
Contemporary File System
Forensic Analysis

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Jan-Niclas Hilgert
aus

Bonn

Bonn, 2025

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

Gutachter/Betreuer: Prof. Dr. Peter Martini
Universität Bonn

Gutachter: Prof Dr. Elmar Padilla
Hochschule Bonn-Rhein-Sieg

Tag der Promotion: 17. Juni 2025

Erscheinungsjahr: 2025

Abstract

This work bridges the gap between traditional and contemporary file system forensic analysis

by addressing the limitations of Brian Carrier’s foundational 2005 workflow for file system

analysis [Car05]. While Carrier’s model has remained the de facto standard for nearly two

decades, it has neither been updated nor its applicability evaluated for file systems commonly

used today, such as ZFS, BTRFS, and MooseFS. These modern file systems introduce complex-

ities — such as pooled storage, the concept of stacked file systems, and network-enhanced

functionality — that are beyond the scope of the original workflow and forensic tools like The

Sleuth Kit.

To address these shortcomings, this research proposes an extended forensic workflow by

introducing two new analysis steps: pool analysis and stacked file system analysis. Pool

analysis enables the reconstruction and forensic examination of pooled storage file systems,

while stacked file system analysis provides a framework for analyzing file systems that store

their data on an underlying file system.

Furthermore, this work explores the integration of network analysis to enhance file system

forensics, leveraging network protocols like SMB to reconstruct file systems and user activities

from network traffic. Tools such as pcapFS and SMB Command Fingerprinting (SCF) are

developed and implemented, offering novel capabilities to recover historical file versions or

reconstruct user interactions.

Our findings establish the limitations of Carrier’s workflow in the context of contemporary

file system analysis and demonstrate the efficacy of our extended model. Thus, our work

equips digital forensic analysts with the methods and tools necessary to address contemporary

file systems and their challenges as well as leverage the unique features they provide.

i

Contents

1. Publications 1

2. Introduction 2

2.1. Pooled Storage File Systems . 7
2.2. Stacked File Systems . 12
2.3. Network-enhanced File System Analysis . 15

3. Accompanying Text to Hilgert, Lambertz & Plohmann (2017) 20

4. Accompanying Text to Hilgert, Lambertz & Yang (2018) 23

5. Accompanying Text to Hilgert, Lambertz & Baier (2024) 26

6. Accompanying Text to Hilgert, Lambertz &Mahr (2024) 30

7. Conclusion 33

A. Appendix 40

References 79

List of Figures 80

ii

1 Publications

The research presented in this thesis was published in the following peer-reviewed conference

proceedings:

■ Jan-Niclas Hilgert, Martin Lambertz, and Daniel Plohmann. Extending The Sleuth

Kit and its underlying model for pooled storage file system forensic analysis. In

Proceedings of the Seventeenth Annual DFRWS USA, 2017. Best Paper Award [HLP17].
DOI: 10.1016/j.diin.2017.06.003

■ Jan-Niclas Hilgert, Martin Lambertz, and Shujian Yang. Forensic analysis of multiple

device BTRFS configurations using The Sleuth Kit. In Proceedings of the Eighteenth

Annual DFRWS USA, 2018. Best Paper Award [HLY18]. DOI: 10.1016/j.diin.2018.04.020

■ Jan-Niclas Hilgert, Martin Lambertz, and Daniel Baier. Forensic implications of stacked

file systems. In Selected Papers from the 11th Annual Digital Forensics Research Conference

Europe, 2024. [HLB24]. DOI: 10.1016/j.fsidi.2023.301678

■ Jan-Niclas Hilgert, Axel Mahr, and Martin Lambertz. Mount SMB.pcap: Recon-

structing file systems and file operations from network traffic. In Selected Papers

from the 4th Annual Digital Forensics Research Conference APAC, 2024. [HML24]. DOI:

10.1016/j.fsidi.2024.301807

1

https://doi.org/10.1016/j.diin.2017.06.003
https://doi.org/10.1016/j.diin.2018.04.020
https://doi.org/10.1016/j.fsidi.2023.301678
https://doi.org/10.1016/j.fsidi.2024.301807

2 Introduction

During the inaugural Digital Forensic Research Conference (DFRWS) in 2001 the concept of

digital forensic science was defined as "the use of scientifically derived and proven methods toward

the preservation, collection, validation, identification, analysis, interpretation, documentation,

and presentation of digital evidence derived from digital sources for the purpose of facilitating or

furthering the reconstruction of events found to be criminal, or helping to anticipate unauthorized

actions shown to be disruptive to planned operations" [Pal+01]. This definition highlights the

wide range of tasks in digital forensics, which also vary depending on the type of evidence

examined. Consequently, digital forensics is divided into specialized subdomains dedicated to

specific types of evidence, such as storage, memory, and network traffic. Storage forensics, for

example, focuses on analyzing data stored on devices such as HDDs, SSDs, and USB drives.

This area of digital forensics encompasses essential tasks such as device acquisition, as well as

the crucial process of data extraction and recovery from these storage devices. The analysis

of file systems, which are engineered to efficiently manage read and write operations on

persistent storage, is a critical component of this process.

One possibility for file system analysis is to simply mount the file system using existing

implementations, such as those provided by an operating system. This method allows an

analyst to access a logical version of the file system, which represents its most current state

and consequently overlooks elements such as deleted files or unallocated space. To overcome

this limitation and achieve a more comprehensive and forensically sound analysis, a more

detailed approach to file system examination is necessary. In 2005, Brian Carrier established

foundational work in this area with his book "File System Forensic Analysis" and defined the

following fundamental goals for file system analysis [Car05]:

■ Depicting the current state of a file system

■ Implementing methods for the recovery of deleted files

■ Viewing of specific data units within the file system

■ Extraction of metadata, e.g. timestamps

2

2. Introduction

■ Detection of unallocated areas for further analysis

■ Analysis of more advanced features such as journals

■ Dealing with corrupted file systems

Carrier’s work provides both theoretical and practical insights into handling file systems

during forensic investigations. Conducting a comprehensive file system analysis to achieve the

aforementioned goals typically requires a thorough understanding of the specific structures

within the file system to accurately extract, parse, and interpret its data. To facilitate this

process, Carrier organizes the data used by file systems into five distinct categories:

■ Content category: This includes the actual content of the files stored. File systems

typically partition the available storage space into data units, such as blocks in Ext file

systems or clusters in NTFS or FAT.

■ Metadata category: Data that describes a file or directory falls into this category. Among

other things, this can include timestamps, attributes, or flags. Furthermore, it also

contains the reference to the actual content data of a file or directory.

■ File name category: Also known as the human interface category, data in this category

includes the names for files and directories including the hierarchy of the file system.

Thus, this data usually references data from the metadata category.

■ Application category: This category comprises additional data responsible for features

of the file system that are, however, not essential for its operation. An example includes

journaling or quota.

■ File system category: This is the core data of the file system, describing the locations of

its other structures and relevant areas.

Dividing file system data into these categories allows for a structured analysis of file systems

and a transparent development of techniques and tools. Although Carrier’s work primarily

focuses on file system analysis, it also addresses other vital aspects of storage forensics. For

this, he outlines a typical workflow for storage forensics that spans from the acquisition of the

storage device to the final analysis of the extracted files at the application level, as depicted in

Figure 1:

1. Physical media analysis: This initial phase involves acquiring the actual persistent

storage device, such as an HDD, SSD, or SD-Card, without interpreting its data, resulting

in a raw binary blob. Depending on the configuration of the analyzed system, this step

may require several acquisitions of multiple storage devices.

3

2. Introduction

2. Volume analysis: In the next step, the binary blob is examined to identify any existing

volume configurations. Brian Carrier defines a volume as a "collection of addressable

sectors that an operating system or application can use for data storage". By this definition,

partitions, which are commonly used to split up available data storage, are also classi-

fied as volumes. Consequently, the volume analysis step involves identifying existing

partition schemes that divide the storage device, with the most notable examples being

the Master Boot Record (MBR) and the GUID Partition Table (GPT). In addition to

partitioning available storage space, it is also possible to merge multiple volumes into a

single one, often for redundancy or efficiency purposes. For this reason, volume analysis

also includes the detection and analysis of multiple disk volumes such as RAIDs. At the

end of this phase, the volume layout is known and each, possibly reassembled, volume

can be analyzed separately.

3. File system analysis: In this phase, the file system stored within a volume is further

analyzed. First and foremost, this includes the identification of a given file system within

a volume. Following this, rather than simply mounting a file system using operating

system drivers, the analysis should ideally include a forensically sound implementation

that is capable of parsing and extracting relevant file system structures. This enables an

analyst not only to list, browse and extract the current state of the file system, but it also

facilitates the analysis of unallocated areas and, where possible, the recovery of deleted

files. These resulting files are then analyzed in the final phase of the workflow.

4. Application analysis: This step focuses on analyzing data at the application level, which

involves interpreting files according to their specific file types. Hence, the analysis is

heavily influenced by the file format in question. Common tasks include analyzing

binary files for malicious behavior or extracting and recovering data from databases such

as SQLite.

Following this workflow from start to end takes an analyst from the raw storage device to the

artifacts obtained from analyzing data at the application level. As shown in Figure 1, all the

steps in this workflow must be performed sequentially since the output of each step is used as

input for the subsequent one. A significant advantage of this approach is that each step can be

performed independently of the others. For example, physical media analysis is not influenced

by the type of volume, file system, or specific file types contained within it, consistently

producing one or more binary data blobs. These blobs are then analyzed to determine the

volume layout, potentially identifying partitions or reassembled RAIDs independent of both

the data’s origin and the file systems eventually stored within these volumes. This principle of

independence extends to the file system analysis step, where each detected volume is examined

4

2. Introduction

Figure 1.: Workflow for a file system forensic analysis established by Brian Carrier in 2005 [Car05].

for the presence of a file system, regardless of the type of volume or underlying storage device.

Finally, in the last step, the resulting files are examined, and here too, the origin of the data

does not affect the analysis.

This structured design of the analysis workflow ensures that each step has clear, distinct

goals and maintains transparency throughout the process. Furthermore, this approach also

facilitates the development of methods and tools for each of these steps independently from the

other. For example, a tool designed for FAT analysis can focus solely on its task without having

to address the complexities of volume reconstruction. Leveraging this approach, Brian Carrier

developed multiple specialized command-line tools, which he compiled into a comprehensive

toolkit known as The Sleuth Kit.

Although The Sleuth Kit is well established within the digital forensics community and has

undergone various updates over the years, its foundational model has remained unchanged

since its introduction in 2005. We define contemporary file systems as those commonly used

today, nearly 20 years after Carrier’s initial work. Contemporary file system analysis, therefore,

refers to the examination of these modern file systems. While Carrier’s work covered file

systems still in use today, such as FAT, NTFS, and the ext family, newer file systems like

5

2. Introduction

BTRFS, ZFS and MooseFS have since emerged. Additionally, concepts like the one of stacked

file systems, which existed when Carrier published his work, were not covered by him, but

still remain relevant today. Consequently, analysts working with these contemporary and

possibly underexplored file systems may face challenges or dead ends, when established

forensic tools like The Sleuth Kit may either lack support for these systems or fail to analyze

their features effectively. This issue may extend beyond mere implementation gaps, as the

underlying workflow of many forensic tools may not be fully equipped to handle contemporary

file systems, potentially suggesting the need for a new theoretical framework.

In light of this, this work aims to bridge the gap between file system forensic analysis estab-

lished in 2005 and contemporary file system analysis required today, ensuring that forensic

analysts are equipped with the knowledge, methods, and tools necessary to effectively handle

modern challenges in file system analysis and take advantage of the features of contemporary

file systems during this process.

We begin by identifying examples of modern file systems whose concepts and features devi-

ate from Carrier’s original workflow. This includes not only addressing recent developments

in file systems, but also incorporating file systems that, while possibly existing at the time,

were not part of Carrier’s work. We then reassess the applicability of Carrier’s workflow to

these contemporary file systems, identifying its limitations and gaps. From this analysis, we

propose necessary extensions to bridge these gaps to enable contemporary file system analysis.

Although Brian Carrier’s original workflow includes four steps, his work places particular

emphasis on the volume and file system analysis phases. Consequently, our work will focus

closely on these two phases, with special attention to their interconnection. In addition to the

mere accommodation of these contemporary file systems in an established workflow, this work

will also highlight their unique characteristics in a forensic analysis and further explore how

they can present new opportunities to enhance forensic capabilities, offering greater value to

forensic analysts.

In summary, the research questions of our work are as follows.

■ Research Question 0 (RQ0): Which concepts of contemporary file systems are not

considered in Brian Carrier’s foundational work from 2005?

■ Research Question 1 (RQ1): How applicable is Brian Carrier’s 2005 workflow for

analyzing contemporary file systems?

■ Research Question 2 (RQ2): How can Carrier’s workflow be modified or extended to

better support the analysis of contemporary file systems?

6

2. Introduction

■ Research Question 3 (RQ3): What features or characteristics of contemporary file

systems offer added value or require special consideration during forensic investigations?

2.1 Pooled Storage File Systems

As outlined earlier, the analysis of a file system is described as a step independent of the

underlying volume. The volume is merely serving as a container for storing the data of the

file system. Although a multiple disk configuration like a RAID may distribute the actual

data across multiple disks, the analysis of the file system itself is unaffected. This is because

the RAID is already reassembled in the volume analysis step and is subsequently treated as

a single volume that contains the file system during further analysis. Fundamentally, Brian

Carrier’s workflow is based on the assumption that a file system is assigned to a single volume,

thus bypassing the need for advanced volume management features, such as data distribution

across multiple disks, within the file system itself.

Over the years, this "one-to-one" association between a volume and a file system has been

challenged by file systems that were not considered by Brian Carrier in 2005, providing an

initial answer to RQ0. First and foremost among these are contemporary file systems like

ZFS, the default file system for modern FreeBSD operating systems, and BTRFS, which has

been integrated into the Linux Kernel. These file systems incorporate their own volume

management capabilities, enabling the creation of complex multiple volume configurations

such as mirrors or RAIDs of various levels. Because these volumes are combined by the file

system to create a unified pool of available storage, we introduce the term pooled storage file

system to describe any file system that implements its own volume management functionality.

Consequently, we refer to the volumes that it uses for data storage as its pool members. To create

a storage pool, pooled storage file systems allow users to specify one or more volumes across

which data is distributed and potentially transformed, depending on the pool configuration.

These volumes can include any type described by Brian Carrier, such as partitions, individual

disks, or even another RAID volume composed of multiple underlying volumes.

Hence, the reconstruction of a pooled storage file system requires access to all members

of the pool across which it is distributed. While this concept is similar to traditional file

systems stored on multiple disk configurations such as RAIDs, the key difference lies in the

fact that the file system itself manages the distribution and transformation of its data across

its corresponding pool members. Brian Carrier’s traditional workflow assumes that these

processes are handled by an independent implementation, such as a software or hardware

7

2. Introduction

RAID, which could be analyzed separately before proceeding to the file system analysis.

However, pooled storage file systems break this assumption by implementing their own volume

management. As a result, the standard workflow for file system analysis is inadequate for

pooled storage systems and must be adapted to accommodate these complexities. In response

to RQ1, we evaluate the applicability of Carrier’s four-step workflow to pooled storage file

systems in detail in our first publication [HLP17], and also address RQ2 by identifying and

proposing the necessary modifications to support pooled storage file systems.

The initial step, the physical media analysis, involves the acquisition of a storage device.

Since this step deals with data as a sequence of bytes, independent of file system or pooled

storage concepts, it remains unchanged in an adapted workflow. Similarly, the final step,

application analysis, involves working with previously extracted and recovered files at the

application level. Since this step is entirely independent of the underlying file system, it does

not require any modifications and also remains unchanged.

Since pooled storage file systems incorporate their own volume management capabilities,

they can operate directly on a disk, making the volume analysis step seemingly unnecessary.

However, this scenario is similar to that of a traditional file system that is stored directly on a

disk. Even though such situations were possible with the file systems Brian Carrier considered,

he included the volume analysis step in his workflow without providing an option to bypass it.

In these instances, the volume analysis simply identifies a single volume that corresponds to

the entire disk. Additionally, pooled storage file systems may not always operate directly on a

disk, instead using other volumes created by common volume managers. For these reasons,

the volume analysis step remains an essential part of the workflow, following the physical

media analysis.

For the file system analysis step, it is still possible to mount the pooled storage file system

using existing implementations. However, this approach suffers from the same limitations as

when used with traditional file systems. To conduct a thorough forensic investigation, a file

system-specific implementation is required. Thus, the core tasks of the file system analysis

remain the same, with the outcome still being a collection of files extracted from the file system

which are then passed on to the application analysis. Consequently, in our adapted version of

Brian Carrier’s model, the file system analysis step and its output remain unchanged.

The key difference in the analysis workflow lies between the volume and file system analysis

steps, as the file system analysis no longer necessarily expects a single volume as its input.

Instead, due to the volume management capabilities of pooled storage file systems, multiple

8

2. Introduction

volumes, or pool members, may be required as input. These pool members form the storage

pool, which ultimately contains the file system’s data. Unlike a RAID configuration created by

an independent implementation, however, it is no longer feasible to separately reassemble the

multiple volumes before performing the file system analysis. The pooled storage file system

itself can be used to reconstruct the storage pool, similar to how a traditional file system is

mounted. To conduct a thorough file system analysis, direct access to all data within the

storage pool is required. Therefore, it becomes necessary to reconstruct the pool during the

analysis step, which includes tasks such as mapping file system addresses to their precise

locations on the pool members. In summary, the tasks we identified in relation to pooled

storage file systems include these critical steps:

■ Identify when a volume is part of a pooled storage file system.

■ Extract detailed information about the pool’s configuration, offering valuable insights to

analysts, particularly regarding any missing pool members.

■ Perform accurate translation of file system addresses to their corresponding locations

on the pool members, such as the exact pool member and offset. This involves an

implementation of the file system-specific methods used to distribute and transform its

data.

■ Ensure access to all structural data within the pooled storage file system, including

metadata and unallocated areas on the pool members.

■ Provide the possibility to deal with incomplete storage pools, such as those with missing

members, to extract as much data as possible whenever feasible.

We refer to the part of the analysis responsible for addressing these tasks as the pool analysis.

Since pooled storage file systems handle the distribution and transformation of their data

themselves, the corresponding pool analysis is also highly file system dependent. Thus, one

approach is to integrate the pool analysis directly within the file system analysis step outlined

by Brian Carrier. However, we have chosen to incorporate the pool analysis as a distinct step

rather than embedding it within the file system analysis, which offers significant advantages.

First, it maintains the functional segregation of each step, as initially intended by Carrier. This

allows each step to specialize and focus on its specific role — volume analysis on recognizing

volume configurations, pool analysis on identifying pool members and providing access to

them, and file system analysis on examining the file system leveraging the access provided

by the pool analysis. Secondly, maintaining a separate pool analysis step from the file system

analysis improves the extensibility for methods dealing with storage pools. For instance, when

9

2. Introduction

new volume management methods are introduced or changed within a pooled storage file

system, they can be integrated or updated more smoothly as it allows for these updates and

enhancements without any modifications to the fundamental file system analysis.

Figure 2.: Our extension to Carrier’s workflow for a file system forensic analysis supporting pooled
storage file systems [HLP17].

Figure 2 illustrates our extended model for file system forensic analysis, incorporating

the newly added pool analysis step. Traditional volume analysis continues to manage the

examination of standard volume configurations, such as partitions, RAIDs, and other logical

volumes, which then serve as input for the pool analysis. If volumes are not part of a pool,

they are addressed directly in the file system analysis step. During the pool analysis step,

individual pool members are identified within a storage pool and any relevant information

about themselves, other members, and the pool as a whole is extracted. Additionally, this

step can reconstruct the pool to provide direct access, allowing the mapping of addresses

to the corresponding locations on the pool members and any necessary data transformation

along the way. This direct access enables subsequent file system analysis to independently and

thoroughly examine the entire pooled storage file system.

10

2. Introduction

It is also important to recognize that the analysis process may not always follow a strictly

linear path. For example, pooled storage file systems may allow users to create logical volumes

from the pool’s storage, which then loop back into the volume analysis step. However, in line

with Carrier’s original workflow, which also omitted scenarios where file systems are stored

within files, we have chosen to exclude such recursive scenarios for storage pools within our

extended model as well.

Our extended model, addressing RQ2, demonstrates how Carrier’s workflow can be adapted

to support the analysis of pooled storage file systems. Beyond this theoretical framework, we

have also implemented both the pool analysis and subsequent file system analysis steps for

ZFS, in line with our extended model, demonstrating its practical applicability. We extended

The Sleuth Kit, maintaining consistent command names to ensure ease of use and transparency

for analysts. Additionally, we utilized our implementation to demonstrate the feasibility of a

forensic analysis of ZFS across various pool configurations. This included scenarios where the

default file system implementation considered pools incomplete and, as a result, was unable to

mount the file system. Despite this limitation, our approach and implementation successfully

extracted data from the remaining pool members, highlighting both the importance of a

comprehensive forensic analysis for pooled storage systems as well as the effectiveness of our

approach.

Our second publication [HLY18] builds upon our extended workflow and examines its

application to another pooled storage file system by adding support for the pool analysis

step of BTRFS, thereby enabling the analysis of multiple disk BTRFS configurations. We also

conduct a practical forensic analysis of this pooled storage file system to demonstrate our

model’s effectiveness and illustrate how BTRFS’ features can be leveraged during forensic

investigations, thus providing answers to RQ3. In our work we demonstrate that the file

system’s snapshot functionality is an important consideration during forensic analysis, since

this feature allows users to arbitrarily capture the state of the file system at a specific point in

time. Our implementation is capable of listing and analyzing these snapshots, enabling the

extraction of older versions of the file system. Additionally, we explore the potential to recover

previous versions by leveraging the copy-on-write mechanism, which writes new metadata and

content to new locations rather than overwriting existing data. This process creates valuable

artifacts that can be used to trace back through earlier versions of the file system. However, this

approach is inherently more error-prone, as the file system may not maintain these structures

in a consistent state, unlike snapshots, which are specifically designed for this purpose.

11

2. Introduction

2.2 Stacked File Systems

As outlined in our first two publications, pooled storage file systems create their own storage

pools by distributing and transforming data across one or more volumes, necessitating an

additional step before conducting the actual file system analysis. Despite integrating volume

management with the file system, a pooled storage file system still relies on an underlying

volume to store its data. In contrast, the class of stacked file systems employs a different

approach to data storage. Instead of writing data directly to a volume, stacked file systems

store their data as files within another underlying file system. This method allows for the

development of novel file systems built on top of well-established, robust file systems that

already offer a distinct set of features.

Thus, since the introduction of this concept in 1994 [HP94], stacked file systems have

become a significant area of research, particularly in the development of file systems. A

stacked file system, which we also refer to as the upper file system, adds an additional layer

on top of the underlying or lower file system, offering users a variety of enhanced features. An

early notable example is eCryptfs, which facilitates the creation of an encrypted file system.

eCryptfs leverages the lower file system to store encrypted versions of its files. When the upper

file system is mounted with the correct decryption key, it presents the plain, unencrypted

versions of the files to the user. Beyond just data transformation, stacked file systems can

also distribute their data across multiple lower file systems. This approach is widely utilized

in contemporary distributed file systems such as MooseFS or GlusterFS, which are spread

across multiple servers. Although stacked file systems had existed for some time when Brian

Carrier published his work, they represent a class of contemporary file systems that were not

considered and remain unsupported by common forensic tools like The Sleuth Kit, offering an

additional answer to RQ0. To address this gap, our third publication [HLB24] explores the

integration of stacked file systems into a forensic workflow, providing further insights to RQ1.

By implementing their own methods to distribute and transform data, stacked file sys-

tems share some similarities with the concept of pooled storage file systems discussed earlier.

Furthermore, stacked file systems can be deployed across multiple lower file systems and, con-

sequently, also across multiple volumes. However, a key difference lies in their dependencies:

while a pooled storage file system requires an underlying volume to build its storage pool, a

stacked file system is entirely dependent on an underlying file system and cannot be directly

deployed onto one or multiple volumes. As a result, the analysis of a stacked file system always

necessitates a preceding file system analysis of the corresponding lower file system and must

thus also be performed after the pool analysis step.

12

2. Introduction

For these reasons, even our extended workflow, in its current state, does not fully account

for the analysis of stacked file systems. While mounting a stacked file system can provide

access to its data, it shares the same limitations as mounting a traditional or pooled storage file

system resulting in the loss of valuable forensic information. In line with RQ2 and to enable a

comprehensive forensic analysis of stacked file systems, we have identified and defined six

specific requirements for a stacked file system analysis that must be addressed by an extended

model capable of accommodating them:

1. Detection of Stacked File Systems: Recognizing and identifying stacked file systems is

crucial, as they can easily be overlooked if investigators are unaware of their existence

or if their tools lack compatibility. This is further complicated by the fact that a file

system can simultaneously function as both a lower and regular file system, potentially

obscuring its role as the lower system. For this reason, files and directories extracted

during the file system analysis should always be analyzed for unique characteristics

hinting at the presence of an upper file system. This step also involves extracting

information about any additional lower file systems utilized by the upper file system, for

example when data is distributed across multiple servers.

2. Correlation of File Names: Establishing the relationship between upper and lower files

is essential for accurately reconstructing and extracting the original hierarchy of the

stacked file system.

3. Data Reconstruction: Similar to pooled storage file systems, stacked file systems may

distribute and transform data when storing it across one or more lower file systems.

To effectively analyze a stacked file system, it is crucial to understand the methods

and algorithms it employs for these processes. This includes addressing the issue of

fragmentation, where an upper file is spread across multiple lower files, and reassembling

it in the correct order. Additionally, any transformation applied by the stacked file system

to store its data in the lower files must be reversed to retrieve the original version of the

upper file.

4. Role of Timestamps: During stacked file system analysis, it is important to extract

timestamps stored by the upper file system. However, the presence of a lower file

system introduces an additional source of timestamps that should also be considered.

Since each lower file is part of the lower file system, their timestamps may provide

valuable information. Especially when data is fragmented across multiple lower files,

their timestamps may be used to obtain a more detailed timeline of file changes.

13

2. Introduction

5. Slack Space in Stacked Systems: Stacked file systems introduce new complexities in

slack space, where lower files may contain padding that does not impact the upper file

system and can thus be used to hide data.

6. File Recovery Methods: For file recovery, the analysis should take advantage of any

features provided by the upper file system, such as built-in trash bin implementations

that offer additional recovery options. However, it is also crucial to explore the file

recovery opportunities offered by the underlying lower file system.

Performing the aforementioned steps in a stacked file system analysis requires the prior

extraction of the corresponding lower files used by the stacked file system, as these files serve

as the input for this analysis phase. Consequently, it is not feasible to incorporate the stacked

file system analysis within the traditional file system analysis step, as doing so would introduce

unwanted recursion in the workflow. Therefore, we have extended Brian Carrier’s workflow

by adding a dedicated step specialized for stacked file system analysis, which follows the

traditional file system analysis as depicted in Figure 3. We refer to this new step simply as the

stacked file system analysis.

In addition to proposing a theoretical extension to the workflow for accommodating stacked

file system analysis, we also provide practical insights by examining the previously outlined

tasks for stacked file system analysis using eCryptfs, MooseFS, and GlusterFS as case studies

while demonstrating how these tasks can be effectively executed. Our results directly address

RQ3 and highlight the additional value of a dedicated stacked file system analysis in forensic

investigations, including information such as a more detailed timeline of file changes and

additional recovery options for deleted files. By expanding Brian Carrier’s workflow for file

system forensic analysis by two additional steps, it can now be applied to both pooled storage

as well as stacked file systems.

14

2. Introduction

Figure 3.: Our extensions to Carrier’s workflow for a file system forensic analysis supporting pooled
storage as well as stacked file systems [HLB24].

2.3Network-enhanced File System Analysis

Beyond his workflow for file system analysis, Brian Carrier outlined several key analysis

types within the broader scope of digital forensics, as illustrated in Figure 4. Although his

work focuses on the analysis of persistent storage, including both volume and file system

analysis, Carrier briefly mentions memory and network analysis as other possible analysis

types. However, these areas are treated separately from file system analysis, and thus, the

potential for leveraging them to enhance file system forensics remains unexplored in his

work. Memory analysis, for example, has proven to be a rich source of artifacts in forensic

15

2. Introduction

investigations, allowing for the extraction of key material, deleted data, and other volatile

structures. It has also seen specific applications in file system forensics, with Volatility plugins

like mftscan capable of retrieving NTFS structures directly from memory. In contrast, network

traffic has received little attention in the context of file system forensics, despite its strong

relevance to contemporary file systems.

Figure 4.: Illustration of different analysis types by Brian Carrier [Car05].

Firstly, some file systems require network functionality to operate effectively. As previously

discussed, pooled and stacked file systems can both distribute and transform data across

various locations. While pooled storage file systems usually operate on a single local machine,

many modern stacked file systems distribute data across multiple underlying file systems

hosted on different servers. Known as distributed file systems, this class of file systems is

defined by the distribution of data across multiple entities. To enable reading and writing to

these remote components, such file systems must support or integrate network functionality.

Examples include MooseFS, GlusterFS, and the Hadoop Distributed File System.

Moreover, file systems today are often accessed remotely rather than solely on local machines,

for instance, when a corporate share is mounted on a remote client. Although some file

systems rely on proprietary network protocols for remote access, more commonly standardized

protocols are used for this purpose. Notable examples include the Network File System (NFS)

and Server Message Block (SMB) protocols, which are widely adopted in Linux and Windows

environments, respectively.

As a result, today’s network traffic frequently contains data originating from or related to

file systems. From a forensic perspective, this network data can provide valuable information

beyond what is typically obtained through traditional file system analysis. For example, net-

work captures preserve a continuous stream of data over time, whereas file systems generally

16

2. Introduction

only reflect their most recent state, making it difficult to recover older data. Consequently,

network traffic may contain information that cannot be recovered using standard file system

forensics.

As mentioned before, Brian Carrier barely touches upon the analysis of network traffic in

his 2005 work, merely suggesting its use for correlational purposes, such as confirming the

timing of file activities. Thus, he maintains a clear distinction between traditional storage

forensics and network forensics. Consequently, in addressing RQ0, Carrier’s work for file

system analysis does not explore the analysis of network traffic generated due to the remote

access to file systems or the architecture of contemporary file systems themselves.

To address this gap, our fourth publication [HML24] centers on RQ3, exploring how file

system-related network traffic can bridge the divide between network and storage forensics

and enhance traditional file system analysis. As an initial case study, we focus on the well-

established SMB protocol, which is widely used in Windows environments to provide remote

access to a server’s file system or shared resources across multiple clients.

As a first step, we explore how network traffic containing file system-related data can be

leveraged to reconstruct the corresponding file system. This approach not only provides

additional information that may be inaccessible through traditional file system analysis but

can also prove valuable in scenarios, where the actual file system is unavailable. Such situations

may arise due to limited access or because the file system has been deleted or corrupted. To

reconstruct a file system from network traffic, we follow the five file system data categories

introduced by Brian Carrier and discuss how each category’s data can be extracted from

network traffic:

■ Content category: Extracting the actual content of a file from network traffic relies

on the file being transferred at some point during the network capture. This typically

occurs during read or write operations involving the file. However, depending on the

implementation, these operations may only transfer parts of the file, thus allowing for

only partial reconstruction of its content. On the other hand, the initial distribution of a

file to its final remote locations naturally involves its entire content.

■ Metadata category: This category contains all available metadata for a file, including

timestamps or attributes. Unlike file content, metadata can be transferred without an

explicit read or write operation, such as when browsing directories on a remote file share.

To accurately reconstruct the file system, it is essential to match this metadata with its

corresponding content, if available.

17

2. Introduction

■ File name category: Similarly, file names can also be transmitted without explicit read

or write operations. Extracted file names from the network capture must be correctly

associated with their corresponding metadata and content. Furthermore, it is essential

to extract information that allows for the most comprehensive reconstruction of the file

system hierarchy.

■ Application and File System Categories: Data from both the application and file system

categories is typically not necessary for network access to a file system, which explains

their rare presence in network traffic. The file system category data, which outlines

the layout and structure of the file system, is crucial for understanding its architecture,

but is not essential when reconstructing a functional, though not exact, replica of the

original system. Brian Carrier also considers data from the application category to be

non-essential for the basic operations of the file system. Consequently, omitting these

categories in our reconstruction process does not compromise the forensic value of the

reconstructed file system.

Extracting this information from network traffic enables the reconstruction of the original

file system, encompassing all available content, metadata, and the hierarchical structure that

can be found within the captured data, even if it does not result in a precise copy of the original

file system. However, the reconstructed file system provides data that may not be recoverable

through traditional file system analysis. Because network traffic captures are continuous, they

may include multiple read or write operations for a single file, potentially revealing various

versions of that file. During reconstruction, it is essential to account for them and give analysts

access to all versions of a file, including those that may no longer exist within the actual

file system itself. Additionally, the reconstructed file system can use information from the

metadata and file name categories to create files without content, which refer to as hollow

files. Although these hollow files are empty and lack content, they retain critical metadata,

such as timestamps and are also placed in the correct location within the file system hierarchy,

providing analysts with as much contextual information as possible.

To demonstrate the feasibility of this approach, we apply it to the SMB protocol and detail

how the necessary information for reconstructing the original file system can be extracted

from network traffic. In addition, we provide a practical implementation of this theoretical

approach through the development of pcapFS. pcapFS is a framework designed to mount

network traffic as a file system, allowing analysts to seamlessly browse through the data

captured in the network. While it supports various protocols such as HTTP, FTP, and TLS,

18

2. Introduction

pcapFS also includes support for the reconstruction of SMB network traffic, enabling the

extraction of multiple file versions and the creation of hollow files.

Beyond reconstructing a file system from network traffic, it is valuable to identify the origins

of captured file operations, such as file creation, modification, access, or deletion. This level of

detail provides information on the origin and sequence of file-related events, helping to build

a comprehensive timeline of actions performed on the file system. Although traditional file

system analysis may not always provide this information, network traffic can be leveraged to

reconstruct these file operations. To demonstrate the practicality of this concept, we developed

and implemented SMB Command Fingerprinting (SCF). This technique involves generating

hashes for SMB packets based on their distinctive values and combining them into a set of

rules, which allows us to accurately reconstruct user interactions, such as browsing a file share

or creating files and directories, entirely from network traffic.

While the use of network traffic is not exclusive to contemporary file systems, it plays a

crucial role in their design and functionality, particularly in the case of distributed file systems.

To harness this feature for forensic purposes, we have introduced, examined, and implemented

two novel approaches. Although these methods for reconstructing file systems and file

operations can be applied independently, the most comprehensive insights are achieved when

they are combined during an analysis. As demonstrated in our publication, the feasibility of

these approaches underscores the significant potential of leveraging network traffic to enhance

traditional file system forensic analysis.

19

3 Accompanying Text to Hilgert, Lambertz &

Plohmann (2017)

The publication Extending The Sleuth Kit and its underlying model for pooled storage file

system forensic analysis [HLP17] presents a first examination as well as an adoption of Brian

Carrier’s established workflow for file system analysis. For this purpose, the paper initially

summarizes the current state of file system forensics and presents the de-facto standard

model by Brian Carrier consisting of the four steps: Physical Media, Volume, File System

and Application Analysis. While each step requires the output of the previous one, they

are transparent to each other, i.e. a file system analysis performed on a reassembled RAID

volume is identical to a file system analysis of an extracted partition. As a result, the file

system analysis step is completely independent of the underlying volume layout. This stems

from the traditional “one-to-one” association between a volume and a file system, which was

the standard for most file systems, when Carrier published his work in 2005. However, this

assumption has been challenged by file systems that either emerged in the years since or were

not considered by Carrier. A notable example is ZFS, introduced in 2003 but not included in

Carrier’s original work.

In ZFS, it is possible to combine one or more top-level virtual devices (vdev) to a single

zpool that is used as the storage space for the file system. When data is then stored in the zpool

ZFS stripes it across all its available top-level vdevs, which in its simplest form can be files or

disks, e.g. volumes as defined by Carrier. Furthermore, ZFS also supports advanced types for

top-level vdevs such as mirror and raidz. These top-level vdevs contain one or more files or

disks and distribute the data to these according to their type. For file systems like ZFS, which

manage their own storage space and implement their own volume management features, we

introduce the term ’pooled storage file systems.

Although these file systems enable the use of multiple separate storage devices, they break

the aforementioned “one-to-one” association between a volume and a file system. In ZFS, the

file system itself manages data distribution across multiple disks, rather than relying on an

20

3. Accompanying Text to Hilgert, Lambertz & Plohmann (2017)

independent implementation, as assumed in Carrier’s workflow. Moreover, established forensic

tools like The Sleuth Kit lack support for ZFS, creating a significant gap for investigators. To

address this gap and assess whether it is merely an implementation issue, our work evaluates

the applicability of Carrier’s workflow for analyzing pooled storage file systems. We conclude

that neither the theoretical foundation nor the tools based on it, such as The Sleuth Kit, are

adequately equipped to handle this class of file systems.

To address this, we extend Carrier’s model with an additional step between the volume and

file system analysis, which we call pool analysis. As with other steps in the model, the input

for this phase is the output of the previous one, i.e. any detected volumes. The pool analysis

step determines whether any of these volumes are part of a storage pool. If not, they are simply

passed to the file system analysis step. This is typically the case for established file systems

that do not support storage pools. This approach is similar to scenarios where a file system is

stored directly on a disk, bypassing the volume analysis step.

If pool members are detected during this step, it is crucial to extract basic information such as

the total number of pool members and the type of pool. The next step is to reconstruct the pool,

which requires understanding how and where data is stored. Similar to reassembling a RAID,

the pooled storage file system that originally created the pool can be used for reconstruction.

However, since the file system is tightly integrated with volume management, the pool cannot

be reconstructed independently. This approach yields a reconstructed pool similar to a

mounted file system, providing only limited data access for forensic analysis.

To gain full access to all data within the pooled storage, including deleted files and unal-

located space, an advanced pool analysis is essential. This step determines how and where

data is stored across the previously detected volumes, requiring a deep understanding of the

specific mechanisms the pooled file system uses to distribute and transform data across its

pool members. Akin to the file system analysis, the pool analysis is highly dependent on the

specific pool and thus also file system implementation.

In our work, we demonstrate how the pool analysis step, including both identification and

reconstruction, can be applied to ZFS on a theoretical level. To achieve this, we extended The

Sleuth Kit (TSK) with a new command, pls, which accepts one or more disks or volumes as

input and analyzes the underlying pool configuration, identifying issues such as missing or

redundant disks. Additionally, we reimplemented ZFS’s volume management capabilities

to enable independent, direct access to pool members for a forensically sound analysis of a

ZFS pool. To further evaluate our pool analysis implementation, we also developed methods

21

3. Accompanying Text to Hilgert, Lambertz & Plohmann (2017)

for performing the file system analysis step specifically for ZFS, integrating these into a

customized version of TSK. We show that our implementation not only offers basic functions

like listing and extracting files, but also supports file recovery in the case of incomplete pools.

An incomplete pool, missing one or more top-level vdevs and typically not reconstructable

using the original implementation, can still be analyzed using our approach, allowing access

to the remaining data of its pool members.

Individual Contributions

Overall, the individual contributions within this paper include:

■ Examining and extending Brian Carrier’s model to support the forensic analysis of

pooled storage file systems

■ Analyzing the pooled storage functionality of ZFS as a prominent example of pooled file

systems.

■ Implementing the pool analysis and file system analysis steps for ZFS

■ Evaluating the feasibility of a forensic analysis of ZFS, including data reconstruction

from incomplete storage pools.

22

4 Accompanying Text to Hilgert, Lambertz &

Yang (2018)

The publication Forensic analysis of multiple device BTRFS configurations using The Sleuth

Kit [HLY18] builds upon the previous preliminary work, which extended Brian Carrier’s model

for file system forensic analysis and added support pooled storage file systems using ZFS as an

example. As outlined and motivated in our previous work, the de-facto standard workflow for

file system analysis at that time was not suitable to deal with file systems that do not follow

the “one-to-one” association between a file system and a volume. Instead, pooled storage file

systems implement their own volume management capabilities making it possible to directly

create multiple disk configurations for redundancy or efficiency purposes. While this is a huge

advantage regarding usability, the analysis workflow as it was presented by Brian Carrier in

2005 had to be updated and extended in order to support pooled storage file systems not only

in theory, but also in existing tools.

To address this, we proposed an additional step within the four-step model labelled pool

analysis, which follows the volume and precedes the file system analysis. This step is not only

responsible for identifying volumes that have been part of a storage pool, but also provides

the possibility to reconstruct the pool. Since this part is highly implementation-specific, it

is necessary to analyze the structures and methods used by the pooled storage file system to

perform the pool analysis. In our previous work, we examined and implemented the pool

analysis as well as the subsequent file analysis step for ZFS, demonstrating the applicability of

our extended model. Additionally, we performed a forensic analysis of the ZFS file system

across various pool configurations. In this work, we shift our attention to BTRFS, another

prominent pooled storage file system, to further assess and validate the applicability of our

extended model, while also highlighting novel features analysts should be aware of.

BTRFS, introduced in 2007, has since been integrated into the Linux kernel and is now

also available for the Windows operating system. Like ZFS, BTRFS includes built-in volume

management capabilities, allowing users to combine volumes into various multi-disk config-

23

4. Accompanying Text to Hilgert, Lambertz & Yang (2018)

urations, such as mirrors or different RAID levels. In the initial phase of our research, we

examined BTRFS’s use of a specialized tree structure for volume management, known as the

chunk tree. Firstly, the chunk tree contains a device item for each physical device, or volume,

that BTRFS uses in its storage pool. These device items store various attributes, such as the

device’s size and unique identifier. Secondly, the chunk tree holds chunk items. In BTRFS, the

available storage is divided into multiple non-overlapping chunks, which are addressed using

a continuous logical addressing scheme. This ensures that each logical address is mapped

to a specific chunk. Information like the start and length of each chunk is stored in the

corresponding chunk item within the chunk tree.

A chunk item also contains details about the stripes into which a chunk is further divided.

For each stripe, it stores the device ID of the corresponding pool member and the offset where

the data is located. The distribution of data across these stripes depends on the chunk type.

In a RAID0 configuration, data is striped across all available stripes within the chunk, with

BTRFS using a specific stripe length to define the size of the data blocks written to each

stripe. In a RAID1 chunk, data is mirrored across pairs of stripes, with each pair residing

on different devices. Understanding these aspects of BTRFS volume management is critical

for conducting a thorough pool and file system analysis. To facilitate this, we followed our

extended model and implemented the pool analysis step for BTRFS. Thus, the pls command,

introduced in our previous work to analyze one or more disks or volumes and identify pool

members, was extended to support the detection of BTRFS pool members. Furthermore, we

have implemented the required pool analysis steps to allow direct access to a BTRFS storage

pool.

Building on this foundation, we have integrated our pool and file system analysis imple-

mentations to enable a comprehensive forensic examination of BTRFS using multiple disks,

providing analysts with a practical tool for investigating this contemporary file system. We

demonstrate the effectiveness of this implementation through the forensic analysis of various

BTRFS configurations, highlighting key characteristics and considerations for investigators.

First and foremost, this includes the copy-on-write principle utilized by file systems such as

BTRFS. Copy-on-write is a modern concept designed to keep a file system in a consistent state,

even after a crash. Instead of overwriting an existing block when modifications are made, the

modified block is written to a new location within the file system. Once the write operation is

complete, all associated metadata and pointers that reference this block are updated to point

to the new location, also using the copy-on-write principle. While this mechanism primarily

ensures the file system’s consistency, it also generates numerous data and metadata artifacts

24

4. Accompanying Text to Hilgert, Lambertz & Yang (2018)

that can be of significant forensic value. Our analysis demonstrated that by accessing old

superblocks, the entry points for the BTRFS file system, investigators can effectively ‘rewind’

the file system to previous states, enabling the recovery of deleted files and the examination of

earlier versions of the file system.

Furthermore, BTRFS supports the usage of snapshots, which leverage the copy-on-write

principle, providing users with a simple and effective way to capture the state of a file system

at a specific point in time. Unlike remnants left by previous copy-on-write operations, a

snapshot is always maintained in a consistent state by the file system. Our implementation is

capable of detecting, listing, and conducting forensic analysis on any given snapshot within

BTRFS file system.

In summary, this work underlines the effectiveness of our extended model for file system

analysis. In addition, we also provide a practical implementation for the digital forensics

community and highlight novel features of contemporary file systems.

Individual Contributions

Overall, the individual contributions within this paper include:

■ Demonstrate the applicability of the extended model for file system analysis for another

prominent pooled storage file system

■ Examining the intricacies of BTRFS’ volume management capabilities

■ Implementing the pool analysis step for BTRFS into TSK to enable the analysis of

multiple device BTRFS configurations

■ Performing a forensic analysis of BTRFS and highlighting its characteristics

25

5 Accompanying Text to Hilgert, Lambertz &

Baier (2024)

In our publication "Forensic Implications of Stacked File Systems" [HLB24], we closely examine

the forensic challenges posed by a specific class of file systems known as stacked file systems.

Unlike traditional file systems, which store data directly on an underlying volume, stacked

file systems rely on another file system for data storage. In these cases, we refer to the stacked

file system as the upper file system and to the underlying file system as the lower file system.

Hence, files within the upper file system are considered upper files, while the lower file system

contains the corresponding lower files. This concept is commonly found in many contemporary

file systems used for distributed data storage, but it has not been extensively studied from a

forensic perspective.

In his foundational work on file system analysis from 2005, Brian Carrier does not address

stacked file systems. Furthermore, The Sleuth Kit lacks support for analyzing this class of

file systems. In our research, we examine the applicability of Carrier’s workflow to stacked

file systems and conclude that it does not accommodate them. This limitation arises because

Carrier’s model assumes a one-to-one assignment between a file system and a single volume,

which it uses for data storage, a concept that was already challenged by pooled storage file

systems. However, even the extended model for pooled systems does not accommodate stacked

file systems, as pooled systems still store data directly on volumes or disks. On the other

hand, stacked file systems rely on an underlying file system and therefore require a preceding

analysis of this lower file system to enable a comprehensive forensic analysis. Since neither

Carrier’s original model nor its extended version reflect this, the workflow must be updated to

support the analysis of stacked file systems.

For this purpose, we introduce an additional step, which we label stacked file system analysis.

As previously discussed, this step requires the successful analysis of the underlying lower file

system and is therefore placed after traditional file system analysis. Both the input and output

of this step are files. In our work, we further define six critical tasks specific to stacked file

26

5. Accompanying Text to Hilgert, Lambertz & Baier (2024)

system analysis that must be carried out during this step in order to achieve a comprehensive

analysis:

1. Detection and identification of stacked file systems within the lower file system.

2. Correlation of file names between upper files and their corresponding lower files.

3. Reconstruction of upper files from lower files, addressing fragmentation and data trans-

formation.

4. Analysis of multiple layers of timestamps from both the upper and lower file systems.

5. Detection and extraction of potential slack space within lower files.

6. Utilizing additional recovery methods from both the upper and lower file systems.

In addition to these theoretical considerations, we offer insight into the practical application

of this newly added analysis step. To cover a wide variety of implementations, we selected

three different stacked file systems, each representing a distinct architectural approach. Based

on their underlying architecture, we define three groups, into which stacked file systems can

be categorized.

A local stacked file system is a stacked file system that operates on the same machine as its

corresponding lower file system. An early example for this type is eCryptfs, which facilitated

the encryption of data by mounting parts of a lower file system to a new mount point. The

other two types of stacked file systems are managed and unmanaged distributed stacked file

systems. As the name suggests, a distributed stacked file system can distribute its data to one

or more lower file systems. While these can theoretically also be stored on the same machine,

they are in practice deployed on different servers as is the case for file systems such as MooseFS

or the Hadoop Distributed File System. While a managed distributed file system like MooseFS

requires some entity to orchestrate access to its distributed lower file systems, an unmanaged

distributed file system such as GlusterFS contains all necessary information within the lower

file systems itself.

Using these stacked file systems as case studies, we conducted experiments and performed

the previously described tasks of stacked file system analysis. From this, we present practical

key takeaways for investigators having to deal with these file systems:

1. Identification: Various indicators from the analysis of the lower file system, such

as distinct hierarchies, file names or extensions and extended attributes can aid in

identifying a stacked file system. Additionally, the internal structure of lower files may

be leveraged to identify it is a lower file.

27

5. Accompanying Text to Hilgert, Lambertz & Baier (2024)

2. Correlation of file names: Our experiments show that in local or unmanaged distributed

stacked file systems, original file names and the hierarchy can typically be deduced from

the metadata within the lower file system. However, in managed stacked file systems,

identifying and extracting metadata from the management component is crucial. Since

this process is highly specific to each file system, it requires corresponding forensic tool

implementations.

3. Data Reconstruction: Our findings indicate that while fragmentation in stacked file

systems may be less complex than in traditional file systems, it still requires attention,

especially in distributed systems spanning multiple lower file systems. In addition to

a file system-specific extraction of information for reassembling lower files, it is also

possible to correlate lower files using timestamps, though this is a less reliable alternative.

The issues of transformation also highly depend on the stacked file system. In some

cases, analysts may benefit from the absence of a transformation layer, allowing for the

direct analysis of lower files. However, in cases where data transformation is present,

e.g. for encryption or error encoding, retranslating the content of lower files is necessary

to obtain the original data. We demonstrated this process for GlusterFS, though the

approach varies based on the features of the specific stacked file system at hand.

4. Timestamps: For stacked file system analysis, practitioners should leverage both times-

tamp sources from the upper and lower file systems. Extracting and correlating these

timestamps is crucial, particularly in distributed stacked file systems, where data frag-

mentation allows for more granular timestamp analysis. In cases where the upper file

system relies solely on the lower system’s timestamps, analyzing the lower system can

provide valuable temporal insights, though these timestamps may be more vulnerable to

manipulation, as seen with eCryptfs.

5. Slack Space: Unlike traditional file systems, stacked file systems generally don’t have

slack space containing remnants of previous files, as each new upper file creates new

lower files. However, our findings suggest that slack space within lower files could be

exploited to hide data in some stacked file system implementations. Detecting slack

space requires comparing file sizes between the upper and lower systems and cross-

referencing replicas of lower files across different systems to identify potential tampering

or manipulation.

6. File Recovery: Our experiments show that stacked file systems may offer additional

file recovery opportunities through their own trash bin features. Investigators should

also explore the potential of the lower file system, as original data may still exist there

even after deletion from the upper file system. In cases of complete file deletion, other

28

5. Accompanying Text to Hilgert, Lambertz & Baier (2024)

recovery techniques like file carving can for example utilize the structure of lower files.

Therefore, acquiring the lower file system, either physically or logically, provides a more

comprehensive recovery approach than focusing solely on the upper file system.

Individual Contributions

Overall, the individual contributions within this paper include:

■ Extending Brian Carrier’s workflow for file system analysis to support the analysis of

stacked file systems

■ Presentation of unique implications of stacked file systems in the context of a file system

forensic analysis

■ Exploring the implications by performing three case study forensic analysis of stacked

file systems

■ Discussion of key takeaways for forensic investigators to handle stacked file systems

29

6 Accompanying Text to Hilgert, Lambertz &

Mahr (2024)

The publication Mount SMB.pcap: Reconstructing file systems and file operations from

network traffic [HML24] takes a closer look on how network traffic can be leveraged to enhance

traditional file system analysis. Though these two disciplines are usually distinct, captured

network traffic may provide valuable information regarding file systems. This is especially

important nowadays considering the use of distributed file systems, which read and write data

over the network and across multiple clients or servers. While these file systems may utilize

proprietary network protocols, sharing of data over the network as well as the protocols for

this purpose are not entirely novel. A well-established and commonly used example is the

Server Message Block (SMB) protocol.

SMB, which is currently available in version 3, makes use of requests and responses in

order to provide a client with access to an SMB share. After a successful session is established,

various command types can be exchanged to read and write to the existing file system, which

is stored on the SMB share server. In a first step, we examine the possibilities of reconstructing

this file system purely from SMB network traffic interacting with it. For this purpose, we

define how data for each of the file system data categories presented by Brian Carrier can be

extracted using the SMB protocol:

■ Metadata such as timestamps, file sizes or attributes can already be found in the re-

sponses to an SMB CREATE request, used to request access to a file or directory.

■ While CREATE requests also contain information about the hierarchy of the original file

system and its file names, this information is also found in responses to QUERY_DIRECTORY

requests. These are typically used to obtain information about all files within a directory

matching a certain pattern.

■ Content of files is typically only found in READ and WRITE requests. These are matched

to the corresponding files using a FileId, which is also found in the associated CREATE

response.

30

6. Accompanying Text to Hilgert, Lambertz & Mahr (2024)

■ While certain SMB requests may yield file system information such as its attributes, the

data in SMB is not sufficient to allow for an exact replication of the file system layout.

The same holds true for the application data, which is usually not shared via SMB.

However, using information for content, metadata and file names already enables us to

reconstruct the most crucial parts of a file system required for a forensic investigation.

In addition to this traditional file system data, utilizing network traffic for the reconstruction

of a file system yields two additional and novel sources of information. A file system analysis

typically takes place at a certain point in time only providing an analyst with one snapshot

of the file system. Since network traffic is a continuous stream of data over time, it may

include multiple versions of files that have changed over the course of capturing. Thus, the

reconstructed file needs to display all available versions of a file. Secondly, SMB may provide

the metadata and file names for a certain file but may not contain its actual data. We refer to

these files as hollow files. Since they still may provide value to an analysis, the reconstructed

file system should contain them for completeness.

Building upon our knowledge about reconstructing an SMB share’s file system from captured

network traffic, we have developed and implemented a framework for this purpose. Based on

the Fuse library, this framework is capable of taking a network capture, e.g. a pcap file, and

mounting it as a common file system. The resulting file system utilizes all of the available

information, recreating the original directory layout, assigning the extracted time stamps and

providing access to different file versions. The framework not only supports SMB network

traffic, but also other protocols such as HTTP, FTP or TLS. Furthermore, it supports various

options for customizing the layout of the mounted file system by using network traffic specifics,

e.g. source or destination IP.

In addition to reconstructing the file system itself, we have evaluated the possibilities of

further enhancing file system analysis by reconstructing file operations. Since the network

traffic is a continuous stream of data, it contains information about the actions performed

in a chronological order. However, the immediate action causing a sequence of packets to

occur is not always obvious. For this reason, we performed experiments involving various

Windows API calls on an SMB share and detailing and describing the resulting SMB command

sequence. Based on these insights, we introduce SMB Command Fingerprinting (SCF). It uses

a combination of characteristics from SMB commands to calculate a fingerprint for an SMB

request or response. These fingerprints can then be combined to create a SCF rule matching a

certain action performed by a user. As a proof of concept, we created a set of SCF rules and

used it to reconstruct user interactions with an SMB share using cmd.exe. Our evaluation

31

6. Accompanying Text to Hilgert, Lambertz & Mahr (2024)

showed that this approach is feasible and was able to reconstruct the majority of all executed

commands on a very granular level, equipping analysts with a powerful method to understand

and analyze SMB network traffic.

Individual Contributions

Overall, the individual contributions within this paper include:

■ Performing an analysis for the reconstruction of a file system using only SMB network

traffic information

■ Development and implementation of the pcapFS framework for mounting SMB network

traffic, also supporting various other network protocols such as FTP and HTTP

■ Introducing a novel method and implementation for SMB Command Fingerprinting to

reconstruct file operations from SMB network traffic

32

7 Conclusion

With his fundamental work on file system forensic analysis in 2005, Brian Carrier introduced

a model and workflow for the analysis of file systems. Alongside his theoretical contributions,

Carrier also developed a suite of command-line tools, known as The Sleuth Kit, to facilitate the

analysis of a wide range of file systems. However, as file systems have evolved over the past

20 years, Carrier’s model has remained unchanged, creating a potential gap in contemporary

file system analysis. This gap arises from new concepts and features that his model does not

address, as shown by the findings to our first research question.

RQ0: Which concepts of contemporary file systems are not considered in Brian Carrier’s

foundational work from 2005?

An initial class of file systems overlooked by Brian Carrier are pooled storage file systems.

Notable examples include ZFS, the default file system for modern FreeBSD operating systems,

as well as BTRFS, which is now part of the Linux kernel. Pooled storage file systems incorporate

their own volume management capabilities, diverging significantly from Carrier’s workflow,

which assumes that a file system is stored in a single volume. For this reason, it is unclear how

to reassemble and analyze such a pooled storage file system in a forensic manner.

Similarly, Carrier’s 2005 publication did not address the concept of stacked file systems, which

is now integral to distributed file systems like the Hadoop Distributed File System, MooseFS,

and GlusterFS. Like pooled storage systems, these file systems do not align with Carrier’s

workflow, as they store their data and metadata as files within other file systems. Thus, it is

important not only to analyze the stacked file system itself but also to explore how the file

system that it uses for data storage should be handled during analysis.

Furthermore, Carrier does not explore the potential of using network traffic to enhance file

system analysis, a concept that becomes particularly relevant given that modern distributed

file systems inherently rely on network functionality to operate effectively. Even in 2005,
remote file system access through file-sharing protocols like SMB, which had been in use for

33

7. Conclusion

decades, was possible. However, Carrier did not examine this approach within the context of

file system analysis, even though it could provide additional and more detailed information

during an investigation.

In summary, Carrier’s workflow not only omits certain classes of file systems, such as

pooled and stacked file systems and lacks guidance on how they should be handled during

investigations. Furthermore, the forensic particularities of these file systems, including

leveraging features like snapshots, their inherent use of network traffic, and the copy-on-

write functionality, remain unexplored, creating a blind spot in contemporary file system

forensic analysis. This gap is further highlighted by the lack of tools that support the analysis

of these modern file systems and their unique features. To determine whether this is merely

an implementation issue or rather an issue with the underlying theoretical foundation, we

have discussed the applicability of Carrier’s model for these file systems, providing an answer

to RQ1.

RQ1: How applicable is Brian Carrier’s 2005 workflow for analyzing contemporary file

systems?

To answer this question, we examined the applicability of Carrier’s model to contemporary

file systems sequentially. We began by focusing on pooled storage file systems, which differ

significantly from traditional file system architectures. Pooled storage file systems combine

multiple volumes into a single storage pool used to store the file system’s data. This approach

deviates from the traditional model, where a single file system is typically stored on a single

volume, which may consist of multiple volumes, however, by an independent implementation,

such as a software RAID.

To evaluate the applicability of Carrier’s model for pooled storage file systems, we examined

and evaluated each of its steps. Our findings show that steps such as physical media and

application analysis remain applicable, as pooled storage systems do not affect the acquisition

of data from persistent storage or the handling of resulting files during application analysis.

Similarly, we conclude that volume analysis remains relevant and important, since traditional

volumes can still serve as pool members within pooled storage file systems. However, because

pooled storage systems distribute both data and metadata across multiple underlying volumes

using their own volume management, we argue that Carrier’s file system analysis step, as

originally presented, does not sufficiently address the complexities of analyzing this class of

file systems.

34

7. Conclusion

Although pooled storage file systems manage their own volume functionality, they still

depend on volumes to store data. In contrast, stacked file systems belong to a different class

that relies on an underlying file system for data storage. While this concept has existed for

many years, modern file systems have started combining it with the distribution of data across

multiple lower file systems, often spread across different servers. As with pooled storage

systems, the unique characteristics and forensic challenges of stacked file systems were not

addressed in Brian Carrier’s foundational work. Similarly, forensic tools like The Sleuth Kit

lack support for stacked file systems.

Like for pooled storage file systems, we also evaluated the applicability of Carrier’s model to

stacked file systems. As with pooled storage, the physical media and application analysis steps

can remain unchanged. Since stacked file systems do not directly interact with volumes, the

volume analysis step is also applicable without modifications. However, unlike pooled storage

systems, stacked file systems store their data within an underlying file system. Therefore,

in order to conduct a comprehensive analysis of the upper file system, a full analysis of the

corresponding lower file system must be performed first. As a result, the traditional file system

analysis step remains both critical and necessary during the analysis. However, the analysis of

stacked file systems is based on files rather than volumes, as seen in traditional file system

analysis. Due to this distinction and other unique characteristics of stacked file systems, we

conclude that the traditional file system analysis step, and therefore Carrier’s model in its

original form, also does not adequately address the analysis of stacked file systems.

Therefore, to effectively support the analysis of both pooled storage and stacked file systems,

Brian Carrier’s model must be updated, directly addressing our second research question.

RQ2: How can Carrier’s workflow be modified or extended to better support the analysis

of contemporary file systems?

To enable support for pooled storage file systems in Carrier’s existing model, we have

expanded it by introducing an additional step called pool analysis. This step not only identifies

and correlates pool members, but also examines the behavior of the pooled file system in

distributing and transforming its data across these members. As a result, this step is highly

dependent on the specific pooled storage file system, similar to the subsequent file system

analysis itself. However, direct access to a storage pool provided during the pool analysis

allows for a comprehensive file system analysis, including recovery of deleted files and access

to unallocated space. Therefore, the inclusion of the pool analysis step in the model paves the

way for the forensic analysis of pooled storage file systems.

35

7. Conclusion

To demonstrate the practical effectiveness of our extended model, we conducted a detailed

examination of the steps required for pool analysis of the pooled storage file systems ZFS and

BTRFS. This process involved a deep understanding of their structures and the algorithms they

use to distribute and transform data across their pool members. Building on this knowledge,

we were able to further develop and refine existing methods for the forensic analysis of

these two pooled file systems. Additionally, we implemented the necessary steps to enable a

forensic analysis of multiple disk configurations for ZFS and BTRFS within The Sleuth Kit,

thereby equipping the digital forensics community with a practical toolset for analyzing these

contemporary file systems.

In order to extend the workflow to support stacked file systems, we have furthermore

introduced a new step to Carrier’s model, which we refer to as the stacked file system analysis.

Following the concept of stacked file systems, this step requires files as its input and also

results in files akin to a traditional file system analysis. We also define six tasks, based on

the intricacies of stacked file systems, that should be addressed during this novel step within

the file system analysis workflow to provide a comprehensive analysis. The first and most

fundamental task is the detection of stacked file systems, which can be achieved by utilizing

the characteristics of its corresponding lower files. Without this detection step, stacked file

systems can easily be overlooked in certain analysis scenarios. Another critical task involves

data reconstruction, which requires a deep understanding of the methods used by stacked file

systems to distribute and transform their data.

To further demonstrate the practical applicability of stacked file system analysis, we selected

three examples of them with different architectures as case studies, covering a wide variety,

and conducted analyses following the tasks we previously defined. This approach not only

offers a theoretical framework for addressing stacked file systems, but also provides practical

insights, enabling effective forensic analysis. Additionally, we also identify and demonstrate

characteristics unique to stacked file systems that differ from traditional file system analysis,

directly addressing our third research question.

RQ3: What features or characteristics of contemporary file systems offer added value

or require special consideration during forensic investigations?

Although using a lower file system for data storage may not typically be seen as a feature

of a stacked file system, our research has demonstrated that it can enrich forensic analysis

with additional information. For example, utilizing two file systems for data storage can

provide an extra set of timestamps from the lower file system. Depending on the specific

36

7. Conclusion

stacked file system and how it fragments and distributes data, this can offer a more detailed

perspective on file modifications. Additionally, we have explored the potential of slack space

within lower files to be used for data hiding, a critical aspect that analysts need to consider in

their investigation.

During our forensic analysis of pooled storage file systems, we also highlight further novel

features that can be found in these contemporary file systems and offer significant additional

forensic value. In particular, we explore artifacts generated by the copy-on-write mechanism,

which allowed us to access earlier versions of the BTRFS file system. Additionally, we examined

the snapshot feature of ZFS and BTRFS, which enables users to capture the entire file system at

a specific point in time. Our implementations, built on The Sleuth Kit, are capable of handling

snapshots and granting analysts access to these past versions of a file system.

Finally, we examined methods to advance file system forensics by leveraging the "remote

character" of contemporary file systems and how they are used. On the one hand, network

traffic can be inherent in the file system architecture. Distributed file systems that store data

across multiple remote servers depend on network protocols to manage data read and write

operations, thus naturally generating network traffic associated with the file system. On

the other hand, file systems may be accessed remotely, often achieved by using established

protocols such as SMB or NFS. As a result, forensic analysts are presented with network traffic

that contains valuable file system-related data. Although network forensics is a critical aspect

of digital forensic investigations, it is often conducted separately from file system analysis. In

our work, we have shown how to bridge this gap and explored how network traffic containing

file system-related data can be leveraged to enhance traditional file system analysis.

To achieve this, we investigated the data required to reconstruct a file system from file

system-related data stored within network traffic. As a case study, we focus on the well-

established and widely used SMB protocol, which serves as a network protocol to facilitate

file system access across multiple clients. We detailed how SMB packets can be utilized to

reconstruct the file system and discuss the challenges associated with extracting file system-

related data from network traffic. This includes the concept of hollow files, where only

metadata is captured in the network traffic without any corresponding content. Additionally,

we addressed the presence of multiple file versions within a continuous stream of captured

network traffic. Beyond our theoretical exploration and to prove the feasibility of this approach,

we introduced pcapFS to the digital forensics community. This framework allows users to

mount network traffic as a file system and supports various protocols, including SMB, enabling

the reconstruction of a file share’s file system directly from network traffic.

37

7. Conclusion

Although this approach allows analysts to reconstruct a file system, it does not provide

insights into the origins of file modifications. In our work, we have demonstrated that network

traffic, as a continuous data stream, serves as a valuable resource for reconstructing file

operations that reflect user interactions with the file system. To achieve this, we introduced

a novel technique called SMB Command Fingerprinting (SCF), which involves generating

hashes, or fingerprints, based on the unique characteristics of SMB network packets and using

them to create specific rules that are mapped to specific file operations. As a case study, we

executed various commands on an SMB file share using the cmd.exe utility and captured the

corresponding network traffic. By applying our SCF ruleset, we were able to successfully

reconstruct the majority of user interactions, including file and directory creation as well as

navigation within the file share thus demonstrating the potential of our approach.

Our work demonstrates that, contrary to Brian Carrier’s 2005 perspective, file system and

network analysis extend beyond mere correlation. We have shown that our contributions

significantly enhance traditional file system forensics by utilizing network traffic to reconstruct

not only the file system itself but also the operations performed on it. Our implementations

provide forensic analysts with powerful tools that integrate network and file system forensics,

enabling a more comprehensive analysis and offering deeper insights into the sequence of

events and the various states of the file system.

Future Challenges In this work, we extended the existing workflow for file system analysis

to encompass contemporary file systems, illustrating how to analyze pooled storage and

stacked file systems while highlighting the unique challenges they present. Specifically, we

implemented forensic analysis techniques for ZFS and BTRFS, demonstrating how to handle

their use of storage pools and novel features such as snapshots and copy-on-write artifacts.

Our findings emphasize the critical role of pool analysis in forensic investigations and pave

the way for further exploration of other file systems within this category.

We also extended Carrier’s theoretical workflow to include stacked file systems and provided

practical guidelines for their analysis. Our research highlights not only the importance of

correctly identifying stacked file systems but also the necessity and value of a dedicated

stacked file system analysis step providing additional forensic insights, such as more granular

timestamps and enhanced recovery options. To further empower analysts in handling this

class of file systems in the future, developing tailored tools based on our findings is essential.

Building on our theoretical model, which introduces two additional analysis steps, this work

also represents a crucial advancement in closing the implementation gap in contemporary

38

7. Conclusion

file system analysis. Future work should focus on expanding support for additional pooled

and stacked file systems in established tools like The Sleuth Kit. However, our research also

highlights that Carrier’s 2005 model, while foundational, is inadequate for the structured

forensic analysis of modern file systems. For this reason, future work should further evaluate its

applicability for other contemporary file systems to identify and address possible deficiencies.

In addition to the extended model, we explored the potential of leveraging network traffic

to enhance traditional file system analysis. Our study demonstrated the feasibility of recon-

structing both the original file system and file operations from network traffic, using the SMB

protocol as a case study. These promising results present three major future challenges:

■ Enhancing SMB Command Fingerprinting: Future research should refine this approach,

including automating rule generation and supporting other features of SMB such as

encryption. Additionally, the development of an expanded SCF ruleset is essential,

covering a broader range of applications, such as file operations performed through

Windows Explorer, to increase its applicability and forensic value.

■ Extending Event Reconstruction to other Protocols: While the focus of this work

was on the SMB protocol, many other network protocols facilitate file operations and

data transfers. Future research should explore whether similar methodologies can be

applied to protocols such as NFS or even proprietary file system-specific protocols used

in distributed file systems such as MooseFS. This would broaden the scope of scenarios

in which network-enhanced file system analysis could be utilized effectively in forensic

investigations.

■ Advancing Cross-Source Forensic Analysis: This work highlights the potential of

leveraging network forensics to enhance file system analysis, but similar opportunities

may exist across other digital forensic domains. For instance, memory analysis can reveal

volatile data that complements file system investigations, such as file operations and

recently accessed or deleted files. Future work should focus on systematically identifying

gaps in cross-source analysis in digital forensics, developing workflows that integrate

insights from multiple sources, and ensuring that tools are adequately designed for this

task. This approach could significantly improve the depth of digital forensic analysis as

a whole.

39

A Appendix

40

DFRWS 2017 USA d Proceedings of the Seventeenth Annual DFRWS USA

Extending The Sleuth Kit and its underlying model for pooled storage
file system forensic analysis

Jan-Niclas Hilgert*, Martin Lambertz, Daniel Plohmann
Fraunhofer FKIE, Zanderstr. 5, 53177 Bonn, Germany

Keywords:
File systems
Pooled storage
Forensic analysis
ZFS
The Sleuth Kit

a b s t r a c t

Carrier's book File System Forensic Analysis is one of the most comprehensive sources when it comes to
the forensic analysis of file systems. Published in 2005, it provides details about the most commonly used
file systems of that time as well as a process model to analyze file systems in general. The Sleuth Kit is the
implementation of Carrier's model and it is still widely used during forensic analyses todaydstandalone
or as a basis for forensic suites such as Autopsy.

While The Sleuth Kit is still actively maintained, the model has not seen any updates since then.
Moreover, there is no support for modern file systems implementing new paradigms such as pooled
storage.

In this paper, we present an update to Carrier's model which enables the analysis of pooled storage file
systems. To demonstrate that our model is suitable, we implemented it for ZFSda file system for large
scale storage, cloud, and virtualization environmentsdand show how to perform an analysis of this file
system using our model and extended toolkit.
© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

File systems play a vital part during a digital forensic investi-
gation. Their analysis enables the collection and recovery of data
and filesdthe digital artifacts necessary for further analysis steps.
Unfortunately, each file system differs in many aspects such as the
data structures it uses, the layout it follows, or the features it im-
plements. For this reason, Brian Carrier introduced a universal
model for a file system forensic analysis in 2005 (Carrier, 2005). He
also provided an implementation of his model: The Sleuth Kit (TSK)
(Carrier, 2017b), a forensic toolkit providing means for the analysis,
recovery, and collection of digital evidence. Carrier's model and The
Sleuth Kit enable investigators to perform a file system forensic
analysis without requiring an extensive background knowledge of
the underlying file system and its peculiarities. Moreover, it serves
as a basis for further analysis techniques and tools (Carrier, 2017a;
Garfinkel, 2009; Buchholz and Falk, 2005).

Although themodel works great on file systems that were in use
at the time of its publication more than a decade ago, its limitations

become obvious when trying to apply it to modern file systems. In
the last years, relatively new file systems like ZFS, BTRFS, or ReFS
have gained more importance for users. A common concept these
file systems share is pooled storage. This concept violates the idea
of “one file system is assigned to one volume”, which Carrier's
model is based on (a volume in this case can be any kind of logical
or physical volume like a partition or a RAID). Instead, multiple
volumes are combined to form a pool, which can be accessed by
multiple file systems. As a result of this change, the model and thus
also TSK cannot be applied to modern file systems implementing
pooled storage without revision. This leaves investigators with a
serious gap in forensic analysis capabilities because these file sys-
tems and especially their underlying concepts will most likely
become the future in the area of file systems.

In this paper, we present a revision of Carrier's model, which
makes it applicable to pooled storage file systems like ZFS and
BTRFS. Furthermoredjust like Carrier when he introduced his
modeldwe provide an implementation of our extended model for
ZFS (Hilgert et al., 2017) proving it to be applicable to pooled
storage file systems. In addition to standard file system meta data
such as timestamps, file ownership, and file listings, our imple-
mentation enables the recovery of deleted data by reconstructing
old ZFS tree structures. This method makes it possible to recover
the state of a ZFS file system from certain points in the past. Also,

* Corresponding author.
E-mail addresses: jan-niclas.hilgert@fkie.fraunhofer.de (J.-N. Hilgert), martin.

lambertz@fkie.fraunhofer.de (M. Lambertz), daniel.plohmann@fkie.fraunhofer.de
(D. Plohmann).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

http://dx.doi.org/10.1016/j.diin.2017.06.003
1742-2876/© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 22 (2017) S76eS85

our implementation is able to deal with missing disks of a pool, so
that a forensic analysis can be performed on incomplete pools,
which are neither importable nor accessible by common tools.

File system forensic analysis

In this section, we give a brief recap of Carrier's theoretical
model and its implementation in TSK as a background for
describing our extension.

Theoretical model

Carrier's model (depicted in Fig. 1) divides a file system forensic
analysis into four interdependent steps where the output of one
step is used as input for the next. Therefore, it is necessary to follow
these steps one by one in the correct order.

The first step is the physical media analysis, which deals with the
acquisition of data from storage devices. At that point, the data is
considered a sequence of bytes only and not interpreted at all.

In the volume analysis, the acquired data is scanned for volume
structures. Possible types of volumes include partitions, RAIDs, and
logical volumes of volume groups. A complete disk can also be a
volume, e.g. when a file system is used directly on a raw device.
Moreover, volumes can be combined in an arbitrary number ofways.

After the underlying volume structure has been identified, each
volume can be analyzed in the file system analysis step. Here, the
data stored on each volume is interpreted as a file system and di-
rectories, files, and their meta data are collected and recovered
from the detected file system. In his model, Carrier divides file
system data into five categories:

� File System Category: Contains file system specific data used to
describe the layout of the file system.

� Meta Data Category: All data which is used to describe files and
directories belongs to this category. This includes e.g. temporal
information or file sizes.

� Content Category: Most of the data can be found in this cate-
gory. It contains the actual content of files stored on the file
system.

� File Name Category: This category is also referred to as the
human interface category since its data only provides a name in
order to identify files more easily.

� Application Category: Data in this category is not essential for
the file system and only implemented to provide additional
features, which would be less efficient if implemented on a
higher software level.

After the digital evidence has been collected, it is processed
during the application analysis, which is the fourth and last step of
Carrier's model. Data is interpreted on content-level and analyzed
using application-level techniques like searches in documents or
detailed analyses of malicious software.

The Sleuth Kit

TSK is a forensic toolkit mainly developed by Carrier and the
implementation of the model described in the previous section. It
provides various tools for a file system forensic analysis, which
operate on different categories of the model. These tools include:

� mmls: Analyzes a single volume providing information about its
layout.

� fsstat: Detects the file system type stored on a single volume
and presents statistics and meta data about it.

� fls: Lists all files and directories of a file system stored on a
single volume.

� istat: Presents information of a given meta data structure.
� icat: Extracts data belonging to a meta data structure.

Pooled storage file systems

When Carrier published his model in 2005 there was a one-
to-one association between a file system and a volume. That is,
one volume was formatted with one file system and one file
system spanned one volume (Bonwick et al., 2003). System ad-
ministrators had to carefully plan the volume structure to meet
the desired storage requirements. A mirror RAID for example
provides reliability by storing multiple copies of the data, a
striped RAID increases efficiency by employing multiple disks at
the same time, and volume groups make it possible to divide the
available space logically. The drawback of this concept becomes
clear when storage has to be resized. Instead of simply adding or
removing a disk, this process usually involves complicated file
system resizing, RAID resilvering, or other convoluted tasks,
making this seemingly easy job a rather painful and daring
venture.

Pooled storage overcomes these issues by combining the avail-
able storage devices into a pool, which is shared between all file
systems. No file system has a fixed size and thus never needs to be
resized as it simply adapts to the available space of the pool. Of
course, file system sizes can still be logically bounded by using
reservations and quotas. Furthermore, reducing and increasing the
available pooled storage becomes a simple task. Whenever a new
device is added to the pool, it begins to provide the newly gained
space. On the other hand, when a device is removed, the data is
dynamically shifted to other available parts of the pool without the
file system noticing it. This ease of use is one of the main reasons
that such pooled storage file systems like ZFS, BTRFS, and ReFS
enjoy great popularity.

For the implementation of pooled storage, modern file systems
are no longer stored on top of single volumes. Instead, the file
system including its data andmeta data is stored across all available
volumes in the pool. For this reason, modern file systems imple-
ment their own kind of volume management functionality, which

Fig. 1. Standard model for a file system forensic analysis by Brian Carrier (Carrier,
2005).

J.-N. Hilgert et al. / Digital Investigation 22 (2017) S76eS85 S77

governs the distribution of the data across all devices. This volume
management functionality is responsible for two major tasks. First,
it has to keep track of all members belonging to a specific pool. This
is done by storing additional information on thesemembers such as
a unique identifier of the pool they belong to and in some cases the
layout of the whole pool configuration. This task is essential in
order to be able to tell if a pool is complete and can be accessed
without any errors resulting from missing members.

Second, it needs to provide means to define and keep track of
the exact location where data is stored on the pool members. This
can for example be realized by an additional structure, which
identifies a unique pool member and specifies an offset. Another
possibility is a mapping between the logical address space of the
pool and the physical addresses of its available members.

Extending Carrier's model

In order to extend Carrier's model, we have to evaluate whether
there are any steps that may need to be changed, removed, or
added.

The physical media analysis obviously does not need any change
since it only interprets data as a sequence of bytes and has no
knowledge of file systems or pooled storage concepts. The same
holds for the last step, the application analysis, which is performed
on already collected digital artifacts and is thus also independent
from the underlying file system.

As described in the previous section, pooled storage file sys-
tems need to provide some kind of volume management func-
tionality. This integrated volume manager can be compared to the
established volume managers used to create partitions, RAIDs, or
volume groups which are dealt with in the volume analysis step in
Carrier's original model. Unfortunately, the integrated volume
management capabilities of pooled storage file systems have a
major limitation from a forensic point of view: when used to ac-
cess a pool, the corresponding file system is directly mounted to
the operating system. This means that a lot of the file system's
data, including information about its layout, meta data, and
deleted files, are not accessible. A reconstructed RAID or volume
group on the other hand, makes up a block device storing the
complete data of a file system which can be mounted afterwards.
The file system analysis has to be performed on such a block de-
vice, because it needs access to all of the file system's data. When
using the integrated volume manager functionality of pooled
storage file systems, this is no longer possible as we end up with a
reconstructed and already mounted file system.We are not given a
block device containing the complete data of the pool for this
analysis step.

Requirements

For the aforementioned reason, it is necessary to extend the
established model by an additional step. This step is responsible
for the analysis of the pool and the volume management func-
tionality of pooled storage file systems. This is required in order
to close the gap which was created by integrating volume man-
agers into the file systems themselves and, as a consequence,
limiting the access to essential data needed for a forensic analysis.
A pool analysis needs to provide information about how and
where the data is stored across all devices of the pool so that a
direct access to the data is assured during the file system analysis
step.

In summary, the new step for pool analysis in our extended
model needs to be able to achieve the following goals in order to
enable a file system forensic analysis of a pooled storage file
system:

� Detect members of a pooled storage file system.
� Analyze multiple volumes and identify their corresponding
pool.

� Analyze a complete pool consisting of multiple volumes and its
configuration.

� Provide functionality to access the correct offsets on the correct
members of a pool according to the means specified by the
pooled storage file system.

� Give access to all of a file system's structural data (e.g. file sys-
tem data and meta data).

� Be able to deal with incomplete pools, e.g. when a member is
missing.

Extension

As shown in Fig. 2, the pool analysis is added between the vol-
ume and the file system analysis steps of Carrier's model. The
traditional volume analysis step still performs the detection of
common volume structures like partitions, RAIDs, or logical vol-
umes. These volumes are used as the input for the pool analysis
step, since pools can also consist of these types of volumes instead
of raw devices exclusively. Our newly added pool analysis step
analyzes if the input volumes are part of a pool. If they are not, they
are passed directly to the file system analysis without further ac-
tions. This is the case for established and non-pooled storage file
systems. If they are part of a pool, the pool analysis can yield two
different results. Importable pools can be reassembled using com-
mon tools, which results in a reconstructed pool with limited access
(shown on the left in Fig. 2). This pool can be used to go through the
most recent version of files only and does not enable a file system
analysis. On the other hand, in order to perform a file system
analysis, the pool analysis has to result in a pool with direct access.
This pool needs to provide the functionality required to perform a
file system analysis directly on the pool members including the
mapping from logical to physical addresses.

Fig. 2. Extended model for a file system forensic analysis for pooled storage file
systems.

J.-N. Hilgert et al. / Digital Investigation 22 (2017) S76eS85S78

Note that the flow of the model is not always strictly monotonic.
For instance, a pooled storage file system may enable the user to
create own logical volumes as block devices made up of storage
from the pool. These block devices can again serve as input for the
volume analysis. Similarly, files could contain a file system or
belong to a volume group. We chose to adapt Carrier's illustration
layout of the model, and decided analogously to exclude these
kinds of recursion, which may appear during a forensic analysis.

Implementation

In this section, we describe how we incorporated our extended
theoretical model into TSK equipping it with means to analyze file
systems with pooled storage. In addition to the general capabilities
to analyze pooled storage file systems, we also used our extended
TSK version to implement analysis commands for a concrete file
system of this class. We chose ZFS as an example here, because it
enjoys great popularity (openZFS, 2016; iXsystems, Inc., 2017) and
is the oldest and most mature pooled storage file system providing
the largest stable feature set when it comes to creating pool
structures. Moreover, its source code is open source which enables
a detailed analysis of the file system internals.

Extending The Sleuth Kit

In TSK, two main structures are used to access volumes and file
systems. TSK_IMG_INFO is created after opening a volume and
used in order to access its content. As already described, pooled
storage file systems do not make a block device available which
could be used to create this structure. Hence, a TSK_IMG_INFO

cannot be created for a storage pool. Similarly, file systems are
represented by a TSK_FS_INFO structure. It contains information
like the number of available blocks in a file system, the address of
its first block, or its ID. Since pooled storage file systems do not have
a fixed size, some of these attributes are obsolete for them.
Nevertheless, information like the used number of bytes or file
system type are also available for pooled storage file systems.

For the extension of TSK, we introduce a new structure called
TSK_POOL_INFO, which is used during the pool analysis (see
Fig. 3). It is added between the volume analysis and file system
analysis (TSK_IMG_INFO and TSK_FS_INFO respectively). This
structure stores pool information, which should be available in-
dependent of the concrete pooled storage file system. Examples are
the pool name, ID of the pool, or number of pool members.
Furthermore, it creates multiple TSK_IMG_INFO objects, one for
each pool member. Additionally, these objects can also be of type
TSK_VS_PART_INFOda TSK structure for handling detected par-
titions. Similar to the file system functions in TSK, also the pool

analysis is file system dependent. Each concrete implementation of
a pooled storage file system might use its own concepts and
methods. Therefore, a per file system implementation is unavoid-
able here unfortunately. This concrete implementation is respon-
sible for abstracting the peculiarities of the file systems providing
features such as the detection of pool members, the pool configu-
ration, parsing of internal file system data structures as well as
direct access to the pool members.

The functionality provided by the new pool objects is exposed to
an analyst via the new TSK command pls. An example on how to
use it can be found in our evaluation.

Our extension has minimal impact on the rest of TSK and does
not affect its previous functionality as well as its commands and
usage for established file systems.

ZFS

ZFS was first presented in 2003 (Bonwick et al., 2003) and
initially developed for Solaris. Nowadays, it is available for multiple
other major platforms including FreeBSD, MacOS, and Linux.

Volume management
A pool in ZFS is referred to as a zpool, which consists of one or

more top-level virtual devices (vdevs). Data in this pool is striped
across all of these top-level vdevs. A vdev in turn consists of one or
more members. These child members store vdev labels in their first
and last sectors containing information about the corresponding
zpool and describing to which top-level vdev they belong. ZFS
supports different types of top-level vdevs (The FreeBSD
Documentation Project, 2017):

� A file is simply a single file, which is used as a member of the
pool. No redundancy or increase of efficiency is given in this
case.

� A disk can be any kind of volume including partitions, RAIDs, or
logical volumes created using other volume managers. Similar
to files, these top-level vdevs provide no redundancy or increase
of efficiency.

� Amirror top-level vdev consists of one ormore disks or files. The
data stored on this top-level vdev is copied to each of its
children.

� A raidz is a special structure in ZFS, which can be compared to
RAID level 3 (Leventhal, 2010). Depending on the chosen type
(raidz1, raidz2, or raidz3) it tolerates one, two, or three missing
children.

� A spare vdev is used to indicate hot spare devices.
� The log vdev type is used for devices storing the ZFS Intent Log of
a pool.

� Cache vdevs are used to store the L2ARC, a ZFS cache type which
is used when the primary, in-memory cache is exhausted.

In this paper, we are mainly interested in the first four vdev
types: file, disk, mirror, and raidz. These are the ones which actually
define how and where data is stored on the pool. The log and cache
types on the other hand mainly indicate what is stored and the
spare vdev is only used to replace a faulty vdev of an existing pool
configuration. While they are undoubtedly of interest during a
forensic analysis in general they are not necessary for pool recon-
struction and analysis.

Because data is always striped across all available top-level
vdevs, the failure of one top-level vdev inevitably results in a loss
of data since it is stored nowhere else across the pool. This must not
be confused with missing children in a mirror or raidz top-level
vdev. In these cases, it may still be possible to recover the data, as
it is stored on other children within the top-level vdev.Fig. 3. Implementation of the extended model in The Sleuth Kit.

J.-N. Hilgert et al. / Digital Investigation 22 (2017) S76eS85 S79

In order to access specific top-level vdevs, ZFS utilizes data virtual
addresses (DVAs). Each DVA consists of the ID of the top-level virtual
device and an offset. For disks and files, the offset refers directly to
the offset where the data is stored on the disk or file respectively.
The same holds for a mirror top-level vdev, where the data is stored
at the specified offset on any of its children. When it comes to raidz,
ZFS uses an algorithm to calculate the actual offset from the offset
specified in the DVA. These DVAs are stored in structures referred to
as block pointers. Depending on its importance, ZFS stores up to two
additional copies of the data. This feature is referred to as the
wideness of a block pointer. Apart from these up to three DVAs,
block pointers also contain information about the size of the data
which is stored at the location specified by the DVAs.

General structure
ZFS stores its data, meta data, and file system data in a tree-like

structure as shown in Fig. 4. The root of the tree is referred to as the
überblock, which points to multiple dataset directories. Each file
system in ZFS is implemented by one dataset directory keeping
track of snapshots or clones by using datasets. A dataset in ZFS
points to an object set storing multiple dnodes, the essential struc-
ture describing objects in ZFS. Dnodes are used to describe file
system objects like dataset directories or datasets, but also files.
Furthermore, ZFS uses the copy-on-write (COW) principle to store
data. Each time a data block is changed, a new version of it is stored
at a new location in the pool. Afterwards, the corresponding meta
data and file system structures are rewritten to point to the new
block and also stored at a new location. Finally, the new überblock
is stored pointing to the new ZFS tree. This method ensures that in
case of a crash, the file system is always in a consistent state.

A more detailed explanation of ZFS, its data structures, and
layout can be found in the on-disk specification (SunMicrosystems,
Inc., 2006).

Implementing the model for ZFS

Integrating ZFS into the extended version of TSK involves the
implementation of two major aspects. First, it is necessary to

analyze multiple disks and to detect the corresponding pool and its
underlying configuration. Second, direct access to the data has to be
provided as this is necessary for the file system analysis.

Pool detection
We detect ZFS pool members by scanning the volumes for vdev

labels and parsing their nameevalue pairs. After finding potential
pool members, we check the plausibility of the candidates by
validating the parsed values. For confirmed pool members, we
extract the unique identifier of the pool along with the unique
identifier of the volume. This approach enables the identification of
all pool members. Moreover, we are able to easily detect duplicates
and volumes which do not belong to a ZFS pool.

In the next step, the pool configuration is reconstructed by
examining the top-level vdev data stored in the vdev labels. It con-
tains information about the total number of top-level vdevs in the
pool, the type of the top-level vdev a volume belongs to, and the
unique IDs of other children belonging to the same top-level vdev.
Afterwards, the detected pool configuration is used to evaluate the
completeness of each top-level vdev and subsequently of the whole
pool. If at least one top-level vdev is not reconstructible (e.g. due to
too many missing children), the whole pool becomes incomplete
since some of its data is missing. Our implementation stores infor-
mation about the detected and expected top-level virtual devices and
their availability. This information is useful, in cases of double- or
triple-wide block pointers containing a DVA, referencing an unavai-
lable top-level vdev. In these cases, our implementation ignores this
DVA and chooses one, which points to an available top-level vdev.

Direct pool access
Mapping the DVA stored in a block pointer to the correct offset

of a pool member requires the IDs of the top-level virtual devices,
which have been obtained in the previous step. Whenever a block
pointer and thus a DVA is processed, the implementation directly
returns the data depending on the top-level vdev type:

� For files or disks the data is directly extracted from the pool
member at the offset specified in the DVA.

� For mirrors, one of the top-level vdev's available children is
randomly chosen and the data at the offset specified in the DVA
is extracted.

� For raidz, ZFS0 algorithm is used to compute the actual offset and
member storing the data which is then extracted.

Evaluation

In this section, we provide three case studies of how our
implementation enables a forensic analysis of ZFS. To ensure the
correctness of our implementation we compared the results with
the output of the ZFS debugger, whenever its functionality
permitted it.

Fig. 4. Tree structure implemented in ZFS (Bonwick et al., 2003).

Fig. 5. Example EvaluationPool consisting of four top-level virtual devices and seven disks in total.

J.-N. Hilgert et al. / Digital Investigation 22 (2017) S76eS85S80

Scenario A: forensic analysis

In this scenario, we show a full iteration through our extended
model using the modified TSK version. That is, we start from raw
storage devices and end up with the extraction of the contents of a
file stored on the file system.

We use the sample zpool depicted in Fig. 5 consisting of seven
storage devices. Using these devices we configured four top-level
virtual devices: two disks, a mirror, and a raidz1. This combina-
tion of different top-level vdev types is unlikely to be found in
practice, but it serves well to show that all different top-level vdev
types are supported by our implementation.

Starting with the raw storage devices we use our newly
implemented pls indicating that the devices belong to a ZFS pool.
Additionally, it already displays information about the corre-
sponding pool stored in the vdev labels of the storage device. This
information includes the detected überblocks. The most and sec-
ond most recent überblocks are highlighted by and
respectively.

Afterwards, pls is used for the analysis of thewhole pool. This is
done by specifying a folder containing all of the acquired devices.
This step identifies the pool configuration, eliminates possible du-
plicates, and provides information about the completeness of the
pool as shown in Listing 2.

Since multiple file systems can be used on a single zpool,
fsstat enables us to display an overview of the file systems in a
pool. Listing 3 presents the output for our test pool also showing
that our fsstat implementation is able to deal with nested file
systems. Furthermore, detailed information about a file system can
be read by specifying its complete path.

A file listing can be obtained by using fls. It displays the files and
directories of all datasets as shown in Listing 4. Datasets are marked
with an asterisk, because they can easily be confused with regular
directories in ZFS. The number given in brackets refers to the object

J.-N. Hilgert et al. / Digital Investigation 22 (2017) S76eS85 S81

number of the file's or directory's dnode in the corresponding
dataset. By default, this command traverses through directories and
datasets recursively.

Detailed information about a specific dnode in a file system can
be obtained by using istat. A sample output is shown in Listing 5.
We have to specify both, the object number as well as the name of
the dataset. This is because each dataset has its own object
numbers and, therefore, a dnode can only be uniquely identified by
these two values together.

Last, the data of a dnode can be extracted by using the icat

command.

Scenario B: recovering deleted data

Recovery of deleted files is generally possible because file sys-
tems usually do not actually remove the corresponding data, but
only flag it as deleted in some kind of way. To restore deleted files in
established file systems it is possible to scan the meta data for this
flag. Starting from structures with this flag, an investigator can then
recover parts or possibly all of the data of a deleted file. The
important point here is that the meta data structures of deleted
files are still a part of the file system.

In ZFS, this is not the case due to the COW principle it imple-
ments. Each time a change in the file system occurs, a new block is
written to a new location somewhere on the available pool. After-
wards, the meta data is changed accordingly, so that it points to the
new block. The old block is still present on the disk until it is
overwritten. In contrast to the meta data of the established file
systems, these blocks are not reachable from the root of the current
ZFS tree anymore.

This means that we have to use an older version of the ZFS tree
in order to find and recover deleted data from ZFS. Common tools,
however, only provide access to themost recent version of the COW
tree. Hence, no old (deleted or overwritten) data nor its meta data is
accessible. By providing direct access to the pool, we are able to
address the complete data stored in the pool including old versions
of the COW structures (as indicated in Fig. 6). This is similar to file
recovery for established file systems, where the meta data struc-
tures stored on the volume are analyzed.

To evaluate our file recovery procedure, we configured a zpool
consisting of five disks and created a file system with the name
data on it. Then we stored the image file IMG_00134.jpg on the
data file system and deleted it. The upper part of Listing 6 shows
that the file is indeed not present anymore if we use fls with the
most recent überblock with the transaction group number (TXG)
660. In contrast, if we use the second most recent überblock with
the TXG 656, fls includes the deleted file in its output.

Provided the file contents have not been overwritten, we are
now able to recover the file using icat, again specifying the older
überblock 656. During our small-scale tests wewere always able to
completely recover deleted files. In write-heavy environments this
will most likely not be the case. Moreover, we expect that the exact
configuration and size of the pool will certainly have an effect on
the success probability of the file recovery process. Amore in-depth
analysis on the influence of these parameters remains to be
performed.

J.-N. Hilgert et al. / Digital Investigation 22 (2017) S76eS85S82

Scenario C: reconstructing an incomplete pool

Whenever a top-level vdev is missing or corrupted, the pool
cannot be imported and, consequently, its data cannot be
accessed. Especially when only little data was stored on the
missing top-level vdev, this behavior becomes a significant
limitation. Imagine for instance the pool shown in Fig. 7 con-
sisting of five top-level vdevs each being a single disk. Data
stored by ZFS is now striped across all of these disk. This means
that if one disk is missing, on average 80% of the pool's data will
still be available but cannot be accessed. In fact, for some files
even more than 80% may be available in case their data is only
stored on the remaining disks. As we already defined in our
requirements, a forensic tool should be able to extract the data
which is still available.

Our extended implementation of TSK accesses the pool mem-
bers directly. Therefore, it is not reliant on a successfully assembled

pool. Furthermore and since we keep track of the availability of the
pool's top-level vdevs, we are able to choose those DVAs of double-
or triple wide block pointers, which are still pointing to available
top-level vdevs. All of this enables us to analyze the file system data
on the remaining disks, reconstruct the ZFS tree, and extract the
available data from the incomplete pool. Fig. 8 illustrates the
capability of this feature.

We took a ZFS pool as shown in Fig. 7 created a file system and
stored an image on it. Then we removed the pool from the system
and removed one of the disks. Afterwards, we tried to mount the
file system again, which failed with the message: cannot import

‘myPool’: one or more devices is currently unavailable.
On the other hand, when using our extended TSK in a way as

presented in Scenario A: forensic analysis, we were able to suc-
cessfully recover themajority of the image as shown in Fig. 8. This is
a scenario where existing state-of-the-art tools would return
nothing at all.

Fig. 6. Most recent ZFS tree accessible by common tools compared to old tree structures accessible after the pool analysis step.

Fig. 7. Example image stored across the five top-level virtual devices of a zpool.

J.-N. Hilgert et al. / Digital Investigation 22 (2017) S76eS85 S83

Limitations

We are confident that our extended model can be applied to any
pooled storage file system. However, the exact implementation as
well as the possibilities of a forensic analysis strongly depend on
the concrete file system, its features, methods, and layout. For
example, ZFS stores multiple versions of global data, which we
exploited for pool reconstruction in case of a missing top-level
vdev. This feature is file system specific and not a part of pooled
file systems in general. Furthermore, the aforementioned recovery
of data by utilizing old data structures in pooled storage file systems
is owed to the COW principle. Pooled storage file systems using
another concept may not leave any fragments of old and deleted
data behind. Yet they may implement other concepts and struc-
tures, which enable file recovery in a similar way.

Related work

Overall, we observed that pooled storage file systems and newer
file systems in general did not receive appropriate attention. This
holds for both, scientific research as well as forensic tool
development.

This very problem was emphasized already in 2009 by Nicole
Beebe (Beebe, 2009). In her article, Beebe argues that most of the
research and knowledge in the area of digital forensics focused on
Microsoft's operating systems and some of the better known Linux
distributions. Furthermore, she highlights the importance to also
consider non-standard systems and new technological de-
velopments. One of these new developments she explicitly men-
tions, are file systems including ZFS. We share Beebe's view and
although we feel that eight years after her article was published at
least some of her concerns have been addressed, the area of
modern file systems still has not received the attention it deserves.

In the same year, Beebe et al. also published a paper elaborating
on the forensic implications of ZFS (Beebe et al., 2009). The authors
argue that ZFS introduces several aspects that may be beneficial
during a forensic analysis. Here, they mention that ZFS creates
multiple copies of data which are likely present in allocated as well
as in unallocated space of a disk. Moreover, they reason that
snapshots, clones, and the COW concept provide investigators with
valuable insight into the chronological states of the file system and
the data stored on it. On the other hand, the authors also highlight
challenges introduced by ZFS. One of the major problems they
describe is the compression of meta and user data built into ZFS.
The article raises some very important questions regarding ZFS in a
forensic context. However, most of these questions remain unan-
swered or unverified, which is also acknowledged by the authors.
While our paper was not intended to answer the questions raised

by Beebe et al., we found a lot of their statements confirmed. For
instance exploiting the COW principledlike we did to recover
deleted filesdshows that ZFS indeed has certain features enabling
some degree of “time travel” through the file system's history.

Max Bruning steps through a complete datawalk of ZFS from the
überblock to the actual data on his blog (Bruning, 2008). This data
walk provides excellent insight into ZFS and its data structures.
Although his work serves great as a basis for a manual file system
analysis, it requires detailed knowledge of ZFS since all of the
structures are parsed by hand. This is clearly not an efficient
approach for an analyst during an investigation.

Leigh and Shi discussed a forensic timeline analysis of ZFS
(Leigh, 2015), but did not focus on the whole process of a digital
forensic analysis of ZFS nor its pooled storage functionality. Andrew
Li described a forensic file recovery on ZFS, providing a proof of
concept that a forensic analysis of ZFS is achievable (Li, 2009).
Furthermore, he presented an extension for the ZFS debugger,
which performs file recovery without using the file system layer.
For this purpose, Li analyzes every ZFS structure until he arrives at
the actual data. This principle is similar to the data walk presented
by Bruning. Unfortunately, Li's extension only uses the active
überblock and is thus not able to recover deleted data. Additionally,
it can only deal with importable pools since it is based on the ZFS
debugger.

At the time of writing, we were not able to find any scientific
publications focusing on a detailed forensic analysis of BTRFS or
ReFS. For BTRFS, a forensic toolkit based on TSK commands has
been published by Shujian Yang (Yang, 2016). Unfortunately, this
implementation is not capable of handling multiple disks in BTRFS.
Thus, it lacks the previously described pool analysis step, which is
required for a forensic analysis of pooled storage file systems. For
ReFS, only non-scientific descriptions of its layout and an exem-
plary forensic analysis could be found (Head, 2015; Ballenthin,
2013).

This lack of scientific publications and tools for a forensic anal-
ysis of pooled storage file systems emphasizes the relevance of our
extension of the standard model for file system forensic analysis to
provide a basis for further research and tool development.

Conclusion and future research

By extending TSK and its underlying model we enable the
analysis of a whole new class of file systems using this popular
toolkit. The proliferation of pooled storage file systems such as ZFS,
BTRFS, and ReFS suggests that this file system type will definitely
play a part in forensic investigations today and in the future. Just
like other researchers have already pointed out, we think that
newer file systems like the ones mentioned did not receive the
attention they deserve from a forensic point of view yet. We are
confident that our work is a valuable step to close this gap.

Moreover, we hope to foster more research in this area. One
natural next step would be to analyze BTRFS and ReFS to determine
what structures are relevant to integrate them into our extended
model. Furthermore, there are more file system types which are
currently not considered in Carrier's or our extended model, e.g.
log-structured file systems like F2FS or NILFS. It is still an open
question whether these types can also be integrated into the
standard model.

We are also convinced that our toolkit makes future forensic
research of ZFS more accessible. Using our implementation already
provides parsing capabilities for a lot of the data structures of ZFS,
so that researchers can focus on the actual functionality and
evaluations.

Last, we also supply the practitioner with a tool to analyze ZFS,
including capabilities to use old überblocks for file recovery and the

Fig. 8. Extracted example image of example pool with one missing disk.

J.-N. Hilgert et al. / Digital Investigation 22 (2017) S76eS85S84

ability to parse data of an incomplete pool (Hilgert et al., 2017).
Again, we hope that our implementation promotes the develop-
ment of higher level analysis tools for ZFS.

References

Ballenthin, W., 2013. The Microsoft ReFS File System. http://www.williballenthin.
com/forensics/refs/index.html.

Beebe, N., 2009. Digital forensic research: the good, the bad and the unaddressed.
In: IFIP International Conference on Digital Forensics. Springer, pp. 17e36.

Beebe, N.L., Stacy, S.D., Stuckey, D., 2009. Digital forensic implications of ZFS. Digit.
Investig. 6 (Suppl. S99eS107).

Bonwick, J., Ahrens, M., Henson, V., Maybee, M., Shellenbaum, M., 2003. The
Zettabyte file system. In: Proceedings of the 2nd Usenix Conference on File and
Storage Technologies.

Bruning, M., 2008. ZFS On-Disk Data Walk (Or: Where's My Data). http://www.
osdevcon.org/2008/files/osdevcon2008-max.pdf.

Buchholz, F., Falk, C., 2005. Design and implementation of Zeitline: a forensic
timeline editor. In: Proceedings of the Digital Forensics Research Workshop
(DFRWS).

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.

Carrier, B., 2017a. Autopsy. https://www.sleuthkit.org/autopsy/.
Carrier, B., 2017b. The Sleuth Kit. https://www.sleuthkit.org/sleuthkit/.
Garfinkel, S.L., 2009. Automating disk forensic processing with SleuthKit, XML and

Python. In: Proceedings of the 2009 Fourth International IEEE Workshop on
Systematic Approaches to Digital Forensic Engineering. IEEE Computer Society,
Washington, DC, USA, pp. 73e84. http://dx.doi.org/10.1109/SADFE.2009.12.

Head, A., 2015. Forensic Investigation of Microsoft's Resilient File System (ReFS).
http://resilientfilesystem.co.uk/.

Hilgert, J.N., Lambertz, M., Carrier, B., 2017. The Sleuth Kit with Support for Pooled
Storage. https://github.com/fkie-cad/sleuthkit.

iXsystems, Inc, 2017. FreeNAS Storage Operating System. http://www.freenas.org/.
Leigh, D., 2015. Forensic Timeline Analysis of the Zettabyte File System.
Leventhal, A., 2010. What Is RAID-Z? https://blogs.oracle.com/ahl/entry/what_is_

raid_z.
Li, A., 2009. Zettabyte File System Autopsy: Digital Crime Scene Investigation for

Zettabyte File System.
openZFS, 2016. Companies e OpenZFS. http://open-zfs.org/wiki/Companies.
Sun Microsystems, Inc, 2006. ZFS On-Disk Specification e Draft. http://www.giis.co.

in/Zfs_ondiskformat.pdf.
The FreeBSD Documentation Project, 2017. ZFS Features and Terminology. https://

www.freebsd.org/doc/handbook/zfs-term.html.
Yang, S., 2016. btrForensics. https://github.com/shujianyang/btrForensics.11.

J.-N. Hilgert et al. / Digital Investigation 22 (2017) S76eS85 S85

DFRWS 2018 USA d Proceedings of the Eighteenth Annual DFRWS USA

Forensic analysis of multiple device BTRFS configurations using
The Sleuth Kit

Jan-Niclas Hilgert a, *, Martin Lambertz a, Shujian Yang b

a Fraunhofer FKIE, Bonn, Germany
b Cap Barbell, Houston, TX, USA

Keywords:
File systems
Pooled storage
Forensic analysis
BTRFS
The Sleuth Kit

a b s t r a c t

The analysis of file systems is a fundamental step in every forensic investigation. Long-known file
systems such as FAT, NTFS, or the ext family are well supported by commercial and open source forensics
tools. When it comes to more recent file systems with technologically advanced features, however, most
tools fall short of being able to provide an investigator with means to perform a proper forensic analysis.

BTRFS is such a file systemwhich has not received the attention it should have. Although introduced in
2007, marked as stable in 2014, and being the default file system in certain Linux distributions, there is
virtually no research available in the area of digital forensics when it comes to BTRFS; nor are there any
software tools capable of analyzing a BTRFS file system in a way required for a forensic analysis.

In this paper we add support for BTRFSdincluding support for multiple device configurationsdto The
Sleuth Kit, a widely used toolkit when it comes to open source file system forensics. Moreover, we
provide an analysis of forensically important features of BTRFS and show how our implementation can be
used to utilize these during a forensic analysis.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In 2005, Brian Carrier published his book “File System Forensic
Analysis” Carrier (2005), in which he analyzed and explained
storage devices and file systems in an unprecedented depth.
Furthermore, he proposed a model how to analyze storage media
from the physical media up to the analysis of extracted files. His
work quickly became the foundation for any analysis conducted in
this area. Moreover, he provided an implementation for his theo-
retical model, known as The Sleuth Kit (TSK) Carrier (2017). TSK is a
forensic toolkit, providing multiple commands, which enables an
investigator to perform a forensic analysis of file systems, inde-
pendent of the actual file system at hand. Thus, no extensive
background knowledge about the internal structures of a file sys-
tem is required in order to create a file listing, recover deleted files,
or search for unallocated sections. Alongwith the fact that it is open
source and can be used or extended by anyone, TSK became a
commonly used tool for many analysts and researchers next to
commercial products.

TSK provides support for a variety of file systems including ext4
on Linux, Microsoft's NTFS and FAT, and Apple's HFSþ. Although
these file systems are still widely used on today's computers, other
file systems have been introduced since the publication of Carrier's
book and TSK. While FAT for instance is still often used on thumb
drives or memory cards due to its simplicity, the demand for reli-
ability, security, and maintainability has sparked progress in the
world of file systems. The copy-on-write principle is used to keep
file systems in a stable state, even after a crash has caused a write
operation to fail. Encryption on a file system-level increases the
protection of personal data in such a way that it is available out
of the box and transparent to the user. Furthermore, modern file
systems decrease the overhead for administrative tasks like volume
management or partitioning. By implementing multiple device
support like ZFS or BTRFS, volumes can be added or removed
straightforwardly to existing file systems. Additionally, snapshots
are used to effortlessly create complete backups of a file system.

In this paper, we implement one of these modern file systems
into TSK in order to close the gap between them and the forensic
world. For this purpose, we are taking an in-depth look at BTRFS as
one of the most prominent examples in this area. BTRFS supports
multiple of the aforementioned features, including copy-on-write,
snapshots, and multiple device support. Despite the fact that it

* Corresponding author.
E-mail addresses: jan-niclas.hilgert@fkie.fraunhofer.de (J.-N. Hilgert), martin.

lambertz@fkie.fraunhofer.de (M. Lambertz), yang_shujian@hotmail.com (S. Yang).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

https://doi.org/10.1016/j.diin.2018.04.020
1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 26 (2018) S21eS29

was implemented into the Linux Kernel more than eight years ago,
it has not received the adequate amount of attention in the aca-
demic or practical forensic area. Therefore, we also provide the first
multiple device analysis of BTRFS form a forensic point of view.

2. Related work

In this section we present related work for two main aspects:
forensic analyses of BTRFS and extensions of TSK with a focus on
modern file systems with multiple device support.

2.1. BTRFS forensics

As already mentioned in the Introduction, there is virtually no
academic work dealing with BTRFS in the context of digital foren-
sics. While there are a few papers introducing BTRFS and some of
its structures Bacik (2012); Rodeh et al. (2013), to the best of our
knowledge there is no prior work investigating which structures
are of particular relevance to perform a forensic analysis of BTRFS.

Looking at the non-academic world, the situation is similar. At
the time of this writing the well known forensic suites like
EnCase Forensic, FTK, or X-Ways Forensics do not list BTRFS in
their lists of supported file systems. X-Ways only mentions the
“ability to identify BTRFS file systems” in their changelog of X-Ways
Forensics Fleischmann and Stefan, 2012. Although there is an
open pull request for BTRFS support for TSK on GitHub P€oschel
and Stefan, 2015, the code changes have not been merged since
2015. Moreover, the code is not able to handle multiple device
configurations which mirror or stripe data to their devices mak-
ing it applicable to a small fraction of BTRFS configurations only.
What is more, during our experiments the implementation failed
for large test pools (z 1 TB of size).

2.2. Multiple device file systems in The Sleuth Kit

In their work “Extending The Sleuth Kit and its Underlying
Model for Pooled Storage File System Forensic Analysis” Hilgert
et al. (2017), Hilgert et al. use the term “pooled storage file sys-
tems” to refer to modern multiple device file systems like ZFS and
BTRFS. These file systems are characterized by the fact that all
available space is combined to a pool and then shared between the
file systems created on this pool. Thus, none of the file systems
needs to be assigned a fixed size as they can grow and shrink
dynamically. In the same transparent way, storage can be added
and removed to the storage pool. These advantages of pooled
storage file systems are possible, since they are providing their own
type of volume management functionality keeping track of the
pool members and the mapping between the logical file system
addresses and the actual physical offsets on the members.

In the same paper, Hilgert et al. assess the applicability of the
model behind TSK for such modern pooled storage file systems.
They found that the steps of the original model are still required,
but that the class of pooled storage file systems needs an additional
step to be performed between the volume analysis and the file
system analysis. The authors call this step “pool analysis” and Fig. 1
depicts where it has been added to in the original model.

Furthermore, they define five key aspects this step has to
implement. An obvious aspect is the capability to detect pooled
storage file systems. Since pooled file systems play their strength
when on multiple disks, support for such multiple device config-
urations is also an important requirement for this step. Hilgert et al.
state that it should be possible to determine the pool membership
of disks and afterwards analyze the resulting storage pools, which
are potentially comprised of more than one disk. Furthermore, the
authors highlight that a forensic analysis should not rely on an

assembled pool, but that a forensic tool should be able to parse all
of the important data structures on its own in order to allow for the
adequate level of detail for a forensic analysis. Finally, the authors
demand that the pool analysis should be able to deal with missing
pool members where possible. That is, it should be possible to
perform a forensic analysis of a RAID or mirror pool if there are still
enough pool members present for example.

As a proof of concept Hilgert et al. implemented support for
ZFS into TSK to show that their extended model enables a forensic
analysis of modern pooled storage file systems. However, even
though the authors mention BTRFS as a pooled storage file system,
they do not provide a detailed investigation of this particular file
system. Neither do they prove that BTRFS is in fact covered by their
model.

3. BTRFS fundamentals

BTRFS is a modern copy-on-write file system primarily for the
Linux operating system. It supports advanced features like check-
sums, deduplication, and SSD awareness btrfs Wiki (2018a).
Moreover, BTRFS allows the creation of subvolumes which can be
considered as “independently mountable POSIX filetree[s]” btrfs Wiki
(2017e). These subvolumes can be used to divide the complete file
system into smaller units. Typically, such a unit contains areas of
the file systemwhich are cohesive in some way. The subvolumes of
a BTRFS file system can be mounted independently of each other
and with different mount options.

Furthermore, BTRFS supports snapshots, which utilize the copy-
on-write principle to save and restore (parts of) a file system.
Snapshots are created per subvolume and technically a snapshot is
a subvolume itself. A snapshot of a subvolume represents the state
of the original subvolume at the time the snapshot was created.
Since snapshots are subvolumes, they can be mounted and modi-
fied. This concept gives users a comfortable option to create
backups of their datawithout any additional soft- or hardware. This

Fig. 1. Extended model for a file system forensic analysis of pooled storage file systems
Hilgert et al. (2017).

J.-N. Hilgert et al. / Digital Investigation 26 (2018) S21eS29S22

renders snapshots a highly interesting feature when it comes to the
forensic analysis of a BTRFS file system.

As already mentioned before, BTRFS is a file system with built
in multiple device support. That is, it has its own volume manager
implemented responsible for storing data on and reading it back
from the underlying volumes of a file system. BTRFS supports
different configurations in such amultiple device setup. At the time
of this writing the BTRFS status page btrfs Wiki (2017d) lists RAID0,
RAID1, and RAID10 as stable implementations and RAID5 and
RAID6 as flawed implementations. In line with what Hilgert et al.
did in their paper Hilgert et al. (2017) for ZFS, we will use the terms
pool and BTRFS file system interchangeably to refer to the complete
file system including subvolumes from now on; even though the
term pool is not part of the BTRFS terminology.

3.1. General overview

Similar to the ext file systems, BTRFS starts with a superblock,
which stores the most basic metadata about the file system.
Apart from that, the rest of the data is stored in different B-trees.
The addresses of the roots of these trees can be found in the
root tree. The address of the root tree in turn is stored in the
superblock.

A main characteristic of a B-tree is that all information is
stored in its leaf nodes. The non-leaf nodes, known as internal
nodes in BTRFS, are only used as references to leaf nodes. Due to
this, the internal nodes of different tree types are very similar as
they only contain pointers to other nodes. The leaf nodes on
the other hand have different types of records called items. Their
exact structure and content depends on the type of the tree at
hand. Listed below is an overview of the most important types of
trees in BTRFS:

� Chunk tree: The chunk tree is used to perform the mapping
from logical to physical addresses in BTRFS. All addresses used in
BTRFS are logical addresses, which translate to one or more
physical addresses depending on the pool configuration. Since
also the chunk tree is referenced by its logical address, the su-
perblock contains a part of the chunk tree, the system chunk
items, for the initial mapping. This is required to build the chunk
tree in the first place. A detailed description of the mapping
performed by the chunk tree in BTRFS is given in Section 3.2.
Besides, the chunk tree also contains information about the
devices used in the pool.

� Root tree: The root tree stores the addresses of the roots of the
trees used by BTRFS. This includes the extent tree, checksum
tree, and device tree as well as all available file system trees. The
root address of the chunk tree on the other hand is not stored in
the root tree, but in the superblock.

� File system tree: This type of tree stores information about the
file and directory hierarchy in file systems, subvolumes, and
snapshots. This includes the metadata of files and directories as
well as extent data items referencing the actual data.

� Extent tree: Allocation records can be found in the extent tree.
This includes block group items, defining regions in the logical
address space of BTRFS as well as metadata and extent items
allocating space within these regions. The number of references
to these items as well as a back reference for each reference is
also stored.

� Checksum tree: This tree simply contains checksums for the
data stored in the BTRFS file system.

� Device tree: The device tree is used for the reversed address
mapping, from physical to logical addresses. This becomes
necessary, when physical devices are for instance removed from
the pool.

The general approach to perform a BTRFS file walk from the
superblock to the contents of a file is depicted in Fig. 2 and includes
the following main steps:

1. Locate the superblock at the default physical address 0x10000.
2. Extract the system chunk items stored in the superblock for the

initial logical to physical address mapping.
3. Find the logical address of the chunk tree in the superblock,

translate it to its physical counterpart, and build the chunk tree.
From now on, this tree will be used to perform the mapping
from logical to physical addresses.

4. Find the logical address of the root tree in the superblock,
translate it to its physical address and build the root tree.

5. The root tree stores the logical addresses of the roots of the
other trees including the file system trees. Find the address of
the corresponding root of the file system tree, translate it and
build the tree.

6. Traverse the file system tree to find the file of interest. Its name
is stored in a directory item.

7. Read the corresponding inode item of the file in the file system
tree, referenced by the directory item, to retrieve its ID and
metadata.

8. Use the ID as a key to find its extent data items in the file system
tree.

9. Extract the data described by all extents corresponding to the
file by mapping their logical to physical addresses.

In summary, the analysis of BTRFS starts with reading the
superblock and extracting the roots of the trees. Once the tree
roots are available, the rest of the analysis is all about expanding,
referencing, and reading the child nodes of these tree roots. More
detailed information about the on-disk format and data struc-
tures of BTRFS can be found in the official Wiki btrfs Wiki (2018b,
2017a).

3.2. Multiple device support

An integral feature of BTRFS is the support for multiple devices,
whose available space is combined and shared by the subvolumes.
In order to accomplish this, BTRFS adds another layer of abstraction
between the logical addresses used by the file system and the
corresponding physical addresses referring to the actual devices.
This abstraction is implemented by a mapping, which translates a
logical address to the correct combination of physical device and
corresponding physical offset. Depending on the configuration, a
logical address can also map to multiple physical offsets and
devices in order to increase the redundancy of the data.

For keeping track of its devices and performing the logical-to-
physical mapping, BTRFS uses special structures stored in the
chunk tree. For each device, a device item is added to the chunk tree,
containing information such as a unique identifier for the device,
another device identifier used to index the available devices, and its
total available space. In addition to device items, the chunk tree
containsmultiple chunk items defining logical chunks. In BTRFS, the
complete logical address space is split into these non-overlapping
logical chunks. Thus, one logical address can be uniquely associ-
ated with one logical chunk. These logical chunks also correspond
to the regions defined by the block group items found in the extent
tree. Each chunk item contains the logical start address of the chunk
it describes as well as its length, the type of data it stores, and the
RAID configuration used to store it. Different types of chunk items
are used to map different types of data btrfs Wiki (2017b):

� System: System chunk items are used for the translation of
logical addresses of the chunk tree itself. For this reason, all

J.-N. Hilgert et al. / Digital Investigation 26 (2018) S21eS29 S23

available system chunk items are also already stored in the
superblock as described previously.

� Metadata:Metadata chunk items are used for the translation of
logical addresses of file system internal data structures like root
items, inode items or directory items. Thus, tree structures like
the root tree, extent tree, device tree, and file system trees are
built using this type of chunk items. In BTRFS, small amounts of
data can be stored inside of metadata structures, for example in
extent data items. In this case, this chunk type is implicitly used
to map the addresses of the embedded raw data.

� Data: These chunk items are only used for the translation of
logical addresses of data blocks.

Each chunk is further divided into a number of stripes defined in
the chunk. The device corresponding to a stripe can be identified
by the given device identifier. The physical offset of each stripe
indicates the beginning of the data on a device. Each stripe in a
chunk item is in turn divided into equally sized units with a stripe
length defined in the chunk item. In addition to the type of data
stored within the chunk, its type also defines the RAID configura-
tion used to store data.

In RAID0, all data is striped across the available stripes of the
logical chunk. After a unit in a stripe is filled, the data is written to
the next stripe. This configuration leads to data loss, if one of the
stripes fails. RAID1 mirrors the data to all stripes in the chunk
resulting in redundancy. That is, the units of each stripe are the
same. As far as we know, RAID1 always uses a pair of all available
devices as its stripes for each chunk item, while RAID0 always uses
all of the available devices. The exact number of stripes used by
each chunk item is always specified in the chunk item itself. RAID10
combines the aforementioned concepts in such away, that all of the
available stripes in a chunk are split into RAID1 configurations
across which the data is then striped. Each of these RAID1 config-
urations in turn mirrors the data across all of their corresponding
stripes. The exact number of stripes used per RAID1 configuration is
defined in the chunk and referred to as sub stripes.

Listing 1. Chunk item example.
$ btrfs-debug-tree/dev/sda

[...]

item 7 key (FIRST_CHUNK_TREE CHUNK_ITEM 299892736)

itemoff 15265 Itemsize 176

chunk length 262144000 owner 2 stripe_len 65536

type DATAjRAID10 num_stripes 4 sub_stripes 2

stripe 0 devid 2 offset 9437184

dev uuid: 66aaeb1a-8cbb-4979-89cf-56fb0c6c958a

stripe 1 devid 1 offset 152043520

dev uuid: b3b74185-13b0-4d2a-8300-ca740c384f4b

stripe 2 devid 5 offset 140509184

dev uuid: c7099e88-5597-4776-9ee0-3d6b662e53b3

stripe 3 devid 4 offset 140509184

dev uuid: e84da2d2-d5fe-4226-a8aa-52d1ad8988b5

[...]

As an example, the chunk item depicted in Listing 1 defines
the chunk starting at the logical address 299892736 spanning
to address 562036736. It is used to store data using a RAID10
configuration with four stripes and two sub stripes. As described
earlier, this means that these stripes are split into two RAID1 con-
figurations, each consisting of two stripes. In this case, stripe 0 and
1 as well as stripe 2 and 3 are used as a RAID1 configuration and
store the same data. For each stripe, the corresponding device
identifier is given indicating the physical device on which the data
of the stripe is stored. In this example, the stripes of the chunk are
located on devices 1, 2, 4 and 5. The exact location of the data on
each stripe (and therefore on the devices) can be determined using
the given offset for each stripe.

4. Integrating BTRFS into TSK

In order to integrate BTRFS into TSK, it is indispensable to
evaluate the applicability of its underlyingmodel to multiple device
file systems which BTRFS is an instance of. Hilgert et al. already

Fig. 2. Overview of the most important BTRFS structures used for a file walk.

J.-N. Hilgert et al. / Digital Investigation 26 (2018) S21eS29S24

discussed this and presented an extended model for TSK, which
enables a forensic analysis of multiple device file systems. For this
reason, wewill first assess the applicability of the revised model for
BTRFS followed by a detailed overview of our implementation.

4.1. Theoretical model

Hilgert et al. adopted the first and last step, the physical media
analysis and the application analysis, as they stood because they do
not need to be changed in order to be applied to pooled storage file
systems. The first step only processes the available data on the
devicesdthe pool members in our casedas a sequence of bytes and
does not interpret the data at all. The last step on the other hand,
interprets the extracted data as files. This does not require any file
system specific information, because at that time of the analysis,
the files have already been extracted from the file system. Since
these two steps are independent of the file system, they can also be
applied unchanged to BTRFS.

The original model was extended by adding a pool analysis step.
Hilgert et al. added this step to address the integrated volume
management capability pooled storage file systems are equipped
with. The potentially multiple devices spanned by a BTRFS pool,
however, are not necessarily raw hard disks. Instead, they can also
be partitions, RAIDs or other multiple disk volumes. Therefore, also
for BTRFS it is still required to perform a volume analysis in order to
detect the volumes involved.

Furthermore, mounting a BTRFS file system also results in access
to the data (i.e. files and directories) stored on the most recent
version of the file system. Apart from that, no access to file system
internal data structures is possible. Accessing older versions of files
as well as file system data and metadata directly requires direct
access to the BTRFS pool, which is obtained during the pool analysis
step. Taken all together, BTRFS fits into the model presented by
Hilgert et al. without any needs for further modification.

As Hilgert et al. pointed out, the pool analysis is a highly file
system dependent step, which needs to be implemented for each
new file system. This is similar to the file system analysis func-
tionality in TSK that differs from file system to file system. The next
section describes in detail how the pool analysis for BTRFS is
implemented.

4.2. Pool analysis

The tasks of the pool analysis can be divided into two major
steps. First, the given volumes need to be searched for a pooled
storage file system. Furthermore, the corresponding pool and its
members need to be identified. Second, after the members and
file system type are known, the mapping from logical to physical
addresses needs to be performed. This results in direct access to the

pool, which is required to perform a complete file system analysis
of BTRFS.

4.2.1. Pool membership detection
As an input, the pool analysis receives the volumes found during

the volume analysis and detects the underlying pooled storage file
system, if there is any. Each device in BTRFS stores a superblock at
the physical offset 0x10000, containing the most essential file
system information. It does not only identify the volume as part of a
BTRFS pool, but it also contains the file system UUID. This ID is
global for the whole BTRFS pool and can be used to identify other
members of the multiple device configuration. Unlike ZFS which
requires a name for its pools, BTRFS does not demand a label to be
set for a file system or a pool. The superblock also includes a device
item for the current device containing its unique identifier enabling
us to rule out duplicate volumes.

Another essential part of this step is the detection of missing
devices. Although the superblock contains the total number of
devices used in a BTRFS pool, it provides information only about the
device it is stored on and not about any of the other devices of the
pool. Some information can be obtained by looking at the system
chunk items stored in each superblock. These chunks contain the
IDs and the UUIDs of the devices used for its stripes. However, in
configurations like RAID1 or RAID10, not all available devices may
be used for the available system chunks. In that case, this method
will not provide a complete listing of all devices. Another possibility
to obtain more information about the available devices opens up,
when all devices storing the chunk tree are available. In this case,
the complete chunk tree can be built containing device items for all
devices used in the BTRFS pool.

4.2.2. Mapping of logical to physical addresses
After the available volumes of a pool have been detected, we

need to gain direct access to data at the correct offsets stored on the
pool members. For this, we need to be able to perform the mapping
from logical to physical addresses. In BTRFS, this mapping is done
by utilizing the chunk tree as described in Section 3.2. Fig. 3 illus-
trates the following steps describing how to map a logical address
to a physical address (i.e. the physical offset on the disk) for a RAID0
configuration:

1. Locate the chunk item containing the given logical target
address (tlog) in the chunk tree. This gives us the logical start
address of the chunk (clog).

2. Calculate the difference (D) between the logical target address
and the logical start address of the chunk.

Fig. 3. Distribution of data in a RAID0 chunk item using three stripes.

J.-N. Hilgert et al. / Digital Investigation 26 (2018) S21eS29 S25

This difference represents the offset of the target address within
the chunk item.

3. Use D and the stripe length (stripeLen) to compute the
total number of stripe units preceding our target address
(preStripeUnits):

4. Find out on which stripe (targetStripe) our logical address
(and thus the start of the data) lies by calculating the total
number of preceding units modulus the number of stripes
(nStripes).

5. Knowing the corresponding stripe gives us the physical start
offset (phyStripeOff) of the data on the device specified in
the chunk item.

6. Calculate the number of units (nStripeUnits) that have
already been allocated on our stripe by dividing the total
number of units already filled by the number of available stripes.

7. Calculate the offset within the unit (unitOff) on our stripe.

8. Adding the calculated values results in the final physical offset
(phyOff)

For a single disk configuration, the logical address space
described by the chunk starts at the physical offset of the one and
only stripe and continues without any interruption. For this reason,
the physical offset can simply be calculated by:

Since each stripe in a RAID1 configuration stores the same data,
it is possible to choose any stripe of the chunk and calculate the
physical offset in a similar way to a single disk configuration. For
RAID10, it is necessary to choose one stripe out of each used RAID1
configuration. Afterwards, these stripes are nothing but a RAID0
configuration, whose mapping can be calculated following the
aforementioned steps 1 to 8.

BTRFS also supports RAID5 and RAID6, however, due to bugs in
the implementations and the consequent risk of data loss, it is
officially recommended not to use these configurations btrfs Wiki
(2017c). Therefore, we do not cover RAID5 and RAID6 in our
implementation for now.

5. Forensic artifacts in BTRFS

The following sections are used to highlight features of BTRFS
which are of particular interest for a forensic examiner when pre-
sented with a BTRFS file system. We extended the implementation
by Hilgert et al., to enable a forensic analysis of BTRFS Hilgert et al.
(2018). In the same way as their support for ZFS, our

implementation does not alter the functionality of the original
Sleuth Kit, so that it can still deal with any previously supported file
systems.

5.1. Forensic analysis of a BTRFS pool

As already described in Section 4.2.1, a main aspect during a
forensic investigation of a pooled storage file system is the detec-
tion of its members followed by the detection of the pool config-
uration. For this purpose, we extended the pls command
introduced by Hilgert et al. to enable support for BTRFS. This
command is used to perform and display the results of the pool
analysis. As shown in Listing 2, the output gives an investigator
insight into the most important information found in the super-
block stored on a device. This information includes the file system
as well as the device UUID. For further analysis, it also displays
information about the pool including its label, if one was given, and
its total number of devices.

Listing 2. Using pls for a pool membership detection of a single
disk.

$ pls/BTRFS/raid10_5disks/disk1

Part of BTRFS pool:

Label: RAID10Pool

File system UUID:

D369B8F5-53EA-4DA9-A020-F6E585AA67D4

Root tree root address: 45711360

Chunk tree root address: 20987904

Generation: 42

Chunk root generation: 39

Total bytes: 5242880000

Number of devices: 5

Device UUID: B3B74185-13B0-4D2A-8300-CA740C384F4B

Device ID: 1

Device total bytes: 1048576000

Device total bytes used: 1004535808

[...]

After detecting the single members of a BTRFS pool, pls can be
used to analyze the pool configuration. For this, it provides the -P

parameter, indicating that the input volumes are now analyzed as a
pool. Listing 3 shows that all of the five devices of the BTRFS pool
have been successfully detected. It also gives information about the
RAID levels used for each type of chunk items in the pool as well as
the available and total number of these chunk items. In a case of
missing pool members, this provides information about the avail-
ability of metadata and thus the chances of recovering data.

Listing 3. Initial analysis of acquired volumes using pls.
$ pls -P/BTRFS/raid10_5disks/Detected BTRFS Pool

Label: RAID10Pool

File system UUID:

D369B8F5-53EA-4DA9-A020-F6E585AA67D4

Number of devices: 5 (5 detected)

e

Device ID: 1 (B3B74185-13B0-4D2A-8300-CA740C384F4B)

Device ID: 2 (66AAEB1A-8CBB-4979-89CF-56FB0C6C958A)

Device ID: 3 (71D7CC24-BBE3-4E31-B532-EDF15C5AC527)

Device ID: 4 (E84DA2D2-D5FE-4226-A8AA-52D1AD8988B5)

Device ID: 5 (C7099E88-5597-4776-9EE0-3D6B662E53B3)

System chunks: RAID10 (1/1)

Metadata chunks: RAID10 (1/1)

Data chunks: RAID10 (6/6)

After a pool has successfully been detected, the other tools
provided by our implementation can be used for a forensic analysis

J.-N. Hilgert et al. / Digital Investigation 26 (2018) S21eS29S26

including file listings, timeline generation, or data extraction.
In line with the implementation of Hilgert et al., we have imple-
mented support for BTRFS to the following tools of TSK:

� fsstat: Shows general information about the BTRFS file system
including its snapshots and subvolumes.

� fls: Lists all files and directories of a BTRFS file system, snapshot,
or subvolume.

� istat: Shows metadata information about an object, which is
uniquely identified by its object ID shown in fls and its parent
file system, subvolume, or snapshot.

� icat: Extracts the data associated with a metadata structure.

5.2. Snapshots

As mentioned earlier, BTRFS offers the possibility to create
snapshots of existing file systems. Remember that a snapshot saves
the current state of the file system and can afterwards be used to
revert the file system to the point in time when the snapshot was
taken. What is more, snapshots are part of the file system and thus
always in a consistent state. Hence, they represent an outstanding
source for the recovery of deleted files. Enabling the detection and
analysis of snapshots is therefore an important analysis technique
during the forensic examination of a BTRFS file system.

Listing 4. Listing all available snapshots and subvolumes using
fsstat.

$ fsstat -P/BTRFS/raid10_5disks/

File system UUID:

D369B8F5-53EA-4DA9-A020-F6E585AA67D4

[...]

The following subvolumes or snapshots were found:

259 snapshot_2017-12-06

260 snapshot_2017-12-13

261 snapshot_2017-12-20

Since snapshots are subvolumes in BTRFS, the following
description applies not only to snapshots but also to subvolumes
in general. For each snapshot, a separate file system tree is
created. These file system trees can be analyzed similar to the
default “top-level” file system. Each of these file system trees is
referenced by a ROOT_REF in the root tree containing for example
the ID of the file system tree or the name of the snapshot.
Furthermore, a root item is added to the root tree storing a
reference to the root node of the tree and additional information
like the number of the generation that created the snapshot. These
generation numbers are always updated whenever a transaction is
written to the BTRFS pool.

Using fsstat, we are able to list all subvolumes and snapshots
for a particular BTRFS file system as shown in Listing 4. Afterwards,
the corresponding name can be used to list, extract, or recover files
from snapshots. This is done by passing the snapshot as an argu-
ment to the other file system analysis tools like fls. Listing 5 shows
an example in which snapshot_2017-12-06 contains multiple
files, which have been deleted in the most recent version of the file
system tree. These deleted files, still available in the snapshot, are
located in the /home/user/directory and can be restored using
icat.

Listing 5. Recovering files using snapshots.
$ fls -P/BTRFS/raid10_5disks/

r/r 265: 043349.ppt

d/d 266: data

þ r/r 267: 018367.docx

þ r/r 268: 018370.docx

þ r/r 269: 018371.docx

d/d 270: home

þ d/d 271: user

þþ r/r 272: 516411.docx

$ fls -P/BTRFS/raid10_5disks/snapshot_2017-12-06

r/r 265: 043349.ppt

d/d 266: data

þ r/r 267: 018367.docx

þ r/r 268: 018370.docx

þ r/r 269: 018371.docx

d/d 270: home

þ d/d 271: user

þþ r/r 272: 516411.docx

þþ r/r 275: 043083.html

þþ r/r 276: 043084.html

þþ r/r 277: 043088.txt

5.3. Metadata-based file recovery

BTRFS only stores allocated metadata for files and directories in
its trees. For this reason, searching for unallocated metadata
structures for file recovery in the most recent tree is not an option.
Nevertheless, it is possible to look at still existing metadata struc-
tures of older trees. Due to the copy-on-write principle used
by BTRFS, each transaction creates a new root tree and results in a
new generation number. Thus, accessing an old root tree makes it
possible to jump back in time, analyze a previous version of the file
system, and extract deleted files.

Unfortunately, there are two issues when trying to perform file
recovery in this manner. First, we are dealing with possibly
inconsistent metadata. The analysis is performed on artifacts of the
file system and chances are high that parts of them have already
been overwritten. If this happens to metadata, it will not be
possible to continue the analysis.

Second, the location of an older root tree needs to be deter-
mined. Apart from scanning the complete set of volumes for
these root structures, file systems sometimes keep track of these
locations. ZFS for example stores the last 128 versions of its root
structure (called überblock) in an array. In BTRFS, unfortunately
only four versions of a structure referred to as btrfs_root_-

backup are stored in an array in each superblock.

Listing 6. Backup root addresses stored in the superblock shown
by pls.

$ pls /BTRFS/raid10_5disks/disk1[...]

Backup Roots:

1. tree root at 45711360 (generation: 42)

chunk tree root at 20987904 (generation: 39)

2. tree root at 44646400 (generation: 39)

chunk tree root at 20987904 (generation: 39)

3. tree root at 45285376 (generation: 40)

chunk tree root at 20987904 (generation: 39)

4. tree root at 45629440 (generation: 41)

chunk tree root at 20987904 (generation: 39)

As shown in Listing 6, these backup structures can be listed
using pls. Though the output only shows the logical addresses of
the root and chunk trees from previous generation numbers, the
backup structure also contains the logical addresses of the roots of
other important trees, like the extent or device tree. Furthermore, it
also stores the generation number corresponding to each tree and
its logical address. These generation numbers are not necessarily
the same for each tree in a backup structure, since not every
transaction modifies, for example, the chunk or device tree. In
Listing 6, the chunk tree at generation 39 is still used for the

J.-N. Hilgert et al. / Digital Investigation 26 (2018) S21eS29 S27

mapping of the most recent root tree. In our example, it can be seen
that the most recent generation of the pool found in the superblock
is 42. The root tree address for that generation is 45711360 and can
already be found in the backup roots. The corresponding chunk tree
is stored at address 20987904.

Listing 7. File listings using the most recent version and an older
version of the tree root of the BTRFS file system.

$ fls -P/BTRFS/raid10_5disks/

r/r 265: 043349.ppt

d/d 266: data

þ r/r 267: 018367.docx

þ r/r 268: 018370.docx

þ r/r 269: 018371.docx

$ fls -P/BTRFS/raid10_5disks/-T 41

using rootTree at logical address: 45629440 (gen-

eration 41)

r/r 265: 043349.ppt

d/d 266: data

þ r/r 267: 018367.docx

þ r/r 268: 018370.docx

þ r/r 269: 018371.docx

r/r 279: IMG00561.jpg

The ZFS extension of TSK by Hilgert et al. provides a parameter
to specify an older transaction group number for the recovery of
deleted files by using the corresponding überblock stored in
the array. In a similar manner, our tool expects the generation

number as a parameter, detects the corresponding backup struc-
ture and uses the provided addresses for the reconstruction of the
BTRFS file system. Listing 7 shows two file listings, one performed
with the tree root referenced by the superblockdthe most recent
versiondfollowed by one performed by specifying the previous
generation 41. By comparing the outputs, an image which is not
available in the most recent version can be found. Similar to the
usage of fls, we were able to successfully recover the file by using
icat with the same parameter. However, as already mentioned,
this type of file recovery does not always yield sufficient results.

5.4. Missing disk

During a forensic examination, an investigator should be in a
position to perform an analysis of a BTRFS file system even if there
are disks missing. There are various reasons for missing disks: e.g. a
disk might have been destroyed or formatted before it could be
acquired. Similar towhat Hilgert et al. observed for ZFS Hilgert et al.
(2017), missing disks render the normal file system tools useless.
That is, a BTRFS file system spanning its data over multiple devices
cannot be successfully accessed if there is a single device missing.
This even holds for scenarios in which at least some of the data is
still recoverable.

As a test scenario, we created a BTRFS file system comprised of
three disks with the metadata profile set to RAID1 and the data
profile set to RAID0. This means that with a single missing disk all
metadata should still be completely accessible whereas on average

Fig. 4. Extracting data from a degraded BTRFS pool missing disks.

J.-N. Hilgert et al. / Digital Investigation 26 (2018) S21eS29S28

one third of the actual file data is expected to be missing. As shown
in Listing 8, btrfs filesystem show recognizes the missing disk,
but cannot provide any additional information about it.

Listing 8. BTRFS pool with missing disk2.
$ btrfs filesystem show

warning, device 2 is missing

warning devid 2 not found already

Label: none uuid:

18f4475c-0b32-47c8-8827-739c6b8328d0

Total devices 3 FS bytes used 89.91MiB

devid 1 size 500.00MiB used 139.00MiB path/dev/sda

devid 3 size 500.00MiB used 147.00MiB path/dev/sdc

*** Some devices missing

Trying to mount the file system in a degraded state using the
mount option -o degraded, fails with the message: BTRFS:

missing devices(1) exceeds the limit(0), writeable

mount is not allowed. After mounting the file system readonly ,
it is possible to browse the directories and files. This is because the
metadata containing this information is still available since it
was mirrored to two independent stripes. Nevertheless, trying to
access any of the filesdwhose content is not stored inline in met-
adatadfails with cp: error reading/mnt/missing_disk/

IMG00158.bmp: Input/output error.
In line with what Hilgert et al. did to deal with missing disks in

ZFS Hilgert et al. (2017), we also implemented direct access to the
file systems internal structures instead of relying on tools provided
by the file system as described in Section 4.2. This fact enables us to
replace any data of missing devices with zeros so that we are able to
extract the data which is still available and store it at the right
offsets in the file.

Listing 9. BTRFS pool with missing disk2.
$ pls/BTRFS/missing_disk/

[...]

Number of devices: 3 (2 detected)

e

Device ID: 2 (2A756EDA-87F4-44CB-9745-361026DC91C8)

Device ID: 3 (AA193982-4C41-4E44-A2A5-350730E35E9B)

System chunks: RAID1 (1/1)

Metadata chunks: RAID1 (1/1)

Data chunks: RAID0 (0/2)

Using pls on the test scenario gives us additional information
about the chunk items of the detected pool as depicted in Listing 9.
As we can see, all of the data chunks are incomplete. However,
all metadata chunks are completely available due to the RAID1
configuration. This enables us to perform a recovery by filling the
missing parts of the data.

An example for this recovery is depicted in Fig. 4. In this scenario,
the common BTRFS toolsdeven though they provide support for
degraded poolsdwould not provide any of the data, though roughly
two thirds of it are still available. To take this even a step further, we
have removed a second disk from our test scenario. Since the
metadata is mirrored in such a way, that it is still available on the

one and only remaining disk, our implementation is able to suc-
cessfully detect, pad, and extract the remaining data of the image.
As shown in Fig. 4c, this is sufficient to obtain an identifiable image,
in a case, inwhich former tools andmethods returned nothing at all.

6. Conclusion and future research

Just like Hilgert et al. we are convinced that pooled storage file
systems will become common in forensic investigations any time
soon. At the time of writing we hold the opinion that the forensic
community is not well enough prepared for file systems of this class:
there are virtually no research papers and the toolsdboth commercial
ones as well as their open source counterpartsddo not support them.

In this paper we tie in with the efforts of Hilgert et al. to close
this serious gap. We confirmed that their proposed model is indeed
applicable to BTRFS. Subsequently, we followed their model to
implement BTRFS support to TSK. This implementation enables
practitioners to perform forensic analyses of BTRFS file systems.
Moreover, it can be used by the academic community for further
research regarding BTRFS. While there have already been ap-
proaches to add BTRFS support before, to the best of our knowledge
we provide the first implementation being able to handle multiple
device configurations correctly and efficiently.

In addition to the implementation, which is publicly available
and open source Hilgert et al. (2018), we also show how to perform
a forensic analysis of a BTRFS file system using our extended TSK
version. Furthermore, we highlight features of BTRFS of particular
interest during a forensic investigation. These include snapshots
andmeans to be able to deal withmissing or corrupted disks. Again,
we also show how our TSK extension can be used to utilize these
features during an analysis.

References

Bacik, J., 2012. Btrfs: the Swiss army knife of storage. USENIX Login 37, 7e15.
btrfs Wiki, 2017a. Data Structures - Btrfs Wiki. https://btrfs.wiki.kernel.org/index.

php/Data_Structures.
btrfs Wiki, 2017b. Manpage/mkfs.btrfs - Btrfs Wiki. https://btrfs.wiki.kernel.org/

index.php/Manpage/mkfs.btrfs.
btrfs Wiki, 2017c. RAID56-btrfs Wiki. https://btrfs.wiki.kernel.org/index.php/RAID56.
btrfs Wiki, 2017d. Status - Btrfs Wiki. https://btrfs.wiki.kernel.org/index.php/Status.
btrfs Wiki, 2017e. SysadminGuide - Btrfs Wiki. https://btrfs.wiki.kernel.org/index.

php/SysadminGuide.
btrfs Wiki, 2018a. Btrfs Wiki. https://btrfs.wiki.kernel.org/index.php/Main_Page.
btrfs Wiki, 2018b. On-disk Format - Btrfs Wiki. https://btrfs.wiki.kernel.org/index.

php/On-disk_Format.
Carrier, B., 2005. File system forensic analysis. Addison-wesley professional.
Carrier, B., 2017. The Sleuth Kit. https://www.sleuthkit.org/sleuthkit/.
Fleischmann, Stefan, 2012. X-ways Forum: X64-ways Forensics 16.4. http://www.x-

ways.net/winhex/forum/messages/1/3685.html?1359801502.
Hilgert, J.N., Lambertz, M., Plohmann, D., 2017. Extending the Sleuth Kit and its

underlying model for pooled storage file system forensic analysis. Digit. Invest.
22, S76eS85.

Hilgert, J.N., Lambertz, M., Yang, S., 2018. The Sleuth Kit with Support for BTRFS.
https://github.com/fkie-cad/sleuthkit.

P€oschel, Stefan, 2015. Btrfs Support by Basicmaster $ Pull Request #413 $ Sleuthkit/
sleuthkit. https://github.com/sleuthkit/sleuthkit/pull/413.

Rodeh, O., Bacik, J., Mason, C., 2013. BTRFS: the Linux B-Tree filesystem. Transact.
Storage (TOS) 9 (9), 1e9, 32.

J.-N. Hilgert et al. / Digital Investigation 26 (2018) S21eS29 S29

Forensic Science International: Digital Investigation 48 (2024) 301678

Available online 15 March 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS EU 2024 - Selected Papers from the 11th Annual Digital Forensics Research Conference Europe

Forensic implications of stacked file systems

Jan-Niclas Hilgert *, Martin Lambertz, Daniel Baier
Fraunhofer FKIE, Zanderstr. 5, 53177 Bonn, Germany

A R T I C L E I N F O

Keywords:
Storage forensics
File systems
Stacked file systems
Distributed file systems
moosefs
Glusterfs
Ecryptfs

A B S T R A C T

While file system analysis is a cornerstone of forensic investigations and has been extensively studied, certain file
system classes have not yet been thoroughly examined from a forensic perspective. Stacked file systems, which
use an underlying file system for data storage instead of a volume, are a prominent example. With the growth of
cloud infrastructure and big data, it is increasingly likely that investigators will encounter distributed stacked file
systems, such as MooseFS and the Hadoop File System, that employ this architecture. However, current standard
models and tools for file system analysis fall short of addressing the complexities of stacked file systems. This
paper highlights the forensic challenges and implications associated with stacked file systems, discussing their
unique characteristics in the context of forensic analyses. We provide insights through three analyses of different
stacked file systems, illustrating their operational details and emphasizing the necessity of understanding this file
system category during forensic investigations. For this purpose, we present general considerations that must be
made when dealing with the analysis of stacked file systems.

1. Introduction

File system analysis is undeniably an essential part during any digital
forensic investigation involving storage devices. Its goal is to identify
and extract files and their corresponding metadata including deleted
information. Brian Carrier already laid a profound foundation for this
research area almost 20 years ago covering various file systems, some of
which are still being used today such as FAT, NTFS and Ext (Carrier,
2005). According to his model for file system forensic analysis, tradi
tional file systems store their data on a volume, e.g. a partition or a RAID.
Since these volumes are transparent to the file system itself, the un
derlying implementation creating the volume is responsible for the final
transformation and distribution of the actual data. Analyzing these
volumes is completely detached from the actual file system at hand and
can thus be first addressed in the volume analysis phase, which is then
followed by the final file system analysis.

As pointed out by Hilgert et al., these two phases become inter
twined, requiring an additional layer in the model when dealing with
pooled file systems (Hilgert et al., 2017). These file systems utilize mul
tiple disks for redundancy or performance but do not require any extra
soft- or hardware for this purpose. In these cases, the file systems
themselves handle the distribution of the data across the underlying
layer, i.e. volume. Still, the file systems presented in their work stored

their data directly on the underlying volume layer.
This work takes a closer look at the forensic analysis of stacked file

systems. These file systems might also handle the distribution of their
data, but they are distinctively characterized by their method of data
storage: they do not store their data on a volume or disk but rather on
another file system creating new opportunities and challenges for
forensic analysis practitioners encountering these file systems. Given the
adoption of this concept in distributed file systems like MooseFS and the
Hadoop File System, equipping forensic analysts with the knowledge to
handle these systems during investigations proficiently is essential.

For this purpose, this paper discusses crucial aspects of the analysis
of stacked file systems. To accommodate this, we have revised the
standard workflow for file system forensic analysis, making it suitable
for the intricacies of stacked systems. We also describe a core set of
forensic implications for analyzing stacked file systems, complemented
by illustrative findings from three different file systems. The knowledge
gathered from our experiments emphasizes the necessity of under
standing these implications and is a vital reference for forensic analysts.

2. Stacked file systems

Stacked or stackable file systems store their data on another file sys
tem, including both data and metadata, which might be stored in a

* Corresponding author.
E-mail addresses: jan-niclas.hilgert@fkie.fraunhofer.de (J.-N. Hilgert), martin.lambertz@fkie.fraunhofer.de (M. Lambertz), daniel.baier@fkie.fraunhofer.de

(D. Baier).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2023.301678

Forensic Science International: Digital Investigation 48 (2024) 301678

2

specialized file format. We denote the stacked file system as the upper file
system and its files as the upper files, which are the files accessible when
the file system is mounted. The underlying file system it relies on is
termed the lower file system storing the lower files, as depicted in Fig. 1.

In instances where the upper and lower file systems operate on the
same machine, the stacked file system is termed as local. Nevertheless,
an upper file can encompass multiple lower files, potentially distributed
across various detached lower file systems. Given this, the concept of
stacked file systems is frequently employed within distributed stacked file
systems like the Hadoop Distributed File System or MooseFS, as they can
be constructed atop a pre-existing and reliable lower file system.
Furthermore, distributed stacked file systems can be categorized as
either managed or unmanaged. In a managed setup, a designated entity
like a main daemon can be used to orchestrate tasks such as data dis
tribution and managing the metadata of the upper file system.
Conversely, in an unmanaged configuration, the systems housing the
lower file systems inherently possess all the requisite data to construct
the upper file system. Both of these types can be encountered during
forensic investigations due to the increasing usage of distributed storage
in cloud environments. Hence, comprehending the forensic implications
and nuances of stacked file system analysis is crucial.

2.1. Related work

A detailed concept of stacking file system layers was already pre
sented in 1994 (Heidemann and Popek, 1994). However, this work fo
cuses on file system development and describes stacking as a method to
leverage already existing file systems facilitating the development pro
cess of new file systems and features. A few years later, Erez Zadok
utilized the concept of stacked file systems to implement a wrapper file
system called Wrapfs (Zadok, 1999). While it still stores its data on a
lower file system, Wrapfs can be used to create arbitrary upper file
systems, for example to provide encryption or prevent deletions of files.
In 2007, Zadok together with others discussed various issues of stacked
file systems within Linux, such as cache coherency between the upper
and lower file system (Sipek et al., 2007). Furthermore, file systems for
secure deletion and tracing of file interactions based on the concept of
stacked file systems have been proposed (Bhat and Quadri, 2012; Aranya
et al., 2004).

While all of the aforementioned research does focus on stacked file
systems, it does not cover them from a forensic point of view. Still,
limited research on the forensic analysis of distributed stacked file sys
tems has been published (Asim et al., 2019; Harshany et al., 2020). take
a closer look at the Hadoop Distributed File System. While their work
yields interesting results, such as analyzing various commands and

reconstructing distributed data, they do not address the underlying file
system used by HDFS. Another analysis of a distributed stacked file
system was performed in (Martini and Choo, 2014). During their anal
ysis of XtreemFS, the authors also focused on the Object Storage Devices
storing the lower file systems including its identification. However, their
work falls short in providing a detailed discussion of general implica
tions of the underlying concept of stacked file systems. Furthermore, the
additional value of an analysis of the underlying file system is not
examined.

2.2. Forensic analysis of stacked file systems

In addition to the research gap, it is important to note that this
deficiency extends to forensic tools as well. Current tools, like The Sleuth
Kit, are equipped to analyze various lower file system types but lack the
functionality to associate them with any existing upper file system. This
limitation underscores the need for an updated standard workflow for
file system forensic analysis, as depicted in Fig. 2, to effectively handle
the complexities of stacked file systems.

In the revised workflow, the initial steps shown in white remain, but
we introduce an additional phase, highlighted in purple, specifically
dedicated to the analysis of stacked file systems, building upon the re
sults from the prior analysis of the lower file system. This emphasizes
that the detection and analysis of traditional file systems continue to be
the foundational elements of the process. However, these steps may now
yield multiple lower files or metadata files associated with stacked file
systems, requiring thorough examination in the newly added step to
ensure a comprehensive forensic analysis. Crucially, the results from the
stacked file system analysis must also be correlated with information
derived from the lower file system analysis and vice versa.

The remainder of this paper deals with the additional step of stacked
file system forensics and integration into forensic investigations. In
particular, we look at six specifics, we believe are essential for file sys
tem analysis: 1) Identification of Stacked File Systems, 2) Correlation of
File Names, 3) Data Reconstruction, 4) Timestamps and their Update
Behavior, 5) Slack Space and 6) Possibilites for File Recovery.

2.3. Experimental setup

To derive the most comprehensive guidance possible, it is crucial to
include a diverse range of stacked file systems in the experiments.

Fig. 1. Overview of a stacked file system utilizing a traditional lower file sys
tem for data storage.

Fig. 2. Extension of Brian Carrier’s model for the applicability of stacked
file systems.

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

3

Accordingly, three distinct stacked file systems, previously overlooked
in research, were selected as representative examples:

MooseFS released in 2008, is an open-source, managed, distributed
stacked file system designed for big data storage. Its architecture includes
Chunk Servers that store data, a Master Server managing metadata,
Metaloggers for metadata backup, and a client interface for mounting
the file system. In MooseFS, large files are split into smaller chunks
distributed across multiple servers.

GlusterFS is an unmanaged, distributed stacked file system thatdiffers
from MooseFS in that it lacks a dedicated master server. Instead, its
storage servers form a trusted pool by connecting directly to each other. It
supports any file system as a brick, the lower file system for storing data.
These bricks are combined to create a volume, which is subsequently
mounted by a client.

eCryptfs introduced in 2005 as a cryptographic file system to
operate on top of an existing file system (Halcrow and ecryptfs, 2005),
was integrated into the Linux kernel in version 2.6.19. Although su
perseded by other mechanisms such as LUKS, eCryptfs remains a notable
early example of stacked file systems. It functions as a local stacked file
system, not used in a distributed manner, and is mounted by specifying a
source directory from the lower file system to store its data.

This variety ensures a thorough exploration of the potential scenarios
forensic experts may encounter. For our experiments, the stacked file
systems were setup, mounted and populated with arbitrary data. Spe
cifics of each experiment are presented in the corresponding section. As
a lower file system during the experiments, we utilized Ext4 due to its
widespread use and to keep the results comparable. Drawing on these
findings, the following sections also outline practical key takeaways to
aid forensic investigators in their work with stacked file systems.

3. Identification of stacked file systems

As described in Section 2.3, it is crucial to identify a stacked file
system following the analysis of the lower file system. During these
experiments, the lower file systems were analyzed for any indicators
hinting at the usage of a stacked file system.

3.1. Findings

3.1.1. MooseFS
As soon as a file system is being used as part of a chunk server in

MooseFS, a distinct hierarchy of directories from 00 up to FF is created on
it. These directories are used to store the chunks, which in turn utilize a file
name pattern like
consisting of an identifier, the chunk ID, a corresponding and the

. Lower files in MooseFS can also be identified by their in
ternal structure that can be inferred by taking a look at the open source code
of the file system. In the default MooseFS installation, i.e. not the light
version, each chunk begins with a 0x2000 bytes long header. It starts with
either a signature of MFSC 1.0 or MFSC 1.1, followed by eight and
respectively four bytes representing the chunk ID and version, both of
which can also found within the chunk’s file name.

3.1.2. GlusterFS
A similar behavior can be observed on servers of a GlusterFS pool,

when a volume is created and started. This includes a hidden.glus
terfs directory storing directories named 00 up to ff. Each upper file
in GlusterFS is assigned a UUID referred to as the GlusterFS internal file
identifier (GFID). This GFID names each lower file inside the hidden
hierarchy. GlusterFS also mirrors the upper system’s structure in the
lower system using hard links as depicted in Fig. 4. While GlusterFS does
not make use of any specific internal structure within its lower files, it
uses extended attributes to store meta information about its files.

3.1.3. eCryptfs
eCryptfs on the other hand does not create a unique hierarchy on the

lower file system. Instead, the hierarchy of the files and directories of the
upper file system are stored in an identical way on the lower file system.
If file name encryption is enabled, the distinct prefix ECRYPTFS_FNE
K_ENCRYPTED defined in the Linux kernel source is used for each lower
file. Lower files in eCryptfs contain magic markers stored in a special
header. These markers can be detected by performing an XOR operation
on bytes 9–12 of the file at hand using the magic 0x3c81b7f5. The
resulting 8 bytes should match bytes 13–16 in case of an eCryptfs lower
file.

3.2. Key takeaways

Depending on the stacked file system at hand various types of in
dicators resulting from the analysis of the lower file system can be used
for its identification. This includes distinct hierarchies, file structures as
well as certain extended attributes. Furthermore, the internal structure
of lower files can be used to identify them directly, for example in cases
in which they are included in a backup outside of the lower file system.

Once identified, investigators can mount the stacked file system
using its native software or conduct an in-depth forensic examination.
However the current shortfall in forensic tools specifically designed for
stacked file system analysis necessitates manual reconstruction of the
system under investigation at the moment.

4. Correlation of file names

For a more comprehensive analysis and deeper understanding, it is
essential to establish the relation between the names of upper files and
the corresponding lower files that represent them. During this experi
ment, we analyzed if and how this connection could be determined.
Furthermore, we examined how the entire hierarchical structure of the
upper file system is reflected within the lower file system.

4.1. Findings

4.1.1. MooseFS
In MooseFS, neither the header, the file name or any other metadata

of a lower file contain any reference to the original upper file. In order to
obtain this relation and thus also the file name, it is necessary to analyze
information stored on the Master Server. By default, chunk servers use
the DNS name mfsmaster to connect to the Master Server. However,
this can be configured within the chunk server’s configuration stored
in/etc/mfs/mfschunkserver.cfg. The Master Server stores its
metadata files within the directory/var/lib/mfs, including meta
data.mfs.back. This metadata file can be extracted and subsequently
inspected or analyzed using the mfsmetadump tool. During our exper
iments, recent MooseFS updates were not instantly reflected in the
metadata file, requiring a Master Server restart to save these changes.

Fig. 3 illustrates the mfsmetadump utility output. In MooseFS, file
names are stored as EDGEs in the filesystem tree, found in the EDGE
section. Each line represents a file, detailing the parent inode, child
inode, and file’s name. The child inode number can be used to link an

Fig. 3. Excerpt of the mfsmetadump tool displaying metadata of a MooseFS
file system.

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

4

entry to a corresponding NODE section entry, which represents an upper
file.

4.1.2. GlusterFS
Fig. 4, the lower files 1847be7c-7a84-4c41-932b-

5e0740c5e809 and data.txt share the same inode number. Addi
tionally, GlusterFS also utilizes extended attributes and soft links, which
can be analyzed to infer the hierarchy. The extended attributes of the
lower file contain a reference including the original file’s name as well as
the GFID of the directory, in which it was stored. The lower file
belonging to this directory is again a soft link pointing to its own parent
directory and so on.

4.1.3. eCryptfs
If the eCryptfs file system is mounted files within the upper file

system can be matched to the files in the lower file system by comparing
the corresponding inode numbers. This is already implemented in the
ecryptfs-find utility. By default, the file names of the lower files are
identical to the file names of the corresponding upper files. In case of file
name encryption, eCryptfs utilizes a file name encryption key (FNEK),
which is required to reveal the original file name of the lower file at
hand. However, eCryptfs stores a hex signature of the utilized FNEK
within all of the encrypted files names. For this reason, it is still possible
to infer, which lower files were encrypted using the same FNEK and thus
probably belonged to the same mounted file system. The signature of the
FNEK is encoded within the FNEK-encrypted file name, also referred to
as a Tag 70 packet and follows the packet type 0x46 and the length of
the packet. By decoding the file name it is possible to extract the
signature of the FNEK used, which can be used for further analyses.

4.2. Key takeaways

Our experiments indicate that in local or unmanaged distributed
stacked file systems, it is generally possible to deduce the original file
names and file system hierarchy. This is to be expected as for these
kinds, the corresponding metadata can be found within the lower file
system. In contrast, with stacked file systems that incorporate a man
agement component, e.g. a dedicated server, it becomes vital to identify
and extract the metadata that holds this information. Our findings
demonstrate how this analysis can be executed for stacked file systems
like MooseFS, enabling the determination of the relationship between
upper and lower files. However, this task varies significantly depending
on the specifics of the stacked file system, necessitating customized
implementations within forensic tools.

5. Data reconstruction

For the reconstruction of upper files from their corresponding lower
files, analysts need to tackle common problems such as fragmentation
and data transformation.

5.1. Fragmentation

In most cases, the content of a file does not fit into a single data unit,
which is why file systems allocate multiple data units. While different
allocation strategies may be used, it often results in file fragmentation.
Thus, traditional file systems need to keep track of the exact data units
used by a file as well as the order in which they belong. This fragmen
tation not only complicates forensic efforts but has also been a long-
standing focal point of research (Garfinkel, 2007; van der Meer et al.,
2021). Yet, the topic of fragmentation in stacked file systems has not
been explored. To address this, we have created multiple large-sized
upper files, aiming to analyze and understand the fragmentation pat
terns in the stacked file systems under study.

5.1.1. Findings

5.1.1.1. MooseFS. Our experiments demonstrated that MooseFS splits
files larger than 64 MiB into multiple lower files, irrespective of the
number of chunk servers. Although mountable with a single chunk
server, MooseFS ideally operates with multiple, and it is advised to use
at least three, as done in our experiments. By default, each chunk is
replicated onto two of the three available chunk servers. Consequently,
large files, fragmented into multiple chunks, may be distributed across
all chunk servers within the MooseFS file system. Since information
within the chunks themselves did not suffice to reassemble an upper file,
it is necessary to consult the Master Server metadata to efficiently
assemble fragmented upper files. As depicted in Fig. 3, the NODE section
stores a list of chunks composing the upper file, each identified by a
unique ID, which is also reflected in the chunk name on the lower file
systems. Since it is unique to each chunk, it can also be used to identify
replicas of chunks across multiple chunk servers.

5.1.1.2. GlusterFS. Depending on the type of volume used, fragmenta
tion as well as replicas of lower files can be encountered. The most
important volume types are:

• Distributed: In this default mode, upper files are not fragmented,
but stored randomly across all available bricks, i.e. all available
lower file systems.

• Replica: This mode is used to ensure redundancy by storing
unfragmented upper files across multiple bricks similar to RAID
mirrors. The corresponding lower files stored across multiple lower
file systems can be correlated by their GFID file name.

• Dispersed: A dispersed volume can be compared to a RAID5-like
volume. Data is split and stored across multiple lower file systems
along with parity information. Again, fragments belonging together
can be matched by their GFID. When creating a dispersed volume, it
is possible to configure the number of bricks used for redundancy, i.e.
how many bricks can be lost without causing any data loss.

The first two modes do not cause any fragmentation of upper files.
However, the replicated mode causes multiple copies of the same files to
be stored on multiple lower file systems, i.e. storage servers. To identify
these lower file systems for further analysis, the configuration of the
GlusterFS at hand can be utilized. A directory for each volume of a
storage server can be found in its/var/lib/glusterd/vols/direc
tory. It stores the volume configuration in an info file and consists of a
bricks subdirectory that offers configurations for each associated
brick. These files appear across all storage servers in the GlusterFS pool Fig. 4. Example of a hierarchy on a lower file system in GlusterFS.

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

5

that created the volume, detailing the server’s hostname and brick path.
Notably, the values listen-port and brick-fsid only seem to exist
in the brick configuration of the respective server. This also allows for
pinpointing the exact GlusterFS server at hand.

When dealing with dispersed volumes, upper files become frag
mented within GlusterFS. An efficient way to identify a lower file of a
dispersed volume is to analyze its extended attributes. Each chunk
belonging to a dispersed file utilizes extended attributes in the trus
ted.ec name space, e.g. trusted.ec.size which stores the real size
of the corresponding file. However, they do not contain any information
about the order in which they should be reassembled. Furthermore,
GlusterFS uses Erasure coding for dispersed volumes, which requires an
additional step to obtain the original version of the file described in the
next section.

5.1.1.3. eCryptfs. In eCryptfs upper files are not split into multiple
lower files and thus no fragmentation occurs.

5.1.2. Key takeaways
Though our findings illustrated that fragmentation may not be as

complex as with traditional file systems, it still has to be considered
especially when dealing with distributed stacked file systems spanning
across multiple lower file systems. In these cases, it is crucial to identify,
which other servers were part of the stacked file system at hand in order
to adequately extend the acquisition process.

Furthermore, our experiments showed that the upper file system’s
metadata plays a crucial role for an efficient reassembly of fragmented
files highlighting the importance of dedicated approaches for stacked
file system analysis. In absence of this information, correlating lower
files via their timestamps is an alternative though less reliable due to
discrepancies as discussed in Section 6.

5.2. Transformation

Unlike early file systems, more advanced ones like APFS or ZFS
started to implement features such as encryption or compression. This
resulted in some kind of transformation between a file’s original content
and the content stored on disk. A similar concept may also be employed
by stacked file systems for various purposes like encryption or the uti
lization of erasure coding, when data is distributed. For this analysis, we
compared the content of lower files to the original content stored within
the upper files of the stacked file system.

5.2.1. Findings

5.2.1.1. MooseFS. Besides the inclusion of an extra 0x2000 byte chunk
header, the open-source MooseFS leaves the original data unaltered.

5.2.1.2. GlusterFS. In distributed and replicated volumes, GlusterFS
leaves the original content in lower files unchanged as well. However,
for dispersed volumes, it employs a Reed-Solomon based Erasure coding.
For an efficient recovery of dispersed files, we recreated the relevant
GlusterFS setup to tackle the fragmentation as well as transformation
hurdle. After the original GlusterFS configuration is identified as
described in the previous section, it is possible to recreate a new Glus
terFS volume using identical parameters. Afterwards, the obtained lower
file systems can be copied to the freshly created GlusterFS bricks. It is
essential to preserve extended attributes; failure to do so will lead
GlusterFS to misidentify dispersed files. Additionally, the sequence of
declaring bricks is crucial, i.e. the original first lower file system’s data
should populate the first brick in the new volume and so on. Any
inconsistency led to reconstruction failure in GlusterFS in our tests.

5.2.1.3. eCryptfs. Since eCryptfs’s main feature is encryption, file con
tents found on the lower file system are naturally encrypted.

Additionally, the cryptographic context for each file is stored in a header
preceding the encrypted data. The minimum size for this header is
defined as 8192 bytes, resulting in slightly larger files on the lower file
system compared to the original stacked file system. Though 8192 bytes
is only the minimum size, we did not encounter any larger header sizes
in our experiments including files up to 1 GB. The size of the original file
is not encrypted and can be found in bytes 0–7 of the header, which
starts directly at offset 0 of the lower file. Further information within the
header includes the version as well as the encrypted session key used for
the encryption of the file’s content.

5.2.2. Key takeaways
Depending on the stacked file system at hand, practitioners can

benefit from the absence of a transformation layer during their analysis.
This enables them to analyze a the files of a lower file system without the
need to perform an analysis of the upper stacked file system. However, in
certain cases, when encryption or error encoding is utilized, it is
required to retranslate the content of lower files to obtain the original
file content. We have illustrated various considerations that have to be
made when using native software to perform this task for GlusterFS. Yet
again, this strongly depends on the features of the stacked file system at
hand.

6. Timestamps and their update behavior

In traditional file systems, timestamps are stored along the metadata
of the files and include information about the last Access, Modification,
Change and in some cases Birth time of a file. The intricacies and
challenges of interpreting timestamps are well-recognized within the
digital forensic community (Raghavan, 2013).

Naturally, these timestamps retain their critical importance in the
context of stacked file systems. However, we encounter an additional
layer of timestamp sources:

• Upper file system: Timestamps of the upper file system refer to the
upper files and consist of one set of timestamps per upper file. The
way this meta information is stored is completely specific to the
upper file system itself.

• Lower file system: Employing an additional file system to store file
content introduces an extra layer of timestamps stored along the
lower files in the lower file systems.

Moreover, it is equally important to grasp the timestamp update
behavior within both the upper and lower file systems as well as how
they affect each other. In our experiments, we conducted fundamental
file operations like creating and modifying files to examine how the
stacked file systems in question update timestamps. This investigation
encompassed both the lower and upper file systems, with a particular
focus on understanding how timestamps in the latter could be accurately
retrieved. We kept a multi-server configuration for the distributed file
systems to observer the timestamp update behavior across multiple
lower file systems.

6.1. Findings

The initial part of this section details the findings on timestamp
sources, while the subsequent sections explore the timestamp update
behavior of the corresponding file system.

6.1.1. Timestamp sources
MooseFS keeps track of the timestamps for all of its upper files within

the metadata that can be found on the Master Server or Metaloggers.
This information can be extracted by using the mfsmetadump utility as
shown previously in Fig. 3. In GlusterFS, this information is not stored in
an external file, but directly within the extended trusted.glus
terfs.mdata attribute of the corresponding lower files across all

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

6

bricks. Any change to the upper file’s timestamps inevitably results in an
update of the metadata of the lower files. The actual timestamps can be
extracted from the decoded Base64 string stored within the extended
attribute. It holds 8 byte timestamps in seconds followed by the time
stamp for nanoseconds following the big-endian format as shown in
Fig. 5 eCryptfs relies solely on the timestamps already present in the
lower file system, without storing any additional timestamp
information.

6.1.2. Update behavior for MooseFS
When a file smaller than the maximum chunk size is created, two

identical chunk copies are made on two out of three chunk servers.
Although MooseFS sets the Modification and Change timestamps of the
upper file identically, the Access timestamp appeared slightly earlier in
our tests. This pattern was also seen in timestamps of the corresponding
chunk servers. Notably, the birth timestamp from the lower file system is
not reflected in MooseFS. Furthermore, it was observed that different
chunk servers displayed varying timestamps for the same chunk.

When an upper file is modified, its Modification and Change time
stamps are updated to the same value. The same holds true for the
corresponding chunks stored within the lower file systems. However,
timestamps might again vary across chunk servers. If the upper file’s
timestamps are changed without data alteration, e.g. by utilizing the
touch command in Linux, the chunk timestamps remain unaffected.

The update of File Access timestamps is rather complex and depends
on multiple of factors:

• MooseFS Configuration: The ATIME_MODE in the Master Server
config determines the Access time update policy for upper files.
Default is always, with options like ”always for files” or ”never”
(similar to Linux’s noatime).

• Client Caching: When mounting MooseFS, it is possible to set a data
cache mode. Options include DIRECT (no caching) and YES (always
use cache). Default is AUTO, which behaved like YES in our tests.

• Chunk Pre-Fetch: For performance, MooseFS uses pre-fetch and
read-ahead algorithms on chunk servers to pre-load expected chunks
into the OS memory. This is hardcoded and cannot be changed.

• Lower File System Configuration: The lower file system on the
chunk server has its own Access timestamp policy. In Linux, the
default is relatime, which doesn’t update Access times with every
access.

In MooseFS, the file access timestamps for upper files are influenced
by its configuration and client caching. It was observed that when client
caching is disabled, every file access updates the Access timestamps on
the client, which the Master Server adopts in the default configuration. If
client caching is enabled however, the Access timestamp stamp of a file is
only updated on its first access or when it gets reloaded into cache. If
MooseFS is however configured to never Modification the Access time
stamps, client-side updates aren’t stored on the Master Server and are
lost almost instantaneously. In our tests, Access timestamps for lower
files were updated upon the chunk server daemon’s initial start, pro
vided its access time mode was set accordingly, e.g. using the stric
tatime option. With 10,000 files (and corresponding lower files),
Access timestamps changed post-daemon start without client read re
quests. This is likely due to MooseFS’s pre-fetch algorithms reading data
in memory for some time, though no clear order was discernible.

Reading all files from the client (with caching off and default
MooseFS settings) resulted in the updating of all 10,000 Access time
stamps in the lower file system. Yet, in setups with fewer upper files,
Access timestamps of chunks only updated during daemon startup, not
during later client requests. The cause for this disparity is still unclear
and requires further research. Given these complexities, interpreting
Access timestamps on MooseFS’s lower file systems demands caution.

On the other hand, Modification timestamps were consistently ac
curate and updated as anticipated, which is especially relevant for large
upper files generating multiple chunks.

Large files: In MooseFS, files exceeding the maximum chunk size are
divided into multiple chunks. When such a large file is created, the
timestamps in MooseFS and the underlying file system are set in the
manner previously detailed. Thus, a 200 MB upper file results in eight
(four distinct but replicated) lower files, each with unique timestamps,
spread across three chunk servers.

In our experiment, we modified the first bytes of the 200 MB file.
While MooseFS only holds a singular set of timestamps for the upper file,
the Modification and Change timestamps are updated the same way
regardless of the position, in which the file is modified. On the lower file
systems however, only the Modification and Change timestamps of the
impacted chunk, the first of four, were updated across the two chunk
servers hosting that chunk. A similar pattern was observed when other
sections of the file were altered: only the relevant chunk’s timestamps
changed. This level of granularity provides a more intricate view into file
modifications on the upper file system.

In our MooseFS experiments, we observed an unexpected behavior
where chunks sometimes moved between chunk servers after file
modification or idling periods. While MooseFS naturally rebalances
chunks across servers, the reasons for these specific movements were
unclear. Crucially, this behavior has implications for timestamps. When
a chunk is relocated to a new server, it behaves as if it’s newly created,
thus resetting all its timestamps to the time of the relocation.

6.1.3. Update behavior for GlusterFS
When a file is created in GlusterFS, the Modification and Change

timestamps of the upper file are set to the same value, while the Access
timestamp was always set to a value a little earlier. For lower file sys
tems, the behavior of the initial timestamps depended on the volume
mode. For a replicated volume, all timestamps were set to same value,
while a dispersed volume resulted in different Change and Modified
timestamps. Furthermore and as expected, the timestamps across the
lower file systems stored on multiple servers varied. Additionally, the
Birth timestamp was utilized by the lower file system, but also not
populated to the upper file system.

After the modification of a file, the Modification and Change time
stamps of the upper file were updated to the same values. Furthermore,
the Modification, Change and Access of the lower files were updated.

Since the Access timestamp of an upper file has to be propagated to
each lower file, GlusterFS doesn’t by default keep track of Access times
preventing any performance drops. It was however observed, that access
to an upper file could update the Access timestamp of a corresponding
lower file depending naturally on the atime configuration of the lower
file systems. In a setup with three replicated bricks, the specific accessed
lower file alternated for each access. Furthermore, the timestamp was
not updated for each access, most likely due to again some kind of
caching performed within the client. Caching within the GlusterFS
servers itself was not observed.

6.1.4. Update behavior for eCryptfs
When a file is created, the Access, Modification and Change time

stamps in eCryptfs are all set to the same value, which is the moment the
file was written and thus created. The exact same timestamps can be
found on the corresponding lower file system. Though it is populated,
eCryptfs as well does not utilize or return the Birth timestamp stored in
the lower file system.

Fig. 5. Structure of the trusted.glusterfs.mdata extended attribute
containing timestamps in GlusterFS.

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

7

After the modification of a file, the Modification and Change time
stamps were updated and contained the same values within eCryptfs as
well as the lower file system. The same holds true for a file access and
metadata modification, updating the corresponding Access and Modi
fication timestamps respectively. Consequently, all of the timestamp
modifications performed directly on the lower file system were also
mirrored to the stacked file system.

6.2. Key takeaways

For stacked file system analysis, we advise practitioners to harness
both potential sources of timestamps within the upper and lower file
system. Extracting timestamps from the upper file system is crucial, as
outlined in our previous section for MooseFS and GlusterFS. In addition,
timestamps of the lower files should also be extracted and analytical
methods need to be able to correlate both timestamp sources. This
approach is particularly beneficial in distributed stacked file systems,
where data fragmentation leads to a more detailed level of timestamp
granularity for each file.

Furthermore, in situations where the upper file system depends
solely on the lower file system’s timestamps, two aspects should be
considered: First, analyzing the lower file system can already provide
valuable temporal insights. Second, as our eCryptfs example shows,
these timestamps may be more susceptible to manipulation.

Moreover, akin to conventional file system forensics, understanding
the behavior of timestamp updates in both the upper and lower file
systems is essential.

7. Slack

In traditional file systems, whenever a file’s size does not align with
the end of a data unit, some unused space between the file’s end and the
data unit is created. This file slack, if not overwritten properly, can
contain artefacts of previously stored data within this data unit or can
simply be used to intentionally hide data. The exploration of slack space,
including its possibilities, detection, and analysis, has already been
conducted across various file systems, including NTFS (Huebner et al.,
2006), BTRFS (Wani et al., 2020) or APFS (Göbel et al., 2019).

Yet, this scrutiny has not been extended to stacked file systems,
which uniquely store a file’s content in other files rather than in tradi
tional data units. These lower files may be aligned with a certain extent
size, e.g. always being a multiple of 4 KiB, resulting in slack space similar
to the previously described file slack in traditional file systems. We refer
to this slack space as lower file slack since it occurs between the actual
end of the file and the end of the lower file. Additionally and unlike in
traditional file systems, data can be directly appended to a certain lower
file directly, since it is represented as a file itself. This way it may be
possible to hide data, which is not considered by the upper file system.
We define this type of slack as extra lower file slack. Fig. 6 illustrates these
different types of slack. It is important to understand, if these types of

slack exist within a stacked file system and how they can be detected and
extracted. During the following experiments, we have evaluated the
feasibility of slack space within stacked file systems by utilizing it to hide
data.

7.1. Findings

This section is divided into two parts: the first presents the findings
related to the lower file slack space, while the second focuses on the
extra lower slack space resulting from expanding the size of a lower file.

7.1.1. Lower file slack

7.1.1.1. MooseFS. Chunks start with a 0x2000 byte header, followed
by the upper file’s content in 0x10000 byte blocks. The final 0x1000
bytes of the chunk header store CRC checksums: four bytes for each
block, accommodating up to 1024 blocks. This results in the maximum
chunk size of 64 MiB, plus the header size. Given the large block size,
MooseFS’s lower file slack can be used to hide up to 64 KiB of data
without altering the chunk size. Data hidden here doesn’t affect the
upper file’s accessibility or its displayed size. However, inserting data
causes a mismatch of the CRC checksums, which led to the chunk
marked as INVALID upon server restarts during our experiments. For
effective concealment, it’s crucial to update these checksums. Further
more, modifying the upper file doesn’t affect the data hidden in the
lower file slack. However, if the file expands, reducing the chunk’s slack,
the concealed data is overwritten.

7.1.1.2. GlusterFS. In distributed and replicated mode, GlusterFS does
not utilize any padding and thus the stored lower files are of the exact
same size as the corresponding upper files. For this reason, there is no
available slack space that can be exploited for data hiding. In dispersed
mode, it was observed that the size of a resulting lower file is always a
multiple of 512 bytes, theoretically creating slack space that could be
used to hide data. However, due to the implemented Erasure coding
algorithm, the position and amount of the padding that can be used to
reliably hide data varies. Hiding data in the wrong part could lead to
modified data within the upper file sometimes even displaying the
hidden data in our experiments.

7.1.1.3. eCryptfs. For eCryptfs, the minimum file size of a file stored on
the lower file system was always 12 KiB, which includes the 8 KiB
header. Its size is then increased in steps of 4 KiB, as this is the default
extent size used by eCryptfs. The actual extent size can also be found
within the header at the start of the lower file. If the data size is not a
multiple of the extent size, padding is used and also encrypted. When
adding data to this lower file slack, it is still possible to mount eCryptfs
and access the file without any problems. For the default extent size, this
results in roughly 4 KiB of lower slack space that can be used to hide
data. However, as soon as the upper file is modified, the whole contents
of the padding is rewritten and the hidden data is lost.

7.1.2. Extra lower file slack

7.1.2.1. MooseFS. With stacked file systems, data can also be hidden in
the extra lower file slack by appending it to an existing lower file. Since
MooseFS utilizes a maximum size for its lower files, it is also ensured
that storing data past this offset is protected from being overwritten due
to any modifications of the upper file. In our experiments, we filled the
space up to the maximum size with zeros and placed data in the suc
ceeding space. Subsequent modifications to the upper file did not
overwrite the hidden data in the extra lower file slack. However, as soon
as a chunk was transferred to another chunk server, the hidden data did
not persist and was lost.

Fig. 6. Overview of possibilities for slack within stacked file systems.

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

8

7.1.2.2. GlusterFS. For GlusterFS, hiding data in extra lower file slack
proved impractical across all modes. In distributed and replicated
modes, data added to the lower file also appears when reading the
corresponding upper file, though the upper file size remains unchanged.
For replicated volumes with only one replica containing hidden slack
data, the upper file consistently reveals this data. When multiple replicas
have extra slack data, the upper file reads from the largest lower file. To
hide data, one might place it in any replica, but ensure another copy has
more benign data, like null bytes. In dispersed mode, data concealed in
the slack of one file in a three-brick setup vanished upon reading the
upper file, while adding data to two lower files caused an I/O error.

7.1.2.3. eCryptfs. In eCryptfs, an upper file remained accessible with its
file size unchanged when the data was stored in the corresponding extra
lower file slack. Notably, this appended hidden data persisted when the
upper file was modified or when new data was added, provided it did not
surpass the padding limit. If the file grew beyond the available padding,
the appended data was overwritten. To avoid this, one can add ample
padding before the hidden data, ensuring that any growth of the original
file only replaces this ’dummy’ padding, thereby preserving the hidden
data.

7.2. Key takeaways

Stacked file systems differ from traditional ones in that slack space
does not contain remnants of previous files, primarily because new
lower files are created for each new upper file. However, our findings
suggest that exploiting slack space in lower files, or even in additional
lower file slack, could be a viable tactic in certain stacked file system
implementations. Consequently, forensic practitioners should not only
focus on the upper file system but also thoroughly examine the lower file
system during their analyses.

Detecting file slack requires a detailed comparison between the file
sizes recorded in the upper file system and those of the corresponding
lower files. Additionally, cross-referencing replicas of lower files across
various lower file systems is critical to identify any discrepancies that
may indicate tampering or manipulation.

8. Possibilities for file recovery

Besides operating system or application specific concepts such as
trash bins, file deletion is completely file system specific. Some file
systems such as older versions of Ext may keep references to the actual
data blocks, while others may wipe these entirely. In these experiments,
we circumvented the operating system’s Trash bin by directly deleting
files from the stacked file system using the rm command. This approach
allowed us to examine the file deletion processes of the stacked file
systems in question, thereby identifying the potential methods available
for file recovery.

8.1. Findings

8.1.1. MooseFS
MooseFS’s own trash mechanism holds deleted files for 24 h by

default. When an upper file is deleted, it becomes inaccessible, but its
chunks in the lower system persist. These deleted files are labeled as
trash files in the NODE metadata section on the Master Server. Further
more, the Change timestamp of these deleted upper files stored in the
metadata can be used to infer the time of deletion. Notably, even with a
trash duration set to zero, chunks stayed active for a couple of minutes.
During this time the upper files got tagged as sustained files in the met
adata indicating they were deleted but still open. The Change timestamp
of these files can hint at their deletion time. Once a file was fully deleted,
its chunks were too.

8.1.2. GlusterFS
In its default configuration, GlusterFS does not utilize its Trash

translator feature. Thus, as soon as an upper file is deleted, the corre
sponding files in the lower file system are removed as well and the
possibilities of recovery depend on the lower file system. Enabling this
feature results in the creation of a.trashcan directory on each of the
bricks, which is used to hold deleted upper files and is also mounted
within the upper file system. After the deletion, the GFID-named lower
file remains intact, while the hard link in the original hierarchy is
removed from the lower file system. Instead, a new hard link within the.
trashcan directory is created, whose name consists of the original
upper file’s name and the actual time of deletion. Furthermore, the
original path hierarchy of the deleted file is also recreated within the
trash directory.

8.1.3. eCryptfs
Following a file deletion within eCryptfs, the corresponding lower

file was also deleted instantaneously in our experiments.

8.2. Key takeaways

Our research reveals that stacked file systems can offer an extra
opportunity for file recovery through their own trash features. Under
standing the specific structure and metadata of the stacked file system is
key, and the data from these trash bin mechanisms should be factored
into the analysis process.

Investigators should consider the new opportunities presented by the
presence of an additional lower file system. Even if content is deleted
from the upper file system, the original data might still exist as lower
files within the lower file system. While file recovery becomes wholly
dependent on the lower file system following a complete file deletion,
the inherent structure of these lower files can be utilized for advanced
recovery techniques, such as file carving. In summary, these findings
imply that acquiring the lower file system, either physically or logically,
is more advantageous than merely performing a simple logical acquisi
tion of the upper file system.

9. Conclusion

Contrary to traditional file systems, the concept of stacked file sys
tems utilizes an additional file system for data storage. Given its inte
gration into various modern distributed file systems, encountering
stacked file systems is inevitable in present and future forensic in
vestigations. In this paper, we focused on the forensic analysis of stacked
file systems and presented an updated model that is capable of handling
this class of file systems. Complementing this, we presented various
forensic implications based on traditional analysis techniques and
explored them using three representative stacked file systems as
examples.

Our findings reveal that understanding the architecture, mecha
nisms, and features of stacked file systems is crucial for effective anal
ysis. We demonstrated basic procedures like identification and metadata
extraction in our findings, noting that further research is essential for a
more comprehensive understanding of these systems. The significance of
the underlying file system was also emphasized, particularly its potential
to enhance investigations with finer details, such as more precise
timestamps. Notably, even when access to the upper file system itself is
hindered, for example by encryption or incomplete distributed struc
tures, valuable data can still be retrieved from the lower file system.

To fully leverage these insights, it is imperative for current forensic
methodologies and tools to adapt. Our research lays a solid groundwork
for future exploration in this area and aims to increase awareness among
forensic investigators regarding the complexities and opportunities
presented by stacked file systems.

J.-N. Hilgert et al.

Forensic Science International: Digital Investigation 48 (2024) 301678

9

Acknowledgement

We thank our shepherd and our anonymous reviewers for their
invaluable feedback on this paper.

References

Aranya, A., Wright, C.P., Zadok, E., 2004. Tracefs: a file system to trace them all. FAST
129–145.

Asim, M., McKinnel, D.R., Dehghantanha, A., Parizi, R.M., Hammoudeh, M.,
Epiphaniou, G., 2019. Big data forensics: Hadoop distributed file systems as a case
study. Handbook of Big Data and IoT Security 179–210.

Bhat, W., Quadri, S., 2012. Restfs: secure data deletion using reliable & efficient
stackable file system. In: 2012 IEEE 10th International Symposium on Applied
Machine Intelligence and Informatics (Sami). IEEE, pp. 457–462.

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.
Garfinkel, S.L., 2007. Carving contiguous and fragmented files with fast object

validation. Digit. Invest. 4, 2–12.
Göbel, T., Türr, J., Baier, H., 2019. Revisiting data hiding techniques for apple file

system. In: Proceedings of the 14th International Conference on Availability,
Reliability and Security, vols. 1–10.

Halcrow, M.A., ecryptfs, 2005. An enterprise-class encrypted filesystem for linux.
Proceedings of the 2005 Linux Symposium 1, 201–218.

Harshany, E., Benton, R., Bourrie, D., Glisson, W., 2020. Big data forensics: Hadoop 3.2.
0 reconstruction. Forensic Sci. Int.: Digit. Invest. 32, 300909.

Heidemann, J.S., Popek, G.J., 1994. File-system development with stackable layers. ACM
Trans. Comput. Syst. 12 (1), 58–89.

Hilgert, J.N., Lambertz, M., Plohmann, D., 2017. Extending the sleuth kit and its
underlying model for pooled storage file system forensic analysis. Digit. Invest. 22,
S76–S85.

Huebner, E., Bem, D., Wee, C.K., 2006. Data hiding in the ntfs file system. Digit. Invest. 3
(4), 211–226.

Martini, B., Choo, K.K.R., 2014. Distributed filesystem forensics: Xtreemfs as a case
study. Digit. Invest. 11 (4), 295–313.

Raghavan, S., 2013. Digital forensic research: current state of the art. Csi Transactions on
ICT 1, 91–114.

Sipek, J., Pericleous, Y., Zadok, E., 2007. Kernel support for stackable file systems. In:
Proc. Of the 2007 Ottawa Linux Symposium, vol. 2. Citeseer, pp. 223–227.

van der Meer, V., Jonker, H., van den Bos, J., 2021. A contemporary investigation of
NTFS file fragmentation. Forensic Sci. Int.: Digit. Invest. 38, 301125.

Wani, M.A., Bhat, W.A., Dehghantanha, A., 2020. An analysis of anti-forensic capabilities
of b-tree file system (btrfs). Aust. J. Forensic Sci. 52 (4), 371–386.

Zadok, E., 1999. Stackable File Systems as a Security Tool. Tech. Rep.; Citeseer.

J.-N. Hilgert et al.

DFRWS APAC 2024 - Selected Papers from the 4th Annual Digital Forensics Research Conference APAC

Mount SMB.pcap: Reconstructing file systems and file operations from
network traffic

Jan-Niclas Hilgert *, Axel Mahr, Martin Lambertz
Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Fraunhofer FKIE, Zanderstr. 5, 53177, Bonn, Germany

A R T I C L E I N F O

Keywords:
File systems
Network forensics
File extraction
Digital forensics
Server message block

A B S T R A C T

File system and network forensics are fundamental in forensic investigations, but are often treated as distinct
disciplines. This work seeks to unify these fields by introducing a novel framework capable of mounting network
captures, enabling investigators to seamlessly browse data using conventional tools. Although our imple
mentation supports various protocols such as HTTP, TLS, and FTP, this work will particularly focus on the
complexities of the Server Message Block (SMB) protocol, which is fundamental for shared file system access,
especially within local networks.

For this, we present a detailed methodology to extract essential file system data from SMB network traffic,
aiming to reconstruct the share’s file system as accurately as the original. Our approach goes beyond traditional
tools like Wireshark, which typically only extract individual files from SMB transmissions. Instead, we recon
struct the entire file system hierarchy, retrieve all associated metadata, and handle multiple versions of files
captured within the same network traffic. In addition, we also investigate how file operations impact SMB
commands and show how these can be used to accurately recreate user activities on an SMB share based solely on
network traffic. Although both methodologies and implementations can be applied independently, their com
bination provides investigators with a comprehensive view of the reconstructed file system along with the
corresponding user activities extracted from network traffic.

1. Introduction

File system analysis, as described by Brian Carrier in 2005, is a
fundamental part of any forensic investigation (Carrier, 2005). It in
volves the analysis of a given file system, including its structures, to
recover deleted files, extract metadata such as timestamps, or harness
certain specific features such as journals or snapshots (Kim et al., 2012;
Hilgert et al., 2018). In certain scenarios, performing file system analysis
may not be practical, for instance, when there is no physical access to the
device or when critical files on persistent storage have already been
modified or deleted. In these instances, the use of network traffic can
help bridge this gap.

In general, network forensics deals with a multitude of tasks, such as
the identification of relevant IP addresses, the analysis of protocols, and,
consequently, the extraction of data. Since data can be transferred over
the network in arbitrary ways, there is no universal solution for file
extraction, and dedicated methods must be implemented to deal with

transferred files. Besides network protocols supporting file transfer, such
as HTTP, SMB or FTP, the rise of distributed file systems has resulted in
more and more file systems utilizing a network for data sharing, either
by building on top of existing protocols or by implementing their own.
Consequently, many file system artifacts can be present within captured
network traffic.

Currently, standard tools such as Wireshark1 provide only limited
possibilities to deal with and analyze these files in transit. Typically,
they only support their extraction from the network capture. However,
we found that in most cases, more information valuable for forensic
investigations such as file system hierarchies, timestamps, or other
metadata is contained within these transmissions, which is usually
neglected.

For this reason, this work aims to close the gap between file system
and network forensics. In this research, we focus on the Server Message
Block protocol, which is extensively used for file transfers on the Win
dows operating system. SMB is frequently used within local corporate

* Corresponding author.
E-mail addresses: jan-niclas.hilgert@fkie.fraunhofer.de (J.-N. Hilgert), axel.mahr@fkie.fraunhofer.de (A. Mahr), martin.lambertz@fkie.fraunhofer.de

(M. Lambertz).
1 https://www.wireshark.org.

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301807

Forensic Science International: Digital Investigation 50 (2024) 301807

Available online 18 October 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

networks, offering clients access to shared files and directories. There
fore, analyzing SMB is critical for reconstructing events in incidents such
as ransomware attacks or data exfiltration. Although Wireshark is
already capable of extracting files transferred via SMB from network
captures, it does by no means harness all of the information available.

To address this, we created a methodology to recreate a file system
representation from SMB network traffic, including the files’ content
and reconstructing its original hierarchy, timestamps, and other meta
data. Moreover, we developed a framework that implements our
methodology and is capable of mounting SMB network traffic as a file
system. In addition to SMB, this framework also supports other network
protocols, such as FTP and HTTP.

Complementing the reconstruction of a file system from network
traffic, we take a closer look at the relationship between a user’s actual
file operations and the resulting SMB network traffic. Knowing and
understanding this relationship enables us to reconstruct user in
teractions from captured network traffic. In general, the contributions of
our work are as follows.

• An analysis of the steps required to reconstruct a file system from
SMB network traffic.

• A framework for mounting SMB network traffic as a file system,
including its original hierarchy and metadata, which also supports
FTP and HTTP Hilgert et al. (2024a).

• A novel method and implementation for SMB Command Finger
printing used to reconstruct user file operations from SMB network
traffic Hilgert et al. (2024b).

Section 2 will provide an overview of the fundamentals of the SMB
protocol. In Section 3, we will show the steps necessary to reconstruct
the original file system of the SMB share from captured SMB network
traffic and present our implementation that allows investigators to
mount network captures in Section 4. Afterwards, in Section 5, we will
explore the possibilities of reconstructing actual file operations from
captured SMB commands. Section 6 presents related work in this area,
before we conclude in Section 6.

2. Server Message Block protocol

The SMB protocol versions 2 and 3 were introduced with Windows
Server 2008; 2012, respectively and are described in Microsoft’s speci
fication Corporation (2024), which includes information about sup
ported commands and parameters, as well as descriptions of the network
packet structures for sending requests and responses. This section pro
vides a basic overview of the SMB protocol to aid in understanding
subsequent discussions on file system and file operation reconstruction.

Packet Structure. Every SMB request and response starts with a 64
byte SMB header that features a protocol identifier, flags (such as to
indicate whether it’s a request or response), and two bytes that denote
the SMB command type. Compound requests or responses can be used to
include multiple commands linked together in a single packet. In these
instances, the header will contain an offset pointing to the subsequent 8
byte-aligned SMB header in the packet. Additionally, to correlate re
quests with their responses, each SMB header contains an 8 byte mes
sage ID.

Moreover, SMB headers include a 4-byte field that indicates the
status of a response. In the case of requests, this field is disregarded and
must be zeroed out. An exhaustive list of possible status codes is avail
able in the [MS-ERREF] document by Microsoft. A status field filled with
zeros denotes a successful response.

Connection Setup. All SMB dialects, that is versions, support direct
TCP as their transport protocol, typically using port 445 on the server
side. Dialect 3.1.1 also introduces support for QUIC. Initially, the client
sends an SMB2 NEGOTIATE request to inform the server of the SMB
dialects it supports. The server then selects its preferred dialect for
subsequent communications in its SMB2 NEGOTIATE response. This is

followed by SMB2 SESSION_SETUP requests and responses to establish
an authenticated session, which include key details about the domain,
host, and user name used within the session. To access a specific server
share, the client sends TREE_CONNECT messages with the full path of
the share. If successful, the TREE_CONNECT response provides the tree
ID, which is used in the SMB header for subsequent requests related to
this share.

Commands. In the SMB protocol specification, Microsoft lists several
commands that fall under the File Access category of SMB messages. The
most important ones for the upcoming sections will be introduced next.

• SMB2 CREATE requests are used to request access or the creation of a
file or directory. It includes 4 Bytes to specify the desired access,
given in the SMB2 Access Mask encoding. Additionally, it also con
tains flags to indicate what actions the server should take, if the file
already exists, further options relevant for opening or creating the
file as well as file attributes given in the [MS-FSCC] specification by
Microsoft. The response to a SMB2 CREATE request contains infor
mation about the status of the operation, e.g. success as well as
create, last access, last write and change timestamps of the file. It also
returns a 16 Byte FileId, which is used to identify the accessed or
created file in subsequent requests.

• SMB2 CLOSE requests are sent by a client to close an opened file or
directory by specifying its FileId.

• SMB2 READ requests contain the FileId of the file a client wants to
request data from. The request contains the offset as well as the
length that should be read. Consequently, the response, if successful,
contains the requested data.

• SMB2 WRITE requests work in a similar way and are used to write
data of a certain length to a certain offset of a file, identified by its
FileId. The successful response then contains the number of bytes
that have been written.

• SMB2 IOCTL commands can be used by the client to issue file system
(FSCTL) or device control (IOCTL) commands to the server over the
network. A list of permitted FSCTL commands can be found in Sec
tion 2.3 of the [MS-FSCC] specification.

• SMB2 QUERY_INFO requests, known as GetInfo requests in Wire
shark, are utilized to gather details about files, quotas, security, or
the underlying storage system, based on the specified 1 Byte Infor
mation Type. Additionally, the specific information requested is
determined by the 1 Byte File Information Class, such as Fil
eBasicInformation for timestamps and attributes. When the in
formation type is SMB2_0_INFO_FILESYSTEM, the response
includes detailed information about the share’s file system.
Requesting the FileFsAttributeInformation class for instance
would provide the file system’s attributes and its name.

• SMB2 SET_INFO commands are used to update specific information
on files and other objects. The details to be updated are defined by
the information type and information class, along with the actual
data to be applied. For instance, setting the Fil

eDispositionInformation is used to mark files for deletion.
• SMB2 QUERY_DIRECTORY requests, known as FIND requests in

Wireshark, are used to retrieve details about the contents of a
directory. In addition to the FileId of the target directory and the
specific information class to be returned, the request includes a
Unicode search pattern, which can also be a wildcard. The server
provides the requested specific information for each match to this
search pattern.

In subsequent sections, we will use abbreviated forms of these
commands, e.g. CREATE for SMB2 CREATE.

2.1. Create context

Within a CREATE request, the client can also include Create Context
Structures to request additional information. Some common ones are.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

2

• Maximal Access Request (MxAc): In this request, the client re
quests the maximal access it has on the opened file or directory based
on the current session. The response includes the corresponding ac
cess mask.

• Query On Disk ID (QFid): If this is sent, the server responds with the
corresponding 8 Byte FileID as well as the VolumeID to which the
opened file belongs.

• Request Lease V2 (RqLs): The client requests a lease for the opened
file.

Leases were introduced in SMB 2.1 to enhance client-side caching,
effectively replacing OPLOCKs. To utilize this feature, a client requests a
lease for an opened file, specifying the desired mode—such as read,
write, or handle cache. In response, the server grants the appropriate
lease, allowing the client to cache reads and writes locally and thereby
reduce network traffic associated with SMB operations. When a lease is
broken — for instance, due to external changes in a directory for which a
client has an open file handle — the server issues a Lease Break Notifi
cation to the client. The client must then act based on the lease’s mode.
For example, if a read cache lease is broken, the application is required
to purge all cached data. More detailed information on lease breaks is
available in the SMB specification.

3. File system reconstruction

In order to reconstruct a file system from network traffic, it is
important to consider what data actually makes up a file system. Ac
cording to Brian Carrier, the data of a file system belongs to one of the
five data categories presented within his reference model Carrier (2005).

• Metadata Category: Metadata encompasses data describing files
such as their timestamps or access rights.

• File name Category: File as well directory names and their rela
tionship to each other are stored in this category, which is why it
basically describes the file system hierarchy.

• Content Category: The actual content of files within the file system
belongs to this category.

• File system Category: Data in this category defines the structure of
the file system itself, e.g. its size or where other data is stored.

• Application Category: This category consists of all the data the file
system does not necessarily need to read and write data, but is added
for special features, e.g. journaling.

In the subsequent sections, we will outline our approach for data
extraction from SMB network traffic corresponding to the previously
mentioned categories of file system data. In addition, we will discuss
certain peculiarities encountered during the reconstruction of a file
system from SMB network traffic.

3.1. Metadata

Most metadata, such as timestamps or file size, can be obtained from
the corresponding SMB2 CREATE response. While it also includes file
attributes, these do not necessarily match all attributes of the share’s
original file system. Instead, the file attributes used in SMB are detailed
in [MS-FSCC] as mentioned earlier. To associate extracted information
from subsequent requests with a specific file or directory, we also extract
the 16 Byte FileId from the CREATE response, along with the corre
sponding TreeId, and store them in an internal mapping table.

QUERY_INFO requests and responses can provide additional meta
data as this command is used to retrieve various types of file informa
tion. Timestamps and file attributes can be obtained from the
BasicInformation class, while the StandardInformation class
includes details such as the allocation size and the end-of-file value,
which indicates the file’s first unoccupied byte, i.e., its end. Further
metadata can also be found in QUERY_DIRECTORY responses as

described in the next subsection. Finally, metadata can also be extracted
from SET_INFO requests targeting metadata like timestamps.

3.2. File names

Our main method for obtaining file and directory names is through
CREATE requests. These not only include the name of the requested file
or directory but also its complete file path relative to the root directory
of the share, which is derived from the TREE_CONNECT request, pro
vided it is present in the network capture. This method enables us to
reconstruct parts of the share hierarchy, including the parent directories
of the requested file. However, this reconstruction is only performed
when a corresponding and successful CREATE response is received,
ensuring that only existing or newly created files are reconstructed.

Another crucial command for hierarchy reconstruction is QUERY_
DIRECTORY. The output of this command typically includes matches to
a specified search pattern. For standard interactions with the share, this
pattern is usually set to the wildcard *. Consequently, the server returns
all available files in a directory up to a specified buffer length. The de
tails stored in the corresponding responses are then used to expand the
file hierarchy. Additionally, depending on the query sent, this infor
mation contains at least the basic metadata for the files matching the
pattern. Extracting files in this manner results in the creation of hollow
files as described in Section 3.5. Similar to metadata, we also use
SET_INFO requests to gather information about files that have been
renamed.

3.3. Content

File contents can mainly be retrieved leveraging READ and WRITE
commands. To achieve this, we first identify all such command types and
correlate them with the actual files by matching their FileIds against our
internal mapping table. Then, we use the offset and length fields within
the commands to accurately reconstruct the file content.

3.4. File system and application data

Extracting information about the file system of the underlying share
can be achieved through QUERY_INFO responses when a File System
Information Class is requested. Section 2.5 of the [MS-FSCC] specifica
tion provides a detailed overview of the available classes and their
corresponding data. In our upcoming experiments, we have primarily
encountered requests and responses for the FileFsVolumeInformation and
FileFsAttributionInformation classes. These classes provide details about
the volume on which the file system is mounted, such as its creation date
or serial number, and a list of attributes describing the file system,
respectively. Since each file system has a unique layout and internal
structures, the data on file system details in SMB network traffic does not
allow for an exact replication of the original file system. This also applies
to any data that belongs to the application category. However, as shown
in the previous sections, this is not necessary for reconstructing the most
critical data for forensic analysis.

3.5. Hollow files

A hollow file is a file whose content does not appear in the SMB
network traffic. Nevertheless, as mentioned previously, various SMB
commands already contain extensive metadata, which we use to create a
hollow file that includes the correct file name, path, attributes, and
timestamps. This method aims to provide the most comprehensive view
possible of the original file system on the share. If a corresponding READ
or WRITE request for a hollow file is identified, we populate the file with
its content, thereby making it a regular file. Fig. 1 shows an example of
three SMB requests and responses and how we use their information to
reconstruct the file system.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

3

3.6. Version history

Unlike traditional file systems, which typically provide a snapshot of
files and directories at a specific point in time, network captures contain
data over a continuous period. Consequently, the same file can be
accessed multiple times during a capture period. If the file changes
during this time, different versions, including older and more recent
versions, may be present in the network capture. Since these previous
versions might not be recoverable from persistent storage of the network
share itself, it is crucial to extract these versions when reconstructing the
file system.

To facilitate this, we monitor the timestamps associated with each
file in our reconstructed file system. A change in these timestamps in
dicates a modification to the file. In such instances, we generate a new
version of the file, denoted by appending ”@<version>” to its filename.
It is important to note that new versions arise not only from files being
read but also from write operations detected in the network traffic.

4. Mounting network traffic

After detailing the process of reconstructing an original file system
from SMB network traffic in the previous section, this section outlines
our implementation for mounting acquired network traffic to achieve
such reconstruction.

Our approach extends traditional network forensics, which typically
focuses on packet-level or protocol-level data analysis. Instead, we
enable an analysis similar to traditional storage forensics, where in
vestigators can navigate through network data using standard forensic
tools and techniques. This includes operations such as calculating
hashes, searching for YARA signatures, or employing other sophisticated
tools.

Furthermore, our solution tackles a major challenge in network fo
rensics: the performance drop due to the extensive size of network traffic
captures, which can consist of countless packets and require lengthy
loading periods in analysis tools such as Wireshark. This is achieved by
utilizing a specialized index file that stores the layout of the recon
structed file system. This eliminates the need for repeated parsing and
examination of the network capture upon mounting, thereby enhancing
performance and accelerating the analysis process.

4.1. Overview

Our implementation utilizes the Filesystem in Userspace (FUSE)2,
which facilitates the creation of customizable and mountable file sys
tems. Unlike traditional storage forensics, where a volume is mounted,

we process network captures, supporting the PCAP and PCAPNG for
mats. We analyze and parse the information within these captures so
they can be mounted and accessed as a regular file system. For this
purpose, our implementation creates virtual files for each network pro
tocol it supports, e.g., TCP or SMB files. As outlined in the previous
section, this involves extracting content, metadata, and filenames and
integrating these components using the methods provided by libfuse.
Naturally, our file system is read-only and thus does not allow writing or
altering the data.

To enhance our implementation’s modularity, we utilize a recursive
approach to analyze various network protocols within network captures.
In a first run, virtual files are created for the network capture files
themselves. Then, other protocols, typically TCP and UDP, are parsed
within these files and new corresponding virtual files are created. These
virtual files contain a set of offsets and lengths that point directly into
the lower virtual file, as depicted in Fig. 2. When accessing data, such as
reading a TCP file, our implementation leverages these pointers to
retrieve and assemble the data efficiently.

Similarly, for SMB files, pointers within the SMB file point to data in
lower files, e.g., TCP files. Metadata for SMB files is extracted during an
initial parsing step and then stored for each SMB file. Since this can be a
time-consuming task, our implementation utilizes an index file, which
stores all relevant information about the detected files, their set of off
sets, as well as any metadata for these files and is typically only a frac
tion of the size of the associated network capture file.

Additionally, our implementation supports arbitrary transformation
steps between virtual file layers. For instance, if data is encrypted,
reading a virtual file may first access the encrypted data from a lower
file, decrypt it—provided that decryption keys are available—and then
present the decrypted data seamlessly in the mounted file system,
maintaining transparency throughout the process. This concept allows
for the support of more complex network protocols such as TLS.

4.2. Structure

By default, a separate directory is automatically created within the
mounted file system for each supported protocol, in which the corre
sponding parsed virtual files are stored, as detailed in Listing 1. File
names start with the index of the source file — for UDP and TCP files,
which usually directly reference the network capture, the index remains
uniformly ’0’ in our example, indicating a single capture-file.pcap.
This index is followed by the offset at which the file begins. For example,
TCPFILE12 starts at offset 770 within the network capture file. This
naming pattern also extends to other protocols, such as the HTTP
banner.svg file, which points to TCP file 31 and starts at offset 22434.
All necessary offsets for file construction are initially stored in memory,
but can optionally be written to a special index file on disk to facilitate
faster mounting by avoiding repeated data parsing.

Fig. 1. Reconstructing file systems from SMB requests and responses.

2 https://github.com/libfuse/libfuse.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

4

Listing 1. Example hierarchy of a mounted network capture.

Depending exclusively on protocols to organize a file system hier
archy has a limitation: essential network capture artifacts like IP ad
dresses are concealed from the investigator. To mitigate this issue, we
introduced a sortby feature. This feature allows for the creation of a
tailored hierarchy that includes critical details such as source and
destination IPs or ports, as well as protocol-specific elements such as
domains or URIs. Listing 2 shows an example where the hierarchy in
cludes the source and destination IP addresses and the domain for the
HTTP protocol. This approach elevates conventional network forensic
filters to the filesystem level, improving both accessibility and usability
for thorough analysis.

Listing 2. The -sortby parameter can be used to create arbitrary hierarchies
for the mounted network capture.

4.3. Mounting SMB

When mounting SMB network traffic, our implementation organizes
the data by creating a directory for each detected SMB server and

subdirectories for each share, or tree. If a TREE_CONNECT request is
detected, the share is named using the provided name; otherwise, it uses
the TreeId. Listing 3 illustrates an example in which a network capture
of the SMBSHARE server is mounted. The test_share represents a
user-defined share, whereas IPC$ is a default share created by Windows
to facilitate anonymous user activities such as share enumeration.

Listing 3. Example for mounted SMB traffic.

As shown for test_share, the share’s hierarchy is reconstructed as
previously detailed. Using the parameter –show-metadata during
mounting, hollow files are enabled and displayed in lighter orange, of
fering a detailed representation of the SMB share including file names,
hierarchy, and metadata such as file timestamps.

The file file2.txt, highlighted in darker green, contains actual data
from the network capture. Our approach also handles the reconstruction
of multiple file versions within the capture, as demonstrated by the three
versions of file2.txt in the mounted share. Common file system tools
such as ls can be utilized to retrieve metadata, helping to determine the
timestamp of each file version.

While presenting multiple file versions as multiple files already ad
dresses the dynamic characteristic of data in network captures, we have
further enhanced our implementation with a snapshot feature. This
feature can be invoked using the snapshot argument with the
–sortby option, adding a new layer of directories to the hierarchy. This
structure mimics snapshots in traditional file systems, enabling in
vestigators to access and navigate the file system as it appeared at spe
cific moments in time. This functionality is particularly useful for
tracking changes like renames or deletions, which prompt the creation
of a new snapshot — essentially a new directory within this layered
hierarchy.

Fig. 2. Overview of data access within our implementation for mounting network captures.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

5

To offer a more complete understanding of the reconstructed file
system data, it is crucial to comprehend its origins by extracting file
operations from network traffic. The subsequent section introduces a
novel methodology for identifying user activities within SMB network
traffic. This approach can be utilized in conjunction with mounting the
network capture for a more comprehensive view or separately.

5. Reconstructing file operations

File operations are any interaction an application has with a file or
directory. As a result, there is a strong connection between file opera
tions and user interactions, since every user interaction may initiate a
series of file operations. This section details how analyzing captured
SMB network traffic can provide insights into file operations and, by
extension, the underlying user interactions.

5.1. Methodology

For this purpose, we divide the process into three steps.

1. Windows API Analysis: We begin by examining the influence of
various Windows API calls on the resultant SMB commands. The
Windows API offers a diverse set of functions that enable applica
tions to interact with the Windows file system, playing a crucial role
in all file operations within Windows.

2. SMB Command Fingerprinting (SCF): Building on our under
standing of the Windows API, we propose a novel technique to detect
the execution of a Windows API call on an SMB share, exclusively
through the analysis of intercepted network traffic.

3. Case Study with cmd.exe: To demonstrate the effectiveness of our
approach, we employ SCF rules to reconstruct specific user in
teractions, starting with the widely used command line utility, cmd.
exe. This tool is selected for its ubiquity, simplicity, and versatile file
system manipulation capabilities.

For our experiments, we used two systems running Windows 11 Pro
Build 22621.3155, configured as an SMB share and an SMB client,
respectively. We captured their network traffic using Wireshark and
further analyzed application behavior through the frida-trace3

utility to track the API calls made by applications.

5.2. Windows API

The Windows API offers a wide array of functions for various tasks
including data access, system management, and networking. Functions
within the Windows API that handle character data typically appear in
three forms: a variant ending in A that utilizes Windows code pages for
text processing, a variant ending in W that accommodates Unicode, and a
basic form without suffix. Given that the standard form ultimately relies
on one of these specific API calls, our emphasis will be on the more
contemporary W-versions of these APIs where relevant. The following
subsections will detail the SMB commands observed when we executed a
compiled C version of the single Windows API call.

5.2.1. CreateFile
Since many Windows API methods require a file handle, it is often

necessary to first open the file using the CreateFile call. In addition to
the file name, it requires the desired access and share mode, the creation
disposition, and flags or attributes as arguments. These arguments thus
need to be adapted to the actual use case, e.g. a read or write.

In our experiments, we have found that the arguments given to the
CreateFile API call can highly influence the resulting SMB commands
sent via the network. For this reason, we present the most crucial results

from our experiments.

• Calling the CreateFile API call results in at least one CREATE
request.

• The specified file share access, create disposition and file attributes are
reflected in the corresponding fields of the CREATE request.

• File attributes do not influence the sequence of SMB commands sent.
• Similarly, file flags including the security flags did not change the SMB

commands sent. Instead, most of the file flags are represented in the
create options field within the CREATE request.

• The desired share mode does not have an impact on the sequence of
SMB commands either.

• The API parameters OPEN_EXISTING, OPEN_ALWAYS, CREA
TE_NEW and CREATE_ALWAYS for the disposition are mapped to the
FILE_OPEN, FILE_OPEN_IF, FILE_CREATE and FILE_OVER
WRITE_IF dispositions in SMB commands.

• Using OPEN_ALWAYS, CREATE_NEW or CREATE_ALWAYS as a
disposition adds an additional CREATE request to the sequence of
SMB commands targeting the parent directory.

• If write access is requested in an API call using the OPEN_EXISTING
disposition, an additional QUERY_INFO requesting the normalized
name of a file is issued.

5.2.2. FindFirstFile
This API call is used to search a directory for a specific file name or

pattern, including a wild card, and returns a search handle for subse
quent searches, as well as the file information for the first matching file.
Performing this call on an explicit file name or directory name results in
a CREATE command for its parent directory followed by two QUER
Y_INFO commands, which were sent as a compound request in our

Fig. 3. SMB commands triggered by a FindFirstFile API call. The right side
illustrates the outcomes when the call is made with the prior file handle
remaining open.3 https://frida.re/docs/frida-trace/.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

6

experiments, as illustrated in Fig. 3. If the client receives a response
indicating a NO_MORE_FILES status after the initial QUERY_INFO re
quests, it does not perform additional ones. However, if the server still
returns files, it performs additional QUERY_INFO requests using a buffer
length of 1048612 Bytes until all files are returned. Most interestingly,
regardless of the search pattern specified in the API call, the SMB
commands seem to always utilize the wild card parameter *, thus
returning information for all files within a directory.

Since the CREATE also requests a lease, the file handle is kept open
and the CLOSE request is only sent when the DormantDirector
yTimeout is reached, which by default is set to 10 min. Alternatively,
the client also sends this command as soon as a Lease Break Notification
for the directory is received. During the time the file handle is still open,
performing this API call still creates the CREATE request as shown in the
second example in Fig. 3. However, the QUERY_INFO commands are
omitted in this case, and the CLOSE request is sent immediately.

The FindFirstFileEx call additionally allows us to specify attri
butes that need to match the returned file. In our tests, the resulting SMB
commands were identical to the ones observed for FindFirstFile.

Subsequently, the FindNextFile API call is usually used to obtain
the next file that matches the search pattern. This call requires the search
handle returned by FindFirstFile. However, since this API function
initially requests all matching and even nonmatching files through SMB,
using FindNextFile does not trigger any additional commands in the
network compared to just using FindFirstFile.

5.2.3. GetFileAttributes and SetFileAttributes
The GetFileAttributes API call is a straightforward method to

retrieve the attributes of a file or directory based on its name, elimi
nating the need for a preceding CreateFile call. This operation trig
gers a single CREATE command for the target file, with the parameters in
the SMB packet set automatically. This is immediately followed by a
CLOSE command.

Conversely, to modify file attributes, the Windows API offers the
SetFileAttributes call, which requires a file name and the new
attributes to apply. Following the CREATE request, which employs pa
rameters distinct from those for attribute retrieval, a QUERY_INFO
command is issued to obtain FileNormalizedNameInfo. Subse
quently, attribute modifications are made using a SET_INFO command
directed at FileBasicInfo. The sequence ends with a CLOSE
command.

5.2.4. ReadFile
To read a file, the Windows API provides the ReadFile function,

which requires a file handle and a specified number of bytes to read. For
our experiments, we obtained the file handle by performing the Cre
ateFile API call with standard GENERIC_READ settings, yielding SMB
commands as detailed in Section 5.2.1.

When ReadFile is called, it causes an additional READ command. In
particular, the number of bytes requested in the SMB command is always
rounded up to the nearest multiple of 4096 or the actual file size of the
file, if it is lower. For example, an API call to read only 50 bytes of a large
file will actually request 4096 bytes over SMB. For read operations that
exceed 2,097,152 bytes, multiple READ requests are issued, using the
offset parameter to request the next parts of the file. These requests are
transmitted consecutively without pausing for the server’s response.

While the ReadFile function lacks a direct parameter to set a read
offset, this can be accomplished by adjusting the file pointer using the
SetFilePointer function. This adjustment also affects the offset
utilized in the SMB READ commands. Similarly to the read length, any
specified offset is rounded down to the nearest multiple of 4096 bytes in
the respective READ command.

5.2.5. WriteFile
Writing data to a file in the Windows APIs is performed using the

WriteFile function. This function requires three key inputs: a file

handle, a pointer to the buffer containing the data, and the number of
bytes to write. The file handle must be obtained first, with the correct
access rights set for writing. For our experiments, we created the handle
using GENERIC_WRITE and OPEN_ALWAYS.

The WriteFile operation itself triggers two additional SMB re
quests: A WRITE request, which includes the actual data to write, follows
the CREATE response for the target file. If the data length exceeds
3,473,408 bytes, the operation is handled through multiple WRITE re
quests. These requests utilize the length and offset fields in the SMB
commands to indicate which part of the data is sent. Once the write
operation is complete, a QUERY_INFO command is issued to retrieve the
FileNetworkOpenInfo, which provides details about the file status
post-write.

5.2.6. CreateDirectory and RemoveDirectory
The API calls CreateDirectory and RemoveDirectory are

intended for creating and deleting directories, respectively.Crea
teDirectory generates a single CREATE request followed by a CLOSE
request. As illustrated in Fig. 4, invoking RemoveDirectory initiates a
CREATE request, which is then succeeded by a SET_INFO request that
sets the FileDispositionInformation to explicitly mark the
directory for deletion. Finally, a CLOSE request is issued.

5.2.7. DeleteFile
The DeleteFile API call requires the name of the file to be deleted.

The resulting SMB commands are similar to those of the RemoveDir
ectory command. However, the parameters for the CREATE request
are different, and there is an additional QUERY_INFO command issued
to retrieve the FileNormalizedNameInformation class. This com
mand sequence is illustrated in Fig. 4.

5.3. SMB Command Fingerprinting

Our research has shown that each Windows API call generates a
distinctive sequence of SMB commands. These sequences are

Fig. 4. SMB commands originating from a RemoveDirectory and Dele
teFile API call.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

7

characterized by two key aspects: the specific types of SMB commands
issued and the parameters set within these commands. This is because
API calls that require a filename generally initiate a file operation using
unique parameters, such as file attributes or desired access levels. We
can use this information to associate SMB command sequences with
their respective API calls.

To facilitate the analysis, we propose an SMB Command Finger
printing approach. This method calculates an MD5 hash for each SMB
packet, simplifying the identification of distinct command sequences. To
ensure that the hashes are both precise and universally applicable, i.e.,
independent of dynamic fields, we selectively hash values based on the
specific type of SMB command. Fig. 5 illustrates which parameters are
used to calculate an SCF for an SMB Create request.

For compound requests containing multiple SMB requests or re
sponses in a single SMB packet, we calculate the individual SCF for each
SMB command, concatenate them, and calculate the final hash of this
result. To facilitate this process, we developed a utility that calculates
the SCFs for SMB packets in a given network capture file automatically.
Examples of SCFs resulting from various Windows API calls can be found
in Table 2.

5.4. Case study: cmd.exe

While reconstructing specific Windows API calls from SMB network
traffic yields valuable insights, the true strength of our approach lies in
reconstructing explicit user interactions. For this purpose, we developed
a set of SCF rules that comprise one or more SCFs. Thus, these rules
consider not only the individual parameters of an SMB command but
also the sequence in which these commands are sent. Listing 4 provides
an example of an SCF rule. This rule identifies a sequence that includes a

, a , a , and a
, while considering the specific parameters for creation,

as well as the information type and class through the use of SCFs.

Listing 4. An SCF rule for the detection of file creation using e.g. echo “Data”
> file in SMB network traffic.

To demonstrate the practicability of this methodology, we utilized

the Windows Command Line Utility cmd.exe, a ubiquitous tool across
Windows systems that can be used to perform various file operations.
We executed a series of commands on a mounted SMB share, captured
the corresponding network traffic, and used our SCF rules to reconstruct
the file operations. Although only 18 commands were executed over a
span of about 2 min, the generated SMB traffic included roughly 250
SMB packets, making a manual analysis impractical and unscalable.
Table 1 provides a comprehensive summary of the events that were
automatically reconstructed purely from network traffic, together with
the original commands executed and their timestamps.

Our findings show that our approach successfully identified 16 of 18
commands executed using cmd.exe. The exceptions were the cd …
commands, which did not generate SMB commands, likely due to
caching mechanisms, hence they could not be reconstructed. All other
commands, including other simple directory changes, were accurately
reconstructed. Notably, the mkdir Files\Other command was
reconstructed as two separate events, reflecting the recursive nature of
directory creation in this scenario.

It is important to note that the timestamps of reconstructed events
typically lag behind the actual execution times due to the inherent delay
in capturing the corresponding network packets. Therefore, the preci
sion of these timestamps in real-world scenarios can vary significantly
depending on the network configuration.

6. Related work

Over the years, multiple research efforts have explored methods to
facilitate network traffic analysis. In digital forensics, research has, for
example, explored the extraction of HTTP traffic events (Gugelmann
et al., 2015). Other studies range from employing neural projections for
the visualization of network traffic for intrusion detection (Corchado
and Herrero, 2011), incorporating 3D representations that integrate the
temporal aspect (Clark and Turnbull, 2020), to using relational graphs
for enhanced data exploration (Cermak et al., 2023). A 2021 study
emphasized the difficulties in using visualization techniques for anom
aly detection in network traffic, highlighting the persistent challenges in
this research area (Corchado and Herrero, 2011).

File extraction from network traffic is a well-established practice,
with current methods capable of extracting various file types from
different network protocols, similar to the functionalities provided by
tools such as Wireshark (Choi et al., 2015; Hansen et al., 2018). How
ever, these methods either do not support or are inadequate in extracting
and presenting all available information for protocols like SMB.

Although initially not developed with digital forensics in mind, a
conceptually similar approach to our SMB Command Fingerprinting
already emerged in 1992. The researchers introduced a toolkit to
approximate the activity of the file system by analyzing the network
traffic of the NFS (Network File System) (Blaze, 1992). Over the years,
various research on NFS tracing has evaluated and refined these
methods, enhancing the ability to recover file system traces from passive
monitoring of network traffic (Moore, 1995; Ellard and Seltzer, 2003).
However, this concept has not been extended to protocols like SMB, nor
has it aimed to establish a universally applicable set of rules to detect
diverse user actions across different applications, as we propose with our
SCF Ruleset.

Furthermore, the broader domain of network traffic fingerprinting
has traditionally focused on identifying specific applications rather than
user interactions (Dai et al., 2013; Taylor et al., 2016). Our research tries
to identify precise user behaviors, thus expanding the forensic capabil
ities of network traffic analysis.

7. Conclusion and future work

In this work, we introduced a novel method for network forensics by
integrating it with traditional file system analysis. To achieve this, we
created a framework enabling analysts to mount a network capture file, Fig. 5. Example calculation of an SMB2 Create Command Fingerprint.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

8

allowing them to navigate the data and use standard file-based tools
easily. Our implementation facilitates this process by offering various
options for customizing the file system hierarchy, such as using IP ad
dresses or ports, thereby merging network and file system forensics.

Although our framework supports multiple protocols that can be
mounted, including HTTP, FTP, and TLS, we particularly emphasized
the SMB protocol due to its common use for file sharing. We have out
lined a methodology for extracting critical data from SMB network
traffic, which can be used to accurately reconstruct the file system of the
share. Unlike other analysis tools such as Wireshark, which only allow
for the extraction of transferred files, our approach enables the recon
struction of the file system hierarchy and metadata by leveraging all
available information in the captured traffic. Therefore, using hollow
files that lack actual data, our method offers a more comprehensive
representation of the original file system.

As an additional method for SMB network analysis, we examined the
unique SMB sequences resulting from Windows API calls and proposed
SMB Command Fingerprinting. This method enables the identification of

Windows API call executions purely from SMB network traffic and the
accurate reconstruction of user activities. For this purpose, we created
SCF rules that allow the precise reconstruction of commands executed
through the Windows command utility. While this was merely a case
study to demonstrate the applicability of our approach, it is essential to
expand on this research in the future.

For example, it is crucial to broaden the SCF ruleset to encompass
other applications and explore the feasibility of distinguishing between
them, such as determining which application was responsible for
creating or deleting a file. In this context, it is also vital to examine
different operating systems, considering various implementations of the
SMB protocol, such as Samba on Linux. Furthermore, it is necessary to
investigate whether failed attempts, such as unsuccessful file access, can
be accurately reconstructed from SMB network traffic. To support
research in this field, both our framework for mounting network traffic
and our implementation for calculating SCFs, reconstructing file oper
ations, and our current rule set are available in our repositories Hilgert
et al. (2024a,b).

Appendix

Table 1
Comparison of actual executed cmd.exe commands and the reconstructed commands from SMB network traffic.

cmd.exe Timestamp Command Executed Reconstructed Timestamp Reconstructed User Activity

18:00:36.27 dir 18:00:37.02 listing of directory (dir)/
18:00:47.79 mkdir Files\Other 18:00:47.93 creation of directory (mkdir): Files

18:00:47.93 creation of directory (mkdir): Files\Other
18:00:52.49 dir 18:00:52.59 listing of directory (dir)/
18:01:00.00 cd Files 18:01:00.16 changed directory (cd) to Files
18:01:04.59 dir 18:01:04.75 listing of directory (dir) Files
18:01:12.36 cd

18:01:17.11 dir 18:01:17.26 listing of directory (dir)/
18:01:23.28 mkdir Documents 18:01:23.51 creation of directory (mkdir): Documents
18:01:29.15 cd Documents 18:02:31.10 changed directory (cd) to Documents
18:01:36.35 echo ”abcd” > test.txt 18:01:36.51 creation of file using echo Documents\test.txt
18:01:41.49 more test.txt 18:01:41.73 view of file Documents\test.txt
18:01:53.60 mkdir Work 18:01:53.80 creation of directory (mkdir): Documents\Work
18:01:58.18 dir 18:01:58.35 listing of directory (dir) Documents
18:02:07.24 echo ”efgh” >> test.txt 18:02:07.46 appending to file using echo Documents\test.txt
18:02:13.96 cd

18:02:18.68 dir 18:02:18.83 listing of directory (dir)/
18:02:24.04 ren docs old 18:02:24.18 renamed (rename) directory docs to old
18:02:30.89 del Documents\test.txt 18:02:31.11 deletion of file (del): Documents\test.txt

Table 2
SMB Command Fingerprints for various Windows API calls.

WinAPI SCF Description

FindFirstFile e128601506b19689cfea77f8e57fa33d
e6f1d54f04f3f80e8c008be45ddb89f1

CREATE
Compound Request
QUERY DIRECTORY — QUERY DIRECTORY

GetFileAttributes 3df084742fb18607089dd93e01da07bb CREATE

SetFileAttributes ec10dfc12cab368e93459f451fd6b2dc
56100944eac20b9e9e3229bee6916e1b
5a4606aac7612839c39162746e8655a0

CREATE
QUERY INFO FileNormalizedNameInformation
SET INFO FileBasicInformation

CreateDirectory cb7e84430eef9f80aa038dfa3679fd91 CREATE

RemoveDirectory 26b162f9c78b0d1095d94d55dfb9bc69
472410aa272671f7d8a103954703cc5a

CREATE
SET INFO FileDispositionInformation

DeleteFile 17221fcc0857e79e60545bb409f37497
56100944eac20b9e9e3229bee6916e1b
472410aa272671f7d8a103954703cc5a

CREATE
QUERY INFO FileNormalizedNameInformation
SET INFO FileDispositionInformation

(continued on next page)

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

9

Table 2 (continued)

WinAPI SCF Description

CopyFile (to server) 901e16b20a7cf536d5279df8a06e2a0a
c10eadfd4fc2a82352888ea761f9ce54

35127603ad78335a7290598c9070e7f7
d4b9e47f65b6e79b010582f15785867e
5a4606aac7612839c39162746e8655a0
80c2cc1529acacebb810ec4014119967

CREATE
Compound Request
QUERY INFO — QUERY INFO
SET INFO FileEndOfFileInformation
WRITE
SET INFO FileBasicInformation
QUERY INFO

MoveFile (to server) e7449ce5b9915ecfadc3293625d087ad
c10eadfd4fc2a82352888ea761f9ce54

35127603ad78335a7290598c9070e7f7
d4b9e47f65b6e79b010582f15785867e
5a4606aac7612839c39162746e8655a0
80c2cc1529acacebb810ec4014119967

CREATE
Compound Request
QUERY INFO — QUERY INFO
SET INFO FileEndOfFileInformation
WRITE
SET INFO FileBasicInformation
QUERY INFO

References

Blaze, M., 1992. Nfs tracing by passive network monitoring. In: Proceedings of the
USENIX Winter 1992 Technical Conference, pp. 333–343.

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.
Cermak, M., Fritzová, T., Rusňák, V., Sramkova, D., 2023. Using relational graphs for

exploratory analysis of network traffic data. Forensic Sci. Int.: Digit. Invest. 45,
301563.

Choi, Y., Lee, J.Y., Choi, S., Kim, J.H., Kim, I., 2015. Transmitted file extraction and
reconstruction from network packets. In: 2015 World Congress on Internet Security
(WorldCIS). IEEE, pp. 164–165.

Clark, D., Turnbull, B.P., 2020. Interactive 3d visualization of network traffic in time for
forensic analysis. VISIGRAPP 177–184, 3: IVAPP.

Corchado, E., Herrero, Á., 2011. Neural visualization of network traffic data for intrusion
detection. Appl. Soft Comput. 11, 2042–2056.

Corporation, M., 2024. [ms-smb2]: Server Message Block (Smb) Protocol Versions 2 and
3. https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/
5606ad47-5ee0-437a-817e-70c366052962.

Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D., 2013. Networkprofiler: towards
automatic fingerprinting of android apps. In: 2013 Proceedings Ieee Infocom, IEEE,
pp. 809–817.

Ellard, D., Seltzer, M., 2003. New nfs tracing tools and techniques for system analysis. In:
Proceedings of the 17th Large Installation Systems Administration Conference.
USENIX Association.

Gugelmann, D., Gasser, F., Ager, B., Lenders, V., 2015. Hviz: Http (s) traffic aggregation
and visualization for network forensics. Digit. Invest. 12, S1–S11.

Hansen, R.A., Seigfried-Spellar, K., Lee, S., Chowdhury, S., Abraham, N., Springer, J.,
Yang, B., Rogers, M., 2018. File toolkit for selective analysis & reconstruction
(filetsar) for large-scale networks. In: 2018 IEEE International Conference on Big
Data (Big Data). IEEE, pp. 3059–3065.

Hilgert, J.N., Lambertz, M., Yang, S., 2018. Forensic analysis of multiple device btrfs
configurations using the sleuth kit. Digit. Invest. 26, S21–S29.

Hilgert, J.N., Mahr, A., Lambertz, M., 2024a. pcapFS – Mounting Network Data. URL:
https://github.com/fkie-cad/pcapFS/tree/main.

Hilgert, J.N., Mahr, A., Lambertz, M., 2024b. SCF - SMB Command Fingerprinting. URL:
https://github.com/fkie-cad/SCF.

Kim, D., Park, J., Lee, K.g., Lee, S., 2012. Forensic analysis of android phone using ext4
file system journal log. In: Future Information Technology, Application, and Service:
FutureTech 2012, vol. 1. Springer, pp. 435–446.

Moore, A.W., 1995. Operating System and File System Monitoring: A Comparison of
Passive Network Monitoring with Full Kernel Instrumentation Techniques. Ph.D.
Thesis. Monash University.

Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I., 2016. Appscanner: automatic
fingerprinting of smartphone apps from encrypted network traffic. In: 2016 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, pp. 439–454.

J.-N. Hilgert et al. Forensic Science International: Digital Investigation 50 (2024) 301807

10

References

[Car05] Carrier, Brian: File System Forensic Analysis. 2005.

[HLB24] Hilgert, Jan-Niclas; Lambertz, Martin & Baier, Daniel: “Forensic implications

of stacked file systems”. In: Forensic Science International: Digital Investigation 48,
2024, p. 301678.

[HLP17] Hilgert, Jan-Niclas; Lambertz, Martin & Plohmann, Daniel: “Extending The

Sleuth Kit and its underlying model for pooled storage file system forensic analy-

sis”. In: Digital Investigation 22, 2017, S76–S85.

[HLY18] Hilgert, Jan-Niclas; Lambertz, Martin & Yang, Shujian: “Forensic analysis of mul-

tiple device BTRFS configurations using The Sleuth Kit”. In: Digital Investigation

26, 2018, S21–S29.

[HML24] Hilgert, Jan-Niclas; Mahr, Axel & Lambertz, Martin: “Mount SMB.pcap: Recon-

structing file systems and file operations from network traffic”. In: Forensic Science

International: Digital Investigation, 2024.

[HP94] Heidemann, John S & Popek, Gerald J: “File-system development with stackable

layers”. In: ACM Transactions on Computer Systems (TOCS) 12.1, 1994, pp. 58–89.

[Pal+01] Palmer, Gary et al.: “A road map for digital forensic research”. In: First digital

forensic research workshop, utica, new york. 2001, pp. 27–30.

79

List of Figures

1. Workflow for a file system forensic analysis established by Brian

Carrier in 2005 [Car05]. 5
2. Our extension to Carrier’s workflow for a file system forensic

analysis supporting pooled storage file systems [HLP17]. 10
3. Our extensions to Carrier’s workflow for a file system forensic

analysis supporting pooled storage as well as stacked file

systems [HLB24]. 15
4. Illustration of different analysis types by Brian Carrier [Car05]. . . . 16

80

	Publications
	Introduction
	Pooled Storage File Systems
	Stacked File Systems
	Network-enhanced File System Analysis

	Accompanying Text to Hilgert, Lambertz & Plohmann (2017)
	Accompanying Text to Hilgert, Lambertz & Yang (2018)
	Accompanying Text to Hilgert, Lambertz & Baier (2024)
	Accompanying Text to Hilgert, Lambertz & Mahr (2024)
	Conclusion
	Appendix
	References
	List of Figures

