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Abstract

In the last decades, the Λ cold dark matter model has been recognised as the standard model of
cosmology due to its remarkable accuracy in explaining cosmological observations. The measurement
of clustering signal from the large-scale structure using summary statistics like the power spectrum
proved to be a useful tool in constraining the parameters of this standard model of cosmology. With
the advent of upcoming next-generation galaxy surveys, which boast extensive volume coverage and
high galaxy number density, the importance of higher-order statistics like the bispectrum is becoming
more apparent in providing the potential for greatly improving current constraints on cosmological
parameters. They also present additional computational and modelling challenges which this thesis
aims to tackle. The study focuses particularly on modelling the bispectrum using the perturbation
theory to enhance its role in extracting cosmological information beyond two-point statistics.

At first we present findings from testing next-to-leading order perturbation theory expansions of the
matter power spectrum and the bispectrum using 𝑁-body simulations, with a focus on the effective
field theory (EFT) of large-scale structure. Results reveal EFT as having the largest range of accuracy
(reach) among perturbation theory models, showcasing its capability to capture small-scale non-linear
effects. The impact of systematic and statistical errors on the model’s reach is also explored.

Next we introduce the use of deep neural networks to model the effect of survey geometry on galaxy
power spectrum and bispectrum. The models demonstrate high accuracy (better than 0.1 per cent) and
computational efficiency. The only challenge in such an approach is creating training datasets for the
bispectrum, which requires significant time investment. However, this step can be accelerated using
massive parallelisation and should not be a challenge in practical applications.

Lastly, the performance of a perturbative galaxy bias expansion up to third order is assessed against
synthetic galaxy catalogues, which replicate the survey characteristics of the next-generation Euclid
spectroscopic galaxy survey. We investigate up to which scales the combination of the real-space galaxy
power spectrum and the bispectrum provide unbiased estimates of the fiducial cosmological parameters,
how well these parameters are constrained. From these tests, it emerges that the combination of the
galaxy power spectrum and the bispectrum modelled using the galaxy bias expansion can accurately
extract the cosmological parameters up to a scale of 0.18 ℎMpc−1. The study also demonstrates
between 2-5 times more gain in the ability to constrain the cosmological parameters by including the
bispectrum data over just using the power spectrum.
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CHAPTER 1

Introduction

Since the dawn of mankind, humans have wondered about the origins of the world and the cosmos
that surrounds it. In early civilisations, astronomical phenomena and stars have been attributed to
religious beliefs, but they also enabled us to predict the seasons and create calendars. Centuries ago,
the exploration of the skies was veiled in mysticism. A pivotal moment in astronomical advancement,
occurring roughly 400 years ago, was the unveiling of Newton’s law of universal gravitation. This
revolutionary discovery not only laid the groundwork for modern cosmology but also expanded our
understanding of the universe. Gravitation stands as the primary force shaping the Universe’s structure,
but its impact reaches further. It revealed a profound realisation: the same physical laws governing
the Earth govern the celestial realms. The heavens, once deemed otherworldly and mystical, are now
recognised as part of our shared cosmic reality, where Earth, despite its modest scale, was an equal
part of it. Today, we are in an extraordinary era where the origins of the cosmos, the birth of the Earth,
life, and humanity have shifted from legend to quantitative science. When employing Earth-bound
telescopes with meter-size mirrors or even turning to telescopes installed in space we can observe
billions of galaxies of various sizes and shapes, and at various distances away from us - we are by no
means special! All of humanity lives on a tiny planet orbiting a star among the hundreds of billions of
other stars in our Galaxy. To give an impression of this, in Fig. 1.1 we show the image from the James
Webb Space Telescope depicting thousands of background galaxies. Considering that thirty million
similar images cover the full sky, one can not comprehend the vastness of the Universe that surrounds
us.

The science that tries to explain the Universe as a whole is the science of cosmology. It asks the
most basic questions like: How did the Universe emerge? How old and how large is it? What does it
contain? How will it evolve in future? Is it static? Even though these questions sound simple, the
answers to them are complicated and hard to achieve due to our limited capacity to observe everything.
The time scale for cosmological evolution is so much longer than that over which we can make
observations, that it is impossible to completely follow the evolution of objects inside it. Furthermore,
we only have access to the one realisation of the Universe and due to this it is difficult to distinguish
the laws of nature from cosmic coincidences. For example, is it a coincidence that our Universe has a
flat geometry, or is there some kind of physical laws behind it? Answering these questions is also
complicated due to the fact that we can observe the current state of the Universe only very locally,
since those events we can look at lie in our past lightcone. If a source is at distance 𝐷, for an observer
it will look Δ𝑡 = 𝐷/𝑐 younger than today. However, this fact due to the finite speed of light makes it
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Chapter 1 Introduction

possible to look back into the past and study the evolution of the Universe.
In the last century, despite these challenges we learned that the Universe is bigger than our galaxy

and is expanding (Hubble, 1929), discovered a dark matter (DM) component that does not interact
with light (Zwicky, 1933; Rubin and Ford, 1970) and detected the Cosmic Microwave Background
(CMB) which confirmed the Big Bang hypothesis (Dicke et al., 1965). We discovered that while dark
matter dominates the structure formation in our Universe, dark energy, abbreviated with Λ, dominates
the total energy budget today and causes the accelerated expansion of the Universe (Riess et al.,
1998). These discoveries formed the basis for the six-parameter model that describes the Universe
as a whole - the Λ Cold Dark Matter (ΛCDM) model. It celebrated a great success for the last two
decades and matches remarkably well with many observations from CMB missions like the Wilkinson
Microwave Anisotropy Probe (WMAP) and Planck (Planck Collaboration et al., 2016), as well as
galaxy redshift surveys like the Two-degree-Field Galaxy Survey (Colless et al., 2001) and Baryon
Oscillation Spectroscopic Survey (BOSS) (Dawson et al., 2013). These measurements have given us
much more precise insight into the energy content of the Universe; over two-thirds of it is dominated
by dark energy, while the matter sector is taken up by dark matter, which is five times more abundant
than the baryons.

Despite these successes of ΛCDM, it is unsatisfactory that the visible matter that can be directly
observed from light sources like stars, galaxies, etc. only makes up roughly 5 per cent of the Universe.
We still have to understand the nature of the rest 95 per cent and reconcile it with the existing theories
of particle physics and general relativity, which currently is the biggest challenge for the ΛCDM
model. Moreover, there are slight inconsistencies (tensions) among different data sets and numerical
studies that might indicate potential problems for the model. These challenges are intended to be
tackled, at least to some extent, through numerous upcoming experiments that leverage a combination
of data from supernovae, gravitational lensing, the CMB, and the distribution of galaxies on a large
scale. This thesis seeks to contribute to the latter field by examining three-point statistics - an analysis
method that, if implemented correctly, has the potential to significantly enhance our utilisation of the
data generated by these new experiments. In the following section, we will lay out the theoretical
background and discuss the goals and open questions that were addressed in this thesis.
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Figure 1.1: An image of the galaxy cluster known as “El Gordo” taken by the James Webb Space Telescope. El
Gordo acts as a gravitational lens, distorting and magnifying the light from distant background galaxies. Credit:
NASA, ESA, CSA.
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CHAPTER 2

Theory

Studying the large scale structure (LSS) of the Universe is one of the main goals of cosmology. It
has become widely accepted that gravitational instability plays a central role in giving rise to the
wonderful structures seen in galaxy surveys. Extracting the wealth of information contained in galaxy
clustering to learn about cosmology thus requires a quantitative understanding of the dynamics of
gravitational instability and application of sophisticated statistical tools that can best be used to test
theoretical models against observations.

In this chapter we will briefly review the fundamentals of cosmology and the theory of structure
formation based on the use of standard perturbation theory (SPT). We will also briefly discuss
the numerical and statistical methods actively used in the observational cosmology to extract the
information from galaxy surveys.

2.1 Cosmology

2.1.1 The Cosmological Principle

Cosmological Principle (CP) states that on large scales, the Universe should be isotropic and
homogeneous - it looks the same in every direction and it has the same properties at every point. This
is a priori assumption about the Universe and is a reasonable postulate backed up by observations (e.g.
Scaramella et al., 1991; Planck Collaboration et al., 2020a). However, in recent years some evidence
has appeared against the assumption of isotropy. Namely, the Hubble constant (Luongo et al., 2022)
and temperature-luminosity relation of galaxy clusters (Migkas et al., 2021, 2022) appear to be not
isotropic. Even though at the moment one can not rule out systematic errors, there is a possibility the
assumption of isotropy will be revised in the future.

We need to combine the CP with General Relativity (GR). According to GR space-time is described
as a four-dimensional manifold and its properties are defined by metric tensor 𝑔𝜇𝜈 . It determines
both the distances between two events and geodesics of free-falling particles, which represent straight
lines (shortest path) following the manifold’s curvature. Distance 𝑠 is computed from the following
equation:

d𝑠2
= 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 , (2.1)

where Einstein’s summation convention is used, which implies summation over the indices that
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Chapter 2 Theory

appear twice. To compute a metric that incorporates CP we need to assume the existence of a set
of fundamental observers - who all experience the Universe in the same way if their clocks are
synchronised, and who all follow the mean motion of matter and radiation. Robertson (1935) and
Walker (1937) showed that by following the above conditions one arrives at the metric

d𝑠2
= 𝑐

2d𝑡2 − 𝑎2(𝑡)
[
d𝜒2 + 𝑓

2
𝐾 (𝜒)

(
d𝜃2 + sin2

𝜃 d𝜙2
)]
. (2.2)

Here, 𝑡 is the cosmic time, 𝑎(𝑡) is the scale factor, 𝜒 is the comoving radial coordinate, 𝜃 and
𝜙 are the angular coordinates on the unit sphere. The above metric in the literature is referred
to as Friedmann-Lemaître-Robertson-Walker metric (hereafter FLRW metric). The scale factor is
normalised such that 𝑎(𝑡0) = 1 today and allows the freedom of homogeneous spatial expansion or
contraction1, i.e. it describes the relative size of the Universe. Using the scale factor we can introduce
comoving coordinates x and physical coordinates r that are related via

r = 𝑎(𝑡) x . (2.3)

Two observers with no peculiar velocity will always have the same comoving distance in space-time.
At last, 𝑓𝐾 (𝜒) is the comoving angular diameter distance, which depends on the curvature parameter
𝐾 in the following way:

𝑓𝐾 (𝜒) =


𝐾

−1/2 sin
(
𝐾

1/2
𝜒

)
for𝐾 > 0

𝜒 for𝐾 = 0
(−𝐾)−1/2 sinh

[
(−𝐾)1/2

𝜒

]
for𝐾 < 0.

(2.4)

The parameter 𝐾 describes the curvature of the space at fixed 𝑡.2 The surface of a sphere with radius 𝜒
is then given by 4𝜋 𝑓 2

𝐾 (𝜒), which differs from the Euclidean value 4𝜋𝜒2 (in the case of 𝐾 = 0, where
space becomes flat).

2.1.2 Friedmann Equations

The Universe, as described by the FLRW metric, is not static; it can contract or expand (in fact, ours
does the latter). If we can determine the evolution of the scale factor 𝑎(𝑡), we can infer the dynamics
of the Universe on the largest scales. To achieve this, we plug in the FLRW metric into Einstein Field
Equations (EFEs), given as

𝑅𝜇𝜈 −
1
2
𝑔𝜇𝜈𝑅 =

8𝜋𝐺
𝑐

4 𝑇𝜇𝜈 − Λ𝑔𝜇𝜈 , (2.5)

where 𝐺 is the gravitational constant, 𝑇𝜇𝜈 is the stress-energy tensor, describing the content of energy
in the space-time, Λ is the cosmological constant (we will explore its meaning later on), 𝑅𝜇𝜈 and
𝑅 are Ricci tensor and Ricci scalar, respectively. The latter two are computed from the Riemann

1 The scale factor depends only on the cosmic time and can be factored out from the spatial components of the metric tensor.
2 Note the difference from the definition of curvature of the space-time, which in turn is described by the Riemann curvature

tensor in Einstein’s field equations
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2.1 Cosmology

curvature tensor 𝑅𝛾𝜇𝜈𝜌 via contraction of indices,

𝑅𝜇𝜈 ≡ 𝑅
𝜎
𝜇𝜈𝜎 (2.6)

and
𝑅 ≡ 𝑅 𝜇𝜇 = 𝑔𝜇𝜈𝑅

𝜇𝜈
. (2.7)

The meaning behind the EFEs, which is the cornerstone of the GR was elegantly summed up by the
physicist John Wheeler in twelve words: "Space-time tells matter how to move; matter tells space-time
how to curve". In other words, the stress-energy tensor dictates what should be the curvature, and that
curvature, in turn, dictates the motion of the matter described by the said tensor.

The Riemann curvature tensor consists of derivatives of the metric tensor up until the second order.
Therefore, the inputs of EFEs are metric and stress-energy tensors. Plugging in the FLRW metric
(2.2) it can be shown that the type of matter contents must be a homogeneous perfect fluid with the
density 𝜌(𝑡) and pressure 𝑝(𝑡). From this calculation, the Friedmann equations can be derived:(

¤𝑎
𝑎

)2
=

8𝜋𝐺
3

𝜌 − 𝐾𝑐
2

𝑎
2 + Λ𝑐

2

3
, (2.8)

¥𝑎
𝑎
= −4𝜋𝐺

3

(
𝜌 + 3𝑝

𝑐
2

)
+ Λ𝑐

2

3
. (2.9)

These equations describe the evolution of the scale factor in time, which is dictated by the r.h.s., i.e.
the different energy densities that were introduced by the stress-energy tensor. The density 𝜌 and
pressure 𝑝 correspond to ‘normal’ matter (particles with or without mass, where the latter is also
called radiation). The term with cosmological constant Λ describes a constant energy density of yet
unknown physical origin. Originally, this constant was introduced by Einstein in the field equations to
allow for a solution that describes a static universe.

In 1928 Edwin Hubble discovered that most galaxies move away from us with a radial velocity 𝑣
which on average is proportional to their distance 𝐷,

𝑣 = 𝐻0 𝐷 , (2.10)

where 𝐻0 is Hubble constant. According to equation (2.10) the Universe is expanding and it is not
static. The value of 𝐻0 is usually parameterised as

𝐻0 = 100 ℎ km s−1 Mpc−1
, (2.11)

where ℎ is a dimensionless number and accounts for the measurement uncertainty about the value of
𝐻0. Namely, the observations of the early Universe like Baryon-acoustic-oscillation (BAO) and the
CMB suggest a value of ℎ = 0.68 ± 0.09 (Planck Collaboration et al., 2016). On the other hand, the
local Universe observations like from supernovae of type Ia (Riess et al., 2022) indicate a higher value
of ℎ = 0.73 ± 0.1. This tension is statistically significant and poses one of the challenges in modern
cosmology. Therefore, since many other parameters depend on the Hubble constant, ℎ is still kept
when working in comoving space. In Fig. 2.1 we show the original plot from Hubble (1929) relating
the recession velocity of galaxies to distance. The linear relation between the two is clearly detectable.
However, this diagram was produced using the objects located close-by. For distant objects the relation
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Chapter 2 Theory

becomes non-linear. One can introduce the time-dependent Hubble function, or expansion rate of the
Universe as it is referred to in the literature, 𝐻 (𝑡) by taking the time derivative of the equation (2.3).
Therefore the velocity of the expansion v will be

v ≡ r = ¤𝑎x =
¤𝑎
𝑎

r(𝑡) = 𝐻 (𝑡) r(𝑡) . (2.12)

According to this, the Hubble constant is the present value of the expansion rate 𝐻0 = 𝐻 (𝑡0). Then one
can define the beginning of the Universe as the event when 𝑎(𝑡) = 0. The evolution of the scale factor
and Hubble function is determined from the Friedmann equations. The solution to these equations
depends on the matter densities in the Universe.

Figure 2.1: The original recession-velocity-versus-distance plot done by Hubble (1929). Plotted are galaxies
(originally referred to as ‘extragalactic nebulae’) whose velocity has been inferred from the spectroscopy. The
distances were estimated using the variable cepheid stars via their period-luminosity relation by relating the
period of their pulsations to the distance modulus. The solid line is a linear fit to the filled circles that represent
individual galaxies. The dashed line is a fit to the empty circles representing galaxies grouped together. The
slope of the lines indicates the Hubble constant.

2.1.3 The matter contents of the Universe

In addition to two Friedmann equations, following the first law of thermodynamics one can write
down the third equation, the adiabatic equation,

d(𝜌𝑐2
𝑎

3) = −𝑝 d(𝑎3) , (2.13)

which tells that the energy density 𝜌𝑐2 within a comoving volume changes with the work done by its
expansion or contraction. From this equation, we can determine the time dependence of the matter
components. Assuming that an equation of state 𝑝 = 𝑤 𝜌𝑐

2 holds, solving the adiabatic equation
yields the solution

𝜌(𝑡) = 𝜌0 𝑎
−3(𝑤+1) (2.14)
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2.1 Cosmology

which tells us that density scales with 𝑎 and exact behaviour depends on 𝑤. The equation is normalised
such that 𝜌0 = 𝜌0(𝑡0), i.e. when 𝑎 = 1.

In cosmology, one distinguishes between three (main) matter components: pressureless matter,
radiation and vacuum energy.

Pressureless matter consists of particles that have mass (such as protons, neutrons, and electrons)
and are characterised by vanishing pressure (𝑝 = 0 and therefore 𝑤 = 0). This assumption holds if
particles are non-relativistic, i.e. 𝑝 ≪ 𝑤𝜌. Then, equation (2.14) implies that

𝜌m(𝑡) = 𝜌m0 𝑎
−3(𝑡) (2.15)

i.e. density times volume stays constant, a result that is intuitively apparent from matter conservation.
The next component is radiation, i.e. relativistic massless particles. Its equation of state is

characterised by 𝑤 = 1/3. Therefore,

𝜌r(𝑡) = 𝜌r0 𝑎
−4(𝑡) . (2.16)

The last component is vacuum energy. It is the energy density of empty space characterised by the
cosmological constant Λ. Its equation of state is 𝑝 = −𝜌𝑐2, which implies the unintuitive negative
pressure. Following equations (2.8) and (2.14), we get

𝜌Λ(𝑡) = 𝜌Λ0 =
Λ𝑐

2

8𝜋𝐺
. (2.17)

The matter density of the Universe is then given by the sum of these three components 𝜌 = 𝜌m+𝜌r+𝜌Λ.
We also define critical density 𝜌cr, which corresponds to the total density for which the Universe is
flat, i.e. when 𝐾 = 0. Therefore, from equation (2.8) follows

𝜌cr =
3𝐻2

0
8𝜋𝐺

. (2.18)

If 𝜌 > 𝜌cr, the Universe is positively curved, otherwise, it is curved negatively. Using this we
can define the cosmological density parameters. These dimensionless quantities are defined as the
respective matter densities relative to the critical density,

Ω𝑖 =
𝜌𝑖0
𝜌cr

. (2.19)

We can further define the total density coefficient of the Universe as Ω0 = Ωr + Ωm + ΩΛ, which is
closely related to the global curvature of the space-time. For a flat universe Ω0 = 1, for a positively
or negatively curved one it will be Ω0 > 1 and Ω0 < 1, respectively. Using these definitions we can
rewrite the Friedmann equation (2.8) as

𝐻
2(𝑎) = 𝐻2

0

[
Ωr

𝑎
4 + Ωm

𝑎
3 +

(1 −Ω0)
𝑎

2 +ΩΛ

]
. (2.20)

One of the main goals of the observational side of cosmology is to determine the values of these density
parameters and Hubble constant, since by knowing them we can describe the Universe’s expansion
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Table 2.1: Cosmological parameters as measured from the CMB (Planck Collaboration et al., 2020a) and
SNeIa (Brout et al., 2022) observations.

Parameter Planck 2018 Pantheon+

Ωm 0.311 ± 0.006 0.334 ± 0.018

ΩΛ 0.689 ± 0.006 0.666 ± 0.018

𝐻0 67.66 ± 0.42 73.6 ± 1.1

history as a solution to the equation (2.20). A lot of effort went into achieving this goal. Modern
cosmology has access to various probes that complement each other which allows us to cross-validate
the different methods for systematic errors and break degeneracies between the parameters. The
basic idea is the following: cosmological observables, like the clustering of galaxies, are sensitive to
cosmological parameters. Therefore, if the observables can be both accurately modeled and measured,
the parameters can be inferred. Some other examples of cosmological probes are CMB, weak-lensing
surveys3 and Supernovae type Ia (hereafter SNeIa) observations4.

In Table 2.1 we present the results of a few selected cosmological parameters measured from the
CMB (Planck Collaboration et al., 2020a) and SNeIa (Brout et al., 2022) observations, assuming a flat
Universe i.e. 𝐾 = 0. While the results from different probes look similar, there are still some tensions
that need to be alleviated either by introducing new physics or reducing systematic errors.

2.1.4 The 𝚲CDM model
As we already mentioned in Sect.1 it was revealed through observations that there exist two exotic
matter components: dark matter (DM) and dark energy. This dark sector can not be observed directly,
but there is a lot of indirect evidence that calls for its existence.

DM does not emit electromagnetic radiation; however, its gravitational impact manifests across
various scales. The rotation curves of galaxies, for instance, deviate from the expected drop at large
radii that one would anticipate based on Keplerian rotation influenced solely by visible baryonic
matter (Sofue and Rubin, 2001). A similar rationale applies to hot gas in galaxy clusters — X-ray
measurements infer temperatures so high that, absent the gravitational influence of DM, the gas would
evaporate from the cluster (Allen et al., 2011). Moreover, the cosmic web (defined in Sect. 2.2)
would not assume its observed form without a ‘backbone’ of DM. Clustering processes on large
scales would generally be much weaker (Eisenstein et al., 2005). Theoretical considerations introduce
different types of DM - called cold, warm, or hot - corresponding to non-relativistic, relativistic, or
ultra-relativistic particles. When comparing quantitative predictions for various DM types against
data, it is found that DM in our Universe is cold (Bardeen et al., 1986; Jenkins et al., 1998), therefore
explaining the part of the current concordance model, Λ Cold Dark Matter (ΛCDM). Thus, since cold

3 Light is deflected by a gravitational potential, described by GR, causing Gravitational Lensing. Depending on the
strength of the potential there are various lensing regimes. In the weak regime, where the potential is small, cosmological
information is extracted using the statistical methods.

4 SNaIa are standard candles which means their luminosity and absolute magnitude can be obtained. Their distance is
recovered by comparing their apparent magnitude to the absolute one. This distance is compared to the one inferred from
the redshift which is cosmology-dependent.
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2.1 Cosmology

dark matter is non-relativistic, the matter density parameter Ωm is the sum of parameters for DM,
Ωc, and baryons, Ωb. The former was observed to be five times bigger than the latter by surveys like
Planck and BOSS.

The emergence of the concept of dark energy can be traced back to the influential studies by Riess
et al. (1998) and Perlmutter et al. (1999), which were later honoured with a Nobel Prize. Using SNeIa
as standard candles, they demonstrated that the Universe is presently undergoing accelerated expansion.
Subsequent works have corroborated this observation (for a review see Huterer and Shafer, 2018). An
expansion history of this nature is only feasible if we infer a contribution to the energy budget with
a density that remains constant over time and has negative pressure, a deduction supported by the
Friedmann equations. Within the ΛCDM framework, this dark energy contribution is encapsulated
through the cosmological constant Λ. Theoretical extensions go beyond this by describing dark
energy as a dynamic, time-dependent quantity (e.g. Chevallier and Polarski, 2001) and there is a
growing evidence to support such extensions according to the next-generation galaxy surveys (DESI
Collaboration et al., 2024).

2.1.5 Cosmological redshift
We need to construct maps of astrophysical sources in three dimensions to extract cosmological
information from them. While the two-dimensional position on the sky can be easily measured, more
difficult is to obtain the distance along the line of sight. An additional complication arises due to the
fact that we live in an expanding universe with non-Euclidean geometry and due to a finite speed
of light when we observe the Universe we are actually looking back in time. Therefore, there is no
unique defintion of distance. Different concepts of distance have emerged that need to be applied in
the correct context. One common way of dealing with these complications is to introduce the concept
of cosmological redshift as a distance indicator.

Due to the expansion of the Universe, the light the galaxies emit gets shifted towards larger
wavelengths. This redshift 𝑧 is defined as follows

𝑧 ≡ 𝜆

𝜆0
− 1 , (2.21)

where 𝜆 is the observed wavelength of a spectral line, whose intrinsic wavelength in a rest-frame is 𝜆0.
The farther away a source is, the stronger the effect will be. We can find out how the cosmological
redshift relates to scale factor 𝑎(𝑡) and, particularly, to cosmic time 𝑡.

From FLRW metric, we find for radial light rays that

𝜒 =

∫ 𝑡0

𝑡

𝑐 d𝑡′

𝑎(𝑡′)
, (2.22)

where a comoving distance 𝜒 between a source and an observer is independent of time by definition.
Since a time interval is the inverse of a frequency 𝜈 we find that

d𝑡0
d𝑡

=
𝜈

𝜈0
=
𝑎(𝑡0)
𝑎(𝑡) =

1
𝑎(𝑡) = 𝑧 + 1 . (2.23)

In the last step, we have used the equation (2.21). The redshift 𝑧 can be used as a distance indicator
or to quantify the time span we look in the past when observing the source. The fact that it is easily
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accessible through spectroscopic measurements makes it very useful in astronomical surveys.
Astronomical surveys that span a wide portion of the sky and whose goal is the three-dimensional

mapping of the cosmos are called the redshift surveys since the information about the line of sight
distance comes from the measured redshift. Early redshift surveys were limited in size since they
allowed observing one object at a time. From the 1990s, the development of fibre-optic and multi-slit
spectrographs enabled the parallel observation of several hundred galaxies. The earliest example is
2dF Galaxy Redshift Survey (2dFGRS) that in the 1900s and early 2000s observed around 2.4 × 106

galaxies in the patch of the sky of ≈ 1500 deg2 (Colless et al., 2001). A more recent one is the Sloan
Digital Sky Survey IV (SDSS-IV; Albareti et al., 2017), the fourth stage of the custom built 2.5m
telescope at Apache Point Observatory, and of particular interest is their Extended Baryon Oscillation
Spectroscopic Survey (eBOSS; Dawson et al., 2016). eBOSS started in 2014 and concentrated on the
observation of galaxies and quasars, in a range of redshifts (0.6 < 𝑧 < 2.2) left completely unexplored
by other surveys. Currently the next-generation redshift surveys like Euclid (Laureijs et al., 2011) and
Dark-Energy Spectroscopic Instrument (DESI Collaboration et al., 2016) with their extensive observed
volume and high galaxy number density are at the forefront of mapping the galaxy distribution on
the very large scales. These missions will play an important role in understanding the nature of dark
energy and structure formation on cosmological scales.

2.2 Cosmological structure formation

The real Universe shows structure on scales up to ∼ 200 ℎ−1Mpc (like in the form of ‘Great Walls’),
which was first detected in the CfA galaxy redshift survey. One of the maps from that survey is shown
in Fig. 2.2.

Besides this wall-like structure, the large filaments of galaxies, and voids in between can be
identified. These correlated structures are created and shaped by gravity. Just as gravity on small
scales pulls together gas particles to form stars, it also pulls together galaxies and matter into patterns
on large scales. These patterns of matter distribution are referred to as large scale structure (LSS) or
‘the cosmic web’. The most natural explanation for the LSS seen in the galaxy surveys is that it is a
result of gravitational amplification of small primordial fluctuations due to the gravitational interaction
of collisionless cold dark matter (CDM) particles in an expanding universe.

All the calculations we performed in the previous sections only describe the homogeneous and
isotropic Universe on the scales above 200 ℎ−1Mpc since we invoked CP. However, when we look at
the small portion of the sky we can see planets, stars, and galaxies, which break this homogeneity.
At these small scales, the CP is invalid. The homogeneous Universe can be described through GR
using the mathematical framework of the FLRW metric. However, such models can not account for
the presence of the structure in the Universe. Hence, the homogeneous world models have to be
supplemented by a description of matter inhomogeneities. In other words, we need another theory
that should explain how actually galaxies, galaxy clusters, and the cosmic web form. It is possible to
accomplish this within the context of the cosmological structure formation.

2.2.1 Dark matter as a fluid

In general, structure formation is a very complicated process - it is in principle an 𝑁-body problem
where an enormous amount of particles interact with each other through various forces. The
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2.2 Cosmological structure formation

Figure 2.2: The Great Wall: in redshift surveys of galaxies with radial velocities of 𝑐𝑧 ≤ 1500 km/s, a large
galaxy structure was discovered located at a redshift of 𝑐𝑧 ∼ 6000 km/s. Each dot on this wedge diagram
represents a galaxy. The polar angle denotes the rectascension, whereas the radial coordinate denotes the
redshift of the galaxies, which measures their distances according to Hubble’s law. Source: Geller and Huchra
(1989)

.

cosmological processes happen on large scales and all forces besides gravity can be safely neglected -
still, it is practically impossible to treat structure formation analytically as an 𝑁-body problem. The
solution is to approach this problem in the framework of hydrodynamics and treat matter as a fluid
instead. Therefore, we do not need to follow individual particles, but instead describe the smooth
fields of density 𝜌 and velocity u.

We can simplify the problem by concentrating on the structure formation of dark matter only and
thus the pressure will be set to zero5. This is justified since the matter component of the Universe
contains much more dark matter than baryons (Planck Collaboration et al., 2020a). Furthermore, we
shall consider matter perturbations on scales much smaller than the horizon scale at a given epoch,
since on large scales the curvature of space-time is important. This allows us to apply the simpler
Newtonian gravitation and avoid the full treatment in the framework of more complicated General
Relativity. Finally, we concentrate on the matter-dominated epoch of the Universe, i.e. where the
matter term in the Friedmann equations dominates. This implies that Ωr = 0.

5 Since the dark matter in the Universe is collisionless the fluid approximation breaks down on small scales or at late times.
This means that streams of dark matter particles can cross each other without frictional interactions, therefore there is not
a well-defined velocity field u(r), but multi-streams do occur. However, on large scales and at early times, such multiple
streams are unimportant, and the fluid approximation applies.
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Taking all these into account we can write the following fluid equations:

𝜕𝜌(r, 𝑡)
𝜕𝑡

+ ∇𝑟 · [𝜌 u(r, 𝑡)] = 0 Continuity equation (2.24)

𝜕u
𝜕𝑡

+ (u · ∇𝑟 )u = −∇𝑟𝜙 Euler equation (2.25)

∇2
𝑟𝜙 = 4𝜋𝐺𝜌 − Λ Poisson equation (2.26)

The continuity equation (2.24) describes the conservation of mass. The Euler equation (2.25) is the
equation of motion for the fluid. The left-hand side of this equation is the Lagrangian derivative of
the fluid velocity, which describes the change of velocity as measured by an observer who follows
the flow. This change of flow velocity is caused by the acceleration, which in this case provided by
the gravitational acceleration −∇𝑟𝜙. The Poisson equation (2.26) has been modified to include the
cosmological constant.

Next we rewrite the equations in terms of comoving coordinates

x =
r
𝑎(𝑡) (2.27)

For the density and velocity field we then have

𝜌(r, 𝑡) = 𝜌̂(x, 𝑡) (2.28)
u(r, 𝑡) = ¤𝑎 x + v(x, 𝑡) (2.29)

As one can see the velocity field has two components: the Hubble expansion of the homogeneous
Universe and the peculiar velocity v(x, 𝑡). Although 𝜌(r) and 𝜌̂(x) describe the same density field,
they are different mathematical functions. Before writing down the equations in comoving coordinates
it is helpful instead of using density field to define a so-called density contrast as

𝛿(x, 𝑡) = 𝜌̂(x, 𝑡) − 𝜌̄(𝑡)
𝜌̄(𝑡) , (2.30)

where 𝜌̄(𝑡) is the mean density. As we mentioned above, if this parameter is small the linear
approximation can be used.

Thus, the fluid equation system in the comoving coordinates is

𝜕𝛿

𝜕𝑡
+ 1
𝑎
∇𝑥 · [(1 + 𝛿)v] = 0 (2.31)

𝜕v
𝜕𝑡

+ ¤𝑎
𝑎

v + 1
𝑎
(v · ∇𝑥)v = −1

𝑎
∇𝑥Φ (2.32)

∇2
𝑥Φ =

3𝐻2
0Ωm
2𝑎

𝛿 (2.33)

Here 𝛷 is the comoving gravitational potential

Φ = 𝜙(𝑎x, 𝑡) + ¥𝑎𝑎
2

|x|2 (2.34)
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2.2 Cosmological structure formation

These 3 equations, (2.31), (2.32) and (2.33), form the complete set of evolution equations for the
density contrast 𝛿 and the peculiar velocity v, coupled via the gravitational potential Φ. The trivial
solution 𝛿 ≡ 0, v ≡ 0, 𝛷 ≡ 0 corresponds to the unperturbed, homogeneously expanding Universe.
Hence, 𝛿 and v describe the deviations of the density and velocity field from this homogeneous
expansion.

The equations written in the above form are non-linear and can not be solved analytically. If we
consider small perturbations in the density field and small peculiar velocities, we can linearize the
foregoing equations in the small quantities 𝛿 and v. In the continuity equation (2.31) the term v𝛿 is of
second order and will be neglected. The same is true for the term 1

𝑎
(v · ∇𝑥)v in the Euler equation

(2.32), whereas the Poisson equation (2.33) is already linear. The other two then become

𝜕𝛿

𝜕𝑡
+ 1
𝑎
∇ · v = 0 , (2.35)

𝜕v
𝜕𝑡

+ ¤𝑎
𝑎

v = −1
𝑎
∇Φ , (2.36)

where we drop the index on ∇-operator. since all the spatial derivatives are with respect to comoving
coordinates.

Taking the time derivative of the linearized continuity equation (2.35), and the divergence of the
linearized Euler equation (2.36),

𝜕

𝜕𝑡

[
𝜕𝛿

𝜕𝑡
+ 1
𝑎
∇ · v

]
= 0 ,

∇
𝑎
·
[
𝜕v
𝜕𝑡

+ ¤𝑎
𝑎

v = −1
𝑎
∇Φ

]
and then combining the two resulting equations, together with the Poisson equation (2.33) to replace
the Laplacian of Φ yields

𝜕
2
𝛿

𝜕𝑡
2 + 2 ¤𝑎

𝑎

𝜕𝛿

𝜕𝑡
−

3𝐻2
0Ωm

2𝑎3 𝛿 = 0 (2.37)

Even though the density contrast depends on the variables x and 𝑡, (2.37) does not contain derivatives
with respect to x, nor does x occurs explicitly in coefficients of this linear equation. Hence, (2.37)
is an ordinary differential equation and the solution can be factorised. The general solution to this
equation is

𝛿(x, 𝑡) = 𝐷+(𝑡)Δ+(x) + 𝐷− (𝑡)Δ− (x) , (2.38)

where 𝐷±(𝑡) are two linearly independent solutions and Δ±(x) are two arbitrary functions of position
describing the initial density field configuration. Equation (2.37) together with Friedmann equation
(2.20) determines the growth of density perturbations in the linear regime as a function of cosmology.
𝐷+ grows with cosmic time, whereas 𝐷− is a decreasing function. Thus, if at some early time, both
modes were present, the 𝐷− mode would have died away quickly. Therefore, only the growing mode
is relevant for structure formation. The 𝐷+ is called a growth factor.

A closed-form solution for the 𝐷± does not exist, but there are some important cases that can be
considered.
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• When Ωm = 1, Ω𝛬 = 0 (Einstein-de Sitter (EdS) universe), we have the simple solution

𝐷+ = 𝑎(𝑡), 𝐷− = 𝑎(𝑡)−
3
2 , (2.39)

thus density fluctuations grow as the scale factor.

• In the case where there is only matter and vacuum energy, the linear growth admits the integral
representation as a function of Ωm and Ω𝛬:

𝐷+ = 𝑎
3
𝐻 (𝑎) 5Ωm

2

∫ 𝑎

0

d𝑎′

[𝑎′𝐻 (𝑎′)]3 (2.40)

In general, it is not possible analytically to solve this integral, but an approximate form of the
growth factor has been derived in Carroll et al. (1992),

𝐷+(𝑎) =
5 𝑎Ωm(𝑎)

2

[
Ω

4/7
m (𝑎) −ΩΛ(𝑎) +

(
1 + Ωm(𝑎)

2

) (
1 + ΩΛ(𝑎)

70

)]−1

. (2.41)

2.3 Standard perturbation theory
We will now consider the evolution of density and velocity field beyond the linear approximation. To
do so, we will make an approximation, that is, we will characterise the velocity field by its divergence,
𝜃 = ∇ · v, and neglect the vorticity degrees of freedom. From equation (2.32) we can write the
evolution equation for vorticity, w = ∇ × v, as

𝜕w
𝜕𝑡

+ ¤𝑎
𝑎

w − 1
𝑎
∇ × [v × w] = 1

𝑎
∇ ×

(
1
𝜌
∇ · 𝜎

)
, (2.42)

where we have temporarily restored the stress tensor contribution (𝜎𝑖 𝑗) to the conservation of
momentum. We see that if 𝜎𝑖 𝑗 ≈ 0, as in the case of a pressureless ideal fluid, if the primordial
vorticity vanishes, it remains zero at all times. On the other hand, if the initial vorticity is non-zero,
in the linear regime it decays due to the expansion of the universe; however, it can be amplified
non-linearly through the third term in equation (2.42). In what follows, we will assume that initial
vorticity vanishes, thus equation (2.42) together with the equation of state 𝜎𝑖 𝑗 ≈ 0 guarantees that
vorticity stays zero throughout the evolution. It must be noted, that this assumption is only valid as
long as the condition 𝜎𝑖 𝑗 ≈ 0 remains true; in particular, multi-streaming and shocks can generate
vorticity. This is expected to happen at small enough scales.

The general assumption of standard perturbation theory (SPT) is that the linear density field still
dominates on intermediate scales, and non-linear gravitational interaction between particles imposes
only small corrections onto it. Thus it is possible to expand the density and velocity fields about the
linear solutions. Linear solutions correspond to simple (time-dependent) scaling of the initial density
field; thus we can write

𝛿(x, 𝑡) =
∞∑︁
𝑛=1

𝛿
(𝑛) (x, 𝑡) , 𝜃 (x, 𝑡) =

∞∑︁
𝑛=1

𝜃
(𝑛) (x, 𝑡) , (2.43)
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where 𝛿 (1) and 𝜃 (1) are linear in the initial density field, 𝛿 (2) and 𝜃 (2) are quadratic in the initial
density field, etc..

On large scales, when fluctuations are small, linear perturbation theory (PT) provides an adequate
description of cosmological fields. In this regime, different Fourier modes evolve independently
(they do not couple) conserving the primordial statistics. Therefore, it is natural to Fourier transform
equation (2.31), (2.32) and (2.33) and work in Fourier space. Convention for the Fourier transform of
an arbitrary field 𝐴(x, 𝑡) throughout this work will be

𝐴̃(k, 𝑡) =
∫

d3x e−ik·x
𝐴(x, 𝑡) . (2.44)

When non-linear terms in the perturbation series are taken into account, the equations of motion in
Fourier space show the coupling between different Fourier modes characteristic of non-linear theories.
Taking the divergence of equation (2.32) and Fourier transforming the resulting equations of motion
we get

𝜕𝛿(k, 𝑡)
𝜕𝑡

+ 𝜃 (k, 𝑡) = −
∫

d3k1d3k2

(2𝜋)3 𝛿D(k − k12) 𝛼(k1, k2) 𝜃 (k1, 𝑡) 𝛿(k2, 𝑡) , (2.45)

𝜕𝜃 (k, 𝑡)
𝜕𝑡

+ 𝐻 (𝑡) 𝜃 (k, 𝑡) + 3
2
Ωm𝐻

2(𝑡) 𝛿(k, 𝑡) = −
∫

d3k1d3k2

(2𝜋)3 𝛿D(k − k12)

× 𝛽(k1, k2) 𝜃 (k1, 𝑡) 𝜃 (k2, 𝑡) ,

(2.46)

(𝛿D denotes the three dimensional Dirac delta function, k12 = k1 + k2) where the functions

𝛼(k1, k2) =
k12 · k1

𝑘
2
1

, 𝛽(k1, k2) =
𝑘

2
12(k1 · k2)

2𝑘2
1𝑘

2
2

(2.47)

encode the non-linearity of the evolution (mode coupling) and come from the non-linear terms in the
fluid equations (2.31), (2.32). From (2.45) and (2.46) we see that the evolution of 𝛿(k, 𝑡) and 𝜃 (k, 𝑡) is
determined by the mode coupling of the fields at all pairs of wave vector k1 and k2 whose sum is k.

Let us first consider the EdS universe, for which Ωm = 1 and ΩΛ = 0. In this case the equations
(2.45) and (2.46) can be formally solved with the following perturbative expansion:

𝛿(k, 𝑡) =
∞∑︁
𝑛=1

𝑎
𝑛 (𝑡) 𝛿 (𝑛) (k, 𝑡) , 𝜃 (k, 𝑡) = −𝐻 (𝑡)

∞∑︁
𝑛=1

𝑎
𝑛 (𝑡) 𝜃 (𝑛) (k, 𝑡) , (2.48)

where only the fastest-growing mode is taken into account. At small 𝑎, the series are dominated
by their first term, and since 𝜃 (1) (k) = 𝛿

(1) (k) from the continuity equation, 𝛿 (1) (k) completely
characterises the linear fluctuations.

The equations of motion (2.45) and (2.46) determine 𝛿 (𝑛) (k) and 𝜃 (𝑛) (k) in terms of the linear
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fluctuations to be

𝛿
(𝑛) (k) =

∫ d3q1 · · · d
3q𝑛

(2𝜋)3(𝑛−1) 𝛿D(k − q1· · ·𝑛)𝐹𝑛 (q1, . . . , q𝑛)𝛿
(1) (q1) · · · 𝛿

(1) (q𝑛) , (2.49)

𝜃
(𝑛) (k) =

∫ d3q1 · · · d
3q𝑛

(2𝜋)3(𝑛−1) 𝛿D(k − q1· · ·𝑛)𝐺𝑛 (q1, . . . , q𝑛)𝛿
(1) (q1) · · · 𝛿

(1) (q𝑛) , (2.50)

where 𝐹𝑛 and 𝐺𝑛 are homogeneous functions, which are constructed from the fundamental mode
coupling functions 𝛼(k1, k2) and 𝛽(k1, k2) according to recursion relations

𝐹𝑛 (q1, . . . , q𝑛) =
𝑛−1∑︁
𝑚=1

𝐺𝑚(q1, . . . , q𝑚)
(2𝑛 + 3) (𝑛 − 1) [(2𝑛 + 1)𝛼(k1, k2)𝐹𝑛−𝑚(q𝑚+1, . . . , q𝑛)

+ 2 𝛽(k1, k2)𝐺𝑛−𝑚(q𝑚+1, . . . , q𝑛)] ,

(2.51)

𝐺𝑛 (q1, . . . , q𝑛) =
𝑛−1∑︁
𝑚=1

𝐺𝑚(q1, . . . , q𝑚)
(2𝑛 + 3) (𝑛 − 1) [3𝛼(k1, k2)𝐹𝑛−𝑚(q𝑚+1, . . . , q𝑛)

+ 2𝑛𝛽(k1, k2)𝐺𝑛−𝑚(q𝑚+1, . . . , q𝑛)] ,

(2.52)

where k1 = q1 + · · · + q𝑚, k2 = q𝑚+1 + · · · + q𝑛, k = k1 + k2 and 𝐹1 = 𝐺1 = 1. Particularly, for 𝑛 = 2
we have

𝐹2(q1, q2) =
5
7
+ 1

2
q1 · q2
𝑞1𝑞2

(
𝑞1
𝑞2

+ 𝑞2
𝑞1

)
+ 2

7

(
q1 · q2
𝑞1𝑞2

)2

, (2.53)

𝐺2(q1, q2) =
3
7
+ 1

2
q1 · q2
𝑞1𝑞2

(
𝑞1
𝑞2

+ 𝑞2
𝑞1

)
+ 4

7

(
q1 · q2
𝑞1𝑞2

)2

. (2.54)

In general, the SPT expansion is more complicated because the solutions at each order become
non-separable functions of 𝑡 and k. In particular, the growing mode at order 𝑛 does not scale as 𝐷𝑛+ (𝑡)
or 𝑎𝑛 (𝑡) as in (2.48). It was shown in Scoccimarro et al. (1998) that a simple approximation to the
equations of motion for general Ωm and ΩΛ leads to separable solutions to arbitrary order in SPT and
the same recursion relations (2.51) and (2.52) as in the EdS case. Thus, for the arbitrary cosmology,
the perturbative solution will be

𝛿(k, 𝑡) =
∞∑︁
𝑛=1

𝐷
𝑛
+ (𝑡) 𝛿

(𝑛) (k, 𝑡) , 𝜃 (k, 𝑡) = −𝐻 (𝑡) 𝑓 (Ωm,ΩΛ)
∞∑︁
𝑛=1

𝐷
𝑛
+ (𝑡) 𝜃

(𝑛) (k, 𝑡) , (2.55)

where 𝑓 (𝛺m, 𝛺𝛬) = d ln𝐷+/d ln 𝑎. All the information on the dependence of the SPT solutions on
the cosmological parameters Ωm and ΩΛ is then encoded in the linear growth factor, 𝐷+(𝑡). Although,
this approximation was shown to generate systematic shifts at the per cent level when applied to
three-point statistics like bispectrum (Steele and Baldauf, 2021).

Given knowledge of 𝛿 (1) , we can construct the density field at a specific time up to an arbitrary order
and incorporate non-linear gravitational clustering to our desired level of accuracy. However, this will
lead to exceedingly intricate analytical expressions. Moreover, it is unclear until which scale 𝑘max this
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2.3 Standard perturbation theory

methodology remains valid and precisely models the actual density field since, at extremely non-linear
scales, multi-streaming will occur and invalidate the fluid approximation on which the entire treatment
is based. We cannot determine this threshold using first principles, so we must compare our theoretical
framework with empirical data to address this issue. This difficulty can be tackled using numerical
𝑁-body simulations, which we will explain in Sect. 2.7. For the time being, we will shift our attention
away from larger scales (and the fluid approximation) towards strongly non-linear scales, where we
will explore a potential theoretical approach in greater detail.

2.3.1 Dark-matter halos

Figure 2.3: A dark-matter halo obtained from a high-resolution cosmological 𝑁-body simulation (More et al.,
2015). The halo has an approximately spherical shape and is supplied with matter from the outer regions via
anisotropic filaments. The density of the halo is greatest at its center and gradually decreases towards the
outskirts. The white lines visible in the image correspond to different physical criteria utilised to establish the
boundaries of the halo.

At the smallest scales of the cosmic web, where collapse in all three dimensions takes place,
the gravitational 𝑁-body interaction is difficult to describe analytically due to limited possibilities.

30th April 2025 12:58 19



Chapter 2 Theory

To overcome this issue, one way is to utilise the spherical collapse model (Gunn and Gott, 1972),
which assumes a spherically-symmetric mass overdensity in an otherwise uniform universe. This
model proposes that during early times, shells of matter recede from the center of mass due to the
Hubble expansion, causing the physical radius of the overdensity to increase with time. However,
the gravitational attraction of the shells stalls the recession process, and thus the comoving radius
decreases with time. If the initial perturbation is dense enough, the shells will eventually reach a
maximum physical size, known as the turn-around radius, and then collapse. The result of this
collapse is a virialised object of finite size in equilibrium, which is referred to as a dark-matter halo.

The average density of the halo 𝜌vir can be computed as 𝜌vir = Δvir 𝜌̄m(𝑡) where 𝜌̄m(𝑡) is the mean
matter density of the Universe and the overdensity Δvir depends on the cosmological parameters and
in general on time. For an EdS universe it is Δvir ≈ 178 for all 𝑡, for ΛCDM universe the values vary
between the EdS value at very high redshifts and increases as we approach the current epoch. It can
be shown that collapse happens when the initial overdensity field 𝛿 ≥ 1.68, which means that already
in the linear regime we can identify the locations of halo formation.

The idealised model presented earlier is just a simplification, as reality is a much more complex
process. In actuality, a density perturbation will not exist in isolation, but rather within the
intricate environment of the cosmic web. To account for this, the ellipsoidal collapse model was
introduced (Bond and Myers, 1996), which relaxes the assumption of spherical symmetry. The
formation process and internal structure of haloes remain active fields of research and are investigated
using both analytical and numerical approaches (e.g. Borzyszkowski et al., 2014; More et al., 2015;
Borzyszkowski et al., 2017). Fig. 2.3 shows a halo from an 𝑁-body simulation, which is being
assembled through anisotropic streams of matter from the outer regions. The density of the halo is
highest at the center and gradually decreases towards the outskirts. For more details on simulations,
please refer to Sect. 2.7.

Rather than delving into the details of halo formation, our study focuses on larger scales, with
an emphasis on haloes that are modeled as point-like objects and serve as tracers of the LSS. Since
we lack direct access to DM and the cosmic web, which primarily comprises it, we instead observe
discrete objects that follow the LSS due to their physical formation process. Under the assumptions
that DM haloes form in dense regions of the LSS (with denser regions having more massive and denser
haloes; Kaiser, 1984; Bardeen et al., 1986), and that galaxies subsequently form in DM haloes (where
baryons cool and fall into the gravitational potential; Mo et al., 2010), we can utilize this relationship
to make inferences about cosmology from galaxy surveys. This connection between discrete objects
and an underlying continuous distribution is referred to as tracer bias or more specifically halo and
galaxy bias (Desjacques et al., 2018). A more comprehensive and quantitative description of this
concept will be explored in the following section.

2.4 Halo and galaxy bias

Moving from the DM distribution to galaxies generally involves two distinct steps. Initially, we require
a method to connect the DM density field to the DM haloes, followed by another process to populate
these haloes with galaxies (Fry and Gaztanaga, 1993; Cooray and Sheth, 2002; Berlind and Weinberg,
2002). This two-step approach is necessary because a single DM halo may contain multiple galaxies
of varying masses and luminosities, which cannot be directly inferred from the halo’s properties alone.

There are two possible approaches to address this issue. Firstly, one can try to comprehend the
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2.4 Halo and galaxy bias

Figure 2.4: The maps of the galaxy distribution observed by SDSS and the one extracted from the Bolshoi
simulation. Credit: Bettoni (2013).

physical mechanisms that cause bias. This method necessitates a thorough understanding of the
halo formation process (or the arrangement of peaks, which are points in space where the density
field exceeds a particular threshold). Alternatively, one can take a more phenomenological approach,
based on fundamental physical principles, but with the primary aim of developing a practical method
for application in observations. In this study, we will mainly concentrate on the latter approach.
Such a phenomenological model that connects haloes (or tracers in general) to the underlying matter
distribution is called a Eulerian biasing scheme (McDonald and Roy, 2009; Baldauf et al., 2011;
Desjacques, 2013).

The basic assumption is that the overdensity field of galaxies 𝛿g(x) is related to the matter density
field 𝛿(x) in some general form 𝛿g(x) = F [𝛿], where F is a functional. In Fig. 2.4 we illustrate
the motivation for this assumption: if one puts the map of the survey over the map predicted by the
𝑁-body simulation, they will exhibit remarkable visual statistical similarity. The most simple relation
between these two fields is expressed through linear bias model, i.e. 𝛿g = 𝑏1𝛿 (Kaiser, 1984). This
relation only holds true on the very large scales (Gaztanaga and Frieman, 1994).

A biasing scheme is called local if it can be written down in the form of an expansion,

𝛿g(x, 𝑡) =
∑︁
O
𝑏O (𝑡) O(x, 𝑡) , (2.56)

where O denotes an bias operator and 𝑏O the respective bias parameter. The former describes
the properties of the galaxies’ environment on which their density can depend, and the latter are
numbers that do not depend on spatial coordinates, but may certainly depend on galaxy properties
like colour or luminosity. The parameters can be positive or negative, and the larger the absolute
value of a bias parameter is, the more importance the respective operator has for describing the
galaxy field. Historically, the operators O would just be taken as powers of the density field, i.e.
𝛿g = 𝑏1𝛿 + 𝑏2𝛿

2 + 𝑏3𝛿
3 + . . . (Fry and Gaztanaga, 1993). Research has revealed that these models
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do not entirely capture the halo field. To obtain a more accurate representation, one should consider
other factors, such as different combinations of density field derivatives or even the peculiar velocity
field (Mirbabayi et al., 2015).

Typically, the exact values of bias parameters are not of utmost importance. Instead, in observations
such as galaxy clustering surveys, a bias model is assumed, and the bias parameters are considered
as free parameters of that model, which will be marginalised during the data analysis process (Cole
et al., 2005; Percival et al., 2007; Blake et al., 2010; Granett et al., 2012; Alam et al., 2017). The
primary challenge is to identify a bias model that accurately describes real-world conditions, which is
not a simple task. Equation (2.56) provides a lot of freedom, which must be reduced using reasonable
arguments. While it is mathematically feasible to formulate a comprehensive set of operators or basis
up to a certain expansion order, determining which operators are necessary for a practical physical
context is crucial. Additionally, the minimum scale that one is attempting to model will likely dictate
the need for specific operators. Moreover, one must determine how to link the operators to cosmology
or how to model the operators themselves such that they rely on cosmological parameters.

2.5 Cosmic fields and their statistical description
Until this point, we discussed how the density field evolves in time, and gave the equations that describe
gravitational clustering. In the following section, we shall derive the explicit spatial dependency,
i.e. 𝛿(x). The current explanation of the LSS of the Universe is that the present distribution of
matter on cosmological scales results from the growth of primordial, small, seed fluctuations on an
otherwise homogeneous universe amplified by gravitational instability. Tests of cosmological theories
which characterise these primordial seeds are not deterministic in nature but rather statistical, for the
following reasons:

• We do not have direct observational access to primordial fluctuations, which would provide
definite initial conditions for the deterministic evolution equations.

• The time scale for cosmological evolution is so much longer than that over which we can make
observations, that it is impossible to follow the evolution of single systems. In other words, what
we observe through our past light cone is different objects at different times of their evolution;
therefore, testing the evolution of structure must be done statistically.

The observable Universe is modelled as a stochastic realisation of a statistical ensemble of
possibilities. The goal is to make statistical predictions, which in turn depend on the statistical
properties of the primordial perturbations leading to the formation of LSS.

2.5.1 Statistical homogeneity and isotropy
A random field is characterised by the probability that a specific realisation 𝛿(x) of the density
fluctuations occurs. Abstractly a random field can be better described as follows. We assume that
all possible realisations of the density field are smooth so that 𝛿(x) can be described, with sufficient
accuracy, by its values on a regular grid in x. Let x𝑖 be as set of appropriately numbered grid-points,
and let 𝛿𝑖 = 𝛿(x𝑖) be the density contrast at x𝑖. The realization of the random field is then described
by the set of the 𝛿𝑖 , and the random field is characterized by the joint probability distribution

𝑝(𝛿1, 𝛿2, . . . ) d𝛿1d𝛿2 . . . (2.57)
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2.5 Cosmic fields and their statistical description

that 𝛿(x𝑖) lies within d𝛿𝑖 of 𝛿𝑖 . Hence, the description of the random fields reduces to a joint probability
distribution of discrete random variables.

We stated in Sect. 2.1 that on large enough scales the Universe is homogeneous and isotropic;
therefore, the density field should share these properties. This is formulated by the requirement that if
all grid points are translated and rotated in the same way, x −→ R(x + y), where R is a rotation matrix
and y a translation vector, the probability density 𝑝 must remain unchanged. Thus, the probabilities
depend only on the relative positions.

2.5.2 Two-point correlation function and power spectrum

Given that we are approaching the issue of structure formation from a statistical perspective, it is
logical to incorporate statistical quantities that enable us to provide accurate details regarding the
statistical properties of the random field. Our aim is to establish the mathematical tools necessary for
a precise and quantitative analysis.

We shall now consider second-order statistical properties of a density field 𝛿(x). The two-point
correlation function is defined as the joint ensemble average of the density at two different locations,

𝜉 (𝑟) = ⟨𝛿(x) 𝛿(x + r)⟩ , (2.58)

which depends only on the distance 𝑟 between the two points due to statistical homogeneity and
isotropy. Here ⟨· · · ⟩ denotes the average over the ensemble of realisations of the random field. In
practice, the ensemble average can be replaced with a volume average. In the limit 𝑟 → 0 it coincides
with the variance of the field

lim
𝑟→ 0

𝜉 (𝑟) = ⟨𝛿2(x, 𝑡)⟩ . (2.59)

The density contrast 𝛿(x) is usually written in terms of its Fourier components,

𝛿(x) =
∫

d3k
(2𝜋)3 𝛿(k) eik·x

. (2.60)

The quantities 𝛿(k) are then complex random variables. As 𝛿(x) is real, it follows that

𝛿(k) = 𝛿∗(−k) . (2.61)

The density field is, therefore, determined entirely by the statistical properties of the random variable
𝛿(k). We can compute the correlators in Fourier space,

⟨𝛿(k)𝛿(k′)⟩ =
∫

d3x d3r ⟨𝛿(x)𝛿(x + r)⟩ e−i(k+k′ ) ·x−ik′ ·x
, (2.62)
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which gives,

⟨𝛿(k)𝛿(k′)⟩ =
∫

d3x d3r 𝜉 (𝑟) e−i(k+k′ ) ·x−ik′ ·r

= (2𝜋)3
𝛿D(k + k′)

∫
d3r 𝜉 (𝑟) eik·r

= (2𝜋)3
𝛿D(k + k′)𝑃(𝑘) , (2.63)

where 𝑃(𝑘) is by definition the density power spectrum and 𝑘 = |k|. The inverse relation between
two-point correlation function and power spectrum reads

𝜉 (𝑟) =
∫

d3k
(2𝜋)3 𝑃(𝑘) eik·r

. (2.64)

Hence, the power spectrum and the two-point correlation function are Fourier transform pairs. Both
of these functions give information about how strongly clustered the field is depending on the scale.
In order to extract cosmological insights from the power spectrum, the conventional approach involves
modelling it using a physical framework that incorporates cosmological parameters. Subsequently,
a comparison is made between the modelled power spectrum and the observed power spectrum.
Alternatively, one can utilise the two-point correlation function which contains identical information.
However, performing numerical calculations in Fourier space is frequently preferred due to its reduced
complexity and computational cost.

2.5.3 Gaussian random fields and the Wick theorem

The power spectrum is a well-defined quantity for almost all homogeneous random fields. This concept
becomes extremely useful when one considers a Gaussian field. It means that any joint probability
distribution 𝑝(𝛿1, 𝛿2, . . . ) of local densities 𝛿𝑖 follows the Gaussian normal distribution.

A Gaussian random field is characterised by the properties:

• the Fourier components 𝛿(k) are mutually statistically independent,

• the probability density for 𝛿(k) is described by Gaussian,

• the joint probability distribution of a number 𝑁 of linear combinations of the random variables
𝛿(x𝑖) is a multivariate Gaussian.

For Gaussian fields any ensemble average of the product of variables can be obtained by the product
of ensemble averages of pairs. This rule written explicitly for the Fourier modes of density field 𝛿(x) is

⟨𝛿(k1) · · · 𝛿(k2𝑁+1)⟩ = 0 , (2.65)

⟨𝛿(k1) · · · 𝛿(k2𝑁 )⟩ =
∑︁

all pair associations

∏
𝑁 pairs (𝑖, 𝑗 )

⟨𝛿(k𝑖)𝛿(k 𝑗)⟩

=
∑︁

all pair associations

∏
𝑁 pairs (𝑖, 𝑗 )

(2𝜋)3
𝑃(k𝑖)𝛿D(k𝑖 + k 𝑗) , (2.66)
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where we used (2.63) to express the correlators ⟨𝛿(k𝑖)𝛿(k 𝑗)⟩ using the power spectrum 𝑃(k𝑖). This is
the Wick theorem. Hence, according to this theorem, the correlator vanishes for any odd number of
variables. This theorem is very convenient for quantitative considerations. Therefore, the statistical
properties of the Gaussian random variables 𝛿(k) are fully specified by its power spectrum.

General random fields are not Gaussian and to specify a random field, one needs to specify all
𝑁-point correlation functions. Throughout this work, we assume that the density fluctuations in the
early Universe are a realisation of a Gaussian random field, which is justified by observations, since
CMB, which essentially tells us the initial conditions of structure formation, is indeed very close to
Gaussian random field (Planck Collaboration et al., 2020b). However, non-linear evolution of the
density fields due to gravitational instability (i.e. the formation of the LSS and DM haloes) turns it
into a highly non-Gaussian field at the present epoch – this can also be understood from the SPT
equations: At next-to-leading order, i.e. for the calculation of 𝛿𝑛≥2, integrals need to be computed
that couple the density fields at different scales k to each other, whereas for Guassian random field the
modes evolve independently.

2.5.4 Three-point correlation function and bispectrum

The three-point correlation function is the lowest-order statistic sensitive to non-Gaussianity. It is
defined similarly to two-point correlation function, by taking an ensemble average of the field at three
different locations,

𝜉3(𝑥1, 𝑥2, 𝑥3) = ⟨𝛿(x1)𝛿(x2)𝛿(x3)⟩ (2.67)

The Fourier equivalent of the three-point correlation function is the bispectrum 𝐵(𝑘1, 𝑘2, 𝑘3), defined
by

(2𝜋)3
𝛿D(k1 + k2 + k3)𝐵(𝑘1, 𝑘2, 𝑘3) = ⟨𝛿(k1)𝛿(k2)𝛿(k3)⟩ . (2.68)

As one can notice, the bispectrum is defined only for closed triangles of wavevectors, i.e. where
k1 + k2 + k3 = 0. Some of the triangular configurations are shown in Fig. 2.5.

As the bispectrum is a function of both the size and shape of triangles formed by a closed loop
of 𝑘-vectors, there is more information encoded in the bispectrum compared to the power spectrum.
Historically, the bispectrum has been considered as a useful tool to learn about the statistical properties
of the primordial density perturbations that seeded structure formation (their degree of non-Gaussianity,
in particular) and to study non-linear physical processes like gravitational dynamics and galaxy biasing.
Furthermore, the bispectrum can be used as an independent statistic to complement the power spectrum
when inferring the cosmological parameters.

Correlation functions are directly related to the multi-point probability function. The physical
interpretation of the two-point correlation function is that it measures the excess over the random
probability that two particles at volume elements d𝑉1 and d𝑉2 are separated by distance 𝑥12 = |x1 − x2 |,

d𝑃12 = 𝑛
2 [1 + 𝜉 (𝑥12)]d𝑉1d𝑉2 , (2.69)

where 𝑛 is the mean density. If there is no clustering (random distribution), 𝜉 = 0 and the probability
of having a pair of particles is just given by the mean density squared, independent of distance. If
objects are clustered (𝜉 > 0), the probability is enhanced, whereas if objects are anti-correlated (𝜉 < 0)
the probability is suppressed. Similarly, for the three-point case, the probability of having three objects
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Figure 2.5: Visual representations of triangles forming the bispectrum, 𝐵(𝑘1, 𝑘2, 𝑘3), with various combinations
of triangles satisfying 𝑘3 ≤ 𝑘2 ≤ 𝑘1. Source: Jeong and Komatsu (2009)

is given by

d𝑃123 = 𝑛
3 [1 + 𝜉 (𝑥12) + 𝜉 (𝑥23) + 𝜉 (𝑥31) + 𝜉3(𝑥12, 𝑥23, 𝑥31)]d𝑉1d𝑉2d𝑉3 . (2.70)

If the density field is Gaussian 𝜉3 = 0, and all probabilities are determined by 𝜉 (𝑟) alone.

2.5.5 Linear power spectrum

Now we concentrate on the time evolution of the cosmic fields during the matter-dominated epoch.
In this case, as we discussed in Sect. 2.3, diffusion effects are negligible and the evolution can be
expressed in terms of ideal fluid equations that describe the conservation of mass and momentum. As
a result, the evolution of the power spectrum is given by a simple time-dependent scaling of the linear
power spectrum

𝑃(𝑘, 𝑧) = 𝐷2(𝑧)𝑃L(𝑘) , (2.71)

where 𝐷 (𝑧) is the growth factor. One must note, however, that the linear power spectrum specified
by 𝑃L(𝑘)

6 derives from the linear evolution of density fluctuations through the radiation domination
era and the resulting decoupling of matter from radiation. This evolution must be followed by using
general relativistic Boltzmann numerical code (Ma and Bertschinger, 1995), although analytic results

6 We denote the linear power spectrum interchangeably by 𝑃L (𝑘) or by 𝑃0 (𝑘)
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can be used to understand quantitatively the results. The end result is that

𝑃L(𝑘) = 𝐴𝑠 𝑘
𝑛s 𝑇

2(𝑘) , (2.72)

where 𝑛s is the primordial spectral index, 𝐴𝑠 is the normalization of power spectrum, 𝑇 (𝑘) is the
transfer function. The transfer function describes how structures grow differently depending on scale
in linear theory. The growth of fluctuations at a certain scale, denoted as 𝑘 , relies on when they enter
the horizon7. This timing, whether during the radiation-dominated or matter-dominated era, affects the
outcome. In other words, it depends on which term dominates in the Friedmann equation. When small
perturbations enter during the radiation-dominated era, their growth is prevented until the Universe
transitions into the matter-dominated phase. Additionally, the transfer function takes into account the
impact of free-streaming. This effect varies depending on the type of DM, whether it is cold, warm, or
hot. Different DM particles exhibit varying velocities, where faster particles cluster less than slower
ones and tend to free-stream. Consequently, hot and warm DM lead to a decrease in small-scale
power compared to CDM. This is encoded in the transfer function and depends on the cosmological
parameters in a complicated way, although in cases when the baryonic content is negligible it can
be approximated by a fitting function that depends on the shape parameter 𝛤 = Ωm ℎ (Bardeen et al.,
1986). Once the perturbations grow sufficiently, linear theory breaks down, and one needs to follow
the evolution of the density by numerical methods. The initial conditions for these simulations are
provided by (2.72).

The theory provides the basis for understanding the shape of the power spectrum, but the actual
measurement of the fluctuations’ strength, represented by the normalisation constant 𝐴𝑠, is necessary.
In the past, a specific parametrisation was developed based on observations. It was discovered that
when counting galaxies within a sphere of 8 ℎ−1 Mpc, the variance of their number 𝑁 was remarkably
close to one, i.e.

⟨(𝑁 − ⟨𝑁⟩)2⟩
⟨𝑁⟩2 ≈ 1 . (2.73)

According to the latest data (see below), it has been confirmed that the value is actually less than one.
However, the initial concept of quantifying the level of structure by counting collapsed objects within
a specific radius has been retained. One employs the dispersion 𝜎2(𝑅) of the density field 𝛿𝑅 (x)
when smoothed at a certain radius 𝑅,

𝜎
2(𝑅) ≡ ⟨𝛿2

𝑅 (x)⟩ =
∫

|𝑊̃ (𝑘𝑅) |2𝑃(𝑘) d3
𝑘

(2𝜋)3 =
1

2𝜋2

∫ ∞

0
|𝑊̃ (𝑘𝑅) |2𝑃(𝑘) d𝑘 (2.74)

where 𝑊̃ (𝑘𝑅) is the Fourier representation of a top-hat filter function that smoothes the density field.
Setting 𝑅 = 8 ℎ−1 Mpc gives the cosmological parameter 𝜎8 that is constrained to be 𝜎8 ≈ 0.8 by
current surveys (e.g. Planck Collaboration et al., 2020a). We see that 𝜎8 ∝ 𝐴𝑠, so fixing either of
them uniquely defines the normalisation of the power spectrum.

7 The horizon represents the furthest distance a photon can cover within a specified time period. In other words, it signifies
the maximum spatial separation between two points that allows them to remain causally connected during that time
interval.
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2.6 One-loop standard perturbation theory

As we saw in Sect. 2.3, the dynamics of gravitational instability are non-linear, and therefore non-linear
evolution inevitably leads to the development of non-Gaussian features.

The statistical characterisation of non-Gaussian fields is, in general, a non-trivial subject. The
situation is somewhat different for gravitational clustering from Gaussian initial conditions, which
we deal with in this work. Here it is possible to calculate in a model-independent way how the
non-Gaussian features arise, and what is the most natural statistical description. In particular, since the
non-linearities in the equations of motion are quadratic, gravitational instability generates connected
high-order correlation functions that scale as 𝜉𝑁 ∝ 𝜉𝑁−1

2 at large scales, where 𝜉2 ≪ 1 and perturbation
theory applies. This scaling can be represented by connected tree diagrams, where each link represents
a two-point function (or power spectrum in Fourier space), since for 𝑁 points (𝑁 − 1) links are
necessary to connect them in a tree-like fashion. In the framework of SPT we found that non-linear
gravitational evolution of the density field can be derived as a perturbative expansion given by the
equation (2.48), which we can use to build the correlators in Fourier space.

Figure 2.6: Tree diagrams for bispectrum (left diagram) and trispectrum (right diagram) or three-point and
four-point functions in a real space. Here dots represent the density fields and lines represent the power
spectrums (two-point function in a real space). Source: Bernardeau et al. (2002)

Fig. 2.6 show the tree diagrams that describe the three- and four-point function induced by
gravity. The number of lines coming out of the given vertex is the order in PT that gives rise to
such a diagram. For example, the diagram for bispectrum requires linear and second-order PT,
representing ⟨𝛿2(k1)𝛿1(k2)𝛿1(k3)⟩

8. On the other hand, the diagrams for trispectrum require up to
third order in PT. The first term represents ⟨𝛿1(k1)𝛿2(k2)𝛿2(k3)𝛿1(k4)⟩ whereas the second describes
⟨𝛿1(k1)𝛿3(k2)𝛿1(k3)𝛿1(k4)⟩.

In general, a consistent calculation of the 𝑝-point function induced by gravity to leading order
(tree-level) requires from first to (𝑝−1)th order in PT. At short scales as 𝜉2 −→ 1, there are corrections
to tree-level PT. These are naturally described in terms of diagrams as well, in particular, next to
leading order contributions (one-loop corrections) require from first to (𝑝 + 1)th order in PT. These
are represented by one-loop diagrams, i.e. diagrams where there is one closed loop.

Figs. 2.7 and 2.8 show the one-loop diagrams for the power spectrum and bispectrum. The one-loop
corrections to the power spectrum describe the non-linear corrections to the linear evolution, that is,
the effects of mode coupling and the onset of non-linear structure growth.

We can write the power spectrum up to one-loop corrections as

𝑃SPT(𝑘, 𝑧) ≃ 𝑃
tree
SPT(𝑘, 𝑧) + 𝑃

1-loop
SPT (𝑘, 𝑧) . (2.75)

8 Subscripts represent the order in perturbation theory
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Figure 2.7: Diagrams for the two-point correlation or power spectrum up to one-loop. The terms in the square
brackets represent one-loop correction terms given by Eqs. (2.77) and (2.78). Source: Bernardeau et al. (2002)

Under the assumption of Gaussian intial conditoins, the leading-order term coincides with the linear
power spectrum, 𝑃tree

SPT(𝑘, 𝑧) = [𝐷 (𝑧)]2
𝑃L(𝑘), and the one-loop contribution consists of two terms,

𝑃
(1) (𝑘, 𝑧) = 𝐷2(𝑧)

[
𝑃22(𝑘) + 𝑃13(𝑘)

]
, (2.76)

with

𝑃22(𝑘, 𝑧) = 2
∫

d3q
(2𝜋)3 [𝐹2,sym(k − q, q)]2

𝑃L( |k − q|)𝑃L(𝑞) , (2.77)

𝑃13(𝑘, 𝜏) = 6
∫

d3q
(2𝜋)3 𝐹3,sym(k, q,−q)𝑃L(𝑘)𝑃L(𝑞) . (2.78)

Here 𝑃𝑖 𝑗 denotes the amplitude given by a loop diagram representing the contribution from ⟨𝛿𝑖𝛿 𝑗⟩ to
the power spectrum. Since we have assumed Gaussian initial conditions 𝑃𝑖 𝑗 vanishes if 𝑖 + 𝑗 is odd.
Equation (2.77) is positive definite and describes the mode coupling between wave vectors k − q and
q. On the other hand, (2.77) is in general negative and does not describe mode coupling, i.e. it is
proportional to 𝑃L(𝑘, 𝜏).

The one-loop expansion for the bispectrum, 𝐵SPT(𝑘1, 𝑘2, 𝑘3, 𝑧) ≃ 𝐵
tree
SPT(𝑘1, 𝑘2, 𝑘3, 𝑧)+𝐵

1-loop
SPT (𝑘1, 𝑘2, 𝑘3, 𝑧),

is given by the tree-level part in terms of a single diagram from second order SPT (Fig. 2.6) plus its
permutations over external momenta:

𝐵
tree
SPT(𝑘1, 𝑘2, 𝑘3, 𝑧) = 𝐷

2(𝑧)
[
2 𝐹2,sym(k1, k2)𝑃L(𝑘1)𝑃L(𝑘2) + perms.

]
.

The one-loop contribution consists of four distinct diagrams involving up to fourth-order solutions,

Figure 2.8: Diagrams for the three-point correlation or bispectrum one-loop corrections. Source: Bernardeau
et al. (2002)

𝐵
1-loop
SPT = 𝐷

6(𝑧)
[
𝐵222 + 𝐵

I
123 + 𝐵

II
123 + 𝐵411

]
, (2.79)
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where

𝐵222 = 8
∫

d3q
(2𝜋)3 𝐹2,sym(k1 + q,−q)𝐹2,sym(−k1 − q, q − k2)𝐹2,sym(k2 − q, q)

× 𝑃L( |k2 − q|)𝑃L( |k1 + q|) ,

(2.80)

𝐵
I
123 = 6𝑃L(𝑘3)

∫
d3q
(2𝜋)3 𝐹3,sym(q − k2,−k3,−q)𝐹2,sym(q, k2 − q)

× 𝑃L( |k2 − q|)𝑃L(𝑞) + 5 perms. ,

(2.81)

𝐵
II
123 = 6𝑃L(𝑘2)𝑃L(𝑘3)𝐹2,sym(k2, k3)

∫
d3q
(2𝜋)3 𝐹3,sym(k, q,−q)𝑃L(𝑞) + 5 perms.

= 𝐹2,sym(k2, k3) [𝑃L(𝑘1)𝑃13(𝑘2) + 𝑃L(𝑘2)𝑃13(𝑘1)] + 2 perms. ,

(2.82)

𝐵411 = 12𝑃L(𝑘2)𝑃L(𝑘3)
∫

d3q
(2𝜋)3 𝐹4,sym(q,−q,−k2,−k3)𝑃L(𝑞) + 2 perms. . (2.83)

At early times and on large scales, the tree-level SPT accurately describes both the matter power
spectrum and bispectrum. However, in later stages, one-loop corrections lead to an overestimation of
the power spectrum on mildly non-linear scales (𝑘 ∼ 0.1 ℎMpc−1, Crocce and Scoccimarro, 2006;
Carlson et al., 2009; Taruya et al., 2009), and including higher-order terms does not improve the
accuracy of the predictions (e.g. Blas et al., 2014). The reason behind the failure of SPT is well
understood: the loop integrals encompass scales where the assumptions of the theory are no longer
valid, such as the generation of vorticity and velocity dispersion during orbit crossing (e.g., Pueblas and
Scoccimarro, 2009), resulting in a non-perturbative regime of physics. Consequently, the breakdown
of SPT on small scales compromises its predictions for the larger scales.

2.6.1 Effective Field Theory of Large-Scale Structure

The fact that two well-separated scales characterise the Universe, the Hubble scale, over which
perturbations are linear, and the non-linear scale, which marks the scale over which the gravitational
collapse overtakes the Hubble expansion, makes the problem of structure formation suitable for
Effective Field Theory (EFT) treatment. In a system characterised by a wide range of scales, such
theories isolate a set of degrees of freedom and describe them with a simplified model without having
to deal with the complex (and often unknown) underlying dynamics. The impact of physics one
intends to neglect on the degrees of freedom one aims to study is computed as a perturbation theory in
terms of expansion parameters.

The EFT for large-scale structure (Baumann et al., 2012; Carrasco et al., 2012, 2014a,b; Hertzberg,
2014; Porto et al., 2014; Senatore and Zaldarriaga, 2015) aims to provide a concise representation
of the matter density field’s long-wavelength modes by integrating out the shorter-wavelength ones.
Unlike the SPT, the EFT does not rely on the single-stream approximation. Instead, it considers
an effective stress tensor that incorporates all operators involving the long-wavelength density and
velocity fields, along with their derivatives, as permitted by the symmetries of the problem, namely
the equivalence principle, statistical isotropy, and homogeneity. To describe the behaviour of the
system, the effective stress tensor is expanded in a Taylor series with respect to the long-wavelength
fluctuations. This expansion generates an infinite series of unknown parameters, with each parameter
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associated with a specific perturbative order. The parameters of the effective theory serve two purposes.
Firstly, they generate ’counterterms’ in the expressions for observables in the EFT, allowing for the
cancellation of the ultraviolet (UV) sensitivity of loop integrals in SPT, meaning their dependence on
the cutoff scale. This cancellation process can be carried out systematically in perturbation theory,
order by order. Secondly, the remaining part of the counterterms, which is independent of the cutoff,
plays a crucial role in quantifying the influence of non-perturbative physics on the long-wavelength
modes. This is achieved by introducing new ’effective’ interactions among these modes. However,
the amplitude of this part can not be determined directly from the effective field theory itself, as it is
unable to account for small-scale physics. Therefore, it must be determined through empirical means,
such as comparison with numerical simulations, or it may be marginalised over during the analysis of
observational data (see, e.g. Ivanov et al., 2020; d’Amico et al., 2020).

The EFT framework postulates the presence of a scale, commonly represented by the wavenumber
𝑘NL, where the physics transitions into a non-perturbative regime, rendering the effective description
invalid. Multiple lines of reasoning indicate that the expansion of the low-frequency fields can be
systematically organized, such that the expansion parameter of the perturbation theory becomes 𝑘/𝑘NL.
This implies that as the wavenumber 𝑘 approaches 𝑘NL, an increasing number of terms need to be
taken into account to obtain precise expressions for the matter field correlators.

In this thesis, we consider the specific parametrisation of the counterterms appearing in the one-loop
expression for the matter power spectrum and bispectrum presented in (Angulo et al., 2015a). Namely,

𝑃EFT(𝑘, 𝑧) = 𝑃SPT(𝑘, 𝑧) + 𝑃𝑐0
(𝑘, 𝑧) , (2.84)

where the tree-level counterterm is given by

𝑃𝑐0
(𝑘, 𝑧) = −2 𝑐0(𝑧) [𝐷 (𝑧)]2

𝑘
2
𝑃L (𝑘) , (2.85)

and 𝑐0 is undetermined by the theory. In terms of the effective speed of sound for the perturbations,
𝑐s(1) (𝑧), we have 𝑐0 ≡ (2𝜋) [𝐷 (𝑧)]𝜁 [𝑐s(1) (𝑧)]

2/𝑘2
NL (where 𝜁 denotes a real constant arising from

the time dependence of the effective stress tensor, see below for further details). Parameter 𝑐0 can be
related to 𝑐1 introduced by Angulo et al. (2015a) in the following manner: 𝑐0 is defined as 𝑐1 [𝐷 (𝑧)]𝜁 ,
where [𝐷 (𝑧)]𝑛+𝜁 corresponds to the assumed growth factor of the EFT corrections to the SPT density
fluctuations of order 𝑛.

Similarly, for the one-loop bispectrum EFT introduces four counterterms

𝐵EFT = 𝐵SPT + 𝐵𝑐0
+ 𝐵𝑐1

+ 𝐵𝑐2
+ 𝐵𝑐3

, (2.86)

where one of them is also proportional to 𝑐0

𝐵𝑐0
= 𝑐0(𝑧) [𝐷 (𝑧)]4 [2 𝑃L

(
𝑘1

)
𝑃L

(
𝑘2

)
𝐹̃

(𝑠)
2

(
k1, k2

)
+ 2 perms.

− 2 𝑘2
1𝑃L

(
𝑘1

)
𝑃L

(
𝑘2

)
𝐹2

(
k1, k2

)
+ 5 perms.] , (2.87)
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with

𝐹̃
(𝑠)
2 (k1, k2) = − 1

(1 + 𝜁) (7 + 2𝜁)

[(
5 + 113𝜁

14
+ 17𝜁2

7

)
(𝑘2

1 + 𝑘
2
2) +

(
7 + 148𝜁

7
+ 48𝜁2

7

)
k1 · k2

+
(
2 + 59𝜁

7
+ 18𝜁2

7

) (
1
𝑘

2
1
+ 1
𝑘

2
2

)
(k1 · k2)

2 +
(
7
2
+ 9𝜁

2
+ 𝜁2

) (
𝑘

2
1

𝑘
2
2
+ 𝑘

2
2

𝑘
2
1

)
k1 · k2

+
(

20𝜁
7

+ 8𝜁2

7

)
(k1 · k2)

3

𝑘
2
1𝑘

2
2

]
. (2.88)

As suggested by some theoretical considerations and fits to simulations 𝜁 = 3.1 (Foreman and Senatore,
2016). Quadratic contributions from the long-wavelength perturbations to the effective stress-energy
tensor expansion lead to three additional counterterms with the following forms:

𝐵𝑐1
= −2 𝑐1(𝑧) [𝐷 (𝑧)]4

𝑘
2
1𝑃L(𝑘2)𝑃L(𝑘3) + 2 perms. , (2.89)

𝐵𝑐2
= −2 𝑐2(𝑧) [𝐷 (𝑧)]4

𝑘
2
1
(k2 · k3)

2

𝑘
2
2𝑘

2
3

𝑃L(𝑘2)𝑃L(𝑘3) + 2 perms. , (2.90)

𝐵𝑐3
= −𝑐3(𝑧) [𝐷 (𝑧)]4 (k2 · k3)

[
k1 · k2

𝑘
2
2

+
k1 · k3

𝑘
2
3

]
𝑃L(𝑘2)𝑃L(𝑘3) + 2 perms. , (2.91)

where alongside 𝑐0 we have additional constants 𝑐1, 𝑐2 and 𝑐3 (similar to 𝑐0, the [𝐷 (𝑧)]𝜁 scaling
is absorbed in their definition) that need to be either fit to simulations or marginalised over in the
analysis of actual observational data.

While some authors argue that EFT offers a convergent perturbative framework for 𝑘 < 𝑘NL (e.g.
Carrasco et al., 2014a), there are indications that it resembles SPT since it also forms an asymptotic
expansion. This expansion loses accuracy when incorporating higher-order loop corrections, reaching
a point where it no longer aligns with numerical simulations (e.g. Pajer and van der Woude, 2018;
Konstandin et al., 2019). The breakdown of the theory is not caused by short-distance physics but
rather by large contributions arising from mildly non-linear scales.

Ultimately, EFT can be perceived as an enhanced version of SPT, wherein counterterms are
introduced to regulate the UV-sensitive components.

2.7 Numerical simulations
Cosmological simulations or 𝑁-body simulations have become a unique testbed to follow the structure
formation in the Universe, and the size and sophistication of these simulations have steeply grown
in the last decades. We have the capability to investigate the development of the cosmic web across
various length scales, ranging from several hundred ℎ−1 Mpc to smaller sub-kpc scales encompassing
individual DM haloes and their constituent galaxies. However, it is not feasible to encompass this wide
range of scales within a single simulation. Instead, a decision must be made regarding the specific
problem to be addressed, and the simulation setup must be tailored accordingly. In this particular
study, our interest lies not in examining the intricate details of the internal structure of individual DM
haloes or galaxies. Rather, our focus is on the cosmic scales and the statistics derived from them.
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Consequently, we will concentrate on DM-only simulations and omit the inclusion of baryons.
𝑁-body simulations study the behaviour (meaning tracing their position and velocity in time) of

a large number of particles under the influence of the gravitational force in a cubic box of some
size which represents a part of the observable universe. Obviously, when we deal with DM actual
elementary particles can not be simulated since that would require enormous computational power and
in fact is not required to achieve results of cosmological relevance. Instead one uses the representative
particles in the mass range of 107-1011 M⊙.

To set up a simulation one has to fix a few external parameters - the number of DM particles 𝑁 ,
the comoving side length 𝐿 of the simulation box, and the cosmological parameters. For example,
common numbers are 𝑁 = 10243 and 𝐿 = 1 ℎ−1 Gpc. The matter content of the Universe is Ωm ≈ 0.3
and the critical density is 𝜌cr ≈ 27.8 × 1010

ℎ
−2M⊙ Mpc−3. Following this a particle mass 𝑚p is of

the order of 1010
ℎ
−1 M⊙ , i.e. that of a small galaxy. More particles give better resolution, but such

simulations are more expensive to run. In order to implement the CP and to allow the application
of Fourier transformations, it is common to use the periodic boundary conditions. This means the
particles close to one side of the box will feel the force from the opposite side, and they will enter
from that side when leaving the box.

The force experienced by the 𝑖-th particle from the 𝑗-th particle can be mathematically expressed as

F𝑖 = 𝐺
∑︁
𝑖≠ 𝑗

𝑚
2
𝑝 (r 𝑗 − r𝑖)
|r 𝑗 − r𝑖 |

3 . (2.92)

This direct approach of calculating the sum of forces for all 𝑁 particles at a specific time step and
using it to accelerate them according to the force they feel is the simplest method. Subsequently, in the
next time step, this process is repeated with updated positions and velocities. However, this method
becomes impractical for large 𝑁 due to its computational cost, which scales quadratically as 𝑁2. To
address this challenge, modern 𝑁-body codes, such as the Gadget-2 (Springel, 2005) code, employ a
hybrid technique known as the TreePM method. This approach divides the force calculation into two
components, targeting large and small scales respectively.

For large scales, the 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒-𝑀𝑒𝑠ℎ method (referred to as the PM method) is utilised. In this
approach, the mass of the point-like DM particles is distributed across a grid using an interpolation
technique9. This allows the computation of the potential by solving the Poisson equation. The force
can be easily determined by performing a Fast Fourier Transform (FFT) and multiplying it with 𝑖 k.
The positions and velocities of the particles are then updated by applying this force using the same
grid interpolation. This method is efficient in terms of speed and memory usage. However, it lacks
accuracy when the separation between particles is only a few grid cells. In such cases, a slower
but more precise Tree algorithm is employed. This algorithm divides the particle distribution into
successively smaller cubes (the initial one being the tree node and the subsequent ones referred to
as leaves) with increasing particle density. The force acting on the particles within these cubes is
calculated using a multipole expansion. Since this method requires a significant amount of memory, it
is reasonable to apply it only to the smallest scales.

In a cosmological simulation, it is necessary to establish the initial density and velocity field, known
as the initial conditions (IC), which can then evolve over time. To determine these IC, we must select

9 A widely used method is Cloud-In-Cell (CIC), where the mass of one particle is distributed over the adjacent eight grid
points, weighted with the distance to the grid point (Efstathiou et al., 1985).
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an initial redshift, denoted as 𝑧IC, during the matter-dominated epoch. It is crucial to choose 𝑧IC
appropriately, ensuring that the random field remains Gaussian while avoiding excessively high values
that would lead to decreased accuracy for small 𝛿. Moreover, choosing an excessively high 𝑧IC would
result in unnecessary computational time. Typically, a commonly used value for 𝑧IC is approximately
50. For each k, the amplitude of the Fourier modes 𝛿(k) are sampled from the following Gaussian
distribution:

𝑝 [𝛿(k)] = 1
𝜋𝜎

2(𝑘)
exp

[
− 𝛿

2(k)
𝜎

2(𝑘)

]
. (2.93)

Here 𝜎(𝑘) ∝ 𝑃L(𝑘) and the theoretical linear power spectrum can be computed numerically from
Boltzmann solvers such as the camb (Lewis et al., 2000a; Howlett et al., 2012) at the respective 𝑧IC for
a certain input cosmology. This way for the IC we obtain a Gaussian random field with the correct
power spectrum. The next step is to obtain the particle distribution that gives exactly this density field.
To achieve this, we can start by positioning the 𝑁 particles on a uniform grid. Then, we apply a slight
positional shift to each particle, ensuring that they have the correct Fourier modes 𝛿(𝑘), employing
a technique known as the Zel’dovich approximation (ZA; Zel’dovich, 1970). The shifted position
x(q, 𝑡) for a particle at initial position q is given as

x(q, 𝑡) = q + 𝐷 (𝑡)Ψ1(q) , (2.94)

where Ψ1(q) is called displacement field and is described by its Fourier modes

Ψ1(q) = −𝑖 k𝛿(k)
𝑘

2 . (2.95)

The ZA is the first-order term within the broader expansion of the displacement field in the context
of Lagrangian Perturbation Theory (LPT). In LPT, the trajectory of each fluid element is traced by
considering its displacement from the initial position q caused by the complete displacement field Ψ,
which can be expressed as:

Ψ(q, 𝑡) =
∞∑︁
𝑛=1

Ψ𝑛 (q, 𝑡) . (2.96)

Utilizing solely ZA introduces undesirable artefacts in the low-redshift power spectrum, impacting it
at a per cent level. However, these spurious effects can be mitigated by employing higher-order LPT
methods, such as 2LPT (White, 2014), for generating the IC.

2.8 Bayesian statistics in cosmological parameter analysis
Much of this work is dedicated to performing or preparing a cosmological parameter analysis. Hence,
in this section, we want to detail the basic foundations of such an analysis.

In the real-world scenario, we collect some data from a survey and estimate a particular statistic X
(e.g. the power spectrum of galaxies in 20 bins). We wish to interpret this data in terms of a model
M. It will typically depend on some parameters 𝜽, which we want to determine. The goal of the
parameter analysis is to provide estimates of the parameters and their uncertainties, or ideally the whole
probability distribution of 𝜽 , given the data X. The latter is called the posterior distribution 𝑝(𝜽 | X)
i.e. the probability that the measured parameters take certain values after doing the experiment (as
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well as assuming some prior knowledge about the parameters). From 𝑝(𝜽 | X) one can calculate the
expectation values of the parameters and their errors.

Often, what may be easily calculable is not this, but rather the opposite, 𝑝(X | 𝜽) - i.e. if we know
what parameters are, we can compute the expected distribution of the data. This is the same as the
likelihood that the model parameters describe a given observation, L(𝜽 | X). However, the likelihood
should not be confused with the probability density over 𝜽 , which is the posterior distribution 𝑝(𝜽 | X)
and is related to the likelihood through Bayes’ theorem

𝑝(𝜽 | X) = L(𝜽 | X) 𝑝(𝜽)
𝑝(X) . (2.97)

Here, 𝑝(𝜽) is called the prior and expresses what we know about the parameters prior to the experiment
being done. This may be the result of previous experiments, or theory (e.g. some parameters, such as
the age of the Universe, may have to be positive). In the absence of any previous information, the
prior is often assumed to be a constant (a ‘flat prior’), meaning all parameters are equally likely. 𝑝(X)
is called the evidence and simply acts to normalise the posterior distribution,

𝑝(X) =
∫

d𝜽L(𝜽 | X) 𝑝(𝜽) . (2.98)

Since it does not depend on the model parameters it is often ignored when doing a parameter estimation.
However, the evidence does play a role in model selection when more than one theoretical model is
being considered, and one wants to choose which model is most likely to describe the data.

In cosmology, due to the central limit theorem, it is a reasonable assumption that the probability
distribution of X follows a multivariate Gaussian with a covariance matrix C. Therefore the likelihood
is

L(𝜽 | X) ∝ exp

[
− 𝜒

2(X, 𝜽)
2

]
, (2.99)

with
𝜒

2(X, 𝜽) = [M(𝜽) − X]TC−1 [M(𝜽) − X] . (2.100)

We can thus calculate the posterior distribution for our cosmological parameters via

ln 𝑝(𝜽 | X) = lnL(𝜽 | X) + ln 𝑝(𝜽) + const = − 𝜒
2(X, 𝜽)

2
+ ln 𝑝(𝜽) + const . (2.101)

After we have computed a posterior 𝑝(𝜽 | X), we are often interested in the marginalised posterior of
a certain subset {𝜃𝑖}𝑖∈𝐼 of parameters (for example, we wish to know the one-dimensional marginalised
posterior of the parameter Ωm). We can achieve that by integrating the posterior over all remaining
parameters

𝑝({𝜃𝑖} | X) =
∏
𝑗∉𝐼

∫
d𝜃 𝑗 𝑝(𝜽 | X) . (2.102)

When performing a cosmological parameter analysis, we mostly want to report constraints on the
individual marginalised parameters. Usually, we cite a mean of a marginalised posterior and a
corresponding 68.3 per cent credible interval, which corresponds to the interval within one standard
deviation of a Gaussian distribution.
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2.8.1 Markov chain Monte Carlo method

After we have established how to compute the posterior distribution of cosmological parameters, a
cosmological parameter analysis appears feasible. If the problem has two or three parameters, then it
may be possible to evaluate the likelihood on a sufficiently fine grid, locate the peak and estimate the
errors. However, usually, the dimensions of the parameter space in cosmology are larger. Therefore,
as the number of grid points grows exponentially with dimension, it becomes rapidly unfeasible to do
it this way. In fact, it is also very inefficient to do it this way, since most of the hypervolume has a very
small likelihood so is of little interest.

There are various ways to sample the posterior distribution more efficiently, concentrating the
points more densely where the probability is high. The most common method is the Markov Chain
Monte Carlo (MCMC). The aim of MCMC is to generate a set of point whose distribution function
is proportional to the posterior distribution. MCMC makes random draws, by moving in parameter
space in a Markov process - i.e. the next sample depends only on the present one. The resulting
Markov chain of points samples the posterior, so we can estimate all the usual quantities of interest
like mean and variance from it. Furthermore, marginalisation is extremely easy: Instead of taking a
high-dimensional integral, one can ignore the marginalised dimensions of the sampled random walk,
which produces a projected posterior distribution along the parameter axis we are interested in.

The basic procedure to make the chain is to generate a new point 𝜽∗ by taking some step from the
present point 𝜽 and accepting it as a new point in the chain based on some criteria. The most popular
algorithm is the Metropolis-Hastings algorithm which has the following steps:

• Choose a random initial starting point 𝜽 in parameter space and compute the target probability
density.

Then at each iteration:

• Generate a step in parameter space from a so-called proposal distribution10 and a new trial
point 𝜽∗ using this step.

• Compute the acceptance ratio:

𝛼 =
𝑝(𝜽∗ | X)
𝑝(𝜽 | X) (2.103)

• Draw a uniform random number 𝑢 between 0 and 1. If 𝑢 < 𝛼, the point 𝜽∗ gets accepted and we
repeat the iteration with 𝜽∗ as the initial point. Otherwise, the point 𝜽∗ gets rejected, and we
repeat the procedure from the start.

The downsides of the Metropolis-Hastings algorithm are choosing the efficient proposal distribution
and the fact that convergence is only ensured after an infinite number of evaluations. If the algorithm
is stopped early, there is a danger that one mistakes a local maximum for a global one and believes that
the random walk has already converged. One method to avoid this is to compute the multiple random
walks with different starting points in parallel. Still, convergence can require many evaluations of the
likelihood function, which can be prohibitive if it is numerically expensive to compute.

10 Usually, but not necessarily, this distribution is chosen to be a multivariate Gaussian distribution.
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2.9 Goals and open questions addressed in this thesis
In this introduction, we have provided an overview of the current state of theory and methodology in
the field of precision cosmology, which seeks to comprehend the entire Universe. We have outlined
the fundamental principles that underpin our prevailing cosmological model, known as the ΛCDM
model. This six-parameter model encompasses the history and composition of the Universe, including
the densities of enigmatic entities called DM and dark energy. We have underscored the significance
of the close relationship between theory, observations, and numerical simulations as the essential
foundations for scientific advancements in cosmology. The interdependence of these distinct branches
is vital for progress in the field.

In the rest of the study, we will focus in particular on the issue of theoretical modelling of summary
statistics like the power spectrum and the bispectrum. Only an accurate model across a broad range
of scales will allow access to the cosmological information contained in the DM distribution. Our
research can be broken down into three aspects:

1. Up to which scale are the state-of-the-art perturbation theory models (e.g. EFT) for the matter
power spectrum and the bispectrum valid when tested against a very large set of 𝑁-body
simulations? How does this scale depend on the assumed survey volume and the systematic
errors introduced by the 𝑁-body technique?

2. How well can a deep neural network (DNN) approach model the influence of the survey geometry
on the estimated galaxy power spectrum and the bispectrum?

3. In view of the forthcoming analysis of the Euclid spectroscopic galaxy sample what is the
accuracy of the perturbative galaxy bias expansion in the description of the real-space galaxy
power spectrum and the bispectrum? How well can this model can infer the fiducial bias and
cosmological parameters? How well are these parameters constrained depending on the assumed
scale cuts on the data vectors? Which bias relations allow unbiased parameter inference?
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CHAPTER 3

The reach of next-to-leading-order
perturbation theory for the matter bispectrum

The following summary is based on the publication

• Alkhanishvili, D., Porciani, C., Sefusatti, E., Biagetti, M., Lazanu, A., Oddo, A., and
Yankelevich, V. (2022). The reach of next-to-leading-order perturbation theory for the
matter bispectrum. MNRAS, 512(4):4961–4981

https://doi.org/10.1093/mnras/stac567

For this work, I led the data analysis and implemented the pipelines that computed the theoretical
models for the power spectrum and bispectrum. Cristiano Porciani provided invaluable insight
into many aspects of goodness-of-fit tests and measured statistics. Emiliano Sefusatti provided the
measured power spectrum and the bispectrum from the Minerva suite. Matteo Biagetti provided
the Eos simulation suite which was used to cross-validate the primary results. Andrei Lazanu
assisted in the cross-validation of the perturbation theory models. Andrea Oddo and Victoria
Yankelevich provided auxiliary data to estimate the modelled power spectrum and the bispectrum.
Of course, many ideas and analysis choices resulted from discussions with the collaborators, so it
is impossible to disentangle the individual contributions perfectly.
The published paper can be found in App. A.1.

The perturbation theory of the large-scale structure of the Universe is the widely used method of
obtaining predictions with analytical control. Even though convergence properties of such theories
are still a matter of debate, there is growing evidence that including just the first few terms provides
an accurate approximation of the exact solution. Modern approaches come in various flavours and
sometimes contain free parameters (e.g. EFT). Therefore, it is crucial to identify the range of validity
(or reach as they refer to in the literature) and accuracy before applying them to the observational data.
𝑁-body simulations of CDM are the standard test bed to achieve this.

In this paper, we have used a very large set of 𝑁-body simulations (the Minerva suite)1 to test
the next-to-leading-order expansions for the matter power spectrum and bispectrum in five different

1 The suite consists of 300 comoving boxes of side length 𝐿 = 1500 ℎ−1 Mpc.
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implementations of perturbation theory. Specifically, we have studied how the different models match
the measurements from the simulations as a function of the maximum wavenumber considered 𝑘max.
Considering the next generation of surveys, such as those to be conducted by DESI and the Euclid
mission, we specifically focus on data at redshift 𝑧 = 1. The reach of a model is determined as the
minimum value of 𝑘max where the null hypothesis that the 𝑁-body data are consistent with the model
predictions is rejected using a 𝜒2 goodness-of-fit test with a significance level of 0.05. To carry out
this analysis, certain assumptions about the covariance matrix of the measurements are necessary. In
both cases, a dedicated version of the 𝜒2 test is employed to ensure that these expressions accurately
approximate the covariance matrix of the measurements extracted from the simulations.

The first part of the paper concentrates on employing the full Minerva suite while neglecting the
systematic errors in the simulations. The results can be summarised as follows.

1. By analysing the simulation data as a function of 𝑘max and fitting the EFT parameters governing
the counterterms’ amplitude, we observe their stability up to a certain maximum wavenumber,
after which they change, indicating that perturbative expansion breaks down beyond this scale and
higher-order corrections become important. The stability region ends at 𝑘max = 0.14 ℎMpc−1

for the power spectrum and 0.125 ℎMpc−1 for the bispectrum. These specific values define the
default range of scales (𝑘 < 𝑘fit) used for fitting the EFT parameters.

2. The 𝜒2 goodness-of-fit test for the power spectrum demonstrates that EFT accurately match the
simulations up to 𝑘max = 0.14 ℎMpc−1, while all models without free parameters fail at larger
scales, around 𝑘max = 0.06 ℎMpc−1.

3. Performing the same test for the bispectrum allows us to rank the models based on their accuracy
range. EFT models have the widest accuracy range, reaching 𝑘max ≃ 0.16 - 0.19 ℎMpc−1

(depending on data binning). RegPT and RLPT follow with a slightly lower range of accuracy
(𝑘max ≃ 0.10 - 0.14 ℎMpc−1), while SPT has the narrowest range of accuracy (𝑘max ≃
0.08 ℎMpc−1). It’s worth noting that the nominal reach of EFT extends beyond 𝑘fit, indicating
that the model with counterterms fixed using triangle configurations with side length 𝑘 < 𝑘fit =

0.125 ℎMpc−1 continues to provide a good fit on slightly smaller scales.

Current surveys of the LSS cover volumes which are one to two orders of magnitude smaller than
the total volume of the Minerva simulations. This translates to larger statistical uncertainty around
the measurements of the power spectrum and the bispectrum and thus into more extended ranges
of accuracy for the models. Therefore, we have sub-sampled the Minerva suite to investigate how
the reach of the models depends on the total volume covered by the simulations. This is useful to
gauge the range of scales that can be probed in the actual galaxy redshift surveys. We have also
approximately accounted for systematic effects introduced by the 𝑁-body technique using different
methods. Our main findings are as follows.

4. As expected, due to the larger statistical error bars the reach of the models improves for smaller
volumes as it becomes easier to fit to the data. Considering a Euclid-like survey volume at
𝑧 = 1 gives a median reach for SPT of approximately 0.12 ℎMpc−1 for the power spectrum and
0.15 ℎMpc−1 for the bispectrum. On the other hand, for EFT we obtain 0.25 ℎMpc−1 for the
power spectrum and 0.18 ℎMpc−1 for the bispectrum. All other models fall in between these
extremes.
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5. The estimated accuracy range of EFT predictions is significantly influenced by the chosen
procedure for fitting the counterterms. When considering the volume of the Euclid-like shell,
using 𝑘fit = 0.22 ℎMpc−1 extends the median reach of the EFT model to 0.33 ℎMpc−1 for the
power spectrum and 0.25 ℎMpc−1 for the bispectrum. However, this extension comes at the
cost of degradation in accuracy for the full Minerva set. Regarding the bispectrum, fitting
only the 𝑐0 parameter from the power spectrum and setting the other three counterterms to zero
provides the highest reach for 𝑉 < 100, ℎ−3Mpc3. On the other hand, fitting all four parameters
is preferred for larger volumes. Consequently, defining a definitive reach for the models with
free parameters becomes challenging due to these complexities.

6. Accounting for a scale- and shape-dependent bias resulting from the finite mass resolution of
the 𝑁-body simulations has a minimal impact on the results, with changes observed to be less
than 10 per cent.

7. On the other hand, a significant difference arises when uncorrelated systematic errors are added
in quadrature to the statistical uncertainties. In such cases, the reach of EFT is dramatically
extended due to the freedom provided by the counterterms. For instance, when considering
the entire Minerva suite, the EFT model demonstrates a good fit up to scales of 0.40 and
0.27 ℎMpc−1 for the power spectrum and the bispectrum, respectively. More modest changes
are observed for the models with no fixed parameters, particularly for larger volumes.
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CHAPTER 4

Window function convolution with deep
neural network models

The following summary is based on the publication

• Alkhanishvili, D., Porciani, C., and Sefusatti, E. (2023). Window function convolution
with deep neural network models. A&A, 669:L2

https://doi.org/10.1051/0004-6361/202245156

For this work, I led the data analysis and implemented the pipelines that trained and tested the deep
neural network models for the power spectrum and bispectrum. Cristiano Porciani and Emiliano
Sefusatti provided invaluable insight into many aspects of the effects of the survey geometry on
the observed power spectrum and the bispectrum. Of course, many ideas and analysis choices
resulted from discussions with the collaborators, so it is impossible to disentangle the individual
contributions perfectly.
The published paper can be found in App. A.2.

Conventional estimators of the galaxy power spectrum and bispectrum are susceptible to the
influence of the survey geometry. Due to the convolution with the survey’s window function, they
produce spectra that deviate from the true underlying signal. Especially on large scales, this bias
becomes statistically significant for current and future generations of experiments. Consequently,
it is crucial to precisely model the impact of the window function on the summary statistics of the
galaxy distribution. Furthermore, to enable the sampling of posterior probabilities during the Bayesian
estimation of cosmological parameters, it is essential that this process remains computationally
efficient. To meet these demands, we have developed a DNN that emulates the convolution with the
window function, and we show that it offers fast and precise predictions.

The purpose of our DNN model is to serve as a proof of concept and to achieve this objective,
we made certain simplifications in our study. Firstly, we utilised the linear power spectrum and
tree-level bispectrum for matter fluctuations. Secondly, we considered a top-hat window function with
a fixed volume, where the number density of tracers remains constant across radial distances from the
observer. While this ideal scenario allowed us to demonstrate the effectiveness of our DNN model, we
believe there is no reason why it cannot accurately predict the effects of more realistic survey masks.
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Building a DNN model requires a training set to fit the model parameters. For this purpose, we have
used the suite of 2000 linear power spectra in the Quijote database (Villaescusa-Navarro et al., 2020)
to build the training set for our DNNs. These spectra were obtained by sampling five cosmological
parameters on a Latin hypercube. From these linear power spectra via convolution, we obtained the
power spectrum and the bispectrum as observed in the survey whose geometry follows the top-hat
window function. In order to benchmark the trained DNN model we also randomly generated 200
samples by employing the same procedure used for the training data set.

It takes less than 10 microseconds to generate DNN predictions for either the power spectrum or
the bispectrum. This is ideal for sampling posterior distributions in Bayesian parameter inference.
Overall, the DNN provides models for the power spectrum and the bispectrum that are accurate to
better than 0.1 per cent.

Generation of the training data set is the bottleneck operation in the DNN approach. It requires a
considerable time investment in the case of the bispectrum. In our case, generating 2000 convolved
bispectra using 64 processor cores took approximately one month of wall-clock time. This phase
can be expedited through extensive parallelisation and potentially by adopting more computationally
efficient formulations for the convolution integral, as proposed by Pardede et al. (2022). However, the
time investment in constructing the training set shouldn’t be a deterrent to adopting the DNN approach.
Even for the relatively straightforward case of the isotropic bispectrum of matter-density fluctuations
in real space, obtaining posterior distributions for the five considered cosmological parameters would
necessitate significantly more than 2000 evaluations of the window-convolved signal. Thus, employing
the DNN model would invariably result in a noticeable speedup. To sum up, we find that utilising the
DNN model is advantageous, as long as the size of the training set remains substantially smaller than
the number of necessary likelihood evaluations in the Bayesian estimation of the model parameters.
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CHAPTER 5

Euclid preparation. Galaxy power spectrum
and bispectrum modelling in real space

This chapter is part of the not-yet published article Euclid Collaboration: Pardede et al., in
prep. which deals with the analysis of the galaxy power spectrum and the bispectrum in real
space. Since the article is in preparation, the results presented here are not yet approved by
the Euclid Consortium. For this work, I led the data analysis and implemented the pipelines
for the real-space galaxy power spectrum and the bispectrum. The Flaghsip I simulations and
the measured power spectrum and the bispectrum were provided by the members of Euclid
Consortium. Of course, many ideas and analysis choices resulted from discussions with the
collaborators, so it is impossible to disentangle the individual contributions perfectly.

5.1 The Euclid mission
In the previous chapters, we discussed cosmology and expansion history of the Universe, the power
spectrum, the bispectrum, galaxy bias, etc. To measure all of these features, one needs to have a
specific survey, which covers a large sky area and redshift range. In this section, we introduce a
promising instrument for such observations - the Euclid satellite Laureijs et al. (2011). The main
goal of Euclid is to understand the physical origin of the accelerated expansion of the Universe. The
mission observes the evolution of cosmic structures by measuring the shapes and redshifts of galaxies
over a large fraction of the sky. With the new observational data, we should be able to better understand
the properties of dark energy, test models of the origin of dark energy, and test GR on different scales.
It is hoped that the mission will aid in understanding dark energy and predicting the future evolution
of the Universe. Another important goal is to explore the nature and properties of dark matter. A final
goal is to reconstruct the initial conditions which led to the present cosmic structure of the Universe.

Euclid is a medium-class mission of the European Space Agency (ESA). The satellite was launched
by a SpaceX Falcon 9 rocket from Cape Canaveral, Florida, on July 1st 2023 and transferred to the
Lagrange point L2 of the Sun-Earth system. The planned mission timeline is 6 years and it will cover
15000 deg2 of the sky in a redshift range 𝑧 ≈ 0.9 − 1.8.

Euclid consists of a 1.2-meter Korsch telescope equipped with imaging and spectroscopic instruments,
VIS and NISP, working in the visible and near-infrared wavelength ranges, respectively.
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Figure 5.1: The artist’s view of the ESA medium class astronomy and astrophysics space mission Euclid . Credit:
ESA

The VIS works in the wavelength range from 500 to 900 nm and has a pixel resolution of 0.1
arcseconds. The large VIS images with their fine angular resolution will be used for many different
purposes, but VIS has been built specifically to make shape measurements of distant galaxies. Their
distortions resulting from weak gravitational lensing by intervening matter allow the matter distribution
to be mapped. Therefore, the dark matter distribution and its changes over the last 10 billion years will
be reconstructed.

The Near Infrared Spectrometer and Photometer (NISP) consists of 16 near-infrared detectors
and covers the same field of view as VIS. The wavelength range of the instrument is between 900
and 2000 nm. The near-infrared photometry data will be combined with the VIS data to derive the
photometric redshifts and rough estimates of the distances of galaxies observed by the VIS. On the
other hand, the spectrometer will accurately measure the distances of ≈ 50 million galaxies. NISP
slitless spectroscopic observations will be able to detect Lyman-alpha emission lines across the
Universe, out to redshifts of 1.9, when the Universe was only 3.5 billion years old. The power of this
mode is the combination of good sensitivity to detect an emission line from even very compact distant
galaxies and covering an area corresponding to almost 3 times the area of the full moon on the sky in
every observation.

5.2 Scientific goals

In this chapter in preparation for the analysis of the Euclid spectroscopic sample we explore the limits
of validity of the perturbative galaxy bias model applied to the joint analysis of the power spectrum
and bispectrum (𝑃 + 𝐵) in real space.

Several recent works provided comparisons of the matter and halo/galaxy bispectrum theoretical
predictions in real space against measurements from 𝑁-body simulations, at leading order (Oddo
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5.3 Data

Table 5.1: Cosmological and structural parameters of Flagship I simulation.

ℎ Ωc Ωb 10−9 × 𝐴𝑠 𝑛𝑠 𝑀𝜈 𝐿 𝑚𝑝

[ ℎ−1 Mpc] [109
𝑀⊙]

0.67 0.27 0.049 2.0943 0.97 0 3780 2.3

et al., 2020a; Bose et al., 2020; Oddo et al., 2021; Moradinezhad Dizgah et al., 2021; Ivanov et al.,
2022) and higher order (Baldauf et al., 2015a; Angulo et al., 2015b; Lazanu et al., 2016; Bose and
Taruya, 2018; Eggemeier et al., 2021; Steele and Baldauf, 2021; Baldauf et al., 2021; Alkhanishvili
et al., 2022; Philcox et al., 2022; D’Amico et al., 2022). The most stringent of these tests, involving
simulation volumes of the order of hundreds of cubic Gigaparsec, indicate that the leading-order,
i.e. tree-level prediction for the galaxy bispectrum has a reach of about 𝑘max ≲ 0.08 ℎMpc−1 at any
relevant redshift, while it can provide a good fit to simulations up to 𝑘max ≲ 0.15 ℎMpc−1 for volumes
comparable to those that will be probed by the Euclid mission.

Much of these results assumed dark matter halo catalogues or galaxy catalogues constructed to
reproduce the samples characterising the eBOSS surveys. Here we revisit these earlier investigations
focusing on a galaxy population that we expect to be a fair description of the Euclid spectroscopic
sample. We explore the scale cuts for a joint analysis of the galaxy power spectrum and bispectrum in
real space, as defined by two wavenumbers 𝑘𝑃max and 𝑘𝐵max. We will consider a one-loop prediction in
perturbation theory for the power spectrum while we will limit ourselves to the tree-level description
for the bispectrum. We will study the possibility of reducing the parameter space offered by imposing
relations among the bias parameters and how these may lead to systematic errors in the determination
of cosmological parameters.

5.3 Data

In order to determine the range of validity of our reference theoretical models for the real-space power
spectrum and the bispectrum, we require the mock galaxy catalogue generated from the 𝑁-body
simulation which spans the same redshift range that will be observed by Euclid . We have used the
real-space galaxy power spectrum and bispectrum estimated from this catalogue to study the range of
validity of our reference theoretical models. In this section, we introduce and discuss this data.

5.3.1 Flagship simulation

Flagship I simulation spans the same redshift range that will be observed by Euclid . Namely,
we have four snapshots that cover the redshift range 𝑧 ∈ [0.9, 1.8] and were generated using the
PKDGRAV3 (Potter et al., 2017) 𝑁-body code. The latter simulated approximately 2 trillion dark
matter particles in a periodic cubic box with a side length of 𝐿 = 3780 ℎ−1 Mpc assuming flat ΛCDM
cosmological model with parameters given in Table 5.1. The mass resolution of the simulation
𝑚𝑝 ≈ 2.398 × 109

ℎ
−1
𝑀⊙ allows to resolve the halos with a mass of few 1010

ℎ
−1
𝑀⊙ , which host the

majority of H𝛼 emission line galaxies that are going to be the main observation targets of the Euclid
survey.
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Table 5.2: Specifications for the HOD galaxy samples used in this analysis. The table lists the total number of
objects 𝑁g and the mean number density 𝑛̄ of the sample. All the considered samples share the same volume,
which coincides with the one of the Flagship I comoving outputs, i.e., 3780 ℎ−3 Mpc3.

𝑧 HOD 𝑁g 𝑛̄

Model
[
10−3

ℎ
3 Mpc−3

]
0.9 1 201 816 513 3.7

3 110 321 755 2

1.2 1 108 057 141 2
3 55 563 490 0.0010

1.5 1 69 132 138 1.3
3 31 613 213 0.6

1.8 1 24 553 758 0.5
3 16 926 864 0.3

In each snapshot, galaxies were populated through a two-step process. Initially, friend-of-friend
(FOF)1 halos were selected with a minimum mass equivalent to that of 10 matter particles. Subsequently,
these halos were assigned galaxies using the halo occupation distribution (HOD) algorithm, aligning
with the central and satellite fractions found in the primary Flagship 1 lightcone catalogue. This
lightcone catalogue, in turn, was designed to replicate the number density and clustering characteristics
based on two distinct H𝛼 profiles referred to as Model 1 and Model 3 in Pozzetti et al. (2016). These
two models are defined by different templates for the evolution of the luminosity function 𝜙(𝐿, 𝑧)2.
Model 1 employs a conventional Schechter parametrisation (Schechter, 1976), while Model 3 directly
fits real observations. As a result, the Model 1 sample contains nearly twice as many objects as Model
3, which is more conservative in selecting H𝛼 emitters. From now on these models will be referred to
as HOD1 and HOD3.

The total numbers of galaxies for each sample, their number density, and the associated Poisson
shot-noise contribution, defined as the inverse of the sample mean number density, 1/𝑛̄, are listed in
Table 5.2.

5.3.2 Power spectrum and bispectrum measurements

Given the Fourier transform of the galaxy overdensity field 𝛿g(k), the galaxy power spectrum, 𝑃g(𝑘),
and the bispectrum, 𝐵g(k1, k2, k3), can be defined in terms of the two- and three-point correlators as

⟨𝛿g(k1) 𝛿g(k2)⟩ = (2𝜋)3
𝛿D(k12) 𝑃g(𝑘1) , (5.1)

1 The FOF algorithm uniquely defines groups that contain all particles separated by distance less than a given so-called
linking length.

2 The luminosity function is a fundamental concept in astronomy and cosmology, particularly in the study of galaxies and
their distribution of brightness (luminosity) in the Universe. The luminosity function tells us how many objects of a
particular luminosity are present in a given volume of space.

48 30th April 2025 12:58



5.3 Data

Figure 5.2: The galaxy power spectrum extracted from the Flagship 1 simulation (top) and corresponding
relative statistical uncertainty (bottom). The colour gradient indicates the different redshifts of the snapshots.
The shaded areas indicate the assumed statistical errors of the measurements and the horizontal dashed lines
indicate the Poissonian shot noise.

and

⟨𝛿g(k1) 𝛿g(k2) 𝛿g(k3)⟩ = (2𝜋)3
𝛿D(k123) 𝐵g(k1, k2, k3) , (5.2)

where the angle brackets denote averaging over an ensemble of realisations, 𝛿D is the Dirac delta
function, and k𝑖... 𝑗 ≡ k𝑖 + · · · + k 𝑗 .

The PowerI4 (Sefusatti et al., 2016) code was used to estimate the galaxy density in a regular
Cartesian grid of 10243 cells from the galaxy positions. From this field, one obtains the Fourier-space
galaxy density 𝛿g(q) sampled at the wavevectors q whose components are integer multiples of the
fundamental frequency 𝑘F = 2𝜋/𝐿. The power-spectrum estimator is

𝑃g(𝑘) =
1

𝐿
3
𝑁𝑃

∑︁
q∈𝑘

|𝛿g(q) |
2
, (5.3)

where 𝑁𝑃 is the number of q vectors lying in a bin centered at 𝑘 and of width Δ𝑘 . The sum is carried
out over all discrete q vectors satisfying the condition 𝑘 − Δ𝑘/2 ≤ 𝑞 < 𝑘 + Δ𝑘/2, which is denoted as
q ∈ 𝑘 . Similarly, the bispectrum estimator is

𝐵̂(𝑘1, 𝑘2, 𝑘3) =
1

𝐿
3
𝑁𝐵

∑︁
q1∈𝑘1

∑︁
q2∈𝑘2

∑︁
q3∈𝑘3

𝛿𝐾 (q123) 𝛿g(q1) 𝛿g(q2) 𝛿g(q3) , (5.4)

where 𝛿𝐾 (q123) is a Kronecker symbol equal to one when q1, q2 and q3 satisfy the triangle condition
q123 = 0 (vanishing otherwise) and 𝑁𝐵 is the number of {q1, q2, q3} triangles located in the ‘triangle
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Figure 5.3: The galaxy bispectrum extracted from the Flagship 1 simulation (top) and its relative statistical
uncertainty (bottom). Results are plotted by ordering the triangular configurations according to condition
𝑘1 ≥ 𝑘2 ≥ 𝑘3. In between the two consecutive vertical lines all dots correspond to triangle bins with the same
longest side 𝑘1, whereas 𝑘2 and 𝑘3 take all allowed values.
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5.4 Theoretical model

bin’ defined by the sides 𝑘1 ≥ 𝑘2 ≥ 𝑘3. For this work, we adopt wavenumber bins of width Δ𝑘 = 2 𝑘F,
which in the case of Flagship 1 simulation approximately equals to 0.003 ℎMpc−1.

Since we only have a single realization of the simulation and consider relatively large scales, we
approximate the covariance matrices associated with the power spectrum and bispectrum measurements
with their Gaussian contribution, which is limited to the diagonal component, that is the variance. In
the power spectrum case this is (Feldman et al., 1994; Meiksin and White, 1999)

𝜎
2
𝑃 (𝑘) =

2
𝑁𝑃

𝑃
2
g (𝑘) , (5.5)

where overline indicates the average over the bin defined by the wavenumber 𝑘 of the power spectrum
𝑃g(𝑞), evaluated at the discrete values of 𝑞 ≡ |q|. To compute this expression we use the theoretical
𝑃g obtained after the first iteration of the fitting procedure to the Flagship measurements.

Similarly, the Gaussian contribution for the bispectrum is given by (see e.g. Scoccimarro et al.,
1998; Chan and Blot, 2017)

𝜎
2
𝐵 (𝑘1, 𝑘2, 𝑘3) =

6 𝐿3

𝑁𝐵
𝑃g(𝑘1) 𝑃g(𝑘2) 𝑃g(𝑘3) . (5.6)

Here overline indicates the average over the triangle bin defined by the sides 𝑘1, 𝑘2 and 𝑘3 of the three
power spectra evaluated at the discrete values 𝑞1, 𝑞2 and 𝑞3.

The top panel of Fig. 5.2 shows the measurements of the galaxy power spectrum for the different
snapshots of the Flagship 1 simulation at redshift 𝑧 = 0.9, 1.2, 1.5 and 1.8. The bottom panel shows
the relative standard deviation, which is below the percent level for 𝑘 > 0.05 ℎMpc−1. Note that,
opposite to the evolution of matter power spectrum, the amplitude of the galaxy power spectrum is
higher as you increase the redshift. This is caused by the presence of a larger galaxy bias at higher
redshift.

Fig. 5.3 shows the measured bispectrum 𝐵̂ (top panels) and its relative statistical error (bottom
panels) for all the considered redshifts. We account for all bins {𝑘1, 𝑘2, 𝑘3} that include a closed
triangle {q1, q2, q3} with the constraint 𝑘1 ≤ 𝑘2 ≤ 𝑘3 to avoid double counting and ordered for
increasing values of the wavenumbers. On average the relative errors range between several percent
and 100 depending on the triangle configuration.

5.4 Theoretical model

The theoretical model we use for the galaxy power spectrum depends on the assumed model for
the matter power spectrum for which we adopt the one-loop expression in Standard Perturbation
Theory (SPT, see Bernardeau et al., 2002, for a review) with a counterterm accounting for the
impact of the short-scale perturbations as described in the Effective Field Theory of Large Scale
Structure (EFTofLSS, Baumann et al., 2012; Carrasco et al., 2012). As we discussed in the Sect.
2.4 the general perturbative expansion of the galaxy density field 𝛿g is based on the sum of all the
individual operators that are a function of properties of the environment in which galaxies reside,
such as the matter density field and the large-scale tidal field. Specifically, the sum includes all those
operators that source by the gravity and velocity potentials, Φ and Φ𝑣 (see Desjacques et al., 2018, for
a review).
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The bias expansion for the galaxy overdensity 𝛿g(x) up to third order is given by

𝛿g(x) = 𝑏1 𝛿(x) +
𝑏2
2
𝛿

2(x) + 𝑏G2
G2(Φ | x) + 𝑏Γ3

Γ3(x) + 𝑏∇2
𝛿
∇2
𝛿(x) + 𝜖 (x) , (5.7)

where 𝛿 is the matter overdensity, G2 and Γ3 are relevant non-local operators. Each operator is
multiplied by a bias parameter that determines its amplitude. From the equation (5.7) one can identify
the following terms:

1. At leading order the relationship between 𝛿g and 𝛿 is linear and local, and it is characterised by
a linear bias parameter 𝑏1.

2. Higher order contributions appear as we move to mildly non-linear scales, starting with a term
proportional to 𝛿2, characterised by a quadratic local bias 𝑏2. During a spherically-symmetric
gravitational collapse terms with higher powers of 𝛿 become more important and it is expected
for such terms to appear on progressively smaller scales.

3. Even if at the time of formation the relation between the matter and galaxy density fields is
local, non-linear evolution generates the tidal fields. At leading order, the correction to the bias
expansion due to the tidal stress tensor is given by a non-local quadratic bias, 𝑏G2

, and by the
so-called second-order Galileon operator, G2, defined as

G2(Φ | x) =
[
𝜕𝑖𝜕 𝑗Φ(x)

]2 −
[
∇2

Φ(x)
]2
. (5.8)

The contribution due to the next-to-leading order correction to the tidal field is represented by
an additional non-local cubic bias, 𝑏Γ3

, and by the operator

Γ3(x) = G2(Φ | x) − G2(Φ𝑣 | x) . (5.9)

4. The impact of short-range non-local effects in the galaxy formation process is marked by the
existence of higher derivatives of the gravitational potential. At leading order, the only non-zero
term is proportional to the Laplacian of the matter density field, ∇2

𝛿, and its amplitude is
controlled by a bias parameter 𝑏∇2

𝛿
.

5. The influence of small-scale fluctuations on the galaxy density field at large separations is
governed by an additional stochastic field, denoted as 𝜖 . Under the assumption of Gaussian
initial conditions, this field is entirely uncorrelated with large-scale perturbations. In the case
of randomly distributed galaxies, the contribution to the galaxy power spectrum arising from
this stochasticity takes the familiar form of the Poisson shot noise, expressed as 1/𝑛̄, where 𝑛̄
represents the mean number density of the selected sample

Using the above bias expansion one can write the galaxy power spectrum in real space as the sum of
the SPT model plus the matter power spectrum counterterm 𝑃ct(𝑘), correction from higher-derivative
bias 𝑃h.d. (𝑘), and term describing the stochastic contributions 𝑃𝜖 (𝑘)

𝑃g(𝑘) = 𝑃SPT(𝑘) + 𝑃ct(𝑘) + 𝑃h.d. (𝑘) + 𝑃𝜖 (𝑘) . (5.10)
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The SPT expression 𝑃SPT(𝑘) is given by

𝑃SPT(𝑘) = 𝑏
2
1 𝑃L(𝑘) + 𝑃1−loop(𝑘) , (5.11)

where

𝑃1−loop(𝑘) = 2
∫

d3q [𝐾2(q, k − q)]2
𝑃L(𝑞) 𝑃L( |k − q|) + 6 𝑏1𝑃L(𝑘)

∫
d3q 𝐾3(k, q,−q) 𝑃L(𝑞)

(5.12)
and 𝑃L(𝑘) is the linear matter power spectrum and 𝐾𝑛 kernels are defined as

𝐾2(k1, k2) = 𝑏1 𝐹2(k1, k2) +
𝑏2
2

+ 𝑏G2
𝑆(k1, k2) , (5.13)

𝐾3(k1, k2, k3) = 𝑏1 𝐹3(k1, k2, k3) +
𝑏2
3

[𝐹2(k1, k2) + cyc.] − 4
21
𝑏Γ3

[
𝑆(k1, k23) 𝑆(k2, k3) + cyc.

]
+ 2

3
𝑏G2

[𝑆(k1, k23) 𝐹2(k2, k3) + cyc.] . (5.14)

Here 𝐹𝑛 are the usual matter SPT kernels in the Einstein-de Sitter approximation and

𝑆(k1, k2) =
(k1 · k2)

2

𝑘
2
1 𝑘

2
2

− 1 . (5.15)

The higher-derivative corrections lead to the following term for the galaxy power spectrum:

𝑃h.d. (𝑘) = −2 𝑏1 𝑏∇2
𝛿
𝑘

2
𝑃L(𝑘) . (5.16)

This has the similar scale dependence as EFTofLSS counterterm

𝑃ct(𝑘) = −2 𝑏2
1 𝑐

2
𝑠 𝑘

2
𝑃L(𝑘) , (5.17)

where 𝑐2
𝑠 is the effective sound speed of the matter fluid. Unless we provide extra information on the

above model parameters, the EFT counterterm and higher-derivative correction are degenerate. In this
case, we can define the combination

𝑐0 := 𝑏2
1 𝑐

2
𝑠 + 𝑏1 𝑏∇2

𝛿
, (5.18)

which reduces the dimension of the parameter space. Finally, the stochastic contribution is given by

𝑃𝜖 (𝑘) =
1
𝑛̄

(
1 + 𝛼𝑃 + 𝜖

𝑘
2 𝑘

2
)

(5.19)

which introduces two free parameters 𝛼𝑃 and 𝜖
𝑘

2 that describe constant and scale-dependent corrections
to the Poissonian shot noise 𝑛̄−1.

We also account for the fact that large-scale bulk flows damp and broaden the BAO feature imprinted
on 𝑃L during early epochs. This is done by implementing the so-called infrared (IR) resummation
procedure. We follow the strategy delineated in Baldauf et al. (2015b) and further developed in
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Blas et al. (2016) and Ivanov and Sibiryakov (2018). The starting point to this is to split the linear
power spectrum into a smooth (no-wiggle) part 𝑃nw(𝑘), capturing the broadband shape of the power
spectrum, and an oscillating (wiggly) part 𝑃w(𝑘), describing the BAO,

𝑃L(𝑘) = 𝑃nw(𝑘) + 𝑃w(𝑘) . (5.20)

In order to obtain this decomposition, we use one-dimensional Gaussian smoothing described in Vlah
et al. (2016, appendix A) and Osato et al. (2019). The leading-order matter power spectrum reads then

𝑃
LO
m (𝑘) =

[
𝑃nw(𝑘) + e−𝑘

2
Σ

2
𝑃w(𝑘)

]
, (5.21)

and the corresponding leading-order galaxy power spectrum (without the stochastic term) is 𝑃LO
g =

𝑏
2
1 𝑃

LO
m . In equation (5.21) the factor e−𝑘

2
Σ

2
accounts for suppression of the wiggle feature. Here Σ is

defined as

Σ
2
=

1
6𝜋2

∫ 𝑘S

0
d𝑞 𝑃nw

[
1 − 𝑗0(𝑞/𝑘osc) + 2 𝑗2(𝑞/𝑘osc)

]
, (5.22)

where 𝑗𝑛 is the 𝑛-th order spherical Bessel function, 𝑘osc is the wavenumber corresponding to the
BAO scale 110 ℎ−1 Mpc and 𝑘S is an arbitrary cut-off scale that separates short and long modes.
According to Ivanov and Sibiryakov (2018) it can be shown that Σ2 is weakly dependent on the choice
of 𝑘S and approaches asymptotic value for 𝑘S ≈ 0.2 ℎMpc−1, which we assume in equation (5.22).
Finally, in all loop corrections coming from equation (5.11), we replace the 𝑃L with equation (5.21)
to obtain the IR-resummed loop corrections 𝑃IR

1−loop(𝑘). Therefore this leads to the IR-resummed
next-to-leading-order galaxy power spectrum

𝑃
NLO
g (𝑘) = 𝑏2

1

[
𝑃nw(𝑘) + e−𝑘

2
Σ

2
(1 + 𝑘2

Σ
2) 𝑃w(𝑘)

]
+ 𝑃IR

1−loop(𝑘) − 2 𝑐0 𝑘
2
𝑃

LO
m (𝑘) + 𝑃𝜖 (𝑘) .

(5.23)

The tree-level galaxy bispectrum in real space can be written as the sum of the SPT model
𝐵SPT(k1, k2, k3) plus the stochastic term 𝐵𝜖 (k1, k2, k3). Therefore,

𝐵g(k1, k2, k3) = 𝐵SPT(k1, k2, k3) + 𝐵𝜖 (k1, k2, k3) , (5.24)

where
𝐵SPT(k1, k2, k3) = 2 𝑏2

1 𝐾2(k1, k2) 𝑃L(𝑘1) 𝑃L(𝑘2) + cyc. (5.25)

and

𝐵𝜖 (k1, k2, k3) =
1 + 𝛼1
𝑛̄

𝑏
2
1 [𝑃L(𝑘1) + 𝑃L(𝑘2) + 𝑃L(𝑘3)] +

1 + 𝛼2

𝑛̄
2 .

The parameters 𝛼1 and 𝛼2 represent the corrections to the Poisson shot noise.

Like the case with the power spectrum, IR-resummation here is done by replacing the instances of
the linear matter power spectrum 𝑃L with its IR-resummed variant, the leading-order power spectrum
𝑃

LO
m .
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5.5 Bias relations

In order to reduce the dimensionality of the parameter space and increase the constraining power of
the summary statistics, it has become standard practice in real data analysis to fix some of parameters
to physically motivated values. In our case, the relations between the bias coefficients can prove useful.
These relations can also help to break the degeneracy between some parameters which makes the
determination of cosmological parameters easier and yields tighter constraints on them.

In this work we test the following bias relations with joint fits of the power spectrum and bispectrum:

1. Since we are analysing synthetic data vectors obtained using a known HOD model, it is possible
to derive a relation for the quadratic local bias 𝑏2, from a combination of halo mass function
𝑛(𝑀), the particular HOD model used to populate halos with galaxies, and the halo quadratic
bias. For the latter, we have used the halo quadratic bias relation from Lazeyras et al. (2016). In
this way, it follows that

𝑏
sph
2 := 𝑏2 −

4
3
𝑏G2

=

{
−0.484 − 0.822 𝑏1 + 0.444 𝑏2

1 + 0.08 𝑏3
1, HOD1

−0.015 − 1.58 𝑏1 + 0.809 𝑏2
1 + 0.025 𝑏3

1, HOD3
; (5.26)

Since this relation is based on the particular numbers defining the HOD of our synthetic galaxy
samples, its applicability to real observations is limited. However, this relation can still be used
as a way to determine the consistency among the parameters of the standard one-loop bias
expansion.

2. The influence of nonlinear gravitational evolution in generating a large-scale tidal field is a
well-established phenomenon, even when starting from an initial local relationship 𝛿g(𝛿) (Fry,
1996; Chan et al., 2012). This implies that even if we initially express the density field of
galaxies assuming a purely spherically symmetric gravitational collapse, which involves only
local bias parameters denoted as 𝑏𝑛 ≠ 0, tidal contributions emerge at subsequent times due to
gravitational evolution. As a result, this leads to the presence of non-negligible tidal biases.
Assuming that the total number of objects is conserved in time, it is possible to find a relationship
between the late-time non-local parameters and lower order bias parameters, such that:

𝑏G2
= −2

7
(
𝑏1 − 1

)
+ 𝑏G2, L , (5.27)

𝑏Γ3
= −1

6
(𝑏1 − 1) − 5

2
𝑏G2

+ 𝑏Γ3, L , (5.28)

where the bias parameters with a subscript L stand for the corresponding Lagrangian quantities,
i.e., at the time of formation. The previous relations are commonly referred to as coevolution, or
local Lagrangian relations when setting to zero the Lagrangian bias, and have been extensively
used in most real data analyses to fix one or both non-local parameters (see e.g. Feldman et al.,
2001; Gil-Marín et al., 2015; Sánchez et al., 2016; Grieb et al., 2017).

3. An alternative method for determining 𝑏G2
, which has demonstrated greater accuracy when

compared to results obtained from 𝑁-body simulations and is derived using the excursion set
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Table 5.3: The list of model parameters and assumed uniform prior ranges.

Parameter Uniform prior ranges

𝑏1 [0.25, 4.00]
𝑏2 [−10, 10]
𝑏G2

[−5, 5]
𝑏Γ3

[−8, 8]

𝑐0

[
ℎ
−2Mpc2

]
[−500, 500]

𝛼𝑃 [−1, 2]

𝜖
𝑘

2

[
ℎ
−2Mpc2

]
[−500, 500]

𝛼1 [−1, 2]
𝛼2 [−1, 2]

𝜔c := Ωc ℎ
2 [0.08, 0.18]

ℎ [0.5, 1.0]
𝐴𝑠/𝐴

fid
𝑠 [0.5, 1.5]

formalism3, has been proposed by Sheth et al. (2013). In this approach, 𝑏G2
can be expressed as

a quadratic expression involving the linear bias term 𝑏1, leading to the following relationship

𝑏G2
= 0.524 − 0.547 𝑏1 + 0.046 𝑏2

1 . (5.29)

In Fig. 5.4 we plot the above relations alongside the marginalised posterior distribution contours
obtained by fitting the theoretical model from Sect. 5.4 with cosmological parameters fixed to its
actual values.

5.6 Likelihood function
We make the simplest and most commonly used assumption to treat the data as generated by an
unbiased estimator with Gaussian measurement errors. Therefore, the likelihood function L in
logarithmic space can be written as

lnL(𝜽 | X) = −1
2
(M(𝜽) − X)TC−1(M(𝜽) − X) + const = − 𝜒

2

2
+ const , (5.30)

where M(𝜽) is the theoretical model, which is the function of a set of model parameters 𝜽, and
explains the measured data X with the corresponding covariance matrix C.
3 The excursion set method is a cosmological framework used to model the formation of large-scale structures like galaxies

and dark matter halos. It involves smoothing initial density perturbations, tracking their evolution via a random walk, and
determining when regions exceed a critical threshold for collapse, forming bound structures. This method, often linked to
the Press-Schechter formalism, helps predict the distribution of dark matter halos and is integral to understanding cosmic
structure formation and evolution. Extensions include ellipsoidal collapse and merger trees for tracking halo growth.
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5.6 Likelihood function

Figure 5.4: The bias relations described in Sect. 5.5. Here blue and red contours depict marginalised
posterior contours obtained from fitting to HOD1 and HOD3 Flagship simulation mock galaxy catalogues. The
same-coloured bands mark the 1𝜎 and 2𝜎 errors of the fiducial 𝑏1 obtained by fitting the linear spectrum to
the large-scale limit of the measured power spectrum from these catalogues.
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In this work, we perform the joint fit of the galaxy power spectrum and the bispectrum. Therefore,
X = {𝑃g, 𝐵g} and M(𝜽) is the corresponding theoretical model described in Sect. 5.4. As we
discussed in Sect. 5.3 the covariance matrix C we consider contains only the leading-order Gaussian
contributions, which have only the diagonal components described by the equations (5.5) and (5.6).

We perform two types of analysis. In the first, we fix the cosmological parameters to the values
used in the Flagship 1 simulation listed in Table 5.1. This allows us to test whether the models
are able to constrain the fiducial bias coefficients obtained from Flagship simulation HOD and
what is the range of validity of these models. Fixing the cosmology helps to improve the precision
and accuracy of the bias coefficients since they are degenerate with the cosmological parameters,
particularly 𝐴𝑠. When the cosmological parameters are fixed, the set of 9 parameters of the model is
{𝑏1, 𝑏2, 𝑏G2

, 𝑏Γ3
, 𝑐0, 𝛼𝑃, 𝜖𝑘2 , 𝛼1, 𝛼2}. We refer to this model as “maximal model", since some of them

can be set to zero or fixed using the bias relations. The priors on these parameters are assumed to be
uniform and are given in Table 5.3. In the second type of analysis, we also vary three cosmological
parameters ℎ, 𝐴𝑠, and 𝜔c to see if the models are able to constrain their fiducial values in an unbiased
way. Introducing these parameters can complicate the sampling of the posterior with the MCMC due
to the strong degeneracy between the bias parameters and 𝐴𝑠. Therefore, we choose to sample the
combinations of the two. Instead of sampling 𝐴𝑠 directly we sample the ratio 𝐴 ≡ 𝐴𝑠/𝐴

fid
𝑠 and the

following redefined bias parameters:

𝑏̄1 = 𝐴
1/2
𝑏1, 𝑏̄2 = 𝐴 𝑏2, 𝑏̄G2

= 𝐴 𝑏G2
, 𝑏̄Γ3

= 𝐴
3/2
𝑏Γ3
, (5.31)

adopting the same uniform priors. This is a consequence of the fact that the 𝑛-th order bias operators in
the equation (5.7) scale proportionally to 𝐴𝑛/2. We keep the spectral index 𝑛𝑠 and the baryon content
Ω𝑏 fixed, as these parameters are constrained well by CMB observations.

With fixed cosmological parameters, we evaluate the posterior distributions using theemcee (Foreman-
Mackey et al., 2013) with the 25 walkers and the affine invariant “stretch move" method from Goodman
and Weare (2010). The number of steps the chains are run is equal to min(105

, 100𝜏), where 𝜏 is the
integrated autocorrelation time. To compute the power spectrum and bispectrum models, at each step
we require the linear power spectrum, which is generated from Boltzmann solver CAMB (Lewis et al.,
2000b). The loop corrections to the power spectrum are computed from the custom implementation
of the FAST-PT code (McEwen et al., 2016). When we vary the cosmological parameters, we use the
nested sampler code MultiNest (Feroz et al., 2019). We change the sampler due to longer running
times when varying the cosmological parameters. To speed up the sampling even more we use the
COMET (Eggemeier et al., 2022), which can emulate the one-loop level galaxy power spectrum and the
tree-level bispectrum in the order of milliseconds.

5.7 Results

In this section, the results of our analysis are presented. We first assess the accuracy of the PT-based
theoretical model for 𝑃 + 𝐵 by carrying out the fits at fixed cosmology. In this way, we can focus on
modelling the one-loop galaxy bias, test up to which 𝑘max the reference model can still provide a good
fit to the data, and compare the performance of the bias relations listed in the Sect. 5.5. Next we repeat
the same by also varying the cosmological parameters ℎ, 𝜔c and 𝐴𝑠.
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Table 5.4: Marginalised mean values of the linear bias 𝑏1 and the shot-noise parameter 𝛼𝑃 measured using the
large-scale limit of the ratio 𝑃g/𝑃m presented in equation (5.32).

𝑧 HOD 𝑏1 𝛼𝑃

Model
[
𝑛̄
−1

]
0.9 1 1.350 ± 0.004 0.220 ± 0.220

3 1.395 ± 0.003 0.253 ± 0.079

1.2 1 1.661 ± 0.006 0.424 ± 0.152
3 1.751 ± 0.004 0.289 ± 0.057

1.5 1 1.977 ± 0.007 0.386 ± 0.104
3 2.030 ± 0.005 0.219 ± 0.032

1.8 1 2.474 ± 0.007 0.257 ± 0.039
3 2.486 ± 0.005 0.346 ± 0.018

5.7.1 The fiducial linear bias
The validation of the model with fixed cosmology is carried out against the fiducial values of the linear
bias 𝑏1, which is determined by making use of the large-scale limit of the measured galaxy and matter
power spectrum. In this regime, we can assume the data is described by the linear power spectrum and
use the simple two-parameter model defined as

𝑃g(𝑘) = 𝑏
2
1 𝑃m(𝑘) +

1 + 𝛼𝑃
𝑛̄

. (5.32)

The latter is used to fit the data on scales 𝑘max < 0.08 ℎMpc−1, which justifies the use of the linear
approximation. The fitted values of 𝑏1 and 𝛼𝑃 are listed in the Table 5.4.

5.7.2 Testing the model with fixed cosmology
We first perform a joint analysis of the power spectrum and bispectrum using the models described
in Sect. 5.4 which have 12 free parameters listed in the Table 5.3. In this section, we consider the
models with cosmological parameters fixed to their fiducial values.

We start by assessing the goodness-of-fit of the models by calculating the corresponding 𝑝-values4

using the posterior-averaged reduced 𝜒2 for each considered Flagship snapshot and various scale cuts
imposed on the 𝑃 and 𝐵 statistics indicated by 𝑘𝑃max and 𝑘𝐵max from the hereafter. In Fig. 5.5 we plot
these 𝑝-values in four separate panels corresponding to the Flagship snapshots at 𝑧 = 1.8, 1.5, 1.2,
and 0.9. With white we indicate that 𝑝-value is less than 0.05, meaning that the model is rejected
as a good fit to the data with a 95 per cent confidence level. According to this test, the goodness
of fit is mostly determined by the 𝑘𝐵max and is insensitive to the chosen 𝑘𝑃max. This is expected since
the bispectrum has many more data points than the power spectrum and therefore the computed 𝜒2

value is mostly determined by the former. Overall, one can say that the maximal 𝑃 + 𝐵 model with
4 A 𝑝-value, or probability value, is a number describing how likely it is that your data is a good fit to the model.
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Figure 5.5: The goodness of fit test of galaxy 𝑃+𝐵model (with fixed cosmology) against the Flagship simulation
mock galaxy catalogues HOD1 and HOD3. Each panel indicates a different snapshot of the simulation and on
the 𝑥 and 𝑦-axis, we indicate the assumed scale cuts on the data vectors. The colours represent the corresponding
𝑝-values (top panels) and FoB with respect to parameter 𝑏1 (bottom panels). If the 𝑝-value is less than 0.05,
the model is a bad fit to the data and we do not plot the corresponding 𝑝-value. Similarly, if the FoB is above
2𝜎 critical level, we do not plot the corresponding value.
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𝑘
𝑃
max ≤ 0.4 ℎMpc−1 and 𝑘𝐵max ≤ 0.22 ℎMpc−1 provides a good fit to the Flagship simulation data for

the redshift 𝑧 = 1.8 and below that one needs to restrict the bispectrum data up to 0.16 ℎMpc−1 to
maintain a good fit.

As a next step, in the same figure, we also quantify how close is the fitted linear bias parameter 𝑏1
to the fiducial one with respect to the statistical errors. This is done by computing the figure of bias
(FoB) with respect to 𝑏1 as,

FoB =

√︄∑︁
𝑖 𝑗

Δ𝜃𝑖 S
−1
𝑖 𝑗 Δ𝜃 𝑗 , (5.33)

where Δ𝜃𝑖 is the difference between the fitted and fiducial parameters and S is the covariance matrix of
the considered parameters5. Therefore, FoB corresponds to the distance between true and estimated
parameters normalised by their uncertainties. Since the fiducial parameter also has a certain variance
we consider it by adding this variance to the diagonal part of S. We plot the obtained FoB values
for different choices of scale cuts and redshifts. In the panels, the white colour indicates that FoB is
above the value corresponding to 2𝜎 deviation between fiducial and fitted bias parameters. According
to this analysis, there is no significant difference between the two for snapshots corresponding
to redshifts above 0.9, whereas, for the latter case, one has to restrict the bispectrum data below
𝑘
𝐵
max = 0.1 ℎMpc−1 to be consistent with the analysis done using the Flagship HOD. This indicates

the need to include the higher-order PT terms in the theoretical bispectrum to model the stronger
non-linear clustering appearing at lower redshifts.

5.7.3 Comparison between bias relations

We now discuss the performances of bias relations listed in Sect. 5.5. We take the maximal model
with fixed cosmology and impose each of the relations to reduce the number of free parameters from
nine to eight. Since we assume that bias coefficients are physical parameters rather than nuisance ones,
any valid physical relation should not create a significant deviation compared to values recovered
using the maximal model. In Figs. 5.6 and 5.7 for each considered catalogue we plot the fitted
linear bias coefficients, 𝑏1, with its marginalised 68 per cent credibility limits and compare them
against the fiducial 𝑏1. For these runs we vary the 𝑘𝐵max and fix 𝑘𝑃max to 0.15 ℎMpc−1. At redshift
𝑧 = 1.2 every model underestimates the fiducial 𝑏1 except when using the 𝑏2(𝑏1) and 𝑏Γ3

(𝑏1, 𝑏G2
)

relations. Particularly, in the case of 𝑧 = 0.9 all models except one assuming the 𝑏2(𝑏1) relation from
the equation (5.26) significantly underestimate 𝑏1. This is expected since the 𝑏2(𝑏1) relation was
obtained from fitting to the data points derived from the Flagship HOD. Overall one can say that for
𝑧 ≥ 1.2 the 𝑏Γ3

(𝑏1, 𝑏G2
) relation tends to agree with the maximal model the most and does not induce

the noticeable deviations among the recovered bias coefficients.
We further quantify the performance of the bias relations by computing the difference in Deviance

Information Criterion (DIC) with respect to the maximal model with nine parameters, which we take
as a reference. DIC is defined as

DIC = ⟨𝐷⟩post + 𝑝𝑉 , (5.34)

where 𝐷 = −2 lnL (deviance, which is averaged over the posterior) and 𝑝𝑉 = 0.5Var(𝐷) (effective
number of parameters that are constrained by the chain). The difference ΔDIC below −5 indicates a

5 In this particular case we are considering only one parameter, 𝑏1, so the covariance matrix will just simply be the variance
of 𝑏1.
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Figure 5.6: First row: comparison of bias parameter 𝑏1 obtained by fitting the galaxy 𝑃 + 𝐵 model (with fixed
cosmology) assuming various bias relations, which are indicated using different colours and error bars depict
the 68 percent credibility intervals. The grey bands mark the 1 and 2𝜎 regions of the fiducial 𝑏1 obtained by
fitting the linear spectrum to the large-scale limit of the measured power spectrum. Second row: the fitted
values of the bispectrum Poisson shot noise correction 𝛼2 and corresponding 68 percent credibility intervals
when fitting the maximal model i.e. the model with only the cosmological parameters fixed. Third row: the
difference in DIC with respect to the reference maximal model with nine parameters when assuming the various
bias relations. The difference ΔDIC < −5 indicates a strong preference against the reference model. Fourth
row: the effective number of parameters 𝑝𝑉 that is constrained by the chain when imposing bias relations. The
horizontal dotted lines indicate the actual number of parameters 9 and 8 with and without imposed bias relation,
respectively. For reference, we also plot the model with 𝛼 = 0 in violet.
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Figure 5.7: Same as in Fig. 5.6 but for the HOD3 mock catalogue case.

strong preference against the reference model. We plot this quantity alongside 𝑝𝑉 for various redshifts
and over a range of 𝑘𝐵max in Figs. 5.6 and 5.7. Looking at values of ΔDIC only the co-evolution
relation 𝑏Γ3

(𝑏1) is favoured consistently over all the considered redshifts with respect to the reference
model. The 𝑏2(𝑏1) relation is only favoured for higher redshifts 𝑧 = 1.8 and 1.5, while at the later
times, it is shown to be not consistent with the reference model. This is also evident from the fact that
the recovered linear bias 𝑏1 between these two models differs significantly. The local Lagrangian bias
relation 𝑏G2

(𝑏1) is strongly disfavoured compared to the reference model on the shorter scales. This
was also confirmed from the bispectrum-only likelihood analysis performed in Oddo et al. (2020b).
The values of 𝑝𝑉 indicate that on large scales one parameter always remains unconstrained, which
turns out to be 𝛼2 as it is evident from the bottom panels. Its marginalised posterior distribution fills
up the whole prior range between −1 and 2 for 𝑘𝐵max < 0.12 ℎMpc−1. When setting 𝛼2 = 0 (cyan
curves) the value of 𝑝𝑉 is closer to the actual number of model parameters, indicating that the Markov
chain can constrain all the model parameters.

5.7.4 Testing model with varied cosmology
After investigating the performance of the joint fit of the galaxy power spectrum and bispectrum in real
space at fixed cosmology, we investigate the possibility of these models to recover the cosmological
parameters in an unbiased way. The theoretical model is described in Sect. 5.4 which depends on the 8
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Figure 5.8: Cosmological parameters 𝐴𝑠 , ℎ and 𝜔c (top three rows) obtained by fitting the galaxy 𝑃 + 𝐵 to the
same statistics measured from the HOD1 snapshot as a function of the scale cut imposed on the power spectrum,
𝑘
𝑃
max. The performance metrics - goodness of fit (in terms of 𝑝-values), figure of bias, and figure of merit

are plotted in the bottom three panels, respectively. The last two metrics were computed with respect to the
parameters 𝐴𝑠 , ℎ, and 𝜔c. The color gradient indicates the different scale cut on the bispectrum, 𝑘𝐵max. The grey
band in the 𝑝-value indicates the critical value of 0.05 below which the model is rejected as a good fit to the data.
The same bands in FoB panels represent the 68 and 95 percentiles of the corresponding distribution, indicating
1 and 2𝜎 deviations of the fitted cosmological parameters from the actual their values. The FoM panels show
the figure of merit normalized to the one computed at 𝑘𝑃max = 0.1 ℎMpc−1 and 𝑘𝐵max = 0.08 ℎMpc−1.

64 30th April 2025 12:58



5.7 Results

Figure 5.9: Same as in Fig. 5.8 but for the HOD3 catalogue.

bias and shot-noise parameters listed in Table 5.3 except setting 𝛼2 = 0 since it remains unconstrained
as we have discussed in Sect. 5.7.3. However, this time we also vary three cosmological parameters
𝐴𝑠, 𝜔c, and ℎ within uniform prior ranges defined in Table 5.3 and others we fix to their fiducial
values defined in Table 5.1. Notice that, in practice, we vary the combination of parameters defined by
equations (5.31), but present the actual bias parameters when discussing the results. This is done to
alleviate degeneracies present between the bias parameters and 𝐴𝑠 in real space, which in turn speeds
up the convergence of MCMC chains.

In Fig. 5.8 we show the fitted cosmological parameters with their marginalised 68 per cent credibility
limits and corresponding metrics for goodness-of-fit, FoB, and figure of merit (FoM). The latter
determines the statistical power in constraining the parameters and for a given set of model parameters
𝜽 it is defined in the following way:

FoM =
1√︁

det[𝑆(𝜽)]
. (5.35)

Here 𝑆(𝜽), as in the case of the FoB, is defined as the matrix containing the covariance of the model
parameters, and det(𝑆) is the determinant of 𝑆. The latter represents the hyper-volume contained in
the hyper-surface defined by the covariance matrix 𝑆. Therefore, the high value of FoM corresponds
to tighter constraints of the model parameters.

The FoB and FoM were obtained with respect to the three varied cosmological parameters. As
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expected, the primordial scalar amplitude 𝐴𝑠 remains the most problematic to obtain the unbiased fit
for. The constraining power for this parameter is increased by including the short-scale information
coming from the bispectrum, although, in some cases producing biased results due to strong 𝐴𝑠 -
𝑏1 degeneracy in real space. In redshift space, the strong degeneracy can be broken since these two
parameters have a distinct impact on multipoles of the power spectrum and bispectrum. The matter
density parameter 𝜔c remains biased on large scales, which is reduced by including the short-scale
information on higher-order bias parameters. For example, including the short-scale information
coming from the one-loop galaxy power spectrum helps to break the degeneracy between 𝜔c and
high-order bias parameters, which in turn improves the constraints on 𝜔c. This feature is also
reflected on the FoB, particularly, for redshifts 1.8 and 1.5 in Fig. 5.9. For these snapshots when
𝑘
𝑃
max > 0.1 ℎMpc−1 and 𝑘𝐵max < 0.18 ℎMpc−1 the values of FoB are reduced.
The goodness-of-fit metric 𝑝-value is consistent with what was observed with the fixed cosmology

case. Namely, it weakly depends on the chosen 𝑘𝑃max and one has to restrict 𝑘𝐵max up to 0.12 ℎMpc−1

for all the considered snapshots to obtain a good fit.
The FoM increases monotonically with respect to the reference case of the fit assuming 𝑘𝑃max =

0.1 ℎMpc−1 and 𝑘𝐵max = 0.08 ℎMpc−1. This increase is larger when moving towards lower redshifts
and adding more nonlinear scales. However, it plateaus after 𝑘𝑃max = 0.25 ℎMpc−1 due to entering the
shot-noise-dominated region of the power spectrum where the signal on the cosmological parameters
diminishes.

5.7.5 Comparison with the P-only fits

We now compare the 𝑃 + 𝐵 results with the results from the companion paper Euclid Collaboration
et al. (2023), where a similar analysis was performed with the galaxy power spectrum only, modelled
with the same 1-loop galaxy bias model. In the latter case, only the ℎ and 𝜔c parameters were varied.
Different from our analysis the primordial amplitude 𝐴𝑠 was fixed to its fiducial value. We repeat the
same for 𝑃 + 𝐵 case and in Fig. 5.10 we compare it to the power-spectrum-only fits in terms of their
one-dimensional marginalised constraints, goodness-of-fit, FoB, and FoM (the latter w.r.t. ℎ and 𝜔c).

Adding the extra information from the bispectrum to the power spectrum breaks the nontrivial
degeneracies between second-order and leading-order bias parameters, which biases the marginalised
constraints on these parameters. As a result, in Fig. 5.10 one can observe the improved agreement
of the linear bias 𝑏1 with its fiducial value on large scales when combining the power spectrum and
bispectrum. The same phenomenon is observed for 𝜔c, whose marginalised constraints are biased for
the 𝑃-only fits on large scales, but in agreement with its fiducial value when performing 𝑃 + 𝐵 fits.

The goodness-of-fit computed in terms of 𝑝-values simply demonstrates that due to larger degrees
of freedom, the 𝑃 + 𝐵 finds it easier to pass that test, demonstrated by its corresponding 𝑝-value, which
is above 0.05 for the considered redshifts. The FoB for both 𝑃 and 𝑃 + 𝐵 fits are below the critical
2𝜎 limit, with 𝑃 + 𝐵 slightly favoured on the large scales due to reasons discussed in the previous
paragraph. Finally, as expected the FoM is increased by approximately between 2-5 times when adding
the extra information from the bispectrum. However, we should expect less constraining power from
the actual surveys when including the bispectrum due to redshift-space distortions, systematic errors,
and smaller survey volume than what is considered in this analysis.

66 30th April 2025 12:58



5.7 Results

Figure 5.10: Cosmological parameters ℎ and 𝜔c (top two rows) obtained by fitting the galaxy 𝑃 and 𝑃 + 𝐵 to the
same statistics measured from the HOD3 catalogue snapshots as a function of the scale cut 𝑘𝑃max imposed on
the power spectrum while the scale cut on the bispectrum 𝑘

𝐵
max = 0.12 ℎMpc−1. The performance metrics -

goodness of fit (in terms of 𝑝-values), figure of bias, and figure of merit are plotted in the bottom three panels,
respectively. The last two metrics were computed with respect to the parameters ℎ, and 𝜔c. The grey bands in
the 𝑝-value panels indicate the critical value of 0.05 below which the model is rejected as a good fit to the data.
The same bands in FoB panels represent the 68 and 95 percentiles of the corresponding distribution, indicating
1 and 2𝜎 deviations of the fitted cosmological parameters from the actual their values.
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5.8 Concluding remarks

In this chapter, we carried out an analysis meant to assess the performance of the model for one-loop
galaxy bias over a redshift range that is representative of the spectroscopic galaxy sample that will be
measured but Euclid. We have used a set of four halo catalogues from comoving snapshots of the
Flagship I simulation, at 𝑧 = (0.9, 1.2, 1.5, 1.8). These snapshots were subsequently populated with
H𝛼 galaxies using HOD procedures based on the Model 1 and 3 from Pozzetti et al. (2016). Each
snapshot has an outstanding volume of 37803

ℎ
−3 Mpc3 and high comoving number density, allowing

us to assess the accuracy of the perturbative bias expansion with a high level of precision.
We tested galaxy bias models for the full shape of the real-space galaxy power spectrum and the

bispectrum. This model adopts an Eulerian bias expansion and it is based on the recently developed
EFT modelling, in which the impact of the small-scale physics can be captured by a set of counterterms.
The final parameter space consists of three cosmological parameters: the Hubble parameter ℎ, the
primordial scalar amplitude 𝐴𝑠, the cold dark matter density parameter 𝜔c, plus a set of nine nuisance
parameters, consisting of bias, EFT counterterm and extra parameters representing deviations from
the Poissonian shot-noise.

We first analysed the performance of the combined power spectrum and the bispectrum models, or
𝑃 + 𝐵, by fixing the cosmological parameters to the input cosmology of the Flagship I simulation.
This way, we focused on modelling the one-loop galaxy bias and compared the performance of the
well-known bias relations, which help to reduce the dimension of the parameter space. Next, we
focused on how well the cosmological parameters are determined using the one-loop galaxy bias.
In all the cases, we determined the range of validity of the model using three different performance
metrics: the goodness of fit, figure of bias (FoB), and the figure of merit (FoM). The last two metrics
were computed on the ℎ, 𝐴𝑠, 𝜔c combination. The results can be summarised as follows:

1. When we fix the cosmology, the goodness of fit is mostly determined by 𝑘𝐵max and is insensitive
to the chosen 𝑘𝑃max. One needs to restrict the former up to 0.16 ℎMpc−1 to maintain a good fit.
On the other hand, the FoB computed on the fiducial 𝑏1 requires to restriction the bispectrum
data up to 𝑘𝐵max = 0.1 ℎMpc−1.

2. When performing analysis using the 𝑃 + 𝐵 model with fixed cosmology, the co-evolution bias
relation 𝑏Γ3

(𝑏1) is favoured consistently over all the considered redshifts. The 𝑏2(𝑏1) relation is
shown to be only favoured for higher redshift 𝑧 = 1.8 and 1.5, and the local Lagrangian relation
𝑏G2

(𝑏1) is strongly disfavoured on the shorter scales.

3. When we also vary the three cosmological parameters mentioned above, the constraining power
of 𝐴𝑠 is increased by including the bispectrum, but in some cases produces biased results due to
strong 𝐴𝑠 - 𝑏1 degeneracy in real space. Including the short-scale information coming from the
one-loop power spectrum reduces the bias for 𝜔c. We have to restrict the data vectors according
to limits 𝑘𝑃max ≤ 0.2 ℎMpc−1 and 𝑘𝐵max ≤ 0.18 ℎMpc−1 to maintain the FoB under the 2𝜎
limit.

4. The FoM increases monotonically as we add more short-scale information from the power
spectrum and the bispectrum, but plateaus after 𝑘𝑃max = 0.25 ℎMpc−1 due to entering the
shot-noise dominated region of the power spectrum.
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5. When comparing the fits from 𝑃+𝐵 to 𝑃-only, while varying only𝜔c and ℎ, the extra information
coming from the bispectrum reduces a bias in 𝜔c on large scales. Furthermore, as expected, the
FoM is increased by factor of 2-5, indicating tighter fits on these parameters.

These results are part of a series of works meant to validate the theoretical framework that will
be used to analyse the large-scale galaxy distribution as observed in the actual measurements of
Euclid. Here we have focused on analysing the performance of the joint fit of the real-space galaxy
power spectrum and the bispectrum, something that stands as an important test for the complementary
analysis that is going to be carried out by Euclid. In parallel, in Euclid Collaboration et al. (2023)
we have focused on modelling of the real-space galaxy power spectrum and found that overall, the
one-loop galaxy bias expansion is sufficiently accurate on the redshift range 1 ≤ 𝑧 ≤ 2, even deep
in the mildly non-linear regime, at 𝑘max 0.4 ℎMpc−1. Two additional instalments of the series
(Euclid Collaboration: Camacho et al., in prep., Euclid Collaboration: Pardede et al., in prep.) will
extend the modelling tests to redshift space. In parallel, a different set of papers will be devoted to a
similar analysis of configuration space statistics (Euclid Collaboration: Guidi et al., in prep., Euclid
Collaboration: Kärcher et al., in prep., Euclid Collaboration: Pugno et al., in prep.).
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CHAPTER 6

Summary

Due to the non-linear growth of the structure, the cosmic density field typically deviates from Gaussian
distribution. Exploring statistical measures beyond the two-point correlation function presents
new opportunities to harness a wealth of cosmological information. In particular, next-generation
galaxy surveys with their extensive coverage and a high galaxy number density hold the potential for
increasingly precise determinations of the galaxy three-point correlation function and bispectrum.
Analysing these three-point correlation functions can enhance our comprehension of structure growth,
galaxy bias, and primordial non-Gaussianity.

Extracting information from the galaxy bispectrum requires accurate modelling of the bispectrum
of the dark matter density field. In chapter 3 we have summarised the results from Alkhanishvili
et al. (2022), where we have used a very large set of 𝑁-body simulations to test the next-to-leading
order perturbation theory expansions for the matter power spectrum and bispectrum in five different
implementations of perturbation theory. Specifically, we studied up to which maximum wavenumber
(scale) 𝑘max the models provide a good fit to the simulations. This scale is also referred to as reach
in the literature. We found that the state-of-the-art model Effective Field Theory (EFT) has the
largest reach (𝑘max ≈ 0.14 ℎMpc−1) among other perturbation theory models. This is partly owed to
the free parameters that this model has that allow to capture the influence of short-scale non-linear
effects on the large-scale fluctuations. We have also looked at how these results change when one
considers smaller volumes since the volumes observed by current and upcoming surveys are one or
two magnitudes lower than the total volume of the simulations we have considered. As expected, due
to larger error bars around the measurements of the power spectrum and the bispectrum the reach
is dramatically improved. For example, in the case of EFT we obtained the reach of 0.25 ℎMpc−1

for the power spectrum and 0.18 ℎMpc−1 for the bispectrum. Furthermore, the impact of systematic
errors of the 𝑁-body simulations on the above results was tested. We have found that adding small
uncorrelated systematic errors to the statistical ones dramatically extended the reach of EFT model
due to the freedom provided by the counterterms. On the other hand, we found that the correlated
errors like one coming from the finite mass resolution have a minimal impact on the results.

Traditional estimators of the galaxy power spectrum and bispectrum are sensitive to the survey
geometry. They yield spectra that differ from the true underlying signal since they are convolved with
the window function of the survey. For the current and future generations of experiments, this bias is
statistically significant on large scales. It is thus imperative that the effect of the window function
on the summary statistics of the galaxy distribution and their covariance is accurately modelled.
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Moreover, this operation must be computationally efficient to allow sampling posterior probabilities
while performing Bayesian estimation of the cosmological parameters. In chapter 4 we demonstrated
how DNNs can be used to achieve this goal. We trained two models, one for the power spectrum and
another for the bispectrum, which emulate the convolution with the window function. These models
turned out to be accurate to better than 0.1 per cent on a timescale of 10 microseconds. The bottleneck
operation in the DNN approach is the creation of the training data set, which requires a significant
time investment in the case of the bispectrum. We thus conclude that using the DNN model would be
advantageous as long as the size of the necessary training set is substantially smaller than the number
of the required likelihood evaluations in the Bayesian estimation of the model parameters.

In chapter 5 we have assessed the performance of a model for one-loop galaxy bias against the
synthetic data from Flagship I simulation that is representative of the Euclid survey spectroscopic
galaxy sample. We tested galaxy bias models for the full shape of the real-space galaxy power
spectrum and the bispectrum. Namely, we analysed how well the combined two and three-point
statistics in Fourier space can constrain the bias and cosmological parameters. At first, we fixed the
cosmological parameters to the input cosmology of the Flagship I simulation. That way we have
focused on how well the one-loop galaxy bias describes the summary statistics. We found that one
needs to restrict the range of considered wavenumbers for the bispectrum 𝑘

𝐵
max up to 0.16 ℎMpc−1

to maintain a good fit. Additionally, we investigated which bias relations can help to reduce the
dimensions of the parameter space without degrading the constraining power of the model. We have
found that co-evolution bias relation 𝑏Γ3

(𝑏1) is favoured over all the considered redshifts. Next, we
have focused on how well the cosmological parameters are determined by the same model. Namely,
we have focused on the Hubble parameter ℎ, the primordial scalar amplitude 𝐴𝑠, and the cold dark
matter density parameter 𝜔c. In this case, the constraining power of 𝐴𝑠 is increased by including
more bispectrum data, but in some cases, this produces biased results due to strong 𝐴𝑠-𝑏1 degeneracy.
This degeneracy is not an issue in redshift space and only exists in real space. On the other hand, the
constraining power of these parameters increases as one adds more short-scale information but it
plateaues after 𝑘𝑃max = 0.25 ℎMpc−1 due to entering the shot-noise dominated region of the power
spectrum. Lastly, we demonstrated that including the galaxy bispectrum on top of the galaxy power
spectrum reduces the bias of 𝜔c on large scales and the constraints on the parameters are improved
by 2-5 times. Overall, our analysis shows promising results that three-point statistics will drastically
improve the information harvested from the next-generation surveys and more effort needs to be made
to model it accurately.
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A B S T R A C T 

We provide a comparison between the matter bispectrum derived with different fla v ours of perturbation theory at next-to-leading 

order and measurements from an unprecedentedly large suite of N -body simulations. We use the χ2 goodness-of-fit test to 

determine the range of accuracy of the models as a function of the volume covered by subsets of the simulations. We find that 
models based on the ef fecti ve field theory (EFT) approach have the largest reach, standard perturbation theory has the shortest, 
and ‘classical’ resummed schemes lie in between. The gain from EFT, ho we ver, is less than in pre vious studies. We sho w that 
the estimated range of accuracy of the EFT predictions is heavily influenced by the procedure adopted to fit the amplitude of 
the counterterms. For the volumes probed by galaxy redshift surv e ys, our results indicate that it is advantageous to set three 
counterterms of the EFT bispectrum to zero and measure the fourth from the power spectrum. We also find that large fluctuations 
in the estimated reach occur between different realizations. We conclude that it is difficult to unequivocally define a range 
of accuracy for the models containing free parameters. Finally, we approximately account for systematic effects introduced 

by the N -body technique either in terms of a scale- and shape-dependent bias or by boosting the statistical error bars of the 
measurements (as routinely done in the literature). We find that the latter approach artificially inflates the reach of EFT models 
due to the presence of tunable parameters. 

Key words: methods: statistical – theory – large-scale structure of Universe. 

1  I N T RO D U C T I O N  

The three-point correlation function or its Fourier counterpart, the 
bispectrum, are the lowest-order clustering statistics that characterize 
departures from Gaussianity in the galaxy distribution. Although 
these statistics have a long history dating back to the earliest 
galaxy redshift surv e ys (Peebles & Groth 1975 ; Gaztanaga 1994 ; 
Scoccimarro et al. 2001 ; Verde et al. 2002 ; Gazta ̃ naga et al. 2005 ; 
Pan & Szapudi 2005 ; Kulkarni et al. 2007 ; McBride et al. 2011 ; Gil- 
Mar ́ın et al. 2015a , b , 2017 ; Slepian et al. 2017a , b , 2018 ; Pearson 
& Samushia 2018 ; Gualdi et al. 2019 ), their importance has al w ays 
been rather marginal. On the contrary, they are expected to play a key 
role to fully exploit the potential of forthcoming observations such 
as those conducted with the Dark-Energy Spectroscopic Instrument 
(DESI; DESI Collaboration 2016 ) and the Euclid satellite (Laureijs 
et al. 2011 ) by improving the estimation of cosmological parameters 
and breaking degeneracies that emerge from the analysis of the power 

� E-mail: daalkh@astro.uni-bonn.de (DA); cporcian@uni-bonn.de (CP); 
emiliano.sefusatti@inaf.it (ES) 

spectrum (e.g Chudaykin & Ivanov 2019 ; Yankelevich & Porciani 
2019 ; Barreira 2020 ; Gualdi & Verde 2020 ; Heinrich & Dor ́e 2020 ; 
Agarwal et al. 2021 ; Eggemeier et al. 2021 ; Hahn & Villaescusa- 
Navarro 2021 ; Moradinezhad Dizgah et al. 2021 ; Samushia, Slepian 
& Villaescusa-Navarro 2021 ). 

In order to achieve this goal, it is crucial that accurate the- 
oretical models are available in the mildly non-linear regime of 
perturbation growth. The information we want to retrieve, in fact, 
is distributed o v er man y triangular configurations the number of 
which grows rapidly with the minimum considered length scale 
(Sefusatti & Scoccimarro 2005 ; Sefusatti et al. 2006 ; Chan & 

Blot 2017 ). Therefore, an essential feature of the models is that 
the y giv e accurate predictions o v er the widest possible range of 
scales. In this paper, we investigate the accuracy of perturbative 
models for the bispectrum of the matter density field against 
large suites of N -body simulations. This way we test the pri- 
mary building block of models for the galaxy bispectrum that 
should also address additional sources of non-linearities (e.g. 
galaxy biasing and redshift-space distortions) and discreteness 
effects. 

© 2022 The Author(s) 
Published by Oxford University Press on behalf of Royal Astronomical Society 
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Standard perturbation theory (SPT; see Bernardeau et al. 2002 , 
for a re vie w) has long been the workhorse for theoretical pre- 
dictions on clustering statistics in cosmology. Based on the so- 
called single-stream approximation (in which velocity dispersion 
is neglected), it expands the fluid equations for a self-gravitating 
pressureless fluid in terms of the linear density contrast and ve- 
locity potential. The evolution of the bispectrum generated from 

Gaussian initial conditions to the lo west non-v anishing order in 
SPT was pioneered by Fry ( 1984 ). Next-to-leading-order (NLO) 
corrections were then discussed in Scoccimarro ( 1997 ) and Scoc- 
cimarro et al. ( 1998 ). Over the years, alternative schemes have 
been developed to model the growth of cosmological pertur- 
bations and the calculation of the matter bispectrum has been 
combined with techniques that resum infinite subsets of pertur- 
bative contributions in both the Eulerian (Crocce & Scoccimarro 
2006a , b ; Bernardeau, Crocce & Scoccimarro 2008 , 2012 ; Crocce, 
Scoccimarro & Bernardeau 2012 ) and the Lagrangian descrip- 
tions (Matsubara 2008 ; Rampf & Wong 2012 ). More recently, 
following a general trend in theoretical physics, an effective field 
theory (EFT) that approximately describes gravitational instabil- 
ity on ‘perturbative’ scales and averages over small-scale fluc- 
tuations provided a new framework to model the matter bispec- 
trum (Angulo et al. 2015 ; Baldauf et al. 2015c ). In this case, 
feedback from the small scales to the large scales is expressed 
in terms of a number of parameters that are fit to observa- 
tional data or numerical simulations. This construction appears 
to be successful in extending the range of accuracy of the mod- 
els. In this work, we compare the different approaches ranging 
from SPT to EFT with two large suites of N -body simulations. 
Since many of the forthcoming observational probes will concen- 
trate on intermediate redshifts, we only consider data at redshift 
z = 1. 

Although several authors already tried to determine the domain 
of accuracy (sometimes dubbed the reach or k -reach) of different 
perturbative predictions for the bispectrum (e.g. Angulo et al. 2015 ; 
Baldauf, Mercolli & Zaldarriaga 2015b ; Lazanu et al. 2016 ; Steele 
& Baldauf 2021 ), our work critically evidences that the results 
depend on a number of factors that have been rarely explored 
in depth. In the first place, they depend on the o v erall volume 
co v ered by the N -body simulations which determines the size 
of the statistical uncertainty affecting the measurements. Besides, 
when these random errors are small, estimates of the reach are 
influenced by systematic shifts due to imperfections of the N - 
body technique (which are not easy to model and to account for). 
Furthermore, in the case of the EFT, on top of the sheer goodness- 
of-fit criterion, one should also consider the consistency (as a 
function of the minimum length scale under study) of the best- 
fitting values for the parameters that determine the amplitude of 
the EFT corrections. In addition, the number of free parameters and 
the range of scales used in the fitting procedure might influence 
the inferred range of accuracy. By considering all these effects, we 
provide a much more comprehensive investigation of the reach of 
perturbative models for the matter bispectrum at NLO than what 
is already available in the literature. As a byproduct of our study, 
we also obtain analogous results for the matter power spectrum 

which we use in order to calibrate the EFT corrections for the 
bispectrum. 

This paper is organized as follows. In Section 2 , we briefly review 

the PT models we use while, in Section 3 , we introduce the simulation 
suites and the bispectrum measurements. In Section 4 , we describe 
how the perturbative models are implemented in practice and how we 
use the χ2 goodness-of-fit test to determine their range of accuracy. 

Our results are presented and critically discussed in Section 5 . Finally, 
we summarize our findings in Section 6 . 

2  P E RTU R BAT I O N  T H E O RY  

Giv en the F ourier transform of the mass-density contrast at redshift 
z , δ( k , z ), the matter power spectrum, P ( k , z), and the bispectrum, 
B( k 1 , k 2 , k 3 , z), can be defined in terms of the two- and three-point 
equal-time correlators as 

〈 δ( k 1 , z) δ( k 2 , z) 〉 = (2 π ) 3 δD ( k 12 ) P ( k 1 , z) , (1) 

and 

〈 δ( k 1 , z) δ( k 2 , z) δ( k 3 , z) 〉 = (2 π ) 3 δD ( k 123 ) B( k 1 , k 2 , k 3 , z) , (2) 

where the angle brackets denote averaging over an ensemble of 
realizations, δD is the Dirac delta function, and k i ... j ≡ k i + · · · + k j . 
In this section, we briefly re vie w a number of perturbative methods 
that have been used to model P ( k , z) and B( k 1 , k 2 , k 3 , z) on quasi- 
linear scales and that we will test against numerical simulations. 

2.1 Standard perturbation theory 

In the standard model of cosmology, the formation of the large-scale 
structure of the Universe is dominated by a dark-matter component. 
Although the physical origin of dark matter is still unclear, it is 
generally assumed that, on macroscopic scales, it can be modelled as 
a self-gravitating medium go v erned by the collisionless Boltzmann 
(or Vlasov) equation in a cosmological background. The Vlasov–
Poisson system can be written as a hierarchy of coupled evolution 
equations for the velocity moments of the phase-space distribution 
function (the so-called macroscopic transport equations). 

SPT assumes that the dark matter can be treated as a pressureless 
ideal fluid go v erned by the continuity, Euler, and Poisson equations. 
These are obtained by setting to zero the second velocity moment 
of the phase-space distribution function and thus correspond to 
considering the so-called ‘single-stream’ regime in which there is 
a well-defined velocity everywhere. 

By considering irrotational flows only, the dynamic equations are 
written in terms of two scalar fields, namely the matter-density 
contrast and the divergence of the peculiar velocity. The solution of 
the linearized transport equations is δ(1) ( k , z) ≡ D( z) δL ( k ), where 
D ( z) denotes the linear growth factor and δL ( k ) is the linear solution 
at the time in which D = 1. Following an established practice, we set 
D = 1 at the present time, corresponding to z = 0. 

The fastest growing solution for δ( k , z) is written as an expansion 
in terms of the linear density contrast. In particular, if we consider 
the Einstein-de Sitter (EdS) cosmological model, it follows that 

δ( k , z) = 

∞ ∑ 

n = 1 

[ D( z)] n δ( n ) ( k ) , (3) 

with 

δ( n ) ( k ) = 

∫ 

d 3 k 1 · · · d 3 k n 

(2 π ) 3( n −1) 
δD ( k − k 1 ···n ) F n ( k 1 , . . . , k n ) 

× δL ( k 1 ) · · · δL ( k n ) , (4) 

where the (symmetrized) kernels F n describe the gravitational 
coupling between Fourier modes of the linear solution and can be 
obtained by recursion relations (Goroff et al. 1986 ). 

Once the statistical properties of δL ( k ) have been specified, the 
e xpressions abo v e allow us to derive perturbativ e e xpansions for the 
power spectrum and the bispectrum of the matter density contrast. 
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These are conveniently computed by following a diagrammatic 
approach which is analogous to the Feynman diagrams in quantum 

electrodynamics (e.g. Bernardeau et al. 2002 ). We classify as ‘tree- 
level’ all terms associated with tree diagrams (in the sense of graph 
theory) and as ‘loop corrections’ those associated with diagrams 
containing n -loops (and that require n 3D integrations). 

Under the assumption that δL ( k ) is a Gaussian random field, 
the leading-order term for P ( k , z) coincides with the linear 
power spectrum, P 

tree 
SPT ( k, z) = [ D( z)] 2 P L ( k), where 〈 δL ( k ) δL ( k 

′ ) 〉 = 

(2 π ) 3 δD ( k + k 

′ ) P L ( k), while, for the bispectrum, we have 

B 

tree 
SPT ( k 1 , k 2 , k 3 , z) = 2 [ D( z)] 4 F 2 ( k 1 , k 2 ) P L ( k 1 ) P L ( k 2 ) 

+ 2 perms . (5) 

Accounting for the NLO corrections, we obtain 

P SPT ( k, z) � P 

tree 
SPT ( k, z) + P 

1-loop 
SPT ( k, z) , (6) 

B SPT ( k 1 , k 2 , k 3 , z) � B 

tree 
SPT ( k 1 , k 2 , k 3 , z) 

+ B 

1-loop 
SPT ( k 1 , k 2 , k 3 , z) . (7) 

Their explicit expressions are given in Appendix A . 
On large scales and at early times, tree-level SPT provides 

an accurate description of both the matter power spectrum and 
bispectrum. At late times, ho we ver, one-loop corrections o v er- 
predict P on mildly non-linear scales ( k ∼ 0 . 1 h Mpc −1 , Crocce & 

Scoccimarro 2006a ; Carlson, White & Padmanabhan 2009 ; Taruya 
et al. 2009 ) and higher-order terms do not impro v e the quality of 
the predictions (e.g. Blas, Garny & Konstandin 2014 ). The reason 
for the breakdown of SPT is well understood: loop integrals extend 
to scales at which the assumptions of the theory do not apply (e.g. 
due to the generation of vorticity and velocity dispersion at orbit 
crossing, Pueblas & Scoccimarro 2009 ) and physics becomes non- 
perturbative. The failure of SPT on small scales thus corrupts its 
predictions for the large scales. 

2.2 Renormalized perturbation theory 

Higher-order SPT corrections in the expansions for the matter power 
spectrum and the bispectrum may have larger amplitudes than lower- 
order ones. In other words, increasing the order of the expansions 
does not necessarily impro v e their accurac y (Crocce & Scoccimarro 
2006a ; Blas et al. 2014 ). Renormalized perturbation theory (RPT; 
Crocce & Scoccimarro 2006a , b , 2008 ; Bernardeau et al. 2008 , 2012 ; 
Crocce et al. 2012 ) forms one of the first attempts to o v ercome the 
shortcomings of SPT (for an approach based on the renormalization 
group, see Matarrese & Pietroni 2007 ; Pietroni 2008 ). In RPT, infinite 
subsets of SPT diagrams are resummed and organized in terms 
of multipoint propagators defined as the ensemble average of the 
infinitesimal variation of the evolved cosmic fields with respect to 
the linear solutions (see Appendix B ). A key property is that all the 
statistical quantities, such as the power spectra and the bispectra, can 
be expressed in terms of the multipoint propagators. This is known 
as the multipoint-propagator expansion or �-expansion. 

RPT has two main advantages o v er SPT. First, all the contributions 
to the power spectrum are positive and adding higher-order terms 
impro v es the range of accuracy of the theory as no cancellations 
occur between successive loop corrections. Secondly, the exponential 
factor appearing in the high- k limit of the multipoint propagators 
ef fecti vely damps the contributions to the loop integrals outside the 
range of validity of the expansion, thus preventing some of the issues 
which occur in SPT. 

One can construct a matching scheme for any multipoint propaga- 
tor which smoothly interpolates between the resummed behaviour in 
the high- k limit and the SPT results at low k (Bernardeau et al. 2012 ; 
Crocce et al. 2012 ; Taruya et al. 2012 ). In this paper, we adopt the 
form derived in Taruya et al. ( 2012 ) which is known as regularized 
PT ( REGPT ). An alternative matching scheme (dubbed MPTBREEZE ) 
has been proposed by Crocce et al. ( 2012 ) and implemented for the 
bispectrum in Lazanu et al. ( 2016 ). We have verified that REGPT and 
MPTBREEZE give nearly identical results and, for this reason, there 
is no point in considering both here. 

2.3 Lagrangian perturbation theory 

In the Lagrangian approach to fluid dynamics, the trajectories of 
the fluid elements are characterized in terms of the displacement 
field �( p , t) which links the Lagrangian position p and the Eulerian 
position x (at time t ) through the relation x ( p , t) = p + �( p , t). 
Lagrangian perturbation theory (LPT) is derived by using �( p , t) 
as a perturbative variable (e.g. Zel’dovich 1970 ; Moutarde et al. 
1991 ; Catelan 1995 ). In this framework, the Eulerian matter density 
can be expressed as 

δ( k ) = 

∫ 

d 3 p e −ik ·p [e −ik ·�( p ) − 1 
]
, (8) 

(where we do not write the time dependence explicitly to simplify 
notation) which allows us to write an expression for the power 
spectrum 

P ( k ) = 

∫ 

d 3 � 12 e 
−ik ·� 12 

[〈 e −ik ·[ � ( p 1 ) −� ( p 2 ) ] 〉 − 1 
]
, (9) 

and the bispectrum 

B( k 1 , k 2 , k 3 ) = 

∫ 

d 3 � 12 

∫ 

d 3 � 13 e 
−ik ·( � 12 + � 13 ) 

× [〈 e −i k 2 ·[ � ( p 1 ) −� ( p 2 ) ] −i k 3 ·[ � ( p 1 ) −� ( p 3 ) ] 〉 − 1 
]
, (10) 

where � ij ≡ p i − p j , and the expectation value only depends on the 
separation � 12 , � 13 due to homogeneity (Fisher & Nusser 1996 ; 
Taylor & Hamilton 1996 ; Matsubara 2008 ; Rampf & Wong 2012 ). A 

perturbativ e e xpansion of equations ( 9 ) and ( 10 ) can then be obtained 
by means of the cumulant expansion theorem 

〈 e −iX 〉 = exp 

[ ∞ ∑ 

N= 1 

( −i) N 

N ! 
〈 X 

N 〉 c 
] 

, (11) 

where 〈 X 

N 〉 c represents the N 

th order cumulant of the random variable 
X . Expanding the powers of X with the binomial theorem, two types 
of terms are obtained: those depending on � at one point, and those 
depending on � at multiple points. It turns out that, if both sets of 
terms are expanded to the same perturbative order, the ‘classical’ 
LPT results coincide with the SPT expressions for both the power 
spectrum and the bispectrum (Matsubara 2008 ; Rampf & Wong 
2012 ). 

2.4 Resummed Lagrangian perturbation theory 

On closer inspection, it emerges the classical LPT predictions for P 

and B can be impro v ed by reorganizing the perturbative expansion. 
The key issue is that, for large Lagrangian separations, the terms 
depending on � at one point are much larger than those depending 
on � at multiple points. It thus makes sense to keep the first set of 
terms inside the argument of the exponential and use the cumulant 
expansion only for the second set (Matsubara 2008 ; Rampf & Wong 
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2012 ). This approach is generally referred to as resummed LPT 

(RLPT) as it corresponds to a partial resummation of the perturbative 
expansion. 1 The resulting formulae for calculating P and B to NLO 

are presented in Appendix C . In Lazanu et al. ( 2016 ), it has been 
shown that the RLPT predictions are similar to those of MPTBREEZE . 

2.5 Effecti v e field theory of large-scale structure 

Ef fecti v e theories hav e become a widely used tool in modern physics. 
In a system characterized by a wide range of scales, they isolate 
a set of degrees of freedom and describe them with a simplified 
model without having to deal with the complex (and often unknown) 
underlying dynamics. The impact of the physics one wishes to neglect 
on the degrees of freedom one desires to study is computed as a 
perturbation theory in terms of one or more expansion parameters. 

The EFT of large-scale structure (EFT; Baumann et al. 2012 ; 
Carrasco, Hertzberg & Senatore 2012 ; Carrasco et al. 2014a , b ; 
Hertzberg 2014 ; Porto, Senatore & Zaldarriaga 2014 ; Senatore & 

Zaldarriaga 2015 ) attempts to provide an ef fecti ve description of the 
long-wavelength modes of the matter density field by integrating 
out (i.e. averaging over) the short-wavelength ones. Contrary to 
the models introduced in the previous sections, the EFT does not 
rely on the single-stream approximation and considers an ef fecti ve 
stress tensor that is expressed in terms of all operators of the long- 
wavelength density and velocity fields (and their deri v ati ves) allo wed 
by the symmetries of the problem: the equi v alence principle, along 
with the assumption of statistical isotropy and homogeneity. The 
ef fecti ve stress tensor is Taylor expanded in the long-wavelength 
fluctuations giving rise to an infinite series of unknown parameters 
each associated with a perturbative order. These parameters can 
be treated as coupling constants in the Wilsonian approach to 
renormalization. We can imagine that the theory contains a cutoff (i.e. 
the loop corrections are integrated up to a maximum wavenumber) 
and the couplings of the ef fecti ve theory can be changed to enforce 
that the physics at low k is al w ays the same when the cutoff is 
changed. Therefore, the parameters of the ef fecti ve theory fulfil 
two purposes. In the EFT expressions for observables, they generate 
‘counterterms’ which can be used to cancel out the ultraviolet (UV) 
sensitivity of the loop integrals in SPT (i.e. their dependence on the 
cutoff scale). This can be done order by order in perturbation theory. 
Moreo v er, the remaining cutoff-independent part of the counterterms 
should actually quantify the impact of the non-perturbative physics 
on the long-wavelength modes by introducing new ‘effective’ inter- 
actions among long-wavelength modes. The amplitude of this part, 
ho we ver, cannot be deri ved from the EFT (which is blind to small- 
scale physics) and must be fixed empirically by comparison with 
numerical simulations or marginalized o v er in the analysis of actual 
observational data (see e.g. d’Amico et al. 2020 ; Ivanov, Simonovi ́c 
& Zaldarriaga 2020 ). 

EFT assumes the existence of a scale, generally indicated in 
terms of the wavenumber k NL , around which physics becomes non- 
perturbative and the effective description becomes meaningless. 
Several lines of reasoning suggest that the deri v ati v e e xpansion of 
the long-wavelength fields can be organized so that the expansion 
parameter of the perturbation theory is k / k NL , meaning that more and 
more terms should be considered to get accurate expressions for the 
correlators of the matter field as k approaches k NL . 

1 Note that RLPT is different from the so-called convolution LPT (e.g. Carlson, 
Reid & White 2013 ) which further extends the partial resummation but has 
not yet been applied to the bispectrum. 

The fact that perturbations of all wavelengths (barring virialized 
structures) evolve on similar time-scales constitutes a complication 
of the theory. It follows from this that the EFT is non-local in 
time, i.e. the long-wavelength perturbations depend on the entire 
past history of the short-wavelength modes. This is difficult to 
treat and, in practical applications, the local-in-time approximation 
is almost invariably invoked. We adopt the same strategy in our 
study. In particular, we focus on the specific parametrization of the 
counterterms appearing in the one-loop expressions for the matter 
power spectrum and bispectrum presented in Angulo et al. ( 2015 ). 
Considering the linear Taylor approximation of the ef fecti ve stress 
tensor in the long-wavelength perturbations gives the EFT power 
spectrum to NLO (Carrasco et al. 2014b ) 

P EFT ( k, z) = P SPT ( k, z) + P c 0 ( k, z) , (12) 

where the tree-level counterterm is given by 

P c 0 ( k, z) = −2 c 0 ( z ) [ D( z )] 2 k 2 P L ( k ) , (13) 

and c 0 is undetermined by the theory. In terms of the effec- 
tive speed of sound for the perturbations, c s(1) ( z), we have c̄ 0 ≡
(2 π ) [ D( z )] ζ [ c s(1) ( z )] 2 /k 2 NL (where ζ denotes a real constant arising 
from the time dependence of the ef fecti ve stress tensor, see below for 
further details). Note that our c 0 relates to the parameter ̄c 1 introduced 
by Angulo et al. ( 2015 ) as c 0 ≡ c̄ 1 [ D( z)] ζ , where [ D ( z)] n + ζ is the 
assumed growth factor of the EFT corrections to the SPT density 
fluctuations of order n . 

Similarly, for the bispectrum to NLO, EFT gives four counterterms 
(Angulo et al. 2015 ; Baldauf et al. 2015b ) 

B EFT = B SPT + B c 0 + B c 1 + B c 2 + B c 3 . (14) 

(where the dependence on k 1 , k 2 , k 3 and z is left implicit to simplify 
notation), one of which is also proportional to c 0 

B c 0 = c 0 ( z ) [ D( z )] 4 
[ 
2 P L ( k 1 ) P L ( k 2 ) ˜ F 

( s ) 
2 ( k 1 , k 2 ) + 2 perms. 

− 2 k 2 1 P L ( k 1 ) P L ( k 2 ) F 2 ( k 1 , k 2 ) + 5 perms. 
]
, (15) 

with 

˜ F 

( s) 
2 ( k 1 , k 2 ) = − 1 

(1 + ζ )(7 + 2 ζ ) 

[(
5 + 

113 ζ

14 
+ 

17 ζ 2 

7 

)

× (
k 2 1 + k 2 2 

) + 

(
7 + 

148 ζ

7 
+ 

48 ζ 2 

7 

)
k 1 · k 2 

+ 

(
2 + 

59 ζ

7 
+ 

18 ζ 2 

7 

)(
1 

k 2 1 

+ 

1 

k 2 2 

)
( k 1 · k 2 ) 

2 

+ 

(
7 

2 
+ 

9 ζ

2 
+ ζ 2 

)(
k 2 1 

k 2 2 

+ 

k 2 2 

k 2 1 

)

× k 1 · k 2 + 

(
20 ζ

7 
+ 

8 ζ 2 

7 

)
( k 1 · k 2 ) 3 

k 2 1 k 
2 
2 

]
. (16) 

Following Angulo et al. ( 2015 ), we assume ζ = 3.1 as suggested by 
some theoretical considerations and fits to simulations (Foreman & 

Senatore 2016 ). We note that Baldauf et al. ( 2015c ) find no apprecia- 
ble difference between using ζ = 2 or 3.1. Quadratic contributions 
from the long-wavelength perturbations to the ef fecti ve-stress-tensor 
expansion lead to four additional counterterms, only three of which 
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are independent. They have the following forms: 

B c 1 = −2 c 1 ( z) [ D ( z)] 4 k 2 1 P L ( k 2 ) P L ( k 3 ) + 2 perms. , (17) 

B c 2 = −2 c 2 ( z) [ D ( z)] 4 k 2 1 

( k 2 · k 3 ) 2 

k 2 2 k 
2 
3 

P L ( k 2 ) P L ( k 3 ) + 2 perms. , (18) 

B c 3 = −c 3 ( z ) [ D( z )] 4 ( k 2 · k 3 ) 

[
k 1 · k 2 

k 2 2 

+ 

k 1 · k 3 

k 2 3 

]
P L ( k 2 ) P L ( k 3 ) 

+ 2 perms. , (19) 

where the ef fecti ve coupling constants c 1 , c 2 , and c 3 are unknown 
(similar to c 0 , we absorb the [ D ( z)] ζ scaling in their definition). 

Although some authors claim that EFT provides a manifestly 
conv ergent perturbativ e scheme for k < k NL (e.g. Carrasco et al. 
2014a ), there are indications that, like SPT, it forms an asymptotic 
expansion in which adding higher and higher-loop corrections, at a 
certain point, deteriorates the agreement with numerical simulations 
(e.g. Pajer & van der Woude 2018 ; Konstandin, Porto & Rubira 
2019 ). The break down of the theory should not be caused by the 
influence of short-distance physics but rather to large contributions 
coming from mildly non-linear scales. 

At the end of the day, EFT can also be simply seen as an impro v ed 
version of SPT in which counterterms are added to regularize the 
UV-sensitive contributions. 

2.6 IR resummation 

Large-scale flows broaden and damp the baryon acoustic oscillation 
(BAO) feature imprinted in P L at early epochs. These effects are 
poorly captured by Eulerian perturbation theories and are more easily 
understood in the Lagrangian framework (Meiksin, White & Peacock 
1999 ; Crocce & Scoccimarro 2008 ; Taruya et al. 2009 ). It turns out 
that it is possible to account for them by resumming the perturbative 
predictions to all orders, a procedure known as ‘IR resummation’ 
(e.g. Senatore & Zaldarriaga 2015 ). In the framework of EFT, this 
is often implemented following the strategy delineated by Baldauf 
et al. ( 2015a ) and further developed in Blas et al. ( 2016 , the method 
we use) and Ivanov & Sibiryakov ( 2018 ). In order to decompose the 
linear power spectrum in smooth and oscillating parts, we use 1D 

Gaussian smoothing as described in Vlah et al. ( 2016 , appendix A) 
and Osato et al. ( 2019 ). 

2.7 Time evolution 

In all the results described abo v e, time evolution is entirely captured 
by the function D ( z). This directly follows from equation ( 3 ) and 
its analogue for the EFT corrections 2 which hold true in the EdS 

universe only. In general, the second-order SPT solution has the 
form D 2A ( z) A ( k ) + D 2B ( z) B( k ), where D 2A ( z) and D 2B ( z) slightly 
differ from [ D ( z)] 2 (for their explicit expressions see e.g. appendix A 

in Takahashi 2008 ). Similarly, the third-order solution contains six 
dif ferent gro wth factors that de viate a little from [ D ( z)] 3 . Previous 
studies have shown that assuming the [ D ( z)] n scaling provides 
rather accurate approximations to the matter power spectrum and 
bispectrum in the 
 CDM model (e.g. Scoccimarro et al. 1998 ; 
Bernardeau et al. 2002 ). For P ( k ), the leading-order contribution is 
unaffected since it only depends on the linear density fluctuations. 
Moreo v er, in the rele v ant range of wavenumbers, de viations from 

the exact solution for the one-loop corrections are well below 

2 I.e. δEFT ( k , z) = 

∑ ∞ 

n = 1 [ D ( z)] n + ζ δ
( n ) 
EFT ( k ) where δ = δSPT + δEFT . 

the per cent level at z = 1 (Takahashi 2008 ). For these reasons, 
we can safely set D 2A ( z) = D 2B ( z) = D ( z) in our analysis of 
the power spectrum. On the contrary, we use the exact F 2 

kernel 

F 2 ,
 CDM 

( k 1 , k 2 ) = 

5 

7 

D 2 A ( z) 

D( z) 2 
( k 1 + k 2 ) · k 1 

k 2 1 

+ 

2 

7 

D 2 B ( z) 

D( z) 2 
( k 1 + k 2 ) 2 k 1 · k 2 

2 k 2 1 k 
2 
2 

, (20) 

to compute the tree-level bispectrum in SPT and EFT (but not for 
the loop corrections). This is necessary because adopting the EdS 

approximation would generate systematic shifts at the per cent level 
(Steele & Baldauf 2021 ) which are comparable with the statistical 
errors of the measurements extracted from our very large suites of 
simulations (see Section 3 ). We revisit this issue in Section 5.3 . 

Since we only consider the matter density field at z = 1, from now 

on, we drop the dependence on z of all functions. 

3  N - B O DY  SI MULATI ONS  

In this section, we introduce the N -body simulations and the estima- 
tors we use to test the theoretical models introduced abo v e. 

3.1 Simulation suites 

We use two sets of N -body simulations, named MINERVA and EOS , run 
using the GADGET-2 code (Springel 2005 ). Our main investigation is 
based on the MINERVA set (first presented in Grieb et al. 2016 ) which 
consists of 300 simulations each following the evolution of 1000 3 

dark-matter particles in a periodic cubic box with a side length of 
1500 h 

−1 Mpc . In order to perform some additional tests in Section 5 , 
we complement the MINERVA suite with a subset 3 of the EOS suite 
composed of 10 realizations each containing 1536 3 particles in a 
periodic cubic box with a side length of 2000 h 

−1 Mpc . 
The simulations follow the formation of the large-scale structure in 

flat 
 CDM cosmological models with parameters given in Table 1 . 
The linear transfer functions are obtained from the Boltzmann codes 
CAMB (Lewis, Challinor & Lasenby 2000 ; Howlett et al. 2012 ) 
and CLASS (Blas, Lesgourgues & Tram 2011 ) for the MINERVA and 
EOS simulations, respectively. In all cases, the initial particle dis- 
placements are computed using the publicly available code 2LPTIC 

(Crocce, Pueblas & Scoccimarro 2006 ) starting from Gaussian initial 
conditions. 

3.2 Power spectrum and bispectrum estimators 

We use the POWERI4 code (Sefusatti et al. 2016 ) to estimate the 
matter density in a regular Cartesian grid containing 512 3 cells from 

the particle positions. With the FFT algorithm, we obtain the Fourier- 
space o v erdensity δq sampled at the wav ev ectors q with Cartesian 
components that are integer multiples of the fundamental frequency 
k F = 2 π / L box . Our power-spectrum estimator is 

ˆ P ( k) = 

1 

L 

3 
box N P 

∑ 

q ∈ k 
| δq | 2 , (21) 

where N P is the number of q vectors lying in a bin centred at 
wavenumber k and of width � k . The notation q ∈ k means that k 

3 Information on the EOS suite is available in Biagetti et al. ( 2017 ) and at 
https://mbiagetti.gitlab.io/cosmos/nbody/eos/ . 
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Table 1. Cosmological and structural parameters for the MINERVA and EOS simulations. 

Name n s h �b �m σ 8 # N 

1 / 3 
p L box V tot m p IC z initial 

sims ( h −1 Mpc ) ( h −3 Gpc 3 ) (10 10 h −1 M 
) 

MINERVA 0 .9632 0 .695 0.044 0 .285 0 .828 300 1000 1500 1012 26.7 2LPT 63 
EOS 0 .967 0 .7 0.045 0 .3 0 .85 10 1536 2000 80 18.3 2LPT 99 

Table 2. Main characteristics of our binning schemes –
see equation ( 23 ). The total number of measurements for 
ˆ P and ˆ B are indicated with N k and N t , respectively, while 

k max gives the maximum wavenumber reached. 

s c N k N t k max ( h Mpc −1 ) 

1 2.0 48 11757 0.20 
2 2.5 28 2513 0.24 
3 3.0 28 2513 0.36 

− � k /2 ≤ q < k + � k /2. Similarly, for the bispectrum, we use 

ˆ B ( k 1 , k 2 , k 3 ) = 

1 

L 

3 
box N B 

∑ 

q 1 ∈ k 1 

∑ 

q 2 ∈ k 2 

∑ 

q 3 ∈ k 3 
δq 1 δq 2 δq 3 , (22) 

where q 1 , q 2 , and q 3 satisfy the triangle condition q 123 = 0 and N B 

denotes the number of triangles contributing to a given ‘triangle bin’ 
defined by the sides k 1 ≥ k 2 ≥ k 3 (which do not necessarily form 

a closed triangle; Oddo et al. 2020 ). We consider different binning 
schemes characterized by the bin width s = � k / k F and the central 
wavenumber of the first bin c (also expressed in units of k F ) so that 
the centres of all bins are given by 

k i = [ c + ( i − 1) s] k F , i = 1 , 2 , . . . , N k . (23) 

The parameters we use for the different power-spectrum and bispec- 
trum measurements and the maximum wavenumber they reach are 
summarized in Table 2 . It is worth stressing that we subtract from 

ˆ P and ˆ B the systematic contributions due to Poissonian shot noise 
which are anyway smaller than the statistical uncertainties. 

Fig. 1 shows the average ˆ P obtained from the MINERVA simulations 
for the three bin sizes (top panel) and the relative standard error of 
the mean (bottom panel). Note that, due to the large number of 
realizations we consider, we achieve better than 1 per cent (one per 
mille) precision for k > 0 . 01 h Mpc −1 ( k > 0 . 1 h Mpc −1 ). Similarly, 
Fig. 2 shows the mean ˆ B (top panels) and its standard deviation 
(bottom panels). In this case, the relative errors range between 10 per 
cent and one per mille depending on the triangular configuration and 
the bin size. Dealing with such unusually small random errors (which 
cannot be obtained from current observations of galaxy clustering) 
calls for a consistent treatment of the systematic errors introduced 
by the N -body method (see Section 5.4 ). 

4  M AT C H I N G  T H E  M O D E L S  TO  S I MULATI ONS  

In this section, we explain how we compare the perturbative models 
to the measurements extracted from the N -body simulations. 

4.1 Binning of theoretical predictions 

In order to compare the theoretical predictions with the measure- 
ments, we need to account for the finite bin sizes assumed by the 
power-spectrum and bispectrum estimators and, possibly, for the 
discreteness characterizing the Fourier-space density grid. The most 

Figure 1. The mean power spectrum extracted from the MINERVA simulations 
(top) and the corresponding statistical uncertainty (bottom). 

precise approach to the problem 

4 consists of averaging the theoretical 
predictions o v er the same set of configurations as it is done for the 
estimators ( 21 ) and ( 22 ). Taking these averages, ho we ver, is com- 
putationally demanding, at least for the bispectrum. A considerable 
speedup (at the expense of accuracy) can be achieved by computing 
the model predictions for one characteristic configuration per triangle 
bin. For instance, Sefusatti, Crocce & Desjacques ( 2010 ) considered 
the average value of the triplet ( k 1 , k 2 , and k 3 ) in a bin that from now 

on we refer to as the ‘ef fecti ve’ triangle of a bin. In what follows, 
we al w ays use the full average of the theoretical predictions for the 
power spectrum and the tree-level bispectrum. On the other hand, 
due to the computational demand, we average the loop corrections 
for B only for triangle bins with k 1 � 0 . 14 h Mpc −1 . In all the other 
cases, we e v aluate the corrections using one ef fecti ve triangle per 
bin (after checking that this approximation differs from the exact 
prediction by less than the standard error on the mean on the larger 
scales for which we have the average). 

4.2 Goodness of fit 

In order to quantify the goodness of fit of the different models, 
we assume Gaussian errors and rely on the χ2 test. Schematically, 
given the mean measurements from the simulations, 〈 D i 〉 , and the 

4 With the exception of point-by-point comparisons on individual realizations 
(Roth & Porciani 2011 ; Taruya et al. 2012 ; Taruya, Nishimichi & Jeong 2018 ; 
Steele & Baldauf 2021 ). 
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Figure 2. The mean bispectrum extracted from the MINERVA simulations (top) and its statistical uncertainty (bottom). Results are plotted by ordering the 
triangular configurations as in Oddo et al. ( 2020 ). In between two consecutive vertical lines, all points correspond to triangle bins with the same longest side 
k 1 , whereas k 2 and k 3 take all allo wed v alues. The colour of the symbols indicates different triangular shapes as illustrated in the bottom middle and right-hand 
panels. 

corresponding model predictions, M i , we compute the statistic 

χ2 
m 

= 

χ2 
tot 

ν
= 

1 

ν

∑ 

i , j 

( M i − 〈 D i 〉 ) C 

−1 
ij ( M j − 〈 D j 〉 ) , (24) 

where ν indicates the number of degrees of freedom (i.e. the number 
of data points N minus the number of adjusted parameters), the 
indices i and j run o v er all possible configurations, and C ij denotes 
the elements of the covariance matrix for the adopted estimators (or 
some approximation thereof). 

Since we only consider relatively large scales, we use the so- 
called Gaussian contribution to the covariance matrix for the power- 
spectrum estimates, (Feldman, Kaiser & Peacock 1994 ; Meiksin & 

White 1999 ) 

C ij = 

2 P 

2 
i 

N P 

δij , (25) 

with P i the expected power spectrum in the i th bin and δij the 
Kronecker symbol. In order to prevent that the covariance is informed 
about the noise in our realizations, we use a smooth function to 
compute P i in the expression above. This is obtained by fitting the 
outcome of the MINERVA simulations with the expression (Cole et al. 
2005 ) 

P NL ( k) = P L ( k) 

(
1 + Qk 2 

1 + Ak 

)
, (26) 

where Q and A are free parameters. We find that setting Q ≈
4 h 

−2 Mpc 2 and A ≈ 0 . 37 h 

−1 Mpc provides a fit that agrees with the 
measurements to better than 1 per cent at all the scales considered in 
this work. 

For the bispectrum, we find that, even at large scales, the Gaussian 
approximation underestimates the sample variance from numerical 
simulations in a shape-dependent manner, reaching a difference of 
order 50 per cent for some squeezed-triangle configurations (see also 
Chan & Blot 2017 ; Colavincenzo et al. 2019 ; Gualdi & Verde 2020 ). 
For this reason, we use the approximate expression 

C ij = [( P P P ) i + 2 ( B B ) i ] δij , (27) 

where 

( P P P ) i � 

6 L 

3 
box 

N B 

P NL ( k 1 ) P NL ( k 2 ) P NL ( k 3 ) (28) 

denotes the Gaussian part and the o v erline indicates the average over 
all the configurations contributing to the i th triangle bin while 

( B B ) i � ( B 

eff 
NL ) 

2 

[
1 

N P ( k 1 ) 
+ 

1 

N P ( k 2 ) 
+ 

1 

N P ( k 3 ) 

]
, (29) 

where B 

eff 
NL denotes the tree-level bispectrum in SPT e v aluated at 

the ef fecti v e wav enumbers using P NL instead of P L . The ( BB ) i 
term approximates the actual non-Gaussian contribution due to 
configurations that share one k -bin (see e.g. Sefusatti et al. 2006 ). 
The factor of two in equation ( 27 ) approximately accounts for 
contributions to the covariances that scale as the product of the power 
spectrum and the trispectrum. This is justified as the two terms are 
expected to be of the same order of magnitude, as shown in recent 
studies of the covariance matrix (Barreira 2019 ; Sugiyama et al. 
2020 ). 

In order to assess the accuracy of these approximations to the 
diagonal elements of the covariance matrices for ˆ P and ˆ B , we use 
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the statistic 

χ2 
s = 

1 

N 

Tr ( S C 

−1 ) , (30) 

where S denotes the sample covariance matrix of the measurements 
from the MINERVA simulations and C is our model covariance. It is 
possible to show that, for Gaussian errors with covariance matrix C , 
the statistic N χ2 

s follows a chi-square distribution with N degrees of 
freedom (Porciani). Therefore, our approximations for the covariance 
matrix should be considered inaccurate if χ2 

s strongly departs from 

unity. In this case, any conclusion on the accuracy of the models 
based on χ2 

m 

should be disregarded. Note that our approximations 
for the covariance matrices are diagonal, implying that 

χ2 
s = 

1 

N 

N ∑ 

i= 1 

S ii 

C ii 
. (31) 

i.e. χ2 
s gives the average ratio between the measured and assumed 

variances of the different data points. More complex statistics can be 
used to test approximations to the covariance matrix in the general 
non-diagonal case (Porciani, in preparation). 

Before moving on, it is important to note that we do not account 
for the so-called ‘theoretical errors’ – i.e. uncertainties on the per- 
turbative predictions reflecting the estimated size of the higher-order 
terms that are neglected – as advocated by some authors (e.g. Baldauf 
et al. 2016 ; Steele & Baldauf 2021 ; Chudaykin, Ivanov & Simonovi ́c 
2021 ). The reason is very simple. We are not trying to determine the 
domain of validity of the full perturbative expansion (we are actually 
agnostic regarding its convergence). More pragmatically, we simply 
want to find out the range of scales for which the one-loop formulae 
provide an accurate match to N -body simulations. 

In the remainder of this paper, we distinguish between the concepts 
of accuracy and validity: the former indicates how closely a pertur- 
bativ e e xpansion reproduces the e xact answer while the latter refers 
to the consistency of all the assumptions of the theory. Therefore, 
the domain of accuracy and the range of validity of the models 
should not be confused. For instance, a model could still provide a 
good approximation to the truth on a range of scales although its 
assumptions are not valid. 

5  RESU LTS  

In this section, we determine the domain of accuracy of the per- 
turbative models for the matter power spectrum and bispectrum we 
have introduced in Section 2 by comparing them against N -body 
simulations. To start with, we pay particular attention to discussing 
how we fix the EFT parameters that determine the amplitude of the 
counterterms. Subsequently, we present results as a function of the 
total volume used to measure P and B . As a final step, we discuss the 
impact of systematic errors introduced by the N -body technique. 

5.1 EFT parameters 

As mentioned in Section 2.5 , the EFT parameters related to the 
counterterms need to be determined from the simulation data. In 
doing so, we do not distinguish between the actual counterterms 
and the renormalized contributions. Therefore, the coefficients we 
obtain should be interpreted as simple ‘matching coefficients’ and 
not giv en an y particular physical interpretation. F ollowing a common 
trend in the literature, we will keep referring to these coefficients as 
counterterms. 

The EFT power spectrum at one loop only contains the parameter 
c 0 for which, following Baldauf et al. ( 2015b ), we can build an 

estimator starting from equations ( 12 ) and ( 13 ), 

ˆ c 0 ( k) = −〈 ˆ P ( k) 〉 − P SPT ( k) 

2 k 2 P L ( k) 
. (32) 

In the left-hand panel of Fig. 3 , we show how ˆ c 0 depends on k 
when we use the mean power spectrum extracted from the MINERVA 

simulations. Within the EFT framework, c 0 is a scale-independent 
parameter but our data show that ˆ c 0 significantly deviates from its 
low- k limit when k > 0 . 14 h Mpc −1 . This is usually interpreted as a 
signal that the truncated perturbativ e e xpansion breaks down beyond 
this scale and higher-order corrections become important (Foreman, 
Perrier & Senatore 2016 ). In the right-hand panel of Fig. 3 , we 
determine c 0 by fitting P EFT (with and without IR resummation) to 
the mean power spectrum extracted from the MINERVA simulations. 
Our results are shown as a function of the maximum wavenumber 
used in the fit, k fit . The orange line represents the best-fitting value 
for the EFT model and the shaded region around it marks the 68 
per cent confidence region of the fit. Not surprisingly, it resembles 
a smoothed version of the results shown in the left-hand panel. 
Considering subsets of 23 MINERVA boxes (which cover the same 
total volume as the EOS simulations) only increases the scatter of the 
estimates (blue shaded region). Accounting for the IR resummation 
(green line) remo v es the oscillations in the region of the baryonic 
acoustic features but does not attenuate the o v erall scale dependence 
for k > 0 . 14 h Mpc −1 . Based on these results, we conclude that 
the domain of validity of the one-loop EFT expressions for the 
power spectrum at z = 1 is k < 0 . 14 h Mpc −1 . Our results are 
consistent with fig. 14 of Baldauf et al. ( 2015b ), even though our 
analysis is performed at z = 1 instead of z = 0. Remarkably, the 
limiting value we find is also consistent with the blinded challenge 
presented in Nishimichi et al. ( 2020 ), which uses a total simulation 
volume of 566 h 

−3 Gpc 3 (about half of the volume co v ered by 
the MINERVA suite) at z = 0.61 to test the constraining power for 
cosmology of the EFT predictions for the galaxy power spectrum in 
redshift space. In this case, the reco v ered cosmological parameters 
show a bias whenever the mock data sets are extended beyond 
k max = 0 . 14 h Mpc −1 . In the remainder of this paper, we use the best- 
fitting value of c 0 using k fit = 0 . 14 h Mpc −1 as the default option 
for P EFT . This gives c 0 = 0 . 581 ± 0 . 009 h 

−2 Mpc 2 . If we simply 
rescale this value by [ D ( z = 1)] −2 (thus ignoring any intrinsic time 
dependence of c 0 ), we obtain 1.525 which closely matches the results 
previously obtained at z = 0 using slightly different cosmological 
models, methods, and scales (Carrasco et al. 2014b ; Angulo et al. 
2015 ; Baldauf et al. 2015c ). 

The EFT bispectrum at one loop contains four unknown param- 
eters and different strategies have been developed in the literature 
to determine them. For instance, it is possible to express c 1 , c 2 , 
and c 3 as a function of c 0 by imposing renormalization conditions 
and then fix c 0 from a fit to the power spectrum (Angulo et al. 
2015 ; Baldauf et al. 2015c ). An alternative line of attack – which 
we follow here – is to treat (at least some of) the EFT parameters 
as fit parameters for the bispectrum, trying to a v oid o v erfitting. The 
recent and comprehensive study by Steele & Baldauf ( 2021 ) gives 
evidence supporting the second approach. Two options are available 
when fitting c 0 : we can either use the best-fitting value for the power 
spectrum or determine it together with the other EFT parameters 
only using the bispectrum. We compare these alternatives in Fig. 4 , 
where we show the dependence of the best-fitting EFT parameters 
on the maximum wavenumber considered in the fit. In all cases, 
we use the IR resummed model. Focussing on c 0 , we notice that 
the fit based on the power spectrum is much more stable and less 
uncertain at large scales. It is also worth stressing that the best- 
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Figure 3. The EFT parameter c 0 obtained by matching the model for the power spectrum at one loop to the MINERVA simulations. In the left-hand panel, we 
use the estimator given in equation ( 32 ), while, in the right-hand panel, we fit the model to the numerical data for k < k fit . Shown are the best-fitting values (solid 
lines) and their uncertainty (68 per cent confidence interval, shaded regions). As indicated in the legend, different colours distinguish results obtained with and 
without accounting for IR resummation or by considering subsamples of the MINERVA simulations. To impro v e readability, we do not plot the shaded region for 
the IR-resummed EFT case. The vertical line indicates the scale at which a statistically significant departure from the low- k limit is detected for the full data set. 
The horizontal line in the left-hand panel shows the result of the fit in the right-hand panel for k fit = 0 . 14 h Mpc −1 . 

Figure 4. The best-fitting values (solid lines) and the uncertainties (shaded regions) of the EFT parameters that influence the matter bispectrum at one loop are 
shown as a function of the maximum wavenumber of the measurements extracted from the MINERVA simulations. We consider two cases: (i) we fix c 0 using 
the power spectrum (Fig. 3 ) and the other three parameters using the bispectrum (blue) and (ii) we fit all four parameters using the bispectrum measurements 
(red). The vertical dashed lines indicate the default value of k fit = 0 . 125 h Mpc −1 we use in the remainder of the paper. The insets show the joint 68 per cent 
confidence regions for two EFT parameters e v aluated for k fit = 0 . 125 h Mpc −1 . The cross indicates the best-fitting values of these parameters. 

fitting values are sometimes ne gativ e while c 0 ≥ 0 in the theory. 
Ho we ver, we do not give much weight to this consideration since 
we do not fit the renormalized counterterms. We also notice that 
c 0 and the other EFT parameters are strongly correlated when they 
are simultaneously fit from the bispectrum. Their trend with k fit in 

Fig. 4 clearly shows that this happens at all scales. Such de generac y 
is investigated in more detail in the three insets where we show the 
joint 68.3 per cent confidence region for c 0 and a second parameter 
estimated at k fit = 0 . 125 h Mpc −1 while keeping the remaining two 
fixed at their best-fitting values. The cross-correlation coefficients 
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between c 0 and the other parameters are as high as −0.997 ( c 1 ), 
−0.872 ( c 2 ), and 0.922 ( c 3 ) indicating that the bispectrum data cannot 
isolate the contributions from the different counterterms. We believe 
that the large-scale fluctuations of the EFT parameters are largely 
influenced by this de generac y. The fluctuations are, in fact, greatly 
suppressed by fixing c 0 to the best-fitting value from the power 
spectrum. In this case, the four EFT parameters assume consistent 
values for k fit < 0 . 14 h Mpc −1 (which is basically determined by P ). 
On the contrary, considering smaller scales generates deviations, 
especially for c 2 and c 3 . All this suggests that k = 0 . 14 h Mpc −1 also 
approximately delimits the domain of validity of the one-loop model 
for the bispectrum at z = 1. Ho we ver, the two fitting methods (i.e. 
fitting three or four counterterms with the bispectrum) do not provide 
fully consistent results for all parameters at k fit ≈ 0 . 14 h Mpc −1 

while they do at k fit ≈ 0 . 125 h Mpc −1 (the actual values are listed in 
Table 3 ). For this reason, unless explicitly stated otherwise, from now 

on we fix the EFT parameters for B EFT to the best-fitting values at this 
scale using the power spectrum to determine c 0 and the bispectrum 

to measure c 1 , c 2 , and c 3 . Note that, in spite of our unprecedentedly 
large data set, only c 0 is precisely determined while c 1 , c 2 , and c 3 are 
compatible with being zero within a few standard deviations. This 
suggests that it might be quite challenging to fix the EFT counterterms 
for the bispectrum from actual observational data and all what could 
be done is to marginalize o v er them in a Bayesian fashion, possibly 
reducing the constraining power for cosmology of the data. 

5.2 Power spectrum 

If we assume for the moment that the N -body technique does not 
introduce any systematic shifts, we can determine the domain of 
accuracy of the perturbative models for the matter power spectrum by 
directly comparing their predictions to the measurements extracted 
from the numerical simulations. The huge volume co v ered by the 
MINERVA simulations results in sub-per cent statistical uncertainties 
for the average power spectrum (see Fig. 1 ). Getting agreement to 
this precision would be a major achievement for the models. 

In the top panel of Fig. 5 , we show the mean power spectrum 

extracted from the MINERVA simulations using � k = k F (symbols with 
error bars) and the corresponding bin-averaged models (solid lines 
with different colours as indicated by the label). In order to reduce 
the span of the data and impro v e readability, we plot the deviation 
from the linear power spectrum in per cent points. Similarly, in the 
second panel from the top, we show the same measurements and 
models but in terms of their deviation with respect to P EFT which 
provides a better fit to the numerical data. The third panel, instead, 
shows the χ2 

m 

statistic evaluated for the different models as a function 
of k max . This quantity gives a measure of the goodness of fit. In order 
to have a reference scale, we highlight the regions bounded by the 
one-sided upper and lower 95 per cent confidence limits for the χ2 

statistic (with the appropriate number of degrees of freedom) with 
a grey shaded region. Basically, a model should be rejected at 95 
per cent confidence when its χ2 

m 

lies outside the shaded region. In 
practice, we determine the domain of accuracy of the models as 
follows: moving from left to right, we look for the first k max at which 
χ2 

m 

lies outside the shaded region. Finally, the bottom panel shows 
the χ2 

s statistic as a function of k max together with the corresponding 
95 per cent confidence limits that can be used to e v aluate the quality 
of our approximation for the covariance matrix. 

Coming to the specific outcome of this comparison, Fig. 5 
indicates that, although equation ( 25 ) systematically o v erestimates 
the variance of our measurements by a few percent, this discrepancy 
is hardly statistically significant in the range of scales we consider. 

Moreo v er, by e xamining the χ2 
m 

curv es as a function of k max , it 
is evident that, when a model begins to break down, χ2 

m 

increases 
very steeply so that the inferred reach is quite insensitive to small 
deviations in the size of the error bars. Therefore, we can proceed 
further with analysing the χ2 

m 

curves knowing that this statistic 
will be only very slightly underestimated. This provides a clear 
ranking for the models based on their domain of accuracy. Not 
surprisingly, the first model to break down is P L which fits the 
MINERVA simulations only for k max < 0 . 035 h Mpc −1 , followed by 
SPT ( k max < 0 . 06 h Mpc −1 ). Since on these relatively large scales 
RegPT and RLPT essentially coincide with SPT, they also fail 
at the same k max . Contrary to SPT, ho we v er, the y agree with the 
simulations to better than 1 per cent up to k � 0 . 15 h Mpc −1 . The 
best agreement is found with the EFT model which fits the MINERVA 

simulations accurately for k max < 0 . 14 h Mpc −1 (and never shows 
per cent deviations within the explored range of wavenumbers). 
Consistently with previous work (e.g. Baldauf et al. 2015a ), we 
find that IR-resummation impro v es the fit only beyond its nominal 
range of accuracy. One issue worth investigating is that the value 
of χ2 

m 

rises sharply around k ≈ 0 . 125 and 0 . 14 h Mpc −1 , which 
causes the EFT models to get rejected on slightly larger scales than 
perhaps expected (based on visual inspection of the top panel in 
Fig. 5 ). This is caused by the statistically significant deviation of 
two simulation data points around those scales which are clearly 
distinguishable in the second panel (from the top) of Fig. 5 . After 
carefully inspecting individual simulations to understand the origin 
of these deviations, we could not reach any clear conclusion. 
Ho we ver, upon re-measuring the power spectrum using narrower 
bins in that region, we notice that the deviations form coherent 
features within a range of k -values and are not simply due to random 

noise. 
To cross check our results and also test the models under less 

demanding standards, we repeat our analysis using the EOS sim- 
ulations which co v er a smaller volume (roughly corresponding to 
23 MINERVA boxes) and thus give larger statistical error bars. For 
simplicity, we only consider the EFT models with and without 
IR-resummation. In order to properly compare results obtained 
using the MINERVA and EOS suites, we proceed as follow: (i) we 
random sample 23 MINERVA boxes from the full set; (ii) we fit 
the EFT parameter c 0 to the mean power spectrum of the subset 
using k max = 0 . 14 h Mpc −1 ; and (iii) we compute the χ2 

m 

statistic 
as a function of k max for the best-fitting c 0 . Our results are shown 
in Fig. 6 where the solid lines represent the mean χ2 

m 

obtained 
from the MINERVA subsets and the shaded regions around them 

show the corresponding standard deviation. Overall, these findings 
are in very good agreement with the χ2 

m 

curves derived from the 
EOS simulations (dot–dashed lines). Due to the larger statistical 
error bars, the nominal reach of the EFT models slightly increases 
with respect to the analysis performed with the full MINERVA set. 
We find k max < 0 . 16 + 0 . 05 

−0 . 01 h Mpc −1 for standard EFT and k max < 

0 . 17 + 0 . 06 
−0 . 02 h Mpc −1 for IR-resummed EFT. Note that this extends 

beyond the minimum scale for which c 0 can be assumed to be 
constant. 

5.3 Bispectrum 

In Fig. 7 , we investigate the goodness of fit of the different models 
for the matter bispectrum by plotting the χ2 

m 

and χ2 
s statistics as 

a function of k max for various bin sizes. In the bottom panels, we 
show two curves: the solid one considers our approximation to 
the covariance matrix given in equation ( 27 ) while the dashed one 
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Table 3. Best-fitting values and uncertainties of the EFT parameters derived with k fit = 0 . 125 h Mpc −1 in Fig. 4 . 
The χ2 

m 

statistic for the best fit is expressed in terms of χ2 
tot and ν as in equation ( 24 ). 

Fit χ2 
m 

c 0 c 1 c 2 c 3 
( h −2 Mpc 2 ) ( h −2 Mpc 2 ) ( h −2 Mpc 2 ) ( h −2 Mpc 2 ) 

1 P + 3 B 171.03/167 0.577 ± 0.013 0.177 ± 0.071 −0.16 ± 0.27 0.30 ± 0.23 
0 P + 4 B 171.01/166 0.67 ± 0.72 0.06 ± 0.90 −0.22 ± 0.54 0.37 ± 0.58 

Figure 5. Comparison of the perturbative models for the matter power 
spectrum (solid lines) with the mean measurement extracted from the 
MINERVA simulations (symbols with error bars) using the bin width � k = 

k F . The top two panels compare the different power spectra to P L and P EFT 

whereas the bottom two display the goodness of fit for the models and the 
covariance matrix (see Section 4.2 for details). The grey shaded areas in the 
top two panels represent deviations smaller than 1 per cent with respect to the 
reference models. Those in the bottom two panels, instead, mark the regions 
bounded by the upper and lower 95 per cent confidence limits for the χ2 

distribution with the appropriate number of degrees of freedom. The vertical 
dotted line indicates k fit = 0 . 14 h Mpc −1 , which is the largest wavenumber 
used to fit c 0 for the EFT models. 

refers to the Gaussian part given in equation ( 28 ). It is evident that 
the Gaussian approximation severely underestimates the variance of 
the bispectrum measurements already at large scales and especially 
for broader triangle bins. On the contrary, equation ( 27 ) provides 
average deviations of only a few per cent for all configurations 
considered in this work. We believe that this is accurate enough 
to get robust estimates of χ2 

m 

, although, at small scales, the assumed 
covariance matrix is nominally incompatible with the scatter seen in 

Figure 6. The χ2 
m 

statistic for the EFT and IR-resummed EFT power spectra 
e v aluated using the EOS suite (dash–dotted) and many different subsets of 
23 MINERVA simulations (solid and shaded for mean and standard deviation, 
respectiv ely). The gre y shaded area highlights the region bounded by the (one- 
sided) upper and lower 95 per cent confidence limits for a χ2 distribution 
function with the appropriate number of degrees of freedom. The vertical 
dotted line indicates k fit . Both simulation measurements use bins of width 
equal to k F . 

the simulations (i.e. the black curve lies outside the shaded region in 
the plots for χ2 

s ). 
The variations of χ2 

m 

with k max provide a clear ranking of the 
models, Independently of the bin width, the tree-level SPT prediction 
breaks down first and one-loop corrections only slightly impro v e the 
range of accuracy of the theory up to k max � 0 . 08 h Mpc −1 . RegPT 

and RLPT provide substantial improvements and accurately match 
the MINERVA simulations up to scales between 0 . 1 and 0 . 14 h Mpc −1 

depending on the bin width. Finally, the counterterms in the EFT 

bispectra boost the agreement up to k max � 0 . 16 − 0 . 19 h Mpc −1 . 
IR-resummation turns out to be rele v ant only for k � 0 . 15 h Mpc −1 

and even marginally for the case of narrow bins, where statistical 
errors are larger than the deviations between the model and the data 
at the scales of the BAOs. 

As we already did with the power spectrum, in Fig. 8 , we verify 
that using the MINERVA and EOS simulations gives consistent results 
for the bispectrum as well. It turns out that the reach of the EFT 

models is a bit reduced for the EOS simulations but this is consistent 
with random fluctuations. We also note that, for EOS , the EFT 

models with and without IR-resummation have practically the same 
domain of accuracy as a consequence of the larger uncertainty of the 
measurements. 

Finally, we test the impact of using the popular EdS approximation 
for the second-order kernel F 2 instead of the more general scheme 
we described in Section 2.7 . Fig. 9 shows that this modification has 
very little influence on our results. No changes in the χ2 

m 

are visible 
on large scales where error bars are bigger. The only noticeable 
differences are: (i) a slight impro v ement in the reach of SPT when 
the EdS approximation is adopted and (ii) a similarly sized increase 
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Figure 7. As in the bottom two panels of Fig. 5 but for the matter bispectrum. 
From top to bottom, we consider three different bin widths, namely k F , 2 k F , 
and 3 k F . The dashed lines in the plots for χ2 

s (bottom panels) refer to the 
Gaussian approximation to the covariance matrix. 

in the range of accuracy of EFT when the exact second-order kernel 
is used. On large scales, the EFT counterterms absorb the differences 
between the exact second-order kernel and the EdS approximation 
as indicated by the fact that the two EFT models give the identical χ2 

values whereas the SPT model fails to do so. We have checked that 
differences between the two kernels also significantly alter the best- 
fitting values for the counterterms, especially for c 1 and c 2 . These 
findings hold true also for wider k -bins. 

Figure 8. As in Fig. 6 but for the matter bispectrum. 

Figure 9. As in the top panel of Fig. 7 but comparing models obtained 
with the exact second-order SPT kernels ( 
 CDM) and the popular EdS 
approximation (see the main text for details). 

5.4 Range of accuracy versus surveyed volume 

The careful reader might have noticed that our results are more 
conserv ati ve than other estimates in the literature. This is partially 
due to the fact that we use all bispectrum configurations, but mostly 
because we use a much larger set of N -body simulations (cf. Angulo 
et al. 2015 ). Current surv e ys of the large-scale structure of the 
Univ erse co v er volumes which are one to two orders of magnitude 
smaller than the total volume of the MINERVA simulations. This 
directly translates into larger statistical uncertainties for summary 
statistics like the power spectrum and the bispectrum and thus into 
more extended ranges of accuracy for the models. In this section, we 
investigate how the reach of the models depends on the volume 
co v ered by a surv e y. In doing so, we also need to account for 
systematic effects which we have so far neglected. In order to better 
e v aluate their impact on our conclusions, we start with assuming that 
they are of no consequence (we relax this assumption in the next 
section). 

In the top panels of Figs 10 and 11 , we show how the reach 
of models for P and B changes with the volume o v er which the 
measurements are performed. These plots are obtained as follows. 
(i) We pick a volume V which corresponds to an integer number N 

of MINERVA boxes. (ii) We randomly select N MINERVA realizations 
(with no repetitions) and compute 〈 ˆ P 〉 and 〈 ̂  B 〉 (using � k = k F for P 

and 3 k F for B in order to probe a wider range of scales). (iii) We fit the 
EFT counterterms to the numerical data using k fit = 0 . 14 h Mpc −1 for 
P and k fit = 0 . 125 h Mpc −1 for B . (iv) We e v aluate the χ2 

m 

statistic 
as a function of k max and use it to determine the reach of each 
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Figure 10. We define the reach of a model for the power spectrum as the minimum k max at which the χ2 goodness-of-fit test rejects the null hypothesis that the 
N -body data are consistent with the model predictions at the significance level of 0.05. The top-left panel shows the median reach of 200 subsets of MINERVA 

simulations each co v ering a volume V . Different colours refer to different models as indicated in the label. Solid lines are used for the models with no free 
parameters and for our default EFT models (i.e. with k fit = 0 . 14 h Mpc −1 , highlighted by a horizontal grey line) while the two dashed lines represent the EFT 

models with k fit = 0 . 22 h Mpc −1 . The top-right panel shows the median (solid) and the central 68 per cent range (shaded) of the estimated reach for SPT and 
the default IR-resummed EFT. The bottom-left panel is analogous to the top-left one but accounts for systematic errors in the simulations by considering an 
additional 0.5 per cent error added in quadrature to the random contributions. The dot–dashed line refers to the IR-resummed EFT model obtained by averaging 
c 0 o v er the 200 subsets. Finally, the bottom-right panel shows the reach of the models after approximately correcting the simulation data for the bias introduced 
by the finite mass resolution (see the main text for details). The shaded regions encompass the range of variability of the corrections while the solid lines are 
taken from the top-left panel and are given as a reference. All panels show three vertical lines indicating: (i) the volume of a redshift bin of width �z = 0.2 
centred at z = 1 for a Euclid -like surv e y (dashed); (ii) the total volume of the EOS simulations (dot–dashed); and (iii) the volume of the PT-challenge simulations 
in Nishimichi et al. ( 2020 , dotted). Measurements and models are compared using a bin width of � k = k F . 

model based on the (one-sided) 95 per cent confidence limits for 
the chi-squared distribution. (v) We repeat the procedure from step 
(ii) onward 200 times. (vi) We plot the median value of the reach 
(top-left panels) and its scatter (top-right panels) as a function of V . 

In order to ease the interpretation of our results and facilitate 
comparison with the literature, we draw vertical lines marking 
three characteristic volumes. From left to right, they are: (i) V = 

7 . 94 h 

−3 Gpc 3 which corresponds to a redshift bin centred at z = 1 
and of width �z = 0.2 of a Euclid-like surv e y (Euclid Collaboration 

2020 ); (ii) V = 80 h 

−3 Gpc 3 which coincides with the total volume 
of the EOS simulations (and is approximately a factor 1.5 larger than 
the volume of the simulations used in Baldauf et al. 2015b , c ; Steele 
& Baldauf 2021 ); (iii) V = 566 h 

−3 Gpc 3 which is the volume of the 
simulation used in the blinded challenge paper of Nishimichi et al. 
( 2020 ). 

We are now ready to discuss the results presented in the top-left 
panels of Figs 10 and 11 . As expected, the domain of accuracy 
of the models decreases with increasing V . The only exception 
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Figure 11. As in Fig. 10 but for the bispectrum models and using �k = 3 k F . In the bottom-left panel, systematic errors were added in quadrature to the 
statistical errors of the measurements following the ansatz of Baldauf et al. ( 2015c ). 

is the case of the EFT bispectrum for which the reach turns out 
to be independent of the simulation volume and corresponds to 
approximately 0 . 17 h Mpc −1 . The ranking of the models is pretty 
much independent of V , with SPT al w ays being the first to break 
down and EFT the last. Howev er, Re gPT does better than RLPT for 
small V while the order is reversed for large V . It is also worth 
noticing that, while RegPT quite significantly extends the reach 
of SPT for the power spectrum for V � 8 h 

−3 Gpc 3 , it gives much 
smaller impro v ements for the bispectrum. 

The nominal range of accuracy of EFT al w ays extends beyond 
k fit (indicated with horizontal grey lines in the figures). This is not 
surprising because, when the χ2 

m 

statistic suggests a good fit at k fit , our 
definition of the reach will automatically pick a larger wavenumber. 
Essentially, what this means is that the EFT fits at k fit are good (or 
even too good) in terms of χ2 

m 

. We remind the reader that the values 
for k fit we use are chosen in Section 5.1 based on two criteria: (i) 
a v oiding that the best-fitting EFT parameters run with k fit and (ii) 
requiring consistency between the results obtained from P and B . 
Ho we ver, since Section 5.1 takes into consideration the full MINERVA 

set, our selected values might be considered ‘conserv ati ve’ when V 

is reduced (although we believe we should al w ays perform the most 
challenging test for the theory, i.e. use the largest possible volume 
to test its basic assumptions like the scale-independence of the free 
parameters). For comparison, in the top-left panels of Figs 10 and 

11 , we also show the range of accuracy one would obtain by fitting 
the EFT parameters up to k fit = 0 . 22 h Mpc −1 (yellow and green 
dashed lines). This vastly increases the reach at small V (for both 
P and B ) but reduces it at large V . In particular, for large enough 
volumes, the estimated reach becomes smaller than k fit meaning that 
it is impossible to get a good fit to the numerical data. 

So far we have concentrated on the median range of accuracy 
of each model. For this reason, in the top-right panels of Figs 10 
and 11 , we plot the statistical uncertainty of the estimated reach 
as a function of V . In this case, we only consider SPT and IR- 
resummed EFT to impro v e readability. The shaded areas indicate the 
central 68 per cent region 5 among the 200 sets of simulations with 
volume V . It turns out that the error on the reach is by no means 
negligible, particularly for EFT which contains free parameters. It 
is therefore important to take this into account when comparing 
studies based on different simulations. In Fig. 12 , we show how 

the distribution of the best-fitting amplitudes for the counterterms 
varies with V . We consider the IR-resummed EFT model for the 
bispectrum, fit c 0 from P and the other counterterms from B , and 

5 Obviously, this statistic underestimates the actual scatter when V approaches 
the total volume of the MINERVA simulations as the different samples mostly 
o v erlap. 
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Figure 12. Distribution of the best-fitting EFT parameters as a function of the volume V used to measure the power spectrum and the bispectrum. The data 
refer to the counterterms of the IR-resummed EFT model with k fit = 0 . 125 h Mpc −1 . The parameter c 0 is derived from the power spectrum while c 1 , c 2 , and c 3 
are determined from the bispectrum. The top panels show the median (solid) and the central 68 per cent region (shaded) over 200 realisations. The horizontal 
dashed lines indicate the values obtained from the full MINERVA simulation suite and given in Table 3 . The three vertical lines mark the same volumes as in 
Figs 10 and 11 . The bottom panels show the signal-to-noise ratio defined as the ratio between the median and and half the central 68 per cent interval. 

use k fit = 0 . 125 h Mpc −1 . It is important to notice that, while the 
median values of the EFT parameters approximately coincide with 
those in Table 3 , the scatter around them strongly depends on V . 
For the redshift shell in a Euclid-like survey, c 1 , c 2 , and c 3 show 

a tremendous variability meaning that they cannot be accurately 
measured from a single realization. In order to get a signal-to-noise 
ratio of order unity for them, it is necessary to consider volumes 
V > 500 h −3 Gpc 3 . As a means to further investigate the impact of 
the fitting strategy for the counterterms, in Fig. 13 , we consider four 
methods in which the EFT parameters are determined in different 
ways as indicated in Table 4 . For the full MINERVA data set, our 
standard choice (1 P + 3 B ) corresponds to the largest reach, while 
the one-parameter fit 1 P + 0 B performs best for V < 50 h 

−3 Gpc 3 

suggesting that there is no need to use three counterterms when the 
surv e yed volume is small and the error bars of the measurements 
are large. Angulo et al. ( 2015 ) reached similar conclusions using 
V = 27 h 

−3 Gpc 3 and k fit = 0 . 1 h Mpc −1 (conjecturing that the other 
counterterms give contributions comparable in size to two-loop 
corrections). In Fig. 13 , there is nothing surprising about the fact that 
models with less free parameters can have a larger reach given that 
the EFT counterterms are determined using k fit = 0 . 125 h Mpc −1 and 
the estimated reach is substantially larger than that. It is interesting 
to try to understand why it is preferable to set c 1 = c 2 = c 3 = 

0 for small V . We believe that the reason is related to the fact 

Figure 13. As in the top-left and top-right panels of Fig. 11 but for the 
IR-resummed EFT model with the counterterms determined as described in 
Table 4 . 

that the expected values given in Table 3 are much smaller than 
the scatter seen in Fig. 12 . Basically, the fit picks large ‘random’ 
counterterms in each realization in order to adjust to the specific 
noise features. 
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Table 4. Schematic description of the methods used 
to fit the EFT counterterms in Fig. 13 . The symbols 
P and B denote parameters determined by fitting (up 
to k fit = 0 . 125 h Mpc −1 ) the power spectrum or the the 
bispectrum, respectively. The number 0 indicates that the 
parameter is set to zero. 

Method c 0 c 1 c 2 c 3 

1 P + 0 B P 0 0 0 
1 P + 3 B P B B B 

0 P + 1 B B 0 0 0 
0 P + 4 B B B B B 

Figure 14. As in Fig. 13 but considering a volume-dependent k fit (grey line 
for the 1 P + 3 B case, see the main text for details). 

Following a suggestion by the reviewer, we also investigate the 
case in which k fit is uniquely determined from the simulation volume. 
This is moti v ated by the fact that, in practical applications of the 
PT models, one first determines k fit by testing the performance of 
the models against mock catalogues with the same volume as the 
actual surv e y. Since the counterterms determined from fitting the 
models to the measurements extracted from smaller volumes have 
larger uncertainties, the scale dependence of the EFT parameters 
will become apparent at higher k fit values. Thus, instead of using 
the fixed value of k fit = 0 . 125 h Mpc −1 as abo v e, we now calculate 
k fit for each considered volume by fitting constants to the curves 
given in Fig. 4 and determining the scale at which the χ2 test rejects 
the fit with 68 per cent confidence. As expected, the value of k fit 

drops as larger and larger volumes are considered (see the grey solid 
line in in Fig. 14 which shows k fit for the 1 P + 3 B case). The 
other curves in Fig. 14 show the variations of k reach for the EFT 

models with the variable k fit . Compared to the case with fixed k fit 

(Fig. 13 ), we observe a dramatic increase of k reach for the models 
with extra 3 counterterms for small and intermediate volumes. For 
V � 8 h 

−3 Gpc 3 (representative of a Euclid-like survey), the formal 
k reach of these models is 0 . 28 h Mpc −1 . Indeed, the combination of 
larger statistical errors with the higher value of k fit results in a better 
agreement with the simulation data on small scales. Note, ho we ver, 
that, in this case, k fit is pushed beyond the value for which the theory 
is self consistent. 

In conclusion, the peculiarity of the EFT approach is the presence 
of free parameters in the counterterms that need to be determined 
from the measurements. Our results show that the methodology 
used to fix the EFT parameters heavily influences the range of 
accuracy of the theory . Basically , when the V is small, error 

bars are large, and the counterterms are poorly determined, the 
resulting freedom in the EFT parameters boosts the apparent 
reach of the models. Care should then be taken to ensure that 
results from different studies are properly compared. Moreo v er, 
future studies should carefully investigate if and how the free- 
dom in the counterterms impacts the estimation of cosmological 
parameters from the galaxy bispectrum that will be measured 
by the forthcoming generation of redshift surv e ys (Oddo et al. 
2021 ). 

5.5 Systematic errors 

Just like any other numerical method, N -body simulations do not 
provide the exact solution to the problem of gravitational instability 
and perturbation growth. Modern codes are optimized based on 
a trade-off between computation speed and accuracy. Their finite 
mass and force resolution, the time-stepping criterion, the integration 
method, the way initial conditions are set, and forces are computed 
generate small systematic deviations from the exact solution. 

Several studies try to quantify the impact of these imperfections 
on various summary statistics (e.g. Takahashi et al. 2008 ; Nishimichi 
et al. 2009 ; Baldauf et al. 2015c ; Schneider et al. 2016 ). Ho we ver, 
the current understanding is not mature enough yet to provide 
a robust method for correcting goodness-of-fit statistics such as 
our χ2 

m 

. Therefore, simplified approaches are necessary. The most 
elementary consists of adding small uncorrelated systematic errors 
to the statistical error budget. We follow this approach in the bottom- 
left panels of Figs 10 and 11 . For the power spectrum, we add a 
0.5 per cent systematic error in quadrature to the statistical error 
in order to approximately match the numerical results of Schneider 
et al. ( 2016 ). For the bispectrum, instead, we adopt two different 
approaches. First, following Angulo et al. ( 2015 ), we consider a 
shape- and scale-independent systematic contribution at the 2 per 
cent level (again summed in quadrature to the random error). As a 
second option, we use the scale-dependent ansatz by Baldauf et al. 
( 2015c ), which provides a fit to the systematic deviations measured 
among N -body simulations with different characteristics. In this case, 
the (relative) systematic error is 

�B 

B 

= 0 . 01 + 0 . 02 

(
k 1 

0 . 5 h Mpc −1 

)
, (33) 

where, as al w ays, k 1 denotes the largest side of the triangular 
configuration. Since both approaches give very similar results, in 
Fig. 11 we only show those obtained with the scale-dependent ansatz. 
We are now ready to present our findings. For the models with no 
free-parameters, adding small systematic errors only changes the 
reach for large values of V , i.e. in every case in which the statistical 
errors are smaller than the additional systematic contributions. As a 
consequence, the resulting ranges of accuracy show little variations 
with V and RegPT turns out to consistently have the largest reach 
for all values of V . Conversely, the range of accuracy of EFT is 
strongly affected by the inclusion of systematic errors for all V . 
What is perhaps more surprising is that the reach of the EFT models 
increases with V . This happens because the values assigned to the 
EFT parameters scatter among the 200 subsets of simulations. In 
particular, when V is small, the EFT parameters have big uncertainties 
and the models cannot provide a good fit to the numerical data for 
large k max . To clarify this further, we investigate what happens when 
we use the same EFT parameters for all simulation subsets. In this 
case, we use the mean of the values obtained from the individual 
sets. Our results are shown with dot–dashed lines in the bottom- 
left panels of Figs 10 and 11 . The reach for the power spectrum 
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and bispectrum are extended to roughly 0.43 and 0 . 26 h Mpc −1 , 
respectively, independently of V . Note, ho we ver, that the calibration 
of the EFT parameters without using the data is not doable in practical 
applications to observational surv e ys. 

Systematic errors affect the accuracy and not the precision of 
measurements. Therefore, it is somewhat unnatural to model them 

as random uncorrelated errors. For example, it is well known that the 
finite mass resolution of N -body simulations leads to the suppression 
of density fluctuations on small scales (e.g. Heitmann et al. 2010 ; 
Schneider et al. 2016 ). In what follows, we propose a simple 
parametrization of this effect which allows us to include it in our 
error budget as a ‘perfectly correlated’ error. Let us consider an N - 
body simulation with particle density n̄ and make the educated guess 
that, due to the finite mass resolution, δn̄ ( k ) = δ∞ 

( k ) R n̄ ( k) where 
δ∞ 

( k ) denotes the ideal continuum case. It follows that 

P n̄ ( k) = P ∞ 

( k) R 

2 
n̄ ( k) , (34) 

and 

B n̄ ( k 1 , k 2 , k 3 ) = B ∞ 

( k 1 , k 2 , k 3 ) R n̄ ( k 1 ) R n̄ ( k 2 ) R n̄ ( k 3 ) . (35) 

In order to constrain the shape of the function R n̄ ( k) at z = 1, we 
use the power spectra extracted from 30 realizations of the Quijote 
simulations (Villaescusa-Navarro et al. 2020 ) at three different 
resolutions, i.e. using 256 3 , 512 3 , and 1024 3 particles within a box 
of 1 h 

−3 Gpc 3 . We find that the following parametrization: 

R n̄ ( k) = 

1 

1 + A ( ̄n ) ε( k) 
(36) 

with 

ε( k) = 

k 

h Mpc −1 + α

(
k 

h Mpc −1 

)2 

+ β

(
k 

h Mpc −1 

)3 

, (37) 

accurately reproduces the numerical data up to k max = 0 . 3 h Mpc −1 . 
The ratio between two power spectra obtained with different mass 
resolution is 

P n̄ 1 ( k) 

P n̄ 2 ( k) 
= 

R 

2 
n̄ 1 

( k) 

R 

2 
n̄ 2 

( k) 
� 1 + 2 �A ε( k) , (38) 

where �A = A ( ̄n 2 ) − A ( ̄n 1 ) and we have Taylor expanded the final 
result to first order assuming that the corrections are small on the 
scales of interest. From the Quijote power spectra, we obtain α = 

−0.35 and β = 0.39. In order to estimate A ( ̄n MINERVA ), we assume 
that the correction is negligible at the highest Quijote resolution 
and interpolate � A (note that n̄ MINERVA = 0 . 296 h 

3 Mpc −3 while the 
Quijote simulations have n̄ = 0 . 017 , 0 . 134 , and 1 . 074 h 

3 Mpc −3 ). 
We obtain A ( ̄n MINERVA ) = 0 . 0188 that corresponds to sub-per cent 
corrections o v er all scales of interest. Ev entually, we write the 
systematic error (bias) in the summary statistics extracted from an 
N -body simulation as 

�P = P n̄ − P ∞ 

= P n̄ 

(
1 − 1 

R 

2 
n̄ ( k) 

)
≈ −2 P n̄ A ( ̄n ) ε( k) , (39) 

�B = B n̄ − B ∞ 

≈ −B n̄ A ( ̄n ) [ ε( k 1 ) + ε( k 2 ) + ε( k 3 ) ] . (40) 

In order to apply this result to the MINERVA simulations, we re-scale 
our estimate for A ( ̄n MINERVA ) by a factor γ for which we consider three 
possible values, namely 0.5, 1.0, and 1.5. Although these values may 
not exactly describe the correction due to the finite mass resolution 
in the MINERVA runs, they allow us to conceptually investigate the 
effect of a scale- and shape-dependent bias. We thus re-compute the 
χ2 

m 

statistic after shifting the measurements from the simulations 

according to the corrections given in equations ( 39 ) and ( 40 ). Our 
results for the reach of the models are displayed in the bottom-right 
panels of Figs 10 and 11 , where the coloured bands indicate the range 
of variability induced by γ and the solid lines reproduce the curves 
from the top-left panel to emphasize changes. Overall, the impact 
of the corrections is rather minor. None the less, a few changes are 
worth noticing. For the power spectrum, the IR-resummed EFT at 
intermediate volumes shows the most marked impro v ement. F or the 
bispectrum, accounting for the bias impro v es the reach of RegPT 

for large V and deteriorates it for both EFT models. Perhaps, the 
most important conclusion that one can draw from this test is that its 
results are very different from those obtained by simply inflating the 
random errors to account for systematics (as routinely done in the 
literature). The latter approach, in fact, artificially boosts the reach 
of models with free parameters as in the case of EFT. Our study calls 
for a better understanding of random and systematic errors in N -body 
simulations. 

6  SUMMARY  

Perturbative techniques based on fluid dynamics are widely used 
to study the growth of the large-scale structure of the Universe. 
In fact, they often are the only method of obtaining predictions 
with analytical control. The convergence properties of perturbation 
theory are still a matter of debate but there is mounting evidence 
that the resulting expressions for large-scale observables are actually 
asymptotic, i.e. only the truncated series expansion (including just 
the first few terms) provides an accurate approximation to the exact 
solution (e.g. Pajer & van der Woude 2018 ; Konstandin et al. 2019 , 
and references therein). 

Modern perturbative approaches come in a plethora of fla v ours 
and sometimes contain free parameters. It is thus imperative to 
identify their regime of validity and accuracy before applying them to 
practical situations. N -body simulations of collisionless dark matter 
in a cosmological background are the standard test bed for inferring 
the reach of the different models. 

The purpose of this study is threefold. First, we use a very 
large set of N -body simulations (the MINERVA suite) to test the 
NLO expansions for the matter power spectrum and bispectrum in 
five different implementations of perturbation theory, namely SPT, 
RegPT , RLPT , EFT , and IR-resummed EFT . Secondly, we try to 
draw the line that demarcates general results from those affected 
by the method used to determine the reach of the models with free 
parameters (i.e. EFT and IR-resummed EFT). Thirdly, we explore 
a no v el way to account for the systematic errors introduced by the 
finite mass resolution of N -body simulations. 

Specifically, we study how well the different models match the 
measurements from the simulations as a function of the maximum 

wa venumber considered, k max . Ha ving in mind the forthcoming 
generation of surv e ys, such as those that will be conducted by DESI 
and the Euclid mission, we only consider data at z = 1. We define the 
reach of a model as the minimum k max at which the χ2 goodness-of- 
fit test rejects the null hypothesis that the N -body data are consistent 
with the model predictions at the significance level of 0.05. This 
requires making some assumptions about the covariance matrix of 
the measurements. We use the Gaussian approximation given in 
equation ( 25 ) for the power spectrum and a more sophisticated 
expression for the bispectrum – see equation ( 27 ). In both cases, we 
use a dedicated version of the χ2 test to verify that these expressions 
closely approximate the covariance matrix of the measurements 
extracted from the simulations. 
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In the first part of our study, we consider the full MINERVA suite 
and neglect systematic errors in the simulations. Our main findings 
are as follows. 

(i) By fitting the EFT parameters that determine the amplitude 
of the counterterms to the simulation data as a function of k max , 
we find that they remain stable until a maximum wavenumber and 
change beyond that (Figs 3 and 4 ). The stability region ends at 
k max = 0 . 14 h Mpc −1 for the power spectrum and 0 . 125 h Mpc −1 for 
the bispectrum. We use these values to define the default range of 
scales ( k < k fit ) o v er which we fit the EFT parameters. 

(ii) The χ2 goodness-of-fit test for the power spectrum (Fig. 5 ) 
shows that EFT and IR-resummed EFT accurately match the simu- 
lations up to k max = 0 . 14 h Mpc −1 while all the models without free 
parameters fail at much larger scales, i.e. k max = 0 . 06 h Mpc −1 . 

(iii) Repeating the test for the bispectrum (Fig. 7 ) provides a clear 
ranking for the models based on their reach. The EFT models have 
the largest range of accuracy ( k max � 0.16–0 . 19 h Mpc −1 , depending 
on the binning of the data) followed by RegPT and RLPT ( k max 

� 0.10–0 . 14 h Mpc −1 ) and SPT ( k max � 0 . 08 h Mpc −1 ). Note that 
the nominal reach of EFT extends beyond k fit , meaning that the 
model with the counterterms fixed using triangle configurations with 
k < k fit = 0 . 125 h Mpc −1 continues to provide a good fit on (slightly) 
smaller scales. 

Next, by sub-sampling the MINERVA suite, we investigate how 

the reach of the models depends on the total volume co v ered by 
the simulations used in our tests. This is particularly useful when 
comparing different results in the literature and also to gauge the 
range of scales that can be robustly probed in an actual galaxy redshift 
surv e y. In this analysis, we approximately account for systematic 
effects introduced by the N -body technique using different methods. 
Our key results are as follows. 

(iv) Obviously, the reach of the models improves for smaller 
volumes as the statistical error bars become larger and it is easier 
to fit the data. Considering a redshift bin of width �z = 0.2 
centred at z = 1 for a Euclid -like surv e y, giv es a median reach 
for SPT of approximately 0 . 12 h Mpc −1 for the power spectrum 

and 0 . 15 h Mpc −1 for the bispectrum. On the other hand, for IR- 
resummed EFT we obtain 0 . 25 h Mpc −1 for the power spectrum and 
0 . 18 h Mpc −1 for the bispectrum. All the other models lie in between 
these extremes (Figs 10 and 11 ). It is also important to mention 
that the scatter of the reach between different realizations with the 
same volume becomes rather large for the models that have free 
parameters (the central 68 per cent range for EFT extends from 0.19 
to 0 . 34 h Mpc −1 in the case of the power spectrum). This should be 
taken into account when comparing results from different studies. 

(v) The estimated range of accuracy of the EFT predictions is 
heavily influenced by the procedure adopted to fit the counterterms. 
For the volume of the Euclid -like shell, using k fit = 0 . 22 h Mpc −1 

extends the median reach of the IR-resummed EFT model to 0.33 
and 0 . 25 h Mpc −1 for the power spectrum and the bispectrum, respec- 
tiv ely, but de grades it for the full MINERVA set. F or the bispectrum, 
fitting only c 0 from the power spectrum and setting the other three 
counterterms to zero gives the largest reach for V < 100 h 

−3 Mpc 3 . 
Fitting all the four parameters are instead preferred for larger volumes 
(Fig. 13 ). Therefore, it is difficult to unequivocally define a reach for 
the models with free parameters. 

(vi) The results abo v e are only slightly affected (less than 10 per 
cent change) by accounting for a scale- and shape-dependent bias 
due to the finite mass resolution of the N -body simulations. 

(vii) The situation is very different when uncorrelated systematic 
errors are added in quadrature to the statistical uncertainties, as 
assumed in Baldauf et al. ( 2015c ) and Angulo et al. ( 2015 ). In this 
case, the reach of EFT is dramatically extended thanks to the freedom 

provided by the counterterms. For example, considering the whole 
MINERVA suite, we obtain that the IR-resummed EFT model provides 
a good fit until 0.40 and 0 . 27 h Mpc −1 for the power-spectrum and 
the bispectrum, respectively. More modest changes are seen for the 
models with no fixed parameters at large V . 

In order to constrain the cosmological parameters from the galaxy 
bispectrum, it is necessary to model galaxy biasing, discreteness 
effects, and redshift-space distortions on top of the non-linearities of 
the matter density field. It is very well possible that the additional 
terms in the expressions for the galaxy bispectrum to NLO will be 
degenerated with higher-order terms in the matter models and thus 
extend the reach of the more complex mathematical descriptions 
beyond the scales determined in this work. Yet, it is pivotal to retain 
control o v er the e xtent to which this is happening, especially if one 
wants to assign a physical meaning to the additional (e.g. bias and 
shot-noise) parameters. This is why we believe our work is important. 
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APPEN D IX  A :  SPT  

The one-loop correction to the matter power spectrum in SPT is 

P 

1-loop 
SPT ( k, z) = P 13 ( k, z) + P 22 ( k, z) , (A1) 

where 

P 13 ( k, z) = 6 [ D ( z)] 4 P L ( k ) 
∫ 

q 
F 3 ( k , q , −q ) P L ( q) , (A2) 

P 22 ( k, z) = 2 [ D( z)] 4 
∫ 

q 
[ F 2 ( q , k − q )] 2 P L ( | k − q | ) P L ( q) , (A3) 

and 
∫ 

q denotes 
∫ d 3 q 

(2 π) 3 
. 

Similarly, for the bispectrum, we have: 

B 

1-loop 
SPT = B 222 + B 

I 
321 + B 

II 
321 + B 411 , (A4) 

with 

B 222 ( k 1 , k 2 , k 3 , z ) = 8 [ D( z)] 6 
∫ 

q 
P L ( q ) P L ( | k 2 − q | ) 

× P L ( | k 3 + q | ) F 2 ( −q , k 3 + q ) 

× F 2 ( k 3 + q , k 2 − q ) F 2 ( k 2 − q , q ) (A5) 

B 

I 
321 ( k 1 , k 2 , k 3 , z ) = 6 [ D( z)] 6 P L ( k 3 ) 

∫ 

q 
P L ( | k 2 − q | ) P L ( q ) 

× F 3 ( −q , −k 2 + q , −k 3 ) 

× F 2 ( k 2 − q , q ) + 5 perms. (A6) 

B 

II 
321 ( k 1 , k 2 , k 3 , z) = 6 [ D( z)] 6 P L ( k 2 ) P L ( k 3 ) F 

( s) 
2 ( k 2 , k 3 ) 

×
∫ 

q 
P L ( q ) F 3 ( k 3 , q , −q ) + 5 perms. (A7) 

B 411 ( k 1 , k 2 , k 3 , z ) = 12 [ D( z )] 6 ( z ) P L ( k 2 ) P L ( k 3 ) 

×
∫ 

q 
P L ( q ) F 4 ( q , −q , −k 2 , −k 3 ) + 2 perms. . 

(A8) 

APPEN D IX  B:  R E G P T  

The ( p + 1)-point propagator, � 

( p) ( k 1 , . . . , k p , z), is defined as 

1 

p! 

〈
δp δ( k , z) 

δδL ( k 1 ) · · · δδL ( k p ) 

〉
= 

δD ( k − k 1 ···p ) 
(2 π ) 3( p−1) 

� 

( p) , (B1) 

and can be expanded using equations ( 4 ) and ( B1 ) as 

� 

( p) = � 

( p) 
tree + 

∞ ∑ 

n = 1 

� 

( p) 
n −loop . (B2) 

� 

( p) 
tree ( k 1 , . . . , k p , z) = [ D( z)] p F p ( k 1 , . . . , k p ) and 

� 

( p) 
n −loop ( k 1 , . . . , k p , z) = [ D( z)] (2 n + p) C 

2 n + p 
p (2 n − 1)!! 

×
∫ 

d 3 q 1 · · · d 3 q n 

(2 π ) 3 n 
F 2 n + p 

× ( q 1 , −q 1 , . . . , q n , −q n , k 1 , . . . , k p ) 

× P L ( q 1 ) · · · P L ( q n ) ≡ [ D( z)] (2 n + p) 

× � 

( p) 
n −loop ( k 1 , . . . , k p ) , (B3) 

where C 

2 n + p 
p denotes the binomial coefficient. Resumming the subset 

of terms that provide the dominant contribution at small scales gives 
(Crocce & Scoccimarro 2006b ; Bernardeau et al. 2008 ) 

� 

( p) ( k 1 , . . . , k p , z ) 
k→∞ −−−→ exp 

{
−k 2 [ D( z )] 2 σ 2 

d 

2 

}
� 

( p) 
tree . (B4) 

where 

σ 2 
d = 

1 

3 

∫ 

d 3 q 

(2 π ) 3 
P L ( q) 

q 2 
(B5) 

is the rms value of the 1D linear displacement field. Up to one-loop 
order, the regularized propagators which interpolate between the two 
asymptotic regimes are (Bernardeau et al. 2012 ; Taruya et al. 2012 ) 

� 

(1) 
reg ( k, z) = D ( z) 

{
1 + 

k 2 [ D ( z)] 2 σ 2 
d 

2 
+ [ D ( z)] 2 � 

(1) 
1 −loop ( k ) 

}

× exp 

{
−k 2 [ D( z)] 2 σ 2 

d 

2 

}
(B6) 

� 

(2) 
reg ( k 1 , k 2 , z) = [ D( z)] 2 

(
F 2 ( k 1 , k 2 ) 

{
1 + 

k 2 [ D( z)] 2 σ 2 
d 

2 

}

+ [ D( z)] 2 � 

(2) 
1 −loop ( k 1 , k 2 ) 

)

× exp 

{
−k 2 [ D( z)] 2 σ 2 

d 

2 

}
, (B7) 

� 

(3) 
reg ( k 1 , k 2 , k 3 , z) = [ D( z)] 3 F 3 k 1 , k 2 , k 3 ) 

× exp 

{
−k 2 [ D( z)] 2 σ 2 

d 

2 

}
. (B8) 

In this formalism, the matter power spectrum and bispectrum up 
to one-loop corrections can be expressed as (Bernardeau et al. 2008 ) 

P ( k, z) = [ � 

(1) ( k , z)] 2 P L ( k ) 

+ 2 
∫ 

q 
[ � 

(2) ( q , k − q , z)] 2 P L ( q) P L ( | k − q | ) , (B9) 
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B( k 1 , k 2 , k 3 , z) = 2 � 

(2) ( k 1 , k 2 , z) � 

(1) ( k 1 , z) � 

(1) ( k 2 , z) 

× P L ( k 1 ) P L ( k 2 ) + 2 perms. 

+ 

[
8 

∫ 

q 
� 

(2) ( k 1 + q , −q , z) � 

(2) ( −k 1 − q , q − k 2 , z) 

× � 

(2) ( k 2 − q , q , z) P L ( | k 2 − q | ) P L ( | k 1 + q | ) P L ( q) 

]

+ 

[
6 � 

(1) ( k 3 , z) P L ( k 3 ) 
∫ 

q 
� 

(3) ( q − k 2 , −k 3 , −q , z) 

× � 

(2) ( q , k 2 − q , z) P L ( | k 2 − q | ) P L ( q) + 5 perms. 

]
. 

(B10) 

APPENDI X  C :  RLPT  

By combining the Lagrangian perturbative expansion with equa- 
tions ( 9 ) and ( 10 ), one obtains the following expressions at one loop 
(Matsubara 2008 ; Rampf & Wong 2012 ): 

P RLPT ( k) = 

[
P L + P 

1-loop 
SPT + 

k 2 

6 π2 
P L 

∫ 

d q P L ( q) 

]

× exp 

[
− k 2 

6 π2 

∫ 

d q P L ( q) 

]
, (C1) 

B RLPT ( k 1 , k 2 , k 3 ) = 

[
B 

tree 
SPT 

{
1 + 

k 2 1 + k 2 2 + k 2 3 

12 π2 

∫ 

d q P L ( q) 

}

+ B 

1-loop 
SPT 

]
exp 

[
−k 2 1 + k 2 2 + k 2 3 

12 π2 

∫ 

d q P L ( q) 

]
. 

(C2) 
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ABSTRACT

Traditional estimators of the galaxy power spectrum and bispectrum are sensitive to the survey geometry. They yield spectra that differ
from the true underlying signal since they are convolved with the window function of the survey. For the current and future generations
of experiments, this bias is statistically significant on large scales. It is thus imperative that the effect of the window function on the
summary statistics of the galaxy distribution is accurately modelled. Moreover, this operation must be computationally efficient in
order to allow sampling posterior probabilities while performing Bayesian estimation of the cosmological parameters. In order to
satisfy these requirements, we built a deep neural network model that emulates the convolution with the window function, and we
show that it provides fast and accurate predictions. We trained (tested) the network using a suite of 2000 (200) cosmological models
within the cold dark matter scenario, and demonstrate that its performance is agnostic to the precise values of the cosmological
parameters. In all cases, the deep neural network provides models for the power spectra and the bispectrum that are accurate to better
than 0.1% on a timescale of 10 µs.

Key words. large-scale structure of Universe – methods: statistical – methods: data analysis

1. Introduction

The most common approach to extract cosmological informa-
tion from a galaxy redshift survey involves measuring the power
spectrum and/or the bispectrum of the galaxy distribution. In the
majority of cases, the spectra are derived using traditional esti-
mators (Yamamoto et al. 2006; Bianchi et al. 2015; Scoccimarro
2015) based on the ideas originally introduced by Feldman et al.
(1994, hereafter FKP). One drawback of this method is that
the survey geometry leaves an imprint on the measured spec-
tra, which is difficult to model. The observed galaxy overdensity
field δobs(x) does not coincide with the actual fluctuations δ(x).
The reasons are twofold. First, galaxy surveys cover only finite
sections of our past light cone. Second, tracers of the large-scale
structure need to be weighted based on the selection criteria of
the survey. In compact form we write δobs(x) = W(x) δ(x), where
W(x) denotes the window function of the survey. It follows that
the observed power spectrum and the underlying true power P(k)
satisfy the relation (Peacock & Nicholson 1991; FKP)

Pobs(k) =

∫
|W̃2(k − q)|2 P(q)

d3q
(2π)3 , (1)

where W̃n(k) denotes the Fourier transform of the function W(x)
normalised such that

W̃n(k) =

∫
W(x) ei k·x d3x

{∫
[W(x)]n d3x

}1/n . (2)

? Member of the International Max Planck Research School (IM-
PRS) for Astronomy and Astrophysics at the Universities of Bonn and
Cologne.

Similarly, for the bispectrum we obtain

Bobs(k1, k2, k3) =

∫
W̃3(k1 − q) W̃3(k2 − p) W̃3(k3 + q + p)

B(q, p,−q − p)
d3q

(2π)3

d3 p
(2π)3 . (3)

The convolution in Eq. (1) mixes Fourier modes with dif-
ferent wavevectors and modifies the power1 significantly on
large scales. Since the survey window is generally not spher-
ically symmetric, it also creates an anisotropic signal in addi-
tion to redshift-space distortions and the Alcock-Paczynski
effect. These consequences need to be accounted for in order
to fit theoretical models to the observational data, in partic-
ular when trying to constrain the level of primordial non-
Gaussianity (e.g., Castorina et al. 2019) or general relativis-
tic effects (e.g., Elkhashab et al. 2022). Two approaches are
possible: by trying to remove the effect from the data (e.g.,
Sato et al. 2011) or accounting for the window in the models
(e.g., de Laix & Starkman 1998; Percival et al. 2001; Ross et al.
2013). This second line of attack is much more popular: start-
ing from an estimate for the window function, a model for

1 A different class of estimators based on pixelised maps of the galaxy
density is immune to this problem and directly provides noisy mea-
surements of the unwindowed spectra (see e.g., the so-called quadratic
estimators for the power spectrum in Tegmark et al. 1998 and Philcox
2021b and the cubic estimator for the bispectrum in Philcox 2021a).
However, these estimators are sub-optimal on small scales. Moreover,
at the moment, there is no such estimator for the anisotropic bispectrum
in redshift space.
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Pobs(k) is obtained by solving the convolution integral numer-
ically. Developing numerical procedures for fast likelihood eval-
uation is pivotal in multivariate Bayesian inference. For this rea-
son, Blake et al. (2013) reformulated the convolution integrals
as matrix multiplications and made use of pre-computed ‘mix-
ing matrices’ to evaluate the impact of the survey window on the
power spectra averaged within wavector bins. A computation-
ally efficient way to evaluate the effect of the window function
on the multipole moments of the power spectrum in the distant-
observer approximation is presented by Wilson et al. (2017) and
generalised by Beutler et al. (2017) to the local plane-parallel
case (in which the line of sight varies with the galaxy pair). In
this approach the convolution is cast in terms of a sequence of
one-dimensional Hankel transforms that are performed using the
FFTlog algorithm (Hamilton 2000). The key idea is to compress
the information about the window function into a finite number
of multipole moments of its autocorrelation function (see also
Beutler et al. 2014). Further extensions account for wide-angle
effects (e.g., Castorina & White 2018; Beutler et al. 2019).

Evaluating the impact of the survey window on the bispec-
trum has only recently received attention in the literature. From a
computational perspective, performing the six-dimensional con-
volution integral in Eq. (3) is a challenging task that cannot
form the basis of a toolbox for Bayesian inference. It is thus
necessary to develop faster techniques. Inspired by perturba-
tion theory at leading order, Gil-Marín et al. (2015) proposed an
approximation where the monopole moment of the convolved
bispectrum is given by the linear superposition of products of
two convolved power spectra given by Eq. (1). Although this
approximation is accurate enough for the BOSS survey (barring
squeezed triangular configurations, which are excluded from
the analysis by Gil-Marín et al. 2015), it would likely intro-
duce severe biases in the analysis of the next generation of
wide and deep surveys such as Euclid (Laureijs et al. 2011)
or DESI (DESI Collaboration 2016), which will provide mea-
surements with much smaller statistical uncertainties (see e.g.,
Yankelevich & Porciani 2019). Sugiyama et al. (2019) intro-
duced a new bispectrum estimator based on the tri-polar spheri-
cal harmonic decomposition with zero total angular momentum
and showed, in this case, that it is possible to compute the models
for the convolved bispectrum following a FFT-based approach.
The issue of developing a similar method for more traditional
estimators of the bispectrum multipoles (Scoccimarro 2015) has
been recently addressed by Pardede et al. (2022), who derived
an expression based on two-dimensional Hankel transforms
that can be computed using the 2D-FFTlog method (Fang et al.
2020). In this case the survey window is described in terms
of the multipoles of its three-point correlation function. Devel-
oping optimal estimators for these quantities is still an open
problem.

In this Letter we propose employing deep learning as a
method to compute the impact of the survey window function
on theoretical models for the power spectrum and bispectrum.
Specifically, we use a deep neural network (DNN) to approxi-
mate the mapping from the unconvolved to the convolved spec-
tra. This technique allows us to consider multiple cosmological
models, while drastically reducing computer-memory demands
and the wall-clock time of computation with respect to per-
forming the convolution integrals numerically. All these features
are key for building efficient Bayesian inference samplers and
determining the posterior distribution of cosmological param-
eters. The structure of the Letter is as follows. In Sect. 2 we
briefly describe the architecture of our DNN models and intro-
duce the data sets we employ for training and testing them. Our

results are presented in Sect. 3. We draw our conclusions in
Sect. 4.

2. Methods

2.1. Philosophy and goals

It is well known that artificial neural networks are able to
approximate any arbitrary continuous function of real vari-
ables (Cybenko 1989; White 1990; Hornik 1991). They learn
how to map some inputs (features, in machine learning jargon) to
outputs (labels) from examples in a training data set. The training
process consists of fitting the parameters of the machine (weights
and biases of the neurons) by minimising a loss function that
quantifies how good the prediction is with respect to the correct
result. After the training the accuracy of the model is determined
using the testing data.

In our applications the features that form the input of the
DNN are the spectra P(k) and B(k1, k2, k3) evaluated at specific
sets of wavevectors. Different options are available when choos-
ing these sets. For instance, we could use many closely sepa-
rated wavevectors around the output configurations. In this case
the DNN would learn how the convolution integrals mix the con-
tributions coming from different configurations. At the opposite
extreme, we could consider inputs and outputs evaluated for the
very same set of configurations, so that, in some sense, the DNN
model also interpolates among the sparser inputs. We opted for
this second approach, which is more conducive to a simpler
machine learning set-up: choosing a smaller size of features
requires fewer model parameters to be tuned, and the trained
model is evaluated more quickly. The only implicit assumption
here is that the input power spectrum is smooth between the sam-
pled configurations. In our implementation the machine learns to
predict the functions

RP(k) =
Pobs(k)

P(k)
and RB(k1, k2, k3) =

Bobs(k1, k2, k3)
B(k1, k2, k3)

(4)

evaluated at the same arguments of the input.
Since this Letter is about giving a proof of concept, for sim-

plicity we only predict the effect of window function on the
linear matter power spectrum and the so-called tree-level bis-
pectrum, which can be trivially computed using the linear power
spectrum (e.g., Fry 1984), neglecting redshift-space distortions
in both cases. Moreover, as an example, we consider a spher-
ically symmetric top-hat window function which assumes the
value of one for distances smaller than the radius R and zero
otherwise. In Fourier space this corresponds to

W̃n(k) =
4π (kR)2 j1(kR)

k3 V1/n , (5)

where the symbol jν(x) denotes the spherical Bessel functions of
the first kind and V = 4πR3/3 is the comoving volume enclosed
by the window function. Basically, W̃n(k) rapidly oscillates (see
Fig. 1) which makes it challenging to numerically compute the
integrals in Eqs. (1) and (3). The oscillations are damped, and the
main contribution to the convolution comes from the first peak
at k = 0, which mixes Fourier modes within a shell of width
∆k ' R−1. Given our assumptions, RP(k) and RB(k1, k2, k3) only
depend on the modulus of the wavevectors.

2.2. Deep learning models

Since the power spectrum is a smooth function of k, we adopt
the convolutional neural network (CNN) architecture to model
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RP(k). The first layer of the network applies a convolution to the
input with 16 trainable filters (kernel size 3) and a rectified lin-
ear unit (ReLU) activation function, defined as f (x) = max(0, x).
This is followed by a dropout layer with a rate of 0.5, which
acts as a regulariser and prevents overfitting (Goodfellow et al.
2016). The final layer is a dense one in which the number of
neurons matches the length of the output data vector. Since
the convolved power spectrum must be positive, the last layer
is processed through a softplus activation function of the form
f (x) = ln(1 + ex).

For the bispectrum, we opt for a different CNN architecture.
We chose this because we organise the data in a one-dimensional
array where each entry corresponds to a different triangular con-
figuration. As a consequence, the sequence of data is not nec-
essarily smooth and we prefer to use a model that can detect
features on multiple scales. The network we chose is based on
the U-Net architecture (Ronneberger et al. 2015), which con-
sists of a contracting path (encoder) followed by an expansive
path (decoder). The former combines convolutional and pool-
ing layers to down-sample the original data, and thus builds a
compressed representation of them. The latter decompresses the
compact representation to construct an output of the desired size.
We include two down-sampling and two up-sampling steps, fol-
lowed by a dropout layer with a rate of 0.5 and a dense layer in
which the number of neurons matches the length of the output
data vector.

For building and training the neural networks, we use the
Keras library (Chollet 2015) under the TensorFlow frame-
work (Abadi et al. 2015). During the training phase, the param-
eters of the machine are adjusted to minimise a loss function
L, which we identify with the mean absolute error (MAE)
L = N−1 ∑N

i=1 |ypred
i /ytruth

i − 1|, where ypred
i denotes the DNN

prediction, ytruth
i is the corresponding item in the training data

set, and N is the number of entries in these data vectors. The
minimisation of this loss function (one of the most popular
choices for regression problems) is controlled by the Adam
Optimizer (based on the stochastic gradient descent method,
Kingma & Ba 2014) with an initial learning rate of 0.001, which
is reduced as the training progresses using the inverse time decay
schedule of TensorFlow. In order to prevent overfitting, five per
cent of the training data are set aside as a validation set (i.e.,
these data are not used to fit the network parameters), and train-
ing is automatically stopped early if the validation loss starts to
increase. This step makes sure that the network predicts previ-
ously unseen data more accurately.

2.3. Training and testing data sets

We used the suite of 2000 linear power spectra in the Quijote
database (Villaescusa-Navarro et al. 2020) to build the training
set for our DNNs. These spectra are obtained by sampling five
cosmological parameters on a Latin hypercube over the ranges
defined in Table 1.

For the power-spectrum analysis, we use 47 linearly spaced
wavenumbers in the range [0.004, 0.2] h Mpc−1. The correspond-
ing values for Pobs(k) are computed using the 3D FFT method
to evaluate Eq. (1) employing a top-hat window, which cov-
ers a comoving volume of V = 7003 h−3 Mpc3 (i.e., R =
434.25 h−1 Mpc).

For the bispectrum we compute the tree-level expression
from the linear power spectra in the Quijote suite. We consider
564 triangular configurations in which the three sides span the
range [0.01, 0.2] h Mpc−1. In this case the integration in Eq. (3)
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Fig. 1. Top-hat window function with V = 2003 h−3 Mpc3.

is carried out in six dimensions using the Vegas routine of
the Cuba library (Hahn 2005). To facilitate the convergence
of the numerical integrals, we consider a top-hat window with
V = 2003 h−3 Mpc3 (R = 124.07 h−1 Mpc).

We generate the test data set by randomly generating 200
sets of cosmological parameters with Latin hypercube sampling.
Since the Quijote database spans a broader region of parame-
ter space compared with that allowed by current observational
constraints, our test data are sampled within a narrower region
mimicking the actual constraints from Planck Collaboration VI
(2020); see the bottom row of Table 1. For each set we com-
pute the linear matter power spectrum using camb (Lewis et al.
2000; Howlett et al. 2012) and employ the same procedure used
for the training data set to obtain the convolved power spectra
and bispectra.

3. Results

In the top panels of Fig. 2 we consider one of the test samples for
the power spectrum. The orange triangles in the left panel show
the function RP(k) computed using Eq. (1): the convolution with
the window function flattens out the power spectrum on large
scales and changes the amplitude of the baryonic acoustic oscil-
lations by a few per cent. Although the window function con-
sidered here is arbitrary, similarly sized (and measurable) cor-
rections are expected for the next generation of galaxy redshift
surveys (see e.g., Fig. 6 in Elkhashab et al. 2022), which should
deliver per cent accuracy for the power spectrum. The black dots
indicate the output of the trained DNN model. The right panel
shows the relative error between the DNN prediction and the
true signal, which is always smaller than 0.1%. To assess the
overall performance of the DNN model, in the bottom panels of
Fig. 2 we plot the MAEs for each test sample (left) and error per-
centiles over the test samples as a function of the wavenumber.
The residual mean inaccuracy of the model is well below the per
cent level.

The effect of the window function on the bispectrum is much
more pronounced than for the power spectrum and the ratio
RB(k1, k2, k3) assumes values below 0.5 for some triangle con-
figurations (top left panel in Fig. 3). The DNN model predicts
the corrections accurately in all cases (top right and bottom pan-
els) and vastly outperforms the approximated method introduced
by Gil-Marín et al. (2015), which, for the compact survey vol-
ume considered here, does not accurately reproduce the ampli-
tude of the convolved bispectrum (green circles in the top left
panel).
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Table 1. Parameter spaces spanned by the training and testing data sets.

Data set Ωm Ωb h ns σ8

Training [0.1,0.5] [0.03,0.07] [0.5,0.9] [0.8,1.2] [0.6,1.0]
Testing [0.2,0.4] [0.03,0.06] [0.6,0.8] [0.9,1.1] [0.7,1.0]
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Fig. 2. Accuracy of the trained DNN for the power spectrum convolution. Top left: function RP(k) obtained with the convolution integral in Eq. (1)
(orange triangles) compared with the DNN model (black dots) for one test sample. Top right: relative error of the DNN model in the same test
sample used in the left panel. Bottom left: MAEs for all the test samples (the one used in the top panels is highlighted in red and surrounded by a
square). Bottom right: 50th, 68th, and 95th error percentiles of the DNN model as a function of k. Generally, the DNN model yields sub-per cent
accuracy.
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RB(k1, k2, k3) is also plotted, computed according to the approximated method introduced by Gil-Marín et al. (2015; green circles).
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4. Conclusions

In this Letter we employed a DNN model to predict the impact
of the window function on the power spectrum and the bispec-
trum measured in a galaxy redshift survey. Overall, the trained
DNN models show very promising results with sub-per cent
MAEs for all test samples (well below the statistical uncertainty
expected from the next generation of surveys). These errors can
be further reduced by increasing the size of the training data
set.

Our DNN model is meant as a proof of concept and, for
this reason, we made some simplifications in our study. First,
we used the linear power spectrum and the tree-level bispectrum
for matter fluctuations. Second, we considered a top-hat window
function with a fixed volume in which the number density of
tracers does not vary with the radial distance from the observer.
Although this is an ideal case, we do not see a reason why a
DNN model should not be able to accurately predict the effect of
more realistic survey masks, given an appropriately sized train-
ing sample.

It takes less than 10 microseconds to generate a complete
sample for either RP(k) or RB(k1, k2, k3) with the trained DNN.
This is ideal for sampling posterior probabilities in Bayesian
parameter estimation. Our method can be straightforwardly gen-
eralised to the multipoles of the spectra, and could also be
combined with emulators that make predictions for the true
clustering signal (including galaxy biasing) based on pertur-
bation theory (e.g., Donald-McCann et al. 2023; DeRose et al.
2022; Eggemeier et al. 2022). Additional corrections due to bin-
ning the theory predictions in exactly the same way as done
for the measurements (see e.g., Sect. 3.2 in Oddo et al. 2020
and Sect. 4.1 in Alkhanishvili et al. 2022) can be computed
by suitably averaging the output of the DNN model or, more
efficiently, can be accounted for in the model. Since in this
Letter we do not perform a Bayesian inference for cosmological
parameters, we skipped this step when we generated the training
sample.

The bottleneck operation in the DNN approach is the cre-
ation of the training data set, which requires a significant time
investment in the case of the bispectrum (in our case, the calcu-
lation of the 2000 convolved bispectra with 64 processor cores
took approximately one month of wall-clock time). This step can
be sped up using massive parallelisation and, possibly, by relying
on more computationally friendly formulations of the convolu-
tion integral (e.g., Pardede et al. 2022). It is also conceivable that
using larger input vectors that densely sample the wavenumbers
within shells of size ∆k around the output configurations might
facilitate the task of the machine, and would thus help to reduce
the training data. The time required to build the training set is not
a good reason to dismiss the DNN approach. Even for the simple
case of the isotropic bispectrum of matter-density fluctuations in
real space, sampling the posterior distribution of the five cosmo-
logical parameters we considered would require many more than
2000 evaluations of the window-convolved signal. Thus, using
the DNN model would lead in any case to a notable speed up.
In any practical application, accounting for redshift-space dis-
tortions, shot noise, and perturbative counterterms would sub-
stantially increase the number of adjustable coefficients in the
perturbative model for the bispectrum (and, correspondingly, the
number of likelihood evaluations needed to constrain them from
experimental data). We thus conclude that using the DNN model
would be advantageous as long as the size of the necessary train-
ing set is substantially smaller than the number of the required

likelihood evaluations in the Bayesian estimation of the model
parameters.

Acknowledgements. We thank Alexander Eggemeier and Héctor Gil-Marin for
useful discussions. D.A. acknowledges partial financial support by the Shota
Rustaveli National Science Foundation of Georgia (GNSF) under the grant FR-
19-498.

References
Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale

Machine Learning on Heterogeneous Systems, software available from ten-
sorflow.org

Alkhanishvili, D., Porciani, C., Sefusatti, E., et al. 2022, MNRAS, 512, 4961
Beutler, F., Saito, S., Seo, H.-J., et al. 2014, MNRAS, 443, 1065
Beutler, F., Seo, H.-J., Saito, S., et al. 2017, MNRAS, 466, 2242
Beutler, F., Castorina, E., & Zhang, P. 2019, J. Cosmol. Astropart. Phys., 2019,

040
Bianchi, D., Gil-Marín, H., Ruggeri, R., & Percival, W. J. 2015, MNRAS, 453,

L11
Blake, C., Baldry, I. K., Bland-Hawthorn, J., et al. 2013, MNRAS, 436, 3089
Castorina, E., & White, M. 2018, MNRAS, 476, 4403
Castorina, E., Hand, N., Seljak, U., et al. 2019, J. Cosmol. Astropart. Phys., 2019,

010
Chollet, F. 2015, Keras, https://keras.io
Cybenko, G. 1989, Math. Control Signals Syst., 2, 303
de Laix, A. A., & Starkman, G. 1998, ApJ, 501, 427
DeRose, J., Chen, S.-F., White, M., & Kokron, N. 2022, J. Cosmol. Astropart.

Phys., 2022, 056
DESI Collaboration (Aghamousa, A., et al.) 2016, ArXiv e-prints

[arXiv:1611.00036]
Donald-McCann, J., Koyama, K., & Beutler, F. 2023, MNRAS, 518, 3106
Eggemeier, A., Camacho-Quevedo, B., Pezzotta, A., et al. 2022, MNRAS,

accepted [arXiv:2208.01070]
Elkhashab, M. Y., Porciani, C., & Bertacca, D. 2022, MNRAS, 509, 1626
Fang, X., Eifler, T., & Krause, E. 2020, MNRAS, 497, 2699
Feldman, H. A., Kaiser, N., & Peacock, J. A. 1994, ApJ, 426, 23
Fry, J. N. 1984, ApJ, 279, 499
Gil-Marín, H., Noreña, J., Verde, L., et al. 2015, MNRAS, 451, 539
Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (MIT Press)
Hahn, T. 2005, Comput. Phys. Commun., 168, 78
Hamilton, A. J. S. 2000, MNRAS, 312, 257
Hornik, K. 1991, Neural Netw., 4, 251
Howlett, C., Lewis, A., Hall, A., & Challinor, A. 2012, J. Cosmol. Astropart.

Phys., 1204, 027
Kingma, D. P., & Ba, J. 2014, ArXiv e-prints [arXiv:1412.6980]
Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, ArXiv e-prints

[arXiv:1110.3193]
Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473
Oddo, A., Sefusatti, E., Porciani, C., Monaco, P., & Sánchez, A. G. 2020, J.

Cosmol. Astropart. Phys., 2020, 056
Pardede, K., Rizzo, F., Biagetti, M., et al. 2022, J. Cosmol. Astropart. Phys.,

2022, 066
Peacock, J. A., & Nicholson, D. 1991, MNRAS, 253, 307
Percival, W. J., Baugh, C. M., Bland-Hawthorn, J., et al. 2001, MNRAS, 327,

1297
Philcox, O. H. E. 2021a, Phys. Rev. D, 104, 123529
Philcox, O. H. E. 2021b, Phys. Rev. D, 103, 103504
Planck Collaboration VI. 2020, A&A, 641, A6
Ronneberger, O., Fischer, P., & Brox, T. 2015, ArXiv e-prints

[arXiv:1505.04597]
Ross, A. J., Percival, W. J., Carnero, A., et al. 2013, MNRAS, 428, 1116
Sato, T., Hütsi, G., & Yamamoto, K. 2011, Progr. Theoret. Phys., 125, 187
Scoccimarro, R. 2015, Phys. Rev. D, 92, 083532
Sugiyama, N. S., Saito, S., Beutler, F., & Seo, H.-J. 2019, MNRAS, 484, 364
Tegmark, M., Hamilton, A. J. S., Strauss, M. A., Vogeley, M. S., & Szalay, A. S.

1998, ApJ, 499, 555
Villaescusa-Navarro, F., Hahn, C., Massara, E., et al. 2020, ApJS, 250, 2
White, H. 1990, Neural Netw., 3, 535
Wilson, M. J., Peacock, J. A., Taylor, A. N., & de la Torre, S. 2017, MNRAS,

464, 3121
Yamamoto, K., Nakamichi, M., Kamino, A., Bassett, B. A., & Nishioka, H. 2006,

PASJ, 58, 93
Yankelevich, V., & Porciani, C. 2019, MNRAS, 483, 2078

L2, page 5 of 5



List of Figures

1.1 An image of the galaxy cluster known as “El Gordo” taken by the James Webb Space
Telescope. El Gordo acts as a gravitational lens, distorting and magnifying the light
from distant background galaxies. Credit: NASA, ESA, CSA. . . . . . . . . . . . . 3

2.1 The original recession-velocity-versus-distance plot done by Hubble (1929). Plotted
are galaxies (originally referred to as ‘extragalactic nebulae’) whose velocity has
been inferred from the spectroscopy. The distances were estimated using the variable
cepheid stars via their period-luminosity relation by relating the period of their
pulsations to the distance modulus. The solid line is a linear fit to the filled circles that
represent individual galaxies. The dashed line is a fit to the empty circles representing
galaxies grouped together. The slope of the lines indicates the Hubble constant. . . . 8

2.2 The Great Wall: in redshift surveys of galaxies with radial velocities of 𝑐𝑧 ≤
1500 km/s, a large galaxy structure was discovered located at a redshift of 𝑐𝑧 ∼
6000 km/s. Each dot on this wedge diagram represents a galaxy. The polar angle
denotes the rectascension, whereas the radial coordinate denotes the redshift of the
galaxies, which measures their distances according to Hubble’s law. Source: Geller
and Huchra (1989) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 A dark-matter halo obtained from a high-resolution cosmological 𝑁-body simula-
tion (More et al., 2015). The halo has an approximately spherical shape and is supplied
with matter from the outer regions via anisotropic filaments. The density of the halo
is greatest at its center and gradually decreases towards the outskirts. The white lines
visible in the image correspond to different physical criteria utilised to establish the
boundaries of the halo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 The maps of the galaxy distribution observed by SDSS and the one extracted from the
Bolshoi simulation. Credit: Bettoni (2013). . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Visual representations of triangles forming the bispectrum, 𝐵(𝑘1, 𝑘2, 𝑘3), with various
combinations of triangles satisfying 𝑘3 ≤ 𝑘2 ≤ 𝑘1. Source: Jeong and Komatsu (2009) 26

2.6 Tree diagrams for bispectrum (left diagram) and trispectrum (right diagram) or
three-point and four-point functions in a real space. Here dots represent the density
fields and lines represent the power spectrums (two-point function in a real space).
Source: Bernardeau et al. (2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Diagrams for the two-point correlation or power spectrum up to one-loop. The terms
in the square brackets represent one-loop correction terms given by Eqs. (2.77) and
(2.78). Source: Bernardeau et al. (2002) . . . . . . . . . . . . . . . . . . . . . . . . 29

30th April 2025 12:58 117



List of Figures

2.8 Diagrams for the three-point correlation or bispectrum one-loop corrections. Source: Bern-
ardeau et al. (2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 The artist’s view of the ESA medium class astronomy and astrophysics space mission
Euclid . Credit: ESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 The galaxy power spectrum extracted from the Flagship 1 simulation (top) and
corresponding relative statistical uncertainty (bottom). The colour gradient indicates
the different redshifts of the snapshots. The shaded areas indicate the assumed
statistical errors of the measurements and the horizontal dashed lines indicate the
Poissonian shot noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 The galaxy bispectrum extracted from the Flagship 1 simulation (top) and its relative
statistical uncertainty (bottom). Results are plotted by ordering the triangular config-
urations according to condition 𝑘1 ≥ 𝑘2 ≥ 𝑘3. In between the two consecutive vertical
lines all dots correspond to triangle bins with the same longest side 𝑘1, whereas 𝑘2
and 𝑘3 take all allowed values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 The bias relations described in Sect. 5.5. Here blue and red contours depict
marginalised posterior contours obtained from fitting to HOD1 and HOD3 Flagship
simulation mock galaxy catalogues. The same-coloured bands mark the 1𝜎 and 2𝜎
errors of the fiducial 𝑏1 obtained by fitting the linear spectrum to the large-scale limit
of the measured power spectrum from these catalogues. . . . . . . . . . . . . . . . . 57

5.5 The goodness of fit test of galaxy 𝑃 + 𝐵 model (with fixed cosmology) against
the Flagship simulation mock galaxy catalogues HOD1 and HOD3. Each panel
indicates a different snapshot of the simulation and on the 𝑥 and 𝑦-axis, we indicate
the assumed scale cuts on the data vectors. The colours represent the corresponding
𝑝-values (top panels) and FoB with respect to parameter 𝑏1 (bottom panels). If the
𝑝-value is less than 0.05, the model is a bad fit to the data and we do not plot the
corresponding 𝑝-value. Similarly, if the FoB is above 2𝜎 critical level, we do not
plot the corresponding value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 First row: comparison of bias parameter 𝑏1 obtained by fitting the galaxy 𝑃 + 𝐵 model
(with fixed cosmology) assuming various bias relations, which are indicated using
different colours and error bars depict the 68 percent credibility intervals. The grey
bands mark the 1 and 2𝜎 regions of the fiducial 𝑏1 obtained by fitting the linear
spectrum to the large-scale limit of the measured power spectrum. Second row: the
fitted values of the bispectrum Poisson shot noise correction 𝛼2 and corresponding 68
percent credibility intervals when fitting the maximal model i.e. the model with only
the cosmological parameters fixed. Third row: the difference in DIC with respect
to the reference maximal model with nine parameters when assuming the various
bias relations. The difference ΔDIC < −5 indicates a strong preference against
the reference model. Fourth row: the effective number of parameters 𝑝𝑉 that is
constrained by the chain when imposing bias relations. The horizontal dotted lines
indicate the actual number of parameters 9 and 8 with and without imposed bias
relation, respectively. For reference, we also plot the model with 𝛼 = 0 in violet. . . . 62

5.7 Same as in Fig. 5.6 but for the HOD3 mock catalogue case. . . . . . . . . . . . . . . 63

118 30th April 2025 12:58



List of Figures

5.8 Cosmological parameters 𝐴𝑠, ℎ and 𝜔c (top three rows) obtained by fitting the galaxy
𝑃 + 𝐵 to the same statistics measured from the HOD1 snapshot as a function of the
scale cut imposed on the power spectrum, 𝑘𝑃max. The performance metrics - goodness
of fit (in terms of 𝑝-values), figure of bias, and figure of merit are plotted in the
bottom three panels, respectively. The last two metrics were computed with respect
to the parameters 𝐴𝑠, ℎ, and 𝜔c. The color gradient indicates the different scale cut
on the bispectrum, 𝑘𝐵max. The grey band in the 𝑝-value indicates the critical value of
0.05 below which the model is rejected as a good fit to the data. The same bands
in FoB panels represent the 68 and 95 percentiles of the corresponding distribution,
indicating 1 and 2𝜎 deviations of the fitted cosmological parameters from the actual
their values. The FoM panels show the figure of merit normalized to the one computed
at 𝑘𝑃max = 0.1 ℎMpc−1 and 𝑘𝐵max = 0.08 ℎMpc−1. . . . . . . . . . . . . . . . . . . . 64

5.9 Same as in Fig. 5.8 but for the HOD3 catalogue. . . . . . . . . . . . . . . . . . . . . 65
5.10 Cosmological parameters ℎ and 𝜔c (top two rows) obtained by fitting the galaxy 𝑃

and 𝑃 + 𝐵 to the same statistics measured from the HOD3 catalogue snapshots as
a function of the scale cut 𝑘𝑃max imposed on the power spectrum while the scale cut
on the bispectrum 𝑘

𝐵
max = 0.12 ℎMpc−1. The performance metrics - goodness of fit

(in terms of 𝑝-values), figure of bias, and figure of merit are plotted in the bottom
three panels, respectively. The last two metrics were computed with respect to the
parameters ℎ, and 𝜔c. The grey bands in the 𝑝-value panels indicate the critical value
of 0.05 below which the model is rejected as a good fit to the data. The same bands
in FoB panels represent the 68 and 95 percentiles of the corresponding distribution,
indicating 1 and 2𝜎 deviations of the fitted cosmological parameters from the actual
their values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

30th April 2025 12:58 119





List of Tables

2.1 Cosmological parameters as measured from the CMB (Planck Collaboration et al.,
2020a) and SNeIa (Brout et al., 2022) observations. . . . . . . . . . . . . . . . . . . 10

5.1 Cosmological and structural parameters of Flagship I simulation. . . . . . . . . . . . 47
5.2 Specifications for the HOD galaxy samples used in this analysis. The table lists the

total number of objects 𝑁g and the mean number density 𝑛̄ of the sample. All the
considered samples share the same volume, which coincides with the one of the
Flagship I comoving outputs, i.e., 3780 ℎ−3 Mpc3. . . . . . . . . . . . . . . . . . . . 48

5.3 The list of model parameters and assumed uniform prior ranges. . . . . . . . . . . . 56
5.4 Marginalised mean values of the linear bias 𝑏1 and the shot-noise parameter 𝛼𝑃

measured using the large-scale limit of the ratio 𝑃g/𝑃m presented in equation (5.32). 59

30th April 2025 12:58 121





Acronyms

𝚲CDM Λ Cold Dark Matter. 2, 10, 11, 37

BAO Baryon-acoustic-oscillation. 7, 53, 54

CDM cold dark matter. 12, 27, 39

CMB Cosmic Microwave Background. 2, 7, 10, 25, 58, 121

CP Cosmological Principle. 5, 6, 12, 33

DIC Deviance Information Criterion. 61

DM dark matter. 2, 10, 11, 20, 25, 27, 32, 33, 37

DNN deep neural network. 37, 43, 44, 72

EdS Einstein-de Sitter. 16–18, 20

EFEs Einstein Field Equations. 6

EFT Effective Field Theory. 30, 31, 37, 39–41, 53, 68, 71

ESA European Space Agency. 45

FoB figure of bias. 59, 61, 64–68, 119

FOF friend-of-friend. 48

FoM figure of merit. 64–66, 68, 119

GR General Relativity. 5, 7, 12, 45

HOD halo occupation distribution. 48, 55, 58, 61, 68, 121

IC initial conditions. 33, 34

LPT Lagrangian Perturbation Theory. 34

30th April 2025 12:58 123



Acronyms

LSS large scale structure. 5, 12, 20, 22, 25, 40

MCMC Markov Chain Monte Carlo. 36, 58, 65

PT perturbation theory. 17, 28, 58, 61

SPT standard perturbation theory. 5, 16, 18, 25, 28, 30, 31, 40

124 30th April 2025 12:58



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor, Cristiano Porciani.
Thank you for giving me the opportunity to pursue a doctoral degree within your group. Your careful
guidance and countless insightful conversations have been invaluable over the years. I am especially
grateful for your constant motivation, encouraging me to persevere through the challenges along the
way.

When I arrived in Germany many years ago as a complete stranger, I was fortunate enough to make
wonderful friends who enriched my journey. I want to give special mention to my dear friends Sven,
Jonathan, and Marcus, who have been with me since day one. Sven, in particular, I cherish the amazing
moments we shared, especially the time we spent living together during our studies and navigating the
pandemic. Those experiences will remain precious memories that I will hold onto for years to come. I
am also deeply grateful for your help in reading my thesis and providing invaluable feedback - your
support is greatly appreciated. I would also like to acknowledge my friends Sandra, Devika, Hannah,
Heba, Xhona, Vakho, Lado and many others. The adventures and positivity we shared helped keep my
spirits high, and although I cannot list every moment, please know how much they all mean to me.

I would also like to thank my office mates - Anna, Yvonne, Benedetta, Yousry, Mandar, Prachi, Alex,
Matteo, and Emilio - for making the daily ups and downs of work so much more enjoyable. Special
thanks go to Alex, whose help during the final stages of my research was crucial. Your attention to
detail and hard-working attitude have always been an inspiration to me. Lastly, I would like to extend
my gratitude to all the members of the Argelander Institute of Astronomy. You made me feel at home
every day and supported me in every possible way. I will deeply miss that sense of community.

I would also like thank Internation Max Planck Research School for the provided support and
opportunities for knowledge exchange with my peers.

I am profoundly grateful to my partner and best friend, Sara. Thank you for coming into my life
and providing all the love and care one could ask for, as well as for all the beautiful memories we’ve
created together and those yet to come. You’ve always been there to lift me up when I was down and
inspire me to challenge myself.

Finally, I want to express my heartfelt thanks to my family - especially my parents and my brother
Oto. Your unwavering support and love have allowed me to stand where I am today. Needless to say,
completing this thesis would have been impossible without you.

30th April 2025 12:58 125


