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Abstract 

In drug discovery, chemical language models (CLMs) inspired by natural language 

processing (NLP) provide innovative solutions for molecular design. CLMs learn the 

vocabulary, syntax, and conditional probabilities of molecular representations, 

enabling various sequence-to-sequence mappings. Leveraging neural language 

architectures, particularly transformers with multi-head self-attention and parallel 

processing, CLMs effectively handle diverse sequence types, enabling efficient 

training and molecular translation tasks. Their versatility in machine translation and 

property conditioning opens new opportunities for generative molecular design. This 

dissertation investigates the development and application of chemical and biochemical 

language models (LMs) for various medicinal chemistry and drug design challenges, 

including activity cliff (AC) prediction, highly potent compound design, analogue 

series extension, and active compound generation from protein sequences. The first 

project focused on conditional transformers (DeepAC) for predicting ACs and 

designing new AC compounds. During pre-training, the models learned source-to-

target compound mappings from diverse activity classes, conditioned on potency 

differences caused by structural modifications. Fine-tuning enabled accurate 

generation of target compounds satisfying potency constraints bridging between 

predictive modeling and compound design. The subsequent study generalized 

predictions beyond ACs to design highly potent compounds from weakly potent 

templates across unseen activity classes. Further, the next study incorporated meta-

learning, enabling effective generative design even in low-data regimes. Building on 

these predictive capabilities, the second project developed the DeepAS models for 

iterative analogue series (AS) extension in lead optimization. The initial DeepAS 

model predicted substituents for AS arranged by ascending potency, successfully 

reproducing AS across various targets from which the terminal (most potent) analogue 

was removed. DeepAS 2.0 expanded this approach to multi-site AS extension using a 

BERT-based architecture, while DeepAS 3.0 integrated structure–activity relationship 

matrix (SARM) formalism, enabling core modifications in AS with multiple 

substitution sites. The final project extended CLMs into the biochemical domain by 

developing a dual-component LM combining a pre-trained protein language model 



 
 

(PLM) with a conditional CLM. This model learned mappings from protein sequence 

embeddings conditioned on potency to active compounds; it consistently reproduced 

known compounds with varying potency across various activity classes not 

encountered during training. Additionally, the biochemical LM generated structurally 

diverse candidate compounds departing from both fine-tuning and test compounds. 

Taken together, this thesis highlights the promising capability of CLMs to address 

previously challenging or unfeasible prediction scenarios in molecular design, 

providing new opportunities for advancing in medicinal chemistry and drug discovery. 
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Chapter 1  

Introduction 

 

1.1 Drug discovery 

Small molecule drug discovery is a complex, interdisciplinary process aimed at 

identifying, optimizing, and developing new pharmaceutical products. It typically un-

folds across six distinct stages, each presenting unique scientific challenges: 1) target 

discovery, 2) hit discovery, 3) hit-to-lead generation, 4) lead optimization, 5) in vivo 

activity, absorption, distribution, metabolism, excretion (ADME) and toxicology op-

timization in animal models, and 6) human clinical trials.1 The process begins with 

target discovery, where new biological targets relevant to a specific disease are iden-

tified. A critical aspect of this stage is understanding the target's role in the disease's 

underlying biological mechanisms.2 Once a viable target is established, hit discovery 

follows, aiming to identify small-molecule compounds that modulate the target's ac-

tivity. Traditionally, this is achieved through high-throughput screening (HTS), where 

hundreds of thousands of compounds are tested against the target protein to identify 

potential modulators.3 The subsequent hit-to-lead and lead optimization stages focus 

on refining the physicochemical and biological properties of identified compounds. 

Structure-Activity Relationship (SAR) studies guide this optimization, enhancing po-

tency, selectivity, and other key pharmacological properties. In parallel, ADME and 

toxicology assessments are conducted, initially in vitro and later in vivo, to evaluate 

the compounds' pharmacokinetic profiles and ensure their safety for clinical trials. 

Each stage in this pipeline is scientifically demanding, time-consuming, and costly. 

Contrary to Moore's law, which predicts exponential growth in computing power, 

Eroom's law observes a steady decline in pharmaceutical productivity, with the num-

ber of FDA-approved drugs per billion US dollars invested halving approximately 

every nine years since 1950.4 The estimated cost of developing a new drug now 

reaches up to $3 billion,5 with the entire process typically spanning 10 to 15 years, and 

clinical trials alone consuming nearly a decade.6 The overall success rate from initial 
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in vitro screening to market approval is estimated to be below 0.01%.4 Historically, 

only about 1,900 compounds have received FDA approval,7,8 despite at least 119 mil-

lion synthesized and researched molecules.9 Notably, a significant proportion of mar-

keted pharmaceuticals resulted from serendipitous discoveries.10 The pharmaceuti-

cally relevant chemical space is vast, estimated to contain between ~ 10³⁰ and 10⁶⁰ 

possible molecules,11 yet less than 109 have been synthesized  and explored. This high-

lights the immense challenge of molecular discovery, which requires multi-property 

optimization in a practically infinite discrete search space. Traditionally, this process 

has been driven by medicinal chemists' empirical knowledge, synthetic intuition, and 

experience. While invaluable, these approaches are inherently biased, ad hoc, and non-

exhaustive, underscoring the need for innovative strategies to navigate this vast chem-

ical landscape. 

1.1.1 Traditional Computer-Aided Drug Discovery 

To standardize the traditionally subjective process of drug discovery, computa-

tional approaches have become indispensable. Various computer-aided drug design 

(CADD) methods have been developed and widely adopted, encompassing two pri-

mary strategies: structure-based drug design (SBDD) and ligand-based drug design 

(LBDD), each with distinct requirements. SBDD relies on three-dimensional (3D) 

structural information, such as X-ray crystallography or cryo-electron microscopy 

(cryo-EM) structures of proteins and protein-ligand complexes, to identify binding 

sites and optimize ligand binding affinity. For example, docking calculations employ 

scoring functions to evaluate receptor-ligand interactions and estimate binding ener-

gies.12–14 Additionally, molecular dynamics (MD) simulations use highly parameter-

ized force fields to calculate atomic interactions and system energies, providing dy-

namic ligand binding poses and enabling detailed contact analysis for drug design.15 

Free energy perturbation (FEP) methods have also been introduced to predict the rel-

ative potencies of congeneric compounds in structure-based settings.16,17 At the ligand 

level, LBDD focuses on non-linear quantitative structure–activity relationship (QSAR) 

analysis,18 building predictive models that correlate molecular structure with biologi-

cal activity or physicochemical properties by leveraging machine learning (ML) tech-

niques. 
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1.1.2 Machine Learning in Drug Discovery 

The integration of ML has significantly expanded the scope of QSAR modeling, 

enabling the capture of non-linear relationships for molecular activity and property 

predictions.18 ML models such as support vector machines (SVMs)19 and random for-

ests (RFs)20 are commonly applied to binary classification tasks, predicting whether a 

compound is active or inactive against a target of interest.21 These models are trained 

on datasets comprising known active compounds alongside randomly selected inactive 

compounds. Deep learning (DL) has further advanced data-driven modeling by ana-

lyzing large and diverse datasets, extracting complex non-linear patterns for compound 

potency predictions.22 Various neural network (NN) architectures have been employed, 

including convolutional NN (CNN),23 recurrent NN (RNN),24 graph convolutional net-

work (GCN),25 and message-passing NN (MPNN).26 However, DL models require ex-

tensive training data to learn internal parameters effectively, posing challenges in 

early-phase drug discovery where data availability is limited.27 Assessing ML/DL 

models for quantitative compound potency prediction in benchmarking settings also 

presents challenges. In particular, benchmark predictions from different ML/DL mod-

els are often separated from randomized predictions by only small error margins, mak-

ing it difficult to unambiguously evaluate the relative model performance.28 Due to 

data scarcity and inherent evaluation limitations, no universally accepted criteria cur-

rently exist for prioritizing ML approaches in quantitative compound potency predic-

tions.28 In addition to qualitative activity classification, semi-quantitative approaches 

can be attempted by deep generative models (DGMs), which aim to generate mole-

cules with desired properties such as highly potency, thus providing a complementary 

approach to traditional potency prediction.22  

 

1.2 Molecular Representations 

Representing molecular data concisely and unambiguously while capturing all rel-

evant structural and chemical characteristics is crucial for applying ML/DL in drug 

discovery. Effective molecular representations should be interpretable by both humans 

and machines while providing sufficient information for computational processing. To 

meet these requirements, various molecular representation formats have been 
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developed over the years, with fingerprints, molecular graphs, and Simplified Molec-

ular Input Line-Entry System (SMILES) being among the most commonly used (Fig-

ure 1). 

 

Figure 1: Molecular representations. The most commonly used include (a) 

Fingerprints, which encode local substructures as bits, (b) Molecular graph, in which 

nodes correspond to atoms and edges represent chemical bonds, and (c) SMILES 

strings, which use specific characters to encode atoms, bonds, branches, aromaticity, 

rings, and stereochemistry of molecules. 

 

1.2.1 Fingerprints 

Molecular fingerprints encode the presence (or absence) of substructures within 

molecules, typically in a sparse vector format. They generally fall into two categories: 

(1) substructure-key fingerprints based on matching molecular substructures of an ex-

pert-defined set and (2) topology-based fingerprints that use algorithmic enumeration 

and hashing of molecular substructures. In substructure key-based fingerprints, mole-

cules are encoded using a predefined dictionary of structural features, where each bit 

position corresponds to a specific substructure. One commonly used example is the 

Molecular ACCess System (MACCS) fingerprint, which includes 166 predefined 

structural keys.29 In contrast, topology-based fingerprints use a hashing function to 

encode structural features. A prominent example is the Extended Connectivity 
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Fingerprint (ECFP),30 which is based on the Morgan algorithm.31 ECFPs encode cir-

cular atom environments up to a specified radius, typically using a fixed-length bit 

vector (e.g., 1024 or 2048 bits). Beyond two-dimensional (2D) fingerprints, 3D mo-

lecular representations incorporate spatial properties such as molecular conformation 

and topology.32,33 Examples include protein-ligand interaction fingerprints like the 

Protein-Ligand Extended Connectivity Fingerprint (PLEC)34 and Extended Connec-

tivity Interaction Features (ECIF)35 which capture 3D binding interactions. A key lim-

itation of fingerprint-based representations is their inconvertibility, meaning the com-

plete molecular structure cannot be directly reconstructed from a fingerprint.36 Despite 

this, fingerprints remain widely used in ML-based classification tasks, such as distin-

guishing active from inactive compounds for a given target. 

 

1.2.2 Molecular Graph 

Molecules can be represented as undirected graphs, where nodes correspond to 

atoms and edges represent chemical bonds. Each node is labeled with an atomic iden-

tity, while edges indicate bond valence. Formally, a molecular graph is defined as G = 

(V, E), where nodes vi ∈ V represent atoms, and edges (vi, vj) ∈ E define the bonds 

between atoms vi and vj. The adjacency matrix of a molecular graph encodes structural 

information by listing atomic numbers along the main diagonal and indicating connec-

tivity between atoms through bond type values (e.g., single, double, triple, or aromatic 

bonds).37,38 Molecular graph representations have been widely adopted in combination 

with CNN or graph neural networks (GNNs) for predictive modeling. However, they 

require significant memory due to the large amount of information necessary to encode 

a single molecule. To address this limitation, one-dimensional (1D) sequence-based 

representations such as SMILES have been developed, providing a more compact and 

human-readable alternative.39 
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1.2.3 SMILES 

Sequence-based representations use linear strings to encode molecular structures, 

offering simplicity in processing and storage. The most widely used 1D formats are 

the International Chemical Identifier (InChI) and SMILES. InChI, developed by IU-

PAC, encodes molecular structures hierarchically, capturing detailed chemical infor-

mation such as charge and stereochemistry.40 However, InChI strings tend to be 

lengthy and complex, particularly for large molecules. To improve searchability and 

retrieval, a hashed version called InChIKey was introduced. Despite its structural com-

prehensiveness, InChI's intricate syntax and valency/branching constraints make it less 

practical for use in LMs.41 In contrast, SMILES provides a more intuitive, compact 

string-based representation, using specific characters to denote atoms, bonds, branches, 

aromaticity, rings, and stereochemistry.42 This character-level encoding facilitates ef-

ficient tokenization, making SMILES the preferred input format for molecular LMs. 

However, a key challenge with SMILES is its non-uniqueness—multiple valid 

SMILES strings can represent the same molecule. This variability can be addressed 

through canonicalization, which standardizes SMILES strings, or by leveraging mul-

tiple representations as a data augmentation strategy, enhancing molecular property 

prediction43–45 and molecular generation.46,47 In generative modeling, SMILES strings 

are typically converted into one-hot encodings, enabling models to learn categorical 

distributions. However, a common issue is the generation of invalid SMILES strings, 

often caused by mismatched ring closure symbols or bond valence violations. To mit-

igate this, DeepSMILES was introduced, modifying SMILES syntax to eliminate un-

balanced parentheses.48 SELF-referencIng Embedded Strings (SELFIES) further ad-

dressed validity concerns by enforcing valence-bond constraints through predefined 

derivation rules.49 Unlike SMILES, SELFIES inherently guarantee 100% validity dur-

ing generation by ensuring proper branch lengths and ring closures. Nevertheless, 

SELFIES strings can sometimes be too short to represent meaningful molecular struc-

tures. Despite these alternatives, canonicalized SMILES remains the most widely used 

format in generative molecular models due to its compatibility with language modeling 

and sequence generation. 
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1.3 Deep Generative Models for Molecular Design 

DGMs have attracted increasing attention in molecular design due to their ability 

to learn implicit chemical knowledge from data by identifying structural patterns—

such as valency rules, reactive groups, molecular conformations—to generate mole-

cules with desired properties. Unlike rules-based or enumeration methods that rely on 

predefined chemical rules, DGMs operate more autonomously, reducing the likelihood 

of producing non-synthesizable molecules with unstable groups. DGMs are primarily 

categorized based on the molecular representation they employ, typically SMILES 

strings or molecular graphs. Correspondingly, these models can be classified into se-

quence-based models and graph-based models. DGMs not only generate molecules 

with targeted properties but also explore broader chemical space by leveraging biased 

learning methods that guide generation towards molecules meeting specific conditions 

or exhibiting analogous structures and chemical properties.50–53 Additionally, DGMs 

effectively map large areas of chemical space by learning chemical rules that facilitate 

molecular structure reconstruction from encoded representations.54,55 Their cost-effec-

tiveness and time efficiency further boost their application in modern molecular design. 

 

1.3.1 Variational Autoencoders  

Variational autoencoders (VAEs) extend the classical autoencoders (AEs) frame-

work, which consists of an encoder that transforms input data into a lower-dimensional 

latent vector and a decoder that reconstructs the original input from this latent repre-

sentation,56 as illustrated in Figure 2. While AEs focus on accurate input reconstruction, 

VAEs introduce regularization by modeling the latent space as probability distribu-

tions rather than discrete points, enhancing the model's generalization capacity. The 

first VAE-based generative model for molecular de novo design was introduced in 

2018.57  Recent advancements have aimed at achieving disentangled representations 

in VAEs, where each latent variable encodes a distinct molecular property. In molec-

ular generation, disentangled VAEs such as ChemVAE,57 GrammarVAE,58 and SD-

VAE59 allow fine-tuning of specific molecular properties by adjusting the correspond-

ing latent variables. Conditional VAEs (CVAEs) extend the VAEs framework by in-

corporating molecular properties into the encoding process, enabling the generation of 
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drug-like molecules with user-defined properties and allowing property control with-

out compromising overall molecular structure.60 Additionally, Adversarial autoencod-

ers (AAEs) offer an alternative to VAEs by introducing adversarial training, where the 

encoder maps inputs to a latent space while a discriminator attempts to distinguish 

encoded points from samples drawn from a predefined distribution.61 Notable AAE-

based models have shown promise in generating chemically diverse molecules with 

tailored properties.62–65 

 

Figure 2: Variational autoencoder. Shown is a schematic representation of the VAE 

architecture, comprising input, encoder, latent space, decoder, and output modules. 

During training, input molecules are encoded into a continuous latent space. For gen-

eration, random points are sampled from this space and decoded to generate novel 

molecular structures. 

 

1.3.2 Generative Adversarial Networks  

Generative adversarial networks (GANs)66 adopt a fundamentally different ap-

proach from VAEs by not relying on an explicit probability density function. Instead, 

GANs employ an adversarial training framework consisting of two competing NNs: a 

generator and a discriminator (Figure 3). The generator aims to produce molecules that 

closely resemble real ones, while the discriminator attempts to distinguish between 

synthetic and real molecules. This adversarial process continues until the generator 

produces molecules that the discriminator can no longer reliably differentiate from real 

data. Early applications of GANs in molecular generation include models such as OR-

GAN67 and ORGANIC,68 which demonstrated the ability to generate a diverse array 

of new structures, some featuring entirely novel scaffolds.  
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Figure 3: Generative adversarial network. Schematic of the GAN framework com-

prising a generator and a discriminator. The generator learns to produce realistic mo-

lecular structures, while the discriminator distinguishes real from generated data. 

Through adversarial training, the generator improves its ability to generate convincing 

molecules. 

 

1.3.3 Graph Neural Networks  

GNNs extend CNNs to process graph-structured data, where nodes represent atoms 

and edges represent bonds.69 GNNs operate through pairwise message passing, ena-

bling nodes to update their representations by exchanging information with neighbor-

ing nodes70 (Figure 4). This trainable architecture makes GNNs particularly well-

suited for generating novel molecular graphs from databases of existing structures by 

encoding chemically relevant bonds and atoms directly as edges and nodes within a 

mathematical graph. Various GNN architectures have been applied in molecular de-

sign, including Graph Isomorphism Networks (GINs),71 Graph SAGE,72 Graph At-

tention Networks (GATNets),73 and Graph Convolutional Networks (GCNs).74 These 

architectures have been applied for prediction tasks such as protein–protein interac-

tions, protein–drug interactions, drug–disease interactions, and drug repurposing.  
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Figure 4: Graph neural network. Schematic of the GNN, where a molecular graph 

consists of atoms as nodes and chemical bonds as edges. The GNN operates through 

two key modules: message passing and node updates. During message passing, each 

node aggregates information from its neighbors based on the graph structure and node 

features, which is then processed through an activation function to update the node 

representation. This process is repeated across layers to capture higher-order depend-

encies, with the updated node representations used for molecule generation.  

1.3.4 Flow-Based Models 

Flow-based models explicitly define data densities through invertible transfor-

mations,75 as illustrated in Figure 5. Normalizing flows transform complex data den-

sities into simpler distributions via a series of differentiable functions, enabling the 

application of techniques such as Gaussian mixture modeling and log-likelihood max-

imization, which are especially useful in classification tasks. Compared to GANs and 

VAEs, flow-based models offer advantages such as eliminating output noise and en-

hancing training stability.76 In molecular generation, flow-based models construct mo-

lecular graphs by creating adjacency and feature matrices.77 Autoregressive versions 

of these models further improve validity and quality control by generating molecular 

graphs step-by-step.78,79 Additionally, strategies such as gradient ascent on a property 
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predictor77 or reinforcement learning (RL) have been employed to guide molecule gen-

eration, ensuring that generated structures align with desired properties.78,79 Hybrid 

approaches, like Graph Flow-VAE, combine VAE encoders with flow-based decoders 

to harness the strengths of both frameworks, enhancing molecular generation capabil-

ities.80 

 

Figure 5: Flow-based models. Schematic of the flow-based generative model, con-

sisting of a series of invertible transformations that map molecular data from the orig-

inal space to a latent space with a Gaussian distribution. During training, the model 

optimizes these transformations to maximize data likelihood. For generation, samples 

are drawn from the Gaussian latent space and transformed back through the learned 

inverse mappings to generate novel molecular structures. 

 

1.3.5 Diffusion-Based Models 

Diffusion-based models have gained considerable attention in molecular 

generation.81,82 Unlike flow-based models, diffusion processes do not require 

invertible transformations. These models operate in two distinct phases: during the 

forward process, stochastic noise is iteratively added to molecular data over a Markov 

chain, progressively transforming the data into a Gaussian distribution (Figure 6). 

Notably, this forward pass involves no trainable parameters. In the reverse process, a 

deep NN is trained to gradually denoise samples from the Gaussian distribution, 

reconstructing molecules with desired characteristics. One prominent example is the 

equivariant diffusion model (EDM),81 which simultaneously operates on categorical 

atom types and continuous atom coordinates, enabling the generation of 3D molecular 

structures while ensuring equivariance to Euclidean transformations. Despite their 
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promising results, diffusion-based models present challenges such as high 

computational demands and prolonged training and sampling times. 

 

Figure 6: Diffusion-based models. Schematic of the diffusion-based generative 

model, comprising two main components: the forward process (curved arrows), where 

noise is progressively added to the data, transforming it into a Gaussian distribution, 

and the reverse process (straight arrows), where data is reconstructed by iteratively 

removing noise through learned denoising steps.  

 

1.3.6 Recurrent Neural Networks  

Recurrent Neural Networks (RNN), originally introduced by Hopfield over 40 

years ago,83 are a class of NN designed to process sequential data (Figure 7). In 

molecular generation, RNNs are employed to handle 1D molecular representations, 

such as SMILES strings. An RNN processes molecular sequences token by token, 

using hidden states to retain contextual information across sequence steps. These 

hidden states are updated recurrently, allowing the network to capture sequential 

dependencies and generate chemically valid structures. However, RNNs encounter 

difficulties when learning long-range dependencies due to the vanishing or exploding 

gradient problem during backpropagation, especially in lengthy sequences. To address 

these challenges, variants such as Long Short-Term Memory (LSTM) units and Gated 

Recurrent Units (GRUs) were developed. These gated architectures incorporate 

trainable gating mechanisms that regulate information flow, effectively mitigating 

gradient-related issues and enabling the learning of long-term dependencies at the cost 

of increased model complexity. 84,85  
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Figure 7: Recurrent neural network. Shown is a schematic diagram of the RNN 

model. The RNN generation process is autoregressive: at each step, the model gener-

ates a probability distribution over all possible tokens based on inputs from the previ-

ous and current steps. A token is then sampled from this distribution as the output for 

the current step, which is used to predict the next token in the sequence. 

 

1.3.7 Transformer 

Transformers, introduced by Vaswani et al. in 2017,86 have surpassed RNNs in 

processing sequential data due to their ability to capture long-range dependencies 

through self-attention mechanisms. The basic transformer architecture, as illustrated 

in Figure 8, consists of multiple encoder-decoder neural modules equipped with atten-

tion mechanisms. Within this architecture, the encoder module comprises a stack of 

sub-layers, including a multi-head self-attention sub-layer and a fully connected feed-

forward network sub-layer. The encoder reads an input sequence and compresses it 

into a context vector in its final hidden state, which then serves as the input for the 

decoder. The decoder, consisting of a feed-forward sub-layer and two multi-head at-

tention sub-layers, reinterprets the context vector to generate an output sequence token 

by token. During training, both the encoder and decoder leverage the attention mech-

anism to comprehensively learn from the feature space. Unlike RNNs, Transformers 

process input sequences in parallel, enhancing efficiency and scalability.87 This 
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advantage has led to the development of various transformer variants, such as Bidirec-

tional Encoder Representations from Transformers (BERT),88 Generative Pre-trained 

Transformer (GPT),89 and Text-to-Text Transfer Transformer (T5),90 each tailored to 

different encoder-decoder architectures. Transformers commonly follow a pre-training 

and fine-tuning paradigm. In this framework, models are pre-trained on massive da-

tasets to learn general language representations, which can then be fine-tuned for spe-

cific downstream tasks. This scalability has enabled the creation of large pre-trained 

models, such as pre-trained BERT and GPT, further enhancing performance across 

diverse NLP applications. BERT, introduced by Google in 2018, employs an encoder-

only Transformer architecture to achieve bidirectional context understanding,88 as il-

lustrated in Figure 8. It consists of an embedding layer, multiple transformer encoder 

layers, and a task-specific output layer. In the embedding layer, input word tokens are 

embedded into a continuous vector space, and a pre-defined positional encoding vector 

is added to each embedding vector. In the encoder layers, each token exchanges infor-

mation with all others through the self-attention mechanism. The final layer typically 

includes a fully connected dense layer, which further processes the encoder’s output 

to address specific tasks such as text classification or next-sentence prediction. GPT, 

developed by OpenAI, adopts a decoder-only architecture comprising positional en-

coding, a masked multi-head self-attention module, a pointwise feed-forward network 

unit, and normalization operations,89 as illustrated in Figure 8. Unlike BERT, which 

uses a bidirectional approach by considering both left and right contexts, GPT employs 

a unidirectional approach, predicting the next word based solely on preceding words. 

This left-to-right method makes GPT particularly effective for natural language gen-

eration and creative writing. T5, introduced by Google in 2019, takes a unified ap-

proach to various NLP tasks, including machine translation. Rather than treating trans-

lation as a sequence-to-sequence task, T5 frames all NLP tasks as text-to-text tasks, 

where both inputs and outputs are treated as text strings.90 In translation, for instance, 

the source language text serves as the input, while the target language text serves as 

the output. This unified framework simplifies the translation process by enabling con-

sistent handling of diverse language mapping pairs. Pre-trained on a large corpus of 

text and fine-tuned on translation-specific data, T5 has achieved promising results in 

machine translation tasks. 
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Figure 8: Transformer model. Schematic of the basic transformer model, comprising 

multiple encoder-decoder modules with attention mechanisms. The encoder consists 

of layers with multi-head self-attention and a feed-forward network, processing the 

input sequence into a context vector passed to the decoder. The decoder, with a feed-

forward layer and two multi-head attention layers, generates the output sequence token 

by token. Transformer variants include encoder-only models (e.g., BERT), decoder-

only models (e.g., GPT), and encoder-decoder models (e.g., T5). 

 

1.4 Language Models in Drug Discovery 

Transformer-based LMs are designed to translate sequences of characters, making 

them highly versatile for various machine translation tasks.91 Their adaptability has led 

to widespread adoption in life sciences and other scientific fields.92,93 These models, 

often employing encoder-decoder architectures with attention mechanisms, exemplify 

the power of DL in enabling novel applications. A key strength lies in their capacity 

to learn mappings between diverse types of sequential or textual data representations, 
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opening opportunities for generative modeling across multiple biological modali-

ties.93,94,95  For example, sequence translation tasks may involve mapping between 

compounds, proteins, or chemical reactions, offering potential applications in drug dis-

covery. Depending on the type of biochemical sequence, LMs can model small mole-

cules, macromolecular proteins, genomic sequences, and even their combinations.93 

Various tokenization schemes are implemented accordingly to handle these different 

modalities.93 

 

1.4.1 Chemical Language Models 

In the context of chemical compounds, LMs designed to translate molecular se-

quences are known as CLMs.96,97 These models learn the chemical vocabulary and 

syntax used to represent molecules while capturing conditional probabilities of char-

acter occurrence based on preceding characters in a sequence.95 CLMs are typically 

pre-trained on large molecular datasets to grasp fundamental chemical patterns and 

subsequently fine-tuned on smaller specific datasets to focus on compounds with de-

sired properties, such as activity against target proteins. Several CLM architectures 

have been developed for different purposes. Encoder-only models, such as Mol-

BERT,98 SMILES-BERT,99 and chemBERTa,100 excel at understanding molecular 

representations, enhancing tasks like molecular property prediction. Decoder-only 

models, such as MolGPT101 and cMolGPT,102 as well as encoder-decoder architectures 

like Chemformer,103 ChemReactNet,104 and X-MOL,105 have been applied to molecu-

lar generation and chemical reaction prediction. A crucial step in CLM development 

is tokenizing input data, which may include chemical structures, molecular properties, 

or other features. For compound SMILES strings, a basic approach is character-level 

tokenization, where each character is treated as a separate token. However, this method 

has limitations, as chemically meaningful information about single atoms may span 

multiple characters, leading to ambiguity. To address this, SMILES are typically to-

kenized at the atom level using regular expressions106 or by incorporating positional 

and connectivity information to distinguish identical atoms in different molecular con-

texts.107 For example, compounds can be encoded as canonical SMILES strings with 

atoms represented as single-character tokens (e.g., "C" or "N"), two-character tokens 

(e.g., "Cl" or "Br"), or tokens enclosed in brackets (e.g., "[nH]" or "[O-]"). Additionally, 
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substructure-level tokenization methods, such as SMILES Pair Encoding (SMILES-

PE),108 iteratively merge frequently occurring token pairs to build a more compact vo-

cabulary, drawing inspiration from byte-pair encoding. In conditional CLMs, molecu-

lar property values must also be transformed into input tokens. Various tokenization 

strategies have been proposed, including binning109,110 and numerical tokenization.111 

For instance, in a binning-based approach, the globally observed potency range of 

[4.00, 12.52] pKi units was divided into 852 bins, each with a constant width of 0.01. 

This fine granularity captures the limits of experimental potency annotations, encoding 

each bin as a single token and assigning potency values accordingly. 

 

1.4.2 Protein Language Models 

Much like words form sentences, protein sequences — strings of 20 amino acids 

that make up the protein "vocabulary" — determine the structure and function of pro-

teins. This ordering of amino acids is crucial, as it influences how proteins fold and 

interact within biological systems. Inspired by NLP principles, PLMs embed long pro-

tein sequences as sentences of characters, where one or more residues form 

words.112,113 The resulting sequence embeddings implicitly capture structural and 

functional characteristics of proteins, making them valuable for diverse applica-

tions.114 Early PLMs primarily used BERT-like encoder-only architectures and de-

noising autoencoding training objectives. These models were pre-trained on large, un-

labeled datasets of protein sequences to encode protein sequences or structures into 

fixed-length vector representations, capturing structural and functional characteristics 

for downstream tasks. Prominent pre-trained protein sequence encoders include ESM-

1b,112  ProteinBERT,115 and ProtTrans,116 which have been applied to tasks such as 

secondary structure prediction, contact prediction, remote homology detection, and the 

prediction of post-translational modifications and biophysical properties. Decoder-

only PLMs have also been developed, playing a predominant role in protein generation 

and design. Notable models include ProGen117 and ProtGPT2.118 Additionally, T5-

based encoder-decoder PLMs, such as ProtT5,119 facilitate translation between protein 

sequences and structures. For PLM modeling, protein sequences are encoded as stand-

ard uppercase residue symbols and tokenized using space delimiters. The token 
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vocabulary includes 21 entries: the 20 canonical amino acids and a special 'X' token 

denoting for rare amino acids. 

 

1.4.3 Genomic Language Models 

Genomic language models (GLMs), a class of LMs trained on DNA and RNA se-

quences, enable the interpretation of genomes and the analysis of interactions between 

DNA/RNA elements at multiple biological scales. Key applications of GLMs include 

functional constraint prediction and sequence design.120 In encoder-only architectures, 

notable models include DNABERT,121 iEnhancer-BERT,122 and scBERT,123 these 

models employ a masked training mechanism where portions of gene sequences are 

masked, prompting the model to predict and complete them, thereby learning inherent 

patterns within gene sequences. Decoder-only models have also gained attention due 

to their generative capacity. For example, GenSLMs124 leverage genome-scale LMs 

comprising multiple layers of attention-based decoders to elucidate the evolutionary 

dynamics of SARS-CoV-2, effectively capturing the evolutionary landscape of SARS-

CoV-2 genomes. Encoder-decoder models in genomics, such as the Ensemble Nucle-

otide Byte-level Encoder-Decoder (ENBED)125 and MegaDNA,126 represent signifi-

cant advancements in bioinformatics. These models combine the strengths of both en-

coder and decoder to analyze and interpret complex genomic sequences. The encoder 

compresses the input genomic data into a meaningful representation, capturing essen-

tial features and patterns, while the decoder generates or reconstructs sequences and 

performs other bioinformatics tasks. For genomic sequences, single-nucleotide tokeni-

zation—using a dictionary of four nucleotides (for DNA: "A," "C," "G," and "T"; for 

RNA: "A," "C," "G," and "U")—simplifies model interpretation and enhances its abil-

ity to handle genomic variations. Additionally, k-mer and byte-pair encoding (BPE) 

tokenization127 create artificially defined nucleotide pair vocabularies, reducing input 

sequence length and enabling models to handle longer contexts. 
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1.5 Molecular Mappings and Transformations 

One of the central challenges in drug discovery is identifying molecules that 

achieve an optimal balance of multiple properties. This challenge can be framed as a 

machine translation problem, where a source compound (input molecule) is translated 

into a target compound (output molecule) with improved properties. Using SMILES-

based molecular representations, CLMs can be trained to predict optimized molecular 

structures.109,110 Constructing diverse and well-defined source-to-target compound 

mappings is essential for CLM modeling, as these mappings capture structural trans-

formations and their associated property changes.94,95 ASs represent a foundation for 

studying molecular transformations and enable systematic analysis of structural mod-

ifications that impact biological activity or other molecular properties. For instance, in 

compound optimization, ASs are essential for assessing SAR progression.128 Over the 

years, various computational methods in cheminformatics have been developed to an-

alyze structural modifications, organize large ASs, and systematically monitor SAR 

progression.129 

1.5.1 Matched Molecular Pairs 

The Matched Molecular Pair (MMP) formalism provides a structural framework 

for defining molecular similarity. In most approaches, an MMP is defined as a pair of 

compounds differing by a small structural change at a single site (Figure 9).130  The 

limited nature of these structural differences makes MMP analysis (MMPA) highly 

interpretable compared to many other similarity-based methods.131 MMPA enables 

systematic analysis of chemical modifications, allowing researchers to quantify the 

average effect of a given transformation.132,133 Identification of MMPs can be ap-

proached in three distinct ways, depending on algorithmic constraints and practical 

considerations. The first approach explicitly defines MMPs based on a set of prede-

fined chemical transformations, specifying how one compound is converted into an-

other.130 A variation of this method uses predefined substructures instead of full trans-

formations, simplifying the problem to a substructure search. While computationally 

efficient, this method is constrained by predefined rules. The second approach involves 

computing the maximum common substructure (MCS) of two molecules, ensuring that 
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the difference between them is confined to a single substructure modification.134,135 

Unlike the predefined transformation method, MCS does not rely on predefined rules 

and can discover novel transformations. However, MCS computations require pair-

wise molecular comparisons, making this approach computationally demanding. To 

mitigate this, pre-filtering strategies can reduce the number of necessary comparisons. 

The third approach systematically fragments molecules into core structures, classify-

ing a pair as an MMP if both molecules can be reduced to the same core scaffold.136 

This rule-based fragmentation is computationally efficient, particularly for large da-

tasets, and does not depend on predefined transformations. One commonly used 

method for this process is the retrosynthetic combinatorial analysis procedure (RECAP) 

algorithm, which applies 11 predefined bond cleavage rules to generate RECAP-

MMPs.137,138 Following MMP extraction, molecules sharing a common core scaffold 

can be grouped into matching molecular series (MMS). An MMS is defined as a set of 

two or more compounds that share a common molecular core but differ at a single 

substitution site, offering a structured approach for analyzing SAR trends. 

 

Figure 9: Matched molecular pair. Shown are exemplary analogues forming a pair 

(a) or a series (b). For the MMP relationship (a), the core structure and chemical trans-

formation are provided. The structural modifications (exchanged substituents) are 

highlighted in red. 
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1.5.2 Systematic Identification of Analogue Series  

The compound-core relationship (CCR) approach is designed to identify structural 

analogues that share a common core structure with modifications at multiple substitu-

tion sites.139 In this method, systematic fragmentation of molecules at one or more 

positions generates a connected core structure with corresponding R-group substitu-

ents (Figure 10). Unlike the original Hussain and Rea fragmentation method,136 which 

primarily focuses on single-site modifications, the CCR approach extends the analysis 

to multi-site variations, allowing for a more comprehensive exploration of analogue 

series. To ensure chemical feasibility, the CCR method incorporates retrosynthetic 

fragmentation rules, ensuring that the generated analogue series reflect realistic mo-

lecular transformations.139 Additionally, the concept of the hydrogen-substituted core 

structure was introduced, where all substituent positions of the core scaffold are re-

placed by hydrogen atoms. By grouping fragmentations that share the same hydrogen-

substituted core, analogue series with substituents at different sites naturally emerge. 

This strategy facilitates the identification of scaffolds with multiple potential modifi-

cation sites, even when only a limited number of non-hydrogen substitutions are pre-

sent in the dataset. 

 

Figure 10: Analogue series. An AS of four analogue compounds generated by CCR 

algorithm is shown. The Markush structure representing the AS is displayed in the 

center. The structural modifications (exchanged substituents) are highlighted in red. 
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1.5.3 Structure-Activity Relationship Matrix 

The SARM methodology was developed to systematically identify and organize 

structurally related ASs from large compound datasets.140,141 SARM identifies struc-

turally analogous core scaffolds and organizes them into a matrix-like format, akin to 

R-group tables,140 as illustrated in Figure 11. Each SARM captures a collection of an-

alogue series with structurally related cores, enabling the systematic extraction of SAR 

from compound datasets.140 Depending on the structural diversity present, a dataset 

typically yields multiple SARMs. SARM generation follows a two-step fragmentation 

process adapted from MMPA.136 First, compounds are fragmented at exocyclic single 

bonds, producing "keys" (core structures) and "values" (substituents), which are stored 

in an index table (Figure 11). In the second step, the core scaffolds undergo further 

fragmentation, identifying subsets of cores that differ only by a single chemical change. 

This process results in a second index table (Figure 11). Each subset of analogous core 

structures, along with the compounds containing each core, forms an individual SARM. 

The matrix structure follows a well-defined organization: each row represents an AS 

where all molecules share the same core scaffold, while each column contains com-

pounds from different ASs that share the same substituent. Each cell in the matrix 

corresponds to a unique compound, which could be either an existing molecule or a 

virtual analogue (i.e., an unexplored combination of core and substituent). This matrix-

based representation allows for intuitive SAR visualization, especially when potency 

values (or other molecular properties) are used to color-code matrix cells. By applying 

potency-based coloring, SARMs effectively illustrate structure-activity trends across 

compound datasets.142 Recent advances have integrated SARM with CCR, enabling a 

more systematic approach to identifying ASs that incorporate both scaffold modifica-

tions and multi-site substitutions.143 This integration further enhances the exploration 

of molecular transformations, providing deeper insights into optimizing lead com-

pounds. 
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Figure 11: Structure-activity relationship matrix. SARM construction is illustrated 

using a model dataset of nine compounds (CPD A–I), with pIC50 values shown in blue. 

Substituents distinguishing analogues are highlighted on a light blue background. 

SARM generation follows a dual-step fragmentation scheme, identifying analogue se-

ries with structurally related cores. Substructures distinguishing cores are shown in red. 

Each SARM cell represents a unique compound (A–I), while empty cells represent 

virtual analogues—unexplored combinations of core and substituent.  

 

1.6 Evaluation Metrics 

An objective and fair evaluation of DGMs is essential for molecular generative 

design. The final step in generating molecules using these models involves assessing 

the quality and relevance of the generated molecules through well-defined evaluation 

metrics. These metrics can be broadly categorized into four main types. The first cat-

egory assesses the overall performance of the model by considering all generated mol-

ecules as a whole. Key metrics include validity, uniqueness, and novelty, typically 

expressed as percentages.91 Validity measures the proportion of generated molecules 
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that adhere to fundamental chemical rules, reflecting the model's understanding of 

chemical syntax and grammar. Uniqueness indicates the percentage of distinct mole-

cules within the generated set, while novelty quantifies the fraction of generated mol-

ecules absent from the training dataset, thereby indicating the model's ability to learn 

the underlying data distribution and produce original structures. Higher novelty values 

suggest reduced model overfitting.91 The second category focuses on evaluating the 

properties of individual molecules, such as drug-likeness and synthetic accessibility. 

The quantitative estimate of drug-likeness (QED)144 quantifies drug-likeness on a scale 

from 0 to 1 by integrating several molecular descriptors, including molecular weight, 

logP, topological polar surface area, hydrogen bond donors and acceptors, aromatic 

rings, rotatable bonds, and the presence of undesirable chemical functionalities. Simi-

larly, the synthetic sccessibility (SA) score145 estimates molecular synthetic feasibility, 

ranging from 1 (easy to synthesize) to 10 (very difficult to synthesize), based on frag-

ment contributions and structural complexity. Benchmarking tools like GuacaMol146 

and MOSES147 are frequently employed to standardize performance evaluation. The 

third category evaluates the bioactivity or physicochemical properties of generated 

molecules. Docking-based scoring functions and ML-based prediction models are 

commonly applied for this purpose. However, these approaches introduce additional 

uncertainty, as hypothetical models guide the generative process. Finally, assessing 

the generative model's generalization ability is crucial, as it reflects the model's pre-

dictive performance on novel tasks. Proper evaluation of generalizability requires rig-

orous data splitting and selection to prevent data leakage and biased outcomes.148 

Time-based splits, simulating real-world scenarios, are preferred in industry set-

tings.149 However, absence of temporal information in public datasets limits their use 

in academic research. To overcome this challenge, models can be tested on target-

based activity classes excluded during training. Additionally, training and evaluation 

can be conducted on structurally distinct compound subsets, generated through com-

prehensive analogue series identification and splitting.150,151 The most stringent proof-

of-concept involves verifying the model's capacity to reproduce known compounds 

with desirable bioactivity or physicochemical properties not encountered during train-

ing.152 
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1.7 Thesis outline 

 

This dissertation investigates the development and application of transformer-

based CLMs to address various challenges in medicinal chemistry and molecular 

design. The thesis is structured into eight chapters, with Chapters 2 to 7 presenting six 

original publications that constitute the core of this work. 

• Chapter 2 focuses on developing and evaluating a CLM for AC prediction. To 

achieve this, a conditional transformer is adapted for constructing a CLM. 

Structural analogue pairs from diverse activity classes, conditioned on potency 

differences, are generated for model pre-training. Subsequently, the pre-trained 

models are fine-tuned to predict ACs and benchmarked against other machine 

learning methods. 

• Chapter 3 extends the application of the CLM to predict highly potent 

compounds from weakly potent template molecules. A conditional CLM is 

implemented to facilitate compound design conditioning on large potency 

differences. Additionally, a novel compound test system is devised to 

rigorously assess model performance. 

• Chapter 4 explores the prediction of potent compounds in low-data regimes. 

To address this challenge, meta learning is incorporated into the conditional 

transformer, enhancing the model's ability to generalize from limited data. The 

performance of this meta learning-based CLM is systematically compared to 

other basic CLM in the presence of varying amounts of fine-tuning data. 

• Chapter 5 investigates the extension of AS in lead optimization, focusing on 

series with multiple substitution sites. A specialized coding and tokenization 

scheme is designed to represent evolving AS, and a transformer variant is 

implemented to predict new potent analogues. The model's performance is 

evaluated and compared to other generative models. 

• Chapter 6 advances the analogue design approach by targeting potent 

compounds with both core structure and substituent modifications at multiple 

sites. To support this task, a novel compound decomposition protocol is 

devised to accommodate analogue series with complex substitution patterns. 

Furthermore, a new coding and tokenization scheme is developed to represent 
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core structure-substituent combinations. Multiple model variants are derived, 

investigated, and compared. 

• Chapter 7 extends the generative design framework to predict active 

compounds with desired potency from target protein sequences. A dual-

component conditional LM is designed to learn from multimodal data, 

comprising a PLM that generates target sequence embeddings and a 

conditional CLM that predicts new active compounds conditioning on desired 

potency. The performance of this dual-component model is rigorously assessed 

and benchmarked against control models. 

• Finally, Chapter 8 summarizes the main findings of this dissertation, 

highlighting the novel molecular design concepts introduced by CLMs. Special 

attention is given to the off-the-beaten-path applications in molecular design 

that have not been previously explored. 
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Chapter 2 

DeepAC–Conditional Transformer-Based Chemical 

Language Model for the Prediction of Activity Cliffs 

Formed by Bioactive Compounds 

The following chapter summarizes the research published as 

Chen, H.; Vogt, M.; Bajorath, J. DeepAC—Conditional transformer-based chemical 

language model for the prediction of activity cliffs formed by bioactive compounds. 

Digital Discov. 2022, 1, 898–909. DOI:10.1039/D2DD00077F 

The publication reprint is available in Appendix A. Reprinted with permission from 

“Chen, H.; Vogt, M.; Bajorath, J. Digital Discov. 2022, 1, 898–909”. Copyright 2022 

The Author(s). Published under the license CC BY-NC 3.0: 

https://creativecommons.org/licenses/by-nc/3.0/ 

Author contributions: Hengwei Chen: Methodology, Data, Code, Investigation, 

Analysis, Writing - review and editing. Martin Vogt: Methodology, Investigation, 

Analysis, Writing - review and editing. Jürgen Bajorath: Conceptualization, 

Methodology, Analysis, Writing - original draft, Writing – review and editing. 

https://doi.org/10.1039/D2DD00077F
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2.1 Summary  

In drug discovery, CLMs inspired by NLP offer innovative solutions for molecular 

design. CLMs learn the vocabulary, syntax, and conditional probabilities of molecular 

representations, enabling sequence-to-sequence mappings. Their versatility in 

machine translation and property conditioning paves the way for exploring new 

molecular design concepts. ACs are formed by pairs of structurally similar or 

analogous active small molecules with large differences in potency. In medicinal 

chemistry, ACs are of high interest as they often reveal SAR determinants for 

compound optimization. Systematic identification of ACs across activity classes has 

provided the basis for computational AC predictions, with initial attempts reported a 

decade ago.153, 154 Although advanced deep neural networks (DNNs) have recently 

been applied to predict ACs from molecular fingerprints, images, or graphs via 

representation learning, AC predictions present three main challenges. First, the 

underlying SARs are highly discontinuous; second, datasets of ACs and non-ACs are 

imbalanced; and third, predictions must be made at the compound pair level rather than 

for individual compounds, as is typical in compound classification or molecular 

property prediction. Therefore, alternative computational methods are required to 

revolutionize AC predictions. In this chapter, we investigate the application of CLMs 

for predictive modeling of ACs. An encoding strategy is devised to predict target 

compounds from source compounds and associated potency differences. Seq2Seq and 

conditional transformer models are pre-trained on pairs of structural analogues with 

varying potency differences and compared. The pre-trained transformer is then fine-

tuned on ACs and non-ACs from different activity classes and evaluated against other 

machine learning reference models. 

For CLM modeling, a systematic search of bioactive compounds with high-

confidence activity data in ChEMBL identified 357,343 transformation size-restricted 

MMPs originating from a total of 600 activity classes. Each MMP was represented as 

a triple: 

(Source compound, Potency difference) → (Target compound). 

In each triple, the source and target molecules were represented as canonical SMILES 

strings, which were tokenized to construct a chemical vocabulary containing all 
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possible chemical tokens. Potency differences captured by MMPs were tokenized by 

binning, with each bin encoded by a single token, assigning each potency difference 

to the token of the corresponding bin. The CLMs, adapted from Seq2Seq and 

conditional transformer architectures, were pre-trained on mappings from a large 

general dataset of MMP-triples, learning MMP-associated potency differences caused 

by given chemical transformations. Given a new (Source compound, Potency 

difference) test instance, trained models generated a set of target candidate compounds 

meeting the potency difference condition. The ability of Seq2Seq and conditional 

transformer models to reproduce target compounds for test sets was evaluated using 

the reproducibility measure. As a result, the pre-trained transformer outperformed the 

Seq2Seq model, achieving a reproducibility of 81.8%. The pre-trained transformer was 

then fine-tuned for AC prediction. By definition, an MMP-Cliff consists of two MMP-

forming compounds exhibiting a potency difference of at least two orders of magnitude 

(100-fold; i.e., ΔpKi ≥ 2.0), while MMP-nonCliffs are restricted to a maximal potency 

difference of one order of magnitude (10-fold; ΔpKi ≤ 1). The pre-trained transformer 

was fine-tuned on MMP-Cliffs and MMP-nonCliffs extracted from four large activity 

classes excluded from pre-training. For fine-tuning, 5%, 25%, and 50% of MMP-Cliffs 

and MMP-nonCliffs from each class were randomly selected. The resulting models 

were tested on the remaining 50% of MMP-Cliffs and MMP-nonCliffs. For 

performance comparison, reference classification models using different fingerprint-

based ML methods, including SVM, RF, and XGBoost, were developed. The results 

showed that, compared to these reference methods, the conditional transformer 

(DeepAC) was less effective in predicting non-ACs but outperformed reference 

methods in predicting ACs, especially when training data was limited. This study 

demonstrates that CLMs learn structural relationships and associated potency 

differences, enabling the reproduction of ACs. Compared to earlier studies that used 

classification models to predict ACs, a unique feature of DeepAC is its ability to extend 

AC predictions by producing new AC compounds. This integrates predictive and 

generative modeling in the context of AC analysis and AC-based compound design. In 

the next chapter, compound predictions conditioned on large potency differences are 

generalized beyond ACs by adjusting the training protocol to predict highly potent 

compounds from weakly potent input templates. 
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Chapter 3 

Designing Highly Potent Compounds using a Chemical 

Language Models 

 

The following chapter summarizes the research published as  

Chen, H.; Bajorath, J. Designing highly potent compounds using a chemical language 

model. Sci. Rep. 2023, 13, 7412. DOI:10.1038/s41598-023-34683-x 

The publication reprint is available in Appendix B. Reprinted with permission from 

“Chen, H.; Bajorath, J. Sci. Rep. 2023, 13, 7412”. Copyright 2023 The Author(s). 

Published under the license CC BY 4.0: http://creativecommons.org/licenses/by/4.0/ 

Author contributions: Hengwei Chen: Methodology, Code, Formal analysis, 

Investigation, Writing - original draft preparation, Writing - review and editing. 

Jürgen Bajorath: Conceptualization, Methodology, Formal analysis, Writing - 

original draft preparation, Writing - review and editing. 
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3.1 Summary 

As shown in the previous chapter, the DeepAC model, a conditional transformer-

based CLM, predicted ACs with an accuracy at least comparable to top-performing 

machine learning models while further extending such predictions through the 

generative design of new AC compounds. This capability, along with the observed 

prediction characteristics, renders DeepAC attractive for practical applications aimed 

at revolutionizing compound potency prediction in generative design. Compound 

potency prediction is a major task in drug design, for which a variety of computational 

methods have been developed or adapted. Mainstays include QSAR analysis to design 

increasingly potent analogues of active compounds and methods for ligand- or 

structure-based virtual screening to identify new hits. For conventional potency 

prediction, the assessment and comparison of different methods typically rely on 

standard benchmark settings. While such benchmark calculations are necessary, they 

are insufficient to fully evaluate the potential of potency prediction methods for 

practical applications. In addition to exploring the applicability domain of standard 

QSAR modeling, we aimed to design structurally diverse compounds beyond 

analogues. This prediction task could not be adequately addressed using conventional 

ML models, necessitating the development of a different methodological framework. 

Therefore, in this chapter, we adapted a conditional transformer architecture 

previously employed for AC predictions (Chapter 2), which demonstrated that 

compound generation could be conditioned on potency differences. Given that ACs 

encode large potency differences, we reasoned that this methodology could be adapted 

and further extended for the design of highly potent compounds. Accordingly, we 

devised and implemented a CLM for the prediction of highly potent compounds, using 

weakly potent compounds as input. To rigorously assess model performance, a 

compound pair-based test system was generated that covered all possible prediction 

outcomes, enabling a well-defined and comprehensive evaluation. 

For CLM modeling, bioactive compounds with high-confidence activity data were 

assembled from ChEMBL and grouped into 496 target-based activity classes. A 

systematic search for ASs with single or multiple substitution sites (up to five) was 

conducted using the CCR method, yielding a total of 881,990 pairs of structural 

analogues (termed All_CCR pairs). From these pairs, All_CCR triples (CpdA, CpdB, 
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PotB-PotA) were generated by recording the potency difference for each pair. In this 

setup, CpdA represented the source compound, concatenated with the potency 

difference (PotB-PotA), while CpdB represented the target compound. Each All_CCR 

pair produced two triples, ensuring that each compound served as both source and 

target. A conditional transformer-based CLM, previously employed for AC predictions 

(Chapter 2), was adapted and pre-trained on the general set of All_CCR triples. To 

evaluate the model, 10 individual activity classes excluded from pre-training were 

reserved for fine-tuning and testing. For each class, All_CCR pairs were extracted and 

divided into CCR pairs with potency differences of less than 100-fold, and AC-CCR 

pairs capturing potency differences of at least 100-fold. The pre-trained CLM was fine-

tuned on activity class-dependent AC-CCR pairs and tested on structurally distinct 

CCR pairs with no core structure overlap between fine-tuning and test sets. 

Additionally, a compound pair-based test system was created to cover all possible 

prediction outcomes, providing a rigorous assessment of model performance. The 

analysis confirmed the model's remarkable ability to reproduce known potent 

compounds not encountered during training, achieving unexpectedly high success 

rates. Predictions included both analogues of weakly potent source compounds and 

structurally distinct compounds. Across activity classes, median potency increases 

were close to or exceeded 100-fold, with multiple predictions surpassing 1000-fold 

potency improvements, demonstrating the model's high performance. Furthermore, the 

CLM generated numerous novel compounds for the activity classes, absent from both 

the fine-tuning and test sets. The next chapter further advances this molecular 

generative design approach, enabling the prediction of highly potent compounds in 

low-data regimes by implementing a CLM variant incorporating meta-learning. 
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Chapter 4 

Meta-Learning for Transformer-Based Prediction of Potent 

Compounds  

 

The following chapter summarizes the research published as  

Chen, H.; Bajorath, J. Meta-Learning for Transformer-Based Prediction of Potent 

Compounds. Sci. Rep. 2023, 13, 16145. DOI:10.1038/s41598-023-43046-5 

The publication reprint is available in Appendix C. Reprinted with permission from 

“Chen, H.; Bajorath, J. Sci. Rep. 2023, 13, 16145”. Copyright 2023 The Author(s). 

Published under the license CC BY 4.0: http://creativecommons.org/licenses/by/4.0/ 

Author contributions: Hengwei Chen: Methodology, Code, Formal analysis, 

Investigation, Writing - original draft preparation, Writing - review and editing. 

Jürgen Bajorath: Conceptualization, Methodology, Formal analysis, Writing - 

original draft preparation, Writing - review and editing. 
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4.1 Summary 

In the previous chapters, transformer-based CLMs were introduced to explore 

novel molecular generative design concepts, circumventing the limitations of 

conventional benchmark settings for potency predictions. The CLMs demonstrated the 

ability to predict ACs with high accuracy, while extending such predictions through 

the generative design of new AC compounds. More importantly, these models 

generated structurally diverse, highly potent compounds by conditioning on large 

potency differences from weakly potent input templates. However, compound activity 

and potency predictions inherently depend on the availability of high-quality data for 

model training. In early-phase drug discovery, such data are often sparse, limiting 

generative design. Therefore, specialized learning strategies are required to address 

sparsely distributed data in this context. In this chapter, a previously developed 

transformer architecture designed for predicting potent compounds was adapted as a 

base model for deriving meta-learning models. The potential of meta-learning was 

assessed for predicting highly potent compounds across different activity classes with 

varying amounts of training data. 

To further advance CLMs for low-data compound design, we adapted the pre-

training dataset described in Chapter 3, which comprises 881,990 All_CCR pairs 

generated from bioactive compounds with high-confidence activity data across 496 

target-based activity classes from ChEMBL. These All_CCR pairs were subsequently 

categorized into CCR pairs (<100-fold potency difference) and AC-CCR pairs (≥100-

fold difference). The Meta-CLM architecture consisted of two modules: the base CLM 

model, previously derived for generating highly potent target compounds from weakly 

potent source compounds conditioned on potency differences, and a meta-learning 

module. The model-agnostic meta-learning (MAML) framework was adopted to 

optimize the model for an activity class-specific prediction task distribution. For 

deriving the meta-learning module, a subset of 176 activity classes was selected, each 

containing at least 300 All_CCR pairs, resulting in 491,688 qualifying All_CCR 

triples. Each activity class was treated as a separate training task, where All_CCR 

triples were randomly split into a support set (80%) and a query set (20%). During 

meta-training, the model fθ was first updated to a task-specific model fθ’ using its 

support set. The corresponding query set was then used to determine the prediction 
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loss of model fθ for that task. This process was repeated across all prediction tasks 

(activity classes), and the model parameters were further adjusted by minimizing the 

sum of the prediction losses over all activity classes. The objective was to learn 

parameter settings that could be rapidly adapted to new prediction tasks with minimal 

fine-tuning. For model validation, the trained Meta-CLM was fine-tuned on 10 activity 

classes excluded from pre-training, and its ability to reproduce known potent candidate 

compounds was evaluated in the presence of varying amounts of fine-tuning data. The 

performance of the Meta-CLM was compared to that of the reference CLM. All models 

successfully reproduced known potent target compounds; however, the meta-learning 

approach significantly increased the number of reproduced compounds across all 

activity classes, particularly when fine-tuning data were limited. Moreover, the meta-

learning models produced target compounds with higher overall potency and larger 

potency differences between templates and targets compared to reference CLMs. 

Additionally, the generative models designed for predicting potent compounds yielded 

large numbers of novel structures. In summary, a CLM variant incorporating meta-

learning was successfully implemented to enable the generative design of highly 

potent compounds in low-data regimes. The next chapter further explores CLM 

applications for lead optimization in medicinal chemistry by iteratively extending 

analogue series with new potent compounds. 
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Chapter 5 

Extension of Multi-site Analogue Series with Potent 

Compounds using a Bidirectional Transformer-Based 

Chemical Language Model 

 

The following chapter summarizes the research published as  

Chen, H.; Yoshimori, A.; Bajorath, J. Extension of Multi-site Analogue Series with 

Potent Compounds using a Bidirectional Transformer-based Chemical Language 

Model. RSC Med. Chem. 2024, 15, 2527– 2537. DOI:10.1039/D4MD00423J 

The publication reprint is available in Appendix D. Reprinted with permission from 

“Chen, H.; Yoshimori, A.; Bajorath, J. RSC Med. Chem. 2024, 15, 2527– 2537”. 

Copyright 2024 The Royal Society of Chemistry 

Author contributions: Hengwei Chen: Conceptualization, Data curation, 

Methodology, Formal analysis, Writing – original draft, writing – reviewing and 

editing; Atsushi Yoshimori: Methodology, Writing – reviewing & editing; Jürgen 

Bajorath: Conceptualization, Methodology, Supervision, Writing – original draft, 

writing – reviewing and editing. 
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5.1 Summary 

As demonstrated in the previous chapters, CLMs effectively handle diverse 

SMILES-to-SMILES mappings, enabling efficient training and molecular translation 

tasks through the use of transformer architecture. Their versatility in machine 

translation and property conditioning has demonstrated promising results for 

generative molecular design, ranging from AC prediction to the generation of highly 

potent compounds from weakly potent compounds, and even compound design in low-

data regimes. However, generating potent compounds for evolving AS remains a key 

challenge in medicinal chemistry. In the practice of medicinal chemistry, a crucial 

question is which analogue(s) to synthesize next to further improve compound potency 

and other molecular properties relevant for drug development. This optimization 

process continues to rely heavily on chemical knowledge and experience. Previously, 

an RNN-based CLM (termed DeepAS) was devised to extend evolving AS with new 

potent analogues, leveraging the SAR transfer principle. This principle stems from 

findings that AS with activity against different targets often contain corresponding 

analogues with comparable potency progression. However, a principal limitation of 

this approach was that predictions were confined to AS with single substitution sites. 

Considering that multiple substitution sites are common in medicinal chemistry, an 

advanced computational framework is required to address the increased complexity of 

the prediction task. To this end, a transformer-based CLM variant was developed to 

enable direct comparison with the RNN-based DeepAS for AS extension with single 

substitution sites. Additionally, a novel AS encoding strategy was devised, facilitating 

the prediction of R-group combinations for extending AS with multiple substitution 

sites. 

For model derivation, 104,627 MMS from 2,195 target-based activity classes were 

extracted from ChEMBL. Each MMS was converted into potency-ordered R-group 

sequences following an increasing potency gradient. These sequences were then 

encoded as sentences in which each R-group was represented as an individual token, 

with each sentence containing a minimum of two R-group tokens. The length of each 

sentence was set to 35 tokens, and the total number of label tokens amounted to 3,855, 

encompassing 3,852 unique R-groups plus three special tokens. BERT was chosen as 

the CLM for AS extension (termed DeepAS 2.0) due to its bidirectional characteristics, 
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which are well-suited for next-sentence (R-group) prediction. Both DeepAS 2.0 and 

the original RNN-based DeepAS were trained on 84,259 MMS covering nearly 2,200 

targets and tested on 9,363 distinct MMS, enabling direct comparison for AS extension 

with single substitution sites. For model evaluation, the final R-group token was 

omitted from each test AS (not encountered during training) and predicted as the label 

based on derived conditional probabilities and corresponding log-likelihood scores. 

The model's ability to accurately predict final R-groups within the top-5 of all 3,855 

R-group tokens served as the primary criterion for validation. As a result, DeepAS 2.0 

further improved performance over DeepAS in systematic R-group predictions for 

MMS. The models’ ability to extend AS in an activity class-specific manner was 

further investigated for MMS from 10 activity classes excluded from training. DeepAS 

2.0 outperformed DeepAS in eight of 10 classes, and fine-tuning consistently increased 

the performance of DeepAS 2.0 across all activity classes. To explore the ability of 

DeepAS 2.0 for multi-site AS extension, a total of 16,538 AS with one to five 

substitution sites from 864 target-based activity classes was obtained. A new AS 

encoding scheme and R-group data structure were devised to represent multi-site AS 

as sequences, where R-groups of each analogue were concatenated into a combined R-

group (combination) token. The vocabulary of possible labels consisted of 36,647 

concatenated R-group (combination) tokens extracted from multi-site AS, 

supplemented by special tokens. Data augmentation involved transforming each AS 

into multiple sentences, expanding each training instance into sentences capturing an 

increasing number of R-group tokens. For deriving DeepAS 2.0 to extend AS with 

multiple substitution sites, termed multi-site DeepAS 2.0 (MS-DeepAS 2.0), a dataset 

comprising 10,863 AS with one to five substitution sites from 854 activity classes was 

used for training, while 2,716 AS were reserved for testing. Additionally, five activity 

classes with multi-site AS were excluded from training for fine-tuning. Despite the 

inherent challenges of predicting R-group combinations of potent compounds, MS-

DeepAS 2.0 successfully predicted potent analogues with varying R-group 

combinations for multi-site AS with activity against many different targets. In 

summary, DeepAS 2.0 demonstrated enhanced performance for single-site AS 

extension, while MS-DeepAS 2.0 successfully extended multi-site AS with new 

encoding scheme. In the next chapter, the AS design strategy is extended to incorporate 

core structure and substituent modifications at multiple sites, further advancing AS 

extension for lead optimization. 
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Chapter 6 

Combining a Chemical Language Model and the 

Structure−Activity Relationship Matrix Formalism for 

Generative Design of Potent Compounds with Core 

Structure and Substituent Modifications 

 

The following chapter summarizes the research published as  

Chen, H.; Bajorath, J. Combining a Chemical Language Model and the 

Structure−Activity Relationship Matrix Formalism for Generative Design of Potent 

Compounds with Core Structure and Substituent Modifications. J. Chem. Inf. Model. 

2024, 64, 8784-8795. DOI: 10.1021/acs.jcim.4c01781 

The publication reprint is available in Appendix E. Reprinted with permission from 

“Chen, H.; Bajorath, J.  J. Chem. Inf. Model. 2024, 64, 8784-8795”. Copyright 2024 

American Chemical Society 

Author contributions: Hengwei Chen: Conceptualization, Data curation, 

Methodology, Formal analysis, Writing – original draft, writing – reviewing and 

editing; Jürgen Bajorath: Conceptualization, Methodology, Supervision, Writing – 

original draft, writing – reviewing and editing. 
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6.1 Summary 

In Chapter 5, the BERT-based CLM, termed DeepAS 2.0, was developed to 

improve the systematic extension of AS with single substitution sites, surpassing the 

performance of the RNN-based DeepAS. The bidirectional characteristics of BERT 

facilitated next-sentence (R-group) prediction, enhancing activity class-specific MMS 

extension. More importantly, DeepAS 2.0 was further advanced with a new AS 

encoding scheme and R-group combination structure, enabling the extension of AS 

with multiple substitution sites. The resulting MS-DeepAS 2.0 accurately prioritized 

R-group combinations of potent analogues across various multi-site AS. Building on 

the success of extending single- and multi-site AS using CLMs, this chapter aims to 

expand the methodology by incorporating core structure modifications alongside 

substituent changes, thus moving beyond AS with invariant cores (scaffolds). 

Modifying core structures is crucial for compound optimization, such as introducing 

new substitution sites and/or heteroatoms at specific positions, but it remains 

computationally challenging. Traditional approaches often rely on scaffold hopping, 

underscoring the need for a new methodology to extend AS through combined core 

and substituent modifications. To address this, the SARM formalism and data structure 

were introduced to extract AS with structurally related cores. A new structural 

decomposition approach was devised to capture AS with multiple substitution sites 

and structurally related cores. DeepAS 3.0 was developed with a novel encoding 

scheme to represent core structure-substituent combinations, facilitating the extension 

of AS through combined core and multiple substituent site modifications. Various 

model variants were derived and compared to assess performance. 

A total of 19,556 SARMs from 2,895 target-based activity classes were generated 

from ChEMBL using the newly designed SARM-CCR approach, which systematically 

organized subsets of multi-site AS with related cores. For each SARM, multi-site AS 

with structurally related cores were combined, and analogues were arranged in 

increasing potency order, yielding a consensus series. This consensus series served as 

model input, representing potency-ordered analogue sequences. Each analogue in the 

consensus series was encoded as a compound token consisting of its core-substituent 

combination, utilizing substructure-based tokenization. Following the encoding 

protocol established in Chapter 5, R-groups at different substitution sites were 
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represented as unique R-group combinations, ensuring consistent application across 

AS with varying substitution sites. Each SARM-based consensus series was encoded 

as a sentence, with each analogue represented by an individual compound token. 

Sentence length was standardized to 35 tokens, and the total number of label tokens 

amounted to 95,910, covering all possible analogues extracted from qualifying 

SARMs. DeepAS 3.0 adapted the BERT CLM in chapter 5, initially trained on a global 

dataset of 17,140 SARMs, comprising 132,310 analogue sequences from 2,885 

activity classes. For model evaluation, the final analogue token was removed from 

each test sequence (unseen during training) and predicted based on the model’s 

conditional probabilities and log-likelihood scores. The primary validation criterion 

was the model's ability to correctly predict the final analogue within the top-ranked 

tokens. As a control, 20 label tokens were randomly selected for each test series to 

assess the probability of the correct final analogue's presence. Performance analysis 

was conducted across four subsets containing varying numbers of substitution sites. 

Additionally, individual models were developed for each subset to explore their 

relative predictive abilities. Fine-tuning of DeepAS 3.0 was performed using analogue 

sequences from 10 activity classes excluded from pre-training. The pre-trained global 

model was also fine-tuned and tested using these subsets as a control. The predictive 

performance of the global general model and the subset-based models was comparable, 

demonstrating the bidirectional transformer’s ability to learn the chemical space of 

compound series with extensive structural variations. Fine-tuning on AS from activity 

classes excluded from pre-training yielded promising predictions, with a confined but 

consistent performance increase for the subset-based models over the global fine-tuned 

model. Test calculations with both general and fine-tuned models generated a wealth 

of candidate compounds, confirming the models' ability to introduce diverse core 

structure and substituent modifications, thereby chemically diversifying input series. 

In summary, DeepAS 3.0 further advances the AS extension by incorporating core 

structure modifications in AS with multiple substitution sites. In the next chapter, a 

new CLM methodology is introduced to revisit sequence-based drug design, aiming to 

predict active compounds from protein sequence embeddings with potency 

conditioning. 
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Chapter 7 

Generative Design of Compounds with Desired Potency 

from Target Protein Sequences using a Multimodal 

Biochemical Language Model 

 

The following chapter summarizes the research published as  

Chen, H.; Bajorath, J. Generative design of compounds with desidered potency from 

target protein sequences using a multimodal biochemical language model. J. 

Cheminf. 2024, 16, 55. DOI:10.1186/s13321-024-00852-x 

The publication reprint is available in Appendix F. Reprinted with permission from 

“Chen, H.; Bajorath, J.  J. Cheminf. 2024, 16, 55”. Copyright 2024 The Author(s). 

Published under the license CC BY 4.0: http://creativecommons.org/licenses/by/4.0/  

Author contributions: Hengwei Chen: Conceptualization, Data curation, 

Methodology, Formal analysis, Writing – original draft, writing – reviewing and 

editing; Jürgen Bajorath: Conceptualization, Methodology, Supervision, Writing – 

original draft, writing – reviewing and editing. 
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7.1 Summary 

In previous chapters, various transformer-based CLMs were introduced for 

molecular SMILES-to-SMILES translation tasks and specific applications in 

molecular design. These include predicting ACs (Chapter 2), generating highly potent 

compounds (Chapters 3 and 4), and extending AS with increasingly potent compounds 

(Chapters 5 and 6). While these approaches focused on learning compound-to-

compound mappings for predicting new active compounds, efforts have also been 

made to establish direct links between biological targets and chemical entities, such as 

through protein sequence-to-compound modeling, thus revitalizing the concept of 

sequence-based compound design. However, designing active compounds directly 

from protein sequences remains challenging, as typically only a small subset of 

residues is involved in ligand binding, and high overall sequence similarity is often 

necessary to infer comparable binding characteristics between targets. Consequently, 

such design efforts are controversial and difficult to pursue with standard ML methods. 

However, the advent of PLMs offers a fresh perspective on this challenging task. PLMs 

embed long protein sequences as sentences of characters, where one or more residues 

form words. The resulting sequence embeddings are shown to implicitly capture 

structural and functional characteristics of proteins, making them attractive for various 

applications. In this chapter, a dual-component LM was designed to learn from 

multimodal data. It combined a PLM component for generating target sequence 

embeddings with a conditional CLM for predicting new active compounds with 

desired potency. The biochemical LM was trained to map combined protein sequence 

and compound potency value embeddings to corresponding compounds. It was then 

fine-tuned on individual activity classes not encountered during model derivation and 

evaluated on compound test sets that were structurally distinct from training sets. 

Compounds with high-confidence activity data were selected from ChEMBL, 

represented as canonical SMILES strings, and divided into target-based activity 

classes. Only targets with a maximal sequence length of 4000 residues were 

considered. For each qualifying target, the protein sequence was extracted in FASTA 

format from UniProt. This resulted in 1575 activity classes, comprising a total of 

87,839 unique compounds. A new multimodal conditional compound generator 

combining two LM components was devised, termed the biochemical LM. It consisted 
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of a pre-trained PLM, ProtT5XLUniref50 (adapted from ProtTrans), generating fixed-

size target sequence embeddings of 1024 dimensions, and a conditional CLM 

predicting new active compounds with desired potency. The biochemical LM was 

trained to map target sequence embeddings conditioned on potency values to active 

compounds. Pre-training was conducted on a general set of 212,004 target-compound 

pairs from 1565 activity classes. As a control, an unconditional model with the same 

architecture but without potency conditioning was also derived. Subsequently, the 

model was fine-tuned on 10 different activity classes not included in model derivation. 

Fine-tuning and evaluation were carried out on structurally distinct compound subsets 

generated through comprehensive AS identification and AS-based compound splitting. 

The most rigorous proof-of-concept criterion for the approach was the model’s ability 

to exactly reproduce known active compounds not encountered during training. 

Consequently, the biochemical LM consistently reproduced varying numbers of 

known active compounds across all test activity classes. Compared to the control 

model, the conditional model consistently reproduced larger numbers of known 

compounds as well as more potent compounds, revealing a clear positive effect of 

potency value conditioning on prediction success. Furthermore, for most activity 

classes, the potency distribution of correctly reproduced compounds closely matched 

the potency distribution of all test compounds, consistent with reproducing compounds 

at different potency levels. Subsequent molecular similarity analysis demonstrated the 

capacity of biochemical LM to generate structurally diverse candidate compounds 

distinct from both fine-tuning and test compounds, indicating its generalization 

potential. Taken together, generative compound design conditioned on potency value 

from target sequence embeddings using the dual-component biochemical LM yielded 

promising results, highlighting its potential for sequence-based compound design. 
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Chapter 8 

Conclusion  

 

One of the major applications of DL in computational drug discovery is generative 

molecular design, which focuses on creating highly diverse or focused chemical 

libraries and design new compounds with desired properties. These models typically 

operate on molecular graphs or textual formats such as SMILES strings. By learning 

the underlying probabilistic distribution of molecular representations in the training 

data, generative models can produce new molecular structures. Among the generative 

approaches, CLMs have gained increasing popularity, particularly for molecular 

sequence-to-sequence translation tasks across various applications in drug discovery. 

CLMs are especially attractive due to their versatility in relating different types of 

sequence representations, enabling exploration of previously challenging applications. 

While various DGMs have been widely applied to sequential data processing, 

transformer-based CLMs are beginning to dominate the field. This shift is largely due 

to the self-attention mechanism of transformers, which reduces errors in generated 

representations and improves computational efficiency through parallel processing. 

Moreover, transformers offer flexibility in conditioning generation on molecular 

properties or other constraints, further enhancing their applicability in molecular 

design. In this context, different chemical and biochemical LMs are investigated and 

derived for specific applications in medicinal chemistry and molecular design. In the 

first study (Chapter 2), we investigated CLMs for AC prediction. To this end, an 

encoding strategy was devised to predict target compounds from source compounds 

and associated potency differences. Seq2Seq and transformer models were pre-trained 

on pairs of structural analogues with varying potency differences, representing true 

SARs. Comparative analysis revealed the superior performance of the transformer 

architecture in reproducing test compound pairs. Building on this, the pre-trained 

transformer was fine-tuned using both ACs and non-ACs across different activity 

classes. Compared to reference methods, DeepAC achieved the highest prediction 

accuracy and exhibited unique predictive behavior. While its performance on non-ACs 

was limited, DeepAC outperformed baseline methods in identifying ACs, particularly 
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in data-scarce settings. A key strength of DeepAC is its dual capability: in addition to 

predicting ACs, it can generate novel AC compounds. This integration of predictive 

and generative modeling enables both AC analysis and AC-based compound design. 

Furthermore, the approach can be generalized beyond AC prediction by conditioning 

on large potency differences, enabling the model to generate highly potent compounds 

from weakly potent input templates. In Chapter 3, we adapted the CLM previously 

used for AC predictions (Chapter 2) to predict highly potent compounds from weakly 

potent ones. To achieve this, the CLM was pre-trained on a general set of CCR triples, 

which comprised ASs with single or multiple substitution sites. The pre-trained model 

was then fine-tuned on pairs of source and target compounds with associated potency 

differences from 10 activity classes excluded from pre-training, enabling an evaluation 

of its ability to predict structurally diverse compounds with substantial potency 

increases relative to input molecules. To rigorously assess model performance, a 

compound pair-based test system was generated, covering all possible prediction 

outcomes. Our analysis confirmed that the model reproduced known potent 

compounds not encountered during training at high rates, including both analogues of 

source compounds and structurally distinct compounds. Median potency gains across 

activity classes approached or exceeded 100-fold, with several predictions 

demonstrating over 1000-fold increases, indicating high model performance. 

Additionally, the CLM generated a large number of novel compounds that were not 

part of the fine-tuning or test sets. However, the accuracy of compound potency 

predictions inherently depends on the availability of high-quality training data. As is 

often the case in early-phase drug discovery, potency measurements for specific targets 

are generally sparse, posing a challenge for generative design. Addressing this issue 

requires specialized learning strategies capable of handling sparsely distributed data, 

which is explored in the subsequent chapter. In the third study (Chapter 4), the CLM 

was further advanced to enable the generative design of highly potent compounds in 

low-data regimes. Building upon the transformer architecture investigated in Chapter 

3, a specialized meta-learning module was incorporated into the pre-trained 

transformer, resulting in a meta-learning model. Meta-CLMs were derived for different 

activity classes, and their performance in designing potent compounds was compared 

to reference CLMs. For model validation, the primary criterion was the ability to 

reproduce known potent target compounds. All models successfully reproduced 

known target candidates; however, the Meta-CLMs significantly increased the number 
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of correctly predicted target compounds across all activity classes, particularly as the 

number of fine-tuning samples decreased. This outcome aligned with expectations for 

successful meta-learning and highlighted its advantages in low-data scenarios. 

Furthermore, the meta-learning models generated target compounds with overall 

higher potency than basic CLMs and achieved larger potency differences between 

template and target compounds. Beyond these results, generating potent compounds 

for evolving AS remains a key challenge in medicinal chemistry and compound 

optimization. Therefore, in the next study (Chapter 5), we investigated the extension 

of AS with potent compounds using CLMs. Building on the original RNN-based 

DeepAS model, which predicted R-groups for potent analogues with single 

substitution sites, we developed DeepAS 2.0—a BERT-based CLM that improved 

performance in systematic MMS extension. Additional fine-tuning confirmed the 

activity class sensitivity of DeepAS 2.0. More importantly, a framework for handling 

AS with multiple substitution sites was explored by introducing a new AS encoding 

scheme and R-group data structure in DeepAS 2.0. Despite the inherent challenges of 

predicting R-group combinations for potent compounds, the resulting MS-DeepAS 2.0 

accurately prioritized R-group combinations of potent analogues across diverse multi-

site AS with activity against various targets. Building upon the successful extension of 

single- and multi-site AS with potent compounds using CLMs, we aimed to further 

extend the method to enable the combined modification of core structures and 

substituents, thereby moving beyond AS with invariant scaffolds. In Chapter 6, the 

SARM formalism was introduced and further advanced with a new compound 

decomposition protocol SARM-CCR designed to cover structurally related AS with 

multiple substitution sites. Additionally, a new CLM coding and tokenization scheme 

was developed to represent core structure–substituent combinations effectively. 

Building upon the BERT architecture, a global general CLM was derived alongside 

four other models tailored to subsets of AS with varying numbers of substitution sites. 

Both the global and subset-based models accurately predicted terminal analogues of 

test series at high ranks. Fine-tuning the models on AS from unseen activity classes 

yielded promising predictions, with the subset-based models consistently showing a 

slight performance advantage over the global fine-tuned model. Test calculations using 

both general and fine-tuned models generated a wealth of candidate compounds, 

confirming the models' ability to introduce diverse core structure and substituent 

modifications, thereby further chemically diversifying input series. Different 
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transformer-based CLMs have been introduced for various molecular string-to-string 

translation tasks. Beyond learning compound-to-compound mappings for predicting 

new active or highly potent compounds, protein sequence-to-compound modeling 

presents an opportunity to establish direct links between biological targets and 

chemical entities, revitalizing the concept of sequence-based compound design. In 

Chapter 7, we advanced this concept by developing a dual-component biochemical 

LM for multimodal learning, aiming to predict new active compounds with desired 

potency from protein sequence embeddings. The model integrated two components: a 

pre-trained PLM to generate target sequence embeddings, and a conditional 

transformer that operated on operating on the output of the PLM. The biochemical LM 

was initially pre-trained to map target sequence embeddings, conditioned on potency 

values, to active compounds, then individually fine-tuned on 10 different activity 

classes not included in model derivation. Fine-tuning and evaluation were carried out 

on structurally distinct compound subsets generated through AS-based compound 

splitting. The model consistently reproduced known active compounds not 

encountered during training across all activity classes. Notably, it outperformed an 

unconditional version of the model by reproducing a greater number of known 

compounds, highlighting the beneficial effect of conditioning on potency values. In 

most cases, the potency distribution of correctly reproduced compounds closely 

matched the potency distribution of all test compounds, reflecting the model’s ability 

to capture compounds across different potency levels. Subsequent molecular similarity 

analysis showed that the biochemical LM could also generate structurally diverse 

candidate compounds, distinct from those in the fine-tuning and test sets. Collectively, 

these findings demonstrate that the biochemical LM enables generative design of 

active compounds with desired potency from target sequences, offering a novel and 

effective strategy for sequence-based compound design. 

In conclusion, this dissertation explores the development and application of 

chemical and biochemical LMs to tackle various challenges in medicinal chemistry 

and drug design. Inspired by NLP, transformers were adapted to learn the chemical 

vocabulary, syntax, and conditional probabilities of molecular SMILES 

representations, enabling a range of molecular translation tasks. By learning the 

mapping pairs of structural analogues with varying potency differences, DeepAC 

accurately predicted ACs and further extended such predictions through generative 
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design of new AC compounds. Additionally, by modifying the training protocol to 

condition on large potency differences, compound predictions were generalized 

beyond ACs enabling the generation of highly potent compounds from weakly potent 

input templates. To address the challenges of low-data regimes, a CLM variant 

incorporating meta-learning was implemented for the generative design of highly 

potent compounds from limited training data. Furthermore, a BERT-based CLM was 

developed for lead optimization in medicinal chemistry. This model iteratively 

extended AS with potent compounds by introducing substituent replacements at 

multiple sites (DeepAS 2.0) and core structure modifications (DeepAS 3.0). Finally, 

compound-to-compound mapping was advanced to protein sequence-to-compound 

mapping through a dual-component biochemical LM, facilitating the generative design 

of active compounds with desired potency directly from target protein sequences. 

These studies demonstrate the potential of CLMs to address previously challenging or 

unfeasible prediction scenarios in molecular design, offering new opportunities for 

advancements in medicinal chemistry and drug discovery. 
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tional transformer-based chemical
language model for the prediction of activity cliffs
formed by bioactive compounds

Hengwei Chen, Martin Vogt and Jürgen Bajorath *

Activity cliffs (ACs) are formed by pairs of structurally similar or analogous active small molecules with large

differences in potency. Inmedicinal chemistry, ACs are of high interest because they often reveal structure–

activity relationship (SAR) determinants for compound optimization. In molecular machine learning, ACs

provide test cases for predictive modeling of discontinuous (non-linear) SARs at the level of compound

pairs. Recently, deep neural networks have been used to predict ACs from molecular images or graphs

via representation learning. Herein, we report the development and evaluation of chemical language

models for AC prediction. It is shown that chemical language models learn structural relationships and

associated potency differences to reproduce ACs. A conditional transformer termed DeepAC is

introduced that accurately predicts ACs on the basis of small amounts of training data compared to

other machine learning methods. DeepAC bridges between predictive modeling and compound design

and should thus be of interest for practical applications.
1 Introduction

In medicinal chemistry, compound optimization relies on the
exploration of structure–activity relationships (SARs). There-
fore, series of structural analogues are generated to probe
substitution sites in specically active compounds with
different functional groups and improve potency and other lead
optimization-relevant molecular properties. For lead optimiza-
tion, the activity cliff (AC) concept plays an important role. ACs
are dened as pairs or groups of structurally similar compounds
or structural analogues that are active against a given target and
have large differences in potency.1–3 As such, ACs represent
strongly discontinuous SARs because small chemical modi-
cations lead to large biological effects. In medicinal chemistry,
SAR discontinuity captured by ACs helps to identify substitu-
ents that are involved in critically important ligand–target
interactions. In compound activity prediction, the presence of
SAR discontinuity prevents the derivation of quantitative SAR
(QSAR) models relying on continuous SAR progression and
requires non-linear machine learning models.1,2

For a non-ambiguous and systematic assessment of ACs,
similarity and potency difference criteria must be clearly
dened.2,3 Originally, molecular ngerprints (that is, bit string
representations of chemical structure) have been used as
Data Science, B-IT, LIMES Program Unit

icinal Chemistry, Rheinische

irzebruch-Allee 5/6, D-53115 Bonn,

e; Fax: +49-228-7369-100; Tel: +49-228-

909
molecular representations to calculate the Tanimoto coeffi-
cient,4 a whole-molecule similarity metric, for identifying
similar compounds forming ACs.2 Alternatively, substructure-
based similarity measures have been adapted for dening
ACs, which have become increasingly popular in medicinal
chemistry, because they are oen chemically more intuitive
than calculated whole-molecule similarity.3 For example,
a widely used substructure-based similarity criterion for AC
analysis is the formation of a matched molecular pair (MMP),
which is dened as a pair of compounds that are only distin-
guished by a chemical modication at a single site.5 Thus,
MMPs can be used to represent pairs of structural analogues,
which explains their popularity in medicinal chemistry. More-
over, MMPs can also be efficiently identied algorithmically.5

Although statistically signicant potency differences for ACs
can be determined for individual compound activity classes,6

for the systematic assessment of ACs and computational
modeling, a potency difference threshold of at least two orders
of magnitude (100-fold) has mostly been applied.2,3

While medicinal chemistry campaigns encounter ACs on
a case-by-case basis, systematic compound database analysis
has identied ACs across different compound activity classes,
providing a wealth of SAR information.2,7 Here, computational
and medicinal chemistry meet. With rapidly increasing
numbers of publicly available bioactive compounds, AC pop-
ulations have also grown over time.3 However, the rate at which
ACs are formed across different activity classes has essentially
remained constant. Only ∼5% of pairs of structural analogues
sharing the same activity form ACs across different activity
classes.3,7 Thus, as expected for compounds representing the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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pinnacle of SAR discontinuity, structural analogues rarely form
ACs.

Systematic identication of ACs across activity classes has
also provided the basis for computational predictions of ACs.
For machine learning, AC predictions generally present a chal-
lenge, for three reasons. First, as discussed, the underlying SARs
that need to be accounted for are highly discontinuous; second,
data sets of ACs and non-ACs are unbalanced; third, predictions
need to be made at the level of compound pairs, rather than
individual compounds, which is usually the case in compound
classication or molecular property prediction. Initial attempts
to predict ACs were reported a decade ago.8,9 ACs were rst
accurately predicted using support vector machine (SVM)
modeling on the basis of special kernel functions enabling
compound pair predictions.9 These ndings have also catalyzed
further AC predictions using SVR variants10–12 and other
methods,13–18 as discussed below. Recently, various deep neural
network architectures have been used to predict ACs from
images14,15 and molecular graphs using representation
learning16 or derive regression models for potency prediction of
AC compounds.17,18

In this work, we further extend this methodological spec-
trum by introducing chemical language models for combined
AC prediction and generative compound design. Compared to
earlier studies predicting ACs using classication models, the
approach presented herein was designed to extend AC predic-
tions with the capacity to produce new AC compounds, thus
integrating predictive and generative modeling in the context of
AC analysis and AC-based compound design.
2 Methods
2.1 Compounds and activity data

Bioactive compounds with high-condence activity data were
assembled from ChEMBL (version 26).19 The following selection
criteria were applied. Only compounds involved in direct
interactions with human targets at the highest assay condence
level (assay condence score 9) were selected and only numer-
ically specied equilibrium constants (Ki values) were accepted
as potency measurements. Equilibrium constants were recor-
ded as (negative logarithmic) pKi values. Multiple measure-
ments for the same compound were averaged, provided all
values fell within the same order of magnitude; if not, the
compound was disregarded. Hence, in a given class, all
compounds were active against a specic target. Compounds
were represented using molecular-input line-entry system
(SMILES) strings.20
2.2 Matched molecular pairs

From activity classes, all possible MMPs were generated by
systematically fragmenting individual exocyclic single bonds in
compounds and sampling core structures and substituents in
index tables.5 For substituents, size restrictions were applied to
limit MMP formation to structural analogues typical for
medicinal chemistry. Accordingly, a substituent was permitted
to contain at most 13 non-hydrogen atoms and the core
© 2022 The Author(s). Published by the Royal Society of Chemistry
structure was required to be at least twice as large as a substit-
uent. In addition, for MMP compounds, the maximum differ-
ence in non-hydrogen atoms between the substituents was set
to eight, yielding transformation size-restricted MMPs.21 The
systematic search identied 357 343 transformation size-
restricted MMPs originating from a total of 600 activity classes.
2.3 Data set for model derivation

From the MMPs, a large general data set for model training was
assembled by combining 338 748 MMPs from 596 activity
classes. The majority of MMPs captured only minor differences
in potency. Importantly, model pre-training, as specied below,
did not require the inclusion of explicit target information
because during this phase, the model must learn MMP-
associated potency differences caused by given chemical
transformations. Each MMP represented a true SAR, which was
of critical relevance in this context, while target information was
not required for pre-training. By contrast, subsequent ne-
tuning then focused the model on target-specic activity
classes for AC prediction and compound design.

MMPs comprising the general data set were represented as
triples:

(CompoundA, CompoundB, PotencyB − PotencyA).

CompoundA represented the source compound that was
concatenated with the potency difference (PotencyB − PotencyA)
while CompoundB represented the target compound. Each
MMP yielded two triples, in which each MMP compound was
used once as the source and target compound, respectively. The
source and target compounds were then used as the input and
associated output for model training, respectively. Further-
more, for MMP-triples, data ambiguities could arise if an MMP
was associated with multiple potency values for different targets
or if a given source compound and potency difference was
associated with multiple target compounds from different
activity classes. Such MMPs were eliminated. Finally, for the
general data set, a total of 338 748 qualifying MMP-triples were
obtained.

For modeling, MMP-triples were randomly divided into
training (80%), validation (10%), and test (10%) sets. Source
and target compounds from MMP-triples displayed nearly
indistinguishable potency value distributions.

For the initial evaluation of chemical language models, three
different test (sub)set versions were designed:

(i) Test-general: complete test set of 33 875 MMP-triples
excluded from model training.

(ii) Test-core: subset of 2576 test set MMP-triples with core
structures not present in training compounds.

(iii) Test-sub: subset of 14 193 MMP-triples with substituents
(R-groups) not contained in training compounds.

For the generation of the training subsets, compounds were
decomposed into core structures and substituents via MMP
fragmentation.5
Digital Discovery, 2022, 1, 898–909 | 899
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2.4 Activity cliffs

For ACs, the MMP-Cliff denition was applied.21 Accordingly,
a transformation size-restricted MMP from a given activity class
represented an AC if the two MMP-forming compounds had
a potency difference of at least two orders of magnitude (100-
fold; i.e., DpKi $ 2.0). MMP-Cliffs were distinguished from
“MMP-nonCliffs”, that is, pairs of structural analogues not
representing an AC. To avoid potency boundary effects in AC
prediction, compounds forming an MMP-nonCliff were
restricted to a maximal potency difference of one order of
magnitude (10-fold; DpKi # 1). Hence, MMPs capturing potency
differences between 10- and 100-fold were not considered for AC
prediction.

MMP-Cliffs and MMP-nonCliffs were extracted from four
large activity classes including inhibitors of thrombin (ChEMBL
ID 204) and tyrosine kinase Abl (1862) as well as antagonists of
the Mu opioid receptor (233) and corticotropin releasing factor
receptor 1 (1800). For MMP-Cliffs and MMP-nonCliffs, triples
were ordered such that CompoundA had lower potency than (or
equal potency to) CompoundB. These activity classes were
excluded from the general data set and their MMP-Cliffs and
MMP-nonCliffs thus formed an external/independent test set
for AC prediction (Table 1).
2.5 Deep chemical language models

Chemical language models for AC prediction were designed to
learn the following mapping from MMP-triples:

(Source compound, Potency difference) / (Target compound).

Then, given a new (Source compound, Potency difference)
test instance, trained models were supposed to generate a set of
target candidate compounds meeting the potency difference
condition.

Sequence-to-sequence (Seq2Seq) models represent an
encoder–decoder architecture to convert an input sequence
(such as a character string) into an output sequence.22 These
models can be adapted for a variety of applications, especially
for neural machine translation.22 The encoder reads an input
sequence and compresses it into a context vector as its last
hidden state. The context vector serves as the input for the
decoder network component that interprets the vector to
predict an output sequence. Because long input sequences
oen present challenges for generating context vectors,23 an
attention mechanism24 was introduced that utilizes hidden
Table 1 Compound activity classes for activity cliff prediction

Target name ChEMBL ID

Thrombin 204
Mu opioid receptor 233
Tyrosine kinase Abl 1862
Corticotropin releasing factor receptor 1 1800

900 | Digital Discovery, 2022, 1, 898–909
states from each time step of the encoder. As a further advance,
a transformer neural network architecture was introduced that
only relies on the attention mechanism.25 The transformer
architecture comprises multiple encoder–decoder modules
(Fig. 1). An encoder module consists of a stack of encoding
layers composed of two sub-layers including a multi-head self-
attention sub-layer and a fully connected feed-forward
network (FFN) sub-layer. Multi-head attention has multiple,
single attention functions acting in parallel such that different
positions in the input sequence can be processed simulta-
neously. The attention mechanism is based upon the following
function:

AttentionðQ; K; VÞ ¼ softmax

�
QKTffiffiffiffiffi

dk
p

�
V (1)

The input for the attention layer is received in the form of
three parameters including query (Q), keys (K), and values (V). In
addition, a scaling factor dk (equal to the size of weight
matrices) prevents calculations of excessive dot products.25

More details concerning the attention function are provided in
the original literature of the transformer model.25 The FFN sub-
layer employs rectied linear unit (ReLU) activation.26 The
multi-head self-attention and FFN sub-layers are then linked via
layer normalization27 and a residual skip-connection.28 Each
decoder layer contains three sub-layers including an FFN sub-
layer and two multi-head attention sub-layers. The rst atten-
tion sub-layer was controlled by a mask function.

In this work, all source and target molecules were repre-
sented as canonical SMILES strings generated using RDKit29

and further tokenized to construct a chemical vocabulary con-
taining all the possible chemical tokens. The start and end of
a sequence were represented by two special “start” and “end”
tokens, respectively. For AC prediction, models must be guided
towards the generation of compounds meeting potency differ-
ence constraints. Therefore, potency differences captured by
MMPs were tokenized by binning.23 The potency difference,
ranging from −8.02 to 9.53, was partitioned into 1755 bins of
width 0.01 that were also added to the chemical vocabulary.
Each bin was encoded by a single token and each potency
difference was assigned to the token of the corresponding bin
(Fig. 1), e.g., a potency difference of 2.134 was encoded as
‘pKi_change_(2.13, 2.14)’. Accordingly, the tokenization
preserved the quantitative relationship between bins. The
SMILES representation of a source compound combined with
its potency difference token then represented the input
sequence for the transformer encoder and was converted into
Total MMPs MMP- Cliffs MMP-nonCliffs

4249 438 2976
5875 329 4319
5403 564 3093
3068 317 1889

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Architecture of a transformer encoder–decoder with attention mechanism.
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a latent representation. Based on this representation, the
transformer decoder iteratively generated output SMILES
sequences until the end token was obtained. During training,
the transformer model minimized the cross-entropy loss
between the ground-truth target and output sequence.
2.6 Model derivation and selection

Seq2Seq and transformer models were implemented using
Pytorch.30 The Adam optimizer with learning rate 0.0001 and
a batch size of 64 was applied. For transformer models, default
hyperparameter settings were used,25 except for the input and
output encoding dimension, which was reduced from 512 to
256, and label smoothing, which was set to 0. On the basis of the
Table 2 Hyperparameter settings for optimization of different models

Model Hyperparameters

SVM Kernel function
C
Gamma

RF Max_depth
Max_features
n_estimators

XGboost Max_depth
n_estimators
Learning_rate
Subsample
Min_child_weight

© 2022 The Author(s). Published by the Royal Society of Chemistry
general training set, models were derived over 200 epochs. A
checkpoint was saved at each epoch and for the validation set,
minimal loss was determined for selecting the nal model. For
the test set, generated candidate compounds were canon-
icalized using RDkit and compared to the target compounds.
2.7 Reference methods for activity prediction

For AC prediction, the chemical language models were
compared to models of different machine learning methods
including support vector machine (SVM),31 random forest
(RF),32 and extreme gradient boosting (XGboost)33 that were
generated using scikit-learn.34 As a molecular representation,
the extended connectivity ngerprint with bond diameter of 4
Value space for optimization

‘Linear’, ‘sigmoid’, ‘poly’, ‘rbf’, ‘tanimoto’
1, 10, 100, 1000, 10 000
10−6, 10−5, 10−4, 10−3, 10−2, 10−1

3, 4, 5, 6, 7, 8, 9, 10
32, 64, 128, 256, 512, 1024
1, 2, 4, 8, 16, 32, 64, 100, 200
3, 4, 5, 6, 7, 8, 9, 10
1, 2, 4, 8, 16, 32, 64, 100, 200
0.0001, 0.001, 0.01, 0.1, 0.2, 0.3
0.5, 0.6, 0.7, 0.8, 0.9, 1
0, 1, 2, 3, 4, 5
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(ECFP4) was used.35 For the common core of an MMP and the
two substituents dening the chemical transformation, nger-
print vectors were generated. For use of the MMP kernel,9 these
vectors were concatenated to yield a single vector9 as input for
deriving SVM, RF, and XGboost models. Hyperparameters of all
models were optimized using the Hyperopt36 package with ve-
fold cross-validation, as reported in Table 2.
2.8 Evaluation metrics

A reproducibility criterion was introduced tomeasure the ability
of a chemical language model to reproduce a target compound
for a given source compound and potency difference. An MMP-
triple met this criterion if it was reproduced when generating
a pre-dened number of target candidate compounds. In our
calculations, up to 50 distinct molecules were generated for
each source compound to determine the reproducibility of
a target compound, dened as:

Reproducibility ¼ MMPrepro

MMPtest

(2)

MMPtest and MMPrepro denote the number of MMP-triples
that were tested and reproduced by a model, respectively.
Notably, this denition of reproducibility directly corresponds
to the recall of labeled instances for classication models.

AC predictions were also evaluated by determining the true
positive rate (TPR), true negative rate (TNR), and balanced
accuracy (BA),37 dened as:

TPR ¼ TP

TPþ FN
(3)

TNR ¼ TN

TPþ FN
(4)

BA ¼ TPRþ TNR

2
(5)

TP, TN, FP, and FN denote true positives, true negatives, false
positives, and false negatives respectively.
Table 3 Reproducibility of target compounds by chemical language
models

Test-general Test-core Test-sub

Seq2Seq 0.719 0.370 0.759
Transformer 0.818 0.528 0.850
3 Results and discussion
3.1 Study concept

The basic idea underlying the use of chemical language models
for AC prediction was learning the following mapping based on
textual/string representations:

(Source compound, Potency difference) / (Target compound).

Then, given a new (Source compound, Potency difference)
test instance, the pre-trained models should generate target
compounds with appropriate potency. For deriving pairs of
source and target compounds, the MMP formalism was applied.
For AC prediction, pre-trained models were subjected to ne-
tuning on MMP-Cliffs and MMP-nonCliffs from given activity
902 | Digital Discovery, 2022, 1, 898–909
classes, corresponding to the derivation of other supervised
machine learning models.

3.2 Pre-trained chemical language models

Initially, the ability of Seq2Seq and transformer models to
reproduce target compounds for test (sub)sets was evaluated by
calculating the reproducibility measure. The results are
summarized in Table 3. Therefore, for each test set triple, the
source compound/potency difference concatenation was used
as input and 50 target candidate compounds were sampled.
Notably, the sampling procedure is an integral part of chemical
language models in order to generate new candidate
compounds, hence setting these models apart from standard
class label prediction/classication approaches.

For the entire test set, the Seq2Seq and transformer model
achieved reproducibility of 0.719 and 0.818, respectively. Hence,
the models were able to regenerate more than 70% and 80% of
the target compounds from MMP-triples not used for training,
respectively. However, reproducibility was consistently higher
for the transformer and all training set versions than for the
Seq2Seq model (Table 3). Hence, preference for AC prediction
was given to the transformer. The test-general reproducibility of
more than 80% was considered high. Attempting to further
increase this reproducibility might compromise the ability of
the model to generate novel compounds by strongly focusing on
chemical space encountered during training. As expected, the
test-core reproducibility was generally lowest because in this
case, the core structures of MMPs were not available during
training (limiting reproducibility muchmore than in the case of
test-sub, i.e., evaluating novel substituents).

3.3 Fine-tuning for activity cliff prediction

The transformer was rst applied to reproduce MMP-Cliffs and
MMP-nonCliffs from the four activity classes excluded from pre-
training. Therefore, for each MMP-triple, the source compound/
potency difference concatenation was used as input for gener-
ating target compounds. As expected for activity classes not
encountered during model derivation, reproducibility of MMP-
Cliffs and MMP-nonCliffs was low, reaching maximally 5% for
MMP-Cliffs and ∼19% for MMP-nonCliffs (Table 4).

Therefore, a transfer learning approach was applied by ne-
tuning the pre-trained transformer on these activity classes. For
ne-tuning, 5%, 25%, and 50% of MMP-Cliffs and MMP-
nonCliffs of each class were randomly selected. The resulting
models were then tested on the remaining 50% of the MMP-
Cliffs and MMP-nonCliffs.

Only 5% of the training data were required for ne-tuning to
achieve reproducibility rates of 70% to greater than 80% for
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Reproducibility of MMP-Cliffs and MMP-nonCliffs by pre-
trained DeepAC

Reproducibility

Activity classes

ChEMBL204 1862 233 1800

MMP-Cliffs 0.050 0.007 0.049 0.006
MMP-nonCliffs 0.185 0.081 0.188 0.035
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MMP-Cliffs from the different activity classes (Fig. 2A, solid
lines). For MMP-nonCliffs, 25% of the training data were
required to achieve reproducibility between 60% and 80% for
the different classes (Fig. 2B, solid lines). For practical appli-
cations, these ndings were encouraging because for any given
target, there were many more MMP-nonCliffs available than
MMP-Cliffs.

Furthermore, to directly test whether high reproducibility
achieved through ne-tuning only depended on learning
structural relationships encoded by MMPs or if potency differ-
ences were also learned, a prerequisite for meaningful AC
Fig. 2 Reproducibility of MMP-Cliffs and MMP-nonCliffs after fine-
tuning. For (A) MMP-Cliffs and (B) MMP-nonCliffs from different
activity classes (identified by ChEMBL target IDs according to Table 1),
reproducibility is reported as a function of transfer ratio accounting for
the percentage of training data used for fine tuning. Solid lines
represent results for true MMP-Cliffs and MMP-nonCliffs and dashed
lines for control data obtained by inverting potency differences for
MMP-Cliffs and MMP-nonCliffs.

© 2022 The Author(s). Published by the Royal Society of Chemistry
prediction, control calculations with inverted potency differ-
ences were carried out. Therefore, for all MMP-Cliffs, potency
differences were set to DpKi = 0.1 and for all MMP-nonCliffs,
potency differences were set to DpKi = 2.0. Using these hypo-
thetical (SAR-nonsensical) data as test instances, reproducibility
rates were determined again. In this case, reproducibility rates
remained well below 50% for both MMP-Cliffs (Fig. 2A, dashed
lines) and MMP-nonCliffs (Fig. 2B, dashes lines) and further
decreased with increasing amounts of training data used for
ne-tuning. These ndings conclusively showed that the
conditional transformer associated structural relationships
with corresponding potency differences, thereby learning to
reproduce and differentiate between MMP-Cliffs and MMP-
nonCliffs.

In the following, the conditional transformer for AC predic-
tion is referred to as DeepAC.

We also evaluated the capability of the model to reconstruct
both MMP-Cliffs and MMP-nonCliffs originating from the same
source compound. For each activity class, we compiled a set of
source compounds from the original test data. Then, models
were ne-tuned with varying amounts of data and applied to
reproduce MMP-Cliff and MMP-nonCliff target compounds
from the same source compound. As shown in Fig. 3, DeepAC
reproduced more than 80% of the target compounds using 5%,
25%, or 50% of ne-tuning data, depending on the activity
class.
3.4 Performance comparison of unconditional and
conditional DeepAC

We also compared model performance of conditional DeepAC
and unconditional DeepAC generated by randomly shuffling
potency differences of MMPs during ne-tuning. Accordingly,
for each activity class, potency differences were randomly
shuffled for the three training set sizes (5, 25, and 50%) for the
ne-tuning MMPs; then the pre-trained transformer was ne-
tuned using these articial MMPs. As shown in Fig. 4A, for
MMP-Cliffs, the reproducibility of conditional DeepAC was
signicantly higher than of unconditional DeepAC. However,
for the reproducibility of MMP-nonCliffs, conditional DeepAC
only yielded slight improvement than unconditional DeepAC
Fig. 3 Reproducibility of MMP-Cliffs and MMP-nonCliffs originating
from the same source compound.
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Fig. 4 Performance of conditional vs. unconditional DeepAC. Reproducibility is reported for (A) MMP-Cliffs and (B) MMP-nonCliffs. Mean and
standard deviations (error bars) are provided for each activity class. Independent-samples t tests were conducted: 0.05 < p# 1.00 (ns), 0.01 < p#

0.05 (*), 0.001 < p # 0.01 (**), 0.0001 < p # 0.001 (***), p # 0.0001 (****).
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(Fig. 4B). This was principally expected because potency differ-
ences of most MMP-nonCliffs remained similar (less than one
order of magnitude). These ndings further demonstrated that
potency difference of ACs played a critical role for model
derivation.
3.5 Alternative ne-tuning

As an additional control, ne-tuning was carried out using
MMP-nonCliffs (DpKi < 1.0) and MMPs with 1.0 # DpKi < 2.0
that were initially excluded from the analysis to prevent
potential bias due to boundary effects. Then, the reproducibility
of MMP-Cliffs of the ne-tuned models was determined and
compared to regular ne-tuning. Fig. 5A shows that ne-tuning
only with MMP-nonCliffs yielded reproducibility of 0.306–0.576
for the activity classes, reecting a baseline learning effect of
MMPs and associated potency differences, even if these were
only small. However, ne-tuning with MMPs (1.0 # DpKi < 2.0),
signicantly increased the reproducibility of MMP-Cliffs to
904 | Digital Discovery, 2022, 1, 898–909
0.620 for thrombin inhibitors, 0.607 for Mu opioid receptor
ligands, 0.726 for corticotropin releasing factor receptor 1
ligands and 0.716 for tyrosine kinase Abl inhibitors. Fine-tuning
using increasing proportions of MMP-Cliffs further increased
reproducibility. Taken together, these ndings clearly demon-
strated the inuence of MMP-associated potency differences for
AC predictions. Furthermore, consistent with these observa-
tions, Fig. 5B shows that ne-tuning with MMP-nonCliffs, led to
very high reproducibility of MMP-nonCliffs, which was
substantially reduced when ne-tuning was carried out with
MMPs capturing larger potency differences.
3.6 Global performance comparison

The performance of DeepAC in activity prediction was
compared to other machine learning methods including SVM,
RF, and XGboost. First, the reproducibility/recall of MMP-Cliffs
and MMP-nonCliffs from the four activity classes was compared
for unbalanced training and test sets according to Table 1. For
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Model performance comparison after alternative fine-tuning with different types of MMPs. Reproducibility of (A) MMP-Cliffs and (B) MMP-
nonCliffs is reported. Mean and standard deviations (error bars) are provided for each activity class. Independent-samples t tests were conducted:
0.05 < p # 1.00 (ns), 0.01 < p # 0.05 (*), 0.001 < p # 0.01 (**), 0.0001 < p # 0.001 (***), p # 0.0001 (****).
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AC prediction, unbalanced sets were deliberately used to
account for the fact that ACs are rare compared to other pairs of
structural analogues with minor potency differences, thus
providing a realistic prediction scenario.

The predictions using different methods were generally
stable, yielding only low standard deviations over independent
trials (Fig. 6). Using 5% of training data for ne-tuning or model
derivation, the recall (TPR) of MMP-Cliffs was consistently
higher for DeepAC than the reference methods, which failed on
two activity classes (Fig. 6). For increasing amounts of training
data, recall performance of the reference methods further
increased and SVM reached the 80% or 90% recall level of
DeepAC in two cases when 50% of available data were used for
training (Fig. 6).
© 2022 The Author(s). Published by the Royal Society of Chemistry
For MMP-nonCliffs, representing the majority class for the
predictions, a different picture was obtained. Here, the recall of
reference methods for increasing amounts of training data was
mostly greater than 90% and signicantly higher than of
DeepAC (Fig. 7). For DeepAC, recall/reproducibility increased
with increasing amounts of training data and reached highest
performance very similar to the reference methods for two
activity classes when 50% training data were used.

Calculation of BA for the prediction of MMP-Cliffs andMMP-
nonCliffs gave similar results for all methods (Fig. 8). The level
of 80% BA was generally reached for 25% or 50% training data.
For largest training sets, all methods were comparably accurate
for two activity classes, SVM reached highest accuracy for one
class, and DeepAC for another (Fig. 8). Compared to the other
methods, DeepAC produced higher TPR and lower TNR values,
Digital Discovery, 2022, 1, 898–909 | 905
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Fig. 6 Recall of MMP-Cliffs. For four different methods, recall/reproducibility of MMP-Cliffs is reported for (A) thrombin inhibitors, (B) Mu opioid
receptor ligands, (C) corticotropin releasing factor receptor 1 ligands, and (D) tyrosine kinase Abl inhibitors. Average recall over five independent
trials is reported for increasing amounts of training data randomly selected from the complete data set (error bars indicate standard deviations).
Statistical tests are shown according to Fig. 4.

Fig. 7 Reproducibility of MMP-nonCliffs. In (A)–(D), reproducibility of MMP-nonCliffs is reported using four different methods. Statistical tests
are shown according to Fig. 4.

906 | Digital Discovery, 2022, 1, 898–909 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Prediction accuracy. Reported are mean BA values and standard deviation (error bars) for the prediction of MMP-Cliffs and MMP-
nonCliffs. In (A)–(D), results are reported using four different methods and statistical tests according to Fig. 4.
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resulting in overall comparable BA. Clearly, a major strength of
DeepAC was the ability to accurately predict MMP-Cliffs on the
basis of small training data sets.
3.7 Activity cliff predictions in context

As discussed above, AC predictions have been reported previ-
ously in independent studies, which are summarized (and
ordered chronologically) in Table 5. In 2012, AC predictions
with SVM and newly designed MMP kernels yielded high
accuracy,9 which was also achieved in several subsequent
studies using modied SVM approaches (Table 5). In addition,
in our current study, we have investigated decision tree
methods for AC predictions using molecular representations
adapted from SVM, which yielded comparably high accuracy.
Hence, although AC predictions are principally challenging, for
reasons discussed above, different machine learning methods
have produced high-quality models for different compound
data sets. Accordingly, there would be little incentive to inves-
tigate increasingly complex models for AC predictions. None-
theless, recent studies have investigated deep learning
approaches for AC predictions, with different specic aims.
These investigations included the use of convolutional neural
networks for predicting ACs from image data14,15 and the use of
© 2022 The Author(s). Published by the Royal Society of Chemistry
graph neural networks for AC representation learning.16 While
these studies provided proof-of-concept for the utility of novel
methodologies for AC predictions, improvements in prediction
accuracy compared to SVM in earlier studies have been
marginal at best. The rst eight studies in Table 5 report clas-
sication models of varying complexity for AC prediction. While
most of these studies applied the MMP-Cliff formalism, their
system set-ups, calculation conditions, and test cases differed
such that prediction accuracies can only be globally compared
and put into perspective including our current study. Further-
more, the last two studies17,18 in Table 5 report regression
models for potency prediction of individual AC compounds that
are distinct from the others, precluding comparison of the
results (these studies also used different AC denitions).
However, they are included for completeness.

With DeepAC, we have introduced the use of conditional
chemical language models for AC prediction. Given that most
studies in Table 5 reported F1 (ref. 38) and Matthews' correla-
tion coefficient (MCC)39 scores for evaluating prediction accu-
racies, we also calculated these scores for the DeepAC
predictions reported herein. With F1 of 0.50–0.78 and MCC of
0.43–0.75, DeepAC also yielded state-of-the-art prediction
accuracy (and higher accuracy than recent AC predictions using
Digital Discovery, 2022, 1, 898–909 | 907
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Table 5 Activity cliff predictionsa

Study
AC criteria, similarity/
potency difference Prediction task Methods Prediction accuracy

Heikamp et al.9 MMP/100-fold ACs for 9 activity classes Fingerprint-based SVM with
MMP kernels

F1: 0.70–0.99

Husby et al.13 Binding mode
similarity (80%)/100-
fold

3D-ACs for 9 activity classes Docking/VLS AUC: 0.75–0.97

Horvath et al.10 MMP/100-fold ACs for 7 activity classes CGR and descriptor
recombination-based SVM/
SVR

F1: 0.61–0.92

Tamura et al.12 MMP/100-fold ACs for 9 activity classes Fingerprint-based SVM with
Tanimoto kernel

MCC: ∼0.20–0.80

Iqbal et al.14 MMP/100-fold ACs from MMP images and
R-groups (5 activity classes)

Image-based CNN with
transfer learning

F1: 0.28–0.76
MCC: 0.24–0.73

Iqbal et al.15 MMP/100-fold ACs from MMP images (3
activity classes)

Image-based CNN F1: 0.36–0.85
AUC: 0.92–0.97
MCC: 0.39–0.83

Tamura et al.11 MMP/100-fold ACs for 2 activity classes Fingerprint-based SVM with
MMP kernel

AUC: 0.46–0.69
MCC: 0.69–0.89

Park et al.16 MMP/100-fold ACs for 3 activity classes GCN F1: 0.34–0.49
AUC: 0.91–0.94
MCC: 0.40–0.49

Jiménez-Luna
et al.17

MCS/10-fold — RF/DNN/GRAPHNET/GCN/
MPNN/GAT

RMSE: 0.698–1.029

Tilborg et al.18 Scaffold SMILES
similarity (90%)/10-fold

ACs for 30 activity classes KNN/RF/GBM/SVM/MPNN/
GAT/GCN/AFP/LSTM/CNN/
Transformer

RMSE: 0.62–1.60

a Abbreviations: SVM/R (support vector machine/regression); F1 (mean F1 score); AUC (area under the ROC curve); MCC (Matthews' correlation
coefficient); 3D-ACs (three-dimensional activity cliffs); VLS (virtual ligand screening); CGR (condensed graphs of reaction); CNN (convolutional
neural network); MCS (maximum common substructure); RF (random forest); DNN (deep neural network); GCN (graph convolutional network);
MPNN (message passing neural network); GAT (graph attention network); RMSE (root mean square error); KNN (K-nearest neighbor); GBM
(gradient boosting machine); AFP (attentive ngerprint); LSTM (long short-term memory network).
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graph neural networks16). However, DeepAC is principally
distinguished from other AC predictions approaches by its
ability to generate new compounds meeting AC criteria, which
partly motivated its development.
4 Conclusion

In this work, we have investigated chemical language models
for predictive modeling of ACs, a topical issue in both chemical
informatics and medicinal chemistry, with high potential for
practical applications. ACs are rich in SAR information and
represent focal points of compound optimization efforts. For
chemical language models, an encoding strategy was devised to
predict target compounds from source compounds and asso-
ciated potency differences. Seq2Seq and transformer models
were pre-trained on pairs of structural analogues with varying
potency differences representing true SARs and compared,
revealing superior performance of the transformer architecture
in reproducing test compound pairs. The pre-trained trans-
former was then ne-tuned on ACs and non-ACs from different
activity classes. It was conclusively shown that the transformer
learned structural relationships in combination with associated
potency differences and thus accounted for SARs. Compared to
reference methods, the conditional transformer (DeepAC)
908 | Digital Discovery, 2022, 1, 898–909
reached state-of-the-art prediction accuracy but displayed
different prediction characteristics. DeepAC was less effective in
predicting non-ACs, but predicted ACs with higher accuracy
than reference methods, especially on the basis of small
training data sets. A unique feature of DeepAC is its ability to
generate novel candidate compounds. This ability and the
observed prediction characteristics render DeepAC attractive for
practical applications aiming to generate new highly-potent AC
compounds, which will be investigated in future studies.
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Designing highly potent 
compounds using a chemical 
language model
Hengwei Chen  & Jürgen Bajorath *

Compound potency prediction is a major task in medicinal chemistry and drug design. Inspired 
by the concept of activity cliffs (which encode large differences in potency between similar active 
compounds), we have devised a new methodology for predicting potent compounds from weakly 
potent input molecules. Therefore, a chemical language model was implemented consisting of a 
conditional transformer architecture for compound design guided by observed potency differences. 
The model was evaluated using a newly generated compound test system enabling a rigorous 
assessment of its performance. It was shown to predict known potent compounds from different 
activity classes not encountered during training. Moreover, the model was capable of creating highly 
potent compounds that were structurally distinct from input molecules. It also produced many novel 
candidate compounds not included in test sets. Taken together, the findings confirmed the ability of 
the new methodology to generate structurally diverse highly potent compounds.

Compound design is one of the major tasks for computational approaches in medicinal chemistry. The primary 
aim is the generation of compounds with desired properties, first and foremost, compounds with activity against 
individual pharmaceutical targets and high potency. For compound design and potency predictions, a variety 
of computational methods have been developed or adapted. Mainstays include quantitative structure–activity 
relationship (QSAR) analysis1 for the design of increasingly potent analogues of active compounds and methods 
for ligand- or structure-based virtual screening2,3 to identify new hits. Ligand- and structure-based methods 
have different requirements. For example, for docking calculations4, a variety of scoring functions have been 
developed to evaluate the quality and strength of receptor-ligand interactions and estimate binding energies5,6. 
For the structure-based prediction of relative potencies of congeneric compounds, free energy perturbation 
methods have been introduced7,8. At the ligand level, machine learning (ML) methods are widely used for hit 
identification and non-linear QSAR modeling9. For potency prediction, support vector regression (SVR)10 has 
become a standard ML approach. Furthermore, for both computational compound screening and potency predic-
tion, deep neural network (DNN) architectures are also increasingly investigated11–13. Recently, a methodological 
framework was developed for evaluating the performance of deep generative models and a recurrent neural 
network (RNN) was used to explore predictions based on sparse training data14. However, the analysis mainly 
focused on physicochemical properties. For potency prediction, the assessment and comparison of different 
methods typically relies on the use of standard benchmark settings. Such benchmark calculations are required 
but not sufficient to evaluate potency prediction methods and their potential for practical applications. Moreover, 
such calculations should be considered with caution. Notably, in benchmark settings, nearest neighbor analysis 
and mean or median value regression often meet the accuracy of increasingly complex ML methods15. The 
high performance of these simple reference methods is supported by potency value distributions in commonly 
used compound data sets15. In addition, narrow error margins separating ML-based and randomized potency 
value predictions limit conclusions that can be drawn from conventional benchmarking15. Such findings call for 
alternatives to conventional benchmarking such as focusing predictions on the most potent data set compounds, 
consistent with the final goal of compound optimization efforts.

While potency predictions are mostly carried out for individual compounds, they can also be applied to assess 
potency differences in compound pairs such as activity cliffs (ACs), which are formed by structurally similar 
(analogous) active compounds with large differences in potency16. In principle, ACs can be predicted by explicitly 
calculating potency differences between compounds in pairs or by distinguishing between ACs and other pairs of 
analogues using classification methods, which implicitly accounts for potency differences of varying magnitude.
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Previously, we have reported a deep learning approach for the prediction of ACs that further extended other 
ML classification methods by its ability to not only predict ACs, but also generate new AC compounds17. Since 
ACs encode large potency differences, we have reasoned that this methodology might be adapted and further 
extended for the design of highly potent compounds. Therefore, in this work, we have devised and implemented 
a chemical language model (CLM) for the prediction of highly potent compounds from weakly potent ones 
used as input. These predictions do not depend on conventional benchmark settings and are thus not affected 
by their intrinsic limitations.

Methods
Compounds, activity data, and analogue series.  From ChEMBL (release 29)18, bioactive compounds 
with high-confidence activity data were assembled. Only compounds with reported direct interactions (assay 
relationship type: “D”) with human targets at the highest assay confidence level (assay confidence score 9) 
were considered. As potency measurements, only numerically specified equilibrium constants (Ki values) were 
accepted and recorded as (negative logarithmic) pKi values. If multiple measurements were available for the 
same compound, the geometric mean was calculated as the final potency annotation, provided all values fell 
within the same order of magnitude; otherwise, the compound was disregarded. Qualifying compounds were 
organized into target-based activity classes. A total of 496 activity classes were obtained.

For each activity class, a systematic search for analogue series (ASs) was conducted using the compound-core 
relationship (CCR) method19, which uses a modified matched molecular pair (MMP) fragmentation procedure20 
based on retrosynthetic rules21 to systematically identify ASs with single or multiple (maximally five) substitution 
sites. The core structure of an AS was required to consist of at least twice the number of non-hydrogen atoms of 
the combined substituents19.

Ultimately, 10 classes comprising ligands of different G protein coupled receptors were extracted as test cases 
for compound predictions that each contained more than 900 compounds and more than 100 analogue series. 
Table 1 summarizes the targets and composition of these activity classes (first four columns from the left) and 
Fig. 1 shows exemplary ASs with single or multiple substitution sites.

Table 1.   Activity classes.

ChEMBL ID Target name Compounds ASs CCR pairs AC-CCR pairs

218 Cannabinoid CB1 receptor 1118 250 8889 585

226 Adenosine A1 receptor 1924 318 18,623 1207

233 Mu opioid receptor 1216 169 10,430 1110

234 Dopamine D3 receptor 1529 213 21,008 755

237 Kappa opioid receptor 940 129 19,277 2897

251 Adenosine A2a receptor 1825 312 16,084 870

256 Adenosine A3 receptor 2033 434 42,621 6219

3371 Serotonin 6 receptor 1535 201 36,735 2485

4792 Orexin receptor 2 1133 131 12,368 1271

5113 Orexin receptor 1 1086 155 23,169 817

Figure 1.   Exemplary analogue series. Shown are small ASs with single (left) or multiple substitution sites 
(right). Core structures are colored blue and substituents red.
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For each of 10 activity classes, the number of compounds, ASs, CCR pairs, and AC-CCR pairs are provided. 
In addition, for each class, the ChEMBL target ID, target name, and abbreviation are given. AS, CCR, and AC 
stand for analogue series, compound-core relationship, and activity cliff, respectively.

From each of the activity classes, all possible pairs of analogues (termed All_CCR​ pairs) were extracted, as 
illustrated in Fig. 2 that shows All_CCR pairs for two different ASs. The 496 activity classes yielded a total of 
881,990 All_CCR pairs.

Tokenization.  For use by a CLM, compounds and potency differences must be tokenized. All compounds were 
represented as molecular-input line-entry system (SMILES) strings22 generated using RDKit23 and tokenized 
using a single chemical character with the exception of two-character tokens (i.e., “Cl” and “Br”) and tokens 
in brackets (e.g. “[nH]” and “[O-]”). For the conditional transformer, potency differences must also be trans-
formed into input tokens. For tokenization of value ranges, different approaches have been introduced includ-
ing binning17,24,25 and, more recently, numerical tokenization26. Since human readability of token sequences 
supported by numerical approaches played no role for our analysis and encoding of drug discovery-relevant 
compound potency ranges via binning has yielded accurate predictions previously17, we continued to use binned 
tokens herein. Accordingly, potency differences between source and target compounds, ranging from − 6.62 to 
6.52 pKi units, were partitioned into 1314 binned tokens of a constant width of 0.01. This granularity (resolution) 
defines the limits of experimental potency measurements and was thus most appropriate for our analysis. Each 
bin was encoded by a single token and each potency difference was assigned to the token of the corresponding 
bin17.

Tokenization of compound SMILES strings and potency ranges yielded the chemical vocabulary for our 
model. In addition, the two special tokens “start” and “end” were added to the vocabulary indicating the start 
and end point of a sequence, respectively.

Generative chemical language model.  Architecture.  For compound design, a CLM with the trans-
former architecture previously reported for the DeepAC approach for AC prediction17 was used. The trans-
former architecture consisted of multiple encoder-decoder neural modules with attention mechanism27. In the 
model, a stack of encoding sub-layers including a multi-head self-attention sub-layer and a fully connected 
feed-forward network sub-layer constituted the encoder module. The encoder read an input sequence and com-
pressed it into a context vector in its final hidden state. The context vector served as the input for the decoder 
block that interpreted the vector to predict an output sequence. Subsequently, the decoder module, which was 
composed of a feed-forward sub-layer and two multi-head attention sub-layers, re-converted the encodings into 
a sequence of tokens (one token at a time). Both encoder and decoder utilized the attention mechanism during 
training to comprehensively learn from feature space.

During pre-training, the model was supposed to learn mappings of source to target compounds based on 
potency differences resulting from changes in substituent(s) (termed chemical transformations):

Then, given a new (Source compound, Potency difference) test instance, the model was applied to generate a 
set of candidate target compounds meeting the potency difference constraints, that is, having higher potency 
than the source compound (according to the given potency difference).

During pre-training, distinguishing between different activity classes was not required because at this stage, 
the model should learn the syntax of textual molecular representations and, in addition, a variety of analogue 

(Source compound, Potency difference) →
(

Target compound
)

.

Figure 2.   Analogue pairs. For each of two exemplary ASs, three representative All_CCR pairs are shown (top, 
middle, and bottom; increasing potency from the left to the right). The Markush structure representing each 
AS is displayed in the center. Core structures are colored blue and substituents red. For each compound, its pKi 
value is reported.
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pair-associated potency differences caused by chemical transformations. By contrast, during fine-tuning, activ-
ity class (target) information was required to focus the model on specific compound series or classes, as further 
discussed below.

Model derivation.  The transformer model was implemented using Pytorch28. Default hyperparameter settings 
were used together with a batch size of 64, learning rate of 0.0001, and encoding dimension of 256. The models 
were derived over 200 epochs on the basis of the general training set. During training, the transformer model 
minimized the cross-entropy loss between the ground-truth and output sequence. A checkpoint was saved at 
each epoch and for a validation set, minimal loss was determined for selecting the final model.

Model pre‑training.  A general data set for model pre-training was derived from the 881,990 All_CCR 
pairs of the 496 activity classes. From All_CCR pairs, All_CCR triples (CpdA, CpdB, PotB-PotA) were generated 
by recording the potency difference for an All_CCR pair. Here, CpdA represented the source compound that 
was concatenated with the potency difference (PotB-PotA) and CpdB represented the target compound. For each 
All_CCR pair, two triples were obtained such that each All_CCR compound was used once as the source and 
target compound. To avoid data ambiguities, All_CCR pairs were eliminated if (1) a given source compound and 
potency difference was associated with multiple target compounds from different activity classes or (2) multiple 
potency values from different classes were available for a pair. On the basis of these criteria, a curated general 
data set of 522,331 qualifying All_CCR triples was obtained and used for pre-training.

For each triple, the SMILES representation of the source compound concatenated with the binned token of 
the associated potency difference served as the input sequence for the encoder that was converted into a latent 
representation. Based on this representation, the decoder iteratively generated output SMILES sequences until 
the end token was detected.

Model fine‑tuning.  For model fine-tuning and evaluation, the 10 activity classes in Table 1 were used. For 
fine-tuning, All_CCR pairs were extracted from each of the 10 activity classes and divided into subsets of so-
called CCR​ pairs with a less than 100-fold potency difference and AC-CCR​ pairs capturing an at least 100-fold 
difference in potency. Accordingly, AC-CCR pairs represented analogue pairs forming ACs. Depending on the 
activity class, 8889–42,621 CCR pairs and 585–6219 AC-CCR pairs were obtained (Table 1, last two columns on 
the right). AC-CCR triples were ordered such that CpdB was highly and CpdA weakly potent.

The pre-trained model was then separately fine-tuned and tested for each activity class. Therefore, AC-CCR 
pairs from each class were randomly divided into 80% fine-tuning and 20% test instances such that there was 
no overlap in core structures between these sets. Thus, the fine-tuning set exclusively consisted of AC-CCR 
pairs and was selected to train the model on activity class dependent analogue pairs with large potency differ-
ences. CCR pairs sharing core structures with the fine-tuning set were omitted from further consideration. The 
remaining CCR pairs were added to the test set. Hence, the fine-tuning and test sets were structurally distinct. 
Model evaluation is detailed below.

Results
Study concept.  Our study had three primary goals. First, we aimed to devise a novel approach specifically 
for predicting highly potent compounds from weakly potent input molecules. Thus, rather than striving for 
prediction of potency values across large ranges, as is conventionally attempted using SVR or other machine 
learning methods, the primary focus was on potent compounds, in line with the practical relevance of potency 
predictions. Second, we aimed to generate a structural spectrum of output compounds, ranging from analogues 
of input molecules to structurally distinct compounds, thereby increasing medicinal chemistry novelty of pre-
dicted candidates. Third, it was intended to evaluate the methodology in a way that was not affected by limita-
tions of conventional benchmarking of potency predictions, as discussed above, and enabled a non-ambiguous 
assessment of the ability to predict potent compounds. To meet the first two goals, which were central to our 
study, we implemented a CLM consisting of a chemical transformer architecture conditioned on compound 
potency differences. To meet the third goal, we designed a new compound test system.

Compound pair‑based test system.  For model evaluation, a compound pair-based test system was gen-
erated using the test set. By design, the fine-tuning and test sets were structurally distinct. Furthermore, in con-
trast to the fine-tuning set, the test set contained analogue pairs capturing small or large differences in potency 
(i.e., CCR and AC-CCR pairs, respectively). Table 2 summarizes the composition of the test set.

For each activity class, the test set contained varying numbers of CCR pairs and AC-CCR pairs yielding vary-
ing numbers of unique CCR and AC-CCR compounds. In the following, SC and TC are used as abbreviations for 
source (input) and target compound, respectively. For the evaluation of the fine-tuned CLM, test set compounds 
were divided into instances with maximally 1 μmol potency (corresponding to a pKi value of 6), which served 
as SCs, and candidate compounds with higher than 1 μmol potency (pKi > 6), which served as known candidate 
compounds (KCCs) for comparison with newly generated TCs.

In addition, the model generated varying numbers of novel (hypothetical) TCs. For each activity class, smaller 
numbers of SCs than KCCs were available. With the exception of activity class 251 (3838 KCCs), the test set 
contained 366–824 KCCs for the activity classes (Table 2), with on average 576 KCCs per class. Each CCR-SC 
(pKi ≤ 6) and AC-CCR-SC (pKi ≤ 6) was once used as an input compound for the model and in each case, 50 TCs 
were sampled, canonicalized, and compared to KCCs to search for exact matches, that is, fully reproduced com-
pounds with known potency. Because the model generated novel TCs, probabilities for re-generating known TCs 
could not be derived in a meaningful way. Consequently, the main measure for establishing proof-of-principle 
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for the ability of the model to predict potent compounds was the reproduction of any KCCs. For each activity 
class, compound statistics were derived over three independent sampling trials, as reported below.

Table 3 reports the possible predictions outcomes for the compound pair-based test system.
For each SC, a TC could be a known CCR or AC-CCR compound or a novel (hypothetical) compound 

representing a TC not contained in the fine-tuning or test set. Taking core structure matches into consideration 
(that is, a TC either contained the same core structure as a SC or not), a total of 12 formally defined prediction 
outcomes were possible, including six each for CCR-SCs and AC-CCR-SCs, as identified by indices 1.1.–1.6. 
and 2.1.–2.6. in Table 3, respectively. Accordingly, a newly generated compound might be a structural analogue 
of a given SC (having the same core structure) or contain a different core structure. Furthermore, SCs and 
TCs might be distinguished by single or multiple substituents. On the basis of this classification scheme, CLM 
predictions were rigorously evaluated focusing on the reproduction of known active compounds, as explained 
above. This was the most relevant measure of model performance because it enabled the exact determination of 
potency differences between SCs and TCs and hence the ability of the CLM to predict highly potent compounds. 
For novel (hypothetical) compounds generated by the model, no assessment was possible (without subsequent 
experimental evaluation).

Model performance.  For the SCs from all activity classes, systematic compound predictions were carried 
out using the CLM. The model only produced 0.5–2% invalid SMILES (assessed using RDKit) for all activity 
classes.

With the exception of class 251 (1391 SCs), the test set contained 40–359 SCs for the activity classes, with on 
average 162 compounds per class (Table 2). The predictions were then assessed on the basis of well-defined pair 
categories detailed above, as reported in Table 4.

For each activity class and compound pair category indexed according to Table 3 (top row), the number of 
unique TCs produced by the CLM is reported. With the exception of categories 1.5., 1.6., 2.5., and 2.6., which 
report novel (hypothetical) candidate compounds not contained in the fine-tuning or test set, the TCs represent 
KCCs, as defined in the text.

Encouragingly, for all activity classes, the CLM successfully reproduced large numbers of KCCs for all SCs 
(categories 1.1.–1.4. and 2.1.–2.4., respectively). Frequently, multiple KCCs were obtained for the same SC. Fur-
thermore, depending on the activity class, the model produced varying numbers of TCs with the same or different 
core structure, thus confirming its ability to generate frequent core structure transformations. In many cases, 
more structurally unique TCs were generated than analogues of SCs. Moreover, large numbers of hypothetical 
candidate compounds not contained in the training set were obtained (categories 1.5.–1.6. and 2.5.–2.6., respec-
tively). The reproducibility of the limited numbers of available KCCs representing known ACs (12–84 unique 
compounds per activity class) was of particular interest (categories 2.1.–2.4.). AC-CCR KCCs were consistently 
reproduced and for five activity classes, the total count exceeded the number of unique AC-CCR KCCs per class 
(due to multiple reproductions of individual KCCs). Table 5 reports statistics for reproduction of KCCs.

Reported are statistics for the re-generation of KCCs including the mean number of KCCs over three inde-
pendent sampling trials and the proportion of reproduced KCCs relative to all available KCCs with standard 
deviations (±). In addition, the mean number of non-KCCs over three independent trials is provided.

The proportion of exactly reproduced KCCs over independent sampling trials ranged from ~ 7 to ~ 37%, 
depending on the activity class (with generally small standard deviations). For nine, six, and two classes, more 
than 10, 20, and 30% of all available KCCs were reproduced, respectively. Applying the most rigorous criterion 
of exact re-generation of known potent compounds as a performance measure (see above), the observed num-
bers and proportions represented unexpectedly good predictions, which clearly established proof-of-concept 
for the approach.

For each activity class, ASs were also extracted from newly generated (predicted) compounds. Table 6 reports 
the number of ASs (multiple compounds having the same core structure) and singletons (compounds with 

Table 2.   Test set. CPD stands for compound, SC for source compound, and KCC for known candidate 
compound. According to our analysis scheme, target compounds (TCs) produced by the model were compared 
to KCCs.

ChEMBL ID CCR pairs Unique CCR CPDs AC-CCR pairs Unique AC-CCR CPDs Overlapping CPDs
Unique 
CCR + AC-CCR CPDs SCs (pki ≤ 6) KCCs (pki > 6)

218 2198 579 6 12 9 582 129 453

226 5950 1174 144 84 80 1178 359 819

233 2332 590 36 36 33 593 76 517

234 7790 913 50 53 53 913 89 824

237 1032 477 31 24 20 481 115 366

251 4706 5210 85 57 38 5229 1391 3838

256 5012 888 40 44 42 890 250 640

3371 4420 722 42 44 44 722 40 682

4792 1941 615 49 50 48 617 146 471

5113 7543 664 13 15 15 664 256 408
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Table 3.   Possible predictions.

Index same/different core Compound pair category

1.1./1.2. (CCR-SC, CCR-TC)

1.3./1.4. (CCR-SC, AC-CCR-TC)

1.5./1.6. (CCR-SC, novel CPD)

2.1./2.2. (AC-CCR-SC, AC-CCR-TC)

2.3./2.4. (AC-CCR-SC, CCR-TC)

2.5./2.6. (AC-CCR-SC, novel CPD)

Table 4.   Prediction results.

ChEMBL 
ID 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 2.1. 2.2. 2.3. 2.4. 2.5. 2.6.

218 73 192 2 5 436 3301 3 3 4 11 24 34

226 262 433 4 25 1067 5030 11 11 27 79 129 529

233 217 179 2 14 252 570 6 9 0 10 21 45

234 141 92 3 2 286 705 3 2 6 7 24 13

237 488 250 0 11 181 766 9 26 14 4 4 10

251 2367 1400 235 128 1031 13,523 17 5 36 13 55 199

256 112 66 1 2 657 5336 10 7 0 12 13 359

3371 60 116 0 4 42 1202 7 4 3 8 33 101

4792 224 662 7 42 253 1222 7 6 7 17 17 25

5113 433 349 1 5 304 1638 5 2 11 2 15 24

Table 5.   Reproducibility of known candidate compounds.

ChEMBL ID KCCs Non-KCCs Reproduced KCCs (%)

218 103 3445 22.74 ± 1.10

226 211 5139 25.76 ± 0.49

233 143 1005 27.66 ± 1.35

234 92 825 11.17 ± 0.24

237 128 839 34.97 ± 1.37

251 251 4996 6.54 ± 0.29

256 76 5165 11.88 ± 0.63

3371 72 2145 10.56 ± 1.17

4792 172 1084 36.52 ± 1.91

5113 117 1499 28.68 ± 1.72

Table 6.   Structural organization of predicted compounds. “Reproduced cores” reports the percentage of the 
core structures contained in each original activity class that were detected in predicted compounds.

ChEMBL ID ASs Singletons Reproduced cores (%)

218 858 1235 4

226 905 1762 4

233 188 255 12

234 90 245 9

237 175 303 7

251 1304 978 4

256 1414 1386 7

3371 321 1022 4

4792 146 219 18

5113 233 440 9
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unique core structures not belonging to any AS). Depending on the activity class, 90–1414 ASs and 219–1762 
singletons were obtained, respectively.

Since each AS and singleton contained a unique core structure (scaffold), the core structure diversity of newly 
generated compounds was generally high. Between 4 and 18% of the core structures contained in the original 
activity classes (from ASs and singletons) were reproduced by the model, as also reported in Table 6.

Having confirmed the ability of the CLM to generate structurally analogous and diverse TCs including KCCs, 
the key question then was whether or not the model would produce TCs that had much higher potency than the 
corresponding SCs. Figure 3 shows the distributions of potency differences between pairs of known source and 
target compounds with experimental potency values involving compounds from ACs. For five activity classes, 
the median potency difference fell between one and two orders of magnitude (10–100-fold) and for the other 
five classes, the median value exceeded two orders of magnitude (100-fold). Furthermore, for all but one class, 
multiple compounds with at least 1000-fold higher potency than the corresponding SCs were generated (includ-
ing highly potent statistical outliers). Thus, these observations unambiguously confirmed the ability of the CLM 
to generate highly potent compounds from weakly potent (micromolar) input molecules.

Figure 4 shows exemplary pairs of SCs and newly designed compounds (TCs) with different structural rela-
tionships. Given our design strategy, all SCs were known compounds with experimentally determined potency. 
The generated TCs included known potent analogues of SCs (Fig. 4a), structurally distinct known potent com-
pounds (Fig. 4b), and novel (hypothetical) compounds (Fig. 4c). Taken together, these examples illustrate suc-
cessful CLM predictions.

Conclusion
The underlying idea for the development of the approach reported herein was to predict highly potent com-
pounds from individual weakly potent input molecules. For all practical purposes, this represents an ultimate 
goal of potency prediction, especially for compound optimization in medicinal chemistry. This prediction task 
could not be addressed using conventional regression models. In addition, going beyond the applicability domain 
of standard QSAR modeling, we also aimed to design structurally diverse compounds, in addition to analogues. 
Therefore, a different methodological framework was required and we adapted a conditional transformer archi-
tecture previously used for AC predictions. These predictions established that compound generation could be 
conditioned on potency differences. However, since AC predictions were also confined to structurally analogous 
compounds, it remained unclear whether or not potency difference conditioning was transferable to the design 
of structurally diverse compounds with high potency. The CLM reported herein was fine-tuned on pairs of SCs 
and TCs with associated potency differences and we then examined its ability to predict structurally diverse 
compounds with large increases in potency relative to input molecules. Therefore, a compound pair-based test 
system was generated that covered all possible prediction outcomes and enabled a well-defined and rigorous 
assessment of model performance. Our analysis confirmed the ability of the model to reproduce known potent 
compounds not encountered during training at unexpectedly high rates, including both analogues of weakly 
potent SCs and structurally distinct compounds. With median potency increases close to or above 100-fold 
across activity classes and multiple predictions with more than 1000-fold increases in compound potency, model 
performance was generally high. In addition, the CLM also produced large numbers of novel compounds for the 
activity classes that were not contained in the fine-tuning or test set.

Taken together, our findings indicate that the approach reported herein should have considerable potential 
for practical applications. In compound optimization, we envision that the CLM will be fine-tuned using sets of 

Figure 3.   Potency difference distribution. For all activity classes, boxplots report the distributions of 
logarithmic potency differences between pairs of known source and target compounds involving compounds 
from ACs. In boxplots, the median value is represented by the horizontal line, and the box defines upper and 
lower quantile. Upper and lower whiskers represent the maximum and minimum value, respectively. Diamond 
symbols mark statistical outliers.
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active compounds for a target of interest and that the predictions will then focus on input compounds prioritized 
by medicinal chemistry. For these and other applications, the CLM is made freely available as a part of our study.

Data availability
All calculations were carried out using publicly available programs and compound data. Python scripts used for 
implementing CLMs and the activity classes used herein are freely available via the following link: https://​doi.​
org/​10.​5281/​zenodo.​77447​63.

Figure 4.   Exemplary predictions. Shown are pairs of corresponding source compounds (left of the arrow) and 
new compounds generated by the CLM (right) including (a) potent known compounds with conserved core 
structures (black, distinguishing substituents are red), (b) potent known compounds with distinct structures 
(blue), and (c) hypothetical compounds (green). For hypothetical compounds, no potency values were available. 
Numbers on arrows identify activity classes according to Table 1. Potency differences between SCs and KCCs are 
reported.

https://doi.org/10.5281/zenodo.7744763
https://doi.org/10.5281/zenodo.7744763
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Meta‑learning 
for transformer‑based prediction 
of potent compounds
Hengwei Chen  & Jürgen Bajorath *

For many machine learning applications in drug discovery, only limited amounts of training data 
are available. This typically applies to compound design and activity prediction and often restricts 
machine learning, especially deep learning. For low-data applications, specialized learning strategies 
can be considered to limit required training data. Among these is meta-learning that attempts to 
enable learning in low-data regimes by combining outputs of different models and utilizing meta-data 
from these predictions. However, in drug discovery settings, meta-learning is still in its infancy. In this 
study, we have explored meta-learning for the prediction of potent compounds via generative design 
using transformer models. For different activity classes, meta-learning models were derived to predict 
highly potent compounds from weakly potent templates in the presence of varying amounts of fine-
tuning data and compared to other transformers developed for this task. Meta-learning consistently 
led to statistically significant improvements in model performance, in particular, when fine-tuning 
data were limited. Moreover, meta-learning models generated target compounds with higher potency 
and larger potency differences between templates and targets than other transformers, indicating 
their potential for low-data compound design.

Predicting new active compounds is one of the major tasks in computer-aided drug discovery, for which machine 
learning approaches have been widely applied over the past two decades1,2. In recent years, deep learning has 
also been increasingly applied for compound activity and property predictions1,2. The prediction of compounds 
exhibiting a desired biological activity (that is, activity against a target of interest) is mostly attempted using 
machine learning models for binary classification (that is, a compound is predicted to have or not to have 
a specific activity)3–5. For this purpose, models for class label prediction (active versus inactive compounds) 
are typically derived based on training sets of known specifically active compounds and randomly selected 
compounds assumed to be inactive. These qualitative activity predictions mostly involve virtual screening of 
compound databases to identify new hits. In addition to qualitative predictions of biological activity, predicting 
compounds that are highly potent against a given target also is of interest. Compound potency prediction can 
be quantitative or semi-quantitative in nature. Quantitative predictions aim to specify numerical potency values 
using, for example, quantitative structure–activity relationship (QSAR)6,7 or free energy methods8,9. Different 
from qualitative predictions and virtual screening, quantitative potency predictions are usually carried out for 
small compound sets or structural analogues from lead series. Furthermore, semi-quantitative approaches aim 
to predict new potent compounds, that is, compounds having higher potency than known actives. For example, 
such predictions might focus on activity cliffs10, which are defined as pairs of structurally similar compounds 
or structural analogues with large potency differences10. Prediction of activity cliffs fall outside the applicability 
domain of standard QSAR methods4.

While quantitative potency predictions are widely carried out, they are difficult to evaluate in benchmark 
settings. It has been observed that benchmark predictions of different machine learning models and randomized 
predictions are typically only separated by small error margins11, which makes it difficult to non-ambiguously 
assess relative method performance11. Therefore, we currently prefer semi-quantitative approaches focusing 
on the prediction of potent compounds (rather than trying to predict compound potency values across wide 
potency ranges). Semi-quantitative predictions can be attempted by deep generative modeling2. For example, 
transformer models have been derived based on pairs of active structural analogues with varying potency to 
predict activity cliffs and design potent compounds12,13. Therefore, the transformer models were conditioned on 
observed potency differences. This generative design approach successfully reproduced highly potent compounds 
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for different activity classes based on weakly potent input compounds13. Transformer models have also been 
derived for other compound property predictions14–16 and generative compound design applications17–19 as well 
as for the prediction of drug-target interactions20–22.

Notably, all compound activity and potency predictions depend on available data for learning. Like many 
other data in early-phase drug discovery, high-quality compound potency measurements for given targets are 
generally sparse, which limits generative design. Therefore, we are considering machine learning approaches for 
low-data regimes to enable predictions of potent compounds for targets, for which only little compound data is 
available. Among learning strategies for sparsely distributed data, active learning23,24 and transfer learning25,26 
have been investigated for machine learning in drug discovery in various studies24,26. Transfer learning attempts 
to use information obtained from related prediction tasks to streamline model derivation for such tasks, while 
active learning focuses on the selection of most informative training instances for iterative model building. Meta-
learning including few-shot learning represents another low-data approach that is relevant for drug discovery27–30. 
In artificial intelligence, meta-learning is a sub-discipline of machine learning27. It aims to combine the output 
of different machine learning models and/or meta-data from these models such as parameters derived from 
training instances to generate models for other prediction tasks27. Alternatively, the same algorithm might be 
applied to generate models for individual prediction tasks whose outputs are then used to iteratively update a 
meta-learning model. Hence, meta-learning can also be regarded as a form of ensemble learning. The general aim 
of meta-learning is achieving transferability of models to related prediction tasks, including the application of 
prior model knowledge to limit the number of training instances required for new tasks. Given the use of meta-
data for learning, the approach is well-suited for parameter-rich deep learning architectures28 and -compared to 
transfer learning- principally applicable to a wider spectrum of predictions tasks. However, in compound design 
and property prediction, the exploration of meta-learning is still in its early stages. Therefore, we have explored 
meta-learning in semi-quantitative potency predictions. To this end, we have adapted a transformer architec-
ture designed for the prediction of potent compounds13 as a base model for deriving meta-learning models and 
assessed the potential of meta-learning for predicting highly potent compounds for different activity classes and 
varying amounts of training data.

Methods
Compounds, activity data, and analogue series
Bioactive compounds with high-confidence activity data were collected from ChEMBL (release 29)31. Only 
compounds with direct interactions (assay relationship type: "D") with human targets at the highest assay con-
fidence level (assay confidence score 9) were considered. In addition, potency measurements were restricted to 
numerically specified equilibrium constants (Ki values), which were recorded as (negative decadic logarithmic) 
pKi values. When multiple measurements were available for the same compound, the geometric mean was cal-
culated as the final potency annotation, provided all values fell within the same order of magnitude. If not, the 
compound was disregarded. Qualifying compounds were organized into target-based activity classes.

In activity classes, analogue series (AS) with one to five substitution sites were identified using the compound-
core relationship (CCR) algorithm32. The core structure of an AS was required to consist of at least twice the 
number of non-hydrogen atoms as the combined substituents. For each AS, all possible pairs of analogues were 
generated, termed All_CCR pairs. For each activity class, ALL_CCR pairs from all AS were pooled. All_CCR 
pairs were then divided into CCR pairs with a potency difference of less than 100-fold and activity cliff (AC)-
CCR pairs with a potency difference of at least 100-fold.

On the basis of the specified data curation criteria and AS distributions, 10 activity classes were assembled 
that consisted of at least ~ 500 qualifying compounds and ~ 50 AS, as summarized in Table 1. These activity 
classes included ligands of various G protein coupled receptors and inhibitors of different enzymes. Figure 1 
shows exemplary AC_CCR pairs for each class.

Table 1.   Activity classes. The composition of activity classes is summarized. For each class, the ChEMBL 
target ID and target name are provided.

ChEMBL ID Target name Compounds AS CCR pairs AC-CCR pairs

226 Adenosine A1 receptor 1924 318 18,623 1207

234 Dopamine D3 receptor 1529 213 21,008 755

237 Kappa opioid receptor 940 129 19,277 2897

244 Coagulation factor X 702 92 9718 1288

251 Adenosine A2a receptor 1825 312 16,084 870

259 Melanocortin receptor 4 543 145 25,126 3086

264 Histamine H3 receptor 1235 173 10,812 532

1862 Tyrosine-protein kinase ABL 499 64 15,573 1873

2014 Nociceptin receptor 512 52 11,472 1058

4792 Orexin receptor 2 1133 131 12,368 1271
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Meta‑learning approach
The basic premise of meta-learning, as investigated herein, is parameterizing a model on a series of training tasks 
by combining and updating parameter settings across individual tasks. This process aims to improve the ability 
of the model to adapt to new prediction tasks through the use of meta-data.

For designing the meta-learning module of Meta-CLM, we adopted the model-agnostic meta-learning 
(MAML) framework28 for an activity class-specific prediction task distribution p(T). Given its model-agnostic 
nature, the only assumption underlying the MAML approach is that a given model is parameterized using a 
parameter vector θ. Accordingly, a meta-learning model is considered as a function fθ with parameter vector θ. 
The model aims to learn parameter settings θmeta that are derived for individual training tasks and updated across 
different tasks such that they can be effectively adjusted to new prediction tasks. Therefore, for each of a series 
of prediction tasks, training data are randomly divided into a support set and a query set Accordingly, when the 
meta-learning module is applied to a new prediction task Ti such as an activity class the current parameter vector 
θmeta is updated for task Ti with activity class-specific parameters θi obtained by gradient descent optimization 
minimizing training errors.

During meta-training, as summarized in Fig. 2, the model fθ is first updated to a task-specific model fθ′ using 
its support set. Then, the corresponding query set is used to determine the prediction loss of model fθ′ for this 
task. The procedure is repeated for all prediction tasks (activity classes). Finally, model parameters are further 
adjusted for testing by minimizing the sum of the prediction loss over all activity classes. Model derivation based 
on the support sets and evaluation based on query sets are implemented as inner and outer loops, respectively. 
For meta-testing, the trained meta-learning module is fine-tuned on a specific activity class, for which parameters 
are adjusted, as also illustrated in Fig. 2. For each class, an individual fine-tuned model is generated.

The meta-learning process aims to capture prior training information through initial parameter vector 
adjustments, followed by updates through monitoring of the joint loss across all training tasks29. Capturing 
prior training knowledge should enable the model to more effectively adapt to new prediction tasks based on 

Figure 1.   Analogue pairs representing activity cliffs. For each activity class, exemplary AC_CCR pairs are 
shown and their potency differences are reported. Numbers on arrows identify activity classes according to 
Table 1. Core structures and substituents are colored blue and red, respectively.
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advanced parameter settings available for initialization and shorter optimization paths with reduced training 
data requirments33,34.

This algorithmic approach differs from conventional multi-task learning where a single model is trained on 
multiple tasks, aiming to share representations and knowledge between these tasks to collectively improve the 
basis for learning. Hence, the primary goal of multi-task learning is to improve predictive performance for all 
tasks by leveraging commonalities between them. Accordingly, model weights are updated based on a combina-
tion of the losses from all tasks in a single optimization step. Shared representations for multiple tasks support 
the model’s ability to simultaneously learn features common to these tasks.

Transformer models
Base model
For meta-learning, the transformer architecture derived previously for the prediction of highly potent compounds 
based on weakly potent templates was adopted13. Figure 3 illustrates the architecture of the base CLM. The 
transformer consisted of multiple encoder-decoder modules with attention mechanism35 and was designed for 
translating string-based representations of chemical structure. Accordingly, the transformer can be perceived as 
a chemical language model (CLM). The base model (referred to as CLM in the following) was devised to predict 
compounds with higher potency for given input compounds13. An encoder module consisted of encoding sub-
layers including a multi-head self-attention sub-layer and a fully connected feed-forward network sub-layer. The 
encoder compressed an input sequence into a context vector in its final hidden state, providing the input for the 
decoder module composed of a feed-forward sub-layer and two multi-head attention sub-layers. The decoder 
transformed the context vector into a sequence of tokens. Both the encoder and decoder modules utilized the 
attention mechanism during training to effectively learn from the underlying feature space.

Figure 2.   Meta-learning. The illustration summarizes training, fine-tuning, and testing of the meta-learning 
module of Meta-CLM using exemplary AC-CCR pairs. For each activity class, the support set is used for the 
initial parameterization of the model (θ). The support loss Lsupport is calculated for updating model parameters 
(θ′). Then, the query set is used to calculate the prediction loss L′

query for this task. The process is repeated for 
all training classes, followed by summation of L′

query over all tasks to further adjust the parameter settings. The 
trained module then enters the fine-tuning and testing phase. Solid and dashed lines indicate inner and outer 
loops, respectively, for meta-training and -testing including fine-tuning.
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During training, the CLM was challenged to learn mappings of template/source compounds (SCs) to target 
compounds (TCs) conditioned on potency differences (ΔPot) resulting from replacements of substituent(s):

Hence, training focused on structural analogues with specific potency differences. Then, given a new (SC, 
ΔPot) test instance, the model generated a set of structurally related TCs with putatively higher potency than SCs.

For transformer modeling, compounds and potency differences must be tokenized. Accordingly, compounds 
were represented as molecular-input line-entry system (SMILES) strings36 generated using RDKit37. Tokenization 
was facilitated by representing atoms with single-character tokens (e.g., "C"or "N"), two-character tokens (e.g., 
"Cl" or "Br"), or tokens enclosed in brackets (e.g. "[nH]" or "[O-]"). Potency differences were subjected to binning 
tokenization12,13,38,39 by dividing the global range of potency differences (-6.62 to 6.52 pKi units) into 1314 bins 
with a constant width of 0.01. Each bin was encoded by a single token and each potency difference was assigned 
to the corresponding token12,13. In addition, two special "start" and "end" tokens were defined as the start and 
end points of a sequence, respectively.

The model was pre-trained using a large set of 881,990 All_CCR pairs originating from 496 public activity 
classes13. For pre-training, All_CCR triples (CpdA, CpdB, PotB-PotA) were generated in in which CpdA and CpdB 
represented the SC and TC, respectively, and (PotB-PotA) their potency difference.

CLM was implemented using Pytorch40. Default hyperparameter settings were used for the transformer archi-
tecture together with a batch size of 64, learning rate of 0.001, and encoding dimension of 256. During training, 
the transformer model minimized the cross-entropy loss between the ground-truth and output sequence. The 
Adam optimizer was used41. The model was trained for a maximum of 1000 epochs. At each epoch, a checkpoint 
was saved, and the final model was selected based on the minimal loss.

The base model achieved a reproducibility of 0.857 for the entire test set (corresponding to 10% of pre-
training set). Hence, the base CLM model regenerated ~ 86% of the target compounds from CCR-triples not 
used for training.

Model for meta‑learning
The CLM variant for meta-learning was also implemented using Pytorch following the protocol described above. 
The meta-learning model, designated Meta-CLM, consisted of two modules including the base model for gener-
ating mappings of SCs to TCs conditioned on potency differences and the meta-learning module (the design of 
which is detailed below). For derivation of the metal-learning module, a subset of 176 of the 496 activity classes 
was selected for which at least 300 All-CCR pairs per class were available, amounting to a total of 491,688 qualify-
ing All_CCR triples. For meta-learning, each activity class was considered a separate training task (see below). 
Therefore, All_CCR triples from each class were randomly split into support set (80%) and query set (20%). The 
Adam optimizer was used for gradient descent optimization during meta-learning.

(SC,�Pot) → (TC).

Figure 3.   Base CLM. The architecture of the base CLM for designing potent compounds is schematically 
illustrated (the representation was adapted from ref. 13).
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Model fine‑tuning
For fine-tuning and comparative evaluation of CLM and Meta-CLM, the 10 activity classes in Table 1 were used. 
Fine-tuning was separately carried out using AC-CCR pairs from each class. The AC-CCR pairs from each class 
were randomly divided into fine-tuning (80%) and test instances (20%). In each case, it was confirmed that 
the fine-tuning and test pairs had no core structure overlap (otherwise, a new partition was generated). For 
fine-tuning, AC_CCR pairs were exclusively used. AC_CCR triples were ordered such that TC was the highly 
potent compound. To assess the ability of CLM and Meta-CLM to learn in low-data regimes, model variants 
were derived based on 10%, 25%, 50% and 100% of the training data. To adapt to differently sized training sets, 
the pre-trained model was fine-tuned with a smaller learning rate of 0.0001. With a maximum of 200 training 
epochs, the final fine-tuned model was selected based on minimal cross-entropy loss.

Model evaluation
For each activity class, CCR pairs sharing core structures with the fine-tuning set were excluded, then the final 
test set was generated by adding the remaining CCR pairs to test AC-CCR pairs. Test set CCR and AC-CCR pairs 
yielded class-dependent numbers of unique CCR and AC-CCR test compounds. To evaluate the performance 
of each fine-tuned CLM and corresponding Meta-CLM, test compounds were divided into two categories: SCs 
with a maximum potency of 1 μM (corresponding to a pKi value of 6) and TCs with a potency greater than 1 
μMol (pKi > 6). These test TCs were termed known target compounds (KTCs), which represented highly potent 
test compounds. Table 2 reports the test composition for each activity class. Depending on the activity class, 139 
to 3838 KTCs were available.

For each test set SC, 50 hypothetical TCs were sampled and compared to available KTCs. The ability of a 
model to reproduce KTCs was considered as the key criterion for model validation.

Results
Reproducibility of known target compounds
We first analyzed the ability of Meta-CLM to reproduce KTCs in comparison to CLM. The results are reported 
in Table 3. For all activity classes, Meta-CLM and CLM correctly reproduced multiple KTCs over all fine-tuning 
conditions, thus providing non-ambiguous proof for the models’ ability to predict potent compounds. From 
correctly predicted SC-KTC pairs, unique KTCs were extracted (a given KTC can occur in multiple pairs). The 
number of correctly predicted SC-KTC pairs and unique KTCs varied depending on the activity class. Impor-
tantly, Meta-CLM consistently predicted more SC-KTC pairs and unique KTCs than CLM across all activity 
classes, without an exception. For Meta-CLM, the number of SC-KTC pairs varied from 71 to 5102 pairs when 
utilizing 100% of the training samples and the number of unique KTCs varied from 27 to 287, corresponding 
to a reproducibility ratio of ~ 7% to ~ 45% of available KTCs per class. For comparison, CLM, the base model, 
generated from 53 to 4385 SC-KTC pairs, with 23 to 241 unique KTCs and a corresponding reproducibility ratio 
of ~ 5% to ~ 36% per class. Moreover, for decreasing numbers of fine-tuning samples, Meta-CLM consistently 
reproduced more KTCs than CLM. For complete fine-tuning sets, Meta-CLM and CLM reached mean repro-
ducibility rates of ~ 21% and ~ 14%, respectively. For only 10% of the fine-tuning samples, Meta-CLM reached a 
mean reproducibility rate of ~ 15% compared to only ~ 7% for CLM. Thus, Meta-CLM learned more effectively 
from sparse data than CLM, consistent with the aims of meta-learning.

Figure 4 illustrates the differences in KTC reproducibility rates between Meta-CLM and CLM. Independent-
samples t-tests were carried out to assess the statistical significance of the observed differences. For complete 
fine-tuning sets, increases in reproducibility detected for Meta-CLM were statistically significant for three of 10 
activity classes. However, for fine-tuning sets of deceasing size, 25 of 30 increases across all activity classes were 
statistically significant, thus providing further evidence for the ability of Meta-CLM to more effectively learn 
from sparse data. For most classes, there was a sharp decline in CLM reproducibility rates when 25% or 10% of 
the fine-tuning samples were used.

Table 2.   Test sets. For each activity class (ChEMBL IDs are used according to Table 1), the composition of the 
test set is reported. CPD stands for compound.

ChEMBL ID CCR Pairs
Unique CCR 
CPDs AC-CCR Pairs

Unique 
AC-CCR CPDs

Overlapping 
CPDs SCs (pki <  = 6) KTCs (pki > 6)

226 5950 1174 144 84 80 359 819

234 7790 913 50 53 53 89 824

237 1032 477 31 24 20 115 366

244 1949 308 287 118 88 90 248

251 4706 5210 85 57 38 1391 3838

259 702 169 59 69 33 66 139

264 4756 840 72 81 58 33 830

1862 4554 175 82 51 51 27 148

2014 1388 256 80 62 29 23 266

4792 1941 615 49 50 48 146 471
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We also note that both models produced large numbers of novel candidate compounds for SCs. For complete 
fine-tuning sets, Meta-CLM and CLM generated on average 2375 and 2818 new candidate compounds per activ-
ity class (ranging from 119 to 9952 and 234 to 10,779 candidates, respectively). While these new compounds 
cannot be considered for model validation, they provide large pools of candidates for practical applications in 
the search for potent compounds.

Table 3.   Reproducibility of compound pairs and known target compounds.

ChEMBL ID Ratio

SC-KTC Pairs Unique KTCs Reproducibility (%)

Meta-CLM CLM Meta-CLM CLM Meta-CLM CLM

226

10 799 379 223 118 27.2 14.4

25 965 510 263 167 32.1 20.4

50 1041 614 268 183 32.7 22.3

100 1193 735 287 216 35.0 26.4

234

10 174 75 50 19 6.1 2.3

25 268 130 68 36 8.3 4.4

50 343 197 87 58 10.6 7.0

100 398 239 101 71 12.3 8.6

237

10 397 325 90 52 24.6 14.2

25 449 366 101 66 27.6 18.0

50 433 362 103 81 28.1 22.1

100 480 429 118 102 32.2 27.9

244

10 109 62 26 11 10.5 4.4

25 111 66 31 17 12.5 6.9

50 160 98 39 28 15.7 11.3

100 193 129 45 36 18.2 14.5

251

10 3930 3288 233 138 6.1 3.6

25 4685 3959 249 172 6.5 4.5

50 4856 4153 245 201 6.4 5.2

100 5102 4385 264 241 6.9 6.3

259

10 51 40 14 5 10.1 3.6

25 73 60 24 13 17.3 9.4

50 98 88 30 22 21.6 15.8

100 129 116 33 30 23.7 21.6

264

10 16 11 14 6 1.7 0.7

25 33 19 28 17 3.3 2.1

50 54 33 42 31 5.1 3.7

100 71 53 57 40 6.9 4.8

1862

10 65 29 25 6 16.9 4.0

25 96 48 28 14 18.9 9.5

50 93 56 32 23 21.6 15.5

100 147 94 33 30 22.3 20.3

2014

10 85 53 20 9 7.5 3.4

25 102 71 25 12 9.4 4.5

50 113 84 22 16 8.3 6.0

100 131 99 27 23 10.2 8.7

4792

10 849 622 176 106 37.4 22.5

25 976 746 179 129 38.0 27.4

50 1085 828 199 151 42.3 32.1

100 1262 969 212 170 45.0 36.1
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Figure 4.   Reproducibility of known target compounds. For each activity class, the proportion of correctly 
reproduced KTCs is reported for Meta-CLM and CLM over varying percentages of fine-tuning samples. Mean 
and standard deviations (error bars) are provided. To assess the statistical significance of observed differences 
between reproducibility rates, independent-samples t tests were conducted: 0.05 < p ≤ 1.00 (ns), 0.01 <  p ≤  0.05 
(*), 0.001 <  p  ≤ 0.01 (**), 0.0001 <  p  ≤ 0.001 (***),  p ≤ 0.0001 (****). Stars denote increasing levels of statistical 
significance and “ns” stands for “not significant”.
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Figure 5.   Potency value distribution of reproduced known target compounds. For all activity classes, boxplots 
report the distributions of logarithmic potency values of KTCs correctly reproduced by Met-CLM and CLM 
over varying numbers of fine-tuning samples. To assess the statistical significance of differences between 
potency value distributions, independent-samples t tests were conducted: 0.05 <  p  ≤ 1.00 (ns), 0.01 <  p ≤ 0.05 (*), 
0.001 <  p ≤ 0.01 (**), 0.0001 <  p ≤ 0.001 (***),  p  ≤ 0.0001 (****).
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Compound potency
In addition to reproducing KTCs, the actual potency level of correctly predicted KTCs and potency differences 
between SCs and corresponding KTCs represented other highly relevant criteria for model assessment. Accord-
ing to our semi-quantitative design approach, ideally, the models should predict highly potent compounds from 
given SCs. Therefore, we next analyzed the potency of correctly predicted KTCs and potency differences between 
Meta-CLM and CLM.

Known target compounds
Figure 5 shows the distributions of logarithmic potency values of KTCs reproduced by Meta-CLM and CLM. 
Importantly, KTCs generated by Meta-CLM were overall consistently more potent than those generated by CLM 
across all activity classes and fine-tuning conditions. Thirty-eight of the total of 40 observed differences between 
the respective potency value distributions were statistically significant. Especially for 25% and 10% of the fine-
tuning samples, Meta-CLM generated multiple KTCs with low-nanomolar or even sub-nanomolar potency 
for each activity class, whereas CLM only generated a few KTCs with potency higher than 10 nM (pKi > 8) for 
three classes.

Potency differences between source and target compounds
Furthermore, we analyzed potency differences captured by SC-KTC pairs. Following our design strategy, increas-
ingly large potency differences between corresponding SCs and correctly reproduced KTCs were favored. Figure 6 
shows the distribution of potency differences between corresponding SCs and KTCs for Meta-CLM and CLM 
predictions. In the case of Meta-CLM (CLM), four (six) activity classes displayed median potency differences 
between SCs and corresponding KTCs between one and two orders of magnitude (10- to100-fold) and the 
remaining six (four) classes displayed median potency differences exceeding two orders of magnitude (> 100-
fold) for complete fine-tuning sets. Hence, significant potency differences were generally observed. For half of 
the activity classes, median potency differences were comparable for all fine-tuning conditions when separately 
viewed for Meta-CLM and CLM, respectively. However, when Meta-CLM and CLM were compared, potency 
differences of SC-KTC pairs were consistently larger for Meta-CLM. Again, 38 of 40 observed differences were 
statistically significant. Overall, many more KTCs with at least 1000-fold higher potency than the correspond-
ing SCs were generated by Meta-CLM compared to CLM. Thus, Meta-CLM predicted KTCs with overall higher 
potency than CLM and much larger potency differences between SCs and KTCs.

Conclusion
In this work, we have explored meta-learning for the prediction of potent compounds using conditional trans-
former models. Compound potency predictions are of high interest in drug discovery but high-quality activity 
data available for machine learning are typically sparse. For these predictions, meta-learning was of particular 
interest to us because the approach is well-suited for models that are rich in meta-data, yet currently only lit-
tle explored for drug discovery applications. Therefore, we have adapted a previously investigated transformer 
architecture to construct a meta-learning model by adding a special meta-learning module to a pre-trained 
transformer. Then, meta-learning model variants were derived for different activity classes and their performance 
in the design of potent compounds was compared to reference transformers. For model validation, the ability 
to reproduce potent KTCs served as the major criterion. All models successfully reproduced KTCs. However, 
compared to reference models, meta-learning significantly increased the number of correctly predicted KTCs 
across all activity classes, especially for decreasing numbers of fine-tuning samples. This was an encouraging find-
ing, consistent with expectations for successful meta-learning. Moreover, meta-learning models also produced 
target compounds with overall higher potency than other transformers and larger potency differences between 
templates and targets. These improvements were not anticipated but are highly attractive for practical applica-
tions. The generative models designed for predicting potent compounds produced large numbers of candidate 
compounds with novel structures. New candidate compounds predicted by the meta-learning models should 
represent an attractive resource for prospective applications in searching for potent compounds for targets of 
interest. Taken together, the results reported herein, provide proof-of-concept for the potential of meta-learning 
in generative design of potent compounds. Moreover, in light of our findings, we anticipate that meta-learning 
will also be a promising approach for other compound design applications in low-data regimes.
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Figure 6.   Distribution of potency differences between source and known target compounds. For all activity 
classes, boxplots report the distributions of logarithmic potency differences for SC-KTC pairs predicted by 
Meta-CLM and CLM over varying numbers of fine-tuning samples. To assess the statistical significance of 
differences between the distributions, independent-samples t tests were conducted: 0.05 <  p ≤ 1.00 (ns), 0.01 <  p  
≤ 0.05 (*), 0.001 <  p ≤ 0.01 (**), 0.0001 <  p ≤ 0.001 (***),  p ≤ 0.0001 (****).
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Data availability
Calculations were carried out using publicly available programs and compound data. Python scripts generated 
for the study and the activity classes used are available via the following link: https://​uni-​bonn.​sciebo.​de/s/​
kfAQZ​0mbCG​Htr0m.
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Extension of multi-site analogue series with
potent compounds using a bidirectional
transformer-based chemical language model

Hengwei Chen,a Atsushi Yoshimorib and Jürgen Bajorath *ac

Generating potent compounds for evolving analogue series (AS) is a key challenge in medicinal chemistry.

The versatility of chemical language models (CLMs) makes it possible to formulate this challenge as an off-

the-beaten-path prediction task. In this work, we have devised a coding and tokenization scheme for

evolving AS with multiple substitution sites (multi-site AS) and implemented a bidirectional transformer to

predict new potent analogues for such series. Scientific foundations of this approach are discussed and, as

a benchmark, the transformer model is compared to a recurrent neural network (RNN) for the prediction

of analogues of AS with single substitution sites. Furthermore, the transformer is shown to successfully

predict potent analogues with varying R-group combinations for multi-site AS having activity against many

different targets. Prediction of R-group combinations for extending AS with potent compounds represents

a novel approach for compound optimization.

Introduction

Generative modeling of compounds has substantially
expanded opportunities for molecular design.1–5 For
generative modeling, deep neural networks (DNNs) adapted
from natural language processing (NLP) that utilize textual
representations of chemical structures3,4 are particularly
versatile. Such models can be derived to learn a variety of
sequence-to-sequence mappings for diverse design tasks,
giving rise to different types of chemical language models
(CLMs).6–14 Popular DNN architectures from NLP include
recurrent neural networks (RNNs), which were first adapted
for applications in chemistry,4–7 and different transformer
networks that are increasingly used for molecular design and
de novo compound generation.10–15 Different deep generative
models including transformers and diffusion models have
also been developed in structure-based drug design for the
discovery and optimization of new active compounds.15,16

In medicinal chemistry, compound optimization efforts
result in analogue series (AS), which represent the major
source of structure–activity relationship (SAR) information.

For evolving AS, the key question in the practice of medicinal
chemistry is which analogue(s) to synthesize next to further
improve compound potency and/or other molecular
properties relevant for drug development. This optimization
process continues to be largely driven by chemical knowledge
and experience and can be supported by standard
computational techniques such as quantitative SAR (QSAR)
analysis using linear or non-linear machine learning
regression models based on assay data.

Previously, we have devised an RNN-based CLM (termed
DeepAS) for extending evolving AS with new potent
analogues,6 representing an off-the-beaten-path prediction
task. Conceptually, this approach was based on the notion of
the SAR transfer principle.17,18 SAR transfer refers to findings
that AS with activity against different targets frequently
contained corresponding analogues with comparable potency
progression.17–19 This observation also reflects the
application of similar optimization strategies in medicinal
chemistry for optimizing (hydrophobic or hydrophilic)
ligand–target interactions. A key aspect of the SAR transfer
concept is that corresponding R-group sequences
representing ascending compound potency gradients are
found in many different AS, regardless of their core
structures (scaffolds).17 Thus, SAR transfer is not dependent
on individual scaffolds. Instead, it depends on the transfer of
SAR information and progression across AS with different
core structures. Therefore, to exploit SAR transfer
information, AS are represented as R-group sequences of
potency-ordered analogues, without considering the invariant
scaffolds of different series. To exploit SAR transfer
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information for generalized analogue design (that is,
prediction of new analogues for individual AS, rather than
pairs of AS representing individual SAR transfer events), the
original DeepAS approach was devised.6 A basic RNN model
was implemented comprising three layers including a long
short-term memory (LSTM) layer, a batch normalization, and
dense layer. The model was trained on a large number of AS
for deriving conditional probabilities for AS extension with
compounds carrying a new R-group and displayed promising
prediction accuracy in reproducing terminal R-groups in AS
for a variety of targets.6 A principal limitation of the approach
was that predictions were confined to AS with single
substitution sites. Considering multiple substitution sites,
which is common practice in medicinal chemistry, would
have substantially increased the complexity of the prediction
task and was not attempted in our proof-of-concept study.

Herein, we have further investigated and advanced the
approach for extending AS with potent compounds. To these
ends, a new transformer model was derived to enable a direct
comparison with the RNN CLM for predictions on AS with
single substitution sites. Moreover, for the transformer, a
novel AS encoding strategy was devised, enabling the
prediction of R-group combinations for extending AS having
multiple substitution sites. In test calculations, new potent
analogues for such AS were successfully predicted across a
large target space.

Methodology
Analogue series data

AS with single substitution sites can be identified and
represented using the matching molecular series (MMS)
formalism.20,21 MMS are defined as series of compounds
that are only distinguished by a chemical modification at
a single site20 and can be identified using a matched
molecular pair (MMP) algorithm variant.21 For the original
development of DeepAS,6 104 627 MMS from 2195 target-
based compound activity classes were extracted from
ChEMBL.22 From these MMS, all R-groups were
systematically isolated, yielding 3852 unique R-groups,
which represented all R-groups occurring in AS covering
the entire target space of active compounds.6 From this

large pool, 10 activity classes each containing at least 700
MMS were randomly selected as test cases for model
evaluation and comparison (Table 1). These activity classes
included a variety of receptor ligand and enzyme
inhibitors. The remaining 2185 activity classes were used
to build and evaluate the transformer model and compare
it to DeepAS.

Furthermore, a systematic search for AS with multiple
substitution sites (multi-site AS) was carried out in activity
classes from ChEMBL (release 29) using the compound-
core relationship (CCR) algorithm.23 This method employs
a modified and extended matched molecular pair (MMP)
fragmentation procedure24 based on retrosynthetic rules25

and effectively identifies multi-site AS in compound data
sets.23 Therefore, activity classes with high-confidence
activity data were pre-selected from ChEMBL based on the
following criteria. Compound activity was required to be
determined in direct interaction assays (assay relationship
type: “D”) with human targets at the highest assay
confidence level (assay confidence score 9). Potency
measurements were limited to numerically specified
equilibrium constants (Ki values) that were recorded at
(negative decadic logarithmic) pKi values. For compounds
with multiple measurements, the geometric mean was
calculated as the final potency annotation, provided all
pKi values fell within the same order of magnitude;
otherwise, the compound was disregarded. Then, in each
qualifying activity class, a systematic search for AS with
one to five substitution sites was carried out. The core
structure of an AS was required to contain at least twice
the number of non-hydrogen atoms as the combined
substituents.23 From 864 target-based activity classes
containing multi-site AS, a total of 16 538 AS were
obtained. Furthermore, from these activity classes, the five
classes with largest total number of AS with one to five
substitution sites were selected (Table 2). These classes
consisted of different G protein coupled receptor (GPCR)
ligands and were used for transformer fine-tuning (see
below). AS from the remaining activity classes were used
to derive and evaluate the transformer model for
extending multi-site AS. Fig. 1 shows exemplary ASs with
single or multiple substitution sites.

Table 1 Selected activity classes with analogue series containing single substitution sites

UniProt ID ChEMBL ID Target name #AS

P00533 203 Epidermal growth factor receptor erbB1 1692
Q72547 247 Human immunodeficiency virus type 1 reverse transcriptase 1279
Q16539 260 MAP kinase p38 alpha 744
P35968 279 Vascular endothelial growth factor receptor 2 1917
Q13547 325 Histone deacetylase 1 989
O60674 2971 Tyrosine-protein kinase JAK2 763
P11362 3650 Fibroblast growth factor receptor 1 810
P08581 3717 Hepatocyte growth factor receptor 852
P42336 4005 PI3-kinase p110-alpha subunit 866
P56817 4822 Beta-secretase 1 1093

For each activity class, UniProt ID, ChEMBL target ID, target name, and number of AS with single substitution sites are reported.
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Analogue design strategy

The approach aimed at the probability-based prediction of
R-groups producing potent compounds in evolving AS.
Relative potency information was implicitly accounted for by
ordering AS according to increasing compound potency.
Thus, each AS and its R-group sequence represented an
ascending potency gradient. Given that CLM-based
probabilities of R-groups depended on the preceding R-group
sequence, the design of new R-groups was order-dependent,
following the potency gradient. For a given AS, this design
strategy corresponded to a search for increasingly potent
analogues, thereby bridging between generative modeling
and property-based optimization. Leveraging the input data
format (sentences), a generative model was supposed to learn
conditional probabilities for R-groups based on potency-
ordered sequences in which they occurred. A major challenge
for the design approach was taking multiple substitution
sites in AS into account, corresponding to probability-based
prioritization of R-group combinations for compound design.

Representing analogue series as potency-ordered R-group
sequences

MMS were converted into potency-ordered R-group
sequences following the original DeepAS approach.6 Each
AS was sorted based on increasing potency of their
analogues. For CLM derivation, an AS was then encoded as
a sentence in which each R-group was represented as an
individual R-group token. Three additional special tokens
were introduced including the “go” and “stop” tokens,
marking the beginning and end of a sentence, respectively,
and “none”, denoting an empty token. A sentence was
required to contain a minimum of two R-group tokens.
Each MMS was composed of the sentence and a terminal
label, representing the next R-group to be added to the
sentence (that is, the prediction for a given input sentence).
The length of a sentence was consistently set to 35 tokens
and the total number of label tokens amounted to 3855,
including 3852 unique R-groups extracted from the
qualifying MMS plus the three special tokens.6

Table 2 Selected activity classes with AS containing multiple substitution sites

UniProt ID ChEMBL ID Target name #1 #2 #3 #4 #5 #AS

P30542 226 Adenosine A1 receptor 150 105 68 26 31 380
P35462 234 Dopamine D3 receptor 180 79 45 30 27 361
P29274 251 Adenosine A2a receptor 185 101 64 33 29 412
P0DMS8 256 Adenosine A3 receptor 114 87 61 29 29 320
Q9Y5N1 264 Histamine H3 receptor 188 79 41 26 21 355

For each activity class, UniProt ID, ChEMBL target ID, target name, number of AS with one to five substitution sites (#1 to #5), and total
number of AS are reported.

Fig. 1 Exemplary analogue series. Markush structures in the column on the left represent AS with increasing number of substitution sites and
each corresponding row shows four exemplary analogues. Substitution sites and non-hydrogen R-groups are highlighted in red.
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For AS featuring multiple substitution sites, a novel
coding scheme was devised. Initially, these AS were also
ordered according to increasing potency and structured in a
tabular format where each row contained an analogue
represented by the core structure, R-groups at different
substitution sites, and its potency annotation (Fig. 2).
Subsequently, R-groups of each analogue were concatenated
into a combined R-group (combination) token. For CLM
derivation, each sample was formatted to contain its sentence
with the terminal label at a constant length of 256 tokens.
The vocabulary of possible labels consisted of 36 647
concatenated R-group (combination) tokens extracted from
multi-site AS, supplemented by special tokens “go”, “stop”,
“none”, and “X”, the latter representing the absence of a
substitution site (Fig. 2). This coding scheme was consistently
applicable to AS with varying numbers of substitution sites,
as illustrated Fig. 3. Herein, it was applied to cover AS with
one to five substitution sites. Notably, the absence of one or
more of maximally five substitution sites in an AS, formally
defined through the use of the “X” token, was distinct from
the presence of an “–H” substituent (label token) at defined
substitution sites.

Data augmentation involved transforming each AS into
multiple sentences such that each training instance was
expanded into sentences capturing an increasing number of
R-group tokens (that is, two, three, … all R-group tokens).
The final label represented the next R-group to be predicted,
with “stop” indicating completion of an AS in iterative
R-group predictions.

Transformer variant

Considering the specifics of the design strategy outlined
above, a new generative CLM, termed DeepAS 2.0, was

devised for the prediction of R-groups producing potent
compounds in evolving AS using the bidirectional encoder
representations from transformers (BERT) architecture26

(Fig. 4a). The original transformer architecture comprised
multiple encoder–decoder neural modules with attention
mechanisms.27 In this architecture, a stack of encoding
layers, each including a multi-head self-attention sub-layer
and a fully connected feed-forward network sub-layer, formed
the encoder module. The encoder processed an input
sequence and compressed it into a context vector in its final
hidden state. This context vector served as input for the
decoder block, which predicted an output sequence. The
decoder module, composed of a feed-forward network sub-
layer and two multi-head attention sub-layers, converted the
encodings into a sequence of tokens. Both encoder and
decoder utilized the attention mechanism during training to
effectively learn from the feature space.

Building upon this original architecture, various
transformer variants have been developed.26,28,29 BERT has
been successfully used in NLP for learning word vectors
based on contextual information, in particular, for text
classification and next-sentence prediction.30–34 Unlike other
language models that capture context unidirectionally, BERT
was designed as a bidirectional model to analyze sentences
in forward and backward direction and predict new words
conditioned on all other words in sentences.26,35 Given that
next-sentence prediction was conceptually related to the AS
extension task, BERT was chosen as a transformer
architecture for R-group prediction.

BERT comprises an embedding layer, multiple
transformer encoder layers, and a task-related output layer.26

In the embedding layer, the input word token is embedded
into continuous vector space via a matrix and a pre-defined
positional encoding vector is added to each embedding

Fig. 2 Analogue series representation. The conversion of an AS into a tabular format and new textual representation for CLM derivation is
illustrated.
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vector. In the encoder layer, each word (token) exchanges
information with all others through the self-attention
mechanism.26 The last layer typically consists of a fully
connected dense layer, which further processes the encoder
layer's output and addresses prediction-specific tasks such as
text classification or next-sentence prediction.

In DeepAS 2.0, new sentences representing R-group
sequences of AS were tokenized using the bidirectional
maximum matching (BMM) algorithm.36 These AS sentences
served as the R-group embedding vectors in the input AS
sequence, and the segmentation embedding vectors and
position embedding vectors were concatenated to the input
sequence. The three combined embedding vectors were then
submitted to the transformer encoder to learn potency-
ordered R-group sequences via the self-attention mechanism
(Fig. 4b). The self-attention mechanism adjusted the weight
of each R-group in the input AS sequence to obtain a global
representation vector capturing the context. Subsequently,
DeepAS 2.0 predicted labels with probabilities derived from
training data via the softmax function of the dense layer. The
model-based probability was converted into a log-likelihood
score using the negative logarithm, resulting in small scores
corresponding to high probabilities. For extension of an
input AS, all potential R-groups were ranked based on log-
likelihood scores (Fig. 4b).

Model derivation and evaluation

DeepAS 2.0 was implemented using PyTorch.37 The Adam
optimizer38 with a learning rate of 0.0001 and a batch size of

128 was employed. Softmax was utilized as the activation
function in the dense layer. Training was conducted on
NVIDIA Tesla A40 (48GB) GPUs. Throughout the training
process, the cross-entropy loss between the ground truth and
the output sequence was minimized. The model was trained
for at least 200 epochs and at the end of each epoch, a check
point was saved. The final model was selected based on
minimal cross-entropy loss.

Initially, DeepAS 2.0 was trained using a data set of
93 622 MMS from 2185 activity classes. As a control, the
original DeepAS model was derived using the same data,
thus enabling a direct comparison with DeepAS 2.0 for
extending AS with single substitution sites. For model
evaluation, the final R-group token was omitted from each
potency-ordered test AS (not encountered during training)
and predicted as the label based on the derived conditional
probabilities and corresponding log-likelihood scores. The
model's ability to accurately predict final R-groups within
top-ranked tokens served as the primary criterion for model
validation.

Subsequently, fine-tuning using DeepAS 2.0 was
investigated for MMS from the activity classes in Table 1 that
were excluded from training. For each activity class, AS were
randomly divided into two distinct equally sized subsets
without AS overlap that were used for fine-tuning and testing,
respectively.

For deriving the DeepAS 2.0 version for extending AS with
multiple substitution sites, termed multi-site DeepAS 2.0
(MS-DeepAS 2.0), a data set comprising 10 863 AS with one to
five substitution sites from 854 activity classes for training

Fig. 3 Encoding of R-group combinations. AS with two, three, or four substitution sites and varying numbers of non-hydrogen R-groups are
encoded into potency-ordered R-group sequences using concatenated R-group combination tokens.
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and 2716 AS for testing were used. Furthermore, five activity
classes with multi-site AS excluded from training were used
for fine-tuning (Table 2). For each class, AS samples with one

to five substitution sites were randomly divided into two
distinct equally sized subsets without AS overlap for fine-
tuning and testing, respectively.

Fig. 4 Transformer model architecture and function. In (a), BERT-based iterative prediction of analogues with new R-groups for an evolving AS is
illustrated. In (b), the model architecture is detailed and R-group ranking illustrated (excluding special tokens and R-group tokens from the input
sequence).
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Results and discussion
Study concept

Our study had two primary objectives. Firstly, we aimed to
develop a new transformer model for generative extension of
MMS with potent compounds, including a fine-tuning option,
and compare the performance to the original DeepAS RNN.
Secondly, we aimed to expand the approach to AS with
multiple substitution sites and determine if prediction of
R-group combinations for potent compounds might be
feasible; a challenging task. To meet these objectives, we
implemented a second-generation DeepAS CLM based on the
BERT architecture, devised a novel encoding scheme for
transforming multi-site AS into potency-ordered R-group
combination sequences, and carried out systematic test
calculations.

General models for the extension of analogue series with
single substitution sites

We first determined the ability of DeepAS 2.0 to predict final
R-groups within the top-5 of all 3855 R-group tokens ranked
based on log-likelihood scores and compared DeepAS 2.0 to
the original DeepAS RNN. Both models were trained on
84 259 MMS (AS with a single substitution site) covering
nearly 2200 targets and tested on 9363 distinct MMS. Table 3
reports the results obtained for the general models. While
prediction accuracy on the training set was comparably high
for both models (at the 90% level), DeepAS 2.0 reached
significantly higher performance on the test set than the
DeepAS model, with 69.8% vs. 57.4% correctly predicted test
instances. Thus, predictions across a large target space

confirmed the ability of the DeepAS approach to exploit SAR
transfer information using alternative CLMs, with further
improved performance of the transformer variant compared
to the original RNN model.

Activity class-specific extension of analogue series with single
substitution sites

We next carried out predictions for the 10 different activity
classes in Table 1. Initially, the general DeepAS and DeepAS
2.0 models were used to separately extend test MMS from
each class, as reported in Table 4. Both models predicted
multiple final R-groups within the top-5 ranked tokens for
∼40% to ∼60% of test MMS from each activity class, with on
average 49.2% for DeepAS and 57.0% for DeepAS 2.0, which
further improved the performance of DeepAS for eight of 10
activity classes (Table 4). Furthermore, predictions were
repeated with DeepAS 2.0 following class-specific fine-tuning
(which was not available in DeepAS). As reported in Table 4,
fine-tuning consistently increased the performance of DeepAS
2.0 for all activity classes. In seven of 10 cases, improvements
of more than 10% to ∼15% were observed, resulting in an
average performance of 68.3% for fine-tuned DeepAS 2.0.
These findings also indicated that the general DeepAS 2.0
model relying on SAR transfer information remained
sensitive to target/activity class-specific SAR features.

Extension of analogue series with multiple substitution sites

At the core of our study has been the expansion of the
approach to cover AS with multiple substitution sites and
predict R-group combinations improving compound potency.
Therefore, given its superior performance compared to the
original DeepAS model, a new methodological framework
was implemented in DeepAS 2.0 (see Methodology),
producing the MS-DeepAS 2.0 version. Increasing the number
of substitution sites increased the complexity of the
prediction tasks, resulting in 36 647 R-group combinations
for AS with one to five substitution sites. Moreover, for AS
with increasing numbers of substitution sites, available
training data decreased. Thus, both in terms of complexity

Table 3 Predictions of general models

Model Training set Test set

DeepAS 88.8% 57.4%
DeepAS 2.0 91.0% 69.8%

Reported is the percentage of training and test MMS for which the
models correctly predicted the terminal R-group within the top-5
ranked R-group tokens.

Table 4 Activity class-specific predictions

ChEMBL ID Test MMS DeepAS DeepAS 2.0 Fine-tuned DeepAS 2.0

203 846 45.2% 56.4% 70.2%
247 639 48.8% 59.0% 64.0%
260 372 39.8% 46.5% 52.4%
279 959 51.1% 60.3% 73.4%
325 494 67.8% 63.6% 77.9%
2971 382 47.9% 57.3% 68.3%
3650 405 55.3% 53.8% 61.7%
3717 426 43.7% 54.9% 65.7%
4005 433 53.8% 61.0% 76.4%
4822 547 38.4% 57.6% 72.6%

Reported is the percentage of test MMS from 10 activity classes for which the models correctly predicted the terminal R-group within the top-5
ranked R-group tokens. Predictions were carried out with the general DeepAS and DeepAS 2.0 models and fine-tuned DeepAS 2.0.
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and training data sparseness, multi-site AS predictions were
more challenging than MMS predictions.

MS-DeepAS 2.0 was trained using 10 863 AS with one to
five substitution sites from 854 activity classes, yielding a
general model, and tested on corresponding 2716 AS. Given
the large number of label tokens, the model's ability to
predict final R-group combinations within the top-5 and top-
10 ranked tokens was determined. As reported in Table 5,
62.2% and 75.6% of predicted final R-group combinations of
training AS were found in the top-5 and top-10 ranked
tokens, respectively, and 41.7% and 53.6% of test instances
were within the top-5 and top-10 tokens, respectively. In light
of the inherent complexity of these predictions, these
findings were encouraging (and not necessarily anticipated).
Fig. 5 shows exemplary predictions for multi-site AS.

We further analyzed model performance for AS subsets
with one to five substitution sites. As reported in Table 6, for
AS with increasing number of substitution sites, available
training (and test) data decreased, thus further increasing the
relative difficulty of predictions as more substitution sites
became available. Accordingly, the proportion of training and
test AS for which the terminal R-group combination was
predicted among the top-5 or top-10 ranked label tokens
generally decreased for AS with one to five substitution sites,
as expected. For test AS, the proportion of terminal R-group
combinations predicted among the top-5 and top-10 tokens
declined from 64.7% to 5.4% and 77.5% to 10.4%,
respectively, from one to five substitution sites. Global
prediction accuracy was dominated by subsets with one to
three substitution sites.

Activity class-specific extension of analogue series with
multiple substitution sites

Five activity classes with largest numbers of AS having
multiple substitution sites we identified (Table 2) were
excluded from training and used for class-specific
predictions with fine-tuning. These classes with largest
numbers of multi-site AS provided as much data for class-
specific learning as possible. As reported in Table 7,
predictions for these five classes of GPCR ligands
produced comparable results, with 20.1% to 28.4% and
26.3% to 39.3% of terminal R-group combinations
predicted among the top-5 and top-10 ranked tokens,
respectively.

However, the MS-DeepAS 2.0 model only failed to predict
the final R-group combination within the top-5 ranked
tokens for test AS with four or five substitution sites from
two activity classes (but did not fail in these cases when
the top-10 ranked tokens were considered). As a control,
when the model was fine-tuned only on AS subsets with
one to three substitution sites and used to predict test AS
with four or five sites, the predictions consistently failed to
identify final R-group combinations among the top-10
ranked tokens. Thus, fine-tuning on these activity classes
had a detectable effect on the predictions, consistent with
the observed class sensitivity of general DeepAS 2.0.
However, for multi-site AS predictions, data sparseness
limited the magnitude of the effect, especially for AS
subsets with four or five substitution sites because in these
cases, only ∼10–15 training AS were available for activity
classes not encountered before.

Conclusions

In this work, we have investigated the extension of AS with
potent compounds using CLMs. Inspired by the ability of the
original DeepAS RNN model to predict R-groups of potent
analogues for series with single substitution sites, providing
proof-of-concept for the approach, a BERT-based transformer
variant was developed and found to further increase the
performance of DeepAS in systematic R-group predictions for
MMS. Exploitation of SAR transfer information provides a
scientific foundation for the predictive ability of the general
DeepAS and DeepAS 2.0 models and additional fine-tuning
confirmed compound class sensitivity of DeepAS 2.0,
providing opportunities for further developments.

Exploring a methodological framework for covering AS
with multiple substitution sites was central to our current
study. Therefore, a new AS encoding scheme and R-group
data structure were devised and implemented in DeepAS 2.0.
Despite the inherent challenges of predicting R-group
combinations of potent compounds, the resulting MS-
DeepAS 2.0 version accurately prioritized R-group
combinations of potent analogues for many multi-site AS.
Training data sparseness for AS with more than three
substitution sites (which are underrepresented in compound
optimization) naturally limited the predictive ability of the
model in these cases. Nonetheless, proof-of-concept was also
established for the extension of AS with combinations of four
or five R-groups. Regardless, for practical applications in
compound optimization, predicting combinations of four or
five R-groups would typically be an exception. However, given
the promising performance of the general MS-DeepAS 2.0
model, meaningful prioritization of varying R-group
combinations should often be feasible. In light of the
findings reported herein, we intend to further develop the
approach by exploring model modifications targeting selected
SAR transfer events and considering multi-site AS
relationships.

Table 5 Predictions for analogue series with multiple substitution sites

Ranking Training set Test set

Top-5 62.2% 41.7%
Top-10 75.6% 53.6%

Reported is the percentage of training and test AS with one to five
substitution sites for which MS-DeepAS 2.0 correctly predicted the
terminal R-group combination within the top-5 or top-10 ranked
R-group combination tokens.
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Fig. 5 Extension of exemplary analogue series with multiple substitution sites. From the top to the bottom, exemplary AS with two, three, four,
and five substitution sites are shown for which MS-DeepAS 2.0 correctly predicted the R-group combination of the final analogue at rank 4, 3, 7,
and 9, respectively (log-likelihood scores are reported in parentheses). Substitution sites and non-hydrogen R-groups are highlighted in red.
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ABSTRACT: In medicinal chemistry, compound optimization relies on the
generation of analogue series (AS) for exploring structure−activity relationships
(SARs). Potency progression is a critical criterion for advancing AS. During
optimization, a key question is which analogues to synthesize next. We introduce a
new computational methodology for the extension of AS with potent compounds
containing both core structure and substituent modifications at multiple sites, which
has been reported for the first time. The approach combines a transformer chemical
language model (CLM) with a SAR matrix (SARM) methodology that identifies and
organizes structurally related AS. Therefore, the SARM approach was expanded to
cover multisite AS. Consensus series extracted from SARMs representing a potency
gradient served as input for CLM training to extend test AS with potent analogues.
Different model variants were derived and investigated. Both general and fine-tuned
models correctly predicted known potent analogues at high positions in probability-
based compound rankings and chemically diversified AS through core structure modifications of the generated candidate compounds
and substituent replacements at multiple sites.

■ INTRODUCTION
In medicinal chemistry, active compounds are optimized by
generating a series of structural analogues to uncover and
exploit structure−activity relationships (SARs). At any stage in
this process, decisions must be made as to which analogue(s)
to synthesize and evaluate next. Decision support is often
provided by quantitative SAR (QSAR) modeling.1,2 Different
analogue series (AS) are typically explored in the course of
lead optimization. If such AS exhibit comparable potency
progression, one series can often be replaced by another if
these compounds have more favorable optimization-relevant
characteristics, which is referred to as SAR transfer.3 AS with
SAR transfer potential can be systematically identified by
computational analysis of corresponding analogues and their
potency progression.3,4 Although SARs are typically optimized
for a given target, SAR transfer can also involve different
targets,5 which is a consequence of generally applied strategies
to optimize compound−target interactions.6 SAR transfer
series for different targets are frequently detected.5

The advent of deep learning approaches in drug discovery
has provided new opportunities for molecular design such as
generative modeling.7−9 Deep neural network architectures
originating from natural language processing such as recurrent
neural networks (RNNs)8 and increasingly popular trans-
former networks10 learn sequence-to-sequence mappings and
can be adapted for new molecular design tasks that have been

difficult or impossible to address using conventional machine
learning methods. A variety of such models have been derived
based on textual representations of molecular structure and
properties that are often referred to as chemical language
models (CLMs).11−15

As a methodological alternative to QSAR modeling, we
previously introduced a CLM (termed DeepAS) for the
extension of evolving AS that was conceptually based on the
notion of SAR transfer across different targets.16 The DeepAS
RNN model was designed to predict the next substituent for
AS in which the analogues were ordered according to their
potency, thus forming an ascending potency gradient. The
approach successfully reproduced AS with activity against a
variety of targets from which the terminal (most potent)
analogue was removed, thus establishing proof of concept.16

However, predictions using the original DeepAS model were
restricted to AS with single substitution sites that were
assembled based on matched molecular pair (MMP)
fragmentation of active compounds.17 Therefore, a second-
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generation model (termed DeepAS 2.0) was designed for the
extension of AS with multiple substitution sites in which a
transformer replaced the RNN architecture. Proceeding from
the extension of AS with single substitution sites to AS with
multiple substitution sites substantially increased the complex-
ity of the prediction task, requiring the development of a new
encoding scheme to enable the prediction of substituent
combinations in terminal analogues. The DeepAS 2.0 trans-
former model further increased the predictive performance of
the original RNN model for AS with single substitution sites
and facilitated the prediction of substituent combinations for
the extension of multisite AS.18

Building upon the successful extension of single- and
multisite AS with potent compounds using CLMs, we have
aimed to extend the underlying methodology for combined
modification of core structures and substituents, hence
departing from AS with invariant cores (scaffolds). Mod-
ification of core structures in compound series is of high
relevance for compound optimization, for instance, to
introduce new substitution sites and/or heteroatoms at specific
positions, but difficult to model computationally (where core
structure modifications are typically attempted through
scaffold hopping exercises). To these ends, we have integrated
the CLM approach for AS extension with the SAR matrix
(SARM) formalism and data structure that was originally
introduced for the systematic extraction of AS with single

substitution sites from compound collections and the
organization of SARMs with structurally related cores in a
matrix format.19 Accordingly, from each SARM capturing a
subset of AS with structurally related cores, a potency-ordered
compound series with core structure and substituent
modifications can be extracted, providing a basis for CLM
derivation. For the extension of multisite AS with core
structure modifications, the SARM data structure was
expanded to organize AS with multiple substitution sites, and
a new transformer encoding scheme was devised to represent
core structure-substituent combinations. Herein, we report the
development of DeepAS 3.0 for structural diversification of AS
and prediction of core structure modifications and substitution
patterns, yielding potent analogues.

■ METHODOLOGY
SAR Matrix Concept. The SARM19 methodology and data

structure were originally designed to systematically extract AS
with single substitution sites from compound data sets. It
identifies AS with structurally analogous cores and organizes
them into a matrix format similar to that of R-group tables
(also referred to as SARM). Each matrix contains a set of AS
with structurally analogous cores. SARMs systematically extract
structural relationships from compound data sets. Depending
on available structural relationships and the resulting AS,
multiple SARMs are typically obtained for a data set.

Figure 1. SAR Matrix construction. SARM construction is illustrated using a model data set comprising nine compounds (CPD A−I; pIC50 values
are reported in blue). Substituents distinguishing analogues are shown on a light blue background. SARM generation is based on a dual-step
fragmentation scheme that identifies AS with structurally related cores. Substructures distinguishing cores are shown in red. Each SARM cell
represents a unique existing compound (A−I), and empty cells represent a virtual analogue, that is, a currently unexplored combination of a core
(key) and substituent (value). Accordingly, virtual analogues are candidate compounds for synthesis that can be prioritized based on their SAR
environments in SARMs.
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SARM generation follows a dual-step compound fragmenta-
tion process adapted from MMP analysis.17 MMPs are defined
as pairs of compounds that are distinguished only by a
chemical modification at a single site.17 In the first step,
compounds are fragmented at exocyclic single bonds,
producing “keys” (core structures) and “values” (substituents),
which are stored in an index table (Figure 1). The cores are
then subjected to the same fragmentation protocol again to
identify subsets of cores differentiated only by a single
chemical change, resulting in a second index table (Figure
1). Each subset of analogous cores and the compounds
containing each core form an individual SARM. In this data
structure, each row contains an AS, in which all compounds
share the same core, while each column contains compounds
from different ASs sharing the same substituent (Figure 1).
Accordingly, SARMs consist of cells that represent every
possible combination of cores and substituents within the
subset of related AS. Each cell corresponds to a specific
compound (key-value pair), which can be either an existing
compound or a virtual analogue, that is, a currently unexplored
core-substituent combination.
Thus, the SARM methodology facilitates the systematic

detection of structural relationships in large compound
collections, extraction of related ASs, and organization of AS
with closely related cores in different matrices. Figure 1

illustrates the generation of SARMs and their information
content. Cells representing existing compounds can be color-
coded by potency values (or other molecular properties),
enabling matrix annotations. If potency coloring is used,
SARMs effectively visualize SARs contained in compound data
sets.
Structurally Related Cores with Multiple Substitution

Sites. Given that SARMs originated from a dual MMP
fragmentation scheme, AS forming SARMs exclusively
contained single substitution sites. However, AS comprising
SARMs can be redefined as AS with single or multiple
substitution sites and structurally related cores by integrating
the SARM methodology with the compound-core relationship
(CCR) algorithm,20 which systematically identifies core
structures with variable numbers of substitution sites. There-
fore, CCR applies a further extended MMP-based fragmenta-
tion approach21 using retrosynthetic rules,22 substitution site
masking, and indexing to identify multisite AS in compound
data sets.20 The SARM-CCR approach begins with originally
defined SARMs and applies the CCR algorithm to the AS
forming each SARM to extract redefined multisite cores (with
one to three possible substitution sites), as illustrated in Figure
2. Based on these alternative cores, SARMs cover AS with
multiple substitution sites having structurally related cores. To
our knowledge, this combined SARM-CCR structural decom-

Figure 2. SARMs covering multiple substitution sites. The SARM-CCR approach is illustrated using a model data set comprising seven compounds
(CPD A−G; pIC50 values are reported in blue) forming two AS (CPD A−C and D−G, respectively). The originally extracted structurally related
cores defined the SARM that is displayed. The corresponding AS were then subjected to CCR analysis, producing modified cores with multiple
substitution sites representing the SARM. Substructures from original SARM cores that are modified in CCR cores are highlighted in blue and
substitution sites in red.
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position represents a novel concept for systematically
identifying multisite AS with structurally related cores and
organizing them according to their relationships for SAR
exploration and analogue design. As further discussed below,
for a given SARM, these AS can be combined and potency-
ordered, yielding a “consensus” series of compounds with
structurally related cores and varying substitution patterns. We
note that a consensus series with core structure modifications
does not represent an AS with an invariant core but is still
categorized as an AS, given the presence of close (SARM-
based) core structure relationships.

Systematic Identification of Analogue Series for
Model Derivation and Evaluation. From ChEMBL23

(release 34), target-based compound activity classes were
preselected, applying several criteria to ensure the availability
of high-confidence activity data. All active compounds were
required to have a molecular mass of less than 1000 Da.
Targets regarded as undesirable, such as drug-metabolizing
cytochrome P450 isoforms, hERG, or serum albumin, were not
selected. Additionally, compounds flagged as “not active,”
“inactive,” “inconclusive,” or with potential errors (e.g., author
or transcription errors) were disregarded. Only compounds

Table 1. Activity Classes Were Selected for Fine-Tuninga

SARM

UniProt ID ChEMBL ID target name #1 #2 #3 #mix total

P00533 203 epidermal growth factor receptor erbB1 42 105 67 52 266
P22303 220 acetylcholinesterase 71 98 23 32 224
P35354 230 cyclooxygenase-2 60 116 20 58 254
Q16539 260 MAP kinase p38 α 31 68 43 27 169
P35968 279 vascular endothelial growth factor receptor 2 101 131 48 47 327
Q13547 325 histone deacetylase 1 125 107 25 50 307
P08253 333 matrix metalloproteinase-2 35 69 28 30 162
P06276 1914 butyrylcholinesterase 67 63 16 34 180
P27338 2039 monoamine oxidase B 54 270 20 32 376
P08581 3717 hepatocyte growth factor receptor 45 93 22 27 187

aFor each activity class, the UniProt ID, ChEMBL target ID, target name, number of SARMs with one, two, or three and varying numbers
(“mixed”) of substitution sites (#1, #2, #3, and #mix), and the total number of SARMs are reported.

Figure 3. SARM sequence representation. The conversion of a SARM into a tabular format and new textual representation for CLM derivation is
illustrated.
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with direct target interactions (target relationship type: “D”)
tested in single-protein assays with the highest ChEMBL assay
confidence score of 9 were retained. Moreover, availability of a
numerically specified IC50 potency measurement with standard
relation (“=”) was required, recorded as a logarithmic pIC50
value. For compounds with multiple measurements, the
geometric mean was calculated for the final potency
annotation, provided all pIC50 values fell within the same
order of magnitude; otherwise, such compounds were
excluded. Finally, activity classes were examined for com-
pounds that might cause assay artifacts using the Lilly
medicinal chemistry rules,24 filters for pan-assay interference
compounds,25 and filters for aggregators.26

From the resulting 2895 target-based activity classes, a total
of 19,556 SARMs were generated via the SARM-CCR
approach, each organizing a subset of multisite AS with related
cores. From this large pool, 10 activity classes, each yielding at
least 160 SARMs, were randomly selected for CLM model
fine-tuning and testing (Table 1). These classes encompassed a
range of receptor ligands and enzyme inhibitors. The
remaining activity classes were used to generate and evaluate
the transformer model for extending multisite AS with scaffold
modifications and new R-group combinations.
Representing SARM as Potency-Ordered Analogue

Sequences. The analogue design approach focuses on
probability-based prediction of core structures and substituent
modifications using a predefined pool of chemical vocabulary
encompassing all potential core-substituent combinations
derived from qualifying SARMs and does not generate
SMILES sequences de novo. Consequently, we opted for
substructure-based (rather than atom-level) tokenization. For
each SARM, multisite AS with structurally related cores were
combined, and the analogues were arranged in the order of
increasing potency, yielding a consensus series for a SARM, as
discussed above. The consensus series represents a potency-
ordered analogue sequence as the model input. Accordingly,
each analogue was encoded as a compound token consisting of
its core and substituent combination. Following our previous

approach,18 R-groups at different substitution sites were
represented as an individual (unique) R-group combination,
hence ensuring consistent application to AS with varying
numbers of substitution sites. For CLM derivation, each
SARM-based consensus series was encoded as a sentence in
which each analogue was represented as a core-substituent
combination by an individual compound token (Figure 3).

Four additional special tokens were introduced, including
“Go” and “Stop” to mark the beginning and end of a sentence,
respectively, “none” to denote an empty token, and “X” to
represent the absence of a substitution site. A sentence was
required to contain at least two compound tokens. Each
encoded consensus series consisted of a token sequence
(sentence) and a terminal label, which indicated the next
analogue compound to be added (that is, the prediction for a
given input sentence). The sentence length was standardized
to 35 tokens, and the total number of label tokens amounted to
95,910, covering all possible analogues extracted from
qualifying SARMs and the four special tokens.

Data augmentation involved transforming each analogue
sequence into multiple sentences by incrementally adding
compound tokens. This expanded each training instance into
sentences capturing an increasing number of compound tokens
(two, three, ... all compound tokens). The final label
represented the next analogue to be predicted, with the
“Stop” token indicating the completion of the sequence
following analogue predictions.
Model Architecture and Implementation. A trans-

former10 variant based upon the Bidirectional Encoder
Representations from Transformers (BERT) architecture27

was adopted from our previous study,18 as illustrated in Figure
4. BERT consists of three main components, including an
embedding layer, multiple transformer encoder layers, and a
task-specific output layer.27 In the embedding layer, each input
token is transformed into a continuous vector space using a
matrix, and a predefined positional encoding vector is added to
each token’s embedding to capture sequential information.
The transformer encoder layer utilizes the self-attention

Figure 4. Transformer variant architecture. The BERT model architecture is summarized, and analogue ranking is illustrated (excluding special
tokens and analogue tokens from the input sequence).
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mechanism,11 allowing each token to exchange information
with all other tokens in the sequence, thereby enhancing
contextual learning. The final layer is a fully connected dense
layer that further processes the output from the encoder and
focuses on prediction-specific tasks, such as next-sentence
prediction, which is conceptually related to AS extension.
BERT’s bidirectional nature enables the analysis of a sentence
in both forward and backward directions, rendering this
architecture a preferred solution for predicting new tokens
based on the context of an entire sentence.
In our current model, termed DeepAS 3.0, new sentences

representing analogue sequences of SARMs were tokenized
using the bidirectional maximum matching (BMM) algo-
rithm.28 Consistent with bidirectional data processing using
BERT, the BMM algorithm (originally introduced for a special
application in natural language processing28) conducts bidirec-
tional token matching, thereby identifying the longest matches
while comparing results from both directions to resolve
potential ambiguities and derive the optimal token sequence.
Therefore, by integrating a predefined vocabulary with BMM,
we anticipated achieving high tokenization accuracy for
domain-specific chemical language terms. The SARM
sentences were transformed into analogue embedding vectors
that were concatenated with segmentation embedding vectors
and position embedding vectors to form the input sequence.
These combined vectors were then submitted to the
transformer encoder, where the self-attention mechanism
learned the potency-ordered analogue sequences (Figure 4).
The self-attention mechanism assigns weights to each analogue
in the input sequence, creating a global representation that
captures the overall context. Once the input SARM sequence is
processed, DeepAS 3.0 predicts the next analogue based on
probabilities generated by the softmax function in the dense
layer. These model-based probabilities were then converted to
log-likelihood scores by applying a negative logarithm such
that smaller scores corresponded to higher probabilities. For
extending an input SARM, all potential analogue compounds
were ranked based on their log-likelihood scores (Figure 4).
DeepAS 3.0 was implemented using PyTorch29 and the

Adam optimizer,30 with a learning rate of 0.0001 and a batch
size of 128. As stated above, softmax served as the activation
function in the dense layer. Training was performed on a
NVIDIA Tesla A40 (48G) GPU. The model was trained for a
minimum of 200 epochs, with a checkpoint saved at the end of
each epoch. The final model was selected based on the
minimum cross-entropy loss between the ground truth and the
predicted output sequence.
Model Derivation and Evaluation. DeepAS 3.0 was

initially trained using a global data set of 17,140 SARMs,
consisting of 132,310 analogue sequences from 2885 activity
classes. For model evaluation, the final analogue token was
removed from each potency-ordered test sequence (not
encountered during training) and predicted based on the
model’s conditional probabilities and corresponding log-
likelihood scores. The primary validation criterion for the
model was its ability to correctly predict the final analogue
within the top-ranked tokens. Therefore, model performance
was assessed based on the ability to correctly predict the final
analogue of the test series within the top-ranked label tokens
from the ranking of all possible tokens. As a control, 20 label
tokens were randomly selected for each test series and
examined for the presence of the correct final analogue.
Performance analysis was carried out for the four subsets with

varying numbers of substitution sites. Furthermore, individual
models were also developed for each subset to explore their
relative predictive ability.

Fine-tuning of DeepAS 3.0 was subsequently carried out
using analogue sequences from the activity classes in Table 1
that were excluded from pre-training. For each activity class,
SARMs from each subset were evenly divided into two
nonoverlapping sets of equal size, one for fine-tuning and the
other for testing. The corresponding analogue sequences were
also divided into two equally sized nonoverlapping fine-tuning
and test sets. The individual models fine-tuned on subsets were
evaluated in activity-class-specific predictions using 3-fold
cross-validation. As a control, the pre-trained global model
was also fine-tuned and tested using these subsets. Therefore,
for each activity class, the four subsets of SARMs with varying
substitution sites were combined into a single general fine-
tuning test set. This setup ensured that the same test data were
used for evaluating the global and individual models, thereby
providing a direct comparison of their performance after fine-
tuning.

■ RESULTS AND DISCUSSION
Generative Analogue Design Concept. The analogue

design strategy from our previous study18 involved probability-
based prioritization of substituent combinations to produce
potent compounds for extending evolving AS with multiple
substitution sites. In this method, relative potency was
implicitly captured by ordering the AS according to the
increasing compound potency. Accordingly, each AS and its
corresponding sequence of substituent combinations followed
an ascending potency gradient. Given that CLM-based
probabilities of substituent combinations depended on the
preceding sequence of combinations, the design of a new
substituent combination was order-dependent, following the
potency gradient. This approach aligned the design process
with the goal of finding increasingly potent analogues, thus
bridging between generative modeling and property-based
optimization. Leveraging the input data format (sentences), a
generative model was supposed to learn conditional proba-
bilities for substituent combinations based on the potency-
ordered sequences in which they occurred. In our current
study, this approach was further extended to generate core
structure modifications within evolving AS, in addition to
substituent combinations. These core structure modifications
introduce unprecedented chemical diversity in computer-aided
lead optimization, for which the assembly of a SARM-based
consensus series provided the basis. No current QSAR-based
compound design method can introduce core structure
modifications. Chemical diversity was further increased by
facilitating replacements of the R-group combinations. This
extension aimed to further advance generative analogue design
through combined chemical modification of related core
structures and substitution patterns.
Global Models. We first assessed the performance of the

global general DeepAS 3.0 model for extending multisite
consensus AS. From potency-ordered test AS, the terminal
(last) analogue token (core-substituent combination) was
removed and predicted by ranking all 95,910 compound
(label) tokens based on log-likelihood scores. The model was
trained on consensus series from 13,683 SARMs consisting of
105,857 analogue sequences with one to three substitution
sites from 2885 activity classes, yielding a global general model.
The test set for the global model comprised 3421 SARMs with
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26,453 analogue sequences. Given the very large set of label
tokens, the model’s ability to predict correct terminal core-

substituent combinations within the top-5, top-10, and top-20
ranked tokens was determined, respectively. For 32.3, 50.3, and

Table 2. Subset-Based Predictions of the Global Model and Individual Modelsa

training sequences (%) test sequences (%)

subsets top-5 top-10 top-20 top-5 top-10 top-20

single-site 30.0 (39.4) 47.4 (58.9) 59.6 (69.6) 15.6 (21.5) 33.2 (39.3) 39.8 (51.5)
dual-site 36.1 (43.8) 53.7 (60.3) 67.7 (73.2) 23.6 (29.3) 39.9 (42.5) 48.6 (55.1)
triple-site 27.9 (30.8) 40.9 (46.2) 53.6 (59.2) 13.2 (15.9) 28.3 (34.7) 33.7 (39.6)
mixed 32.1 (40.0) 50.6 (56.7) 62.6 (65.7) 16.7 (23.0) 33.4 (36.4) 38.9 (47.1)

aFor SARM subsets with consensus AS having different number of substitution sites, the percentage of training and test sequences for which the
terminal analogue was present among top-5, -10, or -20 ranked tokens is reported for the global general model and individual general models
derived for each subset (in parentheses).

Figure 5. Performance of fine-tuned individual models. For each activity class, the performance of the fine-tuned subset-based models is
summarized. On the x-axis, top-5, -10, and -20 token rankings are separately shown for all four models, reporting the percentage of correct terminal
analogues of test sequences present in each ranking (y-axis). The mean values and standard deviations (error bars) are provided following cross-
validation. Activity classes are identified according to Table 1.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c01781
J. Chem. Inf. Model. 2024, 64, 8784−8795

8790

https://pubs.acs.org/doi/10.1021/acs.jcim.4c01781?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01781?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01781?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01781?fig=fig5&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01781?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


63.2% of the training analogue sequences, the correct terminal
analogues were contained in the top-5, top-10, and top-20
ranked tokens, respectively. Furthermore, for 19.7, 33.1, and
39.8% of the test analogue sequences, the correct terminal
analogues were found within the top-5, top-10, and top-20
tokens, respectively. As a control, a random selection of 20
label tokens yielded the correct terminal analogues for only
very small numbers of four, 10, and 20 training sequences and
two, five, and seven test sequences within the top-5, top-10,
and top-20 tokens, respectively. Considering the inherent
complexity of core-substituent pattern predictions, these
results were considered promising. Correctly predicted training
sequences within the top-5, top-10, and top-20 ranked tokens
covered 29.7, 47.6, and 58.3% of all SARM-based series,
respectively. For correctly predicted test sequences, the

corresponding numbers were 18.5, 31.7, and 35.0% of all
series, indicating broad coverage of different SAR environ-
ments captured by SARMs.

Training and test sets of the global model were then
organized into four subsets according to the number of
substitution sites in SARM-based AS, including single-site,
dual-site, triple-site, and “mixed” series (that is, combining AS
with different numbers of substitution sites). Dual-site SARMs
formed the largest subset, with a total of 8250 SARMs with
49,469 AS, followed by 3941 single-site SARMs (31,007 AS),
2585 mixed (34,616 AS), and 2328 triple-site SARMs (17,218
AS).

The performance of the global model was analyzed for each
subset, as reported in Table 2. For consensus AS from dual-site
SARMs, correctly predicted terminal analogues were contained

Figure 6. Performance of the fine-tuned global model. For each activity class, the performance of the fine-tuned global model monitored across
different subsets is summarized. The presentation is the same as in Figure 5. The mean values and standard deviations (error bars) are provided
following cross-validation. Activity classes are identified according to Table 1.
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in the top-5, top-10, and top-20 tokens for 36.1, 53.7, and
67.7% of all training sequences and 23.6, 39.9, and 48.6% of all
test sequences, respectively. For consensus AS from triple-site
SARMs, the corresponding percentages were 27.9, 40.9, and
53.6% for all training and 13.2, 28.3, and 33.7% for all test
sequences. The reduction observed for sequences from triple-
site SARMs was expected because less training data were
available than for dual-site SARMs. The prediction accuracy
for consensus AS from single-site SARMs fell between those
from dual- and triple-site SARMs. For sequences with varying
numbers of substitution sites (from mixed SARMs), the global
model predicted terminal analogues of 16.7, 33.4, and 38.9% of
all test instances within the top-5, top-10, and top-20 ranked
tokens, despite the increasing complexity of the predictions.
For comparison, we then built individual general models for

each subset based on the respective SARMs and corresponding

consensus series reported above. Sequences from single-, dual-,
triple-site, and mixed SARMs contained a total of 23,291,
36,560, 14,727, and 26,794 compound tokens, respectively.
Compared to the global model, there was a consistent increase
in the percentage of sequences with highly ranked correct
terminal analogues for the subset-based models of ∼3 to ∼12%
(with less than 10% in most cases), as also reported in Table 2.
While less training data were available for the individual
models, their prediction tasks were simpler than for the global
model, also taking into consideration that much lower numbers
of label tokens were available for the subset-based models.
However, since the consistent improvements were only
moderate, there was no substantial advantage of the subset-
based general models compared to the global general model.
The proportion of SARMs covered by the predictions was also

Figure 7. Extension of the consensus series from a triple-site SAR matrix. Shown are a CCR-modified triple-site SARM of the target
butyrylcholinesterase and the consensus series obtained by combining and potency ordering the SARM AS. Substructures from original SARM
cores that were extended in multisite cores and varying substituents are colored blue and red, respectively. The terminal analogue was predicted by
the fine-tuned subset-based model at rank 18 (log-likelihood score in parentheses). At the bottom, the top-5 ranked candidate compounds
generated by the model are shown.
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similar for the individual models and the global model (as
reported above).
Fine-Tuned Models. The individual models were then

used for fine-tuning on the activity classes in Table 1 that were
excluded from pre-training. The number of SARMs (corre-
sponding AS) used for fine-tuning and testing varied from 8 to
135 (45 to 625), depending on the activity class and subset.
For each activity class, the four subsets of consensus series
originating from SARMs with different numbers of substitution
sites were combined and then partitioned into single fine-
tuning and test sets for fine-tuning and evaluation of the global
general model. Figure 5 summarizes the results for fine-tuned
subset-based models. For seven of 10 activity classes, terminal
core-substituent combinations were found within the top-5
ranked label tokens across all subsets. For eight activity classes,
model performance was higher for the single- and dual-site
subsets than for the others. Specifically, for the single-site
subsets, an average of 2.3−24.9% of the terminal analogues
were found within the top-5 ranked tokens, 11.9−37.7% within
the top-10, and 16.9−42.7% within the top-20. For the dual-

site subsets, an average of 6.1−26.2% of the terminal analogues
were present in the top-5 ranked tokens, 11.4−39.4% in the
top-10, and 16.5−49.1% in the top-20. For the triple-site and
mixed subsets, the predictive performance was, on average,
overall lower by ∼10%. The triple-site subset model failed to
predict correct terminal analogues within the top-5 ranked
tokens for test sequences from two activity classes, and the
mixed subset model failed for test sequences from one class.
For mixed subsets, prediction accuracy was inherently limited
by the increasing complexity of label token space compared to
individual subsets and, in addition, by the sparseness of
training data for AS with three substitution sites. Nonetheless,
both the triple-site and mixed subset models also consistently
predicted terminal analogues within the top-10 ranked tokens
for all activity classes.

As a control, the global general model was also fine-tuned
using a single fine-tuning set for each activity class and
evaluated using the corresponding test set. For each activity
class, the predictive performance was separately monitored for
the four different subsets, as shown in Figure 6. Here, correct

Figure 8. Extension of a consensus series from a multisite SAR matrix. Shown is a CCR-modified multisite SARM for the target cyclooxygenase-2
and the consensus series obtained by combining and potency ordering the SARM AS. Substructures from original SARM cores that were extened in
multisite cores and varying substituents are colored blue and red, respectively. The terminal analogue was predicted by the fine-tuned subset-based
model at rank 13 (log-likelihood score in parentheses). At the bottom, the top-5 ranked candidate compounds generated by the model are shown.
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terminal analogues within the top-5 ranked label tokens were
only detected across all subsets for three of 10 activity classes,
and the predictive performance was overall lower than
observed for the fine-tuned individual models, albeit by only
small margins in several cases. Given the smaller number of
label tokens available for subset models compared to the global
model, as discussed above, the performance of the fine-tuned
global model was similar to that of subset models. However,
for fine-tuning on individual activity classes, we assign
preference to subset models in light of their more consistent
predictions of terminal analogues among the top-5 ranked label
tokens.
Extension of Consensus Series with Substituent and

Core Structure Modifications. A hallmark of the DeepAS
3.0 design approach is the ability to generate compounds with
multiple substituents as well as core structure modification,
setting it apart from its precursor, which extended AS with
invariant cores and multiple substitution sites. The additional
ability to generate core structure modifications represents a key
feature of DeepAS 3.0 methodology. This was facilitated
through the (i) CCR-based modification of core structures
from SARMs to obtain individual AS with multiple substitution
sites and (ii) generation of consensus series by combining all
multisite AS from a given SARM and potency ordering of their
analogues. Accordingly, consensus series serving as input for
generative design consisted of compounds with structurally
related yet distinct cores and varying substitution sites. In our
calculations, DeepAS 3.0 was found to consistently generate
candidate compounds with chemical modification (diversifica-
tion) of cores and substituent patterns, consistent with the
underlying design ideas. Figure 7 shows an exemplary CCR-
modified triple-site SARM and the corresponding consensus
series for which the terminal analogue was predicted at rank
18. In addition, the top-5 ranked candidate compounds are
shown, illustrating the chemical diversification potential.
Furthermore, Figure 8 shows an exemplary multisite SARM
and its consensus series, for which the terminal analogue was
predicted at rank 13. The top-5 candidate compounds also
displayed desired chemical modifications of cores and
substituents, thus reinforcing the DeepAS 3.0 approach.

■ CONCLUSIONS
In this work, we have introduced a methodology for the
extension of compound series with potent analogues
containing core structure and substituent modifications at
multiple sites. The prediction of compounds with core
structure and substituent modifications based on template
series representing potency gradients was a challenging task. By
adding the new SARM-CCR approach and data structure as a
front end to a transformer CLM, structurally related AS
organized in SARMs were combined into consensus series as
input for CLM derivation. For this purpose, the SARM
formalism was further advanced by devising a new compound
decomposition protocol to cover AS with multiple substitution
sites. Furthermore, a new CLM coding and tokenization
scheme was designed to represent core structure-substituent
combinations. We derived a global general CLM and four
other models for subsets of AS with different numbers of
substitution sites, thus simplifying the prediction task. The
global and subset-based models predicted terminal analogues
of test series at high ranks based on log-likelihood scores from
model-internal probability distributions. Overall, the predictive
performance of the global general model and the general

subset-based models was similar, demonstrating the ability of
the bidirectional transformer to learn the chemical space of
compound series with extensive structural variations. Fine-
tuning of models on AS from activity classes excluded from
pre-training also yielded promising predictions, with a confined
but consistent performance increase for the subset-based
models over the global fine-tuned model. Test calculations
using the general and fine-tuned models yielded a wealth of
candidate compounds and confirmed the ability of these
models to introduce a variety of core structure and substituent
modifications and further chemically diversify input series. In
light of our findings, the DeepAS 3.0 approach further
advances the extension of AS with invariant cores by
introducing core modifications in AS with multiple substitution
sites and should have considerable potential for practical
applications in medicinal chemistry and drug design.
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Abstract   
Deep learning models adapted from natural language processing offer new opportunities for the prediction 
of active compounds via machine translation of sequential molecular data representations. For example, chemi-
cal language models are often derived for compound string transformation. Moreover, given the principal ver-
satility of language models for translating different types of textual representations, off-the-beaten-path design 
tasks might be explored. In this work, we have investigated generative design of active compounds with desired 
potency from target sequence embeddings, representing a rather provoking prediction task. Therefore, a dual-
component conditional language model was designed for learning from multimodal data. It comprised a pro-
tein language model component for generating target sequence embeddings and a conditional transformer 
for predicting new active compounds with desired potency. To this end, the designated “biochemical” language 
model was trained to learn mappings of combined protein sequence and compound potency value embeddings 
to corresponding compounds, fine-tuned on individual activity classes not encountered during model deriva-
tion, and evaluated on compound test sets that were structurally distinct from training sets. The biochemical 
language model correctly reproduced known compounds with different potency for all activity classes, providing 
proof-of-concept for the approach. Furthermore, the conditional model consistently reproduced larger numbers 
of known compounds as well as more potent compounds than an unconditional model, revealing a substantial 
effect of potency conditioning. The biochemical language model also generated structurally diverse candidate 
compounds departing from both fine-tuning and test compounds. Overall, generative compound design based 
on potency value-conditioned target sequence embeddings yielded promising results, rendering the approach 
attractive for further exploration and practical applications.

Scientific contribution   
The approach introduced herein combines protein language model and chemical language model components, 
representing an advanced architecture, and is the first methodology for predicting compounds with desired potency 
from conditioned protein sequence data.
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Introduction
In drug discovery, compound optimization requires the 
comprehensive evaluation of multiple physicochemical 
and in  vivo properties such as affinity, hydrophobicity, 
solubility, toxicity, pharmacogenetics, and pharmacody-
namics [1]. Experimental efforts to assess and optimize 
these molecular properties are supported by compu-
tational approaches [2], with quantitative structure–
activity relationship (QSAR) analysis being a classical 
methodology for compound affinity prediction [3, 4], 
mostly focusing on congeneric compounds and progres-
sion of hit-to-lead or lead series.

In recent years, machine learning (ML) including deep 
learning (DL) has increasingly been considered for activ-
ity and property predictions in drug discovery [5], leading 
to the application of various neural network (NN) meth-
ods such as convolutional NN (CNN) [6], recurrent neu-
ral NN (RNN) [7], graph convolutional network (GCN) 
[8], or message passing NN (MPNN) [9]. DL methods 
including those employed for property predictions gen-
erally benefit from the availability of large data sets for 
learning the multitude of internal weights they require. 
However, such data sets are for the most part unavail-
able in early-phase drug discovery where data sparseness 
often hinders the use of DL models and limits the accu-
racy of their predictions [10]. In addition, the assessment 
of ML methods for quantitative compound potency pre-
dictions in typical benchmark settings poses considerable 
challenges. Notably, benchmark potency predictions by 
ML/DL models of varying complexity and randomized 
predictions are often only differentiated by small error 
margins [11], thus complicating an unambiguous assess-
ment of relative method performance [11]. As a conse-
quence of data sparseness and intrinsic limitations in 
method evaluation and comparison, there currently are 
no generally applicable criteria or guidelines available for 
prioritizing ML approaches for quantitative molecular 
property predictions in drug discovery.

Property predictions can also be combined with gen-
erative modeling of new compounds [12], which pro-
vides a conceptual alternative to conventional property 
prediction strategies. For example, to this end, we have 
developed specialized transformer models, as further 
detailed below. In computer science, transformers origi-
nated from the field of natural language processing where 
they were used for the conversion of an input sequence of 
characters into an output sequence with the aid of self-
attention (importance) mechanisms [13]. Transformer 
architectures are increasingly employed in other fields for 
various machine translation tasks. A transformer-based 
compound design concept investigated in our labora-
tory was semi-quantitative in nature. It aimed at deriv-
ing models for predicting potent compounds for targets 

of interest without specifying numerical potency values 
across wide ranges, thereby circumventing some of the 
obstacles associated with benchmark compound potency 
predictions [11]. Previously, we derived transformer-
based chemical language models (CLMs) for molecular 
string-to-string conversion conditioned on potency dif-
ferences between pairs of structural analogues [14, 15]. 
So-called conditional transformer models not only learn 
conditional probabilities for character sequence trans-
lation, but also for other context-dependent rules (such 
as molecular property constraints). Our rules included 
potency difference thresholds required for the forma-
tion of activity cliffs (i.e., analogue pairs having largest 
potency differences in compound activity classes) [14] or 
-in a generalized form- desired potency difference thresh-
olds structural analogues [15]. In the latter case, trans-
former models were trained based on large numbers of 
analogue pairs with greatly varying potency differences. 
In both instances, conditional transformers consistently 
reproduced highly potent compounds from activity cliffs 
or other compound pairs for a variety of activity classes, 
thus providing proof-of-principle, and generated other 
structurally diverse candidate compounds [14, 15]. On 
the basis of these findings, we extended this transformer 
architecture for generative modeling of potent com-
pounds by a meta-learning framework for modeling in 
low compound data regimes [16].

In addition to learning compound-to-compound map-
pings for predicting new active or highly potent com-
pounds, various attempts have been made to establish 
direct links between biological targets and chemical enti-
ties with DL models using representations combining 
protein sequence and compound information [17–22]. 
These models were often derived to distinguish true 
target-ligand complexes from false (randomly assem-
bled) complexes. Potential applications of such models 
include target validation or compound repurposing. Fur-
thermore, in recent studies, transformer-based language 
models have been employed to learn mappings of protein 
sequences to compounds [22–25]. In the following, mod-
els using protein sequence data as input are termed pro-
tein language models (PLMs), regardless of the nature of 
the output sequences. Sequence-to-compound modeling 
aimed to revitalize the concept of sequence-based com-
pound design [22] that was investigated during the early 
days of drug design but was then for long out of fashion 
in drug discovery settings, for scientific reasons. Notably, 
only limited numbers of residues in protein sequences 
are typically implicated in ligand binding and only high 
global sequence similarity indicates similar ligand bind-
ing characteristics of targets. Hence, designing active 
compounds based on sequence data is challenging and 
partly controversial, perhaps not even possible without 
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additional knowledge, and difficult to pursue using stand-
ard ML methods. However, the advent of PLMs has 
made it possible to have a fresh look at this scientifi-
cally provoking design task. For example, a transformer 
was adapted to associate the primary structures of tar-
get proteins with known active compounds and predict 
new ones [23]. Compounds were represented as Simpli-
fied Molecular Input Line Entry System (SMILES) strings 
[26], a mainstay textual representation. In another study, 
an Lmser network-based transformer variant incorporat-
ing multi-head cross attention blocks was developed to 
map complete protein sequences to active compounds 
[24]. The encoder processed information from the pro-
tein sequence and the resulting latent space was decoded 
into compound SMILES. In addition, compound genera-
tion was combined with Monte Carlo tree search [24]. In 
both of these studies, conventional protein–ligand dock-
ing scores were used to guide compound prioritization. 
In a different investigation, a transformer was derived 
to associate extended sequence motifs of ligand binding 
sites with active compounds [25]. In this case, the abil-
ity of the model to exactly reproduce ATP site-directed 
inhibitors of different kinases not included in model 
training was used as a proof-of-concept criterion (instead 
of hypothetical scoring). Notably, the definition of 
sequence motifs directly implicated in compound bind-
ing requires prior (structural) knowledge.

Following principles from natural language process-
ing, PLMs embed long protein sequences as sentences 
of characters in which one or more residues form words 
[27, 28]. The resulting sequence embeddings are thought 
to implicitly capture much information concerning struc-
tural and functional characteristics of proteins, rendering 
these embeddings attractive for a variety of applications 
[29, 30].

Given our previous studies of chemical language mod-
els for predicting potent compounds and the applications 

of PLMs discussed above, we have been interested in 
exploring the possibility to combining these approaches 
and investigating whether compounds with pre-defined 
potency could also be designed using a conditional trans-
former architecture and protein sequence data. To this 
end, we have developed and assessed a new so-called bio-
chemical language model for learning from multimodal 
data, as presented in the following.

Methods
Targets, compounds, and activity data
Compounds with high-confidence activity data were 
selected from ChEMBL (release 33) [31]. Only com-
pounds engaged in direct interactions (assay relationship 
type: "D") with human targets at the highest assay con-
fidence level (assay confidence score 9) were considered. 
Potency measurements were restricted to numerically 
specified equilibrium constants (Ki values) and recorded 
as negative logarithmic pKi values. In cases where multi-
ple measurements were available for the same compound, 
the geometric mean was calculated as the final potency 
annotation, contingent on all values falling within the 
same order of magnitude; otherwise, the compound was 
excluded from further consideration. Qualifying com-
pounds were divided into target-based activity classes. 
Only targets with a maximal (monomer) sequence length 
of 4000 residues were considered. On the basis of these 
data curation criteria, 1575 activity classes were obtained, 
comprising a total of 87,839 unique compounds. For each 
activity class, the protein sequence of the target was 
extracted in FASTA format from UniProt [32] using an 
in-house script. Compounds were represented as canoni-
cal SMILES strings generated using RDKit [33]. From 
the large activity class pool, 10 classes with at least close 
to 400 compounds were randomly selected as test cases 
for generative design (Table  1). These activity classes 

Table 1  Activity classes for model evaluation

For each of 10 activity classes, the number of compounds, ChEMBL target ID, and target name are reported

ChEMBL ID Target name Compounds

204 Thrombin 454

218 Cannabinoid CB1 receptor 1118

234 Dopamine D3 receptor 1529

244 Coagulation factor X 702

251 Adenosine A2a receptor 1825

1862 Tyrosine-protein kinase ABL 499

4005 PI3-kinase p110-alpha subunit 576

5113 Orexin receptor 1 1086

1,075,104 Leucine-rich repeat serine/threonine-protein kinase 2 397

1,908,389 Mitogen-activated protein kinase kinase kinase 12 404
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included ligands G protein-coupled receptors and inhibi-
tors of different enzymes.

Model architecture
For our prediction task, we devised a new multimodal 
conditional compound generator combining two lan-
guage model components. Its characteristic feature is 
the design of compounds with desired potency based 
on protein sequence information conditioned on com-
pound potency values. To our knowledge, this scheme 
represents a previously unconsidered design concept 
and, in addition, the first instance of a language model 
conditioned on molecular context rules from chemistry 
applied to biological sequences (thus also incorporating 
multimodality). The model architecture is schematically 
depicted in Fig. 1. A pre-trained PLM generating protein 
sequence embeddings (component 1) was combined with 
a conditional transformer (component 2) challenged to 
learn mappings of combined protein and potency values 
embeddings to compounds (SMILES strings) with cor-
responding activity against a given target. Accordingly, 
the transformer should predict compounds from target 
sequence embeddings having a desired potency level. 

Since the generator bridges between protein sequence 
information with compound activity constraints and 
chemical structure, it is termed a “multimodal biochemi-
cal language model”. In the following, the two model 
components are described in more detail.

Protein language model for generating embeddings
Sequence embeddings should capture distributions of 
vast numbers of amino acid sequences of proteins, resi-
due frequencies, and positional dependencies. Hence, 
they should implicitly encode characteristic features 
related to biophysical properties, structure, and func-
tion. For our study, we adapted as model component 1 
the pre-trained ProtT5XLUniref50 PLM from ProtTrans 
[29] with default dimensionality of 1024. ProtTrans PLMs 
were originally derived based on ultra-large sequence 
data sets from UniRef [34] and BFD [35], comprising 
up to 2122 million proteins and 393 billion amino acids. 
Each protein sequence was initially tokenized and then 
subjected to positional encoding. The resulting vector 
was processed to generate context-aware embeddings 
for each input token (amino acid). These embeddings, 
extracted from the last hidden state of a PLM’s attention 

Fig. 1  Architecture of the biochemical language model
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stack, were concatenated and pooled along the length 
dimension. This pooling approach generated a fixed-size 
embedding, regardless of the input length [29]. ProtTrans 
embeddings are considered one of the pioneering devel-
opments in the field. In our work, ProtT5XLUniref50 
protein embeddings of constant dimensionality were gen-
erated for each target and concatenated with conditional 
token embeddings representing compound potency val-
ues (see below). The resulting combined embedding vec-
tors provided the input for the encoder of the conditional 
transformer (model component 2). The ProtTrans PLM 
was only used for calculating protein sequence embed-
dings and not involved in model derivation, optimization, 
or fine-tuning.

Conditional transformer
The architecture of the conditional transformer was 
adapted from our previous study predicting highly 
potent compounds from weakly potent templates [15] 
and modified for generative design of compounds based 
on sequence data. The transformer was implemented 
using PyTorch [36]. It consisted of three encoder and 
three decoder modules with self-attention mechanism. 
Each encoder module included a multi-head self-atten-
tion sub-layer and a fully connected feed-forward neu-
ral  network sub-layer. The encoder converted the input 
embedding into a context vector in its final hidden state, 
serving as input for the decoder. Each decoder contained 
two multi-head self-attention sub-layers and a feed-for-
ward sub-layer. It transformed the context vector into a 
sequence of tokens. The masked self-attention sublayer 
processed the output of the preceding attention sub-layer 
to prevent translation errors. Compounds were predicted 
from a given protein sequence embedding conditioned 
on desired potency via the following triple:

(Protein sequence embedding, Potency 
embedding) → (Compound).

For a given protein sequence, representation vectors of 
the sequence embedding were initially computed using 
the ProtTrans PLM. Subsequently, the output protein 
embedding was concatenated with the potency embed-
ding, forming combined representations as input for 
transformer encoder that were converted into a latent 
representation. The decoder then iteratively gener-
ated an output SMILES sequence until the stop token 
was obtained. Multinomial sampling was employed to 
increase output diversity during decoding (hence, in this 
case, the chemical diversity of candidate compounds). 
Conditional probabilities for SMILES tokens were 
derived by the Softmax function of the decoder.

The conditional transformer component was trained on 
a large number of target-compound triples (see below). 
The model was then applied to sample candidate (output) 

compounds for (Protein sequence embedding, Potency 
embedding) input instances.

Tokenization
For model training, protein sequences, compounds, 
and potency values must be tokenized. Specifically, pro-
tein sequences were represented as standard uppercase 
residue symbols and tokenized using a single space. 
The vocabulary consisted of 21 tokens including the 20 
natural amino acids plus “X” for rare amino acids. Com-
pounds were encoded as canonical SMILES strings. 
Atoms were represented as single-character tokens (e.g., 
"C" or "N"), two-character tokens (e.g., "Cl" or "Br"), 
or tokens enclosed in brackets (e.g., "[nH]" or "[O-]"). 
Potency values were tokenized based on potency range 
binning [15, 16, 37]. Therefore, the globally observed 
potency range of [4.00, 12.52] pKi units was divided into 
852 bins with a constant width of 0.01. This granularity 
(resolution) captures the limits of experimental potency 
annotations. Each bin was encoded as a single token, and 
each potency value was assigned to the corresponding 
token. Additionally, two special tokens, i.e., "start" and 
"end," were defined to mark the beginning and end point 
of a sequence, respectively. This tokenization scheme was 
introduced previously for the successful generation of 
potent compounds [15].

Model derivation and evaluation
The conditional transformer variant was trained using 
the Adam optimizer with a learning rate of 1e-5 and 1024 
dimensions for the hidden states, thus precisely matching 
the settings of the ProtTrans PLM to prevent information 
loss through the connection. A batch size of 1 was chosen 
to place the longest protein sequence into GPU memory, 
and a gradient accumulation scheme was employed to 
achieve an effective batch size of 64. Training was carried 
out on a single NVIDIA Tesla A40 (48G) GPU. Through-
out the training process, the cross-entropy loss between 
the ground truth and the output sequence was mini-
mized. The model was trained for at least 50 epochs and 
at the end of each epoch, a checkpoint was saved. The 
final model was selected based on minimal cross-entropy 
loss. The training procedure included pre-training and 
fine-tuning.

The data set for model pre-training consisted of 
212,004 target-compound pairs from 1565 activity 
classes. For each target-compound pair, triples were gen-
erated, as described above:

(Protein sequence embedding, Potency 
embedding) → (Compound).

For each pre-training and fine-tuning compound, its 
experimental potency value was embedded.
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As a control, an unconditional transformer with the 
same architecture but without potency information was 
also derived from all compounds-target pairs:

(Protein sequence embedding) → (Compound).
For model fine-tuning and evaluation, each of the 10 

activity classes in Table  1 was separately used. Impor-
tantly, model fine-tuning and testing were carried out 
on structurally distinct activity class subsets. Therefore, 
for each class, a systematic search for analogue series 
(AS) was conducted using the compound-core relation-
ship (CCR) algorithm [38]. This method employs an 
extended modified matched molecular pair (MMP) frag-
mentation procedure [39] based on retrosynthetic rules 
[40] to systematically identify AS with single or multiple 
(up to five) substitution sites. The core structure of an 
AS was required to contain at least twice the number of 
non-hydrogen atoms of the combined substituents [38]. 
AS obtained for each activity class were then randomly 
divided into 50% fine-tuning and 50% test instances, 
ensuring no overlap in core structures between these 
sets. Consequently, the fine-tuning and test sets were 
structurally distinct. Figure 2 shows two exemplary AS.

For each test compound, a (Protein sequence embed-
ding, Potency embedding) input instance was generated 
using its experimental potency value. Then, maximally 
100 valid compounds (valid SMILES) were sampled, and 
these candidates were compared to all test compounds. 
The model’s capacity to exactly reproduce known com-
pounds was determined as the most stringent criterion 
for model validation. Additionally, for each activity class, 
1-nearest neighbor (1-NN) similarity was calculated to 
compare the generated candidate compound structures 
with known test compounds. 1-NN similarity was quan-
tified using the Tanimoto coefficient (Tc) [41], calculated 
based on 2048-bit Morgan fingerprints [42] with a bond 
radius of 3.

Results and discussion
Study concept
Our study had four primary objectives. (1) Conceptu-
alize target-based compound generation as a machine 
translation task from a “protein language” to a “chemi-
cal language”. Therefore, protein representation learn-
ing was employed through the incorporation of a 
PLM. (2) Investigate if compound design across differ-
ent activity classes could be facilitated on the basis of 
sequence-based protein representations (embeddings), 
without reliance on prior knowledge of ligand binding 
sites (for example, by defining characteristics sequence 
motifs of binding regions). (3) Evaluate the effects of 
potency value conditioning on generative compound 
design. (4) Assess model performance in a most rigor-
ous manner. To address the first two objectives, which 
were central to our study, we designed a new dual-
component conditional biochemical language model 
to process data of different modality. The model was 
challenged to learn mappings of protein embeddings 
conditioned on molecular potency values to active 
compounds. To address the third objective, we repeated 
the calculations using a corresponding unconditional 
model without context-dependent potency condition-
ing. To address the fourth objective, exact reproduction 
of known active compounds not encountered during 
training was set as the most stringent proof-of-concept 
criterion for the ability of the biochemical language 
model to correctly predict compounds with desired 
potency from protein sequence data. To this end, 
we ensured that fine-tuning and test sets for activity 
classes were structurally distinct by systematically iden-
tifying AS and partitioning them into non-overlapping 
subsets for fine-tuning and testing, respectively. There 
also was no compound overlap between activity classes.

Fig. 2  Exemplary analogue series. On the left and right, two distinct AS are shown consisting of six compounds each. In the center, the common 
core structure is displayed and all substitution sites are indicated. In the analogues, distinguishing substituents are colored red
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Reproducibility of known compounds
The results of the systematic search for AS across 10 
activity classes are presented in Table  2. The number 
of AS per activity class varied from 64 to 312 (“single-
ton” compounds not participating in any AS were dis-
regarded). AS-based partitioning resulted in 74 to 619 
compounds for fine-tuning and 318 to 1206 compounds 
for model evaluation, depending on the activity classes. 
In each case, AS were evenly divided (50/50%) and the 
subset with the smaller and larger total number of com-
pounds was used for fine-tuning and testing, respectively. 
For each test instance, maximally 100 candidate com-
pounds were sampled, canonicalized, and compared to 
compounds in the test set to identify exactly reproduced 
compounds. As reported in Table 2, both the conditional 
model and the unconditional model produced a sub-
stantial number of candidate compounds on the basis 
of target sequence embeddings. Specifically, depending 
on the activity class, the conditional model and uncon-
ditional model produced from 1789 to 7880 and from 
769 to 4206 candidate compounds, respectively. As also 
reported in Table 2 (last two columns on the right), both 
the conditional and the unconditional model correctly 
reproduced multiple test compounds for each activity 
class; an encouraging finding. For the conditional model, 
the number of reproduced known compounds ranged 
from 10 to 115, with on average 43 per class, while the 
unconditional model generated between 3 and 57 known 
compounds, with on average 16 per class. Thus, the con-
ditional model consistently reproduced ~ 2- to ~ 4-times 
more compounds per class than the unconditional model. 
By design, exact reproduction of test compounds ensured 
that these compounds had the desired potency value. 
Hence, these findings revealed a clear effect of compound 
potency conditioning on multimodal learning. Figure  3 
shows exemplary predictions.

In Table  2,  for each of 10 activity classes (ChEMBL 
target ID according to Table 1), the number of AS, num-
ber of compounds from AS for fine-tuning and testing, 
number of compounds produced by the conditional 
and unconditional model, and number of known test 
compounds exactly reproduced by the conditional and 
unconditional model are reported.

As a control, we also used the conditional model with-
out fine-tuning to predict the test sets of three exem-
plary activity classes (204, 218, and 234). In these cases, 
the model sampled a total of 3082, 4328, and 8932 valid 
candidate compounds, respectively. However, no test 
compounds were reproduced in these calculations, as 
anticipated, thus confirming an essential role of class-
specific fine-tuning.

Potency value conditioning
In Fig. 3, exemplary pairs of reproduced compounds and 
their most similar fine-tuning compounds are shown for 
each activity class. In each pair, the reproduced com-
pound is displayed on the right side of the arrow, and its 
most similar fine-tuning compound is on the left side. In 
addition, for each pair, the 1-NN similarity is reported, 
ranging from 0.52 to 0.76 depending on the activity 
classes. These examples illustrate the recurrent successful 
reproduction of test compounds from combined target 
sequence and compound potency embeddings. Moreo-
ver, the comparison of most similar fine-tuning and test 
compounds also indicated that test compounds correctly 
reproduced by the model had at least comparable, but 
often higher potency than the corresponding fine-tuning 
compounds. Notably, higher potency of predicted com-
pared to fine-tuning compounds was not encoded as a 
conditional constraint. In Fig.  4, boxplots compare the 
potency value distributions of fine-tuning and test com-
pounds from all activity classes with the potency value 

Table 2  Composition of fine-tuning and test sets and reproducibility of known active compounds

ChEMBL ID Number of AS Fine-tuning 
compounds

Test compounds Sampled compounds Reproduced compounds

Conditional Unconditional Conditional Unconditional

204 130 134 320 2531 1181 16 4

218 250 285 833 2905 1730 75 29

234 213 499 1030 7880 4021 91 21

244 92 188 514 5163 1990 34 11

251 312 619 1206 7077 4206 115 57

1862 64 100 399 1789 894 21 7

4005 125 149 427 3592 2135 30 13

5113 155 288 798 3869 2021 25 10

1,075,104 114 74 323 1940 769 10 3

1,908,389 78 86 318 2324 1092 13 3
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distributions of test compounds correctly predicted 
by the conditional transformer and the unconditional 
model.

The comparison showed that potency value distribu-
tions and the resulting median values of fine-tuning and 
test compounds differed depending on the activity class, 
as one would expect. In some instances, the median 
potency of test compounds was higher than of fine-tun-
ing compounds and vice versa. However, for most activ-
ity classes, the potency distributions of test compounds 
correctly predicted by the conditional model closely 
matched the potency distributions of all test compounds, 
consistent with the desired effects of potency condition-
ing. By contrast, the unconditional model mostly repro-
duced smaller numbers of compounds with lower median 

potency than those correctly predicted by the conditional 
model, thus revealing a tendency to under-predict com-
pound potency values in the absence of potency condi-
tioning. Notably,  the absence of statistical significance 
of potency differences between compounds reproduced 
with the conditional and unconditional model was mostly 
a consequence of the imbalanced sample sizes, including 
very small samples for the unconditional model (Table 2).

Similarity analysis
In addition to identifying and characterizing correctly 
reproduced test compounds, the 1-NN similarity of 
all sampled candidate compounds to test compounds 
was determined. Importantly, for rigorously establish-
ing proof-of-concept of the approach, it was essential to 

Fig. 3  Exemplary predictions. For each activity class, exemplary test compounds are shown (right of the arrow) that were exactly reproduced 
using the conditional model together with the most similar fine-tuning compounds (left). For each test/fine-tuning compound pair, the Tanimoto 
similarity value is reported. ChEMBL IDs on arrows identify activity classes according to Table 1



Page 9 of 13Chen and Bajorath ﻿Journal of Cheminformatics           (2024) 16:55 	

confirm the ability of the biochemical language model 
to exactly reproduce known active compounds. How-
ever, for the practical relevance of the model and its 
design capacity, generalization potential should also 
be assessed. Ideally, a model with generalization ability 
should diversify candidate compounds (i.e., structurally 
abstract from fine-tuning and test compounds). Hence, 
the generation of candidate compounds with increasing 
structural diversity compared to known compounds also 
represented an important evaluation criterion. Therefore, 
we first systematically compared newly generated can-
didate compounds to test compounds. Figure  5 shows 
the distribution of 1-NN similarities of predicted can-
didate compounds compared to test compounds across 
the 10 activity classes. The predicted compounds con-
sistently exhibited a variety of 1-NN similarities to test 
compounds, ranging from identical (or nearly identical) 
structures (100% 1-NN similarity) to distinct structures 
(~ 10% similarity). The most frequently observed 1-NN 
similarities ranged from ~ 30% to ~ 60%, depending on 
the activity class. These findings underscored the capabil-
ity of the biochemical language model to not only repro-
duce known compounds but also generate structurally 
diverse candidate compounds.

Secondly, we also examined the distribution of 1-NN 
similarities for reproduced test compounds compared to 
fine-tuning compounds across the 10 activity classes. The 

reproduced compounds also exhibited a wide range of 
1-NN similarities compared to fine-tuning compounds, 
from (~ 18%, ~ 56%) to (~ 40%, ~ 70%) across all activ-
ity classes. Here, the most frequently observed 1-NN 
similarities varied from ~ 25% to ~ 65%, depending on 
the activity class. Hence, these findings also confirmed 
the ability of the approach to abstract from fine-tuning 
compounds.

Synthetic accessibility
While exact reproduction of known test compounds 
represents the ultimate criterion for establishing proof-
of-concept for the design approach, newly generated can-
didate compounds also provide a resource for synthesis. 
Therefore, we have compared the synthetic accessibility 
(SA) of all sampled candidate compounds to the existing 
fine-tuning compounds using a well-established scoring 
scheme [43]. The results in Fig. 6 show that the SA score 
distributions for fine-tuning and candidate compounds 
sampled with both the conditional and unconditional 
model were nearly indistinguishable, thus indicating high 
SA for the newly generated candidate compounds.

Conclusion
In this work, we have explored a new concept for pre-
dicting compounds with activity against given targets 
and desired potency from sequence embeddings with 

Fig. 4  Potency value distributions of different compound subsets. For each activity class, boxplots compare logarithmic potency value distributions 
for all fine-tuning and test compounds and for test compounds correctly predicted by the conditional transformer and the unconditional model. To 
assess the statistical significance of differences between potency value distributions, independent-samples t-tests were conducted: 0.05 < p ≤ 1.00 
(ns), 0.01 < p ≤ 0.05 (*), 0.001 < p ≤ 0.01 (**), 0.0001 < p ≤ 0.001 (***), p ≤ 0.0001 (****). Stars denote increasing levels of statistical significance and “ns” 
stands for “not significant”
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Fig. 5  Distribution of 1-nearest neighbor similarities. For each activity class, blue and orange value distributions show 1-NN similarities of sampled 
candidate compounds vs. test compounds and correctly reproduced compounds vs. fine-tuning compounds, respectively
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potency conditioning. For this purpose, a dual-compo-
nent biochemical language model was designed for mul-
timodal learning. The model included a pre-trained PLM 
(component 1) for protein representation learning and a 
conditional transformer (component 2) operating on the 
output of the PLM. The transformer was trained to learn 
mappings of target sequence embeddings conditioned 
on potency values to active compounds. Accordingly, the 
model input for generative design was heterogeneous, 
combining a sequence embedding with a molecular prop-
erty constraint. The model was individually fine-tuned on 
10 different target-based activity classes not included in 
model derivation. Model fine-tuning and evaluation were 
carried out on structurally distinct compound subsets 
generated by comprehensive AS identification and AS-
based compound splitting. As the most rigorous proof-
of-concept criterion for the approach, the ability of the 
biochemical language model to exactly reproduce known 
active compounds not encountered during training was 
determined. By design, exactly reproduced compounds 
had desired potency. The biochemical language model 
consistently reproduced varying numbers of known 
active compounds for all activity classes; an encourag-
ing finding. Moreover, compared to an unconditional 
model used as a control, the conditional transformer 
consistently reproduced larger numbers of known com-
pounds, thus revealing a clear positive effect of potency 
value conditioning on successful predictions. In addi-
tion, for most activity classes, the potency distribution 
of correctly reproduced compounds closely matched the 
potency distribution of all test compounds, consistent 
with reproducing compounds at different potency levels. 
Subsequent molecular similarity analysis showed that the 
biochemical language model was also capable of generat-
ing structurally diverse candidate compounds departing 

from both fine-tuning and test compounds; an indicator 
of model generalization potential.

Generative modeling compounds with desired potency 
from compound potency-conditioned target sequence 
embeddings was an unusual design task that might be 
expected to fail, for the scientific reasons discussed, and 
that could not possibly be addressed using standard ML 
approaches. Rather, for this challenging task, a language 
model was required to learn mappings of conditioned 
sequence data to active compounds, providing an exam-
ple for a new potential opportunity provided by lan-
guage models in compound design. Assessing whether 
or not such models might be predictive required a well-
defined system set-up and rigorous evaluation criteria. 
The detected ability of the two-component biochemical 
language model to exactly reproduce compounds with 
pre-defined potency was not expected initially. Encour-
agingly, however, exact reproduction of test compounds 
was consistently observed across different activity classes, 
establishing proof-of-concept for such predictions.

Taken together, the results of our study suggest that 
compound design based on conditioned target sequence 
embeddings using language models merits further con-
sideration. Currently, origins of correct compound repro-
duction remain model-internal and are non-transparent. 
Therefore, subsequent studies will be devised to explore 
the learning characteristics of the biochemical language 
model, rationalize correct predictions, and identify 
their input determinants. Furthermore, having estab-
lished proof-of-principle at the methodological level, 
the approach will need to be prospectively assessed. For 
practical applications, it is straightforward, for example, 
to direct generative design towards highly potent com-
pounds by setting corresponding potency thresholds. 
Furthermore, other context-dependent rules (such as 
different molecular property constraints) can be investi-
gated in conjunction with target sequence embeddings. 
Moreover, the demonstrated ability of the biochemical 
language model to generate structurally diverse can-
didate compounds can also be explored in prospective 
applications  by tesing new candidates. Therefore, given 
that the methodology is made freely available as a part 
of this study, there are ample opportunities for further 
research and applications.
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