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Single-neuron representations of odours in 
the human brain

Marcel S. Kehl1,2, Sina Mackay1, Kathrin Ohla3, Matthias Schneider4, Valeri Borger4, 
Rainer Surges1, Marc Spehr5 ✉ & Florian Mormann1 ✉

Olfaction is a fundamental sensory modality that guides animal and human 
behaviour1,2. However, the underlying neural processes of human olfaction are  
still poorly understood at the fundamental—that is, the single-neuron—level. Here  
we report recordings of single-neuron activity in the piriform cortex and medial 
temporal lobe in awake humans performing an odour rating and identification task. 
We identified odour-modulated neurons within the piriform cortex, amygdala, 
entorhinal cortex and hippocampus. In each of these regions, neuronal firing 
accurately encodes odour identity. Notably, repeated odour presentations reduce 
response firing rates, demonstrating central repetition suppression and habituation. 
Different medial temporal lobe regions have distinct roles in odour processing, with 
amygdala neurons encoding subjective odour valence, and hippocampal neurons 
predicting behavioural odour identification performance. Whereas piriform neurons 
preferably encode chemical odour identity, hippocampal activity reflects subjective 
odour perception. Critically, we identify that piriform cortex neurons reliably encode 
odour-related images, supporting a multimodal role of the human piriform cortex. 
We also observe marked cross-modal coding of both odours and images, especially  
in the amygdala and piriform cortex. Moreover, we identify neurons that respond to 
semantically coherent odour and image information, demonstrating conceptual 
coding schemes in olfaction. Our results bridge the long-standing gap between 
animal models and non-invasive human studies and advance our understanding of 
odour processing in the human brain by identifying neuronal odour-coding 
principles, regional functional differences and cross-modal integration.

Olfaction, the sense of smell, is vital for humans2. Enhancing our 
understanding of the underlying neuronal mechanisms is essential, 
considering the importance of olfaction in health and disease. Olfac-
tory processing commences when airborne odour molecules activate 
olfactory sensory neurons in the olfactory epithelium (Fig. 1a). Axons 
of neurons expressing the same olfactory receptor3 converge onto 
specific glomeruli in the olfactory bulb, representing odour infor-
mation as a topographic map of receptor activation4. After olfactory 
bulb processing4, mitral and tufted cells relay information to several 
cortical areas that constitute the primary olfactory cortex, including 
the piriform cortex (PC), amygdala and entorhinal cortex (EC)5. Direct 
projections to the EC are established in rodents6,7 but have not yet been 
confirmed in humans8. The PC is key for odour processing9. In contrast 
to the olfactory bulb, there is no apparent topography representing 
odour quality or identity in the PC1,9–11, raising the question of how 
odour-specific information is organized within the human PC. While 
human imaging12,13 and intracranial electroencephalography14 studies 
showed odour-related PC activation at the macroscopic level, record-
ings in rodents demonstrated odour-related responses of individual PC 

neurons10,15–18, and provided a deeper understanding of odour identity 
and intensity coding in the PC19–21. Besides the PC, multiple medial tem-
poral lobe (MTL) regions contribute to central olfactory processing. 
In animal models, neurons responsive to odours have been identified 
in the amygdala, EC and hippocampus22,23. Human imaging studies 
have complemented these findings by demonstrating odour-related 
activation in these regions (amygdala13,24, EC13,24 and hippocampus25).

Human single-unit recordings have substantially advanced our 
conceptual understanding in various areas of neuroscience such as 
auditory processing26, object representation27 and memory forma-
tion28. However, such studies are lacking in olfaction. In humans,  
it remains unclear whether and how individual neurons respond to 
olfactory cues and encode odour identity. We therefore investigated 
the individual contributions of central olfactory areas to odour pro-
cessing and their link to human behaviour at the neuronal level. We took 
advantage of the rare opportunity to record individual neuron activity 
in the human PC and MTL during an odour rating and identification 
task. Such single-unit recordings offer unique insights that bridge 
the long-standing gap between animal electrophysiology and human 
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imaging studies in olfactory research. We identified odour-modulated 
neurons that effectively encode odour identity. We further demon-
strate a distinct role of the amygdala in emotional processing of odours 
and highlight hippocampal involvement in odour identification. 

Notably, not only do our recordings reveal that PC neurons are able 
to encode the identity of odour-related images, but they also demon-
strate cross-modal integration of visual and olfactory information in 
both the PC and amygdala.
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Fig. 1 | Odours modulate human PC and MTL firing. a, Odours activate 
olfactory sensory neurons (OSNs), which project to the olfactory bulb (OB). OB 
neurons innervate the PC, amygdala (Am) and putatively EC, which is connected 
to hippocampus (Hp) and PHC. b, Innermost clinical electrodes projected to  
the MNI-ICBM152 template. Sites are coloured as in a. c, The post-implantation 
computed tomography (CT) scan, co-registered onto the pre-implantation  
MRI scan, visualizes Behnke–Fried electrodes (left). Right, schematic (top right)  
and scalpel-trimmed microwire (bottom right; scanning electron microscopy 
(SEM)). Scale bar, 20 µm. d, Respiratory depth (mean ± s.e.m.) aligned to  
odour delivery. n = 13 sessions. a.u., arbitrary units. e, The odour rating and 
identification task: 15 odours (+1 odourless control) were presented 8 times in a 
pseudorandom order. Rating: during four presentation cycles, the participants 
rated (like or dislike) each odour. Identification: next, the participants identified 
the correct odour (four options; four times per odour). f, The behavioural 
performance per odour, showing ratings (left) and correct identification (right). 
n = 27 sessions. The box plots show the median values (centre lines), 25th–75th 
percentiles (box limits), and the whiskers span data within 1.5× the interquartile 
range. Statistical analysis of odour identification was performed using two- 
sided Wilcoxon signed-rank tests versus chance (25%; dashed line); for all 15 
odours, P < 0.01. Colours are as in g. g, Example odour-modulated PC neuron. 
The firing rate varied significantly with odour identity (left; one-way analysis of 
variance (ANOVA), F15,112 = 13.8, P < 10−10, n = 128 trials). Right, spike-shape density 

(mean ± s.d.; white, polarity inverted for visualization). h, Odour-modulated 
neurons per session and region (mean ± s.e.m.). The PC, amygdala, EC and 
hippocampus host significant populations of odour-modulated neurons  
(PC, 39.5 ± 4.7%, n = 17 sessions, Z = 3.6, P = 0.00029; amygdala, 19.5 ± 2.7%, 
n = 27, Z = 4.3, P = 1.9 × 10−5; EC, 14.2 ± 3.2%, n = 22, Z = 2, P = 0.049; hippocampus, 
12.1 ± 1.9%, n = 27, Z = 3.1, P = 0.0019; PHC, 5.31 ± 1.4%, n = 26, Z = −0.27, P = 0.78; 
two-sided Wilcoxon signed-rank tests versus chance; the dashed line indicates 
5%). i, Odour-modulated neurons in the PC, amygdala, EC and hippocampus 
increase their firing rate (FR) after odour stimulation versus the odourless 
controls (PC, n = 99 neurons, Z = 5.7, P = 9.9 × 10−9; amygdala, n = 129, Z = 4.1, 
P = 3.4 × 10−5; EC, n = 74, Z = 2, P = 0.043; hippocampus, n = 73, Z = 2.3, P = 0.019; 
PHC, n = 29, Z = −0.49, P = 0.63; all compared with control: n = 404, Z = 7.0, 
P < 10−10; two-sided Wilcoxon signed-rank tests). The y axis displays 95% of data. 
j, PSTHs (odour-modulated (red) versus other (grey) neurons; 50 ms bins). 
Odour-modulated neurons increase firing in all regions except in the PHC 
(two-sided Wilcoxon signed-rank tests comparing z-scored firing rates (0–2 s 
after odour onset) against zero; PC, n = 99 neurons, Z = 5.8, P = 7.2 × 10−9; 
amygdala, n = 130, Z = 5.3, P = 1.5 × 10−7; EC, n = 74, Z = 3, P = 0.0028; hippocampus, 
n = 74, Z = 2.8, P = 0.005; PHC, n = 29, Z = −0.46, P = 0.64). ****P < 0.0001, 
***P < 0.001, **P < 0.01, *P < 0.05. Diagrams were created using BioRender (a)  
and Noun Project (e).
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Odours modulate human PC and MTL firing
Although single-neuron recordings in animal models have greatly 
advanced our understanding of olfaction, concepts of single-neuron 
and circuit function in human olfactory processing are largely unex-
plored. To bridge this knowledge gap, we recorded the activity of single 
neurons in the human PC and MTL while patients smelled different 
odours. Overall, we recorded human single-neuron activity (2,416 neu-
rons across 27 sessions) during odour rating and identification tasks in 
17 patients undergoing presurgical epilepsy monitoring (Fig. 1b,c and 
Extended Data Fig. 1). Respiratory measurements confirmed alignment 
of inhalation with odour presentation (Fig. 1d). Patients reported to 
have liked the odours in 64.8 ± 2.0% of cases (Fig. 1e,f (left)) and they 
correctly identified them in 74.1 ± 1.5% of trials (Fig. 1e,f (right); the 
performance per participant is shown in Extended Data Fig. 2).

First, we investigated whether neuronal firing in the human PC 
encodes chemical odour identity. Figure 1g shows an example neuron 
in the left PC that increased firing in response to specific odours. We 
refer to these neurons, which significantly change their firing based 
on odour identities, as odour-modulated neurons (further examples 
are shown in Extended Data Fig. 3). Overall, approximately 40% of PC 
neurons showed odour-modulated response patterns, emphasizing 
the role of the PC in odour processing (Fig. 1h). We next examined 
whether odour-modulated neurons also exist in the human MTL. 
Whereas early, pioneering multiunit recordings in humans did not 
provide evidence for odour-specific neurons in the human amygdala29, 
we identified a substantial fraction of amygdala neurons exhibiting 
odour-modulated firing (Fig. 1h). Moreover, we observed a significant 
set of odour-modulated neurons in the EC and hippocampus (Fig. 1h). 
Odour-modulated neurons were reliably identified across the partici-
pants (Extended Data Fig. 4a). Peri-stimulus time histograms (PSTHs) 
(Fig. 1j) demonstrate prominent peaks in firing rate after odour onset 
among odour-modulated neurons in the PC, amygdala, EC and hip-
pocampus, whereas no such increase was observed in the parahip-
pocampal cortex (PHC).

Sniffing odourless air alone has been shown to activate the PC in 
animal models30 and in human imaging studies31,32. To disentangle puta-
tively mechanosensitive and breathing-related effects from actual che-
mosensory responses, we included an odourless control. Exposure to 
odourless controls alone increased firing of odour-modulated neurons, 
albeit to a significantly lower degree than in response to odours (Fig. 1i). 
Such differences were most prominent in the PC, but also statistically 
significant in the amygdala, EC and hippocampus (Fig. 1i). Increased fir-
ing rates for odours compared to odourless controls were consistently 
observed when accounting for participants and sessions (Extended 
Data Table 1a). Odour-modulated neurons were likewise identified after 
excluding the odourless control (Extended Data Fig. 4b,c). Respiratory 
measurements confirmed that odour-modulated neurons were driven 
by odour-specific characteristics rather than by variability in respira-
tion (Extended Data Fig. 5). Together, our findings firmly establish the 
existence of odour-modulated neurons both in the human PC and MTL.

Neuronal activity decodes odour identity
The lack of human single-neuron recordings during olfactory process-
ing has thus far hindered studying the underlying neuronal popula-
tion codes at high spatial (that is, cellular) and temporal resolution. 
We therefore assessed how effectively odour identity is represented 
by neurons in different regions, performing decoding analysis on 
spiking data33 (Fig. 2a). Odour identity was predicted from neuronal 
spiking with high degrees of accuracy in the PC, amygdala, EC and 
hippocampus (Fig. 2b). Subsampling equal numbers of neurons per 
region demonstrated the highest decoding performance in the PC, 
followed by the amygdala and EC (Fig. 2b). Increasing the number of 
neurons included in decoding further improved performance (Fig. 2c). 

Notably, odour identity was reliably decoded by only a small number of 
neurons, especially in the PC. When systematically varying the decod-
ing time window, odour-identity decoding was fastest in the PC and 
amygdala. By contrast, approximately a 1 s time window was required 
to reach above-chance decoding accuracy in the EC and hippocampus 
(Fig. 2d). Significant odour-identity decoding was observed across the 
recording sessions (Fig. 2e) and participants (Extended Data Fig. 6a).  
In conclusion, our results demonstrate effective neuronal odour-identity 
coding in humans across multiple brain regions involved in odour  
processing.

Odour representations vary in sparseness
We next addressed the sparseness of the human olfactory code. To this 
end, we compared odour representations across regions based on their 
population sparseness index34. Sparseness differed significantly across 
regions (Fig. 3a). As extracellular recordings tend to omit very sparse 
neurons in the spike sorting35, absolute sparseness values are chal-
lenging to interpret. Nonetheless, we can compare sparseness across 
regions given that the same recording and spike-sorting techniques 
were used. The amygdala and hippocampus showed the sparsest odour 
coding (Fig. 3a). The population code in the PC was significantly less 
sparse than that in the MTL areas. Consistent results were obtained 
when analysing population sparseness separately for each recording 
session (Extended Data Fig. 7a). Our findings indicate that the degree 
of sparseness varies significantly along the human olfactory pathway, 
with the amygdala and hippocampus showing the highest degree of 
sparseness.

Neuronal repetition suppression to odours
We also investigated whether and how repeated presentations of the 
same odour affect responses of odour-modulated neurons. During our 
paradigm, each odour was presented eight times in a pseudorandom  
order with an average interpresentation interval for the same odour of 
approximately 5 min (5.18 ± 0.05 min). Despite this substantial inter-
val, we observed decreasing response activity after repeated presen-
tations in the PC, amygdala and hippocampus (Fig. 3b). This effect 
was not caused by decreased inhalation (Extended Data Fig. 7b,c). 
Odour-modulated neurons in the EC showed a decreasing trend that 
did not reach significance. Repetition suppression was reliably found 
when factoring in individual participants and sessions (Extended Data 
Table 1b). Repetition suppression was also observed when, instead of 
including only odour-modulated neurons, all recorded neurons were 
considered (Extended Data Fig. 7d). Notably, the response strength 
reduction in the PC showed a substantial first-trial effect (Fig. 3b and 
Extended Data Fig. 7e). Together, our analyses reveal differences in 
sparseness across central odour-processing areas, in conjunction with 
central repetition suppression.

Amygdala neurons encode odour valence
The central role of the amygdala in emotional processing is well 
established36,37, and rodent studies have revealed valence coding in 
amygdala neurons38. However, animals cannot directly report subjec-
tive preferences, and odour-valence coding remains unclear at the 
individual-neuron level in humans. Consequently, we investigated 
whether amygdala neurons encode subjective odour preferences 
and valence. On the basis of individual odour ratings, we compared 
neuronal responses of odour-modulated neurons to odours rated as 
liked versus disliked (Fig. 4a). Figure 4b,c shows an example amyg-
dala neuron that responded preferentially to liked odours. Overall, 
the responses of odour-modulated neurons in the amygdala were 
significantly greater for liked versus disliked odours (Fig. 4d). No sig-
nificant difference was observed in other regions. Increased activity of 
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odour-modulated neurons in the amygdala in response to liked odours 
was also evident when correcting for session and participant-specific 
differences (Extended Data Table 1c). Using published valence ratings39 
of the standardized odours used in our study, we sought to correlate 
general valence ratings with the activity of odour-modulated neurons 
in the amygdala. Here we found a significant correlation of firing rate 
with valence across recordings (Fig. 4e).

Hippocampus predicts odour identification
Successful odour identification requires odour perception, rec-
ognition and recall of the semantic odour label. The MTL has been 
suggested to have an essential role in these processes40, although 
the underlying neuronal mechanisms remain largely unexplored. 
Thus, we next investigated whether single-neuron activity is linked 
to behavioural odour identification performance (Fig. 4f). We found 
that correct odour identification is accompanied by an overall increase 
in the firing rate of odour-modulated neurons (two-sided Wilcoxon 
signed-rank, n = 406, Z = 2.36, P = 0.018). We next investigated whether 
neuronal odour representations relate to behavioural identifica-
tion performance. We correlated odour-decoding accuracy in each 
recording session and region with behavioural odour-identification 

performance and found a significant positive correlation exclusively in 
the hippocampus (Fig. 4g). This correlation was consistently observed 
across the participants (Extended Data Fig. 6b). Moreover, odour 
identification performance at the behavioural level was correlated with 
higher proportions of odour-modulated neurons in the hippocampus 
and EC (Extended Data Fig. 6c). We next analysed whether neuronal 
odour representations reflected chemical odour identity (presented 
odours) rather than subjective perception (selected odour labels). 
Decoding revealed a dissociation between PC and hippocampus, 
with PC neurons coding preferably for chemical odour identity, and 
hippocampal neurons predicting perceived odour identity (Fig. 4h). 
Collectively, our findings reveal distinct roles of amygdala neurons 
in odour-valence coding and hippocampal neurons in odour identi-
fication.

Olfactory/visual cross-modal integration
Natural environments require humans and other species to constantly 
integrate visual and olfactory sensory cues. How visual and olfactory 
information is integrated at the level of individual neurons is still 
unexplored in humans. We recorded from neurons along the human 
olfactory pathway to explore representations of congruent visual and 
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Fig. 2 | Neuronal activity decodes odour identity. a, Odour-identity decoding: 
neuronal spiking was used to train decoders to predict odour identity (here, the 
scent of orange). b, The odour-identity decoding accuracy per region. Each red 
dot shows the decoding performance based on 200 randomly drawn neurons 
(1,000 subsampling runs). The decoding performance (mean ± s.e.m.) across 
subsampling runs is shown in black. The grey dots indicate the decoding 
performance on label-permuted data. The chance level (6.25%) is indicated by 
the dashed horizontal line. Significance was calculated based on the percentile 
of mean decoding performance of the real data within the surrogate distribution 
(PC, P < 0.001; amygdala, P < 0.001; EC, P < 0.001; hippocampus, P < 0.001;  
PHC, P = 0.16; label permutation test with n = 1,000 permutations). s.e.m. margins 
in b–d are barely visible. c, Odour-identity decoding (mean ± s.e.m.) as a 
function of the number of neurons included (100 subsampling runs). The 
horizontal bars below the dashed line (chance level) indicate neuron counts with 
significant odour-identity decoding (P < 0.05, right-sided Wilcoxon signed-rank 
tests against chance, with Bonferroni correction for different neuron counts).  

d, Odour-identity decoding (mean ± s.e.m.) as a function of the decoding  
time window beginning at odour onset (200 randomly drawn neurons, 100 
subsampling runs). The horizontal bars below the dashed line (chance level) 
indicate the times of significant decoding performance (P < 0.05, right-sided 
Wilcoxon signed-rank test against chance, with Bonferroni correction for 80 
time windows; beginning of sustained significant decoding: PC, 350 ms; 
amygdala, 400 ms; EC, 850 ms; hippocampus, 1,100 ms; PHC, 1,650 ms).  
e, The odour decoding performance (mean ± s.e.m., black) per recording 
session and region (coloured dots). Despite the limited and variable neuron 
counts per session, odour identity could be decoded significantly above  
chance (6.25%, dashed line) in the PC, amygdala, EC and hippocampus (PC,  
14 out of n = 17 sessions showed significant decoding compared to 1,000 
odour-label-permuted data, P < 10−10; amygdala, 13 out of n = 27, P = 1.3 × 10−10; 
EC, 5 out of n = 21, P = 0.0032; hippocampus, 6 out of n = 27, P = 0.0019; PHC, 1 
out of n = 24, P = 0.71; right-sided binomial test, Pchance = 0.05, regions with ≥2 
neurons). Diagrams were created using BioRender (a) and Noun Project (a).



630  |  Nature  |  Vol 634  |  17 October 2024

Article

olfactory stimuli (Fig. 5a). For this purpose, the participants completed 
an additional visual task after our olfactory paradigm (20 out of 27 ses-
sions), during which they repeatedly viewed images of objects, each of 
which corresponded to one of the odours in our panel (for example, 
orange odour and image of an orange). This enabled us to compare neu-
ronal activity after exposure to congruent images and odours within the 
same population of neurons. Image-modulated neurons (Fig. 5b) were 
identified analogously to odour-modulated neurons. Across regions, 
we found more neurons modulated by odours than by images, with a 
significant overlap between both populations (Fig. 5c). Specifically, 
significantly more PC and amygdala neurons were odour modulated 
than image modulated, signifying their central role in odour processing. 
Nonetheless, a significant fraction of PC neurons was image modulated 
(35 neurons out of 277, P = 5.7 × 10−7, two-sided binomial test, n = 277 
neurons, Pchance = 0.05), that is, they changed firing based on the image 
identity (Fig. 5b). The ability of PC neurons to encode odour-related 
image identity was further confirmed by decoding analysis (Fig. 5d and 
Extended Data Fig. 6d). Notably, neuronal activity in the PC predicted 
odour-related image identity more accurately than in any of the MTL 
regions, demonstrating that human PC neurons are not exclusively 
driven by olfaction, but also encode information from other sensory 
modalities. To determine whether there is a unified code for olfactory 
and visual stimuli, we trained a decoder on odours and tested its per-
formance on images, and vice versa. The results showed that neuronal 
coding in the amygdala and PC generalizes across odours and images, 
suggesting cross-sensory representations in these regions (Fig. 5e,f and 
Extended Data Fig. 6e,f). Notably, in this analysis, identity decoding in 
the PC only generalized when training on odours and testing on images, 
and not vice versa, whereas the amygdala exhibited cross-modal cod-
ing in both cases.

In the human MTL, concept cells have been identified that respond 
with a high degree of invariance to representations of a specific con-
cept (for example, a picture as well as the written and spoken name 
of a person or an object)41,42. In our recordings, we identified neurons 
exhibiting concept cell-like characteristics. For example, a neuron in 
the amygdala increased firing selectively in response to the image of  
a banana (Fig. 5g). Notably, the same neuron also responded to the 
odour of banana and the written word ‘banana’, indicating semantic 
coding in the olfactory domain. Moreover, we recorded a PC neuron 
selectively responding to liquorice odour, the image of liquorice and the 
written word ‘liquorice’ (Fig. 5h). Notably, this neuron also responded 
to a second odour, anise, an odour that is typically associated with 
and contained in liquorice candy. These observations in the amygdala 
and PC suggest semantic representations of odours at early stages 

of olfactory processing. Collectively, our findings reveal encoding 
of odour-related visual information in human PC neurons, as well as 
multimodal odour representations in the human amygdala and PC.

Discussion
Despite the importance of human olfaction in health and disease, our 
understanding of central odour coding relies primarily on animal mod-
els and human imaging studies. Although highly informative at the 
macroscopic level, functional human brain imaging lacks both the 
spatial and temporal resolution necessary to investigate the individual 
neuron and circuit coding logic underlying human olfactory process-
ing. We are therefore facing a considerable knowledge gap in human 
olfactory research. Here we recorded from human single neurons in 
PC and MTL, providing insights into olfactory processing. Across both 
primary and secondary olfactory areas, we identified neurons that 
responded to odours and altered their firing based on odour identity. 
We observed suppressed response strength after repeated odour pres-
entations at prolonged intervals beyond peripheral sensory adapta-
tion. Analysis of population sparseness revealed a more distributed 
code in PC compared to MTL regions. Nonetheless, neuronal activity 
in both the PC and MTL could accurately decode odour identity. Our 
findings suggest that different MTL regions mediate distinct aspects of 
odour processing. Amygdala neurons encode odour valence, whereas 
hippocampal activity predicts odour identification performance. Nota-
bly, we show that human PC neurons efficiently encode odour-related 
image identity. Integrating data from both odour-related visual and 
olfactory stimuli, we identified neurons with the ability to represent 
a specific stimulus concept (for example, banana) in a cross-modal 
manner by responding to the scent, an image and the written name of 
a banana. The PC and amygdala in particular engage in cross-modal 
coding.

Odour coding in the human PC and MTL
Given its central role in odour processing and the distributed 
non-chemotopic olfactory coding in the PC proposed by animal 
studies10,11,17,19,20, we hypothesized a corresponding coding logic imple-
mented by human PC neurons. We have demonstrated that a substan-
tial fraction of PC neurons is modulated by odour identity. Moreover, 
activity in few PC neurons is sufficient to accurately decode chemical 
odour identity. The PC exhibits a more distributed odour code com-
pared with MTL regions, indicating an increase in sparseness of odour 
representations along the human olfactory pathway. Tuning profiles 
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Nature  |  Vol 634  |  17 October 2024  |  631

of PC neurons appear relatively broad as odour-modulated neurons 
frequently responded to several odours. Thus, similar to results from 
animal studies19,20, the labelled-line organization of chemotopic infor-
mation established in the human olfactory bulb is disrupted along the 
bulb-to-PC signalling axis.

Beyond the PC, we identified odour-modulated neurons in various 
MTL regions, including the amygdala, EC and hippocampus. Effec-
tive coding of odour information within these regions highlights their 
importance for central odour processing and formation of odour rep-
resentations. Notably, decoding power decreased (and required both 
larger ensembles and longer integration periods) along the hierarchy 
of the olfactory processing pathway. Neural representations of odours 
emerged first in the PC and amygdala and only approximately 500 ms 
later in the EC. This delay in EC odour coding could support a connec-
tivity scheme in which, in contrast to rodents6,7, human olfactory bulb 
mitral cells might not directly project to the EC. Together, our findings 
resolve the long-standing question of whether and how individual 
neurons in human PC and MTL respond to odours29, setting the stage 
for future studies to decipher the human olfactory code.

Central odour repetition suppression
We are constantly surrounded by a variety of odours. Thus, detect-
ing novel odours is of high behavioural relevance—for example, to 
identify potential hazards like smoke. We observed a decrement in 
response strength with repeated presentations (approximately every 
5 min) of the same odour in the PC, amygdala and hippocampus. This 
temporal regime exceeds typical timescales consistent with olfactory 
sensory neuron adaptation43, thereby favouring the interpretation 
that central habituation mechanisms are responsible for the observed 
response reduction. While olfactory habituation has been reported 
both in animals44 and at macroscopic scale in human imaging studies13,45, 
we demonstrate this phenomenon in humans at the single-neuron level. 
Notably, the response reduction in odour-modulated neurons quali-
tatively resembles that of visual responses in the human MTL46. The 
pronounced suppression observed in PC neurons between first and sec-
ond stimulation is particularly marked. This may indicate high respon-
siveness of PC neurons to novel odours, consistent with the ‘first-trial 
effect’ observed in zebrafish47, and could result from local inhibitory 
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Fig. 4 | Amygdala neurons encode odour valence and the hippocampus 
predicts behavioural odour-identification performance. a, The participants 
rated odours as liked or disliked. b, Spike-shape density (mean ± s.d.) of an 
amygdala neuron. c, This neuron increased firing to liked versus disliked 
odours (two-sided Wilcoxon rank-sum test comparing the z-scored firing rates 
0–2 s after odour onset; n = 46 versus n = 18, Z = 2.1, P = 0.034). Bottom, PSTH  
for liked and disliked odours (mean ± s.e.m., 1 s bins). d, Firing rates (z-scored, 
mean ± s.e.m.) of odour-modulated neurons in response to liked versus disliked 
odours. Only the amygdala exhibited a significant difference of subjective 
preference (two-sided Wilcoxon signed-rank tests; PC, n = 99 odour-modulated 
neurons, Z = −0.76, P = 0.44; amygdala, n = 130, Z = 2.9, P = 0.004; EC, n = 74, 
Z = −0.37, P = 0.71; hippocampus, n = 74, Z = −0.61, P = 0.54; PHC, n = 29, Z = −1.6, 
P = 0.11). The y axis displays 95% of data. e, Averaged firing of odour-modulated 
amygdala neurons (z-scored) correlated with standard odour-valence ratings39 
(Spearman correlation, n = 15 odours, r = 0.56, P = 0.03, two-sided permutation 
test). This correlation was observed in a significant number of sessions (6 out  
of n = 27, P = 0.002) and participants (4 out of n = 17, P = 0.009, one-sided 
binomial test, Pchance = 0.05). Linear regressions (black) with 95% confidence 

intervals (grey). f, Odour identification: the participants chose the odour label.  
g, Neuronal odour-decoding accuracy and behavioural odour-identification 
performance across regions and sessions (coloured dots). The decoding 
accuracy in the hippocampus was positively correlated with behavioural 
odour-identification performance across sessions (Spearman correlation,  
PC, n = 17 sessions, r = 0.14, P = 0.59; amygdala, n = 27, r = 0.06, P = 0.75;  
EC, n = 21, r = −0.12, P = 0.62; hippocampus, n = 27, r = 0.50, P = 0.0076;  
PHC, n = 24, r = 0.19, P = 0.38, two-sided permutation tests, regions with ≥2 
neurons). Data are shown as in e. h, The difference in decoding accuracies based 
on chemical versus perceived (selected) odour identity. PC neurons decoded 
chemical odour identity more reliably, whereas hippocampal neurons 
predicted selected odour labels more accurately (PC, 75.8% chemical versus 
22.1% perceived more accurate, Z = 19, P < 10−10; amygdala: 45.6% versus 49.7%, 
Z = −0.95, P = 0.34; EC, 50% versus 45.2%, Z = 1.7, P = 0.083; hippocampus, 26.7% 
versus 69%, Z = −16, P < 10−10; PHC, 52.2% versus 43.5%, Z = 3, P = 0.0024; two- 
sided Wilcoxon signed-rank tests across 1,000 subsampling runs). The y axis 
displays 99% of data. Diagrams were created using BioRender (a and f) and 
Noun Project (a and f).
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circuits specific to the PC48. The absence of a first-trial effect in other 
downstream regions indicates that olfactory information is processed 
in parallel and not merely relayed through the PC. The apparent lack of 
habituation at the earliest stages of human olfactory processing—the 
olfactory epithelium43 and olfactory bulb49—furthermore suggests that 
the first-trial effect emerges predominantly at the PC level.

Valence coding in the amygdala
On the basis of individual hedonic ratings, we demonstrated that 
odour-modulated amygdala neurons change firing depending on per-
sonal preferences and that amygdala firing correlates with reference 
odour-valence values39. Human imaging studies have demonstrated 

amygdala activation by odours both with positive and negative 
valence37,50. However, their effects are not easily differentiated using 
univariate bulk-tissue-imaging methods36, indicating local effects 
of odour-valence encoding51. Our single-neuron data suggest that 
odour-modulated neurons in the amygdala are involved in integrat-
ing odour identity and valence information. As positive valence was 
predominant in our study, future research should encompass odours 
that span the entire valence dimension to conclude whether our find-
ings generalize. As both odour intensity and valence have been shown 
to influence the response of the human amygdala37,51,52, future stud-
ies should also systematically vary odour intensity to investigate the 
interplay of valence and intensity coding. For this purpose, high-end 
olfactometers allowing for precise odour control will be essential.
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PC neuron (one-way ANOVA of z-scored firing rates with image identity, 
F15,112 = 11.98, P < 10−10). c, Population of image- and odour-modulated neurons. 
In total, 185 image-modulated neurons were identified (P < 10−10, two-sided 
binomial test, k = 185, n = 1,856 neurons in olfactory and visual task, Pchance = 0.05). 
More neurons were odour modulated than image modulated (321 versus 185, 
two-proportion Z-test: Z = 6.5, P < 10−10). Both populations showed significant 
overlap (66 neurons, two-sided binomial test, P = 8.9 × 10−8, k = 66, n = 1,856, 
Pchance = (321/1,856) × (185/1,856) = 0.017). The PC and amygdala contained 
significantly more odour-modulated than image-modulated neurons (two- 
proportion Z-tests: PC, 99 versus 35 of n = 277 neurons, Z = 6.3, P = 2.2 × 10−10; 
amygdala, 99 versus 48 of n = 479, Z = 4.6, P = 4.8 × 10−6; EC, 36 versus 22 of 
n = 301, Z = 1.9, P = 0.053; hippocampus, 59 versus 49 of n = 469, Z = 1, P = 0.31; 
PHC: 28 versus 31 of n = 330, Z = −0.41, P = 0.68). d, The image-decoding 
performance based on neuronal activity was significant in all regions 
(statistical analysis was performed using a label permutation test with 
n = 1,000 permutations, as in Fig. 2b; for PC, amygdala, EC, hippocampus, all 

P < 0.001; for PHC, P = 0.018). e,f, The decoding performance for cross-modal 
decoding trained on images and evaluated on odours (d) and vice versa (e) 
(image to odour: PC, P = 0.002; amygdala, P = 0.007; EC, P = 0.14; hippocampus, 
P = 0.11; PHC, P = 0.68; odour to image: PC, P = 0.34; amygdala, P = 0.042; EC, 
P = 0.66; hippocampus, P = 0.22; PHC, P = 0.77, label permutation test as in d). 
g, An amygdala neuron that increases firing in response to banana odour, a 
banana image and the written word ‘banana’ (right-sided Wilcoxon rank-sum 
tests, comparing the pre-odour baseline firing rates (n = 128, 2 s) with the firing 
rates after the onsets of odours (n = 8, 2 s), images (n = 8, 1 s) and non-target 
odour names (n = 12, 1 s) in the identification task; banana, Podour = 6.8 × 10−8, 
Pimage = 1.4 × 10−7, Pname = 0.0073; orange, Podour = 0.0029; anise, Podour = 0.039).  
h, A PC neuron that increases firing in response to the odour of liquorice and 
anise. The same neuron exhibited the most pronounced response to liquorice 
among images and names (liquorice, Podour = 3.2 × 10−9, Pimage = 1.3 × 10−6, 
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Hippocampal role in odour identification
Neurodegenerative diseases such as Parkinson’s and Alzheimer’s dis-
ease often first manifest with olfactory deficits, particularly concern-
ing odour identification53. Our results link odour representations of 
hippocampal neurons directly with behavioural odour-identification 
performance, indicating that hippocampal degeneration may con-
tribute to odour-identification deficits. Impaired behavioural odour 
identification performance could be a direct result of local neurode-
generation or could instead result indirectly from degeneration of 
upstream circuits (for example, olfactory bulb). Future research will 
have to explore causal contributions of odour-modulated neurons in 
odour identification.

Multisensory odour representations
The PC is generally regarded as a primary olfactory area. However, with 
its three-layered architecture and immensely plastic recurrent con-
nectivity, it resembles the structure of an association cortex48,54. Recent 
rodent studies have shown that neurons in the posterior PC precisely 
encode spatial information, suggesting a role in odour–place associa-
tion15. Further evidence for multimodal processing of odour-related 
information in the PC stems from rodents55 and human imaging stud-
ies56,57. Here we tested semantically coherent olfactory and visual stimuli 
to explore coding of PC neurons beyond olfactory perception. We iden-
tified that PC neurons decode not only odours, but also odour-related 
image identities. Thus, the PC not only processes olfactory stimuli, but 
also integrates top-down semantic information from higher cognitive 
areas. Notably, odour-related images were decoded more accurately in 
the PC than in the MTL. Future research will need to examine whether 
PC neurons specifically encode odour-related images, or whether they 
also process images of odourless objects. Our results further suggest 
PC involvement in multimodal, possibly even semantic integration. The 
lack of a specific odour-imagination task prevents us from delineating 
whether these multimodal representations are correlates of cross-modal 
integration or olfactory imagery58. While there is an ongoing debate how 
olfaction differs from other human senses, particularly with regard to 
olfactory imagery and the role of verbal descriptors59,60, our findings 
suggest that conceptual neuronal coding schemes of olfactory informa-
tion resemble those of other senses42. Assigning semantic odour labels 
is a uniquely human ability. Here we revealed that PC neurons preferably 
encode chemical odour identity, whereas hippocampal activity rather 
reflects subjectively perceived odours. This integrates well with our find-
ing that hippocampal activity predicts behavioural odour identification, 
indicating that coherent internal and external odour representations 
facilitate semantic odour identification. While invariant responses of 
MTL concept neurons to visual (pictures or written text) and auditory 
(spoken words) stimuli have been described previously42, chemosensory 
concept cells have not been identified to date. We observed neurons 
that generalize their response to congruent visual and olfactory stimuli. 
As demonstrated by cross-modal decoding analysis, amygdala neurons 
in particular generalize their coding between the olfactory and visual 
domain. Together, our findings demonstrate concept-based neuronal 
coding in human olfaction.
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Methods

Sessions and participants
Data were collected at the Department of Epileptology at the Uni-
versity of Bonn Medical Center, Bonn, Germany. All of the patients 
in our study had drug-resistant epilepsy and underwent invasive sei-
zure monitoring with the goal of subsequent neurosurgical resection 
of the seizure-generating focus. Overall, 27 sessions were recorded 
in 17 patients with epilepsy (12 female, 5 male; aged 22 to 60 years, 
mean ± s.d., 41.3 ± 11.7 years). Microwire bundles were implanted bilat-
erally to record single-neuron activity in the MTL and, in a subset of 
patients, also in the PC (17 sessions in 9 patients). All studies conformed 
with and were approved by the Medical Institutional Review Board 
of the University of Bonn, Germany (289/20). Each patient provided 
informed written consent.

Human single-neuron recordings
Patients were implanted with Behnke-Fried depth electrodes (AdTech) 
(Extended Data Fig. 1a,b). These hollow rodlike electrodes have a 
diameter of 1.25 mm with 8 cylindrical clinical macroelectrodes 
(platinum–iridium). The innermost two macro contacts are spaced 
3 mm apart, while the remaining contacts are equidistantly spaced. 
Through each electrode, a bundle of platinum–iridium microwires 
with a diameter of 40 µm was inserted. Each bundle contained eight 
insulated high-impedance (typically 200–500 kΩ)61 recording wires 
and one low-impedance reference wire without insulation. Electrodes 
were implanted using a rigid stereotactic frame (Leksell, Elekta) with 
an orthogonal guide tube62. Electrode target locations were deter-
mined by clinical criteria and differed minimally within target regions 
across patients. This, along with the technical limitation of precisely 
localizing microwire positions, precluded us from targeting specific 
subregions, for example, individual subnuclei of the amygdala or 
specific hippocampal subfields. Electrode placement was controlled 
by intraoperative CT scans co-registering the head-fixed frame to 
pre-operative MRI planning scans. After skin incision at the electrode 
entry point, a hole for an anchor bolt was drilled, and the anchor bolt 
was screwed into the skull using the guide tube. Microwire bundles 
were preloaded into the macroelectrodes and trimmed by a single cut 
with either a scalpel or surgical scissors on a back table in the operation 
room, such that they protruded from the tip of the clinical electrode by 
3 to 5 mm. Extended Data Fig. 1c displays SEM images of uncut and cut 
microwires for comparison. After preparation, microwire bundles were 
replaced by a guiding rod for implantation. After the insertion of the 
macroelectrode into its target position, the guiding rod was retracted 
and the microwire bundle was carefully inserted to avoid kinking or 
bending62. Local field potentials containing single-neuron activity were 
sampled at 32,768 Hz, band-pass filtered between 0.1 and 9,000 Hz, and 
amplified by a 256-channel ATLAS amplifier (Neuralynx) using Pegasus 
(v.2.1.1, Neuralynx). Spike extraction and sorting were performed using 
Combinato63. Spikes of negative voltage deflection were extracted and 
analysed. For illustration, spikes are depicted with inverted polarity. 
Automated artifact removal based on the DER algorithm64 was applied 
to all sessions. Clustering of each channel was manually validated by 
an experienced rater, and artifacts were removed. As Combinato  
(used with the default parameters in this study) tends to overcluster the 
recorded unit data in automated mode, we manually merged clusters 
on the basis of their waveforms, cross correlograms and other firing 
characteristics. Single-unit recording quality and spike sorting was 
validated based on inter-spike-interval (ISI) violations, spike amplitudes 
and spike peak signal-to-noise (SNR), as well as cluster isolation distance 
(Extended Data Fig. 8). Electrode localization was performed based on 
co-registered CTs and MRIs using the LeGUI software package (v.1.2)65 
and electrode locations were visualized using Fieldtrip (v.213bc8bcb)66 
and the ‘plot_ecog’ function (https://github.com/s-michelmann/
moment-by-moment-tracking/blob/master/plot_ecog.m). A total of 

2,416 units was recorded (1,292 single units (SU)): 622 units (348 SU) in 
the amygdala, 464 units (256 SU) in the EC, 634 units (341 SU) in the hip-
pocampus, 419 units (199 SU) in the PHC and 277 units (148 SU) in the PC.

Odour stimuli and delivery protocol
As odour stimuli, we used standard pen-like Sniffin’ Sticks from the 
Identification-16 test (Burghart Messtechnik). The participants sat in 
bed with a laptop on a tray in front of them while they were presented with 
15 different odour stimuli, administered eight times in pseudorandom  
order. The pen containing leather was replaced by a blank odourless pen 
that served as control (26 of 27 recordings). Odour pens were presented 
approximately 2 cm below the nose, centred between both nostrils. 
The patients were verbally instructed on each trial to inhale on com-
mand (“Please inhale NOW!”). To ensure consistent odour sampling 
across trials, the participants were asked to inhale only once for each 
odour presentation and not sniff at their convenience. Odour pens 
were immediately removed after the first inhalation. This experimental 
protocol was devised to minimize odour-specific respiratory variability. 
The experimenter’s (M.S.K.) direct supervision ensured adherence to 
the instructions throughout the experiment. Pens were opened only 
immediately before odour exposure. Simultaneous with the inhale 
command, the presentation time was logged and an odour was admin-
istered. In 13 out of 27 recording sessions, respiration was measured 
using thoracic and abdominal plethysmography belts (Extended Data 
Fig. 5a; SleepSense, Scientific Laboratory Products). Data from both 
belts were averaged and analysed using the Breathmetrics toolbox67 
(v.2.0, human respiratory belt default settings with sliding baseline 
correction). In the remaining 14 sessions, respiration belts could not 
by applied due to patient discomfort or noisy interference with the 
microwire recordings. Overall, the participants complied accurately 
with the experimental protocol, inhaling once during odour exposure 
and well timed to odour delivery (Fig. 1d and Extended Data Fig. 5c). 
Bilateral measurements of nasal airflow will allow future studies to pre-
cisely examine the interactions of neuronal activity and local oscillatory 
dynamics across the ipsilateral and contralateral hemispheres at a high 
temporal resolution. Standardized pen-like odour stimuli lack millisec-
ond precision and exact control of odour concentrations that can be 
achieved with high-end olfactometers. However, this odour-delivery 
method proved to be both efficient and effective for presenting a wide 
range of odour stimuli in the clinical environment.

Paradigm
During the first four presentation cycles, the patients were asked to 
rate whether they liked or disliked the odour (forced choice; Fig. 1e). 
In 64.8 ± 2.0% of trials, the participants reported to like the odour. 
Although liking and valence have been differentiated in some con-
texts68, we use the term valence as a multifaceted concept that includes 
liking69. In the subsequent four presentation cycles, odours were to 
be identified by choosing the correct odour name out of four options 
(Fig. 1e). Written odour names (labels) were selected pseudorandomly 
from a list of the 15 odour stimuli plus the neutral, odourless control. 
Each odour label was used 4 times as the correct and 12 times as an 
incorrect choice option. Name options were sequentially added at 1 s 
intervals, allowing stimulus-specific assessment of neuronal activity 
to individual written odour-associated words (Fig. 5g,h). To avoid con-
founding cueing effects induced by previous presentation of semanti-
cally matching odours, we excluded trials from the analysis in which 
the odour word was the correct choice option (Fig. 5g,h). The partici-
pants identified the correct odour in 74.1 ± 1.5% of cases. The mean 
presentation time of odours was 2.31 ± 0.13 s, the mean inter-odour 
interval was 19.4 ± 0.4 s, with the same odours repeated on average 
every 5.18 ± 0.05 min. In 20 out of 27 recordings, immediately after the 
olfactory task, we additionally presented 16 pictures, each semantically 
corresponding to one of the odours, including a light grey screen to 
match the odourless control. Each picture was presented for 1 s, 8 times, 
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in pseudorandom order. This protocol enabled us to identify neurons 
responding to images that were semantically congruent to the odours 
presented in this study. The experimental tasks were implemented 
using MATLAB R2019a (MathWorks) and Psychtoolbox370–72.

Statistics
All statistical analyses were conducted in MATLAB 2021a. Unless other-
wise stated, nonparametric and two-sided statistical tests were applied 
with a P value below an α-level of 0.05 considered to be significant. The 
arithmetic mean was used to compute averages, and the error bars 
represent the s.e.m. or the s.d. as specified. Spearman’s rank-order cor-
relations were used for all correlational analyses with P values estimated 
using MATLAB’s ‘corr’ function. ANOVA was performed to determine 
significant differences between multiple groups using Tukey’s honestly 
significant difference procedure to correct for multiple pairwise com-
parisons. The box plots in Fig. 1f were generated based on the built-in 
MATLAB function ‘boxplot’; the central lines indicate the median, 
the box limits show the 25th and 75th percentiles, and the whiskers 
extend from the minimal to maximal values that are not considered 
outliers, which were defined by exceeding 1.5× the interquartile range. 
Statistical significance is indicated by asterisks in figures. Custom 
MATLAB codes were used to calculate binomial tests and to gener-
ate Venn diagrams (MATLAB Central File Exchange, M. Nelson 2023, 
v.2.0, https://www.mathworks.com/matlabcentral/fileexchange/248
13-mybinomtest-s-n-p-sided; Darik 2023, v.1.7, https://www.mathworks.
com/matlabcentral/fileexchange/22282-venn).

Odour-modulated neurons
To identify odour-modulated neurons, we first calculated a z value 
for the firing rate during a response interval ([0, 2 s] after odour onset 
compared to [−5, 0 s] before odour onset) and performed a one-way 
ANOVA for odour identity. Neurons with a significant effect of odour 
identity across all 128 trials (P < 0.05) were termed odour-modulated 
neurons. Normalized PSTHs (Fig. 1j) were calculated by binning the 
spiking of each neuron (50 ms bins) and z-scoring all bins using the 
bins in the [−5, 0 s] baseline window before odour onset.

Image-modulated neurons
In analogy to our definition of odour-modulated neurons, we identified 
image-modulated neurons based on a one-way ANOVA of the z-scored 
firing rates for image identity ([0, 1 s] after image onset compared to 
[−0.5, 0 s] before the image onset27,73,74). Neurons with a significant 
effect of image identity across all 128 trials (P < 0.05) were termed 
image-modulated neurons.

Decoding analysis
All decoding analyses were performed using the Neural Decoding Tool-
box33 (v.1.0.4). In each region, spiking data were first binned within  
a [0, 2 s] time window after odour onset and a [0, 1 s] time window 
after image onset. We trained a maximum-correlation-coefficient 
classifier to predict odour or image identity, using 8 cross-validation 
data splits and 10 resample runs. To compare decoding performance 
across regions, an equal number of neurons (n = 200) was subsampled 
in each decoding analysis. The decoding was repeated 1,000 times on 
random subsamples. Significance levels were estimated based on a sur-
rogate distribution derived from decoding analysis on label-permuted 
data (nperm = 1,000). The percentile of the actual data mean within the 
surrogate distribution was used to estimate P values. To evaluate 
the impact of the decoding time window (Fig. 2d), we repeated the 
decoding analysis, systematically varying the decoding time interval 
ranging from 50 ms up to 4,000 ms, with 50 ms increments and 100 
subsampling runs. Moreover, we systematically varied the number of 
neurons included in the decoding analysis, starting with 10 neurons 
and increasing in steps of 10 (Fig. 2c). For cross-modal decoding, we 
trained the classifier on the image trials and tested it on the odour 

trials (Fig. 5e) and vice versa (Fig. 5f) using the [0, 2 s] decoding time 
window. To ensure that our decoding results were not driven by sys-
tematic differences of the first compared to later trials, we repeated the 
decoding without the first trial and obtained overall consistent findings 
(Extended Data Fig. 9). In the population decoding, equal numbers of 
neurons are randomly sampled across recording sessions, enabling  
a balanced comparison of performance between regions irrespective 
of individual variations in neuronal yield. Comparing decoding per-
formance of randomly sampled neurons within and across recording 
sessions yielded consistent results (Extended Data Fig. 9g), indicat-
ing that population decoding extrapolates well to larger populations 
of neurons. The odour-decoding performance for each session was 
estimated based on all recorded neurons per region with a minimum of  
2 neurons, using all odour presentations, 8 cross-validation data splits 
and 1,000 resample runs. For each session and region, a surrogate 
distribution was estimated by repeating the decoding analysis 1,000 
times on odour-label-permuted data, using 10 resample runs each. The 
percentile of the actual decoding performance within this surrogate 
distribution was used to estimate P values. Decoding performances per 
participant were evaluated by averaging decoding performances across 
repeated sessions within anatomical target regions. To test whether 
neural activity predicted chemical odour identity better than perceived 
odour identity (that is, sometimes falsely selected odour labels), we 
used a decoding analysis during the odour-identification task (4 trials 
per odour). An equal number of neurons was randomly subsampled 
from recordings in which each odour was chosen at least twice. In each 
anatomical target region, 100 neurons were randomly subsampled 
1,000 times, and a decoder was trained using two cross-validation 
data splits and ten resample runs. Decoders were trained based both 
on chemical odour identity and perceived odour identity (selected 
odour label) using the same neuronal populations. The differences 
between the two decoding accuracies were used to assess which labels 
were predicted more accurately by neuronal firing.

Estimation of population sparseness
A widely used measure of population sparseness is the activity ratio 
Ak, defined as75,76
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where xi is the mean response activity of the ith neuron to the stimulus 
k, and N is the number of neurons. The overall sparseness of the popu-
lation to a set of different stimuli was estimated by averaging across 
stimuli. We use the sparseness index SIk = (1 − Ak)/(1 − 1/N) to obtain  
a measure of sparseness ranging from 0 to 1, with higher values cor-
responding to a sparser code34.

Olfactory repetition suppression
Each odour was presented eight times. For each odour-modulated 
neuron, we calculated the mean z-scored firing rate for each odour 
presentation, resulting in eight firing-rate values per neuron. We then 
performed a linear regression for each neuron (firing rates versus odour 
presentation) and used the resulting slopes as a measure of change in 
the firing rate, following previous studies46. Slopes were calculated for 
each region and compared with a constant response strength (that is, 
a slope of 0) using a Wilcoxon signed-rank test.

Mixed-effects models
Generalized linear mixed-effects models (GLMMs) were used to con-
trol for recordings across multiple sessions within and across par-
ticipants. A GLMM was used for each fixed effect to predict trial-wise 
spike counts of odour-modulated neurons using MATLAB’s ‘fitglme’ 
function. Brain regions and interactions were incorporated as fixed 
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effects. Participant identity and recording session per participant 
were included as random effects to account for their nested hierar-
chical nature77. Each fixed-effects regressor was incorporated as a 
random slope for both participant identity and participant-session 
nesting, and neuron identity was included with an individual inter-
sect to account for participant–session–neuron nesting78. All ran-
dom effects comprised an individual intersect. Likelihood ratio tests 
(MATLAB’s ‘compare’ function) confirmed that the full models that we 
used with both random slopes and intercepts outperformed models 
incorporating only random intercepts. Poisson models were fitted 
based on the restricted maximum pseudo likelihood with a logarithmic  
link function.

SEM analysis of microwires
For SEM analysis, two microwires from a new bundle were used. One 
microwire was trimmed using a scalpel, while the other remained uncut. 
For imaging, wires were shortened to approximately 8 mm in length 
and mounted onto aluminium stubs using conductive carbon tape. The 
samples were then sputter-coated with 15 nm of gold using a Quorum 
150 R ES coating unit (Quorum Technologies) and imaged using the 
Everhart–Thornley secondary electron detector in a Zeiss Sigma 300 
(Zeiss) Field Emission Gun SEM operated at 2 kV. In total, five images 
of two scalpel-trimmed microwires and four images of two untrimmed 
microwires were obtained.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data supporting the central findings of this study and needed to repro-
duce the main figures in this manuscript are publicly available at GitHub 
(https://github.com/marcelkehl/HumanOdorRepresentations). Ref-
erence valence ratings of the standardized odours in our study were 
reported previously39 (Fig. 4e).

Code availability
Codes used to generate the main figures and reproduce the central 
results of this study are publicly available at GitHub (https://github.
com/marcelkehl/HumanOdorRepresentations).
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Extended Data Fig. 1 | Characteristics of Behnke-Fried depth electrodes 
used for single-neuron recordings in the human PC and MTL. a, Behnke- 
Fried depth electrode. Microwires inserted through the shaft of the hollow 
clinical macro electrode protrude from the tip of the electrode. The electrode 
features eight cylindrical clinical platin-iridium contacts. The two innermost 

contacts are 3 mm apart, while the remaining contacts are equidistantly spaced 
along the electrode. b, Illustration of the electrode geometry and dimensions. 
c, Scanning electron microscopy images of the tip of a microwire before (top) 
and after cutting (bottom).



Extended Data Fig. 2 | Odour valence ratings and identification performance 
for each participant. a, Mean odour ratings for each participant and odour. 
Odours are sorted from most to least liked (left to right) and participants are 
organized by average valence ratings (top to bottom). b, Average behavioural 

odour identification performance for each participant and odour. Odours are 
sorted from most to the least accurately identified (left to right) and participants 
are organized by their mean identification performance (top to bottom).
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Extended Data Fig. 3 | Odour-modulated neurons in the PC and MTL. 
Examples of odour-modulated neurons across recording sites exhibiting 
significantly different firing rates in response to distinct odours (one-way 
ANOVA of z-scored firing rates with odour identity, n = 128 trials). Spike  
shape density plots of each neuron are shown in the top of each panel, with 
mean ± s.d. in white. a, PC neuron: F15,112 = 9.4, P < 10−10; b, PC neuron: F15,112 = 9.8, 

P < 10−10; c, PC neuron: F15,112 = 2.0, P = 0.02; d, PC neuron: F15,112 = 4.0, P = 7.8⋅10−6; 
e, amygdala neuron: F15,112 = 5.5; P = 3.0⋅10−8; f, amygdala neuron: F15,112 = 5.7, 
P = 1.4⋅10−8; g, EC neuron: F15,112 = 6.8; P = 3.1⋅10−10; h, hippocampus neuron: 
F15,112 = 3.4; P = 0.00012. PC, piriform cortex; Am, amygdala; EC, entorhinal 
cortex; Hp, hippocampus.



Extended Data Fig. 4 | Odour-modulated neurons are reliably identified 
across participants and without odourless controls. a, Same as Fig. 1h,  
but averaged across recording sessions per participant. Proportions of 
odour-modulated neurons (mean ± s.e.m.) across regions for each participant. 
Significant proportions of odour-modulated neurons were found in PC, 
amygdala, EC and hippocampus across participants (PC: 39.7 ± 6%, n = 9 
participants, P = 0.002; amygdala: 19.8 ± 3.4%, n = 17, P = 0.00033; EC: 14.2 ± 3.6%, 
n = 15, P = 0.027; hippocampus: 10.9 ± 1.9%, n = 17, P = 0.0043; PHC: 5.14 ± 1.8%, 
n = 17, P = 0.79; one-sided Wilcoxon signed-rank against chance). Chance level 
(5%) indicated by the horizontal dashed line (see also Fig. 1h). b, Same as Fig. 1h, 
but excluding the odourless control. Distribution of odour-modulated neurons 
after omitting the neutral odour stimuli for the definition of odour-modulated 
neurons (PC: 36.8 ± 4.2%, n = 17 sessions, P = 0.00016; amygdala: 18.7 ± 2.6%, 
n = 27, P = 1.2⋅10−5; EC: 13.9 ± 3%, n = 22, P = 0.017; hippocampus: 9.83 ± 1.8%, 
n = 27, P = 0.011; PHC: 8.61 ± 3.9%, n = 26, P = 0.42; one-sided Wilcoxon signed- 
rank against chance). c, Population of odour-modulated neurons identified 
with and without the odourless control showed a highly significant overlap 
(P < 10−10 in a two-sided binomial test with k = 353, n = 2,416 neurons and 
Pchance = (406/2,416)⋅(378/2,416)). ****P < 0.0001, ***P < 0.001, **P < 0.01, 
*P < 0.05.
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Extended Data Fig. 5 | Odour identity, not respiration, drives odour- 
modulated neurons. a, Respiration was measured with thoracic (upper, 
turquoise) and abdominal (lower, lilac) inductive plethysmography belts. 
Respiration signals were amplified and recorded using the Neuralynx ATLAS 
system, ensuring reliable temporal synchronization with neural recordings.  
b, Performance (adjusted R2) of linear regression models, predicting neuronal 
firing (z-scores) based on odour identity, or odour identity combined with 
respiration (inhalation depth). Adding respiratory information to odour identity 
did not significantly improve the model predictions of firing rates of odour- 
modulated neurons (odour identity & respiration (R 2 = 0.194 ± 0.008) versus 

odour identity alone (R 2 = 0.190 ± 0.008), n = 240 odour-modulated neurons 
with respiratory recordings, Z = 0.85, P = 0.39 two-sided Wilcoxon signed-rank). 
Thus, odour-modulated neurons are primarily driven by odour-specific 
differences and not variations in respiration. c, Averaged odour-locked 
respiratory signals for each individual recording session (mean ± s.e.m.,  
13 sessions with n = 128 trials each). Participants consistently inhaled once 
(single peak) during the first 2 seconds after odour onset (grey shaded area),  
the analysis time window used for identification of odour-modulated neurons. 
n.s. = not significant. Diagrams were created using BioRender (a) and Noun 
Project (a).



Extended Data Fig. 6 | Decoding across individual recording sessions and 
participants. a, Odour-decoding performance per participant and region. 
Averaging the decoding performance across all sessions per participant 
(mean ± s.e.m., black) demonstrated significant odour identity decoding in PC, 
amygdala, and EC (PC: 7 out of n = 9 participants, P = 2.6·10−8; amygdala: 10 of 
n = 17, P = 1.4·10−9; EC: 4 of n = 15, P = 0.0055; hippocampus: 3 of n = 17, P = 0.050; 
PHC: 0 of n = 16, P = 1; right-sided binomial test with Pchance = 0.05). See also 
Fig. 2b. b, Odour-decoding accuracy and behavioural odour-identification 
performance across regions and participants, averaged across sessions for each 
participant (coloured dots). Decoding accuracy in the hippocampus positively 
correlated with odour-identification performance across participants 
(Spearman correlation, PC: n = 9 participants, r = 0.15, P = 0.71; amygdala: n = 17, 
r = 0.10, P = 0.71; EC: n = 15, r = 0.01, P = 0.96; hippocampus: n = 17, r = 0.50, 
P = 0.043; PHC: n = 16, r = 0.15, P = 0.58, two-sided permutation test). Linear 
regressions (black) with 95%-confidence intervals (grey). c, Odour identification 
improves with more odour-modulated neurons in the hippocampus and EC. 
Percentage of odour-modulated neurons and performance for each recording 
session for different regions. Percentage of odour-modulated neurons in the 
EC and hippocampus is positively correlated with individual performance in 
the odour identification task (Spearman correlation, PC: n = 17 sessions, 
r = −0.04, P = 0.89; amygdala: n = 27, r = 0.15, P = 0.44; EC: n = 22, r = 0.49, 

P = 0.022; hippocampus: n = 27, r = 0.38, P = 0.049; PHC: n = 26, r = 0.15, P = 0.47, 
two-sided permutation test). Linear regressions (black) with 95%-confidence 
intervals (grey). d, Image-decoding accuracy (mean ± s.e.m., black) per 
recording session and region (coloured dots). Despite the limited and variable 
neuron count per session, image identity could be decoded significantly  
above chance (6.25%, dashed horizontal line) across sessions in PC, amygdala, 
EC, and hippocampus (PC: 7 out of n = 17 sessions showed significant decoding 
compared to 1,000 image-label-permuted data, P = 9.7⋅10−6; amygdala: 5 out  
of n = 20, P = 0.0026; EC: 5 out of n = 15, P = 0.00061; hippocampus: 10 out of 
n = 20, P = 1.1⋅10−8; PHC: 2 out of n = 17, P = 0.21; right-sided binomial test with 
Pchance = 0.05, regions with ≥ 2 neurons in recordings with both olfactory and 
visual task). e-f, Cross-modal decoding per session trained on images and 
evaluated on odours (e), and vice versa (f), revealed significant cross-modal 
coding in PC and amygdala (Image-to-odour: PC: 4 out of n = 17 sessions, 
P = 0.0088; amygdala: 2 out of n = 20, P = 0.26; EC: 0 out of n = 15, P = 1; 
hippocampus: 2 out of n = 20, P = 0.26; PHC: 0 out of n = 17, P = 1; Odour-to- 
image: PC: 0 out of n = 17, P = 1; amygdala: 4 out of n = 20, P = 0.016; EC: 1 out  
of n = 15, P = 0.54; hippocampus: 2 out of n = 20, P = 0.26; PHC: 0 out of n = 17,  
P = 1; right-sided binomial test with Pchance = 0.05, regions with ≥ 2 neurons in 
recordings with both olfactory and visual task as in (d)). ****P < 0.0001, 
***P < 0.001, **P < 0.01, *P < 0.05.
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Extended Data Fig. 7 | Population sparseness of odours per recording 
session and repetition suppression across all neurons. a, Population 
sparseness index in response to odours for each recording session and odour 
(mean ± s.e.m. in black). Sparseness significantly differed across recording 
sites (one-way ANOVA, F3,1367 = 90.1, P < 10−10). All pairwise tests significant 
(P < 0.05) following Tukey’s honestly significant difference procedure, except 
the pairwise comparison of amygdala and hippocampus (P = 0.11). b, Average 
respiratory traces (mean ± s.e.m.) for each odour presentation (trials 1 to 8) 
across 13 recording sessions. c, Averaged inhalation depth (mean ± s.e.m., 
black) for each odour presentation (1 to 8) and recording session (coloured 
dots). Inhalation depth was consistent across odour repetitions (one-way 
ANOVA, F7,96 = 0.3, P = 0.95, n = 13 recording sessions with 8 trials each). d, Average 
response strength for repeated odour presentations across all recorded 
neurons in each anatomical region (mean ± s.e.m.). Odour repetitions are 
approximately 5 min apart. Insets depict the mean response slopes per region 
(mean ± s.e.m.). Significance is based on a two-sided Wilcoxon signed-rank 

against a slope of zero (PC: n = 276 neurons, Z = −3.1, P = 0.002; amygdala: 
n = 617, Z = −6.6, P < 10−10; EC: n = 464, Z = −4.1, P = 4.2⋅10−5; hippocampus: 
n = 633, Z = −6.5, P = 1.0⋅10−10; PHC: n = 418, Z = −2.4, P = 0.018, neurons with a 
non-zero pre-odour baseline firing rate). e, First-trial effect in the human 
piriform cortex. Changes in firing rates (z-scores, mean ± s.e.m. in black) of 
odour-modulated neurons between consecutive trials. For each region, we 
calculated the differences of firing rate between successive trials (i.e., 2nd-1st, 
3rd-2nd,…, 8th-7th trial). Firing rate changes were significantly different across 
trials and regions (one-way ANOVA, F27,2611 = 3.8, P = 1.5⋅10−10, n = 377 neurons). 
PC neurons showed the most pronounced decline in firing rate from first  
to second trial, as indicated by the blue cross and error bar. All 27 pairwise 
comparisons (blue cross versus each of the remaining crosses) were statistically 
significant (P < 0.05) after Tukey’s correction for multiple comparisons  
across all n = 378 (binomial coefficient for selecting 2 out of 27) pair-wise 
comparisons. The y-axis is truncated to display 99% of the data to improve 
visibility. ****P < 0.0001, **P < 0.01, *P < 0.05, n.s. = not significant.



Extended Data Fig. 8 | Spike-sorting and recording-quality metrics. a, After 
automated spike sorting and manual verification, we identified n = 2,416 units, 
with an average of 2.19 ± 0.04 (mean ± s.e.m., dotted vertical line) units per 
channel. Only channels with at least one recorded unit were included. Cumulative 
density functions (CDF) per brain region are shown as coloured solid lines in 
the lower panels. b, Proportions of Inter-spike intervals (ISI) shorter than 3 ms. 
Units exhibited an average proportion of (mean ± s.e.m.) 0.36 ± 0.01% of ISI 
intervals below 3 ms. More than 95% of all units showed less than 1.4% of ISIs 

below 3 ms (dashed vertical line). c, Distribution of mean firing rates 
(mean ± s.e.m.: 1.62 ± 0.05 Hz, dotted vertical line). d, Spike peak amplitude 
SNR (mean ± s.e.m.: 11 ± 0.1, dotted vertical line). Peak SNR was calculated by 
dividing the peak amplitude by the standard deviation of the background 
activity, estimated based on the median absolute deviation (MAD) as 
SD = MAD/0.674563. e, Mean spike peak amplitude distribution (mean ± s.e.m.: 
44.8 ± 0.5µV, dotted vertical line). f, Isolation distance (mean ± s.e.m.: 66 ± 12, 
for the 1786 clusters for which this measure could be calculated).
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Extended Data Fig. 9 | Replication of the decoding analysis after excluding 
the first trial. a, Odour-identity decoding accuracy based on neuronal activity 
separated by region. Each red dot in the distributions shows the decoding 
performance based on 200 randomly drawn neurons (1,000 subsampling 
runs). Mean decoding performance and s.e.m. across subsampling runs are 
shown in black. Grey dots indicate decoding performance on label-permuted 
data. The dashed horizontal line indicates chance level (6.25%). Significance 
based on percentile of mean decoding performance of the real data in the 
surrogate distribution (PC: P < 0.001; amygdala: P < 0.001; EC: P < 0.001; 
hippocampus: P < 0.001; PHC: P = 0.12, label permutation test with n = 1,000 
permutations). b, Performance of odour-identity decoding (mean ± s.e.m.) as a 
function of the number of neurons included in the decoding analysis using 100 
subsampling runs. Horizontal bars indicate neuron counts for which decoding 
performance significantly exceeded chance (P < 0.05, right-sided Wilcoxon 
signed-rank against chance after Bonferroni correction for different neuron 
counts). c, Performance of odour-identity decoding (mean ± s.e.m.) as a 
function of the decoding time-window beginning at odour onset using 200 
randomly drawn neurons and 100 subsampling runs. Horizontal bars indicate 
times where decoding performance significantly exceeded chance (P < 0.05, 
right-sided Wilcoxon signed-rank against chance after Bonferroni correction 
for 80 decoding time windows; beginning of sustained significant decoding: 

PC: 400 ms; amygdala: 350 ms; EC: 800 ms; hippocampus: 1,050 ms; PHC: 
1,600 ms). d, Image-identity decoding accuracy based on neuronal activity 
separated by region, depicted as in (a). All regions exhibited significant 
decoding of image identities (PC: P < 0.001; amygdala: P < 0.001; EC: P < 0.001; 
hippocampus: P < 0.001; PHC: P = 0.003, label permutation test with n = 1,000 
permutations, as in (a)). Decoding accuracy in PC surpassed all other regions. 
e-f, Decoding accuracy (as in a) for a cross-modal decoding analysis trained  
on images and evaluated on odours (e), and vice versa (f). (Image-to-odour:  
PC: P = 0.008; amygdala: P = 0.018; EC: P = 0.15; hippocampus: P = 0.1; PHC: 
P = 0.79; Odour-to-image: PC: P = 0.17; amygdala: P = 0.14; EC: P = 0.45; 
hippocampus: P = 0.28; PHC: P = 0.7, label permutation test with n = 1,000 
permutations, as in (a)). PC and amygdala reached substantially higher decoding 
accuracies than any of the other regions in both cross-modal decoding 
analyses. g, Odour-decoding accuracy as a function of the number of neurons 
used for decoding, sampled across participants (red, mean ± s.e.m.) or within 
participants (blue, mean ± s.e.m. across sessions), as in Fig. 2c (100 times 
randomly subsampled with 8 cross-validation data splits and 10 resample runs). 
Chance level (6.25%) shown as dashed horizontal line. Note that with 8-32 
microwires per anatomical target region, it is rarely possible to simultaneously 
record the activity of 30 or more neurons per participant. ***P < 0.001, 
**P < 0.01, *P < 0.05.



Extended Data Table 1 | Generalized linear mixed-effects models across participants and sessions

Results of general linear-mixed effects models (GLMMs) for firing rates of odour-modulated neurons in response to odours as compared to odourless controls (a), repeated odour  
presentations (b), and subjective valence ratings (c). Models include different brain regions and account for neurons recorded across participants and sessions as well as their nested 
structure. a, Odours elicited significantly stronger activity of odour-modulated neurons than odourless controls in the PC, amygdala and hippocampus across patients and sessions. (GLMM 
predicting spike counts (SC) based on odour versus odourless control, brain region, and their interaction. Model: SC ~ 1 + Control x Region + (Control|ParticipantID) + (Region|ParticipantID) +  
(control|ParticipantID:SessionID) + (Region|ParticipantID:SessionID) + (1|ParticipantID:SessionID:UnitID), using the odour condition and PHC as reference). b, Repeated odour presentations  
led to reduced firing of odour-modulated neurons specifically in the PC, amygdala, EC and hippocampus across patients and sessions. (GLMM predicting spike counts for repeated odour  
presentations (Rep), brain region and their interaction. Model: SC ~ 1 + Rep x Region + (Rep|ParticipantID) + (Region|ParticipantID) + (Rep|ParticipantID:SessionID) + (Region|ParticipantID:SessionID) +  
(1|ParticipantID:SessionID:UnitID), using PHC as reference). c, Behavioural valence ratings predicted firing of odour-modulated neurons especially in the amygdala across patients and  
sessions (GLMM predicting spike counts based on valence (liked vs disliked), region and their interaction. Model: SC ~ 1 + Liked x Region + (Liked|ParticipantID) + (Region|ParticipantID) +  
(Liked|ParticipantID:SessionID) + (Region|ParticipantID:SessionID) + (1|ParticipantID:SessionID:UnitID), with disliked and PHC as reference).
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