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Olfactionis afundamental sensory modality that guides animal and human
behaviour?. However, the underlying neural processes of human olfaction are

still poorly understood at the fundamental—that is, the single-neuron—level. Here
wereportrecordings of single-neuron activity in the piriform cortex and medial
temporal lobe in awake humans performing an odour rating and identification task.
Weidentified odour-modulated neurons within the piriform cortex, amygdala,
entorhinal cortex and hippocampus. In each of these regions, neuronal firing
accurately encodes odour identity. Notably, repeated odour presentations reduce
response firing rates, demonstrating central repetition suppression and habituation.
Different medial temporal lobe regions have distinct roles in odour processing, with
amygdala neurons encoding subjective odour valence, and hippocampal neurons
predicting behavioural odour identification performance. Whereas piriform neurons
preferably encode chemical odour identity, hippocampal activity reflects subjective
odour perception. Critically, we identify that piriform cortex neuronsreliably encode

odour-related images, supporting a multimodal role of the human piriform cortex.
We also observe marked cross-modal coding of both odours and images, especially
inthe amygdala and piriform cortex. Moreover, we identify neurons that respond to
semantically coherent odour and image information, demonstrating conceptual
coding schemesin olfaction. Our results bridge the long-standing gap between
animal models and non-invasive human studies and advance our understanding of
odour processing in the human brain by identifying neuronal odour-coding
principles, regional functional differences and cross-modal integration.

Olfaction, the sense of smell, is vital for humans? Enhancing our
understanding of the underlying neuronal mechanisms is essential,
considering the importance of olfaction in health and disease. Olfac-
tory processing commences when airborne odour molecules activate
olfactory sensory neuronsinthe olfactory epithelium (Fig. 1a). Axons
of neurons expressing the same olfactory receptor® converge onto
specific glomeruli in the olfactory bulb, representing odour infor-
mation as a topographic map of receptor activation®. After olfactory
bulb processing®*, mitral and tufted cells relay information to several
cortical areas that constitute the primary olfactory cortex, including
the piriform cortex (PC), amygdala and entorhinal cortex (EC)°. Direct
projections to the EC are established in rodents®” but have not yet been
confirmed in humans®. The PC is key for odour processing’. In contrast
to the olfactory bulb, there is no apparent topography representing
odour quality or identity in the PC*™", raising the question of how
odour-specific information is organized within the human PC. While
humanimaging'>?and intracranial electroencephalography* studies
showed odour-related PC activation at the macroscopic level, record-
ingsinrodents demonstrated odour-related responses of individual PC

neurons'®®8 and provided adeeper understanding of odour identity

and intensity codingin the PC* 2, Besides the PC, multiple medial tem-
poral lobe (MTL) regions contribute to central olfactory processing.
In animal models, neurons responsive to odours have beenidentified
in the amygdala, EC and hippocampus?*?*. Human imaging studies
have complemented these findings by demonstrating odour-related
activationin these regions (amygdala™*, EC"*** and hippocampus®).

Human single-unit recordings have substantially advanced our
conceptual understanding in various areas of neuroscience such as
auditory processing®, object representation” and memory forma-
tion?. However, such studies are lacking in olfaction. In humans,
it remains unclear whether and how individual neurons respond to
olfactory cues and encode odour identity. We therefore investigated
the individual contributions of central olfactory areas to odour pro-
cessing and their link tohuman behaviour at the neuronal level. We took
advantage of the rare opportunity torecord individual neuron activity
in the human PC and MTL during an odour rating and identification
task. Such single-unit recordings offer unique insights that bridge
thelong-standing gap between animal electrophysiology and human
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Fig.1|O0dours modulate humanPCand MTL firing. a, Odours activate
olfactory sensory neurons (OSNs), which project to the olfactory bulb (OB). OB
neuronsinnervate the PC,amygdala (Am) and putatively EC, which is connected
to hippocampus (Hp) and PHC. b, Innermost clinical electrodes projected to

the MNI-ICBM152 template. Sites are coloured asin a. ¢, The post-implantation
computed tomography (CT) scan, co-registered onto the pre-implantation
MRIscan, visualizes Behnke-Fried electrodes (left). Right, schematic (top right)
andscalpel-trimmed microwire (bottomright; scanning electron microscopy
(SEM)). Scale bar, 20 pm. d, Respiratory depth (mean +s.e.m.) aligned to
odourdelivery.n=13sessions. a.u., arbitrary units. e, The odour rating and
identification task:15odours (+1odourless control) were presented 8 timesina
pseudorandom order. Rating: during four presentation cycles, the participants
rated (like or dislike) each odour. Identification: next, the participants identified
the correct odour (four options; four times per odour). f, The behavioural
performance per odour, showing ratings (left) and correct identification (right).
n=27sessions. Thebox plots show the median values (centre lines), 25th-75th
percentiles (box limits), and the whiskers spandatawithin1.5x theinterquartile
range. Statistical analysis of odouridentification was performed using two-
sided Wilcoxon signed-rank tests versus chance (25%; dashed line); for all 15
odours, P<0.01.Coloursareasing. g, Example odour-modulated PC neuron.
Thefiringrate varied significantly with odour identity (left; one-way analysis of
variance (ANOVA), Fy5;,,=13.8, P<107'°, n =128 trials). Right, spike-shape density

imaging studiesinolfactory research. We identified odour-modulated
neurons that effectively encode odour identity. We further demon-
strate a distinct role of the amygdalain emotional processing of odours
and highlight hippocampal involvement in odour identification.
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(mean ts.d.; white, polarity inverted for visualization). h, Odour-modulated
neurons persessionand region (mean +s.e.m.). The PC,amygdala, ECand
hippocampus host significant populations of odour-modulated neurons
(PC,39.5+4.7%,n=17 sessions,Z=3.6,P=0.00029; amygdala, 19.5 + 2.7%,
n=27,7=4.3,P=19x107%EC,14.2+3.2%,n=22,Z=2,P=0.049; hippocampus,
12.1+1.9%,n=27,7=3.1,P=0.0019; PHC,5.31+1.4%,n=26,Z7=-0.27,P=0.78;
two-sided Wilcoxon signed-rank tests versus chance; the dashed line indicates
5%).1,0dour-modulated neuronsin the PC,amygdala, EC and hippocampus
increasetheir firing rate (FR) after odour stimulation versus the odourless
controls (PC,n=99 neurons,Z=5.7,P=9.9 x10™%;amygdala,n=129,7=4.1,
P=3.4x10"%EC,n=74,Z=2,P=0.043; hippocampus,n=73,Z=2.3,P=0.019;
PHC,n=29,Z=-0.49,P=0.63; allcompared withcontrol:n=404,7=7.0,
P<107 two-sided Wilcoxonsigned-rank tests). The y axis displays 95% of data.
Jj,PSTHs (odour-modulated (red) versus other (grey) neurons; 50 ms bins).
Odour-modulated neuronsincrease firing in all regions exceptin the PHC
(two-sided Wilcoxon signed-rank tests comparing z-scored firing rates (0-2's
after odour onset) against zero; PC,n=99 neurons, Z=5.8,P=7.2x10"%;
amygdala,n=130,Z7=5.3,P=1.5x107;EC,n=74,Z=3,P=0.0028; hippocampus,
n=74,7=2.8,P=0.005,PHC,n=29,7=-0.46,P=0.64).***P< 0.0001,
***P<0.001,**P<0.01,*P<0.05. Diagrams were created using BioRender (a)
and Noun Project (e).

Notably, not only do our recordings reveal that PC neurons are able
toencode theidentity of odour-related images, but they also demon-
strate cross-modal integration of visual and olfactory information in
both the PC and amygdala.
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Odours modulate human PC and MTL firing

Although single-neuron recordings in animal models have greatly
advanced our understanding of olfaction, concepts of single-neuron
and circuit function in human olfactory processing are largely unex-
plored. Tobridge this knowledge gap, we recorded the activity of single
neurons in the human PC and MTL while patients smelled different
odours. Overall, we recorded human single-neuron activity (2,416 neu-
rons across 27 sessions) during odour rating and identification tasksin
17 patients undergoing presurgical epilepsy monitoring (Fig.1b,cand
Extended DataFig.1). Respiratory measurements confirmed alignment
of inhalation with odour presentation (Fig. 1d). Patients reported to
have liked the odours in 64.8 + 2.0% of cases (Fig. 1e,f (left)) and they
correctly identified them in 74.1 + 1.5% of trials (Fig. 1e,f (right); the
performance per participant is shown in Extended Data Fig. 2).

First, we investigated whether neuronal firing in the human PC
encodes chemical odouridentity. Figure 1g shows an example neuron
in the left PC that increased firing in response to specific odours. We
refer to these neurons, which significantly change their firing based
on odour identities, as odour-modulated neurons (further examples
are shown in Extended Data Fig. 3). Overall, approximately 40% of PC
neurons showed odour-modulated response patterns, emphasizing
the role of the PC in odour processing (Fig. 1h). We next examined
whether odour-modulated neurons also exist in the human MTL.
Whereas early, pioneering multiunit recordings in humans did not
provide evidence for odour-specific neurons in the human amygdala®,
we identified a substantial fraction of amygdala neurons exhibiting
odour-modulated firing (Fig. 1h). Moreover, we observed a significant
setof odour-modulated neuronsin the ECand hippocampus (Fig.1h).
Odour-modulated neurons were reliably identified across the partici-
pants (Extended DataFig. 4a). Peri-stimulus time histograms (PSTHs)
(Fig.1j) demonstrate prominent peaks in firing rate after odour onset
among odour-modulated neurons in the PC, amygdala, EC and hip-
pocampus, whereas no such increase was observed in the parahip-
pocampal cortex (PHC).

Sniffing odourless air alone has been shown to activate the PCin
animal models®* and in human imaging studies®*2. To disentangle puta-
tively mechanosensitive and breathing-related effects from actual che-
mosensory responses, we included an odourless control. Exposure to
odourless controls alone increased firing of odour-modulated neurons,
albeit toasignificantly lower degree thanin response to odours (Fig. 1i).
Such differences were most prominent in the PC, but also statistically
significantinthe amygdala, ECand hippocampus (Fig. 1i). Increased fir-
ingrates for odours compared to odourless controls were consistently
observed when accounting for participants and sessions (Extended
DataTablela). Odour-modulated neurons were likewise identified after
excluding the odourless control (Extended Data Fig. 4b,c). Respiratory
measurements confirmed that odour-modulated neurons weredriven
by odour-specific characteristics rather than by variability in respira-
tion (Extended DataFig. 5). Together, our findings firmly establish the
existence of odour-modulated neurons bothinthe humanPCand MTL.

Neuronal activity decodes odour identity

Thelack of humansingle-neuron recordings during olfactory process-
ing has thus far hindered studying the underlying neuronal popula-
tion codes at high spatial (that is, cellular) and temporal resolution.
We therefore assessed how effectively odour identity is represented
by neurons in different regions, performing decoding analysis on
spiking data® (Fig. 2a). Odour identity was predicted from neuronal
spiking with high degrees of accuracy in the PC, amygdala, EC and
hippocampus (Fig. 2b). Subsampling equal numbers of neurons per
region demonstrated the highest decoding performance in the PC,
followed by the amygdala and EC (Fig. 2b). Increasing the number of
neuronsincluded in decoding furtherimproved performance (Fig. 2c).
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Notably, odouridentity was reliably decoded by only a small number of
neurons, especially in the PC. When systematically varying the decod-
ing time window, odour-identity decoding was fastest in the PC and
amygdala. By contrast, approximately alstime window was required
toreach above-chance decodingaccuracy inthe EC and hippocampus
(Fig. 2d). Significant odour-identity decoding was observed across the
recording sessions (Fig. 2e) and participants (Extended Data Fig. 6a).
Inconclusion, ourresultsdemonstrate effective neuronal odour-identity
coding in humans across multiple brain regions involved in odour
processing.

Odour representations vary in sparseness

We next addressed the sparseness of the human olfactory code. To this
end, we compared odour representations across regions based on their
population sparsenessindex*. Sparseness differed significantly across
regions (Fig. 3a). As extracellular recordings tend to omit very sparse
neurons in the spike sorting®, absolute sparseness values are chal-
lenging to interpret. Nonetheless, we can compare sparseness across
regions given that the same recording and spike-sorting techniques
were used. The amygdalaand hippocampus showed the sparsest odour
coding (Fig. 3a). The population code in the PC was significantly less
sparse than that in the MTL areas. Consistent results were obtained
when analysing population sparseness separately for each recording
session (Extended Data Fig. 7a). Our findings indicate that the degree
of sparseness varies significantly along the human olfactory pathway,
with the amygdala and hippocampus showing the highest degree of
sparseness.

Neuronal repetition suppression to odours

We also investigated whether and how repeated presentations of the
same odour affect responses of odour-modulated neurons. During our
paradigm, each odour was presented eight times in a pseudorandom
order with anaverage interpresentation interval for the same odour of
approximately 5 min (5.18 + 0.05 min). Despite this substantial inter-
val, we observed decreasing response activity after repeated presen-
tations in the PC, amygdala and hippocampus (Fig. 3b). This effect
was not caused by decreased inhalation (Extended Data Fig. 7b,c).
Odour-modulated neurons in the EC showed a decreasing trend that
did not reach significance. Repetition suppression was reliably found
when factoringinindividual participants and sessions (Extended Data
Table 1b). Repetition suppression was also observed when, instead of
including only odour-modulated neurons, all recorded neurons were
considered (Extended Data Fig. 7d). Notably, the response strength
reductionin the PC showed a substantial first-trial effect (Fig. 3b and
Extended Data Fig. 7e). Together, our analyses reveal differences in
sparseness across central odour-processing areas, in conjunction with
central repetition suppression.

Amygdalaneurons encode odour valence

The central role of the amygdala in emotional processing is well
established®®¥, and rodent studies have revealed valence coding in
amygdala neurons®. However, animals cannot directly report subjec-
tive preferences, and odour-valence coding remains unclear at the
individual-neuron level in humans. Consequently, we investigated
whether amygdala neurons encode subjective odour preferences
and valence. On the basis of individual odour ratings, we compared
neuronal responses of odour-modulated neurons to odours rated as
liked versus disliked (Fig. 4a). Figure 4b,c shows an example amyg-
dala neuron that responded preferentially to liked odours. Overall,
the responses of odour-modulated neurons in the amygdala were
significantly greater for liked versus disliked odours (Fig. 4d). No sig-
nificant difference was observedin other regions. Increased activity of
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Fig.2|Neuronal activity decodes odouridentity. a, Odour-identity decoding:

neuronal spiking was used to train decoders to predict odour identity (here, the
scentof orange). b, The odour-identity decoding accuracy per region. Eachred
dotshowsthe decoding performance based on 200 randomly drawn neurons
(1,000 subsampling runs). The decoding performance (mean +s.e.m.) across
subsampling runsis showninblack. The grey dotsindicate the decoding
performance onlabel-permuted data. The chancelevel (6.25%) isindicated by
the dashed horizontalline. Significance was calculated based on the percentile
of mean decoding performance of the real data within the surrogate distribution
(PC,P<0.001;amygdala, P<0.001; EC, P<0.001; hippocampus, P< 0.001;

PHC, P=0.16;label permutation test with n=1,000 permutations). s.e.m.margins
inb-darebarely visible. c, Odour-identity decoding (mean +s.e.m.) asa
function of the number of neuronsincluded (100 subsampling runs). The
horizontal bars below the dashed line (chancelevel) indicate neuron counts with
significant odour-identity decoding (P < 0.05, right-sided Wilcoxon signed-rank
tests against chance, with Bonferronicorrection for different neuron counts).

odour-modulated neuronsintheamygdalainresponse to liked odours
was also evident when correcting for session and participant-specific
differences (Extended Data Table 1¢). Using published valence ratings®
of the standardized odours used in our study, we sought to correlate
general valence ratings with the activity of odour-modulated neurons
in the amygdala. Here we found a significant correlation of firing rate
with valence across recordings (Fig. 4e).

Hippocampus predicts odour identification

Successful odour identification requires odour perception, rec-
ognition and recall of the semantic odour label. The MTL has been
suggested to have an essential role in these processes*’, although
the underlying neuronal mechanisms remain largely unexplored.
Thus, we next investigated whether single-neuron activity is linked
to behavioural odour identification performance (Fig. 4f). We found
that correct odour identificationisaccompanied by an overallincrease
in the firing rate of odour-modulated neurons (two-sided Wilcoxon
signed-rank,n=406,7=2.36,P=0.018). We next investigated whether
neuronal odour representations relate to behavioural identifica-
tion performance. We correlated odour-decoding accuracy in each
recording session and region with behavioural odour-identification

0‘_5_5_5_5_5_
PC Am EC Hp PHC

Q

80

60 [

401

201

Odour-decoding accuracy (%)

0 1,000 2,000 3,000 4,000

Decoding window (ms)

d, Odour-identity decoding (mean + s.e.m.) asafunction of the decoding
time window beginningatodour onset (200 randomly drawn neurons, 100
subsampling runs). The horizontal bars below the dashed line (chance level)
indicate the times of significant decoding performance (P < 0.05, right-sided
Wilcoxon signed-rank test against chance, with Bonferronicorrection for 80
time windows; beginning of sustained significant decoding: PC, 350 ms;
amygdala, 400 ms; EC, 850 ms; hippocampus, 1,100 ms; PHC, 1,650 ms).

e, The odour decoding performance (mean +s.e.m., black) per recording
sessionandregion (coloured dots). Despite the limited and variable neuron
counts per session, odour identity could be decoded significantly above
chance (6.25%, dashed line) in the PC, amygdala, EC and hippocampus (PC,
14 out of n=17 sessions showed significant decoding comparedto 1,000
odour-label-permuted data, P<107; amygdala, 13 outof n=27,P=1.3x107;
EC,5outofn=21,P=0.0032; hippocampus, 6 outof n=27,P=0.0019; PHC, 1
outofn=24,P=0.71; right-sided binomial test, P,... = 0.05, regions with >2
neurons). Diagrams were created using BioRender (a) and Noun Project (a).

performance and found a significant positive correlation exclusively in
the hippocampus (Fig. 4g). This correlation was consistently observed
across the participants (Extended Data Fig. 6b). Moreover, odour
identification performance at the behaviourallevel was correlated with
higher proportions of odour-modulated neuronsin the hippocampus
and EC (Extended Data Fig. 6¢). We next analysed whether neuronal
odour representations reflected chemical odour identity (presented
odours) rather than subjective perception (selected odour labels).
Decoding revealed a dissociation between PC and hippocampus,
with PC neurons coding preferably for chemical odour identity, and
hippocampal neurons predicting perceived odour identity (Fig. 4h).
Collectively, our findings reveal distinct roles of amygdala neurons
in odour-valence coding and hippocampal neurons in odour identi-
fication.

Olfactory/visual cross-modal integration

Natural environments require humans and other species to constantly
integrate visual and olfactory sensory cues. How visual and olfactory
information is integrated at the level of individual neurons is still
unexplored in humans. We recorded from neurons along the human
olfactory pathway to explore representations of congruent visual and
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Fig.3|Odourrepresentations vary in sparseness and are suppressed by
repetition.a, The populationsparsenessindex for eachof the15odoursacross
regions containing odour-modulated neurons (odours are colour coded asin
Fig.1; mean = s.e.m. (black)). The sparseness of odour coding significantly
differed across regions (one-way ANOVA, F; 5, = 505, P<107'%). PC exhibited a
less sparse odour code than MTL regions (P < 0.01 for all pairwise comparisons,
except foramygdala versus hippocampus, for which P=0.47, after applying
Tukey’s honestly significant difference procedure). b, The average response
strength (mean +s.e.m.) of odour-modulated neurons for repeated odour

olfactory stimuli (Fig. 5a). For this purpose, the participants completed
anadditional visual task after our olfactory paradigm (20 out of 27 ses-
sions), during which they repeatedly viewed images of objects, each of
which corresponded to one of the odours in our panel (for example,
orange odour and image of an orange). This enabled us to compare neu-
ronal activity after exposure to congruentimages and odours within the
same population of neurons. Image-modulated neurons (Fig. 5b) were
identified analogously to odour-modulated neurons. Across regions,
we found more neurons modulated by odours than by images, with a
significant overlap between both populations (Fig. 5¢). Specifically,
significantly more PC and amygdala neurons were odour modulated
thanimage modulated, signifying their central role in odour processing.
Nonetheless, asignificant fraction of PC neurons wasimage modulated
(35 neurons out of 277, P=5.7 x 107, two-sided binomial test, n =277
neurons, P...... = 0.05), thatis, they changed firing based on theimage
identity (Fig. 5b). The ability of PC neurons to encode odour-related
image identity was further confirmed by decoding analysis (Fig. 5d and
Extended DataFig. 6d). Notably, neuronal activity in the PC predicted
odour-related image identity more accurately thanin any of the MTL
regions, demonstrating that human PC neurons are not exclusively
driven by olfaction, but also encode information from other sensory
modalities. To determine whether thereis a unified code for olfactory
and visual stimuli, we trained a decoder on odours and tested its per-
formance onimages, and vice versa. The results showed that neuronal
codinginthe amygdalaand PC generalizes across odours and images,
suggesting cross-sensory representations in these regions (Fig. 5e,fand
Extended DataFig. 6e,f). Notably, in this analysis, identity decoding in
the PC only generalized when training on odours and testing onimages,
and notvice versa, whereas the amygdala exhibited cross-modal cod-
inginboth cases.

Inthe human MTL, concept cells have beenidentified that respond
with a high degree of invariance to representations of a specific con-
cept (for example, a picture as well as the written and spoken name
of aperson or an object)**2 In our recordings, we identified neurons
exhibiting concept cell-like characteristics. For example, a neuronin
the amygdalaincreased firing selectively in response to the image of
abanana (Fig. 5g). Notably, the same neuron also responded to the
odour of banana and the written word ‘banana’, indicating semantic
coding in the olfactory domain. Moreover, we recorded a PC neuron
selectively respondingtoliquorice odour, theimage of liquorice and the
written word ‘liquorice’ (Fig. 5h). Notably, this neuron also responded
to asecond odour, anise, an odour that is typically associated with
and contained inliquorice candy. These observations in theamygdala
and PC suggest semantic representations of odours at early stages
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Odour-presentation trial

presentations across regions containing odour-modulated neurons. Insets: the
response slopes per region (mean +s.e.m.). Significance was calculated based
onatwo-sided Wilcoxon signed-rank test against aconstant response strength,
thatis,aslope ofzero (PC,n=99 neurons,Z=-3.4,P=0.00081; amygdala,
n=130,Z=-4.5,P=6.9x10%EC,n=74,Z=-1.7,P=0.087; hippocampus,
n=74,Z=-2.4,P=0.019). Firing of PC neurons substantially decreased from
thefirst tothesecond odour presentation (two-sided Wilcoxon signed-rank
testscomparingfiring rates of the first versus second trial in PC:n=99 neurons,
Z=4.9,P=8.6 x107; Extended Data Fig. 7e). NS, not significant.

of olfactory processing. Collectively, our findings reveal encoding
of odour-related visual information in human PC neurons, as well as
multimodal odour representations in the human amygdala and PC.

Discussion

Despite theimportance of humanolfactionin health and disease, our
understanding of central odour codingrelies primarily on animal mod-
els and human imaging studies. Although highly informative at the
macroscopic level, functional human brain imaging lacks both the
spatialand temporal resolution necessary to investigate the individual
neuron and circuit coding logic underlying human olfactory process-
ing. We are therefore facing a considerable knowledge gap in human
olfactory research. Here we recorded from human single neurons in
PC and MTL, providinginsights into olfactory processing. Across both
primary and secondary olfactory areas, we identified neurons that
responded to odoursand altered their firing based on odour identity.
We observed suppressed response strength after repeated odour pres-
entations at prolonged intervals beyond peripheral sensory adapta-
tion. Analysis of population sparseness revealed a more distributed
codeinPC compared to MTL regions. Nonetheless, neuronal activity
inboth the PC and MTL could accurately decode odour identity. Our
findings suggest that different MTL regions mediate distinct aspects of
odour processing. Amygdala neurons encode odour valence, whereas
hippocampalactivity predicts odour identification performance. Nota-
bly, we show that human PC neurons efficiently encode odour-related
image identity. Integrating data from both odour-related visual and
olfactory stimuli, we identified neurons with the ability to represent
a specific stimulus concept (for example, banana) in a cross-modal
manner by respondingto the scent, animage and the written name of
abanana. The PC and amygdala in particular engage in cross-modal
coding.

Odour coding inthe human PCand MTL

Given its central role in odour processing and the distributed
non-chemotopic olfactory coding in the PC proposed by animal
studies'®71%20 we hypothesized a corresponding coding logicimple-
mented by human PC neurons. We have demonstrated that a substan-
tial fraction of PC neurons is modulated by odour identity. Moreover,
activity in few PC neurons is sufficient to accurately decode chemical
odour identity. The PC exhibits a more distributed odour code com-
pared with MTLregions, indicating anincrease in sparseness of odour
representations along the human olfactory pathway. Tuning profiles
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amygdalaneuron. ¢, This neuronincreased firing to liked versus disliked
odours (two-sided Wilcoxon rank-sum test comparing the z-scored firing rates
0-2safterodouronset;n=46versusn=18,7=2.1,P=0.034). Bottom, PSTH
for liked and disliked odours (mean +s.e.m.,1sbins).d, Firing rates (z-scored,
mean +s.e.m.) of odour-modulated neuronsinresponse to liked versus disliked
odours. Only the amygdala exhibited a significant difference of subjective
preference (two-sided Wilcoxon signed-rank tests; PC, n=99 odour-modulated
neurons,Z=-0.76, P=0.44;amygdala,n=130,7=2.9,P=0.004;EC,n=74,
Z=-0.37,P=0.71; hippocampus,n=74,Z=-0.61,P=0.54;PHC,n=29,Z=-1.6,
P=0.11). Theyaxis displays 95% of data. e, Averaged firing of odour-modulated
amygdalaneurons (z-scored) correlated with standard odour-valence ratings®
(Spearman correlation,n=15odours, r=0.56,P=0.03, two-sided permutation
test). This correlation was observed in asignificant number of sessions (6 out
ofn=27,P=0.002) and participants (4 outofn =17, P=0.009, one-sided
binomial test, P, = 0.05). Linear regressions (black) with 95% confidence

of PC neurons appear relatively broad as odour-modulated neurons
frequently responded to several odours. Thus, similar to results from
animal studies®?, the labelled-line organization of chemotopicinfor-
mation established in the human olfactory bulbis disrupted along the
bulb-to-PC signalling axis.

Beyond the PC, we identified odour-modulated neurons in various
MTL regions, including the amygdala, EC and hippocampus. Effec-
tive coding of odour information within these regions highlights their
importance for central odour processing and formation of odour rep-
resentations. Notably, decoding power decreased (and required both
larger ensembles and longer integration periods) along the hierarchy
oftheolfactory processing pathway. Neural representations of odours
emerged firstinthe PCand amygdalaand only approximately 500 ms
laterinthe EC. This delay in EC odour coding could supportaconnec-
tivity scheme in which, in contrast to rodents®’, human olfactory bulb
mitral cellsmight not directly project to the EC. Together, our findings
resolve the long-standing question of whether and how individual
neurons in human PC and MTL respond to odours?, setting the stage
for future studies to decipher the human olfactory code.

intervals (grey).f, Odouridentification: the participants chose the odour label.
g, Neuronal odour-decoding accuracy and behavioural odour-identification
performance across regions and sessions (coloured dots). The decoding
accuracyin the hippocampus was positively correlated with behavioural
odour-identification performance across sessions (Spearman correlation,
PC,n=17sessions, r=0.14,P=0.59;amygdala,n=27,r=0.06, P=0.75;
EC,n=21,r=-0.12,P=0.62; hippocampus,n=27,r=0.50,P=0.0076;
PHC,n=24,r=0.19,P=0.38, two-sided permutation tests, regions with >2
neurons).Dataareshownasine. h, The differencein decodingaccuracies based
onchemical versus perceived (selected) odour identity. PC neurons decoded
chemical odour identity more reliably, whereas hippocampal neurons
predictedselected odour labels more accurately (PC, 75.8% chemical versus
22.1% perceived more accurate, Z=19, P <107°; amygdala: 45.6% versus 49.7%,
Z=-0.95,P=0.34;EC,50% versus 45.2%,Z=1.7,P= 0.083; hippocampus, 26.7%
versus 69%,Z=-16,P <107 PHC, 52.2% versus 43.5%,Z= 3, P= 0.0024; two-
sided Wilcoxon signed-rank tests across1,000 subsampling runs). The y axis
displays 99% of data. Diagrams were created using BioRender (aand f) and
NounProject (aandf).

Central odour repetition suppression

We are constantly surrounded by a variety of odours. Thus, detect-
ing novel odours is of high behavioural relevance—for example, to
identify potential hazards like smoke. We observed a decrement in
response strength with repeated presentations (approximately every
5 min) of the same odour in the PC, amygdala and hippocampus. This
temporal regime exceeds typical timescales consistent with olfactory
sensory neuron adaptation®, thereby favouring the interpretation
that central habituation mechanisms are responsible for the observed
response reduction. While olfactory habituation has been reported
bothinanimals* and at macroscopicscale inhuman imaging studies™*,
we demonstrate this phenomenon in humans at the single-neuron level.
Notably, the response reduction in odour-modulated neurons quali-
tatively resembles that of visual responses in the human MTL*. The
pronounced suppressionobservedin PC neurons between first and sec-
ond stimulation s particularly marked. This may indicate high respon-
siveness of PC neurons to novel odours, consistent with the ‘first-trial
effect’ observed in zebrafish*’, and could result from local inhibitory
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Fig.5|Olfactory/visual cross-modal integration. a, Cross-modal coding
forvisualand olfactory stimuli (orange scent and picture). b, Image-modulated
PCneuron (one-way ANOVA of z-scored firing rates withimage identity,
Fis1,=11.98,P<107). ¢, Population of image- and odour-modulated neurons.
Intotal, 185 image-modulated neurons were identified (P <107, two-sided
binomial test, k=185,n=1,856 neuronsinolfactory and visual task, P, ,c. = 0.05).
More neurons were odour modulated thanimage modulated (321 versus 185,
two-proportion Z-test: Z= 6.5, P<107'°). Both populations showed significant
overlap (66 neurons, two-sided binomial test,P=8.9 x1078, k= 66,n=1,856,

P pance = (321/1,856) x (185/1,856) = 0.017). The PC and amygdala contained
significantly more odour-modulated thanimage-modulated neurons (two-
proportion Z-tests: PC,99 versus 350f n=277neurons, Z=6.3,P=2.2x107%;
amygdala, 99 versus48 0ofn=479,7=4.6,P=4.8 x10™% EC, 36 versus 22 of
n=301,Z=1.9,P=0.053; hippocampus, 59 versus 49 of n=469,7=1,P=0.31;
PHC: 28 versus31ofn=330,Z=-0.41,P=0.68).d, Theimage-decoding
performance based on neuronal activity was significantinallregions
(statistical analysis was performed using alabel permutation test with
n=1,000 permutations, asin Fig. 2b; for PC,amygdala, EC, hippocampus, all

circuits specific to the PC*8. The absence of a first-trial effect in other
downstreamregionsindicates that olfactoryinformationis processed
inparallel and not merely relayed through the PC. The apparent lack of
habituation at the earliest stages of human olfactory processing—the
olfactory epithelium** and olfactory bulb*—furthermore suggests that
the first-trial effect emerges predominantly at the PC level.

Valence coding inthe amygdala

On the basis of individual hedonic ratings, we demonstrated that
odour-modulated amygdala neurons change firing depending on per-
sonal preferences and that amygdala firing correlates with reference
odour-valence values®. Human imaging studies have demonstrated
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P<0.001; for PHC, P=0.018). e,f, The decoding performance for cross-modal
decodingtrained onimages and evaluated on odours (d) and vice versa (e)
(image toodour:PC,P=0.002;amygdala, P=0.007; EC, P= 0.14; hippocampus,
P=0.11;PHC, P=0.68; odour toimage: PC, P= 0.34; amygdala, P= 0.042; EC,
P=0.66; hippocampus, P=0.22; PHC, P=0.77,label permutation testasind).
g,Anamygdalaneuronthatincreasesfiringinresponse tobananaodour,a
bananaimage and the written word ‘banana’ (right-sided Wilcoxon rank-sum
tests, comparing the pre-odour baseline firing rates (n =128, 2 s) with the firing
rates after the onsets of odours (n=8,2s),images (n=8,1s) and non-target
odournames (n=12,1s) intheidentification task; banana, P4, =6.8 x1075,
Pinage =1.4 X107, P, = 0.0073; orange, Pygo,, = 0.0029; anise, Py, = 0.039).

h, APCneuronthatincreasesfiringinresponsetothe odour of liquorice and
anise. The same neuron exhibited the most pronounced response to liquorice
among images and names (liquorice, Pygou = 3.2 X107, Pipp0e = 1.3 1075,

Pame =5.4 x1075%; anise, Py, = 3.1x 107 cinnamon, P, = 0.0014; peppermint,
Podour = 6.5%1073; fish, Py, = 0.026; statistical analysis was performed as
describeding). Diagrams were created using BioRender (a) and Noun Project
(a,cande-h).

amygdala activation by odours both with positive and negative
valence®°. However, their effects are not easily differentiated using
univariate bulk-tissue-imaging methods®, indicating local effects
of odour-valence encoding®. Our single-neuron data suggest that
odour-modulated neurons in the amygdala are involved in integrat-
ing odour identity and valence information. As positive valence was
predominantin our study, future research should encompass odours
that spanthe entire valence dimension to conclude whether our find-
ings generalize. Asboth odourintensity and valence have been shown
to influence the response of the human amygdala®*"%, future stud-
ies should also systematically vary odour intensity to investigate the
interplay of valence and intensity coding. For this purpose, high-end
olfactometers allowing for precise odour control will be essential.



Hippocampalrole in odour identification

Neurodegenerative diseases such as Parkinson’s and Alzheimer’s dis-
ease often first manifest with olfactory deficits, particularly concern-
ing odour identification®. Our results link odour representations of
hippocampal neurons directly with behavioural odour-identification
performance, indicating that hippocampal degeneration may con-
tribute to odour-identification deficits. Impaired behavioural odour
identification performance could be a direct result of local neurode-
generation or could instead result indirectly from degeneration of
upstream circuits (for example, olfactory bulb). Future research will
have to explore causal contributions of odour-modulated neuronsin
odour identification.

Multisensory odour representations

ThePCisgenerally regarded asaprimary olfactory area. However, with
its three-layered architecture and immensely plastic recurrent con-
nectivity, it resembles the structure of an association cortex*®**, Recent
rodent studies have shown that neurons in the posterior PC precisely
encode spatial information, suggesting arole in odour-place associa-
tion®. Further evidence for multimodal processing of odour-related
information in the PC stems from rodents* and human imaging stud-
ies***”,. Here we tested semantically coherent olfactory and visual stimuli
toexplore coding of PCneurons beyond olfactory perception. We iden-
tified that PC neurons decode not only odours, but also odour-related
imageidentities. Thus, the PC not only processes olfactory stimuli, but
alsointegrates top-down semantic information from higher cognitive
areas. Notably, odour-related images were decoded more accuratelyin
the PC than in the MTL. Future research will need to examine whether
PC neurons specifically encode odour-related images, or whether they
also process images of odourless objects. Our results further suggest
PCinvolvementin multimodal, possibly even semantic integration. The
lack of a specific odour-imagination task prevents us from delineating
whether these multimodal representations are correlates of cross-modal
integration or olfactory imagery*. While there is an ongoing debate how
olfaction differs from other human senses, particularly with regard to
olfactory imagery and the role of verbal descriptors®°, our findings
suggest that conceptual neuronal coding schemes of olfactory informa-
tion resemble those of other senses*. Assigning semantic odour labels
isauniquely human ability. Here we revealed that PC neurons preferably
encode chemical odour identity, whereas hippocampal activity rather
reflects subjectively perceived odours. This integrates well with our find-
ing that hippocampal activity predicts behavioural odour identification,
indicating that coherent internal and external odour representations
facilitate semantic odour identification. While invariant responses of
MTL concept neurons to visual (pictures or written text) and auditory
(spokenwords) stimuli have been described previously*, chemosensory
concept cells have not been identified to date. We observed neurons
thatgeneralize their response to congruent visual and olfactory stimuli.
As demonstrated by cross-modal decoding analysis, amygdalaneurons
in particular generalize their coding between the olfactory and visual
domain. Together, our findings demonstrate concept-based neuronal
coding in human olfaction.
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Methods

Sessions and participants

Data were collected at the Department of Epileptology at the Uni-
versity of Bonn Medical Center, Bonn, Germany. All of the patients
in our study had drug-resistant epilepsy and underwent invasive sei-
zure monitoring with the goal of subsequent neurosurgical resection
of the seizure-generating focus. Overall, 27 sessions were recorded
in 17 patients with epilepsy (12 female, 5 male; aged 22 to 60 years,
mean +s.d.,41.3 +11.7 years). Microwire bundles were implanted bilat-
erally to record single-neuron activity in the MTL and, in a subset of
patients, alsointhe PC (17 sessions in 9 patients). All studies conformed
with and were approved by the Medical Institutional Review Board
of the University of Bonn, Germany (289/20). Each patient provided
informed written consent.

Humansingle-neuronrecordings

Patients wereimplanted with Behnke-Fried depth electrodes (AdTech)
(Extended Data Fig. 1a,b). These hollow rodlike electrodes have a
diameter of 1.25 mm with 8 cylindrical clinical macroelectrodes
(platinum-iridium). The innermost two macro contacts are spaced
3 mm apart, while the remaining contacts are equidistantly spaced.
Through each electrode, a bundle of platinum-iridium microwires
with a diameter of 40 pum was inserted. Each bundle contained eight
insulated high-impedance (typically 200-500 kQ)® recording wires
and one low-impedance reference wire without insulation. Electrodes
were implanted using arigid stereotactic frame (Leksell, Elekta) with
an orthogonal guide tube®. Electrode target locations were deter-
mined by clinical criteriaand differed minimally within target regions
across patients. This, along with the technical limitation of precisely
localizing microwire positions, precluded us from targeting specific
subregions, for example, individual subnuclei of the amygdala or
specific hippocampal subfields. Electrode placement was controlled
by intraoperative CT scans co-registering the head-fixed frame to
pre-operative MRI planning scans. After skin incision at the electrode
entry point, a hole for an anchor bolt was drilled, and the anchor bolt
was screwed into the skull using the guide tube. Microwire bundles
were preloadedinto the macroelectrodes and trimmed by asingle cut
with eitherascalpel or surgical scissors onaback tablein the operation
room, such that they protruded fromthetip of the clinical electrode by
3to5 mm. Extended Data Fig. 1c displays SEMimages of uncut and cut
microwires for comparison. After preparation, microwire bundles were
replaced by a guiding rod for implantation. After the insertion of the
macroelectrodeintoits target position, the guiding rod was retracted
and the microwire bundle was carefully inserted to avoid kinking or
bending®. Localfield potentials containing single-neuron activity were
sampled at 32,768 Hz, band-pass filtered between 0.1and 9,000 Hz, and
amplified by a256-channel ATLAS amplifier (Neuralynx) using Pegasus
(v.2.1.1,Neuralynx). Spike extraction and sorting were performed using
Combinato®, Spikes of negative voltage deflection were extracted and
analysed. For illustration, spikes are depicted with inverted polarity.
Automated artifact removal based on the DER algorithm®* was applied
to all sessions. Clustering of each channel was manually validated by
an experienced rater, and artifacts were removed. As Combinato
(used with the default parametersinthis study) tends to overcluster the
recorded unit datain automated mode, we manually merged clusters
on the basis of their waveforms, cross correlograms and other firing
characteristics. Single-unit recording quality and spike sorting was
validated based oninter-spike-interval (ISI) violations, spike amplitudes
andspike peak signal-to-noise (SNR), as well as cluster isolation distance
(Extended DataFig. 8). Electrode localization was performed based on
co-registered CTs and MRIs using the LeGUI software package (v.1.2)%
andelectrodelocations were visualized using Fieldtrip (v.213bc8bcb)®
and the ‘plot_ecog’ function (https://github.com/s-michelmann/
moment-by-moment-tracking/blob/master/plot_ecog.m). A total of

2,416 units was recorded (1,292 single units (SU)): 622 units (348 SU) in
theamygdala, 464 units (256 SU) in the EC, 634 units (341SU) in the hip-
pocampus, 419 units (199 SU) inthe PHC and 277 units (148 SU) inthe PC.

Odour stimuli and delivery protocol

As odour stimuli, we used standard pen-like Sniffin’ Sticks from the
Identification-16 test (Burghart Messtechnik). The participants sat in
bedwithalaptoponatrayinfrontofthemwhiletheywere presented with
15 different odour stimuli, administered eight timesin pseudorandom
order. The pen containing leather was replaced by ablank odourless pen
thatserved as control (26 of 27 recordings). Odour pens were presented
approximately 2 cm below the nose, centred between both nostrils.
The patients were verbally instructed on each trial to inhale on com-
mand (“Please inhale NOW!”). To ensure consistent odour sampling
across trials, the participants were asked to inhale only once for each
odour presentation and not sniff at their convenience. Odour pens
wereimmediately removed after the firstinhalation. This experimental
protocol was devised to minimize odour-specific respiratory variability.
Theexperimenter’s (M.S.K.) direct supervision ensured adherence to
the instructions throughout the experiment. Pens were opened only
immediately before odour exposure. Simultaneous with the inhale
command, the presentation time was logged and an odour was admin-
istered. In13 out of 27 recording sessions, respiration was measured
using thoracic and abdominal plethysmography belts (Extended Data
Fig. 5a; SleepSense, Scientific Laboratory Products). Data from both
belts were averaged and analysed using the Breathmetrics toolbox®”
(v.2.0, human respiratory belt default settings with sliding baseline
correction). In the remaining 14 sessions, respiration belts could not
by applied due to patient discomfort or noisy interference with the
microwire recordings. Overall, the participants complied accurately
withthe experimental protocol, inhaling once during odour exposure
and well timed to odour delivery (Fig. 1d and Extended Data Fig. 5¢c).
Bilateral measurements of nasal airflow will allow future studies to pre-
cisely examine the interactions of neuronal activity and local oscillatory
dynamicsacross theipsilateral and contralateral hemispheres at a high
temporalresolution. Standardized pen-like odour stimuli lack millisec-
ond precision and exact control of odour concentrations that can be
achieved with high-end olfactometers. However, this odour-delivery
method proved to be both efficient and effective for presenting awide
range of odour stimuliin the clinical environment.

Paradigm

During the first four presentation cycles, the patients were asked to
rate whether they liked or disliked the odour (forced choice; Fig. 1e).
In 64.8 + 2.0% of trials, the participants reported to like the odour.
Although liking and valence have been differentiated in some con-
texts®®, we use the term valence asamultifaceted concept that includes
liking®. In the subsequent four presentation cycles, odours were to
beidentified by choosing the correct odour name out of four options
(Fig.1e). Written odour names (labels) were selected pseudorandomly
fromalist of the 15 odour stimuli plus the neutral, odourless control.
Each odour label was used 4 times as the correct and 12 times as an
incorrect choice option. Name options were sequentially added at1s
intervals, allowing stimulus-specific assessment of neuronal activity
toindividual written odour-associated words (Fig. 5g,h). To avoid con-
founding cueing effectsinduced by previous presentation of semanti-
cally matching odours, we excluded trials from the analysis in which
the odour word was the correct choice option (Fig. 5g,h). The partici-
pants identified the correct odour in 74.1 + 1.5% of cases. The mean
presentation time of odours was 2.31+ 0.13 s, the mean inter-odour
interval was 19.4 + 0.4 s, with the same odours repeated on average
every5.18 £ 0.05 min. In 20 out of 27 recordings, immediately after the
olfactory task, we additionally presented 16 pictures, each semantically
corresponding to one of the odours, including alight grey screen to
matchthe odourless control. Each picture was presented for1s, 8 times,
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in pseudorandom order. This protocol enabled us to identify neurons
responding toimages that were semantically congruent to the odours
presented in this study. The experimental tasks were implemented
using MATLAB R2019a (MathWorks) and Psychtoolbox37°72,

Statistics

All statistical analyses were conducted in MATLAB 2021a. Unless other-
wise stated, nonparametric and two-sided statistical tests were applied
with a Pvalue below an a-level of 0.05 considered to be significant. The
arithmetic mean was used to compute averages, and the error bars
represent the s.e.m. or thes.d. as specified. Spearman’s rank-order cor-
relations were used for all correlational analyses with Pvalues estimated
using MATLAB’s ‘corr’ function. ANOVA was performed to determine
significant differences between multiple groups using Tukey’s honestly
significantdifference procedure to correct for multiple pairwise com-
parisons. The box plots in Fig. 1f were generated based on the built-in
MATLAB function ‘boxplot’; the central lines indicate the median,
the box limits show the 25th and 75th percentiles, and the whiskers
extend from the minimal to maximal values that are not considered
outliers, which were defined by exceeding 1.5x the interquartile range.
Statistical significance is indicated by asterisks in figures. Custom
MATLAB codes were used to calculate binomial tests and to gener-
ate Venn diagrams (MATLAB Central File Exchange, M. Nelson 2023,
v.2.0, https://www.mathworks.com/matlabcentral/fileexchange/248
13-mybinomtest-s-n-p-sided; Darik 2023, v.1.7, https://www.mathworks.
com/matlabcentral/fileexchange/22282-venn).

Odour-modulated neurons

To identify odour-modulated neurons, we first calculated a z value
for the firing rate during aresponse interval ([0, 2 s] after odour onset
compared to [-5, 0 s] before odour onset) and performed a one-way
ANOVA for odour identity. Neurons with a significant effect of odour
identity across all 128 trials (P < 0.05) were termed odour-modulated
neurons. Normalized PSTHs (Fig. 1j) were calculated by binning the
spiking of each neuron (50 ms bins) and z-scoring all bins using the
binsinthe [-5, 0 s] baseline window before odour onset.

Image-modulated neurons

Inanalogy to our definition of odour-modulated neurons, weidentified
image-modulated neurons based on aone-way ANOVA of the z-scored
firing rates for image identity ([0, 1s] after image onset compared to
[-0.5, 0 s] before the image onset?””>7*). Neurons with a significant
effect of image identity across all 128 trials (P < 0.05) were termed
image-modulated neurons.

Decoding analysis

Alldecodinganalyses were performed using the Neural Decoding Tool-
box* (v.1.0.4). In each region, spiking data were first binned within
a[0, 2 s] time window after odour onset and a [0, 1s] time window
after image onset. We trained a maximum-correlation-coefficient
classifier to predict odour or image identity, using 8 cross-validation
data splits and 10 resample runs. To compare decoding performance
across regions, an equal number of neurons (n =200) was subsampled
ineach decodinganalysis. The decoding was repeated 1,000 times on
random subsamples. Significance levels were estimated based onasur-
rogate distribution derived from decoding analysis on label-permuted
data (1, =1,000). The percentile of the actual data mean within the
surrogate distribution was used to estimate P values. To evaluate
the impact of the decoding time window (Fig. 2d), we repeated the
decoding analysis, systematically varying the decoding time interval
ranging from 50 ms up to 4,000 ms, with 50 ms increments and 100
subsampling runs. Moreover, we systematically varied the number of
neurons included in the decoding analysis, starting with 10 neurons
and increasing in steps of 10 (Fig. 2¢). For cross-modal decoding, we
trained the classifier on the image trials and tested it on the odour

trials (Fig. 5e) and vice versa (Fig. 5f) using the [0, 2 s] decoding time
window. To ensure that our decoding results were not driven by sys-
tematic differences of the first compared to later trials, we repeated the
decoding without the first trial and obtained overall consistent findings
(Extended DataFig. 9).In the population decoding, equal numbers of
neurons are randomly sampled across recording sessions, enabling
abalanced comparison of performance between regionsirrespective
of individual variations in neuronal yield. Comparing decoding per-
formance of randomly sampled neurons within and across recording
sessions yielded consistent results (Extended Data Fig. 9g), indicat-
ing that population decoding extrapolates well to larger populations
of neurons. The odour-decoding performance for each session was
estimated based onallrecorded neurons per region with aminimum of
2neurons, using all odour presentations, 8 cross-validation data splits
and 1,000 resample runs. For each session and region, a surrogate
distribution was estimated by repeating the decoding analysis 1,000
times on odour-label-permuted data, using 10 resample runs each. The
percentile of the actual decoding performance within this surrogate
distribution was used to estimate Pvalues. Decoding performances per
participant were evaluated by averaging decoding performances across
repeated sessions within anatomical target regions. To test whether
neural activity predicted chemical odour identity better than perceived
odour identity (that is, sometimes falsely selected odour labels), we
used adecoding analysis during the odour-identification task (4 trials
per odour). An equal number of neurons was randomly subsampled
fromrecordings in whicheach odour was chosen at least twice. In each
anatomical target region, 100 neurons were randomly subsampled
1,000 times, and a decoder was trained using two cross-validation
data splits and ten resample runs. Decoders were trained based both
on chemical odour identity and perceived odour identity (selected
odour label) using the same neuronal populations. The differences
betweenthe two decoding accuracies were used to assess which labels
were predicted more accurately by neuronal firing.

Estimation of population sparseness
A widely used measure of population sparseness is the activity ratio
A,, defined as™"®

2
1 ¢N
4 (ﬁ Z':lxi)
k=TT N 2
N 2iz1 %

wherex;is the meanresponseactivity of the ith neuronto the stimulus
k,and Nis the number of neurons. The overall sparseness of the popu-
lation to a set of different stimuli was estimated by averaging across
stimuli. We use the sparseness index S/, = (1-A,)/(1-1/N) to obtain
ameasure of sparseness ranging from O to 1, with higher values cor-
responding to a sparser code*.

Olfactory repetition suppression

Each odour was presented eight times. For each odour-modulated
neuron, we calculated the mean z-scored firing rate for each odour
presentation, resulting in eight firing-rate values per neuron. We then
performed alinear regression for each neuron (firing rates versus odour
presentation) and used the resulting slopes as ameasure of change in
thefiringrate, following previous studies*®. Slopes were calculated for
eachregionand compared with a constant response strength (that is,
aslope of 0) using a Wilcoxon signed-rank test.

Mixed-effects models

Generalized linear mixed-effects models (GLMMs) were used to con-
trol for recordings across multiple sessions within and across par-
ticipants. A GLMM was used for each fixed effect to predict trial-wise
spike counts of odour-modulated neurons using MATLAB’s ‘fitglme’
function. Brain regions and interactions were incorporated as fixed
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effects. Participant identity and recording session per participant
were included as random effects to account for their nested hierar-
chical nature”. Each fixed-effects regressor was incorporated as a
random slope for both participant identity and participant-session
nesting, and neuron identity was included with an individual inter-
sect to account for participant-session—-neuron nesting’®. All ran-
dom effects comprised an individual intersect. Likelihood ratio tests
(MATLAB’s ‘compare’ function) confirmed that the full models that we
used with both random slopes and intercepts outperformed models
incorporating only random intercepts. Poisson models were fitted
based on therestricted maximum pseudo likelihood with alogarithmic
link function.

SEM analysis of microwires

For SEM analysis, two microwires from a new bundle were used. One
microwire was trimmed using ascalpel, while the other remained uncut.
For imaging, wires were shortened to approximately 8 mm in length
and mounted onto aluminium stubs using conductive carbontape. The
samples were then sputter-coated with 15 nm of gold using a Quorum
150 R ES coating unit (Quorum Technologies) and imaged using the
Everhart-Thornley secondary electron detector in a Zeiss Sigma 300
(Zeiss) Field Emission Gun SEM operated at 2 kV. In total, five images
oftwo scalpel-trimmed microwires and four images of two untrimmed
microwires were obtained.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Datasupporting the central findings of this study and needed to repro-
duce the main figures in this manuscript are publicly available at GitHub
(https://github.com/marcelkehl/HumanOdorRepresentations). Ref-
erence valence ratings of the standardized odours in our study were
reported previously® (Fig. 4e).

Code availability

Codes used to generate the main figures and reproduce the central
results of this study are publicly available at GitHub (https://github.
com/marcelkehl/HumanOdorRepresentations).
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a Behnke-Fried depth electrodes b Electrode dimensions
Microwires Clinical macro contact
l l f Z ; 1.25 mm
Clinical macro
contact
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c Scanning electron microscope (SEM)
images of electrode tips before and after cutting
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cutting
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Microwires
After 40 pym
cutting
Extended DataFig.1|Characteristics of Behnke-Fried depth electrodes contactsare 3 mmapart, while the remaining contacts are equidistantly spaced
used for single-neuronrecordingsinthe humanPCand MTL. a, Behnke- alongtheelectrode. b, lllustration of the electrode geometry and dimensions.
Fried depthelectrode. Microwires inserted through the shaft of the hollow ¢, Scanningelectron microscopy images of the tip of amicrowire before (top)

clinicalmacroelectrode protrude fromthe tip of the electrode. The electrode and after cutting (bottom).
features eight cylindrical clinical platin-iridium contacts. The twoinnermost
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Extended DataFig.2|Odour valenceratings andidentification performance  odouridentification performance for each participant and odour. Odours are
for each participant.a, Mean odour ratings for each participantand odour. sorted from most to the least accurately identified (left to right) and participants
Odoursaresorted frommostto least liked (left to right) and participants are are organized by their mean identification performance (top tobottom).
organized by average valenceratings (top tobottom). b, Average behavioural
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butexcluding the odourless control. Distribution of odour-modulated neurons
after omitting the neutral odour stimuli for the definition of odour-modulated
neurons (PC:36.8 +4.2%,n =17 sessions, P=0.00016; amygdala:18.7 + 2.6%,
n=27,P=1.210"%EC:13.9 +3%,n=22,P=0.017; hippocampus: 9.83 +1.8%,
n=27,P=0.011;PHC:8.61+3.9%,n=26,P=0.42; one-sided Wilcoxon signed-
rank against chance). ¢, Population of odour-modulated neuronsidentified
withand without the odourless control showed a highly significant overlap
(P<10°in atwo-sided binomial test with k=353, n = 2,416 neurons and

Prance = (406/2,416)-(378/2,416)). ***P < 0.0001, ***P < 0.001, **P < 0.01,
*P<0.05.
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Extended DataFig. 5| Odouridentity, notrespiration, drives odour-
modulated neurons. a, Respiration was measured with thoracic (upper,
turquoise) and abdominal (lower, lilac) inductive plethysmography belts.
Respiration signals were amplified and recorded using the Neuralynx ATLAS
system, ensuringreliable temporal synchronization with neural recordings.

b, Performance (adjusted R?) of linear regression models, predicting neuronal
firing (z-scores) based on odour identity, or odour identity combined with
respiration (inhalation depth). Adding respiratory information to odour identity
did notsignificantlyimprove the model predictions of firing rates of odour-
modulated neurons (odour identity & respiration (R?=0.194 + 0.008) versus

odouridentity alone (R?=0.190 + 0.008), n =240 odour-modulated neurons
withrespiratory recordings, Z=0.85, P=0.39 two-sided Wilcoxon signed-rank).
Thus, odour-modulated neurons are primarily driven by odour-specific
differences and not variationsin respiration. ¢, Averaged odour-locked
respiratory signals for eachindividual recording session (mean ts.e.m.,

13 sessions with n =128 trials each). Participants consistently inhaled once
(single peak) during the first 2 seconds after odour onset (grey shaded area),
theanalysis time window used for identification of odour-modulated neurons.
n.s.=notsignificant. Diagrams were created using BioRender (a) and Noun
Project (a).
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Extended DataFig. 6 | Decoding acrossindividual recording sessions and
participants. a, Odour-decoding performance per participantand region.
Averaging the decoding performance across all sessions per participant

(mean +s.e.m., black) demonstrated significant odour identity decodingin PC,
amygdala, and EC (PC: 7 out of n =9 participants, P=2.6:10"%; amygdala: 10 of
n=17,P=1.410"%EC:40fn=15,P=0.0055; hippocampus:3of n=17,P=0.050;
PHC:00ofn=16, P=1;right-sided binomial test with P,,,,.. = 0.05).See also
Fig.2b.b, Odour-decoding accuracy and behavioural odour-identification
performance across regions and participants, averaged across sessions for each
participant (coloured dots). Decoding accuracy in the hippocampus positively
correlated with odour-identification performance across participants
(Spearman correlation, PC: n=9 participants, r=0.15,P=0.71;amygdala:n=17,
r=0.10,P=0.71;EC:n=15,r=0.01, P= 0.96; hippocampus:n=17,r=0.50,
P=0.043;PHC:n=16,r=0.15,P=0.58, two-sided permutation test). Linear
regressions (black) with 95%-confidence intervals (grey). ¢, Odour identification
improves with more odour-modulated neuronsin the hippocampus and EC.
Percentage of odour-modulated neurons and performance for eachrecording
session for different regions. Percentage of odour-modulated neuronsinthe
ECand hippocampusis positively correlated with individual performance in
the odouridentification task (Spearman correlation, PC: n =17 sessions,
r=-0.04,P=0.89;amygdala:n=27,r=0.15,P=0.44;EC:n=22,r=0.49,

P=0.022; hippocampus:n=27,r=0.38,P=0.049; PHC:n=26,r=0.15,P=0.47,
two-sided permutation test). Linear regressions (black) with 95%-confidence
intervals (grey). d, Image-decoding accuracy (mean + s.e.m., black) per
recordingsession andregion (coloured dots). Despite the limited and variable
neuron count per session, image identity could be decoded significantly
abovechance (6.25%, dashed horizontal line) across sessions in PC, amygdala,
EC,and hippocampus (PC: 7 out of n =17 sessions showed significant decoding
compared to1,000 image-label-permuted data, P=9.7.10"%; amygdala: 5out
ofn=20,P=0.0026;EC:50outofn=15,P=0.00061; hippocampus: 10 out of
n=20,P=1.110"%PHC: 2 out of n =17, P=0.21; right-sided binomial test with
P.pance = 0.05, regions with > 2 neuronsinrecordings with both olfactory and
visual task). e-f, Cross-modal decoding per session trained onimages and
evaluated onodours (e), and vice versa (f), revealed significant cross-modal
codingin PC and amygdala (Image-to-odour: PC: 4 out of n =17 sessions,
P=0.0088;amygdala:2outofn=20,P=0.26;EC:0outofn=15,P=1;
hippocampus: 2 outofn=20,P=0.26; PHC: 0 outof n=17,P=1; Odour-to-
image: PC:0outofn=17,P=1;amygdala: 4 outofn=20,P=0.016; EC:1out
ofn=15,P=0.54; hippocampus:2outof n=20,P=0.26; PHC: O outof n=17,
P=1;right-sided binomial test with P,,,.. = 0.05, regions with >2 neuronsin
recordings withbotholfactory and visual task asin (d)). ****P<0.0001,
***P<0.001,**P<0.01,*P<0.05.
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Extended DataFig.7|Populationsparseness of odours perrecording
session and repetition suppression across allneurons. a, Population
sparsenessindexinresponse toodours foreachrecording sessionand odour
(mean +s.e.m.inblack). Sparseness significantly differed across recording
sites (one-way ANOVA, F; 5., =90.1, P<107°). All pairwise tests significant
(P<0.05) following Tukey’s honestly significant difference procedure, except
the pairwise comparison of amygdala and hippocampus (P=0.11). b, Average
respiratory traces (mean * s.e.m.) for each odour presentation (trials1to 8)
across13recordingsessions. ¢, Averaged inhalationdepth (mean +s.e.m.,
black) for each odour presentation (1to 8) and recording session (coloured
dots). Inhalation depth was consistentacross odour repetitions (one-way
ANOVA, F;4,=0.3,P=0.95,n=13recording sessions with 8 trials each). d, Average
responsestrength for repeated odour presentations acrossall recorded
neuronsineachanatomical region (mean +s.e.m.). Odour repetitions are
approximately S minapart. Insets depict the meanresponse slopes per region
(mean +s.e.m.). Significanceis based on a two-sided Wilcoxon signed-rank

againstaslope ofzero (PC:n=276 neurons,Z=-3.1,P=0.002; amygdala:
n=617,Z=-6.6,P<10"%EC:n=464,7=-4.1,P=4.2.107% hippocampus:
n=633,7=-6.5,P=1.0-10"";PHC: n = 418,7=-2.4,P=0.018, neurons with a
non-zero pre-odour baseline firing rate). e, First-trial effectin the human
piriform cortex. Changes infiringrates (z-scores, mean +s.e.m. in black) of
odour-modulated neurons between consecutive trials. For each region, we
calculated the differences of firing rate between successive trials (i.e., 2"*-1%,
3rdand |, 8.7 trial). Firing rate changes were significantly different across
trials and regions (one-way ANOVA, F,;,¢;; =3.8,P=1.5-10"°, n =377 neurons).
PC neurons showed the most pronounced declinein firing rate from first
tosecondtrial, asindicated by the blue crossand error bar. All 27 pairwise
comparisons (blue cross versus each of the remaining crosses) were statistically
significant (P < 0.05) after Tukey’s correction for multiple comparisons
acrossalln =378 (binomial coefficient for selecting 2 out of 27) pair-wise
comparisons. They-axisis truncated to display 99% of the data toimprove
visibility. ****P<0.0001, **P< 0.01, *P< 0.05, n.s.=not significant.
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Extended DataFig. 9 |Replication of the decoding analysis after excluding
thefirsttrial. a, Odour-identity decoding accuracy based on neuronal activity
separated by region. Eachred dotin the distributions shows the decoding
performance based on200 randomly drawn neurons (1,000 subsampling
runs). Meandecoding performance and s.e.m. across subsampling runs are
showninblack. Grey dotsindicate decoding performance on label-permuted
data. Thedashed horizontal line indicates chance level (6.25%). Significance
based on percentile of mean decoding performance of thereal datainthe
surrogate distribution (PC: P< 0.001; amygdala: P< 0.001; EC: P< 0.001;
hippocampus: P<0.001; PHC: P=0.12, label permutation test withn=1,000
permutations). b, Performance of odour-identity decoding (mean +s.e.m.) asa
function of the number of neuronsincluded in the decoding analysis using 100
subsampling runs. Horizontal bars indicate neuron counts for which decoding
performance significantly exceeded chance (P < 0.05, right-sided Wilcoxon
signed-rank against chance after Bonferronicorrection for different neuron
counts). ¢, Performance of odour-identity decoding (mean +s.e.m.) asa
function of the decoding time-window beginning at odour onset using 200
randomly drawn neurons and 100 subsampling runs. Horizontal bars indicate
times where decoding performance significantly exceeded chance (P< 0.05,
right-sided Wilcoxon signed-rank against chance after Bonferroni correction
for 80 decoding time windows; beginning of sustained significant decoding:

PC:400 ms; amygdala: 350 ms; EC: 800 ms; hippocampus: 1,050 ms; PHC:
1,600 ms).d, Image-identity decoding accuracy based on neuronal activity
separated by region, depicted asin (a). All regions exhibited significant
decoding ofimage identities (PC: P< 0.001;amygdala: P< 0.001; EC: P< 0.001;
hippocampus: P<0.001; PHC: P=0.003, label permutation test withn=1,000
permutations, asin (a)). Decodingaccuracy in PC surpassed all other regions.
e-f,Decoding accuracy (asina) for a cross-modal decoding analysis trained
onimages and evaluated on odours (e), and vice versa (f). (Image-to-odour:
PC:P=0.008;amygdala: P=0.018; EC: P=0.15; hippocampus: P=0.1; PHC:
P=0.79; 0dour-to-image: PC: P=0.17;amygdala: P= 0.14; EC: P= 0.45;
hippocampus: P=0.28; PHC: P=0.7,label permutation test withn=1,000
permutations, asin (a)). PCand amygdalareached substantially higher decoding
accuracies thanany of the other regionsinboth cross-modal decoding
analyses. g, Odour-decoding accuracy as afunction of the number of neurons
used for decoding, sampled across participants (red, mean +s.e.m.) or within
participants (blue, mean + s.e.m. across sessions), as in Fig. 2c (100 times
randomly subsampled with 8 cross-validation datasplits and 10 resample runs).
Chancelevel (6.25%) shown as dashed horizontal line. Note that with 8-32
microwires per anatomical targetregion, itis rarely possible to simultaneously
record the activity of 30 or more neurons per participant. ***P< 0.001,
*P<0.01,*P<0.05.



Extended Data Table 1| Generalized linear mixed-effects models across participants and sessions

Extended Data Table 1a | Odours vs. odourless control

Fixed Effect Estimate Std. Error t-value P-value 95%-ClI

Intercept 0.14 0.34 0.43 0.67 [-0.51, 0.80]
Region-PC 0.59 0.38 1.56 0.12 [-0.15, 1.32]
Region-Am 0.55 0.45 1.23 0.22 [-0.33, 1.44]
Region-EC 0.96 0.48 2.01 0.04 [0.02, 1.90]
Region-Hp 0.47 0.52 0.92 0.36 [-0.54, 1.48]
Control 0.13 0.05 2.54 0.01 [0.03, 0.23]
Region-PC x Control -0.46 0.05 -10 >0.0001 [-0.55, -0.37]
Region-Am x Control -0.2 0.04 -4.75 >0.0001 [-0.29, -0.12]
Region-EC x Control -0.21 0.05 -4.56 >0.0001 [-0.30, -0.12]
Region-Hp x Control -0.23 0.05 -5.04 >0.0001 [-0.32, -0.14]

Extended Data Table 1b | Odour repetition suppression

Fixed Effect Estimate Std. Error t-value P-value 95%-ClI

Intercept 0.08 0.34 0.24 0.81 [-0.58, 0.74]
Region-PC 0.85 0.38 224 0.03 [0.11, 1.60]
Region-Am 0.68 0.47 1.44 0.15 [-0.25, 1.61]
Region-EC 1.03 0.49 2.1 0.04 [0.07, 1.99]
Region-Hp 0.59 0.54 1.1 0.27 [-0.46, 1.65]
Repetition 0.02 0.01 2.63 0.01 [0.00, 0.03]
Region-PC x Repetition -0.06 0.005 -12.44 >0.0001 [-0.07, -0.05]
Region-Am x Repetition -0.04 0.005 -8.14 >0.0001 [-0.05, -0.03]
Region-EC x Repetition -0.03 0.005 -6.16 >0.0001 [-0.04, -0.02]
Region-Hp x Repetition -0.04 0.005 -7.72 >0.0001 [-0.05, -0.03]

Extended Data Table 1c | Subjective odour valence coding

Fixed Effect Estimate Std. Error t-value P-value 95%-Cl

Intercept 0.03 0.36 0.07 0.94 [-0.67, 0.72]
Region-PC 0.71 0.38 1.87 0.06 [-0.04, 1.46]
Region-Am 0.76 0.43 1.77 0.08 [-0.08, 1.60]
Region-EC 1.06 0.48 219 0.03 [0.11, 2.00]
Region-Hp 0.66 0.48 1.37 0.17 [-0.29, 1.61]
Liked -0.13 0.05 -2.34 0.02 [-0.23, -0.02]
Region-PC x Liked 0.06 0.03 1.94 0.052 [0.00, 0.13]
Region-Am x Liked 0.15 0.03 4.63 >0.0001 [0.08, 0.21]
Region-EC x Liked 0.04 0.03 1.26 0.21 [-0.02, 0.11]
Region-Hp x Liked 0.01 0.03 0.33 0.74 [-0.05, 0.08]

Results of general linear-mixed effects models (GLMMs) for firing rates of odour-modulated neurons in response to odours as compared to odourless controls (a), repeated odour
presentations (b), and subjective valence ratings (c). Models include different brain regions and account for neurons recorded across participants and sessions as well as their nested
structure. a, Odours elicited significantly stronger activity of odour-modulated neurons than odourless controls in the PC, amygdala and hippocampus across patients and sessions. (GLMM
predicting spike counts (SC) based on odour versus odourless control, brain region, and their interaction. Model: SC~1+ Control x Region + (Control|ParticipantID) +(Region|ParticipantID)+
(control|ParticipantID:SessionID)+(Region|ParticipantID:SessionID) +(1|ParticipantID:SessionID:UnitID), using the odour condition and PHC as reference). b, Repeated odour presentations

led to reduced firing of odour-modulated neurons specifically in the PC, amygdala, EC and hippocampus across patients and sessions. (GLMM predicting spike counts for repeated odour
presentations (Rep), brain region and their interaction. Model: SC~1+ Rep x Region + (Rep|ParticipantID)+(Region|ParticipantID)+(Rep|ParticipantID:SessionID) +(Region|ParticipantID:SessionID) +
(1|ParticipantID:SessionID:UnitID), using PHC as reference). e, Behavioural valence ratings predicted firing of odour-modulated neurons especially in the amygdala across patients and
sessions (GLMM predicting spike counts based on valence (liked vs disliked), region and their interaction. Model: SC~1 + Liked x Region + (Liked|ParticipantID)+(Region|ParticipantID)+
(Liked|ParticipantID:SessionID)+(Region|ParticipantID:SessionID)+(1|ParticipantID:SessionID:UnitID), with disliked and PHC as reference).
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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|Z The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Software and code

Policy information about availability of computer code

Data collection Neurophysiological data were recorded using Behnke-Fried depth electrodes (AdTech, Racine, WI) equipped with microwire bundles protruding
from the tip of the electrodes (3-5 mm). Data were amplified and recorded using a 256-channel ATLAS amplifier (Neuralynx, Bozeman, MT) and
the Pegasus software (version 2.1.1, Neuralynx, Bozeman, MT).




Data analysis Statistical analyses were conducted in MATLAB 2021a including the Statistics and Machine Learning Toolbox (The MathWorks, Natick, MA)
The experimental paradigm was implemented with Psychtoolbox3 (www.psychtoolbox.org)
Spike extraction and sorting was performed using Combinato (no version, https://github.com/jniediek/combinato)
Electrode localization was performed using the LeGUI software package (Davis et al. 2021, version 1.2, DOI: 10.3389/fnins.2021.769872,
https://github.com/Rolston-Lab/LeGUI)
Decoding analyses were performed using the Neural Decoding Toolbox (Meyers 2013, version 1.0.4, DOI: 10.3389/fninf.2013.00008, https.//
www.readout.info/)
Respiratory signals analyzed with Breathmetrics toolbox (Noto et al. 2018, version 2.0, DOI: 10.1093/chemse/bjy045, https://github.com/
zelanolab/breathmetrics)
Matlab toolboxes for visualizing Venn diagrams (version 1.7, https://de.mathworks.com/matlabcentral/fileexchange/22282-venn)
Matlab toolboxes for exact binomial tests (version 2.0, https.//www.mathworks.com/matlabcentral/fileexchange/24813-mybinomtest-s-n-p-
sided)
Electrode visualization based on Fieldtrip (Oostenveld et al. 2011, version 213bc8bcbh, DOI: 10.1155/2011/156869)
and the Matlab function 'plot_ecog' (https://github.com/s-michelmann/moment-by-moment-tracking/blob/master/plot_ecog.m)

Custom MATLAB code to reproduce the main figures and analysis of this study are publicly available on GitHub:
https://github.com/marcelkehl/HumanOdorRepresentations.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data to reproduce the main figures and analysis of this study are publicly available on GitHub:
https://github.com/marcelkehl/HumanOdorRepresentations

Reference valence ratings of the standardized odors in our study are available from Toet et al. 2020 (https://doi.org/10.1007/s12078-019-09275-7)

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Our study included 17 participants, of whom 12 were female and 5 were male, according to the clinical reports.
Our study did not include sex- or gender-specific analyses.

Reporting on race, ethnicity, or  No socially constructed variables were used or analyzed in this study.
other socially relevant
groupings

Population characteristics The population included 17 participants (12 female, 5 male) aged 22 to 60 years (mean + SD: 41.3 + 11.7 years).
In this study, no characteristics of the population were included as covariates.

Recruitment This study comprises a rare-opportunity sample, based on the treatment of drug-resistant epilepsy patients undergoing
invasive seizure monitoring at the Department of Epileptology at the University of Bonn Medical Center, Germany.
Patients were offered to participate in research including single-neuron recordings only after they opted for invasive epilepsy
diagnostics in consultation with their treating physicians. Informed written consent for microwire recordings was obtained
from all participants. Patients were informed that they could withdraw from research at any time, and without any impact on
their clinical care. Patients who consented to microwire implantation were subsequently invited to participate in this study.
All patients gave informed written consent to participate in this study in accordance with the Medical Institutional Review
Board of the University of Bonn, Germany. Only patients over the age of 18 years were recruited.
None of the participants reported subjective olfactory dysfunction or acute respiratory tract infection.

Ethics oversight Informed written consent was provided by each patient. All studies conformed with and were approved by the Medical
Institutional Review Board of the University of Bonn, Germany (License No. 289/20).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life scien

ces study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

Behaviou

Our analysis is based on a total of 2,416 units recorded in 27 recording sessions from 17 epilepsy patients suffering from drug-resistant epilepsy
and undergoing invasive seizure monitoring with the goal of subsequent neurosurgical resection.

No a-priori sample-size calculation was performed. Our comprehensive dataset easily complies with or exceeds current standards in the field of
human single unit recordings (e.g., Jamali et al., Nature, 2024, Qasim et al., Cell, 2021)

No data were excluded from the analysis

All experiments were performed across multiple patients using equivalent electrode and recording techniques, and the same anatomical target
regions. Here, we investigated the neuronal coding of odors in the human brain. The central findings of our study were replicable across
recording sessions and participants.

Replication in healthy subjects is not applicable owing to intervention constraints of the invasive recording techniques.

There was no experimental group assignment in our study.

The study did not include allocation of subjects to experimental groups so no blinding applies.

ral & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.
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Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your studly.
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Did the study involve field work? |:| Yes |:| No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.qg. latitude and longitude, elevation, water depth).
Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology & |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants

XX XXNXNXX s
OoOooooO

Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.




Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pngme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,
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export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.




Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[ ] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
[] Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Ooooooods
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Any other potentially harmful combination of experiments and agents

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atithentication-procedtres foreach seed stock tised-ornovel- genotype generated—Describe-any-experiments-tused-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

ChlP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.




Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community

repository, provide accession details.
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Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).




Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.
Field strength Specify in Tesla
Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,

slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.qg.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ ] Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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	Single-neuron representations of odours in the human brain

	Odours modulate human PC and MTL firing

	Neuronal activity decodes odour identity

	Odour representations vary in sparseness

	Neuronal repetition suppression to odours

	Amygdala neurons encode odour valence

	Hippocampus predicts odour identification

	Olfactory/visual cross-modal integration

	Discussion

	Odour coding in the human PC and MTL

	Central odour repetition suppression

	Valence coding in the amygdala

	Hippocampal role in odour identification

	Multisensory odour representations

	Online content

	Fig. 1 Odours modulate human PC and MTL firing.
	Fig. 2 Neuronal activity decodes odour identity.
	Fig. 3 Odour representations vary in sparseness and are suppressed by repetition.
	Fig. 4 Amygdala neurons encode odour valence and the hippocampus predicts behavioural odour-identification performance.
	Fig. 5 Olfactory/visual cross-modal integration.
	﻿Extended Data Fig. 1 Characteristics of Behnke-Fried depth electrodes used for single-neuron recordings in the human PC and MTL.
	Extended Data Fig. 2 Odour valence ratings and identification performance for each participant.
	Extended Data Fig. 3 Odour-modulated neurons in the PC and MTL.
	Extended Data Fig. 4 Odour-modulated neurons are reliably identified across participants and without odourless controls.
	Extended Data Fig. 5 Odour identity, not respiration, drives odour-modulated neurons.
	Extended Data Fig. 6 Decoding across individual recording sessions and participants.
	Extended Data Fig. 7 Population sparseness of odours per recording session and repetition suppression across all neurons.
	Extended Data Fig. 8 Spike-sorting and recording-quality metrics.
	Extended Data Fig. 9 Replication of the decoding analysis after excluding the first trial.
	Extended Data Table 1 Generalized linear mixed-effects models across participants and sessions.




