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Abstract

The sun, the climate, world politics, the stock market, or the human brain, complex networked
systems are deeply intertwined in the world we live in. Their dynamics, which include unexpected
and catastrophic extreme events, can have tremendous impact on a single human or man-kind
as a whole. Hence, studying these systems’ dynamical phenomena as well as their properties is
essential to improve our knowledge about them. Under the key premise that a complex system can
be divided into interacting elementary units, the network ansatz poses a very useful and decisive
approach to characterise the system. Associating network vertices with elementary units and
network edges with interactions between them, this ansatz yields vast applicability to various
natural or man-made systems. FEven for those cases, where interactions have no structural
correlate or cannot be inferred directly, utilizing time-series-analysis techniques to investigate
the units” dynamics allows to characterize properties of interactions, like their strength, direction
or even coupling functions, ultimately constituting a time-evolving functional network. Graph
theory assesses networks as mathematical structures and provides a multitude of concepts and
metrics to assess network characteristics from a global scale, viewing the network as a whole,
over an intermediate scale, focusing on substructures in it, to a local scale, inspecting properties
of single vertices and edges. Knowledge gained in this way about the properties of the network
can then be related to properties of the investigated system and aid to understand its complex
emergent global dynamics. While in many ways it is the intricate interplay of interactions
between the systems’ elements that dictates its properties and dynamics, the edges of networks
and their properties have been wvastly overlooked. Therefore in this thesis, we embarked on a
more edge-centric approach to investigate complex systems utilizing the network ansatz. We
developed novel concepts, advanced local network metrics, proposed novel edge-centric metrics
and introduced network decomposition algorithms, set out to improve our understanding of real-
world systems and their complex dynamics. We demonstrated the applicability and added value
of these concepts and metrics, and gained vital insights about archetypical network topologies,
spreading phenomena, as well as critical transitions and their entailed extreme events. On the
prime example of a complex dynamical system, able to self-generate extreme events, the human
epileptic brain, we elucidated vital aspects of network mechanisms involved in the generation
of epileptic seizures, e.g. in revealing specific tipping elements and tipping subnetworks. This
can ultimately aid in developing more refined approaches to characterize, predict and possibly
even mitigate extreme events, such as epileptic seizures. We further revealed limitations of the
network ansatz, and how this approach can aid in tackling fundamental challenges encountered
especially when studying such real-world systems as the brain, included sampling issues and
nfluences of endogenous and external driving forces. Employing the network ansatz and focusing
on the intricate interplay of a complex networked system’s interactions, provided considerable
advances in understanding these systems and their dynamical phenomena, while also paving the
way for future research by displaying the immense potential the network ansatz — and especially
the study of important edges — can hold.
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I Introduction

“We never know how our small activities will affect others through the invisible fabric
of our connectedness. In this exquisitely connected world, it’s never a question of
‘critical mass’. It’s always about critical connections.”

— Margaret J. Wheatley (1999). “Leadership and the New Science: Discovering Order in A
Chaotic World”, p.45, Berret-Koehler Publishers, San Francisco

A. DMotivation

Complex dynamical systems surround us al-
most everywhere in our day-to-day lives, hav-
ing vital impact on humanities’ existence.
Whether man-made or natural, these sys-
tems are capable of exhibiting a rich va-
riety of dynamical phenomena like trav-
elling waves [1, 2|, self-organization [3-5],
(de-)synchronization (patterns) [6-8|, emer-
gence [9-11], bifurcations [12-15|, criticality
and multistability [16-18], chimera states [19-
21], (critical) phase transitions, and extreme
events [22, 23|, living on various spatial and
temporal scales. They can have large effects
on humans individually, humanity as a whole
and the world that we live in. Hence, it is vi-
tal and in our best interest to understand and
predict these dynamics and possibly control
the systems to tackle a multitude of today’s
most pronounced and global challenges, in-
cluding climate change, pandemic spreading,
financial crises, and wars. While the desire and
the strive to understand such complex and
interwoven systems is a challenging task, re-
ductionism and abstraction has allowed great
advances in tackling these challenges from a
physics point-of-view.

Presuming that such spatially extend com-
plex dynamical systems can be divided into
smaller and possibly elementary subsystems,
quite often the interplay of these single el-
ements dynamics’ can lead to an emergent
global dynamic.

Comprehending emergence in complex dy-
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namical systems allowed us to understand
many complex phenomena in physics like the
appearance of magnetism from the macro-
scopic behaviour of millions of spins or how
the ensemble of quantum particles can lead to
phenomena such as Bose-Einstein condensa-
tion or to material properties such as super-
conductivity.

Further examples of such complex dynami-
cal systems are many-particle systems found
in various different fields of physics, such
as electrons in metals in condensed mat-
ter physics [24], ideal gas in thermodynam-
ics [25], polymers in material sciences [26-28|
or molecular clouds in astrophysics [29]. How-
ever, the global linear or non-linear dynamic
of such a system is not trivially deducible from
properties and dynamics of the elementary
subsystems [30, 31].

The key and success in describing these sys-
tems and their interesting respective phenom-
ena lies in focusing on the interactions be-
tween their constituting elements. The laws
of thermodynamics, understood through the
microscopic theory called statistical mechan-
ics, allowed Ludwig Boltzmann to introduce
a framework that connects the (dynamical)
behaviour of individual microscopic particles
or units to the macroscopic (ensemble) prop-
erties of matter. In this sense, the concept of
entropy S provides a formal description of the
relation between the microscopic and macro-
scopic scales of a complex dynamical system.
Hence, the definition of entropy by Boltzmann
poses a fundamental building block of statis-



tical mechanics:
S = kB In Q2

with kg being the Boltzmann constant, and
2 being the number of possible microscopic
states corresponding to the macroscopic state
of the system.

The discovery that statistical mechanics al-
lows to derive certain thermodynamic proper-
ties from the behaviour and properties of mi-
croscopic particles, was revolutionary in the
sense that it allowed to provide deeper insights
in how macroscopic phenomena in complex
dynamical system arise from the microscopic
interactions of the system’s constituents.

The principles of statistical mechanics, de-
veloped to describe systems of particles, can
be extended to formulate the statistical me-
chanics of networks [32], allowing to relate the
emergence of structures and (dynamical) phe-
nomena on a macroscopic scale of networks to
the microscopic properties of the network con-
stituents. This postulates the basis of the net-
work ansatz, describing a complex dynamical
systems as an (evolving) network consisting of
interacting units.

Much like in classical statistical mechan-
ics, the physics aspect lies in the character-
isation of the systems’ states, e.g. via exam-
ining energy dependencies affecting probabili-
ties to encounter specific states, or restrictions
and exclusion of specific states. Each state
can be associated with a network, and hence,
the state-space can be represented as a set of
networks. Grasping the dynamics of complex
dynamical systems requires to identify limi-
tations on the respective network(s). As net-
work dynamics often cover sizable phase-space
volumes, approaching the system from a sta-
tistical mechanics point-of-view is quite prac-
tical and possibly advantageous. The phase-
space of networks can then be conceptualized
as the set of all possible networks (equivalent
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to all possible values of position in a mechani-
cal system) that describe the complex dynam-
ical system and how these networks transition
into each other (equivalent to the momentum
variables in a mechanical system). These ad-
vances brought forth unexpected relations to
different fields of physics, e.g, in condensed
matter physics such as percolation or Bose-
Einstein condensation.

Further, and due to the nature of interact-
ing subsystems in many real-world complex
dynamical systems, the network ansatz poses
a great and recordedly successful approach to
study a vast variety of different systems found
in diverse (interdisciplinary) areas of science
including physics [33-41], geosciences [42], cli-
mate sciences [43, 44|, computer sciences [45],
biology [46—49]|, social sciences [50-54], and
neurosciences [55-66.

With the network approach, a system’s (el-
ementary) units are represented as network
vertices and interactions between units are
represented as network edges. Such networks
are often described as complexr networks due
to the complexity of their non-trivial topo-
logical make-up, which is also refereed to as
coupling structure, and describes how vertices
are connected to each other. For complex net-
works, the coupling structure can be deemed
fairly different to regular structures such as
lattices or rings [33-36] and also different to
topologies on the opposite end of this spec-
trum, being random structures [67-70]. The
relationship between a system’s emergent col-
lective dynamic, its subsystems individual dy-
namics, coupling structure and of course the
system’s full functionality are often-times not
comprehensively understood. Different math-
ematical network metrics deduced form graph
theory [71] allow to characterise various topo-
logical and spectral properties of networks and
their constituents, which again can be related
to properties of the described complex sys-



tems. From the network perspective, proper-
ties of the dynamics of a complex system are
reflected in the topological aspects of an in-
teraction network, for which, and in contrast
to the structural network, an edge represents
an interaction that does not necessarily cor-
relate to a physical connection. Hence, edges
in a network might either represent (physical)
couplings or characteristics of an interaction
between coupled elementary units, with the
latter often being derived from the temporal
evolution of suitable observables of the units’
dynamics.

As such complex dynamical systems may
evolve in time, due to exogenous or endoge-
nous factors, it is also to be considered that
the respective complex networks should evolve
in time, altering the coupling structure, the
properties of network constituents and possi-
bly even the composition of the network as a
whole. Such time-evolving networks [72], re-
spectively represented via snapshot networks
in time, potentially allow a more accurate de-
scription and investigation of complex dynam-
ical systems. However, comparing (snapshot)
networks in order to track meaningful and
significant changes and alterations within the
time-evolving network, is a challenging task,
as yet there is no commonly accepted and ro-
bust way to compare networks [73-78|. Yet
again, utilizing network metrics to describe
network properties from the global to the lo-
cal scale allows to circumvent this issue when
interpreted in a suitable context and in uni-

son |79].

The network ansatz has been largely uti-
lized focusing on either global network proper-
ties or the networks’ vertices, in interaction as
well as in structural (evolving) networks, pre-
dominantly deeming vertices as the prominent
and defining network constituents. However,
in many ways, it is the intricate interconnect-
edness of systems’ (elementary) units, as well
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as how this interconnectedness changes, that,
to a great extend, shapes the emergent dy-
namical properties and behaviours of complex
dynamical systems. Whether it is the neu-
ral pathways in our brains, the intricate web
of interactions in ecological communities, the
digital interconnections in social media net-
works, or the complex interplay of tipping el-
ements in the climate, these kinds of connec-
tions serve as conduits for information, influ-
ence, and change, decisively shaping the range
and exhibition of possible dynamics of the re-
spective complex system. Simplified and fig-
uratively speaking, observing a clogged inter-
section in a busy city road network might give
us insights into the occurring dynamical phe-
nomena of traffic jams, but it may be the too
narrow or faulty roads or even a car accident
on one of these roads, which lead to the traffic
jam.

Hence, gaining deeper insights about the
role and essence of interactions between units
in a complex dynamical system is essential
for unraveling the conundrums of emergent
phenomena, predicting system-wide dynam-
ical behaviours, and designing interventions
to alter such behaviours, largely associated
with real-world challenges. Research of the
last decades [33, 36, 80-84| has already re-
vealed that properties of pairwise interactions,
mainly their strength, direction and func-
tional forms, not only hold intricate informa-
tion about a systems characteristics, such as
resilience [40, 85-87], stability and adaptabil-
ity [88] but that the temporal evolution of
these interaction properties can directly influ-
ence the systems’ characteristics [36, 72, 89].

At the heart of this dissertation lies the ex-
ploration of how interactions in complex dy-
namical system, represented by edges in com-
plex networks, drive the many diverse dynam-
ics a (spatially-extended) complex dynamical
system can exhibit. By dissecting the intricate



interplay between the systems’ (elementary)
subsystems (vertices), conveyed by their in-
teractions (edges), we aim to uncover the un-
derlying mechanisms that govern the (collec-
tive) dynamical behaviour of diverse systems,
man-made and observed in nature — ranging
from social structures to complex biological
systems such as the human brain. By deci-
phering the importance and the roles of edges,
as well as their potential superfluousness in
complex networks, we can enhance our un-
derstanding of (critical and often disastrous)
phenomena such as (de-)synchronization, the
spread of disease or information and the
generation and occurrence of extreme events
in many natural systems (such as market
crashes, extreme weather events, power black-
outs, epileptic seizures etc.). Expanding our
knowledge about such dynamical processes —
by focusing on network edges — can inform
the development of strategies for network op-
timization, targeted interventions, and coun-
teracting network alterations which can possi-
bly be translated to application of real-world
actions aiming to understand, predict or even
control the many diverse dynamical systems.

This first chapter is organized as the follow-
ing: We begin by introducing the mathemat-
ical and physical basis of networks as well as
how to characterise them. As the characteri-
sation of networks and their properties allows
the proposition of network models, we sub-
sequently discuss paradigmatic network mod-
els, which respectively, or in combinations of
such, are found in nature. Estimating net-
works for complex dynamical systems in na-
ture is, however, neither an easy task nor is
there a commonly accepted and generally ap-
plicable approach to do so. We elaborate on
the differences of an underlying structural net-
work of a networked dynamical system and
the concept of a respective functional network,
with the letter aiming to grasp the essence

14

of the system’s interactions and their prop-
erties, especially for those cases where knowl-
edge about the relevant structural connections
in the complex dynamical system is insuffi-
cient. We discuss how to infer such functional
interaction networks from empirical (time se-
ries) data and further take into account that
many complex dynamical systems evolve in
time, which deems a description of such sys-
tems via a static network insufficient. Conse-
quently we advance to the description of time-
evolving networks, and how to infer time-
evolving networks from data, as well as how
to assess changes in evolving networks via the
temporal evolution of network properties.

The description of complex dynamical sys-
tems via time-evolving networks provides
great potential for a more in-depth investiga-
tion of interesting and highly relevant dynam-
ical phenomena such as critical transitions,
that may culminate in extreme events. We
introduce a frequently proposed definition of
an extreme event from a physics perspective,
and highlight the relevance of studying criti-
cal transitions and extreme events due to their
occurrence in many different complex dynam-
ical systems in nature, and their often disas-
trous consequences, ranging from a local scale
of single individuals to a global scale of the
majority of the world’s population. We elabo-
rate on the interest and possible approaches
to predict, understand and control extreme
events, utilizing the network approach. We
introduce the different systems, investigated
throughout this thesis, that are either capable
or known to exhibit relevant and interesting
dynamical behaviours — focusing especially on
extreme events — or pose suitable real-world
networks, which allow to investigate the appli-
cability and suitability of different approaches
and metrics presented in the following chap-
ters of this thesis. Hereby we largely focus on
the interactions in the respective network and



aiming to gain deeper insights in the dynamic
behaviour of the respective systems. Lastly we
outline the structure of this thesis throughout
these different chapters.

B. Networks

In mathematics, a network is defined as a col-
lection of wvertices (or modes) connected by
edges (or links). Formally, a network can be
represented by a graph G = (V, ) consisting
of a set of vertices V = {vy,vy,...,0v}, con-
taining all V. = |V| vertices in the network,
and a set of edges € = {ej,ea,...,er}, con-
taining all E = |€| pairs of vertices connected
by an edge. The terms graph and network are
often used interchangeably, having been as-
sociated with each other, more than half a
century ago [67, 68|. Nowadays the two terms
generally refer to the same concept with only
nuanced differences depending on the field of
study [90] while the fundamental idea of ver-
tices connected by edges remains consistent
between graphs and networks.

A network can be considered binary, mean-
ing an edge either exists between two ver-
tices or it does not, or weighted, meaning that
with every edge a certain additional informa-
tion is associated - often labeled as the edge
weight. An edge weight can represent a va-
riety of properties related to the connection
between two vertices and is very individual
for the respective network. Hence, the prop-
erties represented by edge weights can range
from simple, e.g., physical connections such as
the length of a street, railway connection, or
the distance/duration of a flight between two
locations (vertices), to abstract connections
such as the strength of relationships between
individuals or spreading probabilities (of in-
formation or viruses) between organisms or
larger more abstract structures (countries or
continents), to the strength of complex con-
nections between coupled elementary units of
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a larger complex system (e.g., the interaction
strength between power plants and consumers
in a power gird or the interaction strength
between different parts of a brain network).
Mathematically, a binary network of V ver-
tices may be represented via its (vertex) ad-
jacency matriz A € {0,1}V*V) with A
a; = 1 if there is an edge [ connecting vertices
¢ and j and A;; = a; = 0 otherwise. Analo-
gously, a weighted network of V vertices can
be described by its weight matric W € ]RXXV,
with W;; = w; equalling the weight associ-
ated with the edge [ connecting vertices ¢ and
J, and W;; = 0 if the edge does not exist or
has no weight. While these matrix represen-
tations of networks are most commonly used,
it is also to be noted, that another viewpoint
allows the definition of an edge adjacency ma-
tric: A© € {0,1}%*E with A = 1 if two
edges [ and m are adjacent (connected to a

same vertex) and Al(iz = 0 otherwise, in case
of a binary network. Analogously the defini-
tion of a weighted edge adjacency matrix is
WE© ¢ REXE with I/Vl(wel) varying in definition,
but most commonly being assigned the aver-
age of the weights associated with edges [ and
m.

The interaction between two vertices in a
network can either be undirected (a direction
of interaction is not relevant), directed (one of
the two vertices can be considered the driver
while the other is considered the receiver) or
bidirectional (the vertices drive each other and
receive from each other). While concepts of
direction and multi-edge networks may allow
a more accurate detailed description of cer-
tain complex systems in nature [83, 91-94],
their application and resulting interpretations
become adherently more complex. In this the-
sis, we only consider binary or weighted, undi-
rected (A, A©, W and W) are symmetric)
and connected networks, excluding so-called
self-loops — a vertex connected to itself by an



edge (A;; == 0and Wy :=0fori € {1,...,V},
A =0 and W =0 for L € {1,...,E}).

One of the earliest recorded introduction of
network theory is the famous mathematician
and physicist Leonhard Euler’s approach to
tackling the problem of "The Seven Bridges

Ko6nigsberg bridge system layout

it 8,

of Konigsberg" in 1741 [95]. Kénigsberg (now
Kaliningrad, Russia) was divided into four
landmasses by the Pregel River. Two islands
(Kneiphof and Lomse) as well as North and
South Bank of the city. These landmasses were
connected by seven bridges as shown in maps
of the city (cf. Fig. 1).

network representation

(ornment Aead. JE D W.Z«ZA W/:Q/

FIG. 1. Left: Original schematic depiction of the bridge layout in Konigsberg by Leonhard Euler [95]. The landmasses
are labelled A,B,C and D. Right: Network representation of the bridges in Kénigsberg connecting the four landmasses
represented as vertices A,B,C and D (Kneiphof, the South Bank, the North Bank and Lomse). Vertices A,B and C have
multi-edges. In total, three respective edges lie on the vertices B, C and D, while five edges lie on vertex A.

The challenge was — starting from an arbi-
trary position in Konigsberg — to find a path
through the city that would cross each of the
seven bridges exactly once. Euler simplified
and abstracted the problem by associating
the landmasses with vertices and bridges with
edges and showed mathematically, that in or-
der for the described path to exist, each of the
vertices has to have an even number of edges
connected to it. In the historical Konigsberg,
this condition was not given as on each of the
landmasses an odd number of bridges could be
found, allowing Euler to conclude that the de-
sired path did not exist. As a result of the de-
struction of two of the seven bridges in World
War I, the network was modified in such a way
that the condition was then fulfilled, allowing
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to traverse each of the then five bridges ex-
actly once to return to an arbitrary starting
point on one of the landmasses. Euler’s solu-
tion not only showed the power of abstraction
of such complex problems but further laid the
foundation for the formal study of networks
and their properties.

In the following century (19th century), the
physicists Gustav Kirchhoff further advanced
and significantly contributed to the field of
network theory, publishing his fundamental
laws for electrical networks in 1845, known as
Kirchhoft’s circuit laws [96]. In the 20th cen-
tury, mathematician and electrical engineer
Claude Shannon did seminal work in informa-
tion theory, introducing fundamental concepts
such as information entropy [97]. His theo-



ries held vital implications for the design and
analysis of communication networks, such as
telephone networks, data networks, and ulti-
mately the internet. Further, it indirectly in-
fluenced the study of network topology, later
inspiring researchers to explore the proper-
ties of networks, such as robustness and re-
silience [86, 98, 99].

1. characterising networks

Nowadays a multitude of network metrics al-
low to assess different topological and spectral
network properties, and thus aid to charac-
terise networks from a global to a local scale
(cf. Fig. 2). While topological properties in-
clude local and global structural aspects of
the network, spectral properties are derived
from a network adjacency, weight, or Lapla-
cian matrix L (Wlth *Cij Zy Aijéij - Aij
for binary networks, resp. £;; = ZZV Wiji; —
W;; for weighted networks, d;; representing
the Kronecker delta), providing insights into
the global network dynamics and characteris-
tics of the network. For instance, eigenvalues
and eigenvectors of matrix representations of
the network can provide information about
the networks connectivity [100] and robust-
ness [101], however, may also be utilized for
community detection [102] or studying net-
work dynamics [103].

The global network metric synchronizabil-
ity [104]

(1)

is derived from the ratio of the largest Ay and
smallest non-vanishing eigenvalue Ay of the
Laplacian matrix £, and describes the sta-
bility of a fully synchronized state of a net-
work of coupled dynamical units. It further
describes the capacity to achieve and main-
tain such a synchronized state despite hetero-
geneity in the dynamics of its units [105-107].
Depending on the dynamics of the units, a
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FIG. 2. Schematic depiction of exemplary local (top) and
global (bottom) network metrics. Adapted from Chap-
ter VIII.
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small synchronizability either indicates that
the network’s capability to exhibit a synchro-
nized state is limited to begin with (inde-
pendent of the coupling strength between the
units), or indicates the network’s high capa-
bility of achieving and maintaining a synchro-
nized state among its units.

Global network metrics like the average
shortest path length L [108] and a network’s
(pseudo) diameter K [109, 110]| utilize the
concept of a path in a network [109, 111]. A
path is generally defined as the set of edges
P;; € &€ which have to be traversed to get
from a network constituent (vertex or edge) i
to constituent j (or vice-versa). The length of
this path D;; =), wil, with w; corresponding
to the weight of edge ¢; € P;;, is thus de-
fined as the sum of the inverse edge weights
associated with the edges along this path. In
a binary network D;; = ), all, with a; corre-
sponding to edge e; € P;;. If any a; or w; asso-
ciated with ¢; € P;; is zero, the path does not
exist. Consequently, the shortest path length
(also referred to as distance) d;; = min Dj;
between two constituents ¢ and j in a network
corresponds to the path P; ; for which D;; is
minium. Therefore, the average shortest path



length is defined as

1 \%

and the diameter of a network

(3)

is defined as the length of the longest of all
shortest paths between all possible pairs of
vertices ¢ and j. Both of these metrics, in their
way, assess a network’s functional integration,
which can be used to describe the information
flow in a network [112]. A small L and K in-
dicate short ways of interaction and therefore
a fast transport of information [108].

The global clustering coefficient C' [35, 113]
utilizes a local structural aspect in a network:
the number of neighbours (adjacent vertices)
each vertex has, which is generally called the
degree CP of a vertex, with CP(i) = Zy Ajj
being the degree of vertex i [114]. The global
clustering coefficient is generally defined as
the ratio of the number of triangles to the

number of connected triples in a binary net-
work (cf. Fig. 3):

K = max dz’j

number of triangles

C=3

. 4
number of triples (4)
In case of weighted networks, and assuming
the weights to be normalized, i.e., 0 < W;; <
1, Eq. 4 extents to:

. TYW?
=
2205 (W2,

The global clustering coefficient assesses the
functional segregation of a network, which can
be used to describe the extent to which ver-
tices in a network cluster together.
Assortativity A [115, 116] of a network as-
sesses the tendency of vertices to be con-
nected, if these vertices share a (dis-)similar
feature. Commonly this feature is the degree

(5)
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FIG. 3. Exemplary triangle (left) consisting of three triples
(right) in an arbitrary network. Vertices and edges consti-
tuting the respective triangle and triples are depicted in
green.

of the vertices, with the assortativity therefore
quantifying the degree-degree correlation in a
network:

D vy TY(Exy — Puby)

2
UP

A= ) (6)

with  and y being the degree of two con-
nected vertices, e,, being the fraction of edges
that connect vertices with degree x and y, p,
being the probability that a randomly chosen
vertex has degree z, and O'g being the variance
of the degree distribution. A positive assorta-
tivity (A > 0) indicates that high-degree ver-
tices are connected to other high-degree ver-
tices while low-degree vertices are connected
to other low-degree vertices. This often results
in so-called assortative mixing and the forma-
tion of a hierarchical or degree-based commu-
nity structure [115, 117-119]. These large and
highly connected substructures or communi-
ties (hubs or groups of hubs) can influence the
propagation of information in the network and
contribute to a network’s robustness [120] and
resilience [121]. Tt is observed that such assor-
tative networks are much harder to synchro-
nize than less assortative or even disassorta-
tive networks [122, 123]. A negative assorta-
tivity (A < 0) suggests that the network is dis-
assortative and that vertices with high-degree
are connected to low-degree vertices and vice
versa, with the network showing a more ho-
mogeneous degree distribution and the lack
of stronger hierarchical or community struc-



tures. Correspondingly A = 0 suggest that the
network is non-assortative network.

The detection and characterisation of sub-
structures, such as communities, motifs, cores,
shells and webs aims to describe a network
on mesoscopic scales [124-127|. Communities,
which are also referred to as clusters or mod-
ules, most commonly describe a set of ver-
tices in a network, which are more densely
connected to each other than to other ver-
tices in the network, hence distinguishing the
community from the rest of a network based
on strong interconnections or other similari-
ties among communities [128]. Motifs, most
commonly refer to recurring (small) substruc-
tures in a network [129, 130]. They can aid
in uncovering common patterns in a net-
work [131, 132], providing insights into the
network’s structure-function relationships [36]
and dynamical behaviour [133, 134]. Simi-
larly, network decompositions allow to break
down complex networks into smaller substruc-
tures, based on different aspects of the net-
work’s structure and organization. Decompo-
sition techniques, such as the k-core or k-shell
decompositions [135-138|, allow to reveal hier-
archical structures and provide insights in the
organization of vertices based on their degree
(or other constituent-specific properties), po-
tentially identifying central or influential or
key substructures in a network. As part of
this thesis, we will also introduce the so-called
web-decomposition, which, adapted from the
k-core/shell decomposition, allows to reveal a
bottom-up hierarchy of sets of edges, based on
edge-specific properties, that form substruc-
tures (webs) in the network. We show that
these webs can aid in identifying precursor
structures of extreme events in networked dy-
namical systems [139).

Local network metrics are employed with
the aim to characterise properties of single
network constituents (vertices or edges). Such
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FIG. 4. Exemplary depiction of a (binary) random net-
work with its respective constituents’ centrality values as-
sessed via different concepts. Centrality values are colour-
coded: the darker the colour of the respective constituent
the higher its centrality value. The centrality metrics are
separated conceptually (top row: strength-based metrics,
bottom row: path-based metrics).

characterisations can generally be achieved
with the concept of centrality [140]. Central-
ity metrics quantify the importance, or in-
fluence, or role of constituents in a network,
generally estimated based on certain aspects
of their structural or functional embedding
in the larger network. Centrality metrics can
hence provide valuable insights regarding the
role of network constituents for information
flow and a network’s dynamics. The most ba-
sic centrality metric is the degree of vertex 1,
as already introduced prior:

\%
CO(i) =) Ay,

J

(7)

which, in case of a weighted network, can be



extended to the strength of vertex i:
%
Ci(i) = Wi
J

Vertices with a high degree or strength
are deemed to be (locally) stronger intercon-
nected within a network, and may potentially
play central roles in the propagation of infor-
mation in the network [141, 142].

Vertex eigenvector centrality CF [143] fol-
lows the general idea of a vertex’ degree or
strength having vital impact for its role in the
network. It deems a vertex important if its
adjacent vertices are important as well. The
resulting gradual decrease in the impact of a
vertex’ neighbourhood results from the recur-
sive definition of

AV
. 1 .
Cy(i) = X E M;;C(5)
i

(8)

(9)

with A\ corresponding to the largest eigen-
value and eigenvector x of M with Mx = \x,
M A in case of a binary network and
M = W in case of a weighted network. By
now, there are several variations and exten-
sions of eigenvector centrality such as Eigen-
Trust [144], Katz centrality [145] and PageR-
ank [146], the latter famously known for being
part of the Google search engine algorithm.

Besides strength-based centrality metrics,
path-based centrality metrics have shown
successful applications in different scientific
fields. Vertex closeness centrality [114] utilizes
the concept of a path and the length of paths
in a network. A vertex is considered the more
important if its distance to all other vertices
is small, leading to the definition of

(i) = VV 1
> di
for vertex ¢ in the network.
Another path-based centrality metric is ver-
tex betweenness centrality CE |108, 124, 147
149|, for which a vertex is considered the

(10)
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more important, the more commonly this con-
stituent is part of the shortest path between
every possible pair of vertices. Hence, it does
not consider the distance between two vertices
in a direct manner, but the number of shortest
paths between them. It is defined as

2
(V-1)(V-2)

ij(i)
Gk

cP(i) = (1)
i#it
for vertex ¢ with ¢;;(i) denoting the number
of shortest paths between vertices j and k
traversing vertex 7 and @);; denoting the to-
tal number shortest path between vertices j
and k. Vertices with high betweenness ver-
tex centrality can be considered to serve as
bridges, intermediaries or bottlenecks in a net-
work, greatly influencing the flow of informa-
tion between different parts of it [150-152].

Noticeably, the above mentioned centrality
metrics focus on vertices, as surprisingly few
centrality metrics have been defined to char-
acterise the role of individual edges. A fact
that only changed in the recent decade, with
the focus shifting on approaches to achieve
an improved characterisation of importance of
edges, especially in interaction networks, with
the aim to deepen the understanding of and
aid the control of such networks [153].

The edge betweenness centrality C2(1) [124]
was one of the first edge centrality metrics and
is analogously defined to vertex betweenness
centrality, with

B 2 A jk !
U )Y 20

for edge | with ¢;x(I) denoting the number
of shortest paths between vertices j and k
traversing edge [ and @j; denoting the to-
tal number of shortest paths between vertices
j and k. Hence, an edge is the more impor-
tant the more shortest paths in the network
include it. Yet, it is apparent that between-
ness edge centrality is based on vertex specific




properties, being the shortest paths between
them. Therefore, in prior research to this the-
sis, we adapted and modified the frequently
used metrics of vertex closeness and eigen-
vector centrality, and introduced edge close-
ness centrality CS and edge eigenvector cen-
trality C¥ [127]. In case of edge closeness cen-
trality, edge [ is deemed the more important,
the shorter the paths that connect this edge
to every other reachable edge in the network,
yielding

 E-1
S dim

In case of edge eigenvector centrality, edge [ is
deemed the more important, the more impor-
tant its adjacent edges are, yielding

Ce (1) (13)

CEI) = 1 3 MCP(m) (10

with A corresponding to the largest eigenvalue
and eigenvector x of M with Mx = Ax, and
M corresponding to the edge adjacency ma-
trix (M = A in case of a binary network
and M = W in case of weighted network).

As a part of this thesis, we further intro-
duced a novel edge centrality metric, the so-
called nearest-neighbor centrality CN, derived
from generalizing the concepts degree and
strength of a vertex [154]. This metric deems
edge [ to be more important the larger its
weight and the more similar and the higher
the strengths of vertices ¢ and j connected by
that edge, yielding

CP(i) +CP(j) -2
CNl — v v 15
N T E
for binary networks, and
S(s Y
C(lj(l) _ CV (Z) +Cv<]) 2'[1][ (16)

TS = eSO+ 1

for weighted networks.
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It is to be noted, that there is a whole "peri-
odic table of (vertex) centralities’, each high-
lighting and focusing on different aspects of
the network when assessing the integration of
constituents in the network (see references in
Ref. [155]). Certainly, the similarity (in defini-
tion and results) between some centralities is
larger than in others, still there can be made a
case for each of them to justify their relevance.

The four centrality concepts, presented in
this thesis (cf. Fig. 4), can be considered com-
plementary in two different aspects: their gen-
eral consideration of structural aspects in a
network and the structural scale of this con-
sideration. Degree/nearest-neighbor central-
ity and eigenvector centrality are strength-
based centrality concepts primarily depend-
ing on the degree or edge weight distribution
in the network. Here, degree/nearest-neighbor
centrality can be considered a highly local cen-
trality concept, as only directly adjacent con-
stituents (local scale) influence their integra-
tion in the network. Opposing to that, eigen-
vector centrality can be considered a more
global centrality concept, as it considers the
global scale of the neighbourhood of a con-
stituent, with the influence of constituents
gradually decreasing as they are more “dis-
tant” (not directly adjacent) to each other.
On the other hand, closeness and between-
ness centrality focus on the path structures
in a network. Here closeness centrality only
considers specific shortest paths that traverse
the respective constituent (local scale) while
betweenness centrality takes into account the
amount of all shortest paths in a network with
respect to the amount of shortest path travers-
ing the respective constituent (global scale).

Generally, it is notoriously difficult to com-
pare local network characteristics, especially
centrality metrics, as the different metrics
may yield values in different ranges. Rank-
ing these values [156] allows the aimed for



comparison between different metrics and has
been successfully employed in different re-
search [157-159]. Such a ranking is mostly re-
alized in an ascending order, with the largest
value being associated with the smallest/top
rank and the most important element (with
respect to a specific metric). Nevertheless,
ranking also has its limitations, especially
when it comes to assign the ranks based on
a very narrow distribution of centrality val-
ues. Furthermore, equal centrality values may
pose a problem, as the same rank could be as-
signed multiple times. In other cases, certain
centrality values may only vary numerically —
a numerical difference only present in several
digits after the coma — raising the questions
whether the integration of these constituents
in the network can truly be considered differ-
ent (based on the definition of the centrality
concept). The centrality concepts employed in
this thesis yield rather broad distributions of
centrality values and negligible occurrences of
multiple same centrality values (especially for
weighted networks). Throughout this thesis
we hence consider to rank by appearance, dis-
regarding the minor effect of possibly equal or
“numerically close” (which is highly relative)
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centrality values.

Although certain correlations between dif-
ferent centrality concepts are given and to be
expected, one centrality metric may deem a
network constituent to be vital and impor-
tant, while another may deem it unimpor-
tant [127, 160-164], as exemplarily depicted
in Figure 4. Hence, different centrality metrics
allow to highlight distinct structural and func-
tional aspects of a constituent’s embedding in
a network. Further, the vertex and edge cen-
trality metrics, employed in this thesis, yield
complementary information about the hierar-
chical structure of the constituents in a net-
work.

2. Paradigmatic network models

The topology of a network refers to the spe-
cific arrangement or structure that vertices are
connected within a network [33, 81|. This is
largely defined by topological properties such
as the network’s number of vertices V and
number of edges E, the network’s path struc-
ture and the way constituents in the net-
work tend to cluster together (e.g estimated
via global network metrics). A set of certain
topological properties allows to define distinct
types of topologies.
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FIG. 5. Exemplary depiction of realizations of paradigmatic network models. Vertices are portrayed as black dots and
edges are portrayed as black lines. For purposes of demonstration and highlighting differences between the paradigmatic
network models, the depicted networks have a varying number of vertices and edges. Starting from a ring network,
the respective small-world network and random network are generated via rewiring of edges with a specific rewiring
probability p, (Watts-Strogatz Model [113]). The scale free network is generated by preferential attachment (Barabasi-
Albert model [69]) resulting in the formation of a visible highly connected core and a less connected periphery.

The following paradigmatic network models
describe such distinct types of topologies (cf.
Fig. 5) commonly found in nature and in man-
made systems.

e regular network: vertices are con-
nected in a regular pattern. This includes
very simple structures such as chains,
rings, stars or lattices, but also complete
networks (in which every vertex is con-
nected to every other). These types of
networks are commonly found in man-
made systems like road networks [165],
computer architecture [166, 167|, paral-
lel computation [168] and satellite con-
stellations [169]. Further, they are used
for an approximation of spatial-temporal
phenomena commonly described by par-
tial differential equations.

e small-world network: vertices tend to
be clustered, while the average path
length between two vertices in the net-
work tends to be short. Being similar
to regular networks, like a ring or lat-
tice, small-world networks can be dis-
tinguished from such by some few long-
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range connections, that connect two ar-
bitrary vertices in this otherwise regular
structure. Hence, small-world networks
can be generated e.g. by starting from a
regular network and rewiring each edge
in this network with a small rewiring
probability p, [170]. The specific edge
is disconnected from one of its vertices
and connected to another randomly cho-
sen vertex [113]. Small-world networks
are likely to be the most researched and
(critically) discussed paradigmatic net-
work models, as features of small-world
networks are reported to be observed
in complex brain networks, climate net-
works, infrastructure networks as well as
epidemic and rumour spreading in social
networks [56, 171-177].

random network: vertices are ran-
domly connected to each other. In order
to generate a random network, similarly
to small-world networks, one could start
from a regular network and rewire ev-
ery edge with p, being large (p, = 1).
Though, more commonly, each vertex is



connect to any other vertex with some
probability p. [67]. Random networks of-
ten serve as baseline or null models when
studying the properties and behaviour of
other (more complex) networks. Many
networks in nature exhibit, at least to
some extent, properties comparable to
random networks. However, random net-
work models generally do not suffice to
describe real-world networks in an ex-
haustive manner [178].

scale-free network: following a power-
law degree distribution, very few vertices
have a very high degree, while most ver-
tices have a low degree. This often al-
lows the separation of the network in a
core, consisting of the few high-degree
vertices (also refereed to as hubs), and
the periphery, consisting of the remain-
ing low-degree vertices. The preferential
attachment model [34], with which newly
added vertices preferably attach to ex-
isting high-degree vertices, is most com-
monly used to generate scale-free net-
works. This type of topology is largely
observed in social networks, allowing to
prove claims such as from Harvard so-
ciologist, Stanely Milgram, in 1967, that
any two people are about five to six hand-
shakes away from each other [179]. This
feature is now known as the six-degrees of
separation property [180, 181|. Probably
by now the most popular scale-free net-
work is the internet [182-184|. Further-
more, studying physical processes taking
place on scale-free networks, such as re-
silience to random damage [98, 185, 186]
or epidemic spreading processes [187—
190] have shown great success in the last
two decades.

Naturally, these paradigmatic network mod-
els do not account for every network found
in nature, neither do they provide a holis-
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tic description for most of them. Employing
these models, and combinations of such, to de-
scribe complex systems in nature, faces many
challenges such as the validation against real-
world data. This poses problems and diffi-
culties not only due to complexity and vari-
ability of empirical networks but also due to
the methods used to estimate networks from
data, which encompasses errors in measure-
ments and statistics [176, 177, 191]. Boot-
strapping techniques (e.g., time-series surro-
gates and surrogate networks) can aid in tack-
ling these problems [192-195].

3. Inferring functional interaction networks

from empirical (time series) data

Throughout this thesis, we will encounter sev-
eral complex systems ranging from rather sim-
ple social networks, over networked dynam-
ical systems (coupled dynamical units such
as oscillators), to the complex system brain
(see Sec. ID). There is a vast multitude of
different methods and approaches to derive
networks for these complex (dynamical) sys-
tems. Generally, vertices are associated with
different subparts of a system, often sampling
units or dynamical variables of these units via
some sensors. Edges are associated with prop-
erties related to interactions between two or
more units. Yet, in the majority of investi-
gated systems the underlying equations of mo-
tion are not known and the interactions be-
tween units of a system cannot be measured
directly (e.g., via probing). Therefore, time-
analysis-techniques are employed to quantify
(linear or non-linear) dependencies between
time series of suitable observables of the units,
yielding edges (and/or their weights) of func-
tional networks. These networks can severely
differ from structural networks, also referred
to as the coupling topology — consisting of ac-
tually existing connections between elemen-
tary units (e.g., physical or chemical). Knowl-



edge about relevant (underlying) structural
connections may be insufficient or even miss-
ing and hence, functional networks can be de-
rived even though two units are (possibly)
not structurally connected. Interactions them-
selves are manifested in many conceptually
different ways, such as synchronization, flow
of information or similarity:.

While there is no one-fits-all analysis tech-
nique to assess or characterise interactions,
there is a large repertoire of time-series- analy-
sis techniques, based on different concepts em-
anated from statistics, non-linear dynamics,
synchronization theory, information theory
and statistical physics among others [6, 196—
202|. These techniques utilize different signal
characteristics (cf. Tab. I) with the aim to re-
veal certain properties of an interaction, while
exhibiting various sensitivities [203].

We generally differentiate between three dif-
ferent properties of interaction.

The strength of an interaction is based on
the assumption that more (abstractly) similar
dynamics of observables deduced from pairs
of units reflect a stronger coupling between
these units. Deriving the strength of an inter-
action may focus on different dynamical as-
pects, such as amplitude distribution, relative
phase positions, information content, etc. The
quantification of the strength of an interaction
therefore often yields the weight of an edge be-
tween two units in an undirected network.

Determining the direction of an interaction
can allow to assess a driver-receiver relation-
ship between two units. Estimators for the
direction of an interaction are usually based
on assumptions about cause and effect in the
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larger system, respectively on models for the
temporal evolution of the dynamics of ele-
mentary units (e.g., utilizing Granger causal-
ity [204], transfer entropy [205, 206]|, partial
directed coherence [207, 208] or phase mod-
elling [209, 210]). In addition to the fact, that
the driver-receiver relationship may be of bidi-
rectional nature (both units are driver and re-
ceiver of the respective other), interpreting a
numerical quantification of the direction of in-
teraction poses a notorious difficult task. Gen-
erally, the sign of the numerical value of an
estimator is an indicator for the direction of
an interaction, with values close to zero ei-
ther indicating the lack of interdependency or
a bidirectional coupling between two elemen-
tary units, yet not informing about the actual
strength of the interactions [211]. As there is
of now no commonly accepted method to de-
rive both strength and direction of an interac-
tion, directed weighted networks are often de-
rived combining estimators for the strength of
interaction, to assign weights to the edges, and
estimators for the respective direction. Nev-
ertheless, due to the increased complexity of
these networks, metrics to describe the char-
acteristics of them are still limited.

The functional form of interaction describes
the relationship between units — more specifi-
cally dynamical variables thereof — as a math-
ematical model, often expressed as coupling
functions. While estimators for the functional
form of an interaction can allow to derive a
sufficient model for how units react/interact
to/with each other, typically strong assump-
tions and/or in-depth knowledge about the
involved dynamics and model parameters is
needed [212-214].



property of interaction ‘ signal characteristic‘

analysis technique

strength amplitude (cross-)correlation
phase mean phase coherence
information content mutual information
state space non-linear interdependence
direction amplitude Granger causality
phase evolution map approach
information content transfer entropy
state space non-linear interdependence

functional form ‘ phase

‘phase dynamics reconstruction

TABLE I. Time-series-analysis techniques in use to characterise different properties of an interaction based on different
signal characteristics. It is to be noted that in order to sufficiently employ these methods the system is required to be
(at least approximately) stationary. Adapted from Chapter VIII.

With many of these techniques a distinc-
tion between direct and indirect interac-
tions [176, 215| is not possible, raising the
problem of transitivity and leading to the
possible occurrence of spurious or superflu-
ous edges in the network. Superfluous net-
work constituents may also arise due to over-
or/and undersampling of the system (com-
mon sources [176, 216, 217]), which again may
result from difficulties of placing sensors in
a sufficient manner, and lacking knowledge
about the true structural organization. The
issue of identifying superfluous constituents
will be further addressed in Chapter III. Due
to the high specificity of the different tech-
niques regarding the property of an interac-
tion, aspects of the dynamics, as well as spa-
tial and temporal sensitivity, the choice of a
fitting analysis technique depends on the spe-
cific problem in/of the complex system, as
well as the investigated dynamical phenom-
ena. Therefore, with no commonly accepted
time-series-analysis techniques to infer the di-
rection of an interaction and/or its respective
strength, further advancing and conceptual-
ization of novel techniques to reveal the intri-
cate properties of interactions is inevitable.

As the mechanisms involved in the genera-
tion of dynamical phenomena studied in the-
sis relate to complex phase synchronization
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phenomena, we will focus on weighted undi-
rected networks derived via mean phase co-
herence [218|, a phase-synchronization-based
estimator defined as follows:

S
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T “
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Rab =

expi[ga(t) — ¢p(t)]]  (17)

Il
=)

describing the strength of interaction between
two units (vertices in a network, {a,b} €
{1,...,V}) with respect to the dynamical ob-
servables of the units and 7" denotes the num-
ber of data points. Hence, ¢, are the instan-
taneous phases of the time series (of the re-
spective observable) from unit a (we use the
Hilbert transform [219]). By definition, R,y is
confined to the interval [0,1], where Ry, = 1
indicates fully phase-synchronized units.

The mean phase coherence has been shown
to be robust under many influencing fac-
tors, such as noise [217, 218|. This estima-
tor for the strength of an interaction [203]
has been repeatedly employed, and with great
success, to investigate many different sys-
tems, such as coupled oscillators [217, 220],
climate systems [221-223|, the cardiovascu-
lar system [224-226] and the brain [218,
227]. It hence poses a suitable estimator for
the strength of interactions in the systems
(with time-evolving coupling structures) in-
vestigated in this thesis (see Sec. ID).



4. Time-evolving networks

Many real-world systems can be consid-
ered to be (emergent) non-stationary com-
plex dynamical systems. Such systems’ spatio-
temporal dynamics is influenced by their el-
ementary units’ dynamics and the interac-
tions between the elementary units, which can
manifest themselves in many different ways.
Control parameters of such a systems’ dy-
namic may change over time (e.g, coupling
strengths or functions), as well as their under-
lying structural networks (e.g., coupling struc-
ture). Hence, deriving a single holistic static
network to describe such systems is neither
sufficient nor expedient and would potentially
lead to severe misinterpretations. It is there-
fore more suitable to focus on the concept
of time-evolving networks [72, 228|, which

Generally, this is referred to as a moving-
window approach (or sliding-window ansatz,
cf. Fig. 6). It allows to derive a sequence
of functional snapshot networks (associating
each window/segment with a snapshot net-
work), which represent non-overlapping tem-
poral snapshots of the evolving functional net-
work. While this approach allows a more suit-
able characterisation of the evolving func-
tional network for the specific segments in
time, detecting changes in the characteristics
of the evolving functional network is rather
difficult, as comparing snapshot networks is
not an unambiguous task. Generally, compar-
ing networks is notoriously difficult and poses
an unsolved issue [77], as a intuitive approach
to defining a distance metric between net-
works is highly nontrivial [235, 236]. More-
over, metrics for network comparison have
been introduced with limited applicability for
very specific systems [73-76, 78, 237-240|
and with restrictions regarding the compared
networks (e.g. equal in number of vertices
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have been successfully derived for dynamical
systems (in many different scientific fields),
such as epidemic spreading [229], citation net-
works [230, 231], the climate system [232] and
the human epileptic brain (see Chap. VIII for
an overview), just to name a few. As most
analysis techniques to derive functional net-
works require the system to be (at least ap-
proximately) stationary to yield robust and
reliable characterisations, commonly the time
series of recordings of systems’ dynamics are
cut in succesive suitable segments. The du-
ration of these segments has to be chosen in
an appropriate manner, which poses a com-
promise between the approximate stationarity
within a segment and statistical accuracy for
characterisation [233, 234].

or edges, equal edge density, equal degree-
distribution, etc.). However, a direct compar-
ison of networks as a whole can be circum-
vented by comparing network specific proper-
ties (e.g., utilizing the metrics introduced in
Sec. IB 1) [79]. While certain network proper-
ties may not be compared in an absolute sense
— due to limitations regarding their interpreta-
tion —, relative comparison for the respective
snapshot networks can be suitable (e.g., the
specific network property increases/decreases
in time) and aid in gaining insights about the
underlying systems. Utilizing different metrics
to assess multiple local and global network
characteristics, and how these characteristics
evolve in time, will allow interpreting collec-
tive network changes in a contextual and in-
tegral manner, thus yielding a rather compre-
hensive depiction of the alterations of a time-
evolving functional network. These again can
be related back to properties of the respective
system as well as to properties of the system’s
dynamics.
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FIG. 6. Schematic depiction of the moving-window approach. Sensors record the signals/observables of sampled (elemen-
tary) units of the respective system. Time-series-analysis techniques are used to estimate properties of an interaction
between these units, allowing to derive functional snapshot networks. For each snapshot network, metrics can be derived
that resulting in a temporal sequence of metrics that allow to describe local to global network properties.

When interpreting changes in evolving net-
works, statistical validation of the interim re-
sults has to be considered [241|. If lacking
appropriate models, the significance and the
specificity of changes of the networks’ proper-
ties can be verified via bootstrapping methods
and Monte-Carlo simulations, such as surro-
gate techniques (192, 242-247|. By formulat-
ing an appropriate null hypothesis [248|, the
comparison to surrogates (on various levels in
the chain of analysis), can verify the specificity
of changes of networks’ properties, and mini-
mize the impact of confounding variables such
as the influence of driving forces. On the level
of the time series data, surrogate data is gen-
erated with the aim to preserve statistical as-
pects (e.g., mean, variance and distributional
shape) and dynamical aspects (e.g., tempo-
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ral or spatial patterns) of the original data,
with exception of the property which is tested
for [192, 249-252|. Likewise, on the level of
networks, the preserved (global) property of a
network surrogate might be e.g., the distribu-
tion of degree, strength or edge weights [194,
195, 231, 253, 254]. Both types of surrogates
can respectively provide a rigorous framework
for hypothesis testing and validation of meth-
ods. Surrogate data can be constructed by
simulating realizations of an appropriate null
model with Monte Carlo methods, which may
include random sampling (from suitable prob-
ability distributions), model fitting (e.g., re-
gression models), as well as estimating uncer-
tainties and parameter optimization.

In order to accept or reject the defined
null hypothesis, an appropriate statistical test



(e.g., correlation or regression coefficients,
means or variances, Kolmogorov-Smirnov test
or Mann-Whitney U test) is calculated for
both original and surrogate data. The null hy-
pothesis may be confidently rejected, based on
the number of statistically independent con-
strained realizations, and if the respective dis-
criminating statistics calculated from the orig-
inal data fall outside the range of values cal-
culated for the surrogate ensemble.

When it comes to interpreting changes, es-
pecially of local network characteristics (e.g.,
the centrality values of network constituents),
multiple — usually in the order of number of
vertices or edges — comparisons and statisti-
cal test are often conducted. This increases
the likelihood of the null hypothesis being in-
correctly rejected across all the comparisons
(family-wise error rate FWER), which can be
accounted for by correcting the significance
levels (or p-values) using e.g., the Bonferroni
method [255].

C. Ciritical transitions and extreme
events

Various natural, technological, and social sys-
tems have the capability to spontaneously
generate vital and potentially harmful large-
impact events [22, 256-261]. These so-called
extreme events encompass a wide range of
phenomena observed in nature, including so-
lar flares [262, 263|, earthquakes, tsunamis,
extreme weather phenomena like heat waves,
droughts, floods, heavy precipitation, and
tornadoes in climate systems [264-268|, ex-
treme climate phenomena like El Nino, La
Nina [269-272], rogue waves in oceans or op-
tical systems [273-275|, harmful algal blooms
in marine ecosystems [276|, large-scale black-
outs in power networks [277, 278|, mar-
ket crashes [279-282|, mass panics [283] and
wars [256], fatal heart failure [284, 285|, as
well as migraine attacks [286] and epilep-
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tic seizures [287| in humans. Such events,
while often assumed to be preceded by a
critical transition, can result in unexpected
and catastrophic outcomes when intersect-
ing with susceptible human or natural en-
vironments. Therefore, investigating critical
transitions and their entailed extreme events
are in many ways of great scientific signifi-
cance [288|. While some endogenous and ex-
ogenous factors that affect generation and ex-
tent of extreme events are known for some of
these systems, the precise mechanisms under-
lying their emergence remain poorly under-
stood. Hence, studies primarily focus on pre-
diction, revealing mechanisms of emergence
and termination, as well as the control of ex-
treme events. From a physics perspective, ex-
treme events in complex dynamical systems
are defined as rare, recurring large deviations
from the systems average global dynamics. It
is to be expected, that for the majority of
extreme events, abrupt excursions and sig-
nificant deviations from an otherwise stable
temporal evolution of a relevant observable
holds implications about the extreme event
and mechanisms involved in its generation and
associated with a critical transition (cf. Fig. 9
(d)). Employing the network ansatz, deriving
time-evolving functional interaction networks
from relevant observables, has allowed to suc-
cessfully gain deeper insights regarding ex-
treme events in many of the above-mentioned
systems, e.g., possibly enabling the identifi-
cation of precursors of extreme events [289].
Yet, results achieved so far indicate mixed suc-
cess. We will extend on this approach (see
Sec. IB4), focusing on network vertices and
primarily on network edges — which represent
the strength of interaction between vertices
(elementary units in the system) — utilizing
centrality metrics (see Sec. IB1), and with
the aim to assess their role and involvement
in the facilitation of the build-up of precur-



sors and ultimately the generation of an ex-
treme event. In Chapter V, we will investi-
gate extreme events observed in networked-
dynamical systems of FitzHugh-Nagumo oscil-
lators (see Sec. ID 3). In Chapters VI and VII,
we will investigate epileptic seizures in the hu-
man epileptic brain (see Sec. ID4).

D. Investigated systems

The investigated systems throughout this the-
sis can be categorized into two groups: static
networks and time-evolving networks. We
tested and evaluated (newly introduced) met-
rics on static (non-time-evolving) paradig-
matic network models as well as social net-
works (see Chapters II). We employed novel
methods and approaches to study time-
evolving networks derived from coupled oscil-
lator systems and the human epileptic brain
(see Chapters V-VII)).

1. Zachary’s karate club network

One of the most well-studied social networks
is Zachary’s karate club network [290]. Wayne
W. Zachary conducted a study spanning three
years, from 1970 to 1972, on the social struc-
ture of a university karate club. He con-
structed a weighted network consisting of 34
members, with documented connections be-
tween pairs of individuals (members of the
club or associated with the club) who in-
teracted outside club-related activities, which
represents the networks edges (cf. Fig. 7).
Edge weights are associated with the number
of interactions between two individuals. Dur-
ing his study, a conflict emerged between the
administrator, referred to as "John A" (ver-
tex 34) and the instructor, known as "Mr. Hi"
(vertex 1), resulting in the club’s division into
two factions. Half of the members formed a
new club under the leadership of the instruc-
tor Mr. Hi, while others either sought a new
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FIG. 7. Network representation of the social relationships
in a university karate club consisting of 34 individuals. In-
dividuals are represented by vertices (circles and squares)
and interactions between these individuals are represented
by edges (lines). The respective vertices of the two main
characters, the administrator (vertex 34) and the instruc-
tor (vertex 1) are marked with green borders. The latter
fission of the karate club into two groups is represented by
vertices in the form of black circles (group that stayed with
the instructor) and vertices in the form of grey squares
(group that did not stay affiliated with the instructor).
Adapted from Chapter II.

teacher or discontinued their involvement in
karate. Notably, Zachary accurately assigned
nearly all club members to the groups they
joined post-split, based on the collected data,
with only one exception.

2. Commuter network of North

Rhine-Westphalia

North Rhine-Westphalia (NRW) stands as
Germany’s most populous state, housing ap-
proximately 18 million residents across an ex-
pansive territory spanning over 34, 000 square
kilometres. Remarkably dense in population,
NRW rivals the German city-states in this as-
pect. The commuter traffic within NRW is
exceptionally substantial [291] and by deriv-
ing a functional network based on this com-
muter traffic, structural aspects about traffic
networks may be inferred. We associate the
networks vertices with rural and urban dis-
tricts in NRW, while the edges represent com-
muters travelling between them, with edge



weights encoding the number of average daily
commuters between two respective districts
in the year 2017 (see Fig. 8, data collected
by the Statistisches Landesamt NRW - Statis-
tik: 19521). While this commuter network,

FIG. 8. Average daily commuter traffic network of North
Rhine-Westphalia (NRW) in the year 2017. Vertices (black
dots and white border) represent districts in NRW (map in
background). Vertex sizes represent the amount of inhabi-
tants in the respective district. Edges (black lines) indicate
commuter traffic between two districts. Edge widths repre-
sent average daily commuter traffic between the respective
two districts. Adapted from Chapter II.

derived from a real world system, not only
poses a great testbed for novel network met-
rics, exploring the intricacies of it may hold
significant promise for enhancing various as-
pects, including our comprehension and man-
agement of spreading processes.

3. Coupled FitzHugh-Nagumo oscillators

The FitzHugh-Nagumo system (also referred
to as FitzHugh-Nagumo oscillators), also
known as the Bonhoeffer-van der Pol model,
poses one of the most fundamental and exten-
sively researched excitable systems [292-294],
originally introduced as a two-dimensional
simplification of the Hodgkin-Huxley model of
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spike generation in squid giant axons [295]. It
provides a simplified yet effective representa-
tion of neuron firing dynamics using straight-
forward evolution equations [296]. Further,
this non-linear model serves as a cornerstone
in studying excitable behaviour in various
fields, including neural and cardiac non-linear
activities [297-299], social sciences [300] and
material sciences [301, 302|. It has been instru-
mental in elucidating a wide array of phenom-
ena, ranging from pattern formation [303-
305] and firing cessation [306, 307| to noise-
induced effects [308-314], diversity-driven os-
cillations [315, 316|, and aspects of synchro-
nization [306, 317-320].

In this thesis, we consider a network of V'
diffusively coupled FitzHugh-Nagumo oscilla-
tors (i € {1,...,V}). The oscillators inter-
act with each other through coupling terms,
which represent the influence of one oscilla-
tor’s dynamics on the others. This coupling
generally can be excitatory or inhibitory, de-
pending on the nature of the interaction be-
tween the oscillators. The ith oscillator of this
network of V' coupled oscillators is described
by the following equations of motion:

& = xi(a; —xi) (v — 1) — i

K

+ _1;Aij(xj—xi) (18)

%

Yi = bix; — ¢y

Here, x; is known as the excitatory variable
and y; is known as the inhibitory variable of
the ith oscillator. Further, a; , b;, and ¢; are in-
ternal parameters of the ith oscillator, & is the
global coupling strength, and A € {0,1}V*V
denotes the adjacency matrix of the coupling
structure.

The dynamical behaviour that can be ex-
hibited by a network of coupled FitzHugh-
Nagumo oscillators depends on various fac-
tors, including the strength and type of the



coupling between oscillators, the coupling
topology, the control parameters of the indi-
vidual oscillators, and potential external in-
puts to the network (cf. Figs 9). The dy-
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FIG. 9. Range of dynamics exhibited by an exemplary
small-world network of coupled FitzHugh-Nagumo oscil-
lators displayed in the mean of the excitatory variable
T = % Zyzl ;. Parameters were set to V' = 20 vertices,
E = 200 edges, rewiring probability p, = 0.25, inter-
nal parameters a; = a = 0.02651Vi, ¢; = ¢ = 0.02V4,
bi = 0.006 + +=% 0.008 (0.006 < b; < 0.014Vi), coupling
strength k, and randomly chosen initial conditions for x
and y in each realization (a) to (f). Each time series was
generated via the integration of Eq. 18 with the adaptive,
explicit Runge-Kutta method of fifth order [321] and a
step size of 1 and at least 10* initial transients were dis-
carded.

namics exhibited by such a network of cou-
pled FitzHugh-Nagumo oscillators, covers a
wide range from rhythmic behaviour charac-
terised by periodic oscillations, synchroniza-
tion and desynchronization, over the emer-
gence of complex spatio-temporal patterns,
to extreme events [319, 320, 322, 323|. Here,
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extreme events express themselves as rare,
yet recurring high-amplitude oscillations ob-
served in (almost) all oscillators [322]. Due to
these deterministic model systems of coupled
FitzHugh-Nagumo oscillators being capable of
generating extreme events, they pose a great
framework to study the underling generating
mechanisms of extreme events, a topic which
we will pursue in Chapter V. There we will
investigate which edges in networks of cou-
pled, excitable FitzHugh—Nagumo units facil-
itate the recruitment of non-excited units into
the final generation of an extreme event, uti-
lizing novel edge-centrality concepts and net-
work decomposition techniques to assess the
edges’ role in the network.

4. The human epileptic brain

The human brain is not only one of the most
interesting and complex organs in the human
body, but probably also the most complex dy-
namical system in nature known to men. It
contains about 86 billion neurons (and about
trice the amount of glial cells) communicat-
ing with each other through synapses [324],
electromagnetic fields [325] and chemical pro-
cesses [326, 327|. Each neuron can have thou-
sands (up to 200000) of synaptic connections
with other neurons. This amounts to approx-
imately a trillion synapses, which strung to-
gether would cover a distance of hundred of
thousands up to a million kilometres, being
longer than the distance between earth and
moon.

Therefore the structural makeup of the hu-
man brain contains different highly connected
local networks spanning different spatial
scales, starting from single cells and synapses,
over cortical columns, to (sub)cortical areas.
These networks neither follow complete ran-
dom topologies nor are they deemed highly
regular. It is to be considered, that all
these different networks on different spatial



scales, are again connected, forming a net-
work of networks, capable of exhibiting an
immense variety of different cognitive and
behavioural functions. The functional capa-
bilities of this complex dynamical system is
largely similar in most human beings [328-
334] despite certain differences in morpholo-
gies and structural make-up. Generally, in
case of many diseases of the brain, normal,
(healthy) as well as pathological functions and
structures coexist [335]. The human epileptic
brain differs from the "non-epileptic human
brain" especially in its exhibition of epilep-
tic seizures [336]. Epileptic seizures as extreme
events [287] are defined as a transient occur-
rence of symptoms due to abnormal excessive
or synchronous neuronal activity in the brain.
Seizures can be caused and triggered by a va-
riety of different factors, including genetic pre-
disposition or physiological trauma. Having
experienced at least one seizure, with a proba-
bility of at least 60% for further seizures in the
next 10 years [336] qualifies for the clinically
diagnosis of epilepsy. This diagnosis holds a
great burden for affected people, not least to
comorbidities [337], psychosocial and econom-
ical impairments [338, 339|, social stigma [340)]
and seizures [337, 341|, ultimately due to
the large impact, potential complications, and
foremost the unpredictability of seizures [342—
345]. Epilepsy is the third most common neu-
rological disorder, with 50 million people di-
agnosed worldwide [346]. About two-thirds of
these people are sufficiently treated, while for
the remaining, intensive diagnostic, polyther-
apies and non-pharmaceutical interventions
(e.g., surgery, neurostimulation) pose alter-
natives, often associated with even greater
risks and possible side effects. Comprehend-
ing the emergence, spread, and cessation of
epileptic seizures is widely regarded as piv-
otal for grasping the essence of epilepsy. This
understanding is key for developing diagnostic
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methods and treatment strategies.

The brain is a complex network of non-
stationary and interacting subsystems, whose
spatial-temporal dynamics is largely influ-
enced by properties of exactly these interac-
tions. Hence, epilepsy is now-a-days consid-
ered a network disease. This paradigm shift
from focusing solely on discrete cortical areas
as the origin of seizures to recognizing the ex-
istence of widespread epileptic networks span-
ning across lobes and hemispheres has signif-
icantly deepened comprehension of epilepsy.
Treating epilepsy as a network diseases will
further shape both research endeavours and
clinical approaches to treating this complex
and impactful neurological disorder. Recent
advances in understanding brain dynamics
(varying on multiple scales), utilizing the net-
work ansatz and the concept of evolving (func-
tional) brain networks, are extensively re-
viewed, apart from this thesis, in Brohl and
Lehnertz [139].

It is important to highlight that many com-
plex networks in nature (such as epileptic
brain network), however, are not static but
evolve in time, which shows the necessity for
(novel) approaches to not only infer time-
evolving interaction networks from empirical
data but also characterise said networks to
gain a deeper understanding of the complex
dynamical system human epileptic brain and
its dynamics (see Sec. IB3 - IB4). Various
imaging and recording methods are available
for evaluating the structure and dynamics of
a time-varying epileptic brain network across
various spatial and temporal scales, with dif-
fering levels of invasiveness.

In this thesis we mainly focus on electroen-
cephalography (EEG) to record human brain
dynamics, as it is the only technique ca-
pable of long-term continuous recordings up
to months [347-349]. Electroencephalography
(EEG) is a technique used to record electrical



Side view

FIG. 10. Schematic of sensors/electrodes (depicted as
white circles with black border) placed on a human head
in the standardised 10-20 system. (Left: top view, right:
side view)

activity of the brain [350-352]. This electrical
activity is assumed to result from the firing of
neurons, which generates electrical fields that
can be measured even outside of the skull as
voltage differences at various electrodes. It is
to be noted the positioning of electrodes can
result in issues of over- and undersampling.
Especially an overly dense spatial sampling
can ultimately lead to the introduction of su-
perfluous information (on several levels of the
investigation) due to the presence of common
sources [217], a problem that has to consid-
ered, and potentially accounted for, when it
comes to interpreting certain observations.

Electrodes are usually placed on the scalp
at specific locations according to international
standards (such as the 10-20 system [353,
354] depicted in Fig. 10) to ensure consistent
and reproducible placement across individu-
als. However, EEG measures electrical poten-
tials of the brain without a clearly defined
ground, primarily for safety reasons [355—
362]. Consequently, EEG signals are differ-
ential measurements, meaning they represent
the voltage difference between two recording
sites. Therefore, the choice of a reference elec-
trode is to be made, which can significantly af-
fect the interpretation of EEG data. In Chap-
ters IT and IV of this thesis, we will investi-
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gate EEG data recorded from electrode sen-
sors placed according to the 10-20 system,
with the inter-hemispheric sensor CZ as the
chosen reference to avoid unilateral imbalance
from the hemispheres. In Fig. 11, we display
exemplary EEG recordings of such sensors,
differentiating between dynamics presumably
unrelated to an epileptic seizure, the dynam-
ics associated with the critical transition prior
to an epileptic seizure, and the focal onset of
an epileptic seizure.
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FIG. 11. Exemplary electroencephalographic recordings of multiple electrodes from a subject with epilepsy. Excerpts of
30 s duration from different brain regions (top to bottom) during times far off seizure-related dynamics (left), during a
critical transition (middle), and at onset of a focal seizure (right). Adapted from Chapter VII.

Further in Chapters VI and VII we will in-
vestigate data recorded via intracranial EEG
(iIEEG), a technique to measure electrical ac-
tivity directly from the surface of the brain
or from within deep brain structures [363]. To
this purpose, dedicated electrode sensors are
directly placed onto and into the brain tis-
sue, posing a deliberately invasive technique.
In many cases, iIEEG provides a more detailed
and precise source of information, as prob-
lems common for EEG, such as muscle and
skin conductance artefacts, are circumvented,
which increases the signal-to-noise ratio dras-
tically (factor of ~ 100) [364]. Yet, and de-
spite numerous other advantages, iEEG poses
certain risk, mainly related to the surgical im-
plantation of foreign objects into a system as
sensitive and adaptive as the human brain.
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Hence, iEEG is primarily used for pre-surgical
evaluation for epilepsy surgery [365] and map-
ping functional brain areas [366, 367|. The
quantity and specific anatomical placement of
intracranial sensors and choice of reference are
tailored exclusively to suit the unique require-
ments of each individual, resulting in consid-
erable variability rather than uniformity.

E. Structure of this thesis

In the following Chapter II we introduce a
novel edge-centrality metric derived from gen-
eralizing the degree and respectively strength
concept for binary and weighted networks. We
highlight the complementary nature of this
edge centrality metric with regard to more
prominent ones by employing the novel met-
ric to investigate paradigmatic network mod-



els as well as real-world networks from various
scientific domains. Furthermore, we show the
novel centrality concept’s suitability to iden-
tify central edges in these networks.

Chapter III tackles the issue of how to
identify and avoid potentially superfluous net-
work constituents, e.g., resulting from spa-
tial or temporal oversampling of the system’s
dynamics when constructing networks from
empirical time-series data. Hence, we intro-
duce a perturbation-based method to identify
potentially superfluous network constituents
utilizing vertex and edge centrality concepts
and illustrate its suitability by investigating
paradigmatic network models.

In the following Chapter IV, we engage
on EEG-derived evolving functional brain net-
works, and explore the potential influences of
biological rhythms on the importance hierar-
chy of constituents — as derived with differ-
ent complementary vertex and edge central-
ity concepts — in these networks. Specifically,
we reveal the influence of circadian and ul-
tradian rhythms on this time-varying impor-
tance of constituents integration in the net-
work, which holds intricate indications about
the existence of distinct subnetworks, gener-
ally involved in ongoing brain activities during
sleep and wakefulness.

In Chapter V, we firstly bring ex-
treme events to focus, investigating networked
dynamical systems of coupled FitzHugh-
Nagumo oscillator networks. As these oscil-
lators networks are able to exhibit rare and
recurrent events, fitting our definition of ex-
treme events, they pose a suitable testbed to
investigate the generation of extreme events
in greater detail. Again, we derive functional
time-evolving networks from the time series of
the oscillators” dynamics, employing the edge-
centrality concepts and edge-based decompo-
sition techniques to study the role of certain
edges and groups of such for the generation of
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extreme events. We are able to reveal that the
majority of edges which facilitate the build-up
of precursor structures of extreme events, do
not have an equivalent in the underlying cou-
pling topology of the oscillators.

We continue our study of extreme events in
Chapter VI focusing on epileptic seizures in
the human brain, further engaging on iEEG-
derived evolving functional brain networks
from a large but inhomogeneous group of sub-
jects with pharmacoresistant epilepsies with
different anatomical origins. We investigate
the temporal changes of vertex centrality val-
ues from multiple complementary vertex cen-
trality concepts and are able to identify spe-
cific vertices that carry information predic-
tive of impending seizures. From there on,
we are able to formulate several possible net-
work reconfiguration scenarios that describe
alterations of the evolving epileptic brain net-
work specific for pre-seizure periods. Surpris-
ingly, these reconfigurations virtually include
all network constituents, representing the var-
ious brain regions as well as the functional
connections between them in contrast to the
common believe of a focal generation.

Hence, in Chapter VII we revisit the data
and further investigate excitable complex net-
works of FitzHugh-Nagumo oscillators, delv-
ing into research on network constituents that
carry predictive information about impend-
ing seizures, focusing especially on networks’
edges by utilizing edge centrality concepts.
For the time-evolving functional brain net-
works we take into account the influence of di-
verse biological rhythms on the temporal evo-
lution of the importance hierarchy and there-
fore additionally investigate the local tempo-
ral change of centrality values. Overall focus-
ing on networks’ edges not only allows us
to paint a more comprehensive picture about
constituents involved in the generation of ex-
treme events, as well as how predictive ver-



tices and edges are related to each other, but
further reveal that the majority of these con-
stituents form a large complex tipping subnet-
work, generally involved in mechanisms that
drive these complex dynamical systems into
processes involved in the generation of ex-
treme events.

Finally, in Chapter VIII we present a
review, which discusses and summarizes the
conceptual basics of network theory with spe-
cific regard to describing and characterising
time-evolving human epileptic brain networks.
We highlight current shortcomings as well as
the potential developments towards improved
clinical management of epilepsy utilizing the
network approach.

To conclude, in Chapter IX a short sum-
mary of the conducted research, as well as an
outlook and closing remarks are given.
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II A straightforward edge centrality concept derived from
generalizing degree and strength

Timo Brohl and Klaus Lehnertz
Scientific Reports 10, 21921 (2020).
DOL: https://doi.org/10.1038/s41598-022-08254-5

Many natural and man-made networked
systems, such as brain networks [56], cli-
mate networks [43, 368|, food-webs [369] or
social networks [370, 371], have been suc-
cessfully investigated by employing complex
network approaches. In diverse areas of sci-
ence |7, 36, 39, 42, 49, 62, 125, 372|, this ansatz
allowed to gain deeper insights into structure
and dynamics of spatially extended complex
systems, describing the system by an inter-
action network with vertices representing el-
ementary units and edges representing inter-
actions between them. In investigating such
interaction networks it is of vital interest to
identify key network constituents and charac-
terise their importance for a network’s struc-
ture and/or dynamics |64, 139, 153, 373-377|.
A growing number of different concepts and
metrics, which can be abstracted as central-
ities, aim to characterise the role of network
vertices for structure and dynamics [378]. Yet,
in contrast, rather few akin concepts and met-
rics have been defined to characterise the role
of network edges for structure and dynamics.

In prior research, Timo Brohl extended and
modified closeness and eigenvector centrality
concepts for vertices to those for edges, and
further demonstrated their usefulness in gain-
ing additional information about network con-
stituents for various paradigmatic and real-
world topologies [155]. Most other of those
edge centralities also focus on path-structural
aspects [124, 379-384], the concept of bridg-
ing [385-388| or are based on the spectrum
of the network’s Laplacian [389, 390|. Sur-
prisingly, there has been no definition of an
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edge centrality concept, analogously adapted
from the historically first and conceptually
simplest vertex centrality [114], namely ver-
tex degree centrality. Therefore, Timo Brohl
proposed such an analogously defined edge
centrality concept, termed nearest-neighbour
edge centrality. With this novel edge central-
ity concept the authors aim to assess the in-
tegration of an edge within its local neigh-
bourhood in the network, much like vertex de-
gree/strength centrality assesses the integra-
tion of a vertex to its neighbouring vertices.
In order to illustrate this edge centrality con-
cepts’ added value and novelty, Timo Brohl
compared this novel concept to aforemen-
tioned edge centrality concepts, edge between-
ness, edge closeness and edge eigenvector cen-
trality. With this rather holistic approach to
combine the results of multiple complemen-
tary centrality concepts the authors aimed to
investigate the integration of network edges.
Interpreting this integration, based on a sin-
gle or multiple centrality concepts can then ul-
timately aid to understand specific structural
and dynamical phenomena in the network. For
this purpose, and to show this novel concepts
general applicability, Timo Bréhl employed
the nearest-neighbour edge centrality to iden-
tify important edges in a commonly used
benchmark model in social network analysis,
namely Zachary’s karate club, a commuter
network of Germany’s most populated state
North Rhine-Westphalia (NRW), an evolving
epileptic brain network derived from iEEG
recordings, as well as in paradigmatic net-
work models. Indeed, investigating correla-
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tions (Pearson correlation coefficient) of edge
ranks obtained with the different centrality
metrics from investigating paradigmatic net-
work models of different sizes, revealed that
the nearest-neighbour edge centrality provides
non-redundant information about the net-
works’ edges, although observing correlations
to the conceptually related concept of edge
eigenvector centrality. In the investigations
of Zachary’s karate club network, employing
the nearest-neighbour edge centrality, Timo
Brohl was able to identify, both, global as
well as local bottleneck structures in the net-
work. These bottleneck structures can bee as-
sociated with a global fission of the network
into two groups centred around two key fig-
ures (vertices) of the network. In contrast to
this, edge betweenness centrality allowed to
highlight a global bottleneck structure, while
edge closeness and edge eigenvector central-
ity highlighted rather unspecific edges con-
nected to the two most influential vertices
of the network. Hence, Timo Broéhl was able
to deduce, that despite the definition of the
nearest-neighbor edge centrality being based
on local network properties, it still allows to
characterise aspects of the path structure in a
complex network.

Further, Timo Brohl investigated a com-
muter traffic network, where the rural and ur-
ban districts in North Rhine-Westphalia con-
stitute the networks vertices and edges rep-
resenting the commuter traffic between two
districts, with the edge weights equalling the
average number of commuters travelling be-
tween the two districts on a day in 2017.
In contrast to edge betweenness, edge close-
ness and edge eigenvector centrality, nearest-
neighbor edge centrality identified edges to be
important that are far off the expected com-
muter centres of NRW, being the population-
dense districts. Rather, edges between urban
districts, with neither a large population den-

39

sity nor a high commuter volume, were high-
lighted, as the total commuter traffic in and
out of them is comparably high. The latter
may allow to consider two districts, generally
deemed urban, as one larger district. Timo
Brohl hypothesized, that these insights gained
with the nearest-neighbor centrality may hold
intricate but vital information about possible
spreading phenomena on such networks (e.g.
pandemic spreading) and how countermeasure
can be formulated and employed.

Additionally, Timo Brohl investigated an
evolving functional human brain network dur-
ing an epileptic seizure, derived form iEEG
recordings (see Chap. IB4 and Chap. ID4).
The recording was separated into four blocks
(pre-seizure, first half of the seizure, second
half of the seizure, and post-seizure) of equal
duration. Each block contained equal amount
of consecutive snapshot networks. Employ-
ing the nearest-neighbor edge centrality con-
cept for each snapshot network and reporting
on the aggregated centrality values for each
block, allowed to identify that the most im-
portant edges, prior and after the seizure, are
predominantly located in the hemisphere as-
sociated where the seizure was (clinically) as-
sumed to originate from. These edges were
further connected to vertices associated with
the clinically defined seizure onset zone. Dur-
ing the seizure these central edges were rather
connecting nearby vertices in homologous re-
gions in the opposite brain hemisphere. Timo
Brohl deduced that characterising important
edges in evolving functional brain networks
can possibly aid in improving and advancing
the understanding of the complicated spatial-
temporal dynamics of epileptic seizures.

Combining the individual results from inves-
tigations of paradigmatic and real-world net-
works, highlighted that the nearest-neighbor
edge centrality concept, despite the expected
conceptual similarities to other edge central-



ity concepts, provides additional and non-
redundant information about of edges in a
network. Particularly in situations were path-
based and/or more global centrality concepts
have limited significance, such as local spread-
ing phenomena, employing nearest-neighbor
centrality can potentially be considered to be
much more advantageous. The authors further
deduced that extensions — to binary and /or di-
rected networks, networks of networks [391],
multigraphs [91], or hypergraphs [392, 393|
— can be achieved in a rather simple by
manner taking into account in- and out-
degree/strength of vertices and that nearest-
neighbor edge centrality concept will help
to improve the characterisation of networks
through a data-driven identification of impor-
tant edges.
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IIT A perturbation-based approach to identifying
potentially superfluous network constituents

Timo Brohl and Klaus Lehnertz
Chaos 33, 063119 (2023).
DOI: https://doi.org/10.1063/5.0152030

Analysing real-world complex systems often
harbours the problem that explicit knowledge
of structural organization of the dynamical
system under study is limited or simply not
accessible |7, 36, 39, 40, 42, 43, 49, 56, 60,
62, 125, 372]. In these cases, the complex net-
work approach is still a useful and successful
ansatz to gain deeper insights into structure
and dynamics of spatially extended complex
systems, describing a system as an interaction
network with vertices representing elementary
units and edges representing interactions be-
tween them. Henceforth, in real-world appli-
cations the interaction networks’ vertices are
quite commonly associated with sensors that
are placed in sufficient manner to capture the
dynamics of said elementary units. Many dif-
ferent time-series-analysis techniques are uti-
lized to derive edges via a data-driven quan-
tification of interaction properties from the
system’s dynamics. Nevertheless, severe mis-
interpretations of network properties may re-
sult from the fact that the reliability of these
techniques is limited by the unavoidable finite-
ness of noisy field data and the fact that
there is no commonly accepted method to de-
rive binary or weighted networks from inter-
actions properties [176, 177, 191, 217, 394—
397]. These issues, however, are further in-
fluenced and preceded by the more general
problem of choosing the right number of sen-
sors and their respective meaningful place-
ment. As this poses a highly non-trivial task,
a spatial over- or undersampling of a sys-
tem is largely an inevitable outcome. In the
network approach, over- or undersampling di-
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rectly translates to the presence of potentially
superfluous or the absence of potentially rel-
evant network constituents, ultimately lead-
ing to severe misinterpretations of network
properties [176, 177, 191, 193, 217, 394-399|.
As the usual approach in investigating real-
world systems is to gather as much informa-
tion as possible, oversampling appears to be
the more prominent issue. A vast plethora of
methods [156, 398, 400-402] have attempted
to identify redundant edges, and while the
suitability of these approaches is still a mat-
ter of debate [403-406], the identification of
superfluous vertices has been tackled to a
much lesser extend [407, 408]. Timo Brohl
developed a perturbation-based approach to
identify potentially superfluous network con-
stituents. An elemental and minuscule pertur-
bation directly targets a single network con-
stituent with the assumption, that if the tar-
geted constituents is indeed superfluous, net-
work characteristics will largely be left unal-
tered after the employed perturbation. The
authors focused on three elementary perturba-
tions: vertex removal, vertex cloning and edge
removal. Timo Brohl tested the suitability of
the novel approach on weighted paradigmatic
network models, investigating perturbation-
induced changes in multiple global and local
network characteristics, approximating that
these characteristics in their sum capture a
somewhat sufficiently holistic description of
the network. For a given realization of a net-
work, the authors estimated these network
metrics prior to any perturbation. In a next
step, and for each network constituent respec-
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tively, they employed the respective perturba-
tion and re-estimated the respective network
metrics, quantifying the influence of the net-
work perturbation via the average percentage
change of the respective metric. Timo Brohl
confirmed the general expectation, that in-
dependent of the investigated real-world sys-
tem, certain network topologies can contain
superfluous constituents, due to the struc-
tural makeup of the network. Indeed, the in-
vestigated effects of employed perturbations
did largely differ for different network topolo-
gies, sizes and edge densities. Regular net-
work structures where especially prone to be
influenced in their local characteristics, while
global network characteristics were mostly left
unaltered. Yet and here irrespective of the net-
works topology, Timo Brohl further revealed
strong dependencies regarding the importance
of the constituent targeted by the perturba-
tion. The authors assessed constituents’ im-
portance and the networks’ importance hier-
archies via different and complementary cen-
trality concepts for vertices and edges. Con-
trary to expectation, using the perturbation-
based approach, the authors were able to re-
veal that there are far less potentially su-
perfluous constituents in complete and regu-
lar networks than in more complex topologies
such as small-world and scale-free networks.

The authors showed that especially for real-
world complex systems, for which a priori
knowledge about the network’s actual struc-
ture is either limited or simply not acces-
sible, the perturbation-based approach can
aid in identifying potentially superfluous and
likewise indispensable network constituents.
Furthermore, the authors investigations pave
the way for future studies that focus on em-
ploying the presented approach to identify
potentially superfluous constituents in net-
works with built-in superfluous constituents,
i.e.. via some form of cloning network con-
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stituents [193], and even in networks con-
structed from empirical observations of real-
world systems prone to have superfluous con-
stituents, ultimately aiding in a more accurate
modelling of real complex dynamical systems.



IV Impact of biological rhythms on the importance
hierarchy of constituents in time-dependent functional

brain networks

Timo Brohl, Randi von Wrede and Klaus Lehnertz
Frontiers in Network Physiology 3, 1237004 (2023).
DOI: https://doi.org/10.3389/fnetp.2023. 1237004

Various natural and endogenous cycles with
different period lengths influence the human
body on multiple levels, from blood circula-
tion, pulse, hormonal cycles, over bowel ac-
tivity to different sleep stages. It has been
well known for more than 50 years, that bi-
ological rhythms, infradian (> 24 h), circa-
dian, (24 h) as well as ultradian rhythms (<
24 h), impact electroencephalographic (EEG)
signals [409] of the human brain. As many en-
deavours to describe the complex dynamical
system brain are based on EEG recordings,
either assessing the dynamics of few brain re-
gions or/and covering timescales from a few
seconds to some hours, it is close at hand, that
the influence of biological rhythms will impact
tailing investigations. While the network ap-
proach [36, 71, 410] has successfully and re-
peatedly shown to provide novel and impor-
tant insights into complex dynamical systems
such as the brain [56, 62|, many earlier stud-
ies described a static network. Yet, modelling
many systems via time-dependent/evolving
networks [72, 411] allows a potentially more
detailed and accurate description. This holds
true especially for biological networks, such as
the brain, for which dependencies on different
time-scales have been observed. Many differ-
ent network metrics yield a broad applicability
to describe global to local aspects in network
terms, which can be related to properties of
the described systems. A highly relevant as-
pect in investigating such systems is to iden-
tify key network constituents, which can aid
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to understand and control these networks with
respect to the network structure and dynam-
ics. characterisation of a network constituent’s
role is achieved through different methods
and metrics, which can be generalized un-
der the concept of centrality. While many
of these concepts focus on evaluating a ver-
tex’ role [35, 412-414| in the network’s struc-
ture and dynamics, recently introduced mod-
ifications to vertex centrality concepts [127],
novel [154] , as well as some few established
edge-centrality concepts [124, 147] focus on
achieving an analogue for edges.

Importance hierarchies yielded from em-
ploying (multiple different) centrality con-
cepts to evolving functional brain networks
— which are estimated from EEG-data —,
are expected to be influenced by circadian
rhythms. Extending on recent studies [415-
419], the authors investigate the influence of
circadian rhythms on the importance hier-
archies of the constituents of evolving func-
tional brain networks, associating sampled
brain regions with networks vertices and time-
evolving interactions between these brain re-
gions with networks edges. Timo Brohl anal-
ysed EEG signals, continuously recorded over
multiple days, from five subjects with dis-
orders and three subjects without disorders
of the central nervous system. He estimated
the time-dependent, fully connected, weighted
functional brain networks from the respec-
tive EEG recordings (see Chap. I1B4 and
Chap. ID4), and tracked the changes in
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the importance hierarchies of network con-
stituents [420, 421], which are possibly related
to biological rhythms [422]. The importance
hierarchies of each snapshot network were es-
timated via four complementary vertex and
edge centrality concepts, respectively.

The authors observed notable contributions
of circadian rhythms and ultradian rhythms
on certain network local characteristics, in-
dependent of the employed centrality concept
and for all subjects. Nevertheless and contrary
to expectation, Timo Brohl observed the tem-
poral sequences of centrality values of some
brain regions to be much larger impacted by
circadian and ultradian than other brain re-
gions. Furthermore, the strength of this im-
pact differed when considering different cen-
trality concepts, which highlighted (different)
specific structural aspects of a network, such
as the path-structure or the strength distri-
bution. Timo Broéhl showed that when comb-
ing the results yielded by different centrality
concepts, almost all network constituents were
impacted by the circadian rhythm in all sub-
jects. While the authors were not able to de-
duce a trivial relation between the influence of
the circadian rhythm and a constituent’s im-
portance, they were able to observe vital and
fundamental subnetworks within the evolving
functional brain networks. These subnetworks
were constituted by vertices and edges that
showed pronounced influences by the circa-
dian rhythm in their respective temporal se-
quence of centrality values. On the one hand,
the authors were able to identify a subnet-
work comprising specific brain regions from
both hemispheres, while on the other hand,
the authors identified this subnetwork to have
nuanced but distinct differences during night-
time than during day-time. These observa-
tions let the authors to hypothesize about
possible relations to the concept of a resting-
state network [423|. Due to the night-time-
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specific alterations of the evolving functional
brain networks, Timo Brohl further investi-
gated possible day/night patterns in the tem-
poral evolution of the centrality values of ver-
tices and edges. The authors were able to re-
veal major differences regarding the largest
changes in centrality values between night-
and daytimes, which revert back to the vi-
tal subnetworks. During night-time, specific
brain regions were highlighted, an observation
which the authors contributed to memory con-
solidation processes during sleep [424, 425].
During day-time, brain regions were high-
lighted that consolidate spatial and visual
information and integrate perceptions with
other sensory inputs. Overall the authors ob-
served strong influences of the circadian and
ultradian rhythms on the importance hierar-
chy of network constituents in time-dependent
functional brain networks, highlighting dis-
tinct and possibly fundamental subnetworks,
that are generally involved in ongoing brain
activities.



V Identifying edges that facilitate the generation of
extreme events in networked dynamical systems

Timo Brohl and Klaus Lehnertz
Chaos 30, 073113 (2020).
DOI: https://doi.org/10.1063/5.0002743

Extreme events exhibited by dynamical sys-
tems in nature, ranging from natural over
technological to social systems, are ubiquitous
and pose real and often times unpredictable
constraints on humans and the world that we
live in [22, 256-261]. Whether blackouts in
power grids [426-429|, extreme weather events
in our climate system [264-268, 430-438|,
the extinction or overpopulation of species in
the ecosystem, market crashes in economical
systems [280, 282, 439|, cardiovascular dis-
eases like heart attacks [284, 285] or epilep-
tic seizures in the human brain [377, 421],
understanding the dynamical underpinnings
of generation of such extreme events is vi-
tal for understanding, predicting, and control-
ling them. While some aspects of dynamical
mechanisms involved in the generation of ex-
treme events have been recently studied with
great effort, the knowledge about the involve-
ment of potential pathways in networked dy-
namical systems is limited. Identifying such
pathways can lead to further advances in the
study of extreme events, as they may play vi-
tal roles in facilitating the build-up of pre-
cursor structures and ultimately the gener-
ation of extreme events. Therefore a grow-
ing interest in if and how the coupling struc-
ture of spatially-extended complex systems
is involved in the generation and exhibition
of extreme events has led to many advances
in research from different perspectives of sci-
ence [119, 266, 267, 322, 440-446| and was a
further motivation for the authors to conceive
this research project.

Yet, most of the prior research employed ei-
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ther concepts assessing global network charac-
teristics or specifically characteristics of ver-
tices in the networks. However, as in in-
teraction networks edges represent attributes
of an interaction, e.g. strength, direction,
or the coupling function, between two ver-
tices, (time-evolving) properties of edges and
their integration in the network can hold vi-
tal information about the generation of ex-
treme events in the network. Therefore in this
publication the authors conceived a research
project focusing on an improved characterisa-
tion of the role of edges (in relation to the role
of vertices) in networks, to study the genera-
tion of extreme events in networks in greater
depth.

In order to shed light on the role of spe-
cific edges in the network, Timo Broéhl em-
ployed various complementary centrality con-
cepts. These concepts were partly introduced
in prior research (cf. Chap. IB1). He fur-
ther proposed a network decomposition tech-
nique based on edge centrality, that allows to
identify sets of edges in a hierarchical struc-
ture of importance. In this context, Timo
Brohl studied complex networks of excitable
units of FitzHugh-Nagumo oscillators, deriv-
ing time-evolving interaction networks by in-
vestigating the strength of interaction from
time series of the units’ dynamics estimated
with bivariate analysis techniques and using
a sliding-window approach. The FitzHugh-
Nagumo oscillator (or model) is not only a
paradigmatic model of an excitable system
and hence a commonly used model for neu-
ral dynamics [447] and excitable behaviour
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in cardiac non-linear activities [298], but fur-
ther, if multiple FitzHugh-Nagumo oscilla-
tors are coupled, they can mimic diffusion-
like transport processes between them. Hence,
such networked dynamical systems of cou-
pled FitzHugh-Nagumo oscillators are known
to be able to exhibit self-generating and
self-terminating, high-amplitude, rare, yet re-
occurring deviations from their regular dy-
namics, without influencing factors of noise
or parameter changes [322, 374, 448-450],
and hence fulfilling the criteria for an ex-
treme events from a physics perspective. For
a fixed number of oscillators, Timo Brohl
constructed multiple networks of coupled
FitzHugh-Nagumo units with different cou-
pling topologies (and a different number of
edges) paradigmatic for many networked dy-
namical systems found in nature.

While previous studies have revealed that
extreme events in such systems are preceded
by so-called proto-events in certain units of
the system [322, 450] — which has also ob-
served in other excitable systems [451-460] —
the recruitment of other units remained to be
investigated. Successfully tackling this chal-
lenge, in this publication, the authors were
able to conjecture that, independent of the
respective underlying coupling topology, such
a recruitment is facilitated by certain (sets
of) edges in the network. These edges are ei-
ther considered to be the least or the most
important edges (with the different central-
ity concepts). This is partly in accordance to
prior research, as it was revealed that units,
which are less strongly interconnected in the
network are the units that initiate extreme
events [450]. These (sets of) edges appear to
have no respective equivalent in the underly-
ing coupling topology of the networked dy-
namical system of coupled FitzHugh-Nagumo
oscillators. The authors conclude that these
findings together with a more comprehensive
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description of the role of specific edges — con-
sidered to be involved in generation of extreme
events — can aid to gain further insights into
the mechanisms of the generation of extreme
events in many natural networked dynamical
systems. This might ultimately lead to ad-
vances regarding the control of a system (and
its dynamics) via targeted minuscule pertur-
bations [443, 444| (cf. Chapter III) of specific
pathways or single functional edges.



VI

Reconfiguration of human evolving large-scale

epileptic brain networks prior to seizures — an

evaluation with node centralities

Rieke Fruengel, Timo Brohl, Thorsten Rings and Klaus Lehnertz
Scientific Reports 10, 21921 (2020).
DOI: https://doi.org/10.1038/s41598-020-78899-7

Epilepsy is not only one of the most com-
mon neurological disorders observed, account-
ing for 0.5% of the global burden of dis-
case [346] and affecting over 50 million peo-
ple worldwide, it is also a disorder of a, if not
the most complex dynamical systems known
to man, the human brain. Epilepsy is char-
acterised by the recurrence of seizures, which
are considered to be (the result of) sponta-
neous, abnormal and excessive electrical ac-
tivity in the brain. Epileptic seizures, their ap-
parent unpredictability, and stigmatization of
epilepsy itself poses a huge burden for peo-
ple with epilepsy but also their relatives and
people close to them. Yet, still today the treat-
ment of epilepsy is a complex and evolving en-
deavour, as the brain is a complex and adap-
tive dynamical system. For about one third of
people with epilepsy, pharmacological treat-
ment is rendered insufficient [461], causing the
need for alternative treatment options such
as neurostimulation or surgical intervention,
with the latter allowing about 70% of those
pharmacoresistant people with epilepsy to re-
main seizure-free for at least one year after
surgery [462|. Nevertheless, long-lasting free-
dom from seizures is still a goal to be achieved
for most of the affected people, even after sur-
gical intervention and removing the clinically
defined seizure onset zone (SOZ). The lat-
ter especially emphasizes the need to further
investigate seizure generation and to reveal
seizure generating mechanisms in humans. In
general, it is of utmost importance to under-
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stand, predict, and possibly control epilep-
tic seizures, which can bring about the de-
velopment of novel treatment options [377].
Such advances may include warnings about
impending seizures, employing targeted inter-
ventions and countermeasures prior to seizure
generation or even stopping seizures, which
ultimately has the potential to alleviate the
burdens this disease entails.

Epileptic seizures can be considered extreme
events in the most general definition of rare,
yet recurring large deviations from a system’s
average dynamical behaviour. Hence, epilepsy
in the human epileptic brain, from a perspec-
tive of physics, poses a vital opportunity to
study the phenomena of extreme events in
complex dynamical systems.

In the last decade, utilizing the network
ansatz and describing epilepsy as a network
disease has brought great advances in its un-
derstanding [463-466]|. The description of the
human epileptic brain as a large-scale evolv-
ing epileptic brain network, derived from sam-
pling the dynamics of observables in specific
brain regions — associated with networks’ ver-
tices — and deducing the time-varying func-
tional interactions between these brain regions
with time-series-analysis techniques — associ-
ated with the networks edges — has been estab-
lished as a successful approach [467]. There-
fore, network analysis provides a powerful
framework for understanding the interactions
between different brain regions and how these
interactions and the epileptic brain network
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changes over time. Through network analy-
sis, prior studies were not only able to reveal
that the seizure onset zone (SOZ) only plays a
minor role in seizure dynamics [362, 468], but
further that the temporal evolution of central-
ity values of certain network vertices — far-off
the SOZ — hold vital information about im-
pending seizures [421, 469].

Therefore, the authors of this publication
conceived a research project with the larger
aim to achieve a more general understanding
of how the complex functional time-evolving
brain network is altered prior to seizure. The
authors achieved this through a more detailed
characterisation of the involvement of specific
network vertices in seizure generation, utiliz-
ing four complementary vertex centrality con-
cepts [378]. Employing a sliding-window ap-
proach Timo Brohl and Thorsten Rings de-
rived the functional networks from multichan-
nel, multiday intracranial electroencephalo-
graphic recordings of human electrical brain
activity from a large number of people with
epilepsy (cf. Chap. IB4 and Chap. 1D4).
For each window, the strengths of interac-
tion between the dynamics of each pair of
brain regions were derived using a bivariate
time-series analysis technique, more precisely
a phase-based estimator for edge weights, al-
lowing to assign a weight to each edge in the
respective functional network. Under the su-
pervision of Timo Brohl, Rieke Fruengel em-
ployed the different vertex centrality metrics
to investigate the temporal evolution of each
vertex’s integration in the network, differenti-
ating between pre-seizure and seizure-free pe-
riods. With the complementary and compre-
hensive information yielded by the different
centrality concepts, the authors were able to
trace changes in the evolving epileptic brain
network specific to pre-seizure periods. While
the authors observed, prior to seizure, almost
all networks vertices to be, on average, in-
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creasingly interconnected within the network,
they further hypothesized that this is not due
to a single but multiple network mechanisms
possibly underlying seizure generation.

Based on the observations of vertices that
carry predictive information about impend-
ing seizures, and how the integration of these
vertices changes prior to seizure, Timo Brohl,
proposed multiple different reconfiguration
scenarios of the evolving large-scale epileptic
brain network. In combination, these local and
global network-altering mechanisms affect vir-
tually all network constituents associated with
various brain regions and functional connec-
tions between them.

Besides possible confounding influences re-
garding the distinction of seizure-free and pre-
seizure periods, the effects of antiepileptic
medication and other drugs, sleep deprivation,
and infradian rhythms (> 24 h) [470-472], the
authors further highlight that the high indi-
viduality of the subject-specific implantation
schemes of electrodes, possible spatially over-
sampling of clinically deemed vital brain re-
gions (SOZ), as well as spatially undersam-
pling [469] of possibly important brain regions
can lead to serve misinterpretations with re-
gard to the network approach. This further
stresses the need to reevaluate the concept of
a SOZ, as well as the need to sufficiently sam-
ple the human epileptic brain. The authors
proposed to further exhaust the capabilities of
the network ansatz and to specifically inves-
tigate the role of edges in the involvement of
specific mechanisms leading to seizure gener-
ation [377], as it already has been shown that
edges also may carry information about im-
pending seizures in the time-varying property
of edges weights [421]. Investigating the inte-
gration of predictive vertices and of predictive
edges in combination, as well as how this in-
tegration changes over time, may aid in ad-
vancing the proposed mechanisms involved in



seizure generation or even facilitate the iden-
tification of new ones. This ultimately, may
allow to paint a more comprehensive picture
about alterations in the functional epileptic
brain network specific to the generation of
seizures, possibly involving only certain con-
stituents or groups of such. In total, relat-
ing these results to the underlying anatomy
and physiology could not only provide deeper
insights into the generation of seizures but
further hold vital implications about possi-
ble targeted treatment strategies [473-475],
translating the network approach into clinical
practice.
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VII Emergence of a tipping subnetwork during a critical
transition in networked systems: A new avenue to

extreme events

Timo Brohl and Klaus Lehnertz
Physical Review Research 7, 023109 (2025).
DOI: https://doi.org/10.1103/PhysRevResearch.7.023109

To this day, various scientific fields are
challenged with understanding and predict-
ing critical transitions, which are unexpected
and often irreversible shifts in a system’s state
or its dynamics. These transitions can culmi-
nate in extreme events with potentially dis-
astrous consequences for the system and its
environment. As many man-made and nat-
ural complex systems exhibit critical transi-
tions and extreme events, studying these dy-
namical phenomena is of immense relevance.
Critical transitions are largely observed to
be emergent phenomena, where the collective
system dynamics cannot be trivially inferred
from properties and dynamics of its individ-
ual units. Yet, and despite decades of research,
only modest advancements have been made
in detecting, understanding and possibly pre-
dicting critical transitions and entailed ex-
treme events [476-478]. This may possibly be
due to a predominant focus on either specific
subsystems or the system as a whole, largely
dismissing the direct influence of time-varying
relationships between the subsystems — ulti-
mately constituting the networked complex
system — and therefore neglecting vital char-
acteristic of the emergent phenomena. In this
paper, the authors shifted the focus from tra-
ditional approaches which concentrate on ei-
ther global or unit-centric properties to a per-
spective that focuses on interactions between
elementary units of complex networked sys-
tems to identify tipping elements [479] asso-
ciated with the respective critical transition.
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To this end, Timo Brohl investigated excitable
complex networks and human epileptic brains,
either of which are capable of self-generating
critical transitions that result into extreme
events, relating to complex phase synchroniza-
tion phenomena.

The complex networked systems consisted
of diffusively coupled FitzHugh-Nagumo os-
cillators [294, 295], with underlying com-
plex, yet archetypical coupling topologies. The
FitzHugh-Nagumo equation is a paradigmatic
model for excitability with broad applicability
in diverse scientific fields, ranging from engi-
neering, over epidemiology, to cardiology and
neuroscience [296, 480-482.

The investigated human epileptic brain net-
works resulted from multichannel, multiday
intracranial electroencephalographic (EEG)
recordings of electrical brain activity from
more than 45 people with epilepsy.

Utilizing the network ansatz, Timo Brohl
derived time-evolving functional networks, as-
sociating vertices with the respective systems’
units (single oscillators or sensors) and asso-
ciating edges with interactions between these
units, with the properties of the latter char-
acterised from appropriate observables of the
units’ dynamics employing the mean phase
coherence as a suitable estimator for the
strength of the pair-wise interactions [218] (cf.
Chap. IB4 and Chap. 1D 4).

In the toy models as well as in the natu-
ral system human brain, Timo Brohl identi-
fied multiple tipping elements (vertices and /or


https://doi.org/10.1103/PhysRevResearch.7.023109

edges), which generally are characterised by
an abrupt shift in their respective state, asso-
ciated with the critical transition. In this pa-
per, tipping vertices and edges were associated
with significant changes in their integration in
the greater network when comparing critical
transitions to normal dynamics. In order to
assess this integration, Timo Brohl employed
several complementary centrality concepts for
vertices [378, 483] and edges, partly intro-
duced in earlier publications (cf. Chap. II and
Chap. V). A networks constituent was hence
deemed a tipping element, if any of the as-
sessed centralities showed significant changes
when comparing critical transitions to nor-
mal dynamics. The authors identified a large
amount of tipping constituents in each of the
investigated systems and therefore hypothe-
sized about the presences of vital substruc-
tures introducing the concept of a tipping
subnetwork. This subnetwork describes a con-
nected network of exclusively tipping vertices
and tipping edges. Timo Brohl identified the
presence of such a tipping subnetwork — con-
taining most of the tipping constituents — in
the large majority of the investigated systems.

The authors account the diversity in the
relative sizes of the tipping and non-tipping
subnetworks of the respective systems, to the
different systems’ dynamics, as — apart from
toy models — access to their full spatial and
temporal extend might be limited, especially
in natural systems [176, 217, 394, 397| (cf.
Chap. III).

Investigating the alteration of the tipping
subnetwork in greater detail — via global and
local network characteristics — the authors ob-
served a rigidification of the tipping subnet-
work. This indicated a possible diminished
susceptibility of the tipping subnetwork to dy-
namics unrelated to the generation of extreme
events. The authors hypothesized that this vi-
tal insight can help to isolate the mechanisms
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involved in the generation of critical transi-
tions and extreme events.

The authors conclude that future online-
detection and -characterisation of tipping sub-
networks can ultimately allow the develop-
ment of more refined mathematical models
for critical transitions and time-series-analysis
techniques that can aid to tackle the chal-
lenges associated with the detection, charac-
terisation, and prediction of critical transi-
tions and their entailed extreme events.



VIII The time-evolving epileptic brain network: concepts,

definitions, accomplishments, perspectives

Timo Brohl, Thorsten Rings, Jan Pukropski, Randi von Wrede and Klaus Lehnertz.
Frontiers in Network Physiology 3, 1338864 (2024).
DOL: https://doi.org/10.3389/fnetp.2023. 1338864

Epilepsy is one of the most common neuro-
logical disorders in the world, with a preva-
lence of about 1% [346, 484]. It poses a great
burden on many intricate levels of affected
people’s lives, largely due to defining dynami-
cal phenomena and their occurrence: epileptic
seizures. Epileptic seizures hold life-changing
implications for people with epilepsy and peo-
ple close to them. From a physics perspec-
tive, epileptic seizures fit the definition of
extreme events as rare, reoccurring, sponta-
neous, and large deviations from the brains
regular dynamic, as they manifest as abnor-
mal and excessive, synchronous neuronal ac-
tivity in the brain [336]. The exhibition as
well as the apparent unpredictable nature of
epileptic seizures often has disastrous conse-
quences, including risk of injuries, loss of au-
tonomy, and psychosocial burdens [337-340].
Hence, understanding the emergence, propa-
gation and cessation of epileptic seizures is
rather crucial to deepening our understand-
ing of the nature of epilepsy, which is crucial
to develop novel and effective diagnostic ap-
proaches and treatment options.

Today, epilepsy is recognized as a complex
network disorder affecting the brain across
various spatial and temporal scales. This shift
from viewing epileptic seizures as originating
from a discrete cortical area in the brain to
understanding it as a dynamical process on a
widespread epileptic network, spanning lobes
and hemispheres, has significantly aided in
deepening our understanding of epilepsy as
a disorder. In recent research, it is further
considered that this complex epileptic net-
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work is not static but evolves in time. From
a physics and also from a clinical perspective,
this sparks the necessity for innovative and
novel approaches to comprehensibly charac-
terise (functional) time-evolving networks.

Therefore, in this review the authors pre-
sented an overview on and discussed the foun-
dational concepts of network theory and crit-
ically assessed the current and most promi-
nent recording techniques and analysis tools
employed to derive and characterise the time-
evolving human epileptic brain network.

Timo Brohl provided an overview of con-
cepts and metrics that allow to characterise
network properties and internal organiza-
tion ranging from the local [127, 140, 156,
164, 378|, over intermediate [102, 127-129,
414, 485] to the global scale [104, 113, 115,
118, 122, 123, 486-490|. He further reviewed
the state-of-the-art characterisation of time-
evolving brain networks, including the inves-
tigation of temporal fluctuations in brain dy-
namics [422, 491], the identification of sponta-
neous or induced (patho-)physiologic changes
and commonly used, yet controversially dis-
cussed, metrics and approaches for direct or
indirect network comparison [73-76, 239, 240,
492].

The authors also summarized alternative
approaches to investigating changes in the hu-
man epileptic brain network, including uni-
, bi-, and multivariate time-series-analysis
techniques [6, 196, 493-496]. They depicted
how the time-evolving brain network changes
during pre-seizure periods as well as dur-
ing seizure-free periods, reporting on various
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results from different studies regarding spe-
cific reconfigurations and modifications of net-
works — together with their stability and ro-
bustness — (cf. Chapter VI) [61, 377, 421, 497
499|. Timo Brohl depicted exemplary changes
of the functional networks’ path-structure
prior to seizure in comparison to seizure-free
periods, highlighting the formation of bot-
tlenecks related to seizure generation. The
authors underlined the possible implications
of network alterations specific to certain dy-
namical phenomena, presenting research find-
ings from different treatments of epilepsy,
including antiseizure medication [500, 501],
neuromodulation [502, 503|, responsive neu-
rostimulation [504] and vagus nerve stimula-
tion |64, 505-508|

Lastly the authors reviewed conceptual is-
sues, ranging from limitations in computa-
tional and mathematical models for epilepsy
based on dynamical systems theory [509-
512] and the network ansatz [513, 514] to
general investigation of seizure-like extreme
events [323, 446, 515-517|, as well as different
tipping [17, 518-520| and switching phenom-
ena [521-529]. Further they presented (poten-
tial) translational issues of the network ap-
proach into clinical practice, differentiating
between diagnosing epilepsy, choosing treat-
ments and optimizing/monitoring therapies.

Overall, in this review the authors discussed
and presented the general approach to de-
scribing epilepsy as a network disease via a
large-scale, time-evolving epileptic brain net-
work. Although this is a difficult task, ad-
vances of the last two decades have provided
insights and progressed the field with various
innovative tools of analysis. The review con-
cluded that the current insights into the tem-
poral evolution of the epileptic brain network
hold significant promise for clinical applica-
tion, advancing the state-of-the-art in epilepsy
diagnosis and treatment, and further suggests
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that extending investigations into the tem-
poral evolution of epileptic and other dis-
eased brain networks, in comparison with non-
affected brains and healthy brain dynamics,
will be instrumental to further improve our
understanding of epilepsy as a network dis-
ease.



IX Conclusions and outlook

The omnipresence of complex dynamical
systems in nature has significant implications
for humans, as these systems’ dynamics of-
ten shape the world around us. These dynam-
ics range from synchronization phenomena [6]
in coupled (non-linear) oscillators [530-534],
in power grids [5, 8, 535-538|, and in the
human organism [66, 200, 539-541] to syn-
chronization in complex networks, in gen-
eral [7]; from spreading phenomena like ru-
mours in social structures [542, 543], diverse
information transport in socio-technical sys-
tems [10], epidemic outbreaks [175, 187, 190,
544, 545], to more general spreading processes
on complex networks [546-548|; from critical
transitions [285, 527, 549| in socio-economic
structures like financial markets [550] or so-
cial networks [476], critical transitions in dis-
eases [284, 551-553] or in the climate sys-
tem [232, 433, 554-558|, to critical transitions
that can entail extreme events [22], such as
rogue waves [559, 560| and floods [561, 562],
heat waves [563-565] and droughts [270, 566],
over solar flares [262, 567|, large-scale black-
outs in power grids [278, 428, 568-570|, car-
diac arrhythmias [298, 571], fatal heart fail-
ure [284], migraine attacks [286], as well as
epileptic seizures in the human brain [409,

572.

The vast variety of different dynamical phe-
nomena exhibited by complex systems has
vital impact and potentially pose substantial
risks not only to the systems themselves
but also to their environments. Given these
often catastrophic consequences, expanding
our understanding of underlying processes
of specific dynamical phenomena is crucial
for developing approaches to predict and
understand their occurrence, and mitigate or
potentially prevent their outcomes. However,
due to the remarkable complexity of these
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systems [573-575|, this task remains far from
trivial and further necessitates the advance-
ment of new tools and concepts to address
associated challenges.

With the premise that a complex dynamical
system can viewed as a networked system of
elementary units, a promising approach to
studying such complex systems is the network
ansatz, which has been successfully applied to
the wide range of spatially extended complex
dynamical systems mentioned above. For
many of the dynamical phenomena observed
in nature, the respective system’s collective
dynamics is thought to emerge from the
intricate interplay of interactions between the
dynamics of the system’s (elementary) units.
In this thesis, we substantially extended
the network ansatz and the time-evolving
functional network approach to describe and
study complex systems by constructing static
and/or time-evolving (functional) networks,
where vertices represent the system’s elemen-
tary units, and edges denote properties of
interactions between these units, estimated
with time-series analysis techniques [62, 72].
While so-far, the network ansatz has primar-
ily focused on understanding the dynamics of
individual units or the network as a whole,
we proposed that shifting the focus to the
explicit interactions between the system’s
units — represented by the network edges
— and their intricate interplay — alterations
of subnetworks — can offer valuable insights
into emergent phenomena, such as critical
transitions and extreme events. Beside the
advances such a shift in perspective might
hold in the described network ansatz, we
hypothesized that this novel perspective
will be of great value for any conceivable
extensions of the network ansatz. The above



mentioned systems exhibit a range of emer-
gent phenomena that are critical to various
scientific fields, their investigation further
holds potential for adaptation of gained
knowledge and of developed methodologies to
other complex dynamical systems in nature.
Nevertheless, the inherent complexity of such
systems presents numerous challenges, from
assessing the systems’ individual units’ dy-
namics to accounting for external influences
and time-varying interactions [573, 576].

It is the concept of centrality, and our fun-
damental yet innovative adaptation of estab-
lished as well as our introduction of novel
centrality metrics (cf. Chap. II), that is key
in this constituent-centric and therefore also
edge-centric analysis. Centrality metrics are
utilized to quantify the importance of network
constituents — both, vertices and edges — based
on their roles or embedding in the overall net-
work [140]. The combination of results yielded
by multiple centrality metrics, allows to inves-
tigate the integration of constituents within
the network in a comprehensive manner.

Generally, the large majority of centrality
metrics can be divided in two groups, either
focusing on aspects of the networks’ path-
structures or aspects of the networks’ degree
and strength distributions, which furthermore
consider these aspects in either a global (e.g.
betweenness and eigenvector centrality) or lo-
cal (e.g. closeness centrality) manner. In this
context, it is important to note, that prior to
the publication of the nearest-neighbor cen-
trality [154] no edge centrality metric as-
sessed the local and strength-based proper-
ties of edges. The nearest-neighbor central-
ity is a straightforward extensions of the con-
cept of a vertex’s degree or strength, as it
assess the importance of edges based on the
strength of interactions of adjacent edges and
the connected vertices’ strengths [114]. Ap-
plied to (static) paradigmatic models, as well
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as social networks, this new centrality re-
vealed additional and complementary insights
into structural and also functional aspects of
the respective system, highlighting local and
global bottleneck structures, possibly relating
to potential dynamical phenomena these sys-
tem are able to exhibit. In this context, our
findings further suggest that generally edge-
centric investigations of complex networks are
of vital use when studying spreading phe-
nomena such as rumour or epidemic spread-
ing [546, 577-580|, for which path-based or
more global centrality metrics show limited
applicability. We explored the relevance of
this edge-centric approach in investigating ex-
citable complex dynamical system (such as
the human (epileptic) brain) and their emer-
gent dynamical phenomena, namely extreme
events (such as epileptic seizures). By exam-
ining time-evolving functional networks prior
to these events we identified key interactions
between the elementary units of the systems.
Overall, our results suggest that the edge-
centric approach and particularly the com-
bination of various complementing centrality
metrics, not only significantly enhance our un-
derstanding of extreme-event-specific spatial-
temporal dynamics and further allow to elu-
cidate mechanisms involved in critical transi-
tions and extreme events in complex systems.

Edge centrality concepts

By now there is an upsurge of novel edge cen-
trality metrics [581-588] which may, at least
to a certain extent, has been triggered by pre-
liminary research to this thesis [155|. Never-
theless, it is conceivable that centrality met-
rics may be advanced under a perspective
apart from path- or strength-based concepts.
Although a complementing character of the
majority of the various centrality metrics has
been shown [158, 586, 589-592|, there is nei-
ther a trivial way to actually compare how



different centrality metrics assess the roles of
constituents in the network, nor how a spe-
cific centrality metric assesses the role of one
constituent compared to an other constituent
in the network. The reliability and clarity
of centrality values can be at times uncer-
tain, partly due to potential numerical issues,
which can raise questions about when central-
ity values can be considered distinct or equiv-
alent. Hence, it is of vital importance to de-
velop metrics and mathematical concepts that
allow to estimate or measure the reliability of
centrality values. Although ranking centrality
values, as commonly employed in prior stud-
ies [156, 157, 593] as well as in this thesis,
facilitates easier comparisons between the as-
sessments of different centrality metrics, the
aforementioned issues translate to the ques-
tion of when two elements should be assigned
the same rank, or whether assigning identi-
cal ranks is even valid given the research con-
text. Therefore, depending on the system un-
der investigation and the respective research
question, the applicability of centrality met-
rics may still be limited. This necessitates the
development of alternative concepts, whether
it be a constituent’s integration in mesoscopic
structures in the network, similarity aspects
between network constituents or even more
algebraic approaches to a networks adjacency
matrix.

Furthermore, while the temporal evolution
of centrality values can provide crucial in-
sights into a system’s dynamics and behaviour
[594-597| (see also Chap. IV, VI, and VII),
most centrality metrics do not explicitly ac-
count for time or the evolving nature of a net-
work. Hence, especially when studying com-
plex dynamical systems, a centrality metric
that considers a constituent’s role based on
how its integration within the network evolves
over time could be particularly valuable.

Apart from changes in local or global
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characteristics to assess changes of time-
evolving networks, direct comparisons be-
tween (snapshot) networks is conceptually
challenging [77]. While it is generally conceiv-
able to define a (Euclidean) distance [598|,
or covariance and correlation [599| measure-
ments for adjacency matrices, as of now
no suitable mathematical concepts are avail-
able to easily deduce such metrics. Further,
these metrics would likely require crucial con-
straints regarding a network’s size, in terms
of present vertices and edges [239]. In exam-
ple, evaluating the change resulting from the
presence of specific vertex/edge in one net-
work and the absence of this vertex/edge in
an other network is highly non-trivial.

Field data investigations

One of the more fundamental and persis-
tent challenges in studying real-world net-
worked complex systems is the limited knowl-
edge about the system’s elementary units
and their interactions [36, 43, 56, 62|. Yet
despite these limitations, the network ap-
proach remains a powerful tool for gain-
ing insights into the dynamics of such sys-
tems [487|. By employing time-series-analysis
techniques, we estimated interaction prop-
erties between elementary units (associated
with network edges) from data captured from
the dynamics of the elementary units (associ-
ated with network vertices). However, the ab-
sence of a one-fits-all time-series-analysis tech-
nique, along with the challenges of noisy field
data and appropriate sensor placement, often
leads to over- or undersampling of the inves-
tigated system [394, 397, 400, 402|, resulting
in misinterpretations of network characteris-
tics [193, 217] and ultimately the system’s
properties. It is a vital yet difficult undertak-
ing to identify potentially superfluous network
constituents [399, 401, 404, 405|.

As part of this thesis we developed a



perturbation-based approach to tackle these
issues, leveraging the concept of central-
ity to identify potentially redundant or es-
sential constituents within the network (cf.
Chap. III). With centrality metrics assessing
the importance of a network constituents via
their integration in the larger network, here
we are able to estimate a constituents role in
the network in a rather holistic and compre-
hensive manner. Therefore, targeting single
network constituents, by cloning or removing
them, ultimately leads to an overall minus-
cule alteration of the network from a struc-
tural perspective, with perturbation-induced
changes in the centrality values of all other
network constituents, reflecting either a vital
or superfluous character of the targeted con-
stituent, depending on whether the centrality
values changed in a great extend or not at all.
Our method demonstrated that paradigmatic
network models can contain superfluous con-
stituents depending on the network’s topol-
ogy, size, and edge density, with far less po-
tentially superfluous constituents observed in
complete and regular networks than in more
complex topologies, such as small-world and
scale-free networks.

We  further hypothesized that our
perturbation-based approach, and poten-
tial extensions of it, can help to gain decisive
insights about relevant network constituents
(vertices and edges) in real-world complex
networked systems which can possibly relate
to essential or redundant elements in the
system or highlight sampling issues. This
can hold vital implications about entailed
investigations of real-world-systems and their
dynamics, as the systems’ distinct topological
makeup can influence interpretations of net-
work properties independent of the systems’
dynamical aspects.

It is often not straightforward which inter-
action properties — such as strength, direction,
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or functional form — between elementary units
in a system should be represented by network
edges and their attributes, as this largely de-
pends on the specific research question and
the system being studied. The perturbation-
based approach, combined with complemen-
tary centrality metrics, may help to compen-
sate the absence of a universal null model for
edges in a network, or even contribute to the
development of such a model.

Another rather substantial issue when
studying real-world dynamical systems, is the
influence of various natural and endogenous
cycles. Their influences have been shown to
be reflected in measurements of the dynamics
of systems’ elements, ranging from resonance
phenomena caused by traffic on bridges that
led to their failure [600], fluctuations in animal
population in the wilderness [601|, over energy
demand dynamics in power networks [602], to
general response patterns of non-oscillatory
cardiac conducting tissues [603-605|, and
EEG measurements of the human brain [422,
606, 607]). In employing the network ansatz
to describe the time-evolving complex sys-
tem human brain, we demonstrated how such
rhythms impacted the temporal evolution of
functional networks (cf. Chap. IV). Our inves-
tigation of long-term EEG-recordings revealed
vital and fundamental subnetworks within the
time-evolving functional network and how bi-
ological rhythms influence the centrality of
specific network constituents, shedding new
light on the concept of the extensively inves-
tigated resting-state network [423], as well as
fundamental processes such as memory con-
solidation [424, 425]|, consolidation of spatial
and visual information, as well as overall and
general ongoing brain activities. Our findings
emphasize the importance of considering en-
dogenous cycles when studying time-evolving
functional brain networks and highlight the
potential for centrality metrics to reveal key



insights into both physiologic and diseased
brain dynamics. In principal, a transfer of
this methodology, and also its entailed issues,
is imaginable for any time-evolving network
that describes a complex dynamical system,
and might aid to reveal dependencies of the
system’s dynamics and suitable observables
in regard to endogenous and exogenous driv-
ing forces [608]. This could include investi-
gation of pandemic spreading in social net-
works [609-611], predator-prey relationships
in food-web networks [612], and the respective
influences of day-and-night, weekly or even
seasonal cycles.

The recognition that such cycles can signif-
icantly influence real-world systems and their
dynamics motivates extending or even adapt-
ing the time-evolving network approach. Cur-
rently, when studying complex time-evolving
systems, the network ansatz is typically used
in combination with a sliding-window ap-
proach to generate snapshot networks. How-
ever, each snapshot network, in isolation, rep-
resents a static structure without an inherent
time-dependency. Moreover, in many natural
systems, the coupling topology can undergo
intrinsic changes, such as those caused by the
motion of the system’s elementary units [613].
This phenomenon is observed in various con-
texts, including social networks [614-617],
mobile communication networks [370, 618,
619], power transmission systems [620], and
the human brain [491, 621].

Developing time-dependent network
framework, where the temporal evolution
of both the network’s properties and its
constituents’ characteristics are directly em-
bedded in its mathematical structure, may
be crucial for fully capturing the dynamic
aspects of certain complex systems that
are otherwise missed due to the conceptual
limitations of the current network ansatz. In

the absence of mathematical models to de-

a
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scribe a time-dependent network, conceptual
approaches that map time series to ordinal
patterns [622] wusing ordinal
analysis techniques (623, 624| hold promising
potential to advance toward a time-dependent
network framework. Although this approach
and its resulting abstraction leads to a loss
of information, it captures essential aspects
of the temporal structure of the underlying
system dynamics as well as the properties
of interactions between coupled units, and
already holds great potential to shed light
on spatial-temporal dynamics in complex
dynamical systems.

time-series-

Critical transitions and extreme events

Utilizing  the  time-evolving  network
ansatz [72] with the aim to improve our
understanding and characterisation of com-
plex dynamical phenomena, and specifically
emergent phenomena such as critical transi-
tions and extreme events, we studied networks
of excitable units of FitzHugh-Nagumo os-
cillators with different coupling topologies —
archetypical for many networked dynamical
systems in nature. With prior research having
revealed vital aspects of the mechanisms
associated with the generation of extreme
events [322, 450], involving a critical mass of
oscillators to be in an excited dynamical state,
it remained to be investigated how the resid-
ual oscillators got recruited into this state,
which ultimately constitutes the emergent
character of such extreme events. Therefore,
employing complementary centrality metrics
and proposing a network decomposition tech-
nique based on edge centralities, we revealed
that this recruitment, independent of the
underlying coupling topology, was facilitated
by certain (sets of) edges in the time-evolving
functional networks (cf. Chap. V). These
edges were typically classified as either highly
important or entirely unimportant, based



on the corresponding centrality metric. We
hence concluded that especially certain inter-
actions between a systems’ units — associated
with specific network edges — are decisively
involved in the generation of extreme events,
which further harbours great potential for
possible control of a system and its dynam-
ics (443, 444| by targeting these specific
interactions or even distinct interaction path-
ways. So-called link removal is commonly
employed concept [625], which describes the
perturbation of certain edges in a network to
control the dynamics of the respective system.
This approach has been explored across a
wide range of applications, including spread-
ing phenomena [399, 408, 626, 627|, changes
in network robustness [107, 628|, synchro-
nization in power networks [629|, and even
the neutralization of terror networks [630].
Similarly, the removal of specific pathways
in a network is imaginable, yet requires
methods to detect crucial pathways. So far,
most methods proposed have a vertex-specific
focus, aiming at detecting communities [631],
motifs [131, 632, or other constituent groups
through network decompositions [137, 633].
There is a notable lack of analogous methods
for identifying edge-specific structures, such
as pathways. Utilizing or directly expanding
the concept of centrality with a shift in
perspective from the local to the mesoscopic
network scale, in combinations with bottom-
up or top-down decomposition concepts,
presents a promising avenue for developing
new metrics to identify crucial mesoscopic
structures, including pathways.

Interestingly, the edges identified as in-
volved in the generation of extreme events
were found to have no direct equivalent in the
underlying coupling topology (cf. Chap. V).
Differences between functional networks and
their corresponding coupling structures have
been widely observed across various sys-
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tems [35, 46, 79, 634, 635|, yet these dis-
crepancies are notoriously challenging to ex-
plain, particularly when estimating interac-
tion properties. In many natural systems, it
is often unclear whether the coupled subsys-
tems interact exclusively in pairwise fashion,
whether these interactions are transitive, or
if higher-order interactions need to be taken
into account. Hence, often times a direct map-
ping between edges in a functional network
and the pairwise interactions in the respec-
tive coupling structures may not be suitable,
as it is conceivable, that one ore multiple
units are mediating the interaction between
two other units for which no direct interac-
tion is present. Ultimately, this can lead to
severe misinterpretations of interaction prop-
erties or the presence of not only superflu-
ous but potentially incorrect edges. A com-
monly applied approach to address these chal-
lenges is the concept of partialization, with re-
spective estimators [208, 209, 636-644] for in-
teraction properties considered robust against
transitivity. However, it remains to be inves-
tigated whether these estimators, and exten-
sions of such, face limitations similar to those
identified in other non-partialized estimators
for determining the properties of interactions,
particularly when investigating interactions in
larger networks (> 20 vertices). The proposed
perturbation-based approach, along with pos-
sible adaptations and the concept of edge cen-
trality, can significantly contribute to address-
ing these challenges, enhancing our under-
standing — or facilitate the development of
techniques to do so — of the relationship be-
tween interactions and the coupling of local
and global dynamics in complex systems.

Building on the novel insights into the im-
portance of local network characteristics and
the role of specific network constituents, as
outlined in Chap. V, we investigated in greater
detail critical transitions and extreme events



in complex networked systems of diffusively
coupled FitzHugh-Nagumo oscillators, as well
as in the human epileptic brain (epilepsy as a
network disease reviewed in Chap. VIII), with
our focus sharpened on the intricate interplay
of network constituents that carry predictive
information about impending extreme events,
such as epileptic seizures.

In association with the concept of tipping
elements [479], we identified multiple tipping
vertices and edges, whose tipping nature is as-
sociated with significant changes in their inte-
gration in the greater network, when compar-
ing critical transitions to normal dynamics.
We employed the concept of centrality, com-
bining complementary centrality metrics to
gain a detailed understanding of the integra-
tion of network constituents and the changes
in these integrations over time. While previ-
ous research largely focused on the detection
of certain network vertices that carried pre-
dictive information about impending extreme
events [645], in this thesis we also were able
to specify edges with homologous character-
istics, carrying predictive information about
impending extreme events, not only in model
systems of coupled FitzHugh-Nagumo oscilla-
tors but also in time-evolving functional net-
works of epileptic brains. We identified an ex-
tensive amount of tipping constituents, whose
majority formed a large connected tipping
subnetwork. The respective tipping subnet-
work showed vital differences in its global
and local network characteristics during criti-
cal transitions compared to normal dynamics,
pointing to an overall rigidification of this tip-
ping subnetwork during a critical transition.
We concluded that this rigidification could
indicate a reduced susceptibility of the tip-
ping subnetwork to dynamics unrelated to
the mechanisms driving or generating extreme
events. This could further enable a more fo-
cused and isolated study of the tipping sub-

60

network within the context of critical tran-
sitions, potentially providing deeper insights
into the dynamics leading up to these events.
For the time-evolving functional brain net-
works, identified tipping vertices and edges
were primarily associated with brain regions —
or interactions between such — far off the clini-
cally defined brain are exhibiting earliest signs
of seizure activity. With the observed alter-
ations of global as well as local network char-
acteristics of time-evolving functional brain
networks, we proposed major reconfigurations
scenarios affecting virtually all network con-
stituents associated with various interacting
brain regions (cf. Chap. VI). In the context
of time-evolving functional brain networks, we
hypothesized that these results, set in rela-
tion to underlying anatomical and physiologi-
cal aspects, could elucidate our understanding
of the generation of epileptic seizures, which
harbours great potential to develop improved
prediction, mitigation or possibly even pre-
vention strategies. Overall, we concluded that
a detailed study of tipping subnetworks and
the major reconfigurations scenarios of the
time-evolving functional networks can sub-
stantially contribute to the development of re-
fined and possibly novel mathematical mod-
els for critical transitions in general, as well
as time-series-analysis techniques that allow
to tackle persistent challenges encountered in
approaches to detection, characterisation and
prediction of critical transitions and entailed
extreme events.

Although many dynamics of complex sys-
tems found in nature can be considered as
emergent phenomena, the scale at which this
emergent behaviour is most pronounced is nei-
ther always clear nor trivially inferable. The
identification of vital mesoscopic structures,
likely playing a crucial role in the generation
of dynamics in the investigated complex dy-
namical systems here, highlights the potential



advantages — and maybe even the necessity —
of developing more refined methods for uncov-
ering specific mesoscopic structures in com-
plex networks. While an edge-centric focus is
essential to comprehend emergent properties
of system dynamics, a too narrow and local
perspective may miss decisive and potentially
inseparable relations between multiple ele-
mentary units in the system [646-653|. These
challenges could be addressed by developing
and utilizing direct approaches to uncover
mesoscopic structures, or by rethinking how
interaction properties are estimated, refin-
ing existing and developing novel time-series-
analysis techniques. This shift in perspective
would move from focusing on pairwise inter-
actions to higher-order interactions [654, 655|,
and potentially even group interactions at the
mesoscopic level [656, 657], potentially offer-
ing a more comprehensive view of complex
system dynamics.

Wrongfully applied or interpreted time-
series-analysis techniques can have direct con-
sequences on drawn conclusions about the sys-
tem and its dynamics and therefore lead to
severe misinterpretations [658]. It is crucial
to develop methods and tools that can ro-
bustly estimate the accuracy and reliability
of results generated by different time-series
analysis techniques. Surrogate testing is a sta-
tistical method designed to assess the signif-
icance of findings in time-series analysis. In
theory, it helps determine whether observed
relationships in real-world data are mean-
ingful or simply the result of randomness.
Although there have been certain advance-
ments in surrogate techniques [192], partic-
ularly for evaluating the strength of interac-
tions [246, 252, 659, 660|, methods that test
the reliability of both the strength and direc-
tion of an interaction — or even coupling func-
tions [661] — are still in the early stages of
development.
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From dyadic to polyadic time-dependent
interaction networks

The large majority of complex systems in na-
ture not only operate on multiple temporal
and spatial scales but also function as ele-
ments within a larger, interconnected system
of systems. This includes human organisms as
a whole [540, 541, 662|, with neuron activity
operating in the microseconds, the heart beat-
ing in the order of seconds, the gastrointesti-
nal tract operating in the span of minutes to
hours, or growth cycles (e.g. of hair) lasting
up to multiple years; the climate systems [43],
with interactions and teleconnections between
see surface temperature and heat weaves [663],
extreme rainfalls [430, 664| and atmospheric
processes, as well as as the climate change as
a whole [665—667]

Studying these systems can greatly bene-
fit from an extension of the network ansatz
to one that emphasizes a network of net-
works 373, 668, 669|, with the purpose to
bridge temporal and spatial scales. In this con-
text, interactions between networks or their
constituent elements may yield crucial in-
sights into the interplay between structure,
function, and overall dynamics. Over the past
decade, several approaches have been pro-
posed to tackle the challenges of describing
and investigating such systems of systems.
Notably, multiplex [670-673] and multilayer
networks [410, 411, 674, 675] have been ap-
plied successfully to explore properties and
dynamics in complex systems, including food
webs [676], epidemic spreading networks [677],
photonic resonator networks [678|, financial
networks [679], the brain [680], and even the
human organism as a whole [540, 541, 681].
However, many of the established metrics and
concepts that assess the properties of individ-
ual networks have limited applicability when
extended to a network of networks. This high-
lights the need for further research to refine



existing metrics and develop novel ones that
account for the interactions between different
network layers. Here also an edge-centric ap-
proach may provide a more nuanced under-
standing of interlayer edges that connect net-
works, allowing for a detailed characterisation
of interactions between elements across lay-
ers 682, 683].

Additionally, an important and poten-
tially transformative extension of the network
paradigm is to consider edges that connect
multiple vertices, leading to the framework
of hypergraphs [92, 684, 685]. Most available
time-series-analysis techniques either assume
that the systems being studied are (approx-
imately) stationary and that interactions re-
main stable and persistent throughout the ob-
servation period or necessitate the use of a
sliding-window approach, which assumes ap-
proximate stationarity within each time win-
dow. In this context, the hypergraph ap-
proach becomes particularly relevant for non-
stationary systems. Further, it may be espe-
cially useful when investigating systems where
the assumption of exclusive pairwise inter-
actions between elementary units does not
hold, or where multiple forms of coupling co-
exist [686, 687]. The interplay of multiple
different coupling forms is possibly essential
for the emergence of complex dynamical phe-
nomena. Describing higher-dimensional sim-
plices (with dimensions > 2) by evaluating
properties of higher-order interactions — tran-
sient or non-transitive interactions between
multiple units of a system — has garnered
significant interest. In recent years, this ap-
proach has seen substantial conceptual [688—
690] and applied research across various sci-
entific fields [544, 655, 691-698|. It remains
uncertain whether a single approach can be
universally applicable and well suited to char-
acterise all relevant properties of (transient)
interactions among non-stationary systems.
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One of the most promising yet complex and
challenging frontiers is the integration of the
time-dependent network approach into the
hypergraph ansatz, an area of development
that has yet to mature fully [699-702|. Here
edges and their properties could be hy-
pothesized to encapsulate the time-evolving
properties of different couplings and their
respective properties, possible leading not
only the definition of time-evolving or time-
dependent multi-edges, but further different
types of edges in the network. We conjecture
that for this framework especially edge-centric
metrics and also fundamental advancements
and developments presented in this thesis will
be of vital significance to shed light on the
intricate interplay of different time-evolving
interactions and their properties, aiding to
expedite our understanding of complex emer-
gent dynamical phenomena, under the scope
of time-dependent hypergraphs.



References

[1] S. R. Dunbar, Travelling wave solutions of diffu-
sive Lotka-Volterra equations, J. Math. Biol. 17, 11
(1983).

[2] D. A. Wiley, S. H. Strogatz, and M. Girvan, The size
of the sync basin, Chaos 16, 015103 (2006).

[3] S. V. Vladimirov and K. Ostrikov, Dynamic self-

organization phenomena in complex ionized gas sys-

tems: new paradigms and technological aspects,

Phys. Rep. 393, 175 (2004).

T. Aoki, K. Yawata, and T. Aoyagi, Self-organization

of complex networks as a dynamical system, Phys.

Rev. E 91, 012908 (2015).

D. Witthaut, F. Hellmann, J. Kurths, S. Kettemann,

H. Meyer-Ortmanns, and M. Timme, Collective non-

linear dynamics and self-organization in decentral-

ized power grids, Rev. Mod. Phys. 94, 015005 (2022).

A. S. Pikovsky, M. G. Rosenblum, and J. Kurths,

Synchronization: A universal concept in nonlinear

sciences (Cambridge University Press, Cambridge,

UK, 2001).

A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno,

and C. Zhou, Synchronization in complex networks,

Phys. Rep. 469, 93 (2008).

[8] F. Dorfler, M. Chertkov, and F. Bullo, Synchroniza-
tion in complex oscillator networks and smart grids,
Proc. Natl. Acad. Sci. U.S.A. 110, 2005 (2013).

[9] D. R. Chialvo, Emergent complex neural dynamics,
Nat. Phys. 6, 744 (2010).

[10] A. Vespignani, Modelling dynamical processes in
complex socio-technical systems, Nat. Phys. 8, 32
(2012).

[11] D. H. Kelley and N. T. Ouellette, Emergent dynam-
ics of laboratory insect swarms, Sci. Rep. 3, 1073
(2013).

[12] K. Mccann and P. Yodzis, Bifurcation structure of a
three-species food-chain model, Theor. Popul. Biol.
48, 93 (1995).

[13] L. A. Aguirre and S. A. Billings, Dynamical effects
of overparametrization in nonlinear models, Phys. D:
Nonlinear Phenom. 80, 26 (1995).

[14] G. Van der Sande, L. Gelens, P. Tassin, A. Sciré, and
J. Danckaert, Two-dimensional phase-space analysis
and bifurcation study of the dynamical behaviour of
a semiconductor ring laser, J. Phys. B: At. Mol. Opt.
Phys. 41, 095402 (2008).

[15] Z. Wei, Dynamical behaviors of a chaotic system
with no equilibria, Phys. Lett. A 376, 102 (2011).

[16] F. Wolf, Symmetry, multistability, and long-range in-
teractions in brain development, Phys. Rev. Lett. 95,
208701 (2005).

[17] U. Feudel, A. N. Pisarchik, and K. Showalter, Multi-
stability and tipping: From mathematics and physics
to climate and brain—Minireview and preface to the
focus issue, Chaos 28, 033501 (2018).

[18] D. Rybski, V. Butsic, and J. W. Kantelhardt, Self-
organized multistability in the forest fire model,
Phys. Rev. E 104, L012201 (2021).

[19] O. E. Omel’chenko, M. Wolfrum, and Y. L.

4]

[5]

[6]

7]

63

Maistrenko, Chimera states as chaotic spatiotempo-
ral patterns, Phys. Rev. E 81, 065201 (2010).

[20] E. Schéll, Synchronization patterns and chimera
states in complex networks: Interplay of topology
and dynamics, Eur. Phys. J. Spec. Top. 225, 891
(2016).

[21] S. Majhi, B. K. Bera, D. Ghosh, and M. Perc,

Chimera states in neuronal networks: a review, Phys.

Life Rev. 28, 100 (2019).

S. Albeverio, V. Jentsch, and H. Kantz, Extreme

events in nature and society (Springer Science &

Business Media, 2006).

M. Chavez, M. Ghil, and J. Urrutia-Fucugauchi,

Ezxtreme events: Observations, modeling, and eco-

nomics, Vol. 214 (John Wiley & Sons, Hoboken,

2015).

D. M. Basko, I. L. Aleiner, and B. L. Altshuler,

Metal-insulator transition in a weakly interacting

many-electron system with localized single-particle

states, Ann. Phys. 321, 1126 (2006).

S. Kolekar and T. Padmanabhan, Ideal gas in a

strong gravitational field: Area dependence of en-

tropy, Phys. Rev. D 83, 064034 (2011).

[26] Y. Chen, G. Rangarajan, J. Feng, and M. Ding, An-
alyzing multiple nonlinear time series with extended
Granger causality, Phys. Lett. A 324, 26 (2004).

[27] J. P. Hernandez-Ortiz, J. J. de Pablo, and M. D.
Graham, Fast computation of many-particle hydro-
dynamic and electrostatic interactions in a confined
geometry, Phys. Rev. Lett. 98, 140602 (2007).

[28] J. B. Hooper and K. S. Schweizer, Real space
structure and scattering patterns of model polymer
nanocomposites, Macromol. 40, 6998 (2007).

[29] F. Bertoldi and C. F. McKee, Pressure-confined
clumps in magnetized molecular clouds, Astrophys.
J. 395, 140 (1992).

[30] J. Hopfield, Neural networks and physical systems
with emergent computational abilities, Proc. Natl.
Acad. Sci. U.S.A. 79, 2554 (1982).

[31] A. Z. Stieg, A. V. Avizienis, H. O. Sillin, C. Martin-
Olmos, M.-L. Lam, M. Aono, and J. K. Gimzewski,
Self-organized atomic switch networks, Jpn. J. Appl.
Phys. 53, 01AA02 (2013).

[32] S. Thurner, Analysis of Complex Networks (John
Wiley & Sons, Ltd, 2009) Chap. 2, pp. 23-45.

[33] S. H. Strogatz, Exploring complex networks, Nature
410, 268 (2001).

[34] R. Albert and A.-L. Barabasi, Statistical mechanics
of complex networks, Rev. Mod. Phys. 74, 47 (2002).

[35] M. E. J. Newman, The structure and function of
complex networks, SIAM Rev. 45, 167 (2003).

[36] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and
D.-U. Hwang, Complex networks: Structure and dy-
namics, Phys. Rep. 424, 175 (2006).

[37] V. Colizza, A. Flammini, M. A. Serrano, and
A. Vespignani, Detecting rich-club ordering in com-
plex networks, Nat. Phys. 2, 110 (2006).

[38] A. Arenas, A. Diaz-Guilera, and C. J. Perez-Vicente,
Synchronization reveals topological scales in complex
networks, Phys. Rev. Lett. 96, 114102 (2006).

[39] M. Barthélemy, Spatial networks, Phys. Rep. 499, 1

[22]

[23]

[24]

[25]


https://doi.org/10.1017/CBO9780511755743
https://doi.org/10.1017/CBO9780511755743
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1038/nphys2160
https://doi.org/10.1038/nphys2160
https://doi.org/10.1063/1.5027718
https://doi.org/10.1103/PhysRevE.81.065201
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1103/PhysRevLett.96.114102
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1016/j.physrep.2010.11.002

(2011).

[40] J. Gao, B. Barzel, and A.-L. Barabasi, Universal re-
silience patterns in complex networks, Nature 530,
307 (2016).

[41] J. Biamonte, M. Faccin, and M. De Domenico, Com-
plex networks from classical to quantum, Commun.
Phys. 2, 53 (2019).

[42] T. Heckmann, W. Schwanghart, and J. D. Phillips,
Graph theory — recent developments of its appli-
cation in geomorphology, Geomorphology 243, 130
(2015).

[43] J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, The
backbone of the climate network, Europhys. Lett.
87, 48007 (2009).

[44] J. F. Donges, Y. Zou, N. Marwan, and J. Kurths,
Complex networks in climate dynamics, Eur. Phys.
J.-Spec. Top. 174, 157 (2009).

[45] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Ra-
jagopalan, and A. S. Tomkins, The web as a graph:
Measurements, models, and methods, in Interna-
tional Computing and Combinatorics Conference
(Springer, 1999) pp. 1-17.

[46] A.-L. Barabasi and Z. N. Oltvai, Network biol-
ogy: Understanding the cell’s functional organiza-
tion, Nat. Rev. Genet. 5, 101 (2004).

[47] O. Mason and M. Verwoerd, Graph theory and net-
works in biology, IET Syst. Biol. 1, 89 (2007).

[48] E. Almaas, Biological impacts and context of net-
work theory, J. Exp. Biol. 210, 1548 (2007).

[49] A.-L. Barabasi, N. Gulbahce, and J. Loscalzo, Net-
work medicine: a network-based approach to human
disease, Nat. Rev. Genet. 12, 56 (2011).

[50] S. Wasserman and K. Faust, Social Network Anal-
ysis: Methods and Applications (Cambridge Univer-
sity Press, Cambridge, UK, 1994).

[51] J. Scott, Social network analysis: A handbook, 2nd
ed. (SAGE Publications, London, UK, 2000).

[52] L. C. Freeman, The development of social network
analysis: A study in the sociology of science (Empir-
ical Press, Vancouver, Canada, 2004).

[53] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labi-

anca, Network analysis in the social sciences, Science

323, 892 (2009).

J. M. Gémez and M. Verdu, Network theory may

explain the vulnerability of medieval human settle-

ments to the black death pandemic, Sci. Rep. 7, 1

(2017).

J. C. Reijneveld, S. C. Ponten, H. W. Berendse,

and C. J. Stam, The application of graph theoret-

ical analysis to complex networks in the brain, Clin.

Neurophysiol. 118, 2317 (2007).

E. Bullmore and O. Sporns, Complex brain net-

works: graph theoretical analysis of structural and

functional systems, Nat. Rev. Neurosci. 10, 186

(2009).

[57] D. S. Bassett and E. T. Bullmore, Human brain net-
works in health and disease, Curr. Opin. Neurol. 22,
340 (2009).

[58] M. Rubinov and O. Sporns, Complex network mea-
sures of brain connectivity: Uses and interpretations,
Neurolmage 52, 1059 (2010).

[54]

[55]

[56]

64

[59] O. Sporns, Networks of the Brain (MIT Press, Cam-
bridge, MA, 2011).

[60] A. Baronchelli, R. Ferrer-i-Cancho, R. Pastor-
Satorras, N. Chater, and M. H. Christiansen, Net-
works in cognitive science, Trends Cogn. Sci. 17, 348
(2013).

[61] C. J. Stam, Modern network science of neurological
disorders, Nat. Rev. Neurosci. 15, 683 (2014).

[62] K. Lehnertz, G. Ansmann, S. Bialonski, H. Dickten,
C. Geier, and S. Porz, Evolving networks in the hu-
man epileptic brain, Physica D 267, 7 (2014).

[63] M. P. Van den Heuvel, E. T. Bullmore, and

O. Sporns, Comparative connectomics, Trends Cog-

nit. Sci. 20, 345 (2016).

T. Rings, R. von Wrede, T. Brohl, S. Schach,

C. Helmstaedter, and K. Lehnertz, Impact of tran-

scutaneous auricular vagus nerve stimulation on

large-scale functional brain networks: From local to

global, Front. Physiol. 12, 700261 (2021).

R. von Wrede, T. Brohl, T. Rings, J. Pukropski,

C. Helmstaedter, and K. Lehnertz, Modifications of

functional human brain networks by transcutaneous

auricular vagus nerve stimulation: Impact of time of

day, Brain Sci. 12, 546 (2022).

K. Lehnertz, Ordinal methods for a characteriza-

tion of evolving functional brain networks, Chaos 33,

022101 (2023).

[67] P. ErdSs and A. Rényi, On random graphs I, Publ.
Math. Debrecen 6, 290 (1959).

[68] P. Erdds and A. Rényi, On the evolution of random
graphs, Publ. Math. Inst. Hung. Acad. Sci. 5, 17
(1960).

[69] A.-L. Barabasi and R. Albert, Emergence of scaling
in random networks, Science 286, 509 (1999).

[70] S. Abe and S. Thurner, Complex networks emerging
from fluctuating random graphs: analytic formula for
the hidden variable distribution, Phys. Rev. E 72,
036102 (2005).

[71] M. Newman, Networks (Oxford University Press,
2018).

[72] P. Holme and J. Saramiki, Temporal networks,
Phys. Rep. 519, 97 (2012).

[73] A. M. Bronstein, M. M. Bronstein, and R. Kim-
mel, Efficient computation of isometry-invariant dis-
tances between surfaces, STAM J. Sci. Comput. 28,
1812 (2006).

[74] R. F. Andrade, J. G. Miranda, S. T. Pinho, and T. P.
Lobao, Measuring distances between complex net-
works, Phys. Lett. A 372, 5265 (2008).

[75] M. Muskulus, S. Houweling, S. Verduyn-Lunel, and
A. Daffertshofer, Functional similarities and distance
properties, J. Neurosci. Methods 183, 31 (2009).

[76] F. Mémoli, Gromov—Wasserstein distances and the
metric approach to object matching, Found. Com-
put. Math. 11, 417 (2011).

[77] M. Tantardini, F. Ieva, L. Tajoli, and C. Piccardi,
Comparing methods for comparing networks, Sci.
Rep. 9, 17557 (2019).

[78] A. Mheich, F. Wendling, and M. Hassan, Brain net-
work similarity: methods and applications, Network
Neurosci. 4, 507 (2020).

[64]

[65]

[66]


https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/http://dx.doi.org/10.1016/j.geomorph.2014.12.024
https://doi.org/http://dx.doi.org/10.1016/j.geomorph.2014.12.024
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.1140/epjst/e2009-01098-2
https://doi.org/10.1140/epjst/e2009-01098-2
https://doi.org/10.1038/nrg1272
https://doi.org/10.1049/iet-syb:20060038
https://doi.org/10.1242/jeb.003731
https://doi.org/10.1038/nrg2918
https://doi.org/10.1126/science.1165821
https://doi.org/10.1126/science.1165821
https://doi.org/10.1016/j.clinph.2007.08.010
https://doi.org/10.1016/j.clinph.2007.08.010
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
https://doi.org/10.1097/WCO.0b013e32832d93dd
https://doi.org/10.1097/WCO.0b013e32832d93dd
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1038/nrn3801
https://doi.org/10.1016/j.physd.2013.06.009
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.jneumeth.2009.06.035
https://doi.org/10.1162/netn_a_00133
https://doi.org/10.1162/netn_a_00133

[79] T. Rings, T. Brohl, and K. Lehnertz, Network struc-
ture from a characterization of interactions in com-
plex systems, Sci. Rep. 12, 11742 (2022).

[80] M. Newman, The physics of networks, Phys. Today
61, 33 (2008).

[81] J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin,

Networks formed from interdependent networks,

Nat. Phys. 8, 40 (2012).

G. Bianconi, S. N. Dorogovtsev, and J. F. F. Mendes,

Mutually connected component of networks of net-

works with replica nodes, Phys. Rev. E 91, 012804

(2015).

G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli,

A. Gabrielli, and G. Caldarelli, The statistical

physics of real-world networks, Nat. Rev. Phys. 1,

58 (2019).

F. Battiston, G. Cencetti, I. Tacopini, V. Latora,

M. Lucas, A. Patania, J.-G. Young, and G. Petri,

Networks beyond pairwise interactions: structure

and dynamics, Phys. Rep. 874, 1 (2020).

T. Rings, M. Mazarei, A. Akhshi, C. Geier, M. R. R.

Tabar, and K. Lehnertz, Traceability and dynamical

resistance of precursor of extreme events, Sci. Rep.

9, 1744 (2019).

X. Liu, D. Li, M. Ma, B. K. Szymanski, H. E. Stanley,

and J. Gao, Network resilience, Phys. Rep. 971, 1

(2022).

O. Artime, M. Grassia, M. De Domenico, J. P.

Gleeson, H. A. Makse, G. Mangioni, M. Perc, and

F. Radicchi, Robustness and resilience of complex

networks, Nat. Rev. Phys. 6, 114 (2024).

S.-H. Lee, S. Yoon, J.-I. Kim, S.-H. Jin, and

C. K. Chung, Functional connectivity of rest-

ing state EEG and symptom severity in patients

with post-traumatic stress disorder, Prog. Neuro-

Psychopharmacol. Biol. Psychiatry 51, 51 (2014).

[89] Y. Zou, R. V. Donner, N. Marwan, J. F. Donges, and

J. Kurths, Complex network approaches to nonlinear

time series analysis, Phys. Rep. 787, 1 (2019).

S. Bornholdt and H. G. Schuster, Handbook of

Graphs and Networks (VCH, Weinheim, 2002).

[91] M. E. J. Newman, Analysis of weighted networks,
Phys. Rev. E 70, 056131 (2004).

[92] G. Ghoshal, V. Zlati¢, G. Caldarelli, and M. E. New-
man, Random hypergraphs and their applications,
Phys. Rev. E 79, 066118 (2009).

[93] O. Sagarra, C. P. Vicente, and A. Diaz-Guilera, Sta-
tistical mechanics of multiedge networks, Phys. Rev.
E 88, 062806 (2013).

[94] H. Barbosa, M. Barthelemy, G. Ghoshal, C. R.
James, M. Lenormand, T. Louail, R. Menezes, J. J.
Ramasco, F. Simini, and M. Tomasini, Human mo-
bility: Models and applications, Phys. Rep. 734, 1
(2018).

[95] L. Euler, Solutio problematis ad geometriam situs
pertinentis, Commentarii Academiae Scientiarum
Imperialis Petropolitanae 8, 128 (1736).

[96] G. Kirchhoff, Uber den Durchgang eines elektrischen
Stromes durch eine Ebene, insbesondere durch eine
kreisformige, Ann. Phys. (Leipzig) 64 (1845).

[97] C. E. Shannon, A mathematical theory of communi-

(82]

(83]

[84]

(85]

(86]

(87]

(88]

[90]

65

cation, Bell System Technol. J 27, 379 (1948).

[98] R. Albert, H. Jeong, and A. L. Barabasi, Error and
attack tolerance of complex networks, Nature 406,
378 (2000).

[99] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley,
and S. Havlin, Catastrophic cascade of failures in
interdependent networks, Nature 464, 1025 (2010).

[100] K. Rajan and L. F. Abbott, Eigenvalue spectra of
random matrices for neural networks, Phys. Rev.
Lett. 97, 188104 (2006).

[101] Z.-X. Wu and P. Holme, Onion structure and net-
work robustness, Phys. Rev. E 84, 026106 (2011).

[102] M. E. J. Newman, Finding community structure in
networks using the eigenvectors of matrices, Phys.
Rev. E 74, 036104 (2006).

[103] S. Gomez, A. Diaz-Guilera, J. Gomez-Gardenes,
C. J. Perez-Vicente, Y. Moreno, and A. Arenas, Dif-
fusion dynamics on multiplex networks, Phys. Rev.
Lett. 110, 028701 (2013).

[104] M. Barahona and L. M. Pecora, Synchronization in
small-world systems, Phys. Rev. Lett. 89, 054101
(2002).

[105] L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J.

Mar, and J. F. Heagy, Fundamentals of synchroniza-

tion in chaotic systems, concepts and applications,

Chaos 7, 520 (1997).

F. M. Atay, T. Biyikoglu, and J. Jost, Network syn-

chronization: Spectral versus statistical properties,

Physica D 224, 35 (2006).

P. van Mieghem, D. Stevanovi¢, F. Kuipers, C. Li,

R. van de Bovenkamp, D. Liu, and H. Wang, De-

creasing the spectral radius of a graph by link re-

movals, Phys. Rev. E 84, 016101 (2011).

M. E. J. Newman, Scientific collaboration networks.

II. Shortest paths, weighted networks, and centrality,

Phys. Rev. E 64, 016132 (2001).

[109] E. W. Dijkstra, A note on two problems in connexion
with graphs, Numer. Math. 1, 269 (1959).

[110] J. Bouttier, P. Di Francesco, and E. Guitter,
Geodesic distance in planar graphs, Nucl. Phys. B.
663, 535 (2003).

[111] J. B. Kruskal, On the shortest spanning subtree of
a graph and the traveling salesman problem, Proc.
Amer. Math. Soc. 7, 48 (1956).

[112] G. Tononi, O. Sporns, and G. M. Edelman, A mea-
sure for brain complexity: relating functional segre-
gation and integration in the nervous system., Proc.
Natl. Acad. Sci. 91, 5033 (1994).

[113] D. J. Watts and S. H. Strogatz, Collective dynamics
of ‘small-world’ networks, Nature 393, 440 (1998).

[114] L. C. Freeman, Centrality in social networks: Con-
ceptual clarification, Soc. Networks 1, 215 (1979).

[115] M. E. J. Newman, Assortative mixing in networks,
Phys. Rev. Lett. 89, 208701 (2002).

[116] M. E. J. Newman, Mixing patterns in networks,
Phys. Rev. E 67, 026126 (2003).

[117] S. Abe and N. Suzuki, Complex earthquake net-
works: Hierarchical organization and assortative
mixing, Phys. Rev. E 74, 026113 (2006).

[118] S. Bialonski and K. Lehnertz, Assortative mixing in
functional brain networks during epileptic seizures,

[106]

[107]

[108]


https://doi.org/10.1038/s41598-022-14397-2
https://doi.org/10.1103/PhysRevE.91.012804
https://doi.org/10.1103/PhysRevE.91.012804
https://doi.org/10.1016/j.pnpbp.2014.01.008
https://doi.org/10.1016/j.pnpbp.2014.01.008
https://doi.org/10.1103/PhysRevE.70.056131
https://doi.org/10.1038/35019019
https://doi.org/10.1038/35019019
https://doi.org/10.1103/PhysRevLett.89.054101
https://doi.org/10.1103/PhysRevLett.89.054101
https://doi.org/10.1016/j.physd.2006.09.018
https://doi.org/10.1103/PhysRevE.84.016101
https://doi.org/10.1103/PhysRevE.64.016132
https://doi.org/10.1038/30918
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1103/PhysRevLett.89.208701
https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1103/PhysRevE.74.026113

Chaos 23, 033139 (2013).

[119] L. Xiang, Effect of mixing assortativity on extreme
events in complex networks, Chin. Phys. Lett. 31,
068901 (2014).

[120] G. D’Agostino, A. Scala, V. Zlati¢, and G. Caldarelli,
Robustness and assortativity for diffusion-like pro-
cesses in scale-free networks, Europhys. Lett. 97,
63006 (2012).

[121] A. Vazquez and Y. Moreno, Resilience to damage of
graphs with degree correlations, Phys. Rev. E 67,
015101 (2003).

[122] A. E. Motter, C. Zhou, and J. Kurths, Network syn-
chronization, diffusion, and the paradox of hetero-
geneity, Phys. Rev. E 71, 016116 (2005).

[123] M. di Bernardo, F. Garofalo, and F. Sorrentino, Ef-
fects of degree correlation on the synchronization
of networks of oscillators, Int. J. Bifurcation Chaos
Appl. Sci. Eng. 17, 3499 (2007).

[124] M. Girvan and M. E. J. Newman, Community struc-
ture in social and biological networks, Proc. Natl.
Acad. Sci. U.S.A. 99, 7821 (2002).

[125] M. E. J. Newman, Communities, modules and large-
scale structure in networks, Nat. Phys. 8, 25 (2012).

[126] T. P. Peixoto, Network reconstruction and commu-
nity detection from dynamics, Phys. Rev. Lett. 123,
128301 (2019).

[127] T. Brohl and K. Lehnertz, Centrality-based iden-
tification of important edges in complex networks,
Chaos 29, 033115 (2019).

[128] S. Fortunato and D. Hric, Community detection in
networks: A user guide, Phys. Rep. 659, 1 (2016).

[129] U. Alon, Network motifs: theory and experimental
approaches, Nat. Rev. Gen. 8, 450 (2007).

[130] J. P. Onnela, J. Saraméki, J. Kertész, and K. Kaski,
Intensity and coherence of motifs in weighted com-
plex networks, Phys. Rev. E 71, 065103 (2005).

[131] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon, Network motifs: Simple
building blocks of complex networks, Science 298,
824 (2002).

[132] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, Topo-
logical generalizations of network motifs, Phys. Rev.
E 70, 031909 (2004).

[133] R. J. Prill, P. A. Iglesias, and A. Levchenko, Dynamic
properties of network motifs contribute to biological
network organization, PLoS Biol. 3, €343 (2005).

[134] L. L. Gollo, C. Mirasso, O. Sporns, and M. Break-
spear, Mechanisms of zero-lag synchronization in
cortical motifs, PLoS Comput. Biol. 10, €1003548
(2014).

[135] S. B. Seidman, Network structure and minimum de-
gree, Soc. Netw. 5, 269 (1983).

[136] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and
E. Shir, A model of internet topology using k-shell
decomposition, PNAS 104, 11150 (2007).

[137] M. Eidsaa and E. Almaas, s-core network decompo-
sition: A generalization of k-core analysis to weighted
networks, Phys. Rev. E 88, 062819 (2013).

[138] M. Eidsaa and E. Almaas, Investigating the relation-
ship between k-core and s-core network decomposi-
tions, Physica A 449, 111 (2016).

66

[139] T. Brohl and K. Lehnertz, Identifying edges that

facilitate the generation of extreme events in

networked dynamical systems, Chaos 30, 073113

(2020).

D. Koschiitzki, K. Lehmann, L. Peeters, S. Richter,

D. Tenfelde-Podehl, and O. Zlotowski, Centrality in-

dices, in Network Analysis, Lecture Notes in Com-

puter Science, Vol. 3418, edited by U. Brandes and

T. Erlebach (Springer, Berlin, Heidelberg, 2005) pp.

16-61.

T. Opsahl, F. Agneessens, and J. Skvoretz, Node

centrality in weighted networks: Generalizing degree

and shortest paths, Soc. Networks 32, 245 (2010).

[142] G. Lawyer, Understanding the influence of all nodes
in a network, Sci. Rep. 5, 8665 (2015).

[143] P. Bonacich, Power and centrality: A family of mea-
sures, Am. J. Sociol. 92, 1170 (1987).

[144] S. D. Kamvar, M. T. Schlosser, and H. Garcia-
Molina, The eigentrust algorithm for reputation
management in p2p networks, in Proceedings of the
12th international conference on World Wide Web
(2003) pp. 640-651.

[145] L. Katz, A new status index derived from sociometric
analysis, Psychometrika 18, 39 (1953).

[146] S. Brin and L. Page, The anatomy of a large-scale
hypertextual web search engine, Computer networks
and ISDN systems 30, 107 (1998).

[147] L. C. Freeman, A set of measures of centrality based
on betweenness, Sociometry 40, 35 (1977).

[148] M. Barthelemy, Betweenness centrality in large com-
plex networks, Eur. Phys. J. B 38, 163 (2004).

[149] H. Wang, J. M. Hernandez, and P. Van Mieghem,
Betweenness centrality in a weighted network, Phys.
Rev. E 77, 046105 (2008).

[150] M. E. J. Newman, A measure of betweenness cen-
trality based on random walks, Soc. Networks 27,
39 (2005).

[151] S. Sreenivasan, R. Cohen, E. Lopez, Z. Toroczkai,
and H. E. Stanley, Structural bottlenecks for com-
munication in networks, Phys. Rev. E 75, 036105
(2007).

[152] H. Yu, P. M. Kim, E. Sprecher, V. Trifonov, and
M. Gerstein, The importance of bottlenecks in pro-
tein networks: correlation with gene essentiality and
expression dynamics, PLoS Comput. Biol. 3, e59
(2007).

[153] J.-J. Slotine and Y.-Y. Liu, Complex networks: the
missing link, Nat. Phys. 8, 512 (2012).

[154] T. Brohl and K. Lehnertz, A straightforward edge
centrality concept derived from generalizing degree
and strength, Sci. Rep. 12, 4407 (2022).

[155] T. Brohl and K. Lehnertz, Centrality-based iden-
tification of important edges in complex networks,
Chaos 29, 033115 (2019).

[156] H. Liao, M. S. Mariani, M.Medo, Y.-C. Zhang, and
M.-Y. Zhou, Ranking in evolving complex networks,
Phys. Rep. 689, 1 (2017).

[157] A. Solé-Ribalta, M. De Domenico, S. Gémez, and
A. Arenas, Centrality rankings in multiplex net-
works, in WebSci’14 (2014) pp. 149-155.

[158] C. Shao, P. Cui, P. Xun, Y. Peng, and X. Jiang,

[140]

[141]


https://doi.org/10.1063/1.4821915
https://doi.org/10.1103/PhysRevE.67.015101
https://doi.org/10.1103/PhysRevE.67.015101
https://doi.org/10.1103/PhysRevE.71.016116
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1038/NPHYS2162
https://doi.org/10.1063/1.5081098.
https://doi.org/http://dx.doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1103/PhysRevE.71.065103
https://doi.org/10.1103/PhysRevE.88.062819
https://doi.org/10.1063/5.0002743
https://doi.org/10.1063/5.0002743
https://doi.org/10.1007/978-3-540-31955-9_3
https://doi.org/10.1016/j.socnet.2010.03.006
https://doi.org/10.1038/srep08665
https://doi.org/10.2307/2780000
https://doi.org/10.2307/3033543
https://doi.org/10.1038/s41598-022-08254-5
https://doi.org/10.1063/1.5081098
https://doi.org/https://doi.org/10.1016/j.physrep.2017.05.001

Rank correlation between centrality metrics in com-
plex networks: an empirical study, Open Physics 16,
1009 (2018).

S. Oldham, B. Fulcher, L. Parkes, A. Arnatkevi¢iute,

C. Suo, and A. Fornito, Consistency and differences

between centrality measures across distinct classes of

networks, PLOS ONE 14, ¢0220061 (2019).

J. M. Bolland, Sorting out centrality: An analysis of

the performance of four centrality models in real and

simulated networks, Soc. Networks 10, 233 (1988).

[161] K. Stephenson and M. Zelen, Rethinking centrality:
Methods and examples, Soc. Networks 11, 1 (1989).

[162] K. Nakao, Distribution of measures of centrality:
enumerated distributions of Freeman’s graph cen-
trality measures., Connections 13, 10 (1990).

[163] T. W. Valente, K. Coronges, C. Lakon, and
E. Costenbader, How correlated are network central-
ity measures?, Connections 28, 16 (2008).

[164] M.-T. Kuhnert, C. Geier, C. E. Elger, and K. Lehn-
ertz, Identifying important nodes in weighted func-
tional brain networks: A comparison of different cen-
trality approaches, Chaos 22, 023142 (2012).

[165] M. Barthélemy and A. Flammini, Modeling urban
street patterns, Phys. Rev. Lett. 100, 138702 (2008).

[166] N. Genko, D. Atienza, G. De Micheli, J. M. Mendias,
R. Hermida, and F. Catthoor, A complete network-
on-chip emulation framework, in Design, Automa-
tion and Test in Europe (2005) pp. 246-251.

[167] L. Null and J. Lobur, Essentials of Computer Orga-
nization and Architecture, 5th ed. (Jones & Bartlett
Learning, Burlington, 2018).

[168] R. Duncan, A survey of parallel computer architec-
tures, Computer 23, 5 (1990).

[169] J. Sun and E. Modiano, Routing strategies for max-
imizing throughput in leo satellite networks, JSAC
22, 273 (2004).

[170] M. E. J. Newman, Random graphs as models of net-
works, in Handbook of Graphs and Networks (John
Wiley & Sons, Ltd, 2002) Chap. 2, pp. 35-68.

[171] D. J. Watts, Small Worlds - The Dynamics of Net-
works between Order and Randomness (Princeton
University Press, Princeton, NJ, 1999).

[172] D. H. Zanette, Critical behavior of propagation
on small-world networks, Phys. Rev. E 64, 050901
(2001).

[173] D. H. Zanette, Dynamics of rumor propagation on
small-world networks, Phys. Rev. E 65, 041908
(2002).

[174] K. A. Seaton and L. M. Hackett, Stations, trains and

small-world networks, Phys. A: Stat. Mech. Appl.

339, 635 (2004).

F. C. Santos, J. F. Rodrigues, and J. M. Pacheco,

Epidemic spreading and cooperation dynamics on

homogeneous small-world networks, Phys. Rev. E

72, 056128 (2005).

S. Bialonski, M. Horstmann, and K. Lehnertz, From

brain to earth and climate systems: Small-world in-

teraction networks or not?, Chaos 20, 013134 (2010).

D. Papo, M. Zanin, J. H. Martinez, and J. M. Buldu,

Beware of the small-world neuroscientist!, Front.

Hum. Neurosci. 10, 96 (2016).

[159]

[160]

[175]

[176]

[177]

67

[178] Z. Burda and A. Krzywicki, Uncorrelated random
networks, Phys. Rev. E 67, 046118 (2003).

[179] S. Milgram, The small world problem, Psychol. To-
day 1, 61 (1967).

[180] J. Guare, Six degrees of separation, in The Contem-
porary Monologue: Men (2016) pp. 89-93.

[181] I. Samoylenko, D. Aleja, E. Primo, K. Alfaro-
Bittner, E. Vasilyeva, K. Kovalenko, D. Musatov,
A. M. Raigorodskii, R. Criado, M. Romance,
D. Papo, M. Perc, B. Barzel, and S. Boccaletti, Why
are there six degrees of separation in a social net-
work?, Phys. Rev. X 13, 021032 (2023).

[182] M. Faloutsos, P. Faloutsos, and C. Faloutsos, On
power-law relationships of the internet topology,
Comput. Commun. Rev. 29, 251 (1999).

[183] R. Albert, H. Jeong, and A.-L. Barabasi, Diameter
of the world-wide web, Nat. 401, 130 (1999).

[184] A. Broder, R. Kumar, F. Maghoul, P. Ragha-
van, S. Rajagopalan, R. Stata, A. Tomkins, and
J. Wiener, Graph structure in the web, Comput.
Netw. 33, 309 (2000).

[185] D. S. Callaway, M. E. Newman, S. H. Strogatz, and
D. J. Watts, Network robustness and fragility: Perco-
lation on random graphs, Phys. Rev. Lett. 85, 5468
(2000).

[186] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin,
Breakdown of the internet under intentional attack,
Phys. Rev Lett. 86, 3682 (2001).

[187] R. Pastor-Satorras and A. Vespignani, Epidemic
spreading in scale-free networks, Phys. Rev. Lett. 86,
3200 (2001).

[188] R. Pastor-Satorras, A. Vazquez, and A. Vespignani,
Dynamical and correlation properties of the internet,
Phys. Rev. Lett. 87, 258701 (2001).

[189] R. M. May and A. L. Lloyd, Infection dynamics on
scale-free networks, Phys. Rev. E 64, 066112 (2001).

[190] Y. Moreno, R. Pastor-Satorras, and A. Vespignani,
Epidemic outbreaks in complex heterogeneous net-
works, Eur. Phys. J. B 26, 521 (2002).

[191] J. Hlinka, D. Hartman, and M. Palus, Small-world
topology of functional connectivity in randomly con-
nected dynamical systems, Chaos 22, 033107 (2012).

[192] T. Schreiber and A. Schmitz, Surrogate time series,
Physica D 142, 346 (2000).

[193] S. Bialonski, M. Wendler, and K. Lehnertz, Unravel-
ing spurious properties of interaction networks with
tailored random networks, PLOS ONE 6, 22826
(2011).

[194] G. Ansmann and K. Lehnertz, Constrained ran-

domization of weighted networks, Phys. Rev. E 84,

026103 (2011).

K. Stahn and K. Lehnertz, Surrogate-assisted iden-

tification of influences of network construction on

evolving weighted functional networks, Chaos 27,

123106 (2017).

H. Kantz and T. Schreiber, Nonlinear Time Se-

ries Analysis, 2nd ed. (Cambridge University Press,

Cambridge, UK, 2003).

E. Pereda, R. Quian Quiroga, and J. Bhattacharya,

Nonlinear multivariate analysis of neurophysiological

signals, Prog. Neurobiol. 77, 1 (2005).

[195]

[196]

[197]


https://doi.org/10.1016/0378-8733(88)90014-7
https://doi.org/10.1016/0378-8733(89)90016-6
https://doi.org/10.1063/1.4729185
https://doi.org/10.1063/1.3360561
https://doi.org/10.3389/fnhum.2016.00096
https://doi.org/10.3389/fnhum.2016.00096
https://doi.org/10.1103/PhysRevX.13.021032
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.87.258701
https://doi.org/10.1063/1.4732541
https://doi.org/10.1016/S0167-2789(00)00043-9
https://doi.org/10.1371/journal.pone.0022826
https://doi.org/10.1371/journal.pone.0022826
https://doi.org/10.1103/PhysRevE.84.026103
https://doi.org/10.1103/PhysRevE.84.026103
https://doi.org/10.1017/CBO9780511755798
https://doi.org/10.1017/CBO9780511755798
https://doi.org/10.1016/j.pneurobio.2005.10.003

[198] K. Hlavackova-Schindler, M. Palus, M. Vejmelka,
and J. Bhattacharya, Causality detection based on
information-theoretic approaches in time series anal-
ysis, Phys. Rep. 441, 1 (2007).

N. Marwan, M. C. Romano, M. Thiel, and J. Kurths,

Recurrence plots for the analysis of complex systems,

Phys. Rep. 438, 237 (2007).

K. Lehnertz, S. Bialonski, M.-T. Horstmann,

D. Krug, A. Rothkegel, M. Staniek, and T. Wag-

ner, Synchronization phenomena in human epileptic

brain networks, J. Neurosci. Methods 183, 42 (2009).

R. Friedrich, J. Peinke, M. Sahimi, and M. R. R.

Tabar, Approaching complexity by stochastic meth-

ods: From biological systems to turbulence, Phys.

Rep. 506, 87 (2011).

K. Lehnertz, Assessing directed interactions from

neurophysiological signals — an overview, Physiol.

Meas. 32, 1715 (2011).

T. Kreuz, F. Mormann, R. G. Andrzejak,

A. Kraskov, K. Lehnertz, and P. Grassberger,

Measuring synchronization in coupled model

systems: a comparison of different approaches,

Physica D 225, 29 (2007).

A. K. Seth, A. B. Barrett, and L. Barnett, Granger

causality analysis in neuroscience and neuroimaging,

J. Neurosci. 35, 3293 (2015).

[205] T. Schreiber, Measuring information transfer, Phys.
Rev. Lett. 85, 461 (2000).

[206] M. Staniek and K. Lehnertz, Symbolic transfer en-
tropy, Phys. Rev. Lett. 100, 158101 (2008).

[207] L. A. Baccala and K. Sameshima, Partial directed
coherence: a new concept in neural structure deter-
mination, Biol. Cybern. 84, 463 (2001).

[208] B. Schelter, M. Winterhalder, R. Dahlhaus,
J. Kurths, and J. Timmer, Partial phase synchro-
nization for multivariate synchronizing systems,
Phys. Rev. Lett. 96, 208103 (2006).

[209] M. G. Rosenblum and A. S. Pikovsky, Detecting di-
rection of coupling in interacting oscillators, Phys.
Rev. E 64, 045202(R) (2001).

[210] D. A. Smirnov, Quantification of causal couplings

via dynamical effects: A unifying perspective, Phys.

Rev. E 90, 062921 (2014).

K. Lehnertz and H. Dickten, Assessing directionality

and strength of coupling through symbolic analysis:

an application to epilepsy patients, Phil. Trans. R.

Soc. A 373, 20140094 (2015).

T. Stankovski, A. Duggento, P. V. E. McClintock,

and A. Stefanovska, Inference of time-evolving cou-

pled dynamical systems in the presence of noise,

Phys. Rev. Lett. 109, 024101 (2012).

I. T. Tokuda, Z. Levnajic, and K. Ishimura, A practi-

cal method for estimating coupling functions in com-

plex dynamical systems, Phil. Trans. R. Soc. A 377,

20190015 (2019).

F. Malizia, A. Corso, L. V. Gambuzza, G. Russo,

V. Latora, and M. Frasca, Reconstructing higher-

order interactions in coupled dynamical systems,

Nat. Commun. 15, 5184 (2024).

A. Zalesky, A. Fornito, I. H. Harding, L. Cocchi,

M. Yiicel, C. Pantelis, and E. T. Bullmore, Whole-

[199]

[200]

[201]

[202]

[203]

[204]

[211]

[212]

[213]

[214]

[215]

68

brain anatomical networks: Does the choice of nodes

matter?, Neurolmage 50, 970 (2010).

F. Gerhard, G. Pipa, B. Lima, S. Neuenschwander,

and W. Gerstner, Extraction of network topology

from multi-electrode recordings: Is there a small-

world effect?, Front. Comput. Neurosci. 5, 4 (2011).

S. Porz, M. Kiel, and K. Lehnertz, Can spurious in-

dications for phase synchronization due to superim-

posed signals be avoided?, Chaos 24, 033112 (2014).

F. Mormann, K. Lehnertz, P. David, and C. E. El-

ger, Mean phase coherence as a measure for phase

synchronization and its application to the EEG of

epilepsy patients, Physica D 144, 358 (2000).

B. Boashash, Time frequency signal analysis: meth-

ods and applications (Longman Cheshire, Mel-

bourne, 1992).

[220] L. Sheppard, A. Stefanovska, and P. McClintock,
Testing for time-localized coherence in bivariate
data, Phys. Rev. E 85, 046205 (2012).

[221] D. Maraun and J. Kurths, Epochs of phase coher-

ence between el nino/southern oscillation and indian

monsoon, Geophys. Res. Lett. 32 (2005).

I. Mokhov and D. Smirnov, El nino—southern oscilla-

tion drives north atlantic oscillation as revealed with

nonlinear techniques from climatic indices, Geophys.

Res. Lett. 33 (2006).

J. B, J. Moore, A. Grinsted, and S. Jevrejeva, Evi-

dence from wavelet lag coherence for negligible solar

forcing of climate at multi-year and decadal periods,

in Nonlinear Dyn. Geosci. (2007) pp. 457-464.

A. Bandrivskyy, A. Bernjak, P. McClintock, and

A. Stefanovska, Wavelet phase coherence analysis:

application to skin temperature and blood flow, Car-

diovas. Eng. 4, 89 (2004).

A. Bandrivskyy, D. G. Luchinsky, P. V. E. McClin-

tock, V. N. Smelyanskiy, and A. Stefanovska, Infer-

ence of systems with delay and applications to car-

diovascular dynamics, Stochastics and Dynamics 05,

321 (2005).

L. Sheppard, A. Stefanovska, and P. McClintock,

Detecting the harmonics of oscillations with time-

variable frequencies, Phys. Rev. E 83, 016206 (2011).

H. Osterhage, F. Mormann, M. Staniek, and

K. Lehnertz, Measuring synchronization in the

epileptic brain: A comparison of different ap-

proaches, Int. J. Bifurcation Chaos Appl. Sci. Eng.

17, 3539 (2007).

I. Belykh, M. di Bernardo, J. Kurths, and M. Por-

firi, Evolving dynamical networks, Physica D 267, 1

(2014).

[229] E. Valdano, M. R. Fiorentin, C. Poletto, and V. Col-
izza, Epidemic threshold in continuous-time evolving
networks, Phys. Rev. Lett. 120, 068302 (2018).

[230] E. A. Leicht, G. Clarkson, K. Shedden, and M. E.
Newman, Large-scale structure of time evolving ci-
tation networks, Eur. Phys. J. B 59, 75 (2007).

[231] M. Wiedermann, J. F. Donges, J. Kurths, and R. V.
Donner, Spatial network surrogates for disentangling
complex system structure from spatial embedding of
nodes, Phys. Rev. E 93, 042308 (2016).

[232] S. Gupta, N. Boers, F. Pappenberger, and J. Kurths,

[216]

[217]

[218]

[219]

[222]

[223]

[224]

[225]

[226]

[227]

[228]


https://doi.org/10.1016/j.physrep.2006.12.004
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.jneumeth.2009.05.015
https://doi.org/10.1016/j.physrep.2011.05.003
https://doi.org/10.1016/j.physrep.2011.05.003
https://doi.org/10.1088/0967-3334/32/11/R01
https://doi.org/10.1088/0967-3334/32/11/R01
https://doi.org/10.1016/j.physd.2006.09.039
https://doi.org/10.1103/PhysRevLett.96.208103
https://doi.org/10.1103/PhysRevE.90.062921
https://doi.org/10.1103/PhysRevE.90.062921
https://doi.org/10.1098/rsta.2014.0094
https://doi.org/10.1098/rsta.2014.0094
https://doi.org/10.1103/PhysRevLett.109.024101
https://doi.org/10.1016/j.neuroimage.2009.12.027
https://doi.org/10.3389/fncom.2011.00004
https://doi.org/10.1063/1.4890568
https://doi.org/10.1016/S0167-2789(00)00087-7
https://doi.org/10.1142/S0219493705001432
https://doi.org/10.1142/S0219493705001432
https://doi.org/http://dx.doi.org/10.1016/j.physd.2013.10.008
https://doi.org/http://dx.doi.org/10.1016/j.physd.2013.10.008
https://doi.org/10.1103/PhysRevE.93.042308

Complex network approach for detecting tropical cy-

clones, Clim. Dyn. 57, 3355 (2021).

H. Kantz and T. Schreiber, Nonlinear Time Series

Analysis (Cambridge Univ. Press, Cambridge, UK,

1997).

K. Lehnertz, F. Mormann, H. Osterhage, A. Miiller,

A. Chernihovskyi, M. Staniek, J. Prusseit, D. Krug,

S. Bialonski, and C. E. Elger, State-of-the-art of

seizure prediction, J. Clin. Neurophysiol. 24, 147

(2007).

F. Emmert-Streib, M. Dehmer, and Y. Shi, Fifty

years of graph matching, network alignment and net-

work comparison, Inf. Sci. 346, 180 (2016).

[236] C. Donnat and S. Holmes, Tracking network dynam-
ics: A survey using graph distances, Ann. Appl. Stat.
12, 971 (2018).

[237] H. Bunke and K. Shearer, A graph distance metric
based on the maximal common subgraph, Pattern
Recognit. Lett. 19, 255 (1998).

[238] H. Zhou, Distance, dissimilarity index, and net-
work community structure, Phys. Rev E 67, 061901
(2003).

[239] B. C. M. van Wijk, C. J. Stam, and A. Daffertshofer,

Comparing brain networks of different size and con-

nectivity density using graph theory, PLOS ONE 5,

€13701 (2010).

M. De Domenico, S. Sasai, and A. Arenas, Mapping

multiplex hubs in human functional brain networks,

Front. Neurosci. 10, 326 (2016).

National Research Council et al., Assessing the reli-

ability of complex models: mathematical and statis-

tical foundations of verification, validation, and un-
certainty quantification (National Academies Press,

Washington, DC, 2012).

D. Prichard and J. Theiler, Generating surrogate

data for time series with several simultaneously mea-

sured variables, Phys. Rev. Lett. 73, 951 (1994).

[243] T. Schreiber, Constrained randomization of time se-
ries data, Phys. Rev. Lett. 80, 2105 (1998).

[244] D. Kugiumtzis, Test your surrogate data before you
test for nonlinearity, Phys. Rev. E 60, 2808 (1999).

[245] K. T. Dolan and A. Neiman, Surrogate analysis of
coherent multichannel data, Phys. Rev. E 65, 026108
(2002).

[246] R. G. Andrzejak, A. Kraskov, H. Stogbauer, F. Mor-
mann, and T. Kreuz, Bivariate surrogate techniques:
Necessity, strengths, and caveats, Phys. Rev. E 68,
066202 (2003).

[247] R. G. Andrzejak, D. Chicharro, K. Lehnertz, and
F. Mormann, Using bivariate signal analysis to char-
acterize the epileptic focus: The benefit of surro-
gates, Phys. Rev. E 83, 046203 (2011).

[248] B. Efron, Large-scale simultaneous hypothesis test-
ing: The choice of a null hypothesis, JASA 99, 465
(2004).

[249] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian,
and J. D. Farmer, Testing for nonlinearity in time
series: The method of surrogate data, Physica D 58,
77 (1992).

[250] M. Small, D. Yu, and R. G. Harrison, Surrogate test
for pseudoperiodic time series data, Phys. Rev. Lett.

[233]

[234]

[235]

[240]

[241]

[242]

69

87, 188101 (2001).

[251] M. Small and C. Tse, Applying the method of surro-
gate data to cyclic time series, Physica D 164, 187
(2002).

[252] G. Lancaster, D. Iatsenko, A. Pidde, V. Ticcinelli,
and A. Stefanovska, Surrogate data for hypothesis
testing of physical systems, Phys. Rep. 748, 1 (2018).

[253] G. Ansmann and K. Lehnertz, Surrogate-assisted
analysis of weighted functional brain networks,
J. Neurosci. Methods 208, 165 (2012).

[254] C. Presigny, P. Holme, and A. Barrat, Building sur-
rogate temporal network data from observed back-
bones, Phys. Rev. E 103, 052304 (2021).

[255] H. Abdi et al., Bonferroni and 8idak corrections for
multiple comparisons, Encyclopedia of measurement
and statistics 3, 103 (2007).

[256] E. Hobsbawm, The Age of Extremes: 1914-1991
(Abacus, London, 1994).

[257] A. Bunde, J. Kropp, and H.-J. Schellnhuber, eds.,
The Science of Disaster (Springer, Berlin, Heidel-
berg, 2002).

[258] D. Sornette, Critical Phenomena in Natural Sciences
(Springer, Berlin, Heidelberg, 2003).

[259] M. Ghil, P. Yiou, S. Hallegatte, B. D. Malamud,

P. Naveau, A. Soloviev, P. Friederichs, V. Keilis-

Borok, D. Kondrashov, V. Kossobokov, O. Mestre,

C. Nicolis, H. W. Rust, P. Shebalin, M. Vrac,

A. Witt, and 1. Zaliapin, Extreme events: dynamics,

statistics and prediction, Nonlinear Proc. Geophys.

18, 295 (2011).

L. E. McPhillips, H. Chang, M. V. Chester, Y. De-

pietri, E. Friedman, N. B. Grimm, J. S. Komi-

noski, T. McPhearson, P. Méndez-Lézaro, E. J. Rosi,
and J. S. Shiva, Defining extreme events: A cross-

disciplinary review, Earth’s Future 6, 441 (2018).

M. Farazmand and T. P. Sapsis, Extreme events:

Mechanisms and prediction, Appl. Mech. Rev. 71,

050801 (2019).

[262] A. Gheibi, H. Safari, and M. Javaherian, The so-
lar flare complex network, Astrophys. J. 847, 115
(2017).

[263] A. Najafi, A. H. Darooneh, A. Gheibi, and

N. Farhang, Solar flare modified complex network,

Astrophys. J. 894, 66 (2020).

N. Boers, B. Bookhagen, N. Marwan, J. Kurths, and

J. Marengo, Complex networks identify spatial pat-

terns of extreme rainfall events of the South Ameri-

can Monsoon System, Geophys. Res. Lett. 40, 4386

(2013).

S. Scarsoglio, F. Laio, and L. Ridolfi, Climate dy-

namics: a network-based approach for the analysis of

global precipitation, PLOS ONE 8, 71129 (2013).

N. Boers, B. Bookhagen, H. M. J. Barbosa, N. Mar-

wan, J. Kurths, and J. A. Marengo, Prediction of

extreme floods in the eastern Central Andes based

on a complex networks approach, Nat. Commun. 5,

5199 (2014).

J. Ludescher, A. Gozolchiani, M. I. Bogachev,

A. Bunde, S. Havlin, and H. J. Schellnhuber, Very

early warning of next El Nifio, Proc. Natl. Acad. Sci.

U.S.A. 111, 2064 (2014).

[260]

[261]

[264]

265

[266]

[267]


https://doi.org/10.1097/WNP.0b013e3180336f16
https://doi.org/10.1097/WNP.0b013e3180336f16
https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1103/PhysRevE.83.046203
https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1103/PhysRevLett.87.188101
https://doi.org/10.1103/PhysRevLett.87.188101
https://doi.org/10.1016/j.jneumeth.2012.05.008
https://doi.org/10.1007/978-3-642-56257-0
https://doi.org/10.1007/978-3-662-04174-1
https://doi.org/10.5194/npg-18-295-2011
https://doi.org/10.5194/npg-18-295-2011
https://doi.org/10.1115/1.4042065
https://doi.org/10.1115/1.4042065
https://doi.org/10.1038/ncomms6199
https://doi.org/10.1038/ncomms6199
https://doi.org/10.1073/pnas.1323058111
https://doi.org/10.1073/pnas.1323058111

[268] M. Weimer, S. Mieruch, G. Schéidler, and
C. Kottmeier, Predicting climate extremes-a
complex network approach, Nonlin. Proc. Geophys.
Discuss. 2, 1481 (2015).
M. P. Hoerling, A. Kumar, and M. Zhong, El nifo,
la nina, and the nonlinearity of their teleconnections,
J. Climate 10, 1769 (1997).
[270] W. Cai, S. Borlace, M. Lengaigne, P. Van Rensch,
M. Collins, G. Vecchi, A. Timmermann, A. Santoso,
M. J. McPhaden, L. Wu, et al., Increasing frequency
of extreme el nino events due to greenhouse warming,
Nat. Clim. Change 4, 111 (2014).
[271] W. Cai, G. Wang, A. Santoso, M. J. McPhaden,
L. Wu, F.-F. Jin, A. Timmermann, M. Collins,
G. Vecchi, M. Lengaigne, et al., Increased frequency
of extreme la nifia events under greenhouse warming,
Nat. Clim. Change 5, 132 (2015).
[272] W. Cai, A. Santoso, M. Collins, B. Dewitte,
C. Karamperidou, J.-S. Kug, M. Lengaigne, M. J.
McPhaden, M. F. Stuecker, A. S. Taschetto, et al.,
Changing el nifio—southern oscillation in a warming
climate, Nat. Rev. Earth Environ. 2, 628 (2021).
A. Pleskachevsky, S. Lehner, and W. Rosenthal,
Storm observations by remote sensing and influences
of gustiness on ocean waves and on generation of
rogue waves, Ocean Dynam. 62, 1335 (2012).
C. Kharif and E. Pelinovsky, Physical mechanisms of
the rogue wave phenomenon, Eur. J. Mech. B-Fluid
22, 603 (2003).
[275] D. Solli, C. Ropers, P. Koonath, and B. Jalali, Op-
tical rogue waves, Nature 450, 1054 (2007).
[276] D. M. Anderson, A. D. Cembella, and G. M. Hal-
legraeff, Progress in understanding harmful algal
blooms: Paradigm shifts and new technologies for
research, monitoring, and management, Annu. Rev.
Mar. Sci. 4, 143 (2012).
R. Kinney, P. Crucitti, R. Albert, and V. Latora,
Modeling cascading failures in the North American
power grid, Eur. Phys. J. B 46, 101 (2005).
1. Dobson, B. A. Carreras, V. E. Lynch, and D. E.
Newman, Complex systems analysis of series of
blackouts: Cascading failure, critical points, and self-
organization, Chaos 17, 026103 (2007).
J. A. Feigenbaum, A statistical analysis of log-
periodic precursors to financial crashes, Quantitative
Finance 1, 346 (2001).
[280] A. Constantin, T. A. Peltonen, and P. Sarlin, Net-
work linkages to predict bank distress, J. Financial
Stab. 35, 226 (2018).
1. Bosma, J. C. Reijneveld, M. Klein, L. Douw, B. W.
van Dijk, J. J. Heimans, and C. J. Stam, Disturbed
functional brain networks and neurocognitive func-
tion in low-grade glioma patients: a graph theoretical
analysis of resting-state MEG, Nonlinear Biomed.
Phys. 3, 9 (2009).
M. Faggini, B. Bruno, and A. Parziale, Crises in eco-
nomic complex networks: Black Swans or Dragon
Kings?, BE J. Econ. Anal. Poli. 62, 105 (2019).
D. Helbing, H. Ammoser, and C. Kiihnert, Disas-
ters as extreme events and the importance of net-
work interactions for disaster response management

[269]

[273]

[274]

[277]

[278]

[279]

[281]

[282]

[283]

70

(Springer) pp. 319-348.

[284] S. Iravanian and J. J. Langberg, Critical phase tran-
sitions during ablation of atrial fibrillation, Chaos 27
(2017).

[285] M. Scheffer, Critical transitions in nature and soci-
ety, Vol. 16 (Princeton University Press, Princeton,
New Jersey, 2020).

[286] D. Pietrobon and J. Striessnig, Neurobiology of mi-
graine, Nat. Rev. Neurosci. 4, 386 (2003).

[287] K. Lehnertz, Epilepsy: Extreme events in the hu-

man brain, in Extreme events in nature and society,

edited by S. Albeverio, V. Jentsch, and H. Kantz

(Springer Science & Business Media, Berlin, Heidel-

berg, New York, 2006) pp. 123-143.

K. Lehnertz, Time-series-analysis-based detection of

critical transitions in real-world non-autonomous

systems, Chaos 34, 10.1063/5.0214733 (2024).

S. Havlin, D. Y. Kenett, E. Ben-Jacob, A. Bunde,

R. Cohen, H. Hermann, J. Kantelhardt, J. Kertész,

S. Kirkpatrick, J. Kurths, J. Portugali, and

S. Solomon, Challenges in network science: Applica-

tions to infrastructures, climate, social systems and

economics, Eur. Phys. J.-Spec. Top. 214, 273 (2012).

W. W. Zachary, An information flow model for con-

flict and fission in small groups, J. Anthropol. Res.

33, 452 (1977).

R. Selten, M. Schreckenberg, T. Chmura, T. Pitz,

S. Kube, S. F. Hafstein, R. Chrobok, A. Pottmeier,

and J. Wahle, Experimental investigation of day-

to-day route-choice behaviour and network simula-
tions of autobahn traffic in North Rhine-Westphalia,
in Human behaviour and traffic networks (Springer,

2004) pp. 1-21.

B. van der Pol and J. van der Mark, The heartbeat

considered as a relaxation oscillation, and an electri-

cal model of the heart, Phil. Mag. 7 6, 763 (1928).

[293] K. Bonhoeffer, Activation of passive iron as a model
for the excitation of nerve, J. Gen. Physiol. 32, 69
(1948).

[294] J.-I. S. Nagumo, S. Arimoto, and S. Yoshizawa, An
active pulse transmission line simulating nerve axon,
Proc. IRE 50, 2061 (1962).

[295] R. FitzHugh, Impulses and physiological states in
theoretical models of nerve membrane, Biophys. J.
1, 445 (1961).

[288]

[289]

[290]

[291]

[292]

[296] C. Rocsoreanu, A. Georgescu, and N. Giurgiteanu,
The FitzHugh—Nagumo Model: Bifurcation and Dy-
namics (Kluwer Academic Publishers, Dordrecht,
2000).

[297] C. Koch, Biophysics of Computation: Information
Processing in Single Neurons, edited by M. Stryker,
Computational Neuroscience (Oxford University
Press, New York, 1999).

[298] L. Glass, P. Hunter, and A. McCulloch, eds., Theory

of Heart (Springer, New York, 1991).

[299] W.-J. Rappel, The physics of heart rhythm disor-
ders, Phys. Rep. 978, 1 (2022).

[300] A. Piunovskiy and B. Vasiev, Modelling ethnogene-
sis, BioSystems 219, 104731 (2022).

[301] B. Linares-Barranco,  E. Sanchez-Sinencio,

A. Rodriguez-Vazquez, and J. L. Huertas, A


https://doi.org/10.1007/s10236-012-0567-z
https://doi.org/10.1016/j.euromechflu.2003.09.002
https://doi.org/10.1016/j.euromechflu.2003.09.002
https://doi.org/10.1038/nature06402
https://doi.org/10.1146/annurev-marine-120308-081121
https://doi.org/10.1146/annurev-marine-120308-081121
https://doi.org/10.1140/epjb/e2005-00237-9
https://doi.org/10.1063/1.2737822
https://doi.org/10.1088/1469-7688/1/3/306
https://doi.org/10.1088/1469-7688/1/3/306
https://doi.org/10.1186/1753-4631-3-9
https://doi.org/10.1186/1753-4631-3-9
https://doi.org/10.1515/9781400833276
https://doi.org/10.1515/9781400833276
https://doi.org/10.1038/nrn1102
https://doi.org/10.1007/3-540-28611-X_6
https://doi.org/10.1063/5.0214733
https://doi.org/10.1140/epjst/e2012-01695-x
https://doi.org/10.1080/14786441108564652
https://doi.org/10.1085/jgp.32.1.69
https://doi.org/10.1085/jgp.32.1.69
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1007/978-94-015-9548-3
https://doi.org/10.1007/978-94-015-9548-3
https://doi.org/10.1007/978-1-4612-3118-9
https://doi.org/10.1007/978-1-4612-3118-9

cmos implementation of fitzhugh-nagumo neuron
model, IEEE J. Solid-State Circuits 26, 956 (1991).

[302] J. Bisquert and A. Guerrero, Chemical inductor, J.
Am. Chem. Soc. 144, 5996 (2022).

[303] A. T. Winfree, Varieties of spiral wave behavior: An
experimentalist’s approach to the theory of excitable
media, Chaos 1, 303 (1991).

[304] P. Jung, J. Wang, R. Wackerbauer, and K. Showal-
ter, Coherent structure analysis of spatiotemporal
chaos, Phys Rev E 61, 2095 (2000).

[305] M. Perc, Spatial decoherence induced by small-world
connectivity in excitable media, New J. Phys. 7, 252
(2005).

[306] D. Hennig and L. Schimansky-Geier, Synchroniza-

tion and firing death in the dynamics of two interact-

ing excitable units with heterogeneous signals, Phys.

Rev. E 76, 026208 (2007).

M. Ciszak, S. Euzzor, F. T. Arecchi, and R. Meucci,

Experimental study of firing death in a network of

chaotic FitzHugh—Nagumo neurons, Phys. Rev. E

87, 022919 (2013).

P. Jung, A. Cornell-Bell, K. S. Madden, and F. Moss,

Noise-induced spiral waves in astrocyte syncytia

show evidence of self-organized criticality, J. Neu-

rophysiol. 97, 1098 (1998).

R. Toral, C. Mirasso, and J. Gunton, System size

coherence resonance in coupled FitzHugh—Nagumo

models, Europhys. Lett. 61, 162 (2003).

M. A. Zaks, X. Sailer, L. Schimansky-Geier, and

A. B. Neiman, Noise induced complexity: from sub-

threshold oscillations to spiking in coupled excitable

systems, Chaos 15, 026117 (2005).

E. V. Pankratova, A. V. Polovinkin, and B. Spag-

nolo, Suppression of noise in fitzhugh-nagumo model

driven by a strong periodic signal, Phys. Lett. A 344,

43 (2005).

D. Valenti, G. Augello, and B. Spagnolo, Dynamics

of a fitzhugh-nagumo system subjected to autocor-

related noise, Eur. Phys. J. B 65, 443 (2008).

[313] S. Patidar, A. Pototsky, and N. Janson, Controlling

noise-induced behavior of excitable networks, New J.

Phys. 11, 073001 (2009).

S. Zambrano, I. P. Marino, J. M. Seoane, M. A. F.

Sanjuan, S. Euzzor, A. Geltrude, R. Meucci, and

F. T. Arecchi, Synchronization of uncoupled ex-

citable systems induced by white and coloured noise,

New J. Phys. 12, 053040 (2010).

J. H. E. Cartwright, Emergent global oscillations in

heterogeneous excitable media: The example of pan-

creatic f cells, Phys. Rev. E 62, 1149 (2000).

1. Vragovié, E. Louis, C. Degli Esposti Boschi, and

G. Ortega, Diversity-induced synchronized oscilla-

tions in close-to-threshold excitable elements ar-

ranged on regular networks: Effects of network topol-

ogy, Physica D 219, 111 (2006).

Y. Shinohara, T. Kanamaru, H. Suzuki, T. Horita,

and K. Aihara, Array-enhanced coherence resonance

and forced dynamics in coupled fitzhugh-nagumo

neurons with noise, Phys. Rev. E 65, 051906 (2002).

D. Hennig and L. Schimansky-Geier, Implications of

heterogeneous inputs and connectivity on the syn-

[307]

[308]

[309]

[310]

[311]

[312]

[314]

[315]

[316]

[317]

[318]

71

chronization in excitable networks, Physica A 387,

967 (2008).

I. Omelchenko, A. Provata, J. Hizanidis, E. Scholl,

and P. Hovel, Robustness of chimera states for cou-

pled FitzZHugh-Nagumo oscillators, Phys. Rev. E 91,

022917 (2015).

S. A. Plotnikov and A. L. Fradkov, On synchroniza-

tion in heterogeneous FitzHugh—Nagumo networks,

Chaos Solit. Fractals 121, 85 (2019).

[321] G. Ansmann, Efficiently and easily integrating dif-

ferential equations with JITCODE, JiITCDDE, and

JiITCSDE, Chaos 28, 043116 (2018).

G. Ansmann, R. Karnatak, K. Lehnertz, and

U. Feudel, Extreme events in excitable systems and

mechanisms of their generation, Phys. Rev. E 88,

052911 (2013).

M. Gerster, R. Berner, J. Sawicki, A. Zakharova,

A. Skoch, J. Hlinka, K. Lehnertz, and E. Scholl,

FitzHugh—-Nagumo oscillators on complex networks

mimic epileptic-seizure-related synchronization phe-

nomena, Chaos 30, 123130 (2020).

F. A. C. Azevedo, L. R. B. Carvalho, L. T. Grin-

berg, J. M. Farfel, R. E. Ferretti, R. E. P. Leite, W. J.

Filho, R. Lent, and S. Herculano-Houzel, Equal num-

bers of neuronal and nonneuronal cells make the hu-

man brain an isometrically scaled-up primate brain,

J. Comp. Neurol. 513, 532 (2009).

P. L. Nunez and R. Srinivasan, Flectric Fields of the

Brain: The Neurophysics of EEG, 2nd ed. (Oxford

University Press, Oxford, UK, 2006).

E. L. Bennett, M. C. Diamond, D. Krech, and M. R.

Rosenzweig, Chemical and anatomical plasticity of

brain: Changes in brain through experience, de-

manded by learning theories, are found in experi-

ments with rats., Science 146, 610 (1964).

G. J. Siegel, R. W. Albers, R. Katzman, and B. Agra-

noff, Basic neurochemistry (Little, Brown Boston,

USA, 1981).

[328] B. Hutcheon and Y. Yarom, Resonance, oscillation
and the intrinsic frequency preferences of neurons,
Trends Neurosci. 23, 216 (2000).

[329] E. Salinas and T. J. Sejnowski, Correlated neuronal
activity and the flow of neural information, Nat. Rev.
Neurosci. 2, 539 (2001).

[330] S. Makeig, S. Debener, J. Onton, and A. Delorme,
Mining event-related brain dynamics, Trends Cogn.
Sci. 8, 204 (2004).

[331] S. L. Bressler and V. Menon, Large-scale brain net-
works in cognition: emerging methods and principles,
Trends Cogn. Sci. 14, 277 (2010).

[332] J. Fell and N. Axmacher, The role of phase synchro-
nization in memory processes, Nat. Rev. Neurosci.
12, 105 (2011).

[333] M. Siegel, T. H. Donner, and A. K. Engel, Spectral
fingerprints of large-scale neuronal interactions, Nat.
Rev. Neurosci. 13, 121 (2012).

[334] A. K. Engel, C. Gerloff, C. C. Hilgetag, and G. Nolte,
Intrinsic coupling modes: Multiscale interactions in
ongoing brain activity, Neuron 80, 867 (2013).

[335] P. J. Uhlhaas and W. Singer, Neural synchrony in
brain disorders: relevance for cognitive dysfunctions

[319]

[320]

[322]

[323]

[324]

[325]

[326]

[327]


https://doi.org/10.1063/1.165844
https://doi.org/10.1103/PhysRevE.61.2095
https://doi.org/10.1088/1367-2630/7/1/252
https://doi.org/10.1088/1367-2630/7/1/252
https://doi.org/10.1103/PhysRevE.76.026208
https://doi.org/10.1103/PhysRevE.76.026208
https://doi.org/10.1103/PhysRevE.87.022919
https://doi.org/10.1103/PhysRevE.87.022919
https://doi.org/10.1209/epl/i2003-00207-5
https://doi.org/10.1063/1.1886386
https://doi.org/10.1088/1367-2630/11/7/073001
https://doi.org/10.1088/1367-2630/11/7/073001
https://doi.org/10.1088/1367-2630/12/5/053040
https://doi.org/10.1103/PhysRevE.62.1149
https://doi.org/10.1016/j.physd.2006.05.017
https://doi.org/10.1016/j.physa.2007.10.028
https://doi.org/10.1016/j.physa.2007.10.028
https://doi.org/10.1103/PhysRevE.88.052911
https://doi.org/10.1103/PhysRevE.88.052911
https://doi.org/10.1093/acprof:oso/9780195050387.001.0001
https://doi.org/10.1093/acprof:oso/9780195050387.001.0001
https://doi.org/10.1038/nrn3137
https://doi.org/10.1038/nrn3137
https://doi.org/10.1016/j.neuron.2013.09.038

[336]

[337]

[338]

[339]

[340]

[341]

[342]

[343]

[344]

[345]

[346]

[347]

348

and pathophysiology, Neuron 52, 155 (2006).

R. S. Fisher, W. van Emde Boas, W. Blume, C. E.
Elger, P. Genton, P. Lee, and J. Engel Jr, Epilep-
tic seizures and epilepsy: definitions proposed by the
International League Against Epilepsy (ILAE) and
the International Bureau for Epilepsy (IBE), Epilep-
sia 46, 470 (2005).

B. Mesraoua, D. Deleu, A. H. Hassan, M. Gayane,
A. Lubna, M. A. Ali, T. Tomson, B. A. Khalil, J. H.
Cross, and A. A. Asadi-Pooya, Dramatic outcomes in
epilepsy: depression, suicide, injuries, and mortality,
Curr. Med. Res. Opin. 36, 1473 (2020).

A. Strzelczyk, J. P. Reese, R. Dodel, and H. M.
Hamer, Cost of epilepsy, Pharmacoeconomics 26,

463 (2008).
K. Allers, B. M. Essue, M. L. Hackett,
J. Muhunthan, C. S. Anderson, K. Pickles,

F. Scheibe, and S. Jan, The economic impact of
epilepsy: a systematic review, BMC Neurol. 15, 1
(2015).

C.-S. Kwon, A. Jacoby, A. Ali, J. Austin, G. L. Bir-
beck, P. Braga, J. H. Cross, H. de Boer, T. Dua,
P. T. Fernandes, et al., Systematic review of fre-
quency of felt and enacted stigma in epilepsy and de-
termining factors and attitudes toward persons living
with epilepsy—report from the international league
against epilepsy task force on stigma in epilepsy,
Epilepsia 63, 573 (2022).

K. Noe, Counseling and management of the risks of
living with epilepsy, CONTIN. Lifelong Learn. Neu-
rol. 25, 477 (2019).

G. A. Baker, A. Jacoby, D. Buck, C. Stalgis, and
D. Monnet, Quality of life of people with epilepsy: a
european study, Epilepsia 38, 353 (1997).

S. Chiang, R. Moss, A. D. Patel, and V. R. Rao,
Seizure detection devices and health-related quality
of life: a patient-and caregiver-centered evaluation,
Epilepsy Behav. 105, 106963 (2020).

J. Lang, S. Jeschke, B. Herziger, R. M. Miiller,
T. Bertsche, M. P. Neininger, and A. Bertsche, Prej-
udices against people with epilepsy as perceived by
affected people and their families, Epilepsy Behav.
127, 108535 (2022).

A. Strzeleczyk, A. Aledo-Serrano, A. Coppola,
A. Didelot, E. Bates, R. Sainz-Fuertes, and
C. Lawthom, The impact of epilepsy on quality of
life: Findings from a european survey, Epilepsy Be-
hav. 142, 109179 (2023).

World Health Organization, Epilepsy:
health imperative. (2019).

F. H. Lopes da Silva, EEG analysis: Theory and
practice, in FElectroencephalography, Basic Princi-
ples, Clinical Applications and Related Fields, edited
by E. Niedermayer and F. H. Lopes da Silva
(Williams & Wilkins, Baltimore, 1993) 3rd ed., p.
1097.

S. Weisdorf, J. Duun-Henriksen, M. J. Kjeldsen,
F. R. Poulsen, S. W. Gangstad, and T. W. Kjeer,
Ultra-long-term subcutaneous home monitoring of
epilepsy—490 days of EEG from nine patients,
Epilepsia 60, 2204 (2019).

a public

72

[349]

[350]

351]

[352]

[353]

[354]

[355]

[356]

[357]

[358]

[359]

[360]

[361]

[362]

[363]

P. F. Viana, J. Duun-Henriksen, M. Glasstéter,
M. Diimpelmann, E. S. Nurse, I. P. Martins, S. B.
Dumanis, A. Schulze-Bonhage, D. R. Freestone,
B. H. Brinkmann, et al., 230 days of ultra long-term
subcutaneous EEG: seizure cycle analysis and com-
parison to patient diary, Ann. Clin. Transl. Neurol.
8, 288 (2021).

S. Tong and N. V. Thankor, Quantitative EEG anal-
ysis methods and clinical applications (Artech House,
Norwood, 2009).

W. Freeman, Neurodynamics: an exploration in
mesoscopic brain dynamics (Springer Science &
Business Media, London, UK, 2012).

S. Sanei and J. A. Chambers, EEG signal processing
(John Wiley & Sons, Hoboken, 2013).

H. H. Jasper, Ten-twenty electrode system of the
international federation, Electroencephalogr. Clin.
Neurophysiol. 10, 371 (1958).

R. Oostenveld and P. Praamstra, The five percent
electrode system for high-resolution eeg and erp mea-
surements, Clin. Neurophysiol. 112, 713 (2001).

G. Fein, J. Raz, F. F. Brown, and E. L. Merrin,
Common reference coherence data are confounded by
power and phase effects, Electroencephalogr. Clin.
Neurophysiol. 69, 581 (1988).

P. L. Nunez, R. Srinivasan, A. F. Westdorp, R. S.
Wijesinghe, D. M. Tucker, R. B. Silberstein, and P. J.
Cadusch, EEG coherency I: statistics, reference elec-
trode, volume conduction, Laplacians, cortical imag-
ing, and interpretation at multiple scales, Electroen-
cephalogr. Clin. Neurophysiol. 103, 499 (1997).

D. Hagemann, E. Naumann, and J. F. Thayer, The
quest for the EEG reference revisited: A glance from
brain asymmetry research, Psychophysiol. 38, 847
(2001).

R. Guevara, J. L. P. Velazquez, V. Nenadovic,
R. Wennberg, G. Senjanovic, and L. G. Dominguez,
Phase synchronization measurements using elec-
troencephalographic recordings. What can we really
say about neuronal synchrony?, Neuroinformatics 3,
301 (2005).

S. J. Schiff, Dangerous phase, Neuroinformatics 3,
315 (2005).

D. Yao, L. Wang, R. Oostenveld, K. Dremstrup
Nielsen, L. Arendt-Nielsen, and A. C. N. Chen, A
comparative study of different references for EEG
spectral mapping: the issue of the neutral reference
and the use of the infinity reference, Physiol. Meas.
26, 173 (2005).

H. P. Zaveri, R. B. Duckrow, and S. S. Spencer, On
the use of bipolar montages for time-series analysis
of intracranial electroencephalograms, Clin. Neuro-
physiol. 117, 2102 (2006).

C. Geier and K. Lehnertz, Which brain regions are
mportant for seizure dynamics in epileptic networks?
Influence of link identification and EEG recording
montage on node centralities, Int. J. Neural Syst.
27, 1650033 (2017).

J. Parvizi and S. Kastner, Human intracranial eeg:
promises and limitations, Nat. Neurosci. 21, 474
(2018).


https://doi.org/10.1111/j.0013-9580.2005.66104.x
https://doi.org/10.1111/j.0013-9580.2005.66104.x
https://doi.org/10.1016/S0013-4694(97)00066-7
https://doi.org/10.1016/S0013-4694(97)00066-7
https://doi.org/10.1111/1469-8986.3850847
https://doi.org/10.1111/1469-8986.3850847
https://doi.org/10.1088/0967-3334/26/3/003
https://doi.org/10.1088/0967-3334/26/3/003
https://doi.org/10.1016/j.clinph.2006.05.032
https://doi.org/10.1016/j.clinph.2006.05.032

[364] T. Ball, M. Kern, I. Mutschler, A. Aertsen, and
A. Schulze-Bonhage, Signal quality of simultane-
ously recorded invasive and non-invasive eeg, Neu-
roimage 46, 708 (2009).

[365] F. Rosenow and H. Liiders, Presurgical evaluation of
epilepsy, Brain 124, 1683 (2001).

[366] J. P. Lachaux, D. Rudrauf, and P. Kahane, Intracra-

nial EEG and human brain mapping, J. Physiol.

Paris 97, 613 (2003).

J.-P. Lachaux, N. Axmacher, F. Mormann, E. Hal-

gren, and N. E. Crone, High-frequency neural activ-

ity and human cognition: Past, present and possible
future of intracranial EEG research, Prog. Neurobiol.

98, 279 (2012).

D. Zhou, A. Gozolchiani, Y. Ashkenazy, and

S. Havlin, Teleconnection paths via climate network

direct link detection, Phys. Rev. Lett. 115, 268501

(2015).

E. Delmas, M. Besson, M.-H. Brice, L. A. Burkle,

G. V. Dalla Riva, M.-J. Fortin, D. Gravel, P. R.

Guimaraes Jr, D. H. Hembry, E. A. Newman, J. M.

Olesen, M. M. Pires, J. D. Yeakel, and T. Poisot,

Analysing ecological networks of species interactions,

Biol. Rev. 94, 16 (2019).

J. P. Onnela, J. Saraméki, J. Hyvonen, G. Szabo,

D. Lazer, K. Kaski, J. Kertész, and A.-L. Barabasi,

Structure and tie strengths in mobile communication

networks, Proc. Natl. Acad. Sci. U.S.A. 104, 7332

(2007).

[371] G. Palla, A.-L. Barabasi, and T. Vicsek, Quantifying
social group evolution, Nature 446, 664 (2007).

[372] R. J. Allen and T. C. Elston, From physics to phar-
macology?, Rep. Prog. Phys. 74, 016601 (2011).

[373] S. Havlin, D. Y. Kenett, A. Bashan, J. Gao, and
H. E. Stanley, Vulnerability of network of networks,
Eur. Phys. J. ST 223, 2087 (2014).

[374] S. Bialonski, G. Ansmann, and H. Kantz, Data-
driven prediction and prevention of extreme events in
a spatially extended excitable system, Phys. Rev. E
92, 042910 (2015).

[375] Y.-Y. Liu and A.-L. Barabasi, Control principles
of complex systems, Rev. Mod. Phys. 88, 035006
(2016).

[376] A. J. Gates and L. M. Rocha, Control of complex
networks requires both structure and dynamics, Sci.
Rep. 6, 24456 (2016).

[377] K. Lehnertz, H. Dickten, S. Porz, C. Helmstaedter,
and C. E. Elger, Predictability of uncontrollable mul-
tifocal seizures — towards new treatment options, Sci.
Rep. 6, 24584 (2016).

[378] L. Lii, D. Chen, X.-L. Ren, Q.-M. Zhang, Y.-C.
Zhang, and T. Zho, Vital nodes identification in com-
plex networks, Phys. Rep. 650, 1 (2016).

[379] J. M. Anthonisse, The rush in a graph, Amsterdam:
Mathematische Centrum (1971).

[380] S. Fortunato, V. Latora, and M. Marchiori, Method
to find community structures based on information
centrality, Phys. Rev. E 70, 056104 (2004).

[381] J.-P. Onnela, J. Saraméki, J. Hyvonen, G. Szabo,
M. A. de Menezes, K. Kaski, A.-L. Barabasi, and
J. Kertesz, Analysis of a large-scale weighted net-

[367]

[368]

[369]

[370]

73

work of one-to-one human communication, New J.

Phys. 9, 179 (2007).

P. De Meo, E. Ferrara, G. Fiumara, and A. Riccia-

rdello, A novel measure of edge centrality in social

networks, Knowledge-based systems 30, 136 (2012).

[383] Y. Qian, Y. Li, M. Zhang, G. Ma, and F. Lu, Quan-
tifying edge significance on maintaining global con-
nectivity, Sci. Rep. 7, 45380 (2017).

[384] E.-Y. Yu, D.-B. Chen, and J.-Y. Zhao, Identifying
critical edges in complex networks, Sci. Rep. 8, 1
(2018).

[385] M. S. Granovetter, The strength of weak ties, Am.
J. Sociol. 78, 1360 (1973).

[386] T. W. Valente and K. Fujimoto, Bridging: locating
critical connectors in a network, Soc. Netw. 32, 212
(2010).

[387] X.-Q. Cheng, F.-X. Ren, H.-W. Shen, Z.-K. Zhang,
and T. Zhou, Bridgeness: a local index on edge sig-
nificance in maintaining global connectivity, J. Stat.
Mech. Theor. Exp. 2010, P10011 (2010).

[388] A.-K. Wu, L. Tian, and Y.-Y. Liu, Bridges in com-
plex networks, Phys. Rev. E 97, 012307 (2018).

[389] J. G. Restrepo, E. Ott, and B. R. Hunt, Characteriz-
ing the dynamical importance of network nodes and
links, Phys. Rev. Lett. 97, 094102 (2006).

[390] S. D. Pauls and D. Remondini, Measures of centrality
based on the spectrum of the Laplacian, Phys. Rev.
E 85, 066127 (2012).

[391] L. Sola, M. Romance, R. Criado, J. Flores, A. Gar-
cia del Amo, and S. Boccaletti, Eigenvector central-
ity of nodes in multiplex networks, Chaos 23, 033131
(2013).

[392] T. Carletti, F. Battiston, G. Cencetti, and D. Fanelli,
Random walks on hypergraphs, Phys. Rev. E 101,
022308 (2020).

[393] J.-G. Young, G. Petri, and T. P. Peixoto, Hyper-

graph reconstruction from network data, Commun.

Phys. 4, 135 (2021).

V. Wens, Investigating complex networks with in-

verse models: Analytical aspects of spatial leak-

age and connectivity estimation, Phys. Rev. E 91,

012823 (2015).

M. T. Gastner and G. Odor, The topology of large

open connectome networks for the human brain, Sci.

Rep. 6, 27249 (2016).

J. Hlinka, D. Hartman, N. Jajcay, D. Tomecek,

J. Tintéra, and M. Palus, Small-world bias of cor-

relation networks: From brain to climate, Chaos 27,

035812 (2017).

M. Zanin, S. Belkoura, J. Gomez, C. Alfaro, and

J. Cano, Topological structures are consistently over-

estimated in functional complex networks, Sci. Rep.

8, 11980 (2018).

[398] L. Lii and T. Zhou, Link prediction in complex net-
works: A survey, Physica A 390, 1150 (2011).

[399] N. N. Chung, L. Y. Chew, J. Zhou, and C. H. Lai,
Impact of edge removal on the centrality betweenness
of the best spreaders, EPL (Europhysics Letters) 98,
58004 (2012).

[400] M. A. Kramer, U. T. Eden, S. S. Cash, and E. D.
Kolaczyk, Network inference with confidence from

[382]

[394]

[395]

[396]

[397]


https://doi.org/10.1093/brain/124.9.1683
https://doi.org/10.1016/j.jphysparis.2004.01.018
https://doi.org/10.1016/j.jphysparis.2004.01.018
https://doi.org/10.1016/j.pneurobio.2012.06.008
https://doi.org/10.1016/j.pneurobio.2012.06.008
https://doi.org/10.1073/pnas.0610245104
https://doi.org/10.1073/pnas.0610245104
https://doi.org/10.1103/PhysRevE.92.042910
https://doi.org/10.1103/PhysRevE.92.042910
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1038/srep24456
https://doi.org/10.1038/srep24456
https://doi.org/10.1038/srep24584
https://doi.org/10.1038/srep24584
https://doi.org/http://dx.doi.org/10.1016/j.physrep.2016.06.007
https://doi.org/10.1103/PhysRevE.70.056104
https://doi.org/10.1086/225469
https://doi.org/10.1086/225469
https://doi.org/10.1103/PhysRevLett.97.094102
https://doi.org/10.1103/PhysRevE.85.066127
https://doi.org/10.1103/PhysRevE.85.066127
https://doi.org/10.1103/PhysRevE.91.012823
https://doi.org/10.1103/PhysRevE.91.012823
https://doi.org/10.1038/srep27249
https://doi.org/10.1038/srep27249
https://doi.org/10.1063/1.4977951
https://doi.org/10.1063/1.4977951
https://doi.org/10.1038/s41598-018-30472-z
https://doi.org/10.1038/s41598-018-30472-z

multivariate time series, Phys. Rev. E 79, 061916
(2009).

[401] L. Li, L. Pan, T. Zhou, Y.-C. Zhang, and H. E. Stan-
ley, Toward link predictability of complex networks,
Proc. Natl. Acad. Sci. 112, 2325 (2015).

[402] X. Yan, L. G. S. Jeub, A. Flammini, F. Radicchi,
and S. Fortunato, Weight thresholding on complex
networks, Phys. Rev. E 98, 042304 (2018).

[403] A. Zeng and G. Cimini, Removing spurious interac-
tions in complex networks, Phys. Rev. E 85, 036101
(2012).

[404] Q. Zhang, M. Li, and Y. Deng, Measure the structure
similarity of nodes in complex networks based on
relative entropy, Physica A 491, 749 (2018).

[405] A. Kumar, S. S. Singh, K. Singh, and B. Biswas,

Link prediction techniques, applications, and perfor-

mance: A survey, Physica A 553, 124289 (2020).

G. T. Cantwell, Y. Liu, B. F. Maier, A. C. Schwarze,

C. A. Servan, J. Snyder, and G. St-Onge, Threshold-

ing normally distributed data creates complex net-

works, Phys. Rev. E 101, 062302 (2020).

T. L. Frantz, M. Cataldo, and K. M. Carley, Ro-

bustness of centrality measures under uncertainty:

Examining the role of network topology, Comput.

Math. Organ. Theor. 15, 303 (2009).

M. Bellingeri, D. Bevacqua, F. Scotognella, R. Al-

fieri, and D. Cassi, A comparative analysis of link re-

moval strategies in real complex weighted networks,

Sci. Rep. 10, 3911 (2020).

K. Lehnertz, Predicting epileptic seizures—an update,

in Physics of Biological Oscillators (Springer, 2021)

pp. 345-360.

S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Ge-

nio, J. Goémez-Gardenes, M. Romance, I. Sendina-

Nadal, Z. Wang, and M. Zanin, The structure and

dynamics of multilayer networks, Phys. Rep. 544, 1

(2014).

M. Kiveld, A. Arenas, M. Barthelemy, J. P. Gleeson,

Y. Moreno, and M. A. Porter, Multilayer networks,

J. Complex Netw. 2, 203 (2014).

M. L. Stanley, M. N. Moussa, B. Paolini, R. G. Ly-

day, J. H. Burdette, and P. J. Laurienti, Defining

nodes in complex brain networks, Front. Comput.

Neurosci. 7, 169 (2013).

[413] M. K. Chung, Brain network analysis (Cambridge
University Press, Cambridge, UK, 2019).

[414] Y.-X. Kong, G.-Y. Shi, R.-J. Wu, and Y.-C. Zhang,
k-core: Theories and applications, Phys. Rep. 832, 1
(2019).

[415] V. I. Spoormaker, M. Czisch, P. Maquet, and

L. Jancke, Large-scale functional brain networks in

human non-rapid eye movement sleep: insights from

combined electroencephalographic/functional mag-
netic resonance imaging studies, Phil. Trans. Roy.

Soc. A: Mathematical, Physical and Engineering Sci-

ences 369, 3708 (2011).

C. J. Chu, M. A. Kramer, J. Pathmanathan, M. T.

Bianchi, M. B. Westover, L. Wizon, and S. S. Cash,

Emergence of stable functional networks in long-

term human electroencephalography, J. Neurosci.

32, 2703 (2012).

[406]

[407]

[408]

[409]

[410]

[411]

[412]

[416]

74

[417] B. Park, J. I. Kim, D. Lee, S.-O. Jeong, J. D. Lee,
and H.-J. Park, Are brain networks stable during a
24-hour period?, Neuroimage 59, 456 (2012).

F. Liu, C. Zhu, Y. Wang, W. Guo, M. Li, W. Wang,

Z. Long, Y. Meng, Q. Cui, L. Zeng, Q. Gong,

W. Zhang, and H. Chen, Disrupted cortical hubs in

functional brain networks in social anxiety disorder,

Clin. Neurophysiol. 126, 1711 (2015).

F. V. Farahani, M. Fafrowicz, W. Karwowski,

B. Bohaterewicz, A. M. Sobczak, A. Ceglarek,

A. Zyrkowska, M. Ostrogorska, B. Sikora-

Wachowicz, K. Lewandowska, et al., Identifying

diurnal variability of brain connectivity patterns

using graph theory, Brain Sci. 11, 111 (2021).

C. Geier and K. Lehnertz, Long-term variability of

importance of brain regions in evolving epileptic

brain networks, Chaos 27, 043112 (2017).

T. Rings, R. von Wrede, and K. Lehnertz, Precursors

of seizures due to specific spatial-temporal modifica-

tions of evolving large-scale epileptic brain networks,

Sci. Rep. 9, 10623 (2019).

K. Lehnertz, T. Rings, and T. Brohl, Time in brain:

How biological rhythms impact on EEG signals and

on EEG-derived brain networks, Front. Netw. Phys-

iol. 1, 755016 (2021).

[423] M. E. Raichle, The brain’s default mode network,
Annu. Rev. Neurosci 38, 433 (2015).

[424] G. Albouy, B. R. King, P. Maquet, and J. Doyon,

Hippocampus and striatum: Dynamics and interac-

tion during acquisition and sleep-related motor se-

quence memory consolidation, Hippocampus 23, 985

(2013).

V. Prabhakaran, K. Narayanan, Z. Zhao, and

J. D. E. Gabrieli, Integration of diverse informa-

tion in working memory within the frontal lobe, Nat.

Neurosci. 3, 85 (2000).

R. Albert, I. Albert, and G. L. Nakarado, Structural

vulnerability of the north american power grid, Phys.

Rev. E 69, 025103 (2004).

[427] B. A. Carreras, V. E. Lynch, I. Dobson, and D. E.
Newman, Complex dynamics of blackouts in power
transmission systems, Chaos 14, 643 (2004).

[428] S. Pahwa, C. Scoglio, and A. Scala, Abruptness of
cascade failures in power grids, Sci. Rep. 4, 3694
(2014).

[429] B. Schéfer, D. Witthaut, M. Timme, and V. Latora,

Dynamically induced cascading failures in power

grids, Nature Commun. 9, 1975 (2018).

N. Malik, B. Bookhagen, N. Marwan, and J. Kurths,

Analysis of spatial and temporal extreme monsoonal

rainfall over South Asia using complex networks, Cli-

mate Dyn. 39, 971 (2012).

N. Marwan and J. Kurths, Complex network based

techniques to identify extreme events and (sudden)

transitions in spatio-temporal systems, Chaos 25,

097609 (2015).

M. Gelbrecht, N. Boers, and J. Kurths, A com-

plex network representation of wind flows, Chaos 27,

035808 (2017).

[433] U. Ozturk, N. Marwan, O. Korup, H. Saito, A. Agar-
wal, M. Grossman, M. Zaiki, and J. Kurths, Com-

[418]

[419]

[420]

[421]

[422]

[425]

[426]

[430]

[431]

[432]


https://doi.org/10.1103/PhysRevE.79.061916
https://doi.org/10.1103/PhysRevE.79.061916
https://doi.org/10.1103/PhysRevE.98.042304
https://doi.org/10.1103/PhysRevE.85.036101
https://doi.org/10.1103/PhysRevE.85.036101
https://doi.org/10.1103/PhysRevE.101.062302
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.3389/fncom.2013.00169
https://doi.org/10.3389/fncom.2013.00169
https://doi.org/10.1523/JNEUROSCI.5669-11.2012
https://doi.org/10.1523/JNEUROSCI.5669-11.2012
https://doi.org/10.1016/j.clinph.2014.11.014
https://doi.org/10.1063/1.4979796
https://doi.org/10.1038/s41598-019-47092-w
https://doi.org/10.3389/fnetp.2021.755016
https://doi.org/10.3389/fnetp.2021.755016
https://doi.org/10.1063/1.4916924
https://doi.org/10.1063/1.4916924

plex networks for tracking extreme rainfall during

typhoons, Chaos 28, 075301 (2018).

N. Boers, B. Goswami, A. Rheinwalt, B. Bookha-

gen, B. Hoskins, and J. Kurths, Complex networks

reveal global pattern of extreme-rainfall teleconnec-

tions, Nature 566, 373 (2019).

H. A. Dijkstra, P. Petersik, E. Hernandez-Garcia,

and C. Lopez, The application of machine learning

techniques to improve El Nino prediction skill, Front.

Phys. 7, 153 (2019).

U. Ozturk, N. Malik, K. Cheung, N. Marwan, and

J. Kurths, A network-based comparative study of ex-

treme tropical and frontal storm rainfall over Japan,

Clim. Dyn. 53, 521 (2019).

L. Duenas-Osorio, J. I. Craig, and B. J. Goodno,

Seismic response of critical interdependent networks,

Earthq. Eng. Struct. Dyn. 36, 285 (2007).

G. Konapala and A. Mishra, Review of complex net-

works application in hydroclimatic extremes with

an implementation to characterize spatio-temporal
drought propagation in continental USA, J. Hydrol.

555, 600 (2017).

J. J. Bosma, M. Koetter, and M. Wedow, Too con-

nected to fail? inferring network ties from price co-

movements, J. Bus. Econ. Stat. 37, 67 (2019).

[440] V. Kishore, M. S. Santhanam, and R. E. Amritkar,
Extreme events on complex networks, Phys. Rev.
Lett. 106, 188701 (2011).

[441] A. Rothkegel and K. Lehnertz, Recurrent events of
synchrony in complex networks of pulse-coupled os-
cillators, Europhys. Lett. 95, 38001 (2011).

[442] V. Kishore, M. Santhanam, and R. E. Amritkar, Ex-
treme events and event size fluctuations in biased
random walks on networks, Phys. Rev. E 85, 056120
(2012).

[443] V. Kishore, A. R. Sonawane, and M. S. Santhanam,
Manipulation of extreme events on scale-free net-
works, Phys. Rev. E 88, 014801 (2013).

[444] Y.-Z. Chen, Z.-G. Huang, and Y.-C. Lai, Controlling

extreme events on complex networks, Sci. Rep. 4,

6121 (2014).

D. Hunt, F. Molnar, B. K. Szymanski, and G. Kor-

niss, Extreme fluctuations in stochastic network co-

ordination with time delays, Phys. Rev. E 92, 062816

(2015).

G. Ansmann, FExtreme FEvents and other emer-

gent phenomena in the collective dynamics of com-

plex networks of excitable wunits, Ph.D. thesis,

Mathematisch-Naturwissenschaftliche Fakultdt der

Universitat Bonn (2016).

D. S. Bassett, P. Zurn, and J. I. Gold, On the nature

and use of models in network neuroscience, Nat. Rev.

Neurosci. 19, 566 (2018).

[448] R. Karnatak, G. Ansmann, U. Feudel, and K. Lehn-
ertz, Route to extreme events in excitable systems,
Phys. Rev. E 90, 022917 (2014).

[449] G. Ansmann, K. Lehnertz, and U. Feudel, Self-
induced switchings between multiple space-time pat-
terns on complex networks of excitable units, Phys.
Rev. X 6, 011030 (2016).

[450] T. Rings, G. Ansmann, and K. Lehnertz, How im-

[434]

[435]

[436]

[437]

[438]

[439]

[445]

[446]

[447]

(0]

portant are hubs for the generation of extreme events

in networks of excitable units?, Eur. Phys. J.-Spec.

Top. 226, 1963 (2017).

N. M. Alvarez, S. Borkar, and C. Masoller, Pre-

dictability of extreme intensity pulses in optically

injected semiconductor lasers, Eur. Phys. J. - Spec.

Top. 226, 1971 (2017).

C. Bonatto and A. Endler, Extreme and superex-

treme events in a loss-modulated coz laser: Nonlin-

ear resonance route and precursors, Phys. Rev. E 96,

012216 (2017).

T. Jin, C. Siyu, and C. Masoller, Generation of ex-

treme pulses on demand in semiconductor lasers with

optical injection, Optics Exp. 25, 31326 (2017).

[454] R. Karnatak, H. Kantz, and S. Bialonski, Early
warning signal for interior crises in excitable systems,
Phys. Rev. E 96, 042211 (2017).

[455] S. L. Kingston, K. Thamilmaran, P. Pal, U. Feudel,
and S. K. Dana, Extreme events in the forced Lié-
nard system, Phys. Rev. E 96, 052204 (2017).

[456] A. Saha and U. Feudel, Extreme events in FitzHugh-
Nagumo oscillators coupled with two time delays,
Phys. Rev. E 95, 062219 (2017).

[457] A. Mishra, S. Saha, M. Vigneshwaran, P. Pal,
T. Kapitaniak, and S. K. Dana, Dragon-king-like ex-
treme events in coupled bursting neurons, Phys. Rev.
E 97, 062311 (2018).

[458] A. Saha and U. Feudel, Riddled basins of attrac-
tion in systems exhibiting extreme events, Chaos 28,
033610 (2018).

[459] P. Moitra and S. Sinha, Emergence of extreme events
in networks of parametrically coupled chaotic popu-
lations, Chaos 29, 023131 (2019).

[460] A. Ray, S. Rakshit, D. Ghosh, and S. K. Dana, Inter-
mittent large deviation of chaotic trajectory in Ikeda
map: Signature of extreme events, Chaos 29, 043131
(2019).

[461] P. Kwan, S. C. Schachter, and M. J. Brodie, Drug-
resistant epilepsy, N. Engl. J. Med. 365, 919 (2011).

[462] J. de Tisi, G. S. Bell, J. L. Peacock, A. W. McEvoy,
W. F. J. Harkness, J. W. Sander, and J. S. Duncan,
The long-term outcome of adult epilepsy surgery,
patterns of seizure remission, and relapse: a cohort
study, Lancet 378, 1388 (2011).

[463] S. Spencer, Neural networks in human epilepsy: Ev-
idence of and implications for treatment, Epilepsia
43, 219 (2002).

[464] A. T. Berg and I. E. Scheffer, New concepts in clas-
sification of the epilepsies: Entering the 215 century,
Epilepsia 52, 1058 (2011).

[465] M. P. Richardson, Large scale brain models of

epilepsy: dynamics meets connectomics, J. Neurol.

Neurosurg. Psychiatry 83, 1238 (2012).

B. C. Bernhardt, L. Bonilha, and D. W. Gross, Net-

work analysis for a network disorder: The emerging

role of graph theory in the study of epilepsy, Epilepsy

Behav. 50, 162 (2015).

H. Dickten, S. Porz, C. E. Elger, and K. Lehnertz,

Weighted and directed interactions in evolving large-

scale epileptic brain networks, Sci. Rep. 6, 34824

(2016).

[451]

[452]

[453]

[466]

[467]


https://doi.org/10.1103/PhysRevLett.106.188701
https://doi.org/10.1103/PhysRevLett.106.188701
https://doi.org/10.1209/0295-5075/95/38001
https://doi.org/10.1103/PhysRevE.85.056120
https://doi.org/10.1103/PhysRevE.85.056120
https://doi.org/10.1103/PhysRevE.88.014801
https://doi.org/10.1038/srep06121
https://doi.org/10.1038/srep06121
https://doi.org/10.1103/PhysRevE.92.062816
https://doi.org/10.1103/PhysRevE.92.062816
https://doi.org/10.1103/PhysRevE.90.022917
https://doi.org/10.1103/PhysRevX.6.011030
https://doi.org/10.1103/PhysRevX.6.011030
https://doi.org/10.1140/epjst/e2017-70021-3
https://doi.org/10.1140/epjst/e2017-70021-3
https://doi.org/10.1063/1.5063926
https://doi.org/10.1016/S0140-6736(11)60890-8)
https://doi.org/10.1046/j.1528-1157.2002.26901.x.
https://doi.org/10.1046/j.1528-1157.2002.26901.x.
https://doi.org/10.1111/j.1528-1167.2011.03101.x
https://doi.org/10.1136/jnnp-2011-301944
https://doi.org/10.1136/jnnp-2011-301944
https://doi.org/10.1016/j.yebeh.2015.06.005
https://doi.org/10.1016/j.yebeh.2015.06.005
https://doi.org/10.1038/srep34824
https://doi.org/10.1038/srep34824

[468] C. Geier, S. Bialonski, C. E. Elger, and K. Lehnertz,
How important is the seizure onset zone for seizure
dynamics?, Seizure 25, 160 (2015).
L. Kuhlmann, K. Lehnertz, M. P. Richardson,
B. Schelter, and H. P. Zaveri, Seizure prediction —
ready for a new era, Nat. Rev. Neurol. 14, 618
(2018).
P. J. Karoly, L. Kuhlmann, M. J. Cook, H. Ung,
D. B. Grayden, K. Leyde, and D. R. Freestone, The
circadian profile of epilepsy improves seizure fore-
casting, Brain 140, 2169 (2017).
M. O. Baud, J. K. Kleen, E. A. Mirro, J. C. An-
drechak, D. King-Stephens, E. F. Chang, and V. R.
Rao, Multi-day rhythms modulate seizure risk in
epilepsy, Nat. Commun. 9, 88 (2018).
P. J. Karoly, D. M. Goldenholz, D. R. Freestone,
R. E. Moss, D. B. Grayden, W. H. Theodore, and
M. J. Cook, Circadian and circaseptan rhythms in
human epilepsy: a retrospective cohort study, Lancet
Neurol. 17, 977 (2018).
D. J. Englot, H. Birk, and E. F. Chang, Seizure out-
comes in nonresective epilepsy surgery: an update,
Neurosurg. Rev. 40, 181 (2017).
[474] A. Schulze-Bonhage, Brain stimulation as a neuro-
modulatory epilepsy therapy, Seizure 44, 169 (2017).
[475] Y. Nagai, J. Aram, M. Koepp, L. Lemieux, M. Mula,
H. Critchley, S. Sisodiya, and M. Cercignani, Epilep-
tic seizures are reduced by autonomic biofeedback
therapy through enhancement of fronto-limbic con-
nectivity: A controlled trial and neuroimaging study,
EBioMedicine 27, 112 (2018).
C. Kuehn, E. A. Martens, and D. M. Romero, Criti-
cal transitions in social network activity, J. Complex
Netw. 2, 141 (2014).
L. Liu, Z. Shao, J. Lv, F. Xu, S. Ren, Q. Jin, J. Yang,
W. Ma, H. Xije, D. Zhang, et al., Identification of
early warning signals at the critical transition point
of colorectal cancer based on dynamic network anal-
ysis, Front. Bioeng. Biotechnol. 8, 530 (2020).
S. N. Chowdhury, A. Ray, S. K. Dana, and D. Ghosh,
Extreme events in dynamical systems and random
walkers: A review, Phys. Rep. 966, 1 (2022).
M. Gladwell, The tipping point: How little things can
make a big difference (Little, Brown, 2006).
[480] J. P. Keener and J. Sneyd, Mathematical Physiology
(Springer, New York, 1998).
[481] J. D. Murray, Mathematical Biology — II Spatial Mod-
els and Biomedical Applications, 3rd ed. (Springer,
New York, 2003).
E. M. Izhikevich, Dynamical Systems in Neuro-
science: The Geometry of Excitability and Bursting
(MIT Press, Cambridge, MA, 2007).
G. Ghoshal and A.-L. Barabasi, Ranking stability
and super-stable nodes in complex networks, Nat.
Commun. 2, 394 (2011).
E. Beghi, G. Giussani, E. Nichols, F. Abd-Allah,
J. Abdela, A. Abdelalim, H. N. Abraha, M. G. Adib,
S. Agrawal, F. Alahdab, et al., Global, regional, and
national burden of epilepsy, 1990-2016: a systematic
analysis for the global burden of disease study 2016,
Lancet Neurol. 18, 357 (2019).

[469]

[470]

[471]

[472]

[473]

[476]

[477]

[478]

[479]

[482]

[483]

[484]

76

[485] P. Ribeiro, P. Paredes, M. E. Silva, D. Aparicio, and
F. Silva, A survey on subgraph counting: concepts,
algorithms, and applications to network motifs and
graphlets, ACM Comput. Surv. 54, 1 (2021).

[486] M. E. J. Newman, S. H. Strogatz, and D. J. Watts,
Random graphs with arbitrary degree distributions
and their applications, Phys. Rev. E 64, 026118
(2001).

[487] M. E. J. Newman, Handbook of Graphs and Net-
works (Wiley-VCH, Berlin, 2003) Chap. Random
graphs as models of networks, pp. 35-68.

[488] T. Nishikawa and A. E. Motter, Network synchro-
nization landscape reveals compensatory structures,
quantization, and the positive effect of negative in-
teractions, Proc. Natl. Acad. Sci. U.S.A. 107, 10342
(2010).

[489] W. Sun, Q. Ding, J. Zhang, and F. Chen, Coherence
in a family of tree networks with an application of
laplacian spectrum, Chaos 24, 043112 (2014).

[490] Y. Zhang, T. Nishikawa, and A. E. Motter,
Asymmetry-induced synchronization in oscillator
networks, Phys. Rev. E 95, 062215 (2017).

[491] K. Lehnertz, C. Geier, T. Rings, and K. Stahn, Cap-
turing time-varying brain dynamics, EPJ Nonlin.
Biomed. Phys. 5, 2 (2017).

[492] S. 1. Dimitriadis, N. A. Laskaris, V. Tsirka,

M. Vourkas, S. Micheloyannis, and S. Fotopoulos,

Tracking brain dynamics via time-dependent net-

work analysis, J. Neurosci. Methods 193, 145 (2010).

G. C. Reinsel, Elements of multivariate time series

analysis, 2nd ed. (Springer, New York, 2003).

H. Liitkepohl, New introduction to multiple time se-

ries analysis (Springer Science & Business Media,

2005).

[495] T. Wen and K. H. Cheong, The fractal dimension
of complex networks: A review, Inf. Fusion 73, 87
(2021).

[496] A. Caligiuri, V. M. Eguiluz, L. Di Gaetano, T. Galla,

and L. Lacasa, Lyapunov exponents for temporal

networks, Phys. Rev. E 107, 044305 (2023).

M. Chavez, M. Valencia, V. Navarro, V. Latora, and

J. Martinerie, Functional modularity of background

activities in normal and epileptic brain networks,

Phys. Rev. Lett. 104, 118701 (2010).

M.-T. Horstmann, S. Bialonski, N. Noennig, H. Mai,

J. Prusseit, J. Wellmer, H. Hinrichs, and K. Lehn-

ertz, State dependent properties of epileptic brain

networks: Comparative graph-theoretical analyses of
simultaneously recorded EEG and MEG, Clin. Neu-

rophysiol. 121, 172 (2010).

A. Avena-Koenigsberger, B. Misic, and O. Sporns,

Communication dynamics in complex brain net-

works, Nat. Rev. Neurosci. 19, 17 (2018).

D. E. Anderson, D. Madhavan, and A. Swaminathan,

Global brain network dynamics predict therapeutic

responsiveness to cannabidiol treatment for refrac-

tory epilepsy, Brain Commun. 2, fcaal40 (2020).

C. Hatlestad-Hall, R. Bruna, A. Erichsen, V. An-

dersson, M. R. Syvertsen, A. H. Skogan, H. Renvall,

C. Marra, F. Maesti, K. Heuser, et al., The orga-

nization of functional neurocognitive networks in fo-

[493]

[494]

[497]

[498]

[499]

[500]

[501]


https://doi.org/10.1016/j.seizure.2014.10.013
https://doi.org/10.1038/s41582-018-0055-2
https://doi.org/10.1038/s41582-018-0055-2
https://doi.org/10.1093/brain/awx173
https://doi.org/https://doi.org/10.1016/j.ebiom.2017.12.012
https://doi.org/10.1093/comnet/cnt022
https://doi.org/10.1093/comnet/cnt022
https://doi.org/10.3389/fbioe.2020.00530
https://doi.org/10.1016/j.physrep.2022.04.001
https://doi.org/10.1007/b98841
https://doi.org/10.1007/b98869
https://doi.org/10.1007/b98869
https://doi.org/10.7551/mitpress/2526.001.0001
https://doi.org/10.7551/mitpress/2526.001.0001
https://doi.org/10.1038/ncomms1396
https://doi.org/10.1038/ncomms1396
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1073/pnas.0912444107
https://doi.org/10.1073/pnas.0912444107
https://doi.org/10.1103/PhysRevE.95.062215
https://doi.org/10.1051/epjnbp/2017001
https://doi.org/10.1051/epjnbp/2017001
https://doi.org/10.1016/j.jneumeth.2010.08.027
https://doi.org/10.1103/PhysRevLett.104.118701
https://doi.org/10.1016/j.clinph.2009.10.013
https://doi.org/10.1016/j.clinph.2009.10.013

cal epilepsy correlates with domain-specific cognitive

performance, J. Neurosci. Res. 99, 2669 (2021).

A. Khaledi-Nasab, J. A. Kromer, and P. A. Tass,

Long-lasting desynchronization of plastic neuronal

networks by double-random coordinated reset stim-

ulation, Front. Netw. Physiol. 2, 864859 (2022).

A. Vetkas, J. Germann, G. Elias, A. Loh, A. Boutet,

K. Yamamoto, C. Sarica, N. Samuel, V. Milano,

A. Fomenko, et al., Identifying the neural network for

neuromodulation in epilepsy through connectomics

and graphs, Brain Commun. 4, fcac092 (2022).

R. J. Piper, R. M. Richardson, G. Worrell, D. W.

Carmichael, T. Baldeweg, B. Litt, T. Denison, and

M. M. Tisdall, Towards network-guided neuromod-

ulation for epilepsy, Brain 145, 3347 (2022).

M. Fraschini, M. Demuru, M. Puligheddu,

S. Floridia, L. Polizzi, A. Maleci, M. Bortolato,

A. Hillebrand, and F. Marrosu, The re-organization

of functional brain networks in pharmaco-resistant

epileptic patients who respond to vns, Neurosci.

Lett. 580, 153 (2014).

R. von Wrede and R. Surges, Transcutaneous vagus

nerve stimulation in the treatment of drug-resistant

epilepsy, Auton. Neurosci 235, 102840 (2021).

R. von Wrede, T. Rings, S. Schach, C. Helmstaedter,

and K. Lehnertz, Transcutaneous auricular vagus

nerve stimulation induces stabilizing modifications
in large-scale functional brain networks: towards un-
derstanding the effects of taVNS in subjects with

epilepsy, Sci. Rep. 11, 7906 (2021).

R. von Wrede, T. Rings, T. Brohl, J. Pukropski,

S. Schach, C. Helmstaedter, and K. Lehnertz, Tran-

scutaneous auricular vagus nerve stimulation differ-

ently modifies functional brain networks of subjects
with different epilepsy types, Front. Hum. Neurosci.

16, 867563 (2022).

[509] W. W. Lytton, Computer modelling of epilepsy, Nat.
Rev. Neurosci. 9, 626 (2008).

[510] A. B. Holt and T. I. Netoff, Computational model-
ing of epilepsy for an experimental neurologist, Exp.
Neurol. 244, 75 (2013).

[611] D. Depannemaecker, A. Destexhe, V. Jirsa, and
C. Bernard, Modeling seizures: From single neurons
to networks, Seizure 90, 4 (2021).

[612] A. Pathak, D. Roy, and A. Banerjee, Whole-brain

network models: from physics to bedside, Front Com-

put. Neurosci. 16, 866517 (2022).

S. Kalitzin, G. Petkov, P. Suffczynski, V. Grig-

orovsky, B. L. Bardakjian, F. L. da Silva, and P. L.

Carlen, Epilepsy as a manifestation of a multistate

network of oscillatory systems, Neurobiol. Dis. 130,

104488 (2019).

M. Goodfellow, R. Andrzejak, C. Masoller, and

K. Lehnertz, What models and tools can contribute

to a better understanding of brain activity?, Front.

Netw. Physiol. 2, 907995 (2022).

A. Rothkegel and K. Lehnertz, Irregular macroscopic

dynamics due to chimera states in small-world net-

works of pulse-coupled oscillators, New J. Phys. 16,

055006 (2014).

[616] K. Anesiadis and A. Provata, Synchronization in

[502]

[503]

[504]

[505]

[506]

[507]

[508]

[513]

[514]

[515]

7

multiplex leaky integrate-and-fire networks with

nonlocal interactions, Front. Netw. Physiol. 2,

910862 (2022).

J. Wu, S. J. Aton, V. Booth, and M. Zochowski, Het-

erogeneous mechanisms for synchronization of net-

works of resonant neurons under different e/i balance

regimes, Front. Netw. Physiol. 2, 975951 (2022).

P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox,

Tipping points in open systems: bifurcation, noise-

induced and rate-dependent examples in the climate

system, Phil. Trans. Roy. Soc. A 370, 1166 (2012).

P. D. Ritchie, H. Alkhayuon, P. M. Cox, and S. Wiec-

zorek, Rate-induced tipping in natural and human

systems, Earth Syst. Dyn. 14, 669 (2023).

J. Swierczek-Jereczek, A. Robinson, J. Blasco,

J. Alvarez-Solas, and M. Montoya, Time-scale syn-

chronisation of oscillatory responses can lead to non-

monotonous r-tipping, Sci. Rep. 13, 2104 (2023).

J. L. Perez Velazquez, H. Khosravani, A. Lozano,

B. L. Bardakijan, P. L. Carlen, and R. Wennberg,

Type III intermittency in human partial epilepsy,

Eur. J. Neurosci. 11, 2571 (1999).

C. Kirst and M. Timme, From networks of unstable

attractors to heteroclinic switching, Phys. Rev. E 78,

065201 (2008).

M. Aguiar, P. Ashwin, A. Dias, and M. Field, Dy-

namics of coupled cell networks: synchrony, hetero-

clinic cycles and inflation, J. Nonlinear Sci. 21, 271

(2011).

M. Rizzi, I. Weissberg, D. Z. Milikovsky, and

A. Friedman, Following a potential epileptogenic in-

sult, prolonged high rates of nonlinear dynamical

regimes of intermittency type is the hallmark of

epileptogenesis, Sci. Rep. 6, 31129 (2016).

C. Bick and M. Field, Asynchronous networks and

event driven dynamics, Nonlinearity 30, 558 (2017).

A. Pisarchik, V. Grubov, V. Maksimenko, A. Liittjo-

hann, N. Frolov, C. Marqués-Pascual, D. Gonzalez-

Nieto, M. Khramova, and A. Hramov, Extreme

events in epileptic eeg of rodents after ischemic

stroke, Eur. Phys. J.: Spec. Top. 227, 921 (2018).

C. Kuehn, A mathematical framework for criti-

cal transitions: Bifurcations, fast-slow systems and

stochastic dynamics, Physica D 240, 1020 (2011).

[528] M. Morrison and L.-S. Young, Chaotic heteroclinic
networks as models of switching behavior in biolog-
ical systems, Chaos 32, 123102 (2022).

[529] H. Meyer-Ortmanns, Heteroclinic networks for brain
dynamics, Front. Netw. Physiol. 3 (2023).

[530] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths,
Phase synchronization of chaotic oscillators, Phys.
Rev. Lett. 76, 1804 (1996).

[531] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares,
and C. S. Zhou, The synchronization of chaotic sys-
tems, Phys. Rep. 366, 1 (2002).

[532] M. Rosenblum and A. Pikovsky, Synchronization:
from pendulum clocks to chaotic lasers and chem-
ical oscillators, Contemp. Phys. 44, 401 (2003).

[533] M. Kapitaniak, K. Czolczynski, P. Perlikowski,
A. Stefanski, and T. Kapitaniak, Synchronization of
clocks, Phys. Rep. 517, 1 (2012).

[517]

[518]

[519]

[520]

[521]

[522]

[523]

[524]

[525]

[526]

[527]


https://doi.org/10.1038/nrn2416
https://doi.org/10.1038/nrn2416
https://doi.org/10.1016/j.expneurol.2012.05.003
https://doi.org/10.1016/j.expneurol.2012.05.003
https://doi.org/10.1088/1367-2630/16/5/055006
https://doi.org/10.1088/1367-2630/16/5/055006
https://doi.org/10.1016/j.physd.2011.02.012
https://doi.org/10.1103/PhysRevLett.76.1804
https://doi.org/10.1103/PhysRevLett.76.1804
https://doi.org/10.1016/S0370-1573(02)00137-0
https://doi.org/10.1016/j.physrep.2012.03.002

[634] L. M. Pecora and T. L. Carroll, Synchronization of
chaotic systems, Chaos 25 (2015).

[6535] M. Rohden, A. Sorge, M. Timme, and D. Wit-
thaut, Self-organized synchronization in decentral-
ized power grids, Phys. Rev. Lett. 109, 064101
(2012).

[636] G. A. Pagani and M. Aiello, The power grid as a
complex network: a survey, Physica A: Statistical
Mechanics and its Applications 392, 2688 (2013).

[637] A. M. Amani and M. Jalili, Power grids as complex
networks: Resilience and reliability analysis, IEEE
Access 9, 119010 (2021).

[538] G. Odor, S. Deng, B. Hartmann, and J. Kelling, Syn-

chronization dynamics on power grids in Europe and

the United States, Phys. Rev. E 106, 034311 (2022).

J. Liu, M. Li, Y. Pan, W. Lan, R. Zheng, F.-X. Wu,

J. Wang, et al., Complex brain network analysis and

its applications to brain disorders: a survey, Com-

plexity 2017, 8362741 (2017).

K. Lehnertz, T. Brohl, and T. Rings, The human or-

ganism as an integrated interaction network: Recent

conceptual and methodological challenges, Front.

Physiol. 11, 1694 (2020).

P. C. Ivanov, The new field of network physiology:

building the human physiolome, Front. Netw. Phys-

iol. 1, 711778 (2021).

[642] Y. Moreno, M. Nekovee, and A. F. Pacheco, Dynam-
ics of rumor spreading in complex networks, Phys.
Rev. E 69, 066130 (2004).

[643] H. Gatfaoui and P. De Peretti, Flickering in infor-

mation spreading precedes critical transitions in fi-

nancial markets, Sci. Rep. 9, 5671 (2019).

W. Wang, Y. Nie, W. Li, T. Lin, M.-S. Shang,

S. Su, Y. Tang, Y.-C. Zhang, and G.-Q. Sun, Epi-

demic spreading on higher-order networks, Phys.

Rep. 1056, 1 (2024).

A. Arenas, W. Cota, J. Gémez-Gardefies, S. Gémez,

C. Granell, J. T. Matamalas, D. Soriano-Panos,

and B. Steinegger, Modeling the spatiotemporal epi-

demic spreading of covid-19 and the impact of mo-
bility and social distancing interventions, Phys. Rev.

X 10, 041055 (2020).

S. Pei and H. A. Makse, Spreading dynamics in com-

plex networks, J. Stat. Mech.: Theory Exp. 2013,

P12002 (2013).

M. Salehi, R. Sharma, M. Marzolla, M. Magnani,

P. Siyari, and D. Montesi, Spreading processes in

multilayer networks, IEEE Trans. Netw. Sci. Eng. 2,

65 (2015).

M. De Domenico, C. Granell, M. A. Porter, and

A. Arenas, The physics of spreading processes in

multilayer networks, Nat. Phys. 12, 901 (2016).

M. Scheffer, S. R. Carpenter, T. M. Lenton, J. Bas-

compte, W. Brock, V. Dakos, J. van de Koppel, I. A.

van de Leemput, S. A. Levin, E. H. van Nes, M. Pas-

cual, and J. Vandermeer, Anticipating critical tran-

sitions, Science 338, 344 (2012).

J. Jurczyk, T. Rehberg, A. Eckrot, and I. Morgen-

stern, Measuring critical transitions in financial mar-

kets, Sci. Rep. 7, 11564 (2017).

[651] R. Liu, M. Li, Z.-P. Liu, J. Wu, L. Chen, and K. Ai-

[539]

[540]

[541]

[544]

[545]

[546]

[547]

548

[549]

[550]

78

hara, Identifying critical transitions and their leading

biomolecular networks in complex diseases, Sci. Rep.

2, 813 (2012).

C. Trefois, P. M. Antony, J. Goncalves, A. Skupin,

and R. Balling, Critical transitions in chronic dis-

ease: transferring concepts from ecology to systems

medicine, Curr. Opin. Biotechnol. 34, 48 (2015).

P. F. Ghalati, S. S. Samal, J. S. Bhat, R. Deisz,

G. Marx, and A. Schuppert, Critical transitions in

intensive care units: a sepsis case study, Sci. Rep. 9,

12888 (2019).

M. Hirota, M. Holmgren, E. H. Van Nes, and

M. Scheffer, Global resilience of tropical forest and

savanna to critical transitions, Science 334, 232

(2011).

[555] V. Lucarini and T. Bodai, Edge states in the cli-
mate system: exploring global instabilities and crit-
ical transitions, Nonlinearity 30, R32 (2017).

[556] N. Bochow and N. Boers, The South American mon-

soon approaches a critical transition in response to

deforestation, Sci. Adv. 9, eadd9973 (2023).

B. M. Flores, E. Montoya, B. Sakschewski, N. Nasci-

mento, A. Staal, R. A. Betts, C. Levis, D. M. Lap-

ola, A. Esquivel-Muelbert, C. Jakovac, et al., Criti-
cal transitions in the Amazon forest system, Nature

626, 555 (2024).

N. Wunderling, A. S. von der Heydt, Y. Aksenov,

S. Barker, R. Bastiaansen, V. Brovkin, M. Brunetti,

V. Couplet, T. Kleinen, C. H. Lear, et al., Climate

tipping point interactions and cascades: a review,

Earth Syst. Dyn. 15, 41 (2024).

N. Akhmediev, J. M. Soto-Crespo, and A. Ankievicz,

Extreme waves that appear from nowhere: On the

nature of rogue waves, Phys. Lett. A 373, 2137

(2009).

K. F. Cann, D. R. Thomas, R. L. Salmon, A. P. Wyn-

Jones, and D. Kay, Extreme water-related weather

events and waterborne disease, Epidemiol. Infect.

141, 671 (2013).

7Z. W. Kundzewicz, S. Kanae, S. I. Seneviratne,

J. Handmer, N. Nicholls, P. Peduzzi, R. Mechler,

L. M. Bouwer, N. Arnell, K. Mach, et al., Flood risk

and climate change: global and regional perspectives,

Hydrol. Sci. J. 59, 1 (2014).

S. Loreti, E. Ser-Giacomi, A. Zischg, M. Keiler, and

M. Barthelemy, Local impacts on road networks and

access to critical locations during extreme floods, Sci.

Rep. 12, 1552 (2022).

B. G. Anderson and M. L. Bell, Weather-related

mortality: how heat, cold, and heat waves affect mor-

tality in the united states, Epidemiology 20, 205

(2009).

[564] S. E. Perkins and L. V. Alexander, On the measure-
ment of heat waves, J. Clim. 26, 4500 (2013).

[565] D. Barriopedro, R. Garcia-Herrera, C. Ordoiiez,
D. Miralles, and S. Salcedo-Sanz, Heat waves: Phys-
ical understanding and scientific challenges, Rev.
Geophys. 61, €2022RG000780 (2023).

[566] J. Yang, D. Gong, W. Wang, M. Hu, and R. Mao,
Extreme drought event of 2009/2010 over southwest-
ern china, Meteorol. Atmos. Phys. 115, 173 (2012).

[552]

[553]

[554]

[557]

[558]

[559]

[560]

[561]

[562]

[563]


https://doi.org/10.3389/fnetp.2021.711778
https://doi.org/10.3389/fnetp.2021.711778
https://doi.org/10.1126/science.1225244
https://doi.org/10.1038/s41598-017-11854-1
https://doi.org/10.1038/srep00813
https://doi.org/10.1038/srep00813
https://doi.org/10.1038/s41598-019-49006-2
https://doi.org/10.1038/s41598-019-49006-2
https://doi.org/10.1126/sciadv.add9973
https://doi.org/10.1038/s41586-023-06970-0
https://doi.org/10.1038/s41586-023-06970-0
https://doi.org/10.5194/esd-15-41-2024
https://doi.org/10.1016/j.physleta.2009.04.023
https://doi.org/10.1016/j.physleta.2009.04.023
https://doi.org/10.1017/S0950268812001653
https://doi.org/10.1017/S0950268812001653

[667] V. Muifioz and E. Flandez, Complex network study
of solar magnetograms, Entropy 24, 753 (2022).

[568] K. Sun, Z.-X. Han, and Y.-J. Cao, Review on models
of cascading failure in complex power grid, Power
System Technology 13, 1 (2005).

[669] J. W. Simpson-Porco, F. Dérfler, and F. Bullo, Volt-
age collapse in complex power grids, Nature com-
mun. 7, 10790 (2016).

[570] K. Sroka and D. Zlotecka, The risk of large blackout
failures in power systems, Arch. Electr. Eng 68, 411
(2019).

[6571] N. Wessel, C. Ziehmann, J. Kurths, U. Meyerfeldt,
A. Schirdewan, and A. Voss, Short-term forecast-
ing of life-threatening cardiac arrhythmias based
on symbolic dynamics and finite-time growth rates,
Phys. Rev. E 61, 733 (2000).

[672] K. Lehnertz, Epilepsy and nonlinear dynamics,
J. Biol. Phys. 34, 253 (2008).

[573] I. Procaccia, Complex or just complicated?, Nature
333, 498 (1988).

[574] A. Zeng, Z. Shen, J. Zhou, J. Wu, Y. Fan, Y. Wang,
and H. E. Stanley, The science of science: From the
perspective of complex systems, Phys. Rep. 714, 1
(2017).

[575] A.F. Siegenfeld and Y. Bar-Yam, An introduction to
complex systems science and its applications, Com-
plexity 2020, 6105872 (2020).

[576] P. Fieguth, An introduction to complex systems, 2nd
ed. (Springer Nature Switzerland, Cham, 2021).

[677] M. E. J. Newman, Spread of epidemic disease on
networks, Phys. Rev. E 66, 016128 (2002).

[678] G. F. De Arruda, A. L. Barbieri, P. M. Rodriguez,

F. A. Rodrigues, Y. Moreno, and L. d. F. Costa,

Role of centrality for the identification of influen-

tial spreaders in complex networks, Phys. Rev. E 90,

032812 (2014).

S. Gao, J. Ma, Z. Chen, G. Wang, and C. Xing,

Ranking the spreading ability of nodes in complex

networks based on local structure, Physica A 403,

130 (2014).

J. Wang, X. Hou, K. Li, and Y. Ding, A novel weight

neighborhood centrality algorithm for identifying in-

fluential spreaders in complex networks, Physica A

475, 88 (2017).

X. Li, S. Zhou, J. Liu, G. Lian, G. Chen, and C.-W.

Lin, Communities detection in social network based

on local edge centrality, Physica A 531, 121552

(2019).

[582] X. Huang and W. Huang, Eigenedge: A measure of
edge centrality for big graph exploration, J. Comput.
Lang. 55, 100925 (2019).

[583] F. Tudisco and D. J. Higham, Node and edge nonlin-
ear eigenvector centrality for hypergraphs, Commun.
Phys. 4, 201 (2021).

[584] S. Yurtcicek Ozaydin and F. Ozaydin, Deep link en-
tropy for quantifying edge significance in social net-
works, Appl. Sci. 11, 11182 (2021).

[585] D. Altafini, D. A. Bini, V. Cutini, B. Meini, and
F. Poloni, An edge centrality measure based on the
kemeny constant, STAM J. Matrix Anal. Appl. 44,
648 (2023).

[579]

[580]

[581]

79

[586] F. Bloch, M. O. Jackson, and P. Tebaldi, Central-
ity measures in networks, Soc. Choice Welf. 61, 413
(2023).

[587] B. Chen, P. Jiang, Z. Xiang, X. Gao, and Y. Chen,

Novel approach to edge importance ranking: Balanc-

ing network structure and transmission performance,

IEEE Syst. J. 18, 403 (2023).

J.-H. Song, Important edge identification in complex

networks based on local and global features, Chin.

Phys. B 32, 098901 (2023).

W. Li, N. Wu, W. Hou, J. Zhang, W. Xu, G. Wu,

X. Zheng, and H. Feng, Lateralization of epileptic

foci through causal analysis of scalp-EEG interictal

spike activity, J. Clin. Neurophysiol. 32, 57 (2015).

M. Curado, L. Tortosa, J. F. Vicent, and

G. Yeghikyan, Analysis and comparison of central-

ity measures applied to urban networks with data,

J. Comput. Sci. 43, 101127 (2020).

M. Wang, H. Wang, and H. Zheng, A mini review of

node centrality metrics in biological networks, Int. J.

Netw. Dyn. Intell. 1, 99 (2022).

E. Dudkina, M. Bin, J. Breen, E. Crisostomi, P. Fer-

raro, S. Kirkland, J. Marecek, R. Murray-Smith,

T. Parisini, L. Stone, et al., A comparison of cen-

trality measures and their role in controlling the

spread in epidemic networks, Int. J. Control 97, 1325

(2024).

D. Schoch, T. W. Valente, and U. Brandes, Correla-

tions among centrality indices and a class of uniquely

ranked graphs, Soc. Netw. 50, 46 (2017).

[594] P. Holme and G. Ghoshal, Dynamics of networking
agents competing for high centrality and low degree,
Phys. Rev. Lett. 96, 098701 (2006).

[595] M. D. Koénig and C. J. Tessone, Network evolution
based on centrality, Phys. Rev. E 84, 056108 (2011).

[596] R. K. Pan and J. Saraméki, Path lengths, corre-
lations, and centrality in temporal networks, Phys.
Rev. E 84, 016105 (2011).

[597] L. E. Rocha and N. Masuda, Random walk central-
ity for temporal networks, New J. Phys. 16, 063023
(2014).

[598] C. T. Butts and K. M. Carley, Structural change and
homeostasis in organizations: A decision-theoretic
approach, J. Math. Sociol. 31, 295 (2007).

[599] C. T. Butts, Social network analysis: A method-
ological introduction, Asian J. Soc. Psychol. 11, 13
(2008).

[600] M. S. de Freitas, R. L. Viana, and C. Grebogi, Ero-
sion of the safe basin for the transversal oscillations
of a suspension bridge, Chaos Solit. Fractals 18, 829
(2003).

[601] L. B. Keith, Wildlife’s ten-year cycle (University of
Wisconsin Press, Madison, W1, USA, 1963).

[602] G. Walker, The dynamics of energy demand:
Change, rhythm and synchronicity, Energy Res. Soc.
Sci. 1, 49 (2014).

[603] D. R. Chialvo and J. Jalife, Non-linear dynamics of
cardiac excitation and impulse propagation, Nature
330, 749 (1987).

[604] N. C. Stenseth, K.-S. Chan, H. Tong, R. Boonstra,
S. Boutin, C. J. Krebs, E. Post, M. O’Donoghue,

[588]

[589]

[590]

[591]

[592]

[593]


https://doi.org/10.1103/PhysRevE.61.733

N. G. Yoccoz, M. C. Forchhammer, et al., Common
dynamic structure of canada lynx populations within
three climatic regions, Science 285, 1071 (1999).

[605] D. J. Earn, S. A. Levin, and P. Rohani, Coherence
and conservation, Science 290, 1360 (2000).

[606] J. Aschoff, ed., Biological Rhythms (Plenum Press,
New York, NY, USA, 1981).

[607] L. Rensing, U. an der Heiden, and M. C. Mackey,
Temporal Disorder in Human Oscillatory Systems:
Proceedings of an International Symposium Univer-
sity of Bremen, 8—13 September 1986 (Springer Sci-
ence & Business Media, 1987).

[608] P. E. Kloeden and M. Rasmussen, Nonautonomous
dynamical systems (American Mathematical Soc.,
Providence, RI, USA, 2011).

[609] F. Bertacchini, E. Bilotta, and P. S. Pantano, On the
temporal spreading of the sars-cov-2, PLOS ONE 15,
€0240777 (2020).

[610] Z. Du and P. Holme, Coupling the circadian rhythms
of population movement and the immune system in
infectious disease modeling, Plos One 15, 0234619
(2020).

[611] N. Kronfeld-Schor, T. J. Stevenson, S. Nickbakhsh,
E. S. Schernhammer, X. C. Dopico, T. Dayan,
M. Martinez, and B. Helm, Drivers of infectious dis-
ease seasonality: potential implications for covid-19,
J. Biol. Rhythms 36, 35 (2021).

[612] B. Blasius, A. Huppert, and L. Stone, Complex dy-
namics and phase synchronization in spatially ex-
tended ecological systems, Nature 399, 354 (1999).

[613] M. Karsai, N. Perra, and A. Vespignani, Time vary-
ing networks and the weakness of strong ties, Sci.
Rep. 4, 4001 (2014).

[614] L. Gauvin, A. Panisson, C. Cattuto, and A. Barrat,
Activity clocks: spreading dynamics on temporal net-
works of human contact, Sci. Rep. 3, 3099 (2013).

[615] M. Starnini, A. Baronchelli, and R. Pastor-Satorras,
Modeling human dynamics of face-to-face interaction
networks, Phys. Rev. Lett. 110, 168701 (2013).

[616] D. Lipowska and A. Lipowski, Evolution towards lin-
guistic coherence in naming game with migrating
agents, Entropy 23, 299 (2021).

[617] W. Gu, Y. Qiu, W. Li, Z. Zhang, X. Liu, Y. Song,
and W. Wang, Epidemic spreading on spatial higher-
order network, Chaos 34 (2024).

[618] N. Fujiwara, J. Kurths, and A. Diaz-Guilera, Syn-
chronization in networks of mobile oscillators, Phys.
Rev. E 83, 025101 (2011).

[619] A. Baronchelli and A. Diaz-Guilera, Consensus in
networks of mobile communicating agents, Phys.
Rev. E 85, 016113 (2012).

[620] M. L. Sachtjen, B. A. Carreras, and V. E. Lynch,
Disturbances in a power transmission system, Phys.
Rev. E 61, 4877 (2000).

[621] M. Valencia, J. Martinerie, S. Dupont, and
M. Chavez, Dynamic small-world behavior in func-
tional brain networks unveiled by an event-related
networks approach, Phys. Rev. E 77, 050905(R)
(2008).

[622] C. Bandt and B. Pompe, Permutation entropy - a
complexity measure for time series, Phys. Rev. Lett.

80

88, 174102 (2002).

[623] B. L. Hao, Elementary Symbolic Dynamics and
Chaos in Dissipative Systems. (World Scientific, Sin-
gapore, 1989).

[624] C. Daw, C. Finney, and E. Tracy, A review of sym-
bolic analysis of experimental data., Rev. Sci. In-
strum. 74, 915 (2003).

[625] V. Martinez, F. Berzal, and J.-C. Cubero, A survey
of link prediction in complex networks, ACM Com-
put. Surv. 49, 1 (2016).

[626] E. A. Enns, J. J. Mounzer, and M. L. Brandeau,
Optimal link removal for epidemic mitigation: A two-
way partitioning approach, Math. Biosci. 235, 138
(2012).

[627] A. K. Nandi and H. R. Medal, Methods for removing
links in a network to minimize the spread of infec-
tions, Comput. Oper. Res. 69, 10 (2016).

[628] S. He, S. Li, and H. Ma, Effect of edge removal
on topological and functional robustness of complex
networks, Physica A 388, 2243 (2009).

[629] L. Yang and J. Jiang, Impacts of link addition and
removal on synchronization of an elementary power
network, Phys. A: Stat. Mech. Appl. 479, 99 (2017).

[630] S. Karthika, R. Geetha, and S. Bose, Whom to re-
move? breaking the covert network, in 2018 Fifth
International Conference on Advanced Computing
(ICoAC) (IEEE, 2013) pp. 348-354.

[631] S. Fortunato, Community detection in graphs, Phys.
Rep. 486, 75 (2010).

[632] L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and
J. Saraméki, Temporal motifs in time-dependent
networks, J. Stat. Mech.: Theory Exp. 2011, P11005
(2011).

[633] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F.
Mendes, K-core organization of complex networks,
Phys. Rev. Lett. 96, 040601 (2006).

[634] O. Sporns, The non-random brain: efficiency, econ-
omy, and complex dynamics, Front. Neuroinform. 5,
5 (2011).

[635] H.-J. Park and K. Friston, Structural and functional

brain networks: From connections to cognition, Sci-

ence 342, 1238411 (2013).

T. Rings and K. Lehnertz, Distinguishing between

direct and indirect directional couplings in large os-

cillator networks: partial or non-partial phase anal-

yses?, Chaos 26, 093106 (2016).

W. Mader, D. Feess, R. Lange, D. Saur, V. Glauche,

C. Weiller, J. Timmer, and B. Schelter, On the de-

tection of direct directed information flow in fMRI,

IEEE J. Sel. Top. Sign. Proces. 2, 965 (2008).

M. Jalili and M. G. Knyazeva, Constructing brain

functional networks from EEG: partial and unpartial

correlations, J. Integr. Neurosci. 10, 213 (2011).

[639] D. Kugiumtzis, Direct-coupling information mea-
sure from nonuniform embedding, Phys. Rev. E 87,
062918 (2013).

[640] D. Kugiumtzis, Partial transfer entropy on rank vec-
tors, Eur. Phys. J.-Spec. Top. 222, 401 (2013).

[641] R. Ramb, M. Eichler, A. Ing, M. Thiel, C. Weiller,
C. Grebogi, C. Schwarzbauer, J. Timmer, and
B. Schelter, The impact of latent confounders in di-

[636]

[637]

[638]


https://doi.org/10.1038/20676
https://doi.org/10.1103/PhysRevE.77.050905
https://doi.org/10.1103/PhysRevE.77.050905
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1016/j.physa.2009.02.007
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.3389/fncom.2011.00005
https://doi.org/10.3389/fncom.2011.00005
https://doi.org/10.1126/science.1238411
https://doi.org/10.1126/science.1238411
https://doi.org/10.1063/1.4962295
https://doi.org/10.1142/S0219635211002725
https://doi.org/10.1103/PhysRevE.87.062918
https://doi.org/10.1103/PhysRevE.87.062918
https://doi.org/10.1140/epjst/e2013-01849-4

rected network analysis in neuroscience, Phil. Trans.

R. Soc. A 371, 20110612 (2013).

T. Zerenner, P. Friederichs, K. Lehnertz, and

A. Hense, A Gaussian graphical model approach to

climate networks, Chaos 24, 023103 (2014).

B. Kralemann, A. Pikovsky, and M. Rosenblum, Re-

constructing effective phase connectivity of oscillator

networks from observations, New J. Phys. 16, 085013

(2014).

A. Papana, C. Kyrtsou, D. Kugiumtzis, and C. Diks,

Detecting causality in non-stationary time series us-

ing partial symbolic transfer entropy: Evidence in

financial data, Comput. Econ. 47, 341 (2016).

T. Rings, R. Wrede, and K. Lehnertz, Precursors

of seizures due to specific spatial-temporal modifica-

tions of evolving large-scale epileptic brain networks,

Sci. Rep 9, 10623 (2019).

S. Lozano, A. Arenas, and A. Sanchez, Mesoscopic

structure conditions the emergence of cooperation on

social networks, PLOS ONE 3, 1892 (2008).

[647] J. Reichardt, R. Alamino, and D. Saad, The inter-

play between microscopic and mesoscopic structures

in complex networks, PLOS ONE 6, 21282 (2011).

M. G. Pala, S. Baltazar, P. Liu, H. Sellier, B. Hack-

ens, F. Martins, V. Bayot, X. Wallart, L. Des-

planque, and S. Huant, Transport inefficiency in
branched-out mesoscopic networks: An analog of the

braess paradox, Phys. Rev. Lett. 108, 076802 (2012).

J. Tacovacci, Z. Wu, and G. Bianconi, Mesoscopic

structures reveal the network between the layers of

multiplex data sets, Phys. Rev. E 92, 042806 (2015).

G. St-Onge, V. Thibeault, A. Allard, L. J. Dubé, and

L. Hébert-Dufresne, Social confinement and meso-

scopic localization of epidemics on networks, Phys.

Rev. Lett. 126, 098301 (2021).

Z. Jin, Q. Guan, and Y. Duan, Microscopic, meso-

scopic, and macroscopic structural correlations be-

tween the international energy “investment—trade”
networks based on network motifs, Front. Energy

Res. 11, 1203102 (2023).

[652] Q. F. Lotito, F. Musciotto, A. Montresor, and
F. Battiston, Hyperlink communities in higher-order
networks, J. Complex Netw. 12, cnae013 (2024).

[653] G. Son, M. Ha, and H. Jeong, Hidden multiscale
organization and robustness of real multiplex net-
works, Phys. Rev. E 109, 024301 (2024).

[654] A. Santoro, F. Battiston, and G. Petri, Higher-order

organization of multivariate time series, Nat. Phys.

19, 221 (2023).

M. R. R. Tabar, F. Nikakhtar, L. Parkavousi,

A. Akhshi, U. Feudel, and K. Lehnertz, Revealing

higher-order interactions in high-dimensional com-

plex systems: A data-driven approach, Phys. Rev. X

14, 011050 (2024).

L. Gallo, R. Muolo, L. V. Gambuzza, V. Latora,

M. Frasca, and T. Carletti, Synchronization in-

duced by directed higher-order interactions, Com-

mun. Phys. 5, 263 (2022).

B. Arregui-Garcia, A. Longa, Q. F. Lotito, S. Meloni,

and G. Cencetti, Patterns in temporal networks with

higher-order egocentric structures, Entropy 26, 256

[642]

[643]

[644]

[645]

[646]

[648]

[649]

[650]

[651]

[655]

[656]

[657]

81

(2024).

[658] M. Timme and J. Casadiego, Revealing networks

from dynamics: an introduction, J. Phys. A 47,

343001 (2014).

L. Ricci, M. Castelluzzo, L. Minati, and A. Perinelli,

Generation of surrogate event sequences via joint dis-

tribution of successive inter-event intervals, Chaos

29, 121102 (2019).

M. Calderén-Juarez, I. B. Cruz-Vega, G. H.

Gonzalez-Gomez, and C. Lerma, Nonlinear dynam-

ics of heart rate variability after acutely induced

myocardial ischemia by percutaneous transluminal

coronary angioplasty, Entropy 25, 469 (2023).

T. Stankovski, T. Pereira, P. V. E. McClintock, and

A. Stefanovska, Coupling functions: Universal in-

sights into dynamical interaction mechanisms, Rev.

Mod. Phys. 89, 045001 (2017).

P. C. Ivanov, K. K. Liu, A. Lin, and R. P. Bartsch,

Network physiology: From neural plasticity to organ

network interactions, in Emergent Complexity from

Nonlinearity, in Physics, Engineering and the Life

Sciences (Springer, 2017) pp. 145-165.

A. Agarwal, L. Caesar, N. Marwan, R. Maheswaran,

B. Merz, and J. Kurths, Network-based identification

and characterization of teleconnections on different

scales, Sci. Rep. 9, 8808 (2019).

1. B. Gregersen, H. J. D. Sgrup, H. Madsen, D. Ros-

bjerg, P. S. Mikkelsen, and K. Arnbjerg-Nielsen, As-

sessing future climatic changes of rainfall extremes

at small spatio-temporal scales, Clim. Change 118,

783 (2013).

S. Sippel, N. Meinshausen, E. M. Fischer, E. Székely,

and R. Knutti, Climate change now detectable from

any single day of weather at global scale, Nat. Clim.

Change 10, 35 (2020).

X. Liu, Y. Huang, X. Xu, X. Li, X. Li, P. Ciais,

P. Lin, K. Gong, A. D. Ziegler, A. Chen, et al., High-

spatiotemporal-resolution mapping of global urban

change from 1985 to 2015, Nat. Sustain. 3, 564

(2020).

S. Zhou, B. Yu, and Y. Zhang, Global concurrent

climate extremes exacerbated by anthropogenic cli-

mate change, Sci. adv. 9, eabol638 (2023).

G. D’Agostino and A. Scala, Networks of networks:

the last frontier of complexity (Springer, Cham Hei-

delberg New York Dordrecht London, 2014).

[669] J. Gao, D. Li, and S. Havlin, From a single net-
work to a network of networks, Natl. Sci. Rev. 1,
346 (2014).

[670] K.-M. Lee, J. Y. Kim, S. Lee, and K.-I. Goh, Mul-
tiplex networks, in Networks of Networks: The Last
Frontier of Complexity, edited by G. D’Agostino and
A. Scala (Springer International Publishing, Cham,
2014) pp. 53-72.

[671] G. Menichetti, D. Remondini, P. Panzarasa, R. J.
Mondragon, and G. Bianconi, Weighted multiplex
networks, PLOS ONE 9, 1 (2014).

[672] K.-M. Lee, B. Min, and K.-I. Goh, Towards real-
world complexity: an introduction to multiplex net-
works, Eur. Phys. J. B 88, 1 (2015).

[673] F. Battiston, V. Nicosia, and V. Latora, The new

[659]

[660]

[661]

[662]

[663]

[664]

[665]

[666]

[667]

[668]


https://doi.org/10.1098/rsta.2011.0612
https://doi.org/10.1098/rsta.2011.0612
https://doi.org/10.1063/1.4870402
https://doi.org/10.1038/s41598-019-47092-w
https://doi.org/10.1103/RevModPhys.89.045001
https://doi.org/10.1103/RevModPhys.89.045001
https://doi.org/10.1007/978-3-319-03518-5_3
https://doi.org/10.1007/978-3-319-03518-5_3
https://doi.org/10.1371/journal.pone.0097857

challenges of multiplex networks: Measures and mod-
els, Eur. Phys. J.: Spec. Top. 226, 401 (2017).

[674] M. De Domenico, A. Solé-Ribalta, E. Cozzo,
M. Kivela, Y. Moreno, M. A. Porter, S. Gémez, and
A. Arenas, Mathematical formulation of multilayer
networks, Phys. Rev. X 3, 041022 (2013).

[675] M. De Domenico, More is different in real-world mul-
tilayer networks, Nat. Phys. 19, 1247 (2023).

[676] K. R. Hale, F. S. Valdovinos, and N. D. Martinez,

Mutualism increases diversity, stability, and function

of multiplex networks that integrate pollinators into

food webs, Nat. Commun. 11, 2182 (2020).

N. N. Chung and L. Y. Chew, Modelling singapore

covid-19 pandemic with a seir multiplex network

model, Sci. Rep. 11, 10122 (2021).

C. Leefmans, A. Dutt, J. Williams, L. Yuan,

M. Parto, F. Nori, S. Fan, and A. Marandi, Topolog-

ical dissipation in a time-multiplexed photonic res-

onator network, Nat. Phys. 18, 442 (2022).

M. Bardoscia, P. Barucca, S. Battiston, F. Caccioli,

G. Cimini, D. Garlaschelli, F. Saracco, T. Squartini,

and G. Caldarelli, The physics of financial networks,

Nat. Rev. Phys. 3, 490 (2021).

[680] M. Vaiana and S. F. Muldoon, Multilayer brain net-
works, J. Nonlinear Sci. 30, 2147 (2020).

[681] P. C. Ivanov and R. P. Bartsch, Network physiol-

ogy: mapping interactions between networks of phys-

iologic networks, in Networks of Networks: The last

Frontier of Complezity (Springer, 2014) pp. 203-222.

J. Yang, Z. Chen, R. Criado, and S. Zhang, A mathe-

matical framework for shortest path length computa-

tion in multi-layer networks with inter-edge weight-
ing and dynamic inter-edge weighting: The case of
the beijing bus network, china, Chaos Solit. Fractals

182, 114825 (2024).

Y. Liu, A. Li, A. Zeng, J. Zhou, Y. Fan, and Z. Di,

Motif-based community detection in heterogeneous

multilayer networks, Sci. Rep. 14, 8769 (2024).

[684] C. Berge, Hypergraphs: combinatorics of finite sets,
Vol. 45 (Elsevier, New York, 1984).

[685] T. Carletti, D. Fanelli, and S. Nicoletti, Dynami-

cal systems on hypergraphs, J. Phys.: Complex. 1,

035006 (2020).

R. P. Bartsch, K. K. Liu, Q. D. Ma, and P. C. Ivanov,

Three independent forms of cardio-respiratory cou-

pling: transitions across sleep stages, in Computing

in Cardiology 2014 (IEEE, 2014) pp. 781-784.

W. Klimesch, The frequency architecture of brain

and brain body oscillations: an analysis, Eur. J. Neu-

rosci. 48, 2431 (2018).

S. Boccaletti, P. De Lellis, C. del Genio, K. Alfaro-

Bittner, R. Criado, S. Jalan, and M. Romance, The

structure and dynamics of networks with higher or-

der interactions, Phys. Rep. 1018, 1 (2023).

Z. Gao, D. Ghosh, H. Harrington, J. Restrepo, and

D. Taylor, Dynamics on networks with higher-order

interactions, Chaos 33, 040401 (2023).

[690] Y. Zhang, M. Lucas, and F. Battiston, Higher-order
interactions shape collective dynamics differently in
hypergraphs and simplicial complexes, Nat. Com-
mun. 14, 1605 (2023).

[677]

[678]

[679]

[682]

[683]

[686]

[687]

[688]

[689)]

82

[691] M. Aguiar, C. Bick, and A. Dias, Network dynamics

with higher-order interactions: coupled cell hyper-

networks for identical cells and synchrony, Nonlin-

earity 36, 4641 (2023).

M. S. Anwar, G. K. Sar, M. Perc, and D. Ghosh, Col-

lective dynamics of swarmalators with higher-order

interactions, Commun. Phys. 7, 59 (2024).

C. Bick, T. Bohle, and C. Kuehn, Higher-order net-

work interactions through phase reduction for oscil-

lators with phase-dependent amplitude, J. Nonlinear

Sci. 34, 77 (2024).

G. Ferraz de Arruda, A. Aleta, and Y. Moreno, Con-

tagion dynamics on higher-order networks, Nat. Rev.

Phys. 6, 468 (2024).

[695] I. Iacopini, M. Karsai, and A. Barrat, The temporal

dynamics of group interactions in higher-order social

networks, Nat. Commun. 15, 7391 (2024).

C. Luo, Y. Qiang, and D. Zwicker, Beyond pairwise:

Higher-order physical interactions affect phase sep-

aration in multicomponent liquids, Phys. Rev. Res.

6, 033002 (2024).

G. Nicoletti and D. M. Busiello, Information propa-

gation in multilayer systems with higher-order inter-

actions across timescales, Phys. Rev. X 14, 021007

(2024).

P. K. Pal, M. S. Anwar, M. Perc, and D. Ghosh,

Global synchronization in generalized multilayer

higher-order networks, Phys. Rev. Res. 6, 033003

(2024).

[699] L. Neuhduser, R. Lambiotte, and M. T. Schaub, Con-
sensus dynamics on temporal hypergraphs, Phys.
Rev. E 104, 064305 (2021).

[700] L. Di Gaetano, F. Battiston, and M. Starnini, Perco-
lation and topological properties of temporal higher-
order networks, Phys. Rev. Lett. 132, 037401 (2024).

[701] L. Gallo, L. Lacasa, V. Latora, and F. Battiston,
Higher-order correlations reveal complex memory
in temporal hypergraphs, Nat. Commun. 15, 4754
(2024).

[702] A. Kirkley, Inference of dynamic hypergraph repre-
sentations in temporal interaction data, Phys. Rev.
E 109, 054306 (2024).

[692]

[693]

[694]

[696]

[697]

[698]


https://doi.org/10.1103/PhysRevX.3.041022
https://doi.org/https://doi.org/10.1016/j.physrep.2023.04.002

Auxiliaries

The contents of this thesis were thoroughly discussed with Professor Dr. Klaus Lehnertz and
Dr. Thorsten Ring throughout the course of my doctoral studies. The majority of the software
used for numerical simulations, data analysis, and visualization was developed in Python 2
and Python 3, utilizing packages such as numpy, scipy, pandas, matplotlib, and graph-tool,
among others. For image processing, the open-source software Inkscape was employed. I hereby
declare that this thesis is the result of my independent work, conducted in accordance with
the principles of good scientific practice. Only the sources and resources explicitly cited and
referenced have been used. All verbatim and non-verbatim quotations from other works have
been properly identified and attributed in line with academic citation guidelines. This thesis
has not been submitted, in whole or in part, for any previous examination or degree

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my doctoral supervisor,
Professor Dr. Klaus Lehnertz. The extraordinary support and selfless guidance Klaus has pro-
vided, both academically and personally, cannot be overstated. I have learned so much from him
— not only about physics but also about life. The many perspectives he shared have shaped me
as both a scientist and an individual. Klaus introduced me to this field, mentored me through-
out my academic journey, and created invaluable opportunities for me to attend conferences
and visit beautiful places, where I connected with inspiring people. Each lesson he imparted is
something I treasure deeply, and I could not have asked for a better group to belong to or a
more exceptional supervisor to guide me.

I would also like to extend my sincere thanks to the members and former members of the
neurophysics group, as well as my colleagues from the Department of Epileptology, particularly
Dr. Thorsten Rings and PD Dr. med. Randi von Wrede. You have all been not only excellent
research partners but also wonderful friends. Thank you for the insightful discussions, your
guidance, and your unwavering encouragement.

A special thank you goes to the younger members of the neurophysics group, Manuel Adams
and Max Potratzki, who lifted my spirits, especially during the final stages of my doctoral
studies. I am excited to see where your academic journeys take you.

I would not have been able to complete this thesis without the love and support of my
girlfriend, Saskia. She was my anchor during the toughest moments, bringing balance to my
emotions and calming my mind when challenges seemed insurmountable. Her steadfast presence
and love was my source of strength when I felt overwhelmed.

Lastly, and most importantly, I want to thank my parents, Andrea and Marco. No amount of
words could ever fully convey how deeply grateful I am for you both. This thesis is as much your
achievement as it is mine. Throughout my life, you have given me nothing but unconditional
love and encouragement in everything I pursued. The lessons you taught me, both through your
words and your actions, are the most valuable gifts I will ever receive. I appreciate everything
you have done and continue to do for me. Thank you from the bottom of my heart. I love you.

83



Appendix

The accepted manuscripts for the articles included in this cumulative thesis are appended in
the following.

84



www.nature.com/scientificreports

scientific reports

W) Check for updates

A straightforward edge centrality
concept derived from generalizing
degree and strength

Timo Brohl*2 & Klaus Lehnertz23=

Vertex degree—the number of edges that are incident to a vertex—is a fundamental conceptin
network theory. It is the historically first and conceptually simplest centrality concept to rate the
importance of a vertex for a network’s structure and dynamics. Unlike many other centrality concepts,
for which joint metrics have been proposed for both vertices and edges, by now there is no concept
for an edge centrality analogous to vertex degree. Here, we propose such a concept—termed nearest-
neighbor edge centrality—and demonstrate its suitability for a non-redundant identification of
central edges in paradigmatic network models as well as in real-world networks from various scientific
domains.

Complex network approaches have been repeatedly shown to provide deeper insights into structure and dynamics
of spatially extended complex systems in diverse areas of science' ™. In many natural and man-made networked
systems, access to the underlying coupling structure may be restricted or even impossible. Nevertheless, in such
cases can the system be described by an interaction network with vertices representing subsystems or elementary
units and edges representing interactions between them. This ansatz has been successfully applied e.g. in the
study of (functional) brain networks!?, climate networks!"!?, protein-protein interactions'®, gene interactions'?,
plant-pollinator interactions''¢, food-webs!’, or communication and social networks'®1°.

In order to further improve understanding and control of interaction networks, the identification of key
network constituents and a characterization of their importance for a network’s structure and dynamics is highly
relevant®*-?’. There are different concepts and a growing number of metrics—such as centralities—that allow
one to characterize the role of network vertices for structure and dynamics®®. There are by now, however, only
a few metrics for edge centrality. Many of them center around the concept of betweenness centrality?-*, other
make use of the concept of bridging®®~> or are based on the spectrum of the network’s Laplacian®*!. We have
recently introduced modifications of closeness and eigenvector centrality concepts for vertices to those for edges
and demonstrated that these edge centralities provide additional information about the network constituents
for various topologies*2.

The aforementioned joint centrality concepts for vertices and edges can be classified as path-based (between-
ness centrality C® and closeness centrality C) or degree/strength-based (eigenvector centrality CF). Interestingly,
there is by now no edge centrality concept analogous to the historically first and conceptually simplest vertex
centrality®’, namely vertex degree centrality, which is defined as the number of edges incident upon a vertex. In
case of a weighted network, the corresponding vertex strength centrality*** is defined as the sum of weights of
these edges. Here, we propose such an analogous edge centrality concept, which we termed nearest-neighbor
edge centrality CN. Using various paradigmatic network models, we illustrate this edge centrality concept and
investigate possible relationships to the other aforementioned edge centrality concepts. We will then apply the
novel concept to identify important edges in a commonly used benchmark model in social network analysis, in
a commuter network as well as in evolving epileptic brain networks.

Results and discussions

Joint centrality concepts for vertices and edges. Let us briefly recall and discuss the most commonly
used joint centrality concepts (betweenness centrality CB, closeness centrality CC, and eigenvector centrality CF)
for vertices and edges. We here consider binary or weighted, undirected and connected networks that consist of
sets of vertices VV and edges £, with V = |V|and E = |€|denoting the number of vertices and edges, respectively.

!Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn,
Germany. 2Helmholtz-Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16,
53115 Bonn, Germany. 3Interdisciplinary Center for Complex Systems, University of Bonn, Brihler StraRe 7,
53175 Bonn, Germany. “email: klaus.lehnertz@ukbonn.de
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We do not consider self-loops or parallel edges. Centrality concepts that are based on shortest paths require the
definition of “length” d;; of a path between vertices i and j. In a binary network, the length dj; of a shortest path
P between vertices 7 and j is the number of edges along this path. We define d;; := 0 as we do not consider self-
loops. In a weighted network, since an edge weight represents the strength of a connection between two vertices,
we consider a path to be shorter the stronger the connections along this path are. Consequently, we relate dj; of
path P between vertices i and j to the sum of the inverse weights of edges along this path*’. A shortest path can
be defined as the path between two vertices for which the sum of the inverse weights of edges along this path is
minimal*.

Betweenness centrality. With betweenness centrality C®, a network constituent is the more central the

more shortest paths pass through this constituent. Vertex/edge betweenness centrality (of vertex/edge k) can be
defined ag®*4647

B 2 qij (k)
Gl =52 "5 1)
i
where k € {1,...,V}, resp. k € {1,...,E}, {i,j} ell,...,V}, q,-j(k) is the number of shortest paths between
vertices i and j running through vertex/edge k, and Gj; is the total number of shortest paths between vertices i
and j. The normalization factor is F = (V — 1)(V — 2)in case of vertices and F = V(V — 1) in case of edges.

With this definition (Eq. 1), C® may assign disproportionately large centrality values to vertices with an
arbitrary and possible very low degree (at least 2) and a neighboring vertex of degree 1, as every shortest path
between the degree-1 vertex and every other vertex in the network has to traverse the vertex adjacent to the
degree-1 vertex. In a similar manner will an edge between a degree-1 vertex and the adjacent vertex be assigned
a disproportionately large centrality value. Apart from the normalization factor F, C2 and C2 are equally defined
and for the latter, one also considers—contrary to intuition—the shortest paths between all vertex pairs and not
between all possible pairs of edges in the network.

This of course has also the advanta§e of reducing computation time drastically when calculating edge
betweenness centrality. Furthermore, C* does not directly depend on the distribution of edge weights in the
network. It finds wide application and the concept yields distinct and non-redundant information about a net-
work in comparison with the other centrality concepts.

Closeness centrality. With closeness centrality CC, a constituent is the more central the shorter the paths
that connect this constituent to every other reachable constituent of the same type. Closeness centrality of vertex
k is defined as*:

V-1

CcEk) = =——,
fh = @
with (k, ) € {1,..., V}. Closeness centrality of edge k between vertices a and b can the be defined as*
E-1 E—-1
s (k) = =
D T R e 5
_ - S@a®
- Co@) +CEb)’

withk € {1,...,E}and (a, b,i) € {1,...,V}.

Closeness centrality is the only centrality concept that directly depends on the path structure in a network as
well as on the distribution of edge weights. The concept mostly finds application in network studies that model
some kind of information flow. Nevertheless, due to its definition, C¢ lacks applicability regarding networks with
disconnected components**°.

Eigenvector centrality. With eigenvector centrality C¥, a network constituent is central if its adjacent con-
stituents of the same type are also central. Eigenvector centrality CE of vertex®! or edge® k is defined as the kth
entry of the eigenvector v corresponding to the dominant eigenvalue /max of matrix M, which can be derived
from the eigenvector equation Mv = Av using the power iteration method:

1
Crelh) = 5— ;Mkz CreD- %)

In case of vertices, {k,I} € V and M denotes the adjacency matrix A €{0,1}V*V ofa binary network, with

A}y’ = 1if there is an edge between vertices k and /, and 0 otherwise. In case of a weighted network, M denotes
the weight matrix W& e RY*Y, with W,EY) denoting the weight of an edge between vertices k and /. In a binary
network, the degree k of vertex k is defined as the number of its neighbors (kg 1= > . A,(CV-)). Its weighted coun-
terpart is the strength s; := > W,EY). We define AL‘,? :=0Vkand WIEZ) :=0Vkwithk € {1,...,V}.

In case of edges, {k,I} € £ and M denotes the edge adjacency matrix A® ¢ {o, 1}E %E of o binary network,
with A ,5 = 1if edges k and [ are connected to a same vertex, and 0 otherwise. In case of a weighted network, M

denotes the weight matrix W(® e RE*F whose entries ngle) are assigned the average weight of edges k and [ if
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these edges are connected to a same vertex, and 0 otherwise. As above, we define A,(jc) :=0Vkand W,ii) =0Vk
withk € {1,...,E}.

Eigenvector centrality also presents with some limitations. Much like for closeness centrality, CE lacks appli-
cability to networks with disconnected components. Depending on the network structure, one might encounter
weight distributions that decrease exponentially with increasing degree. In this case most of the constituents will
be assigned centrality values close to zero and, therefore, the importance of the constituents may insufficiently
be quantified.

However, compared to C® and CC, CE is the only centrality concept based on spectral properties of the
(weighted) adjacency matrix. While the path-based concepts C® and C only indirectly consider the network as
a whole to identify shortest paths, the strength-based concept CE considers the structure of the total network in
a gradual but direct manner.

Nearest-neighbor edge centrality. With the concept of strength centrality, a vertex is the more central
the stronger the connections to adjacent vertices are. The strength (or strength centrality) of vertex k reads:

S e (v)
Cv(k) = Sk = ]Z ij > (5)

with (k,j) € {1,..., V} and the weight matrix element W,g‘.') (see above). Analogously the degree CP (k) of a
vertex k is defined as sum of adjacent vertices to vertex k. The concept on its own is limited to the total level of
involvement of a vertex in the network and does not take into account intrinsic properties of a vertex (as there
exist no such properties). Instead it considers an intrinsic property of edges connected to a vertex, namely the
edge weights. Moreover, it does not take into account the number of adjacent vertices, which has been described
as a main feature in Freeman’s centrality metrics®*. Aiming to derive a comparably simple and straightforward
definition of edge centrality, one naively could use the edge weight itself. This would give, however, no perspective
of the edges’ role in a network, as an edge weight has no direct relation to the network’ structure. Furthermore,
such an edge centrality would not represent an analogue to the degree/strength of a vertex. To achieve just that,
an edge centrality would have to depend on intrinsic properties of the two vertices connected by an edge. As
there is no intrinsic vertex property, we here resort to the vertices’ degrees/strengths to derive a ‘strength’-related
centrality concept for edges. We consider an edge to be more central the larger its weight and the more similar
and the higher the strengths of the vertices which are connected by that edge. For a binary network, we define
nearest-neighbor edge centrality CN of an edge k between vertices a and b as:

CP(a) +CPb) -2

N
k) = ;
O v —cowit ©
wherek € {1,...,E}and (a,b) € {1,...,V}.
Analogously, for a weighted network we define:
cs CS(b) -2
Nl = D TEO I )

CS(a) — CS(b)] + 1

wherek € {1,...,E}and (a,b) € {1,..., V}, and wi denotes the weight of edge k connecting vertices a and b.

The numerator of the fraction of Eq. 7 (Eq. 6) captures the ‘strength’ (‘degree’) of the edge, as it effectively
describes the sum of weights of adjacent edges (sum of adjacent edges)—edges that share a vertex. The denomi-
nator represents the difference of the strengths of the two vertices connected by the edge. Hence, an edge is the
more central the larger the weights of its adjacent edges are and the more symmetrical these edge weights are
distributed between the two vertices. We therefore define an edge to be more central if it is connected to vertices
that are both strongly connected in the network than an edge that is connected to one very strongly connected
vertex and one weakly connected vertex (e.g., an edge as one of many edges connected to a hub). Furthermore,
the weight of the edge itself contributes to its centrality. This compensates for the fact that even overall weakly
connected vertices, with possibly high degrees but low strength, can also be connected by a highly central edge.
Overall, nearest-neighbor edge centrality is independent of the network’s topology and size and is solely based
on local network characteristics. An additional normalization factor (ﬁ_z)) can be considered when aiming at
a comparison with other edge centrality concepts, since established eége centrality concepts (e.g., C2) are also
normalized with respect to the total number of vertices.

Comparison with other edge centralities. We begin by addressing the question whether our intro-
duced centrality concept provides non-redundant information about edges in weighted networks when com-
pared to other edge centrality concepts. To this end, we investigate paradigmatic network models with differ-
ent sizes V € {50, 100,200}, perform correlation analyses of edge ranks obtained with the different centrality
metrics, and investigate the normalized rank difference § = (rank™(Q) — rank®(2)) J/E = (1 — rank®(Q2))/E,
where €2 denotes the most important edge as identified with Cy ,and e € {B, C, E}. If the nearest-neighbor cen-
trality concept identifies the same edge as most important (rank 1) as the centrality concept we compare it to
(betweenness, closeness, eigenvector) , § will vanish.

We consider small-world networks®® (with rewiring probabilities p, € {0.01,0.1,0.2,0.3}), scale-free
networks™ (parameter of attachment m € {4, 6,10}), random networks>*** (with edge creation probabilities
pc € {0.3,0.5,0.7}), and fully connected networks, for each of which we generated 100 realizations. For each reali-
zation of these weighted networks, we draw weights from some distribution, and in the case of equal centrality
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Figure 1. Nearest-neighbor edge centrality provides non-redundant information about edges in paradigmatic
network models. Correlations (Pearson’s p) of edge ranks (top) and normalized rank differences § (bottom)
obtained with the different centrality metrics for the investigated network topologies and edge densities. Means
and ranges (lengths of error bars) obtained from 100 realizations of the network topologies. Different colors
encode pairs of edge centralities used for correlation analyses and analysis of normalized rank differences:
orange triangle—(Cy,Cf), purple circle— (C?,Cec), and green square—(Cy,Cf). Note that for scale-free networks
error bars are smaller than symbol size.

values (for a given centrality concept), we rank in the order of appearance. All networks are undirected and
connected, contain no self-loops and no multiple edges.

Figure 1 summarizes our findings for the aforementioned analyses with weights drawn from the uniform
distribution ¢/ (0, 1). We obtained similar findings for weights drawn from other distributions (Gaussian, Gumbel
with different locations of the mode). In general, we observe a wide range of correlation values (o € [0.0,0.8])
and these vary for different network topology as well as for different edge densities. We find overall highest
correlation values (0.7 < p < 0.8) for a comparison with CE which, however, is to be expected since both these
edge centralities strongly depend on the weight distribution of the edges that are adjacent to the edge under
investigation. For small-world and scale-free networks, we observe highest correlation values when comparing
with Cg', which may be related to path structure properties that are characteristic for these topologies: short-
cuts and bottlenecks. In case of the most important edge as identified with CY, we observe CS and C to yield
more similar ranks than C2. Based on the definitions of CY, C$ and CZ, similarities—especially in identifying
the most important edge—are to be expected. Nevertheless, the most important edge as identified with CX does
not coincide with the most important edge as identified with the other centrality concepts. Furthermore, we
observe very few concordances between central edges (up to rank 10) as identified with C)Y and those identified
with one of the other three centralities (data not shown). In case of small-world networks and weights drawn
from a Gumbel distribution with a location of the mode around 0.2, we observe highest concordance. Here, in
approx. 37% of realisations, CYY and CE identify the same most important edge. However, over all realizations, the
concordance rate between any edge from the top 10 ranking based on CY with any edge from the top 10 ranking
based on CE, CS or CE is less or equal 5%. Taken together, central edges identified with CLY are not assigned the
same rank when identified with C2, CE or C$, and are also not assigned a rank close to it.

Summarizing these findings, we conclude our novel centrality concept to provide non-redundant information
about network edges when compared to other edge centrality concepts.

Identifying important edges in real-world networks. We next demonstrate the utility of the pro-
posed edge centrality concept for understanding which edges are important in real-world networks. We here
focus on Zachary’s karate club network®, which is a commonly used benchmark model in social network analy-
sis, on a commuter network® -, and on evolving epileptic brain networks®-*2. We regard an edge with the high-
est centrality value as most important and the one with the lowest centrality value as least important. In the case
of equal centrality values, we rank in order of appearance.
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Figure 2. Key interactions in Zachary’s karate club network. Interactions identified with different edge
centrality concepts (edge closeness centrality CS; edge eigenvector centrality CE; edge betweenness centrality
C3; nearest-neighbor edge centrality CIY). Edge importance is encoded as line thickness and numbered vertices
represent the members of the club. The two factions into which the club split during the course of the study are
indicated by circles [the club instructor’s group (vertex 1)] and squares [the club administrator’s group (vertex
34)].

Zachary's karate club network. The network consists of 34 persons (vertices) whose interactions (78
weighted edges) have been carefully investigated over a period of three years. Shortly after Zachary finished his
research, the karate club split into two smaller groups. This was due to a conflict and disagreements between the
club’s instructor (vertex 1) and administrator (vertex 34) regarding the prices of karate lessons. This ultimately
resulted in the instructor’s leaving and launching a new club, taking about a half of the original clubs members
with him. The fission was to 97 % correctly predicted by Zachary based on his observations regarding social
interactions.

The conflict between the two individuals (instructor and administrator) was carried out on a much larger
social structure, with each individual trying to win as many students for their cause. As neither the instructor nor
the administrator necessarily had intensive relationships to each and every student, individual opinion formation
was based on much more complex social structure modeled by the network. Furthermore, the instructor and the
administrator had no direct interactions with each other and an exchange of information between them relied
on close intermediaries. Word of mouth, popular students, or specific relationships (bottlenecks) might be of
vital importance in this context. Thus it is essential to identify key interactions between individuals that very
possibly enabled the observed fission within the club. Figure 2 depicts these key interactions that we identified
with different edge centrality concepts.

With edge closeness centrality CS, we obtained a very narrow distribution of centrality values, which does
not allow a visual identification of key interactions. This can be generally explained by the fact that any vertex
in this rather small network is comparably close to every other vertex.

With edge eigenvector centrality CF, we identify edges with the highest centrality values to connect vertices
33 and 34 (the administrator and a close student of his) with many other vertices. Other arguably important
individuals, represented by vertices 1, 3, 9 and 14, are also connected via some few high-centrality edges, however,
much less than the ones observed around the hubs (i.e., vertices 33 and 34). Eigenvector centrality is closely
related to strength centrality and becomes almost indistinguishable from the latter in case of small networks.
Hence, it can be expected to observe key interactions as the high-centrality edges that connect the high-degree/
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Figure 3. Commuter traffic network of North Rhine-Westphalia (NRW). Numbered vertices represent the
rural and urban districts in NRW. Size of vertices represents their respective strength and thickness of edges
represents the amount of commuter traffic between them.

high-strength vertices (1, 33, and 34) or as those that connect other vertices (namely vertices 3, 9, and 14) to the
aforementioned vertices.

With edge betweenness centrality C2, many edges with comparably high centrality values connect vertex 1
(the instructor) to other vertices. Edges with highest centrality values, however, connect vertices 1 and 3, 3 and
33, as well as vertices 34 and 14. This can easily be understood since betweenness centrality is well suited to
identify bottlenecks in a network. The aforementioned high-centrality edges represent some of the very few key
interactions between the two parts of the network that resulted from the fission.

With nearest-neighbor edge centrality CIY, we expect edges to reflect key interactions if they very strongly
connect vertices that are equally densely integrated in the network and possibly in the two smaller groups of the
network. These edges can be regarded as ‘local’ bottlenecks, possibly also coinciding with ‘global’ bottlenecks.
Those local bottlenecks are edges that connect vertices 6 and 7, 5 and 11, as well as vertices 4 and 14. These edges
are located in the sub-network centered around the instructor. Edges connecting vertices 1, 2, and 33 with vertex
3 can be associated with a more global bottleneck, which in part could also be identified with CZ. The edge con-
necting vertices 2 and 3 has not been identified as important with C®, but appears to be most important using
CXN. This edge is to be associated with a larger bottleneck structure, being the path from vertex 2 to vertex 33,
traversing vertex 3. Hence, vertices 2, 3, and 33 appear to be the main mediators between the club’s instructor
and administrator.

The fact that CN highlights both, local and global bottlenecks in the karate club network distinguishes it from
CB. We conjecture that CY can aid in an improved characterization of the path structure in complex networks.

Commuter network of the German state North Rhine-Westphalia. The most populous state in
Germany is North Rhine-Westphalia (NRW) with approx. 18 million inhabitants living on an area of more
than 34,000 square kilometers. In addition to the German city-states, NRW is the most densely populated state,
and commuter traffic within NRW is enormous®. Studying the network of commuter traffic can greatly aid to
improve, e.g. understanding and control of spreading processes®”>**-%, As a most recent example, we mention
the spread of the corona virus SARS-CoV-2, with the urban district Heinsberg being one of the pandemic’s
origins in Germany.

For our analyses, we take the rural and urban districts in NRW as vertices of the commuter traffic network
(Fig. 3). We consider an edge to exist between two vertices if commuter traffic between them was recorded,
and the edge weight equals the average number of commuters traveling between two vertices on a day in 2017.

Figure 4 summarizes our findings that we obtained from applying the edge centrality concepts to identify
important commuter connections. Similar to Zachary’s karate club network, CS does not highlight any specific
connections since the distribution of edge weights is rather narrow. With C2, we observe a path between the
north-east and south-west of NRW to be most important. It traverses geo-economically centers and population-
dense districts, such as vertices 32 (Muenster), 12 (Essen), 10 (Dusseldorf) and 25 (Cologne). Interestingly
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Figure 4. Key connections in the commuter traffic network of North Rhine-Westphalia (NRW). Connections
identified with different edge centrality concepts (edge closeness centrality CS; edge eigenvector centrality C;
edge betweenness centrality C3; nearest-neighbor edge centrality CN). Numbered vertices represent the rural
and urban districts in NRW and edges indicate commuter traffic between them. Edge importance is encoded as
line thickness.

enough and even though spatially close, neither of these urban districts share a common border. The identified
important edges, however, spatially traverse approximately one other district and therefore would generally not
be considered as long-range connections.

With CE, particularly edges connecting to vertex 25 (Cologne) are highlighted. This is to be expected, as
Cologne—besides being the most densely populated city in NRW—also records the highest commuter volume
in NRW.

With CYY, we observe edges to be important that are far off the expected commuter centers of NRW, namely
the population-dense districts like vertex 25 (Cologne) as well as vertices in the Ruhr area. Certain peripheral
edges (near the borders of NRW) are identified as important: for example, the edge connecting vertices 47
(Steinfurt) and 4 (Borken). These two urban districts do neither have a large population density nor a high
commuter volume. The commuter traffic between them, however, is comparably large so that these two districts
could be interpreted as one large district. Similar observations can me made for edges that connect vertices 50
(Viersen), 31 (Moenchengladbach) and 24 (Krefeld), vertices 40 (Rhein-Erft Kreis), 41 (Rhein-Kreis Neuss) and
42 (Rhein-Sieg Kreis), as well as for the edge that connects vertices 8 (Duisburg) and 12 (Essen) and the edge
that connects vertices 19 (Herford) and 27 (Olpe).
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Figure 5. Brain dynamics during an epileptic seizure Top: invasive electroencephalographic recording of a
seizure from the left (upper half) and right brain hemisphere (lower half). Block B1 indicates the pre-seizure
phase; blocks B2 and B3 indicate the first and second half of the seizure (electroencephalographic seizure
onset and ending determined automatically’); block B4 indicates the post-seizure phase. Bottom: schematics
of sensors placed over the left and right temporal-lateral and temporal-basal neocortex and of bilateral
intrahippocampal sensors.

Evolving functional brain networks during an epileptic seizure. Epilepsy is widely accepted as a
large-scale network disease of the human brain®”!, and it is of utmost importance to not only identify central
network vertices and characterize their dynamics but also to identify and characterize central edges in evolving
functional brain networks. An improved characterization of time-dependent changes of centrality of network
constituents could advance understanding of seizure generation, spread, and termination as well as could aid in
the development of novel treatment options.

Here, we re-analyze evolving functional brain networks* that were derived from multichannel electroen-
cephalographic (EEG) data recorded from a subject with epilepsy prior to, during, and after a focal-onset seizure
(see Fig. 5). The subject had signed informed consent that the clinical data might be used and published for
research purposes. The study protocol had been approved by the ethics committee of the University of Bonn and
is accordance with the tenets of the Declaration of Helsinki.

Briefly, the EEG data were recorded from sensors placed on the cortex and within relevant brain structures
during the presurgical evaluation of the subject’s medically uncontrollable epilepsy. Evolving weighted functional
brain networks were derived by associating vertices with the sampled brain regions (sensors) and edges represent
the time-varying strength of interactions between pairs of brain regions. For the latter, a sliding-window approach
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Figure 6. Key interactions in evolving functional brain networks during an epileptic seizure. Interactions
identified with different edge centrality concepts (edge closeness centrality CS; edge eigenvector centrality

CZ; edge betweenness centrality C2; nearest-neighbor edge centrality CY). Vertices and edges projected onto a
schematics of implanted sensors shown in Fig. 5. Edge color encodes normalized mean centrality values for each
block (B1, - - ., B4). Vertices marked with X’ record from the clinically defined seizure onset zone, and grey-
colored vertices indicate EEG reference sensors (not included in analyses).

was pursued (consecutive non-overlapping windows of 2.5 s duration each; corresponding to 500 data points)
to calculate—in a time-resolved manner—the mean phase coherence R, which is an established data-driven
method for studying time-variant changes in phase synchronization in EEG time series. R is confined to the unit
interval (R = 1indicates fully synchronized systems) and is taken as an estimate for the strength of interaction
between a pair of brain regions. We refer the reader to Ref.* for further details.

In Fig. 6, we present our findings that we obtained from investigating edge centrality in the temporal sequence
of the weighted snapshot networks. Since centrality in such networks can vary strongly over time®*”>7, we parti-
tion the recording into four blocks (B1, - - -, B4) of equal duration. Each block contains the data from 13 consecu-
tive snapshot networks and in the following, we report aggregated centrality values for each block.

For the evolving functional brain networks prior to and after the seizure (blocks B1 and B4), three of the four
employed edge centrality concepts—namely CS, CF, and CN—yield qualitative similar findings. Edges connecting
vertices related to the right brain hemisphere and particularly those that connect to vertices associated with the
clinically defined seizure onset zone (located in the right brain hemisphere) excel with noticeably larger centrality
values than edges connecting vertices related to the left hemisphere as well as than edges connecting vertices in
both hemispheres. As with the other investigated real-world networks, we observe a rather peaked distribution
of CE values. Hence the differentiation between hemispheres is not as distinct as with CE or CI¥. With C5, we
observe only few edges with large centrality values. Prior to the seizure (block B1), these edges are confined to
the left brain hemisphere and to a large extent connect vertices that face the seizure onset zone. After the seizure
(block B4), C? highlights some edges in the left and right brain hemisphere.
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During the first half of the seizure (block B2), all concepts indicate high-centrality edges to connect vertices
in the left and in the right brain hemisphere and particularly vertices associated with the seizure onset zone as
well as its homologous regions in the opposite brain hemisphere. CS (and to a lesser extent also CF) addition-
ally highlights a larger number of high-centrality interhemispheric edges that dilutes during the second half of
the seizure (block B3). In contrast, with C2 the amount of high-centrality interhemispheric edges even slightly
increases during B3. CLY indicates high-centrality edges to connect nearby vertices in homologous regions in the
opposite brain hemisphere during B3.

Although the employed centrality concepts mostly indicate different edges as important (as expected),
our findings point to widespread, even interhemispheric interactions as highly relevant for seizure dynamics.
Although these findings need to be validated on a larger database, they indicate that characterizing important
edges in evolving functional brain networks can help to improve understanding of the complicated spatial-
temporal dynamics of epileptic seizures.

Conclusion

We introduced a novel edge centrality concept—nearest-neighbor edge centrality—that is defined in an analogous
manner as the well-known and widely used vertex degree/strength centrality. By investigating possible relation-
ships to other edge centralities (such as edge betweenness, edge closeness, and edge eigenvector centrality**4>46)
we could demonstrate the suitability of nearest-neighbor edge centrality for an identification of central edges
in paradigmatic network models as well as in real-world networks from various scientific domains. Despite the
expected conceptual similarities to either of the compared edge centralities, nearest-neighbor edge centrality
provides additional and non-redundant information about the role edges play in a network. Moreover, nearest
neighbor edge centrality can be computed much faster (up to a factor of 10) than path-based or edge-adjacency-
matrix-based edge centralities, since—by definition—it depends solely on the distribution of vertex strengths.

Generally, we consider our nearest-neighbor edge centrality concept to be advantageous particularly in those
situations were path-based or more global centrality concepts may have limited significance, e.g., for investiga-
tions of local spreading phenomena. The joint use of vertex degree/strength centrality and nearest-neighbor edge
centrality could help to improve understanding the role vertices and edges play in the larger networks and thus
to gain deeper insights into central but local network phenomena.

The definition of the nearest-neighbor edge centrality as proposed here is based on vertex strength and it
thus allows investigations of undirected and weighted networks. Nevertheless, extensions to directed as well
as to binary networks, to networks of networks”®, multigraphs’®, or hypergraphs’” can be achieved taking into
account the total or in- and out-degree/strength of vertices. Such extensions might even lead to a modification of
existing or formulation of novel concepts and measures that—in addition to degree-/strength distribution—also
include the distribution of nearest-neighbor edge centrality values, to achieve a more complete characterization
of a network.

Eventually, and with an eye on the analysis of real-world data, we expect new insights, by revisiting, extend-
ing and modifying network-based time-series analysis techniques such as visibility graphs’®. We are confident
that the nearest-neighbor edge centrality concept will help to improve characterization of networks through a
data-driven identification of important edges.

Data availability

The data for this work was taken from the following sources: The Zachary’s karate club network data was taken
from The KONECT Project (http://konect.cc/). The commuter traffic data was taken from data collected by the
Statistisches Landesamt NRW (https://www.landesdatenbank.nrw.de/link/statistikTabellen/19321—Statistik:
19321). The rest of the data may be made available, upon request to the authors.

Code availability

The code for the analysis was programmed using standard libraries in Python. All the calculations can be repro-
duced with the equations provided in the main text. Even so, the code used here is available upon request to
the authors.
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ABSTRACT

Constructing networks from empirical time-series data is often faced with the as yet unsolved issue of how to avoid potentially superfluous
network constituents. Such constituents can result, e.g., from spatial and temporal oversampling of the system’s dynamics, and neglecting
them can lead to severe misinterpretations of network characteristics ranging from global to local scale. We derive a perturbation-based
method to identify potentially superfluous network constituents that makes use of vertex and edge centrality concepts. We investigate the
suitability of our approach through analyses of weighted small-world, scale-free, random, and complete networks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0152030

Understanding complex dynamical systems such as climate and
brain profits from the network approach. Deriving networks
from measurements of the systems’ dynamics, however, can lead
to spurious indications of network properties, depending on the
employed sampling strategies and time-series analysis techniques
to define network constituents. This, together with limitations
in knowledge about the system’s actual structural organization,
calls for approaches to identify potentially superfluous network
constituents. Here, we present such an approach. It is based on
minuscule and elementary perturbations targeting single net-
work constituents. Constituents are deemed potentially superflu-
ous if the perturbations lead to no or only negligible changes of
network characteristics, covering the local to global scale. We test
our approach on various paradigmatic network models.

I. INTRODUCTION

Complex network approaches have been repeatedly shown to
provide deeper insights into the structure and dynamics of spatially
extended complex systems in diverse areas of science. In many nat-
ural and man-made networked systems, access to the underlying
coupling structure may be restricted or even impossible.'~'* Never-
theless, in such cases can the system be described by an interaction

network with vertices representing subsystems or elementary units
and edges representing interactions between them. This ansatz has
been successfully applied, e.g., in the study of (functional) brain
networks,”'’ climate networks,'>'* protein-protein interactions,"”
gene interactions,'® plant-pollinator interactions,'~"” food-webs,”’
or communication and social networks.*"**

When it comes to analyzing real-world complex systems, lack-
ing explicit knowledge of the structural organization of the dynam-
ical system under study is quite common. Hence, vertices of the
related interaction network are commonly associated with sen-
sors that are placed to sufficiently capture a subsystems’ dynam-
ics. Deriving edges from the system’s dynamics is usually based
on a data-driven quantification of interaction properties, namely,
strength, direction, and coupling function. Given that interactions
can manifest themselves in various aspects of the dynamics (ampli-
tudes, frequencies, phases, etc.), a large number of time series
analysis techniques are now available. The reliability of techniques,
however, may be influenced by the mostly unavoidable finite-
ness of noisy field data, which can lead to erroneous estimates
of interaction properties. Together with the fact that there is by
now no commonly accepted method to derive binary or weighted
(or weighted and directed) networks from interaction properties,
this represents a source for severe misinterpretations of network

3-30

properties.”
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Yet, these issues are influenced and preceded by a more general
problem: choosing the right number of sensors and placing them in
a meaningful way. Arrangement and placement of sensors is highly
non-trivial and most often leads to a spatial over- or undersam-
pling of a system. These issues translate to the presence of additional
and potentially superfluous constituents or the absence of poten-
tially relevant constituents and may cause severe misinterpretations
of network properties.”’~*> When investigating real-world systems,
aiming to gather as much information as possible is rather com-
mon practice but bears the risk of oversampling the system. Hence,
there is a strong need for methods that allow us to identify redun-
dant or superfluous vertices and edges. For edges, a vast plethora of
methods have been proposed,””~*” although their suitability contin-
ues to be matter of debate.”*~*' Interestingly, the issue of identifying
superfluous vertices has so far been addressed only rarely.’>*

We here propose a perturbation-based approach to identify
potentially superfluous network constituents (vertices and edges),
employing elemental and minuscule perturbations that directly tar-
get single constituents. With the premise that targeting constituents
of a potentially superfluous nature has little to no effect on the char-
acteristics of networks, exactly these are compared prior to and after
perturbation. We test the suitability of this method on weighted
small-world, scale-free, random, and complete networks.

Il. METHODS

There are several ways to perturb a network, with different
types of perturbation potentially leading to different outcomes.
Almost all perturbations, however, can be viewed as an accumula-
tion, superposition, or interplay of the following, straightforward,
and elementary perturbations:

1. vertex/edge removal: one or more constituents are removed
from the network. In the case of removing a vertex, its connected
edges are removed along with it. The removal of constituents
can have a significant impact on the network’s connectedness,
and it can lead to the fragmentation of the network into smaller
disconnected components;

2. vertex/edge addition: constituents are added to the network.
This can increase the network’s connectedness and can facilitate
the exchange of information or resources in different ways;

3. rewiring: an edge is randomly rewired, possibly leading to
changes in the network’s topology. Rewiring can alter the net-
work’s characteristics, especially path-structural aspects;

4. weight changes: the weight of an edge is altered, possibly influ-
encing local up to global network characteristics.

However, the influences of structurally minuscule perturbations
are hard to determine and even harder to control on the level
of the complex system. Previous research has shown that random
perturbations can have a major influence on very specific macro-
scopic network characteristics.*~*° Nonetheless, and especially when
it comes to the investigation of real-world systems, it remains
unclear, how on a general basis minuscule perturbations target-
ing single constituents change the respective networks. Thus far,
comparing networks is a notoriously difficult task, particularly for
networks of different sizes (and changes in network sizes often go
hand in hand with these perturbations), and there is no commonly
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accepted and sufficient way to do so.”>"* Hence, we can only focus
on network metrics* that, in total, describe the network somewhat
comprehensively (cf. Sec. IT B and Table I).

The principal idea behind our perturbation-based approach
now is that if the targeted perturbation of a network constituent
(cf. Sec. 11 C) does not alter network characteristics assessed with
the various metrics, or only to a small negligible extent, the targeted
constituent can be deemed potentially superfluous.

A. Employed perturbations

Of the above listed four elementary perturbations, only the first
two are universally applicable in any kind of network, independent
of its topology and definitions of edges (regarding weight, direction,
or multiple edges). Based on these, we further differentiate between
the following three perturbations that we will employ in the wake of
our perturbation-based method to identify potentially superfluous
constituents:

e vertex removal: a vertex v and its connected edges {v,j} are
discarded, with j denoting vertices adjacent to v;

e vertex cloning: a vertex v—that is already present in the net-
work—is duplicated, including its connected edges {v,j} by
adding a vertex v and adding the respective edges {v/,j}, with
j denoting vertices adjacent to v; cloned vertex v and clone v’ are
not directly connected;

e edge removal: an edge is discarded from the network.

Perturbations directly targeting a single vertex, hence, may
indirectly affect edges connected to the respective vertex in the
course of the perturbation.

B. Network metrics

We generally differentiate between global and local network
characteristics that are evaluated by network metrics (cf. Table I).
Global network metrics describe the network as a whole, often asso-
ciating a network characteristic with a single quantity. Local network
metrics focus on aspects of single network constituents (vertices
and edges) or groups of such. While some of these local metrics
might still depend on the composition of the network as a whole,
others merely depend on the direct neighborhood of the respective
constituent.

A network consists of a set of vertices ¥ (v; € ¥,i=1,...,V;
V=1|7]) and a set of edges (e, € &,n=1,...,E E=|&|) with
an edge connecting two vertices [e; = (v;,v;)]. The network can
be described by its adjacency matrix </ € {0,1}"*", with o/; = 1 if
edge e;; exists between vertices i and j, and .o7; = 0 otherwise. Com-
plementarily, for weighted networks, we define the weight matrix
W €[0,1]"Y, with #j; referring to the edge weight (strength of
interaction) between vertices i and j.

1. Global network metrics

Some metrics of networks describe certain aspects of the net-
work as a whole. This not only can allow the classification of network
topologies but also allows the comparison of other characteristics of
networks, such as network size, path-structure, degree-correlations,
robustness, and stability.
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TABLE I. Overview of global and local network characteristics and their respective quantifying metrics.

Characteristics Metrics
Global network Length of the longest shortest path between any pair of vertices in a network (Pseudo) diameter D
Average length of a path between any two vertices in a network Average shortest path length L
Extent to which vertices in the network tend to cluster together Global clustering coefficient G
Extent to which vertices with (dis-)similar properties are preferentially
connected among themselves Assortativity A
Stability of the network’s globally synchronized state Synchronizability S
Local Vertices Integration of a vertex in its direct neighborhood (binary network) Degree d
Integration of a vertex in its direct neighborhood (weighted network) Strength centrality C3
Extent to which a strongly integrated vertex is connected to other strongly
integrated vertices Eigenvector centrality CE
Extent to which a vertex can reach any other vertex in the network via
shortest paths Closeness centrality C¢
Extent to which a vertex connects otherwise distant regions in the network Betweenness centrality C2
Edges Integration of an edge in its direct neighborhood Nearest-neighbor centrality CY

Extent to which a strongly integrated edge is connected to other strongly
integrated edges
Extent to which an edge can reach any other edge in the network via
shortest paths
Extent to which an edge connects otherwise distant regions in the network

Eigenvector centrality CF
Closeness centrality C¢

Betweenness centrality C

The (pseudo) diameter D is the length of the longest shortest
path between any pair of vertices in a network. The length of a path
is chosen as the sum of the inverse of all edge weights on that path.

The average shortest path length L quantifies the average
length of a path v between any two vertices ({z,]} € ) in a
network,

L= Zzl 1//21
V(V—1)
The global clustering coefficient G quantifies to what extent

network vertices tend to cluster together. For a weighted network,
the global clustering coefficient is defined as

T
Zz;’:l [Wz]zl '

Assortativity A characterizes how vertices with (dis-)similar
properties (here: strength, being the sum of the weights of the
attached edges) are preferentially connected among themselves.”””!
To calculate A, we estimate the (Pearson) correlation coefficient
between the strengths of connected vertices,

A= ny(‘hy - axby)/aaabx

xy

G =

with x and y representing strength values and g,, representing the
fraction of edges that connect a vertex with strength x to a ver-
tex of strength y. Then, g, satisfies the sum rules: ny Gy =1,
Zy Gy = x> ), dxy = by. 0, and oy, are the standard deviations of
the distributions a, and b,,.

Synchronizability S of a network describes the stability of
its globally synchronized state.”””* We here characterize it by the
eigenratio S = Ay/A,. Ay denotes the largest eigenvalue and A, the
smallest non-vanishing eigenvalue of the network’s Laplacian matrix

Ly = 5,81 — Wy (8 is the Kronecker delta, s, denotes the strength of
vertex z; see below).

2. Local network metrics

The concept of centrality has been introduced in many dif-
ferent fields and contexts.”’ " The general idea is to quantify a
constituent’s role or importance in the larger network based on
certain characteristics, primarily focusing on the integration of a
constituent in the network due to specific aspects. Hence, cen-
trality metrics can be utilized to measure importance yielding an
importance ranking.">""’>

The degree of a vertex z is the sum of edges connected to this
vertex: d, = Zz‘;o <7,. Analogously, the strength (or strength cen-
trality) of a vertex is the sum of edge weights of all edges connected
to this vertex: s, = C3(2) = 3 %

Similarly, and in dependence of the edges adjacent con-
stituents, with nearest-neighbor centrality,”” an edge is considered
to be more central the larger its weight and the more similar and
the higher the strengths of the vertices which are connected by that
edge. Nearest-neighbor edge centrality of an edge z between vertices
a and b is defined as™

CS(a) + C3(b) — 2w,

N _
CO= @i+t ™

where w, = #;, denotes the edge weight and z € {1,...,E} and
(a,b) € {1, ..., V}. Hence, nearest-neighbor centrality can be con-
sidered as a strength-based edge centrality concept. Much like the
strength of a vertex, the nearest-neighbor centrality value of an edge
is only influenced by its adjacent constituents.

Eigenvector centrality considers the influence of a vertex/edge
(v/e) on the network as a whole. A constituent is regarded as central
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if adjacent constituents are also central. This centrality is defined
as(x\’,,—j

1
CE(2) = — > M CED.
max l

Here, Amax denotes the dominant eigenvalue of matrix M. In the
case of vertices, {z,1} € ¥ and M denotes the weight matrix %' €

[0, 1]V, with Vﬂzl(v) denoting the weight of an edge between ver-
tices z and I. We define V/Zf{") :=0Vzwithz e {1,...,V}. In case of
edges, {z,1} € & and M denotes the weight matrix #'© € [0,1]"*

whose entries Vﬂzl(e) are assigned the average weight of edges z and
1 if these edges are connected to a same vertex, and 0 otherwise. As
above, we define %f) := 0V z with z € {1,..., E}. The aforemen-
tioned definition is applied iteratively until eigenvector centrality
values remain stable. Eigenvector centrality can be considered as
a strength-based centrality concept, which, due to its recursive
definition, relates a constituent to all the other constituents in the
network.

Closeness centrality considers the distance between a con-
stituent and all other constituents in a network. A constituent with
a high closeness centrality is central as information from this con-
stituent can reach all other constituents in the network via short
paths, and so the constituent can exert a more direct influence over
the network. The closeness centrality of vertex z is defined as”

V-1
Zz zl

with (z,]) € {1,..., V} and where d is the length of the shortest
path between vertices z and J, calculated as the sum of the inverse
of all edge weights on the path. The closeness centrality of edge z
between vertices a and b can be defined as®®

Co2) =

o EZl_ E-d
e - - 1 1
> (di + dp) o + <o
C c
) @D
CS(a) +CE(b)
with z € {1,...,E} and (a,b,]) € {1, ..., V}. Hence, closeness cen-

trality can be considered as a path-based centrality concept, which
is, therefore, influenced by the network as whole.

Betweenness centrality is a measure of how frequently a short-
est path traverses a given constituent. A constituent with a high
betweenness centrality value is central because it acts as a bridge
between other parts of the network. Vertex/edge betweenness cen-
trality (of vertex/edge z) can be defined as™**%/>"°

qim (Z)
Glm ’

2

) ==

ve(2) F
I#m

where z € {1,..., V} (for vertices), respectively, z € {1,...,E} (for
edges), {l, m} € {1,...,V}, qm(2) is the number of shortest paths
between vertices I and m running through vertex/edge z, and G,
is the total number of shortest paths between vertices I and m.
Again, the length of a path is chosen as the sum of the inverse
of all edge weights on that path. The normalization factor is F
= (V= 1)(V —2) in the case of vertices and F = V(V — 1) in the
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case of edges. Betweenness centrality can be considered as a path-
based centrality concept, which is, therefore, influenced by the
network as whole.

In order to be able to compare results yielded by different cen-
trality concepts qualitatively, we introduce a centrality-value-based
ranking of the networks constituents. A vertex/edge is assigned
rank 1 if the largest centrality value is associated with it. The
rank increases in increments of 1 for the vertex/edge with second
largest centrality value, third largest centrality value, etc., yielding
an increasing rank as centrality values decrease. We abstain from
assigning two or more constituents the same rank and rank in order
of appearance for equal centrality values.

C. Perturbations of network constituents

For a given realization of a network (out of N, realizations),

e we estimate local and global network metrics (cf. Sec. II B) and
deduce an initial ranking of the network’s constituents based on
their centrality values. The latter allows us to identify a con-
stituent, based on its rank, in the different realizations;

e we iterate over all network constituents and

employ the respective perturbation (cf. Sec. I A) to the test if
the respective constituent y is potentially superfluous,
estimate local and global network metrics for this perturbed
network, and

quantify the influence of the perturbation by comparing local
and global network metrics prior and after the perturbation
(cf. Sec. 11 D).

D. Quantifying influences of network perturbations

In the case of the global network characteristics, we track the
perturbed constituent y throughout the realizations of a given net-
work via its respective rank r,(y) prior to perturbation (estimated
with C$ for vertices and with CY for edges). Generally, we expect the
structurally minuscule perturbations to also have a negligible impact
on any global network characteristics, if such does not strongly
depend on the number of vertices or the number of edges. We cal-
culate the average percentage change (from N, realizations) of each
metric resulting from the perturbation as

(ru(y))

Sy = Z 100 M"P

iu

Here, u € {D,L,G,A,S}, Miup denotes the global metric of
the unperturbed/perturbed network (of realization i) and r,(y)
€{l,...,V} (for vertices), respectively, r,(y) € {1,...,E} (for
edges) is the rank of the perturbed constituent (y) in the unper-
turbed network.

In the case of the local network characteristics and when
investigating a change in centrality values, it is important to rec-
ognize that there is no one true centrality concept. Each of the
centrality concepts employed here does focus on different topolog-
ical aspects of the network. However, we can generally divide the
centrality concepts into strength-based (nearest-neighbor centrality
and eigenvector centrality) and path-based (betweenness central-
ity and closeness centrality) concepts. Hence, it is not necessarily
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TABLE Il. Percentage increase/decrease (as well as standard deviation and maximum value) of global network characteristics under respective perturbation and averaged over
all constituents and all investigated networks ((e)). D diameter; L average shortest path length; G global clustering coefficient; A assortativity; S synchronizability.

Metrics

Perturbation (D) ¢ (8D) max (|8D]) (8L) o (SL) max (|8L]) (8§G) o (8G) max (|8G]) (SA) o (SA) max (|8A]) (8S) o (8S) max (|8S])

Vertex
removal —1.5 4.85 16.66 —0.81 1.47 2933 —0.19 2.01 1593 —1.01 12.44 39.63 —4.87 19.83 1047.42
Vertex
cloning —0.01 0.06 1.76 0.03 0.24 5.69 091 1.55 9.73 —0.37 13.74 53.97 —1.62 3.23 21.8
Edge
removal —0.56 2.02 9.46 —0.42 0.71 28.37 0.37 1.19 6.65 —0.39 4.6 2498 —1.72 873 1047.74

to be expected to observe perturbation-induced changes in the
distribution of strength-based centrality values, when observing a
perturbation-induced change in the distribution of path-based cen-
trality values (or vice versa). Nevertheless, in order for a targeted
constituent to be considered potentially superfluous, the respective
perturbation should not lead to meaningful changes in either dis-
tribution. For the employed perturbations, we would expect largely
comparable distributions of centrality values for a given network
prior to and after perturbation (independent of the centrality con-
cept). The values of a given centrality metric, for a given network
prior to and after perturbation, can, therefore, be considered to be
drawn from the same distribution, and we test this null hypothesis
using the Kolmogorov-Smirnov test. The null hypothesis is rejected
for p < 0.05. Hence, if the null hypothesis can be rejected for a cer-
tain perturbation, and with regard to any of the centrality concepts,
the perturbed network constituent cannot be considered potentially
superfluous under this perturbation. However opposite reasoning,
deeming a constituent as potentially superfluous is not valid if the
respective perturbation did not lead to significant changes between
the distributions of centrality values of the unperturbed and per-
turbed network. Still, it can be a further indication of the targeted
constituent being potentially superfluous. Nonetheless, the specific
local changes in the importance ranking of constituents can be abun-
dant and meaningful in a greater context, while the distribution of
centrality values is left unaltered.

In the case of the importance hierarchies, as deduced from the
centrality-based rankings of a networks’ constituents (vertices and
edges, respectively), we quantify the local impact of a perturbation
of constituent y by considering the following metric, calculating
the difference A e between the ranks’’ r,(z) and ,(2) of any con-
stituent z # y (z € ¥ for vertices (v) and z € & for edges (e)) for
the unperturbed and the perturbed network:

A;/e(z) = |Tu(Z) - T’P(Z)|,

where o € {S,E,C,B} denotes the centrality concept employed for the
ranking. A}, (z) — 0 can be considered as a further indication for
constituent y to be potentially superfluous. The median value of
A} . (2) is expected to be rather small.

Opverall, deeming a network constituent potentially superfluous
cannot be considered an absolute truth but is rather an assess-
ment of a number of indications based on observed changes in
network characteristics due to specific perturbations. The more
qualifying observations can be made regarding these network

characteristics—for the respective perturbation—the more consid-
erable is a potential superfluous nature of the targeted constituent.

We, thus, set three criteria that indicate a constituent targeted
by the respective perturbations to be considered potentially super-
fluous: negligible changes in a number of global network metrics,
negligible changes in the distributions of centrality values (based on
multiple centrality concepts), and negligible changes in the actual
importance hierarchies of the constituents.

With regard to potentially dependencies of the aforementioned
criteria, such as network topology, size and edge density, and, thus,
with an eye on potential applications in the analyses of real-world
systems, we investigate the suitability of these criteria analyzing
various networks with preset properties.

I1l. NETWORKS INVESTIGATED

When approximating real-world complex systems with net-
works, the latter are often associated with specific topologies (or
combinations of such). Independent of the underlying complex sys-
tems, these topologies can have quite distinct properties that may
not only influence network characteristics substantially but also can
induce superfluous constituents, at least in some of their realiza-
tions. As an example, it may naively be expected to find superfluous
information in a very dense and large network (e.g., large random
networks) while it is rather less likely to find such in sparse networks
(e.g., small-world or scale-free networks) or in networks with regular
structures (e.g., lattices or rings).

We here consider undirected, weighted, and connected net-
works without self-loops or multiple edges. In the following, edge
weights are drawn from a uniform distribution U(0,1). We inves-
tigate four different topologies and networks of different sizes (V €
{20, 50, 100, 200, 500, 1000}) and different edge densities. Each net-
work type of the following four topologies will be realized N, = 100
times:

e small-world networks™ with rewiring probabilities p € {0.01,
0.1,0.2,0.3} starting from a ring with m € {4,8} nearest-
neighbors being connected,

e random networks””* with edge creation probabilities g €
{0.05,0.1,0.2,0.3,0.5,0.7},

e scale-free networks® with the newly added vertices preferen-
tially attached to existing vertices of high degree with k e
{4, 6,10} edges, and

e complete networks.
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FIG. 1. Averages of percentage changes of (pseudo) diameter D), of global clustering coefficient § G, and of average shortest path length SL(w) under the respective
perturbation of a targeted constituent with a certain rank r,. Vertex ranks estimated with strength centrality and edge ranks estimated with nearest-neighbor centrality prior
to perturbation. Averages from 100 realizations of each of four exemplary network types (small-world network: V = 100, m = 4, p = 0.2—random network: V = 100,

q = 0.05—scale-free network: V = 100, k = 4—complete network: V = 100).

The edge density for a network is then defined as
=E Emax =E
o=E/ / (Z)

_ 2E
SV

IV. RESULTS

A. Impact of perturbations on global network
characteristics

For each of the three types of perturbation and predomi-
nantly independent of the network topology, we observe—overall
and on average—perturbation-induced changes of global network
metrics in the order of a few percent (<5%, cf. Table II). It is to

be mentioned that while, on average, pointing to rather negligible
changes, we do observe large maximum changes in a few, specific
networks—primarily observed for assortativity (up to ~50%) and
synchronizability (up to ~1000%)—the latter pointing toward the
existence of some rare but seemingly vital constituents regarding the
stability of a synchronized state particularly in random and complete
networks.

Furthermore, we do observe dependencies regarding the
importance r, of the constituent targeted by the perturbation, for
at least some of the global network metrics. Yet, these depen-
dencies vary regarding the network topology. Especially for those
network topologies that are less random and of more regular
structure (small-world and scale-free networks) the magnitude of
changes of global clustering coefficient and average shortest path
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length (but also of assortativity and synchronizability; data not
shown) depend on the importance r, of the removed/cloned con-
stituent. Generally, largest total changes of metrics can be observed
when removing/cloning most and least important constituents
(cf. Fig. 1).
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Surprisingly, we also observe not the removal of an edge but
the cloning of a vertex to have the smallest average impact on four
of the five global network metrics, even though removing a single
edge is arguably a smaller structural network perturbation. It can be
concluded that the employed network perturbations overall lead to

network types
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FIG. 2. Percentage of network realizations (color-coded) that show no significan
constituent of a given rank r, (estimated with strength/nearest-neighbor centrality,

t change in either of the centrality distributions (cf. Sec. || D) when removing/cloning a
in the respective network) (SW small-world network; SF scale-free network; R random

network; C complete network). Empty cells—due to differences in network size—are colored in gray.
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FIG. 3. Percentage of constituents with rank changes >6 of the maximum possible rank change in dependency of the rank of the constituent targeted by the respective

perturbation (rows). We here chose 6 > 5% as this amounts to A}, > 1 in the case of the smallest investigated networks with V = 20. Ranking is done via different

centrality concepts (color-coded). Data are averaged over 100 realizations of each of four exemplary network types (columns): small-world network (V = 100, m = 4,
p = 0.2), random network (V = 100, g = 0.05), scale-free network (V = 100, k = 4), and complete network (V = 100). The black horizontal line is for eye guidance only

and represents 5% of possible constituents showing a rank change A}, > 1. Similar relations are observed for 20 > V > 1000.

minuscule changes in global network characteristics. Nevertheless,
it is vital to realize that the observed changes can depend on the tar-
geted constituents’ importance. Our results indicate that particularly lowest
those constituents at neither end of the importance ranking can be
deemed potentially superfluous.

B. Impact of perturbations on local network
characteristics

The observed dependencies of changes of global network char-
acteristics regarding the targeted constituent’s importance r, and
the type of perturbation indicate that similar changes and depen-
dencies can be observed on smaller network scales as well. In the
case of local network metrics, we first investigate whether deviations
in the distribution of centrality values—for any of the four cen-
trality concepts (vertex and edge centralities, respectively)—can be
observed after perturbation (cf. Sec. II D). If centrality values from
an unperturbed and perturbed network can generally be considered highest
to be drawn from different distributions, the removed/cloned ver-
tex/edge can hence not be deemed potentially superfluous. Naively
viewed, it is still apparent that of the three perturbations, remov-
ing a single edge is the smallest structural network alteration, as o i . o
removing/cloning a vertex would also include the removal/cloning FIG. 4. Schematic depiction of changes in rank for each constituent (with impor-
of attached edges. Hence, it is generally to be expected that removing iz;r:]c;im:;?rchy prior to perturbation) in dependency on the rank of the targeted
an edge has not only the smallest impact but potentially no impact '

2.5

rank of targeted constituent
rank change in % of maximum rank

importance hierarchy
prior to perturbation

lowest
highest
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FIG. 5. Changes in rank for each constituent (with importance hierarchy prior to perturbation) in dependency on the rank of the targeted constituent in a small-world network

with V =100, m = 4, and p = 0.01.

at all on the distribution of centrality values compared to removing
or cloning a vertex.

Figure 2 shows that the respective perturbations did not lead
to a significant change in the distribution of centrality values in
the majority of investigated networks. We do, however, observe the
changes to strongly depend on network topology, type of pertur-
bation, and rank r, of removed/cloned constituent. In the case of
removing an edge, we only observe very few significant changes
whatsoever in small-world networks with small rewiring probability
(p = 0.01). Their almost regular structure explains why removing
only important edges still can lead to changes in the distribution
of centrality values in at least some of the realizations of networks
(<40%), as removing such an important edge from the network will
lead to large changes in the path-structure and, thus, will greatly
affect centrality values estimated with path-based centrality metrics.
Similar effects, which can be explained in an analogous way, regard-
ing these specific small-world networks (the 12 small-world network

types with p = 0.01) are observed when removing or cloning a
vertex. The more regular the network, the stronger is the alteration
of the regular structure when introducing or removing a vertex and
its respective edges. Furthermore, as the ranking in the case of the
vertices is done via the strength centrality, it can be deduced that the
more important the vertex, the larger is its integration in its direct
neighborhood within the network (cf. Table I). Therefore, the more
important the removed/cloned vertex, the larger the alteration of the
network’s structure.

In particular, the aforementioned small-world networks that
are large in size and have a high edge density (V € {500, 1000},
m = 8) show the largest amount of significant changes. This is, oth-
erwise, only observed for networks with largest possible edge den-
sities (fully connected networks) or comparably large random net-
works (V = 500). For these large and/or dense networks, cloning a
vertex will consequently result in adding a large amount of edges,
due to cloned vertex’ high degree. Likewise, removing a vertex
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FIG. 6. Same as Fig. 5 but for a random network with V = 100 and g = 0.05.

includes removing a large amount of edges in these networks. Both
perturbations, hence, result in large changes of the distributions of
centrality values.

In the case of the less regular and less dense networks (ran-
dom networks with V < 500, small-world networks with 0.01
< p < 1.0, scale-free networks), the observed changes in central-
ity values highly depend on which vertex was removed/cloned.
The amount of network realizations with significant changes in the
distributions of centrality values (regarding the respective pertur-
bation) decreases with increasing rank (decreasing importance) of
the targeted vertex. This once again is likely explained by the high
interconnectedness (high degree) of important vertices. Cloning the
most important vertex always—in 100 % of the realizations—led
to significant changes of the distribution of centrality values with
regard to the unperturbed network. Furthermore, and especially in
small-world networks, even cloning less important vertices much
more often led to significant changes than removing said vertices.

We can conclude that the structurally smallest perturbation,
namely, removing a single edge, has the overall smallest influence on

the distribution of centrality values and that removing a vertex less
often leads to significant changes than cloning said vertex. Further-
more, removing/cloning an important constituent has a stronger
impact than removing a less important constituent. Almost regu-
lar as well as dense and large networks are most strongly affected
by perturbations targeting vertices. Our results here, and in contrast
to those reported on in Sec. IV A, indicate that particularly those
constituents identified as less important prior to perturbation (high
rank), may qualify as potentially superfluous.

C. Impact of perturbations on importance hierarchy

Having observed mostly insignificant changes in the
distribution of centrality values, at first glance, points toward a
weak and minimal alteration of the network. Yet, the importance
hierarchies of network constituents might have changed greatly. As
a most extreme example: the constituents with respectively highest
and smallest centrality value prior to perturbation exchange their
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FIG. 7. Same as Fig. 5 but for a scale-free network with V = 100 and k = 4.

positions in the ranking as a result of the perturbation. A con-
stituent with little importance prior to perturbation is now, after the
employed perturbation, considered the most important constituent
and vice versa, while the distribution of centrality values remained
the same. Furthermore, changes in the importance hierarchies can
be used to identify if constituents that are directly affected by the
perturbation (e.g., removed or cloned) can be deemed potentially
superfluous. To this end, we investigate the changes in constituents
ranks due to the respective perturbations (cf. Sec. I1 D).

It can be deduced from Fig. 3 that, largely independent of the
employed perturbation, the changes in the importance hierarchies
depend on the constituent’s rank r, targeted by the perturbation.
Perturbing constituents with small rank (high importance) in com-
parison to those with high ranks (low importance) tends not only to
lead to greater rank changes of single constituents but also to more
constituents showing such changes (A}, > 0) overall. Widely inde-
pendent of the networks’ topologies, we observe that the smaller the
rank r, (the higher the importance) of the perturbed constituent, the

larger are the changes in the total ranking of the constituents. This
general relationship can be observed with each of the employed cen-
trality concepts, while the precise functional relationship depends
on multiple factors such as network size, network topology, type of
perturbation, and centrality concept.

The quantitative nature of these relationships regarding pertur-
bation and centrality concept is exemplary depicted in the Appendix
(cf. Figs. 5-8) for some network models, highlighting not only the
overall stronger effect on the ranking when targeting important
constituents but also the fact that the rankings of all the other con-
stituents are affected very distinctly depending on their respective
rank prior to perturbation (schematically depicted in Fig. 4). In par-
ticular, in the case of removing vertices, we observe that constituents
at either end of the importance hierarchy are affected less by this per-
turbation than constituents with median rank. Our results here are
in line with those reported in Sec. IV B and indicate that particularly
those constituents identified as less important prior to perturbation
can be deemed potentially superfluous.
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D. Concluding remarks

It is to conclude that while aspects such as the path-structure,
degree-correlations, robustness, and stability are, largely and on
average, left unaltered by the employed perturbations, we do observe
high dependency of changes of metrics 54 regarding the rank of the
constituent targeted by the perturbation. This points toward a pos-
sible intrinsic existence of potentially superfluous constituents in
the networks investigated here. Observing changes in the rankings
of constituents (as determined with different centrality concepts)
consolidates these findings. In particular, targeting constituents
with low rank (high importance) in comparison to targeting con-
stituents with high rank (low importance) led to greater changes
in these rankings and revealed dependencies regarding the network
topology.”” This shows that—arguably contrary to expectation—less
dense networks and also less regular networks (following no triv-
ial geometric arrangements such as a ring or a lattice) can contain
more potentially superfluous constituents than, for example, very
dense and even complete network. For the investigated networks,

we can conclude that the three criteria point toward constituents
of tendentially low (but not least) importance, to be potentially
superfluous.

V. DISCUSSION

We here proposed a perturbation-based method in order to
tackle the extensive problem of identifying potentially superfluous
network constituents. We formulated the premise that the instant
absence or additional presence of a potentially superfluous network
constituent should lead to negligible changes in network characteris-
tics only, which do not trivially depend on even the smallest change
in network size. Making use of minuscule and elemental perturba-
tions, targeting single constituents directly, we investigated whether
such perturbations lead to changes in global as well as local met-
rics that describe the investigated networks rather comprehensively.
The less changes we observe for the metrics when perturbing the
respective network constituent, the more this is an indication for
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this constituent to be of potentially superfluous nature. We formu-
lated three criteria, which can provide important information when
it comes to identifying potentially superfluous constituents.

It is generally to be expected that, independent of the inves-
tigated real-world system, certain network topologies may contain
superfluous constituents, simply due to their structural makeup.
Following this line of thinking, it is to be expected that the sheer
size and density of complete networks should provide a great possi-
bility for the existence of such potentially superfluous constituents.
Likewise, it is easy to understand that certain regular structures, e.g.,
a ring or a lattice with a large amount of nearest- and next-nearest-
neighbors connections, are more likely to contain potentially super-
fluous constituents than a ring/lattice with only nearest-neighbors
connections.

We could confirm that—even though generally shown to have
a small influence on local as well as global characteristics**~*'—the
here investigated effects of employed perturbations indeed largely
differ for different network topologies as revealed with the three
criteria. While we could show that size and edge density affect the
values of global network metrics, the here employed minuscule per-
turbations, on average, led to negligible changes in these values. On
the other hand, regular structures, whether it be a ring/lattice or a
complete network, were especially prone to be influenced in their
local characteristics.

Although in almost regular networks an importance hierar-
chy is dominated by edge weights, the said importance hierarchy
in less regular networks might be influenced by their distinct topo-
logical makeup (small-world or scale-free networks). This makes it
rather hard to get an intuitive feeling about the existence of poten-
tially superfluous constituents in these complex network topologies.
However, contrary to expectation, our perturbation-based approach
points to far less potentially superfluous constituents in complete
and regular networks than in more complex topologies such as
small-world and scale-free networks.

Nevertheless, independent of the networks’ topology, if the
perturbation targeted a more important constituent, the changes
in local network characteristics (distribution of centrality values
and centrality-based rankings) were also larger, in comparison
to targeting a less important constituent. This also shows that
a priori knowledge about the importance hierarchy of the net-
works’ constituents might not only be highly useful but in some
cases even necessary to end up with a satisfactory and somewhat
accurate representation of a real-world complex system. In addi-
tion, and especially in those cases for which a priori knowledge
about the network’s actual structure is either not accessible or
very limited, our perturbation-based approach can aid in identi-
fying potentially superfluous and likewise indispensable network
constituents.

Future studies should focus on employing the presented
approach to identify potentially superfluous constituents either in
networks with built-in superfluous constituents or in networks
constructed from empirical observations prone to have superflu-
ous constituents. Further investigations considering scenarios from
real-world issues (like noise contamination and other measurement
errors®’) might aid in a more accurate modeling of real complex
(dynamical) systems. This could mean taking into account not nec-
essarily the exact cloning of network constituents but a combination
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of cloning and perturbations regarding the edge weights of cloned
edges.
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APPENDIX: ADDITIONAL FIGURES

Changes in rank for each constituent (with importance hierar-
chy prior to perturbation) in dependency on the rank of the targeted
constituent in a small-world network (Fig. 5), a random network
(Fig. 6), a scale-free network (Fig. 7), and a complete network
(Fig. 8).
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Biological rhythms are natural, endogenous cycles with period lengths ranging
from less than 24 h (ultradian rhythms) to more than 24 h (infradian rhythms). The
impact of the circadian rhythm (approximately 24 h) and ultradian rhythms on
spectral characteristics of electroencephalographic (EEG) signals has been
investigated for more than half a century. Yet, only little is known on how
biological rhythms influence the properties of EEG-derived evolving functional
brain networks. Here, we derive such networks from multiday, multichannel EEG
recordings and use different centrality concepts to assess the time-varying
importance hierarchy of the networks’ vertices and edges as well as the
various aspects of their structural integration in the network. We observe
strong circadian and ultradian influences that highlight distinct subnetworks in
the evolving functional brain networks. Our findings indicate the existence of a
vital and fundamental subnetwork that is rather generally involved in ongoing brain
activities during wakefulness and sleep.

KEYWORDS

functional brain network, vertex centrality, edge centrality, circadian rhythm,
electroencephalographic signals

1 Introduction

While describing natural complex dynamical systems is a notoriously difficult endeavor, the
network approach (Boccaletti et al., 2006; 2014; Newman, 2018) has been repeatedly shown to
provide novel and important insights into such systems in various research areas ranging from
neurosciences (Bullmore and Sporns, 2009; Lehnertz et al., 2014) via genomics (Tyler et al., 2009)
and proteomics (Uetz et al., 2000) to ecology (Hegland et al., 2009; Olesen et al., 2011; Delmas
et al,, 2019; Halekotte and Feudel, 2020), climatology (Donges et al., 2009; Zhou et al.,, 2015), and
sociology (Onnela et al., 2007; Palla et al,, 2007). This broad applicability is not least explained by
the large manifold of network metrics, describing global aspects to local aspects in network terms,
which in principle can be directly related to the properties of the described system. Identifying key
network constituents is highly relevant when it comes to improving the understanding and
control of networks, as it allows us to gain insights about the importance hierarchy of its
constituents with respect to the network structure and dynamics. The characterization of a
constituent’s role in the network structure and dynamics can be achieved through different
concepts and a growing number of metrics such as centralities. Most of these concepts focus on
the description of vertices or groups of such [e.g., hubs (Newman, 2003), hub regions in the brain
(Stanley et al,, 2013; Chung, 2019), and k-core decompositions (Kong et al., 2019)], while only a
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few metrics assess the centrality of an edge. We recently proposed a
novel strength-based edge-centrality concept (Brohl and Lehnertz,
2022) and introduced modifications to vertex closeness and vertex
eigenvector centrality concepts yielding corresponding edge centrality
concepts (Brohl and Lehnertz, 2019). We demonstrated that these edge
centralities—together with edge betweenness centrality (Freeman, 1977;
Girvan and Newman, 2002)—provide additional information about the
network constituents for various topologies. These four centrality
concepts, while different in their definition, can be considered
complementary in the description of a constituent’s structural
integration in the network.

Many early studies assumed networks to be static; however, the
recent paradigm shift toward time-dependent (or evolving)
networks (Holme and Saramiki, 2012; Kiveld et al., 2014) allows
one to describe many systems more accurately. This particularly
holds true for biological networks, such as the brain, for which time
dependencies on different scales have been observed. Both
exogenous and endogenous biological rhythms are expected to
assert influences on the level of the network description (Kuhnert
etal., 2010; Lehnertz et al., 2017; Mitsis et al., 2020; Kurth et al., 2021;
Lehnertz et al,, 2021) and therefore on network metrics such as
centralities (Geier et al., 2015; Geier and Lehnertz, 2017; Lehnertz
et al., 2017; Lehnertz et al., 2021).

For more than 50 years, it has been known that the circadian
rhythm and ultradian rhythms impact electroencephalographic
(EEG) signals [see Lehnertz et al. (2021) for a recent overview].
Many former studies, however, were based on EEG recordings that
either assessed the dynamics of few brain regions only or/and
covered timescales ranging only from few seconds to hours.
Here, we extend the recent studies and observations (Spoormaker
et al., 2011; Chu et al., 2012; Park et al., 2012; Liu et al., 2015;
Farahani et al, 2021) and investigate how biological rhythms,
particularly the circadian rhythm (with a period length of
approximately 24 h), influence the importance hierarchies of the
constituents of evolving functional brain networks. Therefore, we
focus on both the networks’ vertices that are associated with the
sampled brain regions and networks’ edges that represent time-
evolving interactions between brain regions.

2 Materials and methods

2.1 Data

We analyzed electroencephalographic signals obtained from eight
subjects (three females, age 19-81 years) with (five subjects) and
without disorders (three subjects) of the central nervous system
(CNS). All subjects were under stable CNS medication (if taking
any). The EEG data were recorded continuously over 4 to 8 days
from 19 electrodes placed according to the 10-20 EEG system (Klem
et al,, 1999) (Cz served as a physical reference) with a sampling rate of
256 Hz, using a 16-bit analog-to-digital converter (Micromed, S.p.A.,
Mogliano Veneto, Italy). Data were band-pass filtered offline
(bandwidth: 1-45 Hz; fourth-order Butterworth characteristic), and a
notch filter (third order) was used to suppress contributions at the line
frequency (50 Hz). Data used in this study were visually inspected to
remove segments containing strong artifacts (e.g., subject movements or
amplifier saturation).
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2.2 Deriving evolving functional brain
networks

Time-dependent, fully connected, weighted functional brain
networks were constructed through a time-resolved synchronization
analysis of an EEG recording (Mormann et al., 2000; Osterhage et al.,
2007; Kuhnert et al., 2010; Goodfellow et al., 2022) to track the changes
in the importance hierarchies of network constituents (Geier and
Lehnertz, 2017; Rings et al, 2019; Fruengel et al, 2020) possibly
related to biological rhythms (Lehnertz et al, 2021). To perform
this, network vertices were associated with brain regions whose
dynamics were sampled by electrodes and network edges were
associated with time-varying estimates of the strength of interactions
between the dynamics of the pairs of those brain regions, regardless of
their anatomical connections. As an estimate of the strength of the
interaction, we employed mean phase coherence (R) (Mormann et al.,
2000), which assesses the degree of synchronization between two phase
time series (R = 1 indicates fully phase-synchronized brain regions, and
R = 0 indicates no phase synchronization). A non-overlapping sliding
window with a duration of 20 s (5,120 data points) was used to calculate
R in a time-resolved manner. The chosen duration of a window can be
considered a compromise between the required statistical accuracy for
the calculation of R and the approximate stationarity within the
window’s length (Lehnertz et al, 2017). For each window, we
derived the instantaneous phase time series via the Hilbert
transform of the EEG time series. An important property of this
analytic signal approach (particularly in the case of two or more
superimposed oscillatory components) is that the instantaneous
frequency relates to the predominant frequency in the Fourier
spectrum (Boashash, 1992). The predominant frequency may be
subjected to fluctuations in the EEG time series. Thus, the
can vary rhythmically around the
predominant frequency, which results in spurious estimates of the

instantaneous  frequency
instantaneous phase. By taking the temporal average, these effects can
be reduced. From an electrophysiological point of view, we consider it
more reasonable to look adaptively (e.g., via the Hilbert transform) at
interactions between predominant rhythms in EEG rather than to look
at interactions in some a priori fixed frequency bands (e.g., via wavelet
transform) for which there is no power in the time series (Osterhage
et al., 2007; Frei et al., 2010). Following these steps of analysis for each
window, we end up with a temporal sequence of snapshot functional
brain networks, each of which consists of V vertices and E edges
and can be described by a weight matrix W € [0, 11"V, where Wij
refers to the edge weight (strength of the interaction) between
vertices i and j. The number of actual windows per subject
depended on the respective recording duration, thus yielding
approximately 9,500-26,000 windows.

2.3 Estimating the importance of network
constituents

In order to further investigate the temporal sequence of snapshot
functional brain networks, different approaches may be adopted.
Estimating distance or (dis-)similarity between two networks might
be one such approach, although finding suitable distance metrics still
remains a challenge (Mheich et al., 2020). Another approach consists of
the so-far insufficiently studied concept of multilayer networks (De
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Domenico, 2017). Yet, due to some fundamental limitations, a
meaningful interpretation of multilayer brain networks remains to
be explored (Buldu and Papo, 2018). Therefore, here, we pursue the
investigation of the time series of networks’ characteristics (Lehnertz
etal, 2014; 2017) and utilize the following centrality metrics to estimate
importance of each network’s vertices and edges.

Strength centrality of a vertex i is the sum of the weights of all
edges connected to this vertex:

\4
Ci) =Y Wy (1)
j=0

The higher the vertex’s degree/strength, the more central it is considered
to be. A related metric for edges is nearest-neighbor centrality, which
considers an edge to be more central when its weight is larger and the
strengths of the vertices that are connected by that edge are more similar
and higher. Nearest-neighbor centrality of an edge k between vertices a
and b is defined as follows (Brohl and Lehnertz, 2022):

CS(a) +CS (b) - 2wy

S _
=@ b1

Wr» (2)

where k € {1,...,E}, (a, b) € {1, ..., V}, and wr = Wy, denotes the
weight of edge k connecting vertices a and b. Similar to strength
centrality of a vertex, nearest-neighbor centrality of an edge is only
influenced by its adjacent constituents. Hence, vertices (brain regions)
and edges (interactions between pairs of brain regions) that have high
C® values are largely interconnected with the neighboring vertices and
edges. When structurally viewed, these neighboring constituents would
be located in either the same areas of the brain or an adjacent area; from
a functional perspective, they might be associated with any area of the
brain. Hence, constituents with high C° values are highly interconnected
within the functional network, although not necessarily allowing a
structural interpretation.

Eigenvector centrality considers the influence of a vertex/edge
on the network as a whole, where a vertex/edge is considered central
if the vertex/edge adjacent to it is also central, and it is defined as

1
Amax

Co(i)=— ) M; Cy (D). (3)
]

In case of vertices, (i, ) € {1, ..., V} and M denotes the weight matrix
WM e 10,11V, where Wi(lv) denotes the weight of an edge between
vertices i and . We define Wi(iv) :=0Viwithi € {I,...,V}. In the case
of edges, (i, [) € {1, ..., E} and M denotes the weight matrix
W ¢ [0,11%F, whose entries Wi(le) are assigned to the average
weight of edges i and I, if these edges are connected to the same
vertex, and 0 otherwise. As mentioned previously, we define Wl-(ie) 1=
0Vi with ke {l,...,E}. Equation 3 is applied iteratively until
eigenvector centrality values remain stable. Hence, -eigenvector
centrality can be considered a strength-based centrality concept,
which, due to its recursive definition, relates a vertex/edge to all the
other vertices/edges in the network. Similar to strength/nearest-neighbor
centrality, constituents with high C® values are gradiently stronger
connected to closer constituents than to those that are far off. Again,
distance-related descriptions, such as “close” or “far-off,” relate to the
functional network and, hence, do not necessarily allow a structural
interpretation, meaning constituents with large C® values are highly
connected to the functional network in a rather general sense. This high
inter-connectedness refers to many and/or possibly strong interactions
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with constituents either associated with the same brain area or possibly
with any other area.

Closeness centrality considers the distance between a vertex/
edge and all the other vertices/edges in the network. A vertex/edge
with high closeness centrality is considered central as information
obtained from this vertex/edge can reach all the other constituents in
the network via short paths and so the vertex/edge can exert a more
direct influence on the network. Closeness centrality of vertex k is
defined as (Bavelas, 1950)

V-1
Zmdﬂm,

where (n,m) € {1,...,V} and d,,, represents the length of the shortest
path between vertices n and m, which is calculated as the sum of the

CS(n) = (4)

inverse of all edge weights on the path. Closeness centrality of edge k
between vertices a and b can be defined as (Brohl and Lehnertz, 2019)

o . E-1 E-1
Ce () = Zi(dia +dp) o1 + 1
Cy(a)  CJ(b) (5)
C C
=(E- 1)75v (a)Cvéb) ,
C,(a)+C, (b)
where k € {1,...,E} and (a, b, i) € {1, ..., V}. Hence, closeness

centrality can be considered a path-based centrality concept, which
is therefore influenced by the network as a whole. High closeness
centrality points toward a constituent, which is associated with any
brain area that is functionally “close” to any other constituent
associated with any brain area. Hence, certain parts (with high
C) of certain brain areas interact strongly with many other parts in
the same area, while also interacting with many other brain areas.

Betweenness centrality is a measure of how frequently the
shortest path traverses a given vertex/edge. A vertex/edge with
high betweenness centrality is considered central because it acts
as a bridge between other brain regions. Vertex/edge betweenness
centrality (of vertex/edge i) can be defined as (Freeman, 1977;
Brandes, 2001; Girvan and Newman, 2002)

IOREPIE ©
n#m

where i€ {l,...,V}, ie{l,...,E}, and {m,m} € {1,...,V} qun(i)
represents the number of shortest paths between vertices n and m
running through vertex/edge i, and G,,,, represents the total number of
shortest paths between vertices n and m. The length of a path is
calculated as the sum of the inverse of all edge weights on that path.
The normalization factor is given as F = (V-1) (V-2) in the case of
vertices and F = V(V-1) in the case of edges. Hence, betweenness
centrality can be considered a path-based centrality concept, which is
therefore influenced by the network as a whole. Constituents with high
betweenness centrality are likely to be part of bottleneck-like structures
spanning between brain areas, both in a structural and functional sense.
In order to facilitate a qualitative comparision of the results
obtained with the different centrality concepts, we utilized centrality
value-based importance ranking of constituents (Liao et al., 2017). A
vertex/edge with the largest centrality value gets assigned to rank 1.
The rank increases in increments of 1 for the vertex/edge with the
second largest centrality value, third largest centrality value, etc.,
yielding an increasing rank as the centrality values decrease. This
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FIGURE 1

Exemplary observations: (A) temporal sequences of the importance of arbitrarily chosen vertices (here, FP2 and PZ) and edges (FP2—-PZ and T8-01)
estimated with 3 and C3, respectively. (B) Lomb—Scargle periodograms of sequences in (A). (C) Temporal evolution of the relative rank (color-coded) of
all network constituents (ant., anterior; post., posterior; ll, left-hemispheric interactions; rr, right-hemispheric interactions; lr, inter-hemispheric
interactions; white vertical lines depict recording gaps). Electrode contacts are displayed in the following descending order (top to bottom)

respectively: ant. — post.: Fpl, Fp2, F7, F3, Fz, F4, F8, T7, C3, C4, T8, P7, P3, Pz, P4, P8, O1, O2; ll: Fp1-F7, Fpl-F3, Fpl-Fz, Fpl-T7, Fpl-C3, Fpl-P7, Fpl-P3,
Fpl-Pz, Fpl-O1, F7-F3, F7-Fz, F7-T7, F7-C3, F7-P7,F7-P3, F7-Pz, F7-O1, F3-Fz, F3-T7, F3-C3, F3-P7, F3-P3, F3-Pz, F3-O1, Fz-T7, Fz-C3, Fz-P7, Fz-P3, Fz-
01, T7-C3, T7-P7, T7-P3, T7-Pz, T7-01, C3-P7, C3-P3, C3-Pz, C3-01, P7-P3, P7-Pz, P7-01, P3-Pz, P3-01, Pz-O1; rr: Fp2-Fz, Fp2-F4, Fp2-F8, Fp2-C4,
Fp2-T8, Fp2-Pz, Fp2-P4, Fp2-P8, Fp2-02, Fz-F4, Fz-F8, Fz-C4, Fz-T8, Fz-P4, Fz-P8, Fz-02, F4-F8, F4-C4, F4-T8, F4-Pz, F4-P4, F4-P8, F4-02, F8-C4,
F8-T8, F8-Pz, F8-P4, F8-P8, F8-02, C4-T8, C4-Pz, C4-P4, C4-P8,C4-02, T8-Pz, T8-P4, T8-P8, T8-02, Pz-P4, Pz-P8, Pz-O2, P4-P8, P4-02, P8-0O2; Ir:
Fpl-Fp2, Fpl-F4, Fpl-F8, Fpl-C4, Fpl-T8, Fpl-P4, Fpl-P8, Fpl-O2, Fp2-F7, Fp2-F3, Fp2-T7, Fp2-C3, Fp2-P7, Fp2-P3, Fp2-01, F7-F4, F7-F8, F7-C4, F7-
T8, F7-P4, F7-P8, F7-02, F3-F4, F3-F8, F3-C4, F3-T8, F3-P4, F3-P8, F3-O2, Fz-Pz, F4-T7, F4-C3, F4-P7, F4-P3, F4-O1, F8-T7, F8-C3, F8-P7, F8-P3, F8-
O1,T7-C4,T7-T8, T7-P4,T7-P8, T7-02, C3-C4, C3-T8, C3-P4, C3-P8, C3-02, C4-P7, C4-P3, C4-01, T8-P7, T8-P3, T8-01, P7-P4, P7-P8, P7-02, P3-
P4, P3-P8, P3-02, P4-01, P8-01, O1-02. (D,E) Fraction of the recording time during which a respective constituent was the most/least important. (F)

Average relative centrality values (C\f and Cz, respectively, normalized to the maximum value) over the recording time.

ranking can be further normalized, yielding a relative ranking with
the highest relative rank being 1 (most important) and the lowest
relative rank being 0 (least important). Hence, we can deduce an
importance hierarchy for the vertices and edges of each snapshot
functional brain network.

2.4 Characterizing the influence of
biological rhythms on the importance of
network constituents

The aforementioned steps of analysis provide us with a temporal

sequence of vertex/edge importance hierarchies of an evolving
functional brain network and enable the investigation of how
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biological rhythms impact this hierarchy. To this end, we proceed as
described in Lehnertz et al. (2021) and estimate the power spectral
densities [Lomb-Scargle periodogram (Press et al, 1989)] of the
respective temporal sequences. Eventually, we quantified the
influence of the circadian rhythm on each such sequence as the
portion of power for period lengths in the range of 20-28 h relative
to the total power in the range of 1-36 h. We refer to this ratio as P, in
the following sections.

3 Results

We observe contributions of rhythms with period lengths of
approximately 24h (and to a lesser extent from rhythms of
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approximately 12h or shorter) in all temporal sequences of
importance (centrality values and ranks) of the respective
network constituents from each subject. However, and contrary
to the expectation, we found that these circadian and ultradian
contributions are more pronounced in the sequences of some
vertices and edges, ie., some brain regions, as well as the
interactions between their dynamics (see Figure 1).

Interestingly, we also observe that the strength of circadian
derived with

different centrality metrics. This is to be expected, at least to

contributions differs for temporal sequences
some extent, since the metrics highlight different structural
aspects of a network, such as the path-structure or strength
distribution. Nevertheless, these observations suggest that the
circadian rhythm affects these different structural aspects.
Figure 2 demonstrates that this rather unspecific relation
regarding path/strength-based centrality metrics for vertices and
edges can be observed in the data from all the investigated subjects.
Moreover, it becomes quite apparent from this figure that by
combining the results yielded by different centrality concepts,
almost all network constituents are impacted by the circadian
rhythm in all subjects.

Yet, it can also be observed that there is no trivial relation
between the influence of the circadian rhythm (estimated with P,,)
and a constituent’s importance (cf. Figure 3). Neither for the most
nor for the least important network constituents do we observe a
generally specific influence of the circadian rhythm (as well as for
ultradian rhythms (data not shown)).

Furthermore, we find that different centrality metrics identify
different constituents as the most important (on average over the
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whole observation time, in line with previous studies) (see, e.g.,
Kuhnert et al. (2012); Brohl and Lehnertz (2019); Brohl and
Lehnertz (2022); and the references therein). One needs to take
into account that the constituents deemed the most important on
average do not always coincide with the constituents that are
deemed the most important for the largest fraction of the
recording time (cf. Figure 4). Likewise, constituents, for which
the temporal profiles of importance are impacted strongly by the
circadian rhythm, neither coincide with those constituents that
are deemed the most important on average nor with those
constituents that are deemed the most important for most of
the recording time. This discrepancy cannot be traced back to the
ceiling or floor effects, resulting from the definitions of their
respective centrality metrics. Overall, we observe a rather
unspecific influence of primarily the circadian rhythm on
many structural aspects of network constituents: each brain
region (vertex) and even interactions between such regions
(edges) appear to be influenced, at least to some extent, in
their structural integration.

In order to improve on the findings achieved so far, we
investigate whether there exists a day/night pattern in the
temporal evolution of the importance of vertices and edges (cf.
Figures 1A, C). Interestingly, we observe that the largest differences
in the importance of network constituents between night- and
daytimes are related to very distinct brain areas along with their
interactions (see Figure 5). These vertices and edges not only exhibit
the largest change in centrality values when functional brain
networks transit from night- to daytimes but are also further
identified as the most important constituent on average and for
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Influence of the circadian rhythm (P,4; color-coded) and the average importance over the recording time (the size of vertices/edges; the larger they

are, the more important they are). Importance estimated with betweenness centrality C®, closeness centrality C°, eigenvector centrality Ct, and strength/
nearest-neighbor centrality C°. Networks are depicted in the layout of the 10-20 EEG system (Klem et al,, 1999). Examples a and b (left and middle
columns) represent the observed opposing extreme cases from two subjects, either showing an overall little (example a) or strong (example b)
influence of the circadian rhythm. The right column shows the group average over all the subjects.
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the largest fraction of the total recording time. While betweenness ~ temporoparietal ~vertices and edges. Both strength-based
centrality highlights bilateral frontotemporal vertices and edges,  centralities (eigenvector  centrality —and nearest-neighbor
closeness  centrality  highlights the predominantly left  centrality) predominantly highlight the left temporoparietal and
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(A) Fraction of the recording time during which a network constituent is the most important (color-coded) and the average relative rank of the
constituent (size-coded). Importance assessed with betweenness centrality C®, closeness centrality cc, eigenvector centrality Ct, and strength/nearest-
neighbor centrality C°. Middle column: Absolute night—day differences in the fraction of the recording time during which the respective constituent is the
most important (color-coded, green/purple indicating a higher fraction of the recording time during night/day) and the absolute value of the
absolute difference in the constituents’ relative rankings (size-coded). (B) Absolute night—day difference in constituents’ relative rankings (color-coded,
red/blue indicating a higher relative ranking during night/day) and the absolute value of the absolute difference in the fraction of the recording time during
which a network constituent is the most important (size-coded). The respective data are averaged over all subjects and their respective night/day periods.

left parietooccipital vertices and edges. Independent of the employed ~ important during daytime (here, 12:00 to 16:00 h). In contrast,
centrality metric, temporoparietal network constituents (vertices T7,  during nighttime (here, 24:00 to 4:00 h), the importance shifts to
T8, and P7 as well as their associated edges) are identified as the most ~ parietal network constituents (vertices P3, P4, and PZ as well as their
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associated edges). Apart from this night-daytime-related spatial
shift of the importance of a few network components, our
findings also point toward a key arrangement of connected
vertices and edges, relating to a subnetwork that comprises
vertices T7, P7, P3 PZ, and P4 together with their associated
edges. This subnetwork, which is slightly more dominantly
located on the left brain hemisphere, is possibly involved in
ongoing activities during wakefulness and sleep.

4 Discussion

We investigated how the circadian rhythm impacts the time-
dependent importance hierarchy of the vertices and edges of an
evolving functional brain network. We employed different path- and
strength-based  centrality metrics for
comprehensively characterize the importance hierarchy of these

vertices and edges to
network constituents. At the single-constituent level, we observed
that their time-dependent changes in importance are clearly
modulated by the circadian rhythm although to a varying degree.
Irrespective of their interindividual variabilities, we observed
pronounced differences in the constituents’ importance hierarchy
when contrasting data obtained during daytimes and nighttimes.
This may point to a local, circadian rhythm-driven modulation of
the dynamics of various brain regions alongside their interactions.
These brain regions form vital and fundamental subnetworks within the
evolving functional brain networks.

The subnetwork highlighted with betweenness centrality comprises
temporofrontal brain regions from both hemispheres. It is rather
unexpected that the subnetworks, as highlighted with closeness,
eigenvector, and strength/nearest-neighbor centrality metrics (but
not with betweenness centrality), are largely overlapping, despite the
fact that the different centrality metrics assess different structural
aspects of network constituents. This subnetwork is predominantly
restricted to the temporoparietal brain regions, with a left-hemispheric
dominance during the nighttime. However, whether the subnetworks
observed here are related to the resting-state network needs further
investigation (Raichle, 2015).

Studies revealed that the hippocampus, deep inside the temporal
lobe, and the visual cortex are simultaneously involved in the
reactivation of coherent memory traces during sleep, which points
toward a contribution to the memory consolidation process
(Prabhakaran et al, 2000; Albouy et al, 2013). The interaction
between those brain regions might possibly relate to the T7-P7 (-T8)
structure in the observed vital subnetworks as these vertices and
edges, associated with these electrodes and interactions between the
sampled brain regions, are deemed more important in general and
for a larger fraction of time during the nighttime compared to the
daytime.

During the daytime, the vertices and edges associated with the
parietal lobes (PZ, P3, and P4) are deemed more important and for a
larger fraction of time compared to the nighttime. These areas
consolidate spatial and visual
perceptions with other sensory inputs,
recognition of the trajectories of moving objects. These areas also

information and integrate

resulting in the
mediate proprioception (perception of the position of the body in

space) and are involved in skills such as arithmetic, writing,
left-right orientation, and finger perception (see Rizzolatti et al.
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(1997) for an overview). Since these functions may also be involved
during dream phases (which account for approximately 25% of the
sleep period), these vertices and edges are nonetheless important
during nighttimes although for shorter periods of time.

Overall, we observe that circadian (and ultradian) biological
rhythms strongly influence the importance hierarchy, as assessed
with different centrality concepts, of the constituents in time-
dependent functional brain networks. These observations highlight,
for each employed centrality concept, distinct subnetworks in evolving
functional brain networks. The structural composition of these
networks, however, largely coincides, which points toward the
existence of a vital and fundamental subnetwork that is rather
generally involved in ongoing brain activities.
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ABSTRACT

The collective dynamics of complex networks of FitzHugh-Nagumo units exhibits rare and recurrent events of high amplitude (extreme
events) that are preceded by so-called proto-events during which a certain fraction of the units become excited. Although it is well known
that a sufficiently large fraction of excited units is required to turn a proto-event into an extreme event, it is not yet clear how the other units
are being recruited into the final generation of an extreme event. Addressing this question and mimicking typical experimental situations, we
investigate the centrality of edges in time-dependent interaction networks. We derived these networks from time series of the units’ dynamics
employing a widely used bivariate analysis technique. Using our recently proposed edge-centrality concepts together with an edge-based
network decomposition technique, we observe that the recruitment is primarily facilitated by sets of certain edges that have no equivalent in
the underlying topology. Our finding might aid to improve the understanding of generation of extreme events in natural networked dynamical

systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002743

Many natural, technological, or social systems are capable of
recurrently generating large events that can lead to disasters when
interacting with exposed or vulnerable human or natural systems.
The understanding of the dynamical underpinnings of the genera-
tion of such extreme events has recently attracted much attention.
While certain dynamical mechanisms have already been identi-
fied, only little is know about potential pathways in networked
dynamical systems, which may play a vital role in facilitating
the build-up of precursor structures that eventually lead to an
extreme event. We here use the concept of centrality—originally
proposed in the social sciences for network vertices and recently
extended for network edges—to identify such pathways in net-
works of coupled, weakly interacting nonlinear oscillators. These
networks are prototypical for excitable systems and are capable of
self-generating and self-terminating extreme events. We demon-
strate that particularly interactions and only rarely edges in the
coupling topology facilitate the build-up of precursor structures
of extreme events.

I. INTRODUCTION

Extreme weather events and other natural hazards, large-scale
blackouts in power supply networks, market crashes, mass pan-
ics, wars, harmful algal blooms in marine ecosystems, or epileptic
seizures in the human brain are recurrent, large-impact events
that occur spontaneously in many natural, technological, or social
dynamical systems.'~” For systems that can be described by a time-
dependent (or evolving) interaction network, novel methods have
been developed over the last years that allow one to identify pre-
cursors of extreme events.” This holds true particularly for cli-
mate extremes,’" seismic extremes,”’ hydrological extremes,” eco-
nomic extremes,”*’ and epileptic seizures.”>”” Methods employed
so far either aim at assessing global networks properties (e.g.,
clustering-coefficient-related or path-related measures) or local
network properties—mostly vertex centralities.”” For interaction
networks—in which an edge represents attributes of an interaction
(strength, direction, coupling function) between two vertices—an
improved characterization of edge properties could add to advance
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understanding, prediction, and control of such networks.”” To this
end, and in order to find which edges in a network are important
between other pairs of vertices, we recently modified various, widely
used centrality concepts for vertices to those for edges.”” We also
proposed a network decomposition technique that is based on edge
centrality and allows one to identify a hierarchy of sets of edges with
each set being associated with a different level of importance.”

We here apply these novel concepts to investigate precursor
structures of extreme events in the dynamics of complex networks
of excitable units of FitzHugh-Nagumo type. Previous studies’ =
have shown these systems to be capable of self-generating and
self-terminating strong, rare, short-lasting, and recurrent devia-
tions from their regular dynamics without the influence of noise
or parameter change. These extreme events are preceded by local
excitations (so-called proto-events’-) in a certain fraction of units
that play a decisive role in their generation. Similar phenomena were
also observed in other excitable systems.”*~* It is, however, not yet
clear how the other units in a network are being recruited into the
final generation of an extreme event, and we here conjecture that
the recruitment is facilitated by certain edges. We demonstrate the
suitability of our novel concepts for the analysis of empirical data by
mimicking typical experimental situations.

Il. METHODS
A. Networks of excitable units

We consider networks of V diffusively coupled, excitable
FitzHugh-Nagumo units (1 € {1,..., V}), where the equations of
motion of unit #n read

X, Xy(a Xn) (X, + A Xm — Xn)s
n n\bn n n Yn Vv lm_l n n

)./n = bnxn - Cnyw (1)
The unit’s internal control parameters are a,, b,, and ¢,, and the
coupling strength is denoted by K. The symmetric adjacency matrix
A € {0,1}VV has entries A,,, = Ay = 1, iff units n and m are cou-
pled. We employ parameter settings that had been identified in
previous studies’*>" to allow robust generation of extreme events
in complex networks. In particular, we set parameters 4 and ¢ iden-
tical for all units: g, = a = 0.0274Vn and ¢, = ¢ = 0.018 Vn; the
parameter b is mismatched with b,, = 0.006 + V’_‘I 0.008, Vn, and the
coupling strength K is chosen individually for each network. We
regard three coupling topologies each of which connects V = 20
vertices but with different number of edges E:

o Ta:abinary network with a small-world topology* with E = 100
(number of nearest neighbors: 5; rewiring probability: 0.25) and
K =10.128.

o Tp: a binary network with a small-world topology'® with E = 40
(number of nearest neighbors: 2; rewiring probability: 0.25) and
K =10.33.

o Tc:abinary network with a scale-free topology”” with E = 36 and
K = 0.1128. The degree («) distribution F of the network follows
a power law of the form F(x) o< =3,

Each networks’” dynamics was integrated using an adaptive, explicit
Runge-Kutta method of fifth order’ with a step size of 11. We
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FIG. 1. (Left) Exemplary temporal evolutions of the average of the first dynamical
variable x for topologies Ta-T¢ (top to bottom). (Right) Excerpt around an extreme
event (colored black) of the respective time series.

discarded at least 10* initial time units, and time series (here:
x-components) used for further analyses consisted of 10° data
points. The choice of the initial conditions (near the attractor) had
no influence on our observations.

In Fig. 1, we show, for each coupling topology, excerpts
of the time series of the average of the first dynamical variable
x(t) = %,Z:xn(t). Generally, we observe x(f) to exhibit irregular,
low-amplitude oscillations’>**** with —0.15 < X(#) < 0.15. Occa-
sionally, we observe stereotyped events at which all units become
excited and thus X(¢) clearly exceeds—Dby at least a factor of six—the
amplitude of the collective low-amplitude oscillations. We consider
these rare but recurring high-amplitude events as extreme events
[time interval beginning with x(f) exceeding a threshold 6 = 0.5].
We find 195 such events for T,, 138 events for Ty, and 830 events
for T¢. For Ty and Tg, for which we often observe double extreme
events,’” only the leading one is considered.

B. Data-driven construction of time-dependent
interaction networks

Mimicking typical experimental situations,”~” we derive time-

dependent interaction networks by estimating—using a sliding-
window approach—the strength of interaction between pairs
{n,m} € {1,..., V} of time series of the first dynamical variable x.
To do so, we employed an established method for investigating
time-variant changes in phase synchronization. The mean phase
coherence™ is defined as

Ruym = , (2)

1 T-1
i(Pp()—DPm (1)
— e
T2
t=0

where ®,, are the instantaneous phases of time series from unit n
(we here use the Hilbert transform®>*) and T denotes the number
of data points. By definition, R, is confined to the interval [0,1],
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where R,,, = 1 indicates fully phase-synchronized units. Note that
the window size T'is a critical parameter since it affects the sensitivity
of the mean phase coherence. We here chose T such that a window
captured at least one full cycle of either an extreme event or a low-
amplitude oscillation.

Having calculated R,, for all pairs (n,m) of units, we
derived—for each window—a synchronization matrix whose non-
diagonal elements were associated with an adjacency matrix A. This
matrix represents an undirected, weighted snapshot network. To
simplify notation, in the following we define A, =0Vn. Depend-
ing on the underlying coupling topology we refer to these time-
dependent interaction networks as networks A, B, and C.

We position a reference window (window number 0) around
the extreme event such that the window center coincides with the
first time point for which the amplitude of x(¢) exceeds the thresh-
old 6. The window number increases while going back in time with
time windows of number 6 or larger are assumed to represent typical
inter-event dynamics.

C. Estimating edge importance in time-dependent
interaction networks
For our investigations, we employ two opposing” concepts to
estimate the centrality of edges in each snapshot network, namely,
edge betweenness centrality C® and edge eigenvector centrality CE.
Edge betweenness centrality (of edge k) can be defined as™**

V(V—1) ; G~

Ci(k) = 3)

ij

where k € {1,...,E}, {i,j} e{l,...,V}, gj(k) is the number of
shortest paths between vertices i and j running through edge k and
Gj; is the total number of shortest paths between vertices i and j. A
shortest path is defined as the path between two edges for which the
sum of the inverse weights of edges along this path is minimal.”’

Edge eigenvector centrality (of edge k) is defined™ as the kth
entry of the eigenvector v corresponding to the dominant eigenvalue
Amax of matrix M, which we derive from the eigenvector equation
MYV = AV using the power iteration method,

1

Cik) =

)"max

D My CED, (4)
1

with {k, l} € {1,...,E}. Here, M denotes the edge adjacency matrix

A9e RE*E whose entries A;.e) are assigned the average weight of
edges i and j if these edges are connected to a same vertex and 0
otherwise.

With the aforementioned definitions, we regard an edge with
the highest centrality value as most important (rank 1) and the one
with the lowest centrality value as least important (rank E). In the

case of equal centrality values, we rank in order of appearance.

D. Identifying important sets of edges in
time-dependent interaction networks

With the aforementioned edge-centrality concepts, we employ
our previously proposed edge-centrality-based network decompo-
sition technique™ that allows us to identify a bottom-up hierarchy

scitation.org/journal/cha

of sets of edges (or “webs”), where each set is associated with a dif-
ferent level of importance. The decomposition technique consists of
the following steps:

0. initialize algorithm: set E' = E and set iteration g = 1;

1. estimate centrality C.(k) for all edges k € {1,...,E’} in the
current network;

2. choose the lowest centrality value as threshold value
® = ming C.(k), in order to eliminate less central edges;

3. every edge k' with C.(k') < © is assigned to the web of rank g
and is removed from the current network (which decreases E’;
note that the < sign holds for repetitions of step 3 within the gth
iteration);

4. repeat step 1 and step 3 until no further edge is assigned to the
web of rank g;

5. continue with next iteration (increase q by 1) at step 1, as long
as there are remaining edges to be assigned to webs; and

6. reverse ranking of webs; the most important web has rank 1.
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FIG. 2. Edge weight distributions (means and standard deviations obtained from
observations of the respective amount of extreme events) of time-dependent inter-
action networks A, B, and C (from top to bottom) for each time window. Time
window 0 is positioned around the extreme events, and the window number
increases while going back in time.
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We note that this network decomposition can lead to two divisions I1l. RESULTS
of a network that are not helpful in identifying sets of edges asso- As shown earlier,”"" extreme events in the dynamics of cou-
ciated with different levels of importance. These cases are either an pled FitzHugh-Nagumo oscillators are preceded by proto-events
assignment of all edges to only one web (number of webs Ny = 1) during which a fraction of the units (those with low values of the
or an assignment of each edge to a web (Ny = E). We also note that control parameter b) become excited and which turn into extreme
edges in a web do not have to be connected with each other. events, if and only if this fraction is sufficiently large (note that not
a)
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FIG. 3. Relative frequency of an edge with a given rank to be connected to a vertex whose dynamics exhibits proto-events. Edge rank estimated via ranking of (a) edge
eigenvector centrality and (b) edge betweenness centrality. Time window 0 is positioned around the extreme events, and the window number increases while going back in
time. Data from 195, 138, and 830 extreme events in the time-dependent interaction networks A, B, and C (from top to bottom). Red dots indicate edges in the time-depended
interaction networks and black dots edges from the underlying coupling topology.
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all proto-events are followed by an extreme event). It is, however,
not yet clear how the other units are being recruited into the final
generation of an extreme event. We conjecture that the recruitment
is facilitated by certain edges (or sets thereof), and in the follow-
ing, we will identify and characterize these edges employing the
edge-centrality concepts and the edge-based network decomposi-
tion technique. Given that most of the complexity of a interaction
network is encoded into the topology of interactions among its ver-
tices (i.e., edges) and into the layout of the interactions’ weights,”’ ="
we first investigate how the edge weight distributions change when
our time-dependent interaction networks transit into an extreme
event. Since edge weights represent the strengths of interaction
between units [estimated with R,,,; see Eq. (2)], we expect a narrow
range of large edge weights despite the constant and rather low cou-
pling strengths K. Indeed, the edge weight distribution peaks close
to the maximum value of R,,, = 1 with a rather narrow spread, by
construction (see Fig. 2).

For our time-dependent interaction networks, we find edge
weights from the time window capturing an extreme event to com-
pare to those from most preceding windows. Interestingly though,
we observe decreased edge weights in the time window directly pre-
ceding the extreme event (window 1), and this decrease is most
pronounced for networks A and B. With our analysis approach,
proto-events thus reflect a desynchronized state during which only
few units are simultaneously excited while the other units are not.
We note that similar desynchronization phenomena were observed
prior to epileptic seizures recorded in humans® and in a simple
dynamical model of two interacting networks of integrate-and-fire
neurons that mimics such an event.®”

Since edge weights impact on the centrality concepts employed
here (cf. Sec. II C) and given our previous observations, we next
hypothesize that a certain amount of edges in the interaction net-
works from the time windows prior to the extreme event will rank
among the ones with highest centrality and are, therefore, possibly
more relevant for the recruitment of further units. In order to check
this hypothesis, we estimate—for each time window—the probabil-
ity P for an edge to be identified as most important (i.e., highest
centrality value and thus highest rank) with the respective edge cen-
trality. For each network, and independently of the used centrality,
we observe (data not shown) in each time window (including time
window 0) the respective probability distributions to peak around a
small amount of edges (if we neglect edges with P < 0.2). In addi-
tion, we observe that these distributions differ in the time window
prior to the extreme event, indicating that during this time window
other edges are most important.

Given these findings, we further investigate which edges are
connected to vertices whose dynamics exhibit proto-events and
whether these edges have a high rank and can be traced back to the
underlying coupling topology (direct edge) or not (indirect edge).
As shown in Fig. 3, we observe edges with low rank to be (on aver-
age) more frequently connected to such vertices in all time windows
preceding time window 1. In time window 1, we additionally observe
few more high-ranked edges to be frequently connected to these ver-
tices; however, this findings holds for importance estimated using C?
only. If importance was estimated using CE, the low-ranked edges
are even more frequently connected to these vertices. However, the
underlying coupling topologies had no influence on these findings,
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the differences seen for the two edge centralities can be related to the
differences in their conceptual basis. While CE considers the central-
ity of the neighborhood of a given edge, C? is a path-based approach
to identify a central edge. For either centrality concept, it is rather
straightforward to understand that in time windows far from the
extreme event, high-ranked edges are not expected to be connected
to the few vertices whose dynamics exhibit proto-events. In the time
window prior to the extreme event, the opposite can be observed
with C2. This indicates that the recruitment of non-excited vertices
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is facilitated via short paths from excited vertices, making it more
likely for edges that are directly connected to such vertices to have a
high rank. On the other hand, with CF highest-ranked edges connect
non-excited vertices as these are mostly stronger connected (larger
edge weights) non-excited vertices.

For direct edges and independent of their centrality ranking, we
furthermore observe a general decrease, in time window 1 compared
to other time windows, in their relative frequency to be connected to
avertex whose dynamics exhibits proto-events. One can thus deduce
that most of the edges that are connected to a vertex whose dynamics
exhibits a proto-event represent indirect edges with few exceptions
found with betweenness centrality.
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Summarizing our findings discussed so far, we conclude that
the recruitment of non-excited units into the generation of an
extreme event is facilitated by the most important and the least
important indirect edges. As a last point, we investigate whether
these edges form specific sets. To this end, we employ our edge-
centrality-based network decomposition technique to identify—for
each time window—the most and the least important web and even-
tually detail their characteristics. Our results presented in Figs. 4
and 5 indicate that the least important webs for time window 1
consist of smaller sets of edges than the ones in the least impor-
tant webs identified for windows preceding window 1 or even for
the window that captures the extreme event. These sets consists to a
greater amount of indirect edges than of direct edges. In general, dif-
ferences are most distinct for networks A and C and for the C2-based
network decomposition. We note that we achieved similar findings
when considering the most important webs (data not shown).

Interestingly, the sets seen for time window 1 are composed of
edges (either direct or indirect ones) connected to vertices whose
dynamics exhibit proto-events. As expected the CZ-based decompo-
sition mostly identifies long-range connections while the CE-based
decomposition mostly identifies (nearest or next-nearest) neighbor-
ing connections within the web.

It can be summarized that distinct sets of primarily indirect
edges appear to play a vital role (in the time window prior to
the extreme event) for the recruitment of non-excited units into
excitation leading up to an extreme event.

IV. CONCLUSIONS

We investigated which edges in networks of coupled, excitable
FitzHugh-Nagumo units facilitate the recruitment of non-excited
units into the final generation of an extreme event. With an eye
on typical experimental situations that explore excitable system, we
investigated the importance of edges in time-dependent interac-
tion networks. We derived these networks from investigating the
strength of interaction between time series of the units’ dynamics
in a time-resolved manner. Importance of edges and sets thereof
were characterized with the concept of edge centrality and an edge-
centrality-based network decomposition technique, respectively.
Our findings indicate that the recruitment of non-excited units is
facilitated primarily by sets of certain most and least important
edges, both of which have no equivalent in the underlying topology.
A more comprehensive understanding of the role of such indirect
edges and their relationship to the underlying coupling topology
might aid to gain further insights into the generation of extreme
events in natural networked dynamical systems.
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Reconfiguration of human evolving
large-scale epileptic brain networks
prior to seizures: an evaluation
with node centralities

Rieke Fruengel, Timo Bréhl*2, Thorsten Rings'? & Klaus Lehnertz*23*

Previous research has indicated that temporal changes of centrality of specific nodes in human
evolving large-scale epileptic brain networks carry information predictive of impending seizures.
Centrality is a fundamental network-theoretical concept that allows one to assess the role a node
plays in a network. This concept allows for various interpretations, which is reflected in a number of
centrality indices. Here we aim to achieve a more general understanding of local and global network
reconfigurations during the pre-seizure period as indicated by changes of different node centrality
indices. To this end, we investigate—in a time-resolved manner—evolving large-scale epileptic brain
networks that we derived from multi-day, multi-electrode intracranial electroencephalograpic
recordings from a large but inhomogeneous group of subjects with pharmacoresistant epilepsies
with different anatomical origins. We estimate multiple centrality indices to assess the various

roles the nodes play while the networks transit from the seizure-free to the pre-seizure period.

Our findings allow us to formulate several major scenarios for the reconfiguration of an evolving
epileptic brain network prior to seizures, which indicate that there is likely not a single network
mechanism underlying seizure generation. Rather, local and global aspects of the pre-seizure network
reconfiguration affect virtually all network constituents, from the various brain regions to the
functional connections between them.

Epilepsy is one of the most common neurological diseases globally, affecting an estimated 50 million people
worldwide, and accounting for 0.5% of the global burden of disease’. Even in countries where adequate diagnosis
and treatment are available, around 30% of epilepsies are pharmacoresistant, failing to respond to conventional
medical therapy?. In these cases, subjects with epilepsy may be candidates for surgical intervention, which allows
around 70% of these subjects to remain seizure-free for at least 1 year after surgery’. Among several other aspects,
this failure to achieve long-lasting freedom from seizures, even after removal of the pre-surgically identified
seizure onset zone (SOZ), suggests an alternative interpretation of seizure generation (ictogenesis) in epilepsy.
In recent years, epilepsy has been investigated as a network disease*”’. In a large-scale evolving epileptic brain
network, sampled brain regions represent nodes, whereas the time-varying functional interactions between
them (regardless of their anatomical connectedness) constitute the time-dependent edges of the network®. This
results in a sequence of networks that evolve in time. When considering the SOZ as a node (or a small group of
nodes) in the evolving epileptic brain network, previous studies reported the SOZ to play only a minor role in
seizure dynamics®'?, in contrast to earlier observations''~'*. A more recent study'* of evolving epileptic brain
networks has identified nodes, whose time-dependent changes in node centrality carry predictive information
about an impending seizure. More importantly, these predictive nodes were exclusively associated with brain
regions far away from the SOZ, in accordance with a number of previous findings achieved with different analysis
concepts'®. This study indicated a reconfiguration of various network properties of evolving epileptic brain net-
works during the pre-seizure period, which is not confined to nodes related to the SOZ but extends to the whole
network. A more detailed characterisation of node centrality can aid in understanding this reconfiguration and
subsequently can help to shed more light on how seizures arise from epileptic brain networks. Indeed, a large
number of different centrality indices have been developed to characterise the various roles the constituents play
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Figure 1. Relative pre-seizure change of centrality values of nodes in the different modules. Non-hatched/
hatched bars represent median values over predictive/non-predictive nodes (median pre-seizure centrality
values referenced against median centrality values from seizure-free periods). Blue/black numbers on

top represent the number of predictive/non-predictive nodes in each module (CS strength centrality; CB
betweenness centrality; C closeness centrality; CE eigenvector centrality; “total” refers to the sum of these
nodes). As betweenness centrality often yields values of 0, calculating a relative difference is not always possible,
therefore we refer to the median absolute value which here amounts to 0.005 independent of the module (SOZ:
S, neighbours: NV, others: O).

in the network'¢-'%. Here, we consider four of the most widely used centrality indices'’, two different interaction-
strength-based centrality indices (strength centrality CS and eigenvector centrality CF) and two different path-
based centrality indices (closeness centrality C© and betweenness centrality C?). According to strength centrality,
anode is central if it is strongly connected to adjacent nodes. Eigenvector centrality considers the influence of a
node on the network as a whole, where a node is considered central if the nodes connected to it are also central.
A node with a high closeness centrality is central as information from this node can reach all other nodes in
the network via short paths, and so the node can exert a more direct influence over the network. A node with a
high betweenness centrality acts as a bridge between other parts of the network. CS and C* are more sensitive to
local aspects of the network, as they only consider edges immediately connected to the investigated node. On
the other hand, CE and C® are more sensitive to global aspects, as they consider all edges in the network when
determining the centrality of any node.

Our long-term aim is to achieve a more general understanding of how the evolving epileptic brain network
changes prior to seizures and how these changes relate to the emergence of seizures from subjects with epilepsy
whose seizures originated from different brain regions (“Methods” section). To this end, and in order to avoid
making any assumptions about a possible influence of the underlying structural and functional aspects of the
respective pathologies, we here pooled the data of the heterogeneous group of subjects with pharmacoresistant
epilepsies and used multiple centrality indices. We then investigated undirected, weighted evolving epileptic brain
networks which we inferred from multi-day, multi-electrode intracranial electroencephalographic recordings
(“Methods” section).

Results

Given the individualised clinical evaluation, number and anatomical locations of intracranial electrodes were
highly variable between subjects (“Methods” section). For this reason, we assigned electrode contacts to func-
tional modules (seizure onset zone (SOZ) S, direct neighborhood of SOZ A/, and all remaining contacts (others)
O; “Methods” section) ™.

Borrowing statistical concepts from seizure prediction to identify nodes that carry predictive information of
an impending seizure (“Methods” section), we find that different centrality indices (“Methods” section) gener-
ally identified different nodes as predictive, as expected. Out of 1316 total nodes, 227 (17%) were found to be
predictive with at least one centrality (110 with CS, 66 with CE, 117 with C€ and 72 with CB). On the level of
functional modules, each sampled brain region was frequently identified as predictive by multiple centralities,
and functional module others O was identified most commonly even when correcting for the high variability
of the electrode contacts in each functional module. This finding concurs with magnetic resonance imaging
(MRI) studies in other subjects with epilepsy, which have revealed structural abnormalities outside of and even
contralateral to the SOZ in multiple aetiologies of epilepsy**-*.

We investigated how the centrality of nodes changed during the pre-seizure period. To this end, we calculated
the medians of the distributions of centrality values from the pre-seizure and the seizure-free period (for each
node and centrality index respectively). We used the relative difference between the distributions’ median values
to determine whether centrality values, on average, increased or decreased prior to seizures. As summarised in
Fig. 1, we generally observed an increase of centrality values prior to seizures, except in the case of CS for nodes
in the functional module neighbours A and C© for nodes in the functional module others O. For nodes that were
not predictive, we generally observed a less pronounced, but qualitatively comparable change than for predictive
nodes (except for nodes in module A when using C5).
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Figure 2. Predictive nodes as identified with onlgl respective centralities or combinations of such. For example,
there are 13 nodes identified as predictive with C>, that are not identified as predictive with the other three
centralities, and 4 nodes identified as predictive with CS and CE, that are not identified as predictive with the
other two centralities. Different colours indicate different centralities (light blue: strength centrality CS; dark
blue: eigenvector centrality C%; light red: closeness centrality CC; dark red: betweenness centrality C®). Centrality
indices considering local/global aspects of the evolving epileptic brain network are depicted in light/dark colour
respectively, while strength-/path-based centrality indices are depicted in blue/red. Hatched bars indicate a
combination of the respective centralities (see colours above).

With the aforementioned predictive changes in centrality values, we next investigated whether the observed
increase is associated with a re-ordering of node importance within the epileptic brain network. To determine
the relative importance of predictive nodes, they were ranked by average centrality value (for each centrality
separately, for seizure-free and pre-seizure periods respectively). Interestingly, predictive nodes were neither the
most nor the least important ones but ranked among the top of the lower half. Moreover there was no significant
difference between average rank of these nodes from pre-seizure and seizure-free periods for any centrality
individually. This may indicate that pre-seizure changes are not necessarily confined to specific brain regions,
but rather that there is, on average, an increase in interaction strength between all nodes in the epileptic brain
network prior to seizures, consistent with findings in previous studies'*".

Subsequently, we investigated whether different centrality indices identify the same nodes as predictive.
While we find that a majority of nodes are identified as predictive with only one centrality index, unexpectedly,
a substantial number of nodes were identified as predictive with two or more indices (see Fig. 2). To further
investigate the information gain from using multiple centrality indices, we separated the 227 predictive nodes
into groups according to the centrality index or indices with which they were identified as predictive. Between-
ness centrality and eigenvector centrality each identified the largest number of nodes as predictive (47 and 37
nodes, respectively) followed by closeness centrality (19 nodes) and strength centrality (13 nodes). It is to be
noted that even two centrality indices based on the same network-theoretical concept (interaction-strength- or
path-based), rarely identified the same predictive nodes. On the other hand, the largest group of nodes identi-
fied as predictive were congruently found with strength centrality and closeness centrality (a total of 71 nodes).
Of note, this is a combination of two different network-theoretical concepts, which both consider local network
characteristics. More rarely were nodes identified as predictive with combinations of three or all four centrali-
ties, which indicates that typically only some and not all aspects of the evolving epileptic brain network change
during the pre-seizure period.

Given these findings, we propose several major scenarios for a pre-seizure reconfiguration of the evolving
epileptic brain network, that can be inferred from significant differences between node centralities from the
pre-seizure and seizure-free periods in the various functional modules (Fig. 3). In the following, we concentrate
on the five most common occurrences of predictive nodes as identified with only respective centralities or
combinations of such.

Scenario 1 (based on observations with strength centrality CS; Fig. 3a): As already described in a previous
study', during the pre-seizure period a small number of nodes both related to the seizure onset zone (SOZ)
and brain regions far off the SOZ, become more strongly connected to the other nodes of the evolving epileptic
brain network. Meanwhile, nodes related to the neighbourhood of the SOZ become less connected. Since we
employed a synchronisation-based measure (mean phase coherence) to estimate the strength of interactions,
this could indicate a loss of synchronisation, i.e., a decoupling of the neighbourhood from the rest of the
network, while the latter interacts more strongly locally. A pre-seizure decrease in synchronisation has been
hypothesised to be a state of increased susceptibility for pathological synchronisation during a seizure® or
depression of synaptic inhibition®, possibly allowing an easier transition to seizure activity. These findings
could lead to the assumption that path structures traversing these nodes in the evolving epileptic brain net-
work change prior to seizures. Surprisingly, however, as not all of these nodes carry predictive information
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Figure 3. Scenarios for the pre-seizure reconfiguration of the evolving epileptic brain network. Schematic
of the network divided into the three functional modules (others O, neighbours N, SOZ S; separated by

dashed lines). The different sub-figures (a—f) represent how the network during the seizure-free period (top)
would change prior to seizures if the pink nodes were deemed predictive with the respective local and global
interaction-strength-based and path-based centrality indices or combinations thereof (note that different
centrality indices generally identified different nodes as predictive; we here restrict ourselves to just a few nodes
to simplify visualisation). The networks can be assumed to be fully connected, however, for the purpose of
visualisation, edges that remain unchanged during seizure-free and pre-seizure periods are not shown. Shortest
paths identified in the seizure-free period (examples) are marked green. The thickness of an edge represents its
edge weight: the thicker an edge the shorter the path traversing the edge or the stronger the connection between
nodes. (C®: strength centrality; CF eigenvector centrality; C© closeness centrality; C: betweenness centrality).

(when assessed with closeness centrality C* and betweenness centrality CP), path structures traversing these
nodes remain unchanged. This indicates that the general exchange of information between brain regions
remains largely unaffected during the pre-seizure period, which might explain the rare occurrence of epileptic
prodromes%’.

Scenario 2 (based on observations with eigenvector centrality C%; Fig. 3b): Beyond the local scope of strength
centrality, our results obtained with the more global eigenvector centrality indicate that strongly connected
nodes are strongly connected especially to each other prior to seizures, highlighting hub-like structures®.
This is, however, not necessarily a formation of new hub-like structures, since their connection strength to the
rest of the epileptic brain network does not change prior to seizures, as indicated by the lack of a significant
change in their strength centrality. This is also supported by the fact that path structures traversing the hub-
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like structures remain unchanged. Moreover, since hub-like structures are not confined to any particular brain
region (as also found in a structural study®), this might point to a recruitment of even brain regions assumed
to be unaffected by the pathology, hereby contributing to the generation of seizure activity.

Scenario 3 (based on observations with closeness centrality C®; Fig. 3c): The shortening of the paths seen
between nodes related to the SOZ and to its neighbourhood, as well as to the rest of the epileptic brain network
prior to seizures, indicates that information can flow more easily along the paths connecting these network
constituents. This is not necessarily accompanied by a profound increase in coupling between constituents
(as indicated by C%) nor by a higher number of shortest paths traversing these nodes (as indicated by C).
However, as we can not infer the direction of this information flow with the methods applied here, several
potential ictogenic mechanisms can be considered: e.g. nodes related to the SOZ recruit other nodes in the
larger network into the generation of seizures***!. This recruitment might also be facilitated by the fact that
information flow between nodes far off the SOZ and its neighbourhood becomes less effective during the pre-
seizure period (lengthening of the shortest paths). In contrast, nodes related to brain regions deemed unaf-
fected by the pathology might recruit nodes related to the SOZ and/or its neighbourhood into the generation
of seizures. Whatever the exact mechanism might be, these possibilities underline that the generation of sei-
zures in any one part of the epileptic brain network is influenced by activity everywhere else in the network®*.
Scenario 4 (based on observations with betweenness centrality C®; Fig. 3d): Expanding the previous
interpretation'* of the formation of bottlenecks during the pre-seizure period, the unexpected lack of con-
gruence between findings obtained with C© and C® (both centrality indices would identify the same node
as relevant for the flow of information through the epileptic brain network) points to a general decrease in
information flow (increased length of shortest paths), except through those nodes that become bottlenecks.
On the one hand, this would indicate that the formation of bottlenecks can be regarded as an epiphenomenon,
while on the other hand and since we here observed bottlenecks almost in the whole network these nodes
possibly form a backbone of the evolving epileptic brain network.

Scenario 5 (based on observations with strength centrality CS and closeness centrality C®; Fig. 3e): If we
combine the information about pre-seizure changes in the epileptic brain network gained with local (and to
a lesser extent also with global; Fig. 3f) path- and interaction-strength-based centrality indices, our findings
point to groups of nodes associated with the SOZ and with brain regions far off the SOZ becoming more
strongly connected prior to seizures, while the connection between these groups weakens and information
flow within the whole network becomes hampered. This indicates a compartmentalisation of brain regions,
which has been hypothesised to cause an increased vulnerability to the spreading of seizure activity®. Similar
compartmentalisation has also been observed during seizures®**. We speculate that the compartmentalisation
seen before and during seizures results from the same underlying process.

Conclusion

While previous studies already showed that the temporal change of node centrality—possibly induced by a recon-
figuration of properties of evolving epileptic brain networks—can carry predictive information about impending
seizures, we here aimed at a more comprehensive perspective of this reconfiguration. These networks—evolving,
large-scale, fully connected networks (spanning lobes and hemispheres)—were constructed from iEEG data,
with nodes representing the sampled brain regions and edges the time-varying functional interactions between
them. By considering four different centrality indices (local and global interaction-strength-based and path-based
indices), that reflect changes in the evolving epileptic brain network differently, and by using established statisti-
cal methods to identify nodes that carry predictive information®®, we can now trace these changes which are
specific to the pre-seizure period.

Pre-seizure changes in the network are not necessarily confined to specific brain regions, but rather there is, on
average, a pre-seizure increase in interaction strength between all nodes in the epileptic brain network, consistent
with findings in previous studies'*'°. Moreover, with our proposed scenarios, we conclude that there is likely
not a single network mechanism underlying ictogenesis. Rather, they point to local and global reconfigurations
of the evolving large-scale epileptic brain network affecting virtually all network constituents, from the various
brain regions to the (functional) connections between them.

An important limitation in this retrospective study was the high variability in implantation schemes for
electrodes, which were purely clinically driven and relate to the structural and functional heterogeneity of the
underlying disease. In many subjects with epilepsy, the area around the suspected SOZ is usually spatially over-
sampled, while data from other brain regions are often very limited or even absent. Even in subjects with greater
electrode coverage, it is possible that evolving epileptic brain networks were incomplete as not all brain regions
were sampled'®. It is therefore possible that there are important regions for ictogenesis which lie outside of those
considered in this study. Among others, there were several possible confounding influences on the distinction
between dynamics from seizure-free and pre-seizure periods: subjects were often sleep-deprived and all had
their individual antiepileptic medication dose tapered as part of the pre-surgical assessment. Furthermore, the
possible impact of multi-day rhythms**-*® was not controlled for in this study, as data from multiple days were
pooled for each subject.

Future studies should investigate the duration of the presumed pre-seizure period as a possible confounder. It
is conceivable that there is a high inter-individual variation in pre-seizure period duration, which the variation in
prodromal symptom onset and duration seems to support®. Finally, the results of this study should be combined
with those of similar studies focusing on edges rather than nodes', which could be expanded to include novel
edge centrality indices*’. Previous studies have assessed whether predictive edges connect predictive nodes',
reporting that this occurs in a majority of cases. A combination of information gained from predictive nodes and
edges and their relation to the underlying anatomy and physiology could provide a more complete understanding
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Sub;j. Age Sex Dur MRI Loc Out Szr Dot Dint Dpre N Ns Nar No #Cpred

1 54 Male 46 R AHS RMT 2B 1 228 224 4 86 3 2 81 0

2 34 Male 29 LFCD LF 1A 7 111 85 26 26 5 5 16 4

3 15 Female |10 R AHS LTRT 4 162 146 16 66 44 0 22 0

4 45 Female |42 L AHS LT 1A 1 146 142 4 48 12 2 34 0

5 25 Female |21 wp.f. RMT 1A 1 82 78 4 58 10 1 47 0

6 22 Male 23 wp.f. RMT 1A 5 94 74 20 74 10 1 63 0

7 57 Male 51 Hamartia REPo 1A 3 71 61 10 72 14 11 47 3

8 39 Female |11 R AHS RT 1A 3 91 79 12 52 11 3 38 0

9 24 Female |23 AHS bilat. LMT,RMT 2 20 14 6 42 20 0 22 1

10 34 Male 33 LAHS,LFCD | LMT 1A 4 70 54 16 52 20 4 28 0

11 25 Male 24 L AHS LMT 1A 3 26 17 9 58 3 5 50 0

12 43 Female |27 wp.f. LT 1A 3 94 85 9 56 8 0 48 4

13 29 Male 17 L AHS LMT,RMT 4 92 76 16 120 20 4 96 1

14 38 Male 15 AHS bilat. LMT 1A 2 52 44 8 46 8 4 34 0

15 44 Female |31 L FCD LF 1A 1 103 99 4 14 4 0 10 0

16 52 Male 52 L AHS LMT 1A 1 49 45 4 42 5 4 33 3

17 45 Male 24 wp.f. LTRT 3 116 107 9 72 28 0 44 2

18 31 Female |14 wpdf. RT 1A 2 74 69 5 36 11 1 24 3

19 25 Female 6 wp.f. LMT,RMT 5 161 142 19 90 8 1 81 4

20 53 Female |13 L AHS LP 1A 1 46 42 4 24 11 3 10 0

21 62 Female 50 Dysplasia RFPa 3 94 84 10 56 39 1 16 2

2 44 Female |30 L AHS LT,RT 1A 3 129 117 12 46 30 0 16 2

23 25 Male 13 RFCD RFP 1A 3 18 8 10 30 5 4 21 2

24 26 Female |10 Dysplasia LT 1A 1 26 22 4 16 5 4 7 1

25 54 Female |49 R FCD RT 1A 1 67 63 4 62 9 7 46 0

26 27 Female |16 wp.f. LMT 1A 2 163 155 8 48 10 2 36 4

27 28 Female |25 R AHS LMT,RMT 2 126 121 5 46 21 1 24 0

28 19 Male 9 AHS bilat. LFT,RFT 2 47 40 7 78 34 2 42 2

29 26 Female |18 wp.f. LMT 2A 3 97 85 12 36 10 0 26 1

30 37 Male 5 R AHS RMT 1A 2 103 95 8 46 10 4 32 4

31 25 Male 26 L AHS LFT,RFT 2 32 25 7 78 0 0 78 0

32 37 Male 2 wpdf. LMT 1A 4 68 52 16 65 6 0 59 2

33 15 Female |11 L FCD LFPo 1A 2 36 28 8 30 8 7 15 1

34 24 Male 4 wp.f. LMT 1A 2 67 59 8 65 6 3 56 4

35 22 Male 18 Lesion LET 1A 3 19 7 12 38 4 2 32 2

36 29 Female 12 w.p.f. LMT,RMT 2 37 29 8 88 6 1 81 3

37 41 Female | 13 wp.f. LMT,RM 2 127 119 8 118 13 5 100 4

38 27 Female |13 LFCD LSMA 1A 2 67 59 8 30 6 7 17 0
Table 1. Subject demographics. Age age at time of presurgical evaluation, Dur duration of epilepsy in
years, MRI MRI findings (w.p.f. without pathological findings, AHS Ammon’s horn sclerosis, bilat. bilateral,
FCD focal cortical dysplasia), L left, R right, Loc location of seizure onset zone (MT mesial temporal, SMA
supplementary motor area, P parietal, F frontal, Fpo frontopolar, Fpa frontoparietal, FT frontotemporal, T
temporal), Out epilepsy surgery outcome scale ** (no surgery performed if empty entry), Szr number of clinical
seizures; Dy, total recording duration in hours, Djy, total duration of seizure-free periods in hours, Dpre
total duration of pre-seizure periods in hours; N total number of electrode contacts, Ns number of electrode
contacts in functional module “SOZ”; Ny number of electrode contacts in functional module “neighbours”,
No number of electrode contacts in functional module “others”, #Cpeq number of centralities that identified
predictive nodes.
of ictogenesis in evolving epileptic brain networks, could help to identify better targets for future treatment
strategies*’~*, and could support the translation of the network approach into clinical practice.
Methods
Data. In this retrospective study, we analysed multi-day, multi-electrode intracranial EEG (iEEG) recordings
from 38 subjects with pharmacoresistant epilepsies with different anatomical origins (Table 1). The data were
part of previous studies®!*'?. Between 2002 and 2012, 380 subjects with drug-resistant epilepsy underwent pre-
surgical evaluation with intracranial electroencephalographic recordings. From this sample, we included sub-
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jects for which either a single or multiple seizure onset zones (SOZ) had been identified and resected, as well
as subjects with multiple, non-resectable SOZs. We only included data from subjects if they had at least 18 h of
recording that captured at least one seizure (with or without secondary generalisation). Recordings spanned an
average of 83 h (total: 3239, range 18-228), and captured 2.5 clinical seizures on average (total: 99, range 1-7).
Subclinical seizures were neglected in our analyses. Placement and number of electrodes were decided for each
subject individually, and were entirely clinically driven (average number of contacts: N = 56, range 16-120).
The study was approved by the ethics committee of the University of Bonn, and all subjects with epilepsy had
signed informed consent that their data could be used and published for research purposes. A parent or legal
guardian gave written informed consent on behalf of the participant if below the age of 18. All experiments were
performed in accordance with relevant guidelines and regulations.

For cortical surface recordings, subdural strip electrodes (four or eight platinum contacts with an intercon-
tact distance of 10 mm) and/or subdural grid electrodes (8 x 4 or 8 x 8 platinum contacts with an intercontact
distance of 10 mm) were used. These types of electrodes were implanted in 74% of subjects. For recordings from
the mesial temporal lobes, depth electrodes (equipped with 10 or 8 cylindrical contacts of nickel-chromium
alloy; length: 2.5 mm, intercontact distance: 4 mm) were implanted using either a trans-occipital (10-contact
electrodes) or orthogonal-to-the-mesial-structures approach (8-contact electrodes) to the hippocampus*. In
five subjects, 8-contact depth electrodes were also implanted into lesions or focal cortical dysplasias. iEEG data
were sampled at 200 Hz using a 16 bit analogue-to-digital converter, band-pass filtered between 0 and 45 Hz
(4th order Butterworth characteristic), and a notch filter was used to suppress the power line frequency (50
Hz). Recorded signals were referenced against the average of two contacts which were selected for each subject
individually, located distant from the suspected seizure onset zone (SOZ).

Seizures were identified by board-certified epileptologists on the iEEG and concomitant video recording. We
divided data into pre-seizure and seizure-free periods. Recordings within the 4 h preceding an electrophysiologi-
cally defined seizure event were classified as pre-seizure®. Recordings within the 30 min after seizure onset were
excluded from this analysis in order to not bias our analyses with effects from the seizure and particularly from
the post-ictal period***”. All remaining recording data were considered to be from the seizure-free period. Fol-
lowing pre-surgical analysis, board-certified epileptologists identified at least one SOZ in all subjects, being the
region where electrical seizure activity was first identified. The electrode contacts within this SOZ were labelled
as S for subsequent analyses. Electrode contacts not more than two contacts distant to the SOZ (“neighbours” or
N') were also considered separately to other electrode contacts more distant to the SOZ (“others” or O). These
classifications are subsequently referred to as “functional modules™”.

Subjects received different antiepileptic drugs (AEDs) with different mechanisms of action, and the majority
of subjects were under combination therapy with two or more AEDs. During presurgical evaluation AEDs were
reduced in a subject-specific manner, and many subjects did not have discontinuation of all AEDs.

Identifying evolving epileptic brain networks. Following previous studies (e.g.!*'>*), we used a slid-
ing window approach and estimated the strength of time-varying functional interactions between brain regions
nand m((n,m) = 1,...,N) sampled by the implanted electrodes, using mean phase coherence®:

1 T—1
. i(Pu()—Pm()))
Rym = T j_zoe ( .

T is the number of data points per window and ®,, is the instantaneous phase time series of node # that we derived
from the Hilbert transform of the iEEG time series of node #n. An important property of this analytic signal
approach (particularly in case of two or more superimposed oscillatory components) is that the instantaneous
frequency relates to the predominant frequency in the Fourier spectrum®*®!. Since the predominant frequency
may be subject to fluctuations in the iEEG time series, the instantaneous frequency can vary rhythmically around
the predominant frequency resulting in spurious estimates of the instantaneous phase. Such effects can never-
theless be reduced, e.g., by taking the temporal average. Note that from an electrophysiological point of view, it
might be more reasonable to look adaptively (e.g., via the Hilbert transform) at interactions between predominant
rhythms in the iEEG than to look at interactions in some a priori fixed frequency bands (e.g., via wavelet) for
which there is no power in the time series®*2. Ry, falls within the range [0, 1], where R,,, = 1 indicates fully
phase-synchronised brain regions, while R,,,, = 0 indicates no phase synchronisation.

A non-overlapping sliding-window with T = 4096 data points (20.48 s duration) was used to calculate Ry,
for all possible combinations of brain regions (nodes (1, m)). Mean phase coherence values were used as edge
weights in subsequent network analysis, while electrode contacts represented nodes, resulting in a sequence of
undirected, weighted and fully connected epileptic brain networks.

Estimating node centrality indices. For each node in the evolving epileptic brain network , we calcu-
lated four different centralities: strength centrality (CS; which is equivalent to degree centrality in unweighted
networks®»*), eigenvector centrality (CF), closeness centrality (C©), and betweenness centrality (C®). This calcu-
lation was repeated for each time-window, in order to assess changes in a node’s centrality over time.

According to strength centrality, a node is central if it is strongly connected to adjacent nodes, and is defined
as the summed weights of edges connected to the node:
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N
CS(”) = Z an;
m=1

where R, is the weight of the edges connecting nodes n and m, and nodes n and m are adjacent.
Eigenvector centrality considers the influence of a node on the network as a whole, where a node is considered
central if the nodes connected to it are also central, and is defined as
1 XN
CHm) = —— > Rum C(m),
1

A
max

where Amax is the dominant eigenvalue of the weighted adjacency matrix, Ry, is the weight of edges between
nodes #n and m, and CE(m) is the eigenvector centrality of node m. This equation is applied iteratively until
eigenvector centrality values remain stable.

Closeness centrality considers the distance between a node and all other nodes in the network. A node with
a high closeness centrality is central as information from this node can reach all other nodes in the network
via short paths, and so the node can exert a more direct influence over the network. CC is calculated as follows:

1
St dim

where d,,,, is the length of the shortest path between nodes n and m, calculated as the sum of the inverse of all
edge weights on the path.

Finally, betweenness centrality is a measure of how frequently a given node falls on the shortest path between
two other nodes. A node with a high betweenness centrality is central because it acts as a bridge between other
brain regions. Betweenness centrality of a node # is given by

2 Qim (1)
(N -1 -2) l#%n Gim

CCn) =

CBm) =

where Gy, is the number of shortest paths between nodes I and m, and gj,,, (1) is the number of shortest paths
between nodes I and m which pass through node n. The length of a path is calculated as the sum of the inverse
of all edge weights on that path.

Both CC and C® consider shortest paths in some sense. A path between two nodes describes a series of edges
(which can be just one edge) that are traversed when going from one node to the other. A path is considered
short or strong (long or weak) if the sum of the inverse edge weights along this path is small (large). Accordingly,
we employed two different interaction-strength-based centrality indices (CS and CF) and two different path-
based centrality indices (C* and CB). While eigenvector centrality was iteratively calculated for all nodes in the
network, and thus takes into account more global aspects of the network, strength centrality only considers the
strength of interactions of a given node to its adjacent ones, reflecting only local aspects of the network. In case of
betweenness centrality, the global path structure in the network is considered (by identifying all shortest paths)
when estimating the centrality of a node, while for closeness centrality only local path structures are considered,
namely the shortest paths from the node, for which the centrality is estimated, to every other node in the network.
Hence, CS and CC are more sensitive to local aspects of the network compared to C* and CB. Note that the term
local does not refer to a spatial relationship, as we estimated the centralities for fully connected networks, but to
certain edges that are either directly connected to the node for which the centrality is calculated, or are a part
of a shortest path connected to this node. CE and CP are sensitive to global aspects, as they consider all edges in
the network, when determining the centrality of any node.

A statistical approach to identify predictive nodes. In order to determine whether a node’s central-
ity changed prior to a seizure, we compared its distributions of values from pre-seizure and seizure-free periods
using the Kolmogorov-Smirnov (KS) test. The p-values of this test were corrected for multiple comparisons
(number of nodes) using the Bonferroni method. In order to be considered for further analysis, a node’s central-
ity had to significantly differ between pre-seizure and seizure-free periods (p < 0.05).

In order to verify the specificity of this change, and to minimise the impact of confounding variables such
as the influence of rhythmic fluctuations in interaction strength?®, seizure time surrogates (STS) were created to
compare the real data to™. 19 STS time-lines were created for each subject, where “seizure times” were placed
randomly within the seizure-free periods, but maintained the same total number of seizures and the distribu-
tion of intervals between sequential seizures. The KS test was then repeated for each of these STS datasets. If
the test revealed larger KS-statistic values (the largest distance between two cumulative distributions) when
comparing centrality values of pre-seizure to seizure-free periods for the STS than for the real data, then any
difference found in the real data could be explainable by changes of node centrality due to unrelated fluctuations
in network topology, e.g. measurement errors or daily rhythms. Using this method we determined the number
of predictive nodes. In order to be identified as predictive, a node’s KS-statistic value had to be at least 5% greater
(to compensate for estimation errors) than any of its KS-statistic values for STS for at least one centrality (note
that the KS-statistic is not sensitive to the direction of change). Given the different sizes (number of electrode
contacts, Table 1) of functional modules within subjects, the hypergeometric statistic was used to test whether
more nodes located within one module were predictive than expected by chance (p < 0.05).
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With any of the employed centrality indices, we identified at least one predictive node in 23 of 38 subjects
with epilepsy (Table 1), and only data from these subjects will be considered in subsequent analyses. Statistical
analysis found no significant correlation between the identification of predictive nodes and the subjects’ age, sex,
duration of epilepsy, surgery outcome, location of the SOZ (hemisphere and lobe), or number of electrodes. We
note that our findings are neither dominated by data from a single nor from few specific subjects.

Data availibility
The data that support the findings of this study are available from the corresponding author upon reasonable
request. The data are not publicly available as they contain information that could compromise the privacy of
research participants.
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Unexpected and often irreversible shifts in the state or the dynamics of a complex system often accumulate in
extreme events with likely disastrous impact on the system and its environment. Detection, understanding, and
possible prediction of such critical transitions are thus of paramount importance across a variety of scientific
fields. The rather modest improvement achieved so far may be due previous research mostly concentrating on
either particular subsystems, considered to be of vital importance for the generating mechanism of a critical
transition, or on the system as a whole. These approaches only rarely take into account the intricate, time-
dependent interrelatedness of subsystems that can essentially determine emerging behaviors underlying critical
transitions. We uncover subsystems, network vertices, and the interrelatedness of certain subsystems, network
edges, as tipping elements in a networked dynamical system, forming a time-evolving tipping subnetwork. We
demonstrate the existence of tipping subnetworks in excitable complex networks and in human epileptic brains.
These systems can repeatedly undergo critical transitions that result in extreme events. Our findings reveal that
tipping subnetworks encapsulate key properties of mechanisms involved in critical transitions.

DOI: 10.1103/PhysRevResearch.7.023109

I. INTRODUCTION

Critical transitions are crucial phenomena in the dynamics
of complex systems, where already a small change in internal
or external conditions can lead to a seemingly abrupt and often
irreversible shift in the systems’ states. Such transitions are
widely observed in different natural and man-made systems
across diverse scientific fields, including ecology, economics,
climate science, epidemiology, medicine, and physics [1-11].
Adopting the network perspective [12,13] and assuming these
systems are composed of coupled units, representing sub-
systems, allows us to improve understanding of emergent
phenomena, where the collective system dynamics cannot be
trivially inferred from properties and dynamics of its individ-
ual units. Rather, for such emergent phenomena, complex and
largely unexpected global behaviors arise from the nontrivial,
local interactions together with the intricate global interplay
of the systems’ coupled units.

Emergent phenomena, such as critical transitions, entail
possibly far-reaching and irreversible impacts and massive
restrictions for the system, as they can culminate in ex-
treme events. These are generally understood as rare yet
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(re)occurring large deviations from an otherwise regular
system dynamics, often imposing potentially disastrous con-
sequences on a system’s stability, functionality, and overall
health [14,15]. Therefore, identifying alterations of the sys-
tems’ dynamics, associated with a critical transition that
lead to an extreme event is of paramount importance. This
would allow for predicting these events, which would en-
able development of effective mitigation and prevention
strategies [16—19].

Advances in mathematical concepts to improve under-
standing of the described phenomena [20,21] as well as
advances in time-series analysis techniques for data-driven
detection of critical transitions and prediction of extreme
events [22], however, are still unsatisfactory and at times even
controversially discussed. The high dimensionality as well as
the intricate interplay between structure and dynamics of real-
world systems, together with stochastic influences, complicate
the identification of critical transitions, prediction of extreme
events, as well as the study of mechanisms that are involved
in their generation. Furthermore, in many approaches, em-
phasis is either placed on the state of individual units or on
global properties of the system. This often leads to a heuristic
derivation of single and specific elements, so-called tipping
elements [23], which may shift abruptly and irreversibly from
one state to another. However, in many complex systems, and
not least because of their emergent properties, all interactions,
i.e., the ways in which coupled units influence each other, play
a central role not only in determining the systems’ dynamics,
but also for transitions between different dynamics [24-26].
The description of complex systems as networked systems of
coupled units emphasizes the relevance of interactions.

Published by the American Physical Society
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In many natural and man-made complex systems, how-
ever, access to couplings is limited or even impossible. The
aforementioned description of a system as a network is still
possible when considering network vertices as units and
network edges as interactions between them, constituting a
functional network. This requires characterizing interactions
from time series of appropriate observables of the units’
dynamics, together with the choice of an estimator for the
strength and/or direction of an interaction or even for the
coupling function, depending on the specific research question
and the system under investigation.

Here, we go beyond the recently proposed relevance of
interacting tipping elements, or networks thereof, that has
been put forward particularly for the Earth’s climate system
[27-31]. We argue that significant advances in understand-
ing critical transitions in the dynamics of networked systems
can be achieved by shifting the focus from either a global
perspective or from a unit-centric view to one that empha-
sizes the identification of temporal and structural patterns
of interactions between units, but on an intermediate level
between single constituents and the entire network. We de-
fine these constituents, vertices and edges, as tipping vertices
and tipping edges that exhibit significant alterations in their
structural integration within the functional interaction net-
work prior to an extreme event. We conjecture that a tipping
subnetwork, a connected network consisting of tipping ver-
tices and tipping edges, together with its integration within
the larger networked system can provide vital insights into
critical transitions and network alterations associated with
their generation.

Here, we demonstrate the presence of a tipping subnet-
work in toy models of excitable complex networks as well
as in a complex natural system, the human epileptic brain.
For these systems some knowledge about the mechanisms
associated with critical transitions is available, as they relate
to complex phase synchronization phenomena [32,33], and
systems are capable of self-generating and self-terminating
extreme events, i.e., without changing control parameters.
Eventually, we highlight the exceptional integration and seclu-
sion of the tipping subnetwork in the larger time-evolving
network.

II. INVESTIGATED SYSTEMS

A. Excitable complex networks

We model excitable complex networks locally by the
FitzHugh-Nagumo equation [34,35], a paradigmatic model
for excitability with broad applicability in diverse fields
such as neuron dynamics, cardiac physiology, cell division,
population dynamics, and electronics [36-39]. Following
Ref. [40], our networks consist of V = 101 diffusively cou-
pled FitzHugh-Nagumo oscillators, where the dynamics of the
ith oscillator is governed by

\%4
Gi=xia—x)x— D=y + kY Aylx; —x)
j=1

Yi = bix; — cy;. (D

The oscillator’s control parameters are a, b;, and ¢, and A €
{0, 1}V*V is the adjacency matrix of a nondirectional network,
in which each vertex corresponds to one FitzHugh-Nagumo
oscillator: A;; = Aj; = 1, if oscillators i and j are coupled.
We disregard any self-coupling (loops): A; = 0Vi € [1,V].

Following previous studies [32,40-43], we consider
paradigmatic networks (small-world (SW) [44], scale-free
(SF) [45], and random (RN) [46]) as coupling topologies,
and additionally consider an all-to-all coupling (complete net-
work; CP) to cover situations encountered in investigations of
empirical data.

‘We choose the global coupling strength k such that the col-
lective network dynamics (ensemble average of the excitatory
dynamical variable x) exhibits extreme events (k = 18.1820
for a small-world network with £ = 202 edges and rewiring
probability p = 0.25; k = 4.9458 for a scale-free network
with E = 198 and m = 3 initial vertices; k = 4.2065 for aran-
dom network with E = 258; k = 0.128 for complete network
with E = 5050). These extreme events are self-generated and
self-terminated [32,40—43] and manifest as rare, short-lived,
and large-amplitude events, which strongly deviate from an
otherwise normal oscillatory dynamical behavior (average
value of first dynamical variable exceeds four standard de-
viations of normal oscillatory behavior; Fig. 1). We observe
10-30 of such events in the time series of the collective
network dynamics for each of the 20 realizations of each
coupling topology.

B. Human epileptic brain

Epilepsy is among the most common diseases of the
brain and affects approximately 50 x 10° people worldwide
[47]. The disease is mainly characterized by the repeated
occurrence of epileptic seizures, an abnormal and exces-
sively synchronized neuronal activity that temporarily and
often massively disrupts normal brain function [48]. Epilepsy
is now viewed as a network disorder with seizures emerg-
ing from large-scale brain networks [49]. Although access
to the brain’s coupling topology is limited, important in-
formation about an epileptic brain network’s dynamics can
nevertheless be achieved from investigating time-evolving
functional networks [(TEFNSs), Sec. III A] derived from elec-
troencephalographic recordings (Fig. 2). In this framework,
a TEFN’s vertices are associated with sampled brain re-
gions, and its edges represent properties of time-dependent
interactions between the region’s dynamics [50], yielding
a time-evolving complete network. We investigate multi-
day electroencephalographic (EEG) recordings encompassing
123 seizures from 48 individuals with epilepsy (refer to
Appendix A for detailed information).

III. METHODS

A. From multivariate time series to time-evolving
functional networks

A functional (or interaction) network can be derived
from multivariate time series of a system’s dynamics as
follows [51,52]: associate subsystems (respectively, sensors
that record the subsystems’ dynamics) with network vertices
(vpeV,me{l,...,V}, V=1V|) and associate properties

023109-2
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FIG. 1. Dynamics of excitable complex networks [coupling topologies: random (RN); small-world (SW); scale-free (SF); all-to-all
(complete; CP)]. (a) Exemplary temporal evolutions of the average value of the first dynamical variable X = % ZL] x; [Eq. (1)] exhibiting
extreme events. (b) Excerpts centered around an extreme event (at f.,,, where X > 40,; o, denotes the standard deviation of x) of the respective
time series. Note that the excitable complex networks are also capable of generating clusters of extreme events consisting of closely following
events that are not preceded by the normal oscillatory dynamics. For our investigations, we only consider the first event of a cluster. (c) Attractor
projection on the (¥, X) plane of extreme event dynamics [colors refer to extreme events in (a)]. (d) Attractor projection on the (y, X) plane
of the normal (oscillatory) dynamics. The control parameters a = —0.02651 and ¢ = 0.02 are identical for all oscillators; the parameter
b; = 0.006 + 0.008 \tll is mismatched with 0.006 < b; < 0.014 Vi [40]. Each networks’ dynamics was integrated using an adaptive, explicit
Runge-Kutta method of fifth order with a step size of 1 [53]. We chose initial conditions randomly near the attractor and discarded at least 10°

initial transients. Time series (here: x components) used for further analyses consisted of 10° data points.

of an interaction between each pair of subsystems with net-
work edges (¢; € £,i € {1,...,E},E = ||, withe; = ¢, =
{vm, v,} and v, € V, v, € V). Properties of an interaction
include existence (binary network), strength (weighted net-
work), or direction (directed network) and can be estimated
with bivariate time-series analysis techniques [54-57]. For a
time-resolved analysis of the system’s dynamics, as in the case
of a nonstationary system [22,58], the multivariate time series
can be split into consecutive windows (e.g., during which
the system can be assumed to be approximately stationary;
Fig 3). This then results in a time-dependent sequence of
functional snapshot networks [a time-evolving functional net-
work (TEFN); Fig. 3] whose number of vertices and edges
remains constant but the strength of the pairwise interactions
between vertices (represented by the weight of the edges)
varies.

Since generating mechanisms of critical transitions ob-
served in the systems investigated here relate to synchroniza-
tion phenomena [43,59-64], we employ a measure for phase
synchronization to estimate the strengths of pairwise interac-
tions. The mean phase coherence between the time series of

vertices v,, and v, is defined as [65]

1 T-1
—_ | — i(d’z»u(t)*(pvn(l))
T Ze ’
t=0

where T denotes the number of data points per window and
¢y, 1s the time series of instantaneous phase of the dynamics
of vertex v,,, which we derived using the Hilbert transform.
R, 1s confined to the unit interval with R,,, = | indicating
fully phase-synchronized subsystems. Mean phase coherence
values between time series from all pairs (v, v,) ; (m # n) of
vertices define the weighted adjacency matrix WY>V, whose
diagonal elements are set to zero to avoid self-loops. This
matrix describes an undirected, weighted functional snapshot
network (Fig. 3).

For the multivariate time series of the excitable complex
networks, we choose T such that each sliding window con-
tains at least one full cycle of either an extreme event or a
low-amplitude oscillation (Fig. 3). This resulted in around
1000 snapshot networks for each realization of an excitable
complex network.

@
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FIG. 2. Exemplary electroencephalographic recordings from a subject with epilepsy (Appendix A). Excerpts of 30 s duration from different
brain regions (top to bottom) during times far off seizure-related dynamics (left), during the critical transition (middle), and at onset of a focal

seizure (right).

For the multivariate time series of epileptic brain dynamics,
we choose T to cover a window of 20 s duration, which
represents a compromise between the required statistical ac-
curacy for the calculation of R,,,, and approximate stationarity
within a window length [58]. This resulted in, on average,
20300 snapshot networks for the investigated epileptic brain
networks (range: 2300—48000; Appendix A).

B. Identifying tipping elements in time-evolving
functional networks

We define tipping elements as those network constituents
whose alterations of their structural integration (assessed with
centralities; Appendix B) during critical transitions to recur-
rent extreme events differ significantly from alterations seen
far from critical transitions. In case of the human epileptic
brain, we also consider short-term fluctuations to minimize
the influence of biological rhythms that act on various time
scales [66]. We identify tipping elements by adopting an anal-
ysis approach that is successfully applied in studies on the
detection of precursors of epileptic seizures [49,59,67].

To this end, we first assume a critical transition to take
a certain amount of time that covers the generation of an
extreme event (critical transition period P with duration
Twiit). We also assume that the period starting a certain amount
of time after the previous extreme event and ending with the
onset of the next critical transition does not cover the gener-
ation, dynamics, and possible enduring effects of an extreme
event (period of normal dynamics Ppom, with duration 7o, ).

Next, we determine whether the (fluctuations of the)
structural integration [C(z)] of network constituent z dif-
fers between Py and Phom [Fig. 3(cl)]. For this purpose,
we perform a nonparametric comparison of the cumula-
tive distribution functions (CDFs) of the respective time

series of centrality values during Py and Py, [two-sample
Kolmogorov-Smirnov (KS) test, Fig. 3(c2)]. Network con-
stituents for which we achieve a significant difference (p <
0.05 after Bonferroni correction to account for multiple com-
parisons in the order of the number of vertices/edges) serve
as candidates for tipping elements. Eventually, and in order
to minimize the risk of potential confounder-mediated false
attributions of network constituents to tipping elements (e.g.,
due to fluctuations in network topology, measurement errors,
etc.), we adopt a surrogate technique [22,69] that consists of
a random shuffling of P, to generate a surrogate sequence
of artificial onset times of P.;. We repeat the aforementioned
statistical comparison for each network constituent with 19
surrogate sequences and use the maximum distance S between
two CDFs to judge false attributions. We identify a network
constituent as tipping element only if the S value of the
original sequence exceeds by at least 5% the maximum S
value obtained from the surrogate sequences, for any of the
employed centrality concepts (i.e., C3N v CE v C€ v CB).

For the dynamics of the excitable complex networks, we
omit =17 around the extreme event and choose T = 3T to
capture protoevents that precede the extreme events [40—42].
We assign the remaining data to Py -

Since opinions differ on how long before a seizure the
mechanisms leading to it actually begin, any recordings within
4h prior to seizure onset were excluded from P, and
instead considered as potentially related to the P.y. We
hence choose Ty = 4h [68]. To avoid possible effects re-
sulting from the seizure and the postseizure period, which
are known to be associated with EEG alterations, recordings
within 30 min after the onset of a seizure, with the onset
identified by a board-certified epileptologists on the EEG
and concomitant video recordings, were omitted from the
analysis.
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FIG. 3. Schematic representation of the methodological framework to derive time-evolving functional networks from multivariate time
series of a system’s dynamics and to identify tipping constituents. (al) Exemplary time-series with marked critical transitions into extreme
event (red) and surrogate extreme events (blue) [69]. (a2) Highlighted arbitrary extreme event and schematic of the sliding-window approach
with nonoverlapping windows (orange). (b) Construction of time-evolving functional networks, where adjacency matrices encapsulate the
strength of interactions between units as assessed with mean phase coherence R. (c1) Temporal evolution of a selected centrality measure
of constituent z with significant differences in periods associated with a critical transitions compared to normal dynamics. (c2) Exemplary
cumulative distribution functions (CDF) of centrality values. Maximum separability S of distributions (Kolmogorov-Smirnov statistic) is
shown as double-headed arrow. The left inset shows the full CDF. The lower inset shows separability S of distributions (diamond) to clearly

exceed the range of S values (brown bar) derived from surrogates.

IV. RESULTS

A. Tipping subnetworks in excitable complex networks

Extreme events in excitable complex networks are pre-
ceded by short-lived events that are characterized by only a
few oscillators being excited (i.e., the corresponding x; as-
sumes a high value) [32,40-43]. Such protoevents appear to
lead to an extreme event only if excited oscillators can recruit

a critical amount of other oscillators, which then also start
to exhibit protoevents. Nevertheless, since extreme events
were observed less frequently than protoevents, the formation
of protoevents may not be regarded as the sole generating
mechanism for a critical transition to an extreme event in the
dynamics of excitable complex networks.

The recruitment of nonexcited oscillators is largely facil-
itated by sets of specific edges in the network [43]. These
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edges are deemed most or least important, on average over
time, based on different centrality concepts, however have
no equivalent in the underlying topology. Further these edges
lie not only between vertices that show protoevents but also
between vertices that dot not show excitation. We argue that
the formation of protoevents is governed by dynamic inter-
actions between both excited and nonexcited oscillators in
the network. These interactions are associated with distinct
time-dependent alterations that underlie a critical transition to
an extreme event.

We identify these alterations, or tipping subnetworks, in
time-evolving functional networks [(TEFNs) that we derive
from time series of the excitatory dynamical variable x in
Eq. (1); Sec. IIT A] by first quantifying how each single net-
work constituent (oscillator or vertex, interaction or edge)
is structurally integrated in the TEFNs (Appendix B) and
then by segregating those constituents that qualify as pre-
cursors (or tipping elements) for an upcoming extreme event
(Sec. III B) in contrast to the residual subnetwork consisting of
the nontipping elements (henceforth referred to as nontipping
subnetwork).

Occurrence of tipping constituents. We find tipping el-
ements, vertices and edges, in all TEFNs that stem from
excitable complex networks with small-world, scale-free, or
all-to-all coupling topologies (SW-/SF-/CP-based TEFNs),
and in two-thirds of the TEFNs stemming from excitable com-
plex networks with a random coupling topology (RN-based
TEFNs) (Fig. 4, top). In contrast to what one would expect

from observations of protoevents, the amount of tipping el-
ements is surprisingly large (Fig. 4, bottom): on average,
between 70% and 80% of vertices are tipping vertices and all
edges are tipping edges if we consider cases with at least one
tipping edge. Of these tipping vertices, 98% are connected,
on average, to a tipping edge, and between 63% and 92% of
tipping edges connect two tipping vertices (data not shown).
Notably, only 1%-5% of tipping edges are connected to
only one nontipping vertex. Together, these findings indicate
the presence of a connected, substantial tipping subnetwork
within the TEFN that takes on a peculiar and pivotal role
during the critical transition to an extreme event in excitable
complex networks. We observe though a strong influence of
the coupling topology of the excitable complex networks the
TEFNs stem from: in SW- (SF)-based TEFNS, we identify a
tipping subnetwork in about 75% (90%) of cases; in RN- or
CP-based TEFNS, this is reduced to about one-third of cases.

Let us now examine in greater detail the changes in the
structural integration (as assessed with different centralities)
of the tipping subnetwork, both during critical transitions and
during periods of normal dynamics. Figure 5 provides a com-
prehensive overview of median changes.

Structural integration assessed with strength-based cen-
tralities. For RN- and SW-based TEFNSs, vertex strength
centrality (C3) is slightly higher in the tipping subnetwork
than in the nontipping subnetwork during normal dynamics
but decreases to comparable levels during the critical transi-
tion. In SF-based TEFNs, CS values drop significantly in both
subnetworks during the transition. Conversely, in CP-based
TEFNS, CS increases slightly across the entire network.

Nearest-neighbor edge centrality (CY) follows a similar
trend: in RN-, SW-, and SF-based TEFNSs, Cg] values decrease
and converge between subnetworks during the transition,
while in CP-based TEFNs, CY increases in the tipping sub-
network and decreases in the nontipping subnetwork. This
suggests that CP-based TEFNs develop distinct structural al-
terations during transitions, whereas RN-, SW-, and SF-based
TEFNs become more homogenized.

Vertex and edge eigenvector centrality (CF, CF) are higher
in the tipping subnetwork than in the nontipping subnetwork
for RN-, SW-, and SF-based TEFNSs, with the differences
becoming on average more pronounced during critical tran-
sitions. While this may seem contrary to the homogenization
observed in C5 and CY, higher CE values indicate stronger
interconnectedness between the tipping and the nontipping
subnetwork. Thus, eigenvector centrality changes further sup-
port the interpretation of TEFN homogenization based on
strength centrality.

Structural integration assessed with path-based cen-
tralities. Neither with vertex nor with edge betweenness
centralities (C“?, Cf) do we observe significant differences
between the tipping and nontipping subnetworks, and not
between the normal dynamics and the critical transition. In
contrast, vertex and edge closeness centralities (CS, CS) reveal
differences that are qualitatively similar to those observed
with strength-based centralities (C5 and CY). This is consistent
with the more homogenized structures of RN-, SW-, and SF-
based TEFNSs, especially during the critical transitions, and
the tipping subnetwork emerging as a distinct structure in
CP-based TEFNS.
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FIG. 5. Median centrality values of tipping (filled bars) and nontipping (empty bars) vertices and edges comprising subnetworks in time-
evolving functional networks (TEFNs) during periods of normal dynamics (nonhatched) and during critical transitions (hatched). Median over
all realizations calculated from the median centrality values of the respective vertices and edges. TEFNs were derived from excitable complex
networks with a random (RN), small-world (SW), scale-free (SF), or all-to-all (CP) coupling topology. Centrality concepts (Appendix B)
are color coded: betweenness C® (red); closeness CC (blue); eigenvector CE (green); strength/nearest neighbor Cvs /CX (orange). We rescaled
centrality values for easier legibility of the figure [scaling factors for vertex centralities: (CB, CC, CE, C3) = (1, 10, 100, 0.01); scaling factors

for edge centralities: (C®, C€, CE, CY) = (1000, 10, 0.01, 0.05)].

Topological and spectral characteristics of the time-
evolving functional network. In addition to characteristics of
single constituents (vertices and edges), global characteristics
of TEFNs can provide important information on critical-
transition-related network modifications [70]. We therefore
calculate, for each snapshot functional network, the average
shortest path length L, the global clustering coefficient C,
assortativity A, and synchronizability S (see Ref. [52] for
details).

The distributions of global characteristics of the TEFNs
for different excitable complex networks during normal dy-
namics and critical transitions are summarized in Fig. 6. For
RN-, SW-, and SF-based TEFNSs, the average path length
(L) tends to be higher, while the clustering coefficient (C)
is lower during critical transitions. Combined with a slight
increase in assortativity (A), this suggests a breakdown of
specific structures (such as clusters and path structures) and
a homogenization of the TEFNs during the critical transition.
The stability of the globally synchronized state, assessed with
synchronizability (S), remains largely unchanged for RN- and
SW-based TEFNSs, but increases for SF-based TEFNs during
the critical transition.

In contrast, global characteristics of CP-based TEFNs are
modified differently during the critical transition. Lower val-
ues of L and higher values of C indicate the formation of
more clustered structures within the TEFNs. Furthermore, and
unlike SF-based TEFNS, the stability of the globally synchro-
nized state decreases during the critical transition.

It is important to note that, for SW-based TEFNs,
the average shortest path length (L) and global clustering

coefficient (C) during critical transitions are comparable to
those observed during normal dynamics for a smaller subset
of SW-based TEFNSs (see Fig. 6, second-order peak of L and
C during normal dynamics, shown in gray). For this sub-
set, the networks appear to reflect a densely connected large
core during periods of normal dynamics, in contrast to more
weakly connected smaller clusters seen in CP-based TEFNs.
A similar observation is made for the shortest path length (L)
in SF-based TEFNs.

This overall highlights specific structural properties of SW-
and SF-based TEFNs, which often exhibit characteristics of
densely connected networks, potentially facilitating the occur-
rence of critical transitions.

Interpretation. The schematics shown in Fig. 7 sum-
marizes our findings based on the occurrence of tipping
constituents and differences observed in local and global
network characteristics. During periods of normal dynam-
ics, the tipping subnetwork already tends to be overall more
integrated in the time-evolving functional network than the
nontipping subnetwork. We observe this difference of integra-
tion in TEFNSs irrespective of the coupling topologies of the
excitable complex networks.

For CP-based TEFNs in the critical transition, the
tipping subnetwork is gradually (with the tipping sub-
network viewed as the core of the TEFN) and globally
weaker integrated, while yet being locally, and with re-
spect to certain path structures, more strongly integrated.
This modification is clearly more pronounced for the tip-
ping subnetwork than for the nontipping one and resembles
the formation of a more structured topology within the
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FIG. 6. Probability density functions (PDFs) of median (over
time) global characteristics of time-evolving functional networks
(TEFNs) during periods of normal dynamics (gray) and dur-
ing critical transitions (red). TEFNs were derived from excitable
complex networks with a random (RN), small-world (SW), scale-
free (SF), or all-to-all (CP) coupling topology. Average shortest
path length L, global clustering coefficient C, assortativity A, and
synchronizability S.

TEFNSs, exhibiting features of scale-free and small-world
networks.

For SW-/SF-, and RN-based TEFNS in the critical transi-
tion, we observe opposing modifications. The variability of
how tipping elements are structurally integrated is reduced,
and the amount of weakly and strongly integrated elements
becomes more comparable. Both these modifications indicate
a homogenization of the structural integration of constituents
of the tipping subnetwork within the TEFN. Further, and in
comparison to the nontipping subnetwork, the tipping one is
locally less integrated with an apparent lack of certain path
structures, while being globally more integrated within the
TEFNs in the critical transition. Contrasting the observations
made for CP-based TEFNSs, this points towards a counterbal-
ancing of the topological properties of the TEFNs, bringing
them closer to a rigid network (cf. Refs. [71-74]).

Summarizing this section, we identified subnetworks
within time-evolving complex networks of coupled excitable
FitzHugh-Nagumo oscillators. These subnetworks are charac-

critical transition

FIG. 7. Schematic of average structural integration of the tip-
ping and the nontipping subnetwork (constituents in gray) within
a time-evolving functional network (TEFN) transiting from normal
dynamics (constituents of tipping network in green) via a critical
transition (constituents of tipping network in red) to an extreme
event. The structural integration for CP-based TEFNS (right top) dif-
fers from the ones for SW-/SF- or RN-based TEFNs (right bottom).
Size/thickness of constituents encodes their structural integration,
with larger constituents being overall more strongly integrated.

terized by their distinct structural integration into the larger
networks. During a critical transition to an extreme event,
the subnetworks are modified in their relevant global and
local topological properties, such that they oppose those of
the excitable complex networks’ coupling topology. These
modifications of a subnetwork to a tipping one are essential
for the generation of patterns of local temporal precursors
(protoevents) and for a buildup of a critical mass of such pat-
terns of precursors that eventually culminates into an extreme
event.

B. Tipping subnetwork in the human epileptic brain

There is strong evidence for the extreme event epileptic
seizure [75] to be preceded by a long-lasting critical transi-
tion [67], although the exact mechanisms underlying seizure
generation are not yet fully understood. A critical transition
can often be detected as gradual but enduring changes in in-
teraction patterns between different regions of the brain [68],
which suggests the brain’s large-scale organization to play a
crucial role in seizure generation. Indeed, temporal changes
in the structural integration of a TEFN’s constituents into the
larger network point to widespread network reconfigurations
associated with a critical transition into an epileptic seizure
[76]. Since these changes also identify individual vertices as
local tipping elements [77], and given the commonalities of
these observations with the ones made for excitable complex
networks we propose that these tipping vertices are part of a
tipping subnetwork, that may drive network reconfiguration
during the critical transition into a seizure.
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FIG. 8. Relative amount of tipping elements in time-evolving
functional networks for which any vertices or any edges were iden-
tified as tipping elements, with the structural integration of tipping
elements (vertices or edges) quantified with different centrality con-
cepts (color coded). Centrality concepts (Appendix B): CB (red); C©
(blue); CE (green); CS/CY (orange); with any of the concepts (black),
including any constituent that has been deemed a tipping element
based on either one or possibly multiple centrality measures.

Occurrence of tipping constituents. Proceeding with the
methodological steps from Sec. III, we identify tipping ver-
tices in the TEFNs (average network size V = 50) from all
but one subject and tipping edges in all subjects during the
critical transition to an epileptic seizure (Fig. 8).

On average, about half of the TEFNs’ constituents (47% of
vertices and 49% of edges) are tipping elements, and we note
that the majority of them do not coincide with constituents
identified clinically as the so-called seizure onset zone [78].
For either of the subjects, connected to all of the identified
tipping vertices is at least one tipping edge. In contrast, only
about half of the tipping edges connect two tipping vertices
and about one-quarter connect to only one tipping vertex, on
average. Figure 9 provides a comprehensive overview of me-
dian changes. Overall, we identify a tipping subnetwork in all
but one subject. It consists of about half of the TEFNS’ tipping
constituents, on average, and spans different brain lobes and
both brain hemispheres. The remaining tipping constituents
do not form any other structure of somewhat comparable size
and are liberally connected to the nontipping subnetwork.

Structural integration assessed with strength-based cen-
trality concepts. During normal dynamics, median vertex
strength centrality (CS) is higher in the tipping subnetwork
than in the nontipping subnetwork. However, during critical
transitions, this relationship reverses. Specifically, the tip-
ping subnetwork has higher median C5 value during normal
dynamics than during the critical transition, whereas the non-
tipping subnetwork shows the opposite pattern.

For nearest-neighbor edge centrality (CY), the trend is re-
versed. During normal dynamics, the median CY in the tipping
subnetwork is smaller than in the nontipping subnetwork. In
contrast, during the critical transition, median Cg‘ is larger in
the tipping subnetwork and smaller in the nontipping sub-
network. Overall, during the critical transition, median Cg
is higher in the tipping subnetwork than in the nontipping
subnetwork.

For vertex eigenvector centrality (CE), the median is
consistently larger in the tipping subnetwork than in the non-
tipping subnetwork, both during normal dynamics and the
critical transition. However, median CE in the tipping sub-
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FIG. 9. Same as Fig. 5 but results for time-evolving functional
brain networks. Centrality concepts (Appendix B) are color coded:
betweenness C® (red); closeness C€ (blue); eigenvector CE (green);
strength/nearest neighbor C5 /CY (orange). We rescaled median cen-
trality values for easier legibility of the figure [scaling factors for
vertex centralities: (CB, CC, CE, CS) = (100, 100, 10, 0.01); scaling
factors for edge centralities: (C®, C€, CE, CY) = (100, 0.01, 1, 1)].

network is lower during the critical transition compared to
normal dynamics, while the opposite is true for the nontipping
subnetwork.

In contrast to the previous centralities, the changes of the
median edge eigenvector centrality (CF) differ. During normal
dynamics, median CE is slightly higher in the nontipping
subnetwork than in the tipping subnetwork. However, during
the critical transition, median CF in the tipping subnetwork
exceed the one in the nontipping subnetwork, with the nontip-
ping subnetwork being more similar to the one during normal
dynamics.

Overall, these observations suggest that the tipping subnet-
work becomes more strongly connected within itself during
the critical transition compared to normal dynamics. This
indicates that during the critical transition, the tipping subnet-
work is less interconnected with the nontipping subnetwork.

Structural integration assessed with path-based centrality
concepts. During normal dynamics, the median vertex close-
ness centrality (CC) in the tipping and nontipping subnetworks
is similar. However, during the critical transition, the tip-
ping subnetwork exhibits slightly higher median CS, while
the nontipping subnetwork shows a slightly smaller median
CS. Median edge closeness centrality (Cec) is comparable in
both subnetworks during normal dynamics and the critical
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FIG. 10. Same as Fig. 6 but results from time-evolving functional
brain networks.

transition, with only minuscule differences observed between
the two periods.

For the vertex betweenness centrality (Cf‘), the median is
higher in the tipping subnetwork compared to the nontipping
subnetwork during normal dynamics. This difference be-
comes more pronounced during the critical transition, where
the median C2 in the tipping subnetwork increases further,
while the median C in the nontipping subnetwork slightly de-
creases. A similar difference is observed for edge betweenness
centrality (C®) in the tipping subnetwork, where the median
CB is higher during the critical transition than during normal
dynamics. In contrast, the median C2 in the nontipping subnet-
work is slightly higher during the critical transition compared
to normal dynamics.

These findings align with the changes observed in strength-
based vertex and edge centralities. However, during the
critical transition, the differences between the tipping and
nontipping subnetwork further emphasize the presence of dis-
tinct path structures in these subnetworks, highlighting their
unique characteristics.

Overall, the observed changes in structural integration, as
assessed with strength- and path-based vertex and edge cen-
tralities, point to a stark contrast between the subnetworks,
suggesting a potential sheltering effect in which the tipping
subnetwork becomes more isolated from the nontipping one
and vice versa.

Topological and spectral characteristics. We observe only
minuscule differences in the global characteristics of TEFNs
from epileptic brain networks when comparing normal
dynamics and critical transitions [79]. These differences do
not contrast with, nor do they emphasize the trends observed
in the changes in centralities (Fig. 10; [80]).

Interpretation. During periods of normal dynamics, es-
pecially the tipping vertices are already more structurally
integrated into the TEFN than other vertices, but the contrary
is true for tipping edges (cf. Fig. 11). Although the latter
points to a weak intrinsic connectedness of the tipping sub-
network’s constituents, despite being generally integrated into
the TEFN, it nevertheless emphasizes the possibility of distin-
guishing between the tipping and the nontipping subnetwork
already during periods of normal dynamics.

The distinction becomes more apparent during the critical
transition (Fig. 11), as the intrinsic connectedness within the
tipping subnetwork is increased while its general structural
integration into the TEFN and compared to the nontipping
subnetwork is decreased. The formation of path structures
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FIG. 11. Schematic of average structural integration of the tip-
ping and the nontipping subnetwork (constituents in green and gray,
respectively) within a time-evolving functional brain network tran-
siting from normal dynamics (left) via a critical transition (right;
constituents of tipping network in red) to the extreme event epileptic
seizure. Size/thickness of constituents encodes their structural inte-
gration, with larger/thicker constituents being overall more strongly
integrated.

within the latter further contrasts the tipping subnetwork.
These alterations of the TEFN can overall be abstracted as
a sheltering of the tipping subnetwork from the remaining
network, making the tipping subnetwork more rigid during the
critical transition. We note that these alterations of the TEFN
during the critical transition do not entail, on average, any
alterations of its global properties. This underlines the crucial
importance of substructures involved in the critical transition,
but whose alterations can be compensated for at the global
level.

Summarizing this section, we conclude that a tipping sub-
network is also detectable in a natural networked dynamical
system undergoing a critical transitions to an extreme event.
We observe commonalities between a tipping subnetwork in
the human epileptic brain and the tipping subnetworks iden-
tified in complex networks composed of FitzHugh-Nagumo
oscillators (Sec. IV A), and differences may be attributable to
the specifics of the investigated systems.

V. DISCUSSION

We report on tipping subnetworks associated with critical
transitions preceding extreme events in complex networked
systems. The tipping subnetwork consists of specific con-
stituents of the corresponding functional network, tipping
vertices, and tipping edges, whose time-dependent properties
carry information about an impending extreme event. As parts
of the larger complex networked system, the tipping subnet-
work contrasts the nontipping one in its significantly different
temporal alterations of its structural integration. Although
these alterations vary for the investigated systems, they exhibit
general similarities. Overall, tipping subnetworks tend to be
more rigid during critical transitions and hence less suscepti-
ble to (possibly unobserved) dynamics unrelated to potential
generating mechanisms of an extreme event.

Critical transitions are omnipresent and can be observed
in the dynamics of a wide range of natural and man-made
complex systems. Understanding, predicting, and potentially
altering these transitions is crucial, as their often disastrous
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impact on both the system and its environment can have
far-reaching consequences. The success in predicting extreme
events is still limited and highly depends on the investigated
system [3,7,15,81-90].

Shifting the focus from a global or unit-centric view to one
that emphasizes the role and relevance of complex interaction
structures, our study provides additional information about
potential mechanisms involved in the generation of extreme
events, in both, the investigated toy models and the human
epileptic brain.

It is evident that the tipping subnetwork plays a crucial role
in the mechanisms underlying critical transitions. The proper-
ties of the tipping subnetwork appear to exhibit, and possibly
need to fulfill, distinct characteristics that enable mecha-
nisms such as amplification and excitation to occur. These
characteristics are generally associated with a reinforced inter-
connectedness within the tipping subnetwork, which, in turn,
contributes to the preservation of these properties, possibly via
positive feedback [91,92]. This interconnectedness ultimately
renders the tipping subnetwork more rigid, a feature that may
be essential for the system to tip into a critical state.

Our findings imply that mechanisms associated with crit-
ical transitions can be studied in greater detail within the
tipping subnetwork due to it being less influenced by other
dynamics, which results from its seclusion from the larger
network. This can aid in the development of more refined
mathematical models of critical transitions in complex net-
worked systems and in advancing existing or developing novel
time-series-analysis techniques for their detection, character-
ization, and possibly prediction. Indeed, our study further
indicates that the relative sizes of the tipping and nontipping
subnetwork differ for the investigated systems. This may be
due to the different systems’ dynamics, as, apart from toy
models, access to their full spatial and temporal extend might
be limited, especially in natural systems. Yet, in the context
of emergent phenomena, such as critical transitions, sufficient
knowledge about subsystems and their dynamics is manda-
tory. Incomplete or insufficient spatial and temporal sampling
can lead to severe misinterpretations of network properties
[93—101] and their time-dependent changes, possibly restrict-
ing the assessment of tipping elements to only a fraction.
Further research is necessary to find appropriate solutions to
these as of yet unsolved issues, but we are confident that future
online detection and characterization of tipping subnetworks
can greatly aid in tackling challenges associated with predict-
ing, mitigating and even preventing critical transitions and
extreme events.
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APPENDIX A: EEG DATA

Electroencephalographic signals (EEG) were recorded
continuously over prolonged periods, typically covering sev-
eral days, from 48 adult subjects as part of the presurgical
evaluation of intractable epilepsies. Recordings captured, on
average, 2.3 clinical seizures per subject (range: 1-7; total:
123; we neglected subclinical seizures in our analyses).

The study was approved by the ethics committee of the
University of Bonn and each subject had signed informed con-
sent that their data could be used and published for research
purposes. All experiments were performed in accordance with
relevant guidelines and regulations.

EEG were recorded from electrodes implanted bilaterally
under the skull and into deeper structures of the brain, hence
with a high signal-to-noise ratio. Subdural strip electrodes
consisted of four or eight contacts with an intercontact dis-
tance of 10 mm, and subdural grid electrodes had 8 x 4 or
8 x 8 contacts with an intercontact distance of 10 mm. Pairs
of needle-shaped depth electrodes were each equipped with
ten or eight cylindrical contacts of length 2.5 mm and an inter-
contact distance of 4 mm. Number and anatomical locations
of electrodes were adapted to the subjects’ needs and were
thus highly nonuniform (average number of contacts: V = 50,
range: 14-120).

EEG data were digitally filtered in the frequency band
1 Hz—45 Hz, sampled at 200 Hz (sampling interval 5 ms) using
a 16-bit analog-to-digital converter and referenced against the
average of two electrode contacts outside of the presumed
focal region. These reference contacts were hence chosen
individually for each subject, and their data was disregarded
in this study.

APPENDIX B: QUANTIFYING THE STRUCTURAL
INTEGRATION OF NETWORK CONSTITUENTS

The structural integration of a single constituent (vertex,
edge) within a network can be quantified using centrality
concepts, where the quantification can be based on several
different network aspects [102-104]. We here employ four
different centrality concepts, jointly defined for vertices and
edges [105,106], differentiating between strength-based con-
cepts (strength/nearest-neighbor centrality and eigenvector
centrality) and path-based concepts (closeness centrality and
betweenness centrality). Within each group, the former con-
cepts are more sensitive to local aspects of the network, while
the latter concepts are more sensitive to global aspects.

1. Strength-based centrality concepts

Strength centrality (or just strength s) of vertex z in a
weighted network is the sum of weights of all edges connected
to this vertex (its analog in a binary network is the degree):

\%4
C3(z) =s(z) = Zsz- BD)
1=0
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Strength and degree have been generalized to derive a
strength-based centrality concept for an edge, called nearest-
neighbor edge centrality [106]. With this concept, an edge is
considered to be more central the larger its weight and the
more similar and the higher the strengths of the vertices which
are connected by that edge. Nearest-neighbor edge centrality
of edge z between vertices m and n is defined as:

Cvs(m) +CS(n) — 2w(z)
|CS(m) — CS(m)| + 1

CNiz) = w(z), (B2)

where w(z) =W,,, denotes the edge weight and z €
{1,...,E} and (m,n) € {1, ..., V}. Much like strength cen-
trality of a vertex, nearest-neighbor centrality of an edge is
only influenced by its adjacent network constituents.

With the concept of eigenvector centrality, a network con-
stituent is central if its adjacent constituents of the same type
are also central. This concept thus considers the influence of
a vertex/edge (v/e) on the network as a whole. Eigenvector
centrality of vertex [107] or edge [105] z is defined as the
zth entry of the eigenvector v corresponding to the dominant
eigenvalue A, of matrix M, which can be derived from
the eigenvector equation Mv = Av using the power iteration
method:

1

Ch(@) = M, CE.(D). (B3)

)\max I

In case of vertices, {z,[} € V and M denotes the weight ma-
trix W™ € [0, 11>V, with W(ZV) denoting the weight of an
edge between vertices z and /. We define WY := 0V z with
z€{l,...,V}. In case of edges, {z,/} € £ and M denotes
the weight matrix W® e [0, 1]5*F whose entries Wz(le) are
assigned the average weight of edges z and [ if these edges are
connected to a same vertex, and O otherwise. As above, we
define W :=0Vzwithz € {1,...,E}.

2. Path-based centrality concepts

A path between two network constituents m and #n is de-
fined as the set of edges that have to be traversed in order to get
from m to n or vice versa. The length of a path can be defined
as the sum of the inverse weights of edges along this path. A
path is considered short (or strong) if this sum is small; it is
considered long (or weak) if this sum is large. In this context,
a path structure refers to the arrangement or configuration of
paths within the network, which can be used to assess aspects
such as the number of shortest paths, information flow, or the
overall connectedness of the network.

The concept of closeness centrality considers the distances
(length of the respective shortest paths) between a constituent
and all other constituents in a network. A constituent with a
high closeness centrality is central as information from this
constituent can reach all other constituents in the network via
short paths, and so the constituent can exert a more direct
influence over the network. Closeness centrality of vertex z
is defined as [108]:

V-1
Zl dzl '
with (z,1) € {1,...,V} and where d,; is the length of the
shortest path between vertices z and /.

Closeness centrality of edge z between vertices m and n
can be defined as [105]:

Cl(z) = (B4)

o E—1 E—1
e )= =
Zl (dlm + dln) _091(’11) + _C\?](n)
CS(m)CE(n)
=(E-1)—"—""T— B
( )Cvc(m) +CE(n)’ )

withz e {l,...,E}and (m,n,1) e {1,...,V}.

The concept of betweenness centrality considers the fre-
quency of shortest paths traversing a given constituent. A con-
stituent with a high frequency of traversings (high between-
ness centrality value) acts as a bridge between other parts of
the network and can thus be considered a central constituent.
Vertex/edge betweenness centrality (of vertex/edge z)
can be defined as [105,109-111]

2 qim(2)
Cl(2)=— B
@ =5 ) e (B6)
1#m
where z e {l,...,V} (for vertices) [z €{l,...,E} (for

edges)], {{,m} € {1,...,V}, qiu(z) is the number of shortest
paths between vertices [ and m running through vertex/edge
z, and Gy, is the total number of shortest paths between
vertices [ and m. As above, we define the length of a path
as the sum of the inverse of all edge weights on that path.
The normalization factor is F = (V — 1)(V — 2) in case of
vertices and F = V(V — 1) in case of edges.

In general, a high (low) centrality value indicates a strong
(weak) structural integration of a constituent within a network.
Calculating the aforementioned centralities of each network
constituent in the time-dependent sequence of functional
snapshot networks (Sec. IIIA), we derive time-dependent
sequences of centrality values that allow tracking temporal
alteration of a constituent’s structural integration far off and
during critical transition.
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Epilepsy is now considered a network disease that affects the brain across
multiple levels of spatial and temporal scales. The paradigm shift from an
epileptic focus—a discrete cortical area from which seizures originate—to a
widespread epileptic network—spanning lobes and hemispheres—considerably
advanced our understanding of epilepsy and continues to influence both
research and clinical treatment of this multi-faceted high-impact neurological
disorder. The epileptic network, however, is not static but evolves in time which
requires novel approaches for an in-depth characterization. In this review, we
discuss conceptual basics of network theory and critically examine state-of-the-
art recording techniques and analysis tools used to assess and characterize a
time-evolving human epileptic brain network. We give an account on current
shortcomings and highlight potential developments towards an improved clinical
management of epilepsy.

KEYWORDS

epilepsy, epileptic network, epileptic focus, seizure, seizure-prediction, seizure-control,
electroencephalography, brain dynamics

1 Introduction

Epilepsy is the third most common neurological disorder with a worldwide
prevalence of about 1% (Beghi et al., 2019; World Health Organization [WHO],
2019). Epilepsy is clinically diagnosed by multiple epileptic seizures or by an
epilepsy syndrome or by a single seizure and a probability of at least 60% for
further seizures to occur over the next 10 years (Fisher et al.,, 2005). An epileptic
seizure is defined as a transient occurrence of symptoms due to abnormal excessive or
synchronous neuronal activity in the brain (Fisher et al., 2005). It can appear due to an
acute disease of the brain (e.g., acute symptomatic seizures due to brain abscess), due to
systemic disorders (i.e., metabolic disturbances), or as a symptom of a chronic disease,
i.e., epilepsy. The disease can be treated sufficiently well in about two-thirds of people
with epilepsy (Kwan and Brodie, 2000; Chen et al., 2018), while the other third needs
intensive diagnostics and extensive therapy attempts such as non-pharmaceutical
interventions (e.g., resective epilepsy surgery, neurostimulation) which in some
cases are associated with significant risks or side effects. The people’s willingness to
undergo more difficult or risky therapies depends on the burden of the disease being
treated. The burden of epilepsy is composed of several factors: comorbidities (Mesraoua
et al., 2020), psychosocial impairment, social stigma (Kwon et al., 2022), medico-legal
restriction, direct and indirect costs (Strzelczyk et al., 2008; Allers et al., 2015) and—as
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their
Mesraoua et al.,

to be expected—seizures, treatment and potential
(Noe, 2019; 2020). The

apparent unpredictability of most seizures not only increases

complications

the risk of injuries and discomfort, but also imposes loss of
autonomy, fear of seizures as well as psychosocial stress (Lang
et al., 2022), thereby impacting massively on the quality of life of
those affected and their caregivers (Baker et al.,, 1997; Chiang
et al, 2020; Strzelczyk et al, 2023). Thus understanding
emergence, propagation, and cessation of epileptic seizures is
generally assumed to be crucial to understand the nature of
epilepsy,
approaches as well as treatment options.

and to understand and establish diagnostic

Classification of seizures, epilepsies, and epilepsy syndromes

changed over time (Merlis, 1970; Dreifuss et al, 1985;
Commission on Classification and Terminology of the
International League Against Epilepsy, 1989; Berg and

Scheffer, 2011), and an increasingly sophisticated work-up was
demanded in clinical daily practice to better understand,
characterize, and treat the disease. Moreover, the dichotomy of
focal and generalized epilepsy was questioned (Liiders et al,
2009). In the clinical context, the origin of epileptic seizures
has been inferred firstly from structural changes and secondly
from semiology, i.e., behavioral changes during a seizure.
Electrophysiological ~changes associated with behavioral
changes were used as a bridge for diagnosis and referred to as
“ictal patterns”. This led to the model of a focal seizure origin and,
for a long time, to assignments of involved brain regions to the
different epilepsy
(symptomatogenic zone, irritative zone, seizure onset zone,

zones in  presurgical diagnosis
epileptogenic lesion, epileptogenic zone, eloquent cortex)
(Rosenow and Liders, 2001). Follow-up data,

demonstrated that only a portion of subjects treated with focal

however,

therapies such as epilepsy surgery (Téllez-Zenteno et al., 2005) or
focal brain stimulation achieves long-term seizure freedom
(Simpson et al., 2022), which about the
of the concept seizure
Furthermore, a similar cerebral lesion does not cause seizures

raises doubts
usefulness of a focal origin.
in every subject, so a “proconvulsive” disposition must
be suspected.

The epileptic brain should not be viewed as a temporarily
disturbed normal brain since it differs from a normal brain in
many structural and functional aspects, and seizures take up only a
small fraction of a subject’s lifetime. Function and dysfunction of
the adaptive dynamical system epileptic brain are interacting
processes that cover various time scales and are influenced by
various endogenous and exogenous factors. These range from
seizures and biological rhythms to treatments with antiseizure
medication, neurostimulation, or epilepsy surgery. Moreover, the
brain’s dynamics are influenced by its intricate structural
complexity; due to its intrinsic plasticity and adaptiveness,
dynamics can modify structure (Sporns, 2022). Together, this
calls for sophisticated approaches to improve our understanding
of the

relationship.

epileptic brain’s complex structure-(dys)functions

Research over the last decades has demonstrated the excellent
suitability of the network approach to the complex system brain in
health and disease (Bullmore and Sporns, 2009; 2012; Avena-

Koenigsberger et al.,, 2018). The explicit time-dependence of the
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epileptic brain, however, required an additional change in
perspective from a static to a time-evolving network. We here
review this novel perspective, its concepts, definitions, and
possible translations into

accomplishments, and discuss

clinical practice.

2 Conceptual considerations

In her seminal work, Susan Spencer considered a network to
be a functionally and anatomically connected, bilaterally
represented, set of cortical and subcortical brain structures and
regions in which activity in any one part affects activity in all the
others. The essential operational component of this definition is
the observation that vulnerability to seizure activity in any one
part of the network is influenced by activity everywhere else in the
network, and that the network as a whole is responsible for the
clinical and electrographic phenomena that we associate with
human seizures. Implicit in this idea is that the seizures may
entrain this large neural network from any given part, such that it
becomes irrelevant to discuss the “onset” of seizures in any specific
part of the network. In other words, the electrical hyperexcitability
associated with seizure activity reverberates within the neural
structures of the network, which operate together and inextricably
to culminate in the expression  of
(Spencer, 2002).

eventual seizures

BOX 1 The number of papers on epileptic brain network published
during the past three decades (sourced via Google Scholar using
the keywords “epileptic network” and “epileptogenic network”).

epileptic network

w
<t
<

B epileptogenic network

w
j=3
=}

[\v)
S
f=

=
3N
(=}

number of publications
_ Do
(=] (=}
[=] (=}

=

2000 2010

year

2020

Since then, epileptic brain network studies (sometimes also
referred to as an epileptogenic network) increased by almost a
factor of 30 (Box 1). In 2010, the term network was included in
the revised terminology and concepts for organization of seizures
and epilepsies of the International League against Epilepsy (Berg
etal., 2010). This highlighted the transition from the old concepts
of an epileptic focus and various cortical zones involved in
epilepsy (Rosenow and Liiders, 2001) to an epileptic network
spanning lobes and hemispheres. Today, epilepsy is considered a

The progress made in this highly
research  field has repeatedly

network disease.

interdisciplinary been
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summarized in a number of reviews [see, e.g. (Richardson, 2010;
Kramer and Cash, 2012; Laufs, 2012; Engel et al., 2013; van
Diessen et al., 2013; Chiang and Haneef, 2014; Stam, 2014; van
Mierlo et al., 2014; Bernhardt et al., 2015; Bartolomei et al., 2017;
Zijlmans et al., 2019; Gil et al., 2020; Royer et al., 2022a)]. A large
number of studies provided increasing evidence for an epileptic
brain network to differ from healthy ones, both structurally
(Whelan et al., 2018; Hatton et al., 2020; Lariviére et al., 2020;
Sisodiya et al., 2022) and functionally (Chavez et al., 2010;
Horstmann et al,, 2010; Zhang et al.,, 2011; Richardson, 2012;
Caciagli et al., 2014; Chiang et al., 2015; Foit et al., 2020; Pegg
et al., 2020; Slinger et al., 2022). Moreover, studies demonstrated
that the network approach allows for an improved understanding
of the dynamics of seizures [both generalized and focal (Schindler
et al., 2007b; Ponten et al., 2007; Kramer et al., 2008; Schindler
et al., 2008; Ponten et al., 2009; Zaveri et al., 2009; Kramer et al.,
2010; Kuhnert et al., 2010; Wilke et al., 2011; Bialonski and
Lehnertz, 2013; Varotto et al., 2012; Burns et al., 2014; Geier et al.,
2015a; Geier et al., 2015b; Zubler et al., 2015; Lopes et al., 2018;
Rungratsameetaweemana et al., 2022)] and of the complex
interplay between the epileptic process and physiologic
activities (Kuhnert et al., 2013; Yaffe et al., 2015; Garcia-
Ramos et al., 2016; Vecchio et al.,, 2016; Steiger et al.,, 2017;
Tailby et al., 2018; Yang et al., 2018; Zaveri et al., 2020; Mutti
et al., 2022; Roliz and Kothare, 2022), possibly mediated by the
same neural substrate.

Some studies [see, e.g., Zijlmans et al. (2019) for an overview]
attempted to integrate the concepts of an epileptic focus and of the
aforementioned cortical zones into the concept of an epileptic
network by considering the former ones as hubs or hub-like
strongly connected (functionally and/or
structurally) network components that significantly impact on

structures, i.e.,

the network. The characteristic of being strongly connected,
however, is only one of many other properties (cf. Section 3.2)
that emphasize a network component as important for both
structure and function of an epileptic brain network. Studies
going beyond hubs or hub-like structures attribute a rather
subordinate role to the epileptic focus and zones for seizure
dynamics and for the many (patho-)physiologic phenomena
seen in between seizures (Geier et al., 2015a; Geier et al., 2015b;
Geier and Lehnertz, 2017b; Geier and Lehnertz, 2017a; Brohl and
Lehnertz, 2019; Rings et al., 2019b; Fruengel et al., 2020; Brohl and
Lehnertz, 2022).

In 2003, John Milton and Peter Jung considered epilepsy as a
dynamic disease and defined an epileptic system as a dynamic,
ever-changing and evolving, distributed system of neurons that
controls the onset, propagation, and arrest of epileptic seizures
and coined the term evolving epileptic network (Milton and Jung,
2003). This concept initially received only little attention. It
regained interest, however, with the fusion of time-series-
analysis techniques and graph-theoretical concepts necessary
to investigate evolving (or time-dependent/temporal/multiplex/
multilayer) networks (Holme and Saramiki, 2012; Boccaletti
et al., 2014; Kiveli et al., 2014; Lehnertz et al., 2014; Muldoon
and Bassett, 2016) and with the development of techniques that
allow recording and storage of spatially extended brain
dynamics assessed over extended periods of time (days to
weeks and beyond).
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3 Techniques to assess and
characterize a time-evolving
brain network

In a brain network and depending on the chosen spatial scale,
a vertex may represent a single cell (e.g., neuron), a group of cells
(e.g., cortical columns), or a brain region (e.g., parcellated area)
and an edge some connection between vertices. If an edge
represents a physical/anatomical connection (single synapses,
fiber bundles, or groups of fiber bundles), then the network is
referred to as structural network (Park and Friston, 2013). If an
edge represents some functional interaction between vertices
(characterized by the interaction’s strength, direction, and
functional form), then the network is called a functional
network (Park and Friston, 2013).

3.1 Recording the brain’s structure
and dynamics

Various imaging and recording techniques can be used to assess
structure and dynamics of a time-evolving epileptic brain network
on different spatial and temporal scales and with different levels of
invasiveness (see Table 1).

Among the structural neuroimaging techniques, x-ray
computed tomography (CT) (Ginat and Gupta, 2014; Pelc,
2014) and magnetic resonance imaging (MRI) (Mori et al,
2005; Atlas, 2009) allow the non-invasive study of the whole
brain at different levels of spatial resolution, ranging from
millimeter-sized voxels to cortical areas and beyond. During the
recording, time-dependent structural changes (Fjell and Walhovd,
2010) are assumed to be negligible. Due to a comparatively better
differentiability of gray and white matter, particularly MRI and
diffusion MRI (Bammer, 2003) are often used to probe the
topological organization of the brain (Duncan, 2009; Engel
et al, 2013; Duncan et al, 2016; Whelan et al, 2018;
Sotiropoulos and Zalesky, 2019; Yeh et al.,, 2021; Zhang et al,
2022). In a structural network (also referred to as structural
connectivity (Horwitz, 2003) or structural connectome), discrete
regions of gray matter represent a network’s vertices and white
matter fibers a network’s edges. In order to identify such network
constituents, a large number of approaches is employed to
parcellate the brain (Eickhoff et al., 2018; Amunts et al., 2020;
Bijsterbosch et al., 2020; Royer et al., 2022b) and to identify and
characterize white matter fibers (Mori and Van Zijl, 2002; Jeurissen
et al., 2019). The variety of techniques requires appropriate
approaches to verify and increase the reproducibility of results
(Bonilha et al., 2015; Welton et al., 2015; Zalesky et al., 2016; Roine
et al.,, 2019; Lawrence et al., 2021; Aleman-Gdémez et al., 2022;
Borrelli et al., 2022; Seider et al., 2022; Charvet, 2023; Madole
et al., 2023).

Among the functional neuroimaging techniques, positron
emission tomography (PET) (Phelps and Mazziotta, 1985;
Juhdsz and Chugani, 2003; Muehllehner and Karp, 2006;
Vaquero and Kinahan, 2015; Watabe and Hatazawa, 2019;
Seshadri et al., 2021), functional magnetic resonance imaging
(fMRI) (Detre, 2004; Buxton, 2013), functional near-infrared
spectroscopy (fNIRS) (J6bsis, 1977; Villringer and Chance, 1997;
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TABLE 1 Structural and (indirect/direct) functional imaging and recording techniques predominantly used to assess structure and dynamics of a time-
evolving epileptic brain network (principle: physical mechanisms underlying the measurement; information: information provided by images/time series;

n.a. not applicable).

Structural imaging techniques

principle

information

resolution

Computed tomography (CT)

Magnetic Resonance Imaging (MRI)

measure attenuation of X-rays by different tissues;
uses ionizing radiation

measure magnetization properties of atomic
nuclei (mostly hydrogen) employing the
techniques of nuclear magnetic resonance; uses
strong magnetic field, gradient fields, and radio
waves

mean attenuation (relative to water) of tissues in a
given pixel/voxel (greyscale-coded)

magnetization properties (e.g., proton density,
different relaxation times, diffusion
characteristics) of tissues in a given pixel/voxel
(greyscale-coded)

spatial: ~ 0.5mm?
temporal: n.a.

spatial: ~ Imm?
temporal: n.a.

indirect functional imaging techniques

Positron Emission Tomography (PET)

Functional Magnetic Resonance Imaging
(fMRT)

measure changes in metabolic processes and in
other physiological activities with radioactive
substances (positron emitter)

measure brain activity by detecting changes in
magnetization properties (T2* relaxation time) of
hydrogen associated with blood flow (blood
oxygenation-level dependent (BOLD) effect);
assumes coupling between cerebral blood flow and
neuronal activation

changes of processes/activities (e.g., cerebral blood
flow) per time unit in a given pixel/voxel (color-
coded statistical maps)

BOLD time series; difference between time series
recorded during activation and control condition
across the brain or from a specific brain region
(color-coded statistical maps)

spatial: 5-10 mm
(pixel size)
temporal: 5-10 s

spatial: 3-4 mm
(pixel size)
temporal: s

Functional Near-Infrared Spectroscopy
(fNIRS)/Diffuse Optical

measure brain activity by detecting attenuation
(absorption) of near-infrared light associated with

time series of relative concentration changes in
O,HB and HHb; difference between time series

spatial: 10-20 mm
(pixel size)

Tomography (DOT) blood flow (BOLD effect); assumes coupling recorded during activation and control condition = temporal: s
between cerebral blood flow and neuronal across the brain or from a specific brain region
activation (color-coded statistical maps)

direct functional imaging techniques

Electroencephalography (EEG) measure the spontaneous electrical activity (net | multiple time series of voltage fluctuations spatial:

effect of ionic currents) of the brain as voltage
fluctuation at multiple sensors (electrodes) placed
on the scalp (non-invasive EEG) or intracranially
(invasive EEG)

sensor space: distance
between sensors

source space: few mm

temporal: ms

Magnetoencephalography (MEG)

measure the spontaneous magnetic activity of the
brain produced by electrical currents occurring
naturally in the brain using very sensitive sensors
(e.g., superconducting quantum interferences
devices) placed over the head

multiple time series of field fluctuations

spatial:
sensor space: distance
between sensors

source space: few mm

temporal: ms

Ferrari and Quaresima, 2012; Nguyen et al., 2018; Chen et al,,
2020), or (high-density) diffuse optical tomography (DOT)
(Eggebrecht et al., 2014; Wheelock et al., 2019) can provide
non-invasive indirect access to transient neural activity (time
scale: some 10 to some 100 milliseconds) by measuring transient
changes in cerebral blood flow and/or metabolic processes (time
scale: up to some 10s) assumed to be related to neuronal
activation [neurovascular coupling hypothesis; Roy and
Sherrington (1890); Huneau et al. (2015); Kaplan et al.
(2020); Drew (2022)]. While providing whole-brain coverage,
the temporal resolution of these techniques ranges in the order
of seconds and is, in general, dictated by the respective imaging
device. An exception is MR-encephalography (Hennig et al.,
2021), which also allows whole-brain coverage in 100 ms and
with a spatial resolution that compares to the other techniques
(few millimeters) (Rapisarda et al., 2010; Torricelli et al., 2014;
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Chaimowet al., 2018). Statistical dependencies (correlation,
cross-correlation) between recorded signals from pairs of
vertices (from voxels to cortical areas) are often used to
define edges of a functional network [also referred to as
functional connectivity (Friston, 2011) or functional
connectome].

Direct non-invasive access to both transient and ongoing
neural activities is achieved with electroencephalography [EEG
and Lopes da Silva, 2005)] and with
[MEG (Baillet, 2017)], both of

which allow whole-head coverage and have high temporal

(Niedermeyer
magnetoencephalography

resolution (few milliseconds). So far, only EEG allows for the
continuous recording of brain dynamics over extended periods
of time [days to weeks and beyond (Lehnertz et al., 2017; 2021;
Milne-TIves et al., 2023)]. This may also be achieved in the future
with further improvements of optically-pumped magnetometer
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MEG systems (Hill et al., 2019; Boto et al., 2021; Pedersen et al.,
2022; Hillebrand et al., 2023). An additional access to the brain’s
dynamics at the meso- (= 10° neurons) and micro-scale (single
neurons) can be achieved with invasive (intracranial) EEG
(Parvizi and Kastner, 2018; Mercier et al.,, 2022; Soloukey
et al., 2023). Although this approach provides the highest
signal-to-noise ratio, it has limited spatial coverage of the
brain and is limited to some brain pathologies (such as
epilepsy) as it electrodes to be
(temporarily or chronically) onto the surface
(electrocorticography) and/or within the brain (stereo-EEG,
local field potentials, For EEG
recordings, the choice of the reference electrode is a

requires implanted

single-neuron activity).

10.3389/fnetp.2023.1338864

notoriously ill-defined problem (Hagemann et al., 2001; Yao
et al., 2005; Zaveri et al., 2006; Rummel et al., 2007; Qin et al.,
2010; Geier and Lehnertz, 2017b; Anastasiadou et al., 2019; Yao
et al., 2019; Babiloni et al., 2020; Delorme, 2023).
EEG/MEG-based techniques allow to capture a wide spectrum
of physiological and pathophysiological activities on various time
scales and as such, often require other, more sophisticated time-
series-analysis techniques (see Section 3.2) to characterize
interactions between the sampled brain regions. Properties of
interactions are then used to define edges of a functional network
whose vertices are usually associated with sensors (EEG-electrodes,
MEG-magnetometers) that capture the dynamics of the sampled
neuronal substrate. The number of network vertices may range from

estimated —
strength of
interaction

o

calculating global, local, or
intermediate network metrics

network

FIGURE 1

metric

oo

time

Schematic of deriving and characterizing a time-evolving epileptic brain network. Top: sliding-window analysis: long-lasting multichannel EEG
recordings are segmented into successive (non-)overlapping windows. Middle: time-dependent sequence of interaction matrices (functional brain
networks): each matrix contains estimates of an interaction property (here: strength of interaction) calculated from EEG data within a given window for all
pairs of sampled brain regions. Bottom: a network analysis approach renders a time-dependent sequence of a network metric, which is then subject

to further analyses. Red lines exemplarily indicate occurrence of epileptic seizures.
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a few ten to a few hundred, depending on recording technique and
research question. Instead of estimating properties of interactions in
sensor-space, it has been proposed to do so in source-space to
overcome the problems of volume conduction (EEG) and field
spread (MEG) [see, e.g., van Mierlo et al. (2019); Koutlis et al.
(2021); Sadaghiani et al. (2022); Chiarion et al. (2023) and references
therein]. Nevertheless, localizing the sources of EEG/MEG activities
in the brain constitutes an inverse problem that lacks a unique
solution (von Helmholtz, 1853) and source-space-based network
approaches continue to be critically discussed (Colclough et al.,
2016; Palva et al., 2018; Koutlis et al., 2021; Adamovich et al., 2022;
Pourmotabbed et al., 2022; Schaworonkow and Nikulin, 2022;
Hatlestad-Hall et al., 2023).

As with the structural neuroimaging techniques, the variety of
approaches and methods used in functional network research requires
appropriate approaches to verify and increase the reproducibility of
results (Niu et al., 2013; Zuo et al.,, 2014; Zuo and Xing, 2014; Geng
et al., 2017; Adamovich et al., 2022; Bottino et al., 2022; Kato et al.,
2022; Rolle et al,, 2022; Wang et al., 2022; Helwegen et al., 2023). This
applies even more to the fusion of structural and functional imaging
techniques (Luat and Chugani, 2008; Aiello et al, 2016;
Babaeeghazvini et al, 2021; Wu et al, 2021) as well as to the
combined use of different functional imaging techniques (e.g.,
EEG-fNIRS or EEG-fMRI) that is often pursued to balance the
disadvantages of one method with the advantages of another
method (Machado et al, 2011; Nguyen et al, 2012; Centeno and
Carmichael, 2014; Obrig, 2014; Pittau and Vulliemoz, 2015; Tousseyn
etal., 2015; Abreu et al., 2018; Sanz-Garcia et al., 2018; Rizkallah et al.,
2020; Anderson et al., 2021; Bernabei et al., 2021; Uchitel et al., 2021;
Tkemoto et al., 2022; Li et al., 2022; Mulert and Lemieux, 2023).

3.2 From observations to a functional
brain network

Having recorded the dynamics of various brain regions as
multivariate time series, a common way to construct a functional

10.3389/fnetp.2023.1338864

brain network consists of associating network vertices with
sampled brain regions and network edges with properties of
an interaction (strength, direction, functional form)
between pairs of brain regions derived from their dynamics
(cf. Figure 1).

The latter ansatz is often pursued in cases where a perturbation-
based approach (actio est reactio) is either unfeasible or not
constructive. Properties of an interaction can then be estimated
with diverse linear and nonlinear, bi- and multivariate time-series-
analysis techniques grounded in statistics (Rodgers and Nicewander,
1988; Hamilton, 2020), nonlinear dynamics (Kantz and Schreiber,
2003; Datseris and Parlitz, 2022), synchronization theory (Arnhold
et al., 1999; Pikovsky et al., 2001; Stankovski et al., 2012; Rosenblum
and Pikovsky, 2023), statistical physics (Tabar, 2019), and
information theory (Hlavackova-Schindler et al, 2007),
among others.

Given that interactions can manifest themselves in many (also
conceptually) different ways (such as the diverse forms of
synchronization, flow of information, or similarity) and since
there is no one-fits-all analysis technique for all types of data or
interactions (Pereda et al., 2005; Kreuz et al., 2007; Wendling
et al., 2009; Holler et al., 2017), the choice of a time-series-
analysis technique is often dictated by the specific research
question. Examples of some of the available techniques
to estimate properties of interactions are listed in Table 2.
Also, technique

(alongside with the sampling interval; see above), time series

depending on the employed recording
can cover various time scales of brain dynamics and include

signal properties reflecting different physiological and
pathophysiological phenomena. Especially for EEG and
MEG recordings, the temporal resolution allows for the
separation of the signal into various frequency bands of neural
oscillations.

However, spectral limits of brain activity often associated
with these frequency bands might vary in time or between brain
regions. It also might not be useful to investigate frequency

bands without discernible power, while a broader perspective

TABLE 2 Examples of time series analysis techniques used to characterize properties of an interaction based on different signal characteristics. The strength
of an interaction quantifies the level of interdependence between two brain regions. Estimators for the strength of an interaction are predominantly based
on the idea that more (abstractly) similar dynamics reflect a stronger coupling between regions. The direction of an interaction assesses which of the two
interacting brain regions is driving the other. Estimators for the direction of an interaction are usually based on assumptions about cause and effect in the
larger system respectively on models for the temporal evolution of the regions’ dynamics. The functional form of interaction describes the relationship
between two brain regions as a mathematical model. Estimators for the functional form of an interaction have the dual task of setting up an appropriate
model for the involved interdependencies and of appraising model parameters, which typically requires strong assumptions and in-depth knowledge of the

involved dynamics.

Property of interaction

Signal characteristic

Analysis technique

strength amplitude (cross-)correlation
phase mean phase coherence
information content mutual information
state space nonlinear interdependence
direction amplitude Granger causality
phase evolution map approach
information content transfer entropy
state space nonlinear interdependence
functional form phase phase dynamics reconstruction
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may include otherwise unnoticed phenomena (Osterhage et al.,
2007a; Frei et al., 2010; Gerster et al., 2022). In addition, the
human brain has to be regarded as an open, dissipative, and
adaptive dynamical system and is inherently non-stationary.
Most methods to characterize properties of interactions,
however, require the system to be (at least approximately)
stationary to yield robust and reliable characterizations.
Thus, time series of recordings of brain dynamics are
typically cut into segments of appropriate duration whose
choice is usually a compromise between the required
statistical accuracy for the characterization and approximate
stationarity within a segment’s duration [see Lehnertz et al.
(2017) for details]. Together, experimental conditions and
non-stationarity in the
investigation of either carefully-selected segments (possibly

handling of the brain’s result
influencing findings with selection bias) or of sequences of

(non-) overlapping segments or windows (moving-
window approach).

Estimates of properties of an interaction can be affected by a
number of influencing factors that may arise from specifics of the
applied recording techniques, specifics and uncertainties of the
various time-series-analysis techniques (cf. Box 2) or due to
unavoidable noise contamination. To at least minimize these
influences and to improve reliability of estimates, the surrogate
approach from statistical hypothesis testing can be employed. This
bootstrapping approach begins with formulating an appropriate
null hypothesis (Efron, 2004), which specifies properties of
influencing factors that might lead to the results of an analysis

(cf. Box 3).

BOX 2 The majority of estimators for the strength of an interaction
increase non-proportional (i.e., non linear) with an increase of the
coupling strength (assuming one knows the true mechanisms for an
interaction between two systems (brain regions)). On the one hand,
this depends very much on the systems under investigation, but
also the choice of the time-series-analysis technique plays an
important role. Even in the case of strong coupling, amplitude-
based (blue) or information-theory-based estimators (purple) may
indicate a low or medium strength of interaction. In contrast, a
phase-based estimator (red) already reaches its maximum value. In
the first case, the two systems would be interpreted as weakly
interacting or even independent, while the second case would
indicate a stronger interaction or even a complete alignment
(synchronization).

amplitude

—
1

estimated strength
of interaction

o
1

weak coupling strength strong
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BOX 3 A null model is a statistical model that is built on a null
hypothesis. It makes an assumption about a fact, which can be
evaluated by way of a statistical test. Using a null model one can test
whether analysis results are purely coincidental and cannot be
traced back to specific influencing factors. If the test confirms the
null model, this is not a proof for its correctness. It only leads to a
rejection of the hypothesis of the previously assumed dependence
on the influencing factors. A null model can not be proven, but only
disproved. With suitable methods, so-called surrogates can be
created from the original time series (top) or from networks
(bottom), whereby the influencing factor to be investigated is
hidden and factors to be investigated are masked out. If analysis
results for the original data differ from those for a sufficiently large
number of surrogates, then the null hypothesis can be rejected with
ascertainable certainty. The investigated influencing factor then
plays a significant role and must be taken into account when
interpreting findings.
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which the
obtained findings are consequent to the influencing factors

The null hypothesis represents the case for

and not to the properties of interest of the investigated
system. From this null hypothesis, a pertinent model (the so-
called null model) is created, and an ensemble of surrogate data is
generated by simulating realizations of the model with Monte
Carlo methods (Efron, 1982). In these realizations, all relevant
statistical and dynamical aspects of the original data are
preserved—except the properties which are tested for. If some
discriminating statistics of the original data falls outside the
expectation range for the surrogate ensemble, the null
hypothesis can be
(depending on

rejected with reasonable confidence

the number of statistically independent
this
hypothesis has to be accepted—i.e., findings are likely due to
the properties of the system. However, the surrogate approach

constrained realizations). In case, an alternative

does not specify alternative hypotheses nor is it a validation of
any specific alternative hypothesis’ accurateness.
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For properties of interactions, constrained realizations of the
multivariate time series can be generated by randomizing the
aspect of a recorded dynamics on which the estimator for the
property of an interaction is based (Schreiber, 1998; Schreiber
and Schmitz, 2000; Andrzejak et al., 2003a; Palus, 2007; Rings
et al., 2020). However, the associated surrogate techniques are
exclusively designed for the strength of an interaction as the
formulation of null hypotheses for the direction of an
interaction (linkable to properties of time series for an
appropriate null
problem. The same applies to null hypotheses for the

model) continues to be an unsolved
functional form of an interaction.

Having estimated the relevant property of interaction for all
pairs of brain regions, the values of the estimates then set up an
interaction matrix T € R¥NN, where N is the number of recorded
brain regions.

Subsequently, a binary or weighted and directed or undirected
network can be constructed from this matrix.

An undirected binary network describes the brain in terms of
connected or disconnected vertices and can be represented by a
symmetric adjacency matrix A € {0, VN (also referred to as
functional connectivity). If two vertices i and j are considered
connected, the associated entry Aij is 1 and 0 otherwise.
Typically, two vertices are assumed to be connected, if an
estimator for the strength of interaction between the
associated brain regions exceeds some threshold. There are,
however, no commonly accepted criteria for the selection of
the threshold [see, e.g., Kramer et al. (2009); Zanin et al.
(2012)]. Alternatively, mesoscopic network structures [e.g.,
minimum spanning tree (Rammal et al,, 1986; Stam et al,
2014) or shell or web decompositions (Brohl and Lehnertz,
2019; Kong et al.,, 2019)] can be derived from Z and used as a
binary network.

If it is additionally of interest which brain regions interact how
strongly, an undirected weighted network provides this information.
Represented by a symmetric weight matrix YW € RM¥ (also referred
to as functional connectivity), it is possible to again select a threshold
to exclude edges with non-significant strengths of interaction.
However, in most cases all edges are considered to exist and
form a complete network. Typically, elements of the weight
matrix are set to be identical to the elements of the interaction
matrix, i.e., Wij = Iij VZ,]

A directed binary network describes the brain by depicting which
brain region drives which other region. Extending the concept
of undirected binary networks, directed networks can be
described by an asymmetric adjacency matrix D € {0, 1}V
(also known as effective connectivity), where an entry D;; is
1, if vertex i is connected to vertex j by a uni-directional edge,
and 0 otherwise. If in addition the entry of the inverse direction
is also 1 (D;j = Dj; = 1), the vertices are connected by a so-
called bidirectional edge and are driving each other. A directed
edge is assumed to exist, if an indication of direction is
strong—e.g., if the value of an estimator for the direction of
interaction (or some directionality index derived from the
value) exceeds some threshold. Again, the choice of this
threshold is arbitrary and there are no commonly accepted
criteria for its selection.

Frontiers in Network Physiology

10.3389/fnetp.2023.1338864

Of note, direction of interaction does not generally inform
of strength of interaction, and combining both information in a
directed and weighted network is a not conclusively solved
problem. When merging strength and direction of
interaction, it is important to remember that both properties
are different but not unrelated (Lehnertz and Dickten, 2015).
The often-employed interpretation of the modulus of an
estimator for the direction of interaction as strength of
interaction might not consistently be accurate and can lead
to severe misconceptions—particularly for uncoupled or
strongly coupled systems (Osterhage et al., 2007b; Palu$ and
Vejmelka, 2007; Lehnertz and Dickten, 2015; Giinther et al.,
2022). It is conceptually unclear how weights should be
assigned to forward and backward direction of the edges.
Strength of interaction is symmetric under exchange of two
vertices, while direction of interaction is not. In addition, many
concepts employed to estimate properties of interactions can
currently not be mapped to each other. The easiest way to avoid
resulting problems is to estimate strength and direction of
interaction separately but using methods that are based on
concepts  (e.g.,
information flow).

the same phase synchronization or

There is also no commonly accepted method to utilize
functional forms of interaction to derive networks, and doing
so would require an abstract, possibly symbolic assignment of
edges. Hypothetically, a system’s equations of motion could
already be considered a symbolic network were a vertex
represents an elementary unit’s self-dynamics function and an
edge represents a coupling function. However, how to interpret
the multitude of possible functions involved as a network’s
component is highly ambiguous.

3.3 Properties of a functional brain network

Having derived a functional brain network from observed
data, the next task is to characterize the network’s properties and
internal organization. While there are a multitude of different
network metrics based on concepts and methods from graph
theory [see, e.g., Rubinov and Sporns (2010); Newman (2018);
Cimini et al. (2019) for an overview; Box 4], they are
predominantly defined for undirected (binary or weighted)
networks and each metric reflects specific topological or
spectral network properties. Network metrics for directed
networks are still subject of current research. Two necessary
concepts for a characterization of a network are distance and
shortest paths. A path is the collection of edges that need to be
traversed to reach a constituent starting at another one, and the
respective path length (which is equivalent to the distance) is
either the number of edges that are traversed in case of a binary
network, or the sum of the inverse weights of these edges in case
of a weighted network. There are multiple paths between every
constituents, and shortest paths are the ones whose path lengths
are minimal. Generally, network metrics can be categorized
which
defined—i.e., from the global scale encompassing the whole

according to the network scale for they are

network to the local scale of single vertices and edges.
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BOX 4 Properties of a network can be assessed with different
local-to-global network metrics. Local network metrics (top)
assess how individual vertices or edges are integrated into the
larger network. These metrics can also be used to determine
the importance (centrality) of vertices and edges for the
network on the basis of objective criteria. For example, a vertex
with a high degree (or strength in case of a weighted network)
has a strong influence on the network; conversely, the
influence of the network on this vertex can be estimated.
Betweenness centrality can be used, e.g., to rate the
importance of a vertex (or an edge) for the flow of information
in a network. Since a vertex (edge) with a high betweenness
centrality is traversed by a large number of paths, it acts like a
bottleneck in the network. Global network metrics (bottom)
evaluate a network as a whole. For example, if the mean value
over all local clustering coefficients of a network takes on a
high value, then vertices are closely connected to their
neighboring vertices (clique formation) In a network whose
average shortest path length is large, vertices are only weakly
connected with their neighboring vertices; the network tends
to break up into different regions. A (dis-)assortative network,
vertices tend to connect with other vertices that are (dis-)
similar in some way.

vertex degree

vertex centrality edge centrality

highest
: edge
: betweenness
: centrality C

highest
vertex
* betweenness
i centrality CP

highest
degree
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» assortativity 4

t disassortative
: Mﬂtiv&

. average shortest
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i t path length [,

coefficient

2 triangles

v

3.3.1 Global scale
On the global describe the
arrangement of vertices and edges according to topological

scale, network metrics
concepts such as tranmsitivity [vertices that are connected to
two other vertices that are connected themselves; evaluated
with, e.g. (global) clustering coefficient (Watts and Strogatz,
1998)], efficiency [information or mass transport in a network
is facilitated by short paths; e.g., average shortest path length
(Newman, 2001)], or assortativity [vertices with the same or
similar properties are connected preferentially (Newman, 2002)].

In greater detail, the global clustering coefficient assess the
number of closed triplets in relation to the total number of
triplets in the network and characterizes a network’s functional
segregation; segregation decreases with increasing values of the
coefficient, however both excessive large or small values
indicate a breakdown of segregation. The average shortest
path length characterizes a networks functional integration;
the shorter the path, the more integrated is the network (cf. Box
5). Assortativity characterizes the mixing of vertices with the
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similar properties (typically assessed with local network
metrics) through being connected (Newman, 2003; Bialonski
and Lehnertz, 2013); if edges preferentially connect vertices
with a similar (dissimilar) property, such networks are called
assortative (disassortative). Disassortative networks are more
vulnerable to perturbations and appear to be easier to
synchronize than assortative networks (Motter et al., 2005;
di Bernardo et al., 2007).

BOX 5 Following Tononi et al. (1994), integration can be defined as
an effective global cooperation between different subsystems
(brain regions). Segregation can be defined as the decomposition of
a system into sufficiently independent specialized processing
subsystems.

Additionally, methods from linear algebra can be employed
to investigate spectral properties of a network’s associated
adjacency or weight matrix, which then can be related to a
network’s emergent global dynamics [for an overview see
(Atay et al, 2006; 2007)].
Synchronizability, e.g., characterizes the stability of a global

Comellas and  Gago,

synchronization state, i.e., a network’s

synchronize (Barahona and Pecora, 2002). However, for an

propensity to

interpretation of synchronizability of human brain networks,
one should keep in mind that some of this metric’s fundamental
fulfilled in  this
synchronizability, it is assumed that all vertices are associated

assumptions are not system—for
with dynamics of the same type with largely identical control
parameters which with  the
heterogeneity of brain dynamics (Papo and Buldd, 2019).

strongly disagrees spatial

Although it is possible to compensate for this heterogeneity
to some degree (while accepting other constraining
assumptions) (Sun et al., 2009; Nishikawa and Motter, 2010;
Zhang and Motter, 2017), a global synchronization state is
fortunately not achieved in the brain (and would indicate
complete dysfunction)—an inveterate conceptional issue.
Consequently, synchronizability should only ever be treated
as an indicator of stability properties of a network’s
associated dynamics instead of face value.

Global network metrics can also be used to define indices
that are thought to be specific to the network’s topology. For
example, global clustering coefficient and average shortest path
are often merged to assess whether a given network has a small-
world-like topology or not (Bassett and Bullmore, 2006), and
this property has been reported for both structural and
functional, physiological and pathophysiological brain
networks in the past (Reijneveld et al., 2007; Bullmore and
Sporns, 2009; Stam, 2014). These findings, however, are
strongly contested (Bialonski et al., 2010; Hlinka et al., 2012;
Hilgetag and Goulas, 2016; Papo et al., 2016) due to the
identification of various factors that can influence the
characterization of networks. Confusingly, the literature
frequently refers to various metrics and underlying concepts
with different, sometimes overlapping names—e.g., the metric
“average shortest path length” and the metric “average
communication efficiency” are identical and both are

indicators of the conceptual “efficiency” of a network.
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3.3.2 Local scale

On the local scale, network constituents (vertices as well as
edges), can be characterized with so-called centrality metrics.
These metrics evaluate a constituent according to the various
roles it can play in a network [for an overview see, e.g.,
Koschiitzki et al. (2005); Kuhnert et al. (2012); Brohl and
Lehnertz (2019)]. Typically, centrality metrics are based
either on the strength with which a constituent is connected
to the rest of the network (strength-based; e.g., strength
centrality or eigenvector centrality) or on their involvement
in the organization of shortest paths in a network (path-based;
e.g.,
Constituents with high strength-based centrality values are

betweenness centrality or closeness centrality).
typically considered to affect (and to be affected by) the rest
of the network more strongly than constituents with smaller
values and are often called hubs. Constituents with high path-
based centrality values are thought to be important for
information or mass transport phenomena on networks, e.g.,
by being bridges connecting remote network regions (high
betweenness centrality) or by reaching other constituents via
especially short shortest paths (high closeness centrality).
Local network metrics are also frequently used to assess
importance of network constituents by establishing rankings of
vertices or of edges (Ghoshal and Barabdsi, 2011; Lii et al., 2016;
Liao et al, 2017). While many studies concentrate on the most
important constituents (i.e., the vertex or edge with the highest
centrality value), information from the full spectrum of centrality
values can be educational when considering the network’s complete

internal organization.

3.3.3 Intermediate scale

Extensions of network metrics to an intermediate,
mesoscopic scale are subject of current research. In principle,
sub-networks can be identified via, e.g., community or module
detection (Fortunato and Hric, 2016) or shell or web
decompositions (Brohl and Lehnertz, 2019; Kong et al., 2019)
on this scale and then characterized with global or local metrics
instead of the whole networks. However, most sub-network
identification schemes are themselves based on local network
metrics, which might lead to an overemphasis on the concept
behind the used local metric. Also, the interpretation of such a
of hitherto

Alternatively, the relative amounts of so-called graphlets or

characterization sub-networks  is unclear.
motifs (smallest sub-networks interpreted as generic building
blocks) can be investigated and related to theoretical arguments
about the roles of these objects in a network (Newman, 2006;
Alon, 2007; Ribeiro et al., 2021).

In principle, estimating network metrics can be affected by
the same adverse influences that also affect the estimation of
properties of interactions—either by error propagation or by
influencing a researcher’s decision about how to derive the
network based on preliminary results (e.g., a higher average
strength of interaction might bias the decided-on level of a
threshold for a binary network). Especially, oversampling
(effectively recording the same dynamics multiple times)

and common sources (due to, e.g., referential recording) can
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lead to misinterpretations (Porz et al., 2014) since especially
estimators for strength of interaction identify largely identical
time series as an indication of very strong interactions, which
in turn influence, e.g., strength-based centrality metrics. In
addition,
properties of interactions can be amplified in unexpected

statistical uncertainties from the estimation of

ways when they are merged into network metrics. In some
of these cases, so-called network surrogates (cf. Box 3) can be
employed to improve reliability and reduce adverse influences
(Ansmann and Lehnertz, 2011; 2012; Wiedermann et al., 2016;
Stahn and Lehnertz, 2017; Va$a and Misi¢, 2022). These
surrogates are constrained realizations of the investigated
network by randomizing edges (or their weights) while
preserving selected network properties such as network size,
density of edges, or distribution of edge weights. Then, to
decide to which extent a metric of a given network is
determined by these properties, its value can be compared to
the values for surrogates of this network. Associated null
typically that the
organization assessed by the network metric is random

hypotheses state internal network
under the constraint of the preserved properties.

Finally, to trace time-dependent changes of a network and
its internal organization over time, networks are derived for
each of the above-mentioned segments of time series of
recordings of brain dynamics. This results in a sequence of
snapshot networks—the time-evolving functional brain
network—and time series of the various network metrics,
which can be again investigated with methods from time

series analysis (cf. Figure 1).

3.4 Characterizing a time-evolving
brain network

In the previous subsection, we critically assessed the
construction of a (snapshot) functional brain network from
windowed data of observed brain dynamics (such as EEG,
MEG, or fMRI) using bivariate time-series-analysis techniques
and the characterization of this network using graph-theoretical
concepts and methods. Performing such analyses for successive
windows of observed data results in a temporal sequence of
snapshot functional brain networks together with time series of
the networks’ metrics, both at a temporal resolution that results
from the duration of an analysis window. The sequence and the
respective time series form the basis for in-depth studies of a
time-evolving brain network which can potentially provide more
detailed information about the network’s temporal fluctuations
and its complex interplay with ongoing physiologic activities
compared to what can be achieved with snippets of recordings of
brain dynamics that usually last only a few tens of seconds.
Among others, the temporal fluctuations can inform about the
significance of averaged quantities such as mean values of some
network metrics (Lehnertz et al., 2017; 2021) that are widely
used in the network neurosciences.

The identification of spontaneous or induced (patho-)physiologic
changes within a sequence of snapshot networks requires estimating
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some distance or (dis-)similarity between two (not necessarily
successive) networks (or adjacency matrices). Finding suitable
metrics for such a comparison, however, continues to be a difficult
task (Bronstein et al., 2006; Andrade et al., 2008; Muskulus et al., 2009;
Dimitriadis et al., 2010; Gao et al., 2010; van Wijk et al., 2010; Mémoli,
2011; De Domenico and Biamonte, 2016; Schieber et al., 2017; Fraiman
and Fraiman, 2018; Carpi et al., 2019; Martinez and Chavez, 2019;
Hartle et al., 2020; Mheich et al., 2020; Lacasa et al., 2021). Difficulties
might even aggravate if network size (number of vertices) and edge
density depend on time.

An alternative approach is offered by the investigation of time series
of the networks’ metrics employing the powerful spectrum of methods
from (linear/nonlinear) uni-, bi-, or multivariate time-series-analysis
(Bendat and Piersol, 1980; Haykin, 1983; Pikovsky et al., 2001; Kantz
and Schreiber, 2003; Reinsel, 2003; Liitkepohl, 2005; Wen and Cheong,
2021; Caligiuri et al,, 2023). Statistical (Efron, 1982; Basseville and
Nikiforov et al., 1993; Anderson, 2011) as well as Fourier and related
analyses (Press and Rybicki, 1989; Huang et al., 1998; Percival and
Walden, 2000; Kantelhardt et al., 2001; Bloomfield, 2004) can help to
detect anomalies and change points (Aminikhanghahi and Cook, 2017)
as well as to assess correlations and periodicities (for an example, see
Figure 2). Bi- and multivariate analyses facilitate identification of
relationships and interdependencies between time series of different
networks’ metrics assessed on the various network scales—from single
constituents via communities to the wider network. Before closing this
section, we briefly mention another, but so far insufficiently studied
analysis approach to investigate time-evolving functional brain
networks. It is based on the concept of a multilayer network
(Boccaletti et al, 2014; Kiveld et al, 2014; Presigny and Fallani,
2022), which is a complex network structure that consists of
multiple networks (e.g., a sequence of snapshot networks). Despite a
continuous development of metrics to characterize such a network of
networks (Battiston et al., 2014; De Domenico et al., 2015; Nicosia
and Latora, 2015; Iacovacci and Bianconi, 2016; Ghariblou et al.,
2017; Mandke et al., 2018; Tudisco et al., 2018; Zaoli et al., 2021),
applications in the neurosciences and related fields mostly center
around frequency-based decompositions or structural and
functional decomposition (De Domenico, 2017; Buldu and
Porter, 2018; Vaiana and Muldoon, 2020). Due to a number of
fundamental problems that arise with this approach, a meaningful
interpretation of multilayer brain networks is still to be explored
(Buldt and Papo, 2018; Mandke et al., 2018).

4 The time-evolving epileptic brain
network: What have we learned so far?

4.1 The time-evolving epileptic brain
network during seizures

Various studies reported increased global clustering coefficients
and—although to a lesser extent—average shortest path lengths of
time-evolving epileptic brain networks during focal and primary
generalized seizures [see, e.g. (Ponten et al, 2007; Kramer et al,
2008; Schindler et al., 2008; Ponten et al., 2009; Kramer et al., 2010)]
compared to the seconds before or after a seizure. For 100 focal
seizures from 60 people with epilepsy, this observation could be
made irrespective of their anatomical onset location (Schindler et al.,

Frontiers in Network Physiology

11

10.3389/fnetp.2023.1338864

2008). If investigated with high temporal resolution (Schindler et al.,
2008; Kramer et al, 2010), both network metrics exhibited a
concave-like temporal evolution which points to a movement
from a more random toward a more regular and more
segregated and then back toward a more random functional
topology of the epileptic brain network (cf. Box 6). A similar
evolution was also observed for time-evolving epileptic brain
networks during status epilepticus (Kuhnert et al., 2010).

BOX 6 Schematic change of exemplary global network metric (here:
global clustering coefficient and average shortest path length) and
changes of the functional topology during seizure.

network
characteristic

I seizure i

time =—3p

Some authors (Ponten et al.,, 2007; Kramer et al., 2008; 2010)
interpreted the evolution to reflect the small-world topology of short
paths and high clustering (Watts and Strogatz, 1998), which is
thought to support efficient communication between brain regions
at the lowest energetic cost under physiological and
pathophysiological conditions (Bassett and Bullmore, 2006;
Reijneveld et al.,, 2007; Bullmore and Sporns, 2012; Stam, 2014).
The validity of such an interpretation, however, continues to be
matter of considerable debate (Bialonski et al., 2010; Gerhard et al.,
2011; Hlinka et al., 2012; Hilgetag and Goulas, 2016; Papo et al.,
2016; Hlinka et al., 2017; Zanin et al., 2018) given a large number of
factors that have been identified to impact on global clustering
coefficient and average shortest path length.

For the same 100 focal seizures from 60 people with epilepsy
mentioned above, Bialonski and Lehnertz (2013) reported on a
concave-like temporal evolution of assortativity, with a more
assortative topology during seizures than during the seconds
before or after a seizure. Interestingly, assortativity decreased
already prior to seizure end. An increasing assortativity indicates
a division of the evolving epileptic brain network into groups of
brain regions that are only sparsely interconnected, if at all. Such
networks have a comparatively resilient core of mutually
interconnected high-degree vertices as has been observed by
Zubler et al. (2015) for 198 seizures from 27 people with
epilepsy. This core makes epileptic brain networks during
seizures quite robust against perturbations, which might
explain the mixed success of active brain stimulation to
interrupt seizures (Morrell, 2006; Hirsch and Schulze-
Bonhage, 2023).

It is important to note that the aforementioned topological
network alterations are not accompanied by an increased
network synchronization [see, e.g., Schindler et al. (2007b; a);
Cash (2013); al. (2014)], into
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FIGURE 2

Exemplary time series of various network metrics: global clustering coefficient C, average shortest path length L, assortativity A, synchronizability S,

B

eigenvector centrality C\Ee and betweenness centrality C;, for vertices (v) and edges (e) being most central, on average, and relative number of edges in
most important web 5 (Bréhl and Lehnertz, 2019). Time series derived from a multichannel (N = 52), long-term (9.8 d) intracranial EEG recording from a
subject with a focal epilepsy undergoing presurgical evaluation (the subject signed informed consent that the clinical data might be used and

published for research purposes, and the study protocol had previously been approved the by ethics committee of the University of Bonn). Left column
shows full (grey) and smoothed time series [black, moving average over 176 windows (1 h) to improve legibility], and tics on x-axis denote midnight. Red
lines mark onset of epileptic seizures. Right column shows power spectral density estimates [Lomb—Scargle periodograms (Press and Rybicki, 1989)] of

the unsmoothed time series.

perspective  the  textbook  description of seizures as
hypersynchronous events (see also Jiruska et al, 2013). Rather,
studies on network synchronization and on the networks’
synchronizability indicate that the changing network topology
during seizures is accompanied by an initially decreased network
synchronization and decreased stability of the globally synchronized
state, both of which increase already prior to seizure end (Schindler

et al., 2008; Kramer et al., 2010; Khambhati et al., 2015; Frassineti
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et al, 2021; Rungratsameetaweemana et al.,, 2022; Salami et al,
2022). These synchronization phenomena may thus be considered
as an emergent (network-topology-mediated) self-regulatory
mechanism for seizure termination (Lado and Moshé, 2008;
Kramer et al., 2012). It is also important to note that the seizure-
related topological network alterations are similar across different
types of epilepsies, seizures, medication, age, gender, and other

clinical features (see also Haneef and Chiang, 2014). This might
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point to a common mechanism underlying seizure dynamics in the
epileptic brain network (Lehnertz et al., 2014).

In addition to these global aspects of time-evolving epileptic brain
networks, several studies investigated the role that network vertices
and edges play in seizure evolution (Kramer et al., 2008; Wilke et al.,
2011; Varotto et al., 2012; Burns et al., 2014; Geier et al., 2015a; Zubler
et al., 2015; Goodfellow et al., 2016; Geier and Lehnertz, 2017b; Brohl
and Lehnertz, 2019; Brohl and Lehnertz, 2022). Employing various
centrality and other metrics to characterize a constituent’s importance
for seizure dynamics, most studies reported these metrics to exhibit a
high temporal variability as seizures evolve, both inter- and
intraindividually. While some studies reported most important
vertices (if based on a metric’s temporal mean) to coincide with
the clinically defined seizure onset zone (SOZ), other studies could not
confirm such a relationship. Rather, network vertices associated with
brain regions deemed unaffected by the pathology and more recently
also edges (Brohl and Lehnertz, 2019; Brohl and Lehnertz, 2022) that
functionally connect these vertices were reported as most important
during the course of a seizure. If at all, vertices that can be associated
with the SOZ gained importance towards the end of a seizure (Burns
et al,, 2014; Geier et al.,, 2015a; Zubler et al., 2015).

It remains to be investigated which factors could have led to
these inconsistencies, apart from methodological issues (Geier and
Lehnertz, 2017b). Nevertheless, the observation of network
constituents that are most important during seizures but appear
to be unrelated to pathological brain tissue not only underlines the
significance of the concept of an epileptic network but also puts into
perspective the role of the epileptic focus in seizure dynamics (see
also Paz and Huguenard, 2015). One might speculate whether such
network constituents represent potential targets for focused
therapeutic interventions.

4.2 The time-evolving epileptic brain
network during the pre-seizure state

Despite the well-known observation that vulnerability to seizure
activity in any one part of the network is influenced by activity
everywhere else in the network, and that the network as a whole is
responsible for the clinical and electrographic phenomena that we
associate with human seizures (Spencer, 2002), we still lack a
sufficient quantitative assessment of the time-evolving epileptic
brain network’s metrics (from the local to the global network
scale) that would help to improve understanding of how the
network generates seizures (Kuhlmann et al, 2018; Lehnertz,
2021; Lehnertz et al, 2023) as well as other pathophysiological
phenomena (Weiss et al., 2022).
first
reconfigurations to promote the formation of a pre-seizure state

Nevertheless, indications for certain network
could be derived from retrospective studies that investigated
macroscopic metrics of time-evolving epileptic brain networks.
Kuhnert et al. (2010) analyzed more than 2,100 h of continuous
intracranial EEG recordings from 13 subjects with epilepsy during
which 75 focal onset seizures and one status epilepticus occurred.
From the time series of global clustering coefficients and average
shortest path lengths, the authors observed the distributions of these
metrics from pre-ictal periods [assumed duration: 4 h; cf. Mormann

et al. (2006)] to significantly deviate from the respective
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distributions of metrics derived from inter-ictal data. Both these
global metrics of network structure attained higher values (on
average) pre-ictally in the majority of subjects, which the authors
interpreted as indications for a loss of functional long-range
connections during the pre-ictal period. Geier et al. (2015b)
performed similar analysis for assortativity (here: degree-degree
1,000 h
intracranial EEG recordings from seven subjects with epilepsy

correlations) based on more than of continuous
during which 16 focal onset seizures occurred. Pre-ictally, a
slightly less assortative mixing of time-evolving epileptic brain
networks was observed, which might indicate these networks to
be less robust against (endogenous and/or exogenous)
perturbations. Both, Kuhnert et al. (2010) and Geier et al.
(2015b) stressed, however, the strong influence of daily rhythms
seen in the time series of the investigated network metrics (cf.
Section 4.3) that would need to be taken into account to avoid
misinterpretations (see also Takahashi et al., 2012).

More recently, Rings et al. (2019a) used the network approach to
develop a time-series-analysis technique that allows tracing
resilience of a networked dynamical system (Fischer et al., 2022),
such as the brain. The authors investigated more than 3,200 h of
continuous intracranial EEG recordings from 43 subjects with
epilepsy during which 112 focal onset seizures occurred. They
observed the
(dynamical resistance) from 4h pre-ictal periods to significantly

distribution of the network resilience estimator

deviate from the respective distribution of the metric derived from
inter-ictal data. The achieved high, above-chance-level predictive
performance [evaluated with seizure time surrogates (Andrzejak
et al,, 2003b)] of dynamical resistance would qualify this resilience
estimator for seizure-prediction studies. In passing, we note that other
estimators of resilience such as those related to the concept of critical
slowing down failed to achieve a sufficient predictive performance
(Milanowski and Suffczynski, 2016; Wilkat et al., 2019; Hagemann
et al,, 2021) rating this concept overly simplistic for the human
epileptic brain. Interestingly, dynamical resistance increased in the
hours prior to the vast majority of seizures. Although one would
expect intuitively resilience to decrease in order to facilitate the
generation of a seizure, the authors speculated that the reduced
effectiveness of antiseizure medication may account for the
observed increase. One might also speculate [see the discussions in
Frei etal. (2010); Zaveri et al. (2020)] that a pre-ictally increased brain
resilience could also reflect the epileptic brain network’s ability to
efficiently defy control because of its intrinsic plasticity and
adaptiveness. In this context, epilepsy may be viewed as a
“learned” disease and seizures as an abnormal learned response to
recurrent perturbations—such as seizures (Turrigiano, 1999; Hsu
et al,, 2008; Lignani et al., 2020; Issa et al., 2023).

In addition to studies on pre-seizure-state-related alterations of
functional segregation and integration as well as of robustness of the
time-evolving epileptic brain network, further in-depth insights into
pre-seizure network reconfigurations could be achieved with
investigations of time-dependent changes of properties of the
network’s vertices and edges. Tauste Campo et al. (2018)
investigated non-continuous intracranial EEG recordings from
10 subjects with epilepsy and used an averaged vertex eigenvector
centrality to characterize network state variability. The authors
observed network states to become less variable a few hours
preceding a global functional connectivity reduction before
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seizure onset [cf. Mormann et al. (2000; 2003); Kuhlmann et al.
(2010); Lehnertz et al. (2016)].

Analyzing retrospectively more than 3,200 h of continuous
intracranial EEG recordings from 38 subjects with epilepsy
during which 97 focal onset seizures occurred, Rings et al.
(2019b) observed distributions of vertex centrality (strength and
betweenness centrality) and edge weight from 4 h pre-ictal periods
to significantly deviate from the respective distributions of these
local network metrics derived from inter-ictal data. The authors
reported high, above chance level predictive performance for these
deviations and observed that most brain regions (vertices) whose
dynamics carried predictive information were connected by most of
the edges whose time-dependent weight changes carried predictive
information. These vertices, however, never played a central role in
the investigated time-evolving epileptic brain networks. More
importantly, these vertices were entirely associated with brain
regions far off the clinically defined SOZ.

Based on these observations, the authors proposed a scenario for the
generation of seizure precursors in a time-evolving epileptic brain
network (cf. Box 7): endogenous and/or exogenous factors trigger a
rearrangement of the network’s path structure which eventually leads to
a formation of bottlenecks in brain regions deemed unaffected by the
pathological process which in turn impairs physiologic brain
communication [cf. (Avena-Koenigsberger et al,, 2018)]. These brain
regions, being part of the large-scale epileptic brain network, generate
and sustain normal, physiologic brain dynamics during the inter-ictal
intervals. Moreover, they also appear to efficiently control the dynamics
of vertices related to the SOZ (Lehnertz and Dickten, 2015; Dickten et al.,
2016; Johnson et al., 2023).

BOX 7 The path-structure (i.e., layout of the paths in the network) of
the functional network is altered prior to seizure, culminating in the
forming of bottlenecks. Black networks represent the average
functional network in the respective interval. Dotted edges indicate
lower interaction strength.

inter-ictal
interval

pre-seizure
state

endogenous and /or
exogenous factors

Fruengel et al. (2020) investigated retrospectively continuous
intracranial EEG recordings that were part of previous studies
(Lehnertz et al., 2016; Rings et al., 2019b) and employed different
strength- and path-based vertex centrality metrics (strength,
eigenvector, closeness and betweenness centrality) to further
improve understanding of local and global reconfigurations of
the time-evolving epileptic brain network during the pre-seizure
period. The authors observed distributions of vertex centrality
from 4 h pre-ictal periods preceding 99 seizures to significantly
deviate from the respective distributions of these local network
metrics derived from inter-ictal data. As a result of high, above
chance level predictive performances for these deviations in
various brain regions, they proposed several major scenarios for
a pre-seizure reconfiguration of the time-evolving epileptic brain
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network. With these scenarios, pre-seizure changes in the network
are not necessarily confined to specific brain regions. Rather, local
and global reconfigurations of the time-evolving epileptic brain
network appear to affect virtually all network constituents,
i.e., various vertices (brain regions) and the edges (functional
connections) between them. Focusing on the pre-seizure
changes in degree and betweenness centrality of vertices
associated with the SOZ, Sumsky and Greenfield Jr (2022)
recently reported similar findings in the seconds prior to
143 seizures from 20 subjects with epilepsy and investigating a
comparable amount of continuous intracranial EEG recordings
(more than 3,300 h).

4.3 The time-evolving epileptic brain
network during seizure-free intervals

If a time-evolving epileptic (and non-epileptic) brain network is
derived from continuous multiday, intracranial or scalp-recorded
EEG, virtually all time series of the network’s metrics—from local to
global—exhibit large fluctuations over time which appear to be
partly periodic (cf. Figure 2). These periodicities can be correlated
with the circadian and various ultradian rhythms (Kuhnert et al.,
2010; Takahashi et al., 2012; Lehnertz et al., 2014; Geier et al., 2015b;
Geier and Lehnertz, 2017a; Lehnertz et al., 2017; Rings et al., 2019a;
Chiosa et al., 2019; Mitsis et al., 2020; Healy et al.,, 2021; Lehnertz
et al,, 2021; Brohl et al., 2023), which are also thought to modulate
seizure risk (Bernard, 2021; Karoly et al., 2021) and seizure dynamics
(Schroeder et al., 2020). Despite these large periodic fluctuations,
additional alterations of network metrics can be observed on shorter
time scales (some tens of seconds to few minutes) typically covered
in clinical and research studies. These (mostly time-averaged)
alterations of metrics seen in epileptic brains clearly differ from
those seen in healthy ones (Chavez et al., 2010; Horstmann et al.,
2010; Vlooswijk et al., 2011; Zhang et al., 2011; Richardson, 2012;
Caciagli et al., 2014; Haneef and Chiang, 2014; Stam, 2014; Chiang
et al., 2015; Foit et al., 2020; Pegg et al., 2020; Slinger et al., 2022).
Importantly, they also differ between different types of epilepsy (Lee
et al., 2006; Barzegaran et al, 2012; Bartolomei et al., 2013;
Chowdhury et al., 2014; van Diessen et al, 2016; Rosch et al.,
2018; Kinney-Lang et al., 2019; Lopes et al., 2019; Marino et al.,
2019; Ahmadi et al., 2020; Pegg et al., 2020; Woldman et al., 2020;
Pegg et al., 2021; Slinger et al.,, 2022; Tufa et al., 2022). Identifying
alterations of network metrics is thus thought to contribute to
improving differential diagnosis, treatment, surgical planning,
and estimation of prognosis.

This perspective is further supported by research findings of
alterations of network metrics due to factors that are known to
modulate the epileptic process such as cognition (Kuhnert et al.,
2013; Shine, 2019), treatment with antiseizure medication
(Anderson et al.,, 2020; Hatlestad-Hall et al., 2021) and with
neuromodulation such as deep brain stimulation (Khaledi-
Nasab 2022; Vetkas et al, 2022),
neurostimulation (Piper et al, 2022), and vagus nerve
stimulation (VNS) (Fraschini et al., 2014). As regards the latter,
investigations in larger groups of subjects with epilepsy and in
healthy controls (Rings et al., 2021; von Wrede et al., 2021; 2022a;

et al, responsive
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b) demonstrated that short-term, non-invasive transcutaneous
auricular VNS can induce small but measurable immediate and
enduring alterations of global metrics of the time-evolving
epileptic brain network while leaving its local metrics essentially
unchanged. The differential alterations of local and global network
metrics can be understood using the model of stimulation-
mediated stretching and compression of the time-evolving
epileptic brain network proposed by Rings et al. (2021). This
model takes into account the changes of the network’s path
structure (average shortest path length) and of its tendency to
form tightly knit groups of vertices (global clustering coefficient) as
well as the centrality (importance) hierarchies of vertices and edges
to characterize stimulation-mediated modifications of the larger
network. The authors conjectured that these topology-modifying
stretching and compression effects likewise impact on the
network’s assortativity and synchronizability, thereby enhancing
its robustness and stability.

Recently, Lehnertz et al. (2023a) reported on a similar
reconfiguration and modification of networks together with
their stability and robustness properties in a group of
20 subjects with and without epilepsy upon a short-term
manual visceral-osteopathic stimulation of the vagus nerve at
the abdomen. This finding may add to the current discussion
on the importance of the gut-brain axis in the treatment of epilepsy
(Ding et al., 2021; Sinha et al., 2022) and to further enhance our
understanding of how multiple organs in the human body
dynamically interact as a network and integrate their functions
to generate (patho-)physiological states (Ivanov, 2021).

4.4 A model for the temporal evolution of
the epileptic brain network

Summarizing the findings achieved so far, we propose a model
for the temporal evolution of the epileptic brain network (cf.
Figure 3A). To this end, we consider an abstract “phase-space”
that is spanned by the networks™ global clustering coefficients C,
average shortest path lengths L, and synchronizabilities S to capture
the diurnal variation of segregation, integration, and the networks’
propensity to synchronize (although they are correlated, we use C
and L to facilitate readability). The networks” motion in this space is
largely dominated by the circadian rhythm (with a period length of
about 24h; cf Figure 2), with a comparably lower (higher)
segregation (integration) as well as an increased propensity to
synchronize during daytimes. This global motion is modulated
by ultradian rhythms with period lengths around 12h and
shorter, seen during both night- and daytimes (cf. Figure 2).
These modulations likely reflect different sleep/vigilance states
and their accompanying modifications of critical network
properties [such as segregation and integration (Deco et al,
2015) as well as the propensity (or vulnerability) to be
synchronized by an admissible input activation] may account for
the well-known fluctuations of epileptic activities and seizure
occurrence (Spencer et al.,, 2016; Khan et al., 2018). Interestingly,
the networks’ motion is, in general, only sparsely modulated by
comparably short-lasting exogenous (e.g., neurostimulation; cf.
Section 4.3 and Figure 3B) and endogenous perturbations
(seizures; cf. Section 4.1 and Figure 3C). Nevertheless, the specific
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manner of these modulations provides novel insights into the
effectiveness of neurostimulation/-modulation approaches as well
as into network mechanisms of pre-seizure dynamics (cf. Section
4.2), seizure generation, spread, and termination.

5 Current limitations and
potential prospects

Initiated by Susan Spencer’s seminal work on neural
networks in human epilepsy, the last two decades have seen
quite a number of accomplishments in defining and
characterizing the epileptic brain network, including an
important change in perspective from a static to a time-
evolving network (cf. Li et al., 2017), which better takes into
account the fact that epilepsy is a dynamic disease. Nevertheless,
much remains to be completed in the coming years, and several

issues need to be addressed to advance the field.

5.1 Methodological issues

Beginning with collecting the brain’s structure and dynamics,
there is a strong need for a recording technique that allows one to
capture the multiple spatial and temporal scales of the epileptic
process. If different recording techniques are used, there is still the
problem of an unambiguous fusion of the different scales (Schevon
et al, 2019; Driscoll et al, 2021; Presigny and Fallani, 2022).
Likewise, suitable strategies to avoid spatial and temporal
oversampling of brain dynamics are urgently needed since
oversampling can lead to severe misinterpretations of network
characteristics (Bialonski et al, 2010; Zalesky et al, 2010;
Bialonski et al., 2011; Joudaki et al., 2012; Montes-Restrepo et al.,
2014; Porz et al., 2014; Puce and Himaldinen, 2017; Conrad et al.,
2020; Vorderwiilbecke et al., 2020; Iivanainen et al., 2021; Allouch
etal., 2023). It remains to be shown whether recent developments of
edge/vertex removal strategies (Bellingeri et al., 2020; Brohl and
Lehnertz, 2023) [or, in case of undersampling, techniques to predict
edges (Zhou, 2021) and to detect hidden vertices (Su et al., 2012)]
can help to avoid misinterpreting characteristics of the time-
evolving epileptic brain network.

Open questions related to deriving functional brain networks
from recordings of brain dynamics were recently summarized by
Korhonen et al. (2021). Beyond that, we note that defining
network edges from properties of an interaction between pairs
of brain regions derived from their dynamics is predominantly
based on bivariate time-series-analysis techniques that assume a
deterministic mechanism behind interactions and any stochastic
treated
developments in characterizing two-dimensional stochastic
processes (Rydin Gorjao et al., 2019; Aslim et al., 2021) based
on the Kramers-Moyal expansion might provide novel insights
into stochastic interactions in the future. Likewise, a further
improved characterization of the temporal structure of the
brain’s dynamics could be achieved with bivariate ordinal

aspect is as mere measurement noise. Recent

time-series-analysis techniques (Lehnertz, 2023) that allow one
to assess both strength and direction of an interaction. Moreover,
while there is an increasing interest in so-called higher-order

frontiersin.org



Bréhl et al. 10.3389/fnetp.2023.1338864

A
|
12 24
time of day [h]
B c
£
=
9 A
g 1S
_ T T T '§ L
A_ _________ Boseniiaanns ® pre-seizure: ot A
o formation of =y L ;
. ' ' bottlenecks «— seizure—»>
S O — 8
I — .
pre stim post
FIGURE 3

(A) Model of the temporal evolution of the epileptic brain network in an abstract “phase-space’—spanned by the networks’ properties of
segregation, integration, and propensity to synchronize—over the day-night cycle (color-coded). Line thickness encodes infradian variability. (B)
Schematic of neurostimulation-induced modifications of global network properties (global clustering coefficient C, average shortest path length L,
assortativity A, synchronizability S; local ones remain essentially unchanged). (C) Schematic of local network modifications (here: formation of
bottlenecks) related to pre-seizure dynamics and of global modifications related to seizure dynamics.

interactions (Battiston et al., 2021; Bianconi, 2021; Boccaletti ~ higher-order interactions from time-series data and what
et al, 2023) (interactions between more than pairs of brain  advantages such hyper mnetworks will provide aside from
regions), it remains unclear how to estimate the relevant theoretical arguments.
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In Sections 3.3 and 3.4, we presented network metrics and
analysis tools to characterize a time-evolving brain network and
briefly discussed their pros and cons. Most concepts and metrics
were initially developed to characterize static networks and are not
immediately transferable to a time-evolving network. Recently
proposed analysis tools for time-dependent networks [see, e.g.,
De Domenico (2017); Thompson et al. (2017); Salcedo-Sanz et al.
(2022)] are either not straightforward to convert to weighted and
complete networks (as in case of EEG-derived functional brain
networks) or wait for proof of their suitability for characterizing
a time-evolving epileptic brain network. In general, concepts and
metrics proposed and used to characterize static networks need to be
redefined or appropriately extended to time-evolving networks, also
to account for the impact of time ordering on causal relationships in
weighted and directed networks.

Additional in-depth insights into the complex behavior of a
time-evolving epileptic brain network prior to and during
seizures could be achieved with novel concepts and tools to
characterize signal propagation in complex networks (Hens
et al, 2019; Ji et al., 2023) and synchronized dynamics of
time-varying networks (Ghosh et al., 2022). Considering the
recent promising developments of centrality concepts and
metrics to characterize properties of edges as well as the
edges’ time-varying role in the larger network (Brohl and
Lehnertz, 2019; Brohl and Lehnertz, 2022; Contisciani et al.,
2022; Altafini et al.,, 2023), adopting an edge-centric perspective
(cf. Faskowitz et al., 2022; Novelli and Razi, 2022) could lead to a
further improved understanding of the time-evolving epileptic
brain network and its control (Sinha et al., 2022; Lehnertz et al.,
2023; Frauscher et al., 2023).

5.2 Conceptual issues

A variety of computational/mathematical models for epilepsy have
been proposed [see, e.g., Lytton (2008); Holt and Netoff (2013);
Depannemaecker et al. (2021); Pathak et al. (2022)], mostly based
on concepts from dynamical systems theory. The majority of these
models focuses on seizure dynamics (initiation, spread, termination)
only, and the network character of the disease is only rarely taken into
account (Kalitzin et al, 2019; Goodfellow et al., 2022). Seizure-like
events (states of synchronous rhythmic activity), however, may also
emerge without change control

spontaneously—i.e., in

parameters—from an oscillator network with some balance between

a

regular and random topology (Rothkegel and Lehnertz, 2014;
Ansmann et al, 2016; Gerster et al., 2020; Anesiadis and Provata,
2022; Wu et al,, 2022). Other mechanisms behind tipping phenomena
include noise-, rate-, and shock-induced tipping [see, e.g., Ashwin et al.
(2012); Feudel et al. (2018); Ritchie et al. (2023); Swierczek-Jereczek
et al. (2023)]. A better understanding of how seizures emerge from an
aberrant, time-evolving epileptic brain network would profit from
considering, e.g, critical transition scenarios other than bifurcation-
induced tipping which may be too simplistic for the human epileptic
brain (Wilkat et al., 2019). Neither of these phenomena require any
change of the system’s stability, and various time-series-analysis
techniques have been proposed to identify early warning indicators
(George et al., 2021; HefSler and Kamps, 2022).
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Similarly, a better understanding of the longer time scales of
brain dynamics that govern the recurrence of seizures would profit
from considering mechanisms that can give rise to various long
term, fluctuating behavior. We here mention switching phenomena
related to the different types of intermittency (Perez Velazquez et al.,
1999; Rizzi et al., 2016; Pisarchik et al., 2018), switching in fast-slow
systems (Kuehn, 2011) and in heteroclinic networks (Kirst and
Timme, 2008; Aguiar et al., 2011; Bick and Field, 2017; Morrison and
Young, 2022; Meyer-Ortmanns, 2023) multistability (Lopes da Silva
et al,, 2003; Takeshita et al., 2007; Rothkegel and Lehnertz, 2009;
Breakspear, 2017; Pisarchik and Hramov, 2022), and metastability
(Kelso, 2012; Tognoli and Kelso, 2014; Rossi et al., 2023). The
validity of such models could be tested if continuous long-term
recordings of brain dynamics—covering weeks to months [see, e.g.,
Weisdorf et al. (2019); Duun-Henriksen et al. (2020)]—would be
publically available.

5.3 Translational issues

In order to consolidate the network approach into clinical
practice, the following issues would need to be tackled.

Diagnosing epilepsy: The understanding and treatment of
epilepsy requires a clear-cut diagnosis of the possibly underlying
disease, allocation of syndromes, and distinction from other
neurological and non-neurological diseases, in comparison to a
healthy brain. Nevertheless, the techniques currently used
routinely only allow a clear-cut diagnosis in, on average, 50% of
the subjects (Oto, 2017; Elger and Hoppe, 2018; Amin and Benbadis,
2019), which can probably be related to a number of confounding
factors. It can be conjectured that the incorporation of the concept of
a time-evolving epileptic brain network into aforementioned
differentiation steps can lead to an improved diagnosing and
classification of epilepsy, even on a personalized level (Nabbout
and Kuchenbuch, 2020).

Choosing treatment: Currently, clinical decisions regarding
treatment options are primarily guided by the epilepsy syndrome
and its burden. Despite several options [e.g., pharmacological
treatment (Kwan and Brodie, 2000; Wandschneider and Koepp,
2016; Holler et al, 2018; Holler and Nardone, 2021), surgical
treatment (Téllez-Zenteno et al., 2007), nutritional treatment
(Pizzo et al, 2022), neurostimulation (Schulze-Bonhage, 2019;
Piper et al., 2022); see Lehnertz et al. (2023) for an overview of
network-based treatment concepts], the treatment is successful in
only about half of the cases. Moreover, from a clinical point of view,
the goal of epilepsy treatment is seizure freedom and if this is not
possible reduction of seizure frequency and burden of the disease.
However, the epileptic brain is not a temporarily disturbed normal
brain, and a seizure is not a clinical sign of a transient dysfunction of
a normal brain. Therefore, on a conceptual level, the treatment of
epilepsy should be addressed more as the treatment of an evolving
epileptic brain rather than treating seizures. Further investigation
the of  different
interventions—adopted to the time-evolving epileptic brain

into network-modulating  effects
network—is vital to provide physicians with information about
the best and most promising treatment options in individual

treatment situations.
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Optimizing and monitoring therapy: Treating subjects with
epilepsy means to achieve a situation in which the subject not
only has no seizures, despite the disease epilepsy, but also is able
to live an unimpaired life. Impairments result not only from
seizures, but also possibly from an underlying structural
correlate, and the epilepsy treatment. A thorough clinical action
includes therapy monitoring, adapting therapies to the current
situation, and preferably acting with foresight in order to avoid
anticipatory therapy consequences. However, available data is
limited by the subjective perception and possible inadequate
sampling of other influencing dynamics and their interactions
[e.g., pharmacokinetics, biological rhythms, fluctuations of the
endocrinal system (Lehnertz et al., 2020; Healy et al., 2021)], and
hence is not yet sufficient to reliably inform such clinical action.
Individual tracking the epileptic brain’s network changes over the
time—not only during seizures, but also in response to chronic
treatment, during everyday activities and therapeutic ad hoc
interventions—are needed, to unveil the potential for tailored
epilepsy treatment. This treatment should be targeted at the
time-evolving epileptic brain network and keep it in states in
which the subject can live everyday life without impairment. For
a treatment to be successful in the long term, it is essential to keep in
mind the brain’s adaptivity and learning capabilities, and to
modulate them in an appropriate way to achieve a healthier
brain network which “unlearned” epilepsy.

6 Conclusion

Recognizing epilepsy as a network disease has sparked extensive
and expanding research, which led to much progress towards the
understanding of the human epileptic brain as well as prediction and
control of its dynamics. This has reshaped the comprehension and
perception of epilepsy, entailing a paradigm shift from a clinically
defined epileptic focus via a spatially and functionally extended
epileptic network to a large-scale, time-evolving epileptic brain
network, whose changes comprise various temporal and spatial
scales. Although such an approach poses a difficult task, the last
two decades have been coined by novel insights and progression,
ranging from recording the brain’s structure and dynamics at
various spatial and temporal scales to constructing functional
brain networks and investigating their properties with various
innovative and adapted customized tools of analysis. Insights
achieved so far regarding the temporal evolution of the epileptic
brain network show great potential for clinical translation,
progressing and maturing the state-of-art of diagnosis and
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