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1 Abstract

Clinical decision-making often relies on quantitative measures derived from statistical time-

to-event models, enabling risk assessment through the quantification of survival probabilities.

A key goal of these modeling approaches in guiding clinical decisions is to provide accurate

risk estimates while using as little patient information as possible. Standard time-to-event

modeling techniques often rely on restrictive assumptions, and their violation bear the risk of

biased estimates. Furthermore, these models may need to be tailored to specific population

groups, such as children or elderly patients.

The aim of this cumulative dissertation was to develop and evaluate new modeling approaches

for clinical time-to-event outcomes, focusing on interpretability and applicability in clinical set-

tings, minimal model assumptions, and the ability to filter out the most relevant patient in-

formation required for accurate risk estimation. To this end, this dissertation presents three

modeling strategies that address the aforementioned goals.

In the first work, a tool for the pre-interventional risk assessment of 30-day mortality in the

population of elderly patients was developed. Translating the underlying semi-parametric Cox

model to a simple scoring system, this tool is user-friendly and only involves three risk factors.

The development process focused on interpretability and applicability in clinical settings, while

relying on a selection of the most relevant patient information within the Cox model framework.

To further reduce assumptions, the second and third works developed modeling approaches

for risk assessment in terms of survival probabilities and the restricted mean survival time.

These methods, which are based on pseudo-value regression and machine learning methods,

demonstrate the reduction of assumptions compared to standard modeling techniques while

being able to automatically select most relevant risk factors and interactions among them.

The presented modeling approaches maintain interpretability and are able to quantify causal

treatment effects, as illustrated in simulation studies and on clinical datasets.

All research articles included in this dissertation have been published in international peer-

reviewed journals.
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2 Introduction and aims with references

2.1 Time-to-event outcomes

In clinical practice, questions like What is my expected survival time? and How likely am I to die within the

next year? are often raised by patients diagnosed with life-threatening diseases. This highlights

the need for accurate risk communication, relying on the quantification of outcome measures

investigated in time-to-event analysis. The aim of time-to-event analysis is the description of

the survival time T and its association to covariates, such as age, sex, or treatment (Klein and

Moeschberger, 2003). The survival time is defined as the duration from a specified starting

point until the occurrence of a target event of interest (Klein and Moeschberger, 2003). In

clinical research, these events include, for example, death, disease progression, or therapy

success, with corresponding survival times measuring time from birth to death, time from study

entry to disease progression, or time from intervention to therapy success. During their longi-

tudinal follow-up, patients may drop-out of the study due to, e.g., relocation or withdrawal of

consent. These drop-outs lead to partly incompletely observed survival times, a phenomenon

known as censoring (Kalbfleisch and Prentice, 2002). Patients are right-censored at the last time

when they were known to be event-free. If patients cannot be included in the study because

their event had occurred before study begin, their survival time is considered left-truncated,

another type of incompletely observed survival times (Kalbfleisch and Prentice, 2002). The

methods discussed and applied in this dissertation account for both right-censoring and left-

truncation.

The survival time can formally be described as a (continuous) random variable T ∈ R+. From

this, several describing functions can be derived, with the most intuitive one being the survival

function S(t). This monotonically decreasing function gives the probability of surviving beyond a

time point t and is defined as S(t) = P(T > t) ∈ [0, 1] for 0 ≤ t < ∞ (Kalbfleisch and Prentice,

2002). With the survival function, quantification of, e.g., the 30-day survival probability is pos-

sible. Moreover, the survival function can be used to derive summary measures of T , such as (re-

stricted) mean and median survival times, which can conveniently be used for risk quantifica-
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tion. The median survival time is defined by tmed = min{t | S(t) ≤ 0.5} and represents the time

at which 50 % of the patients have experienced the event of interest (Klein and Moeschberger,

2003). The quantification of life expectancy is enabled by the mean survival time given as

µ = E(T ) =
∫∞
0

S(t)dt. The restricted mean survival time (RMST) describes the life ex-

pectancy in [0, τ ] with a time-horizon τ > 0 and is given by µ(τ) = E(min(T, τ)) =
∫ τ

0
S(t)dt

(Klein and Moeschberger, 2003). Unlike the survival function, the hazard function h(t) does not

represent a probability but describes the non-negative instantaneous event rate at time t. The

hazard function h(t) = lim
∆→0+

1
∆
P(t ≤ T < t + ∆ | T ≥ t) directly affects the slope of the sur-

vival function: higher event rates result in a strongly decreasing survival function, while lower

event rates correspond to a more gradual decrease. The survival function can be expressed

in terms of the cumulative hazard function H(t) as S(t) = exp(−H(t)), with H(t) =
∫ t

0
h(u)du

representing the accumulated hazard until a time point t (Kalbfleisch and Prentice, 2002).

2.2 Semi- and non-parametric approaches for analyzing time-to-event outcomes

In the following, a time-to-event dataset D = {(T̃i, δi, X
T
i ) | i = 1, . . . , n} containing n indepen-

dent patients is considered. The covariate vector of patient i is denoted by Xi ∈ Rp. The

survival (censoring) time of patient i is denoted by Ti (Ci) and the observed time is given

as T̃i = min(Ti, Ci). Further, δi indicates whether patient i has been censored (δi = 0) or

whether the event of interest has been observed (δi = 1) at T̃i. Common examples to de-

scribe the survival time in a parametric fashion include the Exponential, Weibull, and Lognor-

mal distributions. Those distributions provide closed formulas for the survival and the hazard

functions (Kalbfleisch and Prentice, 2002). However, in some cases, none of the existing

distributions may provide an adequate description of the available data D. The most popular

non-parametric estimator for the survival function is the Kaplan-Meier estimator, assuming inde-

pendent censoring for a consistent estimation of S(t) (Klein and Moeschberger, 2003). Here,

independent censoring refers to the assumption that the additional information on censoring

does not change the instantaneous event rate, i.e., h(t)∆ = P(t ≤ T < t + ∆, T ≤ C |

min(T,C) ≥ t). The Kaplan-Meier estimator is constructed by relating the number of events
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at time t to the number of patients still at risk at t without making any parametric assumptions

on the distribution of T . While this estimator can be applied in different subgroups separately

to investigate group effects, it does not account for other covariates in relation to survival

times. The most popular approach to consider multiple covariates is the semi-parametric

Cox proportional hazards (PH) model (Cox, 1972). Cox assumes the hazard to be given as

h(t | Xi) = h0(t) exp(β
TXi) implying the hazard ratio HR = h(t | Xi)/h(t | Xj) of two patients

i 6= j being time-constant (PH assumption). The vector β ∈ Rp defines covariate effects

which can be estimated consistently by maximizing the partial likelihood function under the

assumption of independent censoring (Cox, 1972). The baseline hazard h0(t) is shared by all

patients and independent of the covariates, so it does not contribute to the partial likelihood

function. Instead of being estimated via the partial likelihood function, the cumulative base-

line hazard function H0(t) =
∫ t

0
h0(u)du can be estimated using the Breslow estimator Ĥ0(t)

(Klein and Moeschberger, 2003). The Cox model is considered semi-parametric because

it assumes a parametric form for the covariates while treating the baseline hazard function

h0(t) as a nuisance parameter. In contrast to the Cox model, accelerated failure time (AFT)

models assume a direct relationship between the covariates and the logarithmic survival time

expressed by ln(Ti) = γTXi. + εi with XT
i. =

(
1, XT

i

)
(Kalbfleisch and Prentice, 2002). Given

this direct relationship, the acceleration factor exp(γTXi.) describes the multiplicative effect

of Xi on Ti. While AFT models do not necessarily assume the HR to be time-constant, an

assumption on the distribution of the error term ε implies a distributional assumption on T .

For example, an extreme-value (normal) distribution for ε results in a Weibull (Lognormal)

distribution for T . Given this assumption, γ can be estimated by maximizing the full likelihood

function (Kalbfleisch and Prentice, 2002).

2.3 Pseudo-value regression for time-to-event outcomes

The modeling approaches described in 2.2 are well-established in time-to-event analysis

but impose restrictive assumptions about the survival process and/or the underlying sur-

vival time distribution. Pseudo-value regression offers a less restrictive alternative for ana-



10

lyzing covariate effects on censored time-to-event outcomes (Andersen and Pohar Perme,

2010). In general, the outcome of interest can be expressed in terms of T as θ = E [f(T )],

f : R+ → A, A ⊂ Rk, k ∈ N+. For example, survival probabilities at t can be written as

S(t) = θ(t) = E [I(T > t)], while the RMST at τ is given by µ(τ) = θ(τ) = E [min(T, τ)].

Without censoring, θ could be easily estimated by 1
n

∑n
i=1 f(Ti), as f(Ti) is observable for all

patients. However, censoring prevents the full observation of f(Ti) and the idea is to impute

f(Ti) with continuous pseudo-values for censored and uncensored patients. Given a consis-

tent estimator θ̂ of θ (e.g., Kaplan-Meier), the pseudo-value for patient i out of D is calculated

as θ̂i = nθ̂ − (n − 1)θ̂−i, where θ̂−i denotes the leave-one-out estimator of θ based on D

but excluding patient i (Andersen et al., 2003). Intuitively, θ̂i can be viewed as the contri-

bution of patient i to θ̂ derived on D. Pseudo-values provide a fully observed, unconditional

imputation of the outcome values of interest and can thus be used as outcome in conven-

tional modeling techniques for continuous data (e.g., linear regression) to assess the direct

relationship between covariates and the outcome of interest. The direct relationship can be

expressed as θ̂i = g−1(γTXi.) + εi with a suitable link function g (e.g., cloglog-link for survival

probabilities or log-link for the RMST) (Andersen and Pohar Perme, 2010). The most common

approach for estimating the covariate effects γ is the generalized estimation equation (GEE)

method (Andersen et al., 2003; Klein and Andersen, 2005; Graw et al., 2009; Andersen and

Pohar Perme, 2010). It can be shown that replacing the outcome values by pseudo-values

enables a consistent estimation of covariate effects under conditional random censoring, i.e.,

assuming that T and C are independent random variables given the covariates (Graw et al.,

2009; Overgaard et al., 2017).

2.4 The role of machine learning in time-to-event analysis

Apart from the modeling approaches presented in 2.2 and 2.3, there are numerous (super-

vised and unsupervised) machine learning approaches for time-to-event data available, such

as random survival forests or support vector machines (van Belle et al., 2007; Ishwaran et

al., 2008). However, pseudo-value regression offers a completely new perspective on ma-
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chine learning in time-to-event modeling, as the pseudo-values can be treated as continuous

outcome values, allowing the application of machine learning approaches designed for con-

tinuous outcomes. One supervised machine learning technique discussed in this dissertation

is component-wise gradient boosting, referred to as gradient boosting in the following (Bühlmann

and Hothorn, 2007; Hofner et al., 2014). The aim of gradient boosting is to obtain an optimal

prediction of the outcome of interest (e.g., pseudo-values) given a set of covariates. This is

achieved by iteratively minimizing a risk function over a prediction function. In the first step

of each iteration, pre-specified regression estimators (base-learners) are related separately

to the negative gradient of the risk function. These base-learners can comprise, e.g., uni-

variable linear regression functions or splines. Secondly, the base-learner with the best fit is

selected and used to update the prediction function. The update is performed by adding the

chosen base-learner, scaled by a shrinkage factor, to the current prediction function. These

steps are repeated until a finite number of iterations is achieved (early stopping). When using

simple univariable linear base-learners, the optimal prediction function is an additive combi-

nation of a selected subset of covariates, automatically implying variable selection. Another

well-established method discussed in this dissertation is model-free recursive partitioning by

regression trees (Breiman et al., 1984; Hothorn et al., 2006). The aim of recursive partitioning

is to derive local estimates of a continuous outcome (e.g., pseudo-values) by an iterative

splitting of the covariate space into mutually exclusive subspaces. At each step, the algorithm

selects the optimal covariate and a corresponding binary split rule fulfilling a split criterion

(Breiman et al., 1984; Hothorn et al., 2006). This iteratively forms a tree structure that sepa-

rates patient groups (nodes) into smaller subgroups (daughter nodes) until a stopping criterion,

like maximum tree depth, is met. The final estimates are obtained by averaging the outcome

values of the patients within each terminal node (Breiman et al., 1984). Regression trees

provide built-in variable selection (by selecting one covariate at each split), are able to model

interactions and non-linear relationships without pre-specification in a model equation, and re-

main interpretable, especially with small tree depths. However, regression trees often suffer

from overfitting if the tree structure becomes too complex and perfectly fits the data including
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possible noise. A common approach to mitigate this issue is to use an ensemble of regression

trees (e.g., 500 or 1,000 trees) grown on different random subsets of the data and to average

their estimates. This technique, termed random forest regression, is a well-established super-

vised machine learning method (Breiman, 2001). While random forest regression constitutes

a model-free algorithm allowing for variable selection and requiring no prior assumptions on

the structure of the covariate effects, it belongs to the group of black-box machine learning

models that are known to be hardly interpretable. In clinical research, model interpretability

and the importance of covariates for the estimated outcome values are crucial for risk com-

munication. Thus, numerous interpretable machine learning (IML) measures, such as feature

importance or Shapley values, have been proposed (Molnar, 2022). These methods aim for

the post-hoc explanation of individual (local) or population-based (global) estimates.

2.5 Datasets

Two large longitudinal clinical studies provided the data basis for this dissertation, serving as

representative examples of observational studies and randomized controlled trials (RCTs).

The first dataset originates from the Peri-Interventional Outcome Study in the Elderly (POSE),

a European multi-center, prospective observational trial (NCT03152734) (POSE study group,

2021). POSE included 9,497 patients aged 80 years or older undergoing any kind of surgical

or non-surgical procedure under anesthesia. The primary outcome of the study was the time

from intervention until death from any cause (overall survival). Patients were censored at the

last date on which they were known to be alive. In total, 388 patients have been reported

dead within 30 days after intervention. Data collected included patient-specific characteristics

(e.g., age, sex, BMI), medical history, frailty, as well as details on the conducted intervention

(surgical or non-surgical, urgency, severity).

The second dataset is drawn from the multi-center randomized phase III SUCCESS-A trial

(NCT02181101) (de Gregorio et al., 2020). SUCCESS-A included 3,754 female patients

with primary invasive breast cancer and a high risk of recurrence. Patients were randomized

equally to one of two treatment arms (control or interventional group). The primary outcome
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of the study was the time from randomization to the earliest disease progression or death from

any cause (disease-free survival) within a 5-year follow-up period. Patients were censored at

the last date on which they were known to be disease-free. SUCCESS-A aimed to compare

the two treatment arms with respect to disease-free survival. In total, 458 patients have ex-

perienced the event of interest. Data collected included patient-specific (e.g., age, BMI) and

tumor-specific covariates (e.g., stage, grade) as well as the treatment group.

2.6 Thesis outline

This dissertation aimed to develop, evaluate, and apply new modeling approaches for clin-

ical time-to-event outcomes, presenting the development of a Cox based scoring system

(Publication 1) and investigating the combination of pseudo-value regression and machine

learning techniques (Publications 2 and 3) regarding performance and applicability. The de-

velopment of new modeling approaches aimed to ensure flexibility in clinical applications

by (i) maintaining interpretability for clinical use, (ii) reducing restrictive assumptions, and

(iii) enabling the automatic selection of relevant patient information, including main covariate

effects, interactions, time-varying effects, and more complex covariate structures.

2.6.1 A semi-parametric scoring system for modeling 30-day mortality

Publication 1 illustrates the development of an easy-to-use scoring system based on a Cox

model to assess 30-day probability of death in elderly patients (≥80 years) derived on the

POSE data (POSE study group, 2021; Schenk et al., 2023). Potential risk factors were ranked

and clustered by their ease of availability before intervention and their simplicity and usabil-

ity in clinical practice. A number of Cox models fitted to different sets of risk factors was

evaluated with respect to their predictive accuracy. The final set of risk factors, selected as

a balance between predictive accuracy, ease of availability and simplicity, included severity

(minor/intermediate, major), urgency (elective, non-elective), and living conditions (indepen-

dent, assisted). A key component of the development process to ensure direct and simple

interpretability and clinical applicability was the conversion of the estimated coefficients from
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the final Cox model into a scoring system (Sullivan et al., 2004). This scoring system, named

Pre-Interventional Risk Assessment in The Elderly (PIRATE), assigns risk points to risk factor

categories and sums them up to a total score ranging from 0 to 5. The corresponding 30-day

probability of death can be extracted from a look-up table. With just three binary risk factors,

PIRATE is a simple, user-friendly tool for identifying high-mortality risk in elderly patients.

2.6.2 A semi-parametric approach for modeling survival probabilities using pseudo-

values

Although PIRATE is easy to use and readily interpretable, its development relied on Cox

model assumptions and manual risk factor selection without considering interactions among

risk factors. In this context, the aim on an alternative modeling approach was to achieve

a higher flexibility in modeling survival probabilities while maintaining interpretability of the

estimates. Flexibility can be increased by reducing model assumptions and by a data-driven

variable selection. To this end, Publication 2 developed pseudo-value regression trees (PRT)

for modeling survival probabilities on a grid of K time points (Schenk et al., 2024). This

semi-parametric extension to the GEE approach is characterized by building a multivariate

regression tree with pseudo-value outcome and by successively fitting regularized additive

models using gradient boosting to the data in each node of the tree. Using PRT, all avail-

able covariates are considered as potential risk factors but only the most informative ones are

selected by the multivariate regression tree and the gradient boosting. Potential time-varying

(treatment) effects can be modeled by including a spline base-learner for the K time points

in the node-wise boosting models. The regression tree and the boosting models are able to

perform variable selection and to capture interactions or more complex covariate structures.

Interpretability of the estimated survival probabilities is maintained by limiting the maximum

depth of the regression tree, resulting in a reasonable number of terminal nodes defining

patient subgroups. Finally, gradient boosting assigns interpretable additive models to each

subgroup. Publication 2 conducted a simulation study on PRT’s properties and performance

and applied it to the SUCCESS-A study data to demonstrate applicability and interpretability.
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2.6.3 A pseudo-value random forest approach for modeling restricted mean survival

times and treatment effects

In clinical research, treatment effects are often quantified using HRs from Cox models. Since

the interpretation of HRs is only valid if the PH assumption holds, treatment effects have been

recommended to be reported using summary measures like RMST differences, which offer

simple interpretations and enable causal estimation (Uno et al., 2014; Stensrud and Hernán,

2020). Standard methods for estimating RMSTs and RMST differences, such as the integra-

tion of estimated survival functions, constitute indirect modeling approaches and often face

limitations. For example, Kaplan-Meier does not account for covariates, while the validity of

the estimated RMST values derived by Cox or AFT models strongly depend on the correct-

ness of the underlying model. This leads to the need of an alternative modeling approach

with the aims to (i) directly model RMST values (and their differences), (ii) have less restric-

tive assumptions, and (iii) enable data-driven selection of main, interaction and time-varying

effects. To address the aims in (i)-(iii), Publication 3 developed a pseudo-value random forest

(PVRF) approach for the estimation of RMSTs (Schenk et al., 2025). Beyond, g-computation

is applied, allowing for the estimation of causal treatment effects, represented by RMST dif-

ferences (keeping measured confounding variables constant) (Snowden et al., 2011). The

PVRF method extends standard GEE modeling by eliminating the need for prior knowledge

to include interactions or complex covariate structures. Interpretability was ensured through

the calculation of permutation feature importance and local Shapley values. Publication 3 con-

ducted comprehensive simulation studies on the performance of PVRF in estimating RMST

values and treatment effects, along with an application to the SUCCESS-A data for illustration.
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Abstract

Risk assessment before interventions in elderly patients becomes more and more vital due

to an increasing number of elderly patients requiring surgery. Existing risk scores are often

not tailored to marginalized groups such as patients aged 80 years or older. We aimed to

develop an easy-to-use and readily applicable risk assessment tool that implements pre-

interventional predictors of 30-day mortality in elderly patients (�80 years) undergoing inter-

ventions under anesthesia. Using Cox regression analysis, we compared different sets of

predictors by taking into account their ease of availability and by evaluating predictive accu-

racy. Coefficient estimates were utilized to set up a scoring system that was internally vali-

dated. Model building and evaluation were based on data from the Peri-Interventional

Outcome Study in the Elderly (POSE), which was conducted as a European multicenter,

observational prospective cohort study. Our risk assessment tool, named PIRATE, contains

three predictors assessable at admission (urgency, severity and living conditions). Discrimi-

natory power, as measured by the concordance index, was 0.75. The estimated prediction

error, as measured by the Brier score, was 0.036 (covariate-free reference model: 0.043).

PIRATE is an easy-to-use risk assessment tool that helps stratifying elderly patients under-

going interventions with anesthesia at increased risk of mortality. PIRATE is readily avail-

able and applies to a wide variety of settings. In particular, it covers patients needing

elective or emergency surgery and undergoing in-hospital or day-case surgery. Also, it

applies to all types of interventions, from minor to major. It may serve as a basis for multidis-

ciplinary and informed shared decision-making.
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Introduction

According to the World Health Organization (WHO) World Report on Aging and Health sig-

nificant impairment in the elderly population is reported. The number of elderly people in

Europe will double by 2050 and thus the number of elderly patients requiring surgery [1]. In

consequence, there is increasing need for pre-interventional risk assessment and outcome pre-

diction focusing on elderly patients.

The key challenge of any pre-interventional risk assessment in the elderly is to identify

and stratify patients at increased risk of mortality and morbidity, accounting for character-

istics that are of particular importance to elderly people, like functional status, level of inde-

pendence and frailty. Pre-interventional risk assessments may thus contribute to informed

decision making, helping both, the patients and possible authorized representatives of the

elderly patients, to better evaluate the trade-off between the medical necessity of a (non-)

surgical intervention and patient specific outcomes [2]. Moreover, they may be employed to

guide clinical planning and decision making, in particular by customising (non-)surgical

interventions. In this respect, the updated Pre-Operative Evaluation of Adults Undergoing
Elective Noncardiac Surgery guideline of the European Society of Anaesthesiology and

Intensive Care recommends in its section on geriatric patients to assess pre-interventional

functional status, level of independence, comorbidities and frailty [3]. Further, the guideline

on Perioperative Care in Adults published by the National Institute for Health and Care

Excellence (NICE) in 2020 recommends to use validated risk stratification tools to supple-

ment clinical assessment when planning surgery [4].

Despite these recommendations, there are thus far no risk assessment tools specifically

developed on elderly patients (�80 years). To the best of our knowledge, no performance

evaluations of existing risk assessment scores in the subgroup of elderly patients exist. Com-

monly used scores such as e.g. the Preoperative Score to Predict Postoperative Mortality
(POSPOM), the Physiological and Operative Severity Score for the Enumeration of Mortality
and Morbidity (POSSUM), the Portsmouth-POSSUM (P-POSSUM), the Surgical Outcome
Risk Tool (SORT), the National Surgical Quality Improvement Program (NSQIP) Universal
Surgical Risk Calculator, the Estimation of Physiologic Ability and Surgical Stress (E-Pass),

and the Surgical Risk Scale (SRS) have all been developed on data referring to a wider age

range and employing a number of risk factors that are, to some extent, not assessable before

intervention [5–13].

Therefore, the aim of this analysis was to develop a pre-interventional risk calculation tool

that is tailored to the assessment of post-interventional mortality in elderly patients (� 80

years). Using prospectively collected data from the Peri-interventional Outcome Study in the

Elderly (POSE), we derived and internally validated a user-friendly scoring system, named

Pre-Interventional Risk Assessment in The Elderly (PIRATE) [14]. As described in detail in

the Results section below, PIRATE resulted from a stepwise predictor selection procedure tak-

ing into account

i. simplicity and usability of the scoring system in daily clinical practice (avoiding complex

and time-consuming calculations),

ii. ease of availability of predictors before intervention (in particular, by using unambiguously

defined risk categories), and

iii. prediction accuracy.

Reporting of the PIRATE tool will be based on the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement [15].
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Methods

Study population

The step-by-step development of our scoring system was based on the POSE database

(exported on 17th of February 2020). POSE was conducted as a European multicenter, observa-

tional prospective cohort study to investigate mortality rates and other outcomes in the elderly

population. Patients were eligible, if aged 80 years or older and undergoing surgical or non-

surgical interventions under anesthesia. The study period lasted from October 2017 to Decem-

ber 2018. Each center recruited patients for 30 consecutive days within the study period. Inter-

ventions were classified as either surgical or non-surgical, elective or non-elective, and

inpatient or outpatient. In total, POSE enrolled 9,862 patients from 177 study centers in 20 dif-

ferent countries, of which 9,497 patients were eligible for analysis. The reasons for exclusion of

365 patients comprised death before intervention (n = 20), intervention postponed/ cancelled

(n = 301), missing patient records (n = 22), and not collected data (n = 22). Of 9,497 patients,

388 experienced the event of interest (i.e., death within 30 days after intervention) and 9,109

did not experience the event of interest (“controls”), resulting in a post-interventional mortal-

ity rate of 4.2% (95% CI 3.8%-4.7%) [14]. POSE was approved by the University Hospital

RWTH Aachen, Germany (EK 162/17). Mandatory research ethics board (REB) approval or a

waiver was granted at each center. Written informed consent was obtained from all subjects

participating in the trial. POSE was registered prior to patient enrollment at clinicaltrials.gov

(NCT03152734, Chief coordinating investigator: Mark Coburn, Date of registration: May 15,

2017). The development of PIRATE was approved by the POSE Steering Committee as a sec-

ondary analysis (https://pose-trial.org/secondary-analyses). A data transfer agreement between

the University Hospital RWTH Aachen and the Department of Medical Biometry, Informatics

and Epidemiology, Faculty of Medicine, University of Bonn was established. AS, MB and MS

had no access to information that could identify individual patients during or after data collec-

tion. It is not precluded that AK, RR and MC could have identified patients from their respec-

tive study site in the course of their work as treating physicians.

Outcome definition

The outcome of interest was the time after intervention until death from any cause. Patients

potentially having an event after 30 days were censored. The survival status of patients dis-

charged before day 30 was enquired using telephone interviews [14].

Definition and choice of predictors

The aim of this secondary analysis was the pre-interventional risk assessment of post-interven-

tional mortality of elderly patients (� 80 years), i.e., the prediction of 30-day mortality after

intervention.

The basis of the stepwise development of the PIRATE tool was the complete POSE cohort

(9,497 patients). We considered 15 potential predictors (seven binary, six categorical and two

continuous predictors). Of these, ten predictors (four binary, four categorical and two contin-

uous predictors) fulfilled the requirement of being assessable before intervention (see the

POSE statistical analysis plan [14] for details on all available predictors and their categories,

see Table 1 for details on included predictors and their categories). These ten predictors,

including age [years], bmi [kg/m2], sex, severity (minor, intermediate, major) and urgency (elec-
tive, urgent, emergent) of intervention, type of intervention, multimorbidity and referring facility
of the patients as well as frailty and a test for patients’ mobility (timed up and go [TUG] test)

were considered in the development process of the scoring system. In POSE, a patient was
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Table 1. Patient characteristics of the POSE [14] cohort used for the development of PIRATE. Values are mean (SD) or number (proportion).

Variable All

n = 9497

n (%)

Cases

n = 388

n (%)

Controls

n = 9109

n (%)

Age [years] (mean, sd) 84.32 (3.8) 85.78 (4.8) 84.26 (3.8)

BMI [kg/m2] (mean, sd) 25.94 (4.33) 25.15 (4.53) 25.98 (4.32)

Missing 148 (1.6%) 11 (2.8%) 137 (1.5%)

Sex

male 4485 (47.2%) 192 (49.5%) 4293 (47.1%)

female 5012 (52.8%) 196 (50.5%) 4816 (52.9%)

Severity

minor 1947 (20.5%) 38 (9.8%) 1909 (21.0%)

intermediate 3612 (38.0%) 107(27.6%) 3505 (38.5%)

major 3938 (41.5%) 243 (62.6%) 3695 (40.6%)

Urgency

elective 7176 (75.6%) 146 (37.6%) 7030 (77.2%)

emergent 479 (5.0%) 87 (22.4%) 392 (4.3%)

urgent 1842 (19.4% 155 (39.9%) 1687 (18.5%)

Frailty

frail 1336 (14.1%) 180 (46.4%) 1156 (12.7%)

not frail 8161 (85.9%) 208 (53.6%) 7953 (87.3%)

Type of intervention

abdominal 1149 (12.1%) 89 (22.9%) 1060 (11.6%)

cardiovascular and thoracic 896 (9.4%) 60 (15.5%) 836 (9.2%)

ENT; ophthalmologic 1594 (16.8%) 8 (2.1%) 1586 (17.4%)

gynaecologic and urologic 1437 (15.1%) 21 (5.4%) 1416 (15.5%)

interventional 1026 (10.8%) 29 (7.5%) 997 (10.9%)

neurosurgery 196 (2.1%) 22 (5.7%) 174 (1.9%)

orthopaedic, trauma and plastic 2860 (30.1%) 142 (36.6%) 2718 (29.8%)

transplant or other surgery 339 (3.6%) 17 (4.4%) 322 (3.5%)

Living conditions (Facility)

Home 8220 (86.6%) 254 (65.5%) 7966 (87.5%)

Other hospital 184 (1.9%) 31 (8.0%) 153 (1.7%)

Rehabilitation 60 (0.6%) 2 (0.5%) 58 (0.6%)

Nursing home 670 (7.1%) 65 (16.8%) 605 (6.6%)

other 360 (3.8%) 36 (9.3%) 324 (3.6%)

missing 3 (0.03%) 0 (0%) 3 (0.03%)

Multimorbidity

yes 7334 (77.2%) 359 (92.5%) 6975 (76.6%)

no 2163 (22.8%) 29 (7.5%) 2134 (23.4%)

Mobility (TUG test)

limited 6461 (68.0%) 316 (81.4%) 6145 (67.5%)

normal 1910 (20.1%) 16 (4.1%) 1894 (20.8%)

missing 1126 (11.9%) 56 (14.4%) 1070 (11.7%)

Abbreviation

BMI = Body Mass Index

ENT = Ear, Nose and Throat

POSE = Peri-Interventional Outcome Study in the Elderly

PIRATE = Pre-Interventional Risk Assessment in The Elderly

SD = Standard deviation

TUG = Timed up and go

https://doi.org/10.1371/journal.pone.0294431.t001
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classified as frail if at least 4 of 6 criteria (mini-cog score of� 3 points, albumin level of� 3.3 g/

d, more than 1 fall in the last 6 months, haematocrit level of< 35%, preoperative functional sta-

tus is partially dependent or totally dependent,�3 comorbidities) were fulfilled [14]. Following

the definition by the WHO, multimorbidity was defined as the presence of at least two chronic

conditions [1, 14]. The TUG test was performed to assess mobility of patients. The patients

were asked to stand up from a chair, to walk three metres, to turn around and to walk back and

sit down again. The test result was evaluated as normal mobility if the patient was able to per-

form the TUG test in 12 seconds or less. If the patient was not able to perform the TUG test or

took more than 12 seconds to perform the test, the test result was evaluated as limited mobility.

Development of the scoring system

Development of the scoring system was based on a stepwise procedure that accounted for the

trade-off between prediction accuracy and simplicity, focussing on the predictors’ ease of avail-

ability in daily clinical routine. In each step of the development process, we fitted a Cox propor-

tional hazards regression model containing different subsets or combinations of the ten initially

available predictors (described above). In order to internally validate the developed scoring sys-

tem at each step, we repeatedly divided the entire study cohort on the center level into a deriva-

tion cohort and a validation cohort (100 replications). Specifically, each derivation cohort

provided a training data set comprising a set of randomly chosen study centers that included

approximately two thirds of the patients in POSE. The patients of the remaining study centers

were allocated to the respective validation cohort providing the test data set. Prediction accuracy

was measured using the concordance index (C-index) averaged across the 100 validation

cohorts [16]. Variable importance was measured by the loss in C-index when permuting the

respective predictor. To assess calibration, we generated calibration plots that compared pre-

dicted 30-day survival probabilities to their respective Kaplan-Meier estimates. Prediction error

of the final model was measured using the Brier score [17]. The various model building steps

will be described in detail in the Results section. After model building, we developed a scoring

system based on the final Cox proportional hazards regression model, assigning risk points to

each category of the included risk factors (predictors) [18]. With this system (entitled Pre-Inter-

ventional Risk Assessment in The Elderly [PIRATE]), users can simply add all risk points and

extract the respective estimated 30-day mortality from a look-up table.

Handling of missing data

Missing data were imputed using multiple imputation (fully conditional specification with all

ten initially available predictors [19, 20]). We generated 12 imputed data sets, following the

POSE trial statistical analysis plan [14].

A sensitivity analysis composed of the application of the development process on each of

the 12 imputed data sets revealed only marginal differences in the results (on the third decimal

place of C-index values) that are less relevant for the final conclusions. Thus, the development

is illustrated for one single imputed data set in the following. The majority of missing values

was present in mobility, which is, as explained in the Results section, not considered in the

final scoring system. Thus, changes across the imputed datasets for mobility were negligible.

All calculations were performed using the R language and environment for statistical com-

puting (version 4.1.0).

Results

Patient characteristics of the 9,497 POSE patients (without imputation of missing values) are

presented in Table 1. In the following, we will give a detailed description of each model
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building step, weighing simplicity, usability, availability of predictors and prediction accuracy.

The C-index value presented in each step represents the mean value averaged across 100

replications.

Step 0: Model with all available predictors

The model including all initially available predictors (age, bmi, sex, facility, type of intervention,

severity, urgency, multimorbidity, timed up go, frailty) reached a mean C-index of 0.818.

Step 1: Grouping of predictors based on availability at the time of

admission

Based on expert discussions with members of the POSE study team, we grouped the predictors

according to the following criteria:

• Very easy to gather: age, sex, facility,

• Easy to gather: bmi, urgency, type of intervention,

• Hard to gather: severity, multimorbidity,

• Very hard to gather: frailty (as assessed in POSE), timed up go.

Based on this grouping, we considered the following set of models:

• Model 0: Null model (without any predictors),

• Model 1: age, sex, facility,

• Model 2: age, sex, facility, bmi, urgency, type of intervention,

• Model 3: age, sex, facility, bmi, urgency, type of intervention, severity, multimorbidity,

• Model 4 (from Step 0): age, sex, facility, bmi, urgency, type of intervention, severity, multimor-
bidity, frailty, timed up go.

Fig 1(A) presents the mean C-index values that were obtained from applying the above

models to the 100 different training data sets. It is seen that there was an upwards trend in pre-

diction accuracy as the number of predictors increased. On the other hand, the differences in

C-index values between models 2, 3 and 4 were considerably smaller than the respective differ-

ence between models 1 and 2. Based on this result and keeping the ease of availability of the

predictors in mind, model 2 (including age, sex, facility, bmi, urgency & type of intervention,

and excluding four predictors from Step 0) seemed to be a reasonable compromise between pre-

diction accuracy and usability. The mean C-index of model 2 was 0.785.

Step 2: Statistical importance of the predictors (permutation importance)

In the next step, we analyzed the individual contributions of the ten predictors to the predic-

tion accuracy of the models. To this purpose, we ranked the predictors according to their (sta-

tistical) permutation importance. This was done by randomly permuting the training data of

the ten available predictors, considering one predictor at a time. Full models with all ten pre-

dictors were then fitted to the training data (one model per permuted predictor, each time

leaving the training data of the other eight predictors unchanged) and the C-indices were cal-

culated on the (non-permuted) test data. For each predictor, we calculated its permutation

importance, which was defined as the difference between the C-index values obtained from

the full model with original data and the model(s) with permuted data. The ranking of the
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importance values of the ten predictors is presented in Fig 1(B). Statistically, the most impor-

tant predictor was urgency followed by frailty, type of intervention and facility. Including these

four predictors in the model, we obtained a mean C-index of 0.807 (on 100 different test data

sets containing one-third of the complete cohort). Urgency as well as type of intervention and

facility matched the set of predictors contained in our favored model in Step 1. Frailty, how-

ever, was not considered for inclusion in this model, as it is rather hard to assess in clinical rou-

tine when using the definition of frailty in POSE (comprising six individual items, see [14]).

Further, the inclusion of age, bmi and sex (and timed up go) did not result in a gain in the

mean C-index compared to the model excluding those predictors. Additionally, the inclusion

of frailty in Step 1 (Model 3 vs. Model 4) did not increase the C-index appreciably (0.797 com-

pared to 0.818). Thus, excluding frailty, age, bmi and sex, we fitted a model solely containing

urgency, type of intervention and facility. This model resulted in a mean C-index of 0.779

Fig 1. Development of PIRATE. (A) Mean C-index values that were obtained from applying the models in Step 1 to the 100 different training data sets. There

was an upwards trend in prediction accuracy as the number of predictors increased in each model. (B) Permutation importance of the ten initially available

predictors in Step 2. Permutation importance was defined as the difference between the C-index values obtained from the full model (from Step 0) with original

data and the model(s) with permuted data. (C) Stepwise evaluation of the mean C-index from Step 0 (full model) to Step 5 (PIRATE).

https://doi.org/10.1371/journal.pone.0294431.g001
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(compared to 0.785 for the model from Step 1 containing age, sex, facility, bmi, urgency and

type of intervention; see Fig 1(C)).

Step 3: Replacement of type of intervention by severity

The model from Step 2 containing urgency, type of intervention and facility consists of three

categorical predictors with, in total, 3 x 8 x 5 = 120 combinations of categories. Regarding the

simplicity and usability of the score in clinical routine, differentiating eight categories for type
of intervention seems impractical given that the score should be calculated as quickly as possi-

ble. On the other hand, the severity of an intervention (coded by three categories) is strongly

associated with the type of intervention: Once the type of the intervention is known, the severity
of an intervention can simply be evaluated (Chi-Squared test, p<10−16). The replacement of

type of intervention by severity in our model lead to a slightly lower mean C-index (0.765 com-

pared to 0.779 from step 2 [including urgency, type of intervention and facility], Fig 1(C)) but

tremendously facilitates the application of the score.

Step 4: Merging categories

The model resulting from Step 3 containing urgency, severity and facility included three cate-

gorical predictors with 3 x 3 x 5 = 45 combinations of categories. In order to further simplify

calculation of the score, we reduced the number of categories of each predictor to two. More

specifically, we collapsed two of the three categories of urgency (elective, urgent and emergency),

obtaining a binary predictor that indicated whether an intervention was planned (elective) or

not. Analogously, rather than distinguishing between minor, intermediate and major severity,

we generated a binary predictor indicating whether the intervention to be performed was

major or not. Referring facility was transformed into the two categories independently living or

(medically) assisted. Here, the categories rehabilitation, other hospital and nursing home were

summarized to (medically) assisted while home was considered as independently living, since

the respective field in the case report form was originally home/independent. Further, regard-

ing the category other in referring facility, free text answers were manually screened and

assigned to one of the two aforementioned categories. More specifically, free text answers

(indicated as other in Table 1) referring to religious community, monastery, hostel and homeless
were allocated to independently living while all other text answers indicated help from a family

member or a trained nurse and were therefore allocated to (medically) assisted. In the remain-

der, we will use the term living conditions consisting of the two aforementioned aggregated cat-

egories instead of facility which refers to the covariate with the initial five categories as in

POSE. The simplified score containing the three binary predictors reached a mean C-index of

0.759 (Fig 1(C)).

Step 5: Transferring the score to a scoring system

To facilitate the application and interpretation of the score in the clinical practice, we trans-

ferred the model derived in Step 4 to a scoring system that is based on the assignment of risk
points. Following the approach described in Sullivan et al. [18], we fitted Cox regression mod-

els to the data of the 100 derivation cohorts, incorporating the three binary predictors derived

in Step 4. Based on the estimated coefficients obtained from the Cox regression models, the

scoring system was set up in each of the derivation cohorts, and the respective estimated

30-day probabilities of death were calculated for the patients in the validation cohorts. Refer-

ence categories for each risk factor were chosen according to the strength of risk association,

assigning zero points to the groups with the lowest risk and higher numbers of points to

groups with higher risk (for details, see [18]). Thus, an increasing score is related to an
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increased estimated 30-day probability of death. We termed the resulting system Pre-Interven-

tional Risk Assessment in The Elderly (PIRATE). Note that the methodology proposed by Sul-

livan et al. involves a constant B reflecting the number of regression units corresponding to

one point [18]. For PIRATE, we set B equal to the regression coefficient of severity, as esti-

mated from the Cox regression model. Thus, the constant reflects the increase in 30-day mor-

tality risk associated with a major intervention [18].

Compared to the Cox regression model in Step 4, the C-index of the scoring system

decreased only slightly (from 0.759 to 0.755, see Fig 1(C) and below).

PIRATE: The final risk assessment tool

The final scoring system (complete cohort with 9,497 observations) is presented in Table 2.

Using the data in Table 2, the individual risk of a patient can be calculated by summing up all

points belonging to the values of the patient’s risk factors. The respective estimated 30-day

probability of death can be extracted from the “look-up” Table 3. Total score values in the full

POSE cohort ranged between 0 and 5 (see S1 Table for example calculations of the risk score).

The scoring system showed good discrimination ability with the mean estimated C-index

across all validation cohorts of 0.755 (min = 0.708, max = 0.797). Prediction error was also

small, with mean estimated Brier score of 0.036 (min = 0.026, max = 0.046) across all valida-

tion cohorts (compared to 0.043 obtained from a reference model not containing any predic-

tor information). Fig 2 shows exemplary calibration plots for six validation cohorts.

Fig 3(A) presents the distribution of the score values in the complete cohort (9,497 observa-

tions). The grey bars represent the relative frequencies of the score values in the full POSE

cohort, the black line represents the respective estimated 30-day probabilities of death, and the

blue line refers to the Kaplan-Meier estimates of 30-day mortality in patients having the

respective score value. As seen from the figure, the scores in the POSE cohort mainly ranged

between 0 and 3, with only few observations having a score higher than 3. Fig 3(A) shows that

PIRATE-based probability estimates (black line) and the Kaplan-Meier estimates of 30-day

mortality (blue line) matched well for almost all score values in the full POSE cohort.

Stratified Kaplan-Meier estimates in subgroups defined by the 25%, 50% and 75% percen-

tiles of the score values are shown in Fig 3(B). Together with Fig 3(A), the non-overlapping

survival curves in Fig 3(B) reflect the score’s ability to discriminate between high-risk and low-

risk patients.

Table 2. PIRATE scoring system, as derived from the coefficient estimates of the Cox regression model in Step 4.

The constant B is given as B = 0.5986 [18].

Risk factor Coefficient estimate Risk points

Severity

minor/intermediate - +0

major 0.5986 +1

Urgency

elective - +0

non-elective 1.3912 +2

Living conditions

independent - +0

(medically) assisted 0.8985 +2

Abbreviation

PIRATE = Pre-Interventional Risk Assessment in The Elderly

https://doi.org/10.1371/journal.pone.0294431.t002
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Discussion

Using the POSE cohort, we were able to derive a new mortality risk assessment tool (PIRATE)

that is based on three fast and simply to gather pre-interventional predictors. Starting with a

multivariable Cox model containing ten predictors, our modeling approach balanced between

Table 3. Look-up table for the predicted 30-day probability of death after intervention.

Total points Estimated probability of death [%] (within 30 days after intervention)

0 1.29%

1 2.33%

2 4.20%

3 7.51%

4 13.24%

5 22.78%

https://doi.org/10.1371/journal.pone.0294431.t003

Fig 2. Calibration plots. Calibration plots for six exemplary validation cohorts. The plots depict the predicted probabilities based on the scoring system versus

the Kaplan-Meier estimates in subgroups.

https://doi.org/10.1371/journal.pone.0294431.g002
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(i) simplicity and usability of the score in clinical routine, (ii) availability of predictors (and the

speed in gathering those) and (iii) prognostic accuracy of the score. The resulting PIRATE sys-

tem demonstrates that an easy-to-use score solely based on readily available pre-interventional

patient characteristics can be a powerful tool in predicting the post-interventional 30-day

probability of death in elderly patients. In our internal validation analysis of the POSE data set,

the three-predictor PIRATE system was able to identify patients with an increased mortality

risk and discriminated well between high- and low-risk patients, thereby offering the possibil-

ity to improve both risk communication (based on easily understandable patient characteris-

tics) and post-interventional treatment optimization. In particular, PIRATE highlights the

markedly different prognoses for urgent (non-elective) and scheduled (elective) interventions.

This is seen, for example, by considering the group of patients living medically assisted and

undergoing a severe intervention (patients 3 and 4 in S1 Table): In this group, the predicted

30-day mortality risk is almost three times higher (22.78%) if the intervention is non-elective

(patient 4) than if the intervention is elective (30-day mortality risk 7.51%, patient 3).

Comparison to existing scores

Previously developed scores (e.g. POSSUM, P-POSSUM, POSPOM) used a logistic regression

model with a binary outcome (dead vs. alive) for score development not accounting for cen-

soring. In contrast to these scores, PIRATE is based on a Cox regression model that accounts

for the characteristics of the survival and censoring processes during the post-interventional

30-day period [5–7]. Further, compared to other scores, we solely included readily available

pre-interventional predictors, focussing on a quick and easy risk assessment before interven-

tion [6, 7]. Similar to POSPOM, we derived a user-friendly scoring system that is applicable in

Fig 3. Evaluation of the PIRATE tool. (A) Distribution of the risk score values. The grey bars represent the relative frequencies of the risk score values in the

full POSE cohort, the black line represents the respective estimated probabilities obtained from PIRATE, and the blue line refers to the death probabilities (one

minus Kaplan-Meier estimates) for patients having the respective score. (B) Stratified Kaplan-Meier estimates in subgroups. Groups were defined by the 25%,

50% and 75% percentiles of the risk score values in POSE. The non-overlapping survival curves reflect the score’s ability to distinguish among high risk and low

risk patients.

https://doi.org/10.1371/journal.pone.0294431.g003
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daily clinical routine [5]. Of note, PIRATE was derived using data exclusively collected in the

elderly target population.

As part of our project, we evaluated the predictive performance of the POSPOM scoring

system in the POSE study cohort, mapping the categories in POSE to the risk factors used in

POSPOM [5]. While POSPOM showed excellent performance and calibration on its original

validation cohort extracted from the French National Hospital Discharge Database (C-index:

0.929), it reached a C-index of 0.76 in our study population containing elderly patients, which

is, in fact, very similar to the C-index obtained from our PIRATE system (C-index: 0.755). In

this respect, it is important to note that POSPOM was not developed exclusively for elderly

patients, using a derivation cohort with mean age 54.6 years (SD = 17.9 years) and a slightly

different outcome definition (all-cause mortality, regardless of whether in-hospital or not) [5].

Thus, our results demonstrate that, by optimising our system on data containing elderly

patients only, and focussing on three simple pre-interventional factors, we were able to obtain

essentially the same discriminatory power as the more complex POSPOM system.

Prognostic predictors not included in PIRATE

The recently published updated guideline from the European Society of Anaesthesiology and

Intensive Care Medicine recommends to assess pre-interventional functional status, level of

independence, comorbidity and frailty in the geriatric patient [3]. The PIRATE easy-to-use

characteristic living conditions is in line with this guideline. While developing PIRATE, we

additionally analyzed several pre-interventional patient specific characteristics recommended

in the guideline such as frailty, and the type of the planned intervention whose inclusion in a

scoring system might lead to an even more accurate prediction of the post-interventional

30-day probability of death in elderly patients. Although increasing the prognostic power,

which is in line with the recommendations of the guideline, those characteristics were not con-

sidered for PIRATE for different reasons as outlined in the Results section (i.e. ease of pre-

interventional availability and the speed in gathering those) but have been described in previ-

ous risk prediction tools [5–13]. Regarding the assessment of frailty, it should be noted that

several novel tools with a high accuracy and feasibility have become available during the past

years [21]. These include, among others, the clinical frailty scale (CFS) [22], which has been

systematically reviewed and recommended for use when predicting mortality and non-home

discharge after surgery [23]. Since the CFS and its properties had not been studied in detail at

the time POSE was planned, and since it was not possible to gather the CFS data retrospec-

tively, we considered the original POSE frailty score for potential inclusion in PIRATE. The

relatively large number of variables needed for the calculation of this score (both clinical and

laboratory, see Methods section) led us to the decision to classify frailty as very hard to gather.
In future studies involving the CFS, frailty will likely be much easier to assess.

Comprehensive geriatric assessment of elderly patients is generally considered to be impor-

tant for the prognosis of post-interventional 30-day mortality. This has been demonstrated, for

instance, by Abete et al. [24], who investigated the impact of surgical scores (e.g., POSSUM),

living conditions, disabilities, cognitive function (evaluated by Mini-Mental State Examina-

tion, MMSE), depressive symptoms and the severity of comorbidities on 30-day mortality. In

line with our results, they demonstrated that POSSUM (developed for patients undergoing

emergency and elective surgical procedures, similar to PIRATE) and living conditions

(included in the final PIRATE tool) were significantly associated with the 30-day mortality in

patients aged 65 years or older [24]. While POSE also collected information on cognitive func-

tion (e.g. via the mini-cog test), we did not include these predictor variables in PIRATE, as we

aimed to consider only those predictors that are readily available in emergency settings (see
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above). In this respect, it should be noted that the study setting considered by Abete et al. dif-

fered from POSE not only by the wider age range but also by the exclusion of patients with

indication for emergency surgery. The evaluation procedures recommended by Abete et al.

could thus be used as a tool to refine PIRATE in non-emergency cases.

Another important risk factor for post-interventional death is sarcopenia [25]. As sarcope-

nia is characterized by age-related loss of muscle mass and strength, it has been suggested to

collect information on falls in elderly study populations and investigate the association

between muscle mass, strength, and the prevalence of falls. In a comprehensive evaluation of

non-institutionalized people, Curcio et al. [25] demonstrated a strong relationship between

the Tinetti Mobility Test (TMT, being an indicator of fall risk) and muscle mass and strength,

concluding that TMT represents a tool to detect sarcopenia in elderly patients [25]. In POSE,

the mobility of elderly patients was evaluated by the history of falls, and also by the TUG test

(both used in the frailty assessment). While we considered frailty in the development process

of PIRATE, we eventually excluded this variable from the set of predictors, as it would be hard

to gather the respective information in non-elective interventional settings (please see Step 2,

and also the above discussion).

Strengths

The development of the PIRATE scoring system is based on POSE, which was a prospective

European multicenter study involving 177 hospitals across 20 countries. As a consequence,

PIRATE refers to a broad study population while, at the same time, benefiting from quality-

controlled data at the individual patient level collected in a highly standardized setting. We

believe that this setting greatly improved estimation and prediction accuracy of the developed

scores, even in view of a relatively moderate sample size (at least compared to often-used elec-

tronic health record databases involving more patients but employing less standardized meth-

ods for data capture).

Generally, the Cox regression model used in the development of PIRATE involves mean-

ingful regression coefficients that have an intuitive interpretation in terms of hazard ratios,

relating estimates to established formulas for the derivation of death probabilities. In particu-

lar, the use of Cox regression enabled us to translate the estimated regression coefficients into

the proposed scoring system [18]. We acknowledge that the prediction accuracy of PIRATE

might be improved further by replacing Cox regression with a machine-learning-(ML)-based

technique. For example, recent work by Kwon et al. [26] and Seki et al. [27] indicated a strong

performance of deep neural networks, random forests, multilayer perceptron and gradient

boosting decision trees when used for the prediction of (in-hospital) mortality. However,

while increasing prediction accuracy, ML-based predictions often rely on a multitude of pre-

dictor variables, which might–or might not–be assessable at the time of surgery. Also, they typ-

ically result in “black-box predictions”, complicating the interpretation of the predictors’

effects and requiring additional electronic support to make predictions on unseen data (e.g.,

through an online calculator). In contrast, PIRATE has the advantage of being readily applica-

ble without having to use supplementary electronic tools.

By construction of the scoring system, PIRATE allows clinicians to assign risk points to the

values of predictors at the individual patient level, including an immediate interpretation of

which predictor indicates a worse outcome (e.g. a non-elective surgery leads to a higher proba-

bility of post-interventional death within 30 days than an elective one). Basing risk assessment

on the scoring system instead of directly computing probabilities of death from the underlying

Cox regression model may thus help to improve clinical utility and to establish the tool in daily

clinical routine.
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Common issues in score development are the transferability to and the external validation

on different cohorts. These issues may become a problem when there are non-overlapping sets

of risk factors in the derivation and validation cohorts, caused e.g. by different definitions or

categorizations of predictors in the respective databases. These problems clearly do not apply

to PIRATE, which guarantees a high degree of transferability due to its small number of unam-

biguously defined and easy-to-determine predictors.

Limitations

Although the PIRATE tool has a number of distinct strengths, there are several limitations to

consider. Compared to the development of POSPOM, for instance, which was based on data

of 2,717,902 patients with 12,786 in hospital deaths (derivation cohort), the sample size and

especially the number of events in the POSE cohort is relatively small [5]. On the other hand,

as mentioned earlier, POSE provides prospectively collected data as part of a multicenter study

ensuring high data quality compared to routinely collected data.

Importantly, we highlight the need for an external validation of the proposed scoring sys-

tem. Although we performed an in-depth internal assessment of discrimination and calibra-

tion by repeatedly dividing the original POSE cohort on center level into a derivation and

validation cohort, we acknowledge that selecting a prediction model based on comparisons of

a performance measure (such as the C-index) is not guaranteed to be entirely free of some

remaining “optimistic bias”. In this respect, external validation studies involving future or

unseen data will provide further important insight in the generalization properties of PIRATE.

We expect the collaborative network established for the POSE study (involving more than 170

study sites all over Europe) to facilitate the planning and conduct of such studies.

Conclusions

In summary, the proposed PIRATE system constitutes a user-friendly tool to identify patients

aged 80 years and older at increased risk of mortality after surgical intervention under anesthe-

sia. PIRATE is readily available and applies to a wide variety of settings. In particular, it covers

patients in need for elective or emergency surgery and undergoing in-hospital or day-case sur-

gery. Also, it applies to all types of interventions, from minor to major. Further, PIRATE is in

line with recent guidelines, which recommend to apply risk stratification tools to guide anes-

thesia care in the elderly patient. The scoring system could be used by physicians to evaluate

patients‘ individual risk in order to adapt and customize treatment strategies and post-inter-

ventional health care. Future research needs to include an external validation of the scoring

system.
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Abstract
This paper presents a semi-parametric modeling technique for estimating the sur-
vival function from a set of right-censored time-to-event data. Our method, named 
pseudo-value regression trees (PRT), is based on the pseudo-value regression frame-
work, modeling individual-specific survival probabilities by computing pseudo-val-
ues and relating them to a set of covariates. The standard approach to pseudo-value 
regression is to fit a main-effects model using generalized estimating equations 
(GEE). PRT extend this approach by building a multivariate regression tree with 
pseudo-value outcome and by successively fitting a set of regularized additive mod-
els to the data in the nodes of the tree. Due to the combination of tree learning and 
additive modeling, PRT are able to perform variable selection and to identify rel-
evant interactions between the covariates, thereby addressing several limitations of 
the standard GEE approach. In addition, PRT include time-dependent effects in the 
node-wise models. Interpretability of the PRT fits is ensured by controlling the tree 
depth. Based on the results of two simulation studies, we investigate the properties 
of the PRT method and compare it to several alternative modeling techniques. Fur-
thermore, we illustrate PRT by analyzing survival in 3,652 patients enrolled for a 
randomized study on primary invasive breast cancer.
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1  Introduction

The estimation of individual-specific survival probabilities is a common task in 
time-to-event analysis. A plethora of methods has been developed to address this 
issue, including, among many other approaches, group-wise Kaplan-Meier estima-
tion, Cox regression (Cox 1972), parametric accelerated failure time models (Kalb-
fleisch and Prentice 2002), and inverse-probability-of-censoring-(IPC)-weighted 
regression models (Molinaro et  al. 2004). Although these approaches are widely 
used in many disciplines, they often rely on restrictive assumptions limiting their 
utility. A notable example is the Cox regression model, which requires careful inter-
pretation when the proportional hazards assumption is violated (e.g. Stensrud and 
Hernán 2020). Similarly, parametric accelerated failure time models may produce 
invalid results when the underlying distributional assumptions are not met, and IPC-
based methods are biased if the working model for the censoring process is mis-
specified (van der Laan and Robins 2003). Invalid findings may also occur when 
the complexity of the data-generating process is not fully captured by the model, 
for instance when relevant covariates are excluded or when interactions between 
covariates remain undetected (e.g. Vatcheva et al. 2015). In some cases, model mis-
specification can be avoided by employing methods from the machine learning field 
(e.g. survival random forests, Ishwaran et  al. 2008, or deep neural networks, Lee 
et al. 2018; Zhao and Feng 2020); however, application of these techniques is often 
infeasible due to small sample sizes or limitations in the interpretability of the esti-
mated predictor-response relationships. For these reasons, it remains a challenging 
task to specify time-to-event models yielding accurate and interpretable estimates of 
individual-specific survival probabilities.

In this paper we propose a novel model building technique named pseudo-value 
regression trees (PRT). Our method is based on pseudo-value regression (Klein and 
Andersen 2005), which provides a direct modeling framework to estimate the sur-
vival function from a set of right-censored time-to-event data. Unlike Cox regres-
sion, pseudo-value regression is not based on a statistical model for the hazard func-
tion (from which the survival function can subsequently be derived by application 
of a suitable transformation); instead, it defines a direct link between the survival 
function and the covariate values on a grid of pre-specified time points t1,… , tK . 
Usually, K is set to a moderate number, e.g. K = 5 or K = 10 (see Andersen and 
Pohar 2010). Given data from a set of n independent individuals with survival 
times Ti ∈ ℝ

+ and time-independent baseline covariates Xi ∈ ℝ
p , i = 1,… , n , 

the key idea of pseudo-value regression is to approximate the survival probabili-
ties S(tk|Xi) = P (Ti > tk|Xi) = E [1{Ti>tk}

|Xi] , k = 1,… ,K , by a set of jackknife 
pseudo-values. The latter are defined as

where ŜKM(tk) and ŜKM(tk)−i denote the Kaplan-Meier estimators based on the com-
plete data and the reduced data (without individual i), respectively. Since it can be 
shown that E [𝜃̂i(tk)|Xi]

P
⟶ E [1{Ti>tk}

|Xi] as n → ∞ (provided that the censoring 
mechanism is independent of the event times and the covariates, Graw et al. 2009; 

(1)𝜃̂i(tk) = n ⋅ ŜKM(tk) − (n − 1) ⋅ ŜKM(tk)
−i , i = 1,… , n ,
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Overgaard et al. 2017), consistent estimates of S(tk|Xi) can be obtained by fitting a 
statistical model that regresses the pseudo-values on the covariates (Andersen and 
Pohar 2010). Unlike IPC-based methods, which often discard the covariate informa-
tion of censored individuals when used in combination with (weighted) regression 
techniques (Molinaro et al. 2004), pseudo-value regression is based on a “pseudo” 
complete data set that includes all available values X1,… ,Xn in the estimation equa-
tion (Andersen and Pohar 2010).

The standard approach to fit a pseudo-value model is to specify a monotonically 
increasing link function g(⋅) and to use 𝜃̂i(tk) as outcome variable in the regression 
model

where (𝛼1,… , 𝛼K , 𝛾
⊤)⊤ ∈ ℝ

K+p is a vector of unknown coefficients. Estimation 
of the coefficients is usually based on generalized estimating equations (GEE, 
Liang and Zeger 1986), setting g(⋅) equal to the complementary log-log link func-
tion (Andersen et  al. 2003; Andersen and Pohar 2010). While the GEE approach 
accounts for possible dependencies between the pseudo-values 𝜃̂i(t1),… , 𝜃̂i(tK) 
obtained from the same individual, it is limited by the restrictive definition of 
the predictor �ik = �k + �TXi . In particular, �ik does not allow for modeling time-
dependent effects (since � is assumed to be constant in time), and it is restricted to 
modeling main covariate effects only. Although more flexible effect terms (repre-
senting e.g. interactions with time or between the covariates) could be included in 
(2), we are not aware of any algorithm to identify these terms in a data-driven way. 
On the other hand, pre-specification of the interaction terms is often infeasible, as it 
would require detailed knowledge on the, usually hidden, interaction structure in the 
data-generating process. Another limitation of the standard regression model in (2) 
is that the intercept terms �1,… , �K (representing the “baseline” risk function) are 
estimated in an unrestricted fashion. As a consequence, the fitted survival probabili-
ties are not guaranteed to decrease with time.

To address these limitations, we extend the standard model in (2) by a semi-para-
metric approach for the estimation of survival probabilities via pseudo-value regres-
sion. Our proposed PRT method is inspired by logistic model trees (LMT, Landwehr 
et al. 2005), which is a popular classification method combining the strengths of tree 
learning and binary regression by fitting a series of regularized logistic models to 
the data in the nodes of a classification tree. In order to adapt LMT to pseudo-value 
regression, we propose to replace the classification tree by a multivariate conditional 
inference tree (Hothorn et al. 2006) and to use a novel GEE-type optimization crite-
rion for modeling the pseudo-values in the nodes. The proposed PRT method does 
not require pre-specification of any main or interaction effects, neither among the 
covariates nor between the covariates and time.

Briefly, the PRT method is characterized by the following steps: First, in order 
to identify the most important interactions between the covariates, we build a mul-
tivariate conditional inference tree (Hothorn et al. 2006) using the pseudo-values as 
K-dimensional continuous response variable. In the second step, we apply a gradient 
boosting algorithm with linear base-learners (Bühlmann and Hothorn 2007; Hofner 

(2)g
(
S(tk|Xi)

)
= g

(
E
[
1{Ti>tk}

|Xi

])
= 𝛼k + 𝛾TXi , k = 1,… ,K ,
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et al. 2014) to the data in each node of the tree. Our node-wise boosting algorithm 
is based on the aforementioned GEE-type optimization criterion, including a pre-
specified link function to ensure that survival probability estimates are bounded 
between 0 and 1. Following the idea of LMT, the fitted values of boosting models 
in higher-level nodes are used as offset values to refine models in lower-level nodes, 
leading to the stabilization of estimates along single paths. In each node, the fitting 
of boosting models is stopped early, enabling the selection of relevant covariates. 
Furthermore, to model interactions between time and the covariates used to build 
the tree, we include a time-dependent monotonic base-learner (Hofner et al. 2011) 
in each node-wise model. This base-learner also ensures that survival probability 
estimates decrease with time.

The result of our model building technique is a set of pseudo-value regression 
models, each corresponding to a single path from the root node to a terminal node 
of the conditional inference tree. Due to the combination of tree learning and model-
based boosting, the node-wise models include a mixture of interaction and time-
dependent effects, all of which are identified in a data-driven way. Furthermore, PRT 
guarantees interpretability of the node-wise boosting fits by additively combining 
linear and monotonic base-learners (Hofner et al. 2014). Estimates of individual sur-
vival probabilities are obtained by dropping the covariate values down the tree and 
by evaluating the pseudo-value regression model in the respective terminal node.

The rest of the paper is organized as follows: In Sect. 2.1, we will start with the 
definition and properties of pseudo-values, including a description of the standard 
GEE approach for pseudo-value regression. Section 2.2 provides a brief introduction 
to logistic model trees (Landwehr et al. 2005). Section 3 contains a detailed descrip-
tion of the PRT method, including definitions of the multivariate recursive partition-
ing and model-based boosting techniques. In Sect. 4 we will present two simulation 
studies investigating the properties of the PRT method. Furthermore, we will present 
a comparison to established methods for survival probability estimation. In Sect. 5, 
we will apply the PRT method to data from the randomized phase III SUCCESS-
A trial (de Gregorio et al. 2020), demonstrating that PRT are able to identify sub-
groups and predictors of disease-free survival in patients with non-metastatic breast 
cancer. The main findings of the paper are summarized and discussed in Sect.  6, 
along with a brief overview and discussion of related approaches. Further results 
and illustrations, as well as details on the implementation of the PRT method, are 
provided in the Supplementary Material.

2 � Prerequisites

2.1 � Pseudo‑values for survival probability estimation

Consider a set of n independent individuals with survival times Ti and covariate 
values Xi = (Xi1,… ,Xip)

⊤ , i = 1,… , n , that are subject to right-censoring. Denote 
the censoring times and the observed survival times by Ci and T̃i = min(Ti,Ci) , 
respectively. The status variable Δi indicates whether the i-th individual is cen-
sored ( Δi = 0 ) or whether the event of interest has been observed ( Δi = 1 ). 
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Following Graw et al. (2009), we assume that the censoring times are independ-
ent of both the covariates and the event times.

The aim of pseudo-value regression is to model the expectation of a func-
tion  �(Ti) conditional on  Xi (Andersen and Pohar 2010). A special case, 
which will be considered in this paper, is the conditional survival probability 
S(tk|Xi) = E [1{Ti>tk}

|Xi] for time points tk , k = 1,… ,K , with 𝜓(Ti) = 1{Ti>tk}
 . In 

order to fit a regression model for E
[
𝜓(Ti)|Xi

]
= E [1{Ti>tk}

|Xi] , knowledge about 
the values 1{Ti>tk}

 is required. In the absence of censoring, 1{Ti>tk}
 is observable for 

all individuals: As Ti = T̃i , it is simply given by 1{T̃i>tk}
 . In this case, the Kaplan-

Meier estimator is precisely one minus the empirical cumulative distribution 
function, implying that the pseudo-value 𝜃̂i(tk) (as defined in (1)) coincides with 
1{T̃i>tk}

 . In the presence of censoring, 1{Ti>tk}
 is not observable for all individuals; 

in this case the idea is to replace 1{Ti>tk}
 by pseudo-values for both, censored and 

uncensored individuals (Andersen and Pohar 2010).
Figure  1 (A) provides an illustration of pseudo-values in a censoring-free 

data set (left panel) and in a set of right-censored data (middle and right pan-
els, adapted from Andersen and Pohar 2010). The figure shows that the values 
𝜃̂i(tk) are not bounded between 0 and 1 in the presence of censoring. In particular, 
when focusing on single time points (Fig. 1 (B)), it appears hard to approximate 
the empirical distribution of pseudo-values by a parametric distribution (as it 
strongly depends on both the time point and the censoring pattern).

As outlined in Sect. 1, the standard approach to pseudo-value regression is to 
use the unconditional values 𝜃̂i(tk) as outcome variable in a GEE model of the 
form (2). Defining the response function by h(⋅) ∶= g−1(⋅) , it is convenient to re-
write Equation (2) as

where the augmented covariate vector Xi,k = (0,… , 0, 1, 0,… , 0,X⊤
i
)⊤ ∈ ℝ

K+p con-
tains an additional set of K binary indicators that are all zero except for the k-th one. 
The coefficient vector 𝛽 = (𝛼1,… , 𝛼K , 𝛾

⊤)⊤ ∈ ℝ
K+p comprises both the baseline 

risk function and the covariate effects. Common choices for the response function 
are h(�TXi,k) = exp(�TXi,k)∕(1 + exp(�TXi,k)) (corresponding to the logit link) and 
h(�TXi,k) = 1 − exp(− exp(−�TXi,k)) (corresponding to the complementary log-log 
link, Klein and Andersen 2005). Both functions ensure that the survival probabili-
ties S(tk|Xi) in (3) are bounded between 0 and 1.

Denoting h(�TXi,.) = (h(�TXi,1),… , h(�TXi,K))
T and 𝜃̂i = (𝜃̂i(t1),… , 𝜃̂i(tK))

⊤ , the 
GEE estimate of � is given by the solution to

where Vi ∈ ℝ
K×K defines a working covariance matrix accounting for possible 

dependencies between pseudo-values obtained from the same individual. In prac-
tice, Vi is often set to a diagonal matrix (corresponding to an independent correla-
tion structure), as Klein and Andersen (2005) found no advantage of using more 

(3)S(tk|Xi) = E
[
1{Ti>tk}

|Xi

]
= g−1(𝛽TXi,k) = h(𝛽TXi,k) ,

(4)
∑

i

{
𝜕

𝜕𝛽
h(𝛽TXi,.)

}T

V−1
i

{
𝜃̂i − h(𝛽TXi,.)

}
= 0 ,
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complex versions. As shown by Graw et al. (2009), solving (4) yields a consistent 
( n → ∞ ) and asymptotically normal estimator for � , provided that the model is 
specified correctly.

2.2 � Logistic model trees (LMT)

To address the issues described in Sect. 1 and to extend Model (2) to more complex 
situations containing interactions and time-dependent effects, we propose to build 
pseudo-value regression models using an adaptation of the LMT method (Landwehr 
et al. 2005). Originally, LMT have been proposed to develop classification models 
with a binary outcome. The method consists of two main steps: First, relevant sub-
groups and interactions are detected by growing a classification tree on the complete 

Fig. 1   A Illustration of pseudo-values obtained from two data sets with n = 1000 individuals each 
( 0 ≤ t

k
≤ 6 , adapted from Andersen and Pohar 2010). Panel (a) refers to an individual with T̃

i
= T

i
= 2 

in a censoring-free data set, whereas the other panels refer to a censored individual with T̃
i
= 2,Δ

i
= 0 

(Panel (b)) and an uncensored individual with T̃
i
= 2,Δ

i
= 1 (Panel (c)) in a data set with 50% right-

censored survival times. In the censoring-free scenario (a), the pseudo-value at time t
k
 is simply a binary 

function indicating whether the individual is still event-free at t
k
 ( ̂𝜃

i
(t
k
) = 1 ) or not ( ̂𝜃

i
(t
k
) = 0 ). In the 

scenario with 50% censoring, the individuals in (b) and (c) have exactly the same pseudo-values up to 
their common observed survival time ( ̃T

i
= 2 ), showing a monotonically increasing pattern. After T̃

i
= 2 , 

the pseudo-values of the two individuals differ: While the censoring of the individual in (b) caused 𝜃̂
i
(t
k
) 

to become monotonically decreasing after T̃
i
= 2 , the observed event in (c) caused 𝜃̂

i
(t
k
) to drop to a neg-

ative value at T̃
i
= 2 and to increase afterwards. B Histograms of pseudo-values at different time points 

in the data set with 50% right-censored survival times from (A). The colors indicate the status of the 
individuals at the respective time points (dead, censored, still at risk). Pseudo-values of individuals that 
were observed to experience the event of interest before t

k
 are negative, whereas pseudo-values are ≥ 1 in 

individuals that are still at risk at t
k
 . Obviously, the distribution of the pseudo-values is strongly depend-

ent on both the censoring pattern and the time point of interest

42



445Pseudo‑value regression trees﻿	

data set (see Sect. 3.1 for details on the tree construction). Second, binary logistic 
regression models are fitted to the data in each node of the tree, resulting in the 
estimation of covariate-dependent (node-wise) class probabilities. Unlike earlier 
approaches to combining tree learning with regression modeling (Quinlan 1992), 
Landwehr et  al. did not fit standard regression models (based on maximum like-
lihood estimation) but used the LogitBoost method with simple regression func-
tions (Friedman et al. 2000) to build regularized main-effects logistic models (see 
Sect. 3.2 for details on boosting). Of note, LogitBoost avoids overfitting the data by 
identifying subsets of the covariates that are most relevant to the node-wise fits. As 
a consequence, the LMT method performs variable selection at two levels: First, the 
classification tree selects the covariates that are most relevant to creating subgroups 
of the data; second, LogitBoost selects the covariates that are most relevant to the 
node-wise models.

An important characteristic of LMT is the successive refinement of the boosting 
fits in each tree level, which is achieved by node-wise updates of the LogitBoost 
coefficients: Starting at the root node of the tree and descending down to the ter-
minal nodes, the LogitBoost coefficients in each daughter node are constructed as 
updated versions of the coefficients in the respective parent node (Landwehr et al. 
2005). Thus, information from higher-level nodes (closer to the root) is incorporated 
in the models at lower levels, leading to a stabilization of the model fits in the termi-
nal nodes. The estimated class probability for an individual is obtained by dropping 
the respective covariate values down to a terminal node and evaluating the logistic 
model associated with that node.

As LMT are a combination of logistic regression and tree learning, they are con-
siderably more flexible than either of the two methods alone, covering both simple 
main-effects logistic models and standard classification trees as special cases. More 
specifically, a classification tree of depth 0 (no splits) with a LogitBoost procedure 
in the root node represents the simple (main-effects-only) logistic model whereas 
a classification tree of any depth > 0 and no covariates selected by LogitBoost is 
equivalent to a standard classification tree (Landwehr et al. 2005).

3 � Pseudo‑value regression trees (PRT)

Given the limitations of the standard GEE approach, and considering the flexibility 
of LMT in dealing with complex interaction structures, we propose to build pseudo-
value regression models by extending the LMT methodology to the estimation of 
survival probabilities. Briefly, the idea of our pseudo-value regression trees (PRT) 
approach is to replace the binary classification tree by a conditional inference tree 
with multivariate pseudo-value outcome (accounting for possible dependencies 
between pseudo-values from the same individual, Sect. 3.1), to replace LogitBoost 
by a component-wise gradient boosting algorithm (including a time-dependent 
monotonic base-learner and a novel GEE-type optimization criterion, Sect. 3.2), and 
to use the successively refined boosting models for the estimation of individual-spe-
cific survival probabilities (Sect. 3.3).
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3.1 � Tree building

The first step of PRT is to grow a regression tree on all available data, replacing the 
binary outcome of LMT by the pseudo-values 𝜃̂i(tk) ∈ ℝ , i = 1,… , n , k = 1,… ,K . 
Generally, the PRT method is not restricted to a specific algorithm for tree building, 
see e.g. Greenwell (2022) for an overview of the many available options. However, one 
needs to account for possible dependencies between the pseudo-values obtained for the 
same individual. To address this issue, we consider the multivariate conditional infer-
ence framework (Hothorn et al. 2006), which allows for building regression trees with a 
K-dimensional outcome.

3.1.1 � Conditional inference trees

The general idea of tree building is to derive local estimates of the outcome variable 
by partitioning the covariate space into a set of mutually exclusive subspaces (Brei-
man et al. 1984; Hothorn et al. 2006; Greenwell 2022). Starting at the root node of the 
tree (comprising all individuals), tree building is done recursively by applying a set of 
decision rules to the available data. Usually, the decision rules are binary, implying that 
each node is followed by two daughter nodes (each containing a subgroup of the indi-
viduals). Tree building is terminated when a pre-defined stopping criterion is reached, 
resulting in a set of terminal nodes from which the local estimates of the outcome are 
derived. In case of PRT, the local estimates are given by the node-wise boosting fits 
(see Sect. 3.3).

During tree building, all decision rules are derived locally from the individuals in 
the respective node. Each rule is characterized by a split variable that is selected in a 
data-driven way from the covariate set. In case of a continuous split variable x∗ , the 
decision rule is defined by x∗ > 𝜉 vs. x∗ ≤ � , where � ∈ ℝ is a threshold estimated 
from the data. In case of a categorical split variable, the decision rule is obtained by 
dividing the set of categories into two mutually exclusive subsets.

Within this framework, the conditional inference approach (Hothorn et al. 2006) is a 
method for tree construction that accounts for the distributional properties of the covar-
iates (thereby avoiding a selection bias towards covariates with many possible splits). 
Decision rules are derived as follows: Given a node with individuals N ⊆ {1,… , n} 
and data L = {(𝜃̂i(t1),… , 𝜃̂i(tK),Xi1,… ,Xip) , i ∈ N} , the first step is to determine the 
covariate showing the strongest association with the outcome variable. In PRT, this is 
done by evaluating the generalized correlation coefficients

where g̃j(⋅) ∈ ℝ
p̃j , j = 1,… , p , is a set of transformation functions depending on the 

measurement scales of the covariates. For the purposes of PRT, we set g̃j(Xij) = Xij 
if the j-th covariate is measured on a continuous scale. For unordered and ordered 
factors, the functions g̃j(Xij) are given by a set of dummy variables or some other 
coding. Next, the elements of  Tj(L) are standardized (assuming conditional 

(5)Tj(L) = vec

(
∑

i∈N

g̃j(Xij) ⋅ (𝜃̂i(t1),… , 𝜃̂i(tK))
⊤

)
∈ ℝ

p̃j×K , j = 1,… , p ,
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independence of the covariates and the outcome, see Hothorn et  al. 2006) and 
transformed using the absolute value function. By this, the standardized and trans-
formed elements of Tj(L) can be interpreted as absolute correlations between the 
j-th covariate and each of the K pseudo-value elements. Specifically, a separate cor-
relation coefficient is computed at each tk , k ∈ {1,… ,K} , so that the dependency 
between the pseudo-values and time (which is possibly non-monotonic, see Fig. 1) 
does not affect these calculations. For each j, the maximum value of the absolute 
correlations is then used to measure the association between the j-th covariate and 
the K-dimensional pseudo-value outcome and to test the null hypothesis of inde-
pendence. Altogether, there are p maximum values, resulting in p hypothesis tests. 
Again, by definition, each of the p maximum values refers to only one time point tk , 
k ∈ {1,… ,K} , so that the tree building step of PRT does not depend on the func-
tional form of the relationship between the pseudo-value outcome and time. Using 
the default specification in the R package partykit, we employ 9,999 permutations 
to determine the conditional distributions of the maximum values under the null. 
Finally, the covariate with minimum p-value in the permutation tests is selected as 
split variable. By definition of this procedure, both the construction of the coeffi-
cients in (5) and the implementation of the subsequent hypothesis tests (permuting 
individuals instead of single pseudo-values) account for the multivariate structure of 
the vectors (𝜃̂i(t1),… , 𝜃̂i(tK)).

The second step is to derive the actual decision rule associated with the selected 
covariate. This is done by determining either a threshold � (if the selected covari-
ate is continuous) or a grouping of the categories (if the selected covariate is a fac-
tor), such that the daughter nodes become maximally dissimilar with respect to the 
outcome variables. Denoting the set of possible decision rules by S , each decision 
rule s ∈ S is characterized by two mutually exclusive sets of individuals  Nleft,s 
and Nright,s , referring to the daughter nodes. In order to determine the optimal deci-
sion rule, the idea is to maximize

over all decision rules s ∈ S , where �k,s and �k,s , denote the conditional means and 
standard deviations, respectively, of 

∑
i∈N 1{i∈Nright,s}

⋅ 𝜃̂i(tk) , k = 1,… ,K (computed 
in the same way as above, cf. Hothorn et al. 2006). By definition, the coefficients in 
(6) measure the association between node membership and the outcome values; 
hence, maximizing (6) ensures that the sets of individuals in the daughter nodes 
become maximally dissimilar with respect to the outcome. Note that each of the 
decision rules s ∈ S depends on the selected covariate; for ease of notation we did 
not indicate this dependency in (6).

3.1.2 � Tuning of the tree

Generally, the partitioning steps described in Sect. 3.1.1 could be applied until each 
terminal node contains exactly one individual. In case of PRT, this situation would 

(6)max
k∈{1,…,K}

������

∑
i∈N 1{i∈Nright,s}

⋅ 𝜃̂i(tk) − 𝜇k,s

𝜎k,s

������
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be clearly undesirable, as a large number of terminal nodes would compromise 
the interpretability of the tree. Furthermore, the tree tends to overfit the data if the 
node sizes are too small, leading to numerical issues with the fitting of the boosting 
models.

To ensure interpretability of the PRT model, we propose to fix the depth D of 
the regression tree at a small number. In our experiments (Sects.  4.1 and 4.2) we 
used D ≤ 5 , noting that D = 5 (referring to five-way interactions) is already a large 
value regarding interpretability. Also note that, in some cases, tree building could be 
terminated before the value D is reached. For instance, the current implementation 
of the conditional inference tree method in the R package partykit stops tree build-
ing if all p-values of the permutation tests are larger than a pre-specified threshold. 
For the purposes of PRT, we set this threshold to 0.05. In addition to restricting the 
depth of the tree, we require a pre-specified minimum number of observations in 
each terminal node. In our experiments we set this number to 5 ⋅ K , i.e. to five times 
the number of time points.

3.2 � Component‑wise gradient boosting

After having grown the regression tree, the next step is to apply a gradient boosting 
procedure to the data in each node. Here we propose to consider component-wise 
gradient boosting, as described in Bühlmann and Hothorn (2007) and Hofner et al. 
(2014).

For gradient boosting it is convenient to organize the data in long format: Since 
the pseudo-values differ between time points, the idea is to create an augmented data 
matrix representing each individual by K rows (one per time point, resulting in an 
overall number of n ⋅ K rows). Furthermore, the augmented data matrix includes an 
additional ID column, as well as a continuous covariate containing the time values 
t1,… , tK . In the following, we will refer to the rows of the augmented data matrix as 

Table 1   Augmented data of two exemplary individuals, assuming three time points t1 = 0.3 , t2 = 1.5 , 
and t3 = 3.8 . Each individual is represented by K = 3 observations (= rows), each referring to one of the 
time points. The ID column is a factor identifying the individuals, and the covariate values (which are 
assumed to be time-independent) are replicated K times each (columns x1,… , xp ). The x0 column refers 
to an intercept term that is needed for technical reasons in the gradient boosting algorithm

ID Time Pseudo-value x0 x1 . x
p

1 0.3 1.003 1 0.46 . − 0.27
1 1.5 0.805 1 0.46 . − 0.27
1 3.8 0.359 1 0.46 . − 0.27
2 0.3 1.003 1 − 0.18 . 0.14
2 1.5 1.141 1 − 0.18 . 0.14
2 3.8 − 0.822 1 − 0.18 . 0.14
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observations (denoted by 𝚤 ∈ {1,… , n ⋅ K} ), in contrast to individuals. Table 1 pre-
sents the augmented data of two exemplary individuals.

3.2.1 � Details on the algorithm

We first describe the procedure that is applied locally to the data in each node. Given 
a node with ñ individuals and ñ ⋅ K observations (denoted by M ⊆ {1,… , n ⋅ K} ), 
the input of the component-wise gradient boosting procedure is an augmented data 
set of the form {(𝜃̂𝚤, t𝚤,X𝚤0,X𝚤1,… ,X𝚤p) , 𝚤 ∈ M} , where 𝜃̂𝚤 and t𝚤 refer to the pseudo-
values and the time points, respectively, of the 𝚤-th observation (Pseudo-value and 
Time columns in Table 1). Correspondingly, the values X𝚤0,X𝚤1,… ,X𝚤p refer to the 
x0, x1,… , xp columns in Table 1.

The aim of gradient boosting is to estimate an “optimal” prediction function 
f ∗ ∈ ℝ by minimizing the empirical risk function R =

∑
𝚤∈M 𝜌(𝜃̂𝚤, f𝚤) over the vector 

f = {f𝚤}𝚤∈M = {f (X𝚤)}𝚤∈M , where X𝚤 is a subset of {t𝚤,X𝚤0,X𝚤1,… ,X𝚤p} and � ∈ ℝ is 
a loss function measuring the “deviation” between the outcome and some prediction 
function f ∈ ℝ . Note that f ∗ is not required to depend on all available covariates; 
instead, the idea is to select the relevant covariates in a data-driven way (hence the 
term “component-wise”, which will be omitted in the following sections for the sake 
of brevity). The loss function will be described in more detail in Sect. 3.2.2.

Estimation of f ∗ is performed in an iterative fashion. Starting with some off-
set values f̂ [0] = {f̂

[0]
𝚤

}𝚤∈M , the idea is to minimize the empirical risk func-
tion by repeating the following steps: (i) Compute the negative gradient vector 
u[m] = −{𝜕𝜌∕𝜕f𝚤 (f̂

[m−1]
𝚤

)}𝚤∈M (with m denoting the iteration number), (ii) relate u[m] 
to the time values and the covariates by a set of univariable regression estimators 
(denoted by bt(t𝚤), b0(X𝚤0), b1(X𝚤1),… , bp(X𝚤p) and fitted separately to the negative 
gradient vector u[m] ), (iii) select the regression estimator with the best fit, and (iv) 
update f̂ [m] = f̂ [m−1] + 𝜈 ⋅ û[m] , where � is a step length factor and û[m] is the vector 
of fitted values obtained from the selected regression estimator. For the purposes 
of PRT, we set � = 0.01 . More details on the algorithm are given in Hofner et al. 
(2014).

Usually, the boosting algorithm is not run until convergence but “stopped early”, 
implying that the stopping iteration (denoted by mstop ) becomes the main tuning 
parameter of the algorithm (see Sect. 3.2.4). By early stopping, the estimate of f ∗ 
is shrunken towards zero, with � serving as a shrinkage factor. Importantly, as each 
of the regression estimators is linked to exactly one of the covariates or time, early 
stopping, together with the selection step in (iii), results in the selection of a subset 
of relevant covariates. Note that a regression estimator is not removed from the set 
of candidate estimators after being selected in step (iii), so that the same regression 
estimator (= covariate) might be selected in multiple iterations.

Generally, the specification of the regression estimators (hereinafter termed 
base-learners) determines the shape of the estimated function f̂ [mstop] . In the litera-
ture, many types of base-learners have been proposed, including smoothing splines 
and trees of various depths (Friedman 2001; Bühlmann and Yu 2003; Hofner et al. 
2014). To increase the interpretability of the PRT model, we propose to specify 
simple linear base-learners for the covariates, implying that the estimators bj(X𝚤j) , 
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j = 1,… , p , refer to a set of simple linear regression models. Following Hofner et al. 
(2014), we propose to exclude the intercept terms from these models and to specify 
a separate simple linear model b0(X𝚤0) for the constant terms X𝚤0 ≡ 1 . Regarding the 
choice of bt(t𝚤) , we propose to use a P-spline estimator that is constrained to increase 
with time, thereby ensuring monotonicity of the baseline risk (see below). For the 
experiments in Sect. 4 we used the default implementation of monotonic P-splines 
in the R package mboost; details are given in Hofner et al. (2011).

With these specifications, and due to the additive updates in step (iv), the boost-
ing fit at iteration mstop can be written as an additive combination of the covariates 
and time. More specifically, the estimated values of f ∗ become equal to

where the intercept �0 and the slope coefficients �j , j = 1,… , p , are defined by � 
times the sum of the coefficient estimates of the simple linear models at the iterations 
at which the respective base-learners bj , j = 0, 1,… , p , were selected. Analogously, 
the function �(⋅) is defined by � times the sum of the monotonic P-spline functions 
at the iterations at which bt was selected. Since bt is monotonically increasing in 
time (and since the same holds for the offset values f̂ [0]

𝚤
 , see below), the baseline risk 

(represented by f̂ [0]
𝚤

+ 𝛾0 + 𝛼(t𝚤) ) is also guaranteed to be monotonically increasing 
in time. This, in turn, leads to a monotonically decreasing survival function for a 
given set of covariate values, see Sect. 3.3.

In the preceding paragraphs we implicitly assumed that all covariates are meas-
ured on a continuous scale. Generally, base-learners for categorical covariates can 
be specified analogously (e.g. by linear models based on dummy variables or some 
other coding). Note, however, that care has to be taken when a categorical covariate 
is binary and when the same covariate has been selected as split variable in some 
higher-level node of the tree. In this case, the covariate will have zero variance, 
implying that the respective base-learner has to be excluded from the boosting algo-
rithm. Similar adaptions have to be made for multi-categorical split variables.

Remark: We emphasize that restricting the base-learners to a set of simple main-
effects models does not preclude the inclusion of interactions in the final PRT 
model. This is because gradient boosting is applied node-wise, introducing interac-
tions between the split variable(s) and the variables selected by the boosting algo-
rithm. In particular, the selection of the time base-learner bt defines a time-depend-
ent effect of the split variable on survival. An illustration of the ability of PRT to 
model time-dependent effects is given in Section S3 in the supplementary material.

Having defined the node-wise boosting procedure, it remains to (i) specify the 
loss function 𝜌(𝜃̂𝚤, f𝚤) , (ii) define the offset values f̂ [0]

𝚤
 in Equation (7), and (iii) con-

ceive a strategy for the optimization of mstop . We will elaborate on these issues in the 
following sections.

(7)f̂
[mstop]

𝚤
= f̂

[0]
𝚤

+

p∑

j=0

𝛾jX𝚤j + 𝛼(t𝚤) , 𝚤 = 1,… , ñ ⋅ K ,

48



451Pseudo‑value regression trees﻿	

3.2.2 � Specification of the loss function

Boosting algorithms with a continuous outcome often employ the squared error loss, 
implicitly assuming normality of 𝜃̂𝚤 (“L2 boosting“, Bühlmann and Yu 2003). In case 
of PRT, this assumption is clearly not appropriate, as the distribution of the pseudo-
values is far from normal (see Fig.  1), and as the predicted survival probabilities 
are constrained to lie in the interval [0, 1]. We therefore propose to use a novel loss 
function defined by

which is inspired by the loss function underlying the GEE approach (assuming a 
complementary log-log link with h(f𝚤) = 1 − exp(− exp(−f𝚤)) , see Sect.  2.1). The 
derivative of this loss function, which is needed to compute the negative gradient 
vector u[m] , is derived as

Under the assumption that Vi = diag(1,… , 1) ∈ ℝ
K×K (corresponding to an inde-

pendent correlation structure), the derivative in (9) is equivalent to the criterion in 
(4).

3.2.3 � Definition of the offset values

Following the original LMT approach by Landwehr et  al. (2005), we propose to 
refine the node-wise boosting models by passing the characteristics of higher-level 
boosting fits down to the models in lower-level nodes. The general idea is to incor-
porate these characteristics in the node-specific offset values f̂ [0] , also accounting for 
the time-dependency of the pseudo-values 𝜃̂𝚤.

More specifically, given a node with ñ individuals, ñ ⋅ K observations (denoted 
by M ⊆ {1,… , n ⋅ K} ), and augmented data {(𝜃̂𝚤, t𝚤,X𝚤0,X𝚤1,… ,X𝚤p) , 𝚤 ∈ M }, we 
define the offset value for some observation 𝚤∗ ∈ M by

where f̂ P
𝚤

 denotes the fitted value of the 𝚤-th observation in the parent node. (Note 
that all observations 𝚤 ∈ M contained in the current node are also part of the obser-
vations in the respective parent node.) Thus, the offset values f̂ [0] ∈ ℝ

ñ⋅K are given 
by the time-dependent average of the fitted values of 𝚤 ∈ M in the respective parent 
node. Regarding the root node (for which no parent node is available), the offset val-
ues f̂ [0] ∈ ℝ

n⋅K are given by the time-dependent average of the pseudo-values in the 
complete data. Conceptually, Equation (10) implies that offset values in lower-level 

(8)𝜌(𝜃̂𝚤, f𝚤) =
(
𝜃̂𝚤 − (1 − exp(− exp(−f𝚤)))

)2

=
(
𝜃̂𝚤 − h(f𝚤)

)2
,

(9)

𝜕𝜌

𝜕f𝚤
= 2 ⋅ exp(− exp(−f𝚤)) ⋅ exp(−f𝚤) ⋅

(
𝜃̂𝚤 − (1 − exp(− exp(−f𝚤)))

)

= −2 ⋅
𝜕h

𝜕f𝚤
⋅

(
𝜃̂𝚤 − h(f𝚤)

)
.

(10)f̂
[0]
𝚤∗

=
1

ñ

∑

𝚤∈M

f̂ P
𝚤
⋅ 1{t𝚤=t𝚤∗ }

,
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nodes depend on the covariates selected by the boosting models in higher-level 
nodes. We will elaborate on this dependency in Sect. 3.3.

Remark: The offset calculation described above implies that, in each node, there is a 
common “average“ time trend from which the node-wise boosting model starts iterat-
ing. Doing this, the re-calculation of the offset in each node corresponds to “shifts” of 
the node-wise time trends, followed by the addition of individual-specific effects (via 
the node-wise boosting models). The rationale of this approach is that the performance 
of boosting algorithms is known to strongly depend on the choice of a suitable offset 
value. Often, a good choice is the average value of the predictor (calculated from the 
data at hand and resulting in a common offset for all individuals, see e.g., Bühlmann 
and Hothorn 2007). The current implementation of PRT follows this idea. Alterna-
tively, node-wise offset values could be calculated using the observation-wise predic-
tions from the respective parent nodes. When developing the PRT method, we found 
that the use of average time-dependent offsets (as described above) resulted in better 
model fits than the “observation-wise” strategy, presumably because taking averages 
stabilized the fits (in the sense that residual variability in the parent models was bet-
ter controlled). This is why we eventually decided to implement the “average” strategy 
in PRT.

3.2.4 � Tuning of the gradient boosting models

For the original LMT method, Landwehr et al. (2005) proposed a heuristic to tune the 
number of LogitBoost iterations in the nodes of the classification tree. Instead of opti-
mizing the iteration number separately in each node (“inner cross-validation”, which 
would have resulted in a high computational effort), the authors determined the opti-
mal value of mstop in the root node (using cross-validation) and applied this value to 
all other (lower-level) boosting models as well. This approach significantly sped up 
the algorithm and worked surprisingly well in approximating the node-wise-optimized 
LMT model. On the other hand, the optimal mstop value determined in the root node is 
likely too large for the boosting models in the terminal nodes, as these models require 
more regularization due to the smaller node sizes. Also, cross-validation tends to show 
a high variability when the node size becomes small. The same is true for a modified 
strategy that would use the same mstop in all boosting models but would optimize this 
value across the whole tree (i.e. by minimizing the cross-validated sum of the loss val-
ues in Equation (8) computed from the predictions in the terminal nodes). Analogous to 
Landwehr et al. (2005), we therefore propose a heuristic that avoids the computational 
burden of optimizing mstop in every node of the tree. The main idea of our strategy is to 
optimize a single tuning parameter for the whole PRT model (in the following denoted 
by mstop(1) ) and to use this parameter for the calculation of the node-wise iteration 
numbers. More specifically, for a given value of mstop(1) , we propose to determine the 
number of boosting iterations in some node N  by

(11)mstop(N) =
ñN

n
⋅ mstop(1) ,
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where ñN  is the number of individuals in N  . By definition, Equation (11) links 
the node-specific iteration numbers to the numbers of individuals contained in the 
respective nodes. It also implies that the tuning parameter mstop(1) becomes equal to 
the number of boosting iterations in the root node (where ñN = n ). Unlike the tuning 
approach of LMT, Eq. (11) does not assign the same iteration number to all nodes; 
instead, the node-specific values mstop(N) are forced to decrease as the tree depth 
increases. By this, our strategy incorporates the well-established result that boost-
ing models applied to smaller data sets (found in lower-level nodes) require more 
regularization (i.e. smaller values of mstop ) than models applied to larger data sets 
(found in higher-level nodes). In line with this result, the largest number of iterations 
is assigned to the root node. In our experiments (Sect. 4) we determined the optimal 
value of mstop by five-fold cross-validation, minimizing the loss function (8) in the 
terminal nodes (averaged across all observations in the test folds).

Remark: In order to avoid overoptimism in the cross-validation procedure, we 
computed separate sets of pseudo-values in each of the training and test folds. For 
the same reason, we grew a new tree on every training fold.

3.3 � Calculation of the estimated survival probabilities

After having determined the optimal value of mstop(1) , the gradient boosting 
models (with iteration numbers mstop(N) ) are successively fitted to the data in 
each node of the conditional inference tree. The last step of PRT is to calculate 
the individual-specific survival probabilities at all time points t1,… , tK . This 
is done as follows: First, each observation 𝚤 ∈ {1,… , n ⋅ K} with covariate val-
ues X𝚤0,X𝚤1,… ,X𝚤p and time point t𝚤 ∈ {t1,… , tK} is dropped down to a terminal 
node. Note that, by construction of the tree in Sect.  3.1, all K observations (= 
time points) referring to one individual are part of the same terminal node. Next, 
the fitted values {f̂ [mstop(N)]

𝚤
}𝚤=1,…,n⋅K are calculated from the boosting models in the 

terminal nodes. Finally, the estimated survival probabilities Ŝ𝚤(t𝚤|X𝚤) are obtained 
by transforming the fitted values using the response function h(⋅) , giving

where NT  indicates the set of terminal nodes. Note that the above procedure also 
applies to any set of new individuals (possibly not contained in the available data), 
see Section S2 in the supplementary material for an illustration.

We emphasize that the node membership (indicated by 1{𝚤∈N} ) is determined 
by a set of binary decision rules depending on at most D split variables. Thus, the 
fitted survival probabilities in (12) contain (at most) D-way interactions between 
the split variables and each of the covariates selected by the boosting algo-
rithm. Moreover, the multiplication of 1{𝚤∈N} with the baseline risk (contained 

(12)

Ŝ𝚤(t𝚤|X𝚤) =
∑

N∈NT

1{𝚤∈N} ⋅ h
(
f̂
[mstop(N)]

𝚤

)

=
∑

N∈NT

1{𝚤∈N} ⋅

(
1 − exp

(
− exp

(
− f̂

[mstop(N)]

𝚤

)))
, 𝚤 = 1,… , n ⋅ K ,
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in f̂ [mstop(N)]

𝚤
 , see Equation (7)), defines a time-dependent effect in each terminal 

node. Of note, this effect does not only depend on the split variables but also on 
the covariates selected by higher-level boosting models (which are incorporated 
in the offset value f̂ [0]

𝚤
).

Figure  2 presents a schematic overview of the PRT method, summarizing 
Sects. 3.1 to 3.3.

4 � Experiments

To investigate the properties of the PRT method, we carried out two simulation 
studies. In the first study (Sect. 4.1), the data-generating process was character-
ized by a tree with lognormal survival models in the terminal nodes (reflecting the 
true structure of a PRT model). The aim of this study was to analyze whether PRT 
was able to identify relevant covariates and subgroups defined by the interaction 
effects. In the second study (Sect. 4.2), the data-generating process was based on 
a lognormal model with an additive mixture of main and interaction effects. Here, 

Fig. 2   Schematic overview of the PRT method
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the aim was to analyze the performance of PRT in the presence of model mis-
specification (since the additive model did not have a tree structure). Both studies 
were based on 100 Monte Carlo replications and K = 5 time points (following the 
suggestions by Andersen and Pohar 2010). In each replication, we generated a 
training data set for model building and a test data set for model evaluation. The 
sample sizes of all data sets were set to n = 1000 . The time points were chosen as 
the mean empirical 10% , 30% , 50% , 70% , and 90% quantiles of T̃i, i = 1,… , 1000 , 
computed from 1000 additional individuals (generated independently using the 
data-generating processes of the simulation studies). Five-fold cross-validation 
on the training data was used to optimize the stopping parameter mstop(1).

Accuracy was measured by applying the fitted models to the test data set. We com-
puted the mean squared error (MSE) defined by

where Ŝ𝚤(t𝚤|X𝚤) and S𝚤(t𝚤|X𝚤) denote the estimated and the true survival probabilities, 
respectively, of observation 𝚤 at time t𝚤 . To evaluate the error on the scale of the 
survival probabilities, we further computed the root mean squared error (RMSE), 
defined as the square root of (13). Additionally, we calculated the bias of the esti-
mated survival probabilities (defined as the average deviation of the estimated sur-
vival probabilities from their respective true survival probabilities) and the Brier 
score (Kvamme and Borgan 2023). Discrimination ability was measured using the 
concordance index (C-index, Gerds et al. 2013). Bias and Brier score values were 
averaged across the five time points. The time horizon for the C-index was set equal 
to the largest time point t5.

4.1 � Simulation study 1

We considered a model with ten covariates x = (x1,… , x10)
T that followed a multi-

variate standard uniform distribution. The correlation matrix of this distribution was 
generated randomly and was the same in each replication (see Section S4 in the sup-
plementary material). We used the method by Demirtas (2004) to sample the covariate 
values, restricting the pairwise Pearson correlations between the covariates to 0.5 in 
absolute value.

Imitating the structure of a tree with D = 2 , we first formed two subgroups of individ-
uals defined by the decision rule x1 ≤ �1 vs. x1 > 𝜉1 with �1 = median(x1) . Afterwards, 
the groups of individuals with x1 ≤ �1 and x1 > 𝜉1 were split according to the deci-
sion rules x2 ≤ �2 vs. x2 > 𝜉2 and x3 ≤ �3 vs. x3 > 𝜉3 , with �2 = median(x2 | x1 ≤ �1) 
and 𝜉3 = median(x3 | x1 > 𝜉1) , respectively (see Fig. 3). This resulted in four terminal 
nodes (indicated by the node numbers m = 3, 4, 6, 7 in Fig. 3). In each of the terminal 
nodes, we generated lognormal survival times using different sets of informative and 
non-informative covariates. Denoting the node-wise linear predictors by

(13)MSE =
1

n ⋅ K

n⋅K∑

𝚤=1

(
Ŝ𝚤(t𝚤|X𝚤) − S𝚤(t𝚤|X𝚤)

)2
,
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the models in the terminal nodes were defined by

with �i ∼ N(0, 1) , i = 1… , n . In each terminal node, we set the coefficients � (m)
j

 of 
five randomly selected covariates to zero. The other coefficients were sampled from 
continuous uniform distributions with supports [−1.25, 1.25] ( m = 3 ), [−1, 1] 

(14)�im =

10∑

j=1

�
(m)

j
Xij , i = 1,… , n, m ∈ {3, 4, 6, 7} ,

(15)

log(Ti) =1{Xi1≤𝜉1}
⋅ 1{Xi2≤𝜉2}

⋅ 𝜂i3 +

1{Xi1≤𝜉1}
⋅ 1{Xi2>𝜉2}

⋅ 𝜂i4 +

1{Xi1>𝜉1}
⋅ 1{Xi3≤𝜉3}

⋅ 𝜂i6 +

1{Xi1>𝜉1}
⋅ 1{Xi3>𝜉3}

⋅ 𝜂i7 + 𝜖i ,

Fig. 3   The plot illustrates the data-generating process of the first simulation study. The boxplots below 
the terminal nodes were generated from a random sample of size n = 1000 . They present the distribu-
tions of the survival times on the log scale
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( m = 4 ), [−1, 1] ( m = 6 ), and [0, 1] ( m = 7 ), see Table 2. Note that the values of the 
coefficients were the same in each replication. The censoring times Ci were gener-
ated independently by the same process, resulting in a censoring rate of 50%.

We first investigated the effect of the tree depth on the performance of PRT. To 
this purpose, we evaluated the RMSE, the bias, the Brier score and the C-index on 
a grid of tree depths D ∈ {0, 1, 2, 3, 4, 5} . As expected, the absolute bias of PRT 
decreased with increasing D and remained nearly constant for D > 2 (see Fig. 4). 
The smallest RMSE, the smallest Brier score and the highest C-index values were 

Table 2   Covariate effects � (m)
j

 , j = 1,… , 10 , in the first simulation study. The numbers m ∈ {3, 4, 6, 7} 
indicate the terminal nodes of the tree in Fig. 3

m �
(m)

1
�
(m)

2
�
(m)

3
�
(m)

4
�
(m)

5
�
(m)

6
�
(m)

7
�
(m)

8
�
(m)

9
�
(m)

10

3 0 − 1.19 − 0.94 − 0.82 − 0.94 0 − 0.95 0 0 0
4 − 0.63 − 0.47 − 0.43 0.67 0 − 0.54 0 0 0 0
6 0 − 0.47 − 0.39 0 − 0.64 0 0 − 0.09 0 0.01
7 0.50 0.48 0 0.24 0 0 0.68 0.77 0 0

Fig. 4   Results of the first simulation study. The boxplots present the RMSE, bias, Brier score, 
and C-index values that were obtained by applying the PRT method with varying tree depths 
( D ∈ {0, 1, 2, 3, 4, 5} ) to the training data and by evaluating the resulting model fits on the test data. Note 
that D = 2 corresponds to the true tree depth, as defined by the data-generating process

55



458	 A. Schenk et al.

obtained from the PRT model with D = 2 , matching the true depth defined by the 
data-generating process. Figure 4 also shows that the RMSE and Brier score val-
ues strongly increased and the C-index values strongly decreased when the tree 
depth was chosen too low. Specifically, the highest RMSE, the highest Brier score 
and the lowest C-index values were obtained from the PRT model with D = 0 , 
which corresponds to a component-wise gradient boosting algorithm in the root 
node. These results demonstrate the negative effects obtained by ignoring relevant 
interactions between the covariates. By contrast, increasing D beyond the true 
depth D > 2 did not prove to be particularly harmful with regard to the RMSE, 
the Brier score and the C-index. Note, however, that large values of D tend to 
have a negative effect on the interpretability of PRT, increasing both the interac-
tion depth and the number of terminal nodes (see Sect. 3.1.2).

Second, we investigated the ability of PRT to identify the split variables and 
the informative covariates in the node-wise boosting models. To this purpose, we 
summarized the selection rates and the coefficient estimates of the PRT fits, setting 
D = 2 . As seen from the node labels in Fig. 5, the PRT fits identified the true under-
lying tree (first split at x1 in the root node, second splits at x2 and x3 in Nodes 2 and 
5, respectively) in 80% of the Monte Carlo replications. By contrast, 2% of the fits 
did only use two of the covariates x1, x2, x3 for splitting; 18% of the fits used the split 
variables x1, x2, x3 but did not identify the correct order.

Regarding the coefficient estimates of the node-wise boosting models, we observed 
that informative covariates (defined by � (m)

j
≠ 0 in the present or in any of the lower-

Fig. 5   Results of the first simulation study ( D = 2 , 100 Monte Carlo replications). The plot presents the 
percentages of correctly identified split variables as well as boxplots of the coefficient estimates obtained 
from the node-wise boosting fits. In Nodes 2–7, the percentages and coefficient estimates are conditional 
on having identified the split variable in the parent node. Blue and gray boxplots refer to informative 
covariates (defined by a non-zero effect in the present or in any of the lower-level nodes) and non-inform-
ative covariates, respectively. Coefficient estimates are zero if the respective base-learners were not 
selected by the gradient boosting algorithm
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level nodes) were preferably selected and had higher coefficient estimates in absolute 
value than non-informative covariates. For example, x9 (which did not have an effect on 
survival in any of the terminal nodes, Table 2) had a mean coefficient estimate of only 
0.05 (upper right gray boxplot in Fig. 5). An important characteristic of PRT can be 
observed when comparing the estimated coefficients at various levels of the tree: Obvi-
ously, as the tree depth increased, the coefficient estimates of informative covariates 
became smaller in absolute value. This result is due to the time-dependent offset values 
in the boosting fits, which, by construction of the PRT method, capture the information 
of the model fits in higher-level nodes. Consider, for instance, the boosting fits in termi-
nal Node 3 (lower left panel in Fig. 5): Although the coefficient estimates of the inform-
ative covariate x2 appear to be small in this node, the strong negative effect of x2 is 
clearly captured by the boosting fits in the parent node (see the blue boxplot to the left 
of Node 2). The respective coefficient estimates are passed to the daughter nodes via 
the time-dependent offset values, implying that they are also included in the boosting 
fits in terminal Node 3. This example demonstrates how the PRT method successively 
refines the coefficient estimates, passing relevant information from higher levels to the 
baseline risk in lower-level nodes.

4.2 � Simulation study 2

In the second simulation study, we considered a model with an interaction structure 
that did not match the tree structure of the PRT model. The aim of this study was to 
evaluate the accuracy of the survival probability estimates in the presence of model 
misspecification. Furthermore, we compared the PRT method to several alternative 
modeling techniques.

We considered a model with 30 covariates x = (x1,… , x30)
⊤ that followed a mul-

tivariate normal distribution with mean zero and a randomly generated covariance 
matrix (see Section S4 in the supplementary material). All covariates had unit variance. 
For the main covariate effects we defined the linear predictor

Five out of the 30 covariates were informative, having non-zero coefficients �j . Fur-
thermore, we considered all two-way interactions xj ⋅ xl , j ≠ l , 1 ≤ j < l ≤ 30 , and 
defined an interaction-only predictor by

The coefficients �jl were set to zero if at least one of the covariates xj or xl was non-
informative. All non-zero coefficients �j , �jl were sampled from a continuous uni-
form distribution with support [−1, 1] . They remained the same in each Monte Carlo 
replication. The combined predictor (including both the main effects and the interac-
tion effects) was defined by

(16)�i,1 =

30∑

j=1

�jXij , i = 1,… , n.

(17)𝜂i,2 =
∑

1≤j<l≤30

𝛾jlXijXil , i = 1,… , n.
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where mean(⋅) and sd(⋅) denote the empirical mean and standard deviation, respec-
tively, and � ∈ [0, 1] is a weighting factor that was included in (18) to analyze the 
impact of different weightings of the main and interaction effects on the perfor-
mance of the PRT method. By definition, the predictor in (18) contained only main 
effects if � = 1 . Decreasing the value of � put more weight on the interaction terms, 
resulting in an interaction-only model if � = 0 . In our simulation study, we consid-
ered � ∈ {0, 0.25, 0.5, 0.75, 1} . Finally, we generated the survival times from a log-
normal model defined by

The censoring times were generated in the same way as in the first simulation study, 
resulting in a censoring rate of 50%.

In addition to analyzing the performance of PRT, we compared our method to 
the following alternative approaches: (i) a regression tree built using model-based 
recursive partitioning (MOB, Zeileis et  al. 2008, MOB), (ii) L2 boosting with a 
pseudo-value outcome and tree base-learners of depth two (Friedman 2001, 
BoostedTree), (iii) a survival random forest (not relying on pseudo-values but on 
the untransformed data (T̃i,Δi,X

⊤
i
) , Ishwaran et al. 2008, SRF), (iv) a multivariate 

conditional inference tree without node-wise gradient boosting (built in the same 
way as in Sect. 3.1 using the multivariate pseudo-value outcome, TreeOnly), (v) 
component-wise gradient boosting with pseudo-value outcome (fitted to the data 
in the root node only, in the same way as in Sect. 3.2.1, BoostingOnly), (vi) the 
standard GEE approach with complementary log-log link and main effects only 
(cf.  Sect.  2.1, GEE), (vii) an inverse-probability-of-censoring-(IPC)-weighted 
least squares model using log-transformed event times (with main effects only, 
Molinaro et  al. 2004, IPCW-LS), (viii) a Cox proportional hazards model with 
main effects only (Cox), (ix) a parametric accelerated failure time model (based 
on log-transformed survival times and assuming normally distributed errors, 
Lognormal) and (x) the Kaplan-Meier estimator (KaplanMeier). For MOB and 
TreeOnly we used the same tree depths and minimum numbers of observations 
in the terminal nodes as for PRT. Along the same lines, we fitted main-effects 
Weibull models (not using pseudo-values but the untransformed data (T̃i,Δi,X

⊤
i
) ) 

in the terminal nodes of the MOB tree. These models were based on the pro-
portional hazards assumption, analogous to the complementary log-log link used 
in PRT. Note that the BoostedTree method did not include a time base-learner, 
effectively ignoring the dependency between pseudo-values of the same individ-
ual. Further note that the lognormal model (Lognormal) did not include any main 
and/or interaction terms with zero coefficients. Consequently, the structure of the 
lognormal model matched the definition of the data-generating process, and we 
expected this model to be superior to all other methods, providing lower refer-
ence values for the RMSE and the Brier score and an upper reference value for 

(18)�i = � ⋅

�i,1 −mean(�i,1)

sd(�i,1)
+ (1 − �) ⋅

�i,2 −mean(�i,2)

sd(�i,2)
, i = 1,… , n ,

(19)log(Ti) =
�i −mean(�i)

sd(�i)
+ �i , �i ∼ N(0, 1) , i = 1,… , n.
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the C-index. In contrast, the KM method served as a covariate-free “null” model 
providing upper reference values for the RMSE and the Brier score and a lower 
reference value for the C-index. Further details on the specification and tuning of 
the methods are given in Section S4 in the supplementary material.

The RMSE, Brier score and C-index values obtained from the second simula-
tion study are presented in Fig. 6. Note that Fig. 6 includes the results for D = 2 
only, as this tree depth reflects the two-way interaction effects in (17). The results 
for D > 2 were very similar (see Section S5 in the supplementary material). Esti-
mates of the bias of PRT (mostly ranging between −0.05 and 0.05 for all tree 
depths) are presented in Section S6 in the supplementary material.

Fig. 6   Results of the second simulation study ( D = 2 , 100 Monte Carlo replications). A Boxplots of the 
RMSE, Brier score and C-index values, as obtained by evaluating the model fits on the 100 test data sets. 
B Mean RMSE values (across the replications). Note that MOB did not converge in some of the replica-
tions (failure rates = 2%, 1%, 2%, 0% , and 1% for � = 0, 0.25, 0.5, 0.75 , and 1 , respectively). The results of 
these models were excluded from the plots
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As expected, the Lognormal method outperformed the other methods in all set-
tings, resulting in the smallest RMSE values, lowest Brier score values, and high-
est C-index values by far. As described above, this was because the Lognormal 
model matched the structure of the true data-generating process. For � = 0 (no main 
effects, two-way interactions only), PRT outperformed all other methods except 
SRF, BoostedTree and Lognormal. Again, this is a plausible result, as the Boost-
edTree algorithm was defined by tree base-learners of depth two, resulting in an 
additive combination of two-way interactions (thereby matching the true structure 
of the predictor in case � = 0 ). Similarly, SRF is a tree ensemble that is expected 
to outperform single-tree methods like PRT in terms of prediction accuracy. The 
MOB approach resulted in rather high RMSE values, high Brier score values and 
low C-index values, which was likely due to the high variability of the Weibull fits 
in the terminal nodes. Note that, unlike PRT, MOB does not perform variable selec-
tion in the terminal nodes and is not stabilized by offset values containing informa-
tion from higher-level nodes. This increases the variability of coefficient estimates 
when the number of covariates is large relative to the node size. For the same rea-
son, MOB could not even be fitted in some of the Monte Carlo replications, see the 
caption of Fig. 6. We also observed that the simple Kaplan-Meier estimator (serving 
as a covariate-free null model) performed quite well for � = 0 . This result might be 
explained by the large numbers of zero main effects (30 out of 30 when � = 0 ) and 
zero interaction terms (425 out of 435), making it hard for any modeling technique 
to approximate the true model structure.

When increasing the value of � to 0.25 (corresponding to models with non-zero 
main effects but 25% weight on the interaction terms), the PRT method performed 
better in terms of RMSE, Brier score and C-index than all other methods (except 
SRF and Lognormal, see above). When main effects and interactions were weighted 
equally ( � = 0.5 ), the PRT method performed best with respect to both RMSE 
and Brier score (except Lognormal, as expected). C-index values were highest for 
Lognormal (as expected), followed by SRF and PRT with only minor differences 
between the latter two. Note, in particular, that PRT performed better than TreeOnly 
and BoostingOnly in the scenarios with � ≤ 0.5 . This result clearly demonstrates the 
benefit of combining the two methods if both main and (relevant) interaction effects 
are present.

In the scenarios with � ∈ {0.75, 1} , all tree-based approaches (PRT, MOB, Boost-
edTree, SRF, TreeOnly) were outperformed by the main-effects models Boostin-
gOnly, GEE, IPCW-LS, Cox and Lognormal. This is another plausible result, as the 
data-generating process either put a small weight on the interaction terms ( � = 0.75 ) 
or completely excluded the interaction terms ( � = 1 ) in these scenarios. Among the 
main-effects models, BoostingOnly performed best (except Lognormal, see above), 
demonstrating the benefit of variable selection and shrinkage in scenarios with a 
larger number of non-informative covariates. The standard approaches (GEE, Cox) 
also resulted in RMSE values that were substantially smaller than those of the tree-
based methods. On the other hand, we note that PRT performed best among the tree-
based methods, coming closest to the RMSE values of the main-effects models when 
� ∈ {0.75, 1} . Of note, among the single-tree methods (PRT, MOB and TreeOnly), 

60



463Pseudo‑value regression trees﻿	

PRT was the only method that was able to outperform the ensemble method SRF in 
these settings (with respect to all considered performance measures).

5 � Application

To illustrate the PRT method, we analyzed data from the SUCCESS-A trial 
(NCT02181101), which was a multicenter randomized phase III study that enrolled 
3,754 patients with a primary invasive breast cancer between September 2005 and 
March 2007. All patients had a high recurrence risk, meaning that the SUCCESS-A 
study population did not constitute a random sample from the general population; 
for details on the inclusion/exclusion criteria and the design of the study see de Gre-
gorio et al. (2020). The study had two treatment arms, with patients either receiving 
one of the standard chemotherapy regimens (control group) or standard chemother-
apy with the addition of gemcitabine (experimental group). The randomization ratio 
was 1:1. The aims of SUCCESS-A were to compare the two groups with respect to 
disease-free survival (DFS) and overall survival (OS) within a five-year follow-up 
period. Here we focus on DFS, which, according to the STEEP system, was defined 
as the period from the date of randomization to the earliest date of disease progres-
sion (distant metastases, local and contralocal recurrence, and secondary primary 
tumors or death from any cause, de Gregorio et  al. 2020). Since the definition of 
DFS included death from any cause, we did not consider death as a competing event.

Patients were censored at the last date on which they were known to be disease-
free, resulting in an event rate of 12.2% (458 events in 3,754 patients). The maximum 
observation time was 5.5 years (6 months of chemotherapy followed by 5 years of 
follow-up; median 5.2 years, first quartile 3.7 years, third quartile 5.5 years). In addi-
tion to the survival times, the study collected data on several established prognostic 
factors, including age at randomization (age, measured in years), body mass index 
(BMI, measured in kg∕m2 ), tumor stage (stage, four categories, pT1/pT2/pT3/pT4), 
tumor grade (grade, three categories, G1/G2/G3), lymph node status (nodal status, 
two categories, pN0/pN+), tumor type (type, three categories, ductal/lobular/other), 
menopausal status (meno, two categories, pre-/post-menopausal), and receptor sta-
tus for estrogen (ER), progesterone (PR), and HER2 (two categories each, negative/
positive), see de Gregorio et  al. (2020). A descriptive summary of the prognostic 
variables is given in Table S3 in Section S7 in the supplementary material.

A key issue in the development of treatment guidelines for breast cancer is the 
identification of patient subgroups with possibly different risks of disease pro-
gression (Coates et  al. 2015; Senkus et  al. 2015). To illustrate the PRT method, 
we investigated the existence of such subgroups in the SUCCESS-A data, noting 
that tree-based methods have a long tradition in medical risk assessment (includ-
ing, among other techniques, univariate survival trees, LeBlanc and Crowley 1992; 
Bacchetti and Segal 1995, tree-structured classification and regression, Ciampi et al. 
1995; Puth et al. 2020, and mixtures of survival trees, Jia et al. 2022). In addition 
to using the aforementioned prognostic factors as covariates, we included the group 
status (group, two categories, control/experimental) and time (monotonic P-spline 
base-learner) in our model. Pseudo-values for DFS were computed at 1, 2, 3, 4, and 
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5 years ( K = 5 ). The depth of the regression tree was fixed at D = 3 . Our rationale 
for choosing this number was that it allowed for capturing interaction effects while, 
at the same time, resulting in a tree with a reasonably simple interpretation (analo-
gous to the specification of the interaction order in linear regression). Patients with 
missing values in any of the variables (102 patients, 2.7% ) were excluded from anal-
ysis, resulting in an analysis data set with n = 3,652 patients. The accuracy of the 
PRT model was evaluated by computing five-fold cross-validated values of the con-
cordance index (C-index, Uno et al. 2011, with five-year time horizon) and the Brier 
score (Kvamme and Borgan 2023, averaged across the five time points).

As mentioned above, the aim of applying PRT to the SUCCESS-A data was 
to illustrate our method but not to optimize it with respect to prediction accuracy. 
For sensitivity analysis, we additionally present the Brier score and C-index values 
obtained from PRT with tree depths fixed at D ∈ {2, 4, 5} , corresponding to maxi-
mum numbers of 4, 16 and 32 terminal nodes, respectively. We also compared PRT 

Fig. 7   Analysis of disease-free survival in the SUCCESS-A study data. The figure presents the results 
obtained from fitting a PRT model with D = 3 , showing the selected split variables and the sizes of the 
patient subgroups in the nodes. The blue bars refer to the base-learners selected in the node-wise boost-
ing models. The blue dots and the black lines refer to the fitted values and their averages in the termi-
nal nodes. In Node 4, the mean estimated DFS function of the group of “triple negative” patients (i.e. 
negative ER, PR and HER2, von Minckwitz et  al. 2012) is marked red. The green line refers to mean 
estimated DFS in the group of HER2 receptor-positive patients. The colored lines in Node 9 refer to the 
mean estimated DFS functions stratified by tumor stage (light red = pT1, dark red = pT4)
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to the methods described in Sect. 4.2. Note that we had to fix the tree depth of the 
MOB method at D = 1 , as larger values resulted in convergence issues.

The regression tree obtained from the PRT fit is shown in Fig.  7. Overall, the 
tree structure reflected several established prognostic factors and subgroups, which 
have been frequently reported in the literature and have also been included in treat-
ment guidelines for breast cancer (Coates et  al. 2015; Senkus et  al. 2015). Spe-
cifically, the first split variable (selected in the root node) was ER, indicating the 
importance of this variable in adjuvant hormonal and chemotherapeutic treatment 
regimens. The survival advantage of estrogen receptor-positive patients (Goldhirsch 
et  al. 2003) is reflected by the estimated five-year DFS probabilities, which were 
80.87% on average in Nodes  4, 5, and  6 and 89.89% on average in Nodes 9, 10, 
and 11 (corresponding to estrogen receptor-negative patients and estrogen receptor-
positive patients, respectively). The split variables in the second level of the tree 
were nodal status and age (threshold = 67 years), reflecting the higher risk of lymph 
node-positive patients (Senkus et al. 2015) and the increased risk of patients aged 
67 or older, respectively (Chen et al. 2016). This result is confirmed by the average 
estimated five-year DFS probabilities, which were smaller in lymph node-positive 
patients than in lymph node-negative patients ( 72.46% , Nodes 4 and 5, vs. 88.04% , 
Node 6), and were higher in patients aged ≤ 67 years than in patients aged > 67 
years ( 90.34% , Nodes 9 and 10, vs. 85.82% , Node 11). Patients with negative estro-
gen receptor status and positive lymph node status were further split into subgroups 
defined by PR. Of note, progesterone receptor-negative patients were estimated to 
have the lowest average five-year DFS probabilities ( 70.31% , Node 4). This group 
of patients also included the high-risk group of “triple negative” patients (negative 
ER, PR, and HER2, von Minckwitz et al. 2012), given through the base-learner for 
HER2 selected by the boosting model in Node 4. In line with the literature (von 
Minckwitz et al. 2012), the subgroup of triple negative patients had lower estimated 
five-year DFS probabilities on average than HER2 receptor-positive patients in Node 
4 (red vs. green lines in the lower left panel of Fig. 7). Another prognostic variable 
is grade, which was selected as split variable in the group of patients ≤ 67 years in 
Node 8. We note that the grouping of grade (G1/G2 vs. G3) reflects the grouping 
in current treatment guidelines for breast cancer (Coates et al. 2015; Senkus et al. 
2015). As expected, patients with a low or intermediate grade had a higher estimated 
five-year DFS probability (G1/G2, 92.03% , Node 9) than patients with a high grade 
(G3, 86.97% , Node 10). Furthermore, tumor stage (selected by the boosting model) 
had a strong impact on survival in Node  9 (see colored lines in Fig.  7). Regard-
ing the treatments investigated in the SUCCESS-A trial, we observed that the group 
was not selected in any of the nodes, neither for splitting nor as base-learner in the 
boosting models. This is in line with the findings in the original study report by de 
Gregorio et al. (2020), who concluded that the addition of gemcitabine to standard 
chemotherapy did not improve DFS.

The five-fold cross-validated Brier score and C-index values obtained from PRT 
and the alternative methods are shown in Table  3. It is seen that the Brier score 
and C-index values obtained from PRT were similar for all considered tree depths, 
suggesting that higher values of D did not increase predictive performance but only 
led to a more difficult interpretation of the models. Overall, PRT were very similar 
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to the alternative methods in terms of prediction accuracy (except TreeOnly and 
KaplanMeier, which performed worse than PRT as expected, and BoostedTree and 
IPCW-LS, which also performed worse than PRT). These results support the plausi-
bility of the above interpretations and the validity of the PRT model in Fig. 7.

6 � Discussion

This paper presents a semi-parametric approach for building time-to-event models 
with a pseudo-value outcome. Our method, entitled pseudo-value regression trees 
(PRT), results in a piecewise regression model for the survival function, where the 
“pieces” are obtained by recursively partitioning the covariate space. As described in 
Sect. 3, developing a model tree algorithm for pseudo-values involved, among other 
components, a method for multivariate tree building, a loss function for non-nor-
mal continuous outcomes, and an appropriately defined time base-learner to ensure 
monotonicity of the probability estimates. Our numerical experiments in Sects.  4 
and  5 demonstrated that the PRT method was able to identify relevant covariates 
and interactions (Sect. 4.1), showed a favorable estimation accuracy (Sect. 4.2), and 
yielded highly plausible results in our application on primary invasive breast cancer 
(Sect. 5). Importantly, by restricting the tree depth to a moderate value ( D ≤ 5 ), the 
fitted PRT models had an easily accessible interpretation (see e.g. Fig. 7). This is 
considered to be a major advantage when the focus is not solely on prediction accu-
racy, especially when compared to black-box methods like support vector machines, 

Table 3   Analysis of the 
SUCCESS-A study data. The 
table presents the five-fold 
cross-validated values of the 
time-averaged Brier score 
and the C-index at 5 years, 
as obtained from fitting PRT 
(with D ∈ {2, 3, 4, 5}) and the 
alternative methods to the study 
data

Method Average Brier 
score

C-index at 5 years

PRT ( D = 2) 0.069 0.660
PRT ( D = 3) 0.069 0.660
PRT ( D = 4) 0.069 0.651
PRT ( D = 5) 0.069 0.662
MOB 0.069 0.666
BoostedTree 0.081 0.618
SRF 0.069 0.668
TreeOnly ( D = 2) 0.070 0.596
TreeOnly ( D = 3) 0.070 0.621
TreeOnly ( D = 4) 0.069 0.639
TreeOnly ( D = 5) 0.069 0.644
BoostingOnly 0.068 0.670
GEE 0.070 0.667
IPCW-LS 0.291 0.597
Cox 0.068 0.670
Lognormal 0.068 0.669
KaplanMeier 0.072 0.500
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random forests, or deep neural networks (see e.g. Mogensen and Gerds 2013; van 
der Ploeg et al. 2014; Zhao and Feng 2020; Rahman et al. 2021).

Conceptually, the PRT method belongs to the class of “direct” modeling 
approaches, relating the covariates directly to the survival probabilities instead of 
relating them “indirectly” to S(t|Xi) = exp(− ∫

t

0
�(u|Xi)du) via the hazard function 

�(t|Xi) (as done e.g. by the Cox model and Aalen’s additive hazard model). Promi-
nent examples of direct models are the proportional odds model and the Cox-Aalen 
model, which can be fitted to a set of censored time-to-event data using inverse-
probability-of-censoring-(IPC)-weighted binomial regression (Scheike et  al. 2008, 
see also Grøn and Gerds 2014 and the references therein). Analogous to pseudo-
value regression, these models provide estimates of S(tk|Xi) on a pre-defined grid of 
time points tk = t1,… , tK . The same is true for the hierarchical modeling approach 
by Garcia et al. (2019), which is a mixture of binomial regression and pseudo-value 
regression; instead of using IPC weights (effectively excluding censored individuals 
from the estimation equation), the authors replaced the binary values of censored 
individuals by pseudo-values and fitted the (pseudo-)binomial model within the gen-
eralized additive modeling framework. Hothorn et al. (2014) proposed the class of 
conditional transformation models, which is a general approach to model the distri-
bution function F(t|Xi) = 1 − S(t|Xi) conditional on a set of covariates (including 
direct survival models as special cases). Of note, Hothorn et al. (2018) developed 
a likelihood-based approach for the modeling of F(t|Xi) that does not require pre-
specification of a grid of time points (see also Hothorn 2019 and the references 
therein). Similar to Garcia et al. (2019), Hothorn et al. (2018) proposed to model the 
baseline risk and the covariate effects using basis functions. Despite the flexibility of 
the aforementioned approaches, we emphasize that the building of survival models 
(in particular, the specification of the model structure) remains a challenging task. 
Tree-based methods like PRT are useful in addressing this issue, providing tools for 
variable selection and the identification of interaction effects. On the other hand, 
the selection steps performed by PRT (and also by related tree methods) preclude 
the application of standard hypothesis tests in the nodes (Loh et al. 2019). As a con-
sequence, tree-based methods like PRT should be handled with care if the model 
structure is fixed and if statistical inference is of major interest.

The PRT approach is also related to other methods for building model trees. 
In Sect.  4, for instance, we used the model-based recursive partitioning approach 
(MOB) as a comparator to PRT. Conceptually, PRT and MOB are of similar nature; 
however, they differ with respect to their tree building approaches: While PRT uses 
the generalized correlation coefficient in (5) for (multivariate) recursive partition-
ing, MOB applies a test for parameter instability (Zeileis and Hornik 2007) to deter-
mine the split variable in each node. In contrast to (5) (which is based on the bivari-
ate relationships between the pseudo-values and the covariates), this instability test 
requires the node-wise fitting of a regression model including all covariates. As a 
consequence, MOB is usually more sensitive in detecting interaction effects in the 
models of interest (controlling for possible confounding instead of considering the 
“marginal” distributions as in (5)); on the other hand, the validity of the test results 
might be compromised by multicollinearity, especially when the number of covari-
ates is large relative to the node size (see Sect. 4). To the best of our knowledge, 
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there exists no regularized version of the MOB algorithm (performing e.g. variable 
selection like the boosting models in PRT). We further note that the current imple-
mentation of MOB in the R package partykit does not allow for modeling corre-
lated observations (e.g. via mixed-effects models or a multivariate tree as in PRT). 
Similar arguments hold for the GUIDE algorithm, which has recently been extended 
by Loh et al. (2019) to build model trees within the proportional hazards framework.

As stated in Sect.  1, the consistency results by Graw et  al. (2009) rely on 
the assumption that the censoring times Ci are independent of the survival 
times Ti (“random censoring”). Under this assumption, it can be shown that 
E [𝜃̂i(tk)|Xi]→ E [1{Ti>tk}

|Xi] = S(tk|Xi) , so that using the pseudo-values as out-
come variable in a statistical model (as done by PRT) is equivalent to substi-
tuting the outcome values of interest (here, the unobserved survival probabili-
ties) by consistent estimates of these values. Later, Binder et al. (2014) showed 
that the random censoring assumption can be relaxed to allow for censoring 
times Ci that are only conditionally independent of Ti given the covariate values 
Xi . More specifically, the authors considered a scenario where pseudo-values 
are based on the Aalen-Johansen estimator of the cumulative incidence func-
tion P (Ti ≤ tk) . By fitting a regression model for the censoring survival func-
tion G(tk|Xi) ∶= P (Ci > tk|Xi) and incorporating the resulting IPC weights in the 
Aalen-Johansen estimator, they were able to eliminate the bias occurring from 
a “naive” calculation of the pseudo-values ignoring dependency on Xi . Analo-
gously, the PRT method could be extended to scenarios with covariate-dependent 
censoring. This could be done by replacing the Kaplan-Meier estimators in (1) 
by one minus the respective IPC-weighted Aalen-Johansen estimators. We point 
out that the results by Binder et al. (2014) rely on the correct specification of the 
regression model for G(tk|Xi).

We further note that the pseudo-value methodology is not restricted to the estima-
tion of survival probabilities from right-censored data. For example, Andersen and 
Pohar (2010) considered a general class of functionals of the form E

[
�(Ti)|Xi

]
 , sug-

gesting that any of these functionals could be estimated by an appropriately defined 
pseudo-value regression model. In the same manner, the PRT approach could be 
adapted to a wider class of functionals, an obvious example being the cumulative 
incidence function in competing-risks analysis. Following the idea described in 
Zhao et al. (2020), PRT could also be applied for dynamic risk prediction. Further-
more, PRT can easily be extended to incorporate left-truncated survival times refer-
ring to individuals not yet at risk at time t = 0 . Provided that the truncation times 
are independent of the survival times Ti (at least conditional on Xi , see above), this 
could be done by an appropriate definition of the risk sets used in the calculation 
of the Kaplan-Meier estimators in (1). With regard to the latter, robustness can be 
increased by computing “stopped” pseudo-values 𝜃̂i(tk) that are based on only those 
individuals who entered the sample before the respective time points tk . For details, 
see Grand et al. (2019).

Finally, we would like to note that PRT is, in general, applicable to high-dimen-
sional scenarios with p > n . Naturally, very large numbers of covariates may result 
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in increased run-times (which are mainly due to the permutation tests conducted 
for the selection of the split variables). It should also be noted that both conditional 
inference trees and gradient boosting usually require some sort of pre-filtering in 
order to work well in “ultra-high”-dimensional scenarios with p ≫ n . The latter 
aspects are, of course, not specific to PRT but apply to many methods for modeling 
high-dimensional data (e.g. to penalized regression and even to random forests).

Software
All computations were carried out using the R Language for Statistical Comput-

ing (version 4.1.2, R Core Team 2022). An implementation of the PRT method is 
available at https://​www.​imbie.​uni-​bonn.​de/​cloud/​index.​php/s/​5oZDB​SJjW4​pLjtb. 
Details are given in Section S1 in the supplementary material.
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ABSTRACT
The restricted mean survival time (RMST) has become a popular measure to summarize event times in longitudinal studies.
Defined as the area under the survival function up to a time horizon 𝜏 > 0, the RMST can be interpreted as the life expectancy
within the time interval [0, 𝜏]. In addition to its straightforward interpretation, the RMST allows for the definition of valid esti-
mands for the causal analysis of treatment contrasts in medical studies. In this work, we introduce a non-parametric approach to
model the RMST conditional on a set of baseline variables (including, e.g., treatment variables and confounders). Our method
is based on a direct modeling strategy for the RMST, using leave-one-out jackknife pseudo-values within a random forest
regression framework. In this way, it can be employed to obtain precise estimates of both patient-specific RMST values and
confounder-adjusted treatment contrasts. Since our method (termed “pseudo-value random forest”, PVRF) is model-free, RMST
estimates are not affected by restrictive assumptions like the proportional hazards assumption. Particularly, PVRF offers a high flex-
ibility in detecting relevant covariate effects from higher-dimensional data, thereby expanding the range of existing pseudo-value
modeling techniques for RMST estimation. We investigate the properties of our method using simulations and illustrate its use by
an application to data from the SUCCESS-A breast cancer trial. Our numerical experiments demonstrate that PVRF yields accurate
estimates of both patient-specific RMST values and RMST-based treatment contrasts.

1 | Introduction

During the past years, an increasing number of statisticians
and applied researchers have advocated the use of the restricted
mean survival time (RMST) to summarize event times in lon-
gitudinal studies [1, 2]. Defined as the area under the survival
function within a time interval [0, 𝜏], the RMST represents the
expected event time between zero and the “time horizon” 𝜏 > 0.

Abbreviations: AFT, accelerated failure time; BMI, body mass index; CART, classification and regression trees; CI, confidence interval; DFS, disease-free survival; ER, estrogen receptor; GEE,
generalized estimation equation; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; IPC, inverse-probability-of-censoring; MSE, mean squared error; PFI, permutation feature
importance; PH, proportional hazards; PR, progesterone receptor; PVRF, pseudo-value random forest; RCT, randomized controlled trial; RMSE, root mean squared error; RMST, restricted mean
survival time; SD, standard deviation; WRSS, weighted residual sum of squares.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.
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In medical research, using the RMST as a summary measure
offers the following specific advantages: (i) Its interpretation as
the life expectancy between 0 and 𝜏 is straightforward and easily
understood by both clinicians and patients [3], (ii) instead of a
single time point (evaluated, e.g., by 𝑡-year survival probabilities
in cancer research), the entire survival history up to 𝜏 is reflected
by the RMST, (iii) in contrast to the hazard ratio (HR) derived
from Cox regression, the RMST can be used for meaningful
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treatment comparisons even when the proportional hazards
(PH) assumption is violated [1, 4], and (iv) the RMST can be used
to define estimands for the causal interpretation of treatment and
interventional effects [5]. As a result, the reporting of the RMST
in medical studies has become increasingly prevalent [6–8].

In addition to the calculation of absolute RMST values, differ-
ences between group-wise RMST values have been suggested as
a measure of treatment contrasts in longitudinal studies [6]. In
medical research, treatment contrasts are often expressed and
evaluated by the HR derived from a Cox PH model [1]. However,
the interpretation of this type of HR is only valid if the PH
assumption holds, assuming the HR to be constant over time.
Thus, Stensrud and Hernán [8] recommended to supplement
the reporting of HRs by summary measures directly derived
from the survival function 𝑆(𝑡) = P(𝑇 > 𝑡) (with 𝑇 denoting
the survival time). The RMST belongs to this class of measures,
as it can be expressed as 𝜇(𝜏) = E[min(𝑇 , 𝜏)] = ∫

𝜏

0 𝑆(𝑡) 𝑑𝑡 and
therefore directly summarizes the survival function in [0, 𝜏].
Similarly, the RMST difference for two treatment groups
𝐴 and 𝐵 with survival functions 𝑆𝐴(𝑡) and 𝑆𝐵(𝑡), defined
by 𝜇𝐴(𝜏) − 𝜇𝐵(𝜏) = ∫

𝜏

0
(
𝑆𝐴(𝑡) − 𝑆𝐵(𝑡)

)
𝑑𝑡, can simply be inter-

preted as the difference in life expectancy or as a gain (or loss) in
event-free survival time before 𝜏 [3].

This paper is concerned with the estimation of RMSTs condi-
tional on covariates 𝜇(𝜏|𝑋𝑖) = ∫

𝜏

0 𝑆(𝑡|𝑋𝑖) 𝑑𝑡, 𝑖 = 1, . . . , 𝑛, from
a set of 𝑛 independent individuals with possibly right-censored
event times (in the following referred to as individual RMSTs).
The covariate values are denoted by 𝑋𝑖 = (𝑋(1)

𝑖
, . . . , 𝑋

(𝑝)
𝑖
)⊤ ∈ ℝ

𝑝.
For ease of notation and without loss of generality, we assume
all treatment and interventional variables to be included in
𝑋𝑖. Our method is characterized by a non-parametric approach
combining pseudo-value modeling [9] with random forest
regression [10, 11]. Using the estimated individual RMSTs, we
pursue two goals: (a) To incorporate the effects of a (possibly large
and interacting) set of covariates in the estimation of the RMST,
and (b) to quantify and assess accuracy of treatment effect esti-
mation through RMST differences in observational longitudinal
trials.

Standard approaches to estimate individual RMSTs 𝜇(𝜏|𝑋𝑖)
are the direct integration of group-wise Kaplan–Meier curves
(leading to identical RMST estimates for individuals belonging
to the same treatment group) and the integration of survival
functions estimated through a parametric or semi-parametric
time-to-event model with covariates 𝑋𝑖 (e.g., a Cox PH model
or an accelerated failure time (AFT) model [4, 12]). Using these
standard approaches, the estimation of treatment effects through
RMST differences is straightforward. Previous research on RMST
differences also includes the work by Royston & Parmar [1], Tian
et al. [13] and Huang & Kuan [14], who developed hypothesis
tests for RMST differences derived by group-wise integration of
Kaplan–Meier curves. Clearly, the covariate-free Kaplan–Meier
approach is not recommended for use in non-randomized stud-
ies, as it ignores the effects of potential confounders on RMST
differences. While integrating estimated survival functions
derived from Cox PH or AFT models mitigates this problem, the
validity of the resulting RMST estimates strongly depends on
the correctness of the underlying model and/or distributional
assumptions [15].

Instead of estimating individual RMSTs by integrating survival
functions derived from time-to-event models, several authors
have suggested to directly model the RMST [16–18]. In gen-
eral, the idea of direct modeling approaches is to estimate
unconditional individual RMSTs (without using any covariate
information) and to subsequently fit a statistical model regress-
ing these values to the covariates. Key advantages of directly
modeling the RMST are less restrictive distributional assump-
tions as well as the straightforward interpretation of the model
coefficients [1, 3, 6, 19].

In this paper, we pursue a direct approach for modeling RMST
values and their differences. More specifically, the idea of our
method is to derive unconditional RMST values from jackknife
pseudo-values and to regress these values to the covariates using
random forests. Classical pseudo-value regression for the RMST
difference [20] is based on parametric models of the form

𝑔[𝜇(𝜏|𝑋𝑖)] = 𝛼 + 𝛾𝑇𝑋𝑖 =∶ 𝜂𝑖, (1)

with a monotonic link function 𝑔, an intercept 𝛼 and covariate
effects 𝛾 . Note that we suppress the dependency of 𝛼, 𝛾 and 𝜂𝑖 on
𝜏 for ease of notation. Andersen et al. [9] and Andersen & Pohar
Perme [20] suggested to estimate unconditional RMST values by
leave-one-out jackknife pseudo-values 𝜃̂𝑖(𝜏) defined as

𝜃̂𝑖(𝜏) = 𝑛 ⋅

𝜏

∫
0

𝑆̂KM(𝑡) 𝑑𝑡 − (𝑛 − 1) ⋅

𝜏

∫
0

𝑆̂−𝑖
KM(𝑡) 𝑑𝑡 , 𝑖 = 1, . . . , 𝑛 ,

(2)

where 𝑆̂KM(𝑡) denotes the Kaplan–Meier estimate evaluated at
𝑡 calculated on the complete data set and 𝑆̂−𝑖

KM(𝑡) denotes the
respective Kaplan–Meier estimate calculated on the data set
without individual 𝑖.

The coefficients in (1) can be estimated by a generalized estima-
tion equation (GEE) approach, with 𝑔 being the identity or the
log link [9]. However, while the GEE approach yields consistent
estimates (𝑛 → ∞) under the assumption of random censoring
[21, 22], its flexibility is limited by the restrictive specification
of the main-effects predictor 𝜂𝑖 in (2). Although more flexible
effect terms (representing, e.g., interaction terms or non-linear
main effects) could be included in (1), this approach is not
commonly used in practice. Often, this is due to the fact that
pre-specifying an extended version of 𝜂𝑖 requires detailed knowl-
edge on the, usually unknown, dependency structure between
the pseudo-value outcome and the covariates. Further, the GEE
approach does, in its basic form, neither incorporate any mecha-
nism for data-driven variable selection nor perform any other sort
of regularization to reduce redundant or irrelevant information.

To address these issues, and to achieve the goals stated in (a)
and (b), we propose to replace the GEE approach by a random
forest regression [10]. This regression model, which uses the
pseudo-values 𝜃̂𝑖(𝜏) as continuous outcome and which will be
termed “pseudo-value random forest” (PVRF) in the following,
allows for a data-driven selection of covariates and their interac-
tion effects. In this way, the need to pre-specify 𝜂𝑖 is eliminated,
making PVRF a convenient method for applications involv-
ing a large number of covariates compared to the number of
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individuals (for instance, in medium-sized observational stud-
ies containing many potential confounders). By applying a
g-computation formula [23, 24] to the estimated RMST values,
the PVRF method further allows for the direct estimation and
causal interpretation of RMST differences. To additionally facil-
itate interpretability of the covariate effects, we propose to use
methods for interpretable machine learning, as described in
Molnar [25].

The remainder of this paper is organized as follows: In Section 2,
we define relevant terms and provide a detailed description of
the PVRF method. Sections 3 and 4 contain the results of a sim-
ulation study investigating the properties of the PVRF method
and comparing the proposed approach to established methods for
RMST estimation. Section 5 presents an application of the PVRF
method to data from the SUCCESS-A study, a randomized phase
III trial investigating the effects of two treatment regimens on
the disease-free survival of patients with early breast cancer [26].
Section 6 concludes with the main findings and a brief overview
of related approaches.

2 | Methods

We consider a set of 𝑛 independent individuals subject to
right-censoring with covariate values 𝑋𝑖 = (𝑋(1)

𝑖
, . . . , 𝑋

(𝑝)
𝑖
), 𝑖 =

1, . . . , 𝑛, measured at baseline. The individual survival time
and censoring time are denoted by 𝑇𝑖 and 𝐶𝑖, respectively. The
observed survival time is denoted by 𝑇̃ 𝑖 = min(𝑇𝑖, 𝐶𝑖), and the
status variable 𝛿𝑖 = 1{𝐶𝑖>𝑇𝑖} indicates whether the 𝑖-th individ-
ual is censored (𝛿𝑖 = 0) or whether the event of interest has been
observed (𝛿𝑖 = 1). Following Graw et al. [21], we assume that the
censoring times are independent of both the covariates and the
event times.

2.1 | Estimation and Modeling of the RMST via
Pseudo-Values

When using the RMST, defined as 𝜇(𝜏) = E[min(𝑇 , 𝜏)] =
∫

𝜏

0 𝑆(𝑡) 𝑑𝑡, as dependent variable in a regression model, the
outcome values are given by 𝜇𝑖(𝜏) = min(𝑇𝑖, 𝜏), 𝑖 = 1, . . . , 𝑛. By
definition, these values depend on the survival times 𝑇𝑖, and, due
to censoring, cannot be observed for all individuals. Pseudo-value
regression overcomes this problem by replacing the partly incom-
pletely observed outcome values with continuous (real-valued)
pseudo-values 𝜃̂𝑖(𝜏) that can be computed for both censored and
uncensored individuals. For the RMST, the 𝑖-th pseudo-value at
a time horizon 𝜏 is given by the right-hand side of Equation (2).
The pseudo-values can subsequently be used as a (completely
observed) imputation for the outcome variable 𝜇𝑖(𝜏) in the RMST
regression model, facilitating the application of conventional
modeling techniques like linear regression or trees [27]. It can
be shown that the replacement of 𝜇𝑖(𝜏) with 𝜃̂𝑖(𝜏) enables the
consistent estimation of covariate effects on the RMST (see
Overgaard et al. [22] for details and regularity assumptions). As
seen from Figure 1, the characteristics of pseudo-values for the
RMST depend on the observed time 𝑇̃ 𝑖, the censoring proportion
in the data set and the time horizon 𝜏. In general, it appears hard
to approximate the empirical distribution of the pseudo-values
by a parametric distribution.

As outlined in Section 1, the standard approach to pseudo-value
regression for the RMST is to use the unconditional
pseudo-values 𝜃̂𝑖(𝜏) as outcome variable in a GEE model (see
Equation (1)). The estimated coefficients of this model can be
interpreted as direct effects on the RMST if 𝑔 is the identity link,
or on the logarithm of the RMST if 𝑔 is the log link. For details
on GEE estimation, we refer to Graw et al. [21].

FIGURE 1 | Illustration of pseudo-values, as derived from a synthetic data set with 𝑛 = 500. The dashed vertical lines indicate the time horizons
𝜏 ∈ {6, 8}. Pseudo-values of censored and uncensored individuals are represented by dots and plus symbols, respectively (blue: 𝜏 = 6, red: 𝜏 = 8). In the
data with no censoring (left panel), it holds that 𝜃̂𝑖(𝜏) = 𝑇̃ 𝑖 = 𝑇𝑖 if 𝑇̃ 𝑖 < 𝜏 and 𝜃̂𝑖(𝜏) = 𝜏 if 𝑇̃ 𝑖 ≥ 𝜏. For censored individuals (dots in the middle and right
panels), it is observed that 𝜃̂𝑖(𝜏) > 𝑇̃ 𝑖 for 𝑇̃ 𝑖 < 𝜏, irrespective of the choice of 𝜏 and the censoring proportion. For individuals with an observed event in
data sets with censoring, there is no consistent pattern regarding the dependency of pseudo-values on 𝑇̃ 𝑖: At a lower censoring proportion, pseudo-values
of individuals with an observed event closely resemble the observed times (plus symbols in middle panel). In contrast, at a higher censoring proportion,
pseudo-values of individuals with an observed event are mostly lower than the observed event time and can even become negative (plus symbols in the
right panel). For 𝑇̃ 𝑖 ≥ 𝜏, it holds that 𝜃̂𝑖(𝜏) ≥ 𝜏 for all individuals. Consequently, there is no difference between individuals who were censored after
time 𝜏 and those who were observed to experience an event after 𝜏. Figure adapted from Andersen & Pohar Perme [20].
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Despite the popularity of the GEE approach, it is easily seen from
(1) that the estimated RMST values are constrained to a rather
restrictive linear combination of the covariate effects. Particu-
larly, (1) does not include any interaction terms. While these
terms could be pre-specified in 𝜂𝑖, it is well known that the
number of interactions grows exponentially with the number of
covariates. This implies numerous coefficients to be estimated
and a high variance of the GEE estimator even in cases with a
moderate number of covariates. If there is no expert knowledge
available to pre-select a suitable (small) number of interaction
terms, data-driven variable selection techniques (such as forward
or backward selection) could be applied. However, these algo-
rithms usually show a high variability and are not recommended
for the selection of interaction terms.

2.2 | Random Forest Regression

To address the issues described in Section 2.1, we propose to
model individual RMSTs by using the pseudo-values 𝜃̂𝑖(𝜏) as con-
tinuous outcome variable in a random forest regression model
[10, 11]. Random forest regression is characterized by averaging
estimates of multiple regression trees trained on different ran-
dom subsets of the data (“ensemble” of regression trees). In this
way, overfitting is avoided, and both interactions and non-linear
covariate effects are captured by the model [10].

The general idea of building a regression tree is to derive local
estimates of the outcome variable by partitioning the covariate
space into a set of mutually exclusive subspaces [28–30]. Begin-
ning with the root node containing all individuals 𝑖 = 1, . . . , 𝑛,
the idea is to successively evaluate a split criterion and to split
individuals into two mutually exclusive sets termed daughter
nodes. Each daughter node 𝑅𝑚 ⊆ {1, . . . , 𝑛} is further split into
two daughter nodes𝑅𝑚1

⊂ 𝑅𝑚 and𝑅𝑚2
⊂ 𝑅𝑚 with𝑅𝑚1

∩𝑅𝑚2
= ∅,

and splitting is continued until some stopping criterion applies
(see Appendix B). In each node 𝑅𝑚, splitting is done by selecting
a split variable 𝑋(𝑗∗), 𝑗∗ ∈ {1, . . . , 𝑝}, and a corresponding split
rule 𝑚𝑗∗ that optimize a pre-defined split criterion (e.g., the
mean squared error, see Hothorn et al. [29] and Greenwell [30]
for details on split rules). The split criterion is evaluated on the
data of the individuals in the respective node 𝑅𝑚. Nodes that are
not further split into two daughter nodes because the stopping
criterion applies are referred to as leaf nodes. For calculating the
estimated RMST value of a single individual, the associated leaf
node is determined by using the individual’s covariate values and
by successively applying the split rules from the root node to the
leaf node. Afterwards, the RMST value is estimated by averaging
the observed pseudo-values 𝜃̂𝑖(𝜏) in the leaf node.

Random forest regression is characterized by growing large
ensembles of regression trees. In this paper, we will use 500 trees
unless stated otherwise. Furthermore, we follow the recommen-
dation by de Bin et al. [31] and grow our tree ensemble on sub-
samples of the complete data without replacement. Thus, each
tree in the forest is grown on a different subset of the data, lead-
ing to different split rules and different RMST estimates in the
leaf nodes. Additionally, only a random subset of the covariates
is considered for splitting the nodes of the regression trees. We
determine the size of this subset (termed “mtry”) using five-fold
cross-validation, see Appendix B. The final RMST estimate for

individual 𝑖 is obtained by dropping the covariate values 𝑋𝑖 down
to the leaf nodes of the 500 trees and by averaging the 500 tree
estimates.

In the literature, there exist multiple tree building algorithms
that vary in the procedure to select the split variables and the
corresponding split rules. In this work, we consider two dif-
ferent tree-building algorithms that will be described briefly in
Sections 2.2.1 and 2.2.2: (i) Classification and regression trees
(CART) [28] and (ii) conditional inference trees [29]. Correspond-
ingly, the resulting forests will be referred to as CART random
forest and conditional random forest.

2.2.1 | CART Random Forest

In each node 𝑅𝑚, the CART algorithm selects the split variable
𝑋(𝑗∗) and the corresponding split rule 𝑚𝑗∗ by minimizing

MSE
𝑚𝑗

=
∑

𝑖∈𝑅𝑚1

(
𝜃̂𝑖(𝜏) − 𝑐1

)2 +
∑

𝑖∈𝑅𝑚2

(
𝜃̂𝑖(𝜏) − 𝑐2

)2 (3)

over 𝑚𝑗 , where 𝑐1 and 𝑐2 are the averaged pseudo-values in the
daughter nodes 𝑅𝑚1

and 𝑅𝑚2
, respectively. Consequently, the split

variable and the split rule minimizing the mean squared errors
of the pseudo-values 𝜃̂𝑖(𝜏) in the daughter nodes are selected
jointly in one optimization step. In practice, this leads the CART
algorithm to favor split variables with many possible splits, imply-
ing that the algorithm is biased towards the selection of covariates
with many possible splits (e.g., continuous covariates) [29].

2.2.2 | Conditional Random Forest

Unlike the CART algorithm, conditional inference trees [29] fol-
low a two-step process in each node, selecting the optimal split
variable by a set of statistical hypothesis tests before determining
the corresponding split rule. In this way, a selection bias towards
covariates with many possible splits is avoided. More specifically,
in the first step, the null hypotheses of independence between
the covariates and the outcome values 𝜃̂𝑖(𝜏) are tested by evalu-
ating a set of generalized correlation coefficients 𝜌𝑗 , 𝑗 = 1, . . . , 𝑝
(measuring the pairwise associations between the outcome and
the covariates), and by computing a permutation-based p-value
for each covariate using the conditional distributions of trans-
formed versions of 𝜌𝑗 under the null. Finally, the covariate with
minimum p-value in the permutation tests is selected as a split
variable. Since the p-values do not depend on the scales of the
covariates, the selection procedure does not show any system-
atic preference towards covariates with many possible splits. For
details on the definition of 𝜌𝑗 and the test procedure, we refer to
Hothorn et al. [29].

The second step is to derive the split rule associated with the
selected split variable 𝑋(𝑗∗). Analog to the CART algorithm, each
possible split rule leads to two possible daughter nodes 𝑅𝑚1

and
𝑅𝑚2

. To determine the optimal split rule 𝑚𝑗∗ , the idea is to
maximize a criterion that is constructed in the same way as the
generalized correlation coefficients 𝜌𝑗 , this time measuring the
association between the pseudo-values and node membership.
Details on the selection procedure are given in Hothorn et al. [29].

4 of 19 Statistics in Medicine, 2025

 10970258, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.70031 by A
lina Schenk - U

niversitäts-U
 L

andesbibliothek B
onn , W

iley O
nline L

ibrary on [22/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

74



2.3 | Evaluating RMST Differences

In medical research, a common aim is to compare subgroups of
the population with regard to their survival behavior. Usually,
these subgroups are defined by an intervention (e.g., treatment
vs. control, see Section 5) or by the presence of a risk factor.
Following Royston & Parmar [4], Uno et al. [6] and Dehbi et al.
[7], we quantify differences in the survival behavior of popula-
tion subgroups (in the following termed “treatment contrasts”)
using differences in RMST values. In randomized controlled
trials (RCTs), which usually allow for ignoring all covariates
except the intervention due to the randomization procedure,
treatment contrasts can simply be estimated by the differences
of the average RMST values in the relevant groups. When addi-
tional covariates have to be taken into account, particularly in
non-randomized studies where the covariates usually take the
roles of confounders, we propose to apply g-computation to esti-
mate treatment contrasts [23, 24]. More specifically, denoting the
treatment variable of individual 𝑖 by 𝑋

(trt)
𝑖

and the respective con-
founders by 𝑋

(−trt)
𝑖

, we propose to calculate RMST differences as

Δ̂𝑖(𝜏) = 𝜇̂(𝜏|𝑋(−trt)
𝑖

, 𝑋
(trt)
𝑖

= 𝐴) − 𝜇̂(𝜏|𝑋(−trt)
𝑖

, 𝑋
(trt)
𝑖

= 𝐵) , 𝑖 = 1, . . . , 𝑛 ,

(4)

where 𝜇̂ denotes the RMST estimate obtained from the random
forest model (see Hu et al. [32] for alternative ways to define
and estimate survival treatment effects). Based on the individual
RMST differences, the average treatment effect (= treatment con-
trast) is estimated by

Δ̂(𝜏) = 1
𝑛

𝑛∑

𝑖=1
Δ̂𝑖(𝜏) =

1
𝑛

𝑛∑

𝑖=1

[
𝜇̂(𝜏|𝑋(−trt)

𝑖
, 𝑋

(trt)
𝑖

= 𝐴) − 𝜇̂(𝜏|𝑋(−trt)
𝑖

, 𝑋
(trt)
𝑖

= 𝐵)
]
,

(5)

2.4 | Pseudo-Value Random Forest

Summarizing Sections 2.1 to 2.3, we define our proposed method
(termed “pseudo-value random forest”, PVRF) by the following
steps:

1. Calculate pseudo-values 𝜃̂𝑖(𝜏), 𝑖 = 1, . . . , 𝑛, for the RMST
(Equation (2)).

2. Grow a random forest using either the CART algorithm
(Section 2.2.1) or conditional inference trees (Section 2.2.2).

3. Estimate RMST values conditional on covariates
𝜇̂(𝜏|𝑋𝑖), 𝑖 = 1, . . . , 𝑛, from the fitted random forest.

4. Depending on the research question,
a. proceed analyzing estimated RMST values using inter-

pretable machine learning techniques (see Section 5).
b. estimate treatment contrasts Δ̂(𝜏) from individual RMST

differences Δ̂𝑖(𝜏), 𝑖 = 1, . . . , 𝑛 (Equation (5)).

3 | Experiments

To investigate the performance of PVRF, we carried out a
comprehensive simulation study in R (version 4.1.2 [33]). The
data-generating process was based on a time-to-event model

with an additive combination of main and interaction effects.
We analyzed the ability of PVRF to estimate RMSTs and RMST
differences conditional on covariates between treatment groups
in the absence and presence of two-way interactions. To this end,
we considered scenarios with time-constant and time-varying
treatment effects. The simulation study was based on 100 Monte
Carlo replications. In each replication, we generated a data set of
size 𝑛 = 1000.

Survival times 𝑇𝑖, 𝑖 = 1, . . . , 𝑛, were generated from a Weibull
model with scale parameter 𝜆 > 0, shape parameter 𝜈 > 0 and
hazard function ℎ(𝑡|𝑋𝑖) = 𝜆 ⋅ exp

(
𝜂𝑖(𝑡)

)
⋅ 𝜈 ⋅ 𝑡𝜈−1, where 𝜂𝑖(𝑡) is

the (possibly time-dependent) linear predictor of individual 𝑖

(depending on 𝑋𝑖, see Equation (6)). The cumulative hazard
function was given by 𝐻(𝑡|𝑋𝑖) = 𝜆 ⋅ exp

(
𝜂𝑖(𝑡)

)
⋅ 𝑡𝜈 . The censoring

times were generated independently of the survival times, using
the same Weibull model with 𝜂𝑖(𝑡) = 0. The parameters 𝜆 and 𝜈

were adjusted such that the data-generating process yielded the
desired censoring proportions.

Overall, we examined four scenarios, each differing in the calcu-
lation of 𝜂𝑖(𝑡). Each scenario was characterized by five continu-
ous covariates (denoted by 𝑋

(𝑗)
𝑖

, 𝑗 = 1, . . . , 5) and five dichoto-
mous covariates (denoted by 𝑋

(𝑗)
𝑖

, 𝑗 = 6, . . . , 10). The continu-
ous covariates followed a multivariate normal distribution with
zero mean and a covariance matrix as given in Table A1 in
Section A. Dichotomous covariates were independent and fol-
lowed Bernoulli distributions with probability 0.5 each. In addi-
tion, we considered a dichotomous treatment variable 𝑋

(trt)
𝑖

(treatment A vs. B, Bernoulli distributed with probability 0.5).
The scenarios further differed in the structure of the interactions
between the covariates and the strength of the treatment effects.
We considered predictors of the form

𝜂𝑖(𝑡) =
10∑

𝑗=1
𝛿𝑗𝑋

(𝑗)
𝑖

+
∑

𝑙∈{1, . . . ,5}
𝑚∈{1, . . . ,5}

𝜓𝑙𝑚𝑋
(𝑙)
𝑖
𝑋

(𝑚)
𝑖

+
∑

𝑟∈{1, . . . ,5}
𝑠∈{6, . . . ,10}

𝜑𝑟𝑠𝑋
(𝑟)
𝑖
𝑋

(𝑠)
𝑖

+ 𝜗trt(𝑡)1{𝑋(trt)
𝑖

=𝐵} , (6)

where 𝛿𝑗 , 𝑗 = 1, . . . , 10, denote main effects of the continuous
and the dichotomous covariates, 𝜓𝑙𝑚, 𝑙, 𝑚 ∈ {1, . . . , 5}, represent
the interaction effects between the continuous covariates, 𝜑𝑟𝑠,
𝑟 ∈ {1, . . . , 5}, 𝑠 ∈ {6, . . . , 10}, represent the interaction effects
between the continuous and the dichotomous covariates, and
𝜗trt(𝑡) denotes the (possibly time-varying) treatment effect. All
main and interaction effects were sampled from a continuous
uniform distribution on [−1, 1]; they were generated indepen-
dently of each other and were the same in all Monte Carlo
replications. Furthermore, we added five independent standard
normally distributed noise variables to the covariate set. These
were independent of the other covariates and did not affect
the predictor 𝜂𝑖(𝑡). In Scenarios 1 and 2, the treatment effect
was time-constant, whereas in Scenarios 3 and 4, the treatment
effect changed at the transition time 𝑡0, resulting in crossing sur-
vival curves (Figure 3). Scenarios 1 and 3 included only main
effects, whereas Scenarios 2 and 4 additionally included interac-
tion effects. Table 1 provides an overview of the four scenarios,
and Figure 3 presents the group-wise Kaplan–Meier curves for
each scenario.
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TABLE 1 | Overview of the four scenarios used in the simulation study, each characterized by five continuous covariates, five dichotomous covari-
ates, eight interaction effects (Scenarios 2 and 4), and a time-constant (Scenarios 1 and 2) or time-varying (Scenarios 3 and 4) treatment effect. Interaction
effects not contained in the fourth column were set to zero.

Scenario

Effects of
continuous
covariates

Effects of
dichotomous

covariates Interaction effects Treatment effect

1 𝛿𝑗 ∼ U(−1, 1) 𝛿𝑗 ∼ U(−1, 1) 𝜓𝑙𝑚 = 0 ∀𝑙, 𝑚 𝜗trt(𝑡) = −2
𝑗 = 1, . . . , 5 𝑗 = 6, . . . , 10 𝜑𝑟𝑠 = 0∀𝑟, 𝑠

2 𝛿𝑗 ∼ U(−1, 1) 𝛿𝑗 ∼ U(−1, 1) 𝜓13, 𝜓14, 𝜓23, 𝜓25, 𝜓45 ∼ U(−1, 1) 𝜗trt(𝑡) = −2
𝑗 = 1, . . . , 5 𝑗 = 6, . . . , 10 𝜑17, 𝜑28, 𝜑39 ∼ U(−1, 1)

3 𝛿𝑗 ∼ U(−1, 1) 𝛿𝑗 ∼ U(−1, 1) 𝜓𝑙𝑚 = 0 ∀𝑙, 𝑚 𝜗trt(𝑡) =

{
−2 𝑡 ≤ 𝑡0

2 𝑡 > 𝑡0
𝑗 = 1, . . . , 5 𝑗 = 6, . . . , 10 𝜑𝑟𝑠 = 0∀𝑟, 𝑠

4 𝛿𝑗 ∼ U(−1, 1) 𝛿𝑗 ∼ U(−1, 1) 𝜓13, 𝜓14, 𝜓23, 𝜓25, 𝜓45 ∼ U(−1, 1) 𝜗trt(𝑡) =

{
−2 𝑡 ≤ 𝑡0

2 𝑡 > 𝑡0
𝑗 = 1, . . . , 5 𝑗 = 6, . . . , 10 𝜑17, 𝜑28, 𝜑39 ∼ U(−1, 1)

In each of the four scenarios, we considered three different cen-
soring proportions (25%, 50%, and 75%) and five different values
of the time horizon 𝜏. The latter were determined by the 50%,
60%, 70%, 80%, and 90% quantiles of the observed times 𝑇̃ 𝑖, 𝑖 =
1, . . . , 𝑛, denoted by 𝑞50%, 𝑞60%, 𝑞70%, 𝑞80%, and 𝑞90%, respectively.
The values of 𝜏, which were held fixed across the simulation runs,
are given in Table A2 in Section A. The transition time 𝑡0 in Sce-
narios 3 and 4 was set to 𝑞70%. In total, each scenario examined
15 combinations of censoring proportions and time horizons 𝜏.
For the values of the coefficients 𝛿𝑗 , 𝜓𝑙𝑚 and 𝜑𝑟𝑠, we refer to the
attached R code (see Appendix B).

To evaluate performance of RMST estimates, we considered the
mean squared error defined by

MSE = 1
𝑛

𝑛∑

𝑖=1

(
𝜇̂(𝜏|𝑋𝑖) − 𝜇(𝜏|𝑋𝑖)

)2
, (7)

where 𝜇̂(𝜏|𝑋𝑖) and 𝜇(𝜏|𝑋𝑖) denote the estimated and the theoret-
ical RMSTs, respectively, of individual 𝑖 at time horizon 𝜏. The
root mean squared error (RMSE) is defined as the square root of
(7). The theoretical RMST in (7) is derived as

𝜇(𝜏|𝑋𝑖) =
∫

𝜏

0
𝑆(𝑡|𝑋𝑖) 𝑑𝑡 =

∫

𝜏

0
exp(−𝐻(𝑡|𝑋𝑖)) 𝑑𝑡

=
⎧
⎪
⎨
⎪
⎩

∫
𝜏

0 exp(−𝐻1(𝑡|𝑋𝑖)) 𝑑𝑡 , 𝜏 ≤ 𝑡0 ,

∫
𝑡0

0 exp(−𝐻1(𝑡|𝑋𝑖)) 𝑑𝑡 + ∫
𝜏

𝑡0
exp(−𝐻1(𝑡0|𝑋𝑖)

−𝐻2(𝑡|𝑋𝑖) +𝐻2(𝑡0|𝑋𝑖)) 𝑑𝑡 , 𝜏 > 𝑡0 ,

(8)

where𝐻1(𝑡|𝑋𝑖) and𝐻2(𝑡|𝑋𝑖) are the cumulative hazard functions
before and after the transition point 𝑡0, respectively. Note that in
Scenarios 1 and 2, the hazards are constant over time and thus
𝐻1(𝑡|𝑋𝑖) = 𝐻2(𝑡|𝑋𝑖), resulting in 𝜇(𝜏|𝑋𝑖) = ∫

𝜏

0 exp(−𝐻1(𝑡|𝑋𝑖))𝑑𝑡
for both 𝜏 ≤ 𝑡0 and 𝜏 > 𝑡0. Analogously, we evaluated the accu-
racy of treatment effect estimates by calculating the mean
squared error of the treatment effect, defined as

MSEΔ = 1
𝑛

𝑛∑

𝑖=1

(
Δ̂𝑖(𝜏) − Δ𝑖(𝜏)

)2
, (9)

where Δ̂𝑖(𝜏) and Δ𝑖(𝜏) denote the estimated and the theoretical
individual treatment effects, respectively (see Section 2.3).

In addition to evaluating the estimation accuracy of the CART
and conditional random forest approaches, we compared our
method to alternative modeling approaches. These were (i)
a GEE pseudo-value model with identity link (GEE), (ii) a
GEE pseudo-value model with log link (GEE (log)), (iii) a
Cox PH model (Cox), (iv) a parametric AFT model (based
on log-transformed survival times and assuming normally dis-
tributed errors [34], Lognormal), and (v) a correctly specified Cox
PH model (Reference). For the modeling approaches (i)–(iv), we
specified the main effects of all continuous and dichotomous
covariates (including the noise variables) but did not consider
any interaction terms. The Reference model was specified such
that it corresponded to the true data-generating process, incorpo-
rating the informative (= non-zero) main and interaction effects
only (see Table 1). The Reference model also accounted for the
time-dependent treatment effect in Scenarios 3 and 4. This was
accomplished by specifying a time-varying stratification variable
that enabled the Cox model to estimate a time-dependent treat-
ment effect. Consequently, Reference served as a lower bench-
mark in the RMSE and RMSEΔ comparisons. For the Cox, Log-
normal and Reference models, which do not directly model the
RMST, estimates of the RMST were derived through the integra-
tion of the estimated survival function. Further details on the
implementation of the methods are given in Appendix B.

For the main-effects-only Scenario 1, we expect the Cox and Log-
normal models (both assuming a main effects structure) to show
a better performance than the PVRF method. In contrast, we
anticipate that the CART random forest and the conditional ran-
dom forest approaches will outperform the Cox, Lognormal, GEE,
and GEE (log) models in the scenarios with non-zero interaction
terms (Scenarios 2 and 4). Additionally, due to the time-varying
treatment effect, we expect the pseudo-value methods to outper-
form the Cox model in Scenarios 3 and 4. Generally, we expect
both the RMSE and RMSEΔ values to increase with 𝜏, since the
RMST also rises with 𝜏.

6 of 19 Statistics in Medicine, 2025
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To evaluate the performance of the PVRF method and its com-
parators in a misspecified scenario, we further conducted a mod-
ified version of the previously described simulation study. In
this additional study, data were simulated in the same way as
before (Table 1), but one informative continuous covariate (𝑋(2))
and one informative dichotomous covariate (𝑋(7)) were excluded
from the set of candidate covariates used for model fitting. As a
result, all methods were provided with a reduced set of covari-
ates. In this study, we expect both the RMSE and RMSEΔ values
to increase relative to the study using the full candidate covari-
ate set. Additionally, we anticipate that the Cox and Lognormal
models will be less advantageous in Scenario 1 compared to the
PVRF method. Similar to the simulation study above, we expect
the PVRF method to be superior to all comparators in Scenarios
2, 3, and 4.

4 | Results

Figure 2 summarizes the simulation results of the four scenar-
ios at a censoring proportion of 50%. In the first scenario (main
effects only, time-constant treatment effect), both the average
RMSE and the average RMSEΔ increase with 𝜏, as expected.
This is true for all considered models. Notably, there is a clear
difference in terms of RMSE between the standard modeling
techniques (Cox and Lognormal) and the pseudo-value methods
(GEE, GEE (log), CART random forest and conditional random
forest), with the best performing model being the Cox model fol-
lowed by the Lognormal model. This result can be explained by
the fact that the Cox model matches the data-generating mecha-
nism in this scenario (except for the noise variables). Among the
pseudo-value regression methods, the conditional random for-
est demonstrates superior performance for 𝜏 ≤ 𝑞60% followed by

GEE, GEE (log) and CART random forest. However, this is no
longer true when 𝜏 > 𝑞60%. In terms of the RMSE for the treat-
ment effect (RMSEΔ), the Cox model demonstrates the best per-
formance, in line with our expectations, followed by the Log-
normal model. Among the pseudo-value methods, the condi-
tional random forest performs best with regard to treatment effect
estimation, followed by the GEE model. The application of the
log link in the GEE approach (GEE (log)) appears to have a
negative effect on both performance measures (first column of
Figure 2). Notably, the CART random forest shows inferior per-
formance compared to the conditional random forest and to all
other comparators.

In Scenario 2 (non-zero interaction effects, time-constant treat-
ment effect), the average RMSEΔ increases with 𝜏, similar to
Scenario 1. The tree-based pseudo-value methods, particularly
the conditional random forest, perform best in terms of RMSE,
having a slight advantage over the CART random forest. This
result demonstrates the ability of tree-based methods to identify
and model interactions between the covariates. All other meth-
ods perform similarly in this scenario. Regarding treatment effect
estimation, the conditional random forest performs best, having
slight advantages over the standard Cox and Lognormal modeling
techniques, as well as over the CART random forest. Although
the Cox and Lognormal models do not perform well in terms of
RMSE, their performance regarding treatment effect estimation
is comparable to the respective performance of the tree-based
methods. On the other hand, the GEE with log link shows a poor
performance in the estimation of the treatment effect, with esti-
mates getting worse as 𝜏 increases (second column of Figure 2).

In Scenario 3 (main effects only, time-dependent treatment
effect), the average RMSE values of the standard modeling

FIGURE 2 | Results of the simulation study (50% censoring). The upper panels present the average RMSE (7), as obtained from the RMST estimates
at different values of 𝜏. The lower panels present the average RMSE for the treatment effect (9). The dashed black lines refer to the correctly specified
Cox PH model (Reference).
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techniques Cox and Lognormal do not monotonically increase
with 𝜏, as in Scenarios 1 and 2. Instead, there is a turning
point in the RMSE values at 𝜏 = 𝑡0 = 𝑞70%. This can be explained
as follows: As seen from Figure 3, the Cox model assumes a
time-constant treatment effect, implying that the effect of treat-
ment 𝐵 is underestimated when 𝑡 ≤ 𝑡0 = 𝑞70%. This in turn leads
to strongly biased RMST estimates. On the other hand, the Cox
model overestimates the effect of treatment 𝐵 when 𝑡 > 𝑡0 = 𝑞70%.
Consequently, as RMST estimates are derived by the area under
the survival curve up to 𝜏, the part of the area under the survival
curve that is not included in the RMST estimates for 𝑡 ≤ 𝑡0 = 𝑞70%
is compensated by the excess area under the estimated survival
curve for 𝑡 > 𝑡0 = 𝑞70%. As a result, the Cox model yields decreas-
ing RMSE values for 𝜏 > 𝑡0 = 𝑞70%. For the Lognormal model,
analog observations can be made. In contrast, the pseudo-value
methods exhibit increasing RMSE values with rising 𝜏, as
expected. The conditional random forest demonstrates superior
performance compared to the Cox and Lognormal models with
respect to the RMSE for 𝜏 ≤ 𝑡0. On the other hand, as the RMSE
values obtained from the Cox and Lognormal models decrease for
𝜏 > 𝑡0, these methods perform better than the conditional ran-
dom forest at 𝜏 = 𝑞90%. Notably, the CART random forest shows
inferior performance compared to all other methods, which is
likely due to its selection bias towards (possibly non-informative)
continuous covariates. Regarding treatment effect estimation, the
RMSEΔ values obtained from the pseudo-value methods increase
with 𝜏. In contrast, the RMSEΔ values obtained from the Cox
model increase for 𝜏 ≤ 𝑡0 = 𝑞70% but decrease for 𝜏 > 𝑡0 = 𝑞70%.
Again, this is due to the underestimation (overestimation) of the
effect of treatment 𝐵 for 𝑡 ≤ 𝑡0 = 𝑞70% (𝑡 > 𝑡0 = 𝑞70%). The condi-
tional random forest consistently performs best, regardless of the
value of 𝜏, confirming its ability to capture the time-dependent
treatment effect (third column of Figure 2).

In the presence of interaction effects, as in Scenario 4 (non-zero
interaction effects, time-dependent treatment effect), there is a
clear advantage of the tree-based methods (CART and condi-
tional random forest) with respect to the RMSE. Regarding treat-
ment effect estimation, the conditional random forest performs

consistently best with respect to RMSEΔ across all time horizons
𝜏 (fourth column of Figure 2). These results highlight the abil-
ity of the conditional random forest to model interaction effects
and to capture time-dependent treatment effects simultaneously.
As seen from Figure 2, the time-dependent treatment effect influ-
ences the trend of the RMSEΔ values of the Cox and Lognormal
models, similar to Scenario 3, but not the trend of the respective
RMSE values. The results obtained for 25% and 75% censoring
are similar to the results shown in Figure 2. They are presented
in Figures C1 and C2 in Appendix C.

While our primary focus was on evaluating the performance of
the PVRF method in estimating RMST values conditional on
covariates, we also explored the generalizability of our findings to
unseen data, that is, data that were not used for model fitting. The
RMSE and RMSEΔ values derived on unseen data can be found
in Figures D1–D3 in Appendix D. In summary, we observed sim-
ilar results as for the RMSE and RMSEΔ values obtained from the
data used for model fitting, except for the CART random forest,
which showed an improved performance.

Figure 4 presents a comparison of the results from Scenario 1
using the full and reduced candidate covariate sets at 50% censor-
ing. As expected, the average RMSE and RMSEΔ values increase
when the reduced candidate covariate set, excluding 𝑋(2) and
𝑋(7), is used for the modeling approaches. Furthermore, the
differences between the Cox, Lognormal, and PVRF methods
decrease, suggesting that the models exhibit a more similar per-
formance (in terms of both RMSE and RMSEΔ) than when the full
candidate covariate set is used. Put differently, the advantages of
the Cox and Lognormal models are way less pronounced when
𝑋(2) and 𝑋(7) are excluded from the set of candidate covariates,
indicating a higher stability of the conditional random forest. In
Scenarios 2, 3 and 4, the conditional random forest still outper-
forms all other methods when 𝑋(2) and 𝑋(7) are removed from
the candidate covariate set (see Figure E1 in Appendix E).

In summary, when considering scenarios with interactions
and/or time-varying treatment effects, we find the conditional

FIGURE 3 | Results of the simulation study (50% censoring). The dark lines depict the Kaplan–Meier curves in the two treatment groups, as
obtained from 𝑛 = 1000 individuals with data generated according to Table 1 (including the true treatment effects 𝜗trt(𝑡)). The bright lines depict
the Kaplan–Meier curves derived from data generated according to Table 1 but including the time-constant average treatment effect estimated by
the Cox method instead of the true treatment effect (Scenario 1: 𝜗̂Cox

trt (𝑡) = −2.10, Scenario 2: 𝜗̂Cox
trt (𝑡) = −1.26, Scenario 3: 𝜗̂Cox

trt (𝑡) = −0.38, Scenario 4:
𝜗̂

Cox
trt (𝑡) = −0.33).
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FIGURE 4 | Results of the additional simulation study (50% censoring, main-effects-only Scenario 1, Cox and Lognormal models expected to perform
well). The left panels show the average RMSE and RMSEΔ values obtained from the full candidate covariate set, whereas the right panels show the
respective values obtained from the reduced candidate covariate set without 𝑋(2) and 𝑋(7). Note the different scalings of the y-axes in the left and right
panels.

random forest to perform better than standard modeling
approaches in estimating the RMST and treatment effects.
The value of 𝜏 relative to the transition time 𝑡0 significantly
impacts the performance of the standard modeling techniques
Cox and Lognormal, especially in the scenarios with time-varying
treatment effects. In the main-effects-only scenarios, the condi-
tional random forest still performs well when some information
is omitted from the set of candidate covariates. Regarding the
estimation of treatment effects, the conditional random forest
performed considerably better than the CART random forest
(both on the data used for model fitting and on unseen data).

5 | Application

To illustrate the PVRF approach, we applied the conditional ran-
dom forest to data from the multicenter randomized phase III
SUCCESS-A trial (NCT02181101). SUCCESS-A enrolled 3 754
patients with a primary invasive breast cancer between Septem-
ber 2005 and March 2007 [26]. Study participants were randomly
assigned in a 1:1 ratio to one of two treatment arms, which
received either standard chemotherapy (control group) or stan-
dard chemotherapy with the addition of gemcitabine (interven-
tional group). For details on the inclusion/exclusion criteria and
the design of the study see de Gregorio et al. [26].

The primary aim of the SUCCESS-A trial was to compare the
two treatment arms with respect to disease-free survival (DFS),
defined as the period from the date of randomization to the
earliest date of disease progression (distant metastases, local
and contra local recurrence, and secondary primary tumors)
or death from any cause [26, 35]. Here, we present the results
of a secondary analysis that considered DFS as the outcome of

interest. Note that the definition of DFS includes death from any
cause. Accordingly, we did not consider death as a competing
event.

Patients were censored at the last date at which they were known
to be disease-free, resulting in an event proportion of 12.2% (458
events in 3 754 patients). The maximum observation time was
5.5 years (6 months of chemotherapy followed by 5 years of
follow-up; median 5.2 years, first quartile 3.7 years, third quartile
5.5 years). Patient characteristics included age at randomization
(age, in years), body mass index (BMI, in 𝑘𝑔∕𝑚2) and menopausal
status (meno, two categories, pre-/post-menopausal) as well as
information on the tumor, including stage (stage, four categories,
pT1/pT2/pT3/pT4), grade (grade, three categories, G1/G2/G3),
lymph node status (nodal status, two categories, pN0/pN+), type
(type, three categories, ductal/lobular/other) and receptor status
of estrogen (ER), progesterone (PR), and HER2 (two categories
each, negative/positive). A descriptive summary of the variables
is given in Table F1 in Section F. Patients with missing values in
any of the considered covariates were excluded from our analysis.
The analyzed data comprised 3 652 patients.

The main aim of our analysis was to model the RMST for DFS at
𝜏 = 5 years, corresponding to the length of the follow-up period.
To this end, we applied the conditional random forest, the Cox
model and the GEE model to the SUCCESS-A study data. The
covariates were defined by the treatment (control/intervention)
and the ten patient/tumor characteristics described above. The
accuracy of the models was measured by the weighted residual
sum of squares (WRSS), an inverse-probability-of-censoring
(IPC) weighted error measure [36] and by a 95% normal boot-
strap confidence interval (CI, 1 000 repetitions). The WRSS is
defined as
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WRSS = 1
𝑛

∑

𝑖

(
min(𝑇̃ 𝑖, 𝜏) − 𝜇̂(𝜏|𝑋𝑖)

)2
⋅ 𝑤̂𝑖, (10)

with 𝜇̂(𝜏|𝑋𝑖) denoting the estimated RMST for individ-
ual 𝑖. The IPC weights 𝑤̂𝑖 are defined by 𝑤̂𝑖 = 1{𝑇̃ 𝑖 ≤

𝜏} ⋅ 𝛿𝑖 ∕ 𝐺̂(𝑇̃ 𝑖− |𝑋𝑖) + 1{𝑇̃ 𝑖 > 𝜏} ∕ 𝐺̂(𝜏|𝑋𝑖), where 𝐺̂ is a con-
sistent estimator of the censoring survival function. In this work,
we use the Kaplan–Meier method to estimate 𝐺̂. The average
treatment effect (measured in days, control vs. interventional
group) was calculated as

Δ̂(𝜏) = 1
𝑛

∑

𝑖

[
𝜇̂(𝜏|𝑋(−𝑡𝑟𝑡)

𝑖
, 𝑋

(𝑡𝑟𝑡)
𝑖

= control)

−𝜇̂(𝜏|𝑋(−𝑡𝑟𝑡)
𝑖

, 𝑋
(𝑡𝑟𝑡)
𝑖

= interventional)
]
. (11)

To enhance the interpretability of the conditional random forest,
we computed the permutation feature importance (PFI𝑗) along
with a 95% normal bootstrap CI and Shapley values for each
covariate [25]. PFI𝑗 is defined as the ratio of the WRSS with
𝜇̂(𝜏|𝑋𝑖) derived from the fitted model but using permuted values
of the 𝑗-th covariate (numerator), and the WRSS with 𝜇̂(𝜏|𝑋𝑖)
calculated as usual (denominator, see Equation (B1)). Thus,
higher PFI𝑗 values indicate a higher importance of the 𝑗-th
covariate for estimating the RMST. Local Shapley values were
derived for 1 000 randomly selected patients. A high absolute
local Shapley value indicates a high importance of the respective
covariate in the estimation of the RMST.

The results of our analysis are presented in Figure 5. They show
that the conditional random forest detected several established
prognostic factors and subgroups, which have been consistently

FIGURE 5 | Analysis of DFS in the SUCCESS-A study. The four panels present the results obtained from the Cox, GEE and conditional random
forest methods. Panel (A) shows the square root of the WRSS (measured in years) and the treatment effect Δ̂(𝜏) (measured in days). The dots represent
values of

√
WRSS and Δ̂(𝜏) derived by the complete cohort, while the bars refer to 95% bootstrap confidence intervals for

√
WRSS and Δ̂(𝜏). Panel

(B) shows the estimated RMST values in patient groups defined by molecular tumor subtypes, as obtained from the conditional random forest (see
Table F2). Panel (C) shows the permutation feature importance of each covariate for the conditional random forest. The dots represent PFI𝑗 values and
the bars refer to the respective 95% bootstrap confidence intervals. Panel (D) presents local Shapley values for each covariate, as obtained by evaluating
the conditional random forest estimates in 1 000 randomly selected patients. Each dot corresponds to one patient. The color codings used in Panel (D)
are presented in the bottom row of the figure.
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reported in the literature and have also entered treatment guide-
lines for primary breast cancer [37, 38]. Regarding the WRSS, the
conditional random forest (

√
WRSS = 0.93 years, 95% CI: 0.88 to

0.98 years) performs best, followed by the Cox model (
√

WRSS
= 0.94 years, 95% CI: 0.87 to 1.01 years) and the GEE approach
(
√

WRSS = 0.95 years, 95% CI: 0.90 to 1.00 years, Figure 5A).
The average treatment effect Δ̂(𝜏) estimated by the conditional
random forest is close to zero (−0.01 days, 95% CI: −11.22 to
11.21 days), indicating no advantage of any of the two groups.
This supports the results found by de Gregorio et al. [26], who
concluded that the interventional treatment does not improve
survival in patients with high-risk early breast cancer. In contrast,
the Cox model indicates a slight advantage of the control group
(Δ̂(𝜏) = 3.73 days, 95% CI: −19.74 to 27.20 days) while the GEE
model indicates a slight advantage of the interventional group
(Δ̂(𝜏) = −3.22 days, 95% CI: −26.92 to 20.49 days). Note, how-
ever, that the treatment difference is measured in days, so none
of the obtained differences can be considered clinically relevant.

Figure 5B visualizes the RMST values at 𝜏 = 5 years in patient
groups defined by molecular tumor subtypes [39]. More specifi-
cally, HER2 positive patients are characterized by HER2 positive
tumors (regardless of ER status, PR status and grade). HER2
negative tumors are further classified into luminal A-like tumors
(HER2 negative, ER and/or PR status positive, grade G1 or
G2), luminal B-like tumors (HER2 negative, ER and/or PR sta-
tus positive, grade G3), and triple-negative tumors (HER2, ER
and PR status negative and any grade, see Table F2). Accord-
ing to Figure 5B, the high-risk triple-negative group has the
lowest estimated RMST values (mean (SD): 4.46 (0.24) years),
which is consistent with findings in the literature [40]. Addi-
tionally, when comparing the luminal A-like and luminal
B-like subgroups, there appears to be a slight advantage (cor-
responding to higher estimated RMST values) of patients with
tumor grade G1 (luminal A-like, 4.78 (0.10) years) compared to
those with tumor grade G2 or G3 (luminal B-like, 4.68 (0.12)
years). Again, this result is in line with previous findings in the
literature [40]. The comparison of luminal A-like, luminal B-like
and triple-negative confirms the ability of the conditional random
forest to identify interactions between hormone receptor status
and grade.

As illustrated in Figure 5C, the PFI𝑗 values obtained from the con-
ditional random forest identify nodal status as the most influen-
tial covariate in the estimation of the RMST. The strong influence
of nodal status on DFS has previously been reported by Senkus
et al. [38]. Other important covariates (in terms of PFI𝑗) are ER,
stage, PR, grade, HER2 and BMI. Notably, all other covariates
appear to have negligible importance in estimating RMST values
by the conditional random forest, including treatment. This result
is in line with the findings of de Gregorio et al. [26].

The local Shapley values in Figure 5D are also in line with
previous findings in the literature [38, 40, 41] and with the PFI𝑗
values in Figure 5C. As seen from Figure 5D, lymph node positive
patients (nodal status = pN+) exhibit higher risk of recurrence or
death, reflected by negative local Shapley values of these patients.
Furthermore, the high Shapley values for ER confirm the impor-
tance of this covariate in adjuvant hormonal and chemotherapy.
The survival advantage of ER positive patients [41] is reflected

by positive Shapley values for this group. Conversely, negative
Shapley values are observed for ER negative, PR negative, and
HER2 negative patients, which is consistent with lower esti-
mated RMST values for the triple-negative group in Figure 5B
[40]. Likewise, the difference in estimated RMST values between
luminal A-like and luminal B-like patients is confirmed by the
respective local Shapley values: Patients with grade G1 and G2
have a positive contribution to the estimated RMST values, while
patients with grade G3 contribute negatively. Furthermore, the
local Shapley values accurately reflect the hierarchy of tumor
stages: Tumor stage pT1 (best prognosis for DFS) has a positive
contribution to the estimated RMST, whereas tumor stages pT2
to pT4 have increasingly negative contributions. Shapley values
for treatment spread around 0 in both groups, suggesting neither
a positive nor a negative contribution of the treatment to the
RMST. Again, this result is consistent with the findings of de
Gregorio et al. [26]. In addition to the bootstrapped estimates,
we evaluated cross-validated values of WRSS and PFI𝑗 . As seen
from Figure F1 in Section F, these values are very similar to those
obtained from the bootstrap procedure.

6 | Discussion

During the past years, the restricted mean survival time has
become an increasingly popular measure for summarizing indi-
vidual event times in medical studies. Compared to other estab-
lished measures like the hazard ratio, the RMST is derived from
survival probabilities measured at the untransformed risk scale,
thereby avoiding interpretability and collapsibility issues in the
comparison of interventional groups [42, 43]. As a consequence,
the RMST is considered a valid survival estimand for the causal
interpretation of treatment contrasts in clinical and observational
trials [5, 44].

In this work, we proposed the pseudo-value random forest
(PVRF) method, which is a non-parametric approach for the
quantification of treatment effects by group-specific RMST val-
ues. Instead of estimating RMST values from (semi-)parametric
models like Cox or AFT regression, the PVRF method combines
unconditional pseudo-value RMST estimation with the subse-
quent fitting of a random forest. Except for the random censoring
assumption, both components of our method (pseudo-values
and random forests) require minimal assumptions on the
data-generating process. While unconditional pseudo-values
are based on non-parametric Kaplan–Meier estimates, ran-
dom forest regression is a model-free algorithm allowing for
variable selection and requiring no prior assumptions on the
structure of the covariate effects. As a result, the PVRF method
is particularly suited for incorporating subgroup characteristics,
non-linearities, and higher-order interactions affecting individ-
ual RMST values. In non-randomized studies, this approach is
particularly useful when treatment effects need to be corrected
for higher-dimensional sets of confounders, allowing for the
estimation of causal contrasts via g-computation. Furthermore,
our method enables model-free comparisons of treatment and
control groups in randomized trials. Regarding the latter, we
demonstrated that PVRF is able to capture time-dependent
treatment effects in a data-driven way (see Section 3, where
PVRF performed better than (semi-)parametric approaches in
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the scenarios with crossing survival curves). Methods to adjust
RMST estimation for covariate-dependent censoring have been
studied in Rong et al. [15].

In our numerical studies, we observed that the conditional ran-
dom forest (correcting for a possible selection bias towards covari-
ates with many possible splits) showed a better performance
in terms of RMSE than the traditional CART random forest
approach. This finding was particularly evident in the estimation
of treatment contrasts, where conditional random forests outper-
formed CART in all scenarios. We therefore recommend to prefer
conditional random forests over CART random forests when the
aim is to estimate treatment effects from data with heterogeneous
covariate types.

An important topic for future research is the development of
hypothesis tests and confidence intervals for PVRF-based RMST
differences. Previous research in this field [1, 13, 14] has mainly
focused on hypothesis tests for RMST differences derived by
group-wise integration of Kaplan–Meier curves (not incorporat-
ing additional covariates). Tian et al. [13] compared RMST-based
tests to HR-based tests in the context of randomized clinical
trials, demonstrating that RMST-based tests outperformed their
HR-based counterparts in scenarios where the PH assumption
is violated. It would be interesting to conduct analog studies
for pseudo-value-based tests of RMST differences, which, to the
best of our knowledge, have not yet been explored thus far.
In our analysis of the SUCCESS-A study data (Section 5), we
constructed confidence intervals for treatment contrasts using
bootstrap methods, along the lines of Hernán & Robins [45],
Chapter 13.

A general issue in the estimation of RMST values is the choice of
a suitable time horizon 𝜏. While choosing a small value of 𝜏 may
discard a large proportion of the data and will therefore result
in a potential loss of information, estimation of the RMST may
no longer be possible if 𝜏 becomes too large [46]. General recom-
mendations on the choice of 𝜏, have, for instance, been made by
Tian et al. [46]: Before data collection (for instance, in the course
of planning a clinical trial), it is advisable to pre-select 𝜏 based
on clinical and feasibility considerations. If pre-selection of 𝜏 is
not possible (e.g., when the analysis is conceived after data collec-
tion), Tian et al., suggest to explore a data-dependent time win-
dow for 𝜏 and to select the time horizon based on the empirical
behavior of the observed times in this window (e.g., by comput-
ing quantiles of 𝑇̃ , as done in our simulations). Alternatively, the
RMST could be modeled as a function of 𝜏, as suggested by Zhong
& Schaubel [47].

We finally note that pseudo-value-based RMST modeling is not
restricted to the use of random forest regression. In this work, we
focused on random forests because this method is considered to
be “among the best “off-the-shelf” supervised learning methods
that are available” [48]. In particular, random forests are known
to perform well on medium-sized data (as often encountered in
medical applications), with several efficient software implemen-
tations being available [49]. However, it is of course possible to
extend our approach to other statistical modeling or machine
learning techniques, e.g., to gradient boosting [27] or deep neural
networks [32, 50, 51].
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Appendix A

Simulation Study

Covariance Matrix of the Continuous Covariates

TABLE A1 | Covariance matrix of the continuous covariates 𝑋(𝑗), 𝑗 =
1, . . . , 5.

𝑿(1) 𝑿(2) 𝑿(3) 𝑿(4) 𝑿(5)

𝑋(1) 1.00 −0.08 −0.47 0.73 −0.44
𝑋(2) −0.08 1.00 0.85 −0.05 −0.31
𝑋(3) −0.47 0.85 1.00 −0.38 −0.33
𝑋(4) 0.73 −0.05 −0.38 1.00 −0.37
𝑋(5) −0.44 −0.31 −0.33 −0.37 1.00

Values of the Time Horizon 𝝉

TABLE A2 | Time horizons 𝜏 used in the simulation study.

Scenario
Censoring
proportion 𝒒50% 𝒒60% 𝒒70% 𝒒80% 𝒒90%

1 25% 1.72 2.81 4.64 8.08 16.95
50% 1.09 1.56 2.23 3.28 5.24
75% 0.40 0.55 0.74 1.02 1.52

2 25% 1.37 2.38 4.26 8.19 19.64
50% 0.78 1.15 1.68 2.51 4.07
75% 0.23 0.32 0.44 0.62 0.92

3 25% 1.41 1.83 2.05 2.23 2.74
50% 0.64 0.88 1.07 1.22 1.65
75% 0.31 0.42 0.55 0.64 0.86

4 25% 1.22 1.67 2.03 2.19 2.77
50% 0.52 0.74 1.01 1.14 1.57
75% 0.20 0.27 0.36 0.43 0.60

Note: Note that 𝑞70% is approximately equal to the transition time 𝑡0 in Scenarios 3
and 4.

Appendix B

Specification and Implementation of the Methods

The simulation study and the application were carried out in R, ver-
sion 4.1.2 [33]. Data for the simulation study were generated using the

R package simstudy, version 0.7.1 [52]. Pseudo-values for the RMST, as
defined in Equation (2), were calculated using thepseudomean function
of the R package pseudo, version 1.4.3 [53].

The CART random forest was implemented using the R packageranger,
version 0.15.1 [49]. The number of trees was set to 500. Data for tree
building was sampled without replacement from the complete data using
a sampling fraction of 0.632. The number of candidate split variables
in each node (“mtry”) was tuned using five-fold cross validation. In
each tree, the minimum number of observations required to perform
an additional split was set to 5. In order to avoid overoptimism in the
cross-validation procedure, we computed separate sets of pseudo-values
in each of the training and test folds. There were no restrictions on the
tree depth and the minimum number of observations in the leaf nodes.

The conditional random forest was implemented using cforest func-
tion of the R package partykit, version 1.2.20 [54]. The number of
trees was set to 500. By default, cforest implements sampling with-
out replacement from the complete data, using a sampling fraction of
0.632. The number of candidate split variables in each node was tuned
using five-fold cross validation. In order to avoid overoptimism in the
cross-validation procedure, we computed separate sets of pseudo-values
in each of the training and test folds. In each tree, a minimum of 20 obser-
vations was required to perform a split, and each leaf node was required
to contain a minimum of 7 observations. There was no restriction on the
depth of the trees.

The Lognormal, Cox, and Reference methods were implemented using the
R package survival, version 3.5.7 [55]. GEE and GEE (log) were imple-
mented using the R package geepack, version 1.3.9 [56].

Permutation feature importance values were calculated as

PFI𝑗 =
WRSSperm,𝑗

WRSSorig , (B1)

where WRSSorig denotes the WRSS calculated from the unpermuted data
and WRSSperm,𝑗 denotes the respective WRSS calculated from data with
randomly permuted values of the 𝑗-th covariate. Local Shapley values
were calculated using the R package iml, version 0.11.2 [57].

The R-code for the simulation study is available at https://www.imbie.
uni-bonn.de/cloud/index.php/s/6gmJQmayFAMJZHk.
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Appendix C

Simulation Results for Censoring Proportions 25% and 75%

FIGURE C1 | Results of the simulation study (25% censoring). The upper panels present the average RMSE (7), as obtained from the RMST estimates
at different values of 𝜏. The lower panels present the average RMSE for the treatment effect (9). The dashed black lines refer to the correctly specified
Cox PH model (Reference).

FIGURE C2 | Results of the simulation study (75% censoring). The upper panels present the average RMSE (7), as obtained from the RMST estimates
at different values of 𝜏. The lower panels present the average RMSE for the treatment effect (9). The dashed black lines refer to the correctly specified
Cox PH model (Reference).
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Appendix D

Simulation Results on Unseen Data

FIGURE D1 | Results of the simulation study (25% censoring). The upper panels present the average RMSE (7), as obtained from the RMST estimates
at different values of 𝜏. The lower panels present the average RMSE for the treatment effect (9). All RMSE and RMSEΔ values were obtained by applying
the model fits from Section 4 to independent data sets of size 𝑛test = 1000 each that were generated according to Scenarios 1–4. The dashed black lines
refer to the correctly specified Cox PH model (Reference).

FIGURE D2 | Results of the simulation study (50% censoring). The upper panels present the average RMSE (7), as obtained from the RMST estimates
at different values of 𝜏. The lower panels present the average RMSE for the treatment effect (9). All RMSE and RMSEΔ values were obtained by applying
the model fits from Section 4 to independent data sets of size 𝑛test = 1000 each that were generated according to Scenarios 1–4. The dashed black lines
refer to the correctly specified Cox PH model (Reference).
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FIGURE D3 | Results of the simulation study (75% censoring). The upper panels present the average RMSE (7), as obtained from the RMST estimates
at different values of 𝜏. The lower panels present the average RMSE for the treatment effect (9). All RMSE and RMSEΔ values were obtained by applying
the model fits from Section 4 to independent data sets of size 𝑛test = 1000 each that were generated according to Scenarios 1–4. The dashed black lines
refer to the correctly specified Cox PH model (Reference).

Appendix E

Simulation Results for the Reduced Candidate Covariate Set (50% Censoring)

FIGURE E1 | Results of the simulation study (50% censoring). The upper panels present the average RMSE (7), as obtained from the RMST estimates
at different values of 𝜏. The lower panels present the average RMSE for the treatment effect (9). All RMSE and RMSEΔ values were obtained by applying
the methods from Section 3 with the reduced candidate covariate set (excluding 𝑋(2) and 𝑋(7)). The dashed black lines refer to the correctly specified
Cox PH model (Reference).
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Appendix F

Application

Patient and Tumor Characteristics of the SUCCESS-A Study Data

TABLE F1 | Descriptive summary of the SUCCESS-A study data.

Characteristic Patients (n = 3 754)

Age (years) Mean (SD) 53.5 (10.5)
Median [Min, Max] 53.0 [21.0, 86.0]

BMI (𝑘𝑔∕𝑚2) Mean (SD) 26.3 (5.03)
Median [Min, Max] 25.4 [15.4, 53.4]

Tumor stage pT1 1552 (41.3%)
pT2 1929 (51.4%)
pT3 198 (5.3%)
pT4 52 (1.4%)

Missing 23 (0.6%)
Tumor grade G1 176 (4.7%)

G2 1783 (47.5%)
G3 1773 (47.2%)

Missing 22 (0.6%)
Lymph node status pN+ 2452 (65.3%)

pN0 1273 (33.9%)
Missing 29 (0.8%)

Tumor type ductal 3060 (81.5%)
lobular 419 (11.2%)
other 253 (6.7%)

Missing 22 (0.6%)
ER ER- 1252 (33.4%)

ER+ 2481 (66.1%)
Missing 21 (0.6%)

PR PR- 1525 (40.6%)
PR+ 2205 (58.7%)

Missing 24 (0.6%)
HER2 HER2- 2787 (74.2%)

HER2+ 883 (23.5%)
Missing 84 (2.2%)

Menopausal status pre 1565 (41.7%)
post 2189 (58.3%)

Treatment group Control 1898 (50.6%)
Interventional 1856 (49.4%)

Definition of Molecular Tumor Subtypes

TABLE F2 | Definition of molecular tumor subtypes in the SUCCESS-A study data.

Subgroup HER2 ER/PR grade

HER2 positive HER2+ any any
Luminal A-like HER2− ER+ and/or PR+ G1 or G2
Luminal B-like HER2− ER+ and/or PR+ G3
Triple-negative HER2− ER− and PR− any
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Cross-Validated Results Obtained From the SUCCESS-A Study Data

FIGURE F1 | Five-fold-cross-validated analysis of DFS in the SUCCESS-A study. Panel (A) shows the square root of the WRSS (measured in years)
and the treatment effect Δ̂(𝜏) (measured in days). The dots represent the five-fold cross-validated values of

√
WRSS and Δ̂(𝜏), while the bars refer to the

respective ranges of
√

WRSS and Δ̂(𝜏) in the five folds. Panel (B) shows the permutation feature importance of each covariate for the conditional random
forest. The dots represent the five-fold cross-validated values of PFI𝑗 and the bars refer to the respective ranges in the five folds of the cross-validation
procedure.
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90

4 Discussion with references

Accurate and efficient risk quantification by time-to-event models is a crucial challenge in

patient care. As the amount of routinely collected clinical data continues to grow, there is a

rising demand for advanced modeling techniques in time-to-event analysis that enable au-

tomated, data-driven selection of the most informative covariates. Ideally, such algorithms

should not only identify relevant covariates from a large set of candidates but also capture

interactions and complex relationships among them. This would eliminate the need for pre-

specifying covariate effects within model equations, increasing flexibility and reducing man-

ual variable pre-selection. Moreover, advanced modeling approaches for clinical time-to-

event data should be applicable across diverse scenarios and data structures, which can

be achieved by minimizing restrictive assumptions, further enhancing flexibility. Within this

dissertation, well-established and newly developed modeling approaches for survival proba-

bilities and RMSTs are discussed in this context and evaluated in numerical experiments and

on different datasets from clinical studies. The publications in this cumulative dissertation en-

compass the development of a Cox-based scoring system and novel pseudo-value regression

techniques based on machine learning approaches.

In clinical practice, simple scoring systems for time-to-event outcomes have long been used

for risk stratification. For example, the acute physiology score (APS) was originally developed

to assess the risk of death in intensive care unit patients (Knaus et al., 1981). However, since

APS is calculated from a large number of physiological measures, simpler versions, such as

the simplified acute physiology score (SAPS), SAPS II and SAPS III, were introduced later (Le

Gall et al., 1984; Le Gall et al., 1993; Vazquez et al., 2003). This reflects the ongoing need

for scoring systems that are easy to apply and provide accurate risk quantification. While

these tools often apply to a broad population, covering all age groups or encompassing a

wide range of comorbidities, simple scoring systems like PIRATE (Publication 1) are essential

for risk assessment in a target population (Schenk et al., 2023). Elderly patients (≥ 80 years)

represent a particularly vulnerable group when it comes to mortality risk, especially in the con-

text of interventions with anesthesia. Their age-related physiological decline, comorbidities,
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and increased frailty make them more susceptible to complications compared to younger age

groups (POSE study group, 2021). Existing risk assessment tools often target a broader age

range or focus on elderly patients with undergoing a specific type of intervention (Manach

et al., 2016). In contrast, PIRATE is tailored for all elderly patients, regardless of comorbidi-

ties, requiring elective or emergency surgery, and encompasses all intervention types, from

minor to major. Fast and reliable pre-interventional risk stratification with PIRATE can help

clinicians to make multidisciplinary informed shared decisions regarding pre-interventional

optimization, peri-interventional monitoring and post-interventional patient care of the elderly

population. PIRATE is an easy-to-use tool in clinical practice for patient admission but re-

quires external validation for a routine implementation. One limitation of PIRATE include the

reliance on a Cox model assuming the HR to be time-constant. In clinical data, verifying the

PH assumption (or distributional assumptions as required for AFT models) is often challeng-

ing, and in many cases, the assumptions do not hold reliably. Modeling time-varying hazards

to address violated PH assumptions within the Cox framework is challenging due to the lack

of information on changes over time. Further, the development of PIRATE is based on a step-

wise manual evaluation of risk factors and performance measures, making this development

process hardly repeatable on other clinical datasets. All these considerations underscore the

need for more flexible but interpretable modeling approaches for time-to-event outcomes with

less restrictive assumptions.

The presented PRT and PVRF methods in Publications 2 and 3 combine pseudo-value re-

gression and machine learning techniques, thereby avoiding distributional assumptions on the

survival time or on the proportionality of HRs (Schenk et al., 2024; Schenk et al., 2025). The

application of regression trees and gradient boosting in PRT ensures data-driven variable se-

lection and the modeling of interactions (Hothorn et al., 2006; Bühlmann and Hothorn, 2007).

The monotonic spline base-learner for the time component in the node-wise gradient boost-

ing models additionally allow for capturing time-varying effects. As both the regression tree

and the gradient boosting with simple linear base-learner produce interpretable estimates,

their combination remains interpretable. Particularly, the terminal nodes of the regression
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tree correspond to patient subgroups, with gradient boosting assigning interpretable additive

models to each subgroup. PRT showed superior performance in estimating survival probabil-

ities compared to GEE and other (machine-learning) methods in a comprehensive simulation

study, especially in the presence of interactions or complex covariate structures (Schenk et al.,

2024). Similar to PRT, the PVRF approach provides comparable advantages in modeling the

RMST, leveraging the characteristics of pseudo-values and random forests (Breiman, 2001).

Moreover, the proposed g-computation formula for RMST differences is particularly useful in

non-randomized studies, when treatment effects need to be corrected for higher-dimensional

sets of confounders, but can also be applied in RCTs, as demonstrated on the SUCCESS-A

study data (Robins, 1986; Snowden et al., 2011; de Gregorio et al., 2020). This allows for

the causal interpretation of treatment effects (assuming no unmeasured confounding), even

though only the observed outcomes under either treatment or non-treatment, but not the coun-

terfactual ones, are available for each patient. Numerical experiments including scenarios

with interactions and time-varying treatment effects (i.e., violated PH assumption) show that

the PVRF method provides accurate estimates of RMST values and RMST-based treatment

effects and that the PVRF method outperforms modeling approaches like the Cox model,

an AFT model or the GEE approach (Schenk et al., 2025). Using data of the SUCCESS-

A study, it has been demonstrated that survival probability estimates derived by PRT and

RMST estimates derived by PVRF, remain interpretable, either through the algorithm itself

(PRT) or by calculating IML measures (PVRF) (de Gregorio et al., 2020). Notably, post-hoc

IML measures explain covariate effects without relying on additional model assumptions. For

instance, Shapley values leverage methods from game theory without assuming a specific

modeling process (Molnar, 2022). The application of both methods on the SUCCESS-A data

validated results previously reported in breast cancer literature and confirmed widely recog-

nized treatment guidelines (Coates et al., 2015; Senkus et al., 2015). Deriving estimates for

a new patient using PRT and PVRF is more complex than for the easily memorable PIRATE.

However, implementing these methods as user-friendly applications, similar to the web-based

PIRATE tool, would enable equally simple and accessible use in clinical practice.
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The modeling approaches presented in this dissertation contribute to the expanding literature

on pseudo-value regression combined with machine learning for time-to-event outcomes,

highlighting both the flexibility of pseudo-value regression and the need for new modeling

approaches of this type (Zhao and Feng, 2020; Zhao, 2020; Feng and Zhao, 2021; Rahman

et al., 2021; Rahman and Purushotham, 2022). While PRT provides interpretable estimates

without the need for IML techniques, many of these approaches include deep neural networks,

falling into the category of hardly interpretable black-box models. Beyond that, deep neural

networks typically require large datasets to achieve good performance and avoid overfitting. In

contrast, PRT and PVRF are specifically designed to perform well on medium-sized datasets,

which are commonly encountered in clinical studies. While deep neural networks can handle

high-dimensional data, they can also process unstructured data like medical images, which is

not yet possible with the methods discussed in this thesis. However, PVRF in particular offers

new insights into the causal estimation of treatment effects, providing results that are easy to

interpret and effectively support risk communication.

While the presented methods offer numerous advantages and perform well on simulated and

clinical data, they also have limitations. For right-censored data, pseudo-value regression ad-

dresses the challenge of incompletely observed survival times by replacing them with pseudo-

values calculated for the outcome of interest. For calculating of pseudo-values in PRT and

PVRF, only the independent censoring assumption, required for the Kaplan-Meier estimator,

is necessary. However, relating the pseudo-values to covariates, this assumption needs to

be extended to the slightly stronger conditional random censoring assumption for consistent

estimation of covariate effects (Graw et al., 2009; Overgaard et al., 2017). If this assump-

tion is violated, the pseudo-value technique proposed by Overgaard et al. (2019) could be

used to adapt the PRT and PVRF approaches appropriately. Similarly, pseudo-values can

straightforwardly be adapted to discrete survival times T , provided a consistent estimator for

the outcome of interest is available (Tutz and Schmid, 2016). Both PIRATE and PRT are de-

signed to model survival probabilities at one or K time points, respectively. Future adaptions

on PRT comprise the investigation of the optimal grid of time points to maximize performance.
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These include investigations on the distance between the time points and the minimum num-

ber of time points required for reliable estimates. Similarly, the PVRF approach models the

RMST for one time-horizon τ . One extension of PVRF could be to model the RMST on a

grid of time horizons simultaneously and to investigate the performance on time horizons not

used for model fitting (Zhong and Schaubel, 2022). This could be accomplished by applying

an adapted PRT algorithm to pseudo-values for the RMST across a grid of time horizons.

PRT is particularly suited for this task, as it is designed to handle multivariate inputs with time-

varying effects. Taken together, these extensions would further enhance the flexibility of PRT

and PVRF.

In general, time-to-event analysis is not restricted to analyzing one single event of interest,

as considered in this dissertation. Instead, it covers a range of different scenarios, often

occurring in clinical research. For example, within the competing risks setting, more than

one event of interest, such as death from cancer or death from heart disease, are analyzed

competitively. Another scenario is the illness-death model, representing a multi-state model

estimating the probability of transitioning between three stages (disease-free, diseased and

dead). Both the competing events and multi-state settings require special techniques to be

analyzed. However, among others, pseudo-value approaches are available for these settings,

for example based on the Aalen-Johansen estimator for the cumulative incidence function for

the competing risks setting (Andersen and Pohar Perme, 2010). With this, the extension

of methods like PRT and PVRF to competing risks or multi-state settings is straightforward

(Andersen et al., 2003; Klein and Andersen, 2005; Andersen and Pohar Perme, 2010). All

approaches discussed in this dissertation can handle right-censored time-to-event data, the

most common type of censoring in clinical research. However, other censoring mechanisms,

such as left- and interval-censoring, can also occur (Kalbfleisch and Prentice, 2002). Left-

censoring arises when an event is known to have happened before a certain time but the

exact timing is unknown. Interval-censoring is characterized by the event known to have

happened within a specific time interval with fixed or random limits (Kalbfleisch and Prentice,

2002). The presented modeling approaches do not yet account for left- or interval-censoring.
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As a final note, the methods presented in this dissertation are not limited to the application in

clinical research. They can be readily applied to other research fields, including economics,

social sciences, health services research, and environmental sciences. Here, common sur-

vival time examples include the time until a borrower defaults on a loan, the duration of unem-

ployment before securing a job, the time until nursing home admission, or the progression of

a wildfire to a specific location. All these examples involve right-censored time-to-event data,

for which the presented methods are specifically designed.

4.1 Conclusion

The discussed approaches extend existing time-to-event models, providing interpretable esti-

mates of survival probabilities, RMSTs, and causal treatment effects. PIRATE offers a fast and

reliable risk assessment tool for the elderly which can be easily implemented in clinical prac-

tice. With less restrictive assumptions, PRT and PVRF offer a high flexibility to be applied to

data from observational studies and RCTs. These approaches perform well in medium-sized

datasets while automatically selecting main effects, interactions, non-linear, and time-varying

effects from a given set of covariates, where standard methods often fail or require manual

inclusion of prior knowledge. Thus, PRT and PVRF represent flexible alternatives to existing

modeling approaches showing convincing performance and interpretability in different data

situations.
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