
Exploring Suberin's Functionality in Roots, Shoots and Tubers 

A Comparative Analysis 

Dissertation 

zur 

Erlangung des Doktorgrades (Dr. rer. nat.) 

der 

Mathematisch-Naturwissenschaftlichen Fakultät 

der 

Rheinischen Friedrich-Wilhelms-Universität Bonn 

vorgelegt von 

Kiran Suresh 
aus 

Ranibennur, Indien 

Bonn, 2025 



I 
 

 

 
 
 

Angefertigt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät 
der Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gutachter/Betreuer: Prof. Dr. Lukas Schreiber 

Gutachter: Prof. Dr. Frantisek Baluska 

 
 
 
 
 
 
 
 
 
 
 
Tag der Promotion: 04.07.2025 
Erscheinungsjahr: 2025 



II 
 

 

List of publications 

 

The following chapters of this thesis have been published in peer-reviewed scientific book or 

journals, including Taylor & Francis Group, Springer Nature and John Wiley & Sons. 

 

Chapter 1: Suresh K., Zeisler-Diehl V.V.  & Schreiber L. (2023). Hydrophobisation of cell 

walls by cutin, suberin and associated waxes. In Geitmann, A. (Ed.). (2023). Plant Cell Walls: 

Research Milestones and Conceptual Insights (1st ed.). CRC Press, 298-310. 

https://doi.org/10.1201/9781003178309-14 

 

Chapter 2: Suresh K., Zeisler-Diehl V.V., Wojciechowski T. & Schreiber L. (2022). 

Comparing anatomy, chemical composition and water permeability of suberized organs in five 

plant species: wax makes the difference. Planta 256 (3): 60.  

https://doi.org/10.1007/s00425-022-03975-3 

 

Chapter 3: Suresh K., Bhattacharyya S., Carvajal J., Ghosh R., Zeisler-Diehl V.V., 

Böckem V., Nagel K.A., Wojciechowski T. & Schreiber L. (2024). Effects of water stress 

on apoplastic barrier formation in soil grown roots differ from hydroponically grown roots: 

Histochemical, biochemical and molecular evidence. Plant, Cell & Environment 47 (12): 

4917–4931. https://doi.org/10.1111/pce.15067

  

https://doi.org/10.1201/9781003178309
https://doi.org/10.1007/s00425-022-03975-3
https://doi.org/10.1111/pce.15067


III 
 

Summary 

 

Suberization is a key physiological process in plants that forms protective barriers at interfaces 

to control water loss and regulate the exchange of substances with their environment. Besides 

suberin, plants developed further specialized apoplastic barriers made of hydrophobic 

biopolymers like cutin, lignin and often combined with waxes, especially in above-ground 

organs. The introductory review section of this thesis traces the evolution of our understanding 

of cutin and suberin from early microscopic studies to the latest discoveries about their 

chemical composition, biosynthesis and the transport mechanisms behind their assembly. It 

also highlights the unique properties that make these polymers such effective barriers in plant 

tissues. Mainly, it highlights the gradient of water potential difference in soil and the 

atmosphere. The functionality of suberin might vary completely in roots, shoot and tubers due 

to the more negative water potential experienced by the shoots compared to roots. The 

efficiency of suberized plant/environment interfaces as transpiration barriers was studied in 

five different plant species. Results from the cross-species study demonstrated that neither the 

number of suberized cell layers nor the amount of suberin correlated with their effective water 

loss prevention. Instead, the presence of waxes proved critical, as their removal led to a ten-

fold increase in permeance, highlighting their dominant role in transpiration resistance. 

Furthermore, barley roots grown in soil were studied to explore how barley they respond to 

drought. By comparing a modern cultivar with a wild barley accession, the study shows that as 

soil water potential decreases, suberin and lignin begin to accumulate much earlier towards the 

young root tip. This shift is not just physiological, it is also accompanied at the molecular level, 

by the increased expression of stress-responsive genes responsible for suberin and lignin 

biosynthesis. It was also obvious that the wild accession had longer roots than the modern 

cultivar pointing to the value of wild genetic resources in breeding for drought resilience. 

Interestingly, changes to drought were more pronounced in soil-grown roots than in 

hydroponically grown ones, highlighting the importance of studying plants in their natural 

environment. Soil-grown plants had an earlier onset of endodermal suberization occurring 

closer to the root tip and total suberin amounts were doubled compared to hydroponic 

conditions. Overall, this thesis shows how plants build and optimize their protective barriers in 

response to environmental stress. These insights have important implications for improving 

crop resilience, postharvest storage and drought adaptation strategies.  
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1. Introduction 
 

The introduction provides an overview of the evolutionary transition of plants from water to 

land and all the secondary modifications followed by it. It briefly introduces suberin’s history, 

role in different plant tissues, study methods, composition, structures, biosynthesis and genes 

involved. Additionally, it explains the role of suberin in plant survival and adaptation under 

biotic and abiotic stress and its synergistic role with lignin and wax. Soil-atmosphere water 

potential difference in relation with functionality of apoplastic barriers is briefly introduced. 

Overall, this section is the cumulative introduction of all three publications, which intends to 

advance the understanding of suberin’s function as an apoplastic barrier.  

 

1.1 Evolution and secondary cell wall modifications 
 

The plant-environment interfaces are dynamic and continuously evolve due to external and 

internal influences to ensure survival and reproduction. These interface changes are based on 

environmental conditions, growth media, water availability, biotic interactions and genetic 

factors. The transition of life from aquatic to terrestrial environments marks a significant event 

in Earth's history, initiated around 450 million years ago when plants began colonizing land 

during the Ordovician period (Delwiche & Cooper, 2015). This process featured numerous 

essential adaptations that permitted land plants to survive this harsh land environment (Kumar 

et al., 2022). Although the direct ancestors of modern plants appeared about 500 million years 

ago, members of a group closely similar to the charophyte green algae, with which they are 

thought to share a common ancestor, have been preserved as fossils from Lower Ordovician 

rocks formed 470 million years ago (Strother & Foster, 2021). These algae were aquatic 

photosynthetic organisms. Algae and early plants shared many characteristics, including the 

possession of chlorophyll a and b, cellulose cell walls and the storage of carbohydrates in the 

form of starch. Plants upon transitioning into land, they had to face many challenges like 

dehydration, maintenance of stability and reproduction and the development of strategies of 

acquiring nutrients from the soil (Mischler, 2001).  

 

The nonvascular plants (liverworts, hornworts and mosses) were the first plant species to 

colonize land around 470 million years ago in the Ordovician period (Field et al., 2015). These 

plants developed a waxy cuticle reducing water loss, the evolution of gametangia (specialized 
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organs to protect gametes from drying out) and sporopollenin, a rigid polymer protecting spores 

from harsh conditions (Graham et al., 2000; Raven & Edwards, 2001). Vascular plants like 

ferns and club mosses evolved around 420 million years ago in the Silurian period (Harrison 

et al., 2005). Overtime, these had the capacity and ability to develop specialized tissues (xylem 

and phloem) for water and nutrient transport, allowing them to grow taller and more 

prominently (Delwiche & Cooper, 2015). The emergence of lignin in cell walls also provided 

more structural support, enabling plants to stand taller and transport water around the plant 

body with network of xylem vessels. Roots anchor the plant and take up water and nutrients 

from the soil, while leaves evolved to capture energy from sunlight more efficiently than other 

shoot organs. Xerophytes evolved for dry conditions and hydrophytes for aquatic habitats (Friis 

et al., 2011; Pennington, 2002). 

 

During this process of evolution, plants also changed their structure depending on the 

surrounding conditions. These secondary modifications refer to changes in the cell walls or 

other cellular components following the primary structure. Cell wall post-modifications are the 

changes required for the development, growth and environmental response of plants and these 

often follow certain biosynthetic pathways. Some of the key secondary modifications are: 

 

a. Suberization: Suberin, a hydrophobic polymer, creates a barrier in the roots (rhizo-, 

hypo- and endodermis), periderm (bark), tuber and seed coats. It mainly comprises 

long-chain fatty acids (aliphatic pathway), phenolic chemicals and glycerol. The fatty 

acid precursors are hydroxylated following the chain elongation and modification. 

These elongated fatty acids are esterified, transported and polymerized across the 

plasma membrane. The formation of suberized layers improves plant defense, reduces 

water loss and protects against environmental stresses (Ranathunge et al., 2011; 

Schreiber, 2010).  

b. Lignification: The lignin polymer provides rigidity and structural support, especially 

in capsular tissues like xylem vessels. The monolignols (p-coumaric, coniferyl and 

sinapyl alcohols) are polymerized to form a lignin structure and the biosynthesis of 

these monomers happens via the phenylpropanoid pathway. The amino acid 

phenylalanine is deaminated, hydroxylated, methylated and finally it is reduced to form 

monolignols and transported to cell walls. Lignification also aids pathogen resistance 

and wound healing (Bonawitz & Chapple, 2010; Vanholme et al., 2010). 
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c. Cutinization: Fatty acid-derived cutin is one of the protective polymers deposited on 

the walls of epidermal cells along with epicuticular waxes. The fatty acids synthesized 

are modified by mid-chain hydroxylation and epoxidation. These cutin monomers are 

transported to plasma membranes and are assembled. This polyester layer along with 

waxes is a water-impervious protective layer against mechanical damage, UV radiation 

and plant pathogens (Nawrath, 2006; Yeats & Rose, 2013). 

d. Cell wall polysaccharide modifications: Precursor sugars and galacturonic acid esters 

are assembled to form hemicellulose and pectin, respectively in the Golgi apparatus. 

Enzymes like peroxidases and laccases form the linkages between cell wall 

hemicellulose and pectin. These cross-linked polysaccharide chains toughen the cell 

walls.  Modifying pectin by methylation and demethylation changes the wall properties 

like stiffness, porosity and interactions with other components. (Cosgrove, 2005; 

Mohnen, 2008).  

e. Cell wall protein modifications: Hydroxyproline-rich glycoproteins (HRGPs), 

extensins and arabinogalactan proteins (AGPs) are modified and cross-linked in the cell 

wall, contributing to its structural integrity and flexibility. Enzymes like peroxidases, 

glycosyltransferases and transglutaminases modify cell wall proteins, influencing cell 

wall properties and interactions with other cells (Ellis et al., 2010; Kieliszewski & 

Lamport, 1994). 

f. Formation of secondary cell walls: In specialized cells, such as tracheary elements, 

fibers and sclerenchymatous cells, a secondary cell wall forms inside the primary cell 

wall. These secondary walls are rich in cellulose, hemicelluloses (xylan and 

glucomannan) and lignin. These layers with special orientation of the microfibrils 

provide support, rigidity, an efficient transport system for water and are involved in 

defense mechanisms (Meents et al., 2018; Zhong & Ye, 2015). 

g. Mineralization: Cell walls in grasses have silica (SiO2) deposition that provides 

protection against herbivory and rigidity to leaf blades. Similarly, calcium carbonate 

deposition contributes to structural integrity and mechanical strength. These deposits 

form crystals known as cystoliths and can be found in certain groups of plants such as 

Urticaceae and Acanthaceae (Currie & Perry, 2007; Franceschi & Nakata, 2005; 

Hodson et al., 2005). 

Altogether, these secondary modifications are crucial for plant survival, growth and adaptation 

to their environment. They provide structural support, defend against biotic/abiotic stresses and 

facilitate the transport of water and nutrients. 
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1.2 Suberin 
 

1.2.1 History of suberin 

 

Suberin was first described in the early 19th century. It was identified as a substance that made 

plant tissues impervious to water. The term "suberin" was derived from the Latin word "suber," 

meaning cork. It was recognized as a key component of cork cells in tree bark, especially cork 

oak (Quercus suber). Charles-Frédéric Gerhardt, a French chemist, is often credited with some 

of the earliest research into cork substances, particularly identifying its unique properties in 

1840. Already early chemical studies aimed to understand its composition. Initially, suberin 

was thought to be similar to cutin, another plant polymer, due to its lipid nature and water-

repellent properties (Graça & Pereira, 2000a; Kolattukudy, 1981). 

 

Research in the mid-20th century began to reveal the complex nature of suberin. It was found 

to be a polyester composed of long-chain fatty acids and glycerol. Unlike cutin, suberin also 

contains aromatic compounds and longer chain length monomers. Studies indicated that 

suberin is not just a simple barrier but has a complex structure with both aliphatic (fatty acids) 

and aromatic (phenolics) domains (Holloway, 1983; Kolattukudy, 1981). This dual nature 

contributes to its function as a protective and structural component in plant tissues. Suberin’s 

role in reducing water loss, especially in cork cells and root endodermal cells, was understood 

during this period. It was seen as crucial for the formation of Casparian strip in roots, which 

regulate the movement of water and solutes into the vascular system. 

 

In the late 20th century, scientists uncovered the biochemical pathways of suberin synthesis, 

which involves the production of monomers like fatty acids, glycerol and phenolic compounds 

that are later polymerized. Advances in molecular biology also identified the genes responsible 

for suberin biosynthesis. Key enzymes such as fatty acid elongases, acyltransferases and 

peroxidases were crucial for the synthesis and assembly of suberin (Beisson et al., 2012; 

Schreiber & Franke, 2011; Vishwanath et al., 2015). Studies on plant mutants deficient in 

suberin production helped to elucidate their functions. Mutants with reduced suberin synthesis 

experienced increased water loss and greater sensitivity to salt stress, emphasizing suberin's 

protective role. Advanced techniques like solid-state NMR, mass spectrometry and electron 

microscopy have revealed that suberin is a heterogeneous polymer with a complex, layered 
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structure. Recent research has highlighted the importance of suberin in plant responses to 

environmental stresses, such as drought, salinity and pathogen attack (Grünhofer et al., 2022b; 

Grünhofer & Schreiber, 2023). It is involved in wound healing and the formation of barriers 

that protect plants from biotic and abiotic stressors. There is growing interest in how suberin 

contributes to carbon sequestration in soils and how plants with enhanced suberin production 

can be developed to better cope with climate change-related stresses. 

 

1.2.2 Suberin in different plant tissues 

 

Suberin is a hydrophobic biopolymer found in various plant tissues. It acts as a protective 

barrier against environmental stress, water loss and pathogen invasion. The composition and 

function of suberin vary depending on the tissue type and the plant species. 

 

• Root endodermis: Suberin forms part of the Casparian strip, a crucial barrier that 

regulates the selective uptake of water and nutrients while preventing the uncontrolled 

movement of solutes between the soil and the vascular tissue. The suberin in the root 

endodermis consists of polyaliphatic domains and aromatic phenolic components. 

Suberin deposition in the endodermis increases with age and under environmental 

stress, such as drought or salinity (Enstone et al., 2003). 

• Root hypo-, exodermis: The exodermis, located near the root surface, provides an 

additional barrier to protect against pathogen attack, excessive water loss and toxic 

compounds in the soil. The exodermal suberin has a lipid-rich composition, similar to 

the endodermis but often less extensive. Suberin accumulation in the exodermis is 

influenced by external factors such as water availability and soil composition (Cantó-

Pastor et al., 2024; Schreiber et al., 2005b). 

• Bark (Periderm): Suberin is a significant component of the bark's periderm layer, 

forming a physical barrier that prevents water loss and protects the plant from 

mechanical injury and pathogen invasion. Bark suberin contains long-chain fatty acids, 

ω-hydroxy acids and dicarboxylic acids, often linked with phenolic compounds. 

Suberin biosynthesis is upregulated in response to wounding, leading to the formation 

of wound periderm to seal off injured tissues (Graça, 2015; Rains et al., 2018). 

• Tuber periderm: In tubers (potato, sweet potato, cassava and yam), suberin in the 

periderm plays a key role in protecting against water loss and pathogen entry, especially 
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during storage and wounding. The post-harvest storage quality of potato tuber is better 

than others because of suberin, which is rich in fatty acids, glycerol and phenolic 

compounds (Schreiber et al., 2005a; Suresh et al., 2022). 

• Fruit periderm: In fruits, suberin along with cutin and wax acts as a barrier to protect 

against environmental stress, moisture loss and microbial infection, particularly in 

species like apples, avocados and citrus. The suberization of the fruit periderm increases 

with ripening and senescence, enhancing the fruit’s defense mechanisms. Russeting in 

fruits is caused by epidermal damage, subsequent wound healing and deposition of 

suberin and lignin (Straube et al., 2021). 

• Seeds and seed coats: Suberin acts as a barrier in seeds to prevent desiccation, protect 

against microbial invasion and regulate water and gas exchange. Seed coats contain 

suberin in their outer layers, rich in long-chain aliphatic molecules. The presence of 

suberin in seed coats influences germination by regulating water uptake and acts as a 

barrier against toxicity (de Silva et al., 2021a; Molina et al., 2008). 

• Wound-healing tissues: Suberin forms a crucial part of the wound-healing response 

in plants, especially in tissues like tubers, roots, leaves and bark. After injury, suberin 

is deposited at the wound site to form a barrier that prevents infection and dehydration. 

The suberin in wound-healing tissues consists of aliphatic and aromatic domains, with 

a high content of ω-hydroxy fatty acids and phenolics. Wound-induced suberization 

involves rapid upregulation of biosynthetic genes for suberin formation (Chen et al., 

2022; Schreiber et al., 2005a). 

 

1.2.3 Methods for studying suberin 

 

Suberin studies involve biochemical, analytical and molecular techniques to understand its 

composition, structure, biosynthesis and regulation. 

 

• Microscopy techniques: 

a. Histochemical staining: Specific dyes or fluorochromes are used to localize and 

visualize suberin in plant tissues. Fluorol Yellow 088, a fluorescent dye that binds 

suberin, is used for fluorescence microscopy. Sudan IV and Sudan Black B detect 

suberin's lipid-rich components. These stains help identify suberized tissues in the 
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root hypo-, rhizo, endodermis, periderm (bark) and wound tissues (Brundrett et al., 

1991; Lulai & Morgan, 1992; Ursache et al., 2018). 

b. Transmission Electron Microscopy (TEM): TEM is an effective method for 

identifying suberin in plant tissues. Suberin is an electron-dense lamellar structure 

commonly found in the endodermis, periderm, or wound-healing zones. The sample 

preparation process includes fixation with agents such as glutaraldehyde and 

osmium tetroxide, dehydration and resin embedding for ultrathin sectioning. 

Specific stains, including osmium tetroxide, potassium permanganate and 

ruthenium tetroxide, can be used to enhance the contrast of suberin (Franke et al., 

2005; Li-Beisson, 2011; Sitte, 1962). 

c. Scanning Electron Microscopy (SEM): SEM is widely used to visualize suberin 

deposition, cell wall structure and tissue morphology. It reveals suberin's polygonal 

structures or layered granular texture and helps assess barrier integrity, 

environmental responses and stress-induced changes. SEM is often paired with 

EDS/EDX for elemental analysis or combined with techniques like FTIR for 

enhanced visualization. Proper sample preparation, including fixation, dehydration 

and gold coating, is crucial for clear imaging. Key studies highlight SEM’s role in 

understanding suberin's protective functions in plants (Correia et al., 2020; Ferreira 

et al., 2012). 

• Mass spectrometry techniques: 

a. Gas Chromatography-Mass Spectrometry (GC-MS): Suberin is depolymerized 

using alkaline methanolysis or transesterification and the resulting monomers (e.g., 

ω-hydroxy acids, α,ω-dicarboxylic acids and fatty acids) are analyzed by GC-MS 

(Marques & Pereira, 1987). GC-MS provides detailed chemical profiling of suberin, 

allowing for the qualification and identification of more than 20 individual 

monomers (Graça & Pereira, 2000a; Marques & Pereira, 2013). The amount is 

quantified using the GC-FID (Flame Ionization Detector) and the peaks are 

identified from the GC-MS chromatogram. 

b. Liquid Chromatography-Mass Spectrometry (LC-MS): LC-MS excels in 

detecting non-volatile, polar and high-molecular-weight components. It can 

identify both monomers and oligomers that result from partial depolymerization. 

Characterizing larger suberin fragments or assessing the complexity of suberin 

networks can be done using LC-MS (Thiombiano et al., 2020). 
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c. Pyrolysis-MS (Py-MS): Thermal degradation products is used for chemical 

fingerprinting in screening phenolic and lipid profiles, especially in 

thermochemical conversion studies for biofuel applications. Trace plant-derived 

suberin markers in soils are used to understand the contribution of different plant 

species to soil organic matter and track changes in soil composition over time 

(Kiersch et al., 2012; Melnitchouck et al., 2006). 

d. Matrix-Assisted Laser Desorption/Ionization (MALDI-MS): MALDI-MS is 

excellent for analyzing large suberin fragments, including ester-linked oligomers 

that are challenging to detect with traditional GC-MS or LC-MS. Comprehensive 

suberin profiling of complex mixtures of monomers and oligomers provides a broad 

view of suberin architecture, especially for studying polymeric structures and cross-

linking patterns (Veličković et al., 2014). 

• Fourier-Transform Infrared Spectroscopy (FTIR): The functional groups in 

suberin, namely ester, alkyl and aromatic group, have a characteristic IR absorption 

spectrum that can be measured. This method is beneficial in studying intact suberin 

polymers and comparing the chemical composition across species and different stress 

conditions (Mattinen et al., 2009). 

• Nuclear Magnetic Resonance (NMR) spectroscopy: NMR spectroscopy, with its 

unparalleled precision, unveils the exact molecular structure and the linkages of suberin 

monomers. The structure of depolymerized suberin is meticulously characterized using 

both 1H NMR and 13C NMR (Bernards & Razem, 2001; Serra et al., 2012). NMR 

identifies the nature and proportions of different chemical groups in suberin and 

provides profound insights into how these groups are linked in the polymer (Garbow et 

al., 1989). Other methods in NMR like solution-state and solid-state, are essential for 

analyzing suberin's structure and composition. Solution-state NMR is used to identify 

soluble components such as aliphatics, phenolics, glycerol, hydroxycinnamates like 

ferulic acid and lignin-like subunits. Solid-state NMR, ideal for studying suberin in its 

native polymeric form, reveals distinct methylene environments, with more rigid 

acylglycerols in the core and dynamic alkanols and alkanoic acids present on its 

periphery. Gel-state NMR further helps in understanding the primary structure of 

suberin, showing how monomeric units link to form oligomeric and polymeric 

networks. Together, these NMR methods provide a comprehensive view of suberin’s 

complex molecular structure and dynamics (Harman-Ware et al., 2021). 
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• CRISPR/Cas9 genetic manipulation: CRISPR/Cas9 gene editing is a powerful tool 

in suberin research. It can knock out or modify genes involved in suberin biosynthesis, 

such as those encoding fatty acid elongases, cytochrome P450 enzymes and 

transcription factors (Grünhofer et al., 2024). By targeting these genes, researchers can 

investigate the impact of specific genetic changes on suberin formation, composition 

and regulation in plant models such as Arabidopsis thaliana (Shukla et al., 2021; 

Vishwanath et al., 2015). The insights gained from this work can be applied to crop 

species and the function of genes can be further validated. 

• RNA sequencing (RNA-seq) and qRT-PCR: For a comprehensive examination of 

suberin biosynthesis-related genes, RNA-seq and qRT-PCR are the go-to methods. 

RNA-seq thoroughly explains transcript levels and other transcriptomic changes linked 

to the suberin pathway. Meanwhile, qRT-PCR allows to validate RNA-seq data and 

measures the expression of certain suberin biosynthetic genes (Kreszies et al., 2019; 

Lashbrooke et al., 2016). 

 

Studying suberin is not a simple task. It requires a multidisciplinary approach, combining 

histochemical techniques, chromatographic analysis, spectroscopy, molecular biology and 

genetic engineering. Other methods like chromatography-based metabolite profiling, X-ray 

Diffraction (XRD) and electron microscopy are also used to study the ultrastructure of suberin 

in plant tissues. This multidisciplinary approach underscores the complexity and depth of 

suberin research. 

 

An indirect approach to evaluate suberin efficiency in plants usually involves examining 

physiological or biochemical responses associated with suberin's protective function rather 

than directly measuring the compound itself. 

 

1. Drought Tolerance Assay: This method evaluates how suberin helps plants retain 

water during drought (Cantó-Pastor et al., 2024). As a protective barrier, suberin 

reduces water loss, leading to higher Relative Water Content (RWC) and improved 

plant stomatal control (Yan et al., 2018). Kosma et al. (2014) indicated that Arabidopsis 

mutants with impaired suberin formation show decreased drought resistance. 

2. Radial Oxygen Loss (ROL): The effectiveness of the suberin layer in plant roots such 

as rice can be measured by quantifying the oxygen lost across the root surface. Plants 
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with well-developed suberin typically show reduced Radial Oxygen Loss (ROL), 

especially in waterlogged conditions. This approach is commonly used in wetland plant 

studies, where controlling ROL is vital for root aeration and stress response (Colmer, 

2003; Ejiri & Shiono, 2019). 

3. Ion Leakage Test (Electrolyte Leakage): This technique indirectly assesses suberin's 

role in maintaining membrane integrity (Puthmee et al., 2013). Suberin-deficient plants 

experience more electrolyte leakage under osmotic stress or freezing conditions. 

Researchers can evaluate suberin efficiency by measuring ion concentration in the 

surrounding solution. Baxter et al. (2009) found that suberin-deficient Arabidopsis 

mutants showed increased ion leakage, indicating a weakened barrier function. 

4. Salt Stress Assay: Suberin regulates ion uptake in saline environments (Shao et al., 

2021b). This method evaluates its efficiency by exposing plants to salt stress and 

measuring sodium (Na⁺) and potassium (K⁺) levels in roots and shoots. Practical suberin 

barriers limit Na⁺ uptake, improving salt tolerance. According to Barberon et al. (2016), 

suberin deficiency is linked to higher sodium levels in Arabidopsis mutants. 

5. Water Loss Measurement (Gravimetric Method): This method assesses suberin 

efficiency by measuring water loss from excised plant tissues. Since suberin reduces 

water permeability, tissues with more effective suberin layers lose water more slowly. 

Li et al. (2007) and de Silva et al. (2021b) showed that Arabidopsis mutants with 

increased suberin production had lower water loss in controlled conditions. 

6. Pathogen Resistance Assay: Suberin is a barrier that prevents pathogen entry into plant 

tissues. Researchers assess suberin's effectiveness by inoculating plants with soil-borne 

pathogens like Phytophthora spp. and monitoring infection rates (Ranathunge et al., 

2008). Plants with higher suberin levels typically show greater resistance to root-

infecting pathogens. Thomas et al. (2007) found that suberin-deficient mutants were 

more susceptible to infection. 

7. Hydraulic Conductivity Measurement: This method examines how suberin regulates 

water flow in root tissues by measuring the hydraulic conductivity of plant roots using 

a pressure chamber and root pressure probe. Lower conductivity indicates greater 

suberin efficiency, as it restricts water movement. Enstone et al. (2003), Ranathunge & 

Schreiber, (2011) and Kreszies et al. (2019) effectively demonstrated this in roots, 

showing suberin's role in reducing water permeability and forming apoplastic barrier 

formation. 
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1.2.4 Suberin composition and structure 

 

Suberin is known as a bio-polyester made of a polyaliphatic and a polyaromatic domain with 

glycerol as its backbone (Graça, 2015; Graça & Pereira, 2000a; Schreiber & Franke, 2011). 

The polyaliphatic domain of suberin consists primarily of long-chain mono- or bi-functional 

fatty acids and their derivatives. These compounds contribute to suberin’s hydrophobic nature, 

making it impermeable to water. Key components of the aliphatic domain include: saturated 

and unsaturated long-chain fatty acids (typically C16 to C26) in varying relative amounts 

(Holloway, 1983; Kolattukudy, 2005). These are the primary building blocks of the suberin 

aliphatic domain. Hydroxylated fatty acids, such as ω-hydroxy fatty acids and α,ω-dicarboxylic 

acids, represent most of the aliphatic monomers. Hydroxylation increases the cross-linking 

potential, strengthening the suberin structure. Long-chain alcohols add to the hydrophobic 

nature of the aliphatic domain (Ballal & Chapman, 2013). The detailed monomers reported, 

along with their related substance classes and corresponding plant materials, are summarized 

and referenced in Table S1.  

 

The aliphatic domain forms hydrophobic lamellar layers, creating a waterproof barrier that 

limits water and solute movement in suberized tissue. The phenolic domain adds structural 

rigidity and resistance to microbial degradation (Bernards, 2002; Kligman et al., 2022). The 

phenolic domain is covalently bound to the cell wall and interacts with lignin, reinforcing the 

cell wall structure. The most prominent phenolic compound in suberin is ferulic acid that is 

cross-linked by ester and ether bonds, forming a robust, resistant network (Graça, 2015). 

Suberin also contains other phenolic monomers, such as p-coumaric acid and sinapyl alcohol, 

contributing to its rigidity and antimicrobial properties (Reyes et al., 2024). Suberin’s phenolic 

chemicals bear similarities to lignin, another important biopolymer found in plant secondary 

walls. The phenolic domain can interact with lignin and enhance the mechanical strength of 

the cell wall (Bernards & Razem, 2001). Suberin lamellae are usually deposited directly 

between the plasma membrane and the primary cell wall. The aliphatic domain in suberin layer 

aligns towards outside, whereas the phenolic domain forms the inner portion of the layer next 

to the principal cell wall. Because of this configuration, the phenolic domain can anchor suberin 

to the cell wall, while the aliphatic domain can act as a barrier (Serra & Geldner, 2022). The 

above-described linkages and orientations are, to a large degree, still model hypotheses and up 

to now, the organized three-dimensional suberin polymer structure in its unaltered native form 

has not been studied.    
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1.2.5 Biosynthesis of suberin and the genes involved 

 

Suberin biosynthesis is a highly regulated and complex process that involves multiple pathways 

and enzymes. The production of monomer precursors of fatty acids, glycerol and phenolics are 

crucial steps. The polyaliphatic domain of suberin comprises Long-Chain Fatty Acids 

(LCFAs), ω-hydroxy fatty acids, α,ω-Dicarboxylic Acids (DCAs) and primary alcohols. The 

Fatty Acid Synthase (FAS) complex in the plastids synthesizes C16:0, C18:0 and C18:1 fatty 

acids. Key enzymes include fatty acid elongases, such as Ketoacyl-CoA synthetase (KCS) 

proteins, fatty acyl-CoA synthetases and various hydroxylases that generate Very Long-Chain 

Fatty Acids (VLCFAs). VLCFAs are transported into the Endoplasmic Reticulum (ER) after 

CoA groups are added and elongated. Initially, the biosynthesis of VLCFAs involves acetyl-

CoA conversion into malonyl-CoA. Fatty acid elongases (FAEs) elongate malonyl-CoA by 

adding C2 units and the condensation of C2 units involves KCS (Beisson et al., 2012; Franke 

et al., 2009; Lee et al., 2009; Serra et al., 2009a). Subsequently, VLCFAs can be oxygenated 

by the members of the cytochrome P450 oxidase protein family (Höfer et al., 2008). The 

addition of hydroxy- and carboxy groups results in the most prominent suberin monomers, ω-

hydroxy fatty acids and DCAs (Compagnon et al., 2009). Primary alcohol formation is 

achieved by reducing the carboxyl groups with the help of Fatty acyl-CoA Reductase (FAR) 

enzymes (Domergue et al., 2010; Liu et al., 2019). These modified fatty acids are esterified to 

glycerol by BAHD-type acyltransferases, which form the glycerolipid backbone of the 

polyaliphatic domain (Beisson et al., 2007). The polyaromatic domain is derived from 

monomers of the phenylpropanoid pathway. Deamination of phenylalanine by Phenylalanine 

Ammonia-Lyase (PAL) leads to the formation of cinnamic acid (Bernards, 2002; Bernards & 

Razem, 2001). It is further hydroxylated and methylated to produce other phenolic acids that 

are found in the polyaromatic domain. These phenolic acids are polymerized and cross-linked 

to form a rigid network by peroxidases and laccases. The integration of both domains into the 

cell wall occurs via ester and ether linkages (Pollard et al., 2008). 

 

The studies of different genes and associated enzymes helped to identify their role in suberin 

biosynthesis. Studies related to KCS2/DAISY and KCS20 showed that they encode FAE-

condensing enzymes for aliphatic suberin production. Mutants showed reduced growth rate 

and suberin amount; C22 was depleted but had enhanced C16-C20 derivatives (Lee et al., 2009). 

KCS6 in potatoes is involved in the formation of suberin monomers with >C28 chain length 

(Serra et al., 2009a). A reverse genetics approach characterized the CYP86A1/HORST gene 
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as a key enzyme in synthesizing ω-hydroxyacids. The mutants displayed reduced suberin 

accumulation, particularly of chain lengths shorter than C20 (Höfer et al., 2008). CYP86A33-

RNAi lines producing potato tubers showed reduced C18:1 ω-hydroxy and α,ω-diacid levels of 

suberin with thinner suberin lamellae (Serra et al., 2009b). A similar approach was used to 

identify CYP86B1/RALPH as a key oxidase in the biosynthesis of suberin ω-hydroxyacids and 

α,ω-dicarboxylic acids. Chemical analysis showed that the level of C22 and C24 ω-hydroxy 

acids and α,ω-dicarboxylic acids were reduced in mutants (Compagnon et al., 2009). CYP94B1 

from Avicennia officinalis and its putative ortholog in Arabidopsis are shown to control root 

suberin biosynthesis (Krishnamurthy et al., 2020) and also the mutants of CYP94B3 showed 

decreased suberin in Arabidopsis (Krishnamurthy et al., 2021). The FAR1, FAR4 and FAR5 

triad are expressed in root endodermal cells and it was shown that they are involved in reducing 

C22, C20 and C18 primary alcohols, respectively. The triple mutant had 70-80 % less suberin 

than the wildtype (Domergue et al., 2010). GPAT5 acts on a wide range of long-chain ω-

oxidized and/or unsubstituted acyl-CoA components; mutants showed >50 % aliphatic suberin 

reduction in root endodermis and seed coats (Beisson et al., 2007). GPAT4, GPAT 6 and GPAT 

8, which are associated with cutin biosynthesis, showed strict preference for C16 and C18:1 ω-

oxidized acyl-CoA (Wendel et al., 2009). ASFT (Aliphatic Suberin Feruloyl Transferase) and 

BAHD (Benzyl alcohol acetyltransferase, Hydroxycinnamoyl-CoA: Hydroxyacid 

acyltransferase, p-Hydroxybenzoate: CoA ligase and Deacetylvindoline 4-O-acetyltransferase) 

family of acyltransferases is expressed in the seed coat and root endodermis and mutants were 

devoid of ferulic acid in their polyphenolic domain (Gou et al., 2009; Molina et al., 2009). 

Other enzymes like ESB1, GELPs, HHT, FHT, FACT, LPT, ABC transporters peroxidases 

and laccases are involved in the crucial step of suberin biosynthesis (Grünhofer et al., 2021b; 

Nomberg et al., 2022a). 

 

1.2.6 Suberin transport and regulation of the suberin pathway 

 

Exporting suberin monomers from their biosynthesis sites to deposition sites is a complex 

process and the transport mechanisms are still poorly understood. In-vivo and in-silico assays 

showed that many suberin-associated enzymes are located in the endoplasmic reticulum (ER). 

The synthesis and modification of aliphatic monomers occur in the ER, whereas aromatic 

monomers synthesis occurs in the cytosol. Some of the hypothesized mechanisms are: ER 

domains attached to the plasma membrane (PM); cytosolic carriers carry soluble proteins; 

oleophilic droplets bud from ER and travel through the cytosol to the PM; specialized vesicles 
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from Golgi-mediated sections transport suberin components (Pollard et al., 2008). In rice, ER-

derived ribosome-bearing vesicles were reported to transport aliphatic suberin (Oparka & 

Gates, 1982). Transporters such as ATP-Binding Cassette (ABCG) and Lipid Transfer Proteins 

(LTP) superfamilies are speculated to participate in suberin transport. DSO/ABCG11 plays a 

role in suberin monomer export (Panikashvili et al., 2010). ABCG2, ABCG 6 and ABCG 20 

were associated with suberin metabolism and mutants had lower suberin deposition in seeds of 

Arabidopsis (Yadav et al., 2014). The ABCG1-RNAi-silenced potato had lower VLCFAs, 

primary alcohols, dicarboxylic acids levels and distorted suberin layers (Landgraf et al., 2014). 

The RCN1/ABCG5 rice mutant line had lower C28 and C30 fatty acids and ω-hydroxyacids 

(Shiono et al., 2014). LTPI4 mutants had lower C18 VLCFAs and a significant rise in C24 and 

C26 VLCFAs (Deeken et al., 2016). Furthermore, a Glycosylphosphatidylinositol (GPI)-

Anchored LTP mutant had lower levels of C20-C24 fatty acids, C20 and C22 primary alcohols, 

C22 and C24 ω-hydroxyacids and C20 and C22 dicarboxylic acids in Arabidopsis seeds (Lee & 

Suh, 2018). 

 

Several suberin related transcription factors and regulators have been identified in the last 

decade, but only limited knowledge remains. Early studies in potato tubers with 

supplementation of ABA increased suberin amount and diffusion resistance (Lulai et al., 2008). 

Similar results were obtained for the roots of maize and Arabidopsis (Hose et al., 2000; Wang 

et al., 2020). Co-expression studies showed that MYB, NAC and WRKY transcription factor 

gene families also play a role in the suberization process. MYB41 in Arabidopsis is required 

for aliphatic suberin deposition of cell-wall-associated-suberin-like lamellae (Kosma et al., 

2014). MYB107 and MYB9 transcription factors coordinate the transcriptional induction, 

biosynthesis and transport of aromatic and aliphatic monomers (Lashbrooke et al., 2016). 

MYB107 interacts with regulatory elements in their promoters for the expression of suberin 

genes (Gou et al., 2017). MYB107 and MYB41 in kiwi fruit interact with the CYP86A1 

promoter and regulate aliphatic suberin gene expression (Wei et al., 2020). MYB78 is a 

regulator of suberin in sugarcane internodes during culm development and wound healing. 

MYB78 in Nicotiana benthamiana leaves induced suberin deposition by activating suberin 

synthesis genes (Figueiredo et al., 2020). MYB41, MYB53, MYB92 and MYB93 all promote 

endodermal suberization in Arabidopsis roots (Shukla et al., 2021) and Nicotiana benthamiana 

(To et al., 2020). ANAC103 negatively regulates suberin synthesis in potato tubers (Verdaguer 

et al., 2016). MYB1 in cork oak is involved in transporting and assembling both suberin and 

lignin biosynthesis and is associated with secondary growth and cork development (Capote et 
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al., 2018). MYB93 in apple fruit regulates suberin formation during the russeting of the fruit 

periderm during its growth (Legay et al., 2016). MYB102 and MYB74 in potatoes regulate 

wound suberization (Wahrenburg et al., 2021). MYB70 in Arabidopsis is the root negative 

regulator of suberin biosynthesis (Wan et al., 2021). Arabidopsis ANAC058, an ortholog of 

potato ANAC103, positively regulated endodermal suberization (Markus, 2018). ANAC046 is 

a transcriptional activator of suberin in Arabidopsis (Mahmood et al., 2019). WRKY33 in 

Arabidopsis is the upstream regulator of CYP94B1 oxidase; mutants showed lower suberin 

amounts and were more sensitive to salt exposure (Krishnamurthy et al., 2020). WRKY9 in 

Arabidopsis (Capote et al., 2018) is the upstream regulator of CYP94B3 and CYP86B1 

oxidases (Krishnamurthy et al., 2021). Most biosynthesis and regulation research is still 

conducted in Arabidopsis primarily and most of these results still need to be validated in other 

crop species. 

 

1.2.7 Key factors influencing suberin deposition 

 

The formation of suberin is influenced by several factors such as drought, salinity, nutrient 

availability and pathogen attack. Genetic regulation involves transcription factors, along with 

hormonal signals (abscisic and jasmonic acid) which modulate suberization under stress 

conditions (Lashbrooke et al., 2016; Shukla et al., 2021). Additionally, developmental cues, 

such as tissue-specific expression, plant age and cell differentiation regulate suberin deposition 

(Ranathunge et al., 2011; Ursache et al., 2018).  

 

1.2.7.1 Biotic stress 

 

Suberin is reported as a barrier in stopping nematodes and other pathogens from penetrating 

into the root. The suberized endodermis acts as a line of defense for pathogens entering the 

vascular tissues and spreading throughout the plants (Holbein et al., 2019; Kashyap et al., 2022; 

Ranathunge et al., 2008). In soybeans, the amount of suberin and fungal resistance is correlated 

(Thomas et al., 2007) and also some cultivars with high suberin amounts experienced slower 

hyphae growth (Ranathunge et al., 2008). Suberin plays a key role in facilitating beneficial 

biotic interactions and maintaining a balanced plant ionome through modulation by the root 

microbiome, thereby contributing to enhanced plant adaptation to various stress conditions 

(Salas-González et al., 2021). The ligno-suberin deposition in the endodermis and lignification 

of the secondary cell wall structures are also reported as an immune response due to biotic 



16 
 

 

stress (Floerl et al., 2012; Kashyap et al., 2022; Reusche et al., 2012; Zhou et al., 2020). A 

detailed list of biotic stresses is given with references in Table S2.   

 

1.2.7.2 Abiotic stress 

 

Environmental conditions can also negatively impact the plant growth and development. Such 

abiotic stress may include, Osmotic stress, water deficit/drought, flooding/water-logging, 

hypoxia, salinity, nutrient excess/deficiency, heavy metal exposure etc. Suberin, particularly 

in the root endodermis and periderm plays a crucial role by regulating water and solute 

movement in response to stress. Controlled water deficit stress experiments are conducted in 

hydroponics systems using polyethylene glycol (PEG), which induces non-toxic osmotic 

stress, allowing the precise adjustment of the medium’s water potential. Decreasing the water 

potential for maize and barley plants caused a decreased root length and increased the suberin 

amounts (Kreszies et al., 2019, 2020a; Zeier & Schreiber, 1998). NaCl stress has the potential 

to cause root organs to experience significant ion toxicity in addition to the osmotic stress that 

already PEG alone can cause (Grünhofer et al., 2022b). Suberin genes are expressed upon salt 

treatment and the amount of aliphatic and aromatic suberin increased when compared to control 

(Knipfer et al., 2021; Krishnamurthy et al., 2011). In rice, during salt stress, the extent of 

suberin deposition in primary roots negatively correlated with Na+ ion uptake in the shoot. 

 

Other nutrient deficiencies such as Fe, Mn and Zn were shown to decrease suberization in 

Arabidopsis, while a lower amount of S and K resulted in increased suberin contents (Barberon 

et al., 2016). Ethylene was found to mediate the reduction in suberin deposition, whereas 

abscisic acid (ABA) promoted suberization. By adjusting the Fe, Mn and Zn intake and 

retaining K and S in the stele, plant roots may have adapted to manage changing nutrient 

availability (Barberon, 2017; Chen et al., 2019; Doblas et al., 2017). Deficits in phosphorus 

(P) and nitrogen (N) significantly impact plant suberization patterns and root morphology. In 

barley, a nitrogen shortage led to longer roots and increased deposition of aliphatic suberin, 

which enhanced root suberization near the tip (Armand et al., 2019; Melino et al., 2021). In 

contrast, ammonium limitation decreased suberin levels in rice (Ranathunge et al., 2016). On 

the other hand, barley exposed to phosphorus deficiency had longer roots but lower levels of 

aliphatic suberin (Armand et al., 2019). The quantified suberin amounts contradict the 

microscopic observations, which suggested that phosphorus deficiency enhances suberization. 

These variations emphasize integrating chemical and histochemical analyses and species-
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specific reactions. Silicon (Si) supplementation influences suberin deposition in maize and rice 

differently; while some studies report enhanced suberization, others indicate no effect or even 

a reduction (Fleck et al., 2011, 2015; Vaculík et al., 2012). Chemical tests showed that there 

was occasionally a drop in aromatic suberin but no effect on aliphatic suberin (Fleck et al., 

2015; Hinrichs et al., 2017). In barley, silicon supplementation did not alter suberin levels but 

resulted in a slight increase in root length (Kreszies et al., 2020b). By increasing the expression 

of the aquaporin gene, Si mitigated the decreases in root hydraulic conductivity in sorghum 

caused by osmotic and salt stress (Liu et al., 2014, 2015). Crop plants exposed to heavy metals, 

especially cadmium (Cd), have shorter roots and more suberin lamellae deposits (Líška et al., 

2016; Lukačová et al., 2013; Vaculík et al., 2009). A complex sensing mechanism was 

demonstrated by the unilateral suberization of maize roots in response to Cd (Líška et al., 

2016). Compared to aeroponics, hydroponic growth increased Cd uptake but decreased suberin 

deposition (Redjala et al., 2011). When exposed to Cd, the maize endodermis and exodermis 

had higher levels of suberin, according to a quantitative study (Zeier, 1998). 

 

In rice, oxygen deprivation caused a decrease in radial oxygen loss but not water transfer due 

to enhanced suberin deposition in the exodermis and endodermis (Kotula et al., 2009). The 

exodermal barrier's function in limiting NaCl permeability was validated by genetic research 

(Shiono et al., 2014). According to similar findings, hypoxia-induced exodermal suberization 

decreased oxygen loss in Hordeum marinum (Kotula et al., 2017). Suberin genes were 

activated by small organic acids such as ABA in low-oxygen environments, improving barrier 

qualities (Colmer et al., 2019). A more comprehensive review validated suberin reinforcement 

in rice, wheat and maize under waterlogging conditions (Pedersen et al., 2021), but this could 

not be confirmed for poplar (Grünhofer et al., 2023). 

 

1.3 Suberin’s synergistic roles with wax 
 

It is not justifiable to assume that a suberized cell wall creates a watertight transport barrier. 

The degree of effectiveness of the suberized tissues as water barriers might vary significantly 

depending on the organs and tissues of the plant (Schreiber et al., 2005a; Grünhofer & 

Schreiber, 2023). The water and dissolved solutes permeability of the cuticle often rise by 100–

1000 times once the cuticular waxes are extracted (Schönherr, 1976; Schreiber, 2010). The 

cuticular associated wax function might vary from the suberized surface waxes. The complex 
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connection between suberin and waxes in plant tissues reflects their complementary functions 

in plant physiological processes as well as their shared biosynthesis routes. The results of Soler 

et al. (2020) underline this shared biosynthesis by showing that salt stress affects suberin-

associated waxes, indicating a regulatory overlap between abscisic acid pathways for wax and 

suberin biosynthesis. The thorough investigation by Huang et al. (2017) demonstrates that the 

potato periderm tissues consistently contained notable amounts of fatty acids, alkanes and 

alcohols—the building blocks of suberin and waxes. A comprehensive biosynthetic approach 

in plants is suggested by Kosma et al. (2015), who show that several enzymes involved in the 

synthesis of suberin polymers are also essential for the production of waxes.  

 

Suberin and related waxes have physiological purposes that go beyond their structural ones. 

Waxes significantly increase the periderm's impermeability, even while suberin might serve as 

the barrier to prevent water loss (Schreiber et al., 2005a; Serra et al., 2010). The work of 

Chemelewski et al. (2023), further supports the protective functions by observing that wax 

buildup is crucial to the permeability and integrity of plant organs, offering an extra line of 

defense against environmental challenges. These lipid molecules also play an important role in 

interactions between plants and pathogens. By strengthening the plant cell wall, suberin and 

waxes both help to increase resistance to infections where these substances function as a first 

line of defense (Wang et al., 2020). Waxes offer a physical barrier against microbial invasion, 

while suberin may have both structural and signaling functions during defense reactions. 

According to Zhou et al. (2022), suberin and waxes are essential elements in the larger context 

of lipid metabolism and are necessary for the development of plant resilience mechanisms. 

Overall, the association of suberin and waxes in plant defense mechanisms illustrates a 

sophisticated synergy between these two lipid classes, rooted in their biosynthetic 

interconnectedness and their shared roles in enhancing plant resilience against various biotic 

and abiotic stresses. 

 

1.4 Suberin’s synergistic roles with lignin 
 

Suberin and lignin are essential plant polymers that work synergistically to improve plant 

resilience to environmental challenges while contributing to structural integrity. Both 

apoplastic barriers are essential to producing the secondary plant cell wall, particularly in 
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specialized tissues like the endodermis and exodermis, where they regulate water and nutrient 

transport while acting as a barrier to pathogens and harmful chemical substances. 

 

Suberin is deposited in between the cell walls and plasma membrane forming suberin lamellae, 

which prevent water and other solutes from moving through the apoplast (Sexauer et al., 2021). 

Maintaining nutrient balance and shielding the soil from dangerous contaminants depend on 

this deposition (Li et al., 2017). MYB proteins, among other transcription factors, control the 

production of suberin by coordinating the expression of genes involved in suberin biosynthesis 

(Capote et al., 2018; Shukla et al., 2021). For example, it has been demonstrated that the gene 

MYB52 promotes the manufacture of lignin in apples during the suberization process, 

suggesting a complicated interaction between these two polymers (Xu et al., 2022). On the 

other hand, the phenolic polymer lignin gives plant tissues mechanical support and helps 

maintain their structural integrity. It has a crucial role in water conduction and resistance to 

biotic and abiotic stressors and is present mainly in the secondary cell walls of vascular plants 

(Liu et al., 2018). Specific transcription factors, such as the R2R3-MYB family, tightly regulate 

the production of lignin, which is also impacted by various environmental. Along with suberin, 

lignin is deposited in the Casparian strips of the endodermis and exodermis, forming a strong 

barrier that restricts the passive movement of solutes and water (Lee et al., 2013; Li et al., 

2017).  

 

The relationship between lignin and suberin is significant when considering plant defense 

mechanisms. Both polymers have a role in the plant's defense reaction to wounding and 

pathogen attack and phytohormones, including salicylic acid and abscisic acid, can cause their 

deposition (Boher et al., 2013). Suberin and lignin in cell walls improve the plants' structural 

integrity and reduce the permeability to harmful agents, enhancing the resistance to 

environmental stresses. Recent research also shows that manipulating their biosynthesis 

pathways can further boost the plants resilience and adaptability. For instance, discovering 

specific genes that control these polymers creates opportunities for biotechnological uses to 

improve agricultural stress tolerance (Lashbrooke et al., 2016; Lin et al., 2019). 

 

Altogether, lignin and suberin are crucial elements of plant cell walls that complement each 

other to improve structural integrity and offer protection from environmental stimuli. They are 

crucial to plant physiology and have potential uses in agriculture since their production is 

complexly controlled by a network of transcription factors and impacted by outside stimuli. 
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1.5 Water potential gradient acting on plants 
 

Knowing the significance of the soil and atmospheric water potentials for plants is essential to 

comprehend plant physiology, especially regarding stress reactions and water availability. 

Water flow and availability are governed by the Soil-Plant-Atmosphere Continuum (SPAC), 

including but not limited to the atmospheric and soil water potentials. The water potential 

describes the water status of a sphere (e.g., the atmosphere, a plant tissue or even a single cell) 

and can range from a high water-saturation (e.g., water potential close to 0 MPa) to extreme 

water-deficiency (e.g., water potential as low as -100 MPa). Ultimately, it is the water potential 

gradient between two adjacent spheres (e.g., rhizosphere to root or leave to atmosphere) that 

orchestrates the direction and intensity of water flow (Grünhofer & Schreiber, 2023). 

 

A plant’s capacity to absorb water through its roots is directly impacted by the soil water 

potential, representing the energy state of the water in the soil. Monteiro et al. (2018) state that 

plants can absorb water effectively when the soil's water potential is higher (less negative) than 

that of the roots. This is necessary to sustain turgor pressure, promote nutrient transport and 

assist with photosynthesis. In contrast, drought conditions lower the soil’s water potential 

(more negative), reducing water intake and potentially subjecting plants to physiological stress. 

Water stress can affect photosynthesis and the plant’s general health by causing a drop in the 

water potential of the leaves (Lewar et al., 2022; López‐Serrano et al., 2019). According to 

previous studies, plants exposed to low soil water potential, for example, have lower stomatal 

conductance, which restricts transpiration and CO2 absorption, ultimately affecting growth and 

yield (Gisbert-Mullor et al., 2023; Spinelli et al., 2017). Conversely, temperature and humidity 

also impact on the atmospheric water potential, affecting transpiration rates. Water moves more 

easily from the soil to the leaves when the transpiration (stomatal) generates a negative pressure 

inside the plant (Yan et al., 2015). During dry conditions, plants can reduce water stress by 

absorbing atmospheric moisture through foliar uptake (Gong et al., 2019; McHugh et al., 

2015).  

 

Understanding the interaction between soil and atmospheric water potentials is crucial for 

comprehending how plants respond to environmental stressors. For instance, the soil water 

potential might worsen during drought conditions because the water from soil moves to 

atmospheric with much lower humidity (Shackel, 2007; Spinelli et al., 2017). According to 



21 
 

 

Yan et al. (2015) and Xue & He (2008), gradients in water potential between the soil, plant and 

atmosphere play a crucial role in regulating water balance, which is essential for maintaining 

plant physiological functions.  

 

To achieve effective irrigation management, it is essential to integrate soil and atmospheric 

water potentials. By monitoring the plant water potential, farmers can schedule irrigation in a 

way that maximizes water use efficiency and minimizes crop stress. This approach is 

particularly beneficial in regions with limited water resources, where improving agricultural 

practices and enhancing crop resilience can result from a better understanding of water 

potential dynamics (Gisbert-Mullor et al., 2023; Spinelli et al., 2017). Suberin, lignin and water 

potentials are important physiological research areas in plants, highlighting the roles of these 

biopolymers in plant stress responses and water management. Suberin and lignin are critical 

components of the plant cell wall, particularly in root tissues, where they regulate water 

permeability and provide structural support. In conclusion, the atmospheric and rhizospheric 

water potential significantly influence plant-water relations. These factors affect stress 

responses, physiological functions and water uptake. Understanding these relationships is 

crucial for optimizing agricultural practices and managing plant health in various 

environmental conditions. 
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1.5  Aims of this thesis 
 

• Is there a correlation between the barrier properties of the suberized interfaces and the 

number of suberized layers, the amount of soluble wax and the amount of suberin? 

 

Suberized cell walls function as protective barriers at the interfaces between plants and soil or 

the atmosphere in different plant organs (soil-grown roots, aerial roots, tubers and bark). Does 

the number of suberized layers show relative barrier properties? Does suberin alone form an 

effective apoplastic barrier, or do the properties of these interfaces change upon wax 

extraction? 

 

• How does the response of root apoplastic barrier formation change according to soil 

water potential in wild barley and a modern cultivar, how does this differ in hydroponic 

versus soil-based media? 

 

Hydroponic plant cultivation is a commonly used method for root research and soil 

experiments are rare. Previous results in hydroponics have shown that suberin deposition 

patterns along the root and amounts vary with differing water potential and cultivars. We 

hypothesised that the root response to drought stress of wild barley (Pakistan) will differ from 

the modern cultivar (Scarlett) and differ between soil and hydroponic conditions.  
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2. Results 

 

The results section contains summaries of three peer-reviewed articles published in Taylor & 

Francis Group, Springer Nature and John Wiley & Sons. This thesis does not include Materials 

and Methods section, since each publication provides a detailed description of methodologies 

on its own. 

 

The introductory Chapter 1 explains how plant cell walls are rendered hydrophobic through 

the presence of the apoplastic barriers cutin, suberin and waxes, which all are essential for the 

survival of terrestrial plants. The chapter also discusses the technological applications and 

future research directions in the study of plant hydrophobic barriers. Chapter 2 examines the 

suberized interfaces between plants and their environments in five different plant species in 

more detail. It focuses on their anatomy, chemical composition (including suberin and wax) 

and water permeability. Chapter 3 explores the impact of water stress on the formation of 

apoplastic barriers in soil-grown barley roots, highlighting differences compared to 

hydroponically cultivated barley plants subjected under osmotic stress. 

 

The original publications are attached in the appendix (Chapter 1-3 ≙ Appendix 1-3, 

respectively), or copyable Portable Document Format (PDF) versions can be found online by 

using the Digital Object Identifier (DOI) hyperlinks. 

 

The Project DEAL agreement ensures that all publications are open access. 
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Chapter 1 

 

Hydrophobization of cell walls by cutin, suberin and associated waxes 

 

Kiran Suresh, Viktoria V. Zeisler-Diehl, Lukas Schreiber 

 

Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, 

Kirschallee 1, 53115 Bonn, Germany. 

 

Geitmann A (2023) Plant Cell Walls: Research Milestones and Conceptual Insights (1st ed.). 

CRC Press: 298-310 

https://doi.org/10.1201/9781003178309-14 

 

“Hydrophobization of cell walls by cutin, suberin and associated waxes”, was published in 

2023 as one of the book chapters in Plant Cell Walls: Research Milestones and Conceptual 

Insights (1st ed.) by CRC Press, Taylor & Francis Group. The original publication is attached 

in the appendix of this dissertation. The following overview is intended to highlight my 

contribution and outcome. As an abstract that primarily focuses on the most important elements 

for conciseness and clarity, relevant references to some claims have been excluded. 

 

I am the first author of this book chapter, which reviews the following elements: (i) a brief 

recapitulation of the main steps in the history of research into cutin and suberin; (ii) a summary 

of the current state of knowledge regarding the chemical composition, biosynthesis and 

function of hydrophobized plant cell walls; (iii) the selected relevant methodological and 

applied aspects of the problems associated with plant interfaces made of cutin and suberin; and 

finally, (iv) pointing out the critical future questions and approaches further improving our 

knowledge about hydrophobic plant interfaces. The key discussion in the book chapter is as 

follows: 

 

• Historical perspective: The article demonstrates the evolutionary importance of plant 

cell wall modifications, including cutin and suberin, which protect plants against water 

loss, pathogen invasion and environmental stresses. It shows how scientific findings, 

https://doi.org/10.1201/9781003178309-14
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like microscopy, have clarified the nature of these polymers and their roles in adapting 

plants to terrestrial life. 

• Hydrophobic barriers and water permeability: It emphasizes how cutin and suberin 

decrease uncontrolled water loss in plants. These polymers form hydrophobic barriers 

and especially wax plays a significant role in water retention. The comparison of 

species and tissues reveals that wax accumulation largely determines the water 

permeability of cutinized and suberized layers. 

• Chemical nature of cutin and suberin: It explains the chemical composition of these 

biopolymers, focusing on fatty acid derivatives, waxes and aromatic compounds like 

lignin and certain suberin monomers. It highlights the role of glycerol as a cross-linker 

in forming polyesters and enzymes such as cytochrome P450 monooxygenases 

involved in fatty acid elongation and hydroxylation. Meanwhile, cutin and suberin 

primarily act as barriers to water, nutrients, microorganisms and gases. The discussion 

in this chapter includes the functions of these polymers in forming essential barrier 

coatings, preventing pathogens from entering plants and reducing nutrient loss from 

plant tissues. 

• Transport barriers in roots and leaves: The publication explores suberin's role in 

roots, preventing harmful materials like sodium chloride from entering while allowing 

water and mineral absorption. This study examines the differences in transport 

mechanisms within roots and leaves, with a particular focus on the role of suberin in 

regulating two key pathways: apoplastic (between cells) and symplastic (through cells). 

The findings also have practical implications for agriculture. The wax or suberin 

amount changes may help the plant adjust to different environmental stresses, for 

example, drought and salinity. Transport barrier studies will aid in selecting or 

developing the properties required to thrive under various challenging conditions. 

• Technological and future applications: The derived cutin and suberin polymers can 

also be used as bio-based polymers, offering biodegradable alternatives to petroleum-

based plastics for packaging and contributing to sustainability. This publication 

identifies current methodological limitations in fully understanding the hydrophobic 

barriers’ molecular structure and function. It calls for further research on the 

ultrastructural arrangement of these biopolymers and their precise roles in plant-

environment interactions. 
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Apoplastic barriers, mainly those formed by Casparian strips and suberin lamellae, are 

significant in controlling the inflow of water and nutrients into the roots while excluding the 

entry of toxic ions. The chapter talks about the differences between the hydrophobic barriers 

in roots and leaves: leaves have very effective cuticular barriers, while the roots have to achieve 

an equilibrium of water and nutrient absorption while preventing the flux of specific ions. The 

apoplastic barrier is essential in the roots to balance water uptake and protection against 

environmental stress, with two components that carry out this function: suberin and lignin. The 

effectiveness of transport barriers in plants are discussed with regarding the surrounding water 

potential both in soil and air.  

 

The open questions related to the molecular and ultrastructural basis of the cuticular barrier 

properties, their relationship to species-specific chemical compositions and the chemical 

differences between plant cuticles are further discussed. The upcoming two chapters will try to 

answer some of the questions related to the chemical composition, water permeability and 

water stress acting on apoplastic barriers. 

 

I carried out all the literature research and made a draft manuscript with its contents. The 

subtopics were further refined with the guidance of Lukas Schreiber and Viktoria Zeisler-

Diehl. Already published results from several publications were referred to compile the graph 

related to the correlation of permeances of isolated cuticles along with average wax coverage. 

I made the microscopy and SEM picture for the book chapter. The final design of figures and 

graphs was carried out along with both co-authors. Pro-create software was used to design the 

schematic diagram of water potential gradients between soil, plant and air. 

 

The structure and content of the manuscript were conceived and written after a prior discussion 

with Lukas Schreiber regarding the book chapter preparation. After writing the first 

manuscript, Viktoria Zeisler-Diehl helped me revise its content. The final version of the 

manuscript was corrected and approved by Lukas Schreiber before being submitted to the 

corresponding editors. 
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Chapter 2 

 

Comparing anatomy, chemical composition and water permeability of various 

suberized tissues 

 

Kiran Suresh1, Viktoria V. Zeisler-Diehl1, Tobias Wojciechowski2, Lukas Schreiber1 

 
1Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of 

Bonn, Kirschallee 1, 53115 Bonn, Germany 
2Forschungszentrum Jülich, IBG-2, Wilhelm-Johnen-Straße, 52428 Jülich, Germany 

 

Planta (2022) 256:60  

https://doi.org/10.1007/s00425-022-03975-3 

 

“Comparing anatomy, chemical composition and water permeability of various suberized 

tissues” was published in 2022 as an online article in Planta by Springer Nature. The original 

publication is attached in the appendix of this dissertation. The following overview is intended 

to highlight my personal contribution. As an abstract that primarily focuses on the most 

important elements for conciseness and clarity, relevant references to some claims have been 

excluded; nevertheless, they can be found in the complete publication linked (Appendix 2). 

 

I am the first author of this study, in which suberized cell walls were enzymatically isolated 

and collected from five different plant species including Clivia miniata, Monstera deliciosa, 

Solanum tuberosum, Manihot esculenta and Malus domestica. The structural barriers at the 

plant/soil or plant/atmosphere interface in various plant organs including soil-grown roots, 

aerial roots, tubers and bark were examined. Anatomy, chemical composition (suberin and 

wax) and efficiency as transpiration barriers (water loss in m s−1) of the different suberized cell 

wall samples were quantified. Diverse plant materials were selected for the experiment and 

two distinct types within the same plant organ were chosen for comparison (young vs matured 

root, soil-grown v/s exposed roots above soil and fresh v/s 3-week stored tubers). For Clivia 

miniata the soil-grown and roots exposed to the atmosphere were used and in Monstera 

deliciosa young growing and matured aerial roots were examined. Tubers of Solanum 

tuberosum and Manihot esculenta (fresh periderm and 3-week-old stored root tubers periderm) 

https://doi.org/10.1007/s00425-022-03975-3
https://doi.org/10.1007/s00425-022-03975-3
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were compared with each other. The bark of Malus domestica, which is mainly made up of 

secondary cell wall modification accumulating over time, was used as a reference. 

 

The overall key findings are as follows: 

• Water permeability and suberized layers: The effectiveness of suberized tissues as 

a water barrier does not depend solely on the number of suberized cell layers or the 

total amount of suberin. Although various suberized tissues differ in both the number 

of layers and their chemical composition, not all are equally effective in preventing 

transpiration. 

• Wax plays a key role: Wax molecules impregnated into the suberin polymer play a 

crucial role in forming an effective water barrier. This is most easily illustrated in 

species like Monstera deliciosa and Solanum tuberosum, which showed a dramatic 

increase in permeability to water upon wax extraction. For the tissues of Clivia miniata 

and Manihot esculenta with lower amounts of wax, weak or no barriers to water were 

formed even though they were partially suberized. 

• Plant organ differences: The potential for the formation of water barriers by different 

plant organs, i.e., roots, tubers and bark vary greatly. Solanum tuberosum and Monstera 

deliciosa (aerial roots) form a strong barrier, while the roots of cassava and the bark of 

the apple form a weak barrier. In fact, it has been postulated that the wide variability in 

barrier efficiency in cassava could be a contributing factor in post-harvest loss since the 

periderm with root developmental origin in this plant fails to provide an effective 

barrier against water loss. The functionality of different apoplastic barriers varies 

depending on the location, maturity and environmental factors. 

• Transpiration rates: The transpiration rates varied within suberized tissues and those 

of Solanum tuberosum periderms were the lowest in terms of water loss, showing the 

most efficient water barrier. On the contrary, the root tuber periderm of Manihot 

esculenta indicated that it was highly permeable to water, which accounts for why 

cassava tubers deteriorate quickly after being harvested. 

• Chemical composition: Detailed analyses of the wax and suberin compositions 

revealed variations in chain lengths across different substance classes. For instance, 

apple bark may have a higher total wax content than other tissues but still performs 

poorly in water retention. Similarly, suberin amounts varied among tissues, yet did not 

consistently correlate with water permeability. A direct relationship was observed 
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between wax content in the suberized periderm and transpiration rates, particularly in 

potato and cassava. 

• Physiological implications: These findings have implications for agricultural 

practices, particularly in postharvest storage and reduction of losses. Some suberized 

tissues, such as those in cassava, do not provide effective water barriers. Improving the 

wax biosynthesis of the plant could be one of the targets towards improving the water 

retention properties of the plant's suberized tissues. 

   

Overall, this study demonstrates that there is no linear correlation between the number of 

suberized cell layers and the effectiveness of water barrier properties. Instead, it highlights the 

critical role of wax deposition within suberized tissues in significantly reducing the water 

permeability.  

 

I conducted all the experiments related to this chapter after discussing them with Lukas 

Schreiber. At first, I carefully excised different tissues by measuring dimensions to conduct 

quantitative chemical analysis and transpiration experiments. The samples were 

microscopically investigated by staining and then the further experiment was designed based 

on the number of suberized layers, location and function of the plant material. For the 

transpiration experiments, each set was further divided as intact suberized tissue with wax and 

wax-extracted suberized tissues. Wax and suberin amounts were calculated after identifying 

the individual monomers on GC-MS and the transpiration experiments were repeated with 

several replicates for the data reproducibility. Viktoria Zeisler-Diehl assisted me in gas 

chromatography to verify the identified monomers. Tobias Wojciechowski provided cassava 

tubers for investigation and he was actively part of the discussion of data and provided helpful 

insights in writing the manuscript along with Lukas Schreiber. 

 

Before writing the publication, all co-authors discussed the data collected during this 

investigation. The main figures and structure of the publication were performed by me and 

closely discussed with Lukas Schreiber before writing the draft. After I finished the first draft 

of the paper, all co-authors helped me refine its content. The final version of the manuscript 

was then read and approved by all co-authors before being submitted to the relevant journal.   
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Chapter 3 

Effects of water stress on apoplastic barrier formation in soil grown roots differ from 

hydroponically grown roots: histochemical, biochemical and molecular evidence 

Kiran Suresh1, Sabarna Bhattacharyya2, Jorge Carvajal1, Rajdeep Ghosh3, Viktoria V. Zeisler-

Diehl1, Vera Böckem4, Kerstin A. Nagel4, Tobias Wojciechowski4, Lukas Schreiber1

1Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of 

Bonn, Kirschallee 1, 53115 Bonn, Germany. 
2Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, 

Kirschallee 1, 53115 Bonn, Germany. 
3Department of Experimental Plant Biology, Charles University, Viničná 1965/5, 12843 Praha, 

Czech Republic. 
4Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany 

Plant, Cell & Environment (2024) 1–15.  

https://doi.org/10.1111/pce.15067 

“Effects of water stress on apoplastic barrier formation in soil grown roots differ from 

hydroponically grown roots: histochemical, biochemical and molecular evidence” was 

published in 2024 as an original research article in Plant, Cell & Environment by John Wiley 

& Sons. The original publication is attached in the appendix of this dissertation. The following 

overview is intended to highlight my personal contribution and summarized results. As an 

abstract that primarily focuses on the most important elements for conciseness and clarity, 

relevant references to some claims have been excluded; nevertheless, they can be found in the 

complete publication linked (Appendix 3). 

I am the first author of this publication, in which I investigated the response of 12-day-old 

barley roots grown in soil-filled rhizotrons to different soil water potentials (SWP). A modern 

cultivar (cv. Scarlett) was compared with a wild accession (ICB181243) from Pakistan. Soil 

water potentials were measured across different relative water contents. Root anatomy was 

https://doi.org/10.1111/pce.15067
https://doi.org/10.1111/pce.15067
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analyzed using histochemistry and microscopy, while suberin and lignin levels were quantified 

through analytical chemistry. Transcriptomic changes were assessed via RNA sequencing. 

 

The results section of the study on the effects of water stress on apoplastic barrier formation in 

soil-grown barley roots highlights several key findings: 

• Soil Water Content (SWC) and Soil Water Potential (SWP): The SWC and SWP 

were systematically measured in soil samples across different depths in the rhizotrons. 

The results showed that well-watered soil had an SWC of about 72.6%, while mild and 

strong water stress treatments resulted in lower SWCs of 54.3% and 41.3%, 

respectively. The SWP ranged from -0.09 MPa for well-watered soil to -1.04 MPa for 

strong water stress. The nonlinear relationship between SWC and SWP explains how a 

small change in a relative quantity leads to a major change in another parameter. 

• Root and shoot morphology: The length of barley roots decreased with increasing 

water stress. In control conditions, the barley accession from Pakistan (wild) exhibited 

longer roots than the modern cultivar Scarlett. Root lengths under mild and strong water 

stress also showed similar trends, with Pakistan roots being consistently longer. Strong 

water stress significantly decreased the total root and shoot length in both cultivars, but 

the reduction was more pronounced in Scarlett. Root/shoot ratios increased under water 

stress conditions, indicating a shift in resource allocation favoring root growth to cope 

with limited water availability. 

• Histochemical analysis of suberin and lignin: Histochemical staining revealed that 

under control conditions, suberization of endodermal cells occurred between 5% and 

10% of the root length (root tip defined as 0%, root base as 100%), while in water-

stressed plants the suberization occurred earlier and was more extensive. Under both 

mild and severe water stress, suberization increased significantly in both barley 

cultivars, with Scarlett exhibiting more pronounced suberization than Pakistan. 

Lignification followed a similar trend, intensifying with increasing water stress, 

particularly in the metaxylem and endodermal cells. The outer tangential walls of 

endodermal cells near the shoot showed the strongest suberin and lignin deposition in 

response to stress. 

• Chemical analysis of suberin and lignin: Additional quantitative analysis confirmed 

that the total amount of aliphatic suberin monomers increased over the root length in 

both genotypes, especially under strong water stress. Pakistan roots showed enhanced 
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suberin accumulation in the basal root zones under mild and strong stress. Lignin 

analysis revealed that lignin accumulation also increased over the length of the roots, 

with strong water stress significantly boosting lignification, especially in Scarlett. The 

lignin monomers predominantly included guaiacyl, syringyl and p-hydroxyphenyl 

units. 

• Transcriptomic analysis: RNA sequencing of root tips from both cultivars under 

strong water stress revealed differential gene expression associated with suberin and 

lignin biosynthesis pathways. Genes related to fatty acid elongation, alcohol synthesis 

and polymerization were upregulated in both cultivars, supporting the observed 

increase in suberin and lignin deposition. Pakistan showed more upregulation of genes 

related to stress responses, including those involved in reactive oxygen species (ROS) 

detoxification, glutathione metabolism and nutrient transport. The analysis showed that 

nutrient transporter genes, particularly those associated with nitrate, potassium and 

phosphate uptake, were upregulated under water stress conditions. The expression of 

aquaporin genes, which facilitate water transport across membranes, also increased in 

response to stress, particularly in the root tips. 

 

Overall, water stress induced higher suberization and lignification in the soil-grown roots, 

which are important for protecting the plant under drought conditions. Suberization for the soil-

grown roots started way closer toward the root tip compared to the hydroponic growth 

conditions. Roots grown in soil had approximately twice the amount of suberin compared with 

hydroponically grown roots, which indicated that the apoplastic barrier of roots was stronger 

for soil conditions. The root lengths decreased with water stress treatment and the gene 

expression related to suberin and lignin synthesis significantly increased. Soil-grown roots 

reacted differently to water stress, when compared to hydroponically grown roots, with earlier 

and stronger suberization responses, which should be crucial for the survival of plants under 

drought stress. 

 

The experimental setup was developed over the years to establish a suitable method for 

obtaining reliable results. Initial pot experiments were conducted alongside water potential 

measurements and moisture content analysis to understand the dynamics of various growth 

media and their differing soil compositions. Before defining the experiment’s objective, 

preliminary root samples were examined microscopically and suberin contents were quantified 

through chemical analysis. This idea was further co-ordinated with Tobias Wojciechowski and 
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Lukas Schreiber in a collaboration using a rhizotron root growth system from Jülich (Germany) 

and a final experimental design was formed. I quantified water potentials in soils with varying 

relative water contents. This was used as a reference to conduct water stress experiments in 

soil. The plants were regularly monitored throughout the growth period for physiological 

parameters, including the total root length, maximum root depth, maximum root width, lateral 

root length and convex hull area. I measured the soil moisture content and determined the water 

potential at various depths. With the harvested roots, anatomy was studied using histochemistry 

and microscopy. The roots were further divided into different zones to determine the amounts 

of suberin and lignin through analytical chemistry. I developed a micro-analysis of lignin using 

a thioacidolysis protocol and further GC analysis of suberin and lignin was carried out. The 

observed transcriptomic changes were studied using RNA sequencing. With the guidance of 

Sabarna Bhattacharyya, I analyzed the transcriptomic data to understand the activities of the 

genes of interest. The data was further sorted and the representative figures were designed to 

support the results from microscopy and histochemistry. I designed the schematic diagram 

using digital tools to show the different root zones that were harvested for gas chromatography 

analysis and RNA-sequencing analysis. 

 

The data obtained from this study were primarily discussed with Lukas Schreiber and the co-

authors involved in the preparation of the manuscript. After drafting the initial version, I 

collected written feedback from all co-authors, with Lukas Schreiber providing the most 

substantial input. Upon completion of the final version, all authors reviewed and approved the 

manuscript prior to its submission to the respective journal. 
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3. Discussion 

 

The discussion section will try to link all three individual articles and establish a more 

comprehensive interrelation. All of the publications contribute to our understanding of how 

plant organs physiologically and biochemically respond to water loss and water stress, with a 

particular emphasis on the processes of suberization. This process is crucial for plants to adapt 

to varying levels of water availability and environmental conditions surrounding the plants. 

 

The introductory book chapter (Chapter 1; Suresh et al., 2023): describes the history of suberin 

research, the current state of knowledge, discusses methodological and applied aspects related 

to plant interfaces and finally points out important future questions. In the field of suberin 

research, several open questions remained unanswered. These include the molecular 

organization of dark and light lamellae, the structural and molecular nature of polar transport 

pathways and the challenge of synthetically mimicking suberin. Additionally, the detailed 

pathway of suberin biosynthesis is still not fully understood. Other questions include whether 

an apoplastic barrier in roots can be as efficient as in leaves, whether barrier properties are 

species-specific and how the chemical composition of Casparian strips varies among species. 

Furthermore, it remains unclear whether suberin alone or in combination with wax and lignin 

forms an effective barrier.  

 

The schematic diagram in Chapter 1, representing the water potential between soil, plant and 

air, is key to identifying the aim of this thesis. In contrast, the atmosphere has a mean relative 

humidity of 99% which corresponds to -1.36 MPa and well-watered plant tissue has a water 

potential up to -1.0 MPa. Thus, the gradient between the leaf and the atmosphere is really steep 

and wax extraction from cuticles increases the water loss by between 10 to 1000-fold, which 

substantiates the role of wax as being the key determinant in controlling water loss. Other 

suberized plant interfaces in the shoot-root axis are believed to be equally efficient in 

preventing water loss and this needs to be verified. The plant interfaces where transpirational 

water loss can be measured were carefully selected from five different species and organs 

(roots, tubers and stems) (Chapter 2; Suresh et al., 2022). 

 

The second chapter explores the anatomy and chemical composition of suberized organs in 

various plant species, highlighting the role of waxes in regulating water permeability. This 
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paper notes that while cuticles are highly efficient in preventing water loss, suberized cell walls 

can vary significantly in their impermeability depending on the species, plant organ and 

environmental conditions. The study highlights that the presence of waxes, which are often 

associated with cutin and suberin, plays a pivotal role in enhancing the hydrophobicity of these 

barriers. This is particularly important in maintaining water retention during periods of drought, 

as wax layers maintain reduced leaf transpiration rates as soon as stomata are closed. 

Additionally, the comparative analysis of suberization among five plant species highlights the 

differences in structural adaptations to varying water potentials in the soil/root region, 

indicating that evolutionary pressures have influenced these traits to enhance survival in 

various environments.  

 

Referring back to the question outlined in this thesis's aim, the response can now be formulated 

as follows: 

• Is there a correlation between the barrier properties of the suberized interfaces and the 

number of suberized layers, the amount of soluble wax and the amount of suberin? 

No, there is no significant correlation between the barrier properties of the suberized interfaces 

and the number of suberized cell layers, the content of soluble waxes, or the total suberin 

content. Based on all results, there is no straightforward explanation for why certain suberized 

tissues act as efficient transpiration barriers. Upon wax extraction, the permeance increased, 

underscoring the importance of wax in establishing a transpiration barrier (e.g., Monstera aerial 

root and potato). In the case of tuber crops periderm (potato and cassava), differences in 

ontogenic origin and biochemical machinery helped to explain the observed contrasting barrier 

properties (potato highly efficient after storage and cassava lose moisture).  

 

Post-Harvest Losses (PHL) pose a major challenge in agriculture, especially for perishable 

crops like fruits and vegetables, which are highly susceptible to damage and quality decline 

after harvest (Krishna et al., 2022). These losses are often driven by poor handling, 

environmental stress and natural spoilage processes. To address this, researchers have explored 

the role of natural plant biopolymers such as suberin, lignin and cuticular waxes in boosting 

the resilience of plant tissues. For instance, increased lignin levels can improve a plant’s 

resistance to fungal infections, while cuticular waxes help retain moisture and shield against 

pathogens (Lee et al., 2021; Wang et al., 2020; Xu et al., 2011). Our research revealed a 

striking difference between Manihot esculenta and Solanum tuberosum: while the latter 

develops a periderm with wax that acts as an effective barrier against water loss, M. esculenta 
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fails to do so, leading to rapid dehydration and quality decline. Why M. esculenta cannot form 

a functional transpiration barrier remains an intriguing and unresolved question. 

 

Water stress in plants, which resembles drought-like conditions, triggers many physiological 

and molecular responses that affect plant growth and survival. One such response includes the 

development of apoplastic barriers, especially in roots, impacting water and nutrient uptake. 

These barriers limit the passive movement of water and ions, forcing water uptake through 

more regulated pathways like the symplastic route. This adaptation enables plants to maintain 

water balance and avoid leaching out essential nutrients under drought conditions. The last 

chapter (Chapter 3; Suresh et al., 2024), explores how water stress affects the formation of 

apoplastic barriers in roots, emphasizing the distinct responses observed in a modern and a 

wild cultivar grown in soil. Pakistan, a wild barely genotype, developed longer roots than 

Scarlett, its cultivated counterpart. This was observed both in well-watered and also in 

decreasing soil water potential conditions. As correlated with the surface area available for 

water volume and dissolved nutrients (Grünhofer et al., 2024), Pakistan’s longer roots may 

provide a competitive advantage. In both wild and modern genotypes, the histochemical and 

chemical analysis results were largely similar. In general, wild accessions, naturally adapted to 

harsher environments, might exhibit stronger drought resistance with more efficient water 

retention mechanisms. Their robust root structures and apoplastic barriers potentially helps to 

mitigate water loss. In contrast, modern cultivars, often bred for higher yield rather than stress 

tolerance, might tend to have weaker barriers, making them more vulnerable to drought. 

However, recent breeding efforts aim to reintroduce drought-resistant traits from wild relatives 

to enhance the resilience of modern crops (Baldoni et al., 2021; Khoury et al., 2015; Prohens 

et al., 2017). The soil-grown versus hydroponically grown roots show differences than shoots 

when both are grown under controlled conditions. The histochemical and biochemical analyses 

demonstrate that suberization, a process where suberin, a hydrophobic biopolymer, is deposited 

in cell walls, is significantly more pronounced in soil-grown roots under water stress conditions 

compared to well-watered conditions and in hydroponics. This is particularly evident in the 

endodermal cells, where nearly complete suberization occurs at 25% from the root tip in both 

control and stress conditions for soil-grown plants, contrasting sharply with the limited 

suberization observed in hydroponically grown roots. The study further reveals that the 

chemical composition of suberin in soil-grown roots contains higher levels of aliphatic and 

aromatic monomers along with lignin, which are crucial for enhancing the hydrophobic 

properties of the cell walls, thereby presumably reducing water permeability and preventing 
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backflow of water from the xylem. This research examines the molecular mechanisms that lead 

to the upregulation of genes associated with suberization and lignification in response to water 

deficits. Several transcription factors, including WRKY, MYB, NAC and ERF, regulate these 

processes, indicating a complex network of genetic responses that help plants acclimate to 

abiotic stress. Histochemical analyses reveal enhanced suberization and lignification in the cell 

walls of the endodermis and xylem vessels. These findings support the conclusion that these 

structural modifications are crucial for maintaining plant integrity and function during stress.  

 

Referring back to the question outlined in this thesis's aim, the response can now be formulated 

as follows: 

• How does the response of root apoplastic barrier formation with the change with soil 

water potential in wild barley and a modern cultivar, how does this differ in hydroponic 

versus soil-based media? 

Comparing the wild accession Pakistan and the modern cultivar Scarlett, Pakistan developed 

longer roots. However, the differences in histochemical and chemical analyses between the 

two were not significant. As soil water potential decreased, root lengths declined, while the 

amounts of aliphatic suberin and lignin increased and genes involved in their biosynthesis were 

upregulated. Compared to hydroponic cultivation, soil-grown roots were much longer and the 

degree of suberization was much closer to the root tip. The soil environment even under well-

watered (control) conditions had much higher and more rapid suberization and lignification 

compared with hydroponic cultivation. 

 

The complex interactions between environmental conditions, anatomical adaptations and 

molecular responses in plant roots under water stress are highlighted in the above discussion. 

Roots grown in soil develop more suberin and lignin than those in hydroponics, presumably 

helping retain water and prevent backflow. Additionally, specific transcription factors and cell 

wall modifications play key roles in stress responses, offering insights for breeding more 

resilient crops to combat climate change. The degree of suberization varies across root 

developmental stages, species and growth conditions, underscoring the need for standardized 

analytical methods. Genetic variability further complicates this process, necessitating genetic 

mapping and targeted studies on individual plant responses to environmental cues. An 

integrated approach will help us better understand and enhance suberin’s role in agriculture. 

Future approaches and experiments should be planned accordingly, considering all the points 
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listed below. Since suberin is a complex apoplastic barrier, a multi-diagnostic approach will 

help us understand its functionality in roots, shoots and tubers: 

 

1. Lab experiments: Plants grown in labs and those in the field often look and react very 

differently, especially under water stress. This calls for a closer look at research 

methods on stress resilience. The seedling stage also matters when young plants may 

respond in ways that don't reflect mature ones (Villani et al., 2024). Previous results 

show that as plants grow, their heat tolerance, leaf structure and photosynthesis can 

change significantly (Lampayan et al., 2019; Grünhofer et al., 2022a; Xu et al., 2024) 

and even the root architecture can also change. To truly understand stress resilience, 

studies must consider the plant’s full lifecycle and environment. 

 

2. Lignin: Lignin often gets overlooked when discussing plant stress responses, but it 

plays a crucial role in maintaining cellular integrity, especially under drought (Yan et 

al., 2021). Drought-tolerant maize lines produce more lignin than sensitive ones, 

helping them withstand dry spells (Hu et al., 2009). In rice, overexpression of lignin-

related genes not only increases lignin production but also improves drought resistance 

by optimizing water transport (Bang et al., 2019; Lee et al., 2016). Enhanced 

lignification strengthens plant structures, reduces water loss and helps them cope with 

both biotic and abiotic stress (Moura et al., 2010). The biosynthesis of suberin and 

lignin in plants is closely linked, with phenolic compounds serving as precursors with 

MYB transcription factors playing a key role in regulating both (Kosma et al., 2014; 

Lashbrooke et al., 2016; Xu et al., 2022). With further research, we may be able to fine-

tune these pathways, paving the way for stronger, more adaptable plants that can thrive 

in challenging conditions. 

 

3. Lateral roots: Lateral roots play a crucial role in helping barley absorb water, making 

up about two-thirds of its root surface and supplying as much as 92% of the water young 

plants take up (Knipfer et al., 2011). When water or nutrients are scarce, these roots get 

suberized, which helps with water absorption but might also slow down transport when 

roots are densely packed (Zaiats et al., 2020; Zexer & Elbaum, 2021). This balance 

suggests that the chemical makeup of roots, including suberin and lignin, plays a big 

part in their effectiveness. The study approaches using X-ray CT scan, MRI, Rhizotubes 

combined with computational tools for data analysis gives us a non-invasive approach 
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to studying both seminal and lateral roots while still being intact (Jeudy et al., 2016; 

Metzner et al., 2015; Shao et al., 2021a). Most studies are done in hydroponics and the 

main seminal roots and the influence of nodal and lateral roots is ignored. As seen from 

the soil root studies, the response of root growth is different than from hydroponics and 

developing a better system to study the roots will be useful. 

 

4. Soil curve establishment: In soil-related drought experiments, a common approach 

involves regulating watering or using the pot-drying method by withholding water for 

a specific duration (Amin et al., 2021). One research study simulated drought 

conditions, showing that at 100% field capacity, Ψw = −2.89 MPa and at 40% field 

capacity, Ψw = −3.9 MPa (Gupta & Senthil-Kumar, 2017). However, these results 

cannot be directly compared with other pot experiments or osmotic stress experiments 

(such as hydroponics) without a proper soil curve. Soil curves and moisture gradients 

vary depending on the soil mixture. Establishing an exact calibration curve that 

correlates soil water potential with soil water content is essential for obtaining 

comparable results across different experiments. 

 

5. Other crop species: We all know that Arabidopsis serves as a powerful model organism 

species, but its limitations in agricultural relevance must be acknowledged. Arabidopsis 

research doesn’t always translate well to crops due to key differences in physiology, 

growth and nutrient needs (Yaschenko et al., 2024). Traits like yield and biomass, 

crucial for crops like corn and rice, are often poorly represented (Spannagl et al., 2011). 

Real crops also have complex traits shaped by polyploidy and environmental 

interactions that Arabidopsis cannot fully mimic, especially for drought tolerance. 

Additionally, Arabidopsis is adapted to temperate climates, making it less relevant for 

tropical crops. Its small size and simple structure further limit its usefulness in studying 

traits like root architecture and biomass allocation, which are critical for crop 

performance (Stephenson et al., 2019). 

 

6. Holistic molecular approach: Gene interactions are complex, meaning a mutation in 

one gene can significantly impact others, especially those linked to suberin, lignin and 

drought resistance. This highlights the need for multi-tissue studies. Research has 

identified co-expression networks (Shahriari et al., 2022), key hub genes and related 

microRNAs that show activity in both roots and shoots (Arjmand et al., 2021). Drought 
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tolerance is regulated by various mechanisms, including specific transcription factors 

(Sun et al., 2022) and long non-coding RNAs (Chen et al., 2021), which help fine-tune 

gene expression. This broader perspective will provide valuable insights regarding the 

complex inter-linked network. 

 

7. Mutants: Studying suberin mutants provides valuable insights into plant water 

regulation, nutrient transport and stress responses (Cantó-Pastor et al., 2024; Fedi et 

al., 2017; Shukla et al., 2021; Vestenaa et al., 2024). These mutants help researchers 

understand suberin’s role in drought tolerance, pathogen resistance and interactions 

with soil microbiomes. Arabidopsis, with its simple genome, serves as an ideal model 

for dissecting suberin biosynthesis and identifying key regulatory genes. Controlled 

experiments allow precise investigation of how suberin influences plant resilience, 

offering applications for improving drought-resistant crops. Additionally, research on 

suberin mutants supports advancements in breeding, genetic engineering and 

collaborative efforts using technologies like CRISPR to enhance agricultural 

sustainability. However, mutant studies in crop species are complex and time 

consuming.  

 

The proposed multi-diagnostic approach provides a comprehensive framework for studying 

suberin functionality within roots, shoots and tubers. Employing a combination of 

histochemical techniques, analytical chemistry, molecular biology, physiological assays and 

field studies will yield significant insights into the diverse roles of suberin in plant biology. 

Future research should prioritize interdisciplinary collaboration to effectively address the 

complexity of suberin and its implications in plant health and adaptation.  
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Abstract
Main conclusion  The efficiency of suberized plant/environment interfaces as transpiration barriers is not established 
by the suberin polymer but by the wax molecules sorbed to the suberin polymer.

Abstract  Suberized cell walls formed as barriers at the plant/soil or plant/atmosphere interface in various plant organs 
(soil-grown roots, aerial roots, tubers, and bark) were enzymatically isolated from five different plant species (Clivia min-
iata, Monstera deliciosa, Solanum tuberosum, Manihot esculenta, and Malus domestica). Anatomy, chemical composition 
and efficiency as transpiration barriers (water loss in m s−1) of the different suberized cell wall samples were quantified. 
Results clearly indicated that there was no correlation between barrier properties of the suberized interfaces and the number 
of suberized cell layers, the amount of soluble wax and the amounts of suberin. Suberized interfaces of C. miniata roots, 
M. esculenta roots, and M. domestica bark periderms formed poor or hardly any transpiration barrier. Permeances varying
between 1.1 and 5.1 × 10−8 m s−1 were very close to the permeance of water (7.4 × 10−8 m s−1) evaporating from a water/
atmosphere interface. Suberized interfaces of aerial roots of M. deliciosa and tubers of S. tuberosum formed reasonable
transpiration barriers with permeances varying between 7.4 × 10−10 and 4.2 × 10−9 m s−1, which were similar to the upper
range of permeances measured with isolated cuticles (about 10−9 m s−1). Upon wax extraction, permeances of M. deliciosa
and S. tuberosum increased nearly tenfold, which proves the importance of wax establishing a transpiration barrier. Finally,
highly opposite results obtained with M. esculenta and S. tuberosum periderms are discussed in relation to their agronomical
importance for postharvest losses and tuber storage.

Keywords  Bark · Diffusion barrier · Periderm · Suberization · Storage root · Transpiration · Tuber · Water loss · Wax

Introduction

Plant environment interfaces are formed by hydrophobized cell 
walls which are additionally modified by cutin and suberin 
polymers (Pollard et al. 2008). Outer epidermal cell walls of 
leaves facing the atmosphere are modified by the deposition 
of the plant cuticle (Riederer and Müller 2006). It is highly 

impermeable for water and it protects leaves from uncontrolled 
water loss when stomata are closed due to water limitation 
(Schreiber 2010). Root soil interfaces are characterized by 
the apoplastic deposition of suberin (Schreiber et al. 1999). 
Best known is the endodermis forming a root internal apo-
plastic barrier separating the central cylinder of the primary 
root from the cortex. However, the actual interface of roots 
directly facing the soil environment is formed by the rhizo-
dermis and the hypodermis. The primary cell walls of these 
cell layers, especially the single or multi-layered hypodermis, 
are also characterized by the deposition of suberin (Hose et al. 
2001; Serra et al. 2022). Tubers as storage organs of plants are 
characterized by a multi-layered periderm, which is suberized 
(Lulai and Corsini 1998). Finally, roots and shoots in their sec-
ondary developmental stages with a radial growth of thickness 
develop multi-layered suberized tissues as plant/environment 
interfaces.
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Both, cutin and suberin are composed of oxygenated fatty 
acids, with varying chain lengths, which are polymerized 
(Kolattukudy 1980). Major cutin and suberin monomers are 
ω-hydroxy fatty acids and α,ω-diacids. The cutin polymer is 
always modified by the deposition of cuticular wax (e.g., lin-
ear, long-chain fatty acids, alcohols, aldehydes, alkanes, and 
esters) sealing the polymer and thus rendering it highly imper-
meable for water and dissolved substances (Kunst and Samu-
els 2003). The suberin polymer may contain wax molecules 
(Schreiber et al. 2005) or not (Schreiber et al. 1999; Teixeira 
and Pereira 2010). Cutin, suberin, and wax biosynthesis have 
intensively been investigated in the last 2 decades and many 
genes and enzymes involved have successfully been identi-
fied and characterized (Nawrath 2002; Samuels et al. 2008; 
Vishwanath et al. 2015; Fich et al. 2016).

Whereas there is no doubt that plant cuticles are highly 
efficient and impermeable polymer membranes, perfectly 
protecting plants from uncontrolled desiccation (Riederer 
and Schreiber 2001; Yeats and Rose 2013), this must not 
necessarily be the case with suberized cell walls. With the 
suberized periderm of potato, it was shown that the native 
periderm already formed a very efficient transpiration barrier 
directly after digging out from soil (Schreiber et al. 2005). 
Upon storage up to 4 weeks in the dark at ambient tempera-
ture and humidity, even a strong induction of suberin and wax 
biosynthesis was induced. The final water permeability of 
native potato periderm was further decreased by a factor of 
ten and was not different from leaf cuticles. However, water 
permeability of the wound periderm of potato, although it 
contained comparable amounts of suberin and wax, failed to 
form a transpiration barrier, since its water permeability was 
100–1000 times higher compared to the native periderm.

Based on these contradictory results obtained with pota-
toes in the past, we investigated a series of further suberized 
tissues isolated from different plant organs (roots, tubers, 
and stems) from 5 different species in order to cover a broad 
spectrum of suberized tissue investigating their barrier prop-
erties. The anatomy (number of suberized cell layers) and 
the chemical composition (suberin and wax) of the various 
suberized samples was characterized and related to its prop-
erties as a water barrier, quantified by measuring transpira-
tion kinetics. This larger set of data on the structure and 
function of suberized plant cell walls should help to estimate 
to what extent suberized plant/environment interfaces form 
transpiration barriers as efficient as plant cuticles or not.

Materials and methods

Selection and preparation of suberized tissues

Roots of Clivia miniata (Lindl.) Regel and Monstera deli-
ciosa Liebm. were harvested from plants growing in the 

IZMB in Bonn. Soil-grown roots of C. miniata were care-
fully washed to remove adhering soil particles, whereas 
the air-exposed roots, which were slightly green due to 
photosynthetic pigments, were collected from the surface 
of the soil. Aerial roots of M. deliciosa were separated 
into young aerial roots (root tips with a smooth surface) 
and mature aerial roots (with a rough surface). Tubers of 
Solanum tuberosum L. var. WEGA were purchased from 
a local supermarket. Tubers of Manihot esculenta Crantz 
cultivated in a greenhouse at IGB-2 at Forschungszentrum 
Jülich GmbH (Jülich, Germany) were used for periderm iso-
lation directly after harvest (fresh tubers) and after 3-week 
storage (stored tubers) at ambient temperature and humidity 
in the dark. Bark from Malus domestica Borkh. cv. Pinova 
was collected from 21-year-old trees growing in an orchard 
of the Institute of Horticultural Production Systems at the 
Hannover University.

The cylindrical roots of C. miniata and M. deliciosa were 
cut into 1.5–2 cm sections and the diameter was measured 
using a vernier caliper. Disks were punched out from M. 
esculenta and S. tuberosum skins with a cork borer (1.0 cm 
diameter) carefully avoiding any regions with lenticels. Bark 
samples from M. domestica were cut into sections of 1 cm2 
with a razor blade. Suberized tissues from all samples were 
enzymatically isolated using 2% cellulase (Novozymes) and 
2% pectinase (Novozymes) dissolved 0.01 M citric buffer 
(Carl Roth) with the pH adjusted to 3.0 (Vogt et al. 1983; 
Schönherr and Riederer 1986). The enzyme solution con-
tained 1 mM of NaN3 (Fluka) to prevent microbial growth. 
The solution was changed once in 2 days until all suberized 
tissues were free from cellular debris. Isolated tissues were 
washed first with 0.01 M borate buffer (Carl Roth), adjusted 
to pH 9.0, and finally washed with deionized water. The 
cylindrical tissues of roots were carefully cut over the length 
in longitudinal sections and were fixed using paper clips on 
Teflon strips to carefully flatten them. A gentle air stream 
was used to air-dry isolated suberized tissues, which were 
stored in Petri dishes for 2–3 months at room temperature 
until the experiments were performed. In addition to the 
suberized samples, transpiration measurements were con-
ducted with open transpiration chambers representing no 
barrier at all. Measurements with pure cellulose filter mim-
icking a primary carbohydrate cell wall without any further 
lipophilic modification were performed as well.

Fluorescence microscopy

Freehand cross-sections were made for C. miniata and 
M. deliciosa roots with a razor blade. For other species,
fresh samples were cut to a size of 1 cm × 0.2 cm (length
×  width) and semi-thin sections of about 20 µm thickness
were made using a cryostat microtome (Microm HM 500 M,
Microm International, Walldorf, Germany). Suberized cell
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walls were stained with 0.01% (w/v) Fluorol Yellow 088 
(Sigma Aldrich) for 1 h and samples were rinsed with water 
before microscopic investigation (Brundrett et al. 1991). 
Cross-sections were analyzed by fluorescence microscopy 
using an ultraviolet (UV) filter set (excitation filter BP 365, 
dichroic mirror FT 395, barrier filter LP 397; Zeiss). Images 
were made with a Canon EOS 600D camera at ISO 100–400.

Chemical analysis of wax and suberin composition 
of suberized tissues

Wax analysis of the suberized tissues was performed as 
described in Baales et al. (2021). Wax was extracted by 
immersing isolated suberized tissues in chloroform (5 ml) 
overnight in glass vials kept on a rolling bench. Before 
extraction, chloroform was spiked with 20 µg tetracosane 
(100 µl of a solution of 10 mg tetracosane in 50 ml chloro-
form; Fluka) as an internal standard for wax quantification. 
The total solvent volume of wax extracts was reduced under 
a gentle stream of nitrogen gas to a final volume of 200 µl. 
For suberin analysis, wax-extracted samples were depolym-
erized using boron trifluoride/methanol (BF3/MeOH, Fluka) 
as described by Baales et al. (2021). Before extraction of the 
released monomers with chloroform, transesterified samples 
were spiked with 20 µg of dotriacontane (100 µl of a solu-
tion of 10 mg dotriacontane in 50 ml chloroform; Fluka) as 
internal standard. The final chloroform volume was reduced 
to 200 µl using a gentle stream of nitrogen.

Both wax and suberin samples were derivatized for 
45 min at 70 °C using 20 µl each of pyridine (Sigma Aldrich) 
and BSTFA (N, N-bis-trimethylsilyl-tri-fluoroacetamide, 
Machery-Nagel). This converts free functional groups 
of alcohols and acids to trimethylsilyl-ethers and -esters. 
Wax and suberin samples (1 µl) were quantified by GC-
FID (CG-Hewlett Packard 5890 series H, Agilent) analysis 
and individual wax and suberin compounds were identified 
by GC–MS (quadrupole mass selective detector HP 5971, 
Hewlett Packard, Agilent) analysis. 1 µl of the wax samples 
were on-column injected, whereas analysis of suberin sam-
ples was done using split/splitless injection. Identification 
of the compounds was done using a homemade MS library.

Transpiration measurements of suberized tissues

Transpiration was measured by gravimetry (Schönherr and 
Lendzian 1981). Prior to the measurement, dry and brittle 
suberized tissues were equilibrated overnight in an atmos-
phere with 100% humidity, making them soft and flexible, 
which allowed to handle them carefully without the danger 
of breaking. Suberized samples were carefully mounted 
on water-filled stainless-steel transpiration chambers with 
an open circular area of 0.28 × 10–4 m2 across which tran-
spiration was possible. Before starting the transpiration 

experiment a 10 µl drop of ethanol was applied to the outer 
surface. This allows detecting micro-defects invisible to the 
eye since suberized samples immediately turn dark with 
ethanol penetrating defect suberized tissues. The chambers 
were closed with a lid (inner opening 0.28 × 10–4 m2).

Transpiration chambers were placed upside-down in 
an air-tight polyethylene box containing freshly activated 
silica at 25 °C, resulting in 2% humidity. Water loss across 
the suberized tissues was measured every hour up to 6 h 
using an analytical balance (Sartorius) with a resolution of 
0.1 mg. As references, the transpiration of water from an 
open chamber (upright chamber) and across a pure cellulose 
filter (thickness: 140 µm) mounted to transpiration chambers 
were measured. The amount of water lost from individual 
suberized tissues or control samples were plotted as a func-
tion of time, and the slopes of the linear regression lines (in 
g s−1) fitted to the transport kinetics were used to calculate 
permeances P (m s−1) using the formula: P = slope/A × ΔC 
(Schreiber and Schönherr 2009), where A (m2) corresponds 
to the exposed area across which transpiration took place 
(0.28 × 10–4 m2) and ΔC (g m−3) represents the driving 
force for the transpiration given by the density of water 
(106 g m−3).

Statistical analysis

The number of suberized cell layers in the different sam-
ples was determined with 6–10 representative microscopic 
pictures for each species (Fig. 2). Wax and suberin analyses 
were done using 3 replicates (Figs. 3, 4, 5, 6). The transpi-
ration kinetics were measured with 5–10 isolated samples 
before and after wax extraction (Fig. 7). Results are given 
as means with standard deviations or box plots. t-Tests were 
conducted and the levels of significance are indicated in the 
figures as 95% (**) or 99% (***), respectively.

Results

Microscopic investigation of suberized tissues

Cross-sections of the isolated suberized tissues were 
observed using fluorescence microscopy (Fig. 1a–h). Suber-
ized cell walls appeared greenish/yellow or sometimes blu-
ish/yellow after Fluorol Yellow 088 staining under UV 
light (395 nm). In soil-grown roots of C. miniata and air-
exposed roots, the number of outer suberized cell layers 
varied between one and three (Figs. 1a, b, 2). Outer suber-
ized tissues of young and mature aerial roots of M. deliciosa 
had two to four suberized cell layers (Figs. 1c, d, 2). Outer 
suberized periderms of tubers of M. esculenta had between 
15 and 12 cell layers (Figs. 1e, f,  2). Suberized periderms 
from freshly harvested tubers (Fig. 1e) had several highly 
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compressed suberized cells on the outer surface above the 
lately formed young suberized cells. In suberized periderms 
isolated from M. esculenta after storage for 3 weeks, these 
highly compressed layers were not intact anymore and to 
some extent thus missing (Fig. 1f). Periderms of S. tubero-
sum had 7 to 9 cell layers (Figs. 1g, 2). Suberized bark 
isolated from M. domestica shoots had between 8 and 10 
suberized cell layers often only faintly stained (Figs. 1h, 2).

Amounts and composition of wax extracted 
from suberized tissues

Wax amounts extracted from suberized tissues varied among 
different species both in amount and composition (Fig. 3). 
The detected wax monomers are separated into aliphatic wax 
amounts (linear, long-chain aliphatic wax monomers), ster-
ols, and terpenoids. Sterols (stigmasterol and β-sitosterol) 
were detected only in minor and comparable amounts in 
nearly all samples except for potato. Fairly high amounts 
(84.7 ± 8.7 µg cm−2) of terpenoids were detected only in 
bark samples isolated from M. domestica (Figs. 3 and 4d). 
The highest amount of aliphatic waxes was found in suber-
ized tissues isolated from mature aerial roots of M. deliciosa 
(28.5 ± 2.5 µg cm−2) and suberized bark of M. domestica 
(27.2 ± 0.7 µg cm−2), respectively (Fig. 3). In suberized tis-
sues isolated from soil-grown C. miniata roots, aliphatic 
wax amounts were only 0.9 ± 0.1 µg cm−2, whereas higher 
wax amounts of 2.5 ± 0.2 µg  cm−2 were detected in air-
exposed roots (Fig. 3). The average amount of total wax in 
suberized tissue of young aerial roots of M. deliciosa was 
17.4 ± 1.9 µg cm−2 (Fig. 3). Freshly isolated periderms of 
M. esculenta had only 2.6 ± 0.4 µg cm−2 aliphatic wax and
amounts increased after 3 weeks storage to 6.0 ± 1.3 µg cm−2

(Fig. 3). The amounts of wax extracted from S. tuberosum
were 13.0 ± 1.3 µg cm−2 (Fig. 3).

The fraction of the aliphatic wax molecules was com-
posed of the substance classes alcohols, acids, alkanes, 
esters, and aldehydes (Fig.  4) of varying chain lengths 
(C16–C34). In C. miniata, the substance classes alcohols, 
acids, alkanes, and aldehydes were detected and amounts of 
all substance classes were significantly higher in air-exposed 
roots (Fig. 4a). In M. deliciosa alcohols, acids, alkanes, and 

esters were detected and amounts of all substance classes 
increased in mature aerial roots with the alkanes showing 
the highest increase (Fig. 4b). In M. esculenta and S. tubero-
sum, only three substance classes, namely alcohol, acids, and 
esters, were present and the amount of alcohols and esters 
increased two- to threefold in stored M. esculenta periderms 
(Fig. 4c). In S. tuberosum, the fraction of esters was essen-
tially composed of ferulic acid esters of the chain lengths 
C20 to C32. In M. domestica, alcohols and acids were the 
dominating substance classes of wax whereas alkanes were 
only present in minor amounts (Fig. 4d).

Amounts and composition of suberin monomers 
depolymerized from suberized tissues

Suberin content of the different suberized tissues varied 
between 100 and 1000 µg cm−2 (Fig. 5). Monomers obtained 
after suberin depolymerization were classified into aliphatic 
(linear, long-chain oxygenated fatty acids) and aromatic 
suberin (essentially coumaric and ferulic acids). Except for 
soil-grown roots of C. miniata, the aromatic fraction of the 
suberin polymer in the other samples amounted only to a few 
percent of the total suberin amounts (Fig. 5). In C. miniata 
roots, the aliphatic suberin amount in hypodermis was about 
twofold higher in air-exposed roots (52.4 ± 1.5 µg cm−2) 
when compared to soil-grown roots (29.1 ± 2.4 µg cm−2) 
(Fig. 5). In M. deliciosa, the total aliphatic suberin con-
tent was 120.70 ± 1.7 µg cm−2 in young aerial roots and it 
increased to 417.9 ± 18.2 µg cm−2 (Fig. 5). Upon 3 weeks 
of storage, the amount of aliphatic suberin in M. esculenta 
decreased from 268.2 ± 40.8 to 202.1 ± 20 µg cm−2 (Fig. 5). 
In S. tuberosum, the total aliphatic suberin content was 
120.7 ± 7.9 µg cm−2 and the highest aliphatic suberin content 
of 891.2 ± 109.4 µg cm−2 was measured with the periderm 
isolated from M. domestica bark (Fig. 5). Dominating sub-
stance classes of the aliphatic suberin monomers detected 
in all samples after depolymerization were ω-hydroxy acids 
and α,ω-diacids (Fig. 6). In addition, varying amounts of 
linear long-chain alcohols and fatty acids were also released 
by transesterification (Fig. 6). The chain length of the ali-
phatic suberin monomers ranged from C16 to C30 (data not 
shown). Substance classes of suberin tissues did not change 
when comparing soil-grown with air-exposed C. miniata 
roots (Fig. 6a), young with mature aerial M. deliciosa roots 
(Fig. 6b), and fresh with 3-week-stored M. esculenta tubers 
(Fig. 6c).

Rates of water loss (transpiration) from suberized 
tissues

Linear transpiration kinetics were obtained plotting the 
amounts of water lost from the transpiration chambers vs. 
time (Fig. 7). The highest transpiration rates were measured 

Fig. 1   Fluorescence microscopic cross-sections of suberized tissues 
stained with Fluorol Yellow 088 and viewed at 365 nm. The presence 
of suberin is indicated by the greenish-yellow fluorescence. Suberized 
hypodermis isolated from a soil-grown roots of clivia (Clivia min-
iata) and from b air-exposed roots. Suberized hypodermis isolated 
from c young aerial roots of monstera (Monstera deliciosa) and from 
d mature aerial roots. Suberized periderm isolated from e freshly 
harvested cassava (Manihot esculenta) tubers, from f stored cassava 
tubers, and from g potato (Solanum tuberosum) tubers. Suberized 
shoot periderm isolated from h apple (Malus domestica cv. Pinova) 
bark. Bars = 100 µm

◂
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with open chambers and cellulose filters (Fig.  7h) and 
slopes of the transpiration kinetics were not significantly 
different between the two samples. The lowest rates of tran-
spiration were measured with periderms isolated from S. 
tuberosum (Fig. 7f). The transpiration kinetics of all other 
samples were between these upper and lower value ranges 
(Fig. 7b–e, g). Water permeability of the suberized samples 
increased by factors of 1.7 ± 1.7 (M. domestica), 2.8 ± 1.8 
(the exposed root of C. miniata), 5.6 ± 3.8 (young roots of 
M. deliciosa), 9.2 ± 7.7 (mature roots of M. deliciosa and
9.6 ± 2.1 (S. tuberosum) after solvent extraction of waxes
with chloroform (Fig. 8). With the suberized hypodermis
isolated from C. miniata soil-grown roots and the periderm
isolated from M. esculenta fresh tubers, the rates of water
loss were slightly decreased after wax extraction (Fig. 8).

From the slopes of the regression lines fitted to transpi-
ration kinetics, permeances P (m s−1) were calculated for 
suberized intact periderm, wax-extracted periderm, the 
open transpiration chamber, and the cellulose filter (Fig. 9). 
Permeances obtained for intact suberized samples varied 
between the lowest value of 6.5 × 10–10 (± 6.2 × 10–10) m 
s−1 measured with matured aerial roots of M. deliciosa and 
the highest value of 5.1 × 10–08 (± 3.0 × 10–08) m s−1 meas-
ured for stored tubers of M. esculenta (Fig. 9). Permeances 
obtained for wax-free suberized samples varied between the 
lowest value of 5.8 × 10–09 (± 5 × 10–09) m s−1 measured 
with matured aerial roots of M. deliciosa and the highest 
values of 4.4 × 10–8 (± 5.4 × 10–08) m s−1 measured for air-
exposed roots of C. miniata (Fig. 9). Permeances obtained 
for the open chamber and the cellulose filter were 7.4 × 10–08 
(± 5.6 × 10–09) m s−1 and 6.4 × 10–08 (± 5.0 × 10–09) m s−1 
(Fig. 9).

Discussion

Extremely steep gradients with water potentials of about 
– 160 MPa (about 30% relative humidity) in the atmosphere,
strongly driving foliar transpiration, can be followed within
hours by very flat gradients with water potentials higher than
– 1.5 MPa (about 99–100% relative humidity), hardly caus-
ing any gradient for an efficient transpiration of water from
the leaf (Milburn 1979; Pickard 1981; Chen et al. 1999).
Due to these rapid changes in water vapor gradients between
the inside (nearly 100% relative humidity) and the outside
of leaves, throughout their life period leaves need constant
and nearly perfect protection from uncontrolled water loss.
There is no doubt, that this protection is successfully pro-
vided by the plant cuticle sealed with waxes (Schreiber and
Schönherr 2009), which is highly impermeable for water,
especially when compared to stomatal transpiration (Grün-
hofer et al. 2022). Permeances of plant cuticles, efficiently
protecting leaves and fruits from uncontrolled water loss,

Fig. 2   Number of cell layers in the different suberized tissues isolated 
from five different plant species (Clivia miniata, Monstera deliciosa, 
Solanum tuberosum, Manihot esculenta, and Malus domestica). The 
average number of cell layers given as means ± standard deviations 
was obtained by investigating at least 5 or more independent micro-
scopic cross-sections of each sample. Asterisks indicate a significant 
difference between the number of cell layers of soil-grown and air-
grown Clivia roots and of young and mature aerial root of Monstera, 
respectively (*** = 99%)

Fig. 3   Total amounts (µg cm−2) of soluble wax extracted with chloro-
form from the different suberized tissues isolated from five different 
plant species (Clivia miniata, Monstera deliciosa, Solanum tubero-
sum, Manihot esculenta, and Malus domestica). Waxes are classified 
into 3 groups: aliphatic wax (linear long-chain aliphatic wax mole-
cules), sterols (cyclic sterols), and terpenoids (triterpenoids and ses-
quiterpenoids). Data points represent means with standard deviations 
(n = 3). Asterisks indicate a significant difference between aliphatic 
wax amounts of soil-grown and air-exposed Clivia roots, of young 
and mature aerial root of Monstera and of fresh and stored Cassava 
tubers, respectively (*** = 99%)
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cover a range between 10–10 and 10–9 m∙s−1 (Schreiber and 
Riederer 1996). As examples for representative permeances 
for cuticles, P of Hedera helix leaf cuticle and of Solanum 
lycopersicon fruit cuticle can be given here (Fig. 9), having a 
value of 0.9 × 10–11 m s−1 and 1.9 × 10–09 m s−1 respectively 
(Schönherr and Lendzian 1981). Upon wax extraction, per-
meances of wax-free cuticles of Solanum lycopersicon were 
3.7 × 10–08 m s−1 and permeances of Hedera helix were 2.6 
× 10–08 m s−1 (Schönherr and Lendzian 1981). Thus, wax 
extraction resulted in 20- (Solanum lycopersicon) and 265-
fold (Hedera helix) increased permeances.

The highest possible transpiration rate of water, which 
can theoretically be measured with the system used here, is 
given by the permeance of an open transpiration chamber 
without any membrane mounted. This measurement resulted 
in a permeance of 7.4 × 10–08 m s−1 (Fig. 9). The fact that a 
primary carbohydrate cell wall, without any further aromatic 
(lignin) or aliphatic (suberin or cutin) modification, does not 
represent an efficient transpiration barrier is shown for the 
filter membrane made of pure cellulose, which was mounted 

to the transpiration chamber. Although the cellulose filter 
investigated here had a thickness of 140 µm, which is by 
far thicker than a regular primary carbohydrate cell wall 
of a leaf, varying about 1–2 µm (Moghaddam and Wilman 
1998), the permeance was 6.4 × 10–08 (± 5 × 10–09) m s−1 
which is statistically not different from the value measured 
for an open chamber (Fig. 9). It is remarkable that perme-
ances of wax-free cuticles were only about two- to threefold 
lower than the permeance of the open transpiration chamber 
(Fig. 9). All further permeances measured here with the dif-
ferent suberized cell wall samples isolated from roots, tubers 
or shoots, are located between the low values of cuticles and 
the high values of cellulose filter and the open transpiration 
chamber (Fig. 9).

In comparison to the atmosphere surrounding the leaves, 
which is characterized by wide variation in water potentials 
reaching very low values, the range and the temporal varia-
tion in soil by far less pronounced. Field capacity is defined 
as the maximum amount of water absorbed by the soil, 
water potentials are very close to 0 ( – 0.03 MPa), whereas 

Fig. 4   Substance classes of soluble waxes (µg  cm−2) extracted with 
chloroform from the different suberized tissues isolated from five 
different plant species (Clivia miniata, Monstera deliciosa, Solanum 
tuberosum, Manihot esculenta, and Malus domestica). Besides ster-
ols and terpenoids, amounts of aliphatic waxes are separated into 
alcohols (Alc), fatty acids (Fa), alkanes (Alk), esters (Est), aldehydes 
(Ald), sterols (Ste) and, terpenoids (Ter). a Wax composition of the 
suberized hypodermis isolated from soil-grown roots and air-exposed 

roots of Clivia miniata. b Wax composition of the suberized hypoder-
mis isolated from young aerial roots and mature aerial of Monstera 
deliciosa. c Wax composition of the suberized periderms isolated 
from freshly harvested tubers and 3  weeks stored tubers Manihot 
esculenta and from Solanum tuberosum. d Wax composition of the 
suberized bark isolated from shoots of Malus domestica. Data points 
represent means with standard deviations (n = 3)
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a potential of – 1.5 MPa is already defined as the permanent 
wilting point of plants (Kramer and Boyer 1995). At soil 
water potential of – 1.5 MPa, corresponding to a relative 
humidity of nearly 99% (Milburn 1979), most herbaceous 
plants and crops cannot take up water anymore and will start 
to wilt. This permanent wilting point of – 1.5 MPa leads to 
the conclusion that the main problem for plants, when deal-
ing with water shortage, is not related to the fact that they 
do not have an efficient transport barrier on the root surface, 
protecting them from desiccation, but obviously plants are 
not able to decrease their internal water potentials to values 
significantly more negative than – 1.5 MPa. Consequently, 
at a soil water potential of – 1.5 MPa or lower, the driving 
force for the passive water diffusion usually directed inwards 
is inversed leading to wilting of plants already at 99% soil 
humidity.

Thus, it is not too surprising that the permeance meas-
ured with the suberized hypodermal cell layers, isolated 
from soil-grown roots of C. miniata, was 5 × 10–08 (± 3.2 × 
10–09) m s−1, which is nearly as high as the cellulose mem-
brane and the open transpiration chamber (Fig. 9). Upon 
wax extraction, permeance was statistically not significantly 
different from the intact hypodermis (Fig. 8), indicating that 
there is hardly any diffusional barrier for water developed 
with the outer suberized cells of soil-grown C. miniata roots. 
The suberized hypodermis isolated from C. miniata roots 
exposed to the atmosphere had fivefold lower permeance of 

1.6 × 10–08 (± 1.2 × 10–08) m s−1 compared to the soil-grown 
roots. Upon wax extraction the permeance increased on an 
average threefold, indicating that the wax in the suberin 
polymer of the air-exposed roots established this, albeit 
very weak, diffusional barrier for water and not the slightly 
increased amounts of aliphatic suberin (Fig. 5).

Very different from C. miniata, the suberized hypoder-
mis isolated from aerial roots of M. deliciosa had fairly 
low permeances between 4.2 × 10–09 (± 3 × 10–09) m s−1 
measured for the young still developing aerial root tip and 
6.5 × 10–10 (± 6.2 × 10–10) m s−1 measured for the mature 
aerial root zone (Fig. 9). These values nearly match perme-
ances located in the upper range of isolated cuticular mem-
branes (Schreiber and Schönherr 2009). Thus, aerial roots 
of M. deliciosa, facing the steep gradient in water potential 
between the roots and the atmosphere, obviously need an 
efficient transpiration barrier for survival. The intensity of 
suberization (Fig. 5), and the amounts of wax (Fig. 3), being 
significantly higher in M. deliciosa compared to C. miniata, 
established this pronounced transpiration barrier (Fig. 3), 
which is again largely lost upon wax extraction (Fig. 8). 
This emphasizes the significance of the wax in establishing 
a transpiration barrier, as it is also the case with leaf cuti-
cles. In addition, it is worth pointing out that the number of 
suberized cell layers is on average only twofold higher with 
M. deliciosa (2–4 cell layers) compared to C. miniata (1–2
cell layers), whereas the permeance of the suberized tissue
of M. deliciosa compared to C. miniata is on average 1–2
orders of magnitude lower (Fig. 9). Thus, it is not so much
an increase in the number of suberized cell layers and in
suberin amounts reducing water permeability, but in wax
deposition establishing the transpiration barrier of aerial
roots of M. deliciosa.

Tuber and storage roots as subterranean storage organs of 
plants are growing all their life span in soil and they develop 
fairly thick outer periderms as interfaces towards the soil 
environment. This is also the case here with M. esculenta, 
characterized by 12 to 15 suberized cell layers, and with 
S. tuberosum having a slightly lower number of about 10
suberized cell layers (Fig. 1 and 2). Therefore, it is very
surprising that the periderm of M. esculenta nearly com-
pletely failed to establish reasonable transpiration barriers,
whereas it was exactly the opposite with the periderm of
S. tuberosum, forming a highly efficient transpiration bar-
rier (Fig. 9). Permeances measured with the periderms of
M. esculenta varied between 2.3 × 10–08 m s−1 and 5.1 ×
10–08 m s−1, which is comparable to the values obtained with
soil-grown C. miniata roots and already very close to the
values obtained with the cellulose filter and the open transpi-
ration chamber (Fig. 9). However, permeances obtained for
S. tuberosum were 7.4 × 10–10 (± 2.7 × 10–10) m s−1, which
is 1 to 2 orders of magnitude lower compared to the perme-
ances of M. esculenta. The permeances measured here for

Fig. 5   Total amounts (µg  cm−2) of aromatic (ferulic and coumaric 
acids) and aliphatic suberin (linear long-chain aliphatic suberin mon-
omers) obtained after depolymerization of the different wax-extracted 
suberized tissues isolated from five different plant species (Clivia 
miniata, Monstera deliciosa, Solanum tuberosum, Manihot esculenta, 
and Malus domestica). Data points represent means with standard 
deviations (n = 3). Asterisks indicate a significant difference between 
aliphatic suberin amounts of soil-grown and air-exposed Clivia roots, 
of young and mature aerial root of Monstera and of fresh and stored 
Cassava tubers, respectively (*** = 99%)
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S. tuberosum also fit values published for S. tuberosum in
the past (Schreiber et al. 2005) and they are in the range of
permeances (10–11–10–09 m s−1) published for highly water-
impermeable cuticular membranes (Schreiber and Riederer
1996).

Different from S. tuberosum, where it was shown that 
upon 4-week-storage permeances of periderms decreased 
by 1 order of magnitude (Schreiber et al. 2005), perme-
ances of M. esculenta periderms isolated after 3 weeks of 
storage were statistically not different from freshly isolated 
periderms (Fig. 9), although aliphatic wax amounts of M. 
esculenta periderms increased by about twofold during 
3-week storage (Fig. 3). This completely opposing behav-
ior between the periderm of S. tuberosum, forming a very
efficient transpiration barrier, and the periderm of M. escu-
lenta, completely lacking the ability to form an efficient
water barrier (Fig. 9), protecting tubers against water loss,
fits the well-known difference in shelf-life between both
tubers. Whereas S. tuberosum tubers ideally can be stored
for several months (Alamar et  al. 2017), M. esculenta
tubers rapidly start to deteriorate within 24 h after harvest

(Saravanan et al. 2016). Besides many other physiological 
and enzymatic processes leading to rapid deterioration and 
loss of nutritional quality of harvested M. esculenta tubers, 
this total failure of the periderm protecting the tubers from 
rapid dehydration represents another significant factor for 
the pronounced postharvest losses of M. esculenta. Covering 
the tubers with paraffin wax, which will reduce tuber dehy-
dration, can delay the postharvest deterioration by a couple 
of weeks (Uchechukwu-Agua et al. 2015). At the moment, it 
remains an interesting and unsolved question, why M. escu-
lenta completely fails to establish an efficient transpiration 
barrier protecting the tubers, whereas S. tuberosum is highly 
successful?

One could speculate that this difference between M. 
esculenta and S. tuberosum establishing a transpiration 
barrier could be related to additional yet unknown differ-
ences in the polyphenolic cell wall modifications of both 
periderms, which, however, would need to be investigated 
in the future. Another reasonable explanations could be the 
completely different ontogenetic origin of both types of 
tubers. The tuber of M. esculenta develops from the root, 

Fig. 6   Amounts of the different substance classes of suberin mono-
mers (µg  cm−2) obtained after depolymerization of the different 
suberized tissues isolated from five different plant species (Clivia 
miniata, Monstera deliciosa, Solanum tuberosum, Manihot esculenta, 
and Malus domestica). Substance lasses are separated into aromat-
ics (Arom), primary alcohols (Alc), fatty acids (Fa), α,ω-diacids, 
and ω-hydroxy acids (ω-OH). a Substance classes of the suberized 
hypodermis isolated from soil-grown roots and air-exposed roots 

of Clivia miniata. b Substance classes of the suberized hypodermis 
isolated from young aerial roots and mature aerial of Monstera deli-
ciosa. c Substance classes of the suberized periderms isolated from 
freshly harvested tubers and 3-week-stored tubers Manihot esculenta 
and from Solanum tuberosum. d Substance classes of the suberized 
bark isolated from shoots of Malus domestica. Data points represent 
means with standard deviations (n = 3)
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whereas the tuber of S. tuberosum originates from a shoot 
growing horizontally belowground. Potentially the genetic 
and biochemical machinery, leading to a pronounced suberin 
and wax biosynthesis, is activated a lot more in a tuber being 
homologous to a plant shoot, naturally facing the atmos-
phere, instead of a tuber originating from a root, normally 
facing the soil environment. A further explanation could 
be the functions of the tuber of S. tuberosum and storage 
root of M. esculenta. Potato tubers allow re-growth after 

dormancy protecting the apical and lateral axillary buds and 
the resources for re-growth from abiotic and biotic condi-
tions (Suttle 2004), while the storage roots of M. esculenta 
do not experience times of dormancy but facilitate growth 
of the perennial shrub serving as a carbon sink and source 
tissue for growth (El-Sharkawy 2004). Solanum species 
show a huge variation in dormancy, and it is affected by 
pre- and postharvest environmental conditions (Sonnewald 
2001; Suttle 2004). For example, the Chilean and European 

Fig. 7   Transpiration kinetics 
(g h−1) measured for the differ-
ent suberized tissues isolated 
from five different plant species 
(Clivia miniata, Monstera 
deliciosa, Solanum tuberosum, 
Manihot esculenta, and Malus 
domestica). a–g Intact suber-
ized tissues (black squares) and 
wax-extracted suberized tissues 
(white circles) were compared. 
e Intact periderms isolated from 
3-week-stored tubers of Mani-
hot esculenta (black triangles)
are shown in comparison to
intact periderms isolated from
freshly harvested tubers of M.
esculenta (black squares). h
Transpiration kinetics were
measured with cellulose filters
(white circles) and with open
transpiration chambers (black
square). Data points represent
means with standard deviations
of (n ≥ 10)
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potatoes are believed to derived from a domestication event 
that took place in Peru at an altitude of 3000–4000 m. As 
a consequence, tubers of potatoes would need suberin bar-
riers to withstand the abiotic and biotic conditions guar-
anteeing re-growth after the dormancy period in such an 
altitude. These potatoes migrated through hybridization with 
other Andean wild species to coastal Chile over time, which 
allowed the adaptation to temperate climates (reviewed by 
Ramsay and Bryan 2011). However, cultivars of the S. 
tuberosum L. Phureja Group occurred at the Eastern slope 
of the Andes from western Venezuela to central Bolivia in an 
altitude of 2000 to 3400 m (Ochoa 1990), and some cultivars 
lack tuber dormancy in this group (Ghislain et al. 2006). 
Thus, the dormancy and subsequently suberization of the 
tuber could be due to the environmental origins of the Chil-
ean and European potato or due to a selection and breeding 
process as an adaptation to the Chilean coastal regions and 
subsequently to temperate climates. Such an adaptation or 
adaptation/breeding of cassava never occurred as the crop is 
only grown in the tropical region around the globe (reviewed 
by McKey and Delêtre 2017). Therefore, the discrepancy in 
periderm function between M. esculenta and S. tuberosum 
remains an interesting scientific as well as important applied 
research question to be analyzed in the future.

The last sample of suberized tissues analyzed here was 
the periderm isolated from M. domestica shoots. Although 

this periderm was characterized by the highest amount of 
wax molecules (Fig. 3) and suberin monomers (Fig. 5) 
of all samples investigated here, rates of water loss were 
surprisingly high (Fig. 7h). The permeance was about 1.1 
× 10–08 (± 3.4 × 10–08) m s−1 and there was no signifi-
cant increase in permeance after the extraction of wax 3 
× 10–08 (± 1.8 × 10–08) m s−1 (Fig. 8). At the moment, 
we do not have a straightforward explanation as, to why 
the periderm isolated from M. domestica shoots did not 
represent a reasonable transpiration barrier. Maybe dif-
ferent possibilities must be considered. First, periderms 
were isolated from still growing and therefore continu-
ously radially expanding shoots, which could be a reason 
for the failure to establish an efficient transpiration barrier. 
In addition, compared to the other suberized samples, han-
dling of the periderms isolated from M. domestica shoots 
and mounting to the transpiration chambers was fairly 
difficult, since shoot periderms were very brittle. It can-
not be excluded that this caused some defects or cracks 
in the investigated periderms, which were not detectable 

Fig. 8   Effects of wax extraction on transpiration measured with 
suberized tissues isolated from five different plant species (Clivia 
miniata, Monstera deliciosa, Solanum tuberosum, Manihot escu-
lenta, and Malus domestica). Effects were calculated by dividing the 
slopes of transpiration kinetics of wax-extracted suberized tissues by 
the slopes of transpiration kinetics measured with intact suberized tis-
sues. As a reference (dotted line), the effect of 1 is shown, indicating 
that there was no change in transpiration after the extraction of wax 
from the isolated suberized tissue. Means (n ≥ 5) with standard devia-
tions are shown. n.d. = not determined. Asterisks indicate a significant 
different effect from 1 (** = 95%; *** = 99%)

Fig. 9   Box plots of permeances P (m s−1) calculated from the regres-
sion lines fitted to the transpiration kinetics measured with suber-
ized tissues isolated from five different plant species (Clivia min-
iata, Monstera deliciosa, Solanum tuberosum, Manihot esculenta, 
and Malus domestica). Intact suberized tissues (grey box plots) and 
wax-extracted suberized tissues (white box plots) were compared. P 
(dash dot line) of the open transpiration chamber (7.4 × 10–08 m s−1) 
and P (dashed line) of the cellulose filter (6.4 × 10–08 m s−1) is given 
as “upper” reference lines. P (dotted line) of the leaf cuticle isolated 
from Hedera helix 9.9 × 10–11 m s−1 and fruit cuticle from Solanum 
lycopersicon 1.9 × 10–9  m  s−1; Schönherr and Lendzian (1981) is 
given as a “lower” reference line. Box plots with medians (line in the 
box), means (square in the box), whiskers (10–90% of the values), 
and outliers (crosses) are given (n ≥ 5; n.d. = not determined. Aster-
isks indicate a significant difference between permeances of intact 
periderms and wax-extracted periderms (** = 95%; *** = 99%)
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and visible. Therefore, it is worth investigating the water 
permeability of periderms isolated from shoots in more 
detail in the future.

Conclusion

From the data presented and discussed here, it can be 
concluded that there is no straightforward explanation 
why certain suberized tissue can form efficient transpira-
tion barriers and others fail. For the soil-grown roots and 
considering the weak gradients for potential water loss 
it is understandable that an effective water barrier is not 
needed, whereas for aerial roots facing the atmosphere 
an efficient transpiration barrier was established. From a 
physiological point of view, it can be hypothesized that 
periderms of tubers, which are acting as storage organs of 
plants, should have a good transpiration barrier. This was 
the case for S. tuberosum but not at all for M. esculenta. 
This discrepancy remains unclear. Our data also clearly 
shows that the pronounced variations in wax and suberin 
amounts and composition do not lead to an easy explana-
tion of why certain suberized tissue represents efficient 
transpiration barriers and others not. However, for those 
suberized tissues forming good transpiration barriers, it is 
evident that wax is essential for barrier formation, since 
upon wax extraction barrier properties are largely lost. 
Thus, biotechnological approaches trying to improve the 
transpiration barriers of suberized tissues should focus on 
the enhancement of wax biosynthesis.
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Abstract

In root research, hydroponic plant cultivation is commonly used and soil experiments

are rare. We investigated the response of 12‐day‐old barley roots, cultivated in soil‐

filled rhizotrons, to different soil water potentials (SWP) comparing a modern

cultivar (cv. Scarlett) with a wild accession ICB181243 from Pakistan. Water

potentials were quantified in soils with different relative water contents. Root

anatomy was studied using histochemistry and microscopy. Suberin and lignin

amounts were quantified by analytical chemistry. Transcriptomic changes were

observed by RNA‐sequencing. Compared with control with decreasing SWP, total

root length decreased, the onset of endodermal suberization occurred much closer

towards the root tips, amounts of suberin and lignin increased, and corresponding

biosynthesis genes were upregulated in response to decreasing SWP. We conclude

that decreasing water potentials enhanced root suberization and lignification, like

osmotic stress experiments in hydroponic cultivation. However, in soil endodermal

cell suberization was initiated very close towards the root tip, and root length as well

as suberin amounts were about twofold higher compared with hydroponic

cultivation.

K E YWORD S

apoplastic root barrier, lignin, soil‐grown barley root, soil water potential, soil water stress,
suberin

1 | INTRODUCTION

Drought severity and frequency have increased as a result of climate

change (AghaKouchak et al., 2014). For agriculture, drought is a

recurring catastrophic climate occurrence and one of the costliest

natural disasters worldwide, according to historical drought trends

(Asong et al., 2018). Scientists have examined how plants respond to

drought and discovered that, as drought intensifies, there is a

stronger nonlinear relationship between vegetative growth and

drought (Zhou et al., 2022). To ensure agricultural efficiency and
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output in the future, genetic diversity is crucial (Dawson et al., 2015).

Given the effects of climate change, this genetic diversity is very

valuable since it facilitates the production of more robust and flexible

cultivars (Dawson et al., 2015; Newton et al., 2011). Over the years,

genetic and genomic tools have been employed to improve drought

tolerance. In the current study, we chose barley due to its importance

in food production (ranking fourth in the world's food production),

and its genetic diversity. The wild progenitor (Hordeum vulgare ssp.

spontaneum) originating from the Fertile Crescent region is adapted to

various arid and semiarid habitats (Badr et al., 2000). In contrast to

the wild progenitor, the modern cultivars of barley, Hordeum vulgare

ssp. vulgare, which are derived from wild barley, have lost important

traits related to drought tolerance due to breeding over the years for

preferred traits reducing the genetic background (Cai et al., 2020;

Zhao et al., 2010). The lost traits during selection can be reintroduced

into cultivated barley for crop improvement purposes (Ellis

et al., 2000) allowing for the breeding of more drought tolerant

barley varieties in the future. Therefore, it was the aim, comparing a

wild progenitor of barley (H. vulgare ssp. spontaneum) rich in genetic

diversity, with a modern barley cultivar (H. vulgare ssp. vulgare),

reduced in genetic diversity. This could offer new aims what to

consider for breeding more drought tolerant modern barley cultivars.

Roots play an important role in facilitating drought tolerance

since they are the organs being directly exposed to water

deficiency in soil and they have to respond securing water supply

of the plant as good as possible. Thus, water and coupled nutrient

uptake efficiency play an important role to mitigate water deficits.

Water and nutrient uptake in roots can occur through apoplastic

and cell‐to‐cell pathways (symplastic and transcellular pathways).

The apoplastic movement of water and solutes can also be

affected by the formation of Casparian strips and suberin in the

endodermis (Franke & Schreiber, 2007; Ranathunge et al., 2017).

Abiotic and biotic stressors have been demonstrated to enhance

suberization in roots (Grünhofer et al., 2022, 2023; Holbein

et al., 2019; Kreszies et al., 2020; Lanoue et al., 2010). The

suberin polymer is composed of polyaliphatic and polyaromatic

domains. Primary alcohols, fatty acids, α,ω‐dicarboxylic acids

(diacids), and ω‐hydroxy acids (ω‐OH acids) are the aliphatic

monomers, whereas ferulic and coumaric acids are the aromatic

components (Graça, 2015; Schreiber et al., 1999). Casparian strips

are mainly made up of lignin (Naseer et al., 2012; Schreiber, 1996;

Zeier & Schreiber, 1997). Syringyl, guaiacyl, and p‐hydroxyphenol

are the monomers of lignin, a complex aromatic biopolymer

(Rolando et al., 1992). Apoplastic barrier formation leads to water

uptake via the cell‐to‐cell pathway, which is regulated by

aquaporins (Steudle, 2000a, 2000b). Previous hydroponic studies

showed an earlier onset of root suberization in modern cultivar

Scarlett (H. vulgare L. ssp. vulgare) when compared with wild

accession Pakistan (ICB181243; H. vulgare L. ssp. spontaneum)

during osmotic stress induced by polyethylene glycol (PEG) 8000

(Kreszies et al., 2020).

Water stress for plants starts in soil and roots are the first plant

organs to sense water limitation in dehydrating soil. Thus, studying

roots is of great importance to understand the altered growth and

development of plants in response to low soil water content (SWC).

In this study, the main intention was to investigate the responses of

apoplastic barriers in barley roots to water limitation in soil. Anatomy

of root cross sections, chemical composition of apoplastic barriers,

and gene expression patterns were analysed over the length of the

root. It was the intention of identifying differences in drought stress

responses comparing a modern barley cultivar with a wild barley

cultivar. In addition, drought effects on root growth in soil

investigated here should be compared with recently published data

describing root responses to osmotic stress in hydroponic cultivation,

mimicking water stress (Kreszies et al., 2020). We hypothesized that

(i) the root response to drought stress of wild barley will differ from

the modern cultivar (Scarlett and the wild accession), and that (ii) the

drought stress response of soil grown roots will differ from that of

plants cultivated in hydroponics.

2 | MATERIALS AND METHODS

2.1 | Plant material and growth conditions

The rhizotron experiments were performed in the greenhouse of the

Institute of Bio‐ and Geosciences (Plant Sciences) (IBG‐2, For-

schungszentrum Jülich GmbH) during the months of June 2020 and

June 2021. For detailed growth conditions, refer to Nagel et al.

(2012). The rhizotrons were filled with sieved, black peat soil

(Graberde; Plantaflor Humus). Seeds of the cultivar Scarlett (Hordeum

vulgare ssp. vulgare) and the wild barley accession Pakistan

(ICB181243; Hordeum vulgare ssp. spontaneum) were soaked in water

(Day −1) and transferred to rhizotrons (Day 0) to germinate. A thin

layer of perlite or vermiculite was added on top, and only these layers

were watered with 20mL thrice per week for stress treatments to

prevent the excess loss of moisture from the soil. For the control

condition, the whole rhizotron (vermiculite layer and soil) was

watered with 400mL of tap water three times per week. The plants

were grown for 12 days under 16 h/8 h of day/night, temperatures of

25.8/19.7°C, relative air humidity of 48.9/64.5% and average light

intensity during the day of 181.5 µmol/m2 s between 06:00 and

22:00 h local time. The rhizotrons were imaged for physiological root

measurements on Days 1, 4, 6, 11 and 12 after transferring the seeds

to the rhizotrons with the automated phenotyping platform

GrowScreen‐Rhizo 1 (Nagel et al., 2012) to quantify noninvasively

root‐system architecture. Root traits such as visible main root length,

visible lateral root length, maximum depth and width of the root

system, and convex hull area which represents the area which is

covered by the root system were estimated as described in Nagel

et al. (2012). After the 12th day, the soil‐filled rhizotrons were

washed with water to obtain the whole root system with the shoot

intact. For each plant, shoot height, leaf length and individual seminal

root length were measured using a ruler. The shoot and roots were

separated and dried in the oven for 10–12 days at 60°C until the

constant weight was measured for dry weight determination.
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2.2 | Water stress stimulation: Measurements of
SWC and soil water potential (SWP)

A calibration curve (pF curve) was established correlating the SWP

in MPa with the corresponding relative SWC in % (Figure 1).

Relative SWC in % is calculated by first subtracting the weight of

the totally dried soil from the weight of the wet soil and then

dividing the difference by the weight of the dry soil. SWC was

measured by gravimetry and SWP was measured using aWP4C soil

water potentiometer (Decagon Devices). For generating the

calibration curve, a larger batch of soil (about 5 L) was homoge-

neously watered overnight, and a large number of smaller samples

(about 10 mL) were prepared in preweighed containers. SWPs and

weights of the well‐watered soil samples were measured at time 0.

Subsequently, the soil samples were allowed to continuously dry

out over 2 weeks. Every day from Day 0 to Day 14, a subset of at

least three soil samples were taken for determination of the SWP

and the corresponding weight. Subsequently, soil samples were

dried at 60°C for 1 week, and the final dry weight was measured.

Finally, SWC in % of the individual soil samples was calculated.

Data pairs (SWP vs. SWC) were plotted and a polynomial curve

was fitted (Figure 1).

To obtain larger volumes of soil with a reduced SWC for the

planned stress experiments, the sieved black peat soil was spread in

the greenhouse and turned around two to three times a day for a

couple of days to loose moisture before it was evenly filled into the

rhizotrons. This resulted in relative SWCs of about 50% (mild water

stress: mild WS) in 2021 and of about 40% (strong water

stress: strong WS) in 2022 (Supporting Information S1: Figure S1).

Well‐watered soil (SWC of about 70%), close to field capacity

(Figure 1), was used for the control experiment.

2.3 | Histochemical detection of suberin lamellae
and lignified tissues in roots

Harvested roots were stored in fixation solution and segmented into

1 cm sections, after which they were cut into 50 µm thick cross‐

sections using a cryostat microtome (Microm HM 500M, Microm

International GmbH). Suberin lamellae were stained for 1 h using

0.01% (w/v) lipophilic Fluorol Yellow 088 (Brundrett et al., 1991).

Safranin red 1% (w/v) for 10min and Astra blue 1% (w/v) for 10min

were used for differential staining to differentiate between lignified

and unlignified tissues (Vazquez‐Cooz & Meyer, 2002). Before

applying the counterstain (Astra blue), the section was washed thrice

with 70% ethanol to remove excess Safranin. Safranin red will stain

lignified tissues red, while Astra blue will stain unlignified tissues blue.

Photographs for both suberin lamellae and lignified tissues were

made using a Canon EOS 600D camera and an ultraviolet (UV) filter

set (Zeiss) (excitation filter BP 365, dichroic mirror FT 395, barrier

filter LP 397). As described in Kreszies et al. (2019), the analysed root

segments were expressed as relative lengths of the entire root, with

0% representing the root tip and 100% representing the root base.

2.4 | Chemical analysis of barley root suberin

Following harvesting from the rhizotrons, root samples were kept in

70% ethanol. Seminal root was divided from tip to base into three

different zones (zone A: 0%–25%, zone B: 25%–50% and zone C:

50%–100%) as described in Kreszies et al. (2019, 2020), and were

enzymatically digested with 0.5% (w/v) cellulase and 0.5% (w/v)

pectinase at room temperature under gentle shaking (Zeier &

Schreiber, 1997). The enzyme solution was changed every 3–5 days

for 3 weeks. The roots were washed in borax buffer and then in

deionized water. Subsequently, samples were transferred to chlor-

oform:methanol (1:1) to remove all soluble lipids. Before chemical

analysis, root samples were dried, weighed and cut into very fine

sections (Ranathunge et al., 2016). For both suberin and lignin

analyses, 10 seminal roots sections from three to four plants were

pooled per replicate for each zone.

For suberin depolymerization, 2 mg extracted materials were

transesterified for 16–18 h at 70°C in 30% (v/v) boron trifluoride‐

methanol (Zeier & Schreiber, 1998). To stop the depolymerization

reaction, 2mL of saturated NaHCO3 was added. As an internal

standard, 10 µg of C32 (dotriacontane) were spiked into each sample.

Suberin monomers were extracted three times by adding 2mL

chloroform. Free hydroxy groups of released suberin monomers were

derivatized using 20 µL of N, O‐bis‐(trimethylsilyl)‐trifluoroacetamide

(BSTFA) and 20 µL of pyridine for 40min at 70°C before gas

chromatographic analysis. Suberin monomers were quantified by

injecting 1 µL of sample on a splitter system on a gas chromatography

F IGURE 1 Nonlinear correlation of soil water potential (MPa) as a
function of relative soil water content (%) established for the soil
used in the experiments. The black arrows indicate the soil water
content and the corresponding soil water potential for control, mild
and strong water stress experiments. The red line gives the
polynomial curve fit for the individual data points. The second order
polynomial equation for the curve with an adjusted R2 value is given
in the table.
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connected to flame ionization detection (GC‐FID; HP 6890N;

Hewlett‐Packard) and identified by gas chromatography connected

to mass spectrometry (GC‐MSD; 5977B; Agilent). The obtained mass

spectra of suberin monomers were compared with literature mass

spectra and an in‐house created mass spectral library (Schreiber

et al., 2005).

2.5 | Chemical analysis of barley root lignin

The protocol from Foster et al. (2010) was used with slight

modifications. For lignin analysis in the three root zones (A, B and C).

Only 1–2mg of extracted dried samples were weighed, incubated in

500µL of the thioacidolysis reagent on a heat block (105°C) for 4 h in

autosampler vials. These vials were sealed with an extra Teflon disc

inside the crimp seal with PTFE/silicone septa. Samples were vortexed

once per hour and it was made sure that the analyzing materials

remained in the liquid reagent throughout the digestion. Upon

completion of the reaction, autosampler vials containing the samples

were cooled to room temperature, and spiked with 10µg of C32

(Dotriacontane) as internal standard. To stop the reaction 500µL of

saturated NaHCO3 solution was added. Samples were extracted three

times with 1mL ethyl acetate. The combined organic extracts were

dried in a heating block, and 500µL of acetone was added twice to

remove all the excess water at 60°C using a gentle nitrogen stream. For

lignin monomer analysis by gas chromatography, samples were

derivatized with 20µL pyridine and 100µL BSA reagent (N,O‐bis

(trimethylsilyl)acetamide; Sigma Aldrich) for 45min at 70°C. Suberin

monomers were quantified by injecting 1 µL of sample on a splitter

system on a gas chromatograph connected to flame ionization detection

(GC‐FID; HP 6890N; Hewlett‐Packard). Lignin monomers were identi-

fied by GC‐MS (GC‐MSD; 5977B; Agilent) according to Rolando et al.

(1992) thioacidolysis products prominent fragments.

2.6 | RNA extraction, sequencing and RNA‐Seq
analyses

RNA was extracted from the 12‐day‐old barley roots grown under

control (well‐watered, −0.09MPa) and strong water stress

(−1.04MPa) of both cultivars using the Zymo Research Plant Easy

RNA kit. Based on the histochemical analysis a section from zone A

(0%–12.5% of the root length) was harvested for the analysis. The

quality was assessed using a nanodrop spectrophotometer (Nano-

Drop 2000c Spectrophotometer; ThermoFisher Scientific), a gel run

and determination of RIN values. Roots were washed with DEPC

treated water, and flash frozen using liquid nitrogen. RNA‐

sequencing was carried out with a total of three biological replicates

growing either under control conditions and under water stress. Each

replicate consisted of pooled roots from five to six different plants.

cDNA libraries were prepared using the QuantSeq. 3′mRNA kit, and

the sequencing was done on an Illumina HiSeq. 6000 platform, kindly

enabled by the NGS Service, University of Bonn, Germany.

Approximately 10–15 million reads were obtained, with a base

length ranging up to 1 × 50 bp. The raw RNA‐Seq reads were first

subjected to a quality check using fastQC, which was then

subsequently processed through cutAdapt (Martin, 2011) to remove

traces of any sequencing adapters. The processed reads were then

aligned against the barley reference genome (EnsemblPlants, v2)

using Tophat2 (Trapnell et al., 2012) with the help of a bowtie index

designed with the individual chromosome files and default parame-

ters. For mapping statistics, a percentage of at least 90% alignment

was considered to be the minimum for further downstream

processing in our study. With the alignment files in BAM format, a

gene count matrix was obtained using the featureCounts (Liao

et al., 2014) function from the Rsubread package (Liao et al., 2019).

With these files, an MDS (Multi‐Dimensional Scaling) scaling plot

was also generated using the limma (Ritchie et al., 2015) and edgeR

(Robinson et al., 2010) packages respectively, which highlighted the

nature of the replicates and homogeneity of the samples used in this

study. Differential expression analysis was then carried out using the

normalized counts using DESeq. 2 (Love et al., 2014) with cutoffs: |

log2FC | >1 and FDR < 0.05, where the raw p values obtained using

Wald test (Wald, 1943) were subsequently corrected by False

Discovery Rate analysis (Benjamini & Hochberg, 1995). For this

study, a contrast matrix was designed as stress (−1MPa) versus

control (well‐watered). Gene ontology analyses with the obtained

differentially expressed genes (DEGs) were carried out with agriGO

software (Tian et al., 2017) or shinyGO software (Ge et al., 2020),

available online. The raw sequencing data has been deposited at

the National Centre for Biotechnology Information (NCBI) database

(ID: PRJNA1063280).

2.7 | Statistical analysis

Depending on the type of experiment, the number of replicates

varied: more than 10–30 for phenotypic measurements, 10–15 for

microscopic examinations, 6–3 for chemical analysis and 3 for RNA‐

Seq were examined. For the statistical evaluation of the data and

figure preparation, OriginPro 2021b (OriginLab Corporation) was

used. Using the Shapiro–Wilk test, the normal distribution of the data

was tested before checking for statistical significance. All the

physiological measurements and chemical analysis were assessed

using the analysis of variance (Fisher's least significant difference,

LSD) of plants grown under varied water potentials and a significance

threshold of 0.05 was used. Means with standard deviations or box

plots with medians and means are shown in the graphs.

3 | RESULTS

3.1 | SWC and SWP

After 12 days of plant growth, rhizotrons were opened and soil

samples were taken at three different depths in the rhizotrons
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(bottom: 15%–25%; middle: 40%–50%; top: 75%–85%) in relation

to the maximum root system depth (100%) in length (Supporting

Information S1: Figure S1). SWC of the well‐watered soil (control

experiment) was 72.6% ± 0.4. SWC of the stress treatments was

54.3% ± 0.5 (mild WS) and 41.3% ± 0.8 (strong WS), respectively.

Within each of the three treatments, SWC did not vary

significantly between the three different positions (Supporting

Information S1: Figure S1). The SWPs of the control and two

different treatments could be predicted from the calibration

curve using the equation of the curve fit (Figure 1). SWPs for

well‐watered soil (control) were −0.09 ± 0.01 MPa, and for the

stress treatments, they were −0.37 ± 0.02 MPa (mild WS), and

−1.04 ± 0.04 MPa (strong WS), respectively (Figure 1). Thus,

control conditions were close to field capacity (−0.01 MPa) and

stress treatments were between field capacity and the permanent

wilting point (−1.5 MPa) defined for crops (Kirkham, 2005).

3.2 | Root and shoot morphology

The average root length of 12‐day‐old barley seminal roots of

both, Scarlett and Pakistan cultivars, negatively correlated with

decreasing SWP (Figure 2a). The average seminal root lengths

under control, mild WS and strong WS treatment was always shorter

in Scarlett (53.1 ± 9.2 cm; 36.8 ± 5.6 cm; 24.4 ± 2.7 cm) compared

with Pakistan (61.3 ± 9.7 cm; 47.1 ± 7.4 cm; 29.3 ± 5.2 cm). Only

12‐day‐old control plants developed very short adventitious

roots (Figure 2a). The maximum root system depth (Supporting

Information S1: Figure S2a) and the total visible root length

(Supporting Information S1: Figure S2b) after 12 days cultivation

was higher in Pakistan compared with Scarlett. Maximum root

system width was almost similar for control and mild WS plants

compared with strong WS (Supporting Information S1:

Figure S2c). The total visible lateral root length was not

significantly different for cultivars or treatments (Supporting

Information S1: Figure S2d). Compared with Scarlett the first leaf

of Pakistan was longer in control and mild WS but shorter in

strong WS (Figure 2b). Lengths of leaves 2 and 3 were reduced in

response to stress in both cultivars and strong WS delayed the

formation of the third leaf in both cultivars (Figure 2b). Root/

shoot ratios increased significantly upon stress treatments

(Figure 2c).

F IGURE 2 Phenotypic characterization of barley roots and
shoots. (a) Average length of seminal and adventitious roots of
12‐day‐old plants grown under control or mild and strong water
stress conditions. (b) Average leaf length of 12‐day‐old plants
grown under control or mild and strong water stress conditions.
(c) Root/shoot ratios (biomass dry weight) of 12‐day‐old plants
grown under control or water stress. Box plots give the 25th–75th
percentiles. Squares inside the boxes represent arithmetic means.
The whiskers range to the outliers, and each box plot represents
>30 (a) or >10 (b, c) replicates. The different letters indicate
significant differences at a significance level of 0.05 in two‐way
(a, c) and one‐way (b) ANOVA (Fischer's least significant
difference, LSD). Uppercase letters indicated significant
differences between treatments, lowercase letters indicated
significant differences between all the means.
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3.3 | Root anatomy: Suberin and lignin staining

At 25% and 50% of the root length, almost all endodermal cells were

fully suberized except for some passage cells in control and stress

treatments (Figure 3a). In control and both WS treatments, first

suberized endodermis cells were already detectable at 5%–10% of

the total root length (Figure 3a). At 10% of the root length, the

endodermal cell wall suberization was higher for roots grown in stress

compared with control in both cultivars (Figure 3a). Intensity of the

lignin staining of late metaxylem, early metaxylem and endodermal

cell walls was increasing from 25 over 50%–90% of the root length

and it was increasing with stress intensity (Figure 3b). In response to

WS the inner tangential endodermal cell walls were asymmetrically

stained at 50% and 90% of the root length (Figure 3b). This is

complementary to the suberin staining, where the outer tangential

endodermal cell walls showed a much stronger asymmetric staining

F IGURE 3 Histochemical detection of root suberization and lignification. (a) Suberin‐lamellae development in the endodermis of 12‐day‐old
barley roots grown under control or mild and strong water stress. By staining with fluorol Yellow 088, suberin‐lamellae presence is indicated by a
bright yellow fluorescence. At a distance of 50% from root tip, all the cells are suberized (a, d, g, j, m, p). At a distance of 25% from root tip,
endodermal cells of roots grown in control are partially suberized (b, k), whereas the cells grown under stress (mild or strong) are almost
completely suberized except for some passage cells (e, h, n, q). At a distance of 10% from root tip, 3–4 cells (c, l) are suberized in the control
condition, and partial suberization of the endodermis can be seen. Suberization is stronger in strong WS (i, r) compared with mild WS (f, o). (b)
Lignification of 12‐day‐old barley roots grown under control or mild and strong water stress. Lignified tissues are stained in red and cellulose in
blue. At a distance of 90% from root tip, the inner side of the endodermis and Casparian strips are lignified (a, d, g, j, m, p), and metaxylem and
protoxylem are lignified. Stress treatments show that the cortical cells inside the endodermis are lignified (d, g, m, p). At a distance of 50% from
root tip, the Casparian strips in roots grown in the control condition are hardly stained (b, k), and in stress, stronger lignification can be seen (e, h,
n, q). At a distance of 25% from root tip, Casparian strips can be seen mostly under strong WS (i, r) roots compared with mild WS (f, o) and
control (c, l). Bars, 50 µm. [Color figure can be viewed at wileyonlinelibrary.com]
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compared with a fainter staining of the inner tangential cell walls

(Figure 3a).

3.4 | Chemical analysis of barley root suberin

In both cultivars, the total amount of linear long‐chain aliphatic

suberin monomers released after transesterification continuously

increased over root length (Figure 4a), which was not the case for the

aromatic suberin amount (Supporting Information S1: Figure S3a). In

Scarlett, strong WS significantly enhanced suberization mainly in

zone C, whereas in Pakistan both, mild WS and strong WS,

significantly enhanced suberization in zones B and C (Figure 4a). In

response to strong WS total amounts of aliphatic suberin were higher

in Scarlett compared with Pakistan. Aliphatic suberin was composed

of four main substance classes (Figure 4a): fatty acids, alcohols,

ω‐hydroxy acids, and α,ω‐dicarboxylic acids (diacids). Most of the

total amount of aliphatic suberin was composed of ω‐hydroxy acids,

followed by diacids, fatty acids and alcohols (Figure 4b). Chain lengths

of the aliphatic suberin monomers varied between C16 and C26

(Supporting Information S1: Figure S4a–d) with C18:1 ω‐OH, C18:1

diacid and C24 ω‐OH hydroxyl fatty acid representing the most

abundant aliphatic suberin monomers. Aromatic suberin was mainly

composed of coumaric and ferulic acid monomers; trans isomeric

monomers of these monomers were present in higher amounts

compared with cis isomers (Supporting Information S1: Figure S3b).

3.5 | Chemical analysis of barley root lignin

That amount of lignin which can efficiently be depolymerized in the

solid state with minimal condensation is called uncondensed lignin

F IGURE 4 Amounts of aliphatic suberin detected in barley seminal roots grown under control or mild and strong water stress. The roots
were divided into three root zones (zones A, B and C) from root tip to base. (a) Total amounts of endodermal suberin increase from Zone A to C
and they increase with increasing water stress. (b) ω‐Hydroxyacids and diacids are the predominant substance classes of the aliphatic suberin,
followed by fatty acids and alcohols. Bars represent means with standard deviations of at least three biological replicates (control n = 6; stress
n = 3). Different letters indicate significant differences within each root zone between the means at a significance level of 0.05 in one‐way
ANOVA (Fischer's least significant difference, LSD).
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(Li et al., 2018). Uncondensed lignin increased from zone A to zone C in

both cultivars (Figure 5a). Within the same root zone for each of the

three stress treatments total amounts of lignin were similar between

Scarlett and Pakistan (Figure 5a). The total uncondensed lignin was

composed of three main groups of monomers (C6C3 aryl glycerol‐β‐aryl

ethers): p‐hydroxyphenyl (H), guaiacyl (G), and syringyl (S) monomers

(Figure 5b). G lignin monomers were the dominant group of monomers

in both, Scarlett and Pakistan, followed by S and H lignin (Figure 5b).

Further compounds released by thiacidolysis were C6C2, C6C1

monomeric compounds, and some derived from p‐coumaric and ferulic

acid aromatic compounds (Supporting Information S1: Figure S5). The H,

G, and S core fragments, including all monomers composed only of the

H, G, and S aromatic ring, were similar to uncondensed lignin results.

Aromatic derived products are not significantly different in between

treatments and each root zones, but the amount increases over the root

length (Supporting Information S1: Figure S5).

RNA‐Seq analyses: comparison of strong water stress versus

control of the two barley cultivars.

For RNA‐Seq analysis root zone A (0%–12.5%), showing the

largest differences in the degree of apoplastic barrier formation

(Figures 3–5), was investigated comparing strong WS with control

conditions. The MDS plot showed a clear separation of all the control

(well‐watered) samples from the strong WS samples and clear

separation of both cultivars (Figure 6a). About 43 050 expressed

genes were identified in the different samples, which corresponds to

roughly 50% of the barley reference genome consisting of about

83 381 expressed genes (Sato, 2020). In Scarlett, comparing strong

WS versus control, a total of 948 genes were differentially

upregulated and 842 genes were downregulated, from which 360

up‐ and 306 downregulated genes were unique to Scarlett (Figure 6b,

Supporting Information S2: Table S1). With Pakistan, 1260 genes

were up‐ and 927 genes were downregulated with 672 up‐ and 391

F IGURE 5 Amounts of uncondensed lignin detected in barley seminal roots grown under control or mild and strong water stress. The roots
were divided into three root zones (zones A, B and C) from root tip to base. (a) Total amounts of uncondensed lignin increase from Zone A to C
and they increase with increasing water stress. (b) The three dominant lignin monomers (H = p‐hydroxyphenyl, G = guaiacyl and S = syringyl unit)
increase from Zone A to C and they increase with increasing water stress. The bars represent means with a standard deviation of three biological
replicates. Different letters indicate significant differences within each root zone between the means at a significance level of 0.05 in one‐way
ANOVA (Fischer's least significant difference, LSD).
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downregulated genes being specific for Pakistan (Figure 6b, Support-

ing Information S3: Table S2). Both cultivars had 588 up‐ and 536

downregulated genes in common.

A GO (Gene Ontology) analysis was performed with all the DEGs

of both cultivars in response to strong WS (Supporting Information

S1: Figure S6, Supporting Information S4: Table S3). Most GO terms

associated with the upregulated genes in the two cultivars were

related to general aspects of abiotic stress responses of plants and

associated signalling and transduction aspects. In Scarlett, the top

upregulated GO terms were mostly associated with ROS, H2O2

metabolism, heat shock proteins (Supporting Information S1:

Figure S6a). In Pakistan, the top upregulated GO terms were related

to certain aspects of ROS detoxification, glutathione metabolic

process, glutathione transferase activity and nicotinamine metabolic

activity (Supporting Information S1: Figure S6b). The common

upregulated GO‐terms in both cultivars were associated with several

aspects of stress signalling, phytohormone signal, cold acclimation,

actin filament depolymerisation and response to abscisic acid

(Supporting Information S1: Figure S6c). In Scarlett GO terms with

most downregulated genes were related to aldehyde dehydrogenase

activity, nutrient reservoir activity and manganese ion activity

(Supporting Information S1: Figure S6d). Further categories included

GO terms associated with cell walls, plasmodesmata and the

apoplast. The top GO terms contained the most downregulated

genes specific to Pakistan included different aspects of detoxification

like hydrogen peroxide catabolic processes, ROS metabolic processes

and peroxidase activity (Supporting Information S1: Figure S6e). GO

terms with most downregulated genes common for both cultivars

were related to various aspects of nitrate metabolism and transport

including response to nitrate, nitrate transmembrane transporter

activity and nitrate transport (Supporting Information S1: Figure S6f).

A number of DEGs (Figure 7, Supporting Information S5:

Table S4) specifically upregulated in both cultivars in response to

water stress were genes related to suberization (e.g., LACS: fatty acid

activation, KCS: fatty acid elongation, FAR: alcohol synthesis, CYP:

fatty acid hydroxylation, GPAT: esterification of fatty acids to

glycerol, etc.), lignification (C4H: p‐coumaric acid synthesis, PAL:

cinnamic acid synthesis, HCT: shikimate hydroxycinnamoyl transfer-

ase, CCR: p‐coumaryl‐ and coniferyl aldehyde synthesis, OMT:

methyltransferase, CAD: p‐coumaryl‐ and coniferyl alcohol synthesis,

PER: lignin polymerisation, etc.) and transcription factors known to be

involved regulating gene expression in response to abiotic environ-

mental stress (e.g., WRKYs and MYBs). A smaller number of DEGs

annotated as genes related to suberization and lignification were

downregulated in roots exposed to water stress (Supporting

Information S1: Figure S7, Supporting Information S5: Table S4). In

addition, a series of DEGs were involved in nutrient (e.g., NRT: nitrate

transport, PHT: phosphate transport, KT: potassium transport, MGT:

magnesium transport, VIT: iron transport, SULTR: sulfate transport)

and water transport (aquaporins) via cell membranes, with many of

them being upregulated but some of them also downregulated

(Supporting Information S1: Figure S8, Supporting Information S6:

Table S5). For further information, the list of all the DEGs related to

suberin, lignin, aquaporins, nutrient transporters, ROS signalling and

other transcription factors are given in Supporting Information S7:

Table S6.

4 | DISCUSSION

In root research, hydroponic cultivation is frequently used since it

allows easy, noninvasive access of the root system during growth.

But this approach is artificial since roots are continuously immersed

in an aqueous solution with homogeneously distributed nutrients.

F IGURE 6 Results of the RNAseq analysis showing the
differentially expressed genes (DEGs) in the barley roots of Scarlett
and Pakistan grown under control or strong water stress conditions.
(a) Multidimensional scaling plot of replicated RNA sequencing
samples grown under control and strong WS conditions shows that
cultivars and growth conditions are clearly separated. (b) Venn
diagram representing DEGs (DESeq, Log2FC ≥ 1, ≤−1, and
FDR ≤ 0.05) between strong WS and control conditions of Scarlett
and Pakistan. Among all DEGs, 588 and 536 genes were commonly
up‐ and downregulated in both Scarlett and Pakistan. Red and cyan
dots indicate upregulation, and downregulation of genes,
respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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Cultivating plants in soil‐filled rhizotrons are closer to the situation

roots face in the field conditions such as mechanical impedances, soil

structure, and so forth, when compared with hydroponic cultivation.

But rhizotrons still allow the observation of root growth and

development noninvasively (Nagel et al., 2012).

4.1 | Nonlinear relationship between SWC
and SWP

Water limitation in a substrate leading to drought needs to be

quantified in MPa, giving the exact water potential. Only on this basis

can different experimental approaches, for example, hydroponics

versus soil cultivation, can directly be compared. Whereas, it is easy

and straight forward to measure water potential in hydroponics, it is

complex in soil. This is due to the fact that relative SWC (in %) versus

SWP (in MPa) is not a linear function and this curve is strongly

influenced by various factors such as soil texture, organic matter

content, and soil moisture patterns (Groenevelt & Grant, 2004;

Hewelke et al., 2015). Due to this nonlinearity (Chen et al., 1998),

shown here for soil used in our rhizotron experiments, already minor

changes in relative SWCs can lead to major changes in SWPs

(Figure 1). Decreasing the relative SWC by 1.3‐fold (from 54% to

41%) resulted in a decrease of the SWP by nearly threefold (from

−0.37 to −1.04MPa). This shows how important it is to first establish

an exact calibration curve correlating SWP with SWC (Nimah &

Hanks, 1973; Or et al., 2002). This is also confirmed by our study,

with the soil initially drying out to have a relative SWC of

approximately 50%, it finally turned out after the experiment 12

days later that relative SWC was only 54.3% in 2021 and 41.3% in

2022, resulting in SWPs of −0.37MPa (mild WS) and −1.04MPa

(strong WS). SWCs and SWPs were homogeneous in the rhizotron

from top to bottom (Supporting Information S1: Figure S1). Thus, in

our experiments roots were exposed over their whole length, from

tip to base, to nearly the same water deficit. This is still somewhat

artificial compared with natural environmental conditions, with the

soil drying out from top to bottom leading to an increasing water

potential gradient.

F IGURE 7 Upregulated genes relevant for suberin and phenylpropanoid biosynthesis, transcription factors, and other associated genes
which are commonly upregulated in both Scarlett and Pakistan barley roots upon strong water stress treatment. Empty white cells in the table
are nonsignificant (ns). (A detailed description is given in Supporting Information S5: Table S4 with references.) [Color figure can be viewed at
wileyonlinelibrary.com]
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4.2 | Comparing root development between wild
barley and modern barley

Breeding programmes mostly focus on aboveground plant traits and

not on root morphology or architecture (Koevoets et al., 2016).

However, root length is an important trait of plants when dealing

with water stress (Bengough et al., 2011; Boudiar et al., 2020;

Sahnoune et al., 2004). With Pakistan, as the wild barley cultivar,

compared with the highly cultivated modern cultivar Scarlett, there

was a tendency that in either control or stress conditions, average

root lengths (Figure 2a), maximum root system depth (Supporting

Information S1: Figure S2a) and total seminal and nodal root lengths

(Supporting Information S1: Figure S2b) were higher. Root length is

directly correlated to the total root surface area that is accessible to

soil water volume and thus dissolved nutrients (Dara et al., 2015). In

hydroponic cultivation, similar results were previously observed for

different wild cultivars when compared with modern cultivars

(Kreszies et al., 2020; Paschen et al., 2022). The formation of longer

roots in wild cultivars is obviously genetically fixed and will offer an

advantage under drought conditions as the availability of water in

deeper soil layers will be higher (Ahmed et al., 2018; Lynch &

Wojciechowski, 2015; Naz et al., 2014). Roots of 12‐days‐old barley

plants grown hydroponically under control and osmotic stress were

approximately about 1.5–3‐fold shorter for both cultivars (Kreszies

et al., 2019, 2020) compared with soil grown roots (Supporting

Information S1: Figure S9a,b). This clearly indicates that soil

cultivation significantly affects root development. A possible ex-

planation might be the fact that in hydroponic cultivation, roots are

growing in a homogeneously mixed nutrient solution, which does not

require an extensive root system for soil exploration and nutrient and

water uptake. The root/shoot ratios increased (Figure 2c) in response

to water stress, which was also observed recently with barley

cultivated in hydroponics (Kreszies et al., 2019, 2020).

4.3 | Comparing suberization between wild barley
and modern barley

In both cultivars, endodermal root suberization detected by histo-

chemistry was already clearly visible in control conditions between

5% and 10% distance from the root tip (Figure 3a). Only in the zone

between 0% and 5% from the root tip, no suberized cells were

histochemically detected (data not shown). At 25% from the root tip,

nearly all endodermal cells in both cultivars were fully suberized in

control as well as stress conditions (Figure 3a). These histochemical

results are very different from hydroponically grown roots (Kreszies

et al., 2019, 2020). In hydroponic cultivation, under control

conditions as well as in response to osmotic stress (−0.4, −0.8, and

−1.2MPa) first suberized cells could only be detected earliest at 25%

from the root tip in hydroponic experiments. Thus, in soil‐grown

roots endodermal suberization is extending significantly closer to the

root tip, it starts already at 5% from the root tip and 75%–80% of the

root length are nearly fully suberized. This observation was

confirmed by the detailed chemical analysis (Figure 4; Supporting

Information S1: Figure S4). Whereas the qualitative suberin compo-

sition (substance classes and chain lengths of the detected

monomers) was similar between the two cultivars and the cultivation

conditions (soil vs. hydroponic cultivation; Supporting Information S1:

Figure S9c), total amounts of suberin were significantly (about

twofold) higher in each of the three root zones in soil‐cultivated

roots. Thus, soil‐environment under control conditions stimulates the

root to a much higher and much faster root suberization compared

with hydroponic cultivation.

4.4 | Comparing lignification between wild barley
and modern barley

Besides suberization, lignification represents another well‐known

nonspecific response of plant cell walls to abiotic stress, which

includes oxidative stress besides water limitation (Cabané et al., 2004).

Histochemistry (Figure 3b) as well as chemical analysis (Figure 5;

Supporting Information S1: Figure S5) showed that the lignification of

endodermal cell walls and xylem vessels was significantly increased in

response to increasing water deficits. An enhanced lignification of

root cell walls in response to water deficit was described earlier in

different crop species (Fan et al., 2006; Kováč et al., 2018; Ouyang

et al., 2020; Steudle, 2000a; Yang et al., 2006). The increased levels

of cell wall lignification can help to prevent embolism of xylem

vessels (Lens et al., 2016), stabilize dehydrated tissue (Sharma

et al., 2020; Yamaguchi et al., 2010), and provide support and

protection against mechanical stress in dehydrating soil (Schneider

et al., 2021). The induction of the tertiary developmental state of the

endodermis was observed at 90% of the root length close to the base

(Supporting Information S1: Figure S10). Histochemically, the inner

U‐shaped endodermal cell walls (Enstone et al., 2002; Esau, 1953;

North & Nobel, 1995; Ouyang et al., 2020) were strongly responding

to lignin staining (Supporting Information S1: Figure S10) whereas the

suberin signal was limited to the outer periclinal cell walls (Supporting

Information S1: Figure S10). Probably due to a strong lignification of

the added U‐shaped cell wall the suberin signal in the inner periclinal

cell wall was masked. This was also observed in roots of other plant

species (Zeier & Schreiber, 1998; Zeier, Goll, et al., 1999; Zeier, Ruel,

et al., 1999).

4.5 | Comparing differential gene expression
between wild barley and modern barley

The enhanced lignification and suberization was also supported by the

transcriptomic analyses. Several genes related to the biosynthesis of

aliphatic monomers of suberin and to the phenylpropanoid pathway

were upregulated in both Scarlett and Pakistan (Figure 7; Supporting

Information S5: Table S4). This supports the important function of

suberization and lignification in dealing with water stress in barley.

Apoplastic suberization is also described to prevent the passive
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backflow of water from the xylem vessels in the central cylinder into the

soil, which is of major importance under water stress conditions

(Steudle, 2000a; Steudle & Peterson, 1998). The upregulation of quite a

number of genes related to suberization and lignification in soil‐grown

roots confirmed recent RNAseq studies conducted with hydroponically

grown roots (Kreszies et al., 2019, 2020).

Besides the upregulation of suberin‐ and lignin‐related genes, the

RNAseq analysis revealed a series of other additional genes that were

differentially expressed in both cultivars in response to water stress

(Supporting Information S7: Table S6). Additionally, ubiquitous

transcription factors (WRKY, MYB, NAC, ERF, etc.) were upregulated,

having multiple roles in a variety of plant processes such as

development, stress response, and acclimatization to abiotic stress

(Dasauni & Nailwal, 2020; Gangola & Ramadoss, 2020; Ramadoss

et al., 2020; Wang et al., 2023). Besides osmotic adjustment,

tolerance to water deficit also requires that the mechanical stability

of the cells and tissues is ensured (Dutta et al., 2016; Izanloo

et al., 2008). This explains why besides lignification, many GO terms

related to cell wall, plant‐type cell wall, plant‐type cell wall

organization or biogenesis, cell wall organization or biogenesis are

differentially enriched in water‐stressed roots (Supporting Informa-

tion S4: Table S3).

Recent studies with hydroponically grown roots showed that the

apoplastic water transport in roots decreased with increasing

suberization (Kreszies et al., 2019; Ranathunge et al., 2017) and that

the nonsuberized or partially suberized root zone close to the root tip

is mainly be responsible for water and nutrient uptake. In addition,

water transport in roots can be significantly facilitated by aquaporins

(Gambetta et al., 2017), which were in fact upregulated in the

stressed plants in the root tip (NIP5;1, NIP1;2 and TIP4;1; Supporting

Information S1: Figure S8). In parallel genes related to nutrient

uptake and transport, including phosphate, ammonium, iron, and

magnesium transport, were upregulated. Macro and micronutrients

are particularly crucial for plant growth and development, and they

are also essential for contributing to several aspects of stress

tolerance as osmotic adaptation (Kumari et al., 2022).

Overall, upon decreasing SWP, root lengths decreased, amounts

of aliphatic suberin and lignin increased, and genes related to suberin

and lignin biosynthesis were upregulated (Figure 8). Compared with

hydroponic cultivation, soil‐grown roots were longer, suberization

started much closer to the root tip and amounts of suberin were

higher indicating clear differences between both ways of cultivation

(Supporting Information S1: Figure S9). Comparing the drought stress

response of the cultivar Scarlett (H. vulgare ssp. vulgare) with the wild

F IGURE 8 Summary of the results comparing 12‐day‐old Scarlett and Pakistan roots grown in soil under control (−0.09MPa), mild
(−0.4MPa), and strong water stress (−1.04MPa). In all the treatments, the average root length of Pakistan was greater than Scarlett. The shoot
height of Pakistan was only in control higher than Scarlett. Root/shoot ratios were higher in Pakistan compared with Scarlett in stress
treatments. Scarlett and Pakistan had similar amounts of suberin and lignin within the same root zones. Aliphatic suberin or uncondensed lignin
increased over the root zones and with decreasing water potentials. Suberization is increased during strong WS in zone A compared with the
control roots. Relevant upregulated genes related to suberin and lignin biosynthesis, aquaporins and nutrient transporters are listed. Font colour,
yellow—suberin, red—lignin; P, Pakistan; S, Scarlett; WS, water stress. [Color figure can be viewed at wileyonlinelibrary.com]
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barley accession Pakistan (ICB181243; H. vulgare ssp. spontaneum) it

is obvious that Pakistan developed longer roots. This will be of major

advantage under water limited conditions, since it should offer better

access to deeper, less dehydrated soil horizons. This aspect of root

lengths should be considered in future breeding approaches

improving drought resistance in crops.
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Supplementary Tables 

Table S1: Summary of different suberized materials from different plant species with their respective substance classes, individual suberin 

monomers and references. These are arranged based on the material type: Skin (fruit), Fruit periderm, Tuber periderm, Fibres, Bark, Seeds, Aerial 

roots and Roots. 

Source Material Aromatics Fatty acids Fatty 

alcohols 

ω-

hydroxyacids 

Diacids Reference 

Adiantum capillus-

veneris

Entire root 

tissues 
Coumaric acid, 

Ferulic acid 
C16, C18 C18 - - (Su et al., 2023) 

Arabidopsis thaliana L. Root Hydroxycinnamic 

acid, Coumaric 

acid, Ferulic acid  

C16-C24, C18:1, 

C18:2 
C18-C22 C16-C24, C18:1, 

C18:2 
C16-C24, 

C18:1, C18:2 
(Baxter et al., 2009; de Silva et 

al., 2021b; Domergue et al., 

2010; Franke et al., 2005; Gully 

et al., 2024; Höfer et al., 2008; 

Lu et al., 2011; Ranathunge & 

Schreiber, 2011; Shanmugarajah 

et al., 2019) 
Arabidopsis thaliana L. Seed Coumarate, 

Ferulate, Sinapate 
C16-C24, C18:1 C22 C16, C18, C22, 

C24, C16:1, C18:1, 

C18:2 

C16, C22, 

C24, C18:1, 

C18:2 

(Gou et al., 2009) 



Ceratopteris richardii Entire root 

tissues 
Coumaric acid, 

Ferulic acid 
C16, C18 C18 - - (Su et al., 2023) 

Clivia miniata (Lindl.) 

Regel 
Root periderm Cis/Trans-

Coumaric acid 

Trans-ferulic acid 

C18 C18-C28 C16, C18:1 C18:1 (Suresh et al., 2022) 

Crateva benthami 

Eichl. 
RHCWs root 

tip (0–30 mm) 
Cis/Trans-Ferulic 

acid, S-Lignin 
C16, C18, C22, C24, 

C28, C18:1, C18:2 
C18, C22, C28 C16, C20, C22, 

C18:1 
C16, C18, 

C18:1 
(De Simone et al., 2003) 

Cucumis melo Skin discs of 

1 cm dia. 
Cis/Trans-Ferulic 

acid 
C22-C24 C22-C28 C20-C24 C16-C18 (Cohen et al., 2019; 

Manasherova & Cohen, 2022) 
Cucumis sativus and 

Cucumis sativus var. 

sikkimensis

Skin discs of 

1 cm dia. 
Coumaric acid, 

Ferulic acid, 

Vanillic acid, p-

HBA 

C16-C28 

C18:1, C18:2 

C18 ester, C20:1, 

C22:1, C24:1 

C15, C18-C22 C16-C26, C18:1, 

C18(9,10)-epoxy 
C15, C16-

C22, 

C16(1,16), 

C16(10,16), 

C18:2(9,10) 

(Arya et al., 2022; Nomberg et 

al., 2022b) 

Cycas revoluta Entire root 

tissues 
Coumaric acid, 

Ferulic acid 
C16-C24 C22 C16, C18, C22, 

C18:1 
C16, C20, 

C22, C18:1 
(Su et al., 2023) 

Ginkgo biloba Entire root 

tissues 
Coumaric acid, 

Ferulic acid 
C16-C24 C20, C22 C16, C18, C20, 

C22, C18:1 
C16, C20, 

C22, C18:1 
(Su et al., 2023) 

Glyceria maxima Root segments 

(85–155 mm) 

behind the tip   

Cis/Trans-Ferulic 

acid, Coumaric acid 
C18, C24, C28, 

C18:1, C18:2 
C16, C18, C22-

C26 
C24-C28 C16, C18:1 (Soukup et al., 2007) 

Glycine max L. Merr. Root - C16-C22, C16:1, 

C18:1 
- C16-C24, C18:1 C16, C20, 

C18:1 
(Thomas et al., 2007) 
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Gossypium hirsutum L. Green 

cotton fibers 

Ferulate, Caffeate - - C16-C24 C16-24 (Schmutz et al., 1996) 

Hordeum vulgare L. 

cv. ‘Golf’, L. spp.

vulgare cv Scarlett,

Root Cis/Trans-

Coumaric and 

Ferulic acid 

C16-C26, C30 C16-C30 C16-C30, C18:1 C16-C26, 

C18:1 

(Kreszies et al., 2019; 

Ranathunge et al., 2017; Suresh 

et al., 2024) 

Kielmeyera coriacea Ground and 

sieved bark 

(0.250-0.425 

mm) 

Glycerol, 

Ferulic acid 

9-Epoxyoctadecanoic

acid

C26-C30 C18:1, 9-Epoxy-

18-

hydroxyoctadecano

ic acid, 9,10,18-

Trihydroxyoctadec

anoic acid 

C18:1, 9,10-

Dihydroxyoc

tadecane-

1,18-dioic 

acid 

(Rios et al., 2014) 

Laetia corymbulosa 

Spruce ex Bent. 

RHCWs root 

tip (0–30 mm) 

Cis/Trans-Ferulic 

acid, p-OH-Benzoic 

acid, S-Lignin 

C18-C24, C18:1, 

C18:2 

C18-28 C16-C24, C18:1 C16, C18, 

C22, C18:1 

(De Simone et al., 2003) 

Malus × domestica 

Borkh 

Bark Benzoic acid, 

Ferulic acid, 

Cinnamic acid, 

Linoleic acid 

C16-C28 C16-C28 C16-C24, C18:1 C16-C22, 

C18:1 

(Straube et al., 2021; Suresh et 

al., 2022) 

Malus × domestica 

Borkh 

Fruit periderm Hydrocinnamic 

acid, Cis/Trans-

Coumaric acid 

C16-C26 C26-C28 C16-C24, C18:1, 

C16: di (10,16), 

C18: tri (9, 10, 18) 

C16, C16 

(9,10), C18 

(9,10) 

(Chen et al., 2022; Straube et 

al., 2021) 

Manihot esculenta 

Crantz 

Tuber 

periderm 

Trans-Coumaric 

acid, S-Syringyl-

C22-C32 C26-C30, C29 C16, C18:1, C24-

C30 

C16-C18, 

C18:1 

(Suresh et al., 2022) 
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Lignin-Keton, cis-

Ferulic acid 

Metasequoia 

glyptostroboides 

Entire root 

tissues 

Coumaric acid, 

Ferulic acid 

C16-C24 C20 C16, C18, C22, 

C18:1 

C16, C20, 

C22, C18:1, 

C18:2 

(Su et al., 2023) 

Monstera deliciosa 

Liebm. 

Aerial root 

periderm 

Cis-Coumaric acid 

Trans-Ferulic acid 

C18-C30 C20-C28 C16-C30, C18:1 C16-C18, 

C18:1 

(Suresh et al., 2022) 

Nephrolepis 

auriculata 

Entire root 

tissues 

Coumaric acid, 

Ferulic acid 

C16, C18, C24 C18 - - (Su et al., 2023) 

Ophioglossum 

vulgatum 

Entire root 

tissues 

Coumaric acid, 

Ferulic acid 

C16, C18 C18 - - (Su et al., 2023) 

Oryza sativa L. cv. 

Kinmaze 

Root 

exodermis 

Cis/Trans-coumaric 

and ferulic acid 

C18-26, C30, C18:1, 

C18:2 

C16-C28 C16-C30, C18:1 C16-C20, 

C18:1 

(Jiménez et al., 2024) 

Phaseolus vulgaris Root Cis/Trans-Ferulic 

and Trans 

Coumaric acid 

C18-C26 C18-C26 C16-C22, C18:1 C16-C22, 

C18:1 

(Carvajal et al., unpublished) 

Phragmites australis Root segments 

(85–155 mm) 

behind the tip   

Cis/Trans-Ferulic, 

Coumaric acid 

C18-C24, C28, C30, 

C18:1, C18:2  

C16, C18, C22, 

C24 

C16-C28, C18:1 C16, C18:1 (Soukup et al., 2007) 

Polystichum tsus-

simense 

Entire root 

tissues 

Coumaric acid, 

Ferulic acid 

C16, C18 C18 - - (Su et al., 2023) 

Populus tremula x P. 

alba 

Bark tissues Ferulic acid C22-C24 - C16, C18:1, 10,16-

OH 16:0 

C18-C20, 

C18:1 

(Rains et al., 2018) 
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P. × canescens (Aiton)

Sm. clone “84K” (P.

alba × P. tremula var.

glandulosa)

Root Cis/Trans-Ferulic 

acid 

C16, C24, C18:1, 

C18:2 

C18-C22 C16-C24, C18:1, 

C18:2 

C16-C22, 

C18:1 

(Grünhofer et al., 2021a) 

Quercus suber L. Ground and 

sieved bark, 

(<0.425 mm) 

Ferulic acid C16-C24, C18:1, 

C18:2 

C16-C26, C18:1 C16-C24, C18:1, 

C20:1, C21, C23 

C16-C24, 

C18:1, C20:1 

(Lopes et al., 2000) 

Salix martiana Leyb. RHCWs root 

tip (0–30 mm) 

Trans-Ferulic acid, 

p-OH-Benzoic acid,

S-Lignin

C22-C26, C18:1, 

C18:2 

C22-C26 C16-C26, C18:1 C16, C18, 

C18:1 

(De Simone et al., 2003) 

Salvinia cucullata Entire root 

tissues 

Coumaric acid, 

Ferulic acid 

C18, C20, C24 C18 C16 - (Su et al., 2023) 

Selaginella kraussiana Entire root 

tissues 

Coumaric acid, 

Ferulic acid 

C16, C18, C24 C18 - - (Su et al., 2023) 

Solanum lycopersicum 

and S. pennellii 

Root Trans coumaric, 

Cis/Trans-Ferulic 

acid 

C18-C28 C18-C28 C16-C26, C18:1 C16-C18, 

C18:1 

(Cantó-Pastor et al., 2024; 

Carvajal et al., unpublished) 

Solanum tuberosum Hairy root 

cultures 

- C18-C24 C18-22 C16-C24, C18:1 C16-C22, 

C18:1 

(Bjelica et al., 2016) 

Solanum tuberosum L. Tuber 

periderm disc 

Cis/Trans-Ferulic 

acid, Glycerol, 

Coniferyl alcohol 

C16-C30, C29 C16-C30, C19, 

C21, C23, C27 

C16-C28, C18:1, 

C18:2 (9,10), C23 

C16-C28, 

C18:1, C18:2 

(9,10) 

(Company-Arumi et al., 2023; 

Graça & Pereira, 2000b; 

Schreiber et al., 2005a; Suresh 

et al., 2022) 
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Tabernaemontana 

juruana Schumann ex 

J.F. Macbride 

Rhizodermal 

cell walls 

(RHCWs) root 

tip (0–30 mm) 

Cis/Trans-Ferulic 

acid, S-Lignin 

C18-C26, C18:1, 

C18:2 

C18-C28 C16, C22-C28, 

C18:1 

C16, C18, 

C22, C24, 

C18:1 

(De Simone et al., 2003) 

Triticum aestivum Root Cis/Trans-

Coumaric and 

Ferulic acid 

C18-C26, C30 C16-C30 C16-C30, C18:1 C16-C26, 

C18:1 

(Carvajal et al., unpublished) 

Vigna radiata Root Cis/Trans-Ferulic 

acid and Trans 

Coumaric acid 

C18-C26 C18-C26 C16-C24, C18:1 C16-C24, 

C18:1 

(Carvajal et al., unpublished) 

Vitis riparia root Root section 

5–20 cm from 

the root tip 

- C16-C22, C18:1, 

C18:2, C18:3 

C18-C22 C16-C22, C18:1 C16-C22, 

C18:1, C18:2 

(Zhang et al., 2020) 

Zea mays Suberized 

bundle sheath 

strands 

Coumarate, 

Ferulate, Caffeate 

C16-C32 C18-C22 C16-C30, C18:1 C16-C18, 

C18:1 

(Mertz et al., 2020) 

Zea mays Root Cis/Trans-

Coumaric and 

Ferulic acid 

C18-C26, C30 C16-C30 C16-C30, C18:1 C16-C26, 

C18:1 

(Carvajal et al., unpublished) 

Zea mays L. cv. Mutin Root 

endodermis, 

hypodermis 

p-Coumaric and

Ferulic acid

C16-C26, C18:1, 

C18:2 

C16-C24 C16-C30, C18:1 C16, C24, 

C18:1 

(Zeier et al., 1999) 
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Table S2: Summary of studies reporting about effects of different biotic stress on suberization of different crop species. 

Species Biotic factor Findings related to suberin Reference 

Arabidopsis thaliana 

(Col-0) 

Verticillium longisporum Lignification of the secondary cell wall structures (Floerl et al., 2012; Reusche et 

al., 2012) 

Arabidopsis thaliana 

(Col-0) 

Heterodera schachtii and 

Meloidogyne incognita 

Suberin biosynthesis genes activation and periderm formation or ectopic suberization at 

nematode infection sites 

(Holbein et al., 2019) 

Arabidopsis thaliana 

(Col-0) 

Pseudomonas protegens and 

Ralstonia solanacearum 

Lignin and suberin deposition in the endodermis as immune responses (Zhou et al., 2020) 

Arabidopsis thaliana Bacterial isolates Modify endodermal suberization and enhance performance under 

abiotic stress 

(Salas-González et al., 2021) 

Arabidopsis thaliana 

(Col-0) 

Verticillium longisporum V. longisporum downregulate genes involved in Casparian strip formation and suberin

biosynthesis

(Fröschel et al., 2021) 
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Glycine max L. Merr. 

Conrad × OX760-6  

Phytophthora sojae Suberin deposition in root tissues as a response to P. sojae infection (Thomas et al., 2007) 

Glycine max cv. 

Conrad and L., var 

OX760-6 

Phytophthora sojae Suberin was formed subsequent to the 

initial infection process. Conrad had more resistance and aliphatic suberin than the line 

OX760-6 

(Ranathunge et al., 2008) 

Hordeum vulgare cv. 

Jana 

Chaetomium globosum Hypodermal suberization stopped fungal invasion in barley root compared to unsuberized 

root tip 

(Reissinger et al., 2003) 

Solanum tuberosum L. Erwinia carotoäora 

subsp. Carotoäora and 

Fusarium sambucinum 

Both aliphatic and aromatic domain of suberin play different role in development of 

resistance against bacterial and fungal infection during suberization 

(Lulai & Corsini, 1998) 

Solanum lycopersicum 

var. Marmande, Hawaii 

7996 (H7996) and 

Moneymaker 

Ralstonia solanacearum Vascular structural barrier formed by a ligno-suberin coating and tyramine-derived 

hydroxycinnamic acid amides restricted bacterial movement 

(Kashyap et al., 2022) 

Oryza sativa 

germplasm Phule 

Radha 

Meloidogyne graminicola Enhanced suberin deposition and biosynthesis of genes were greatly expressed in the 

exodermis 

(Singh et al., 2021) 
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