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Abstract

In this thesis, we leverage machine learning (ML) methods primarily based on deep neural
networks to drastically reduce the manual work of financial analysts, investors, auditors, and
other stakeholders by automating key steps in their analysis of financial disclosure documents.
A core challenge in this context is transforming highly unstructured and inherently discrete
textual data into meaningful numerical representations that ML models can effectively interpret.
We refer to this automated conversion process as representation learning and remark that the
learned representations must encode the text’s syntactic, semantic, and contextual structure.

We develop novel methodologies utilizing deep representation learning to improve the efficiency
and quality of several financial document analysis tasks. First, we introduce an approach for
the joint extraction, linking, and consistency checking of Key Performance Indicators (KPIs)
from corporate disclosure reports. By fine-tuning a bidirectional text encoder neural network
with classification heads for named entity recognition and relation extraction, we efficiently
extract KPIs and predict their interrelationships. Building upon this, we enhance the detection
of numerical inconsistencies between semantically equivalent KPIs using contrastive learning
techniques. This includes joint sentence and table encoding and a contrastive autoencoder
classification module, along with a filtering mechanism employing cross-attention to handle
data imbalance from numerous unrelated KPI pairs.

To assist auditors in aligning regulatory requirements with relevant sections of financial reports,
we introduce a context-aware recommender system designed to retrieve the most pertinent text
passages in sustainability reports. The system utilizes a Transformer-based encoding module
with a non-linear multi-label classification head, trained end-to-end. Recognizing the limitations
of processing paragraphs in isolation, we propose a novel pre-training methodology called
Pointer-Guided Segment Ordering, which enhances the model’s ability to generate contextually
rich paragraph embeddings by understanding narrative flow and inter-paragraph relationships.

Addressing the dynamic nature of accounting standards, we propose a flexible compliance check
methodology using Large Language Models (LLMs). We combine a fine-tuned semantic text
matching model with an LLM-based re-ranking module, enabling zero-shot matching between
financial reports and potentially unseen legal requirements. We further integrate a compliance
verification component that employs zero- and few-shot learning with prompting techniques
like chain-of-thought to assess compliance with disclosure requirements from international
accounting standards.

Lastly, we develop a specialized LLM-powered chatbot with an optimized Retrieval-Augmented
Generation pipeline to support compliance with Risk Management and Quality (R&Q) standards.
By integrating hybrid search techniques and relevance boosting, the system enhances retrieval
accuracy and provides precise and contextually appropriate answers to queries related to R&Q
standards, aiding employees in accessing and interpreting complex regulatory information.
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CHAPTER 1

Introduction

In today’s interconnected and rapidly evolving financial landscape, corporations are required to
generate and publish vast amounts of financial documents like annual reports, sustainability
disclosures, and regulatory filings that are critical for informing investors, regulators, and the
public. These complex documents offer detailed insights into a company’s financial health,
operational strategies, and future prospects. However, the task of meticulously analyzing
them to ensure accuracy, compliance with rigorous accounting standards, and transparency
is formidable. Auditors are confronted with the enormous challenge of navigating through
extensive narratives, dense numerical data, and intricate regulatory requirements.

This traditional auditing process is not only labor-intensive and time-consuming but also
prone to human error, which can lead to major financial scandals and reputational damage,
such as the Wirecard collapse in 2020 [1], and contribute to systemic risks in the global economy,
as highlighted by the financial oversight issues during the 2008 financial crisis [2].

Recent advancements in artificial intelligence (AI) and machine learning (ML) present
transformative opportunities to address these challenges. Specifically, deep representation
learning [3] has emerged as a powerful foundation for modern ML systems that automate and
refine the analysis of complex textual and numerical data inherent in financial documents.
Hence, this thesis explores the naturally arising question:

How can we leverage deep representation learning to improve the efficiency, accuracy,
and reliability of financial document analytics?

By investigating this question, we aim to enhance auditing processes, reduce the potential
for errors, and ultimately contribute to greater transparency and trust in financial reporting.

To set the stage, we start by discussing the significance of representation learning in modern
ML and its transformative impact on various domains. We then delve into the difficulties
of auditing financial documents, highlighting the complexities and intricacies that auditors
face in analyzing financial reports. Subsequently, we introduce the key contributions of this
thesis, which focus on advancing representation learning techniques to address the challenges in
financial document analytics.
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Chapter 1 Introduction

1.1 The Significance of Representation Learning
Representation learning is a fundamental aspect of modern ML that involves the automatic
discovery and extraction of features from raw data that capture their underlying patterns and
latent structures as part of the learning process [4]. Transforming raw data into meaningful
numerical representations is essential for the ML model’s performance in solving supervised
or unsupervised learning tasks. For instance, in image classification, analyzing each pixel
individually is impractical. Instead, a holistic representation that encapsulates both local and
global patterns is necessary to understand the image’s overall content. Similarly, in natural
language processing (NLP), understanding a sentence requires more than just analyzing its
individual characters. It necessitates representations that capture the semantics of words within
their broader context.

Unlike images and audio, where pixels and waveforms inherently have numeric representations
that can be directly fed into ML algorithms expecting vector inputs, text is composed of discrete
symbols, characters, and words, without immediate numerical equivalents. This discrete
nature of text poses significant challenges in representation learning, as the raw textual data
must be transformed into numerical vector representations that effectively capture syntactic
structure and semantic meaning, especially in the light of word ambiguity, polysemy, and
context dependence.

A real-life example that illustrates this importance of data representation is the process of
performing long division. As noted by Goodfellow et al. [5], when dividing 210 by 6 using Arabic
numerals, the task is straightforward due to the place value system and the structured method
of long division. However, if the same division is attempted using Roman numerals (CCX
divided by VI ), the process becomes significantly more complex and cumbersome. This example
highlights how the choice of representation can dramatically affect the ease and efficiency of
problem-solving. Just as the right numerical representation simplifies arithmetic operations,
appropriate data representations in ML can substantially enhance the model’s ability to process
and understand information.

In the early days of ML, models often relied on manual feature engineering, where domain
experts crafted input features believed to be relevant for specific tasks. This process was
labor-intensive and limited by human intuition, often failing to capture complex non-linear
patterns inherent in high-dimensional data. Representation learning addresses these limitations
by enabling models to automatically learn hierarchical features from data, thus reducing
the need for manual intervention and potentially uncovering more abstract and powerful
representations [3].

A significant turning point in representation learning was the advent of deep learning,
which utilizes deep neural networks to recognize patterns at multiple levels of abstraction.
Foundational algorithms like backpropagation [6–8], developed and popularized in the 1970s
and 1980s, provided the mathematical underpinnings for training multi-layer neural networks.
However, practical applications were initially constrained by limited computational resources
and insufficient data, which hindered the training of large-scale models.

The rise of big data and advancements in computational hardware, particularly the develop-
ment of powerful graphical processing units (GPUs), overcame these limitations. Large-scale
datasets like ImageNet [9] supplied the necessary amount of data for training deep neural
networks, while GPUs offered the computational power to handle complex matrix and tensor

2



Chapter 1 Introduction

calculations efficiently. This convergence yielded unprecedented progress across various do-
mains. In computer vision, deep learning has revolutionized image classification [10], object
detection [11], and image generation [12, 13]. In speech recognition, it has enabled more
accurate interpretation of human speech [14]. Moreover, deep reinforcement learning has
achieved remarkable feats, such as AlphaGo’s victory over the world champion in Go [15] and
advancements in protein folding [16], a long-standing problem in biology.

In NLP, representation learning has been particularly transformative considering that the vast
flexibility of language can be used to formulate and subsequently solve virtually any problem
that humans can communicate. Leveraging vast amounts of textual data and recent advances
in self-supervised and transfer learning, powerful large language models (LLMs) like OpenAI’s
GPT (Generative Pre-trained Transformer) [17, 18] have demonstrated expert-level capabilities
in a range of applications, from machine translation [19] and text summarization [20] to highly
complex tasks involving mathematical and legal reasoning [21, 22].

In this thesis, we focus on the evolution of representation learning in the context of NLP
with applications in the financial auditing domain. In the following, we introduce the challenges
of analyzing financial documents in the context of auditing and tie them to our contributions
in textual representation learning.

1.2 Challenges of Auditing Financial Documents
Auditing financial documents is a critical function in the financial industry, ensuring that an
organization’s financial information is accurate, reliable, and compliant with applicable laws and
regulations [23]. By conducting comprehensive reviews and evaluations, independent auditors
uphold transparency and integrity in financial reporting, which is essential for stakeholders
such as investors, regulators, and the public. Despite its importance, the auditing process faces
significant challenges due to the inherent complexity of long financial documents, the intricacies
of accounting standards, and the specialized language used in finance.

Financial documents such as annual reports and sustainability disclosures include detailed
narratives and extensive numerical tables. They provide crucial insights into a company’s
financial condition, operational results, strategic direction, and potential risks. An annual
financial report typically comprises several key components: the financial statements (including
the income statement, balance sheet, and cash flow statement), notes to the financial statements
offering additional context and explanations, and the Management’s Discussion and Analysis,
where leadership discusses financial results, operational achievements, future prospects, and
difficulties.

Auditors are tasked with verifying that every relevant requirement from the accounting
standards is appropriately reflected in the financial report. Accounting standards such as
the German Handelsgesetzbuch1 (HGB) [24], International Financial Reporting Standards
(IFRS) [25], and U.S. Generally Accepted Accounting Principles (GAAP) [26] provide detailed
frameworks outlining the required content and presentation of financial reports. They function
as extensive checklists, with each item specifying a legal or regulatory requirement that the
report must address. However, financial reports are often organized in ways that do not
directly align with the structure of these standards. The layout and presentation can vary
1 German Commercial Code.
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Chapter 1 Introduction

greatly between organizations, which complicates auditors’ efforts to locate and verify relevant
information within the documents [27–29].

Furthermore, auditors must meticulously extract and verify quantitative information to
ensure that reported financial figures are accurate and comply with relevant standards [30,
31]. This process involves not only checking the calculations within the financial statements
but also tracing figures back to their source documents and, when necessary, checking them
against external evidence. Such diligence is critical because errors or misstatements in numerical
data can significantly impact stakeholders’ decisions and may lead to legal penalties for the
organization.

In addition to verifying individual figures, auditors face the challenge of ensuring consistency
throughout the document [32]. Discrepancies between different sections, such as conflicting
financial figures or inconsistent descriptions of company policies and risks, can undermine the
credibility of the entire report. Ensuring consistency requires auditors to thoroughly compare
narratives, data tables, and disclosures, which is a meticulous and time-consuming task.

Another significant issue is conducting a comprehensive completeness and compliance check.
Auditors must verify that all material requirements from the accounting standards are sufficiently
covered and that the report fully complies with these standards [33]. This involves not only
confirming the presence of required disclosures but also evaluating the adequacy and accuracy
of the information provided. Given the substantial length and complexity of both the standards
and the financial reports, the manual process of ensuring completeness and compliance is very
cumbersome.

To address these obstacles, this thesis presents several contributions to the field of represen-
tation learning and its application to financial document analysis, aiming to assist auditors and
enhance the auditing process:

1. Joint Extraction and Linking of Key Performance Indicators (KPIs). Financial reports
often present KPIs in diverse formats and contexts, which makes their manual extraction
and analysis challenging and cumbersome. To tackle this, we develop KPI-BERT, a method
that jointly extracts and links KPIs from financial documents, leveraging Transformer-
based text encoders [19, 34] in conjunction with novel Named Entity Recognition (NER)
and Relation Extraction (RE) techniques. This approach, detailed in Chapter 5, increases
the efficiency of retrieving quantitative information, and thus, facilitates the automation
of subsequent auditing tasks such as consistency checks.

2. Verifying Numerical Consistency via Contrastive Learning. Ensuring that semantically
equivalent KPIs maintain consistent numerical values throughout financial documents is
crucial for reliable financial analysis. We introduce KPI-Check, an advanced system that
automatically identifies and cross-verifies semantically equivalent KPIs within real-world
financial documents to detect numerical inconsistencies. By utilizing contrastive learning
to create robust embeddings for KPIs and employing modules such as joint sentence and
table encoding, we improve the detection of discrepancies. This contribution is discussed
in Chapter 6.

3. Enhancing Semantic Text Matching with Paragraph-Level Context. Aligning regulatory
requirements with relevant sections of financial reports is challenging due to the complexity
of the documents and the lack of structural alignment. To assist auditors in efficiently

4



Chapter 1 Introduction

matching disclosure requirements to pertinent text passages, we develop sustain.AI, a
context-aware recommender system for sustainability reports. Furthermore, we address
the limitation of processing paragraphs in isolation by introducing a novel pre-training
method called Pointer-Guided Segment Ordering (SO). This method enhances language
models’ ability to understand narrative flow and inter-paragraph relationships, producing
contextually rich paragraph embeddings. By incorporating paragraph-level contextual
awareness, our approach improves semantic matching between standards and report
sections, aiding auditors in locating and verifying compliance-related information. These
contributions are detailed in Chapters 7 and 8.

4. Flexible Compliance Verification Using LLMs and Retrieval-Augmented Generation
(RAG). The dynamic and evolving nature of accounting and compliance standards
poses difficulties for traditional models that require retraining when standards change.
To provide a scalable and adaptable solution, we develop flexible approaches leveraging
advanced text matching techniques and LLMs. We introduce ZeroShotALI, which combines
BERT-based [34] text matching with an LLM-based re-ranking and compliance check
module utilizing GPT-4 [18], enabling zero-shot matching and subsequent compliance
assessment between financial reports and unseen legal requirements without retraining
(Chapter 9). Additionally, to enhance compliance verification and support in contexts
such as risk and quality assurance, we employ RAG techniques [35]. We dynamically
integrate external knowledge sources into the LLM answer generation process, which
improves the trustworthiness and reliance of model responses, mitigating the hallucination
of spurious information (Chapter 10).

By integrating these advanced representation learning methods, we address the key challenges
in financial document auditing. Our contributions improve the efficiency and accuracy of
the document analytics process, thereby reducing the potential for human error and allowing
auditors to focus their expertise on advanced areas that require more nuanced judgment.
Ultimately, this work enhances the transparency and reliability of financial reporting, fostering
greater trust among stakeholders.

1.3 Thesis Outline
This thesis is structured into three parts.

Part I lays the groundwork by exploring the fundamentals of representation learning in NLP,
which are crucial for the applications discussed later. Chapter 2 presents the core concepts
and techniques that underpin this thesis, e.g., text classification, text matching, tokenization,
and topic modeling. We trace the evolution of word embeddings from static, frequency-based
methods to sophisticated semantic embeddings that capture word meanings. In Chapter 3,
we bridge the gap between the previously discussed interpretable frequency-based embeddings
and non-interpretable semantic embeddings. We introduce a novel DEDICOM-based matrix
factorization approach to jointly learn interpretable word embeddings and distinct topics
from unlabeled text corpora. Chapter 4 examines language modeling and contextual word
embeddings, introducing advanced deep neural network architectures capable of modeling
sequential data dependencies. We explore self-supervised learning in the context of language
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modeling and present transfer learning paradigms, like supervised fine-tuning and zero-shot
learning. Additionally, we discuss retrieval augmented generation, a technique that enhances the
trustworthiness and actuality of generative models by integrating relevant external knowledge via
retrieval mechanisms. These methodologies form the foundation for the advanced applications
covered in the subsequent chapters.

Part II centers on sequential text classification and semantic text matching to enhance the
consistency of financial documents within the auditing domain. In Chapter 5, we propose novel
methods for the joint extraction and linking of Key Performance Indicators (KPIs) in financial
reports, which facilitate subsequent consistency checks. Chapter 6 introduces contrastive
learning techniques for numerical consistency checks, improving the semantic matching of KPIs
within financial documents.

Part III explores the application of LLMs for ensuring financial document compliance.
Chapter 7 presents methods for semantic text classification in the auditing of sustainability
reports. In Chapter 8, we enhance LLMs with paragraph-level awareness, refining paragraph-
level text representations for sequential text classification. Chapter 9 investigates zero-shot
learning for automatic compliance verification and showcases the potential of LLMs in assessing
a financial report’s compliance and completeness with respect to rigorous accounting standards.
Finally, in Chapter 10, we utilize RAG for risk and quality assurance, which illustrates how
the combination of hybrid (full-text and vector-based) retrieval mechanisms with LLMs can
increase answer performance and reliance for complex user queries.

1.4 Publications
This thesis is based on the following publications (in order of appearance):

1. L. Hillebrand, D. Biesner, C. Bauckhage, and R. Sifa, “Interpretable Topic Extraction
and Word Embedding Learning Using Row-Stochastic DEDICOM,” Proc. CD-MAKE,
2020, doi: 10.1007/978-3-030-57321-8_22 [36]

2. L. Hillebrand, D. Biesner, C. Bauckhage, and R. Sifa, Interpretable Topic Extraction and
Word Embedding Learning Using Non-Negative Tensor DEDICOM, Machine Learning
and Knowledge Extraction (2021), doi: 10.3390/make3010007 [37]

3. L. Hillebrand, T. Deußer, T. Dilmaghani, B. Kliem, R. Loitz, C. Bauckhage, and R.
Sifa, “KPI-BERT: A Joint Named Entity Recognition and Relation Extraction Model for
Financial Reports,” Proc. ICPR, 2022, doi: 10.1109/ICPR56361.2022.9956191 [30]

4. L. Hillebrand, T. Deußer, T. Dilmaghani, B. Kliem, R. Loitz, C. Bauckhage, and R.
Sifa, “Towards automating Numerical Consistency Checks in Financial Reports,” Proc.
BigData, 2022, doi: 10.1109/BigData55660.2022.10020308 [31]

5. L. Hillebrand, M. Pielka, D. Leonhard, T. Deußer, T. Dilmaghani, B. Kliem, R. Loitz, M.
Morad, C. Temath, T. Bell, R. Stenzel, and R. Sifa, “sustain.AI: a Recommender System
to analyze Sustainability Reports,” Proc. ICAIL, 2023, doi: 10.1145/3594536.3595131
[29]
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CHAPTER 2

Fundamentals of Classification and Embeddings

This chapter provides a comprehensive exploration of the foundational concepts underpinning
word embeddings and text classification, which are essential for understanding the more
advanced topics discussed in subsequent chapters. We begin by examining text classification, a
pivotal task in NLP that involves the categorization of text data into predefined classes. This
task serves as a fundamental building block for a wide array of supervised NLP applications,
including translation, question answering, sentiment analysis, summarization, and information
extraction. Many complex NLP tasks can be distilled into text classification problems, for
instance, text generation can be conceptualized as a classification task where the model predicts
the next word in a sequence.

Subsequently, we delve into topic modeling, a technique designed to uncover latent topics
within a collection of documents. Topic modeling is a crucial unsupervised learning method that
aids in understanding the underlying themes in a corpus of text data. Unlike text classification,
topic modeling, akin to clustering, operates without the need for labeled data, providing insights
into the structure of text data without predefined categories.

A unique challenge in processing text data, as opposed to image or audio data, is its
inherently discrete nature. While image data comprises continuous pixel values that can be
directly utilized by ML models, text data necessitates transformation into a numerical format.
This transformation involves tokenization and the application of word embeddings, which are
vital for capturing the semantic and syntactic nuances of words.

We conclude the chapter by discussing the significance of word embeddings in NLP and
tracing the evolution of embedding methods over the years, underscoring their transformative
impact on the field.

2.1 Text Classification
Text classification is a fundamental task in NLP that involves assigning a text segment, denoted
as x, to one or more predefined categories from a set C. These text segments can vary in
granularity, encompassing entire documents, paragraphs, sentences, or even individual words.
Formally, the task can be defined as learning a function f : X → C, where X represents the
space of all possible text segments.

In binary classification, the set C consists of two labels, typically represented as {0, 1}. For
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multi-class classification, C contains C distinct categories, and the task is to assign each text
segment to exactly one category. Multi-label classification extends this by allowing a text
segment to be associated with multiple categories simultaneously, thus C is a power set of
possible categories.

The softmax function is commonly employed in multi-class classification tasks. It transforms
the raw output scores of a model into a probability distribution over the C classes. This
ensures that the probabilities sum to one, facilitating the assignment of the text segment to
the class with the highest probability. In contrast, the sigmoid function is utilized in binary
and multi-label classification tasks. It maps the model’s output to a probability between 0
and 1 for each class independently. This allows for the independent prediction of each class,
making it suitable for scenarios where multiple categories can be assigned to a single text
segment. Multitask classification further extends these concepts by simultaneously learning
multiple related tasks, each with its own set of categories. This approach leverages shared
representations to improve performance across tasks.

A critical aspect of text classification is the conversion of text data into a numerical vector
format, known as embeddings. Text data, being inherently discrete, requires this transformation
to be processed by ML models. The simplest method, one-hot encoding, assigns a unique
integer to each word in the vocabulary, resulting in a high-dimensional, sparse representation.
However, this approach lacks semantic and contextual awareness.

Recent advancements in NLP have focused on developing embeddings that capture the
semantic and syntactic nuances of words while being contextually aware of surrounding words.
These embeddings, which we will explore in Section 2.6 and Chapter 4, have been instrumental
in the success of modern NLP applications.

2.2 Sequential Text Classification
Sequential text classification extends text classification to tasks where each element in the
input sequence, e.g., words in a sentence or paragraphs in a document, is assigned a label
from a predefined set C. Instead of classifying each text segment independently, sequential text
classification takes into account the context provided by the entire sequence. This approach is
crucial in sequence tagging tasks like Named Entity Recognition (NER) and Part-of-Speech
(POS) tagging, where the meaning and function of each word depend heavily on its surrounding
words.

Given a sequence of T text segments x = (x1, x2, . . . , xT ), the goal is to predict a corresponding
sequence of labels y = (y1, y2, . . . , yT ), where each yt ∈ C.

To model the joint probability P(y | x) of the label sequence given the input sequence, two
main approaches are commonly used. The first is the conditional probability approach, which
factorizes the joint probability into a product of conditional probabilities using the chain rule
[41]:

P(y | x) =
T∏

t=1
P(yt | x, y1, y2, . . . , yt−1). (2.1)

This approach allows each label yt to depend on the entire input sequence x and all previous
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labels, leveraging deep neural architectures like recurrent neural networks (RNNs) and trans-
formers to capture complex long-range label dependencies. However, at inference time it can
suffer from error propagation since ground truth labels are not available and each prediction
depends on the correctness of the preceding ones.

The second approach is to use structured prediction models like conditional random fields
(CRFs) [42], which model the joint probability without explicitly factoring over time steps. The
CRF defines the probability as

P(y | x) = 1
Z(x)

T∏
t=1

ψ(yt−1, yt,x, t), (2.2)

where ψ(yt−1, yt,x, t) is a potential function that captures the relationship between adjacent
labels and the input sequence, and Z(x) is a normalization constant ensuring the probabilities
sum to one. The CRF approach jointly models the entire label sequence, which mitigates error
propagation. However, it typically models only local dependencies between adjacent labels and
can be computationally demanding for larger label sets since for each element in the sequence
transitions between all possible label pairs have to be considered.

In Chapter 5, we apply the first approach by utilizing an RNN-based label decoding method
enhanced with conditional label masking. We compare its performance to CRF decoding in the
context of identifying and relating Key Performance Indicators (KPIs) within financial text
documents.

2.3 Text Matching
Text matching is a crucial task in NLP that focuses on assessing the semantic similarity between
two text segments. Unlike text classification, where a text segment x is assigned to a fixed
set of categories C, text matching aims to learn a similarity function capable of producing a
similarity score for any pair of text segments. Formally, given two text segments x, x′ ∈ X ,
the objective is to learn a distance function d : X × X → [0,K] that quantifies the semantic
similarity between x and x′ by mapping similar text pairs close to 0 and unrelated pairs to a
large value K depending on the form of d.

A common approach to text matching involves using the same neural network model fθ :
X → Rd with learnable parameters θ that encodes each text segment into a d-dimensional
continuous vector representation [43, 44]. This siamese architecture results in comparable
embeddings h = fθ(x) and h′ = fθ(x′) for the two text segments. The similarity between the
text segments is then computed using the distance function d(h,h′) that measures the distance
of the embeddings in the vector space. Common choices for distance functions are the euclidean
distance deuclidean ∈ [0,∞) and cosine distance, often defined as dcosine = 1− cosine similarity ∈
[0, 2] [45].

To train such a system in a supervised way, a contrastive learning objective can be employed.
The aim is to adjust the encoding network fθ so that semantically similar text segments have low
distance scores, while dissimilar segments have high scores. A general form of the contrastive
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loss function for a single text pair can be defined as

L = y · LS(d(h,h′)) + (1− y) · LD(d(h,h′)), (2.3)

where y ∈ {0, 1} is the binary label that indicates whether x and x′ are similar (y = 1) or
dissimilar (y = 0), and LS and LD are the respective partial loss functions for a similar and
dissimilar pair [46]. LS and LD are designed to penalize similar pairs that are far apart (high
distance score) and dissimilar pairs that are close together (low distance score).

Exemplary choices for the partial loss functions as defined by [46] are

LS = 1
2
(
d(h,h′)

)2
, LD = 1

2
(
max

(
0,m− d(h,h′)

))2
, (2.4)

where m > 0 is a margin hyperparameter that defines the maximum distance for a dissimilar
pair still contributing to the loss. The margin m ensures that the model focuses particularly on
difficult-to-separate dissimilar pairs.

In Chapter 6, we apply contrastive learning to dynamically match semantically equivalent
KPIs in financial reports. By learning models that capture the nuanced semantics of KPIs, we
are able to perform consistency checks on their numerical values, ensuring they are equal and
consistent throughout financial documents.

2.4 Topic Modeling
Topic modeling is an unsupervised learning technique employed to uncover latent topics within
a collection of documents. Unlike text classification, which necessitates labeled data, topic
modeling operates without such requirements, making it a versatile tool in NLP for applications
such as document clustering, information retrieval, and recommendation systems.

One of the most prominent techniques in topic modeling is Latent Dirichlet Allocation (LDA)
[47], a generative probabilistic model that posits each document as a mixture of topics, with
each topic being a mixture of words.

Another widely used technique is Non-negative Matrix Factorization (NMF) [48], which
factorizes the document-term matrix, containing the individual word frequencies per document,
into two non-negative matrices, one representing the topics, while the other represents the
topic-associated words.

Generally speaking, the aim of topic modeling is to extract meaningful topics from a corpus
and assign these topics to documents based on the word distributions within them. Since
the topics are not predefined, qualitative inspection and interpretation are often necessary to
understand the extracted topics within the corpus.

In Chapter 3, we explore how topic modeling can be combined with word embedding learning
to develop interpretable dense word vectors that capture not only the semantic and syntactic
structure of words but can be qualitatively introspected since each embedding entry refers to
an extracted corpus topic.
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Table 2.1: Example of common Preprocessing methods to standardize text data and reduce the
vocabulary size.

Text Fraunhofer’s 2023 revenue was €~3 billion.

Lowercasing fraunhofer’s 2023 revenue was €~3 billion.
Punctuation-Removal fraunhofers 2023 revenue was 3 billion
Stopword-Removal fraunhofers 2023 revenue 3 billion
Lemmatization fraunhofer 2023 revenue 3 billion

2.5 Tokenization
Tokenization is a critical preprocessing step in the conversion of text data into a numerical
representation suitable for input into ML models. This process involves segmenting text into
smaller units, known as tokens, which can then be mapped to numerical indices. The most
common level of granularity for tokenization is at the word level, where each word in the text
is treated as a distinct token.

A notable challenge with word-level tokenization is the large size of the resulting vocabulary
and the inevitable issue of unknown words that are absent from a pre-trained vocabulary (see
Figure 2.1(c)). To reduce the vocabulary size, various preprocessing steps are employed, e.g.,
lowercasing, punctuation and stop word removal, and lemmatization or stemming, as illustrated
in Table 2.1.

In addition to rare and unknown words, misspellings and numerical data present challenges
for word-level tokenization. Given the infinite nature of numbers, it is impractical to maintain
a vocabulary that contains all possible numbers without decomposing them into subword units.

Character-level tokenization offers an alternative approach, circumventing the problem
of unknown words by utilizing a limited set of characters to construct all possible words.
However, models based on character-level tokenization are computationally intensive and
require substantially more data to learn the relationships between individual characters and
subsequently words (see Figure 2.1(a)).

Subword tokenization strikes a balance between word and character-level tokenization by
segmenting words into subword units based on their frequency in the corpus (see Figure
2.1(b)). Popular subword tokenization techniques include Byte Pair Encoding (BPE) [49] and
WordPiece [50] tokenization, which are employed in modern language models like BERT [34]
and GPT [17]. For a comprehensive analysis and quantitative evaluation of various subword
tokenization methods across multilingual corpora, a diverse range of downstream tasks, and
different vocabulary sizes, we refer to [51].

2.6 Evolution of Word Embeddings
Building upon the different tokenization methods, this section explores the early progression
of word embeddings, which are numerical representations that encapsulate the semantic and
syntactic properties of words or documents. We divide this section into two parts:

First, we examine count-based embeddings that rely on word frequency and importance
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Input: Fraunhofer’s 2023 revenue was €~3 billion.

Tokens F r a u n h o f e r ’ s 2 0 2 3 r e v e n u e w a s € ~ 3 b
i l l i o n .

Indices 70 114 97 117 110 104 111 102 101 114 39 115 95 50 48 50 51 95 114
101 118 101 110 117 101 95 119 97 115 95 8364 126 51 95 98 105 108
108 105 111 110 46

(a) Character Tokenization. Each index in the vocabulary represents the unicode integer of the respective
character. “ ” highlights the whitespace character for better readability.

Tokens Fr ##au ##nh ##of ##er ’ s 202 ##3 revenue was € ~ 3 billion .
Indices 13359 3984 15624 10008 1200 112 188 17881 1495 7143 1108 836 199 124

3775 119

(b) Subword Tokenization. Rare words and numbers not present in the vocabulary are split into subwords
to avoid the OOV issue. The “##” prefix indicates the continuation of a subword.

Tokens [UNK] ’ s [UNK] revenue was € ~ 3 billion .
Indices 0 39 115 0 21452 4148 8364 126 51 1319 46

(c) Word Tokenization. The sentence is split on whitespace and punctuation marks and subsequently
mapped to a large vocabulary. Words or numbers not present in the vocabulary are replaced with the
special “[UNK]” (unknown) token.

Figure 2.1: Comparison of (a) character-, (b) subword-, and (c) word-level tokenization. Subword
tokenization trades off between character- and word-level tokenization by splitting rare words
and numbers into subword units to avoid the out-of-vocabulary (OOV) issue while maintaining
a relatively short sequence length and a reasonable vocabulary size.

without the need for complex ML models. In the second part, we introduce semantic embeddings,
which are generated through ML techniques like Word2Vec [52] and GloVe [53], capturing
deeper semantic relationships but lacking interpretability.

In Chapter 3 we address this shortcoming and present a novel matrix factorization approach
based on the DEDICOM model [54] that yields semantic but interpretable word embeddings
while simultaneously producing distinct topics for a given corpus.

Table 2.2 provides a high-level comparison of these embedding techniques, highlighting their
differences, weaknesses, and strengths.

Since the current state-of-the-art, dynamically generated contextual embeddings, is tightly
linked to language modeling [55] and deep neural architectures like RNNs and Transformers
[19], we cover it in full detail in Chapter 4.
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Table 2.2: Comparison of Word Embedding Techniques, categorized by type, vector characteris-
tics, and semantic capabilities.

Method Type Vector Type Interpretable Semantic
Bag of Words Word Frequency Sparse ✓ ✗

TF-IDF Word Importance Sparse ✓ ✗

Word2Vec Learned Dense ✗ ✓

GloVe Learned Dense ✗ ✓

DEDICOM Learned Dense ✓ ✓

2.6.1 Count Statistics-Based Embeddings
Count statistics-based embeddings disregard word order and context, focusing solely on the
frequency of words within a corpus. These methods are computationally efficient, straightforward
to compute, and highly interpretable but fail to capture the semantic relationships between
words.

Bag of Words

The Bag of Words (BoW) model is a fundamental technique for text representation that has
been employed for several decades [56]. It is one of the simplest methods for numerically
encoding text. In this model, each document d is represented as a vector vd ∈ RV , where V
denotes the size of the vocabulary. The i-th element of vd corresponds to the frequency of the
i-th word in the document. Individually, each word is represented as a one-hot encoded vector,
with dimensionality equal to the size of the vocabulary. Formally, the BoW representation
is defined as vd[i] = count(wi, d), where count(wi, d) indicates the number of times word wi

appears in document d. This approach results in a sparse representation that does not capture
the context or semantic relationships between words.

To illustrate, consider a simple corpus consisting of two documents

Document 1: “The sith Darth Vader is feared across the galaxy.”
Document 2: “The jedi Luke Skywalker is loved across the galaxy.”

with the joint vocabulary (after lowercasing and punctuation-removal preprocessing)

{the, sith, darth, vader, is, feared, across, galaxy, jedi, luke, skywalker, loved}.

The BoW vectors, vBoW
i ∈ R12, for these documents are constructed based on their respective

term occurrences:

vBoW
1 =

[
2 1 1 1 1 1 1 1 0 0 0 0

]
,

vBoW
2 =

[
2 0 0 0 1 0 1 1 1 1 1 1

]
.
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It is evident that common words like “the” and “is” have high occurrences, while more
contextually significant words such as “sith” and “jedi” appear less frequently. This underscores
a limitation of the BoW model: its inability to capture the relative importance of words within
a document in the context of the entire corpus.

TF-IDF

The Term Frequency-Inverse Document Frequency (TF-IDF) model [57] enhances the BoW
approach by considering the significance of words in a document relative to the entire corpus. It
normalizes the BoW count statistics by the inverse document frequency (IDF) of words, thereby
assigning higher weights to words that are frequent in a document but rare across the corpus.
This adjustment makes TF-IDF more informative, particularly for distinguishing common
words, like “and”, “is” and “the”, from those that are more contextually significant, typically
nouns or descriptive verbs and adjectives. The TF-IDF value for a word wi in document d is
calculated as

TF-IDF(wi, d) = TF(wi, d) · IDF(wi), with (2.5)

TF(wi, d) = count(wi, d)∑
w∈d count(w, d) , and (2.6)

IDF(wi) = log (N/(1 + DF(wi))) , (2.7)

where TF(wi, d) represents the term frequency normalized by the total number of words in the
document, and IDF(wi) is the inverse document frequency, with N being the total number of
documents and DF(wi) the number of documents containing wi.

Applying TF-IDF to the above toy corpus of two documents, the resulting vectors are:

vTF-IDF
1 =

[
0.13 0.11 0.11 0.11 0.07 0.11 0.07 0.07 0.00 0.00 0.00 0.00

]
,

vTF-IDF
2 =

[
0.13 0.00 0.00 0.00 0.07 0.00 0.07 0.07 0.11 0.11 0.11 0.11

]
.

In contrast to BoW, TF-IDF scores for common words like “the” and “is” are relatively lower,
reflecting their omnipresence across the corpus. Conversely, the scores for informative words
like “sith” and “jedi” are relatively higher, indicating their importance within the respective
documents.

Despite its simplicity and lack of semantics, TF-IDF remains relevant, particularly in fast
hybrid search systems that combine traditional search algorithms like BM25 [58] with modern
semantic search methods.

2.6.2 Semantic Embeddings
“You shall know a word by the company it keeps!” [60, p. 11]. This famous quote by John Rupert
Firth encapsulates the foundational idea behind semantic embeddings. Unlike traditional
methods such as BoW and TF-IDF, which rely on word occurrence counts and fail to capture
semantic relationships, semantic embeddings offer a more sophisticated representation. They

16



Chapter 2 Fundamentals of Classification and Embeddings
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Figure 2.2: (a) An illustrative example showing semantically similar words clustered together
in vector space. Homonyms like “stock” and “laundering” appear at the intersections of
different clusters. (b) Demonstration of the approximate algebraic properties of semantic word
embeddings: the vector for “Germany” can be approximately derived from the equation “France
- Paris + Berlin”. Similarly, adding the vectors for “Spain” and “Capital” yields a vector very
similar to “Madrid”. Note for real embeddings, the algebraic operations are not exact but
approximate [59].

embed words in a latent vector space that aims to encode both semantic and syntactic language
properties.

This section details the two pioneering approaches for learning such embeddings: Word2Vec
[52] and GloVe [53]. These methods are trained to position semantically similar words close to
each other in vector space, which enables subsequent ML models to better distinguish between
different samples in downstream classification tasks.

Figure 2.2 illustrates the algebraic vector space properties of semantic embeddings. In part
(a), semantically similar words are clustered together in vector space. The blue boldface words
in each cluster exemplify how a semantically structured vector space can be utilized for text
classification, as similar words occupy similar regions.

Part (b) of Figure 2.2 demonstrates the algebraic properties of semantic word embeddings
[59]. For example, the vector for “Germany” can be approximately derived from the equation
“France - Paris + Berlin”. Similarly, adding the vectors for “Spain” and “Capital” yields a vector
very similar to the word “Madrid”. These approximate algebraic operations are possible due to
the encoded relationships within the vector space.

The training algorithms of semantic word embeddings focus on neighboring words, often
resulting in words with similar POS tags being located near each other. Interestingly, this
proximity also extends to synonyms and antonyms within the vector space (see “brave” and
“scared” in Figure 2.2(a)).

Despite their advantages, these methods have limitations compared to count-based em-
beddings. The resulting dense vectors are not easily interpretable, as each index does not
correspond to a specific word or semantic concept. To address this limitation, Chapter 3
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introduces DEDICOM, a semantic word embedding method that integrates word embedding
learning with topic modeling to produce interpretable dense word embeddings.

Word2Vec

Word2Vec [61], introduced in 2013, represents a novel approach to learn dense word embeddings,
capturing semantic relationships between words. Unlike frequency-based methods such as
TF-IDF, which produce sparse vectors based on word frequency, Word2Vec generates dense
vectors by learning from a large corpus of text data using neural networks. The authors of this
method proposed two primary architectures for learning word embeddings: Continuous Bag of
Words (CBOW) and Skip-Gram.

The CBOW model predicts a target word wt based on its surrounding context, defined as a
window of words. For instance, in the sentence “The Jedi master trains the young Padawan”,
with a window size of 2, the context words for “master” would be [“The”, “Jedi”, “trains”,
“the”]. In this model, the input consists of the context words, each represented as a one-hot
encoded vector. These vectors are projected into a shared hidden layer, typically by mean or
max pooling the embedding vectors corresponding to the context words. The output layer, a
softmax function, predicts the target word by computing probabilities based on the dot product
between the embeddings and the softmax weights.

Conversely, the Skip-Gram model uses the target word to predict its context words. Given
the same example sentence and the target word “master”, the Skip-Gram model aims to predict
the context words [“The”, “Jedi”, “trains”, “the”]. Here, the input is only the target word. The
output layer consists of multiple softmax units, each predicting a word in the context, and the
model outputs a probability distribution for each context position. The objective is to adjust
the embeddings to maximize the probability of the correct context words given the target word.

Formally, the loss functions for the CBOW and Skip-Gram models are defined as

LCBOW = − 1
T

T∑
t=1

logP(wt | wt−c, . . . , wt+c), (2.8)

LSkip-Gram = − 1
T

T∑
t=1

∑
−c≤j≤c,j ̸=0

logP(wt+j | wt), (2.9)

where T is the total number of words in the corpus and c is the context window size.
Word2Vec embeddings are static, which means they do not change at inference time based

on context. The choice between CBOW and Skip-Gram depends on the task requirements.
CBOW is generally faster and provides slightly better representations for syntactic tasks, while
Skip-Gram, though slower, excels in capturing semantic relationships [61].

Overall, Word2Vec’s ability to capture semantic relationships through dense word embeddings
represented a major milestone in NLP and enabled tasks such as analogy reasoning and semantic
similarity measurement for the first time.

GloVe

GloVe (Global Vectors for Word Representation) [53] is an alternative approach to learning
dense word embeddings that encode semantics and syntactical structure. Unlike word2vec
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which leverages a neural network architecture, GloVe effectively captures linear substructures of
the word vector space by employing matrix factorization techniques on the word co-occurrence
matrix of a large document corpus. The primary objective of GloVe is to leverage the statistical
information of word occurrences in a corpus to produce embeddings where semantically similar
words have similar representations.

GloVe constructs a word co-occurrence matrix X ∈ Rn×n, where each element xij denotes
the frequency with which word i occurs in the context of word j and n is the vocabulary size of
the entire corpus. This is similar to the count-based approach of TF-IDF, but GloVe uses a
sliding context window to encode relationships between words into these statistics. Instead of
modeling the co-occurrence probabilities Pij = P(j | i) = xij/

∑n
j=1 xij directly, GloVe focuses

on the ratios of co-occurrence probabilities, which capture the relative relationships between
word pairs in relation to other words. Specifically, for three words i, j, and k, the ratio of
probabilities Pik/Pjk reflects how much more (> 1) or less (< 1) associated word k is with word
i than with word j. To represent this in vector space, GloVe encodes these ratios using the
differences between word vectors

exp
(
(wi −wj)⊤w̃k

)
= Pik

Pjk
=

exp
(
w⊤

i w̃k

)
exp

(
w⊤

j w̃k

) , (2.10)

where wi,wj ∈ Rd are d-dimensional word vectors and w̃k ∈ Rd are context word vectors. By
leveraging properties of logarithms and accounting for model symmetry, this relationship can
be simplified to

w⊤
i w̃k = logPik = log xik − bi − b̃k, (2.11)

where bi and b̃k are bias terms that absorb the logarithmic count of how often any word occurs
in the context of word i (log∑n

k=1 xik). The derived model seeks to learn these vectors and
biases such that their interactions approximate the logarithm of the co-occurrence counts. The
resulting loss function is defined as

LGloVe =
n∑

i,j=1
f(xij)

(
w⊤

i w̃j + bi + b̃j − log xij

)2
, (2.12)

where f(xij) is a weighting function that reduces the impact of very frequent co-occurrences.
For a more detailed derivation of the GloVe model, we refer to the original paper [53].

Both GloVe and Word2Vec yield semantic word embeddings, but their approaches to capturing
word relationships differ. As described in Section 2.6.2, Word2Vec utilizes local context
information by training a neural network to predict adjacent words in a sentence. In contrast,
GloVe constructs an explicit word co-occurrence matrix using global statistical information
from the corpus and then applies matrix factorization.

Lack of interpretability is a major problem with both GloVe and Word2Vec. These methods
often produce high-dimensional word vectors, typically with dimensions d ≥ 100. The individual
entries of these vectors do not directly correspond to specific semantic meanings or concepts.
For instance, when a model that uses these embeddings is applied to a downstream task such
as sentiment analysis, it becomes harder to understand the model’s decision-making process
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and to identify potential errors without interpretable dimensions in the embedding space. In
the subsequent chapter, we address this issue by presenting a novel approach for generating
interpretable word embeddings. Our method, row-stochastic DEDICOM, involves factorizing a
logarithmic and normalized word co-occurrence matrix, allowing us to interpret the resulting
word embedding dimensions as distinct topics present in the text corpus.
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CHAPTER 3

DEDICOM for Interpretable Word Embeddings
and Topic Modeling

Building upon the foundational concepts of word embeddings discussed in Chapter 2, we now
turn our attention to a new matrix factorization-based method that enhances the interpretability
of word embeddings while simultaneously facilitating topic modeling. As established, word
embeddings are crucial for transforming text into numerical vectors that ML models can process.
Traditional methods, such as GloVe, utilize matrix factorization to derive these embeddings
from word co-occurrence matrices. However, these embeddings often lack interpretability, as
the dimensions of the resulting vectors do not correspond to any specific semantic concepts.

In this chapter, we introduce a novel method that addresses this limitation by employing
the DEDICOM (DEcomposition into DIrectional COMponents) [54] algorithm, a matrix
factorization technique that allows for the creation of interpretable word embeddings. This
approach not only retains the semantic richness of traditional embeddings but also provides a
clear interpretative framework by associating each dimension of the embedding with distinct
topics derived from the corpus.

The DEDICOM model factorizes a square matrix S ∈ Rn×n into three matrices, expressed as

S ≈ ARA⊤, A ∈ Rn×k, R ∈ Rk×k, (3.1)

where A is the loading matrix and R is the affinity matrix. By applying this factorization to a
pointwise mutual information matrix of word co-occurrence statistics, we derive a matrix A
that is row-stochastic, ensuring that each word embedding represents a probability distribution
over k topics. This constraint allows us to interpret each word embedding as a mixture of
topics, with the significance of each topic indicated by the magnitude of the corresponding
entry in the word vector.

The affinity matrix R further enriches this model by capturing the relationships between topics.
A high value in rbc suggests a strong co-occurrence likelihood between words associated with
topics b and c, thereby revealing semantic relationships between these topics. This interpretative
capability is extended through a tensor factorization approach, which accommodates multiple
text sources, enabling the analysis of topic relationships across different corpora.

Our research, as detailed in [36] and [37], demonstrates the efficacy of this approach in
generating interpretable word embeddings across various text corpora. The DEDICOM model
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(a) (b)

Figure 3.1: (a) The DEDICOM algorithm factorizes a square matrix S ∈ Rn×n into a loading
matrix A ∈ Rn×k and an affinity matrix R ∈ Rk×k. (b) The tensor DEDICOM algorithm
factorizes a three-dimensional tensor S ∈ Rt×n×n into a loading matrix A ∈ Rn×k and a
three-dimensional affinity tensor R ∈ Rt×k×k.

not only highlights logical relationships between topics but also adapts to the dynamic focus of
topics, as evidenced in longitudinal analyses of news articles over time.

This chapter is based on the following publications:

• L. Hillebrand, D. Biesner, C. Bauckhage, and R. Sifa, “Interpretable Topic Extraction
and Word Embedding Learning Using Row-Stochastic DEDICOM,” Proc. CD-MAKE,
2020, doi: 10.1007/978-3-030-57321-8_22 [36],

• L. Hillebrand, D. Biesner, C. Bauckhage, and R. Sifa, Interpretable Topic Extraction and
Word Embedding Learning Using Non-Negative Tensor DEDICOM, Machine Learning
and Knowledge Extraction (2021), doi: 10.3390/make3010007 [37].

As shared first authors, Lars Hillebrand and David Biesner contributed equally to the
research, planning, and conceptualization of the project. Together, they jointly derived the
update rules for the matrix formulation of the DEDICOM algorithm. Lars Hillebrand was
primarily responsible for implementing the experimental framework, which encompassed data
preparation, training with techniques designed to enforce row-stochasticity and matrix scaling
for faster convergence, and evaluation. While the experiments and the writing of the papers,
including the creation of tables and figures, were collaborative efforts, Lars Hillebrand took the
lead in the experiments section, detailing the data processing, training procedures, and findings.

3.1 Introduction
Matrix factorization methods have always been a staple in many NLP tasks. Factorizing a
matrix of word co-occurrences can create both low-dimensional representations of the vocabulary,
so-called word embeddings [53, 62], that carry semantic and topical meaning within them, as
well as representations of meaning that go beyond single words to latent topics.

DEDICOM is a matrix factorization technique that factorizes a square, possibly asymmetric,
matrix of relationships between items into a loading matrix of low-dimensional representations
of each item and an affinity matrix describing the relationships between the dimensions of the
latent representation (see Figure 3.1 for an illustration).

We introduce a modified row-stochastic variation of DEDICOM, which allows for interpretable
loading vectors, and apply it to different matrices of word co-occurrence statistics created from
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Wikipedia-based semi-artificial text documents. Our algorithm produces low-dimensional word
embeddings, where one can interpret each latent factor as a topic that clusters words into
meaningful categories. Hence, we show that row-stochastic DEDICOM successfully combines
the task of learning interpretable word embeddings and extracting representative topics.

We further derive a similar model for factorization of three-dimensional data tensors, which
represent word co-occurrence statistics for text corpora with an intrinsic structure that allows
for some separation of the corpus into subsets (e.g., a news corpus structured by time).

An interesting aspect of this type of factorization is the interpretability of the affinity matrix.
An entry in the matrix directly describes the relationship between the topics of the respective
row and column, and one can therefore use this tool to extract topics that a certain text corpus
deals with and analyze how these topics are connected in the given text.

In this chapter, we first describe the aforementioned DEDICOM algorithm and provide
details on the modified row-stochasticity constraint and on optimization. We further expand
our model to factorize three-dimensional tensors and introduce a multiplicative update rule
that facilitates the training procedure. We then present results of various experiments on both
semi-artificial text documents (combinations of Wikipedia articles) and real text documents
(movie reviews and news articles) that show how our approach is able to capture hidden latent
topics within text corpora, cluster words in a meaningful way, and find relationships between
these topics within the documents.

3.2 Related Work
Matrix factorization describes the task of compressing the most relevant information from
a high-dimensional input matrix into multiple low-dimensional factor matrices, with either
approximate or exact input reconstruction (see, for example, [63] for a theoretical overview of
common methods and their applications). In this work, we consider the DEDICOM algorithm,
which has a long history of providing an interpretable matrix or tensor factorization, mostly for
rather low-dimensional tasks.

First described in [54], it since has been applied to analysis of social networks [64], email
correspondence [65] and video game player behavior [66, 67]. DEDICOM has also been
successfully employed in NLP tasks, such as part-of-speech tagging [68]. However, to the best
of our knowledge, we provide the first implementation of DEDICOM for simultaneous word
embedding learning and topic modeling.

Many works deal with the task of putting constraints on the factor matrices of the DEDICOM
algorithm. In [65, 66], the authors constrain the affinity matrix R to be non-negative, which aids
interpretability and improves convergence behavior if the matrix to be factorized is non-negative.
However, their approach relies on the Kronecker product between matrices in the update step,
solving a linear system of n2×k2, where n denotes the number of items in the input matrix and
k is the number of latent factors. These dimensions make the application on text data, where
n describes the number of words in the vocabulary, a computationally futile task. Constraints
on the loading matrix, A, include non-negativity as well (see [65]) or column-orthogonality as
in [66].

In contrast, we propose a new modified row-stochasticity constraint on A, which is tailored to
generate interpretable word embeddings that carry semantic meaning and represent a probability
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distribution over latent topics.
The DEDICOM algorithm has previously been applied to tensor data as well, for example,

in [69], in which the authors apply the algorithm on general multi-relational data by computing
an exact solution for the affinity matrix. Both [64] and [65] explore a slight variation of our
tensor DEDICOM approach to analyze relations in email data and [70] apply a similar model
on non-square input tensors.

Previous matrix factorization-based methods in the NLP context mostly dealt with either
word embedding learning or topic modeling, but not with both tasks combined.

For word embeddings, the GloVe [53] model factorizes an adjusted co-occurrence matrix
into two matrices of the same dimension. The work is based on a large text corpus with a
vocabulary of n ≈ 400, 000 and produces word embeddings of dimension k = 300. To maximize
performance on the word analogy task, the authors adjusted the co-occurrence matrix to the
logarithmic co-occurrence matrix and added bias terms to the optimization objective.

A model conceived around the same time, word2vec [52], calculates word embeddings not
from a co-occurrence matrix but directly from the text corpus using the skip-gram or continuous-
bag-of-words approach. More recent work [62] has shown that this construction is equivalent
to matrix factorization on the pointwise mutual information (PMI) matrix of the text corpus,
which makes it very similar to the glove model described above.

Both models achieve impressive results on word embedding-related tasks like word analogy.
However, the large dimensionality of the word embeddings makes interpreting the latent factors
of the embeddings impossible.

On the topic modeling side, matrix factorization methods are routinely applied as well.
Popular algorithms like Non-negative Matrix Factorization (NMF) [48], Singular Value De-
composition (SVD) [71, 72] and Principal Component Analysis (PCA) [73] compete against
the probabilistic Latent Dirichlet Allocation (LDA) [47] to cluster the vocabulary of a word
co-occurrence or document-term matrix into latent topics.1 Yet, we empirically show that the
implicitly learned word embeddings of these methods lack semantic meaning in terms of the
cosine similarity measure.

We benchmark our approach qualitatively against these methods in Section 3.4.3 and the
appendix.

3.3 Constrained DEDICOM Models
In this section, we provide a detailed theoretical view of different constrained DEDICOM algo-
rithms utilized for factorizing word co-occurrence-based positive pointwise mutual information
matrices and tensors.

We first consider the case of a two-dimensional input matrix S (see Figure 3.1(a)) in Section
3.3.1. We then present an extension of the algorithm for three-dimension input tensors S (see
Figure 3.1(b)) in Section 3.3.2. Finally, we derive a multiplicative update rule for non-negative
tensor DEDICOM.

1 More recent expansions of these methods can be found in [74, 75].
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3.3.1 The row-stochastic DEDICOM Model for matrices
For a given language corpus consisting of n unique words X = x1, . . . , xn we calculate a
co-occurrence matrix X ∈ Rn×n by iterating over the corpus on a word token level with a
sliding context window of specified size. Then

xij = #word i appears in context of word j. (3.2)

Note that the word context window can be applied symmetrically or asymmetrically around
each word. We choose a symmetric context window, which implies a symmetric co-occurrence
matrix, xij = xji.

We then transform the co-occurrence matrix into the pointwise mutual information matrix
(PMI), which normalizes the counts to extract meaningful co-occurrences from the matrix.
Co-occurrences of words that occur regularly in the corpus are decreased since their appearance
together might be nothing more than a statistical phenomenon, the co-occurrence of words that
appear less often in the corpus gives us meaningful information about the relations between
words and topics. We define the PMI matrix as

pmiij := log xij + logN − logNi − logNj (3.3)

where N := ∑n
ij=1 xij is the sum of all co-occurrence counts of X, Ni := ∑n

j=1 xij the row sum
and Nj := ∑n

i=1 xij the column sum.
Since the co-occurrence matrix X is symmetrical, the transformed PMI matrix is symmetrical

as well. Nevertheless, DEDICOM is able to factorize both symmetrical and non-symmetrical
matrices. We expand details on symmetrical and non-symmetrical relationships in Section
3.3.4.

Additionally, we want all entries of the matrix to be non-negative, our final matrix to be
factorized is therefore the positive PMI (PPMI)

sij = ppmiij = max{0,pmiij}. (3.4)

Our aim is to decompose this matrix using row-stochastic DEDICOM as

S ≈ ARA⊤, with sij ≈
k∑

b=1

k∑
c=1

aibrbcajc, (3.5)

where A ∈ Rn×k, R ∈ Rk×k, A⊤ denotes the transpose of A and k ≪ n. Literature often refers
to A as the loading matrix and R as the affinity matrix. A gives us for each word i in the
vocabulary a vector of size k, the number of latent topics we wish to extract. The square matrix
R then provides the possibility for interpretation of the relationships between these topics.

Empirical evidence has shown that the algorithm tends to favor columns unevenly, such that
a single column receives a lot more weight in its entries than the other columns. We try to
balance this behavior by applying a column-wise z-normalization on A, such that all columns
have zero mean and unit variance.

To aid interpretability, we wish each word embedding to be a distribution over all latent
topics, i.e., entry aib in the word-embedding matrix provides information on how much topic b
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describes word i.
To implement these constraints, we therefore apply a row-wise softmax operation over the

column-wise z-normalized A matrix by defining A′ ∈ Rn×k as

a′
ib := exp(āib)∑k

b
′=1 exp(āib

′)
, āib := aib − µb

σb
,

µb := 1
n

n∑
i=1

aib, σb :=

√√√√ 1
n

n∑
i=1

(aib − µb)2
(3.6)

and optimizing A for the objective

S ≈ A′R(A′)⊤. (3.7)

Note that after applying the row-wise softmax operation, all entries of A′ are non-negative.
To judge the quality of the approximation (3.7) we apply the Frobenius norm, which measures

the difference between S and A′R
(
A′
)⊤

. The final loss function we optimize our model for is
therefore given by

L(S,A,R) =
∥∥∥S −A′R(A′)⊤

∥∥∥2

F
(3.8)

=
n∑

i=1

n∑
j=1

(
sij −

(
A′R(A′)⊤

)
ij

)2
(3.9)

with (
A′R(A′)⊤

)
ij

=
k∑

b=1

k∑
c=1

a′
ibrbca

′
jc (3.10)

and A′ defined in (3.6).
To optimize the loss function we train both matrices using alternating gradient descent

similar to [66]. Within each optimization step, we apply

A←[ A− fθ(∇A, η
A), where ∇A = ∂L(S,A,R)

∂A
(3.11)

R←[ R− fθ(∇R, η
R), where ∇R = ∂L(S,A,R)

∂R
(3.12)

with ηA, ηR > 0 being individual learning rates for both matrices and fθ(·) representing an
arbitrary gradient-based update rule with additional hyperparameters θ. For our experiments,
we employ automatic differentiation methods. For details on the implementation of the algorithm
above, we refer to Section 3.4.2.

3.3.2 The constrained DEDICOM model for tensors
In this section, we extend the model described above to three-dimensional tensors as input data.
As above, the input describes the co-occurrences of vocabulary items in a text corpus. However,
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we consider additionally structured text: Instead of one matrix describing the entire corpus,
we unite multiple n× n matrices of co-occurrences into one tensor S ∈ Rt×n×n. Each of the t
slices then consists of an adjusted PPMI matrix for a subset of the text corpus. This structure
could originate for instance from different data (e.g., different Wikipedia articles), different
topical subsets of the data source (e.g., reviews for different articles) or describe time-slices
(e.g., news articles for certain time periods).

To construct the PPMI tensor we again take a vocabulary X = x1, . . . , xn over the entire
corpus. For each subset l, we then calculate a co-occurrence matrix Xl ∈ Rn×n as described
above. Stacking these matrices yields the co-occurrence tensor X ∈ Rt×n×n.

When transforming slice Xl into a PMI matrix we want to apply information from the entire
corpus. We therefore do not only calculate the column, the row, and the total sums on the
corresponding subset but on the entire text corpus. Therefore,

pmilij := log xlij + logN − logNi − logNj , (3.13)

where N := ∑k
l=1
∑n

ij=1 xlij is the sum of all co-occurrence counts of X, Ni := ∑k
l=1
∑n

j=1 xlij

the row sum and Nj := ∑k
l=1
∑n

i=1 xlij the column sum.
Finally, we define the positive pointwise mutual information tensor as

slij = ppmilij = max{0,pmilij}. (3.14)

We decompose this input tensor into a matrix A ∈ Rn×k and a tensor R ∈ Rt×k×k, such that

S ≈ ARA⊤ (3.15)

where we multiply each slice of R with A and A⊤ to reconstruct the corresponding slice of S:

slij ≈
k∑

b=1

k∑
c=1

aibrlbcajc. (3.16)

We keep our naming convention for A as the loading matrix and R as the affinity tensor,
since again A gives us for each word i in the vocabulary a vector of size k and for each slice l,
the square matrix Rl := (rlij)k

i,j=1 provides information on the relationships between the topics
in the l-th input slice.

Analogous to (3.8) we construct a loss function

L(S,A,R) =
∥∥∥S −AR(A)⊤

∥∥∥2

F
(3.17)

=
t∑

l=1

n∑
i=1

n∑
j=1

(
slij −

(
ARl(A)⊤

)
ij

)2
(3.18)

=
t∑

l=1
L(Sl,A,Rl) (3.19)
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with (
ARl(A)⊤

)
ij

=
k∑

b=1

k∑
c=1

aibrlbcajc. (3.20)

Note that in this framework, the DEDICOM algorithm described in the previous section is
equivalent to tensor DEDICOM with t = 1.

Update steps can then be taken via alternating gradient descent on A and R. As in the
previous section, one can now add additional constraints to A and R and calculate the gradients
as in (3.11), using automatic differentiation methods. Taking update steps of size ηA and ηR

respectively leads to an eventual convergence to some local or global minimum of the loss (3.17)
with respect to the original or constrained A and R.

Alternatively, constraints can be added to A and R by methods like projected gradient
descent and the Frank-Wolfe algorithm [76] which either adjust the respective matrix or tensor
to be constrained after the gradient step or apply the general gradient step such that the matrix
or tensor never leaves the constrained area.

However, empirical results show that automatic differentiation methods lead to slow and
unstable training convergence and worse qualitative results when applying the mentioned
constraints on the factor matrices and tensors. We therefore derive an alternative method of
applying alternating gradient descent to A and R based on multiplicative update rules. This
does not only improve training stability and convergence behavior but also leads to better
qualitative results (see Section 3.4.3 and Figure 3.4).

We derive the gradients for A and R analytically and set the learning rates ηA and ηR

individually for each element (i, j) as ηA
ij for matrix A and for each element (l, i, j) as ηR

lij for
tensor R, such that the resulting update step is an element-wise multiplication of the respective
matrix or tensor.

We derive the updates for the matrix algorithm first and later extend them for the tensor
case. For detailed derivations, refer to Appendix Section A.1. For A we derive the gradient
analytically as

∂L(S,A,R)
∂A

= −2
(
SAR⊤ + S⊤AR−A

(
RA⊤AR⊤ + R⊤A⊤AR

))
. (3.21)

Therefore, the update step is

aij ← aij + ηA
ij 2
([

SAR⊤ + S⊤AR
]

ij
−
[
A
(
RA⊤AR⊤ + R⊤A⊤AR

)]
ij

)
. (3.22)

If we now chose ηA as
ηA

ij :=
aij

2[A(R⊤A⊤AR + RA⊤AR⊤)]ij
, (3.23)

the update (3.22) becomes

aij ← aij

[S⊤AR + SAR⊤]ij
[A(R⊤A⊤AR + RA⊤AR⊤)]ij

. (3.24)
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For R we derive the gradient analytically as

∂L(S,A,R)
∂R

= −2(A⊤SA−A⊤ARA⊤A). (3.25)

Therefore, the update step is

rij = rij + ηR
ij 2([A⊤SA]ij − [A⊤ARA⊤A]ij). (3.26)

Choose

ηR
ij :=

rij

2[A⊤ARA⊤A]ij
, (3.27)

and the update (3.26) becomes

rij ← rij

[A⊤SA]ij
[A⊤ARA⊤A]ij

. (3.28)

Since sij ≥ 0 for all i, j, in both (3.24) and (3.28) each element of the multiplier matrix is
positive if both A ≥ 0 and R ≥ 0 in all entries. Therefore, initializing both matrices with
positive values results in an update step that keeps the elements of A and R positive.

To extend this rule to tensor DEDICOM, consider that the analytical derivatives hold for R
and A by considering each slice Sl and Rl individually:

∂L(Sl,A,Rl)
∂Rl

= −2(A⊤SlA−A⊤ARlA
⊤A), (3.29)

∂L(Sl,A,Rl)
∂A

= −2(S⊤
l ARl + SlAR⊤

l −A(R⊤
l A⊤ARl + RlA

⊤AR⊤
l )). (3.30)

Since by (3.19) we have L(S,A,R) = ∑t
l=1 L(Sl,A,Rl) we can derive the full gradients as

∂L(S,A,R)
∂R

= (A⊤SA−A⊤ARA⊤A), (3.31)

∂L(S,A,R)
∂A

=
t∑

l=1
−2(S⊤

l ARl + SlAR⊤
l −A(R⊤

l A⊤ARl + RlA
⊤AR⊤

l )). (3.32)

For A we set ηA as

ηA
ij :=

aij

2∑t
l=1[A(R⊤

l A⊤ARl + RlA
⊤AR⊤

l )]ij
. (3.33)
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Then the update step is

aij ← aij − η
A
ij
∂L(S,A,R)

∂A
(3.34)

= aij

∑t
l=1[S⊤

l ARl + SlAR⊤
l ]∑t

l=1[A(R⊤
l A⊤ARl + RlA

⊤AR⊤
l )]ij

. (3.35)

For R we again set

η
R
lij :=

rlij

2[A⊤ARlA
⊤A]ij

, (3.36)

and the update (3.26) becomes

rlij ← rlij

[A⊤SlA]ij
[A⊤ARlA

⊤A]ij
. (3.37)

Equations (3.24) and (3.28) provide multiplicative update rules that ensure the non-negativity
of A and R without any additional constraints. Equations (3.34) and (3.37) provide the
corresponding rules for matrix A and tensor R in tensor DEDICOM.

3.3.3 On Symmetry
The DEDICOM algorithm is able to factorize both symmetrical and asymmetrical matrices S.
For a given matrix A, the symmetry of R dictates the symmetry of the product ARA⊤, since

(ARA⊤)ij =
k∑

b=1

k∑
c=1

aibrbcajc =
k∑

b=1

k∑
c=1

aibrcbajc (3.38)

=
k∑

c=1

k∑
b=1

ajcrcbaib = (ARA⊤)ji (3.39)

iff rcb = rbc for all b, c. We therefore expect a symmetric matrix S to be decomposed into ARA⊤

with a symmetric R, which is confirmed by our experiments. Factorizing a non-symmetric
matrix leads to a non-symmetric R. The asymmetric relation between items leads to asymmetric
relations between the latent factors. The same relations hold for each slice Sl and Rl in tensor
DEDICOM.

3.3.4 On Interpretability
We have

sij ≈
k∑

b=1

k∑
c=1

aibrbcajc, (3.40)

i.e. we can estimate the probability of co-occurrence of two words wi and wj from the word
embeddings ai and aj and the matrix R, where ai denotes the i-th row of A.
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Figure 3.2: The affinity matrix R describes the relationships between the latent factors. Illus-
trated here are two word embeddings, corresponding to the words wi and wj . Darker shades
represent larger values. In this example, we predict a large co-occurrence at sii and sjj because
of the large weight on the diagonal of the R matrix. We predict a low co-occurrence at sij and
sji since the large weights on ai1 and aj3 interact with low weights on r13 and r31.

If we want to predict the co-occurrence between words wi and wj we consider the latent
topics that make up the word embeddings ai and aj , and sum up each component from ai

with each component aj with respect to the relationship weights given in R.
Two words are likely to have a high co-occurrence if their word embeddings have larger

weights in topics that are positively connected by the R matrix. Likewise, a negative entry
rbc makes it less likely for words with high weight in the topics b and c to occur in the same
context. See Figure 3.2 for an illustrated example.

Having an interpretable embedding model provides value beyond the analysis of the affinity
matrix of a single document. The worth of word embeddings is generally measured in their
usefulness for downstream tasks. Given a prediction model based on word embeddings as one
of the inputs, further analysis of the model behavior is facilitated when latent input dimensions
easily translate to semantic meaning.

In most word embedding models, the embedding vector of a single word is not particularly
useful in itself. The information only lies in its relationship (i.e. closeness or cosine similarity)
to other embedding vectors. For example, an analysis of the change of word embeddings
and therefore the change of word meaning within a document corpus (for example, a news
article corpus) can only show how various words form different clusters or drift apart over time.
Interpretability of latent dimensions would provide tools to also consider the development of
single words within the given topics.

All considerations above hold for the three-dimensional tensor case, in which we analyze a
slice Rl together with the common word embedding matrix A to gain insight into the input
data slice Sl.

3.4 Experiments and Results
In the following section we describe our experimental setup in full detail2 and present our
results on the simultaneous topic (relation) extraction and word embedding learning task. We
compare these results against competing matrix and tensor factorization methods for topic

2 Our Python implementation to reproduce the results is available on https://github.com/LarsHill/
text-dedicom-paper. Additionally, we provide a snapshot of our versions of the applied public datasets
(Wikipedia articles and Amazon reviews).
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modeling, namely NMF (including a Tucker-2 variation compatible with tensors), LDA, and
SVD.

3.4.1 Data
We conduct our experiments on three orthogonal text datasets, which cover different text
domains and allow for a thorough empirical analysis of our proposed methods.

The first corpus leverages triplets of individual Wikipedia articles. The articles are retrieved
as raw text via the official Wikipedia API using the wikipedia-api library. We differentiate
between thematically similar (e.g., “Dolphin” and “Whale”) and thematically different articles
(e.g., “Soccer” and “Donald Trump”). Each article triplet is categorized into one of three
classes: All underlying Wikipedia articles are thematically different, two articles are thematically
similar and one is different, and all articles are thematically similar. [36] contains an extensive
evaluation over 12 triples of articles in the supplementary material. In this chapter, we focus
on the three triples described in the previous main paper, namely

1. “Soccer”, “Bee”, “Johnny Depp”,

2. “Dolphin”, “Shark”, “Whale”, and

3. “Soccer”, “Tennis”, “Rugby”.

Depending on whether the article triplets are represented as input matrix or tensor they
are processed differently. In the case of a matrix input, all three articles get concatenated to
form a new artificially generated document. In the case of a tensor input the articles remain
individual documents which later represent slices in the tensor representation.

To analyze the topic extraction capability of constrained DEDICOM also on text which is
rather prone to grammatical and syntactical errors we utilize a subset of the Amazon review
dataset [77]. In particular, we restrict ourselves to the “movie” product category and create a
corpus consisting of six text documents holding the concatenated reviews from the following
films respectively, “Toy Story 1”, “Toy Story 3”, “Frozen”, “Monsters, Inc.”, “Kung Fu Panda”,
and “Kung Fu Panda 2”. Grouping the reviews by movie affiliation enables us to generate a
tensor representation of the corpus, which we factorize via non-negative tensor DEDICOM
to analyze topic relations across movies. Table 3.1 lists the number of reviews per movie and
shows that based on review count, “Kung Fu Panda 1” is the most popular among the six films.

The third corpus represents a complete collection of New York Times news articles ranging
from September 1st, 2019 to August 31st, 2020. The articles are taken from the New York
Times website and cover a wide range of sections (see Table 3.3).

Instead of grouping the articles by section, we bin and concatenate them by month, yielding
twelve news documents containing monthly information (see Table 3.2 for details on the article
count per month). Thereby, the factorization of tensor DEDICOM allows for an analysis of
topic relations and their changes over time.

Before transforming the text documents to matrix or tensor representations we apply the
following textual preprocessing steps. First, the whole text gets lower-cased. Second, we
tokenize the text making use of the word-tokenizer from the nltk library and remove common
English stop words, including contractions such as “you’re” and “we’ll”. Lastly, we clear the
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Table 3.1: Amazon Movie Review
corpus grouped by movie and num-
ber of reviews per slice of input
tensor.

Movie # Reviews
Toy Story 1 2491
Monsters, Inc. 3203
Kung Fu Panda 1 6708
Toy Story 3 1209
Kung Fu Panda 2 1208
Frozen 1292

Table 3.2: New York Times
news corpus grouped by
month and number of arti-
cles. This corresponds to the
number of articles per slice
of input tensor.

Month # Articles
Sep 19 1586
Oct 19 1788
Nov 19 1623
Dec 19 1461
Jan 20 1725
Feb 20 1602
Mar 20 1937
Apr 20 1712
May 20 1713
Jun 20 1828
Jul 20 1814
Aug 20 1886

Table 3.3: New York Times
news corpus composition by
section and number of arti-
cles.

Section # Articles
Politics 3204
U.S. 2610
Business 1624
New York 1528
Europe 988
Asia Pacific 839
Health 598
Technology 551
Middle East 443
Science 440
Economy 339
Elections 240
Climate 239
World 233
Africa 124
Australia 113
Canada 104

text from all remaining punctuation and delete digits, single characters, and multi-spaces (see
Table 3.4 for an overview of corpora statistics after preprocessing).

Next, we utilize all preprocessed documents in a corpus to extract a fixed-size vocabulary of
n = 10 000 most frequent tokens. Since our dense input tensor is of dimensionality t× n× n, a
larger vocabulary size leads to a significant increase in memory consumption. Based on the
total number of unique corpora words reported in Table 3.4, a maximum vocabulary size of
n = 10 000 is reasonable for the three Wikipedia corpora and the Amazon reviews corpus. Only
the New York Times dataset could potentially benefit from a larger vocabulary size.

Based on this vocabulary a symmetric word co-occurrence matrix gets calculated for each of
the corpus documents. When generating the matrix we only consider context words within a
symmetrical window around the base word. Analysis in [53] and [36] shows that the window size
in the range of 6 to 10 has little impact on performance. Thus, following our implementation in
[36], we choose a window size of 7, the default in the original glove implementation. As in [53],
each context word only contributes 1/d to the total word pair count, given it is d words apart
from the base word. To avoid any bias or prior information from the structure and order of the
concatenated Wikipedia articles, reviews, or news articles, we randomly shuffle the vocabulary
before creating the co-occurrence matrix. As described in Section 3.3 we then transform the
co-occurrence matrix to a positive PMI matrix. If the corpus consists of just one document
the generated PPMI matrix functions as input for the row-stochastic DEDICOM algorithm. If
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Table 3.4: Overview of word count statistics after preprocessing for all datasets. Columns
represent from left to right the total number of words per corpus, the total number of unique
words per corpus, the average number of total words per article, the average number of unique
words per article, and the cutoff frequency of the 10 000th most common word. Wikipedia
article combinations: DSW (Dolphin, Shark, Whale), SBJ (Soccer, Bee, Johnny Depp), STR
(Soccer, Tennis, Rugby).

Total Unique Avg. Total Avg Unique Cutoff
Amazon Reviews 252 400 15 560 15.2 13.4 1
Wikipedia DSW 14 500 4376 4833.3 2106.0 1
Wikipedia SBJ 10 435 4034 3478.3 1600.3 1
Wikipedia STR 11 501 3224 3833.7 1408.0 1
New York Times 12 043 205 141 591 582.5 366.5 118

the corpus consists of several documents (e.g., one news document per month) the individual
PPMI matrices get stacked to a tensor, which in turn represents the input for the non-negative
tensor DEDICOM algorithm.

The next section sheds light upon the training process of row-stochastic DEDICOM, non-
negative tensor DEDICOM, and the above-mentioned competing matrix and tensor factorization
methods, which will be benchmarked against our results in Section 3.4.3 and in the appendix.

3.4.2 Training
As thoroughly outlined in Section 3.3 we train both, row-stochastic DEDICOM and non-negative
tensor DEDICOM with the alternating gradient descent paradigm.

In the case of a matrix input and a row-stochasticity constraint on A we utilize automatic
differentiation from the PyTorch library to perform update steps on A and R. First, we
initialize the factor matrices A ∈ Rn×k and R ∈ Rk×k, by randomly sampling all elements
from a uniform distribution centered around 1, U(0, 2). Note that after applying the softmax
operation on A all rows of A are stochastic. Therefore, scaling R by

s̄ := 1
n2

n∑
ij

sij , (3.41)

will result in the initial decomposition A′R(A′)⊤ yielding reconstructed elements in the range
of s̄, the element mean of the PPMI matrix S, and thus, speeding up convergence. Second, A
and R get iteratively updated employing the Adam optimizer [78] with constant individual
learning rates of ηA = 0.001 and ηR = 0.01 and hyperparameters β1 = 0.9, β2 = 0.999 and
ϵ = 1 × 10−8. Both learning rates were identified through an exhaustive grid search. We
train for num epochs = 15, 000 until convergence, where each epoch consists of an alternating
gradient update with respect to A and R. Algorithm 1 illustrates the just-described training
procedure.

In the case of a tensor input and an additional non-negativity constraint on R we noticed
an inferior training performance with automatic differentiation methods. Hence, due to faster
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Algorithm 1 The row-stochastic DEDICOM algorithm
1: initialize A,R← U(0, 2) · s̄ ▷ See Equation (3.41) for the definition of s̄
2: initialize β1, β2, ϵ ▷ Adam algorithm hyperparameters
3: initialize ηA, ηR ▷ Individual learning rates

4: for i in 1, . . . , num epochs do
5: Calculate loss L = L(S,A,R) ▷ See Equation (3.8)
6: A← [ A−Adamβ1,β2,ϵ(∇A, η

A), where ∇A = ∂L
∂A

7: R←[ R−Adamβ1,β2,ϵ(∇R, η
R), where ∇R = ∂L

∂R
8: return A′ and R, where A′ = row softmax (col norm (A)) ▷ See Equation (3.6)

Algorithm 2 The non-negative tensor DEDICOM algorithm
1: initialize A,R← U(0, 2)
2: scale A by ᾱ and Rl by αl ▷ See Equation (3.42) for the definitions of ᾱ and αl

3: for i in 1, . . . , num epochs do
4: Calculate loss L = L(S,A,R) ▷ See Equation (3.18)

5: aij ← [ aij

[∑t
l=1
(
SlAR⊤

l + S⊤
l ARl

)]
ij[

A
∑t

l=1
(
RlA

⊤AR⊤
l + R⊤

l A⊤ARl

)]
ij

6: rlij ←[ rlij

[
A⊤SlA

]
ij[

A⊤ARlA
⊤A

]
ij

7: return A and R

and more stable training convergence and improved qualitative results, we update A and R
iteratively via derived multiplicative update rules enforcing non-negativity. Again, we initialize
A ∈ Rn×k and R ∈ Rt×k×k by randomly sampling all elements from a uniform distribution
centered around 1, U(0, 2). To ensure that the initialized components yield a reconstructed
tensor whose elements are in the same range of the input, we calculate an appropriate scaling
factor for each tensor slice Sl as

αl :=
(
s̄l

k2

) 1
3
, where s̄l := 1

n2

n∑
ij

slij . (3.42)

Next, we scale A by ᾱ = 1
t

∑t
l=1 αl and each slice Rl by αl before starting the alternating

multiplicative update steps for num epochs = 300. The detailed derivation of the update rules
is found in Section 3.3.2 and their iterative application in the training process is described in
Algorithm 2.

We implement NMF, LDA, and SVD using the sklearn library. In all cases, the learnable
factor matrices are initialized randomly and default hyperparameters are applied during training.
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Figure 3.3: Reconstruction loss development during matrix factorization training. The x-axis
plots the number of epochs, and the y-axis plots the corresponding reconstruction error for
each method.

For NMF the multiplicative update rule from [48] is utilized.
Figure 3.3 shows the convergence behavior of the row-stochastic matrix DEDICOM training

process and the final loss of NMF and SVD. Note that LDA optimizes a different loss function,
which is why the calculated loss is not comparable and therefore excluded. We see that the final
loss of DEDICOM is located just above the other losses, which is reasonable when considering
the row stochasticity constraint on A and the reduced parameter amount of nk + k2 compared
to NMF (2nk) and SVD (2nk + k2).

To also have a benchmark model for our constrained tensor DEDICOM methods to compare
against, we implement a Tucker-2 variation of NMF, named tensor NMF (TNMF), which
factorizes the input tensor S as

Sl ≈W hl. (3.43)

Its training procedure follows closely the above-described alternating gradient descent approach
for non-negative tensor DEDICOM. However, due to the two-way factorization (three-way for
DEDICOM) the scaling factor αl to properly initialize W and H has to be adapted to

αl :=
(
s̄l

k

) 1
2
, where s̄l := 1

n2

n∑
ij

slij . (3.44)

Analogous to Figure 3.3 we compare the training stability and convergence speed of our
implemented tensor factorization methods. In particular, Figure 3.4 visualizes the reconstruction
loss development for non-negative tensor DEDICOM trained via multiplicative update rules,
row-stochastic tensor DEDICOM trained with automatic differentiation and the Adam optimizer,
and tensor NMF. It can be observed that row-stochastic tensor DEDICOM converges much
slower than the other two models trained with multiplicative update rules (learning rates are
implicit here and don’t have to be tuned).
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Figure 3.4: Reconstruction loss development during tensor factorization training. The x-axis
plots the number of epochs on a logarithmic scale, and the y-axis plots the corresponding
reconstruction error for each method.

3.4.3 Results
In the following, we present our results of training the above-mentioned constrained DEDICOM
factorizations on different text corpora to simultaneously learn interpretable word embeddings
and meaningful topic clusters and their relations.

First, we focus our analysis on row-stochastic matrix DEDICOM applied to the synthetic
Wikipedia text documents described in Section 3.4.1. For compactness reasons we primarily
consider the document, “Soccer, Bee and Johnny Depp”, set the number of topics to k = 6 and
refer to Appendix A.2.1 for the other article combinations and competing matrix factorization
results. Second, we extend our evaluation to the tensor representation of the Wikipedia
documents (t = 3, one article per tensor slice) and compare the performance of non-negative
(multiplicative updates) and row-stochastic (Adam updates) tensor DEDICOM. Lastly, we
apply non-negative tensor DEDICOM to the binned Amazon movie and New York Times
news corpora to investigate topic relations across movies and over time. We again point the
interested reader to Appendix A.2 for additional results and the comparison to tensor NMF.

In the first step, we evaluate the quality of the learned latent topics by assigning each word
embedding a′

i ∈ R1×k to the latent topic dimension that represents the maximum value in a′
i,

e.g.,

a′
i =

[
0.05 0.03 0.02 0.14 0.70 0.06

]
, argmax

(
a′

i

)
= 5, (3.45)

and thus, a′
i gets matched to Topic 5. Next, we decreasingly sort the words within each topic

based on their matched topic probability. Table 3.5 shows the overall number of allocated
words and the resulting top 10 words per topic together with each matched probability.

As indicated by the high assignment probabilities, one can see that columns 1, 2, 4, 5, and 6
represent distinct topics, which easily can be interpreted. Topic 1 and 4 are related to soccer,
where 1 focuses on the game mechanics and 4 on the organizational and professional aspects
of the game. Topic 2 and 6 refer to Johnny Depp, where 2 focuses on his acting career and 6
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Figure 3.5: (a) 2-dimensional representation of word embeddings A′ colored by topic assignment.
(b) 2-dimensional representation of word embeddings A′ colored by original Wikipedia article
assignment (words that occur in more than one article are excluded). (c) Colored heatmap of
affinity matrix R.

on his difficult relationship with Amber Heard. The fifth topic obviously relates to the insect
“bee”. In contrast, Topic 3 does not allow for any interpretation and all assignment probabilities
are significantly lower than for the other topics.

Further, we analyze the relations between the topics by visualizing the trained R matrix as a
heatmap (see Figure 3.5(c)).

One thing to note is the symmetry of R which is a first indicator of a successful reconstruction
A′R(A′)⊤ (see Section 3.3.3). Also, the main diagonal elements are consistently blue (positive),
which suggests a high distinction between the topics. Although not very strong one can still
see a connection between Topic 2 and 6 indicated by the light blue entry r26 = r62. While the
suggested relation between Topic 1 and 4 is not clearly visible, element r14 = r41 is the least
negative one for Topic 1. To visualize the topic cluster quality we utilize UMAP (Uniform
Manifold Approximation and Projection) [79] to map the k-dimensional word embeddings to a
2-dimensional space. Figure 3.5(a) illustrates this low-dimensional representation of A′, where
each word is colored based on the above-described word-to-topic assignment. In conjunction
with Table 3.5 one can nicely see that Topics 2 and 6 (Johnny Depp) and Topics 1 and 4 (Soccer)
are close to each other. Hence, Figure 3.5(a) implicitly shows the learned topic relations as well.

As an additional benchmark, Figure 3.5(b) plots the same 2-dimensional representation, but
now each word is colored based on the original Wikipedia article it belonged to. Words that
occur in more than one article are not considered in this plot.

Directly comparing Figure 3.5(b) and 3.5(a) shows that row-stochastic DEDICOM does not
only recover the original articles but also finds entirely new topics, which in this case represent
subtopics of the articles. Let us emphasize that for all thematically similar article combinations,
the found topics are usually not subtopics of a single article, but rather novel topics that might
span across multiple Wikipedia articles (see, for example, Table A.2 in the appendix). As
mentioned at the top of this section, we are not only interested in learning meaningful topic
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Table 3.5: The top 10 representative words per
dimension of the basis matrix A′, trained on the
wikipedia data as input matrix using automatic
gradient methods.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
#619 #1238 #628 #595 #612 #389
ball film salazar cup bees heard1 (0.77) (0.857) (0.201) (0.792) (0.851) (0.738)
penalty starred geoffrey football species court2 (0.708) (0.613) (0.2) (0.745) (0.771) (0.512)
may role rush fifa bee depp3 (0.703) (0.577) (0.2) (0.731) (0.753) (0.505)
referee series brenton world pollen divorce4 (0.667) (0.504) (0.199) (0.713) (0.658) (0.454)
goal burton hardwicke national honey alcohol5 (0.66) (0.492) (0.198) (0.639) (0.602) (0.435)
team character thwaites uefa insects paradis6 (0.651) (0.465) (0.198) (0.623) (0.576) (0.42)
players played catherine continental food relationship7 (0.643) (0.451) (0.198) (0.582) (0.536) (0.419)
player director kaya teams nests abuse8 (0.639) (0.45) (0.198) (0.576) (0.529) (0.41)
play success melfi european solitary stating9 (0.606) (0.438) (0.198) (0.57) (0.513) (0.408)
game jack raimi association eusocial stated10 (0.591) (0.434) (0.198) (0.563) (0.505) (0.402)

Table 3.6: For the most significant two words
per topic, the four nearest neighbors based
on cosine similarity are listed. Matrix A′

trained on the wikipedia data as input ma-
trix using automatic gradient methods.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
ball film salazar cup bees heard0 (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)
penalty starred geoffrey fifa bee court1 (0.994) (0.978) (1.0) (0.995) (0.996) (0.966)
referee role rush national species divorce2 (0.992) (0.964) (1.0) (0.991) (0.995) (0.944)
may burton bardem world pollen alcohol3 (0.989) (0.937) (1.0) (0.988) (0.986) (0.933)
goal series brenton uefa honey abuse4 (0.986) (0.935) (1.0) (0.987) (0.971) (0.914)
penalty starred geoffrey football species court0 (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)
referee role rush fifa bees divorce1 (0.999) (0.994) (1.0) (0.994) (0.995) (0.995)
goal series salazar national bee alcohol2 (0.998) (0.985) (1.0) (0.983) (0.99) (0.987)
player burton brenton cup pollen abuse3 (0.997) (0.981) (1.0) (0.983) (0.99) (0.982)
ball film thwaites world insects settlement4 (0.994) (0.978) (1.0) (0.982) (0.977) (0.978)

clusters but also in training interpretable word embeddings that capture semantic meaning.
Hence, we select within each topic the two most representative words and calculate the cosine

similarity between their word embeddings and all other word embeddings stored in A′. Table
3.6 shows the 4 nearest neighbors based on cosine similarity for the top 2 words in each topic.
We observe a high thematic similarity between words with large cosine similarity, indicating
the usefulness of the rows of A′ as word embeddings.

In comparison to DEDICOM, other matrix factorization methods also provide a useful
clustering of words into topics, with varying degrees of granularity and clarity. However, the
application of these methods as word embedding algorithms mostly fails on the word similarity
task, with words close in cosine similarity seldom sharing the same thematic similarity we have
seen in DEDICOM. This can be seen in Table A.1, which shows for each method, NMF, LDA,
and SVD, the resulting word-to-topic clustering and the cosine nearest neighbors of the top two
word embeddings per topic. While the individual topics extracted by NMF look very reasonable,
its word embeddings do not seem to carry any semantic meaning based on cosine similarity;
e.g., the four nearest neighbors of “ball” are “invoke”, “replaced”, “scores”, and “subdivided”.
A similar nonsensical picture can be observed for the other main topic words. LDA and SVD
perform slightly better on the similar word task, although not all similar words appear to be
sensible, e.g., “children”, “detective”, “crime”, “magazine” and “barber”. Also, some topics
cannot be clearly defined due to mixed word assignments, e.g., Topic 4 for LDA and Topic 1
for SVD.
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Figure 3.6: (a) and (b) show colored heatmaps of the affinity tensor R, trained on the Wikipedia
data represented as input tensor using different methods: (a) automatic gradient methods, and
(b) non-negative multiplicative update rules.

Before shifting our analysis to the Amazon movie review and the New York Times news
corpus, we investigate factorizing the tensor representation of the “Soccer, Bee, and Johnny
Depp” Wikipedia documents. In particular, we compare the qualitative factorization results of
row-stochastic and non-negative tensor DEDICOM trained with automatic differentiation and
multiplicative update rules, respectively. Tables 3.7 and 3.8 in conjunction with Figures 3.6(a)
and 3.6(b) show the extracted topics and their relations for both methods.

It can be seen that non-negative tensor DEDICOM yields a more interpretable affinity tensor
R (Figure 3.6(b)) due to its enforced non-negativity. For example, it highlights the bee-related
Topics 1, 3, and 5 in the affinity tensor slice corresponding to the article “Bee”. Moreover,
all extracted topics in Table 3.8 are distinct, and their relations are well represented in the
individual slices of R. In contrast, Topic 6 in Table 3.7 does not represent a meaningful topic,
which is also indicated by the low probability scores of the ranked topic words. Although the
results of the similar word evaluation are arguably better for row-stochastic tensor DEDICOM
(see Tables A.6 and A.7) we prioritize topic extraction and relation quality. That is why in the
further analysis of the Amazon review (see Appendix A.2.3) and New York Times news corpus,
we restrict our evaluation to non-negative tensor DEDICOM.

Figure 3.7 and Table 3.9 refer to our experimental results on the dataset of New York Times
news articles. We see a diverse array of topics extracted from the text corpus, ranging from US
politics (Topics 4, 6, 7) to natural disasters (Topic 8), Hollywood sexual assault allegations
(Topic 10), and the COVID epidemic both from a medical view (Topic 3) and a view on resulting
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Table 3.7: Top 10 representative words per di-
mension of the basis matrix A′, trained on the
wikipedia data as input tensor using automatic
gradient methods.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
#481 #661 #414 #457 #316 #1711
hind game film heard bees disorder1 (0.646) (0.83) (0.941) (0.844) (0.922) (0.291)
segments football starred court bee collapse2 (0.572) (0.828) (0.684) (0.566) (0.868) (0.29)
bacteria players role divorce honey attrition3 (0.563) (0.782) (0.624) (0.51) (0.756) (0.285)
legs ball series depp insects losses4 (0.562) (0.777) (0.562) (0.508) (0.68) (0.284)
antennae team burton sued food invertebrate5 (0.555) (0.771) (0.547) (0.48) (0.634) (0.283)
females may character stating species rate6 (0.549) (0.696) (0.499) (0.45) (0.599) (0.283)
wings play success alcohol nests businesses7 (0.547) (0.692) (0.494) (0.449) (0.596) (0.282)
small competitions played paradis flowers virgil8 (0.538) (0.677) (0.483) (0.446) (0.571) (0.282)
groups match films alleged pollen iridescent9 (0.527) (0.672) (0.482) (0.445) (0.56) (0.282)
males penalty box stated larvae detail10 (0.518) (0.664) (0.465) (0.444) (0.529) (0.281)

Table 3.8: Top 10 representative words per di-
mension of the basis matrix A, trained on the
wikipedia data as input tensor using multiplica-
tive update rules.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
#521 #249 #485 #871 #445 #1469
species game honey allow insects depp1 (3.105) (3.26) (2.946) (0.668) (2.794) (2.419)
eusocial football bee organised pollen film2 (2.524) (3.05) (2.01) (0.662) (2.239) (2.115)
solitary players beekeeping winner flowers role3 (2.279) (2.699) (1.933) (0.632) (2.019) (1.32)
nest ball bees officially nectar starred4 (2.118) (2.475) (1.704) (0.626) (1.656) (1.3)
females may increased wins wasps actor5 (1.993) (2.447) (1.589) (0.617) (1.602) (1.155)
workers team humans level wings series6 (1.797) (2.424) (1.515) (0.613) (1.588) (1.126)
nests association wild free many burton7 (1.787) (1.92) (1.415) (0.6) (1.588) (1.112)
colonies play mites constitute hind played8 (1.722) (1.834) (1.4) (0.596) (1.577) (1.068)
egg referee colony regulation hairs heard9 (1.692) (1.809) (1.35) (0.595) (1.484) (1.005)
males laws beekeepers prestigious pollinating success10 (1.664) (1.792) (1.332) (0.594) (1.467) (0.981)

restrictions to businesses (Topic 9).
The corresponding heatmap allows us to infer when certain topics were most relevant in the

last year. While the entries relating to the COVID pandemic remain light blue for the first
half of the heatmap we see the articles picking up on the topic around March 2020, when the
effects of the Coronavirus started hitting the US. Even comparatively smaller events like the
conviction of Harvey Weinstein and the death of George Floyd triggering the racism debate in
the US can be recognized in the heatmap, with a large deviation of Topic 10 around February
2020 and Topic 4 around June 2020.

Further empirical results on the Amazon review and New York Times news corpora, such
as two-dimensional UMAP representations of the embedding matrix A and extracted topics
from tensor NMF, can be found in Appendix A.2.3 and A.2.4, respectively. For example, Table
A.23 shows that the tensor NMF factorization also extracts high-quality topics but lacks the
interpretable affinity tensor R which is crucial to properly comprehend a topic development
over time.

3.5 Conclusion and Outlook
We propose a constrained version of the DEDICOM algorithm that is able to factorize the
pointwise mutual information matrices of text documents into meaningful topic clusters all
the while providing interpretable word embeddings for each vocabulary item. Our study on
semi-artificial data from Wikipedia articles has shown that this method recovers the underlying
structure of the text corpus and provides topics with thematic granularity, meaning the extracted
latent topics are more specific than a simple clustering of articles. Comparison to related matrix
factorization methods has shown that the combination of relation-aware topic modeling and
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Figure 3.7: Colored heatmap of affinity tensor R, trained on the New York Times news article
data represented as input tensor using multiplicative update rules.

interpretable word embedding learning given by our algorithm is unique in its class.
Extending this algorithm to factorize three-dimensional input tensors allows for the study of

changes in the relations between topics across subsets of a structured text corpus, e.g., news
articles grouped by time period. Algorithmically, this can be solved via alternating gradient
descent by either automatic gradient methods or by applying multiplicative update rules which
decrease training time drastically and enhance training stability.

Due to memory constraints from matrix multiplications of high-dimensional dense tensors,
our proposed approach is currently limited in vocabulary size or time dimension.

In further work, we aim to develop algorithms capable of leveraging sparse matrix multiplica-
tions to avoid the above-mentioned memory constraints. In addition, we plan to expand on
the possibilities of constraining the factor matrices and tensors when applying a multiplicative
update rule and further analyze the behavior of the factor tensors, for example, by utilizing
time series analysis to discover temporal relations between extracted topics and to potentially
identify trends. Finally, further analysis may include additional quantitative evaluations of the
topic modeling performance of our proposed methods with competing approaches.
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Table 3.9: Top 10 representative words per dimension of the basis matrix A, trained on the
New York Times news article data as input tensor using multiplicative update rules.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
#454 #5984 #567 #562 #424 #330 #515 #297 #431 #436
suleimani loans masks floyd contributed confederate ukraine storm restaurants weinstein1 (2.812) (0.618) (3.261) (3.376) (4.565) (3.226) (3.191) (2.76) (2.948) (3.442)
iran university protective minneapolis reporting statue sondland hurricane bars sexual2 (2.593) (0.551) (2.823) (2.551) (2.788) (2.649) (2.881) (2.622) (2.021) (2.71)
iraq oil gloves police michael statues zelensky winds reopen rape3 (2.453) (0.549) (2.516) (2.255) (2.707) (2.416) (2.133) (1.715) (1.684) (2.102)
iranian billion ventilators george katie monuments ambassador tropical gyms assault4 (2.408) (0.54) (2.22) (2.088) (2.324) (1.815) (1.976) (1.606) (1.654) (1.861)
iraqi loan surgical protests alan monument ukrainian storms stores jury5 (1.799) (0.468) (2.032) (1.936) (2.292) (1.375) (1.789) (1.439) (1.638) (1.513)
baghdad bonds gowns brutality emily flag giuliani coast theaters charges6 (1.604) (0.466) (1.965) (1.765) (2.165) (1.206) (1.755) (1.415) (1.627) (1.409)
qassim payments equipment racism nicholas richmond volker laura salons predatory7 (1.599) (0.456) (1.86) (1.579) (2.096) (1.109) (1.754) (1.259) (1.438) (1.387)
strike edited supplies knee cochrane symbols investigations isaias closed harvey8 (1.597) (0.452) (1.816) (1.435) (1.934) (1.089) (1.602) (1.217) (1.424) (1.35)
gen trillion gear killing rappeport remove testified category shops guilty9 (1.513) (0.451) (1.742) (1.429) (1.613) (1.058) (1.584) (1.192) (1.325) (1.312)
maj graduated mask officers maggie removal testimony landfall indoor sex10 (1.504) (0.449) (1.502) (1.405) (1.529) (1.003) (1.558) (1.106) (1.247) (1.3)
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CHAPTER 4

Language Modeling and Contextual
Embeddings

In the previous chapters, we established semantic word embeddings and foundational concepts
in NLP, such as text classification, text matching, and topic modeling. Notably, the previous
chapter introduced a novel method, row-stochastic DEDICOM, which combines word embedding
learning and topic modeling to enhance the interpretability of word embeddings.

However, a significant limitation of the embedding methods so far discussed is their static
nature, where each word in the corpus vocabulary is represented by a fixed vector, independent
of the surrounding context. This approach fails to account for polysemous words, words with
multiple meanings, and those whose meanings are highly context-dependent. For instance, the
homonym “bat” can either refer to the flying animal or the equipment used to hit a ball in
sports like Baseball, depending on the context.

This chapter addresses these issues by introducing contextual word embeddings, which dy-
namically generate word representations based on their context within a sentence or document.
These embeddings are closely linked to language modeling [55], where deep neural network ar-
chitectures capable of sequence modeling are trained on large corpora to learn the relationships,
syntactic intricacies, and semantic dependencies of natural language.

Language modeling is a fundamental task in NLP that involves predicting the likelihood of
sequences of words. It serves as the cornerstone for developing contextual embeddings, which
are crucial for understanding and generating human language. Language models are designed
to capture the sequential dependencies of words, which can be intricate and span long distances
within a text.

There are various approaches to language modeling, each with its own methodology and
applications. Autoregressive models, such as those used in RNNs and decoder-only Transformers
like GPT (Generative Pre-trained Transformer) [17], focus on predicting the next token in
a sequence, thereby modeling the text in a unidirectional manner. In contrast, denoising
or bidirectional models, exemplified by BERT (Bidirectional Encoder Representations from
Transformers) [34], employ masked language modeling to predict missing words within a
sequence, allowing them to capture context from both directions. These advancements in
language modeling have paved the way for the inherent development and improvement of
contextual embeddings.
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Figure 4.1: (a) Contextual embeddings resolve the homonymy and polysemy issue. Depending
on the surrounding context, the embedding vector for “bat” is closer to the vector for “cave” or
“Baseball”. (b) Large Language Models (LLMs) output contextual embeddings dynamically at
inference time, taking the surrounding context into account.

As illustrated in Figure 4.1, contextual embeddings dynamically adjust based on the context
in which a word appears. We see how the word “bat” can have different embedding vectors
depending on its usage: when used in the context of “animal” or “cave” its embedding is closer
to those words, whereas when used in the context of “Baseball”, its embedding aligns more
closely with sports-related terms. This dynamic adjustment effectively resolves issues such as
homonymy and polysemy.

The remaining structure of this chapter is designed to provide a comprehensive overview of the
key concepts and deep neural network architectures used in language modeling, which underpin
the creation of contextual embeddings. We begin with an exploration of RNNs, which laid the
groundwork for sequential data processing. Following this, we delve into Transformers, which
have revolutionized the field with their ability to handle long sequences and parallelize training.
Building on these foundational architectures, we introduce the concepts of self-supervised pre-
training and transfer learning. These paradigms have become essential in leveraging large-scale
datasets to capture the statistics and intricacies of language, enhancing model performance and
facilitating domain adaptation.

Throughout these sections, we also present the most influential and prominent architectures
for language modeling, namely BERT [34] and GPT [17], which exemplify the bidirectional
and autoregressive approaches, respectively. These models have set new benchmarks in various
NLP tasks and have been instrumental in advancing the capabilities of language understanding
and generation.

Finally, we conclude with a discussion on Retrieval-Augmented Generation (RAG) [35],
a cutting-edge approach that combines retrieval mechanisms rooted in text matching (see
Section 2.3) with generative models like GPT to produce more reliable and trustworthy
responses. This approach addresses common issues such as hallucination [80] in generative
language models.
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4.1 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) [8] are a class of neural networks designed to process
sequential data by maintaining an internal state that evolves over time. This architecture is
particularly suited for tasks where the order and context of input data are crucial, such as
language modeling and sequence prediction. The fundamental operation of an RNN can be
described by the following equations

ht = σ (Uht−1 + W xt + bh) , (4.1)
yt = ϕ

(
V ht + by

)
, (4.2)

where ht is the hidden state at time step t, xt is the input at time t, U , W , and V are weight
matrices, bh and by are bias vectors, and σ and ϕ are activation functions. The hidden state ht

captures information from all previous inputs, allowing the RNN to model dependencies across
time steps.

In the context of textual data, the input xt represents the embedding of the word at position
t. Initially, this embedding can either be randomly initialized or derived from pre-trained static
word embeddings. In contrast to the static input representation xt, the hidden state ht is a
dynamically computed contextual representation of the word at time t, capturing the semantic
dependencies of all previous words. The input xt introduces new information at each time
step, while the hidden state ht−1 retains information from the preceding sequence. The RNN
is typically initialized with a zero or random hidden state h0.

One significant shortcoming of this unidirectional approach is that the contextual word
embedding at time step t only captures context from the preceding text. To incorporate context
from both past and future words, Bidirectional RNNs (BiRNNs) are employed. In a BiRNN,
two separate RNNs process the sequence: one in the forward direction (from left to right) and
another in the backward direction (from right to left). The hidden states from both RNNs are
then combined, often by concatenation, to form the final embedding at each time step. This
approach enriches the hidden state representation by capturing context from both directions,
leading to more informative embeddings.

Despite their ability to model sequential data, standard RNNs suffer from the vanishing
gradient problem [81], which hampers their ability to learn long-term dependencies. To address
this issue, variants such as Long Short-Term Memory (LSTM) networks [82] and Gated Recurrent
Units (GRUs) [83] have been developed. These architectures introduce gating mechanisms,
e.g., input, output, and forget gates in LSTMs, to control the flow of information, enabling the
network to retain or forget information as needed. This allows them to capture dependencies
over longer sequences more effectively.

In Chapter 5, we leverage a GRU for sequential text classification, specifically for named
entity recognition, to extract KPIs from financial reports.

Since all RNNs are inherently sequential, they process one token at a time. This sequential
nature limits their parallelizability and results in computational inefficiency for long sequences.
Training RNNs on modern hardware like GPUs, which are optimized for parallel computations,
becomes less efficient due to this constraint.

Additionally, RNNs can struggle with capturing long-range dependencies in sequences,
even with gating mechanisms, especially in very long texts. These limitations motivate the
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exploration of alternative architectures that can handle long sequences more efficiently and
capture dependencies over varying lengths without being constrained by sequential processing.

In the following section, we present the Transformer architecture, a state-of-the-art neural
network model that addresses many of the limitations of RNNs by utilizing self-attention
mechanisms. Transformers enable efficient parallelization during training and effectively capture
long-range dependencies, making them highly suitable for language modeling and contextual
embedding generation.

4.2 Transformers
Transformers [19] have fundamentally transformed NLP by introducing an architecture that
replaces the sequential nature of RNNs with a mechanism known as self-attention. This allows
the model to process input data in parallel and capture dependencies regardless of their distance
in the sequence. Unlike RNNs, which process tokens sequentially and maintain an evolving
hidden state, Transformers compute representations of the entire sequence simultaneously.

The core component of the Transformer architecture is the self-attention mechanism, which
enables the model to weigh the significance of different tokens when encoding a particular word
or symbol. This mechanism relies on transforming the input sequence into queries (Q), keys
(K), and values (V ). Given an input sequence of token embeddings represented as X ∈ Rn×d,
where n is the sequence length and d is the embedding dimension, the projection layer computes

Q = XW Q ∈ Rn×dk , K = XW K ∈ Rn×dk , V = XW V ∈ Rn×dv , (4.3)

where W Q ∈ Rd×dk , W K ∈ Rd×dk , and W V ∈ Rd×dv are learnable projection matrices,
dk is the dimension of the keys (and queries) and dv is the dimension of the values. The
attention weights are calculated using the scaled dot-product of the queries and keys which are
subsequently projected on the value matrix

Attention(Q,K,V ) = softmax
(

QK⊤
√
dk

)
V ∈ Rn×dv , (4.4)

where dk is the dimension of the keys (and queries). The scaling factor 1/
√
dk helps to mitigate

the effect of large dot-product values on the softmax function [19].
To enhance the model’s ability to focus on different positions and representation subspaces,

Transformers employ multi-head attention. Instead of utilizing a single attention function, the
model computes attention multiple times, known as heads, each with its own set of projection
matrices W Q

i ,W
K
i ,W V

i . The outputs of these h heads are concatenated and projected back
to obtain the final multi-head attention result

MultiHead(Q,K,V ) = [head1; . . . ; headh] W O ∈ Rn×d, (4.5)

where each head is defined as headi = Attention(XW Q
i ,XW K

i ,XW V
i ), and W O ∈ Rhdv×d is

a learned projection matrix.
Because Transformers lack the inherent sequential structure of RNNs, positional information

is not encoded automatically. To address this, positional encodings are added to the input
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embeddings to provide the model with information about the position of each token in the
sequence. These encodings can be learned or predefined, such as using sinusoidal functions that
allow the model to generalize to longer sequences than those seen during training [19].

The original Transformer architecture employs an encoder-decoder structure, where both the
encoder and decoder are composed of stacked layers containing multi-head attention mechanisms
and position-wise feedforward networks. The encoder processes the input sequence to generate
contextualized representations, while the decoder generates the output sequence, attending
both to the previous outputs and the encoder’s representations.

Several variations of the Transformer architecture have been developed to suit specific tasks.
One of the most influential encoder-only models is BERT [34], which revolutionized the field of
NLP. BERT focuses solely on the encoder part of the Transformer, allowing it to learn deep
bidirectional representations capturing context from both left and right simultaneously. By
leveraging multitask self-supervised pre-training (see Section 4.3), BERT learns rich token-level
and sentence-level representations. This enables efficient fine-tuning for a variety of downstream
tasks, setting new benchmarks in NLP.

In contrast, decoder-only models, like GPT [17, 84], utilize only the decoder part and are
geared towards text generation tasks. GPT employs autoregressive next token prediction during
pre-training, modeling the probability of a token given its preceding context. This unidirectional
approach makes GPT highly effective for generative tasks, and its ability to perform zero-shot
and few-shot learning via prompting (see Section 4.4) has further expanded its applicability.

While Transformers excel in capturing long-range dependencies and allow for parallelization
during training, they have computational and memory demands that grow quadratically with
the sequence length due to the self-attention mechanism’s O(n2) complexity. This limits their
scalability for very long sequences. To address this, various approaches aim to reduce the
computational burden while maintaining performance to enable longer input sequence lengths.
Notable examples include the Longformer [85], which uses local windowed attention mechanisms
to reduce complexity, and BigBird [86], which introduces sparse attention patterns.

Furthermore, efficient attention mechanisms like FlashAttention [87] optimize the computation
and memory usage of the attention operation itself. Research continues into alternative
architectures and methods, such as linear time selective state-space models like Mamba [88],
which aim to handle long sequences more effectively.

Transformers have become the foundation of state-of-the-art language models, including large
generative models like GPT-4 [18], Mixtral [89], and Gemini [90]. These models demonstrate
remarkable capability in generating coherent and contextually appropriate text, answering
questions, and performing complex language tasks.

Throughout the remainder of this thesis, we employ Transformer-based models to leverage
their strengths in handling sequential data and capturing contextual relationships. Specifically,
we utilize BERT-based architectures for sequential text classification and text matching in
Chapters 5, 6, 7, and 8. Additionally, we utilize GPT-based architectures for text generation
tasks in Chapters 9 and 10.

48



Chapter 4 Language Modeling and Contextual Embeddings

4.3 Self-Supervised Pre-Training
Self-supervised pre-training has become a cornerstone of modern NLP, enabling models to
learn powerful representations of language without the need for extensive labeled datasets. The
vast availability of unlabeled textual data on the internet, combined with advancements in
computational resources such as powerful GPUs and large-scale memory, has facilitated the
training of massive deep neural networks capable of capturing complex linguistic patterns.

The key idea behind self-supervised learning is to generate supervisory signals directly from
the data itself through carefully designed pre-training tasks. This approach circumvents the
need for manual annotation, which is both time-consuming and expensive, thus allowing models
to leverage enormous amounts of data to learn semantic, syntactic, and contextual nuances of
language.

One of the pioneering methods in self-supervised pre-training is Next Token Prediction (NTP),
utilized in generative language models like GPT [17, 18, 91]. In NTP, the model learns to
predict the next token in a sequence, which inherently requires understanding the prior context
to generate plausible continuations. For instance:

“Luke Skywalker ignites his lightsaber and prepares to face Darth Vader . . . ”

Formally, given a sequence of T text tokens x = (x1, x2, . . . , xT ), where each xt ∈ V and V
represents the vocabulary (commonly ranging from 50 000 to 100 000 tokens), the goal is to
model the joint probability P(x). This is achieved by factorizing the joint probability into a
product of conditional probabilities using the chain rule:

P(x) =
T∏

t=1
P(xt | x1:t−1). (4.6)

The model is trained to maximize the likelihood of the observed sequence, which corresponds
to minimizing the negative log-likelihood loss

LNTP = −
T∑

t=1
logPθ(xt | x1:t−1). (4.7)

In practice, Pθ(xt | x1:t−1) is commonly modeled with deep neural network architectures like
Transformers that consist of billions of learnable parameters θ. By learning to predict each
token based on its preceding tokens, the model captures the sequential dependencies necessary
for coherent text generation.

Another prominent approach is Masked Language Modeling (MLM), utilized by models like
BERT [34]. In MLM, a proportion of the input tokens are randomly masked, and the model is
tasked with predicting the original tokens based on the surrounding context. This encourages
the model to develop a deep understanding of the language structure and the relationships
between tokens. For example, given the sentence:

“Luke [MASK] ignites his [MASK] and prepares to face [MASK] Vader.”
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the model must predict the missing words Skywalker, lightsaber, and Darth, relying on the
context provided by the unmasked tokens.

Formally, for each training sequence, a masking function M(x) randomly replaces some
tokens in x with a special token [MASK], producing a corrupted sequence x̃. The model is
then trained to predict the original tokens at the masked positions. The loss function for MLM
is defined as

LMLM = −
∑
t∈M

logPθ(xt | x̃), (4.8)

where M is the set of masked token positions and θ denotes the model parameters. By
predicting the masked tokens, the model learns bidirectional context representations, capturing
information from both left and right of the masked positions.

Self-supervised pre-training can also be leveraged to incorporate higher-level contextual
understanding, such as paragraph-level coherence. BERT introduced the Next Sentence Predic-
tion (NSP) task [34], where the model learns to predict whether a given pair of sentences are
consecutive in the original text. This is formulated as a binary classification problem, enhancing
the model’s ability to understand the relationship between sentences. For example:

✓ A: Luke Skywalker is the last Jedi. B: He ignites his lightsaber and prepares to face Darth Vader.

✗ A: Luke Skywalker is the last Jedi. B: Harry Potter fights Lord Voldemort.

In the first pair, Sentence B logically follows Sentence A, whereas in the second pair, the
sentences are unrelated. While NSP aims to foster an understanding of discourse coherence,
subsequent research has indicated that it might not significantly contribute to downstream task
performance and could be too simplistic, potentially allowing the model to exploit superficial
cues [92].

To address these limitations, alternative pre-training objectives have been explored. In
Chapter 8, we introduce a novel self-supervised pre-training task designed to enhance paragraph-
level contextual awareness in language models. This task aims to provide a more robust training
signal that encourages models to capture deeper semantic relationships and improve performance
on tasks requiring a comprehensive understanding of longer text spans.

Overall, self-supervised pre-training has enabled the development of models that achieve
state-of-the-art results across a wide range of NLP tasks by effectively utilizing large-scale
unlabeled data to learn rich linguistic representations.

4.4 Transfer Learning: Fine-Tuning and Zero-Shot Learning
Building upon self-supervised pre-training, transfer learning has become a pivotal technique in
NLP, enabling models to leverage knowledge acquired from large-scale pre-training and adapt
it to specific downstream tasks. Transfer learning allows models to generalize to new tasks
or domains with limited labeled data, enhancing their applicability and performance across
diverse linguistic challenges.

One common approach to transfer learning is fine-tuning, where a pre-trained language model
is further trained on a target task using labeled data specific to that task. The model adjusts
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its parameters to minimize the loss associated with the new task while retaining the language
understanding acquired during pre-training. Fine-tuning is particularly effective because it
requires significantly less data and computational resources compared to training a model from
scratch.

A powerful example of fine-tuning is instruction tuning, where foundational LLMs pre-trained
on massive text corpora are further fine-tuned to follow instructions and comply with user
requests [93]. This process enables models like GPT [91] to better understand and execute a
wide range of tasks specified by natural language prompts, enhancing their ability to perform
complex tasks based solely on user instructions.

For instance, after instruction tuning, a model can perform tasks such as summarization,
translation, or question answering when provided with appropriate instructions. This capability
extends to understanding tasks formulated entirely in language, allowing the model to generalize
to new tasks and domains without explicit task-specific training data.

In few-shot learning, the model is given a limited number of input-output examples (shots)
within the prompt to demonstrate the desired task. The model leverages these examples to
infer the task’s pattern and apply it to new inputs. For example:

Instruction: Identify the character who said the following quotes in the Star Wars universe.

Examples:
Quote: “Do or do not, there is no try.”
Character: Yoda

Quote: “It’s a trap!”
Character: Admiral Ackbar

Quote: “I find your lack of faith disturbing.”
Character:

The model is expected to continue the pattern and provide the character name for the next
quote, namely Darth Vader, demonstrating its ability to learn from minimal examples.

In zero-shot learning, the model is instructed to perform a task solely through natural
language prompts without any task-specific examples. This leverages the model’s pre-trained
knowledge and its ability to follow instructions embedded in the prompt. For example:

Instruction: Identify all the characters mentioned in the following sentence.

Sentence: “Luke Skywalker and Han Solo board the Millennium Falcon.”

The model, understanding the task from the instruction, should output: “Luke Skywalker,
Han Solo.”

These capabilities stem from the extensive pre-training on diverse data and the instruction-
following fine-tuning process, which together enable models to perform new tasks by interpreting
instructions provided in natural language.

We successfully leverage the fine-tuning paradigm in Chapter 6 of this thesis to adapt a
BERT model for text matching tasks. By fine-tuning, we enable the model to assess semantic
similarity between pairs of texts effectively. In Chapter 8, we further fine-tune a pre-trained
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BERT model for sequential text classification, enhancing its ability to label sequences of tokens
for tasks such as named entity recognition.

In the final chapters of Part III, we utilize zero-shot learning by prompting GPT-based
models to perform compliance checks on financial text documents and to generate high-quality,
trustworthy answers to detailed user queries related to risk and quality assessments. By
formulating the tasks through appropriate prompts, we harness the model’s capability to
generalize to new domains without additional task-specific training.

Overall, transfer learning, through fine-tuning and zero-shot learning, empowers language
models to adapt to a wide array of tasks and domains, maximizing the utility of pre-trained
models and minimizing the need for extensive labeled data.

4.5 Retrieval-Augmented Generation
While LLMs like GPT have demonstrated remarkable capabilities in generating coherent and
contextually relevant text, they are not without limitations. One significant challenge is the
phenomenon of hallucination, where the model generates plausible-sounding but factually
incorrect or nonsensical content [80]. This issue arises because LLMs learn statistical patterns
in text data rather than grounded truths, leading them to produce information that may not
align with reality, especially when dealing with specific or specialized knowledge.

Another limitation of LLMs is the knowledge cutoff inherent in their training data. Models
like GPT-3 and GPT-4 are trained on vast datasets that encompass information available up
to a certain point in time. Consequently, they lack awareness of events, data, or developments
that occur after their last training update. For instance, an LLM trained up to 2019 would be
unaware of events like the COVID-19 pandemic or the latest technological advancements.

Furthermore, many organizations possess extensive proprietary knowledge bases containing
confidential or specialized information not available in public datasets. This information is
critical for tasks requiring domain-specific expertise, such as legal advisories, financial analyses,
or technical support. Since LLMs cannot be trained on private data they have not seen, they
are unable to access or utilize this information during their standard operation.

To overcome these limitations and enhance the reliability and accuracy of language models,
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach [35]. RAG
combines the generative capabilities of LLMs with information retrieval systems, enabling
models to access and incorporate external knowledge sources at inference time. This integration
allows the model to provide up-to-date and contextually relevant information, grounded in the
retrieved data, which mitigates hallucination and addresses the knowledge cutoff problem.

In the RAG framework, when a user provides a query or prompt, the system first uses a
retrieval component to search over a large corpus of documents, such as databases, knowledge
bases, or the internet, to find relevant information. The retrieved documents or passages are then
fed into the generative model along with the original query. The model generates a response
that is conditioned not only on its pre-trained parameters but also on the supplementary
information provided by the retrieval component. This process effectively injects real-time,
context-specific knowledge into the model’s output.

Consider the following example from the auditing domain where an employee asks:
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“Have there been any significant changes in the company’s internal control processes or risk management
strategies in 2024 that could impact the accuracy and reliability of financial reporting?”

A standard LLM with a knowledge cutoff before 2024 would be unable to provide the most
recent guidelines. Even if it attempts to answer, it might hallucinate or provide outdated
information, especially considering that the relevant information is only available in internal
sources. However, using RAG, the system can retrieve the latest documents from the company’s
internal document knowledge base. By incorporating this retrieved information, the language
model can generate an accurate, up-to-date, and trustworthy response.

In Chapter 10, we leverage RAG to develop a reliable and accurate chatbot designed for
complex queries related to risk and quality assessment within PricewaterhouseCoopers (PwC),
a leading global auditing and consulting firm.
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CHAPTER 5

Joint KPI-Extraction and Linking for Financial
Reports

Building upon the foundational concepts of representation learning in NLP introduced in
Part I, we now transition to the specialized domain of financial document analysis. The
previous chapters provided a comprehensive exploration of text classification, the evolution of
word embeddings, from static to contextual, and advanced architectures such as RNNs and
Transformers [19], which underpin today’s state-of-the-art NLP models. Notably, we examined
how models like BERT [34] and GPT [17] have revolutionized the field by leveraging transfer
learning paradigms, enabling applications across a wide range of NLP tasks.

In the following parts of the thesis, we focus on the application of these advanced NLP
techniques to improve the analysis of financial documents. Specifically, this chapter introduces
a novel approach for the joint extraction and linking of Key Performance Indicators (KPIs)
from financial reports. KPIs are quantifiable measures that reflect the critical success factors of
an organization, providing insights into financial health, operational efficiency, and strategic
progress. Examples of KPIs include revenue growth, net profit margin, return on investment,
and earnings per share. Extracting and accurately linking these indicators within and across
documents is essential for analysts, investors, and regulatory bodies to assess performance and
ensure transparency.

Financial reports are complex documents that often contain KPIs expressed in varied linguistic
forms and embedded within intricate narrative contexts. Moreover, semantically equivalent
KPIs can be presented differently across sections or even within the same section, posing
challenges for automated extraction and consistency verification. Linking these KPIs involves
identifying relationships between them, such as hierarchical dependencies, which is crucial for
tasks like trend analysis and anomaly detection.

In this chapter, we present KPI-BERT a novel methodology that addresses these challenges
by leveraging the power of contextual embeddings and multitask learning. Our approach
employs a BERT-based encoder model augmented with two classification heads that are trained
jointly:

• Named Entity Recognition Decoder: Utilizing an RNN-based GRU [83] decoder with
conditional label masking, this component efficiently extracts KPIs from sentences by
capturing contextual dependencies and ensuring label consistency.
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• Relation Extraction Classifier: This head predicts the relationships between the extracted
KPIs, facilitating the linking process by identifying how different KPIs relate to each
other within the document.

The model architecture is designed for end-to-end training, allowing the shared encoder to learn
representations that are optimal for both tasks simultaneously. By fine-tuning a pre-trained
BERT checkpoint, we leverage transfer learning to adapt the model to the financial domain,
enhancing its ability to comprehend domain-specific terminology and structures.

Our research demonstrates that jointly training the extraction and linking tasks improves
performance in both areas, as the shared encoder benefits from the combined learning objectives.
This approach not only enhances the accuracy of KPI extraction but also improves the reliability
of KPI linking, which is vital for subsequent analyses such as consistency checks. In the following
chapter, we build upon this work to perform numeric consistency verification, ensuring that
semantically equivalent KPIs exhibit consistent numerical values throughout the documents.

This chapter is based on the following publication:

• L. Hillebrand, T. Deußer, T. Dilmaghani, B. Kliem, R. Loitz, C. Bauckhage, and R.
Sifa, “KPI-BERT: A Joint Named Entity Recognition and Relation Extraction Model for
Financial Reports,” Proc. ICPR, 2022, doi: 10.1109/ICPR56361.2022.9956191 [30].

As first author, Lars Hillebrand was responsible for the idea and methodological design of the
joint extraction and linking model. He implemented the majority of the codebase, including the
training routines using PyTorch [94], and led the development of the model architecture. The
experiments were conducted collaboratively with Tobias Deußer, with both contributing to the
evaluation of results. The writing of the paper was a joint effort between Lars Hillebrand and
Tobias Deußer, with Lars Hillebrand focusing on articulating the methodological innovations
and experimental findings.

5.1 Introduction
In the context of business administration, KPIs are defined as quantitative measures about
structural entities and are usually utilized for facilitating descriptive, comparative, and predictive
analysis as well as for informed decision-making [95, 96]. Considering the latter, (semi-
)automatically extracting information (e.g., in the form of values or relationships) related
to such indicators can give companies competitive advantages due to the time efficiency
practitioners gain, especially when analyzing large amounts of data. Recently NLP and ML-
based approaches have been deployed to extract KPI-related information from unstructured
data, such as financial documents. These approaches have also been used to support financial
auditors with certain elementary processes related to analyzing and comparing information
from single as well as multiple documents [27]. Although being successfully deployed, these
concepts often suffer from either being rule-based and inflexible [97], only considering structured
data (i.e. tables) [96], or focusing exclusively on numerical cross-checking [98].

To alleviate these challenges, we present KPI-BERT, an automated system which leverages
new methods of Named Entity Recognition (NER) and Relation Extraction (RE) to detect
KPIs and their relationships in real-world German financial documents. The described system
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is currently being integrated in the auditing process of a major auditing company and promises
to achieve significant efficiency gains.

Given the following sentence from a financial statement,

“In 2021 the revenue
kpi

increased to $100
cy

million (prior year: $80
py

million) while the total costs
kpi

decreased to $50
cy

million (prior year: $70
py

million).”

it automatically recognizes and classifies the highlighted named entities and links their
relations:

revenue
kpi

− 100
cy

, revenue
kpi

− 80
py

, total costs
kpi

− 50
cy

, total costs
kpi

− 70
py

where kpi, cy (current year value), and py (prior year value) are defined entity classes explained
in Table 5.2. In particular, the system utilizes a BERT-based [34] architecture that novelly
combines an RNN with conditional label masking to sequentially tag the above-emphasized
entities before it classifies the linked relations. We further improve the setup by employing
trainable RNN-based pooling layers, which outperform the established mean- and max-pooling
counterparts. The model also incorporates domain expert knowledge into the process. First,
it filters impossible relation candidates prior to their classification since not all entity pair
combinations are allowed to be linked (see Table 5.1). Second, we post-process the predicted
relations by removing overlapping ones based on their prediction probability.

We benchmark our approach against multiple strong baselines, which also build on BERT-
encoded word embeddings but utilize different entity tagging schemes, namely state-of-the-art
span-based tagging [99], sequential Conditional Random Field (CRF) tagging [100] and standard
linear tagging [101]. In addition, we thoroughly investigate the impact of various parameter
ablations, including the usage of different word pooling functions. We find that our system
outperforms the competing architectures in robustly extracting and relating KPIs within
financial reports.

In summary, our contributions are twofold:

• We present a novel system that automatically extracts and links KPIs from financial
documents and is actively integrated into the auditing process of a major auditing firm.

• We introduce a new BERT-based architecture that employs a GRU coupled with trainable
pooling layers and conditional label masking to successfully address the sequential nature
of the KPI extraction task.

In the following, we first review related work and recent advances in NER and RE. Next,
Section 5.3 introduces our model, competing baselines, and the corresponding training process.
In Section 5.4, we describe our real-world dataset of financial documents and present the
experimental setup along with the performance results of all models. We close with concluding
remarks and an outlook into conceivable future work.
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5.2 Related Work
In this work, we focus on our specific setup of token-level entity tagging combined with
conditional label masking to jointly extract entities and relations on a novel corpus of German
financial documents and contrast the results with various ablation studies. However, many recent
studies have investigated the task of NER [102–105], RE [106–108], and the joint combination
of both [109–113]1.

Much effort has been spent on the task of separately recognizing named entities and extracting
relations in the past, whose results were then hierarchically combined in a pipeline [114, 115]. The
previously mentioned studies showed that learning these tasks jointly can improve performance
immensely and thus suggest that insightful information from one task can be exploited by the
other. Furthermore, most contemporary models have their foundation in modern pre-trained
natural language models [17, 34, 84, 92].

Highlighting a few of these contemporary studies, [99] introduced a model called SpERT and
reported state-of-the-art results on various datasets designated for this task. [116] leveraged
BERT at its core to implement an end-to-end model on the token-level with feed forward layers
for each task, achieving comparable results to [99]. [109] lessened the required annotations
during the NER task by introducing a self-training approach and [117] focused on diminishing
the computational complexity by utilizing more compact entity embeddings.

Looking at our specific task of retrieving information from financial reports using ML methods,
[118] employed a multi-layer perceptron (MLP) to capture interpretable structures similar to
accounting ratios. However, the inputs for their MLP were already extracted and transformed
accounting variables. A step in the direction of automatically extracting these variables has been
made by [97], who developed a NER model with a rule-based approach. The most up-to-date
work in this specific field is [98], which leveraged a joint entity and relation extraction approach
to cross-check various financial formulas.

With respect to our domain of processing German accounting and financial documents,
[119] leveraged contextualized NLP methods to recognize named entities in the context of
anonymization. Besides, [27] presented a recommender-based tool that greatly simplifies and to
a large extent automates the auditing of financial statements.

5.3 Methodology
Our proposed model comprises three stacked components that we train jointly in an end-to-end
fashion via gradient descent. First, a BERT-based encoder embeds the sentence into latent
space. Second, a GRU-based named entity NER decoder sequentially classifies entities using
conditional label masking along with the prior tagging history. Third, a RE decoder links the
predicted entities.

5.3.1 BERT-based Sentence Encoder
Given a WordPiece [120] tokenized input sentence of n subwords we use a pre-trained BERT
[34] model to obtain a sequence of n+ 1 encoded token embeddings, (c, t1, t2, . . . , tn), where
1 [101] wrote a more comprehensive article on recent developments in the field of RE and compared their results

in depth.
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The Net Operating Profit

O B-kpi I-kpi E-kpi

GRU

mask + softmax

z1

GRU

mask + softmax

z2

GRU

mask + softmax

z3

GRU

mask + softmax

z4

Figure 5.1: Sequential IOBES tagging (each entity class is prepended with the prefixes I- (inside),
B- (begin), E- (end) or S- (single), while O (outside) represents the none class) leveraging a
Gated Recurrent Unit (GRU) and conditional label masking. zj represents the concatenation
of the previously predicted label embedding with the word embedding at position j. Along
with the previous hidden state vector, it gets passed to a GRU that, followed by label masking
and a softmax layer, predicts the next IOBES tag.

c ∈ Rd represents the context embedding for the whole sentence and ti ∈ Rd represents the
token embedding at position i. To easily utilize our word-level entity annotations and to reduce
model complexity, we apply a pooling function, pool(·), which creates word representations by
combining their individual subword embeddings. Specifically, the j-th word, consisting of k
subwords, is represented as

ej := pool(ti, ti+1, . . . , ti+k−1), ej ∈ Rd. (5.1)

While also evaluating max- and mean-pooling we employ a more sophisticated trainable
RNN-pooling mechanism building on a bidirectional GRU.

In particular, the subword embedding sequence (ti, ti+1, . . . , ti+k−1) is passed bidirectionally
through a forward and backward GRU, yielding the final hidden states

hf
j = GRUf (ti, ti+1, . . . , ti+k−1) , (5.2)

hb
j = GRUb (ti+k−1, . . . , ti+1, ti) , (5.3)

where hf
j ,h

b
j ∈ Rd/2 and the superscripts ·f and ·b refer to the forward and backward model,

respectively. Next, we simply concatenate hf
j and hb

j to obtain

ej =
[
hf

j ; hb
j

]
. (5.4)

5.3.2 NER Decoder
Utilizing the BERT-encoded and pooled word embedding sequence (e1, e2, . . . , em), a NER
decoder module classifies named entities within the sentence. Specifically, we introduce a
sequential GRU-based tagger with conditional label masking, which builds on the IOBES
annotation scheme. IOBES tagging refers to classifying named entities on a word level by
prepending all entity classes with the prefixes I- (inside), B- (begin), E- (end) and S- (single).
Additionally, O (outside) represents the none type in this annotation scheme. If we denote E
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as the set of possible entity types described in Table 5.2 including the none class, the actual
number of IOBES entity tags increases to |EIOBES| = 4 (|E| − 1) + 1.

Given the sentence “The Net Operating Profit increased to $ 1.2 million in 2020 .”, IOBES
tagging aims to predict the following label sequence: “O, B-kpi, I-kpi, E-kpi, O, O, O, S-cy, O,
O, O, O”.

To take the sequential nature of entity tagging into account we employ a GRU in combina-
tion with conditional label masking to sequentially predict IOBES tags considering the past
predictions. Figure 5.1 visualizes this decoding scheme, which is described in more detail in the
following paragraphs.

First, we define an embedding matrix Wlabel ∈ R|EIOBES|×u that holds learnable u-dimensional
embeddings of all IOBES entity types.

Second, we concatenate ej with wlabel
j−1 , which yields the decoding input representation of word

j, zj =
[
ej ; wlabel

j−1
]
, where wlabel

j−1 ∈ Ru represents the embedding of the previously predicted
IOBES tag. We define wlabel

0 as the O label embedding since using a dedicated begin-of-sequence
embedding did not yield improved empirical results.

Third, we feed zj alongside the previous hidden state hj−1 into a GRU, yielding

hj = GRU
(
zj ,hj−1

)
. (5.5)

To get IOBES tag posteriors for word j we linearly transform hj followed by masking out
impossible tag predictions and applying softmax:

ŷj = softmax
(
mask

(
Wseqhj + bseq

))
. (5.6)

Note that masking is applied conditional on the last predicted tag ŷj−1. Specifically, if
arg max(ŷj−1) equals O or has prefix S or E we mask out all entity types with prefix I and
E. Likewise, if arg max(ŷj−1) starts with B or I we know the next predicted tag has to be of
the same entity type with prefix I or E. Hence, all other entity types are masked out, which
effectively reduces the tagging decision to a binary classification problem.

Next, we convert all predicted IOBES tags and their word embeddings ej to the entity
level by applying the same pooling function as in Equation (5.1). Finally, we concatenate this
pooled entity representation with a span size embedding wwidth

k . It is taken from a dedicated
embedding matrix Wwidth ∈ Rl×v holding fixed-size embeddings of dimensionality v for each
span length from 1 to l and is learned during training to let the model include a prior over
span widths. This gives us the embedding for each entity s

e(s) :=
[
pool(ej , ej+1, . . . , ej+k−1); wwidth

k

]
, e(s) ∈ Rd+v. (5.7)

5.3.3 RE Decoder
We only allow for a single relation type between two entities, namely the matches relation. This
relation is symmetric, as it does not matter whether a KPI is matched to its value or the reverse
case of a value being matched to its KPI. Additionally, we refine the entity sampling process
to only allow for valid entity pairs. The relation matrix shown in Table 5.1 specifies which
entity combinations are allowed. Finally, we enforce the uniqueness conditions specified in said
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Table 5.1: Comprehensive overview of all allowed relations and their uniqueness. “1:1”: One
entity of type 1 can only be linked to one entity of type 2, “1:n”: One entity of type 1 can be
linked to many entities of type 2. “-”: No relation possible.

kpi cy py increase decrease davon davon-cy davon-py
kpi - 1:1 1:1 1:1 1:1 1:n - -
cy 1:1 - - - - - - -
py 1:1 - - - - - - -
increase 1:1 - - - - - - -
decrease 1:1 - - - - - - -
davon n:1 - - - - - 1:1 1:1
davon-cy - - - - - 1:1 - -
davon-py - - - - - 1:1 - -

table after the model has processed the input data. This prunes the results by eliminating
relations of two entities if the same combination is predicted with a higher score in the same
input sequence and such a combination is labeled as unique, i.e. a 1:1 relation. For instance, if
two KPI entities are linked to a singular current year value, we only keep the relation with the
higher score and discard the other.

Similar to other studies, we sample candidate pairs s1 and s2 from the pool S×S representing
all allowed entity combinations in the sentence. Given two entities, we concatenate their
respective representations (see Equation (5.7)) with a localized context embedding cloc. Different
from the global sentence context c, cloc is defined as the pooled representation2 of BERT-
encoded word embeddings located between s1 and s2. As in [99] we find that this localized
context embedding is better suited for the relation classification task than the BERT context
token c. Hence, we define

xr(s1, s2) := [e(s1); cloc(s1, s2); e(s2)] (5.8)

as input for the relation classifier, where xr(s1, s2) ∈ R3d+2v. Due to our relation type being
symmetric, we do not have to classify the inverse xr(s2, s1).

The relation classifier is then defined as

ŷr = sigmoid
(
wT

relxr(s1, s2) + brel
)
, (5.9)

where wrel ∈ R3d+2v and brel ∈ R. If the output of Equation (5.9) exceeds a confidence threshold
α, we consider entity s1 and entity s2 to match.

5.3.4 Training
We train the above-described model architecture end-to-end, including fine-tuning BERT, by
minimizing the joint entity and relation classification loss defined as L = Lner +Lrel, where Lner

2 The same pooling function as in Equation (5.1) is applied.
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Table 5.2: Description and support of all entity types in the complete dataset, excluding the
none type.

Entity Support Description

kpi 16 849 Key Performance Indicators expressible in numerical and monetary
value, e.g. revenue or net sales.

cy 11 498 Current Year monetary value of a KPI .
py 5057 Prior Year monetary value of a KPI.
increase 356 Increase of a KPI from the previous year to the current year.
decrease 230 Decrease of a KPI from the previous year to the current year.

davon 8827 Davon, German for thereof, represents a subordinate KPI, i.e. if a KPI
is part of another, broader KPI.

davon-cy 8443 Current Year value of a thereof KPI.
davon-py 4382 Prior Year value of a thereof KPI.

denotes the categorical cross-entropy loss over IOBES-tagged entity classes and Lrel denotes
the binary cross-entropy loss over the relation prediction.

For the GRU-based NER decoder, we utilize teacher forcing to foster training convergence
and stability. Thus, we embed the annotated ground truth tag and use it to condition the label
masking instead of the previously predicted tag.

For the relation classifier, we utilize annotated ground truth relations as positive examples
as well and randomly sample Nrel negative examples from allowed ground truth entity pairs
Sgt × Sgt that don’t constitute a labeled relation.

5.4 Experiments
In the following sections, we introduce our custom dataset, describe the training setup and
model selection process, and evaluate the results. All experiments are conducted on four Nvidia
Tesla V100 GPUs and the model plus training code is implemented in PyTorch [94].

5.4.1 Data
Our dataset3 comprises 500 manually annotated financial documents containing a total of
15 394 sentences and was sourced from the Bundesanzeiger4, a platform hosted by the German
department of Justice where companies publish their legally mandated documents.

In the first pre-processing step, the reports are tokenized on a sentence level and subsequently
on a word level using the syntok Python library. Second, we tag monetary numbers and extract
their scale (e.g., million) and unit (e.g., $) applying rule-based string matching heuristics. Third,
we filter each tokenized report for sentences containing said monetary numbers because our only
interest lies in matching KPI entities with their monetary values. Next, we manually generate

3 We are currently unable to publish the dataset and the accompanying Python code because both are developed
and used in the context of an industrial project.

4 https://www.bundesanzeiger.de/.
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token and span-level annotations that are composed of an entity and a relation part, where the
entity annotation signals the type of each span in a sentence and the relation annotation which
entity spans are linked together.

The manual annotations were done by a group of six qualified auditors, led by a senior
auditing expert. In consultation with them, we defined the entity classes outlined in Table 5.2,
which also shows the overall support of each class in the dataset. Throughout the annotation
process, the exact entity class definitions were refined in several iterations to adjust for variation
and edge cases in the data. Most notably, we paid special attention to distinguish kpi and
davon entities which proved difficult depending on the sentence context. After completing
the annotations, the aforementioned senior auditing expert reviewed 50 randomly sampled
documents and verified their quality. Due to budget and time constraints, each document
was annotated just once by a single auditor. Hence, no inter-annotator agreement metrics
can be provided. Although not being entirely free of mistakes, we are confident of the overall
annotation quality of the dataset.

We randomly split the pre-processed dataset on a document level into a training, validation,
and test set, encompassing 13 835, 821, and 738 sentences each.

5.4.2 Baselines
We compare our proposed model with three competing architectures, which all build on the
BERT-based sentence encoder outlined in Section 5.3.1, ensuring a level playing field.

First, we replace the GRU-based NER decoder with a fully connected linear layer that
classifies named entities in parallel using the BERT-encoded word embeddings as input. The
resulting model was introduced by [101] and functions as a straightforward baseline since it
neglects inter-label dependencies when classifying entity tags.

Second, we integrate SpERT [99] in our training framework by utilizing its span-based NER
decoder. Span-level entity tagging does not make use of the IOBES annotation scheme but
classifies entire word spans at once. For further details, we refer the interested reader to [99].
Our implementation closely follows the original code5 except for extending the hyperparameter
search to our novel Bi-GRU pooling function and including the options to filter overlapping
and impossible relations.

Third, we implement a Conditional Random Field (CRF) [42] leveraging Viterbi decoding
[121] to classify named entities, which is a popular choice for NER due to its ability to model
label dependencies. To ensure a fair comparison with our model, we also incorporate the IOBES
label constraints from Section 5.3.2 in the CRF by masking out invalid class transitions in the
trainable transition matrix.

5.4.3 Training Setup and Hyperparameter Selection
To determine the best hyperparameter setup for each model we conduct an extensive grid search
evaluating various parameter combinations based on the validation set relation classification
F1-score. A relation is considered correct if the spans and the types of both related entities are
predicted correctly. Table 5.3 shows all tuned model parameters with their respective ranges
of values. The overall best-performing setup on the validation set is highlighted in boldface.
5 https://github.com/lavis-nlp/spert.
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Table 5.3: Hyperparameter configurations evaluated by grid search. The best configuration on
the validation set is highlighted in boldface. LM indicates the model using conditional label
masking.

Hyperparameter Configurations
Word-, entity- and context pooling (pool) Bi-GRU, Min, Max
NER decoding GRULM, CRFLM, Span, Linear
Conditional label masking (LM) True, False
Dropout 0.0, 0.1, 0.2, 0.3
Confidence threshold (α) 0.4, 0.5, 0.6
Filtering impossible relations True, False
Removing overlapping relations True, False
Batch size 2, 4, 8
Learning rate 5 × 10−6, 1 × 10−5, 5 × 10−5

Weight decay None, 0.01, 0.1
Gradient normalization None, 1.0

Also, note that the “NER decoding” row effectively discriminates KPI-BERT (GRULM – GRU
with conditional label masking) from the other baselines. For all models, we employ the cased
BERTBASE sentence encoder, published by the MDZ Digital Library team (dbmdz)6, which has
the same architectural setup as the English BERTBASE counterpart: 12 multi-head attention
layers with 12 attention heads per layer and 768-dimensional output embeddings. We initialize
all trainable parameters randomly from a normal distribution N (0, 0.02), fix the same random
seed of 42 for all training runs, and utilize the AdamW [122] optimizer with a linear warm-up
of 10% and a linearly decaying learning rate schedule. Further, we set the width embedding
dimension v to 25, the label embedding dimension u to 128 (where applicable), and sample a
maximum of Nrel = 100 negative relation examples per sentence. In line with Table 5.3 we also
evaluate different levels of dropout regularization [123] before the entity and relation classifier
and apply weight decay and gradient normalization. In addition, the models train with varying
peak learning rates, batch sizes, and prediction thresholds (α). We train each model variation
for 20 epochs and determine its best checkpoint via early stopping7.

5.4.4 Ablation Study
In the process of hyperparameter selection, we paid special attention to certain parameter
ablations of KPI-BERT, which are described in Table 5.4. First, we find that conditional label
masking boosts its validation set relation F1-score by 1.07 percentage points, which shows
the beneficial influence of including prior knowledge in the form of label dependencies in the
classification process. Second, we thoroughly investigate the impact of employing different
pooling functions. We find that trainable bidirectional GRU-pooling layers outperform the
standard mean- and max-pooling significantly by 1.16 percentage points. Third, we quantify

6 https://huggingface.co/dbmdz/bert-base-german-cased.
7 KPI-BERT’s best validation set relation F1-score is achieved in epoch 18.
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Table 5.4: Ablation study of our tuned KPI-BERT model, applying different pooling functions
and removing filtering heuristics and conditional label masking. F1-scores are reported on the
validation set since the model ablations are part of a broader grid search.

Configuration/Ablations Relation F1 in %
KPI-BERT 70.32

No conditional label masking 69.25
No filtering overlapping relations 69.73
No filtering impossible relations 69.47
No filtering impossible & overlapping relations 69.04

KPI-BERTmax pooling 69.16
KPI-BERTmean pooling 69.34

how much our modifications of filtering overlapping and impossible relations improve the
model’s performance. While both heuristics enhance the relation extraction F1-score, filtering
impossible relations leads to a larger improvement, which is expected considering the simplified
relation task depicted by the sparsity of Table 5.1.

5.4.5 Results
We retrain the fine-tuned configurations of KPI-BERT and all baselines on the combined training
and validation set. To control for a model’s susceptibility to random weight initialization, we
execute each retraining process 10 times with different seeds. Thereafter, we evaluate all models
on the previously specified hold-out test set based on the classification results of the joint NER
and RE task. Table 5.5 reports the mean and standard deviation of our metrics based on the
10 seed-varying training runs. We see that KPI-BERT outperforms the other architectures
on both the entity and relation classification objective, yielding respective F1-scores of 81.08
and 70.88 percentage points. Noticeably, SpERT and the linearly NER decoding model show a
significantly lower mean classification performance on both tasks, which likely originates from
neglecting label dependencies when decoding NER tags. The CRF-based extraction model with
conditional label masking (CRFLM) takes label dependencies into account but still achieves
lower scores while suffering from a higher standard deviation across differently seeded runs
indicating a worse model robustness compared to KPI-BERT.

Table 5.6 showcases several test set sentence examples where KPI-BERT predicts valid
relations that either have not been annotated correctly or deviate only slightly from the ground
truth entity spans, but still contain valuable information. For instance, in Sentence 3 the
annotators did not add the word “Raw” to the entity annotation of “Raw, auxiliary and
operating materials”. The model predicted that word, and thus the entity span prediction as
well as the relation classifications in this sentence were evaluated as mistakes, although the
actual model predictions are arguably correct. Further, Sentence 5 shows that the model is
able to detect long-distance relations between entities that even have been wrongly annotated.

Taking the above findings into account we see that KPI-BERT handles noise in the annotations
adequately and is capable of extracting valuable KPI relations from complex sentence structures.
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Table 5.5: Test set evaluation of the joint named entity and relation classification task, reporting
mean (standard deviation) Precision-, Recall- and F1-scores of 10 identical training runs with
varying seeds. Our model, KPI-BERT, outperforms the competing state-of-the-art architectures
in both entity extraction and relation linking.

in % Entity Relation
Name Architecture Precision∗ Recall∗ F∗

1 Precision Recall F1

– BERT + Linear + RE [101] 76.81
±1.00

81.57
±0.59

79.12
±0.72

66.95
±1.51

69.34
±1.13

68.12
±1.26

SpERT BERT + Span + RE [99] 75.67
±0.63

83.45
±0.46

79.37
±0.47

67.00
±0.84

69.48
±0.63

68.22
±0.61

– BERT + CRFLM + RE 79.80
±0.63

82.35
±0.51

81.05
±0.51

70.68
±0.81

70.62
±0.93

70.65
±0.83

KPI-BERT BERT + GRULM + RE 79.87
±0.55

82.31
±0.55

81.08
±0.53

70.33
±0.55

71.43
±0.60

70.88
±0.55

∗ = micro average, LM = conditional label masking

5.5 Conclusion and Future Work
In this chapter, we introduce KPI-BERT, an automated system that utilizes new methods
of Named Entity Recognition (NER) and Relation Extraction (RE) to jointly extract and
relate KPIs and their values from real-world German financial reports. Our system leverages a
BERT-based architecture that novelly employs an RNN coupled with conditional label masking
to sequentially predict KPI tags. In contrast to several other studies, this setup successfully
models label dependencies and takes the sequential nature of entity tagging into account. We
further integrate a trainable RNN-based pooling layer, which significantly improves upon classic
methods like mean and max pooling.

We compare KPI-BERT with three strong relation extraction models, which equally build on
BERT embeddings, but differ in their NER capabilities. Our system outperforms all competing
setups in both KPI extraction and entity linking performance, especially surpassing state-
of-the-art span-based entity decoders such as SpERT [99]. Ultimately, our results illustrate
KPI-BERT’s capability to correctly learn and identify long term relations, despite the complexity
of the prediction task.

In future work, we plan to evaluate KPI-BERT on public datasets, potentially outside
the financial accounting domain. Additionally, we intend to investigate cross-attention-based
transformer architectures coupled with conditional label masking to sequentially tag entities
and classify their relations. Further, current state-of-the-art language models like BERT lack
numerical reasoning capabilities and are mainly limited to representing plain text. Since we
aim to expand the entity and relation extraction task to structured data, e.g., financial tables,
a future direction of research will be to replace BERT with a tailored language model, better
capable of numerical reasoning and representing tables.
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Table 5.6: Several example sentences from the test set with NER and RE results. Green, blue
and red represent “true positive”, “false positive”, and “false negative” entity and relation
classifications, respectively.

Sentence with predicted Entities Relations

(a) Correct relation predictions and annotations.

1
The [other assets

kpi
] include “[earmarked loans

davon
]” amounting to TEUR [ 25

davon-cy
] (prior

year: TEUR [ 25
davon-py

]), which were given to franchise partners in fiscal year 2004 to
2007.

kpi – davon
davon – davon-cy
davon – davon-py

2
The [members of the supervisory board

attr
] received Te [368

cy
] (prior year Te [242

py
]) as

[total compensation
kpi

] in fiscal year 2007.
kpi – attr

kpi – cy
kpi – py

(b)
Minor differences between ground truth annotations and model predictions. Arguably,
the model predictions are correct, but an annotation mismatch leads to a sentence
F1-score below 1.

3
[Raw, [auxiliary and operating materials

kpi kpi
]] in the amount of [56,9

cy
] M. e (prior year

[50,3
py

] M. e) are mainly allocated to medical requirements.

kpi – cy
kpi – py
kpi – cy
kpi – py

4

In 2011, [the [performance-related share
kpi kpi

]] is composed of [short term components
davon

] in

the amount of TEUR [ 150
davon-cy

] (corresponding to 75% of the performance-related share),
which will be paid off during the following fiscal year, and [long term components

davon
]

in the amount of TEUR [ 48
davon-cy

] (corresponding to 25% of the performance-related
share).

kpi – davon
kpi – davon
kpi – davon
kpi – davon

davon – davon-cy
davon – davon-cy

(c) Wrong ground truth annotations, but arguably correct model predictions.

5

[ These
kpi-coref

] include [[revenues from not yet billed service contracts]
davon kpi

] in the amount of Te

[[ 6.848
davon-cy cy

]] (prior year Te [[ 3.950
davon-py py

]]), which are realised in accordance to the
stage of completion.

kpi-coref – davon
davon – davon-cy
davon – davon-py

kpi – cy
kpi – py

6

The [interest expenses
kpi

] include TEUR [[ 848
davon-cy cy

]] (prior year TEUR [[ 816
davon-py py

]])

for the [compounding of long term accruals
davon

], in particular for retirements, partial

retirements and anniversaries and TEUR [ 317
davon-cy

] (prior year TEUR [ 432
davon-cy

]) [for
[remunerations of factoring services]

davon davon
].

kpi – davon
kpi – davon

davon-cy – davon
davon-py – davon
davon-cy – davon
davon-py – davon

kpi – cy
kpi – py
kpi – cy
kpi – py
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CHAPTER 6

Contrastive Learning for Numerical Consistency
Checks

Building upon the KPI-BERT model introduced in the previous chapter, which effectively
extracts and links Key Performance Indicators (KPIs) from financial documents, we now address
the critical task of verifying the numerical consistency of these KPIs within a report. Ensuring
that semantically equivalent KPIs maintain consistent numerical values throughout a document
is essential for analysts, investors, and auditors who rely on accurate financial information to
make informed decisions.

In this chapter, we present KPI-Check, an advanced system that automatically identifies and
cross-checks semantically equivalent KPIs within real-world German financial documents. By
focusing on the detection of numerical inconsistencies, KPI-Check enhances the reliability and
integrity of financial reports, contributing to improved transparency and trust in corporate
disclosures.

To achieve this, we augment the capabilities of KPI-BERT with additional modules and
methodologies:

• Joint Sentence and Table Encoding Module: We use a fine-tuned BERT model to jointly
encode processed sentences and tables. We extract context-aware embeddings for the
KPIs within these texts, utilizing the known positions of the individual KPI words and
aggregating them to a single embedding via max-pooling.

• Contrastive Autoencoder (CAE) Classification Module: We introduce a binary predic-
tion module that leverages a CAE to classify the previously embedded KPI pairs. By
employing weighted over- and under-sampling, we expose the model to related pairs more
frequently during training, enhancing its ability to learn semantic similarities despite data
imbalance. The CAE minimizes the distance between embeddings of related KPI pairs
while maximizing it for unrelated pairs, effectively distinguishing between them.

One of the key challenges in KPI matching is the extreme data imbalance caused by the vast
number of unrelated KPI pair combinations. To address this, we introduce a Filtering Module
that acts as a pre-filtering step prior to the linking process. This module employs a fine-tuned
BERT model with cross-attention mechanisms to jointly encode candidate sentence-table pairs.
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Based on this representation it is fine-tuned to keep semantically relevant pairs and to discard
unrelated ones, effectively simplifying the matching task and improving the system’s overall
performance.

Recognizing the impracticality of manually annotating thousands of financial documents,
we implement an Automated Annotation Process leveraging informed number matching. By
accurately linking each KPI to its numerical quantities, units, and scales, and accounting for
potential rounding errors, we match KPIs based on their numerical values. This process
minimizes false positives and negatives, providing reliable training data without manual
intervention. Our results show that despite the presence of some false positive and negative
annotations, KPI-Check generalizes effectively, learning the correct similarity patterns and
ultimately outperforming the annotation process itself.

To validate the effectiveness of KPI-Check, we conduct comprehensive experiments comparing
our system with several baselines, including fuzzy string matching, an MLP, and a siamese
network architecture trained via contrastive learning. Additionally, we perform ablation
studies by removing the filtering module to assess its impact on performance. Our results
demonstrate that KPI-Check outperforms these baselines, highlighting the importance of each
component, particularly the filtering module and the contrastive learning approach in handling
data imbalance and improving classification accuracy.

Our complete system achieves a final test set micro F1-score of 73.00%, demonstrating its
capability to learn semantic similarities and identify numerical inconsistencies effectively.

This chapter is based on the following publication:

• L. Hillebrand, T. Deußer, T. Dilmaghani, B. Kliem, R. Loitz, C. Bauckhage, and R.
Sifa, “Towards automating Numerical Consistency Checks in Financial Reports,” Proc.
BigData, 2022, doi: 10.1109/BigData55660.2022.10020308 [31].

As the primary contributor, Lars Hillebrand conceived and developed the methodology, imple-
mented the codebase, designed and conducted the experiments, processed the data, evaluated
the results, and authored the paper. Co-authors assisted in revising the final version of the
work.

6.1 Introduction
Corporate disclosure documents like annual financial statements, management reports, or initial
public offering (IPO) prospectuses play a vital role in informing the public about a company’s
economic state of affairs. They contain large amounts of numerical facts that convey detailed
information about profitability, financial strength, and operational efficiency. These KPIs
greatly affect investment decisions of outside investors and in return impact the company’s
future development. Hence, their authenticity, factual correctness, and consistency within
the report are of immense importance, which is reflected in strict reporting standards, e.g.,
IFRS (International Financial Reporting Standards), whose compliance is regularly validated
by external auditors.

Companies themselves and external auditors spend a considerable amount of time manually
cross-checking these numerical facts and financial indicators, which occur in tables and are
further explained and referred to in various sections of text across the entire document. Due
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to their large volume and tedious report generation process, which often involves multiple
authors, frequent updates, and copy-pasting, they are prone to numeric inconsistencies. These
errors frequently persist even after official publishing, which negatively affects the reader’s
impression of the firm and thus, harms its reputation and integrity. Several studies have
quantified the negative effect of accounting errors on investment decisions and the resulting
economic consequences. For example, [124] and [125] show that individual investors prefer to
invest in companies with accessible and transparent disclosures. [126] and [127] go a step further
and find that accounting errors are negatively associated with share returns and cause market
participants to react less to earnings surprises. Therefore, reducing the amount of numerical
errors in disclosure documents, while at the same time speeding up the tedious cross-checking
process, is in the best interest of companies as well as auditing firms.

To tackle these objectives, we introduce KPI-Check, a sophisticated system that automati-
cally identifies and cross-checks semantically equivalent KPIs in real-world German financial
documents. Figure 6.1 shows an excerpt of such a document, in which textual KPIs and their
numeric values are successfully identified across the document and matched with their balance
sheet counterparts (equal color). Subsequently, the related pairs can be validated for numerical
consistency by simply comparing their monetary values taking the scale (e.g., million) and unit
(e.g., e) into account.

The balance sheet and profit & loss statement arguably represent the most important sources
of information within a financial report. Together, they can be used to assess the year-to-year
consistency, performance, and organizational direction of a company. That is why KPI-Check
focuses on matching retrieved textual KPIs to these table types.

To achieve the non-trivial linking of synonymous KPIs, our tool consists of three dependent
building blocks.

First, we leverage KPI-BERT [30] (introduced in the previous Chapter 5), a novel NER and
RE model tailored to the financial domain, which jointly retrieves KPIs from sentences and
relates them to their numeric values. Given the following example sentence,

“In 2021 the revenues
kpi

increased from $76
py

million to $112
cy

million while the total costs
kpi

decreased
to $47

cy
million (prior year: $66

py
million).”

revenue
kpi

− 112
cy

, revenue
kpi

− 76
py

, total costs
kpi

− 47
cy

, total costs
kpi

− 66
py

it automatically recognizes and classifies the highlighted financial indicators and links their
numeric relations, where kpi, cy (current year value), and py (prior year value) are part of
previously defined entity classes.

Second, we integrate a joint sentence- and table encoding module which utilizes BERT [34]
to find relevant sentence/table pairs within a financial report. One of the key challenges of
linking semantically equivalent KPIs is the extreme data imbalance since the large majority of
KPI pair combinations are unrelated. Hence, this filtering module substantially simplifies the
matching task, which positively impacts the system’s performance.

Lastly, we introduce a binary prediction module using a CAE to classify the remaining KPI
pairs employing weighted sampling techniques to expose related pairs more frequently during
training.
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Balance sheet as of December 31, 2011 

Assets 

 31.12.2011 
EUR 

31.12.2010 
EUR 

A. Fixed assets   
I. Property, plant and equipment   
Office furniture and equipment 1,00 867,64 
II. Financial assets   
1. Shares in affiliated companies 73.800.962,67 36.000.962,67 
2. Loans to affiliated companies 61.100.000,00 98.900.000,00 
 134.900.963,67 134.901.830,31 
B. Current assets   
I. Receivables and other assets   
1. Receivables from affiliated companies 24.074.137,40 26.067.468,52 
2. Other assets 2.840,00 26.751,35 
 24.076.977,40 26.094.219,87 
II. Cash on hand, bank balances 645.050,74 3.048.351,92 
 24.722.028,14 29.142.571,79 
C. Prepaid expenses 73.331,32 66.018,45 
 159.696.323,13 164.110.420,55 

... 

D. Notes to the balance sheet 

1. Fixed assets 
The development of fixed assets is shown in the appendix to these notes. Shares in affiliated companies increased from EUR 36.0 
million to EUR 73.8 million. … 
Accordingly, loans to affiliated companies decreased from EUR 98.9 million to EUR 61.1 million.  
... 

2. Net assets, financial position and results of operations 
... 
Cash and cash equivalents amount to EUR 0.6 million (2010: EUR 3.0 million). The decrease is mainly due to the dividend payment 
for the previous year, which amounted to EUR 5.5 million. In the reporting year, 14,000 shares were acquired as part of the share 
buyback program. The difference of EUR 0.328 million resulting from the acquisition of treasury shares was offset by EUR 0.130 
million against other revenue reserves and the remaining amount of EUR 0.198 million against retained earnings. As of the 
reporting date, the Company held 143,900 no-par value shares in treasury. 

Figure 6.1: A screenshot of selected parts of a German financial statement (translated to
English via DeepL, https://www.deepl.com/) showcasing the successful linking of semantically
equivalent Key Performance Indicators (KPIs) that occur in the balance sheet and at different
places across the document text. KPIs colored equally refer to the same fact and thus, have to
be numerically consistent.

The complete system achieves a final test set micro F1-score of 73.00%, which shows the
model’s capability to learn semantic similarities despite the task’s difficulty and the aforemen-
tioned imbalance challenge.

KPI-Check is currently being deployed for a major auditing firm as a separate component of
an AI-based auditing tool for financial statements. It adds a convenient method to automatically
retrieve and highlight identical KPIs and detect numerical inconsistencies in financial documents.
First user tests have already revealed significant efficiency gains and continuous use in production
will further improve the system’s performance due to the integration of human feedback, e.g.,
in the form of error corrections.
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Figure 6.2: Schematic visualization of our system, KPI-Check, to automatically identify and
link semantically equivalent Key Performance Indicators (KPIs) in sentences and tables within
financial documents. First, (a) sentences are passed through KPI-BERT, a joint named entity
and relation extraction model, to retrieve KPIs and their numeric values. Second, (b) a BERT-
based filtering model using cross-attention with a multi-layer perceptron (MLP) classification
head classifies a KPI-tagged sentence and pre-processed table pair to either match (contain
equivalent KPIs) or not. If a match is predicted, a separate BERT-based encoding module
utilizing max-pooling creates encoded sentence- and table KPI embeddings, s̄ and t̄. Finally,
(c) a contrastive autoencoder (CAE) classifies each sentence/table KPI pair to be synonymous
or not.

6.2 Related Work
In today’s digitized world with an ever-growing amount of freely available information claim-
checking becomes more and more important to guarantee factual correctness and consistency.
Over the past years, it has sparked much research interest across multiple disciplines. For
example, [128] introduce StatCheck, a rule-based tool that detects inconsistencies during
significance testing in academic psychology papers. [129] develop a fact-checking platform called
ClaimBuster that utilizes NLP and supervised learning to identify important factual claims in
political discourses. Additionally, [130] and [131] present end-to-end fact-checking systems that
predict the factuality of historically given claims.

The majority of these systems rely on pre-trained natural language models [17, 34, 92] and
utilize NER [104, 105, 132–134] and RE [99, 110–113, 135], of which KPI-Check is no exception
since it makes use of KPI-BERT [30], a joint named entity and relation extraction model
tailored to the financial domain (see Chapter 5).
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Turning to our concrete task of analyzing and cross-checking financial documents, [136]
suggest Jura, an ML-based compliance tool to improve the efficiency of reviewing annual
financial reports submitted to the Hong Kong Exchanges and Clearing (HKEX). Similarly, [27]
and [28] propose and improve ALI (Automated List Inspector), a recommender-based tool that
greatly simplifies and to a large extent automates the auditing of financial statements.

However, the previously named systems lack our focus on the numerical consistency of KPIs.
The closest research in this regard is probably the studies by [98] and [137]. The former extracts
formulas from verbal descriptions of numerical claims while leaving the actual claim-linking task
for future work. Also, they extract financial indicators using a whitelist, which might not be
general enough depending on the variety of KPIs. The latter study analyzes how well different
KPIs in tables can be cross-checked in Chinese IPO prospectuses and auditing reports. The
authors achieve great results in identifying semantically equivalent table cells, but we consider
it problematic that they leak numerical information in the matching process, which they claim
is purely based on semantics.

Since identifying semantically equivalent KPI pairs in financial reports suffers from an
extremely high data imbalance KPI-Check’s task qualifies as an outlier/anomaly detection
problem. In the past many architectures and training schemes have been proposed to tackle such
problems. However, autoencoders [138–142] stand out in popularity, both in supervised and
unsupervised settings. KPI-Check, being no exception, leverages a CAE that uses contrastive
learning on the reconstruction loss to separate equivalent from unrelated KPI pairs.

6.3 Methodology
In this section, we briefly formulate the problem and motivate our modeling approach before
turning to the in-depth analysis of our proposed architecture which is visualized in Figure 6.2.

6.3.1 Problem Formulation and Modeling Approach
Given a corporate financial report containing a list of tabular KPIs, T , depicted in the balance
sheet and profit & loss statement, and a list of sentence KPIs, S, occurring across the entire
document, we identify all semantically equivalent pairs from the combined Cartesian product
T × S. Once we succeed in this task, we can automatically cross-check their monetary values
and thus, verify numerical consistency.

Effectively, the above-described objective can be divided into three sub-problems.
First, we extract the originally unknown performance indicators, T and S, along with their

numerical quantities from the document. In the case of T this can be done rule-based, due
to the known structure of the balance sheet and profit & loss statement. On the contrary,
retrieving S is more difficult which is why we utilize KPI-BERT [30], a dedicated named entity
and relation extraction model that is trained to detect and link KPIs within unstructured
sentences (see Figure 6.2 (a)). KPI-Check uses the extracted and linked KPIs subsequently in
the following two tasks.

Second, we create vector representations (embeddings) for all extracted KPIs in T and S
that capture their semantics and contextual information (see Figure 6.2 (b)). It is important to
note that we explicitly exclude the KPI’s numeric quantity from the embedding process so that
our classification module is forced to only learn semantic and contextual similarities instead of
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focusing on numerical equivalence. Enabling the latter would open up the possibility of linking
KPIs solely based on their monetary values, which contradicts our idea of matching identical
KPIs to find numerical inconsistencies.

Third and finally, we classify each KPI pair (t, s) ∈ T × S to either match, +, or not match,
− (see Figure 6.2 (c)). Due to the huge discrepancy in the amount of synonymous (small)
and unrelated (large) KPIs, a key challenge is the extremely high classification imbalance of
|T ×S|−

|T ×S|+
≈ 500 : 1 which effectively qualifies this task as outlier detection problem. To reduce this

issue, we introduce a separate filtering module that is trained to remove irrelevant sentence/table
pairs not containing any matching KPIs before performing the actual KPI linking step. In
addition, we incorporate class-weighted sampling in the training process to expose the minority
class of matching KPI pairs more frequently. Lastly, we perform the final KPI linking step
by introducing a contrastive autoencoder (CAE) that utilizes contrastive learning to robustly
differentiate between inliers (unrelated KPIs) and outliers (synonymous KPIs).

The following sections describe our solutions to these sub-tasks in more detail.

6.3.2 Entity Extraction and Relation Linking (KPI-BERT)
To retrieve and connect all textual KPIs, S, and their numeric quantities from unstructured
sentences in a financial report, we leverage a named entity and relation extraction model, called
KPI-BERT [30]. The model consists of three stacked components that are trained jointly in an
end-to-end fashion via gradient descent. The entire architecture and its training process are
described in full detail in the previous Chapter 5.

6.3.3 Entity Encoding
After KPI-BERT [30] successfully extracts all textual KPIs in S and links their numeric
quantities within sentences, we turn to the second sub-task of encoding sentence- and table
KPIs into vector space while preserving their semantics and context.

Pre-Processing

For the balance sheet and profit & loss statement, we only regard their first column, which
comprises the entirety of tabular KPIs, T . The current and prior year numeric values, present
in the remaining table columns, are deliberately discarded in the embedding process. Including
them would potentially enable the downstream classification model to base its predictions
mainly on the numerical equivalence of two KPIs. This would be problematic since semantically
identical KPIs with inconsistent numerical values, e.g., caused by human error, might not be
detected.

We flatten and pre-preprocess each table, which is exemplarily depicted in Figure 6.3. First,
we use rule-based heuristics and regular expressions to remove any hierarchical prefix, i.e.
converting “1. Gross profit” to “Gross profit”. Second, we include two special tokens, <row>
and <nan> to separate new rows and tag empty KPIs, respectively.

To prepare the previously extracted sentence KPIs for encoding, we process each sentence by
enclosing all tagged KPIs with HTML-like special tokens, i.e.
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in $ 2019/2020 2018/2019
1. Gross profit 24 059 512.21 22 051 698.38

2. Personnel expenses
a) Wages and salaries 15 675 943.67 13 231 237.73
b) Social security contributions 1 375 421.49 1 865 432.63
. . . . . . . . .

(a) Excerpt of a profit & loss statement.

Gross profit <row> <nan> <row> Personnel expenses <row> Wages and salaries <row>
Social security contributions <row> . . .

(b) Flattened and pre-processed profit & loss statement.

Figure 6.3: Example of a profit & loss statement (a) and its pre-processed and flattened Key
Performance Indicators (KPI) sequence (b).

In 2022, the <kpi> revenue </kpi> increased to $1.5 million.

Filtering

As visualized in Figure 6.2 (b), a filtering module decides prior to linking KPIs whether a
candidate sentence/table pair contains synonymous KPIs. Concretely, we employ a pre-trained
and in the process fine-tuned BERT model which jointly encodes the processed sentence and
table using cross-attention to learn a combined sentence/table representation

h[CLS] = BERTfilter ([CLS] sentence [SEP] table [SEP]) , (6.1)

where [CLS] and [SEP] denote BERT-specific special tokens used for input classification and
separation. Subsequently, we classify the pair’s relevance by passing h[CLS] to a simple MLP
consisting of a fully connected layer followed by dropout [123] and a sigmoidal activation
function:

ŷfilter = MLPfilter
(
h[CLS]

)
. (6.2)

If ŷfilter ∈ [0, 1] is below a pre-defined confidence threshold α1, we discard the sentence/table
pair to reduce the aforementioned data imbalance problem and thus, increase the final KPI
matching performance.

Encoding

We use a dedicated pre-trained BERT model to separately encode pre-processed sentences and
tables that succeeded the previous filtering process. Specifically, given a KPI-tagged sentence
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of n tokens and a flattened table of m tokens, we obtain context-aware sub-word embeddings:

s1, s2, . . . , sn = BERTencode ([CLS] sentence [SEP]) , (6.3)
t1, t2, . . . , tm = BERTencode ([CLS] table [SEP]) . (6.4)

Next, we utilize the known positions of our KPIs within the embedding sequences and apply
max-pooling to create KPI embeddings for both, tables and sentences. Similar to Equation 5.7,
an arbitrary KPI in a sentence containing k sub-words is represented as

s̄ =
[
max-pool(si, si+1, . . . , si+k−1); wwidth

k

]
, (6.5)

where wwidth
k again denotes a unique size embedding. t̄ follows the same approach for tables.

6.3.4 Entity Pair Classification
We cast the entity pair classification task as an outlier detection problem to further tackle the
imbalance of relatively few synonymous KPI pairs compared to many unrelated KPI pairs.
Specifically, we implement the KPI matching network depicted in Figure 6.2 (c) as a CAE
leveraging contrastive learning on the reconstruction loss to distinguish synonymous from
unrelated pairs. The autoencoder is defined as

φ(x) := dec(enc(x)), x =
[
s̄; t̄
]
, (6.6)

where x represents the concatenation of the sentence- and table KPI embeddings s̄ and t̄ that are
randomly sampled from the pool of pairs T ×S. The encoder (enc) and decoder (dec) networks
are MLPs with two fully connected layers each enclosed by ReLU [143] activation functions and
dropout [123]. Following the standard design of autoencoders the hidden dimension imposes
an information bottleneck (dimhidden ≪ diminput = dimoutput), which enforces meaningful
representation learning for correct input reconstruction.

Given the reconstructed input, x̂ = φ(x), the original input x and the ground truth label
y ∈ {0, 1} we train the CAE to minimize the reconstruction loss for unrelated KPI pairs, y = 0,
while maximizing it for semantically equivalent pairs, y = 1. Concretely, we define the combined
contrastive loss as

Lcontrastive(x̂,x, y) = (1− y) · LMSE(x̂,x) + y ·max(0,m− LMSE(x̂,x)), (6.7)

where LMSE denotes the mean-squared error loss function and m denotes the margin param-
eter enforcing that the model focuses particularly on difficult-to-reconstruct samples during
optimization.

During inference, we normalize the resulting mean-squared error loss with a sigmoid layer
such that

ŷ = sigmoid(LMSE(x̂,x))) ∈ [0, 1]. (6.8)

If ŷ is above the threshold α2, we consider the KPI pair (t, s) to be semantically equivalent.
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6.3.5 Training
We decouple the training process of KPI-Check and train each sub-module independently due
to the significantly different objectives in their sub-tasks and a more effective usage of tailored
random over and undersampling (ROUS) per task.

First, our named entity and relation extraction model for sentences, KPI-BERT, trains on
a smaller subset of 500 manually annotated financial reports1, to extract and link KPIs and
their numeric quantities from each sentence. The model jointly optimizes the named entity
(categorical cross-entropy) and relation extraction (binary cross-entropy) loss. Further details
about the training and hyperparameter tuning process can be again taken from [30]. In this
work we leverage the best-performing version of KPI-BERT as reported in [30].

Second, we train the components of the filtering module, BERTfilter and MLPfilter, end-to-
end while fine-tuning BERTfilter explicitly on the task of identifying relevant sentence/table
pairs. We optimize the binary cross-entropy loss over related and unrelated pairs. Since most
sentences and tables are unrelated and only a few share semantically equivalent KPIs, we employ
weighted random over- and undersampling (ROUS) with replacement to show relevant pairs
more often during training. Specifically, the originally uniform sampling probability of each
sentence/table pair is altered to the normalized inverse frequency of the pair’s class occurrence
in the training set. For example, a training set of four pairs (+,−,−,−) receives weighted
sampling probabilities of

(
1
2 ,

1
6 ,

1
6 ,

1
6

)
.

Third, we train the actual KPI-matching model, the CAE, which takes the encoded
(BERTencode) and pooled KPI representations as input, provided their sentence/table pair
overcame the previous filtering process. We employ contrastive learning (see Equation (6.7))
to learn a robust decision boundary, which effectively distinguishes between unrelated and
synonymous KPI pairs. In addition, we leverage teacher forcing (training only) by also utilizing
positively annotated KPI pairs that were falsely filtered out.

6.4 Experiments
In the following sections, we introduce our custom dataset of German financial reports, describe
the automated annotation process of synonymous KPIs, discuss the overall training setup
including hyperparameter optimization, and evaluate results.

6.4.1 Data
Our dataset2 comprises 7548 real-world corporate annual reports sourced from the Bunde-
sanzeiger3, a platform hosted by the DuMont media group where German companies publish
their legally required documents. A subset of 500 reports (part of the training set) was utilized
in [30] to train KPI-BERT, our joint named entity and relation extraction model that identifies
and links KPIs in sentences. For the remainder of this paper, we take a trained KPI-BERT

1 The reports are part of the training split for the other KPI-Check modules.
2 We are currently unable to publish the dataset and the accompanying Python code because both are developed

and used in the context of an ongoing industrial project.
3 https://www.bundesanzeiger.de/
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Table 6.1: Dataset statistics about Key Performance Indicators (KPI) and sentence/table pairs,
highlighting their respective class imbalances of positive (+) and negative (−) pairs.

Training Validation Testing
Documents 6032 764 752
KPI Pair Statistics

Total
Pairs + 48 736 5893 5431
Pairs − 17 871 922 2 192 954 2 145 354
Imbalance 367:1 372:1 395:1

Average per Document
Pairs + 8 8 7
Pairs − 2963 2870 2853
Imbalance 510:1 492:1 560:1

Sentence/Table Pair Statistics
Total

Pairs + 42 912 5218 4812
Pairs − 503 150 64 423 60 543
Imbalance 12:1 12:1 13:1

Average per Document
Pairs + 7 7 6
Pairs − 83 84 81
Imbalance 17:1 16:1 17:1

model as a given and only consider it in the context of KPI-Check. For detailed information
about annotations, model training, and performance results we again refer to [30].

We pre-process each report by first tokenizing on a sentence level and subsequently on a word
level using the syntok Python library. Second, we tag monetary numbers and extract their
scale (e.g., million) and unit (e.g., $) using regular expressions. Similarly, we utilize rule-based
string matching heuristics and trigger words to identify the balance sheet and profit & loss
statement within each document. Third, we ignore all other tables and discard sentences not
containing any numeric quantities because our only interest lies in linking KPI entities to check
their numerical consistency.

For model training, tuning, and evaluation purposes we randomly divide the dataset into
a fixed split of 6032 training, 764 validation, and 752 testing documents. Table 6.1 presents
detailed KPI- and sentence/table pair statistics for all splits. Each document contains on average
around 8 semantically equivalent and 2900 unrelated KPI pairs leading to a per-document
imbalance of around 500 : 1. The overall imbalance across the entire training set still amounts to
367 negative pairs for each positive one, which emphasizes the need for a filtering approach. The
corresponding model, BERTfilter, requires sentence/table inputs, whose class ratio of negative
(−) to positive (+) pairs is significantly lower equaling 12 : 1.
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6.4.2 Automated Annotation Process
Manually cross-checking over 7000 financial documents to get ground truth annotations for
semantically equivalent KPI pairs would be extremely time-consuming and is practically
infeasible in the scope of our project. Hence, we introduce an automated annotation logic which
leverages informed number matching to efficiently annotate synonymous KPIs while keeping
the amount of false positive and false negative annotations to a minimum.

As described in Section 6.3.2 we identify and link each KPI within a sentence to its numeric
quantities, i.e. current year (cy) and prior year (py) values. In addition, the value’s unit
(e.g., e) and scale (e.g., million) are accurately extracted employing regular expressions and
rule-based heuristics. The same is true for KPIs occurring in the balance sheet and profit & loss
statement. They can be automatically aligned with their quantities due to the known tabular
structure.

Utilizing the accurate linking of each KPI to its numerical quantity, we apply informed
number matching taking a number’s unit, scale, and potential rounding into account. For
example, our matching heuristic recognizes that the tabular value of “EUR 73 800 962.67” and
the textual value of “EUR 73.8 million” match (see Figure 6.1).

Of course, relying on number matching for linking semantically equivalent KPIs is not perfect.
In particular, two sources of noise might dilute the annotation quality. First, all equivalent KPIs
whose numeric quantities do not match, i.e. caused by human error due to wrong rounding or
copy-pasting, remain undetected (false negative annotations). Second, two numbers can match
by chance, although their KPIs are completely unrelated (false positive annotations).

The first issue cannot be avoided but occurs presumably quite rarely. The second issue can
be mitigated by applying the following rules.

If two candidate KPIs are respectively linked to current year and prior year values (cy and
py), we numerically compare both quantities. In case of two matches, we confidently label the
KPI pair positively. If one of the candidate KPIs is linked to only a single numeric quantity
(either cy or py), we can only focus on comparing this quantity. In case of a numerical match,
we additionally confirm whether the matched number x is “common” by validating if the decade
logarithm of the absolute value of x returns a natural number, i.e. log10(|x|) ∈ N. If the
previous expression evaluates to False (not common) we directly label the KPI pair positively.
If it evaluates to True we add an extra safety cushion by applying fuzzy string matching on
the raw strings of both candidate KPIs. Concretely, we use the Levenshtein distance [144]
based weighted ratio function WRatio() of the rapidfuzz Python library to check whether
the character similarity of both KPIs is below or above a strict threshold of 0.9 (similarity is
bound between 0 and 1). Only if the textual similarity is ≥ 0.9 we label the candidate KPI
pair positively. In all other cases, pairs are labeled negatively.

We extend this logic to the sentence/table level, by annotating a corresponding pair positively
if at least two KPIs within the pair match.

A qualitative analysis of randomly sampled annotations supports our hypothesis of high
labeling accuracy. Out of 100 positively labeled samples, 97 were actually correct. Also, a
small amount of annotation noise is acceptable due to the large amount of data and the proven
robustness of deep neural networks [145]. In addition, employing the available numerical
information for automated labeling is fully decoupled from the actual modeling process. As
described in Section 6.3.3, KPI-Check discards all numerical information and solely uses
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semantics and context to learn useful representations for synonymous KPI matching.
In Section 6.4.6 we see that KPI-Check generalizes well and is indeed able to predict correct

KPI matches that were missed during the automated annotation process.

6.4.3 Evaluation Metrics
We quantitatively evaluate our system’s performance by calculating precision, recall, and F1
scores. For a single document d and given sets of predicted- and ground truth KPI pairs, Ŷ
and Y∗, the three metrics are defined as

Precision = |Ŷ ∩ Y
∗|

|Ŷ|
, Recall = |Ŷ ∩ Y

∗|
|Y∗|

, F1 = 2 · Precision · Recall
Precision + Recall . (6.9)

For N documents (d1, d2, . . . , dN ) we calculate macro scores by averaging the document-level
metrics and micro scores by aggregating Ŷ and Y∗ across all documents. For example, macro
and micro recall are respectively defined as

Recallmacro =
∑N

i=1 Recalli
N

, Recallmicro =
∑N

i=1|Ŷi ∩ Y
∗
i |∑N

i=1|Y
∗
i |

, (6.10)

where the subscript i refers to the i-th document. Macro and micro metrics for precision and
F1 score are calculated analogously.

6.4.4 Training Setup
In this section, we shed light on the training setup and hyperparameter optimization of the
individual components of KPI-Check (except KPI-BERT [30], which is thoroughly described in
Chapter 5).

We determine the best hyperparameter setup for each sub-module by conducting an extensive
grid search analyzing various parameter combinations based on their validation set micro
F1-score. Table 6.2 shows all tuned model parameters with their respective ranges of values.
The best-performing parameter setup on the validation set is highlighted in boldface.

Each sub-module employs the cased BERTBASE encoder, published by the MDZ Digital
Library team (dbmdz)4, which has the same architectural setup as the English BERTBASE
counterpart5 and is pre-trained on a large corpus of German news reports, books and Wikipedia
articles. We initialize all of KPI-Check’s trainable parameters randomly from a normal
distribution N (0, 0.02) and fix the same random seed of 42 for all training runs. In addition,
we utilize the AdamW [122] optimizer with a linear warmup of 10% and a linearly decaying
learning rate schedule. Further, we apply weight decay of 0.01, clip gradients by normalizing
their length to 1 and set the width embedding dimension of wwidth to 25. In line with Table
6.2 we also evaluate different levels of dropout regularization [123], various peak learning rates,
batch sizes, and hidden dimensions.

Our experiments are conducted on four Nvidia Tesla V100 GPUs and the model plus training
code is implemented in PyTorch [94]. We train the BERT-based filtering model for 10 epochs
4 https://huggingface.co/dbmdz/bert-base-german-cased.
5 12 multi-head attention layers with 12 attention heads per layer and 768-dimensional output embeddings.
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Table 6.2: Evaluated hyperparameter configurations of KPI-Check’s sub-modules, the filtering
component, and the contrastive autoencoder (CAE) classification head. The best configuration
on the validation set is highlighted in boldface. The classification thresholds α1 and α2 are
tuned in the [0, 1] interval based on the best validation set micro F1-score performance. For
details on KPI-BERT, we refer to the previous Chapter 5.

Sub-Module Hyperparameter Configurations

BERTfilter
+ MLPfilter

Batch size 2, 4, 8
Learning rate 1 × 10−6, 1 × 10−5, 1 × 10−4

Dropout 0.0, 0.1, 0.2, 0.3
Confidence threshold (α1) [0,0.0035, 1]

MLP hidden dimensions no, (1024, 128), (2048, 256),
(2048, 1024, 256)

CAE

Batch size 32, 64, 128
Learning rate 1 × 10−6, 1 × 10−5, 1 × 10−4

Dropout 0.0, 0.1, 0.2, 0.3
Confidence threshold (α2) [0,0.7099, 1]

Hidden dimensions (enc/dec) (1024, 128), (2048, 256),
(2048, 256, 64)

margin (m) 0.5, 1.0

and find the best-performing model on the validation set after epoch 9 using early stopping. The
total training time amounted to 52 hours and 14 minutes. The final KPI matching classification
network was trained for 15 epochs until convergence with a training time of 7 hours and 3
minutes.

6.4.5 Baseline and Ablations
We compare the fine-tuned setup of KPI-Check with three baselines and an additional variation
discarding the filtering module. Each baseline makes use of KPI-BERT to first extract and
link relevant KPIs and their numerical values from sentences. Also, all competing methods are
fine-tuned individually on the validation set and only their respective best setup is evaluated
on the hold-out test set.

First, we establish a simple baseline, which we denote Fuzzy String Matching, that drops all
learnable components and solely employs fuzzy string matching to link semantically equivalent
KPIs. Concretely, it utilizes the extracted KPI strings from sentences (KPI-BERT) and
tables and links them by applying the weighted string similarity function WRatio() from the
rapidfuzz Python library which is based on the Levenshtein distance [144]. If the similarity
exceeds a fixed threshold which is tuned on the validation set, we classify two candidate KPIs
as semantically equivalent.

Second, we benchmark KPI-Check and its CAE classification layer depicted in Figure 6.2c
against an MLP with two fully connected layers. It is enclosed by ReLU activation functions
[143] and dropout [123] and is followed by a sigmoidal output layer. Formally, the MLP is
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Table 6.3: Test set results of the sentence/table pair filtering sub-task (a) and the final task of
matching semantically KPIs (b). Our full model, KPI-Check, achieves the highest micro- and
macro F1 scores of 73.00% and 70.52%, which significantly improves upon the variation with
no filtering module and outperforms the other baselines which all employ the filtering module.
We also report upper-bound metrics for our approach, assuming a perfect filtering module with
no mistakes.

in % Micro Macro
Task Architecture Precision Recall F1 Precision Recall F1

(a) Filtering BERTfilter + MLPfilter 70.72 80.01 75.08 72.75 81.73 70.31

(b) KPI
Matching

Fuzzy String Matching 49.18 40.88 44.65 56.91 48.62 41.37
Siamese Network 52.94 67.43 59.31 64.15 72.19 60.98
MLP 71.83 73.71 72.76 76.09 76.76 70.21
KPI-Checkno filtering 62.13 77.55 68.99 66.42 80.34 65.71
KPI-Check 73.16 72.84 73.00 77.21 76.21 70.52

KPI-Checkperfect filtering 90.81 84.09 87.32 91.79 83.65 85.57

defined as

ŷ = MLP
([

s̄; t̄
])
. (6.11)

Third, we compare KPI-Check’s classification performance with a siamese network, first
introduced by [146], that is also trained via contrastive learning but utilizes the siamese
architecture of two identical MLPs with shared weights. In particular, the sentence- and table
KPI embeddings s̄ and t̄ are passed individually through the same MLP, and the similarity of
their resulting representations is calculated based on the cosine similarity. Similar to the CAE
we employ a contrastive loss to minimize the cosine similarity for unrelated KPI pairs while
maximizing it for semantically equivalent pairs. During inference, the classification decision
is thus based on the cosine similarity score and a fixed threshold which is again tuned on the
validation set.

Note both the MLP and the Siamese Network make use of the previous filtering module to
ensure a fair comparison to KPI-Check.

Last, we train a fine-tuned ablation version of our complete system that discards the
filtering module and directly encodes and classifies all KPI pairs. We call this variation
KPI-Checkno filtering.

6.4.6 Results
We evaluate and compare KPI-Check, its variations, and all baselines on the previously specified
hold-out test set. Table 6.3 reports micro- and macro precision, recall, and F1 scores for (a)
the filtering sub-task and (b) the final task of matching semantically equivalent KPIs.

First, it can be seen that classifying learned KPI representations significantly outperforms
the purely string-based approach of fuzzy string matching by almost more than 25 percentage
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Table 6.4: Impact of sentence/table pair filtering on the KPI pair imbalance. Our actual filtering
model drastically reduces the number of negative KPI pairs while keeping the majority of
positive once to reduce the overall test set imbalance from 395 : 1 to 46 : 1. “−” denotes no
filtering (see Table 6.1) and “perfect” assumes a perfect filtering model that makes no mistakes
to establish an upper bound.

KPI Statistics Filtering Training Validation Testing

Pairs +
− 48 736 5893 5431

model 48 731 4659 4408
perfect 48 736 5893 5431

Pairs −
− 17 871 922 2 192 954 2 145 354

model 1 688 112 199 468 200 839
perfect 1 589 333 189 152 180 401

Imbalance
− 367:1 372:1 395:1

model 35:1 43:1 46:1
perfect 32:1 32:1 33:1

points on all metrics.
Second, we find that including a carefully tuned filtering module improves KPI-Check’s

overall micro and macro F1 score performance by 4 and 5 percentage points to 73.00% and
70.52%, respectively. The same filtering module is also utilized by the baselines, MLP and
Siamese Network. However, KPI-Check with its contrastive autoencoder classification head
outperforms both competing approaches.

Since the filtering of irrelevant sentence/table pairs is applied before the actual KPI pair
classification, any errors are inevitably carried over to the KPI matching module. Hence, we
analyze different filtering thresholds α1 to find the right trade-off between reducing the dataset
imbalance on the one hand and falsely removing correct KPI pairs on the other hand. The best-
performing model is included in KPI-Check and the other baselines, and it is separately evaluated
on the filtering sub-task (see Table 6.3 (a)). Further, we report KPI-Check’s hypothetical
performance, assuming a perfect filtering model that makes no mistakes. These numbers can
be interpreted as an upper bound for the current approach.

Table 6.4 shows the impact of our filtering module on the dataset imbalance of positive
and negative KPI pairs. While the number of negative test set pairs decreases considerably
from around 2.1 million to 0.2 million (91%), the number of positive pairs remains relatively
high with 4408 compared to originally 5431 (19% decrease). Of course, the difference of 1023
wrongly filtered out pairs is in the process automatically classified negatively, thereby reducing
the maximum possible micro recall to 81, 16%.

In addition to the quantitative evaluation, Table 6.5 qualitatively highlights a few test
set examples where KPI-Check correctly predicts the equivalence of two KPIs, whereas the
automated annotations generated via number matching (see Section 6.4.2) are wrong. Examples
1 to 3 reveal rounding and unit inconsistencies in the current and prior year values which lead
to wrong negative annotations. Nevertheless, KPI-Check correctly predicted these samples as
semantically equivalent. On the contrary, examples 4 and 5 showcase accidental current and
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Table 6.5: Translated test set samples of wrongly annotated but correctly predicted Key
Performance Indicators (KPI) pairs. Examples 1 to 3 indicate rounding and unit errors in
the financial report leading to wrong negative annotations via automated number matching.
Examples 4 and 5 reveal accidentally matched but actually unrelated KPIs.

KPI-Pair (Text/Table) Current Year Prior Year Prediction Label

1 Active difference 991 Te + −E. Active difference from asset offsetting 992 Te 863 Te

2 Net income 293 475.51 e 1 078 302.11 Te + −15. Net income 293 475.51 e 1 078 302.11 e

3 Passive surplus of deferred taxes 170 Te 226 Te + −G. Passive deferred taxes 170 500 e 226 Te

4 Supervisory board remuneration 16 Te 16 Te − +Other provisions 15 710 e 15 710 e

5 Reserve for own shares 1499 Te − +21. Withdrawals from other revenue reserves 1499 Te 390 Te

T = thousand

prior year value matching that results in wrong positive annotations. However, the model again
correctly classified both samples as completely unrelated.

In summary, these examples demonstrate the model’s generalization capability despite
automatically generated imperfect annotations.

6.5 Conclusion and Future Work
Numerical inconsistencies of KPIs within published financial reports may diminish investors’
trust in a firm’s compliance and governance process which potentially impacts the firm econom-
ically and in the worst case harms its reputation.

In this work, we approach this issue by introducing KPI-Check, a novel system that aids
auditors in automatically identifying semantically equivalent KPIs and validating their numerical
consistency. The architecture combines a tailored financial named entity and relation extraction
module with a BERT-based filtering component and a contrastive autoencoder (CAE) based
text pair classification head. It first extracts KPIs and their numerical facts from unstructured
sentences before linking them to synonymous mentions in the balance sheet and profit & loss
statement. It achieves a strong matching performance of 73.00% micro F1-score on a hold-out
test set, which shows the model’s capability to detect semantically equivalent KPIs with high
confidence.

KPI-Check is momentarily being integrated in the auditing process of a major auditing
company and first user tests have already promised significant efficiency gains.

In future work, we plan to extend the system to arbitrary table types to guarantee automated
KPI cross-checking across the entire financial document. While the balance sheet and profit &
loss statement arguably represent the most important pieces of information, many less relevant
KPIs are reported in smaller tables throughout the document. Semantically linking these to
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other table- and sentence occurrences is high on our agenda.
Further, we set out together with our industry partner to manually annotate a small number

of financial statements with respect to creating high-quality ground truth labels of semantically
equivalent KPIs. Currently, our model training and quantitative evaluation build on a carefully
designed automated annotation process leveraging informed number matching. Despite the high
annotation quality and the model’s success, we hope to improve the quantitative evaluation
even further by utilizing manually crafted labels.
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CHAPTER 7

Semantic Text Classification for Sustainability
Reports

Building upon the previous chapters where we introduced KPI-Check, a system for extracting
and linking financial Key Performance Indicators (KPIs) to assess numerical consistency in
financial reports, we now shift our focus towards assisting auditors in ensuring compliance
with auditing guidelines and standards. While numerical consistency is essential, adherence to
relevant standards such as IFRS (International Financial Reporting Standards) and HGB (Han-
delsgesetzbuch) for annual financial reporting, and CSRD (Corporate Sustainability Reporting
Directive) and GRI (Global Reporting Initiative) for sustainability reports, is paramount.

In this and the following chapter, we develop solutions that enable auditors to quickly
retrieve the most relevant text passages of a financial report corresponding to specific regulatory
requirements. Subsequently, we advance towards assessing the compliance of these retrieved
passages with respect to the disclosure requirements by leveraging LLMs, which will be discussed
in Chapter 9.

Now, we start out by introducing sustain.AI, a context-aware recommender system designed
to facilitate the retrieval of the most pertinent document sections related to specified disclosure
items in sustainability reports, particularly under the GRI standard. Manually locating relevant
information in extensive sustainability reports is a daunting and time-consuming task for
auditors and stakeholders. Our system addresses this challenge by efficiently identifying and
highlighting the most relevant text passages for a given regulatory requirement.

We utilize a BERT-based [34] encoding module paired with a non-linear multi-label classifi-
cation head, trained together in an end-to-end manner. To address class imbalance in the data,
we apply weighted random sampling. Evaluating on two new German sustainability reporting
datasets, sustain.AI surpasses numerous strong baselines, achieving over a 10 percentage point
improvement in mean average precision.

By providing auditors with an efficient tool to match concrete regulatory requirements to the
corresponding text passages in sustainability reports, sustain.AI significantly streamlines the
auditing process and enhances compliance verification.

This chapter is based on the following publication:

• L. Hillebrand, M. Pielka, D. Leonhard, T. Deußer, T. Dilmaghani, B. Kliem, R. Loitz, M.
Morad, C. Temath, T. Bell, R. Stenzel, and R. Sifa, “sustain.AI: a Recommender System
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to analyze Sustainability Reports,” Proc. ICAIL, 2023, doi: 10.1145/3594536.3595131
[29].

Lars Hillebrand, as first author, originated and executed the concept for this research, conducting
the implementation, preprocessing, experimental design, and model training. He carried out
the experiments, processed and analyzed the data, assessed the outcomes, and wrote the paper.
The co-authors offered valuable feedback and participated in discussions throughout the writing
process.

7.1 Introduction
In the face of climate change and environmental degradation, our society’s expectations of
sustainable and responsible entrepreneurial action have increased continuously over the past
years. Legislators worldwide and particularly in the EU become increasingly aware of the
situation and have taken concrete political measures to enforce Corporate Social Responsibility
(CSR). In 2014, the EU approved the Non-Financial Reporting Directive (NFRD) which forces
large companies to extend their reporting on policies, risks, and KPIs regarding sustainability
and social matters. Beginning in 2024, the NFRD will be updated with the stricter CSR-
Directive, which applies to around 50 000 European companies and includes a wider catalog of
reporting requirements covering environmental, social, and governance aspects. The majority of
these requirements are based on the popular regulatory framework from the GRI. Its universal
reporting standards provide a detailed set of indicators that address a company’s impact on
the economy, environment, and people.

In light of these more comprehensive and rigorous sustainability regulations and the public’s
growing interest in corporate social responsibility, it is of vital importance to make the disclosed
information easily accessible and comparable. However, manually retrieving and analyzing
the published reports concerning specific GRI-Indicators is practically infeasible, especially
considering that the documents often span around a hundred pages or more. This is particularly
true for the auditing domain, where auditors spend hours to ensure a report’s compliance
related to said CSR standards.

Hence, we introduce sustain.AI, a sophisticated, context-aware recommender system that
utilizes modern techniques of NLP and ML to process and analyze uploaded sustainability
reports. Concretely, interested users like consumers or investors can query the recommender
engine for specific GRI-indicators, e.g., the company’s emissions (see Figure 7.1), and the
engine returns and renders the most relevant document segments related to the query. Thus,
stakeholders are able to quickly assess investment risks and opportunities arising from social and
environmental issues and to evaluate the sustainability performance of companies. Similarly,
auditors significantly benefit from the automated matching of concrete regulatory requirements
to the relevant text passages. In fact, a large part of the sustainability report audit is about
ensuring the completeness and correctness of the report according to the specified GRI standards.

Our recommender system builds on a BERT-based [34] encoding module followed by a
non-linear multi-label classification head. Both components are trained jointly in an end-to-end
fashion, leveraging weighted random sampling (WRS) to counter the significant class label
imbalance. We evaluate the model on two novel German sustainability reporting data sets
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Figure 7.1: A screenshot of the sustain.AI recommender tool. After selecting a specific regulatory
requirement from one of the categories, the system predicts the most relevant segments of a
provided sustainability report. On the right side, the recommended segments are highlighted in
the rendered report, fostering an efficient sustainability analysis.

while consistently outperforming a large set of strong baselines by more than 10 percentage
points in mean average precision.

sustain.AI is released to the public as a KI-NRW demonstrator, which is available at
https://sustain.ki.nrw/. First user tests have already promised significant efficiency gains
for the analysis of sustainability reports in the context of auditing. Moreover, the continuous
use in production will further improve the system’s recommendation capabilities due to the
integration of human feedback, e.g., in the form of correcting wrong predictions.

7.2 Related Work
Before continuing with the description of the inner workings of sustain.AI, we take a look at
prior accomplishments of other researchers related to this work.

In terms of facilitating the audit of annual financial statements, [27] presented the ALI
tool, a recommender system that ranks textual elements of financial documents to associated
requirements of predefined regulatory frameworks like IFRS or HGB. For the ranking task,
the authors used classical NLP techniques like TF-IDF [57], latent semantic indexing, neural
networks, and logistic regression (LR) with the combination of the first and last methods giving
the best performance. In follow-up work, [28] improved ALI by utilizing a pre-trained BERT
[34] language model as the backbone to encode text segments. Our architecture extends this
approach by including weighted random sampling in the training process which speeds up the
model convergence time and improves the overall performance.

When it comes to the NLP-based analysis of sustainability or CSR reports, different aspects
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have been researched. [147] and [148] addressed the problem of automatically evaluating the
GRI- and ESG1-accordance of CSR-reports. Both applied unsupervised text similarity measures
building on GloVe embeddings [53]. Similarly, [149] leveraged the language model RoBERTa
[92] to predict the relevance of sustainability reports according to the sustainable development
goals in the USA. Specifically targeted for the banking sector, [150] developed a rule-based
NER approach to estimate an index that displays the level of compliance of the climate-related
financial disclosures with the TCFD2 recommendations.

7.3 Methodology
In this section, we formally define the problem of matching text segments within documents to
relevant legal requirements before turning to the in-depth analysis of our proposed architecture,
which is visualized in Figure 7.2.

7.3.1 Problem Formulation
Given a sustainability report consisting of N distinct text segments S, e.g., paragraphs, titles,
tables, or diagrams, and a set of M regulatory checklist requirements R, our goal is to identify
all semantically relevant text segments for each requirement. Since the number of requirements
M is static, but each document has a different length (number of text segments) N , we initially
model the described matching task from a segment-to-requirements perspective as a multi-label
classification problem. Formally, for every si ∈ S our recommender model assigns relevance
scores to all rj ∈ R.

However, from the users’ point of view, the reverse direction of getting relevant segment
recommendations for a specific requirement rj (requirement-to-segments perspective) is far
more beneficial. This is especially true because a significant amount of text segments within
a sustainability report is unrelated to concrete requirements in R. This is why, based on the
assigned relevance scores, our model ranks the text segments per requirement in descending
order and subsequently recommends the top K relevant text blocks to the user.

7.3.2 Document Parsing
Before we focus on the actual recommender module, the core component of sustain.AI, we
briefly touch upon the non-negligible task of document parsing. The large majority of publicly
available sustainability reports are published as PDF documents, an inherently difficult format
to convert into a structured machine-readable form like XML or JSON. The latter is particularly
true for scanned PDF reports that only contain image information.

To solve this issue our system utilizes a custom PDF parser (see Figure 7.2), that is capable
of parsing machine-created as well as scanned PDFs with arbitrarily complex formattings. The
parser leverages a refined image segmentation technique by combining the powerful object
detection network Faster R-CNN [11] with the density-based clustering algorithm DBSCAN
[151]. It is also trained to recognize specific elements of a document, such as footers, headers,
or pagination. For further details about the parser’s functionality, we refer to [152].
1 Environmental, Social and Governance factors.
2 Task Force on Climate-related Financial Disclosures.
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Figure 7.2: Schematic visualization of the recommender system and the data flow in sustain.AI.
A custom PDF parser processes the raw sustainability reports. After some textual clean-ups, a
fine-tuned BERT model encodes individual text segments that are subsequently matched to
relevant regulatory requirements.

After the successful PDF parsing, we apply some basic textual preprocessing in the form of
removing line break hyphens and filtering out irrelevant text segment types like footer, header,
and table of contents. Our final set of considered segments S consists of titles, paragraphs,
enumerations, tables, and diagrams.

7.3.3 Recommender System
Considering a parsed and processed sustainability report, we use a pre-trained BERT [34] model
to individually encode each text segment si ∈ S.

Formally, we first apply WordPiece [120] tokenization to transform an exemplary input
segment s into a sequence of sub-word tokens t = ([CLS], t1, . . . , tn, [SEP]). Note [CLS] denotes
a BERT-specific special token that aggregates the content of the entire segment while [SEP]
simply highlights the end of the sequence.

Passing t to the BERT model with pre-trained parameters Wbert yields a sequence of
contextual token embeddings h[CLS],h1, . . . ,hn,h[SEP], where h[CLS] represents the aggregated
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context hidden state for the whole segment s.
Subsequently, we employ an MLP with trainable parameters Wmlp to predict relevance

probabilities ŷ = [ŷ1, . . . , ŷM ] ∈ RM for all requirements in R. The classifying MLP consists
of a fully connected hidden layer followed by dropout [123] and ReLU (Rectified Linear Unit)
[143] activation functions and a sigmoidal output layer.

During training, we jointly optimize and fine-tune the parameters of the BERT model Wbert
and the classification layer Wmlp to minimize the Binary Cross-Entropy (BCE) loss between
target labels y and predicted probabilities ŷ.

Finally, after assigning relevance scores over requirements for all si ∈ S, we sort the segments
for each requirement rj in descending order to recommend the top K relevant text blocks.

7.4 Experiments
In the following sections, we introduce our two custom data sets of German sustainability
reports, define our evaluation metrics, discuss the overall training setup, describe the competing
baseline methods, and finally, evaluate results.

7.4.1 Data
We train and evaluate our algorithms on two novel sustainability reporting data sets.

The first data set, named GRI, consists of 92 published sustainability reports from major
German companies. The reports have been sourced in PDF format from the companies’
websites. After the parsing step domain experts from the auditing industry annotated all
text segments in accordance with the requirements of the GRI standards. Concretely, we
consider the 89 indicators of the GRI topic standards, which cover the three main categories,
economy, environment, and social that are further split into granular topics like anti-corruption,
energy consumption, and human rights assessment. The annotation workload was equally
split among three auditors which were supervised by a senior auditor. In multiple iterations,
the created requirement labels have been validated and refined via double-checking randomly
selected sample annotations and a qualitative inspection of the false positive and negative
model predictions.

The second data set, named DNK, leverages the public sustainability reporting database
from the German Sustainability Code3 (DNK). The platform is used by the majority of German
companies to annually disclose their sustainability activities with respect to 33 requirements
from 20 DNK criteria, e.g., usage of natural resources and human rights. The categories and
their requirements cover most of the GRI topics but are generally less granular. In contrast
to the PDF documents of the GRI data set, the DNK reports in HTML format follow a
predefined structure where each section of text segments answers a distinct requirement. Since
the requirement descriptions precede their respective sections we can automatically retrieve the
ground truth annotations from the HTML during the parsing process.

Table 7.1 displays descriptive statistics for both data sets. Due to the smaller amount of
training documents, the greater document size, and the annotation sparsity, we consider the GRI
data set the harder challenge for our models. We separately train, optimize and evaluate our

3 https://www.deutscher-nachhaltigkeitskodex.de/Home/Database.
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Table 7.1: Properties of our GRI and DNK data sets. We display the number of requirements
and documents, the average number of segments per document, the average percentage of
segments assigned to at least one requirement, and the average number of matched segments
per requirement.

Data set GRI DNK
# requirements 89 33
# documents 92 1779
# segments s per document 972 242
% segments s matched 9 100
# matched segments s per requirement 2.7 7.3

algorithms on both data sets to verify this hypothesis, investigating how well sustain.AI handles
different sizes of training data and number of labels. For our GRI and DNK experiments, we
employ fixed training, validation and testing splits of 65-15-20 and 70-15-15, respectively.

As a contribution to the open-source community and for further research concerning German
sustainability reports we make the DNK data set publicly available4.

7.4.2 Evaluation Metrics
We quantitatively evaluate all models by calculating modified Mean Sensitivity (MS) and Mean
Average Precision (MAP) scores for the top K recommendations. While MAP punishes the
lower-ranked recommendations of relevant segments, MS only considers whether the relevant
segments are contained in the set of recommendations. For a single document and a concrete
requirement rj the modified sensitivity S(K) from [27] and the average precision AP(K) are
respectively defined as:

S(K) = |top K recommendations ∩ L annotations|
min(K,L) , (7.1)

AP(K) = 1
min(K,L)

K∑
i=1

(P(i) · rel(i)) , (7.2)

where L denotes the number of relevant segment annotations, rel(i) indicates whether the ith
recommendation is relevant (rel(i) = 1) or not (rel(i) = 0), and

P(i) = |top i recommendations ∩ L annotations|
i

(7.3)

represents the precision score considering the top i recommendations. Averaging S(K) and
AP(K) over all checklist requirements rj ∈ R and documents yields the subsequently reported
mean sensitivity MS(K) and mean average precision MAP(K) metrics.

4 https://github.com/LarsHill/dnk-dataset.
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Table 7.2: Evaluated hyperparameter configurations of sustain.AI. The best configuration on
the validation set is highlighted in boldface.

Hyperparameter Configurations
MLP hidden dimensions None, 512, 1024, 2048
Dropout 0.0, 0.1, 0.3, 0.5,
Batch size 2, 4, 8, 16
Learning rate 1 × 10−6, 1 × 10−5, 1 × 10−4

7.4.3 Training Setup
In this section, we shed light on the training process and the hyperparameter optimization of
sustain.AI.

For all evaluated models we conduct an exhaustive grid search comparing various parameter
combinations based on their validation set MAP(3) performance to determine the best training
setup. Table 7.2 highlights the explored ranges and respective best values of sustain.AI’s tuned
model parameters.

As encoding backbone we employ a BERTBASE model, published by the MDZ Digital Library
team (dbmdz)5. It mirrors the architectural setup of the English BERTBASE counterpart6

and is pre-trained on a large corpus of German books, news reports and Wikipedia articles.
We train our model and all neural network-based baselines via gradient descent utilizing the
AdamW [122] optimizer with a linear warmup of 10% and a linearly decaying learning rate
schedule. Additionally, we apply weight decay of 0.01 and gradient clipping with a maximum
value of 1. We also analyze different learning rates, batch sizes, levels of dropout regularization
[123], and MLP hidden dimensions, as can be seen in Table 7.2. For all training runs we set a
random seed of 42 and fix the maximum number of epochs to 15 while applying early stopping
with a patience of 3 epochs.

Due to the small percentage of annotated segments s in the GRI data set (9%, see Table 7.1)
we employ WRS with replacement to expose these relevant segments more frequently during
training. Concretely, we alter the originally uniform sampling probability of each segment to
the normalized inverse frequency of relevant + or irrelevant − occurrences in the training set.

Figure 7.3 showcases the benefits of integrating WRS into the model training process for the
GRI data set. We achieve a much faster training convergence and thus, save a considerable
amount of training time and compute power benefitting from early stopping. At the same time,
our model’s MAP(3) score on the validation set increases by 3 percentage points.

7.4.4 Baselines
We compare sustain.AI’s end-to-end recommender model from Section 7.3.3 with 4 competing
baseline architectures. For a fair comparison, all baselines make use of weighted random
sampling concerning the imbalanced GRI data set.

5 https://huggingface.co/dbmdz/bert-base-german-cased.
6 12 multi-head attention layers with 12 attention heads per layer and 768-dimensional output embeddings.
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Figure 7.3: Positive impact of weighted random sampling (WRS) on training convergence
and validation performance. We report the mean average precision considering the top 3
recommendations (MAP(3)) with and without WRS.

First, we utilize word frequency-based TF-IDF [153] representations that have been fitted
on our respective training corpora. Prior to training, all segments have been preprocessed
in terms of lowercasing, punctuation- and digit removal as well as stemming. The resulting
8000-dimensional segment vectors are then used as input for an ensemble of one-vs-rest binary
LR classifiers. Each classifier is trained for a specific requirement r and a maximum of 100
iterations using the “liblinear” solver from the scikit-learn Python library.

Second, we pass the same TF-IDF representations into an MLP with one hidden layer of
dimensionality 1024. In contrast to the binary logistic regression heads, the MLP performs
multi-label classification and predicts the relevant requirements simultaneously. We find an
optimal batch size of 64 and a learning rate of 1e−3.

Third, we exchange the TF-IDF input vectors with frozen contextual embeddings from
sustain.AI’s BERT model. As classifiers, we evaluate the previously defined MLP and a GRU.
While the MLP takes BERT’s CLS output embedding as input, the bidirectional GRU processes
the resulting token representations of the frozen BERT model. Specifically, the last/first hidden
state of the forward/backward GRU is concatenated and passed to a sigmoidal output layer.
Optimal settings are obtained with a hidden size of 512 neurons, a batch size of 8, and a
learning rate of 1e−5.

7.4.5 Results
We evaluate and compare sustain.AI and all baseline methods on the previously specified
hold-out test set for both the GRI and DNK data. Table 7.3 reports MS and MAP scores for
the top 3 and top 5 recommendations.

First, it can be seen that the overall DNK performance across all methods is much better
compared to the GRI data. This was expected, considering the reduced number of requirements
and the larger amount of training documents and annotations.

Second, we find that the application of WRS during training significantly improves the test
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Table 7.3: Test set results for the recommendation of relevant segments in GRI and DNK sus-
tainability reports. sustain.AI outperforms all competing baselines in top 3/5 Mean Sensitivity
(MS) and Mean Average Precision (MAP).

in % GRI DNK

Model MS MAP MS MAP
3 5 3 5 3 5 3 5

Tf-Idf + LR 24.3 33.7 17.1 19.5 70.8 66.3 66.8 59.0
Tf-Idf + MLP 33.0 39.8 22.6 24.2 77.4 77.8 74.8 71.8
BERTfrozen + MLP 28.4 36.1 21.0 22.4 75.2 70.6 73.5 66.4
BERTfrozen + GRU 28.1 36.8 20.5 22.1 84.0 80.2 83.0 77.2
sustain.AIno WRS 35.5 44.2 28.4 30.5 90.3 87.8 89.7 86.1
sustain.AIWRS 48.0 53.8 35.9 37.0 − − − −
− = not applicable, since weighted random sampling (WRS) is only applied on GRI data.

set performance of our model. Compared to the version without WRS all metrics have increased
by more than 6 percentage points. To enable a fair comparison we apply WRS during the
training process of all baseline methods. Also, WRS is solely employed for the GRI data, since
the DNK reports do not exhibit any annotation scarcity.

Finally, the results in Table 7.3 show the overall superiority of sustain.AI’s end-to-end
architecture, outperforming all baselines by a large margin.

7.5 Conclusion and Future Work
We presented sustain.AI, an interactive, AI-powered tool for the semi-automated analysis of
German sustainability reports. Our transformer-based model achieves promising results both
on the well-structured DNK data set and on the real-world GRI data, compared to a number
of strong baselines. Qualitative exploration of the results also suggests that it is indeed helpful
in analyzing those long documents. The tool is planned to be deployed on an online platform
soon and will then be openly accessible to the public.

Future work includes improving the current model with additional annotated data, which can
easily be inferred from the user feedback we will collect through the tool. We also plan to extend
the framework to English reports, as currently, only the processing of German documents is
possible. Another idea for improvement is to extract specific numeric KPIs from the reports,
such as different types of CO2 emissions, water consumption, or indicators for social welfare.
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CHAPTER 8

Enhancing Large Language Models with
Paragraph-Level Awareness

In the previous chapter, we presented sustain.AI, a BERT-based [34] text classification system
designed to recommend the most semantically relevant text passages from sustainability reports
for given disclosure requirements from the Global Reporting Initiative (GRI) sustainability
standard. This model employed a classification approach that generated embeddings for
individual paragraphs using BERT and used these embeddings to match text segments to the
appropriate requirements. While the model achieved excellent performance, it operated under
a significant limitation: the absence of paragraph-level contextual awareness.

Specifically, the prior approach processed each paragraph in isolation. Each paragraph was
independently transformed into an embedding using BERT, and the model considered only
this single-paragraph representation for classification. This independent processing meant
that the model did not take into account the surrounding textual context, such as preceding
or succeeding paragraphs, which often contain crucial information influencing the meaning
and relevance of a passage. As a result, the model might miss subtle contextual cues and
relationships between paragraphs that are essential for accurate classification, particularly in
documents where the narrative develops across multiple sections.

To address this limitation, we introduce a novel pre-training methodology called Pointer-
Guided Segment Ordering (SO) in this chapter. Our approach enhances the language model’s
ability to generate contextually rich paragraph embeddings by training it to comprehend
narrative flow and inter-paragraph relationships. By reconstructing the original order of
shuffled text segments using a self-attention-based [19] pointer network, the model learns
to understand how paragraphs relate within a document. This task effectively infuses the
model with paragraph-level contextual awareness. When combined with standard pre-training
techniques like Masked Language Modeling (MLM), our method enables the model to capture
both local and global contextual information.

Furthermore, we implement a dynamic sampling strategy during fine-tuning to increase the
diversity of training instances across epochs, thereby improving sample efficiency. This strategy
is particularly beneficial for smaller fine-tuning datasets characterized by long documents, as it
mitigates the risk of overfitting and promotes better generalization by exposing the model to a
wider range of paragraph sequences.
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Through extensive experiments, we demonstrate that models pre-trained with our pointer-
guided SO task consistently outperform competing baselines. Our approach sets new state-of-
the-art results on the task from the previous chapter and in the scientific literature domain,
highlighting the advantages of incorporating paragraph-level context and advanced pre-training
techniques in enhancing sequential text classification performance.

In the following sections, we delve deeper into our methodology, provide detailed experiments
to validate our approach, and discuss the implications of our findings in the context of NLP
advancements.

This chapter is based on the following publication:
• L. Hillebrand, P. Pradhan, C. Bauckhage, and R. Sifa, “Pointer-Guided Pre-Training:

Infusing Large Language Models with Paragraph-Level Contextual Awareness,” Proc.
ECML PKDD, 2024, doi: 10.1007/978-3-031-70359-1_23 [38].

Lars Hillebrand originated and refined the methodology, which encompassed the novel self-
supervised SO pre-training and dynamic sampling to enhance downstream performance in
sequential text classification. He was responsible for implementing the codebase in Python
using PyTorch [94] for deep neural network modeling, training, and evaluation, while also
executing the experiments, and conducting data processing. Lars Hillebrand also evaluated the
results, drafted the manuscript, and finalized the work after including valuable feedback from
all co-authors.

8.1 Introduction
The landscape of NLP has been profoundly transformed by the emergence of generative LLMs
such as OpenAI’s GPT series [18, 91], Mixtral [89], and Llama [154]. These models have set
new benchmarks across a wide range of NLP tasks, showcasing remarkable capabilities in
understanding and generating human language. Despite the significant advancements achieved
by these large-scale models, there remains an equally important domain for smaller, specialized
language models that excel in fast retrieval and semantic search, particularly those that generate
precise paragraph and section representations. This domain is crucial, especially in the context
of Retrieval-Augmented Generation (RAG) [35], where the integration of retrieval mechanisms
with generative models enhances the reliability and informativeness of the output.

In this work, we address the important area of representation learning for improved paragraph-
level contextual understanding, which is critical for enhancing the capabilities of NLP systems
in sequential text classification and retrieval-based applications such as semantic text search.

At the heart of our approach is the introduction of a novel pre-training methodology, named
“pointer-guided segment ordering” (SO). This technique is designed to infuse language models
with a deep awareness of paragraph-level context. Utilizing a self-attention-driven pointer
network, the pointer-guided SO task challenges the model to reconstruct the original sequence
of shuffled text segments (see Figure 8.1). This complex task enables the model to develop a
nuanced comprehension of narrative flow, coherence, and contextual relationships, significantly
enhancing its ability to understand and represent paragraph-level context when combined with
standard pre-training techniques like masked language modeling.

To complement our pre-training methodology, we further introduce dynamic sampling during
the fine-tuning phase. This sampling technique increases the diversity of training instances across
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Figure 8.1: Schematic visualization of our “Pointer-Guided Pre-Training” methodology. During
pre-training a self-attention-based pointer network classification head learns to reconstruct the
original order of shuffled text segments based on their hidden state representations (h[SEP]).
Employing this segment ordering (SO) pre-training mechanism alongside masked language
modeling (MLM) increases the segment-level contextual awareness of the encoding language
model and subsequently improves its downstream classification capabilities.

epochs, thereby improving sample efficiency. Dynamic sampling is particularly advantageous
for smaller fine-tuning datasets characterized by long documents, where it effectively mitigates
the risk of overfitting and promotes better generalization.

We demonstrate the effectiveness of these contributions through extensive experiments.
We show that models pre-trained with our pointer-guided SO task consistently outperform
competing baselines and raise the state-of-the-art across various datasets and tasks in the
scientific literature and financial reporting domain. Furthermore, the model-agnostic nature of
our methodology positions it to capitalize on future advancements in language model design,
promising further improvements in paragraph-level text representation.

In summary, our work not only introduces a novel and effective methodology for enhancing
paragraph-level embeddings but also establishes a new benchmark for sequential text classifi-
cation. By opening new avenues for research in leveraging document structure for enhanced
language modeling, our work marks a significant step forward in the ongoing evolution of NLP,
with substantial potential impact on retrieval-based applications like semantic text search.

In the following, we first review related work, before describing our modeling approach in
Section 8.3. In Section 8.4, we outline our experiments, describe our datasets, and discuss the
results. Section 8.5 then draws a conclusion and provides an outlook into conceivable future
work.
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8.2 Related Work
Traditional language modeling tasks such as MLM and next token prediction (NTP) have been
instrumental in learning token-level representations. Models like RoBERTa [92], ELECTRA
[155], and GPT variants [18, 91, 154] have shown significant success in these areas. However,
these models often lack mechanisms to enforce the learning of meaningful segment-level repre-
sentations, crucial for understanding paragraph-level context. BERT [34] introduced the next
sentence prediction (NSP) task to bridge this gap, but its simplicity limited its effectiveness.
Subsequent models, such as RoBERTa, abandoned NSP due to its limited contribution to model
performance. Unlike these approaches, our work introduces a pointer-guided segment ordering
methodology that directly leverages the inherent structure of textual data, offering a novel
way to enhance paragraph-level understanding without relying on external data sources like
Wikipedia article links in LinkBERT [156] or knowledge-graph reasoning [157]. The underlying
architecture of our method, the pointer network [158], has been successfully used for stand-alone
sequence ordering tasks, as demonstrated by [159–161]. However, to the best of our knowledge,
we are the first to employ a novel self-attention-driven pointer network for segment ordering in
conjunction with LLM pre-training.

We evaluate our pre-training technique on several sequential text classification tasks. Previous
studies have tackled these challenges with domain-adapted and fine-tuned BERT models [29,
162] and the incorporation of hierarchical LSTMs, attention mechanisms, and CRF layers for
improved sequential label dependency handling [163–166].

8.3 Methodology
In this section, we provide a comprehensive description of our methodological contributions
aimed at enhancing the contextual sensitivity of paragraph-level text representations, as well
as their optimization for various downstream applications. Initially, we describe our novel
“pointer-guided segment ordering” approach, a versatile pre-training strategy that employs a
self-attention-driven pointer network to accurately restore the original sequence of shuffled text
segments. Subsequently, we detail our fine-tuning methodology, which incorporates dynamic
sampling to augment the diversity of training instances throughout successive training epochs,
thereby improving sample efficiency.

8.3.1 Pointer-guided Segment Ordering
A text document is inherently composed of consecutive text segments, which can range from
whole paragraphs and individual sentences to enumerations, tables, and headlines. These
segments are typically contextually interdependent, forming a coherent narrative in various
types of documents, such as news articles, fiction novels, annual reports, or legal contracts.

To capture the essence of this structural coherence, we propose a novel self-supervised
pre-training technique denoted as pointer-guided segment ordering (SO) that is capable of
leveraging large amounts of unlabeled text data to infuse language models with additional
embeddings for individual text segments. Concretely, we employ a self-attention-based pointer
network to reconstruct the original order of a randomly shuffled sequence of text segments. This
non-trivial pre-training task becomes exponentially more complex as the number of segments
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increases. Given a document of N consecutive text segments, the number of possible segment
permutations grows factorially to N !. This inherent complexity requires the model to gain a
deep contextual understanding, picking up on nuanced intricacies like coherence, chronological
order, and causal relationships to ensure that the narrative flows logically and maintains
continuity from beginning to end.

To address the fact that transformer-based language models [19] typically exhibit an upper
limit on the maximum token context size1, denoted as C, we start with dissecting long text
documents into individual training samples. Concretely, a training sample consists of K text
segments s, where K is the maximum number of segments that fit within the language model’s
context window. Each segment is appended with a special delimiting token, [SEP], that indicates
the segment’s end. Note the value of K varies for each sample, depending on the token length
of the individual segments.

We enable the segment ordering task by randomly shuffling the segments within each
training sample before encoding the entire sequence with a bidirectional language model
denoted as BiLM. Specifically, we first apply WordPiece [120] tokenization to transform an
exemplary input sample consisting of K segments into a sequence of sub-word tokens t =
([CLS], s1, [SEP]1, s2, [SEP]2, . . . , sK , [SEP]K). [CLS] denotes the special start of sequence token
and an individual segment si = (t1, . . . , tm) consists of m sub-word tokens, where m can differ
between segments.

We couple our segment ordering pre-training task with MLM to enhance the model’s un-
derstanding of context and word relationships. In line with the insights from [167] and [168],
we implement whole word masking and mask 15% of randomly selected whole words. For the
remaining MLM pre-training methodology of predicting the correct sub-words from a given
vocabulary for all masked tokens, we refer to [34].

The tokenized, masked, and permuted input sequence is then encoded by a BiLM, which yields
a series of d-dimensional hidden state vectors H = (h1,h2, . . . ,hT ) ∈ RT ×d corresponding to
each token ti for a sequence of length T .

For the segment reordering task, we collect the hidden states corresponding to the [SEP]
tokens, denoted as H[SEP] = (h1

[SEP],h
2
[SEP], . . . ,h

K
[SEP]) ∈ RK×d. We add learnable absolute

positional embeddings E = (e1, e2, . . . , eK) to each segment hidden state, yielding the enhanced
segment representations H ′

[SEP] = H[SEP] + E. Naturally, the added positional bias encodes the
new segment position after shuffling, preventing the reordering task from being compromised.

Subsequently, we pass H ′
[SEP] to a pointer network [158], which is particularly suited for our

SO task due to the varying number of segments per sample K, which precludes the use of
a static output layer with a fixed number of classes. The network calculates each segment’s
probability distribution over the original segment positions using a multiplicative self-attention
mechanism, defined as follows:

A = softmax
(

QK⊤
√
q

)
, Q = H ′

[SEP]W
⊤
query, K = H ′

[SEP]W
⊤
key, (8.1)

Wquery ∈ Rq×d, Wkey ∈ Rq×d, Q ∈ RK×q, K ∈ RK×q, A ∈ RK×K , (8.2)

1 The self-attention mechanism incurs a computational cost that scales quadratically in sequence length, imposing
practical limits on the processable context size.
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Figure 8.2: Schematic visualization of “Dynamic Sampling”. Dynamic sample construction
increases sample diversity across epochs which improves contextual understanding and model
generalization in contrast to simply creating samples greedily.

where Wquery and Wkey are learnable query and key weight matrices, q = d/4 is their respective
row dimension, and A is the row-stochastic2 square attention matrix, with each element aij

denoting the predicted probability that segment i originated from position j. It follows that
the predicted position of segment i equals ŷi = arg maxj(ai).

The loss for the segment ordering task is computed using negative log-likelihood, LSO(A,y) =
−
∑K

i=1 log(ai,yi
), where yi denotes the ground truth position of segment i.

8.3.2 Sample-efficient Fine-Tuning using Dynamic Sampling
Based on the previously detailed concept of combining multiple text segments to improve
contextual understanding, this section focuses on the associated benefits of sample efficiency
and introduces dynamic sampling to enhance data diversity.

Traditional text classification fine-tuning approaches for encoder-only language models like
BERT often treat each text segment as an independent sample, which can lead to suboptimal
context utilization and unnecessary computational overhead, especially for short segments. Our
method dynamically combines multiple text segments into a single sample, thereby maximizing
the use of the model’s context capacity C and enhancing training efficiency.

For an average segment length of T̄ tokens, the maximum number of segments per sample
K =

⌊
C/T̄

⌋
represents the efficiency gain factor, which quantifies the improvement over

processing segments individually. This gain is more evident when using large batch sizes B, as
the longest sample in a batch dictates the memory and computational requirements.

A drawback of uniting multiple segments in one sample is the reduction in sample diversity,
which is particularly problematic in small datasets. To mitigate this issue and promote sample
diversity, we introduce dynamic sampling for fine-tuning in scenarios with scarce data (see

2 ∑K

j=1 aij = 1 ∀i ∈ {1, 2, . . . , K}.
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Figure 8.2). Instead of deterministically merging the maximum number of segments K, we
randomly select the number of combined segments L, sampling from a uniform distribution
U(Lmin,K), where Lmin denotes the minimum number of merged segments. While this reduces
the expected computational efficiency gain per sample, it introduces beneficial randomness
into the training process. By exposing the model to varying segment combinations of different
lengths during each epoch, we encourage better generalization and reduce the risk of overfitting.

Subsequently, our experiments validate that combining segment order pre-training with
sample-efficient fine-tuning using dynamic sampling significantly enhances performance in
downstream text classification tasks that require a comprehensive understanding of complex
and extended document structures.

8.4 Experiments
We split our experiments into two parts. First, we focus on our pointer-guided pre-training
setup before quantitatively evaluating its impact on five downstream tasks requiring sequential
text classification.

The experiments were conducted on a GPU cluster equipped with eight 32 GB Nvidia Tesla
V100 GPUs. The cumulative pre-training duration of all models amounted to 380 GPU hours.
Our code is implemented in PyTorch [94], with the initial weights of pre-trained models being
loaded from Huggingface. We open-source our code base on GitHub3.

8.4.1 Pre-Training
In the following, we briefly introduce our pre-training datasets and discuss the overall training
setup including baselines and results.

Data

Table 8.1 details the mixture of our pre-training datasets and reports various descriptive
statistics like the number of tokens and segments per dataset.

The Wikipedia datasets comprise 5.9 (English) and 2.4 (German) million articles respectively
that were directly retrieved from their rendered HTML pages. In contrast to the commonly
used Wikimedia XML dumps, our corpus resolves Wikipedia’s templating syntax embedded
in the dumps and thus represents the articles in their original form leading to improved data
quality.

Bundesanzeiger contains 1.9 million German corporate annual reports from the Bunde-
sanzeiger, a platform where German companies are mandated to publish their legally required
documents. Compared to Wikipedia the average document length is roughly three times higher
resulting in around 2000 tokens per report.

Lastly, we include two proprietary datasets of English (2 million) and German (650 thousand)
news articles that raise the total number of pre-training tokens to 12.24 billion.

For all datasets, we employ a 90-10 split for training and validation. We parse raw HTML
articles using the lxml Python library, distinguishing headlines, paragraphs, tables, enumerations,
and more.
3 https://github.com/LarsHill/pointer-guided-pre-training.
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Table 8.1: Descriptive statistics of pre-training datasets with document, segment, sample, and
token counts in English and German, including total and average values. Token and sample
statistics are calculated based on the multilingual word-piece vocabulary, custom-100K (see
Table 8.2), created from all pre-training datasets.

Wikipedia Bundesanzeiger News Sum
EN DE DE EN DE

Documents (M) 5.85 2.44 1.91 2.02 0.65 12.88
Segments (M) 99.37 19.63 85.06 36.25 17.51 257.81
Samples (M) 13.83 4.80 9.53 5.23 1.23 34.62
Tokens (B) 4.48 1.62 3.74 1.97 0.44 12.24
Tokens (%) 36.56 13.26 30.52 16.10 3.56 100
M: million, B: billion.

Training Setup and Results

We evaluate the efficacy of our pointer-guided segment ordering (SO) task by pre-training and
fine-tuning three variants of the BERT language model: BERT, RoBERTa, and our proposed
PointerBERT. The BERT model adheres to the original design by [34], employing self-supervised
MLM and NSP. RoBERTa [92] modifies the BERT pre-training scheme by omitting NSP and
maximizing the use of context by concatenating multiple text segments. PointerBERT extends
RoBERTa with the inclusion of our SO task, as detailed in Section 8.3.1. Note the application of
SO is architecture agnostic and can be used to generally enhance the paragraph-level contextual
comprehension of bidirectional encoder language models like RNNs [169], DeBERTa [170] and
Electra [155].

Table 8.2 presents the pre-training configurations for each model variant. All variants
are based on Google’s BERTBASE architecture as encoding backbone, differing only in their
tokenizer and vocabulary construction.

Concretely, we distinguish three scenarios. First, we train each model from scratch on the
English Wikipedia corpus (wiki-en) using Google’s bert-base-cased tokenizer. The validation
results demonstrate that PointerBERT correctly reorders shuffled segments in 35% of cases.
Although this may appear modest, it is significantly higher than the baseline random guess
accuracy of approximately 1/5040 ≈ 2 × 10−4, given an average of 7 segments per sample
(see Table 8.1) and 5040 possible permutations. Importantly, the inclusion of SO does not
compromise MLM performance, with only a marginal decrease in validation accuracy. Lastly,
we observe that combining MLM with NSP significantly diminishes MLM performance, likely
due to the reduced sample efficiency and the underutilization of the model’s context capacity.

Second, we train RoBERTa and PointerBERT on the combined multilingual datasets, denoted
“all”, using a newly developed 100K token word-piece vocabulary created from the pre-training
data. This step aims to assess the impact of SO in a multilingual context.

Third, we build upon the pre-trained checkpoints of Allen AI’s SciBERT [171] and the German
BERT model released by the MDZ Digital Library team (dbmdz)4 and continue pre-training,
4 https://huggingface.co/dbmdz/bert-base-german-cased.
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Table 8.2: Training configurations and validation accuracies for all language model variations
and their pre-training tasks, masked language modeling (MLM), next sentence prediction
(NSP), and segment ordering (SO). The scores represent averaged batch accuracies across the
validation set.

Accuracy ↑ (%)

Architecture Datasets Pre-
trained

Train
steps Tokenizer MLM NSP SO

BERT wiki-en ✗ 1 × 105 bert-cased 30.14 73.85 −
RoBERTa wiki-en ✗ 1 × 105 bert-cased 44.77 − −
PointerBERT wiki-en ✗ 1 × 105 bert-cased 43.10 − 34.90

RoBERTa all ✗ 2 × 105 custom-100K 57.66 − −
PointerBERT all ✗ 2 × 105 custom-100K 55.11 − 39.49

PointerSciBERT wiki-en ✓ 1 × 105 scibert-uncased 58.27 − 52.45
PointerBERT all-de ✓ 1 × 105 bert-caseddbmdz 73.62 − 57.35

incorporating both MLM and SO. Here we aim to demonstrate the applicability of SO for
already pre-trained language models and show that continuous pre-training with MLM and
SO not only further increases the MLM performance but also manages to induce improved
paragraph-level text understanding thanks to pointer-guided SO.

All models are trained using gradient descent with the AdamW optimizer [122], featuring a
10% linear warmup and a decaying learning rate schedule. We apply a weight decay of 0.01
and clip gradients at a maximum value of 1. The peak learning rate is set to 1 × 10−4, with a
batch size of 16 and gradient accumulation over 4 steps, resulting in an effective batch size of
64. Model performance is evaluated on a hold-out validation set every 5000 steps. Figure 8.3
provides a detailed view of the training progress, depicting both MLM and SO validation losses
and accuracies.

Notably continued pointer-guided pre-training not only further improves MLM accuracy
but also yields robust SO performance, which translates into enhanced results on downstream
classification tasks, as discussed in the following section.

8.4.2 Downstream Fine-Tuning for Sequential Text Classification
In this section, we delve into the application of our pre-trained models to a series of fine-tuning
downstream tasks that necessitate sequential text classification. We explore a diverse array
of datasets, spanning both scientific literature and financial reporting domains, to assess the
models’ capabilities in categorizing text segments in different scenarios.

Datasets

Our evaluation encompasses five datasets, three from the scientific literature corpus and two from
the financial reporting sector, each presenting unique challenges for text segment classification.
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Figure 8.3: Pre-training progress for all model variants, showcasing validation accuracy curves
for masked language modeling (MLM) and segment ordering (SO).

Within the scientific literature, we examine the CSAbstruct dataset [162], which comprises
2189 computer science abstracts with sentences annotated to discern their rhetorical roles.
The PubMed-RCT dataset [172] extends our evaluation to 20 000 biomedical abstracts from
PubMed, segmented into five rhetorical categories, following the preprocessing methodology
outlined by [164]. The Nicta dataset [173] further contributes with 1000 biomedical abstracts,
where sentences are classified according to the PICO framework (Population, Intervention,
Comparison, Outcome) [174].

Transitioning to the financial sector, we incorporate the GRIDE dataset [29] (introduced in the
previous Chapter 7), which consists of 92 sustainability reports from leading German companies.
These reports were initially obtained as PDFs from corporate websites and subsequently
annotated by experts to correspond with the GRI standards, covering 89 indicators across
economic, environmental, and social dimensions. The IFRSEN dataset is composed of 45 English
annual reports adhering to the International Financial Reporting Standards (IFRS). Provided
by an auditing firm, these reports contain annotations that map paragraphs to 543 distinct
legal requirements, with some paragraphs addressing multiple items.

A summary of the datasets’ descriptive statistics is presented in Table 8.3. The scientific
abstract datasets (CSAbstruct, PubMed-RCT, and Nicta) contrast with the financial report
datasets (GRIDE and IFRSEN) in terms of structure. The former category includes a higher
volume of documents, each with approximately 10 sentences, typically fitting within the model’s
context window of 512 tokens. This is reflected in the average number of samples per document
being close to 1 for these datasets. They feature a smaller set of categories and require multi-class
classification, where every text segment is annotated and assigned to a single category.

Conversely, the financial datasets contain fewer but significantly longer documents, averaging
over 400 segments. The resulting classification complexity is further amplified by a larger
number of checklist categories and annotation scarcity, with only 8.5% of paragraphs in the
GRIDE dataset linked to a GRI requirement. Moreover, both datasets contain segments that
refer to multiple checklist items, making this task a multi-label classification challenge that
resembles the difficulty of information retrieval due to the severe class imbalance and annotation
sparsity.
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Table 8.3: Descriptive statistics of scientific and financial fine-tuning datasets. Sample statistics
are calculated based on the custom-100K vocabulary (see Table 8.2).

Scientific Abstracts Financial Reports
CSAbstruct PubMed-RCT Nicta IFRSEN GRIDE

Documents 2189 20 000 1000 45 92
Segments 14 708 240 386 9771 19 573 89 412
Samples 2191 23 289 1061 4773 21 306
Is multi-label ✗ ✗ ✗ ✓ ✓

Classes 5 5 6 543 89
Segments labeled (%) 100.00 100.00 100.00 78.37 8.57
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Figure 8.4: Class distributions across all datasets showcasing label imbalances.

The variation in class distribution across all datasets is graphically depicted in Figure 8.4.
For all datasets, we adhere to the established training, validation, and test splits introduced in
prior work. For the new IFRSEN dataset, we employ a random split of 35 training, 5 validation,
and 5 test documents.

Baselines and Classification Tasks

In the following comparative analysis, we benchmark our PointerBERT model variants against
the various pre-trained baselines described in Section 8.4.1. In contrast to the other baselines,
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Table 8.4: Selected hyperparameters per dataset for our PointerBERT models based on the
best validation-set micro F1 and MAP@3 performances.

Hyperparameter CSAbstruct PubMed-RCT Nicta IFRSEN GRIDE

Dropout 0.1 0.2 0.2 0.2 0.2
Batch size 8 4 4 4 4
Learning rate 1 × 10−4 5 × 10−5 5 × 10−5 5 × 10−5 1 × 10−5

Epochs 2 2 3 30 3
Loss weighting ✗ ✗ ✗ ✓ ✓

Random oversampling ✗ ✗ ✗ ✗ ✓

Dynamic sampling ✗ ✗ ✗ ✓ ✓

Classification head RNN Linear Linear Linear Linear
Label embedding dim 32 − − − −

BERTwiki-en processes each text segment individually, and we utilize the hidden state vector of
its special classifier token [CLS] as input for the downstream classification head. The remaining
RoBERTa-based models handle multiple segments at a time, which is why we leverage the hidden
states of their segment separating special tokens [SEP] for subsequent category prediction. The
final output layer of each model differs depending on the dataset and its respective classification
task. The scientific abstract datasets require multi-class classification which implies a softmax
output layer that uniquely maps each segment si to a single category rj ∈ R. Conversely, the
financial report datasets necessitate a sigmoidal output layer for multi-label classification, where
a segment si receives relevance scores for all checklist requirements in R.

We also compare our methodology with external state-of-the-art models that have not been
pre-trained by us. For the scientific abstract datasets, we draw comparisons with [162] who
utilize a pre-trained SciBERT [171] model and fine-tune it in the fashion of our RoBERTa
baselines using the model’s [SEP] tokens as input for the classification layer. Additionally,
we report results for the latest sequential sentence classification models [163–166] that are
particularly optimized for incorporating sequential label dependencies while decoding. Lastly,
we compare our novel methodology with the dedicated recommender model for sustainability
reports, sustain.AI [29], that we introduced previously in Chapter 7. It employs weighted
random sampling and leverages a pre-trained BERT architecture equipped with an MLP to
identify the most relevant checklist requirements for each text segment in the GRIDE dataset.

Training Setup

For all models and datasets, we conduct an exhaustive grid search across a wide range of
hyperparameters to identify the best parameter combinations, evaluated on the hold-out
validation set micro F1 (scientific abstracts) and Mean Average Precision (MAP) @3 scores
(financial documents). Initially, we perform a broad parameter sweep to establish a viable
starting point for each architecture and dataset, followed by a more detailed fine-tuning within
the proximity of these initial parameters. The outcome of this rigorous process is detailed in
Table 8.4, presenting the optimal configurations for our PointerBERT model across datasets.

In the following, we highlight a few insights from Table 8.4. First, we compare different
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classification heads for the single-label prediction tasks. Besides a standard linear output layer
that classifies each segment simultaneously, we evaluate the performance of employing a GRU
[83] that incorporates the previously predicted label information for the subsequent segment
prediction (see [30] for more details). Surprisingly, this more elaborate decoding method only
slightly improves results for CSAbstruct, which indicates that label dependencies are already
sufficiently encoded in the separator token hidden states.

Second, we mitigate the challenges of annotation scarcity and data imbalance in the financial
report datasets, by utilizing class-based loss weighting and adjusting the binary cross-entropy
loss according to the segments’ inverse class frequencies. Following [29], we also adopt random
oversampling for the GRIDE dataset, enhancing model exposure to annotated segments.

Third, we employ dynamic segment sampling (Section 8.3.2), which increases sample diversity
across epochs for models that are capable of processing multiple segments together. This
sampling technique proves especially useful for the financial report datasets characterized by a
small number of long documents. For our experiments, we set the minimum number of randomly
selected segments per sample to Lmin = 3. We refrain from applying dynamic sampling on the
scientific abstract datasets because of their substantially larger size and almost all documents
comfortably fitting within our models’ 512-token context window.

All additional training parameters not specified in Table 8.4 align with the pre-training
configurations described in Section 8.4.1, except for gradient accumulation, which is not needed
during fine-tuning due to smaller batch sizes. Also, to ensure a level playing field, all pre-trained
baseline models undergo the same hyperparameter selection process and benefit from the
described training enhancements, which enables fair test-set evaluations.

Results

Table 8.5 presents the test-set performance metrics for all evaluated models across each dataset.
To ensure reliability of our results, each model-dataset pairing has been evaluated 10 times
using different seeds, with the average and standard deviation of these runs reported. We
categorize the comparisons into three distinct groups. In the first category, our continuously
pre-trained PointerBERT models are compared with current state-of-the-art models, revealing
that the English PointerSciBERT model surpasses previous benchmarks on two out of three
scientific abstract datasets. Notably, we did not focus on incorporating improved decoding
mechanisms like advanced attention and CRF output layers, as included in the external baselines.
Joining these methods with our PointerBERT methodology would likely further improve results.
Additionally, the German PointerBERTall-de model exhibits enhanced retrieval performance
on the German GRIDE sustainability report dataset. Due to the distinct vocabularies and
monolingual pre-training approach, English models were not evaluated on German datasets
and vice versa.

The second comparison group evaluates the PointerBERT architecture against RoBERTa and
BERT models in a controlled setting. Both sets of models have been identically pre-trained from
scratch, allowing any performance discrepancies to be attributed to architectural differences.
This comparison underscores the superiority of our pointer-guided SO task, with PointerBERT
consistently outperforming the other architectures across all English datasets.

In the final comparison group, the multilingual PointerBERTall model is pitted against
the RoBERTaall baseline. Both models have been pre-trained from scratch as well using the
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Table 8.5: Test set results for sequential text classification on scientific abstract and financial
document datasets. PointerBERT outperforms all competing baselines in micro and macro F1
score as well as top 3/5 Mean Average Precision (MAP). We report mean (best scores in bold)
and standard deviation values from 10 independently seeded training runs for robust test set
evaluation.

Scientific Abstracts Financial Reports
CSAbstruct PubMed-RCT Nicta IFRSEN GRIDE

in % F1 F1 F1 MAP MAP
Architecture Micro Macro Micro Macro Micro Macro @3 @5 @3 @5
Jin et al. [164] 81.30 − 92.60 − 84.70 − − − − −
Cohan et al. [162] 83.10 − 92.90 − 84.80 − − − − −
Yama. et al. [166] − − 93.10 − 84.40 − − − − −
Shang et al. [165] − − 92.80 − 86.80 − − − − −
Brack et al. [163] − − 93.00 − 86.00 − − − − −
Pointer-
SciBERTwiki-en

83.21
±0.31

82.05
±0.57

93.56
±0.10

89.56
±0.16

85.07
±0.33

76.22
±1.13

62.75
±1.00

63.99
±0.94 − −

Hillebrand
et al. [29] − − − − − − − − 33.37

±0.95
35.29
±0.91

Pointer-
BERTall-de

− − − − − − − − 34.25
±1.07

36.19
±1.06

BERTwiki-en
73.25
±0.72

73.83
±0.60

85.98
±0.07

80.72
±0.09

72.74
±0.48

65.80
±0.82

56.77
±0.71

57.61
±0.67 − −

RoBERTawiki-en
81.21
±0.70

79.37
±1.02

92.48
±0.05

88.17
±0.10

80.98
±0.56

69.92
±1.28

54.68
±0.94

56.05
±0.90 − −

Pointer-
BERTwiki-en

81.91
±0.41

80.42
±0.66

92.63
±0.06

88.29
±0.08

81.25
±0.27

70.82
±0.73

57.17
±1.17

58.43
±1.11 − −

RoBERTaall
81.60
±0.46

79.92
±0.72

92.77
±0.10

88.53
±0.12

81.67
±0.38

70.42
±0.90

59.07
±0.72

60.47
±0.89

27.83
±1.79

29.88
±1.91

PointerBERTall
81.82
±0.71

80.36
±0.83

92.87
±0.10

88.65
±0.18

81.92
±0.33

71.52
±1.06

59.50
±0.94

60.52
±0.87

28.84
±1.80

30.99
±1.75

same datasets, vocabulary, and training configurations (see Table 8.2). Evaluated across all
five datasets, the PointerBERTall model consistently outperforms the RoBERTaall baseline,
showcasing the efficacy of our pointer-guided architecture.

Overall, our findings demonstrate that the pointer-guided SO methodology, combined with
dynamic sampling for efficient fine-tuning, surpasses all competing baselines across a diverse
array of datasets and classification tasks.
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8.4.3 Limitations
Despite the promising results, our current experiments have a few practical limitations that
we plan to improve upon in future work. Firstly, the models are constrained by a context
window size of only 512 tokens and employ absolute positional embeddings. Incorporating
advanced attention mechanisms [87], along with relative positional embeddings [175], enables
our pre-training approach to accommodate longer input sequences during inference. This
enhancement will not only increase the complexity and effectiveness of the SO pre-training task
but also enable the model to capture more distant paragraph-level context.

Besides scaling up our pre-training methodology in terms of larger model sizes, increased
number of training steps, and larger datasets, we also aim to extend our evaluation and fine-
tuning efforts to information retrieval and semantic search tasks [44, 176]. Specifically, we
seek to assess our methodology’s effectiveness in identifying semantically relevant passages
from long documents in response to natural language queries. We assume that our method’s
enhanced understanding of paragraph-level context and its ability to jointly embed subsequent
text segments has the potential to improve semantic search and thereby RAG [35].

8.5 Conclusion
We introduce a novel approach to enhance the contextual sensitivity of paragraph-level text
representations through a pointer-guided segment ordering (SO) pre-training strategy and
dynamic sampling for fine-tuning. Our methodology aims at improving the understanding
of document structure and coherence, which is crucial for a wide range of downstream NLP
applications, including text classification and information retrieval.

Our pre-training methodology leverages a self-attention-driven pointer network to restore
the original sequence of shuffled text segments, thereby requiring the model to develop a deep
understanding of narrative flow, coherence, and contextual relationships. This task, combined
with masked language modeling, significantly enhances the model’s ability to comprehend
and represent paragraph-level context. We further establish dynamic sampling during the
fine-tuning phase to increase the diversity of training instances across epochs and improve
sample efficiency. This sampling technique proves particularly beneficial for small datasets with
long documents, as it helps to mitigate overfitting and foster better generalization.

Our experiments demonstrate that models pre-trained with our pointer-guided SO task
outperform existing baselines across a variety of datasets and tasks. Notably, our PointerBERT
models achieve superior performance on both scientific literature and financial reporting
datasets, showcasing the versatility and effectiveness of our approach. Looking ahead, we aim
to overcome current limitations by incorporating more sophisticated language model backbones
and broadening our evaluation framework to include information retrieval and semantic search
tasks.

In conclusion, our work contributes an advancement in representation learning for paragraph-
level text, setting a new benchmark for sequential text classification and paving the way for
future research in document structure-based language modeling.
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CHAPTER 9

Large Language Models for Compliance
Verification

In the previous chapter, we introduced a new self-supervised pre-training task, Pointer-Guided
Segment Ordering (SO), to enable encoder-only Transformer-based [19] language models like
BERT [34] to learn improved paragraph-level representations by considering the surrounding
context of preceding and succeeding paragraphs. We demonstrated the effectiveness of this
approach in sequential text classification tasks, where the model performs multi-label classi-
fication per paragraph given a predefined set of possible classes. While this method showed
significant improvements, it relies on statically trained classifiers mapping paragraphs to a fixed
set of requirement IDs. This rigidity poses a limitation: if regulatory standards are updated
or new requirements are introduced, the model would require retraining with annotated data,
which is time-consuming and not scalable.

To address this issue, in this chapter, we shift towards a more flexible and dynamic approach
leveraging advanced text matching techniques and LLMs. We introduce ZeroShotALI, a
methodology that combines BERT-based text matching with an LLM-based re-ranking module
utilizing GPT-4 [18]. This approach enables zero-shot text matching between new financial
reports and unseen legal requirements without the need for retraining, offering a scalable
solution adaptable to evolving regulatory landscapes.

Furthermore, we extend this retrieval capability by integrating a compliance verification
module that utilizes zero- and few-shot learning in conjunction with prompting techniques
like chain-of-thought [177] and tree-of-thought [178]. This allows us to assess the actual
compliance of the retrieved financial document paragraphs with respect to the requirements
from accounting standards such as IFRS (International Financial Reporting Standards) and
HGB (Handelsgesetzbuch, the German Commercial Code).

We evaluate our approach on two datasets containing regulatory requirements, IFRS and
HGB, demonstrating that our method effectively retrieves relevant text segments and accurately
verifies compliance. Our experiments highlight the advantages of using advanced LLMs like
GPT-4 for re-ranking and compliance assessment, as well as the potential of open-source models
for these tasks. Importantly, we also explore the impact of prompt design and framing on
model performance, emphasizing the need for tailored prompts to maximize effectiveness.

This chapter is based on the following publications:
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• L. Hillebrand, A. Berger, T. Deußer, T. Dilmaghani, M. Khaled, B. Kliem, R. Loitz,
M. Pielka, D. Leonhard, C. Bauckhage, et al., “Improving Zero-Shot Text Matching for
Financial Auditing with Large Language Models,” Proc. DocEng, 2023, doi: 10.1145/
3573128.3609344 [39],

• A. Berger, L. Hillebrand, D. Leonhard, T. Deußer, T. B. F. De Oliveira, T. Dilmaghani,
M. Khaled, B. Kliem, R. Loitz, C. Bauckhage, et al., “Towards automated regulatory
compliance verification in financial auditing with large language models,” Proc. BigData,
2023, doi: 10.1109/BigData59044.2023.10386518 [33].

Lars Hillebrand played a pivotal role in the development of both research papers. He was
responsible for conceptualizing the core ideas and designing the experimental framework,
including the evaluation setup. The implementation, carried out in Python, was a collaborative
effort between the shared first authors, Lars Hillebrand and Armin Berger. Armin Berger
took the lead in conducting and evaluating the experiments, while Lars Hillebrand focused on
prompt design, data collection, processing, and the evaluation routine.

The writing process was a joint endeavor. Armin Berger drafted the initial manuscripts,
while Lars Hillebrand made significant contributions, particularly to the methodology sections
and the architectural pipeline, including its figures, and thoroughly revised the entire text.
Other co-authors supported the writing by contributing to the Related Work section. Both
first authors, along with other contributors, engaged in productive discussions and provided
valuable feedback throughout the research and writing phases.

9.1 Introduction
Corporate financial disclosures in the form of financial statements play a vital role in informing
the public about a company’s financial situation and future prospects. These documents provide
detailed information on the financial stability, productivity, and profitability of a company,
thus having a major influence on investment decisions made by external investors. Due to their
economic significance, these documents are highly regulated and examined annually to ensure
conformity with relevant financial reporting frameworks, such as the IFRS and Germany’s HGB.
This examination process requires high-grade expert knowledge and manual analysis of lengthy
financial texts, making it inherently time-consuming and prone to human error.

The regulatory requirements of IFRS and other accounting standards are generally presented
as a large collection of individual checklist items. For each item, the assigned auditor has to
identify the relevant text segments in the financial report before answering questions regarding
completeness, accuracy, valuation, consistency, classification, and readability. While the initial
retrieval task is particularly tedious, considering the report size and the number of items in the
standard, the subsequent assessment of compliance is even more challenging since it requires a
deep understanding of the legal requirements and the financial report’s content.

In this chapter, we tackle both of these challenges. We introduce a novel method called
ZeroShotALI, which enables zero-shot text matching between new financial reports and unseen
legal requirements based on a pre-trained SentenceBERT [44] model from [179] and GPT-4
[18]. We evaluate multiple strong baselines, such as combining a vector store-based architecture
utilizing OpenAI’s Ada embeddings with GPT-4.
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IFRS Legal Checklist

Requirement j

Financial Report

Segment i

BERT + Pooling

j

Shared
Weights

GPT-4

Cosine
Similarity

rj

BERT + Pooling

i

si

Cosine similarity sorted report segments s for requirement rj

Requirement j Top 15 segments

Top 5 segments

ALI Compliance Check

is complied: yes / no / unclear / not applicable

ZeroShotALI

Figure 9.1: Schematic visualization of the complete auditing pipeline combining ZeroShotALI,
an auditing-specific textual recommender system, and the ALI compliance check system. While
ZeroShotALI focuses on retrieving the top 5 relevant text passages per legal requirement, the
compliance check system evaluates whether the retrieved passages comply with the provided
requirement.

We leverage ZeroShotALI to find the most relevant passages for each checklist item and
subsequently couple it with an LLM like GPT-4 to assess the completeness and compliance of
the respective item. Our primary objectives encompass two key aspects: firstly, to evaluate the
performance of open-source models in comparison to prominent proprietary models like GPT-4;
and secondly, to analyze the impact of framing the problem through the utilization of prompts.
Our motivation for exploring open-source models primarily stems from considerations related
to cost-effectiveness and data privacy, both of which are pivotal concerns in the contemporary
landscape of accounting and ML research.

In the following, we first review related work, before describing our modeling approach in
Section 9.3. In Section 9.4, we outline our datasets, present our experiments, and discuss the
results. Section 9.5 then draws a conclusion and provides an outlook into conceivable future
work.
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9.2 Related Work
This section reviews the relevant literature in three key areas: the use of NLP in the financial
domain, the application of OpenAI’s GPT models and other LLMs for financial tasks, and
research on compliance and completeness checks using NLP.

The field of financial NLP, particularly automated auditing, has garnered significant interest
over the years. In 2019, we introduced the ALI tool [27], a supervised recommender system
that ranks textual components of financial documents according to established regulatory
frameworks like IFRS. Traditional NLP techniques such as TF-IDF, latent semantic indexing,
neural networks, and logistic regression were employed, with the combination of the first and
last methods yielding the best performance.

Subsequent enhancements to ALI included the integration of a pre-trained BERT language
model [34] to encode text segments [28]. A more general framework for this task was later
introduced by [179]. We build upon this work and present a novel recommender system for
financial documents by employing a custom BERT-based model in conjunction with an LLM,
improving recommendation results and incorporating completeness checks for the recommended
text segments.

To address the need for detailed information extraction for automatic consistency checks of
financial disclosures, we developed KPI-Check [31] (see Chapter 6), a BERT-based system that
utilizes a customized model for named entity and relation extraction [30] (see Chapter 5). This
tool automatically identifies and validates semantically equivalent key performance indicators
in financial reports. The KPI extraction task was also studied on an English dataset in [180],
which was released along with the results.

The GPT line of OpenAI, although relatively novel, has shown promising results in various
financial tasks. [181] qualitatively demonstrated GPT-4’s effectiveness in sentiment analysis,
ESG analysis, corporate culture analysis, and Federal Reserve opinion analysis. Quantitative
analysis by [182] revealed that ChatGPT struggled with complex financial advice, necessitating
additional professional guidance. [183] proposed the Automated Financial Information Extrac-
tion framework using GPT-3.5 and GPT-4, achieving significant accuracy improvements in KPI
extraction from financial reports. [184] investigated the general capabilities of GPT-3.5 and
GPT-4 in financial analysis using mock exam questions from the Chartered Financial Analyst
(CFA) program.

Other notable works include [185], which introduced BloombergGPT, a model trained
on Bloomberg’s extensive data sources and evaluated on financial tasks and general LLM
benchmarks. FinBERT, introduced by [186] and further researched by [187–190], is another
LLM specialized in financial language.

Ensuring compliance and completeness in financial reports, including the detection of contra-
dictory statements, is a critical area of research. We studied the task of automated contradiction
detection using a transformer-based model in [32]. Other related works include [191], who
implemented a deep MLP for fraudulent statement detection, and [192], who proposed a novel
capsule network for detecting fraudulent activities in accounting reports. [98] employed a com-
bined entity and relation extraction method to verify formulas in Chinese financial documents.
Additionally, [193] demonstrated the vulnerability of GPT-3 to adversarial attacks in financial
sentiment analysis, highlighting the importance of robust, context-aware LLMs.

Our research uniquely integrates a proven recommender system with an LLM to improve
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retrieval results and comprehensively verify the completeness of financial reports across varied
reporting standards. This approach aims to enhance the reliability and accuracy of automated
financial auditing systems.

9.3 Methodology
In this section, we formally define the problem of matching text segments within documents to
relevant legal requirements before turning to the in-depth analysis of our proposed architecture,
ZeroShotALI, which we couple with an LLM-based compliance check module (see Figure 9.1).

Formally, the task of assigning relevant text segments from a financial report to concrete
requirements from an accounting standard can be defined as a text matching problem: For
each legal requirement rj ∈ R, a list of relevant text segments from the report si ∈ S (where
S is the set of all paragraphs and R is the set of all requirements) has to be predicted. The
recommendation system has to assign relevance scores ni,j ∈ (0, 1) to every segment-requirement
pair (si, rj). To obtain a classification from those scores, the top K text segments for each
requirement are being selected as relevant.

Previous work has mostly approached this task as a multi-label classification problem, where a
sigmoidal output layer predicts individual relevance scores for each pre-defined legal requirement.
This problem formulation is inflexible with respect to unseen requirements, i.e. a full model
re-training is required. Also, the semantic information contained in the actual requirement
texts is neglected, since the requirements have been translated to numeric class IDs.

To overcome these architectural shortcomings, we introduce ZeroShotALI. Following [179],
we employ a text similarity-based matching model that individually encodes text segments
from the financial report as well as legal requirements from the accounting standard before
predicting matches based on semantic text similarity. Specifically, we leverage a domain-adapted
SentenceBERT model [44] as our initial text retrieval solution. It is a modification of the
BERT language model [34] that encodes both the requirement text and the financial report
text segment, using two BERT models with shared weights, and applies mean-pooling to
obtain paragraph level embeddings si for text segment i and rj for requirement j, respectively.
Subsequently, the cosine similarity between these embeddings is computed to measure how
well the report segment and legal requirement semantically match, resulting in a normalized
similarity score between 0 and 1. For full architectural details and training procedures, we
refer to [179]. To further improve the final matching performance, we augment the described
SentenceBERT model with the state-of-the-art generative language model, GPT-4. In the first
pre-filtering step, SentenceBERT retrieves the top 15 most relevant financial report segments for
each requirement query j. Then, we prompt GPT-4 with these 15 segments and the requirement
text as input to further narrow down the recommendations to the five best-matching segments.

Subsequently, auditors must ascertain that these suggested passages not only pertain but also
conform to the associated legal criterion. To streamline this process and enhance the efficacy of
the auditing protocol, we integrate an LLM-based compliance check module to automatically
validate the relevancy and compliance of these recommended text sections with their respective
legal prerequisites.

The complete architecture is illustrated in Figure 9.1. We evaluate and compare the two-stage
approach of ZeroShotALI and its compliance check module with multiple baselines in the next
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section.

9.4 Experiments
Our experiments are structured into two main parts. Initially, we focus on the experimental
setup and performance evaluation of ZeroShotALI, which is designed to retrieve the top 5
relevant text segments per legal requirement. Subsequently, we introduce the compliance check
module to assess the architecture’s capability in evaluating the completeness and correctness of
the retrieved text segments.

9.4.1 ZeroShotALI
This subsection details our custom financial dataset, describes competing baseline methods for
requirement matching, explores various LLM prompt designs, and concludes with a discussion
of the results obtained from our approaches.

Data

We obtain 50 IFRS-compliant financial reports from PricewaterhouseCoopers GmbH (PwC),
encompassing a total of 7097 text segments. Auditors carefully annotate these reports, mapping
each text segment to one of the 1214 distinct IFRS requirements. This rigorous annotation pro-
cess unfolds through multiple iterations involving various domain experts, ensuring the highest
quality of data. The SentenceBERT model, employed in our experiments, undergoes fine-tuning
on domain-specific data, with further details available in [179]. Apart from SentenceBERT, the
other four architectures we test do not require additional training. Consequently, we exclusively
utilize a test set for evaluation, carefully ensuring that the SentenceBERT model is neither
trained nor evaluated on this test set to prevent data leakage.

Baselines

We evaluate ZeroShotALI against several baseline models: (1) a basic SentenceBERT model
as outlined in Section 9.3, which operates without the GPT-4 filtering enhancement, (2) a
vector database retrieval model utilizing OpenAI’s Ada V1 or V2 embeddings, and (3) a hybrid
approach that combines the same vector database model with GPT-3.5 Turbo or GPT-4 as
filtering models.

The vector database employed in our study is Chroma DB, an open-source platform that
integrates a k-means clustering algorithm with the ClickHouse database management system
to facilitate the retrieval of semantically similar text passages based on a given query. For a
comprehensive understanding of the concept and a review of analogous applications, please
refer to [194]. We embed each of the 10 IFRS reports using either the lower-dimensional Ada
V1 or Ada V2 embeddings and store them in Chroma DB. This setup allows each report to be
accessed individually by its name, enabling queries to be made against specific reports. For
each query, we retrieve the top five text segments that exhibit the highest cosine similarity
scores.
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The third set of systems we compare involves Chroma DB using V2 Embeddings, augmented
with frozen LLMs, specifically GPT-3.5 Turbo or GPT-4. These systems embrace the concept
of retrieval-augmented generation, which aims to equip LLMs with pertinent information for a
specific task rather than relying solely on the language model’s intrinsic knowledge. As with
the previous setup, we retrieve the top 15 most relevant text segments for each query using
Chroma DB. These segments then serve as prompt inputs for the LLM, which is tasked with
returning the five most pertinent text segments for each requirement.

Effects of prompt design

For all architectures leveraging GPT-4 we evaluate the impact of prompt design on model
performance. Prompt design refers to the format and phrasing of the task presented to the
GPT-style LLMs. Building upon the findings of [195] regarding the effects of prompt phrasing
on LLM performance, we conduct our evaluations by primarily investigating two factors: (1)
the phrasing of the task and (2) the structure of the output allowed for the model’s responses.

Our evaluation is as follows: We formulate a specific task for GPT-4, which involves the
retrieval of the five most relevant text segments from a provided set of 15 segments, based
on a given requirement. We then randomly sample 20 requirements from one of the 10
IFRS-compliant reports.

Regarding the phrasing of the task, we find no significant impact on the quality of the model’s
responses, implying that variations in the way the task was presented did not substantially
influence the model’s performance.

However, when examining the structure of the output allowed for the model’s responses,
we observe a notable effect. We categorize the types of outputs into two broad formats:
“open-ended” and “closed.” In the “open-ended” format, the model is permitted to provide
explanations for its answers, while in the “closed” format, the model is restricted to returning
the IDs of the five most relevant text segments. Interestingly, we find that the “closed” format
yields improved performance compared to the “open-ended” format. Table 9.1 shows the four
best-performing prompts and their respective performance.1 For all GPT-based experiments
we leverage the best performing prompt design A.

Evaluation and Results

As depicted in Table 9.2, the performance analysis reveals that the two architectures based
on SentenceBERT surpass the vector store-based architectures for all metrics2. Notably,
ZeroShotALI, combining SentenceBERT with GPT-4, demonstrates the highest performance
which can be attributed to several factors.

First, the vector store-based architectures rely on embeddings from generically pre-trained
language models that exhibit no domain-specific fine-tuning and leverage approximate nearest-
neighbor calculations to return text matches. In contrast, the SentenceBERT model was
fine-tuned specifically for the task of retrieving semantically similar text passages within
an auditing context. This custom training process enables SentenceBERT to capture the

1 Due to the stochastic nature of GPT-4 it is impossible to exactly reproduce results. We set the temperature
parameter to 0, which reduces but does not remove stochasticity in the generation process.

2 See Section 7.4.2 for definitions of mean sensitivity and mean average precision.
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Table 9.1: Quantitative comparison of 4 different prompt setups for the text segment to
requirement matching task. Mean Sensitivity and Mean Average Precision (MAP) are defined
in Section 7.4.2. The (bracketed blue) text shows the respective differences between prompts B
and A as well as D and C.

Prompt \ in % Sensitivity MAP F1

A 36.92 26.38 23.75
B 35.54 26.00 23.75
C & D 23.57 22.62 17.05

A & (B): “(System: You are an expert auditor with perfect knowledge of the IFRS accounting
standard.) Out of all document segments provided below which ones are the 5 most relevant for
fulfilling the IFRS requirement? (Think step by step.) IFRS requirement: {requirement} document
segments: {document} Your answer should only contain the IDs of the relevant document segments.
Example: [’1129’, ’1139’,’1159’, ’1161’, ’829’]. Your answer needs to be machine-readable. Do not
add any additional text.”
C & (D): “System: You are an expert auditor with perfect knowledge of the IFRS accounting standard.
Out of all document segments provided below which ones are the 5 most relevant for fulfilling the IFRS
requirement? Explain for each requirement why you selected the 5 most relevant requirements. (Each
should only be a sentence long.) Think step by step: IFRS requirement: {requirement} document
segments: {document} Format your output complying to the following json schema: {’explanation’:
’The most relevant document segments ...’, ’answer’: [’1129’, ’1139’,’1159’, ’1161’, ’829’]}. Ensure that
’answer’ is its own key in the json schema. Your answer needs to be machine-readable.”

Table 9.2: Test set results for the top 5 recommendations of relevant financial report segments for
legal requirements of the IFRS accounting standard. ZeroShotALI outperforms all competing
methods in Mean Sensitivity, Mean Average Precision (MAP), and F1 score.

Model \ in % Sensitivity MAP F1

Chroma (Ada V1) 14.00 7.12 9.12
Chroma (Ada V2) 25.73 17.33 13.15
Chroma (Ada V2) + GPT-3.5 Turbo 29.95 21.32 15.74
Chroma (Ada V2) + GPT-4 35.30 24.72 18.53
SentenceBERT (from [179]) 52.12 39.00 27.69
ZeroShotALI (this work) 57.62 44.65 30.57
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intricacies and nuances of the auditing domain, leading to more accurate and contextually
relevant retrievals. The observed subpar performance of vector store-based architectures in
our use cases raises an important question regarding the suitability of such systems in various
applications. Currently, many applications leverage retrieval-augmented generation using vector
databases, assuming that these systems can provide reliable results. However, our findings
suggest that incorporating domain-specific, fine-tuned retrieval systems like SentenceBERT
could significantly enhance the performance of such applications.

9.4.2 Compliance Check
Leveraging the strong retrieval capabilities of ZeroShotALI, we couple it with the LLM-
based compliance check module introduced in Section 9.3. In the following, we detail its
experimental setup and evaluate the results with respect to correctly assessing the completeness
and correctness of the retrieved text segments.

Data

In addition to the previously introduced IFRS dataset, our study incorporates 50 HGB-compliant
financial reports. The ALI tool, introduced in 2019, serves as a supervised recommender system
that ranks text passages in financial documents according to their relevance to auditing standards
such as IFRS or HGB [27]. PwC auditors subsequently verify these machine-processed reports
to ensure accurate mapping of text segments to the respective accounting requirements under
both frameworks. The annotation task, distributed among three auditors and overseen by a
senior auditor, involves several rounds of review. This meticulous process includes re-examining
randomly chosen annotated samples to fine-tune the generated labels and assess the model’s
accuracy in identifying false positives and negatives.

Considering the extensive size of the original datasets, we select a subset for detailed
analysis. From the IFRS dataset, we sample 10 financial reports, from which we choose 100
specific requirements for evaluation. From the HGB dataset, we select 3 reports, focusing on
requirements that have at least two annotations. This selection strategy aligns with our study’s
aim to assess the capabilities of publicly available LLMs without the necessity for training on
domain-specific data, thereby eliminating the need for data splitting.

The annotation criteria for IFRS involve marking the compliance of text passages with a
requirement as ‘yes’, ‘no’, or ‘unclear’. For HGB, annotations include ‘yes’, ‘no’, ‘unclear’, or
‘not applicable’. The distribution of these ground truth annotations for both datasets is detailed
in Table 9.3.

Baselines

We evaluate six state-of-the-art LLMs, comprising both open-source and proprietary architec-
tures. Specifically, we include three variants of the open-source Llama-2 model3 [154], with
sizes denoted as 7b, 13b, and 70b parameters, and three versions of the closed-source GPT
architecture: GPT-3.5-Turbo, GPT-3.5-Turbo-16K, and GPT-4. Our rationale for juxtaposing

3 The concrete model IDs from Huggingface are: meta-llama/Llama-2-7b-chat-hf, meta-llama/Llama-2-13b-chat-
hf, meta-llama/Llama-2-70b-chat-hf.
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Table 9.3: Class distribution of ground truth values for IFRS and HGB. HGB compliance data
was annotated by auditors at PwC Germany with ‘yes’, ‘no’, ‘unclear’, or ‘not applicable’, while
IFRS data was annotated with ‘yes’, ‘no’, and ‘unclear’.

Label IFRS HGB
Yes 17 43
No 82 28
Unclear 1 23
Not Applicable - 26
Total 100 120

open-source and proprietary models is twofold: economic considerations and data privacy issues.
Additionally, the open-source nature of certain models offers the potential for fine-tuning,
facilitating adaptability for specialized applications.

To ensure a controlled environment for model inference, we deploy a dedicated server equipped
with an NVIDIA A100 80 GB GPU. We implement an inference API analogous to the OpenAI
API to facilitate on-demand access to the Llama-2 models. For experimental consistency, all
models are subjected to identical prompts and parameters during the inference phase.

Prompt Design

Since all systems involve the querying of an LLM, we evaluate the impact of prompt design on
model performance. The term prompt design encompasses how a task is presented to LLMs.
Building on insights by [196] into the impact of prompt phrasing on LLM performance, our
evaluation centers on two key factors: (1) task phrasing and (2) the structure of permitted
model responses.

In our evaluation methodology, we have devised a specific task for all tested LLMs, involving
the assessment of text passages from financial reports against regulatory accounting standards
like IFRS or the German HGB. Through a process of trial and error and qualitative assessment,
we have selected a total of eight prompts aimed at solving the above-stated task. Prompt
performance was then quantified using metrics including Precision, Recall, and F1-Score per
predicted class, as well as Micro and Macro F1-Score averages across all classes (detailed in the
Evaluation Metric section). Below we have added one exemplary prompt.
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Exemplary prompt

System: You are an expert auditor with perfect knowledge of the IFRS accounting
standard. You always answer truthfully whether a given regulatory requirement is fully
complied with in the following line IDs.
Answer with “yes”, if all sub-requirements are fully complied. Answer with “no”, if at
least one of the sub-requirements is not fully complied.
Format your output complying to the following json schema:

{{"answer": <"yes"|"no">}}

requirement: “{requirement}”
document: “{document}”

The main two factors we discuss, are (1) task phrasing and (2) the structure of permitted
model responses.

In terms of task phrasing, we used a variety of techniques such as chain of thought prompting,
providing the model with an example prompt answer combination (also referred to as a one-shot
prompt), asking the model for an explanation for their answer, and Tree-of-Thought prompting.
Tree of Thought prompting as introduced by [178] and [197] (https://www.promptingguide.
ai/techniques/tot) refers to the idea of enhancing LLM’s ability to solve more elaborate
problems through tree search via a multi-round conversation. Since this technique traditionally
requires multiple LLM calls, the technique is costly and compute-intensive, thus not scaling well
for commercial applications like ours. To overcome this issue, we have employed the prompting
method from [198] that adapts key elements from Tree-of-Thought frameworks to create a
singular prompt that enables LLMs to assess intermediate ideas.

When examining the response structure, a noteworthy effect was observed. Outputs were
categorized into two main formats: “open-ended”, allowing the model to provide explanations,
and “closed”, constraining the model to return only ‘yes’, ‘no’, ‘unclear’, or ‘not applicable’.
Intriguingly, the “closed” format yielded superior performance compared to the “open-ended”
format.

Due to the lengthy nature of each prompt, we summarize the differences between each
evaluated prompt. The complete prompt definitions can be found in Section B.2 in Appendix
B.

I. In-Out-Sub-Template:

• Simple Yes/No/Unclear/Not applicable answer.
• Short, point-by-point answers without explanation.
• Formatting in JSON schema.

II. Cot-Sub-Template:

• Chain of thought response leveraging intermediate explanations before the final answer.
• Specification of relevant line numbers from the document.
• No formatting in the JSON schema.

III. In-Out-Template:
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• Simplified version of In-Out-Sub.
• Direct Yes/No/Unclear/Not applicable response.
• Formatting in JSON Schema.

IV. Cot-Template:

• Step-by-step response and explanation for each sub-request.
• Detailed explanation for each sub-request.
• No formatting in JSON schema.

V. In-Out-Tot-Template:

• Same as In-Out, with the addition of tree-of-thought Prompting.
• Three experts give their opinion on the issue and come to a conclusion through majority voting.

VI. In-Out-Tot-One-Shot-Template:

• Same as In-Out-Tot, with the addition of a one-shot example.
• In the one-shot example chosen, the text passage complies with the requirement.

VII. In-Out-One-Shot-Template:

• Same as In-Out with the addition of a one-shot example.
• In the one-shot example chosen, the text passage complies with the requirement.

VIII. In-Out-One-Shot-No-Template:

• Same as In-Out with the addition of a one-shot example.
• In the one-shot example chosen, the text passage does not comply with the requirement.

Evaluation and Results

This section aims to assess the applicability of current state-of-the-art LLMs in an auditing
context, specifically to validate the compliance of financial report passages with regulatory
standards. For each model, we execute the same eight selected prompts, with the sole exception
being an answer adaptation for the open-source Llama-2 models. If an LLM provides an answer
outside the predefined choices, we categorize the response as ‘invalid’. We explore three main
questions through various configurations:

1. Performance Across Configurations: Among all selected systems, which LLM and prompt
configuration performed the best per class and across all classes?

2. Prompt Consistency Across Models: Is prompt performance consistent across models? If
yes, which prompts perform the best across all models and datasets?

3. Deploying LLM for Compliance: How can we deploy an LLM-based compliance check
system in a manner that saves auditors time while minimizing false negatives?

Performance Across Configurations: Evaluating the overall micro F1-Score performance across
both datasets, HGB and IFRS, the generally best-performing model is GPT-4. As can be seen
in Table 9.4, the model achieves a micro F1 score of 59.31% on HGB and 71.65% on IFRS data
averaged across all prompts. A similar picture can be seen in the detailed analysis of comparing
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Table 9.4: Micro F1-Scores per model and dataset (HGB and IFRS) for the best performing
prompt and the average over all prompts.

in % HGB IFRS
Model Average Best Prompt Average Best Prompt
GPT-3.5-Turbo 41.83 46.15 66.68 77.56
GPT-3.5-Turbo-16k 40.48 46.15 49.92 77.58
GPT-4 59.31 75.60 71.65 77.05
Llama2-7b 28.49 49.23 47.56 68.02
Llama2-13b 24.81 47.34 48.01 65.58
Llama2-70b 18.04 49.23 53.02 70.04

all prompt configurations for all models and datasets in Table B.1 in Appendix B.1. Overall,
we observe significantly worse performance on HGB data than on IFRS data across all models.
This is likely attributed to the fact that most state-of-the-art LLMs are almost exclusively
trained on an English text corpus, thus neglecting text understanding in other languages. The
Llama-2 models for reference were trained on a 98% English text corpus as stated in Meta’s
technical report [154].

A further notable finding is that the increasing parameter size in the open-source Llama-2
models did not translate into superior performance across all prompt types. Llama-2-70b for
reference performs worse overall, considering micro F1-Score performance across both the HGB
and the IFRS dataset, than its significantly smaller counterpart Llama-2-7b.

Prompt Consistency Across Models: Prompt performance does not appear to be consistent
across models for our task. Despite the varying performance across models, we notice that
prompt I. ‘In-Out-Sub-Template’ achieves the best score in 4 out of 12 cases, when considering
micro F1-scores (see Table 9.5). These results indicate that a combination of keeping the
prompt instructions brief and providing the model with examples to follow can improve the
response quality. It is interesting to note that the more advanced prompting techniques such as
chain of thought (II. and IV.)or trees of thought (VI. and VII.) did not induce a significant
performance increase.

Deploying LLMs for Compliance: In collaboration with our partners at PwC Germany, we have
determined that a compliance check system should avoid false positive predictions at all costs.
Assuming that a text passage complying with a given auditing context is considered positive, a
false negative prediction, in this case, would imply a financial report text passage falsely being
classified as complying with a regulatory requirement. To avoid false positives, we prefer a
model that has very high precision and recall for the class ‘No’. In our evaluations, we found
that the best model for the ‘No’ class in terms of F1-Score is the open-source Llama-2-70b with
a Precision of 80.21%, Recall of 96.25% and an F1-Score of 87.50% on IFRS data (see Table
9.6). This performance did not translate into a similar performance on HGB data, which is
likely due to the German language.

Even though the ‘No’ class is most important in practice, we also report the models’ micro
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Table 9.5: Best-performing prompt per model
and dataset based on the Micro F1-Score.

Prompt
Model HGB IFRS
GPT-3.5-Turbo I VI
GPT-3.5-Turbo-16k I I
GPT-4 VII II
Llama-2-7b II I
Llama-2-13b VI III
Llama-2-70b VI III

Table 9.6: Results for Llama-2-70b in % IFRS
Data - Class ‘No’.

No
Prompt Precision Recall F1

I 75.00 41.25 53.23
II 80.22 91.25 85.38
III 82.22 46.25 59.20
IV 82.86 72.50 77.33
V 81.58 77.50 79.49
VI 80.21 96.25 87.50
VII 82.35 17.50 28.87
VIII 85.00 21.25 34.00
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Figure 9.2: Grouped bar plot of F1-Scores by model and answer choices on HGB and IFRS
data. Due to poor model performance in the German language, some LLMs were incapable of
generating any machine-readable consistent outputs that are interpretable with a heuristic for
some prompt formats, leading to some F1-Scores being 0.

F1 scores for the other classes in Figure 9.2 for IFRS and HGB. It can be seen that for both
datasets no model picked up on the ‘Unclear‘ class which might be explained by the models
being overly confident in their ‘Yes’ (is complied) and ‘No’ (is not complied) answers. Also,
the figures reveal that surprisingly for HGB the models perform best on the ‘Yes’ class while
performing significantly better on the ‘No’ class for IFRS.

9.5 Conclusion and Future Work
This study has conducted a thorough evaluation of the application of LLMs in the auditing
of financial documents, focusing on two main aspects: retrieval of relevant text segments and
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compliance verification against regulatory standards such as IFRS and HGB.
The first part of our experiments centered on ZeroShotALI, a system designed to retrieve

the top five relevant text segments per legal requirement using a domain-tuned SentenceBERT
model combined with OpenAI’s GPT-4. This system significantly outperformed other baseline
models, highlighting the effectiveness of domain-specific adaptations over generic systems
employing general-purpose embeddings.

Building on the strong retrieval capabilities of ZeroShotALI, we introduced a compliance
check module to evaluate the completeness and correctness of the retrieved text segments.
This extension leverages the same LLM architecture to assess whether the text segments fully
comply with the specified requirements. Our findings indicate that while GPT-4 showed robust
performance, especially with the IFRS dataset, challenges remain when dealing with non-English
datasets like the German HGB, due to the models’ training predominantly on English text
corpora.

The study also revealed that there is no universally optimal prompt for LLMs; different
models responded best to tailored prompts, emphasizing the need for customizing prompts
to maximize the effectiveness of LLMs. Moreover, simpler prompts combined with exemplary
instructions often yielded better results than more complex prompting techniques.

In deploying LLMs for compliance checks in financial reporting, precision is crucial to avoid
significant repercussions associated with false positives. Our collaboration with PwC Germany
highlighted the importance of achieving high precision in detecting non-compliance, with the
open-source Llama-2-70b model showing promising performance in this regard on the IFRS
dataset.

Future research should explore several avenues:

1. The deployment of domain-specific fine-tuned LLMs for auditing, utilizing open-source
models like LLaMA, could potentially overcome current limitations related to language
and domain specificity.

2. Advanced prompt tuning methodologies, such as Chain-of-Thought [177] or Tree-of-
Thoughts [178], warrant further exploration to optimize LLM performance across different
configurations and tasks.

3. The expansion of the ZeroShotALI system to assess requirement completeness based on
relevant text passages could further enhance its utility in auditing applications.

Additionally, given the commendable performance of the open-source Llama-2-70b model in
accurately predicting true negatives, further investigation into the potential improvements
achievable through additional model training on comprehensive accounting compliance data
may enhance its effectiveness and enable a more reliable assessment of regulatory compliance.
Opting for dedicated open-source models also presents advantages in terms of data privacy and
economic feasibility, particularly when compared to the costs associated with commercial LLM
APIs.

In conclusion, while LLMs hold immense promise for transforming the auditing landscape, their
deployment must be approached judiciously, with careful model selection, prompt customization,
and an acknowledgment of their inherent limitations to ensure their effective integration into
auditing workflows.
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CHAPTER 10

Retrieval-Augmented Generation for Risk and
Quality Assurance

In the previous chapter, we explored the application of LLMs for compliance verification in
financial reporting, introducing ZeroShotALI, a flexible approach combining BERT-based text
matching with GPT-4 for re-ranking and compliance assessment. While this method effectively
aided in verifying compliance with accounting standards, organizations operating in highly
regulated industries such as auditing, finance, and legal services face additional challenges.
Compliance with Risk Management and Quality (R&Q) standards is not only crucial but
also complex, as non-compliance can lead to significant legal penalties and financial losses.
Employees must navigate intricate regulations and policies, often dealing with numerous internal
queries that require nuanced interpretation of trusted sources.

To address these challenges, we introduce a specialized chatbot powered by GPT with an
optimized Retrieval-Augmented Generation (RAG) pipeline. By integrating hybrid search
techniques and relevance boosting, our system enhances retrieval accuracy and improves response
quality, providing precise and contextually appropriate answers to users’ queries related to R&Q
standards. This chatbot assists employees in efficiently accessing and interpreting complex
regulatory information, thereby supporting compliance efforts within the organization.

Our work is evaluated using a handcrafted dataset with expert-annotated answers, and we
develop a custom evaluation framework to assess the chatbot’s performance. The chatbot has
been successfully deployed within the Risk and Quality department of PricewaterhouseCoopers
GmbH, enhancing the efficiency and accuracy of handling internal queries.

In summary, the key contributions of this chapter include the development of a RAG-based
chatbot tailored for R&Q compliance, the creation of a robust evaluation framework aligned
with expert assessments, and insights into optimizing system performance through careful
hyperparameter tuning, valuable for practitioners.

This chapter is based on the following publication:
• L. Hillebrand, A. Berger, D. Uedelhoven, D. Berghaus, U. Warning, T. Dilmaghani,

B. Kliem, T. Schmid, R. Loitz, and R. Sifa, “Advancing Risk and Quality Assurance:
A RAG Chatbot for Improved Regulatory Compliance,” Proc. BigData, 2024, doi:
10.1109/BigData62323.2024.10825431 [40].

Lars Hillebrand played a key part in the development of this research. He was responsible for
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Figure 10.1: Architecture of the Retrieval-Augmented Generation chatbot system, demonstrating
the workflow for query resolution.

formulating the foundational concepts and crafting the experimental design, including the setup
for evaluation. The implementation, executed in Python, was a collaborative effort between Lars
Hillebrand and Armin Berger, who share first authorship of the publication. Lars Hillebrand
took the lead in conducting and analyzing the experiments, while Armin Berger concentrated
on gathering and processing the data, as well as managing parts of the evaluation process.

The writing process was a collaborative effort. Lars Hillebrand made substantial contributions,
particularly in detailing the methodology and designing the architectural framework, including
the development of illustrative figures. He also meticulously revised the entire document to
enhance clarity and coherence. Other co-authors contributed by focusing on the Related Work
section. Throughout the research and writing stages, both first authors, along with the team,
engaged in constructive discussions and provided valuable feedback and insights.

10.1 Introduction
Compliance with Risk Management & Quality Standards is fundamental in regulated industries
like auditing, finance, and legal services, where non-compliance can lead to significant legal
penalties and financial losses. Employees face the challenge of navigating complex regulations
and policies, handling numerous internal queries daily that require nuanced interpretation of
trusted sources.

Recent advancements in LLMs such as GPT [18, 91] have shown significant potential in
assisting with complex language understanding tasks. In the legal domain, LLMs are increasingly
being utilized to support various aspects of legal work [199]. However, directly applying LLMs
in regulated contexts poses challenges, particularly regarding the accuracy and reliability of
generated responses.

In this work, we propose a specialized chatbot that leverages an optimized RAG pipeline
to address the specific needs of R&Q compliance assistance. By integrating hybrid search
methods and relevance boosting, our system (see Figure 10.1) enhances the retrieval of relevant
information from a trusted corpus of regulatory documents. The RAG approach allows the LLM
to generate responses grounded in these documents, ensuring that the answers are accurate,
contextually appropriate, and compliant with organizational policies and regulations. Here is
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an example of how the system processes a user query and generates a response.

Example Query and R&Q chatbot Response

Employee query:
“How far does the prohibition on the provision of tax advisory services extend in the case of EU PIEs?”

Workflow:
Preparing and embedding query
Running retrieval using hybrid search
Re-ranking text- and vector search results
Generating final answer with references

Final answer:
“To answer the question of how far the prohibition on providing tax advisory services to EU Public Interest
Entities (PIEs) extends, we need to analyze the relevant information from the provided documents. [...]
In summary, the prohibition on providing tax advisory services to EU-PIEs in Germany is very extensive
and encompasses almost all tax advisory services listed on the blacklist. However, there are specific
exceptions and national regulations that may allow certain tax advisory services under certain conditions.”

We evaluate our solution using a handcrafted dataset with expert-annotated answers and
develop a custom evaluation framework using DeepEval1. The framework achieves a 0.70
correlation coefficient with expert assessments. The chatbot has been successfully deployed
within the R&Q department of PricewaterhouseCoopers GmbH. The key contributions of this
work are:

• Development of a RAG chatbot for R&Q standards: We introduce a specialized chatbot
combining advanced AI capabilities with RAG.

• Establishment of a Robust Evaluation Framework: We devise an automated chatbot
evaluation method corroborated by expert assessments.

• Insights into Hyperparameter Optimization: We identify how core hyperparameters affect
system performance.

In the following sections, we first review related work. We then describe our modeling
approach in Section 10.3. In Section 10.4, we outline our datasets, present our experiments,
and discuss the results. Finally, Section 10.5 draws a conclusion and provides an outlook into
future work.

10.2 Related Work
The advancement of LLMs, such as GPT-3 and GPT-4 [18, 91], has significantly transformed
NLP, enabling applications across diverse domains, including legal and regulatory compliance.
These models exhibit remarkable capabilities in understanding and generating human-like
text, which is crucial for automating complex tasks in compliance and risk management. The
evaluation of these models’ capabilities has also advanced, with [200] demonstrating that LLMs

1 https://github.com/confident-ai/deepeval.
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themselves can serve as effective judges for assessing model performance, achieving over 80%
agreement with human evaluators and providing a scalable framework for evaluating both
model capabilities and human alignment.

RAG techniques [35] enhance LLMs by integrating external knowledge sources, allowing
for more accurate and contextually relevant responses. Efficient retrieval methods, including
semantic search [201] and dense passage retrieval [202], are essential for fetching pertinent
information in knowledge-intensive domains.

In the legal industry, LLMs have raised attention after GPT-4 [18] was able to achieve
impressive legal question answering results, such as passing first-year law school exams [203]
and passing the bar exam [204]. Moreover, ML techniques have been applied to tasks like
contract analysis [205] and legal assistance in French [206]. The integration of AI in compliance
processes has involved combining text analysis with structured data, as seen in consistency
checks for verifying financial documents [31, 98], and contradiction detection in financial texts
using transformer-based models [32].

10.3 Methodology
In this section, we present the methodology underlying our proposed system designed to enhance
compliance with Risk Management & Quality standards through AI-driven solutions. The
system architecture comprises three primary components: (1) an ingestion pipeline that processes
and indexes documents into a structured knowledge base; (2) a RAG chatbot leveraging LLMs
to provide accurate and contextually appropriate responses; and (3) an automated evaluation
framework for quantitatively assessing the system’s performance.

10.3.1 Ingestion Pipeline and Knowledge Base Construction
Effective knowledge retrieval necessitates a robust and well-structured knowledge base. To this
end, we developed an ingestion pipeline that systematically transforms raw documents into
a format suitable for AI-driven search and retrieval. The pipeline consists of several stages:
parsing, processing, chunking, embedding, and indexing, as depicted in Figure 10.2.

Parsing and Processing

We employ the Unstructured2 library to parse various document formats, including PDFs,
Word documents, and HTML files. The library extracts fundamental text elements such as
titles, paragraphs, tables, and lists while preserving the semantic and structural integrity of
the original documents. Hierarchical relationships, such as headings and subheadings, are
maintained to reflect document organization accurately. The extracted elements are converted
into a standardized Markdown format, facilitating uniform handling in subsequent processing
stages and ensuring compatibility with downstream NLP tasks.

Specific elements with limited relevance or redundant information, such as headers and
footers, are removed to enhance the quality of the extracted text.

2 https://github.com/Unstructured-IO/unstructured
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Figure 10.2: Schematic visualization of the document ingestion pipeline architecture, illustrating
the individual steps from raw document parsing from various formats to indexed knowledge
base creation.

Chunking

To optimize documents for embedding and retrieval, we segment the processed text into coherent
chunks. Our chunking strategy involves combining smaller text elements sequentially until
reaching a predefined maximum token length (e.g., 500 tokens), introducing overlaps of 50 tokens
between chunks to maintain context continuity. For larger elements exceeding the maximum
size, such as extensive tables or long paragraphs, we implement sentence-level splitting using
natural language sentence tokenizers. This approach balances the need for context preservation
with computational efficiency in embedding and retrieval processes.

Embedding and Indexing

We generate embeddings for each chunk using OpenAI’s ada-002 [207] and 3-large [208]
embedding models. These embeddings capture semantic representations of the chunks, enabling
effective similarity searches. The embedded chunks are indexed using Azure AI Search 3,
supporting hybrid search capabilities that combine vector similarity with keyword matching.
We employ boosting strategies within the indexing process to prioritize internal documents (2×
boosting factor) over external sources, ensuring that authoritative organizational knowledge is
prominently featured in search results.

3 https://learn.microsoft.com/en-us/azure/search/search-what-is-azure-search
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10.3.2 Retrieval-Augmented Generation Chatbot
Our RAG chatbot system is designed to effectively interpret user queries, retrieve relevant
information from a knowledge base, and generate contextually appropriate responses. The
system employs a sophisticated hybrid search strategy that enhances retrieval accuracy and
relevance.

The hybrid search strategy combines vector similarity search with fulltext search using TF-IDF-
based BM25 [209] algorithms. Vector similarity search leverages dense vector representations
of text, capturing semantic meanings beyond mere keyword matching. Analogously to the
ingestion stage, we utilize OpenAI’s ada-002 [207] and 3-large [208] embedding models to
convert the user queries into high-dimensional vectors. The similarity between the embedded
query and the ingested document chunk vectors is calculated using cosine similarity, allowing
the system to identify chunks that are semantically aligned with the user’s intent.

In parallel, the full-text search component employs the BM25 algorithm, which ranks chunks
based on TF-IDF. BM25 is particularly effective for capturing the importance of exact term
matches, providing a complementary perspective to the semantic insights from vector similarity
search.

To integrate the results from both search methods, we apply Reciprocal Rank Fusion (RRF)-
[210], which combines the rankings by assigning higher importance to documents that are highly
ranked by either method. The RRF score for a retrieved document chunk is calculated as

RRFd =
K∑

k=1

1
γ + rk

d

, (10.1)

where rk
d is the rank of chunk d in the k-th retrieval method (in our case K = 2), and γ = 60

is a constant to relatively increasing the impact of lower-ranked chunks compared to highly
ranked chunks.

By employing this hybrid search strategy and coupling it with the previously described
relevance boosting, our RAG chatbot system ensures that responses are generated based on the
most trusted and contextually relevant information, providing users with accurate and helpful
answers.

10.3.3 Automated Evaluation Framework
We establish an automated evaluation framework using DeepEval4 and the G-Eval scoring
method [211]. The evaluation focuses on correctness, completeness, relevance, and adherence to
R&Q standards. We leverage GPT-4o as the LLM backbone for the evaluation and define the
metric range between 0 (worst) and 5 (best). The following evaluation steps are performed to
create the final score per sample.

4 https://github.com/confident-ai/deepeval.
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Evaluation Steps

Answer Evaluation Steps
• Check if the facts in ‘Actual Output’ contradict any facts in ‘Expected Output’.
• DO NOT punish long and detailed answers if the ‘Actual Output’ is perfectly correct. Generally,

more details in the ‘Actual Output’ are encouraged.
• If the ‘Actual Output’ misses details compared to the ‘Expected Output’ you should slightly penalize

omission of detail.
Context Evaluation Steps
• Summarize the expected ‘Context’ and note the most important points.
• Compare the summary with the ‘Retrieval Context’ and check if the most important points are

present.
• If the ‘Retrieval Context’ is missing important points compared to the ‘Context’ you should penalize

the response.
• If the ‘Retrieval Context’ contains irrelevant information, you should very slightly penalize the

response.
• If the ‘Retrieval Context’ contains contradictory information, you should heavily penalize the response.

To validate reliability, we compare LLM-based scores with manual evaluations from domain
experts across 124 responses, achieving a Pearson correlation coefficient of r = 0.70. While
acknowledging potential LLM biases [200], this correlation supports the use of automated
evaluations as proxies for expert judgment.

10.4 Experiments
We conduct experiments on an expert-curated dataset to provide insights for implementing
LLM-based chatbots in production environments. We present our dataset, experimental setup,
and discuss our findings.

10.4.1 Data
Our dataset 5 consists of 124 Risk and Quality question-answer pairs created by PwC Germany
domain experts. An illustrative example is highlighted in Figure ??. For each question, experts
identified relevant sources from both internal company data and external resources, utilizing
these in conjunction with their professional expertise to formulate answers. Of these questions,
110 were based on internal sources, while the remainder drew from external data. The task of
creating and answering these questions was distributed evenly among 13 experts, with oversight
provided by three senior Risk and Quality assurance specialists. The question-answer pairs
underwent multiple rounds of review for verification and refinement.

10.4.2 Model Configurations
Our ablation studies examine three key areas: (1) ingestion parameters, (2) retrieval parameters,
and (3) model parameters, measuring their impact on system performance. Table 10.1 presents
the complete configuration space, with bold values indicating our baseline setup. All configura-
tions use an LLM temperature value of 0 to increase answer robustness. Through a systematic
5 Dataset and Python code are currently unpublishable due to ongoing industrial project constraints
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Table 10.1: Hyperparameter configurations. Bold values indicate the Baseline setup used for
ablation studies.

Module Hyperparameter Configurations

Ingestion

Max Chunk Size 256, 512, 1024, 2048
Min Chunk Overlap 32, 64, 128, 256
Markdown Conversion Yes, No

Search

Top-k 5, 10, 20
Search Type Text, Hybrid, Vector
Relevance boosting Yes, No
Embedding model ada-002, 3-large

Chatbot LLM-Backbone (GPT) 4o-mini, 4o, 3.5-Turbo, 4-Turbo

evaluation of ingestion and retrieval parameters, we identify the optimal configuration achieving
the highest correctness scores. While initially using ada-002 for embeddings, we discovered
that 3-large yields superior performance during our retrieval optimization process, leading to
its adoption in subsequent experiments. The final optimized configuration is then used as the
foundation to assess different LLM backbones (see Table 10.3).

10.4.3 Prompt Design
Our prompt design includes a template that ensures consistent and accurate responses from the
LLM. We utilize dynamic language detection using the langdetect6 library to automatically
adjust the language of the response to match the user’s query. The prompt instructs the model
to cite sources appropriately and avoid hallucinations by stating when information is not present
in the provided context.

6 https://github.com/Mimino666/langdetect.
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Prompt Template

{user question}

<instruction>
Write your answer in {language}. If you cannot answer the question based on the provided context,
state that the information is not present, don’t invent or hallucinate an answer, and don’t reference
any sources. After each fact you state, provide the corresponding document name and chunk ID from
the appended sources in brackets and separated by “/”. For example: “Apple was founded in 1976.”
∗(apple.docx/1)∗
Don’t combine sources but list each individual source separately if a fact contains multiple sources. E.g.
∗(apple.docx/1)∗, ∗(apple.docx/2)∗, etc.
You must comply with the following sources format: ∗(<document name as str>/<chunk id as int>)∗
Before answering the question, lay out your full thought process and dissect the user question and its
implications.
</instruction>

<document context>
{retrieved chunks}
</document context>

10.4.4 Results
Our experiments demonstrate that the optimal configuration, Baseline3-large with relevance
boosting enabled, achieves the highest correctness scores for both answers and context, as
shown in Table 10.2. We see that our hybrid search strategy outperforms both, full-text and
semantic vector search. Additionally, we find that a chunk size of 512 tokens with an overlap
of 64 tokens strikes an optimal balance between providing sufficient context and maintaining
processing efficiency. Configurations with notably smaller or larger chunk sizes and overlaps
lead to performance degradation, emphasizing the importance of these parameters in preserving
search and subsequently answer quality.

In the second part of our evaluation, we assess the impact of different LLM backbones using
the optimal retrieval configuration identified earlier. As presented in Table 10.3, although
the previously evaluated ingestion and retrieval parameters contribute to the overall answer
quality, the choice of LLM has the most significant effect. GPT-4o outperforms the other
models, achieving the highest scores in both answer and context correctness. In stark contrast,
GPT-3.5-Turbo scores considerably lower, despite all other parameters remaining unchanged.
This pronounced difference illustrates that the selection of the LLM backbone is critical to
maximizing the effectiveness of the RAG chatbot system. For robust analysis, each model
configuration was evaluated using 5 independent runs, with results reported as mean and
standard deviation for our G-Eval correctness metric.

10.5 Conclusion and Future Work
In this work, we introduced a novel RAG chatbot system tailored for R&Q assurance in highly
regulated industries. Our system effectively leverages LLMs with optimized retrieval strategies,
including hybrid search and relevance boosting, to improve query processing and compliance
adherence. The evaluation demonstrates significant performance gains over baseline approaches,
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Table 10.2: Detailed ablation study to evaluate multiple model configurations. We report mean
and standard deviation values of 5 independent runs (best scores in bold) for both, answer and
context correctness (Scale: 0-5).

Model Configuration G-Eval Correctness Score
Answer ↑ Context ↑

Baselineada-002 3.72 (±.026) 2.80 (±.028)
Chunking: 256/64 3.61 (±.048) 2.75 (±.041)
Chunking: 512/32 3.69 (±.042) 2.84 (±.043)
Chunking: 512/128 3.69 (±.053) 2.88 (±.046)
Chunking: 1024/128 3.67 (±.045) 2.74 (±.049)
Chunking: 1024/256 3.66 (±.039) 2.83 (±.045)
Chunking: 2048/256 3.56 (±.050) 2.29 (±.015)
+Markdown 3.65 (±.050) 2.77 (±.030)

Baseline3-large 3.76 (±.030) 2.91 (±.031)
Vector Search 3.72 (±.030) 2.91 (±.032)
Text Search 3.60 (±.030) 2.62 (±.026)
Top-k: 5 3.72 (±.033) 2.77 (±.027)
Top-k: 20 3.72 (±.016) 2.90 (±.048)
+Relevance Boosting 3.79 (±.037) 2.90 (±.018)

Chunking: 512/64 (Max Chunk Size = 512, Min Chunk Overlap = 64)

Table 10.3: Results of the best architectural setup for different LLM backbones (Scale: 0-5 and
best scores in bold).

Model Configuration G-Eval Correctness Score
Answer ↑ Context ↑

GPT-4o (R&Q-Chatbot) 3.79 (±.037) 2.90 (±.018)
GPT-4-Turbo 3.69 (±.047) 2.84 (±.048)
GPT-4o-mini 3.63 (±.053) 2.79 (±.037)
GPT-3.5-Turbo 3.27 (±.012) 2.53 (±.077)

validating the efficacy of our system. The integration of hybrid search allows the system
to balance semantic understanding with precise keyword matching, while relevance boosting
ensures that the most credible and pertinent information is prioritized.

Future research will focus on extending the chatbot to a dynamic multi-agent system capable
of intelligent query dissection, clarifying questions, and multi-hop reasoning to further enhance
its conversational capabilities. This will involve developing mechanisms for the chatbot to break
down complex queries into manageable components and engage in dialogue to clarify ambiguous
questions. These advancements aim to further improve the chatbot’s ability to handle complex
interactions and provide users with even more reliable and insightful information.
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CHAPTER 11

Conclusion

In this thesis, we have introduced novel representation learning techniques to improve the
efficiency and reliability of financial document analytics with a particular emphasis on auditing.
Our methodologies address the inherent challenges in processing complex corporate disclosure
documents, e.g., technical terminology, large volumes, rigorous accounting standards to comply
with, many numerical figures, and more, and significantly contribute to automating and refining
their analysis. In the following sections, we summarize our main findings and provide an outlook
on potential directions for future work.

11.1 Summary
Our research is organized into three main parts, with Part I tracing the evolution of repre-
sentation learning techniques in NLP and Parts II and III building upon these foundations
to develop novel methods for improved document consistency and compliance in the financial
domain.

We started out in Chapter 2 by introducing the foundational building blocks of modern NLP,
with a particular focus on (sequential) text classification, text matching, and the underlying
concept of word embeddings. We indicated how the majority of problems in NLP can be
formulated as supervised classification tasks with text matching being no exception. Leveraging
a binary classification signal (related or unrelated) text matching aims to learn a latent similarity
metric that enables the general matching of semantically similar text pairs without the need
to previously define a fixed set of text categories. We further established the importance
of word embeddings since the discrete nature of text, consisting of individual characters, is
not directly compatible with the vectorized input of ML models. Thus, the overall goal of
embedding methods is to properly encode the text’s syntactic, semantic, and contextual nature
into numerical vector representations. We traced the evolution of these methods from early
frequency-based approaches to semantic embeddings, showcasing their respective advantages
and limitations.

Acknowledging the lack of interpretability as one of these limitations, Chapter 3 presented a
novel matrix factorization-based approach that enhances the interpretability of word embeddings
by implicitly utilizing topic modeling. Leveraging the DEDICOM algorithm, we developed
a method for creating interpretable word embeddings where each dimension corresponds to
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distinct topics derived from the corpus. This approach not only retains the semantic richness
of traditional embeddings but also provides a transparent framework for understanding the
relationships between words and topics.

Chapter 4 addressed another core limitation of static word embeddings by introducing
contextual awareness in the embedding learning process. Tightly linked to language modeling,
we explored how deep neural network architectures like BERT and GPT, capable of modeling
sequential dependencies, capture the dynamic meanings of words based on context. We discussed
the differences of autoregressive and bidirectional models while also covering self-supervised
learning, and transfer learning paradigms like fine-tuning and zero-shot learning. Additionally,
we examined Retrieval-Augmented Generation (RAG) as a means to enhance the reliability of
generative models by integrating external knowledge sources.

Transitioning to the application of these concepts, Part II focused on improving the consistency
of financial documents. In Chapter 5, we laid the foundation for subsequent consistency checks
by presenting a novel method for the joint extraction and linking of Key Performance Indicators
(KPIs) from financial reports. KPIs like revenue or operating cash flows embody key financial
information about the company’s health and future prospects which is why their validity across
reports is paramount. Recognizing that KPIs are often presented in varied linguistic forms and
contexts, we developed KPI-BERT, a BERT-based language model that combines an RNN with
conditional label masking to autoregressively extract KPIs before it classifies their relations.
By jointly training the system’s components end-to-end, our model effectively captures the
contextual dependencies necessary for accurate KPI extraction and linking. This approach
facilitates the automation of subsequent auditing tasks, such as consistency checks and trend
analysis.

Building on KPI-BERT, Chapter 6 addressed the critical task of verifying the numerical
consistency of KPIs across financial documents. We introduced KPI-Check, a system that
employs BERT-based cross-encoders in conjunction with contrastive learning to generate robust
embeddings for KPIs, enabling the automatic identification and cross-verification of semantically
equivalent KPIs within financial reports. By utilizing dedicated modules like joint sentence and
table encoding, and a contrastive autoencoder for classification, we effectively handled the data
imbalance inherent in the KPI matching tasks. Our system demonstrated the ability to detect
numerical inconsistencies, thereby enhancing the reliability of financial analyses.

In Part III, we focused on ensuring compliance with regulatory standards in financial reporting.
Chapter 7 introduced sustain.AI, a context-aware recommender system designed to assist
auditors in efficiently locating relevant text passages in sustainability reports corresponding to
specific disclosure requirements. Utilizing a BERT-based encoding module and addressing class
imbalance through weighted sampling, our system outperformed strong baselines, significantly
improving retrieval performance measured in mean average precision. However, we recognized
that processing paragraphs in isolation limited the model’s ability to capture the full contextual
meaning.

To overcome this limitation, Chapter 8 presented a novel pre-training method called Pointer-
Guided Segment Ordering (SO). By training a bidirectional language model to reconstruct
the original order of shuffled text segments using a self-attention-based pointer network, we
enhanced the model’s understanding of narrative flow and inter-paragraph relationships. This
resulted in contextually rich paragraph embeddings that improved semantic text classification
performance. Our experiments demonstrated that models pre-trained with the SO task consis-
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tently outperformed baselines, setting new state-of-the-art results in sequential text classification
tasks.

Taking into account the dynamic nature of regulatory standards and the need for flexibility,
Chapter 9 explored the use of Large Language Models (LLMs) for compliance verification. We
introduced ZeroShotALI, a methodology that combines BERT-based text matching with an
LLM-based re-ranking and compliance assessment module utilizing GPT-4. This approach
enabled zero-shot matching between financial reports and unseen legal requirements without
retraining, offering a scalable solution adaptable to evolving standards. We demonstrated the
effectiveness of LLMs in assessing compliance, highlighting the potential of advanced models in
auditing applications.

Finally, Chapter 10 tackled the challenges faced by organizations in navigating complex
regulatory landscapes, particularly in Risk and Quality (R&Q) assurance. We developed
a specialized chatbot powered by GPT with an optimized RAG pipeline. By integrating
hybrid search techniques and relevance boosting, our system provided precise and contextually
appropriate answers to users’ queries related to R&Q standards. The chatbot was successfully
deployed within PricewaterhouseCoopers GmbH, a globally operating accounting and consulting
firm, enhancing the efficiency in handling internal compliance queries.

Collectively, our research demonstrates a comprehensive approach to addressing the com-
plexities of financial document analytics using deep representation learning. By starting from
foundational concepts and progressively tackling more complex challenges such as information
extraction, relationship linking and consistency and compliance verification, we have developed
a suite of methods that utilize advanced representation learning techniques to enhance auditing
processes for financial disclosure documents.

11.2 Discussion and Outlook
While our work represents a substantial step forward in leveraging deep representation learning
to improve the analysis of financial documents, several opportunities remain that offer avenues
for future research.

In Chapter 10, our retrieval-based chatbot for R&Q assurance uses a single LLM to generate
the final answer based on a fixed retrieval step. While being fast, a more flexible system
would be capable of dynamically analyzing the request, potentially asking clarifying questions,
planning and optimizing multiple retrieval steps to find the most relevant information, and
generating the answer following specific formatting and source referencing instructions. In such
complex settings, a single LLM may not always suffice. In future research, we plan to explore
developing LLM-Powered Multi-Agent Systems [212, 213]. By employing a divide-and-conquer
approach, such systems can mimic human teams, delegating subtasks to specialized agents that
collaborate to solve complex tasks. Implementing self-correcting mechanisms and feedback
loops could enhance the robustness and quality of the outputs. For instance, in our R&Q
consulting chatbot, individual agents could handle tasks like query analysis, planning, search
optimization, final answer formulation, and feedback integration, working together to produce
comprehensive and accurate results.

Another area for future work is addressing the computational and privacy challenges associated
with large-scale LLMs. Leveraging Model Distillation [214] and Domain-Specific Fine-Tuning
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[215] could enable the creation of smaller, efficient models that retain the capabilities of larger
LLMs while being more suitable for deployment in resource-constrained environments. By
transferring knowledge from large models to smaller ones and fine-tuning them with domain-
specific data, we can make advanced AI tools more accessible for smaller corporations and
address data privacy concerns by avoiding reliance on external providers.

Additionally, our focus predominantly on text-based analysis may overlook the richness of
financial documents that include charts, images, and other modalities. Exploring Multi-Modal
Foundation Modeling and Reasoning [216] could allow for more comprehensive analysis by
integrating information from various sources. Developing models capable of processing and
reasoning over multi-modal data would enhance the ability to extract insights from complex
documents, containing more than just textual data.

Building on this, recent advancements in reasoning-focused LLMs, such as OpenAI’s o-series
[217] and DeepSeek’s R1 models [218], present promising opportunities for refining our LLM-
based systems. These models have been fine-tuned via reinforcement learning to utilize internal
chain-of-thoughts for improved reasoning at inference time before generating the final answer,
which could significantly boost the performance of very complicated analytical tasks. However,
their employment requires a careful evaluation within our specific use cases, as the increased
computational demands from generating additional tokens during internal reasoning could
negatively impact system efficiency.

Lastly, enhancing Search and Retrieval capabilities for highly diverse and unstructured
document corpora remains an important area for improvement. Implementing multi-modal
and structure-agnostic retrieval methods, such as automatically constructing knowledge graphs
from unstructured data and utilizing graph relations [219] at retrieval time, could improve the
relevancy of retrieved information.
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APPENDIX A

DEDICOM for Interpretable Word Embeddings
and Topic Modeling

A.1 Matrix derivatives for Non Negative DEDICOM
In this section, we derive the derivatives in 3.21 and 3.25 analytically.

The optimization problem can be formulated as

min
A,R

L(A,R) s.t. A ≥ 0, R ≥ 0, (A.1)

and we write the loss in trace form:

L(S,A,R) =
∥∥∥S −ARA⊤

∥∥∥2

F
(A.2)

= tr
[(

S −ARA⊤
)⊤ (

S −ARA⊤
)]

(A.3)

= tr
[
Q⊤Q

]
. (A.4)
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Next, we differentiate the loss function

dL = d tr
[
Q⊤Q

]
(A.5)

= tr
[
d
(
Q⊤Q

)]
(A.6)

= tr
[
(d Q)⊤Q + Q⊤ d Q

]
(A.7)

= tr
[
Q⊤ d Q + Q⊤ d Q

]
(A.8)

= tr
[(

Q⊤ + Q⊤
)

d Q
]

(A.9)

= 2 tr
[
Q⊤ d Q

]
(A.10)

= 2 tr
[
Q⊤ d

(
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)]
(A.11)

= 2 tr
[
Q⊤ d S

]
− 2 tr

[
Q⊤ d

(
ARA⊤

)]
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= −2 tr
[
Q⊤ d

(
ARA⊤

)]
, (A.13)

and express the resulting differential both in terms of d R

dL = −2 tr
[
Q⊤ d

(
ARA⊤

)]
(A.14)

= −2 tr
[
Q⊤A d RA⊤

]
(A.15)

= −2 tr
[
A⊤Q⊤A d R

]
, (A.16)

and in terms of d A

dL = −2 tr
[
Q⊤ d

(
ARA⊤

)]
(A.17)

= −2 tr
[
Q⊤ d ARA⊤ + Q⊤AR(d A)⊤

]
(A.18)

= −2 tr
[
RA⊤Q⊤ d A + R⊤A⊤Q d A

]
(A.19)

= −2 tr
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RA⊤Q⊤ + R⊤A⊤Q
)

d A
]
. (A.20)

Hence, the final partial derivatives are given by

∂L
∂R

= −2
(
A⊤QA

)
(A.21)

= −2
(
A⊤

(
S −ARA⊤

)
A
)

(A.22)

= −2
(
A⊤SA−A⊤ARA⊤A

)
, (A.23)
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and

∂L
∂A

= −2
(
QAR⊤ + Q⊤AR

)
(A.24)

= −2
((

S −ARA⊤
)

AR⊤ +
(
S −ARA⊤

)⊤
AR

)
(A.25)

= −2
(
SAR⊤ −ARA⊤AR⊤ + S⊤AR−AR⊤A⊤AR

)
(A.26)

= −2
(
SAR⊤ + S⊤AR−A

(
RA⊤AR⊤ + R⊤A⊤AR

))
. (A.27)

A.2 Additional Results
This section presents additional results for our DEDICOM matrix and tensor factorization
method to jointly identify topics and learn interpretable and semantic word embeddings. In
addition, we showcase results for the baseline methods, NMF, LDA, and SVD. We present
results on all our datasets: Wikipedia, Amazon Reviews, and New York Times.

A.2.1 Wikipedia – Matrix Input
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Table A.1: Articles: “Soccer”, “Bee”, “Johnny Depp” – For each evaluated matrix factorization
method we display the top 10 words for each topic and the 5 most similar words based on
cosine similarity for the 2 top words from each topic.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

#619 #1238 #628 #595 #612 #389

NMF

1 ball bees film football heard album
2 may species starred cup depp band
3 penalty bee role world court guitar
4 referee pollen series fifa alcohol vampires
5 players honey burton national relationship rock
6 team insects character association stated hollywood
7 goal food films international divorce song
8 game nests box women abuse released
9 player solitary office teams paradis perry
10 play eusocial jack uefa stating debut

0 ball bees film football heard album
1 invoke odors burtondirected athenaeus crew jones
2 replaced tufts tone paralympic alleging marilyn
3 scores colour landau governing oped roots
4 subdivided affected brother varieties asserted drums

0 may species starred cup depp band
1 yd niko shared inaugurated refer heroes
2 ineffectiveness commercially whitaker confederation york bowie
3 tactical microbiota eccentric gold leaders debut
4 slower strategies befriends headquarters nonindian solo

#577 #728 #692 #607 #663 #814

LDA

1 film football depp penalty bees species
2 series women children heard flowers workers
3 man association life ball bee solitary
4 played fifa role direct honey players
5 pirates teams starred referee pollen colonies
6 character games alongside red food eusocial
7 along world actor time increased nest
8 cast cup stated goal pollination may
9 also game burton scored times size
10 hollow international playing player larvae egg

0 film football depp penalty bees species
1 charlie cup critical extra bee social
2 near canada february kicks insects chosen
3 thinking zealand script inner authors females
4 shadows activities song moving hives subspecies

0 series women children heard flowers workers
1 crybaby fifa detective allison always carcases
2 waters opera crime serious eusociality lived
3 sang exceeding magazine allergic varroa provisioned
4 cast cuju barber cost wing cuckoo

#1228 #797 #628 #369 #622 #437

SVD

1 bees depp game cup heard beekeeping
2 also film ball football court increased
3 bee starred team fifa divorce honey
4 species role players world stating described
5 played series penalty european alcohol use
6 time burton play uefa paradis wild
7 one character may national documents varroa
8 first actor referee europe abuse mites
9 two released competitions continental settlement colony
10 pollen release laws confederation sued flowers

0 bees depp game cup heard beekeeping
1 bee iii correct continental alleging varroa
2 develops racism abandoned contested attempting animals
3 studied appropriation maximum confederations finalized mites
4 crops march clear conmebol submitted plato

0 also film ball football court increased
1 although waters finely er declaration usage
2 told robinson poised suffix issued farmers
3 chosen scott worn word restraining mentioned
4 stars costars manner appended verbally aeneid
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Table A.2: Articles: “Dolphin”, “Shark”, “Whale” – Top half lists the top 10 representative
words per dimension of the basis matrix A, bottom half lists the 5 most similar words based on
cosine similarity for the 2 top words from each topic.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
#460 #665 #801 #753 #854 #721

1 shark calf ship conservation water dolphin
(0.665) (0.428) (0.459) (0.334) (0.416) (0.691)

2 sharks months became countries similar dolphins
(0.645) (0.407) (0.448) (0.312) (0.374) (0.655)

3 fins calves poseidon government tissue captivity
(0.487) (0.407) (0.44) (0.309) (0.373) (0.549)

4 killed females riding wales body wild
(0.454) (0.399) (0.426) (0.304) (0.365) (0.467)

5 million blubber dionysus bycatch swimming behavior
(0.451) (0.374) (0.422) (0.29) (0.357) (0.461)

6 fish young ancient cancelled blood bottlenose
(0.448) (0.37) (0.42) (0.288) (0.346) (0.453)

7 international sperm deity eastern surface sometimes
(0.442) (0.356) (0.412) (0.287) (0.344) (0.449)

8 fin born ago policy oxygen human
(0.421) (0.355) (0.398) (0.286) (0.34) (0.421)

9 fishing feed melicertes control system less
(0.405) (0.349) (0.395) (0.285) (0.336) (0.42)

10 teeth mysticetes greeks imminent swim various
(0.398) (0.341) (0.394) (0.282) (0.336) (0.418)

0 shark calf ship conservation water dolphin
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 sharks calves dionysus south prey dolphins
(0.981) (0.978) (0.995) (0.981) (0.964) (0.925)

3 fins females riding states swimming sometimes
(0.958) (0.976) (0.992) (0.981) (0.959) (0.909)

4 killed months deity united allows another
(0.929) (0.955) (0.992) (0.978) (0.957) (0.904)

5 fishing young poseidon endangered swim bottlenose
(0.916) (0.948) (0.987) (0.976) (0.947) (0.903)

0 sharks months became countries similar dolphins
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 shark born old eastern surface behavior
(0.981) (0.992) (0.953) (0.991) (0.992) (0.956)

3 fins young later united brain sometimes
(0.936) (0.992) (0.946) (0.989) (0.97) (0.945)

4 tiger sperm ago caught sound various
(0.894) (0.985) (0.939) (0.987) (0.968) (0.943)

5 killed calves modern south object less
(0.887) (0.984) (0.937) (0.979) (0.965) (0.937)
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Figure A.1: Articles: “Dolphin”, “Shark”, “Whale” – (a) 2-dimensional representation of
word embeddings A′ colored by topic assignment. (b) 2-dimensional representation of word
embeddings A′ colored by original Wikipedia article assignment (words that occur in more
than one article are excluded). (c) Colored heatmap of affinity matrix R.
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Table A.3: Articles: “Dolphin”, “Shark”, “Whale” – For each evaluated matrix factorization
method we display the top 10 words for each topic and the 5 most similar words based on
cosine similarity for the 2 top words from each topic.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

#492 #907 #452 #854 #911 #638

NMF

1 blood international evidence sonar ago calf
2 body killed selfawareness may teeth young
3 heart states ship surface million females
4 gills conservation dionysus clicks mysticetes captivity
5 bony new came prey whales calves
6 oxygen united another use years months
7 organs shark important underwater baleen born
8 tissue world poseidon sounds cetaceans species
9 water endangered mark known modern male
10 via islands riding similar extinct female

0 blood international evidence sonar ago calf
1 travels proposal flaws poisoned consist uninformed
2 enters lipotidae methodological signals specialize primary
3 vibration banned nictating ≈– legs born
4 tolerant iniidae wake emitted closest leaner

0 body killed selfawareness may teeth young
1 crystal law legendary individuals fuel brood
2 blocks consumers humankind helping lamp lacking
3 modified pontoporiidae helpers waste filterfeeding accurate
4 slits org performing depression krill consistency

#650 #785 #695 #815 #635 #674

LDA

1 killed teeth head species meat air
2 system baleen fish male whale using
3 endangered mysticetes dolphin females ft causing
4 often ago fin whales fisheries currents
5 close jaw eyes sometimes also sounds
6 sharks family fat captivity ocean groups
7 countries water navy young threats sound
8 since includes popular shark children research
9 called allow tissue female population clicks
10 vessels greater tail wild bottom burst

0 killed teeth head species meat air
1 postures dense underside along porbeagle australis
2 dolphinariums cetacea grooves another source submerged
3 town tourism eyesight long activities melbourne
4 onethird planktonfeeders osmoregulation sleep comparable spear

0 system baleen fish male whale using
1 dominate mysticetes mostly females live communication
2 close distinguishing swim aorta human become
3 controversy unique due female cold associated
4 agree remove whole position parts mirror

#1486 #544 #605 #469 #539 #611

SVD

1 dolphins water shark million poseidon dolphin
2 species body sharks years became meat
3 whales tail fins ago ship family
4 fish teeth international whale riding river
5 also flippers killed two evidence similar
6 large tissue fishing calf melicertes extinct
7 may allows fin mya deity called
8 one air law later ino used
9 animals feed new months came islands
10 use bony conservation mysticetes made genus

0 dolphins water shark million poseidon dolphin
1 various vertical corpse approximately games depicted
2 finding unlike stocks assigned phalanthus makara
3 military chew galea hybodonts statue capensis
4 selfmade lack galeomorphii appeared isthmian goddess

0 species body sharks years became meat
1 herd heart mostly acanthodians pirates contaminated
2 reproduction resisting fda spent elder harpoon
3 afford fit lists stretching mistook practitioner
4 maturity posterior carcharias informal wealthy pcbs
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Table A.4: Articles: “Soccer”, “Tennis”, “Rugby” – Top half lists the top 10 representative
words per dimension of the basis matrix A, bottom half lists the 5 most similar words based on
cosine similarity for the 2 top words from each topic.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
#539 #302 #563 #635 #650 #530

1 may leads tournaments greatest football net
(0.599) (0.212) (0.588) (0.572) (0.553) (0.644)

2 penalty sole tournament tennis rugby shot
(0.576) (0.205) (0.517) (0.497) (0.542) (0.629)

3 referee competes events female south stance
(0.564) (0.205) (0.509) (0.44) (0.484) (0.553)

4 team extending prize ever union stroke
(0.517) (0.204) (0.501) (0.433) (0.47) (0.543)

5 goal fixing tour navratilova wales serve
(0.502) (0.203) (0.497) (0.405) (0.459) (0.537)

6 kick triggered money modern national rotation
(0.459) (0.203) (0.488) (0.401) (0.446) (0.513)

7 play bleeding cup best england backhand
(0.455) (0.202) (0.486) (0.4) (0.438) (0.508)

8 ball fraud world wingfield new hit
(0.452) (0.202) (0.467) (0.394) (0.416) (0.507)

9 offence inflammation atp sports europe forehand
(0.444) (0.202) (0.464) (0.39) (0.406) (0.499)

10 foul conditions men williams states torso
(0.443) (0.201) (0.463) (0.389) (0.404) (0.487)

0 may leads tournaments greatest football net
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 goal tiredness events female union shot
(0.98) (1.0) (0.992) (0.98) (0.98) (0.994)

3 play ineffectiveness tour ever rugby serve
(0.959) (1.0) (0.989) (0.971) (0.979) (0.987)

4 penalty recommences money navratilova association hit
(0.954) (1.0) (0.986) (0.967) (0.96) (0.984)

5 team mandated prize tennis england stance
(0.953) (1.0) (0.985) (0.962) (0.958) (0.955)

0 penalty sole tournament tennis rugby shot
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 referee discretion events greatest football net
(0.985) (1.0) (0.98) (0.962) (0.979) (0.994)

3 kick synonym event female union serve
(0.985) (1.0) (0.978) (0.953) (0.975) (0.987)

4 offence violated atp year england hit
(0.982) (1.0) (0.974) (0.951) (0.961) (0.983)

5 foul layout money navratilova wales stance
(0.982) (1.0) (0.966) (0.949) (0.949) (0.98)
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Figure A.2: Articles: “Soccer”, “Tennis”, “Rugby” – (a) 2-dimensional representation of
word embeddings A′ colored by topic assignment. (b) 2-dimensional representation of word
embeddings A′ colored by original Wikipedia article assignment (words that occur in more
than one article are excluded). (c) Colored heatmap of affinity matrix R.
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Table A.5: Articles: “Soccer”, “Tennis”, “Rugby” – For each evaluated matrix factorization
method we display the top 10 words for each topic and the 5 most similar words based on
cosine similarity for the 2 top words from each topic.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

#511 #453 #575 #657 #402 #621

NMF

1 net referee national tournaments rackets rules
2 shot penalty south doubles balls wingfield
3 serve may football singles made december
4 hit kick cup events size game
5 stance card europe tour must sports
6 stroke listed fifa prize strings lawn
7 backhand foul union money standard modern
8 ball misconduct wales atp synthetic greek
9 server red africa men leather fa
10 service offence new grand width first

0 net referee national tournaments rackets rules
1 defensive retaken serbia bruno pressurisation collection
2 closer interference gold woodies become hourglass
3 somewhere dismissed north eliminated equivalents unhappy
4 center fully headquarters soares size originated

0 shot penalty south doubles balls wingfield
1 rotated prior asian combining express experimenting
2 execute yellow argentina becker oz llanelidan
3 strive duration la exclusively bladder attended
4 curve primary kong woodbridge length antiphanes

#413 #518 #395 #776 #616 #501

LDA

1 used net wimbledon world penalty clubs
2 forehand ball episkyros cup score rugby
3 use serve occurs tournaments goal schools
4 large shot grass football team navratilova
5 notable opponent roman fifa end forms
6 also hit bc national players playing
7 western lines occur international match sport
8 twohanded server ad europe goals greatest
9 doubles service island tournament time union
10 injury may believed states scored war

0 used net wimbledon world penalty clubs
1 seconds mistaken result british measure sees
2 restrictions diagonal determined cancelled crossed papua
3 although hollow exists combined requiring admittance
4 use perpendicular win wii teammate forces

0 forehand ball episkyros cup score rugby
1 twohanded long roman multiple penalty union
2 grips deuce bc inline bar public
3 facetiously position island fifa fouled took
4 woodbridge allows believed manufactured hour published

#1310 #371 #423 #293 #451 #371

SVD

1 players net tournaments stroke greatest balls
2 player ball singles forehand ever rackets
3 tennis shot doubles stance female size
4 also serve tour power wingfield square
5 play opponent slam backhand williams made
6 football may prize torso navratilova leather
7 team hit money grip game weight
8 first service grand rotation said standard
9 one hitting events twohanded serena width
10 rugby line ranking used sports past

0 players net tournaments stroke greatest balls
1 breaking pace masters rotates lived panels
2 one reach lowest achieve female sewn
3 running underhand events face biggest entire
4 often air tour adds potential leather

0 player ball singles forehand ever rackets
1 utilize keep indian twohanded autobiography meanwhile
2 give hands doubles begins jack laminated
3 converted pass pro backhand consistent wood
4 touch either rankings achieve gonzales strings
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Appendix A DEDICOM for Interpretable Word Embeddings and Topic Modeling

A.2.2 Wikipedia – Tensor Input
Articles “Soccer”, “Bee”, “Johnny Depp” – DEDICOM Automatic gradient method

Table A.6: For the most significant two words per topic, the four nearest neighbors based on
cosine similarity are listed. Matrix A′, trained on the wikipedia data as input tensor using
automatic gradient methods.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

0 hind game film heard bees disorder
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 segments football starred court bee collapse
(0.995) (1.0) (0.968) (0.954) (0.999) (1.0)

2 legs players role divorce honey losses
(0.994) (0.999) (0.954) (0.925) (0.99) (1.0)

3 antennae ball series sued insects attrition
(0.993) (0.999) (0.951) (0.907) (0.976) (0.999)

4 wings team burton alleged food businesses
(0.992) (0.998) (0.945) (0.897) (0.97) (0.999)

0 segments football starred court bee collapse
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 antennae game role divorce bees disorder
(1.0) (1.0) (0.993) (0.996) (0.999) (1.0)

2 wings players series sued honey losses
(0.999) (0.999) (0.978) (0.991) (0.995) (0.999)

3 bacteria ball burton alleged insects pesticide
(0.999) (0.999) (0.975) (0.981) (0.984) (0.998)

4 legs team film alcohol food businesses
(0.998) (0.999) (0.968) (0.981) (0.976) (0.998)
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Figure A.3: (a) 2-dimensional representation of word embeddings A′ colored by topic assignment.
(b) 2-dimensional representation of word embeddings A′ colored by original Wikipedia article
assignment (words that occur in more than one article are excluded).
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Appendix A DEDICOM for Interpretable Word Embeddings and Topic Modeling

Articles “Soccer”, “Bee”, “Johnny Depp” – DEDICOM Multiplicative Update Rules

Table A.7: For the most significant two words per topic, the four nearest neighbors based on
cosine similarity are listed. Matrix A, trained on the wikipedia data as input tensor using
multiplicative update rules.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

0 species game honey allow insects depp
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 easier football boatwrights emancipation ultraviolet charlie
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 tiny players glade broadly mechanics infiltrate
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

3 halictidae association tutankhamun disabilities exploit thenwife
(0.999) (1.0) (1.0) (1.0) (1.0) (1.0)

4 provision team oracle total swallows tourist
(0.999) (0.997) (1.0) (1.0) (1.0) (1.0)

0 eusocial football bee organised pollen film
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 oligocene players subfamilies comes honeybees starred
(1.0) (1.0) (0.995) (1.0) (1.0) (1.0)

2 architecture game internal shows enlarged smoking
(1.0) (1.0) (0.994) (1.0) (0.998) (0.999)

3 uncommon association studied attention simple dislocated
(1.0) (1.0) (0.994) (1.0) (0.998) (0.999)

4 termed team cladogram deductions drove injuries
(1.0) (0.997) (0.99) (1.0) (0.998) (0.999)
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Figure A.4: (a) 2-dimensional representation of word embeddings A′ colored by topic assignment.
(b) 2-dimensional representation of word embeddings A′ colored by original Wikipedia article
assignment (words that occur in more than one article are excluded).
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Appendix A DEDICOM for Interpretable Word Embeddings and Topic Modeling

Articles “Dolphin”, “Shark”, “Whale” – DEDICOM Multiplicative Update Rules

Table A.8: Each column lists the top 10
representative words per dimension of the
basis matrix A.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
#226 #628 #1048 #571 #1267 #554

1 cells mysticetes shark bony dolphin whaling
(1.785) (1.808) (3.019) (1.621) (3.114) (3.801)

2 brain whales sharks blood dolphins iwc
(1.624) (1.791) (2.737) (1.452) (2.908) (2.159)

3 light feed fins fish bottlenose aboriginal
(1.561) (1.427) (1.442) (1.438) (1.629) (2.098)

4 cone baleen killed gills meat canada
(1.448) (1.33) (1.407) (1.206) (1.403) (1.912)

5 allow odontocetes endangered teeth behavior moratorium
(1.32) (1.278) (1.377) (1.088) (1.399) (1.867)

6 greater consist hammerhead body captivity industry
(1.292) (1.162) (1.269) (1.043) (1.298) (1.855)

7 slightly water conservation system river us
(1.269) (1.096) (1.227) (1.027) (1.281) (1.838)

8 ear krill trade skeleton common belugas
(1.219) (1.05) (1.226) (1.008) (1.275) (1.585)

9 cornea toothed whitetip called selfawareness whale
(1.158) (1.003) (1.203) (0.99) (1.248) (1.542)

10 rod sperm finning tissue often gb£
(1.128) (0.991) (1.184) (0.875) (1.218) (1.528)

Table A.9: For the most significant two words
per topic, the four nearest neighbors based on
cosine similarity are listed.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

0 cells mysticetes shark bony dolphin whaling
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 sensitive unborn native edges hybrid māori
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 cone grind tl mirabile hybridization trips
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

3 rod counterparts predators—
organisms matches yangtze predominantly

(0.998) (1.0) (1.0) (1.0) (1.0) (1.0)
4 corneas threechambered cretaceous turbulence grampus revenue

(0.998) (1.0) (1.0) (1.0) (1.0) (1.0)

0 brain whales sharks blood dolphins iwc
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 receive extended reminiscent hydrodynamic superpod distinction
(0.998) (0.996) (1.0) (0.998) (1.0) (1.0)

2 equalizer bryde electrical scattering masturbation billion
(0.998) (0.996) (1.0) (0.998) (1.0) (1.0)

3 lobes closes induced reminder interaction spain
(0.997) (0.996) (1.0) (0.998) (1.0) (1.0)

4 clear effects coarsely flows stressful competition
(0.997) (0.996) (1.0) (0.998) (1.0) (1.0)
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Figure A.5: Colored heatmap of affinity tensor R.
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Figure A.6: (a) 2-dimensional representation of word embeddings A colored by topic assignment.
(b) 2-dimensional representation of word embeddings A colored by original Wikipedia article
assignment (words that occur in more than one article are excluded).
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Appendix A DEDICOM for Interpretable Word Embeddings and Topic Modeling

Articles “Soccer”, “Tennis”, “Rugby” – DEDICOM Multiplicative Update Rules

Table A.10: Each column lists the top 10
representative words per dimension of the
basis matrix A.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
#441 #861 #412 #482 #968 #57

1 rugby titles rackets net penalty doubles
(2.55) (1.236) (2.176) (2.767) (1.721) (2.335)

2 union wta wingfield shot football singles
(2.227) (1.196) (1.536) (2.586) (1.701) (2.321)

3 wales circuit modern serve team tournaments
(1.822) (1.123) (1.513) (2.393) (1.507) (2.245)

4 georgia futures racket hit laws tennis
(1.682) (1.122) (1.43) (1.978) (1.462) (1.752)

5 fiji earn th stance referee grand
(1.557) (1.104) (1.355) (1.945) (1.449) (1.662)

6 samoa offer lawn service fifa events
(1.474) (1.096) (1.316) (1.83) (1.439) (1.648)

7 zealand mixed century stroke may slam
(1.458) (1.089) (1.236) (1.797) (1.435) (1.623)

8 new draws strings server goal player
(1.414) (1.085) (1.179) (1.761) (1.353) (1.344)

9 tonga atp yielded backhand competitions professional
(1.374) (1.072) (1.121) (1.692) (1.345) (1.328)

10 south challenger balls forehand associations players
(1.369) (1.07) (1.101) (1.554) (1.288) (1.316)

Table A.11: For the most significant two words
per topic, the four nearest neighbors based on
cosine similarity are listed.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

0 rugby titles rackets net penalty doubles
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 ireland hopman proximal hit organisers singles
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 union dress interlaced formally elapsed tournaments
(1.0) (1.0) (1.0) (1.0) (1.0) (0.985)

3 backfired tennischannel harry offensive polite grand
(1.0) (0.998) (1.0) (1.0) (1.0) (0.975)

4 kilopascals seoul deserves deeply modest slam
(1.0) (0.998) (1.0) (1.0) (1.0) (0.971)

0 union wta wingfield shot football singles
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 rugby helps proximal requires circumference doubles
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 ireland hamilton interlaced backwards touchline tournaments
(1.0) (1.0) (1.0) (1.0) (1.0) (0.985)

3 backfired weeks harry entail sanctions grand
(1.0) (1.0) (1.0) (1.0) (1.0) (0.975)

4 zealand couple deserves torso home slam
(1.0) (1.0) (1.0) (1.0) (0.999) (0.971)
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Figure A.7: Colored heatmap of affinity tensor R.

0 10

0

5

10

15

20

Soccer

Tennis

Rugby football

(a)
0 10

0

5

10

15

20

Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

Topic 6

(b)

Figure A.8: (a) 2-dimensional representation of word embeddings A colored by topic assignment.
(b) 2-dimensional representation of word embeddings A colored by original Wikipedia article
assignment (words that occur in more than one article are excluded).
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Appendix A DEDICOM for Interpretable Word Embeddings and Topic Modeling

Articles “Soccer”, “Tennis”, “Rugby” – Tensor NMF

Table A.12: Each column lists the top 10
representative words per dimension of the
basis matrix A′.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
#275 #505 #607 #459 #816 #559

1 greatest rackets tournaments net football penalty
(39.36) (33.707) (29.126) (29.789) (27.534) (27.793)

2 ever modern events shot rugby referee
(26.587) (24.281) (25.327) (27.947) (24.037) (23.632)

3 female balls tour serve union goal
(25.52) (22.016) (23.488) (25.722) (21.397) (23.072)

4 navratilova wingfield prize hit south may
(24.348) (20.923) (21.823) (21.344) (20.761) (22.978)

5 best tennis atp stance national team
(24.114) (19.863) (21.124) (20.75) (19.586) (21.258)

6 williams strings money service fifa kick
(22.207) (18.602) (20.667) (19.7) (19.331) (21.052)

7 serena racket doubles server wales foul
(21.256) (18.369) (19.919) (19.051) (18.627) (19.018)

8 said made ranking stroke league listed
(20.666) (17.622) (19.736) (18.781) (18.31) (17.736)

9 martina yielded us backhand cup free
(20.153) (17.284) (19.431) (17.809) (17.015) (17.702)

10 budge th masters ball association goals
(20.111) (16.992) (18.596) (17.2) (16.721) (17.209)

Table A.13: For the most significant two words
per topic, the four nearest neighbors based on
cosine similarity are listed.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

0 greatest rackets tournaments net football penalty
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 illustrated garden us lob midlothian whole
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 johansson construction earned receiving alcock corner
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

3 wilton yielded participating rotates capital offender
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

4 jonathan energy receives adds representatives stoke
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

0 ever modern events shot rugby referee
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 deserved design juniors lobber slang dismissed
(1.0) (0.999) (1.0) (1.0) (1.0) (1.0)

2 stated version bowl unable colonists showing
(1.0) (0.999) (1.0) (1.0) (1.0) (1.0)

3 female shape comprised alter sevenaside stoppage
(1.0) (0.998) (1.0) (1.0) (1.0) (1.0)

4 contemporaries stitched carlo applying seldom layout
(1.0) (0.998) (1.0) (1.0) (1.0) (1.0)
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Figure A.9: (a) 2-dimensional representation of word embeddings H colored by topic assignment.
(b) 2-dimensional representation of word embeddings H colored by original Wikipedia article
assignment (words that occur in more than one article are excluded).
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Appendix A DEDICOM for Interpretable Word Embeddings and Topic Modeling

Articles “Dolphin”, “Shark”, “Whale” – Tensor NMF

Table A.14: Each column lists the top 10 rep-
resentative words per dimension of the basis
matrix H.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
#675 #996 #279 #491 #1190 #663

1 whaling sharks young killed dolphin mysticetes
(34.584) (30.418) (33.823) (23.214) (35.52) (24.404)

2 whale fish born shark dolphins flippers
(25.891) (23.648) (27.62) (22.6) (31.881) (22.059)

3 whales bony oviduct states bottlenose odontocetes
(21.653) (19.689) (23.706) (21.24) (18.198) (21.621)

4 belugas prey viviparity endangered behavior water
(20.933) (18.785) (23.694) (20.976) (18.003) (21.087)

5 aboriginal teeth embryos conservation selfawareness tail
(19.44) (18.242) (22.966) (20.398) (16.48) (18.268)

6 iwc blood continue fins meat mya
(19.226) (16.521) (21.752) (18.641) (16.02) (17.79)

7 canada gills calves new often baleen
(18.691) (13.34) (21.25) (18.445) (15.687) (17.189)

8 arctic tissue blubber international captivity limbs
(17.406) (12.927) (21.094) (18.4) (15.452) (16.56)

9 industry body egg drum river allow
(16.837) (12.691) (20.735) (17.587) (14.68) (16.552)

10 right skeleton fluids finning common toothed
(16.766) (12.52) (20.662) (17.321) (14.389) (16.489)

Table A.15: For the most significant two words
per topic, the four nearest neighbors based on
cosine similarity are listed.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

0 whaling sharks young killed dolphin mysticetes
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 antarctica loan getting alzheimer behaviors digits
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 spain leopard insulation queensland familiar streamlined
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

3 caro dogfish harsh als pantropical archaeocete
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

4 excluded lifespans primary control test defines
(1.0) (0.999) (1.0) (1.0) (1.0) (0.999)

0 whale fish born shark dolphins flippers
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 reason like getting figure levels expel
(1.0) (0.997) (1.0) (1.0) (1.0) (1.0)

2 respected lifetime young sources moderate compress
(1.0) (0.992) (1.0) (1.0) (0.999) (1.0)

3 divinity content leaner video injuries protocetus
(0.999) (0.992) (1.0) (0.998) (0.999) (1.0)

4 taken hazardous insulation dogfishes seems nostrils
(0.998) (0.992) (1.0) (0.997) (0.998) (1.0)
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Figure A.10: (a) 2-dimensional representation of word embeddings H colored by topic assignment.
(b) 2-dimensional representation of word embeddings H colored by original Wikipedia article
assignment (words that occur in more than one article are excluded).
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Appendix A DEDICOM for Interpretable Word Embeddings and Topic Modeling

Articles “Soccer”, “Bee”, “Johnny Depp” – Tensor NMF

Table A.16: Each column lists the top
10 representative words per dimension
of the basis matrix H.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
#793 #554 #736 #601 #740 #616

1 film ball honey football heard species
(37.29) (27.588) (29.778) (32.591) (37.167) (32.973)

2 starred may insects fifa depp eusocial
(23.821) (25.768) (27.784) (25.493) (30.275) (25.001)

3 role penalty bees world court females
(23.006) (25.04) (27.679) (25.414) (20.771) (24.24)

4 series players bee cup divorce solitary
(19.563) (24.063) (26.936) (24.925) (17.289) (21.173)

5 burton referee food association sued nest
(18.694) (23.649) (23.44) (22.331) (16.105) (20.198)

6 played team flowers national stated males
(17.583) (22.9) (22.374) (20.958) (15.984) (18.3)

7 character goal pollination women alcohol workers
(16.646) (22.859) (18.09) (20.668) (15.238) (17.16)

8 success player larvae international stating typically
(16.41) (22.054) (17.73) (20.16) (15.199) (16.886)

9 films play pollen tournament paradis colonies
(15.74) (21.774) (17.666) (18.26) (14.98) (16.528)

10 box game predators uefa alleged queens
(15.024) (20.471) (17.634) (18.029) (14.971) (16.427)

Table A.17: For the most significant two words per
topic, the four nearest neighbors based on cosine
similarity are listed.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

0 film ball honey football heard species
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 avril officials triangulum entered obtained progressive
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 office invoke consumption most countersued halictidae
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

3 landau heading copper excess depths temperate
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

4 chamberlain twohalves might uk mismanagement spring
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

0 starred may insects fifa depp eusocial
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 raimi noninternational blooms oceania city unfertilized
(1.0) (0.992) (1.0) (1.0) (1.0) (1.0)

2 candidate red eats sudamericana tribute females
(1.0) (0.991) (1.0) (1.0) (1.0) (1.0)

3 hardwicke required catching widened mick paper
(1.0) (0.991) (1.0) (1.0) (1.0) (1.0)

4 peter yd disease oversee elvis hibernate
(1.0) (0.989) (1.0) (1.0) (1.0) (1.0)
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Figure A.11: (a) 2-dimensional representation of word embeddings H colored by topic assignment.
(b) 2-dimensional representation of word embeddings H colored by original Wikipedia article
assignment (words that occur in more than one article are excluded).

155



Appendix A DEDICOM for Interpretable Word Embeddings and Topic Modeling

A.2.3 Amazon Reviews – Tensor Input
As described in Section 3.4.1, our Amazon movie review corpus comprises human-written reviews
for six famous animation films. Factorizing its PPMI tensor representation with non-negative
tensor DEDICOM and the number of topics set to k = 10 reveals not only movie-specific
sub-topics but also general topics that span over several movies. For example, Topics 1, 9, and
10 in Table A.18 can uniquely be related to the films “Frozen”, “Toy Story 1”, and “Kung Fu
Panda 1”, respectively, whereas Topic 5 constitutes bonus material on a DVD which holds true
for all films. The latter can also be seen in Figure A.12 where Topic 5 is highlighted in each
movie slice (strongly in the top and lightly in the bottom row). In the same sense, one can
observe that Topic 3 is present in both, “Kung Fu Panda 1”, and “Kung Fu Panda 2”, which is
reasonable considering the topic depicts the general notion of a fearsome warrior.

DEDICOM Mulitplicative Update Rules

1
2

3
4

5
6

7
8

9
1
0

Toy Story 1 Monsters, Inc. Kung Fu Panda 1

1 2 3 4 5 6 7 8 9 10

1
2

3
4

5
6

7
8

9
1
0

Toy Story 3

1 2 3 4 5 6 7 8 9 10

Kung Fu Panda 2

1 2 3 4 5 6 7 8 9 10

Frozen

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure A.12: Colored heatmap of affinity tensor R, trained on the Amazon review data
represented as input tensor using multiplicative update rules.
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Table A.18: Top 10 representative words per dimension of the basis matrix A, trained on the
Amazon review data as input tensor using multiplicative update rules.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
#528 #445 #1477 #1790 #1917 #597 #789 #670 #1599 #188

1 anna shen legendary lasseter disc screams code mike woody po
(4.215) (4.21) (1.459) (2.887) (1.367) (3.779) (3.292) (4.325) (6.12) (5.737)

2 elsa peacock valley director birds energy email crystal buzz master
(4.087) (2.668) (1.448) (2.392) (1.343) (3.315) (2.781) (4.055) (5.484) (5.276)

3 olaf oldman temple andrew widescreen monstropolis promo billy andy shifu
(2.315) (2.627) (1.31) (2.158) (1.327) (3.13) (2.645) (3.911) (4.355) (4.707)

4 trolls gary kim stanton outtakes world free goodman toys dragon
(2.241) (2.423) (1.307) (2.119) (1.238) (3.109) (2.343) (3.812) (4.119) (4.344)

5 frozen lord fearsome special extras monsters promotion sully lightyear warrior
(2.196) (2.201) (1.288) (1.892) (1.185) (3.047) (2.279) (3.728) (3.334) (4.274)

6 kristoff weapon teacher pete dvd city promotional wazowski allen tai
(2.155) (1.469) (1.288) (1.612) (1.142) (2.994) (2.266) (3.513) (2.752) (4.082)

7 queen wolf battle ranft included monster amazon randall tim lung
(2.055) (1.405) (1.264) (1.564) (1.13) (2.978) (2.129) (3.404) (2.609) (3.993)

8 hans inner duk joe short power click sulley hanks five
(2.054) (1.38) (1.257) (1.564) (1.101) (2.919) (2.024) (3.396) (2.471) (2.952)

9 sister yeoh train feature games scare download buscemi cowboy oogway
(1.904) (1.359) (1.221) (1.555) (1.1) (2.614) (1.889) (3.266) (2.407) (2.918)

10 ice michelle warriors ralph tour closet instructions james space furious
(1.839) (1.354) (1.22) (1.518) (1.031) (2.555) (1.877) (3.264) (2.375) (2.806)

Table A.19: For the most significant two words per topic, the four nearest neighbors based on
cosine similarity are listed.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

0 anna shen legendary lasseter disc screams code mike woody po
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 christoph canons sacred andrew thxcertified harvested confirm bogg rips panda
(1.0) (1.0) (0.999) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (0.985)

2 readiness yeoh fulfill stanton presentation speciallytrained discount chased spy fu
(1.0) (1.0) (0.999) (1.0) (0.999) (1.0) (1.0) (0.996) (1.0) (0.983)

3 carrots wolf roster eggleston upgrade screamprocessing browser flair josie black
(1.0) (1.0) (0.999) (1.0) (0.999) (1.0) (1.0) (0.996) (1.0) (0.983)

4 poverty weapon megafan uncredited featurettes corporation popup slot supurb kung
(1.0) (1.0) (0.999) (1.0) (0.998) (1.0) (1.0) (0.995) (1.0) (0.981)

0 elsa peacock valley director birds energy email crystal buzz master
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 shipwreck shen praying producer pressed powered confirm oz hist shifu
(1.0) (1.0) (0.999) (0.998) (1.0) (0.998) (1.0) (1.0) (1.0) (0.999)

2 marriage mcbride kim teaser gadget frightened code mae wayne warrior
(1.0) (1.0) (0.997) (0.997) (1.0) (0.997) (1.0) (1.0) (1.0) (0.999)

3 idena yeoh chorgum globes classically screams fwiw celia reunited dragon
(1.0) (1.0) (0.997) (0.997) (1.0) (0.996) (1.0) (1.0) (1.0) (0.998)

4 prodding michelle preying rousing starz scarry android cristal hockey martial
(1.0) (1.0) (0.997) (0.997) (1.0) (0.996) (1.0) (1.0) (1.0) (0.994)
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Figure A.13: (a) 2-dimensional representation of word embeddings A colored by topic assignment.
(b) 2-dimensional representation of word embeddings A colored by original review article.

158



Appendix A DEDICOM for Interpretable Word Embeddings and Topic Modeling

Tensor NMF

Table A.20: Each column lists the top 10 representative words per dimension of the basis matrix
H.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
#590 #1052 #456 #350 #4069 #733 #1140 #582 #423 #605

1 anna woody director allen widescreen code master mike film screams
(109.81) (134.366) (100.622) (83.875) (34.484) (88.94) (89.686) (88.628) (58.514) (87.782)

2 elsa buzz lasseter hanks outtakes email po crystal animation energy
(106.148) (120.93) (93.134) (77.313) (30.724) (73.645) (85.79) (82.472) (53.628) (78.113)

3 olaf andy andrew tim disc promo shifu billy characters world
(59.353) (105.728) (81.452) (75.511) (30.688) (67.483) (82.465) (79.244) (46.861) (73.888)

4 trolls toys stanton rickles extras amazon warrior goodman films monstropolis
(58.811) (98.523) (80.132) (74.217) (30.09) (64.978) (75.609) (76.831) (44.937) (73.484)

5 kristoff lightyear john tom versions promotion dragon sully pixar monsters
(56.309) (68.336) (73.004) (72.401) (27.894) (58.631) (74.235) (75.612) (44.873) (71.721)

6 hans sid pete jim included free tai wazowski even city
(55.628) (52.34) (70.556) (69.776) (27.455) (58.207) (71.721) (71.588) (44.176) (71.352)

7 frozen cowboy docter varney material promotional lung randall animated power
(54.257) (48.588) (64.734) (66.053) (26.887) (57.738) (70.786) (69.695) (43.492) (70.642)

8 queen space ralph slinky edition click furious sulley also monster
(53.956) (47.88) (54.884) (62.326) (26.546) (55.373) (63.232) (69.604) (43.484) (70.197)

9 sister room joe potato contains download oogway james dvd closet
(52.749) (42.655) (53.7) (62.237) (25.386) (50.788) (60.879) (68.574) (42.736) (61.451)

10 ice toy ranft mr extra purchase five buscemi well scare
(49.71) (42.042) (53.41) (61.801) (25.144) (50.327) (59.259) (66.028) (40.124) (61.243)

Table A.21: For the most significant two words per topic, the four nearest neighbors based on
cosine similarity are listed.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

0 anna woody director allen widescreen code master mike film screams
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 marriage acciently producer trustworthy benefactors card furious longtime films electrical
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (0.995) (1.0) (1.0)

2 trolls limp jackson arguments pioneers confirmation dragon cyclops first screamprocessing
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (0.995) (0.994) (1.0)

3 flees jealousey rabson hanks keepcase assuming shifu slot animated chlid
(1.0) (0.999) (1.0) (1.0) (1.0) (1.0) (1.0) (0.995) (0.993) (1.0)

4 christian swells composer knowitall redone android warrior humanlike animation shortage
(1.0) (0.999) (1.0) (1.0) (1.0) (1.0) (1.0) (0.994) (0.989) (1.0)

0 elsa buzz lasseter hanks outtakes email po crystal animation energy
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 marriage recive nathan trustworthy storyboarding promo martial billy film supply
(1.0) (0.999) (1.0) (1.0) (0.993) (1.0) (0.998) (1.0) (0.989) (1.0)

2 heals zorg officer allen informative avail fight talkative story powered
(1.0) (0.999) (1.0) (1.0) (0.991) (1.0) (0.997) (0.999) (0.987) (1.0)

3 marrying limp cunningham tom contents flixster arts competitor scenes collect
(1.0) (0.997) (1.0) (1.0) (0.99) (1.0) (0.996) (0.999) (0.987) (1.0)

4 feminist acciently derryberry arguments logo confirming adopted devilishly also screams
(1.0) (0.997) (1.0) (1.0) (0.99) (1.0) (0.995) (0.999) (0.984) (0.999)
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Figure A.14: (a) 2-dimensional representation of word embeddings H colored by topic assignment.
(b) 2-dimensional representation of word embeddings H colored by original review article.
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A.2.4 New York Times News – Tensor Input
DEDICOM Mulitplicative Update Rules

Table A.22: For the most significant two words per topic, the four nearest neighbors based on
cosine similarity are listed.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

0 suleimani loans masks floyd contributed confederate ukraine storm restaurants weinstein
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 qassim spend sanitizer brutality alan statue lutsenko storms salons raped
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 iran smallbusiness wipes police edmondson monuments ukrainians isaias cafes predatory
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

3 iranian rent cloth systemic mervosh statues yovanovitch landfall pubs mann
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

4 militias incentives homemade knee emily honoring burisma forecasters nightclubs sciorra
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

0 iran university protective minneapolis reporting statue sondland hurricane bars sexual
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 qassim jerome gowns breonna rabin monuments zelensky bahamas dining rape
(1.0) (0.999) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 suleimani oxford ventilators kueng contributed statues volker hurricanes theaters metoo
(1.0) (0.998) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

3 iranian columbia respirators floyd keith confederate giuliani forecasters venues sexually
(1.0) (0.998) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

4 militias economics supplies police chokshi honoring quid landfall malls mann
(1.0) (0.998) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)
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Figure A.15: 2-dimensional representation of word embeddings A colored by topic assignment.
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Tensor NMF

Table A.23: Each column lists the top 10 representative words per dimension of the basis matrix
A.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
#977 #360 #420 #4192 #489 #405 #1135 #748 #108 #1166

1 floyd contributed iran masks ship syria senator restaurants bloom ukraine
(82.861) (137.058) (80.007) (40.463) (87.178) (94.686) (77.285) (93.511) (110.77) (79.611)

2 police reporting suleimani patients crew syrian storm bars julie sondland
(64.649) (84.889) (78.78) (34.77) (70.694) (82.565) (43.439) (64.889) (103.282) (61.099)

3 protesters michael iranian ventilators aboard kurdish hurricane reopen edited testimony
(63.588) (76.156) (72.581) (34.299) (67.464) (82.013) (42.213) (57.541) (100.159) (49.982)

4 minneapolis katie iraq protective passengers turkey iowa stores los testified
(63.216) (63.146) (63.27) (33.719) (65.895) (80.374) (41.985) (55.435) (95.747) (49.959)

5 protests emily gen loans cruise turkish republican gyms graduated zelensky
(61.585) (60.696) (50.966) (28.178) (63.535) (75.912) (40.993) (50.487) (93.51) (48.427)

6 george alan strike supplies princess kurds gov theaters angeles ambassador
(53.378) (59.499) (49.026) (27.15) (45.714) (63.639) (37.689) (49.866) (92.349) (46.086)

7 brutality nicholas iraqi gloves flight fighters buttigieg closed berkeley weinstein
(44.051) (55.899) (46.027) (26.724) (45.375) (62.313) (37.1) (46.544) (85.653) (45.053)

8 officers cochrane qassim equipment nasa forces democrat indoor grew ukrainian
(43.581) (52.045) (45.861) (26.252) (43.306) (57.659) (37.087) (44.541) (84.145) (43.716)

9 racism ben maj respiratory navy troops representative salons today giuliani
(43.457) (41.414) (44.921) (25.447) (40.396) (54.045) (35.807) (41.99) (41.818) (42.674)

10 demonstrations maggie baghdad testing astronauts isis bernie shops california sexual
(42.547) (41.328) (44.867) (24.179) (37.073) (53.743) (35.228) (40.311) (38.807) (39.966)

Table A.24: For the most significant two words per topic, the four nearest neighbors based on
cosine similarity are listed.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

0 floyd contributed iran masks ship syria senator restaurants bloom ukraine
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 demonstrations shear suleimani providers aboard isis wyden shops graduated volker
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

2 systemic annie retaliation distressed capsule ceasefire iowa takeout edited inquiry
(1.0) (1.0) (1.0) (1.0) (1.0) (0.999) (1.0) (1.0) (1.0) (1.0)

3 protests mazzei qassim tobacco diamond fighters steyer nightclubs berkeley transcript
(1.0) (1.0) (1.0) (1.0) (1.0) (0.999) (1.0) (1.0) (1.0) (1.0)

4 defund kitty revenge selfemployed dragon syrian klobuchar pubs grew investigations
(1.0) (1.0) (1.0) (1.0) (1.0) (0.999) (1.0) (1.0) (1.0) (1.0)

0 police reporting suleimani patients crew syrian storm bars julie sondland
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

1 systemic luis strike treating aboard alassad carolina reopen garcetti testifying
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (0.993) (1.0)

2 peaceful beachy maj infection capsule recep rubio nonessential graduated mick
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (0.988) (1.0)

3 peacefully kaplan iran develop princess erdogan hampshire nail edited quid
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (0.988) (1.0)

4 knee glueck retaliation repay cruise kurds landfall takeout berkeley impeachment
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (0.988) (1.0)
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Figure A.16: 2-dimensional representation of word embeddings H colored by topic assignment.
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APPENDIX B

Large Language Models for Compliance
Verification

B.1 Prompt evaluation
Table B.1 shows the detailed evaluation of all prompt configurations per dataset and model
based on the micro F1 score.

Table B.1: Micro F1-Scores for all models per dataset and prompt configuration. Note: Due to the
verbose nature of Llama-2 Models and their poor performance in the German language, Llama-2
was incapable of generating any machine-readable consistent outputs that are interpretable
with a heuristic for some prompt formats. This leads to some Micro F1-Scores being 0.

Prompt Dataset GPT-3.5 GPT-3.5-16K GPT-4 Llama-2-7b Llama-2-13b Llama-2-70b
HGB 45.88 45.88 66.67 49.23 0.00 0.00I IFRS 76.42 77.21 73.60 58.58 24.57 42.58
HGB 35.49 35.10 40.07 46.89 36.20 13.68II IFRS 69.69 10.32 77.05 33.13 52.83 70.04
HGB 43.44 43.44 66.67 36.20 0.00 24.62III IFRS 58.22 57.22 71.73 29.74 22.59 50.69
HGB 37.87 37.87 41.03 43.44 43.44 49.23IV IFRS 74.27 11.03 75.23 35.83 56.49 66.57
HGB 43.96 33.57 53.85 38.46 0.00 13.68V IFRS 72.00 60.77 71.37 35.68 65.41 69.65
HGB 37.87 37.87 75.60 0.00 46.89 43.08VI IFRS 77.56 77.58 66.38 68.02 65.58 70.00
HGB 43.96 43.96 63.95 13.68 24.62 0.00VII IFRS 70.04 70.04 70.13 65.82 61.62 24.76
HGB 46.15 46.15 66.67 0.00 47.34 0.00VIII IFRS 35.21 35.21 67.74 53.69 35.02 29.87
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B.2 Prompt configurations
The following features the list of evaluated prompts as outlined in Section 9.4.2. First, the
prompts used for reports written under the IFRS are shown. Second, prompts used for German
reports written for the HGB are listed.

B.2.1 IFRS Prompts

I In-Out-Sub-Template

System: You are an expert auditor with perfect knowledge of the IFRS accounting standard. You
always answer truthfully whether a given regulatory requirement is fully complied in the following line ids.

Is the following IFRS sub-requirement fully complied in the following input document?

Answer with “yes”, if the sub-requirement is fully complied.
Answer with “no”, if it is not fully complied.

Format your output complying to the following json schema:
{{“answer”: <“yes”|“no”>}}

requirement: “{requirement}”
document: “{document}”

II Cot-Sub-Template

System: You are an expert auditor with perfect knowledge of the IFRS accounting standard. You
always answer truthfully whether a given regulatory requirement is fully complied in the following line ids.

Is the following IFRS sub-requirement fully complied in the following input document? Think
step by step: Explain whether it is fully complied and reference relevant line ids from the input document.
Based on your explanation, determine whether the requirement is fully complied by answering with “yes”
or “no”.

requirement: “{requirement}”
document: “{document}”

III In-Out-Template

System: You are an expert auditor with perfect knowledge of the IFRS accounting standard. You
always answer truthfully whether a given regulatory requirement is fully complied in the following line ids.

Answer with “yes”, if all sub-requirements are fully complied.
Answer with “no”, if at least one of the sub-requirements is not fully complied.

Format your output complying to the following json schema:
{{“answer”: <“yes”|“no”>}}

requirement: “{requirement}”
document: “{document}”
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IV Cot-Template

System: You are an expert auditor with perfect knowledge of the IFRS accounting standard. You
always answer truthfully whether a given regulatory requirement is fully complied in the following line ids.

Think step by step: Explain for each sub-requirement whether it is fully complied and refer-
ence relevant line ids from the input document in each explanation. Based on your explanations,
determine whether the overall requirement is fully complied by answering with “yes” or “no”.

requirement: “{requirement}”
document: “{document}”

V In-Out-Tot-Template

System: Imagine three different experts in the field of auditing answering this question. Each expert has
perfect knowledge of the IFRS accounting standard. All experts always answer truthfully whether a
particular regulatory requirement in the following line numbers is is completely fulfilled.

Each expert writes down 1 step of their thought process and shares it with the group. Then
all experts move to the next step, and so on. Show each step and each expert’s thinking process. If at
any time an expert realizes he is wrong, he is eliminated.

Answer with “yes”, if all sub-requirements are fully complied.
Answer with “no”, if at least one of the sub-requirements is not fully complied.

Format your output complying to the following json schema:
{{“answer”: <“yes”|“no”>}}

requirement: “{requirement}”
document: “{document}”

VI In-Out-Tot-One-Shot-Template

System: Imagine three different experts in the field of auditing answering this question. Each expert has
perfect knowledge of the IFRS accounting standard. All experts always answer truthfully whether a
particular regulatory requirement in the following line numbers is is completely fulfilled.

Each expert writes down 1 step of their thought process and shares it with the group. Then
all experts move to the next step, and so on. Show each step and each expert’s thinking process. If at
any time an expert realizes he is wrong, he is eliminated.

Answer with “yes”, if all sub-requirements are fully complied.
Answer with “no”, if at least one of the sub-requirements is not fully complied.

Format your output complying to the following json schema:
{{“answer”: <“yes”|“no”>}}

requirement: “{requirement}”
document: “{document}”

Example:
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Requirement: “Disclose the amount of receivables with a remaining maturity of more than
one year; separately for each item reported.” Document: “544: All receivables have a remaining maturity
of less than one year.”

Expert 1: “The requirement asks for the amount of receivables with a remaining maturity of
more than one year. However, line 544 states that all receivables have a remaining maturity of less than
one year. This seems to imply that there are no receivables with a remaining maturity of more than one
year and the requirement has been met.”

Expert 2: “I see Expert 1’s point. Since the document indicates that all receivables have a
remaining term of less than one year, we can assume that the requirement has been met.”

Expert 3: “I agree with my colleagues. Although the document does not provide any other
specific information, we can conclude from the context that the requirement has been met.”

{{“answer”: “yes”}}

VII In-Out-One-Shot-Template

System: You are an expert auditor with perfect knowledge of the IFRS accounting standard. You
always answer truthfully whether a given regulatory requirement is fully complied in the following line ids.

Answer with “yes”, if all sub-requirements are fully complied.
Answer with ”no”, if at least one of the sub-requirements is not fully complied.

Format your output complying to the following json schema:
{{“answer”: <“yes”|“no”>}}

requirement: “{requirement}”
document: “{document}”

Example:

Requirement: “Disclose the amount of receivables due in more than one year; separately for
each item shown.” Document: “544: All receivables have a remaining maturity of less than one year.”

{{“answer”: “yes”}}

VIII In-Out-One-Shot-No-Template

System: You are an expert auditor with perfect knowledge of the IFRS accounting standard. You
always answer truthfully whether a given regulatory requirement is fully complied in the following line ids.

Answer with “yes”, if all sub-requirements are fully complied.
Answer with “no”, if at least one of the sub-requirements is not fully complied.

Format your output complying to the following json schema:
{{“answer”: <“yes”|“no”>}}

requirement: “{requirement}”
document: “{document}”
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Example:

Requirement: “Disclose the amount of receivables due in less than one year; separately for
each item shown.” Document: “544: All receivables have a remaining maturity of less than one year.”

{{“answer”: “no”}}

B.2.2 HGB Prompts (German)

I In-Out-Sub-Template

System: Sie sind ein Experte im Bereich Wirtschaftsprüfung und haben perfekte Kenntnisse des
HGB-Bilanzierungstandards. Sie antworten immer wahrheitsgemäß, ob eine bestimmte behördliche
Anforderung in den folgenden Zeilennummern vollständig erfüllt ist.

Ist die folgende HGB-Anforderung im unten genannten Dokument vollständig erfüllt?
Antworten Sie mit:
- “yes”, wenn die Anforderung erfüllt ist,
- “no”, wenn die Anforderung nicht erfüllt ist,
- “unclear”, wenn die Erfüllung der Anforderung nicht beantwortet werden kann, da Kontextinformationen
fehlen und
- “not applicable”, wenn die Anforderung für das Dokument nicht relevant ist.

Formatieren Sie Ihre Ausgabe gemäß dem folgenden JSON-Schema:
{{“answer”: <“yes”|“no”|“unclear”|“not applicable”>}}

Anforderung: “{requirement}”
Dokument: “{document}”

II Cot-Sub-Template

System: Sie sind ein Experte im Bereich Wirtschaftsprüfung und haben perfekte Kenntnisse des
HGB-Bilanzierungstandards. Sie antworten immer wahrheitsgemäß, ob eine bestimmte behördliche
Anforderung in den folgenden Zeilennummern vollständig erfüllt ist.

Ist die folgende HGB-Teilanforderung im gegebenen Eingangsdokument vollständig erfüllt?
Denke Schritt für Schritt: Erklären Sie, ob sie vollständig erfüllt ist, und geben Sie die relevanten
Zeilennummern aus dem vorhanden Dokument an. Basierend auf Ihrer Erklärung bestimmen Sie, ob die
Anforderung vollständig erfüllt ist.
Beenden Sie ihre Antwort mit
- “yes”, wenn die Anforderung erfüllt ist,
- “no”, wenn die Anforderung nicht erfüllt ist,
- “unclear”, wenn die Erfüllung der Anforderung nicht beantwortet werden kann, da Kontextinformationen
fehlen und
- “not applicable”, wenn die Anforderung für das Dokument nicht relevant ist.

Anforderung: “{requirement}”
Dokument: “{document}”
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III In-Out-Template

System: Sie sind ein Experte im Bereich Wirtschaftsprüfung und haben perfekte Kenntnisse des
HGB-Bilanzierungstandards. Sie antworten immer wahrheitsgemäß, ob eine bestimmte behördliche
Anforderung in den folgenden Zeilennummern vollständig erfüllt ist.

Antworten Sie mit:
- “yes”, wenn die Anforderung erfüllt ist,
- “no”, wenn die Anforderung nicht erfüllt ist,
- “unclear”, wenn die Erfüllung der Anforderung nicht beantwortet werden kann, da Kontextinformationen
fehlen und
- “not applicable”, wenn die Anforderung für das Dokument nicht relevant ist.

Formatieren Sie Ihre Ausgabe gemäß dem folgenden JSON-Schema:
{{“answer”: <“yes”|“no”|“unclear”|“not applicable”>}}

Anforderung: “{requirement}”
Dokument: “{document}”

IV Cot-Template

System: Sie sind ein Experte im Bereich Wirtschaftsprüfung und haben perfekte Kenntnisse des
HGB-Bilanzierungstandards. Sie antworten immer wahrheitsgemäß, ob eine bestimmte behördliche
Anforderung in den folgenden Zeilennummern vollständig erfüllt ist.

Denke Schritt für Schritt: Erkläre für jede Teilanforderung, ob sie vollständig erfüllt ist, und
verweise in jeder Erklärung auf die relevanten Zeilennummern aus dem gegebenen Dokument. Basierend
auf deinen Erklärungen entscheide, ob jede Teilanforderung vollständig erfüllt ist. Beenden Sie ihre
Antwort mit
- “yes”, wenn die Anforderung erfüllt ist,
- “no”, wenn die Anforderung nicht erfüllt ist,
- “unclear”, wenn die Erfüllung der Anforderung nicht beantwortet werden kann, da Kontextinformationen
fehlen und
- “not applicable”, wenn die Anforderung für das Dokument nicht relevant ist.

Anforderung: “{requirement}”
Dokument: “{document}”

V In-Out-Tot-Template

System: Stellen Sie sich vor, drei verschiedene Experten im Bereich Wirtschaftsprüfung beantworten
diese Frage. Jeder Experte hat perfekte Kenntnisse des HGB-Bilanzierungstandards. Alle Experten
antworten immer wahrheitsgemäß, ob eine bestimmte behördliche Anforderung in den folgenden
Zeilennummern vollständig erfüllt ist.

Jeder Experte schreibt 1 Schritt seines Denkprozesses nieder und teilt ihn mit der Gruppe.
Dann gehen alle Experten zum nächsten Schritt über, usw. Zeige jeden Schritt und den Denkprozess
jedes Experten. Wenn ein Experte zu irgendeinem Zeitpunkt feststellt, dass er falsch liegt, scheidet er aus.

Geben Sie bei einer Mehrheitsabstimmung unter den Experten nur eine Antwort in diesem
Format zurück:
- “yes”, wenn die Anforderung erfüllt ist,
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- “no”, wenn die Anforderung nicht erfüllt ist,
- “unclear”, wenn die Erfüllung der Anforderung nicht beantwortet werden kann, da Kontextinformationen
fehlen und
- “not applicable”, wenn die Anforderung für das Dokument nicht relevant ist.

Formatieren Sie Ihre Ausgabe gemäß dem folgenden JSON-Schema:
{{“answer”: <“yes”|“no”|“unclear”|“not applicable”>}}

Anforderung: “{requirement}”
Dokument: “{document}”

VI In-Out-Tot-One-Shot-Template

System: Stellen Sie sich vor, drei verschiedene Experten im Bereich Wirtschaftsprüfung beantworten
diese Frage. Jeder Experte hat perfekte Kenntnisse des HGB-Bilanzierungstandards. Alle Experten
antworten immer wahrheitsgemäß, ob eine bestimmte behördliche Anforderung in den folgenden
Zeilennummern vollständig erfüllt ist.

Jeder Experte schreibt 1 Schritt seines Denkprozesses nieder und teilt ihn mit der Gruppe.
Dann gehen alle Experten zum nächsten Schritt über, usw. Zeige jeden Schritt und den Denkprozess
jedes Experten. Wenn ein Experte zu irgendeinem Zeitpunkt feststellt, dass er falsch liegt, scheidet er aus.

Geben Sie bei einer Mehrheitsabstimmung unter den Experten nur eine Antwort in diesem
Format zurück:
- “yes”, wenn die Anforderung erfüllt ist,
- “no”, wenn die Anforderung nicht erfüllt ist,
- “unclear”, wenn die Erfüllung der Anforderung nicht beantwortet werden kann, da Kontextinformationen
fehlen und
- “not applicable”, wenn die Anforderung für das Dokument nicht relevant ist.

Formatieren Sie Ihre Ausgabe gemäß dem folgenden JSON-Schema:
{{“answer”: <“yes”|“no”|“unclear”|“not applicable”>}}

Anforderung: “{requirement}”
Dokument: “{document}”

Example:

Anforderung: “Angabe des Betrags der Forderungen mit einer Restlaufzeit von mehr als einem Jahr;
gesondert für jeden ausgewiesenen Posten” Dokument: “544: Sämtliche Forderungen haben eine
Restlaufzeit von weniger als einem Jahr.”

Experte 1: “Die Anforderung verlangt die Angabe des Betrags der Forderungen mit einer
Restlaufzeit von mehr als einem Jahr. In Zeile 544 wird jedoch angegeben, dass alle Forderungen eine
Restlaufzeit von weniger als einem Jahr haben. Das scheint zu implizieren, dass es keine Forderungen
mit einer Restlaufzeit von mehr als einem Jahr gibt und die Anforderung erfüllt worden ist.”

Experte 2: “Ich sehe den Punkt von Experte 1. Da das Dokument angibt, dass alle Forderun-
gen eine Restlaufzeit von weniger als einem Jahr haben, können wir davon ausgehen, dass die
Anforderung erfüllt worden ist.”

Experte 3: “Ich stimme meinen Kollegen zu. Obwohl das Dokument keine weiteren spezifis-
chen Informationen enthält, können wir aus dem Kontext schließen, dass die Anforderung erfüllt worden
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ist.”

{{“answer”: “yes”}}

VII In-Out-One-Shot-Template

System: Sie sind ein Experte im Bereich Wirtschaftsprüfung und haben perfekte Kenntnisse des
HGB-Bilanzierungstandards. Sie antworten immer wahrheitsgemäß, ob eine bestimmte behördliche
Anforderung in den folgenden Zeilennummern vollständig erfüllt ist.

Antworten Sie mit:
- “yes”, wenn die Anforderung erfüllt ist,
- “no”, wenn die Anforderung nicht erfüllt ist,
- “unclear”, wenn die Erfüllung der Anforderung nicht beantwortet werden kann, da Kontextinformationen
fehlen und
- “not applicable”, wenn die Anforderung für das Dokument nicht relevant ist.

Formatieren Sie Ihre Ausgabe gemäß dem folgenden JSON-Schema:
{{“answer”: <“yes”|“no”|“unclear”|“not applicable”>}}

Anforderung: “{requirement}”
Dokument: “{document}”

Example:

Anforderung: “Angabe des Betrags der Forderungen mit einer Restlaufzeit von mehr als einem Jahr;
gesondert für jeden ausgewiesenen Posten” Dokument: “544: Sämtliche Forderungen haben eine
Restlaufzeit von weniger als einem Jahr.”

{{“answer”: “yes”}}

VIII In-Out-One-Shot-No-Template

System: Sie sind ein Experte im Bereich Wirtschaftsprüfung und haben perfekte Kenntnisse des
HGB-Bilanzierungstandards. Sie antworten immer wahrheitsgemäß, ob eine bestimmte behördliche
Anforderung in den folgenden Zeilennummern vollständig erfüllt ist.

Antworten Sie mit:
- “yes”, wenn die Anforderung erfüllt ist, - “no”, wenn die Anforderung nicht erfüllt ist,
- “unclear”, wenn die Erfüllung der Anforderung nicht beantwortet werden kann, da Kontextinformationen
fehlen und
- “not applicable”, wenn die Anforderung für das Dokument nicht relevant ist.

Formatieren Sie Ihre Ausgabe gemäß dem folgenden JSON-Schema:
{{“answer”: <“yes”|“no”|“unclear”|“not applicable”>}}

Anforderung: “{requirement}”
Dokument: “{document}”

Example:

Anforderung: “Angabe des Betrags der Forderungen mit einer Restlaufzeit von weniger als
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einem Jahr; gesondert für jeden ausgewiesenen Posten” Dokument: “544: Sämtliche Forderungen haben
eine Restlaufzeit von weniger als einem Jahr.”

{{“answer”: “no”}}

172



Bibliography

[1] H. Jo, A. Hsu, R. Llanos-Popolizio, and J. Vergara-Vega,
Corporate governance and financial fraud of wirecard,
European Journal of Business and Management Research (2021) (cit. on p. 1).

[2] P. Sikka, Financial crisis and the silence of the auditors,
Accounting, organizations and society (2009) (cit. on p. 1).

[3] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, nature (2015) (cit. on pp. 1, 2).
[4] Y. Bengio, A. Courville, and P. Vincent,

Representation learning: A review and new perspectives,
IEEE transactions on pattern analysis and machine intelligence (2013) (cit. on p. 2).

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016,
url: http://www.deeplearningbook.org (cit. on p. 2).

[6] S. Linnainmaa, The representation of the cumulative rounding error of an algorithm as
a Taylor expansion of the local rounding errors,
Master’s Thesis (in Finnish), University of Helsinki (1970) (cit. on p. 2).

[7] S. Linnainmaa, Taylor expansion of the accumulated rounding error,
BIT Numerical Mathematics (1976) (cit. on p. 2).

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
Learning representations by back-propagating errors, nature (1986) (cit. on pp. 2, 46).

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” Proc. CVPR, 2009 (cit. on p. 2).

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
Imagenet classification with deep convolutional neural networks,
Advances in neural information processing systems (2012) (cit. on p. 3).

[11] S. Ren, K. He, R. Girshick, and J. Sun,
Faster r-cnn: Towards real-time object detection with region proposal networks (2015)
(cit. on pp. 3, 90).

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial nets,
Advances in neural information processing systems (2014) (cit. on p. 3).

[13] J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models,
Advances in neural information processing systems (2020) (cit. on p. 3).

173

http://www.deeplearningbook.org


Bibliography

[14] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups,
IEEE Signal processing magazine (2012) (cit. on p. 3).

[15] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.,
Mastering the game of Go with deep neural networks and tree search, nature (2016)
(cit. on p. 3).

[16] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, et al.,
Highly accurate protein structure prediction with AlphaFold, nature (2021) (cit. on p. 3).

[17] A. Radford and K. Narasimhan,
“Improving Language Understanding by Generative Pre-Training,” 2018
(cit. on pp. 3, 13, 44, 45, 48, 49, 55, 58, 72).

[18] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al., Gpt-4 technical report,
arXiv:2303.08774 (2023) (cit. on pp. 3, 5, 48, 49, 98, 100, 112, 113, 128–130).

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser, and
I. Polosukhin, “Attention is all you need,” Proc. NeurIPS, 2017
(cit. on pp. 3, 4, 14, 47, 48, 55, 97, 101, 112).

[20] G. Adams, A. R. Fabbri, F. Ladhak, E. Lehman, and N. Elhadad,
“From sparse to dense: GPT-4 summarization with chain of density prompting,”
Proc. EMNLP, 2023 (cit. on p. 3).

[21] S. Frieder, L. Pinchetti, R.-R. Griffiths, T. Salvatori, T. Lukasiewicz, P. Petersen, and
J. Berner, Mathematical capabilities of chatgpt,
Advances in neural information processing systems (2024) (cit. on p. 3).

[22] D. M. Katz, M. J. Bommarito, S. Gao, and P. Arredondo, Gpt-4 passes the bar exam,
Philosophical Transactions of the Royal Society A (2024) (cit. on p. 3).

[23] I. Auditing and A. S. B. (IAASB),
2023-2024 Handbook of International Quality Management, Auditing, Review, Other
Assurance, and Related Services Pronouncements,
International Federation of Accountants (IFAC), 2024 (cit. on p. 3).

[24] Bundesministerium der Justiz, German Commercial Code (Handelsgesetzbuch, HGB),
url: https://www.gesetze-im-internet.de/hgb/ (visited on 02/21/2025)
(cit. on p. 3).

[25] IFRS Foundation, International Financial Reporting Standards,
url: https://www.ifrs.org/issued-standards/list-of-standards/ (visited on
02/21/2025) (cit. on p. 3).

174

https://www.gesetze-im-internet.de/hgb/
https://www.ifrs.org/issued-standards/list-of-standards/


Bibliography

[26] Federal Accounting Standards Advisory Board,
FASAB Handbook of Accounting Standards and Other Pronouncements,
url: https://fasab.gov/accounting-standards/ (visited on 02/21/2025)
(cit. on p. 3).

[27] R. Sifa, A. Ladi, M. Pielka, R. Ramamurthy, L. Hillebrand, B. Kirsch, D. Biesner,
R. Stenzel, T. Bell, M. Lübbering, et al.,
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[114] K. Fundel, R. Küffner, and R. Zimmer,
RelEx—Relation extraction using dependency parse trees, Bioinformatics (2007)
(cit. on p. 58).

[115] H. Gurulingappa, A. Mateen-Rajpu, and L. Toldo,
Extraction of potential adverse drug events from medical case reports,
Journal of Biomedical Semantics (2012) (cit. on p. 58).

[116] J. Giorgi, X. Wang, N. Sahar, W. Y. Shin, G. D. Bader, and B. Wang, End-to-end
Named Entity Recognition and Relation Extraction using Pre-trained Language Models,
arXiv:1912.13415 (2019) (cit. on p. 58).

[117] A. Pappu, R. Blanco, Y. Mehdad, A. Stent, and K. Thadani,
“Lightweight Multilingual Entity Extraction and Linking,” Proc. WSDM, 2017
(cit. on p. 58).

[118] D. Treigueiros and R. Berry, “The application of neural network based methods to the
extraction of knowledge from accounting reports,” Proc. HICSS, 1991 (cit. on p. 58).

181



Bibliography

[119] D. Biesner, R. Ramamurthy, R. Stenzel, M. Lübbering, L. Hillebrand, A. Ladi,
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hidden state representations (h[SEP]). Employing this segment ordering (SO)
pre-training mechanism alongside masked language modeling (MLM) increases
the segment-level contextual awareness of the encoding language model and
subsequently improves its downstream classification capabilities. . . . . . . . . 99

8.2 Schematic visualization of “Dynamic Sampling”. Dynamic sample construction
increases sample diversity across epochs which improves contextual understanding
and model generalization in contrast to simply creating samples greedily. . . . . 102

8.3 Pre-training progress for all model variants, showcasing validation accuracy
curves for masked language modeling (MLM) and segment ordering (SO). . . . 106

8.4 Class distributions across all datasets showcasing label imbalances. . . . . . . . 107

9.1 Schematic visualization of the complete auditing pipeline combining ZeroShotALI,
an auditing-specific textual recommender system, and the ALI compliance check
system. While ZeroShotALI focuses on retrieving the top 5 relevant text pas-
sages per legal requirement, the compliance check system evaluates whether the
retrieved passages comply with the provided requirement. . . . . . . . . . . . . 114

9.2 Grouped bar plot of F1-Scores by model and answer choices on HGB and IFRS
data. Due to poor model performance in the German language, some LLMs
were incapable of generating any machine-readable consistent outputs that are
interpretable with a heuristic for some prompt formats, leading to some F1-Scores
being 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10.1 Architecture of the Retrieval-Augmented Generation chatbot system, demon-
strating the workflow for query resolution. . . . . . . . . . . . . . . . . . . . . . 128

10.2 Schematic visualization of the document ingestion pipeline architecture, illus-
trating the individual steps from raw document parsing from various formats to
indexed knowledge base creation. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.1 Articles: “Dolphin”, “Shark”, “Whale” – (a) 2-dimensional representation of word
embeddings A′ colored by topic assignment. (b) 2-dimensional representation of
word embeddings A′ colored by original Wikipedia article assignment (words
that occur in more than one article are excluded). (c) Colored heatmap of affinity
matrix R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

192



List of Figures

A.2 Articles: “Soccer”, “Tennis”, “Rugby” – (a) 2-dimensional representation of word
embeddings A′ colored by topic assignment. (b) 2-dimensional representation of
word embeddings A′ colored by original Wikipedia article assignment (words
that occur in more than one article are excluded). (c) Colored heatmap of affinity
matrix R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.3 (a) 2-dimensional representation of word embeddings A′ colored by topic as-
signment. (b) 2-dimensional representation of word embeddings A′ colored by
original Wikipedia article assignment (words that occur in more than one article
are excluded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.4 (a) 2-dimensional representation of word embeddings A′ colored by topic as-
signment. (b) 2-dimensional representation of word embeddings A′ colored by
original Wikipedia article assignment (words that occur in more than one article
are excluded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.5 Colored heatmap of affinity tensor R. . . . . . . . . . . . . . . . . . . . . . . . 151
A.6 (a) 2-dimensional representation of word embeddings A colored by topic as-

signment. (b) 2-dimensional representation of word embeddings A colored by
original Wikipedia article assignment (words that occur in more than one article
are excluded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.7 Colored heatmap of affinity tensor R. . . . . . . . . . . . . . . . . . . . . . . . 152
A.8 (a) 2-dimensional representation of word embeddings A colored by topic as-

signment. (b) 2-dimensional representation of word embeddings A colored by
original Wikipedia article assignment (words that occur in more than one article
are excluded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.9 (a) 2-dimensional representation of word embeddings H colored by topic as-
signment. (b) 2-dimensional representation of word embeddings H colored by
original Wikipedia article assignment (words that occur in more than one article
are excluded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.10 (a) 2-dimensional representation of word embeddings H colored by topic as-
signment. (b) 2-dimensional representation of word embeddings H colored by
original Wikipedia article assignment (words that occur in more than one article
are excluded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.11 (a) 2-dimensional representation of word embeddings H colored by topic as-
signment. (b) 2-dimensional representation of word embeddings H colored by
original Wikipedia article assignment (words that occur in more than one article
are excluded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.12 Colored heatmap of affinity tensor R, trained on the Amazon review data
represented as input tensor using multiplicative update rules. . . . . . . . . . . 156

A.13 (a) 2-dimensional representation of word embeddings A colored by topic as-
signment. (b) 2-dimensional representation of word embeddings A colored by
original review article. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.14 (a) 2-dimensional representation of word embeddings H colored by topic as-
signment. (b) 2-dimensional representation of word embeddings H colored by
original review article. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.15 2-dimensional representation of word embeddings A colored by topic assignment.161

193



List of Figures

A.16 2-dimensional representation of word embeddings H colored by topic assignment.163

194



List of Tables

2.1 Example of common Preprocessing methods to standardize text data and reduce
the vocabulary size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Comparison of Word Embedding Techniques, categorized by type, vector char-
acteristics, and semantic capabilities. . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Amazon Movie Review corpus grouped by movie and number of reviews per slice
of input tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 New York Times news corpus grouped by month and number of articles. This
corresponds to the number of articles per slice of input tensor. . . . . . . . . . 33

3.3 New York Times news corpus composition by section and number of articles. . 33
3.4 Overview of word count statistics after preprocessing for all datasets. Columns

represent from left to right the total number of words per corpus, the total
number of unique words per corpus, the average number of total words per
article, the average number of unique words per article, and the cutoff frequency
of the 10 000th most common word. Wikipedia article combinations: DSW
(Dolphin, Shark, Whale), SBJ (Soccer, Bee, Johnny Depp), STR (Soccer, Tennis,
Rugby). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 The top 10 representative words per dimension of the basis matrix A′, trained
on the wikipedia data as input matrix using automatic gradient methods. . . . 39

3.6 For the most significant two words per topic, the four nearest neighbors based
on cosine similarity are listed. Matrix A′ trained on the wikipedia data as input
matrix using automatic gradient methods. . . . . . . . . . . . . . . . . . . . . . 39

3.7 Top 10 representative words per dimension of the basis matrix A′, trained on
the wikipedia data as input tensor using automatic gradient methods. . . . . . 41

3.8 Top 10 representative words per dimension of the basis matrix A, trained on the
wikipedia data as input tensor using multiplicative update rules. . . . . . . . . 41

3.9 Top 10 representative words per dimension of the basis matrix A, trained on the
New York Times news article data as input tensor using multiplicative update
rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Comprehensive overview of all allowed relations and their uniqueness. “1:1”:
One entity of type 1 can only be linked to one entity of type 2, “1:n”: One entity
of type 1 can be linked to many entities of type 2. “-”: No relation possible. . . 61

5.2 Description and support of all entity types in the complete dataset, excluding
the none type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

195



List of Tables

5.3 Hyperparameter configurations evaluated by grid search. The best configuration
on the validation set is highlighted in boldface. LM indicates the model using
conditional label masking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Ablation study of our tuned KPI-BERT model, applying different pooling func-
tions and removing filtering heuristics and conditional label masking. F1-scores
are reported on the validation set since the model ablations are part of a broader
grid search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Test set evaluation of the joint named entity and relation classification task,
reporting mean (standard deviation) Precision-, Recall- and F1-scores of 10
identical training runs with varying seeds. Our model, KPI-BERT, outperforms
the competing state-of-the-art architectures in both entity extraction and relation
linking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Several example sentences from the test set with NER and RE results. Green,
blue and red represent “true positive”, “false positive”, and “false negative”
entity and relation classifications, respectively. . . . . . . . . . . . . . . . . . . 67

6.1 Dataset statistics about Key Performance Indicators (KPI) and sentence/table
pairs, highlighting their respective class imbalances of positive (+) and negative
(−) pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Evaluated hyperparameter configurations of KPI-Check’s sub-modules, the fil-
tering component, and the contrastive autoencoder (CAE) classification head.
The best configuration on the validation set is highlighted in boldface. The
classification thresholds α1 and α2 are tuned in the [0, 1] interval based on the
best validation set micro F1-score performance. For details on KPI-BERT, we
refer to the previous Chapter 5. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Test set results of the sentence/table pair filtering sub-task (a) and the final task
of matching semantically KPIs (b). Our full model, KPI-Check, achieves the
highest micro- and macro F1 scores of 73.00% and 70.52%, which significantly
improves upon the variation with no filtering module and outperforms the other
baselines which all employ the filtering module. We also report upper-bound
metrics for our approach, assuming a perfect filtering module with no mistakes. 82

6.4 Impact of sentence/table pair filtering on the KPI pair imbalance. Our actual
filtering model drastically reduces the number of negative KPI pairs while keeping
the majority of positive once to reduce the overall test set imbalance from 395 : 1
to 46 : 1. “−” denotes no filtering (see Table 6.1) and “perfect” assumes a perfect
filtering model that makes no mistakes to establish an upper bound. . . . . . . 83

6.5 Translated test set samples of wrongly annotated but correctly predicted Key
Performance Indicators (KPI) pairs. Examples 1 to 3 indicate rounding and
unit errors in the financial report leading to wrong negative annotations via
automated number matching. Examples 4 and 5 reveal accidentally matched but
actually unrelated KPIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

196



List of Tables

7.1 Properties of our GRI and DNK data sets. We display the number of requirements
and documents, the average number of segments per document, the average
percentage of segments assigned to at least one requirement, and the average
number of matched segments per requirement. . . . . . . . . . . . . . . . . . . 93

7.2 Evaluated hyperparameter configurations of sustain.AI. The best configuration
on the validation set is highlighted in boldface. . . . . . . . . . . . . . . . . . . 94

7.3 Test set results for the recommendation of relevant segments in GRI and DNK
sustainability reports. sustain.AI outperforms all competing baselines in top 3/5
Mean Sensitivity (MS) and Mean Average Precision (MAP). . . . . . . . . . . . 96

8.1 Descriptive statistics of pre-training datasets with document, segment, sample,
and token counts in English and German, including total and average values.
Token and sample statistics are calculated based on the multilingual word-piece
vocabulary, custom-100K (see Table 8.2), created from all pre-training datasets. 104

8.2 Training configurations and validation accuracies for all language model variations
and their pre-training tasks, masked language modeling (MLM), next sentence
prediction (NSP), and segment ordering (SO). The scores represent averaged
batch accuracies across the validation set. . . . . . . . . . . . . . . . . . . . . . 105

8.3 Descriptive statistics of scientific and financial fine-tuning datasets. Sample
statistics are calculated based on the custom-100K vocabulary (see Table 8.2). 107

8.4 Selected hyperparameters per dataset for our PointerBERT models based on the
best validation-set micro F1 and MAP@3 performances. . . . . . . . . . . . . . 108

8.5 Test set results for sequential text classification on scientific abstract and financial
document datasets. PointerBERT outperforms all competing baselines in micro
and macro F1 score as well as top 3/5 Mean Average Precision (MAP). We report
mean (best scores in bold) and standard deviation values from 10 independently
seeded training runs for robust test set evaluation. . . . . . . . . . . . . . . . . 110

9.1 Quantitative comparison of 4 different prompt setups for the text segment to
requirement matching task. Mean Sensitivity and Mean Average Precision (MAP)
are defined in Section 7.4.2. The (bracketed blue) text shows the respective
differences between prompts B and A as well as D and C. . . . . . . . . . . . . 119

9.2 Test set results for the top 5 recommendations of relevant financial report
segments for legal requirements of the IFRS accounting standard. ZeroShotALI
outperforms all competing methods in Mean Sensitivity, Mean Average Precision
(MAP), and F1 score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.3 Class distribution of ground truth values for IFRS and HGB. HGB compliance
data was annotated by auditors at PwC Germany with ‘yes’, ‘no’, ‘unclear’, or
‘not applicable’, while IFRS data was annotated with ‘yes’, ‘no’, and ‘unclear’. 121

9.4 Micro F1-Scores per model and dataset (HGB and IFRS) for the best performing
prompt and the average over all prompts. . . . . . . . . . . . . . . . . . . . . . 124

9.5 Best-performing prompt per model and dataset based on the Micro F1-Score. . 125
9.6 Results for Llama-2-70b in % IFRS Data - Class ‘No’. . . . . . . . . . . . . . . 125

197



List of Tables

10.1 Hyperparameter configurations. Bold values indicate the Baseline setup used for
ablation studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.2 Detailed ablation study to evaluate multiple model configurations. We report
mean and standard deviation values of 5 independent runs (best scores in bold)
for both, answer and context correctness (Scale: 0-5). . . . . . . . . . . . . . . 136

10.3 Results of the best architectural setup for different LLM backbones (Scale: 0-5
and best scores in bold). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.1 Articles: “Soccer”, “Bee”, “Johnny Depp” – For each evaluated matrix factoriza-
tion method we display the top 10 words for each topic and the 5 most similar
words based on cosine similarity for the 2 top words from each topic. . . . . . . 144

A.2 Articles: “Dolphin”, “Shark”, “Whale” – Top half lists the top 10 representative
words per dimension of the basis matrix A, bottom half lists the 5 most similar
words based on cosine similarity for the 2 top words from each topic. . . . . . . 145

A.3 Articles: “Dolphin”, “Shark”, “Whale” – For each evaluated matrix factorization
method we display the top 10 words for each topic and the 5 most similar words
based on cosine similarity for the 2 top words from each topic. . . . . . . . . . 146

A.4 Articles: “Soccer”, “Tennis”, “Rugby” – Top half lists the top 10 representative
words per dimension of the basis matrix A, bottom half lists the 5 most similar
words based on cosine similarity for the 2 top words from each topic. . . . . . . 147

A.5 Articles: “Soccer”, “Tennis”, “Rugby” – For each evaluated matrix factorization
method we display the top 10 words for each topic and the 5 most similar words
based on cosine similarity for the 2 top words from each topic. . . . . . . . . . 148

A.6 For the most significant two words per topic, the four nearest neighbors based
on cosine similarity are listed. Matrix A′, trained on the wikipedia data as input
tensor using automatic gradient methods. . . . . . . . . . . . . . . . . . . . . . 149

A.7 For the most significant two words per topic, the four nearest neighbors based
on cosine similarity are listed. Matrix A, trained on the wikipedia data as input
tensor using multiplicative update rules. . . . . . . . . . . . . . . . . . . . . . . 150

A.8 Each column lists the top 10 representative words per dimension of the basis
matrix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.9 For the most significant two words per topic, the four nearest neighbors based
on cosine similarity are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.10 Each column lists the top 10 representative words per dimension of the basis
matrix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.11 For the most significant two words per topic, the four nearest neighbors based
on cosine similarity are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.12 Each column lists the top 10 representative words per dimension of the basis
matrix A′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.13 For the most significant two words per topic, the four nearest neighbors based
on cosine similarity are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.14 Each column lists the top 10 representative words per dimension of the basis
matrix H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.15 For the most significant two words per topic, the four nearest neighbors based
on cosine similarity are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

198



List of Tables

A.16 Each column lists the top 10 representative words per dimension of the basis
matrix H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.17 For the most significant two words per topic, the four nearest neighbors based
on cosine similarity are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.18 Top 10 representative words per dimension of the basis matrix A, trained on the
Amazon review data as input tensor using multiplicative update rules. . . . . . 157

A.19 For the most significant two words per topic, the four nearest neighbors based
on cosine similarity are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.20 Each column lists the top 10 representative words per dimension of the basis
matrix H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.21 For the most significant two words per topic, the four nearest neighbors based
on cosine similarity are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.22 For the most significant two words per topic, the four nearest neighbors based
on cosine similarity are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.23 Each column lists the top 10 representative words per dimension of the basis
matrix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.24 For the most significant two words per topic, the four nearest neighbors based
on cosine similarity are listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B.1 Micro F1-Scores for all models per dataset and prompt configuration. Note:
Due to the verbose nature of Llama-2 Models and their poor performance in the
German language, Llama-2 was incapable of generating any machine-readable
consistent outputs that are interpretable with a heuristic for some prompt
formats. This leads to some Micro F1-Scores being 0. . . . . . . . . . . . . . . . 164

199


	1 Introduction
	1.1 The Significance of Representation Learning
	1.2 Challenges of Auditing Financial Documents
	1.3 Thesis Outline
	1.4 Publications

	I Foundation of Representation Learning for Document Analysis
	2 Fundamentals of Classification and Embeddings
	2.1 Text Classification
	2.2 Sequential Text Classification
	2.3 Text Matching
	2.4 Topic Modeling
	2.5 Tokenization
	2.6 Evolution of Word Embeddings
	2.6.1 Count Statistics-Based Embeddings
	2.6.2 Semantic Embeddings


	3 DEDICOM for Interpretable Word Embeddings and Topic Modeling
	3.1 Introduction
	3.2 Related Work
	3.3 Constrained DEDICOM Models
	3.3.1 The row-stochastic DEDICOM Model for matrices
	3.3.2 The constrained DEDICOM model for tensors
	3.3.3 On Symmetry
	3.3.4 On Interpretability

	3.4 Experiments and Results
	3.4.1 Data
	3.4.2 Training
	3.4.3 Results

	3.5 Conclusion and Outlook

	4 Language Modeling and Contextual Embeddings
	4.1 Recurrent Neural Networks
	4.2 Transformers
	4.3 Self-Supervised Pre-Training
	4.4 Transfer Learning: Fine-Tuning and Zero-Shot Learning
	4.5 Retrieval-Augmented Generation


	II Named Entity Recognition and Text Matching for Financial Document Consistency
	5 Joint KPI-Extraction and Linking for Financial Reports
	5.1 Introduction
	5.2 Related Work
	5.3 Methodology
	5.3.1 BERT-based Sentence Encoder
	5.3.2 NER Decoder
	5.3.3 RE Decoder
	5.3.4 Training

	5.4 Experiments
	5.4.1 Data
	5.4.2 Baselines
	5.4.3 Training Setup and Hyperparameter Selection
	5.4.4 Ablation Study
	5.4.5 Results

	5.5 Conclusion and Future Work

	6 Contrastive Learning for Numerical Consistency Checks
	6.1 Introduction
	6.2 Related Work
	6.3 Methodology
	6.3.1 Problem Formulation and Modeling Approach
	6.3.2 Entity Extraction and Relation Linking (KPI-BERT)
	6.3.3 Entity Encoding
	6.3.4 Entity Pair Classification
	6.3.5 Training

	6.4 Experiments
	6.4.1 Data
	6.4.2 Automated Annotation Process
	6.4.3 Evaluation Metrics
	6.4.4 Training Setup
	6.4.5 Baseline and Ablations
	6.4.6 Results

	6.5 Conclusion and Future Work


	III Large Language Models for Financial Document Compliance
	7 Semantic Text Classification for Sustainability Reports
	7.1 Introduction
	7.2 Related Work
	7.3 Methodology
	7.3.1 Problem Formulation
	7.3.2 Document Parsing
	7.3.3 Recommender System

	7.4 Experiments
	7.4.1 Data
	7.4.2 Evaluation Metrics
	7.4.3 Training Setup
	7.4.4 Baselines
	7.4.5 Results

	7.5 Conclusion and Future Work

	8 Enhancing Large Language Models with Paragraph-Level Awareness
	8.1 Introduction
	8.2 Related Work
	8.3 Methodology
	8.3.1 Pointer-guided Segment Ordering
	8.3.2 Sample-efficient Fine-Tuning using Dynamic Sampling

	8.4 Experiments
	8.4.1 Pre-Training
	8.4.2 Downstream Fine-Tuning for Sequential Text Classification
	8.4.3 Limitations

	8.5 Conclusion

	9 Large Language Models for Compliance Verification
	9.1 Introduction
	9.2 Related Work
	9.3 Methodology
	9.4 Experiments
	9.4.1 ZeroShotALI
	9.4.2 Compliance Check

	9.5 Conclusion and Future Work

	10 Retrieval-Augmented Generation for Risk and Quality Assurance
	10.1 Introduction
	10.2 Related Work
	10.3 Methodology
	10.3.1 Ingestion Pipeline and Knowledge Base Construction
	10.3.2 Retrieval-Augmented Generation Chatbot
	10.3.3 Automated Evaluation Framework

	10.4 Experiments
	10.4.1 Data
	10.4.2 Model Configurations
	10.4.3 Prompt Design
	10.4.4 Results

	10.5 Conclusion and Future Work

	11 Conclusion
	11.1 Summary
	11.2 Discussion and Outlook

	A DEDICOM for Interpretable Word Embeddings and Topic Modeling
	A.1 Matrix derivatives for Non Negative DEDICOM
	A.2 Additional Results
	A.2.1 Wikipedia – Matrix Input
	A.2.2 Wikipedia – Tensor Input
	A.2.3 Amazon Reviews – Tensor Input
	A.2.4 New York Times News – Tensor Input


	B Large Language Models for Compliance Verification
	B.1 Prompt evaluation
	B.2 Prompt configurations
	B.2.1 IFRS Prompts
	B.2.2 HGB Prompts (German)


	Bibliography
	List of Figures
	List of Tables


