
Metabolic Network Reconstruction of Algal 

Strains of Chlorella species

Dissertation 

zur 

Erlangung des Doktorgrades (Dr. rer. nat.) 

der 

Mathematisch-Naturwissenschaftlichen Fakultät 

der 

Rheinischen Friedrich-Wilhelms-Universität Bonn 

vorgelegt von 

Arif Saeed 

aus 

Lahore, Pakistan 

Bonn 2025 



ii 
 

 

 

 

 

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät 

der Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

 

 

 

 

 

 

 

 

 

 

 

Gutachter/Betreuer: Prof. Dr. rer. nat. Heiko Schoof 

Gutachter: Prof. Dr. rer. nat. Jan Hasenauer 

 

 

 

Tag der Promotion: 12.07.2024 

Erscheinungsjahr:  2025 

 

  



iii 
 

  



iv 
 

ABSTRACT OF THE THESIS 

Chlorella is a photosynthetic, eukaryotic microalgae that has received profound 

interest as a prospective feed source for the production of biofuels. For efficient 

biotechnological application, the high light tolerance and thereby accelerated 

growth of some species is of special interest. To uncover the genetic basis of high 

light tolerance, genome metabolic network reconstruction of high light sensitive 

and tolerant strains was performed. 

For this thesis research work, four Chlorella strains are used for a comparative 

analysis. Three strains were high light tolerant while one was high light sensitive. 

The genomes of these algal strains were annotated with gene ontology terms and 

EC numbers by using InterProScan, InterPro2GO and EC2GO mapping. 

With Arabidopsis thaliana as reference genome, ortholog prediction was 

conducted by using OrthoMCL. BLASTP was used for sequence similarity 

analysis, whereas for pathway mapping KEGG Pathways mapping tool was used. 

Pathway coverage of shared and strain-specific genes was analysed. The results 

show that in the Oxidative Phosphorylation pathway there is a missing gene in the 

sensitive strain (Cv11b). This gene belongs to NADH dehydrogenase, Complex-I 

and functions in the transfer of electrons from NADH to the respiratory chain, while 

it is present in tolerant strains. The glycerophospholipid metabolism pathway also 

shows a missing enzyme, PSD3, in the sensitive strain (Cv11b). This gene is 

present in all tolerant strains. Subsequently, synteny analysis was conducted for 

the PSD genomic region. The alignment of Cv264 and Cv11b algal strains showed 
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that PSD3-neighbouring genes were located on contig node-207 of the sensitive 

algal strain Cv11b, however flanking genes to one side of the expected PSD3 

location were found in reverse order and orientation in Cv11b. However, the PSD3 

gene itself could not be mapped to the Cv11b genome sequence. This indicates 

that the genomic region of PSD3 is sequenced and assembled in Cv11b, however 

the PSD3 gene has presumably been deleted. 

These differences in metabolic networks could be candidates for further studies 

regarding their potential to enhance lipid production by using metabolic 

engineering. Especially PSD3 appears to be an interesting target for high light 

tolerance as it may be linked to lipid production and the capacity of membranes to 

maintain function under high light stress. 
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Chapter 1 

Introduction and Literature Review 

1. Microalgae:  

1.1. A Good Source of Biofuel 

Microalgae have been known as a great source of lipids for health metabolites, 

protein and biofuels including vitamins, antioxidants and polyphenols [1]. Chlorella 

species has gathered substantial attention, as for its comparatively high nutritional 

value, its capability to change its metabolites with variations in its growth medium, 

reasonably rapid rates of reproduction and having a thick cell wall that guards its 

nutrients [2].  

A wide range of metabolites can be produced by microalgae (like, Chlorella), even 

with growth under stress environments [3]. It is also established knowledge that 

various types of metabolites can be yielded by different types of microalgae [4]. In 

an optimal growth environment, the relative profiles and concentrations of different 

metabolites in microalgae remain the same. Though, in a sub-optimal growth 

environment, the metabolite profile changes considerably. Algal species use 

various approaches to manage these environmental changes. According to their 

capability to cope with different types of stresses, the microalgae produce a diverse 

range of secondary metabolites to enhance their probability of survival [4]. 
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Several studies regarding the consequences of stress upon the microalgal 

metabolome have been established in literature [5,6]. However, our knowledge 

about microalgal molecular level response to physiological stress is mainly limited 

to model organisms, and the pertinent pathways have also not been fully 

established.  

Likewise, microalgal appearance and size can be altered significantly according to 

the associated types and levels of stress and their environmental conditions. 

Foregoing studies proposed that, depending on different growth and 

environmental conditions, the colour of Chlorella can be altered from green to 

yellow or red, as a result of changes in pigment production [7,8,9,10].  

Comparative transcriptome profiling can help to identify phenotypic details, like the 

effect of stress on the making of metabolites and pigments that play a role to 

microalgae survival [11,12]. Transcriptomic study is an appropriate approach, in a 

microalgal stress response, which offers a preliminary and comprehensive 

assessment of the derived metabolite pathways regulation. 

Up to now, studies have concentrated on metabolite content screening and growth 

experiments, but regarding gene expression have generated partial information, in 

microalgae under stress and normal conditions [13,14,15,16].  

With the identification of multiple new categories of RNA molecules like gene 

regulatory, along with transcriptional regulatory as well as protein based [17], 

transcriptome sequencing can offer a significant approach to find microalgae  
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functional genomics knowledge. Hence, it is essential to study the transcriptomic 

profile along with Chlorella metabolite composition.  

It is significant and well-timed to identify the right prospective of these species and 

to establish the potential for microalgal genetic engineering, because they are 

getting a significant focus as substitute source of biofuel, health supplements and 

food items.  

Global warming and the rising need for energy are a couple of big challenges 

confronting modern-day society. Depending only on fossil fuels to fulfil increasing 

demand of energy is unsustainable, because of growing levels of utilisation and a 

lack of novel sources for these non-renewables. Therefore, this issue has inspired 

researchers to identify unconventional energy sources like biomass, wind, solar, 

and water. 

Biofuels are formed from sugar, cellulosic, starch or lipid-rich substrates, and they 

are good alternatives to liquid fossil fuels. Thus, biofuels are derived from 

feedstocks like cereal crops, involving wheat and corn [18]; sugar crops, like 

sugarcane [19]; energy crops, like switchgrass [20,21]; agricultural wastes, like 

straws [22–25]; and numerous aquatic species. Presently, ethanol is produced 

from sugarcane and corn in significant volumes as a supplemental fuel. Ethanol 

use as a transportation energy results in a decline of emission of greenhouse gas.  
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1.2. Algal Production:  

1.2.1. Effects of Environmental Factors  

Whether in closed photobioreactors or in open ponds, culturing algae 

demands consideration of several environmental conditions. Environmental 

factors such as light, temperature, nutrients and pH level, not only affect 

photosynthesis and rate of growth of the algae but also affect the endeavour 

of cellular composition and metabolism. During photosynthesis, algae 

produce carbohydrates, proteins and lipids, by only using light and nutrients. 

The relative volumes of these metabolic products are closely linked to 

environmental as well as nutrient conditions containing: the intensity and 

amount of CO2 concentrations, sunlight, temperature, and the presence of 

other organisms. 

1.2.2. Effects of Light on Algal Growth 

Light is used as the energy source for the photoautotrophic development 

stage and plants use the energy of light to produce organic compounds (like, 

sugars) from carbon dioxide. The spectrum of light intensity changes with 

sturdy local and seasonal reliance [26]. Intensity of light stimulates algal 

progression through its influence on photosynthesis [27].  
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The algal growth rate is highest at saturation of light intensity and declines in 

both conditions either increase or decrease in intensity of light [28]. According 

to the accessibility of light and an escalation in photosynthetic proficiency, the 

process of photoadaptation in algae leads to alterations in cell properties [29].  

These alterations may occur across various mechanisms like modifications in 

quantities and types of rates of growth, rate of dark respiration, pigments or 

the accessibility of necessary fatty acids [30]. Algae overwhelm light 

constraint by chloroplast membrane desaturation [31]. Intensity of light 

upsurge above drenching edges instigates photoinhibition [32,33]. This is 

because the interruption of the chloroplast lamellae triggered by high light 

strength [34] besides deactivation of enzymes concerned in C2O complex 

[35]. It is like, growth rate of Dunaliella viridis (green algae) declined to sixty 

percent with rise in light concentration from seven hundred to fifteen hundred 

micromole per square meter for each second [32]. 

Intensity of light influences the cellular arrangement of algae. Green alga 

Dunaliella reveals a decline in protein substance and a rise in content of the 

lipid as light intensities rise up to the drenching level [36]. Alike outcomes were 

stated in a study that low-light led to a rise in the protein synthesis ratio [37]. 

High light intensity has been detected to outcome in enhanced polysaccharide 

content in extracellular region, while low light concentration results in more 

protein material [35]. Lack of light was detected to upsurge the entire lipid 

substance of the Dunaliella virdis but decrease sterols, triglycerides, and 

abandoned fatty acids [38].  
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Generally, high light indications impairment in polyunsaturated fatty acids 

oxidation. Several studies have proposed that the lipid substance of a cell and 

polyunsaturated fatty acids is reduced under more intense light [39-41]. 

Contrarily, cells of Nannochloropsis species were shown to have increased 

lipid content but reduced percentage of eicosapentaenoic acid under high light 

[42]. Validating this observed trend, another study described an upsurge in 

unsaturated fatty acids under low light primarily because of a rise in 

eicosapentaenoic acid and reduction in protein matter [30]. Under light- 

restricted growth circumstances, upsurge in polyunsaturated fatty acids is 

linked to a growth of cellular thylakoid membrane [43].  

Additionally, the composition range of light cycles influence algae production. 

Moreover, research assessed the effect of dark and light rotations on the algal 

growth. It is detected that with intensifying the density of photon-flux, growth 

rate rises up to a certain threshold value of photon flux density, after that 

growth rate was declined [44]. It is also described that persistent high-light 

concentrations could be a reason of photoinhibition and minimise efficient use 

of light. Under high light circumstances, efficient use of light may be elevated 

by extending the dark period. This permits the photosynthesis equipment of 

the cell to completely operate and amend the photons into chemical energy 

after capturing them [45].   
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1.3. Systems Biology 

Systems biology is a field of study that links biological systems information with 

computing and mathematical approaches. Systems Biology emphasises on the 

collaboration of the discrete components and it aims to comprehend the whole 

system. One module could be the group of biochemical reactions and other module 

maybe accountable for the metabolic processes that regulate the functionality of 

the cell, like the metabolic network.  

By considering metabolic as well as genetic organisation, we can estimate 

phenotypical characters initiated due to variations of the metabolic network or 

genome. It may facilitate to find essential transporters or enzymes that can be 

prospective targets for new drugs. It can assist the pathways optimisation which 

can be accountable to produce specific compounds for biotechnological purposes.  

This knowledge can be attained by the metabolic network modelling, a practise 

called as metabolic reconstruction. Specifically, by using signals from the genome 

sequence, metabolic reconstruction is the progression of composing a metabolic 

network map.  

A promising methodology of network reconstruction is established by manual 

curation. Researcher for an explicit organism practises various accessible 

resources altogether with literature and experimental outcomes and afterwards 

review manually all the metabolic network annotations. This comprises steps like 

performing laboratory experiments and literature search, to discover proof that 
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accepts or rejects every annotation. It is a very time-consuming procedure. The 

growing pace to sequence a genome of any organism, helps bioinformatics to 

create significant source of information.  

Presently, automatic role allocations are still mostly accomplished using similarity 

sequence approaches. The similarity sequence searches work satisfactory, if an 

annotation of a relevant organism is available already, while for many species, this 

may not be sensitive enough to identify all the enzymes, like as Chlorella species.  

Enzymes can have some more tasks that cannot be signified in sequence 

databases, some practical analogues to other irrelevant proteins catalysing the 

similar reaction, or merely have deviated too far to be detectable. Concisely, further 

remotely linked proteins, where merely specific sequence characters or 

fundamental motifs are preserved, the resemblance between a pair of proteins 

cannot clearly be recognisable by pairwise alignment approaches, not even by 

other more perceptive profile-based techniques [46].  

Due to this difficulty for assignment of certain enzymatic functions, preliminary 

metabolic reconstruction generally harvests networks with many gaps of significant 

reactions for a comprehensive biochemical pathway, though for that no enzyme 

has annotated in the genome. The presence of a gap in a pathway can be because 

of various reasons. It may be initiated by a fault or the gene is not yet or incorrectly 

annotated.  
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In the genomes of microbes, around three hundred pathway gaps are anticipated, 

whereas a large number of the gaps are supposed to be the consequence of a 

failure to find the accurate gene [47].  

 

Figure 1.1: Ideal Algal strain development for Higher Biofuel concentration: 

A workflow representation to develop an ideal algal strain; firstly, an algal strain is 

selected and isolated from the culture, by using serial dilution and plating and 

Micro-pipetting methodologies. Afterwards algal strain’s metabolomics, 

transcriptomics and genomics analysis data is used for the metabolite 

reconstruction [48]. 

To find the lost enzymes that catalyse reactions believed to be present, by using 

a comparative genomic approach [49] where information from intently linked 

genomes is used. While within comparative genomics, some studies are tried to 

discover functionally analogous genes [50]. Other methodologies use Machine 
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Learning practices in order to assess the nominee gene using genomic 

perspective, homology and pathway-based confirmation [51].  

Novel and more accurate approaches for the metabolic pathways are required if 

we have to make complete use of systems biology in finding transporters or 

enzymes [Figure 1.1].  

1.4.  Background Gene and Enzymes 

1.4.1. Enzymes  

The genetic knowledge transferred in cell division is comprised of the 

deoxyribonucleic acid. Some specific fragments of the deoxyribonucleic acid 

sequence, named genes, be able to transcribe to a ribonucleic acid and 

translated to proteins made of amino acids connected by peptide bonds. The 

remaining part of the deoxyribonucleic acid sequence is yet not fully 

comprehended [52].  

Proteins can have various different tasks that makes them accountable 

effectively for all functions of the cell.  

A protein class is termed enzymes. Enzyme proteins have functions to 

catalyse chemical reactions. Virtually all reactions require an enzyme for 

catalysation. The reactions are entitled spontaneous which do not require an 

enzyme. The enzyme works by reducing the minimum energy essential to 
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initiate the reaction, subsequently increasing the rate of the reaction. 

Enzymes, their function play a significant role for metabolic networks.  

1.4.2.  Enzymatic Function Labelling  

Associating an enzyme with a specific task can occasionally be a very 

challenging task. For that it is critical to have an organised enzymatic 

classification system. Presently the two most used classification systems are 

GO terms and EC Numbers.  

1.4.2.1. EC Numbers  

The EC number (Enzyme Commission number) is a numerical as well as 

hierarchical classification pattern for enzymes, established according to the 

chemical reactions they catalyse.  

An enzyme code contains the EC letters followed by four numbers 

connected with dot. Those numbers indicate an increasingly progressive 

classification of the enzyme. The first number defines the following six 

groups of enzymatic functions: 1) Oxidoreductases: comprise all the 

oxidation and reduction reactions, which are symbolised by the handover of 

a hydrogen or oxygen atom and electrons in the molecules. 2) 

Transferases: dependable for the allocation of a functional group, like 

methyl, phosphate, etc. 3) Hydrolases: comprise all the hydrolysis 

reactions, accountable for the cleavage of a compound by addition of water. 

4) Lyases: accountable for cleaving non-hydrolytic chemical bonds. 5) 
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Isomerases: convert one molecule into another, which has precisely the 

similar set of atoms. 6) Ligases: responsible for the chemical bond synthesis 

by breaking down ATP.  

The next number in the EC number notation defines the finer groups of 

reactions until the 4th number, that classifies the substrate level reaction.  

1.4.3. Gene Ontology  

GO terms are a segment of a scheme with the objective of regulating the gene 

and protein annotations within species and diverse data sources [53]. This 

classification scheme also offers a number of tools to access its contents and 

reduces the time needed to search.  

The GO terms divide gene products into three distinct ontologies: 1) cellular 

component, 2) biological process and 3) molecular function. Each individual 

ontology is a directed acyclic graph, a gene product can be allocated to one 

or more GO terms. Due to these pairs of fundamental characters a gene 

associated with a given node is automatically linked to all its inherited nodes.  
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1.5. Structural Domain Classification  

The primary structure or sequence of amino acids of a protein defines its three-

dimensional (3D) conformation. There are two types of patterns within the 3D 

conformation, which compose the secondary structure. Two types are the α-

helices and the β-sheets. Manifold α-helices and β-sheets can join into more 

compact and complex units entitled domains.  

These structures can be represented in diverse proteins and can be connected 

with each other in distinct groups in a single protein called multi-domain proteins 

or alone called single-domain protein, follow-on in different enzymatic tasks. 

Domains are also perceived as evolutionary units. The domains, within a 

multidomain protein, are often functionally and structurally autonomous.  

There are three stages of structural domain classification: 1) fold, 2) superfamily 

and 3) family [54]. Fold is the uppermost stage. It clusters together domains which 

have the identical subordinate structure elements and the identical chain topology.  

Subsequent to the fold, next is the superfamily. This stage clusters together 

domains which have functional and structure proof to share a common 

predecessor. So, in these groups are considered to be the most distant 

homologous genes. The lowermost final stage is called family. This stage groups 

collectively domains with well-defined sequence similarity. Same family domains 

manage to have similar tasks.  
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1.6. Metabolic Network  

A Metabolic Network is a set of biochemical reactions. The reaction’s interaction is 

accountable for the metabolic processes which regulate the cell functions. Usually, 

the reactions denote the nodes of this Metabolic network. For virtually all reactions 

have an enzyme behind catalysis reactions.  

The sets of associated chemical reactions, that convert a preliminary molecule into 

another molecule called product, are termed as metabolic pathways. They 

generally represent the conversion of a main molecule into product. Furthermore, 

the pathways are dependent on each other, taking common molecules and 

reactions.  

As different species have diverse biochemical properties, a particular pathway may 

differ between species or not exist in others species. Some databases gather all 

these different types of biochemical properties and have constructed pathway 

templates that demonstrate the complexity level of the metabolic networks and the 

variations between species. Such pathway templates can be located in KEGG 

(Kyoto Encyclopedia of Genes and Genomes) [55,56] and in RAST (Rapid 

Annotation using Subsystem Technology) [57].  
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1.6.1.  Metabolic Reconstruction  

Metabolic reconstruction is the methodology of constructing an organism’s 

metabolic network map using confirmation from its genome sequence [58]. A 

motivation to make these models better is that more precise metabolic 

networks of parasites and pathogens will allow the discovery of key enzymes 

or transporters that can be prospective targets for new drugs.  

The reconstruction process may be explained as a series of simple steps. 

Subsequently assembling the whole genome sequence, the first step is the 

discovery of the coding sequences of potential genes.  

The approach used to interpret gene sequences can run from the discovery 

of the starting and ending codons, to the consumption of family profiles or 

sequence similarity. After identification of the gene’s coding sequence, the 

predicted protein sequences are compared with the sequences from known 

and closely related genomes for enzymatic annotation where genes appear 

to be functionally relevant. The most common approach, for this step, relies 

on sequence comparison approaches such as BLAST.  

Like this, acknowledged metabolic networks are assembled. The resulting 

steps are time consuming. They are associated to the manual curation of the 

networks and also to the nodes that were created for the missing nodes. Here, 

researchers try to reconcile the conclusive information with the known biology, 

especially with species-specific information [58].  
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1.6.2. Data Sources for Metabolic Networks  

There are numerous databases that assemble and link essential biological 

information altogether, which can be used to curate metabolic networks. The 

KEGG (Kyoto Encyclopedia of Genes and Genome) knowledge base 

[59,60,61] provides an abundance of information of several species about 

biological systems, starting from genes and proteins to molecular wiring 

diagrams of network interactions and reactions. 

Whereas, BRENDA (BRaunschweig ENzyme DAtabase) is an example of a 

more enzyme-specific database [62], which offers several levels of 

information including enzymes’ nomenclature, relation between reactions and 

species specificity, etc for mapping and linking with other metabolic network 

databases.  

There are a number of other databases, which provide details of the 

identification and classification of domains. Moreover, there are also several 

other databases that make use of these above-described databases and 

through Hidden Markov Models (HMM) construct profiles for different 

structural levels. Some of these types of databases are SUPERFAMILY [63], 

Pfam [64], and Gene3D [65].  
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1.6.3. Available Approaches for Metabolic Network 

Reconstruction 

A manual curation-based approach is a reasonably promising approach for 

network reconstruction. However, this procedure just by itself is very time 

consuming. The improving speed of an organism’s genome sequencing offers 

bioinformatics a progressively significant source of information.  

There are various different approaches that can be used to assist with 

metabolic reconstruction. Some approaches cover most of the steps needed 

to construct a metabolic model for example Pathway Tools [66], ERGO [67] 

and RAST [68]. This metabolic reconstruction software combines multiple 

bioinformatic tools that cover the genome and gene sequence, protein 

function annotation, and visualization tools all together with integrated 

databases that assist to curate the metabolic network model.  

However, the availability of a comprehensive annotated genome is 

indispensable, because most of the techniques of network reconstruction start 

with the functional annotation to the known and potential enzymes. 

Some other software use different techniques to annotate sequences, like 

metabolic SearcH And Reconstruction Kit (metaSHARK) [69,70], ERGO and 

RAST. It uses the PRIAM library of its SHARKhunt tool [71], and profile 

models are used as the basis of a search tool to find the DNA sequence 

regions to known enzymes, based on significant similarity.  
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Instead, a very diverse methodology is used by GLIMMER2, it is integrated in 

RAST [72]. Here, the annotation is built by the use of incorporated Markov 

models trained by using curated structured gene data. Yet the annotation is 

presently typically established on sequence similarities, like BLAST [73]. 
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Chapter 2 

Material and Methods 

2. Genome Analysis  

2.1. Annotation and Mapping of Genomes of Chlorella strains  

2.1.1.   InterPro Annotation 

Protein annotation for the analysed Chlorella strains (Chlorella sorokiniana 

211-8k, Chlorella vulgaris 264, Chlorella vulgaris C-1, Chlorella vulgaris 

211-11b [Table 2.1] [111] was assessed by using InterProScan [74]. 

InterProScan mapped genome sequences of algal strains with InterPro IDs, 

protein domains, families and motifs, including Pfam [75], PANTHER [76], 

PRINTS [77], SMART [78], SUPERFAMILY [79] and TIGRFAMs [80]. 

 

Strain Full name Origin Strain 

Cs-8k  Chlorella sorokiniana 211-8k  Austin, USA  High Light Tolerant 

Cv264  Chlorella vulgaris 264  Köthen, Germany  High Light Tolerant 

Cv-C1  Chlorella vulgaris C-1  Arkhangelsk, Russia  High Light Tolerant 

Cv11b  Chlorella vulgaris 211-11b  Delft, The Netherlands  High Light Sensitive 

Table 2.1: List of 4 Chlorella Strains: Cs-8k, Cv264, and Cv-C1 are high light 

tolerant algal strains originally belong to the USA, Germany and Russia 

respectively; while Cv11b is high light sensitive algal strain belonging to the 
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Netherlands. High light tolerant strains showed good growth rate under low light 

as well as high light intensity, while High light sensitive strain showed good 

growth rate only under low light. These algal cultures were grown under the high 

light intensity of 1,000 μmol /m2 /s1. 

  

 

Figure 2.1: Framework designed for this Metabolic Network Reconstruction 

research work: This pictorial illustration explains the workflow methodology, for 

this research work. All the databases and mapping tools, like InterProScan, 

OrthoMCL, Blastp and UniProt, were used to annotate the genome and protein 

sequence data. Then KEGG Pathway Mapping tool was used to generate 

automated drafts of reconstructed metabolic networks, then list of missing genes 

from metabolic pathway was extracted and tried to annotate them with tBlastn 

tool, finally automated drafts of reconstructed metabolic networks were 

generated again.  
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2.1.2. Annotation of Gene Ontology  

Genomic sequencing has made it evident that a large number of genes 

linked to the core biological functions are shared by all eucaryotes [81, 82]. 

Thus, the biological functions of these shared proteins are generally 

predicted by mapping between newly identified protein sequences and 

known functional genes with well-established knowledge of their biological 

roles in a model organism. Therefore, these annotated algal protein 

sequences are mapped with Gene Ontology (GO) terms [83] using an 

updated InterPro2GO mapping file [Figure 2.1] [84]. 

2.1.3.  Annotation of Enzyme Commission (EC) Number 

Mapping of multiple functional annotations can significantly improve 

metabolic network size, particularly for non-model organisms [86]. 

Correspondingly the count of EC numbers mapped with protein sequences 

suggests the size of the metabolic network [85]. Consequently, GO terms 

mapped with algal protein sequences are further linked with EC numbers 

by using the EC2GO mapping file [86]. 

2.2.  Similarity Comparison Between Protein Sequences of Algal 

Strains 

For similarity comparison between algal protein sequences, the OrthoMCL 

software [87] was used, which allows simultaneous classification of global 

relationships in a similarity space. Thus, Orthologous Groups between all 
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Chlorella strains i.e., Cs-8k, Cv264, Cv11b and Cv-C1, were identified with 

OrthoMCL-v2.0.9 [88] by using the protein sequences of annotated genes as 

input. Then the output result files were curated by removing protein sequences 

labelled with ‘No-Group’. 

For visualization of this similarity comparison, a four-way Venn diagram of 

orthologous groups was drawn between the analysed Chlorella strains by using 

the R package VennDiagram v1.6.20 [89].  

2.3.  OrthoMCL Clustering with Reference Genome 

2.3.1. Reference Genomes (Arabidopsis thaliana and Chlorella variabilis) 

In addition, OrthoMCL was run once again including the proteomes of 

Chlorella variabilis, and Arabidopsis thaliana with the Chlorella strains Cs-

8k, Cv264, Cv11b and Cv-C1. 

2.3.2. Comparison Between Algal Strains and Reference Genomes 

The output result files of OrthoMCL were used for comparison between the 

Chlorella strains Cs-8k, Cv264, Cv11b and Cv-C1; and the reference 

genomes of Chlorella variabilis, and Arabidopsis thaliana. 

2.4.  Sequence Analysis by Using Blastp of Algal Strains with 

Reference Genome (Arabidopsis thaliana) 

Sequence similarity searches between predicted genes of four algal strains and 

the database of Arabidopsis thaliana as a reference genome from 
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UniProtKB/Swiss-Prot were carried out with BLASTP v2.3.0+ [90], by setting the 

e-value (expect value) to 1e-6. 

2.4.1. Mapping Of UniProt and KEGG Ids by Using KEGG Mapper 

The output result files of BLASTP were used to extract UniProt gene 

identifiers mapped with the algal strains’ predicted gene ids. Then these 

UniProt identifiers of the four algal strains were mapped with KEGG [91] gene 

ids of Arabidopsis thaliana by using the reference organism-based Convert ID 

[92] tool of KEGG Mapper [93]. 

2.4.2. KEGG Pathway Mapping with Arabidopsis thaliana 

For pathway mapping, the KEGG Pathways mapping tool [94] was used. 

The lists of KEGG gene ids of Arabidopsis thaliana were mapped with 

metabolic pathways including “Carbohydrate metabolism”, “Energy 

metabolism”, “Lipid metabolism”, “Nucleotide metabolism”, “Amino acid 

metabolism”, “Metabolism of other amino acids”, “Glycan biosynthesis and 

metabolism” and “Metabolism of cofactors and vitamins”; while Arabidopsis 

thaliana was used as a reference organism.  

2.5.  Finding Missing Functions with TBLASTN 

2.5.1. Missing Functions in Algal Strains 

Subsequently, lists of mapping and missing genes were extracted from the 

KEGG Mapping tool. Then missing KEGG gene ids of Arabidopsis thaliana 
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were mapped with KEGG Orthology (KO) ids to identify the missing 

functions. 

2.5.2. Algal Proteins (Absent in Arabidopsis) 

Similarly, lists of those predicted genes were also extracted, which were 

present in four algal strains but missing in the Arabidopsis thaliana fasta file 

to identify the different functions. 

2.5.3. Sequence Analysis by Using TBLASTN 

Afterwards, the missing gene list is used to extract genome sequences of 

relevant predicted genes from the genome fasta files for the four algal 

strains. Then, sequence similarity analysis was carried out by using 

tBLASTn and setting the e-value to 1e-6, between these extracted genome 

fasta files and the protein database of Arabidopsis thaliana. This was a 

reference genome from UniProtKB/Swiss-Prot, to compare a protein query 

sequence against the six-frame translations of nucleotide sequences for 

finding homologous protein coding regions in unannotated nucleotide 

sequences.  

2.5.4. Count of Newly Found Functions in Algal Strains 

After sequence similarity analysis with tBLASTn, newly discovered genes 

were extracted from the result files, counted and added into previously 

existing lists of mapping genes. 
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Newly extracted UniProt gene ids were again mapped with KEGG gene ids of 

Arabidopsis thaliana and these new updated lists of KEGG gene ids of 

Arabidopsis thaliana were again mapped with metabolic pathways by using the 

KEGG Pathways mapping tool, while Arabidopsis thaliana was used as a 

reference organism. 

2.6.  Calculating Pathway Coverage for Arabidopsis and Four Algal 

Strains 

The Percentage of pathway coverage was calculated by comparing function 

counts between Arabidopsis and all algal strains, for all pathways, while for 

pathway’s percentage coverage, count of functions found in an algal strain was 

divided by all functions count in a pathway (for all functions of Arabidopsis). 

2.6.1. Pathways and Algal Strains Comparison 

After metabolic pathway mapping, pathway coverage was calculated for 

Arabidopsis thaliana and four algal strains. Missing genes were identified 

and counted for all four algal strains against all metabolic pathways with the 

reference of mapped list of genes of Arabidopsis thaliana. 

2.6.2. Comparison Between Shared and Strain Specific Gene and Function 

Count 

Afterwards, pathway coverage was again calculated for shared and strain 

specific genes and functions (by using KO ids) for all algal strains with pair-
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wise analysis. These lists of shared and strain specific gene and KO ids 

counts were used for comparison between four algal strains against all 

metabolic pathways. 

2.7.  Fischer Test Calculations Between Tolerant and Sensitive 

Algal Strains 

2.7.1. Fisher Test to Verify Difference Between Shared and Strain-Specific 

Gene and KO Ids Count for Cs8k-Cv11b 

The intersection between each shared and strain-specific gene and KO ids’ 

count was built and a Fisher’s exact test was performed in R v3.2.3 [95] to 

test the hypothesis that difference between tolerant and sensitive algal 

strains are significantly enriched (p=0.05).  

 

Fischer’s exact test was calculated for all pathways and for all algal strains 

for: 

• the number of shared (overlapped) proteins between tolerant algal 

strain (Cs-8k) and sensitive algal strain (Cv11b) in a pathway 

• the number of tolerant algal strain (Cs-8k) specific proteins in a 

pathway 

• the number of shared (overlapped) functions (KO) between tolerant 

algal strain (Cs-8k) and sensitive algal strain (Cv11b) in a pathway 

• the number of functions present only in tolerant algal strain (Cs-8k) 

in a pathway 
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2.7.2. Bonferroni and Benjamini-Hochberg (BH (alias FDR)) Correction 

Subsequently, Bonferroni and Benjamini-Hochberg (BH (alias FDR)) 

corrections were implemented to verify the results of Fischer exact tests for 

significant differences. 

 

Figure 2.2: Workflow for Comparison & Verification: This workflow shows the 

steps of metabolic networks comparison, their verification and re-evaluation for 

this research work. Fischer Exact test was used to calculate the statistical 

significance of the variation between HL-tolerant and HL-sensitive strains. Then 

highly significant metabolic networks were selected for further comparison, 

missing genes were again verified by using tBlastn and Blastn tools. Then 

synteny analysis was applied to identify the variant genomic regions, then 

selected gene was further investigated and its missing genomic region was re-

evaluated and analysed by using Integrative Genomic Viewer. 
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2.8.  Identifying Pathways Variation Between Tolerant vs Sensitive 

Strains 

After comparison between tolerant and sensitive strains, pathways were ranked 

according to results of Fischer’s exact test. Then top ranked pathways were 

selected to identify variations between tolerant and sensitive strains, and those 

genes ids were discovered which were different in tolerant and sensitive algal 

strains [Figure 2.2]. 

2.9. Verification of Pathways Variation Between Tolerant vs 

Sensitive Strains 

After identification of differences between tolerant and sensitive strains, these 

variant genes were verified with a sequence similarity check by using tBLASTn 

[96], BLASTn [97]. 

2.9.1. Sequence Analysis by Using tBLASTn (Tolerant vs Sensitive Strains) 

To verify the variation between genes of tolerant and sensitive strains’ 

sequence a similarity check was conducted by using tBLASTn against 

protein sequences of Cs8k and genome sequences of Cv11b for selected 

genes sequences. 
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2.9.2. Sequence Analysis by Using BLASTn (Tolerant vs Sensitive Strains) 

Afterwards, a sequence similarity check was conducted by using BLASTn 

against the genome sequences of Cs8k (with upstream and downstream 

genome) and Cv11b 

2.9.3. Sequence Analysis by Using tBLASTn (Arabidopsis and Sensitive 

Strain) 

Subsequently, a sequence similarity check was conducted by using 

tBLASTn against protein sequences of Arabidopsis and the genome 

sequence of Cv11b.  

2.10. Synteny Analysis 

Synteny analysis refers to synteny as the conservation of blocks of order within 

two sets of chromosomes that are being compared with each other. This analysis 

was conducted to visualize the chromosome regions, which can help to identify 

chromosomal rearrangement processes. That is why, genome sequences of 

selected genes of high ranked pathways were used for synteny analysis and for 

that SimpleSynteny v1.5 [98] was used. 
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2.10.1. Pairwise Synteny Analysis for Selected Nodes of Algal 

Strains to Explore the PSD3 Gene 

Pairwise synteny analysis was done systematically to check the genome 

orientation and positions of the genes. Firstly, without flipping and 

reordering to see their original alignment and later pairwise synteny analysis 

was redone after flipping and reordering the nodes to check the best fit 

orientation between the sequences of these nodes. 

i.Node 117 and 218 of Cs8k and Node 22 and 72 of Cv264  

ii.Node 117 and 218 of Cs8k and Node 5 and Node 68 of CvC1 

iii.Node 117 and 218 of Cs8k and Node 207, 341, 377 and 383 of Cv11b  

iv.Node 22 and 72 of Cv264 and Node 5 and Node 68 of CvC1 

v.Node 22 and 72 of Cv264 and Node 207, 341, 377 and 383 of Cv11b  

vi.Node 5 and 68 of CvC1and Node 207, 341, 377 and 383 of Cv11b  

Subsequently, the neighbouring nodes of Node-341 and Node-383 of Cv11b 

(i.e., Node-342 and Node-382) were extracted and mapped firstly with the 

CvC1 Node 68 and then with the Cv264 Node 72. 

2.11. Re-evaluation of Missing Gene by Synteny Analysis 

2.11.1. Sequence Alignment by Using Contiguous Megablast  

For reassessment and detailed review of the result of sequence alignment 

between all four algal strains and to retry the discovery of PSD3 gene; sequence 

alignment was done again between selected nodes of all algal strains by using 

Blast online available tool, sequence fasta files of genome and proteome were 
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uploaded and contiguous megablast was used to identify highly similar 

sequences.  

Thus, sequence alignment was done for sequences of nodes of CvC1 (i.e., 

NODE_68), Cv264 (i.e., NODE_72) and Cs8k (i.e., NODE_117) with 3 nodes of 

the Cv11b strain (i.e., NODE_207, NODE_383 and NODE_341); sequence 

fasta files of the genome were uploaded and the contiguous megablast tool 

was used to identify highly similar sequences.  

Secondly, if the contiguous megablast tool could not identify highly similar 

sequences, the alignment was done by using the discontinuous megablast 

tool. 

2.11.2. Sequence Analysis by Using TBLASTN and TBLASTX 

TBLASTN compares a protein query sequence to a database of nucleotide 

sequences dynamically translated in all six possible reading frames and is 

used to identify proteins in new, undescribed genomes or to ask whether a 

DNA database encodes a protein that matches your protein query of interest.  

TBLASTX compares the dynamically translated six‐frames of a nucleotide 

query sequence against the dynamically translated six‐frames of a nucleotide 

sequence database. The TBLASTX program is more sensitive and 

computationally intensive than TBLASTN. It is used for a DNA sequence with 

no obvious database matches to identify if it encodes a protein with distant, 

statistically significant database matches in a database of expressed 
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sequence tags and it is therefore useful to reveal genes that encode proteins 

homologous to the query [Figure 2.3]. 

 

 

 

 

Figure 2.3: Finding Algal Genes with TBLASTN sequence Alignment: 

To verify gene annotation, another sequence similarity analysis was carried 

out by using TBLASTN between algal genome fasta files and the protein 

database of Arabidopsis thaliana, and TBLASTX between algal and 

Arabidopsis thaliana genome fasta files. TBLASTN compares a protein 

query sequence to a database of nucleotide sequences dynamically 

translated in all six possible reading frames, while TBLASTX compares the 

dynamically translated six‐frames of a nucleotide query sequence against 

the dynamically translated six‐frames of a nucleotide sequence database, 

and is used to identify proteins in new, undescribed genomes or to ask 

whether a DNA database encodes a protein that matches your protein 

query. 
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In order to investigate the patterns and degree of DNA sequence 

divergence between the Cv11b and CvC1 algal genomes, the neighbouring 

nodes of Node-341 and Node-383 of Cv11b (i.e., Node-342 as a 

neighbouring node of Node-341 and Node-382 as a neighbouring node of 

Node-383 of Cv11b) were extracted and mapped firstly with the CvC1 Node 

68 and then with the Cv264 Node 72 by using tblastn and tblastx. TBLASTN 

operates by translating database nucleotide sequences to hypothetical 

amino acid sequences in all six reading frames and then aligning the 

hypothetical amino acid sequences to the query.  

 

For re-evaluation, the protein sequence file of the PSD3 gene of 

Arabidopsis thaliana was extracted from uniport KB. Moreover, nucleotide 

sequences of 3 relevant Nodes of Cv11b (i.e., Node_207, Node_341 and 

Node_383), Node-117 of Cs8k, Node-72 of Cv264, Node-68 of CvC1 and 

the complete genome of Cv11b were used to create a database. 

Subsequently tblastn was used to map the protein sequence with all the 

above-mentioned nucleotide databases. 

 

Furthermore, nucleotide sequences of Node-117 of Cs8k, Node-72 of 

Cv264, Node-68 of CvC1 were mapped by using tblastx, with the databases 

of 3 relevant Nodes of Cv11b (i.e., Node_207, Node_341 and Node_383) 

and complete genome sequence of Cv11b individually.  
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2.11.3. IGV (Integrative Genomics Viewer) Analysis 

IGV (Integrative Genomics Viewer) (version 2.3) [99,100] was used to figure 

out the micro-collinearity of genomic sequences between all four algal strains 

in the region of the PSD3 gene, and to confirm assembly and synteny, and to 

find possible traces of deletion of the PSD3 gene. 

 

Thus, the sequence of Node117 of the Cs8k genome was explored to identify 

NNN’s series (i.e., the sequencer could not resolve with enough confidence 

about which base was sequenced and assigns letter 'N' instead of A, T, C, G.) 

in the region between base pairs 156912 and 167183. Moreover, Cs8k 

NODE_117 was prepared for IGV analysis to check the annotation for PSD3 

between base pairs 162000 and 173000. 
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Chapter 3 

Results 

3. Genome Analysis  

3.1. Annotation and Mapping of Genomes of Chlorella strains  

3.1.1.  Genomes and Proteomes of Analysed Chlorella Strains  

The initial purpose of this research work was the genetic analysis by 

evaluating similarity between the analysed Chlorella strains, Chlorella 

sorokiniana 211-8k (Cs8k), Chlorella vulgaris 264 (Cv264), Chlorella 

vulgaris C-1 (CvC1), and Chlorella vulgaris 211-11b (Cv11b). 

The genome assemblies of the High Light (HL) tolerant strains Chlorella 

sorokiniana 211-8k (Cs8k), Chlorella vulgaris 264 (Cv264), and Chlorella 

vulgaris C-1 (CvC1), and the HL-sensitive strain Chlorella vulgaris 211-11b 

(Cv11b) were estimated regarding their completeness in comparison to the 

reference genomes of Chlorella variabilis NC64A, and Arabidopsis thaliana 

(Thale cress) [Figure 3.1]. Furthermore, whole genome alignments between 

the strains were performed and the similarity between genomic sequences 

was assessed. 

Thereafter, the genomes of the analysed Chlorella strains were annotated 

using two different genome annotation pipelines. The completeness of 
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genome annotations was assessed for both genome annotation pipelines. 

In addition, the completeness of genome annotations was further 

determined in comparison to the reference genome annotations of Chlorella 

variabilis NC64A, and Arabidopsis thaliana. The predicted proteins were 

grouped into Clusters of Orthologous Groups (COGs) to establish the 

similarity of proteomes between the analysed algae species and the 

selected reference genomes. 

 

 

Figure 3.1: Comparison of different protein sequence count: The 

Chart of comparison shows that HL-tolerant algal strains have more 

protein sequence count (i.e., Cs-8k:14259, Cv-264:14212, and Cv-

C1:14072) than HL-sensitive algal strain (i.e., Cv-11b:11430), while 

protein sequence count for Chlorella variabilis is even less than HL-

sensitive algal strain (i.e., C. variabilis:9791). 
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Protein annotation for the analysed Chlorella strains (Chlorella sorokiniana 

211-8k, Chlorella vulgaris 264, Chlorella vulgaris C-1, Chlorella vulgaris 

211-11b) [111] was assessed by using InterProScan. InterProScan mapped 

genome sequences of algal strains with InterPro IDs, protein domains, 

families and motifs, including Pfam, PANTHER, PRINTS, SMART, 

SUPERFAMILY and TIGRFAMs. 

3.1.2. Algal Genome Mapping and Annotation  

Not all the protein sequences were able to find their mapping InterPro IDs 

and GO terms. Approximately half of them were mapped with GO terms, 

while before that 80% protein sequences were annotated perfectly with 

InterPro identification numbers [Figure 3.2]. 

 

Figure 3.2: Ratio of InterPro and GO annotations: The chart represents 

that all protein sequences of algal strains could not be annotated, with protein 

IDs. Only 80 percent protein sequences are mapped with InterPro IDs while half 

of these annotated protein sequences are linked with GO terms.  
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3.2.  Similarity Comparison Between Protein Sequences of Algal 

Strains 

According to the output result files that are illustrated in the chart below; most of 

the proteins were grouped with the homologs, and only a few were left unassigned 

[Figure 3.3]. 

 

 

Figure 3.3: OrthoMCL: Assign-Group VS No-Group: This chart represents a 

comparison for the protein sequences which are assigned to protein groups by 

OrthoMCL tool. It shows that a very small number of protein sequences could not 

be assigned to any group while majority of them are assigned to a group. 

 

 



39 
 

3.3.  OrthoMCL Clustering with Reference Genome 

3.3.1. Comparison Between Algal Strains 

According to OrthoMCL comparison, the predicted genes of these algal 

strains were sorted into a total number of 13,783 Orthologous Groups (OGs).  

 

Figure 3.4: Venn Diagram showing the shared genome between four 

algal species: This Venn Diagram represents that 7497 orthologous groups 

are shared between all four algal strains, while 12972 orthologous groups 

are shared only between three HL-tolerant algal strains. Additionally, 

genomes of HL-tolerant algal strains are associated with more than 13000 

orthologous groups while genome of HL-sensitive algal strain is only linked 

with 7892 orthologous groups. 

 

The results indicate close phylogenetic relationships between the analysed 

Chlorella strains, especially between the HL-tolerant strains Cs8k, Cv264 
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and CvC1. While 7,497 OGs contained orthologs from all analysed strains, 

the HL-tolerant strains shared a large number of OGs, including 5,475 OGs 

specific to these strains. Cv11b showed the highest number of strain-

specific OGs among these strains (i.e., 218) [Figure 3.4]. 

3.3.2. Comparison Between Algal Strains and Reference Genomes 

The analysed Chlorella strains were compared to the reference proteomes of 

Chlorella variabilis NC64A, and Arabidopsis thaliana. The proteomes of the 

reference strains were included in the analysis of COGs. The OrthoMCL 

results including all strains revealed a total of 18,003 OGs. 

3.4.  Sequence analysis by Using BLASTP of Algal Strains with 

Reference Genome (Arabidopsis thaliana) 

After sequence similarity searches, the lists of KEGG gene ids of Arabidopsis 

thaliana were mapped with metabolic pathways including “Carbohydrate 

metabolism”, “Energy metabolism”, “Lipid metabolism”, “Nucleotide metabolism”, 

“Amino acid metabolism”, “Metabolism of other amino acids”, “Glycan 

biosynthesis and metabolism” and “Metabolism of cofactors and vitamins”; while 

Arabidopsis thaliana was used as a reference organism.  
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Figure 3.5: Pathway Categories and Gene Count of Algal Strains: Pathway 

analysis of all different algal strains displays that the “Amino acid metabolism” 

pathway has maximum variation, whereas the “Carbohydrate metabolism”, “Lipid 

metabolism” and “Metabolism of cofactors and vitamins” pathways have 

moderate variation. However, the “Energy metabolism”, “Glycan biosynthesis and 

metabolism” and “Nucleotide metabolism” pathways have approximately similar 

gene counts. 

According to Pathway categories and the gene count of different algal strain 

analysis, it was revealed that the highest level of variation in gene count was 

observed for the “Amino acid metabolism” pathway, where Cv11b strain has the 

lowest number of gene count. While the “Carbohydrate metabolism”, “Lipid 

metabolism” and “Metabolism of cofactors and vitamins” pathways showed 

moderate variation in gene count for all algal strains. However, the “Energy 
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metabolism”, “Glycan biosynthesis and metabolism” and “Nucleotide metabolism” 

pathways showed approximately similar gene counts for all algal strains [Figure 

3.5]. 

3.5. Finding Missing Functions with TBLASTN 

3.5.1. Missing Functions in Algal Strains 

The result of mapping between KEGG gene ids and KEGG Orthology (KO) 

ids showed that the maximum missing functions i.e., 267 functions, belong 

to the HL-sensitive strain Cv11b. While the HL- tolerant strains have an 

almost similar number of missing functions i.e., 240 functions.  

3.5.2. Algal Proteins (Absent in Arabidopsis) 

The list of functions which were present in algal strains but missing in the 

Arabidopsis thaliana fasta file, represented here that minimum number of 

functions belong to HL-sensitive strain Cv11b. While HL- tolerant strains 

have almost similar number of functions [Figure 3.6]. 



43 
 

 

Figure 3.6: Gene Count of Algal Strains missing in Arabidopsis species: 

This chart shows that all of 4 algal strains HL-tolerant as well as HL-sensitive 

have around 150 genes which are specific to algal genome and could not be 

mapped with the model genome of Arabidopsis species.  

3.5.3. Sequence Analysis by Using TBLASTN 

As TBLASTN compares a protein query sequence against the six-frame 

translations of genome sequences for finding similar protein coding regions, 

therefore that tool helped to annotate several significant genes in 

unannotated genome sequences, which were missed in annotation earlier 

in similarity analysis while using BLASTP. 
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3.5.4. Count of Newly Found Functions in Algal Strains 

Sequence similarity analysis with TBLASTN, assisted to identify 159 

functions for Cv11b, while 133, 134 and 135 identified functions belonged 

to CvC1, Cv264 and Cs8k respectively [Figure 3.7].  

 

Figure 3.7: Count of Missing Genes in Algal Strains:  Sequence similarity 

analysis with TBLASTN tool supported to annotate around 134 and 159 new 

genes for HL-tolerant and HL-sensitive algal strains respectively. 

3.6. Calculating Pathway Coverage for Arabidopsis and Four Algal 

Strains 

Pathway coverage for shared and strain specific genes and functions (by using 

KO ids) for all algal strains, demonstrated that highest number of shared and algal 

specific genes were associated with Carbohydrate Metabolism Pathways. 
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Whereas the algal strain Cs8k has more strain specific genes than the algal strain 

Cv11b [Figure 3.8]. 

 
 

Figure 3.8: Comparison between shared and strain specific gene count: 

This chart represents pathway analysis by comparing shared and strain specific 

gene count for HL-tolerant (Cs-8k) and HL-sensitive (Cv-11b) algal strains, where 

blue bars are presenting shared gene IDs, while yellow and green bars are 

showing strain specific gene count for HL-tolerant (Cs-8k) and HL-sensitive (Cv-

11b) algal strains respectively. 
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Figure 3.9: Comparison between shared and strain specific KO terms 

count: This chart represents pathway analysis by comparing shared and strain 

specific KEGG Orthology (KO) IDs for HL-tolerant (Cs-8k) and HL-sensitive (Cv-

11b) algal strains, where blue bars are presenting shared KO IDs, while yellow 

and green bars are showing strain specific KO IDs for HL-tolerant (Cs-8k) and 

HL-sensitive (Cv-11b) algal strains respectively. 

 

The results are showing that along with shared genes, there are a large number of 

algal strain specific genes but when these strain specific genes were mapped with 

the KO functions then the number of algal strain specific functions were reduced 

remarkably. Moreover, some notable algal specific functions belonged to HL-

tolerant strain Cs8k, while the algal specific functions linked to HL-sensitive strain 

Cv11b are missing. Thus, even though both strains have different gene set but still 

these genes belong to the same KO functions [Figure 3.9]. 
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3.7.  Fischer Test Calculations Between Tolerant and Sensitive 

Algal Strains 

3.7.1. Fisher Test to Verify Difference Between Shared and Strain-Specific 

Gene IDs Count for Cs8k-Cv11b 

According to Fischer’s exact test, three top ranked pathways were Cysteine 

and methionine metabolism, Glycerophospholipid metabolism and 

Galactose metabolism, with significant p-value i.e., < 0.05. Significant p-

value result for these pathways is evidence of the hypothesis approval 

[Figure 3.10]. Thus, according to the hypothesis these pathways have shown 

the significant difference between genes of HL-tolerant and HL-sensitive 

algal strains [Figure 3.11]. 

 

 

Figure 3.10: A Ranked List of Metabolic Pathways: A table showing the 

ranked list of Metabolic Pathways with p-values to measure the significant 

difference between genes of HL-tolerant and HL-sensitive algal strains, where 

Cysteine and methionine metabolism pathway of Amino Acid Metabolism is top 

of the list followed by Glycerophospholipid metabolism of Lipid metabolism.  
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Figure 3.11: Graph of Metabolic Pathways: Graph showing p-values for a list 

of Metabolic Pathways to measure the significant difference between genes of 

HL-tolerant and HL-sensitive algal strains. 

 

3.7.2. Bonferroni and Benjamini-Hochberg (BH (alias FDR)) Correction 

The following plot of the Bonferroni and the Benjamini-Hochberg 

corrections, between Fischer exact test p-values and adjusted p-values, 

demonstrates that Bonferroni method is more conservative than the 

Benjamini-Hochberg method. The Bonferroni’s adjusted p-values approach 

1.0 very abruptly when the Fischer exact test p-values increase [Figure 

3.12]. 
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Figure 3.12: Graph showing the Bonferroni and Benjamini-Hochberg corrections 

of Fischer exact test: This plot shows variance between two distinct multi-test 

correction methods, i.e. The Bonferroni and the Benjamini-Hochberg corrections, 

between Fischer exact test p-values and adjusted p-values. 

  

0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Fisher Test p−value

A
d
ju

st
e

d
 p

−
va

lu
e

Bonferroni

BH



50 
 

3.8.  Identifying Pathways Variation Between Tolerant and 

Sensitive Strains 

From the ranked pathway list, four pathways were selected based on their 

relevancy with the lipid production. 

3.8.1. Oxidative Phosphorylation Pathway 

In Energy metabolism, Oxidative Phosphorylation pathway is showing a missing 

gene in sensitive strain (Cv11b) this gene belongs to NADH dehydrogenase 

(NDUA1). This gene is present in tolerant strains [Figure 3.13]. 

 

Figure 3.13: Oxidative Phosphorylation Pathway: This demonstration shows 

Comparison of Oxidative Phosphorylation pathway mapping with genomes of HL-

Tolerant as well as with HL-Sensitive Algal Strains. Where green shaded genes are 

 HL-Sensitive Algal Strain  HL-Tolerant Algal Strain 
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present in the reference genome while red font represents genes’ presence in algal 

genome.  

 

3.8.2. Sulfur Metabolism Pathway 

In Energy metabolism, Sulfur metabolism pathway is showing a missing gene in 

sensitive strain (Cv11b) This missing enzyme is linked to a gene, SOX (Sulfite 

oxidase). This gene is present in tolerant strains [Figure 3.14]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Sulfur metabolism Pathway: This demonstration shows 

Comparison of Sulfur metabolism pathway mapping with genomes of HL-

Tolerant as well as with HL-Sensitive Algal Strains. Where green shaded genes 

are present in the reference genome while red font represents genes’ presence 

in algal genome. 

 HL-Tolerant Algal Strain  HL-Sensitive Algal Strain 
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3.8.3. Glycerophospholipid Metabolism 

 

In Lipid metabolism, Glycerophospholipid metabolism pathway is also showing a 

missing gene in sensitive strain (Cv11b). This missing enzyme is linked to three 

genes, PSD1, PSD2 and PSD3. PSD3 (Phosphatidyl Serine Decarboxylase) gene 

is present in tolerant strains [Figure 3.15].  

 

  

Figure 3.15: Glycerophospholipid metabolism Pathway: This demonstration 

shows Comparison of Glycerophospholipid metabolism pathway mapping with 

genomes of HL-Tolerant as well as with HL-Sensitive Algal Strains. Where green 

shaded genes are present in the reference genome while red font represents 

genes’ presence in algal genome. 

 HL-Tolerant Algal Strain  HL-Sensitive Algal Strain 
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3.8.4. Sphingolipid Metabolism 

In Lipid metabolism, Sphingolipid metabolism pathway is also showing a missing 

gene in sensitive strain (Cv11b). This missing enzyme is linked to ACD5 

(Accelerated Cell Death 5) gene, gene is present in tolerant strains [Figure 3.16]. 

 

Figure 3.16: Sphingolipid metabolism Pathway: This demonstration 

shows Comparison of Sphingolipid metabolism pathway mapping with 

 HL-Tolerant Algal Strain 

 HL-Sensitive Algal Strain 
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genomes of HL-Tolerant as well as with HL-Sensitive Algal Strains. Where 

green shaded genes are present in the reference genome while red font 

represents genes’ presence in algal genome. 

3.9. Verification Pathways Variation Between Tolerant vs 

Sensitive Strains 

This verification process between HL tolerant and HL sensitive genome, by using 

TBLASTN, revealed presence of some missing genes like SUOX (Sulfite oxidase) 

[Figure 3.17] and ACD5 gene (Accelerated Cell Death 5) [Figure 3.18] in sensitive 

strain (Cv11b). As PSD1 and PSD2 gene could not be mapped in tolerant 

genomes, PSD3 gene was selected for further investigation. 

 

Figure 3.17: Blast query result of SOX (Sulfite oxidase) gene and Cv11b 

genome: The verification process of HL sensitive genome mapping with HL-

tolerant gene, by using TBLASTN tool, revealed the presence of earlier missing 

gene SUOX (Sulfite oxidase). 
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Figure 3.18: Blast query result of CERK (ACD5 gene (Diacylglycerol kinase 

family protein)) gene and Cv11b genome: The verification process of HL 

sensitive genome mapping with HL-tolerant gene, by using TBLASTN tool, 

revealed the presence of earlier missing gene ACD5 (CERK) gene (Accelerated 

Cell Death 5) 

 

Figure 3.19: Blast query result of NADH dehydrogenase 1 alpha 

subcomplex subunit 1 and Cv11b genome: The verification process of HL 

sensitive genome mapping with HL-tolerant gene, by using TBLASTN tool, 

confirmed the absence of NDUA1 gene. 
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Figure 3.20: Blast query result of PSD1_ARATH and Cv11b genome: The 

verification process of HL sensitive genome mapping with HL-tolerant gene, by 

using TBLASTN tool, confirmed the absence of PSD1 gene. 

 

Figure 3.21: Blast query result of PSD2_ARATH and Cv11b genome: The 

verification process of HL sensitive genome mapping with HL-tolerant gene, by 

using TBLASTN tool, confirmed the absence of PSD2 gene. 
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Figure 3.22: Blast query result of PSD3_ARATH and Cv11b genome: The 

verification process of HL sensitive genome mapping with HL-tolerant gene, by 

using TBLASTN tool, confirmed the absence of PSD3 gene. 

 

 

 

 

 

 

 

 

Table 3.1: List of the most significant genes and their presence after verification 

 

Conclusively, that NADH dehydrogenase and PSD genes could not be 

identified in Cv11b in the BLAST searches [Table 3.1]. 

Genes HL-Tolerant Algal Strains HL-Sensitive Algal Strains 

PSD1   

PSD2   

PSD3 ✓  

NDUA1 ✓  

SUOX ✓ ✓ 

ACD5 ✓ ✓ 
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3.10. Synteny Analysis 

To confirm the absence of these genes, the genomic locus where they would 

be expected based on synteny was inspected. Disruption of synteny could be 

due to contig rearrangement processes such as: 

• Translocation, inversion, contig fusion, and breakage;  

• Gene, segment, and contig duplication and loss;  

• Polyploidization and return to diploidy;  

Synteny analysis assists to identify missing and duplicating genomic regions. 

It also supports to reveal inversion or deleted segments. The contigs of HL-

sensitive strain Cv11b were mapped with the contigs of all HL-tolerant strains 

Cs8k, Cv264 and CvC1 in search of PSD3 gene. All these depictions are 

generated by synteny analysis tool SimpleSynteny v1.5 [98]. Where matching 

genes are linked with same colour lines, while change in gene direction is 

represented by turning arrow. 

 

Figure 3.23: Synteny analysis for PSD3 gene: This contig mapping depiction 

shows the comparison between two algal strains (i.e., Cv264 and Cv11b) with 

matching genome contigs. Where PSD3 gene is visible on the Node_72 of 

Cv264 algal strain while this gene is missing in Cv11b contigs. 
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According to this synteny analysis, PSD3 gene was visible on the Node_72 of 

Cv264 algal strain [Figure 3.23]. While, CvC1 contig showed PSD3 gene location 

on Node_68 [Figure 3.24]. However, contigs of Cs8k algal strain displayed that 

PSD3 gene is located on Node_117 [Figure 3.25]. Nonetheless, PSD3 gene could 

not be mapped on the contigs of Cv11b in all these analytical figures.  

 

 
  

Figure 3.24: Synteny analysis for PSD3 gene: This contig mapping depiction 

shows the comparison between two algal strains (i.e., CvC1 and Cv11b) with 

matching genome contigs. This analysis shows that PSD3 gene location on 

Node_68 of CvC1 contig. Whereas no mapping of this gene is visible with Cv11b 

contigs.  

 

Figure 3.25: Synteny analysis for PSD3 gene: This contig mapping depiction 

shows the comparison between two algal strains (i.e., Cs8k and Cv11b) with 

matching genome contigs. Contigs of Cs8k algal strain displayed that PSD3 gene 

is located on Node_117. However, no mapping is visible with Cv11b contigs.  
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Conversely, contigs of all algal strains Cv264, CvC1, Cs8k and Cv11b were 

mapped together [Figure 3.26], according to the synteny analysis, PSD3 gene was 

visible on the contigs of all HL-tolerant algal strains Cv264, CvC1 and Cs8k. While 

this gene could not be mapped in Cv11b, HL-Sensitive algal genome [Figure 3.26]. 

 

  

Figure 3.26: Synteny analysis for PSD3 gene: This contig mapping depiction 

shows the comparison among four different algal strains (i.e., Cs8k, Cv264, 

CvC1, and Cv11b) with matching genome contigs. This analysis shows PSD3 

gene is visible on the contigs of HL-tolerant Cv264, CvC1 and Cs8k algal strains. 

While this gene could not be mapped in Cv11b. It also shows the alignment of 

contiguous genes  

This analysis also revealed that neighbouring genes of PSD3 genomic region are 

visible on the contig (i.e., Node_72) of Cv264 algal strain. While comparing this 

contig with CvC1 algal strain showed that adjacent genes are located on a contig 

(i.e., Node_68) but their direction and positions of some genes are changed. 
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However, comparing this contig with Cs8k algal strain showed that neighbouring 

genes are located on two different contigs (i.e., Node_117 and Node_218); 

moreover, their direction and positions are also changed. While Cv11b contigs 

showed that contiguous genes are located on four different contigs (i.e., 

Node_207, Node_341, Node_377 and Node_383); additionally, their direction and 

positions are also changed. However, PSD3 gene could not mapped in Cv11b, 

HL-Sensitive algal genome. 

 

3.10.1. Pairwise Synteny Analysis for Selected Nodes of Algal 

Strains to Explore the PSD3 Gene 

This pairwise synteny analysis of Cv264, CvC1, Cs8k and Cv11b was generated 

according to the sequence order of the genome and then the nodes were 

reordered and flipped to check and investigate the better-aligned mapping 

between genome contigs. 

3.10.1.1. Cs8k vs Cv264 Contigs  

Pairwise synteny analysis between HL-tolerant strains Cs8k and Cv264, 

conducted without flipping or reordering their contigs, revealed that the genome 

regions were generally well aligned. However, the orientation of many genes 

was reversed, although the PSD3 gene aligned well on the corresponding 

contigs of both HL-tolerant strains.  
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After reordering the contigs of strain Cv264, the alignment improved further. 

Matching genes were connected by lines of the same colour, while changes in 

gene orientation were indicated by curved arrows. Notably, one gene, 

4CLLA_ARATH, from strain Cs8k could not be located near its neighbouring 

genes in strain Cv264 [Figure 3.27]. 

 

 

Figure 3.27: Synteny Cs8k vs Cv264 Contigs: This contig mapping depiction 

shows the comparison between Cs8k and Cv264, with matching genome contigs, 

after reordering of Cv264 contigs. PSD3 gene is well aligned and mapped 

between the contigs of both HL-tolerant strains. 

 

3.10.1.2. Cs8k vs CvC1 Contigs 

Pair-wise synteny analysis between HL-tolerant strains Cs8k and CvC1, 

without flipping and reordering of their contigs, proposed that contigs were 

aligned but the direction of multiple genes was reversed, while PSD3 gene was 

reasonably mapped on both HL-tolerant strains’ contigs. 

Subsequently, after flipping CvC1 node 68 and reordering of CvC1 contigs, 

genome region was very well aligned; however, 4CLLA_ARATH and 
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ASHR1_ARATH genes of Cs8k were located inversely without their vicinity on 

Cv264 contigs [Figure 3.28]. 

 

Figure 3.28: Synteny Cs8k vs CvC1 Contigs: This contig mapping depiction 

shows the comparison between Cs8k and CvC1, with matching genome contigs, 

after flipping Node 68 and reordering of CVC1 contigs. Where PSD3 gene was 

reasonably mapped on both HL-tolerant strains’ contigs. 

 

3.10.1.3. Cs8k vs Cv11b Contigs 

Pair-wise synteny analysis between HL-tolerant strain Cs8k and HL-sensitive 

strain Cv11b, without flipping and reordering of their contigs, anticipated that 

genes of Cs8k node 117 were dispersed on different contigs of Cv11b and the 

direction of many genes was reversed; however, it was evident in the synteny 

representation that PSD3 gene was not mapped between HL-tolerant and HL-

sensitive strains. Successively, flipping of Cv11b node 207 and reordering of 

Cv11b contigs assisted to align these genomic regions in a better way.  

Next synteny analysis was conducted by flipping both Cv11b nodes 207 and 

377 and reordering of Cv11b contigs; and later on, by flipping three Cv11b 
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nodes 207, 377 and 341 and reordering of Cv11b contigs [Figure 3.29]. These 

rearrangements aided to enhance orientation between these genomic regions. 

 

 

Figure 3.29: Synteny Cs8k vs Cv11b Contigs: This contig mapping depiction 

shows the comparison between Cs8k and Cv11b, with matching genome contigs, 

after flipping Nodes 377 and 341 and reordering of Cv11b contigs. The 

reorganization aided for better orientation between these genomic regions. 

 

3.10.1.4. Cv264 vs CvC1 Contigs 

A pair-wise synteny analysis between HL-tolerant strains Cv264 and CvC1, 

without flipping and reordering of their contigs, projected that genes of Cv264 

node 72 were very well aligned with CvC1 node 68 except they were aligned in 

reverse order, while PSD3 gene was reasonably brought into link on both HL-

tolerant strains’ contigs. Continually, flipping of Cv264 node 72 aided to align 

these genomic regions in a better way.  

However, later synteny analysis was conducted by flipping both CvC1 nodes 5 

and 68 and reordering of Cv264 and Cv11b contigs [Figure 3.30]. These 
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rearrangements revealed a straight mapping orientation of these genomic 

regions. 

 

 

Figure 3.30: Synteny Cv264 vs CvC1 Contigs: This contig mapping depiction 

shows the comparison between Cv264 and CvC1, with matching genome 

contigs, after flipping Nodes 5 and 68 and reordering of Cv264 and CvC1 

contigs. The readjustment revealed a straight mapping orientation between the 

genomic regions of Cv264 and CvC1. 

 

3.10.1.5. Cv264 vs Cv11b Contigs 

Subsequently, pair-wise synteny analysis between HL-tolerant strain Cv264 

and HL-sensitive strain Cv11b, without flipping and reordering of their contigs, 

projected that genes of Cv264 node 72 were dispersed on different contigs of 

Cv11b and the direction of few genes was reversed, manifestly PSD3 gene’s 

traces were not found on HL-sensitive strain contigs. Continuously, reordering 

of Cv264 contigs aligned these genomic regions in a better approach.  
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Afterwards, synteny analysis was managed by aligning Cv11b nodes 341 and 

383 and against Cv264 node 72 contigs [Figure 3.31]. These readjustments 

facilitated to align these genomic regions with better coordination. 

 

 

Figure 3.31: Synteny of Cv11b (Nodes 341, and 383) vs Cv264 (Node 72) 

Contigs: This contig mapping depiction shows the comparison between Cv264 

Node 72 and Cv11b Nodes 341 and 383, with matching genome contigs, after 

reordering of Cv264 contig. This mapping revealed that contiguous genes of 

PSD3 gene are dispersed on two different contigs of Cv11b. 

 

3.10.1.6. CvC1 vs Cv11b Contigs 

Consequently, pair-wise synteny analysis between HL-tolerant strain CvC1 and 

HL-sensitive strain Cv11b, without flipping and reordering of their contigs, 

presented that genes of CvC1 node 68 were dispersed on multiple contigs of 

Cv11b and the direction of many genes was reversed, where it is obvious that 

PSD3 gene was not identified on HL-sensitive strain’s contigs. Similarly, 

flipping of Cv11b nodes 341 and 377 and reordering of Cv11b contigs brought 

into line these genomic regions with few genes in reverse order.  
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Then, after flipping Cv11b nodes 383, 207 and 377 and reordering of Cv11b 

contigs. Successively, Cv11b nodes 341 and 383 were lined up against Cs8k 

node 68 to explore orientation of these genomic regions entirely [Figure 3.32]. 

 

 

Figure 3.32: Synteny of Cv11b (Nodes 341, and 383) vs CvC1 (Node 68) 

Contigs: This contig mapping depiction shows the comparison between CvC1 

Node 68 and Cv11b Nodes 341and 383, with matching genome contigs. This 

illustration disclosed that neighbouring genes of PSD3 genes are not well aligned 

between these contigs. 

3.10.2. Mapping of Cv264 with Cv11b Nodes 

3.10.2.1. Synteny of Cv11b vs Cv264 Contigs 

Neighbouring genomic regions of HL-sensitive strain Cv11b nodes 207, 

341, 342, 377, 382 and 383 were further explored by positioning them 

against Cv264 nodes 22 and 72 contigs [Figure 3.33]. This investigation 

revealed that Cv11b nodes 342 and 382 were not mapped with genomic 

region of Cv264. Moreover, no trace of PSD3 gene was discovered on 

Cv11b contigs. 
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Figure 3.33: Synteny of Cv11b vs Cv264 Contigs: This contig mapping 

depiction shows the comparison between Cv264 and Cv11b Nodes 207, 341, 

342, 377, 382 and 383. This analysis showed nice alignment of neighbouring 

genes of PSD3 gene located on Cv264 contig with multiple contigs of Cv11b.  

3.10.2.2. Synteny of Cv264 (Node 72) and Cv11b (Node 207) 

Mapping of node 72 of Cv264 and node 207 of Cv11b showed that PSD3 

neighbouring genes located on node 72 of Cv264 is mapped in a reverse order 

with contig node 207 of Cv11b.  Moreover, it can be anticipated that the 

genomic region of PSD3 gene is a part of deleted genomic region. Likewise, a 

very small genomic region is mapped with HACL_ARATH gene [Figure 3.34]. 

 

Figure 3.34: Synteny of Node 72 of Cv264 and Node 207 of Cv11b: This 

contig mapping depiction shows the comparison between Cv264 Node 72 and 

Cv11b Node 207. This figure uncovers that PSD3 adjacent genes located on 

node 72 of Cv264 is mapped in a reverse order with node 207 of Cv11b contig. 
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3.11. Re-evaluation of Missing Genomic Region by Blast and 

Synteny Analyses 

3.11.1. Sequence Alignment by Using TBLASTN and TBLASTX 

Sequence alignment between selected nodes of CvC1 strain (i.e., NODE_68) and 

Cv11b strain (i.e., NODE_207, NODE_383 and NODE_341); with contiguous 

megablast alignment showed significant results due to high similarity between 

sequences with very significant e-values and bit scores [Figure 3.35]. Likewise, 

sequence alignment between nodes of Cv264 strain (i.e., NODE_72) and Cv11b strain 

(i.e., NODE_207, NODE_383 and NODE_341) by using contiguous megablast also 

showed high similarity between sequences [Figure 3.36]. 

 

 

Figure 3.35: BLASTN Alignment between CvC1 NODE 68 and Cv11b NODES 

207, 383, and 341 

 

Figure 3.36: BLASTN Alignment between Cv264 NODE 72 and Cv11b 

NODES 207, 383, and 341 
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While, sequence alignment between nodes of Cs8k strain (i.e., NODE_117) and Cv11b 

strain (i.e., NODE_207, NODE_383 and NODE_341) by using contiguous 

megablast indicated that there is no significant similarity found [Figure 3.37]. Then 

this alignment was done by using discontinuous megablast, which showed 

moderate result with dissimilarities in alignment. Which revealed that sequence 

alignment has many dissimilarities between the nodes of Cs8k and Cv11b strains 

[Figure 3.38]. 

 

 

 

Figure 3.37: MEGABLAST Alignment between Cs8k NODE 117 and Cv11b 

NODE 207, 383 and 341 (With contiguous megablast) 

 
 

 
Figure 3.38: BLASTN Alignment between Cs8k NODE 117 and Cv11b NODE 

207, 383 and 341 (With discontiguous megablast) 
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3.11.2. Sequence Alignment by Using TBLASTN and TBLASTX 

3.11.2.1. Sequence Alignment with TBLASTN 

Sequence alignment between PSD3_ARATH protein sequence and Cs8k 

NODE_117 by using TBLASTN showed significant e-value 3e-09 [Figure 3.39], 

while Sequence alignment between PSD3_ARATH protein sequence and 

Cv264 NODE_72 showed significant e-value 4e-09 [Figure 3.40], and finally 

sequence alignment between PSD3_ARATH protein sequence and CvC1 

NODE_68 by using TBLASTN also showed significant e-value 4e-09 [Figure 

3.41]. While bit scores of all these alignments were 53.1. 

 

 

Figure 3.39: Alignment result of TBLASTN for PSD3_ARATH protein 

sequence against Cs8k NODE 117 
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Figure 3.40: Alignment result of TBLASTN for PSD3_ARATH protein 

sequence against Cv264 NODE 72 

 

 
 

Figure 3.41: Alignment result of TBLASTN for PSD3_ARATH protein 

sequence against CvC1 NODE 68 

 

However, to the contrary sequence alignment between PSD3_ARATH 

protein sequence and Cv11b NODE_383 by using TBLASTN showed 

insignificant e-value (i.e., 0.99) and score (bit score = 24.6) [Figure 3.42]. 
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Figure 3.42: Alignment result of TBLASTN for PSD3_ARATH protein 

sequence against Cv11b NODE 383 

 

3.11.2.2.  Sequence Alignment with TBLASTX 

Since no similarity match to the PSD3 gene region could be found in Cv11b 

sequences using TBLASTN, the search was repeated on the protein coding 

level using TBLASTX. Correspondingly, sequence alignment of 

CvC1_NODE_68 and Cv264_NODE_72 genome sequences and against 

Cv11b NODE_207, NODE_383 and NODE_341 by using TBLASTX 

showed a significant e-value and score (bit score) [Figure 3.43, 3.44], while 

on the other hand sequence alignment between Cs8k_NODE_117 genome 

sequence and Cv11b NODE_207, NODE_383 and NODE_341 by using 

TBLASTX showed relatively moderate e-value and bit score [Figure 3.45]. 
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Figure 3.43: Alignment result of TBLASTX CvC1 NODE 68 against Cv11b 

NODE 207, 383 and 341 

 

 

Figure 3.44: Alignment result of TBLASTX Cv264 NODE 72 against Cv11b 

NODE 207, 383 and 341 
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Figure 3.45: Alignment result of TBLASTX Cs8k NODE 117 against Cv11b 

NODE 207, 383 and 341 

 
 

Consequently, alignment of Cv264 and Cv11b strains showed that PSD3 

neighbouring genes were located on sensitive algal strain Cv11b in a reverse order 

on the contig of node-207, while the PSD3 gene could not be mapped to the Cv11b 

genome sequence. So, while the genomic neighbourhood of the PSD3 locus can 

be found in Cv11b and shows synteny, the PSD3 gene itself could not be found 

and appears to be deleted [Figure 3.46].
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3.11.3. Synteny Analysis Diagram of Selected Nodes of All 4 Algal Strains 

 

Figure 3.46: Synteny analysis diagram of selected nodes of algal strains after reordering and flipping the 

nodes to investigate the traces of PSD3 gene: The Synteny depiction shows the comparison of four different 

algal strains (i.e., Cv264, CvC1, Cs8k and Cv11b) with multiple contigs 



77 
 

3.11.4. IGV (Integrative Genomics Viewer) Analysis 

The Node117 sequence of Cs8k genome in the region between 156912 and 167183 was scrutinised by using 

IGV (Integrative Genomics Viewer), to discover any sequencing or assembly problems such as NNNN sequence. 

IGV analysis showed that there is no such evidence found, thus no NNN region identified [Figure 3.47, 3.48]. 

 

 

 

Figure 3.47: Cs8k NODE_117 to check the NNN sequence between 156912 and 167183 base pairs 

 

Figure 3.48: Cs8k NODE_117 to check the annotation for PSD3 between 162000 and 173000 base pairs 

(Cs8k_g9456.t1 → PSD3_ARATH) 
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3.11.4.1. IGV (Integrative Genomics Viewer) Analysis Between Cv264 and Cv11b 

 
 

Figure 3.49: IGV-Mapping for Node_72 of Cv264 algal strain 

 

 

 

 

Figure 3.50: IGV-Mapping for Node_207 of Cv11b algal strain 
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3.11.5. Diagrammatic Representation of IGV Analysis Between Cv264 and Cv11b 
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Figure 3.51: Diagrammatic representation of IGV mapping between Nodes of 2 different algal strains Cv264-Node 72 

(tolerant) and Cv11b-Node 207 (sensitive)
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Diagrammatic representation of the above figure [Figure 3.51], summarizes the 

findings from synteny, alignment and IGV analyses. Node 207 in Cv11b shows 

syntenic genes that correspond to the genes flanking PSD3 in Cv264, but no 

evidence of a PSD3 sequence. Some rearrangements are detected that could be 

a consequence of the genomic rearrangement that led to deletion of the PSD3 

gene. There is no evidence of assembly artefacts, however these cannot be 

excluded [Figure 3.49, 3.50, and 3.51]. 
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Chapter 4 

Conclusion and Discussion 

The aim of this research work was to systematically do a comparative genome 

analysis for four algal strains of Chlorella species (including one Highlight sensitive 

Cv11b and three Highlight tolerant strains Cs8k, Cv264 and CvC1), by applying 

metabolic network reconstruction methodology; to identify the discrepancies and 

similarities between tolerant and sensitive algal strains and to figure out the causal 

genes for these differences. Which could be metabolic processes or relevant 

candidate genes that allow the tolerant strain to grow in high light stress 

conditions? 

Genome comparison identified that tolerant algal strains have more genes count 

and gene functions in comparison to the sensitive strain [Figure 3.1]. Moreover, 

OrthoMCL results revealed that genome of the sensitive strain has much less 

orthologous groups than the tolerant strains [Figure 3.4].  

An evolutionary process, known as regressive evolution, suggests that a species 

can gradually lose certain genes, typically in response to changes in its 

environment. Genes that become unnecessary or even disadvantageous may be 

discarded over time. This idea supports the "less is more" hypothesis, which 

proposes that gene loss can be beneficial, paving the way for new adaptations and 

potentially enhancing an organism's overall fitness [109]. 
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Here we can hypothesize that the sensitive strain has been adapted to much milder 

conditions. In this adaptation process it has lost genes that were necessary to react 

to specific stresses. After several generations the sensitive strain lost many genes 

due to the lack of stress or selection pressure. However, additional genes in the 

pathways are found in all the tolerant strains. 

Zhang et al.  endorsed in a recent study that a tolerant algal strain has a larger 

genome and more genes count inferring adaptive alterations under environmental 

stresses [110]. Thus, this will lead to another hypothesis that likewise a sensitive 

strain would not only be sensitive to high light stress but it must be more sensitive 

to other stresses, like salt, heat and cold stress due to loss of gene functions [110]. 

Sequence similarity searches were carried out with BLASTP, between protein 

sequences of four algal strains and the database of Arabidopsis thaliana as a 

reference genome. Then KEGG Pathways mapping tool was used to map the 

KEGG gene identifiers of the algal strains with metabolic pathways; by using 

reference pathways of Arabidopsis thaliana as a template. 

There were some enzymes which were missing in the metabolic pathway 

comparison. Thus, to ensure the completeness of the metabolic network, a more 

comprehensive sequence similarity analysis was carried out by using TBLASTN, 

between the algal genome sequences and the protein sequences of Arabidopsis 

thaliana, to compare a protein query sequence against the six-frame translations 

of nucleotide sequences for finding homologous protein coding regions in 
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unannotated nucleotide sequences. Subsequently, algal genes were mapped 

including new found genes with metabolic pathways. Newly extracted genes 

helped to close the gap between the algal strains and reference genome.   

After extracting the similar and diverse gene lists from the algal strain’s similarity 

comparison, we tried to validate the disparity by using Fischer’s exact test 

between shared and strain-specific genes of tolerant and sensitive strains. 

Fischer’s exact test assisted to identify statistically most significant pathways 

[Figure 3.10]. 

Next, to ensure the completeness of the metabolic network we mapped lists of 

shared and strain-specific genes of tolerant and sensitive strains with the KEGG 

Orthology (KO) IDs to identify the missing gene functions. Results of metabolic 

network reconstruction had shown significant genetic differences between strains. 

There were multiple strain-specific genes in algal genomes, for high light tolerant 

as well as for sensitive algal strains [Figure 3.8]. But after linking these genes to 

putative functions to identify their roles in metabolism, it was revealed that number 

of strain-specific functions reduced considerably for high light tolerant as well as 

for sensitive algal strains [Figure 3.9]. Which established that multiple strain-

specific genes associated with the shared functions. 

From the top ranked pathway list, four genes were selected which were associated 

with different gene functions: NDUA1 (NADH dehydrogenase) from Oxidative 

Phosphorylation pathway [Figure 3.13], SUOX (Sulfite oxidase) from Sulfur 

metabolism pathway [Figure 3.14], PSD3 (Phosphatidylserine decarboxylase-3) 
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from Glycerophospholipid metabolism pathway [Figure 3.15] and ACD5 

(accelerated cell death 5) from Sphingolipid metabolism pathway [Figure 3.16]. 

Annotation of these selected genes were again verified after extracting them from 

tolerant strain, by using TBLASTN against database of sensitive genome. This 

comparison helped to annotate ACD5 [Figure 3.17] and SUOX genes in sensitive 

genome [Figure 3.18]. Then genome of 5KB upstream and downstream of PSD3 

and NADH dehydrogenase (NDUA1) genes were extracted from tolerant strains 

by using BEDTOOLS and tried to map it against sensitive algal genome. But, 

NADH dehydrogenase [Figure 3.19] and PSD3 genes could not be mapped in HL 

sensitive algal strain [Figure 3.22].  

In Energy metabolism, Oxidative Phosphorylation pathway is showing a missing 

gene NDUA1 in sensitive strain (Cv11b). The NDUA1 gene belongs to the NADH 

dehydrogenase which plays a significant role for Complex-I functions in the 

transfer of electrons from NADH to the respiratory chain, in oxidative 

phosphorylation for the energy metabolism [111]. The immediate electron acceptor 

for the enzyme is believed to be ubiquinone [101]. However, NADH 

dehydrogenase (Complex-I) is an accessory subunit of the mitochondrial 

membrane respiratory chain, that is believed not to be engaged in catalysis. As 

this gene fulfils a core function for energy metabolism, it appears surprising that 

the sensitive strain could grow without it. It may be a region of the genome that 

was not sequenced at sufficient coverage to be included in the assembly. 
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Finally, we ended up with the selection of PSD3 gene due to its relevancy with lipid 

production. Altered lipid composition was reported for Cv11b under high light 

stress [112]. Thus, this gene is very interesting to explain the phenotype.  

To verify that PSD3 gene is a deletion in the Cv11b genome, synteny of 

surrounding genes was analysed in order to identify the precise deletion. Where 

PSD3 gene was mapped with the contigs of all tolerant algal strains but not with 

sensitive algal strain, while flanking genes of PSD3 were located on sensitive 

genome but they were rearranged or inverted [Figure 3.26]. 

Then, BLASTN [Figure 3.35 – 3.38], TBLASTN [Figure 3.39 – 3.42] and TBLASTX 

tools [Figure 3.43 – 3.45] were used to identify significant similarity between these 

selected contigs, and ended up with highly significant similarity. So, the flanking 

regions where PSD3 would be located in Cv11b, are present, however rearranged 

and inverted, suggesting that the PSD3 gene was deleted as part of the mutation 

leading to the rearrangement of this region. 

Subsequently, we aimed to exclude an assembly artifact, which might be indicated 

by gaps (NNNs) in the sequence. Using IGV, no stretches of N were identified in 

that region of the sensitive genome. So, we come to the conclusion that the PSD3 

gene is deleted from the sensitive genome [Figure 3.50]. 

The PSD3 gene is part of the Phosphatidylserine decarboxylase (PSD) family 

involved in the lipid metabolism pathway, specifically in glycerophospholipid 

metabolism. Research shows that PSD3 plays a key role in producing 

phosphatidylethanolamine mainly in mitochondria, about two-thirds of total PSD 
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activity. While PSD1 contributes only about one-third of the total PSD activity in 

leaves of Arabidopsis thaliana. However, PSD2 has very low activity [102]. 

This genomic research work revealed that PSD1 [Figure 3.20] and PSD2 [Figure 

3.21] were missing in both tolerant and sensitive algal strains while PSD3 was 

missing only in the genome of the sensitive algal strain Cv11b.  

Consequently, we propose that a rearrangement in the genomic region of the 

PSD3 gene led to its deletion in Cv11b. PSD3 may have been lost during the repair 

of the inversion of DNA fragment. However, further laboratory experiments like 

targeted PCR are necessary for validation, as we cannot exclude e.g. an assembly 

artifact, even if we did not find hallmarks of an artifact such as assembly gaps or 

stretches of NNN. 

Support for the hypothesis that PSD3 may explain high light tolerance can be found 

in research work of Widzgowski et al., which showed a difference in phospholipid 

composition between tolerant and sensitive strains [112]. PSD (Phosphatidyl 

serine decarboxylase) catalyzes the conversion of phosphatidyl serine to 

phosphatidyl ethanolamine (PE). We propose that the change in availability of PE 

due to lack of PSD3 in Cv11b impacts the phospholipid composition under high 

light conditions, but the mechanism needs to be studied further. Experiments such 

as knock out studies can help to establish the function of PSD3 under high light 

conditions and thus demonstrate the in vivo relevance of the candidate gene for 

high light tolerance. 
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It is important to note that this analysis is limited by the research and publication 

bias in knowledgebase data. However, the in-silico reconstructed metabolic 

networks as developed in this work can effectively contribute to a well-informed 

design of in vivo experiments that show the proposed candidate genes are relevant 

in these environmental conditions. 

Summary: Most genes and pathways are shared, but one key gene was identified 

that is missing and is linked to phospholipid biosynthesis. This is an interesting 

lead for experiments to establish its role in shaping the phospholipid profile. 
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