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1 Introduction 

1.1 Motivation 

The human brain is the most complex organ, and unraveling its molecular mechanisms is 

one of our most significant scientific challenges today (Poldrack & Farah, 2015). The hu-

man brain is composed of approximately 86 billion neurons (Azevedo et al., 2009), which 

are intricately interconnected and form the organization of the brain into distinct brain re-

gions (Amunts et al., 2020). While brain regions are often dedicated to specialized func-

tions, at the same time, brain regions act as part of a network to coordinate physiological 

and cognitive processes such as perception, memory, attention, movement, mood, or so-

cial interaction (Bassett & Sporns, 2017). The development of the human brain is orches-

trated by molecular events that are genetically regulated (Lindhout et al., 2024). Variations 

in brain development, shaped by genetic and environmental factors, not only account for 

interindividual differences in personality, behavior, or cognitive performance but also in-

fluence susceptibility to neuropsychiatric disorders (Parikshak et al., 2015). 

Neuropsychiatric disorders are characterized by difficulties in emotion regulation, cogni-

tive processing, or social communication (American Psychiatric Association, 2013). These 

conditions have a profound impact on the quality of life of those affected and are consid-

ered to be among the medical conditions with the highest number of years lost to disability 

(GBD 2019 Mental Disorders Collaborators, 2022). Furthermore, individuals affected by 

neuropsychiatric disorders are often unable to fully engage in daily activities, including 

work, social roles, or household. As a result, neuropsychiatric disorders represent a sig-

nificant societal disease burden in terms of social consequences and time missed from 

work (Eaton et al., 2008; Knapp & Wong, 2020). 

To date, there are few treatment options available to ameliorate the symptoms of neuro-

psychiatric disorders (Holmes et al., 2018). However, early diagnosis and careful treat-

ment planning, including psychotherapy and medication, can improve patients' quality of 

life (Lord et al., 2020; Marx et al., 2023). A more profound understanding of the biological 

etiology of neuropsychiatric disorders will be critical to improving diagnostic specificity and 

developing effective treatment options (Pardiñas et al., 2021; Rees & Owen, 2020). This 

may not only improve patients’ quality of life but also mitigate the stigma linked to neuro-

psychiatric disorders (GBD 2019 Mental Disorders Collaborators, 2022). 



12 

Neuropsychiatric disorders such as attention deficit hyperactivity disorder (ADHD), ano-

rexia nervosa (ANO), autism spectrum disorder (ASD), bipolar disorder (BIP), major de-

pression (MD), obsessive-compulsive disorder (OCD), schizophrenia (SCZ), and Tou-

rette’s syndrome (TS) are considered to have a multi-factorial etiology with genetic and 

environmental factors playing a role in disease susceptibility (Sullivan & Geschwind, 

2019). Recent advances in genotyping technology and statistical analyses, such as ge-

nome-wide association study (GWAS), have identified hundreds of genetic variants for 

neuropsychiatric disorders (Andreassen et al., 2023). Most genetic variants for neuropsy-

chiatric disorders are located in non-coding regions of the genome (Lappalainen & 

MacArthur, 2021). Consequently, the precise molecular mechanisms by which these var-

iants contribute to disease risk remain unclear (Lappalainen & MacArthur, 2021). Never-

theless, recent research revealed an enrichment of genetic variants for neuropsychiatric 

disorders for genes involved in early neurodevelopmental processes (P. H. Lee et al., 

2019; Schork et al., 2019). 

There is mounting evidence that major neuropsychiatric disorders have overlapping ge-

netic architectures, indicating a potential shared genetic etiology (P. H. Lee et al., 2019). 

In particular, the second cross-disorder GWAS meta-analysis of the Psychiatric Genomics 

Consortium (PGC-CDG2), which included 232,964 patients with ADHD, ANO, ASD, BIP, 

MD, OCD, SCZ, or TS, revealed substantial genetic correlations across neuropsychiatric 

disorders (P. H. Lee et al., 2019). In addition, single-nucleotide polymorphisms (SNPs) 

with complex associations across neuropsychiatric disorders were identified, such as an-

tagonistic, highly pleiotropic, and disorder-specific SNPs (P. H. Lee et al., 2019). For the 

majority of SNPs, the molecular mechanism leading to susceptibility to neuropsychiatric 

disorders is unknown. 

This thesis aims to uncover the neurobiological correlates of selected genetic variants with 

associations across neuropsychiatric disorders identified by the PGC-CDG2 (P. H. Lee et 

al., 2019). Section 1.2 provides a comprehensive overview of clinical characteristics, neu-

roimaging findings, and the genetic architecture of neuropsychiatric disorders. Section 1.3 

introduces the field of imaging genetics and discusses the importance of studying brain 

structural associations for genetic variants for neuropsychiatric disorders. Section 1.4 re-

views current findings from cross-disorder GWAS for neuropsychiatric disorders. Finally, 

Section 1.5 outlines the analyses performed in the present thesis. 
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1.2 Neuropsychiatric disorders 

This section introduces the clinical characteristics of neuropsychiatric disorders (Section 

1.2.1), summarizes recent neuroimaging findings in neuropsychiatric disorders (Section 

1.2.2), and gives an overview of the genetic architecture of neuropsychiatric disorders 

(Section 1.2.3). This thesis focuses on the eight neuropsychiatric disorders encompassed 

by the PGC-CDG2 (P. H. Lee et al., 2019). 

1.2.1 Clinical characteristics 

Neuropsychiatric disorders vary in clinical characteristics, lifetime prevalence, or SNP-

based heritability (Table 1). Diagnostic systems such as the Diagnostic and Statistical 

Manual of Mental Disorders (DSM) (American Psychiatric Association, 2013) or the Inter-

national Classification of Diseases (ICD) (World Health Organization, 1992) feature a wide 

range of descriptive criteria for the diagnosis of specific neuropsychiatric disorders. Nev-

ertheless, recent findings from genetic, transcriptomic, and neuroimaging data suggest 

that their neurobiological underpinnings transcend these diagnostic boundaries (Smoller 

et al., 2018). 

Table 1 | Overview of the eight neuropsychiatric disorders included in the PGC-CDG2 

Disorder Main clinical characteristics Lifetime 
prevalence 

htwin
2

 GWAS included in  
the PGC-CDG2 

Ncases hSNP
2  

ADHD attention deficits and hyperactivity1 0.053 0.76 Demontis et al. (2019) 19,099 0.22 
ANO excessive weight loss owing to re-

duced food intake2 
0.009 0.58 Duncan et al. (2017)  3,495 0.20 

ASD difficulties with verbal and non-verbal 
social communication, repetitive be-
haviors, or restrictive interests3 

0.017 0.74 Grove et al.(2019) 18,381 0.11 

BIP (hypo)manic and depressive epi-
sodes4 

0.010 0.85 Stahl et al. (2019) 20,352 0.18 

MD persistent sadness and loss of interest 
in activities and life5 

0.162 0.37 Wray et al. (2018) 130,664 0.09 

OCD obsessions and compulsions6 0.011 0.47 Arnold et al. (2018) 2,688 0.28 
SCZ hallucinations and delusions7 0.004 0.81 Ripke et al. (2014) 33,640 0.22 
TS verbal and non-verbal motoric tics8 0.005 0.37 Yu et al. (2019) 4,645 0.20 
A more detailed description of the clinical characteristics is provided in Section 1.2.1. Lifetime prevalence 
and twin-based heritability (htwin

2 ) were taken from Table 1 in (Sullivan & Geschwind, 2019), whereby MD 
lifetime prevalence referred to major depressive disorder. Reference for the GWAS originally included in 
the PGC-CDG2 meta-analysis (P. H. Lee et al., 2019) was given for each disorder. The corresponding 
number of cases (Ncases) and the observed SNP-based heritability (hSNP

2 ) were provided based on Table 1 
in (P. H. Lee et al., 2019). References. 1(Faraone et al., 2015), 2(Treasure et al., 2015), 3(Lord et al., 2020), 
4(Vieta et al., 2018), 5(Marx et al., 2023), 6(Stein et al., 2019), 7(Kahn et al., 2015), 8(Johnson et al., 2023). 
Abbreviations. ADHD, attention deficit hyperactivity disorder; ANO, anorexia nervosa; ASD, autism spec-
trum disorder; BIP, bipolar disorder; GWAS, genome-wide association study; MD, major depression; OCD, 
obsessive-compulsive disorder; PGC-CDG2, second cross-disorder GWAS meta-analysis of the PGC; 
SCZ, schizophrenia; SNP, single-nucleotide polymorphism; TS, Tourette’s syndrome. 
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Relevant clinical characteristics of (i) early-onset and neurodevelopmental disorders, (ii) 

disorders with compulsive and perfectionist behaviors, and (iii) mood and psychotic disor-

ders are presented below. The assignment of disorders was adopted from the factor anal-

ysis of the PGC-CDG2 (P. H. Lee et al., 2019). While TS and MD loaded on two factors 

(P. H. Lee et al., 2019), TS was assigned to (i) due to its early age of onset, and MD was 

assigned to (iii) due to its main clinical feature of depressive mood. 

Early-onset and neurodevelopmental disorders such as ADHD (Faraone et al., 2015), 

ASD (Lord et al., 2020), and TS (Johnson et al., 2023) typically manifest during childhood 

or adolescence. 

ADHD is marked by dysfunctions in attentional processing that manifest as impul-

sivity, hyperactivity, and difficulties in learning, self-regulation, or social interactions 

(Faraone et al., 2015). 

ASD is characterized by restrictive interests, repetitive behaviors, and difficulties in 

verbal and non-verbal social communication (Lord et al., 2020). The symptoms of 

ASD vary in severity, which makes ASD recognized as a spectrum disorder (Lord 

et al., 2020). 

TS is a condition in which the motor system is affected, causing patients to perform 

vocal or motor tics (Johnson et al., 2023). The tics are involuntary and may exhib-

ited daily or primarily in stressful situations, with a diagnosis of TS being made 

when the tics occur for at least one year (Johnson et al., 2023). 

Disorders with compulsive and perfectionist behaviors such as ANO (Treasure et al., 

2015) and OCD (Stein et al., 2019) are characterized by actions that disrupt oneself, with 

patients often perceiving themselves as unable to control or stop their actions. 

ANO is an eating disorder characterized by a distorted perception of one’s body 

and an excessive concern with weight loss through reduced food intake (Treasure 

et al., 2015). Abnormal weight loss can lead to various physical consequences like 

endocrine or cardiovascular system dysfunctions. 

OCD is marked by intrusive thoughts and excessive routines that last for more than 

an hour per day (Stein et al., 2019). This includes obsessions like an urge for sym-

metry, fear of contamination, or compulsions like excessive hand washing, count-

ing, or cleaning (Stein et al., 2019). 
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Mood and psychotic disorders such as BIP (Vieta et al., 2018), MD (Marx et al., 2023), 

and SCZ (Kahn et al., 2015) are typically diagnosed in late adolescence and early adult-

hood. 

BIP is typically characterized by alternating periods of depressed and elevated 

mood (Vieta et al., 2018). During depressive periods, patients often experience 

persistent sadness, low energy levels, and a tendency to withdraw socially. During 

manic or hypomanic periods, patients exhibit elevated levels of energy, enhanced 

self-esteem, and a lack of need for sleep (Vieta et al., 2018). 

MD is a condition in which patients report experiencing persistent depressed mood 

and loss of interest or pleasure in activities that were previously enjoyed (Marx et 

al., 2023). Patients often report negative thoughts about themselves and their fu-

ture, as well as sleep or appetite-related symptoms (Marx et al., 2023). 

SCZ is marked by alterations in thought processes, including hallucinations, delu-

sions, and disorganized behavior (Kahn et al., 2015). Patients with SCZ often ex-

hibit anhedonia, social withdrawal, and a range of cognitive dysfunction, including 

impairments in working memory and concentration (Kahn et al., 2015). 

Despite their distinct clinical characteristics, neuropsychiatric disorders share a wide 

range of symptoms (Borsboom et al., 2011; Forbes et al., 2024) and have high rates of 

comorbidities (Plana-Ripoll et al., 2019). For example, symptoms of insomnia, inattention, 

and irritable mood can occur in different neuropsychiatric disorders (Forbes et al., 2024). 

Furthermore, it was estimated that 66 % of individuals who meet the criteria for one dis-

order will fulfill the criteria for a second neuropsychiatric disorder in their lifetime (Caspi & 

Moffitt, 2018). With this in mind, recent research has emphasized the importance of cross-

disorder analyses (Caspi & Moffitt, 2018). 

1.2.2 Neuroimaging findings in neuropsychiatric disorders 

Neuroimaging is a key research tool that sheds light on the biological basis of neuropsy-

chiatric disorders (Etkin, 2019). Various non-invasive imaging techniques are used in re-

search to depict changes in various aspects of the human brain in patients with neuropsy-

chiatric disorders (Linden, 2012). For example, magnetic resonance imaging (MRI) visu-

alizes brain structure, functional MRI and electroencephalography register brain activity, 
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albeit at different temporal and spatial resolutions, and positron emission tomography de-

picts neurotransmitter dynamics (Linden, 2012). The following will focus on MRI, as this 

thesis analyzes brain structure based on brain MRI scans. 

The MRI technique relies on the body’s magnetic properties, given by its high water con-

tent (see Brown & Semelka (2011) for a detailed explanation). Water consists of hydrogen 

protons that spin randomly about their axes. When the MRI scanner exposes a strong 

magnetic field, these protons align with its net magnetization vector (Brown & Semelka, 

2011). During MRI imaging acquisition, radio frequency pulses are turned on, forcing the 

protons in the body to absorb energy and change their longitudinal and transverse mag-

netization. When the radio frequency pulses turn off, the body's protons recover to the 

magnetization vector's original orientation (Brown & Semelka, 2011). The time required 

for relaxation depends on the water content of the tissue, a property that allows visualiza-

tion of contrast between different tissues. The relaxation time can be measured differently 

(Brown & Semelka, 2011). For example, T1 relaxation captures the longitudinal magneti-

zation to reach 63 % of the initial state. MRI images based on the T1 relaxation time depict 

contrasts between the white and gray matter of the brain and are most commonly used to 

analyze brain structure (Brown & Semelka, 2011). 

With advances in MRI techniques, research has investigated alterations in brain structure 

in patients with neuropsychiatric disorders compared to controls (Etkin, 2019). Case-con-

trol MRI differences, however, have shown at most small effect sizes, and as a result, 

expectations to identify putative neuroimaging biomarkers for use in diagnosis, prognosis, 

or treatment planning have not yet been met (Schmaal et al., 2020). Furthermore, early 

case-control MRI studies included small sample sizes of less than a hundred, leading to 

underpowered and false-positive results (Button et al., 2013; Etkin, 2019). 

As a field, neuroimaging has emphasized the importance of enhancing replicability, and 

in the course of this, studies of large-scale neuroimaging data have been initiated (Etkin, 

2019; Poldrack et al., 2017). Today, clinical and population-based studies have collected 

data from thousands of individuals (e.g., Bycroft et al., 2018; Kircher et al., 2019). For 

example, the FOR2107 study, which aimed to uncover neurobiological correlates of dis-

orders along the mood and psychosis spectrum, comprised, at the time of writing, brain 

MRI scans from more than 2,000 individuals including patients with BIP, major depressive 

disorder (MDD), SCZ, or schizoaffective disorder, and healthy controls (Kircher et al., 
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2019). Another example is the UK Biobank (UKBB) study, which collected biomedical 

data, including genetic and health-related data, from more than 500,000 individuals across 

the middle-aged and older adult population in the UK (Bycroft et al., 2018). In addition, 

MRI scans were available to researchers for a subset of more than 30,000 individuals at 

the time of writing. 

Coordinated analyses of neuroimaging data across research sites have been conducted 

to achieve the large sample sizes needed for the robust discovery of neurobiological cor-

relates (Thompson et al., 2020). Fast forwarding within the last decade, the Enhancing 

NeuroImaging Genetics through Meta Analysis (ENIGMA) consortium fostered data shar-

ing across sites using harmonized data processing pipelines (Thompson et al., 2020). In 

light of this, the ENIGMA consortium has performed large-scale meta-analyses of case-

control MRI studies for several diagnostic groups, including ADHD, ANO, ASD, BIP, MD, 

OCD, and SCZ (Thompson et al., 2020; Walton et al., 2022). These studies revealed al-

terations in the volume of subcortical structures and regional and whole-brain measures 

of cortical thickness (CT) and surface area (SA) in patients with neuropsychiatric disorders 

compared to controls (Thompson et al., 2020). For example, a case-control MRI study of 

SCZ by the ENIGMA consortium (Ncases=4,474) reported a significant decrease of CT and 

SA widespread throughout the cortex in patients with SCZ (Van Erp et al., 2018). Here, 

the most prominent effect sizes were observed in regions of the prefrontal and temporal 

cortices (Van Erp et al., 2018), which have been suggested to contribute to the severity of 

negative symptoms observed in patients with SCZ (Kirschner et al., 2021; Walton et al., 

2018). 

Notably, case-control MRI differences partially overlap across neuropsychiatric disorders 

(Goodkind et al., 2015; Opel et al., 2020; Wise et al., 2016). For example, case-control 

MRI differences from the ENIGMA consortium meta-analyses were shown to be correlated 

across ADHD, ASD, BIP, MD, OCD, and SCZ (Opel et al., 2020). Furthermore, a large-

scale voxel-based morphometry (VBM) meta-analysis that included data from patients 

with anxiety disorders, BIP, MDD, OCD, SCZ, or substance use disorders observed de-

creased gray matter volume (GMV) in the dorsal anterior cingulate and left and right an-

terior insula (Goodkind et al., 2015). Both regions are important for executive functions 

and emotional regulation (Etkin et al., 2015), which are implicated in most neuropsychiatric 

disorders (American Psychiatric Association, 2013). In addition to shared brain structural 
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alterations, predominantly disorder-specific case-control MRI differences have been re-

ported for patients with neuropsychiatric disorders compared to controls (McCutcheon et 

al., 2023). 

1.2.3 Genetic architecture 

Neuropsychiatric disorders tend to run in families and are partially heritable (Sullivan & 

Geschwind, 2019). Twin studies have suggested that a large proportion of interindividual 

variability can be explained by genetics, with estimated twin-based heritability ranging 

from 37 % for MD and TS to 85 % for BIP (Table 1) (Sullivan & Geschwind, 2019). Over 

the past few decades, molecular studies have shown that the genetic architecture of neu-

ropsychiatric disorders consists of genetic variants across the allelic spectrum (Sullivan & 

Geschwind, 2019). These include genetic variants of varying frequencies and types 

(Uffelmann et al., 2021). Whether a variant is rare or common is specific to the population. 

However, a common variant is often defined as one that is present in more than 5 % of 

the population (Agarwala et al., 2013). The variant type determines the deoxyribonucleic 

acid (DNA) sequence change. For example, SNPs refer to single basepair positions in 

DNA that are variable in the population with a minor allele frequency (MAF) of ≥1 % 

(Brookes, 1999). Typically, associations between SNPs and a trait of interest show small 

effect sizes (Manolio et al., 2009). In contrast, Indels describe the insertion or deletion of 

nucleotides in the DNA sequence. Short Indels span one to 50 basepairs (Altshuler et al., 

2010). Deletions or duplications of DNA sequences that are larger than 1000 basepairs 

are commonly referred to as copy number variations (CNVs) (Feuk et al., 2006). CNVs 

are suggested to contribute to the risk for neuropsychiatric disorders with large effect sizes 

(Rees & Kirov, 2021). Until now, the SNPs, Indels, and CNVs identified so far explain only 

a fraction of the twin-based heritability of neuropsychiatric disorders, whereby psychiatric 

genetics demonstrates ongoing efforts to identify novel genetic variants for neuropsychi-

atric disorders (Sullivan & Geschwind, 2019). The following findings focus on SNPs, as 

they were examined in the present thesis. 

GWAS are a powerful tool to identify SNPs associated with a phenotype of interest 

(Uffelmann et al., 2021; Visscher et al., 2017). GWAS test the linear association of the 

allele frequency of SNPs with the phenotype in a large number of individuals (Uffelmann 

et al., 2021). In doing so, GWAS typically assume an additive biometric model, which 
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states that the effect on the phenotype increases linearly with the number of copies of the 

effect allele of the SNP (Uffelmann et al., 2021). As GWAS test associations for millions 

of SNPs across the genome, the significance threshold is typically set at p<5x10-08 

(Uffelmann et al., 2021). This corresponds to a Bonferroni threshold for testing approxi-

mately one million independent SNPs, the suggested average number of independent 

SNPs (Uffelmann et al., 2021). Associations with p<5x10-08 are hereafter referred to as 

genome-wide significant. Notably, the power of GWAS is inherently dependent on large 

sample sizes, and its validity benefits from replication in an independent sample 

(Uffelmann et al., 2021). Therefore, data sharing and coordinated GWAS meta-analyses 

such as those conducted by the Psychiatric Genomics Consortium (PGC) are crucial 

(Sullivan et al., 2018). 

Today, GWAS for neuropsychiatric disorders have identified more than four hundred loci 

(Andreassen et al., 2023). In turn, it has become clear that neuropsychiatric disorders 

have an extensive polygenic architecture (Andreassen et al., 2023). For example, the 

most recent GWAS of SCZ comprised 76,755 individuals with SCZ across multiple ances-

tries and identified 287 loci that are genome-wide significantly associated with SCZ 

(Trubetskoy et al., 2022). Collectively, SNPs account for 24 % of the risk for SCZ in the 

sample with European ancestry (Trubetskoy et al., 2022). In addition, the genetic archi-

tectures of some neuropsychiatric disorders have been shown to overlap substantially 

across diagnostic categories, as outlined in more detail in Section 1.4 (P. H. Lee et al., 

2021). 

The majority of genetic variants identified by GWAS of neuropsychiatric disorders are har-

bored in non-coding regions (Sullivan & Geschwind, 2019), which inherently complicates 

the understanding of their molecular mechanisms (Sullivan et al., 2018). To pinpoint rele-

vant biological processes, follow-up analyses are typically performed using functional ge-

nomics data (Lappalainen & MacArthur, 2021). To this end, previous research has shown 

that genetic variants identified by GWAS of neuropsychiatric disorders map to genes im-

plicated in neurobiological pathways, including neurogenesis and synaptic functioning (P. 

H. Lee et al., 2019; Trubetskoy et al., 2022). For example, the most recent GWAS of SCZ 

prioritized 120 genes by fine-mapping the 287 loci identified as genome-wide significant 

(Trubetskoy et al., 2022). These genes were specifically implicated in synaptic structure 
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and function, whereby they were not confined to pre- or postsynaptic compartments 

(Trubetskoy et al., 2022). 

Functional analyses span many levels of biology (Lappalainen & MacArthur, 2021). In 

addition to identifying neural pathways, genetic variants have been shown to functionally 

map to genes globally expressed in the brain (Andreassen et al., 2023). For example, the 

GWAS of SCZ found that associations were particularly enriched in genes that are ex-

pressed in excitatory glutamatergic neurons and inhibitory interneurons of cortical and 

subcortical regions (Trubetskoy et al., 2022). Beyond that, 48.1 % of the genome-wide 

significant variants identified by the second GWAS of SCZ from the PGC (Ripke et al., 

2014) were associated with gene expression in brain tissue (Jaffe et al., 2018). Such loci 

that are associated with the expression of a particular gene, as quantified by ribonucleic 

acid (RNA) sequencing, are referred to as expression quantitative trait loci (eQTLs) 

(Cookson et al., 2009). Mapping genetic variants, such as SNPs, to genes whose expres-

sion they regulate can provide valuable insights into their molecular mechanisms 

(Watanabe et al., 2017). 

As neuropsychiatric disorders have an extensive polygenic architecture, genetic scores, 

which estimate an individual’s genetic predisposition for a particular neuropsychiatric dis-

order, have become an important research method (Wray et al., 2014, 2021). Genetic 

scores are calculated by aggregating the count and weight of effect alleles from GWAS 

carried by an individual (Wray et al., 2014, 2021). Scores based on a limited number of 

SNPs are referred to as genetic risk scores (GRSs), while scores that aggregate SNPs 

across the genome are referred to as polygenic risk scores (PRSs) (Igo et al., 2019; 

Keaton et al., 2024). In research, individual-level genetic scores are used to assess 

whether the genetic predisposition to a particular trait explains part of the individuals’ phe-

notypic variability (Wray et al., 2014, 2021). For example, research has shown that PRSs 

for neuropsychiatric disorders were associated with outcomes related to mental health 

and cognition (Leppert et al., 2020) as well as brain structure (Liu et al., 2023; Rodrigue 

et al., 2023; Stauffer et al., 2021). PRSs for neuropsychiatric disorders, however, have not 

shown sufficient predictive power to be used for diagnosis, subtyping, or treatment plan-

ning (Wray et al., 2021). 
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1.3 Imaging genetics 

Imaging genetic analyses aim to pinpoint the neurobiological processes underlying ge-

netic variants for neuropsychiatric disorders (Bigos & Weinberger, 2010; Le & Stein, 

2019). Taking a mechanistic view, imaging genetic analyses assume that brain structure 

and function lie in a causal pathway from genetic variation to disease pathology (Le & 

Stein, 2019). Studying brain structure and function as so-called intermediate phenotypes 

contributes to understanding how genetic variation alters disease risk (Le & Stein, 2019). 

To investigate the influences of genetic variants for neuropsychiatric disorders on the 

structure of the human brain, imaging genetic analyses test the associations of genetic 

variants with MRI-derived brain measures like subcortical volume, CT, and SA (Le & Stein, 

2019). These associations are often studied in healthy controls (Bigos & Weinberger, 

2010). This has the advantage that the effects of medication and disease-related influ-

ences are eliminated and that analysis in large-scale population-based samples can be 

conducted (Bigos & Weinberger, 2010). 

In the early years of imaging genetics and before the GWAS era, analyses have reported 

associations between candidate genes for neuropsychiatric disorders and brain structure 

(Klein et al., 2017). For example, a polymorphism in the serotonin-transporter-linked pro-

moter region (5-HTTLPR), associated with depression, anxiety, and stress reactivity (Karg 

et al., 2011), was found to be associated with reduced GMV in the anterior cingulate and 

medial amygdala regions (Pezawas et al., 2005). As both regions play an important role 

in emotional processing (Rolls, 2019), it was suggested that their structural changes may 

lead to increased vulnerability to affective disorders (Pezawas et al., 2005). With the suc-

cess of larger and more powerful GWAS, it was shown that candidate genes for neuro-

psychiatric disorders did not yield large effect sizes, raising justified concerns about the 

candidate gene approach (Farrell et al., 2015; Sullivan, 2017). 

Today, research in imaging genetics focuses on common genetic variants, whereby large 

GWAS of several brain structural phenotypes have been performed (Thompson et al., 

2020). For example, the ENIGMA and Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) consortia coordinated a GWAS of regional and global SA and 

CT measures, including more than 33,000 samples in the discovery cohort. They identified 

369 genome-wide significant loci (Grasby et al., 2020). Subsequent functional analysis 
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showed that loci associated with SA were rather enriched for genes relevant to the regu-

lation of neural progenitor cells during fetal development. In contrast, CT-associated loci 

were rather enriched for genes that regulate mid-fetal neurobiological processes such as 

myelination or synaptic dynamics (Grasby et al., 2020). 

Interestingly, significant overlaps between the genetic architectures of brain phenotypes 

and neuropsychiatric disorders have been reported (Cheng et al., 2021, 2022; Grasby et 

al., 2020; Satizabal et al., 2019). Furthermore, it was estimated that, depending on the 

structure, 74 to 96 % of the genetic variants associated with subcortical volumes were 

also associated with SCZ (Cheng et al., 2022). Although cross-phenotype associations do 

not signify the same neurobiological processes, these findings support the notion that ge-

netic variants for neuropsychiatric disorders may shape disease susceptibility through 

their involvement in brain-related processes (Le & Stein, 2019). 

Genetic scores are a commonly used research tool to test the associations of an individ-

ual’s genetic predisposition to a neuropsychiatric disorder with brain structure (Liu et al., 

2023; Stauffer et al., 2023). For example, a large-scale study using data from the UKBB 

found that the PRS for SCZ was positively associated with cortical thinning in the left and 

right medial orbitofrontal cortex, left pars orbitalis, and left lateral orbitofrontal cortex, as 

well as increased CT in the right lateral occipital cortex (Liu et al., 2023). However, another 

large-scale UKBB study reported that brain structural associations of the PRSs for differ-

ent diagnostic groups were partially overlapping (Rodrigue et al., 2023). For example, the 

PRS for ADHD and the PRS for MD showed associations with decreased inferior temporal 

SA, and the PRS for BIP and SCZ were both associated with cortical thinning in the lateral 

and medial orbitofrontal region (Rodrigue et al., 2023). This overlap may be due to the 

high degree of pleiotropy of genetic variants identified in GWAS of neuropsychiatric dis-

orders (Rodrigue et al., 2023). 

1.4 Genetic overlap across neuropsychiatric disorders 

Research has reported a high degree of genetic overlap across neuropsychiatric disorders 

(Anttila et al., 2018; P. H. Lee et al., 2019). In 2009, a study by Purcell and colleagues 

was among the first to report that genetic variants identified in GWAS for SCZ were also 
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associated with BIP (Purcell et al., 2009). At the same time, the Cross-Disorder (Pheno-

type) Group of the PGC was established to characterize the overlaps and differences in 

genetic architecture across neuropsychiatric disorders (Craddock et al., 2009). 

With advances in statistical methods, the global similarity of genetic variation for two traits 

could be estimated using SNP-based genetic correlations (Bulik-Sullivan et al., 2015). For 

most pairs of neuropsychiatric disorders, moderate SNP-based correlations were found 

(Anttila et al., 2018; P. H. Lee et al., 2019), with SCZ and BIP exhibiting the highest degree 

of SNP-based genetic correlation with rg=0.70 (P. H. Lee et al., 2019). Research has 

shown that genetic correlation across neuropsychiatric disorders was reflected at addi-

tional biological levels (Gandal et al., 2022; Patel et al., 2021; Radonjić et al., 2021). For 

example, the similarity of cortical alterations observed in patients across six neuropsychi-

atric disorders (ADHD, ASD, BIP, MD, OCD, and SCZ) has been suggested to resemble 

their genetic correlations (Patel et al., 2021; Radonjić et al., 2021). Furthermore, similari-

ties in gene expression patterns across five neuropsychiatric disorders (ASD, BIP, MD, 

SCZ, and alcoholism) were found to reflect their genetic correlations (Gandal et al., 2018). 

However, genetic correlations may be underestimated when genetic variants have a mix-

ture of concordant and discordant effects on two traits (Frei et al., 2019). Univariate and 

bivariate Gaussian mixture models can be used to quantify the genetic overlap of two 

traits in the presence of mixed effects (Frei et al., 2019). When applied to neuropsychiatric 

disorders, it was demonstrated that 95 to 99 % of the genetic variants for anxiety, SCZ, 

BIP, and ADHD were also influential for MD (Als et al., 2023). These findings suggest that 

the genetic overlap may contribute to shared neurobiological processes across neuropsy-

chiatric disorders (Mallard et al., 2023). 

Over the past decade, several cross-disorder GWAS have been conducted to character-

ize the genetic overlap across neuropsychiatric disorders (P. H. Lee et al., 2019; Romero 

et al., 2022; Schork et al., 2019). To date, the largest cross-disorder GWAS by the PGC 

comprised more than 232,964 cases across eight neuropsychiatric disorders (ADHD, 

ANO, ASD, BIP, MD, OCD, SCZ, and TS) and identified 146 linkage disequilibrium (LD)-

independent SNPs at 136 genome-wide significant loci (P. H. Lee et al., 2019). The PGC-

CDG2 used a subset-based meta-analysis framework that allows associations to be cap-

tured across a heterogeneous group of disorders (Bhattacharjee et al., 2012). As a result, 
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a large proportion of the identified genetic variants were shown to have complex associa-

tions across neuropsychiatric disorders (Figure 1) (P. H. Lee et al., 2019). 

The second cross-disorder GWAS by the PGC (P. H. Lee et al., 2019) identified 11 antagonistic 
SNPs with oppositely directed effects on at least two neuropsychiatric disorders (Section 2.1.1.1; 
Table 2), 23 highly pleiotropic SNPs that were associated with at least four neuropsychiatric disor-
ders (Section 2.2.2.2; Table S1), and 22 predominantly SCZ-associated SNPs that were associ-
ated with SCZ, but showed no evidence for an association with other neuropsychiatric disorders 
(Section 2.2.2.2; Table S2). The Figure outlines the association between a SNP (blue rectangle) 
and neuropsychiatric disorders (geometric shapes shown in gray). Regarding the antagonistic 
SNP, the red arrow indicates an increased risk, and the green arrow indicates a protective effect 
for a disorder. Abbreviations. GWAS, genome-wide association study; PGC, Psychiatric Genomics 
Consortium; Pred., predominantly; SCZ, schizophrenia; SNP, single-nucleotide polymorphism. 

In particular, among the 146 SNPs, 23 highly pleiotropic SNPs were associated with at 

least four disorders, and 22 SNPs were predominantly associated with SCZ but showed 

no evidence of association with the other seven neuropsychiatric disorders (P. H. Lee et 

al., 2019). In addition, among all SNPs with p≤1.0×10-06, 11 antagonistic SNPs were as-

sociated with an increased risk for one neuropsychiatric disorder, while being protective 

against another disorder (P. H. Lee et al., 2019). 

It might be presumed that shared and predominantly disorder-specific genetic variants are 

involved in different neurobiological processes (P. H. Lee et al., 2019). Using functional 

genomic data, the PGC-CDG2 showed that pleiotropic (associated with at least two neu-

ropsychiatric disorders) and predominantly disorder-specific genetic variants (associated 

with a single neuropsychiatric disorder) were enriched for genes of distinct sets of neural 

cell types and brain tissues (P. H. Lee et al., 2019). Furthermore, genes mapped to plei-

otropic genetic variants showed increased expression in the brain with the beginning of 

the second prenatal trimester compared to genes mapped to non-pleiotropic genetic var-

iants (P. H. Lee et al., 2019). 

Highly pleiotropic SNP Antagonistic SNP Pred. SCZ-associated SNP 

Figure 1 | SNPs with complex associations across neuropsychiatric disorders 
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Several of the shared and predominantly disorder-specific genetic variants are likely to be 

involved in neurodevelopmental processes. For instance, rs8084351 was particularly in-

teresting because this SNP was associated with all eight disorders (P. H. Lee et al., 2021; 

Torres-Berrío et al., 2020; Vosberg et al., 2019). rs8084351 is an intronic variant in the 

DCC netrin 1 receptor (DCC) gene and may thus influence its transcription (Vosberg et 

al., 2019). DCC has been proposed to mediate axonal growth and axonal guidance for 

cortical projections (Bendriem & Ross, 2017), suggesting an important effect on the wiring 

of the human brain (Bendriem & Ross, 2017). Among the predominantly SCZ-associated 

SNPs, rs75059851 was previously highlighted in the second GWAS of SCZ by the PGC 

(Ripke et al., 2014). The SNP is located in the first intron of the immunoglobulin super-

family member 9b (IGSF9B) gene (Barešić et al., 2019), which encodes a cell adhesion 

molecule important for neurodevelopment (Barešić et al., 2019) and suggested to play a 

specific role in inhibitory synapses (Clarin et al., 2024). 

While (highly) pleiotropic genetic variants are of particular interest for understanding bio-

logical processes that are shared across neuropsychiatric disorders, uncovering neurobi-

ological correlates of genetic variants with disorder-specific or even antagonistic effects 

may shed light on why some neuropsychiatric disorders have distinct symptoms, such as 

hallucinations, which occur primarily in SCZ (Kahn et al., 2015), or difficulties with social 

communication, which are characteristic for ASD (Lord et al., 2020). In particular, it may 

reveal why some neuropsychiatric disorders have contrasting clinical characteristics, such 

as ASD and SCZ, which, despite their shared cognitive dysfunctions, exhibit opposite ex-

tremes in mental state attribution (Ciaramidaro et al., 2015). Here, patients with ASD tend 

to devoid people’s intentions, whereas patients with SCZ tend to attribute intentions where 

none exist (Ciaramidaro et al., 2015). 

1.5 Aim and outline of this thesis 

With brain structure recognized as a key intermediate phenotype for neuropsychiatric dis-

orders (Section 1.3) and increasing evidence for a substantial genetic overlap across neu-

ropsychiatric disorders (Section 1.4), this thesis set out to investigate the neurobiological 

correlates of genetic variants with complex associations across neuropsychiatric disorders 

(Figure 2). Here, 11 antagonistic, 23 highly pleiotropic, and 22 predominantly SCZ-asso-

ciated SNPs identified by the PGC-CDG2 (P. H. Lee et al., 2019) (Figure 1) are the subject 
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of analysis. These genetic variants are of particular interest as they may shed light on 

shared and distinct neurobiological processes in phenotypically different neuropsychiatric 

disorders. The findings from this thesis may prioritize SNPs and brain phenotypes for fu-

ture research across additional neurobiological scales. 

This thesis addressed two key challenges in the field of psychiatric genetics (Derks et al., 2022) 
that include (A) understanding the molecular mechanisms of how genetic variants associated with 
neuropsychiatric disorders influence disease risk, and (B) characterizing the genetic cross-disorder 
landscape of neuropsychiatric disorders. For reasons outlined in Section 1.3, this thesis addressed 
A by investigating the association of selected SNPs with brain structural and brain-related pheno-
types. Based on findings introduced in Section 1.4, this thesis advanced B by focusing on SNPs 
with complex associations across multiple neuropsychiatric disorders to improve our understanding 
of their diagnostic boundaries. Connections in B represent genetic correlations, as shown in Figure 
1 of (P. H. Lee et al., 2019). The icons were taken from the open NIH BIOART Source (https://bio-
art.niaid.nih.gov/). Abbreviations. ADHD, attention deficit hyperactivity disorder; SNP, single-nu-
cleotide polymorphism. 

This thesis is structured around two studies. Study 1 shed light on the association of the 

11 antagonistic SNPs with brain structure. In a series of subsequent analyses, significantly 

associated structural phenotypes were examined for their alteration in patients compared 

to controls, and implicated SNPs were further annotated for their association with gene 

expression in brain tissue and cognitive-behavioral traits. Moreover, a VBM analysis was 

performed using data from the FOR2107 study to shed light on brain structural associa-

tions beyond atlas-bound regions. Considering brain structure as an intermediate pheno-

type, as outlined in Section 1.3, it can be presumed that antagonistic SNPs for neuropsy-

chiatric disorders may also be associated with brain structural phenotypes. 

Study 2 examined the neurobiological correlates of the 23 highly pleiotropic SNPs and the 

22 predominantly SCZ-associated SNPs (P. H. Lee et al., 2019). In light of this, GRSs 

were calculated in data from the UKBB for each set of SNPs and associated with brain 
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Figure 2 | Neurobiological processes and genetic overlap across neuropsychiatric disorders 



27 

structural phenotypes. To provide additional insights into their potential influence on par-

ticipants’ psychological well-being, including their emotional stability, ability to cope with 

stress, or tendency to experience irritable mood, the association of the GRSs with out-

comes related to mental health was investigated. Based on the results presented in Sec-

tion 1.2.2, it was hypothesized that the GRS of highly pleiotropic SNPs would be more 

likely to be associated with brain regions implicated in multiple neuropsychiatric disorders, 

including the prefrontal cortex (Goodkind et al., 2015; Opel et al., 2020). In contrast, the 

GRS of predominantly SCZ-associated SNPs may be associated with brain regions spe-

cifically implicated in the pathogenesis of SCZ, such as the superior temporal region (Van 

Erp et al., 2018). Furthermore, it can be speculated that the GRS of highly pleiotropic 

SNPs may show pronounced associations with outcomes related to mental health, which 

are known to be nonspecific factors for neuropsychiatric disorders (Davis et al., 2020). 
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2 Material and Methods 

A schematic overview of the imaging genetic analyses performed in this thesis can be 

found in Figure 3. The tools and software used throughout this thesis are listed in Table 

S3. Of note, genetic variants refer to common genetic variants with a MAF of >1 % unless 

otherwise stated. 

This thesis performed two genomic imaging analyses to uncover mechanisms by which genetic 
variants may contribute to the risk for neuropsychiatric disorders (A). Study 1 (B) systematically 
characterized the antagonistic SNPs identified by the PGC-CDG2 (P. H. Lee et al., 2019) for their 
association with brain-related traits. Study 2 (C) examined neurobiological correlates of the highly 
pleiotropic and predominantly SCZ-associated SNPs identified by the PGC-CDG2 (P. H. Lee et al., 
2019). Icons are from the open-source NIH BIOART (https://bioart.niaid.nih.gov/). Abbreviations. 
GRS, genetic risk score; GWAS, genome-wide association study; IDP, image-derived phenotype; 
neuropsy., neuropsychiatric; PGC-CDG2, second cross-disorder GWAS meta-analysis of the 
PGC; PleioPsych-GRS, GRS of highly pleiotropic SNPs for neuropsychiatric disorders; SCZ, schiz-
ophrenia; SCZ-GRS, GRS of predominantly SCZ-associated SNPs; SNP, single-nucleotide poly-
morphism; VBM, voxel-based morphometry. 

Study 1 investigated the association of the 11 antagonistic SNPs (P. H. Lee et al., 2019) 

with 78 brain image-derived phenotypes (IDPs), including measures of subcortical vol-

ume, CT, and SA, based on GWAS summary statistics from the ENIGMA and CHARGE 

consortia (Section 2.1.1) (Grasby et al., 2020; Hibar et al., 2017; Satizabal et al., 2019). 

Study 1 
Antagonistic SNPs 

Study 2 
Highly pleiotropic and predominantly 

SCZ-associated SNPs 

Associations with brain IDPs using GWAS summary 
statistics 

Associations with gene expression in brain tissues 

Alterations of implicated brain IDPs in patients of 
neuropsychiatric disorders 

Associations with cognitive and behavioral traits 

Whole-brain VBM analysis in data from the 
FOR2107 study 

22 highly pleiotropic SNPs 21 SCZ-associated 
SNPs 

Base dataset: 
PGC-CDG2 

Associations of the GRSs with 154 brain IDPs and 
12 outcomes related to mental health 

Target dataset: 
UK Biobank 

PleioPsych-GRS SCZ-GRS 

Associations of the individual SNPs with brain IDPs 
using GWAS summary statistics 

B C 

A 

Figure 3 | Schematic overview of the imaging genetic analyses presented in this thesis 
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Subsequently, a bootstrapping test was performed to assess whether the 11 antagonistic 

SNPs had a significantly higher number of associations with IDPs compared to randomly 

drawn sets of 11 SNPs (Section 2.1.2). Furthermore, it was determined whether IDPs 

significantly associated with an antagonistic SNP were altered in patients compared to 

controls based on the case-control MRI studies by the ENIGMA consortium (Section 

2.1.3). In addition, antagonistic SNPs that were significantly associated with an IDP were 

further annotated for their association with gene expression in the brain using the geno-

type-tissue expression (GTEx) project and Brain eQTL Almanac (BRAINEAC) eQTL da-

tabases (Section 2.1.4) and with cognitive and behavioral traits using the Open Targets 

Genetics Portal (Section 2.1.5). Finally, a whole-brain VBM analysis was performed in 

data from the FOR2107 study to provide insights into the association of the 11 antagonistic 

SNPs with brain structure without being bound to the neuroanatomical boundaries given 

by the brain atlas (Section 2.1.6). 

Study 2 investigated the association of the GRSs of highly pleiotropic SNPs (PleioPsych-

GRS) and likewise predominantly SCZ-associated SNPs (SCZ-GRS) with brain structure 

and outcomes related to mental health in data from the UKBB (n=28,952) (Section 2.2). 

To prioritize SNPs of particular relevance, the associations of individual SNPs with brain 

structure were assessed based on GWAS summary statistics of the ENIGMA and 

CHARGE consortia (Grasby et al., 2020; Hibar et al., 2017; Satizabal et al., 2019). 

2.1 Study 1 

Ethical approval for Study 1 was obtained from the local ethics committees of the Univer-

sity of Marburg (AZ: 07/14) and the University of Münster (AZ: 2014-422-b-S), Germany. 

The methods presented in Study 1 were in line with the relevant guidelines and regula-

tions, and all participants provided informed consent (Federmann et al., 2024). 

2.1.1 Association of the antagonistic SNPs with brain image-derived phenotypes 

2.1.1.1 Materials 

The associations between the 11 antagonistic SNPs (Table 2) and the 78 IDPs (Table S4) 

were examined using summary statistics of large-scale GWAS from the ENIGMA and 

CHARGE consortia (Grasby et al., 2020; Hibar et al., 2017; Satizabal et al., 2019). GWAS 

summary statistics provide relevant statistical parameters of the trait associations of 
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SNPs, such as the effect allele, effect size, and estimated p-value (Uffelmann et al., 2021). 

As GWAS typically rely on large numbers of participants, GWAS summary statistics are a 

valuable resource with sufficient power to investigate SNP-to-IDP associations. 

Table 2 | Antagonistic SNPs 

rsID CHR BP 
(GRCh37) 

EA OA Risk Protective CADD VEP Nearest 
gene 

rs301805 1 8481016 T G MD SCZ 6.56 Intron variant SLC45A1 

rs6748341 2 225377574 C G SCZ ANO 4.84 Intron variant CUL3 

rs75595651 4 123133540 T C BIP MD 4.62 Intron variant KIAA1109 

rs1363105 5 103917790 T C ANO ADHD/ 
ASD/MD 

3.07 Intron variant NUDT12 

rs3806843 5 140212538 T C SCZ MD 0.99 Intron variant PCDHA7 

rs2388334 6 98591622 A G TS ASD/BIP 5.76 Intron variant POU3F2 

rs1933802 6 105365891 C G SCZ MD 4.16 Intergenic variant LIN28B 

rs2867673 7 71752652 T C SCZ ADHD 1.07 Intron variant CALN1 

rs9329221 8 10240202 T G SCZ ASD 7.72 Intron variant PRSS55 

rs2921036 8 8363897 T C ASD SCZ 3.79 Intergenic variant PRAG1 

rs9511168 13 19600475 A C ADHD ANO 8.80 Non-coding tran-
script exon variant 

TUBA3C 

Information on the genomic position, effect allele, and associated neuropsychiatric disorders of the 11 an-
tagonistic SNPs identified by the PGC-CDG2 were obtained from Table S3.3 in (P. H. Lee et al., 2019) and 
corresponding GWAS summary statistics excluding 23andMe subjects. PHRED-scaled CADD, Ensembl 
VEP, and nearest genes were taken from annotations provided in the Open Targets Genetics portal v22.10 
(Ghoussaini et al., 2021; Mountjoy et al., 2021). The CADD score estimates the deleteriousness of SNPs 
(Rentzsch et al., 2019), while the VEP annotates the potential effects of the SNPs (McLaren et al., 2016). 
Abbreviations. ADHD, attention deficit hyperactivity disorder; ANO, anorexia nervosa; ASD, autism spec-
trum disorder; BIP, bipolar disorder; BP, basepair position; CADD, combined annotation-dependent deple-
tion; CHR, chromosome; EA, effect allele; GRCh37, Genome Reference Consortium human build 37; 
GWAS, genome-wide association study; MD, major depression; OA, other allele; PGC, Psychiatric Ge-
nomics Consortium; SCZ, schizophrenia; SNP, single-nucleotide polymorphism; TS, Tourette’s syndrome; 
VEP, variant effect predictor. 

This analysis was based on the following GWAS, which were the most recent GWAS from 

the ENIGMA and CHARGE consortia for the respective IDPs at the time of analysis: (i) 

the GWAS of the volumes of the amygdala, brainstem, caudate, nucleus accumbens, pal-

lidum, putamen, and thalamus (nIDPs=7, nsamples=37,741) (Satizabal et al., 2019), (ii) the 

GWAS of hippocampal volume (nIDPs=1, nsamples=26,814) (Hibar et al., 2017), and (iii) the 

GWAS of CT and SA that encompass each one whole-brain as well as 34 regional 

measures as delineated by the Desikan-Killiany (DK) atlas (Desikan et al., 2006) 

(nIDPs=70, nsamples=33,281) (Grasby et al., 2020). Here, nsamples refers to the number of 

samples given in the GWAS summary statistics of the discovery cohort. The studies were 
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approved by the respective ethics committees, and all participants provided informed con-

sent as described in the respective publications (Grasby et al., 2020; Hibar et al., 2017; 

Satizabal et al., 2019). 

2.1.1.2 Statistical analysis 

The GWAS summary statistics were accessed via the ENIGMA-VIS tool (Novak et al., 

2012), which allowed the query of statistical parameters like the effect size, effect allele, 

and p-value of the SNP-to-IDP associations. The effect sizes constituted Z-scores for sub-

cortical IDPs and β-values for cortical IDPs. At the time of analysis, the ENIGMA-Vis tool 

did not incorporate the GWAS of subcortical volumes (Satizabal et al., 2019). Hence, the 

corresponding SNP-to-IDP associations were extracted from the original GWAS summary 

statistics provided upon request by the authors. Furthermore, the antagonistic SNP 

rs1933802 was replaced by rs314280 (r2=1; LD in Utah residents with Northern and West-

ern European ancestry (CEU)) as it was not covered in the GWAS summary statistics of 

cortical IDPs (Grasby et al., 2020). Here, the proxy SNP was queried using the LDproxy 

tool (Machiela & Chanock, 2015), which uses the haplotypes from the 1000 Genomes 

Project (Auton et al., 2015) to calculate the LD for a specific population. Finally, correction 

for multiple testing was performed using the Benjamini-Hochberg (BH) procedure 

(Benjamini & Hochberg, 1995) that controls the false discovery rate (FDR). SNP-to-IDP 

associations were deemed significant at pFDR<0.05. 

2.1.2 Bootstrapping the number of significant associations 

A bootstrapping test was performed to investigate whether the 11 antagonistic SNPs were 

associated with a higher number of IDPs than expected. This test compared the number 

of significant SNP-to-IDP associations of the 11 antagonistic SNPs to a sampling distribu-

tion. This distribution was constructed by obtaining the number of significant SNP-to-IDP 

associations for randomly drawn sets of 11 SNPs. 

Two separate bootstrapping tests were conducted. In a first test, K1=10,000 sets of 11 

SNPs were randomly drawn from the n=6,559,812 SNPs included in all 78 GWAS sum-

mary statistics from the ENIGMA and CHARGE consortia that were provided by the au-

thors upon request (Grasby et al., 2020; Hibar et al., 2017; Satizabal et al., 2019). In an 

independent second test, K2=1,000 sets of 11 SNPs were randomly drawn from the 
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n=13,999 SNPs that were included in all 78 GWAS summary statistics and had an asso-

ciation p-value of ≤1.0×10-06 within the GWAS summary statistics of the PGC-CDG2 (P. 

H. Lee et al., 2019) without the 23andMe samples. 

For each randomly drawn set of 11 SNPs, corresponding p-values of association with 

each of the 78 IDPs were retrieved from GWAS summary statistics. As done in the main 

analysis, multiple testing correction was applied using the BH procedure, and associations 

were deemed significant at pFDR<0.05. The number of significant SNP-to-IDP associations 

was obtained across (i) all 78 IDPs as well as across all IDPs specific to one brain meas-

ure, namely across (ii) eight IDPs of subcortical volume, (iii) 34 IDPs of CT, and (iv) 34 

IDPs of SA. Finally, for each of (i) - (iv), a sampling distribution was constructed over the 

number of significant SNP-to-IDP associations across K1 or K2 sets of 11 SNPs. 

The number of significant SNP-to-IDP associations of the 11 antagonistic SNPs t was 

compared to the sampling distribution, which enabled to assess whether this number was 

significantly higher than expected. To this end, the p-value was estimated by p=
1+#{tk

* ≥t}

K+1
 

(Davison & Hinkley, 1997) with #{tk*>t} denoting the count of randomly sampled sets of 11 

SNPs that showed a higher number of significant SNP-to-IDP associations compared to 

the 11 antagonistic SNPs. The comparisons were considered significant at p<6.25×10-03, 

corresponding to a Bonferroni correction for two bootstrapping tests and four sets of IDPs. 

2.1.3 Case-control MRI differences of the implicated brain image-derived pheno-

types 

For all IDPs that were significantly associated with an antagonistic SNP, it was examined 

whether these IDPs have previously been found to be altered in patients with neuropsy-

chiatric disorders compared to controls. The present analysis considered disorders asso-

ciated with the respective antagonistic SNP (P. H. Lee et al., 2019). 

Structural alterations were investigated using the case-control MRI meta- and mega-anal-

yses by the ENIGMA consortium for six of the eight neuropsychiatric disorders included 

in the PGC-CDG2 (see Table 3 for an overview). No case-control MRI study has been 

performed for TS at the time of writing. In addition, ANO was not included because the 

ENIGMA case-control MRI study comprised only female participants and, in part, acutely 

underweight cases whose weight loss may have affected brain structure (Walton et al., 
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2022). The six included case-control MRI studies used standardized pipelines for prepro-

cessing and meta-analysis (Thompson et al., 2020). However, the different case-control 

MRI studies varied in sample size, ranging from 1,658 cases of ASD to 4,474 cases of 

SCZ, but also in cohort characteristics, including age range, male-to-female ratio, and 

covariates (Table 3). Each study was approved by the respective ethics committees, and 

informed consent was obtained from all participants, as described elsewhere (see refer-

ences in Table 3). These studies incorporated IDPs similar to those used in Section 2.1.1 

but examined unilateral compared to bilateral measures (Table S4). 

Table 3 | Case-control MRI studies of neuropsychiatric disorders 

Disorder Vol./CT/SA ENIGMA study Ncases / 
Ncontrols 

age sex ICV site IQ Multiple testing 
correction 

ADHD Vol. Hoogman et al. (2017) 1,713/1,529 x x x x  FDR 
 CT, SA Hoogman et al. (2019) 2,246/1,934 x x x1   FDR 
ASD Vol., CT, SA Van Rooij et al. (2018) 1,658/1,606 x x x2  x FDR 

BIP Vol. Hibar et al. (2016) 1,710/2,594 x x x   FDR 
 CT, SA Hibar et al. (2018) 1,837/2,582 x x x1   FDR 
MD Vol. Schmaal et al. (2016) 1,728/7,199 x x x x  Bonferroni3 
 CT, SA Schmaal et al. (2017) 2,148/7,957 x x  x  FDR 
OCD Vol. Boedhoe et al. (2018) 1,830/1,759 x x x x  Bonferroni3 
 CT, SA Boedhoe et al. (2017) 1,905/1,760 x x x1 x  FDR 
SCZ Vol. Van Erp et al. (2016) 2,028/2,540 x x x x  Bonferroni3 
 CT, SA Van Erp et al. (2018) 4,474/5,098 x x    FDR 

Overview of the ENIGMA consortium case-control MRI studies of ADHD, ASD, BIP, MD, OCD, and SCZ 
adapted from Table S2 in (Federmann et al., 2024). Here, the numbers of cases (Ncases) and controls (Ncon-

trols) were obtained from the individual studies. The included covariates and the procedure for multiple testing 
corrections were taken from the study overview of the ENIGMA Toolbox (https://enigma-
toolbox.readthedocs.io/en/latest/pages/04.loadsumstats/index.html). Site refers to the scanner site. 1ICV 
was included as a covariate for SA measures, and 2ICV for subcortical measures. Significance was consid-
ered with 3p<5.6×10-03. Abbreviations. ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum 
disorder; BIP, bipolar disorder; CT, cortical thickness; ICV, intracranial volume; IQ, intelligence quotient; 
MD, major depression; MRI, magnetic resonance imaging; OCD, obsessive-compulsive disorder; p, p-
value; SA, surface area; SCZ, schizophrenia; Vol., volume. 

Statistical parameters of case-control MRI differences, including uncorrected p-values for 

subcortical IDPs, FDR-corrected p-values for cortical IDPs, and effect sizes denoted by 

Cohen’s d were accessed for each study using the ENIGMA Toolbox (Larivière et al., 

2021). Case-control MRI differences of the main analyses were retrieved and considered 

significant at pFDR<0.05 for cortical IDPs and p<5.6×10-03 after Bonferroni correction for 

subcortical IDPs. 
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2.1.4 Antagonistic SNPs and gene expression in brain tissues 

Antagonistic SNPs significantly associated with at least one IDP (n=8) were investigated 

for their association with gene expression levels in brain tissues. This analysis is based 

on eQTLs of 12 brain tissues from the GTEx project database v8 (Lonsdale et al., 2013), 

including the amygdala, Brodmann area 9, Brodmann area 24, caudate, cerebellum, cer-

ebellar hemisphere, entire cortex, hippocampus, hypothalamus, nucleus accumbens, pu-

tamen, and substantia nigra. In addition, the analysis used eQTLs of four brain tissues 

from the BRAINEAC database (Ramasamy et al., 2014). To avoid overlap with the brain 

tissues of GTEx, a subset of brain tissues was selected from the BRAINEAC database, 

namely the frontal cortex, occipital cortex, temporal cortex, and the average across all ten 

tissues of the BRAINEAC database. The eQTLs from GTEx v8 were based on RNA-Seq 

data from n=205 donors for cortical tissue to n=114 donors for substantia nigra tissue (cf., 

Figure 1 in Aguet et al., 2020). In contrast, eQTLs from BRAINEAC were based on cortical 

tissues from n=134 donors (Ramasamy et al., 2014). For this analysis, rs75595651 was 

substituted by the proxy SNP rs77087420 (LD in CEU r2=1) using the LDproxy tool, as it 

was not covered in both databases. 

The antagonistic SNPs were deemed to be part of an eQTL with p<4.0×10-04 using Bon-

ferroni correction for eight SNPs and 16 brain tissues. eQTLs that regulate the expression 

of pseudogenes as given by the locus type in the database of the HUGO Gene Nomen-

clature Committee (Tweedie et al., 2021) were not reported. 

2.1.5 Antagonistic SNPs and cognitive and behavioral traits 

Associations with cognitive and behavioral traits were reported for all antagonistic SNPs 

significantly associated with at least one IDP (n=8). Traits of interest encompassed cog-

nitive performance, educational attainment, lifestyle, personality, food preferences, sleep 

factors, and mental health outcomes. Trait associations with any of the eight neuropsychi-

atric disorders of the PGC-CDG2 were excluded. 

Trait associations of SNPs were queried from the Open Targets Genetics portal v22.10 

(Ghoussaini et al., 2021; Mountjoy et al., 2021), which integrates GWAS summary statis-

tics from the NHGRI-EBI GWAS Catalog (Buniello et al., 2019) as well as GWAS per-

formed in large-scale biobanks such as the UKBB (https://www.nealelab.is/uk-biobank/) 
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and the FinnGen project (Kurki et al., 2023). SNP associations were reported at genome-

wide significance (p<5.0×10-08). 

2.1.6 Whole-brain voxel-based morphometry analysis in data from the FOR2107 

study 

Whole-brain VBM analysis was performed using data from the FOR2107 study to shed 

light on the associations of the antagonistic SNPs with brain structure beyond atlas-bound 

brain regions. Data collection, preprocessing, and quality control of brain MRI scans and 

genotype data have been performed by colleagues from the University of Marburg, Uni-

versity of Münster, University of Bonn, and Max Planck Institute of Psychiatry in Munich. 

These steps are presented in Sections 2.1.6.1 to 2.1.6.5 as described in previous studies 

(e.g., T. Kircher et al., 2019; Vogelbacher et al., 2018). The whole-brain VBM analysis of 

the 11 antagonistic SNPs was performed in the context of the present study (Section 

2.1.6.6). Thereby, an existing pipeline was used. Here, the pipeline was set up and run to 

test the association between the antagonistic SNPs and brain structure with the support 

of Dr. Lisa Sindermann from the University of Bonn. 

2.1.6.1 Study design 

The FOR2107 study was designed to uncover neurobiological correlates of disorders 

across the affective disorder-psychosis spectrum (Kircher et al., 2019). In this context, the 

FOR2107 study collected data from healthy controls as well as individuals with a DSM-IV 

diagnosis of BIP, MDD, SCZ, or schizoaffective disorder. The collection of multimodal 

data, including brain MRI scans, genotype data, and detailed cognitive and psychological 

assessments, took place in Marburg and Münster, Germany (Kircher et al., 2019). The 

study population comprised more than 2,000 individuals aged 18 to 65 years at the date 

of analysis. All participants gave written informed consent. Ethical approval was obtained 

from the local ethics committees of the University of Marburg (AZ: 07/14) and the Univer-

sity of Münster (AZ: 2014-422-b-S), Germany (Kircher et al., 2019). 

2.1.6.2 Participants 

The VBM analysis was performed in a subsample of n=847 healthy controls and n=754 

patients with MDD. 64.2 % of the subsample were female. The mean age was 35.4 years 
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(standard deviation (SD)=13.1 years). Patients with BIP, SCZ, and schizoaffective disor-

der were not included in the present VBM analysis, as structural brain changes are more 

pronounced in individuals with these disorders (Cheon et al., 2022). Individuals who did 

not pass the genetic quality control (Section 2.1.6.3) and imaging quality control (Section 

2.1.6.5) were excluded previously. 

2.1.6.3 Genotyping, genetic quality control, and imputation 

The preprocessing of the genetic data of the FOR2107 study was performed in a previous 

study and is described in the Supplementary Information of Andlauer et al. (2021). 

For each sample, DNA was extracted from peripheral blood. Genome-wide genotyping 

was performed using the Infinium PsychArray-24 BeadChip (Illumina, San Diego, CA, US) 

(Andlauer et al., 2021). Quality control of genotype data was performed using PLINK v1.90 

(Chang et al., 2015) and R v3.5. The following variant and sample filters were used: SNPs 

with a call rate of <98 % or a MAF of <1 % were removed (Andlauer et al., 2021). Subse-

quently, samples with genotyping rates of <98 %, sex mismatches, cryptic relatives with 

pi-hat≥12.5, or deviation in autosomal and X-chromosomal heterozygosity (>4 SD from 

the mean) were removed. Genetic duplicates were dropped. Multidimensional scaling 

(MDS) ancestry components were computed per sample (Andlauer et al., 2021). Next, all 

samples with a deviation of >4 SD in the first eight MDS components were removed. The 

genetic variants were further filtered by removing SNPs with Hardy-Weinberg equilibrium 

(HWE) p-value of p<1.0×10-06, non-autosomal SNPs, or ambiguous SNPs. The genotype 

data was aligned to the 1000 Genomes phase reference panel using SHAPEIT v2.3.2 

(Andlauer et al., 2021). The imputation has been carried out using IMPUTE v2 (B. Howie 

et al., 2012; B. N. Howie et al., 2009) and post-imputation SNPs with an imputation quality 

metric (INFO) of <0.8 or a MAF of <1 % were dropped (Andlauer et al., 2021). 

As part of this study, genotype dosages of the 11 antagonistic SNPs were extracted for 

the remaining subsample. Based on this subset, MDS components were calculated per 

sample using an in-house script for later use as covariates to account for population strat-

ification. 

2.1.6.4 MRI acquisition 

MRI data, namely T1-weighted brain scans, were acquired on a 3 Tesla Siemens Prisma 

MRI scanner in Münster and a 3 Tesla Siemens Trio Trim MRI scanner in Marburg 
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(Vogelbacher et al., 2018). The head matrix Rx coil had 20 channels in Münster and 12 

channels in Marburg. An MP-RAGE sequence was performed with a field-of-view of 256 

mm, a voxel resolution of 1×1×1 mm3, and 192 (Münster) and 176 (Marburg) sagittal slices 

(Vogelbacher et al., 2018). 

2.1.6.5 MRI data preprocessing 

The T1-weighted brain scans were visually inspected for artifacts and structural abnor-

malities by a senior clinician (Vogelbacher et al., 2018). Brain MRI scans were prepro-

cessed with the computational anatomy toolbox (CAT)-12 v1184 (Gaser et al., 2024), 

which extends the statistical parametric mapping (SPM)-12 toolbox (Penny et al., 2011) 

using default parameters. Brain MRI scans were segmented into cerebrospinal fluid, gray 

matter, and white matter (Vogelbacher et al., 2018). Next, segmented brain MRI scans 

were spatially normalized to the MNI152 space using the Diffeomorphic Anatomical Reg-

istration Through Exponentiated Lie Algebra (DARTEL) algorithm (Ashburner, 2007). The 

reparametrized gray matter segments were smoothed with an 8 mm full width at half max-

imum Gaussian kernel. Lastly, the total intracranial volume (ICV) has been extracted 

(Vogelbacher et al., 2018). 

2.1.6.6 Statistical analysis 

Based on the assumption of an additive biometric model (see Section 1.2.3), this VBM 

analysis tested the positive and negative associations of genotype dosages for the 11 

antagonistic SNPs with voxel-wise GMV using general linear models as implemented in 

the CAT-12 toolbox v2159 (Gaser et al., 2024) of the SPM12 toolbox v7771 (Penny et al., 

2011). It was corrected for age, sex, diagnosis of MDD, ICV, and the first three MDS 

components. In addition, it was corrected for a scanner Rx coil change in Marburg that 

took place during data collection. 

GMV clusters associated with an antagonistic SNP's allele dosage were presented with a 

cluster-forming threshold of puncorrected<0.001 and cluster size of k>10 voxels. Associations 

were deemed significant with a peak-level family-wise error (FWE) correction pFWE<0.05. 

Clusters were labeled using the automated anatomical labelling atlas (AAL) v3 (Rolls et 

al., 2020; Tzourio-Mazoyer et al., 2002). Furthermore, the peak voxel of the GMV cluster 

was labeled using the Julich Brain Atlas v3.1 (Amunts et al., 2020). Here, a more fine-
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grained annotation of the peak voxel was achieved based on cytoarchitectonic maps of 

the human brain. 

2.2 Study 2 

2.2.1 Participants 

The associations of the PleioPsych-GRS and SCZ-GRS with IDPs and outcomes related 

to mental health were examined using genotype data, brain MRI scans, and mental health 

assessments from the UKBB resource (Bycroft et al., 2018). The UKBB is a prospective 

biobank study that has recruited over 500,000 individuals between the ages of 40 and 69 

years to promote research on the determinants of health-related outcomes (Bycroft et al., 

2018). Here, genomic, MRI imaging, medical history, and lifestyle questionnaire data were 

collected at 22 assessment centers across the UK (Bycroft et al., 2018). Ethical approval 

for the UKBB study was granted by the North West Multi-centre Research Ethics Commit-

tee under the reference number 11/NW/0382 (see https://www.ukbiobank.ac.uk/learn-

more-about-uk-biobank/about-us/ethics). Written informed consent was obtained from all 

study participants. The present study was conducted under project application 41655. 

Individuals with an ICD-10 diagnosis (data-field in the UKBB showcase: 41720; see 

https://biobank.ndph.ox.ac.uk/ukb/) related to the central nervous system were excluded 

(n=1,127; see Supplementary Table S5 for a detailed list of ICD-10 codes). The resulting 

subsample included n=28,952 (46.9 % male) individuals of self-reported White British an-

cestry with available genotype and brain MRI data that passed genetic quality control. The 

mean age was 63.8 years (SD=7.4 years). 

As the PGC-CDG2 meta-analysis included samples from the UKBB due to a GWAS of 

MD (Wray et al., 2018), a sensitivity analysis was performed excluding samples with self-

reported and diagnosed depression. According to the case ascertainment of the respec-

tive GWAS of MD (Wray et al., 2018), samples with an ICD-10 diagnosis of MDD (ICD-10 

codes F32 and F33; data-field: 41270) and samples who reported having been depressed 

or feeling down for at least two weeks (data-field: 4609), or having seen a psychiatrist for 

anxiety or depression (data-field: 2100) were excluded. For self-reports, data records were 

taken from the first and second assessments as the GWAS of MD (Wray et al., 2018) was 

based on the UKBB interim data release. A total of n=21,556 samples (48.6 % males) 
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remained for sensitivity analyses. The subsample had a mean age of 64.0 years (SD=7.4 

years). 

2.2.2 Materials 

2.2.2.1 Genotyping and genetic quality control 

The UKBB study team extracted DNA from whole blood samples. The Affymetrix Re-

search Services Laboratory carried out genotyping using the Applied Biosystems UK Bi-

LEVE Axiom® Array and the Applied Biosystems UKBB Axiom® Array (Bycroft et al., 

2018). The UKBB provided imputed genotype data positioned according to the GRCh37 

(category in the UKBB showcase: 100319). 

In light of a previous project (Primus et al., 2024), genetic quality control using PLINK 1.9 

and 2.0 (Chang et al., 2015) was performed by collaborators at the Institute of Neuroge-

nomics of the Helmholtz Zentrum München, Germany. Variants with a MAF of <0.01, a 

call rate of <95 %, a deviation from HWE of p<1×10-6, or an INFO metric of <0.3 were 

removed. Furthermore, all samples with genotype coverage <95 %, sex mismatch, and 

heterozygosity rates that extended ±3 SD from the mean were dropped (Primus et al., 

2024). In addition, one sample was excluded for each pair of samples with a kinship co-

efficient >0.088, corresponding to up to and including second-degree relatedness 

(Manichaikul et al., 2010). Ancestry principal components were calculated using PLINK 

2.0 to capture the genetic variance across samples with self-reported White British ances-

try (data-field: 21000) (Primus et al., 2024). 

2.2.2.2 Single-nucleotide polymorphisms 

The highly pleiotropic and predominantly SCZ-associated SNPs were derived from the 

PGC-CDG2 (P. H. Lee et al., 2019). The meta-analysis framework used by the PGC-

CDG2 provided for each SNP the posterior probability of association with each of the eight 

neuropsychiatric disorders denoted by the m-value (Han & Eskin, 2012). Note that asso-

ciations with m<0.8 can be considered ambiguous, and associations with m≥0.8 can be 

considered evident (see Figure 1 in Han & Eskin, 2012). 

The PGC-CDG2 defined a highly pleiotropic SNP if the m-values for at least four neuro-

psychiatric disorders were greater than or equal to 0.9 (P. H. Lee et al., 2019). In total, 23 

highly pleiotropic SNPs were identified (see Table 2 in P. H. Lee et al., 2019; and Table 
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S1). For the following analyses, the palindromic SNP rs11688767 was excluded because 

its MAF exceeds 40 % and thus, allelic mismatches between the base and target datasets 

cannot be inferred. 

The predominantly SCZ-associated SNPs were derived from Table S3.2 of the PGC-

CDG2 (P. H. Lee et al., 2019). Here, any SNP that showed an association of m≥0.9 for 

SCZ but m<0.8 for the other neuropsychiatric disorders was considered predominantly 

SCZ-associated. Applying a threshold of m<0.8 ensures that there is no strong evidence 

of association between the SNP and other neuropsychiatric disorders. In total, 22 predom-

inantly SCZ-associated SNPs were derived from the PGC-CDG2 (P. H. Lee et al., 2019) 

(Table S2). One palindromic SNP (rs2801578) with a MAF greater than 40 % was ex-

cluded from these SNPs. Furthermore, rs13217619 was replaced by rs34718920 (LD in 

CEU r2=1) as it was not covered in the GWAS summary statistics of the PGC-CDG2 ex-

cluding the 23andMe cohort (P. H. Lee et al., 2019). 

2.2.2.3 Genetic risk scores 

The calculation of the GRS for individuals in data from the UKBB was performed with the 

support of Dr. Kaustubh R. Patil from the Institute of Neuroscience and Medicine (INM-7) 

at the Forschungszentrum Jülich, Germany. 

The PleioPsych-GRS and SCZ-GRS, which aggregate the effects of 22 highly pleiotropic 

SNPs and 21 predominantly SCZ-associated SNPs, respectively, were calculated using 

PRSice v2.3.5 (Choi & O’Reilly, 2019). SNP effect sizes were taken from the GWAS sum-

mary statistics of the PGC-CDG2 without samples from the 23andMe cohort (P. H. Lee et 

al., 2019). The GRS calculation did not include the steps of LD-clumping or p-value thresh-

olding, as the selected SNPs were part of LD-independent and genome-wide significant 

loci. Lastly, the GRSs were standardized by Z-scoring and visually inspected for normality. 

It should be noted that the SCZ-GRS was calculated based on effect sizes derived from 

a cross-disorder GWAS. While it could be argued that other neuropsychiatric disorders 

influence the effect sizes, it must be pointed out that the PGC-CDG2 applied a subset-

based GWAS meta-analysis framework (Bhattacharjee et al., 2012). The effect size of 

association was maximized across all combinations of disorder subsets (Bhattacharjee et 

al., 2012), allowing potential disorder-specific effects to be captured. However, to assess 
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whether the origin of the SNP effect sizes influenced the present results, sensitivity anal-

yses were conducted with the SCZ-GRS calculated based on the effect sizes from the 

most recent GWAS of SCZ by the PGC (PGC-SCZ3) (Trubetskoy et al., 2022). Here, SNP 

effect sizes were taken from the core GWAS summary statistics of the PGC-SCZ3, includ-

ing samples from multiple ancestries (ncases=67,390 and ncontrols=94,015). Of note, the 

PGC-SCZ3 did not include participants from the UKBB (Trubetskoy et al., 2022). As 

rs10211550, rs11782089, and rs144158419 were not covered in the GWAS summary 

statistics, these SNPs were replaced by the following proxy SNPs: rs67657812 (LD in 

CEU r2=0.8), rs7839435 (LD in CEU r2=1), and rs72934586 (LD in CEU r2=1). 

2.2.2.4 Brain structural image acquisition and image-derived phenotypes 

T1-weighted MRI scans were acquired at the UKBB recruitment centers in Bristol, New-

castle, Cheadle, and Reading (Bycroft et al., 2018). The brain MRI scans were prepro-

cessed in light of a previous project by colleagues of the Institute of Neuroscience and 

Medicine (INM-7) at the Forschungszentrum Jülich, Germany, and the Institute of 

Neurogenomics at the Helmholtz Zentrum München, Germany (Primus et al., 2024). The 

preprocessing was done with fMRIprep (Esteban et al., 2018). fMRIprep implements the 

FreeSurfer v6 preprocessing pipeline (Dale et al., 1999) that consists of skull stripping, 

tissue segmentation, and spatial normalization to reconstruct brain surfaces. Based on 

these, subcortical segmentation of the amygdala, caudate, hippocampus, nucleus accum-

bens, pallidum, putamen, and thalamus and cortical parcellation of 34 regions delineated 

by the DK atlas (Desikan et al., 2006) was performed. Next, regional unilateral measures 

of subcortical volume, CT, and SA, as well as average CT per hemisphere, total SA per 

hemisphere, and total ICV were extracted. Finally, the Euler number, a measure of MRI 

image reconstruction quality, was calculated using FreeSurfer v6. In total, 154 IDPs were 

incorporated in the association analysis (Table S4). This included unilateral measures of 

seven subcortical volumes, unilateral CT and SA for 34 cortical regions each, average CT 

per hemisphere, and total SA per hemisphere. In light of this analysis, IDPs with ±3 SD 

from the mean were removed, and Z-scores were derived. 

2.2.2.5 Outcomes related to mental health 

The association of the GRS with the following 12 outcomes related to mental health was 

investigated: Mood swings, miserableness, irritability, sensitivity / hurt feelings, fed-up 
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feelings, nervous feelings, worrier / anxious feelings, tense feelings / highly strung, worry 

too long after embarrassment, suffer from nerves, loneliness, and guilty feelings (data-

fields: 1920-2030). A self-rated touchscreen questionnaire assessed all outcomes by ask-

ing, for instance, ‘Does your mood often go up and down?’ (data-field: 1920, mood 

swings). The present analysis included responses with ‘yes’ or ‘no’, while responses with 

‘do not know’ or ‘prefer not to answer’ were dropped. Of note, the assessment was com-

pleted for all participants in the UKBB subsample used in this study (n=28,952). Data 

obtained at a visit corresponding to the brain MRI scan were analyzed. 

2.2.3 Statistical analysis 

2.2.3.1 Main analysis 

This study examined the associations between the PleioPsych-GRS and the SCZ-GRS 

with each of the 154 IDPs. Univariate multiple linear regression models were used with 

age at MRI scan (data-field: 31-2.0), age2, and sex (data-field: 21003-2.0) as covariates. 

Furthermore, similar to the case-control MRI studies by the ENIGMA consortium (Table 

3), ICV was included as a covariate for subcortical volume and regional SA measures. 

Correction for multiple testing was performed using the BH method for each GRS sepa-

rately. Associations with pFDR<0.05 were considered significant. 

The associations between the PleioPsych-GRS and the SCZ-GRS with each of the 12 

outcomes related to mental health were tested using logistic regression. Again, age, age2, 

and sex were included as covariates. Associations were considered significant with 

pFDR<0.05 after correction for multiple testing using the BH method. 

2.2.3.2 Sensitivity analysis 

The following sensitivity analyses were conducted: First, the association analysis between 

GRSs and IDPs and between GRSs and outcomes related to mental health was repeated 

with an expanded set of covariates, including the interaction of sex and age, Euler number 

as a proxy for surface reconstruction quality, head positions x, y, z in the MRI scanner 

(data-fields: 25756-2.0, 25757-2.0, 25758-2.0)), the UKBB recruitment center as a dummy 

variable (data-field: 54), and the first ten ancestry principal components as additional co-

variates. Second, association analyses were repeated excluding samples with self-re-

ported or diagnosed depression (see Section 2.2.1). Third, the association analyses were 
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repeated with the SCZ-GRS based on effect sizes from a GWAS of SCZ (Trubetskoy et 

al., 2022) (see Section 2.2.2.3). 

2.2.4 Association of the individual SNPs with brain image-derived phenotypes 

The associations of highly pleiotropic and predominantly SCZ-associated SNPs with 77 

bilateral IDPs were investigated using GWAS data from the ENIGMA and CHARGE con-

sortia (Grasby et al., 2020; Hibar et al., 2017; Satizabal et al., 2019). The respective 

GWAS and the procedure for extracting SNP-to-IDP associations from the GWAS sum-

mary statistics were previously described for Study 1 in Section 2.1.1. The IDPs included 

the volumes of seven subcortical structures, as well as CT and SA measures of the whole 

brain and 34 regions of the DK atlas (see Table S4 for a list of IDPs). Of note, the IDPs 

aligned with the aforementioned GRS association analysis, but bilateral versus unilateral 

measures were incorporated. After multiple testing corrections using the BH method sep-

arately for the two sets of SNPs, associations were considered significant at pFDR<0.05. 

Proxy SNPs replaced two SNPs because they were not covered in at least one GWAS 

summary statistics. The predominantly SCZ-associated SNPs rs10211550 was replaced 

by rs11891750 (LD in CEU r2=0.8) and rs188099135 by rs11780834 (LD in CEU r2=1). 

For the highly pleiotropic SNP rs117956829 and the predominantly SCZ-associated SNP 

rs12826178, no proxy SNPs with LD in CEU r2>0.6 were available, and thus they were 

excluded from the present analysis. In total, 21 highly pleiotropic and 20 predominantly 

SCZ-associated SNPs remained for analysis.  
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3 Results 

3.1 Study 1 

3.1.1 Association of the antagonistic SNPs with brain image-derived phenotypes 

Eight of the 11 antagonistic SNPs were significantly associated with at least one IDP (Fig-

ure 4 and Figure 5). 

Significant associations (pFDR<0.05) with the volume of subcortical structures. ↗ indicates in-
creased risk, whereas ↘ indicates decreased risk for a disorder with respect to the effect allele. 
The association of rs3806843 with the nucleus accumbens is not shown, as the brain plot does not 
cover the region. The embedded Tables were adapted from Figure 2 in (Federmann et al., 2024). 
Abbreviations. ASD, autism spectrum disorder; FDR, false discovery rate; IDP, image-derived phe-
notype; MD, major depression; p, p-value; SCZ, schizophrenia; SNP, single-nucleotide polymor-
phism; Z, Z-score. 

These comprised, most frequently, measures of SA. In particular, seven SNPs were as-

sociated with SA measures, three SNPs with CT measures, and three SNPs with subcor-

tical volume. The lowest p-values were found for the association of the T allele of 

rs9329221 (increased risk for SCZ; protective against ASD) with decreased SA of the 

superior temporal region (pFDR=6.9×10-09; β=-12.5) (Figure 5f) and the association of the 

T allele of rs2921036 (increased risk for ASD; protective against SCZ) with increased SA 

of the superior temporal region (pFDR=4.8×10-06; β=10.4) (Figure 5g). 

Implicated IDPs encompassed brain regions spread across the cortex (Figure 5). Thereby, 

it can be observed that antagonistic SNPs are likely to be associated with IDPs of neigh-

boring brain regions. For example, the T allele of rs75595651 has been significantly as-

sociated with increased CT in the rostral and caudal anterior cingulate (Figure 5c). 

rs3806843 – T (effect allele)/C ↗ SCZ, ↘ MD 
Brain region p pFDR Z 
putamen 1.6×10-05 3.1×10-03 -4.3 
caudate 2.1×10-05 3.1×10-03 -4.3 
nucleus accumbens 3.1×10-04 1.6×10-02 -3.6     

rs314280 – A/G 
 

↗ SCZ, ↘ MD 
caudate 1.4×10-03 4.6×10-02 3.2     
    

    
rs2921036 – T/C 

 
↗ ASD, ↘ SCZ 

brainstem 2.3×10-04 1.2×10-02 3.7 

a 

b 

c 

Figure 4 | Associations of the antagonistic SNPs with subcortical IDPs 
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Significant associations (pFDR<0.05) with CT measures are shown in blue and SA measures in red. ↗ 
indicates increased risk, whereas ↘ indicates decreased risk for a disorder with respect to the effect 
allele. The association of rs75595651 with the frontal pole is not shown, as the brain plot does not 
cover the region. The embedded Tables were adapted from Figure 2 in (Federmann et al., 2024). 
Abbreviations. ANO, anorexia nervosa; ant., anterior; ASD, autism spectrum disorder; β, effect size; 
BIP, bipolar disorder; cing., cingulate; CT, cortical thickness; FDR, false discovery rate; IDP, image-
derived phenotype; lat., lateral; MD, major depression; p, p-value; SA, surface area; SCZ, schizophre-
nia; SNP, single-nucleotide polymorphism; sts., superior temporal sulcus; sup., superior; TS, Tourette’s 
syndrome; trans., transverse; Vol., volume. 

rs301805 – T (effect allele)/G  ↗ MD, ↘ SCZ 
CT/SA Brain region p pFDR β 
CT posterior cing. 1.1×10-03 3.7×10-02 3.0×10-03 
SA caudal ant. cing. 7.1×10-04 2.8×10-02 -2.6 

insula 1.0×10-03 3.6×10-02 4.3      

rs6748341 – C/G ↗ SCZ, ↘ ANO 
SA pars opercularis 7.6×10-05 5.7×10-03 5.8      

          

rs75595651 – T/C ↗ BIP, ↘ MD 
CT rostral ant. cing. 2.9×10-05 3.1×10-03 1.3×10-02 

caudal ant. cing. 2.2×10-04 1.2×10-02 1.3×10-02 
SA frontal pole 7.9×10-05 5.7×10-03 2.0      

rs2388334 – A/G ↗ TS, ↘ ASD/BIP 
SA trans. temporal 2.2×10-05 3.1×10-03 1.6  

banks of sts. 2.9×10-05 3.1×10-03 -3.5  
insula 6.0×10-04 2.5×10-02 4.4  
inferior parietal 1.5×10-03 4.8×10-02 -10.3      

rs314280 – A/G ↗ SCZ, ↘ MD 
SA pericalcarine 5.4×10-05 4.7×10-03 -6.2  

lingual 4.7×10-04 2.0×10-02 -8.1      

     
rs9329221 – T/G ↗ SCZ, ↘ ASD 
CT supramarginal 3.8×10-04 1.8×10-02 2.0×10-03 
SA sup. temporal 7.9×10-12 6.9×10-09 -12.5  

trans. temporal 1.3×10-05 3.1×10-03 -1.7  
isthmus cing. 2.0×10-04 1.2×10-02 3.3  
lat. orbitofrontal 3.9×10-04 1.8×10-02 5.0  
posterior cing. 8.5×10-04 3.2×10-02 -2.9      

rs2921036 – T/C ↗ ASD, ↘ SCZ 
SA sup. temporal 1.1×10-08 4.8×10-06 10.4 

trans. temporal 3.5×10-05 3.3×10-03 1.6 
lat. orbitofrontal 1.2×10-04 8.0×10-03 -5.4 

CT SA 
a 

b 

c 

d 

e 

f 

g 

Figure 5 | Associations of the antagonistic SNPs with cortical IDPs 
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3.1.2 Bootstrapping the number of significant associations 

The 11 antagonistic SNPs were significantly associated with an increased number of IDPs 

compared to the sampling distribution. In the first test, this distribution was constructed by 

drawing sets of 11 SNPs from all SNPs represented in the 78 GWAS summary statistics 

of the incorporated IDPs and assessing the number of significant associations with 78 

IDPs for each set. Notably, the 11 antagonistic SNPs showed a significantly higher num-

ber of associations compared to the sampling distribution across all IDPs (p=1.0×10-04) 

and all IDPs of a specific measure, namely all IDPs of subcortical volume (p=5.0×10-04), 

IDPs of CT measures (p=5.0×10-03), and IDPs of SA measures (p=1.0×10-04). 

In a second test, the sampling distribution was constructed by drawing sets of 11 SNPs 

that additionally showed an association at p≤1.0×10-06 with neuropsychiatric disorders in 

the GWAS summary statistics of the PGC-CDG2 excluding samples from the 23andMe 

cohort (P. H. Lee et al., 2019). Likewise, for each set of 11 SNPs, the number of significant 

associations with 78 IDPs was obtained. The 11 antagonistic SNPs presented a signifi-

cantly higher number of associations compared to the sampling distribution across all 

IDPs (p=3.0×10-03), all IDPs of subcortical volume (p=1.0×10-03), and IDPs of SA 

measures (p=3.0×10-03). For IDPs of CT measures, the 11 antagonistic SNPs showed 

only a nominally significant higher number of associations (p=2.0×10-02). 

3.1.3 Case-control MRI differences of the implicated brain image-derived pheno-

types 

IDPs that were significantly associated with an antagonistic SNP showed no oppositely 

directed case-control MRI differences, meaning that the implicated IDP was not found to 

be increased in cases compared to controls for one disorder and, at the same time, de-

creased in cases compared to controls for the other disorder. Here, case-control MRI dif-

ferences were assessed for disorders associated with the respective antagonistic SNP. 

Nonetheless, several implicated IDPs showed significant case-control MRI differences in 

patients with BIP, MD, or SCZ (Table 4). For example, the T allele of rs9329221 (increased 

risk for SCZ) was significantly associated with decreased superior temporal SA 

(pFDR=6.9×10-09, β=-12.5) (Grasby et al., 2020), a region that showed pronounced SA de-

crease in patients with SCZ compared to controls (pFDR, left=9.2×10-09, dleft=-0.196; pFDR, 

right=9.3×10-07, dright=-0.195) (Figure 6) (Van Erp et al., 2018). 
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Table 4 | Alterations of implicated IDPs in patients with neuropsychiatric disorders 

Disorder Vol./CT/SA Brain region d pFDR 

SCZ Vol. nucleus accumbens -0.25 1.5×10-05 
   dL pFDR, L dR pFDR, R 

BIP CT caudal anterior cingulate -0.095 4.2×10-02 n.s. n.s. 
  rostral anterior cingulate -0.153 3.8×10-05 n.s. n.s. 
MD CT posterior cingulate -0.099 1.8×10-02 -0.093 2.2×10-02 
  rostral anterior cingulate -0.130 3.0×10-02 -0.098 3.4×10-02 
SCZ CT posterior cingulate -0.298 4.7×10-21 -0.310 1.2×10-26 
  supramarginal -0.395 4.9×10-15 -0.386 1.3×10-17 
 SA caudal anterior cingulate -0.128 5.1×10-04 -0.156 1.2×10-08 
  insula -0.122 3.5×10-03 -0.113 4.3×10-03 
  lateral orbitofrontal -0.179 4.2×10-05 -0.150 1.1×10-04 
  lingual -0.148 7.8×10-05 -0.168 8.3×10-07 
  pars opercularis -0.151 9.0×10-06 -0.146 2.0×10-07 
  pericalcarine -0.133 1.7×10-03 -0.107 3.8×10-03 
  posterior cingulate -0.117 1.5×10-03 -0.125 1.3×10-03 
  superior temporal -0.196 9.2×10-09 -0.195 9.3×10-07 
  transverse temporal -0.151 7.4×10-03 -0.169 9.0×10-09 

Case-control MRI differences of IDPs that were significantly associated with an antagonistic SNP (Fig-
ure 4 and Figure 5) are shown at pFDR<0.05 for cortical IDPs and p<5.6×10-03 for subcortical IDPs. Ref-
erences are given in Section 2.1.3. Statistics of case-control MRI differences were retrieved from the 
ENIGMA-Toolbox, corresponding for subcortical IDPs to Table 1 in (Van Erp et al., 2016) for SCZ and 
for cortical IDPs to Table 1 in (Hibar et al., 2018) for BIP, Table 1 in (Schmaal et al., 2017) for MD, and 
Table S4a and S5a in (Van Erp et al., 2018) for SCZ. This Table has been adapted from Table S4 in 
(Federmann et al., 2024). Abbreviations. BIP, bipolar disorder; CT, cortical thickness; d, Cohens’s d; 
FDR, false discovery rate; IDP, image-derived phenotype; L, left; n.s., not significant; MD, major de-
pression; MRI, magnetic resonance imaging; p, p-value; R, right; SA, surface area; SCZ, schizophrenia; 
SNP, single-nucleotide polymorphism; Vol., volume. 

 

The T allele of rs9329221 was significantly associated with decreased SA in the superior temporal 
region. This IDP was significantly decreased in patients with SCZ compared to controls, which may 
provide a notion of how the T allele of rs9329221 confers an increased risk for SCZ. d denotes 
Cohen’s d. The relationships shown represent results from association analyses and do not repre-
sent results from mediation analyses. Statistics of SNP-to-IDP associations are shown in Figure 5, 
and statistics of IDP case-control MRI differences are shown in Table 4. The Figure was adapted 
from Figure 3 in (Federmann et al., 2024). Abbreviations. β, effect size; FDR, false discovery rate; 
IDP, image-derived phenotype; L, left; MRI, magnetic resonance imaging; p, p-value; R, right; SA, 
surface area; SCZ, schizophrenia; SNP, single-nucleotide polymorphism; sup, superior. 

 

 
schizophrenia 

SA 
sup. temporal region 

T – rs9329221 

pFDR,L=9.2×10
-09

, dL=-0.196 

pFDR,R=9.3×10
-07

, dR=-0.195 

pFDR=6.9×10
-09

 
β=-12.5 

risk 

Figure 6 | Case-control MRI differences of IDPs associated with an antagonistic SNP 
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3.1.4 Antagonistic SNPs and gene expression in brain tissues 

Based on the BRAINEAC (Ramasamy et al., 2014) and GTEx databases (Lonsdale et al., 

2013), six of the eight antagonistic SNPs that were significantly associated with at least 

one IDP were found to be part of an eQTL in brain tissues (Figure 7). 

The lowest p-value was found for the C allele of rs2921036 that was associated with re-

duced expression of the family with sequence similarity 85 member B (FAM85B) gene in 

multiple brain tissues including the cortex (p=3.0×10-16, normalized effect size (NES)=-

0.67) and the cerebellum (p=1.4×10-15, NES=-0.69), among others. The second lowest p-

value was observed for the C allele of rs3806843, which was associated with upregulated 

expression of genes belonging to the protocadherin alpha gene cluster (PCDHA@) in 

several brain tissues, including the cerebellum (PCDHA1: p=4.0×10-15, NES=0.56), the 

cerebellar hemisphere (PCDHA13: p=2.9×10-14, NES=0.55), and the entire cortex 

(PCDHA13: p=2.2×10-12, NES=0.53). 
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Six SNPs were part of an eQTL of human brain tissues with p<4.0×10-04. rs2921036, which is part 
of an eQTL of the FAM85B gene, and rs3806843, which is part of an eQTL of genes of the PCDHA 
cluster, are highlighted in red color as they showed the lowest p-values. AveALL refers to the av-
erage across all ten brain tissues of the BRAINEAC database. This Figure was adapted from Table 
S3 in (Federmann et al., 2024). Abbreviations. AMY, amygdala; BA9, Brodmann area 9; BA24, 
Brodmann area 24; BRAINEAC, Brain eQTL Almanac; CAU, caudate; CB, cerebellum; CBhemi, 
cerebellar hemisphere; CTX, cortex; eQTL, expression quantitative trait locus; FCTX, frontal cor-
tex; HIPP, hippocampus; HYPO, hypothalamus; NAcc, nucleus accumbens; OCTX, occipital cor-
tex; p, p-value; PUT, putamen; SNP, single-nucleotide polymorphism; STNG, substantia nigra; 
TCTX, temporal cortex. 

Figure 7 | Antagonistic SNPs as part of eQTLs of brain tissues 
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3.1.5 Antagonistic SNPs and cognitive and behavioral traits 

All eight antagonistic SNPs that were significantly associated with at least one IDP showed 

significant associations (p<5.0×10-08) with at least one cognitive or behavioral trait (Table 

5). Above all, the G allele of rs2388334 (increased risk for ASD/BIP; protective against 

TS) was positively associated with college or university degree conditioned on qualifica-

tions (p=2.8×10-37, https://www.nealelab.is/uk-biobank/; lowest p-value), intelligence 

(p=3.7×10-29, (Savage et al., 2018)), and cognitive performance (p=1.8×10-26, (J. J. Lee 

et al., 2018)) (Figure 8). The second lowest p-value was found for the C allele of 

rs2921036, which was negatively associated with neuroticism (p=6.2×10-26; 

https://www.nealelab.is/uk-biobank/). 

rs2388334 showed associations with traits related to behavior, cognition, education, and food pref-
erences. In particular, the G allele of rs2388334 was associated with higher cognitive performance 
and educational attainment. In addition, the G allele decreased the likelihood of pursuing a job that 
involves heavy manual or physical work, while increasing average total household income. See 
Table 5 for statistics. Abbreviations. CSE, certificate of secondary education; p, p-value; qtn., ques-
tionnaire. 

Figure 8 | Cognitive-behavioral fingerprint of rs2388334 



51 

Table 5 | Associations of antagonistic SNPs with cognitive and behavioral traits 

rsID EA Category Trait p β Reference 
rs301805 G Neuroticism Feeling tense 7.6×10-09 -0.01 GCST006952 

  Feeling miserable 2.7×10-08 -0.01 GCST006943 
  Tense / highly strung 3.9×10-08 -0.04 N_1990 
  Depressed affect 4.2×10-08 -0.01 GCST006475 
 Sleep Daytime nap 6.9×10-09 0.01 GCST011494 

rs6748341 G Behavior Age at first sexual intercourse 1.1×10-11 0.01 GCST90000047 
  Walk | types of transport used (ex-

cluding work) 
4.3×10-08 0.03 N_6162_2 

rs75595651 T Neuroticism Fed-up feelings 6.2×10-10 -0.06 N_1960 
   3.0×10-08 -0.03 GCST006947 
  Miserableness 1.1×10-09 -0.06 N_1930 
   1.5×10-08 -0.03 GCST006943 

rs3806843 C Cognition Intelligence 1.5×10-08 0.02 GCST006250 
rs2388334 G Behavior Time spend outdoors in summer 6.9×10-19 -0.02 N_1050 

  Average total household income 
before tax 

1.8×10-18 0.02 N_738 

  Job involves mainly walking or 
standing 

3.0×10-17 -0.03 N_806 

  Job involves heavy manual or 
physical work 

4.0×10-16 -0.02 N_816 

  Time spent using computer 3.5×10-13 0.02 N_1080 
  Participation in a health question-

naire (not invited vs invited) 
3.3×10-11 -0.01 GCST90012794 

  Time spent watching television 1.3×10-10 -0.01 N_1070 
  Time spent outdoors in winter 1.6×10-10 -0.01 N_1060 
  Number of days/weeks walked 

10+ minutes 
2.5×10-09 -0.03 N_864 

 Cognition Intelligence 3.7×10-29 0.03 GCST006250 
  Cognitive performance 1.8×10-26 0.03 GCST006572 
  Fluid intelligence score 4.9×10-11 0.06 N_20016_raw 
 Education College or university degree | 

qualifications 
2.8×10-37 0.06 N_6138_1 

  A levels/as levels or equivalent | 
qualifications 

7.0×10-14 0.04 N_6138_2 

  CSEs or equivalent | qualifications 9.2×10-10 -0.04 N_6138_4 
  Educational attainment 3.2×10-09 0.03 GCST003496 
  Age completed full time education 5.5×10-09 0.01 N_845 
  Year ended full time education 2.4×10-08 0.09 N_22501_raw 
 Food pref. Muesli | cereal type 3.1×10-13 0.05 N_1468_4 
  Wholemeal or wholegrain | bread 

type 
2.1×10-10 0.03 N_1448_3 

  Hot drink temperature 7.9×10-10 -0.01 N_1518 
  Cereal intake 2.3×10-09 0.01 N_1458 
  White | bread type 4.4×10-09 -0.03 N_1448_1 

rs1933802 G Neuroticism Feeling guilty 7.3×10-09 0.01 GCST006945 
rs9329221 T Behavior Age first had sexual intercourse 1.0×10-14 -0.07 N_2139_raw 

   4.2×10-13 -0.02 GCST90000047 
 Neuroticism Neuroticism 8.0×10-21 -0.05 GCST005232; 
   1.7×10-18 -0.07 N_20127_raw 
   1.6×10-15 -0.02 GCST005327 

Table continues on the next page. 
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Table 5 continued. 
rsID EA Category Trait p β Reference 
rs9329221 T Neuroticism Neuroticism 6.6×10-15 -0.03 GCST003770 
   Worrier / anxious feelings 3.4×10-18 -0.04 N_1980 
   Irritability 2.3×10-14 -0.04 N_1940 
   Miserableness 2.2×10-13 -0.03 N_1930 
   Nervous feelings 1.2×10-12 -0.04 N_1970 
  Sleep Sleep duration 2.3×10-08 0.01 N_1160 
  Food pref. Cheese intake 5.1×10-13 -0.02 N_1408 
rs2921036 C Behavior Age first had sexual intercourse 6.4×10-13 -0.07 N_2139_raw 

   7.1×10-12 -0.01 GCST90000047 
 Neuroticism Neuroticism 6.2×10-26 -0.09 N_20127_raw 
   8.0×10-26 -0.06 GCST005232 
   8.3×10-16 -0.02 GCST005327 
   1.2×10-14 -0.03 GCST003770 
  Worrier / anxious feelings 9.5×10-23 -0.05 N_1980 
  Irritability 3.0×10-15 -0.04 N_1940 
  Nervous feelings 4.2×10-15 -0.04 N_1970 
  Miserableness 2.0×10-13 -0.03 N_1930 
  Worry too long after embarrass-

ment 
1.2×10-12 -0.03 N_2000 

  Fed-up feelings 2.2×10-12 -0.03 N_1960 
  Tense / highly strung 3.3×10-12 -0.04 N_1990 
  Sensitivity / hurt feelings 1.9×10-10 -0.03 N_1950 

Behavioral and cognitive trait associations of the eight antagonistic SNPs with p<5×10-08 were retrieved 
from the Open Targets Genetics portal v22.10 (Ghoussaini et al., 2021; Mountjoy et al., 2021). References 
beginning with ‘GCST’ referred to the NHGRI-EBI GWAS Catalog, while those with ‘N’ referred to GWAS 
analyses of data from the UKBB (http://www.nealelab.is/uk-biobank). The assignment of categories ‘Cog-
nition’, ‘Education’, ‘Food preferences’, and ‘Sleep’ were based on the categories of the UKBB showcase 
(https://biobank.ndph.ox.ac.uk/showcase/). The category ‘Behavior’ summarized traits of physical activity, 
sexual factors, household, and smoking. The category ‘Neuroticism’ was based on the items of the neurot-
icism scale of the Eysenck Personality Questionnaire-Revised Short Form (Eysenck et al., 1985). The sym-
bol ‘|’ refers to conditional GWAS. β denotes the effect size. The Table was adapted from Table S5 in 
(Federmann et al., 2024). Abbreviations. CSE, certificate of secondary education; EA, effect allele; GWAS, 
genome-wide association study; p, p-value; pref., preferences; SNP, single-nucleotide polymorphism; 
UKBB, UK Biobank. 

3.1.6 Whole-brain voxel-based morphometry analysis in data from the FOR2107 

study 

All 11 antagonistic SNPs were associated (puncorrected<0.001) with increased or decreased 

GMV within at least one cluster of k>10 (Table S6) in data from the FOR2107 study. In 

particular, significant associations (pFWE<0.05) between the allele dosage and GMV were 

found for rs301805 and rs1933802. The G allele dosage of rs301805 was associated with 

decreased GMV in the left superior temporal pole (pFWE=1.2×10-02, k=44, T=4.85) (Figure 

9A-B), whereby the peak voxel (x/y/z=-28/10/-22) was mapped to the Frontal-to-Tem-

poral-II GapMap using the cytoarchitectural maps of the Julich Brain Atlas v3.1 (Amunts 

et al., 2020) (Figure 9C). 
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Figure 9 | Associations of the G allele dosage of rs301805 with GMV 

GMV clusters associated with puncorrected<0.001 and k>10 (A). GMV cluster significantly associated 
after multiple testing corrections with pFWE<0.05 (B). The corresponding peak voxel (x/y/z=-28/10/-
22) was mapped to the left Frontal-to-Temporal-II GapMap by the Julich Brain Atlas v3.1 (Amunts 
et al., 2020) using the EBRAINS viewer (https://atlases.ebrains.eu/viewer/#/) (C). The Figure was 
adapted from Figure 4 and Figure S2 in (Federmann et al., 2024). Colors in A and B represent T-
values that were provided in Table S6. Abbreviations. FWE, family-wise error; GMV, gray matter 
volume; p, p-value. 

Furthermore, the G allele dosage of rs1933802 was associated with increased GMV in 

the left superior parietal region (pFWE=2.9×10-02, k=15, T=4.62) (Figure 10A-B). The cor-

responding peak voxel (x/y/z=-20/-69/62) was mapped to the Area 7A of the superior pa-

rietal lobe (Julich Brain Atlas v3.1, Amunts et al., 2020) (Figure 10C). 
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Figure 10 | Associations of the G allele dosage of rs1933802 with GMV 

GMV clusters associated with puncorrected<0.001 and k>10 (A). GMV cluster significantly associated 
after multiple testing corrections with pFWE<0.05 (B). The corresponding peak voxel (x/y/z=-20/-
69/62) was mapped to the left Area 7A of the superior parietal lobe by the Julich Brain Atlas v3.1 
(Amunts et al., 2020) using the EBRAINS viewer (https://atlases.ebrains.eu/viewer/#/) (C). Colors 
in A and B represent T-values that were provided in Table S6. The Figure was adapted from Figure 
4 and Figure S2 in (Federmann et al., 2024). Abbreviations. FWE, family-wise error; GMV, gray 
matter volume; p, p-value. 

3.2 Study 2 

3.2.1 Association of the GRSs with brain image-derived phenotypes 

No significant association was observed between the PleioPsych-GRS and IDPs after 

correction for multiple testing. Albeit, nominally significant associations (puncorrected<0.05) 

were found between the PleioPsych-GRS and decreased volume in the left thalamus, left 

and right caudate, right nucleus accumbens, left and right amygdala, increased CT in the 

left precentral region, and decreased SA in the right caudal and rostral anterior cingulate, 

left pars opercularis, left rostral middle frontal, and left lateral orbitofrontal regions (Figure 

11A and Table 6). 
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Table 6 | Associations of the PleioPsych-GRS and brain structure 

Vol./CT/SA L/R Brain region p pFDR BETA CIlower CIupper 

Vol. L thalamus 0.003 0.460 -0.012 -0.021 -0.004 

 R caudate 0.019 0.563 -0.012 -0.021 -0.002 

 L caudate 0.022 0.563 -0.012 -0.021 -0.002 

 R accumbens 0.027 0.583 -0.011 -0.021 -0.001 

 R amygdala 0.037 0.600 -0.010 -0.019 -0.001 

 L amygdala 0.039 0.600 -0.010 -0.019 -0.001 

CT L precentral 0.044 0.612 0.011 3.2×10-04 0.022 

SA R caudal anterior cingulate 0.008 0.460 -0.014 -0.025 -0.004 

 R rostral anterior cingulate 0.009 0.460 -0.013 -0.023 -0.003 

 L pars opercularis 0.012 0.460 -0.013 -0.024 -0.003 

 L rostral middle frontal 0.030 0.583 -0.009 -0.017 -0.001 

 L lateral orbitofrontal 0.048 0.622 -0.008 -0.017 5.7×10-05 

Nominally significant associations (p<0.05) between the PleioPsych-GRS and IDPs. CIs refer to 95 %. 
This Table has been adapted from Table 1 in (Federmann et al., 2025). Abbreviations. BETA, effect size; 
CI, confidence interval; CT, cortical thickness; FDR, false discovery rate; IDP, image-derived phenotype; 
L, left; p, p-value; PleioPsych-GRS, GRS of highly pleiotropic SNPs for neuropsychiatric disorders; R, 
right; SA, surface area; Vol., volume. 

Significant associations (pFDR<0.05) were identified between the SCZ-GRS and eight IDPs 

(Figure 11B and Table 7). The lowest p-values were observed for increased SA in the left 

lateral orbitofrontal region and increased volume in the left putamen. In addition, the SCZ-

GRS was significantly associated with increased volume in the right putamen, decreased 

CT in the left pars orbitalis, left insula, and left lateral orbitofrontal region and increased 

SA in the right paracentral region, and right lateral orbitofrontal region. When controlling 

for the extended set of covariates, the associations remained significant except for the 

association of the SCZ-GRS with left orbitofrontal CT (Table S7). 

Table 7 | Associations of the SCZ-GRS and brain structure 

Vol./CT/SA L/R Brain region p pFDR BETA CIlower CIupper 

Vol. L putamen <0.001 0.008 0.019 0.010 0.028 

 R putamen 0.001 0.030 0.016 0.006 0.025 

CT L pars orbitalis 0.001 0.025 -0.019 -0.031 -0.008 

 L insula 0.002 0.033 -0.019 -0.030 -0.007 

 L lateral orbitofrontal 0.002 0.045 -0.018 -0.029 -0.006 

SA L lateral orbitofrontal <0.001 0.008 0.017 0.008 0.025 

 R paracentral <0.001 0.013 0.018 0.008 0.027 

 R lateral orbitofrontal <0.001 0.019 0.016 0.007 0.025 

Significant associations after multiple testing corrections (pFDR<0.05) between the SCZ-GRS and IDPs. 
CIs refer to 95 %. This Table has been adapted from Table 1 in (Federmann et al., 2025). Abbreviations. 
BETA, effect size; CI, confidence interval; CT, cortical thickness; FDR, false discovery rate; IDP, image-
derived phenotype; L, left; p, p-value; R, right; SA, surface area; SCZ-GRS, GRS of predominantly SCZ-
associated SNPs; Vol., volume. 
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Associations of the PleioPsych-GRS (A) and the SCZ-GRS (B) with IDPs of subcortical volume 
(left column), CT (middle column), and SA (right column) are shown with puncorrected<0.01. The color-
bar shows positive standardized effect sizes in purple and negative ones in green. This Figure has 
been adapted from Figure 3 in (Federmann et al., 2025). Abbreviations. CT, cortical thickness; 
GRS, genetic risk score; IDP, image-derived phenotype; PleioPsych-GRS, GRS of highly plei-
otropic SNPs for neuropsychiatric disorders; SA, surface area; SCZ, schizophrenia; SCZ-GRS, 
GRS of predominantly SCZ-associated SNPs. 

In the sensitivity analysis excluding samples with self-reported or diagnosed depression, 

the effect sizes of the association between the GRSs and IDPs were concordant with the 

main analysis (ρ=0.94 with ρ referring to the concordance correlation coefficient (Lin, 

1989)). Notably, the association between the SCZ-GRS and six IDPs remained significant 

(Table S8). In addition, the SCZ-GRS showed significant positive associations with left 

amygdala volume and left parahippocampal SA (Table S8). 

In the sensitivity analysis of the effect sizes used to calculate the SCZ-GRS, high correla-

tions were observed between the effect sizes of the predominantly SCZ-associated SNPs 

from the PGC-CDG2 and the corresponding effect sizes from the PGC-SCZ3 (Figure 12). 

In this context, it should be noted that the PGC-CDG2 and PGC-SCZ3 datasets have 

largely overlapping samples of patients with SCZ and controls (P. H. Lee et al., 2019; 

Trubetskoy et al., 2022). Furthermore, the SCZ-GRS based on the effect sizes of the PGC-

Figure 11 | Associations of the GRSs with brain structure 
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SCZ3 was significantly associated with 29 IDPs (Table S9). In the main analysis, the as-

sociation between the SCZ-GRS and eight IDPs was significant after correction for multi-

ple testing, while it was nominally significant for the other 21 IDPs (data not shown). 

Figure 12 | Effect sizes of the predominantly SCZ-associated SNPs from the PGC-CDG2 

and a GWAS of SCZ 

A sensitivity analysis was conducted to investigate the influence of the origin of the effect size. This 
Figure displays the effect sizes of the predominantly SCZ-associated SNPs for the PGC-CDG2 in 
orange and for the PGC-SCZ3 (Trubetskoy et al., 2022) in blue. Here, the proxy SNPs rs7839435, 
rs67657812, and rs72934586 were used to replace rs11782089, rs10211550, and rs144158419, 
as stated in Section 2.2.3.2. This Figure has been adapted from Supplementary Figure S1 in 
(Federmann et al., 2025). Abbreviations. GWAS, genome-wide association study; PGC-CDG2, 
second cross-disorder GWAS meta-analysis of the Psychiatric Genomics Consortium; PGC-SCZ3, 
third GWAS of SCZ of the PGC; SCZ, schizophrenia; SNP, single-nucleotide polymorphism. 

3.2.2 Association of the GRSs with outcomes related to mental health 

The PleioPsych-GRS and the SCZ-GRS were both significantly associated (pFDR<0.05) 

with the following outcomes related to mental health: worrier / anxious feelings, sensitivity 

/ hurt feelings, and tense feelings / highly strung (Figure 13 and Table S10). In addition, 

the PleioPsych-GRS showed significant associations with irritability, miserableness, fed-

up feelings, mood swings, and nervous feelings. The SCZ-GRS showed an additional 

significant association with guilty feelings. 

When the analysis was repeated using an extended set of covariates, all the associations 

reported above between the GRSs and the outcomes related to mental health remained 

significant (Table S11). 
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Furthermore, in the sensitivity analysis excluding samples with self-reported or diagnosed 

depression, correlated odds ratios (ORs) (ρ=0.72) were observed compared to the main 

analysis. Nine of the 12 previously found associations between the GRSs and outcomes 

related to mental health reported in the main analysis remained significant (Table S12). In 

particular, the PleioPsych-GRS was associated with fewer outcomes. In contrast, all four 

associations between the SCZ-GRS and outcomes related to mental health were also 

significant when the GRS was calculated based on effect sizes from a GWAS of SCZ 

(Table S13), whereby no additional associations were found. 

 
Figure 13 | Associations of the GRSs with outcomes related to mental health 

Significant associations (pFDR<0.05) between the PleioPsych-GRS (left) and the SCZ-GRS (right) 
with outcomes related to mental health are depicted in dark blue. Bars represent 95 % CIs. Corre-
sponding statistical parameters are presented in Table S10. This Figure has been adapted from 
Table 2 in (Federmann et al., 2025). Abbreviations. CI, confidence interval; emb., embarrassment; 
FDR, false discovery rate; GRS, genetic risk score; p, p-value; PleioPsych-GRS, GRS of highly 
pleiotropic SNPs for neuropsychiatric disorders; SCZ-GRS, GRS of predominantly SCZ-associated 
SNPs. 

3.2.3 Association of the individual SNPs with brain image-derived phenotypes 

Two of the 21 highly pleiotropic SNPs were significantly associated (pFDR<0.05) with at 

least one IDP (Table 8). The A allele of rs8084351 was significantly associated with in-
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creased putamen volume (pFDR=2.0×10-07, Z=6.4). The A allele of rs10149470 was signif-

icantly associated with decreased pallidum volume (pFDR= 2.7×10-02, Z=-4.1) and de-

creased postcentral gyrus CT (pFDR= 1.8×10-02, β=-2.9×10-03). 

Furthermore, ten of the 20 predominantly SCZ-associated SNPs were significantly asso-

ciated (pFDR<0.05) with at least one IDP (Table 8). The lowest p-value was found for the 

association of the A allele of rs4391122 with decreased SA in the pericalcarine region 

(pFDR=4.1×10-07; β=-9.7). Of note, the A allele of rs35225200 was significantly associated 

with three subcortical IDPs, nine regional CT measures, nine regional SA measures, av-

erage CT, and total SA. The lowest p-value was found for increased cuneus CT 

(pFDR=1.0×10-05; β=0.009) and decreased nucleus accumbens volume (pFDR=2.2×10-05, 

Z=-5.5). Interestingly, rs35225200 was associated with increased and decreased CT and 

SA measures (Figure 14). 

rs35225200 was significantly associated (pFDR<0.05) with nine regional IDPs of CT and nine re-
gional IDPs of SA. Positive associations are depicted in red, and negative associations in blue. 
Effect size is denoted by β, and corresponding statistical parameters are presented in Table 8. The 
association with the frontal pole was not shown, as the region is not part of the brain plot. Abbrevi-
ations. CT, cortical thickness; FDR, false discovery rate; IDP, image-derived phenotype; p, p-value; 
SA, surface area.  
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Figure 14 | Associations of rs35225200 with IDPs 
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Table 8 | Associations of the highly pleiotropic and predominantly SCZ-associated SNPs with IDPs 

rsID CHR EA OA Vol./CT/SA Brain region p pFDR Effect 

rs10149470 14 A G CT postcentral 2.2×10-05 1.8×10-02 -2.9×10-03 
    Vol. pallidum 5.0×10-05 2.7×10-02 -4.06 
rs8084351 18 A G Vol. putamen 1.2×10-10 2.0×10-07 6.44 

rs1702294 1 T C CT postcentral 3.5×10-05 3.6×10-03 3.6×10-03 
rs11891750 2 A G SA superior frontal 5.9×10-05 5.6×10-03 -12.56     

SA fusiform 1.9×10-04 1.1×10-02 7.27 
rs7618871 3 T G SA temporal pole 1.5×10-04 1.1×10-02 -1.39 
rs35225200 4 A C CT cuneus 1.3×10-08 1.0×10-05 0.01 
    Vol. nuc. accumbens 4.7×10-08 2.2×10-05 -5.46     

CT lateral occipital 5.7×10-08 2.2×10-05 0.01     
CT caudal middle frontal 1.2×10-07 3.3×10-05 -0.01     
SA temporal pole 1.9×10-07 4.8×10-05 3.68     
CT rostral middle frontal 1.5×10-06 3.0×10-04 -0.01     
CT average CT 2.2×10-06 3.5×10-04 0.01     
CT lingual 2.3×10-06 3.5×10-04 0.01     
SA middle temporal 5.3×10-06 7.5×10-04 16.44     
SA cuneus 7.4×10-06 8.9×10-04 -10.07     
SA pericalcarine 8.1×10-06 8.9×10-04 -13.25 

    Vol. caudate 8.1×10-06 8.9×10-04 -4.46     
CT pars opercularis 6.7×10-05 6.0×10-03 -0.01     
SA total SA 8.0×10-05 6.8×10-03 -838.40     
CT pericalcarine 1.6×10-04 1.1×10-02 0.01     
SA frontal pole 1.9×10-04 1.1×10-02 1.64     
SA inferior temporal 2.3×10-04 1.3×10-02 15.47     
CT isthmus cingulate 2.8×10-04 1.5×10-02 0.01     
SA inferior parietal 4.0×10-04 2.0×10-02 22.33     
SA fusiform 6.6×10-04 3.2×10-02 12.60 

    Vol. amygdala 8.1×10-04 3.6×10-02 -3.35     
CT transverse temporal 8.2×10-04 3.6×10-02 0.01     
SA lingual 9.9×10-04 4.1×10-02 -14.77 

rs4391122 5 A G SA pericalcarine 2.7×10-10 4.1×10-07 -9.71     
CT inferior parietal 1.0×10-04 8.3×10-03 0.002     
SA inferior parietal 1.2×10-04 9.2×10-03 12.54 

rs62526783 8 A G SA isthmus cingulate 7.9×10-04 3.6×10-02 -3.60 
rs6471814 8 T G CT parahippocampal 5.8×10-04 2.9×10-02 0.01 
rs10883832 10 T G CT transverse temporal 8.7×10-07 1.9×10-04 -0.01     

SA transverse temporal 1.5×10-04 1.1×10-02 2.63     
SA supramarginal 9.0×10-04 3.3×10-02 14.88 

rs61882743 11 C G SA total SA 2.2×10-04 1.3×10-02 -532.26 
rs1615350 12 T C SA cuneus 1.6×10-04 1.1×10-02 4.92 

SNP-to-IDP associations with pFDR<0.05 for two highly pleiotropic SNPs (rs10149470, and 
rs8084351) and ten predominantly SCZ-associated SNPs. Note that effect sizes refer to β for cortical 
IDPs and Z-scores for subcortical IDPs. Abbreviations. CT, cortical thickness; EA, effect allele; FDR, 
false discovery rate; IDP, image-derived phenotype; nuc., nucleus; OA, other allele; p, p-value; SA, 
surface area; SCZ, schizophrenia; SNP, single-nucleotide polymorphism; Vol., volume. 
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4 Discussion 

This thesis sheds light on the neurobiological correlates of antagonistic and highly plei-

otropic SNPs for neuropsychiatric disorders as well as SCZ-associated SNPs identified 

by the PGC-CDG2 (P. H. Lee et al., 2019). 

Study 1 investigated the associations of brain structure with 11 antagonistic SNPs whose 

alleles increased the risk for one neuropsychiatric disorder and were protective against 

another disorder. Here, eight antagonistic SNPs were significantly associated with at least 

one IDP based on GWAS summary statistics of subcortical volume, CT, and SA by the 

ENIGMA and CHARGE consortia (Grasby et al., 2020; Hibar et al., 2017; Satizabal et al., 

2019). Several implicated IDPs were altered in patients with SCZ, BIP, or MD compared 

to controls. In addition, six of the eight SNPs were part of an eQTL in brain tissues, and 

all eight SNPs were significantly associated with cognitive-behavioral traits. Furthermore, 

rs301805 and rs1933802 were significantly associated with voxel-wise GMV in data from 

the FOR2107 study. 

Study 2 examined neurobiological correlates of the GRS of highly pleiotropic SNPs and 

the GRS of predominantly SCZ-associated SNPs in data from the UKBB. The GRS for 

highly pleiotropic SNPs was significantly associated with several outcomes related to 

mental health but not with brain structure. The GRS for SCZ-associated SNPs was signif-

icantly associated with eight IDPs, including left lateral orbitofrontal SA and left putamen 

volume. Furthermore, two highly pleiotropic and ten predominantly SCZ-associated SNPs 

were significantly associated with at least one IDP based on GWAS from the ENIGMA 

and CHARGE consortia (Grasby et al., 2020; Hibar et al., 2017; Satizabal et al., 2019). 

Sections 4.1 and 4.2 discuss the results of Study 1 and Study 2 in light of the current 

literature. Section 4.3 presents the limitations of both studies, while Section 4.4 places the 

results of this thesis in a broader context and addresses future directions. 

4.1 Study 1 

4.1.1 Association of the antagonistic SNPs with brain image-derived phenotypes 

Eight of the 11 antagonistic SNPs were associated with at least one IDP. The number of 

significant SNP-to-IDP associations was higher for the 11 antagonistic SNPs compared 

to randomly sampled sets of 11 SNPs, as shown by a bootstrapping test. The SNP-to-IDP 
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associations with the most statistically robust evidence are discussed below for each brain 

measure. 

Three antagonistic SNPs were significantly associated with the volume of subcortical 

structures. These include the T allele of rs3806843, which was associated with decreased 

volume in the putamen, caudate, and nucleus accumbens. The striatal divisions are pri-

marily involved in motor control and reward processing, including the response to positive 

stimuli, decision-making, and motivation (Cox & Witten, 2019). Brain structural changes 

in striatal regions have previously been reported in patients with MD or SCZ compared to 

controls (Arnone et al., 2012; Van Erp et al., 2016). However, the findings have been 

inconsistent, with other large-scale studies reporting no brain structural alterations in these 

regions in patients with MD (Schmaal et al., 2016). Moreover, research has suggested 

that medical treatment may partially account for increased volume in striatal regions in 

patients with SCZ (Kirschner et al., 2021). Nevertheless, the association of rs3806843 

with the volume of the putamen, caudate, and nucleus accumbens prioritizes the striatum 

for follow-up investigations. Future studies could examine the association of rs3806843 

with neural activity in the striatum during behavioral paradigms related to reward pro-

cessing, which is known to be dysfunctional in patients with MD and SCZ (Whitton et al., 

2015). In addition, future studies could investigate the role of PCDHA@ genes in striatal 

circuit development, as rs3806843 is associated with gene expression of PCDHA@ genes 

in striatal tissues, among others (see Section 4.1.3). 

Three antagonistic SNPs were significantly associated with at least one CT measure. 

These include the T allele of rs75595651, which was associated with increased CT in the 

caudal and rostral anterior cingulate. Interestingly, rs75595651 was previously associated 

with white matter tracts of the cingulum (Smith et al., 2021), as provided in the Interactive 

PheWeb server of the brain imaging GWAS using data from the UKBB resource (see 

https://open.win.ox.ac.uk/ukbiobank/big40/pheweb33k/variant/4:123133540-C-T). Of 

note, GMV volume in the anterior cingulate was reported to be reduced in patients with 

MD and patients with BIP compared to controls (Wise et al., 2016). As the anterior cingu-

late is strongly implicated in the processing of affective states (Etkin et al., 2015), structural 

changes in this region could be a contributing factor to the dysfunctional affective pro-

cessing observed in MD and BIP (Marx et al., 2023; Vieta et al., 2018). Future work could 

shed light on neurobiological processes underlying the association of rs75595651 with the 
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anterior cingulate region. Based on previous findings (Smith et al., 2021), follow-up studies 

of rs75595651 may incorporate IDPs of white matter microstructure. In addition, future 

studies might explore the association of rs75595651 with neural activation of the anterior 

cingulate during affective tasks, given the region's implications in emotional processing 

(Etkin et al., 2015). 

Most antagonistic SNPs (n=7) were associated with at least one SA measure. For exam-

ple, rs2921036 and rs9329221, which are in partial LD (r²=0.46 in CEU) and showed op-

positely directed effects for SCZ and ASD, were significantly associated with SA in the 

superior temporal region. This region mainly involves auditory and language processing 

(Yi et al., 2019). Beyond that, the superior temporal region plays a role in social information 

processing, such as understanding others’ thoughts and intentions (Deen et al., 2015). 

This is of interest because previous studies have demonstrated that patients with ASD 

and SCZ exhibit opposite difficulties in terms of mentalizing (Ciaramidaro et al., 2015). 

These deficits may be, in part, explained by structural changes in the superior temporal 

region (Mitelman et al., 2017). However, future studies are warranted to uncover whether 

and how the association of rs2921036 and rs9329221 with superior temporal SA leads to 

their oppositely directed SNP associations with ASD and SCZ. In this context, structural 

changes of the superior temporal region in patients with SCZ and ASD are discussed in 

more detail in Section 4.1.2. Beyond that, future analyses could be motivated by further 

findings from the systematic annotation of rs2921036 and rs9329221. For instance, 

rs2921036 was found to regulate the expression of the FAM85B gene (see Section 4.1.3), 

while rs9329221 was nominally significant associated with the expression of the methio-

nine sulfoxide reductase A (MSRA) gene in brain tissue of the temporal cortex 

(Ramasamy et al., 2014) (see http://www.braineac.org/). Notably, gene ontology terms 

from the Open Targets platform (Ochoa et al., 2021) suggest that the MSRA gene is in-

volved in protein repair, cellular responses to oxidative stress, and methionine metabo-

lism. In light of this, future studies could examine, for example, how rs2921036 and 

rs9329221 regulate brain-region specific gene expression in the superior temporal region. 



64 

4.1.2 Case-control MRI differences of the implicated brain image-derived pheno-

types 

An increase and, at the same time, a decrease of one IDP for the neuropsychiatric disor-

ders linked to the respective antagonistic SNP was not observed based on the case-con-

trol MRI studies by the ENIGMA consortium. One reason may be that the case-control 

MRI differences showed striking similarities across neuropsychiatric disorders (Cheon et 

al., 2022). Furthermore, it must be recognized that hundreds of SNPs regulate brain struc-

ture with small effect sizes (Grasby et al., 2020). Therefore, a potential SNP effect on brain 

structure may not contribute to observable case-control MRI differences and the link of 

case-control MRI differences with the SNP-to-IDP associations must be interpreted cau-

tiously. 

Nevertheless, several implicated IDPs were found to be altered in patients compared to 

controls. For example, the T allele of rs9329221 (increased the risk for SCZ; protective 

against ASD) was associated with decreased SA in the superior temporal region. Notably, 

it was observed that superior temporal SA was disproportionally decreased in patients 

with SCZ (Van Erp et al., 2018). While this IDP was not observed to be altered in patients 

with ASD in the case-control MRI studies by the ENIGMA consortium (Van Rooij et al., 

2018), another study found increased GMV volume in the right superior temporal region 

in majorly healthy children with autistic cognitive style (Kobayashi et al., 2020). In addition, 

another case-control MRI study reported decreased GMV in the superior temporal region 

in patients with SCZ and increased GMV in this region in patients with ASD (Mitelman et 

al., 2017). While this may provide a notion of how rs9329221 could exert opposing effects 

on SCZ and ASD, future studies at the cellular and molecular level are needed to establish 

a functional interpretation of the link of genetic variation for neuropsychiatric disorders with 

structural brain alterations in patients with neuropsychiatric disorders. For example, the 

spatial distribution of structural alterations can be compared with maps of microstructural 

determinants to gain insight into possible relationships with molecular features like neuro-

transmitter density or myelination (Hansen et al., 2022). 

4.1.3 Antagonistic SNPs and gene expression in brain tissues 

In this analysis, six of eight antagonistic SNPs were significantly associated with gene 

expression in brain tissues. Among these, the lowest p-value was observed for the C allele 
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of rs2921036 with reduced expression of the FAM85B gene in brain tissues of the cau-

date, hippocampus, nucleus accumbens, cerebellum, cerebellar hemisphere, putamen, 

frontal cortex, hypothalamus, anterior cingulate, amygdala, substantia nigra, and the 

whole cortex. Previously, a potential link between the proxy SNP rs2980439 (LD in CEU 

r2=0.54) with SCZ and the expression of FAM85B was suggested by a colocalization anal-

ysis (Sieberts et al., 2020) and likewise for rs2980436 (r2=0.56) by a Mendelian randomi-

zation (MR) analysis (Baird et al., 2021). Future studies are needed to examine underlying 

molecular processes of how rs2921036 impacts the gene expression of FAM85B. As 

FAM85B is considered a long non-coding RNA gene, molecular processes may include 

RNA interference or post-transcriptional events (Ward et al., 2019). Above all, such future 

analysis may focus on the gene expression of FAM85B in brain regions like the superior 

temporal or lateral orbitofrontal region, whose SA was associated with rs2921036 in the 

SNP-to-IDP analysis (see Section 4.1.1). 

The second lowest p-value was found for the C allele of rs3806843 with increased expres-

sion of genes that are members of the PCDHA cluster. According to the Gene Cards da-

tabase (Stelzer et al., 2016), genes of the PCDHA cluster promote cadherin-like cell ad-

hesion in neural populations, which is crucial for neural cell-cell recognition. As such, 

these genes are relevant for the formation of neural circuits (Peek et al., 2017; Wu & 

Maniatis, 1999). In light of this, studies using animal models found that the dysfunction of 

Pcdha genes could result in incorrect or incomplete synaptic formation and arborization 

(Shao et al., 2019). Furthermore, studies using cellular models reported that cortical inter-

neurons derived from induced pluripotent stem cells (iPSCs) of SCZ patients (n=14) ex-

hibited dysregulated expression of genes of the PCDHA cluster (Shao et al., 2019). Future 

studies are needed to elucidate the functional implications of genes of the PCDHA cluster 

in the development of neural circuitry, which might influence the risk for distinct neuropsy-

chiatric disorders (Flaherty & Maniatis, 2020). This may shed light on the antagonistic 

effect of rs3806843 on SCZ and MD, which was previously suggested by Byrne et al. to 

be affected by changes in the expression of genes of the PCDHA cluster (Byrne et al., 

2021). Also, at this point, further studies could focus on gene expression in striatal regions, 

which have already been discussed in the context of the SNP-to-IDP analysis for 

rs3806843 (see Section 4.1.1). 
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4.1.4 Antagonistic SNPs and cognitive and behavioral traits 

All antagonistic SNPs significantly associated with at least one IDP were genome-wide 

significantly associated with cognitive-behavioral traits. Foremost, the G allele of 

rs2388334 was associated with higher educational degrees, intelligence, and cognitive 

performance. Previously, a study highlighted the association of a close proxy SNP, 

rs1906252 (LD in CEU r2=1), with the general cognitive ability factor g (Trampush et al., 

2015). One might speculate that the association of rs2388334 with cognitive ability ac-

counts, in part, for its trait associations with educational attainment, intelligence (Savage 

et al., 2018), or response behavior to survey questionnaires (Mignogna et al., 2023). Fu-

ture studies could uncover the cross-phenotype associations of rs2388334 with cognitive 

traits and specific neuropsychiatric disorders. Furthermore, future studies may elaborate 

on whether the association of rs2388334 with brain structure, such as the SA of the trans-

verse temporal region (see Section 3.1.1), mediates the observed association with cogni-

tive traits. 

In addition, the G allele of rs2388334 was significantly associated with food preferences. 

Factors influencing food preferences are multi-faced and include food-related, physical, 

psychological, social, and society-related features (P. J. Chen & Antonelli, 2020). Inter-

estingly, the gene closest to rs2388334, POU class 3 homeobox 2 (POU3F2) – an im-

portant neuronal transcription factor (C. Chen et al., 2018) – was also suggested by pre-

vious studies to be essential for the development of the hypothalamus that is highly rele-

vant to food intake and appetite regulation (Andersen & Rosenfeld, 2001; Kasher et al., 

2016). Future studies are needed to shed light on the association of rs2388334 with hy-

pothalamic structure, which was not incorporated in this study. 

The C allele of rs2921036, which showed the second lowest p-values, was significantly 

associated with lower measures of neuroticism and several items of the Eysenck Person-

ality Questionnaire-Revised Short Form (Eysenck et al., 1985), including worrier, irritabil-

ity, and miserableness. Of note, a previous study showed that rs2945232, a SNP in partial 

LD (LD in CEU r2=0.54), presented colocalized associations with SCZ and neuroticism 

(Smeland et al., 2017). Patients with SCZ have been observed to have higher levels of 

neuroticism (Van Os & Jones, 2001). However, symptom severity of ASD has also been 

reported to correlate with higher levels of neuroticism (Schwartzman et al., 2016). More-

over, higher levels of neuroticism were genetically negatively correlated with total SA 
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(Grasby et al., 2020); specifically, the item worrier was genetically negatively correlated 

with total brain volume (Zhao et al., 2019). Future studies may elaborate on a cross-phe-

notype association of rs2921036 with brain structure and neuroticism and how this con-

tributes to its antagonistic effect with ASD and SCZ. 

4.1.5 Whole-brain voxel-based morphometry analysis in data from the FOR2017 

study 

The allele dosages of rs301805 and rs1933802 were significantly associated with voxel-

wise GMV in data from the FOR2107 study. First, the G allele dosage of rs301805 was 

linked to lower GMV in a larger cluster. While the cluster mapped by the AAL atlas to the 

left superior temporal pole, it extended to the left insula and left posterior orbital gyrus. 

Notably, the G allele of rs301805 was significantly associated with SA in the insula in the 

SNP-to-IDP analysis (Section 3.1.1). The insula and the temporal pole are highly inter-

connected (Herlin et al., 2021). Both regions have been implicated in socio-emotional 

functioning and semantic processing, among others (Gasquoine, 2014; Herlin et al., 

2021). Furthermore, the temporal pole and insula showed a progressive GMV decline that 

was previously related to symptom severity in patients with first-episode SCZ (S. H. Lee 

et al., 2016). Overall, the results of the VBM analysis, together with the SNP-to-IDP anal-

ysis, prioritized the left superior temporal pole, the insula, and the orbital part of the inferior 

frontal region for future research on the influence of the genomic region of rs301805 on 

brain structure. 

Second, the G allele dosage of rs1933802 was linked to increased GMV in the left superior 

parietal region. In particular, the superior parietal region has been implicated in higher 

cognitive processes such as visual motion perception, spatial processing, attentional 

shifts, and processing of self-related information (Husain & Nachev, 2007; Kircher et al., 

2000; Sulpizio et al., 2023). However, rs1933802 was not associated with this region in 

the SNP-to-IDP analysis (Section 3.1.1). Thus, future VBM analyses in larger cohorts are 

needed to assess the reproducibility of the finding. 

4.2 Study 2 

4.2.1 Association of the GRSs with brain image-derived phenotypes 

This analysis found no significant associations between the PleioPsych-GRS and IDPs 

after correction for multiple testing. This is noteworthy as the PGC-CDG2 highlighted a 
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distinct involvement in neurodevelopmental processes for the pleiotropic genetic variants 

associated with at least two neuropsychiatric disorders (P. H. Lee et al., 2019). Further-

more, previous studies focusing on individual highly pleiotropic SNPs have also high-

lighted their role in neurodevelopmental processes (P. H. Lee et al., 2021; O’Leary et al., 

2022; Vosberg et al., 2019). However, one reason for the lack of significant brain structural 

associations might be that highly pleiotropic SNPs are implicated in multifaceted neurobi-

ological processes (P. H. Lee et al., 2019). Here, their aggregated effect may dilute their 

impact on brain structure. Moreover, it might be plausible that the highly pleiotropic SNPs 

collectively affect neural processes reflected by other brain measures, such as structural 

and functional connectivity (Moreau et al., 2022; Whalley et al., 2014). Future studies need 

to examine the associations of the PleioPsych-GRS with additional brain measures. 

Nevertheless, the PleioPsych-GRS was nominally associated with 12 IDPs. These in-

cluded, with the lowest p-values (p<0.01), volumetric decrease in the left thalamus and 

decreased SA in the right caudal and rostral anterior cingulate. While the thalamus is 

traditionally known to relay sensory input (Acsády, 2017), the current view of the thalamus 

suggests a more general role in modulating information processing throughout the cortex 

(Shine et al., 2023). As such, the thalamus regulates key cognitive functions such as work-

ing memory, emotion regulation, and attention (Shine et al., 2023). Recent research sug-

gested that thalamic structure and connectivity are subtly altered in patients with neuro-

psychiatric disorders (Hettwer et al., 2022; Hwang et al., 2022). Notably, these changes 

were partially shared across neuropsychiatric disorders (Hettwer et al., 2022; Hwang et 

al., 2022). Future studies are needed to explore whether the highly pleiotropic SNPs in-

fluence structural changes in the thalamus observed across neuropsychiatric disorders. 

In this context, it would be interesting to include the volume of thalamic subnuclei 

(Elvsåshagen et al., 2021) or thalamic connectivity (Hwang et al., 2022), which could pro-

vide insights into anatomical and information processing facets. 

In addition, the PleioPsych-GRS was nominally associated with SA of the right caudal and 

rostral anterior cingulate. A key role of the anterior cingulate is the regulation of emotions 

and affective states (Etkin et al., 2011). While previous reports have highlighted that the 

anterior cingulate shows similar structural changes in patients across multiple neuropsy-

chiatric disorders (Romer & Pizzagalli, 2022; Wise et al., 2016), other studies have not 

supported cross-disorder morphological changes in the anterior cingulate (Hansen et al., 
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2022; Opel et al., 2020). Therefore, the extent to which brain structural alterations in the 

anterior cingulate observed in patients with neuropsychiatric disorders are shaped by ge-

netic factors, especially highly pleiotropic SNPs, must be investigated by future studies. 

Significant associations between the SCZ-GRS and IDPs were found for eight IDPs. The 

lowest p-values were observed for increased SA in the left lateral orbitofrontal region. 

Furthermore, an association was found between the SCZ-GRS and decreased CT in the 

left and increased SA in the left and right lateral orbitofrontal region. A case-control MRI 

study of 4,474 individuals with SCZ showed that the lateral orbitofrontal region was thinner 

in patients with SCZ compared to controls (Van Erp et al., 2018). While SCZ was associ-

ated with cortical thinning globally, the effect was suggested to be pronounced in prefron-

tal and temporal regions (Van Erp et al., 2018). In addition, morphological changes in the 

prefrontal cortex, including the lateral orbitofrontal region, have also been reported in other 

neuroimaging case-control MRI studies of SCZ (e.g., Howes et al., 2022; Madre et al., 

2020; Nenadic et al., 2015). Notably, the lateral orbitofrontal region plays an important 

role in reward, motivation, and emotional regulation (Kringelbach, 2005). In light of this, it 

has been demonstrated that decreased CT in the orbitofrontal region is linked to the neg-

ative symptoms observed in patients with first-episode SCZ (Kirschner et al., 2021). Fu-

ture studies should focus on this region to uncover which molecular and cellular mecha-

nisms underlie the association between the SCZ-GRS and the lateral orbitofrontal region. 

While the lateral orbitofrontal region may play an important role in the pathophysiology of 

SCZ, it remains unclear whether the observed neurobiological correlates are specific to 

SCZ compared to other neuropsychiatric disorders. While previous studies revealed sig-

nificant associations of the PRS for SCZ and decreased CT in the lateral orbitofrontal 

region (Alnæs et al., 2019), further studies reported significant associations of the PRS 

for BIP with decreased CT and increased SA in the lateral orbitofrontal region (Rodrigue 

et al., 2023) as well as significant associations of the PRS for MD and cortical complexity 

in this region (Schmitt et al., 2022). Therefore, it remains to be investigated whether the 

aggregated effect of the predominantly SCZ-associated SNPs may differently affect the 

structure of the lateral orbitofrontal region. For example, the association could be based 

on microstructural changes in different subregions or underlying molecular processes like 

synaptic density or myelination. 
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The SCZ-GRS was also significantly associated with increased volume in the left puta-

men. The putamen, along with the caudate, forms the striatum, which is critical for con-

trolling movement but is also important for higher cognitive functions such as goal-directed 

behavior, reinforcement learning, or decision-making (Cox & Witten, 2019). Putamen vol-

ume was found to be increased in SCZ and BIP, whereas it has been reported to be 

decreased in other neuropsychiatric disorders such as ADHD and MD (X. Luo et al., 2019). 

These distinct case-control MRI differences may indicate that distinct molecular processes 

are implicated in psychotic but not other neuropsychiatric disorders. While an increased 

number of dopaminergic neurons may contribute to the increased putamen volume ob-

served in SCZ (X. Luo et al., 2019), certain antipsychotic medications could impact the 

reported volumetric increase (Ho et al., 2011). To further understand the relationship be-

tween the SCZ-GRS and putamen volume, future studies could investigate the associa-

tion in patients with SCZ. In addition, future studies could explore whether predominantly 

SCZ-associated SNPs are linked to gene expression in the putamen (Q. Luo et al., 2019), 

which may shed further light on the underlying molecular mechanisms. 

4.2.2 Association of the GRSs with outcomes related to mental health 

The PleioPsych-GRS was significantly associated with self-reports of irritability, fed-up 

feelings, tense feelings, miserableness, worrier, mood swings, nervous feelings, and sen-

sitivity. These results suggest that the collective effect of the highly pleiotropic SNPs does 

indeed explain some of the phenotypic variance, although the GRS was not significantly 

associated with brain structure. Of note, the implicated outcomes related to mental health 

constitute items of the Eysenck Personality Questionnaire-Revised Short Form (Eysenck 

et al., 1985), which is frequently used to assess neuroticism. This rather broad personality 

trait is considered an unspecific risk factor for neuropsychiatric disorders (Ormel et al., 

2013). While it could be suggested that higher levels of neuroticism increase the suscep-

tibility to neuropsychiatric disorders, the link may also be due to a common underlying 

etiology (Ormel et al., 2013). 

Interestingly, the sensitivity analysis excluding samples with self-reported and diagnosed 

depression found that the PleioPsych-GRS was not significantly associated with worrier, 
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nervous feelings, and sensitivity. The exclusion of these samples likely affected the distri-

bution of outcomes with mental health, with fewer samples tending towards lower emo-

tional stability and higher stress reactivity. 

The SCZ-GRS was significantly associated with worrier, guilty feelings, sensitivity, and 

tense feelings. These outcomes relate to the negative symptoms in SCZ (Kahn et al., 

2015). However, an implication of these findings for SCZ pathology cannot be established 

as the analysis is based on majorly healthy controls. Therefore, future studies in clinical 

cohorts are warranted to elucidate whether the SCZ-GRS accounts for part of the clinical 

features observed in patients with SCZ. 

4.2.3 Association of the individual SNPs with brain image-derived phenotypes 

Two highly pleiotropic and ten predominantly SCZ-associated SNPs were significantly as-

sociated with at least one IDP. This reflects the observation that the PleioPsych-GRS 

showed limited associations with brain structure, and the SCZ-GRS was significantly as-

sociated with several IDPs (Section 3.2.1). Interestingly, the predominantly SCZ-associ-

ated SNPs were, in particular, associated with CT and SA in the temporal and occipital 

regions. This is noteworthy as gene enrichment analysis by the PGC-CDG2 (cf., Figure 

5C in P. H. Lee et al., 2019) found that loci predominantly associated with a specific dis-

order compared to pleiotropic loci were enriched for genes with heightened expression in 

the occipital cortex. Future studies should investigate the implicated SNPs and their influ-

ence on gene expression in the occipital cortex. 

In addition, rs35225200, a predominantly SCZ-associated SNP, was significantly associ-

ated with 23 IDPs. Moreover, rs35225200 and several LD-dependent SNPs were previ-

ously reported to be associated with brain structure, including subcortical GMVs and white 

matter tracts in the midbrain (Elliott et al., 2018). Notably, rs35225200 was located near 

the solute carrier family 39 member 8 (SLC39A8) gene, which is involved in important 

cellular functions like the transport of several metals, including zinc, manganese, and cad-

mium (Mealer et al., 2022). Previous studies (e.g., Costas, 2018; Mealer et al., 2020; 

Smart et al., 2024) have primarily focused on a functional missense variant of SLC39A8, 

namely rs13107325 (LD in CEU r²=0.85) (p.Ala391Thr). This variant has been associated 

with reduced cellular transport of zinc (Tseng et al., 2021) and altered manganese-related 

phenotypes relevant to brain development (Mealer et al., 2022). The relationship between 
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genetic variation in SCL39A8 and the pathophysiology of SCZ is largely unknown (Costas, 

2018). Further characterization of the genetic variants rs13107325 and rs35225200 may 

focus on cellular functions related to metal uptake or transport, such as glycosylation 

(Mealer et al., 2022), neuroinflammation (Tseng et al., 2021) or altered neurotransmission 

(Costas, 2018). 

4.3 Limitations 

The limitations of Study 1 and Study 2 are discussed in detail in the respective articles. 

The present thesis focuses on the limitations of fundamental aspects, including the choice 

of the datasets (Section 4.3.1), the selected genetic variants (Section 4.3.2), and the brain 

IDPs (Section 4.3.3). By reflecting on these, valuable insights for future research are 

given. 

4.3.1 Choice of the datasets 

The datasets used in Study 1 and Study 2 are discussed below regarding their sample 

sizes, cohort characteristics, availability of phenotypic assessments, and potential sample 

overlap. 

Imaging genetic analyses require large sample sizes to obtain robust statistical results 

(Carter et al., 2017). The SNP-to-IDP analysis of Study 1 was based on large-scale GWAS 

summary statistics from the ENIGMA and CHARGE consortia, each of which included 

more than 26,000 samples in the discovery cohort, while Study 2 analyzed genetic and 

neuroimaging data from 28,952 UKBB participants. Although these datasets are among 

the largest data resources available today, future studies with even larger datasets will be 

able to assess the reproducibility of the findings presented in these studies. 

The large sample sizes incorporated in Study 1 and Study 2 were only achieved by com-

prising datasets of majorly healthy individuals (Bycroft et al., 2018; Grasby et al., 2020; 

Hibar et al., 2017; Satizabal et al., 2019). Therefore, it remains unexplored whether the 

associations between SNPs and GRSs with IDPs identified in Study 1 and Study 2 were 

potentially pronounced in patients with neuropsychiatric disorders. As previous research 

has uncovered associations between genetic variants for neuropsychiatric disorders in 

brain structural phenotypes reported to be altered in patients compared to controls 

(Radonjić et al., 2021; Stauffer et al., 2021), future studies are encouraged to follow up 

the findings of Study 1 and Study 2 using data from clinical cohorts. 
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Cohort characteristics such as ancestry, age, and sex ratio influence the generalizability 

of results (Schmaal et al., 2020). Study 1 and Study 2 primarily included data from partic-

ipants with European ancestry. Thus, it remains unclear whether the results are general-

izable to other ancestry groups (Mufford et al., 2017). Strikingly, including imaging and 

genetic data from samples of diverse ancestries is one of the key goals of the ENIGMA 

consortium (Thompson et al., 2017) and the PGC (Peterson et al., 2019). This effort might 

open up future studies to incorporate samples from various ancestries, which is necessary 

to realize benefits in clinical care across ancestries. 

Furthermore, Study 2 primarily included data from middle-aged to older adults. As previ-

ous studies have found that genetic variants for neuropsychiatric disorders may influence 

brain development (Alex et al., 2023) and brain aging (Kaufmann et al., 2019), future stud-

ies may elaborate on whether the association between genetic variants and brain structure 

observed in Study 1 and Study 2 changes across the lifespan. Understanding how an 

effect evolves with age may provide insights into the points in time at which the genetic 

variation exerts its effect on brain-related processes (Le & Stein, 2019). 

In addition, Study 1 and Study 2 did not investigate sex differences. Prospective studies 

could address this, as previous research has demonstrated sex differences in the genetic 

architecture of neuropsychiatric disorders (Blokland et al., 2022) and in the case-control 

MRI differences for neuropsychiatric disorders (Hibar et al., 2018). 

The availability and depth of phenotypic assessment limited the exploration of how the 

selected genetic variants for neuropsychiatric disorders influence cognition and behavior. 

For example, Study 2 explored the association of the GRSs with outcomes related to 

mental health, which were assessed by a dichotomous questionnaire. However, these 

outcomes may not precisely reflect the participants' mental health as the records are self-

reported and assessed through brief dichotomous questions (Davis et al., 2020). There-

fore, future studies might explore whether the GRSs are associated with more compre-

hensive mental health assessments that can provide greater specificity in specific do-

mains like anxiety, mood, and stress reactivity. 

Finally, it is important to note that the datasets used in these studies partially overlap, 

which could subtly affect the results. In Study 1, the GWAS of CT and SA measures used 

in the SNP-to-IDP analysis (Grasby et al., 2020) comprised a subset of participants from 

the FOR2107 study on which the VBM analysis was based. In Study 2, data from the 
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UKBB were partially comprised in a GWAS of MD (Wray et al., 2018), which was included 

in the meta-analyses of the PGC-CDG2 (P. H. Lee et al., 2019). Sensitivity analyses were 

performed excluding samples with self-reported or diagnosed depression (Wray et al., 

2018). The effect sizes of the association of GRSs with both brain structure and outcomes 

related to mental health observed in the sensitivity analyses correlated with the corre-

sponding effect sizes of the main analysis. While this suggests that sample overlap did 

not substantially influence the results, it should be noted that controls for the GWAS of 

MD could not be excluded. 

4.3.2 Choice of the selected genetic variants 

The selected SNPs that were the subject of Study 1 and Study 2 were based on the most 

recent cross-disorder GWAS by the PGC today (P. H. Lee et al., 2019). It should be noted 

that the PGC-CDG2 included more than 230,000 patients with neuropsychiatric disorders, 

which allowed for the identification of robust genetic associations (P. H. Lee et al., 2019). 

However, sample sizes for ANO, OCD, and TS were smaller than for the other neuropsy-

chiatric disorders (Table 1). This might explain why antagonistic and highly pleiotropic 

SNPs were mainly associated with ASD, BIP, MD, and SCZ but showed much fewer as-

sociations with ANO, OCD, or TS (Table S1). Hence, the results of Study 1 and Study 2 

are more likely to reflect the underlying neurobiology of the more strongly represented 

disorders. Future cross-disorder studies, including larger numbers of cases with ANO, 

OCD, or TS, may provide better insights into these disorders. 

Furthermore, Study 1 and Study 2 investigated a limited number of SNPs (P. H. Lee et 

al., 2019). Future cross-disorder GWAS with larger sample sizes and alternative GWAS 

methods like case-case GWAS (Peyrot & Price, 2021) may expand the set of SNPs with 

complex associations across neuropsychiatric disorders. Concerning Study 1, an in-

creased number of antagonistic SNPs may open up the possibility of investigating GRSs 

that aggregate SNPs with opposing effects for two specific disorders (e.g., a GRS of ASD 

vs. SCZ), which was not done in Study 1 due to the different combinations of disorder 

associations for each antagonistic SNP. In addition, it is conceivable that antagonistic 

SNPs are associated with more than two disorders. Thus, they represent antagonistic 

associations for two subgroups of neuropsychiatric disorders or antagonistic associations 

that distinguish one from other neuropsychiatric disorders. For example, the G allele of 
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rs2388334 increased the risk for ASD and BIP while being protective against TS (P. H. 

Lee et al., 2019). Nevertheless, it may be hypothesized that rs2388334 poses an effect 

that distinguishes TS from other neuropsychiatric disorders as further cross-disorder 

GWAS showed that the identified LD-dependent SNP rs1906252 (LD in CEU r2=1) 

showed an oppositely direct effect on TS vs. ANO (Grotzinger et al., 2022; Peyrot & Price, 

2021), and rs9401593 (r2=1) on TS vs. SCZ (Peyrot & Price, 2021). Together, this may 

hint that the genomic region of rs2388334 affects biological processes whose dysfunctions 

particularly distinguish TS from other neuropsychiatric disorders. Concerning Study 2, the 

possible identification of further SNPs predominantly associated with one specific neuro-

psychiatric disorder other than SCZ may allow the investigation of the neurobiological cor-

relates of genetic variants predominantly specific for ASD, BIP, or MD, among others. 

Finally, the two studies included SNPs previously associated with the eight neuropsychi-

atric disorders in the PGC-CDG2 (P. H. Lee et al., 2019). Future imaging studies may 

incorporate SNPs identified by cross-disorder GWAS that include additional neuropsychi-

atric disorders such as anxiety, insomnia, and substance use disorders (Romero et al., 

2022). 

4.3.3 Choice of the brain image-derived phenotypes 

Genetic variants for neuropsychiatric disorders may influence different aspects of the hu-

man brain (Warrier et al., 2023). Study 1 and Study 2 investigated the association of se-

lected SNPs with subcortical volume, CT, and SA measures. These reflect macroscopic 

measures such as the number and density of neurons in the brain (Warrier et al., 2023). 

Future studies could further explore the associations of the SNPs with IDPs of additional 

MRI measures. These could include IDPs of white matter structure, which reflect micro-

scopic measures such as fiber dispersion (Warrier et al., 2023), and IDPs of structural and 

functional connectivity, which provide insight into brain networks (van den Heuvel & 

Hulshoff Pol, 2010). Testing the association of the selected SNPs with these IDPs may 

provide supplementary insights into their influences on neural processes. 

Study 1 and Study 2 assessed the association of selected SNPs with cortical IDPs delin-

eated by the DK atlas (Desikan et al., 2006). This made it possible to use GWAS summary 

statistics of IDPs and to investigate whether the implicated IDPs were altered in patients 

with neuropsychiatric disorders using large-scale studies coordinated by the ENIGMA 
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consortium. The DK atlas represents a coarse parcellation (Desikan et al., 2006), limiting 

the detection of genetic influences on fine-grained brain regions (Warrier et al., 2023). 

Future imaging genetic studies are encouraged to use other parcellations like the Julich-

brain atlas (Amunts et al., 2020). This may support the discovery of genetic influences on 

subregions (Mufford et al., 2024; Van der Meer et al., 2018). Nevertheless, it is plausible 

that while some genetic variants influence small, localized regions, others have a wide-

spread influence on brain structure (Alexander-Bloch et al., 2019; Grasby et al., 2020). 

4.4 Implications for future research 

4.4.1 Building a mechanistic understanding of genetic variants for neuropsychi-

atric disorders 

Studying how genetic variants exert their risk on the pathophysiology of neuropsychiatric 

disorders requires converging insights alongside molecular, cellular, and neuroimaging 

studies (Le & Stein, 2019). As a field, imaging genetics approaches this by studying brain 

structure and function as intermediate phenotypes (Meyer-Lindenberg & Weinberger, 

2006). However, imaging genetic analyses, including the present studies, are limited in (i) 

unraveling the causal mechanisms underlying cross-phenotype associations, (ii) integrat-

ing insights across biological scales, and (iii) uncovering biological processes underlying 

GRS-phenotype associations. 

4.4.1.1 Cross-phenotype associations 

Imaging genetic analyses – including Study 1 of this thesis – aim to investigate whether 

genetic variants associated with neuropsychiatric disorders are also associated with brain 

structure. Such cross-phenotype associations, however, can be inherently caused by dif-

ferent scenarios, from true biological pleiotropy in that a single causal variant influences 

two phenotypes, over colocalization in that two causal variants in the same gene influence 

two phenotypes, to spurious pleiotropy in that two causal variants in different genes exists, 

whereby their strong LD results in a cross-phenotype association (cf., P. H. Lee et al., 

2021; Solovieff et al., 2013). In sum, associations between genetic variants and brain 

phenotypes do not infer causation but allow research to identify genetic variants with po-

tential prominent neurobiological implications (Le & Stein, 2019). 

To infer the causal relationship between brain structure and neuropsychiatric disorders, a 

two-sample MR may be performed (Sanderson et al., 2022). MR uses genetic variants as 
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instrumental variables to test the relationship between exposure and outcome based on 

GWAS summary statistics (Sanderson et al., 2022). However, due to technical consider-

ations, such an analysis is only partly feasible concerning Study 1 and Study 2. First, 

choosing a limited number of SNPs as an instrumental variable may result in weak instru-

ment bias (Sanderson et al., 2022). Second, SNPs associated with neuropsychiatric dis-

orders are likely associated with cognitive and behavioral traits (Hindley et al., 2022). 

These SNPs were typically excluded (e.g., Guo et al., 2022) as one assumption of MR 

analyses states that the outcome must not influence the exposure through another varia-

ble (Sanderson et al., 2022). As neither technical requirement was met, a two-sample MR 

analysis to estimate the causal genetic relationships between brain structure (exposure) 

and neuropsychiatric disorder (outcome) was not conducted in the courses of Study 1 and 

Study 2. 

4.4.1.2 Integrate insights across biological scales 

Imaging genetic analyses aim to explore the association of disease-associated variants 

with multiple phenotypes across different biological scales (Le & Stein, 2019). For exam-

ple, Study 1 systematically characterized 11 antagonistic SNPs for their association with 

brain structure, gene expression in brain tissues, and cognitive-behavioral traits. However, 

integrating findings across different biological scales is not sufficient to unravel a mecha-

nistic understanding (Parikshak et al., 2015). In light of this, selected genetic variants need 

to be followed up for their association with brain structure at finer resolutions that capture 

cellular or synaptic microstructure (Le & Stein, 2019). Furthermore, prioritized genetic var-

iants can be followed up by functional characterization (Gallagher & Chen-Plotkin, 2018), 

including animal models (Gottesman & Gould, 2003) or cellular models (Y. Zhang et al., 

2013). For instance, iPSC-derived models can be used to explore how genetic variants 

affect neural differentiation, gene expression, or epigenetic regulation (De Los Angeles et 

al., 2021). Here, the use of CRISPR/Cas9 enables the editing of genetic variants in iPSCs 

to create isogenic lines that can be compared in terms of molecular and cellular processes 

(De Los Angeles et al., 2021). 
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4.4.1.3 Biological processes underlying GRS-phenotype associations 

Study 2 of this thesis reported a significant association between the SCZ-GRS and several 

IDPs. Due to the aggregated effect of genetic variants potentially involved in different mo-

lecular processes, insight into the underlying biological processes was limited. One ap-

proach to elucidate implicated pathways can be the calculation of pathway-specific GRSs 

(Barbu et al., 2019). Therein, GRSs were calculated for gene sets contributing to SCZ 

pathophysiology, including GRSs that aggregate genetic variants involved in the NE-

TRIN1 signaling pathway (Barbu et al., 2019) or that implicate postsynaptic density (Barbu 

et al., 2023). Notably, the construction of pathway-specific GRSs is often limited because 

many genetic variants identified by GWAS are located in non-coding regions of the ge-

nome (Sullivan & Geschwind, 2019). For this reason, and because of the limited number 

of SNPs in Study 2, pathway-specific GRSs were not examined in the present thesis. 

However, with additional genetic variants to be identified, building GRSs of pathways rel-

evant to general psychopathology or predominantly SCZ-related will become realizable 

(Warren et al., 2024). 

4.4.2 Translational challenges and clinical opportunities in imaging genetics 

The translation of findings from biological psychiatry for clinical utility has not been 

achieved (Derks et al., 2022). This subsection outlines how imaging genetic analysis pre-

sented herein could lay the foundation for developing biomarkers and addressing transdi-

agnostic perspectives. In addition, it will be illustrated that further research on interindivid-

ual variability is warranted. 

4.4.2.1 Biomarker development 

Biomarkers provide essential information about an individual’s health status to aid in di-

agnosis, treatment planning, and monitoring of disease progression (García-Gutiérrez et 

al., 2020). To date, biomarkers in psychiatry have limited predictive validity for patient 

outcomes (Abi-Dargham et al., 2023), making the development of biomarkers to support 

clinical research and clinical care vitally important. 

Imaging genetic analyses may guide the discovery of clinical biomarkers by prioritizing 

SNPs and IDPs for future research (J. Chen et al., 2019; Mufford et al., 2017). For exam-

ple, in Study 2, the predominantly SCZ-associated SNP rs35225200 was prominently as-

sociated with brain structure. In the next step, it may further be investigated whether the 
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finding is potentially enhanced in patients with SCZ and other neuropsychiatric disorders 

compared to controls. In such an analysis, the nearby missense variant rs13107325 (LD 

in CEU r²=0.85) should also be incorporated (see Section 4.2.3). Findings of differences 

in the association between the genetic variant and brain structure within patient cohorts 

may encourage further studies of clinical biomarkers. 

Furthermore, imaging genetics analyses support the integration of biomarkers from multi-

ple modalities, including genomics, neuroimaging, and cognitive-behavioral assessments 

that capture different aspects of disease etiology (Schmaal et al., 2020). For example, 

Study 1 found that the T allele of rs2921036 was significantly associated with superior 

temporal SA but also with higher levels of neuroticism. This suggests intercorrelations 

across distinct biological levels, encouraging future research on the meaningful integration 

of phenotypes across multiple modalities to develop biomarkers (Sui et al., 2023). In light 

of this, machine learning has emerged as a promising tool for multi-modal integration, 

particularly for handling the high-dimensional nature of the data (Quinn et al., 2024). 

4.4.2.2 Transdiagnostic perspectives 

Neuropsychiatric disorders exhibit high rates of comorbidity, highlighting the need for 

transdiagnostic perspectives in research and clinical care (Allsopp et al., 2019). In partic-

ular, psychiatric genetics and neuroimaging studies have emphasized that current diag-

nostic criteria do not represent biologically distinct conditions (Smoller et al., 2018). To 

address this challenge, this thesis focused on antagonistic, highly pleiotropic, and pre-

dominantly SCZ-associated SNPs. In particular, Study 2 investigated neurobiological cor-

relates of a GRS that aggregates the effect of 22 predominantly SCZ-associated SNPs. 

Future research on disorder-specific genetic scores is encouraged as it is important to 

improve the specificity of PRSs across neuropsychiatric disorders (Rodrigue et al., 2023). 

Such disorder-specific PRSs may be more clinically relevant descriptors to investigate 

correlates of genetic risk with phenotypic traits, to predict treatment response, or to stratify 

patients across neuropsychiatric disorders (Fusar-Poli et al., 2022; Smeland & 

Andreassen, 2021). 

4.4.2.3 Inter-individual variability 

Neuropsychiatric disorders feature a considerable degree of phenotypic heterogeneity 

(Allsopp et al., 2019). On this basis, personalized treatment in psychiatry has become a 
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promising research topic (McMahon & Insel, 2012; Schmaal et al., 2020). Nevertheless, 

much research, including Study 1 and Study 2, investigated group averages. Investiga-

tions of the interindividual variability of patients with neuropsychiatric disorders will be crit-

ical to tailor the needs of the individual in clinical care (Jockwitz et al., 2021; Schmaal et 

al., 2020). One step in this direction can be the identification of patient subtypes. Espe-

cially in BIP, two major subtypes, BIP type 1 and type 2, are distinguished (Vieta et al., 

2018). It has been shown that the two subtypes present clinical and genetic differences 

(Guzman-Parra et al., 2021) and benefit from different treatment approaches (Nierenberg 

et al., 2023). Subtyping based on neuroimaging and genetics has also shown potential for 

refining treatment in other neuropsychiatric disorders, including MD (Nguyen et al., 2022) 

or ADHD (W. Zhang et al., 2023). 

4.5 Conclusion 

This thesis uncovered associations between antagonistic, highly pleiotropic, and predom-

inantly SCZ-associated SNPs with brain structure and brain-related traits, supporting that 

genetic variants may alter the risk for specific neuropsychiatric disorders through brain 

structure. Overall, the results from this work prioritize individual SNPs and phenotypic 

traits for future investigation. 

Study 1 found that eight of the 11 antagonistic SNPs, which increase the risk for one 

neuropsychiatric disorder and are protective against another, were significantly associ-

ated with brain structure. Systematic characterization of the implicated SNPs highlighted 

their association with gene expression in brain tissue and cognitive-behavioral traits. No-

tably, Study 1 prioritized rs9329221 and rs2921036, which are in partial LD and showed 

oppositely directed effects for SCZ and ASD. Both SNPs were significantly associated 

with the lowest p-values to the superior temporal SA, a region that was found to be altered 

in patients with SCZ compared to controls. In addition, rs9329221 and rs2921036 were 

significantly associated with higher neuroticism scores, and rs2921036 was significantly 

associated with gene expression of FAM85B in several brain tissues. Given their associ-

ation with brain-related traits at multiple neurobiological levels, future studies are encour-

aged to elucidate their underlying molecular mechanisms. 

Study 2 revealed, based on data from the UKBB, that the GRS of predominantly SCZ-

associated SNPs was significantly associated with the left lateral orbitofrontal SA and left 
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putamen volume, among others. Future studies could follow up on this association by 

examining the association of the GRS with additional brain measures, such as the struc-

tural and functional connectivity of these regions as part of the fronto-striatal network. 

Among the predominantly SCZ-associated SNPs, rs35225200 is noteworthy as it was 

found to be associated with 23 brain structural phenotypes. While the GRS of highly plei-

otropic SNPs showed limited evidence of association with brain structure, it was broadly 

associated with outcomes related to mental health that are implicated across neuropsy-

chiatric disorders. Future studies are needed to elaborate on this association in clinical 

cohorts to evaluate its significance for further clinical research. 

This thesis contributes important insights into how antagonistic, highly pleiotropic, and 

predominantly SCZ-associated SNPs may confer risk for specific neuropsychiatric disor-

ders by studying their associations with brain-related traits. Future studies, including ad-

ditional brain measures, cellular models, and clinical cohorts, are warranted to further ad-

vance our understanding of their underlying neurobiology.  
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5 Abstract 

With the advances in genome-wide association studies (GWAS), hundreds of genetic var-

iants have been identified for neuropsychiatric disorders. Strikingly, many of these genetic 

variants showed complex associations across diagnostic groups. For example, the sec-

ond cross-disorder GWAS meta-analysis by the Psychiatric Genomics Consortium (P. H. 

Lee et al., 2019) comprised 232,964 patients with eight neuropsychiatric disorders and 

identified 11 antagonistic single-nucleotide polymorphisms (SNPs) that were associated 

with an increased risk for one neuropsychiatric disorder, while being protective against 

another neuropsychiatric disorder. Furthermore, the cross-disorder GWAS meta-analysis 

uncovered 23 highly pleiotropic SNPs that were associated with at least four neuropsychi-

atric disorders and 22 SNPs that were predominantly associated with schizophrenia (SCZ) 

but not with the other disorders (P. H. Lee et al., 2019). The underlying molecular mech-

anisms by which these genetic variants alter the risk of distinct neuropsychiatric disorders 

are largely unclear. The present thesis conducted two imaging genetic studies to uncover 

the associations between antagonistic, highly pleiotropic, and predominantly SCZ-associ-

ated SNPs with brain structure and brain-related traits. 

Study 1 performed a systematic characterization of the 11 antagonistic SNPs (Federmann 

et al., 2024). Here, the association of the SNPs with T1-weighted magnetic resonance 

brain structural phenotypes using GWAS summary statistics from the ENIGMA and 

CHARGE consortia was investigated. The implicated SNPs were further annotated for 

their association with gene expression in human brain tissue and cognitive-behavioral 

traits. To examine the brain structural association at the voxel-wise level, a whole-brain 

voxel-based morphometry (VBM) analysis in data from the FOR2107 study was per-

formed. Study 2 used data from the UK Biobank (n=28,952) to examine the association 

of a genetic risk score of highly pleiotropic SNPs for neuropsychiatric disorders (Plei-

oPsych-GRS) and a genetic risk score of predominantly SCZ-associated SNPs (SCZ-

GRS) with brain structure and outcomes related to mental health. To prioritize individual 

SNPs, the association of each SNP with brain structure was investigated. 

The results of Study 1 showed that eight of the 11 antagonistic SNPs were significantly 

associated with at least one brain structural phenotype. Several of the implicated pheno-

types were found to be altered in patients with bipolar disorder, major depression, or SCZ 



83 

compared to controls. Six of the eight antagonistic SNPs were significantly associated 

with gene expression in brain tissue, and all eight antagonistic SNPs were significantly 

associated with cognitive-behavioral traits. The VBM analysis in data from the FOR2107 

study found that rs301805 and rs1933802 were significantly associated with clusters of 

gray matter volume. 

Study 2 found that the PleioPsych-GRS was not significantly associated with brain struc-

tural phenotypes after multiple testing corrections, whereas the SCZ-GRS was signifi-

cantly associated with left and right putamen volume and left and right lateral orbitofrontal 

surface area, among others. While the PleioPsych-GRS was significantly associated with 

eight outcomes related to mental health, including irritability, fed-up feelings, and tense 

feelings, the SCZ-GRS was significantly associated with four outcomes related to mental 

health, including worrier, sensitivity, and guilty feelings. Furthermore, two highly pleiotropic 

and ten predominantly SCZ-associated SNPs were significantly associated with at least 

one brain structural phenotype. 

In conclusion, this thesis showed that antagonistic, predominantly SCZ-associated and, 

to a lesser extent, highly pleiotropic SNPs for neuropsychiatric disorders were associated 

with brain structure. In addition, the SNPs were associated with traits related to mental 

health, cognition, and behavior. These findings provided a notion of how these SNPs 

might influence disease development and led to the prioritization of selected SNPs and 

brain regions relevant for further investigations. Future work should extend these findings 

by exploring the association of these SNPs with additional brain modalities, including white 

matter microstructure and structural and functional connectivity of the human brain. 
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9 APPENDIX 

Table S1 | Highly pleiotropic SNPs 

rsID CHR BP 
(GRCh37) 

EA OA BETA 

A
D

H
D

 

A
N

O
 

A
S

D
 

B
IP

 

M
D

 

O
C

D
 

S
C

Z
 

T
S

 

 

CADD VEP Nearest  
gene 

 

rs7531118 1 72837239 T C -0.035  × ×  ×  × ×  11.35 Reg. region 
var. 

NEGR1  

rs12129573 1 73768366 A C 0.053 ×   × ×  ×   5.32 Up. g. var. LRRIQ3  
rs1518367 2 198807015 A T -0.050   × × ×  ×   0.08 Intron var. PLCL1  
rs34215985 4 42047778 C G -0.052 × × ×  ×  × ×  6.84 Intron var. SLC30A9  
rs1484144 4 80217597 T C 0.036 ×  × × ×  ×   3.35 Intron var. NAA11  
rs12658451 5 103904037 T C 0.037 ×  × × ×  × ×  5.86 Intron var. NUDT12  
rs9360557 6 73132745 C G 0.034 × × × × ×  ×   0.95 Reg. region 

var. 
KCNQ5  

rs79879286 7 24826589 C G 0.046   × × ×  ×   2.13 Reg. region 
var. 

GSDME  

rs6969410 7 110069015 T G 0.051   × × × × ×   2.13 Downstream. 
gene var. 

LRRN3  

rs10265001 7 140665521 C G -0.053   × ×  × ×   8.94 Interg. var. BRAF  
rs9787523 10 106460460 T C 0.035 ×  ×  × ×  ×  9.77 Intron var. SORCS3  
rs61867293 10 106563924 T C -0.050 × × × × ×  ×   8.24 Intron var. SORCS3  
rs11570190 11 57560452 A C -0.034 ×  ×  × × ×   6.11 Intron var. CTNND1  
rs117956829 11 89339666 A G 0.109  × × × ×  ×   0.97 Reg. region 

var. 
TRIM77  

rs78337797 12 23987925 T G 0.042   × × ×  ×   2.21 Intron var. SOX5  
rs2332700 14 72417326 C G 0.047   × × ×  ×   4.26 Intron var. RGS6  
rs10149470 14 104017953 A G -0.039   × × ×  × ×  0.47 Up. g. var. KLC1  
rs7193263 16 6315880 A G -0.039 ×  × × × × × ×  0.14 Intron var. RBFOX1  
rs7405404 16 13749859 T C 0.070   × × ×  ×   1.33 Interg. var. ERCC4  
rs8084351 18 50726559 A G 0.044 × × × × × × × ×  4.03 Intron var. DCC  
rs6125656 20 48090779 A G 0.063   × × ×  ×   0.93 Intron var. KCNB1  
rs5758265 22 41617897 A G 0.073     × × × ×  7.61 Intron var. L3MBTL2  
Information on the genomic position, effect allele, effect size (BETA), and associated neuropsychiatric dis-
orders of the 22 highly pleiotropic SNPs identified by the PGC-CDG2 were taken from Table 2 and Table 
S3.2 in (P. H. Lee et al., 2019). Note that rs11688767 was removed due to non-inferable allele ambiguity 
(see Section 2.2.2.2). Resources of PHRED-scaled CADD, VEP, and nearest gene are given in Table 2.
Abbreviations. ADHD, attention deficit hyperactivity disorder; ANO, anorexia nervosa; ASD, autism spec-
trum disorder; BIP, bipolar disorder; BP, basepair position; CADD, combined annotation-dependent deple-
tion; CHR, chromosome; down., downstream; EA, effect allele; g., gene; GRCh37, Genome Reference 
Consortium human build 37; Interg., intergenic; MD, major depression; OA, other allele; OCD, obsessive-
compulsive disorder; PGC-CDG2, second cross-disorder GWAS meta-analysis of the PGC; reg., regula-
tory; SCZ, schizophrenia; SNP, single-nucleotide polymorphism; TS, Tourette’s syndrome; up., upstream; 
var., variant; VEP, variant effect predictor. 
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Table S2 | Predominantly SCZ-associated SNPs 

rsID CHR BP (GRCh37) EA OA BETA CADD VEP Nearest gene 
rs1702294 1 98501984 T C -0.115 0.13 Intron var. DPYD 
rs10211550 2 198383299 T G -0.069 0.05 Intron var. HSPD1 
rs7618871 3 136400420 T G 0.070 0.19 Intron var. STAG1 
rs35225200 4 103146888 A C -0.135 2.40 Intergenic var. SLC39A8 
rs4391122 5 60598543 A G -0.078 4.56 Intergenic var. ZSWIM6 
rs34718920 6 27783941 T C -0.213 3.62 Up. gene var. H2BC14 
rs13240464 7 110898915 T C 0.075 0.72 Intron var. LRRN3 
rs188099135 8 27411792 A G -0.065 2.12 Intergenic var. CLU 
rs6471814 8 60697874 T G 0.064 1.26 Intergenic var. CA8 
rs62526783 8 111471166 A G 0.065 2.51 Intergenic var. KCNV1 
rs10883832 10 104871279 T G 0.161 12.48 Intron var. RPEL1 
rs61882743 11 46548754 C G -0.069 0.22 Intron var. AMBRA1 
rs10791097 11 130718630 T G 0.077 9.19 Intron var. SNX19 
rs75059851 11 133822569 A G 0.089 6.03 Intron var. IGSF9B 
rs12826178 12 57622371 T G -0.168 2.50 Up. gene var. SHMT2 
rs4766428 12 110723245 T C 0.064 2.01 Intron var. ATP2A2 
rs1615350 12 123650335 T C -0.085 7.91 Intron var. PITPNM2 
rs2414718 15 61863133 A G 0.068 0.23 Intron var. RORA 
rs9636107 18 53200117 A G -0.080 5.05 Intron var. TCF4 
rs144158419 18 53554733 T C -0.142 0.65 Intron var. TCF4 
rs2103655 20 37425958 A G 0.077 2.48 Intergenic var. PPP1R16B 
Information on the genomic position, effect allele, and effect size (BETA) of the 21 predominantly SCZ-
associated SNPs derived from the PGC-CDG2 were obtained from Table S3.2 in (P. H. Lee et al., 2019).
rs2801578 was excluded due to non-inferable allele ambiguity, and rs13217619 was replaced by 
rs34718920. Note that the rsID rs188099135, as given by the PGC-CDG2 (P. H. Lee et al., 2019), was 
merged to rs11782089. The latter rsID was used for the database query. Resources of PHRED-scaled
CADD, VEP, and nearest gene are given in Table 2. Abbreviations. BP, basepair position; CADD, combined 
annotation-dependent depletion; CHR, chromosome; EA, effect allele; GRCh37, Genome Reference Con-
sortium human build 37; OA, other allele; PGC-CDG2, second cross-disorder GWAS meta-analysis of the 
PGC; SCZ, schizophrenia; SNP, single-nucleotide polymorphism; up., upstream; var., variant; VEP, variant 
effect predictor. 
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Table S3 | Overview of toolsets and databases 

Toolset / 
databases 

Version Description in relation to this thesis 

BRAINEAC1 n.a. The BRAINEAC database is a resource of eQTL data from ten brain tis-
sues. 

CAT-122 v2159 The CAT-12 toolbox extends the SPM12 software package for various 
morphometry-based analyses to study brain structure. 

EBRAINS Atlas 
Viewer3 

v3.1 The 3D atlas viewer from EBRAINS allows the exploration of regional fea-
tures of the human brain. In the present thesis, it is used for the anatomical 
labeling of the peak voxels based on the Julich Brain Atlas v3.1. 

ENIGMA 
Toolbox4 

n.a. The ENIGMA toolbox can be used to query the results of the case-control 
MRI studies conducted by the ENIGMA working groups. 

ENIGMA-Vis5 n.a. The ENIGMA-Vis tool allows the retrieval of associations between SNPs 
and brain IDPs from GWAS of the ENIGMA and CHARGE consortia. 

fMRIPrep6 n.a. The fMRIprep pipeline simplifies running software such as FreeSurfer. 
FreeSurfer7 v6 The FreeSurfer software is tailored to the preprocessing of brain MRI 

scans and the surface-based brain structure analysis. 
LDproxy8 n.a. The LDproxy tool assists in finding a proxy SNP in LD, given a selected 

ancestral population. 
GTEx9 v8 The GTEx database is a resource of eQTL data from 54 tissues. 
Open Targets 
Genetics10 

v22.10 The Open Targets Genetics portal is a resource for SNP trait associations. 
In addition, functional genomic information of SNPs is provided. 

PLINK11 1.9 / 2.0 The PLINK toolset enables the analysis of whole genome data, including 
genetic quality control of microarray data. 

PRSice-212 v2.3.5 The PRSice-2 software supports the calculation of genetic risk scores at 
the individual level. 

SPM1213 V7771 The SPM software package allows brain imaging data, such as brain MRI 
scans, to be analyzed regarding statistical hypotheses.  

Description of toolsets and databases incorporated in Study 1 and Study 2. Version information is pro-
vided if applicable. References. 1(Ramasamy et al., 2014), 2(Gaser et al., 2024), 3(Amunts et al., 2020), 
4(Larivière et al., 2021), 5(Novak et al., 2012), 6(Esteban et al., 2018), 7(Dale et al., 1999), 8(Machiela & 
Chanock, 2015), 9(Lonsdale et al., 2013), 10(Ghoussaini et al., 2021; Mountjoy et al., 2021), 11(Chang et 
al., 2015; Purcell et al., 2007), 12(Choi & O’Reilly, 2019), 13(Penny et al., 2011). Abbreviations. 
BRAINEAC, Brain eQTL Almanac; CAT, computational anatomy toolbox; CHARGE, Cohorts for Heart 
and Aging Research in Genomic Epidemiology; ENIGMA, Enhancing NeuroImaging Genetics through 
Meta Analysis; eQTL, expression quantitative trait locus; GTEx, genotype-tissue expression; IDP, image-
derived phenotype; LD, linkage disequilibrium; MRI, magnetic resonance imaging; n.a., not available; 
SNP, single-nucleotide polymorphism; SPM, statistical parametric mapping. 
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Table S4 | Image-derived phenotypes 

Brain region Vol./ 
CT/SA 

Study 1 
SNP-
IDP 

Study 2 
GRS-IDP 

Study 2 
SNP-IDP 

GWAS Ndiscovery 

hippocampus Vol. × × × Hibar et al. (2017)  26,814 
amygdala Vol. × × × Satizabal et al. 

(2019) 
37,741 

brainstem Vol. ×   
caudate Vol. × × × 
nucleus accumbens Vol. × × × 
pallidum Vol. × × × 
putamen Vol. × × × 
thalamus Vol. × × × 
banks of the sts. CT, SA × × × Grasby et al. (2020) 33,281 
caudal anterior cingulate CT, SA × × × 
caudal middle frontal CT, SA × × × 
cuneus CT, SA × × × 
entorhinal CT, SA × × × 
frontal pole CT, SA × × × 
fusiform CT, SA × × × 
inferior parietal CT, SA × × × 
inferior temporal CT, SA × × × 
insula CT, SA × × × 
isthmus cingulate CT, SA × × × 
lateral occipital CT, SA × × × 
lateral orbitofrontal CT, SA × × × 
lingual CT, SA × × × 
medial orbitofrontal CT, SA × × × 
middle temporal CT, SA × × × 
paracentral CT, SA × × × 
parahippocampal CT, SA × × × 
pars opercularis CT, SA × × × 
pars orbitalis CT, SA × × × 
pars triangularis CT, SA × × × 
pericalcarine CT, SA × × × 
postcentral CT, SA × × × 
posterior cingulate CT, SA × × × 
precentral CT, SA × × × 
precuneus CT, SA × × × 
rostral anterior cingulate CT, SA × × × 
rostral middle frontal CT, SA × × × 
superior frontal CT, SA × × × 
superior parietal CT, SA × × × 
superior temporal CT, SA × × × 
supramarginal CT, SA × × × 
temporal pole CT, SA × × × 
transverse temporal CT, SA × × × 
average CT CT, SA × × × 
total SA CT, SA × × × 
bi-/unilateral  bilateral unilateral bilateral   
total number of IDPs  78 154 77   
Overview of IDPs included in Study 1 and Study 2. Subcortical IDPs comprised volumes of struc-
tures segmented by using FreeSurfer or FSL-FIRST depending on the study site (Fischl et al., 
2002; Patenaude et al., 2011; Satizabal et al., 2019). Cortical IDPs comprised CT and SA measures 
of brain regions as delineated by the Desikan-Killiany atlas (Desikan et al., 2006). For each analy-
sis, it was outlined whether bilateral or unilateral brain measures were used. The corresponding 
sample sizes of the GWAS discovery cohort (Ndiscovery) were given. With regard to Study 1, the 
information presented in this Table was adapted from Table S1 in (Federmann et al., 2024) and 
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and Table S3 in (Federmann et al., 2025). Abbreviations. CT, cortical thickness; GRS, genetic risk 
score; GWAS, genome-wide association study; IDP, image-derived phenotype; SA, surface area; 
SNP, single-nucleotide polymorphism; sts, superior temporal sulcus; Vol., volume. 
 

Table S5 | ICD-10 diagnoses that represented an exclusion criterion 

ICD-10 code Description 
A80-89 Viral infections of the central nervous system 
C70-72 Malignant neoplasm 
F00-09 Organic, including symptomatic mental disorders 
G00-09 Inflammatory diseases of the Central nervous system 
G10-G14 Systemic atrophies 
G20-26 Extrapyramidal and movement disorders 
G30-32 Other degenerative disorders 
G35-G37 Demyelinating diseases 
I60-69 Cerebrovascular diseases 
S06-09 Injuries to the head 
T90 Sequelae of injuries of the head 
Q00-Q07 Congenital malformations of the nervous system 
Q90-Q99 Chromosomal abnormalities 
More information on the ICD-10 codes can be found in the UKBB showcase portal (https://bi-
obank.ndph.ox.ac.uk/showcase/field.cgi?id=41270). Abbreviations. ICD-10, International Classifica-
tion of Diseases version 10; UKBB, UK Biobank. 
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Table S6 | VBM analyses in data from the FOR2107 study 

rsID EA/ 
OA 

Dir. L/ 
R 

Labelling cluster 
using AAL atlas 

Labelling peak voxel 
using Julich brain atlas 

k x/y/z T pFWE η2 

rs
2

38
83

34
  G/A + L Angular Area PGa (IPL) 148 -57/-58/32 3.95 0.331 0.010 

  L Temporal_Sup Temporal-to-Parietal (GM) 49 -52/-44/14 3.55 0.763 0.008 
  R Outside Temporal-to-Parietal (GM) 15 34/-3/-26 3.47 0.844 0.008 
  L Occipital_Mid Area hOc4la (LOC) 17 -44/-88/2 3.33 0.938 0.007 
  R Temporal_Sup Area Te 3 (STG) 42 66/-30/2 3.31 0.945 0.007 
  L Temporal_Mid Temporal-to-Parietal (GM) 14 -62/-60/18 3.29 0.955 0.007 
 - R Cerebellum_3 n.a. 39 10/-36/-18 3.34 0.946 0.007 
  L Frontal_Mid_2 Area 8d2 (SFG) 18 -28/28/44 3.31 0.974 0.007 
  L Cerebellum_3 n.a. 26 -9/-36/-15 3.23 0.964 0.007 

rs
30

18
05

 G/T + R Precuneus Frontal-to-Occipital (GM) 18 10/-62/44 3.45 0.873 0.007 
 - L Tem-

poral_Pole_Sup 
Frontal-to-Temporal-II (GM) 998 -28/10/-22 4.85 0.012 0.015 

  R OFCpost Frontal-to-Temporal-II (GM) 274 26/12/-22 3.78 0.526 0.009 
  L Lingual Subc (Hippocampus, Subicular 

complex) 
81 -14/-40/-2 3.60 0.734 0.008 

  R Outside Frontal-to-Temporal-II (GM) 34 14/-16/-21 3.58 0.752 0.008 
  R Temporal_Inf Temporal-to-Parietal (GM) 208 52/-4/-34 3.57 0.767 0.008 
  R Hippocampus VTM (Amygdala) 55 26/-9/-20 3.22 0.981 0.006 
  R ParaHippocampal Temporal-to-Parietal (GM) 25 32/-1/-22 3.19 0.985 0.006 
  R Lingual Temporal-to-Parietal (GM) 15 15/-42/-6 3.19 0.985 0.006 
  L ParaHippocampal n.a. 10 -15/-16/-22 3.18 0.986 0.006 

rs
7

55
95

65
1

 T/C + L Calcarine n.a. 490 -2/-100/-6 3.81 0.470 0.009 
  L Fusiform Area FG4 (FusG) 35 -39/-60/-16 3.54 0.776 0.008 
  R Frontal_Sup_2 Area SFG2 (SFG) 26 21/52/39 3.32 0.973 0.007 
 - n.a. Outside n.a. 16 15/-15/-32 3.36 0.920 0.007 

rs
19

33
80

2
 G/C + L Parietal_Sup Area 7A (SPL) 448 -20/-69/62 4.62 0.029 0.013 

  R Precuneus Area 5M (SPL) 957 8/-46/54 4.28 0.108 0.011 
  L Lingual Area hOc2 (V2, 18) 387 -9/-68/-4 4.16 0.166 0.011 
  L Precuneus Area 5M (SPL) 79 -16/-42/58 3.81 0.461 0.009 
  L Frontal_Mid_2 Frontal-I.1 (GM) 20 -34/45/-6 3.76 0.514 0.009 
  L Frontal_Med_Orb n.a. 199 -2/69/-2 3.74 0.537 0.009 
  L Calcarine Area hOc1 (V1, 17, CalcS) 559 -3/-102/-2 3.69 0.597 0.009 
  R Frontal_Sup_2 Area Fp1 (FPole) 143 20/63/-4 3.40 0.885 0.007 
  R Parietal_Sup Area 7A (SPL) 23 30/-58/62 3.38 0.902 0.007 
  L Outside Area p32 (pACC) 66 -15/46/-10 3.37 0.906 0.007 
  R Rolandic_Oper Area Op5 (Frontal Oper.) 23 52/2/8 3.24 0.967 0.007 
  L Outside Area hOc3v (LingG) 14 -28/-98/-15 3.23 0.968 0.007 
 - R Cerebellum_7b n.a. 37 46/-52/-54 3.50 0.803 0.008 
  L Parietal_Inf Area PGa (IPL) 18 -44/-56/56 3.29 0.948 0.007 
  n.a. Outside n.a. 19 0/-10/2 3.22 0.971 0.006 

rs
6

74
83

41
 G/C + L Fusiform Temporal-to-Parietal (GM) 183 -28/-28/-22 3.83 0.421 0.009 

  R Temporal_Sup Area TPJ (STG, SMG) 56 64/-21/15 3.65 0.626 0.008 
  R Hippocampus CA1 (Hippocampus) 42 39/-33/-9 3.53 0.756 0.008 
  R Temporal_Sup Area Te 2.2 (STG) 10 54/-20/9 3.21 0.989 0.006 
 - R ACC_pre Area p32 (pACC) 19 14/46/21 3.50 0.790 0.008 

rs
3

80
68

43
 C/T + R Outside Area Id4 (Insula) 29 32/-9/14 3.42 0.871 0.008 

 - n.a. Outside n.a. 302 6/-74/-46 3.57 0.733 0.008 
  n.a. Outside n.a. 44 18/-93/-21 3.51 0.793 0.008 
  R Temporal_Inf Temporal-to-Parietal (GM) 55 46/-16/-40 3.45 0.847 0.008 
  R Cerebellum_6 n.a. 28 12/-69/-27 3.32 0.931 0.007 

Table continues on the next page. 
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Table S6 continued. 
rsID EA/ 

OA 
Dir. L/ 

R 
Labelling cluster 
using AAL atlas 

Labelling peak voxel 
using Julich brain atlas 

k x/y/z T pFWE η2 

rs
9

32
92

21
 T/G + R Temporal_Mid Area hIP4 (IPS) 95 39/-64/18 3.77 0.510 0.009 

  L Temporal_Mid Temporal-to-Parietal (GM) 39 -69/-26/-18 3.52 0.788 0.008 
  L Temporal_Mid Temporal-to-Parietal (GM) 113 -58/-66/-2 3.47 0.838 0.008 
  R Cingulate_Mid Frontal-to-Occipital (GM) 37 8/-9/39 3.36 0.916 0.007 
  L Hippocampus DG (Hippocampus) 74 -28/-27/-10 3.34 0.925 0.007 
  R Hippocampus CA3 (Hippocampus) 59 32/-28/-8 3.26 0.961 0.007 
 - n.a. Outside n.a. 57 18/-21/-33 4.23 0.129 0.011 
  R Occipital_Mid Area hIP7 (IPS) 508 30/-84/21 4.08 0.218 0.011 
  L Lingual Area hOc3v (LingG) 19 -20/-68/-2 3.58 0.723 0.008 
  L Cerebellum_4_5 n.a. 262 -6/-57/-20 3.38 0.906 0.007 

rs
2

92
10

36
 C/T + L Postcentral Area hIP3 (IPS) 564 -33/-45/52 4.27 0.114 0.012 

  R Cingulate_Mid Frontal-to-Occipital (GM) 619 8/-9/38 4.09 0.207 0.011 
  R Outside Frontal-to-Occipital (GM) 219 9/-39/28 3.92 0.347 0.010 
  L Precuneus n.a. 47 -4/-46/75 3.63 0.662 0.008 
  L Hippocampus CGL (Metathalamus) 79 -28/-28/-8 3.58 0.716 0.008 
 - L Cerebellum_6 n.a. 1204 -3/-66/-16 4.41 0.066 0.012 
  R Occipital_Sup Area hIP7 (IPS) 321 28/-86/24 3.68 0.603 0.009 
  L Cerebellum_6 n.a. 56 -22/-64/-14 3.34 0.924 0.007 

rs
2

86
76

73
 C/T + R Parietal_Sup Area 7P (SPL) 19 21/-74/54 3.46 0.859 0.007 

 - L Rolandic_Oper Area Op6 (Frontal Oper.) 417 -48/2/10 4.11 0.206 0.010 
  R Outside Temporal-to-Parietal (GM) 224 20/12/-42 3.85 0.441 0.009 
  R Lingual Temporal-to-Parietal (GM) 13 9/-40/-4 3.26 0.966 0.007 
  L OFCpost Frontal-to-Temporal-II (GM) 10 -21/12/-18 3.18 0.986 0.006 

rs
9

51
11

68
 A/C + R Precuneus n.a. 97 18/-54/26 3.66 0.641 0.008 

  L Frontal_Sup_2 Area SFG2 (SFG) 37 -16/60/30 3.56 0.752 0.008 
  R Cuneus Area hOc4d (Cuneus) 44 10/-76/28 3.54 0.772 0.008 
  L Fusiform Temporal-to-Parietal (GM) 176 -34/0/-34 3.48 0.833 0.008 
  R Olfactory n.a. 60 10/26/-12 3.39 0.897 0.007 
  L Paracentralobule n.a. 18 -2/-20/76 3.33 0.933 0.007 
 - R OFCmed Area Fo3 (OFC) 67 21/48/-21 3.50 0.806 0.008 
  L Precuneus Frontal-to-Occipital (GM) 16 -9/-45/54 3.37 0.911 0.007 

rs
1

36
31

05
 T/C + R Frontal_Inf_Tri Area 45 (IFG) 565 51/24/18 4.13 0.190 0.011 

  n.a. Outside n.a. 96 16/-21/-30 3.89 0.391 0.009 
  L Calcarine Area hOc1 (V1, 17, CalcS) 172 -8/-99/-6 3.74 0.555 0.009 
  R Lingual Temporal-to-Parietal (GM) 71 10/-56/2 3.51 0.815 0.008 
  R Calcarine Area hOc1 (V1, 17, CalcS) 42 15/-69/4 3.43 0.884 0.007 
  R Temporal_Inf Temporal-to-Parietal (GM) 24 50/-60/-4 3.33 0.941 0.007 
  R Frontal_Sup_2 Area 6d3 (SFS) 21 22/12/58 3.25 0.970 0.007 
 - R Frontal_Mid_2 Area 6v2 (PreCG) 13 34/9/38 3.30 0.954 0.007 
  L Frontal_Mid_2 Frontal-II (GM) 28 -36/14/38 3.29 0.956 0.007 

Results of the association between genotype dosages of the 11 antagonistic SNPs and voxel-wise GMV in 
data from the FOR2107 study are reported with cluster size k>10 and puncorrected<0.001. Note that positive 
(+) and negative (-) associations are presented for each SNP. rs301805 and rs1933802 were significantly 
associated with GMV pFWE<0.05 and highlighted in bold font. Clusters were labeled using the AAL atlas v3 
(Rolls et al., 2020; Tzourio-Mazoyer et al., 2002) . Using an in-house script, the peak voxels (x/y/z in MNI152 
space) were labeled using the Julich brain atlas v3.1. For an overview of the anatomical regions' full names, 
see Rolls et al. (2020) for the AAL atlas and https://atlases.ebrains.eu/viewer/#/ for the Julich brain atlas. 
Equation 4 in Mordkoff (2019) was applied to compute partial effect sizes denoted by η2. Abbreviations. 
AAL, automated anatomical labelling atlas; Dir., direction of association; EA, effect allele; FWE, family-wise 
error; GM, GapMap; GMV, gray matter volume; L, left; OA, other allele; Oper., operculum; p, p-value; R, 
right; SNP, single-nucleotide polymorphism; T, T-value; VBM, voxel-based morphometry.  
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Table S7 | Associations of the GRSs with brain structure using an extended set of covariates 

GRS Vol./CT/SA L/R Brain region p pFDR BETA CIlower CIupper 

Pleio-
Psych-
GRS 

Vol. L thalamus 0.002 0.357 -0.013 -0.021 -0.005 

 R caudate 0.023 0.490 -0.011 -0.021 -0.002 

 L caudate 0.028 0.490 -0.011 -0.021 -0.001 

 R nucleus accumbens 0.029 0.490 -0.011 -0.021 -0.001 

 L amygdala 0.029 0.490 -0.010 -0.020 -0.001 

 R amygdala 0.032 0.490 -0.010 -0.019 -0.001 

 R thalamus 0.043 0.605 -0.008 -0.016 2.4×10-04 

SA R caudal ACC 0.010 0.490 -0.014 -0.025 -0.003 

 R rostral ACC 0.012 0.490 -0.013 -0.023 -0.003 

 L pars opercularis 0.015 0.490 -0.013 -0.023 -0.002 

 L rostral middle frontal 0.032 0.490 -0.009 -0.017 -0.001 

SCZ-
GRS 

Vol. L putamen <0.001 0.006 0.020 0.010 0.029 

 R putamen 0.001 0.022 0.016 0.007 0.026 

CT L pars orbitalis 0.001 0.027 -0.019 -0.030 -0.008 

 L insula 0.002 0.037 -0.018 -0.030 -0.007 

SA L lateral orbitofrontal <0.001 0.007 0.017 0.008 0.025 

 R  lateral orbitofrontal <0.001 0.016 0.016 0.007 0.025 

 R paracentral <0.001 0.016 0.017 0.008 0.027 

Nominally significant associations (p<0.05) between the PleioPsych-GRS and IDPs. Significant associa-
tions after multiple testing corrections (pFDR<0.05) between the SCZ-GRS and IDPs in bold font. CIs refer 
to 95 %. This Table has been adapted from Table S4 in (Federmann et al., 2025). Abbreviations. BETA, 
effect size; CI, confidence interval; CT, cortical thickness; FDR, false discovery rate; GRS, genetic risk 
score; IDP, image-derived phenotype; L, left; p, p-value; PleioPsych-GRS, GRS of highly pleiotropic SNPs 
for neuropsychiatric disorders; R, right; SA, surface area; SCZ-GRS, GRS of predominantly SCZ-associ-
ated SNPs; Vol., volume. 
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Table S8 | Associations of the GRSs with brain structure excluding samples with self-reported and 

diagnosed depression 

GRS Vol./CT/SA L/R Brain region p pFDR BETA CIlower CIupper 

Pleio-
Psych-GRS 

Vol. L thalamus 0.004 0.568 -0.014 -0.024 -0.005 
 R caudate 0.041 0.736 -0.012 -0.023 0.0005 
 R thalamus 0.041 0.736 -0.009 -0.019 0.0004 
CT L precentral 0.029 0.736 0.014 0.001 0.027 
 R isthmus cingulate 0.034 0.736 0.014 0.001 0.027 
SA R pars triangularis 0.007 0.575 -0.016 -0.028 -0.004 
 L pars opercularis 0.012 0.633 -0.015 -0.027 -0.003 
 L rostral middle frontal 0.044 0.736 -0.010 -0.020 0.0003 

SCZ-GRS Vol. L putamen <0.001 0.003 0.024 0.013 0.035 
 R putamen  0.001 0.020 0.019 0.008 0.030 
 L amygdala  0.002 0.047 0.017 0.006 0.028 
CT L pars orbitalis <0.001 0.020 -0.024 -0.037 -0.011 
 L insula 0.002 0.047 -0.021 -0.034 -0.007 
SA L lateral orbitofrontal <0.001 0.010 0.019 0.009 0.029 
 R lateral orbitofrontal 0.002 0.047 0.017 0.006 0.027 
 L parahippocampal 0.002 0.047 0.018 0.007 0.030 

Sensitivity analyses excluding samples with self-reported and diagnosed depression. Nominally signifi-
cant associations (p<0.05) between the PleioPsych-GRS and IDPs. Significant associations after multiple 
testing corrections (pFDR<0.05) between the SCZ-GRS and IDPs in bold font. CIs refer to 95 %. This Table 
has been adapted from Table S5 in (Federmann et al., 2025). Abbreviations. BETA, effect size; CI, con-
fidence interval; CT, cortical thickness; FDR, false discovery rate; GRS, genetic risk score; IDP, image-
derived phenotype; L, left; p, p-value; PleioPsych-GRS, GRS of highly pleiotropic SNPs for neuropsychi-
atric disorders; R, right; SA, surface area; SCZ-GRS, GRS of predominantly SCZ-associated SNPs; Vol., 
volume. 
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Table S9 | Associations of the SCZ-GRS based on a GWAS of SCZ and brain structure 

Vol./CT/SA L/R Brain region p pFDR BETA CIlower CIupper 

Vol. L putamen <0.001 0.001 0.021 0.012 0.030 

 R putamen <0.001 0.007 0.018 0.008 0.027 

CT L insula 0.001 0.014 -0.020 -0.031 -0.009 

 L pars orbitalis 0.001 0.014 -0.020 -0.031 -0.008 

 L lateral orbitofrontal 0.001 0.014 -0.020 -0.031 -0.008 

 R lateral orbitofrontal 0.002 0.027 -0.019 -0.030 -0.007 

 L paracentral 0.002 0.027 -0.018 -0.029 -0.006 

 L cuneus 0.002 0.027 -0.018 -0.029 -0.007 

 R pars orbitalis 0.003 0.027 -0.017 -0.029 -0.006 

 R precuneus 0.004 0.029 -0.016 -0.027 -0.005 

 R lingual 0.004 0.029 -0.017 -0.028 -0.005 

 L precuneus 0.004 0.030 -0.016 -0.027 -0.005 

 R cuneus 0.005 0.032 -0.016 -0.028 -0.005 

 R insula 0.007 0.042 -0.016 -0.027 -0.004 

 R pars opercularis 0.008 0.045 -0.015 -0.026 -0.004 

SA L lateral orbitofrontal <0.001 0.001 0.018 0.010 0.027 

 R paracentral <0.001 0.004 0.019 0.010 0.029 

 R lateral orbitofrontal <0.001 0.005 0.017 0.008 0.026 

 R superior frontal 0.002 0.027 0.013 0.005 0.021 

 R insula 0.002 0.027 0.014 0.005 0.023 

 L posterior cingulate 0.003 0.027 0.015 0.005 0.024 

 R total  0.003 0.027 0.014 0.005 0.024 

 L total 0.003 0.027 0.014 0.005 0.024 

 R precuneus 0.003 0.028 0.013 0.004 0.022 

 L parahippocampal 0.004 0.029 0.015 0.005 0.025 

 R posterior cingulate 0.005 0.032 0.014 0.004 0.023 

 L paracentral 0.005 0.032 0.014 0.004 0.023 

 L superior frontal 0.005 0.032 0.011 0.003 0.019 

 L middle temporal 0.009 0.048 0.011 0.003 0.020 
Significant associations after multiple testing corrections (pFDR<0.05) between the SCZ-GRS based on a 
GWAS of SCZ (Trubetskoy et al., 2022). CIs refer to 95 %. This Table has been adapted from Table S6 
in (Federmann et al., 2025). Abbreviations. BETA, effect size; CI, confidence interval; CT, cortical thick-
ness; FDR, false discovery rate; GRS, genetic risk score; GWAS, genome-wide association study; IDP, 
image-derived phenotype; L, left; p, p-value; R, right; SA, surface area; SCZ, schizophrenia; SCZ-GRS, 
GRS of predominantly SCZ-associated SNPs; Vol., volume. 

  



121 

Table S10 | Associations of the GRSs with outcomes related to mental health 

Outcomes related to 
mental health 

PleioPsych-GRS SCZ-GRS 

pFDR OR CI pFDR OR CI 
mood swings 0.008 1.039 [1.014, 1.065] 0.089 1.024 [0.999, 1.049] 
miserableness 9.4×10-04 1.049 [1.024, 1.076] 0.491 1.010 [0.986, 1.036] 
irritability 8.7×10-06 1.074 [1.045, 1.103]  0.963 0.999 [0.973, 1.027] 
sensitivity/hurt feel-
ings 

0.046 1.028 [1.004, 1.053]  0.021 1.033 [1.008, 1.058] 

fed-up feelings 3.4×10-04 1.056 [1.030, 1.083] 0.549 1.008 [0.983, 1.034] 
nervous feelings 0.014 1.045 [1.013, 1.077]  0.263 1.020 [0.989, 1.051] 
worrier/anxious 
feelings 

0.005 1.040 [1.016, 1.065] 0.005 1.041 [1.016, 1.066] 

tense feelings/ 
highly strung 

7.3×10-04 1.076 [1.037, 1.116] 0.029 1.047 [1.010, 1.086] 

worry too long after 
embarrassment 

0.175 1.019 [0.995, 1.044] 0.549 1.008 [0.984, 1.032] 

suffer from nerves 0.253 1.023 [0.989, 1.057] 0.549 0.989 [0.957, 1.023] 
loneliness 0.088 1.035 [1.000, 1.071] 0.089 1.034 [0.999, 1.070] 
guilty feelings 0.088 1.027 [1.000, 1.071] 0.023 1.036 [1.009, 1.064] 
Significant associations (pFDR<0.05) are highlighted in bold font. CI represents a 95 % confidence interval. 
This Table has been adapted from Table 2 in (Federmann et al., 2025). Abbreviations. CI, confidence 
interval; FDR, false discovery rate; GRS, genetic risk score; p, p-value; PleioPsych-GRS, GRS of highly 
pleiotropic SNPs for neuropsychiatric disorders; OR, odds ratio; SCZ-GRS, GRS of predominantly SCZ-
associated SNPs. 

 

Table S11 | Associations of the GRSs with outcomes related to mental health using an extended 

set of covariates 

Outcomes related to 
mental health 

PleioPsych-GRS SCZ-GRS 
pFDR OR CI pFDR OR CI 

mood swings 0.009 1.039 [1.014, 1.065] 0.083 1.025 [1.000, 1.051] 
miserableness 0.001 1.049 [1.023, 1.076] 0.422 1.012 [0.987, 1.037] 
irritability 8.7×10-06 1.074 [1.045, 1.103] 0.875 0.998 [0.971, 1.025] 
sensitivity/hurt feelings 0.043 1.028 [1.004, 1.053] 0.016 1.035 [1.010, 1.060] 
fed-up feelings 4.2×10-04 1.056 [1.029, 1.083] 0.473 1.010 [0.985, 1.036] 
nervous feelings 0.016 1.045 [1.013, 1.077] 0.235 1.021 [0.991, 1.053] 
worrier/anxious feelings 0.007 1.039 [1.015, 1.064] 3.2×10-03 1.043 [1.018, 1.068] 
tense feelings/ 
highly strung 6.9×10-04 1.076 [1.038, 1.116] 0.033 1.047 [1.009, 1.086] 
worry too long after 
embarrassment 0.167 1.019 [0.995, 1.044] 0.432 1.011 [0.987, 1.035] 
suffer from nerves 0.235 1.022 [0.989, 1.057] 0.712 0.993 [0.961, 1.027] 
loneliness 0.086 1.034 [0.999, 1.070] 0.083 1.035 [1.000, 1.071] 
guilty feelings 0.083 1.027 [1.000, 1.055] 0.021 1.037 [1.009, 1.065] 
Significant associations after multiple testing corrections (pFDR<0.05) are indicated in bold font. CIs refer 
to 95 %. This Table has been adapted from Table S7 in (Federmann et al., 2025). Abbreviations. CI, con-
fidence interval; FDR, false discovery rate; GRS, genetic risk score; p, p-value; PleioPsych-GRS, GRS of 
highly pleiotropic SNPs for neuropsychiatric disorders; OR, odds ratio; SCZ-GRS, GRS of predominantly 
SCZ-associated SNPs. 
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Table S12 | Associations of the GRSs with outcomes related to mental health excluding samples 

with self-reported and diagnosed depression 

Outcomes related to 
mental health 

PleioPsych-GRS SCZ-GRS 
pFDR OR CI pFDR OR CI 

mood swings 0.029 1.038 [1.008, 1.069] 0.029 1.040 [1.009, 1.071] 
miserableness 0.023 1.043 [1.012, 1.075] 0.029 1.038 [1.008, 1.070] 
irritability 0.001 1.069 [1.035, 1.105] 0.916 0.998 [0.966, 1.031] 
sensitivity/hurt feelings 0.344 1.015 [0.987, 1.044] 0.023 1.039 [1.011, 1.069] 
fed-up feelings 0.029 1.039 [1.008, 1.072] 0.114 1.029 [0.998, 1.061] 
nervous feelings 0.240 1.026 [0.988, 1.066] 0.104 1.038 [0.999, 1.078] 
worrier/anxious 
feelings 

0.161 1.023 [0.995, 1.052] 0.001 1.056 [1.028, 1.086] 

tense feelings/ 
highly strung 

0.023 1.068 [1.019, 1.119] 0.029 1.061 [1.012, 1.112] 

worry too long after 
embarrassment 

0.344 1.015 [0.987, 1.044] 0.344 1.015 [0.987, 1.044] 

suffer from nerves 0.916 0.997 [0.956, 1.040] 0.766 1.008 [0.967, 1.052] 
loneliness 0.240 1.031 [0.987, 1.076] 0.023 1.062 [1.017, 1.108] 
guilty feelings 0.240 1.023 [0.990, 1.057] 0.021 1.052 [1.018, 1.086] 
Significant associations after multiple testing corrections (pFDR<0.05) are indicated in bold font. CIs refer 
to 95 %. This Table has been adapted from Table S8 in (Federmann et al., 2025). Abbreviations. CI, 
confidence interval; FDR, false discovery rate; GRS, genetic risk score; p, p-value; PleioPsych-GRS, 
GRS of highly pleiotropic SNPs for neuropsychiatric disorders; OR, odds ratio; SCZ-GRS, GRS of pre-
dominantly SCZ-associated SNPs. 

Table S13 | Associations of the SCZ-GRS based on a GWAS of SCZ with outcomes related to men-

tal health 

Outcomes related to 
mental health 

SCZ-GRS 
pFDR OR CI 

mood swings 0.065 1.027 [1.001,1.052] 
miserableness 0.456 1.010 [0.985,1.036] 

irritability 0.831 0.997 [0.970,1.025] 

sensitivity/hurt feelings 0.017 1.034 [1.010,1.059] 

fed-up feelings 0.456 1.011 [0.985,1.037] 

nervous feelings 0.256 1.020 [0.989,1.052] 

worrier/anxious 
feelings 

0.004 1.042 [1.017,1.067] 

tense feelings/ 
highly strung 

0.034 1.046 [1.009,1.085] 

worry too long after 
embarrassment 

0.450 1.011 [0.987,1.036] 

suffer from nerves 0.624 0.991 [0.959,1.025] 

loneliness 0.062 1.038 [1.003,1.075] 

guilty feelings 0.022 1.037 [1.009,1.065] 
Significant associations after multiple testing corrections (pFDR<0.05) are 
indicated in bold font. CIs refer to 95 %. This Table has been adapted from 
Table S9 in (Federmann et al., 2025). Abbreviations. CI, confidence inter-
val; FDR, false discovery rate; GRS, genetic risk score; GWAS, genome-
wide association study; p, p-value; OR, odds ratio; SCZ, schizophrenia; 
SCZ-GRS, GRS of predominantly SCZ-associated SNPs. 
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