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SUMMARY

We study Einstein metrics of negative sectional curvature on closed manifolds. By a
classic result of Koiso from the late 70s, on any closed manifold these metrics are isolated
in the moduli space of Riemannian structures. Because of this, if a negatively curved
metric is almost Finstein in a suitable sense, one might potentially find a genuine Einstein
metric close to it. If this is indeed possible, this is referred to as a stability result.

Despite the fact that the study of Einstein metrics has a long and rich history in
Riemannian Geometry, it to this day extremely difficult to construct Einstein metrics,
especially those of negative sectional curvature. In this thesis, we exploit stability phe-
nomena to construct negatively curved Einstein metrics.

More precisely, we obtain the following results:

(1) We prove several instances of stability phenomena for negatively curved Einstein
metrics. Importantly, the pinching constants that measure being almost Einstein do
not depend on global geometric bounds such as an upper bound for the diameter or
volume.

(2) In any dimension at least four, we construct infinitely many closed manifolds that ad-
mit an Einstein metric with negative sectional curvature, but that do not admit any
locally symmetric metric (for example, no hyperbolic or complex-hyperbolic metric).
In dimensions at least five, these are the first examples of such Einstein manifolds.

(3) We show that any closed orientable 3-manifolds that is sufficiently complicated in a
certain topological sense admits a hyperbolic metric. This gives a Ricci flow free proof
of Perelman’s hyperbolization theorem - a special case of Thurston’s geometrization
conjecture - for topologically complicated 3-manifolds. Moreover, we also obtain
new geometric control on the hyperbolic metric by showing that the volume of the
hyperbolic metric is bounded from below by a number measuring the topological
complexity of the underlying closed 3-manifold.
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INTRODUCTION

A leading question in Riemannian Geometry, often attributed to Thom and Yau, asks
if for a smooth manifold there exists a "best" (or "distinguished") Riemannian metric on
it. A frequent choice for the notion of a "best" metric is that of an Finstein metric. A
Riemannian metric g on a smooth manifold M is called Einstein if for some A € R

Ric(g) = Ag,

that is, if (M,g) has constant Ricci curvature. One possible motivation to consider
Einstein metrics as "distinguished" is that they are the critical points of the total scalar
curvature functional S: M, (M) - R, g~ [,,scaly(y) dvoly(y) on the space M, (M) of
all Riemannian metrics on M with fixed volume v € R.

The study of Einstein metrics has a long and rich history in Riemannian Geometry
(see for example [Bes08]). However, it is extremely difficult to construct examples of
Einstein metrics on closed manifolds.

On the other hand, the following philosophy has proven to be fruitful:

There is an abundance of closed manifolds with negative sectional curvature.

In fact, some experts even say that "most" closed manifolds are negatively curved (for
example [So24|). The following results can be seen as evidence supporting this philoso-
phy. In dimension two, it is a classic result that all closed orientable surfaces, except the
sphere S? and the torus 72, admit a hyperbolic metric, that is, a metric with constant
sectional curvature —1. In dimension three, Maher [Mahl0| has shown that a random
closed orientable 3-manifold is hyperbolic (the precise notion of a random 3-manifold is
not important here). Finally, in dimensions n > 4, a result of Ontaneda [O20] states,
roughly speaking, that for any closed n-manifold M and any € > 0 there exists a closed n-
manifold N that admits a metric with sectional curvature sec € (-1-¢,-1+¢) and that, in
some sense, is cohomologically more complicated than M. In particular, there are closed
negatively curved manifolds with arbitrary complicated cohomology rings. This is in
stark contrast to positive sectional curvature. Namely, all known examples of closed ori-
entable n-manifolds with positive sectional curvature have the rational cohomology ring
of S*, CP2 or HP%, and by a recent result of Kennard--Wiemeler--Wilking [KWW22|
this has to be the case for all positively curved manifolds satisfying a certain symmetry
assumption.

In view of the above philosophy, and the fact that Einstein metrics are objects of
high interest in Riemannian Geometry, the author believes that it is interesting to study
Einstein metrics of negative sectional curvature. The first result connecting the Einstein
condition and negative curvature is due to Koiso [Ko0i78] who showed that for a closed
manifold M, the Einstein metrics with negative sectional curvature are isolated in the
space of Riemannian structures on M. This gives hope that if a negatively curved metric
on M is "almost" Einstein (in a suitable sense), that then one should be able to perturb
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it to a genuine Einstein metric close to it. We refer to this phenomenon as stability. The
goal of this thesis is to

prove stability results and use them to construct negatively curved Einstein metrics.

Statement of the main results. We now describe the main results of this thesis in
more detail. Keeping in mind the above-mentioned philosophy that negative sectional
curvature is very common, one of the leading questions for this thesis is the following.

Question (Existence of negatively curved Einstein metrics). Are there, in some sense,
many closed manifolds admitting an Einstein metric with negative sectional curvature?

The first main result of this thesis gives a partial answer to this question. Namely,
there is a handful of examples of closed manifolds admitting Einstein metrics with nega-
tive Einstein constant A < 0, including:

(1) locally symmetric spaces of non-compact type, e.g., hyperbolic or complex-hyperbolic
manifolds;

(2) compact Kéhler manifolds with ¢; < 0 admit a K&hler--Einstein metric with Einstein
constant A <0 due to the work of Aubin [Aub78| and Yau [Yau78];

(3) manifolds obtained by generalized Dehn filling of hyperbolic cusps in dimensions
n >4, due to Anderson [And06] and Bamler [Bam12].

Out of these, only the examples in (1) are known to have negative sectional curvature,
and these examples have been known for more than a century. In fact, until recently,
locally symmetric spaces were the only known examples of Einstein metrics with negative
sectional curvature on a closed manifold (in the non-compact case the existence of neg-
atively curved non-symmetric Einstein metrics has been known for a long time - see for
example [GL91]). This changed with a breakthrough result of Fine--Premoselli [FP20]
who showed that there are infinitely many closed 4-manifolds that admit an Einstein
metric with negative sectional curvature, but that do not admit any locally symmetric
metric. The first main result of this thesis, obtained in collaboration with U. Hamenstidt,
extends the result of Fine--Premoselli to all dimenions.

Theorem 1. For all n > 4 there exist infinitely many closed n-manifolds admitting
an Einstein metric with negative sectional curvature, but that do not admit any locally
symmetric metric.

In dimensions at least five, these are the first non-trivial examples of closed Einstein
manifolds with negative sectional curvature. The proof builds on the original construction
of Fine--Premoselli but exploits an algebraic property of arithmetic hyperbolic manifolds,
called subgroup separability, in order to greatly simplify the involved analytic arguments,
allowing for an extension to all dimensions. Very recently, this construction was also
extended to the Kéhler setting by Guenancia--Hamenstadt [GH25].

As alluded to before, the core analytic principle that underlies the proof of Theorem 1
and most of the other results in this thesis is what we call stability. By this we mean
positive answers to the following purposefully vague question.

Question (Stability). Let g be a metric that is almost Einstein in a suitable sense on a
smooth manifold M. Then, does there exist a genuine Einstein metric on M close to g¥
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There are several examples of such stability results in the literature (see for example
[And90, Proposition 3.4, [PW97, Corollary 1.6], [Pet16, Theorems 11.4.16 and 11.4.17]).
For instance, it is possible to prove stabilility results using arguments by contradiction
that build on suitable convergence theories for Riemannian manifolds. For these argu-
ments, it is neccesary to assume strong global geometric bounds for the metric g, such
as uniform upper bounds for the diameter or uniform lower bounds for the injectivity ra-
dius. However, for the geometric applications in this thesis, it is crucial to prove stability
results that do not assume such global bounds.

Another possibiliy is to use Ricci flow. For example, there do exist several stability
results for hyperbolic metrics under Ricci flow on hyperbolic manifolds M (assuming
either vol(M) < oo or M = H") stating that if go is a metric on M such that ||gnyp—gol| < €
for a suitable norm |[|-||, then the (rescaled) Ricci flow (g¢)se[0,00) Starting at go converges
to ghyp (see [MO90], [Ye93],[SSS11], [Bam14], [Bam15]). However, these results already
assume that the given metric g is close to the hyperbolic metric gyyp,, and the pinching
constant ¢ also depends on other geometric quantities such as diameter or volume.

In this thesis, we will prove stability results by applying the inverse function theorem to
the so-called Finstein operator. To do so, one needs to prove that the linearized Einstein
operator is an invertible operator between suitably defined Banach spaces, whose exact
definition will depend on the specific geometric situation. This approach has also been
used in the literature before (see for example [And06], [Bam12|, or [FP20]).

The second main result of this thesis, obtained in collaboration with U. Hamenstadt,
is a stability result for negatively curved Einstein metrics in dimension three. In its
formulation, we denote My, = {z € M |injy;(z) < p} and Mipicek = {z € M |injy,(z) > p},
where p > 0 is a three-dimensional Margulis constant. We also point out that in dimension
three, Einstein metrics have constant sectional curvature.

Theorem 2. For all « € (0,1) and A >0 there exist positive constants gy = e9(c, A) and
C = C(a, A) with the following property: let M be a 3-manifold that admits a complete
Riemannian metric g that is almost hyperbolic in the sense that is satisfies the following
conditions for some € < gq;

(1) vol(M,g) < oo;

(11) sec(M,g) e (-1 —e,-1+¢);
(iii) sec(M,g) = -1 in the thin part M ;

(iv) we have

/M |sec +1]*(y) dvoly(y) < €2,
where |sec+1| is the function |sec+1|(y) = maxqcr, 1 |sec(m) + 1|;
(v) [[VRic(9)llco(ar,g) < A-
Then, there exists a hyperbolic metric gnyp, on M close to g in the sense that
llghyp = gllc2.e (ar,g) < ce' .

For our applications it is crucial that the pinching constant €y in Theorem 2 does not
depend on global geometric bounds such as an upper bound for the diameter or volume
or a lower bound on the injectivity radius. Theorem 2 extends an unpublished preprint of
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Tian [Tial, which did assume a global lower bound inj(M,g) > 1 on the injectivity radius.
Most of the work in the proof of Theorem 2 consists of dealing with the regions with small
injectivity radius, which we achieve by combining ideas of Tian [Tia|, Bamler [Bam12],
and a geometric preimage counting result. Moreover, choosing the correct geometric
conditions on g in the regions of small injectivity radius is quite delicate. Namely, we
exhibit explicit examples which show that Theorem 2 is no longer true if condition (iii)
is dropped. This is contrary to a well-known unpublished folklore result, and thus shows
that this folklore result is false. However, it is possible to weaken condition (iii) and only
assume that |sec+1|(z) < e exp(—nd(z, Mipick)) for some 1 > 1 and all x € My, (plus the
analogous condition for its derivatives).

Building on another geometric preimage counting result, we also prove the following
stability result for almost hyperbolic metrics in higher dimensions.

Theorem 3. For all n > 3, a € (0,1), A >0, § € (0,2v/n—2) there exist positive
constants g = eg(n,a, A,0) >0 and C = C(n,a,\,0) >0 with the following property. Let
M be a closed n-manifold that admits a Riemannian metric g satisfying the following
conditions for some € < gqg:

(i) sec(M,g) e (-1-¢g,-1+¢);

(i1) sec(M,g) = -1 in Mipin;
(i3i) for all x € M we have

n+1

LM Mie) [ VDR Ric(g) + (n - 1)gl2(y) dvoly (y) < €%

where rz(y) = d(x,y);
() [[VRic(g)llcocar,gy < A
Then there exists an Einstein metric go on M with Ric(go) = —(n—1)go so that

llgo = gllcz.e(rg) < Ccele

Even though Theorem 3 is true in all dimensions n > 3, we believe it is most useful when
n+l

n € [4,12] ~ {11}. This is because the exponential weight [TJ outside the integral in

condition (iii) is smaller than the negative weight 2v/n — 2—4 inside that integral for some
d > 0 exactly when n € [4,12] \ {11}. So in these dimensions there is a high chance that
the exponentially decaying weight —(2v/n — 2 —§) can absorb the exponentially growing
weight | %1 | in the integral condition (iii). For example, Theorem 3 immediately implies
the analogue of Theorem 2 for n € [4,12] ~ {11}.

As an immediate consequence of Theorem 2 and Theorem 3 we obtain the following
result, which states that if in dimension n € [3,12] ~ {11} a (1 + ¢)-pinched negatively
curved metric is already hyperbolic except in a region of bounded geometry, then it is
close to an Einstein metric.

Corollary 4. For all n € [3,12] ~ {11}, av € (0,1), A >0, ¢ > 0 and v > 0 there exist
g1 =e1(n,a, A, 1,v) >0 and C = C(n,a, A, t,v) with the following property. Let M be a
closed n-manifold, and let g be a Riemannian metric on M satisfying

|sec(M,g) +1[<e and |[VRic(g)|lcoary <A
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for some € < e1. Assume that there is Q € M so that
inj(2) >¢, vol(2) <v and sec(M,g)=-1 outside Q.
Then there exists an Finstein metric go on M with Ric(gg) = —(n —1)go satisyfing

90 = Gllc2a gy < Ce™.

Previously known results in this direction have to assume that the entire manifold
has bounded geometry, though they do not assume a bound on VRic (see for example
[And90, Proposition 3.4, [PW97, Corollary 1.6], [Pet16, Theorems 11.4.16 and 11.4.17]).
Thus, compared to previously known results, Corollary 4 is better in some aspects but
worse in others.

To formulate our final main result, we recall that as part of his celebrated solution
of Thurston’s geometrization conjecture, Perelman proved the following hyperbolization
theorem, characterizing completely which closed 3-manifolds can be equipped with a
hyperbolic metric.

Theorem (Perelman). A closed 3-manifold M admits a hyperbolic metric if and only
if M is aspherical (i.e., the universal cover is contractible) and atoroidal (i.e., w1 (M)
does not contain Z* as a subgroup).

Due to the celebrated Mostow rigidity theorem, two closed hyperbolic 3-manifolds are
isometric if and only if they are homeomorphic. Consequently, geometric invariants of
such a hyperbolic manifold (e.g., volume) should in fact be topological invariants of the
underlying topological manifold. This motivates the following natural question.

Question (Effective hyperbolization). Can one obtain information about geometric prop-
erties of a hyperbolic metric in terms of topological data of the underlying manifold?

Perelman’s proof of the geometrization conjecture does not give any information to-
wards this question.

It is a well-known fact that any closed 3-manifold can be realized by a certain gluing
construction called a Heegaard splitting. Namely, for an integer g > 2, let H, be a
handlebody of genus g, that is, the boundary connected sum of ¢ solid tori; this is a
compact 3-manifold whose boundary is a closed orientable surface 3, of genus g. Gluing
two genus g handlebodies with an orientation-reversing diffeomorphism f:3, - X, of
the boundary surfaces yields a closed 3-manifold

Mf = Hg Uf Hg.

The final main result of this thesis states, roughly speaking, that if the gluing map f
is sufficiently complicated, then M; admits a hyperbolic metric whose volume can be
controlled from below by topological data.

Namely, the Hempel distance Hemp(f) of the gluing map f is a number that, in some
sense, measures its topological complexity. It is defined as follows: The curve graph
CC(X,) of the surface 3, is the graph whose vertices are isotopy classes of essential simple
closed curves on ¥4, and two vertices are joined by an edge if they can be represented by
disjoint curves. We equip CC(X,) with a length metric for which every edge has length
one. The disc set D ¢ CC(¥,) consists of all isotopy classes of essential simple closed
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curves in ¥, = 0H, that are contractible in Hg, or equivalently, that are represented
by curves bounding a disc in Hy. Finally, note that any diffeomorphism f:3, — 3,
canonically induces a map f.:CC(Xy) - CC(Xy). The Hempel distance is then defined
as Hemp(f) = dec(s,) (D, f+(D)).

We can now formulate the final main result of this thesis, also obtained in collaboration
with U. Hamenstadt.

Theorem 5. For any g > 2 there exist positive constants R = R(g) and C = C(g) with
the following property: if the Hempel distance of f:3, — Xg is at least R, then My admits
a hyperbolic metric gnyp and its volume is bounded from below by

1
volg, (My) > EHemp(f).

It follows from a result of Hempel [Hem01, Theorem on p. 632] and Haken’s lemma
[Ha68| (also see [Ja80, Theorem IL1.7]) that if Hemp( f) > 3, then My is not Seifert fibered
and neither contains an essential two-torus nor an essential two-sphere, and thus admits
a hyperbolic metric by Perelman’s solution of the geometrization conjecture (see for
example [Mar22, Theorem 12.1.1 and Conjecture 12.9.1]). However, our proof does not
make use of Perelman’s result or the Ricci flow in general, that is, we give a Ricci flow free
proof of the hyperbolization theorem for 3-manifolds that are sufficiently topologically
complicated in the sense that they have a Heegaard splitting with large Hempel distance.

We also point out that having large Hempel distance is, in some sense, a generic
property of surface diffeomorphisms. Namely, Maher [Mah10| showed that for a random
walk (wp)neny in the mapping class group MCG(X) := Diff (X)/isotopy with transition
probabilities determined by a probability measure p whose support is a finite generating
set for MCG(X), there are constants 0 < ¢ < f5 such that the asymptotic probability
satisfies limy,— oo IP’n(Hemp(wn) € [nty, nfg]) = 1. In particular, this gives a Ricci flow free
proof of Maher’s result that a random closed 3-manifold is hyperbolic, and thus gives an
alternative proof of a result of Feller--Sisto--Viaggi [FSV19, Theorem 1].

The proof of Theorem 5 builds on Theorem 2, the construction of almost hyperbolic
metrics on My (for certain f) due to Hamenstddt-Viaggi [HV22, Theorem 5.12|, and
Thurston’s hyperbolization theorem for Haken manifolds [Thu86al,/Thu86b].

Proof outlines. We now present very rough outlines of the proofs of the above-mentioned
results. In order to keep the presentation simple, we will be a bit imprecise throughout.

We start by explaining the general set-up. As stated before, we prove the stability
results by applying the inverse function theorem to the so-called Einstein operator. For
a manifold M and a background metric g on M, this is an operator ®; from the space
of Riemannian metrics on M to the space of symmetric (0,2)-tensor fields on M. It
has the important property that it can detect Einstein metrics. Namely, if g is another
Riemannian metric on M, then

®5(g) =0 implies Ric(g)+(n-1)g=0.

Moreover, ®5(g) = Ric(g) + (n - 1)g (though in general ®5(g) # Ric(g) + (n - 1)g).
Therefore, if g is "almost" Einstein, then ®5(g) is "almost" zero, and so one might hope
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to apply the inverse function theorem to find a metric gg close to g with ®5(go) = 0; this
metric gg is then the desired Einstein metric on M.

To apply the inverse function theorem, one needs to show that the linearization
(D®g)g of @5 at the initial metric g is an invertible operator between suitable Banach
spaces. This linearization is given by the elliptic partial differential operator of second
order £ acting on sections h of the bundle Sym?(T* M) of symmetric (0,2)-tensors on
M by

Lh= %ALh+ (n—1)h,

where Ay is the Lichnerowicz Laplacian (Aj agrees with the usual Laplacian up to
zero-th order terms involving the curvature). Showing that this is an invertible operator
between suitable Banach spaces, boils down to proving an a priori estimate

HhHsource < CHﬁtharget

for suitable Banach norms || - [[source and || - |Jtarget in the source and target spaces. It is
crucial to prove this a priori estimate with a constant C' that only depends on very little
data, for example C should not depend on upper bounds for the diameter or volume. To
achieve this, we will combine the following estimates:

e Since L is an elliptic partial differential operator of second order, the classic
Schauder estimates give

1Rllc2.e (ary < C(IIRllcoary + €Al co.eary)- (Sch)
e From the classic De Giorgi--Nash--Moser estimates one can deduce
h)(x) < C(IIRll 2221y + LA coar)) (GNM)

for all x € M whose injectivity radius is uniformly bounded from below.

e Koiso’s L?-spectral gap [Koi78, Section 3] (also see [Bes08, Lemma 12.71]) states
that for an Einstein metric g on a closed manifold M with Ric(g) + (n-1)g=0
and sec(M, g) < -K <0 we have

(n-2)K .
S fw Ihf2dvol < fM (Lh, R) dvol,. (Koi)

The same estimate holds with a slightly worse constant if Ric(g) + (n—1)g is
small pointwise.

In order to import the Schauder and the De Giorgi--Nash--Moser estimates from euclidean
space to the manifold, we make use of a classic result of Jost--Karcher [JK82, Satz 5.1]
or Anderson [And90, Main Lemma 2.2| stating that, under weak geometric assumptions,
around every point there exists a harmonic chart with good analytic control defined on a
ball of a priori size. The assumption |[VRic(g)||co < A in Theorem 2(v) and Theorem 3(iv)
guarantees that in these harmonic coordinates the coefficients g;; of the metric g have
uniformly bounded C*%norm; this is needed to define the C*%norm of tensors.

Because of the estimates (Sch),(GNM),(Koi), we will work with Banach norms ||-||source
and || - ||sarget that combine Holder- and L?-norms (or variations thereof).

After explaining this general set-up, we can now present the proof ideas for the main
results of this thesis.
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Proof outline of Theorem 1. Asmentioned before, the general outline follows the original
construction of Fine--Premoselli [FP20], but we exploit an algebraic property, called
subgroup separability, to simplify the construction and the analytic arguments.

For a suitable sequence of closed arithmetic hyperbolic n-manifolds (M) gen and closed
totally geodesic null-homologous submanifolds ¥ ¢ M} of codimension two, consider
the cyclic d-fold cover Xj of M} branched along ¥ (d > 2 fixed). Fine--Premoselli
constructed negatively curved metrics g on Xj that are almost Einstein in the sense
that, for all m € N, the C"™-norm of Ric(gx) +(n—1)gx tends to zero as k - co. However,
for their choice of (X € My)ken the L?-norm of Ric(gx) + (n — 1)gx is not controlled.
Because of this, they need involved analytic arguments to perturb g to a genuine Einstein
metric on Xg, and their arguments only work for n = 4.

The core idea is to produce a different sequence (X € My, )gey for which the L2-norm
of Ric(gx) + (n — 1)gx also tends to zero as k — co. Then since inj( Xk, gx) is uniformly
bounded from below and sec(Xk, gi) is uniformly bounded from above by a negative
constant (independent of k), combining (Sch), (GNM), (Koi) shows that for the Banach
norms || - [lsource = max{|| - [|cz.a, || g2} and [|- [liarget = max{[| - [lco., || - |72} and for
all k sufficiently large, we obtain an a priori estimate ||h|lsource < C||Lh||target- Then, as
explained above, an application of the inverse function theorem will yield the existence
of an Einstein metric on X}, close to gy for all sufficiently large k.

It follows from Fine--Premoselli’s explicit construction of g that, in order to obtain
|IRic(gr) + (n — 1)gkl|lr2 — 0 as k — oo, it suffices to construct a sequence (X € My )gen
for which R} /diam (%)) — co as k — oo, where R} = inj”(X}) is the normal injectivity
radius of X inside Mj,.

To achieve this, we fix a closed (standard) arithmetic hyperbolic n-manifold My =
I'\H" and a closed codimension two submanifold ¥q ¢ My of the form ¥y = I's\H" 2,
for some totally geodesic copy of H" 2 in H" and I's = Stabp(H"2). Then subgroup
separability states that for any v € I' \ 'y, there exists a finite index subgroup IV < T
such that I's < T but v ¢ I''. Now fix R > 0 very large. If the normal injectivity radius
inj” (o) is less than R, this is caused by a finite set of loops that do not lie in Xo.
Therefore, appealing to subgroup separability, we find a finite cover Mr - My that fixes
Yo and satisfies inj”(Xo € Mg) > R. Finally, appealing to a result of Bergeron--Haglund-
-Wise [BHW11], one can pass to a two-sheeted cover Mp - Mpg such that the preimage
i]o c MR of 3¢ is null-homologous in MR. O

In the proof of Theorem 2, the Banach norms || - [[source and || - |ftarget are again a
combination of Holder and integral norms. However, the exact definitions are more com-
plicated (especially in the source space), and they combine ideas of Tian |Tia| and Bamler
|Bam12|. More specifically, the integral norms will be weighted versions of the classic
L%~ and H?*norms, and the Holder norms will be exponentially weighted in (subsets of)
the thin part Mip- The need for exponentially weighted Hélder norms is also evident
because, as mentioned earlier, Theorem 2 is wrong if condition Theorem 2(iii) is dropped.
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C \ Csmall

First level torus with diameter at most 1.

FIGURE 1. A rank 2 cusp C and its small part Cypan (colored in gray).
If the boundary torus dC has large diameter, Cgpan lies deep inside C.

Proof outline of Theorem 2. Fix some § € (0,1). For every basepoint z € M and every
f in the target space we consider the weighted L?-norm

1
(o) [ 0| () avoly))

where 7,(y) = d(z,y). The integral part of the norm |- ||target is given by taking the
supremum over all x € M of these weighted L?-norms. The integral part of || [|source
is defined by the analogously defined weighted H2norms. The idea of including the
exponential decaying weight e (397 in the integral norms is adapted from Tian [Tial.
We also point out that, since the Holder norm will only be weighted inside Mipin, it
follows from the assumptions of Theorem 2 that ||Ric(g) + 29]|target < Ce'™.

We now explain how to bound || - [[source in terms of ||£ - ||target. Throughout, for any
symmetric (0,2)-tensor h we will abbreviate f := Lh.

If |sec(M, g) + 1| < e is small enough, using Koiso’s L2-spectral gap estimate (Koi) for
almost Einstein metrics, one can deduce

[ e EI O ) dvol(y) < C8) [ DDy (y) dvol(y),

that is, one obtains a priori bounds for the integral part of ||h|source i terms of || f||target-

We are left with bounding the Holder norm of h in terms of || f||target- Due to the
Schauder estimate (Sch), it suffices to bound the C%-norm. For x € My, combining
(GNM) and the above weighted integral estimate yields |h|(z) < C||f|lsarget- Therefore, it
remains to bound |h|(z) for x € Mipiy.

Fix & € Mipin; then x is either contained in a Margulis tube or in a rank 2 cusp. For
simplicity, we will only explain the case when x is contained in a rank 2 cusp C. Since
sec(M,g) = -1 in M, by Theorem 2(iii), C is diffeomorphic to T2 x [0, c0) and the
metric is given by § = e " gppa; + dr? for some flat metric gpra on T2 (see Figure 1).
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We define the small part Cgnan of the rank 2-cusp C' as the union of all level tori
T? x {r} in C = T? x [0, 00) whose diameter (with respect to its induced metric) is at
most 1 (see Figure 1). To prove the C’-estimate, we will employ different arguments in
C N Cyman and Cypan- Namely, for 2 € C' N Cgpan we combine (GNM) together with a
preimage-counting result, while for x € Cgpan we will model the PDE Lh = f by an ODE.

Case 1 (the non--small part): First, consider the case x € C' \ Cypan. Because in the
cusp C' the injectivity radius can be arbitrary small, we can not directly apply (GNM).
However, as M is negatively curved, its universal cover M has infinite injectivity radius,
so that we can apply (GNM) to the lifted equation £h = f in M. Note that C°-norms
stay invariant when going to the universal cover. On the other hand, local L?-norms can
get larger when passing to the universal cover, but one can bound the difference by the
local covering degree, i.e., we have

/B(m) IR2(7) dvol(7) g#(w—l(x)mB(g:«,n)fBW)W(y) dvol(y),

where 7 € M is a preimage of x, m: M — M is the universal covering projection, and
B(#,1) denotes the ball of radius 1 in M with center Z. Therefore, applying (GNM) to
Lh = f, observing that the weight e~ (2*97+ ig uniformly bounded from below on B(z,1),
and using the above weighted integral estimate, we conclude

(@) < C (||f||CO(M> +(#(m '@ nB@) [ @I W) dvol<y>)2) .

This establishes the C%estimate |h|(x) < C||f|ltarget for € C' N Cyman if we can bound
the number of local preimages by #((7~1(z) n B(2,1)) < Cexp(d(z, Minick)).

To see why the latter is true, consider the flat level torus T} of C' = T2 x [0, )
containing x. It suffices to prove the local preimage counting result for the universal
cover R? — T, of T,. There is a fundamental region {tjvy + tovs|t1,t2 € [0,1]} € R?
for T, with |v1]| = 2inj(7;) and <« (vi,v2) € [7/3,27/3]. Since z ¢ Cypan, the diame-
ter of T, is at least one, and thus |vg| is bounded from below by a universal constant.
Consequently, area(T)) > %inj(T %) , and thus an area counting argument in R? shows
that the number of local preimages is bounded from above by C/inj(7,). Moreover,
by the definition of My, inj(OC) is uniformly bounded from below, which implies
inj(T,) = exp(~d(x,0C)) since § = e 2" gpla; +dr?. This yields the desired local preimage
counting estimate #((7 1 (z) n B(%,1)) < Cexp(d(z, Minicak))-

Case 2 (the small part): Now consider the case € Cgpan- In this case we follow
the strategy of Bamler [Bam12| and model the PDE Lh = f by an ODE. Namely, for
a symmetric (0,2)-tensor h we define a symmetric (0,2)-tensor h in Cypan that only
depends on 7 := d(-,0Csman) by defining iL(r) as the average of h over the level torus
T(r) in Cgpan of distance r to 0Csman. The averaging operation * commutes with £, so
that £h = f implies Lh(r) = f(r). Then

Lh(r) = f(r) is a linear system of ODEs with constant coefficients.
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Moreover, the initial condition |h|(0) < maxsc,, ., |h| is bounded in terms of ||f||target
because, as explained above, we can bound |h| by || fltarget in all of C' N\ Cymai.-
However, the key problem is that this linear system of ODEs has 0 as an eigenvalue,
that is, there are constant fundamental solutions to this ODE; this makes it impossible
to bound ||h||co in terms of ||f]|co. In fact, the set of eigenvalues of this linear system of
ODEs is {1-+/5,-1,0,2,3,1+/5}.
Fix some A € (0,1). We enrich the norm || - ||sarget by the weighted C%-norm

Iflleg = sup (M02Cm|1|(y)).

yecsmall

Then, due to standard ODE arguments, h is of the form
h(r) = sum of fundamental solutions + O(||f||c§e_)""),

and the initial value at = 0 of each fundamental solution is bounded by || f||target because
this is the case for |h](0) (here r = d(-, dCsman))-

Since h € L?(Cgpan), no exponentially growing fundamental solutions appear in h.
Denote by vy, the constant fundamental solution appearing in h. Then, h -y, is a sum
of terms with exponential decay rates 1-+/5, -1, -\; thus \\fz—vh\lcg = O(|| f|lsarget ) since
I [[target also includes || - HC&). Therefore, we obtain a priori estimate

llco, < Cllfllcaret.

where || - ||Cg;* is the weighted decomposition norm defined by

1Allco . = lvnl + [1h = vallco-

Finally, since the level torus T'(r) of distance r to 0Cspan has diameter O(e™"), we have
|h = h|(r) = O(e™"||h]|c1). This can then be used to prove ||h||Cg;* < CHfHCQ-

To summarize, we obtain an a priori estimate ||h||source < C||Lh||target, Where

o || ||target consists of the weighted L?-norms and a C%%norm that is exponentially
weighted in the small part Mgy of Mipin, and

e || - ||source comsists of the weighted H 2_norms together with the exponentially
weighted decomposition norm |- ||C§ ., (or rather a C?*%version thereof).

Since the assumptions in Theorem 2 imply ||Ric(g) + 29]|target < Ce'™%, an application of
the inverse function theorem implies the existence of a hyperbolic metric gyy, close to g.
The idea to work with the decomposition norm || - HCE\;* that isolates the constant

fundamental solutions of the model ODE is adapted from Bamler [Bam12]. O

The proof of Theorem 3 is similar to that of Theorem 2, but it requires a new local
preimage counting result.
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Proof outline of Theorem 8. Similar to the proof of Theorem 2, for every basepoint z €
M and every f in the target space, we consider the weighted L?-norm

1
(e[’%le(r»thck)fMe—(2vn—2—6)rz(y)|f‘2(y)dvol(y))2.

Then we define [|-||sarget as the maximum of ||-[|co.a(psy and the supremum of this weighted
L%norm over all basepoints z € M. Similarly, || - [[source 15 the maximum of || - llc2.o (ar)
and the supremum of the analogous weighted H2-norm over all basepoints = € M.

As before, if |sec(M, §) +1| < € is small enough, using Koiso’s L?-spectral gap estimate
(Koi) for almost Einstein metrics we show

[ BRI, () dvol(y) < C(n,8) [ & BIEDRDILnR, (y) dvol(y).

Therefore, due to Schauder estimates (Sch), it remains to bound [|h[|co(ary by [[Lh|target-
For x € Mipiek, this again follows directly from (GNM) and the above weighted integral
estimate. For x € Mipiy, as in the proof of Theorem 2, by applying (GNM) in the universal
cover M and using the local covering degree to relate local L2-norms, we obtain

[hl(z) < C (||£h||co<M> t(#(r @0 B@D) [ @O dvol(y))z) .

This reduces the desired a priori estimate ||h||co(ary < C|[Lh|[sarget to the local preimage
bound

#(7171(3;) n B(z, 1)) <Cexp ([nTHJ d(z, Mthick)) .

Keeping in mind that M is hyperbolic in M, by Theorem 3(ii), the key ingredient in
the proof of this local preimage estimate is the following: Fix a geodesic v € H" and a
non-trivial isometry ¢ € Isom™ (H") that acts as a translation along . Moreover, denote
inj(y) = 3 ming.o dun (y, ¢ (y)) for y e H", and Z(R) = {y e H"|d(y,) = R} for R > 0.
Then, we show for all y € H" and all r > inj(y) that

» NES

#ikeZldz(y, " (y)) <7 SC(.. ) :
A

where dyz is the intrinsic distance in the cylinder Z ¢ H" containing y. Indeed, for a map
©:S"2xR - S" 2 xR of the form ¢(v,t) = (Av,t+7) for some A € SO(R" 1) and 7 € R,

any orbit of ¢ is contained in a flat manifold of dimension | % |, because, by elementary

2
linear algebra, any orbit {A*vg}yez is contained in a torus of dimension || - 1. Thus,
a volume counting argument yields the above bound.

The local preimage estimate # (7! (z)nB(%,1)) < Cexp (|4 |d(x, Minicx)) can then
be deduced from the previous bound. However, this deduction requires more care than in
the three-dimensional situation of Theorem 2 because the relation between d(z, Mipjck)
and inj,,(x) is not as straightforward. The reason for this is that, in contrast to di-

mension three, a minimal geodesic from x € Mipin to OMipi, is in general not a radial
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geodesic (a geodesic segment is called radial if it is a subsegment of geodesic that inter-
sects the core geodesic of the Marguls tube perpendicularly). At this point we refrain
from elaborating on this any further, and refer to Chapter IV for more details. U

Corollary 4 can easily be deduced from Theorem 2 and Theorem 3.

Proof outline of Corollary 4. Since the constants are allowed to depend on ¢, we can
without loss of generality assume that the Margulis constant p defining Mipice and Mipin
is smaller than ¢; then inj(2) > ¢ implies Q € Mipick. In particular, sec = =1 in Mipiy.

Since vol(f2) < v, the integral in Theorem 2(iv) is bounded by Ce?v. So for & > 0 small
enough (depending on v), we can apply Theorem 2 to obtain a hyperbolic metric gny;, on
M close to g.

Forn e [4,12]\ {11}, fix § = (n) > 0 with 2¢/n —2-6 > | 41 |. Thus, the negative expo-
nential weight —(2v/n — 2-0) inside the integral in Theorem 3(iii) can absorb the positive
exponential weight | % | outside that integral. Hence, the integral in Theorem 3(iii) is

2
also bounded by Ce?v. So Theorem 3 yields the desired Einstein metric. O

We finish by giving some explanations for the proof of Theorem 5.

Proof outline of Theorem 5. For simplicity, we will only outline the proof in the case
that the gluing diffeomorphism f:0H, — 0H, satisfies a certain property called relative
bounded combinatorics, and we will only explain the existence of the hyperbolic metric,
but not the lower volume bound. The exact definition of relative bounded combinatorics
is not important for this outline, but we point out that it is defined purely in terms of the
action of f on the curve graph CC(¥,) and that a random walk in MCG(X,) satisfies it
with asymptotic probability one (see for example [HV22, Proposition 6.12]). So, in some
sense, it is a generic property.

By building on the model manifold technology developed by Minsky [Minl0] and
Brock--Canary--Minsky [BCM12|, Hamenstédt--Viaggi [HV22, Theorem 5.12| show that
for f satisfying the relative bounded combinatorics condition, there exist two complete
hyperbolic metrics g; and g2 on the interior Int(H,) of the handlebody H, such that

o there exist U; ¢ Int(H,) diffeomorphic to 34 x [0,1] with vol(U;, g;) uniformly
bounded from above and inj(V, g;) uniformly bounded from below,
e and there exists a diffeomorphism ®:U; — Us in the homotopy class defined by
f satisfying ||®* g2 — g1]|cs < €.
The manifold My := H, uy Hy can also be realized by gluing Uy to Uz using ®, and we
denote by €2 ¢ M/ the region corresponding to Uy resp. Us. Using a gluing construction
gives a metric g on My that agrees with g; resp. g2 outside of €2, and that interpolates
between g1 and ®*go inside 2. Then sec(M, g) = -1 outside of Q. Moreover, since ® is
an almost-isometry, |sec(M,g) + 1| < Ce inside Q, and vol(£2, g) is uniformly bounded
from above and inj(£2, g) is uniformly bounded from below (independent of £). Therefore,
we obtain a hyperbolic metric gy, on My thanks to Corollary 4.

When f does not satisfy the relative bounded combinatorics condition, the argument
is more involved and also builds on Thurston’s celebrated hyperbolization theorem for
Haken manifolds [Thu86a],[Thu86b]. We refer to Chapter II for more details. O
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Structure of this thesis. This thesis consists of four parts.

Chapter I reproduces the article [HJ24]. Its main result is Theorem 1, that is, the
construction of non-trivial closed negatively curved Einstein manifolds in each dimension
at least four. This is joint work with U. Hamenstadt.

Chapter II replicates the article [HJ22]. Its main results are the stability result for
finite volume hyperbolic 3-manifolds and the effective hyperbolization in large Hempel
distance given by Theorem 2 and Theorem 5 respectively. It also contains other results
that were not mentioned in this introduction as, for example, an analytic proof of Dehn
drilling and filling of hyperbolic 3-manifolds that allows the drilling and filling of arbitrary
many tubes and cusps. This is also joint work with U. Hamenstadst.

Chapter III is the article [J23], which constitutes a technical extension of the article
|HJ22| replicated in Chapter II. Namely, as mentioned before, it is possible to weaken
condition Theorem 2(iii) and only assume that |sec +1|(z) < e exp(-nd(z, Mipicx)) for all
x € Mipin. In [HJ22] this was proven for > 2 + A, where A € (0,1) is the parameter
used to define the exponentially weighted Hélder norms in the proof of Theorem 2. In
Chapter IIT this is extended to n > 1 (independent of \) by a bootstrap argument.

Finally, Chapter IV reproduces the article [J25], which presents a complete proof of
the stability results of Theorem 3 and Corollary 4.
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NEGATIVELY CURVED EINSTEIN METRICS ON
GROMOV--THURSTON MANIFOLDS

URSULA HAMENSTADT AND FRIEDER JACKEL

ABsSTRACT. For every n > 4 we construct infinitely many mututally not homotopic
closed manifolds of dimension n which admit a negatively curved Einstein metric but
no locally symmetric metric.

1. INTRODUCTION

As a consequence of the solution to the geometrization conjecture by Perelmann, any
closed manifold of dimension three which admits a negatively curved metric also admits a
hyperbolic metric, and for surfaces, the corresponding statement is a classical consequence
of the uniformization theorem. This statement is not true any more for closed negatively
curved manifolds of dimension at least four.

Indeed, Gromov and Thurston [GT87| constructed for each dimension n > 4 and every
€ > 0 a closed manifold X of dimension n which admits a metric with curvature contained
in the interval [-1 — €,-1 + €] but which does not admit a hyperbolic metric. These
manifolds are cyclic coverings of standard arithmetic hyperbolic manifolds, branched
along a null-homologous totally geodesic submanifold of codimension two. In the sequel
we call such branched coverings Gromouv--Thurston manifolds.

The proof of non-existence of hyperbolic metrics on these manifolds is however indirect,
that is, it it shown that among an infinite collection of candidate manifolds with pinched
curvature, only finitely many admit hyperbolic metrics. Much later, Ontaneda [020] gave
a very general method for constructing closed Riemannian manifolds of any dimension
n > 4 with arbitrarily pinched negative curvature. Some of the examples he found have
in addition some non-zero Pontryagin numbers.

It is a natural question whether these manifolds admit distinguished metrics. This
was partially answered affirmatively by Fine and Promoselli [FP20] who constructed
negatively curved Einstein metrics on an infinite family of Gromov-Thurston manifolds in
dimension four. These metrics do not have constant curvature and therefore by the work
of Besson, Courtois and Gallot [BCG95|, see also the survey [And10|, these manifolds
are not homotopy equivalent to hyperbolic manifolds.

The goal of this article is to extend this result to all dimensions. We show

Date: January 14, 2025.
AMS subject classification: 53C25, 53C21, 22E40.
Partially supported by the DFG Schwerpunktprogramm "Geometry at infinity".
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Theorem 1. For any n > 4 and any € > 0 there exist infinitely many pairwise non-
homeomorphic smooth closed manifolds X of dimension n with the following properties.

(1) X admits a Riemannian metric with sectional curvature sec € [-1 —€,—-1 +€].
(2) X admits an Einstein metric with negative sectional curvature.
(8) X is not homeomorphic to any closed locally symmetric space.

The examples in the Theorem are Gromov--Thurston manifolds. For n > 5 they seem
to be the first examples of negatively curved Einstein metrics on manifolds which are not
locally symmetric.

Our construction builds on the ideas of Fine and Premoselli, however the examples
we find in dimension four are different from the examples in [FP20].

The following question is motivated by the uniqueness of Einstein metrics on hyper-
bolic 4-manifolds [BCG95|.

Question. Is it true that an Einstein metric on any closed hyperbolic manifold has
constant curvature? Does every Gromov--Thurston manifold admit an Einstein metric?

The answer to the first question is negative if the Finstein metrics are allowed to have
conical singularities (see Remark 4.4).

1.1. Sketch of proof. In this subsection we outline the rough strategy for the proof of
Theorem 1 and point out the difference to the proof of Fine--Premoselli.

We start by constructing a particular sequence of closed hyperbolic manifolds of which
we take the branched cover. Namely, using subgroup separability in arithmetic hyper-
bolic lattices of simplest type, we construct for each n >4 a sequence (My)ken of closed
hyperbolic manifolds that contain null-homologous closed totally geodesic codimension
two submanifolds ¥ € M} with at most two connected components and such that

i by
o diam(Xy) _

0, 1.1
Jim = (L1)

where I} is the normal injectivity radius of Xj, € M}, and, by a slight abuse of notation,
diam(Xy) is the maximum of the diameters of the connected components of 3.

As ¥, € My is homologous to zero, for any fixed integer d > 2 there exists a cyclic d-fold
covering X of Mj, branched along ;. Fine--Premoselli constructed an approximate
Einstein metric g, on X by gluing together a model Einstein metric and the hyperbolic
metric, where the gluing takes place in the region of distance Ry away from ¥;. We
follow this strategy and choose as gluing parameter Ry := %RZ From (1.1) we then
deduce that

Sy 1Ric(@0) + (0= 1)54 (2) dvolg, () = 0. (12

From this estimate, we obtain the Einstein metric from an application of the inverse
function theorem, using a uniform a priori estimate for the so-called Einstein operator.
This leaves the question open whether the branched covering manifolds admit a locally
symmetric metric. As our construction of the Einstein metrics uses a delicate volume
estimate, to answer this question in the affirmative we can not rely on the indirect
argument in [GT87|. Moreover the rigidity theorem in [BCG95| only holds in dimension
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four. Instead we show in Section 5 a result of independent interest whose precise version
is Theorem 5.5. It states that given a pair (M,Y) consisting of a closed hyperbolic n-
manifold M (n >4) and a codimension two null-homologous embedded totally geodesic
submanifold ¥ of M of the form required for our construction, among the cyclic covers
of M branched along 3, at most one can be homeomorphic to a hyperbolic manifold.

1.2. Structure of the article. The article is organized as follows. In Section 2 we
review the necessary background information. Namely, Section 2.1 introduces the Ein-
stein operator. Section 2.2 explains how the De Giorgi--Nash--Moser estimates can be
used to obtain C°-estimates for the linearized Einstein operator. In Section 2.3 we recall
the construction of the approximate Einstein metric on branched covers due to Fine--
Premoselli. The algebraic results about arithmetic hyperbolic manifolds due to Bergeron
and Bergeron--Haglund--Wise we use are contained in Section 2.4. These are then em-
ployed in Section 3 to construct the sequence of closed hyperbolic manifolds containing
well-behaved codimension two submanifolds. In Section 4.1 we show that the linearized
Einstein operator is invertible. The existence of negatively curved Einstein metrics is
then proved in Section 4.2. Finally, in Section 5 we analyze Gromov Thurstion mani-
folds and, as an application, deduce that we can find such manifolds in any dimension
to which our construction applies and which do not admit any locally symmetric metric.

Acknowledgement: U.H. thanks Alan Reid for pointing out the reference [BHW11],
and Bena Tshishiku for pointing out the reference [CLW18|.

2. PRELIMINARIES

2.1. The Einstein operator. As mentioned in the introduction, we shall construct
the Einstein metric by an application of the implicit function theorem for the so-called
Finstein operator (see [Biq00, Section 1.1.C], |[And06, page 228| for more information).
This operator is defined as follows.

Consider the operator ¥ : g - Ric(g) + (n—1)g acting on smooth Riemannian metrics
g on the manifold X, where Ric denotes the Ricci tensor. As the diffeomorphism group
Diff (X)) of the manifold X acts on metrics by pull-back and ¥ is equivariant for this
action, the linearization of W is not elliptic. To remedy this problem, for a given back-
ground metric g one defines the Einstein operator ®5 (in Bianchi gauge relative to g)
by

D5(9) = Ric(g) + (n = g + 3 L3, (i (0) (21)

where the musical isomorphism § is with respect to the metric g, and 85 is the Bianchi
operator of g acting on symmetric (0,2)-tensors h by

By(h) = 3, (h) + %dtrg(h) - i(veih)(-, e + %dtrg(h). (2.9)

The exact formula (2.1) is not important. What does matter is that, using the formula
for the linearization of Ric (|Top06, Proposition 2.3.7]), one computes the linearization
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of ®; at g to be
1
(D®g)g(h) = §ALh+(n—1)h. (2.3)
Here Ay is the Lichnerowicz Laplacian acting on symmetric (0, 2)-tensors h by
Aph=vV*Vh+Ric(h),

where V*V is the Connection Laplacian and Ric is the Weitzenbock curvature operator
given by Ric(h)(z,y) = h(Ric(x),y)+h(x,Ric(y))-2trysh(-, R(-,x)y) (see [Petl6, Section
9.3.2]).

Equation (2.3) shows that (D®g)z is an elliptic operator. This opens up the possibility
for an application of the implicit function theorem.

The main point is, as has been observed many times in the literature, that the Einstein

operator can detect Einstein metrics. The following result can for example be found in
[And06, Lemma 2.1].

Lemma 2.1 (Detecting Einstein metrics). Let (X, g) be a complete Riemannian mani-
fold, and let g be another metric on X so that

sup|B5(g)|(xz) <oo and Ric(g) < Ag for some X <0,
reX

where [5(+) is the Bianchi operator of the background metric g. Denote by ®g the Einstein
operator defined in (2.1). Then

Ric(g) =-(n-1)g
By(g) =0
2.2. CY-estimate. To obtain CY-estimates for the linearization of the Einstein operator,

we use once again a standard tool, the De Giorgi--Nash--Moser estimates on manifolds
in the following form.

®;(g9) =0 if and only if g solves the system {

Lemma 2.2 (C%estimate). For all n € N, a € (0,1), A > 0, and ig > O there exist
constants p = p(n,a, A,ig) >0 and C = C(n,a, A, ig) >0 with the following property. Let
(X,9) be a Riemannian n-manifold satisfying

|sec(X,9)| <A and inj(X,g) >ip.
For f e CO( Sme(T*X)) let he CQ(Sym2(T*X)) be a solution of

1
5ALh+ (n— 1)h = f

Then it holds
|h|(x) < C(||h||L2(B(x,p)) + ”fHCO(B(x,p))) (2.4)

for all x € M.
Here as customary, sec(X,g) denotes the sectional curvature of the metric g and

inj(X, g) the injectivity radius, and Sym?(7* X) is the bundle of symmetric (0,2) tensors
on X.
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In the proof we will make use of a result by Jost--Karcher [JK82, Satz 5.1| or Anderson
[And90, Main Lemma 2.2| that, under the geometric assumptions on (X, g), around every
point there exists harmonic charts of a priori size with good analytic control.

Proof. The desired CY-bound will follow from the De Giorgi—-Nash—Moser estimates.
The problem is that De Giorgi--Nash--Moser estimates only hold for scalar equations, but
not for systems. To remedy this, we show that |h| satisfies an elliptic partial differential
inequality.

We write A = V*V = —tr V2 for the Connection Laplacian (on tensors and functions).

Using 3A(|R[?) = (AR, h) = |VA|? and f = AR+ 5 Ric(h) + (n - 1)h, we obtain

—%A(\MZ) — Z9(f, h) + (Ric(h), h) +2(n - 1)|h[2 + |Th[.

Note that |[Ric(h)| < C(n,A)|h| since |sec(M)| < A. Thus, together with the Cauchy-
Schwarz inequality, the above equality implies

1
—5A(Ihl2) +C(n, M) R > =2/ f||n] + [VA[*. (2.5)

Suppose for the moment that h # 0 everywhere. Then |h| is a nowhere vanishing C?
function. Observe

V(DI <|Vh| and - %A(IhIQ) = ~[nAIA]) + v ()P

Combining this with inequality (2.5) and dividing by |h| shows
~A(|hl) + C(n, A) k| 2 =2|f]. (2.6)
By [JK82, Satz 5.1] (also see [And90, Main Lemma 2.2|, [And06, page 230| and |Big00,
Proposition 1.3.2]) there exist p = p(n,a, A, ip) > 0 and C = C(n,a, A,iy) with the fol-

lowing property. For all z € X there exists a harmonic chart ¢ : B(x,2p) ¢ X - R"
centered at x so that

eiQ’U‘g < (D) (v)leuct. < 6Q|U’g (2.7)

for all v e TB(x,2p), and for all 4,5 =1,...,n
lg5illcra < C, (2.8)
where @ >0 is a very small fixed constant, and || - [|c2.« is the usual Holder norm of the

coefficient functions in ¢(B(p,2p)) € R™.
Fix 2 € X and choose a harmonic chart ¢ : B(z,2p) - R” satisfying (2.7) and (2.8).
In the local harmonic coordinates given by ¢, the differential inequality (2.6) reads

9200;(1hlo ™) + C(n, M) (Ihlo ™) 2 =2(If| o ™) in p(B(zo,20)) K™

Since the matrices (g ) are uniformly elliptic by (2.7), the desired estimate (2.4) follows
from the classical De Giorgi-Nash—Moser estimates (see [GT01, Theorem 8.17|) provided
that h # 0 everywhere.

It remains to show that the assumption h # 0 can be dropped. Note that (2.4) is stable
under C%-convergence, that is, if (2.4) holds for a sequence of h; and if h; — h in the
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C?-topology, then (2.4) also holds for h. Therefore, it suffices to construct a sequence h;
converging to h in the C2-topology so that h; # 0 everywhere.

An arbitrary h € CQ( Sym?(T*X )) can be approximated in the C?-topology by sym-
metric (0,2)-tensors h; (i > 1) which are transverse to the zero-section of Sym?(T*X).
For reasons of dimension, such a section is disjoint from the zero-section, in other
words, the tensors h; vanish nowhere. Therefore, the estimate (2.4) holds for all h
C?(Sym*(T*X)) and z € X. O

2.3. The approximate Einstein metric of Fine--Premoselli. In this subsection we
review the construction of the approximate Einstein metric on the branched cover of a
hyperbolic manifold due to Fine--Premoselli. We refer the reader to [FP20, Section 3|
for more information.

Let M be a closed hyperbolic manifold of dimension n >4, and let ¥ € M be a closed
null-homologous totally geodesic codimension two embedded submanifold. Fix an integer
d > 2 and denote by p: X — M the cyclic d-fold cover branched along Y. We refer to
[FP20| and to Section 3 for an explicit construction of such branched covers.

Define r: X - R by r(x) = dy(p(x),X) and u = cosh(r). Set

Unax := cosh(R"),

where RY is the normal injectivity radius of ¥ ¢ M. The construction of the approximate
Einstein metric also depends on a choice of gluing parameter Ugjye < %Umax. We will
later choose Uglye = (Umax)l/ 2 though this is irrelevant at the moment.

The following proposition summarizes all the necessary information about the approx-
imate Einstein metric that will be used later.

Proposition 2.3 (The approximate Einstein metric). There exists a smooth Riemannian
metric § on the branched covering X with the following properties:

(i) For all m e N there ezists a constant C = C'(m,n,d) such that

| Ric(g) + (n = D)gllom(x,5) < CUgilSéil);

(ii) The tensor Ric(g) + (n—1)g is supported in the region {%Uglue <u < Uglye};
(#1i) There exists a constant ¢ = c¢(n,d) >0 such that sec(X,g) < —c<0;
(iv) For all U < Upax the volume of the region {%U <u< U} 18 bounded from above by

1
voly, ({5(] <u< U} ,g) <oyt volp—2(2, ghyp)
for a constant C = C(n,d).

Points (i)-(iii) are contained in [FP20, Proposition 3.1]. Property (iii) requires that
the gluing parameter Ugjye is larger than a constant depending on n and d. As in [FP20],
in our construction this will always be the case. Point (iv) follows from the explicit
construction, which we are now going to explain.

Consider H" and fix a totally geodesic copy S € H" of H" 2. Then in exponential
normal coordinates centered at S, the hyperbolic metric of H" is given by

gun = dr? + sinh?(r)d6? + cosh?(r)gs,



NEGATIVELY CURVED EINSTEIN METRICS ON GROMOV--THURSTON MANIFOLDS 25

where gg is the hyperbolic metric of S. Using the change of variables u = cosh(r), this
becomes

du?
u? -1
which is defined for (u,6) € (1,00) x St.
Fine--Premoselli consider metrics of the form

~ du?
97 V()

gHn = + (u2 - 1)al92 + UQQS,

+V(u)do?* + u’gs, (2.9)

where V is a positive smooth function. The following is [FP20, Proposition 3.2].

Lemma 2.4. The metric g defined in (2.9) solves Ric(g) + (n—1)g =0 if and only if V
s of the form
a

_ .2
V(u)=u _1+u"‘3

(2.10)
for some a € R.

Let g, be the metric (2.9) for the function V' = V, given by (2.10). Let u, denote
the largest zero of the function V,. If uw, > 0, g, is a smooth Riemannian metric for
u € (ug,00), but in general it will have a cone singularity along S at u = u, with cone
angle depending on a. The following summarizes [FP20, Lemma 3.3|.

Lemma 2.5. There are explicit constants amax = amax(n) >0 and v =v(n) >0 such that
the following hold.

(i) We have ug > 0 if and only if a € (=00, amax| and the map a — u, is a decreasing
homeomorphism (=00, amax| = [v,00);

(i1) For each integer d > 1 there exists a unique a = a(d) € (—00, amax) Such that the
cone angle of g along S at u =, is 2X.

(i1i) The sequence (a(d))qen is strictly increasing with a(l) = 0 and a(d) - amax as
d — oo.

Therefore, the metric g,(4) defines a global smooth metric on the cyclic d-fold branched
cover of H™ along S. Of course, this is also true in X, the cyclic d-fold branched cover
of M along 3, at least in a tubular neighbourhood of .

The approximate Einstein metric g in Proposition 2.3 is then obtained by interpolating
between g,(q) (defined in a tubular neighbourhood of ¥) and gny, (defined on X \ X).
Namely, g is as in (2.9) for a function V' of the form

a
VZUQ— 1+ WX(U),
where x smooth cutoff function with y =1 in {u < %Uglue} and x =0 in {u> Ugye}. We
refer the reader to [FP20, Section 3.2| for further details.
The volume estimate in Proposition 2.3(iv) follows easily because g is of the form (2.9).
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2.4. Algebraic retraction and subgroup separability. In this subsection we state
the results about arithmetic hyperbolic manifolds and arithmetic groups from Bergeron-
-Haglund--Wise [BHW11| and Bergeron [Ber00| that are needed for the construction of
good totally geodesic submanifolds of codimension two (see Proposition 3.1).

Consider a Q- algebraic group G such that the group of its real points is the product,
with finite intersection, of a compact group by the isometry group O*(n,1) of H" for
some n > 4. We require that G comes by restriction of scalars from an orthogonal
group over a totally real number field and that G is anisotropic over Q. The arithmetic
group I' is the subgroup of G which is defined over the ring of integers in the totally
real number field; it acts cocompactly on H". The compact hyperbolic orbifold T'\H" is
called standard, and I' is a called a standard arithmetic lattice or an arithmetic lattice of
simplest type. A sufficiently deep congruence subgroup I'V of T' is known to be torsion free
and hence acts freely on H". Following [BHW11] we call the quotient I'"\H" a standard
arithmetic hyperbolic manifold.

A D-hyperplane in H" is a totally geodesic hyperplane H c H" with the property that
Stabp(H) acts cocompactly on H. If T' is an arithmetic group, then it is well-known that
there exists a I’-hyperplane in H" if and only if I" is standard. Similarly, a I'-subspace
is a totally geodesic subspace X of H" of arbitrary codimension so that Stabr(X) acts
cocompactly on X.

Definition 2.6. A subgroup A of a group I is called separable if for any v € '\ A, there
exists a finite index subgroup IV < T such that A <T” and v ¢ I".

The following is a special case of a result of Bergeron (see [Ber00, Lemme principal]
or [BHW11, Corollary 1.12]).

Theorem 2.7 (Subgroup Separability). Let M = T\H" be a standard arithmetic hyper-
bolic manifold and X2 a T'-subspace. Then Stabp(X) is separable in T.

Note that if I is a group as in Theorem 2.7, if ¥ is a I'-subspace and if I is a finite
index subgroup of T', then Stabr/(X) < I is separable. Indeed, if v € TV \ Stabr/(X), then
v € I'x Stabp(X). Thus if ' is a finite index subgroup of I which contains Stabp(X)
but not v, then I'"' NI is a finite index subgroup of I which contains Stabp/ () but not

7.
The following summarizes the results of [BHW11]| that will be needed in the sequel.

Theorem 2.8 (Bergeron--Haglund--Wise). Let M = T\H" be a standard arithmetic hy-
perbolic manifold and H € H™ a I'-hyperplane. Then there exists a subgroup of finite
index T" < T that retracts onto Stabr/(H), that is, there is a group homomorphism

retr : I'' — Stabp/(H)  such that retT|Seaby (1) = idstab (H)-

Moreover, Stabp/(H)\H is a standard arithmetic hyperbolic manifold, and the natural
map

Stabp (H)\H — I'"\H"

is an embedding whose image agrees with the projection of H € H" to T"\H".
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The first half of Theorem 2.8 is [BHW11, Theorem 1.2]. So it remains to explain why
the second part easily follows from the results of [BHW11].

Proof. By [BHW11, Theorem 1.2] there exists a torsion free congruence subgroup I'' < T
of finite index. Note that, for any I'-hyperplane H ¢ H", the stabilizer Stabp/(H) of H
in I is a congruence subgroup of the arithmetic group Stabr(H).

Appealing to [BHW11, Theorem 1.4] we may assume, after possibly passing to a further
finite index congruence subgroup, that A = Stabp/(H) is a virtual retract of I, that is,
there exists a finite index subgroup @ < IV containing A and a homomorphism @Q — A
that is the identity when restricted to A.

Now A\H is a compact standard arithmetic manifold, and the natural map A\H —
Q\H" induced by the inclusion H < H" is an immersion. By Theorem 2.7 and the
following remark, the subgroup A is separable in Q.

If the immersion A\H — Q\H" is not an embedding, then the hyperplane H is not
precisely invariant under @), that is, there exist v € @ \ A such that

y(H)nH=+@ but ~(H)+H. (2.11)

Then v(H) n H is the intersection of two totally geodesic hyperplanes and hence it is
a totally geodesic submanifold of H of codimension one. As the action of A on H is
cocompact, there exists a compact fundamental domain D € H for the action of A on H.
For any v € @\ A satisfying (2.11) there exists, by precomposing with a suitable element
from A, an element 7' € Q \ A such that

Y(H)nH+@ and ~'(D)nD #0. (2.12)

Since the action of Q on H" is discrete and D is compact, there exist only finitely
many elements in @ \ A satisfying (2.12). Keeping in mind that A is separated in @,
we can find a finite index subgroup Q' <  which contains A but does not contain any
of the elements satisfying (2.12), and hence also no element satisfying (2.11). Then the
manifold A\H is embedded in Q"\H". Furthermore, the restriction of the retraction
Q — A to Q' defines a retraction Q" — A. This completes the proof. O

3. GOOD TOTALLY GEODESIC SUBMANIFOLDS OF CODIMENSION TWO
The goal of this section is to prove the following proposition.

Proposition 3.1 (Codimension two submanifolds). For each n > 4 and any standard
arithmetic hyperbolic manifold M, there is a sequence of finite covers (My)gen of M
containing closed embedded totally geodesic submanifolds ¥y, ¢ Hy, ¢ My, with the following
properties:

(i) The manifolds ¥y are all isometric, and they are of codimension 2.
(i) Xy is null-homologous in the embedded connected hypersurface Hy ¢ My;
(i4i) X has at most two connected components;
(iv) We have
i A C2)

0,
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where R} is the normal injectivity radius of Xy, € My, and, by abuse of notation,
diam(Xy) is the mazimum of the diameters of the connected components of Xy.

Before we come to the proof of Proposition 3.1, we first show how it can be used to
control the L2-norm of the approximate Einstein metrics.

Namely, let (My)keny and X © My be as in Proposition 3.1. Fix an integer d > 2, and
denote by Xj the cyclic d-fold cover of M} branched along ¥j. Set

1
Uk;max = COSh(RZ) and Uk;glue = (Uk;max)2 : (31)

Let gi be the approximate Einstein metric on X given by Proposition 2.3. Then we
easily obtain the following from Proposition 2.3 and Proposition 3.1.

Corollary 3.2 (Small L?-norm). For the L?-norm of Ric(gy) + (n—1)gr we have
. - _ k—o0
| IRic(gi) + (0=l (@) dvolg, () 2 0.
k

This is the key estimate that will enable us to use a fairly simple perturbation argument
for the construction of Einstein metrics.

Proof of Corollary 3.2. By Proposition 2.3(i),(ii) the tensor Ric(gx) + (n — 1)gy is sup-
ported in the region {%Uk;glue <u < Uk;glue} and it is uniformly bounded from above
by
- _ ~(n-1
IRic(gi) + (n— Dailleo (xpg0) < CUp G (3.2)
It follows from Proposition 3.1(iii),(iv) and the definition (3.1) of Uy.giye that for all e >0
and k > ko(e) large enough we have

1
vol,-2(Zk, ghyp) < Cexp ((n - 3) diam(Xy)) < Cexp (ing) < CUgglye-
Together with the volume bound in Proposition 2.3(iv) this implies

1 n— n—
vol, ({gUkz;glue <u< Uk;glue} vg) < CUk;gllue vol,2(%, ghyp) < CUk;glluza' (3.3)
Combining (3.2) and (3.3) implies the desired estimate given that we choose e <n-1. 0O
We now come to the proof of Proposition 3.1.

Proof of Proposition 3.1. The proof of Proposition 3.1 is divided into three steps.
Step 1. Let M be a standard arithmetic hyperbolic manifold. Because of Theorem 2.8 and
[BHW11, Theorem 1.4|, after passing to a finite cover, we may assume that M = r\H"
where I' is a torsion free cocompact lattice and that there exists a I-hyperplane H ¢ H"
with the following properties:

(1) Stabp(H)\H is a standard arithmetic hyperbolic manifold which is embedded in

\H"; )
(2) There is a retraction retr : I' - Stabr (H);
(3) Any geometrically finite subgroup of I' is a virtual retract.
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Since Stabj(ﬂ: Y\H is a standard arithmetic hyperbolic manifold, there exists a Stabr(H)-
hyperplane ¥ ¢ H and a subgroup @ < Stabp(H) of finite index such that

¥ = Stabg (2)\X

is a standard arithmetic hyperbolic manifold embedded in Q\H.

The preimage T := retr™'(Q) of Q < Stabp(H) under the retraction retr : I' —
Stabr(H) is a finite index subgroup of I'. Note that Stabp/(H) = I n Stabp(H) = Q,
and so the retraction of I' restricts to a retraction retr : I — Stabp(H). Moreover, any
geometrically finite subgroup of I is still a virtual retract of IT".

Therefore, we have obtained a finite index subgroup I'" < I' such that Stabp (2)\Z,
Stabr(H)\H and I"\H" are all standard arithmetic hyperbolic manifolds that are smoothly
embedded in each other and so that (2),(3) above still hold for I".

For ease of notation we will from now on replace I by I' in our notations and put
M =T\H". Furthermore we put

Iy :=Stabp(X), X:=Ix\%, TI'py:=Stabpr(H), H:=TIy\H.

This notation is slightly different than in Section 2.4, where we used H to denote a
hyperplane in H". We hope that this leads to no confusion.

Step 2. Let R > 0 be arbitrary. We will now show that one can pass to a finite-sheeted
cover Mr — M that keeps ¥ fixed but so that the normal injectivity radius radius of
> ¢ Mp is at least R. To achieve this we will exploit the subgroup separability from
Theorem 2.7.

Proof of Step 2. We first make the following observation: If the normal injectivity radius
of ¥ ¢ M is at less than R, then there exists v € I' such that

din (7 70, ) < 2(R+ diam(%)) and ¢ T, (3-4)

where 7y € ¥ is some basepoint. Indeed, if the normal injectivity radius of ¥ ¢ M is less
than R, then there exists a geodesic o : [0,1] = M of length at most 2R such that

o(i)eX and o'(i) LT,;»% fori=0,1.

Let zg € X be the projection of the chosen basepoint Zg € 3. Choose a distance minimizing
geodesic 7; in ¥ from zg to o(i). Then the concatenation 7o-o - 77! is a loop based at
xg of length at most 2( R+ diam(X)). Clearly, this loop is not homotopic to a loop in .
This proves the existence of an element ~y € m (M, z) 2 I" satisfying (3.4).

Note that, for R > 0 fixed, there are only finitely many elements ~ € I' satisfying the
conditions in (3.4). Therefore, by Theorem 2.7, there is a finite index subgroup I'' of T
containing I'y;, such that v ¢ T/ for all v € T satisfying (3.4).

Since I is a subgroup of T' of finite index, we know that Stabr(H) is a subgroup of
finite index in Stabp(ﬁ ) and hence it is a cocompact torsion free lattice. In particular,
Stabrs(H) is a geometrically finite subgroup of I'. Thus from property (3) in Step 1 we
obtain a finite index subgroup @ < I' such that there is a retraction retr’ : Q — Stabp(H).
As Stabp(H) = Stabring(H), we obtain a retraction retr’ : T n Q — Stabpng(H) by
restriction. Moreover, I's; < Stabps(H) implies I's < IV 0 Q. The finite cover M’ - M
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associated to IV n @) has the desired properties. For ease of notation, we will in the
following simply write I'' for IV n Q. This completes the proof of Step 2. []

The construction in Step 2 yields a finite cover M’ of M and connected totally geodesic
submanifolds ¥ ¢ H' ¢ M’ =T"\H" such that the normal injectivity radius of ¥ ¢ M’ is
larger than an arbitrary multiple of diam(X). If 3 is null-homologous in H’ (and hence
in M") we are done. So we assume that ¥ is not null-homologous in H'.

Step 3. Finally we show that there is a two-sheeted cover M - M’ such that the preimage
S ¢ M of ¥ is null- homologous in M and the preimage H of H' in M is connected.

Proof of Step 3. In accordance with Fine--Premoselli [FP20, Definition 2.2] we say
that X ¢ H' separates H' if H' \ ¥ is disconnected. It is well-known that this can be
detected algebraically. Namely, 3 determines a class [X] € H,,_o(H';Z/2Z) and hence,
by Poincaré duality, also a homomorphism

p:m(H") > Z[27Z

that counts the number of intersections mod 2 of a generic loop with 3. Then X separates
H' if and only if p is trivial (see for example [FP20, proof of Lemma 2.3]). Therefore, if
p is non-trivial, then the two-sheeted cover H — H' associated to ker(p) is connected,
and the preimage S c H of ¥ will separate H. In particular, 3 is null- homologous in
H. Note that as 71(X) is contained in the kernel of p, the manifold 3 has precisely two
connected components, each of which is isometric to X.
Precomposing with the retraction retr’ : TV — Stabp/( ~) we can extend p to a ho-
momorphlsm defined on I". Let I' < I be the kernel of this homomorphism. Then
F\H" contains the two-sheeted cover H — H' of H as an embedded totally geodesic
submanlfold. Since 3 is null- homologous in H, it is also null- homologous in M. Fur-
thermore, as < IV, the normal injectivity radius of S is at least R. This completes the
proof of Step 3. [ ]
Recall that if 3 is not homologous to zero then S has precisely two connected compo-
nents, isometric to ¥, and the normal injectivity radius can not become smaller. There-
fore, this completes the proof of Proposition 3.1. (]

4. CONSTRUCTION OF THE EINSTEIN METRIC

Let Mj be a sequence of closed hyperbolic n-manifolds with a totally geodesic codi-
mension two submanifold Y as in Proposition 3.1, X the cyclic d-fold covering of My
branched along X, and gi the approximate Einstein metric on X given by Proposi-
tion 2.3.

The goal of this section is to prove Theorem 1, that is, to show that X admits a
negatively curved Einstein metric. By Lemma 2.1 it suffices to show that the Einstein
operator ®j, = ®g, defined in (2.1) has a zero sufficiently close to the zero section. We
will achieve this by an application of the Inverse Function Theorem.

Recall from (2.3) that the linearization of the Einstein operator at the background
metric g is given by

1
L= (Dq)k)gk = §AL + (’I’L— 1)1d
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We will first show in Section 4.1 that £ is an invertible linear operator between suitable
Banach spaces. Section 4.2 then contains the proof of Theorem 1.

4.1. Invertibility of the linearized Einstein operator. It is a classic result of Koiso
[Koi78, Section 3] (also see |[Bes08, Lemma 12.71]) that for a closed Einstein manifold
with negative sectional curvature, the operator £ has a uniform L2-spectral gap (only de-
pending on the negative upper curvature bound). By an adaptation of Koiso’s argument,
the same is also true for the approximate Einstein metrics gg.

Lemma 4.1 (L2-spectral gap). There exists a constant A = \(n,d) > 0 such that for all
sufficiently large k we have

)\ka b2 dvoly, S/;(kwh,h)dvolgk
for all h € CZ( Sym2(T*Xk)).

For a detailed proof we refer the reader to [FP20, Proposition 4.3], which is a bit more
general than what we need here.

Fix a Holder parameter o € (0,1). We equip C’Ovo‘(Sym2(T*Xk)) with the hybrid
norm

1£llo == max {][ llco.o x, g0y 1 Fllz2(x000) |- (4.1)

Similarly, we equip 02’0‘( Symz(T*Xk)) with the hybrid norm

1Az = max {[{Bllcz.o x, g0 22 000 (42)

where [ - ||g2(x, g,) 15 the Sobolev norm

1
2
||h||H2(Xk7§k) = (Ak |h|2 + |Vh|2 + |Ah|2 dvolgk) .

Here the Holder norm of a tensor is defined by the Hélder norm of the coefficients of the
tensor in a harmonic chart defined on balls of a priori size (for a detailed account we
refer to [HJ22, Proof of Proposition 2.5]).

Using the C%-estimate from Lemma 2.2 with the L?-estimate from Lemma 4.1, it is
now straightforward to show that £ is invertible (with universal constants).

Proposition 4.2 (£ is uniformly invertible). There ezists a constant C = C(«a,n,d) with
the following property. For all k sufficiently large, the linearized Einstein operator

£+ (€ (Sym*(T* Xp)), || [I2) — (CO*(Sym* (T X)), |- o)

18 1nvertible, and
1€]lop, 1€ lop < C,
where || -||o resp. || ||z is the norm defined in (4.1) resp. (4.2).
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Proof. 1t is clear that ||£||op is bounded by a universal constant. It will suffice to prove
the a priori estimate ||hlls < C||Chllp for all h e C?*(Sym*(T*X})). Indeed, given
the a priori estimate, standard arguments show that £ is surjective; consequently L is
invertible and ||£7Y||op < C due to the a priori estimate.

Clearly, [|h]|r2(x,) < C||Lh]|r2(x,) because £ has a uniform L2-spectral gap (Lemma 4.1).
Since L = %AL +(n—-1)id, this L% estimate implies

1Al z2(x,) < ClILR L2 x,)- (4.3)
Moreover, the well-known Schauder estimates (see [HJ22, Proposition 2.5]) state
IAllc2ox,) < C(HﬁthM(xk) + HhHCO(Xk))- (4.4)
The C%-estimate (2.4) together with (4.3) yields
Pl < C(IllLax) + 1Rllcocx, ) < C(IIERIIL2x) + I1€hllencxy ) (4.5)
Keeping in mind the definitions (4.1) and (4.2) of the norms ||-||o and || - ||2, the desired
a priori estimate ||hl|2 < C||Lh||o follows by combining (4.3), (4.4) and (4.5). O

4.2. Proof of the Main Theorem. The goal of this subsection is to present the proof
of our main result.

Theorem 4.3 (Existence of Einstein metrics). For all sufficiently large k there exists a
metric g on X such that

Ric(gx) +(n-1)gx =0 and sec(Xk,gr) < —c(n,d) <O0.

Moreover,

~ _ k—o0
19k = Grllc2e(x,.50) — O

Before we come to the proof we point out that, for k sufficiently large, the Einstein
metric g can not be locally symmetric. Indeed, sec(Xg, gx) = —u;?d) < -1 by (2.9) and
Lemma 2.5. Thus sec(Xg, gx) < -1 for all k sufficiently large, and so gx can not be (real)
hyperbolic. Moreover, by construction, the metric gi is hyperbolic outside of a tubular
neighborhood of ¥j. Hence, outside of a tubular neighborhood of ¥, sec(Xp, gr) is very
close to -1, and so gr can not be complex- or quaternionic hyperbolic nor the Cayley
plane.

In fact, in Section 5 we will show that for a slightly restricted choice of the hyperbolic
manifolds Mj, at most one of the cyclic branched coverings X can not admit any locally
symmetric metric.

Proof. We equip C**(Sym?(T*X},)) with the norm || - ||y defined in (4.1) and (4.2)
(k=0,2); B(h,r) shall denote the balls with respect to these norms.

Any element in B(gg,1/2) ¢ CQ’O‘(Sme(T*Xk)) is a positive definite (0,2)-tensor,
that is, a Riemannian metric on Xj. Let ®; = ®5 be the Einstein operator defined in
(2.1), which we consider as an operator

Oy, : B(gr, 1/2) € C**(Sym?*(T* Xy,)) —» C**(Sym*(T* Xy,)).
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Denote by £ = (D®})g, the linearization of ®; at the background metric g;. By Proposi-
tion 4.2 there exists a universal constant Cy = Cy(a, n,d) such that, for all k sufficiently
large, £ is invertible with ||£]|op, [|£ ™ |lop < Co. Moreover, by possibly enlarging Cp, it is
clear that the map g — (D®y), is Co-Lipschitz. Therefore, applying (a quantitative ver-
sion of) the Inverse Function Theorem implies that there exist constants €9 = eo(a, n,d) >
0 and C = C(a,n,d) with the following property: For each f € Co’a( Sme(T*Xk)) with
1f = ®x(Gk)lo < €0 there exists a metric gy € C**( Sym?(T*X})) such that

Oi(gr) = f and g7 = gillo < Cllf = @ (gr)llo-

Note that ®x(gx) = Ric(gr) + (n — 1)gx. Hence it follows from Proposition 2.3(i) and
Corollary 3.2 that ||®x(gk)|lo = 0 as k& - oo. In particular, for all k sufficiently large,
f =0 satisfies ||f — ®r(gr)|| < €0. Therefore, there exists a metric g, on Xy such that

N ]{;—)00
Pp(gr) =0 and |[|gg = glla — 0.
In particular, as sec(Xg, gx) < —c(n,d) < 0 by Proposition 2.3(iii), also sec(Xk, gx) < 0
for all k sufficiently large. Therefore, ®x(gx) = 0 implies Ric(gx) + (n—1)gx = 0 due to
Lemma 2.1. This completes the proof. O

For the formulation of the next remark, note that there is a natural action of the cyclic
group Cy of order d on the d-fold branched cover Xj.

Remark 4.4. For all k sufficiently large, the Einstein metric gp on Xj given by The-
orem 4.3 is Cg-invariant. In particular, for all k sufficiently large (depending on d),
the hyperbolic manifolds M} admit negatively curved Einstein metrics with a conical
singularity and cone angle <& 2™ along the codimension two submanifold X, € M.

Proof. In the proof of Theorem 4.3, the Einstein metric g, was the zero of the Einstein
operator ®; obtained from an application of the Inverse Function Theorem. Since the
Inverse Function Theorem can be proved using the Banach Fixed Point Theorem, gy, is
of the form g + ﬁk, where hy, is a fixed point of the operator

Uy, : C*(Sym®(T*Xy,)) - C**(Sym*(T* X)), h > h = L7 (D4 (g + ).

Using the definition (2.1) of the Einstein operator, one can easily check that if a Rie-
mannian metric g on X}, is ¢-invariant for some ¢ € Isom(Xy, gx), then also <I>k(g) is
@-invariant. As the fixed point Ay, is given by the limit lim;_, e W! (0), this shows that hu,
and hence gy, is Isom( Xy, gx )-invariant. However, it is apparent from the construction of
gi explained in Section 2.3 that gy is Cy-invariant. Therefore, also gy is Cg-invariant. [

5. EINSTEIN MANIFOLDS NOT HOMEOMORPHIC TO LOCALLY SYMMETRIC SPACES

By Theorem 4.3 there exist negatively curved Einstein metrics on some branched
covers X of certain hyperbolic manifolds M. The construction is valid for all covering
degrees smaller than a number depending on M. As M varies, this maximal covering
degree can be arbitrarily large. The goal of this section is to show that for any dimension
n >4, we find infinitely many such branched coverings which are not homeomorphic to
a locally symmetric manifold.
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We start with the following basic observation.

Proposition 5.1. Let M be a closed hyperbolic n-manifold and ¥ € M a closed null-
homologous totally geodesic submanifold of codimension two. Then the cyclic d-fold cov-
ering X of M branched along ¥ is not homeomorphic to any locally symmetric manifold,
except possibly hyperbolic manifolds.

Proof. Arguing by contradiction, we assume that X is homeomorphic to a locally sym-
metric manifold N that is not hyperbolic. We first observe that this locally symmetric
manifold has to be of real rank one. Namely, since X is aspherical, a locally symmetric
metric on a manifold homeomorphic to X is of non-positive curvature. By a theorem
of Wolf (Theorem 4.2 of [W62]), a cocompact lattice in a semisimple Lie group of real
rank 7 contains a subgroup isomorphic to Z". However, as X carries a negatively curved
metric [GT87|, by Preissmann’s theorem |Pr42, Théoréme 10| (also see [dC92, Theorem
3.2 in Chapter 12]) any abelian subgroup of 71 (X) is infinite cyclic.

It remains to show that X is not homeomorphic to any complex-, quaternionic- or
Cayley-hyperbolic manifold. If X is homotopy equivalent to a complex hyperbolic man-
ifold NV, then there is a degree d > 2 map Il : N - M. Since M has constant negative
curvature, the map II is homotopic to a harmonic map. But by a theorem of Sampson
[Sa86], any harmonic map from a compact Kéhler manifold into a real hyperbolic mani-
fold is trivial in homology of dimension larger than two, which contradicts the fact that
the degree of the map II is positive (unless n =2 and N is also real hyperbolic).

By a celebrated result of Novikov [Nov65, Theorem 1], the rational Pontryagin classes
are a homeomorphism invariant. In particular, the Pontryagin numbers are a homeomor-
phism invariant. By a result of Lafont--Roy [LR07, Theorem B] all Pontryagin numbers
of X vanish, while it is a well-known consequence of the Hirzebruch proportionality prin-
ciple [Hir56, Satz 2 and Equation (2)| that closed quaternionic- or Cayley-hyperbolic
manifolds have some non-zero Pontryagin numbers (see [LR07, Corollary 3]). Therefore,
X can also not be homeomorphic to a quaternionic- or Cayley-hyperbolic manifold. [

As a consequence of Proposition 5.1 and the work of Besson, Courtois and Gallot
[BCGY95] we obtain.

Corollary 5.2. If dim(X) = 4 and X admits an FEinstein metric as constructed in
Theorem 4.8 then X is not homeomorphic to a locally symmetric manifold.

Proof. Using the notations from Proposition 5.1, if X is homeomorphic to a locally
symmetric manifold M then M is real hyperbolic. As X admits an Einstein metric g,
it is a consequence of [BCG95, Théoréme 9.6] (also see [And10, Corollary 4.6]) that X
is diffeomorphic to M and g is of constant curvature. However, the curvature of the
Einstein metric g on X is not constant, from which the corollary follows. O

In the remainder of this section, which is independent of the rest of the article, we
show that for any n > 4 there are infinitely many arithmetic hyperbolic manifolds M of
dimension n which admit branched covers to which our construction of Einstein metrics
applies, but such that at most one of these branched covers can be homeomorphic to a
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hyperbolic manifold. Together with Theorem 5.5, this completes the proof of Theorem
1.

We begin with collecting some more specific information on the standard arithmetic
hyperbolic manifolds used in our construction. Let k be a totally real number field
of degree d over Q equipped with a fixed embedding into R which we refer to as the
identity embedding. Let V be an (n + 1)-dimensional vector space over k equipped
with a quadratic form ¢ (with associated symmetric matrix @) defined over k which has
signature (n,1) at the identity embedding, and signature (n + 1,0) at the remaining
embeddings. Such a quadratic form is called admissible. We require in the sequel that ¢
is anisotropic over Q. This means that ¢ = 0 has no rational solution.

Let Ry be the ring of integers of the number field k£ and let O(q, Rx) be the group of
automorphisms of the quadratic form ¢ which are defined over Ry, that is,

O(q,Ry) = {X € GLny1(R:) | X'QX = Q}.

A subgroup T of the isometry group O*(n, 1) of the hyperbolic space H" is called an
arithmetic group of simplest type if I' is commensurable with a conjugate of an arith-
metic group O(q, Ry). As the quadratic form ¢ is admissible and anisotropic over Q, an
arithmetic group of simplest type I' is a cocompact lattice in O*(n,1). Thus I'\H" is
a compact hyperbolic orbifold with singularities corresponding to the fixed points of I'.
We refer to [Em23, Example 6.30] for more information.

Example 5.3. The quadratic form
q(z) = —2z2+ 2+ + 22

on R™! is defined over the quadratic extension Q(v/2) of Q. Evaluation on the non-
identity embedding Q(v/2) - R given by v/2 - —/2 shows that ¢ is admissible, moreover
it is anisotropic over Q. The upper paraboloid {x e R"!|g(z) = -1 and x¢ > 0} is a
model for H".

The ring of integers of the number field Q(v/2) is the ring Z[+/2] and hence

O(¢.2[V2]) = O(q) N CLux (Z[V2])
is a cocompact lattice in O*(n,1).

Standard theory of quadratic forms (see [La73]) provides an equivalence over k of the
quadratic form ¢ to an admissible diagonal quadratic form. Thus we may assume without
loss of generality that

q(z) = —apxd + a1zt + - + apx?

with a; € k,a; >0. Put T'=0(q, Ry).
Let ¢ € Isom(H™) be the geometric involution that acts via reflection in the x;-variable,
that is,

t(xo, 1,2, ..., Tn) = (Lo, —T1, T2, ..., Tp)-

Then H := Fix(s) = {x ¢ H"|x1 = 0} is a hyperplane. The quadratic form

qo(x) = —apTi + asws + - + anr’
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on the linear subspace Vj = {1 = 0} of V defined over k is admissible and anisotropic over
Q. Under the obvious identifications we then have Stabp(H) = O*(n -1,1) n O(q, Ry,),
so that, by the same reason as above, the quotient Stabp(ﬁ )\I:I is compact. This means
that, in the terminology of Section 2.4, His a I-hyperplane. Furthermore, we have
(e =T.

Consider the sequence I';;, < I' of congruence subgroups defined as the kernel of the
natural homomorphism

I = GLys1 (Ri) > GLps (Ri/Om)

where O, is a sequence of mutually distinct prime ideals in Ry. For sufficiently large
m the group I'), is sufficiently deep and hence torsion free. The quotient manifold
Ny, =T \H" is a standard arithmetic hyperbolic manifold. Moreover, by construction,
N,, is oriented.

As kernels are normal subgroups, one easily checks (It ™t = Ty, It follows that ¢
descends to an isometric involution of N,, = I';,\H", again denoted by ¢. The fixed
point set of this involution is a (possibly disconnected) totally geodesic submanifold of
codimension one. Fix a component H of this submanifold. We may assume that H is the
projection to Ny, of the I'y,-hyperplane H. Following the construction in Section 3, we
know that Stabr, (H) is a virtual retract of T',. Let I/, < T',, be a finite index subgroup
containing the fundamental group Stabr, (H) of H which retracts onto Stabr (H).

Lemma 5.4. There exists a t-invariant finite index subgroup T'0, < T which contains

Stabr,, (H).

In particular, by restricting the retraction ret : I/, — Stabr, (H) to I'%, we see that
I'% also retracts onto Stabro (H) = Stabr,, (H).

Proof. As T < T, has finite index and T, is c-invariant, T9, = I/, nI7 0t is a
t-invariant finite index subgroup of I';,. Moreover, by inspecting the action of the dif-
ferential, one ca,n check that 'Stabyp, (H). € Stabp (H) ¢ TIj,. This then implies
Stame(H) < m. O

The group T? is invariant under conjugation by ¢, and this action of ¢ on I'?, is
nontrivial. Thus ¢ acts as an isometric involution on M, = T \H". Its fixed point set is
a disjoint union of totally geodesic embedded hyperplanes containing the quotient H of
H under the action of Stabr, (H).

By the construction in Section 4, by perhaps passing to a two-sheeted covering M,,
of M,,, we may assume that the preimage H of H in M,, contains a totally geodesic
embedded hyperplane S, which is homologous to zero and consists of at most two
connected components. The involution ¢ may not lift to M,,,, but it lifts to the covering

i Of My, of degree at most two with fundamental group w1 (M) Ny (M, )" Note
that as the hyperplane H in M, is contained in the fixed point set of the 1nv01ut10n L
if 7T1(Mm) < m(M,,) is not invariant under conjugation by ¢, then the preimage of H
in M,, consists of two components of H each of which contains a totally geodesic null
homologous hyperplane as required in the construction in the beginning of this article.
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Using this construction, Theorem 1 is an immediate consequence of Theorem 4.3,
Proposition 5.1 and the following main result of this section.

Theorem 5.5. Let M be an oriented closed hyperbolic manifold of dimension n >4 and
let Hc M to a totally geodesic embedded hyperplane. Assume that H is contained in the
fized point set of an orientation reversing isometric involution v and that H contains a
(possibly disconnected) embedded totally geodesic hyperplane ¥ which is homologous to
zero in H. Then for at most one d € 47, the cyclic d-fold covering of M branched along
> can be homeomorphic to a hyperbolic manifold.

Remark 5.6. Building on the results in this section, in forthcoming work, we show
that for n > 4, no nontrivial branched cover of a closed hyperbolic n-manifold admits a
hyperbolic metric. We refer to [KS12] for a closely related result.

The remainder of this article is devoted to the proof of Theorem 5.5. It is inspired by
[GT87, Remark 3.6], though it does not directly follow from it. The section is divided
into two subsections. We always consider a degree d branched covering X of M for an
even number d > 2, and we assume that X admits a hyperbolic metric.

5.1. Fixed point sets of isometries. Let M be as in the statement of Theorem 5.5,
containing the hypersurface H > . By assumption, ¥ bounds a submanifold Hy c H.
Put H1 =H~ Ho.

The d-fold covering X of M branched along the totally geodesic submanifold ¥ c H c
M can be realized as follows. Let M., be obtained from M by cutting along Hy, that is,
M.yt is the metric completion of M — Hy. Thus My is a compact (topological) manifold
whose boundary consists of two copies Hy and H{j of Hyp intersecting in ¥. The manifold
X is obtained by gluing d copies ML ,,..., MZ, of My along the boundary, so that the
copy of Hi in M¢, is glued to the copy of Hy in MUl (where the superscripts i are
taken modd).

Let ¢ = tpy :+ M — M be the isometric involution whose fixed point set contains
H c Fix(¢). Since locally near H, tps acts as a reflection in H, it exchanges the two
components of U ~ H where U is a tubular neighborhood of H in M. Thus tjs acts as
an involution on M, which exchanges Hj and Hy and fixes W = Fix(upr) N Ho 2 H;.

As a consequence, ¢ty induces an involution ¢ of X with the property that L(M(fut) =
ME:27% and so that the restrictions ¢ : M2, - M2 are identified with ¢ : Meyy = Mey
(superscripts are again taken modd).

Let ¢ be a generator of the cyclic deck group of X — M. It cyclically permutes the
copies M MZ . of M.y in X. Define j = ( ot (read from right to left).

cuty

Fact 5.7. The fixed point set of j in X is the union Hg’l U Hg’Hd/Q of the copies of

Hoc H in M}, and Mcllftd/Q, and the copies Hg’l and Hg’1+d/2 of Hy are glued along 3

C

(see Figure 1).
The fixed point set of each of the involutions Ctojo(™" (i=0,...,d-1) is the embedded
submanifold ¢"(Fix(j)) of X. Their union cuts X up into the d copies of Mcy. We call

any diffeomorphism of X contained in the finite group of diffeomorphisms of X generated
by 7 and ¢ an admissible diffeomorphism of X.
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FiGURE 1. The cyclic 4-fold branched cover. The involutions ¢ and j act
via reflection along the colored submanifolds and ¢ via rotation around
3.

By Mostow rigidity, any homotopy self-equivalence o of X is homotopic to a unique
isometry o of X. Furthermore, by uniqueness, the map

Homeo(X) - Isom(X), o~ o

which associates to a homeomorphism the unique isometry homotopic to it is a group
homomorphism. The following result relates the finite group of admissible diffeomor-
phisms of X to the corresponding finite group of isometries for the hyperbolic metric.
It seems be known to the experts, and it was claimed in [GT87] for the generator ¢ of
the deck group of X — M (except for Remark 3.4, this is not used in [GT87]). In view
of the fact that in the presence of fixed point sets of positive dimension, a finite group
of diffeomorphisms of a hyperbolic manifold of dimension n > 3 need not be conjugate
to its isometric realization (see the main result of [CLWI18]| for the case of finite groups
of homeomorphisms and the included remark about the case of diffeomorphisms), we
present a proof.
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Proposition 5.8. Let ¢ be an admissible diffeomorphism of X and let ¢7 be the isom-
etry of X homotopic to ¢. Then the fized point set Fix(¢7) c X of ¢7 is (abstractly)
diffeomorphic to Fix(¢). Moreover, Fix(¢7) and Fix(¢) are freely homotopic inside X .

Proof. Let ¢ be any nontrivial admissible diffeomorphism of X. Then either ¢ is an
orientation reversing involution whose fixed point set is a disjoint union of submanifolds
of codimension one contained in the preimage of Fix(¢y/), or it is a power of ¢ with fixed
point set 3. In particular, the fixed point set of ¢ is a (possibly disconnected) orientable
hyperbolic manifold of dimension n —2 or n —1 containing ..

We first observe that ¢* does have fixed points. Indeed, otherwise X — (¢7)\X
would be a finite-sheeted covering map between manifolds. As X is a closed hyperbolic
manifold, it is aspherical and m1(X) has trivial center. But then [HJ24, Lemma 2.2]
implies that ¢ can not be homotopic to a map of finite order and non-empty fixed
point set, contradicting the fact that ¢* is homotopic to ¢.

Since a component Z# of Fix(¢7) is a totally geodesic submanifold of X containing
the unique closed geodesic in X freely homotopic to an element of 71 (Z%), no two distinct
components of Fix(qé#) can be freely homotopic. As a consequence, it suffices to show
that for every component Z of Fix(¢) (or Z7 of Fix(¢™)) there exists a component Z7
of Fix(¢™) (or Z of Fix(¢)) which is diffeomorphic and freely homotopic to Z (or Z7#).

Thus let Z be a component of Fix(¢) and choose a basepoint = € Z. Let ¢. be the
automorphism of 71 (X, x) induced by ¢. We divide the proof into six steps.

Claim 1. We have Fix(¢.) = m1(Z,x).

Proof of Claim 1. The hyperbolic metric on M lifts to a hyperbolic cone metric h on
X which is smooth away from ¥ and with cone angle 2dm along . Thus h is locally
a CAT(-1)-metric. Therefore every homotopy class « € w1 (X, x) has a unique geodesic
representative for the metric A which is a geodesic loop based at x. The map ¢ is an
isometry for h fixing Z pointwise.

Note that the inclusion m (Z, x) < Fix(¢.) trivially holds. To prove equality, we argue
by contradiction and assume that there exists a class [v] € Fix(¢.) ~71(Z, ). This class
is represented by a unique geodesic loop v based at x that does not entirely lie in Z. As
¢ is an isometry, ¢(7) is the geodesic representative of ¢.([v]) = [7], and hence ¢(v) =~
by uniqueness. As Z is a connected component of Fix(¢), we get v ¢ Z, contradicting
[’7]¢7r1(Z,I'). n

The argument in the proof of Claim 1 also applies to the map ¢7 as an isometry for
the hyperbolic metric on X and shows that if Z# is any component of the fixed point
set Fix(¢?) of ¢, which is a totally geodesic submanifold of X, and if y € Z#, then
7Tl(Z#7Z/) = FlX(‘bf&) c WI(X73/)'

Since ¢ has fixed points, by changing the hyperbolic metric with an isotopy, that is,
replacing it by its pullback by a diffeomorphism of X isotopic to the identity, we may
assume that 2 € Fix(¢#). Then ¢* induces an automorphism c/bffE of m (X, z).

Claim 2: Let [y] e m1(Z,2) and let 7 be the closed geodesic for the hyperbolic metric
which is freely homotopic to v; then v c Fix(¢™).
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Proof of Claim 2. Since ¢ and ¢* are homotopic, there exists an element o € 71 (X, x)
such that ¢7 = ag.a . As [v] e m1(Z,x) c Fix(¢«) we know that ¢f([’y]) is conjugate
to [v]. In other words, ¢7 preserves the conjugacy class of [~].

Let 47 be the unique oriented closed geodesic for the hyperbolic metric on X in the
free homotopy class of [y]. Since ¢# preserves the conjugacy class of [y] and is an
isometry, it preserves 7# as an oriented unparameterized circle.

We argue by contradiction and we assume that 7% ¢ Fix(¢?). If there are no fixed
points of ¢ on v then as ¢7 preserves the hyperbolic norm of the tangent of 47, it
acts on the immersed circle % ¢ X as a nontrivial rotation. Then 7% admits a lift 37
to the universal covering H” of X so that a lift ¢# of ¢* acts on 57 as a nontrivial
translation. But any isometry of H" which preserves a geodesic and acts on it as a non-
trivial translation is loxodromic and hence fixed point free. This violates the fact that
&% and hence ¢# have fixed points.

As a conclusion, the restriction of ¢# to ~# has fixed points. Let y € v# be such
a fixed point. Since ¢ preserves 47 as a set, the differential dyqb# of ¢ at y maps
the (oriented) tangent v of ¥# at x to +v. If d,¢* (v) = v then 4# c Fix(¢™) since an
isometry maps geodesics parameterized by arc length to geodesics parameterized by arc
length, and geodesics are determined by their tangent at a single point. This contradicts
the assumption y# ¢ Fix(¢™).

Therefore dy¢™ (v) = —v and ¢7 reverses the orientation of y#. Then [y#] is conjugate
to its inverse in 71 (X, x). This is equivalent to stating that there exists an element of
m1(X,x) acting as the deck group of X on H" which exchanges the endpoints in the
ideal boundary OH™ of H" of a lift of v, contradicting the fact that any isometry with
this property has a fixed point. Together this completes the proof of Claim 2. [ ]

Claim 3: Up to changing the hyperbolic metric with an isotopy, we have ¢, = gzﬁf, in
particular Fix(¢7) = Fix(¢,).

Proof of Claim 3. Let v ¢ Z be a (nontrivial) closed geodesic for the hyperbolic cone
metric h on X. Note that such a geodesic exists since the dimension of each component
of Fix(¢) is at least two and Z is totally geodesic for h. Let x € v and let as before ~#
be the closed geodesic for the hyperbolic metric on X which is freely homotopic to ~.

Choose a point z# € v# and an embedded arc a : [0,1] - X, smooth up to and
including the endpoints, which connects = to z# and such that a o~ oa™ (read from
right to left) is homotopic to 4% in 71 (X,z"). Let N be a tubular neighborhood of a.
There exists a smooth isotopy [0,1] x X — X of X which is the identity outside of N
and pushes the point = along a. Let A be the endpoint map of this isotopy. Then A
maps 7 to a based loop at 2 which is homotopic to 47 and hence up to replacing the
hyperbolic metric by its pull-back under A, we may assume that z € % and that the
homotopy classes of v and 4* in 71 (X, z) coincide.

Recall that qbfﬁ = a¢.a! for some a € m (X, z) (the element o may have changed in
the course of this proof). Since
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we know that a centralizes the homotopy class [v] of 7. As 71 (X, x) is the fundamental
group of a hyperbolic manifold, the centralizer of [v] equals the infinite cyclic group
generated by [v]. In particular, ¢.(«) = « since [v] € Fix(¢«), moreover o7 preserves
the fixed point set 7 (Z,x) of ¢..

The component Z of the fixed point set of ¢ is a closed oriented hyperbolic manifold of
dimension at least two. Thus any nontrivial inner automorphism of 71(Z, x) has infinite
order. Now ¢¥ is an isometry of finite order and hence the order of ¢f£ is finite as well.
But d)f(ﬁ) = afBa! for all B € m(Z,x) and consequently a = e and ¢, = gbfé. This
completes the proof of Claim 3. [ ]

We showed so far that for every component Z of Fix(¢) there exists a component
Z# of Fix(¢”) whose fundamental group is isomorphic to the fundamental group of Z.
Each component Z of Fix(¢) and corresponding component Z# of Fix(¢*) is naturally
equipped with a hyperbolic metric. Its dimension equals the cohomological dimension
of its fundamental group. Thus if the dimension of Z is at least three, then by Mostow
rigidity, the manifolds Z and Z# are isometric and freely homotopic inside X. If the
dimension of Z equals two then the manifolds Z and Z# are diffeomorphic as the diffeo-
morphism type of a closed surface is determined by its fundamental group. Furthermore,
Z and Z# are freely homotopic inside X.

It remains to show that there is no component of Fix(¢*) which is not freely homotopic
to a component of Fix(¢). This is carried out in the rest of this proof.

Claim 4: X \ Fix(¢) is aspherical.

Proof of Claim 4. As X is a closed hyperbolic manifold by assumption, its universal
covering X is diffeomorphic to R™. Furthermore, Fix(¢) c X is an embedded closed
totally geodesic submanifold for the CAT(-1)-hyperbolic cone metric h on X whose
codimension either equals one or two. The preimage ¥ of X \ Fix(¢) in X is the
complement in X of a countable union of properly embedded submanifolds diffeomorphic
either to R"™! or to R"2,

If the codimension of these subspaces equals one then Y is a disjoint union of countably
many contractible spaces. If the codimension of these subspaces equals two then Y is
homotopy equivalent to the wedge of countably many circles, each corresponding to
a loop encircling one of the codimension two complementary subspaces. Hence Y is
aspherical. Since Y is a covering of X \ Fix(¢), the space X \ Fix(¢) is aspherical as
well. ]

Claim 5: X\Fix(¢) has the homotopy type of a finite CW-complex, and its fundamental
group is center free.

Proof of Claim 5. There are two cases possible for the map ¢. In the first case, Fix(¢)
is a finute disjoint union of compact codimension one submanifolds in X, and in the
second case, we have Fix(¢) = X. In both cases, X \ Fix(¢) is homotopy equivalent to a
compact manifold with boundary, which can be chosen to be the complement of a small
open tubular neighborhood of Fix(¢). Hence X \ Fix(¢) has the homotopy type of a
finite CW-complex.
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To see that 71 (X \ Fix(¢)) is center free, note that if Fix(¢) is a disjoint union of
hyperplanes, then cutting X open along the corresponding components of Fix(gé#) yields
a (possibly disconnected) compact hyperbolic manifold N with totally geodesic boundary
whose fundamental group is a torsion free hyperbolic group and hence center free.

If Fix(¢) = ¥ then putting G = m1(X \ Fix(¢)), the homomorphism p : G - 71 (X)
induced by the inclusion X \Fix(¢) — X is surjective. Thus as m (X)) is torsion free and
center free, an element in the center of G is contained in the kernel of the homomorphism
p and hence it is contained in the center of ker(p). But the kernel of p is the fundamental
group of the preimage Y of X \ ¥ in the universal covering H" of X. As Y has the
homotopy type of a countable wedge of circles, this fundamental group is an infinitely
generated free group and hence center free. [ |

The following claim completes the proof of the proposition.

Claim 6: There can not be any component of Fix(¢™) that is not freely homotopic to
a component of Fix(¢).

Proof of Claim 6. We showed so far that there exists a union Q of components of Fix(¢?)
which is abstractly diffeomorphic to Fix(¢) and freely homotopic to Fix(¢) in X. The
manifolds X \ Fix(¢) and X \ @ have isomorphic fundamental groups, and by Claim 4
and its analog for X \ @, they are aspherical. As a consequence, X \ Fix(¢) and X \ Q
are homotopy equivalent.

Let A : X N\ Fix(¢) - X ~ @ be a homotopy equivalence, with homotopy inverse
A, The map ¢ acting on X \ Fix(¢) is homotopic to the map ¢ = A~ o ¢# o A, read
from right to left. Thus via an identification of 71 (X \ Fix(¢)) with 71(X \ Q) via
the homotopy equivalence A, the maps ¢ and ¢7 induce the same outer automorphisms
of 71(X \ Fix(¢)). Furthermore, by construction, ¢ and ¢* have the same order, say
m>2.

We now follow [HJ24, Lemma 2.2]. The finite order diffeomorphism ¢ restricts to a
fixed point free finite order diffeomorphism on X \ Fix(¢). Let X = (¢)\(X \ Fix(¢)) be
the quotient of X under the free action of ¢. There exists an exact sequence

1 - 7 (X N Fix(¢)) » m(X) - Z/mZ - 1.

Since ¢ and ¢* induce the same outer automorphism of 7 (X \ Fix(¢)), this sequence
splits if the map ¢* acting on X \ @ has a fixed point. However, as 7 (X \ Fix(¢)) is
center free by Claim 5, if the sequence splits then Z/mZ is a subgroup of 7 (X)), which is
impossible as X \ Fix(¢) and hence X has the homotopy type of a finite CW complex by
Claim 5. We refer to [HJ24, Lemma 2.2| for more information on this line of argument.
As a conclusion, the action of ¢* on 71 (X \ Q) is fixed point free, completing the proof
of Claim 6. [ ]

This completes the proof of Proposition 5.8. (]

Remark. The above proof is valid for all covers X of a hyperbolic manifold M, branched
along a totally geodesic nullhomologous submanifold 3 of codimension two. It shows that
if X admits a hyperbolic metric, then the fixed point set of an isometry of X homotopic
to an element of the deck group of X - M is diffeomorphic to the branch locus ¥, thus
confirming [GT87].
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5.2. The proof of Theorem 5.5. In this subsection we assume as before that X admits
a hyperbolic metric. Let j be the involution of X described in Fact 5.7, and ¢ be the gen-
erator of the deck group of X — M which cyclically permutes the copies M}, ..., M2,
of Meyt in X.

From now on we always denote by F' the component of Fix(j) containing ¥ and by
F# the homotopic component of Fix(j#) whose existence was shown in Proposition 5.8.
By Proposition 5.8 and Mostow rigidity for closed hyperbolic manifolds of dimension
n -1 > 3, there exists an isometry ¢ : F - F# which maps ¥ to the fixed point set
Y# of ¢(*. Furthermore, with a homotopy we may identify ¥ and ¥# in X. For each
i=0,...,d—-1, the map (¢*)" o) o (™" maps ¢'(F) isometrically onto ((#)(F#).

After possibly changing the hyperbolic metric of X with an isotopy, we may assume
that for each connected component Xy of ¥ we have Xy n Zé’é + @, where Z# = 1(20)-
So, for each component, we can fix a basepoint xg € g N Z#, and we may assume
without loss of generality that 1g(xg) = 9. We call such a basepoint preferred. Due to
Proposition 5.8, we may also assume that

™1 (S0, 20) = m (BF,0)  and i (F,x0) = m (F#, o).

In the sequel, the fundamental group m (X, z¢) will always be represented with respect
to a fixed choice xg of preferred basepoint.

Although by Proposition 5.8, the cyclic group generated by ¢# acts freely on X \ 2%
and the manifold F# is homotopic to F, this does not necessarily imply that ¢(#(F#) n
F# = %#. The following lemma takes care of this issue.

Lemma 5.9. (1) The differential of (* acts on the normal bundle of 7 by a rotation
with angle 27 /d.
(2) We have F7# n (*(F#) =27,
Proof. We begin with the proof of the second part of the lemma. We may assume that
m1(F,20) = 71 (F7,20) and 71 (C(F), xo) = 1 (C* (F#),x0). Thus for a choice of lift &
of xg to the universal covering H", limit sets of these groups in the ideal boundary o0H"
and of their conjugates, acting as subgroups of the deck group, coincide.

Let F# c H" and (#F# c H" be the (unique) lifts of F# and (¥ (F7#), respectively,
which pass through #,. Each component of F# n (#(F#), which is a totally geodesic
embedded hyperplane in F7#, lifts to precisely one 7 (F#, zq)-orbit of intersections of F#
with 7 (X, xo)(&—ﬁﬁﬁ) (using the deck group action) and hence to a 1 (F¥,xg)-orbit
of intersections of the boundary sphere of F# with the boundaries of the hyperplanes in
the orbit of (# F#. These boundary spheres are precisely the limit sets of the conjugates
of the group 71 (C* (F#),z0) = 11 (C(F),x0) in OH". Since F n((F) =%, the number of
71 (F7, xg)-orbits of such intersection spheres is at most the number of components of
¥ = ¥#. Thus we have F7# n C#(F#) = Y% which completes the proof of the second part
of the lemma.

Let E# be a component of 7. This is a totally geodesic submanifold of X of codi-

mension two contained in the fixed point set of (. Since (¥ is a non-trivial orientation
preserving isometry of X of order d, its differential acts on the normal bundle of Z# as
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a rotation with rotation angle 27k/d where k is a generator of the cyclic group of order
d. We have to show that k = 1.
Consider again lifts ¢, (" of ¢,¢7 to the universal covering H" of X, chosen so that

they fix pointwise the same component E of the universal covering of ZO , which is a
totally geodesic subspace of H" of codimenswn two. The differential of (¥ acts on the
normal bundle of ¥# as a rotation with rotation angle 27k/p.

The choice of basepoint zg € ZO# determines an identification of the unit tangent sphere
T%OH” of H" at o with the ideal boundary OH" = §"! of H" by associating to a unit
tangent vector v the equivalence class of the geodesic ray with initial velocity v. The
limit set in OH"™ = S™~! of the stabilizer of F# in the deck group 71(X,xo) equals the
boundary OF# of ﬁ, which is an equator sphere of codimension one in T3 H" = 0H".

It contains the ideal boundary of E# as an equator sphere. We also know that ¢ #(8}’7\#)
coincides with the limit set ((dF) of the group m (((F),x) acting on H™.

Now recall that ¢ acts as an isometry with respect to the CAT(-1) hyperbolic cone
metric h on X, which is quasi-isometric to the hyperbolic metric, and it acts as a cyclic
permutation on the totally geodesic submanifolds *(F'). Thus viewing OH" as the ideal
boundary of the universal covering of X, equipped with the hyperbolic cone metric h,
we obtain that there is a component of 8H” ~ (OF U ¢(OF)) which does not intersect
any of the spheres ¢*(9F). By identifying OF# with the unit tangent sphere of F F# at
Zg, which is an equator sphere in T, %O]HI", and C#(E)F #) with the unit tangent space of
C*(F7) at &g, we deduce that there is a component of T%OH” N (T%OF# U d(#(T%OF#))
not intersecting any of the spheres d¢ #(T%OF#) if and only if the differential of (¥ acts

on the normal bundle of E# as a rotation with rotation angle 27/d. This completes the
proof of the lemma. ([

Remark. The proof of the first part of Lemma 5.9 relies on the analysis of limit sets of
stabilizers of preimages of the totally geodesic hyperplane H ¢ M. It remains valid even
if H is not fixed by an isometric involution.

With these preliminary results at hand, we can now prove Theorem 5.5.

Proof of Theorem 5.5. By construction, the subspace F U ((F') of X separates X. By
the definition of the map j, the complement X — (F u ((F')) contains two connected
components whose closures are homeomorphic to M.y;. Let Z be the closure of such a
component. Its boundary consists of two copies of Hy glued along X..

By Lemma 5.9, there exists a corresponding component Mfﬁt of X — (F# u (¥ (F7)).
The boundary of its closure Z# is connected and consists of two copies of Hy meeting
along ¥ with an angle 2r/d. Identifying ¥ and % as before and choosing a basepoint
r e, we claim that 71(Z,z) = 71 (Z%, x).

Namely, by Proposition 5.8, it holds that 71(0Z,z) = 7 (0Z%,z). As 0Z is a sepa-
rating hypersurface in X homotopic to dZ%, by the theorem of Seifert-van Kampen, we
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know that
7I-1()(7'77) = 7T1(Z7.%’) *r1(8Z,x) 7T1(X N va) = 7T1(Z#,.T) *r(0Z# ) 7T1(X N Z#,l’).

It then follows from the normal form for amalgamated products [LSO01, p.186] that
71 (Z#,x) is isomorphic to either m (Z, x) or to 7 (X \ Z, ).

If d = 2 then 71 (Z,x) is isomorphic to m1(X \ Z,x) and the claim is clear. If d > 3
then note that ¢, = Cf maps 71(Z,x) to a proper subgroup of m1 (X \ Z,z), and it maps
71(X \ Z,z) to a proper supergroup of m(Z,z). Furthermore, it maps 71 (Z%,2) to a
proper subgroup of m (X \ Z#, x), and it maps m (X \ Z%,z) to a proper supergroup of
71 (Z%, ). Thus we have 71(Z,z) = 71 (Z7, x) as claimed.

We argue now by contradiction and we assume that there are distinct multiples of
dy # dg € 4N such that the cyclic d;-fold branched cover X (4i) admits a smooth hyperbolic
metric for ¢ = 1,2. Then, for each 7 = 1,2, the above discussion implies that there exists a
hyperbolic cone manifold M, 2n/di ith totally geodesic boundary M 2m/d; homeomorphic

cut cut
and path isometric to O My, with singular set isometric to X, cone angle 27/d; along 3,

and 71 (M™% = 1 (M)

cut

Note that %3—7{ + d2—2(21—72r = 2. Therefore, we can glue dy/2 copies of Miﬁ/dl and da/2
copies of Mf::t/ &y cyclic order along the components of 8MC2171T,5/ % (Y to a smooth hy-

perbolic manifold Y. An application of the Seifert--van Kampen theorem shows that
the fundamental group of Y is isomorphic to the fundamental group of the (di + ds)/2-
fold cyclic cover X of M branched along . In particular, this fundamental group
admits a finite group of automorphisms generated by an element (. of order (dy + d2)/2
and an involution j. corresponding to the automorphisms induced by the homeomor-
phisms ¢ and j of X (notations are as before). By the beginning of this proof, for each
i=0,...,(dy +d2)/2 -1, the fixed point group of (i oj, o (;* is the fundamental group
of an embedded codimension one submanifold F; that, by construction of the hyperbolic
metric on Y, is already totally geodesic. Moreover, for some ¢ the totally geodesic sub-
manifolds F; and Fj;q intersect with angle 27/dy, while for other i they intersect with
angle 27 /ds.

By Mostow rigidity, there exist isometries ¢, j7 of the hyperbolic manifold Y of order
(d1+d2)/2 and 2, respectively, that induce the outer automorphism given by (, and j.. By
Lemma 5.9, the fixed point set of (¥ is a codimension two totally geodesic submanifold
»# freely homotopic to ¥, and thus X% = ¥ since ¥ is already totally geodesic in
Y. Similarly, the fixed point set (¢#)(F#) of the involution (¢#) o j# o (¢#)7™% is
a totally geodesic hyperplane freely homotopic to the manifold F; satisfying w1 (F;) =
Fix(¢% 0§, 0 (7%, and thus (¢7)!(F#) = F; since F; is already hyperbolic. However, as
(7 acts by rotation with a fixed angle in the normal bundle of ¥, the intersection angle
of (¢*){(F#) and (¢#)™1(F#) is the same for all 4. But this contradicts the fact that,
by construction, the intersection angle of F; with Fj,q varies between 27 /d; and 27/ds,
completing the proof of the theorem. O

Remark 5.10. The proof of Theorem 5.5 for branched covers of hyperbolic manifolds
of dimension n > 4 depends in a crucial way on the validity of Mostow rigidity for closed
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hyperbolic manifolds of dimension n — 1 and hence is not valid for n = 3. It also shows
that at most one covering of degree d =2 mod 4 can admit a hyperbolic metric.
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STABILITY OF EINSTEIN METRICS AND EFFECTIVE
HYPERBOLIZATION IN LARGE HEMPEL DISTANCE

URSULA HAMENSTADT AND FRIEDER JACKEL

ABSTRACT. Extending earlier work of Tian, we show that if a manifold admits a
metric that is almost hyperbolic in a suitable sense, then there exists an Einstein
metric that is close to the given metric in the C**-topology. In dimension 3 the
original manifold only needs to have finite volume, and the volume can be arbitrarily
large. Applications include a new proof of the hyperbolization of 3-manifolds of large
Hempel distance yielding some new geometric control on the hyperbolic metric, and an
analytic proof of Dehn filling and drilling that allows the filling and drilling of arbitrary
many cusps and tubes.
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1. INTRODUCTION

1.1. Statement of the main results. The search for Finstein metrics on a closed man-
ifold M has a long and fruitful history. Such metrics can be found using the Ricci flow,
perhaps with surgery. This approach was used by Perelman to prove the so-called ge-
ometrization conjecture for 3-manifolds, embarking from the easy fact that in dimensions
2 and 3, Einstein metrics have constant curvature.

An older method for the construction of Einstein metrics consists in starting from a
metric g which is almost Einstein in a suitable sense, and construct a nearby Einstein
metric as a perturbation of the given metric. The perturbation can be done using once
again the Ricci flow, as for example in [MO90]. The cross curvature flow is another tool
for evolving metrics on 3-manifolds towards an Einstein metric [KY09]. One may also
use compactness properties for Riemannian manifolds with a uniform upper bound on
the diameter, a uniform lower bound on the volume and a suitable curvature control, like
an LP-bound on the norm of the curvature tensor, to establish the existence of Einstein
metrics which are close to a metric g with these properties and for which in addition the
LP-norm of Ric(g) — Ag is sufficiently small (see [PW97, Corollary 1.6] and also [And06]
and [Bam12]).

Much more recently, Fine and Premoselli [FP20] constructed Einstein metrics using
a gluing method which can be described as follows. Starting from a manifold M which
is the union of two open submanifolds U,V admitting each an Einstein metric whose
restrictions to U NV are close to each other in a controlled way, one can glue these
metrics on U NV and try to use an implicit function theorem for the so-called Einstein
operator at the glued metric to find a nearby Einstein metric. This method depends on
stability of Einstein metrics near the given metric, which means that locally, if there
is an Einstein metric in an a priori chosen neighborhood of the glued metric, then this
metric is unique up to scaling and pull-back by diffeomorphisms. No a priori volume
bound is necessary.
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In the setting we are interested in, stability is guaranteed by curvature control. Namely,
a classical result states that on compact manifolds of dimension n > 3, Einstein metrics
with negative sectional curvature are isolated in the moduli space of Riemannian struc-
tures (see [Bes08, Corollary 12.73|, [Koi78, Theorem 3.3]). For manifolds of infinite
volume, this is no longer true. We refer to [Biq00| for more information and for refer-
ences. We also note that for positive sectional curvature there are much stronger rigidity
results. For example, Berger showed that if an Einstein metric has positive strictly
Z—:?—pinched sectional curvature, then the sectional curvature is constant (see [Ber66]).

The main goal of this article is to develop a systematic approach for the construction
of Einstein metrics by a perturbation of metrics whose sectional curvature is close to —1.
The first result we prove is a general existence result for Einstein metrics in this setting.
It requires a uniform lower bound on the injectivity radius, but no volume bounds. Its
formulation is similar to the main result of an unpublished preprint of Tian |Tia|, and the
proof we give follows his outline. Section 5 contains a stronger but also more technical
version of this result.

Theorem 1 (Stability of Einstein metrics with a lower injectivity radius bound). For any
n>3, ac(0,1),A>0, and § € (0,2v/n —2) there exist constants €9 = e9(n,a, A,0) >0
and C =C(n,a,\,d) >0 with the following property. Let M be a closed n-manifold that
admits a Riemannian metric g satisfying the following conditions for some € < ¢egp:

i) —1-e<secg) <-1+¢;

i) inj(M,g) > 1;
’L’L’L) ||VR1C(_§_])||CO(M@) <A;

i) It holds

-[M 6_(2\/n—2—6)rx(y)|RiC(g) +(n - 1)§|§(y) dvolg(y) < e2

for all x € M, where r,(y) = d(z,y).
Then there exists an Einstein metric go on M so that Ric(gy) = —(n—1)go and

llgo — gHCQva(M@) <Cele,

Moreover, if additionally Ric(g) = —(n —1)g outside a region U, and if

fU [Ric(7) + (n - 1)g[2dvol; < €2,

then

|go _ g|02,a (I‘) < CEl—ae—(\/n727%6) distg(z,U)

for all x e M.

We refer to Section 2.3 for a detailed explanation of the notion of Hélder norm used
here.

As in [FP20], [And06] and [Bam12|, the proof of Theorem 1 is based on an application
of the implicit function theorem to the Einstein operator ® (see Section 2.2 for the
definition of ®). The novelty of our approach consists in the use of Banach spaces for
tensor fields whose construction is adapted to the specific geometric situation. These
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Banach spaces are defined by hybrid norms which are a combination of Hélder- and
weighted Sobolev norms.

For the main applications we have in mind, Theorem 1 is not strong enough due to the
assumption of a uniform positive lower bound on the injectivity radius. But Theorem
1 does not extend in a straightforward way to finite volume manifolds without such a
lower injectivity radius bound. We illustrate this in Section 6 by constructing for any
L > 1 a metric on a closed 3-manifold which fulfills all assumptions of Theorem 1 with the
exception of a uniform lower bound on the injectivity radius, with an arbitrarily small
control constant e, which is not L-bilipschitz equivalent to an Einstein metric

Finding the correct assumptions for 3-dimensional manifolds of finite volume for which
an extension of Theorem 1 without the hypothesis of a uniform positive lower bound on
the injectivity radius holds true is the main technical result of this article. For its formu-
lation, recall that a complete manifold of bounded negative sectional curvature admits a
decomposition into its thick part Mipick consisting of points where the injectivity radius
is bigger than a fixed Margulis constant for the curvature bounds, and its complement
Mthin-

Theorem 2 (Stability of Einstein metrics in dimension 3). For all o € (0,1), A > 0,
0€(0,2), b>1 and n > 2 there exist g = e0(a, A, 6,b,m) >0 and C = C(a, A, d,b,17) >0
with the following property. Let M be a 3-manifold that admits a complete Riemannian
metric g satisfying the following conditions for some € < eq:
i) vol(M,g) < oo;
i) =1 -e<secprg) < -1+¢;
i11) It holds
max |sec(r) + 1|, |[VR|(z), |[V2R|(z) < ce @ Municx)
wCTe M
for all x € Mipin;

w) [[VRic(g)llcoargy < A
v) It holds

ehilaMaia) [ =D Ric(g) + 2g[2(y) dvoly (y) < =°

for all x € M, where r,(y) = d(z,y).
Then there exists a hyperbolic metric gny, on M so that
_ 1-
llghyp = gllc.a(ar,gy < Ce™ ™.

Moreover, if additionally g is already hyperbolic outside a region U € M, and if
- _2 2
/U [Ric(g) + 2gl; dvolg < €7,

then for all x € Minick 1t holds

|ghyp - §|C2ya (SU) < Cé‘lfae*(lfé‘s)di“é(mvUuaMthick).

Here R denotes the Riemann curvature endomorphism. Section 10 contains a slightly
stronger but also more technical version of this result.



STABILITY OF EINSTEIN METRICS AND EFFECTIVE HYPERBOLIZATION 55

We believe that there is a version of Theorem 2 with similar assumptions which holds
true in all dimensions. However, it turns out that the well known difference between
geometric properties of the thin parts of negatively curved 3-manifolds and the thin parts
of negatively curved manifolds in higher dimensions require a modification of the strategy
we use, and we do not attempt to establish such an extension of Theorem 2 in this article.

In view of a good understanding of large scale geometric properties of asymptotically
hyperbolic manifolds of infinite volume as considered for example in [Biq00] and [HQS12]
we also expect that there are extensions of Theorem 1 to negatively curved manifolds of
infinite volume with finitely generated fundamental group and asymptotically hyperbolic
infinite volume ends.

Theorem 2 makes it possible to glue finite volume hyperbolic metrics which are defined
on open submanifolds U,V of a given 3-manifold M along the intersection U n'V and
deform the glued metrics to a hyperbolic metric. As a fairly immediate application, we
obtain an analytic approach to hyperbolic Dehn filling and Dehn drilling in dimension
3, without the use of the deformation theory of hyperbolic cone manifolds. An earlier
analytic proof of hyperbolic Dehn filling under a uniform upper bound for the volume
which also is based on an implicit function theorem is due to Anderson [And06] and
Bamler [Bam12|. We refer to [FPS19a], [HK08| for an overview on what is known to
date about Dehn filling and Dehn drilling.

For the statement of our drilling result, recall that a Margulis tube in a negatively
curved manifold M is a tubular neighborhood of a closed geodesic 8 which is a connected
component of the thin part of M. The radius of the Margulis tube is the distance between
the core geodesic of the tube and its boundary.

Theorem 3 (The drilling theorem). For any € >0, k € (0,1) and m > 0 there exists
a number R = R(e,k,m) > 0 with the following property. Let M be a finite volume
hyperbolic 3-manifold, and let T, ..., T} be a family of Margulis tubes in M. Let R; >0
be the radius of the tube T;, and let B; be its core geodesic. If for each v > 0 and each
x € M we have #{i | dist(x,T;) < r} < me" and if R; > R for all i, then the manifold
obtained from M by drilling each of the geodesics B; admits a complete hyperbolic metric
of finite volume, and the restriction of this hyperbolic metric to the complement of the
cusps obtained from the drilling is e-close in the C*-topology to the restriction of the
metric on M.

The same argument which allows for drilling closed geodesics in finite volume hyper-
bolic 3-manifolds can also be used to Dehn fill cusps. This is formulated in our next result.
Recall that the meridian of a solid torus 7' is a simple closed curve on the boundary torus
0T of T which is homotopic to zero in T'. A torus cusp in a hyperbolic 3-manifold is
a cusp diffeomorphic to T2 x [0, c0) where T? denotes the 2-torus. Any cusp in a finite
volume orientable hyperbolic 3-manifold is a torus cusp.

Theorem 4 (The filling theorem). For any € > 0, k € (0,1) and m > 0 there exists
a number L = L(e,k,m) > 0 with the following property. Let M be a finite volume
hyperbolic 3-manifold, C1,...,Cy € M be a finite collection of torus cusps, and assume
that for each r >0 and each x € M we have #{i | dist(x,C;) <r} <me"". For each i<k
let a; be a flat simple closed geodesic in OC; of length L; > L. Then the manifold obtained
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from M by filling the cusps C;, with meridian «;, is hyperbolic, and the restriction of its
metric to the complement of the Marqulis tubes obtained from the filling is e-close to the
metric on M —u;C;.

Although unlike [FPS19a], we do not obtain effective constants for Dehn filling and
drilling, Theorem 3 and Theorem 4 allows to drill or fill an arbitrary number of tubes
or cusps with fixed meridional length as long as the boundaries of the tubes or cusps
are sufficiently sparsely distributed in the manifold. We also obtain a more precise
geometric control on the complement of the drilled or filled tubes or cusps which we
discuss in Section 11.

The proofs of Theorem 3 and Theorem 4 use Theorem 2 to deform a metric glued
from the metric on the given manifold and hyperbolic metrics on tubes and cups to a
hyperbolic metric on the drilled or filled manifold. This strategy can also be used to
construct hyperbolic metrics on manifolds glued in a controlled way from hyperbolic
pieces as long as the gluing regions are sufficiently sparsely distributed. An example of
such a construction can be found in the article [BMNS16|. We do however not discuss
such a potential application of our main result here.

Apart from a new approach to drilling and filling, we also obtain results towards
what sometimes is called effective Mostow rigidity, a program which lead among others
to the solution of the so-called ending lamination conjecture (see [Minl0], [BCM12]).
The idea is as follows. Due to the groundbreaking work of Thurston and Perelman, a
closed aspherical atoroidal 3-manifold admits a hyperbolic metric, which is moreover
unique up to isotopy by Mostow rigidity. Thus topological information gives rise to
geometric invariants, and some of these invariants, like for example the injectivity radius
or the volume, should be recoverable from suitably chosen topological data. Even more
ambitious, it may be possible to construct a bi-Lipschitz model for the hyperbolic metric
from topological information as in [BCM12].

To implement this program, one may try to decompose a closed 3-manifold M into
pieces which are equipped with hyperbolic metrics constructed from the knowledge of
the pieces and knowledge on how these pieces glue together to M. This program is well
suited for an application of Theorem 2.

For the formulation of our last main result, recall that a handlebody of genus g > 1 is
a compact 3-manifold with boundary which is diffeomorphic to the connected sum of g
solid tori. The boundary OH of such a handlebody H is a closed oriented surface OH
of genus g. Any closed 3-manifold can be realized as the gluing My = Hy uy Hy of two
handlebodies Hy, Ho of the same genus g > 1 along a diffeomorphism f: Y = 0H, - 0H»
of the boundaries. The manifold My only depends on a double coset of the mapping
class of ¥ defined by f. The boundaries 9Hy,0Hy of Hy, Hs contain collections Dy, Do
of curves, the simple closed curves in 0H;,0Hs which bound disks in Hy, Hy. We call
these curves the disk sets of Hy, Ho. Using the identification of 9H; and 0Hs via f, these
disk sets define subsets in the curve graph CG(X) of the boundary surface ¥ of Hy, Ho.
The vertices of this graph are isotopy classes of simple closed curves on 3, and two such
curves are connected by an edge of length one if they can be realized disjointly.
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The Hempel distance of the manifold M is the distance in CG(X) between the image
of the disk set D; of Hy under the map f and the disk set Dy of Hy. Hempel [Hem01]
showed that if the Hempel distance of My is at least 3, then M/ is aspherical atoroidal
and hence hyperbolic by the work of Perelman.

The following result can be viewed as a first step towards an effective geometrization
of 3-manifolds. In its formulation, we denote by d¢g the distance in the curve graph of
the boundary surface X.

Theorem 5 (Effective hyperbolization in large Hempel distance). For every g > 2 there
exist numbers R = R(g) >0 and C = C(g) > 0 with the following property. Let My be
a closed 3-manifold with Heegaard surface X of genus g and gluing map f, and assume
that deg(D1,D2) > R. Then My admits a hyperbolic metric, and the volume of My for
this metric is at least Cdeg(D1,D3).

This result does not rely on the work of Perelman and does not use the Ricci flow, that
is, we give a new proof of hyperbolization under the assumption of large Hempel distance.
The lower bound on the Hempel distance we need is not effective, however we obtain
some explicit information on the hyperbolic metric. An earlier proof of hyperbolization
of random 3-manifolds without the use of the Ricci flow can be found in [FSV19].

The first geometric information which is new is the lower volume bound in terms of
the Hempel distance stated in Theorem 5. Note that up to a universal constant, the
volume of a closed hyperbolic 3-manifold coincides with its simplicial volume. Work of
Brock (see [Bro03| and [HV22| for more details) shows that this simplicial volume is
bounded from above by a fixed multiple of the smallest distance in the so-called pants
graph of ¥ between a pants decomposition consisting of pants curves in D1, and a pants
decomposition consisting of pants curves in Ds. We conjecture that this upper estimate
computes the volume up to a universal multiplicative constant. This conjecture holds
true for random 3-manifolds [Via2l]. Our lower volume bound is expected to be far from
sharp.

The second geometric information we obtain applies to manifolds M for which there
is a sufficiently long segment of a minimal geodesic in the curve graph of ¥ connecting
D; to Dy which has bounded combinatorics. In this case we obtain that the hyperbolic
metric is uniformly close to a metric obtained by gluing two convex cocompact hyperbolic
metrics on handlebodies near the boundary.

Motivated by [Min00], in the absence of such a segment, and assuming that the man-
ifold My is equipped with a hyperbolic metric, we prove an a priori length bound for
closed geodesics in My which arise in the following way. For a proper essential subsurface
Y of X, denote by diamy (D1, Ds) the diameter in the curve graph of Y of the subsurface
projections of the disk sets Dy, Dy into Y. Furthermore, for a multicurve ¢ in X, let
l¢(c) be the length of the geodesic representative of ¢ in the manifold My (which may
be zero if ¢ is compressible).

Theorem 6 (A priori length bounds). Given X, there exists a number p = p(3) > 3,
and for every € > 0, there exists a number k = k(X,e) > 0 with the following property.
Let My be a hyperbolic 3-manifold of Heegaard genus g and Hempel distance at least 4
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and let Y ¢ X be a proper essential subsurface of ¥ such that deg(0Y, Dy u Do) > p. If
diamy (D UDy) > k, then £§(0Y) <e.

Note that a priori, the statement of Theorem 6 relates a property which only depends
on the manifold My, namely the hyperbolic length of a system of essential closed curves,
which is well defined by Mostow rigidity, to a property which depends on choices, namely
the choice of a Heegaard splitting for M;. However, as the diameter of the subsurface
projection of the disk sets of M into Y is required to be large, it follows from [JMM10]
that up to isotopy, Y appears as a subsurface of every Heegaard surface of sufficiently
small genus.

1.2. Organization of the article and outline of the proofs. The article is roughly
divided into four parts which can be read independently. The first part, contained in
Sections 2-5, is devoted to the proof of Theorem 1, and it is the only part containing
results on manifolds of dimension different from 3. Section 2 organizes the basic set-up
and collects some technical results used later on. It also introduces the conventions and
notations we are going to use. In particular, we introduce the Einstein operator ®, and
we formulate and prove a general statement which allows to obtain C-estimates for a
solution of its linearization from suitable integral bounds. The results in this section are
variations of results available in the literature, adjusted to our needs.

The goal is to use an implicit function theorem to construct solutions of the equation
®(g+h) =0 (see Lemma 2.4). To this end it is necessary to invert the linearization
of @ and obtain a good norm control on this inverse, acting on suitably chosen Banach
spaces of sections of the bundle of symmetric (0,2)-tensors over the manifold M. This
is carried out in Section 3. As the Einstein operator is closely related to the Laplacian,
we begin with establishing a uniform L?-Poincare inequality for the manifolds with small
pinched negative curvature. We then introduce the weighted Sobolev spaces which are
our primary tool. They enter in the definition of the hybrid norms in Section 4, which are
combinations of Holder and weighted Sobolev norms. These norms are used in an a priori
estimate for the linearized Einstein equation leading to an invertibility statement for the
linearized equation. In Section 5 we then show that this is sufficient for an application
of the implicit function theorem which completes the proof of Theorem 1.

A crucial point in this proof is a uniform C°-bound for solutions of the linearization
of the Einstein equation, which depends on a uniform lower bound on the injectivity
radius. In Section 6 we show that there is no straightforward way of dropping this
assumption by exhibiting a family of metrics on closed 3-manifolds obtained by Dehn
filling a finite volume hyperbolic 3-manifold with a single cusp and slowly changing the
conformal structure of the level tori for the distance to the core geodesics of the filled
cusp while keeping the monodromy of the core curve fixed. This construction does not
alter the metric in the thick part of the manifold, and we show that it can be done in such
a way that its curvature is arbitrarily close to to —1, the weighted L?-norm of Ric(g) +2¢
is arbitrarily small, while the length ratio of the core curves of the modified metric and
the hyperbolic metric can be made arbitrarily large.

The second part of this article is devoted to overcoming this difficulty for finite volume
3-manifolds satisfying suitable curvature assumptions. We begin with analyzing the case
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when the injectivity radius may be arbitrarily small, but an extension of the strategy
used in the proof of Theorem 1 is possible. Namely, in Section 7 we define the small part
of a finite volume negatively curved 3-manifold to consist of points of small injectivity
radius and such that moreover the diameter of the distance torus or horotorus containing
the points is bounded from above by a universal constant. In the case of hyperbolic 3-
manifolds, the diameter of a component of the small part may be arbitrarily large. Using
a counting argument for preimages of points in the thin but not small part of a negatively
curved 3-manifold which are contained in a fixed size ball in the universal covering, in
Proposition 7.5 we extend the main C°-estimate in the proof of Theorem 1 to the thin
but not small part of the 3-manifold.

Motivated by work of Bamler [Bam12|, to deal with the small part of the manifold we
take advantage of the fact that on the small part of a hyperbolic Margulis tube or cusp,
solutions of the linearized Einstein equations can be controlled with an ODE. The main
task is then to use the geometric assumptions to construct a hyperbolic model metric for
the small parts of tubes and cusps in Section 8 and to use the ODE for the hyperbolic
model metric to analyze the solutions of the linearized Einstein equation. We construct
Banach spaces adapted to our needs which control the growth of solutions in the small
part, and we use these Banach spaces to invert the linearized Einstein operator with
uniformly controlled norm in Section 9. This then leads to the proof of Theorem 2 in
Section 10.

In Section 11 which contains the third part of the article, we apply Theorem 2 to Dehn
filling and Dehn drilling as formulated in Theorem 3 and Theorem 4.

The last part of this article is devoted to the proof of Theorem 5. We begin in Section
12 with showing that Theorem 2 together with a gluing result taken from [HV22| can
fairly immediately be used to construct a hyperbolic metric close to a model metric on a
closed 3-manifold M = Hy Uy Hy which has the following property. The Hempel distance
of My is large, and a minimal geodesic in the curve graph CG(X) of the boundary surface
> = 0Hy = O0H, connecting the disk set D; to the disk set Dy contains a sufficiently long
segment whose endpoints have bounded combinatorics.

This statement is not sufficient for the proof of Theorem 5 as it uses an assumption
which is not be fulfilled for an arbitrary 3-manifold of large Hempel distance. To complete
the proof of Theorem 5 we use instead an approach which has some resemblance to the
work [FSV19].

Namely, we first establish Theorem 6 which gives a length bound on closed geodesics
in a hyperbolic manifold M arising as boundary curves of proper essential subsurfaces
of ¥ with large subsurface projections of the disk sets. Then we use this a priori length
bound for two distinct curves ¢y, co arising from two different such subsurfaces together
with Dehn surgery and Thurston’s hyperbolization result for pared acylindrical manifolds
to find a hyperbolic metric on M. This construction is carried out in Section 14.

Counting Margulis tubes and segments of a geodesic in the curve graph of ¥ connecting
the disk sets with no large subsurface projection then yields the lower volume bound
stated in Theorem 5.
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2. THE BASIC SET-UP

In this section we introduce the notations we are going to use, and collect some tech-
nical tools needed later on.

2.1. Notation. We start by stating our notational conventions of various operations on
tensors. We use the sign convention

R(z,y)z = VaVyz = VyVaz = Vg )2
for the Riemannian curvature endomorphism. The Ricci tensor Ric(g) of a Riemannian
metric g is the (0,2)-tensor given by
n
Ric(g)(x,y) = trg(z = R(z,2)y) = Y (R(ei, 2)y, ei),
i=1
where (€;)1<i<n is a local orthonormal frame. The associated (1, 1)-tensor is denoted by

Ricy(z) = Z R(z,e;)e;
i-1

The (1,1)-tensor Ricy induces the Weitzenbick curvature operator, also denoted by Ricy,
that acts on (0, 2)-tensors h by

Ricy(h)(z,y) = h(Ricg(m),y) + h(m,Ricg(y)) - 2trgh(-, R(-,x)y).

For the covariant differentiation of tensors we use the last input as the direction of
differentiation, that is,

(vh)(yla “wy/ﬁw) = (V:Eh)(ylv ey yk‘)
The adjoint of the covariant derivative is
(v*h)(yla- o Yk— 1 Z(Vh (yla o Yk- 1381761)
=1

where (€;)1<i<n is a local orthonormal frame. The Connection Laplacian and Lichnerow-
icz Laplacian of a (0,2)-tensor h are

Ah:=V*Vh and Aph:=Ah+Ricgy(h).
Similarly, we define the Laplacian of a function u: M — R as

Au = Vidu.
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The divergence §, of a (0,2)-tensor h is defined as

n

(59}1 == Z(Vebh)(7 ei)

i=1
Finally, the Bianchi operator 4 of a metric g acts on (0,2)-tensors h by

8, (h) = 8,(h) + %dtrg(h).

We will often drop the metric g from the notation, and hope that this leads to no
confusion with the notation of Weitzenbdck cruvature operator and the Ricci tensor.
More precisely, if g is a background metric, then for a generic tensor h we simply write
Ric(h) for Ricg(h), while if ¢’ is another metric, then Ric(g") is the Ricci tensor of ¢,
and not Ricy(g").

Throughout the article we shall use the following convention regarding the use of
constants appearing in analytic estimates.

Convention 2.1. In a chain of inequalities, constants denoted by the same symbol may
change from line to line, and may depend on varying sets of parameters. In short, the
letter C' does not always refer to the same constant.

We also use the following convention for the O-notation. Here X shall be an arbitrary
set.

Notation 2.2. For functions u, @1, ..., pm : X = R we write u = Y., O(gy) if there are
ungversal constants ¢ such that |u(z)| < Y7L, crpr(x) for all x € X.

Moreover, we always assume the following.

Convention 2.3. Unless otherwise stated, all manifolds are assumed to be connected
and orientable.

2.2. The Einstein operator. As mentioned in the introduction, we shall construct
the Einstein metric by an application of the implicit function theorem for the so-called
Finstein operator (see [Biq00, Section I1.1.C], [And06, page 228] for more information).
This operator is defined as follows.

Consider the operator ¥ : g - Ric(g)+(n—1)g. As the diffeomorphism group Diff (M)
of the manifold M acts on metrics by pull-back and W is equivariant for this action, the
linearization of W is not elliptic. To remedy this problem, for a given background metric
g one defines the Einstein operator ®3 by

25(9) = Ric(g) + (n = 19 + 3 L3, (i (0) (21)

where the musical isomorphism f is with respect to the metric g. Using the formula for
the linearisation of Ric (|Top06, Proposition 2.3.7]), one shows that the linearisation of
®; at g is

1

Hence (D®g)g is an elliptic operator. This opens up the possibility for an application of
the implicit function theorem.
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It has been observed many times in the literature that the Einstein operator can detect
Einstein metrics. The following observation can for example be found in [And06] (Lemma
2.1).

Lemma 2.4. Let (M, g) be a complete Riemannian manifold, and let g be another metric
on M so that

sup |B5(g9)|(z) < oo and Ric(g) < Ag for some X <0,
xeM

where f(-) = 6g(-) + %dtrg(-) is the Bianchi operator of the background metric g. Denote
by ® = Oy the Finstein operator defined in (2.1). Then

Ric(g) =-(n-1)g
Bs(g) =0

2.3. Holder norms. To apply the implicit function theorem to the Einstein operator
®, we have to study its linearization (D®)z at the initial metric g, acting on a suit-
ably chosen Banach space of sections of the symmetric tensor product Sym?(T*M) =
Sym(T*M ® T*M). The Banach norms we shall use are hybrids of two rather classical
Banach norms: C*%norms, defined locally using charts, and weighted L?-norms.

It is important for our main results that Holder estimates arising from Schauder theory
for the Einstein operator on the manifold (M, g) only depend on local geometric informa-
tion: The injectivity radius, and a bound on |Ric(g)|c1(arg)- Since we were unable to
find a suitable reference in the literature, we summarize what we need in the following
proposition. The existence of C*®-norms with the stated properties is part of the claim
and will be established below. Similar statements can for example be found in [And06]
(page 230 for his definition of Hélder norms, and inequality (3.16) for the estimate).

®(g) =0 if and only if g solves the system {

Proposition 2.5 (Schauder estimate for tensors). Let (M, g) be an n-dimensional Rie-
mannian manifold satisfying

IRic(9)llcr(arg) A and  inj(M) > ido.
Let S € End(T(0’2)M) and let R € Hom(T(0’3)M, T(O’Q)M) be such that
IRllco.oarys  ISllcoe(ary < A
For fe CO’O‘(T(O’2)M) let h e C27Q(T(O’2)M) be a solution of the equation
Ah+R(Vh)+S(h) = f.
Then it holds
1Al ary < C (| fllco.eary + Rllco )
and

Rllcreary < C (1 fllcocary + 1Rllcocary)
for some C >0 only depending on n,a, A\, A, ig.

The remainder of this subsection is devoted to the construction of the Hélder norms
and a sketch of the proof of Proposition 2.5.
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Proof of Proposition 2.5. In local coordinates, the Connection Laplacian A has the form
(Ah)ij = —g™ 9%, (hi;) + Lower Order Terms

and the coefficients of the lower order terms can involve up to two derivatives of g;;.
Therefore, to import the Schauder estimates from R"™ by writing the equation in local
coordinates, we need coordinates ¢ that have the following properties:
e The matrix (g¢) is uniformly elliptic;
@ ; : )
* ||gij||02.,(x is bounded by a universal constant;
e The coordinates are defined on a metric ball of a priori size.

The existence of such charts is guaranteed if we have a lower bound on the injectivity
radius and an upper bound on [[Ric(g)||c1(ar,g)- Namely, Anderson proved the following
(see [JK82], [And90, Main Lemma 2.2|, [And06, page 230] and [Biq00, Proposition 1.3.2]):

For any n € N, a € (0,1), A > 0, i9p > 0 there exist p = p(n,a,A,ig) > 0 and
C =C(n,a,A,iy) with the following property. Let (M, g) be a Riemannian n-manifold
satisfying

IRic(9)llcr(arg) A and  inj(M) > idg.

Then for all p e M there exists a harmonic chart ¢ : B(p,2p) € M — R™ centered at p so
that

e oy < [(D)(V)euct. < el (2.2)

for all v e TB(p,2p), and
g5 llc2e < C (2.3)
for all 4,5 = 1,...,n. Here Q > 0 is a very small fixed constant, and || - ||g2.« is the usual

Hoélder norm of the coefficient functions in ¢(B(p,2p)) ¢ R".
Assume from now on that the Riemannian manifold (M, g) satisfies

||RiC(g)||C1(M,g) <A and inj(M) > 19
for some A >0 and g > 0.

Remark 2.6. The C! bound on Ric(g) is only used at two places in this article. First,
we need it for the construction of our notion of Hélder norm. Second, it is used to obtain
an upper bound on [|[Ric(g) + (n - 1)g||co.« (see the proof of Theorem 5.1).

We now state the definition of the Holder norms. For k = 1,2, a C*-tensor field T and
p e M we define the C**-norm of T at p as

[Tlow.e (p) = max [T or.e.
where ¢ is some harmonic chart satisfying (2.2) and (2.3), and ||-||gk,« is the usual Holder
norm in ¢(B(p, 5)) ¢ R™. Similarly, we define the C%®-norm of T at p to be
I T|co.e (p) = max || T co,
/[/7-]
where ¢ is some harmonic chart satisfying (2.2) and (2.3), and ||-||co.« is the usual Holder
norm in (B(p,p)) € R". For all k=0,1,2 we also define
1Tl (ary 3= sup [Tor.a (p)-
peM
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Note that the euclidean domain in which the Hélder norms C%® are computed is bigger
than for the C1* and CQ’?;norm.
By (2.2), the matrix (g¢) is uniformly elliptic, and we have

diam(p(B(p,2p))) < 4e%p and distgn (¢(B(p,§)),3<p(3(p,p))) > %e’Qp-

Therefore, the classical interior Schauder estimates imply

[hlcea (p) < C(|£RIco. (p) + sup |h]) (2.4)
B(p.p)
and
[hlora (p) < C( sup [£h]+ sup |h]) (2.5)
B(p,p) B(p,p)
for a constant C' = C(n,a, \, A, iy), where L is the elliptic operator from Proposition 2.5.
This immediately yields Proposition 2.5. (]

Apart from Schauder estimates, there is one more basic property that an elliptic
operator £ should satisfy, namely the continuity property [|Lh||co.aary < C|lhllc2.0. In
fact, an elliptic operator £ as in Proposition 2.5 satisfies

|Lhlgo.(p) < sup |hlc2a(q) (2.6)
qeB(p.p)

for some C = C'(n,a, A\, A, ip).

Proof of (2.6). Fix pe M and let ¢ : B(p,2p) » R™ be a harmonic chart satisyfing (2.2)
and (2.3). Let ¢ € B(p, p) be arbitrary and choose a harmonic chart ¢ : B(q,2p) — R”
satisfying (2.2) and (2.3). It suffices to show that the C*%*mnorm of the coordinate change

1 1
Yoyt B(p(q), L—Le‘Qp) SR" > 9(B(g 5p)) < R"

is bounded by a universal constant. Note that this coordinate change is well-defined
since ¢ is a e?-biLipschitz equivalence by (2.2). In fact, this coordinate change is even
defined on B(go(q),%e’Qp). Abbreviate B; := B(ap(q),%e’Qp), By = B(gp(q),%e’Qp)
and F = ¢ o@™'. As ¢ is a harmonic chart, we have AgYp™ = 0 for every coordinate

function ¥™ of 1. Also ~Agu = gfoj 83-25; for any C? function u because ¢ is harmonic.
Hence for every m =1,...,n we get

-=0 in BQ.
Invoking the classical interior Schauder estimates yields
1F™ les.e(By) € CIE™[|co(y)

for a universal constant C. We may without loss of generality assume that ¥(q) =0 € R".
Then Tm(v)) ¢ B(0,2e¥p) ¢ R™. In particular, IF™|co(By) < 2¢%p. This completes the
proof. O
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This argument also shows that (up to equivalence) the choice of harmonic chart for
the definition of the pointwise Holder norm is irrelevant (as long as the chart satisfies
(2.2) and (2.3)).

Remark 2.7. For Theorem 2, we have to consider manifolds without a lower injectivity
radius bound. However, these manifolds are negatively curved, and hence their universal
covers have infinite injectivity radius. So our notion of Hélder norms applies to the
universal cover. We then define |T'|cm.a (p) := |T|cm.a (p) where T is the pull-back of T
to the universal cover.

2.4. C%-estimates. To obtain C%-estimates for the linearization of the Einstein operator,
we use once again a standard tool, the De Giorgi-Nash—-Moser estimates on manifolds
in the following form. In its formulation p = p(n,«, A,ip) > 0 shall denote the constant
appearing in the definition of the C*®-norms (see the proof of Proposition 2.5).

Lemma 2.8 (C%-estimates). For a € (0,1), A>0, ig >0, ¢>n, A>0, and r € (0,p)
there exists a constant C = C(n,a, A, i, q, A\, r) > 0 with the following property. Let
(M,g) be a Riemannian n-manifold satisfying

IRic(g)llcr(arg) <A and  inj(M) > .
Let X be a continuous vector field, and let ¢ be a continuous function on M so that
1Xllcocary: llellcoary € A If we C*(M) and f e CO(M) satisfy
-Au+ (X, Vu) +cu> f,
then for all x € M it holds

u() < C(I[ullz2 (o) + 1l By ) (27)
Moreover, if -Au+ (X,Vu) + cu = f, then the same upper bounds holds for |u|(x).

Remark 2.9. It will be apparent from the proof that assuming |[Ric(g)lco(arq) < A is
sufficient for the statement of Lemma 2.8.

Note that when dealing with negatively curved manifolds without a lower injectivity
radius bound, the terms on the right hand side of inequality (2.7) has to be replaced with
the corresponding term in the universal cover.

Proof. Fix xg € M and pick a harmonic chart ¢ : B(zg,2p) - R" satisfying (2.2) and
(2.3). Also fix 7 € (0, p), and abbreviate Q := o(B(z,r)) € R™. In the local coordinates
given by ¢ the differential inequality reads

920:0j(uo ™) + X'0i(uo ™) +c(uog ) 2 (foyp™h) in QR

By (2.2) (gfoj ) is uniformly elliptic. Note that as ¢ is an e?-bi-Lipschitz equivalence onto
its image, it holds B(¢(z¢),2r") c Q for r’ = %e‘Qr. The classical De Giorgi—-Nash-Moser
estimates (see |GT01, Theorem 8.17]) yield that there is C' = C(\,q,7",n,a, A, ip) so that

sup  (wop™) < C|uow ™2y +I1f 09 ey )
B(p(zo),r")

Since ' : Q - B(p,r) is an e?-biLipschitz equivalence, this completes the proof. O
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3. INTEGRAL INEQUALITIES

Our goal is to invert the linearisation (D®)g(h) = %Ah + %Ric(h) + (n-1)h of the
Einstein operator &.

3.1. Poincaré inequalities. As a first step, we establish that the Laplacian A acting
on the space of (0,2)-tensors has a spectral gap, that is, that it satisfies a Poincaré
inequality. This is expressed by the following proposition, which is taken from [Tia]
(Corollary 1 of Section 3).

Proposition 3.1. For every n > 2 there exist numbers e(n) >0 and ¢ = ¢(n) > 0 with
the following property. Let M"™ be a Riemannian manifold with |sec+1| < e <e(n); then

1
2 2
1Pllzzqary < ——ZIVAlz2(ar)

for all h e C2(Sym*(T*M)) with tr(h) = 0.

The proof of this proposition is divided into two steps. We begin with some purely
algebraic control of the curvature tensor R of a Riemannian manifold (M, (-,-)) whose
sectional curvature is close to —1, summarized in Lemma 3.2 below. The second step
consists in controlling L?-norms of covariant derivatives.

For the algebraic control, recall that a Riemannian manifold (M has constant sectional
curvature k if and only if the curvature endomorphism satisfies R(z,y)z = k((y, z)x —
(z,2)y). Motivated by this, we define for x € R the tensors R* and Rm" by

R*(z,y)z = k({y,2z)x — (z,2)y) and Rm"(z,y,z,w):=(R"(x,y)z,w). (3.1)

More specifically, we denote R"™P := R™' and Rm™P := Rm™', where hyp stands for
hyperbolic. We also remark that bounding |Rm - Rm"| is equivalent to bounding |sec - &|.
More precisely, there is a constant ¢(n) > 0 such that

sup ‘sec(a) - H‘ <|Rm - Rm"| < ¢(n) - sup ‘sec(a) - /<;|, (3.2)

g g
where the supremum is taken over all planes o € T, M and p € M is arbitrary. This is
clear because curvature operators are determined by their sectional curvatures through

an explicit formula (see [Petl6, Exercise 3.4.29]).
With these notations we observe

Lemma 3.2. Let M be a Riemannian n-manifold and k € R. Then the pointwise estimate

(Ric(h), h) - k(n|h|* = tr(h)?)| < (1 + /n)|Rm - Rm"||h|?

1
2
holds for all symmetric (0,2)-tensors h.

By the irreducible decomposition of the curvature tensor (see Section G of Chapter 1
in |Bes08|) Rm decomposes as

scal

Rm=——o
" 2n(n-1)

1 . scal
g®g+—(RIC(9)——g)®g+W,
n-2 n
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where @ is the Kulkarni-Nomizu product, scal = tr(Ric(g)) is the scalar curvature, and W
is the Weyl tensor. Using the Kulkarni-Nomizu one can write Rm" = $g ® g. Therefore,
if g is almost Einstein in the sense that |[Ric(g) — (n —1)kg| is small, then |Rm — Rm"| is
small if and only if the norm of the Weyl tensor |[W]| is small.

Proof. For this proof we introduce the following abbreviations (here (€;)1<i<n is an or-
thonormal frame):

e p(h)(z,y) = %(h(Ric(x),y) + h(:L',Ric(y)));

L(h)(x,y) := trh(:, R(,x)y);
Ric™(z,y) = trRm"(x,-,-,y) and Ric"(z) = ¥; R*(x, e;)e;;

po(h)(x,y) = %(h(Ric”(w),y) + h(m,Ric"‘(y)));
LE(h)(z,y) = trh('> RE(, x)y)
Claim (1). For every symmetric (0,2)-tensor h, it holds
(L(h) - L*(h),h)| <|Rm — Rm"||h|> and |(p(h) - p"(h),h)| < /n|Rm - Rm"||h|*.

Proof of Claim 1. The first inequality follows by writing the expression in an orthonor-
mal bagsis and invoking the Cauchy-Schwarz inequality.

For the second inequality, choose an orthonormal basis (€;)1<i<n so that h(ex,e;) =0
for k # [. Writing the expression in this frame and using |Ric(z,y) — Ric™(z,y)| <
Vn|Rm — Rm”||z||y| (which holds since |tr(-)| < \/n|-|) yields the second inequality. O

Claim (2). For every symmetric (0,2)-tensor h, we have
(LF(h),h) = n(tr(R)? — IhI2) and (o™ (h), ) = k(- IR

Proof of Claim 2. Note that Ric®(z) = k(n—1)z. So the second equality is clear. Choose
an orthonormal basis (e;)1<j<n for the metric g so that h(eg,e;) =0 for k£ #[. Then

L”(h)(el,el) = Zh(ei,ej)/ﬁ((ei,ej) - <€iael><€j7€l>) = Zhii/‘i(l —(51'1) = HEhii
2y %

i#l
and thus
(L*(h),h) = Zz: L¥(h)uhu = & ; Zl hyhii = FG((E hii)? - Z hy;) = k(tr(h)? = |hl2).
1+ (2 (]
This finishes the proof of the second claim. (|

As $(Ric(h),h) = (p(h) — L(h),h), the two claims immediately imply the desired result.
(]

The following L2-identity is the second auxiliary result we need.

Lemma 3.3. Let M be a Riemannian manifold. Then it holds
L.
0< ||vh||%2(M) + §(Rlc(h)a h)LQ(]V[)

for all h e C'Cz(SymZ(T*M)).
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Proof. This follows immediately from the equation on the bottom of page 355 of [Bes08|.
Indeed, this equation states

(67d7 +d"6V)h = V*Vh - Rh + hor.

By Rh Besse denotes (Io%h)(x,y) = trh(-,R(',az)y)) (see |Bes08, page 51| and note that
[Bes08] uses the sign convention opposite to ours). Moreover, r is the (0,2)-Ricci ten-
sor Ric(g), and o denotes the symmetric product, that is, the pairing that under the
isomorphism Sym?(T*M) = Sym(End(T M )) corresponds to the symmetric product
(L,L') » (Lo L'+ L' o L), where Lo L’ is the composition of endomorphisms. So
(hor)(z,y) = %(h(Ric(x), y) + h(z,Ric(y))), and hence the right hand side in the equa-
tion above is just V*Vh + $Ric(h).

Moreover, dV is the exterior differential on T M-valued 1-forms induced by the Levi-

Civita connection V, and §V denotes its dual (note that a symmetric (0,2)-tensor can
be thought of as a T* M-valued 1-form). Therefore,

0 SHdvhH%mw) + HévhH%?(M)

=((6VdY +dvsV)h, h)L2(M)

* 1 1
=(V'Vh ) g2y + 5 (Ric(h), ) )

2 L.
=[[VAlT200) + §(Rlc(h)v h)L2(M)'

This completes the proof. O
We are now ready for the proof of Proposition 3.1.

Proof of Proposition 3.1. We copy the proof from [Tia, Corollary 1 in Section 3]. By
Lemma 3.3, we have 0 < ||Vh||i2(M) + %(Ric(h),h)Lz(M). As |sec+1| < g, it holds
|Rm — Rm/"P| < ecq for some constant ¢y = co(n) due to (3.2). Hence Lemma 3.2 yields
—%(Ric(h),h) > (n—eco(1++/n))|h|*. Combining these two inequalities completes the
proof in case ¢ is small enough that n —eco(1+/n) > 0. O

3.2. Weighted L?-norms. The main tool for obtaining a priori C -estimates for the
differential equation (D®)g(h) = f which are independent of vol(M) is the use of hybrid
norms that are a mixture of Holder norms and weighted Sobolev norms (see Section 4.1).
The next proposition establishes the required a priori estimates for weighted L?-norms.
It follows Corollary 2 in Section 3 of |Tia].

Proposition 3.4. Let M be a complete Riemannian n-manifold of finite volume, let
fe€ C’O(Sme(T*M)) NL?(M) and let h e CQ(Sym2(T*M)) nL2(M) be a solution of

%ALh f(n-1)h=T.
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Let o e C®(M) be so that oh, of € L2(M). Then it holds
—2/ 242 d 1g2f 2, f)d 1+f 2112 dvol
(n-2) | ¢7Ihl"dvo ¢ fydvol+ [ [Velhl” dvo
+(1+\/ﬁ)A4¢Q|Rm—Rmhyp||h|2dvol.

The weights appearing in our hybrid norms will not be smooth. For convenience, we
state the precise version of Proposition 3.4.

Corollary 3.5. Let M, h, f be as in Proposition 3.4, and let p : R - R be a smooth
function so that p and p' are bounded on Rsg. Then for every x € M we have

—2[ D2 d 1g2f 2)2(h, f) dvol f '(re) ) |12 dvol
(n=2) | p(ra)*|h]* dvo | pr2) (b fdvol+ [ (p'(rz))"[RI dvo

+(1+m) fM p(r2)2| Rm — R || dvol,
where T, = dp (-, ).

Proof. Theorem 1 in [AFLMRO07]| shows that for every € > 0 there is a Lipschitz function
re € O (M) such that |[re = r¢||cocary < € and Lip(re) < 1 +e. Consider ¢ := pore, and
note that ¢.h,¢. f € L2(M) as p is bounded. Applying Proposition 3.4 to ¢, := pore and
taking € - 0 implies the desired result. (]

Proof of Proposition 3.4. We adapt the proof from [Tia, Corollary 2 in Section 3| and
include further details.

We first consider the case that ¢ has compact support. Abbreviate h = ph. A direct
computation yields

Ah = (Ap)h - 2tr8N (Vo @ Vh) + pAh.
This implies
Ah = (Ap)h - 2t:Y (Vo ® VA) + 20f - 2(n - 1)k - Ric(h)

as f = %Ah + %Ric(h) + (n —1)h. Consider the 1-form w = ¢|h|?dp. A straightforward
calculation in a local orthonormal frame shows

~V'w = [Vl + 2(te D (Vo @ Vh), h) - ((Ap)h, h).

Note that [;, V*wdvol = 0. Indeed, ~V*w = div(w') because the musical isomorphisms
commute with covariant differentiation, and f[,, div(w") dvol = 0 by the divergence theo-
rem since wh is compactly supported.

Thus ((Ap)h, ﬁ)m ~2(trM (Ve vh), B)LQ =|||V¢| hl[2,. Together with Lemma 3.3
this shows

- o~ 1 I
0 S(Ah; h)LQ + §(R1C(h), h)L2

. . 1, . -~ -
=1Vl hllzz + 2(of,h) 12 = 200 = DIAllz2 = 5 (Ric(h), h) .
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Lemma 3.2 implies
(Rlc(h) hy <(nfh? = tr(h)?) + (1 +/n)|Rm — Rm"¥?||h|?
<n|h[® + (1 +/n)|Rm — Rm"¥P||n|>.
Hence

(=2l < 2(00.7) o + 196l Bl + (1) [ 1R = Rt dvol.

Since h = wh this finishes the case that ¢ is compactly supported.
We now consider the general case. Choose a pointwise non—decreasing sequence of
bump functions (g )reny € Co°(M) so that 0 < ¥ < 1, [[VY|lcoary € %, and 9y — 1

pointwise. Since (a +b)? < (1+k)a® + (1+ 1+)b?, we have
+k
V) < (L RIvine? + (1 3 ) ufivel < S0t (14 1) 9l

Applying the result for the case of compact support to i = Yrp gives
(n-2) wa 2|2 dvol < 2 f D22 (h, f) dvol

1 k:
Sl (147) [ 1wePIn? avol

+ (1 ++/n) fM Y22 Rm — Rm"™P||h|? dvol.

Taking k — oo implies the desired result. Indeed, the second summand on the right hand
side converges to 0 since ph € L?(M), and the first and fourth summand converge by
dominated convergence because ph,f € L?(M). Also we may assume |Vi|h € L?(M)
since otherwise the desired inequality trivially holds. So the third summand on the right
hand side also converges. (]

4. INVERTIBILITY OF Lh = %ALh +(n-1)h

In order to apply the implicit function theorem it is necessary to invert the linearisation
of the Einstein operator ® at the original metric g. This linearisation is given by

(D), (h) = %ALh +(n-1)h.

For simplicity of notation we abbreviate this operator by L. Tt is of utmost importance
that ||£7!||op is bounded by some constant that is independent of vol(M). To achieve this
we consider special hybrid norms that are defined in Section 4.1. The a priori estimate
is then proven in Section 4.2.

4.1. The hybrid norm. Bounding the operator norm of the inverse £7' boils down
to proving an a priori estimate ||h|lsource < C||Lh|target. As L is an elliptic operator, it
is natural to work with Hdélder norms and use the Schauder estimates established in
Proposition 2.5. To obtain constants that are independent of vol(M) we define norms
that are a combination of Holder and weighted Sobolev norms. The basic reason for this
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is that C°-bounds can be deduced from L?-bounds by De Giorgi-Nash-Moser estimates
(Lemma 2.8).

Let M be a Riemannian manifold of dimension n > 3. For € > 0,§ € (0,2v/n —2) and
ro > 1 define

E := E(M;€d,rg) = {x eM ‘ /B e~ (2Vn=2=0r:(¥) gyl (y) < E}, (4.1)

(z,2r0)\B(z,r0)

where r,(y) = dy(z,y). Inside E we will be able to bound [|h]|co in terms of ||f]|co.
Outside of E we will use Lemma 2.8 to bound ||h||co in terms of ||f||z2. The norms we
define are supposed to capture L-information outside of E.

We now come to the precise definition, which we take from Section 5 of [Tia).

Definition 4.1. For a € (0,1), €>0, § € (0,2v/n—2) and ¢ > 1 the hybrid norms || - ||«
on C’k’a(Sme(T*M)) are defined as

1
1Al = maX{HhHCQ,n(M),sup( [ e-<W”—2-5>7'm<y>(yh|2+|vh|2+|Ahy2)dvol(y))2}
¢ B

(4.2)
and

1
I fllo = maX{HfHCo,a(M) , S;lg (A/[ e‘(Q\/n—Q_cS)m(y)|f|2 dVOl(y))2 }’ (4.3)

where E = E(M;¢€,0,r0) is the set defined in (4.1).

Strictly speaking these norms also depend on a choice of constants A >0 and ig > 0 for
which it holds |[VRic(g)llco(ar,g) < A and inj(M, g) > d9. This is because our notion of
Holder norm depends on this geometric information (see Proposition 2.5 and its proof).

The reason why we use weights of the form e~ (2Vn-2-8)rs (and not e~ for arbitrary
big a > 0) is that in order to obtain weighted L?-estimates we can only use weights e for
functions w satistying |Vw| < v/n — 2. This is because in the estimate of Proposition 3.4
the factor n — 2 on the left hand side needs to be able to absord the factor |Vw|? on the
right hand side.

For later purposes it will be useful to mention the following equivalent version of the
norm || -||2.

Remark 4.2. Let M be a closed Riemannian n-manifold with [sec| < 2. The norm || |2
is equivalent to the norm

1
1Al = maX{HhHCZa(M) , sup(/Me‘(QV”‘2‘5>”<y)(|h|2+|Vh|2+|v2h|2)dvol(y))2}.
¢ E

and the equivalence constants can be chosen to depend only on n.

Sketch of proof. By approximation it suffices to show that for any smooth Lipschitz
function ¢ : M — R and any smooth (0,2)-tensor h it holds

/M e?|v2h|?* dvol < ¢ fM e?(|h* +|Vh[* + |AR[?) dvol
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for a constant ¢ depending only on n and Lip(¢) (see [AFLMRO7, Theorem 1| for the
approximation of Lipschitz functions). It is a well-known fact that for u € C°(R™,R)
it holds [p. |V?uldz = [p. |Au[*dz (see (3) on page 326 of [Eval(]). In fact, this only
needs integration by parts and the fact that second order partial derivatives commute. A
similar calculation applies in the present context. The only difference is that now second
order partial derivatives only commute up to a term involving the curvature tensor. But
since |sec| < 2 we have uniform control on any term involving the curvature. O

4.2. The a priori estimate. After having introduced the hybrid norms || - ||z and || - [|o
in the previous subsection, we now prove that

£ (C*(Sym* (T M)), || - o) — (€ (Sym?* (T M)), |- [lo)
satisfies an a priori estimate with a constant independent of vol(M). This is Proposition
5.1 in [Tial.

Proposition 4.3. For alln >3, a€(0,1), A>0, § € (0,2v/n—-2) and ro > 1 there exist
constants g, €y and C > 0 with the following property. Let M be a closed Riemannian
n-manifold with

|sec+1|<ep, inj(M)>1 and [[VRiclcos <A
Then for all h € C’Q’O‘(SymZ(T*M)) it holds
[[ll2 < ClILAo,
where ||-||2 and ||-|lo are the norms defined in (4.2) and (4.3) with respect to any € < €.

Proof. Our proof follows that in |Tia]. We add further details and at times give alterna-
tive arguments. Abbreviate f := Lh.

Step 1 (Integral estimate): Let c¢(n,0) :=n—-2—-(v/n-2-§/2)? and ¢ < 2(61(:1%).

Assume that |[Rm - RmhypHCO(M) < g9. An application of Corollary 3.5 with p(¢) =
o~ (Vn2-5/2)t

gives
c(n, ) fM " @VRT2-0)re 12 o) < 9 fA OV () dvol
+(1+\/ﬁ)eofMe_(zm_‘s)“\h]deol,
and consequently

Ad) [ vt [ o on (Dyp, L) ol
2 M M 4 c(n,d)

by the Cauchy-Schwarz inequality and the inequality between the arithmetic and the
geometric mean. Hence

[M e (2Vn=20)ra 12 gyl <

=,
e 5)2fMe (2Vr=2-8)r2 £12 gy, (4.4)
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Note that [Ric(h)| < ¢(n)|h| because |sec| < 2. Testing the equation f-1iRic(h)-(n-1)h =

%Ah with e-(V1=2-0)72 A and using the inequality between the weighted arithmetic and
the weighted geometric mean implies

fM e~ V=20 A dvol < C(n) fw O (R [ ) dvol. (4.5)

Set ¢ == (2v/n—-2-9)r,. We may act as if p were smooth. Indeed, by Theorem 1 in
[AFLMRO7] there exists a sequence (¢e)es0 € C®(M) so that lime_o || — @ellcoary = 0

and Lip(p:) < 2/n—2. Then all the arguments below apply to ¢, so that (4.8) will
hold for ¢, instead of ¢. But then taking ¢ — 0 will yield (4.8) for .
Using 2A(|R[?) = (Ah, h) - |Vh|* < 3|ARJ? + |1 = [VA|* we obtain

1 1
f e ?|Vh|? dvol <= f e #|hJ* dvol + = [ e"?|Ah|? dvol
M 2JM 2Jm
1
- = | e ®A(|h)?) dvol.
2Jm

Integration by parts shows that

1 1

=5 [ ARy dvol = -2 fA/I(V(|h|2),V(e“p))dvoL

moreover |3(V(|h[), V)| < [B||VA||Ve| < 1[VeP|h? + L|VA[2. Absorbing e ?|Vh[* to
the left hand side of inequality (4.6) and using |Ve| < 2v/n — 2 yields

f e~?|Vh|? dvol < f ¢?|h[ dvol + f P\ AR[ dvol
M M M

(4.7)
+4(n—2)fMe_“0|h\2 dvol.

Therefore
[M e”GVn=2=0ra (1p12 4 |Th[? +|ARJ?) dvol < C(n, 8) [M "GV 17 dvol - (4.8)

by combining (4.4), (4.5) and (4.7). This completes the integral estimates.

Step 2 (C-estimate): It remains to estimate |Allc2.0(ary- By Proposition 2.5, it
suffices to bound |[|h[|co(ary. We reduce the CY-estimate to an L%-estimate. Namely, we
show that there is a constant C' = C'(n,a, A) so that for each x € M it holds

() < C(I1llr2(Bp)) + 1 lcoB ) ) (4.9)

where p is the constant appearing in the definition of the Holder norms. This will
follow from the De Giorgi-Nash-Moser estimates of Lemma 2.8. The problem is that De
Giorgi-Nash—Moser estimates only hold for scalar equations, but not for systems. For
this reason we can not directly apply Lemma 2.8 to Lh = f. To remedy this, we show
that |h| satisfies an elliptic partial differential inequality.
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Recall f = %Ah+%Ric(h)+(n—1)h. Using %A(|h|2) = (Ah, h)—|Vh|? and the estimate

on %(Ric(h), h) from Lemma 3.2 we get (assuming &g < 1+1ﬁ)

—%A(IhIQ) = =2(f,h) + (Ric(h), h) + 2(n - 1)|h|* + |VA|?
> =2\ f||h| - 2(n +eo(1 +/n))|h|?* + 2tr(R)? + 2(n - 1)|h|* + |V A|?
> —2|f||h| - 4|h)? +|Vh|*. (4.10)

Suppose for the moment that h # 0 everywhere. Then |h| is a nowhere vanishing C?
function. Observe

V([pDI<|VR| and - %A(IhIQ) = ~[nAIA]) + [V ()P

Combining this with inequality (4.10) and dividing by |h| shows
=A(|h]) = =2|f| - 4]h]. (4.11)

Applying Lemma 2.8 to (4.11) yields (4.9).

Recall that we assumed h # 0 everywhere. We will now show that this assumption
can be dropped. Namely, (4.9) is stable under C?-convergence, that is, if (4.9) holds for
a sequence of h; and if h; — h in the C%-topology, then (4.9) also holds for h. Therefore,
it suffices to construct a sequence h; converging to h in the C-topology so that h; # 0
everywhere.

Let h e C?*(Sym?(T*M)) be arbitrary. Then h can be approximated in the C?-
topology by symmetric (0,2)-tensors h; (i > 1) which are transverse to the zero-section
of Sym?(T™* M). For reasons of dimension, such a section is disjoint from the zero-section,
in other words, the tensors h; vanish nowhere. Therefore, the estimate (4.9) holds for all
h e CQ’Q(Sme(T*M)) and x € M.

Fix h e C%*(Sym*(T*M)). Choose z € M so that |h|(z) > %HhHCO(M). Then (4.9)

implies
1
§HhHCO(M) < C(Ihllz2(B(apy) * 1flloocan) (4.12)

for some C' = C'(n,a,A). We can without loss of generality assume that the p from the
definition of Holder norms is at most 1. So it suffices to bound ||h||z2(B(z,r0)) @8 70 2 12 p.
To this end we distinguish two cases.

We first consider the case that = ¢ E. By (4.4)

f Ih[2 dvol < €2V/7-2r0 f e (V20T ) ol
B(z,r0) M
SEVTIO(,) [ BRI dvol
<C(n,d,m0)|I£II5,

where in the last line we used (4.3) and = ¢ E. This finishes the case x ¢ E.
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Now consider the case x € E. Choose n: R — ]R smooth such that n =1 on (—o0,1],
n=0on [2,00) and — <77 <0. Let p(t) =n(+ ~)e” (Vn=2-3/2)t " Compute

p(8) = & VI afr) = (e ) (V=2 = 612) ).

Abbreviate o := n—2—(v/n—-2-8/2)% (1 ++/n)eo. As ||Rm— Rm™P|| < o, Corollary 3.5

implies
/]\46_(2\/”_2_6)”172(0|h|2 —2(h, f)) dvol

_ _ !
<[ (n(—n')Z—M+(n—)Q)]h!Qe‘(W"‘Z_‘S)”dVOI
M 70 70

g[ (?””_2 ) )|h|2 ~(@Vn=2-6)r gyo)
B(z,2r0)\B(z,m0)

o 42

<C(n, ro)Hhngo(M) .[B(g: 2r0)B(z:0) e~ (Vn=2-0)rs gy

<€C(n, o)l IhlIo(ar): (4.13)

where we used that n’(:—g) =0 outside B(x,2rp) \ B(x,r0) in the second inequality, and
x € E together with the definition (4.1) of E in the last inequality. Moreover,

f -(2vn- 5)%7] ‘f|2 dvol < 64\/ —2rg /

M B(z,2r0)

since n(72) = 0 outside B(z,2r¢). Combining this with (4.13) yields

o~ (2Vn=2-8)rz |fI? dvol < ¢(n,70)]| f||2

/S8 1 9 B c(n,r
"fMe S dvolgecm,m)||hugom)+MHM%-

Note o = ¢(n,d) — (1 ++/n)ep. Assume gg < 2(01(25)5) Then o > C(n %) Hence

1
N e e e e I L1 dvol
B(z,ro) o M o
< C(n,6,r0) (@l Eoagy + I12):
Using the triangle inequality we get
_1
1llr2(B 2oy < C(n,6,m0) (€2][Bllcoary + I1.fl0)-
Combining this with (4.12) yields
1
_HhHC’O(M) < C(ez|lhllcoary +11£lo)

for some C = C(n,,d,rg,A). Thus for €< 1602

1
§||h||CO(M) < ZHh”CO(M) +C||fllo-

This implies the desired C°-estimate. (]
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We now make some further remarks concerning this proof. First, we point out the
following estimate that can be extracted from the proof. In fact, it follows immediately
from the estimates (4.4) and (4.9). This estimate will be the key ingredient to obtain
the exponential decay estimate in Theorem 1.

Remark 4.4. Let f € C%*(Sym*(T*M)) and let h e C*>*(Sym?(T*M)) be a solution
of Lh = f. Then there is a constant C' = C'(n,a, 0, A) so that

1
(TE-8)rs 2
|h|<x>sc(ufnco(B(m,p)ﬁ( [ e ol )

for all x € M. Here p > 0 is the constant appearing in the definition of the Hélder norms.

For the proof of Theorem 2 we have to deal with manifolds that may no longer be
compact (but have finite volume), and do not have a positive lower bound on the in-
jectivity radius. The next two remarks explain to what extend the arguments from the
proof of Proposition 4.3 are still valid in that situation.

Remark 4.5. Let M be a finite volume manifold that satisfies all the assumptions
from Proposition 4.3 except the compactness assumption and the lower bound on the
injectivity radius. If h e C?(Sym?(T*M))n H*(M) and if £(h) = f, then the inequality
(4.8) is still valid. Here h e C?(Sym?(T*M))n H?(M) just means that h is C* and that
Jar (IR +|VR[? + [V2h|?) dvol < oo.

Proof. The proof of inequality (4.8) carries over without change provided we can verify
the equality

fMe_“”A(|h|2)dv01:/M(v(e_‘p),v(|h|2))dvol, (4.14)

which involved an integration by parts. Here ¢ = (2/n—2—0)r,. As in the proof of
Proposition 4.3 we may act as if ¢ were smooth.

Consider the vector field X := e ?V(|h|?). As h € H?(M) and because ¢ is Lip-
schitz and bounded from below, it is easy to see that X e LY(M) and div(X) =
(v(e™®),v(|h|*)) — e ¥A(Jh|?) € L*(M). Therefore, the main result of [Gaf54] shows
[y div(X) dvol = 0. O

Remark 4.6. Let M be a finite volume manifold that satisfies all the assumptions
from Proposition 4.3 except the compactness assumption and the lower bound on the
injectivity radius. Then there exist € = €(n,a,A,d,r9) > 0 and C = C(n,a, A, d,r)
with the following property. Let h € C?(Sym*(T*M)) n H*(M), and assume there is
0 € Minick with |h|(20) > |lhllco(ar)- Then it holds

[1hllco < ClILAo,
where || -||o is the norm defined in (4.3) with respect to any € < €.

Proof. A priori (4.9) only holds in the universal cover. But for x € My, the norm
Illz2(B(z,p)) is the same in the universal cover and in the base manifold (here we assume
without loss of generality that the universal radius p used to define Hélder norms is
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smaller than a chosen Margulis constant). So (4.9) holds for x € Miy;ck, and the rest of
the argument of Proposition 4.3 applies without change. U

We finish this section by showing that the operator £ is invertible. This follows from
Proposition 4.3 by standard techniques.

Proposition 4.7. For alln>3, a€(0,1), A>0, § € (0,/n—-2) and ro > 1 there ezist
constants g, €9 and C > 0 with the following property. Let M be a closed Riemannian
n-manifold with

|sec+1|<ep, inj(M)>1 and [[VRiclcosy <A
Then the operator
£ (022 (Sym (T 20)), ||-|l2) — (CO*(Sym(T*21)). | -|Io

1s tnvertible, and
-1
[1£]lops [1£7 lop < €
where ||-||2 and ||-||o are the norms defined in (4.2) and (4.3) with respect to any € < €

Proof. By Proposition 4.3, it remains to show that £ is surjective. We split up the
equation into its trace and its trace-free part. Namely, note that any (0,2)-tensor f can
be written as f = f° + g, where f° has vanishing trace, ¢ is a function, and ¢ is the
given Riemannian metric of M.

Note that L(ug) = (%Au +(n- 1)u)g. The bilinear form ag : H*(M) x H*(M) - R
associated to the equation lAu +(n—-1)u = is given by

agp(u,v) = [ ( (Vu, Vo) + (n—l)uv) dvol.

This is clearly bounded and coercive. Thus by Lax-Milgram and the Weyl Lemma, for
any @ € C(M) there is u e C*° (M) so that L(ug) = ¢g.

Let E — M be the vector bundle of symmetric (0, 2)-tensors with vanishing trace. The
bilinear form a : H'(E) x H'(E) - R associated to £ is given by

a(h ') = f( (Vh, VH') (Ric(h),h’)+(n—1)(h,h’))dvol.

By Proposition 3.1 the Poincaré inequality holds for tensors with vanishing trace. To-
gether with the estimate from Lemma 3.2 we get

1 1 1+(1+n)e
a(h,1) 2 5ITHagapy ~ (14 (1 VD) M2y 2 (5 _1+ (Ve

h2
L0 ) 0

for all h e HY(E), so that for g9 > 0 small enough, the form a is coercive on E. So again
by Lax-Milgram and the Weyl Lemma, for any f° e C*°(F) there is h e C*°(E) so that
Lh = f°.
Therefore, splitting any f up into its trace part ¢g and its trace-free part f°, we obtain
that for any f e C*(Sym?(7*M)) there is h e C*°(Sym?(T*M)) so that Lh = f.
Recall the well-known fact that for any u € C%“(R™) there is a sequence (us)eso €
C*(R") so that lime_ [Juz —ullco.s(gny = 0 for any B € (0, ). Moreover, if u has compact
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support in some open set 2 € R", then u. can be assumed to have compact support in
Q too. Now let f € C’O’O‘(Sme(T*M)) be arbitrary. Applying this approximation result

locally, we obtain a sequence (f;)en in C“(Sme(T*M )) converging to f with respect
to the C®2-norm. Let h; be the solutions of £h; = f;. Note that the norms || - [

and ||-||o are equivalent on CO’%(Sme(T*M)) (but with a non-universal constant). Tt
follows from Proposition 4.3 (applied with )

1hi = hjlle> < Cllfi = fillco.g =0 as 4,j = oo

for a (non-universal) constant C. So (h;)ien € C’Q(Sym2(T*M)) is a Cauchy sequence.
Denote the limit tensor field by h. Clearly h solves £h = f. Finally, h e C*(Sym?(T*M))
by elliptic regularity theory. Therefore, £ is bijective. The bound on ||£7}|op follows
from Proposition 4.3, and the one for ||£||op is obvious. O

Recall that by Convention 2.3 we assume all manifolds to be orientable. Nonetheless,
we have the following.

Remark 4.8. Proposition 4.7 also holds when M is not orientable.

Proof. Proposition 4.7 holds for the orientation cover M of M. Moreover, since the non-
trivial decktransformation 7 : M — M is an isometry, Proposition 4.7 shows that the
elliptic operator £ on M restricts to an isomorphism between subbundles of T-invariant
Holder sections of symmetric (0,2)-tensors. But 7-invariant Hélder sections on M are
nothing else than Hélder sections on M. O

5. PROOF OF THE PINCHING THEOREM WITH LOWER INJECTVITY RADIUS BOUND

We start by stating a more precise formulation of Theorem 1.

Theorem 5.1. For anyn >3, a € (0,1), A>0,6 € (0,2v/n—-2) and ro > 1 there exist
constants g and C' > 0 with the following property. Let M be a closed n-manifold that
admits a Riemannian metric g satisfying the following conditions for some € < ¢egp:

i) -1-e<secg) < —1+¢;
i) inj(M,g) > 1;
iii) ||[VRic(9)|lco(arg) < As
) It holds
[M e_(Q\/n—2—6)Tw(y)|RiC(§) +(n - 1)g|§(y) dvolg(y) < g2
for all x € M with

-(2vn-2-0)r=(y) -
€ dvol > €0,
/;(90727”0)\3(1’,7"0) g(y) 0

where 1, (y) = dg(x,y).
Then there exists an Finstein metric go on M so that Ric(go) = —(n—1)go and

llgo - gll2 < Ce™™,
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where || - ||2 is the norm defined in (4.2) with respect to the metric g and the constants
€0,0,70.
Moreover, if for some B <2vV/n—-2-9 and U € M 1t holds

/M e Vr=2=0r:WRic(g) + (n - 1)g* (y) dvol(y) < e2(1-N e 2Bdista@ V) for gl 2 ¢ M,

then
190 = glc2.a () < Celae Adists(@.U) for all x € M.

In particular, if Ric(g) = —(n—1)g outside a region U, and if

fU [Ric(g) + (n - 1)g|*dvol; < €2,

then
|90 _g|C2qa (.7}) < Csl—ae—(\/n— —%5)distg(z,U) fOT all =€ M.

As mentioned previously, we will prove this using the implicit function theorem. The
linearisation (D®)g of the Einstein operator ® at the initial metric was studied in Sec-
tion 4, and we showed that it is invertible, with controlled norm of its inverse. To control
the size of a neighborhood of ®(g) in which & is invertible requires an estimate of the
Lipschitz constant of the mapping g = (D®),. This will follow from the next lemma.

Lemma 5.2. For alln>2, a€(0,1), A >0, ig >0 there exist € = e(n,a,A,ig) >0 and
C = C(n,a, A, ig) with the following property. Let (M,g) be a Riemannian n-manifold
with

IRic(@)llcr(arg) <A and  inj(M,g) > io
and let g € C’Q’Q(Symz(T*M)) be another Riemannian metric so that ||g—gllc2.(arg) < €-

Then the linearization of the Einstein operator ® = @y defined in (2.1) satisfies the
pointwise estimates

((D®)g(h) = (D)g(h)lcoa(z) <€ max g =glcza(y)lhlcza(y)
yeB(z,p)

and

[(D®)g(h) = (D®)g(h)|co(z) < Clg = gloz(2)|hlc2(2)
for all h € C2’°‘(Sym2(T*M)), where all norms are taken w.r.t. the background metric
g.

The term maxyep(, ,) comes from the fact that C%-norms are defined in bigger local

charts than C%“norms (also see inequality (2.6)). Also note that since all norms are
taken w.r.t. g, we do not need an upper bound on [|VRic(g)||co.

Proof. The linearisation of the operator g - Ric(g) is given by (see [Top06, Proposition
2.3.7))

_ 1 1
(DRic)g(h) = SALh = L5, (nyy1a (9),
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where B4 = 04(-) + %dtrg(-) is the Bianchi operator of g, f4: T*M — T'M is the musical
isomorphism associated to g, and Lx(-) is the Lie derivative in direction X. Therefore,
it follows from the definition (2.1) of ® and the product rule that

1 1 1
(D®)g(h) = Aph+(n=1D)h+ L, (g)yis (h) + 5L h)-,(0)10 (9) + 5L D14 (B3(90) (9):

where (Dpf)g : T*M — TM is the linearisation of g — f, in direction h. Denote by
bg : TM — T*M,v ~ g(v,-) the inverse of {,. Differentiating the identity idzas = 40 bg
in direction h, and applying by yields (Dpf)g = —figobnofg, where bp(v) = h(v,-). In
local coordinates this reads ((Dj, u)g(w))m = —g™*hy;g"w;. Therefore, Lemma 5.2 can
be checked by a straightforward (albeit tedious) calculation in local coordinates. We will
not carry this out in more detail. O

Lemma 5.2 and Remark 4.2 immediately imply the following corollary.

Corollary 5.3. For any n >3, a € (0,1), A > 0 there exist € = e(n,a,A) >0 and C =
C(n,a,N) with the following property. Let (M,g) be a closed Riemannian n-manifold
with

lsec| <2, inj(M,g) 21 and |[[VRic(g)|lcoarg) <A
and let g € C’2’Q(Sym2(T*M)) be another Riemannian metric so that ||g—gllc2.0(ag) < €
Then the operator ® = ®g defined in (2.1) satisfies

[(D®)4(h) = (DP)g(h)llo < Cllg = gll2IAl2

for all h e CQ’a(Sym2(T*M)), where ||-||2 and ||-||o are the norms defined in (4.2) and
(4.3) with respect to the metric g and any €,9,r¢.

We now come to the proof of Theorem 5.1.

Proof of Theorem 5.1. In this proof, ||-||2 resp. ||||o shall denote the norms defined in (4.2)
and (4.3) with respect to the metric g and the constants g, d, o, and CQ’Q(Sym2(T*M))
is understood to be equipped with ||-||2. Metric balls B(h, R) of radius R about a section
h are taken with respect to that norm.

Define the operator

¥ : B(0,1) ¢ C**(Sym*(T*M)) - C**(Sym*(T* M))

by
W(h):=h-L(D(g+h)).
Here ® = @4 is the Einstein operator defined in (2.1), and £ = (D®)3.

By Proposition 4.3 and Corollary 5.3, there is a constant C' = C'(n, «, 0,9, A) such that
1L~ lop < C and Lip((D®).) < C. Thus it follows from (D¥), = L7 o (L - (D®)gy1)
that for R = R(n,«,d,A) >0 small enough, the restriction of ¥ to the closed ball B(0, R)
is 1-Lipschitz. Moreover, since || [|go.a < C||-[|5*]| - [|% and @(g) = Ric(g) + (n - 1)g,
the assumptions i) and i77) imply that ||®(g)||co.« < Cel™. Together with condition iv),
this shows

1@(g)llo < '
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due to the definition of the norm || [jo. As a consequence, for g9 = g(n, o, 0, A) > 0 small
enough, we have [|[¥(0)]|2 < % and hence ¥ restricts to a map B(0,R) - B(0,R). By
the Banach fixed point theorem there exists a fixed point hg of ¥. By definition of ¥
this means ®(g + hg) = 0, and hence gy = g + ho is an Einstein metric due to Lemma 2.4.
Moreover, as VU is %—Lipschitz, it holds

1 -
[1hollz = 1% (ho)ll2 < [[¥ (ho) = W(O)l|z2 + 1T (O)]l2 < 5 llholl2 + Cee.

This implies ||hg||2 < Ce'™@.

It remains to show the improved estimate on |gg — g|c2.(z). Let 8 <2v/n—-2-¢ and
U c M be as in the statement of Theorem 5.1.

Recall that the pointwise Holder norm |- |co,a (2) is computed in a local chart defined
on the ball B(z,p), where p = p(n,a,A) > 0 is a universal constant (see the proof
of Proposition 2.5 for more details). In particular, || - |lco(p(z,p)) < C| - |coa(z). So
Remark 4.4 and the pointwise Schauder estimate (2.4) show that there is a universal
constant Cy so that for all h € C’27a(Sym2(T*M)) it holds

1
|h|Cz,a(:E)SC’O(|Eh|Co,a($)+( fM e_(w”_z_‘s)”(y)|£h|2(y)dvolg)Q). (5.1)

Choose Cj large enough so that the a priori estimate from Proposition 4.3, and the
weighted integral estimates from Step 1 of the proof of Proposition 4.3 hold, that is,

||h||2 < C()H;Ch”o and ||h||H2(Z\/[;wI) < CO”‘ChHLQ(M;wz) fOI' all X € M, (52)

1
where ||| g2 w,) = ([M e~(2Vn- ‘%5)”‘(9)\ ez (y) dvolg(y)) ? is the weighted H2-norm,
and analogously || - ||z2(as.w,) shall denote the weighted L?-norm. Moreover, we assume
l-o

that Cp is large enough so that [|[Ric(g) + (n - 1)gl|co.a(ary < Coe
Define C := 2C’gepv "2 4 20, and consider the set

U:= {h € Dom (W) | h satisfies the inequalities (5.4), (5.5) for all z € M}7 (5.3)
where the inequalities (5.4) and (5.5) appearing in the definition of U are
|h| 2 (z) < Cret e P dista(@U) (5.4)
and
WPl 2 (0, ) € Cpele Adista(@U) (5.5)

We will show that W(U) cU. This implies the desired estimate, because the fixed point
ho is then necessarily contained in U.
To prove ¥(U) cU we first observe that for all h € Dom(W) it holds

1
\Il(h)—\ll(()):fo L7Y(Lh - (D®)guh) dt (5.6)
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by the Fundamental Theorem of Calculus. Denote by Cs := Lip( (D<I>).) the universal
continuity constant given by Lemma 5.2, so that it holds

|[Lh = (D®)grinhlcoe(r) <Co sup  [hffe.a(y) (5.7)
yeB(z,p)
and
Lk~ (D®)g4inhlco(x) < Colhfge (z). (5.8)

Now let h € U be arbitrary. We start by showing that W(h) satisfies (5.5). Combining
the Jensen-inequality, (5.2), (5.6), and (5.8) yields

(56) 1, 2
1) - ¥ Olqary < [, 167 (R~ (DD)guinh) [z o,y
(5.2) 1 2
<G8 [ lleh=D)gnh}a o,
(5.8) -(2v/n-2-9)r
< CgC’%fMe (2vn-2-9) I(y)\hlég(y) dvolg(y). (5.9)
Note [|hllc2(ary < C1e'7® by (5.4) and since h € U. Together with (5.5) and (5.9) this
implies
(5.9) - n—2-0)r
180 = WO aqrry < CHC3 [ @D Wn, (y) dvol(y)
< CRC3CE0m) [ DM, (y) dvol(y)

D007 0220100 28 sty (@), (5.10)

Note ®(g) = Ric(g) + (n - 1)g. Hence ||®(9)||r2(rr:w,) < gl Adistg(@.U) 1y assumption,
so that |[W(0)||m2(arw,) < Coe' e Pdista(@U) 1y (5.2). Applying (5.10) and the triangle
inequality yields

19 (W) 122 (a1 < (Co + 0002055(1—a)) o(1-a) ,~Bdisty (2,U)

As Cy + CyCyC2e1-%) < (0 for e > 0 small enough, we conclude that W(h) satisfies (5.5)
for all z € M.
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It remains to show that W(h) satisfies (5.4) for all x € M, because then ¥(h) € U by
the definition (5.3) of &. Combining (5.1), (5.6), (5.7), and (5.8) shows

(5.6) Lo
O =¥l (@) 5 [T (Lh= (DO)genh)| o (@)

1) 1

< fo ColLh — (D®) gynhlco. (o) dt

1
+00f0 1Lh = (D®)geenhllL2(ar,) dt

(5.7),(5.8)
< CoCy sup  |h|e2a(y)

yeB(z.p)
1
+CoC ( [ cemmonop ) dvolg(y)) > a1

Note that the last summand is estimated in (5.10). Using (5.4) to estimate |h|c2.a(y),
and remembering 5 <v/n -2 we get

(5.11)
[U(h) = U(0)|coa(z) < CoCh sup [hlgea(y)
yeB(w,p)

1
+ CyCl (.[M 67(2\/”*2*5)’“1(9)|h|402 (y) dvolg(y)) ’

(5'4)7<(5'10)0002012€2(1_a) sup  e~2Bdists (W1)

yeB(z,p)
+ 00020%52(1—04)6—5 distg (z,U)

< (20002012620\/”_25(1—0))E(l—a)e—ﬁdistg(x,U).

Recall ||®(9)]l12 (s < € e PU(®U) and ¥(0) = —-£7'®(g). Thus applying (5.1)
shows [¥(0)|c2.a(z) < Co(|®(g)]co.(z) + 51_0‘6_6(11“57(“’[])). Since | - |co.a(z) is com-
puted in a local chart defined on B(z,p), it holds |®(g)|co.«(x) = 0 if distz(x,U) > p.
For x € M with distg(x,U) < p it holds [®(g)|co.e(z) < [|[(g)llcoear) < Coel™ <
CoelPel-ae=fdists(z.U) Al in all we conclude (again remembering 8 < v/n - 2)

W (h)|c2a(z) < (2000201%2/”"—25(1-“) +Cp + Cge‘”"‘z) glmaeAdists(=.U)
for all # € M. Recall that C} = 2C2ePV"2 + 2Cy. As 2C,C2C7e?7 (179 < € for £ > 0

small enough, we conclude that W(h) satisfies (5.4) for all x € M. Therefore, W(h) € U.
Since h € U was arbitrary, we obtain W(U) € U. This completes the proof. O

Since the proof of Theorem 5.1 is merely an application of the Banach fixed point
theorem based on Proposition 4.7, the next remark is immediate due to Remark 4.8.

Remark 5.4. Theorem 5.1 also holds when M is non-orientable.



84 URSULA HAMENSTADT AND FRIEDER JACKEL

6. COUNTEREXAMPLES

For our most important applications, we need a version of Theorem 5.1 which does
not require a lower injectivity radius bound. The purpose of this section is to show
that at least in dimension 3, such a result can not be obtained as a straightforward
extension of Theorem 5.1 by providing examples which show that such straightforward
extensions do not hold true. The mechanism behind these examples lies in the fact that
hyperbolic metrics on Margulis tubes or cusps admit nontrivial hyperbolic deformations,
and such deformations can be used to construct families of metrics on closed hyperbolic
3-manfolds violating the a priori stability estimates which are essential for an application
of the implicit function theorem. The geometric feactures of these examples motivate
our approach towards our second main result Theorem 2 which is valid for 3-dimensional
manifolds without the assumption of a lower injectivity radius bound.

Proposition 6.1. For anye >0, A€ (0,2) and any C > 0 there exists a closed 3-manifold
M, and a Riemannian metric g on M. with the following properties.

i) The sectional curvature of g is contained in the interval [-1—e,-1+¢].
i1) For each component A of the thin part of (M., g), we have

1 : 2 2
_/A Wﬁhc(g) + 2g|gdvol <e”.

iti) The volume of (Mc,g) is bounded from above by a constant independent of .
i) There is no constant curvature metric geonst 0n M with the property that the identity
idpas 1 (Me, g) = (Me, geonst ) is a C-bilipschitz equivalence.

Remark 6.2. It will be apparent from the proof that the geometric properties we use for
the construction of the examples are special to dimension 3 and, by a result of Gromov
[Gro78], do not extend to dimension at least 4. Although we expect a result similar to
our second main theorem to hold true in all dimensions, such an extension may require
a new strategy for the proof.

For the construction of the manifolds M, we start with an orientable hyperbolic 3-
manifold M of finite volume, with a single cusp. For example, the figure 8 knot comple-
ment will do. The cusp has a neighborhood B = T'\H which is the quotient of a horoball
H in H? by an abelian subgroup I' = Z? of parabolic isometries. The group I' preserves
each of the horospheres which foliate H, and the quotient of each horosphere under I' is
a flat two-torus 72.

Let us write the cusp neighborhood B and its hyperbolic metric g in the form

B=T?x [0,00), g= e 2t gy + dt?

where go is a fixed flat metric on T2. In other words, we have (T2, go) = I'o\R? where I'g
is a group of translations of R? isomorphic to Z2.

We now look at deformations of the metric gg of the following form. Let (e1,e2) be
any orthonormal basis of R%. For s € R consider the matrix

A(s) = ((1) 60)
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It acts as a linear isomorphism on R? not preserving the euclidean metric. Let g5 be the
pull-back of the euclidean metric by A(s). This pullback metric preserves orthogonality
of the vectors ey, eq, preserves the length of e; and scales the length of es by the factor
e’.
For numbers 6 > 0,R > 0 let f5r : [0,00) - [0,00) be a smooth function with the

following properties.

(1) fs5 r is supported in [0, % +4].
(2) |fs.r| <0.
(3) |f5.rl <.
(4) |fs gl <1
(5) [y fsr(s)ds = R.

Let gs = g(s,6, R, e1,e2) be the pull-back of the euclidean metric on the torus 72 by
the linear isomorphism A( [y f5 r(u)du). Then for each s, the metric gs is a flat metric
on T which is the pullback of the standard metric by an affine automorphism and as
such determined by the property that the vectors ey, es /efos fs.r(W)du gre orthonormal.

Since the curvature of a Riemannian metric is computed by second derivatives of the
metric, and since furthermore for any of the flat metrics g on 72, the metric e 2! g, + dt?
on B is hyperbolic, that is, of constant curvature —1, the following is a consequence of
the construction.

Lemma 6.3. For any € > 0 there exists a number §(¢) > 0 such that for any § < d(e),
m >0 the curvature of each of the metrics

e_2tg(t -m, 0, R,e1,e2) + dt?
on B =T?x[0,00) is contained in the interval [-1 —e,-1 +¢].

Proof. As curvature computation is local, we can carry this out in the universal covering.
Thus for a fixed point y € T? x {t} ¢ B, we compute in the universal covering R x [0, c0),
which we can identify with the horoball H = {x3 > ¢} for some ¢ > 0 in hyperbolic
3-space H? = {(x1,29,23) € R® | 23 > 0}. We also may assume that the horosphere
S ={x3 = 1} ¢ H contains a preimage ¢ of y. Furthermore, we consider the standard
hyperbolic metric h on H, where the normalization is such that the standard flat metric
on {z3 =1} is the preimage of the flat metric on the slice 72 x {t} containing y.

For simplicity of notation, write u = t —s. With this description, the hyperbolic
metric near § determined by the flat metric on 72 x {s} is the warped product metric
h = e 2%hg+du? on H where u = log x3, and the lift § of the metric e 2%g(s—m, 6, R,e1,e2)
near g is of the form

G=e2A(B(u))* ho + du?
where $(u) is a smooth function on an interval containing 0 which satisfies 5(0) = 0 and
whose first and second derivatives near 0 are smaller than 24 in absolute value.

Thus in standard coordinates, the Christoffel symbols for the metric ¢ and their first
derivatives are uniformly near the Christoffel symbols and their first derivatives for the
hyperbolic metric. This implies that for any € > 0 we can find a number §(¢) > 0 so that
the statement of the lemma holds true for this e. (]
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We now use this construction as follows. Consider as before a finite volume hyperbolic
3-manifold M with a single cusp B. We shall Dehn-fill the cusp and use a deformation
of the Dehn filled metric to achieve our goal. The geometric control we are looking
for is obtained from geometric information of Margulis tube of the Dehn filled manifold
corresponding to the cusp of M.

To set up this construction, note that a Margulis tube in a hyperbolic 3-manifold is
given as the quotient of a tubular neighborhood N (7, R) of radius R > 0 of a geodesic
4 ¢ H3 by an infinite cyclic group (¢) € SO(3,1) of isometries, generated by an element
¢ which preserves 4 and acts on 4 as a translation. Then ¢ can be represented as a
product of a transvection preserving 4 and an isometry 1 which fixes 4 pointwise and
acts as a rotation on the orthogonal complement of 4’ ¢ T:Y]HI3 .

Parameterize 4 by arc length and write xg = (0). There is a totally geodesic hyper-
bolic plane H? ¢ H? orthogonal to 4" which passes through zo. The quotient by ¢ of the
tubular neighborhood N (7, R) intersects H? in a hyperbolic disk whose boundary is an
embedded circle in the two-torus T2 = ON (7, R)/é of length 27 sinh(R). This circle is
the meridian of the solid torus B = N(%, R)/¢.

Choose a totally geodesic hyperbolic plane Hy ¢ H3 which contains 4. If 7 > 0 is
the translation length of ¢, then Hj intersects the fundamental domain {expY | Y €
Tﬁ(u)H?’7 0<u<T,Y 14} for ¢ in a strip bounded by two geodesics which are orthogonal
to 4, and the intersection of this strip with ON (4, R) contains an arc which descends
to a straight line segment on the boundary torus T? of length 7cosh(R). In particular,
the translation length 7 of ¢, which equals the length of the closed geodesic in the free
homotopy class defined by ¢ in the quotient manifold H3/(¢), can explicitly be computed
from the length of the meridian on 72 and the length of a straight line segment orthogonal
to the meridian which connects two points on the meridian and does not contain an
intersection point with the meridian in its interior.

A Dehn filling of the finite volume hyperbolic manifold M is determined by the choice
of a simple closed geodesic ¢ on the boundary T? of the cusp, which is a flat torus.
The Dehn filling along ¢ is obtained from M by removal of the cusp and gluing a solid
torus along the boundary whose meridian is glued to . If { is sufficiently long in the
flat metric on T2, then the filled manifold is hyperbolic (see for example [HKO08] or
Section 11 of this article which does not depend on this section). Furthermore, as the
lengths of such simple closed curves tend to infinity, the Dehn filled manifolds, equipped
with their unique hyperbolic metrics, will be almost isometric to M on larger and larger
neighborhoods of the complement of the cusp (see for example [BP92| or Section 11). As
a consequence, for each ¢ > 0 we can find such a Dehn filling with the property that the
hyperbolic manifold obtained by this Dehn filling contains a copy of the £-neighborhood
of T? in the cusp B ¢ M up to a change of the metric in the C2-topology which is as
close to zero as we wish.

Fix a number A € (0,2). The modification of the metric on such a Dehn filling of M
will be carried out in a region of the form T2 x [m, m + % +4] in standard coordinates on
the cusp where 6 < §(e) (for d(¢) given by Lemma 6.3), and m > 0 is a number which is
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sufficiently large that

D%/ et <1,

m

where Dy > 0 is the (intrinsic) diamater of the boundary 72 of the cusp (see Lemma 6.5).

After choosing m with this property, the length of the meridian for the Dehn filling is
chosen large enough so that the Dehn filled metric is arbitrarily near the metric of the
cusp on the neighbhood of radius £ = m+ % +4 of the thick part of M. The deformation is
chosen so that it stretches the direction orthogonal to the meridian (. For an arbitrarily
chosen constant C > 0, the deformed metric g on the Dehn filled hyperbolic manifold
(M¢, go) has the following properties.

(1) The metric coincides with the hyperbolic metric gg on a neighborhood of radius
m of the thick part of the hyperbolic metric.

(2) The ratio of the lengths of the closed geodesics for the metrics g and gg in the
filled manifold which are freely homotopic to the core curve of the tube is at least

C.

Lemma 6.4. For oll sufficiently large m there is no constant curvature metric geonst SO
that idys : (Mc, g) = (M, geonst) @5 @ \/6/2—bilipschitz equivalence.

Proof. Choose m sufficiently large that there exists a closed geodesic 8 in the union of
the thick part of M with the m-neighborhood of the boundary torus of the cusp. The
length of this geodesic in the Dehn filled manifold M, equipped with the hyperbolic
metric go, is almost identical to the length of 5. Furthermore, 3 is a closed geodesic for
the deformed metric g since g coincides with the hyperbolic metric near .

Assume there is a constant curvature metric geonst 80 that idpy, : (M¢,9) = (M, geonst)
isaC /2-bilipschitz equivalence. By Mostow Rigidity, there is then a number ¢ > 0 and
a diffeomorphism ¢ homotopic to the identity so that ¢*geonst = c¢2go. Define § := ¢*g.
Then idys, : (M¢,9) — (Mg, c*go) is a v/C/2-bilipschitz equivalence. Denote by 7o the
core geodesic of the distinguished Margulis tube of the Dehn filled hyperbolic manifold
(M¢,g0). Note that g also is the core geodesic for (M¢,g). As a consequence, 7y :=
#»(70) is the unique g-geodesic in its free homotopy class. Moreover, v and g are freely
homotopic since ¢ ~id. Therefore,

Clgy(70) < Lg(70) by the construction of g)
=L43()
<£5(70)

1
< 5\/566290 (’)/0)

by the definition of § and ~)

because 7 is a g-geodesic and v ~ )

(
(
(
(by the bilipschitz equivalence)

1
= 50V Cly (7).
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Hence ¢ > 2v/C. Similarly, we have

lgo (B) = £4(B) (by the first paragraph)
= EA(cb‘l(ﬁ)) (by the definition of §)
Lezg (@7 L)) (by the bilipschitz equivalence)

—f
~

Thus ¢ < 2/C. This is a contradiction. O

£g0 (8). (because [ is a go-geodesic and gb_l(ﬁ) ~ [3)

It follows from the following lemma that the constructed manifolds satisfy the curva-
ture assumption i) of Proposition 6.1.

Lemma 6.5. Let M be a closed 3-manifold, T a Margulis tube of M with core geodesic
v, and X € (0,2). Assume that —1 — ¢ < sec(M) < -1 + ¢ for some € < %/\, and that for
some m >0 the metric is hyperbolic outside the region

{y € Tlm < diSt(ya Mthick) < Rad - 1}7

where Rad is the Radius of T'. Then for some universal constant ¢ >0 it holds
1 . 9 9 9 Rad-1 A,
[VI Wﬁhc(g) +2¢|*(y) dvol(y) < eDge /m e 2"dr,
where Dy := diam(9T) is the (intrinsic) diameter of OT.

Proof. For r >0 denote by T'(r) the torus in the Margulis tube T all whose points have
distance r to 9T'. It follows from standard Jacobi field estimates that for some universal
constant ¢ > 0 it holds

area(T'(r)) < ce 2 area(9T) < eD3e~ 217"
for all r € [0,Rad —1]. Similarly, a comparison argument shows that for all y € T'(r) with
€ [0,Rad - 1] it holds
1 < C€(1+e)r
inj(y)
for some universal constant ¢ > 0 (see the proof of Corollary 7.7 for more details). Thus

1
/T(T) deolg(y) < DRV (1+e)=2(1-)r
for all r € [0,Rad - 1]. Note that (2-A)(1+¢g)-2(1-¢) =e(4-A) -\ < -3 since
by assumption € < %)\. Therefore, the desired estimate follows from the fact that the
curvature assumption sec(M) € [-1 —&, -1 +¢] implies [Ric(g) + 2g[* < 3(2¢)%. O

We quickly review the construction of the counterexamples constructed in this section
and point out what should be taken away from these examples. We started with a hy-
perbolic metric. The new metric was defined by slowly changing the conformal structure
on the horotori (quotients of horospheres). But this change only started deep in the thin
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part of the manifold. More precisely, the change of the conformal structure only starts
at horotori that have distance at least m to Mipick, where for some arbitrary constant
A € (0,2), the number m > 0 was chosen so large that D3 [ e 2Tdr < 1, where Dy is
the (intrinsic) diameter of the boundary of the filled Margulis tube T". In particular, the
change of the conformal structure only occours on tori T'(r) whose diameter is bounded
by some universal constant. Here T'(r) := {y € T'|d(y,0T) = r}. Indeed, for r > m it
holds

diam(7'(r)) <diam(7'(m)) (monotonicity)
<cDge™ (the metric is hyperbolic up to T'(m))
<cD} [oo e "dr (diam(0T") > inj(9T') = p)

gcpgf A (A<2)

m

<c (definition of m),

where ¢ > 0 is a universal constant, and p is a Margulis constant. With the terminology
of Section 7 we can express this by saying that the change of the conformal structure
only happens in the small part of the Margulis tube.

These geometric facts (which however are inherent to dimension 3, see |Gro78|) prevent
the establishment of the C°-estimate required in the proof of Theorem 5.1, and this
problem can not be resolved by enriching the hybrid norms |- ||z and |- ||g with weighted
L?-norms whose weight involves inj(y).

Our second main result Theorem 2 overcomes this difficulty by constructing new hy-
brid Banach spaces and imposing stronger geometric control in the thin part of a neg-
atively curved 3-manifold M. This is done in two steps. In a first step, carried out in
Section 7, we locate the region in the thin part of M for which we can obtain C°-estimates
sufficient for our goal with a direct adaptation of the proof of Theorem 5.1. In a second
step, we control its complement, which we call the small part of the manifold, with an
ODE-Ansatz motivated by the work [Bam12].

7. THE THIN BUT NOT SMALL PART OF A NEGATIVELY CURVED 3-MANIFOLD

In the proof of Theorem 5.1, the assumption on a lower bound for the injectivity radius
was used to establish a C%-estimate for a symmetric (0, 2)-tensor field h from knowledge
of L(h). The examples in Section 6 show that without such a bound, we can not expect
that such an a priori estimate holds true.

In the remainder of this section, M denotes a finite volume Riemannian 3-manifold of
sectional curvature in [-4,-1/4], with universal cover M. We know that each cusp is
diffeomorphic to T2 x [0, 00) where T? is the 2-torus. This is true since by Convention 2.3
we assume that M is orientable. In Section 7.1 we introduce a region Mgy in M, called
small part of M, and we establish some of its basic properties. We show in Section 7.2 that
if M satisfies the hypothesis on the curvature stated in Theorem 5.1, then in M \ Mgpan,
a modified version of such a C%estimate holds true in spite of the fact that the injectivity
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radius may be arbitrarily small. The proof rests on a counting result for preimages in M
of points in M — Mgpan which is proved in Section 7.3.

7.1. The small part of M. Choose once and for all a Margulis constant p < 1 for
3-manifolds M with curvature in the interval [-4,-1/4]. This constant determines the
thin part

Mipin = {z € M | inj(z) < pu}
of M. For a number x < u let M<X ¢ My, be the set of all points x with inj(x) < x.
The set Mipin is a disjoint union of cusps and Margulis tubes, where a Margulis tube is
a tubular neighborhood of a closed geodesic of length smaller than 2.

From now on, we shall only consider Margulis tubes of radius r > 3, where the radius
means the distance between the core curve of the tube and the boundary, determined
by the constant u. Comparison shows that this only excludes tubes whose core curves
have length bounded from below by a fixed positive constant. In other words, tubes of
radius at most three can be thought of belonging to the thick part of M for a properly
adjusted Margulis constant.

Consider a Margulis tube T of M and let v be its core geodesic. For r > 0 denote by

T(r):= {af e M|d(z,v) = r}
the torus of distance r to v. The small part of the Margulis tube T is
Tsman = {:L‘ e T|d(z,7) <2 or diam(T(ry(z))) < D},

where 7, = d(-,7y), the diameter is with respect to the intrinsic metric on the torus, and
D >0 is a universal constant which will be determined later.

The small part Csnan of a rank 2 cusp C' is defined similarly. The only difference is
that we have to consider Busemann functions (instead of r(:)) to define the level tori
T(r). Fix a rank 2 cusp C, and let £ € oo M be a point corresponding to C. Choose
a Busemann function be : M — R associated to & (see [BGS85] for more information on
Busemann functions). This induces a Busemann function b¢ : C - R. For r € R we define
T(r):={x e C|be(x) =r}. Asin the case of a tube, we define the small part of the cusp
C to be

Clamall = U {T(r) | diam(T(r)) < D},

where D is the same universal constant as before that will be determined later, and the
diameter is the intrinsic diameter.
Finally, the small part Mgpnay of the manifold M is the union

Msmall = U Tsmall U U C’small;
T C

where 7" ranges over all Margulis tubes 1" of radius at least 3 and C ranges over all rank
2 cusps of M.

Remark 7.1. Although the definition of the small part of a negatively curved manifold
makes sense in all dimensions, it follows from [Gro78| that the small part of a closed
negatively curved manifold M of dimension n >4 is the union of tubular neighborhoods
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of short geodesics of uniformly bounded radius. The fact that this is not true in dimension
3 (see Section 6) is the main reason for introducing the small part of a negatively curved
3-manifold.

Remark 7.2. Since we use intrinsic diameters for the definition of the small part of M,
standard Jacobi field estimates show that the small part of a Margulis tube or cusp is a
connected subset of the tube or cusp.

Remark 7.3. If M is non-orientable, we define Mgan = F(Msmau), where 7: M - M
is the orientation cover of M.

Choose
D < min{p,1/4}

sufficiently small so that the one-neighborhood of the D-thin part MP is contained in
the 11/2-thin part M<H2 of M. Using comparison of Jacobi fields, one observes that such
a constant D only depends on the choice of p and the curvature bounds.

Lemma 7.4. My, ¢ M<P and hence if x € Myyan, then the torus T(r) containing x is
a Cl-submanifold of M contained in int(Miyi,) whose distance to Miyiac s at least j1)2.

Proof. Let © € Mgy be arbitrary. We only present the case that x is contained in a
Margulis tube T, the case of a cusp being similar.

Let v denote the core geodesic of T. We first consider the case that r,(z) = d(x,v) < 2.
As we only consider Margulis tubes of radius at least three, the distance of x to Mipjck
is at least 1> p/2.

So we may assume r := r,(x) > 2. By the definition of Mgy, the diameter of the
distance torus T'(r) containing x is at most D. Let oo € T'(r) be a shortest closed geodesic
for the induced metric on T'(r) which is not contractible as a curve in T'(r). The length
of a is at most 2D. If « is contractible in M, then « is a meridian in 7'(r). Thus
comparison of Jacobi fields shows that the length of « is at least 4wsinh(r/2). As r > 2
and D < 1, this length is at least 47 sinh(1) > 1> 2D, which is a contradiction.

As a consequence, « is not contractible in M and hence defines an essential loop in M
of length at most 2D. But then z is contained in the D-thin part of M and hence the
D-neighborhood of z (which contains T'(r)) is contained in the p/2-thin part of M by
the choice of D. In particular, T'(r) is the projection to M of the level set of a function
in the universal covering M of M which either is the distance function to a geodesic line
or a Busemann function. Such functions are known to be of class C! and non-singular
away from their minimum [BGS85]. This completes the proof. O

7.2. The C%estimate. The main reason for introducing the small part of M is that
for points in Mipin ~ Maman, we can prove a C-estimate which is weaker than the esti-
mate established in the proof of Theorem 5.1 but sufficient for an analogous conclusion.
To obtain C%-estimates for points in Mgy, we shall use an ODE-Ansatz inspired by
[Bam12] (see Section 9.3 for more details). As before, £ denotes the elliptic differential
operator given by Lh = %ALh + 2h.



92 URSULA HAMENSTADT AND FRIEDER JACKEL

Proposition 7.5. Forall e (0,1), A >0, § € (0,2), and b > 1 there exist g = €0(J,b) >0
and C = C(a, A, 8,0) >0 with the following property. Let M be a Riemannian 3-manifold
of finite volume so that

|sec+1|<eg and |[|[VRicl|coary < A

Then for all h e CQ(Sme(T*M)) N H?(M) and & € Miin ~ Mgman it holds

1
hl(2) < C (||£h||OO(M) i ehlettanad) ([ GOm0 L (y) dvol(y) ) ) .

The estimate in Proposition 7.5 motivates the definition of the norm ||-[|p x that will
be introduced in Section 9.2. The proof of Proposition 7.5 is based on a counting result
for the number of preimages of points in M \ Mgy in the universal covering M of M
contained in a ball in M of fixed size which is the main result of Section 7.3. We denote
by N, (M N Mgman) (r > 0) the r-neighborhood of M ~ Mgpan.

Proposition 7.6 (Counting preimages). There is a constant C > 0 so that for every
reMPn Nyjy(M N Mgman) and every lift & € M it holds

#(71'_1(56) N B(fc,D)) < C@,

where m: M — M 1is the universal covering projection.

The complete proof of Proposition 7.6 is is a bit technical. For this reason we postpone
it to Section 7.3. However, in the special case that sec = -1 in My, the proof is very
simple and it already contains the core ideas for the general case. Moreover, this special
case is sufficient for our applications to drilling and filling, and effective hyperbolization.

Proof of Proposition 7.6 when the thin part is hyperbolic. Fix some zq € M<”’0N1/4(M\
Mgman), and denote by T := T'(r(xo)) the distance torus or horotorus containing x.
Since the intrinsic geometry of T is uniformly bilipschitz to its extrinsic geometry (see
Proposition 7.8 for a detailed formulation), it suffices to show

1
#(7‘(‘7_11(1'0) N B(fQ,D)) < Cm,
where 77 : R? » T is the universal covering projection of T, and B(&o, D) € R?.

Since radial projections are uniformly Lipschitz (see Proposition 7.8), it follows from
the definition of the small part of M that diam(7) > D’ for some universal constant D’.
Note that T is a flat torus since sec = —1 in Myp;,. Thus by a simple volume counting
argument for balls in R?, it suffices to assume that inj(7) < 3D’

By the results of Section 2.24 in [GHL04], there is a fundamental region {tvy+sva | s, €
[0,1]} € R? for T with

o] = 20nj(T)  and QZ:A(’Ul,’Ug)EI:Tr 2”].

373
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Clearly D' < diam(T") < 2 (|v1] + |v2]), and thus |ve| > D’ since we assume inj(T') < 1D".
For any 7 € 77 (20) consider

Ri= i+ {tvl +s% |te[0,1/2],5 ¢ [O,D'/Q]},
V2

and note that they are pairwise disjoint. All of them have area

area(Rz) = sin(@)%%’ > @
Also Uzep(ao,0) Rz € B(Z0, D +2D") since diam(Rz) < %(|v1| +D') < 2D'. As the sets
Rz are pairwise disjoint, volume counting implies
area(B(:Z"o,D + 2D’)) . C
area(R) ~inj(T)
This completes the proof of the special case. O

inj(T).

#(m7' (z0) N B(&0, D)) <

In order to deduce Proposition 7.5 from Proposition 7.6 we have to replace ﬁ by a
function that is easier to control.

Corollary 7.7. There is a universal constant C >0 with the following property. Let M
be a Riemannian 3-manifold with

~b* <secpy < -1/4
for some 1 <b<2. Then for all x € N1/4(M N Mgman) and every lift & of x to M, it holds
#(n Y () n B(&, D)) < Cebd@Manie),

The proof of Corollary 7.7 is also contained in Section 7.3. We now show how Corol-
lary 7.7 can be used to prove Proposition 7.5.

Proof of Proposition 7.5. Abbreviate f := £Lh. It holds £k = f in the universal cover. By
the argument which led to (4.9), we have

11(&) < C(IIPll 2 (Bez.pr2) + I Fllcoginy) (7.1)

for a constant C' = C(n,a, A). Therefore, it suffices to bound ||fL||L2(B(3~37D/2)). To this
end, we invoke the following basic claim, which states that an integral in the universal
cover can be estimated by a weighted integral in the manifold when the weight is an
upper bound for the number of preimages.

Claim. Let x e M and p: M — R be a function so that
# (7' (v) n B(§,D)) < p(y)
holds for all y € B(x,D/2) € M. Let u: M — Ryy be a non-negative integrable function

and denote by u :=womw its lift to the universal cover. Then we have

u(y) dvols(y dvol .
iy M@ Al @ < [ p(yyuy) dvoly(y)
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Proof of the claim. By the triangle inequality, if § € B(&, D/2) then B(z, D/2) ¢ B(y, D).
Thus by assumption, a point y € B(z,D/2) has at most p(y) preimages in B(Z, D/2).
Hence the claim holds true for the indicator function w = xy of a small open subset
U ¢ B(z,D/2). By linearity and monotonicity the result follows for all non-negative
simple functions. A standard approximation argument completes the proof. O

For g9 = go(b) > 0 small enough, |sec+1| < ¢ implies —b? < sec < —-1/4. Hence
Corollary 7.7 shows that for any x € M \ Mgy the function p(y) = C'ebd(v:Minici) gatisfies
the assumption of the claim. Thus

B dvoly(3) < C [ by Munic) |2 () dvol, (1).
oo @ w0z <C [ e 1P () dvol (y)
As d(yaMthick) < d(:‘caMthick) +D/2 for Y€ B(:L‘,D/Q),
h2(§) dvoly(§) < CePPl2ebde:Munici) hl*(y) dvoly(y). 7.2
ooy @) dvoly () < O PP oy @ AL ). (72)
Moreover,
B ) dvoly(y) < e” [ @OnWIR(y) dvoly(y). (73
oo M@0l <e? [ e @) dvoly(y).  (7.3)

By Remark 4.5 the integral estimate (4.8) from the proof of Proposition 4.3 is still valid.
In particular, for g9 = €9(0) > 0 small enough it holds

fM "0 Wh[(y) dvoly (y) < C fM e G0 £12 (y) dvoly (y) (7.4)
for a constant C' = C(¢). Combining (7.1)-(7.4) yields the desired estimate. O

7.3. Counting preimages. This subsection is concerned with the proof of Proposi-
tion 7.6. Before we come to the more technical details, we begin with a short overview
of the proof. Let z € M<* n Nyjy(M N Mgyan) and let as before inj(x) be the injec-
tivity radius of M at z. There is a geodesic loop of length at most 2inj(x) based at
2. This loop can be homotoped with fixed endpoints to a loop ¢; lying entirely in the
distance torus containing z of controlled comparable length. Using the assumption that
T € N1/4(M N Mgman ), we then show that any closed curve on the torus whose homotopy
class is not a multiple of the class of ¢1 has length at least £ where £ > 0 is a fixed constant.
Namely, we show that otherwise the torus has a small diameter, contradicting that = is
contained in a small neighbourhood of M ~ Mg.n. Therefore, in the universal cover of
the torus, a preimage Z of x either lies on the lift ¢&; of ¢; through Z, or it has distance
at least £ from Z. A volume counting argument then completes the proof.

The main step in the implementation of this argument lies in obtaining sufficient
geometric control on the tori so that the volume counting argument used in the case
when the thin part is hyperbolic can be applied. The following proposition summarizes
geometric properties of distance tubes and horospheres in simply connected manifolds of
pinched negative curvature which are used in the proof of Proposition 7.6. Note that
although a priori Busemann functions are only of class C2, the Gauf equations show that
their sectional curvature is defined and continuous.
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Proposition 7.8. For every n > 2 there exists numbers A= A(n)>1 and B = B(n) >0
such that for any simply connected complete n-manifold M of curvature sec; € [-4,-1/4]
the following holds true. Let ¥ € M be a geodesic.
i) Forr >3[4, the sectional curvature of the level sets
{d(3,) =7}
with respect to the induced metric is contained in [-A% A%], and the injectivity

radius is at least B.
it) For r >3[4, the radial projection

{r-1/4<d(¥,)) <r+1/4) > {d(5,") =r}
1s A-Lipschitz. )
itr) For poinls x,y on distance level sets {d(7,-) = r} (r > 3/4) in M, the distance
between x,y with respect to the intrinsic metric on the level set is at most Ad(x,y)
provided that d;(x,y) < 1/4.

Analogous properties also hold true for horospheres in M, with the same constants A >
1,B>0.

Proof of Proposition 7.8. We sketch an argument for the first part of the proposition
and refer to [Esc87] and [HIH77| for more information about the remaining parts.

In simply connected manifolds of constant sectional curvature x < 0, the distance
cylinders of distance r about geodesics have principal curvatures /-« tanh(y/=xr) and
/—k coth(y/=k7). By standard comparison results for solutions of the Riccati equation,
the principal curvatures A of the distance tori in M are bounded by the maximal resp.
minimal principal curvatures of the distance tori in the spaces of constant curvature —4
resp. —1/4. Thus %tanh (%r) < A < 2coth(2r).

There is a constant ¢ > 1 so that % < %tanh(%r) ,2coth(2r) < ¢ for all » > 1. So the
principal curvatures A of the distance tori in M are contained in [1/¢,c]. Thus there are
uniform bounds for the shape operator of the level sets, and since the curvature of the
ambient manifold is contained in [-4,-1/4] by assumption, the curvature of the level sets
is uniformly bounded by the Gaufs equations (see Chapter 6 of [dC92]). This completes
the proof of the curvature control stated in the proposition.

To establish a uniform lower bound on the injectivity radius of the level sets Z =
{d(7,") =7} (r > 3/4), note first that for § < 1/4, the ball BZ(&,d) of radius § about a
point T € Z for the intrinsic metric contains the radial projection of the intersection with
Z of the ball B(z,0/A) of radius /A in M about & (this uses 4i)). This implies that
B(%,6/A) is contained in the preimage of BZ(Z,d) under the restriction of the radial
projection to the 1/4-neighborhood of Z in M.

Since the radial projections are uniformly Lipschitz continuous, Fubini’s theorem im-
plies that the volume of BZ(%,d) is bounded from below by Covol(B(#,5/A)), and the
latter is bounded from below by C1(6/A)™ where Cy, Cy only depend on the curvature
bounds of M.

As a consequence, for § = 1/4 fixed, the volume of B?(%,1/4) is bounded from below
by a universal constant not depending on Z or Z. Since the sectional curvature of the
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distance hypersurface Z is bounded from above by a universal constant, this implies that
its injectivity radius is bounded from below by a universal constant B > 0 by a result of

Cheeger, Gromov and Taylor (see [CGT82, Theorem 4.7]).
All remaining statements follow in a similar way, and their proofs will be omitted. [

Proof of Proposition 7.6. Step 1 (Large injectivity radius): Due to the definition of
D < 1/2, the ball of radius 1 about a point in M <t is contained in Minin. Therefore, it
suffices to consider the covering M=M /T of M where I' is the fundamental group of
the component of My, containing x.

Let A = A(3) > 1 and B = B(3) > 0 be as in Proposition 7.8. Assume without
loss of generality that B < D/2A where D > 0 is as in the definition of Mgyay. If the
injectivity radius inj(z) of M at x is at least B/8A, then the ball of radius B/8A about
x is diffeomorphic to a ball of the same radius about a preimage T of = in M. By the
curvature bounds, the volume of this ball is bounded from below by a universal positive
constant ¢ > 0. Similarly, the volume of the ball B(Z,2D) is bounded from above by a
universal constant ¢; > 0. As the balls of radius B/8A < D about the preimages of x in
B(z,D) are pairwise disjoint and contained in B(Z,2D), the number of preimages of x
contained in B(Z,p') is at most ¢1/cg. Thus in the sequel we may always assume that
inj(z) < B/8A.

Let z € M<B/8AmN1/4(M\MsmaH), choose a lift 2 of z to M and let 7 € M be a lift of
&. Let T be the distance torus of M containing . There exists a geodesic loop o based
at & with ¢(o) = 2inj(z).

By the definition of Mgyan, the distance of Z to the core geodesic is at least 3/4. Thus
by Proposition 7.8, there is a curve ¢y lying entirely in 1" that is homotopic to o relative
endpoints and that satisfies ¢(c1) < Al(o) < B/4. 1t follows from the definition of o that
the curve c¢p is not contractible in 7.

Assume without loss of generality that c; € T is the shortest essential based loop at Z.
Then c¢; is simple, that is, ¢; does not have self-intersections, and it is a geodesic with
at most one breakpoint at Z. Cut T open along c; and let Z be the resulting metric
cylinder. Let 0°Z,0'Z be the two distinct boundary components of Z.

Step 2 (Loops independent from c; are long): The distance d := dz(3°Z,0'Z)
can be realized by an embedded arc ¢y € Z connecting 9°Z to 9'Z. Concatenation of ¢y
with a subarc of ¢; gives a closed essential curve co € T of length ((cor) < d+€(c1)/2 <
d+ BJ4.

By Proposition 7.8, since T'€ Ny (M — Mgman), the diameter of T' with respect to the
intrinsic metric is at least D/A > 2B. We use this to show that d > B/4. To this end we
argue by contradiction and we assume otherwise. Let 41 € T be the closed geodesic of
minimal length in the free homotopy class of ¢;. Its length ¢(1) is at most £(c;) < B/4.

Cut T along v; and denote the resulting cylinder by Z’. The connected components
of cor N (71 Neyr) lift to arcs in Z' whose endpoints lie on the one of the boundary
components 0°Z" or 0'Z' of Z'. At least one of these lifts must connect 0°Z’ and 9'Z’.
Namely, otherwise cor is freely homotopic to a multiple of ~;, which contradicts that
c1,co intersect in a single point. This implies that dz(0°Z’,0'Z") < #(cor) < B/2.
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Let 7 be a minimal geodesic in Z’ from 9°Z’ to 8'Z’. Since 7, is a periodic geodesic,
7 intersects 9°Z’ and 0'Z’ perpendicularly. Cutting Z’ open along 7, we see that T has
a rectangular fundamental region R in the universal covering T of T with geodesic sides
of side lengths ¢(7y1) < B/4 and /(1) < B/2, intersecting each other perpendicularly.

If v e T is a vertex of R, then any point in the boundary R of R is of distance smaller
than 3B/4 to v. As a consequence, OR is a Jordan curve embedded in the ball of radius
B about v. Since the injectivity radius of T is at least B, this ball is diffeomorphic to a
disk in R?. Then OR encloses a compact disk embedded in this ball. On the other hand,
since T is diffeomorphic to R2, the disk R is the unique disk in 7" bounded by 9R. Hence
‘R is contained in the open disk of radius B about v which yields that the diameter of R
is smaller than 2B. Consequently the diameter of T is smaller than 2B < D/A which is
a contradiction to the assumption that x € Ny/q(M — Mgyan)-

Step 3 (Counting argument): The main idea in this step is the following. By
the result of Step 2, all preimages of & in the universal covering mwp : T - T of the
distance torus 7' that are contained in a ball of radius r < B/4 come from the action of
[c1] € m (T, %), and thus a volume counting argument (similar to the proof of the special
case) should complete the proof.

We now make this more precise. Since the deck group of T is isomorphic to Z? and
acts freely and isometrically, the union of all lifts of the simple geodesic loop ¢; from Step
2 above form a 71 (7T, &)-invariant countable collection £ of disjoint piecewise geodesic
lines in T = R2. By Step 2, the distance for the metric on T between any two of these
lines is at least B/4. Furthermore, these lines contain all preimages of & in 7.

Now if ¢ is smooth, that is, if ¢; does not have a breakpoint at 2, then the lines in £
are biinfinite geodesics. Since the injectivity radius of T is at least B, this implies that
the number of preimages of & which are contained in the ball of radius B/4 about a fixed
preimage is at most B/4¢(c1). As £(c1) > 2inj(x), we conclude that this number is at
most B/4inj(x), completing the proof of the proposition in this case (note that by the
same argument as in Step 1, bounds on the number of preimages in a ball of radius B/4
implies bounds on the number of preimages in a ball of radius D).

In general, we can not hope that c; is smooth. We use instead a volume counting
argument. Namely, the lines in the family £ divide T in a union of disjoint strips with
boundary in £. Let a be a minimal geodesic connecting two adjacent lines L1, Lo from
L. This is an embedded geodesic arc embedded in one of the strips, say the strip .S,
with endpoints on the two distinct boundary lines L1, Lo. The infinite cyclic subgroup
of m (T, &) which is generated by the class ¢ of ¢; preserves the lines in £ and the strip
S, and its maps « to a geodesic ¢(a) disjoint from «. Namely, if they did intersect, they
intersect transversely, and thus an elementary variational argument yields that one can
find a curve connecting L1 to Lo of strictly shorter length than a. This contradicts the
minimality of a. As a consequence, the subsegments a; of L; connecting the endpoints
of @ and ¢(a) bound together with a and p(«) a rectangular region R in T which is a
fundamental domain for the action of the deck group of T

As we assume that Ly, Lo are not smooth, each of the lines L1, Ly contains countably
many breakpoints of the same breaking angle. For an orientation of T’ and the induced
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orientation of Ly, Lo as oriented boundary of S, for one of the boundary lines, say the line
L1, all internal angles at the breakpoints are strictly bigger than w. In other words, L;
is a locally concave boundary component of S. Since o and ¢(«) are minimal geodesics
connecting L1 to Lo, either they meet L at a singular point of L; and the arc a; does
not contain a singular point in its interior, or they meet L; orthogonally at a smooth
point, and a; contains a unique singular point in its interior. In case a and p(«) meet
L1 at a singular point, the angle they form with the smooth subsegments of a; exiting
the breakpoint is at least /2.

We shall show that the fundamental region R contains embedded rectangles of width
at least (c1)/2 and height B/4. We only consider the case that o and ¢(«) meet L; at
a smooth point, the other case being similar (even a bit easier). Throughout we use the
fact that since the injectivity radius of T is at least B (and since B < D/2A < w/2A) the
convexity radius is at least B/2 (see [CE08, Theorem 5.14]). In particular, this implies
the following. Let p € T, B1, 82 be two geodesics segments emanating from p whose
endpoints are connected by a geodesic segment c¢. If f1UByUc c B(p, B/2) and if ¢ meets
(B1 orthogonally, then the interior angle at the endpoint of 8o of the triangle with sides
B1, Ba, ¢ is strictly smaller than 7/2.

Recall from Step 1 that £(a1) = ¢(c1) < B/4. Let ay : [0,0] » T be a subsegment of
ay of length at least £(c1)/2 which connects the cone point a1(0) € a; n 7 (2) to the
endpoint a1(d) = an Ly of a;. Let t > v(t) be the unit normal field along a; pointing
inside of the strip S. We claim that the restriction of the normal exponential map to the
set {sv(t)|0<s<BJ4,0<t<¢} is an embedding into R.

First, observe that this is an embedding into the strip S. Indeed, if two distinct
orthogonal segments s - exp(sv(t1)) and s — exp(sv(t2)) (0 <ty < tg < J) intersect in a
point p, then they are sides of a triangle with edge opposite to p is the arc d1|[t1,t2]. This
triangle is contained in B(p, B/2) and has two right angles, contradicting convexity.

If the image intersects S—R, then since the arc {exp(sv(d)) |0 < s < B/4} is contained
in the side a of R, the arc 3 := {exp(sv(0)) | 0 < s < B/4} has to intersect the geodesic
segment (o) in some point p (perhaps after replacing ¢ with ¢~!). Thus we obtain
a triangle whose sides are the subarc of 8 connecting a1(0) to p, the subarc of ¢(a)
connecting ¢(a) N Ly to p and the subarc of a; connecting a1(0) to ¢(a) N Ly (see
Figure 1). This triangle is contained in B(p, B/2), and it has a right angle at ¢(a) n Ly
and an angle > 7/2 at & since the interior angle at the breakpoint & is strictly bigger
than m. As before, this violates convexity. This finishes the proof that restriction of the
normal exponential map to the set {sv(t) |0<s< B/4,0<t<¢} is an embedding into
R.

Using once more the lower bound on the injectivity radius of T and the upper bound
on the Gauk curvature, we conclude from £(ay) > ¢(c1)/2 that

area(exp{sv(t) |0<s< B/4,0<t<d}) 2 kl(cy),

where k> ( is a universal constant.
Since the images of the rectangle R under the action of the deck group of T' have
pairwise disjoint interiors, we conclude that the area of the B/4-neighborhood of the ball
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a2

F1GURE 1. The argument by contradiction showing that the image of the
normal exponential map is contained in R.

of radius B about any point z € 77!(2) is at least
#(n7(2) n BT (2,B)) - wl(c1)

(here the notation BT (Z, B) makes is precise that we take a ball in T'). On the other
hand, this area is bounded from above by a universal constant. Since moreover for any
T e W]_le(:i‘) we have 73}(2) n BM(%,B/A) ¢ 771(2) n BT(#, B) (note that this is an
abuse of notation since WE(T) is an infinite cylinder if T is an infinite cyclic group of
hyperbolic isometries, that is, if the component of My;, with fundamental group I' is a
Margulis tube), and since 2¢(c1) > inj(z), this shows that

#(mat(2) n B (2, B/A)) < &' [inj(x).

Again, as in Step 1, estimates on the number of preimages in a ball of radius B/A implies
bounds on the number of preimages in a ball of radius D. This completes the proof. [J

Corollary 7.7 is now an easy consequence of Proposition 7.6.

Proof of Corollary 7.7. 1t suffices to prove the estimate for those x € Ny/q(M \ Mgman)
with inj,;(z) < D. By Proposition 7.6 this follows if for those x it holds inj(z) >
Cebd@Mumick) for g universal constant C' > 0.

Thus let z € Nyq(M ~ Mgman) and let 2* be the first point on the radial geodesic
through = that lies in O M. Abbreviate R = d(z,z*) = d(x, Minicx)-

Let I" be the fundamental group of the component of My, containing x. Consider the
intermediate cover M := M /T, and choose lifts Z and #* of # and z* with d(&,2*) = R. It
holds inj (#) = injy,(z) and inj, (2*) = injy,(2*). Let o c M be an essential based loop
at & of minimal length. Radially project o to a curve o* based at £*. Note that if z is
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contained in a Margulis tube, then z has distance at least 3/4 from the core geodesic due
to the definition of M,y Hence Jacobi field comparison shows £(c*) < Ce®®4(o) for a
universal constant C. As inj,(2*) = injy(2*) = 4, we have £(0”) > 2u, where p is the
chosen Margulis constant for manifolds with sectional curvature contained in [-4,-1/4].
Thus Ce*®0(c) > 2u. The definition of o, and the fact that inj (2) = injp, (), imply
CebBinjy,(x) > p. Since R = d(x, Miniek ), this completes the proof. O

7.4. Generalisations. In Section 9.4 we will prove a global C%-estimate in terms of a
new hybrid norm. For this we will need a slightly more general version of Proposition 7.5.
This is based on the following more general version of Proposition 7.6. Recall that for
r >0 we denote by N.(M ~ Mgpan) the m-neighbourhood of M ~ Mgyan.

Lemma 7.9. For all R >0 there exists a constant C(R) > 0 with the following propertsy.
Let &€ MS" n NR+1/4(M N Maman ), and if x is contained in a Margulis tube, assume in

addition that Nj (M Mgman) is disjoint from the one-neighbourhood of the core geodesic.

Then it holds .
#(n () n B(z,D)) < C(R)m7

where m: M — M 1is the universal covering projection.

Proof. We quickly review the proof of Proposition 7.6. We choose the constants A and
D

B from Proposition 7.8, and we assumed without loss of generality that B < 55. The
reason for chosing % is the following. For all € Nyjy(M ~ Mgyan) the level torus T
containing x satisfies diam(7") > D/A (see Step 2).

We now explain how to adjust the argument from the proof of Proposition 7.6. Stan-
dard Jacobi field estimates show that for any R > 0 there exists D(R) > 0 with the
following property. For any x as stated in Lemma 7.9 it holds diam(7) > D(R) for
the level torus T containing 2. Choose some B(R) < min{B(3),1D(R)}. The proof of
Proposition 7.6 goes through without change when replacing B by B(R) (and A = A(3)

still given by Proposition 7.8). O

The next result is the generalisation of Proposition 7.5 that we need for the global
CY-estimate in Section 9.4. It follows from Lemma 7.9 analogous to how Proposition 7.5
followed from Proposition 7.6. We omit the details.

Lemma 7.10. For all a € (0,1), A >0, § € (0,2), b> 1, and R > 0 there exist g9 =
£0(0,b) > 0 and C(R) = C(R,a,\,6,b) > 0 with the following property. Let M be a
Riemannian 3-manifold of finite volume so that

|sec+1|<eg and |[|[VRic|lcoary <A,
Let © € Ng(M N Mgman), and if x is contained in a Margulis tube, assume in addition

that Nj(M N Mgman) 4s disjoint from the one-neighbourhood of the core geodesic. Then
for all h e C*(Sym?(T*M)) n H*(M) it holds

1
(@) < C(F) (||ch||CO(M> i htettoiad ([ DLy avol(y)) ) .
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8. MODEL METRICS IN TUBES AND CUSPS

The examples of Section 6 show that Theorem 1 no longer holds true without the
assumption of a uniform lower bound on the injectivity radius. At the end of Section 6
we pointed out that the counterexamples model a deformation of hyperbolic structures
on a fixed Margulis tube, obtained by slowly changing the conformal structure of the
tori T'(r) contained in Mgpay. The goal of this section is to formulate a geometric
condition for the tubes and cusps, controlled asymptotic hyperbolicity, which rules out
such examples. This section can be skipped by readers who are mainly interested in the
applications to drilling, filling and hyperbolization. For these applications, it suffices to
consider metrics which have constant curvature in the thin parts of the manifold.

Asymptotically hyperbolic metrics on non-compact manifolds have been widely studied
in the literature, however mainly in the context of manifolds with flaring ends. We refer
to |[HQS12| for an overview of some related results.

In the sequel, n > 1 is a constant fixed once and for all. Let M be a complete Riemann-
ian 3-manifold of finite volume that satisfies the following curvature decay condition:

max lsec(m) + 1, |[VR|(z), |V2R|(z) < gge @M sma)  for all € Mgpan. (8.1)
TC L M

Here R denotes the Riemann curvature endomorphism.

As before, we know that all cusps are diffeomorphic to T2 x [0, c0) since by Conven-
tion 2.3 we assume that M is orientable. We construct in this section a hyperbolic model
metric in the small part of cusps and the complements of the 1-neigbhborhood of the
core curves of the small part of tubes. These auxiliary metrics are used in Section 9.2 to
construct Banach spaces geared at controlling solutions of the equation £(h) = f in the
small part of M.

Let as before T2 be a two-torus. Call a metric g on T2 x I (where [ is an interval) a
cusp metric if it is of the form

g= e_2rgFlat + d’l"2,

where gpjqt is some flat metric on 72 and r is the I-coordinate. Let T be a Margulis tube
and C arank 2 cusp of M. Note that Cypan = T2x[0, 00) and Tyman N1 (7) = T?x[0, R-1],
where R is the radius of Ty, that is, the distance of the boundary of Ty to the core
curve of T', and 2 stands for diffeomorphic. The given metric on M will in general not
be a cusp metric on these sets.

The following two statements are the main results of this section.

Proposition 8.1. For any n > 1 there exists eg = 9(n) > 0 with the following property.
Let M be an Riemannian 3-manifold satisfying the curvature decay condition (8.1) and
let T be a Margulis tube of M with core geodesic y. Then there exists a cusp metric geusp
on Tsman N N1(7) so that for all x € Typnan ~ N1(7) it holds
|g — gcusp|02 (;1;') = O(€—2T'y(l‘) + €0€_nraT(x)),

where ror(x) = d(x,0Tsman), and r(x) = d(z,7).

See Notation 2.2 for our convention of the O-notation. For cusps we have a slightly
better estimate.
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Proposition 8.2. For any n > 1 there exists ey = e9(n) > 0 with the following property.
Let M be a Riemannian 3-manifold satisfying the curvature decay condition (8.1) and
let C be a rank 2 cusp of M. Then there exists a cusp metric geusp 0n Csman 50 that for
all x € Cypan it holds

19 = Geusplez () = O(e0e™ ™),
where r(z) = d(x,0Csmaln)-
The remainder of this section is devoted to the proof for Proposition 8.1 and Propo-
sition 8.2. The main idea for the proof is to compare the Jacobi equation in M with

the one in the comparison space M = H3. To do so we require the following stability
estimate for linear ODEs.

Lemma 8.3. Let A, A : [0,T] - End(R™) and b,b: [0,T] - R" be continuous, and
assume that the following conditions are satisfied:

i) [|A(t)|lop < @ and ||A(t)|lop < @ for all t € [0,T];

i) [JA(t) = A(t)||op = O(se"(t’T)) for some n>a-a;
iii) [b(t)| = O(Be) for some i > max{a,a} and B >0;

w) |b(t) - b(t)| = O(Be!) for some > a and B> 0.
Then the solutions y,y:[0,T] - R™ of the ODEs

V() = A(y(H) +b(t) and (t) = A()5() + B(t)
with initial conditions y(0) = yo and 5(0) = go satisfy
908) - 901 = O(1o - yole® + elgole™enT) + £5eMenT) 4 gert),
The same estimates hold for second order linear ODEs v (t) = R(t)v(t) if g is replaced

by [0(0)| + |v"(0)| (similarly for |go — yo|), and a is replaced by max{1, max ||R(t)||op}
(similarly for @). Indeed, substituting y = (v,v") the second order ODE is equivalent to

V0= (pty 5 a0 a0 = 00O,

0 idan
(st )

Proof. Consider a linear ODE

and it holds
= max{1, | () lop}-

op

X' (t) = 2()x(t) +£(t),
and assume

m?XHE(t)HOp <o and  [€(t)] < Zme)‘it for some \; > o and k; > 0.
i

Then it holds
IX(@)] < [x(0)]e” + S (i - o) e (8.2)

Indeed, this is a straightforward consequence of inequality (4.9) on page 56 of [Har82].
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Compute

(7-9)' () = A) (G -y) () + (A= A) ()7 (t) + (b= )(1).
As i > @ we may apply (8.2) to §’' = Ay +b to obtain |y|(t) = (|go|e™ + BeF*). Hence
|(A-A)g|(t) = O(elgole® e 1) +eBeftent=1)) due to condition ii). Since a+n, fi+n, u > a
we can apply (8.2) to the ODE satisfied by y —y. Therefore,

17 91(t) = O(lgo — yole® + elgole™ ") + fefent=T) 1 o).
This completes the proof. O

We now come to the construction of geusp on Tyman N N1(7). As an intermediate step
we first construct another metric giype 00 Tymall-

Let v be the core curve of T and let 5 € M be a lift of 4. Denote by ¢ : M — M the
deck transformation corresponding to [y] € w1 (M) which preserves 4 and acts on it as a
translation. To the element ¢ we associate its {ranslation length which is the length of
v, and the rotation angle, defined by parallel transport of the orthogonal complement of
v in TM|y. Let B < H? be a geodesic, and let ¢ : H®> - H? be an orientation preserving
loxodromic isometry, with axis § and the same translation length and the same rotation
angle as ¢.

Define M = M/{p) and H? := H?/(+). Using the normal exponential maps for 4 in
M and for 8 in H?, we see that there is a diffeomorphism M 2 Ng(%) 5 Nr(B) <
H? /(1)) of the full distance tori. The projection M — M also induces a diffeomorphism
M 2 Ngr(%) = Ngr(y) € M when R is the radius of Typan because Tyman € Minin by
Lemma 7.4. Note that Nr(7y) = Tsman by the definition of the radius R of Tynan. The
tube metric giupe on Tyman is the pullback of the hyperbolic metric on NR(B) via the
diffeomorphism Tyman — Ngr(8) € HA.

The cusp metric geusp On Tsman N N1(7) = 0Tgman x [0, R — 1] is the metric

—2r 2
Geusp =€ 7 GFlat T dr )

where gpjq is the flat metric on 0Ty induced by the tube metric gupe. One can easily
check by explicit calculations that

|gtube - gcusp|C’2(:E) = 0(6_27‘7(33)) (83>
for all = € Typan ~ N1(7).
We next verify that g..sp has the properties stated in Proposition 8.1.

Proof of Proposition 8.1. By (8.3), it suffices to show that

|9 = Gruve|c2 () = 0(806_7’T‘9T(m)) (8.4)
for all z € Typan ~ N1(y). Let v be the core g~eodesic of the tube T'. It suffices to prove
the estimates in the universal cover. Let ¥ € M be a lift of y. Choose parallel unit vector

fields vy, 5 along 4 so that 7/, v1, V2 is a positively oriented orthonormal frame along 7.
Define a map ¢ : RxRyg x R - M by

()D(Satv 9) = expfy(s) (tl/g(S)),
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where vy(s) = cos(0)v1(s) +sin(0)va(s). We think of ¢ as a 2-dimensional variation of
geodesics. The main idea is that the variational fields of ¢ solve Jacobi equations, and
so one can use Lemma 8.3 to compare the situation with the comparison space H?.

We fix some notation. Let V be a vector field along ¢, i.e., amap V : RxRygxR — TM
so that mo V' = ¢. Denote by D,V the vector field whose value at (so, %9, 0p) equals the
covariant derivative of V' along the curve t - ¢(so,t,00) at t = to. The vector fields DsV
and DyV are defined analogously. For example, for ¢ = 0 the vector DyV (s, 0,6p) is just
the usual derivative of the curve 0 — V(s0,0,0) in T )J\Zf. We will also write ()’ for
Dy.

Fix sg and 6y, and consider the geodesic o(t) = ¢(so,t,00) with o(0) = Y(sp) and
o'(0) = vg,(s0). Let Ey, Ea, E5 be a parallel orthonormal frame along o so that E;(0) =
¥'(s0), E2(t) = 0'(t), and E3(0) = vy (s0) := —sin(fo)v1(s0) + cos(0o)va(s0)-

Let ¢ be either the s- or the #-coordinate. The restriction of the variational field
J;i == 0;p to o is a Jacobi field, that is, it solves the Jacobi equation

Ji (t) + R(t) Ji(t) =0,

where R(t) = R(-,0'(t))o’(t) and J; = DDy J;.

We do the same set-up in the comparison space M = H?. Using the orthonormal frames
(E;)3., we can think of J; resp. R as a curve resp. a family of symmetric matrices in
R3. Similarly, (E'i)?:l can be used to think of J; resp. R as a curve resp. a family of
symmetric matrices in R3. Hence it makes sense to write J;(¢) — J;(t) and R(t) — R(t).
The curvature decay condition (8.1) translates to (for t € [0, R])

IR() = R(t)llop < 0",

where R is the radius of Ty, i-€., the distance of the core geodesic v to 0Tgman. Observe
that @ := max{1, max; || R(t)|lop} = 1 and a := max{1, max;||R(t)|op} < 1+&o. So condition
i7) of Lemma 8.3 is satisfied if g9 < 7.

Note that J; and J; have the same initial conditions. Therefore, invoking Lemma 8.3
with 8= 3 =0 yields (for t € [0, R])

[Ji(t) = Ti()], 177 (1) = T (1)] = O(eoe’e" 1)) (8.5)
Note |Ji|(¢),]J]|(t) = O(e') due to (8.2), and by (8.5) the same holds for J;.
Let j be either the s- or the §-coordinate. Consider the variational fields D;J; restricted

to 0. A straightforward calculation shows that D;J; solves a inhomogeneous Jacobi
equation, that is,

(so

(D; )" + R(t)D; Ji(t) = b(t)
for a vector field b along o. In fact, one can show
b(t) == (VR)(JJa 0,7 Ji> U,) - (VR)(J’L’ UI) Ul? ‘]J)
- R(JJ'-, o')J; —=2R(J;,0")J] - R(J;, J],-)O'/ - R(J;, a')Jj{.
The analogous statements hold in the comparison space. We again use the parallel
orthonormal frames (E;)?; and (E;)2, to view D;J;, DjJ;, b, and b as curves in R>.
Then (8.1), (8.5) and the growth estimates |Ji(’)|(t),|ji(')|(t) = O(e') can be used to
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show |b(t)| = O(e?") and |b(t) - b(t)| = O(eerte"(t_R)). One also computes D;J;(0) =0 =
D;J;(0), and |(D;J;)'(0) - (D;J;)'(0)| = O(e™™?) by using the curvature decay condition
(8.1). Then one can again use Lemma 8.3 to obtain

ID;Ji(t) = Dy Ji(OL (D3 J3) () = (D3 i) (8)] = O(c0e® ). (8.6)

Again note that |D;Ji|(t),|(D;J;)'|(t) = O(e*) due to (8.2) and [b|(t) = O(e*). By (8.6)
the same estimate holds for D;J;.

Finally, let k be either the s- or §-coordinate. Using arguments similar as for D;J;
(that is, inhomogeneous Jacobi equation, and Lemma 8.3) one can show

\Dy.D; Ji(t) - Dy D Ji(t), |(DrD;jJi)' (t) — (DpD; ;) (t)| = O(g0e®e=R)). (8.7)

The estimates (8.5), (8.6), and (8.7) imply the desired estimate on |g— giupe|c2 in (8.4).
Indeed, for m > 0 define c¢: {s,t,0}™ - N as ¢(i1,...,0m) := #{u|iy # t}. Then it follows
from (8.5), (8.6), and (8.7) that

1967 = Gis| = O(ee 1 en10) (8.8)

|0k gij = Okij| = O(Eoec(i’j’k)ten(t_m) (8.9)
810 — O10k7ij| = O(g0ecHikDLn(=F) 8.10
| 10k Yij l kglj| 0 ( )

for all 4, j, k,1 € {s,t,0}. Note g = cosh?(t)ds? + dt? + sinh?(¢)d#?, and so in particular the
matrix (g;;) is diagonalised. So for any (0, m)-tensor T

|T|§ - . Z (Ellm)Q(gzlzl)_l Tt (gim,inz)_l'

115--5tm

For t > 1, cosh(t) and sinh(t) agree with e’ up to a uniform multiplicative constant.
So (Giyir) Lo (Giypin) L = O(e‘2c(i1""’im)t), and thus (8.8), (8.9), and (8.10) imply
(8.4). O

We now come to the sketch of proof for Proposition 8.2. This is a bit more involved
than the case of a tube. The main idea is to pull back the conformal structure of the
distance tori at infinity for the construction of the cusp metric and use the fact that up
to scale, a flat metric on T2 is determined by the conformal structure it defines. To
produce a cusp metric that is close to the given metric, we establish an effective version
of the Uniformization Theorem.

The classical Uniformization Theorem states that for any Riemannian metric g on the
two torus T2, there exists a flat metric g on 72 and a function p: T2 — R so that g = e”g.
The flat metric is unique only up to a multiplicative constant, and hence p is only defined
up to an additive constant. The following definition should be thought of as the choice
of a canonical flat metric in the conformal class of g.

Definition 8.4. Let ¢ be a metric on T2. The associated flat metric gpjq is the unique
flat metric conformal to g such that the corresponding function p satisfies

/T2 pdvoly = 0.
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We are now in a position to state the effective Uniformization Theorem. It says that
if the given metric is "almost" a flat metric, then p is small. Here the function p is
understood to define the associated flat metric.

Lemma 8.5. There exist constants g > 0 and C > 0 with the following property. If g is
a metric on T? such that

diam(T?,9) <1 and |sec(g)| <0

for some § < dy, then
lp(z)| < C3  for all x e T2

We postpone the proof of Lemma 8.5, and show next how to use Lemma 8.5 to obtain
Proposition 8.2.

Proof of Proposition 8.2. For each r > 0 we denote by T'(r) the torus in Cyyay all of
whose points have distance r to 0Csman. For the moment fix 9 > 0. Note that by the
curvature decay condition (9.1) it holds |sec +1|,|VR|,|[V2R| < ege™" for all points x that
lie further inside Cypan than T'(rg). The results of [She83] show that under this condition,
a Busemann function associated to the rank 2 cusp C is of class C*, with controlled
norm of the derivatives, and the shape operator H,, of the horotorus T'(r¢) satisfies
[Hyo — id|2 = O(g0e™™). This implies that [K|c2 = O(g0e™"™) for the Gauf curvature
K of T(rg). As T'(r9) € Cgman we can invoke Lemma 8.5 to conclude |p| = O(gpe™0),
where p on T'(rg) is given by Definition 8.4. By Exercise 2 in Chapter 4.3 of [dC16] it
holds Ap = 2K, where A is the Laplace operator with respect to the restriction of the
metric g to T'(ro). Therefore, Schauder estimates imply ||p||cz = O(g9e™).

Let ggl(;)t be the flat metric on T'(rp) defined by epggl‘;)t =g|T(ro) (se? D)efinition 8.4).
)

Let ¢ : R* - T(rg) be the universal Riemannian covering map for gy, .
RQ x [Oa TO] - Csmall by

Define ¢ :

QO(ZU, t) = expw(x) (_taT)7

where 0, is the radial vector field in Cgpan pointing to infinity. Fix xg € Rz, and consider
the geodesic o(t) = (o, t).

As in the proof of Proposition 8.1 consider the variational fields J; = 0,ip, D;J;,
and DpD;J; along o (for the notation see the proof of Proposition 8.1). These sat-

isfy (in)homogeneous Jacobi equations. We claim that the initial conditions JZ.(')(O),
(D;J;)"(0), (DrD;J;)"(0) are sge™°-close to those in the comparison space M = H?,
where we write V(") to denote V or V’. We show this for J;, J/ and D;J;, the other cases
being similar.

As in the proof of Proposition 8.1 we use a parallel orthonormal frame (E;)?, along
o to view all vector fields as curves in R3, and all tensors as a family of tensors on R3.

Choose the parallel orhonormal frame so that F;(0) = 6_9/28%1, E»(0) = e‘p/Qa%Q and

E3(0) = 0'(0), so that J;(0) = e??F;(0) for i = 1,2. In the comparison space M = H3 it
holds J;(0) = E;(0). Using |e*—1| < 2|z| for |z| small, we obtain |J;—J;|(0) < 2|p| = O(e™).
Moreover, J;(0) = V s,V = ’H,,(J,-(O)), where H,, is the shape operator of T'(rg) with
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respect to the unit normal v := -0,. Now the shape operator # of horospheres in H3
is the identity and therefore [H - H| = O(e™"°)and |J; - J{|(0) = O(e™"°). To see that
D;J;(0) is close to D;J;(0) observe that

D;J;(0) = I, (Ji(0), J;(0)) + V550 75(0),

where v7(70) is the Levi-Civita connection of T'(rg). Note that .J;(0) = Oyi- The Christof-
fel symbol F;?i of vT(ro) i %(5kj8ip+5ik8jp+5ij8kp) because g = €1, gr2 on T'(rg). There-
fore, the estimates on the shape operator and ||p||c2 imply |D;J; — D;J;|(0) = O(e™"").

As in the proof of Proposition 8.1 the curvature decay condition (8.1) reads (for t €
[07 TO])

IR - R|(t), [VR - VR|(t), V2R - V2R|(t) < gpe70).

Since all initial conditions are e”"-close to the ones in the comparison situation, one can,
exactly as in the proof of Proposition 8.1, iteratively use Lemma 8.3 to conclude that the
metric g is close to the metric g in the comparison situation (with error O(soe”(t_m))).
Note that in H? the hyperbolic metric is of the form § = e 2" gpyq + dr? for a flat metric
griat on a reference horosphere. As d(o(t),0Csman) = ro —t we have

|9 - 952227\02 () = O(g0e™™ ™) whenever r(x) <70,

where r(x) = d(x, 0Csman ), and géggg, = e_Q(T_TO)gg% +dr?.
Now choose a sequence rg — oco. After passing to a subsequence we may assume

952227 — geusp 10 the pointed C?-topology. This limit is the desired cusp metric. O

It remains to prove Lemma 8.5. For its proof we will need the fact that for metrics
g on T? as stated in Lemma 8.5, the injectivity radius of the universal cover (12,3) is
bounded from below by a universal constant. This follows from the next lemma.

Lemma 8.6. Let v >0, and let g be a Riemannian metric on T? so that
voly(T?) <v and sec(g) <6
for some 0 < § < 27” Then inj(T?,§) > %.
In fact, the same proof applies to all closed orientable surfaces.

Proof. Assume inj(72,§) < %. Choose %y € T2 so that inj;(%0) = inj(72,3). By the

curvature assumption, the conjugate radius is not smaller than %. Thus there exists a

periodic geodesic 4 through o with £(5) = 2inj(T?2,§) (see Proposition 2.12 in Chapter
13 of [dC92]). It suffices to prove the following claim.

Claim. The projected geodesic 7 := w07 has no self-intersections, that is, the restriction
of the universal covering projection 7 : T2 - T2 to 7 is injective.

We first show how this claim can be used to finish the proof, and then we prove the
claim. As # is a closed curve in the universal cover, 7 is null-homotopic in T2. Moreover,
by the claim ~ has no self-intersections. Therefore by the Jordan curve theorem, there is
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a closed disc Q ¢ T? with 9 = v. Using the local Gauk-Bonnet theorem, the curvature
bound, and the volume bound we get

27 =27x(Q) = [ sec dvol, < dvoly(Q) < dvoly(T?) < dv,

which contradicts § < 2T, For the application of the local Gauk-Bonnet theorem observe
that 02 is a geodesm w1thout corners.

So it remains to prove the claim. Arguing by contradiction, we assume that the claim
is wrong. Then there exists a non-trivial deck transformation ¢ : T2 — T2 so that for
A% = (7) it holds

FNAY +@.
Observe that 4 and 4% intersect each other transversely. Indeed, otherwise we have
©(¥) =4% =4 by uniqueness of geodesics. But then all powers of ¢ fix the compact set
7, which contradicts that the Deck group is torsion-free and acts properly on T2,

It is well known that the mod 2 intersection number iz/97(+,-) is homotopy-invariant.
Hence iZ/QZ(’y,’y“") = 0 because 7 and 5% are both null-homotopic as T? is simply con-
nected. So 4 and A% intersect in an even number of points. By assumption their inter-
section is non-trivial, and hence they intersect in at least two distinct points.

Choose two distinct points &,y € ¥n4¥. Choose subarcs ¢ of 4 and ¢? of 4¥ from Z to
¥ in such a way that £(c),f(c¥) < %E(’y) = %E(’W). If ¢ and ¢¥ are both strictly shorter
than 10(%), then exp; is not injective on B(0,20(%)) ¢ T5T?, and so inj(z) < $£(7).
But this contradicts £(3) = 2inj(72,§). The argument in the general case is similar.
By a variational argument we construct two geodesics with the same endpoints that
have strictly smaller length than ¢ and ¢¥. The same reasoning will then lead to a
contradiction. )

Since ¢ and ¢? intersect transversely at @, there exists v € TyT? with (v,¢/) < 0 and
(v, (¢#)") < 0. Choose a curve ¢, : (—¢,&) - T2 with ¢,(0) = 7 and ¢, (0) = v. Since § is not
conjugate to Z along c or ¢?, there exist variations through geodesics I',T'¥ : (—¢,e) x[0,1]
of ¢ and ¢¥ with

['(5,0) =z =T%(s,0) and T(s,1)=cy(s)=T%(s,1)

for all s € (—e,¢) (here we reparametrize ¢ and ¢? to be defined on [0,1]). As cis a
geodesic, the first variation formula shows

d

dsls=o

Similarly, ds‘ o T%(s,7)) < 0. So £(T'(s0,-)) < €(c) and £(I'*(s9,-)) < £(c?) for 59 >0
sufficiently small Then T'(sg,-) and T'?(sg,-) are geodesics with the same starting point
Z and the same endpoint ¢,(sp), and both are strictly shorter than %E(’y). Therefore,
exp; is not injective on B(0, %E(i)) ¢ TpT?, and hence inj(Z) < %é(ﬁ) = inj(72, §) which
is a contradiction. This finishes the proof of the claim. U

U (s,-)) = (8:T(0, 1), ,(0, 1)) = {v, ) < 0.

We remainder of this section is devoted to the proof of the effective Uniformization
Theorem.
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Proof of Lemma 8.5. Step 1 (averaged L*-estimate): Inequality (**) on p. 520 of
[GKS07] states the following. If M is a closed Riemannian n-manifold of diameter D

satisfying Ric > —(n—1), then the smallest positive eigenvalue A; of the Laplace operator

satisfies A\ > e 2(n-1)D

By definition, we have diam(7?,g) < 1, [sec(g)| < § < 1 and [z pdvoly = 0. So p is
perpendicular to the space of constant functions in H'(7?). Thus we have the Poincare-
inequality

fT2 pdvol, < C’/T2 IV p|? dvol,,
for C = 2. It follows from Exercise 2 in Chapter 4.3 of [dC16] that
Ap =2K,

where K is the Gaufs curvature of g and A is the Laplace operator of g. Recall that by
our sign convention A = —tr(v?). We denote the average integral W%TQ) J2 dvoly by

fr2 dvoly. Testing Ap = 2K with p gives

2
]5 [Vofdvol, =2 ]g pKdvol,

<26 ]52 |p|dvoly

<28 2dvol :
s (]52‘/(4 Vog)

<2603 2dvol :
< (]52|Vp| Vog) ,

where we used the curvature assumption, the Cauchy-Schwarz and the Poincaré inequal-
ity. Thus

1 1
(][T \p|2dvolg)2 <c? (]g |Vp]2dvolg)2 < 25C. (8.11)

Step 2 (C'-estimate): Lifting Ap = 2K to the universal cover we get Ap = 2K,
where p and K are the lifts of p and K to T?. Curvature bounds and diameter bounds
imply upper volume bounds by the Bishop-Gromov volume comparison theorem. Hence
it follows from Lemma 8.6 that for dy small enough it holds inj(7?2, §) > i for a universal
constant g > 0. So we can apply Lemma 2.8, and conclude that for all Zo € T2 it holds

71(20) < C(IAll 20y + 1K llogo ) (8.12)

for a universal constant C'. Choose a partition of T2 into fundamental regions for the
action of the fundamental group of T2 whose diameters do not exceed 2diam (72, g). For
each & € T? denote by F; the element of the partition containing . Fix &y € T?. Define

ﬁ = U Fs.
ZeB(Zo,1)
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Observe that F is a finite union of fundamental regions, and thus

]gj dvol; = ]52 P2 dvol,, (8.13)

where f;; denotes the averaged integral VOI—%U) [+ Since diam(Fz) < 2diam(7?, g) < 2 we

also have B(&,1) ¢ F € B(%,3). From the lower bound iq for the injectivity radius of

A

T we deduce that vol (]-" ) is bounded from below and from above by a universal constant.
Remembering B(Zg,1) € F this implies

19120y < 171y = O ( £ avols). (5.14)
Combining (8.11)-(8.14) and using the curvature assumption |K| < J yields
pl(Z0) < €6
for a universal constant C. This finishes the proof. O

9. INVERTIBILITY OF £ WITHOUT A LOWER INJECTIVITY RADIUS BOUND

9.1. Statement and overview. For the proof of Theorem 2 we need to analyze the
invertibility of the elliptic operator £ = %A L +2id in complete Riemannian 3-manifolds
of finite volume that do not have a positive lower bound on the injectivity radius. The
examples of Section 6 show that Proposition 4.3 can no longer hold in this more general
situation. Also recall from the discussion at the end of Section 6 that the counterex-
amples were constructed by slowly changing the conformal structure of the level tori
T(r) contained in Mgyay. To exclude these examples, we shall use the geometric control
of tubes and cusps established in Section 8 for manifolds M whose sectional curvature
approaches constant curvature —1 exponentially fast in Mgyan-

We introduce new norms | - 2. and | - o for smooth sections of the bundle
Sym?(T*M) = Sym(T*M ® T*M) which are inspired by the work of Bamler [Bam12],
and we use these norms to prove the following invertibility result. At this point we only
mention that these norms depend on certain parameters a, \,d,79,b,€. Recall that R
denotes the Riemann curvature endomorphism.

Proposition 9.1. For all « € (0,1), A >0, XA € (0,1), § € (0,2), 1o > 1, b > 1 and
1N > 2+ X there exist constants g, €9 and C' > 0 with the following property. Let M be a
Riemannian 3-manifold of finite volume that satisfies

|sec+1| <eo, |[VRic|lcoary <A,
and

mTa:}<W|sec(7r) +1|, |[VR|(2), |V2R|(z) < gge " @OMeman)  for all 2 € M. (9.1)
Then the operator
£ (3 (Sym* (T M), [ o ) — (CY (Sym® (T M), [ - [lo.2)

1s 1nvertible and
[1£]lop: 1€ lop < C,
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where |||2, 5« and ||-[|o.x are the norms defined in (9.7) and (9.8) with respect to any € < €,
and C';’a(Sme(T*M)) is the corresponding Banach space of sections of Sym?(T*M).

The proof of the existence of ¢ and € is constructive. This is not the case for the
constant C' which involves an argument by contradiction.

Remark 9.2. Proposition 9.1 is also valid for all A € (0,1) and n > 1. The proof we found
is technically more involved, but it does not require any new insights. As we are not
aware of additional applications, we restrict ourselves to the case n > 2+ A and postpone
the presentation of the stronger statement to forthcoming work.

Analogous to Remark 4.8 the following holds (also see Remark 7.3).
Remark 9.3. Proposition 9.1 also holds when M is non-orientable.

This section is structured as follows. The definition of the norms which appear in the
statement of Proposition 9.1 is presented in Section 9.2. In Section 9.3 we prove that
solutions h of the equation Lh = f satisfy certain growth estimates in Mgy,1. These will
be used in Section 9.4 to show that £ satisfies an a priori estimate ||h|j2 x;« < C||LA|o .
Finally, the surjectivity of £ will be established in Section 9.5.

9.2. Various norms. In this subsection we present the definition of the norms || |j2 x:«
and || - [|o.» appearing in Proposition 9.1, and state some of their properties. To this end
we first define ezponential norms ||HC; Second, adapting a construction in [Bam12], we
present decomposition norms H||C;7yr The ezponential hybrid norms |- ||2.x.« and ||-]|o.x
are then a combination of the decomposition norms || - ||C; . and the hybrid norms || - ||
and || -||o defined in Section 4.1.

Throughout this section we assume that M satisfies the assumptions from Proposi-
tion 9.1, that is, M is a complete Riemannian 3-manifold of finite volume satisfying
|sec+1| < eq, ||[VRicl|co(ary < A, and

mTa>]<V[\sec(7r) +1], [VR|(z), |[V2R|(z) < goe @M sma)  for all 2 € My
TE Ly

for some 1 > 2+ A. As before, £ denotes the elliptic operator %AL + 2id.

We begin with the definition of the exponential norms. Let Ci,...,Cy be the cusps of
M, and let T1, ..., T, be the Margulis tubes of M of radius at least 3. For any k=1,...,p
let Ry, be the radius of (T )sman, that is, the distance of the core geodesic vx to O(Tk)smal-
Denote by

r(x) = d(x, M N Mgnan)
the distance of x to the complement of Mgyay. For A € (0,1) define the inverse weight
function Wy : M - R by
e*)\T(x) if ze ngl(ci)small
W)\($) = e—)\r(z) + 6)\(T(m)_Rk) if ve (Tk)small

otherwise

—
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For any C* or C*® norm || - ||z we define the corresponding ezponential C* norm by

up(#w(x)). 02)

. ? =S
|| HCA(M) oM W)\(l‘)

Observe that Lip (log (WLA)) < A in Mgpan, and that outside Mgy it holds Wy (z) = 1. So

the pointwise Schauder estimates (2.4) and (2.5) imply that there are Schauder estimates
for the exponential norms, that is, there is a constant C' = C'(«, A, \) so that

#llezary < CIEAlIGoa oy + IRl ar)) (93)
and

Il cary < CILRIcgary + Illogeany)- (94)
Similarly, it follows from (2.6) that ||£h||C§]\,a(M) < C’||h||c§,a(M).

We continue with the definition of the decomposition norms. Following Section 3.2
of [Bam12], we first introduce trivial Einstein variations. In Definition 9.4 below, T2
denotes a flat torus (with a fixed flat metric), and I ¢ R is an interval. Even though
T? is equipped with a metric, the product T2 x I is only meant as a topological product.
Moreover, in the definition we take coordinates (x',22%,7) on T2 x I, where (2!, 2?) are
flat coordinates for T2, and r is the standard coordinate for I ¢ R.

Definition 9.4. A (0,2)-tensor v on T2 x I is called an Einstein variation if it is of the
form

U= e_2ruijdxlda:j
for some constants u;; € R. Moreover, u is called a trivial Einstein variation if the trace
of u with respect to the flat metric on T2 vanishes everywhere, that is, if ¥, us = 0.

Here dz’ and da’ are understood to be either dz! or dz?, but not dr. Our definition
looks slightly different than that in [Bam12], but this difference is only due to a change
of coordinates.

Remark 9.5. The trace free condition guarantees that L.,spu = 0 for a trivial Einstein
variation u (see (9.14)). Here L.ysp denotes the operator %AL + 2id with respect to the
hyperbolic cusp metric geysp = e_2rgplat + drz, where grjq: is the given flat metric on T2,

An Einstein variation should be thought of as an infinitesimal change in the conformal
structure of the torus 72, and a trivial Einstein variation is an infinitesimal change of
the conformal structure that can not be detected by the operator £. Therefore, to ensure
that £ is invertible, we have to work with a norm in the source space that isolates trivial
Einstein variations. Also recall from the discussion at the end of Section 6, that the
counterexamples of Proposition 6.1 are constructed by changing the conformal structure
of the horotori that are contained in the small part of the manifold. This further justifies
the use of a norm that is sensitive to changes in the conformal structures. A more precise
explanation for the necessity of a norm that isolates trivial Einstein variations will be
given in Remark 9.13.
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For each k£ =1,...,p let 74 be the core geodesic of Tj. Choose cutoff functions py so
that

pr =0 in (M N (Tk)small) UNi(v) and pp=11in Np,_1/4(k) ~ Nsa(e)-
Similarly, choose cutoff functions g; so that
00=01in M~ (C))gman and g =1 outsideNl(M N (C’l)small).

Here for any subset X ¢ M, and any r > 0, N,(X) denotes the set of all points that
have distance less than r to X. The cutoff functions are chosen in such a way that the
Hoélder norms ||pgl|c2.e, ||0i|lc2.« are bounded from above by a universal constant. Recall
that by Lemma 7.4 the boundary 9(T)sman is @ smooth torus, and (Tk)sman ~ N1(Vk)
is diffeomorphic to O(Tk)sman % [0, Rk — 1]. By Proposition 8.1, there is a natural choice
for a flat metric on O(Tj)sman, namely the flat metric induced by the model metric
Jeusp Of Proposition 8.1. Hence it makes sense to speak of trivial Einstein variations on
(Tk)sman ~ N1(7%). Similarly, it makes sense to speak of trivial Einstein variations on

(Cl)small-
For a continuous symmetric (0, 2)-tensor field h, consider decompositions

_ p q
h=h+ Zpkuk+Zglvl, (95)
k=1 =1

where uy, is a trivial Einstein variation in (Tj)sman N N1(7%), and v; is a trivial Einstein
variation on (C})sman. Following p. 896 of [Bam12], for any C* or C%® norm || -||o»
define the corresponding decomposition norm by

Pl aryee = (IRl cary + Jmax ug| + max o), (9.6)

where the infimum is taken over all decompositions as in (9.5) and |- | is a norm on the
finite dimensional space of trivial Einstein variations, e.g., || := || - ||co. We point out
that our notation differs from that in [Bam12].

We now state some properties of the decomposition norm. We start with a basic
inequality.

Lemma 9.6. It holds
[12llco < 2[[Allco...-

Proof. Note W) < 2, so that ||h]|co < 2||l_1||cg. Now the desired inequality follows from
the triangle inequality and the definition of || - HCQ;*' O

Schauder estimates also hold for the decomposition norm (see [Bam12, Lemma 4.1]).

Lemma 9.7. There is a universal constant C' so that
hl| ~2,a.. < Cl||LA|| ~0,a + ||R]|~o0.
Iz, < C(I1LAGow + [Hlles,.)

for all h e Cz7a(Sym2(T*M)).
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Proof. In this proof we use Notation 2.2. Let L.,s, denote the differential operator %A L+
2id with respect to the model metrics geusp given by Proposition 8.1 and Proposition 8.2.
By Remark 9.5, it holds Leyspur = 0 and Leyspyy = 0. Hence [Jug||c2.a = O(|ug|) and
[villcz.e = O(Ju]) due to Schauder estimates.

The estimates on |g — geusplc2 given by Proposition 8.2 and Proposition 8.1 yield that

Lot co.a (2) = O(e0e™ @ |uy]) and |Lup|co.a(z) = o((62<r<w>-Rk> + 506_"’"($))|u;€|), where

7 is the decay rate in the curvature decay condition (9.1), and r(x) = d(x, M ~ Mgpan)-
We then get [[Lugl| 0.0 = O(Jug|) and [|Lv|| 0.0 = O(|vg]) since A <1 <n. The rest of the
A A

argument carries over from [Bam12, Lemma 4.1] O

The next result and its proof is analogous to Lemma 4.2 in [Bam12|. It gives the
canonical choice of a trivial Einstein variation in a Margulis tube. For rank 2 cusps the
canonical choice of a trivial Einstein variation will be given by Proposition 9.10.

Lemma 9.8. Leth ¢ C’O(Sme(T*M)). Choose points ¢y, € Ty, with r(cy) = %, where r =
d(-y M N Mgpan). For each k let uy be the trivial Einstein variation in (T)sman ~ N1(7k)
such that |h—ug|(c) is minimal among all trivial Einstein variations in (Tk)sman™> N1(7k)-
Then for some universal constant C it holds

||h||c§(M');* < ||B||C§(M’) + m,?X|uk| < CHh“CR(M’);M

where h:=h - Y ppug and M’ = M ~ U7, (C1)smal-

Note that on (T%)sman, the weight ﬁ(r) is maximal at r = %.

Proof. The proof of [Bam12, Lemma 4.2| goes through without modification. For later
purpose we point out that |uz|(cx) < |h|(ck), and |h|(ck) < |h - u|(cy) for any trivial
Einstein variation w on (T )sman N N1(7%). This is because by its definition, uy is the
image of the orthogonal projection from Sme(Tc*kM ) to the space of trivial Einstein
variations on (Tk)sman > V1(7x)- Also note that trivial Einstein variations have constant
norm (if the norm is taken with respect to the cusp metric geysp). In particular, we have

lug| < I”llco(ary- a

Finally, we come to the definition of the ezponential hybrid norms ||-||2.x.« and ||-]|ox
appearing in Proposition 9.1. Recall that for £ = 0 and k = 2, in Definition 4.1 we defined
the hybrid norms (when n = 3) by

1
(2-6)r 2
|11k == maX{||~||Ck,a(A4),Slig(/]we (2-6) (y)|-|20k(y)dvol(y)) }’

where F ¢ M is a subset defined by a volume growth condition and |-|-«(y) denotes the
C*-norm at the point y. We refer to Section 4.1 for more details. For ease of notation
we abbreviate

1
Il ey = ( O lhiay) avol(y))



STABILITY OF EINSTEIN METRICS AND EFFECTIVE HYPERBOLIZATION 115

and
1
2

Ill2arny = ( f, €7 1o () dvol())

Here w, should indicate that there is a weight function involved that depends on x € M.

Definition 9.9. For a € (0,1), A€ (0,1),b>1,€>0, € (0,2) and ¢ > 1 the ezponential
hybrid norms || ||2.x;« and || - ||o,x are defined by

b
hll2.a:x = max {||h]] 2. s sup||bl| gz sup 2@ M) || bl 22y }
o = ey s Wlorsye sun T
(9.7)
and
b
f 0, = max{ f 0,0 sup f 2 W sup egd(LMthick) f 9 e }
H H H ”C>‘ (M) z¢E H ”L (M) T€Mthin N Msman H HL (Miez) [

(9.8)
where E = E(M;€,0,rg) is the set defined in (4.1).

In the source space we use || ch,a(M),* instead of just || ||Cz,a(M) so that the norm is
A ’ A

sensitive to trivial Einstein variations. We refer to Remark 9.13 and the discussion after
Remark 9.5 as to why this is necessary. The last integral terms in the definition of the
norms are included so that we can employ the CY-estimate from Proposition 7.5. As was
the case with the previously defined hybrid norms || -||2 and || - ||o, we suppress most of
the constants in the notation for the norms ||-[j2 x;« and || - |[o,x-

Define the spaces C)'*(Sym?(T*M)) and C53*(Sym*(T*M)) as
Oy (Sym*(TM)) == { £ € C¥*(Sym (T M) | 1 ll g ary < o0 (9.9)

and
CY(Sym* (T M)) = { h e €2 (Sym*(T* M) | Il cary;s < oo} (9.10)

The latter is the space of sections h with the property that Lh € C’f\]’a(Sme(T*M)) (see
Lemma 9.21).

9.3. Growth estimates. In Section 9.4 we shall prove the a priori estimate of Proposi-
tion 9.1. An intermediate step towards this goal is Proposition 9.18, in which we prove a
global C¥-estimate I”llcocary < ClILRJo A For points in Mipic we can use the arguments
from the proof of Proposition 4.3 to obtain such an estimate (see Remark 4.6). Moreover,
Proposition 7.5 provides the desired estimate for points in Mipin N Mgman. Therefore, it
remains to obtain C%-estimates in Myyay. The main ingredient to obtain CO-estimates
in Mgman are certain growth estimates that solutions of Lh = f satisfy. These estimates
are contained in the following Proposition 9.10 and Proposition 9.11 which are the main
results of this section.

We begin with the growth estimate in a cusp. Besides the growth estimate, this result
also states that there is a canonical choice of trivial Einstein variation inside a cusp (for
tubes the canonical choice of trivial Einstein variation was given by Lemma 9.8).
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Proposition 9.10 (Growth estimate in a cusp). For all a € (0,1), A >0, A € (0,1),
b>1,0¢€(0,2), and n>2+ X there exists g > 0 with the following property.
Let M be a finite volume 3-manifold that satisfies

|sec+1| <eo, |[Ric(g)llcocary < A,
and

max [sec(m) + 1|, [VR|(@), [V2RI(x) < oe ™ @PMeme) - for all @ ¢ Monan.
TEL

Let f ¢ C’g’a(Sym2(T*M)), and let h € C?(Sym?*(T*M)) with IMllcocary < oo be a solu-
tion of
Lh=f.
Fiz a cusp C of M. Then there exists a unique trivial Finstein variation v in Cynan
satisfying
||h N U‘lcg(csmall) < OO,

and we have

vl = O(llf1lo.x)-
Moreover, if ||hl|cocary: I fllco.e(ary < 1, then for all x € Cypan it holds
[#l() = O(lIflloa+¢7) (9.11)
and
A @h—vf(z) = O(||fllo + e @), (9.12)

where r(z) = d(x,0Csmaln)-

We refer to Notation 2.2 for our convention of the O-notation. The component
suPep || fllL2(0w,) Of the norm || f[lo,x is not needed for this estimate. For this reason we
don’t have to include constants € > 0 and r9 > 1 in the formulation of Proposition 9.10
as these only enter the definition of the set E.

The estimate in a tube is very similar, but it additionally involves the distance to the
core geodesic.

Proposition 9.11 (Growth estimate in a tube). Let all the constants and the manifold
M be as in Proposition 9.10. Let f € Cf\)’a<Sym2(T*M)) with ||fllox < 1, and let h €
C?*(Sym?(T*M)) with IAllcocary <1 be a solution of

Lh=f.
Fiz a Margulis tube T of M, and denote its core geodesic by . For all x € Tgpan ~ N1(7)
it then holds

3

[hl@) = O ([Ifllox + e () 4 emam()) (9.13)
where ror(x) = d(x, 0Tsman), and r(x) = d(z, 7).
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The main idea to obtain these growth estimates is as follows. On Mgy, consider the
model metric geysp Obtained in Section 8. Following [Bam12, p. 901|, we define with
respect to this model metric an averaging operator that assigns to each tensor i another
tensor h that only depends on 7 = d(-, M N~ Mgpan) (we will say in a moment what this
means exactly). This averaging operator commutes with the differential operator £ (if
L is taken with respect to the model metric). So Lh = f A key point is that as h and
f both only depend on r, the equation Lh = f actually just is a linear system of ODEs
with constant coefficients whose fundamental solutions can be written down explicitly.
Using standard ODE arguments we thus obtain growth estimates for h. These will yield
growth estimates for h since |h — h|(z) decays exponentially in 7(z).

We now explain these ideas in more detail. We start with some terminology. Recall
from Section 8 that we call a metric g on T2 x I (where I is an interval) a cusp metric
if it is of the form

g=€" gpia +dr?,

where gryq: is some flat metric on 72, and r is the standard coordinate on I ¢ R. We call a
covering ¢ : R2xI — T?xI cusp coordinates if it is of the form p(z1, z2,7) = (1(z1,22),7)
for some local isometry ¢ : R? — (T2, gpja¢). We say that a tensor h on T%xI only depends
on r if its coefficients h;; in cusp coordinates only depend on r. This can also be stated
without reference to local coordinates as follows. Note that there is an isometric R2-
action on (T2 x I, g) preserving the level tori {r = const}. Then h only depends on r if
it is invariant under this isometric R?-action.

Next we explain the averaging operator that assigns to each tensor h on T2 x I another
tensor h that only depends on r. The average 4 of a function u:7T? x I - R is

R 1

U@) = LT ) Jre
where 7 = r(z), and T(r) := T? x {r}. For a (0,2)-tensor h we define h componentwise,
that is,

, uly) dvola(y),

(0)5(2) = 5 0) = sy oy W) dvolo)

where the coefficients are with respect to cusp coordinates. It is clear that this definition
is independent of the choice of cusp coordinates. The averaging for tensors of any type
is defined in exactly the same way. We collect the properties of this averaging operation
in the following lemma.

Lemma 9.12. Let T? x I be equipped with a cusp metric. The averaging operation * has
the following properties:

i) h only depends on r;
it) There is a universal constant ¢ >0 so that

|hl(z) < |h|(y) dvola(y).

1
vola(T'(r)) JT(r)
In particular, |h|(z) < cmaxy(y(z)) [h| for a universal constant c;
i) If h is of class C*, then the same holds true for il, and Vh = Vﬁ;
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i) * commutes with taking the trace, that is, tr(lAz) =tr(h);
v) If h is C1, then
h-hl(z) <eDe™™® max |h 1,
o~ hi(z) . [Ale

where D := diam(T?, gpjat) and ¢ is a universal constant.

Property v) is what allows us to deduce estimates on |h| from estimates on |h/.

Proof. These properties are all straighforward to check. The main fact to observe is that
in cusp coordinates the g;; (and hence the Christoffel symbols) only depend on r, and so
one can take g;;(y) inside the integral fT(T) out of the integral. O

Another crucial point is that if h and f are (0,2)-tensors that only depend on 7, then
the equation Lh = f is a linear system of ODEs with constant coefficients (here £ is
taken with respect to the cusp metric). Namely, it holds

—Q(Eh)(ag, 83) = (hgg)” - 2(h33), - 4h33,
~2(Lh)(9;,05) = (hiz)" = 4his;

2
—-2(Lh)(0;,0;) = (hz‘j)” + 2(hij), - 20y Z Rk,
k=1

where (-)" denotes d% and 03 = %. This can be checked by a straightforward calcula-

tion. Note that |h|? = (hs3)? + 232 (e hiz)? + Zij:l(eQThij)Q. Thus we are interested in
equations for hss, e"h;3, ethij, rather than for h3s, h;3, hi;. Using the above, it is straight-

forward to check that if h, f only depend on r, then the equation Lh = f is equivalent
to

(hsz)” —2(hs3)’ —4hss  =-2fs3
(erhzg)" - 2(67'hi3)/ - 3€Thi3 = —2€Tfi3 (9.14)
(€2Thij)” - 2(€2rhij)’ = —2€2Tfij + 2(513‘ (tl“(h) - h33).

The set of roots of the polynomials associated to these ODEs are {1-+/5,1+/5}, {-1,3}
and {0,2}. The exact form of this linear system of ODEs is not important. All what
matters is that it is some system of ODEs whose fundamental solutions we can write
down explicitly. Moreover, tracing the equation Lh = f yields %Atr(h) +2tr(h) = tr(f).
For a function v that only depends on r it holds —Awu = v” — 2u’. Thus

tr(h)" = 2tr(h)" - 4tr(h) = -2tr(f). (9.15)

The roots of the polynomial Q(X) = X2 - 2X — 4 associated to this ODE are 1 ++/5.
At this point we make another important comment as to why we work with the
decomposition norm ||-|| ;2.0 instead of just the exponential norm ||-|| ,2.o (see Section 9.2
A A

for the definition of these norms).

Remark 9.13. As mentioned previously, the counterexamples of Section 6 show that
working with the hybrid norms of Section 4.1 will no longer be sufficient in the absence
of a positive lower bound on the injectivity radius. A natural condition to rule out the
counterexamples of Section 6 is to require that the sectional curvatures converge to —1
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exponentially fast inside Mgy, and thus it is natural to work with weighted Holder
norms. However, if we used || - || o2 instead of || - || C2o for definining the hybrid norm
in the source space Ci’a(Sme(T*M)), then the operator L : Ci’a(Sme(T*M)) -
C’g’o‘(Sme(T*M )) would not be invertible (with universal constants). This is because
the system (9.14) has some constant fundamental solution (coming from the root 0).
Therefore, in Mgyan there are bounded solutions of Lh = 0 that are not decaying. The
fundamental solutions corresponding to the root 0 are the tensors with eQThZ-j = const.,
but these are exactly the trivial Einstein variations (see Definition 9.4). This explains
why in the source space we have to work with a weighted norm that isolates trivial
Einstein variations and only considers their unweighted C°-norms.

Now we explain in detail how to use the averaging operator and the linear system of
ODEs in (9.14) to obtain growth estimates in Mgyan. Let f € C’g’a(Symz(T*M)) be
arbitrary, and let h be a solution of

Lh=f,
where L is the elliptic operator given by Lh = %ALh+2h with respect to the given metric

g of M. We start with considering a rank 2 cusp C of M. Note that Cypan = 72 x [0, 00).
Let geusp be the model metric on Cgpan given by Proposition 8.2. This satisfies

‘g - gv:usp‘C2 ((L‘) = 0(50677”(30))7

where r(x) = d(x, 0Csman ), and €g, 1 are the constants appearing in the curvature decay
condition (9.1). Let Ly be the elliptic operator Leysph = %ALh + 2h with respect to

the model metric geysp. Set fe := Leusph. Then |f — fe|(z) = O(eolh|c2 (x)e—nr(x)) by the
above estimate on |g — geusp|cz. Thus
|fc|($) S|f|($) + O(€0|h|cg(x)€_nr(x))
:O(||f\|0,,\€_’\r(m) +eolh|c2 (x)e—m‘(w))'

Let * be the averaging operator with respect to the model metric geysp. Using ii) of
Lemma 9.12 we get

7Y = 0 (Ifllone™ +20e 27 [ hlea(y) dvola(v)).
where we used that
voly(T'(1)) = € 2" voly (dCsman) = O(e™")

since by definition diam(9Cspan ) is bounded by a universal constant. Define the function
1 :Ryp = R by

0= [ Ihles(y) dvoloy). (916)
Hence

7l (r) = O (Il fllope™ +e0to(r)e ™) (9.17)

since n > 2+ .
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By idii) and iv) of Lemma 9.12 and the identity f. = Leusph, it holds

Ecuspi'/ = fc

As h and J. only depend on 7, Ecuspiz = f. is the linear system of ODEs given by (9.14).
Due to the growth estimate (9.17), we can invoke the following two basic ODE results
to obtain a growth estimate for h.

In the formulation of these ODE results, we denote by I either Ryo or an interval of
the form [0, R — 1] for some R > 2. Moreover, for a polynomial @Q = Y, a,, X™ we write
Q((Zir) for the differential operator Y, am(z,—z.

Lemma 9.14. Let Q € R[X] be a quadratic polynomial with two distinct real roots A,
Xo. Let y: I - R be a solution of the ODE

d
Q(5)w -
where u: I - R is a function satisyfing u(r) = X7, O(ﬁke“”) for some B, € Ryg, and
pr € RN {1, \a}. Then

y(r) = A1 M7+ Age™T 4 i O(,Bke““)
k=1

for some constants Ay, A € R.

Lemma 9.15. Let Q € R[X] be a quadratic polynomial with two distinct real roots A,
Xo. Lety: I - R be a solution of

d
Q(5)w-u
where u satisfies [u(r)| < e (r) for some a € R and 1 € L'(Rsg). Then
y(r) = A1eM” + Age™” + O(||¢||L1(RZO)€W)
for some A1, As e R.

In Lemma 9.14 and Lemma 9.15, the universal constant absorbed by O(...) is allowed
to depend on Aj, A2, and a, but not on R (in case I = [0, R - 1]). We again refer to
Notation 2.2 for our convention of the O-notation.

Proof of Lemma 9.14 and Lemma 9.15. Both of these lemmas follow easily from the ex-
plicit integral formulas for solutions of linear ODEs. (]

In order to successfully apply Lemma 9.15, we need to control the L'-norm of the
function ¢ defined in (9.16). This is expressed in the following lemma.

Lemma 9.16. Let the constants and the manifold M be as in Proposition 9.10. Let
f e CO(Sym*(T*M)) with || fllcoa(ary < 00, and let h e C*(Sym?(T*M)) n H} (M) be
a solution of

Lh={.
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Fiz a rank 2 cusp C of M, and let ¢ : Rsg - R be given by
() = [ Ihlea(y) dvola(y),
T(r)

where T(r) € Cyman 18 the torus of all points of distance r to OCsman. Then ¢ € ! (Rxp),
and

19121 (Rso) = OCIf o),
where || - |lo,x s the norm defined in (9.8).

Not all components of the hybrid norm ||f|jo,x are needed for this estimate. In fact,

b
we only need ||f||co and eid(x’Mthick)||f||L2(M;Wm) (x € Mipin N Mgman).- Moreover, the
curvature decay condition (9.1) is not needed for this estimate.

Proof. By the co-area formula it holds

fo b(r)dr = fc - [hlea() dvol(x). (9.18)

Since by definition diam(9Cgpay) is bounded by a universal constant, it is easy to see
that vol(Csman) is also bounded by a universal constant. Combining this with (9.18),
and using the Cauchy-Schwarz inequality yields

[Ooow(r)dTSC(/C

1
N |h|%2(m)dvol(m))2 (9.19)
for some universal constant C. Therefore, it suffices to obtain HZ2-estimates of h in
Csmall-
For g9 > 0 small enough it follows from Lemma 7.10 and Schauder estimates that

Bl (2) = O(Ifllon) for all = with r(z) < 1. (9.20)

Choose a smooth bump function ¢ : M — [0, 1] satisfying ¢ =0 on M N Cypan, ¢(x) =1
for x € Cyman with 7(x) > 1, and [|[Vel|co(ary < 2. Applying Proposition 3.4 with this ¢,
and using (9.20) we obtain (for €9 > 0 small enough)

f |h|2dvolsC[ /2 dvol + O(fI.)-
C4smaull Csmall ’

Analogous to Step 1 in the proof of Proposition 4.3 we get H?-estimates for the solutions
h of Lh = f in terms of ||h||z2 and ||f||z2 by standard computations using integration by
parts. Because of (9.20) we can control the boundary terms when invoking integration
by parts on Cypan. Therefore, for some universal constant C' > 0 it holds

L[ Badvolsc [ |pPdvol+ O(IfIR ). (9.21)
Csmall Csmall ’

Note [|fllz2(cpman) = OUIfllco) since vol(Cypan) is bounded by a universal constant. Thus
the desired inequality follows from (9.19) and (9.21). O

We are now finally in a position to prove the growth estimate in a cusp.
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Proof of Proposition 9.10. Later when we prove that £ is surjective, it will be important
to have an argument that only assumes h € Cz(Sme(T*M)) n H} (M), but that does
not assume ||h[|cocpry < oo. For this reason we will as long as possible only assume
h e CQ(Sme(T*M)) n H3(M), and point out from which point on we really need the
assumption ||h||co < oco.

Let geusp be the model metric in the rank 2 cusp C given by Proposition 8.2. Because of
the estimate on |g—geusp|c2 in Proposition 8.2, it is irrelevant in Cgpay whether quantities
such as the L?-norm are taken w.r.t. g or Jeusp, and we will compute all quantities w.r.t.
Jeusp- Denote by Leysp the elliptic operator %AL + 2id with respect to the model metric
Jeusp- We define f.:= Loygph. Moreover, let - denote the averaging operator with respect
to the model metric geysp (see Lemma 9.12). In the discussion after Lemma 9.12 we
showed (see (9.17))

Ecuspﬁ = fc and |}\C|(T) = O(HfHO,/\e_)\T + 50¢(r)6_>\r)7

where ¢ was defined in (9.16). Moreover, as h, . only depend on 7, Ecuspfz = 7. is the
linear system of ODEs given by (9.14). Namely, by (9.15), and the first two equations
in (9.14) we have

Q) =-20x(Fo)

Ql(%)(h:{f) =-2(f.)ss

Q2(g) (€ his) = -2¢"(fo)is
for some quadratic polynomials @ and Qs with roots {1 -+/5,1++/5} and {-1,3}. As
|ﬂ| satisfies the above growth estimate, and since -\ ¢ {1 +/5,-1,3} we can apply
Lemma 9.14 and Lemma 9.15.

We know [[¢]|11(ryo) = O(l|fllo,x) from Lemma 9.16 (note that Lemma 9.16 does not
assume ||hl|co < 00). Thus we get from Lemma 9.14 and Lemma 9.15

tr(h)(r) = are=VE 4 gpeHVo)r O([|fllore™");

ilgg(T) = ble(l_\/g)r + b2€(1+\/g)r + O(Hf”o)\e_)""); (9.22)

Chis(r) =ei’em w0l flloae™);
for some constants a1, as, b, bg,cgi),cgi) e R. Note that h € L?(Csman) € L' (Csman) since
Cyman has finite volume, and vol(T(r)) = O(e "), where T(r) € Csman is the torus
all whose points have distance r to 9Cspan. Hence e ' |h|(r) € L'(Rsg). In particular,

e 2tr(h)(r), e’zrﬁgg(r),e’ZT(eTﬁig(T)) e L'(Rsp) (i=1,2), and thus ag = by = cgl)A: 0.
|h| = O(|| f]lo,n) due to Proposition 7.5, and we have |h|(0) =
O(maxgc,,, |h|) by ii) of Lemma 9.12. Hence evaluating at r = 0 yields

alvblacgi) = O(||fllo,x)-

We know that maxgc

small

As A <1<+/5-1 this implies
[tr(R) (r)], [has (r)], " hia ()] = O(|| flloxe™")- (9.23)
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By the last equation in (9.14) there is a quadratic polynomial Q3 with roots 0 and 2
so that

d o A ~ —
Qs () (¢2hi) =20 (1x(h) = ) ~ 267 (7
=O(IIfllope™" +e0p(r)e™),

where we used the growth rate of | f,| in (9.17), and the one for tr(h), has in (9.23). Again
invoking Lemma 9.14 and Lemma 9.15, and using Lemma 9.16 to estimate ||v||11(r.0),
we conclude

e hij=d") + iV e? +O(| fllore™) (9.24)
for some constants dy’j),dg’j) e R. As before, e 2"|h|(r) € L*(Rso) implies dgi’j) = 0.
Exactly as before, evaluating at r = 0 we obtain

d% = 0(||fllo)- (9.25)

Define an Einstein variation v in Cgman by vi;(r) = dgi’j)e_%. Note that tr(ﬁ) =

hss + tr(v), and that tr(v) is constant. Hence hss(r),tr(h)(r) —— 0 implies that
tr(v) = 0. Therefore, v is indeed a trivial Einstein variation. From (9.25) we know

[vl = O([[.fllo,»)-
Moreover, (9.23), (9.24), the fact that dgi’j) =0, and the definition of v imply
I~ vlico = O(1Ifllo.x)- (9.26)
In particular, |v| = O(]|f]lo.x) and (9.26) yield
sup [h] = O([[£llo)- (9.27)

small
We will need this fact in the proof of the surjectivity of £. Until this point we did not
need ||h/|co < oo, but only h e C*(Sym?(T*M)) n H} (M).

From now on we use the assumption ||h||co < oo, which implies ||h||c1 < oo due to
Schauder estimates. Since A < 1, we deduce from v) of Lemma 9.12 that ||h - il”cg < 00
and hence ||h - UHOQ < oo. This proves the existence of a trivial Einstein variation as
stated in Proposition 9.10. Uniqueness of such a trivial Einstein variation is clear because
trivial Einstein variations have constant C’-norm (with respect to geusp)-

If we assume ||h||co, || f]|co.« <1, then these last considerations can be made more quan-
titative. Indeed, under this assumption we have ||h||c1 = O(1) by Schauder estimates.
Recall that diam(9Cgpan) is bounded by a universal constant due to the definition of
the small part. Thus |h - h|(z) = O(e_’”(x)) by v) of Lemma 9.12. Together with (9.26)
this implies

N —v|(z) = O(||fllo +e” V),
This finishes the proof of (9.12). As we already showed |v| = O(||f]lo.x), this also yields
(9.11). This completes the proof. O
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The proof Proposition 9.11 is very similar to that of Proposition 9.10, so we only
highlight the differences.

Let T be a Margulis tube of M with core geodesic v. Denote by R the radius of Typnan,
that is, the distance from v to 0Tgman. The model metric geysp given by Proposition 8.1 is

only defined on Tgman N N1(7y), and it satisfies |g — geusplo2 () = O(eoe_nr(m) + 62(T(5"’)_R)),
where r(2) = d(x, 0Tgman). Define Leysp, fe, and ¢ exactly as in the case of a cusp (the
only difference being that now 1 is only defined on [0, R - 1]). As |[f]lo.,]|Rllco < 1 by
assumption, it holds [|h||c2 = O(1) due to Schauder estimates. Thus we can estimate
fe = fl(z) = O(eovp(r)e ™" + 62(T’R)). So | f¢| satisfies the growth estimate

17e(r) = O(IflloaWa(r) +eoo(r)e ™ + e20=1), (9.28)
where W), is the inverse weight entering the definition of || - HCQ- In Tyman it is given by

Wa(r) = e+ B) n contrast to the definition of the cusp,  now only takes values
in a bounded interval. For this reason we can not get rid of the exponentially growing
fundamental solutions as easily as in the case of a cusp. To remedy this, we evoke the
following basic ODE lemma.

Lemma 9.17. Let Q € R[X] be a quadratic polynomial with distinct real roots Ao <0<
A, R>2, e LY[0,R~-1]) so that 1l L1 ([0,r-1]) %8 bounded by a universal constant,
and let W:[0,R-1] — R be a function of the form

W(r) =3 gres
k=1

for some B € Rsg, pg ¢ {\1, 2}, so that W(r) is bounded by a universal constant for
re[R-2,R-1]. Lety:[0,R-1] - R be a C? function with |y| <1 and

Q(4) =0y s v
for some a > 0. Then there is a universal constant C' so that
[yl(r) < C(X" (|y1(0) + W(0) + [Wllr fo.r11y) + €M~ + W(r) + llpre™)  (9.29)
for all r €[0,R-1]. In particular,
[yl(r) < C(Iyl(0) + W) + [[¢llz (o, o)y + €M+ W(1)). (9.30)

As in Lemma 9.14 and Lemma 9.15 the universal constant C' is allowed to depend on
A1, A2, and a, but not on R.

Proof. As g, ¢ {\1, 2}, and v € L'([0, R - 1]), Lemma 9.14 and 9.15 imply
y(r) = AjeM” + Age™? + OW(r) +|[Y||pre™™) (9.31)

for some constants Aj, Ay € R. For ease of notation we abbreviate R’ := R —1. Since
lyl, W, ||| 1e™® = O(1) on [R' - 1, R'] (this uses a > 0), also A" + Aye*?” = O(1) on
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[R'-1,R']. Using this at r = R’ and r = R' - 1 gives the linear system of equations
11 )[4 (0(1)
e—)\1 e—/\z A2€)\2R' - 0(1) :
1

. . 1
The operator norm ||L7Y||op of the inverse of the linear operator L = (e_/\l e‘)‘Z) only

depends on Ay, As. Hence Ay eME and Ase*2® are bounded by a universal constant. We
know y(0) = Ay + Ay + O(W(0) +||¢[| 1) due to (9.31). Invoking (9.31) once more we
obtain

y(r) =A1eM” + Aye”
+OW(r) + [l e
=M (A1 M) + 27 ((0) = e (A1) + O(W(0) + 6]
+O(W(r) + [l pre™)
=MT0(1) + €27 (y(0) + M O(1) + O(W(0) + [[¢]11))
+O(W(r) +[[llpre™™),

that is, there is a universal constant C' so that
91(7) (AT 1 A (gl(0) + N+ W) + [9l51) + W) + e ™)

forall 0 <r < R'. As Ay < A\, so that e M < M(=E) and B’ = R—1, this completes
the proof of (9.29). O

To apply Lemma 9.17 we need to make sure that the growth rates of |f,| are different
from the fundamental solutions of the system of ODEs in (9.14). For this reason, we
weaken the growth control on |f.| in (9.28) to

71 (r) = O(IFllopaWa(r) +eotp(r)e ™ + e%(T‘R)). (9.32)

Analogous to the case of a cusp, it still holds [[4)||1(j0,r-1]) = O(l|fllo,»)- Indeed, the proof
of Lemma 9.16 goes through without modification. Now the proof of Proposition 9.11
follows by applying Lemma 9.17 with

W(r) = | flloaWa(r) + e2(1) - [ Fllox(e + =R 4 e2(r=R)

and v defined in (9.16) componentwise to the linear system of ODEs Ecuspﬁ = f.
given in (9.14). (To be precise: Similar to the proof of Proposition 9.11, one first ap-
plies Lemma 9.17 to the equations for tr(ﬂ),ﬁgg,erﬁig, and then for eQrﬁij one applies
Lemma 9.17 to the above W + the growth of tr(h), hgs obtained from (9.29).) This gives
growth estimates for h. By v) of Lemma 9.12 we again know |h — h|(z) = O(e™"(®)),
Remembering that r, = R —r will yield the estimate (9.13), thus finishing the proof of
Proposition 9.11.
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9.4. A priori estimates. The goal of this section is to prove the a priori estimate of
Proposition 9.1, that is, that there exists a universal constant C' so that

[1All2.x:+ < ClILAJox
for all h € CY*(Sym?(T*M)). The norm |- |jar« is a mixture of weighted Sobolev
norms and the decomposition norm |- [[ 2. . By Remark 4.5, the weighted Sobolev-
A k)

estimate ||A]|g2(ar,)
volume. Therefore, it suffices to prove an a priori estimate ||h[2.q
A

< CllfllL2(amw,) still holds if M is non-compact but has finite
(e S ClILR o

We do this in two steps. First we establish global C*“-estimates, and then prove the
estimate for the *-norm.

For the proof of a global C%*®-estimate, we adapt the arguments in [Bam12, Lemma
6.1].

Proposition 9.18. For all a € (0,1), A >0, A€ (0,1), b>1, § € (0,2), ro > 1, and
n 22+ A there exist constants g, €y and C' > 0 with the following property. Let M be a
Riemannian 3-manifold of finite volume that satisfies

|sec+1] <eg, ||VRic|lcocary < A,
and

max [sec(m) + 1|, |VR|(z), IV2R|(x) < goe” " =OMomat)  for all € Mman.
TEL,

Then for all h e C*(Sym?(TM)) it holds
17llc2.e(ary < ClILA]Jo A,
where || - ||o,x s the norm defined in (9.8) with respect to any € < €.

Proof. Step 1 (Reducing the problem): Let €9 > 0 be small enough so that one can
apply Proposition 9.10, Proposition 9.11, and Lemma 9.19 below, and choose € > 0 so
that Remark 4.6 applies. Due to Schauder estimates (Proposition 2.5) it suffices to prove
a C%-estimate.

Arguing by contradiction, assume that such a C%-estimate does not hold. Then there
exist a sequence of counterexamples, given by a sequence of finite volume Riemannian
3-manifolds (M?, ¢*) satisfying the curvature assumptions stated in Proposition 9.18, and
tensors h' e C’i’o‘(Symz(T*M)) so that

1K llcocariy =1 and [|Lgihiflgx — 0,
where || - [jo.x is the norm defined in (9.8) with respect to some & < &. Abbreviate
f":= L, ih". Choose points z' € M with |h'|(z") > 3

If #' € M}, then Remark 4.6 shows ||h’||co < C||f]jo = 0, where ||-||o is the norm
defined in (4.3) with respect to € < &. This is a contradiction.

Hence 2 € M},. for all i large enough. By Proposition 7.5, and the definition (9.8)

thin ! ; . : 16 ael
of || [lo.x, it holds |hf|(z) < O||f!lo. for all z e M.~ ME . Thus z* e M? . for all i

small” small ’
large enough. After passing to a subsequence, either z' is contained in a cusp Cj; ¢ M*
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for all i, or ' is contained in a Margulis tube T} ¢ M* for all i. We distinguish these
two cases.

Step 2 (Cusps): First we consider the case that x° is contained in a cusp Cji. Ab-
breviate 1 := d(z,0(Cji )sman)- By the growth estimate (9.11) in Proposition 9.10 we
know that

(") < C(I1Flor+e™)

for a universal constant C. As ||f*|[o.» = 0, this shows that for i large enough it holds
1 o 1 i
— <A (z") < =+Ce",
2 4

and thus 7 < log(4C), that is,_ri is bounded by the universal constant R = log(4C). By
Lemma 7.10 there is some C'(R) so that

[h'[(2) < CR)IIFlox

for all # € N(Cpi N (Cpi)sman)- In particular, |h¥|(z%) < C(R)||f%lo.r. However, this
contradicts [h'[(z%) > £ and ||f*[jo.n — 0.
Step 3.1 (Radius of (7} )sman): The goal of this step is to show

Ry — 00 asi— oo,

where Ry is the radius of the small part (T}i)sman, that is, the distance of the core
geodesic Vi t0 O(Ti)sman- Assume that this is wrong. Then, after passing to a subse-
quence, it holds Ry < R for all i for some R > 0. Choose a finite cover Tji — T} so that
((A4i) € [1,10]. Note that the T}: have uniform lower bounds on the injectivity radius,
uniform bounds on the sectional curvature and the covariant derivative of the Ricci ten-
sor. Moreover, d(2%,4,i) < Ry < R where #° is a preimage of #* in T}:. Therefore, after
passing to a subsequence, it holds

pointed C?8
—_—

(Tk“'ﬁl) (Too’xoo)’

where the convergence is pointed C%#-convergence for some 8 € (0,a). Here T* is a
negatively curved tube of possibly finite length (see the discussion before Lemma 9.19
for our definition of a negatively curved tube). After passing to a subsequence we may
assume that the limit Re, = lim; Ry: € [0, R] exists. Since the distance of (T} )sman t0
Minick is at least p/2 by Lemma 7.4, the length of T°°, that is sup,.pe d(Z,7s0), is at
least Roo + 11/2.

Denote the lifts of h* and f* to T}: by h* and f%. Since “ili”CQ,a(Mi) is uniformly
bounded (due to Schauder estimates), after passing to a subsequence we may assume
that h' - k™ in the pointed C*P-sense. From |hi(z?)| > 3 it follows [h%(2%)| > 3.
Similarly, f* — 0 in the pointed C%?-sense. Due to the stability of elliptic PDEs, we get
LZh> =0.

Proposition 7.5 shows that

max |2 < Cllf flo
Tki \(Tki )small
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The same still holds for h’. As Ryi — Reo, and ||f||o.x — 0, this implies A* = 0 outside of
Npr_, (7). In particular, this shows that h* has compact support because the length of
T is at least R + /2. Note that |sec(M?) + 1| < g implies |sec(T*) + 1| < £g. By our
choice of €9 we can apply Lemma 9.19 (or rather the comment following it) and conclude
h* = 0. This contradicts |h*(x*)| > % Therefore, Ry — oo.

Step 3.2 (Estimate in a tube): By the growth estimate (9.13), we know that for
all z € (Tyi)sman N N1(7:) it holds

|hi|(z) < C’(IIfi||0,>\ Lo Tori(@) | om2 (x)), (9.33)

where 7y7:(z) = d(2,0(T}i )sman) and Ty (@) = d(z,7). Recall that | (2%)] > %, and
|#llo.x = 0. Thus there is a subsequence so that either Toypi (2%) or 74 (2%) stays bounded.
We show that both these cases lead to a contradiction, thus completing the proof. Note
that these two cases exclude each other because of Step 3.1.

Case 1: rgpi(z?) is bounded

Let R € R be so that ryp:(2') < R for all i € N. In Step 3.1 we showed that the
radius Ryi of (Tj)sman goes to infinity. In particular, Np(M*~ M ..\ is disjoint from
the 1-neighbourhood of the core geodesic v for all i large enough. Thus by applying
Lemma 7.10 to the Margulis tube T}:, we obtain that there is some constant C(R) so
that

[P (z) < C(R)][f]lo.x

for all x € Ng(Tji ~ (Tyi)sman)- In particular, |h'|(z") < C(R)||f"jor — 0. But this
contradicts |h'[(z?) > 1.

Case 2: 1.,(2") is bounded

Analogous to Step 3.1 (that is, going to appropriate covers and taking a convergent
subsequence) we can construct a tensor h*° on a tube T with the following properties:
it solves L®h* = 0, and there is a point * € T so that |h™(z*)| > % Moreover,
since Rj: — oo the tube T is complete and of infinite length. As in Step 3.1 it holds
|sec(T>) + 1] < g9. Moreover, (9.33), ||f*[lo.x = 0, and 757:(2') — oo imply

[h™|(x) < Cem2™= (@)

for all z € T N\ Ni(7s0). So we can apply Lemma 9.19 and conclude A* = 0. However,
this contradicts |h*° (z*)| > % O

In the proof of Proposition 9.18 we used the next lemma several times. It is the analog
of Proposition 8.3 in [Bam12]. However, since we are in the presence of pinched negative
curvature there is a much shorter proof than that in [Bam12]. In its formulation, a
complete negatively curved solid 3-torus is the quotient 7" = F\M of a simply connected
negatively curved 3-manifold M by an infinite cyclic group I' of loxodromic isometries.
The core geodesic of such a solid torus is the projection of the axis 4 of the elements of
T.

Lemma 9.19. There exists €9 > 0 with the following property. Let T be a complete solid
3-torus with |sec(T) + 1| < o, and let h be a symmetric C*-tensor that solves Lh = 0.
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Assume that for some constant C >0
IB|(z) < Ce 2™ ()
for all x € T~ N1(7), where 7 is the core geodesic. Then h vanishes identically.

The statement also holds if T is of finite length (that is, ' = I'\Nr (%) for some R > 0)
if we assume that h has compact support. Indeed, the same proof will go through since
the the argument mostly relies on integration by parts.

Proof. We first argue that tr(h) = 0. Taking the trace in Lh =0 yields
A(tr(h)) +2tr(h) =0.

By assumption, [tr(h)|(z) - 0 as r,(z) - oo. So there is some xg € T with [tr(h)|(zo) =
lltr(A)llco(ry- By possibly replacing h with —h we may assume that tr(h)(zo) > 0. Recall

that by our sign convention —Awu = tr(VZu). As tr(h) assumes its maximum at xg, we
have —A(tr(h))(zo) < 0. Hence

Jex () llenry = tr(h) (o) = =5 A(sr(h)) (o) <0

and consequently tr(h) = 0.

By regularity of solutions of elliptic equations and Schauder theory, h is smooth and
all covariant derivatives V*h satisfy the same kind of estimate, that is, |[V*h|(z) <
Cre 2™ Jacobi field comparison shows that area(ONg(v)) = O(egR) if g9 > 0 is
small enough. Hence VFh € L%(T) for all k € N. Therefore, [Gaf54] shows that one can
apply integration by parts to h and all its derivatives.

The proof of the Poincaré inequality (Proposition 3.1) only needed integration by
parts and some tensor calculus. Hence the Poincaré inequality also holds in the present
situation, and we may apply it to h since h has vanishing trace. Thus if €9 > 0 is small
enough it holds

1

h
Al
where ¢ = ¢(3) is the constant from Proposition 3.1. Recall that Lh = 1A+ %Ric(h) +2h.
Since tr(h) =0, it follows from Lemma 3.2 that 5(Ric(h),h) > —(3+c’gq)|h[? for a constant

¢’ > 0. Therefore, applying (,h) 21y to the equation Lh = 0 yields (remembering that
we are allowed to integrate by parts)

IAllz2(ry <

3—ceg

1
0= (LR 1) pagry > 311V Hlzqry = (L o)z > (52 = (1+ =) ) Il oy

This implies h = 0 if we choose g9 > 0 small enough so that (37% - (1+cg))>0. O
Our proof of the a priori estimate in Proposition 9.1 is a variation of that for [Bam12,

Proposition 5.1]. We explain the central ideas first before presenting the complete proof.
It suffices to prove an a priori estimate for the || - ||C§;*—norm. Similar to the proof of

Proposition 9.18 we assume that such an estimate does not hold. So there is a sequence
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(Mi,gi) of Riemannian manifolds satisyfing the assumptions of Proposition 9.1, and
hi e C(Sym*(T*M)) so that

W lcos =1 and  |f*flon =0,
where f?:= Ly h'. Consider the canonical decompositions

h'=h'+ Zpkuz + Z oy,
k l

given by Lemma 9.8 resp. Proposition 9.10, so that (up to a multiplicative universal
constant) it holds

17 llcgse = 1A lleg + mex fuj] + max o]

In this outline we only consider tubes. From Lemma 9.8 (or rather its proof) we know
that |uj| = O(||R’||co), and hence |uj| - 0 by Proposition 9.18. For simplicity assume
that ||h’||Cg = 1, and that there exists a point z' in some Margulis tube T}: so that
[Wlco (2) = Gy Ihleo () = 1. Note that o € (Thi )sman,

ror(z') - oo and T (z") = oo,

where rg(z) = d(z,0(Tyi )sman) and 7o, (z) = d(z,v;:) for the core geodesic v of Th.
Indeed, otherwise the weight W is bounded from above by some constant, and so

Proposition 9.18 would yield a contradiction.

Abbreviate r := rgp. For simplicity assume that r(z') = =&, where Ry is the radius

2
of (T} )sman, so that the weight WLA is maximal at 2’. Let s(z) = r(z) - RQ’“i be the radial

function centered at z*. By construction, the rescaled tensors h' := Wﬁi satisfy a
growth estimate
1Y|(z) < O (e 4 () (9.34)

for some constant C' (independent of 7). As in the proof Proposition 9.18, after passing to
suitable covers and taking a convergent subsequence, we obtain a two sided infinite hy-
perbolic cusp (T%xR, geyusp) and a tensor field A only depending on the radial coordinate
s so that |[h™|(z*°) =1, LA™ =0, and

|hoo|(x) < C(ef)\s(:p) i eAs(x)).

As h*° only depends on s, L2h™ = 0 is the linear system of ODEs in (9.14). If || is smaller
than the absolute value of the non-zero exponential growth rates of the fundamental
solutions of (9.14), the growth condition (9.34) implies that h™ is a trivial Einstein
variation (see Lemma 9.20).

On the other hand, by definition, h’ satisfies

|A](«') <A ~ul(z")
for any trivial Einstein variation u on (7} )sman (see the proof of Lemma 9.8). This
implies

=[(2%) < [B% = ul(z)
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for any trivial Einstein variation u on (T2 xR, geusp). But as h™ is itself a trivial Einstein
variation, choosing v = h* implies |[h*[(2*°) = 0. But this contradicts |h*=°|(z*) =1
(which we know from |h%|(z%) = 1).

From this outline the following is apparant. Inside the small part of a tube, the key
requirement on the weight WL is that away from its maximum, the decay rate of the
weight is strictly smaller than the absolute value of the non-zero exponential growth
rates of the fundamental solutions of the linear system of ODEs in (9.14).

Now we present the complete proof.

Proof of the a priori estimate in Proposition 9.1. Step 1 (Set-Up): As mentioned in

the beginning of this section, we know that the weighted integral estimates hold, and so

we only have to show [|h[| 2.a., < C[[Lhllo for a universal constant C. Because of the
>\ b

Schauder estimates for the *-norm (Lemma 9.7), it suffices to prove
12llco (ary;x < ClILAo,- (9.35)

Denote by €q, €y the constants obtained in Proposition 9.18.

Arguing by contradiction, we assume that a constant C as in (9.35) does not exist.
Then there exists a sequence of finite volume Riemannian 3-manifolds (M?, ¢°) satisfying
the curvature assumptions in Proposition 9.1, and tensor fields A’ such that

|\hi||0§(Mi);* =1forall ieN and [fjo—0,asi— oo,

where as before we abbreviate f? := Ly ht.
Consider the canonical decomposition

W' =R+ phug + ) 0]
k l

where u}C and vli are the canonical choices of trivial Einstein variations on a Margulis
tube and a cusp, respectively, given by Lemma 9.8 and Proposition 9.10. So it holds

Villcgaroye < Rilogary + masx ] + maxof] < QI logqareye + 17 T0.0)

for a universal constant C. We know |uf| < C||hi||CO(M) from Lemma 9.8 (or rather its
proof) and ||h'||co < C||f|lo.x by Proposition 9.18, so that maxy, [ul| - 0. Also max; [v}| —
0 as we have [v| = O(||f*|lo.n) by Proposition 9.10. Together with Proposition 9.18, this
shows that for all ¢ large enough it holds

% < ||l_1i||cg <C and ||Bi||co(M) -0, as i — oo.

Choose z' € M* with |Bi|cg (%) = Wﬁﬂ(ﬂ) > % Since the inverse weight function
W is constant to 1 outside Mgpan, it holds |hZ|C§ (z) = |h'|co(x) for ¢ M, and hence
x' e M - After passing to a subsequence, either x' is contained in a cusp Cy: for all 7,
or z' is contained in a Margulis tube Ty for all i. We distinguish these two cases.

Step 2 (Cusps): We start by considering the case that x* is contained in a cusp Cj:.

Abbreviate r = d(z,0(Cji )sman)- The growth estimate (9.12) of Proposition 9.10 shows
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that for some universal constant C, we have

Lz i i —(1-M)rt
5 Slh log (') < C(IIf llop + €17V,

and thus

<=+ Ce~1-Mr

N | —
=

for large enough i. Hence r’ < (1 - \)'log(4C), that is, r* is bounded by the universal
constant R := (1 - A)"'log(4C). But then 3 < |7zi|cg(mi) < *E||hY|co — 0, which is a
contradiction.

Step 3 (Tubes): It remains to consider the case that ﬂ is contained in a Margulis
tube Tji. Denote by 7;: the core geodesic of Tii. Set f':= Lyih'. Since [|p}[lc2.0 is
uniformly bounded, it follows from the proof of Lemma 9.7 that [|£,: (X} p}cu}C)HCg <

C'maxg |u}| - 0, and the analogous statement holds for v{. Thus
Hfl||og — 0, as i > oo.

Recall that [|h']|cogpsy — 0, and W!ﬁ‘\co(xz) > 1 from the definition of 2. Thus
Wi (z%) - 0. Hence, for i large enough, z* € M

small and

Tari (‘rl)v Ty, (xl) — 0,
where ryi(x) = d(x, 8(Tki)small) and 7y, (x) = d(x,7}:). Abbreviate = ropi ().

Consider the torus T(r%) = {x € Ty |ryri(z) = r'} in Tj: containing x. Take a
covering T — (T}i )sman such that

diam (7 (r)) <10 and inj(z") > 1,

where diam(Ti(ri)) is the diameter with respect to the intrinsic metric of Tkz (r"). There-
fore, after passing to a subsequence,

~. .\ pointed C%8 0o oo
(Tz,mz) _— (T , T ),

where @ is a preimage of 2 in T* and where the convergence is pointed C?#-convergence
for some B € (0,a). From the curvature decay condition (9.1), and the fact that
Tori(z'),r4 ; (2") — oo, it follows that the limit manifold 7% is a hyperbolic cusp which

is two-sided infinite, that is, 7°° = T2 x R and
9% = ¢ griar + dr”

for some flat metric gge; on the torus T2. Denote by h' the pullback of A? to Ti, and
analogously fz shall denote the pullback of f*. Since going to covers does not change
Holder or C*-norms, all the estimates on A' and f* still hold for h' and fl

Set s'(z) := rgpi(z) — . Then s'(z') = 0 and s* - 5%, where s is the R-coordinate
in 7% = T% x R with s®(2*) = 0.

Abbreviate r(-) = rg7: (), and write R' := Ry for the radius of (T} )sman, that is, the
distance of the core geodesic to O(T}i)sman. After passing to a subsequence, we may
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distinguish between the following three cases. We will show that each case leads to a
contradiction, thus completing the proof.
Case 1: R -2r* - —o0
Note
BA(Ri_Ti)WA(‘T) _ eA(Ri—'ri) (6—)\7“(27) 4 6A(r(m)—Ri)) _ 6>\(Ri—2ri)6—/\si(:ﬂ) 4 eAsi(m)'

Define h' to be the rescaled tensor M T)hi. As ||iLi||Cg <C

1

]2 = X IWA) |

A7)

< C(ez\(Ri—2ri)e—/\si(x) i eAsi(ac)).

Thus ' is locally uniformly bounded near z*. By Schauder-estimates, the same holds
true for its derivatives. As a consequence, after passing to a subsequence we obtain that
h' — h* in the pointed C%# -sense for some B € (0, 8) where the symmetric (0, 2)-tensor
h on T satisfies

h*|(x) < CeM™ @,

|h?|(2") > &, and hence [R°°|(z>) > 1. In particular, 2 is non-zero.

Note |h2’(§: 29

Wi(2") A 2
The same calculation as above shows that f* = M=) figatisfies

1) < 1 leg (X200 4 2700,

As ||f‘||c§ — 0, this implies f — 0. By stability of elliptic equations the limit tensor h*
therefore solves LXh> =0

Note that the tensor h* is obtained as a limit of tensors that are lifts of tensors
on (Tyi)sman, and since the tubes (7T} )sman converge to a line in the pointed Gromov-
Hausdorff topology, the limit tensor h™ only depends on s* (we refer to Section 9.3
for the definition of what it means for a tensor to only depend on the R-coordinate s).
Lemma 9.20 below then shows that A™ = 0, which contradicts [h|(z*) > 3.

Case 2: R' - 2r" > oo

Compute

EMJW)\(.Z) _ e)\r'i (efx\r(m) i eA(r(m)—Ri)) _ 67)\5"(:1:) 4 e*/\(Ri72ri)€)\si(:v)'

By the same arguments as in Case I, after passing to a subsequence, the rescaled tensors
b= MR converge to some non-zero h™ which only depends on s and that satisfies

L2h* =0 and |[h®|(z) <Ce™ @)

for some C > 0. Again by Lemma 9.20 below, this implies h* =0, a contradiction.
Case 3: R'—2r" - AeR
The same calculation as in Case I shows that the rescaled tensors h' := e
converge to some non-zero h™ that only depends on s*°, satisfies the growth estimate

|hoo|($) < C(eAe—)\s“(w) +6)\s°°(x))’

and solves L*h* = 0. Lemma 9.20 shows that h™ is a trivial Einstein variation.

)\(Ri—ri)hi
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By the proof of Lemma 9.8, we know that h' satisfies |h’|(ck,) < |h’ - ul(c},) for any
trivial Einstein variation u on (T} )sman. Here CZL € (Tyi)sman) is a chosen point with
fr(c}ii) = %. Since C%-norms and the space of trivial Einstein variations are invariant
under passing to covers and scaling we also have

[0(2k) < h' = ul(é),
for every trivial Einstein variation u on Tt (notations are as above). By assumption,

rt - RTZ is bounded. Hence d(:i:’,é%) is also bounded. Therefore, there is a limit point
c®™ e T*. Note that any trivial Einstein variation on 7°°° is the limit of trivial Einstein
variations on 7. Thus
[2%|(c) < |h™ = ul(c™)

for every trivial Einstein variation w on T°°. Because h*™ 1is itself a trivial Einstein
variation, choosing u = h* shows h%™(c¢*) = 0. As trivial Einstein variations have
constant norm (with respect to a cusp metric), this implies h* = 0 everywhere. This is
a contradiction. O

The following lemma was used at the end of the above proof to show that each of
the three cases leads to a contradiction. The lemma plays the role of Proposition 7.1
in [Bam12|. Our proof is the same as that in [Bam12|, but adapted to our context.
Concerning terminology, we refer to Section 9.3 for the notion of a cusp metric, and
what it means for a tensor to only depend on r.

Lemma 9.20. Assume T2 x R is equipped with a hyperbolic cusp metric. Let h be a
tensor that only depends on the R-coordinate v, and that solves Lh = 0. If h satisfies

|h|(r) < C (G_AT + e)‘T)
for some C > 0 and X\ € (0,1), then h is a trivial Einstein variation. If moreover h
satisfies
|h|(r) < Ce ™ forall reR or |h|(r) < Ce™  for all reR,
then h = 0.

Proof. We first show tr(h) = 0. From (9.15) we have Ql(%)(tr(h))(r) = 0 for a qua-
dratic polynomial Q; with roots 1 ++/5. Thus by applying Lemma 9.14 we get

tr(h)(r) = A,eHVAIr 4 4 (1-VE)r

for some Ay, A_ € R. By assumption [tr(h)|(r) < C(e* +e™"). Since A < 1++/5, taking
r — oo implies A, = 0. Similarly, since A < /5 - 1, taking - —oo shows A_ = 0. Thus
tr(h) =0 everywhere.

Using (9.14), the same argument shows hs3 = 0 and h;3 = 0 everywhere. For h;3 this
uses the assumption A < 1.

By (9.14) we have Q3(%)(€2rhij) =0 for a quadratic polynomial Q)3 with roots 0 and
2. So invoking Lemma 9.14 yields

62rhij =A+ BGQT
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for some A, B € R. As |e"h;j| < |h|(r) < C(e + ") and \ < 2, taking r — co implies
B=0. So h;j = Ae™?" for some A € R.

With everything up to now we have shown that h is a trivial Einstein variation. Now
assume that h either satisfies |h|(r) < C*" or |h|(r) < C~*. Note that trivial Einstein
variations have constant norm (with respect to a cusp metric). Thus taking r - —oco or
r — oo implies |h| = 0. O

9.5. Surjectivity of L. In order to establish Proposition 9.1 we have to show that
£ (C3(Sym*(TM)), |- laxie ) — (X (Sym®(TM)). |- llo,r)

is an invertible operator, and that ||£7!||op is bounded by a universal constant. In
Section 9.4 we proved that £ satisfies an a priori estimate ||h||2x,« < C||Lhljo.x. Therefore,
to complete the proof of Proposition 9.1, we have to show that £ is surjective. This will
be done with the strategy used in the proof of Proposition 4.7, which had two main
ingredients:

e (Weak solutions exist) For any f in the target space, the equation £(h) = f has
a weak solution.

e (Regularity) If f is a smooth tensor in the target space and h is a solution of
Lh = f, then h is contained in the source space.

e (Approximation) For any f in the target space, there is a sequence of smooth
tensors (f;)in converging to f;

In the setting of Section 4, the regularity part is immediate due to local (euclidean)
regularity theory of elliptic PDEs. In our present non-compact setting this is no longer
the case. Local regularity theory only shows that h is of a certain regularity in local
coordiantes, but it does not necessarily mean that the globally defined norm [|hl|2 x.« is
finite. That this is indeed the case is shown in the following lemma. Here we assume that
M satisfies the assumptions stated in Proposition 9.1. Also, we refer to Notation 2.2 for
our convention of the O-notation.

Lemma 9.21. Let f ¢ Cf\)’a(Sme(T*M)) and h ¢ C?(Sym*(T*M)) n H}(M) be a
solution of
Lh=f.

Let C be a cusp of M, and ic € (0,1) so that ic < inj(x) for all x € ICspnan. Then it
holds

sup (1] = O( o)

small

In particular, supy; |h| < oo and h € C’i’a(Sym2(T*M)).

Because the boundary tori dC can have arbitrary large diameter, there can be no
universal lower bound on ic. The point of Lemma 9.21 is not to obtain a universal
bound for ||h||co, but just that h e Ci’a(Sme(T*M)). Once this is known, one obtains
universal estimates by the results of Section 9.4.
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Proof. Fix a cusp C, and let g, be the hyperbolic cusp metric on Cgnan given by
Proposition 8.2. This satisfies |g — geusplc2 () = O(soe_m(x)), where 7(x) = d(z, 0Csman),
and 7 is the decay rate in the curvature decay condition (9.1). In particular, up to
universal constants, the C*-norms (k < 2) with respect to ¢ and Jeusp agree. Let * be
the averaging operation of the cusp metric geusp (see Lemma 9.12). First, we recall an
estimate for |iL| that was established in the proof of Proposition 9.10. In a second step
we obtain estimates on |h — ﬁ| We do this by using De Giorgi—-Nash—Moser estimates in
the universal cover to reduce this problem to bounding L?-norms in the universal cover
M, which we obtain from weighted L2-estimates in M. Throughout this proof, for 7 >0
we denote by T'(r) the torus in Cypap all of whose points have distance r to dCspan.
Step 1 (Estimating |k|): In the proof of Proposition 9.10 we established (9.27),
which states
sup |h = O([|f{lo.x)- (9.36)
small
Even though in the formulation of Proposition 9.10 we assume ||hl|co < oo, we pointed
out that for (9.27) only the assumption h € C?*(Sym*(T*M)) n Hg (M) is needed.
We also mention the following estimates that will be needed in Step 2. Denote by
Lcusp the operator %AL +2id with respect to the metric geysp- From |g — geusplcoz(2) =
O(Eoe‘m(x)) it follows that

Lewsph — fleo(x) < O(e0e™™ @ |h| 2 (). (9.37)
Now i) of Lemma 9.12 and (9.37) together yield
| Leusph = £l o () = O(e0tp(r)e”T72)7) (9.38)

where r = r(x), and 9 € L*(Rsg) is the function defined in (9.16).

Step 2 (Estimating |h — h|): Since dim(M) = 3, we can apply the estimates from
Lemma 2.8 with ¢ = 4. Hence the same argument that led to (4.9) shows that for all
2 € Ciman, and any lift & € M of z, it holds

| = hlco(£) < C(Hﬁ ~ hllr2(B@p)) + | Leusp(h— il)”L?(B(i:,p))) (9.39)

for some universal constant C. Here p > 0 is the universal radius appearing in the
definition of the Holder norms. 3

We want to bound these L?-norms in M by weighted L?-norms in M. Towards this
goal, note that for any y € M and lift § € M of y it holds #(W‘l(y) NnB(7, 2p)) < Cﬁ,

where C' is a universal constant, and 7 : M — M is the universal covering projection.
Indeed, this follows by a simple area counting argument. Note that (up to universal
constant) it is irrelevant whether the injectivity radius is taken with respect to g or
Geusp- Choose ic € (0,1) so that inj(x) > ic for all £ € Csman. Since geysp is hyperbolic,
the argument from the proof of Corollary 7.7 shows that inj(y) > e~@W:Csman)j for all
Y € Cgmanl- Therefore, there is a universal constant C' so that for any function v : M — Ry,
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T € Cyman, and lift £ € M of x it holds

(9.40)

Gcusp)

1
f udvolg,,,, <C— > Wy dvol
B(&,p) 1 JB(z,p)

where @ = uom and 7(y) = d(y, 0Csman ). See the claim in the proof of Proposition 7.5 for
more details as to why this integral estimate follows from the preimage counting.

We now show how (9.40) can be used to estimate the L?-norms in (9.39). We start
with the first term. Inequality (**) on p. 520 of [GKS07] shows that for any flat 2-torus
T? of diameter 1, we have A\;(7?) > e72. Together with a scaling argument, this implies
that if 72 is a flat 2-torus of diam(7?) < 1, then Ay (7?) > me’Q. Therefore, for
any function u it holds

/T(r) lu = af* dvoleysy < 2diam (T (1), geusp)* /T(T) I uf? dvolewsy,

where 4 is the average of u over T'(r) (see the discussion before Lemma 9.12). Applying
this componentwise and multiplying by e?” implies

2 212 212 2
o2 fT o I o dvolensy < €*D /T o e dvoleusy,
where D is the universal constant appearing in the definition of the small part. Thus

f €2\ = hf2o dvol,,,, < ¢2D? f Ih2s dvoleusy = O(IAlee, y)- (9:41)
Csmall Csmall sma

We know from the proof of Lemma 9.16 that [|h|[g1(c,,...) = OIfllo,x) (in fact, we
even showed ||h||g2(cy,..) = Ol fllo,n)). Thus (9.40) and (9.41) yield

~ X 1
2 . _ - 2
Jio = d¥08, = O M11E). (942

This completes the bound of the first L2-norm in (9.39).
Towards bounding the second L?-norm in (9.39), we use the triangle inequality, (9.37),
i7) of Lemma 9.12, and (9.38) to estimate

|£cuspil - Ecusp;lKi') S|£Cuspib - f|({f‘) + |f~|(;i-) + |f:|((f‘) + |£C’u,sp;L _ ,]§|(i')
:0(506—777’|;;|02 (@) + [ fllore™ + 501?(7”)6_(”_2)%)7

where 7 = r o, and 1) € L'(Rsg) was defined in (9.16). Invoking (9.40), and using 7 > 1,
we obtain

(9.43)

7|7, 2 1 -2(n-1 2
e B2 ) dvols <O — e 20=Dm1p12, dvol
/B(:i,p)( | ‘C) Jeusp ZQC B(z,p) | |C2

1 2
SCT f ’h|cz dV019cusp
ZC Csmall

1
=0( =z I171.1)- (9.44)
C

Gcusp
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where for the last inequality we used ||h||g2(c,,...) = Ol fllo,x) (this was established in
the proof of Lemma 9.16). Also

]];(N )6_2)‘1: dvolg,,., < vol(B(%,p)) = O(1). (9.45)
&,p
Recall that the function v is defined by v (r) := fT(r) |h|c2. Denote by fT(T) the aver-

2
age integral WIT(T). By the Jensen inequality (fT(T,) |h|C2) < fT(T,) |h|2,2, which

N , 2 - .
implies (e w(r)) < /T(r) |h|é2. So e")(r) € LQ(RZ()), and |le ¢||L2(R20) < HhHHZ(Csman) =
O(|fllo,)- Because p is universal, area(B(Z, p)n{y|7(y) = s}) is bounded by a universal
constant C for all s. Thus, as > 1,

~(n-2)7 2<Cfr(””)+p 2117 (7).
S, (@T0) < [T ey ay

(z)-p
r(z)+
SC/ p(eTi/J)2 dr
r(z)-p
=O([I£1I5»)- (9.46)
Combining (9.39), (9.42)-(9.46) yields

sup [h = | = O(—Iflo.n)-
Csmall e
1] = O (£ 11£l0,)-

For the last assertions, note that M has only finitely many cusps because M has
finite volume. The proven estimate and the compactness of M \ Ug Csman immediately
imply that sup,; |h| < co. To conclude h € C’i’a(Sme(T*M)) we have to show that
||h||ci,a;* < oo. As ||£h||Cg,a < oo by assumption, the Schauder estimates for the *-norm

Together with (9.36) this implies sup

small

(Lemma 9.7) reduce the problem to showing ||h\|c§;* < 00. Due to the compactness of
M ~Uc Csman, it suffices to show HhHCR;* < oo in each rank 2 cusp of M. But this follows
from Proposition 9.10 since ||h||co < co. O

Recall from the introduction of this section that establishing surjectivity of £ requires
an approximation and a regularity result. Lemma 9.21 is the regularity statement. The
approximation result is given by the next lemma.

Lemma 9.22. Let f € C’g’a(Sme(T*M)) and € (0,a). Then there is a sequence

(fe)eso € COO(Sme(T*M)) so that lim._o||f — fEHCg’B(M) =0.

Proof. Tt is well known that for u € C%%(R™) there is a sequence (u:)eso € C*°(R™) so
that ||u—uc||co,s = 0 as € > 0. Moreover, if u has compact support inside some open set
Q) ¢ R"™, the u. can be chosen to have compact support in €2 too.

Denote by r the distance function to M\ Mgman. For k > 0 define Uy, := 1! ((k:—l, k+1)).
Choose a partition of unity (ng)gso subordinate to the cover {Uj}rso. By applying

the above approximation result locally, we see that for each k there is fg(k) so that



STABILITY OF EINSTEIN METRICS AND EFFECTIVE HYPERBOLIZATION 139

supp(fs(k)) c Uy and ||(nxf) - fe(k)”(;o,a < %e’)‘(k”). Then f::= Y32, fg(k) has the desired
property. Indeed, let x € M be arbitrary and and choose kg € N so that kg < r(x) < ko + 1.
Then Uy, and Uy,;1 are the only sets of the cover {Ug}rso which may contain z. Thus

1f = Felcos (@) < (o f) = 5o (@) + [ (g1 f) = £ o8 (2)

< S Mko+l) | € ~A(ko+2)

< Ee—)\r(x)

<eWy(z),
and hence ||f - fEHCgﬁ(]w) = SUPgep mﬁ - f€|00v5 (:E) <e. g
Now we are ready to present the proof of Proposition 9.1.

Proof of Proposition 9.1. As the a priori estimate was established in Section 9.4, it re-
mains to show that L is surjective. The same argument as in Proposition 4.7 shows
that for any f ¢ LQ(Sme(T*M)), there is a weak solution h € H&(Sym2(T*M)) of

Lf =h Fix f ¢ Cg’a(Sme(T*M)). Invoking Lemma 9.22 we obtain a sequence
(fi)ien € C(Sym?(T*M)) so that ||f - fi||00,% — 0 as ¢ - oo. Choose weak solu-
A

tions h; € Hy(Sym?(T*M)) of Lh; = f;. Then h; e C*°(Sym?(T*M)) and Lh; = f; holds
in the classical sense. Moreover, Lemma 9.21 implies h; € Cg’f(Symz(T*M)). Note

that the norms || - HCO’Q and || - |[o,x are equivalent on CS’S(SyHP(T*M)) (but with a

2

A
non-universal constant). Therefore, the a priori estimate from Proposition 9.18 gives

i =hyllcs < Cllfi = fill og =0 as i,j > oo
A

for some (non-universal) constant C. So (h;)ien € C*(Sym?(T*M)) is a Cauchy se-
quence. Let h € C’Q(Sme(T*M)) be the limit tensor field. As M has finite volume,
C?-convergence implies H'-convergence. Thus h € H&(Sme(T*M)) and Lh = f ¢
C’g’a(Symz(T*M)). Invoking Lemma 9.21 once more yields h € Ci’a(Sme(T*M)).
Therefore, L is a surjective mapping from C’z’a(Sme(T*M)) to Cg’a(Sme(T*M)). O

10. PROOF OF THE PINCHING THEOREM WITHOUT LOWER INJECTVITY RADIUS
BOUND

We can now finally state and prove the full version of Theorem 2.

Theorem 10.1. For all a € (0,1), A>0, A€ (0,1), §€(0,2), 7021,b>1, andn>2+X\
there exist constants eg = e(a, A, N, 8,79,b,m) >0 and C = C(a, A, N, 6,70,b,1) >0 with the
following property. Let M be a 3-manifold that admits a complete Riemannian metric g
satisfying the following conditions for some € < ey

i) vol(M,g) < oo;

i) =1 -e<secpg) < -1+¢;
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i11) It holds
mTa)j/[|sec(7T) +1|, |VR|(z), |V?R|(z) < ge™"4(®:0Msman)

for all x € Mgman;

w) [[VRic(g)llco(argy < A
v) It holds

fM e~ (2O Ric(g) + 292 dvol;(y) < €
for all x € M with

=(2-0)2(Y) gvol-
€ VO > €,
fB(w,2ro)\B(z,7-0) 3(y) > ¢eo

where ry(y) = dg(x,y);
vi) It holds

e0d (@, Minicx) [M e~ (20 Ric(g) + 2§|§ dvolg(y) < &

fOT all x € Mthin N Mgmall -
Then there exists a hyperbolic metric gyny, on M so that

lghyp = gll2,x;+ < 0517057

where || |2z« 15 the norm defined in (9.7) with respect to the metric g and the constants
a, )\a bv €0, 67 To-
Moreover, if for some B <1 - %5 and U € M it holds

/M e W Ric(g) + 2§|§ dvolg(y) < g2(1=0) =20 dist (@.ULOMmic)  for gll 2 € Mypiex,

then

—ae—ﬁdistg (z,UU0Mipick)

|9hyp — Glcza(z) < Ce! Jor all x € Mip;cx.

In particular, if g 1s already hyperbolic outside o region U € M, and if

. —12 2
fU |Ric(g) + 29|§ dvolg < €7,
then it holds
1_a€—(l—%§)distg(z,UUaMthick)

|9hyp = Glo2a(z) < Ce Jor all x € Mipicx.

The following slight generalisation follows from Remark 9.2.

Remark 10.2. Theorem 10.1 holds for all A€ (0,1) and > 1.

Proof. Since the proof is basically identical to that of Theorem 5.1 we only sketch it and
highlight differences. For R > 0 we denote by B(0,R) < Ci’a(Sme(T*M)) the closed
ball of radius R around the O-section with respect to the norm || - ||z x;x. Analogous to
the proof of Theorem 5.1 we consider

W : B(0,R) - Cy*(Sym*(T*M)), h > h— L7®(g + h),

where ® is the Einstein operator defined in (2.1), and £ = (D®)z. We want to show
that for R > 0 small enough, ¥ is 3-Lipschitz. Since [|[£7![op is bounded by a universal
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constant (Proposition 9.1), it suffices to show that for any h € B(0,R) and any h’ €
C’i’a(Sme(T*M)) it holds

[(D®)gin(h") = (D®)g(A)lox < (R o+

for some universal ¢(R) with ¢(R) — 0 as R — 0. Indeed, this can be shown by the exact
same argument as in [Bam12, pages 898 and 899|.

Fix R > 0 such that U is %—Lipschitz. Then it follows from the definition (9.7) of
|| “[l2.7:+, the conditions i) —v) and Proposition 9.1 that [[¥(0)||2.x.» < Ce'™, which is at
most % if 9 > 0 is small enough. Remembering that in dimension three Einstein metrics
have constant sectional curvature, the existence of a hyperbolic metric gy, now follows
exactly as in the proof of Theorem 5.1.

To show the improved estimate, note that (5.1) still holds for points in the thick part
of M, that is, for all e C3*(Sym?(T*M)) and all € Mypiqx it holds

[hle2e (@) < Co(ILhlco (@) + LAl 2 arie )

for a universal constant Cp. Also choose Cj large enough so that [[¥(0)[|2.« < 2Coe’™@.

Abbreviate R, = Coe'™®, so that U restricts to a %—Lipschitz endomorphism of B(0, R.).
For an appropriatly chosen C; > Cy define

U = {h e B(0, R.) | h satisfies (10.1) for all z € Mnia and (10.2) for all z € M},
where the inequalities (10.1) and (10.2) appearing in the definition of U are
Bl 2. (@) < Cret e P dista (@ U0 0Mumick) (10.1)

and

HhHHQ(M’wJL) < Clgl—ae—ﬁ diStg(CE, UUa]VTthick) (102)

The rest of the proof of Theorem 5.1 carries over with only one small additional obser-
vation. For h e U the estimate (10.1) even holds for all y € N,(Minick). Here p> 0 is the
radius appearing in the definition of the Holder norms. Indeed, if y € Ny(Minick) N Minick,
then d(y,0Mipick) < p, and thus

|h|cz.a(y) < ||Rll2,x < Coet™@ < (C’oe”)el_o‘e_(l_%‘s)d(y’UU@M““C“)

So h € U satisfies (10.1) for all y € N,(Minick) if we choose C1 > Cpe”. We really need the
estimate (10.1) in an enlarged region because in order to check that U/ is W-invariant, it
is necessary to control maxycp(s, ) |h|%2,a (y) for x € Mpick (see (5.7)). O

Analogous to Remark 5.4, Remark 9.3 implies the following.

Remark 10.3. Theorem 10.1 also holds when M is non-orientable.
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11. DRILLING AND FILLING

In the first part of this section we consider a hyperbolic 3-manifold M of finite volume
and a collection T1,...,T; of Margulis tubes in M. Each T; is a solid 3-torus whose
boundary 07T; is a flat 2-torus which is locally isometrically embedded in M. The meridian
of the tube T; is an essential simple closed curve a; on 9T; which is homotopically
trivial in M. It is unique up to free homotopy. Up to homotopy equivalence and hence
isometry (by the Mostow rigidity theorem), the manifold M is uniquely determined by
the homotopy type of M —u;T; and the choice of these meridians. The core curve of the
tube T is a primitive closed geodesic (; c T;.

Drilling of the geodesics 3;, that is, removal of the geodesic 3; for each i, defines a
new manifold M. Brock and Bromberg (Theorem 6.1 of [BB02|) showed that if the sum
of the lengths of the geodesics §; is sufficiently small, then the manifold M admits a
complete hyperbolic metric of finite volume for which each Margulis tube T; about one
of the geodesics ; has been replaced by a rank two cusp C;. Furthermore, the hyperbolic
metric on M — u;C; is L-bilipschitz to the hyperbolic metric on M — u;T; for a number L
which tends to one as the sum of the lengths of the geodesics B; tends to zero.

The work [BB02| does not give an effective upper bound for the total length of the
geodesics §; for which the drilling result holds true, nor is the dependence of the bilipschitz
constant L on this total length explicit. Such effective bounds were recently obtained by
Futer, Purcell and Schleimer [FPS21].

The first main goal of this section is to establish a version of the drilling result of
Brock and Bromberg [BB02] as an application of our main theorem. As in [BB02|, our
result is not effective, but it allows the drilling of an arbitrary number of geodesics, with
only a universal upper length bound for each of them, provided that these geodesics are
sufficiently sparsely distributed in M.

For an application of our methods, it is more convenient to control a Margulis tube
via the length of its meridian on the boundary torus and not via the length of the core
geodesic. Thus we begin with comparing the information on meridional length with the
information on the length of the core geodesic.

Let us consider for the moment an arbitrary Margulis tube T" with core geodesic S of
length £ > 0 and boundary 0T in some hyperbolic 3-manifold M. If R > 0 is the radius
of the tube, that is, the distance of the core geodesic 8 to the boundary torus 0T, then
the meridian of 7" is a simple closed geodesic on the flat torus 07 of length 27sinh R.
In particular, since the injectivity radius of 0T roughly equals the Margulis constant
for hyperbolic 3-manifolds, the radius R is bounded from below by a universal positive
constant. Cutting 97 open along a meridian yields a flat cylinder with boundary length
2msinh R and height ¢cosh R. The area of 0T equals 27¢sinh R cosh R.

In general, the relation between the length ¢ of the core geodesic of a Margulis tube
and the radius R of the tube is delicate. The following effective bound is a special case
of Theorem 1.1 of [FPS19b].

Theorem 11.1 (Futer, Purcell and Schleimer). Let € < 0.3 be a Margulis constant for
hyperbolic 3-manifolds. Let M be a hyperbolic 3-manifold and let N ¢ M be a Margulis
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tube whose core geodesic has length ¢ < 8. Then the radius of the tube is at least

arcosh —=.
NG

Theorem 11.1 makes the idea effective that a very short core geodesic is contained
in a Margulis tube of very large radius. As a consequence, finding non-effective upper
length bounds on closed geodesics which we can drill from a hyperbolic manifold, with
effective control on the geometry of the resulting manifold with cusps, is equivalent to
finding non-effective lower bounds on tube radii about closed geodesics which allow for
geometrically controlled drilling.

We show

Theorem 11.2 (The drilling theorem). For any >0, k€ (0,1) and m >0 there exists
a number R = R(e,k,m) > 0 with the following property. Let M be a finite volume
hyperbolic 3-manifold, and let T, ..., T} be a family of Margulis tubes in M. Let R; >0
be the radius of the tube T;, and let B; be its core geodesic. If for each r > 0 and each
x € M we have #{i | dist(x,T;) < r} < me™ and if R; > R for all i, then the manifold
M obtained from M by drilling each of the geodesics 3; admits a complete hyperbolic
metric of finite volume, and the restriction of this hyperbolic metric to the complement
of the cusps C; obtained from the drilling is e-close in the C?-topology to the metric on
M - T;.

Remark 11.3. Our drilling theorem is weaker than Theorem 6.1 of [BB02]| as we require
that the manifold M is of finite volume rather than just geometrically finite. Furthermore,
in contrast to the work [FPS21|, our estimates are not effective. But it is also stronger
than the results obtained in [BB02, FPS21] as it allows for drilling of an arbitrary number
of closed geodesics, contained in Margulis tubes of tube radius larger than a fixed constant,
provided that the tubes are sufficiently sparsely distributed in the manifold M, and it
gives better geometric control on the drilled manifold.

In fact, the improved estimate in Theorem 10.1 and the estimate (11.4), which will be
obtained during the proof of Theorem 11.2, immediately imply the following. For any
d > 0 there exists R = R(d,&,k,m) > 0 so that on the thick part of the drilled manifold,
the hyperbolic metric is e~ (1-3r-0)dist(,Menin)_c]ose to the original metric. In particular,
by choosing § < %(1 - k) one can always arrange that on the thick part of the drilled

1 dist('7Mt}1in)_

manifold, the hyperbolic metric is ce™ 2 close to the original metric.

Proof of Theorem 11.2. We split the proof into several steps.

Step 1 (Construction of an approximating metric): Let us consider the bound-
ary 0T of a Margulis tube T in a hyperbolic 3-manifold of finite volume. This is a flat
torus, and the meridian of the tube T' defines a foliation of 9T by closed geodesics. In
polar coordinates (r,6,y) about the core geodesic 8 of the Margulis tube, the hyperbolic
metric can be written as

g = dr® + (sinh7)2d6* + (coshr)?dy?
where dy is a one-form on T" which vanishes on the immersed totally geodesics hyperbolic

planes which intersect the core geodesic of the tube orthogonally and where r > 0 is the
radial distance from the core curve of the tube T. The bilinear form (sinhr)2df? +
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(coshr)?dy? defines the flat metric on the level tori {r = const} of the distance function
from the core geodesic.

Choose a smooth function o : R — [0, 1] such that o = 1 in a neighbourhood of (-0, -1]
and o =0 in a neighbourhood of [0, c0). Let R be the radius of the Margulis tube 7. In
the coordinates (r,0,y), define a new metric § on a tubular neighborhood C c T about
0T of radius 1 by

. L1 \?
g =dr’ + ((1 - o(r-R))sinh(r) +o(r - R)§eT) d6?
R .1 \2
+((1—0(7“—R))C08h(7')+U(7’—R)§€T) dy?.

Since the first and second derivatives of ¢ are uniformly bounded and the derivatives
of the function €"/2 — sinh(r) = €7"/2 equal +e™"/2 and similarly for €"/2 — cosh(r),
the metric § is aje ?R-close to ¢ in the C-topology on C' where a; > 0 is a universal
constant. Furthermore, as the metric § coincides with the hyperbolic metric g of M in
the complement of the Margulis tube 7', it can be viewed as a metric on M — T which is
are”?F-close to ¢ in the C?-topology, where T =T-C. The sectional curvature of g equals
-1 outside of the collar C, and it is contained in the interval [-1 — aze 2%, -1 + age %]
for a universal constant as > 0 not depending on 7" or M. The same argument shows
that ||[VRic(g)||co < A for a universal constant A > 0.

Near the boundary component of C' which is contained in the interior of the tube T,
the metric § is of the form dr? + e?" gy where gg is a fixed flat metric on the distance tori
to OT for the metric g. Such a warped product metric is the local model for a hyperbolic
metric on a rank two cusp. Thus we can glue a hyperbolic rank two cusp to the interior
boundary component of the collar C' in such a way that the resulting manifold M is
obtained from M by drilling the closed geodesic 3, and M is equipped with a complete
Riemannian metric § whose restriction to M — T coincides with g and is hyperbolic in
the complement of the collar C. In particular, § coincides with g on M — T (using the
natural embedding of M — T into M).

The same construction can be done for all the Margulis tubes T1, ..., T, simultaneously.
That is, the manifold M which is obtained from M by drilling the closed geodesics
b1, ..., B admits a complete finite volume Riemannian metric g such that

o g:gonM\Uf:ITi;

9 gles < e in M UL, T

|sec(g) + 1] < ae~?% inside the cusp that is obtained by drilling ;;
g is hyperbolic outside the union of the collars Uf;l Ci;
IVRic(g)llco(ar,g) <A

Here @ and A are both universal constants.

Step 2 (Reducing the problem): For sufficiently large R;, all the conditions in
Theorem 2 besides the integral estimate are clearly satisfied. Thus it remains to prove
the integral estimate. Since area(07;) = 2wl(5;) cosh(R;) sinh(R;) where R; is the radius
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of the tube T;, we have
volg (C;) < cefti

for a universal constant ¢, where Cj is the collar around 07;. Namely, if R is large, then
the same holds true for sinh(R). Thus a shortest closed geodesic on T;, whose length
equals twice the Margulis constant p and hence roughly equals one, is different from
a meridian and has to cross through the cylinder of height ¢(/;) cosh(R;) obtained by
cutting T; open along a meridian. As a consequence, its length is at least £(3;) cosh(R;),
that is, we have £(3;) cosh(R;) < 2u. Together with the curvature estimate, this implies

j; |Ric(g) + 29\3 dvolg < Cvol(C;) (6_2Ri)2 <Ce i< Ce3R, (11.1)

where in the last inequality we used the assumption that the radius R; of T; is at least
R.

Write 0;(x) := dist(x,07;) and rz(y) = d(x,y). As C; has width 1, for all z € M, all
i <k and all y € C; it holds 0;(z) < d(z,y) +1 = r,(y) + 1, whence [d;(x)] < rx(y) + 2.
Therefore, we deduce from (11.1)

k
.[M e W Ric(g) + 2§|§ dvolz(y) < C (Z 8(25)[61(1)]) e 31 (11.2)
i=1

Here 0 € (0,2) is a small constant that will be determined later.

Step 3 (Estimating the sum): By assumption, we have #{i|d;(z) < r} < me"".
Observe that by choosing x’ > , if R = R(k, ') is big enough, then by the second bullet
point at the end of Step 1, after replacing s by ', this estimate also holds true in M.
Choose once and for all such a number &’ € (k,1). From now on all distances are taken
in M and with respect to g.

To estimate the sum in (11.2) we need to analyze the functions [d;(z)]. Observe that
[0;(x)] also satisfies the growth condition. Indeed, since for all u € R and r € N it holds
w < r if and only if [u] <7, we have

#{i|[6:(x)] <Y = #{i| 6 (z) < v} <me”T
for all r e N. Fix x € M. Let 0 < rg < ... <1 be an enumeration of {[d;(z)]]i=1,...,k}.
So

k l l
Do e GO = 5 i [6:()] = ry}e G0 cm Yy G (113
j=0 J=0

i=1

-----

decreasing (assuming 0 + k' < 2), we get

l o ! !
3 e @0 ¢ f @6k g - L (26w (r0-1) (11.4)
§=0 ro—1 2-0-k'
Finally note that d(z, Mthick) < d(x,0T;) since 0T; € Mthick, and hence d(z, Mthick) <rQ.
Therefore, if we choose § = 0(x) € (0,2) and b = b(x) > 1 small enough so that §+x’'+b < 2,
then
ebd(@:Minicic) [M e" (20| Ric(g) + 2§|§ dvoly(y) < Ce 3k
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by combining (11.2), (11.3) and (11.4). For R large enough, this will be at most &2.
Therefore, we can evoke Theorem 2 to complete the proof. O

Controlled Dehn filling can be done with precisely the same argument. The following
is a version of a theorem of Hodgson and Kerckhoff [HKO08]. In its formulation, we start
with a finite volume hyperbolic 3-manifold M and a collection of cusps C1,...,C; whose
boundaries 0C; are 2-tori. Our goal is to fill these cusps by replacing them by solid tori,
and show that if the lengths on OC; of the meridians of the solid tori are sufficiently
large, then the filled in manifold admits a hyperbolic metric which is close to the metric
of M on the complement of the cusps. Our result is weaker than the result in [HK08| as
the filling constants we find are not effective. On the other hand, similarly to Theorem
11.2 and unlike the results of [HKO08]|, the filling constants do not depend on the number
of cusps to be filled but only on sparsity of these cusps in M. Furthermore, the lower
length bound on the meridional geodesic v we use for the filling is the actual length of
~ on the flat torus T" and not its normalized length, defined to be the length of ~v on the
flat torus 7”7 which is obtained from T by rescaling the metric so that the volume of 7’
equals one.

Theorem 11.4 (The filling theorem). For any € >0, k€ (0,1) and m > 0 there exists
a number L = L(e,k,m) > 0 with the following property. Let M be a finite volume
hyperbolic 3-manifold, C1,...,Cy € M be a finite collection of torus cusps, and assume
that for each r >0 and each x € M we have #{i | dist(z,C;) <r} <me" . For each i<k
let a; be a flat simple closed geodesic in OC; of length L; > L. Then the manifold obtained
from M by filling the cusps C;, with meridian «;, is hyperbolic, and the restriction of its
metric to the complement of the Marqulis tubes obtained from the filling is e-close to the
metric on M —u;C;.

Proof. The proof is analogous to the proof of Theorem 11.2. Namely, let a; c 9C; be a
closed geodesic. Then «; defines a foliation of C; by closed geodesics, and there is a dual
orthogonal foliation by geodesics (which are not necessarily closed). Let us assume that
the length of o; equals e /2 for a number R; > 0. Reversing the argument in the proof
of Theorem 11.2, define a new metric on the tubular neighborhood N(9C;, 1) of radius
one about JC; in the cusp C; as follows. Write the hyperbolic metric in horospherical
coordinates in the form dt? + e**da? + e*dy® where the euclidean coordinates (z,%) on
the flat torus are such that the horizontal lines are the geodesics parallel to «; and the
vertical lines define the orthogonal foliation.

Let 0 : R - [0,1] be a smooth function which vanishes on [0,00) and equals 1 on
(=00, —1]. Define a metric g; on C; by

gi=g - (a(t)e 7t 12)da? + (o (t)e 7 [2)dy?.

Then the metric §; on the distance tori of distance bigger than one can be written in
orthogonal coordinates as (sinh(R; —t))?dz? + (cosh(R; —t))?dy?. In particular, if £; >0
is such that the height of the cylinder obtained by cutting the boundary component of
N(0C;,1) distinct from OC; open along «; equals ¢; cosh(R; — 1), then we can glue a
hyperbolic tube to this boundary with core curve of radius ¢; and meridian «;.
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The resulting manifold M is obtained from M by Dehn filling of ;. Furthermore, it
is equipped with a Riemannian metric of curvature in the interval [-1-¢€,—1+¢] which is
of constant curvature —1 outside of the sets N(9C;, 1), and the integral of the traceless
Ricci curvature fulfills the assumptions in Theorem 11.2.

Thus the arguments in the proof of Theorem 11.2 apply without change and show the
theorem. O

12. EFFECTIVE HYPERBOLIZATION I

A handlebody of genus g > 1 is a compact 3-manifold H which is diffeomorphic to the
connected sum of g solid tori and whose boundary is a closed oriented surface dH = ¥ of
genus g. It is characterized up to marked homotopy equivalence by its disk set, which
can be thought of as the collection of all essential simple closed curves on 0H which
bound embedded disks in H. Equivalently, the disk set is the set of all essential simple
closed curves in 0H which are homotopic to zero in H.

If we glue two handlebodies Hy, Hs along their boundaries with an orientation reversing
diffeomorphism f: dH; — 0Hs, then the resulting 3-manifold is closed and oriented. Up
to homotopy and hence diffeomorphism, it only depends on the isotopy class of f, in
fact, only on the double coset of this isotopy class in the mapping class group of dH
which allows for precomposition of f with an element of the handlebody group of H; and
postcomposition of f with an element of the handlebody group of Hs.

The curve graph CG(X) of ¥ = OH is the graph whose vertices are isotopy classes of
simple closed curves on ¥ and where two such curves can be connected by an edge of
length one if they can be realized disjointly. The curve graph of ¥ is known to be a
hyperbolic geodesic metric graph. The disk set of H determines a full subgraph D of
CG(X) whose vertex set is the disk set of H. This subgraph is uniformly quasi-convez
[MMO4] in CG(X). This means that there exists a number k > 0 only depending on
the genus of the surface ¥ such that for any two disks a,b € D, any geodesic in CG(X)
connecting a to b is contained in the k-neighborhood of D.

The Hempel distance of the Heegaard splitting f is defined to be the distance in CG(X)
between the disk set Dy of Hs and the image D; under the gluing map f of the disk set
of Hy. If the Hempel distance is at least three, then the manifold M, is known to be
aspherical and atoroidal [Hem01] and hence by the geometrization theorem, it admits a
hyperbolic metric. The goal of this section is to give an effective construction of such
a metric not depending on any earlier hyperbolization result provided that the gluing
map f fulfills some combinatorial requirement which for example is satisfied for random
3-manifolds. We refer to [HV22] for a detailed account on the geometry of random
3-manifolds.

To introduce the combinatorial condition, note that since D; is a quasi-convex subset
of the curve graph and the curve graph is hyperbolic [MM99], if the distance between
D1 and Dy is larger than a constant b > 0 only depending on the hyperbolicity constant
of CG(X) (which does not depend on ¥) and of the quasi-convexity constant for the
embedding D; - CG(X) (which only depends on ¥), then there is a coarsely well defined
shortest geodesic ¢ in CG(X) connecting Dy to Dy. This means that ¢ is a geodesic in
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CG(X) which connects a point ¢; € Dy to a point co € Do, and if v is any geodesic in
CG(X) connecting a point in D; to a point in Do, then ( is entirely contained in the
r-neighborhood of v where r > 0 is a constant only depending on ¥. For the remainder
of this section, we always assume that deg(Di,D2) > b.

For a proper essential connected subsurface S of ¥ different from a pair of pants and
an annulus, define the arc and curve graph CG(S) of S to be the graph whose vertices
are essential simple closed curves in S or essential arcs with endpoints in the boundary
0S of S. Two such arcs or curves are connected by an edge of length 1 if they can be
realized disjointly. If S is an annulus then this construction has to be modified. As we do
not need more precise information here, we omit a more detailed discussion which can be
found in [MMO0O]. For a simple closed curve ¢ € CG(X) with an essential intersection with
S, the subsurface projection of ¢ into CG(S) is the union of all intersection components
of ¢ with S (properly interpreted if S is an annulus).

By the above discussion and Theorem 3.1 of [MMO00]|, there exists a number p > 0 with
the following property. Let as before ¢ be a shortest geodesic in CG(X) connecting D1 to
Ds. Let us assume that there exists a proper essential connected subsurface S ¢ ¥ whose
boundary 0S5 consists of a collection of simple closed curves whose distance to each of
the endpoints of ( is at least p. Let us also assume that the diameter of the subsurface
projection of the endpoints of ¢ into S equals k > 2p. Then for any pair (a1,a2) € D1 x Do,
the diameter of the subsurface projection of a1, as into S is at least k—p > p. Furthermore,
any geodesic in CG(X) connecting ay to as passes through a simple closed curve which
is disjoint from S.

The following is the main result of this section. For its formulation, we define an e-
model metric on a closed ashperical atoroidal 3-manifold M to be a metric which fulfills
the assumptions in Theorem 10.1 for the control constant e.

Theorem 12.1. For every k > 2p,e > 0 there exists a number b = b(X,k,e) > 0 with
the following property. Let D1, Do be the disk sets of the manifold My. Assume that a

minimal geodesic ¢ in CG(X) connecting D1 to Dy contains a Subsegmenté of length at
least b whose endpoints do not have any subsurface projection of diameter at least k into
any subsurface of . Then My admits an explicit e-model metric which is e-close in the
C?-topology to a hyperbolic metric.

We begin the proof of Theorem 12.1 by recalling some results from [HV22].

The geometry of the curve graph of the surface X is coarsely tied to the geometry of
the Teichmiller space T(X) of ¥. Namely, there is a (coarsely well-defined) Mod(X)-
equivariant Lipschitz map T : T (X) — CG(X), called the systole map, that associates to
every marked hyperbolic structure X € 7(X) a shortest geodesic T(X) on it. It follows
from Masur-Minsky [MM99]| (see Lemma 3.3 of [MMO00] for a precise account, and note
that small extremal length of a closed curve on a Riemann surface is equivalent to small
hyperbolic length) that there exists a constant L > 1 only depending on ¥ such that
for every Teichmiiller geodesic v : I - T(X) (here I is a connected subset of R), the
composition T o~ : I — CG(X) is an unparameterized L-quasi-geodesic. This means
that there exists a homeomorphism p: J — I such that the composition T oo p is an
L-quasi-geodesic in CG(X). Moreover, if we restrict our attention to the J§-thick part
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T5(X) of Teichmiiller space of all hyperbolic metrics whose systole, that is, the length
of a shortest closed geodesic, is at least §, then the situation improves: In [Ham10] it is
shown that for every § > 0 there exist Ls > 1 such that if v is parameterized by arc length
on an interval I of length at least Ls and if y(I) c T5(X), then Y o+ is a parameterized
Ls-quasi-geodesic.

Using the notations from Theorem 12.1, let us now assume that for some k£ > 2p, a
shortest geodesic ¢ connecting Dy to Dy contains a subsegment g: with the property that
there does not exist any proper essential subsurface S of 3 for which the diameter of
the subsurface projection of the endpoints of f into S is larger than k. If the length of
é is sufficiently large, then we shall construct from this segment two convex cocompact
hyperbolic metrics on a handlebody which contain large almost isometric regions whose
injectivity radius is bounded from below by a universal constant. We then glue the
handlebodies along these regions with a map which is close to an isometry for these
metrics and construct a closed 3-manifold diffeomorphic to My with an e-model metric
which can be deformed to a hyperbolic metric using Theorem 2.

To implement this program, we follow [HV22] and introduce a notion of relative
bounded combinatorics and height. Fix a sufficiently small threshold § > 0. Denote
by d7 the distance on 7 (X) for the Teichmiiller metric.

Definition 12.2 (Relative Bounded Combinatorics). Consider Y, X € T(X). We say
that (Y, X) has relative d-bounded combinatorics with respect to the handlebody H with
disk set D if the Teichmiiller geodesic [Y, X ] connecting Y to X is contained in 75(X)
and if

1
deg(D, T(Y)) +deg(T(Y), (X)) < deg(D, T(X)) + =
The height of the pair (Y, X) is dr (Y, X).

A convexr cocompact metric on a handlebody H is a complete hyperbolic metric on
the interior of H with the following property. The hyperbolic metric determines up to
conjugacy an embedding of the fundamental group of H (which is the free group with g
generators) into PSL(2,C). The image group T acts on the boundary OH?® of hyperbolic
3-space, preserving a decomposition of 9H? into the limit set A(T') and the domain of
discontinuity Q(T).

The quotient H3uQ(I")/I" is compact and homeomorphic to the handlebody H. More-
over, as the action of I' on Q(T") preserves the conformal structure, the quotient Q(T")/T"
is the surface ¥ equipped with a conformal structure X € 7(X). Up to isometry, the
convex cocompact metric on H is determined by X, and the corresponding hyperbolic
handlebody will be denoted by H(X). The convex core CC(H(X)) of H(X) is the quo-
tient of the convex hull of A(T") in H?® by the action of T, with boundary CC(H(X)).
The convex core CC(H (X)) is homeomorphic to the handlebody H.

A product region in a convex cocompact hyperbolic handlebody H(X) with bound-
ary surface X is a codimension 0 submanifold U ¢ H(X) contained in the convex core
CC(H(X)) of H(X) which is homeomorphic to X x [0, 1] with a homeomorphism whose
restriction to each surface ¥ x{s} is homotopic to the inclusion ¥ - dCC(H (X)) c H(X).
If U is such a product region then we can define the width width(U) = inf{d(z,y) | z €
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0"U,y € U™} where 0*U are the two boundary components of U. If the width of the
product region is at least D and the diameter is at most 2D then we say that the product
region has size D (see Section 5 of [HV22]).

A product region U ¢ H(X) can be used to decompose the handlebody H(X) into
two connected components. The first component is the closed subset of H(X) - U
containing H(X) - CC(H (X)) (it is straightforward that there are no choices made in
this construction). The second component is its complement, which is an open subset of
H containing U. We define the gluing block Hy of H(X) to be the component containing
U.

Fix a number «a € (0,1). For a number £ > 0, define a £-almost isometry between two
Riemannian manifolds (M, p1), (Ma, p2) to be a smooth map ® : My — M, such that
[p1 = @*p2|c2 < € Our main technical tool is the following Theorem 5.12 of [HV22]. In
its formulation, dcg denotes as before the distance in the curve graph of ¥ = 0H;.

Theorem 12.3 (The gluing theorem). For § >0 there exists ¢ = ¢(5) >0,D = D(4) >0,
and for § > 0 there exists hgluing (0,€) > 0 such that the following holds true. Let Hy, Hy be
two handlebodies of genus g and let f: O0Hy - OHy be a gluing map. Let [Y, X ] c T5(X)
be a geodesic segment satisfying the following relative bounded combinatorics and large
heights properties:

o dr(Y,X) € [h,2h] for some h > hglying (0,&).
e If Dy denotes the disk set of the handlebody Hy, then the pair (Y, X) satisfies

deg(Y(X),Y(Y)) +deg(Y(Y),D1) < deg(Y(X),D1) + %

The same holds true for the pair (f1X, f~1Y) and the disk set Dy of Ho.
Consider Ny = H(Y), Ny = H(f1X). Then there exist:

e Product regions U; c CC(N;) of size D for j =1,2. We denote by N]Q c CC(N;)
the gluing blocks they define.

o An orientation reversing &-almost isometric diffeomorphism ® : Uy - Us for
7=1,2 1in the homotopy class of f.

In particular, we can form the 3-manifold
Xg =Ny V-0, Ny

obtained from the disjoint union of N, N3 by identifying a point x € NY with its image
under ® in NY. This manifold is diffeomorphic to My = Hyuy Hy. Denote by ) the
image in Xy of Uy uUs. The manifold Xy comes equipped with a Riemannian metric p
with the following properties:

i) The sectional curvature of p is contained in the interval (-1 -§,-1+¢&), and it is
constant -1 on Xy - Q.
i1) The diameter of Q2 is at most 2D, and the injectivity radius on Q is at least ¢.
iti) The two components of Xy - are isometric to the complement in CC(N;) of collar
neighborhoods about the boundary of CC(N;) of uniformly bounded diameter (de-
pending on h and hence on £,0).



STABILITY OF EINSTEIN METRICS AND EFFECTIVE HYPERBOLIZATION 151

We call the metric constructed in Theorem 12.3 from the convex cocompact handle-
bodies H(Y), H(f 'X) and the gluing map f a &-model metric with 5-bounded combi-
natorics. Theorem 12.3 then can be restated as saying that if M fulfills the assumption
stated in Theorem 12.3, then it admits a £&-model metric with §-bounded combinatorics.
Note that the lower injectivity radius bound on €2 is not explicitly stated in Theorem 5.12
of [HV22], but is discussed in Section 5.3 of [HV22]. The metric has constant curvature
—1 outside of the open subset €2, called the gluing region in the sequel. Furthermore,
since it is constructed by gluing two almost isometric hyperbolic metrics with a gluing
function all of whose derivatives are uniformly bounded (and in fact small depending on
the geometric data which enter in the construction), the covariant derivative of Ric is
pointwise uniformly bounded by a constant only depending on 4.

By construction, the gluing region contains an open subset diffeomorphic to ¥ x (0,1)
whose diameter is bounded from above by a constant 2D > 0 only depending on &, whose
injectivity radius is bounded from below by a constant ¢ only depending on § and is such
that the distance between the two boundary surfaces of this set is at least D. This implies
that its volume is contained in the interval [v~! v] for a number v > 0 only depending
on the genus g of the handlebody and on §.

Theorem 2 from the introduction can be used to promote a model metric to a hyperbolic
metric which is close to the model metric in the C%-topology. We summarize this as
follows.

Proposition 12.4. For all € > 0,k > 0 there exist numbers b =b(e, k) >0, £ =&(e, k) >0,
0 =0d(e,k) >0 and v = v(e, k) > 0 with the following properties. Let f : 0H; — OHo
be a gluing map und use this to define the disk sets D1, Ds. Assume that a shortest
geodesic ¢ connecting Dy to Dy contains a subsegment é of length at least b such that for
any proper essential subsurface S of 3, the diameter of the subsurface projection of the
endpoints ofé into S is at most k. Then the manifold My admits a {-model metric with
§-bounded combinatorics which is e-close in the C*-topology to a hyperbolic metric. Iff
s another subsegment of ( of length at least b which has the same properties as é and 1s
disjoint from é, then these two segments determine a submanifold of My diffeomorphic

to ¥ x [0,1] whose volume for the hyperbolic metric on My is at least v(deg(C,0)).

Proof. The distance formula Theorem 6.12 of [MMO00] and its variation for the Teich-
miiller metric together with the main result of [Ham10] and Lemma 6.7 and Lemma 6.8
of [HV22] shows that for every k > 0 there are numbers mg = mo(k), o = (k) > 0 and
L = L(k) > 1 with the following property.

Let m > 3mg and let n: [0,m] - CG(X) be a geodesic with the property that there
exists no proper essential subsurface S of ¥ such that the diameter of the projection
of the endpoints 7(0),n(m) of n into the arc and curve graph of S is larger than k.
Let X,Y € T(X) be such that the Y-length of the curve n(0) is not larger than a Bers
constant for 3, and that the same holds true for the X-length of the curve n(m). Let
[Y, X] be the Teichmiiller geodesic connecting Y to X. Then there exists a subsegment
[Yo, Xo] c [Y, X] entirely contained in 7,(X) with the property that Y|[Yp, Xo] is an
L-quasi-geodesic connecting a point in the L-neighborhood of n(mg) to a point in the
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L-neighborhood of n(m —myg). In particular, we have

deg(n(mo), T(Yo)) + deg (Y (Yo), T(Xo)) < deg(n(mo), T(Xo)) + L

and similarly for n(m —mg) and Y(Xj).

It follows from the construction in the previous paragraph that up to a uniform ad-
justment of constants, if n is a subsegment of a minimal geodesic connecting D1 to Do,
then the pair (Yp, Xo) has relative o-bounded combinatorics with respect to the han-
dlebody H; with disk set Dy, and (Xo,Yp) has relative o-bounded combinatorics with
respect to the handlebody Hs with disk set Dy in the sense of Definition 12.2. The
height d7(Yy, Xo) is bounded from below by (m—2my—2L)/c—c for a universal constant
¢ > 0 by the fact that the image of [Yy, Xo] under T is an L-quasi-geodesic connecting
two points in CG(X) of distance at least m — 2mg — 2L and the fact that Y is coarsely
c-Lipschitz. As a consequence, for any & > 0, if h = hglying(0,€) > 0 is as in Theorem 12.3
and if m > ch + 2mg + 2L + ¢2, then this height is at least h.

Recall that the diameter D and hence the volume of the gluing region €2 in the state-
ment of Theorem 12.3 for § = o and £ is bounded from above by a constant which only
depends on ¢ but not on €. Since the sectional curvature of the model metric is contained
in the interval [-1 - C¢, -1+ C¢], we know that for a given number & > 0 and the fixed
number o which only depends on k, there exists a number &y = §y(¢,0) > 0 such that if
§ <&o, then the {-model metric with relative o-bounded combinatorics on M} fulfills the
assumptions in Theorem 2 for this number . An application of Theorem 2 then shows
that there is a hyperbolic metric on My in the e-neighborhood of the model metric in the
C?-topology.

We are left with the volume estimate. To this end note that the construction of the
Teichmiiller segment [Yy, Xo] which gave rise to the gluing region 2 only used a suffi-
ciently long subsegment ¢ of a minimal geodesic in CG(2) connecting D; to Ds. Let
us now assume that ¢ is a second such subsegment which is disjoint from f , and let
us assume that it is contained in the subsegment of ¢ connecting D; to ¢. Let [W,V]
be a Teichmiiller geodesic segment constructed from 5 as in the first paragraph of this
proof, and let [Wy, Vy] ¢ [W, V] be the subsegment in 7,(X) found with the argument
in the second paragraph of this proof. By Proposition 4.1 of [HV22], the convex cocom-
pact handlebody H(Y') which entered the above construction contains a submanifold N
which is £-almost isometric to a submanifold Ny of the quasi-fuchsian manifold Q(Vp, Yp)
defined by the marked hyperbolic surfaces Vp, Yy, and this submanifold contains the com-
plement of a collar of uniformly bounded height about the boundary in its convex core
CC(Q(Vy,Yp)). By Theorem 12.3, the submanifold N of H(Y') is isometrically embedded
in My, equipped with the model metric constructed as above from the segment é .

The model manifold theorem [Min10] or earlier work of Brock [Bro03] shows that there
exists a constant p > 0 such that the volume of the manifold Ny and hence the volume of
N is bounded from below by pdw p(Vo, Yp), where dyy p is the distance in 7 (X) induced
by the Weil Petersson metric. Namely, by [Bro03], the volume of the quasi-fuchsian
manifold Q(Vj,Yp) is bounded from below by p'dw p(Vy, Yy) for a constant p' = p'(X),
and vol(Q(Vo, Yo) — No) is uniformly bounded. As by bounded combinatorics and the
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explicit construction, the Weil Petersson distance dy p(Vp, Wy) is large, the volume
estimate for IV follows from an adjustment of constants.

Now there exist a number C' > 0 such that dy p(Vo, Yo) > Cdeg(Y(Vp), YT(Yp)) [Bro03]
and hence the volume of the submanifold N of My with respect to the model metric

is bounded from below by pCdeg(Y(Vo), Y(Yy)) > pCdeg(C,¢). Thus Theorem 2 im-
plies that the same holds true for My, equipped with the hyperbolic metric (recall the
convention of adjusting constants). This completes the proof of the proposition. O

Remark 12.5. The volume estimate in Proposition 12.4 is far from being sharp. Namely,
in the proof, we used the fact that under suitable assumptions on the gluing map f, the
hyperbolic manifold M; contains an embedded subset which is almost isometric to the
complement of a collar of uniformly bounded height about the boundary in CC(Q(Vy, Yy))
where Q(Vp, Yp) is a quasi-fuchsian manifold whose conformal boundaries Vj, Yy are con-
tained in the thick part of Teichmiiller space. By a result of Brock [Bro03], the volume
of Q(Vp,Yp) is proportional to the Weil-Petersson distance dw p(Vp, Yy) between Vp, Yy
in 7(X), and the ratio deg (Y (Vh), Y(Y0))/dwp(Vo, Yp) can be arbitrarily small.

Since the Weil-Petersson distance between Vj, Yy € T(X) is proportional to the distance
in the pants graph between shortest pants decompositions for Vj, Yy [Bro03], this leads
us to conjecture that the volume of a hyperbolic 3-manifold My with Heegaard surface
> of minimal genus is proportional to the minimal distance in the pants graph between
two pants decompositions P; ¢ D; and P> c Ds, with constants only depending on .

13. A PRIORI GEOMETRIC BOUNDS FOR CLOSED HYPERBOLIC MANIFOLDS

The goal of this section is to obtain some geometric control on a closed hyperbolic 3-
manifold M constructed by gluing two handlebodies Hy, Ho with boundary 0H; = 0Hs =
> with a gluing map f which does not fulfill the combinatorial condition in Theorem 12.1.
This leads to the proof of Theorem 6 from the introduction. We always assume that the
Hempel distance of the Heegaard splitting is at least 3. This rules out the existence of
trivial handles in the Heegaard surface.

As before, denote by D1, Do the disk sets of My, viewed as subsets of the curve graph
CG(X) of 3. Call a proper essential subsurface Y of ¥ strongly incompressible in My if
the distance in CG(X) between Y and Dy U Ds is at least three. This implies that the
boundary dY of Y consists of simple closed curves in ¥ which are not homotopic to zero
in My. More concretely, we have

Lemma 13.1. Let Y c X be a strongly incompressible subsurface.
i) For any boundary component v of Y, the inclusion ¥ \ v — Mg \ 7y is mi-injective.
it) If a 'Y is an embedded essential arc with endpoints on Y, then « is not homotopic
in My into OY keeping the endpoints in OY .
1) If o, B are two disjoint non-homotopic essential arcs in'Y, then «, 3 are not homo-
topic in My keeping the endpoints in 0Y .

Proof. The first statement of the lemma follows from Dehn’s lemma [Hem76|, applied
to the complement of a small open tubular neighborhood N of v in M. Namely, ¥ - N
is a properly embedded bordered surface in My — N, and hence if there is an essential
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closed curve in ¥ - v which is contractible in My —~y, then there is an essential simple
closed curve in X -~ which bounds a disk in M. But this contradicts the fact that any
diskbounding simple closed curve in X has essential intersections with ~.

Now let o ¢ Y be an embedded essential arc with endpoints on the same component
¢ of 9Y. Then each component of the boundary of a small neighborhood of « U in Y
is an essential simple closed curve in Y. This curve is not homotopic to zero in My by
the discussion in the previous paragraph. But this means that o is not homotopic in My
into Y keeping the endpoints in 0Y'.

Similarly, if a1, a9 are two disjoint non-homotopic arcs in Y with endpoints on the
same (not necessarily distinct) boundary components (i, (2 of Y, then their union with
suitable chosen subarcs of (3 U (o defines an essential simple closed curve in Y to which
the above discussion applies. Thus such arcs can not be homotopic in My keeping the
endpoints in 3Y". (]

Denote by dgg the distance in the curve graph of ¥. Lemma 13.1 does not state that
for a subsurface Y ¢ ¥ with deg(0Y, D1 uDs) > 3, the inclusion Y — My is m-injective.
However we have the following weaker statement.

For its formulation, for a proper essential subsurface Y of 3 denote by dy the distance
in the arc and curve graph of Y, and diamy denotes the diameter of subsets of this graph.
Furthermore, if oy, as are simple closed curves in X which have an essential intersection
with Y, then we write dy (a1, a2) to denote the distance in the arc and curve graph of
Y between the subsurface projections of aq,ao, that is, the components of a; nY.

Lemma 13.2. There exists a number p = p(X) > 4 with the following property. LetY c 3
be a strongly incompressible subsurface whose boundary 0Y , as a geodesic multicurve in
My, fulfills deg(0Y,D1uDs) > p. If h: 3 x[0,1] = My is any homotopy of the inclusion
which preserves 0Y and if hi : X — X is a homotopy equivalence, then hi induces the
identity on m (X).

Proof. By [MMOO], there exists a number p = p(X) > 4 with the following property.
Let «, 8 be simple closed curves on ¥ and let Y ¢ ¥ be a subsurface which has an
essential intersection with «, 8 and such that dy(«,3) > p — 1; then any geodesic in
CG(X) connecting « to 8 has to pass through a curve disjoint from Y.

Since by [MMO04], the disk sets Dy, Dy are uniformly quasi-convex subsets of CG(X),
this implies that up to increasing p, the following holds true. Let Y c 3 be any proper
essential subsurface such that deg(9Y,D;) > p (i = 1,2); then diamy (D;) < p.

Let Y ¢ ¥ be such a subsurface and let h : ¥ x [0,1] - M be a homotopy of the
inclusion hg : ¥ - M which fixes Y. Assume that hq is a homotopy equivalence of X
onto ho(X). Then h; defines a mapping class ¢ € Mod(W), the mapping class group of
the component W. We claim that ¢ induces the identity on 1 (W).

Namely, as W is a surface with non-empty boundary, the group Mod(W') does not
have elements of finite order. Thus if ¢ is not trivial, then either ¢ is a pseudo-Anosov
mapping class of W, or ¢ preserves a non-trivial multicurve 5 ¢ W. Furthermore, there
exists a subsurface Z of W which is preserved by ¢, and if Z is not an annulus, then
the restriction of ¢ to Z is a pseudo-Anosov mapping class, and if Z is an annulus, then
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the restriction of ¢ to Z is a Dehn twist. The mapping class ¢ induces the identity on
m1(W) if and only if it is a composition of Dehn twists about the boundary curves of W
or is trivial.

To see that this is the case, note that by composition, for each k > 1, the mapping class
©" can also be represented by a homotopy of ¥ which preserves Y. But deg(dY,D; U
Ds) > p >4 and hence since OW is disjoint fromm 0Y, we have deg(OW,D1uDsy) > p—1.
In particular, any diskbounding simple closed curve in 3 has an essential intersection
with Z. Furthermore, by the choice of p, we have diamy (D;) <p (i =1,2).

Since ¢ is induced by a homotopy of ¥ in M, it has to preserve the diskbounding
curves in Y as this set is determined by the topology of M. Now if ¢ preserves the
non-peripheral subsurface Z ¢ W and acts on Z as a pseudo-Anosov mapping class (here
we include the case that Z is an annulus and ¢ is a Dehn twist) then

diamy (D1 U D, 0" (D UDy)) > 00 (k — o0).

As d)k(Dl UDy) = D1 UDsy, and as diamy(D; U Ds) < oo, this is a contradiction which
shows the lemma. O

Using an idea of Minsky [Min00], we establish an a priori upper bound for the total
length of the boundary 9Y of Y for the hyperbolic metric on My in terms of the diameter
of the subsurface projection of D1, D5 into Y.

More precisely, for a simple closed multi-curve v on ¥, denote by £;(y) the sum of
the minimal lengths of representatives of the free homotopy classes of the components of
7 in the hyperbolic manifold M. By convention, we have £;(c) = 0 for any curve on X
which is homotopically trivial in M. In the statement of the following result and later
on, p >4 is the constant from Lemma 13.2.

Theorem 13.3 (A priori length bounds). There ezists a number p = p(X) > 3, and for
every € >0 there exists a number k = k(X,€) > 0 with the following property. Let My be a
hyperbolic 3-manifold with Heegaard surface 3, Hempel distance at least 4 and disk sets
D1,Dy. If Y c X is a proper essential subsurface of X, with deg(0Y, D1 uDsy) > p and
diamy (D UDy) > k, then £;(0Y) <e.

Theorem 13.3 can be thought of as a version of Theorem B of [Min00] in a different
setting. The fact that Heegaard surfaces in My are compressible requires however a
substantial modification of the proof.

Following [Min00|, the main tool for the proof of Theorem 13.3 are pleated surfaces.
The pleated surfaces we are interested in are maps g: % — My in the homotopy class of
the inclusion ¥ — M} together with a hyperbolic metric o on ¥ satisfying the following
two conditions.

e g is path-isometric with respect to o.
e There exists a o-geodesic lamination A on 3 whose leaves are mapped to geodesics
by g. In the complement of A, g is totally geodesic.

The geodesic lamination A is called the pleating lamination of g. We refer to [Min00] for
more details on pleated surfaces as used in our context. We call the hyperbolic metric
o on Y which has the above properties the metric induced by the map g. Note that
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this makes sense since o is indeed the pull-back of the hyperbolic metric on My by g
(properly interpreted on the pleating locus).

We fix now once and for all a constant kg which is smaller than a Margulis constant for
hyperbolic surfaces and with the following properties (see p.139 of [Min00] for details).

(P1) For any hyperbolic surface S with geodesic boundary 0.5, any two essential prop-
erly embedded arcs 7,7’ in S with endpoints on 95 whose lengths are at most kg
are either homotopic keeping endpoints in 0.5, or they are disjoint.

(P2) If v is a simple closed geodesic on a hyperbolic surface S and if a contains a point
x € S of injectivity radius smaller than kg, then x is contained in a Margulis tube
A of S, and either o equals the core curve of A, or the subarc of Ana containing

x crosses through A, that is, it connects the two distinct boundary components
of A.

The second property follows from the fact that a closed geodesic in a hyperbolic surface
which enters sufficiently deeply into a Margulis tube but is not entirely contained in the
tube either crosses through the tube, or it has self-intersections.

A bridge arc for an essential proper non-annular subsurface Y c ¥ is an embedded arc
a c Y with both endpoints on Y which is not homotopic in M/ into Y keeping the
endpoints in Y. For a hyperbolic metric o on ¥, define a minimal proper arc to be a
bridge arc 7 for Y which is minimal in o-length among all such arcs. The following is a
version of Lemma 4.1 of [Min00].

Lemma 13.4 (Lemma 4.1 of [Min00]|). There exists a number Dy = D1(X) > 0 with
the following property. Let' Y c Xl be a proper essential non-annular subsurface which is
strongly incompressible for the hyperbolic 3-manifold My. Then for every v € D1 U Dy
there exists a pleated surface g, in the homotopy class of the inclusion X — My mapping

Y geodesically, with induced metric o(g-), such that for any minimal proper arc T in
(Y.o(g,)) we have

dY(f%T) < -Dl-

Proof. The proof of Lemma 4.1 of [Min00| carries over with no essential modification.
Namely, let v ¢ ¥ be a simple closed curve which defines an element of D; U Ds. By
assumption on Y, the curve v has an essential intersection with 9Y".

Modify 7 by spinning it about dY. That is, let T3y be the mapping class that performs
one positive Dehn twist about each component of Y. The sequence of curves T3 ()
converge, as n — oo, to a finite-leaved lamination A whose non-compact leaves spiral
about 0Y and whose closed leaves are precisely Y. Since the distance in CG(X) between
~ and QY is at least three, the complement ¥ — (0Y u~y) is a union of simply connected
components and hence the complementary regions of A are simply connected as well. Add
finitely many leaves to A so that the resulting lamination A’ is maximal. To simplify
notations, we identify A\ with \’.

The lamination A is the pleating lamination of a pleated surface gy in My mapping A
geodesically, with induced metric o) (compare [Min00]). Namely, let n be a component
of Y. Then 7 is not homotopic to zero in My and hence it can be represented by a

unique closed geodesic 7. Let M ¢ be the covering of M; whose fundamental group is
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infinitely cyclic and generated by the loop 7. Then M ¢ is a solid torus with core curve
the geodesic 7, and 7 lifts to a closed curve in Mf. Mapping a point p on 7 c Mf to
its shortest distance projection to 7 and connecting p to its image by a geodesic arc
determines a canonical homotopy of 7 to 9 which projects to a homotopy in M. Using
this homotopy, any essential arc in Y with endpoints on n can be extended to an arc
with endpoints on 7.

Thus the intersection arcs of the simple closed curve v with dY, assumed without
loss of generality to be essential, define a collection of arcs in My with boundary on the
collection JY of geodesics in My homotopic to dY. By the second part of Lemma 13.1,

such an extended arc is not homotopic into oYy keeping the endpoints in éY, and by
the third part of Lemma 13.1, two such extended arcs are homotopic in M; keeping the
endpoints in oY only if the corresponding arcs in Y are homotopic keeping the endpoints
in JY. Namely, two distinct such arcs are disjoint up to homotopy. Using the above
homotopy which deforms 7 to 7), this yields that each such arc can be represented by a
unique nontrivial geodesic arc in My with endpoints in dY which meets Y orthogonally
at the endpoints

Now spinning ~ about the boundary components of 9Y corresponds to turning the
endpoints of the geodesic arcs with boundary on dY about the components of Y. Taking
a limit as the number of turns goes to infinity results in replacing the arcs by infinite
geodesics which spiral about the components of dY . These geodesics define the geometric
realization of the lamination A in M. After adding finitely many leaves, the lamination
A decomposes ¥ into finitely many ideal triangles. These triangles bound totally geodesic
immersed ideal triangles in M; whose union defines the pleated surface gy.

Denote by Ry the complement in (X,0)) of the ko-Margulis tubes whose cores are
components of A (and hence of 9Y"), where kq is the constant chosen above with properties
(P1) and (P2). Realize the diskbounding curve v c ¥ by its geodesic representative for
ox. Denoting by 45, (o) the length of a geodesic arc « for the hyperbolic metric oy,
Theorem 3.5 and formula (4.3) of [Min00] show that

Uy, (YN Ry) <2C(y,0Y)

for a universal constant C' = C'(3, ko) > 0 where ¢(y,0Y) is the geometric intersection
number. Note that Theorem 3.5 of [Min00] holds true as stated for homotopically trivial
curves in My, that is, for curves of vanishing length.

As on p.139 of [Min00], it now follows that there exists at least one component arc of
vNnY n Ry of length at most 4C. Given a minimal proper arc 7 for (Y, o)), Lemma 2.1
of [Min00| then bounds dy (7, 7) from above by a universal constant. This is what we
wanted to show. (]

Following once more [Min00], we next turn to the proof of an analogue of Lemma 13.4
for essential incompressible annuli. For its formulation, define a bridge arc for a simple
closed curve « in X to be an embedded arc in ¥ with both endpoints in o which meets «
only at its endpoints and is not homotopic into « keeping the endpoints in . Let o be
a hyperbolic metric on 3 and let a be a simple closed geodesic for this metric. Define a
mininmal curve crossing o to be a simple closed curve constructed in the following way.
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Pick one side of o in ¥ and let 7 be a minimal length primitive bridge arc for «, that is,
a bridge arc whose interior is disjoint from «, that is incident to « on this side. Let 7/
be a minimal length primitive bridge arc for « that is incident to a on the other side. If
one of these arcs meets o on both sides then put 7 = 7’. Choose 3 to be a minimal length
shortest simple closed curve that can be represented as a concatenation of 7, 7' (if they
are different) and arcs on . Thus § crosses through « once or twice.

Lemma 13.5 (Lemma 4.3 of [Min00]). Given € >0 there exists Dy = Da(3,€) > 0 such
that for a closed hyperbolic 3-manifold My the following holds. Let'Y c X be a proper
essential strongly incompressible annulus with core curve a so that £y(o) > €. Then for
every v € Dy U Dy, there exists a pleated surface g, with induced metric o(gy), mapping
a geodesically and the property that a minimal curve B for o(g,) crossing o satisfies

dy (7, B) < Ds.

Proof. The proof of Lemma 4.3 of [Min00] is valid without any change. Construct a
lamination A from « and v € D; UDs by spinning v about a. As in the proof of Lemma
13.4, by the assumption on the distance in CG(X) between a and ~, all complementary
components of A are simply connected. Adding finitely many leaves to A yields a maximal
lamination and hence a pleated surface gy, with metric o). As in Lemma 13.4, it follows
from Theorem 3.5 of [Min00] that

loy (7) £2C1(a,7y)

for a universal constant C' = C(7,¢) > 0.

The remainder of the argument in the proof of Lemma 4.3 of [Min00| only uses the
geometry of o) on ¥ and does not use any information on the hyperbolic 3-manifold
containing the pleated surface gy. It is thus valid without any adjustment. (]

In [Min00], the proof of a version of Theorem 13.3 is completed by proving a universal
upper length bound for minimal bridge arcs for pleated surfaces constructed from proper
essential strongly incompressible subsurfaces Y ¢ ¥ with big boundary length (this is
the core of the proof of Lemma 4.2 and Lemma 4.4 of [Min00]). This step requires
a substantial modification for Heegaard surfaces. We formulate what we need in the
following proposition. For the remainder of this section, My always denotes a hyperbolic
3-manifold with Heegaard surface >, Hempel distance at least 4 and disk sets Dy, Ds.
Recall that for any proper incompressible subsurface Y c 3, any simple closed curve ¢
on ¥ with deg(c,0Y) > 3 gives rise to a pleated surface containing 9Y in its pleating
lamination. The number p >4 is as in Lemma 13.2.

Proposition 13.6. For any € > 0 there exists a number D3 = D3(X,€) > 0 with the
following property. LetY c ¥ be a proper essential subsurface with deg(0Y,D1uDs) > p,
and let g1, g2 be a pair of pleated surfaces in the homotopy class of the inclusion X — My
mapping OY geodesically which are constructed from diskbounding simple closed curves
v1 € D1,v2 € Dy, Let 0(g1),0(g2) be the induced hyperbolic metrics on ¥ and let 11,72 be
minimal proper arcs for o(g1),0(g2) if Y is not an annulus, or minimal curves crossing
a for o(g1),0(g2) if Y is an annulus. If £;(0Y") > € then

dY(T]_,TQ) < Ds.
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We are now ready to deduce Theorem 13.3 from Lemma 13.4, Lemma 13.5 and Propo-
sition 13.6.

Proof of Theorem 13.3. Let Y c 3 be a proper essential subsurface with deg(9Y, Dy u
Dy) > p. Let € >0 and assume that £¢(0Y") > €. Let 1 € D1, 72 € Dy be two diskbounding
simple closed curves in X.

If Y is non-annular then apply Lemma 13.4 to obtain two pleated surfaces mapping 0Y
geodesically, and minimal proper arcs 7,79 in Y with respect to the two induced metrics
on X, with dy(v;,7;) < D1 (i = 1,2). Proposition 13.6 then implies that dy (v1,72) <
2D1 + D3(%,€).

If Y is an annulus, then apply Lemma 13.5 to obtain two pleated surfaces mapping the
core curve « of Y to a geodesic, and minimal curves 31, B2 crossing o with respect to the
two induced metrics on 3, with dy (5;,7;) < Dy = Da(X,€) for i = 1,2. An application of
Proposition 13.6 shows as before that dy (y1,72) < 2D3 + D3(3,€). This completes the
proof of Theorem 13.3. (]

We are left with proving Proposition 13.6 which is the main technical result of this
section.

To facilitate notations, call a system X c X of nontrivial homotopically distinct disjoint
simple closed curves in 3 stongly incompressible in My if deg (X, D1uDs) > 3. This notion
is compatible with the notion of a strongly incompressible subsurface of ¥. Note that X
is strongly incompressible if and only if the same holds true for each of its components.

If X c ¥ is a strongly incompressible curve system, then we denote by P(X) the
collection of all pleated surfaces in My in the homotopy class of the inclusion ¥ —
My, with pleating lamination a complete (that is, maximal and approximable in the
Hausdorff topology by simple closed geodesics) finite geodesic lamination whose minimal
components are precisely the components of X.

An important fact is that for any strongly incompressible curve system X c X, any
two pleated surfaces g,h € P(X) can be deformed into each other with a homotopy
consisting of surfaces with controlled geometry. To make this precise, we define £(X)
to be the collection of all maps g : X — My in the homotopy class of the inclusion with
the following additional property. There exists a hyperbolic metric o(g) on ¥ such that
for this metric, the map g is one-Lipschitz and maps each component of X isometrically
onto its geodesic representative in M. Note that the metric o(g) on X is part of the
data which define a point in £(X) although it may not be unique. Note also that we
have P(X) c L(X). If g is a pleated surface then o(g) is assumed to be the hyperbolic
metric on ¥ defined by g.

A path in £(X) is a continuous map h : X x [a,b] - My for some interval [a,b] c R
such that for each s € [a,b], there is a marked hyperbolic metric o(s) on ¥ depending
continuously on s and such that the map hs : z € ¥ - hs(x) = h(z,s) € M is a point in
L(X) for the metric o(s). If a point of the path, say the point h,, is a pleated surface,
then we require that o(a) = o(hg).

Following Section 3 of [Min00|, define two pleated surfaces f,g: % — My to be homo-
topic relative to a common pleating lamination p if p is a sublamination of the pleating
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lamination of f,g and if f and g are homotopic by a family of maps which fixes p
pointwise.

The following is a slight strengthening of a well know construction which goes back to
Thurston (see p.140 of [Min00] and [Can93| for more on earlier accounts). Recall from
Lemma 13.1 that for an incompressible curve system X c ¥, an essential arc « in 3 with
endpoints on 9X lifts to an arc in the universal covering H® of M ¢ which connects two
distinct lifts of the components of X containing the endpoints of a. The second part of
the lemma extends Lemma 3.3 of [Min00].

Lemma 13.7. Let X c X be a strongly incompressible curve system. Then any g,h €
P(X) can be connected by a path in L(X). Furthermore, g,h are homotopic relative to
any common pleating lamination pc X.

Proof. Let us first consider two pleated surfaces go,g1 € P(X) which are related by
a diagonal move. By this we mean the following. The pleating lamination A of gg is
an extension of X. It decomposes ¥ into ideal triangles whose sides spiral about X.
Isolated leaves of A do not belong to X. Removal of such an isolated leaf o results in
a geodesic lamination A\’ whose complementary components are ideal triangles and one
ideal quadrangle . The leaf a connects two opposite vertices of ) and subdivides @
into two ideal triangles. We assume that the pleating lamination for ¢; is obtained from
A by replacing « by the diagonal 5 of ) connecting the other two opposite vertices.

Our goal is to construct a path in £(X) connecting go to g;. To this end let go : H? —
H? be a lift of gy to the universal coverings H? of ¥ and H?® of M ¢- Let Q c H? be a
lift of the ideal quadrangle Q. The image jo(Q) of Q under the map §o is the union of
two ideal triangles which are glued along a common side. Let (a1,as,as,as) c OH? be
the ordered collection of points in the ideal boundary OH? of H? which are the images of
the ordered vertices of Q. This ordered quadruple of points spans an ideal tetrahedron
T c H3. Note that by the third part of Lemma 13.1, this tetrahedron is non-degenerate.
The map §o maps Q onto the union Qg of two adjacent sides of T. The image of Q under
a suitably chosen lift §; of g1 equals the union Q; of the remaining two adjacent sides
of T. Four of the six edges of T are the sides of jo(Q), and the remaining two edges are
the i images under g, g1 of the lifts &, ﬁ of the diagonals a, 8 of @ to Q. The restriction
of §o, g1 to Q is a path isometry onto Qg, Q1, respectively.

The piecewise totally geodesic quadrangle Qo is equipped with an intrinsic hyperbolic
metric. Let By ¢ Qo be the intrinsic geodesic which connects the 2 ideal vertices of Qo
which are different from the endpoints of go(&). Then fo is a piecewise geodesic line in
H? which intersects the geodesic go(&) in a single point xo. The point zq is the finite
vertex of a partition of Qg into 4 totally geodesic triangles with one vertex at zg and
two ideal vertices. The total cone angle, that is, the sum of the angles at xy of these
triangles, equals 2. Construct in the same way a point x € Q1 as the intersection point
between the two intrinsic geodesics connecting the two pairs of opposite ideal vertices of
Q1. As before, z; is the finite vertex of a partition of Q1 into 4 totally geodesic triangles
with total cone angle 27 at x;.
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Connect xg to 1 by a geodesic arc 7 : [0,1] - T ¢ H?® parameterized proportional to
arc length on [0,1]. For each t € [0,1] consider the union Q; of the 4 totally geodesic
triangles A;(¢) (i =1,...,4) with one vertex at v(¢) which have the same ideal vertices
as the triangles which subdivide Qo. Note that this notation is consistent with the above
definition of Qy, Q1. Each of the 4 boundary geodesics of Qo is contained in precisely
one of the triangles from the collection Q;. If we choose the labels of the triangles A;(t)
in such a way that for each i, the triangles A;(¢) contain the same boundary geodesic of
Qo for all ¢, then these triangles depend continuously on ¢. Since T is the convex hull of
its ideal vertices and y ¢ T', the total cone angle at y(¢) of the union of these triangles is
at least 27, and it is 27 at the endpoints xg =v(0), z1 = y(1) of 7.

For t € [0,1] let g(t) > 0 be such that the total cone angle of Q; at (t) equals
27(1 + q(t)). Denote by v;(t) the angle of the triangle A;(t) c Q; at v(t). Let 0;(t) =
vi(t)/(L+q(t)) <vi(t) (i =1,2,3,4); we have Y; 0;(t) = 2m for all t. Let B;(t) be the
hyperbolic triangle with two ideal vertices and one vertex of angle ;(¢). Note that there
exists a natural isometric embedding of A;(¢) into B;(t) so that the image contains the
biinfinite side of B;(t). This embedding is unique if we require that the finite vertex of
A;(t) is contained in the minimal geodesic &;(t) of B;(t) which connects the finite vertex
of B;(t) to the opposite side. Denote the image of A;(¢) under this embedding again by
Ai(t).

By the choice of the angles ;(t), the triangles B;(t) can be glued along their sides
which are adjacent to the finite vertex cyclically in the order prescribed by the order of
the triangles A;(¢) in the polygon Q; to a hyperbolic ideal quadrangle B(t) with a distin-
guished vertex ¢(t). The ideal quadrangle B(t) contains the union A(t) of the triangles
A;(t). This construction does not depend on choices and hence depends continuously on
t. Moreover, B(t) — A(t) is a region which is star shaped with respect to the point ¢(t).
This region consists of the interior of an embedded relatively compact quadrangle C(t),
with an ideal triangle attached to each of its sides.

By invariance under the action of 71 (X)), the hyperbolic quadrangle B(t) determines a
hyperbolic metric o(t) on ¥ depending continuously on ¢, and o(0) = o(g0), (1) = o(g1)-
Thus we are left with constructing a continuous map h : ¥ x [0,1] - My such that for
each ¢, the restriction of h to ¥ x {t} is a one-Lipschitz map (X,0(t)) - My mapping X
geodesically. .

There is a natural 1-Lipschitz map B(t) — Q; which maps each of the triangles A;(t)
isometrically, collapses the complementary quadrangle C(¢) to a point and collapses
the ideal triangles attached to the sides of C(t) to one of its infinite length sides by
collapsing a geodesic arc contained in one of these triangles with endpoints on the two
distinct infinite sides of the triangle to a point if its endpoints are identified in Q. This
construction defines a one-Lipschitz map (2,0(t)) - M; depending continuously on ¢
and mapping X isometrically. As for ¢ = 0 and ¢ = 1 the collapsing map equals the
identity, we obtain a path in £(X) connecting go to g; provided that gy and g; are
related by a diagonal move.

Note that this construction does not use any information on the pleating locus of gg, g1
beyond the information that these pleating loci differ by a diagonal move. Moreover, it
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yields a path g5 € £L(X) whose restriction to the intersection of the pleating loci of go, g1
is the identity. In particular, the pleated surfaces gg, g1 are homotopic relative to the
pleating lamination X.

To complete the proof of the lemma we are left with showing that any two pleated
surfaces go, g1 € P(X) can be connected by a finite chain of pleated surfaces in P(X) so
that any two consecutive pleated surfaces in the chain are related by a diagonal move.
That this is possible is an immediate consequence of a result of Hatcher [Hat91] (compare
[Can93| and [Min00] for more details about this fact). By concatenation, this shows that
any two pleated surfaces in P(X) can be connected by a path in £(X), and gg, g1 are
homotopic relative to the pleating lamination X. O

Remark 13.8. The proof of Lemma 13.4 together with Lemma 13.7 and Lemma 13.2
yield additional information on M. Namely, let as before Y c X be a strongly incom-
pressible subsurface and let a ¢ ¥ —3Y be any system of pairwise disjoint non-homotopic
arcs with endpoints on Y which decompose Y into the maximal possible number of
simply connected regions. Then « determines a pleated surface g in My in the homotopy
class of the inclusion ¥ - M whose pleating lamination contains dY as the union of
its minimal components. This pleated surface only depends on 0Y and the homotopy
classes of the components of « as arcs in My with boundary on 9Y. If oy, s are two
such arc systems, and if oy contains an arc ¢; which is homotopic in M} relative to Y
to an arc (o from g, then (; and (s determine the same isolated leaf of the pleating
lamination of the pleated surface in My constructed from aj,as. Since by the proof of
Lemma 13.4 the pleated surfaces constructed in this way are naturally homotopic to the
inclusion ¥ — My, Lemma 13.2 yields that the arcs (1, (2 are in fact homotopic in 3.

The strategy is now to obtain geometric information on minimal proper arcs or minimal
curves for a pleated surface g € P(9Y) from information on the geodesic representative
Y c My. In the following elementary observation, £¢(c) denotes as before the length in
My of a geodesic representative of a multicurve ¢ in X.

Lemma 13.9. For every € > 0 there exists a number L = L(e) > 0 with the following
property. LetY c X be a proper essential strongly incompressible non-annular subsurface
with £7(0Y") > €; then for any g € L(OY), the o(g)-length of a minimal proper arc for Y
is at most L. Moreover, for any k1 > 0 there exists a number Ry = Ri(k1) > 0 with the
following property. If B c OY is a component with £¢(3) > Ry then there exists a bridge
arc for Y with one endpoint on 3 and of o(g)-length at most k.

Proof. Let m € [1,3g — 3] be the number of components of Y. By the collar theorem
for hyperbolic metrics on ¥, if 8 is a component of 9Y of length at least €¢/m, then the
supremum p of the o(g)-heights of a half-collar about  is bounded from above by a
number L/2 only depending on ¢/m. By the choice of p, the boundary of a half-collar
of radius p about  can not be retracted into 8. Hence there exists a radial geodesic
segment of length p emanating from the side of 3 determined by the half-collar whose
endpoint either is the endpoint of another such segment or is contained in . In both
cases, we find an essential arc 7 with endpoints on § whose length does not exceed 2p.
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Using the half-collar at the side of 8 contained in Y, we can assume that a neighbor-
hood of at least one endpoint of the essential arc 7 is contained in Y. Since the second
endpoint of 7 is contained in 3, we conclude that there is a (possibly proper) subarc of
7 which is a bridge arc for Y, and the length of this arc is at most 2p < L as claimed.

Using again the collar lemma for hyperbolic metrics on ¥ (or a standard area estimate),
for a given number k; > 0, if Ry > 0 is sufficiently large then the height of a half-collar
about a simple closed geodesic of length at least R; for any hyperbolic metric on X is
smaller than k1/2. By the above discussion, this implies that if 9Y contains a component
B of length at least Rj, then there exists a bridge arc for Y of length at most x; with
one endpoint on 8. This completes the proof of the lemma. O

We use Lemma 13.7 and Lemma 13.9 to establish the following version of Lemma 4.2
of [Min00]. In its formulation, £;(0Y") denotes as before the length of 0Y with respect
to the hyperbolic metric on Mj.

Lemma 13.10. For all € > 0,R > 0 there exists a number ko = ko(e, R) > 0 with the
following property. LetY c X be a proper essential strongly incompressible subsurface
and assume that £¢(0Y') < R. If diamy (D UD3) > ko, then

Ef((‘)Y) <E.

Proof. Let R > 0,€e < R be fixed and assume that £7(9Y") € [¢, R]. If Y is not an annulus,
then by Lemma 13.9, there exists a number L = L(€) > 0 such that for every g € £L(9Y),
the o(g)-length of a minimal proper arc for Y is at most L.

We claim that there also is a uniform upper length bound L’ = L'(e, R) for a minimal
curve for Y if Y is an annulus. Namely, let Y be an annulus with core curve c. If ¢ is
a hyperbolic metric on 3 such that the o-length of ¢ is contained in the interval [e, R],
then the o-height of a half-collar about ¢ is bounded from above by a constant p > 0 only
depending on e. Thus there exists a proper arc 7 for ¢ of length at most 2p with both
endpoints on c. If 7 leaves and returns at the two different sides of ¢, then the endpoints
of 7 can be connected by a subarc of ¢ of length at most R/2 to yield a simple closed
curve crossing through ¢ of length at most 2p + R/2. If all proper arcs 7 for ¢ of length
at most 2p leave and return to the same side of ¢, then we can find such a proper arc
7 leaving and returning to a fixed side of ¢, and a second arc 7’ leaving and returning
to the other side of ¢. Furthermore, we may assume that 7 and 7’ are disjoint. The
endpoints of 7 and 7’ can be connected by disjoint subarcs of ¢ to yield a simple closed
curve crossing through c of length at most 4p + R.

We first show the lemma in the case that Y is not an annulus. Following the proof of
Lemma 4.2 of [Min00|, let go, g1 € P(9Y) be two pleated surfaces and assume that g is
constructed from Y and a maximal system A of arcs with endpoints in Y which contain
the intersection arcs with Y of a disk from the disk set Dy, and that g1 is constructed
from Y and a maximal system B of arcs which contain the intersection arcs with Y of a
disk from the disk set D;. By Lemma 13.7, these pleated surfaces can be connected in
L(9Y) by a path ¢g; (t €[0,1]). Let o(g¢) be the corresponding path in the Teichmiiller
space T (X) of ¥ connecting o(gp) to o(g1). Given any bridge arc 7 for Y, let E; c [0,1]
denote the set of t-values for which 7 is homotopic rel Y to a minimal proper arc with
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respect to o(g;). Continuity of the metrics o(g;) in ¢ implies that F. is closed, and the
family {E;} covers [0,1]. The path g; determines a coarsely well defined map ¥ from
the interval [0,1] into the arc and curve graph of Y. This map associates to ¢ € [0,1]
the set of all 7 with t € E,.

Following p.141 of [Min00|, we observe that if E- n E» # @ then up to homotopy, 7
intersects 7/ in at most one point and hence the distance in the arc and curve graph of
Y between 7,7’ is at most 2. Thus the coarsely well defined map ¥ has the following
property. If 7 € ¥[0,1], and if U[0,1] consists of more than one point, then any 7’ €
U[0,1] - {7} fulfills dy (7,7") < 2. Together with Lemma 13.4, this shows that ¥[0,1]
contains a sequence of arcs 7o, 71, -, 7, so that dy (79, A) < D1, dy(m,,B) < D; and
1 <dy(7,7i+1) <2 for all i. As a consequence, it holds n > dy (D1, D3)/2 - 2D;. We also
may assume that the arcs 7; are pairwise non-homotopic as arcs in Y with endpoints in
aY.

By Remark 13.8, if two such arcs 7;,7; are homotpic in My keeping the endpoints in
dY, then 7;, 7; are homotopic in 3 keeping the endpoints in 9Y. Together this implies
the following. Among the bridge arcs 7; of Y, there are at least dy (D1, D2)/2-2D1 =q
arcs which are pairwise non-homotopic in My keeping the endpoints in 9Y".

Since the maps g € L(9Y') are one-Lipschitz, the union of Y with the homotopy
classes of minimal proper arcs for the metrics o(g;), viewed as arcs in My with boundary
in JY via the 1-Lipschitz maps g; : ¥ - My, can be represented in My by a 1-complex
V with at most m components where m < 3|x(2)|/2 is the number of components of 9Y".
The diameter in My of each component of V' is at most R+ mL. Each such minimal
proper arc 7 together with one or two segments of Y — 7 gives rise to a loop in this
one-complex V of length at most 2R+2L. Up to homotopy rel Y, these based loops are
images by the inclusion X < M} of simple closed curves contained in Y. Such a simple
closed curve is a component of the boundary of a small neighborhood of the union of 7
with the components of Y containing the endpoints of 7.

Given a component Vg of V, choose a basepoint x for Vj in a component of 9Y
contained in Vj. Connecting each of the loops in V4 constructed in the previous paragraph
to o determines a collection of based loops in My which up to homotopy are images of
based simple loops contained in Y. The length of each such loop is at most 3R+ (2m+2) L.
By Lemma 13.1, no two distinct of these loops are homotopic in M.

As bridge arcs 7,7’ for Y which are homotopically distinct in M give rise to homotopy
classes which do not have a common power and hence which do not commute, a standard
application of the Margulis lemma gives an upper bound M = M (3R+ (2m+2)L) for the
number of such elements of 71 (M) which can translate any point a distance 3R+ (2m +
2)L or less (see p.141 of [Min00] for more details). As a consequence, the number ¢ of
homotopy classes of arcs obtained from the above construction is at most M. Together
we conclude that

dy (D1,D2) <2q+4Dy <2M +4D;.
This complete the proof of the lemma in the case that Y c ¥ is not an annulus.

If Y is an annulus then the above argument carries over in the same way, where the
arc and curve graph is now the arc graph of the annular cover of ¥ whose fundamental
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group equals the fundamental group of Y. We refer to Lemma 4.4 of [Min00] for more
details of this argument which is valid in our context with as only addition the above
counting estimates for homotopy classes of arcs in M with endpoints in the core curve
of Y. An application of Lemma 13.5 then completes the proof of the lemma. U

Let kg > 0 be a constant which has properties (P1) and (P2) from the beginning of
this section. By possibly decreasing kg, we may assume that it is a Margulis constant
for hyperbolic surfaces and hyperbolic 3-manifolds. In the sequel we always assume that
the thin part of a hyperbolic 3-manifold is determined by such a constant k.

We next investigate strongly incompressible surfaces Y ¢ X with the property that the
geodesic representatives of their boundaries Y enter deeply into a Margulis tube of My
away from the core curve of the tube. For a number v < kg and a Margulis tube T for
My, we call the set T of all points in T" of injectivity radius smaller than v the v-thin
part of T.

Lemma 13.11. There exists a number v < ko with the following property. Let T' c My
be a Margulis tube and let Y c X be a strongly incompressible subsurface whose boundary
Y, as a geodesic multicurve in My, intersects T<"° in the complement of the core
geodesic of T. Then for every map g € L(OY), and any choice o(g) of a corresponding
hyperbolic metric, there exists a Margulis tube for o(g) whose core curve o ¢ X intersects
Y in a bridge arc T of length smaller than ko if Y is not an annulus, or which is a simple
closed curve crossing through OY if Y is an annulus. Moreover, one of the following not
mutually exclusive possibilities is satisfied.

i) Up to homotopy, g(a) bounds a disk D cT c Mjy.
it) g(«) is homotopic to a nontrivial multiple of the core curve of T. Furthermore,
there exists a diskbounding simple closed curve B on 3 which is disjoint from a.
i11) Up to homotopy, any component of the intersection of g(X) with the 1-neighborhood
of T<*° is an annulus, and this annulus is the image under g of a Margulis tube for
o(g). The core curve of each such tube is mapped by g to a curve homotopic to a
nontrivial multiple of the core curve of T'.

Proof. For the fixed choice of a Margulis constant kg > 0 for hyperbolic surfaces, there
exists a number £ > 0 only depending on 3 and kg such that for any hyperbolic metric on
3., the diameter of any component of the ko-thick part of X is at most ¢. Let vg > 0 be
sufficiently small that the 2¢-neighborhood of the vy-thin part T<"° of a Margulis tube
T for My is entirely contained in 7.

Let Y c ¥ be a strongly incompressible surface with boundary dY and let g € L(9Y).
There exists a decomposition of ¥ into thick and thin components for the metric o(g).
The thin components are Margulis tubes about closed o(g)-geodesics of length smaller
than 2k¢. By the choice of ¢ and vy, for any Margulis tube 17" c My, any component of
the thick part of ¥ for the metric o(g) whose image under g intersects T<*° is mapped
by ¢ into T

Assume that the geodesic multicurve 0Y c My intersects the vp-thin part 7" of a
Margulis tube T" ¢ My in the complement of the core curve of the tube. Since 9Y is
a union of closed geodesics in My and the only closed geodesic in M; which is entirely
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contained in the tube T is the core curve of the tube, dY intersects the boundary 9T of
T, which is a torus smoothly embedded in M.

Let Wy c ¥ be the union of all components of the o(g)-thick part of ¥ whose images
under g do not intersect T<°, and let W c ¥ be the union of Wy with all Margulis tubes
for o(g) whose images under g do not intersect 7<*°. Then the closure Z of ¥ -W is a
closed nonempty essential subsurface of . The surface Z is a union of components of
the thick part of ¥ and some Margulis tubes. Each component of the thick part of Z is
mapped by g into the tube T'. Since the fundamental group of T is cyclic, and the map
g induces a surjection g : m1(X) - m(My), this implies that the subsurface Z of ¥ is
proper. Note that by assumption, the surface Z is intersected by 0Y.

Now g(W) is disjoint from the core curve of T', and the complement of the core curve
of T' deformation retracts onto the boundary 07T of T. Thus up to modifying g with a
homotopy and replacing T' by the complement in 7" of a suitably chosen collar about 07T,
we may assume that g(W)nT = @.

There are now two possibilities. In the first case, Z contains a component Zj of the
o(g)-thick part of ¥. Then we have g(Zy) c T.

Let xg € 0Zy and consider the map gf" s m1(Zo,x0) = w1 (My,g9(x0)). Since Zyc X is
a properly embeded connected surface different from an annulus, its fundamental group
71(Zp) is a free group with at least two generators. As 71 (7T') is infinite cyclic, the kernel
of gfo is nontrival. Now Zy c X is a proper subsurface of the embedded Heegaard surface
Y. Therefore the loop theorem Theorem 4.2 of [AR04] (see also Theorem 4.2 of [Hem76])
shows that there exists a simple closed curve ¢ ¢ Zy such that g(c) is homotopically
trivial in My and hence in T'.

To be more precise, since g(Zp) ¢ T, if o ¢ Zp is any closed curve such that g(a)
is contractible in My, then g(«) is contractible in 7. Thus there exists a homotopy of
g(a) to the trivial curve which does not intersect g(W) c My - T, and, consequently,
there exists a homotopy of a ¢ Zy ¢ ¥ ¢ My to the trivial curve which does not intersect
WeM f-

Cutting M open along W c ¥ yields a manifold N whose boundary N consists of two
copies of W, glued along the boundary. Up to homotopy, each component of X - W = Z
is a properly embedded surface in N. In particular, this holds true for the component
Zo of ¥ — W containing Zy (a priori, Zy may be a proper subsurface of Zo) Note that
Zo is an oriented, two-sided properly embedded subsurface of N which is different from
a disk and a 2-sphere.

Since a loop in Zj c Zg which is contractible in My is contractible in M, - W, it
is contractible in N. Therefore the homomorphism m(Zy) — w1 (N) induced by the
inclusion Zy - N is not injective. The loop theorem Theorem 4.2 of [AR04| then shows
that there is a simple closed curve ¢ c ZO which bounds an embedded disk in N and
hence in M.

If ¢ is either peripheral in Zy or the core curve of a Margulis tube for o(g) contained
in Zo, then ¢ is a core curve of a Margulis tube for o(g) which is diskbounding in M £
Identify ¢ with its geodesic representative for o(g). As the subsurface Y c ¥ is strongly
incompressible by assumption, its boundary dY has to cross through the diskbounding
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simple closed curve c. If Y is not an annulus and if £ ¢ Y is an embedded arc crossing
through ¢, then a subarc of ¢ connecting & N ¢ with the point in ¢n dY which is closest
along ¢ and leaves ¢ at the side of £ contained in Y is a bridge arc for Y of o(g)-length
at most ko. If Y is an annulus, ¢ is a simple closed curve of o(g)-length less than kg
which crosses through 0Y. This shows that the first possibility stated in the lemma is
fulfilled. Note that in the case that Z is a 3-holed sphere, the only surnple closed curves
in Zy are the boundary curves and hence the simple closed curve c in Zo is automatically
peripheral.

On the other hand, if no diskbounding simple closed curve ¢ c Zo is the core curve
of a Margulis tube for o(g), then the second case in statement of the lemma holds true.
Namely, in this case a peripheral curve d c Zy is the core curve of a Margulis tube
and disjoint from c¢. Furthermore, the curve d is mapped by g into T and hence it is
homotopic to a nontrivial multiple of the core curve of T'. Since deg(9Y,D1UDs) > 3 by
assumption, the multicurve 0Y has to cross through d. We then find a bridge arc for Y
of o(g)-length smaller than k¢ which is a subarc of d, or, if Y is an annulus, choose d as a
simple curve crossing through 9Y of length smaller than kg. Thus the second possibility
in the statement of the lemma is fulfilled. This completes the analysis of the case when
the image under g of the o(g)-thick part of 3 intersects T<"°.

If the image under g of the o(g)-thick part of ¥ does not intersect T<*°, then each
intersection point of g(X) with 7" is contained in the image of a Margulis tube for
o(g). Since 9Y intersects T<"° in the complement of the core curve of T', there is simple
closed curve a ¢ ¥ which is freely homotopic to the core curve of one of these Margulis
tubes, of o(g)-length at most g, which intersects Y and which is mapped by ¢ into 7.
As before, if g(«) is contractible in My then we are in the situation described in the first
case of the lemma. Otherwise g(«) is homotopic in T to a multiple of the core curve of T,
and we conclude that the third case described in the lemma is fulfilled. This completes
the proof of the lemma. O

In the following lemma, the constant p >4 is as in Lemma 13.2.

Lemma 13.12. There exist numbers k1 = k1(X) > 0, and vy < vy with the following
properties. Assume that the Hempel distance deg(D1, D) for My is at least 4. LetY c X
be a strongly incompressible subsurface whose boundary Y, as a geodesic multicurve in
My, intersects the vy-thin part T<"' of a Margulis tube T'c My in the complement of the
core geodesic of T and fulfills deg(0Y, D1 UDy) > p. Then we have

diamy(Dl U DQ) < k.

Proof. The number p > 4 was chosen so that the following holds true [MMO0O0|. Let «, 3
be simple closed curves on ¥ and let Y c 3 be a subsurface which has an essential inter-
section with a, 8 and 0 such that dy (a, 5) > p; then any geodesic in CG(X) connecting
« to 8 has to pass through a curve disjoint from Y. Furthermore, if Y c 3 is any proper
essential subsurface such that deg(0Y,D;) > p (i = 1,2); then diamy (D;) < p.

Let £ > 0 be an upper bound for the diameter of a component of the thick part of a
hyperbolic metric on ¥ for a Margulis constant ko > 0 as in (P1),(P2). For 1y >0 as in
Lemma 13.11, let v1 < vy be sufficiently small that the neighborhood of radius ¢ of the
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v1-thin part M]fl’l of My is contained in the y-thin part M;VO of My. Let us assume
that Y c X is a proper essential subsurface with deg(9Y,D;) > p for i = 1,2 and such that
Y intersects the vi-thin part T<"* of a Margulis tube T' in the complement of the core
curve of T'.

Consider first the case that Y is not an annulus. Let ; € D; for i = 1,2 and g, h € P(9Y")
be pleated surfaces for 1,7 as in Lemma 13.4 . By Lemma 13.7, we can connect g, h
by a path hs (s €[0,1],hg = g,h1 = h) in L(IY). Let o(hs) be a corresponding path in
Teichmiiller space connecting o(g) to o(h). We showed in Lemma 13.11 that for each
s, there exists a bridge arc 75 for Y of o(hs)-length smaller than k¢ which is contained
in a simple closed curve ag on X of o(hs)-length at most kg, and «; is homotopic to the
core curve of a Margulis tube for o(hs) and crossed through by Y. Furthermore, up to
homotopy, we may assume that hs(as) c T<*0. By the choice of kg, the bridge arc 75 is
disjoint from a minimal proper arc for Y and the metric o(hs) (see p. 139 of [Min00] for
more details).

For each s there exists a connected open neighborhood V; of s in [0, 1] so that the curve
as has the properties stated in the previous paragraph for each t € V. By compactness,
the interval [0,1] can be covered by finitely many of the sets V. Thus we may assume
that there is a partition 0 = sp < --- < s, = 1 such that for each i < n, the interval [s;, s;41]
is contained in V; = V;,. Then for each s € [s;,s5+1] the curve ag, is of length smaller
than kg for the metric o(hy). In particular, by the choice of kg, the curves ay, and as,,,
are disjoint.

Assume that the number n of partition points of [0,1] is minimal with the above
property. This then implies that for all ¢, the curve «; is not homotopic to a;1. If n =1,
or, equivalently, if ay; = a,; for all ¢, j, then there exists a bridge arc 7 for ¥ which up
to homotopy is of length at most xg for each of the metrics h,. Since this bridge arc is
of distance at most 1 in the arc and curve graph of Y to a o(hs)-minimal proper arc
for Y, it then follows from the choice of g,h and Lemma 13.4 that the diameter of the
subsurface projection of y; U~y into Y is at most 2D; + 2.

If n > 2 then by minimality, we can not find a simple closed curve in 3 which is the core
curve of a Margulis tube for o(hs) with the properties stated above for all s € [s;, $;+2]
and all . In particular, we have as, # as,,, for all i. Furthermore, there is at least one
S € [Sit1,Si+2] such that for the metric o(hs), the curve as, is not the core curve of a
Margulis tube with the properties stated above. Now «y, is crossed through by dY and
is mapped by hg, into T<"°, furthermore we may assume that the restrictions to 9Y of
the maps hg coincide. As a consequence, there is some s € [8;41, Si+2] and a component
of the (closure of the) thick part of o(hs) whose image under the map hg intersects T="°.
Let s > s;,1 be the smallest number with this property. By continuity, the curve ay; is
the core curve of a Margulis tube for o(hs).

By the choice of vy, by Lemma 13.11 and the definition of the set V;, there exists a
diskbounding simple closed curve ¢; on ¥ which is disjoint from the core curve of any
Margulis tube for o(hs) and hence which is disjoint from ay,. Note that we may have
¢; = as,. This curve then belongs to one of the disk sets D1, Dy. Moreover, property (1)
or (2) in Lemma 13.11 holds true for o(hs).
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Using this argument inductively, we conclude that either n = 1 and diamy (D; UDs) <
2D; + 2 by the beginning of the proof, or for each 7 > 1, the curve oy, and hence the
bridge arc 7, for Y is disjoint from a diskbounding simple closed curve ¢; on X.

Since ag;, as,,, are disjoint for all 4, we have deg(ci,¢iv1) < 3. But deg(Dy,D2) >4 by
assumption, and therefore if ¢; € D; for j =1 or j = 2 then the same holds true for c;.1.
By induction on i, we deduce that up to renaming, we have ¢; € D; for all 4.

As a consequence, by the choice of p, we have diamy (U;¢;) < p. Lemma 13.4 then
shows that diamy (y; Uv2) < p+2(D; +2). Since ~; € D; for i = 1,2 were arbitrarily
chosen and diamy (D;) < p, this yields that diamy (D;uDs) < p+2(D; +2) which is what
we wanted to show.

The argument in the case that Y is an annulus is identical to the above discussion,
with the only difference that in each step, the bridge arc 7 for Y is replaced by the simple
closed curve « crossing through 9Y. Additional details will be left to the reader. (]

From now on we always assume that the Hempel distance of the manifold My is at
least 4, and we let p > 0 be the number from Lemma 13.2. We use Lemma 13.12 to
control the diameters of the subsurface projections of D1 UDs into subsurfaces Y whose
boundaries have large diameter in M.

Lemma 13.13. There exist numbers Ry = Ra(X) > 0, ko = ko(X) > 0 with the following
property. Let Y c X be a strongly incompressible subsurface with deg(0Y, Dy U D) > p.
If 9Y contains a component 3 whose diameter in My is at least Ry, then

diamy(D1 U DQ) < ko.

Proof. Let 11 < kg be as in Lemma 13.12. Choose Ry > 0 sufficiently large that the
following holds true. Consider a hyperbolic metric o on X, and let =,y € X be two points
of distance at least Rg; then any path in ¥ connecting x to y crosses through a Margulis
tube whose core curve has length smaller than v4.

Assume that 9Y has a component 3 whose diameter in M} is at least Ry. By Lemma
13.12, it suffices to consider the case that on 3, the injectivity radius of My is bounded
from below by /2.

By the choice of R, for every g € £L(9Y') and corresponding hyperbolic metric o(g),
there exists a simple closed curve « on X of o(g)-length smaller than 14 which is crossed
through by 3. Since the injectivity radius of My on 3 is at least v1/2, the curve g(«)
bounds a disk in M. In other words, « is contained in one of the disk sets for My, say
the disk set Dy.

As in the proof of Lemma 13.12, we find that if Y is not an annulus, then a subarc of
a is a bridge arc for Y. In other words, there exists a bridge arc for Y of o(g)-length
smaller than v; < kg which is a subarc of the diskbounding simple closed curve o. If Y
is an annulus then we choose a as a simple closed curve of length smaller than kg which
crosses through JY.

We argue now as in the proof of Lemma 13.12. Let «; € D; (i = 1,2) and let g,h €
P(IY) be pleated surfaces for 71,72 as in Lemma 13.4 or Lemma 13.5. Connect g, h by
a path hs (0<s<1)in £(JY). For each s choose a diskbounding simple closed curve
as for hg of o(hs)-length smaller than vy which is crossed through by . The curve ag
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contains a bridge arc for Y of o(hs)-length smaller than kg. By continuity, there exists
an open neighborhood Vs of s in [0,1] so that for every ¢ € Vj, the o(h:)-length of as is
smaller than .

Cover the interval [0, 1] by finitely many of the sets V. This covering can be used to
find a partition 0 = sg < -+ < s, = 1 such that for all i, we have [s;,s;41] ¢ Vs,. Now for
each 1, if o, is different from oy, ,, then the curves as,, a,,, are core curves of Margulis
tubes for the same metric hg,,, and hence they are disjoint. This implies that if a,, € D;
(j € {1,2}) then the same holds true for ay,,,. As a consequence, if ag € D; then so is
aq.

By assumption on Y, we have diamy (D;) < p (see the proof of Lemma 13.12). Using
once more Lemma 13.4 and Lemma 13.5, this implies as in the proof of Lemma 13.12
that dy (v1,72) < p+2(D;y +1) if Y is not an annulus, and dy (v1,72) < p+2(Dg + 1)
otherwise. This is what we wanted to show. (]

The proof of Lemma 13.13 uses the assumption that the diameter of a component § of
JY in My is large to conclude that for any g € £L(9Y), a component of QY crosses through
a Margulis tube for o(g) whose core curve is diskbounding. It is not used elsewhere in
the proof. Thus the statement of the lemma can be extended in the following way.
For a multicurve Y c X, define a simplicial path gs ¢ L(JY) between two pleated
surfaces (X2,90),(2,91) to be a path which consists of pleated surfaces connected by
a diagonal exchange path as in Lemma 13.7. We assume for convenience that such a
path is parameterized on the interval [0, 1], but there are no other requirements for the
parameterization. Let as before ko > 0 be a constant with properties (P1),(P2). We
say that such a simplicial path gs ¢ £(9Y") is thick-thin incompatible if for every s there
exists a simple closed curve in (X, 0(gs)) of length smaller than (/10 whose image under
gs is contractible in M. The constants Ry > 0,p > 0 in the following lemma are as in
Lemma 13.13.

Lemma 13.14. Let Y c X be an essential subsurface with deg(0Y, D1 uDs) > p and
let s € [0,1] » gs € L(OY) be a thick-thin incompatible path. Then for £ =1 or ¢ = 2
and each s, there exists a bridge arc s for Y of o(gs)-length at most ko which is the
subsurface projection of a diskbounding curve in Dy, or there is a diskbounding curve in
Dy of 0(gs)-length at most ko crossing through OY if Y is an annulus. In particular, the
distance in the arc and curve graph of Y between 1o, T, is at most p.

Proof. By uniform quasi-convexity of the disk set Dy in CG(X) (¢ = 1,2) and the lower
bound p on the distance deg(9Y, D1 U Ds), the diameter of the subsurface projection of
D; into Y is bounded from above by p (see the proof of Lemma 13.13).

Now if Y is not an annulus, if g € £(9Y') and if there exists a simple closed curve ¢
in ¥ of o(g)-length at most kg whose image under the map g is contractible in M, then
Y crosses through ¢ and hence there exists a bridge arc for Y of o(g)-length at most g
which is a subarc of a curve in Dy for £ =1 or £ = 2. The path g, then coarsely determines
in this way a sequence of elements of D; U Dy containing such short bridge arcs where
we may assume that two consecutive of these elements are disjoint. Thus this path is
entirely contained in Dy for £ =1 or £ = 2.
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As a consequence, there are bridge arcs for o(gp),o(g1) of length at most k¢ which
are projections of curves in Dy. Then their distance in the arc and curve graph of Y is
at most p. U

Using what we established so far, we are left with analyzing subsurfaces Y whose
boundary Y have a component 3 with £¢(f) > Ry and diameter in M which is smaller
than Ry together with maps g € £(JY) whose thin part is mapped to the thin part of
M. Compressibility of the Heegaard surface 3 ¢ M causes considerable difficulties, and
the remainder of this section is devoted to overcoming this problem. The strategy was
laid out by Thurston [Thu86a| and is based on an argument by contradiction.

To set up the proof, consider a sequence (My,x,) (n > 1) of pointed hyperbolic 3-
manifolds so that the injectivity radius inj(z,) of M, at z, is bounded from below
by a positive constant not depending on n. We say that the sequence converges to
a pointed hyperbolic 3-manifold (M, z) in the pointed geometric topology if for every
R > 0,€ > 0 there is a number n(R,§) > 0, and for every n > n(R,£) there exists a
smooth embedding, the approzimation map k, : U, ¢ M — M,, such that k, is defined
on the ball By/(x, R) c U, of radius R centered at x € M, it sends k,(z) = x,, and
the restriction of ky, to Bys(z, R) satisfies | par — kppar, |c2(By (a,r)) € € Where par, par,
are the metric tensors on M, M,,. We then say that the restriction of k, to B(x, R) is
&-almost 1sometric.

The following is well known (see e.g. Chapter E of [BP92| for details).

Proposition 13.15. If (M,,x,) is a sequence of pointed hyperbolic 3-manifolds such
that inj(x,) > x >0 for all n, then up to passing to a subsequence, the sequence (M, )
converges in the pointed geometric topology to a pointed hyperbolic 3-manifold (M, x).

We can also consider convergence of pleated surfaces in the pointed geometric topology.
The following lemma establishes a first control on such pleated surfaces.

Lemma 13.16. Let M, be a sequence of closed hyperbolic 3-manifolds with Heegaard
surface ¥ of Hempel distance at least 4. Assume that there exists a number x >0 and
for each n a pleated surface g : (X,0(gn)) = M, homotopic to the inclusion with the
following properties.

(1) There exists a point x, € ¥ with inj(x,) > x and inj(g,(x,)) > .
(2) The thin part of (X,0(gyn)) consist of annuli whose core curves are of distance
at least 3 to D1 U Ds.

Then up to passing to a subsequence, the pointed manifolds (M,,, gn(xn)) converge in the
pointed geometric topology to a pointed hyperbolic 3-manifold (M, %), and the pointed
pleated surfaces gy, : (X,25) = (My, gn(xn)) converge to a pleated surface g: W — M
where W is a finite volume hyperbolic surface homeomorphic to an essential subsurface of
Y of negative Euler characteristic, and g maps cusps of W to cusps of M. Furthermore,
if W # % then g is m1-injecctive.

Proof. Fix as before a Margulis constant kg < x for hyperbolic surfaces. Since there are
only finitely many topological types of subsurfaces of ¥, after passing to a subsequence
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we may assume that there exists a connected subsurface W, c ¥ containing x, with
geodesic boundary such that the following holds true.

e The homeomorphism type of the surfaces W,, does not depend on n.

o If W, denotes the component of the ko-thick part of (3,0(gyn)) containing x,,
then the inclusion W, — W, is a homotopy equivalence.

e The o(gy)-length of each boundary component of W,, tends to 0 as n — oo.

Using the first property above, we may identify each W, with a fixed subsurface W
of ¥. The surface W has negative Euler characteristic and may coincide with 3.

By assumption, the image under g, of no boundary component « of g,(W) is con-
tractible in M,. Since g, is 1-Lipschitz, this implies that for each n, the curve g,(a) is
homotopic to a closed geodesic &, in M. As n — oo, the lengths of the curves g, («) and
hence of &, tend to zero.

Since the o(gy,)-diameter of any component of the kg-thick part of W, is bounded
from above by a constant only depending on 3, it follows from Proposition 13.15 and
the Arzela Ascoli theorem that up to passing to another subsequence, we may assume
that the pointed manifolds (M, g,(x,)) converge in the pointed geometric topology to
a pointed hyperbolic 3-manifold (M, Z), and the pleated surfaces g,|W,, : (W, x,,) = M,
converge in the pointed geometric topology to a pleated surface g : (W,z) — (M, )
where W is obtained from W,, by replacing each boundary component by a puncture.
The surface W is equipped with a complete finite volume hyperbolic metric. Furthermore,
since the length of g,(«) tends to 0 as n — oo, the map g maps cusps of W to cusps of
M.

We are left with showing that if W # X, then g is mp-injective. Thus assume that W
has at least one cups. We know that g maps cusps in W to cusps in M and hence a
closed curve a ¢ W whose image under g is contractible in M is essential in W. Assume
to the contrary that o ¢ W is such a curve.

Denote by D c C the closed unit disk. There exists a continuous map v : D - M
with ¥(9D) = g(«). By compactness of D and hence of ¢(D) c M, for large enough n
the set (D) c M is contained in the domain U, of the almost isometric map k, which
determine the geometric convergence (M, gn(zn)) - (M, ), and hence k,(g(«)) c M,
is contractible as well.

But « is contained in W, and a simple closed curve & going around a cups of W is a
geometric limit of boundary curves of W,, which are of distance at least 3 from D; uD;.
Convergence of the maps ¢, : W), ¢ ¥ - M, to the map g : W - M yields that for
large enough n, the image k,g(&) of g(§) under k,, is homotopic to the image under the
map gn|W,, : W,, > M, of a boundary component of W,,, and k,g(«) is contractible in
M, — gn(0W,,).

On the other hand, since deg(0W,, D1 UDs) > 3 by assumption, Lemma 13.1 shows
that the surface g, (W,,) is incompressible in M —g,,(0W,,). This is a contradiction which
shows that indeed, g is 7i-injective and completes the proof of the lemma. O

We use Lemma 13.16 to establish the following relative version of Thurston’s uniform
injectivity result. Let P(M) be the projectivized tangent bundle of the hyperbolic 3-
manifold M. If g: (3,0(g)) — M is a pleated surface, with pleating lamination A, then
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there is a map p: A - P(M) which associates to x € A the tangent line of g(\) at g(x).
The number Ry > 0 in the statement of the proposition is the number from Lemma 13.13.

Proposition 13.17. For b > 0 there exists a number R3 = R3(b) > Rs, and for all
€ > 0 there exists a number § = 6(b,e) > 0 with the following property. Let M be a
closed hyperbolic 3-manifold with Heegaard surface ¥ and Hempel distance at least 4.
Let X ¢ 3 by a multicurve with deg(X, D1 UDs) > p. Assume that the diameter in M
of the geodesic representative of each component of X is at most Ry and that X has a
component 3 whose length in M at least Rs. Let g € P(X) be a pleated surface with all
core curves of Margulis tubes incompressible in M and assume that there exists a simple
closed curve o on 3 disjoint from X of o(g)-length at most b. Then

do(q)(2,y) < € for all x,y € B with dp ) (p(x),p(y)) <06
where d,(4) denotes the distance function of the hyperbolic metric o(g) on X > 3.

Proof. Following the strategy of [Thu86a|, assume to the contrary that the proposition
does not hold true. Then there are numbers b > 0, € > 0 for which no R3(b) > 0,d(b,¢) >0
as in the statement of the proposition exists. This means that there exists a sequence of
counterexamples, consisting of a sequence of hyperbolic 3-manifolds M,, with Heegaard
surface X, multicurves X,, ¢ ¥ with deg(X,, D1 UD3) > p, pleated surfaces g, : X - M,
whose pleating lamination contains X, o 5, and the following properties.

o The length of 3, is at least n.

e The diameter in M, of each component of X, is at most Rs.

e The core curve of each Margulis tube of o(g,,) is not homotopic to zero.

e There exists a simple closed curve «, c ¥ disjoint from X,, of o(g,)-length at
most b.

e There are points x,,y, € By With dy(g.)(%n,yn) 2 € and dp(ary(p(zn), p(yn)) <
1/n.

Since the diameter in M, of the curve 3, is at most Ry and the length of 3, tends to
infinity with n, for sufficiently large n the curve 3, is not the core curve of a Margulis
tube and B, is contained in the y-thick part of M, for a constant y > 0 only depending
on Rs. Since core curves of Margulis tubes in X for o(g,) are not null-homotopic in M,
we can apply Lemma 13.16. It yields that by passing to a subsequence, we may assume
that the pointed pleated surfaces g, : (X, z,,) = (My, gn(2,)) converge in the geometric
topology to a pointed pleated surface g : (W, z) — (M, g(x)) where W is a finite volume
hyperbolic surface homeomorphic to the interior of an essential subsurface of ¥ and g
maps cusps to cusps. The pleating lamination of g contains the geometric limit 5 of the
simple closed curves (3,,.

By Lemma 13.16, if W # 3 then the map g : W - M is mp-injective. If W = ¥ then
there exists a simple closed curve o on ¥ of o(g)-length at most b which is disjoint from
a geometric limit 3 of the curves 3,. Furthermore, the argument in the proof of Lemma
13.16 yields that the map g: ¥ —a - M - g(«) is mi-injective. No modification of the
argument is required. Let Z =W if W £ ¥ or Z = ¥ — o otherwise where we identify «
with its geodesic representative for the metric o(g).
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Assume for the moment that W = 3. By the collar lemma for hyperbolic surfaces, the
distance in (Z,0(g)) between « and the geodesic lamination f is bounded from below
by a positive constant p = p(b) < x/2 only depending on b. Modify g with a homotopy
which equals the identity on the complement of the p/2-neighborhood of « to a map §
which maps « to the complement of the p/2-neighborhood of g(8). This can be done in
such a way that the map g is L-Lipschitz for some L > 0 and that it maps W into M>XI2,

Resume the general case that includes W # 3. If W # ¥ then put L =1 and a = g(«) =
@. Consider the diagonal lamination 8 x 8 c Z x Z. If x1,29 € B are two points which
have the same image under p, then the leaves {1, ¢ of g through x1, x5 are mapped to
the same geodesics in g(Z) c¢ M. Since the lamination 8 and hence 3 x § is compact,
the leaf £1 x €5 of 8 x § enters a small neighborhood U c Z x Z infinitely often. We may
assume that the diameter of U for the product metric on Z x Z is smaller than p/2L.

From each return of ¢ x £5 to U one can construct closed loops in Z based at 1, T2
by connecting the endpoints of the subarcs of £1, s determined by these return times by
an arc of length at most p/2L. The two resulting closed curves are not homotopic in
Z. As the map ¢ is L-Lipschitz, their images under g are obtained from each other by
concatenation with a loop of length smaller than p/2 < x/4, based at a point in g(3). But
the injectivity radius of M on g(3) is a least x/2. This implies that the images under g of
these loops are homotopic with a homotopy entirely contained in the p/2-neighborhood
of g(8). Now the p/2-neighborhood of g(/3) is contained in M - g(«). Since the map
g:Z~a—-> M~ g(a) is m-injective, we deduce as on p.232 of [Thu86a| that the leaves
l1,0o of B are identical.

That this leads to a contradiction to the assumption d, (g, )(2n, yn) > € for all n follows
from the arguments on p.232-233 of [Thu86a| which work directly with compact subsur-
faces filled by limit laminations and uses nowhere that the underlying surface is closed
or of finite volume. This completes the proof of the proposition. O

Remark 13.18. It follows from the proof of Proposition 13.17 that under the assumption
in the proposition, there exists a constant p = p(b) > 0 such that the restriction of a map
g € L(X) to the p-neighborhood of 8 is incompressible within the p-neighborhood of
g(B) ¢ M. The point here is that p only depends on b. Furthermore, the conclusion
of the proposition also holds true for any element g € £(X) which is contained in some
simplicial path in £(X). Namely, the argument only used that the maps considered are
one-Lipschitz and map the boundary 9Y of the subsurface Y isometrically.

Recall that if deg(9Y, D1 U D) > p then a simple closed curve on ¥ which is disjoint
from QY is not homotopic to zero in M; and hence it has a geodesic representative in
M.

Corollary 13.19. For every b > 0 there exists a number Ry = Ra(b) > R3(b) with the
following property. Let OY c X be a subsurface with deg(0Y, D1 UDs) > p and assume
that there exists a component 3 of OY whose geodesic representative in M is contained
in a subset of M of diameter at most Ry and has length at least Ry. Let gs ¢ L(OY)
be a stmplicial path and assume that for each s, the core curve of any Margulis tube for
o(gs) is incompressible in M. Assume furthermore that for each s there exists a simple
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closed curve on (3,0(gs)) disjoint from Y of o(gs)-length at most b. If Y is not an
annulus then there exists a bridge arc T for Y whose length is smaller than ko for each
of the metrics 0(gs). If Y is an annulus then there exists a simple closed curve crossing
through Y which intersects a minimal curve crossing through Y for each of the metrics
o(gs) in at most 2 points.

Proof. As in the proof of Proposition 13.17, there exists a universal constant y < kg
only depending on Ry with the following property. Let g € £L(JY") be such that the core
curves of Margulis tubes for o(g) are incompressible in M. Then for any point x € 3, the
injectivity radius of o(g) at = is at least x.

Let 6 = §(b,x/4) > 0 be as in Proposition 13.17. By standard hyperbolic geometry
(see [Min00] for details), there exists a number R4 = R4(b,x/4) > 0 with the property
that for any closed geodesic ¢ in a hyperbolic 3-manifold M whose diameter in M is
at most Ry and whose length is at least Ry, there are three points 21, 22,23 € ¢ with
dp )y ((PT¢)(2i), (PT¢)(2;)) < 6 and such that the distance along ¢ between z;,z; is
larger than 2x (i =1,2,3). Here pT'¢ denotes the projectivized tangent line of .

Let gs ¢ £(0Y) be a simplicial path as in the statement of the corollary for this
number Ry. For each s the restriction of the map gs : (3,0(gs)) = M to the o(gs)-
geodesic B c JY is an isometry onto a geodesic B c M. If the diameter of B in M is at
most Ro and its length is at least R4 then by the previous paragraph, there are points
21,29,23 € B with the following property. Let x; € 8 be the preimage of z; under gs;
then dp(M)(p:l:i,p:Uj) < ¢ and the distance along 8 between x;,x; is larger than 2x. It
then follows from Proposition 13.17 and Remark 13.18 that d, 4, )(wi, ;) < x/4 for all s
(i,j =1,2,3).

Since the injectivity radius of o(gs) at z;,z; is at least x for all s, the points z;, z;
can be connected in (X,0(gs)) by a unique minimal geodesic arc a; of length at most
x/4. Since the metrics o(gs) depend continuously on s, the arc depends continuously
on s and hence its homotopy class with fixed endpoints is independent on s. See also
Lemma 13.7 and Remark 13.8 for a similar statement.

Consider first the case that Y is not an annulus. If oy is contained in Y, then a; is a
bridge arc for Y with the required properties. If o has a proper subsegment contained
in Y with one endpoint an endpoint of ag, then the same argument applies to this
subsegment. Now the points zo,x3 are contained in the y/4-neighborhood of x1, and
the simple closed geodesic 5 crosses through these points. Since S does not have self-
intersections, locally the subarcs of 8 through the points x; decompose a suitably chosen
disk neighborhood of x; into two strips with boundary in S which are separated by a
subarc of 3, say the subarc through z;, and two half-disks. Then the subarc of 3 through
x; divides a small disk about z; into two half-disks, at least one of which is contained in
Y. Thus for either £=j+1 or £=7—-1 (indices are taken modulo 3), the initial segment
of the minimal geodesic connecting x; to x, is contained in Y. Its first intersection with
Y defines a bridge arc for Y of length smaller than x/2 < k¢/2, and up to homotopy
keeping the endpoints in dY, the length of this arc is smaller than ko/2 for all s. This
shows the corollary in the case that Y is not an annulus.
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Following once more [Min00|, the argument in the case that Y is an annulus is analo-
gous. Namely, the above argument shows that for each of the two sides of the geodesic
representative 3 of the core curve of Y we can find a homotopy class of an arc 7 with
endpoints in 8 which leaves S from the chosen side and whose length is smaller than
ko/2 for each of the metrics gs. If the arc 7 leaves and returns to different sides of 5 then
its concatenation with a subarc of 8 determines a simple closed curve crossing through
Y with the properties we are looking for. Otherwise there are two such arcs leaving and
returning to distinct sides of Y, and the union of these arcs with subarcs of 0Y define
a simple closed curve with the desired properties. This follows once more from the fact
that for a given hyperbolic metric, any two bridge arcs for a subsurface Y of length at
most kg are disjoint up to homotopy keeping the endpoints on 9Y . (]

We are left with analyzing pleated surfaces (X, g) whose pleating locus contains the
boundary dY of a subsurface Y c 3 with the following properties.
(1) deg(0Y, Dy uDs) > p.
(2) The diameter of (X,0(g)) is uniformly bounded.
(3) The length in (X,0(g)) of any simple closed curve disjoint from 9Y is large.

A geodesic lamination 8 on a surface ¥ is said to fill 3 if all complementary components
of 8 are simply connected. We have

Lemma 13.20. Let (X,0,) be a sequence of hyperbolic surfaces of uniformly bounded
diameter. Let 8, c (3,0,) be a simple closed multicurve whose length tends to infinity
with n and assume that the same holds true for the length of any simple closed curve
disjoint from B,. Then up to passing to a subsequence and the action of the mapping
class group, the triple (X, 04, By) converges in the geometric topology to a triple (X, 0, 3)
where o is a hyperbolic metric on X of uniformly bounded diameter and 5 is a geodesic
lamination which fills 3.

Proof. Since by assumption the diameters of the hyperbolic metrics oy, are bounded from
above by a universal constant and since the mapping class group acts cocompactly on
the thick part of Teichmiiller space, up to the action of the mapping class group we may
assume that the hyperbolic metrics o, converge in Teichmiiller space to a hyperbolic
metric o.

The space of geodesic laminations on (3, 0) equipped with the Hausdorff topology on
compact subsets of ¥ is compact. Thus up to passing to a subsequence, the geodesic
laminations 3, converge as n — oo in the Hausdorff topology to a geodesic lamination /.
We have to show that S fills 3.

Namely, otherwise there is a simple closed curve o c ¥ disjoint from 5. As 5, = [ in
the Hausdorff topology, either the curve « is disjoint from (3, for all sufficiently large n,
or « is a component of 5. Now the length of o for the metric o is close to the length
of a for g, and hence by the assumption that the o,-length of any closed curve disjoint
from S, tends to infinity with n, the curve o can not be disjoint from 3,, for large n.

We conclude that any simple closed curve a which is disjoint from ( is a component
of 5. Moreover, as 3 is a limit in the Hausdorff topology of simple closed curves with an
essential intersection with «, if A ¢ ¥ is any annular neighborhood of « then g intersects
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both components of A—«. But this just means that S fills ¥ and completes the proof of
the lemma. O

Lemma 13.21. For D > 0,b > D there exists a number Rs = Rs5(D,b) > 0 with the
following property. Let Y ¢ X be an essential subsurface with deg(0Y, D1 UDs) > p and
let (3, gs) € L(OY) be a simplicial path with the property that the diameter of o(gs) is at
most D for all s. Assume that the o(go)-length of every simple closed curve on X disjoint
from QY is at least Rs. Then the following holds true.

(1) The o(g1)-length of every simple closed curve disjoint from dY is at least b.

(2) If Y is not an annulus then there exists a bridge arc for Y of length at most kg
for each of the metrics o(gs). If Y is an annulus then there exists a simple closed
curve crossing through Y which intersects a minimal curve crossing through o(gs)
in at most 2 points for all s.

Proof. Again we argue by contradiction and we assume that there are D > 0,5 > 0 such
that a number Rs = R5(D,b) > 0 with property (1) in the lemma does not exist. We
then obtain a sequence of counter examples, consisting of the following data.

(a) A hyperbolic 3-manifold M,, with Heegaard surface ¥ and an essential subsurface
Y,, ¢ ¥ with deg(0Yy,, D1 UDsy) > p whose boundary has diameter at most D in
M,,.

(b) A simplicial path (X2,¢;) ¢ L(9Y;) (s € [0,1]) such that the o(g})-diameter of
Y is bounded from above by D for all n,s and that the o(g2)-length of every
simple closed curve on X disjoint from 0Y;, tends to infinity with n.

(c) A simple closed curve a,, disjoint from 9Y;, whose o(g.)-length is at most b.

Choosing a point z, € M, on the geodesic representative of 0Y,, by passing to a
subsequence we may assume that the pointed hyperbolic manifolds (M,, z,) converge
in the pointed geometric topology to a pointed hyperbolic 3-manifold (M, z). Note to
this end as before that the injectivity radius of M, at z, is bounded from below by a
universal constant.

By assumption, the diameters of the hyperbolic metrics o(g;) are uniformly bounded.
Thus for each n the images g;(X) c M, are contained in a compact subset of M, of
diameter bounded from above by a constant independent of n. Namely, the maps g, are
one-Lipschitz and their images g; (¥) contain the geodesic representatives of 9Y;,.

Since for all n the maps g; are homotopic within a fixed compact subset of M, and
by Lemma 13.7 and Remark 13.8 they all define the same marked homotopy class of
maps > — M,, up to passing to a subsequence and the action of the mapping class
group, the almost isometric maps k, : U, ¢ M — M, whose existence follows from the
assumption on geometric convergence M,, - M define a fixed marked homotopy class of
maps h: X - M. If (X,g) is any geometric limit of one of the maps (3,¢;) as n — oo,
then this limit is contained in this fixed marked homotopy class.

For large enough n, the geodesic multicurve 0Y,, of uniformly bounded diameter in
M,, defines via the almost isometric map k, a geodesic multicurve 8Yn in M which is
the image of 0Y,, under the preferred homotopy class of maps > — M. The length in
M of these multicurves tends to infinity as n — oco. Using the preferred homotopy class
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of maps ¥ — M, for large enough n each pleated surface (X, g) in the simplicial path
gy € L(JY,,) determines via the map k, a pleated surface (3,¢;) in M. In particular,
this holds true for s = 0,1. Furthermore, by the explicit construction of simplicial paths
in £(9Y,,), we also obtain a corresponding simplicial path g c E(@ffn). In particular,
the maps gg,g}L : 2. - M are homotopic relative to the common pleating lamination oY,

Using once more the almost isometric maps ky, the length of any simple closed curve
on (2,0(§%)) disjoint from Y;, tends to infinity with n. Thus by Lemma 13.20, up to
passing to another subsequence we may assume that the multicurves ) converge as
n — oo in the geometric topology to a geodesic lamination i on ¥ which fills .

On the other hand, by assumption, for each n there exists a simple closed curve on
(2,0(gL)) of length at most b which is disjoint from 9Y;,. Via the almost isometric maps
ky, for large enough n the same holds true (for a perhaps slightly larger constant) for
(%,0(4l)). By passing once more to a subsequence, this property passes on to a limiting
pleated surface (3,g'). In other words, there exists a simple closed curve ¢ on ¥ which
is disjoint from a limit 4! of the geodesic laminations Y, on ¥. Since fi' is a limit of
dY,, in the Hausdorff topology, we deduce that c is disjoint from dY,, for all large enough
n.

But a limiting lamination 4% for ¢(§2) fills ¥. Since by Remark 13.8 the pleated
surfaces §0 and ¢ induce the same maps m1(X) — 7 (M) as marked homomorphisms,
this implies that dY,, has an essential intersection with ¢ for all large enough n. Recall
that this is a topological property. This is a contradiction and yields that there exists a
number R5 = R5(D,b) > 0 for which property (1) stated in the proposition holds true.

We are left with showing that up to perhaps enlarging Ry, property (2) is satisfied as
well. Again we argue by contradiction and we assume that the statement does not hold
true. Then there is a sequence of counter examples with properties (a) and (b) from the
beginning of this proof and that moreover no such bridge arcs or simple closed curves
exist. By what we established so far, we may assume that as n - oo and up to the action
of the mapping class group, the hyperbolic metrics 0(¢%) and o(g.) on ¥ converge in
Teichmiiller space to metrics 0, 0!, and the geodesic laminations 3, c (2,0(g%)) (i =
0,1) converge to laminations 2, 4! which fill ¥. The pleated surfaces g2, g: converge in
the pointed geometric topology to pleated surfaces g%, ¢g' : ¥ — M in the same homotopy
class which map u%, ' leafwise isometrically to the same geodesic lamination p c M.
This lamination is a geometric limit of the geodesic representatives of the preimages 371
of the geodesics 5, under the almost isometric metric maps k, which define the geometric
convergence.

It follows from the above discussion that the laminations u, u! coincide as marked
geodesic lamination on ¥. Denote this lamination by y for convenience. Let §°, ' be two
limiting pleated surfaces which are limits of the sequence gg, g}l, respectively. Let QQ ¢ 3
be a complementary component of the filling geodesic lamination p which is contained
in the pleating lamination for §°, ¢! and let £1,¢s be two oriented boundary leaves of Q
which are backward asymptotic. Then for a given € > 0, there are points x € £1,y € {5 of
distance at most €/2 for both ¢°, . For large enough n such that §°(X) is contained in
the domain of the map k,, there are points on 9Y,, close to the images of x,y under k,, of
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distance at most € for both gg, g and such that there exists a bridge arc with endpoints
on dY, which is of length at most e for both g2, gl. If this bridge arc is contained in
Y, then this is a contradiction. This is in particular the case if 9Y,, is a non-separating
simple closed curve.

We are left with showing that the latter property can always be assumed. Namely, if
Y, is not an annulus then Y;, c ¥ is a subsurface of negative Euler characteristic. The
pleating lamination )\, for (2, ¢°) decomposes Y;, into ideal triangles. A limiting ideal
triangle is contained in the limit of the subsurfaces Y,, and hence the above construction
applied to a complementary polygon which is contained in the limit of the surfaces Y,
yields the desired property. This completes the proof of the lemma in the case that Y is
not an annulus.

The argument for the case that Y is an annulus is completely analogous and will be
omitted. (]

The next proposition combines what we established so far to a subsurface projection
bound for subsurfaces with large length geodesic realization. In its formulation, the
constants Ry > 0,ko > 0,p >0 are as in Lemma 13.13.

Proposition 13.22. There exists a number Rg = Rg(X) > Ry with the following property.
Let Y c 3 be a proper essential subsurface. Assume that deg(0Y, Dy U Dsy) > p, that
the diameter in My of each component of OY is at most Ry and that OY contains a
component 3 of length at least Rg; then

diamy(D1 U DQ) < ko.

Proof. We only show the proposition for non-annular subsurfaces, the claim for annuli
follows from exactly the same argument.

Thus let Y be a proper essential subsurface of ¥ with deg(9Y,D; U Dy) > p. Assume
that the diameter in My of each component of Y is at most Ry where Ry > 0 is as in
Lemma 13.13.

Choose a number by > 0 which is larger than 10 times the Bers constant for 3. For
this number by let by = R5(R2,b) be as in Lemma 13.21. Define by = R5(R2,b1). Note
that by Lemma 13.21, if (X, g) is a pleated surface in the homotopy class of the inclusion
of a Heegaard surface whose pleating lamination contains 9Y for an essential subsurface
Y of X, if the diameter of o(g) is at most Rs, the length of 9Y is at least by and if
there exists a simple closed curve digjoint from Y of length at most by, then all pleated
surfaces in a path consisting of surfaces of diameter at most Ro contain a simple closed
curve disjoint from dY of length at most by. Let Rg = R4(b2) be as in Proposition 13.17.

Assume that the length of some component of 9Y is at least Rg. Choose diskbounding
simple closed curves ¢; € D41 (i =0,1) and use these curves to construct pleated surfaces
9o, g1 : % — M with pleating lamimation defined by spinning ¢; about Y. Connect gg
to g1 by a simplicial path gs ¢ £(9Y"). It follows from the assumption on Y that there
exists a partition 0 =tg < --- <t, =1 of [0, 1] such that the path g; = g|[¢;-1,t;] has one of
the following properties.

(1) If i is even then for each s € [t;_1,t;] there exists a Margulis tube for o(gs) with
core curve of length at most x(/10, and this core curve is diskbounding.
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(2) If iis odd then either for each s € [t;-1,t;] the diameter of o(gs) is at most Ro and
for all s there exists a simple closed curve disjoint from Y whose g,-length is
at most be, or for all s the shortest o(gs)-length of a simple closed curve disjoint
from Y is at least by.

Now by Corollary 13.19 and Lemma 13.21, for each odd ¢ there exists a bridge arc for
Y of 0(gs)-length smaller than ko for each s € [t;_1,t;]. Furthermore, for each even ¢
there exists a bridge arc of length at most k¢ contained in a diskbounding curve, and each
of these bridge arcs is a subarc of a curve from D; for j =1 or j = 2. But as the distance
in CG(X) between D; and Ds is at least 4 by assumption, for consecutive even i the disk
sets which give rise to the short bridge arcs coincide. As a consequence, either there is
a short bridge arc persisting along the path, or all the short bridge arcs are uniformly
close in the arc and curve graph of Y to a bridge arc contained in a diskbounding curve
from a fixed disk set, say the set D;. This shows the proposition. O

Proof of Theorem 13.3. Let R = Rg > Ro where Ry, Rg are as in Lemma 13.13 and
Proposition 13.22. For this number R and the given number € > 0 let k = k(R,¢€) > 0 be
as in Lemma 13.10. Assume that the diameter of the subsurface projection of Dy U Dy
into Y is at least k. By Lemma 13.13 and Proposition 13.22, we know that the length
of Y is at most R. But then an application of Lemma 13.10 shows that this length is
in fact smaller than e. This is what we wanted to show. (]

14. EFFECTIVE HYPERBOLIZATION II

The goal of this section is to complete the proof of effective hyperbolization for closed
3-manifolds M; with large Hempel distance. Theorem 12.1 takes care of the case that
a minimal geodesic in the curve graph of the Heegaard surface 3 connecting the two
disk sets D1, D; for My has a sufficiently long subsegment with bounded combinatorics
(no large subsurface projections). Thus we are left with considering manifolds for which
there are proper strongly incompressible subsurfaces Y c ¥ so that the diameter of the
subsurface projection of D; UDs into Y is larger than some a priori fixed constant.

Our strategy is to choose two of these subsurfaces of 3, say the surfaces Y1, Y2, whose
boundaries are sufficiently far away in the curve graph of ¥ from both Dy uDy and from
each other, and to choose a boundary curve aj of Y. Drilling the curve oy from My
results in a non-compact manifold M; with one end C; homeomorphic to T2 x (0, o)
where T? denotes a 2-torus. Proposition 3.1 of [FSV19] shows that the manifold M is
irreducible, atoroidal and Haken and hence it admits a complete finite volume hyperbolic
metric by Thurston’s geometrization theorem for Haken manifolds [Thu86a|, [Thu86b|.
The end C; of M is a cusp for this hyperbolic metric. The torus 7?2 = 9C, inherits a
flat metric from the hyperbolic metric on Mj.

By the Dehn filling theorem Theorem 11.4, removal of C; and gluing a solid torus to
the boundary 9C7 of M7 —C4 in such a way that the meridian for the gluing is sufficiently
long for the flat metric on 0C4 yields a closed hyperbolic manifold Ni. We show that for
a suitable choice of the meridian for the gluing, the Heegaard surface ¥ for M} also is a
Heegaard surface for Ny, and we can control distances in the curve graph of X and sizes
of subsurface projections for the disk sets of both My and Ni. In particular, we observe
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that the Heegaard distance of N7 coincides with the Heegaard distance of My, and the
diameter of the subsurface projection of the disk sets Dy uD; of M/ into the subsurface
Y5 of ¥ essentially coincides with the diameter of the subsurface projections of the disk
sets of V7.

By Theorem 13.3, the length of the boundary Y>3 of Y5 for the hyperbolic metric on
N is bounded from above by a constant only depending on the size of the subsurface
projection of D; U D5 into Yz, but not on the filling meridian defining N;. Thus if the
diameter of this subsurface projection is large, then this length is smaller than any a
priori chosen constant.

Do the above construction with the manifold M; and a boundary curve as of the
subsurface Y of X. Drilling as from M} yields an irreducible atoroidal Haken manifold
M with one end Cs which admits a complete finite volume hyperbolic metric. Filling the
cusp using a suitably chosen long meridian on the boundary of Cy results in a hyperbolic
manifold Ny. Using again Theorem 13.3, the length of the boundary 0Y; of Y7 in N» is
smaller than any a priori chosen constant provided that the diameter of the subsurface
projection of D1 U Dy into Y] is sufficiently large, independent of the choice of the filling
of the cusp of Mo.

But this means the following. Let M + be the manifold obtained from M}y by drilling
both curves a1, as. This manifold admits a finite volume hyperbolic metric with two
rank two cusps C1, Cs. There exists a uniform lower bound for the lengths of the curves
on the boundaries 8@1,86‘2 of Cl, C’Q corresponding to the meridians for the filling of
C1,Cy which gives rise to My, and this lower bound only depends on the diameters of the
subsurface projections of the disk sets of My into Y7,Ys. respectively. As a consequence,
we can use Theorem 11.4 to fill both cusps and construct a hyperbolic metric on Mjy.

To implement this strategy we have to assure that suitably chosen Dehn surgeries
about a boundary curve of a strongly incompressible subsurface Y c ¥ yield manifolds
N with the same Heegaard surface ¥ as My, and we have to control the disk sets of the
surgered manifold as well as their distances in the curve graph of X.

To set up this control we use Theorem 3.1 of [MMO00]. For a proper essential subsurface
Y c X, we denote as before by dy the distance in the arc and curve graph of Y.

Theorem 14.1 (Masur-Minsky). There exist constants m = m(X) > 0,p = p(X) < m
with the following properties. Let o, B € CG(X) be two simple closed curves and let Y ¢ 3
be a proper essential subsurface. If dy(a, ) > m, then any geodesic ¢ : [0,n] - CG(X)
connecting a = ((0) to 5 =((n) has to pass through a curve ((j) (for some je[1l,n-1])
which is disjoint from Y. Furthermore, if j € [3,n—3] and if a €[0,j-3], be[j+3,n]
then

|dy (¢(a),¢(b)) - dy (a, B)[ < p.

Here the last part of Theorem 14.1 follows from the fact that a geodesic in CG(X)
can contain at most three simple closed curves disjoint from a subsurface Y, and their
mutual distance is at most 2. Thus if j € [3,n - 3] and if @ € [0,5 - 3], b e [j +3,n]
then up to adjusting constants, Theorem 3.1 of [MMO00| shows that dy (((0),¢(a)) < p/2,
dy (¢(b,¢(n)) < p/2 and hence the statement follows from the triangle inequality.
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Using the constants m,p from Theorem 14.1, let us assume that Y c ¥ is a proper
essential subsurface which is strongly incompressible for My and such that the diameter of
the subsurface projection of D;uUDy into Y is at least 2m. Assume also that deg(0Y, D;) >
3. Let ¢:[0,n] —» CG(X) be a minimal geodesic in CG(X) connecting D; to Dy. Choose
markings p1, pe for X whose pants decompositions are composed of curves in D1, Dy and
which contain ¢(0),((n). Here a marking consists of a pants decomposition of ¥ together
with a system of spanning curves, one for each component « of the pants decomposition
P, which is disjoint from P -« and intersects « in the minimal number of points (one or
two, depending on the topological type of the component of ¥ — (P — «) containing «).

The marking graph is the graph whose vertices are markings and whose edges are given
by so-called elementary mowves, consisting of removal of one of the marking curves and
replacing it by another curve while keeping all the remaining curves from the marking
(see [MMOO0] for a detailed discussion). Choose a simplicial path us (s € [0,u]) in the
marking graph of ¥ so that each point of p contains a point of (. We require moreover
that the pants decomposition of the endpoints ug of u consists of curves in the disk set Dy
and contains ((0), and that the pants decomposition of the endpoint u,, of p consists of
curves in the disk set Dy and contains the endpoints of ((n) of . Since { passes through
a curve disjoint from Y, we may assume that there exists a point in g which contains
the boundary of Y as part of the pants decomposition. View the 3-manifold M} as being
glued from two handlebodies Hy, Hy of genus g and the manifold ¥ x[1,2], where ¥ x {1}
is equipped with the marking po, and ¥ x {2} is equipped with the marking p,. In this
way the manifold My is completely determined by the pair of markings (uo, ) of 3.

Let T be a solid torus. Its boundary 97 contains the meridian as a distinguished
homotopy class of a simple closed curve ¢, characterized by being contractible in 7. A
longitude for T is a simple closed curve on 97 which intersects ¢ in a unique point and
is isotopic to the core curve of T, that is, to a generator of the fundamental group of T'.

Let a be a boundary curve of the strongly incompressible subsurface Y of 3. Then «
is not contractible in My and hence it is the core curve of a solid torus T c M. Choose
as a longitude on the boundary of T the curve a c 3. This construction associates to
the torus T' ¢ My with core curve « a preferred meridian-longitude pair (c,«) on 0T
Theorem 6.2 of [Com96| now states the following.

Theorem 14.2 (Comar). Let (c,«) be a preferred meridian-longitude pair in the bound-
ary of a tube in My with core curve oo c Y. Let T, be the left Dehn twist about o c 3.
Then the manifold defined by the pair of markings (po, Tol ptu) s obtained from My by
(1,q)-Dehn surgery along « for all q.

To control the diameter of subsurface projections of the disk sets of the Dehn surgered
manifolds we begin with some preliminary discussion about Dehn twists.

Lemma 14.3. Let k>0, let Ac X be an annulus and let Ty be the left Dehn twist about
the core curve of A. Let ¢,d € CG(X) be simple closed curves which have an essential
intersection with A. Then there exists a number q € Z such that the diameter of the
subsurface projection of c,Tjd into A is contained in [k,k+2]. Up to perhaps replacing
q by q+ 1, the number q is unique if we require in addition that its absolute value is
minimal with this property.
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The ambiguity in the choice of ¢ in the last statement of the lemma reflects the fact
that the subsurface projection into an annulus is only well defined up to the ambiguity
of possibly adding a single positive or negative twist.

Proof. The subsurface projection into A of two simple closed curves ¢,d on X is defined
as follows. Equip ¥ with an auxiliary hyperbolic metric. Consider the covering V of X
with fundamental group m(A). This covering is an annulus, equipped with a complete
hyperbolic metric. Both ends of V' have infinite volume and hence the ideal boundary of
V' consists of two disjoint circles. Since ¢, d intersect A essentially, there are components
¢,d of a lift of ¢,d to V which are arcs abutting on the two distinct components of the
ideal boundary of V. Up to an additive constant of +1, the diameter of the subsurface
projection of ¢,d into A then equals the number of essential intersections of ¢, d.

Let d be an essential arc in V with the same endpoints as d which is disjoint from ¢é
except perhaps at its endpoints. Up to homotopy with fixed endpoints, we have d= ’TXCZ
for some n € Z; note that this makes sense since the Dehn twist T4 lifts to V. Write
g=n-kifn>0, and write g=n+k if n <0. Then TX(J) has k + 1 intersections with ¢.
Thus the diameter of the subsurface projections into A of the curves c, 7;‘{d is contained
in the interval [k—1,k+1]. Furthermore, up to perhaps replacing ¢ by ¢+ 1, the number
q is the unique number of minimal absolute value with this property. This shows the
lemma. O

Let ¢ : [0,n] - CG(X) be a minimal geodesic connecting D; to Dy where as before,
D1 uDs are the disk sets of M. Let Y c ¥ be a proper essential strongly incompressible
subsurface such that dy (D1,D2) > m + 2p where m,p > 0 are as in Theorem 14.1. Let
«a c JY be a boundary curve and let T, be the left Dehn twist about a. By the choice
of m, there exists j > 0 be such that ((j) is disjoint from Y. Let £ > 2m and let ¢ € Z
be as in Lemma 14.3 of minimal absolute value such that the diameter of the subsurface
projection of ¢(0),74¢(n) into the annulus A ¢ 3 with core curve « is contained in the
interval 4,0+ 2].

Since the Dehn twist 74! fixes the curve ((j), we can define a modified path ¢, :
[0,n] = CG(%) by

Td(C(u))  foruzj’

Note that by Theorem 14.2, the curve (o connects the disk sets D1, Dy of the manifold
M obtained from M by (1,q)-Dehn surgery along . We have

Lemma 14.4. i) The path (, is a geodesic in CG(X).
it) If Y ¢ X is not an annulus then dy ({4 (0),la(n)) = dy (£(0),{(n)).
itt) Let Z ¢ ¥ be a proper incompressible subsurface such that deg(0Y,07) > 5. Assume
that dz(€(0),{(n)) >m +2p and that £ € (0,n) is such that (({) is disjoint from Z.
Then | —j| >3, and

dz(¢(0),75¢(n)) 2 dz(¢(0),¢(n)) = 2p if £ < j,
draz(¢(0),75¢(n)) 2 dz(¢(0),¢(n)) = 2p if £> j.

) = {g(u) for u < §
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Proof. The path (, has the same length as (. We claim that it is a geodesic in CG(X).

To show the claim let 5 : [0,b] - CG(X) be a geodesic connecting 5(0) = (,(0) to
B(b) = (a(n). Its length b is at most the length n of the path (,. Now note that if
Y is not an annulus, then dy (¢(0),7a¢(n)) coincides with dy (¢(0),¢(n)), and if YV is
an annulus then dy (¢(0), 72¢(n)) > 2m by construction. Thus any geodesic in CG(X)
connecting €(0) = (4(0) to (o(n) = Ta(¢(n)) has to pass through a curve disjoint from
Y.

Let a € [0,b] be such that 3(a) is disjoint from Y. Then £(a) is left fixed by 7, % and

therefore we can define an edge path 3 of length b connecting ¢(0) to ¢(n) by

vy | B(u) foru<a
plu) = {E_qﬂ(u) foru>a’

As ( is a geodesic, the length b of B is not smaller than the length n of (. Thus we
have b =n and consequently (, is a geodesic as claimed. This shows the first part of the
lemma.

The second part of the lemma follows from the fact that the projection of a simple
closed curve ¢ with an essential intersection with a proper essential non-annular subsur-
face Y of ¥ equals the union of the intersection arcs cnY. Thus if ¢ is replaced by Tg(c)
for a boundary component a of Y, then these subsurface projections coincide.

To show the third part of the lemma, assume without loss of generality that ¢ < j, the
case ¢ > j follows from an application of 7. Since the distance in CG(X) between 07
and 0Y is at least 5, and a curve disjoint from 9Z,0Y has distance at most 1 to 07,0Y,
we have |j — ¢| > 3 and hence Theorem 14.1 shows that

dz((0),¢(7)) 2 dz(C(0),¢(n)) —p2m+p.

Now the restriction of the geodesic (, to [0,7] coincides with the restriction of the
geodesic ¢, and hence the same estimate holds true for {, as well. As (, is a geodesic,
and (,[0, 7] passes through a curve disjoint from Z, the subsegment (,[7,n] does not
pass through a curve disjoint from Z. Theorem 14.1 then shows that dz((,(0), (s (n)) >
dz(€a(0),¢a(j)) —p2m—p. But dz((.(0),(a(4)) =dz(¢(0),¢(5)) and consequently we
have dz((x(0),la(n)) > dz(¢(0),((n)) —2p as claimed. O

We are now ready to complete the proof of Theorem 5 from the introduction.

Theorem 14.5. For every g > 2 there exist numbers R = R(g) >0 and C = C(g) > 0 with
the following property. Let My be a closed 3-manifold with Heegaard surface X of genus g,
gluing map f and disk sets D1 UDs, and assume that deg(D1,D2) > R. Then My admils
a hyperbolic metric, and the volume of My for this metric is at least Cdeg(D1,D2).

Proof. Fix a Margulis constant p for hyperbolic 3-manifolds and let £ € (0,1/4) be
a sufficiently small constant. Let L = L(&,1/100,2) > 0 be as in Theorem 11.4. By
Theorem 11.1, there exists a constant € > 0 such that the following holds true. If M is
any hyperbolic 3-manifold and if NV ¢ M is a hyperbolic solid torus whose core geodesic
has length less than ¢, then the length of the meridian of the tube on its boundary is at
least 2L. For this number ¢ let k£ = k(3,e) > 0 be as in Theorem 13.3. For the number
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k and the above number & > 0 let b = b(X,k,£) > 0 be as in Theorem 12.1. Let p > 3 be
as in Theorem 13.3.

Consider a closed 3-manifold My, constructed from a gluing map f : 0H; - O0H».
Assume that the Hempel distance of My, that is, the distance in CG(X) between the disk
sets D1, Do, is larger than 2b + 2p + 3. There are two possibilities.

In the first case, a minimal geodesic ¢ in CG(X) connecting D; to Dy contains a
subsegment of length at least b whose endpoints do not have any subsurface projections
of diameter at least k. Then M/ fulfilles the assumptions in Proposition 12.4 and the
existence of a hyperbolic metric on M} is an immediate consequence of Proposition 12.4.

In the second case, no such subsegment exists. Then there exist at least two distinct
proper essential incompressible subsurfaces Y7, Y2 of ¥ whose boundaries have distance
at least 5 in CG(2), distance at least p from D; U Dy and such that the diameter of the
subsurface projection of D1 UDs into Y7, Ys is at least k. Namely, in this case there exists
such a subsurface Y, and there exist one or two points on the minimal geodesic ¢ in
CG(X) connecting D1 to Dy which are disjoint from Y7, and these points are of distance
one in CG(X). Such a point {(m) decomposes the geodesic into two subsegments, one
of which has length at least b+ p+ 1. We then use this subsegment to find a second
subsurface Ys of 3 with these properties and whose boundary if of distance at least 5 to
the boundary of Y7 in the curve graph of X.

Let a1, a9 be a boundary component of Y7,Y5. Its distance in CG(X) from Dy U Dy is
at least p > 3 and hence by Proposition 3.1 of [FSV19], the 3-manifold M; obtained by
drilling ¢; is irreducible atoroidal and Haken, with a single end C; which is homeomorphic
to T x [0,00) where T = 0C; is a 2-torus. The simple closed curve «; c dY; determines
a distinguished free homotopy class 8; on the boundary 0C; of C;, chosen so that the
3-manifold obtained by removing C; and gluing a solid torus to the boundary 9C; of
M; - C; with meridian 3; is just the manifold My. We call the curve §8; the meridian of
My in the sequel. By Theorem 14.2, the manifold M; is obtained from My by (1, 0)-
Dehn surgery along a preferred meridian-longitude pair for the boundary of a tube about
(67 in M f-

By Thurston’s hyperbolization theorem for irreducible atoroidal Haken manifolds (see
[Thu86a|, [Thu86b|), M; admits a complete finite volume hyperbolic metric for which
the end C; is a rank two cusp. Replace M; by a Dehn filling M; which is obtained from
My by (1,q)-Dehn surgery along a preferred meridian-longitude pair for the boundary
of a tube about «; in My. Theorem 11.4 shows that for sufficiently large ¢, the manifold
M; admits a hyperbolic metric which is close to the metric of M; away from the cusp C;.

Since M; is obtained from M ¢ by (1,q)-surgery along along a preferred meridian-
longitude pair for My, Theorem 14.2 shows that the manifold M; admits a Heegaard
decomposition with the same Heegaard surface ¥ as My. Let 151,152 be the disk sets

of M; for this Heegaard decomposition. By Lemma 14.4, the Heegaard distance of M;
coincides with the Heegaard distance of M, and the diameter of the subsurface projection
of Dy UDy into Vi equals the diameter of the subsurface projection of D1 uDs up to a
uniformly bounded additive error (indices are taken modulo 2).
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As a consequence, the proper incompressible subsurface Y, fulfills the assumption of
Theorem 13.3 for the hyperbolic manifold M; with Heegaard surface 3. An application of
Theorem 13.3 shows that the length of the curve ;41 in MZ is less than €. In particular,
if we consider the meridian of the Margulis tube in MZ with core curve a;.1, viewed as
a curve on the boundary of the Margulis tube defined by a;,1 in Mi, then the length of
this meridian is at least 2L, independent of the filling slope for the Dehn filling of M;
which gives rise to M;.

Exchanging the roles of M; and M3y in this argument shows the following. For suffi-
ciently large ¢, the manifold N obtained from My by (1,q) Dehn surgery at both a1, oz is
hyperbolic, and the lengths of the simple closed curves on the boundaries of the surgered
Margulis tubes which correspond to the meridians in My (that is, which are obtained
from N by (1,-g)-surgery) are at least 2L. Thus Theorem 11.4 shows that we can
modify N by Dehn surgery with slope (1,-¢) at both aj,as. The resulting manifold is
diffeomorphic to My, and it carries a hyperbolic metric whose restriction to the so-thick
part of My is §-close in the C?-topology to the restriction of the hyperbolic metric of N,
where kg > 0 is the constant with properties (P1),(P2) used in Section 13. This completes
the proof that M admits a hyperbolic metric.

We are left with controlling the volume of this metric. Using the constant k = k(¢) > 0
from Theorem 13.3, and for this number k the integer b = b(X%,k,e) from Theorem
12.1, we find the following. Denote by n the Hempel distance decg(D1,D2) of My. Let
¢:[0,n] - CG(X) be a shortest geodesic in CG(X) connecting D to Ds. Let Y7,...,Y; be
the subsurfaces of ¥ with deg(9Y;, D1 UDs) > p such that the diameter of the subsurface
projection of Dy UDs into Y; is at least k. The geodesic ¢ passes through simple closed
curves disjoint from Y;.

Subdivide ( into segments of length b. Let £y, £1, respectively, the smallest and largest
integer such that for the segment [£;b, (¢;+1)b], there exists no u € [£;b, (¢;+1)b) so that
¢(u) is disjoint from one of the surfaces Y; (j = 0,1). There are now two possibilities. In
the first case, we have ¢1 — £y > n/2b. By Proposition 12.4 and its proof, we conclude that
in this case, the volume of My is at least v(deg(¢(b(£o+1)),¢(b(¢1-1))) > vb(l1—Ly—2) >
vn/2 — 2vb which gives the required bound up to adjusting constants.

On the other hand, if £1 - £y < n/2b then each of the segments (|[yep(¢+1)) for £ < £y or
£ > {1 contains at least one curve which is disjoint from a subsurface with large subsurface
projection. There are at least £o + | 3] — £1 > [n/2b] such segments. For each of these
segments [kb, (k+1)b), there exists at least one subsurface Y}, such that dy, (((0),{(n)) is
large, and such that ((u) is disjoint from Y}, for some u € [kb, (k+1)b). Now if {(u),((s)
are both disjoint from Y%, then |u —s| < 2 and hence if Y}, = Y}, then |k — k2| <2. As a
consequence, the number s of such distinct subsurfaces is at least [n/2b]/2.

By Theorem 13.3, for each i < s the total length of the geodesic representatives of
the boundary curves 9Y; of the surface Y; is not bigger than € and therefore a boundary
component of Y; is the core curve of a Margulis tube in M. These Margulis tubes are
pairwise disjoint, and their volumes are bounded from below by a fixed number w > 0 as
this is already true for the one-neighborhoods of their boundary tori. In other words, each
of the tubes contributes at least the fixed amount w to the volume of M}, independent
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of any choices. Adding up shows that the volume of My and is at least Cn where C' >0
is a constant only depending on b and hence only depending on .. O

Remark 14.6. Our construction for manifolds with Heegaard splitting 3 and large sub-
surface projection of the disk sets D1 UDs into a proper essential non-annular subsurface
Y of ¥ gives less information than the article [FSV19]. Namely, in contrast to these
results, we do not obtain any information on the shape of boundary tori of Margulis
tubes arising from such large subsurface projections which are reminiscent of the model
manifold theorem for quasi-fuchsian groups in [Min10].
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IMPROVED DECAY RATE IN A STABILITY THEOREM FOR
HYPERBOLIC METRICS

FRIEDER JACKEL

ABsTRACT. Recently, Ursula Hamenstadt and the author proved a stability result for
finite volume hyperbolic metrics in dimension three that does mot assume any upper
volume bounds, but that requires an exponentially fine control of the metric in the
thin part of the manifold. We use a bootstrap argument to extend the result allowing
for a weaker exponential control of the metric. This is achieved by formulating an
abstract axiomatic framework.

1. INTRODUCTION

The construction of Einstein metrics on a closed manifold M has a long history. Evolv-
ing a given metric under Ricci flow, possibly with surgery, has proven to be an extremely
fruitful method to construct such metrics. Related to the construction is the stability
of Einstein metrics, which adresses the question whether a metric that is almost Ein-
stein (in a suitable sense) is close to an Einstein metric. To prove stability results, a
classic approach is to develop a suitable convergence theory of Riemannian manifolds,
and use Arzela-Ascoli type compactness theorems together with arguments by contradic-
tion (see [And90, Theorem 1.1 and Proposition 3.4], [PW97, Theorem 1.4 and Corollary
1.6], [Pet97], [Pet16, Chapter 11]). Alternatively, one can try to use an implicit function
theorem applied to the so-called Einstein operator to perturb a metric that is almost Ein-
stein (in a suitable sense) to an Einstein metric. This approach, together with a gluing
construction, was used by Anderson [And06] and Bamler [Bam12| to construct Einstein
metrics on manifold obtained from hyperbolic manifolds of finite volume by generalized
Dehn filling, or more recently by Fine and Premoselli [FP20| to find negatively curved
Einstein metrics on the Gromov-Thurston examples of negatively curved 4-manifolds
|GT87|. For a more detailed account, we refer the reader to the introduction in [HJ22].

Extending earlier work of Tian |Tia|, and using ideas of Bamler [Baml2|, Ursula
Hamenstédt and the author [HJ22| used the implicit function theorem approach to prove
a stability result for negatively curved Einstein of finite volume in dimension three. The
goal of this article is to show that this stability result still holds if one of the assumptions
is relaxed. Our proof is based on a bootstrap argument. We formulate this bootstrap
argument in an abstract axiomatic approach, and hope that this will also be applicable
in other contexts. Along the way, we also give an overview of the proof in [HJ22].

Date: June 13, 2023.
AMS subject classification: 53C20, 53C25, 57K32
The author was supported by the DFG priority program "Geometry at infinity".
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We now state our main result, the generalisation of [HJ22, Theorem 2|. In its formu-
lation, R denotes the Riemann curvature endomorphism, and My,y is the small part of
M, a geometrically defined subset of the thin part of M (see Section 2.2).

Theorem 1.1 (Stability of Einstein metrics in dimension 3). For all « € (0,1), A >0,
0 €(0,2), b>1 and n > 1 there exist g = eo(a, A, 0,b,m) >0 and C = C(a,\,6,b,1) >0
with the following property. Let M be a 3-manifold that admits a complete Riemannian
metric g satisfying the following conditions for some € < ¢eq:

i) vol(M,g) < oo;

ii) =1 —e <sec(M,g) <-1+¢;
i11) For all x € Mgpan it holds

max [sec(m) + 1], [VE|(2), V2R|(x), [V°R|(x) < e ®0Moman); (1.1)
w) [[VRic(g)llcoargy < A
v) It holds
ebd(@Minici) ; e”F0r=WRic(g) + 2912 (y) dvoly(y) < & (1.2)

for all x € M, where r5(y) = d(zx,y).

Then there exists a hyperbolic metric gny, on M so that

thYP - g”(ﬂ@(}ng) <Cele,

Moreover, if additionally g is already hyperbolic outside a region U € M, and if

/U |Ric(g) + 2§|§ dvoly < €2,
then for all x € Minic 1t holds

|ghyp _ §|c2,a (SL‘) < Csl—ae—(l—%é)distg(m,Uu@]\/]thick).

The improvement of Theorem 1.1, compared to [HJ22, Theorem 2| (or more precisely
[HJ22, Theorem 10.1]), lies in relaxing the assumption on the decay rate n in the curva-
ture decay condition (1.1) (see the end of Section 2.1 for a detailed explanation).

We briefly comment on the conditions in Theorem 1.1. It is important to note that
condition 7) only requires the finiteness of the volume, but it does not assume any upper
bound on the volume. Consequently, the constants €9 and C do not depend on an upper
volume bound. Condition i) is natural because in dimension three Einstein metrics have
constant sectional curvature. The curvature decay condition (1.1) in Mgyay allows to
construct hyperbolic model metrics in Mgnan (see Section 2.2) that are used to model
the linearisation of the Einstein operator £ by a linear system of ODEs (see Section 2.3).
The bound on the covariant derivative of the Ricci tensor in iv) is necessary for a
well-defined notion of Holder norms (see the proof of [HJ22, Proposition 2.5] and the
references therein). Finally, for the integral condition (1.2) it is important to note that
the exponential weight b outside the integral is close to 1, and the exponential weight
—(2-6) inside the integral is close to —2. This makes it possible for the weight inside
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the integral to absorb the weight outside, so that (1.2) can be checked without assuming
any volume bounds (see [HJ22, Theorem 11.2] and its proof for an example of this).

An immediate consequence of Theorem 1.1 is the following result, which states that if
in dimension three a metric is already hyperbolic except in a region of bounded geometry,
then it is close to a hyperbolic metric. Previously known results in this direction had
to assume that the entire manifold has bounded geometry (see for example [And90,
Proposition 3.4|, [PW97, Corollary 1.6, [Pet16, Theorem 11.4.16 and Theorem 11.4.17]).

Corollary 1.2. For any a€(0,1), A>0, ¢t >0 and v > 0 there exist g9 = eg(, A, 1,v) >0
and C = C(a, A, 1,v) > 0 with the following property. Let M be a 3-manifold, and let g
be a complete Riemannian metric of finite volume on M satisfying

|sec(M,g) +1[<e and |[VRic(g)llcoar < A
Assume that there is € M so that
inj(Q) >¢, vol(Q)<v and sec(M,g)=-1 outside Q.

Then there erists a hyperbolic metric gnyp, on M satisyfing

lgnyp = gllc2a(ar,g) < cete,

Corollary 1.2 already follows from [HJ22, Theorem 2|. However, since it is not explic-
itly stated in [HJ22|, we formulate it here for the convenience of the reader.

The article is structured as follows. In Section 2 we review the relevant results from
[HJ22]. More specifically, Section 2.1 introduces the FEinstein operator, provides an
overview of the proof of [HJ22, Theorem 2|, and explains that to prove Theorem 1.1 only
certain growth estimates have to be adjusted. In Section 2.2 we recall the definition of the
small part Mgpan introduced in [HJ22] and show that the curvature decay assumption
(1.1) allows to construct hyperbolic model metrics in Mgy that will be crucial to model
the linearisation £ of the Einstein operator. How £ can be modelled by a linear system
of ODEs by using an averaging operator is explained in Section 2.3. In Section 3.1 we
state the growth estimates needed to prove Theorem 1.1. As alluded to, we formulate
a general axiomatic approach in Section 3.2, and show in Section 3.3 that given the
axiomatic set up, one can use a bootstrap argument to obtain growth estimates similar
to those needed for the proof of Theorem 1.1. In Section 3.4 we verify that the axiomatic
conditions are satisfied in the case relevant for Theorem 1.1.

Acknowledgements: I am grateful to Ursula Hamenstddt for helpful comments con-
cerning the presentation of this article.

2. BACKGROUND

2.1. Rough overview of the proof. The goal of this section is to give an overview of
the proof of [HJ22, Theorem 2|. We focus on explaining the main ideas, thus omitting
technical details and referring to the relevant sections in [HJ22] for more information.
As the complete proof of [HJ22, Theorem 2| is quite long, we hope that this overview
will be of interest independent of the rest of this article.
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The overall strategy is to make use of the Inverse Function Theorem to produce a
hyperbolic metric. Namely, for every inital metric g there is an operator ®3, called the
FEinstein operator, that assigns to every metric g a symmetric (0,2)-tensor ®5(g) (see
[HJ22, Section 2.2]). The Einstein operator has two crucial properties.

(1) If ®5(g) =0, then g is hyperbolic (see [HJ22, Lemma 2.4]).
(2) The linearisation £ = (D®3)g at the initial metric g is the elliptic partial differential
operator acting on symmetric (0,2)-tensors h by

1 1 1
Lh = §ALh +2h = EAI’L + §R1C(h) + 2h,

where Ay is the Lichnerowicz Laplacian, A is the connection Laplacian, and Ric(-)
is the Weitzenbock curvature operator (see [HJ22, Section 2.1 and Section 2.2] for
more information).

Moreover, one constructs suitable Banach spaces (.5, ]| - [|source) and (7% || - ||target) of sym-
metric (0,2)-tensors, and considers the Einstein operator as a map ®5: U ¢ .S - T, where
U is a neighbourhood of g all whose elements are Riemannian metrics. If g is almost
hyperbolic (in a suitable sense) and || - [|target is suitably defined, then the image of the
inital metric ||®g(g)l|target Will be close to 0. The linearisation £ = (D®g)g:S - T is an
elliptic operator, and for a suitable choice for the norms || ||source and || - |Jtarget it will be
an invertible operator. Therefore, by the Inverse Function Theorem ®; is invertible in
a neighbourhood V' of ®;(g), and if V' is large enough so that 0 € V, then there exists
a preimage of 0. This preimage will be the desired hyperbolic metric by (1). Here we
remark that if dim(M) > 4, then ®5(g) = 0 will only imply that ¢ is an Einstein metric
with Ric(g) = -(n-1)g.

Showing that £:S — T is an invertible operator between the suitably defined Banach
spaces S and T of symmetric (0,2)-tensors boils down to proving an a priori estimate

||h||source < CHEtharget (21>

for suitably constructed norms ||-||source and ||-||target- We stress the fact that the constants
go and C appearing in Theorem 1.1 have to be universal constants, that is, they are only
allowed to depend on the stated constants, and in particular can not depend on an upper
volume bound. Hence also the constant C' in the a priori estimate (2.1) has to be a
universal constant.

A central idea of [HJ22|, which is taken from Tian [Tial, is to define certain hybrid
norms that are a mixture of Holder and (weighted) L?-norms in order to guarantee that
the a priori estimate (2.1) can be achieved with a constant C' independent of vol(M)
(see [HJ22, Section 4.1] for the precise definition of the hybrid norms). Due to Schauder
estimates (|HJ22, Proposition 2.5|)

Bllc2ary < C(I1£RI o ary + 1Blleocary )

bounding the Hélder norm of h reduces to proving a CY-estimate. To further bound the
C%norm of h (independent of vol(M)) we invoke the De Giorgi-Nash-Moser estimate
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([HJ22, Lemma 2.8])
[hl(20) < C(IIERIIL2(B(z0.1)) * llz2(Bm0.)) )

where |h|(x0) is the pointwise C%-norm of h at zg € M, and ||-||12(5(zo,1)) is the L*-norm
in the ball B(zo,1). As one can bound bound ||h||z2(ar) in terms of [[Lh||2(ary with some
integration by parts argument, this should indicate that it is possible to deduce the a
priori estimate (2.1) with a universal constant C' when defining the norms || - ||source and
|| |ltarget to be hybrid norms that are a mixture of Holder and L?-norms. We refer to the
proof of [HJ22, Proposition 4.3] for details.

The outlined arguments work in regions of the manifold whose injectivity radius is
bounded from below by a positive universal constant, but break down in regions where
this is not the case. This is because a lower bound on the injectivity radius is required
to import elliptic regularity estimates (such as the De Girgio-Nash-Moser estimate) from
subsets of R” to the manifold. Therefore, other arguments are required to deal with the
thin part Mipi, of the manifold (the set of points that have no universal lower bound on
the injectivity radius - see Section 2.2). The idea in [HJ22] was to define the small part
of the manifold Mgpan € Minin (see Section 2.2). In Mipin N Mgman and Mgpan completely
different arguments are employed to obtain the C°-estimate.

In Mipin N Mgman one still uses regularity theory of elliptic operators, but the estimates
are applied in the universal cover M instead of M itself. Combined with a counting result
for the number of preimages (see [HJ22, Proposition 7.6]), for xo € Mipin N Mgman this
allows to bound the pointwise C%-norm |h|(zg) in terms of certain weighted L2-norms
of Lh. These arguments will not be important in the rest of this article, and so we
will not elaborate further on them and refer to [HJ22, Section 7| for more details. As a
consequnce, outside the small part we obtain a C%-estimate (see (3.1))

sup || < C[|LA]lo,
Minin N Mgman
where || - [|o.x Is a norm on the target space of symmetric (0,2)-tensors whose definition
is inspired by the pointwise estimates for |h| in terms of weighted L?-norms of £h. The
exact definition of the norms || -[|px is not important here, and we refer the reader to
|[HJ22, Proposition 7.5 and Definition 9.9] for more details.

To obtain a C%-estimate in Mgman one exploits the fact that in Mgyan the linearisation
L of the Einstein operator can be modelled by an explicit linear system of ODEs. Namely,
the main idea, taken from Bamler [Bam12|, is to introduce an averaging operator that
assigns to each tensor h in Mg,,, another tensor h that only depends on r = d (-, 0Mgman)
(see Section 2.3). This averaging operator commutes (up to small error) with the differ-
ential operator £. So the PDE Lh = f reduces to the ODE Lh = f. Using standard
ODE estimates we derive certain growth estimates for h (and in turn also for k). The
C%estimate in Mypan (and also all other a priori estimates in [[1J22, Section 9.4]) follow
from these growth estimates using geometric arguments by contradiction.

The difference between Theorem 1.1 and [HJ22, Theorem 2| (or more precisely [HJ22,
Theorem 10.1]) is that in [HJ22| the decay rate n in the curvature decay condition (1.1)
had to satisfy n > 2+ A (where X € (0,1) is the parameter entering the definition of the
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norm || -[jo,x - see (3.1)), but in this article we only need 7 > 1 (independent of A). The
proof of the growth estimates mentioned in the previous paragraph was the only situation
in [HJ22| where the assumption 7 > 2 + A was used. Therefore, it suffices to show that
the same growth estimates from [HJ22, Section 9.3] still hold only assuming n > 1. The
growth estimate inside the small part Cypay of a rank 2 cusp C is contained in [HJ22,
Proposition 9.10|, while [HJ22, Proposition 9.11] deals with the small part Typan of a
Margulis tube T'. Because the proofs are very similar, we focus on the case of a rank 2
cusp, that is, we will only present the proof of [HJ22, Proposition 9.10] under the weaker
assumption 1 > 1.

2.2. The small part, model metrics and trivial Einstein variations. The goal of
this section is to recall the definitions and results from [HJ22| that will be used in the
subsequent sections.

We start with the definition of the small part Mgyn.n. Let M be a 3-manifold with
sec(M) € [-4,-1]. The thin part of M is

Mipin = {x € M |injy,(x) < p},

where p is a fixed choice for the Margulis constant (see [BGS85, p. 101]). If M has finite
volume, a connected component of the thin part is either rank 2 cusp C' or Margulis
tubes T', which is a tubular neighbourhood of a closed geodesic v whose length is at most
2.

Fix a rank 2 cusp C. Let £ € M be a point corresponding to C, and choose an

associated Busemann function be : M — R (see [BGS85, Section 3| for details about
Busemann functions). This induces a Busemann function bg :C - R. ForreR we

denote by T'(r) the level-torus T(r) := {x € C|be(x) = r}. The small part of C is defined
as

Coman = J{T'(r) |diam(T(r)) < D},

where D is a suitably chosen universal constant (see [HJ22, p. 41| for the definition of

D). The flow of —VBg induces a diffeomorphism ¥ : 9Cqyan x [0, 00) =N small SO that
for © = W(y,r) € Cyman it holds d(x,0Cgpan) = r. For this reason we often abbreviate
r(z) =d(z,0Csman)-

For a Margulis tube T the definition of Ty, is similar, the main difference being that
the Busemann function 135 is replaced by 7y = d(:,y), where 7 is the core geodesic of T'
(see |[HJ22, Section 7.1| for more details). The small part of M is

Msmall = U Tsmall U U C1smalla
T C

where the union is taken over all Margulis tubes 7" and rank 2 cusps C.

As explained at the end of Section 2.1 we will, for simplicity of presentation, only
present the proof of the growth estimate [HJ22, Proposition 9.10] in the small part of
a rank 2 cusp under the weaker assumption 1 > 1, where 7 is the decay rate in the
curvature decay condition (1.1).



IMPROVED DECAY RATE IN A STABILITY THEOREM FOR HYPERBOLIC METRICS 199

Fix a rank 2 cusp C', and assume that the curvature decay condition

mTa)&\sec(w) +1|, [VR|(z),|V2R|(x) < goe " @0C%ma) for all 2 € Cyman (2.2)

stated in Theorem 1.1 holds. Here R denotes the Riemann curvature endomorphism. In
the decay condition (1.1) in Theorem 1.1 we also ask that this decay condition also holds
for V3R, but for the proof of the growth estimates this is not needed.

It was shown in [HJ22, Proposition 8.2] that under the curvature decay assumption
(2.2) there exist certain hyperbolic model metrics on Cypan. The following terminology
is used in its formulation. A metric g on T% x I (where T? is the two torus and I is an
interval) is called a cusp metric if it is of the form

—2r 2
g=e€ 9Flat T+ dr )
where gpiq: is some flat metric on T2, and r is the standard coordinate on I ¢ R.

Proposition 2.1 (Proposition 8.2 in [HJ22]). For any n > 1 there exists g9 = eo(n) > 0
with the following property. Let M be a negatively curved 3-manifold of finite volume, and
let C be a rank 2 cusp of M so that that the curvature decay condition (2.2) is satisfied
in Csmanl- Then there exists a cusp metric geusp 0n Csman S0 that for all x € Copan it holds

lg - gcuszz|02(x) = O<€—771“(96))’
where r(z) = d(x,0Csmal)-

Here we use the following convention for the O-notation. In its formulation X shall be
an arbitrary set, and a constant c is universal if it only depends on the constants stated
in Theorem 1.1.

Notation 2.2. For functions u, @1, ..., pm : X = R we write u = X7, O(gy) if there are
ungversal constants ¢ such that |u(z)| < Y7t crpr(x) for all x € X.

For the existence of model metrics in the small part of a Margulis tube see [HJ22,
Proposition 8.1|. The main idea for the proof of [HJ22, Proposition 8.2] is to compare
the Jacobi equation in M with the Jacobi equation in the comparison space M = H?.
The curvature decay condition (2.2) translates into the fact that the C?-norm of the
coefficients of the Jacobi equations are exponentially close, and so the desired estimate
can be deduced from standard ODE comparison estimates. For the case of a rank 2
cusp we also make use of an effective version of the uniformization theorem (see [HJ22,
Lemma 8.5]) that is needed to detect the correct conformal structure of the level-tori
T(r) as r - oco. We refer to [HJ22, Section 8| for more information.

Finally, we come to the definition of trivial Einstein variations. Let geusp be the cusp
metric on Cypan ¥ OCsman % [0,00) given by Proposition 2.1, and denote by gpq: the
flat metric on OCsman s0 that geysp = 6_2TgFlat +dr?. In the following definition we take
coordinates (2!, 22,7) on Cyman & OCsman % [0, 00), where (x!,2?) are flat coordinates on
(0Csman, 9riar) and r is the standard coordinate on [0, c0).

Definition 2.3 (Definition 9.4 in [HJ22]). A (0, 2)-tensor v on Cypan is a trivial Einstein
variation if it is of the form o
v= 6_27'1)ijdarzdac]7
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and if >, vy = 0, that is, if the trace of v with respect to gg: vanishes.

Here dz* and da? are understood to be either dz' or dz?, but not dr. This definition is
taken from Bamler [Bam12, Section 3.2|, but we state the definition in coordinates that
are better suited for our geometric situation.

Remark 2.4. For a trivial Einstein variation it holds L.uspv = 0, where Ly, is the

operator %A rh+2h with respect to the cusp metric geyusp given by Proposition 2.1. Indeed,
this follows from (2.3) below.

We refer to [HJ22, Remark 9.13] and the discussion after [HJ22, Remark 9.5] for
explanations why trivial Einstein variations are crucial to consider (also see the comments
after Lemma 3.6).

2.3. The averaging operator. The main idea to prove the growth estimate [HJ22,
Proposition 9.10] in the small part Cypnan of a rank 2 cusp C is that the linearisation £
of the Einstein operator can be modelled by a linear system of ODEs. Namely, consider
the hyperbolic model metric geusp on Cgman given by Proposition 2.1. With respect to
this model metric we define an averaging operator that assigns to each tensor h another
tensor h that only depends on r = d(-,0Csman). Up to a small error, the averaging
operator commutes with the differential operator £ , so that Lh = f implies Lh = f (up
to small error). Since h and f only depend on r, the differential equation Lh = f is
an ODE. Thus we will obtain growth estimates for h (and in turn for h) by standard
ODE results. It is the goal of this section to introduce the averaging operator and
its fundamental properties, and state the necessary ODE results used in the following
sections.

Fix a cusp metric g on T2 x I, that is, a metric of the form

g9=e " gpia +dr?,

where gpjqs is some flat metric on 72, and 7 is the standard coordinate on I ¢ R. We call a
covering o : R?xI — T?xI cusp coordinates if it is of the form p(z!, 2%, 7) = ((zt, 2?),7)
for some local isometry 1 : R2 > (Tz,gFlat). Moreover, we say that a tensor h on T?>x 1
only depends on r if in cusp coordinates the coefficients of h only depend r. This can
be reformulated by saying that h only depends on 7 if h is invariant under the isometric
R2-action on T2 x I that preserves the level tori T'(r) = T2 x {r}.

Now we come to the definition of the averaging operator. For a function u: T?xI - R
we define its average @: T? x I - R via

u(z): 1

) area(T'(r)) JT(r)

where 7 = r(z) is the I-coordinate of z, and T'(r) = T? x {r} is the level-torus containing
x. For a (0,2)-tensor h its average h is the componentwise average of h, that is,

. — 1

h .. = h . = h ; d 1

( )Z] (I) (] (:’U) area(T(r)) T(’!‘) 1) (y) VO (y)7

where the coefficients are with respect to cusp coordinates. The average for tensors of
general type is defined analogously.

u(y) dvol(y),
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The key properties of the averaging operator are collected in the following lemma. In
its formulation |h|(x) denotes the pointwise C%-norm of a tensor h at the point x.

Lemma 2.5 (Lemma 9.12 in [HJ22]). Let T? x I be equipped with a cusp melric. The
averaging operation * has the following properties:

i) h only depends on r;
i1) There is a universal constant ¢ >0 so that

|h|(x) < Cm /T(T) |1{(y) dvol(y).

In particular, |h|(z) < cmaxy(r(z)) |h| for a universal constant c;
i) If h is of class Ct, then the same holds true for h, and Vh = Vh;
w) ° commutes with taking the trace, that is, tr(h) = tr(h);
v) If his C1, then

h-h|(z) <cDe™ ™ max |h|e,
e s

where D := diam(T?, gpar) and c is a universal constant.

It follows from i) and iv) that the averaging operator commutes with the differential
operator L = %AL +2id, that is, if Lh = f, then also Lh = f (here it is understood that £
is with respect to the given cusp metric). Property v) will enable us to deduce bounds
for h from bounds on h.

Let h and f be (0,2)-tensors that only depend on . Then the PDE Lh = f is actually
just an ODE. Namely, Lh = f is equivalent to (see [HJ22, (9.14)])

(hs33)" —2(hs3)" —4hgz  =-2f33
(e"hi3)" —2(e"hi3)" =3e"hiz = -2¢"fi3 (2.3)
(€2Thij)” - 2(€2rhij)’ = —2€2Tfij + 2513‘ (tl“(h) - h33),

where (-)" denotes d%, and 03 = %. The reason why we state the equations for hss, " h;s
and €2rhij, and not h337 hig, hij7 is that

2 2
P = (hss)? 2 32 his)” + 3 (¢ hig)” (24)

ij=1
Moreover, tr(h) satisfies (see [HJ22, (9.15)])
tr(h)"” - 2tr(h)’ - 4tr(h) = =2tr(f). (2.5)
From (2.3), (2.4), (2.5) one can deduce the following coordinate independent descrip-
tion of trivial Einstein variations (see Definition 2.3).
Remark 2.6. The trivial Einstein variations v from Definition 2.3 are exactly the solu-
tions in Cgman of Leuspv = 0 so that

e v only depends on 7;
® VE LQ(Csmall);
e |v|(r) is constant.
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Here Liysp is the operator %AL + 2id with respect to the cusp metric geusp given by
Proposition 2.1, and the norm |v| is computed with respect to geusp-

We will use the two following basic ODE estimates to analyze (2.3) and (2.5). In their
formulation, I either denotes Ry or an interval of the form [0, R — 1] for some R > 2
(the case I = [0, R — 1] is needed in the situation of a Margulis tube). Moreover, for a
polynomial @ =Y, a;,, X™ we write Q(d%) for the differential operator Y, amiim.
Lemma 2.7. Let Q € R[X] be a quadratic polynomial with two distinct real roots A,
Xo. Lety: I - R be a solution of the ODE

d
Q(5)w -
where u: I - R is a function satisyfing u(r) = X%, O(ﬁke“’”) for some By, € Ryg, and
M € R~ {)\1, AQ} Then

y(r) = A1eM” + Age™” + > O(Bke“”)
k=1

for some constants Ay, As € R,

Lemma 2.8. Let Q € R[X] be a quadratic polynomial with two distinct real roots A1,
Ao. Let y: I — R be a solution of

d
Q(5)w-u
where u satisfies [u(r)| < e (r) for some a € R and 1 € L*(Rsg). Then
y(r) = A1eM” + Age™” + O(1ll L1 (o))
for some A1, As e R.

In Lemma 2.7 and Lemma 2.8, the universal constant absorbed by O(...) is allowed
to depend on A1, A\g, and a, but not on R (in case I = [0, R - 1]). See Notation 2.2 for
our convention of the O-notation.

Proof of Lemma 2.7 and Lemma 2.8. Both of these lemmas follow easily from the ex-
plicit integral formulas for solutions of linear ODLEs. (]

3. GROWTH ESTIMATES

At the end of Section 2.1 we explained that in order to prove Theorem 1.1 we only
have to prove that the growth estimates from [HJ22, Section 9.3| still hold under the
assumption that the decay rate n in the curvature decay condition (1.1) is at least one,
and that then all the other arguments from [HJ22| go through without any modifications.
In Section 3.1 we give the precise formulation of these growth estimates. As explained in
Section 2.1 and Section 2.3 the key ingredient to obtain these growth estimates is that,
using the averaging operator * from Section 2.3, in the small part Mgy, the linear partial
differential operator £ can be modelled by a linear system of ODEs. In Section 3.2 we
formulate general conditions on an elliptic operator that can be modelled by an ODE that
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allow to deduce growth estimates analogous to those needed for the proof of Theorem 1.1.
These general growth estimates are proved in Section 3.3. Finally, in Section 3.4 we show
that the conditions given in Section 3.2 are satisfied in the specific situation relevant for
Theorem 1.1.

3.1. Statement of the growth estimate. In this section we state the analog of the
growth estimate [HJ22, Proposition 9.10]. In its formulation the norm ||-||o x is used. The
complete definition ([HJ22, Definition 9.9]) is not important for our purposes, but we
collect two main properties that will be used below. The norm ||-||o » depends on a param-
eter A € (0,1) and it is defined for all symmetric (0,2)-tensors f € C’O7a(Sym2(T*M))
of regularity C%® (but might be infinite for some C%®tensors). It has the following
properties (see Notation 2.2 for our convention of the O-notation):

(i) For every rank 2 cusp C' it holds
171() = O(lIflloae™ ) for all & € Caman (3.1)

where |f|(z) denotes the CY-norm of f at z, and r(z) = d(z, 0Csman).
(ii) If h e C*(Sym?(T*M)) n H' (M) is a solution of Lh = f, then it holds

e~ O . 3.2
gu2x 1oz = Ol flo.n) >

for every rank 2 cusp C.

Point (i) reflects the fact that ||-||o, is an exponentially weighted Hélder norm (see [HJ22,
(9.2) and (9.8)]). For (ii) we refer to Proposition 7.5, Definition 9.9 and Equation (9.20)
in [HJ22|. Moreover, C’g’a(Sme(T*M)) denotes the Banach space

C° (Sym*(°2) = { & CO Sy (T A) 1 < oo}

If M is compact C’f\J’O‘(SymZ(T*M)) agrees with CO’O‘(Sme(T*M)) as a set, but the
norms are not equivalent with universal constants. If M is non-compact, then C’g’a(Sme(T*M ))
is a proper subset, of CO’O‘(Sme(T*M)).

We now state the generalisation of [HJ22, Proposition 9.10]. For its formulation
we refer to Section 2.2 for the definition of Mgy and trivial Einstein variations, and
to Notation 2.2 for our convention of the O-notation. Also recall that R denotes the
Riemann curvature endomorphism.

Proposition 3.1 (Growth estimate in a cusp). For all a € (0,1), A>0, A€ (0,1), and
n>1 and there exists eg > 0 with the following property.
Let M be a finite volume 3-manifold. Assume

[sec+1| <eo, [[VRic(g)llcocary < A,
and that for all x € Mgy it holds
max [sec(m) + 1|, [VR|(2), IV2R|(x), |V*R|(x) < gge” 14 (@:OMsman) (3.3)

wELlx
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Let f ¢ C’g’a(Sme(T*M)), and let h € C?(Sym*(T*M)) with I”llcocary < oo be a solu-
tion of
Lh=f.
Fiz a cusp C of M. Then there exists a unique trivial Einstein variation v in Cgynan
satisfying
sup (e)‘T(I)|h - v|(x)) < 00,

xecsmall
and for this trivial Einstein variation it holds
[vl = O(llf1lo.x)-
Moreover, if ||hl|cocary: I fllco.e(ary < 1, then for all x € Cypan it holds
[#l() = O(IIfllo +¢7) (3.4)

and

@ —v|(z) =0 + e~ (17 r(@) 3.5

f 0,\ y

where r(z) = d(x,0Csmaln)-

The constants absorbed by O(...) are allowed to depend on the given parameters
a, A, n.

Recall that the difference to [HJ22, Proposition 9.10] is that in [HJ22] the decay rate
7 in the curvature decay condition (3.3) had to satisfy n > 2+ A, where A € (0,1) is the
exponential weight in the definition of || |jo.x (see (3.1)), and here we only require n > 1
(independent of the parameter A € (0,1)).

The curvature decay condition (3.3) is used to model £ by an ODE. More precisely,
(3.3) guarantees the existence of a hyperbolic cusp metric modelling the given metric
(Proposition 2.1), and with respect to the hyperbolic cusp metric the operator £ is given
by the linear system of ODEs in (2.3). For the existence of the hyperbolic model metric
we de not need the estimate on |[V3R|(z) in (3.3), but we include it to be coherent with
the formulation in Theorem 1.1.

Here we only state the growth estimate in the small part Cgpay of a rank 2 cusp C. The
growth estimate for the small part of a Margulis tube is contained in [HJ22, Proposition
9.11]. Since the proofs are similar, we only give the proof for the growth estimate in a
cusp under the weaker condition n > 1.

3.2. An axiomatic formulation. We take an axiomatic approach towards the proof
of Proposition 3.1, that is, we formulate general conditions for some elliptic differential
operator of second order and some norm that allow to deduce statements analogous to
Proposition 3.1. We believe that this makes the presentation more transparent, and also
makes it clear how to apply our arguments in similar situations.

Let N be a (possibly non-compact) Riemannian manifold with compact boundary
ON (possibly with mutiple connected components). We denote by r(x) = d(x,0N) the
distance to the boundary. Using a slight abuse of notation, for a number r € Ryg we
denote by N(r) the level sets

N(r):={zeN|r(z)=r}. (3.6)
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For simplicity we assume that N(r) is a smooth codimension one submanifold for all
T e RZO'
For a parameter o € R and tensors h and f we denote by

1
2
Pz v,y = ([ 27O () dvol() (37)
and
1
2
20y = ([, 7O () dvol) (38)

exponentially weighted H?- and L?-norms, where the symbol w, should indicate that the

weight depends on o. Here |-|ox(y) == X _o|V™-|(y) denotes the pointwise C*-norm at

y € N. For the pointwise C’-norm we will often just write |-|(y) instead of |- |co(y).
Our axiomatic setup consists of five components:

A tensor bundle 7 — N over the given manifold N;
An elliptic partial differential operator of second order £ acting on C?-sections

of T;
e A subspace & of the C2-sections of T;
e A (possibly infinite) norm ||-|| on the space of C%-sections of T

A linear operator * acting on C%-sections of 7.

In the specific situation of Proposition 3.1 these will be
1
N = Conan, T =Sym*(T"M),  L=ZA +2id,

& = {trivial Einstein variations in Cspant, ||-|=1"llo.x

and - is the averaging operator from Lemma 2.5,

where || -[|o,» is the norm appearing in Proposition 3.1 (see Section 3.1 for more informa-
tion), and trivial Einstein variations had been defined in Definition 2.3.

The space £ will typically consist of certain fundamental solutions of £ or the fun-
damental solutions of a model operator Ly0del that is very close to £ (see Remark 2.6).
The norm || - || can be infinite for some C°-tensors (for example when ||-|| = [|-||co.a ), and
we think of || -|| as defining a Banach space of sections whose || |[-norm is finite. Finally,
one should think of * as an averaging operator (see Section 2.3).

We need to make certain assumptions on the data (N, T, L, &, ||-||,*). Most importantly,
we require that the elliptic operator £ admits (weighted) Sobolev estimates. Note that
because IV has a boundary, to have a well-posed elliptic problem Lh = f it is neccesary to
impose boundary conditions. For this reason, the (weighted) Sobolev estimates involve
boundary data maxgy |h|cz. In the situation relevant for Proposition 3.1, the boundary
data maxpy |h|c2 is bounded in terms of ||f|| (see (3.2)), but we do not include this
as an assumption in our axiomatic approach. The other key condition is that * has
properties that are typical for an averaging operation. Namely, we ask that ° satisfies
a Poincaré inequality (similar to those in [Eval0, Section 5.8.1]) and property v) from
Lemma 2.5. The precise assumptions are listed in Compatibility condition 3.2 below.
For its formulation, we again refer to Notation 2.2 for our convention of the O-notation,
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and recall that |- |(z) denotes the pointwise C*-norm at z € N. Also, for any k > 0, we
denote by C*(T) the space of C*-sections of the tensor bundle 7 — N.

Compatibility condition 3.2. Let (N,7,L,E,|-|,?) be as above. We say that they
are compatible if the following conditions are satisfied.

(i) There are weighted Sobolev estimates for £, that is, for all h € C?(T) it holds

Wl = ORI 2 o) + Wollz2 v, + B Rlc2) (3.9)
where || ||2(n,w,) and ||-[[2(n,w,) are the weighted integral norms defined in (3.7)
and (3.8).
(ii) There are (unweighted) L%-estimates for £, that is, for all h e C*(T) it holds
Illz2 vy = O(I£HII2(vy + suplhlcs ). (3.10)
ON
(iii) For all o in a certain range, say o € [0,b], and all f e C°(T) it holds
1/ llL2(v, w0y = OUIFD- (3.11)
(iv) For all v € £ it holds
[vlle2(nvy = Ollvllcowy), (3.12)
and if o € [0,b], then also
10l L2 (v, wq) = Ol0llcovy)- (3.13)
Moreover, the elements of £ are invariant under *, that is,
v=v forallvef. (3.14)

(v) The operator * satisfies a level-wise Poincaré inequality, that is, there is a universal
constant C' so that for every h e C*(T) and for all r € Ry it holds

oo =P dvol(y) < Ciam(N(r))* [ b2 () dvol(w), (3.15)

where N (r) is the codimension one submanifold defined in (3.6).
(vi) There is a universal constant C so that for all h € C1(T) and all z € N it holds

|h - h|(z) < Cdiam(N(r(x)))Nr(riz(i;()) |h|cns (3.16)

where N(r(x)) is the level set containing x.
(vii) For all but finitely many values of o, say o € [0,b] ~ {071, ..., 0%}, the following holds.
Let h be a C?-tensor with h e L?(N), and assume there exists some v € £ so that

lellcoqyy = O(I1£AI + max|hl) and 1k = vll2(y,0,) = O(ICAN+max|hl),  (3.17)

where ||-[|g2(n,w,) is the weighted Sobolev norm defined in (3.7). Then there exists
a (possibly different) v’ € £ satisfying

o'l vy = O(I1Al] + max h) (3.18)
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and
b= v'|en () = O((|ILh]] + max [1])er () for all z € N, (3.19)

where (o) is some number depending on o so that
fN 21T W) gyol(y) = O(1) (3.20)

for all ¢’ that are larger than o by some definite amount, that is, for all o’ < o + s,
where sg > 0 is a fixed positive constant (independent of o).

The constants absorbed by O(...) are allowed to depend on o. It will be shown in
Section 3.4 that these conditions hold in the specific situation needed for Proposition 3.1.

The key technical condition in Compatibility condition 3.2 is (vii), stating that if
h e C?(T) can be modelled in the H2(N, w,)-norm by some controlled v € £, then there
is some v’ € £ so that the C%-norm of h—v' is exponentially controlled. Roughly speaking,
one should be able check this if the elliptic problem Lh = f can be modelled by an ODE
(see the comments after Lemma 3.6 for a detailed discussion). We also recall that if the
averaging operator * (almost) commutes with the operator £, one can use * to model the
PDE Lh = f by the ODE Lh = f (see Section 2.3).

Let us comment on the remaining conditions in Compatibility condition 3.2. We al-
ready discussed the (weighted) Sobolev estimates for £ and the properties of *, explaing
conditions (i), (ii), (v) and (vi). Condition (iii) will be satisfied when ||-|| is an expo-
nentially weighted norm (similar to (3.1)) and the weight entering the definition is big
enough to absorb the weight €2°"®) in the definition (3.8) of || - l22(N,w,) We men-
tioned previously that £ will typically consist of certain fundamental solutions of £ (or
the fundamental solutions of a model operator Ly0de1 that is very close to £). In such
a situation one should be able to check (3.12) and (3.13) by applying standard elliptic
regularity theory to the operator £ (or Liodel)-

As alluded to at the beginning of this subsection, in any situation where the Compat-
ibility condition 3.2 is satisfied, one can obtain estimates analogous to those in Proposi-
tion 3.1. This is contained in the following theorem. Recall that r(z) = d(x,0N).

Theorem 3.3 (General growth estimate). Let N be a (possibly non-compact) manifold
with compact boundary ON (possibly disconnected). Assume that (N, T,L,E,||-,%) are
compatible in the sense of Compatibility condition 3.2. In addition, assume that the level
sets N(r) ={x e N|r(z)=r} satisfy

diam(N(r)) =O0(e™"). (3.21)
Let f be a CY-section of T with ||f|| < oo, and let h be a C?-section of T with h € L>(N)
that solves

Lh=f, (3.22)

and whose boundary condition satisfies

max b2 = O(f]). (323)
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Then there exists v € £ such that
[Wllcowy = O(IA)  and b —v|(z) = O(||f|le" "), (3.24)

where b is the number appearing in conditions (i), (iv) and (vii) of Compatibility con-
dition 8.2, and p(b) is given by (3.19). Moreover, if ||h||c1(ny < o0, then also

[h=l(@) = O(II 1" + ||hfcr rye ™). (3.25)

We will see in Lemma 3.5 and Lemma, 3.6 that in the situation of Proposition 3.1 the
Compatibility condition 3.2 is satisfied with b =2+ X\ -n and pu(o) = 2-n - o, where
n > 1 is the decay rate in the curvature decay condition (3.3), and X\ € (0,1) is the
exponential weight in the definition of || - [|o.x (see (3.1)). Thus Proposition 3.1 will be
an immediate consequence of Theorem 3.3 once we have checked the conditions (i)-(vii)
of Compatibility condition 3.2 in that specific situation.

The condition (3.21) is taken to fit the specific context of Proposition 3.1 (see (3.31)).
In a more general setting, where N is diffeomorphic to N x [0, c0), and the given metric
on N is (very close to) a warped product metric p(r)2gaon + dr?, (3.21) will be replaced
by diam(N(r)) = O(p(r)). In that case one will have to adjust the definitions (3.7) and
(3.8), and consider weighted Sobolev spaces whose weights are adapted to p. For the
clarity of presentation we will not elaborate further on this more general case, and hope
that it will be clear how our methods generalize to different settings.

3.3. Proof of Theorem 3.3. The goal of this section is to explain how the growth
estimates of Theorem 3.3 follow from Compatibility condition 3.2. This will be done by
a bootstrap argument.

Let (T,L,&,]-]],?) be as in Compatibility condition 3.2. Let f be a C%-section of T
with ||f|| < oo, and let h be a C%-section of T with h € L?(N) that solves (3.22) and
whose boundary data satisfies (3.23), that is,

Lh=f and max|hlcz = O(|f]])-

The induction assumption of the bootstrap argument, which depends on a parameter
o >0, is the following. Note that under the bound on the boundary data (3.23) this is
just the assumption (3.17) in condition (vii) of Compatibility condition 3.2.

Bootstrap Assumption (Ass,). There exists v € £ satisfying
[llcony = O(IFID  and  Ih = vllg2(n,w,) = OIF),

where || - ||2(n,,) 18 the weighted Sobolev norm defined in (3.7). Here the universal
constant absorbed by O(...) is allowed to depend on o (see Notation 2.2).

For ¢ = 0 the bootstrap assumption (Ass,) is satisfied with v = 0 because of the H>-
and L2-estimates (3.9), (3.10), (3.11), and the boundary condition (3.23).

The induction step of the bootstrap argument is contained in the following proposition.
In its formulation, [0,b]\ {01, ...,0%} and s¢ > 0 are as in condition (vii) of Compatibility
condition 3.2.
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Proposition 3.4 (Bootstrap Induction). Let (N,7T,L,E,||-|,?) be as in Theorem 3.5.
Assume that (Ass,) holds for some o € [0,b] \ {01,...,0,}. Then (Ass,,) also holds for
all ' € [0,b] with ¢’ <o +min{1, sg}.

We point out that when passing from (Ass,) to (Ass,,), the v € £ given by (Ass,)
might change to some different v’ € £ in (Ass,,).

The key condition in Compatibility condition 3.2 for the bootstrap argument is con-
dition (vii), and we recall that one should be able to check condition (vii) when the
operator £ can be modelled by an ODE.

Proof. The idea of the proof is simple. Let v" € £ be given by condition (vii). We split
h=v"as (h—h)+(h-v"), and use the Poincaré¢ inequality (3.15) to estimate ||h—hl[r2(n,w_,)
for ' <o +1, and (3.19) to bound ||h ~V'||L2(N,w,,y for o' <o +sp. Together with (3.9)
this will yield an estimate for [|h = || g2(n,4,,)-

We now give the detailed argument. We start by estimating h — h. Let v € € be
given by (Ass_ ). Note that h—h = (h—v) — h—v because 0 = v by (3.14). Applying
the Poincaré inequality (3.15) to h — v, and recalling that diam(N(r)) = O(e™) due to
(3.21), we deduce

[N ol W2 (y) dvol(y) < Ce™" [N . I = v (1)) dvol(y) (3.26)

for a universal constant C. As r(x) = d(x,dN) is a distance function, the co-area formula
states that [y udvol = [;° (fN(T) udvol) dr for any integrable function w on N. Thus,

2(o+1)r

multiplying (3.26) by e , and integrating over r from 0 to co, we obtain

[ XD = o () dvol(y) <€ [ Ol - it (y) dvol(y).
By (Ass,) the left hand side is bounded by O(||f|[*). Therefore,
172 = Rll 2 (N ) = OIS (3.27)

The assumption (3.17) in condition (vii) is satisfied because of (Ass,). Let v’ € £
be so that (3.18) and (3.19) hold. So, recalling the boundary condition (3.23), we have
[[0']lco(ay = O and [h=v'|(2) = O(|| flle)7*)). Thus,

O =) dvol(y) = O (I [ 70 avol(y)).

and by the definition (3.20) of u(o) it holds [, 2@ *#DTW) gyol(y) = O(1) when o' <
o + sg. Hence for o’ < o + 59 we have

="l 2,0y = OUIF)- (3.28)
Using the triangle inequality we deduce
[|h - /U,HLZ(N,UJO_I) =O(|IfI) for o' <o +min{l,so} (3.29)

from (3.27) and (3.28).
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To bound ||l = v[|g2(N,w,,), note that for all o’ € [0,b] it holds

1£Ch =0 L2 (v, w,) < 2w, w,) + 1EV 22, w,0) = OCIFID,
where we used (3.11) to bound || f[[z2(n, ), and (3.13) and [[v"[|co(ny = O(]|f]]) to bound
1LV || L2 (N, w,.)- Moreover, maxay [h —v'|c2 = O(|| f]|) because maxay k|2 = O(||f]]) by
(3.23), and maxpy [v'|c2 = O(||f]]) due to (3.12) and |[v'||co(ny = O(|If]]). Therefore,
together with (3.29) we obtain [|h = v'||g2(n,w, ) = O(||f]]) for all o’ € [0,0] with o’ <
o +min{1,so} by applying (3.9) to h —v'. Also recall that |[v||co = O(||f]]). Thus the
estimates in (Ass,,) hold with v". This completes the proof. O

The proof of Theorem 3.3 is now straightforward.

Proof of Theorem 3.3. As mentioned after the definition of (Ass,), for ¢ = 0 the as-
sumption (Ass_) is satisfied with v = 0 due to the H%- and L*-estimates (3.9), (3.10),
(3.11), and the boundary condition (3.23). Applying Proposition 3.4 finitely many times,
we deduce that (Ass,) is also satisfied for ¢ = b. Applying condition (vii) for o = b
we obtain some v € £ (denoted by v’ in condition (vii)) so that (3.18) and (3.19) hold,
that is, [[v|lcony = O(||f]]) and \ﬁ—v[(m) = O(HfHe“(b)T(m)). This proves (3.24). If in
addition [|Allc1(ny < oo, then |h - h|(z) = O(||h||c1(N)e”"(x)) due to (3.16) and (3.21).
Therefore, the desired estimate (3.25) for |h — v|(x) follows from the triangle inequality.
This completes the proof. O

3.4. Checking the compatibility conditions. The goal of this section is to show that
the conditions in Compatibility condition 3.2 are satisfied in the situation relevant for
Proposition 3.1. For completeness we also include the proofs of Proposition 3.1 and
Corollary 1.2 at the end.

To deduce Proposition 3.1 from Theorem 3.3, we have to check that the conditions
(1)-(vii) in Compatibility condition 3.2 are satisfied for

1
N = Coman, T =Sym*(T*M), L= §AL +2id,

& = {trivial Einstein variations in Csman}, |1/ =1l"llox, (3.30)

and * is the averaging operator from Lemma 2.5,
Here |[|-||o,» is the norm appearing in Proposition 3.1 (see Section 3.1 for more information),
trivial Einstein variations had been defined in Definition 2.3, and the averaging operator *
from Lemma 2.5 is defined with respect to the cusp metric geysp given by Proposition 2.1.
We start by checking the conditions (i)-(vi). Recall that [0,b] denotes the allowed

range for the weight parameter o, and that A € (0,1) is the exponential weight in the
definition of || - [|o.x (see (3.1)).

Lemma 3.5. Let (N,T,L,E,]-|,") be as in (3.30). Then the conditions (i)-(vi) in
Compatibility condition 3.2 are satisfied for any b<1+ A.

Throughout the proof we will use that the level tori
T(T) = {.’L’ € Csmall | d(l‘, aCvsmall) = T}
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satisfy

diam(T(r)) =O0(e™™) and area(T(r)) = O(e™"). (3.31)
Indeed, diam(9Cspman) is bounded by a universal constant due to the definition of Cypan
(see Section 2.2). Thus, the estimates are clear if diameter and area are computed with
respect to the cusp metric geusp from Proposition 2.1 because, by definition, a cusp
metric on Cypall = OCsman % [0,00) is of the form geusp = € 2" gpiar + dr? for some flat
metric grigr on OCsman. But the given metric g and geysp are uniformly bi-Lipschitz by
Proposition 2.1, and thus these estimates also hold for the given metric.

Proof. Condition (i). A detailed account of how to prove weighted H?-estimates for
L = %AL + 2id using an integration by parts argument is contained in Step 1 of the
proof of [HJ22, Proposition 4.3| (see (4.5) and (4.7) therein). The only differences are
that the integral are taken over a complete manifold M without boundary, and that
the weight functions are e”(2VAMM)=2=0)r2(y) where § > 0 is a constant and r,(y) =
d(zx,y) for a basepoint x € M. However, the only property of —(2\/dim(M) -2 -4§)r,(+)
that was used is that it is uniformly Lipschitz, and this is also true for 20d(-, 0Csman)-
Moreover, the boundary terms appearing when invoking integration by parts can all (up
to universal constant) be bounded by maxgc,_, |h|c2 because diam(OCspman) is bounded
by a universal constant due to the definition of Cgpan (see Section 2.2). Therefore, the
argument presented in [HJ22| goes through with only minor modifications.

Condition (ii). This is contained in the proof of [HJ22, Lemma 9.16|, or alternatively
follows from |HJ22, Proposition 3.4].

Condition (iii). Recall that the norm || - |l satisfies |f|(z) = O(||fllore™®) for
x € Cyman, where r(x) = d(x,0Csman) (see (3.1)). By the co-area formula it holds

-[Csmall wdvol = [~ ( fT(T) udvol) dr for any integrable function u on Cypan. Thus, to-
gether with (3.31) we obtain

[, eerongiyavolt) = oIl [ e Here v ar).
small

Note that [;~ e ™2 e?7"e 22" dr is finite when o € [0,b] and b < 1+ X. This proves (3.11).

Condition (iv). Let v be a trivial Einstein variation (see Definition 2.3). Recall from
Remark 2.6 that L.uspv = 0, where Lysp is the operator %AL + 2id with respect to the
cusp metric geusp given by Proposition 2.1. Thus, it follows from Schauder estimates
that |[v]|c2 = O(||v]|co). This proves (3.12). By Proposition 2.1 it holds |g — geusplc2(2) =
O(gge‘m(x)), where ¢ is the given metric, and €y > 0 and 1 > 1 are the constants in
the curvature decay condition (3.3). Hence ‘(ﬁ - Ecusp)v’(ac) = O(eov|c2 (x)e’m(‘r)) =
0(50||v||coe’m(:”)). Thus, as n > 1 > A, the argument from the proof of condition (iii
also proves (3.13). Finally, note that a trivial Einstein variation v only depends on
r (see Definition 2.3), and thus © = v by the definition of the averaging operator (see
Section 2.3). So (3.14) is also satisfied.

Condition (v). Since the given metric g and the cusp metric geysp from Proposition 2.1
are uniformly bi-Lipschitz, we may work with g.,s, instead of g. This has the advantage
that the the induced metric on the level tori T'(r) is a flat metric. Inequality (**) on p.
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520 of [GKS07] shows that for any flat 2-torus T? of diameter 1, we have A\ (72) > e72.
Together with a scaling argument, this implies that if 7 is a flat 2-torus of diam(7?) < 1,
then A\ (T?) > me‘Q. Therefore, for any function u we have the following Poincaré
inequality

.12 2 1. 2 2
u — ul* dvol < e“diam(7T'(r / Vul|® dvol, 3.32
Jrylnm @@)? [, v (3:2)

where 4 is the average of u over T'(r) (see Section 2.3). Let h be a (0, 2)-tensor. Applying
the Poincaré inequality (3.32) to each coefficient function h;; of h, and summing over all
indices i, j implies

h = B2 dvol < Cdiam(T 2f hI2., dvol
Sy 1=l dvol < Ciam(T())? [ |hfe dvo

for a universal constant C. This proves (3.15).
Condition (vi). This is contained in v) of Lemma, 2.5. O

The next lemma states that condition (vii) is satisfied in the situation relevant for
Proposition 3.1. For its formulation recall that [0,b] \ {01, ...,0k} denotes the set of all
possible values of o for which condition (vii) can be applied, that (o) is the exponential
rate in (3.19), and that sg > 0 is the definite step size of improvement from o’ to o in
(3.20).

Lemma 3.6. Let (N, T,L,E,|||,) be as in (3.30). Then condition (vii) in Compatibility
condition 3.2 is satisfied with

[O>b]\{017"'7ak}:[072+)\_77]\{2_77}7 :U'(O-):2_77_O-> so=n-1,
where 1 > 1 is the decay rate in the curvature decay condition (3.3), and X € (0,1) is the
parameter in the norm || -[[o x.

The core idea of the proof is as follows. Let h be a solution of Lh = f. Denote by Lysp
the operator %AL + 2id with respect to the cusp metric geusp given by Proposition 2.1.
Using Proposition 2.1 and Lemma 2.5 one can show Lcuspﬁ = ﬁ, where f. = Leysph
is very close to f. As h and f. only depend on r, Ecuspﬁ = . is the linear system of
ODEs given by (2.3). The fundamental solutions of this linear system of ODEs have
the growth rates e(l_\/g)’", e(1+VB)r, e, e, 1,62 Using e 2"|h| € L'(Rsg) (which follows
from h € L?(Cysman) and (3.31)) one can eliminate the fundamental solutions with growth
rates 6(1+\/5)T,63T,62T. Hence the only relevant fundamental solutions are those with
growth rates e(1=VHr = 1. Now the trivial Einstein variation v’ in condition (vii) of
Compatibility condition 3.2 can be read off from the linear system of ODEs (2.3). Namley,
v’ is the part of h that corresponds to the fundamental solution with growth rate 1, that
is, the fundamental solution with constant norm (see Remark 2.6). So, by Lemma 2.7
and Lemma 2.8, h — v’ is the sum of fundamental solutions with decay rate e(l‘\/g)T, e™"
and an error term with the same decay rate as fc (this decay rate has a e and a
e(2179)" summand - see (3.34)).

At this point we make another comment about condition (vii) in Compatibility con-
dition 3.2 and when it is neccesary to consider a subspace of special tensors £ as in
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Compatibility condition 3.2. In many situations it is natural and necessary to consider
weighted versions of classical norms, such as weighted Holder norms, when studying a
linear elliptic operator £. However, it may happen that there are special solutions of
Lv =0 (or Liedev = 0 for a model operator Lyoqe close to £) that are L%-integrable
but that have constant pointwise C%-norm, so that their weighted Holder norms will be
arbitrary large or even infinite (see Remark 2.6). In practice, the set £ will consist of such
special fundamental solutions. These special fundamental solutions make it impossible to
prove a priori estimates for the weighted norms. However, it will often be possible to get
the weighted estimates if one subtracts these special solutions (such as in the previous
paragraph). Indeed, if the operator £ is modelled by a linear system of ODEs (such as
in (2.3)), one can hope to prove the estimate (3.19) for h — v by arguments similar to
those in the previous paragraph.
After these comments we no give the proof of Lemma 3.6.

Proof of Lemma 3.6. Step 1 (Growth rate bound for Ecuspiz): Let h be C?-tensor
with h € L?(Cyman). Abbreviate

Lh=f,

where L is the elliptic operator Lh = %ALh + 2h with respect to the given metric g of
Csman- Let geusp be the cusp metric on Cypan given by Proposition 2.1, and denote by
Lcusp the elliptic operator Leysph = %ALh +2h with respect to the metric geusp. The goal
of Step 1 is to show that, under the assumption (3.17) in condition (vii), it holds

Leusph = e (3.33)

for some tensor fc that only depends on r and that satisfies the growth estimate
[Fel(r) = O((HfHO,)\ + ax [h)e™" + 601/10(?“)6(2_'7_”)T), (3.34)
small

where €9 > 0 and 1 > 1 are the constants appearing in the curvature decay condition
(3.3), and 9, : Ryg = R is a function with

ol gy = O(11flloy + e [n). (3:35)
To see this, let v be a trivial Einstein variation so that the assumption (3.17) in

condition (vii) is satisfied, that is,
lellco = O(17llox + e [a]), (3.30)

and

1
20r(y) |1 _ .2 2 _
(Lsmall c |h v|02 (y) dVOl(y)) O(Hf”O,)\ + aglax |h’|)’ (337>

small

where 7(y) = d(y, 0Csman )- It holds
(£~ Lewsy) (h = )| () = O(c0lh vl () )
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because g — geusploz(z) = 0(506_777"(””)) by Proposition 2.1. Recall from the proof of
condition (iv) that |Lv|(x) = 0(50||v||coe_’7”(x)). So

[ol(@) = O(=o(lIfllor + max [f)e ™)

small

due to (3.36). We define f. := Loysph. Recall that *is the averaging operator of Lemma 2.5
with respect to the cusp metric geysp, and so * commutes with Le,s, because of 444) and
) in Lemma 2.5. This establishes (3.33). Recall Loygpv = 0 from Remark 2.4, and

1f1(z) = O(|| fllone™ @) because of (3.1). Combining all these estimates we obtain

|[fel(@) =|Leusp(h - v)|(2)
<|Lh|(x) +[Lo|(x) + |(£ — Leusp) (h = U)‘(ﬂf)

=O(IIflloxe™ ) + eo(llfllor + max [k)e™™ ) + ol = vla (2)e ™)
small

:O((HfHO,A + max IB])e @) 4 gg|h — v\cze‘"’"(x)),

small

where in the last line we used 7 > 1> A. Invoking 4i) of Lemma 2.5 yields

74r) = O (11l + gma [b)e™ e [ jh=vice (1) dvola(v) ).

small

where we used that area(T'(r)) = O(e ") by (3.31). Here we only write |f|/(r), and not
|fel(x), because the average f. only depends on r = d(x,0Cgpan) by i) of Lemma 2.5.
For any o > 0 define the function ¥, : Ryg = R by

b (r) = " [T o [ vz (v) dvola(y), (3.38)

where v is the trivial Einstein variation from (3.37). With this choice of ¥, (3.34) follows
from the above estimate for |f,|.
It remains to check that 1, defined in (3.38) satisfies (3.35). To see this, note that

[T vetydr= [ W= tlea(y) dvol(y)
small

due to the co-area formula. By definition of the small part diam(9Cgyay) is bounded
by a universal constant, and hence vol(Cypan) is also bounded by a universal constant.
Therefore, it follows from the Cauchy-Schwarz inequality and (3.37) that

1

3

[T ey svolCama) (7 Dln=vf2a () dvol(®)” = O(|flloa+ max 1)

small

This completes Step 1.
Step 2 (ODE Analysis): In Step 1 we showed that (see (3.33) and (3.34))

Leh=Fo and [F16r) = O((17loa + max )™ + gty (r)e o),
small
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where 1, was defined in (3.38). Moreover, as iL, T only depend on r, the equation
Leusph = fe is the linear system of ODEs given by (2.3). Namely, by (2.5), and the first
two equations in (2.3) we have

Ql(%)(ﬁr(h)) = —2trA(ﬁ)
Ql(%)(h:ﬁj) ==2(/c)3s
Q2(L)(e"hiz)  =-2€"(fo)is

for some quadratic polynomials @ and Qs with roots {1 -+/5,1++/5} and {-1,3}. As
|7.| satisfies the growth estimate (3.34), and since -\ ¢ {1 ++/5,-1,3} we can apply
Lemma 2.7 and Lemma 2.8.

We know |15 11 (ry0) = O(l|fllo,x) due to (3.35). Recall from the formulation of condi-
tion (vii) and Lemma 3.6 that we only consider o € [0,b]~{01,...,01} = [0, 2+A-n]~{2-7n}.
In particular, -\ <2 -7 —0. Thus we get from Lemma 2.7 and Lemma 2.8

tr(h)(r) = a1 4 aze VR4 O((|fllor + maxac,, (1) 77);

ﬁgg(r) = ble(l‘\/g)’" + er(“\/g)’” + O((||f||07,\ +maxgc,, ., |h|)e(2‘”“’)”); (3.39)

€TiLZ'3(’I”) = cgl)e”" + cgl)eg’“ + O((||f
for some constants a1, a9, b1, bg,cgi),cgi) e R. Note that h € L?(Cyman) € L' (Caman) since
Ciman has finite volume, and area(7(r)) = O(e ") by (3.31), where T'(r) € Cypan is
the torus all whose points have distance r to OCspan. Hence e 2"|h|(r) € L*(Rsg). In
particular, it holds e‘QTtr(h)(r),e‘QThgg(r),e_QT(eThig(r)) e L'(Rsg) (i = 1,2) because
of (2.4), and thus

0»>‘ + maxacsmall |h|)€(277770)7’);

ag = b2 = Céz) =0.

We know |h|(0) = O(maxsc,,,, |h|) by ii) from Lemma 2.5. Hence evaluating at r =0
yields

a,br,ef” = O(Ilfllos + e [h]).

small

Note 1-v/5 < -1 <-A<2-n-0 because A € (0,1) and o € [0,2+ -]~ {2-7n}. Together
with the previous estimates we obtain

b (R) ()], s ()] e his ()] = O( (11 fllo.x + max [B)e@om). (3.40)

By the last equation in (2.3) there is a quadratic polynomial Q3 with roots 0 and 2 so
that

d - PO -~
Qs (%) (€* hij) =20;5(tr(h) - hss) — 2¢*" (fe)i
_ (2-n-o)r
=O((IlFllo + ma |uf)e=r)

+ O((||f||o,x + 8%1?3;1 |h|)67)\r + Eowg(r)e(Q’"*U)T)7
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where we used the growth rate of tr(h), hss in (3.40), and the one of |f| in (3.34). Since
we only consider o € [0,2+ A —n]~{2-n} and n > 1, it holds 2-n -0 ¢ {0,2}, and thus
we may invoke Lemma 2.7 and Lemma 2.8. Using (3.35) to estimate [[{)5||1(r.,), and
recalling -\ <2 -n -0, we conclude

e hij = d{"? + S e? + O((||flloa + max [h] e (3.41)
small
for some constants dgi’j),dg’j) e R. As before, e |h|(r) € L'(Rsg) implies dgi’j) = 0.
Again, evaluating at r = 0 we obtain

& = O(Ifllo + max |nl). (3.42)

small
If2-n-0>0 we set v =0. Then (3.18) is trivially satisfied. Since 2 -7 -0 >0, the
desired estimate (3.19) on |h —v'| with u(o) = 2 —n - o follows immediately from (2.4),
(3.40), (3.41), (3.42), and the fact that d$" = 0.
If 2—1n -0 <0 we define an Einstein variation v in Cypay by vlfj(r) = dgi’j)e_%. Note
that tr(h) = hss + tr(v’), and that tr(v”) is constant. Moreover, as 2 -n — o < 0 the

T —>00

bound (3.40) yields hss(r), tr(h)(r) —— 0. Hence tr(v') = 0. Therefore, v’ is indeed
a trivial Einstein variation (see Definition 2.3). The desired estimate (3.18) on |[v/||co

follows from (3.42) and (2.4). Moreover, (3.40), (3.41), the fact that dgi’]) =0, and the
definition of v imply

ho_ o - 2-n-o)r
= 0/1) = O((Ilox + g [B)e ). (3.43)
This is the desired estimate (3.19) on |k — /| with u(c) =2-n-0.

Thus in either case we have completed the proof of (3.18) and (3.19). It remains to
check (3.20) for u(o) =2—-n— o and the step size sg =n— 1, that is,

/C e2(0"+u(a))r(y) dvol(y) = O(1) for all ¢/ <o + sp.
small

Indeed, it follows from the co-area formula and (3.31) that
f e2(a"+p(a))r(y) dvol(y) = foo o=2r 200" (o)) g0,
Csmall 0

is finite if =1+ 0’ + p(o) <0, that is, if 6’ <1-p(c) =o+n-1. O

We now show how Proposition 3.1 follows from Theorem 3.3. As explained at the end
of Section 2.1, once Proposition 3.1 has been established, the remaining arguments from
[HJ22] carry over without any modifications, completing the proof of Theorem 1.1.

Proof of Proposition 3.1. For (N,T,L,E,|-,*) as in (3.30), all conditions in Compati-
bility condition 3.2 are satisfied with b=2+A-n and p(o) =2-n-0 by Lemma 3.5 and
Lemma 3.6. The assumption (3.21) in Theorem 3.3 also holds because of (3.31). Let h
and f be as stated in Proposition 3.1. We know from (3.2) that the boundary condition
(3.23) is satisfied. So we can apply Theorem 3.3. It follows from Schauder estimates that
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||h]|c1 < oo since by assumption ||h||co < oo and ||f||co.e < 0. As u(b) = =X, (3.24) and
(3.25) show that there is a trivial Einstein variation v with

ol =Olfllon) and |h=vl(z) = O(IFlone ™ + [lllere ().
In particular, sup,.c

. M@ h—v|(x) < 00 as A€ (0,1). Moreover, if [|h||co, ||f]|coe < 1,
then ||h||c1 is bounded by a universal constant due to Schauder estimates. Thus the
above estimate implies (3.5). Note that (3.4) follows from (3.5) and |[v| = O(||fllo.n)-
Finally, observe that the uniqueness of such a trivial Einstein variation v is clear because
trivial Einstein variations have constant norm (in cusp coordinates). This completes the
proof. O

We end with the proof of Corollary 1.2.

Proof of Corollary 1.2. Observe that all constants implicitely depend on the choice of a
Margulis constant p (see Section 2.2). Therefore, if the constants we produce are allowed
to depend on a constant ¢ > 0, we can without loss of generality assume p <.

Fix 0 >0 and b > 1 so that 2—§ > b, and also fix some 1 > 1. Let (M, g) be as stated in
Corollary 1.2, that is, (M, g) is a complete Riemannian 3-manifold of finite volume with
|sec(g) + 1| < e and ||[VRic(g)llco(ary € A, and moreover g is already hyperbolic outside a
region 2 with inj(2) > ¢ and vol(2) < v. The conditions 7),7),iv) in Theorem 1.1 are
satisfied. It holds ©Q € My because inj(2) > ¢ and p < ¢. In particular, sec = -1 in
Mipin, and so condition #i7) in Theorem 1.1 trivially holds. Therefore, it suffices to check
the integral condition (1.2). From the curvature assumption it follows

Ric(g) +27 = 0 outside @ and |Ric(g) + 2g]* < ce? in Q

for a universal constant ¢ > 0. Hence, by using Q € Mipick, 2 -0 > b and vol(2) < v, we
obtain for all z € M

et [ DA Ric(g) + (= 1)g(y) dvol(y)

< fQ IRic() + (n— 1)g[*(y) dvol(y)

< UC€2

Thus, if € > 0 is small enough (depending on v) the integral condition (1.2) is satisfied.

Therefore, Theorem 1.1 implies the existence of a hyperbolic metric gyyp, close to g. This
completes the proof. O
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EFFECTIVE STABILITY OF NEGATIVELY CURVED EINSTEIN
METRICS IN DIMENSIONS AT MOST 12

FRIEDER JACKEL

ABsTrRACT. We show that if a closed manifold admits a metric that is almost hy-
perbolic in a suitable sense, then it also admits a negatively curved Einstein metric,
and the pinching constant measuring the almost hyperbolicity does not depend on
an upper diameter or volume bound. As an application we obtain that in dimension
n € [4,12] N {11}, a (1 +¢)-pinched negatively curved metric that is hyperbolic outside
a region of bounded geometry is close to a negatively curved Einstein metric.
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1. INTRODUCTION

1.1. Statement of the main results. A classic method for the construction of Einstein
metrics is to start with a metric g that is almost Einstein in a suitable sense, and then
to obtain an Einstein metric from g by a suitable perturbation procedure. This can for
example be done using the Ricci flow (see for example [MO90]). Another possibility is to
apply the inverse function theorem to the so-called Finstein operator (see for example
[Biq00],[And06],[Bam12] or [FP20]). Recently, closely following an unpublished preprint
of Tian [Tia|, Hamenstadt and the author [HJ22| used the Einstein operator to construct
Einstein metrics as a perturbation of metrics with sectional curvature close to —1 and
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whose injectivity radius is uniformly bounded from below. The main goal of this note is
to extend [HJ22, Theorem 1] to closed manifolds with arbitrary small injectivity radius.

Theorem 1.1. For all n > 3, a € (0,1), A >0, 0 € (0,2v/n—2) there exist positive
constants g = eg(n,a, A,0) >0 and C = C(n,a,\,d) >0 with the following property. Let
M be a closed n-manifold that admits a complete Riemannian metric g satisfying the
following conditions for some € < &g

i) -1-e<sec(M,g) <-1+e¢;
“) SeC(Mag) =-1ln Mthin;
i11) For all x € M it holds

el "3 1@ Menici) fM e~ V=202 W|Ric(g) + (n - 1)gl2(y) dvoly(y) <%,  (1.1)

where rx(y) = d(:c, y);
Z.’U) HVRIC(g)||CO(M7§) <A.

Then there exists an Einstein metric go on M with Ric(go) = —(n—1)go so that

llgo - F_]HC?’Q(M@) < Celt,

The basic reason why one might hope that a strategy involving the inverse function
theorem could be fruitful in this setting is a classic result of Koiso [Koi78, Theorem 3.3]
stating that on a closed manifold of dimension n > 3, Einstein metrics with negative
sectional curvature are isolated in the moduli space of all Riemannian structures (also
see [Bes08, Corollary 12.73|). To prove Theorem 1.1 we combine this classic result of
Koiso (or rather elements of its proof), together with standard analytic techniques, and
a new geometric preimage counting result (see Proposition 3.1).

Even though Theorem 1.1 is true in all dimensions n > 3, it will plgobably be most useful

n+

when n € [4,12] N {11}. This is because the exponential weight [TJ outside the integral

in (1.1) is smaller than the negative weight 2v/n —2 inside the integral exactly when
n € [4,12] ~ {11}. So in these dimensions there is a high chance that the exponentially
decaying weight can absorb the exponentially growing weight in the integral condition
(1.1).

As an illustration of this, we have the following immediate consequence of Theorem 1.1,
which states that if in dimension n € [4,12] ~ {11} a (1 + €)-pinched negatively curved
metric is already hyperbolic except in a region of bounded geometry, then it is close to
an Einstein metric. The analogous result for n = 3 follows from [HJ22, Theorem 2].

Corollary 1.2. For all n € [4,12] ~ {11}, a € (0,1), A >0, ¢ >0 and v > 0 there exist
g1 =e1(n,a, A, 1,v) >0 and C = C(n,a, A, t,v) with the following property. Let M be a
closed n-manifold, and let g be a Riemannian metric on M satisfying

|sec(M,g) +1[<e and |[VRic(g)|lcoary <A
for some € < 1. Assume that there is Q € M so that

inj(Q) >¢, vol(Q)<v and sec(M,g)=-1 outside Q.
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Then there exists an FEinstein metric go on M with Ric(gg) = —(n —1)go satisyfing

Hg() - §’|02aa(M7g) < Ccel e,

Previously known results in this direction have to assume that the entire manifold has
bounded geometry, though they do not assume a bound on VRic (see for example [And90,
Proposition 3.4], [PW97, Corollary 1.6], [Pet16, Theorems 11.4.16 and 11.4.17]). These
results are proved by an argument by contradiction, building on suitable convergence
theories. In contrast, Corollary 1.2 is proved directly. Thus, compared to previously
known results, Corollary 1.2 (and its proof) is better in some aspects but worse in others.

1.2. Structure of the article. This article is organized as follows. In Section 2 we
review the necessary preliminaries. Namely, in Section 2.1 we introduce the Einstein
operator, while Section 2.2 and Section 2.3 contain the basic C°- and L2-estimates for
its linearization. In Section 3 we prove a geometric preimage counting result, which is
the key ingredient in the proof of Theorem 1.1. This is then used in Section 4 to show
that the linearized Einstein operator is invertible with respect to suitable Banach norms.
Finally, the proofs of Theorem 1.1 and Corollary 1.2 are presented in Section 5.

Acknowledgements: I thank U. Hamenstddt and T. Ozuch-Meersseman for useful
comments regarding an earlier version of this article.

2. PRELIMINARIES

2.1. The Einstein operator. As mentioned in the introduction, we shall construct
the Einstein metric by an application of the inverse function theorem for the so-called
Finstein operator (see [Biq00, Section I.1.C], [And06, page 228] for more information).
This operator is defined as follows.

Consider the operator g — Ric(g) + (n — 1)g acting on smooth Riemannian metrics
g on a manifold M. This operator is Diff (M )-equivariant, and thus its linearization is
not elliptic. To resolve this problem, for a given background metric g one defines the
FEinstein operator ®5 (in Bianchi gauge relative to g) by

. 1
®5(g) = Ric(g) + (n-1)g+ 55(55(9))u(9),

where the musical isomorphism § is with respect to the metric g, and 85 is the Bianchi
operator of g acting on (0,2)-tensors h by

B,(h) = 35(h) + %dtrg(h) - i(veih)(-, e + %dtrg(h).

Invoking the formula for the linearization of Ric (|Top06, Proposition 2.3.7]) shows that
the linearization of ®; at g is given by

(D®,),(h) = %ALh+(n—1)h. 2.1)

Here Ay is the Lichnerowicz Laplacian acting on (0, 2)-tensors h by
Aph =V*Vh+Ric(h),
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where V*V is the Connection Laplacian and Ric is the Weitzenbdck curvature operator
given by Ric(h)(z,y) = h(Ric(x),y)+h(z,Ric(y))-2tr h(-, R(-,x)y) (see [Petl6, Section
9.3.2]). Equation (2.1) shows that (D®g5)g is an elliptic operator. This opens up the
possibility for an application of the inverse function theorem.

The main point is that the Einstein operator can detect Einstein metrics. The following
result can for example be found in [And06, Lemma 2.1].

Lemma 2.1 (Detecting Einstein metrics). Let (M,g) be a complete Riemannian mani-
fold, and let g be another metric on M so that

sup |B5(9)|(z) < oo and Ric(g) < Ag for some X <0,
zeM

where Bg(-) is the Bianchi operator of the background metric g. Denote by ®4 the Einstein
operator defined in (2.1). Then

Ric(g) =-(n-1)g
By(g) =0
2.2. CY-estimate. To obtain C -estimates for the linearization of the Einstein operator,

we use the De Giorgi--Nash--Moser estimates in the following form. In its formulation,
Sym?(T* M) denotes the bundle of symmetric (0,2)-tensors on M.

®5(9) =0 if and only if g solves the system {

Lemma 2.2 (C%-estimate). For all n € N, a € (0,1), A >0, and ¢ > 0 there exist
constants p = p(n,a, A, 1) >0 and C = C(n,a, A, ) >0 with the following property. Let
M be a Riemannian n-manifold satisfying

|sec(M)| <A and inj(M) >..

Let f € CO( Sme(T*M)) be arbitrary, and assume h € CQ(Sme(T*M)) is a solution of
1
§ALh +(n-1)h=f.

Then it holds
Ihl(2) < C(IIPllz2 (B oy + I1Flleo (B
for all xe M.

The main ingredients for the proof are the classic De Giorgi--Nash--Moser estimates
(see for example [GT01, Theorem 8.17]) and a result by Jost--Karcher [JK82, Satz 5.1]
or Anderson [And90, Main Lemma 2.2| stating that, under the geometric assumptions,
around every point there exists a harmonic chart of a priori size with good analytic
control. We refer the reader to [HJ24, Proof of Lemma 2.2 for further details.

For the proof of Theorem 1.1 we can not directly apply Lemma 2.2 because the latter
assumes a positive lower bound for the injectivity radius. To remedy this problem, we
will apply Lemma 2.2 to the lifted equation £h = f in the universal cover M. But then
one needs to relate the local L?-norm ||l~1||L2(B(j71/2)) in the universal cover to the local
L2-norm ||h| L2(B(z,1/2)) in the manifold M itself. The following basic observation states
that this is possible if one can count the number of local preimages. In its formulation,
7: M — M denotes the universal covering projection.
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Lemma 2.3. Let x € M and assume w: M — R is a continuous function satisfying

# (7 (y) N B(7,1)) < w(y)
for all y € B(x,1/2) € M and every lift §j € M of y. Let u: M — Rso be a non-negative
locally-integrable function and denote by U :=w o7 its lift to the universal cover. Then

Sy KD 00 < [ woyyuty) dvoly(v)

Proof. By the triangle inequality, if § € B(&,1/2) then B(%,1/2) ¢ B(g,1). Thus by
assumption, a point y € B(x,1/2) has at most w(y) preimages in B(Z,1/2). Hence the
claim holds true for the indicator function u = yy of a small open subset U ¢ B(x,1/2).
By linearity and monotonicity the result follows for all non-negative simple functions. A
standard approximation argument completes the proof. O

2.3. L%-estimate. A classic result of Koiso [Koi78, Section 3] states that for the lin-
earized Einstein operator £ = %A L+ (n-1)id on a closed Einstein manifold (M, g) with
Ric(g) = —(n-1)g and sec(M, g) < -K it holds

_2)K
(n=2)K f Ih[2 dvol < / (Ch, hY dvol.
2 M M

The next result is a weighted version of this for Riemannian manifolds (not necessarily
Einstein) with sectional curvature close to —1 that, in slightly weaker form, is originally
due to Tian [Tia, Corollary 2 in Section 3|. In its formulation, |sec+1| denotes the
function

+1 = +1
|sec+1|(z) = max [sec(m)+1],
where the maximum is taken over all 2-planes w € T, M.

Lemma 2.4 (Weighted L2-estimate). Let M be a complete Riemannian n-manifold,
fe C’O( SymZ(T*M)) and h € CZ( Sym2(T*M)) a solution of

1
EALh-F(?’L—l)h:f.
Let o e C*®°(M) be so that oh,of € L>(M). Then

—2f 242 d 1g2[ 2( £, hY dvol f 2112 dvol
(n-2) [ FPavol<2 [ G(fh)dvol+ [ [ToPlhl?avo -
+c(n) A{ ©?|sec+1||h|* dvol.

This is contained in [HJ22, Proposition 3.4], whose proof builds on a Weitzenbock
formula (see [Bes08, bottom of page 355]) and linear algebraic calculations.
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3. COUNTING PREIMAGES

In view of Lemma 2.3, in order to apply the De Giorgi--Nash--Moser estimate, we need
to bound the number of local preimages in the universal cover. To do so, we once and
for all fix a Margulis constant p € (0,1) for all n-manifolds M with sectional curvature
sec € [-4,-1/4]. Then, the goal of this section is to prove the following preimage counting
result.

Proposition 3.1. Let M be closed Riemannian n-manifold such that sec(M) € [-4, _}1]'
Assume in addition that sec = =1 in Myn,. Then there is a universal constant C' = C(n)

such that for all x € M and every lift & € M of = it holds
1
# (B(:E, n ﬂ_l(m)) < Cexp (l%J d(z, Mthick)) , (3.1)

where w: M — M is the universal covering projection, and B(z,1) is the ball of radius
one with cenler T i M.

The assumption sec = —1 in Mipin will allow us to use H" as a comparison space.
Towards this end, we fix a geodesic ¥ € H" and an isometry ¢ € Isom*(H") that is a
translation along 7 with translation length £ > 0. Moreover, we define injz;: H" - R by

inj—(z) = %rﬁigdHn(@k(f),i). (3.2)

For R > 0 we denote by Z(R) the cylinder {g € H" | dgn (7,7) = R} of radius R around 4.
Observe that Z(R) is isometric to Sg;}%(R) xR, where Sg;ﬁ(m is the round (n-2)-sphere
of radius sinh(R).

The following lemma is the key technical ingredient for the proof of Proposition 3.1.

Lemma 3.2. There is a constant C = C(n) > 0 such that for every y € H" and r >
inj37() it holds

|25+
r
#keZ|ds ("), 5) <r SC(T) ; 3.3
{kezlaz(e"@.0) sr} < 0| s (3.3)
where dz is the intrinsic distance in the cylinder Z € H" containing .
The reason for the exponent ["T“J is the following. If p: S" 2 xR - S" 2 xR is of
the form ¢(v,t) = (Av,t + 1) for some A € SO(R™!) and 7 € R, then any orbit of ¢ is

contained in a flat manifold of dimension at most ["T”J because, by elementary linear

algebra, any orbit { A¥(vg)}rez is contained in a flat torus of dimension at most [”T“J -1

Proof. We split the proof into two steps.

Step 1 (Reduction to a torus): We denote by @* € SO(R™!) the identification of the
orthogonal restriction (dg)|5: with an isometry of R"™ ! via parallel transport. Abbreviate
R := d(y,7), so that Z(R) is the cylinder containing §. Under the isometry Z(R) =
Sg;ﬁ(R) x R the restriction ¢ : Z(R) — Z(R) is given by

B St L xR = SER gy xR, (v,1) = (§(v),t + Lcosh(R)).

S
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For ease of notation we only consider the case that n is odd, and we write n = 2m + 1,
so that R™! = R?™, Since @¢* € SO(R?™), we may, after a change of orthonormal basis,
assume that @* is of the form

G i C™ > C™, (21,0, 2m) = (€21, ..., €0 2)
for some 61, ...,0,, € R. Let (vo,tp) be the point corresponding to § under the isometry

Z(R) = S’:ir_lﬁ(R) x R, and write vy = (z?, s 221) € Sg;ﬁ(R) c C™. Define

Tyln = {(/\12’?, 7Angn)|)‘2 eSlc (C},

that is, 73" is the orbit of vp € Sg;ﬁ(R) under the the isometric action of 7 = St x ... x St

on C™. Note that 73" is isometric to
Z;”;.5’11><...><S71n,
where 5’; = S|1zﬂ| is the circle of radius |z?| (here it is understood that 5]1 = {pt} if z;-) =0).
i

Observe that, under the isometry Z(R) S:i;ﬁ(R) x R, the orbit {@*(7)}rez is contained
in 73" xR. Moreover, up to universal constants, the intrinsic distance in 73" = Stx..xSL
agrees with the extrinsic distance in C™ (and hence also with the distance in S;T}:(%)).

Therefore, it suffices to prove the desired estimate (3.3) with dTéan instead of dz.

Step 2 (Volume counting): Let 0 < a <m be the number of factors SJ1 of T satisfying
diam(S]l) < inj37(%),
where diam stands for the intrinsic diameter of the circle. We may, after reordering,
assume that this is the case for the first a factors S7,..., Sy of 5" = S1x..xSL.

Note dyn(:,+) < drmxr(-,-) since Tg" x R ¢ Z(R) ¢ H". Thus, by the definition
(3.2) of inj37(7), we have for inj;;(7) < %dTéan(gj, @k(g)) for k # 0. Hence the balls
B(@k(g), injﬂ(g)) € T7" xR (k € Z) are pairwise disjoint because ¢ is an isometry. Note
that, for any r > 0, the volume of balls of radius 7 in 77" x R is bounded from above by

a
Vongan(B(pt, r)) < Cr™ ] diam(Sjl-).
j=1
Since inj37(y) > diam(Sjl) for j = 1,...,a and inj3;(y) < diam(S}) for j=a+1,...,m,
we can also bound the volume of balls of radius inj;;(7) from below by

. a1 T 1 o

. nj (7)™ a+1j1:11 d1am(5’j1) < Vongme(B(pt, inj77(9))).
Therefore, a volume counting argument shows that for all r > inj37(7) we have

. m-a+1 ’ ["T“J
# k€ Z| drmur (2°(9),9) <7 §C(%) SC(%)
{ [ dryx ) } injz7() injp ()

where in the second inequality we used r > inj;7(7) and m—a+1<m+1=|%1| when
n =2m+ 1. Keeping in mind the end of Step 1, this completes the proof. O
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We will also need the following elementary result. In its formulation, a radial geodesic
is a geodesic o : [0, 00) > H" with ¢(0) € ¥ and ¢'(0) L 7.

Lemma 3.3. Let 0:[0,00) > H" be a radial geodesic and 2< R'< R< oo. Set T =o(R)
and ' = o(R"). Then there is a universal constant Cy such that for all r >0 it holds

#{k e Z|dgm)(2°(2),2) <r} <H{k e Z| g (#"(@),7) <1}
<t {k € Z|dz ) (#"(2), 7) < Coe™Fr},
where dz(gy and dz gy are the intrinsic distances in the cylinders Z(R) and Z(R').

Proof. This is a straightforward consequence of the fact that the outward radial pro-
jection Z(R') - Z(R) is @g-equivariant, distance non-decreasing and Cpef*f'-Lipschitz.

To see the latter two points, observe that under the isometries Z(R) Sg;lﬁ(R) xR and

Z(R') = S’;};ﬁ(R,) x R the outward radial projection Z(R') - Z(R) is given by

0.0

Thus the outward radial projection is distance non-decreasing. Note that, for s > 2,

sinh(s) and cosh(s) agree with e® up to universal constant. Since R, R’ > 2 by assumption,
this shows that the outward radial projection is also CgeR’R/—Lipschitz. U

sinh(R) cosh(R))
sinh(R’) " cosh(R') )

We are now in the position to present the proof of Proposition 3.1.

Proof of Proposition 3.1. The desired bound (3.1) trivially holds when = € Mipick. So it
suffices to consider x € Mipi,. Let T be the Margulis tube containing x with core geodesic
~. Fix a lift # € M of , and let T ¢ M be the component of 7~'(T') containing 7. Let
¢ € Deck(m) be the Deck transformation that is a translation along 4 with translation
length (7). Fix a lift & € T of z. Note that B(#,1) na (z) = B(Z,1) n {¢*(&) }rez-
Step 1 (Comparison with H"): Fix a geodesic 4 ¢ H". Using exponential normal
coordinates around 4 ¢ M and 5 ¢ H" gives an obvious diffeomorphism & : M — H".
There exists an isometry @ € Isom*(H™) that is a translation along 4 with translation
length £() and such that ® o p = @ o ®. We claim that for all § € T and k € Z we have

dyy(3,¢" (@) = dun (2(9), 8 (2(5))). (3-4)

Since sec = —1 in Mipiy, the restriction ®|; is a Riemannian isometry onto its image, and
thus it suffices to check that the geodesic segment from § to () is contained in T.

To see this, fix any § € T and ko € Z. Denote by o : [0,1] - M the geodesic segment

from § to @ (7). Since sec(M) < 0, the function [0,1] 3  + di7(o(t), " (o (1)) is

convex for all k € Z, and thus attains its maximum at ¢ = 0 or ¢t = 1. But as o(1) =

©*(5(0)), the values at t =0 and ¢ = 1 coincide. Consequently, for all ¢ € [0,1] we have

]. . k ]. . ~ ks~ .
5 mindy (o(t), ¢ (o(1))) < 5 mindyy (7,0 (9)) = injas (9) <,
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where at the end we used that y = 7(g) € T S M, as § € T. This implies that
injy (m(o(t))) < p for all ¢ € [0,1], and thus o € T, establishing (3.4).

Set T := ®(T). Because of (3.4), the desired estimate (3.1) follows if for all Z € T we
can show

#{k e Z|dn (3,8"(2)) <1} < Cexp ([”; 1JdHn(£,8T)) . (3.5)

Fix Z € T and choose a minimal geodesic ¢ ¢ T from z to OT (¢ will in general not
be a radial geodesic when n > 4). Denote by y € 0T the endpoint of (. Abbreviate
R, =dyn(z,7) and Ry = dun (7,7).

Step 2 (Proving (3.5)): Towards proving (3.5) we first establish the following claim.

Claim. For every r > 2 there exists C, = C(n,r) > 0 with the following property. If ¢
passes through the r-neighbourhood N.(%) of 7, then

#{k e Z) dewn (2, 6" (@) < 1} < Crexp(ln; 1JdHn(a_c,6T)).

Proof of Claim. Clearly, as ¢ has translation length £ := £(7), we see

C
#{k € Z|dyn (7,¢"(7) < 1)} <—.
l
Since j e T, i.e., inj37(y) = p, [Rez95, Lemma, 1] states 1/¢ < Cexp(["T”J Ry) (this can
also be easily deduced from Lemma 3.2 and Lemma 3.3). Finally, d(z,0T) = £(¢) > Ry-r
because ¢ passes through N, (7). Combining these inequalities yields the claim. [ |

Fix 6 > 1 such that H" is Gromov dé-hyperbolic. Denote by o, and o, the radial
geodesics from 4 to Z and g. Then ¢ € Nas(5) U Nas(0s) U Nos(oy) follows from Gromov
d-hyperbolicity. If ¢ passes through Nios5(%), then the desired estimate (3.5) follows
from the above claim. We may thus assume that ¢ and Njg5(%) are disjoint. Then
¢ € Nos(0z) U Nos(oy). Consequently, there exist ' € 0,([0, R;]) and ¢’ € 0,([0, Ry])
with dgn (Z',7") < 46 and d(7',¢) < 20. For two radial geodesics 01,09, the function
t — dgn(o1(t),02(t)) (t > 0) is monotone increasing due to the convexity of dyn(-,-).
Thus

#{k e 2| dan (7" (2),7) < 1} < #{k € 2| din (8" (@), 7") <1},
Using dyn (Z',7") < 49 and that @ is an isometry, we see
#{k e 2| dn (7" (@),7) <1} < #{k € 2] dun (7°(7'), 77) < 86 + 1.

As d(y',7) 2d((,7) —d(y',¢) 2108 > (85 + 1) + 1, there exists rg = ro(d) > p such that

#{k € 2| dun (8°(7),7) <85 + 1} < #{k € Z] dz(n (8 @), 7) < 70},
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where dz(pry is the intrinsic distance in the cylinder Z(R') containing 3’. Appealing first
to Lemma 3.3 and then to Lemma 3.2 yields

#{k € Z|dZ(R’)(@k(g,)>g,) < ’I"O} S#{k € Z|dZ(Ry)(¢k(g),g) < COTOQR?J_R,}

CoToeRy_R’ lnTHJ

<Cl——F— .
( injz7(9) )

Note inj37(y) = p since § € 0T, and R, - R' = d(y',§) < 26 + £(¢) = 26 + d(z,0T) by the

choice of i. Therefore, combining the above inequalities yields (3.5), and thus completes

the proof. O

4. INVERTIBILITY OF Lh=31Aph+(n-1)h

In order to apply to inverse function theorem with the Einstein operator ®3, we need
to show that its linearization at the background metric g is invertible. Recall from (2.1)
that this linearization is

(D®,),(h) = %ALh + (n-1)h.

For ease of notation, we will denote this linearization by £. Since the pinching constant
o in Theorem 1.1 is not allowed to depend on geometric quantities such as vol(M), we
have to show that ||£71||op is bounded from above by a universal constant. To achieve
this, we will consider certain hybrid norms adapted to our given geometric setting.

Let M be a Riemannian manifold of dimension n > 3 and fix 0 € (0,2v/n - 2). For any
basepoint x € M we abbreviate

1

||h||H2(M;wz)::(fMe_(Qvn_Q_é)r””(y)(|h|2+|Vh|2+|Ah|2)(y)dvol(y))§ (4.1)
and

1
- n—2-0)r 2
Fllscasion = ( ), e @20l dvol()) (4.2

where r,(y) = dy(z,y). Here the notation w, should indicate that there is a weight
function involved that depends on x € M.

The reason why we use the weights e~ (2Vn=2-9)7s ig that we can only obtain weighted
L?-estimates with weights ¢? for functions w satisfying |Vw| < v/n —2. This is so that,
when applying Lemma 2.4 with ¢ = ¢*, the factor (n —2)e*’|h? on the left hand side of
(2.2) can absord the factor [Vw|?¢2“|h|? on the right hand side of (2.2).

The following is inspired by a definition of Tian [Tia, Section 5].

Definition 4.1 (Hybrid norms). For a € (0,1) and § € (0,2v/n —2) the hybrid norms
I || on Ck’a(Sym2(T*M)) (k =0,2) are defined as

Lintl )00 .
||h||2 = maX{||h||C2’a(M)7 Su]gte. 2 Jd( ,Mthlck)||h||H2(M;wm)}
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and

n+1

iz z thic
[1£1l0 = maX{llfHowM), su}&e?[ 2l Mo k)HfHL?(M;wI)}'

Here we use the following notion of Holder norm: For a Riemannian manifold M as in
Theorem 1.1, the universal covering M has infinite injectivity radius and its Ricci tensor
has uniformly bounded C!'-norm. Thus, by a result of Anderson [And90], around every
point in M there exists a harmonic chart of a priori size and for which the coefficients Gij
of the metric have controled C*®-norm. The Hélder norm for a tensor on M is defined
as the Holder norm of its coefficients in these harmonic charts. Finally, we can extend
this notion to tensors on M by defining their Holder norm as the Hoélder norm of their
lift to M. For further details we refer the reader to [HJ22, Proof of Proposition 2.5 and
Remark 2.7].

We now prove the main result of this section. Namely, we show that with respect to
the hybrid norms || - ||z and || - [|o, the linearized Einstein operator £ = 1A + (n-1)id is
uniformly invertible.

Proposition 4.2. For all n > 3, a € (0,1), A > 0 and 6 € (0,2/n—2) there ezist
constants € = eg(n,a,A,0) >0 and C = C(n,a,\,d) >0 with the following property. Let
M be a closed Riemannian n-manifold with

| sec(M)+1|<eg, sec=-11in M, and [[VRicl|coay <A.

Then the operator
L: (CQ’Q(Sme(T*M)), Il - HQ) — (Co’a(Sym2(T*M))a |- ”0)

18 1nvertible, and
-1
1£llop [1£7" lop < C,

where ||-||2 and || ||o are the norms defined in Definition 4.1.

Using Lemma 2.2, Lemma 2.4 and Proposition 3.1, the proof of Proposition 4.2 is
standard. Consequently, we keep it short and refer the reader to [HJ22, Propositions 4.3
and 4.7] for further details.

Proof. 1t is clear that ||L||op is bounded from above by a universal constant. It will suffice
to prove the a priori estimate ||h||2 < C||Lhl|o for all h e C?*( Sym*(T*M)). Indeed, given
this a priori estimate, standard arguments show that £ is surjective; consequently L is
invertible and ||£7Y||op < C thanks to the a priori estimate.

Throughout, we will abbreviate f := Lh.

Step 1 (Integral estimate): Fix a basepoint x € M, and recall that r, denotes the
distance function dys(z,-). We want to show that

[M e~ V=220 (1p12 4 |V R + |AR|?) dvol < C(n, §) [N je—<2V"—2—5>’“w|f|2dv01. (4.3)
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Because of [AFLMRO07, Theorem 1], we may act as if 7, were smooth. Abbreviate
c(n,8) =n-2-(v/n-2-6/2)% Applying Lemma 2.4 with ¢(y) = e(V"279/27:(¥) vields

c(n,é)/]‘46_(2V"_2_5)T”|h|2dvolgZ[Me_(QV”_Q_‘S)”(f,h)dvol

+c(n)eg [M e~ (2Vn=2=0)re 2 o,

Note 2(f,h) < C(Z’(S) |h|?+ c(sa) |f|? due to the Cauchy-Schwarz inequality and the inequal-

ity between the arithmetic and the geometric mean. Thus, for gg < 62(0727?)) we obtain

/ e~ VIR 2 o] ¢ L0 f e~ @VRT2-0)s 412 ol
M e(n,9)? Jm

This weighted L2-bound then implies the desired weighted H?-bound (4.3) because L is
a second order elliptic operator.

Step 2 (C-estimate): It remains to estimate ||||c2. «(ar)- Due to Schauder estimates
(see for example [HJ22, Proposition 2.5]), it suffices to bound ||h||CO(M) by |Ifllo. Let f

and h be the lifts of f and h to the universal cover M. Then Lk = f in M. Note that M
satisfies the assumptions in Lemma 2.2 with, say, ¢ = 1 since sec(M) € [-4,-1/4]. We
may assume without loss of generality that p = p(n a, A, 1) >0 given by Lemma 2.2 is at
most 1/2. Thus, applying Lemma 2.2 to Lk = f yields for all z € M and every lift & € M
of x

[hl(2) = |hl(2) < C(IRllz2(B/2)) * 1 Flloo sty ) = C(IRllL2ma2y) * oo )-

Moreover, we can apply Lemma 2.3 with w(:) = Cexp([”T“J d(-,MthiCk)) thanks to
Proposition 3.1. Hence

+1

fB(i’1 1oy 1P (@) dvol(§) <O / iy P (VTJ d(y, Mthick)) 1 (y) dvol(y)

sCexp (| "5 |t M) [P dvol(n)

sCoxp (| "5 [ de Muge) [ IO dvol(y).

Combining these inequalities with (4.3), and keeping in mind the definition (4.2) of ||-||o,
implies |h|(x) < C||f|o for all € M. This completes the proof. O

5. PROOF OF THEOREM 1.1 AND COROLLARY 1.2

We can now present the proofs of the results mentioned in the introduction.

Proof of Theorem 1.1. We equip C**( SymZ(T*M)) with the hybrid norm ||-||; defined

in Definition 4.1 (k =0,2); B(h,r) shall denote the balls with respect to these norms.
Any element in B(g,1/2) ¢ C%%( Sme(T*M)) is a positive definite (0, 2)-tensor, that

is, a Riemannian metric on M. Let ® = ®5 be the Einstein operator defined in (2.1),
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which we consider as an operator
®: B(gy, 1/2) € C**(Sym*(T*M)) - C**(Sym?(T*M)).

Denote by £ = (D®)g the linearization of ¢ at the background metric g. By Propo-
sition 4.2 there exists a universal constant Cy = Cy(n,a, A,d) such that £ is invert-
ible with ||£]|op, ||[£ 7 lop < Co. Moreover, by possibly enlarging Cp, it is clear that the
map g = (D®), is Co-Lipschitz. Therefore, applying (a quantitative version of) the
inverse function theorem implies that there exist constants e = ¢((n, o, A,d) > 0 and
Cj) = Cf(n,a, A, §) with the following property: For each f e C%*( Sym?(T*M)) with
|f = ®(9)llo < & there exists a metric gy € C>*( Sym*(T*M)) such that

®(gs) = f and lgr - gll2 < Collf - 2(9)llo-

Note that ®(g) = Ric(g) +(n-1)g. So, as ||-|lco.a < [|/|5*]]- %1, [|®(g)]|o < Ce'~ follows
from the assumptions in Theorem 1.1 and the Definition 4.1 of the hybrid norm || -|lo.
In particular, f = 0 satisfies ||f — ®(g)|| < &;, for € > 0 small enough. Thus, there exists a
metric go on M such that

®(g0) =0 and |lgo - glla < Ce"*,

In particular, for ¢ small enough, sec(M,gp) < -1/4 as sec(M,g) € (-1 —e,-1 +¢).
Therefore, ®(go) = 0 implies Ric(gp) + (n—1)go = 0 due to Lemma 2.1. This completes
the proof. O

Proof of Corollary 1.2. All constants implicitely assume on the choice of a Margulis con-
stant pu. Therefore, if the constants we produce are allowed to depend on a constant
t >0, we can without loss of generality assume p <.
For n e [4,12] \ {11} we can choose § = §(n) > 0 such that 2v/n—-2-8 > [%1]. Let
€d

eo =¢eo(n,a, A,0) be the constant from Theorem 1.1, and for v > 0 set &1 := Tos

Now let (M,g) and 2 € M be as in Corollary 1.2. Then Q € My since inj(2) > ¢
and < ¢. In particular, sec = -1 outside Miy,;,. Note that [Ric(g) +(n-1)g|* < (n—1)&?
when |sec(M,g) + 1| < e. Thus, as sec = —1 outside 2, Q € Mipick, 2vVn—-2-0 > [”T”J,
and vol(§2) < v, we obtain for all x € M

otiase) [ D0 Rie(g) + (n-1)g(y) dvol(y)

< fQ IRic(7) + (n - 1)g*(y) dvol(y)
<vol()(n-1)e2

SE%.

ol

So all the assumptions in Theorem 1.1 are satisfied, and we obtain an Einstein metric gg
close to g from the conclusion of Theorem 1.1. O
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