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3 Introduction 

Understanding how a network’s structure relates to its function as an information processing 

system is challenging. Since Ramón y Cajal discovered over a century ago that neurons from 

different parts of the nervous system have very different morphologies, investigating how the 

structure of neurons and networks in the brain contributes to their function has been an active 

field of study. Unravelling structure-function relationships in brain networks remains 

challenging, not least due to the overwhelming number and diversity of neurons, and the 

intricacy of the connected networks they form. Complexity arises from interactions between 

dynamic systems at different scales, from nonlinear biophysical properties of individual 

neurons to long-range anatomical projections between distant brain regions. Furthermore, 

measurements at the required level of detail and temporal resolution often remain elusive 

experimentally, and even with the necessary measurements, inferring causal relationships 

from observational data is often intractable. 

To address these challenges, I here largely work in a system in which I have access to any 

data one could want: a highly detailed, multi-scale model of the rat primary vibrissal 

somatosensory cortex (barrel cortex), the brain region which processes sensory information 

from the animal’s whiskers (Feldmeyer et al., 2013). The multi-scale model is built from 

decades of empirical anatomical and functional measurements of the barrel cortex at various 

scales. These data are used to constrain the model for simulations which reproduce 

experimental measurements of cortical function. Structurally, it consists of a dense neuropil 

built from in vivo labelled reconstructed dendrite and axon morphologies of all major cortical 

cell types, as well as thalamocortical axons (Egger et al., 2014). Using empirical 

measurements of synapse density and axo-dendritic projection patterns, the model provides 

realistic estimates for connectivity at cellular and subcellular scales. These connectivity 

estimates were shown to not only be accurate in terms of pairwise connectivity, but also to 

reproduce empirical measurements of synapse clustering and network motif occurrences 

(Udvary et al., 2022). Each cell in the model can be activated according to in vivo measured 

cell type-specific activity during a whisker stimulus, which in combination with synaptic 
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connectivity from the anatomical model provides a realistic estimate of the synaptic activity 

impinging onto any cell in the model during a sensory stimulus (Egger et al., 2020).  

The multi-scale model has been used to perform well-constrained simulations of layer 5 

pyramidal tract neurons (L5PTs), the major output cell type of the neocortex (Harris and 

Shepherd, 2015), in response to sensory stimuli of the whiskers (Egger et al., 2020). This 

required the inclusion of a biophysically detailed single-cell model of a L5PT, which can 

transform synaptic input into spiking output. The multi-scale model has since been extended 

to include a diverse set of biophysically detailed multi-compartmental models of L5PTs, which 

span the full range of morphological and biophysical diversity of the cell type, while all 

reproducing the characteristic electrophysiology and sensory responses of L5PTs (Bast and 

Oberlaender, 2021). However, although the multi-scale model accurately reproduces a 

wealth of experimental measurements, it does not per se provide much understanding about 

the cellular and circuit mechanisms underlying sensory processing.  

Modelling provides an additional benefit beyond perfect access to data: the ability to exactly 

repeat a trial and make targeted manipulations. In order to disentangle the contributions of 

various neuron and network properties, one may want to perform manipulations to remove 

or modify specific features and assess the effect of this manipulation on the network’s 

function. However, these kinds of specific manipulations, for example altering connectivity or 

biophysical properties, or modifying the activity of a specific cell type without changing any 

others, are often inaccessible experimentally. Furthermore, even if keeping all conditions 

identical in an experiment, it is highly likely that e.g. the exact spatiotemporal pattern of 

synapse activations will differ from a previous trial, or that the starting membrane voltage 

before a stimulus will not be identical. These many sources of trial-to-trial variability make it 

challenging to determine the precise causal effect of a manipulation, leaving aside substantial 

cell-to-cell and animal-to-animal variability (Marder and Taylor, 2011). Stochasticity is a 

fundamental feature of brain function, starting with noisy ion channel conductance (Rusakov 

et al., 2020). The ability to keep everything exactly the same, and only make targeted 

manipulations, is therefore unique to modelling, and allows us to investigate fine-grained 

causal relationships.  
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When investigating structure-function relationships in brain networks, we could work at a 

range of different scales: from protein interactions on a molecular level (Agnati et al., 2008), 

through cellular-scale synaptic connectivity, to brain regions connected by white matter tracts, 

the brain fundamentally consists of links and interactions between its components. Formally, 

a network is defined as a set of objects (nodes) of which at least some pairs are somehow 

related - these relations are denoted by edges between the nodes. Here, I focus on cellular 

scale networks, where each neuron represents a node in the network, and synaptic 

connections between neurons form the network’s edges. Hereby, we describe the network’s 

structure, comprising the neurons and their properties, and the anatomical connections 

between them.  Within the cellular scale networks which we model here, we may describe 

components at different levels of detail. For instance, we may note simply whether a neuron 

is excitatory or inhibitory, or we may consider its specific cell type and location. We may 

represent each neuron as a very simplified computational unit, like an integrate-and-fire 

model, or account for intricate morphological detail and nonlinear biophysical properties. 

Regarding edges, we may deem it sufficient to simply use a binary connectivity matrix (a 

square matrix where each entry indicates whether or not a pair of neurons are connected), 

or we may care about the specific number and dendritic location of synapses which make up 

each connection. The aim of this thesis is to use modelling approaches at three levels of 

detail to investigate how structure affects function in cortical networks:   

1. Macro-scale architecture and connectivity, abstracted through artificial neural 

networks (ANNs) with cortex-inspired architecture. 

2. Circuit-level, accounting for biophysical detail and realistic synaptic input to uncover 

how interactions between neuronal properties and network input shape the receptive 

fields of L5PTs in barrel cortex. 

3. Subcellular scale, following the observation that direct primary thalamocortical (TC) 

innervation to L5PTs has a density peak around the region which initiates calcium 

action potentials (CaAPs) in the apical dendrite. What is the relevance of this wiring 

specificity for calcium-mediated burst firing in response to sensory stimuli?  
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3.1 Cortex-inspired artificial neural networks 

Cortical networks are very sparsely connected. In fact, it has recently been shown that in a 

given subvolume of sensory cortex, <1 % of neurons with overlapping axons and dendrites 

will form a synaptic connection (Udvary et al., 2022). What is the relevance of such sparse 

connectivity for a network’s function? Surprisingly, sparse connectivity was shown to impair 

information processing in ANNs, making training more difficult and leading to worse 

performance (Evci et al., 2019). Do these findings in ANNs imply that sparse connectivity 

also impairs information processing in biological neural networks, or are there conditions 

under which sparsity may be beneficial?  

Although the ANNs underlying much of modern deep learning were originally inspired by the 

brain, there are major differences between conventional ANNs and biological neural 

networks. While neurons are arranged in layers consisting of different cell types, there are 

abundant recurrent connections within and between layers (reviewed in Singer, 2021). 

Meanwhile, conventional ANNs are typically initialised with dense, feedforward connectivity, 

meaning that each node in a given layer is connected unidirectionally to all nodes in the 

subsequent layer. In the brain, a neuron is either excitatory or inhibitory (Dale's law; Eccles, 

1976), whereas conventional ANNs place no such constraints on weights, allowing individual 

nodes to have both positive and negative outgoing connections. Determining the relevance 

of these differences in structure for network function is challenging. It may seem an obvious 

approach to take the empirically measured connectivity from e.g. a dense electron 

microscopic reconstruction or the multi-scale model, and use it to construct an ANN replica 

with biologically realistic connectivity. Unfortunately, such a detailed replica of cortical 

connectivity is challenging to compare to other architectures in order to understand which 

structural properties are actually relevant for function. How can we isolate the effect of 

individual features of cortical networks on information processing in a network? 

To this end, I systematically generate and train artificial neural networks (ANNs) constrained 

by selected, interpretable features of cortical network architecture. I constructed ANNs with 

different degrees of sparsity in the hidden layers – the sparser the network, the fewer nodes 

were connected to each other by a trainable weight. Connectivity in cortex is highly recurrent, 
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so I compared the effect of sparsity in feedforward ANNs and recurrent neural networks 

(RNNs). It has been suggested that the degree of sparsity in cortex is affected by the size of 

the brain, with larger brains having sparser connectivity (Herculano-Houzel et al., 2010). This 

relationship between network size and sparsity has also recently been shown experimentally 

in CA3 hippocampus (Watson et al., 2025), with humans having sparser connectivity than 

rats, and rats, in turn, having sparser connectivity than mice. Therefore, I here investigated 

sparsity and recurrence in networks of different sizes. I find that in networks which are large 

and recurrent, like cortical networks, sparse connectivity enables networks to achieve better 

performance when training time or data are limited than conventional, dense connectivity.  

An important function of sensory areas in the cortex is to encode inputs in a way that enables 

them to be distinguished by downstream areas. Similarly, ANNs must encode their inputs in 

the activations of nodes in the hidden layers in order to allow classification at the output layer. 

I therefore next investigated how our ANNs represent their inputs in the activations of the 

hidden layer nodes, and to what extent connectivity in the hidden layer affects this input 

representation. I find that although in the case of large, recurrent networks, both sparsely and 

densely connected networks form sparse representations of their inputs, sparse networks 

use more distributed representations which are more robust to neuronal noise. 

Finally, I constructed and trained ANNs which obey Dale’s principle, which states that a 

neuron releases the same set of neurotransmitters at all of its synapses (Eccles, 1976); 

broadly, each neuron is either excitatory or inhibitory and must remain that way. For ANNs, 

this corresponds to each node having exclusively positive or negative outgoing weights, and 

this sign remaining unchanged throughout the training process. It has been found that 

applying such constraints to conventional ANNs often impairs their training (Cornford et al., 

2020). Here, I constructed Dale-compliant RNNs with a proportion of inhibitory nodes 

corresponding to the proportion of inhibitory neurons reported in sensory cortex (Meyer et al., 

2011). I find that the training of densely connected networks is indeed severely slowed by 

Dale’s principle, but that sparse connectivity enables Dale’s networks to train almost as 

efficiently as their unconstrained counterparts. 
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3.2 Neuron-network interactions which shape L5PT receptive fields 

L5PTs are the main output cell type of the cortex, integrating synaptic inputs along their 

extensive, biophysically complex dendrites which span all cortical layers, and sending action 

potential (AP) outputs to subcortical targets (Harris and Shepherd, 2015; Rojas-Piloni et al., 

2017).  Following a sensory (whisker) stimulus, L5PTs in the barrel cortex show fast and 

reliable AP responses (de Kock et al., 2007). How L5PTs transform synaptic input into AP 

output – their effective input-output computation – remains unclear, in no small part due to 

many sources of trial-to-trial and cell-to-cell variability, which make it challenging to elucidate 

general computational principles. L5PTs show substantial variability in their dendritic 

morphology (Hay et al., 2013). Biophysical properties (i.e., the density and distribution of ion 

channels on the dendrite) may also vary greatly from cell to cell: while this is challenging to 

measure experimentally, it has been shown that the characteristic electrophysiology of L5PTs 

can be reproduced by biophysically detailed models with vastly different biologically plausible 

ion channel expression and utilisation (Bast and Oberlaender, 2021). Additional variability 

arises from the synaptic input received by the cell: it has been found experimentally that the 

spatiotemporal input pattern (i.e., when and where on the dendrite synapses are active) is 

highly variable from cell-to-cell and even trial-to-trial within the same experimental condition 

(Chen et al., 2011; Varga et al., 2011; Rochefort and Konnerth, 2012; Jia et al., 2014; Scholl 

et al., 2021). We would therefore like to disentangle the relevance of morphological and 

biophysical properties for the input-output computation performed by L5PTs, and determine 

how AP responses arise from the interplay between network input and neuronal properties. 

Addressing these questions would ideally require simultaneous measurements of sensory-

evoked synaptic input at high spatiotemporal resolution and AP output, as well as a 

morphological reconstruction of the dendrites and their ion channel distributions. While this 

remains challenging experimentally, such data is accessible in the multi-scale model, which 

reproduces the fast sensory-evoked responses of L5PTs seen in vivo. The multi-scale model 

provides realistic estimates of the timing and location of synapse activations which a L5PT 

receives from the network after a whisker stimulus, and uses biophysically detailed models 

to simulate how L5PTs transform these synaptic inputs into AP outputs (Egger et al., 2020).  
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Here, we developed an approach which reduces the multi-scale model into analytically 

tractable models which capture the input-output computation of L5PTs upon single whisker 

deflections, while preserving cell-to-cell and trial-to-trial variability. These reduced models 

revealed that three features are sufficient to predict an AP response: the count of active 

synapses in a time window, their distance from the soma, and the time since the previous AP 

of the L5PT. They show that this input-output computation is qualitatively preserved across 

L5PTs with different morphologies and biophysical properties. Thanks to the interpretability 

of the reduced models, we use them to investigate the circuit mechanisms underlying another 

property of L5PT sensory-evoked responses: broad and heterogeneous receptive fields.  

The receptive fields of L5PTs are broader than those of any other cell type in the same 

column. The multi-scale model had previously predicted that the circuit mechanism 

underlying these broad receptive fields is a horizontal dissemination of thalamocortical input 

by layer 6 cortico-cortical cells (L6CCs). This prediction was successfully tested in vivo by 

pharmacological manipulation (Egger et al., 2020). The reduced models confirmed that L6CC 

is the primary source of excitation to L5PTs in columns which are not somatotopically aligned 

to the stimulated whisker, and thereby acts to horizontally spread thalamocortical input, which 

results in broad receptive fields in L5PTs. However, the origin of the inter-cell variability in 

receptive field shapes remained unexplored. Using the reduced models, we show that a 

L5PT’s location, and therefore the presynaptic cells it is connected to which determine the 

synaptic input it receives from the network, is the primary determinant of receptive field shape, 

and that morphology and biophysics play only a minor role. 

3.3 Subcellular scale thalamocortical wiring specificity 

L5PTs have been observed to respond to some stimuli with high frequency bursts of two or 

more APs both in vitro (Larkum et al., 1999) and in vivo (Larkum and Zhu, 2002). In response 

to a sensory stimulus in vivo in awake rats, an increase in high frequency bursts distinguishes 

L5PTs from all other excitatory cell types in the column (De Kock et al., 2021). What is the 

functional relevance of these bursts? Being the main source of output from the cortex, L5PT 

axons target, among other downstream areas, higher order thalamic nuclei (the 

posteromedial nucleus (POm) for L5PTs in the barrel cortex, (Rojas-Piloni et al., 2017)). 



14 
 

These corticothalamic synapses are strong, but also strongly depressing (Groh et al., 2008) 

– this means that individual APs or bursts are filtered out by POm, but a synchronous volley 

of bursts from L5PTs can overcome this depression and in turn lead to burst firing in POm 

neurons (Mease et al., 2017). This increase in POm activity can enhance sensory processing 

in the barrel cortex via feedback thalamocortical excitation (Mease et al., 2016). Despite their 

apparent importance for sensory processing, the origin of these bursts in cortical output from 

L5PTs remains unknown. 

One theory, proposed following in vitro observations in L5PTs, is coincidence detection 

(Larkum et al., 1999). In slice experiments, L5PTs elicit single AP responses when subjected 

to a brief current injection at the soma. If this somatic current injection is paired with a slightly 

delayed current injection at the distal dendrite, which on its own produces no somatic 

response, the cell instead produces a high frequency burst of APs. This burst is driven by a 

plateau potential at the apical dendrite, which is mediated by calcium currents. The plateau 

potential originates from the coincidence of the distal dendritic current injection with the 

backpropagation of depolarisation from the somatic AP caused by the somatic current 

injection, which then supralinearly combine and result in a CaAP. Unfortunately, 

backpropagating APs were shown to have little influence on dendritic calcium potentials in 

vivo (Helmchen et al., 1999; Murayama et al., 2007), and coincidence detection is therefore 

unlikely to explain bursts in cortical output. 

Rather, L5PT burst firing in vivo is thought to arise from a local activation of calcium channels 

(Takahashi et al., 2016). What could be the source of this localised excitatory input to the 

apical dendrites? The primary thalamus (ventral posterior medial nucleus (VPM) for barrel 

cortex) is the main source of sensory information to the cortex, and VPM axons form 

synapses with most cell types across all cortical layers in barrel cortex. The seminal 

anatomical finding for the present study was that in addition to a high number of synapses on 

the basal dendrites of L5PTs, VPM axons form a high density of synapses to the region of 

the apical dendrite which initiates CaAPs (Bast et al., 2021). The CaAP initiation zone lies 

below the primary bifurcation point (BP) of the apical dendrite – the laminar location of this 

zone can therefore vary greatly depending on the L5PT’s dendritic morphology. Nonetheless, 
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this high density VPM innervation to the CaAP initiation zone is preserved across L5PTs with 

very different morphologies. What is the functional relevance of this wiring specificity in the 

TC-L5PT pathway? 

A major challenge with disentangling the relevance of this direct TC input is that L5PTs 

receive synaptic input from virtually all intracortical cell types (Lefort et al., 2009), all of which 

respond with similar latencies to sensory stimuli (de Kock et al., 2007). Therefore, it is 

theoretically possible for all of these intracortical pathways to provide input to L5PTs and 

contribute to bursting. As these different pathways remain highly challenging to isolate 

experimentally, the multi-scale model provides sufficient access to disentangle the effects of 

individual pathways on CaAPs and burst firing in L5PTs.  

We find that direct input from VPM is necessary for bursts in sensory-evoked L5PT 

responses, but not sufficient. Removing all direct TC input to L5PTs abolished bursts, 

generally leaving single AP responses, whereas removing all intracortical sensory-evoked 

input and only leaving direct TC input almost fully abolished somatic responses. In general, 

burst responses arise from a combination of direct sensory input via TC innervation, indirect 

sensory input from intracortical cell types and non sensory-evoked input prior to the stimulus. 

We find that bursts with 2 APs (doublets) and bursts with 3 or more APs (triplets) have 

different origins: while doublets frequently occur without a CaAP and only require TC input to 

the basal dendrites, triplets are almost always associated with a CaAP and additionally 

require direct TC input to the distal dendrite. As an exception to this finding, I identify a distinct 

class of early triplet response, which only rely on direct TC input to the basal dendrites as the 

associated CaAPs are driven by pre-stimulus input.  
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4 Methods 

4.1 Cortex-inspired ANNs 

Author contributions: Rieke Fruengel & Marcel Oberlaender. MO conceived and designed the 

study. RF developed the approach, performed training and analysed results. RF wrote the 

paper with feedback from MO. Additional investigations by Stephan Henk and Enru Qiu as 

thesis projects for a BSc Biology programme. SH investigated the effect of network motif 

occurrences, and EQ investigated the effect of degree sequences. Both projects were 

supervised by RF. 

Corresponding publication: Fruengel, R. & Oberlaender, M. (under review) ‘Sparse 

connectivity enables efficient information processing in cortex-like artificial neural networks’. 

The Introduction, Methods, Results and Discussion sections are in part adapted from the 

submitted manuscript. Figures 3-8 and Supplementary Materials are taken directly from the 

submitted manuscript. 

All code needed to reproduce the results in this study can be found at:  
https://github.com/mpinb/sparseANNs 

First, I built an ANN with connectivity directly taken from the C2 column of the multi-scale 

model (Fig. 1). I extracted a binary connectivity matrix between all intracortical cells in the C2 

column (n = 23087). These formed the hidden layer, with one node representing each neuron. 

There is no convenient way to split these intracortical neurons into layers with exclusively 

feedforward connectivity, as would be the case for a conventional ANN, due to the high 

degree of recurrence, so I put all 23087 nodes into a single, recurrent hidden layer. This 

means that any node could be connected to any other node, allowing the creation of a replica 

of the connectivity in the cortical column, where only nodes representing neurons which are 

connected in the cortical column were connected by a trainable weight (other edge weights 

were set to zero). I initialised nodes representing inhibitory neurons (2869 nodes) with all 

negative outgoing weights (-0.001 to 0), and nodes representing excitatory neurons (20398 

https://github.com/mpinb/sparseANNs
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nodes) with all positive outgoing weights (0 to 0.001). Weights were drawn from a uniform 

distribution. I chose to use the MNIST dataset as a first benchmark training task (Lecun et 

al., 1998). Each image in the MNIST dataset is 28 pixels wide, and 28 pixels tall. To adapt 

this image-based dataset into a time series for classification by a recurrent network, I split 

each image into rows and provided one row to the ANN per time step, meaning each input 

had a length of 28, and there were 28 time steps (Fig. 1).  

These 23087 cortical neurons received sensory input from 350 different neurons in VPM 

according to the barrel cortex model. To account for connectivity from VPM to the C2 column, 

I randomly assigned each of the 350 VPM neurons to one of the 28 columns in the image – 

at each time step, each node in the hidden recurrent layer would receive input only from the 

columns in the image which corresponded to the VPM neurons it was connected to. In the 

final time step, output values were collected from all nodes representing L5PTs (1086 nodes), 

and passed to a linear decoder layer, representing a downstream target of the barrel cortex. 

There were 10 nodes in the output layer, one for each class in the dataset, and outputs were 

one-hot encoded (meaning the output layer node representing the target class should have 

an output of 1, and all other outputs should be zero). I used the ADAM optimiser for gradient 

descent, with a learning rate of 0.001.  

 

Figure 1. Cortical column ANN performing MNIST image classification. 
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To determine the relevance of specific connectivity, I shuffled the connectivity matrix between 

the hidden layer nodes. Everything else, including the identity of excitatory and inhibitory 

nodes, input and output layer connectivity and training parameters remained the same. Next, 

I removed all nodes representing neurons from cortical layers 1-4, and as a control for this 

manipulation, removed an equal number of nodes at random (both manipulations leave 8788 

nodes/neurons in the hidden layer). The final manipulation was to decode from other cell 

types. Instead of connecting L5PTs to the output layer, I connected L5ITs (1575 nodes) or 

L6CTs (3359 nodes).   

I systematically investigated the effect of size, sparse connectivity and recurrence on the 

training and performance of ANNs (Fig. S1A). I began in recurrent neural networks (RNNs). 

To this end, I generated a range of ANNs with different numbers of nodes in the hidden layer, 

and with different connection probabilities between the hidden layer nodes. All nodes were 

arranged in a single recurrent hidden layer, and any node in the hidden layer could be 

connected to any other node, with the number of such connections determined randomly by 

the connection probability. The lower the connection probability the sparser the network, i.e., 

the fewer nodes were connected to each other by a trainable weight. The weights of edges 

between hidden layer nodes were randomly initialised from a uniform distribution between -

0.001 and 0.001, with weights between unconnected nodes fixed at zero throughout. For 

each set of hyperparameters (network size & sparsity) I trained 10 networks with different 

random initialisations, which differ in their connectivity matrix (specifying which nodes are 

connected by a trainable weight) and in the values of edge weights at initialisation. Results 

are given as mean ± standard deviation unless otherwise specified. All nodes in these ANNs 

use the rectified linear unit (ReLU) activation function unless otherwise specified.  

I evaluated our networks on three benchmark machine learning tasks, MNIST (Lecun et al., 

1998) and CIFAR10 (Krizhevsky, 2012) image classification, and Sleep-EDF (Kemp et al., 

2000) sleep-stage classification from EEG recordings. The image-based tasks were modified 

for recurrent networks to encode each image as a time series by slicing each image row-wise 

and presenting one row of pixel values (one value per pixel for grayscale images in MNIST, 
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three values per pixel for RGB images in CIFAR10) in each time step (Fig. S1B). The size of 

the input layer was equal to the width of the image (MNIST, 28), the width of the image 

multiplied by 3 to account for RGB colour channels (CIFAR10, 32x3), or one for the single-

channel time series in the Sleep-EDF dataset. Each input layer node was connected to all 

hidden layer nodes by a trainable weight. The output from all the recurrently connected 

hidden layer nodes in the last time step was then passed to a linear output layer with 5 (Sleep-

EDF) or 10 (MNIST & CIFAR10) nodes for classification (one for each class in the dataset, 

target classes were one-hot encoded). Networks were trained by backpropagation using the 

ADAM optimiser for gradient descent, with a learning rate of 0.001. I used the cross entropy 

loss function. All networks were implemented and trained in PyTorch v1.8.1.  

To assess the single-epoch learning performance of our networks, I trained all networks for 

one epoch, meaning that each data point from the training dataset was presented once 

(60000 data points for MNIST, 50000 data points for CIFAR10, 398370 data points for Sleep-

EDF). Then, the accuracy of the networks was tested on the corresponding testing dataset, 

which consists of 10000 (MNIST & CIFAR10) or 170730 (Sleep-EDF) unseen examples.  

To assess whether recurrent network architecture was necessary for sparsity to be beneficial, 

I repeated the same training of networks with different hyperparameters with feedforward 

networks. Here, hidden layer nodes were split into two hidden layers. Nodes in the first layer 

could be connected to nodes in the second hidden layer by a feedforward connection, with 

the number of such connections determined randomly by the connection probability. To 

feedforward networks, the whole image was provided at once as input (flattened to a 1D 

vector) for MNIST and CIFAR10 datasets, and for the Sleep-EDF dataset, the whole EEG 

sequence was passed at once. The length of the resulting input vector determined the size 

of the input layer. 

To evaluate the effect of a different activation function, I replaced the ReLU activation function 

in hidden layer nodes with the hyperbolic tangent (tanh) function. All other hyperparameters 

remained unchanged, and I trained three different random initialisations for each set of 

hyperparameters with this new activation function. 
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To assess the performance of our networks with limited training data, I modified the MNIST 

and CIFAR10 tasks. The full training datasets contain 6000 or 5000 examples of each class 

for MNIST and CIFAR10 respectively. I selected a smaller random subset of examples (50, 

100, 500 or 1000 per class) and used only these for training. The test dataset remained 

unchanged. ANNs were trained for 50 epochs with early stopping if their performance 

stopped improving, and we then compared their best test accuracy. 

In order to investigate how our networks encode their inputs, I determined how hidden layer 

nodes contribute to a classification. To this end, I took a sparsely connected network (size 

10000 hidden nodes, connection probability 0.1) and a densely connected network (size 

10000 hidden nodes, connection probability 1.0). Then, I gave each network the full testing 

dataset of MNIST (10000 images) as input. After the network had processed each image, I 

recorded the activation values (outputs) of all hidden layer nodes at the last time step, which 

is the activation value which is passed to the output layer for classification. I performed these 

measurements before the networks had received any training, and after one epoch of 

training. I first consider what proportion of hidden layer nodes send a non-zero activation to 

the output layer in response to each image. Then, I also consider the magnitude of these 

non-zero activations. I used sklearn.feature_selection.mutual_info_regression from 

scikitlearn (Pedregosa et al., 2011) to calculate the mutual information between the 

responses to the whole testing dataset for 10000 randomly sampled node pairs. To 

investigate the effect of neuronal noise, I randomly set the output of a proportion of hidden 

layer node outputs to zero at test time.  

I next trained networks which obey Dale’s principle (Eccles, 1976), meaning that each node 

had either exclusively positive or negative outgoing weights, and this sign remained 

unchanged throughout the training process. I initialised networks with 11.5 % inhibitory 

nodes, corresponding to the proportion of inhibitory neurons reported in sensory cortex 

(Meyer et al., 2011). Inhibitory nodes were initialised with random, all negative outgoing 

weights, and excitatory nodes with random, positive outgoing weights (all weights still had a 

magnitude randomly chosen according to a uniform distribution between 0 and 0.001). 
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Whether a node had a trainable connection to another node was purely determined by the 

connection probability, and was not affected by their excitatory or inhibitory nature. After each 

weight update, if any weight’s sign would be reversed, its value was set to zero instead. All 

other training parameters were the same as for previous networks (with the exception of 

sparse to dense networks in Fig. S4, where weights initialised at zero were allowed to become 

nonzero during training). For Fig. 6F, I initialised networks with 50 % inhibitory nodes to 

evaluate the effect of structural E/I balance. 

Finally, we investigated the effect of higher-order features of cortical connectivity on the 

training and performance of ANNs. First, we explore the effect of varying the occurrence of 

recurrent network motifs (Fig. 7A). We began with random connectivity matrices with 

connection probability 0.14 to match the barrel column, with either 100, 1000 or 10000 nodes. 

In these matrices, we replaced empty network motifs from randomly sampled triplets with 

fully recurrent network motifs, increasing the number of recurrent motifs by 300 % and 600 % 

for networks with 100 and 1000 nodes, and by 50 % and 100 % in networks with 10000 nodes 

(the difference in the extent of modification between small and large networks is due to the 

large computational cost of sampling and modifying network motifs in larger networks). To 

maintain the overall number of edges and therefore connection probability in the network, we 

compensated for this addition of edges by removing edges from sparse feedforward motifs. 

To evaluate the effect of a network with only recurrent motifs, we began with an empty 

connectivity matrix and added fully recurrent motifs until the same overall connection 

probability was reached as for the other networks. We trained all networks on MNIST for 10 

epochs.  

We investigated the effect of maintaining biological degree sequences. The degree sequence 

is the distribution of in- and out-degrees of nodes in a network, the in-degree being the 

number of incoming connections each node receives, and the out-degree being the number 

of outgoing connections from each node. First, we calculated the in- and out-degree 

distributions for one column (C2) of the barrel cortex model. We then sample from this 

distribution in two different ways: for ‘uncorrelated’ networks, each node receives an in- and 
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out-degree randomly sampled from the corresponding distributions. For ‘correlated’ 

networks, each node receives both the in- and out-degree from a randomly sampled neuron 

in the cortical column – this way, the correlations between in- and out-degree which are seen 

in the cortical network (Landau et al., 2016; Udvary et al., 2022) are preserved. To test the 

effect of including Dale’s principle, we calculate the cortical in- and out-degree distributions 

separately for excitatory and inhibitory neurons, and then construct a network with excitatory 

and inhibitory nodes as before, sampling each node’s in- and out-degree from a neuron of 

the corresponding type. We built ANNs with uncorrelated, correlated, correlated-Dale’s and 

random (as a control) connectivity matrices with 500, 5000 and 10000 hidden layer nodes, 

and trained all networks on MNIST and CIFAR10 for 100 epochs.   

4.2 Reduced models 

Author contributions: Arco Bast*, Rieke Fruengel*, Christiaan P. J. de Kock & Marcel 

Oberlaender.  *These authors contributed equally. AB & MO conceptualised the study and 

provided supervision. AB developed the model reduction approach (estimation of 

spatiotemporal filters, nonlinearity and post-spike penalty from simulation data of 

biophysically detailed models), developed a pipeline to estimate spatiotemporal filters via 

optimisation of the AUROC score accelerated by GPU computing, generated reduced models 

to predict APs from synaptic input and validated the predictions with respect to in vivo data. 

RF extended the approach to robustly work with different biophysically detailed models and 

to robustly estimate the post-spike penalty, improved compatibility with larger datasets, 

performed generalisability analysis, performed comprehensive evaluation of model 

performance and applied the pipeline to different biophysical models. AB & RF performed 

simulations and analysed data. CDK contributed experimental data. AB & RF wrote the paper 

with MO.  

Corresponding publication: Bast*, A., Fruengel*, R., de Kock, C.P.J. & Oberlaender, M. 

(2024) ‘Network-neuron interactions underlying sensory responses of layer 5 pyramidal tract 

neurons in barrel cortex’, PLOS Computational Biology. Edited by H. Cuntz, 20(4), p. 

e1011468. Available at: https://doi.org/10.1371/journal.pcbi.1011468. 

https://doi.org/10.1371/journal.pcbi.1011468
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The Methods, Results and Discussion sections are in part adapted from the publication. 

Figures and Supplementary Materials are taken directly from the publication. 

Code for reduced model inference is provided here: 
https://doi.org/10.5281/zenodo.10730382 

Training data for the reduced models (synapse activation times and spike times) and 

parameters for all reduced models: https://doi.org/10.7910/DVN/QV7JIF  

4.2.1 Biophysically detailed models and multi-scale model simulations 

The work in this section was performed by AB and is included for completeness. 

We selected 5 L5PT dendrite reconstructions that are representative of the morphological 

variability of this cell type. Multi-compartmental models were generated for these 

morphologies as described previously (Hay et al., 2011; Egger et al., 2020). Briefly, a multi-

objective evolutionary algorithm was used to find parameters for the passive leak 

conductance and the density of Hodgkin-Huxley type ion channels on soma, basal dendrite, 

apical dendrite and axon initial segment, such that the neuron model is able to reproduce 

characteristic electrophysiological responses to somatic and dendritic current injections of 

L5PTs within the experimentally observed variability, including back-propagating APs, 

calcium APs, and AP responses to prolonged somatic current injections, using a method 

adapted from Hay et al. (2011) with additions described in Bast and Oberlaender (2021). We 

incorporated the IBEA algorithm (van Geit et al., 2016) for optimisation. The optimisation was 

terminated if there was no progress or when acceptable models had been found. We 

repeated the optimisation process several times. From each independent run, we selected 

one model for which the maximal deviation from the experimental mean in units of standard 

deviation across all objectives was minimal (0.9–1.9 mean STDs across objectives). 

We embedded the dendrite morphologies selected for biophysically detailed models in the 

network model of the barrel cortex (Egger et al., 2014) at 81 locations within the cortical barrel 

column representing the C2 whisker, which is located approximately in the centre of the barrel 

https://doi.org/10.5281/zenodo.10730382
https://doi.org/10.7910/DVN/QV7JIF
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cortex. For all in silico data presented in this study, the principal whisker (PW) is hence the 

C2 whisker. The locations were the column centre, and equally spaced in a grid with a 

distance of 50 μm between adjacent somata. For each of the 81 locations, we extracted the 

location of presynaptic neurons in VPM and barrel cortex that provide input to the respective 

L5PT (Fig. 7D) and where along the L5PT dendrite they synapse (Fig. 7E) from the multi-

scale model. To generate synaptic activity, we activated all presynaptic cells in the barrel 

cortex model according to experimental recordings for their cell type and columnar position 

relative to the chosen whisker stimulus  (de Kock et al., 2007; Egger et al., 2020).  The peak 

conductance for synaptic inputs from each excitatory cell type was fitted to in vitro and in vivo 

unitary post-synaptic potential amplitudes, as described in (Egger et al., 2020). Depending 

on the network embedding, L5PTs receive different fractions of excitatory and inhibitory 

inputs, which may not maintain functional EI balance (Landau et al., 2016). We therefore 

included a scaling factor for evoked inhibitory synaptic strength, which we constrained to fit 

empirically observed PW response probabilities (scaling factors ranged from 0.79 to 1.56 

depending on the biophysically detailed model). 

Simulations were performed using Python 2.7, dask (Dask Development Team, 2016) and 

NEURON 7.4 (Hines and Carnevale, 1997). We simulated 1000 whisker stimulus trials for 

the PW and each of the 8 surround whiskers (SWs), for all 7 biophysically detailed models in 

each of the 81 network embedding locations. The database also contained trials for one 2nd 

SW (E2), which was however not included into analysis. This results in 810000 simulation 

trials per biophysically detailed model. 

4.2.2 Reduced model inference and simulations 

We performed reduced model inference for each biophysically detailed model separately. We 

split the multi-scale model simulation dataset for each biophysical model into a training and 

test dataset (split ratio: 70 % to 30 %, respectively). Synapses were binned based on their 

time point of activation (1 ms bins) and soma distance (50 micron bins). We excluded trials 

of the recent AP category (in which there was an AP in the last 50 ms) for inference of the 

spatiotemporal filters. Spatial and temporal filters were constructed as a weighted sum of 
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basis functions 𝑓𝑓𝑖𝑖 and 𝑔𝑔𝑗𝑗. The soma distance dependent weight 𝑤𝑤𝑧𝑧 and the time dependent 

weight 𝑤𝑤𝜏𝜏 of a synapse are given by  

𝑤𝑤𝜏𝜏 =  �𝑎𝑎𝑖𝑖𝑓𝑓𝑖𝑖(𝜏𝜏)
𝑖𝑖

 

𝑤𝑤𝑧𝑧 = �𝑏𝑏𝑗𝑗𝑔𝑔𝑗𝑗(𝑧𝑧)
𝑗𝑗

 

where 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑗𝑗 are free parameters.  

We used raised cosine functions (Weber and Pillow, 2016) as basis functions. The temporal 

basis functions 𝑓𝑓𝑖𝑖 were: 

𝑓𝑓𝑖𝑖(𝜏𝜏) =  
1
2

cos(𝑘𝑘 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙[𝜏𝜏 + 𝑐𝑐] − 𝜙𝜙𝑖𝑖) +  
1
2

 

for 𝜏𝜏 such that k·log(t + c) ϵ [𝜙𝜙𝑖𝑖 – π, 𝜙𝜙𝑖𝑖  + π] and 0 elsewhere. Values used were k = 3, c = 5, 

and φ ϵ [3, 12]. Analogously, the spatial basis functions 𝑔𝑔𝑖𝑖 were: 

𝑔𝑔𝑗𝑗(𝑧𝑧) =  
1
2

cos�𝑘𝑘 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙[𝑧𝑧 + 𝑐𝑐] − 𝜙𝜙𝑗𝑗� +  
1
2

 

for z such that k·log(z + c) ϵ [𝜙𝜙𝑖𝑖 – π, 𝜙𝜙𝑖𝑖 + π] and 0 elsewhere. Values used were k = 2, c = 1, 

and φ ϵ [1, 11]. 

Using the spatiotemporal filters, we compute a weighted sum of active synapses at a time 

point t, in the following referred to as weighted net input (WNI). The WNI is computed as 

follows: 

𝑊𝑊𝑊𝑊𝑊𝑊(𝑡𝑡) =  �𝑛𝑛𝑧𝑧,𝑡𝑡 − 𝜏𝜏,𝐸𝐸 ⋅ 𝑤𝑤𝜏𝜏,𝐸𝐸 ⋅  𝑤𝑤𝑧𝑧,𝐸𝐸
𝜏𝜏,𝑧𝑧

+  �𝑛𝑛𝑧𝑧,𝑡𝑡 − 𝜏𝜏,𝐼𝐼 ⋅ 𝑤𝑤𝜏𝜏,𝐼𝐼 ⋅  𝑤𝑤𝑧𝑧,𝐼𝐼
𝜏𝜏,𝑧𝑧

 



26 
 

where, 𝜏𝜏 ϵ [0, 80 ms] is the time before t, 𝑧𝑧 ϵ [0, 1300 µm] is the distance of the synapse from 

the soma, and 𝑛𝑛𝑧𝑧,𝑡𝑡 − 𝜏𝜏 is the number of active synapses at a given 1 ms time and 50 micron 

soma distance bin. 𝑤𝑤𝜏𝜏 and 𝑤𝑤𝑧𝑧 are the temporal and spatial filter, respectively. 𝑛𝑛, 𝑤𝑤𝜏𝜏 and 𝑤𝑤𝑧𝑧 

are split by synapse type, as indicated by the subscripts E (excitatory) and I (inhibitory). 

To adjust the free parameters (𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑗𝑗 for excitatory and inhibitory input) which determine 

the shape of the spatial and temporal filters, we use a gradient-free optimisation method 

(COBYLA, implemented in SciPy: (Virtanen et al., 2020)) to maximize the area under the 

receiver operating characteristic curve (AUROC) between the WNI and AP output for a 

selected 1 ms time bin. The 1 ms time bin selected for the optimisation is in the following 

referred to as the inference time point 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.  For each biophysical model, we performed 

this optimization for 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ϵ [0,25] ms post whisker stimulus. We then manually selected 

one inference time point for each biophysical model which resulted in reduced models that 

generalised well to other time points based on visual inspection of the peri-stimulus time 

histograms (PSTHs). The selected inference time point of each selected model is visualized 

in Fig. S4. Finally, we normalized the spatial and temporal filters such that the peak of the 

temporal filter is 1 for excitatory synapses and -1 for inhibitory synapses, and the value of the 

spatial filter for excitatory synapses at spatial bin 0 is 1.  

In order to calculate the spiking probability for a given WNI value, we used these filters to 

calculate the WNI for all biophysical model simulation trials from the training dataset at 

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and recorded whether a AP occurred at this time bin or not. The trials were then 

binned by WNI. The AP probability for each bin corresponds to the proportion of trials that 

produced an output AP in the biophysically detailed model simulation (Fig. 8C). Bins with few 

data points were combined to ensure a minimum of ten data points per bin. Linear 

interpolation was used to find the spiking probability corresponding to any WNI value, and 

WNI values greater/smaller than values seen in the biophysical model simulation were 

assigned the highest/lowest spiking probability respectively. We refer to this as the 

“nonlinearity” function.  
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In order to estimate the effect of recent APs on spiking probability, WNI values were plotted 

against the time since the previous AP (Fig. 8D). Then, a boundary was drawn to best 

separate spiking from non-spiking trials by dropping points with the lowest 5 % of all WNI 

values (to remove the effect of outliers) and then drawing a boundary along the minimum 

remaining spiking WNI values. This boundary was normalized such that its value is zero for 

time to previous AP →  ∞ by subtracting the offset. We found this two-step procedure (first 

estimate spatiotemporal filters based on a dataset in which recent APs are filtered out, second 

determine the post AP penalty based on these filters) to be more robust than a joint inference 

of both. WNI with penalty applied maintains a high AUROC over all stimulus periods (Fig. 

8F), while the uncorrected WNI’s AUROC drops after the sensory stimulus due to a high 

proportion of trials in which the biophysical model is refractory.  

When using the reduced models to generate spiking output from synaptic input, we first apply 

the spatiotemporal filters to binned excitatory and inhibitory synaptic input at each prediction 

time point. The resulting WNI value is looked up in the nonlinearity to determine the spiking 

probability. According to this probability, a random number generator is used to determine 

whether an AP is produced at this prediction time point or not. If an AP is produced, the WNI 

of subsequent time points is penalised according to the post AP penalty.  

4.2.3 Analysis 

‘AP probability’ is used to denote the probability that an AP is evoked within a 1 ms time bin. 

‘Response probability’ denotes the probability that one or more APs are generated in the 

25 ms following a whisker stimulus. ‘Accuracy’ is the percentage of trials in which the multi-

scale and reduced model agree on whether or not an AP is elicited in a 25 ms window 

following the whisker stimulus. We used the SciPy function ‘metrics.roc_auc_score’ to 

compute the AUROC score, which by default uses the full range of values (i.e. thresholds are 

automatically chosen such that the false positive rate varies between 0 % and 100 %). 

Distributions of response probabilities were compared with the two-sided Kolmogorov-

Smirnov test using the SciPy function ‘scipy.stats.ks_2samp’. 



28 
 

4.3 Thalamocortical wiring specificity  

Author contributions: Arco Bast*, Jason M. Guest*, Rieke Fruengel, Rajeevan T. Narayanan, 

Christiaan P.J. De Kock, Marcel Oberlaender. *These authors contributed equally. JMG, RTN 

& CDK performed experiments. MO provided supervision and wrote the manuscript. AB 

developed the biophysically detailed L5PT models, analysis pipelines for experimental and 

simulation data, a semi-automated method for AP detection with manual proofreading and 

high performance computing routines for simulation and analysis, performed analysis of 

electrophysiological and anatomical data to constrain multi-scale models, extracted APs for 

all anaesthetised experiments and performed cell type-specific and distance-dependent 

removal manipulation simulations. RF performed a detailed characterisation of CaAP shapes, 

categorised and investigated non sensory-evoked CaAPs, performed manipulations to test 

the effect of TC facilitation and increased prestimulus activity, and reanalysed experimental 

data from awake animals with manual spike proofreading and behaviour categorisation. AB 

& RF analysed manipulated simulations, performed manipulations to test the effect of 

decreased prestimulus activity, quantified the voltage in different dendritic compartments and 

analysed experimental data from airpuff and optogenetics experiments. 

Corresponding publication: Bast*, A., Guest*, J.M., Fruengel, R., Narayanan, R.T., de Kock, 

C.P.J. & Oberlaender, M. (in preparation) ‘The Origins of Burst Firing in Sensory-evoked 

Cortical Output’.  

The Methods section is in part adapted from the manuscript. Figures and Supplementary 

Materials are adapted from the manuscript where noted in the figure legends. 

4.3.1 In vivo experiments 

Experiments were performed by JMG, CDK and RN.  

Details of experimental materials and methods can be found in Bast et al. (2021). In brief, for 

electrophysiology experiments in anaesthetised rats, the animals received a 700 ms airpuff 

stimulus to caudally deflect the whiskers at 2.5 second intervals, with 20-30 trials per 

recording. APs were recorded using an extracellular loose patch amplifier, which was low-
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pass filtered (300 Hz) to measure the local field potential (LFP). Trials were assigned to the 

response types depending on their activity within the first 50 ms after stimulus onset: 3 AP 

bursts were defined as 3 APs occurring within 30 ms, 2 AP bursts as 2 APs within 10 ms. 

Trials that fulfilled both criteria were assigned as 3 AP bursts. The same criteria were used 

for classifying optogenetic responses, active touch responses, and the simulations. Some of 

the rats had an adeno-associated virus (AAV) expressing channelrhodopsin (ChR2) injected 

into VPM thalamus, which was later used to view TC axonal boutons to identify TC synapse 

locations onto L5PT dendrites (combined with immunolabelling with VGlut2). These AAV-

injected rats were also used for an optogenetics experiment, with TC terminals expressing 

ChR2 optically stimulated by 10 ms light pulses to the cortical surface. Stimuli were given at 

100 ms, 500 ms and 2.5 second intervals, with 20-100 trials of each. APs and LFP were 

recorded the same way as for the airpuff stimulus. Following electrophysiological recordings, 

the neurons were filled with biocytin, and later reconstructed – these reconstructed L5PT 

dendrite morphologies were used to generate biophysically detailed models for this study. 

For electrophysiology experiments in awake animals, rats were habituated to head fixation 

before the recording experiment. On the recording day, rats were anaesthetised and targeted 

loose-patch recordings were made using intrinsic optical imaging. Passive whisker 

stimulation and receptive field mapping were used to confirm intrinsic optical imaging results. 

The whiskers were then clipped apart from the PW or a single SW, and anaesthesia was 

terminated. The rats were head fixed, and an object was positioned 2 cm lateral from the 

whisker pad and anterior relative to the whisker set point, to ensure that touches were the 

result of whisker protraction. Touch events and whisker angle were determined manually by 

video recording. Following electrophysiological recordings, the neurons were filled with 

biocytin, and later reconstructed. 

4.3.2 Multi-scale model simulations 

The work in this section was performed by AB. 

Simulations were performed using Python 3.8, dask (Dask Development Team, 2016) and 

NEURON 7.8 (Hines and Carnevale, 1997). First, we determined L5PT simulation 
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configurations that result in simulations with AP rates that are within the range observed 

across L5PTs during periods preceding passive whisker stimuli. For the 612 network-

embedded L5PT models (i.e., 68 multi-compartmental models for 3 morphologies and 9 

embeddings into the network model, respectively) we simulated prestimulus activity by 

activating neurons in the network model that are presynaptic to the L5PTs with the 

spontaneous firing rates that we recorded in anesthetised animals across layers and for 

different excitatory and inhibitory types, and in VPM thalamus. We distributed 5000 inhibitory 

synapses uniformly across the dendritic tree, and activated them with different multiples of 

the in vivo observed firing rates (i.e., 0.25 to 3.75 times the in vivo rates, in 0.25 steps). For 

each of these 9180 L5PT simulation configurations (i.e., 68 L5PT models * 9 network 

embeddings * 15 EXC/INH ratios), we simulated 48 trials of 1245 ms duration, of which we 

discarded the first 245 ms as initialisation of the simulations. 2241 of the 9180 configurations 

predicted ongoing AP rates as observed for L5PTs in vivo (i.e., >0 Hz and ≤11 Hz). Second, 

we determined which of these 2241 L5PT simulation configurations result also in simulations 

with 1 AP, 2 AP and 3 AP burst rates that are within the respective ranges observed across 

L5PTs during the onset response evoked by passive whisker stimuli. For this purpose, we 

simulated 445 ms of prestimulus activity as described above, and then activated neurons in 

the network model that are presynaptic to the L5PT models by generating Poisson spike 

trains for each presynaptic neuron based on the empirically measured PSTHs of the 

respective types. We systematically tested whether our simulation results are robust with 

respect to different stimuli, different timings and ratios of sensory-evoked inhibition relative to 

excitation. Stimuli: principal whisker, three whiskers within the same row, or three whiskers 

within two adjacent rows, respectively. Timings: latencies as observed in vivo, inhibition 

shifted by 1 or 2 ms to earlier time points. Ratios: we activated inhibitory neurons with different 

multiples of the in vivo observed firing rates (i.e., 0.1 to 1.0 times the in vivo PSTHs, in 0.1 

steps). For each of these 161352 L5PT simulation configurations (i.e., 2241 models with 

realistic prestimulus rates * 3 stimuli * 3 EXC/INH timings * 8 EXC/INH ratios), we simulated 

20 trials to select all configurations that predict sensory-evoked responses within the in vivo 

observed ranges (i.e., ≥1 AP probability: >0 %, 2 AP burst probability >0 % and ≤40 %, 3 AP 

burst probability ≥0 % and ≤25 %). 67424 of the 161352 configurations predicted pre- and 
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post-stimulus activity as we had observed for L5PTs in vivo, out of which 22850 

configurations contained sensory-evoked bursts. Third, we selected these 22850 L5PT 

simulation configurations and repeated the simulations, this time 200 instead of 20 trials per 

model configuration. Moreover, in the first coarse selection step, we had accepted 3 AP burst 

probabilities up to 25 %. Now, we only selected those L5PT simulation configurations with 3 

AP burst probabilities up to 13 %, which is the maximal value observed in anesthetised 

animals. The simulations hence identified 20359 L5PT simulation configurations that predict 

pre- and post-stimulus activity, including fast sensory-evoked bursts with 2 and 3 APs, 

consistent with the in vivo data. These comprised configurations for all three morphologies 

(most superficial BP: 12589, middle BP: 3298, deepest BP: 4472 models), all nine network 

locations, all 68 biophysical parameter sets, all 3 whisker stimuli, all inhibitory timings, 7/8 

post-stimulus EXC/INH ratios, and 13/15 pre-stimulus EXC/INH ratios. 

4.3.3 Multi-scale model manipulations 

Next, we used these 20359 L5PT simulation configurations to test the effect of various 

manipulations. To this end, we replayed the control simulations, but modified the synaptic 

input in various ways. For the cell type removal manipulations, we removed the sensory-

evoked synaptic input from either all intracortical excitatory cell types, VPM, layer 2/3 

pyramidal neurons (L2/3PNs), spiny neurons in layer 4 (L4SPs), layer 5 intratelencephalic 

neurons (L5ITs), L5PTs, L6CCs, or VPM and L6CCs. All subsequent analyses were 

performed for models from the morphology with the most superficial BP. To investigate 

distance-dependent impacts of TC synapse distributions, we selected models with triplet 

probability >= 2 %, and simulated 1000 trials for each of them. We replayed the simulations 

20 times, each time removing 50 TC synapse activations in 200 μm intervals with increasing 

soma distance ranging from 0-200 to 950-1150 μm. To investigate the effect of decreased 

ongoing activity, we selected all simulation trials with a triplet response in the control scenario 

and then removed 50 synapse activations from intracortical excitatory cell types in the 20 ms 

window before TC onset, from different dendritic compartments (basal, trunk, apical tuft). If 

in a trial there were less than 50 synapse activations, all active synapses were removed. To 

investigate the effect of increased ongoing activity, we selected all L5PT simulation 
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configurations with triplet probability ≥1 %, and simulated 200 trials for each where the in vivo 

recorded ongoing firing rates of intracortical excitatory cell types were scaled by a factor from 

0.5 to 2 throughout the simulation. We scaled the firing rates of either superficial (L2-4), deep 

(L5-6), or all (L2-6) types. As a proof of principle for how increased ongoing activity could 

increase the rate of triplets, we show results from models that had a triplet rate of at least 

35 % with a scaling factor of 1.7 applied to all types. Finally, plasticity has been reported for 

VPM synapses to some pyramidal neurons in the deep layers of barrel cortex, with ~1/3 of 

the synapses showing facilitation on the second stimulus in a series (synapse class 1C, 

described by Viaene, Petrof and Sherman (2011)). To investigate whether synaptic facilitation 

in the TC-L5PT pathway could account for the observed transition from singlets to bursts in 

our optogenetics experiment, we repeated all simulations with an increased synaptic weight 

for all TC synapses (2.5 times the control value, as reported in Viaene, Petrof and Sherman 

(2011) for the second stimulus).   

4.3.4 Categorising sensory- vs non sensory-evoked CaAPs 

We characterised the onset time (time of crossing -30 mV), peak voltage and width of CaAPs 

(time between up and down crossing of -30 mV) in trials which are abolished (no longer cross 

the -30 mV threshold) by removing intracortical sensory-evoked input (i.e., sensory-evoked 

CaAPs) compared to those which remain (i.e., non sensory-evoked CaAPs). Comparing the 

properties of these two categories of CaAPs, we defined sensory-evoked CaAPs as having 

peak voltages >-20 mV, widths >8.9 ms and onset times >6 ms after TC onset. In contrast, 

non sensory-evoked CaAPs had peak voltages >-15 mV, widths >4 ms and an onset time 

before TC onset. We filtered out trials with non sensory-evoked CaAPs from our analyses up 

to section 5.3.3.  
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5 Results 

5.1 Sparse connectivity enables efficient information processing in cortex-like neural 
networks 

5.1.1 Training and manipulating cortical column ANNs 

A first attempt at investigating the relevance of cortical structural properties for information 

processing was made by making an ANN model of a cortical column. I took the connectome 

of one column (C2) in the multi-scale model and extracted a binary cell-to-cell connectivity 

matrix. I constructed an ANN where each node represented one neuron from the cortical 

column (23087 nodes/neurons). Nodes representing inhibitory neurons were initialised with 

all negative outgoing weights, and nodes representing excitatory neurons were initialised with 

all positive outgoing weights. Only nodes representing neurons which were synaptically 

connected in the multi-scale model were connected by a trainable weight, resulting in an 

average connection probability of 0.14 between nodes. There is no way to split neurons from 

the cortical column into distinct layers with strictly feedforward connectivity between them 

due to the high number of recurrent and feedback connections. Therefore, the architecture 

of the ANN had a single recurrent hidden layer which housed all nodes from the cortical 

column, an input layer which represented sensory input from VPM (the primary thalamus of 

the whisker system), and an output layer which performed the classification based on outputs 

of nodes representing L5PTs (see Fig. 1 in Methods section). I trained such a “cortical 

column” network on the MNIST handwritten digit recognition task (Lecun et al., 1998), a 

popular benchmark machine learning task. This “cortical column” network successfully 

learned to classify MNIST in five epochs to 97.4 % accuracy. Having established that a 

cortical column network can be trained to perform classification tasks, the challenge was now 

to disentangle which features of cortical connectivity were relevant for the performance of the 

ANN.  

To determine whether the specific connectivity from the barrel cortex was relevant for 

function, I shuffled the connectivity matrix from the barrel cortex while keeping all other 

parameters the same. This results in a connectivity matrix with the same total number of 
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synaptic connections, but otherwise random connectivity. Interestingly, out of 5 ANNs with 

randomly shuffled connectivity matrices, 3 trained successfully, but were slightly slower than 

the true cortical column ANN, and 2 failed to train at all in the allotted training time (Fig. 2A – 

note that these plots show the test loss, not accuracy, where a lower loss means better 

performance). I found that the gradients associated with weights in the hidden layer, and 

therefore also the changes in weights, were vanishingly small in the two networks which did 

not train (Fig. 2B). At the time of training these networks, I did not identify the reason for this 

failure to learn. In retrospect, it is plausible that they fail for the same reason as the Dale’s 

principle networks which I train later: an excitation-inhibition imbalance caused by the 

comparatively small fraction of inhibitory nodes, which in some random initialisations may be 

better mitigated by connectivity than in others. 

 

Figure 2. Manipulations of cortical column ANNs. A: Test loss comparing shuffled 
connectivity matrix to control cortical column ANN. B: Hidden layer weight changes after 5 
epochs of training, on control cortical column and shuffled ANNs. C: Test loss comparing 
control cortical column ANN to an ANN with nodes representing neurons in cortical layers 1-
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4 removed, or the equivalent number of nodes randomly removed. D: Test loss comparing 
decoding from L5PTs to decoding from L5Its or L6CTs. 

I hypothesised that perhaps specific subnetworks were important for information processing 

in the cortical column. In fact, it had been reported previously that densely connected ANNs 

contain sparse subnetworks which, when trained from scratch, achieve comparable 

performance to the full dense network with shorter training time (Frankle and Carbin, 2019). 

Perhaps such particularly important subnetworks also existed in the cortical column. As a 

first, drastic manipulation, I removed all cells from layers 1-4, leaving only layers 5-6 in the 

ANN (8788 nodes/neurons) and their respective input and output layer connectivity. I 

expected that such a network would be inferior at learning the task. Surprisingly, the ANNs 

with only L5-6 neurons performed better than the whole cortical column ANN (Fig. 2C). I 

noted that removing nodes by layer was changing the patterns of connectivity within the ANN, 

but also its size and overall connection probability. As a control, I randomly removed the 

same number of nodes as are in L1-4 from across all cortical layers, and repeated the training 

process – this had the same effect (Fig. 2C), suggesting that the change in performance was 

due to a change in size or perhaps connection probability of the network, and not due to the 

loss of some specific connectivity circuits. 

Instead of changing the connectivity in the hidden layer, I next investigated whether perhaps 

information is distributed in the cortical column ANN such that L5PTs are the optimal output 

cell type. To this end, I modified only the output layer connectivity: instead of passing outputs 

from L5PTs to the linear decoder layer, I took outputs from all layer 5 intratelencephalic 

neurons (L5IT, 1575 nodes) or all layer 6 corticothalamic neurons (L6CT, 3359 nodes), both 

cell types which are close to L5PTs in terms of their cortical depth, but have rather different 

connectivity. Surprisingly, decoding from L5ITs resulted in equivalent performance to 

decoding from L5PTs, while decoding from L6CTs even improved performance (Fig. 2D).  

It became clear that performing specific manipulations on the cortical column ANN’s 

connectivity would not be a practical approach to isolating how structural features affect a 

network’s performance. 
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5.1.2 Sparse connectivity enables time- and data- efficient training of large and 
recurrent networks 

To systematically investigate the effect of network size, sparsity and recurrence on training, 

I generated ANNs with random connectivity and different connectivity parameters which 

made them more or less cortex-like (Fig. 3). I began by training RNNs with different numbers 

of hidden layer nodes and different connection probabilities between these nodes on MNIST 

(Fig. 4A). The lower the connection probability, the fewer nodes were connected by a 

trainable weight, and therefore the sparser the network. The input and output layers were 

fully connected.  To avoid interpreting artefacts from a particular initialisation, I repeated each 

set of network connectivity parameters 10 times, using different random weight initialisations.  

 

Figure 3. Schematic illustration depicting ANNs with conventional or cortex-inspired 
structural properties. Top row, left to right: conventional ANNs are densely connected, 
feedforward and have nodes with mixed excitatory and inhibitory weights. Bottom row, left to 
right: cortex-inspired ANNs are sparsely connected, have recurrent connectivity and have 
nodes with fixed excitatory or inhibitory weights. 

My first observation was that networks with different connectivity parameters differ in their 

performance most notably during the early stages of training (Fig. 4B). To compare the 

performance of networks with limited training time, I therefore evaluated the single epoch 

accuracy, i.e., the performance on the testing dataset after the network has seen each 

example in the training dataset only once. I find that sparse connectivity facilitates time-limited 
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learning in large and recurrently connected networks, but confers no benefit and is rather 

detrimental in small networks (Fig. 4C). After just a single epoch of training, large sparse 

networks (with 20,000 nodes and a connection probability of 10 %) attained a mean test 

accuracy of 90.3±2.0 % while their densely connected counterparts only reached 77.5±7.3 % 

(for all values see Table S1). This disparity in performance is abolished by further training, 

with sparse and dense networks reaching comparable test accuracies after around 80 

training epochs (p > 0.05, KS-test). 

Next, I assessed whether these findings generalise to another, more challenging benchmark 

image recognition dataset, CIFAR10, which uses full-colour RGB images (Krizhevsky, 2012). 

Similarly to results on MNIST, large sparse networks outperform their dense counterparts on 

the CIFAR10 dataset as well (Fig. 4D). After a single training epoch, large sparse networks 

attained a mean test accuracy of 29.7±1.5 %, while large densely connected networks only 

reached 17.4±3.9 % (for all values see Table S2). On the CIFAR10 dataset, while large 

sparse networks initially outperform their dense counterparts and attain a higher maximum 

accuracy, they begin to overfit after around 40 epochs, and their test performance eventually 

drops below that of dense networks. 

To confirm that these findings are not due to some artefact related to performing image 

classification with recurrent networks, I evaluated the networks on a native time series 

dataset, Sleep-EDF sleep-stage classification from EEG recordings (Kemp et al., 2000). 

Once again, I find that large sparse networks outperform their dense counterparts, reaching 

50.7±1.8 % accuracy after one training epoch while dense networks of the same size only 

attained 10.3±0.0 % accuracy (Fig. 4E, for all values see Table S3). I therefore conclude that 

sparse connectivity facilitates training when training time is limited in large and recurrent 

networks, and that this effect is not dataset-specific. 
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Figure 4. Effect of network size and sparsity on time-limited training. A: Examples from 
each of the three classification datasets used in this study. B: Test accuracy over 10 training 
epochs of a densely (connection probability = 1) and sparsely (connection probability = 0.1) 
connected network with 20000 hidden layer nodes on the MNIST dataset. C: Test accuracy 
after one training epoch on the MNIST dataset for networks with different numbers of hidden 
layer nodes and connection probabilities between nodes in the hidden layer (mean over 10 
initialisations). D: Test accuracy after one training epoch on the CIFAR10 dataset for 
networks with different numbers of hidden layer nodes and connection probabilities between 
nodes in the hidden layer (mean over 10 initialisations). E: Test accuracy after one training 
epoch on the Sleep-EDF dataset for networks with different numbers of hidden layer nodes 
and connection probabilities between nodes in the hidden layer (mean over 10 initialisations). 

I next investigated how this finding depends on other network properties. I find that the 

advantage conferred by sparse connectivity is limited to networks with a recurrent 

architecture (Fig. 5A). In feedforward networks, sparse connectivity has very little effect on 

the performance of large networks, and is typically detrimental in small networks (Fig. S2). I 

had so far constructed networks using the ReLU activation function (see Fig. S1B), with which 

nodes require a threshold of net excitation received before any output is produced. This is 

reminiscent of neuronal integration, whereby neurons require net excitatory synaptic input to 

surpass a certain threshold before an action potential response is elicited, and otherwise 

produce no output. I therefore next tested whether our finding still holds when using an 
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activation function whose properties are very different from neuronal integration, e.g., the 

symmetrical hyperbolic tangent function, which can produce positive and negative outputs. I 

find that with this less biologically realistic activation function, sparse connectivity no longer 

improves learning efficiency in large networks (Fig. 5B). The tanh activation function has been 

reported to cause vanishing gradients (Ven and Lederer, 2021). To investigate whether this 

may explain my results, I repeated training and recorded the gradients during the first epoch 

of training in large sparse networks (10000 hidden layer nodes, connection probability 0.1). 

Surprisingly, networks with the tanh activation function have slightly larger gradients than 

those with the ReLU activation function (mean gradient magnitude 2.0x10-5 for tanh network 

and 6.0x10-6 for ReLU network), indicating that the failure of large networks using tanh is not 

simply due to vanishing gradients. 

 

Figure 5. The benefit of sparse connectivity is dependent on a recurrent network 
architecture and a single-cell activation function with a threshold. A: Comparison of test 
accuracy between densely (connection probability = 1) and sparsely (connection probability 
= 0.1) connected networks in small networks (1000 hidden layer nodes, top row) and large 
networks (10000 hidden layer nodes, bottom row). Nodes were either placed in a single 
hidden layer with recurrent connectivity (black lines) or in two hidden layers connected by 
feedforward connections (grey lines). B: Test accuracy after one training epoch on the MNIST 
dataset for networks with different numbers of hidden layer nodes and connection 
probabilities between nodes in the hidden layer when nodes use the hyperbolic tangent 
activation function instead of ReLU. 

Having established that sparse connectivity can improve network performance in large and 

recurrent networks when training time is limited, I next investigated whether the same is true 
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with data limitations. To this end, I trained networks on a reduced training set from the MNIST 

dataset, where only a subset of samples from each class was used during training (50, 100, 

500 or 1000 samples per class – results for 100, 500 and 1000 samples per class, as well as 

for the full dataset are found in Fig. S3). The test dataset remained unaltered. Training time 

was not a constraint in these experiments, so all networks were trained for 50 epochs and I 

recorded the best test accuracy attained during this training period. I find that in large (20000 

hidden nodes) recurrent networks, sparse connectivity becomes more advantageous the 

more restricted training data are: while on the full training dataset of 60000 examples, sparse 

and dense networks attain comparable maximum test accuracies (99.0 ± 0.1 % vs 

98.5 ± 0.1 %), their performance diverges the more restricted the training dataset is, with 

respective test accuracies of 70.1 ± 10.2 % and 40.3 ± 7.2 % when trained on only 500 

examples (50 per class, Fig. 6A). Meanwhile, in small networks (500 hidden nodes), I again 

see that sparse connectivity is detrimental to the training process, with test accuracies only 

reaching 57.0 ±1.3 % in sparse networks but 66.0±4.0 % in dense networks when trained on 

the most restricted training dataset. Repeating this experiment on the CIFAR10 dataset, large 

sparse networks outperform their dense counterparts on all subsets of the training data, with 

test accuracies of 54.9 ± 0.1 % vs 42.1 ± 1.8 % on the full training dataset, and 24.0 ± 0.1 % 

vs 17.6 ± 1.5 % on the most restricted dataset (Fig. 6B). My findings therefore suggest that 

in large and recurrent networks, as found in the cortex, sparse connectivity enables the 

network to learn efficiently in terms of both training time and training data. 

5.1.3 Sparsely connected networks form distributed, robust representations 

To determine how inputs are represented by networks with different connectivity properties, 

I recorded the activation values of nodes in the hidden layer when presented with all 

examples from the test dataset. To assess whether activity is sparse or dense, I first recorded 

whether a node produces a zero or non-zero activation in the final time step, which is passed 

to the output layer (Fig. 7A). I find that in large networks (10000 hidden nodes), already after 

a single training epoch inputs are sparsely represented by the hidden layer activity in both 

sparsely and densely connected networks, with a majority of hidden layer nodes sending 

zero-activations to the output layer in response to any given image (Fig. 7B). Surprisingly, I 
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find that in sparsely connected networks more nodes contribute non-zero outputs to the 

classification than in densely connected networks (11.2 ±1.5 % vs 3.0 ±1.0 % after one 

training epoch). When looking at the activation values, not just whether they are zero or non-

zero, I note that the average magnitude of hidden layer activations is larger in densely 

connected networks and smaller in sparsely connected networks (Fig. 7C). I calculated the 

mutual information between the outputs of 10000 randomly chosen pairs of hidden layer 

nodes for a sparse and a dense network. I find that the mutual information is significantly 

higher between nodes in the sparsely connected network (mean 0.019±0.065) compared to 

densely connected networks (mean 0.005±0.029, KS-test p = 1.03x10-44). A larger proportion 

of nodes contributing to the classification with smaller activations suggests that large sparse 

networks employ a more distributed, consensus-based coding strategy than dense networks.  

 

 

Figure 6. Sparse connectivity enables data-efficient training of large and recurrent 
networks. A: Test accuracy after one training epoch on a reduced version of the MNIST 
dataset (50 examples per class instead of 6000) for networks with different numbers of hidden 
layer nodes and connection probabilities between nodes in the hidden layer. B: Test accuracy 
after one training epoch on a reduced version of the CIFAR10 dataset (50 examples per class 
instead of 5000) for networks with different numbers of hidden layer nodes and connection 
probabilities between nodes in the hidden layer. 
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Such a distributed code may have advantages in terms of robustness to noise, as the output 

of any individual node may be less important for the final classification. To test this, I set the 

output to the classification layer of a proportion of randomly selected nodes to zero for each 

image at test time and assessed the networks’ performance (Fig. 7D). Indeed, I find that 

sparsely connected networks outperform their dense counterparts at all noise levels (Fig. 7E). 

For instance, when 50 % of all nodes’ outputs are set to zero after one epoch of training, the 

test performance of sparse networks is barely affected (from 91.1 % to 90.9 %), while the 

performance of dense networks suffers more (from 88.1 % to 76.3 %). This discrepancy is 

even more noticeable at higher dropout levels, with sparse networks’ performance only 

dropping by 3.1 %, while dense networks lose 33.3 % in accuracy when 90 % of nodes are 

zeroed out. With more training, dense networks gradually become more robust to low levels 

of dropout noise, but even after 10 training epochs they are still outperformed by sparse 

networks at high dropout levels. 

 

Figure 7. Sparsely connected networks form distributed, robust representations. A: I 
recorded how many nodes in the hidden layer send zero and nonzero activations to the output 
layer in response to all images from the MNIST test dataset (N = 10000). B: Change in 
percentage of nodes sending a nonzero activation to the output layer in the first training epoch 
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on MNIST. C: Distribution of activation values sent from hidden layer nodes to the output 
layer by large networks (10000 hidden layer nodes) with dense (connection probability = 1, 
red) or sparse (connection probability = 0.1, blue) connectivity in response to all images from 
the MNIST test dataset after one training epoch. D: I performed a dropout experiment where 
the output from a randomly selected fraction of nodes in the hidden layer was set to zero at 
test time. E: Effect of different dropout fractions on test accuracy in large networks (10000 
hidden layer nodes) with dense (connection probability = 1, red) or sparse (connection 
probability = 0.1, blue) connectivity after 1 training epoch (left) and 10 training epochs (right). 

 

5.1.4 Sparse connectivity facilitates efficient training in networks with fixed excitatory 
and inhibitory nodes 

How do these sparse representations form during training? When recording the changes in 

hidden layer weights during training, I observe a greater tendency for negative weights to 

increase their magnitude, and positive weights to change their sign and become negative, 

than vice-versa (Fig. S4A). This leads to a sparse representation as the weighted sum of 

inputs to any given node is more likely to be negative, resulting in an output of zero after the 

ReLU activation function is applied. This extent of sign reversal of weights is biologically 

unlikely, as each neuron generally transmits the same set of neurotransmitters to all of its 

post-synaptic partners, and cannot change this for individual connections (Dale’s principle). 

Therefore, I constructed and trained networks which obey Dale’s principle, with fixed 

excitatory and inhibitory nodes, reminiscent of biological neuronal cell types (Fig. 8A). I chose 

the proportion of inhibitory nodes which has been reported experimentally for somatosensory 

cortex (Meyer et al., 2011) (11.5 % inhibitory, 88.5 % excitatory). Inhibitory nodes were 

initialised with random, all negative outgoing weights, and excitatory nodes with random, 

positive outgoing weights. During training, if any weight’s sign would be reversed, its value 

was set to zero instead. 

In line with reports from others, I note that the training of large (10000 nodes), densely 

connected networks is indeed severely impeded by the constraints of Dale’s principle (Fig. 

8B). I observe a delay of tens of training epochs at the start of the training process, during 

which the network’s performance remains around chance level. However, the sparser the 
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connectivity, the shorter the delay before a network’s performance shows improvement. The 

length of this delay in training of densely connected networks increases with the size of the 

network, and no delay was observed at any tested network size for sparsely connected 

networks with a connection probability of 0.1 (Fig. 8C).  

I investigated why sparse networks outperform their dense counterparts under these 

conditions. When examining the activations sent from the hidden layer to the output layer, I 

find that at initialisation, activations from the hidden layer nodes of densely connected 

networks are highly correlated with each other, whereas those from sparsely connected 

networks are less correlated (Fig. 8D). This implies that in densely connected networks, all 

nodes initially produce very similar outputs, which would make it more challenging to develop 

meaningful, distinguishable outputs through training. 

The gradient of a weight represents the rate of change of the loss function with respect to 

that weight, providing a measure of how modifying the weight will influence the network’s 

overall error. Therefore, recording the gradients during training allows us to observe the 

shape of the error landscape. I find that during early training epochs (with the exception of 

the first epoch), densely connected networks have very small gradients associated with their 

weights, while the gradients in sparsely connected networks are much larger (Fig. 8E). This 

suggests that densely connected networks, unlike their sparse counterparts, become stuck 

on a plateau in the error landscape, i.e., a region with a high error and small gradients. This 

plateau is difficult to leave via gradient descent, and therefore causes a delay in learning. 

To verify that this is indeed a feature of the weight initialisation, and not some other aspect 

of training, I initialised a network with a sparse weight matrix (i.e., with 90 % of weights 

starting at zero), but then allowed all weights to be modified during training regardless of their 

starting value, as would be the case for a dense network. These “sparse-to-dense” networks 

all start training without a delay like standard sparse networks, but their learning rate soon 

slows and they take longer to reach their peak performance, similar to networks with more 

dense connectivity (Fig. S4B). 
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Figure 8. Sparse connectivity facilitates efficient training in networks with structural 
E/I imbalance seen in cortex. A: I constructed recurrent ANNs where each node was fixed 
to either excitatory (only positive outgoing weights) or inhibitory (only negative outgoing 
weights). I set 11.5 % of nodes to be inhibitory, as reported in measurements from 
somatosensory cortex. B: Test accuracy over time in large networks (10000 hidden layer 
nodes) trained on MNIST with fixed excitation and inhibition and different hidden layer 
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connection probabilities. C: Training delay (number of epochs before the network’s 
performance exceeds chance level) as a function of the number of nodes in the network’s 
hidden layer, for sparse (connection probability = 0.1, blue) and dense (connection probability 
= 1, red) connectivity. Shaded area shows standard deviation. D: Distribution of Pearson R 
correlation values between hidden layer node activations in response to all MNIST test 
dataset images, at initialisation (before any training), for sparse (connection probability = 0.1, 
blue) and dense (connection probability = 1, red) connectivity with 10000 hidden layer nodes. 
E: Distributions of gradients associated with hidden layer weights for sparse (connection 
probability = 0.1, blue) and dense (connection probability = 1, red) networks with 10000 
hidden layer nodes. Numbers correspond to labels in panel B. F: I repeated the same 
experiment with fixed excitatory and inhibitory nodes, but now set 50 % of nodes to be 
inhibitory (balanced E/I). Test accuracy over time is shown for networks with 10000 hidden 
layer nodes. 

The hidden layer activations in densely connected networks with a learning delay were not 

only highly correlated, but also very large, which led me to speculate that these networks may 

be experiencing an excitation-inhibition (E-I) imbalance due to the low proportion of inhibitory 

nodes. To test this, I repeated the training of Dale-compliant networks with a biologically 

unrealistic, balanced proportion of excitatory and inhibitory nodes (50 % excitatory, 50 % 

inhibitory). I found that these balanced networks did not experience a delay in training, 

regardless of their density (Fig. 8F). This confirms that densely connected networks with a 

biologically plausible fraction of inhibitory nodes experience an E-I imbalance which prevents 

them from learning efficiently, and that this imbalance is mitigated by sparse connectivity. 

5.1.5 Beyond random connectivity: degree sequences and network motifs 

The investigations in this section were performed by SH and EQ, and supervised by RF. 

Finally, we investigated the effect of higher-order features of cortical connectivity on the 

training and performance of ANNs. It has been shown that fully connected, recurrent network 

motifs (Fig. 9A) are overrepresented in cortex compared to their expected prevalence in a 

randomly connected network (Udvary et al., 2022, Fig. 9B). To investigate the effect of 

recurrent loops on network function, we constructed and trained ANNs with varying numbers 

of recurrent network motifs. To this end, we began with a randomly connected ANN 

(connection probability = 0.14 to match the barrel cortex column) and replaced the 

connectivity between randomly sampled triplets which were previously unconnected (‘empty’ 
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motif, Fig. 9A) by a fully recurrent motif. To maintain the overall number of edges in the 

network, we compensated for this addition of edges by removing edges from sparse 

feedforward motifs. Our modified connectivity matrices differ substantially from random 

connectivity, and are more similar to cortical connectivity in terms of network motif 

occurrences (Fig. 9C).  A clear effect on performance when modifying the occurrence of 

recurrent loops was only seen in the smallest tested networks, with 100 hidden layer nodes 

(Fig. 9D). Similar to previous results, the largest effect was seen early in training, with all 

networks reaching comparable performance after ten training epochs. When trained on 

MNIST, networks built from only recurrent loops achieved a test accuracy of 65.39 ± 0.87 % 

after the first and 80.61 ± 2.47 % after the second training epoch, while networks with random 

connectivity attained 61.13 ± 1.75 % and 72.92 ± 3.96 % accuracy in the first two epochs. 

This difference was only statistically significant in the first training epoch (t-statistic = 3.07, p 

= 0.037). Networks with increased recurrent loops fell between these results in terms of 

training performance. In larger networks with 1000 and 10000 nodes, there was no significant 

effect of changing the occurrence of recurrent loops. This is generally consistent with our 

earlier finding that dense connectivity is beneficial in very small networks: although the overall 

connection probability of the network remains unchanged, we increased the number of fully 

connected recurrent loops, which are the most densely connected motif. It is therefore 

plausible that, even without changing the overall number of edges, it is still beneficial in small 

networks to create small, local areas of dense connectivity. The inclusion of Dale’s principle, 

by making a fraction of all nodes inhibitory as described previously but otherwise keeping 

everything the same, did not lead to any additional observations of interest, nor did training 

on reduced training datasets.  
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Figure 9. Effect of recurrent triplet network motif occurrences on ANN performance. A: 
Examples of triplet network motif classes relevant to this study. B: Occurrence of triplet motifs 
in a barrel cortex column (C2) from the multi-scale model, compared to in a random network. 
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C: Occurrence of triplet motifs in a network with 100 hidden layer nodes, modified to have a 
600% increase in fully recurrent loops, compared to in a random network. D: Test accuracy 
of ANNs of different sizes, with connectivity matrices containing different amounts of recurrent 
loops, training on MNIST for 10 epochs. Random: randomly generated connectivity matrix. 
+x% RL: occurrence of fully recurrent loops increased by x%, overall connection probability 
maintained. Only RL: connectivity matrix constructed entirely of recurrent connections, overall 
connection probability maintained. 

In cortical networks, the in- and out-degree of a neuron (i.e., the number of incoming and 

outgoing synaptic connections a neuron forms) are correlated (Landau et al., 2016; Udvary 

et al., 2022). We quantified the in- and out-degrees for all neurons in the C2 column of the 

barrel cortex model (Fig. 10A). Compared to a randomly generated connectivity matrix with 

the same connection probability, cortical networks have more broad degree distributions. We 

construct ANNs which preserve these cortical degree sequences in several ways: we sample 

the in- and out-degree for each node separately from the in- and out-degree distributions 

(uncorrelated), we sample in- and out-degree from the same neuron, which is randomly 

chosen for each node, preserving correlations between in- and out-degree (correlated), and  

we construct an ANN adhering to Dale’s principle as before, and sample the in- and out-

degree for each node from a randomly chosen neuron of the same type (excitatory or 

inhibitory). We tested networks with 500, 5000 and 10000 hidden layer nodes. We trained all 

networks for 100 epochs on MNIST and CIFAR10 – the first 10 training epochs on the 

CIFAR10 dataset are visualised here (Fig. 10B). We observed no notable differences 

between any networks of one size, with networks preserving the cortical in- and out-degrees 

not differing significantly from random networks in their performance.  
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Figure 10. Effect of degree distribution preservation on ANN performance. A: In- and 
out-degree distributions of the C2 column of the barrel cortex model. B: Test accuracy of 
ANNs of different sizes on the CIFAR10 dataset, with different methods for transferring 
degree sequences from the cortical network. Random: randomly generated connectivity 
matrix. Uncorrelated: in- and out-degree sampled independently for each node from 
distributions in panel A. Correlated: in- and out-degree for each node taken from a randomly 
sampled neuron, preserving degree correlations. Correlated + Dale’s principle: Dale’s 
principle network constructed as before, then in- and out-degree for each node taken from a 
randomly sampled neuron of the corresponding type (excitatory/inhibitory). 
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5.2 Network-neuron interactions underlying sensory responses of layer 5 pyramidal 
tract neurons in barrel cortex 

5.2.1 Reduction of the multi-scale models into analytically tractable models 

The starting point for this study was the multi-scale model of rat barrel cortex, which we 

extended to account for cell-to-cell and trial-to-trial variability. We performed simulations of 

L5PT responses to passive deflections of either the somatotopically aligned “principal 

whisker” (PW) or one of the eight surround whiskers (SW) (Fig. 11A). Previously, the multi-

scale model only included a single L5PT model, so in order to account for cell-to-cell 

variability we extended it with models from five different L5PT dendrite morphologies (Fig. 

11B), with a total of seven biophysically detailed models with different biophysical 

compositions (Table S4), reflecting different densities and dendritic distributions of active 

conductances. All of these L5PT models reproduced the cell type’s characteristic 

electrophysiological properties (Fig 11H & Table S5). In vivo, the L5PTs from which the 

dendritic morphologies were reconstructed had the typical broad and heterogeneous 

receptive fields (Fig. 11C). We embedded the L5PT models into the barrel cortex model, 

which provides realistic estimates for which neurons in the primary thalamus (VPM) and 

barrel cortex are synaptically connected to the L5PT (Fig. 11D) and the locations of these 

synapses on the dendrite (Fig. 11E). We placed each L5PT model at 81 different locations in 

and around the C2 column (Fig. S5). Activating each neuron with cell type-specific activity 

measured experimentally for this stimulus condition (de Kock et al., 2007, Fig. S6) results in 

different empirically well-constrained spatiotemporal synaptic input patterns (Fig. 11F) for 

each morphology, location of the cell and configuration of active neurons in the network. 

These input patterns down to the level of single synapse activity (Fig. 11G) are consistent 

with those observed experimentally via dendritic spine imaging (Varga et al., 2011). Our 

simulations reproduce the characteristic fast responses (Fig. 11I) and broad and 

heterogeneous receptive fields (Fig. 11J). The distribution of response probabilities closely 

matches for all whisker stimuli (p-values ranging between 0.07 and 0.92) and the means of 

these distributions, i.e., the ‘mean receptive field’, is significantly correlated (R value 0.76, p 

= 0.017).  
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Figure 11. Biophysically detailed multi-scale model of whisker deflection evoked 
responses in cortical pyramidal tract neurons. A: Sensory-evoked signal flow: stimuli of 
single whiskers (which are arranged in ‘arcs’ and ‘rows’ on the animal’s snout) are transmitted 
to the brainstem (BS), from there to the VPM thalamus, and from there to the primary sensory 
cortex of the vibrissal system (barrel cortex, vS1). This pathway is somatotopically organized, 
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with barreloids in VPM and barrels in cortex corresponding to the respective whiskers. B: In 
vivo labeled L5PT dendrite morphologies used in this study. C: Corresponding receptive 
fields to passive single whisker touch, measured in vivo (upper panels). Average receptive 
field across 9 in vivo recorded L5PTs (lower panel). Error bars are std. D: Network model of 
rat barrel cortex and VPM provides anatomically realistic estimates of which neurons are 
connected to a L5PT embedded into the network. In this study, the simulated neurons are 
located in the C2 column of vS1, thus we refer to the somatotopically aligned C2 whisker as 
the ‘principal’ whisker, and the adjacent whiskers as surround whiskers. Red and blue 
markers denote soma locations of presynaptic excitatory and inhibitory somata, respectively. 
E: Synapse distribution originating from the neuron shown in Panel B. F: Spatiotemporal input 
pattern to L5PT: combining the anatomical constraints with empirical measurements of the 
activity of different presynaptic populations (Fig. S6) provides spatiotemporal input patterns 
that the L5PT can receive after sensory stimulation. G: Trial-to-trial activity of example 
synapses matching the soma distance from panel F for a principal whisker (C2) and surround 
whisker (D2) stimulus. H: Biophysically detailed multi-compartmental L5PT models 
reproduce the cell type’s characteristic electrophysiology (left panel), i.e. back propagation of 
APs (upper left), dendritic Ca-APs and somatic burst firing (upper right), as well as regular 
firing properties (lower row). Right panel: biophysically detailed neuron morphologies at the 
moment of a dendritic Ca AP. I: Simulated response to principal whisker touch. J: Simulated 
receptive fields across morphologically and biophysically diverse L5PT multi-compartmental 
models across 81 network embeddings capture broad and heterogeneous receptive fields. 

The challenge now, despite these highly realistic and detailed simulations, remains in 

understanding the effective computation performed by the system. The first difficulty in 

understanding the computation performed by L5PTs in the multi-scale model arises from the 

biophysically detailed models themselves: although mechanistically accurate and able to 

realistically reproduce in vivo responses, these models are based on a series of partial 

differential equations, which are not analytically tractable. This makes it almost impossible to 

understand the computation being performed by a given L5PT to transform synaptic input 

into AP output. The second challenge arises from the many sources of variability in the multi-

scale model: from trial-to-trial variability in synaptic activations to cell-to-cell variability in 

morphological and biophysical properties, this variability makes it challenging to extract 

general computational principles from the model. We here begin by addressing the first 

challenge, and reducing the biophysically detailed models into analytically tractable models 

which explain the input-output computation at the single cell level.  
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The model reduction approach was developed using one of the biophysically detailed models 

(morphology from example 1 in Fig. 11B). In a dataset comprising 1000 simulation trials from 

each of the 81 network embeddings and 9 whisker stimuli, we searched for features of the 

synaptic input which are predictive for the generation of an AP in a given millisecond 

(hereafter referred to as the prediction time point, Fig. 12A). We found that a weighted count 

of active inhibitory vs excitatory synapses, where each synapse activation is weighted by its 

distance from the soma and its time relative to the prediction time point, can predict AP output 

well, with an AUROC score of 0.949 (Fig. 12B). According to these spatial and temporal 

weights, which we hereafter refer to as the spatiotemporal filter, the contribution of both 

excitatory and inhibitory synapses to AP output decays with increasing soma distance, 

reaching approximately zero at around 500 µm. In the temporal dimension, the contribution 

of excitatory and inhibitory synapses has a time course resembling excitatory and inhibitory 

postsynaptic potentials (EPSPs and IPSPs). Excitatory and inhibitory synapses contribute 

the most to AP output if they were active around 4ms and 9ms before the prediction time 

point, respectively. In the following, we refer to this weighted count of active synapses as the 

weighted net input (WNI). The probability of observing an AP in the biophysical model 

increases with the WNI (Fig. 12C).  

We revisited trials which are misclassified by the WNI, and found that misclassifications are 

most frequent when there was an AP a few milliseconds before the prediction time point. This 

is because the biophysically detailed model is less excitable for a short period following an 

AP, reflecting the time constants of involved ion channels. Therefore, even if the WNI is high 

the probability of another AP is low. To account for this spike history-dependent property of 

the biophysically detailed model, we determined the boundary separating trials with an AP 

from those without an AP and with a recent AP based on WNI and time since the previous 

AP (Fig. 12D). Subtracting the value of this boundary as a post AP penalty from the WNI 

results in an improved AP prediction accuracy (AUROC 0.990). Thus, three features are 

sufficient to predict AP output in the biophysically detailed model: the spatial and temporal 

distribution of synaptic input, and the time since the previous AP.  
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Figure 12. Input-output computation of L5PTs upon single whisker deflections. A: 
Exemplary responses of the multi-compartmental model with respect to the prediction time 
point (the time point for which the occurrence of an AP is to be predicted) for the three relevant 
response categories ‘AP’, ‘no AP’, and ‘recent AP’ (AP was elicited shortly before the 
prediction time point). B: Spatiotemporal input filter that best separates AP and no AP trials 
assigns strong weight to proximal synapses (top) active in a short time window before the 
prediction time point (bottom). C: Nonlinear relationship between WNI and AP probability. 
WNI represents the ‘drive’ a neuron receives; the higher the WNI the higher the probability 
an AP will be generated. D: Weighted net input–the input filtered by the spatiotemporal filter–
separates AP and no AP trials, but not ‘recent AP’ trials, which can be distinguished based 
on a second measure, ‘time to previous AP’.E: Reduced model structure. APs are generated 
stochastically based on the AP probability (output of the nonlinearity). If an AP is generated, 
subsequent APs become less likely due to the post AP penalty, which is subtracted from the 
WNI. This reduced model directly relates AP output to synaptic input and previously 
generated APs in the simulated in vivo condition. F: The reduced model’s responses match 
the biophysically detailed model across many trials (close PSTH match) and on the and on 
the single trial level (high AUROC score across all time points). Without the post AP penalty, 
the AUROC score drops during the sensory-evoked response. 

Based on these three features, we can therefore describe the input-output computation of the 

biophysically detailed model under this stimulus condition in an analytically tractable model. 

In order to predict AP output from synaptic input, we assemble the spatiotemporal filters, the 

nonlinear relationship between WNI and AP probability, and the post AP penalty into a 
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generalised linear model (GLM, Fig. 12E). We applied the GLM to predict AP output at time 

points ranging from 25 ms before to 25 ms after the onset of the whisker stimulus. Even 

though the GLM was inferred from the peak of AP responses (see Methods), it maintained a 

high AUROC score before and after this time point (Fig 12F). On a single-trial level, the model 

was able to predict whether or not an AP was elicited in the 25 ms after the stimulus with an 

accuracy of 96.7 % (Table S6), and the timing of APs within this window was accurate to 

within 1.1 ± 1.6 ms (Fig. S7). Thus, the GLM accurately predicts APs throughout the entire 

time interval, and the post-stimulus time histogram (PSTH) predicted by the GLM hence 

closely matches with the PSTH of the multi-compartmental model (Fig 12F). 

5.2.2 Input-output computation is robust to morphological and biophysical diversity 

Is this input-output computation a general property of L5PTs, despite cell-to-cell variability in 

morphology or biophysics? To address this question, we repeated model reduction on each 

of the seven biophysically detailed models, which represent five different dendritic 

morphologies. We find that the input-output computation is qualitatively preserved across 

L5PTs with different morphologies and biophysical properties (Fig. 13A): all L5PTs count 

active excitatory and inhibitory synapses, assigning more importance to proximal synapses 

active shortly before the prediction time point, and with a similar penalty to AP probability 

following an earlier AP. Each reduced model achieved a high accuracy throughout the 

sensory-evoked response (Fig. 13B), with highest accuracies generally during the peak 

response (AUROC median/min/max: 0.97/0.93/0.998). At the single trial level, the reduced 

models were able to predict whether or not an AP was elicited in the 25ms after the stimulus 

with a mean accuracy of 90.9 ± 3.9 % (min 85.0 %, max 96.7 %, confusion matrices for all 

models are provided in Table S6) and the timing of APs was predicted accurately to within a 

mean of 2.0 ms (min 1.1 ms, max 3.1 ms, Fig. S7). 
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Figure 13. Input-output computation is robust to morphological and biophysical 
diversity. A: Reduced models inferred on the different multi-compartmental models are 
qualitatively similar, with similar temporal and spatial filters, nonlinearity and post AP penalty. 
B: All models have high AUROC scores, specifically during the sensory-evoked (peak) 
response. C: We quantify latency, spontaneous AP rate (before the stimulus) and response 
probability for each pair of multi-compartmental and reduced model. D: Comparing response 
properties between multi-compartmental and corresponding reduced model shows close 
match. 

While the input-output computation is qualitatively preserved across L5PT models, the 

reduced models are not identical. For example, the decay of the spatial filter with soma 

distance differs slightly between reduced models, which we find largely reflects diameter 

differences of the apical trunk dendrite (Fig. S8). To what extent do these variations in the 

reduced model capture real, small differences in the input-output computation across L5PTs? 

We compared the predicted PSTHs between each biophysically detailed model and its 

corresponding reduced model and found that the slight differences between their shapes are 

matched well by the reduced model (Fig. S7). To quantify this similarity, we compared the 

time to maximum response (latency), spontaneous AP rate before the stimulus, and response 
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probability between biophysically detailed models and corresponding reduced models (Fig. 

13C). Each reduced model generated responses which matched those of the corresponding 

biophysically detailed models in all of these properties, while preserving the considerable 

variation across them (Fig. 13D). Thus, the small variations in the reduced models account 

for the differences in the input-output computation between the biophysically detailed models. 

5.2.3 Linear reduced models capture effects of nonlinear mechanisms 

It is somewhat surprising that the reduced models are able to accurately predict AP output in 

the biophysically detailed models with such a linear model structure. This suggests that either 

the synaptic input patterns arising from passive whisker deflections in the anaesthetised  

animal do not strongly activate nonlinear dendritic mechanisms in L5PTs, or that these 

nonlinear mechanisms are active but do not greatly influence the prediction of AP output. To 

determine whether nonlinear dendritic mechanisms are active during our stimulus condition, 

we recorded currents through voltage-gated sodium and calcium channels, and through N-

methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid  

(AMPA) receptors during a simulation of a PW stimulus with a biophysically detailed model 

(example morphology 2). We recorded these currents for 16 locations across the basal and 

apical dendrites, including the primary bifurcation point (BP) of the apical trunk (Fig. 14A).  

We find that nonlinear dendritic mechanisms are frequently active in our simulated 

experimental condition. For example, we find calcium-mediated depolarisations which 

exceed -30 mV at the primary BP in 18 % of simulation trials (Fig. 14B middle). However, this 

calcium influx generally does not lead to bursts of APs at the soma (of 179 trials with calcium 

depolarisation: 13 % no AP, 83 % 1 AP, 4 % burst with 2 APs), and the reduced model was 

able to predict a response equally well for trials with and without a calcium depolarisation 

(86 % vs 90 %, p = 0.07). In addition to calcium transients, we frequently observe peaks of 

sodium influx in the distal dendrites (Fig. 14E). NMDA currents dominate the synaptic 

conductance in the trunk and tuft dendrites (Fig. 14C, D & F). However, despite generally 

being considered a nonlinear conductance, they do not seem to impact the prediction 

accuracy of the reduced model: we compared trials with low NMDA conductance (33rd 
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percentile and below) and high NMDA conductance (66th percentile and above) in the tuft 

dendrites and found no significant difference for the accuracy of the reduced models (88 % 

vs 91 %, p = 0.17). Thus, active nonlinear synaptic and dendritic mechanisms are active 

during simulations of passive single whisker deflection, but either their impact on somatic AP 

output is low in this condition, or the reduced models are able to capture their impact on the 

effective input-output computation. 

 

 

Figure 14. Active nonlinear mechanisms in simulations of passive whisker deflection 
with biophysically detailed multi-compartmental models. A: example morphology 2 (from 
Fig. 11), for which we simulated 1000 PW stimuli while recording synaptic AMPA and NMDA 
currents, ion currents and the transmembrane potential from the marked branches. B: 
example trial with a 2 AP burst response at the soma, a calcium-mediated depolarization at 
the primary bifurcation point (BP), and AMPA and NMDA currents of an example synapse at 
the example branch. We quantified the charge exchanged through the AMPA and NMDA 
receptors of each synapse during the 25ms window following the whisker stimulus (‘response 
window’). C: synaptic currents of all synapses recorded on distal branches. Yellow lines are 
synapses on the example branch. D: as C, but for basal dendrites. E: Sodium currents 
recorded at distal dendritic branches. The yellow line is the example branch. F: Ratio of 
NMDA/AMPA area under the curve (AUC) across 1000 simulation trials. 
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To investigate this, we re-simulated trials for each of the 9 whisker stimuli for a biophysically 

detailed model (example morphology 2) but either reduced the NMDA conductance by 50 % 

or completely removed NMDA conductance in all synapses. Reducing NMDA conductance 

reduced sensory-evoked responses to all whiskers (Fig. 15A & B), indicating that NMDA 

contributes strongly to AP output. We find that reduced models inferred from these modified 

biophysically detailed models show changes to their spatial and temporal filters (Fig. 15C). 

According to these reduced models, NMDA increases the influence of distal synapses (Fig. 

15D) and widens the integration time window for synapses (Fig. 15E). Interestingly, reduced 

models for biophysically detailed models with reduced or absent NMDA have a better 

prediction accuracy than reduced models for the control biophysical model (Fig. 15F). These 

findings imply that in the case of NMDA, the reduced models are able to capture the influence 

of this nonlinear conductance on the effective input-output computation to an extent, where 

it is reflected in the shape of the spatiotemporal filter, but there is some small residual effect 

which the linear reduced models cannot account for. 
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Figure 15. Influence of NMDA on sensory-evoked responses and input-output 
computation. A: Simulated receptive fields to passive single whisker touch for one L5PT 
multi-compartmental model across 81 network embeddings, with NMDA conductance set to 
100 %, 50 % and 0 % of control value. B: Response probability to a principal whisker stimulus 
by NMDA conductance. C: spatial and temporal filters (red: excitatory synapses, blue: 
inhibitory synapses) inferred from multi-compartmental models with different NMDA 
conductances. D-E: width of spatial and temporal filters by NMDA conductance. F: AUROC 
score of GLM by NMDA conductance.  

5.2.4 Contribution of different input pathways to sensory responses 

Which presynaptic neuron populations contribute to sensory-evoked responses? The 

reduced models have so far only distinguished between excitatory and inhibitory inputs, 

however the multi-scale model contains information about the location and cell type of the 
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neuron from which each synapse originates. To separate the contribution of each presynaptic 

population to L5PT output, we calculated each cell type’s contribution to the WNI individually 

by applying the spatiotemporal filters to synaptic input from one cell type at a time (Fig. 16A). 

We first analysed L5PTs at the centre of the column somatotopically aligned with the PW 

defined in this study (C2). By looking at the contributions of different presynaptic populations 

to WNI, it becomes clear that they contribute in two distinct ways: by their spontaneous 

activity preceding the stimulus (‘baseline WNI’), and/or by an increase in activity following the 

stimulus (‘sensory-evoked WNI’). During periods of spontaneous activity, other L5PTs are 

the largest contributor to the baseline WNI – this is consistent with their high spontaneous 

firing rates and high pairwise connectivity (de Kock et al., 2007; Hay and Segev, 2015). 

Subtracting the baseline WNI to isolate the sensory-evoked contributions of different 

populations, we find that the primary contributor to sensory responses in the case of a PW 

stimulus is direct thalamic input from VPM (Fig. 16B). This is different for a SW stimulus (Fig. 

16C), where the contribution of VPM is minimal and the primary source of excitatory drive is 

L6CCs. The reduced models thereby predict that the contributing thalamocortical and 

intracortical pathways depend on the stimulated whisker.  

Given that the identity of the whisker stimulus relative to the location of the L5PT 

(somatotopically aligned or not) affects the contributing input pathways, does the location of 

the L5PT within a single column also have an effect? We computed the relative WNI 

contribution of VPM and L6CC, the two primary contributors to sensory-evoked WNI for a PW 

stimulus, with the L5PT at 81 different embedding locations in and around the C2 column 

(Fig. 16D). We find that VPM input dominates only in the centre of the barrel column, and 

that towards the edge of the barrel and in the septa, L6CC is the most important input pathway 

for sensory-evoked responses. Thus, for most L5PTs in the column, L6CC is the major 

contributor to sensory-evoked excitation. This is consistent with an earlier finding, which 

showed that experimentally inactivating L6CCs results in narrow receptive fields, largely 

abolishing responses to SWs and greatly reducing the response to the PW (Egger et al., 

2020). The effect of this manipulation is reproduced by the reduced models (Fig. 16E), 

indicating that the reduced models capture the origin of broad receptive fields in L5PTs. 
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Figure 16. Reduced models predict contribution of input pathways to sensory 
responses. A: Absolute contribution of presynaptic populations to WNI following a PW 
stimulus to a model located at the centre of the C2 column: pyramidal neurons in L2/3 (L2PY, 
L3PY), spiny neurons in L4 (L4SP), intratelencephalic neurons in L5 (L5IT), L5PT, 
corticocortical neurons at the L5/6 border (L6CC), and relay cells in the ventral posterior 
medial nucleus of thalamus (VPM). Despite the lack of sensory-evoked responses by L4PY, 
L6CT and L6INV (Egger et al., 2020), their contributions were considered in the overall WNI 
calculations (Figs 11 and 12). B: Sensory-evoked contribution (i.e. absolute contribution 
minus baseline for each input pathway) of presynaptic populations to WNI following a PW 
stimulus. C: Sensory-evoked contribution of presynaptic populations to WNI following a SW 
stimulus. D: Contribution of the main input pathways–VPM and L6CC–depending on the 
soma location of the L5PT model in a 9x9 grid across the C2 column for a PW stimulus. The 
black circle denotes the C2 column border. E: Comparison between model responses to 9 
different whisker stimuli (PW and 8 SW) under control conditions and when removing 
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sensory-evoked input from L6CC. Removing evoked L6CC activity attenuates responses, in 
particular to surround whiskers. 

5.2.5 Network vs neuron contributions to receptive field variability 

How can the large variability in L5PT responses and receptive field shapes arise from such 

small variability in input-output computation? To address this question, we repeated 

simulations of all whisker stimuli and network embedding locations with the reduced models, 

which we had previously simulated with the biophysically detailed models. The reduced 

models closely match the response probability to a given whisker stimulus of their 

corresponding biophysically detailed model (Fig. 17A, Pearson correlation coefficient = 0.97). 

Consequently, the receptive fields of reduced and biophysically detailed models are also 

highly similar (Fig. 17B & C, Pearson R between receptive fields 0.96 ± 0.01). The sensory 

responses of the reduced models also closely match in vivo measurements in terms of 

response probability to different whiskers (Fig. 17D) and large variability in the shape of the 

receptive field between L5PTs (Fig. 17E).  

As the reduced models accurately capture the trial-to-trial and cell-to-cell variability in 

sensory-evoked responses, we now use them to disentangle the contributions of neuronal 

and network properties on receptive field shape. To this end, we computed the similarity 

between receptive field shapes from reduced models representing different biophysical 

properties, dendritic morphologies, and different embedding locations in the network model 

(Fig. 17F). We find that a change in network embedding, and therefore in synaptic 

connectivity, has the largest effect on receptive field shape (i.e., results in the least correlated 

receptive fields). The dendritic morphology has a lesser impact on receptive field shape, and 

the biophysical properties have little effect. The reduced models thereby suggest that 

variations in network input are the primary cause of receptive field variability between L5PTs. 

Overall, the reduced models predict that under the experimental condition of passive single 

whisker deflection in anaesthetised rats, the input-output computation is largely preserved 

across L5PTs despite their dendritic and biophysical variability, and that the cell-to-cell and 

trial-to-trial variability in sensory-evoked responses primarily arises from variability in network 

input. 
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Figure 17. Reduced models predict origins of receptive field variability. A: Comparison 
of responses of 7 different biophysically detailed models and their corresponding reduced 
models to 9 different whisker stimuli (PW and 8 SW) in 81 different network embedding 
locations. Response probability is the probability that one or more APs are generated 0- 25ms 
after the sensory stimulus. B: Comparison of exemplary receptive field shapes shows close 
match between biophysically detailed and reduced model. C: Quantification of receptive field 
similarity for all cell positions and biophysically detailed models. D: Comparison between in 
vivo and reduced model responses to 9 different whisker stimuli (PW and 8 SW). Green dots 
represent the mean response probability. E: Exemplary receptive fields of reduced models. 
F: Influence of biophysics, morphology and cell position on receptive field shape, quantified 
by computing the correlation coefficient between receptive fields if one of these properties is 
changed. 
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5.3 The origin of bursts in sensory-evoked cortical output 

5.3.1 Characterisation of calcium potentials in the distal dendrites 

We began with a database of 660960 L5PT simulation configurations, comprising 68 different 

biophysically detailed models from 3 dendritic morphologies, which were selected to 

represent the full biophysical parameter space, and which were embedded in 9720 different 

network configurations of the barrel cortex model. We simulated either a single PW stimulus 

or a multi-whisker stimulus including the PW and 2 SWs. Of these, we selected the 20359 

L5PT simulation configurations whose ongoing and sensory-evoked firing rates matched in 

vivo observations, and which had sensory-evoked somatic burst firing. 

In order to quantify the occurrence of CaAPs and measure the effect of manipulations, we 

need a definition of “CaAP”. In earlier analyses, a CaAP was defined as depolarisation at a 

recording site just below the primary bifurcation point in the distal dendrite which crosses the 

threshold of -30 mV. However, this is a rather coarse definition which fails to capture the clear 

differences in dendritic responses depending on somatic responses (Fig. 18A). Notably, trials 

in which the somatic response is a triplet have a high prevalence of broad, sustained distal 

dendritic depolarisation. Other somatic responses tend to be associated with shorter dendritic 

depolarisation, which although they cross the -30 mV threshold do not seem to represent a 

sustained calcium influx. Therefore, we do not consider these as CaAPs, and set a new 

definition of CaAP as having a minimum width above the -30 mV threshold, and a minimum 

peak depolarisation, with both values depending on its onset time (values are based on a 

systematic characterisation of CaAP properties, which is discussed in detail in Methods and 

section 5.3.3).  

Using this refined definition of a CaAP, we compare the co-occurrence of CaAPs and different 

somatic responses. We find that a triplet is almost always associated with a CaAP (Fig. 18B), 

but that vice-versa, observing a CaAP does not allow prediction of the somatic response (Fig. 

18C), as singlet and doublet trials, which represent the majority of simulation trials, may also 

have CaAPs.  
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Figure 18. Relationship between dendritic and somatic response. A: 1000 randomly 
chosen dendritic voltage traces for trials with different somatic responses. Horizontal dashed 
blue line indicates the previous threshold for a CaAP at -30mV. B: Probability of observing a 
CaAP depending on somatic response. C: Probability of observing different somatic 
responses given that a CaAP occurred. 

5.3.2 The network origin of CaAPs and triplets 

Which inputs on the dendrite are necessary for CaAPs, and therefore triplets? Is the wiring 

specificity of direct TC inputs to the primary BP functionally relevant for these responses? 

We selectively removed direct sensory-evoked TC input from different sections along the 

dendritic tree by soma distance to investigate the location-dependent effect of TC input on 

CaAPs and triplets. We see that for the somatic response, removing TC input to the primary 

BP or to the basal dendrites greatly reduces the occurrence of triplets (Fig. 19A). Doublets 

are largely independent of TC input to the distal dendrite, and rather rely on input to the basal 

dendrites. CaAPs, on the other hand, are primarily driven by input to the primary BP (Fig. 

19B).  
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So is direct TC input sufficient to drive CaAPs and triplets? If we remove all other sensory-

evoked input from intracortical cell types, triplets are completely abolished (Fig. 19E). 

Likewise, CaAPs are absent, with only a small dendritic depolarisation remaining (Fig. 

19C&D). Direct TC input is therefore clearly not sufficient to account for bursts in sensory-

evoked output. Given its apparently small contribution to dendritic depolarisation, is direct TC 

input really necessary for triplets? We next removed all direct TC input, leaving only sensory-

evoked input from intracortical (IC) cell types. This manipulation also all but abolished triplets 

(Fig. 19G), as well as a majority of CaAPs (Fig. 19F). Breaking down the contribution of 

intracortical excitatory input by cell type, we see that removing sensory-evoked input from 

any source reduces or abolishes bursts (Fig. S9). We therefore conclude that both direct 

sensory input from VPM, and indirect sensory-evoked input from intracortical cell types are 

necessary for sensory-evoked bursts.  
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Figure 19. Network origin of triplets and CaAPs. A: Effect of removing direct TC input at 
different dendritic locations on doublets and triplets. B: Effect of removing direct TC input at 
different dendritic locations on CaAPs. C: Example dendritic voltage traces from triplet trials. 
D: Example voltage traces from the same trials, but with sensory-evoked intracortical input 
removed. E: Effect of removing sensory-evoked intracortical input on triplet rate across L5PT 
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simulation configurations. F: Example dendritic voltage traces from the same trials as panels 
C&D, but with sensory-evoked TC input removed. G: Effect of removing sensory-evoked TC 
input on triplet rate across L5PT simulation configurations. 

In addition to sensory-evoked excitatory input, it had been suggested by results from an 

optogenetics experiment (Fig. 20A, for description of experiment see Methods) that pre-

stimulus input may influence the prevalence of triplets. Activating TC synapses 

optogenetically at 100ms intervals resulted in persistent network activity from intracortical cell 

types, reflected in a persistently depolarised LFP (Fig. 20C), which was absent in 

experiments with longer inter-stimulus intervals (Fig. 20B). In this high frequency stimulus 

experimental condition, we observed an increase in triplets during the course of the 

experiment, which was not observed in lower frequency stimulation protocols. The more 

depolarised the LFP, the higher the probability of a triplet response (Fig. 20D&E).  

To test the effect of pre-stimulus inputs in the multi-scale model, we replayed existing 

simulation trials but decreased pre-TC input from intracortical cell types to the basal, trunk 

and tuft compartments. This was done by removing 50 synapse activations at random from 

the corresponding compartment in the 20 ms before TC onset (example voltage traces in Fig. 

21A). This manipulation reduced the occurrence of triplets (Fig. 21B), but interestingly had 

only a minor effect on CaAPs (Fig. 21C). It should, then, be possible to do the inverse: 

increase pre-stimulus inputs to increase the rate of triplets. As a proof of concept, we 

demonstrate in 3 L5PT simulation configurations that increasing ongoing AP rates of 

intracortical cell types can create a triplet in a trial which previously did not have one (Fig. 

21D). For these 3 simulation configurations, the probability of a triplet response increases 

with increased ongoing activity, consistent with results from the optogenetics experiment (Fig. 

21E&F). However, this manipulation did not have the same effect in all simulation 

configurations, the reason for which would require further investigation and likely a 

comprehensive characterisation of the activity of intracortical cells by cell type during this 

experiment, which was beyond the scope of the present analysis.  
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Figure 20. Optogenetics experiment suggests role of pre-stimulus inputs for triplets. 
A:  Above: schematic of the optogenetic experiments in anaesthetised rats. Below: Example 
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trials from the L5PT whose responses are seen in panels B&C, showing three TC-evoked 
response types. B: Somatic APs recorded during 4 example stimuli with a 500 ms inter-
stimulus interval. We estimated ongoing intracortical activity by the LFP amplitude in barrel 
cortex at the onset of each light stimulus, compared to the baseline before the first stimulus. 
C: As B, for stimulus protocol with 100 ms inter-stimulus intervals, showing increased 
intracortical ongoing activity. D: Distribution of somatic response types by pre-stimulus 
activity. E: Probability of singlets and triplets by pre-stimulus activity. Figure adapted from 
(Bast et al., 2021). 

 

Figure 21. Simulations to investigate the effect of pre-stimulus inputs on triplet rate. 
A: Simulation examples show how decreased pre-TC input to basal or apical dendrites affects 
a triplet trial. B: Effect of decreased pre-TC input on somatic responses. C: Effect of 
decreased pre-TC input on CaAPs. D: Simulation examples show how increased pre-TC 
input, achieved by scaling the ongoing AP rates of intracortical excitatory cell types, affects 
a trial which previously did not have a triplet. E: Analogous to 20D from optogenetics 
experiment, distribution of somatic response types by pre-stimulus activity in 3 L5PT 
simulation configurations. F: Analogous to 20E, probability of singlets, doublets and triplets 
by pre-stimulus activity in 3 L5PT simulation configurations. Panels A-C adapted from (Bast 
et al., 2021). 

An alternative explanation was proposed for the increased triplet rate in the optogenetics 

experiments: facilitation of TC synapses as a result of high frequency stimulation. This has 

been reported experimentally for a subtype of TC synapses, which were observed to be 

facilitating for the second stimulus in a series (Viaene et al., 2011). We performed simulations 

of a single stimulus with increased strength of TC synapses mirroring the EPSP amplitude 
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ratio observed experimentally at an inter-stimulus interval of 100 ms (2.5x increase in uPSP 

amplitude, Fig. 22A). These simulations showed that it is possible to create triplets by 

increasing TC synaptic strength (Fig. 22B). However, according to the aforementioned study, 

subsequent stimuli in a series had a depressing effect. We therefore extrapolated the effect 

that synaptic strength changes would be expected to have on triplets over a series of 40 

stimuli (Fig. 22C). We show that if our findings were due to synaptic facilitation, the proportion 

of triplet responses would increase sharply at the start of the experiment and then decay. 

This is not consistent with observations during the optogenetics experiments, where the triplet 

rate increases during the course of the experiment, mirroring the LFP depolarisation, and 

triplets were never seen at the second stimulus. This indicates that TC facilitation does not 

play a significant role in increased bursts responses in this experiment.  

 

Figure 22. Investigation of TC synapse facilitation as an explanation for optogenetics 
results. A: Upper: PSP amplitude ratio at different inter-stimulus intervals from (Viaene et al., 
2011), lower: we selected a facilitation ratio of 2.5 for our simulations, which corresponds to 
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the ratio observed at 100ms ISI, as in our optogenetics experiment. B: Simulation example 
shows that TC facilitation can create a triplet in a trial which did not previously have one. C: 
Expected effect of TC facilitation (green), extrapolated to 40 stimuli, compared to in vivo 
results from optogenetics experiment (purple). Solid green line: assume that the synaptic 
strength decays back to baseline, dotted green line: do not assume that the synaptic strength 
decays back to baseline. Figure adapted from (Bast et al., 2021). 

5.3.3 Early triplets and CaAPs have different origins 

We noticed that in a small subset of trials, the CaAP was not abolished by removing TC or 

intracortical sensory-evoked input (Fig. 23A). This implies that these CaAPs are entirely 

initiated by pre-stimulus input, a hypothesis which is supported by the fact that they begin to 

depolarise, on average, 15.4 ms before the onset of sensory-evoked activity. In order to 

quantify the occurrence of these non sensory-evoked CaAPs, we separated trials where the 

CaAP remains when intracortical sensory-evoked input is removed from those in which it is 

abolished. We then compared the distribution of onset time, peak voltage and width of the 

CaAPs between these two categories (Fig. 23B). We note that non sensory-evoked CaAPs 

are earlier, with a higher peak and shorter width, than sensory-evoked CaAPs, and set 

definitions for classifying CaAPs into these two categories accordingly (values in Methods). 

We find non sensory-evoked CaAPs in approximately 3.78 % of all trials, compared to 7.85 % 

of trials with sensory-evoked CaAPs. 

How does the network origin of non sensory-evoked triplets differ from sensory-evoked ones? 

We find that for non sensory-evoked triplets, direct TC input is only relevant to the basal 

dendrites, unlike sensory-evoked triplets which are also affected by input to the distal dendrite 

(Fig. 23C). To test our hypothesis that non sensory-evoked CaAPs are driven by ongoing 

intracortical activity before the stimulus, we repeated the manipulation of decreasing pre-

stimulus input to various dendritic compartments (Fig. 23D&E). Decreasing pre-TC input to 

any dendritic compartment almost completely abolished triplets in these trials. Abolished 

triplets overwhelmingly become doublets, with the first spike of the triplet absent when pre-

TC input is reduced. The occurrence of these CaAPs is reduced by manipulating input to the 

basal and trunk dendrites, and completely abolished by reduced pre-stimulus input to the tuft. 



75 
 

We therefore conclude that these non sensory-evoked CaAPs are indeed driven by pre-

stimulus input, but generating a triplet at the soma additionally requires sensory-evoked input.   

 

Figure 23. Characterisation of non sensory-evoked CaAPs and triplets. A: Dendritic 
voltage traces from 1000 randomly chosen triplet trials in control, no sensory-evoked 
thalamocortical input (no TC) and no sensory-evoked intracortical input (no IC) 
manipulations. Blue lines indicate trials which remain depolarised above -30mV in the no IC 
manipulation (non sensory-evoked CaAPs). B: Distribution of CaAP properties between 
sensory- and non sensory-evoked CaAPs. C: Effect of removing direct TC input at different 
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dendritic locations on triplets with sensory- and non sensory-evoked CaAPs. D: Simulation 
examples show how decreased pre-TC input to basal or apical dendrites affects a triplet trial 
with a non sensory-evoked CaAP. E: Effect of decreased pre-TC input on somatic responses 
and CaAPs in trials which had a non sensory-evoked CaAP in the control condition. Panels 
D&E adapted from (Bast et al., 2021). 

 

5.3.4 Triplets distinguish awake from anaesthetised animals 

The overall prevalence of triplet responses is low in anaesthetised animals (3% triplets in 

response to whisker deflection, N = 25 L5PTs). It has been reported that during active touch 

in awake animals, the distal dendrites of L5PTs in barrel cortex are highly active (Xu et al., 

2012), and activity in L5PT dendrites in motor cortex has been found to be significantly higher 

in awake than anaesthetised animals (Murayama and Larkum, 2009). If dendritic activity is 

specifically relevant for triplets, as our results have suggested so far, we would therefore 

expect to see an increased rate of triplets, but not other responses, when comparing 

experimental data from anaesthetised to awake animals. Indeed, we find that compared to 

passive whisker deflections in anaesthetised rats, triplets are significantly increased in awake 

animals performing active whisker touches on a stationary object (ANOVA with multiple 

comparison: p=0.02), while overall responses (p = 0.48) and doublets (p = 0.45) are not (Fig. 

24A). Finally, we compared the occurrence of different responses depending on the 

behaviour of the awake animal (Fig. 24B). We find that the rate of singlets (p = 0.65) and 

doublets (p = 0.08) remains unchanged, regardless of whether the animal is quiescent, 

actively whisking or touching the object. Triplets, on the other hand, seem to specifically 

encode active touch, with an increase in triplets upon touch (p = 0.02) that is not seen during 

other periods of whisking. This corroborates our finding that doublets and triplets have 

different origins, with triplets reflecting additional activity in the distal dendrites.  
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Figure 24. Comparison of anaesthetised and awake responses. A: Probability of any 
response, doublet response and triplet response to whisker touch in anaesthetised animals 
(passive whisker deflection) or awake animals (active whisker touch). B: Singlet and triplet 
rate in awake animals when the animal was quiescent, actively whisking without touching the 
object, or immediately after a whisker touched the object. 
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6 Discussion 

Using a multi-scale model based on data, I explored structure-function relationships in cortex. 

At a macro-scale, I used ANNs with cortical features to show that sparse connectivity enables 

efficient learning in large and recurrent networks. Using a model reduction approach to 

explain the computation performed by L5PTs, we show that the input-output computation is 

largely preserved across morphologically and biophysically diverse neurons, and we found 

that the main source of variability in sensory responses and receptive field shapes is synaptic 

input. Finally, we investigate the relevance of subcellular scale wiring specificity in the TC-

L5PT pathway, finding that this, combined with intracortical sensory-evoked excitation and in 

certain circumstances prestimulus input, is necessary for bursts observed in sensory-evoked 

responses. 

Comparing our investigations at different levels of detail, it becomes evident that there is a 

trade-off between biological/mechanistic realism (and therefore how likely it is that our results 

apply to the system we are trying to understand) and interpretability, i.e. how much 

understanding we can actually gain. A highly detailed model of a complex system is just as 

complex a system, and will not necessarily per se help in understanding a given 

phenomenon. Nonetheless, the highly detailed multi-scale model was a necessary starting 

point for all of our investigations, to ensure that any simplifications or manipulations we 

performed are still relevant to the biology, and that we aren’t just making top-down 

assumptions.  

Using data to gain understanding has presented a general challenge in neuroscience (Jonas 

and Kording, 2017). Even as large, multimodal datasets become increasingly available from 

different animals performing different tasks, under the influence of various pharmaceutical, 

surgical or genetic manipulations, the question remains how to use this data. A popular 

assumption – or perhaps hope – seems to be “keep on mapping and it will eventually get 

cognitive” (Gomez-Marin, 2021): keep on collecting data, and an understanding of the brain 

will naturally follow. Of course, the collection of high-quality experimental data is necessary 

to expand and validate our understanding of the brain, but it would be short-sighted to suggest 
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that it will in itself be sufficient. It was already noted over a decade ago that “as data sets 

grow and become more complex, it will become more and more difficult to analyze and extract 

conclusions” (Sejnowski et al., 2014). Thanks to advances in experimental techniques and a 

huge investment of time and resources, we are gradually approaching an era of 

comprehensive big data neuroscience. For example, in the relatively simple nervous system 

of C. elegans, the connectome has been available for many years (White et al., 1986), and 

simultaneous whole-brain imaging of neuronal activity has been demonstrated more recently 

(Nguyen et al., 2016). Thus, the major challenge will become: how can we take rich, complex 

datasets and use them to inform our understanding of the brain? Here, we show that using 

extensive data to construct a detailed, biologically realistic multi-scale model allows us to 

systematically disentangle the contributions of neuron and network features to cortical 

function.  

 

6.1 Sparse connectivity enables efficient information processing in cortex-like neural 
networks 

I generated and trained ANNs constrained by interpretable features of cortical networks in 

order to disentangle the effect of structural properties on network function. I find that sparse 

connectivity is a prerequisite for efficient learning when the network adheres to certain other 

properties of cortical networks: large recurrent networks, even more so when nodes are either 

excitatory or inhibitory like cortical neurons. For biological context, the smallest computational 

unit of the cortex is often reported to be the cortical column, consisting of 10,000 - 20,000 

neurons, with connectivity between 10 - 30 % (Meyer et al., 2013). Therefore, the large and 

sparse networks I investigated here share the same parameters as this elementary 

computational unit of the cerebral cortex. My finding that sparsity may be beneficial to 

information processing in cortical networks is mirrored by a recent study about CA3 

hippocampus, which showed that the large, sparse networks found in the human 

hippocampus have a higher memory capacity than the small, dense networks found in mouse 

hippocampus (Watson et al., 2025).  
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From a machine learning perspective, many attempts have been made to achieve high 

performance with sparse networks due to their potential for lower computational and memory 

demands. A significant approach to generating performant sparse networks is pruning, which 

begins by training a densely connected network and then removing (pruning) edges which 

are deemed unimportant throughout the training process, to eventually obtain a sparse 

network. Pruning approaches are able to generate sparse networks whose performance does 

not significantly differ from dense networks for both feedforward (Han et al., 2015) and 

recurrent (Narang et al., 2017) networks, but still require starting with a densely connected 

network. A related method is rewiring, which begins with a sparse network, and then allows 

existing edges to be pruned and new edges to be formed during training, while maintaining 

a constant total number of edges. This was shown to produce performance equivalent to 

densely connected networks for feedforward architectures (Dettmers and Zettlemoyer, 2019), 

and in fact resulted in sparse networks which outperformed their dense counterparts for 

recurrent architectures (Liu et al., 2021). Here I show that, given the right conditions, a sparse 

recurrent network can outperform its dense counterparts even with fixed sparse connectivity. 

Given the extent of non-random wiring observed in the cortex (Song et al., 2005; Udvary et 

al., 2022), it is somewhat surprising that sparse networks with random connectivity perform 

as well as they do here, and that I find no notable effects of preserving higher-order 

connectivity features from cortical networks, like network motif occurrences and degree 

sequences. There is evidence for random connectivity in some biological neural networks, 

like olfactory inputs to the mushroom body in Drosophila (Caron et al., 2013). This aligns with 

computational models like the Liquid State Machine, which posits that a sufficiently large 

population of randomly interconnected neurons can generate a diverse enough set of input 

representations, even in the absence of learning, for a simple downstream classifier to learn 

to distinguish between inputs (Maass, 2011). There is some evidence that the same may be 

true in ANNs: Frankle and Carbin (2019) find that sparse subnetworks exist in randomly 

initialised densely connected ANNs which, when trained in isolation, achieve at least 

equivalent performance to the full-sized dense network with less training. This finding 

suggests that within randomly initialised networks, there exist structures which are inherently 
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well-suited for learning and/or performing the task at hand, which could explain why my large, 

sparse networks perform well even with randomly initialised connectivity.  

Our results suggest that the integrative properties of nodes (i.e., their activation function) are 

relevant for determining whether a network will benefit from sparse connectivity. However, a 

linearly weighted sum followed by a ReLU activation function by no means reproduces the 

complex input-output computations performed by real neurons. For example, unlike the 

nodes in these ANNs, synaptic conductance and therefore the activation of biological neurons 

are stochastic (Rusakov et al., 2020). There are strong parallels between stochastic activity 

and the practice of node dropout during training in machine learning, as both result in the 

absence of activity from a varying subset of neurons/nodes. Dropout has been shown to 

reduce overfitting (Srivastava et al., 2014), a problem which I observed in our large, sparse 

networks on the CIFAR10 dataset. Furthermore, dropout has been shown to decrease the 

susceptibility of ANNs to adversarial attacks (Dapello et al., 2021). Adversarial attacks are 

small changes made to e.g. pixels in an image, which are generally imperceptible to humans 

but cause a complete misclassification of the example by the ANN – this indicates that ANNs 

often rely on non-robust features for classification (Ilyas et al., 2019), a key distinction from 

biological neural networks, which may be resolvable by including dropout. Overall, this 

suggests that incorporating additional biological details on a single-cell scale may also be 

fruitful. 

Sparsely and densely connected networks differ in their node activity, and therefore in their 

representations of input. I found that in sparsely connected networks, more nodes participate 

in the classification than in densely connected networks. It has previously been shown that 

correlations in in-degrees (i.e., the number of synaptic inputs received by a neuron from 

various presynaptic populations) are a mechanism to compensate for heterogeneous inputs 

and enable balanced state dynamics, where a majority of nodes are able to contribute to 

signal processing (Landau et al., 2016). Here, I show that sparse connectivity could be 

another way to facilitate a balanced state and reduce quiescence. However, by itself sparsity 

is insufficient to account for the broad representation typically seen experimentally in cortical 
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recordings. Biological neural networks may make use of specific synaptic plasticity 

mechanisms in order to equalise excitation-inhibition ratios and thereby regulate the activity 

of individual neurons (Xue et al., 2014). I used global backpropagation of error and gradient 

descent-based optimisation to train our networks, which cannot account for local synaptic 

plasticity mechanisms. The impact of more local learning rules should therefore also be the 

topic of further studies. 

Why do sparsely connected networks perform better than densely connected networks under 

these conditions? My analysis of node activations in Dale’s networks shows that the outputs 

of nodes in densely, but not sparsely connected networks are highly correlated at 

initialisation, a relationship which has also been reported in spiking neural networks (Pernice 

et al., 2011). I find that this is likely due to an excitation-inhibition imbalance here, the effects 

of which are mitigated by sparse connectivity. Correlations in activity between neurons in 

biological neural networks are thought to be relevant for information processing (Shadlen and 

Newsome, 1998; Averbeck et al., 2006) and learning (Bi and Poo, 2001). However, the 

extremely high correlations in densely connected networks here suggest a high redundancy 

in information across nodes, and therefore a very limited effective capacity of the network. 

This could make it more difficult for the dense network to develop distinguishable 

representations of its inputs, and thereby explain the delay in learning. It has also been 

observed that very wide and very deep ANNs often contain many nodes with nearly identical 

representations, a phenomenon attributed to overparameterisation (Nguyen et al., 2021). 

Since dense networks have more parameters than sparse networks, this 

overparameterisation may be a contributing factor to my findings.  

It has been speculated that innate behavioural abilities and rapid learning in animals may be 

facilitated by specific wiring properties in neural circuits that emerge during development 

(Zador, 2019). As the information capacity of the genome is orders of magnitude too small to 

encode the connection between each pair of neurons explicitly, it was suggested that wiring 

rules may underlie the formation of neural circuits in the developing brain. According to this, 

a bulk of the ‘learning’ – or more precisely, meta-learning - in biological neural networks would 
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thereby take place on the timescale of evolution, and changes to the network structure would 

be implemented in the genome in the form of wiring rules. It is indeed plausible that such 

wiring rules could inform biological neural networks, as exemplified by a study proposing rules 

connecting different innexins to form gap junctions in the nervous system of C. elegans 

(Kovács et al., 2020), or another showing that just the structural composition of the neuropil 

is sufficient to explain a large portion of the non-random connectivity observed in the rat 

somatosensory cortex (Udvary et al., 2022). To further support this, I here find that even a 

‘wiring rule’ as simple as sparse connectivity can facilitate efficient information processing.  

In summary, I show that the degree of connectivity in a cortex-like recurrent network is critical, 

conditional on the network’s size, for efficient information processing.  

6.2 Network-neuron interactions underlying sensory responses of layer 5 pyramidal 
tract neurons in barrel cortex 

We developed an approach to reduce a detailed, multi-scale model of L5PTs in rat barrel 

cortex into analytically tractable models. The reduced models reveal that, in the experimental 

condition of passive whisker deflection in anaesthetised animals, just three features are 

sufficient to explain the transformation of synaptic input into AP output: the count of excitatory 

and inhibitory synapses active relatively close to the soma and in a recent time window, and 

the time since the previous AP. We show that this input-output computation is qualitatively 

preserved across L5PTs with diverse morphological and biophysical properties. Consistent 

with an earlier study (Egger et al., 2020), we predict that the broadness of receptive fields in 

L5PTs arises from a horizontal spread of sensory-evoked excitation by L6CC neurons. The 

variability in trial-to-trial and cell-to-cell responses is predicted to arise primarily from 

variations in synaptic innervation from the network.  

A major advantage of the reduced models is their interpretability, which makes the input-

output computation easily understandable. Of course, other interpretable single neuron 

models are already popularly used, like leaky integrate-and-fire models, which are highly 

interpretable and computationally efficient. However, these models are based on 



84 
 

assumptions about neuronal computation, and have no representation of the constituents of 

a biological neuron. Our reduced models, on the other hand, start with empirical 

morphological and electrophysiological measurements. The neuronal computation is derived 

by exposing a biophysically detailed neuron model to synaptic input constrained by in vivo 

measurements of cellular activity in the specific experimental condition. The reduced models 

can therefore also account for biological variability in dendritic properties, and can explain 

their effect on input-output computation. They achieve this at a similar computational cost to 

leaky integrate-and-fire models, and thereby open the door to large-scale simulations of 

neuronal activity with high biological realism.  

However, the reduced models presented here are likely only applicable to the specific 

experimental condition of passive anaesthetised single whisker deflection. Other recent 

studies have developed reduced biophysically detailed models which are valid under a wide 

range of synaptic input conditions, like simplified conductance-based models (Amsalem et 

al., 2020; Wybo et al., 2021), stacks of linear-nonlinear units (Ujfalussy et al., 2018) or deep 

artificial neural networks (Beniaguev et al., 2021). However, all of these models are difficult 

to understand – for example, Beniaguev, Segev and London (2021) find that a 7-layer 

convolutional neural network is necessary to represent the computational complexity of a 

single L5PT with NMDA synapses. Instead, the reduced models compromise on 

generalisability to different experimental conditions in favour of being accurate in a single 

experimental condition but highly interpretable. 

Generating reduced models for other experimental conditions would likely require a different 

model structure. It has been shown that dendritic compartmentalisation can change 

depending on synaptic input conditions (Wybo et al., 2019), making it unlikely that the 

reduced models described here will generalise well to other experimental conditions. For 

example, performing passive whisker deflections in an awake animal (Takahashi et al., 2020) 

or allowing the animal to actively move its whiskers to touch objects (De Kock et al., 2021) 

changes L5PT output from predominantly single APs to high-frequency bursts of APs, which 

are mediated by active calcium conductances in the distal dendrite. The number of APs in a 
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response is not well captured by the reduced models here (Fig. S10). Generating reduced 

models which account for this phenomenon would require a multi-scale model which includes 

well-constrained spatiotemporal synaptic input patterns and captures the variability in output 

in this new experimental condition. Finding the new minimal description for the input-output 

computation under this condition would then be an iterative process, and is likely to require 

additional information about synaptic input or dendritic properties. 

While our reduction approach currently relies on the multi-scale model, the same approach 

could be applied to future experimental data. It is plausible that large-scale electron 

microscopy and population-level voltage imaging could provide the required resolution and 

volume of data to derive an input-output computation. A reduction approach could thereby 

facilitate interpretation of experimental data, and help to disentangle how neuron and network 

features contribute to observed activity.  

In summary, we show that the input-output computation performed by L5PTs is surprisingly 

independent of their morphology and biophysical properties. We show that the broadness of 

L5PT receptive fields originates from innervation by horizontally extensive L6CC axons, and 

that the heterogeneity of L5PT receptive fields arises from the diversity of the neuropil, due 

to which each L5PT receives inputs from a different population of presynaptic neurons.  

6.3 The origin of bursts in sensory-evoked cortical output 

We investigated the origin of bursts in sensory-evoked output of L5PTs, and the relevance of 

highly specific thalamocortical innervation to the distal dendrites for these responses. Using 

manipulations to synaptic input in the multi-scale model, we found that bursts are driven by 

a combination of thalamocortical and intracortical sensory-evoked input, as well as ongoing 

activity before the sensory stimulus.  

We show that doublets and triplets have different origins: while doublets only require TC input 

to the basal dendrites, distal TC innervation is necessary for triplet bursts, which are almost 

always associated with a CaAP. I identify an exception to this finding with non sensory-

evoked CaAPs, which represent approximately 1/3 of CaAPs across our L5PT simulation 
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configurations. Non sensory-evoked CaAPs are initiated by pre-stimulus ongoing activity, and 

these trials therefore do not require distal TC input to produce a triplet response. Nonetheless, 

the majority of burst responses require the distal dendritic input provided by the wiring 

specificity of the thalamocortical input pathway. Even though, in isolation, this thalamocortical 

excitation only has a minor effect on dendritic depolarisation, and is insufficient to cause a 

CaAP on its own, the fast and reliable activation of distal TC terminals is necessary to provide 

enough dendritic depolarisation to allow subsequent intracortical sensory-evoked inputs to 

cause a CaAP and somatic burst firing.  

We find that ongoing activity present before the sensory stimulus can modulate sensory-

evoked responses. Which information might be encoded in what we have so far described 

as “ongoing” activity? One component is likely to be the spontaneous, cortex-wide oscillations 

which are observed in anaesthetised and quiet awake animals (Mohajerani et al., 2010). 

Surprisingly, in L2/3 of barrel cortex, it has been shown that neurons are less responsive to 

sensory stimuli when they are depolarised by spontaneous waves of activity (Petersen et al., 

2003). The shorter, more spatially localised sensory-evoked responses when the cortical 

region was in the ‘UP state’ (more depolarised) were speculated to improve temporal and 

spatial discrimination of inputs. Conversely, we here predict that in L5PTs, increased pre-

stimulus depolarisation leads to a stronger response with a higher likelihood of burst firing. 

This is consistent with the experimental observation that dendritic activity and somatic output 

appear to be strongly correlated in L5PTs in vivo (Palmer et al., 2012). In addition to 

spontaneous oscillations, non sensory inputs to L5PTs likely contain motor information: 

L5ITs, which provide input in particular to the distal dendrites of L5PTs, significantly increase 

their activity in response to whisking (De Kock and Sakmann, 2009). I find that non sensory 

activity can affect the burst rate, most strongly via non sensory-evoked CaAPs. Therefore, 

L5PTs in barrel cortex could also integrate information from the motor-sensory pathway like 

whisker motion and position, which may be relevant for interpreting sensory information. 

We find that triplet bursts specifically encode active touch in awake animals, with an increase 

in sensory-evoked triplet responses in awake animals compared to anaesthetised animals. 
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This is consistent with the finding that anaesthesia disrupts signalling in the apical dendrites 

(Suzuki and Larkum, 2020), as we predict that calcium activity in the distal dendrites is 

necessary for burst firing in L5PTs. Disrupting this distal activity by anaesthesia would 

therefore also impair bursts in cortical output. Furthermore, this likely explains why calcium-

mediated activity in the distal dendrites is correlated with conscious perception and 

perceptual thresholds (Takahashi et al., 2016), and thereby clarifies the role of dendritic 

calcium signalling in conscious perception: excitatory thalamocortical feedback from POm 

enhances sensory processing in the barrel cortex (Mease et al., 2016). This is consistent with 

the Global Neuronal Workspace model (Dehaene and Changeux, 2011), which posits that 

the basis of conscious processing is an amplification of relevant sensory activity which leads 

to an “ignition” of a large-scale prefronto-parietal network. However, overcoming the strong 

depression of POm synapses to kickstart the amplification of sensory activity requires a 

synchronous volley of bursts from L5PTs (Mease et al., 2017). Such a volley of bursts 

requires calcium activity in the distal dendrites of multiple L5PTs, so that sensory-evoked 

activity can elicit triplet responses. The TC-L5PT connectivity which we revealed here is 

perfectly set up to provide synchronous input to the distal and basal dendrites of L5PTs 

across a whole column. In combination with sensory-evoked intracortical activity, and with 

the possibility of encoding non sensory information as well, this highly specific TC wiring 

enables L5PTs in barrel cortex to respond to sensory input with a synchronous volley of 

bursts and thereby ignite conscious sensory processing.  

In summary, we used the highly detailed multi-scale model and targeted manipulations to 

reveal the functional implications of thalamocortical wiring specificity, showing that it is 

necessary for synchronous bursts in cortical output. 
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7 Abstract 

Using a multi-scale model based on extensive experimental data, I explored structure-

function relationships in cortex. At a macro-scale, I used ANNs with cortical features to show 

that sparse connectivity enables efficient information processing in large and recurrent 

networks, as are found in cortex. I propose that cortex-inspired ANNs may be a useful tool to 

disentangle the relevance of other properties of cortical connectivity and neuronal function 

for information processing in a network. Incorporating more biological detail on the neuron 

and network level, we used a model reduction approach to explain the computation 

performed by L5PTs following a sensory stimulus. We showed that the input-output 

computation is largely preserved across morphologically and biophysically diverse neurons, 

and found that the main source of variability in sensory responses and receptive field shapes 

is differences in synaptic input. Finally, we investigated the relevance of subcellular scale 

wiring specificity in the TC-L5PT pathway. We found that this wiring specificity, combined 

with intracortical sensory-evoked excitation and in certain circumstances prestimulus input, 

is necessary for bursts observed in sensory-evoked responses which may ignite conscious 

sensory processing. 
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9 Supplementary Material 

 

Figure S1. A: Schematic illustration of ANNs with different connectivity properties. Densely 
connected feedforward: nodes in the hidden layer are arranged into 2 layers. All nodes in the 
first hidden layer are connected to each node in the second layer by a trainable weight. 
Sparsely connected feedforward: nodes in the hidden layer are arranged into 2 layers. Some 
of the nodes in the first layer are connected to some of the nodes in the second layer by a 
trainable weight, according to the connection probability. Sparsely connected recurrent: 
nodes in the hidden layer are arranged into a single layer. Within this recurrent layer, any 
node can be connected to any other node with a trainable weight. The number of connections 
changes according to the connection probability. B: Modifying image classification tasks 
(MNIST & CIFAR10) for use with recurrent networks. The image was split row-wise, and at 
each time step the next row of the image was provided as input to all nodes in the recurrent 
layer. 
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Figure S2. Sparsity confers minimal benefit in feedforward networks. A: Test accuracy 
after one training epoch on the MNIST dataset for feedforward networks with different 
numbers of hidden layer nodes and connection probabilities between nodes in the hidden 
layers. B: Test accuracy after one training epoch on the CIFAR10 dataset for feedforward 
networks with different numbers of hidden layer nodes and connection probabilities between 
nodes in the hidden layers. C: Test accuracy after one training epoch on the Sleep-EDF 
dataset for feedforward networks with different numbers of hidden layer nodes and 
connection probabilities between nodes in the hidden layers. 
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Figure S3. Reduced training data supplement. A-H: Test accuracy after one training epoch 
on for recurrent networks with different numbers of hidden layer nodes and connection 
probabilities between nodes in the hidden layers. Left column: MNIST dataset, right column: 
CIFAR10 dataset. Rows top to bottom: training dataset reduced to 100 examples per class, 
training dataset reduced to 500 examples per class, training dataset reduced to 1000 
examples per class, full training dataset (6000 examples per class for MNIST, 5000 examples 
per class for CIFAR10). 

 

 

 

Figure S4. Supplement for Dale’s principle figure. A: Changes in weights after one epoch 
of training a network with 10000 hidden layer nodes with dense (connection probability = 1, 
red) or sparse (connection probability = 0.1, blue) connectivity on the MNIST dataset. We 
illustrate weights whose sign changed (from positive to negative or vice versa), and those 
whose magnitude increased without changing sign. B: Test accuracy over time in large 
networks (10000 hidden layer nodes) trained on MNIST with fixed excitation and inhibition 
(11.5 % inhibitory nodes). We compare networks which were initialised with a connection 
probability of 0.1. In sparse networks, any weight that was initialised at zero according to the 
connection probability was not trainable, and could not change during training. In sparse to 
dense networks, although the network was initialised with a sparse connectivity matrix, all 
weights were trainable, and could therefore change from zero, making the network less 
sparse during training.  
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Figure S5. Network embeddings at 81 positions in and around the C2 column of the 
five in vivo reconstructed morphologies. 

 

 

Figure S6. Cell type and stimulus specific activity used to constrain the multi-scale 
model. A: Average whisker receptive fields of intracortical and thalamic cell types. B: Average 

post-stimulus time histogram (PSTH) of intracortical cell types. 
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Figure S7. Spike timing in all multi-compartmental (black) versus corresponding 
reduced models (blue). Rows correspond to each multi-compartmental model. The first row 
corresponds to example 1 in Fig. 1 and the reduced model in Figure 2. Columns are from left 
to right: PSTHs of multi-compartmental and reduced models for a PW stimulus, PSTHs of 
multi-compartmental and reduced models for a PW and the eight SW stimuli (vertical lines 
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reflect inference time points – i.e., the time point on which the respective GLM was trained), 
raster plots of 20 example trials with a PW stimulus, deviation in ms between APs predicted 
by the reduced vs. multi-compartmental model for PW and SW stimuli. 

 

 

Figure S8. Differences in the decay of the spatial filter can largely be explained by the 
diameter of the dendritic trunk. A: spatial filters for the seven models, as in Figure 3. B: 
spatial filter height at the 15th spatial bin (corresponding to a soma distance of 700 to 750 
microns) versus the mean trunk diameter. C: as B, but for the diameter at the primary 
bifurcation point of the neuron.  
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Figure S9. Effect of removing sensory-evoked input by cell type on somatic responses.  
A: From left to right: effect on response probability across L5PT simulation configurations 

when removing sensory-evoked input from intracortical excitatory cells (IC), thalamocortical 

cells in VPM (TC), L2/3 pyramidal cells (L2/3PY), L4 spiny stellates (L4SP), L5 

intratelencephalic neurons (L5IT), L5 pyramidal tract neurons (L5PT), L6 corticocortical 

neurons (L6CC), or thalamocortical and layer 6 corticocortical neurons (TC & L6CC). B: as 

for panel A, but effect on doublet probability. C: as for A, but effect on triplet probability. Figure 

adapted from (Bast et al., 2021). 
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Figure S10. AP counts are not well estimated by the reduced model. Predicted mean 
number of APs in response to a whisker stimulus for 7 multi-compartmental/reduced models 
at 81 different positions, for PW and 8 SW stimuli deviates from the multi-compartmental 
models. In comparison, response probability (See Fig. 13) is very well captured by the 
reduced models. This indicates that the mechanisms discriminating single AP responses from 
burst responses are not well captured by the reduced model. 
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Table S1. Mean test accuracy after one training epoch on the MNIST dataset for 
recurrent ANNs with different numbers of hidden layer nodes (rows) and different 
connection probabilities between nodes in the hidden layer (columns).  
 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
100 44.6 47.2 50.7 53.5 56.1 55.8 58.4 59.8 61 60 63.9 66.7 68.5 72 72.4 74.1 74.1 76.3 76.9 
200 48.6 51.5 58.1 60.2 62.8 64 65.3 65.2 64.8 66 67 73.1 76.5 80.4 81.8 83 83.8 83.1 84.4 
300 51.1 58.1 62.2 64.9 66.9 67.6 68.9 69.4 69.3 69.2 75.6 80.1 83.1 85.4 85.1 86 83.6 85.5 84.1 
400 51.2 58.2 63.4 67.4 70.5 70.7 71.9 72.3 72 72.2 81.4 85.5 86.8 86.3 87.1 88.2 87.2 87.3 83.8 
500 54.4 61.4 67 70.7 71.3 72.7 72.5 74.4 75.8 74.3 84.8 86.7 88.1 88 86 87.9 85.1 88 87 
600 55 63.7 68.9 71.9 72.8 72.5 73.7 74.1 76.8 80.3 86.7 88.1 88 89.1 87.4 87.9 86.9 85.9 83.1 
700 53.5 63.3 70.4 72.2 73.2 74.1 74.3 76.9 78.8 81.4 87.5 88.8 89.5 88.6 87.4 87.7 86.1 86.6 86.7 
800 55.8 64.6 70.4 74.7 76.2 76.4 77.2 79.7 82.1 83.2 88.2 88.7 88.7 88.3 87.3 88.1 85.8 86.6 82.7 
900 56.6 66.8 72 74.6 76.6 78.2 80.4 81.9 83.7 84.8 88.9 89.2 90.1 89.4 88.1 86.5 86.2 87.1 85.3 

1000 55.7 67.5 73.3 75.6 76.4 78.4 81.5 82.9 83.5 85 88.8 88.8 87.2 89 86 87.7 88.1 85.3 85.6 
2000 64.3 75.2 79 83.7 86.3 87.6 88.3 88.4 89.3 88.9 89.9 90.2 89.9 89.1 88.9 87.6 85.6 84.9 84.2 
3000 69.1 76.5 81.9 85.9 88.8 89.2 89.3 89.4 89.8 89.7 90.1 89.2 88 85.8 86.1 86.7 84 85.8 83.5 
4000 73.9 80.5 84.6 87.2 88.3 89.6 89.4 90.2 90.3 90.6 89.5 89.6 88.1 87.3 87 86.5 84.9 79.9 85.3 
5000 76.3 83.8 88.1 88.9 90.4 90.6 90.9 90.7 90.3 91.1 91 89.7 87.6 86.4 86.3 86.5 84.7 83.4 79.2 
6000 76.5 84.9 87.9 89.2 89.6 90.4 90.9 90.4 91 90.2 89.9 87.9 89 86.4 85.6 84.2 82.6 79.8 80.8 
7000 77.9 85.8 88.8 89.8 90.6 90.5 91.2 91.1 90.8 90 90.4 87.3 88.6 88.6 87.4 86.9 84 82.6 79.7 
8000 80.3 87.2 89.3 90 90.7 91.1 90.9 91.1 90.7 90.8 89.3 88.8 85.5 87.9 86 83.2 83.6 83.1 80.9 
9000 80.8 87 89.3 91.2 90.6 90.2 89.6 90.6 89.9 89.4 90.2 86.6 84.9 87.8 83.9 79.7 84.4 85.2 78.5 

10000 80.9 87.9 89.6 90.1 90.5 91.1 90.3 90.6 89.3 90.8 88.4 89.5 86.5 85.7 85.7 81.4 83.2 82.9 80.3 
11000 82 89.2 90.2 90.8 90.4 90.5 91.1 91.1 91.2 91 90 89.8 86.1 83.4 87.6 86.3 84.8 79.3 81.5 
12000 84.1 88.9 90 90 90.7 90.7 90.9 90.8 90.6 90.3 90.1 87.9 89 84.9 83 83.6 83.7 78.2 78.6 
13000 85.1 88.8 89.8 90.3 90.5 92.1 91.3 91.7 90.4 90.5 89.7 89.1 87.8 84.5 85.4 82 83.7 82.6 80.6 
14000 85.3 89.4 90.9 90.5 90.2 91.2 91 91.1 90.3 90.7 88.2 88 88.1 86.8 86.1 82.3 78.6 79.9 73.6 
15000 87.3 89.5 90.8 91.1 91.1 91.4 91.2 90.4 91.4 91.1 90.2 88.5 88.4 86 84.4 81.2 77.1 80.2 78.3 
16000 86.3 89.3 91.2 90.6 90.6 91.1 90.9 90.4 89.3 90.4 88.9 87 86.3 86.5 82.8 81.4 82.2 76.3 78.9 
17000 87.2 90.1 90.3 91.1 91 90.5 91.2 90.4 90.2 91.1 89.4 89.6 85.5 84.5 82.4 80.6 82.5 76.7 77.5 
18000 87.5 90.6 90.8 90.6 91 91.2 91.2 90.4 91 90.3 90.3 88.1 88.4 86.3 83 83.6 80.3 76.8 77.8 
19000 87.1 89.5 91 90.7 90.3 90.4 91 91.1 90.6 90.6 89.3 87.6 85.5 86.1 84.7 80.6 81.7 77.8 69.8 
20000 88.3 89.7 90.5 91.3 91 89.8 91.2 90.9 90.8 90.3 90 87.5 86.1 83.2 82.6 79 75.9 79.7 77.5 
21000 88.8 89.9 91 90.5 90.9 90.3 89.7 89.4 90.2 91 90.1 88.8 85.4 88.8 80.5 79.2 79.7 73 79.6 
22000 88.5 90.7 90.7 90.6 90.7 91.4 91.3 89.6 90.6 90 89.2 86.5 86.4 82.9 83.2 81.9 82.5 75.7 76.3 
23000 88.4 90.3 90.3 90.7 90.6 90.7 91 90.5 89.3 90.1 90.2 86.4 85.2 83.1 81.6 80.5 79.5 79 71.1 
24000 88.9 91 90.7 91.6 90.5 91.8 91.5 90.1 90 89.7 89.2 88.2 88.2 87.2 83.2 78.9 77.9 77.7 77.2 
26000 89.5 91 91.3 91.2 91.6 91.1 90.6 90.7 89.7 90.7 89.3 87.7 87 86.9 85.9 82.6 83 79.6 77.4 
28000 88.9 91.2 91.4 90.7 91.2 90.9 90.5 89.8 90.1 90.6 89.1 88 84.9 85.5 82 78.3 70.3 77.7 76 
30000 89.6 90.7 91 90.1 91.3 90.2 90.5 90.1 89.9 90.2 89.2 86.1 85.5 85.7 83.5 81.6 81.2 79.3 75.9 
32000 89.5 91 91.3 90.1 91.4 91 90.2 90.5 90.5 89.9 88.3 85.6 84.1 84 81.1 84.9 76.6 77.2 72.8 
34000 89.7 91.1 91.8 91.1 90.5 90.9 91.1 90.1 91.1 90.9 88.7 85.5 85 86.1 83.2 80.4 80.1 76.5 66.4 
36000 90.2 90.6 91 91.2 90.5 90.3 89.4 90.9 90.2 89.4 87 86.6 88.6 84.3 84.2 84.1 79.4 76.6 74.4 
38000 89.7 90.7 90.5 91.2 91.4 90.3 89.2 90.6 90 90.8 90.1 87.7 86.9 83.9 81.6 81.4 77.2 73.7 76.1 
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Table S2. Mean test accuracy after one training epoch on the CIFAR10 dataset for 
recurrent ANNs with different numbers of hidden layer nodes (rows) and different 
connection probabilities between nodes in the hidden layer (columns).  
 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
100 23.6 23.9 24 24.2 24.5 24.7 25.1 25.4 25.9 26 28.5 29.9 30.5 30.6 31 30.6 30.7 30.3 30.8 
200 24 24.4 25 25.6 26.4 27.1 27.5 27.8 28 28.1 30.3 31.1 31.6 30.9 31.4 31 30.9 31 30.2 
300 24.3 24.9 26 26.7 27.4 27.7 28.1 28.5 28.8 29.1 31 32 31.6 31.7 30.6 30.7 30 30.4 30.2 
400 24.7 25.8 26.9 27.4 27.8 28.1 28.6 29 29.5 29.8 31.6 31.1 31.1 31 30.7 30 28.8 29.5 29.2 
500 25 26.1 27.3 27.8 28.2 28.6 29.1 29.5 29.8 30.4 31.3 31.3 30.7 30.7 29.6 30.3 28.6 28.9 29.7 
600 24.8 26.4 27.5 27.8 28.4 28.7 29.4 30 30.4 30.6 31.4 30.8 31.2 30.6 29.7 29.1 29.2 29.2 29.1 
700 25.2 26.8 27.7 28.1 28.6 29.3 29.8 29.9 30.6 30.6 31 30.3 30.9 30 29.7 29.9 29.5 28.9 26.7 
800 25.3 27.1 27.8 28.2 28.8 29.4 29.7 30 30.5 30.8 31.3 29.9 30.1 30 29.8 29.2 29.5 29.1 28.9 
900 25.5 27.4 28.2 28.5 29.1 29.9 30 30.3 30.4 30.4 31 30.3 29.6 29.3 29.6 29 29.1 28.7 28.4 

1000 25.4 26.9 27.6 28.5 29.5 30.5 30.5 31.1 30.7 31 30.4 30.6 30.1 29.8 29.6 29.1 29.1 28.9 29 
2000 26.6 28.1 28.7 29.5 29.3 30.1 29.8 30.3 30 30.7 29.6 29.6 29.7 29.6 29.3 28.9 28.4 27.8 28.3 
3000 27.6 28.7 29.4 29.9 30.3 30.6 30.6 30.4 30.6 30 30.3 29.4 29.3 28.8 28.6 28.4 27.7 28 28.6 
4000 27.7 28.8 29.5 29.8 29.5 30 29.5 30.2 30.5 30.2 29.7 28.9 28.8 28.3 27.9 27.4 28.4 28 28.1 
5000 28 28.8 29.7 30.3 29.6 29.8 30.4 30 30.5 30.6 29.5 29.2 28.8 28.1 28.1 27.3 27.6 28.5 27.4 
6000 27.4 28.1 29.3 29.2 29.2 29.4 29.5 29.6 29.5 30.1 29.6 29.2 28.9 28.8 28.6 29 28.6 27.9 27.7 
7000 28.1 29.1 29.5 29.9 30.3 30 30.3 29.5 29.8 28.9 29.9 28.9 28.7 29.3 28.8 30 29.4 27.5 25.3 
8000 27.7 28.2 28.6 29.2 29 29.8 29.2 29.3 29.4 29.6 30 29.3 28.1 28.4 29 28.8 26 22.8 22.3 
9000 28 28.8 29.3 29.6 29.8 30 29.6 29.9 30.2 30.1 29.2 29.2 28.3 28.3 27.9 27.5 26.3 25 22.6 

10000 27.6 29.1 29.1 29.7 29.4 30.2 29.8 29.4 30.1 30.2 29.3 27.8 28.4 29.8 29.2 24.9 22.2 17.4 22.6 
11000 27.4 28.3 29.4 29.6 29.9 29.7 30 29.8 29.2 29.3 28.6 28.4 29.2 29.5 27.7 25.4 22.4 20.1 24.1 
12000 27.9 29.2 29.4 29.8 29.9 29.9 30.4 28.6 28.9 29.5 29.4 29.5 29.4 27.8 25.7 22.6 20.4 20.6 21.9 
13000 27.7 28.7 29.9 29.7 30 29.7 30.1 29.8 29.9 29.4 28.9 29 28.7 29.6 24.1 21.1 22.1 20.9 16.1 
14000 28 29.1 29.7 29.1 29.9 29.9 29.6 29.6 29.7 30.1 29.7 29.6 29.4 26 22.8 20.1 20.4 19.8 20.5 
15000 28.2 29 29.6 29.9 29.7 30.3 30.1 30.1 29.8 29.4 29.5 29.4 28.7 23.3 21.8 22.3 23.1 22.4 19.4 
16000 27.9 28.8 29.3 29 29.9 29.6 29.8 29.2 29.4 30.1 29.1 29.2 29.3 23.5 22.1 24.3 19.9 20.7 21.2 
17000 27.7 29.1 29.6 29.9 30.3 30.2 29.4 30.3 29 29.6 28.4 29.3 28.4 24.4 24.8 24.8 23.4 22.7 20.7 
18000 28 28.7 29.1 30 29.3 29.4 29.3 29.7 29.4 29.6 28.9 29.4 26.6 23.6 24.2 22.3 20.7 21.6 19.5 
19000 27.9 29.6 29.7 29.5 29.9 29.5 29.6 29.7 29.5 29.1 29 29.8 27.6 23.5 24.3 21.3 22.8 22.1 20 
20000 27.9 29.4 29.6 29.7 30 30.2 29.8 30.2 29.6 29.7 29.2 29.8 25 25.1 24.4 19.6 19.1 19.9 17.4 
21000 28.1 29.4 29.8 30.3 29.7 30.5 30 29.9 29.5 30 29.3 29.7 22.3 23.9 23.9 20.5 21.4 19.6 20.2 
22000 27.9 28.9 29.6 29.7 29 30.1 29.7 29.4 29.4 30.3 30 29.5 23.4 25.2 24.1 21 19.8 19.8 19.8 
23000 27.8 29 29.3 29.2 29.5 29.2 29.5 29.6 29.4 30 29.9 29.2 23.2 24.1 22.8 21.7 19.9 19 19.8 
24000 28.1 28.9 29.6 29 29.3 29.9 29 30.1 28.6 30 29.8 28.8 25.7 25.1 22.5 21.6 20.3 19.7 18.5 
26000 27.4 29.2 29.8 29.7 29.8 29 29.8 29.3 29.9 29.5 30.5 26.1 24.6 22 20.7 18.5 20.1 20.1 12.7 
28000 28 29.1 28.7 29.2 30 29.6 29.1 30.1 29.7 30.2 29.7 22.7 23 22.4 21.5 19.4 20.1 13.5 13.1 
30000 28.1 29.3 29.7 29.9 29.7 30 29.8 29.5 29.9 29.7 30.5 23.9 24.7 23.6 20 21.8 18.4 16 10 
32000 27.5 28.7 29.4 29.7 29.2 29.3 28.7 29.3 29.2 28.7 28.7 25.1 23.2 19.7 21.8 18.1 13.9 11 10 
34000 27.9 29.1 29 29.6 28.8 29.1 29.3 28.8 29.2 28.8 29.3 24.7 25.4 21.9 19.3 19.4 16.8 10.6 9.8 
36000 28.1 28.8 29.2 29.3 29 29.4 29.1 29.9 29.8 29.6 26.2 24.4 21.7 23.3 19.2 16.6 11 11.3 10 
38000 27.8 29.2 29.6 29.8 29.6 29.9 29.5 30 29.7 30.1 24 21.9 23.3 21 18.7 13.1 9.9 10 10 
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Table S3. Mean test accuracy after one training epoch on the Sleep-EDF dataset for 
recurrent ANNs with different numbers of hidden layer nodes (rows) and different 
connection probabilities between nodes in the hidden layer (columns).  
 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 
100 48.5 48.8 49.3 50.3 51.8 53 53.3 52.9 54.2 53.2 53.5 51.7 50.6 51.1 51.1 50.7 50.7 51 50.8 
200 49 51 53.3 53.4 54.8 54.5 54.1 53.7 54.1 53.3 51.3 51.1 50.5 51.3 50.5 51.4 50.9 50.4 51.2 
300 49.7 54.3 54.9 54.9 54.1 53.4 53.7 53.4 52.9 52.5 50.8 51.9 51.6 51.3 50.6 50.6 50 48.3 50.5 
400 51.4 55.1 55.5 54.2 54.3 55.8 53.3 53.1 53.5 52.3 52.2 51.6 50.9 50.8 51.5 51.5 50.3 50.1 50.3 
500 52.7 55 55.9 55 54.8 54 52.6 51.8 52.2 52.8 51.1 50.8 51.6 51.4 50.7 51.5 49.6 50.7 50.6 
600 53.4 54.5 55.1 53.6 53.6 52.7 53.1 52.2 52.3 48.3 51.6 50.4 51 50.9 51.4 51.3 51 50.2 50.1 
700 53.8 55.6 53.8 54.6 53.2 52.7 51.7 51.7 51.3 51.8 51.9 50.3 51.7 51.6 51.3 50.3 51.7 51.1 50.1 
800 54.2 55.9 54.8 52.4 53.2 53.1 51.8 51.5 52.8 51.5 50.2 50.5 50.9 50 49.8 49.8 50.9 50.4 50.7 
900 55 56.4 54.3 54.3 53.1 52.3 52.5 51.9 52 51.7 51.9 50.5 51.4 50.5 50.6 52 50.5 50.6 49.4 

1000 54.8 54.1 54.4 52.8 52 51.7 52.3 51.9 51 53.2 50.8 51.3 51.6 51.1 51.1 50.3 49.8 50 48.8 
2000 55.2 54.1 53.1 52.2 51.2 52.4 51.5 52.5 51.3 52.3 52.2 50.8 50.4 50.3 49.9 48.7 50.3 47.3 50 
3000 56.2 52.1 52.2 53 51.5 51.7 50.2 52.3 52.9 50.9 50 50.1 51.3 51.2 50.7 50.5 48.2 50.6 49.9 
4000 54.9 53.8 52.4 52.3 51.2 51.5 52.5 52.9 51.6 50.3 50.8 51.7 51 51.2 49.5 50.6 49.6 50 48.8 
5000 54.8 51.3 52 51.9 52.1 52.1 51.5 51.5 51.9 52.3 52.1 50.7 51.9 50.3 49.8 49.4 45 36.8 32.3 
6000 53.6 53 50.7 52.7 52.2 51.3 51.8 52.7 51 52 52.2 50.8 51.3 51.2 50.5 45 40.5 29.1 21.3 
7000 53.8 51.4 52.4 51.2 50.7 51.7 51.5 50.5 50.9 51.3 51.4 51.7 51.2 49.4 40.3 18 17.6 17.6 10.3 
8000 54.3 53.6 52.1 50.3 50.5 51.6 51.2 50.2 51.6 51.6 51.3 51 49.7 48.5 25.8 14 10.3 10.3 10.3 
9000 54.6 52.7 52 52.3 52.2 52.2 51.7 51.1 52.5 51.7 51.5 52 51.6 41.7 28.7 10.3 10.3 10.3 10.3 

10000 55.1 53.2 51.8 52.5 51.8 51.5 52.2 51.8 52.2 51.6 51.7 50.6 49.1 28.7 10.3 10.3 10.3 10.3 10.3 
11000 55 51.8 52.7 51.6 51.9 50.9 50.8 51.8 50 51.2 50.7 51.7 37 18.1 10.3 10.3 10.3 10.3 10.3 
12000 54.9 50 51.4 51.9 52.6 52.6 51 52.1 51.4 51.6 50.8 48.2 25.3 10.3 10.3 10.3 10.3 10.3 10.3 
13000 54.3 51.6 52.2 51.6 50.9 51.3 50.1 51.7 51 49.5 51.9 50.2 29.8 14.9 10.3 10.3 10.3 10.3 10.3 
14000 54.7 52.8 50.5 51.1 50.1 51.3 52 51.1 50.3 52.1 52.1 45 17.6 10.3 10.3 10.3 10.3 10.3 10.3 
15000 54.3 51.6 51.4 52.8 51.6 52.8 51.8 51.1 52.2 52.4 51.2 45.6 17.6 10.3 10.3 10.3 10.3 10.3 10.3 
16000 53.5 53.1 52.4 50.1 50.8 50.6 50.5 51.4 51.2 49.7 51.6 28.9 10.3 10.3 10.3 10.3 10.3 10.3 10.3 
17000 54.1 51.2 51 51.5 53.3 48.5 52.1 52.4 48.4 51.7 52 37.5 17.6 10.3 10.3 10.3 10.3 10.3 10.3 
18000 55 52.4 53.3 51.8 51.9 52 51.1 51 51.3 52.4 52.6 21.8 14 10.3 10.3 10.3 10.3 10.3 10.3 
19000 53 51.4 50.7 51.2 50.9 50.8 50.5 51.2 51.8 50.9 50.7 25.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 
20000 54.2 52.4 52.3 50.5 52.2 51.2 49.8 51.4 51.7 50.7 50.8 15.1 10.3 10.3 10.3 10.3 10.3 10.3 10.3 
22000 54.7 51.7 52 51.7 50.6 52.2 51.8 51.5 51.5 52.6 49.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 
24000 54.1 52.7 51.5 51.5 51.3 52.3 51.6 50.6 51 51.7 33.4 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 
26000 53.4 51.6 52.2 51.4 51.8 51.6 52.3 51.4 50.1 51.1 29.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 
28000 55 53.1 50.9 52.3 49.9 52 51.6 51.6 51.3 50.4 17.6 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 
30000 53 51.7 52 52 51.4 50.8 51.5 51.7 51.7 53.1 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 
32000 54 51.9 52.4 51.7 52.3 49 51 51.3 51 51.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 
34000 53.2 52 52.8 52 51.8 50.4 51.9 51.2 51.8 52.4 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 
36000 53.9 53.1 51.7 50.8 52.6 51 50.2 52.4 51.7 52.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 
38000 53.4 51.9 51.9 51.7 51.1 50.1 50.9 49.8 49.3 48.9 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 

 



103 
 

Table S4: Biophysical parameters of multi-compartmental models used in this study. 

 
Parameter name/Model ID 1 2 3 4 5 6 7 
CaDynamics_E2.apic.decay 121.0674 138.7704 188.4791 114.9947 124.7849 94.58709 124.0039 
CaDynamics_E2.apic.gamma 0.000813 0.000551 0.000522 0.000579 0.000519 0.000567 0.003474 
CaDynamics_E2.axon.decay 119.401 333.7151 346.1883 196.5606 912.4342 973.4132 222.7396 
CaDynamics_E2.axon.gamma 0.001766 0.002154 0.001582 0.000642 0.004945 0.000515 0.038612 
CaDynamics_E2.soma.decay 301.457 530.8009 327.2006 155.3969 311.9493 213.7342 88.21946 
CaDynamics_E2.soma.gamma 0.000517 0.000554 0.010279 0.007425 0.000502 0.03446 0.001622 
Ca_HVA.apic.gCa_HVAbar 0.002759 0.004131 0.003894 0.001015 0.004717 0.003176 0.001476 
Ca_HVA.axon.gCa_HVAbar 0.000185 0.000488 2.86E-05 0.000819 2.96E-05 2.85E-05 5.13E-05 
Ca_HVA.soma.gCa_HVAbar 0.000683 0.000298 3.56E-05 0.00011 0.000564 2.22E-05 0.000502 
Ca_LVAst.apic.gCa_LVAstbar 0.001881 0.063474 0.025106 0.002194 0.009637 0.001959 0.024519 
Ca_LVAst.axon.gCa_LVAstbar 0.009016 0.006404 0.004188 0.003719 3.58E-05 0.00286 0.00011 
Ca_LVAst.soma.gCa_LVAstbar 0.004735 0.002137 0.001545 0.000614 0.006072 5.14E-06 0.008861 
Im.apic.gImbar 0.000113 4.52E-05 2.47E-05 2.7E-06 0.000381 4.03E-05 9.71E-07 
K_Pst.axon.gK_Pstbar 0.004625 0.296952 0.290188 0.005763 0.104922 0.172764 0.077452 
K_Pst.soma.gK_Pstbar 0.005713 0.078117 0.140957 0.003549 0.025351 0.152812 0.009897 
K_Tst.axon.gK_Tstbar 0.035837 0.006818 0.096493 0.044702 0.03351 0.027037 0.040092 
K_Tst.soma.gK_Tstbar 0.033603 0.003949 0.078375 0.099119 0.081466 0.075429 0.078967 
NaTa_t.apic.gNaTa_tbar 0.016966 0.01891 0.017893 0.013856 0.016047 0.020064 0.017836 
NaTa_t.axon.gNaTa_tbar 3.863664 3.553574 3.560277 3.899617 3.711704 0.109311 3.348559 
NaTa_t.soma.gNaTa_tbar 3.208129 1.833618 3.362703 3.896084 1.325818 3.843608 3.992573 
Nap_Et2.axon.gNap_Et2bar 0.009615 0.002898 0.001821 0.009965 0.002535 0.002898 0.009859 
Nap_Et2.soma.gNap_Et2bar 0.002371 0.003883 0.009257 0.005123 0.000599 0.000328 0.001849 
SK_E2.apic.gSK_E2bar 0.002111 0.002975 0.003351 0.001143 0.003455 0.003749 0.000585 
SK_E2.axon.gSK_E2bar 0.009162 0.01546 0.077013 0.014094 0.08137 0.00117 0.020578 
SK_E2.soma.gSK_E2bar 0.079714 0.029528 0.024539 0.066667 0.080914 0.059734 0.003856 
SKv3_1.apic.gSKv3_1bar 0.002863 0.014618 0.01143 7.1E-05 0.007639 0.003849 8.58E-06 
SKv3_1.apic.offset 0.703146 0.679136 0.594989 0.086458  0.845104 0.212368 
SKv3_1.apic.slope -2.73404 -2.04156 -2.79123 -2.98351  -0.87599 -1.09782 
SKv3_1.axon.gSKv3_1bar 0.002863 0.014618 0.01143 7.1E-05 0.007639 0.003849 8.58E-06 
SKv3_1.soma.gSKv3_1bar 0.002863 0.014618 0.01143 7.1E-05 0.007639 0.003849 8.58E-06 
apic.g_pas 7E-05 5.77E-05 3.43E-05 4.54E-05 4.16E-05 3.37E-05 3.54E-05 
axon.g_pas 2.42E-05 3.57E-05 2.09E-05 2.07E-05 4.99E-05 2.69E-05 3.49E-05 
dend.g_pas 5.3E-05 8.21E-05 7.97E-05 4.15E-05 6.45E-05 6.26E-05 6.19E-05 
soma.g_pas 2.31E-05 2.04E-05 4.96E-05 2.25E-05 2.54E-05 3.56E-05 2.01E-05 
scale_apical 1 2.181484 2.766078 1.713925 1 2.910863 1.345393 
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Table S5. Electrophysiological responses of the multi-compartmental models used in 
this study determined from the stimulus protocols shown in Figure 7H.  

 model 1 model 2 model 3 model 4 model 5 model 6 model 7 
Somatic AP peak (mV) 36.79 31.89 33.81 30.28 36.70 39.49 32.65 
Somatic AP half-width (ms) 1.08 0.96 1.02 1.10 1.16 1.03 1.00 
bAP amplitue 180 microns 
below the BP 

24.12 31.17 37.65 41.35 27.64 26.82 40.78 

bAP amplitude at the BP 15.04 15.28 19.66 36.83 15.95 10.50 30.78 
Somatic AP spike count 1 1 1 1 1 1 1 
Mean AP height during 3 AP 
burst 

28.91 22.24 27.25 25.59 26.44 31.99 24.60 

Somatic AP ISI 10.29 10.85 10.71 11.46 10.30 12.03 11.87 
Somatic AHP depth (mV) -62.20 -62.79 -63.54 -64.54 -62.45 -65.45 -62.65 
Ca2+ AP peak (mV) 6.42 3.14 6.48 5.74 -0.85 3.55 5.11 
Ca2+ AP width (ms) 35.48 37.53 36.89 38.60 34.82 38.18 37.99 
Somatic AP spike count (BAC 
stimulus) 

3 3 3 3 3 3 3 

First spike latency (ms), Step 1 29.96 44.92 32.81 27.14 28.23 33.90 31.53 
First spike latency (ms), Step 2 18.23 21.98 19.94 17.85 17.19 20.24 19.69 
First spike latency (ms), Step 3 6.61 7.03 7.27 7.15 5.68 6.75 7.32 
Initial Burst ISI (ms), Step 1 11.91 67.17 42.92 23.50 15.05 48.00 15.59 
Initial Burst ISI (ms), Step 2 8.75 16.49 19.06 14.49 9.26 22.17 10.62 
Initial Burst ISI (ms), Step 3 5.78 6.03 6.44 8.43 5.61 6.06 6.04 
AP peak (mV), Step 1 22.37 14.71 22.31 17.93 18.05 24.74 19.42 
AP peak (mV), Step 2 22.23 14.30 22.20 18.05 17.64 24.80 18.56 
AP peak (mV), Step 3 21.07 10.84 21.23 17.75 15.05 24.15 13.98 
AP half-width (ms), Step 1 1.06 0.95 0.98 1.11 1.03 0.95 0.98 
AP half-width (ms), Step 2 1.06 0.95 0.98 1.10 1.03 0.95 0.98 
AP half-width (ms), Step 3 1.06 0.94 0.98 1.09 1.02 0.94 0.98 
Fast AHP depth (mV), Step 1 -60.10 -59.82 -61.33 -61.89 -59.58 -62.05 -60.55 
Fast AHP depth (mV), Step 2 -60.12 -59.49 -61.26 -62.16 -59.31 -62.01 -60.12 
Fast AHP depth (mV), Step 3 -59.64 -56.78 -60.66 -62.36 -57.77 -61.62 -57.46 
Slow AHP depth (mV), Step 1 -60.61 -60.77 -62.24 -63.43 -59.48 -62.54 -61.24 
Slow AHP depth (mV), Step 2 -60.49 -60.28 -61.98 -63.43 -59.04 -62.51 -60.68 
Slow AHP depth (mV), Step 3 -59.81 -57.08 -60.94 -63.28 -57.52 -61.91 -57.38 
Slow AHP time, Step 1 0.33 0.16 0.20 0.30 0.29 0.20 0.32 
Slow AHP time, Step 2 0.26 0.25 0.25 0.31 0.28 0.23 0.33 
Slow AHP time, Step 3 0.22 0.27 0.22 0.22 0.20 0.26 0.15 
AP frequency (Hz), Step 1 10.50 7.00 10.00 10.50 11.00 9.50 10.50 
AP frequency (Hz), Step 2 15.00 13.50 14.00 13.50 15.50 13.50 14.00 
AP frequency (Hz), Step 3 25.00 29.00 23.50 21.00 25.50 21.50 28.00 
Adaptation index, Step 1 0.01 0.02 0.01 -0.01 0.02 0.00 0.00 
Adaptation index, Step 2 0.02 0.01 0.01 0.00 0.02 0.01 0.01 
Adaptation index, Step 3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
ISI-CV, Step 1 0.12 0.09 0.08 0.07 0.12 0.05 0.06 
ISI-CV, Step 2 0.16 0.12 0.09 0.06 0.13 0.09 0.12 
ISI-CV, Step 3 0.15 0.13 0.10 0.12 0.14 0.13 0.13 
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Table S6: Single trial accuracy of reduced models versus multi-compartmental 
models. Tables are confusion matrices representing the number of trials in which at least 
one AP was elicited in the response window (25ms post whisker stimulus) in the 
biophysically detailed multi-compartmental models (bio) and reduced models, respectively. 
Data is provided for all whisker stimuli, i.e., the principal and 8 surround whiskers. The 
shaded value is the overall accuracy (i.e., the percentage of simulation trials in which the 
reduced and biophysically detailed model match). 

 

m
od

el
 1

   AP 
(bio) no AP (bio) % 

m
od

el
 5

   AP 
(bio) no AP (bio) % 

AP (reduced) 61348 13092 82.41 AP (reduced) 108704 23461 82.25 

no AP (reduced) 10660 643900 98.37 no AP (reduced) 23444 573391 96.07 

% 85.20 98.01 96.74 % 82.26 96.07 93.57 

          

m
od

el
 2

   AP 
(bio) no AP (bio) % 

m
od

el
 6

   AP 
(bio) no AP (bio) % 

AP (reduced) 91659 23253 79.76 AP (reduced) 124309 38886 76.17 

no AP (reduced) 21801 592287 96.45 no AP (reduced) 57407 508398 89.85 

% 80.79 96.22 93.82 % 68.41 92.89 86.79 

          

m
od

el
 3

   AP 
(bio) no AP (bio) % 

m
od

el
 7

   AP 
(bio) no AP (bio) % 

AP (reduced) 163240 30828 84.11 AP (reduced) 127239 23081 84.65 

no AP (reduced) 52914 482018 90.11 no AP (reduced) 37475 541205 93.52 

% 75.52 93.99 88.51 % 77.25 95.91 91.69 

          

m
od

el
 4

   AP 
(bio) no AP (bio) % 

     
AP (reduced) 127538 57207 69.03      

no AP (reduced) 52427 491828 90.37      
% 70.87 89.58 84.96      
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