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Abstract

Mathematical modelling of biological processes has become an area of high scientific interest.
This field has expanded substantially over the past century and developed a wide variety of
mathematical approaches and biological applications. The complexity of biological systems
requires models taking random effects into account.

This thesis investigates stochastic individual-based models of adaptive dynamics for asexu-
ally reproducing populations with mutation, focussing on the interplay between population
dynamics, mutation rates, and environmental changes. Evolution is driven by linear birth
rates, density-dependent logistic death rates, and mutations occurring along a finite trait
graph. The model partially incorporates time-varying parameters, such as periodic changes
in the environment or drug concentrations, which impact the evolutionary process. We in-
vestigate the behaviour of mutants and their invasion dynamics under small mutation rates
and a simultaneously diverging population size, where environmental changes occur on a
moderately diverging time scale.

The results of the first part (Appendix A) provide a detailed analysis of transitions between
evolutionary stable conditions (ESC) in a constant environment. Here multiple mutations
need to be accumulated to cross fitness valleys. The system exhibits metastable behaviour
across multiple time scales which are linked to the widths of these fitness valleys. Introducing
a meta-graph framework of ESCs, we describe the multi-scale jump chain resulting from
concatenated jumps and prove the convergence of the population process to a Markov jump
process that visits only ESCs of sufficiently high stability.

We then turn to the study of periodically changing environments. In the second part (Ap-
pendix B), we examine the growth of emergent mutants and their invasion of the resident pop-
ulation with a focus on mesoscopic scaling limits and the effective growth rates of mutants.
The dynamics are influenced by an averaging effect of invasion fitness across different phases
of the environment.

Additionally, we explore the crossing of fitness valleys in a changing environment in the third
part (Appendix C), distinguishing two cases: Under the assumption of a strict fitness valley,
we can show that the crossing rates are computed as an average taking into account the
ability to survive. A particularly interesting scenario is the pit stop phenomenon, where
intermediate mutants within a fitness valley experience phases of positive fitness, allowing
them to grow to large sizes before going extinct. This accelerates the traversal of the valley
and introduces a novel time scale in the evolutionary process.
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1. Introduction

This thesis is intended to contribute to an improved mathematical understanding of evolu-
tionary dynamics. To this end, we study a stochastic individual-based model of an asexually
reproducing population, based on the few fundamental mechanisms of Darwinian evolution.
Our primary focus is on the analysis of rare events that can only be observed over large
time scales. Furthermore, we investigate the implications of environmental changes on the
emergence of new traits, the occurrence of rare events, and the whole evolutionary process.

A pivotal rôle in advancing our understanding of the interplay of ecology and evolution is
played by mathematics, particularly through the formalisation and quantification of inter-
actions between individuals. Biology and mathematics share a long history of at least 200
years [47]. Over the past few decades, the integration of biology and mathematics has led
to significant advancements in understanding complex biological systems [103]. A key area
of interest is local regulation in biological systems, where macroscopic enhancements emerge
from the microscopic interactions of individual components with each other and with the
environment. This becomes of particular relevance in the study of evolutionary dynamics,
where the focus is on how populations adapt to environmental pressures through a series of
changes in traits. Both evolutionary mechanisms of how these changes arise and how certain
traits are selected to be favoured in the overall population are objects of research. Therefore,
mathematical modelling has become an essential tool as it bridges different scales.

The mathematical models used to study these dynamics range from deterministic systems
such as differential equations, to stochastic models including diffusions and Markov jump
processes. The choice of model depends on the specific biological question at hand, with
stochastic individual-based models capturing the detailed behaviour of single individuals
within a population. This class of models forms the foundation of our analyses. While
individual-based models offer valuable insights, they can be computationally expensive, par-
ticularly in large populations. To address this, researchers explore simplified models, such as
deterministic equations or less detailed stochastic processes, to approximate the behaviour
of large systems more efficiently. By analysing these models, they aim to better understand
the long-term evolution of populations.

In order to establish a consistent mathematical theory of evolution, it is essential to link
complex microscopic models with those that offer a more macroscopic perspective. In this
thesis, we make use of a common systematic approach to introduce scaling parameters and
derive macroscopic descriptions as limits of the more intricate models. These limit approx-
imations can hence be applied to improve simulation algorithms for the underlying stochastic
models.

We focus on three scaling parameters: The order of the total population size K, the prob-
ability of mutations µK , and the speed of changes in the environment λK . We consider the

1



1. Introduction

regime of simultaneously large populations (K ↗ ∞) and rare mutations (µK ↘ 0). The
frequency of mutations varies depending on the rate at which µK decays. This can lead to
mutations being either spaced apart, compared to faster ecological dynamics, or overlapping
and competing to invade the population. For the environmental changes we choose an inter-
mediate time scale between those of stabilisation of the resident population and exponential
growth of mutants (1� λK � lnK). The system can be viewed across multiple time scales,
each of which emphasises different aspects of the evolutionary process. As a result, ap-
proximating the stochastic individual-based model leads to a number of results with various
degrees of resolution as presented in the main part of this thesis.

The interlock of the several effects acting on different time scales is the main concern of
Appendix A, with a particular focus on metastable transitions. When the evolutionary
process reaches a state in which all possible single mutations are harmful, it appears to
pause. However, the accumulation of several mutations can produce an individual with
higher fitness. Considering a larger time scale, it is possible to escape the metastable state
by crossing a fitness valley. We look at the evolution on a general finite trait graph and
give a precise description of transitions between evolutionary stable states, thereby going
beyond the analysis of toy models. The general underlying trait graph is also the basis
for the analysis in Appendix B. Here, the focus lies on comprehending the effects of the
changing environment on the emergence and growth of new mutants. In Appendix C, we
finally examine a combination of both, fitness valleys and changing environments in two
simplified scenarios.

The remainder of this thesis is structured as follows: In Chapter 2, we give a brief introduc-
tion to the history of the biological theory of evolution and present different approaches of
its mathematical modelling. Chapter 3 is dedicated to the mathematical model studied in
this thesis. In Section 3.1, we introduce the individual-based model followed by the scaling
parameters in Section 3.2. Together these sections form the basis for the extensions studied
in the Appendices. Section 3.3 explains the notion of fitness used in this thesis, while Section
3.4 is dedicated to a careful overview of the inherent time scales of the model. In Section 3.5,
we show how a changing environment can be integrated into the model. We summarise the
main results in Chapter 4, accompanied by a discussion of the further outlook in Chapter
5. The Appendices A, B and C contain the two publications and the preprint that together
form the heart of the work.
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2. Approaches of mathematical modelling

2.1. Foundations in Evolution Theory

The most prominent mastermind of the modern theory of evolution is Charles Darwin.
For though some preliminary thoughts were developed by his grandfather Erasmus Darwin
[53, 54] and Thomas Malthus [135], C. Darwin presented a completely new perspective in
his seminal work On the origin of species [51], elaborated in 1839 but published 20 years
later. Therein and in the joint work with Alfred Wallace [52] he laid the cornerstone of our
modern thinking of evolution and speciation as a process driven by the interplay of three
simple mechanisms:

Heredity: reproduction of individuals that pass their traits on to their offspring,

Variation: heredity is not perfect, i.e. sometimes the offspring’s traits vary from those
of its ancestor,

Natural Selection: different traits have different rates of survival and reproduction.

While in the retrospective these ideas seem to be natural and intuitive, they stand in opposi-
tion to what was argued by other savants. Let us mention exemplarily the theory invented by
Lamarck [57], claiming that individuals achieve advantages during their life time which then
are passed on to their descendants. The famous representative here is the giraffe, stretching
to reach the leaves of taller trees and thus, in Lamarck’s view, gaining a small increase of
its neck. Over generations, this should result in the long neck characterising giraffes today.
Although Lamarck’s theory now is outdated, some aspects revive empirically verified in the
field epigenetics and horizontal gene transfer, as we discuss below.

Darwin’s work is based mostly on observations missing the modern techniques, laboratories
and instruments we have at hand. However, his ideas were groundbreaking and foreseeing
in view of our modern theory. For example, the traits to be inherited were described by
a bundle of the morphology and physiological properties of the individuals. This is called
the phenotype. Moreover, to Darwin it was not really clear how heredity works. It was the
abbot and researcher Gregor Mendel who came up with the concept of heredity on the basis
of genes [138, 139]. His empirical studies on peas led him to distinguish alleles and prove
rules on their mixture producing the traits one can observe. In modern language, these rules
of sexual reproduction of diploid organisms are part of what we generally call recombination,
one of the sources of variation. It took more than 100 years until Crick, Watson, Wilkens and
Franklin [85, 165, 168] discovered the material corresponding to Mendel’s theory. The whole
genetic information, the genotype, shaping all features of an individual, is encoded in the
large molecule-strings of the DNA. This is also what allows for heredity as basic mechanism,

3



2. Approaches of mathematical modelling

since the DNA is usually copied without major changes during reproduction. However, the
visible phenotype is not fully determined by the genes, but it is compiled by the complex
mechanism of gene expression influenced by the environment surrounding the organism and
regulatory mechanisms acting on the gene, which is analysed in Epigenetics.

Besides recombination, there are at least two other sources of variation. A key role is
played by mutations. These errors arising during DNA replication can produce truly new
features and hence enrich the pool of genes, instead of only rearranging what is available
(cf. Hardy-Weinberg principle). Thus mutations are crucial for the adaptation of species to
environments that permanently undergo changes.

Last but not least, let us mention that some organisms (e.g. bacteria) have the ability to
interchange genetic material during their lifetime. In a figurative sense, this phenomenon,
called horizontal gene transfer (HGT), corresponds to some ideas of Lamarck. For example,
if a bacterium has by chance the resistance against a particular antibiotic, it can transfer a
copy of the coding gene to a neighbouring bacterium, when triggered by the environment.
Hence the latter individual gained a new beneficial feature during its lifetime, which is then
inherited by its descendants.

The third component of Darwin’s explanation of evolution, the natural selection, leads the
random forces of variation in some direction and hence shapes the evolutionary process. It
can be divided into two aspects. The fitness, meaning the ability to survive and reproduce,
is on the one hand determined by the adaptedness to the environment. If an individual has
a strong need for unavailable resources it may have a small survival probability, whereas a
well-adapted organism with a high fertility is likely to populate most of the available habitat.
On the other hand, individuals interact with each other, either through the environment by
the competition for resources (nutrients, water, light, space, etc), which turns out to be
crucial to explain the limits of growth (cf. Section 2.2). Moreover, the interactions can
be immediate in dependent relations such as the asymmetric predator-pray or parasite-host
relation or mutually beneficial relations of cooperation or symbiosis.

Although Darwin’s theory, that is often summarised by the principle survival of the fittest,
already covers the key aspects of evolution theory its beauty should not hide the fact that
evolution is still a highly complex process challenging us with many open problems on various
levels. To bring it to one single question: How do all the chemical processes on subcellular
level interact and lead to macroscopically observable speciation in the long run?

Since Darwin, a broad theory of evolution partially answering these questions has been es-
tablished. In the following, we outline some of the contributions of different mathematical
approaches, each of which aims to explain particular aspects of the fascinating phenomenon.
For example, the accumulation of variations can be traced back to be the origin of evolu-
tionary jumps and branching. Additionally, it is of no minor interest how the environment,
which itself is not constant, influences the genotypic evolution and the phenotypic expres-
sion. Though mathematical models are always simplifications or approximations of the real
world, the formalisation to abstract problems allows to understand the complex mechanisms
on multiple scales and gives insights into the inter-scale dependencies.

4



2.2. Population dynamics

Before turning to the mathematical models, let us mention Mukherjee’s textbook [144] as a
great reference on the history of modern theory of evolution. Moreover, the Encyclopedia
Britannica [5] covers different aspects in more detail.

2.2. Population dynamics

One of the oldest directions of biomathematics is population dynamics. It aims to analyse
the ecological forces generated by the interactions between different species and its origin
can be traced back to the end of the 18th century. In [135], Malthus worked out the contrast
of population growth following geometric orders and the limited resources of arithmetic
order. Notwithstanding the political and socio-ethic conclusions Malthus deduced, his theory
pointed out the importance of competitive interaction as a strong force of ecology. Therefore,
the first mathematical expression for the dynamics of the population size is the ODE of
logistic growth

ṅ(t) = rn(t)− cn2(t), t ≥ 0, (2.2.1)

where r denotes the expected net growth, i.e. the difference between birth and death rates,
and c parametrises the strength of competitive pressure two individuals exert on each other.
Let us remark that the function n : R+ → R+ has to be seen as the (rescaled) mass of the
population rather than counting single individuals. In fact, we can identify n to be a scaling
limit of an “infinite” population (cf. Section 3.2). In this simple case of a monomorphic
population (i.e. consisting of individuals all of which have the same trait) and under the
assumptions of r ≥ 0 and c > 0, one can easily identify the two fixed points 0 and r/c, the
first one unstable and the later one a stable and globally attractive equilibrium.

Turning to the joint ecological dynamics of multiple different species, what we call poly-
morphic populations, directly brings us to the work of Alfred Lotka [130] and Vito Volterra
[164]. Considering a finite set V of different traits, they studied the natural generalisation
of (2.2.1),

ṅv(t) = nv(t)
(
rv −

∑
w∈V

cv,wnw(t)
)
, t ≥ 0, v ∈ V. (2.2.2)

Named Lotka-Volterra equations (LVE) after their investigators, these systems display quite
different behaviour depending on the parameters; besides the case of the competitive LVE
(cv,w ≥ 0), the predator-prey system (V = {1, 2}, r1 < 0, r2 > 0, c1,2 > 0, c2,1 < 0 and
c1,1 = c2,2 = 0) has gained some popularity due to its periodic solutions.

In the further course of this work, the Lotka-Volterra equations and in particular their
(stable) equilibria play a crucial rôle. However, the stability analysis becomes a major
challenge for populations consisting of more than two different types. Already for the three-
dimensional case, Zeeman lists 33 different scenarios [172] and in dimension |V | ≥ 5 on can
show that the system can exhibit arbitrary complex behaviour in the long term [159].

To get a comprehensive overview of the approaches of population dynamics the readers are
referred to the monograph of Hofbauer and Siegmund [102].

5



2. Approaches of mathematical modelling

2.3. Populations genetics

The main objective of population genetics is the understanding of genealogical structures
and the changes of gene frequency. Laying the emphasis on heredity, ecological interactions
of individuals are usually ignored. An overview of the early theory is given in [67], whereas
[77, 74] provide also some modern perspectives.

The mathematical rigorous investigation of the concept of heredity started with the redis-
covery of Mendel’s work in the beginning of the 20th century by Ronald Fisher [80], Sewall
Wright [169] and John B.S. Haldane [97]. An elementary model, that can be seen as the
corner stone of many models studied today is the Wright-Fisher model. It considers a pop-
ulation of constant size N and time is counted in discrete generations. Each individual of
a new generation independently choses a ancestor at random from the previous generation
to inherit its trait. To link this model to empirical observations let us take a look on the
long-term experiment initiated by Lenski [128]. Its protocol is the following: After bacteria
could grow and populate the whole medium over night, in the morning a laboratory worker
takes a random fraction of it to be placed on a new medium and each morning the same
procedure. If we ask now for the probability of a single bacterium to carry a particular
trait of the previous generation, this meets exactly the trait frequency before the laboratory
worker put hands on the medium.

Despite the fact, that the Wright-Fisher model seems very simplified, it exhibits a central
paradigm. It is a neutral model since it does not contain any bias, but the probability
of receiving a certain trait is exactly its frequency in the previous generation. One can
thus show that the time evolution of the frequencies is a martingale. This is in accordance
with the Hardy-Weinberg principle [98, 167] stating that in infinite populations with no
selection, the allele frequencies remain constant. Then again, due to random fluctuations,
one can determine a genetic drift driving the finite population towards the states of genetic
homogeneity. These are the absorbing states since after losing genetic diversity there is no
possibility to regain.

Both of these properties are conserved in the continuous (time and space) analogue, the
Wright-Fisher diffusion. Introduced by Kimura [114] it can be derived from the discrete
model as a diffusion limit if the time is rescaled as btNc, which was shown by Ethier and
Norman [76].

Since the Wright-Fisher model laid the cornerstone, many extensions and generalisations
have been developed. The continuous time equivalent preserving the finite number of indi-
viduals but allowing for exponential distributed inter-generation times is the Moran model
[143]. The Cannings model [38, 39] is in some way a joint extension, as it can mimic both.
Building up on the classical discrete generation model, it allows for more general offspring
distributions. The only assumption is the exchangeability of the offspring distribution to
keep the mean trait frequencies constant. Again, as an infinite population limit, but this
time from the Moran model, the Flemming-Viot model is deduced [82].

Changing the perspective, the above models and their variations can also be studied back-
wards in time along the ancestral lines. This analysis of the genealogical tree structure leads
to coalescent processes. The first one to mention is the one introduced by Kingmann [115], as
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it is the natural time-reversal to the Moran model. Here each pair of lineages is assigned an
exponential clock, when the first clock rings these two lineages coalesce and are treated from
now on as a single lineage. Corresponding to different forward in time models one derives
various backward in time processes. They differ in the rate of and the nature of mergers:
Namely the Λ-coalescent allows multiple lineages to merge and in the Ξ-coalescent different
mergers may happen simultaneously. A particular process to mention is the Bolthausen-
Sznitman-coalescent as it is not only some example of the Λ-coalescent, but turns out to be
a universal scaling limit of spin glass models of statistical physics. We refer to [12] for an
insightful introduction to this field. Let us just mention that this is a vital field of active
research bringing out new models integrating further aspects as for example the Brownian
spatial coalescent [117] or the weak and strong seedbank coalescent [17].

To understand evolution, it is necessary to overcome the inherent problem of constant allele
frequencies, stated in the Hardy-Weinberg principle. As already Darwin proposed, one has
to integrate the two missing mechanisms: variation and selection. Mutation allows for an
enrichment of the pool of genes. In the models of constant population size, this can be
implemented in the following way: At a randomly chosen time, a single individual is affected
by a mutation event and henceforth has a new trait, which was not present before. Selection
can be included in the form of a bias to not choose parents uniformly at random but to
favour some of which we then call to be of higher fitness. Backwards in time, this yields
the ancestral selection graph [147] and the ancestral recombination graph [2], if one includes
also recombination as a source of variation. Let us point out that this kind of selection does
not rely on true interaction of the living individual but relies on a fixed fitness landscape or
adaptive landscape [170], which comes with a clear ordering of the traits. Therefore we cannot
talk about the important phenomena of coexistence and speciation. Instead population is
driven by selection towards (local) fitness maxima which one can escape by chance of the
genetic drift. We come back to this manifestation of metastability when analysing valleys in
the fitness landscape in Appendix A.

Lastly to mention is that for a long time, the theories of Darwin and Mendel were argued
to exclude each other since Darwin thought about evolution as a continuous process while
Mendel’s work showed the discrete jumps between generations. Eventually, it was Fisher
[80], who laid the basis for understanding that both, Darwin’s and Mendel’s theories, show
two sides of the same coin. The difference was the scale and the otherness of the phenotypic
characteristic they studied. As Mendel’s focus lies on properties determined just by a few
genes, Darwin was interested in features regulated by the interplay of many genes and the
environment. The latter is the main concern of the subfield called quantitative genetics.
It deals with the evolution of phenotypic traits that seem to change gradually. Instead of
giving an extensive introduction to this field, we refer to [36, 79], and emphasise that this
simultaneousness of different scales is one of the key paradigms to understand evolution.

2.4. Adaptive dynamics

Above we outline that population genetics is very good in dealing with heredity, the genea-
logical structure and different origins of genetic variation. It sadly lacks the integration of
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ecological interactions of individuals, which is crucial for a proper description of selective
forces. On the opposite, the models of population dynamics are very sensitive to these de-
pendencies between individuals shaping the development of population size. But as they act
on an initially fixed set of traits to be distinguished, an inherent problem is the missing vari-
ation that would allow an evolution of the pool of genes. Combining the best of both worlds,
adaptive dynamics aims to take a look at the interesting border line of the interplay of ecology
and evolution. Initially invented as an outgrow of evolutionary game theory by Hofbauer
and Sigmund [101] and parallel contributions of Metz et al. [142] (fitness landscape) as well
as Marrow et al. [136] (small mutation steps), which laid the spiritual ground, it has was
developed further by Metz et al. [141] (large populations and rare mutations), Dieckmann
and Law [61] (canonical equation) and Geritz [88, 89] (evolutionary branching).

A fundamental idea of adaptive dynamics is that the current population can be assumed to
be close to an equilibrium, determined by the ecological system, when a new mutant appears.
This principle, often referred to as a separation of time scales, is quite debatable as it is not
clear whether it goes in line with real-world observations. But considering the low effective
rate of advantageous mutations and under the reasonable assumption, that the adaptation
towards stability of the macroscopic population is faster than the growth of small mutant
populations, one can still restrict the dependence of the fixation of new traits on its fitness
with respect to a population close to equilibrium. The notion of invasion fitness in adaptive
dynamics is oriented on the population dynamics concept of the initial growth rate of small
subpopulations. But it also integrates the idea of population genetics to measure selective
advantage by the probability of reaching maturity (i.e. producing offspring). Hence fitness
is no longer an absolute quantity but becomes dynamic and dependent on the state of the
entire population due to interaction (see Section 3.3). Moreover, the invasion fitness and
the shape of the corresponding landscape may change totally when the outer environmental
conditions change. Let us point out that this notion of invasion fitness landscape has to be
distinguished fundamentally from Wright’s traditional concept of a fitness landscape [166].

Sometimes the adaptive dynamics approach is specified to study the meso-evolution [140]
meant in the sense that it connects the micro-evolutionary process of the permanent interplay
mutational variation and ecological selection to the macroscopically visible trait substitution.
Crucial to guarantee that really one resident trait is replaced by a more advantaged one
completely, is to assume that once a mutant is strong enough to form a subpopulation
of relevant size, it can fixate in the macroscopic population and long-term coexistence is
excluded. This principle is known as invasion implies fixation [142]. Mathematically this
manifests in the trait-substitution-sequence (see below).

The beauty of adaptive dynamics of course comes by the price of some simplifications. In
general, the AD perspective is only interested in observing phenotypes. It usually ignores the
genotypic details as well as the mechanism of sexual reproduction. However, as mating is a
major source of variation and widely spread among many species, some authors successfully
included genetic diploidity, sexual mating-schemes and the Mendelian rules into an AD
model [28, 126, 148]. Moreover, it is an ongoing discussion if mutations can be assumed
as rare events (see Section 3.2.2). But at least with the focus on advantageous phenotypic
mutations, this is broadly accepted.
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The individual-based model of adaptive dynamics this thesis is based on conceptually relies
on the idea of interacting particles. At its core, it is basically a continuous-time Bienaymé-
Galton-Watson branching process, but it integrates an additional state-dependent logistic
death rate, to take care of the limited resources of the environment and can be seen as an
interaction term of the particles. We hence, lose the classical independent additivity which
usually characterizes the branching processes. However, this leads to non-trivial equilibria
besides extinction or infinite growth one normally deals with in the theory of branching
processes. One often refers to these kind of model to be locally regulated [18, 40, 43, 55, 72,
83, 94, 104, 127, 132]. Moreover, this self-regulation of the population size is what makes a
difference to the Wright-Fisher type models of population genetics as these are often nailed
to have a constant population size over time. Together with the possibility to found new
subpopulations of different traits due to mutation the ecological regulation via competitive
interaction allows for a perceptual adaptation to the environment. This is evolution.

The mathematical foundation of the class of individual-based evolution models can be found
in the works of Bolker and Pacala [24, 25], who were originally interested in the spacial
dispersion of plants. They utilised the particle-wise description to heuristically derive ODEs
Shortly after, Dieckmann and Law [62] enhanced the ODE approach to a stochastic measure-
valued process. This representation, actually introduced to deal with the spatial positions,
turns out to provide the right framework to consider generally infinite trait spaces as well.
Eventually, Fournier and Méléard [83] used Poisson random measures to come up with a
path-wise construction of the process and rigorously proved a law of large numbers that
justifies the former heuristic ODE approaches. Let us emphasise that the convergence of
density-dependent Markov processes to the associated ODEs was proven already thirty years
before by Kurtz [124].

Since this breakthrough, the individual-based population models are the object of extensive
studies by many different authors. Due to its simple and adaptable microscopic description,
multiple extensions aim to cover the variety of biological phenomena. To point out just a few
of them, Champagnat presented the separation of time scales in [40] by the convergence of
the macroscopic evolutionary to a trait-substitution-sequence (TSS). Under the collaboration
of Méléard this could be extended multi-dimensional polymorphic-evolution-sequence (PES)
[43]. Both depict the resulting macroscopic evolution as a jump process between evolutionary
stable states. Moreover, it were Baar, Bovier and Champagnat, who derived the canonical
equation of adaptive dynamics (CEAD) directly as a limit process from the individual-
based model. This equation was heuristically introduced by Dieckmann and Law in [61]
and describe evolution as continuous movement in the trait space, under the assumption
of infinitesimal small mutation steps. Since the driving force of the CEAD is the fitness
gradient, it is natural to ask if evolution stops if we run into an evolutionary singularity, i.e.
if this gradient attains 0. As a rigorous mathematical answer to this question is still part of
current research we take it on in Chapter 5 under the keyword of evolutionary branching.

Another option of apparent stability is known as fitness valleys [29]. Here the evolutionary
process has reached a local maximum in a fitness landscape, known as evolutionary stable
condition (ESC), and one can see this as a combination of an ecological and evolutionary
equilibrium. In order to escape a couple of mutation steps have to be accumulated until a
trait of higher fitness can invade the resident population. This needs a larger time scale to
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be observed and it becomes a natural question, which ESC is reached under which condition.
We present some answers in Appendix A that is dedicated to discover the course of evolution
(cf. [140]) and partially ties in with the concept of adaptive walks and adaptive flights. In
this context, it becomes interesting to explore not only the microscopic and the macroscopic
state of the population. But particular the mesosopic growth in between gives important
insights, as well in the stochastic model [48] as in the analysis of the corresponding ODE
model [32, 44, 120]. This is also the main point of view of Appendix B.

A very interesting and loosely connected branch that is a topic of recent research aims to take
into account the effects of survival of exponentially small subpopulations. Building on early
PDE results [63] an initial gate was passed by the rigorous derivation of the Hamilton-Jacobi
equation from the individual based model with small mutation steps and high mutation
probability [44].

For a broad and well structured overview of contributions to various aspects of adaptive
dynamics, we refer to the webpage of Kisdi [116]. As important sources for a detailed
discussion of the history, the ideas and the aims of adaptive dynamics let us point out the
essay of Metz [140] and the thesis of Champagnat [41].

2.5. Further directions

While biological networks are of a highly non-trivial nature also the tools to occupy and
investigate evolve continuously. In the last decades, the field of life science expanded quickly
aiming to explore and decode the complexity of its object of research. We thus know about
the existence of many more interdependences that have an influence on the evolutionary
process. In the following, we delineate how different phenomena have been worked out in
varying depth. Moreover, we give some hints on additional approaches and model classes.

For instance, the variety of mechanisms to regulate, interchange and store genetic information
goes far beyond that of clonal or sexual reproduction with the possibility of mutations. One
additional mechanism is the horizontal gene transfer (HGT), which allows for the interchange
of parts of the genome between individuals during life-time (see [112]). Particularly archaea
and bacteria are able to perform HGT, which turns out to be important for the transmission
of resistance against antibiotics. covering this an individual-based model has been introduced
in [13] and was further developed in [44]. While this part of the superordinate field of
epigenetics could be reflected well in mathematical models, other aspects like the degree of
methylation [96, 162] or further regulatory factors of DNA transcription wait for a rigorous
mathematical model.

A quite different phenomenon is known as dormancy or the formation of seed-banks. In
general, one means by this the ability of individuals to switch to a phenotypic state of
radically reduced or completely suspended metabolism. Let us point out, that this is not
only a single feature but many species have evolved a huge variety of mechanisms that
allow for a dormant state. Starting from the formation and spread of seeds by plants,
spores of fungus, via the latency phases of infections or cancer cells, up to the adaptive
microbial dormancy of bacteria or other unicellular organisms induced by environmental
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stress. As broad the manifestations of dormancy appear, as broad are also the miscellaneous
mathematical models focussing on different aspects. Let us cite [21, 22, 49, 134] to mention
just a few of them. Since this is a field of recent research interest, that increases rapidly, we
also refer to the map of Blath [16] for a structured overview.

The spatial spread of populations and their forward and backward genealogies are studied
intensively in the context of spatial Λ-Flemming-Viot processes introduced by Etheridge and
co-authors [8, 73]. We also mention the class of models relying on the partial differential
equation introduced separately by Fisher [81] and Kolmogorov, Petrovsky and Piscunov
[118]. These are utilized in particular to model how the spatial habitat is populated. We
refer to [122] for a recent applied and to [31] for a more theoretic approache.

Eventually, we like to emphasise that a non-trivial direction is to include the effects of ageing
and memory [161]. One approach are the Hawkes processes [100], which by construction keep
track of (parts of) their history. These are used not only in evolution theory but for example
helpful to model the intercellular network of neuron activation [65]. Another interesting
strategy is presented in [93], where the authors define a structured seed bank that allows to
construct non-exponential (even heavy-tailed) wake-up times but preserves the Markovian
evolution.

Of course, this has to be regarded as a non-exhaustive enumeration. As mentioned before
life-science and mathematical modelling of biological phenomena is a topic of recent interest
and evolves quickly in many directions.
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3. Individual-based models of adaptive
dynamics

3.1. Basic model

In this thesis we study the evolution of an asexually reproducing population. To this aim, we
use a individual-based model of adaptive dynamics, that is introduced subsequently. These
models build the foundation for the work presented in Appendix A. In Section 3.5 we explain
how we extend the model to the changing environment investigated in Chapters B and C.
Note that existence of the jump-processes has been shown by Fournier and Méléard [83] via
an explicit pathwise construction of the locally regulated process.

Evolution is observed as macroscopic changes of the population, but its basic mechanisms
(heredity, mutation and selection) act on the microscopic level of the individuals. We there-
fore describe the evolving population by finite but varying number of interacting individuals,
each of them characterized by its traits. These can be interpreted as its geno- or phenotype
and are taken form a finite, discrete trait space V , which in our case comes as vertex set of
a directed graph G = (V,E). The set of edges in E marks possible mutations, meaning that
(v, w) ∈ E if and only if an individual of trait w can be obtained from a v-individual by a
single mutation step.

To each trait we associate a number of biological parameters that describe the dynamics of
the system:

− bv ∈ R+, the birth rate of an individual of trait v,

− dv ∈ R+, the (natural) death rate of an individual of trait v,

− cv,w ∈ R+, the competitive pressure imposed by an individual of trait w onto an
individual of trait v,

− µ ∈ [0, 1], the probability of mutation at a birth event,

− mv,· ∈Mp(V ), the law of the trait of a mutant offspring produced by an individual of
trait v.

Due to the interpretation of the edge set E as possibilities of mutation, we assume that
mv,w > 0 if and only if (v, w) ∈ E. Moreover, we assume that cv,v > 0, i.e. there is always
self-competition within a subpopulation of a certain trait. This prevents the process from
explosion and is also biologically meaningful since individuals of the same trait compete for
the same resources.
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The original construction of the stochastic individual-based model by Fournier and Méléard
[83] represents the population as a measure-valued process composed of Dirac-measures for
every individual alive. This brings the advantages to be able to deal with traits from an
arbitrary (Polish) space without further complications. However, if the trait space is finite
as in this thesis, it is convenient to reduce to a vector-valued process (N(t))t≥0 taking values
in the cádlág space D(R+,NV0 ), where Nv(t) denotes the number of individuals of trait
v ∈ V that are alive at time t ≥ 0. The Markov process is characterised by its infinitesimal
generator

Lφ(N) =
∑
v∈V

(φ(N + ev)− φ(N))
(
Nvbv(1− µ) +

∑
w∈V

Nwbwµmw,v

)

+
∑
v∈V

(φ(N − ev)− φ(N))Nv

(
dv +

∑
w∈V

cv,wNw

)
, (3.1.1)

acting on measurable and bounded functions φ : NV0 → R. Here, ev denotes the unit vector
at v ∈ V .

Assuming boundedness of the parameters b, d, c and m, which becomes trivial for the finite
trait space, one can deduce the existence and uniqueness in law of the process [83]. In
fact, Fournier and Méléard give an explicit pathwise construction of the process (N(t))t≥0
in terms of Poisson random measures. Since we make extensive use of this representation
to introduce couplings of the original process to classical birth death processes [4], we recall
this description in Sections A.4 and C.4. The process can also be obtained by an explicit
algorithmic construction for jump processes (cf. [26, 75]). This can also be seen as a instruc-
tion how to simulate the population numerically in terms of a so-called Gillespie algorithm
[90].

3.2. Scaling parameters

The stochastic individual-based model presented in the previous section is designed to emu-
late the basic mechanism of eco-evolution (heredity, mutation and selection). Given this
model, we can follow two distinct paths to deduce meaningful information. One approach is
to statistically fit the model to some application system by estimating realistic input data
(trait graph, parameters, initial condition,...) to eventually run numeric simulations. To
not just get a single possibly unlikely realisation one has to evaluate the model multiple
times and find the a meaningful statistics to summarize the features of interest. However,
simulations of individual-based models can be computationally heavy, which is impractical
for applications. In particular, in our situation this seems not to be promising, as we are
interested in the long-term evolution of the system and would need to run the algorithm for
many iterations.

Instead we aim to analyse the process with mathematical methods, more precisely we prove
a number of limit theorems that provide information on the evolution of the population and
the key points, where the stochastic fluctuations can have a huge impact on the output. To
this end, we introduce three scaling parameters, namely we control the population size by the
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scaling parameter K, the mutation probability by the scaling parameter µ and the mutation
step size by the scaling parameter σ.

In the following, we outline how these are implemented. The limit of large populations
(K ↗ ∞) is our central scale of interest and leads to the ecological ODE-system of the
Lotka-Volterra equations. For the limit of rare mutations (µ ↘ 0), we distinguish various
regimes in relation to the large population limit and the time scales involved. To complete
the picture of the main scaling parameters we shortly introduce the limit of small mutation
steps (σ ↘ 0), despite it not being considered in the main part of this thesis. Nevertheless,
we comment on to different approaches that lead to the evolutionary ODE, which is the
so-called canonical equation of adaptive dynamics (CEAD).

3.2.1. Large populations

Since the aim is to study evolution, which can be characterised without further specification
as the changes in the composition of a heterogeneous population on the macroscopic scale,
it is natural to study populations constituting of many interacting individuals. Evolution
should not be effected too much by the specific behaviour of single representatives of a species
and these random fluctuations are expected to balance if the total population is large enough.
This is exactly what we observe in the limit of large populations.

The respective scaling parameter K is integrated by replacing the former competition kernel
by the rescaled version

cKv,w := cv,w
K

, (3.2.1)

referring to the modified generators by LK and the respective processes by NK , for K ∈ N.
If we take a closer look at the generator given in (3.1.1) it becomes clear why this leads to
populations with size scaling linearly with K. Reducing to a monomorphic population, i.e.
the trait space V = {v} is just a singleton, the process is nothing but a logistic birth death
process, which finds its equilibrium at n̄ = (b−d)/c. Decreasing the competition by the factor
K−1 implies a linear increase of the expected population size. Motivated by the biological
perspective, the parameter K is often called carrying capacity, as it can be interpreted as
the capacity of the environment to support living organisms. The more resources (space,
nutrients, light,...) are available, the less is the competitive pressure between individuals.

In fact, we can make the considerations on the balance of stochastic fluctuations mentioned
above rigorous. Fixing a compact time interval [0, T ] and assuming convergence of the
rescaled initial conditions NK(0)/K → n(0) ∈ RV+, Ethier and Kurtz [75, Chap.11, Thm.2.1]
provide a law of large numbers). The rescaled processes NK/K converge almost surely to
the solution (nv(t), v ∈ V, t ≥ 0) of the Lotka-Volterra equations with mutations:

d
dtnv(t) =

(
bv(1− µ)− dv −

∑
w∈V

cv,wnw(t)
)
nv(t) + µ

∑
w∈V

bwmw,vnw(t), ∀v ∈ V, t ≥ 0.

(3.2.2)
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These equations and their solutions are objects of intensive analysis on their own. Because of
its deduction from the large population limit, this regime is sometimes referred to as infinite
population. It is of particular interest to study existence and stability of equilibrium points.
Anticipating the rare mutation limit, we can take µ = 0 and ignore the last term of (3.2.2),
which accounts for mutations (cf. Section 2.2). Moreover, it is often useful to not consider
the full system but restrict the search for equilibria to as subset of traits v ⊆ V . Associated
to this, we call n̄ ∈ Rv

+ an equilibrium state of the mutation-free Lotka-Volterra equations
if and only if (

bv − dv −
∑
w∈V

cv,wn̄w

)
n̄v = 0, ∀v ∈ v. (3.2.3)

Note, that for both, the components of the solution to the differential equation and the
equilibria, we only consider biologically reasonable values in R+. If the equilibrium has
value 0 for some trait, we sometimes say that this trait does not belong to the equilibrium.
On the other hand if there exists a unique equilibrium in Rv

>0, we denote by n̄(v) its extension
to RV+ by zero. If |v| ≥ 2 and there exists a equilibrium n̄(v) ∈ Rv

>0, we say that the traits
of v can coexist and call n̄(v) the coexistence equilibrium. The origin n̄ ≡ 0 is of course
always an equilibrium, but in almost all relevant cases it is unstable, because of some traits
being able to survive (i.e. bv > dv). Under the assumption of positive self-competition (i.e.
cv,v > 0), for all traits, the driving vector field builds a kind of barrier if the population
becomes too large. To be more precise, far away from the origin the vector field points
towards 0. This ensures boundedness for solutions to 3.2.2 and we can deduce existence,
uniqueness, and continuity from Lipschitz continuity of the coefficients.

Although there is a good understanding in dimensions d = 1 and d = 2 [40], the analysis of
the Lotka-Volterra equations becomes highly non-trivial in dimensions d ≥ 3 (cf. [172]).

Let us close the discussion for the carrying capacity by introducing some terminology for
the stochastic model. In the sequel we refer to subpopulations with a size of order K as
macroscopic, while we call populations with a size of order 1 microscopic, and intermediate
sizes of order strictly between 1 and K mesoscopic. The macroscopic traits that are close to
their joint equilibrium size are called resident.

3.2.2. Rare mutations

It is an ongoing scientific discussion what is the actual frequency of mutations [?, 166].
On the one hand the mutation rates per base pair per cell division is generally estimated
to be of order 10−9 (cf. [33, 110]). In relation to approximately 3 × 109 base pairs in the
human genome for example, this suggests a large probability of finding a genetic variation
after cytokinesis. There are various works considering a fixed mutation probability [42, 44].
On the other hand a large part of the genome is non-coding. Thus mutations at irrelevant
positions may be much more frequent, but do not change the phenotype. Focussing only
on mutations that actually affect the phenotype, suggests to discuss several regimes of rare
mutations.
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If we simply take the limit µ↘ 0 in the stochastic system, it converges to the mutation-free
stochastic model. This case becomes relevant if only ecological forces are aimed to be studied
as in the theory of population dynamics. However, evolution is only possible if mutations
occur.

Therefore, a first approach would be to study the deterministic Lotka-Volterra system in the
limit µ ↘ 0. As this means a positive mutation probability in an “infinite population”, we
interpret the regime still as frequent mutations. As a consequence Wang, Bovier and Kraut
show in [32, 120] that in finite time every trait in the connected component of the trait space
is populated independent of its mutation distance (i.e. the smallest number of mutation steps
needed in the trait graph) to the resident population. Under rescaling of time by ln(1/µ)
they show convergence to a deterministic jump process that can be connected to theory of
adaptive walks or flights, respectively. To bound the mutation range, they study in addition
a modified differential equation with an artificial lower threshold of population densities
that can proliferate, to ensure address the problem of population sizes being discrete. As
a consequence this bounds the number of maximally accumulated mutations. Its natural
stochastic correspondence we meet again below in the context of fitness valleys.

To study really a small mutation probability it is inevitable to consider a simultaneous limit
of µK ↘ 0 jointly with K ↗∞. It was observed first that under the so-called Champagnat
scaling,

e−CK � µK �
1

K lnK , (3.2.4)

for some constant C ∈ (0,∞), mutation events are rare and well separated in the following
sense: The lower bound guarantees the occurrence of mutants before the resident population
deviates too much from the equilibrium. After a mutant population of a new trait is founded
by a single individual, there is enough time either to fixate and grow to a macroscopic size
or to go extinct before the next mutation occurs. The dominating time scale (see Section
3.4) is then 1/KµK and it has been shown the convergence of the macroscopic populations
to Markov jump processes, the trait substitution sequence and the polymorphic evolution
sequence, respectively [40, 43]. Due to the regime of very rare mutations, these cannot
be accumulated. Instead from all possibly fit mutants only the nearest neighbours of the
residents are reached and get the chance to invade.

The accumulation of mutations before invading the resident becomes possible, when we
slightly increase the mutation probability, while still considering a simultaneous limit µK ↘
0. Therefore, we introduce the power-law mutation probability

µK = K−
1
α , (3.2.5)

for some parameter α ∈ (0,∞), which is the main regime analysed in this thesis. Note that
for α ∈ (0, 1) this coincides with the Champagnat scaling, but for α > 1 mutations are more
likely and we thus refer sometimes to this regime as the scaling of moderately rare mutations.
Depending on the parameter α, we observe multiple mutation steps within time of order 1.
Due to consecutive thinning by the mutation probability one can show, that the population
size of a mutant trait w reached within d(v, w) mutation steps is of orderKµd(v,w)

K . Hence, we
can make out a neighbourhood Vα(v) around the residents, comprising all traits of mesoscopic
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size. This allows now to also use non-beneficial mutations to be used as intermediate steps
towards a trait of higher fitness. At the same time this phenomenon, which we call the
crossing of a fitness valley, is limited to a number of bαc accumulated mutations. The
individual-based model was studied under this regime first by Bovier, Coquille and Smadi.
In [29] they show first that short fitness valleys of length L < α are crossed in a deterministic
time of order lnK (cf. Section 3.4). Secondly larger valleys of length L > α, can also be
crossed, but on a much larger time scale 1/KµLK and this time is still random. For more
general trait graphs he first case has been elaborated in [48], while the large fitness valleys
are part of the present thesis.

3.2.3. Small mutation steps

In view of Darwin’s concept that evolution happens gradually and incrementally, it is also
worthwhile to consider a continuous trait space (e.g. compact subsets of Rn) instead of the
discrete trait graph. The third scaling parameter σ that we can hence integrate into the
model is hence the mutation step size or the size of the evolutionary advantage of a mutant.
The idea of only small changes roots back to diffusion models Fisher already derived in
[80]. Mathematically we implement this by defining a scaled mutation kernel such that the
mutation distance is proportional to the scaling parameter, i.e. given a probability kernel
M(x,dy), we set ∫

V
Mσ(x,dy)f(y)dy =

∫
V
M(x, dy)f(σy)dy, (3.2.6)

for all x ∈ V and all bounded and measurable functions f : V → R. If a mutation occures at
a birth event of an individual of trait x ∈ V , the new mutant carries the trait x+ y, where
y is choosen randomly with distribution Mσ(x,dy).

In the theory of adaptive dynamics, this scaling goes along with the important concept
of the canonical equation of adaptive dynamics (CEAD). Heuristically motivated by the
biological assumptions of large population and rare mutations with small effects and the
assumption that no two different traits can coexist, Dieckmann and Law [61] introduced this
ODE. Beside the biological deduction, there are also different rigorous scaling limits of the
individual-based model, which lead to the CEAD to encode the limiting dynamics [7, 43]:

ẋt =
∫
V
h [hm(xt)n̄(xt)∂1f(xt, xt)]+M(xt, dh). (3.2.7)

The equation describes the continuous evolution of the trait of a monomorphic population in
a fitness landscape driven by the contrary forces of mutation and selection expressed in the
fitness gradient. The notion of fitness f(v, w) used in the equation is introduced in Section
3.3. The evolution finally comes to a hold, when approaching an evolutionary singularity,
i.e. a local extreme value in the fitness landscape. In case of a local minimum one can make
some subtle conjectures about evolutionary branching and coexistence.
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3.3. The notion of invasion fitness

3.3. The notion of invasion fitness

Talking about fitness valleys it is inevitable to discuss the different notions that have been
established in mathematical biology. The aim is in general to quantify the ability of subpop-
ulations to survive and establish in a reasonable manner, respectively. One can distinguish
the individual fitness from the concept of invasion fitness that is assigned to a trait. While
the first one is a fixed value describing how well a trait is adapted to its environment without
taking into account the other species alive, the latter one takes into account these ecological
quantities by integrating the interactions between individuals. These questions have been
addressed in the beginning by Metz and co-authors [141, 142] and made precise for the
individual-based model by Champagnat and Méléard [40, 43].

Following their approach, one can define, for each trait v ∈ V the individual fitness by
rv := bv − dv. This notion is related to classical pure birth-death-processes, if we ignore
competition-induced damping effects. Thus rv reflects the exponential growth rate of such
processes as well as of the corresponding deterministic systems.

To make the advantages of the adaptive dynamics approach work, it makes sense to include
the ecological population state into a evolutionary meaningful dynamic notion of fitness. This
comes somehow natural in the model under consideration by taking care of the competition as
interaction terms between individuals. Moreover, let us utilise the idea of adaptive dynamics
that the population is close to an equilibrium when a new mutant appears. Then we define
for a single individual of trait w ∈ V within a bulk population of traits v ⊂ V close to their
equilibrium n̄(v) its invasion fitness by

fw,v := bw − dw −
∑
v∈v

cw,vn̄v(v). (3.3.1)

In view of (3.2.2) setting µ = 0, this can again be seen as the exponential growth rate but
only in a initial stage. If this value is positive the newly founded subpopulation can and
invade the equilibrium population, we therefore refer to fw,v as invasion fitness. Based on the
sign of this invasion fitness of a trait, we can approximate its population either by subcritical
or supercritical branching processes.

In the case of equal competition, i.e. cv,w ≡ c, for all v, w ∈ V , the two fitness concepts are
strongly connected by the relation fw,v = rw − rv. Hence, rv can be interpreted as absolute
fitness, whereas fw,v is now the relative fitness. Thus it suffices to give a fitness landscape by
the fixed individual fitnesses and a trait w can invade the population of trait v if and only if
rw > rv. For broader discussions see [58], where this is connected to the theory of adaptive
walks and flights.

3.4. Time scales

One of the biggest advantages of adaptive dynamics is to study both ecological and evolu-
tionary dynamics of populations in the same model. However this does not necessarily mean
to observe those simultaneously, but they mostly occur on different time scales. On the one
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Figure 3.1.: The four phases of the invasion of a mutant trait (blue) in a resident trait (grey)
at a distance of d(v, w) mutation steps.

hand the population process covering a certain set of traits of macroscopic population size
evolves fast towards a ecological equilibrium without changing the traits being represented.
On the other hand the interplay of rare mutations and selection allows for a better adapta-
tion to the (outer) environment in the long run by evolution. This intuitive splitting of time
scales also manifests in the individual-based model introduced above and was first shown
by Champagnat in [40]. In the sequel we give an overview of the different time scales being
involved, as a careful analysis shows these are more than two. We explain them in the order
of occurrence in a invasion of a new trait and give some remarks on the mathematical tools
utilised. Figure 3.1, which is an adapted version of Figure 1.2 in [121], provides a schematic
picture of the population sizes at each phase of the invasion.

3.4.1. Stability of residents

For simplicity let us consider the population process to start near a ecological equilibrium
for the traits supporting the macroscopic population. If this was not the case, we could
first study the equilibration-phase described below. The key tool to control the dynamics
of all other individuals is to show that the macroscopic subpopulations stay close to this
equilibrium for a very long time, unless a new trait reaches a macroscopic size. This goes
perfectly in line with our biological intuition on adaptive dynamics. This is possible, since we
can interpret the subprocess as random perturbation of the underlying ODE-system (2.2.2).
Under use of the theory of Freidlin and Wentzell [86] one can establish a large deviation
principle [66], which yields stability for a exponential long time exp(V K), for some V > 0.
In [7] the authors consider a potential theoretic approach for the long term stability. We
adapt the techniques in the Appendices B and C to show strong results on the speed of
convergence.
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3.4.2. Arrival of mutants

Since almost stability of the resident population is now warranted, we use an approximation
by Poisson point processes to monitor the occurrence of mutants. There are order K-
many residents, which each proliferate with linear rate. With probability µK a mutation
occurs at a birth event and the child carries a different trait. Hence first order mutants (i.e.
nearest neighbours to the residents) are produces at a rate of order KµK . These individuals
themselves produce mutants at a rate of order Kµ2

K of second order mutants. In general,
mutants of trait w are produced at a rate of Kµd(v,w)

K , where d(v, w) is the graph distance of
w from the resident set v, i.e. the length of the shortest directed path in G connecting v to w.
Hence, the arrival time for a w-mutant is of order 1/Kµd(v,w)

K and approximately exponential
distributed. Depending on the scaling of µK ↘ 0 we can distinguish a neighbourhood of
v where 1/Kµd(v,w)

K � 1, which means that in finite time there are order Kµd(v,w)
K many

mutants present. In our case of the power-law mutation probability µK = K−1/α this is
equivalent to d(v, w) < α and we refer to this neighbourhood by Vα(v). Outside of this
region, mutants arrive separately on a the diverging time scale 1/Kµd(v,w)

K � 1.

3.4.3. Mesoscopic growth phase

As long as a mutant does not population become macroscopic, it can be well approximated
by classical birth-death-processes. Depending on the sign of the invasion fitness fw,v these
branching processes are either super- or subcritical. In the later case one can use the results
of Harris, Atherya and Ney [3, 4, 99] to show extinction in finite time. For supercritical
branching processes, the same theory gives us the dichotomy of extinction or fixation with
unbounded exponential growth. Moreover, the probability of fixation is quantified explicitly
by (fw,v/bw)+. Because of the exponential growth it takes a time of order lnK for a finite
population to reach a macroscopic size εK. The exact growth behaviour has been studied
in [29, 48, 158] a detailed description is provided in the Appendix of [45]. Note that we
also use and refine these results for different scales in Appendix B according to the changing
environment.

3.4.4. Macroscopic (re-)equilibration

Once a mutant population eventually reaches a macroscopic size εK one follows the early
approach of Fournier and Méléard [83] to establish a law of large numbers utilising the frame-
work of Ethier and Kurtz [75, 124]. Rescaling the population size by K gives convergence on
finite time intervals to the mutation-free Lotka-Volterra equations 2.2.2 with µ = 0. Note
that it is crucial, that the initial conditions for the Lotka-Volterra dynamics are of order K,
i.e. non-vanishing when rescaled by K, in order to bound the adaptation time uniformly by
a time of order 1. Hence, also the stochastic system undergoes a rapid change and gets close
to its new (ecological) equilibrium.

Due to the different traits being resident and we have to consider the invasion fitness with
respect to the new equilibrium from now on. In particular the former residents may not be
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fit any longer and thus their population size declines as a subcritical birth-death-process on
the lnK-time scale. This is depicted in the last phase of Figure 3.1.

3.5. Changing Environment

The key feature we add to our model and investigate in Chapters B and C is a changing
environment. Our biological motivation is rooted in the simple fact, that the outer forces
shaping ecology and evolution never stand still, but underlay permanent changes on various
scales ranging from dramatic singular catastrophes, like the impact of a meteorite, which
implied the extinction of dinosaurs, to (semi-)regular fluctuations like seasons or the day-
night-cycle. Out of the different scenarios there have been investigated different approaches
to implement these environmental changes into mathematical models. While some works
consider more or less random fluctuations in the environment [19, 64, 111, 125, 134], others
study a shift or a permanent drift [87, 107, 155] or similar to our approach, periodic changes
[37, 145, 160].

Motivated by medical treatment by a regular drug supply, the extension we introduce and
analyse in the following is a deterministic, periodically changing environment. This can
reflect for example the fluctuations of drug concentration in the blood induced by a regular
treatment protocol. For simplicity consider a fixed number ` of phases with individual
length Ti > 0, for each i = 1, . . . , `. By TΣ

j :=
∑j
i=1 Ti we refer to the endpoints of these

phases. In each phase, we assume the parameters to be constant, so we take birth, death
and competition rates biv, div, civ,w, for all i = 1, . . . , ` and all v, w ∈ V . Then we define the
time-dependent birth rates as the periodic extension of

bv(t) :=
∑̀
i=1

1t∈[TΣ
i−1,T

Σ
i )b

i
v, (3.5.1)

and analogously for the death rates dv(t) and competition rates cv,w(t).

If we would simply take these parameter functions to define the population process, this
corresponds to a quickly changing environment since it takes place in time of order 1. Instead
we introduce the scaling parameter λK and set

bKv (t) := bv(t/λK), dKv (t) := dv(t/λK), and cKv,w(t) := cv,w(t/λK) (3.5.2)

to control the speed of environmental changes. The aim is to make these happen slow enough
such that the resident populations can adapt, but fast enough such that they influence the
growth of mutants. In view of the previous section we choose

1� λK � lnK (3.5.3)

as an intermediate scale and define for each K ∈ N the time dependent generator of the

22



3.5. Changing Environment

population process

(
LKt φ

)
(N) =

∑
v∈V

(φ(N + ev)− φ(N))
(
Nvb

K
v (t)(1− µK) +

∑
w∈V

Nwb
K
w (t)µKmw,v

)

+
∑
v∈V

(φ(N − ev)− φ(N))Nv

(
dKv (t) +

∑
w∈V

cKv,w(t)
K

Nw

)
. (3.5.4)

Again it acts on the measurable and bounded functions φ : NV0 → R and ev denotes the unit
vector at v ∈ V .

A similar model is introduced in [49] to workout the interplay between changes in the envir-
onment and the effect of dormancy on speciation. In contrast to our constraints, they assume
very slow changes, i.e. λK � lnK. The consequence of this is that the mutants can grow to
a macroscopic size within a single phase of constant parameters and hence invasions add up
to a drift. The accelerated changes of our model instead lead to an inter-phase averaging of
the key quantities and we can deduce some effective growth rates as a weighted average.

Of course, this comes by the price of some involved technicalities in the growth analysis.
For ones, the frequent parameter changes entails a permanent adaptation of the resident
population to its phase-dependent equilibrium. We therefore cannot directly use the stability
analysis of Freidlin and Wentzell explained in the previous section. But we need good control
on the speed of convergence of the probability to get too far from the equilibrium. For the
same reason we improve the convergence result of Ethier and Kurtz partially.

Focussing on the mutant growth the changing environment causes the need to extend the
approxiamtion theory of branching processes of Champagnat, Méléard and Tran [45] on both
time scales. In the time horizon of mutant growth, lnK, we show the averaging effects. In
particular the extinction probability turns out to be of non-trivial matter. At the same time
we achieve strong estimates on the growth and decline of a population during a single period.
In combination with the fitness valley the later one turns out to be crucial in the detailed
analysis of a pit stop (cf. Section 4.4).
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4. Outline and main results of the thesis

The main body of this thesis is structured into three interconnected chapters, each of which
can be read independently, though their contents are related. Appendix A focusses on the
analysis of the long-term behaviour of the model of Chapter 3 for a fixed (outer) environ-
ment. In Appendix B and C we decode the effective influences of a periodically changing
environment. While the first two consider a general trait graph, the results of the last part
restrict to a particular setting reflecting the condensed version of a fitness valley. In the
following give some remarks on the genesis of the questions addressed in the thesis and
summarise the content and main results of the three chapters.

4.1. Historic placement and motivation

The individual-based model defined in Section 3.1 has been the object of intensive analysis
over the last two decades. Step by step different authors were able to work out the interplay
of ecology and evolution on different time scales and for different mutation regimes.

Building on the preliminary works and fundamental ideas of Metz, Geritz, Bolker, Pacala,
Dieckman, Law and coauthors in the 1990s [24, 25, 61, 62, 141, 142] as mentioned before,
Fournier and Méléard introduced the model rigorously in [83]. Moreover, they already proved
convergence to the deterministic Lotka-Volterra-system and the respective equilibria in the
O(1)-time scale.

Under the strong assumption of very rare mutations, Champagnat worked out the splitting
of time scales between ecology and evolution and described the several phases of invasion
we discuss in Section 3.4 in [40]. Therein and later under collaboration with Méléard in
[43], it was given a shown convergence of the population process on the time scale 1/KµK
to the so-called trait substitution sequence (TSS) and the polymorphic evolution sequence
(PES), respectively. Both are Markov jump processes with the state space consisting of the
Lotka-Volterra equilibria between different traits. Due to the regime of very rare mutations,
the limiting processes are driven by fit mutant traits only in the direct neighbourhood of the
present resident traits.

After Smadi gave some insights on the exponential growth of mutant populations in [158] and
together with Billard in [14], the joint work of her, Bovier and Coquille [29] worked out the
splitting of invasion time scales for the power-law mutation regime for a simplified linear trait
space. As explained in Section 3.4.2 traits that are close enough to the residents (by means
of mutations to be accumulated) are immediately present with a non-vanishing number of
individuals. Therefore, fit subpopulations start growing approximately exponentially and
reach a macroscopic size in time of order lnK. Otherwise, if there is no fit mutant in the
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4. Outline and main results of the thesis

accessible neighbourhood, the process gets stuck in a so-called evolutionary stable condition
(ESC). In order to escape one has to wait for a fit mutant to appear outside of the accessible
neighbourhood. This requires a time of order 1/KµLK , where L is the length of the so-called
fitness valley to be crossed,i.e. the mutational distance to the fit mutant trait. This goes
perfectly in line with the former results for the TSS and PES when setting L = 1. Since on
a macroscopic level, the process stays stable for a long time, while the actual change takes
place comparably fast, this phenomenon can be seen as a characteristic of metastability.

While a general description of the evolution on an arbitrary trait graph for the lnK-time
scale was achieved by Coquille, Kraut and Smadi in [48], the corresponding result for the
metastable transitions between ESCs was still missing. Appendix A aims at closing this gap
by investigating fitness valleys in general trait graphs. Considering the model extension of a
changing environment introduced in Section 3.5, Appendix B recreates the general picture
on the lnK-time scale and Appendix C analyses different cases of crossing a fitness valley
on a simplified trait graph.

4.2. A general picture of adaptive dynamics on multiple scales

Appendix A studies the individual-based model for fixed environments, where the trait space
is given by an arbitrary finite directed graph G = (V,E). We investigate the full picture of
jumps between evolutionary stable conditions (ESC) in two main results. We first construct
the metastability graph GESC with ESCs as vertices, and describe the jumps on varying time
scales depending on the stability of the ESC. Fixing a particular time scale then yields the
converges to a Markov jump chain on the so-called L-scale graph GL, which is a collapsed
version of the former one. This appendix was published in the Journal of Mathematical
Biology as joint work with Anna Kraut [69],

M. Esser and A. Kraut, A general multi-scale description of metastable adaptive
motion across fitness valleys. Journal of Mathematical Biology, Volume 89, Number
46, 2024.

Appendix A contains the published version, with only minor changes to correct some typing
errors and adapt the layout to the format of this thesis.

Metastability is a phenomenon usually known from the field of (statistical) physics and
chemistry [30]. It describes the situation of systems to seem stable on short time scales and
besides small excursions to return to the same stable state very often. In the long-term
run, however, these systems can be triggered to escape from this trap and rapidly evolve
towards another stable state. Often one can characterize these metastable states as local
minima in the energy landscape and an escape is possible when a critical energy threshold is
reached. The seminal work [29] laid the basis for understanding also evolution as a metastable
process.

In Appendix A, we follow this perspective and establish the rigorous theory of metastability
for evolution on general trait graphs. While the physical notion of stability is closely related
to the (absolute) energy landscape, this translates to the shape of the (dynamic) invasion
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fitness landscape in the biological world. To each evolutionary stable condition v ⊆ V , we
associate a stability degree L(v), which is basically the radius of the surrounding fitness
valley when traits v are resident. The critical event to trigger an escape is the birth and
fixation of a fit mutant at the boundary of the valley. The fast evolution to the next ESC
is then given by the algorithm of [48] on a lnK-time scale. The time scale to observe the
metastable transitions 1/KµL(v)

K depends on the degree of stability and hence varies between
the ESCs. We illustrate this peculiarity in two different results.

In Theorem A.2.7 we show that the exit time of an ESC is approximately exponentially dis-
tributed and we obtain the exact rates R(v). Moreover, if multiple equidistant mutants can
trigger the escape, these are chosen randomly and we compute the respective probabilities.
Considering the ESCs as the vertices of a new graph GESC, where directed, weighted edges
indicate possible transitions, we can describe the trajectory of evolution in the limit of large
populations K ↗ ∞ as a multi-scale jump chain on this metastability graph. This can be
related to the concept of adaptive walks or adaptive flights (cf. [123]). Those are stochastic
processes that directly study the motion of the macroscopic population on the trait space,
focussing on successful invasions and omitting the microscopic dynamics.

In contrast to this general picture spanning multiple time scales, we present another perspect-
ive in Theorem A.2.11 Fixing a level of stability L and focussing on a particular timescale
1/KµLK one notices that on the one hand larger valleys L(v) > L cannot be crossed, while
smaller valleys L(v) < L are crossed immediately. This implies, that edges connecting ESCs
of lower stability get concatenated and contracted, but those starting in ESCs of higher
stability get removed. The metastability graph hence collapses to a L-scale graph GL. And
we can deduce convergence to a Markov jump process NL. Since the construction of the
meta-graphs GESC and GL from the fitness landscape on the original trait graph is a bit
involved, we provide a detailed explanation in Section A.3 together with some examples,
which exhibit an interesting behaviour.

Particular difficulties we have to overcome in the proofs lie in the fact, that circles and
backwards mutations are generally allowed in our trait graph. Heuristically it is clear, that
these do not have a valuable effect on the exit times, because the shorter a mutational path
is, the fewer mutations need to occur at respective small probability µK . We use an inductive
approach over the oriented graph distance from the resident population to make the principle
of the shortest paths rigorous.

A remarkable insight we gain from the complete analyses is that besides Darwin’s principle
survival of the fittest, there comes additionally the survival of the first. By this we mean,
that from the possible mutants, which could trigger the exit from ESC, it is the first one,
who makes it. This is not necessarily the fittest one.

4.3. The influence of environmental changes on the growth of
mutant subpopulations

In Appendix B, we investigate the growth of emergent mutants and their invasion of the
resident population in the periodically changing environment introduced in 3.5 under power
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law mutation probability µK = K−1/α, α > 0. Since the growth phase is affected by frequent
changes of the parameters, we are able to extract the effective speed of growth as an aver-
aging of the phase-dependent invasion fitnesses. In addition to a mesoscopic scaling limit
of the orders of population sizes, we deduce a limit result for the sequence of consecutive
macroscopic resident traits that is similar to the so-called trait-substitution-sequence. This
appendix is to appear in Stochastic Processes and their Applications as joint work with Anna
Kraut [71],

M. Esser and A. Kraut, Effective growth rates in a periodically changing environ-
ment: From mutation to invasion. Stochastic Processes and their Applications,
Volume 184, Number 104598, 2025.

Appendix B contains the accepted manuscript, with only minor changes to correct some
typing errors and adapt the layout to the format of this thesis.

We give a full characterisation of the limiting process under rescaling of time by lnK.
Theorem B.2.4 provides the precise description of the orders of the different subpopulation
sizes in terms of the exponents βKv (t) := ln(NK

v (t lnK)+1)/ lnK. When K tends to infinity
these converge to deterministic piecewise linear function given by an inductive algorithm.
Moreover, in Corollary B.2.5, we depict the “visible” evolution of the population process,
i.e. the progression of macroscopic traits that dominate the whole system. The results are
parallel to those for the constant environment case in [48]. There are two main differences.
First in the algorithmic description of the limiting functions, one has to replace the invasion
fitness fw,v, which is the key quantity related to the slopes of the functions, by the so-called
effective growth rate fav

w,v =
∑`
i=1 f

i
w,vTi/T

Σ
` , which is nothing but the weighted average of

the fitness over the different phases of the environment. Second, the characterisation of the
macroscopic evolution is limited to determining the supporting traits since the actual value
of the equilibrium size fluctuates according to the environmental changes.

The proof relies on the inductive approach of [48], the intermediate time steps introduced
there and an analogous approximation by (logistic) birth-and-death processes with and
without migration. However, the changing environment faces us with three main technical
issues, which necessitate different approaches to be fixed.

First, we require a stability result for the resident population in order to be able to ap-
proximate the mutant populations by classical birth-death-processes. However, we cannot
simply apply the large deviations approach that is used in the case of constant parameters
because due to the changes in the environment, the equilibrium sizes of the resident traits
change from phase to phase. Therefore, we must concatenate short times of re-equilibration
and longer sections of stability in alternating sequence for all phases. Since the total time
horizon under consideration includes an increasing number of phase changes in the limit, it
is necessary to get good bounds on the speed of convergence for each approximation as the
sum of a diverging number of failure probabilities still needs to vanish in the end. For the
re-equilibrations we improved the results of Ethier and Kurtz [75], which were also used in
former results. To prove a stability result with sufficiently fast convergence of the probab-
ilities in between parameter changes we decided for a different approach and adapted some
results of Baar, Bovier and Champagnat presented in the appendix of [7] using potential
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theory. Despite these being restricted to monomorphic equilibria they turn out to be very
strong and robust.

A second and somehow minor difficulty is to take the swap from the approximation by
branching process to the law of large numbers at the right time. When a new emerging
mutant becomes macroscopic we have to ensure that the new mutant is in a fit phase to
apply the Lotka-Volterra system. We do so by a careful choice of the utilised stopping times,
which now include conditions on the fitness, and by establishing results on the short-term
growth of the mutant populations.

The third challenge appears in the context of the branching process approximation, where
we have to rework the results of the appendix from Champagnat, Méléard, and Tran’s
paper [45] for the setting of a changing environment. While the adaptation of the results is
straightforward, despite needing a lot of notation, the control over small populations, those
which newly emerge or are close to extinction, turns out to be particularly different. In the
case of a constant environment one utilise the easy extinction probability of simple birth-
death-processes several times. Because of the time-dependent parameters, this is no longer a
helpful quantity. Instead, we prove estimates on these probabilities by a time-discretisation
and an iterative bound for the probability generating function of the corresponding Galton-
Watson process, taken from [4].

4.4. The effect of periodic environments on the crossing of fitness
valleys

Appendix C extends the considerations of Appendix B by analysing the crossing of fitness
valleys in a changing environment. These occur typically on much larger time scales than
the growth of mutant populations depending on the length of the valley. By examining the
influences of the changing environment carefully on each time scale, we are able to determine
the overall crossing rates of fit mutants and their ability to invade the resident population.
Building on this, we study an interesting variation, which we call pit stop. In this case, an
intermediate trait within the valley has temporary phases of positive invasion fitness. We
observe a significant acceleration of the traversal of the valley and can precisely characterize
the new time scale. This appendix is available as a preprint as joint work with Anna Kraut
[70],

M. Esser and A. Kraut, Crossing a fitness valley in a changing environment: With
and without pit stop. Preprint, arXiv:2503.19766.

Appendix C contains the preprint, with only minor changes to adapt the layout to the format
of this thesis.

In the context of changing environments, there are different notions of fitness. On the
one hand for each phase i = 1, . . . , ` there is the classical phase-dependent invasion fitness
f iw,v = bi− di− ciw,vn̄iv describing the initial growth rate of a new emerging w mutant within
a bulk population of trait v near its monomorphic equilibrium under the parameters given
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for the i-th phase. On the other hand, we determine in Appendix B the effective growth
rate fav

w,v =
∑`
i=1 f

i
w,vTi/T

Σ
` as the waited average, quantifying the growth of mesoscopic

population on the time scale lnK. When defining a fitness valley for changing environments,
it turns out to make a huge difference, which of those two quantities we ask to be negative,
despite both preventing mutant populations within the valley from growing to macroscopic
size. In Appendix C we therefore investigate two different scenarios.

The first and more restrictive assumption is the so-called strict valley. For all traits
v ∈ [[1, L− 1]] within the valley, we assume the invasion fitness with respect to the res-
ident population at trait 0 to be negative in every phase, i.e. f iv,0 < 0 ∀i = 1, . . . , `. Note
that this immediately implies that also the average fitness fav

v,0 is negative. For the trait L
at the end of the valley we then assume positive average fitnessfav

L,0 > 0, since this enables
the L-trait already to grow to macroscopic size.

Under these fitness valley assumptions we are able to prove a limit result for the crossing time
TKinv, that is similar to [29]. Namely, Theorem C.2.2 shows that the time is approximately
exponentially distributed on the time scale 1/KµLK and the effective crossing rate Reff

L is
an average of the phase-dependent crossing rates RiL. In contrast to the effective growth
rates of Appendix B one cannot simply take the weighted average to define Reff

L . This is
because there are time intervals where mutants of trait L at the end of the valley are born
and start growing, due to their positive invasion fitness in this phase (f iL,0 > 0). However,
if the population was founded too late within the fit phase and in the next phase the trait
L is unfit (f i+1

L,0 < 0), the population size at the phase change is not large enough and the
L-population goes almost sure extinct. Note, that this situation is possible since we only
assumed the average fitness of trait L to be positive.

We deal with this difficulty by a careful study of the initial fixation in a time of order
√
λK

and the survival over a full period of length λKTΣ
` . Under usage of the probability generating

function for time-inhomogeneous branching processes, we characterize a set A ⊆ [0,∞) of
admissible arrival times, that allow for a successful invasion. Using the indicator function of
this set as additional filtration finally leads to the proper formula for Reff

L . (cf. C.2.14).

The second and more intricate kind of fitness valley we summarize under the name valley
with pit stop in Theorem C.2.3. To avoid further complications we restrict the changing
environment to only two alternating phases. In contrast to the strict valley, we choose exactly
one trait in the more distant part of the valley w ∈ [[bαc+ 1, L− 1]] which is assumed to
have positive invasion fitness in the first phase (f1

w,0 > 0) but still forced to have negative
average fitness (fav

w,0 < 0). The rest of the valley is of the strict form described in scenario
one. To avoid the entanglement of the set A here, the final trait of the valley shall have
positive fitness in both phases (f1

L,0, f
2
L,0 > 0).

This little change in the fitness landscape seems harmless but has a significant impact on the
speed of traversal of the valley. Formerly, as analysed in [29] a mutant arriving at trait w
gave rise to a subcritical excursion, i.e. a subcritical birth-death-process, which is well known
to get extinct in finite time almost surely. If a w-mutant is produced in the phase i = 1 this
is no longer the case because of the positive invasion fitness. Instead, this newly founded
population can grow exponentially until the phase changes and it decays until extinction in
the second phase. Note that extinction within one period is guaranteed by fav

w,0 < 0. Since
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the population grows for a phase of diverging length 1 � λK � lnK, the peak size is also
of diverging order exp(cλK), where c depends on the arrival time of the first w-mutant and
its fitness. Note that this size is of smaller order, than any power law Kγ .

As there are now many more individuals alive that have the ability to produce mutants
of trait w + 1, this is much more likely than in the purely subcritical case. Therefore, at
trait w the former thinning induced by µK from the subcritical excursion is replaced by a
less restrictive thinning with a probability of order exp(cλK)µK . Inserted in the complete
valley, this yields a significant acceleration of the time scale of traversal. To be precise the
impact is the largest if the w-mutant is born at the beginning of the first phase and its
descendants produce a mutant of trait w+1 at near the phase change. Then the peak size is
approximately exp(f1

w,0T1λK). Since the w-mutants arrive almost uniformly the probability
for this to happen is of order 1/λK . Hence we see an overall speed-up by exp(f1

w,0T1λK)/λK .
Moreover, this “typical behaviour” condenses also in the corresponding rate Rpitstop

L . Here,
averaging of the two phase-dependent crossing rates splits into the part before trait w and
thereafter (cf. C.2.17).

In order to make the preceding heuristics rigorous two main challenges have to be addressed.
First, we improve the bounds on the stability of the residents. Besides strengthening the
estimates on the convergence speed, we also refine the bounding tunnel of allowed fluctuations
around the exact equilibrium by replacing the formerly fixed ε > 0 by a vanishing sequence
εK ↘ 0. The first result is necessary since compared to Appendix B the number of phases to
be concatenated increases when enlarging the time scale and hence the time horizon under
consideration. The finer tunnel becomes inevitable because the time scale itself depends on
the invasion fitness and this quantity and its approximations are strongly connected to the
bounds of the fluctuations of the resident population. Unfortunately, this comes at the price
of assuming equality of the equilibrium sizes over both phases (n̄1

0 = n̄2
0). If this was not the

case, one had to take into account the adaptation phases after each change of phases, which
take too long, when the degree of deviation from the equilibrium at the end of adaptation
is too small. However, under this assumption, we can show long-term stability for the finer
εK-tunnel.

Second, we give a precise description of the growth and decline of the population of the pit
stop trait. Under the use of a basic limit result of [4] and refining the techniques established
in [45] exploiting Doob’s maximum principle, we prove sharp bounds on the population size
during one period. This enables us to finally determine the correct time scale and rate of a
successful crossing of the valley.
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5. Outlook and open questions

It is not a new insight that with every new theory that is proved the number of new emerging
questions exceeds the number of given answers. Subsequently, we present a few of the
topics.

A somewhat intuitive path forward is to combine the ideas given in the three main chapters
in the sense to decode the metastable transitions on general trait graphs for periodically
changing environments. It would be of some interest if one can find a similar metastability
graph and how the phenomenon of pit stops enters in. This requires a careful analysis of the
fitness landscape over the different phases of the environment.

Regarding the environment, it seems promising to consider changes of a more general nature.
We are confident that without too much effort, one can extend the results for piece-wise
constant parameters to periodic, continuous (or even cádlág) parameter functions, which
could bring us closer to realistic scenarios. For the same reason, one could ask for random
changes of the phases, either by random times of changes or more generally to model the
environment by an ergodic Markov chain. While resident stability can likely be ensured
similar to the demonstrated case, the control of the small populations and the decision
about their survival or extinction presents as a non-trivial but highly interesting problem.

There are also various scenarios of less stability for the resident population driven by some
realistic examples. Motivated by the drug-treatment example, we can think of a setting,
where the resident population is also affected by the drug, hence declines and cannot stay
macroscopic all the time. In this situation, the possible mutant populations are no longer
suppressed by the bulk population and thus have a much larger ability to grow and invade
the residents. From a medical point, this is a critical implication of the treatment since the
mutants of the pathogen are likely to adapt better to the drug, in the sense of resistance,
which means over time they become more aggressive.

The results on changing environments presented in this thesis only consider monomorphic
resident populations, due to our different approach to estimating the speed of convergence
for the resident stability. Nevertheless, we are of the opinion that the perturbation results of
Freidlin and Wentzell [86] can be reworked and adapted to extend the results of Appendix
B and C to polymorphic evolution sequences (cf. [43]).

Furthermore, we would like to relax the assumption of the unique stable equilibria to the
Lotka-Volterra system involving the resident traits and the new mutant. Instead, the differ-
ential equation could approach a stable orbit, such that the resident population is period-
ically changing. Such limit cycles appear in Lotka-Volterra systems of dimension three and
larger [171], for example in predator-prey systems and other constellations of coexistence
like collaboration and mutual interaction. Let us mention the modelling of immunotherapy
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with oscillating cancer-cell and T-cell populations as a relevant application (cf. [121]). The
tools established in this thesis seem auspicious to investigate the mutation growth in this
context.

Of course, cyclic behaviour can be observed on nearly every time scale and may lead to
interesting (average-)results on higher time scales. Besides the changing environment and
the Lotka-Volterra limit cycles mentioned above, we heuristically discuss a particular case
for a cycle in the metastability graph GESC in Example 5 in Appendix A.

A further branch of mathematical biology, which permanently advances is the theory of
dormancy or phenotypic switches in general. This mechanism is studied in full broadness
ranging from models of population genetics and coalescent processes [17] over questions of
fractional time derivatives [157] in population dynamics up to the spatial dispersal of seeds
and seedbanks in ecological project [131]. It ties in with the modelling of cancer and different
therapies against [1, 35, 84]. A first stepping stone to study the effects of dormancy in the
models of adaptive dynamics is the works of Blath, Tóbiás [22]. The results on dormancy
and evolutionary branching, which they developed under the collaboration of Paul and Wilke
Berenguer [21] should be extended further to the theory of fitness valleys with larger mutation
probabilities. Let us mention in addition, that there are also contributions on the interplay
of dormancy and changing environment, e.g. [19, 49]. It seems also worth studying this in
more detail regarding the faster environmental time scale of this thesis.

Moreover, let us take a closer view onto an area of adaptive dynamics that seems some-
what disconnected yet. In this thesis, we restrict ourselves to a discrete trait graph. Since
mutations are not only rare but mostly cause only small changes, it is also reasonable to
consider a continuous trait space. Under an appropriate scaling of small mutation steps (see
3.2.3) one can show convergence to the canonical equation of adaptive dynamics [7, 43, 61].
A non-trivial question is if and how one can achieve comparable results within a changing
environment. How does the CEAD depend on the environment and what are the appropriate
scales for environmental changes, mutation probability and mutation step size? Already in
the constant parameter set-up, the simultaneous scaling requires a variety of new methods.
So far there are still subtle heuristic conjectures on the time scale of evolutionary branch-
ing. Their proofs let us expect to open a new window towards a better understanding of
speciation as a key observable of the evolutionary tree.

We close this outlook on rewarding approaches to adaptive dynamics by mentioning a current
and relevant extension of the underlying class of individual-based models. In [154], Popovic
and Véber present a particle-based model for chemical reaction-diffusion processes and proof
a law of large number providing the convergence to an ODE system similar to the Lotka-
Volterra equations. Although the biochemical interpretation of this model is meant on a
subcellular scale, the individual-based population model outlined in Chapter 3 can also be
seen in some sense as a special subclass of this newly established framework, which cannot
hide its mathematical origin. It seems that the transfer of results from the adaptive dynamics
model is not restricted only to the law of large numbers. Particularly, understanding the long-
term behaviour on diverging time scales of these chemical reaction networks is a desirable
aim of further investigation.
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A. Publication: A general multi-scale
description of metastable adaptive motion
across fitness valleys

This appendix was published in the Journal of Mathematical Biology as joint work with
Anna Kraut [69],

M. Esser and A. Kraut, A general multi-scale description of metastable adaptive
motion across fitness valleys. Journal of Mathematical Biology, Volume 89 , Number
46, 2024. https://doi.org/10.1007/s00285-024-02143-3

We consider a stochastic individual-based model of adaptive dynamics on a finite trait graph
G = (V,E). The evolution is driven by a linear birth rate, a density dependent logistic
death rate and the possibility of mutations along the directed edges in E. We study the
limit of small mutation rates for a simultaneously diverging population size. Closing the
gap between [29] and [48] we give a precise description of transitions between evolutionary
stable conditions (ESC), where multiple mutations are needed to cross a valley in the fitness
landscape. The system shows a metastable behaviour on several divergent time scales,
corresponding to the widths of these fitness valleys. We develop the framework of a meta
graph that is constituted of ESCs and possible metastable transitions between them. This
allows for a concise description of the multi-scale jump chain arising from concatenating
several jumps. Finally, for each of the various time scales, we prove the convergence of
the population process to a Markov jump process visiting only ESCs of sufficiently high
stability.

A.1. Introduction

The theory of evolution aims to understand the adaptation of biological populations to their
environment through mutation and selection. Following the principles originally proposed by
Darwin, it associates to each individual a fitness, which characterises their ability to survive
and produce a growing population. The path of evolution, tracing the types of individuals
that were able to fixate in the population, usually follows a sequence of types of increasing
fitness. However, in many cases the mutational path has to pass through a number of
deleterious or neutral intermediate types in order to reach a type of higher fitness. This
can for example be seen in cancer initiation, where multiple driver mutations need to be
accumulated to induce an outgrowing population [137]. Other examples are the formation
of complex mechanisms like flagella in bacteria, where only partially functional intermediate
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stages of flagella yield an evolutionary disadvantage but fully functional apparatuses lead to
increased fitness [152]. See also [59] for a review of empirical fitness landscapes arising in
nature.

When the population needs to cross types of lower fitness in order to reach a fitter type,
many such attempts will be unsuccessful. This is because the intermediate unfit types are
destined to go extinct within a short time and might not produce a new mutant type before
this happens. As a result, the waiting time to cross a valley in the fitness landscape is
much longer than the invasion time of fit mutant types that are directly accessible. Once
a fit type is attained, however, it rapidly fixates in the population. These dynamics, which
can also be analysed in the framework of metastability, as illustrated below, have already
been studied heuristically by Gillespie in the 80s [91]. Since then, fitness valleys have been
studied in a variety of mathematical models, ranging from Moran models [119, 92] to multi-
type branching processes [149].

The model that we want to focus on in this paper is a stochastic individual-based model
of adaptive dynamics, for which Bovier, Coquille and Smadi have studied fitness valleys in
the simple case of a linear trait space [29]. This type of model tracks the sizes of different
subpopulations and - opposed to many others like the Moran model - does not work under
the assumption of a constant overall population size. It is in this aspect closer to branching
processes, where the population size varies over time. However, infinite growth is limited
due to competitive interactions. Moreover, selective advantages of certain traits are not
prescribed by a fixed parameter but arise through these interactions. This is particularly
important for the long-term evolution of the population since the fitness landscape depends
on the current composition of the dominant population and changes over time.

This study of the interplay of ecology and evolution goes back to ideas from Metz and
Geritz (among others) in the early 90s [142]. Shortly after, an individual-based approach
has been proposed by Bolker and Pacala [24] and a rigorous construction was first presented
by Fournier and Méléard almost 20 years ago [83]. Since then, these models have been the
topic of study for scaling limits in a variety of parameter regimes and extensions to the base
model (e.g. [40, 43, 7, 158, 28, 120, 45, 48]). We refer to [27] for a comprehensive overview
of various scaling limits.

To study the typical long-term behaviour of the population, two scaling parameters are
introduced: The carrying capacity K, which scales the order of the population size, and
the mutation probability µK , which scales the frequency of mutation events. For large
populations (K → ∞) and rare mutations (µK → 0), different mechanisms that change
the state of the population - like mutations introducing a new type or interactions between
individuals that lead to a new equilibrium state of resident traits - act on different time scales.
There are three important time scales in this setting: Ecological interactions between well-
established subpopulations, like the competition for resources, can change the composition
of the overall population within a short time of order 1. This is related to classical Lotka-
Volterra dynamics and leads to equilibrium states between the larger traits. Short-range
mutations and the initial exponential growth of small mutant populations can be witnessed
on a logarithmic time scale of order lnK. Finally, long-range mutations - in particular those
that need to traverse a large fitness valley of width L - are quite rare and occur on a time
scale of order 1/KµLK . The distinction between long and short-range mutations depends on
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the choice of the mutation probability µK , where long ranges L satisfy KµLK � 1. To obtain
a non-trivial limit as K →∞, the population size is usually rescaled by K. As a result, only
the established resident traits are visible. Since the ecological changes of these traits happen
very fast in comparison with the other time scales, the limit of the population process yields
a jump process that transitions between different equilibrium states.

The effects of short-range mutations on the lnK-time scale have been studied extensively
by Coquille, Kraut, and Smadi in [48]. The authors give a full description of the limiting
dynamics for the scenario of a general finite graph as a trait space. As mentioned above,
the crossing of fitness valleys through long-range mutations (on the 1/KµLK-time scale)
has been analysed for a simple linear trait space in [29]. Moreover, the case of very rare
mutations, where even neighbouring traits are regarded as long-range mutations, has already
been studied by Champagnat and Méléard in [40, 43], who showed convergence to the trait
substitution sequence or polymorphic evolution sequence.

The present paper finally closes the gap between the previous works and gives a full de-
scription of the jump processes resulting from long-range mutations on general finite trait
graphs, thus extending the results of [29] to the more general setting of [48]. This general
setting entails that, for a given equilibrium state, there might be several paths to cross the
surrounding fitness valley. Concentrating on the decisive, shortest paths we calculate the
rate of a transition to the next evolutionary stable condition and give the precise asymptotics
in Theorem A.2.7 and Corollary A.2.8. The length of the shortest paths determines the time
scale to cross the valley. Based on this, we introduce the notion of a stability degree L to
classify the equilibrium states. Combining multiple of these steps gives rise to a jump chain
that moves on a so called metastability graph stated in Corollary A.2.10. This graph typic-
ally consists of fitness valleys of different width, which can be crossed on different time scales
of the form 1/KµLK . Depending on the choice of time scale, only some of these transitions
are possible (valleys of width strictly larger than L cannot be crossed) or visible (transitions
of valleys of width strictly smaller than L are immediate). This leads to different limiting
jump processes in Theorem A.2.11.

When long-range mutations are necessary to cross a large fitness valley, the system displays
an almost stable behaviour on shorter time scales but can change its state when waiting a
long time. This type of phenomenon is also known as metastability. It has been studied
mathematically mostly in the context of physics and statistical mechanics (e.g. [46]). How-
ever, the concept is very versatile and can be applied to many dynamical systems, including
models for biological processes. This has for example been mentioned in [29] for models of
adaptive dynamics, and in [56] for population dynamics.

In the former case, as well as in this paper, the role of the traditional physical energy
(landscape) is taken over by the fitness (landscape). Instead of passing a critical state of
high energy, the process has to cross a valley of negative fitness through a sequence of
deleterious mutations. Similarly to the fast dynamics after passing a high energy state, the
adaptive dynamics system quickly attains a new metastable equilibrium once a fit mutant
is reached due to fast exponential growth. The results of [29] and this paper even confirm
classical definitions of the mean time for a metastable transition (e.g. [30]), by proving that
the waiting times for jumps between equilibrium states are exponentially distributed when
considering the correct time scale.
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While single jumps across a fitness valley can be regarded as metastable transitions, the
limiting jump chain can be related to the concept of adaptive walks or flights. Those are
stochastic processes that directly study the motion of the macroscopic population on the trait
space, focussing on successful invasions and omitting the microscopic dynamics (see [123] for
an overview). There are two sources of randomness in adaptive walks: A random fitness
landscape and a random motion towards neighbours of higher fitness, according to some
transition law. Based on these, properties of interest are the distribution and accessibility of
fitness maxima [156, 150, 10, 11], as well as the time or path length to reach those maxima
[151]. In adaptive flights, transitions are not just possible between neighbouring traits but
from one local fitness maximum to another [108, 109, 106, 146]. This relates back to the
limiting processes derived in this paper, where the population jumps between equilibrium
states that are surrounded by valleys of traits of lower fitness.

A major difference between the models of adaptive walks/flights and adaptive dynamics
is that the former assume a fitness landscape that is random but fixed in time, while in
the latter case the fitness landscape is dynamic and depends on the current resident traits.
As mentioned before, the notion of local fitness maxima can nevertheless be translated.
Moreover, if equal competition between all traits is assumed in the adaptive dynamics model,
the fitness landscape can again be regarded as fixed. We study this special case in a number
of examples. Overall, the results of this paper can be seen as a validation of certain types of
adaptive walks or flights, deriving their macroscopic dynamics from a microscopic, individual-
based model.

The remainder of this paper is structured as follows: In Chapter A.2, we rigorously define
the individual-based model of adaptive dynamics, for which we derive our limit theorems.
We introduce key quantities, like the fitness of a trait, and recapitulate the most important
results of [48] that lead to a metastable state on the lnK-time scale. Finally, we heuristically
derive the limit behaviour on longer time scales and present the formal convergence results,
starting with a single metastable transition in Section A.2.3 and treating the full jump
process in Section A.2.4. Chapter A.3 is devoted to the discussion of a number of examples
that highlight different aspects of the complicated limiting dynamics in an easy set up. The
proofs of the main results of this paper can be found in Chapter A.4. A combinatorial result
on excursions of subcritical birth death processes and the complete version of the results
from [48] are stated in Appendix A.5, for the convenience of the reader.

A.2. Model and Main Results

In this chapter we introduce the individual-based model of adaptive dynamics and develop
the main results of this paper. After a rigorous definition of the population process and its
driving parameters we give a short overview of the behaviour on the time scales of order 1
and lnK in Section A.2.2. Moreover, in this section we derive the key quantities that lead
us to the definition of the notion of an evolutionary stable condition. Our main results on
the transition out of an ESC are stated in Section A.2.3 and we give a heuristic explanation
there. Finally, Section A.2.4 is devoted to our results on multi-scale jump chains and the
convergence of the population process. For the convenience of the reader, we provide a

38



A.2. Model and Main Results

preview of the different time scales and the main results of this paper at the end of Section
A.2.1.

A.2.1. Individual-based model

To study the evolution of a heterogeneous population, we consider a classical stochastic
individual-based model of adaptive dynamics. Each individual of our haploid population is
characterised by its trait, which can be interpreted as its geno- or phenotype. Note that we
assume a one to one correspondence between trait and physical properties. In this paper
we consider a finite trait space that is given by a directed graph G = (V,E). Here, the set
of vertices V represents the possible traits that individuals can obtain. The set of edges E
marks the possibility of mutation between traits.

To each trait we associate a number of parameters that describe the dynamics of the system.
For v, w ∈ V and K ∈ N, denote by

− b(v) ∈ R+, the birth rate of an individual of trait v,

− d(v) ∈ R+, the (natural) death rate of an individual of trait v,

− cK(v, w) = c(v, w)/K ∈ R+, the competition imposed by an individual of trait w onto
an individual of trait v,

− µK ∈ [0, 1], the probability of mutation at a birth event,

− m(v, ·) ∈Mp(V ), the law of the trait of a mutant offspring produced by an individual
of trait v.

Here, Mp(V ) denotes the set of probability measures on V . The parameter K scales the
competitive interaction between individuals. It is called carrying capacity and can be in-
terpreted as the environment’s capacity to support life, e.g. through the supply of nutrients
or space. The way in which the mutation probability µK may depend on K is discussed
below.

To ensure a limited population size and to establish the connection between the possibility
of mutation and the edges of our trait graph, we make the following assumptions on our
parameters.

Assumption 1. For every v ∈ V , c(v, v) > 0. Moreover, m(v, v) = 0, for all v ∈ V , and
(v, w) ∈ E if and only if m(v, w) > 0.

The evolution of the population over time is described by the Markov process NK with
values in D(R+,NV ). NK

v (t) denotes the number of individuals of trait v ∈ V that are alive
at time t ≥ 0. The process is characterised by its infinitesimal generator:

LKφ(N) =
∑
v∈V

(φ(N + ev)− φ(N))
(
Nvb(v)(1− µK) +

∑
w∈V

Nwb(w)µKm(w, v)
)

+
∑
v∈V

(φ(N − ev)− φ(N))Nv

(
d(v) +

∑
w∈V

cK(v, w)Nw

)
, (A.2.1)
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where φ : NV → R is measurable and bounded and ev denotes the unit vector at v ∈ V . The
process can be constructed algorithmically following a Gillespie algorithm [90]. Alternatively
the process can be represented via Poisson measures (see [83]), a representation that is used
in the proofs of our results. Throughout this paper, we assume that all processes NK , K ∈ N,
are defined on a common probability space. We give an example of a joint construction in the
proof of Lemma A.4.1. However, we emphasize that we do not assume a specific dependence
or independence between the different processes in order for our results to hold true.

We want to study the typical behaviour of this process for large populations and moderately
rare mutations. We do not have a fixed population size. However, due to our scaling of
cK(v, w), the equilibrium size of the population is always of order K. We therefore consider
the limit of the processes (NK/K,K ∈ N) as K → ∞ and µK → 0 simultaneously in this
paper.

Outlook: In the following sections, we develop the theory to describe the systems behaviour
on various time scales. Since the description of each increasing time scale builds on the
behaviour on previous shorter time scales, we go through these step by step, introducing the
relevant notation as well as previous and new results along the way. To give the reader some
orientation, we provide a brief overview of the time scales and preview the main results:

− During times of order 1, the limiting rescaled stochastic process can be approximated
by the solution of deterministic differential equations of Lotka-Volterra type. These
describe how the larger subpopulations attain an equilibrium state (if existent). Since
we consider the regime of µK → 0, mutations cannot be observed on this time scale.

− For moderately rare mutations µK = K−1/α, mutations occur on the time scale 1/KµK
and mutant subpopulations grow from a single individual to a size of order K on the
time scale lnK � 1/KµK . The limiting dynamics on the lnK-time scale have been
described in [48]. We provide the heuristics of this result in Section A.2.2 and give the
precise statement in A.5.2. On this time scale, the system evolves until it reaches an
equilibrium state, where there are no fit mutant traits of (graph-)distance at most α to
the resident traits. This state is what we call an evolutionary stable condition (ESC).

− In Section A.2.3, we discuss how, on a more accelerated time scale 1/KµLK that corres-
ponds to the distance L > α of the closest fit mutant, the process can escape an ESC.
Our first result Theorem A.2.7 states that the time to produce a new fit mutant outside
of the ESC is of order 1/KµLK and approximately exponentially distributed with a rate
that can be calculated precisely. It moreover states the probabilities to produce specific
mutant types. Corollary A.2.8 deduces that the time to reach a new ESC has the same
distribution as the time of leaving the old ESC and calculates transition probabilities
to reach specific new ESCs. These single transitions between ESC states, which can
be regarded as metastable transitions, are used to define the (directed) metastability
graph GESC in Definition A.2.9, in the beginning of Section A.2.4. It consists of subsets
of V that allow for an ESC and the possible transitions between them.

− Since the time scales on which transitions on the metastability graph occur depend
on the distances L between fit mutants and current resident traits, the corresponding
jump chain (characterised in Corollary A.2.10) cannot be obtained as a limiting process
on a single time scale. Instead, if we fix a time scale 1/KµLK , only transitions of this
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precise distance L are visible in the limit of NK/K as K → ∞. Shorter jumps occur
immediately and longer jumps cannot be observed. To describe these dynamics, we
introduce an L-scale graph GL, consisting of all ESCs that are not left immediately
on the time scale 1/KµLK and characterize the limiting jump process on this graph in
Theorem A.2.11.

A.2.2. Short-term dynamics and frequent mutations

A law of large numbers result by [75] states that, for µK ≡ 0, the rescaled processes NK/K
converge to the solution of a system of Lotka-Volterra equations. The study of these equa-
tions is central to determine the short term evolution, i.e. the evolution on a finite time scale,
of the process NK .

Definition A.2.1 (Lotka-Volterra system, equilibrium states, invasion fitness). For a subset
v ⊂ V we denote by LV S(v) the system of Lotka-Volterra equations given by

d
dtnv(t) =

(
b(v)− d(v)−

∑
w∈v

c(v, w)nw(t)
)
nv(t), v ∈ v, t ≥ 0. (A.2.2)

By LV E(v), we denote the set of all equilibrium states n̄ ∈ Rv
≥0 such that(

b(v)− d(v)−
∑
w∈v

c(v, w)n̄w

)
n̄v = 0, v ∈ v, (A.2.3)

and by LV E+(v) := LV E(v) ∩ Rv
>0 the subset of positive equilibrium states. If LV E+(v)

consists of a single globally asymptotically stable element, we denote it by n̄(v) and call it
coexistence equilibrium.
For a trait w ∈ V and coexistence equilibrium n̄(v), we denote by

f(w,v) = b(w)− d(w)−
∑
v∈v

c(w, v)n̄v(v) (A.2.4)

the invasion fitness of w. For a given equilibrium n̄(v), we call a trait w fit if f(w,v) > 0
and unfit if f(w,v) < 0.

Note that the invasion fitness f(w,v) describes the approximate growth rate of a small
population of trait w in a bulk population of coexisting traits v, in the mutation-free system.
To simplify notation for later purpose, in the case of monomorphic equilibria, i.e. v = {v},
we write

n̄(v) := n̄v({v}) and f(w, v) := f(w, {v}). (A.2.5)

Going back to the stochastic process NK , it is of interest to study the logarithm of the
population size as K → ∞. Only subpopulations with a size of order K are visible in the
rescaled limit of NK/K and exponential growth of the absolute population size translates to
linear growth of the K-exponent when studying a logarithmic time scale via et lnK·f = Kt·f .
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This makes it easier to describe the limiting dynamics. We therefore define βK = (βKv )v∈V ,
where

βKv (t) := ln(1 +NK
v (t))

lnK , (A.2.6)

which is equivalent to NK
v (t) = KβKv (t)−1. Note that we add or subtract 1 here respectively

to ensure that βKv (t) = 0 if and only if NK
v (t) = 0. As K → ∞, βKv ranges between 0 and

1.

Remark 1. In contrast to [45, 48], we do not rescale the time by lnK in this definition of
βK since we are studying a variety of different time scales.

Based on this definition, we introduce the following subsets of traits.

Definition A.2.2 (macroscopic, microscopic, living and resident traits). 1. A trait v ∈ V
with exponent βKv is called macroscopic if lim infK→∞ βKv = 1.

2. A trait that is not macroscopic is called microscopic.

3. The set of living traits is the set V K
living := {v ∈ V : βKv > 0}.

4. A subset of traits v ⊆ V is called resident if all v ∈ v are macroscopic and have a
population size close to the coexistence equilibrium n̄(v).

Remark 2. Note that these definitions are time dependent when considering an evolving
population. The macroscopic traits change according to βK(t) and the varying subset of
living traits is denoted by V K

living(t). Most of the time macroscopic and resident traits coincide.
A non-resident macroscopic trait is either unfit and will shrink to an order lower than K
within a short time, or it is fit and will therefore induce a change in resident traits according
to the short-term Lotka-Volterra dynamics.

To study multi-step mutations we consider paths on the trait graph G = (V,E).

Definition A.2.3 (paths and distances). We denote a (finite) path on G = (V,E) by
γ = (γ0, ..., γ`) such that γi ∈ V , 0 ≤ i ≤ `, and (γi, γi+1) ∈ E, 0 ≤ i ≤ `− 1.
The length of a path γ = (γ0, ..., γ`) is defined as |γ| = `. We write γ : v → v′ as a short
notation for all paths γ that connect v ⊂ V to v′ ⊂ V , i.e. that satisfy γ0 ∈ v and γ|γ| ∈ v′.
We introduce the graph distance between two vertices v, w ∈ V as the length of the shortest
connecting path

d(v, w) := min
γ:v→w

|γ| , (A.2.7)

where the minimum over an empty set is taken to be∞. For two subsets v,v′ ⊂ V we define

d(v,v′) := min
v∈v,v′∈v′

d(v, v′). (A.2.8)

Remark 3. Note that d(v, w) is not a distance in the classical sense, as it may not be
symmetric in the case of a directed graph.
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Along these paths γ, mutants can be produced. A macroscopic trait produces subpopulations
of a size of order KµK of its neighbouring traits, which then produce subpopulations of a
size of order Kµ2

K of the second order neighbours, and so on. These subpopulations, that
are produced along a path γ, can survive as long as Kµ`K � 1. This motivates the study of
mutation probabilities µK = K−1/α, α > 0, where mutants can survive within a radius α of
the resident traits.

Remark 4. We could also study mutation probabilities µK = f(K)K−1/α such that
|ln(f(K))| ∈ o(lnK). This would not change the following results. However, we restrict
ourselves to the case of f(K) ≡ 1 to simplify notation.

To avoid mutant subpopulations with a size of order K0 = 1 and to ensure that non-resident
traits are always either fit or unfit we make the following assumptions.

Assumption 2. (i) The mutation probability satisfies µK = K−1/α for some α ∈ R+ \N.

(ii) For each v ⊂ V such that LV E+(v) = {n̄(v)}, it holds f(w,v) 6= 0, for all w /∈ v.

Remark 5. Both of these assumptions are purely technical. The first one prevents the case
where a fit mutant population of size of order 1 can die out due to stochastic fluctuations such
that fixation in the population becomes random. The second one allows us to approximate
non-resident subpopulations by branching processes that are either super- or subcritical, but
not critical. Note that the second assumption is only required for subsets v that allow for a
unique positive equilibrium state (i.e. such that LV E+(v) contains exactly one element).

Under these assumptions, the evolution of the population on the time scale lnK has been
studied in [48]. The authors give an algorithmic description of the limiting evolution of
βK(t lnK) as long as there always exists a unique asymptotically stable equilibrium of the
Lotka-Volterra system (A.2.2) involving all macroscopic traits. In the following, we give the
heuristics of this description. For the precise result we refer to Section A.5.2.

Roughly speaking, for a given set of resident traits v at their (coexistence) equilibrium n̄(v),
every living microscopic trait w ∈ Vliving can grow (or shrink) with rate at least f(w,v).
This is due to the fact that the competitive interaction with all microscopic traits can be
neglected in comparison with this rate. If there was no mutation (i.e. µK = 0), f(w,v)
would be the exact growth rate of w. However, due to incoming mutants from neighbouring
traits, the population size of w is also at least as big as a µK-fraction of the population sizes
of its (incoming) neighbours. Since we only consider the order of the population size βKw , the
largest of these influences dominates the asymptotics and a sum of population sizes (coming
from different mutation sources) yields a maximum in the exponent. Overall, we obtain the
relation

βKw (t lnK) ≈
(
βKw (0) + tf(w,v)

)
∨ max
u∈V :d(u,w)=1

(
βKu (t lnK)− 1

α

)
. (A.2.9)
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Iterating this argument for traits at increasing distance to w yields that, as long as the
resident traits remain unchanged (i.e. traits v stay close to their equilibrium n̄(v) and no
new traits become macroscopic), βK(t lnK) converges to β(t) such that

βw(t) = max
u∈V

[
βu(0) + (t− tu)f(u,v)− d(u,w)

α

]
+
. (A.2.10)

Here,

tu :=

inf
{
s ≥ 0 : ∃ u′ ∈ V : βu′(s) = 1

α , (u
′, u) ∈ E

}
if βu(0) = 0,

0 if βu(0) > 0.
(A.2.11)

Once a former microscopic trait w∗ becomes macroscopic, the population sizes of v ∪ w∗
follow the Lotka-Volterra dynamics of (A.2.2) to reach a new equilibrium associated to the
resident traits v′ ⊂ v ∪ w∗ within a time of order 1 (if such a new unique equilibrium
does not exist, or in a number of other technical special cases, the algorithm terminates as
described in Section A.5.2). During this phase, the orders of population sizes βw do not
change significantly. After the change of resident traits, the population sizes again follow
(A.2.10), now with the changed fitnesses f(u,v′).

This algorithmic description yields a series of successive resident traits. The macroscopically
visible evolution stops as soon as an equilibrium v is reached such that f(w,v) < 0 for all
w ∈ Vliving\v. All traits w ∈ V such that d(v, w) < α stay alive due to incoming mutations
but all other traits eventually go extinct according to (A.2.10) on the lnK-time scale.

This observation leads us to the following definitions (visualised in Figure A.1).

Definition A.2.4 (mutation spreading neighbourhood). For a subset v ⊂ V , we denote by
Vα(v) := {w ∈ V : d(v, w) < α} the mutation spreading neighbourhood of v. The traits at
the boundary of Vα are denoted by ∂Vα(v) := {w ∈ V : d(v, w) = bαc}.

Definition A.2.5 ((asymptotic) evolutionary stable condition). (i) A subset v ⊂ V and
(orders of) population sizes β are called an evolutionary stable condition (ESC) if the
traits v can coexist at a unique globally asympotically stable equilibrium n̄(v),

f(w,v) < 0, ∀w ∈ Vα(v)\v, (A.2.12)

and

βw =
(

1− d(v, w)
α

)
+
, ∀ w ∈ V. (A.2.13)

(ii) A subset v ⊂ V and population sizes (βK)K≥0 are called an asymptotic evolutionary
stable condition if the traits v can coexist at equilibrium n̄(v), (A.2.12) is satisfied,∣∣∣βKw − (1− d(v, w)/α)

∣∣∣ ∈ O( 1
lnK

)
, ∀w ∈ Vα(v), (A.2.14)

and there exists a K0 <∞ such that βKw = 0, for all K > K0 and w ∈ V \Vα(v).
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Remark 6. (i) Note that (A.2.12) is only a necessary condition for a subset v ⊂ V to be
able to attain an ESC during the evolution of a population. (A.2.13) are the orders of
population sizes that unfit traits stabilise at purely due to (multi-step) mutations from
v. (A.2.12) guarantees that these will be reached for w ∈ Vα(v). To attain an ESC
(v, β), in addition all other traits w ∈ Vliving(τv), that are alive at the time τv when
the new equilibrium n̄(v) is reached, have to satisfy f(w,v) < 0. If this is the case,
all traits outside of Vα(v) will die out within a time of order lnK and (A.2.13) will be
reached. Otherwise, if there is a w ∈ Vliving(τv)\Vα(v) such that f(w,v) > 0 (the case
f(w,v) = 0 is excluded by Assumption (2)), its subpopulation is able to grow, will
not die out, and hence not satisfy (A.2.13). The characterization of ESCs is therefore
highly dependent on the state of the whole system.

(ii) Note that the definition of an asymptotic ESC forces the population process to be in
an ESC up to a multiplicative error of order one. That is

NK
w = (K(1−d(v,w)/α)+ − 1)×O(1). (A.2.15)

The reason for introducing this error is that, for finiteK, NK
w might never reach exactly

K(1−d(v,w)/α)+ . This is for example the case if n̄v(v) < 1 for some v ∈ v.

By definition, an evolutionary stable condition is surrounded by unfit traits, at least within
an α-radius. This form of a fitness landscape is referred to as a fitness valley and has been
studied in a special case in [29]. Based on this, we introduce a measure for the stability of
a coexistence equilibrium, connected to the width of the surrounding fitness valley.

Definition A.2.6 (Stability degree). For a subset v ⊆ V we define its stability degree L(v)
by

L(v) :=
{

minw∈V :f(w,v)>0 d(v, w) if v can coexist,
0 else.

(A.2.16)

Remark 7. A subset v associated to an ESC satisfies L(v) > α by definition. The evolution of
the population process reaches a final state, independent of the time scale, once the resident
traits satisfy L(v) =∞, i.e. there are no fit traits anymore.

A.2.3. Transitioning out of an ESC and first convergence result

Once an ESC is obtained, there is no further evolution on the lnK-time scale. However, as
long as there is a fitter trait that is connected to the resident traits, i.e. that can be reached
along a finite path in G, we can witness metastable transitions on an even more accelerated
time scale. On this time scale, under certain assumptions on the lnK-dynamics, we observe
a direct transition from one ESC to another.

In the following, we consider one of these transitions for an arbitrary initial asymptotic
ESC. We split the transition into two phases: In the first phase, a new fit mutant beyond
the fitness valley fixates in the population within a time of order 1/KµL(v)

K . In the second

45



A. A general multi-scale description of metastable adaptive motion across fitness valleys

phase, a new ESC is obtained, starting with these new initial conditions, which takes a time
of order lnK. We assume that v and (βK(0))K≥0 are an asymptotic ESC. We could also
consider more general initial conditions that lead to an ESC within finitely many steps of
the lnK-algorithm in [48], see Remark 11. For the sake of a simpler notation, we stick with
the assumption of starting in an (asymptotic) ESC here.

To consider the first phase of the transition, we introduce the set

Vmut(v) := arg min
w∈V :f(w,v)>0

d(v, w) = {w ∈ V : f(w,v) > 0, d(v, w) = L(v)}. (A.2.17)

This consists of all fit mutant traits that are closest to v (visualised in Figure A.1).

Note that Vmut(v) ∩ Vα(v) = ∅ by the definition of an ESC. It turns out that the traits
Vmut(v) are the only ones that need to be considered for a crossing of the fitness valley since
one of them will be the first new trait to fixate in the equilibrium population. If Vmut(v) = ∅,
i.e. L(v) = ∞, there is no fitter trait connected to the resident traits and the equilibrium
associated to v is the final state of the population.

For L(v) <∞, we define the stopping time

TKfix := inf
{
t ≥ 0 : ∃ w ∈ V \Vα(v) : βKw (t) ≥ 1

α

}
, (A.2.18)

the first time when a new trait reaches a size of order K1/α, can thus produce neighbouring
mutants within a time of order 1 and influence the subpopulations of other traits.

Remark 8. Note that the name TKfix might be a little misleading at first glance. Generally,
we speak of the fixation of a trait within a population as the event that the subpopulation
corresponding to this trait does not go extinct (due to random fluctuations or negative
fitness), as long as the fitness landscape stays unchanged. As this event is determined
by the future progression of the population, there is no precise time point to pin it to.
In particular, whether a trait fixates or goes extinct is not foreseeable at the time point
when the first individual of this trait arises. Therefore, we choose instead the time point
when the subpopulation has reached a size that guarantees non-extinction with probability
1, asymptotically as K → ∞. We could choose a much smaller size than K1/α for this,
however, this will not influence the event of fixation and only change the stopping time by
a time of order lnK, which is negligible compared to the much longer time scale on which
mutants arise. We thus pick the first time when mutants can influence the population size
of other traits.

Our first result describes the limiting distribution of this stopping time TKfix.

For a path γ : v → Vmut(v) such that |γ| = L(v), the rate at which a w = γL(v) mutant
population arises along this path γ and fixates can be derived as the product of several
factors. The rate at which the first trait in γ outside of Vα(v) arises can be calculated in
terms of the equilibrium population sizes of the traits in Vα(v) (see Section A.4.1). This
rate then has to be multiplied by the probabilities that all of the following unfit traits on the
path γ produce mutants of the correct trait before extinction, i.e. during small subcritical

46



A.2. Model and Main Results

v
v

Vα
Vα

Vmut

Vmut

α ∈ (2, 3), f ( ,v) < 0, f ( ,v) < 0, f ( ,v) > 0

Figure A.1.: Trait graph G = (V,E) with an ESC associated to the non-connected set of
spotted resident traits v. Unfit traits inside the mutation spreading neighbourhood Vα(v)
are marked light blue while those outside are dark orange. In this case, the stability degree
is L(v) = 4. Therefore, only the two nearest of the three fit, spiked green traits make up the
set of mutant candidates Vmut(v).

excursions. This yields the rate at which single mutants of trait w arise, which finally has
to be multiplied by their probability of fixating in the population, i.e. of non-extinction.

In order to calculate the probability of mutation during a subcritical excursion, we need to
introduce some notation. For a subset v ⊂ V and a trait w ∈ V we define

ρ(w,v) := b(w)
b(w) + d(w) +

∑
v∈v c(w, v)n̄v(v) , (A.2.19)

which is connected to the probability of a birth event in the branching process approximating
the growth of a mutant w in a bulk population of coexisting traits v. Moreover, we let

λ(ρ) :=
∞∑
`=1

(2`)!
(`− 1)!(`+ 1)!ρ

`(1− ρ)`+1, (A.2.20)

which is the expected number of birth events before extinction in a subcritical birth death
process with birth probability ρ (related to the expected number of positive jumps in a
simple random walk on N before hitting 0, as explained in the proof of this result in Sec-
tion A.5, Lemma A.5.1). Note that, for ρ ∈ [0, 1/2), one can explicitely calculate that
λ(ρ) = ρ/(1− 2ρ) <∞. Moreover, the symmetry relation λ(ρ)ρ = λ(1− ρ)(1− ρ) shows
convergence of the series for ρ ∈ (1/2, 1] as well.

With these definitions, the overall rate of mutants of trait w ∈ Vmut(v) arising along path γ
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and fixating in the population is approximately equal to R(v, γ)KµL(v)
K , where

R(v, γ) := n̄γ0(v)

bαc∏
i=1

b(γi−1)m(γi−1, γi)
|f(γi,v)|

 b(γbαc)m(γbαc, γbαc+1)

·

 L(v)−1∏
j=bαc+1

λ(ρ(γj ,v))m(γj , γj+1)

 · f(γL(v),v)
b(γL(v))

. (A.2.21)

Here, the first line is the rate at which the first trait in γ outside of Vα(v) arises, which
is related to the equilibrium size of trait γbαc. The first factor in the second line is the
probability of producing consecutive mutants during subcritical excursions and the last factor
is the fixation probability of trait w = γL(v). Note that, as b(γL(v)) increases, so does
f(γL(v),v) (cf. (A.2.4)), and hence this fixation probability is in fact increasing in the birth
rate b(γL(v)).

The total rate at which a mutant population of trait w ∈ Vmut(v) arises and fixates collects
all shortest paths that end in w and is approximately equal to R(v, w)µL(v)

K , where

R(v, w) :=
∑

γ:v→w
|γ|=L(v)

R(v, γ). (A.2.22)

Finally, the total rate at which any mutant population of a trait in Vmut(v) arises and fixates,
i.e. the rate at which the population exits the ESC associated to v, is approximately equal
to R(v)µL(v)

K , where

R(v) :=
∑

w∈Vmut(v)
R(v, w). (A.2.23)

The probability that this population is of trait w ∈ Vmut(v) is proportional to the rate
R(v, w).

With these heuristics, we can now state the first main result of this paper.

Theorem A.2.7. Let G = (V,E) be a finite graph. Suppose that Assumption 1 and 2 are
satisfied and consider the model defined by (A.2.1) with µK = K−1/α. Assume that v ⊂ V
and (βK(0))K≥0 are an asymptotic ESC. Then there exist constants ε0 > 0 and 0 < c <∞
such that, for all 0 < ε < ε0, there exist exponential random variables EK+ (ε) and EK− (ε)
with parameters R(v)(1 + cε) and R(v)(1− cε), such that

lim inf
K→∞

P(EK− (ε) ≤ TKfixKµ
L(v)
K ≤ EK+ (ε)) ≥ 1− cε. (A.2.24)

Moreover, for all w ∈ V , the probability of w being the trait to trigger TKfix is

lim
K→∞

P
(
βKw (TKfix) = 1/α

)
=
{
R(v, w)/R(v) if w ∈ Vmut(v),
0 else.

(A.2.25)
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Remark 9. Note that traits in w ∈ Vα(v) do not attain βKw = 1/α before TKfix due to the
assumption that α /∈ N. Therefore the probability in (A.2.25) is zero for such traits.

Once some w ∈ Vmut(v) has reached βKw ≥ 1/α, the lnK-dynamics evolve as described in
[48], initiated with βKw = 1/α and βKu = (1 − d(v, u)/α)+, for u ∈ V \w. These dynamics
are deterministic and in case they do not terminate early and if they lead to a new ESC, we
denote the associated set of resident traits by vESC(v, w).

Observe that there is no general formula to express vESC(v, w) in terms of v and w and the
parameters of the system. An interesting case is illustrated in Example 3.

Under the assumption that all traits w ∈ Vmut(v) lead to asymptotic ESCs vESC(v, w), we
define the stopping time at which one of these asymptotic ESCs is obtained by

TKESC := inf
{
t ≥ TKfix : ∃ w ∈ Vmut(v) :

∀u ∈ Vα(vESC(v, w)) :
∣∣∣∣βKu (t)−

(
1− d(vESC(v, w), u)

α

)∣∣∣∣ < εK ,

∀u /∈ Vα(vESC(v, w)) : βKu (t) = 0
}
, (A.2.26)

where we pick εK = C/ lnK for a large enough 0 < C <∞. Then this definition is precisely
in line with the definition of an asymptotic ESC.

Remark 10. The minimal necessary C can be made precise using the prefactors of the pop-
ulation sizes in equilibrium, calculated in Lemma A.4.1. We refrain from doing so here as it
is notationally very heavy and does not provide any deeper insight.

Since the time TKESC−TKfix is of order lnK, the asymptotics for TKfix translate to TKESC. Moreover,
the transition probabilities from one ESC to another can be expressed in terms of the prob-
abilities of traits w ∈ Vmut(v) fixating in the population. For w ⊂ V we define

p(v,w) :=
∑

w∈Vmut(v):
vESC(v,w)=w

R(v, w)
R(v) . (A.2.27)

Example 1 treats a case where this probability is indeed the sum over multiple mutant
candidates w.

We can now state the result on transitions between ESCs as a direct corollary of Theorem
A.2.7.

Corollary A.2.8. Suppose the same assumptions as in Theorem A.2.7 are satisfied. Moreover,
assume that, for every w ∈ Vmut(v), the algorithmic description of the lnK-dynamics in Sec-
tion A.5.2, initiated with

βu(0) =


1
α if u = w,(
1− d(v,u)

α

)
+

else (A.2.28)
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does not stop early due to one of its termination criteria and reaches an ESC associated to
some traits vESC(v, w) after finitely many steps. Then, TKESC − TKfix ∈ O(lnK) and therefore,
with the same constants ε0 and c and with the same random variables EK+ (ε) and EK− (ε) as
in Theorem A.2.7,

lim inf
K→∞

P(EK− (ε) ≤ TKESCKµ
L(v)
K ≤ EK+ (ε)) ≥ 1− cε. (A.2.29)

Moreover, for all w ⊂ V ,

lim
K→∞

P({u ∈ V : βKu (TKESC) > 1− εK} = w) = p(v,w). (A.2.30)

Remark 11. (i) Note that Theorem A.2.7 and Corollary A.2.8 only consider a specific
transition from the ESC associated to some v to another ESC. The constants ε0 and
c can however be chosen uniformly for all ESCs by reason of the finite trait graph.

(ii) Both results assume that the system starts out in an asymptotic ESC. These are the
natural initial conditions, particularly when a first transition between asymptotic ESCs
has already occurred. We could however allow for more general initial conditions,
as long as they lead to an asymptotic ESC within finitely many steps of the lnK-
algorithm.

A.2.4. Multi-scale jump chain and limiting Markov jump processes

Building on the previous description of a single transition step from one ESC to another, we
now want to describe the multi-step transitions between ESCs as a jump chain (v(k))k≥0 on
a meta-graph. We first introduce the underlying metastability graph GESC, consisting of all
sufficiently stable macroscopic equilibrium configurations, and then describe the dynamics
of the jump chain. Finally, we give a convergence result that derives different Markov jump
processes, depending on the chosen time scale.

Definition A.2.9 (Metastability graph). As vertices for the general metastability graph
GESC = (VESC, EESC) we take all sets of resident traits that correspond to an ESC, i.e. that
have stability degree strictly bigger than α, and edges represent possible transitions to other
ESCs. More precisely,

VESC := {v ⊆ V : L(v) > α} , (A.2.31)
EESC := {(v,w) : ∃w ∈ Vmut(v) s.t. w = vESC(v, w)} . (A.2.32)

Recall that vESC(v, w) stands for the resident traits associated to the new ESC that is
attained at the end of the lnK-algorithm being started with resident set v and invading
mutant w ∈ Vmut(v). We already assigned to each vertex v ∈ VESC the exit rate R(v) in
(A.2.23) and to each edge (v,w) ∈ EESC the transition probability p(v,w) in (A.2.27).

Using Corollary A.2.8, we can now work out inductively the multi-scale jump chain (v(k))k≥0
on GESC. To this end, let v(0) ∈ VESC be the resident traits of the initial ESC that the process
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starts in and set T (0,K)
ESC := 0. We describe the kth transition, for k ≥ 1, conditioned on the

knowledge of v(k−1). We denote the set of closest fit mutant traits by V (k)
mut = Vmut(v(k−1)),

the width of the next fitness valley to cross by L(k) = L(v(k−1)), and the exit rate by
R(k) = R(v(k−1)). Moreover, we keep track of the time when the first mutant population
fixates and when the next ESC is reached by introducing the stopping times

T
(k,K)
fix := inf

{
t ≥ T (k−1,K)

ESC : ∃ w ∈ V \Vα(v(k−1)) : βKw (t) ≥ 1
α

}
, (A.2.33)

T
(k,K)
ESC := inf

{
t ≥ T (k,K)

fix : ∃ w ∈ V (k)
mut :

∀u ∈ Vα(vESC(v(k−1), w)) :
∣∣∣∣∣βKu (t)−

(
1− d(vESC(v(k−1), w), u)

α

)∣∣∣∣∣ < εK ,

∀u /∈ Vα(vESC(v(k−1), w)) : βKu (t) = 0
}
, (A.2.34)

with εK as in A.2.26.

With this notation, we can now state the result on the kth transition of the multi-scale jump
chain.

Corollary A.2.10. Assume that we constructed the process up to time T (k−1,K)
ESC , when the

ESC associated to v(k−1) is obtained, and suppose the same assumptions as in Theorem
A.2.7 are satisfied. Moreover, assume that the lnK-dynamics behave as in Corollary A.2.8,
for every w ∈ V (k)

mut. Then there exist constants ε0 > 0 and 0 < c < ∞ such that, for all
0 < ε < ε0, there are exponential distributed random variables E(k,K)

+ (ε) and E(k,K)
− (ε) with

parameters R(k)
± (ε) := R(k)(1± cε) such that

lim inf
K→∞

P(E(k,K)
− (ε) ≤ (T (k,K)

ESC − T (k−1,K)
ESC )KµL(k)

K ≤ E(k,K)
+ (ε)|v(k−1)) ≥ 1− cε. (A.2.35)

Moreover, for all w ⊂ V ,

lim
K→∞

P({v ∈ V : βKv (T (k,K)
ESC ) > 1− εK} = w|v(k−1)) = p(v(k−1),w). (A.2.36)

The preceding corollary allows us to construct a limiting random jump chain (v(k))k≥0 on the
metastability graph GESC. To be precise, given the current state v(k−1), the next ESC v(k)

is taken at random from VESC with probability distribution p(v(k−1), ·). However, the jumps
take place on varying time scales of type 1/KµL(k)

K . The construction is valid until an ESC
is obtained such that some mutant w ∈ V (k)

mut does not induce a unique new ESC, following
the deterministic lnK-dynamics. A visualisation of the metastability graph including a
particular realisation of the jump chain is given in Figure A.2.

After this general description of the multi-scale jump chain we can now easily elaborate the
true Markov jump process on each time scale. To be more precise, for each stability degree
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v(3)

v
(4)
2

v
(4)
3

v(2)

v
(4)
1

v(1)

v(0)

Figure A.2.: Metastability graph GESC including a jump chain (vk)k≥0, where v(4)
i =

vESC(v(3), wi), for Vmut(v(3)) = {w1, w2, w3}.

L > α, we are looking for the limit process of NK
w (t/KµLK)/K, for K → ∞. The support

of this process jumps between sets of coexisting traits of sufficiently high stability degree,
which can only be exited on this time scale. In this context, we define the level sets of equal
stability degree as

SL := {v ⊆ V : LV E+(v) = {n̄(v)}, L(v) = L} . (A.2.37)

Note that, for L > α, a stability degree of L(v) = L ensures that the coexisting traits v
allow for an asymptotic ESC, see Remark 7.

As the state space for the limiting jump process, we introduce the L-scale graph GL, which
is a collapsed version of GESC. The vertex set consists of all ESCs that are stable enough to
be visible on the respective time scale. Therefore, we set

VL :=
⋃
L′≥L

SL′ . (A.2.38)

Note that it is possible that the process jumps into an ESC v ∈ SL′ , for L′ > L, on the
1/KµLK-time scale. However, there is no possibility to escape from those on this time scale,
which means that these are absorbing states.

Edges EL in GL represent possible transitions of the limiting process. To construct these, we
study the limiting jump chain from Corollary A.2.10.

In order to use the corollary and in particular the process (v(k))k≥0, we have to ensure that,
for fixed L > α, this process always reaches an ESC of stability degree at least L in finitely
many steps.
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A.2. Model and Main Results

Assumption 3.

∀v ∈ SL : P
(
∃k ∈ N>0 : L(v(k)) ≥ L|v(0) = v

)
= 1 (A.2.39)

Note that, if this assumption is satisfied for some fixed L, this has no implications for the
validity for different L′ 6= L. This is due to the fact, that only the initial conditions v ∈ SL
are considered. One can easily think of counterexamples where GESC is non-connected such
that there may be cycles of lower time scale but there is no danger to run into them. For a
broader discussion of the assumption we refer to the Examples 4 and 5.

Remark 12. If the process runs into a cycle or stable cluster on a lower time scale, there are
still possibilities to escape from these by accelerating and looking at higher time scales. The
detailed description of such behaviour is much more involved. This is mainly due to technical
reasons: Errors accumulate in the approximation of each transition step. As long as it is
ensured that the system reaches a (sufficiently stable) ESC after finitely many steps, these
errors can be iteratively bounded to ensure convergence. This however fails if the number of
lower time scale transitions between higher time scale jumps is not bounded. Heuristically,
if one can observe ergodic behaviour on the L′-scale graph, for some L′ < L, transitions
out of the ergodic cluster will occur along one of the shortest fitness valleys of width L.
Transition rates will be weighed according to the stationary distribution on states in SL′

and the transition takes a time of order 1/KµLK . Rather than defining vertices of GL as
single sets of coexisting traits in SL, one would then choose communication classes of such
sets in SL′ (for possibly multiple L′ < L) that support an ergodic stationary distribution.
Rigorously justifying this argument is a topic of current and future research of the authors.

Now asking for possible jumps in GL we have to respect again the principle that jumps on
lower time scales are absorbed in those happening on the 1/KµLK-time scale. This means
that the critical event for a transition starting in v ∈ SL is to escape from v, which needs a
time of order 1/KµLK . Compared to that, the subsequent transitions in GESC until reaching
again a state w of stability at least L(w) ≥ L take place in very short time. Therefore we
say that the (directed) egde (v,w) is in EL if and only if L(v) = L and there exists a finite
path Γ : v→ w in GESC such that L(Γi) < L, ∀1 ≤ i < |Γ|.

The probability of possible transitions (v,w) ∈ EL is then the sum over all possible paths Γ
that give rise to this edge, while the probability of taking a particular path is easily computed
as the product of its segments in GESC.

pL(v,w) :=
∑

Γ:v→w
L(Γi)<L, ∀1≤i<|Γ|

|Γ|∏
i=1

p(Γi−1,Γi) (A.2.40)

For an explanatory computation of these probabilities we refer to the Examples 6 and 7.

The transition rate for the jumps on the 1/KµL time scale are then given by the over-all
rate to escape from v weighted with the transition probability to end in w.

RL(v,w) := R(v)pL(v,w) (A.2.41)
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Now we are prepared to formulate the main result, i.e. the convergence to a Markov jump
process on different time scales.

Theorem A.2.11. Let L > α such that Assumption 3 holds true and take vL(0) ∈ VL.
Suppose the same assumptions as in Theorem A.2.7 are satisfied for v = vL(0) and assume
that the lnK-dynamics behave as in Corollary A.2.8, for every v ∈

⋃
L′≤L SL

′ and all w ∈
Vmut(v). Then, for all T < ∞, the rescaled process (NK

v (t/KµLK)/K, v ∈ V, t ∈ [0, T ])
converges in the sense of finite dimensional distributions to a jump process of the form

NL
v (t) = 1v∈vL(t)n̄v(vL(t)), v ∈ V, t ∈ [0, T ]. (A.2.42)

Here (vL(t), t ∈ [0, T ]) is a Markov jump process on the L-scale graph GL = (VL, EL), with
transition rates given by (A.2.41).

Remark 13. (i) We like to point out that Assumption 3 does not exclude the cases where
we have cycles in GL, i.e. on the time scale 1/KµLK . It only prevents the process from
running into a cycle of lower time scale. We even allow for self connecting edges, i.e.
edges of the form (v,v).

(ii) As shown in [40, Prop. 1] it is not possible to get convergence with respect to the
Skorohod (J1)-topology since this would imply continuity for the limit of the total
mass process, which cannot be true.

A.3. Interesting examples

In this chapter, we present and analyse a variety of examples that aim to highlight different
aspects of the complicated dynamics covered in our main results. The first two examples
are dedicated to single transition steps from one ESC to another, applying the results of
Theorem A.2.7 and Corollary A.2.8. The next three examples focus on the metastability
graph GESC that is constructed in Corollary A.2.10 and we study two cases that are concerned
with Assumption 3. The final two examples are focussed on applications of Theorem A.2.11,
studying the limiting Markov jump processes on different time scales as well as the L-scale-
graphs GL.

In order to give a manageable and clear description of the dynamically changing fitness land-
scape, we introduce some new notation that helps to simplify the set up of the examples.

Definition A.3.1. We speak of a regime of equal competition if and only if
c(v, w) ≡ const > 0, for all v, w ∈ V .

This is by no means a necessary assumption to produce the studied phenomena, however, it
allows us to characterise the fitness landscape in a much simpler way. In the case of equal
competition, the invasion fitness of a trait w with respect to a single resident trait v is fully
characterised by

f(w, v) = r(w)− r(v), (A.3.1)

54



A.3. Interesting examples

where we set r(v) := b(v)−d(v) as the individual fitness of trait v, i.e. its net growth rate in
the absence of competitive interactions. As a consequence, traits w with higher individual
fitness than the resident v are able to invade the population. Hence, instead of specifying
the invasion fitnesses for all possible resident traits, the fitness landscape is fully described
by the individual fitnesses r(v).

To specify the fitness relations between different traits - in particular in the case of non-equal
competition - we introduce the following notation.

Definition A.3.2. For v, w ∈ V , we write v � w if and only if f(w, v) > 0 and f(v, w) < 0.
Moreover, we write v1, ..., vk � w1, ..., wl whenever vi � wj , for all 1 ≤ i ≤ k and 1 ≤ j ≤ l.

This reflects the case where the equilibrium of the Lotka-Volterra system involving v and w
is the monomorphic equilibrium n̄(w) of w. In other words w can invade the v population
and fixate.

A.3.1. Single transition steps

A first example with multiple mutation paths

Example 1. Let us consider the directed graph G depicted in Figure A.3. Assume equal
competition and the individual fitness r plotted in Figure A.3. Moreover, let α ∈ (1, 2).

1b

2b

2c

3b

r(v)

V

4

1a 2a

0

Figure A.3.: Trait graph G and fitness landscape in terms of individual fitness r of Example
1.
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In this case, the initial resident trait 0 has stability degree L({0}) = 2 > α. This is due to
the fact that traits 1a and 1b are unfit in presence of the resident, while traits 2a, 2b and 2c
are fit, with connecting paths γA = (0, 1a, 2a), γB = (0, 1b, 2b) and γC = (0, 1b, 2c) of length
2 respectively. Therefore, we have the possible mutant candidates Vmut({0}) = {2a, 2b, 2c}.
An application of Theorem A.2.7 yields that we can observe a new fixating trait at rescaled
time TKfixKµ2

K , which is distributed approximately as a exponential random variable with
rate R({0}) = R({0}, 2a)+R({0}, 2b)+R({0}, 2c). The probability for say trait 2b to be the
trait that fixates in the population and triggers the stopping time is R({0}, 2b)/R({0}).

Asking for the new ESCs, which are reached after fixation, we have to take into account the
subsequent evolution on the lnK time scale. This allows for jumps towards traits of higher
fitness, which are in the mutation spreading neighbourhood, i.e. direct neighbours in this
case. Therefore, we end up with

vESC({0}, 2a) = {2a} vESC({0}, 2b) = {4}, vESC({0}, 2c) = {4}. (A.3.2)

In particular, note that {2b}, {2c} are not ESCs and thus not part of the metastability graph
GESC as plotted in Figure A.4.

This puts us into the setting where the sum in (A.2.27) becomes relevant. In particular,
despite the micro-evolutionary branching from 1b into 2b and 2c in the trait graph G , there
is no such branching on the macro-evolutionary level in GESC. There, we only observe a
transition from {0} to {4}. Note also that the different path lengths of 2b → 4 and 2c → 4
do not matter for the asymptotics of the time TESC until stabilising in the new ESC. This is
because this time is dominated by the waiting time Tfix for the first fixation of a fit mutant
trait. Since L({0}) = 2, this time is of order 1/Kµ2

K and thus absorbs the much faster lnK
evolution.

Note that, since all transitions between ESCs occur on the time scale 1/Kµ2
K here, the

metastability graph GESC agrees with the 2-scale graph G2.

4

2a

0

Figure A.4.: Metastability graph GESC and 2-scale graph G2 of Example 1

An ESC with coexistence

Since in this paper we discuss the occurrence of metastable behaviour in a rather general
setting, we like to point out that Definition A.2.5 explicitly allows for ESCs v that consist of
several coexisting traits. This clearly enlarges the mutation spreading neighbourhood Vα(v)
and changes the set of mutant candidates Vmut in a non-trivial way.
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Example 2. Let us consider the directed graph G depicted in Figure A.5. Let α ∈ (1, 2) and
consider a fitness landscape that satisfies

f(0, 3), f(3, 0) > 0, (A.3.3)
f(1, {0, 3}), f(2, {0, 3}) < 0, (A.3.4)
f(4, {0, 3}), f(5, {0, 3}) > 0, (A.3.5)

0, 1, 2, 3� 4, 5, (A.3.6)
1, 2� 0, 3, (A.3.7)

f(4, 5), f(5, 4) < 0, (A.3.8)

and allows for no polymorphic coexistence equilibria apart from {0, 3}. Moreover, assume
that the unique stable equilibrium of the Lotka-Volterra system involving traits {0, 3, 4} is
n̄(4) and the same is true for 5 replacing 4.

1 32

4 5

{0, 3}{4} {5}

0

GESC = G2

G

30

Figure A.5.: Trait graph G and metastability graph GESC (which agrees with the 2-scale graph
G2) of Example 2

Checking for traits that do not have any fitter direct neighbours, and hence do not allow for
transitions on the lnK-time scale, the monomorphic ESCs in this case correspond to {0},
{3}, {4}, and {5}. Classical results on Lotka-Volterra systems yield that under assumption
(A.3.3) traits 0 and 3 can coexist, i.e. n̄({0, 3}) ∈ R2

>0. Now the mutation spreading neigh-
bourhood is given by Vα({0, 3}) = {0, 1, 2, 3}. Apart from the resident traits themselves,
those traits are by assumption unfit with respect to {0, 3} and thus {0, 3} allows for an
ESC.

Looking for the stability degree and possible mutant candidates, the assumptions on the
fitness landscape imply that

L({0, 3}) = 2 and Vmut({0, 3}) = {4, 5}. (A.3.9)
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By Theorem A.2.7, we can observe a fixating mutant population of one of the traits
w ∈ Vmut({0, 3}) on the time scale 1/Kµ2

K . The corresponding rates are given by

R({0, 3}, 4) = n̄0({0, 3}) b(0)m(0, 1)
|f(1, {0, 3})|b(1)m(1, 4)f(4, {0, 3})

b(4) , for w = 4, (A.3.10)

R({0, 3}, 5) = n̄3({0, 3}) b(3)m(3, 2)
|f(2, {0, 3})|b(2)m(2, 5)f(5, {0, 3})

b(5) , for w = 5. (A.3.11)

Note that, although there are also paths connecting 3 → 4 and 0 → 5, only the paths of
shortest length |γ| = 2 do have an impact on the above rates.

To conclude this example, we see that both mutant traits 4 and 5 are fit enough to invade
the coexisting resident population. Overall, we obtain the metastability graph GESC pictured
in Figure A.5, which in this case agrees with the 2-scale graph G2. Note that the traits 0
and 3 appear both as monomorphic ESCs, as well as a polymorphic coexistence ESC.

A.3.2. Successive metastable transitions

Self connection in GESC

By definition of an ESC, the first fixating mutant has a distance of at least bαc + 1 from
the corresponding resident traits. Despite this fact, the lnK-mechanism triggered by such
a mutant may lead to a new ESC that is closer to the old one than bαc+ 1. It can even be
the same and thus give rise to a self-connecting edge in GESC

Example 3. Let us consider the directed graph depicted in Figure A.6 and take α ∈ (1, 2).
Consider a fitness landscape that satisfies

0� 2� 4� 5� 2, (A.3.12)
1� 2, 3� 4, (A.3.13)

f(1, 0), f(3, 2), f(3, 5) < 0 (A.3.14)

and assume that there are no polymorphic coexistence equilibria.

After a first jump from v(0) = {0} to v(1) = {2} on the time scale 1/Kµ2
K , the next fixating

mutant is of trait 4 and arises on the same time scale. The chosen fitness landscape ensures
that it grows and can invade the population of trait 2 within a lnK-time. Since α ∈ (1, 2),
we obtain a non-vanishing population of trait 5 on the same time scale, which can grow as
soon as trait 4 is the new resident trait. Due to its positive invasion fitness, 5 invades the
trait 4 population. Finally, the same argument applies for an invasion by trait 2, where we
then get stuck in because {2} is an ESC of stability degree L({2}) = 2 > α.

Overall, we obtain that

v(2) = vESC({2}, 4) = {2}. (A.3.15)

In view of Definition A.2.9, this gives rise to the self-connecting edge ({2}, {2}) ∈ GESC,
which is illustrated in Figure A.6.
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0 1 4

5

2 3

{0} {2}

G

GESC

Figure A.6.: Trait graph G and metastability graph GESC of Example 3

On Assumption 3

Since the assumption that prevents the process from getting stuck on a slower time scale is
somewhat involved, we give two examples. First, we illustrate in Example 4 that Assumption
3 may hold true even if there is a cycle in the metastability graph GESC. Second, we slightly
modify the trait graph G and the fitness landscape to get Example 5, where Assumption 3
is not satisfied, and explain why this leads to difficulties.

Example 4. Let us consider the directed graph depicted in Figure A.7. Let α ∈ (0, 1) and
consider a fitness landscape that satisfies

0� 2� 3� 4� 6, (A.3.16)
1� 2, 5� 6, (A.3.17)

3� 7� 2, (A.3.18)
f(1, 0), f(5, 4) < 0 (A.3.19)

and assume that there are no polymorphic coexistence equilibria.

Let us first remark that, because of α ∈ (0, 1), we are in the regime of the trait substitution
sequence (cf. [40]). This means that we can neglect the lnK-algorithm. In particular, if
v � w, for some w ∈ Vmut({v}), then vESC({v}, w) = {w}.

With this knowledge, let us construct the jump chain step by step. The first two jumps are
determined easily, noting that

v(0) = {0}, L({0}) = 2, Vmut({0}) = {2}, (A.3.20)
v(1) = {2}, L({2}) = 1, Vmut({2}) = {3}, (A.3.21)
v(2) = {3}, L({3}) = 1, Vmut({3}) = {4, 7}. (A.3.22)

For the third jump, there are two possible triggering mutants. If trait 7 fixates first, the
process jumps to the ESC v(3) = {7} and then returns to v(4) = {2}, all on the time scale
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0 1 2 3 4 5 6

7

GESC {2} {3} {4}

{7}

{6}

G1 {2} {3} {4}

{7}

{6}

G2 {4}{0} {6}

{1} {5}

{0}

{0}

{1} {5}

G

Figure A.7.: Trait graph G, metastability graph GESC and L-scale graphs G1 and G2 of
Example 4

1/KµK . If instead trait 4 fixates earlier, the jump chain continues to v(3) = {4} within a
time of order 1/KµK and then to v(4) = {6} on the time scale 1/Kµ2

K , since f(5, 4) < 0.

Mentioning that Vmut({1}) = {2} and Vmut({5}) = {6} gives us the metastability graph
drawn in Figure A.7.

To check whether Assumption 3 is satisfied, we decompose the set of ESCs VESC according
to the stability degree,

S1 = {{1}, {2}, {3}, {5}, {7}} , S2 = {{0}, {4}} , S∞ = {{6}} . (A.3.23)

For all v ∈ S1, one directly sees that an ESC of the same or a higher stability is reached
after one jump with probability one. Thus the assumption is true for L = 1 and we can
construct the graph G1 as drawn.

In the case of L = 2, for v(0) = {4}, we obtain that with probability one the process jumps
to v(1) = {6}, which is of higher stability. Finally, we have to check the most involved case
of v(0) = {0}. From the metastability graph we identify v = {4} as the only reachable ESC
of degree L ≥ 2. Due to the branching at {3}, we have to ensure that the process does not
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get stuck in a cycle of ({2}, {3}, {7}, {2}) for infinitely many steps. We can see that

P
(
∀ k ∈ N>0 : v(k) 6= {4}|v(0) = {0}

)
= 0 (A.3.24)

since the number of cycles that run through before exiting towards {4} has a geometric law
with success probability p({3}, {4}) > 0. Therefore, Assumption 3 also holds true for L = 2.
This yields the L-scale graph G2, depicted in Figure A.7.

Let us now modify the example by inserting an additional trait 8, that can be viewed as an
intermediate unfit mutation between 3 and 4. Moreover, for the sake of clarity, we cut off
the traits 5 and 6.

Example 5. Let us consider the directed graph depicted in Figure A.8 and let α ∈ (0, 1).
Consider a fitness landscape that satisfies

0� 2� 3� 4, (A.3.25)
3� 7� 2, (A.3.26)

1� 2, 8� 4, (A.3.27)
f(1, 0), f(8, 3) < 0 (A.3.28)

and assume that there are no polymorphic coexistence equilibria.

Since we only changed the trait graph G slightly, also the metastability graph GESC stays
almost the same. Apart from the omitted traits 5 and 6, the main difference is that the
valley from the ESC {3} to the fit mutant 4 is now of width 2. Therefore, trait 4 is no
longer one of the nearest fit traits to trait 3 and the set of possible mutants gets reduced
to Vmut({3}) = {7}. In particular, there is no longer an edge ({3}, {4}) in the metastability
graph.

To check whether Assumption 3 is satisfied, we again separate the stability classes

S1 = {{1}, {2}, {3}, {7}, {8}} , S2 = {{0}} , S∞ {{4}} . (A.3.29)

For L = 1, it is again easy to see from GESC that the assumption holds true. To check this for
L = 2, we have to consider how the process can get from the initial ESC {0} to some ESC
of at least the same stability degree. This is not possible since the only candidate would bee
{4}, which is not reachable since the metastability graph is disconnected. As a conclusion,
Assumption 3 is not satisfied for L = 2 and thus we can neither construct the L-scale graph
G2 nor apply Theorem A.2.11.

Remark 14. Although the population process gets stuck in a cycle between of the ESCs
{2}, {3}, {7} for infinite time, we expect that it might escape through the fitness valley
3→ 8→ 4 eventually, when looking at the time scale 1/Kµ2

K . This is due to the fact that,
from the microscopic point of view, it is possible to observe mutants of trait 4 in the phases
where 3 is the resident trait. Indeed, those mutants appear with a much smaller rate than
those of trait 7, but since these phases occur infinitely often, it should only be a question of
acceleration to escape from this cycle (c.f. Remark 12).
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0 1 2 3 8 4
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GESC {2} {3} {8}
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G1 {2} {3} {8}
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G2 {0}

{1} {4}

{0}

{0}

{1} {4}

G
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Figure A.8.: Trait graph G, metastability graph GESC and L-scale graphs G1 and G2 of
Example 5

Collapse on higher time scales

In the two final examples, we demonstrate how paths in the metastability graph that pass
through ESCs of different stability degree collapse to a single edge in the L-scale graph
when focussing on a particular time scale. To this end we start with an example of a simple
linear trait graph with multiple successive fitness valleys of different length. The second
example allows for a branching in the metastability graph, which again vanishes in the
L-scale graph.

Example 6. Let us consider the directed graph G depicted in Figure A.9. Assume equal
competition and the individual fitness r plotted in Figure A.9. Moreover, let α ∈ (1, 2).

Due to the linear and directed structure of the trait graph, we can extract the fitness valleys
and thus the stability degrees directly from the plotted individual fitness r. The jump chain
(v(k))k≥0 is the deterministic sequence

v(0) = {0}, v(1) = {3}, v(2) = {5}, v(3) = {8}. (A.3.30)
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0

r(v)

V

1 2 3 4 5 6 7 8

Figure A.9.: Trait graph G and fitness landscape in terms of individual fitness r of Example
6

This is reflected in the metastability graph drawn in Figure A.10. Note that {6} is also an
ESC of stability degree 2, but it cannot be reached starting from {0}.

Let us now have a look at the L-scale-graphs, i.e. at how the limiting jump process evolves
when fixing a particular time scale. To this end we focus on the sets of ESCs of equal stability
degree, namely

S2 = {{3}, {6}} , S3 = {{0}, {5}} , S∞ = {{8}} . (A.3.31)

Following our construction in (A.2.38), the L-scale-graph G2 consists of the vertices
V2 = {{0}, {3}, {5}, {6}, {8}}. Since all but {3} and {6} are of stability degree higher
than L = 2, the only edges are E2 = {({3}, {5}), ({6}, {8})}.

The construction of the edges of G3 is far more interesting. In particular, starting in the
initial ESC v(0) = {0}, we cannot simply take the edge ({0}, {3}) from the metastability
graph since L({3}) < 3 and thus {3} is not stable enough. Instead, we have to consider the
whole path Γ = ({0}, {3}, {5}) until an ESC of higher stability is reached. This is because the
second jump of Γ happens much faster (more precisely on the time scale 1/Kµ2

K) and hence
becomes absorbed in the slower first jump when rescaling the process with 1/Kµ3

K . This
gives us one edge in E3. The second one is given by the jump ({5}, {8}). Since L({8}) =∞,
no further evolution is possible here.

Overall, these considerations lead to the pictures of G2 and G3 in Figure A.10.

Example 7. Let us consider the directed graph G depicted in Figure A.11. Assume equal
competition and the individual fitness r plotted in Figure A.11. Moreover, let α ∈ (1, 2).

Starting with the resident population in v(0) = {0}, we can directly extract from the plotted
individual fitness r that only the traits 3 and 5 have positive invasion fitness. Moreover,
both can be reached via a path of length |γ| = 3, namely

γA = (0, 1, 2, 3), γB = (0, 1, 6, 5). (A.3.32)
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GESC {0} {3} {5}

G2 {0} {3} {5}

G3 {0}

{8}{6}

{8}

{8}

{6}

{5}

Figure A.10.: Metastability graph GESC and L-scale graphs G2 and G3 of Example 6

0

r(v)

1 42 3

6

V

5

Figure A.11.: Trait graph G and fitness landscape in terms of individual fitness r of Example
7

Hence, we associate to this ESC the stability degree L({0}) = 3 and the set of mutant
candidates Vmut({0}) = {3, 5}.

If trait 5 fixates first, there is no further evolution and we end with vESC({0}, 5) = {5}. In the
case where trait 3 fixates, it can grow and becomes macroscopic. Moreover, since α ∈ (1, 2),
the population of trait 4 grows by frequent incoming mutants. However, due to its negative
invasion fitness with respect to the resident {0} and later against the macroscopic population
{3}, it cannot invade. Hence vESC({0}, 3) = {3} is the corresponding ESC and is of stability
degree L({3}) = 2. From thereon, only trait 5 is a fit reachable mutant, which arises after
a waiting time of order O(1/Kµ2

K) and replaces 3 as an ESC. Those three jumps form the
edges of the drawn metastability graph GESC in Figure A.12.

The L-scale-graph G2 is constructed easily whereas the really interesting behaviour occurs
when asking for the G3. Since L({0}) = 3, the jumps ({0}, {3}) and ({0}, {5}) happen on
the visible time scale. The latter one is clearly also an edge in G3, due to the high stability of
the final ESC L({5}) =∞. However, in case of the former, the ESC that the process jumps
to is of smaller stability, i.e. L({3}) = 2. Therefore, the next jump ({3}, {5}) directly occurs
within a time that vanishes under rescaling. The path Γ = ({0}, {3}, {5}) in GESC thus yields
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an edge ({0}, {5}) for G3. This edge already exists and we do not allow for double edges in
GL. However, the two edges are merged in the sense of adding up the transition rates and
probabilities as in (A.2.40).

Overall, we see that even a branching in the metastability graph can disappear when multiple
paths collapse to the same edge on a particular time scale.

{0} {5}

{3}

GESC

G3 {0} {5}

G2 {0} {5}{3}

Figure A.12.: Metastability graph GESC and L-scale graphs G2 and G3 of Example 7

A.4. Proofs

In this chapter, we discuss the proofs of the results on metastable transitions and limiting
jump processes that are presented in Sections A.2.3 and A.2.4. These build on the results
in [29] on the crossing of a fitness valley on a linear trait space and in [48] on the faster
lnK-dynamics on general finite graphs. The main idea is to extend the techniques from [29]
to more complex trait spaces by considering sequential mutations along certain paths. Since
mutations are very rare outside of the mutation spreading neighbourhood of the resident
traits and unfit traits quickly go extinct, mutations along different paths can essentially be
regarded as independent. Consequently, the overall rate of transitioning out of an ESC is
obtained by summing over the rates of taking specific paths through the surrounding fitness
valley.

The remaining chapter is structured as follows: In Section A.4.1, we determine the precise
equilibrium size of the subpopulations with traits inside the mutation spreading neighbour-
hood. In Section A.4.2, we consider the rates at which mutants of any fitness arise along
specific paths and combine these to the overall rate at which single mutants are born. Finally,
in Section A.4.3, we combine these rates of producing mutants beyond the fitness valley with
the probability of fixation and the faster lnK-dynamics of reaching a new ESC to conclude
Theorem A.2.7 and Corollary A.2.8. Section A.4.4 is dedicated to the proof of Corollary
A.2.10 and Theorem A.2.11, where we concatenate several jumps across fitness valleys to
obtain the multi-scale jump chain and carefully study which transitions are visible on the
respective time scales to obtain the dynamics of the limiting Markov jump process.
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A.4.1. Estimation of the equilibrium size

In this section we discuss the equilibrium population sizes of the living traits once an ESC is
obtained. The results from [48] only characterize the orders of population sizes βw and the
actual size n̄(v) of the resident traits associated to an ESC. In order to calculate the precise
transition rates from one ESC to another, we do, however, need a better estimate for the
population sizes of the non-resident traits in Vα(v).

We prove that, if the initial conditions of our process satisfy the assumptions of an asymptotic
ESC, all living traits in Vα(v) get arbitrarily close to their equilibrium size within a finite
time. This equilibrium size preserves the orders of population sizes and is of the form

NK
v (t) = avKµ

d(v,v)
K + o

(
Kµ

d(v,v)
K

)
∀v ∈ Vα(v), (A.4.1)

for some av ∈ R+, which can be calculated precisely. The populations of living traits stay
close to these equilibrium sizes as long as no new trait arises and reaches a size at which it
can influence the population sizes of other traits, i.e. a size of order K1/α. To this extend,
we recall the definition of the stopping time

TKfix := inf
{
t ≥ 0 : ∃w ∈ V \Vα(v) : βKw (t) ≥ 1/α

}
. (A.4.2)

Lemma A.4.1 (Equilibrium size inside the α-radius). Let v ⊂ V and (βK(0))K≥0 be an
asymptotic ESC. Then, for all ε > 0, there exist constants τε < ∞, Uε > 0 and Markov
processes

(
N

(K,±)
v (t), t ≥ 0

)
K≥0

such that,

lim
K→∞

P
(
N (K,−)
v (t) ≤ NK

v (t) ≤ N (K,+)
v (t) ∀t ∈ (τε, TKfix ∧ eUεK), v ∈ Vα(v)

)
= 1 (A.4.3)

and ∣∣∣∣∣∣
E
[
N

(K,±)
v (t)

]
Kµ

d(v,v)
K

− av

∣∣∣∣∣∣ < ε ∀t ≥ τε, (A.4.4)

where

av :=
∑
γ:v→v
|γ|=d(v,v)

n̄γ0(v)
|γ|∏
i=1

b(γi−1)m(γi−1, γi)
|f(γi,v)| . (A.4.5)

Proof. We will prove the claim by induction w.r.t. the distance from the resident traits. For
the initialisation let us start with v ∈ v. That is, we count also a single vertex as a path
of length zero together with the convention that an empty product has the value one. In
this case (NK

v , v ∈ v) can be coupled with logistic birth-death processes with immigration,
by estimating the incoming and outgoing mutants, which are of order O(KµK) or smaller.
Hence we know already from [48, Lemma A.6(ii)] that the residents stabilize near their
Lotka-Volterra-equlilibrium within a time of order O(1). To make this more precise, define,
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for all ε > 0, the stopping time when the resident populations enter an ε-neighbourhood of
their equilibrium size

τKε := inf
{
t ≥ 0 : ∀v ∈ v :

∣∣∣K−1NK
v (t)− n̄v(v)

∣∣∣ < εC
}
. (A.4.6)

Here C is a constant, depending only on the competition rates c(v, w), which compensates
the slight shift of the equilibrium due to small fluctuations of non-resident traits. Then there
exists a constant time τ̃ε < ∞, such that limK→∞ P

(
τKε < τ̃ε

)
= 1. After this time τ̃ε, the

environment of competitive pressure stays almost constant, unless the fluctuations of the
resident populations become too big or the non-residents reach a macroscopic level. These
two events are described by the stopping times

SKε := inf
{
t ≥ τKε : ∃v ∈ v :

∣∣∣K−1NK
v (t)− n̄v(v)

∣∣∣ > 2εC
}

(A.4.7)

and

σKε := inf

t ≥ 0 :
∑

w∈V \v
NK
w (t) ≥ εK

 . (A.4.8)

We know from [43, Propostition A.2] that, for some constant Uε > 0,

lim
K→∞

P
(
SKε > eUεK ∧ σKε

)
= 1. (A.4.9)

For the other traits in the α-radius v ∈ Vα\v we prove as the induction step that (A.4.3) is
satisfied with

av =
∑

(w,v)∈E
d(v,w)=d(v,v)−1

aw
b(w)m(w, v)
|f(v,v)| (A.4.10)

by deriving an upper and a lower bound on the population size through couplings. These
bounds then immediately imply the claim.

Following the notation of [83], we represent the population processes in terms of Poisson ran-
dom measures. For this purpose let (Q(b)

v , Q
(d)
v , Q

(m)
w,v ; v, w,∈ V ) be independent homogeneous

Poisson random measures on R2
+ with intensity δsδθ. Then we can write

NK
v (t) = NK

v (0) +
∫ t

0

∫
R+

1θ≤b(v)(1−µK)NK
v (s−)Q

(b)
v (ds, dθ)

−
∫ t

0

∫
R+

1θ≤[d(v)+
∑

w∈V c
K(v,w)NK

w (s−)]NK
v (s−)Q

(d)
v (ds, dθ)

+
∑

(w,v)∈E

∫ t

0

∫
R+

1θ≤µKb(w)m(w,v)NK
w (s−)Q

(m)
w,v (ds, dθ). (A.4.11)

Note that we use the same Poisson measures to construct the processes for each K here.
However, as already pointed out in Section A.2.1, this is not necessary and we do not use
any particular correlation between the processes for different K. We can use a specific joint
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construction here since we are only considering the convergence of probabilities of certain
events, rather than of the processes themselves.

Since we already know from [48, Theorem 2.2] that in the equilibrium state the non-resident
populations w ∈ Vα(v) stay of size O(Kµd(v,w)

K ), the main part of the mutations in the
last line comes only from traits lying closer to the resident traits. Thus we can adopt the
inductive structure of [29, Lemma 7.1] and approximate the population size of v analogously
by coupling it, for K large enough, with two processes

N (K,−)
v (t) ≤ NK

v (t) ≤ N (K,+)
v (t), ∀τ̃ε ≤ t ≤ σKε ∧ TKfix ∧ SKε . (A.4.12)

To be precise, we take care of the admissible fluctuations of the residents by defining

n̄(±)
v (v) := n̄v(v)± 2εC. (A.4.13)

Then, for v ∈ V \v and µK < ε, we set

N (K,−)
v (t) = NK

v (τ̃ε) +
∫ t

τ̃ε

∫
R+

1
θ≤b(v)(1−ε)N(K,−)

v (s−)Q
(b)
v (δs, δθ)

−
∫ t

τ̃ε

∫
R+

1
θ≤[d(v)+

∑
w∈v c(v,w)n̄(+)

w (v)+εmaxw̃∈V \v c(v,w̃)]N(K,−)
v (s−)Q

(d)
v (δs, δθ)

+
∑

(w,v)∈E

∫ t

τ̃ε

∫
R+

1θ≤µKb(w)m(w,v)NK
w (s−)Q

(m)
w,v (δs, δθ) (A.4.14)

and

N (K,+)
v (t) =NK

v (τ̃ε) +
∫ t

τ̃ε

∫
R+

1
θ≤b(v)N(K,+)

v (s−)Q
(b)
v (δs, δθ)

−
∫ t

τ̃ε

∫
R+

1
θ≤[d(v)+

∑
w∈v c(v,w)n̄(−)

w (v)]N(K,+)
v (s−)Q

(d)
v (δs, δθ)

+
∑

(w,v)∈E

∫ t

τ̃ε

∫
R+

1θ≤µKb(w)m(w,v)NK
w (s−)Q

(m)
w,v (δs, δθ), (A.4.15)

where we use the same Poisson measures as in (A.4.11). Note that this coupling satisfies
(A.4.12) only on the event

{
τKε < τ̃ε

}
. However, as mentioned above, this event’s probability

converges to 1 and we can hence restrict our considerations to this case to obtain the desired
convergence.

On closer inspection, the approximating processes N (K,−)
v , N

(K,+)
v are nothing but subcritical

branching processes with immigration stemming from incoming mutations.

Similar to the proof of [29, Equation (7.8) et sqq.] we can use the martingale decomposition
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of N (K,+)
v and N (K,−)

v to derive, for t > τ̃ε, the differential equation

δ

δt
E
[
N (K,∗)
v (t)

]
=
(
b(v)(1− 1{∗=−}ε)− d(v)−

∑
w∈v

c(v, w)n̄(∗̄)
w (v)− 1{∗=−}ε sup

w̃∈V \v
c(v, w̃)

)
× E

[
N (K,∗)
v (t)

]
+

∑
(w,v)∈E

µKb(w)m(w, v)E
[
NK
w (t)

]
(A.4.16)

= f (∗)(v,v)E
[
N (K,∗)
v (t)

]
+

∑
(w,v)∈E

µKb(w)m(w, v)E
[
NK
w (t)

]
, (A.4.17)

where ∗̄ = {+,−}\∗ denotes the inverse sign.

Here, we introduce f (∗)(v,v) as a short notation to point out that this is nothing but a
perturbation of the invasion fitness. Then we can apply our a priori knowledge on the size
of the sub-populations, i.e.

E
[
NK
w (t)

]
= O

(
Kµ

δ(v,w)
K

)
∀w ∈ Vα(v), (A.4.18)

to rewrite the ODE system

δ

δt
E
[
N (K,∗)
v (t)

]
= f (∗)(v,v)E

[
N (K,∗)
v (t)

]
+

∑
(w,v)∈E

d(v,w)=d(v,v)−1

µKb(w)m(w, v)E
[
NK
w (t)

]

+O
(
Kµ

δ(v,v)+1
K

)
(A.4.19)

= f (∗)(v,v)E
[
N (K,∗)
v (t)

]
+

∑
(w,v)∈E

d(v,w)=d(v,v)−1

b(w)m(w, v)awKµδ(v,v)
K

+ o
(
Kµ

δ(v,v)
K

)
. (A.4.20)

Here we use the induction hypothesis to estimate the populations with traits lying closer to
the residents in the latter equality.

Rescaling with Kµd(v,v)
K and using (A.4.10), the equation becomes

δ

δt
E
[
N

(K,∗)
v (t)
Kµ

δ(v,v)
K

]
= f (∗)(v,v)E

[
N

(K,∗)
v (t)
Kµ

δ(v,v)
K

]
+ av |f(v,v)|+ o(1). (A.4.21)

By variation of constants the solution is given by

E
[
N

(K,∗)
v (t)
Kµ

δ(v,v)
K

]
= ef (∗)(v,v)(t−τ̃ε)

(
E
[
NK
v (τ̃ε)

Kµ
δ(v,v)
K

]
− |f(v,v)|∣∣f (∗)(v,v)

∣∣av + o(1)
)

+ |f(v,v)|∣∣f (∗)(v,v)
∣∣av + o(1)

(A.4.22)
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Note that the term in brackets can be bounded uniformly in K and ε, for ε small enough.
Moreover, the ratio of (perturbed) fitness can be expressed as (1±εc̃ε). So (A.4.22) becomes

E
[
N

(K,∗)
v (t)
Kµ

δ(v,v)
K

]
= ef (∗)(v,v)(t−τ̃ε)O(1) + (1± εc̃ε)av + o(1) (A.4.23)

Finally taking into account that the fitness f (∗)(v,v) < 0 is negative for v ∈ Vα(v) the first
term vanishes for increasing time. Hence we see that for all ε̃ > 0 there are ε > 0 and
τε̃ ∈ (τ̃ε,∞) and K0 ∈ N such that, for all t > τε̃ and K > K0∣∣∣∣∣E

[
N

(K,∗)
v (t)
Kµ

δ(v,v)
K

]
− av

∣∣∣∣∣ < ε̃. (A.4.24)

Finally, we can deduce again from our knowledge on the orders of population sizes that

lim
K→∞

P
(
σKε < TKfix ∧ eUεK

)
= 0, (A.4.25)

which allows us to drop the stopping time σKε in the claim.

A.4.2. Pathwise evolution rates

From the precise description of the population sizes inside the mutation spreading neigh-
bourhood we can now deduce the rate of occurrence of mutants that lay outside.

To observe a new mutant, whose trait is far away from the resident population, a whole
sequence of mutation steps is needed. Traits outside the α-neighbourhood Vα(v) cannot avoid
extinction only due to incoming mutants. Therefore, if such a trait has negative invasion
fitness, mutants only give rise to small excursions approximated by subcritical branching
processes. During each of these excursions there is a small probability that a new mutant is
produced before extinction.

To overcome the problem of tracking possible back mutations, we not only observe the sizes
of the different mutant populations. Instead, we distinguish mutants by the mutational path
along which they arose and keep track of the genealogy. We set

NK
v (t) =

∑
γ:∂Vα→v

NK
v,γ(t) ∀v ∈ V \Vα, (A.4.26)

where the pathwise mutations can by represented by

NK
v,γ(t) =

∫ t

0

∫
R+

1θ≤b(v)(1−µK)NK
v,γ(s−)Q

(b)
v,γ(δs, δθ)

+
∫ t

0

∫
R+

1θ≤µKb(ṽ)m(ṽ,v)NK
ṽ,γ\v(s−)Q

(m)
v,γ (δs, δθ)

−
∫ t

0

∫
R+

1θ≤[d(v)+
∑

w∈V c
K(v,w)NK

w (s−)]NK
v,γ(s−)Q

(d)
v,γ(δs, δθ). (A.4.27)
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Here ṽ stands for the next-to-last vertex in γ, which is the progenitor of v in γ, and for
ṽ ∈ ∂Vα we set

Nṽ,(ṽ)(t) := Nṽ(t). (A.4.28)

As before, (Q(b)
v,γ , Q

(d)
v,γ , Q

(m)
v,γ ; v ∈ V, γ : ∂Vα → v) are independent homogeneous Poisson ran-

dom measures with constant intensity one.

Remark 15. It suffices to only sum over the paths starting in ∂Vα in the decomposition. By
the definition of TKESC all populations outside of Vα are extinct at that time. The probability
that a mutant of trait v ∈ V \Vα arises before the finite time τε in Lemma A.4.1, when
the populations in Vα reach their equilibrium, goes to zero. After this time we have good
bounds on the population sizes of all traits in Vα and it is therefore sufficient to trace back
the genealogy of new mutants to the last trait in Vα, i.e. a trait in ∂Vα.

With this representation at hand, we are now able to define the cumulated number of mutant
individuals of trait v that arose as mutants of the progenitor ṽ, along the path γ

MK
v,γ(t) =

∫ t

0

∫
R+

1θ≤µKb(ṽ)m(ṽ,v)NK
ṽ,γ\v(s−)Q

(m)
v,γ (δs, δθ), (A.4.29)

as well as the respective occurrence times of these mutants

T (i,K)
v,γ := inf

{
t ≥ 0 : MK

v,γ(t) ≥ i
}
, (A.4.30)

where we set T (0,K)
v,γ := 0.

Our aim is to show that new mutants outside of Vα appear at the end of a mutation path
approximately as a Poisson point process with rate scaling with length of the path.

Lemma A.4.2. Suppose v and (βK(0))K≥0 are an asymptotic ESC and let TKfix be defined
as in (A.4.2). Let v ∈ V \Vα and γ : ∂Vα → v be such that |γ| ≥ L − bαc and f(γi,v) < 0,
for all i = 0, . . . , |γ|−1. Then there exist 0 < c,C <∞ such that, for each ε > 0, there exist
two Poisson point processes M (K,±)

v,γ with rates R̃(±)
v,γKµ

bαc+|γ|
K such that

lim inf
K→∞

P
(
M (K,−)
v,γ (t) < MK

v,γ(t) < M (K,+)
v,γ (t), ∀t < TKfix

)
≥ 1− cε, (A.4.31)

where the rate parameters are defined as

R̃v,γ := aγ0b(γ0)m(γ0, γ1)
|γ|−1∏
j=1

λ(ρ(γj ,v))m(γj , γj+1), R̃(±)
v,γ = (1± Cε)R̃v,γ . (A.4.32)

For the definitions of λ(ρ) and ρ(v,v) we refer to (A.2.20) and (A.2.19) respectively, while
aγ0 is the equilibrium size defined in (A.4.5).
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Proof. Note that, throughout the whole proof, we assume that τε < t < TKfix ∧ eUεK , where
τε and Uε are defined in Lemma A.4.1. This can then be extended to all 0 ≤ t < TKfix in the
limit of K →∞ since TKfix < eUεK with probability converging to 1 and, since µK → 0, there
is almost surely no mutation event during the finite time interval [0, τε].

Let v ∈ V \ Vα and γ : ∂Vα → v be given as in the Lemma. To better distinguish from the
full path γ, we refer to the vertices of the path via γ = (v0, v1, . . . , v|γ|). The idea of this
proof is to considered the path isolated from the remaining graph and adapt the tools from
[29, Ch. 7.3.] to the present situation. We refrain from adding much more notation to our
already complicated situation. We try to handle the far more general structure of our trait
graph by translating the notation of the central objects between the articles instead.

The first observation is that, for every t < TKfix, we can bound the mutant counting process
of trait v1 by

M (K,−)
v1,γ (t) ≤MK

v1,γ(t) ≤M (K,+)
v1,γ (t) a.s., (A.4.33)

with the bounding processes being defined as

M (K,±)
v1,γ (t) =

∫ t

0

∫
R+

1
θ≤µKb(v0)m(v0,v1)N(K,±)

v0 (s−)Q
(m)
v0,γ(δs, δθ). (A.4.34)

Note that the estimate corresponds to equation (7.42) in [29], while the definition is the ad-
apted version of (7.17) therein. In order make use of Lemma A.4.1, we continue temporarily
with the simplified processes

M̄ (K,±)
v1,γ (t) =

∫ t

0

∫
R+

1
θ≤µKb(v0)m(v0,v1)E

[
N

(K,±)
v0 (s−)

]Q(m)
v0,γ(δs, δθ) (A.4.35)

and

T̄ (i,K,±)
v1,γ := inf

{
t ≥ 0 : M̄ (K,±)

v1,γ (t) ≥ i
}
. (A.4.36)

In fact, this turns out to be sufficient for our results since a standard application of Doob’s
martingale inequality shows that, with probability converging to 1, the difference of the
processes M (K,±)

v1,γ and M̄
(K,±)
v1,γ during the relevant time interval stays of sufficiently small

order. To be precise there exist sequences of numbers N1(K) and N2(K), with

N1(K)� (KµLK)−1 and N2(K)� (µL−1−bαc
K )−1 (A.4.37)

such that

lim
K→∞

P
(

sup
s≤N1(K)

∣∣∣M (K,±)
v1,γ (s)− M̄ (K,±)

v1,γ (s)
∣∣∣ > N2(K)

)
= 0. (A.4.38)

For details, see [29, p.3583]. At each time T̄ (i,K,±)
v1,γ an individual of trait v1 is born. In order

to track its descendants until potentially a trait v|γ| individual is born, in a similar way as

72



A.4. Proofs

done in the previous section, we couple the k-mutant population, for 1 ≤ k ≤ |γ| − 1, to
birth-death-processes with individual birth and death rates

b(∗)(vk) = b(vk)(1− 1{∗=−}ε), (A.4.39)

d(∗)(vk) = d(vk) +
∑
w∈v

c(vk, w)n̄(∗̄)
w (v) + 1{∗=−}ε sup

w̃∈V \v
c(vk, w̃). (A.4.40)

Note that in contrast to Section A.4.1, these subcritical processes do not gain from any
immigration and hence go extinct in finite time. However, there is a small probability
during such an excursion of the k-mutant population that an individual of trait (k + 1) is
born. Analogously to [29, pp. 3581–3582], we can use Lemma A.5.1 (see Appendix A.5.1)
to derive

P (An excursion of trait vk produces exactly 1 mutant of type vk+1)
= µKλ(ρ(vk,v))m(vk, vk+1)(1 +O(ε)), (A.4.41)

while on the other hand

P (An excursion of trait vk produces at least 2 mutants of vk+1) = O(µ2
K). (A.4.42)

Hence, the probability that the i-th mutant of trait v1 (i.e. the one triggering T̄
(i,K,±)
v1,γ )

produces a v|γ|-mutant is, for large K,

µ
|γ|−1
K

 |γ|−1∏
k=bαc+1

λ(ρ(vk,v))m(vk, vk+1)

 (1 +O(ε)). (A.4.43)

Since Lemma A.4.1 implies that M̄ (K,±)
v1,γ can be treated as a Poison process with intensity

Kµ
d(v,v0)+1
K avb(v0)m(v0, v1), (A.4.44)

we get appearance of v|γ|-mutants also as Poison process with thinned intensity

Kµ
d(v,v0)+|γ|
K avb(v0)m(v0, v1)

 |γ|−1∏
k=bαc+1

λ(ρ(vk,v))m(vk, vk+1)

 (1 +O(ε)) (A.4.45)

= R̃(±)
v,γKµ

bαc+|γ|
K . (A.4.46)

Eventually, the difference betweenM (K,±)
v1,γ and M̄ (K,±)

v1,γ is of smaller order than (µL−1−bαc
K )−1

and multiplying with the thinning probability (A.4.43), which is of order µ|γ|−1−bαc
K , this

only changes the appearance rate for the v|γ|-mutants by a vanishing order.

Remark 16. Note that in general there could be an overlap of two excursions of NK
vk,γ

,
associated to different incoming mutants. Nevertheless in the limit of K →∞ this does not
happen since the time interval between the incoming mutants diverges, while the durations
of the excursions stay of order one, i.e. T (i+1,K)

vk,γ − T (i,K)
vk,γ � 1.
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As a direct corollary we can deduce the law of the appearance times of new mutants with
trait v ∈ V \Vα.

Corollary A.4.3. Suppose v and (βK(0))K≥0 are an asymptotic ESC. Let v ∈ V \Vα be a
trait such that all paths γ : ∂Vα → v of shortest length |γ| = d(Vα, v) do only visit traits with
negative invasion fitness, excluding the last trait v, i.e. f(γi,v) < 0
∀i = 0, . . . , |γ| − 1. Denote by T

(i,K)
v the appearance time of the i-th mutant of trait v

descended from an nearest neighbour trait. Then there exists a 0 < c < ∞ such that, for
each ε > 0, there exist sequences of iid. exponential random variables E(i,K,±)

v , i ≥ 1 with
rates R̃(±)

v = (1± Cε)R̃v, where

R̃v :=
∑

γ:∂Vα→v
|γ|=d(Vα,v)

aγ0b(γ0)m(γ0, γ1)
|γ|−1∏
j=1

λ(ρ(γj ,v))m(γj , γj+1) (A.4.47)

Such that

lim inf
K→∞

P
(
E(i,K,−) ≤ Kµd(v,v)

K

(
T (i,K)
v − T (i−1,K)

v

)
≤ E(i,K,+)

∣∣∣T (i,K)
v < TKfix

)
≥ 1− cε

(A.4.48)

Proof. Due to Lemma A.4.2, we can describe the arrivals of new v-type mutants approxim-
ately as sum of Poisson point processes. Since the Poisson measuresQ(·)

·,· in our representation
(A.4.27) are taken as independent, the resulting mutation counting processes MK

v,γ are also
independent. Hence their sum can be approximated by a Poisson process with with intensity∑

γ:∂Vα→v
R̃v,γKµ

|γ|+bαc
K . (A.4.49)

Since each summand scales with the length of the respective path, the first order of the overall
rate is given only by the shortest paths (i.e. γ such that |γ| = d(Vα, v) = d(v, v)−bαc). As a
result, the first order becomes (A.4.47) multiplied by Kµd(v,v). Finally, the waiting times of
homogeneous Poisson point processes are exponentially distributed with the same rate.

A.4.3. Proof of Theorem A.2.7 and Corollary A.2.8

We have now assembled all the tools to finish the proof of Theorem A.2.7 and Corollary
A.2.8.

Note that, with the notation from the proof of Lemma A.4.1, all following considerations
are only valid up to the stopping time SKε ∧ σKε , for sufficiently small ε. Since we have
seen previously that TKfix ≤ SKε ∧ σKε with probability converging to one, as K → ∞, we
do not condition on this anymore in the following. Moreover, constants c and C may vary
throughout the proof but are always assumed to satisfy 0 < c,C <∞.

Both results assume that the initial conditions (βK(0))K≥0 compose an asymptotic ESC
associated to the coexisting traits v ⊂ V . In a first step, we study the time until the fixation
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of the first mutant trait outside of Vα := Vα(v), i.e. TKfix. Corollary A.4.3 implies that, for all
traits w ∈ V \Vα such that all shortest paths γ : v → v only pass through unfit traits, new
mutants of this trait arise approximately according to a Poisson point process with rate R̃v.
By assumption, βKw (0) = 0, for all K > K0 and w ∈ V \Vα, i.e. all traits outside of Vα are
initially extinct. As a result, individuals of such traits w are only present due to the above
incoming mutations.

We now argue why it suffices to consider traits w ∈ V \Vα such that f(w,v) > 0 and
d(v, w) = L(v), i.e. the w ∈ Vmut := Vmut(v), as candidates to reach βKw = 1/α first and
trigger the stopping time TKfix.

For all w such that bαc < d(v, w) < L(v), the definition of L(v) yields f(w,v) < 0.
Therefore, the descendants of a mutant of such traits can be bounded from above by a
subcritical birth-death process with rates that do not depend on K, that dies out within a
finite time with probability 1. As a result,

lim
K→∞

P

 sup
t∈[0,TKfix∧eUεK ]

βKw (t) ≥ 1
α

 = 0. (A.4.50)

For w such that d(v, w) = L(v) and f(w,v) < 0, the same argument can be applied.

Finally, for all w such that d(v, w) > L(v), for all T <∞, Corollary A.4.3 implies that the
arrival time of the first w mutant, T (1)

w , satisfies

lim
K→∞

P
(
T (1)
w ≤ T

Kµ
L(v)
K

∧ TKfix

)
= 0. (A.4.51)

Focussing on the w ∈ Vmut, we can use couplings to supercritical birth-death processes
(similar to the arguments in the previous sections) to bound the different mutant populations.
Using classical results on branching processes (e.g. from [4, Ch. III.4]) we can approximate
the probability that the descendants of a single mutant of a particular trait w do not go
extinct by (1±Cε)f(w,v)/b(w). Moreover, conditioned on not going extinct, the time that
such a population needs to grow to a size of K1/α can be bounded by (1±Cε) lnK/αf(w,v).
It is therefore negligible on the time scale 1/KµL(v)

K , on which the w mutants arise.

Overall, we can deduce from Corollary A.4.3 that there is a constant 0 < c <∞ and expo-
nential random variables E(K,±)

w,fix with parameters (1± cε)R̃wf(w,v)/b(w) = (1± cε)R(v, w)
such that

lim inf
K→∞

P
(
E

(K,−)
w,fix ≤ Kµ

L(v)
K TKfix ≤ E

(K,+)
w,fix

∣∣∣βKw (TKfix) = 1
α

)
≥ 1− cε. (A.4.52)

Since the mutants arising along different paths are independent (see the proof of Corollary
A.4.3), the actual stopping time KµL(v))

K TKfix (without conditioning on a trait w) is roughly
exponentially distributed with the sum of all rates R(v) =

∑
w∈Vmut R(v, w). In addition, the

probability that a certain trait w ∈ Vmut triggers the stopping time TKfix can be approximated
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by R(v, w)/R(v). More precisely, there are exponential random variables E(K,±)(ε) such
that

lim inf
K→∞

P
(
E(K,−)(ε) ≤ KµL(v)

K TKfix ≤ E(K,+)(ε)
)
≥ 1− cε, (A.4.53)

R(v, w)
R(v) (1− cε) ≤ lim

K→∞
P
(
βKw (TKfix) = 1

α

)
≤ R(v, w)

R(v) (1 + cε). (A.4.54)

Since ε can be picked arbitrarily small, this concludes the proof of Theorem A.2.7.

To deduce Corollary A.2.8, we note that at time TKfix the population sizes satisfy (A.2.28), for
some w ∈ Vmut(v). Hence the assumption of the corollary and Theorem A.5.2 imply that a
new ESC associated to vESC(v, w) is obtained within a time of order lnK. We emphasise that,
although Theorem A.5.2 only implies that βKu → 0 for traits
u /∈ Vα(vESC(v, w)) after this time, these subpopulations can be bounded from above by
subcritical branching processes that go extinct within a time of order 1, such that the con-
ditions of TKESC are truly satisfied. This yields the first claim of Corollary A.2.8. Since this
time is again negligible with respect to the 1/KµL(v)

K -time scale, the second claim follows
directly. For the last claim, we realise that a new ESC w might be reached from multiple
w ∈ Vmut(v), and we therefore add up all corresponding probabilities to obtain p(v,w). This
concludes the proof of Corollary A.2.8.

A.4.4. Proof of Corollary A.2.10 and Theorem A.2.11

In order to derive results for the jump chain (v(k))k≥0 on GESC, we observe that, after a
successful transition according to Corollary A.2.8, the final state of the process again satisfies
the initial assumptions for another application of the corollary. We simply need to recompute
the state-dependent quantities (L(v), Vmut(v), etc.). As a consequence, the strong Markov
property allows us to use Corollary A.2.8 to construct the random sequence (v(k))k≥0 as
well as derive the asymptotics of the stopping times T (k,K)

ESC by an inductive procedure. This
proves Corollary A.2.10.

To extract the limiting process on the time scale 1/KµLK for fixed L > α, take an initial
configuration of this stability degree, i.e. v ∈ SL. Considering the jump chain (v(k))k≥0
with v(0) = v, Assumption 3 implies that, with probability one, (v(k))k≥0 reaches an
ESC of stability degree at least L within finitely many steps. We now consider such a
finite path Γ : v → w in GESC, where L(w) ≥ L. Without loss of generality we may
assume that the intermediate ESCs are of strictly lower stability degree, i.e. L(Γi) < L
∀1 ≤ i < |Γ|. Otherwise we could shorten the path. Asking now for the time TKΓ that it
takes to transition from v to w along Γ, we can simply add up the single step transition
times T (i,K) − T (i−1,K). By Corollary A.2.10, we know that, on the time scale 1/KµL(i)

K ,
those are well approximated by exponential random variables E(i,K)

± . Since L = L(1) > L(i),
for 2 ≤ i ≤ |Γ|, we can deduce that the rescaled transition time TKΓ KµLK is dominated by
the very first transition and thus well described by exponential random variables.

To compute the respective transition rates, notice that by Corollary A.2.10, on the time
scale 1/KµLK , the rate to escape from v = Γ0 is given by R(v) = R(1). Moreover, we
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have to take into account that we consider the case where the limit process (v(i))i≥i takes a
particular path, i.e. v(i) = Γi, for 0 ≤ i ≤ |Γ|. The probability of this event is simply given
by the product of the one-step-probabilities p(v(i−1),v(i)). Similarly to previous arguments,
there might by different paths Γ : v → w and hence we add up their probabilities. This
yields the rates RL(v,w) in (A.2.41) and therefore the claimed dynamics of the jump process
(vL(t))t∈[0,T ] on the L-scale graph GL.

To finally deduce the limit of the rescaled population process NK/K, we note that there is
no macroscopic evolution during almost the entire waiting time for a transition on GL. The
set of macroscopic traits

{
v ∈ V : βKv (t) > 1− εK

}
only changes after a new mutant fixates,

which happens at time T (1,K)
fix . The rest of the transition time, which may consist of many

chances of the macroscopic traits, vanishes when rescaling with KµLK . Therefore, we obtain
the limit process of Theorem A.2.11, which jumps between the Lotka-Volterra-equilibria
associated to the state of (vL(t))t∈[0,T ].

A.5. Technical results

The aim of this chapter is to collect some results on the O(1)- and O(lnK)-time scale
behaviour of the population process. While Section A.5.1 explains the form of λ(ρ), Section
A.5.2 justifies the notation vESC(v, v). The statements have been derived in [29] and [48]
whereto we refer for detailed proofs.

A.5.1. Excursions of subcritical birth death processes

The first lemma quantifies the mean number of birth events before a subcritical birth death
process goes extinct, corresponding to λ(ρ). Although we restate an existing result here, we
provide a short proof below. This proof is different to the more general scenario that is cited
in [29] and gives the reader an intuition behind the expression.

Lemma A.5.1. ([29, Lemma A.3]) Consider a subcritical linear birth death process with
individual birth and death rates 0 < b < d. Denote by Z the total number of birth events
during an excursion of this process initiated with exactly one individual. Then, for k ∈ N0,

p(b,d)(k) := P (Z = k) = (2k)!
k!(k + 1)!

(
b

b+ d

)k ( d

b+ d

)k+1
(A.5.1)

and in particular

e(b,d) := E [Z] =
∞∑
k=1

(2k)!
(k − 1)!(k + 1)!

(
b

b+ d

)k ( d

b+ d

)k+1
. (A.5.2)

Moreover, we have the following continuity result. There exist two positive constants c, ε0 >
0, such that, for all 0 < ε < ε0 and 0 < bi < di, if |b1 − b2| < ε and |d1 − d2| < ε, then∣∣∣e(b1,d1) − e(b2,d2)

∣∣∣ < cε. (A.5.3)
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Figure A.13.: Original path x that prematurely goes extinct and its reflection x̃.

Remark 17. Note that (C.5.16) corresponds to (A.2.19) via e(b,d) = λ(ρ), where ρ = b/(b+d).

Proof. Although the considered process takes place in continuous time, it suffices to focus
on the birth and death events as jump chain in discrete time. This is nothing but a simple
random walk on N0 with probabilities

p(x, x+ 1) = b

b+ d
, p(x, x− 1) = d

b+ d
∀x ≥ 1 (A.5.4)

and absorbing state 0. From this point of view it is only a question of counting the number
of paths leading from one individual to extinction consisting of exactly k births and hence
k+ 1 death events. As final step there has to happen a death since the population does not
vanish before. So the first 2k events form a walk from 1 to 1. There are

(2k
k

)
of such paths

but some of them would lead to extinction earlier. To determine their number we apply a
reflection principle in the following way. Let x = (x0, x1, . . . , x2k) be a path leading from
one to one such that there exists a 0 < j < 2k with xj = 0. Then we define the partially
reflected path x̃ by

x̃i :=
{

xi for i ≤ j,
−xi for i > j.

(A.5.5)

This gives us a unique path from x̃0 = 1 to x̃2k = −1 (cf. A.13). Moreover, there is a one
to one correspondence between prematurely extincting processes and paths leading from 1
to −1. The latter ones consist of only k − 1 births and hence there are

( 2k
k−1
)
different ones.

Finally the total number of legal paths is

# {x = (x0, x1, . . . , x2k)|x0 = 1, x2k = 1, xi > 0} =
(

2k
k

)
−
(

2k
k − 1

)
= (2k)!
k!(k + 1)! . (A.5.6)

We now achieve (A.5.1) by multiplying with the probability of k births and k + 1 death
events. The last statement is a simple consequence of the mean value theorem.
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A.5.2. Fast evolution until ESC

In this subsection we discuss the first phase of evolution, where an ESC is obtained on the
lnK-time scale. The convergence of NK(t lnK)/K and βK(t lnK), as K → ∞, is studied
in [48]. In the following we cite the respective results in the notation of this paper.

For a finite graph G = (V,E) and under Assumptions 1 and 2, the trajectories (βw(t), w ∈ V )
(which turn out to be the limit of (βKw (t lnK), w ∈ V )) are defined by an inductive procedure.
The construction is valid until a stopping time T0.

Denote by ṽ(`), ` ≥ 0, the sequence of consecutive coexisting resident traits. We emphasize
that these are not to be confused with the sequence of resident traits v(k), k ≥ 0, that are
associated to ESCs. The invasion times, at which the sets of resident traits change due to
upcoming mutant traits, are denoted by the increasing sequence (s`)`≥0.

For initial conditions β̃(0), the support of the unique asymptotically stable equilibrium of
the Lotka-Volterra system (A.2.2) associated to the traits {w ∈ V : β̃w(0) = 1} (if existent)
is denoted by ṽ(0). The equilibrium n̄(ṽ(0)) is reached within a time of order 1 and we set
s0 := 0. Moreover, we define βw(0) := maxu∈V [β̃u(0) − d(u,w)/α]+ as the initial condition
of the limiting trajectories. This reflects that, within a time of order 1, living traits produce
neighbouring mutant populations with the size of a µK-fraction of their own size. This time
of order 1 is negligible on the lnK-time scale, which the limit β is defined on.

Assuming that s`−1, ṽ(`−1) such that LV E+(ṽ(`−1)) = n̄(ṽ(`−1)), and β(s`−1) are known,
the next phase can be described as follows. The `th invasion time is set to

s` := inf{t > s`−1 : ∃ w /∈ ṽ(`−1) : βw(t) = 1}. (A.5.7)

For s`−1 ≤ t ≤ s`, for any w ∈ V , βw(t) is defined by

βw(t) := max
u∈V

[
βu(s`−1) + (t− tu,` ∧ t)f(u, ṽ(`−1))− d(u,w)

α

]
∨ 0, (A.5.8)

where, for any w ∈ V ,

tw,` :=

inf
{
t ≥ s`−1 : ∃ u ∈ V : d(u,w) = 1, βu(t) = 1

α

}
if βw(s`−1) = 0

s`−1 else
(A.5.9)

is the first time in [s`−1, s`] when this trait arises. If we define Vliving(t) := {w ∈ V :
βw(t) > 0} equivalently to V K

living (on the lnK-time scale), then this implies βw(tw,`) ≥ 0
and βw(tw,` + δ) > 0, for small δ > 0.

The stopping time T0, that terminates the inductive construction of the limiting trajectories,
is set to s` if

(a) there is more than one w ∈ V \ṽ(`−1) such that βw(s`) = 1;

(b) the mutation-free Lotka-Volterra system associated to ṽ(`−1) and the unique w ∈
V \ṽ(`−1) such that βw(s`) = 1 does not have a unique globally attractive stable equi-
librium (in particular, if such an equilibrium does not exist for {w ∈ V : β̃w(0) = 1},
T0 is set to 0);
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(c) there exists w ∈ V \ṽ(`−1) such that βw(s`) = 0 and βw(s` − δ) > 0 for all δ > 0 small
enough.

(d) there exists w ∈ V \ṽ(`−1) such that s` = tw,`.

These conditions are mostly technical and are discussed in [48].

With this construction, the results can be stated as follows:

Theorem A.5.2. ([48, Theorem 2.7]) Let G = (V,E) be a finite graph. Suppose that
Assumption 1 and 2 hold and consider the model defined by (A.2.1) with µK = K−1/α. Let
ṽ0 ⊂ V and assume that, for every w ∈ V ,

βKw (0)→ β̃w(0), (K →∞) in probability. (A.5.10)

Then, for all T > 0, as K →∞, the sequence ((βKw (t lnK), w ∈ V ), t ∈ [0, T ∧T0]) converges
in probability in D([0, T ∧T0],RV+) to the deterministic, piecewise affine, continuous function
((βw(t), w ∈ V ), t ∈ [0, T ∧ T0]), which is defined in (A.5.8).

Theorem A.5.3. ([48, Proposition 2.8]) Under the same assumptions as in Theorem A.5.2,
for all T > 0, as K →∞, the sequence ((NK

w (t lnK)/K,w ∈ V ), t ∈ [0, T ∧T0]) converges in
the sense of the finite dimensional distributions to a deterministic jump process ((Nw(t), w ∈
V ), t ∈ [0, T ∧ T0]), which jumps between different Lotka-Volterra equilibria according to

Nw(t) :=
∑

`∈N:s`+1≤T0

1s`≤t<s`+11w∈ṽ(`) n̄w(ṽ(`)). (A.5.11)

Moreover, the invasion times s` and the times tw,` when new mutants arise are calculated
precisely in [48]. This is however not relevant to the discussion in this paper.

We notice that the constructed trajectories (βw(t), w ∈ V ) stay constant precisely once an
ESC is obtained. In this case, there is no more visible evolution on the lnK-time scale.
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B. Publication: Effective growth rates in a
periodically changing environment: From
mutation to invasion

This appendix is to appear in Stochastic Processes and their Applications as joint work with
Anna Kraut [71],

M. Esser and A. Kraut, Effective growth rates in a periodically changing environ-
ment: From mutation to invasion. Stochastic Processes and their Applications,
Volume 184 , Number 104598, 2025. https://doi.org/10.1016/j.spa.2025.
104598

We consider a stochastic individual-based model of adaptive dynamics for an asexually re-
producing population with mutation, with linear birth and death rates, as well as a density-
dependent competition. To depict repeating changes of the environment, all of these para-
meters vary over time as piecewise constant and periodic functions, on an intermediate
time-scale between those of stabilization of the resident population (fast) and exponential
growth of mutants (slow). Studying the growth of emergent mutants and their invasion of the
resident population in the limit of small mutation rates for a simultaneously diverging popu-
lation size, we are able to determine their effective growth rates. We describe this growth as
a mesoscopic scaling-limit of the orders of population sizes, where we observe an averaging
effect of the invasion fitness. Moreover, we prove a limit result for the sequence of consecutive
macroscopic resident traits that is similar to the so-called trait-substitution-sequence.

B.1. Introduction

Mathematical approaches to understanding the long-term evolution of populations have a
long history and can even be traced back to ideas of Malthus in 1798 [135]. The study of
heterogeneous populations is of particular interest as it allows to analyse the diversity and
the interaction of species as they adapt over time. The driving mechanisms, ecology and
evolution, which are addressed by models of adaptive dynamics, may strongly depend on the
environment a population is living in. Since realistically this environment cannot be assumed
to stay constant over time, we study the effects of periodic changes of the model parameters in
this paper. From an application point of view, this is for example motivated by the seasonal
changes of temperature, humidity, accessibility of nutrition and other resources, which may
effect the fertility of individuals and thus directly have an impact on the population’s growth
[78, 129]. Another interesting example is pulsed drug-based therapy for infectious diseases
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or cancer. Dependent on the treatment protocol, the concentrations of drugs may vary over
time. Assuming a regular supply of drug, this can be described by periodic changes, leading
to varying reproduction rates of the pathogen.

While in both of these cases the population’s dynamics are directly affected by the envir-
onmental changes on a short time-scale, it is reasonable to expect some averaging and thus
a macroscopic trend of growth or shrinking on a larger time-scale. This averaging effect is
what we study rigorously in the present paper. Starting from a model that describes the
individuals’ dynamics on a microscopic level, i.e. taking into account interactions between
single individuals, we derive results for the effective mesoscopic growth rates of subpopu-
lations of intermediate size, i.e. that consist of a larger number of individuals but are still
negligible with respect to the total population size. Moreover, we give an explicit description
of the macroscopic evolution of the whole population process, tracing the evolution of the
dominating trait, in the large population limit. A crucial aspect in this is to understand
under which conditions we can observe the emergence and growth of new types or even the
replacement of resident traits by fitter mutants.

We consider a variation of the stochastic individual-based model of adaptive dynamics that
has been introduced by Fournier and Méléard [83] and since then was studied for a broad
spectrum of scaling limits and model extensions (see e.g. [27] for an overview and [6, 158,
148, 28, 22]). Its aim is to study the interplay of ecology and evolution, i.e. both the short-
term effects of competitive interactions of different subpopulations and the long-term effects
of occurrence and fixation of new mutant species. Since our interest lies in analysing the
effects of time-dependent changes of ecological parameters on the long-term evolution of a
population, these models of adaptive dynamics are naturally helpful.

As one of the first results on the individual-based model, Champagnat was able to show that
certain assumptions on the scaling of large populations and very rare mutations lead to a
separation of the time-scales of ecology and evolution, which is a fundamental principle of ad-
aptive dynamics. Under the aforementioned assumptions, Champagnat derived convergence
to the trait-substitution-sequence (TSS) [40] and, together with Méléard, the polymorphic-
evolution-sequence (PES) [43]. On an accelerated time-scale, these sequences describe how
the macroscopic population essentially jumps between (monomorphic or polymorphic) equi-
libria of different Lotka-Volterra systems. A broader spectrum of more frequent mutations
was investigated by Bovier, Coquille, and Smadi for a simple trait space with a valley in the
fitness landscape [29]. This work laid the basis for the more general study of moderately rare
mutations in [48], under collaboration of Kraut. The latter provides both the description
of a macroscopic limit process, which consists of (deterministic) jumps between equilibrium
states, as well as a mesoscopic limit result for the growth and decline of all subpopulations,
observable on a logarithmic time-scale.

Despite the variety of different scenarios that have already been analysed, all of these pre-
vious works ask for the parameters of the population process to be constant over time. In
the present paper, we break with this assumption and allow for periodic parameter changes.
As before, we study the limit of a diverging carrying capacity K ↗ ∞, which scales the
order of the total population’s size, and choose moderate mutation probabilities µK ↘ 0. In
addition, we introduce a finite number of parameter constellations, which repeat periodically
on time intervals (phases) with fixed length of order λK , to model a changing environment.
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These parameter constellations vary the individual birth, death, and competition rates,
which in particular determine the fitness, or growth rate, of the different subpopulations.
Consequently, both the sign of the fitness, resulting in growth or shrinkage of the subpopu-
lations, and the fitness relations between different types may change between phases.

We choose an intermediate time-scale of 1 � λK � lnK for these environmental changes.
As a result, the environment stays stable enough for the macroscopic resident population
to adapt to it in between parameter changes, but changes occur fast enough to influence
the growth of the micro- and mesoscopic subpopulations in between invasions. Under these
assumptions, we can observe an averaging effect on the level of mutant growth. Similarly to
[48], we prove a mesoscopic convergence result for the orders of population sizes Kβ of all
subpopulations. In the limit of K ↗∞, on the time-scale lnK of exponential growth, these
exponents β converge to deterministic, piecewise affine functions β̄ that can be described by
a recursive algorithm. The slopes of these functions are determined by the effective (time-
average) fitness of the subpopulations. Based on this mesoscopic characterisation, we further
derive a substitution-sequence on the same time-scale, describing the macroscopic jumps of
the population between successive resident traits.

The fact that the environmental parameters now change on an intermediate time-scale at a
first glance seems to be only a small variation of the former models. However, a couple of
non-trivial difficulties arise in all parts of the established proof strategies: First of all, since
time spans of order lnK consist of asymptotically infinitely many parameter phases that need
to be concatenated, the way in which a large deviation principle is usually applied for these
types of processes to ensure stability of the resident population in between invasions (see
e.g. [40]) is not sufficient. To obtain a quantification of the speed at which the probability of
exit from a domain within a λK-time span tends to zero, we instead use potential theoretic
arguments similar to Baar, Bovier, and Champagnat [7]. Moreover, to take care of the short
O(1) times of re-equilibration after a parameter change, we study the speed of convergence
in the standard convergence result of Ethier and Kurtz [75].

Second, we need to extend the general growth results for branching processes (with immig-
ration) of Champagnat, Méléard and Tran [45] to periodically changing parameters. This
in particular requires a careful consideration of small populations, i.e. in the case of ex-
tinction or a newly emerging mutant population. Here we study the distribution function
of the extinction time, making use of estimates on the probability generating function of
Galton-Watson processes.

Finally, we need to carefully consider the event of a mutant population becoming macro-
scopic. Here we need to choose the stopping time, after which we start the comparison to
the deterministic system, such that the invading mutant is guaranteed to be in a phase with
positive invasion fitness and successfully fixate as the new resident trait within a time of
order 1.

Changing environmental parameters have been previously introduced to a number of math-
ematical population models. While we cannot give an extensive review here, we want to
mention a few examples. One popular scenario is that of a shifting optimal trait (mostly in
deterministic ODE or PDE models), where the fitness of all other traits depends only on the
distance to the current optimum [107, 155, 87]. A common observation is the importance
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of the relation between the time-scales of environmental shifts and trait changes (mutation
speed and step size), which determines whether the population can successfully adapt or
not. A scenario similar to the one of the present paper is that of periodically changing envir-
onments, in both deterministic and stochastic models [145, 160, 37]. Here, previous studies
have focussed on the dynamics of a fixed (usually small) number of competing traits without
mutation. As we observe in this paper, time-scales again play a crucial role, where all of the
above works find that sufficiently fast fluctuations lead to the population evolving according
to time-averaged effective parameters. Other questions have been addressed by various au-
thors, for example the dynamics of phenotypic switching and dormancy for non-competitive
multi-type systems in more or less randomly fluctuating environment [125, 134, 64, 111, 19].
To the best of our knowledge, the dynamics of stochastic models with periodically changing
environment, general fitness landscapes, and newly emerging mutant types are still an open
problem.

Similar to some of these approaches it will be interesting to extend the adaptive dynamics
model of this paper to more generally changing parameters. Modelling the environmental
parameters as continuous functions or as a stochastic process itself, where jump times and
transitions are random, can allow for a more realistic depiction of biological scenarios that
either only change gradually or less regularly. Our results in this manuscript are meant as a
first step to establish techniques of how to study this new class of models and lay the basis
for future research that is already in progress.

The remainder of this paper is structured as follows. In Section B.2.1, the individual-based
model for a population in a time-dependent environment is introduced rigorously. We point
out some key quantities, like equilibrium states and invasion fitness, in Section B.2.2. Finally,
we describe the behaviour of the limit process in terms of an inductive algorithm in Section
B.2.3 and state our main convergence results. Chapter B.3 provides a discussion of the
general heuristics and the necessity of some of our assumptions. Moreover, we give an
outlook on possible extensions of this approach. The proofs of the main results of this paper
can be found in Chapter B.4. The technical results on birth death processes, which lay the
basis for these proofs, are discussed in Appendices B.5, B.6, and B.7.

B.2. Model and Main Results

B.2.1. Individual-based model in a time-dependent environment

We consider a population that is composed of a finite number of asexual reproducing indi-
viduals. Each of them is characterized by a genotypic trait, taken from a finite trait space
that is given by a (possibly directed) graph G = (V,E). Here, the set of vertices V repres-
ents the possible traits that individuals can carry. The set of edges E marks the possibility
of mutation between traits. We start out with a microscopic, individual-based model with
logistic growth.

To extend the basic model to one with a periodically changing environment, we consider
a finite number ` ∈ N of phases. For each phase i = 1, · · · , ` and all traits v, w ∈ V , we
introduce the following biological parameters:
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− biv ∈ R+, the birth rate of an individual of trait v during phase i,

− div ∈ R+, the (natural) death rate of an individual of trait v during phase i,

− civ,w ∈ R+, the competition imposed by an individual of trait w onto an individual of
trait v during phase i,

− K ∈ N, the carrying capacity that scales the environment’s capacity to support life,

− µK ∈ [0, 1], the probability of mutation at a birth event (phase-independent),

− mv,· ∈Mp(V ), the law of the trait of a mutant offspring produced by an individual of
trait v (phase-independent).

To ensure logistic growth and ensure the possibility of mutation only along the edges of our
trait graph, we make the following assumptions on our parameters.

Assumption 4. (a) For every v ∈ V and i = 1, · · · `, civ,v > 0.

(b) mv,v = 0, for all v ∈ V , and mv,w > 0 if and only if (v, w) ∈ E.

Rescaling the competition by K (cf. (B.2.3) below) leads to a total population size of order
K. We adapt the following terminology: As K → ∞, subpopulations of certain traits are
referred to as

− microscopic if they are of order 1,

− macroscopic if they are of order K,

− mesoscopic if they are of order strictly between 1 and K.

For a new mutant, reaching a macroscopic population size through exponential growth takes
a time of order lnK. For a resident population, it takes a time of order 1 to reach a
small neighbourhood of its new equilibrium after an environmental change. In order for
environmental changes to happen slow enough such that the resident populations can adapt,
but fast enough such that they influence the growth of mutants, we choose

1� λK � lnK (B.2.1)

as an intermediate time-scale for the length of the ` phases. For each i = 1, . . . , `, we assume
that the i-th phase has length TiλK , where Ti > 0. To refer to the endpoints of the phases,
we define TΣ

j :=
∑j
i=1 Ti.

Building on this, we define the time-dependent birth-, death-, and competition rates as the
periodic extension of

bKv (t) =
∑̀
i=1

1t∈[TΣ
i−1λK ,T

Σ
i λK)b

i
v, (B.2.2)

and analogously for dKv (t) and cKv,w(t). Note that biv and bKv are very similar in notation. To
make the distinction clear, we always use the upper index i to refer to the constant parameter
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in phase i and the index K to refer to the time-dependent parameter function for carrying
capacity K, and use the same convention in comparable cases.

For any K, the evolution of the population over time is described by a Markov process NK

with values in D(R+,NV0 ). NK
v (t) denotes the number of individuals of trait v ∈ V that are

alive at time t ≥ 0. The process is characterised by its infinitesimal generator

(
LKt φ

)
(N) =

∑
v∈V

(φ(N + ev)− φ(N))
(
Nvb

K
v (t)(1− µK) +

∑
w∈V

Nwb
K
w (t)µKmw,v

)

+
∑
v∈V

(φ(N − ev)− φ(N))Nv

(
dKv (t) +

∑
w∈V

cKv,w(t)
K

Nw

)
, (B.2.3)

where φ : NV0 → R is measurable and bounded and ev denotes the unit vector at v ∈ V . The
process can be constructed algorithmically following a Gillespie algorithm [90]. Alternatively,
the process can be represented via Poisson measures (see [83]), a representation that is used
in the proofs of this paper.

B.2.2. Important quantities

In this paper we study the typical behaviour of the processes (NK ,K ∈ N) for large popula-
tions, i.e. as K →∞. A classical law of large numbers [75] states that the rescaled processes
NK/K converge on finite time intervals to the solution of a system of Lotka-Volterra equa-
tions. The study of these equations is central to determine the short term evolution of the
processes NK .

Definition B.2.1 (Lotka-Volterra system). For a phase i ∈ {1, . . . `} and a subset v ⊆ V ,
we refer to the following differential equations as the corresponding Lotka-Volterra system:

ṅv(t) =
(
biv − div −

∑
w∈v

civ,wnw(t)
)
nv(t), v ∈ v, t ≥ 0 (B.2.4)

In this work, we focus on the case of a sequence of monomorphic resident traits, meaning
that, apart from the invasion phases, only one single (fit) subpopulation is of macroscopic size
and fluctuates around its equilibrium size. This monomorphism is ensured by a termination
criterion in the construction of the limiting process for our main Theorem B.2.4 (criterion
(d), see also Remark 19). Taking into account the phase-dependent parameters, we denote
these monomorphic equilibria by n̄iv := (biv − div)/civ,v.

Talking about evolution, the most important quantity is fitness. For the individual-based
model of adaptive dynamics, the notion of invasion fitness has been shown to be useful. It
describes the approximate growth rate of a small population of trait w in a bulk population
of trait v in the mutation-free system. To adapt it to the present setting we have to include
the phase-dependence.
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Definition B.2.2 (Invasion fitness). For each phase i ∈ {1, · · · , `} and for all traits v, w ∈ V
such that the equilibrium size of n̄iv is positive, we denote by

f iw,v := biw − diw − ciw,vn̄iv (B.2.5)

the invasion fitness of trait w with respect to the monomorphic resident v in the i-th phase.
Moreover, we define the time-dependent fitness and the average fitness by the periodic ex-
tension of

fKw,v(t) :=
∑̀
i=1

1t∈[TΣ
i−1λK ,T

Σ
i λK)f

i
w,v and favw,v :=

∑`
i=1 Tif

i
w,v

TΣ
`

. (B.2.6)

Let us now consider multi-step mutations arising along paths within the trait graph
G = (V,E). We introduce the graph distance between two vertices v, w ∈ V as the length
of the shortest (directed) connecting path

d(v, w) := min
γ:v→w

|γ| , (B.2.7)

where we use the convention that the minimum over an empty set is ∞. Note that d(v, w)
is not a distance in the classical sense, as it may not be symmetric in the case of a directed
graph.

Since a single birth event causes a mutation with probability µK , a macroscopic trait v (size
of order K) produces subpopulations of a size of order KµK of its neighbouring traits. These
traits themselves produce subpopulations of a size of order Kµ2

K of second order neighbours
of v. In general, v induces mutant populations of trait w of size of order Kµd(v,w)

K . We study
mutation probabilities of the form

µK = K−1/α, α ∈ R>0 \ N. (B.2.8)

As a consequence all traits at a distance of at most bαc have a size that is non-vanishing for
increasing K, which means that they can survive. For technical reasons, we exclude α ∈ N,
see the discussion in Section B.3.

B.2.3. Results

The main result of this paper gives a precise description of the orders of the different sub-
population sizes as K tends to infinity. It is convenient to describe the population size of a
certain trait v ∈ V at time t by its K-exponent, which is given by the following definition.

Definition B.2.3 (Order of the population size). For all v ∈ V and all t ≥ 0, we set

βKv (s) := ln(NK
v (s lnK) + 1)

lnK . (B.2.9)
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Note that adding one inside the logarithm is only done to ensure that βKv (s) = 0 is equivalent
to NK

v (s lnK) = 0. Before we state the result below, let us describe the limiting functions
(β̄v, v ∈ V ). We can define these trajectories up to a stopping time T0 by the following
inductive procedure:

Let v0 ∈ V be the initial macroscopic trait. For simplicity, we assume that the initial orders
of population sizes converge in probability to β̄w(0) satisfying the constraints

β̄w(0) = max
u∈V

[
β̄u(0)− d(u,w)

α

]
∨ 0, (B.2.10)

β̄w(0) = 1 ⇔ w = v0. (B.2.11)

The increasing sequence of invasion times is denoted by (sk)k≥0, where s0 := 0 and, for
k ≥ 1,

sk := inf{t > sk−1 : ∃ w ∈ V \vk−1 : β̄w(t) = 1}. (B.2.12)

Moreover, we set vk to be the trait w ∈ V \vk−1 that satisfies β̄w(sk) = 1, which we assume
to be unique in order to proceed (cf. termination criteria below).

For sk−1 ≤ t ≤ sk, for any w ∈ V , β̄w(t) is defined by

β̄w(t) := max
u∈V

[
β̄u(sk−1) + (t− tu,k)+f

av
u,vk−1 −

d(u,w)
α

]
∨ 0, (B.2.13)

where, for any w ∈ V ,

tw,k :=
{

inf{t ≥ sk−1 : ∃ u ∈ V : d(u,w) = 1, β̄u(t) = 1
α} if β̄w(sk−1) = 0

sk−1 else
(B.2.14)

is the first time in [sk−1, sk] when this trait arises.

Remark 18. The formula in (B.2.13) can heuristically be explained as follows: From time sk−1
on, on the lnK-time-scale, every living trait u (i.e. traits such that t ≥ tu,k) grows/shrinks
at least at the rate of its own fitness fav

u,vk−1 , which would yield β̄u(t) ≈ β̄u(sk−1) + (t −
sk−1)fav

u,vk
. On top of this, every living trait spreads a µK = K−1/α portion of its population

size to its neighbouring traits through mutation. These then pass on a µ2
K portion to the

second order neighbours and so on. Overall, a trait w ∈ V receives a µd(u,w)
K = K−d(u,w)/α

portion of incoming mutants from all living traits u, and its actual population size can hence
be determined by taking the leading order term, i.e. the maximum of all these exponents
β̄u(sk−1) + (t− sk−1)fav

u,vk
− d(u,w)/α.

The stopping time T0, that terminates the inductive construction of the limiting trajectories,
is set to sk if

(a) there is more than one w ∈ V \vk−1 such that β̄w(sk) = 1;

(b) there exists w ∈ V \vk−1 such that β̄w(sk) = 0 and β̄w(sk − ε) > 0 for all ε > 0 small
enough;
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(c) there exists w ∈ V \vk−1 such that sk = tw,k;

(d) there exists an i ∈ {1, . . . , `} such that either f ivk−1,vk ≥ 0 or f ivk,vk−1 = 0;

(e) there exists an i ∈ {1, . . . , `} such that bivk − d
i
vk
≤ 0.

Remark 19. Note that conditions (a)–(c) are purely technical (cf. [48]). The first part of
condition (d) is a sufficient criterion to ensure the principle of invasion implies fixation, i.e.
any mutant trait that reaches a macroscopic populations size replaces the former resident
trait and there is no coexistence. The criterion is not necessary and there are other possible
scenarios where the invading mutant replaces the resident population (see discussion in
Chapter B.3). The second part is again technical and ensures that the εK-threshold (needed
for the approximations by birth death processes) is reached at a time when invasion can
take place in finite time, i.e. the comparision to the deterministic Lotka-Volterra system is
possible (cf. the classical result in [75]) The last condition (e) ensures that the new resident
possesses a strictly positive monomorphic equilibrium n̄ivk in all phases.

Theorem B.2.4 (Convergence of β). Let a finite graph G = (V,E) and α ∈ R>0\N be given
and consider the model defined by (B.2.3). Let v0 ∈ V and assume that, for every w ∈ V ,
βKw (0) → β̄w(0) in probability, as K → ∞, where the limits satisfy (B.2.10) and (B.2.11).
Then, for all fixed 0 ≤ T ≤ T0, the following convergence holds in probability, with respect
to the L∞([0, T ],RV≥0) norm

(βKw (t), w ∈ V )t∈[0,T ]
K→∞−→ (β̄w(t), w ∈ V )t∈[0,T ], (B.2.15)

where β̄w are the deterministic, piecewise affine, continuous functions defined in (B.2.13).

Remark 20. Note that we only assume (B.2.10) to ensure convergence at t = 0. If the
βKw (0) converge to initial conditions β̂w(0) that do not satisfy this constraint, the orders of
the population sizes stabilize in a time of order 1 at β̄w(0) := maxu∈V

[
β̂u(0)− d(u,w)

α

]
∨ 0.

These new orders satisfy (B.2.10). Because the βK describe the population on a lnK-time-
scale, this means that we still get convergence on the half-open interval (0, T ].

Building upon this detailed description of growth of all living traits, it is natural to ask for
the “visible” evolution of the population process, i.e. the progression of macroscopic traits
that dominate the whole system.

Corollary B.2.5 (Sequence of resident traits). Let

νKε (t) :=
∑

w∈V :NK
w (t)>εK

δw and ν(s) :=
∑
k∈N0

1sk≤s<sk+1δvk (B.2.16)

denote point measures having support on the macroscopic traits. Then, under the assump-
tions of Theorem B.2.4, there exists an ε0 > 0 such that, for all 0 < ε < ε0 and all p ∈ [1,∞),
the following convergence holds in probability, with respect to the Lp([0, T ],M(V )) norm(

νKε (s lnK)
)
s∈[0,T ]

K→∞−→ (ν(s))s∈[0,T ] , (B.2.17)

where M(V ) denotes the set of finite, non-negative point measures on V equipped with the
weak topology.
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B.3. Heuristics and discussion

In this chapter, we give a heuristic idea of the proof strategy for the main Theorem B.2.4
and discuss the necessity of some of the assumptions that are made. Moreover, we present
some specific examples for fitness landscapes that do not satisfy these assumptions, which
can still be treated with similar techniques.

B.3.1. Heuristics of the proof of Theorem B.2.4

As it is usually the case for adaptive dynamics models, the analysis of the limiting dynamics
is split into approximations for the resident and the mutant populations.

First, in Section B.4.1, we prove that - as long as the mutant populations stay below a certain
small εK-threshold - the resident population also only deviates from its equilibrium state by
an amount of order εK. In previous papers, this is often done by applying large deviation
results that guarantee for the stochastic process to stay close to an attractive equilibrium
for an exponential time in K. In our case, to bound the probability of failure (i.e. deviating
too far from the equilibrium), we need to concatenate these results for an order of lnK/λK
many λK-phases that are necessary to observe mutant growth on the lnK-time-scale. By
conditioning on not deviating too much during the previous phases, we can write the overall
probability of failure as the sum of the probabilities to deviate during specific phases. We
hence need the latter probabilities to converge to 0 faster than λK/ lnK. In previous works,
this probability of exit from a domain was bounded through a large deviation principle that
ensures a vanishing probability of deviating within an exponential time as K →∞, but does
not specify the exact speed of convergence (see e.g. [40]). In the present paper, we instead
apply a potential theoretic approach similar to [7] to study the embedded discrete time
Markov chain and bound the probability of deviation during a λK-phase in o(λK/ lnK). We
combine this with a revised version of the standard convergence result to the deterministic
system of [75, Ch. 11.2] to address the short time spans of order 1 at the beginning of each
phase, where the resident population attains its new equilibrium. We prove convergence
in probability instead of almost surely but can again quantify the convergence speed and
bound the probability of failure in o(λK/ lnK) in return. Overall, concatenating these two
results, which are derived in Appendix B.5, for O(lnK/λK) many phases yields a vanishing
probability for the resident population to stray from its respective equilibria.

With these bounds on the resident population, in Section B.4.2 we can couple the mutant
populations to simpler birth death processes (with immigration) to estimate their growth.
In [45] we find a collection of general results on the growth of birth death processes (with
immigration) which were formerly used to study similar coupling processes. These results
however only cover processes with constant parameters. In Appendix B.6, we argue that
we can essentially work with the time-average fitness fav

w,v as the mutants growth rate since
λK � lnK, i.e. the parameter fluctuations occur on a faster time-scale than the growth of
the mutants. This requires a careful rerun of the proofs in [45] to keep track of the error
stemming from this averaging approximation.
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Finally, based on the results on the coupling processes, we can derive the piecewise affine
growth of the orders of population sizes βKw of the mutant populations as in (B.2.13). The
equations for β̄w combine the growth of a mutant at the rate of its own fitness fav

w,v with the
growth due to incoming mutants from other traits u (which themselves grow at least at rate
fav
u,v).

B.3.2. Discussion of assumptions

In the following, we address the necessity of some of our assumptions and discuss possible
extensions to more general cases.

Mutation kernel and probability

In Section B.2.1 we choose the mutation kernel (or law of the trait of a mutant) (mv,·)v∈V to
be independent of the phases i = 1, ..., ` and the carrying capacity K. Moreover, in Section
B.2.2 we choose the probability of mutation at birth as

µK = K−1/α, α ∈ R>0 \ N, (B.3.1)

which is independent of the phases and traits and depends on K in a very specific way. Both
of these assumptions are not necessary and purely made to simplify notation.

The important part is to ensure that, for each v, w ∈ V , m(i,K)
v,w > 0 either during all or

during none of the phases i (i.e. the mutation graph G does not depend on the phase), that
µ

(i,v)
K > 0 for all phases and traits and that the (additional) dependence on K does not

influence the order of the population sizes. Overall, we can allow for dependences of the
form

m(i,K)
v,w µ

(i,v)
K = h(v, w, i,K)K−1/α, (B.3.2)

where, for each (v, w) ∈ E,

h(v, w, i,K) > 0 and
∣∣∣∣ ln h(v, w, i,K)

lnK

∣∣∣∣ = o(1) (B.3.3)

and, for each (v, w) /∈ E, h(v, w, i,K) ≡ 0.

Under these assumptions, the mutation kernel and probability only contribute a (varying)
multiplicative lower order constant to the mutant population sizes (beyond the K−1/α) and
do not affect the traits’ fitnesses. As a consequence, neither the asymptotic growth of the
order of the population size βK , which determines the next invading trait, nor the outcome of
the invasion according to the Lotka-Volterra dynamics are affected. Therefore, the limiting
processes β̄ and ν would remain unchanged.

The technical assumption of α /∈ N allows for the dichotomy that either Kµd(v,w)
K � 1, if

d(v, w) < α, or Kµd(v,w)
K � 1, if d(v, w) > α. Hence, one can decide whether a w-population

gets founded by mutation or not. However, we think that the critical case where w-mutants
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arrive at a rate of order K0 = 1 and may go extinct due to stochastic fluctuations can be
handled as well. On any diverging time-scale (� λK) we see an infinite number of mutations
and corresponding attempts to survive and fixate in the population, where survival is also
decided on the same short time-scale. As a result, one can heuristically expect fixation with
probability converging to one. This type of argument is part of ongoing research. Its details
are quite involved and diverge too far from the core of this paper. Therefore, we exclude
these cases in our present results.

Monomorphic resident population

Through termination criterion (d), we ensure that f ivk−1,vk < 0, for all phases i = 1, ..., `. This
is a sufficient criterion to imply a monomorphic equilibrium of trait vk as the outcome of the
Lotka-Volterra dynamics involving the former resident trait vk−1 and the newly macroscopic
mutant vk. While this criterion is not necessary (as shown in the first example below), we
do want to guarantee a monomorphic resident population at all times.

The reason for this is that our potential theoretic approach to proving good bounds on the
resident’s population size in Appendix B.5 (which is made use of in Section B.4.1 to derive the
bounding functions φ(K,ε,±)), relies on estimating the influence of variations in the absolute
value of the population size. In the case of a monomorphic population, larger variations can
be attributed to either a severe over- or undershoot of the equilibrium population size. In the
case of polymorphy however, variations could stem from either of the resident subpopulations
or even a mixture of those, which makes the same estimates no longer useful.

We expect that these problems are more of a technical nature and an extension to poly-
morphic resident populations is part of our ongoing research.

B.3.3. Examples

In this section, we present two examples that provide some more insight into the assumptions
made to ensure a monomorphic resident population.

Ensured monomorphism despite temporarily fit resident trait

We consider the example of an invasion step (i.e. the last Lotka-Volterra like step of an
invasion, where an already macroscopic mutant population takes over a former resident
population) for ` = 3 phases, with resident trait v and mutant trait w, where termination
criterion (d) is triggered, i.e. f iv,w ≥ 0 for one of the phases i ∈ {1, 2, 3}. We impose the
following fitness landscape:

fav
w,v > 0, fav

v,w < 0, (B.3.4)
f1
w,v > 0, f1

v,w < 0; f2
w,v < 0, f2

v,w < 0; f3
w,v < 0, f3

v,w > 0, (B.3.5)
T2f

2
v,w + T3f

3
v,w < 0. (B.3.6)
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The first part of (B.3.4) ensures that the mutant w population reaches a macroscopic pop-
ulation size of order K in the presence of a resident v population in the first place. Next,
the conditions on f iw,v in (B.3.5) imply that trait w can only invade the resident population
in phase 1 and f1

v,w < 0 guarantees that a monomorphic equilibrium of trait w is obtained.
Moreover, the population of trait v drops to a mesoscopic size (strictly smaller order than K)
by the end of phase 1. In phase 2, due to the respective negative fitnesses, trait w stays in its
monomorphic equilibrium while the population size of v shrinks further with rate f2

v,w < 0.
In phase 3, trait v is indeed fit and can grow again (triggering termination criterion (d)).
However, (B.3.6) together with the precise approximations in Appendix B.7 ensures that
this growth does not make up for the decrease in population size during phase 2 and hence
v will not reach the εK-threshold again. Finally, the second part of (B.3.4) implies that the
v population shrinks overall and becomes microscopic on the lnK-time-scale.

To summarise, we have shown that termination criterion (d) is not necessary to guarantee
a monomorphic resident population. However, formulating a sharp criterion is much more
complicated.

Different possible outcomes for two-phase cycles

As a toy example, to motivate our assumptions/termination criteria for the fitness landscape,
we consider all possible behaviours during an invasion step for ` = 2 phases with resident
trait v and macroscopic mutant w. For the latter to be able to reach a macroscopic size,
we need fav

w,v > 0, which implies that there is at least one phase during which f iw,v > 0.
Hence, excluding cases of fitness 0, there are seven possible scenarios (up to exchangeability
of phases):

scenario 1 2 3 4 5 6 7
f1
v,w and f2

v,w -/- -/- +/+ +/+ +/- +/- +/-
f1
w,v and f2

w,v +/+ +/- +/+ +/- +/+ +/- -/+

The analysis of the different scenarios again makes use of the estimates in Appendix B.7 and
we only present the heuristics here.

Scenarios 1 and 2 are covered by our results and lead to a new monomorphic resident
population of trait w.

Scenario 3 yields a polymorphic resident population of coexisting traits v and w. This is
because in both phases the respective positive invasion fitnesses imply that there is a unique
stable equilibrium point of the two-dimensional Lotka-Volterra system with both components
being strictly positive (see e.g. [105, Ch. 2.4.3] for a discussion of stable equilibria for two-
dimensional Lotka-Volterra systems).

Scenario 4 does not lead to a fixed resident population. During phase 1, traits v and w obtain
a polymorphic coexistence equilibrium as in scenario 3. In phase 2 however, a monomorphic
v population is the only stable equilibrium state and the w population starts to shrink
again. Since fav

w,v > 0 is assumed, we have T1f
1
w,v + T2f

2
w,v > 0, which implies that w

recovers from this decline in the next phase 1 and hence the system keeps switching between
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a coexistence equilibrium of both traits and a monomorphic equilibrium of trait v. (Note
that in the beginning of each phase 1, there is a time of order λK during which v is still
the monomorphic resident trait, before w reaches a critical size to trigger the Lotka-Volterra
dynamics again).

Scenario 5 is in some sense the flipped scenario 4. However, we do not have information
about the sign of fav

v,w. If fav
v,w > 0, this is indeed the opposite version and the resident

population switches back and forth between a coexistence equilibrium of v and w and a
monomorphic equilibrium of trait w only. If fav

v,w < 0, then T1f
1
v,w + T2f

2
v,w < 0. Hence,

once the pure w equilibrium is obtained during a phase 1, at the beginning of the next
phase 2, v starts to decrease in size. This decline can not be made up by its growth in
phase 1 and hence the v population becomes mesoscopic and shrinks on the lnK-time-scale,
making w the new monomorphic resident trait. Note that this is an even smaller example
for the phenomenon described in Section B.3.3, i.e. an ensured monomorphic new resident
population of the mutant trait despite the former resident trait being fit during some phase.
However, it is a little more complicated to describe the exact population sizes here (they
depend on whether w first becomes macroscopic during phase 1 or 2, where the previous
example guarantees invasion during phase 1). Hence we present both examples and treat
this one with less detail.

Scenario 6 gets more complicated. In phase 1, the only stable equilibrium is the polymorphic
state involving both v and w. In phase 2 however, both monomorphic equilibria of v or w
are stable. Hence the dynamics depend on the relation between the coexistence equilibrium
state and the regions of attraction for the two monomorphic states. If the former is attracted
to the equilibrium of v, the w population shrinks during phase 2 but can recover to re-attain
the coexistence state in phase 1 (i.e. the resident population switches between coexistence
and trait v alone). If the coexistence state is attracted to the equilibrium of w in phase
2, the outcome again depends on the fitness fav

v,w and whether trait v can make up for its
decrease in phase 2 by its growth in phase 1, similarly to scenario 5.

Scenario 7 again has two possible outcomes. The Lotka-Volterra dynamics would lead to
monomorphic equilibria of v in phase 1 and of w in phase 2. It depends on the average
fitnesses though whether the respective invading traits reach the critical threshold size to
trigger these dynamics within these phases. In case of trait w, this is guaranteed by fav

w,v > 0.
If also fav

v,w > 0, both traits grow faster during their respective fit phases than they shrink
during their unfit phases. As a consequence, we observe a switching back and forth between
the monomorphic equilibria (not necessarily synced up with the phase changes but delayed
by a λK time, as above). If fav

v,w < 0, trait v cannot recover during phase 1 and the system
stays in the monomorphic w equilibrium.

Overall, already in this minimal example of two phases, we can observe a variety of differ-
ent behaviours, ranging from monomorphic equilibrium states to coexistence and switching
between those. Which of these is the case not only depends on the invasion fitnesses of the
single traits but also on the precise relation between them and the timing of the different
phases.
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B.4. Proofs

In this chapter, we conduct the proofs of the main results of this paper, i.e. Theorem B.2.4
and Corollary B.2.5. We utilise a number of technical results on birth death processes with
self-competition or immigration. To maintain a better readability of the main proofs, these
technical results are stated and proved in the appendices.

This chapter is divided into several sections. In Section B.4.1, we discuss the stability of the
resident trait during the mutants’ growth phase. In Section B.4.2 we prove Theorem B.2.4,
i.e. the convergence of the exponents βK . Finally, in Section B.4.3, we conclude the result
on the sequence of resident traits of Corollary B.2.5.

B.4.1. Stability of the resident trait

Since we are working in a regime of periodically changing parameters, we cannot expect the
resident population’s size to stay close to one fixed value. Instead, the population size is
attracted to the respective equilibrium sizes of the different phases. Since the population
needs a short time to adapt to the new equilibrium after a change in parameters, we define
two functions φ(K,ε,+)

v and φ
(K,ε,−)
v that bound the population size and take into account

these short transition phases of length Tε. We can then prove that, as long as the mutant
populations stay small and as K → ∞, the resident’s population size stays between these
bounding functions for a time of order lnK with high probability.

We define

φ(K,ε,+)
v (t) =

{
max{n̄i−1

v , n̄iv}+Mε if t ∈ (TΣ
i−1λK , T

Σ
i−1λK + Tε),

n̄iv +Mε if t ∈ [TΣ
i−1λK + Tε, T

Σ
i λK ],

φ(K,ε,−)
v (t) =

{
min{n̄i−1

v , n̄iv} −Mε if t ∈ (TΣ
i−1λK , T

Σ
i−1λK + Tε),

n̄iv −Mε if t ∈ [TΣ
i−1λK + Tε, T

Σ
i λK ],

(B.4.1)

with periodic extension, where n̄i−1
v := n̄`v for i = 1, and φ(K,ε,±)

v (0) = n̄`v ±Mε. Note that
these functions also depend on the choices ofM and Tε. To simplify notation, we however do
not include those parameters in the functions’ names. To mark the time at which the mutant
populations become too large and start to significantly perturb the system, we introduce the
stopping time

S(K,ε)
v := inf

t ≥ 0 :
∑
w 6=v

NK
w (t) ≥ εK

 . (B.4.2)

With this notation, the resident’s stability result can be stated as follows.
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Theorem B.4.1. There exists a uniform M < ∞ and, for all ε > 0 small enough, there
exists a deterministic Tε < ∞ such that, for all traits v ∈ V such that biv > div, 1 ≤ i ≤ `,
and for all T <∞,

lim
K→∞

P
(
∃ t ∈ [0, T lnK ∧ S(K,ε)

v ] : N
K
v (t)
K

/∈ [φ(K,ε,−)
v (t), φ(K,ε,+)

v (t)]
∣∣∣∣

NK
v (0)
K

∈ [φ(K,ε,−)
v (0) + ε, φ(K,ε,+)

v (0)− ε]
)

= 0. (B.4.3)

Proof. The proof is based on couplings with bounding single-trait birth death processes with
self-competition. We proceed in several steps:

1) For a fixed i phase, prove that NK
v /K gets ε-close to the new equilibrium n̄iv within a

finite time Tε and stays bounded until then.

2) For a fixed i phase, prove that NK
v /K stays ε-close to its equilibrium n̄iv after Tε until

the end of the phase.

3) Use the strong Markov property to concatenate multiple phases to obtain a result for
lnK times.

Note that in the following we conduct the proof for a fixed resident trait v ∈ V . Uniform
values for M and Tε can be obtained by taking the maximum over all such traits since we
work with a finite trait space. In steps 1 and 2, we prove that the desired bounds fail with a
probability in o(λK/ lnK). This allows us to concatenate O(lnK/λK) phases for an overall
time horizon of order lnK in step 3.

Step 1 (attaining the equilibrium): We fix a phase 1 ≤ i ≤ ` and, without loss of
generality, assume that an i phase starts at time t = 0 and lasts until t = TiλK (we will
“reset” time with the help of the Markov property in step 3). We start by showing that
there are constants Ci, Ci < ∞ such that, for any ε > 0 and interval I = [a1, a2] ⊂ (0,∞),
there is a deterministic time T I,iε <∞ such that

P
(
∃ t ∈ [0, T I,iε ∧ S(K,ε)

v ] : N
K
v (t)
K

/∈ [((n̄iv − εCi) ∧ a1)− ε, ((n̄iv + εC
i) ∨ a2) + ε]

or T I,iε ≤ S(K,ε)
v & NK

v (T I,iε )
K

/∈ [n̄iv − εCi − 2ε, n̄iv + εC
i + 2ε]

∣∣∣∣NK
v (0)
K

∈ [a1, a2]
)

= o

(
λK

lnK

)
as K →∞. (B.4.4)

While these bounds seem quite unintuitive, they come up naturally by first comparing the
actual process NK

v to two branching processes and then comparing these to their determ-
inistic equivalent. These approximations are discussed in detail below and are visualised in
Figure B.1. The first line of B.4.4 corresponds to a worst case bound of the population up to
the time T I,iε when the new equilibrium is (almost) obtained. The second line corresponds
to (almost) reaching the new equilibrium at time T I,iε itself.
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n̄i
v

n̄(ε,+,i)
v

n̄(ε,−,i)
v

a2

a1

ε

ε

T I,i
ε

0

ε

ε

x(ε,+,i)

x(ε,−,i)

X(K,ε,+,i)

K

X(K,ε,−,i)

K

N
(K)
v
K

Figure B.1.: Two steps of approximation: Original process NK
v /K and new equilibrium n̄iv in

black. Bounding birth death processes with self-competition X(K,ε,−,i)/K and X(K,ε,+,i)/K
in red. Limiting deterministic solutions x(ε,−,i) and x(ε,+,i) with respective perturbed equi-
librium sizes n̄(ε,−,i)

v = n̄iv − εCi and n̄
(ε,+,i)
v = n̄iv + εC

i in blue.

We want to apply the results from Appendix B.5. To do so, we couple the process NK
v to two

single-trait birth death processes with self-competition X(K,ε,−,i) and X(K,ε,+,i) such that

X(K,ε,−,i)(t) ≤ NK
v (t) ≤ X(K,ε,+,i)(t), ∀ t ∈ [0, S(K,ε)

v ∧ τ (K,ε)
v ∧ TiλK ], (B.4.5)

where

τ (K,ε)
v := inf

{
t ≥ 0 : NK

v (t) < εK
}

(B.4.6)

ensures that the resident does not become too small and incoming mutants can hence be
approximated by additional clonal births. We let K be large enough such that µK < ε.

X(K,ε,−,i) assumes the lowest starting value, maximal competition from other traits, maximal
loss due to outgoing mutants and no incoming mutants. It hence has

− initial condition X(K,ε,−,i)(0) = ba1Kc,

− birth rate biv(1− ε),

− death rate div + εmaxw 6=v civw and

− self-competition rate civv/K.
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X(K,ε,+,i) assumes the highest starting value, no competition from other traits, no outgoing
mutation and maximal incoming mutation. It hence has

− initial condition X(K,ε,+,i)(0) = da2Ke,

− birth rate biv + εmaxw 6=v biw,

− death rate div and

− self-competition rate civv/K.

These couplings can be explicitly constructed via Poisson process representations, see e.g.
[29, Ch. 7.2].

By Theorem B.5.3, on finite time intervals, the rescaled processes X(K,ε,−,i)/K and
X(K,ε,+,i)/K converge uniformly on finite time intervals to the solutions (x(ε,−,i)(t))t≥0 and
(x(ε,+,i)(t))t≥0 of the ordinary differential equations

ẋ(ε,−,i)(t) = x(ε,−,i)(t)
(
biv(1− ε)− (div + εmax

w 6=v
civw)− civvx(ε,−,i)(t)

)
, x(ε,−,i)(0) = a1,

ẋ(ε,+,i)(t) = x(ε,+,i)(t)
(
biv + εmax

w 6=v
biw − div − civvx(ε,+,i)(t)

)
, x(ε,+,i)(0) = a2.

(B.4.7)

These equations have unique attractive equilibrium points

n̄(ε,−,i)
v := biv(1− ε)− (div + εmaxw 6=v civw)

civv
= n̄iv − ε

biv + maxw 6=v civw
civv

=: n̄iv − εCi,

n̄(ε,+,i)
v := biv + εmaxw 6=v biw − div

civv
= n̄iv + ε

maxw 6=v biw
civv

=: n̄iv + εC
i
,

(B.4.8)

which their solutions will attain up to an ε within a finite time T I,iε <∞, i.e.

∣∣∣x(ε,−,i)(T I,iε )− n̄(ε,−,i)
∣∣∣ ≤ ε and

∣∣∣x(ε,+,i)(T I,iε )− n̄(ε,+,i)
∣∣∣ ≤ ε. (B.4.9)

Moreover, due to the monotonicity of the solutions, for all t ∈ [0, T I,iε ],

x(ε,−,i)(t) ≥ a1 ∧ n̄(ε,−,i) and x(ε,+,i)(t) ≤ a2 ∨ n̄(ε,+,i). (B.4.10)
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We can hence bound

P
(
∃ t ∈ [0, T I,iε ∧ S(K,ε)

v ∧ τ (K,ε)
v ] : N

K
v (t)
K

/∈ [((n̄iv − εCi) ∧ a1)− ε, ((n̄iv + εC
i) ∨ a2) + ε]

or T I,iε ≤ S(K,ε)
v ∧τ (K,ε)

v & NK
v (T I,iε )
K

/∈ [n̄iv−εCi−2ε, n̄iv+εCi+2ε]
∣∣∣∣NK

v (0)
K

∈ [a1, a2]
)

≤ P
(
∃ t ∈ [0, T I,iε ] : X

(K,ε,−,i)(t)
K

<((n̄iv−εCi)∧a1)−ε or X
(K,ε,+,i)(t)
K

>((n̄iv+εCi)∨a2)+ε

or X
(K,ε,−,i)(T I,iε )

K
< n̄iv − εCi − 2ε or X

(K,ε,+,i)(T I,iε )
K

> n̄iv + εC
i + 2ε

)

≤ P
(
∃ t ∈ [0, T I,iε ] :

∣∣∣∣∣X(K,ε,−,i)(t)
K

− x(ε,−,i)(t)
∣∣∣∣∣ > ε or

∣∣∣∣∣X(K,ε,+,i)(t)
K

− x(ε,+,i)(t)
∣∣∣∣∣ > ε

)

≤ P

 sup
t≤T I,iε

∣∣∣∣∣X(K,ε,−,i)(t)
K

− x(ε,−,i)(t)
∣∣∣∣∣ > ε

+ P

 sup
t≤T I,iε

∣∣∣∣∣X(K,ε,+,i)(t)
K

− x(ε,+,i)(t)
∣∣∣∣∣ > ε


= o

(
λK

lnK

)
, (B.4.11)

where we apply Theorem B.5.3 in the last step.

Finally, we note that, if we choose ε small enough such that ε < ((n̄iv − εCi)∧ a1)− 2ε, then
τ

(K,ε)
v < T I,iε ∧ S

(K,ε)
v implies that NK

v (t)/K must have left the above intervals prior to this
time and hence we can drop the stopping time τ (K,ε)

v from the probability on the left hand
side.

Step 2 (stability of the equilibrium): We still study a specific i phase from time t = 0
up to t = TiλK and now consider the time span [T I,iε , TiλK ]. Since this is a time span
of divergent length, we can no longer apply Theorem B.5.3 and the convergence to the
deterministic system. Instead, we apply Theorem B.5.2 on the stability of equilibrium points
for lnK times to derive

lim
K→∞

lnK
λK
· P
(
∃ t ∈ [T I,iε , TiλK ∧ S(K,ε)

v ] : N
K
v (t)
K

/∈ [n̄iv − εCi − 16ε, n̄iv + εC
i + 16ε]

∣∣∣∣
NK
v (T I,iε )
K

∈ [n̄iv − εCi − 2ε, n̄iv + εC
i + 2ε]

)
= 0

(B.4.12)

We utilise the coupling processes X(K,ε,−,i) and X(K,ε,+,i) as in step 1, with the same birth,
death and self-competition rates but this time with initial conditions

X(K,ε,−,i)(T I,iε ) = b(n̄iv − ε(Ci + 2))Kc and X(K,ε,+,i)(T I,iε ) = d(n̄iv + ε(Ci + 2))Ke.
(B.4.13)
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Then, if NK
v (T I,iε )/K ∈ [n̄iv − ε(Ci + 2), n̄iv + ε(Ci + 2)],

X(K,ε,−,i)(t) ≤ NK
v (t) ≤ X(K,ε,+,i)(t), ∀ t ∈ [T I,iε , S(K,ε)

v ∧ τ (K,ε)
v ∧ TiλK ]. (B.4.14)

We apply Theorem B.5.2 with ε′ = 16ε, and hence

∣∣∣X(K,ε,±,i)
v (T I,iε )− n̄(ε,±,i)

v K
∣∣∣ ≤ 2εK = ε′K

8 <
1
2

⌊
ε′K

2

⌋
, (B.4.15)

to obtain

P
(
∃ t ∈ [T I,iε , TiλK ∧ S(K,ε)

v ∧ τ (K,ε)
v ] : N

K
v (t)
K

/∈ [n̄iv − εCi − 16ε, n̄iv + εC
i + 16ε]

∣∣∣∣
NK
v (T I,iε )
K

∈ [n̄iv − εCi − 2ε, n̄iv + εC
i + 2ε]

)

≤P
(
∃ t ∈ [T I,iε , TiλK ] : X

(K,ε,−,i)(t)
K

< n̄iv − εCi − 16ε or X(K,ε,+,i)(t)
K

> n̄iv + εC
i + 16ε

)

≤P
(
∃ t ∈ [T I,iε , TiλK ] :

∣∣∣∣∣X(K,ε,−,i)(t)
K

− n̄(ε,−,i)
∣∣∣∣∣ > ε′ or

∣∣∣∣∣X(K,ε,+,i)(t)
K

− n̄(ε,+,i)
ε

∣∣∣∣∣ > ε′
)

≤P

 sup
t∈[T I,iε ,TiλK ]

∣∣∣X(K,ε,−,i)(t)−n̄(ε,−,i)K
∣∣∣>ε′K

+P

 sup
t∈[T I,iε ,TiλK ]

∣∣∣X(K,ε,+,i)(t)−n̄(ε,+,i)K
∣∣∣>ε′K


=o
(
λK

lnK

)
. (B.4.16)

As in step 1, for sufficiently small ε, we can again drop the stopping time τ (K,ε)
v from the

probability on the left hand side.

Step 3 (concatenating multiple phases): We first piece together steps 1 and 2 to obtain
a result for an entire i phase and then concatenate multiple phases to prove the final result
of the Theorem.
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Applying the Markov property (at T I,iε ) in the first step, we obtain

P
(
∃ t ∈ [0, T I,iε ∧ S(K,ε)

v ] : N
K
v (t)
K

/∈ [((n̄iv − εCi) ∧ a1)− ε, ((n̄iv + εC
i) ∨ a2) + ε]

or ∃ t ∈ [T I,iε ∧ S(K,ε)
v , TiλK ∧ S(K,ε)

v ] : N
K
v (t)
K

/∈ [n̄iv − εCi − 16ε, n̄iv + εC
i + 16ε]

∣∣∣∣
NK
v (0)
K

∈ [a1, a2]
)

≤ P
(
∃ t ∈ [0, T I,iε ∧ S(K,ε)

v ] : N
K
v (t)
K

/∈ [((n̄iv − εCi) ∧ a1)− ε, ((n̄iv + εC
i) ∨ a2) + ε]

or T I,iε ≤ S(K,ε)
v & NK

v (T I,iε )
K

/∈ [n̄iv − εCi − 2ε, n̄iv + εC
i + 2ε]

∣∣∣∣NK
v (0)
K

∈ [a1, a2]
)

+ P
(
∃ t ∈ [T I,iε , TiλK ∧ S(K,ε)

v ] : N
K
v (t)
K

/∈ [n̄iv − εCi − 16ε, n̄iv + εC
i + 16ε]

∣∣∣∣
NK
v (T I,iε )
K

∈ [n̄iv − εCi − 2ε, n̄iv + εC
i + 2ε]

)

= o

(
λK

lnK

)
. (B.4.17)

Here, we impose stronger bounds in the first time period up to T (I,i)
ε to ensure good initial

conditions for the remaining diverging time.

Note that these probabilities are in o(λK/ lnK) uniformly in 1 ≤ i ≤ `.

Now we can finally link together multiple phases. For ease of notation, we index the phases
by i ∈ N instead of 1 ≤ i ≤ `, where every (k` + i)th phase, k ∈ N, is of type i and length
TiλK . Similarly, we extend the definitions of TΣ

i , n̄iv and T I,iε .

Choosing Tε = max1≤i≤` T
I,i
ε and M = max1≤i≤`(Ci ∨C

i) + 17 in the definition of φ(K,ε,±)
v ,

and the intervals I = [a1
1, a

1
2] = [n̄`v − ε(M − 1), n̄`v + ε(M − 1)] as well as I = [ai1, ai2] =

[n̄i−1
v − ε(Ci−1 + 16), n̄i−1

v + ε(Ci−1 + 16)], i ≥ 2, in (B.4.17), we deduce the convergence for
any T <∞. See Figure B.2 for a visualisation of the concatenation of two phases.
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P
(
∃ t ∈ [0, T lnK ∧ S(K,ε)

v ] : N
K
v (t)
K

/∈ [φ(K,ε,−)
v (t), φ(K,ε,+)

v (t)]
∣∣∣∣

NK
v (0)
K

∈ [φ(K,ε,−)
v (0) + ε, φ(K,ε,+)

v (0)− ε]
)

= P
(
∃ i ∈ N : TΣ

i−1λK ≤ T lnK ∧ S(K,ε)
v and

∃ t ∈ (TΣ
i−1λK , (TΣ

i−1λK + T I,iε ) ∧ S(K,ε)
v ) : N

K
v (t)
K

/∈ [(n̄i−1
v ∧ n̄iv)−Mε, (n̄i−1

v ∨ n̄iv) +Mε]

or ∃ t ∈ [(TΣ
i−1λK + T I,iε ) ∧ S(K,ε)

v , TΣ
i λK ∧ S(K,ε)

v ] : N
K
v (t)
K

/∈ [n̄iv −Mε, n̄iv +Mε]
∣∣∣∣

NK
v (0)
K

∈ [φ(K,ε,−)(0) + ε, φ(K,ε,+)(0)− ε]
)

≤ P
(
∃ i ∈ N : TΣ

i−1λK ≤ T lnK ∧ S(K,ε)
v and

∃ t∈ [TΣ
i−1λK , (TΣ

i−1λK+T I,iε )∧S(K,ε)
v ] :N

K
v (t)
K

/∈ [((n̄iv−εCi) ∧ ai1)−ε, ((n̄iv+εCi) ∨ ai2)+ε]

or ∃ t∈ [(TΣ
i−1λK + T I,iε ) ∧ S(K,ε)

v , TΣ
i λK ∧ S(K,ε)

v ] :N
K
v (t)
K

/∈ [n̄iv−εCi−16ε, n̄iv+εCi+16ε]
∣∣∣∣

NK
v (0)
K

∈ [φ(K,ε,−)(0) + ε, φ(K,ε,+)(0)− ε]
)

≤
∑
i∈N:

TΣ
i−1λK<T lnK

P
(
∃ t ∈ [TΣ

i−1λK , (TΣ
i−1λK + T I,iε ) ∧ S(K,ε)

v ] :

NK
v (t)
K

/∈ [((n̄iv − εCi) ∧ ai1)− ε, ((n̄iv + εC
i) ∨ ai2) + ε]

or ∃t∈ [(TΣ
i−1λK+T I,iε )∧S(K,ε)

v , TΣ
i λK∧S(K,ε)

v ] :N
K
v (t)
K

/∈ [n̄iv−εCi−16ε, n̄iv+εCi+16ε]
∣∣∣∣

NK
v (TΣ

i−1λK)
K

∈ [ai1, ai2]
)

= o(1), (B.4.18)

where we utilise that we have O(lnK/λK) summands that are (uniformly) of order
o(λK/ lnK) to conclude.

Note that, in contrast to the second to last expression, in (B.4.17) the initial time of the
phase is set to 0. This however does not change the probability due to the Markov property
and the periodic time-homogeneity of the Markov process. Letting K tend to infinity, this
yields the proof of Theorem B.4.1.
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n̄i
v

n̄(ε,+,i)
v

ε

T Ĩ ,i+1
ε

TΣ
i−1λK

T I,i
ε

TΣ
i λK

16ε
ε

n̄(ε,−,i−1)
v

n̄i−1
v

n̄(ε,+,i−1)
v

n̄(ε,−,i)
v

16ε2ε

2ε

ϕ(K,ε,+)
v

ϕ(K,ε,−)
v

n̄i+1
v

n̄(ε,−,i+1)
v

n̄(ε,+,i+1)
v

Figure B.2.: Concatenation of phases i − 1, i and i + 1. Original process NK
v /K and

corresponding equilibria in black. Bounding birth death processes with self-competition
X(K,ε,−,i)/K and X(K,ε,+,i)/K in red (fast re-equilibration from step 1) and orange (long
stability from step 2). Equilibrium sizes n̄(ε,−,i)

v = n̄iv − εCi and n̄
(ε,+,i)
v = n̄iv + εC

i of the
corresponding (perturbed) deterministic system in blue. Bounding functions φ(K,ε,−)

v and
φ

(K,ε,+)
v in green.

B.4.2. Convergence of the orders of population sizes

The proof of Theorem B.2.4 is based on an induction principle and similar to the proof of
the main theorem of [48]. We therefore do not repeat every single detail but point out how
to deal with the important difficulties arising from our extended model with time-dependent
growth parameters. This is done in five steps:

1) Define the main stopping times and set up the induction.

2) Use the convergence of βKw (0) for the base case of the induction.

3) Couple the process with non-interacting birth death processes to control the growth of
the mutant populations.

4) Ensure that mutants become macroscopic only in a fit phase i.

5) Finish the induction step by comparison to the deterministic Lotka-Volterra system.

Step 1 (preparation): The induction is set up in such a way that each step corresponds to
the invasion of a new mutant. We divide these steps into two alternating substeps. During
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the first one, the resident population is stable in a certain sense and we approximate the
growth of the mutant populations on the lnK-time-scale. The second one is started when one
of the mutant populations becomes macroscopic and we therefore observe a Lotka-Volterra
interaction between the mutant and the former resident population.

In order to make this distinction into substeps rigorous, we introduce, for k ∈ N0, the pair
of stopping times (visualised in Figure B.3)

σKk :=inf

t ≥ θKk :
NK
vk

(t)
K

∈ [φ(K,εk,−)
vk

(t) + εk, φ
(K,εk,+)
vk

(t)− εk] and
∑
w 6=vk

NK
w (t) < ε2

kK

 ,
θKk+1 :=inf

t ≥ σKk :
NK
vk

(t)
K

/∈
[
φ(K,εk,−)
vk

(t), φ(K,εk,+)
vk

(t)
]
or

∑
w 6=vk

NK
w (t) ≥ εkK

 ,
(B.4.19)

where the εk > 0 are chosen at the very end, in reverse order. More precisely, to ensure good
estimates until the end of our time horizon [0, T lnK], one has to keep the accumulating
error low from the very beginning and choose each εk small enough to provide good initial
bounds for the next invasion step.

This means that at time σKk the process has reached the monomorphic Lotka-Volterra-
equilibrium of trait vk ∈ V , and vk remains the only macroscopic trait until time θKk+1.
Moreover, its population size lies inside the ε-tunnel described by φ(K,εk,−) and φ(K,εk,+)

during [σKk , θKk+1].

In step 3, we introduce the stopping times sKk+1, when the first non-resident population
becomes almost macroscopic, i.e. attains a population size of order K1−εk+1 for some small
εk+1 > 0 (see Figure B.3), as well as the appearance times tKw,k+1 of new mutants. The first
one is necessary for technical reasons and gives good bounds for θKk+1. The second one is
needed to keep track of these new populations. As in [48], let (τKh )h≥0 be the collection of
both (sKk )k≥0 and (tKw,k)k≥0. The main part of the proof then consists of approximating the
growth dynamics in the intervals [τKh ∧ θKk+1 ∧T, τKh+1 ∧ θKk+1 ∧T ]. Subsequently, we estimate
the time between θKk+1 and σKk+1, which completes the induction step.

Step 2 (base case): We set θK0 =0. Then the base case is reminiscent of [48] since, within
a finite time horizon [0, T ′ε], the parameter functions bK , dK , cK stay constant, for K large
enough. Hence, we can apply Lemma A.6(ii) of [48] to get, for every ε0 > 0, a T ′ε0 <∞ such
that

lim
K→∞

P
(∥∥∥∥∥NK

v0 (T ′ε0)
K

− n̄1
v0

∥∥∥∥∥
∞
< ε0

)
= 1. (B.4.20)

Here, our ε0 corresponds to ε2 in [48] and a lower bound of order K for the initial population
size of trait v0 gives their ε1K. We use that our assumption on the initial condition (B.2.11)
guarantees that limK→∞ βw(0) < 1, for all w 6= v0. Hence limK→∞ βw(t) < 1 for all w 6= v0
and t ∈ [0, T ′ε0 ], and in particular

∑
w 6=v0 N

K
w (t) < ε2

0K for such t. Therefore, Assumption
A.5 in [48] is satisfied for standard couplings to birth death processes with immigration,
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K1/α

K1−εk+1

εkK

Kφ(K,εk,+)
vk

σKk

Kφ(K,εk,−)
vk

θKk+1 σKk+1

Kφ(K,εk+1,+)
vk+1

Kφ(K,εk+1,−)
vk+1

ε2k+1K

O(lnK) O(1)

sKk+1 lnKtKw,k+1 lnK

Figure B.3.: Substeps of the (k + 1)st invasion: Resident population NK
vk

(t) (blue), invading
mutant NK

vk+1(t) (red) and new emerging subpopulation NK
w (t) (green), together with the

triggered stopping times and the corresponding bounds and thresholds.

where the birth, death and (self)competition rates do not deviate from b1v0 , d
1
v0 and c1

v0,v0

by more than ε2
0Ĉ, and immigration is bounded by ε2

0KµKĈ, for some Ĉ <∞. Overall, we
obtain that σK0 ≤ T ′ε0 <∞, for K large enough.

Step 3 (growth of mutants): To show the induction step, let us assume that at time
σKk the process has reached the monomorphic Lotka-Volterra-equilibrium of trait vk ∈ V .
Our first goal is to estimate the competitive interaction between the subpopulations in the
interval [σKk , θKk+1]. Recalling the rates of the different events for the population of trait
w ∈ V , which has size NK

w (t) at time t, we have

− Reproduction without mutation:

bKw (t) = bKw (t)(1− µK)NK
w (t), (B.4.21)

− Death (natural and by competition):

dKw (t) =
(
dKw (t) +

∑
u∈V

cKw,u(t)
K

NK
u (t)

)
NK
w (t), (B.4.22)
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− Reproduction from mutation:

bmK
w (t) = µK

∑
u∈V

bKu (t)mu,wN
K
u (t). (B.4.23)

Using the shorthand notation v := vk and ĉw := maxu6=v,1≤i≤` ciw,u, we can introduce the
approximating parameter functions, for w ∈ V ,

b(K,ε,+)
w (t) := bKw (t),
b(K,ε,−)
w (t) := (1− ε)bKw (t),
d(K,ε,+)
w (t) := dKw (t) + cKw,v(t)φ(K,ε,−)

v (t),
d(K,ε,−)
w (t) := dKw (t) + cKw,v(t)φ(K,ε,+)

v (t) + ĉwε.

(B.4.24)

If K is taken large enough such that µK < ε, we therefore have, for t ∈ [σKk , θKk+1],

b(K,ε,−)
w (t)NK

w (t) ≤ bKw (t) ≤ b(K,ε,+)
w (t)NK

w (t),
d(K,ε,+)
w (t)NK

w (t) ≤ dKw (t) ≤ d(K,ε,−)
w (t)NK

w (t).
(B.4.25)

Moreover, defining f (K,ε,±)
w,v (t) := b

(K,ε,±)
w (t)− d(K,ε,±)

w (t), we have

f (K,ε,+)
w,v (t) =

{
f iw,v + ciw,vMε+ ciw,v

(
n̄iv − n̄i−1

v

)
+

f iw,v + ciw,vMε

: t ∈ [TΣ
i−1λK , T

Σ
i−1λK + Tε),

: t ∈ [TΣ
i−1λK + Tε, T

Σ
i λK),

f (K,ε,−)
w,v (t) =

f
i
w,v −

(
ciw,vM + biw + ĉw

)
ε− ciw,v

(
n̄i−1
v − n̄iv

)
+

f iw,v −
(
ciw,vM + biw + ĉw

)
ε

: t ∈ [TΣ
i−1λK , T

Σ
i−1λK + Tε),

: t ∈ [TΣ
i−1λK + Tε, T

Σ
i λK).

(B.4.26)

We can use these new parameter and fitness functions to define suitable couplings to simpler
bounding branching processes to approximate the original processes NK

w .

In contrast to the estimates of [48], we have to work with periodic functions instead of con-
stants. Another peculiarity is that we only have good estimates in the intervals
[TΣ
i−1λK + Tε, T

Σ
i λK). On the intervals [TΣ

i−1λK , T
Σ
i−1λK + Tε), we have to deal with de-

viations staying macroscopic (i.e. not scaling with ε). Fortunately, these bad estimates are
only given for a finite time Tε (not increasing with λK) and for the remaining time, which
scales with λK , we have the estimates that are arbitrarily accurate, proportional to ε > 0.
In Appendix B.6, we work out how to capture both of these characteristics.

In order to make these results applicable, let us first define the stopping time when the first
non-resident population becomes almost macroscopic

sKk+1 := inf
{
t ≥ σKk / lnK : ∃ w 6= vk : βKw (t) > 1− εk+1

}
, (B.4.27)

as well as the time of appearance of a mutant

tKw,k+1 :=
{

inf
{
t ≥ σKk / lnK : ∃ u ∈ V : d(u,w) = 1, βKu (t) = 1

α

}
if βKw (σKk / lnK) = 0,

σKk / lnK else.
(B.4.28)
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Building on this, we can define the sequence of important events (τh)h∈N0 via τK0 = σK0 /lnK
and, for σKk / lnK ≤ τKh−1 < sKk+1,

τKh := sKk+1 ∧min {tw,k+1 : w ∈ V, tw,k+1 > τh−1} . (B.4.29)

Moreover, we can then define the sequence of sets of living traits (MK
h )h∈N0 via

MK
h :=

{
w ∈ V : βKw (τKh ) > 0 or τKh = tKw,k+1

}
=
(
MK
h−1 \

{
w ∈ V : βKw (τKh ) = 0

})
∪
{
w ∈ V : τKh = tKw,k+1

}
. (B.4.30)

After establishing these stopping times and estimates on the rate functions, we are in a
similar framework as in [48] but now adapted to the time-dependence of the driving para-
meters. We can couple the mutant populations NK

w to time-dependent birth death processes
(with immigration) with parameters b(K,εk,±)

w (t) and d(K,εk,±)
w (t). Together with the results

presented in Appendix B.6, one can now follow the arguments of Section 4.2 in [48]. To be
precise, we just have to replace their Lemma A.1 by our Theorem B.6.1 and their Corollary
A.4 by our Theorem B.6.9 and use similar inductive arguments to show that, for w ∈MK

h−1
and t ∈ [τKh−1 lnK ∧ θKk+1 ∧ T lnK, τKh lnK ∧ θKk+1 ∧ T lnK], we obtain the bounds

max
u∈MK

h−1

[
βKu (τKh−1)− d(u,w)

α
+ (t− τKh−1)(fav

u,vk
− Chεk)

]
+

(B.4.31)

≤ βKw (t) ≤ max
u∈MK

h−1

[
βKu (τKh−1)− d(u,w)

α
+ Chεk + (t− τKh−1)(fav

u,vk
+ Chεk)

]
+
. (B.4.32)

A heuristic for these bounds has already been given in Remark 18. As a brief reminder,
without mutation, every living trait u ∈ MK

h−1 would grow/shrink at the rate of its own
fitness fav

u,vk
on the lnK-time-scale, yielding βKu (t) ≈ βKu (τKh−1) + (t − τKh−1)fav

u,vk
. Through

mutation however, a trait w ∈ V receives a µd(u,w)
K = K−d(u,w)/α portion of incoming mutants

from all living traits u ∈MK
h−1, and its actual population size corresponds the leading order

term, i.e. the maximum of all these exponents βKu (τKh−1) + (t− τKh−1)fav
u,vk
− d(u,w)/α.

Note that these estimates on βKw are also where the errors accumulate. Namely, knowing the
initial value of βKu at time τh−1 lnK allows for approximations until τh lnK but at a cost
of an additional error term of order εk. To eventually ensure the convergence of Theorem
B.2.4, which means having good estimates until time T lnK, one has to choose the εk in
reverse order, such that every approximation step gives good enough bounds to the initial
values of the next one.

By analogous arguments to Section 4.3 and 4.4 of [48], we can deduce the formulas for and
the convergence of (τKh − τKh−1) and MK

h , as well as for sKk+1 and θKk+1. Note that we need to
introduce the stopping times sKk+1 for the following technical reason: At time θKk+1 we only
know that the overall mutant population (summing over all non-resident traits) has reached
the threshold εkK. The above bounds on βKw only allow us to estimate a single mutant’s
population size up to a multiplicative factor of K±Cεk , which is not sufficient to imply that
vk+1 has a non-vanishing population size (when rescaled by K) at this time. This is however
necessary to have a good initial condition for the deterministic Lotka-Volterra approximation.
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Hence, sKk+1 is chosen to guarantee the existence of one large mutant population, where we
choose a threshold slightly smaller than βKw = 1 to ensure that the Lotka-Volterra dynamics
are not triggered before this time either.

We can show that, in the limit of K ↗ ∞ and for small εk+1, the times θKk+1/ lnK and
sKk+1 are arbitrarily close. Namely, following again the argument in [48], we can show by
contradiction that

sKk+1 lnK < θKk+1 < (sKk+1 + εk+1C) lnK. (B.4.33)

To be precise, let wKk+1 be the mutant trait that triggers sKk+1 and take

ηKk+1 := 2εk+1/(fav
wK
k+1,vk

− Chεk). (B.4.34)

If one assumes that (sKk+1 + ηKk+1) lnK ≤ θKk+1, then (B.4.31) would still be applicable and
directly lead to

βKwK
k+1

(sKk+1 + ηKk+1) ≥ 1 + εk+1. (B.4.35)

This however is a contradiction since limK→∞ β
K
w (s) ≤ 1 for all w ∈ V and s ≥ 0, and hence

the upper bound in B.4.33 is satisfied for C = 2/(fav
wK
k+1,vk

− Chεk). The lower bound is
satisfied by definition of the stopping times.

Step 4 (time of invasion): Now the last difference to [48] that we have to address is
that the trait reaching a macroscopic size at time θKk+1, which is with high probability vk+1,
might be unfit at that time. In the following, we show that this only happens with vanishing
probability. In order to track the sizes of the different subpopulations more carefully, let us
introduce the additional stopping times

RKk+1 := inf
{
t ≥ σKk : NK

vk+1(t) ≥ ε2
kK and f (K,ε,−)

vk+1,vk (t) > 0
}
, (B.4.36)

R̃Kk+1 := inf
{
t ≥ σKk : NK

vk+1(t) ≥ ε2
kK
}
, (B.4.37)

ŘKk+1 := inf
{
t ≥ R̃Kk+1 :

∫ t

R̃K
k+1

f (K,εk,−)
vk+1,vk (s)ds > 0

}
. (B.4.38)

The first time RKk+1 is the time we are ultimately looking for, namely the starting point for
the deterministic Lotka-Volterra system involving the resident trait vk and the (at that time
fit) mutant vk+1 (see Step 5 below). The second time R̃Kk+1 gives us a first warning before
reaching θKk+1, with vk+1 possibly being unfit. The last time ŘKk+1 helps to estimate the first
one and can be computed deterministically in relation to the second one.

Our goal in this step is to prove that RKk+1 < θKk+1, such that all branching process approx-
imations apply up to this point. While in the next step we deduce from the Lotka-Volterra
system σKk+1 < RKk+1 +O(1).

We know that, for εk > 0 small and K large enough,∫ R̃Kk+1+λKTΣ

R̃K
k+1

f (K,εk,−)
vk+1,vk (s)ds ≥ λKTΣ

`

(
favvk+1,vk − M̃εk

)
− `TεkCvk+1,vk > 0, (B.4.39)
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since favvk+1,vk > 0. Which implies directly

ŘKk+1 ≤ R̃Kk+1 + λKT
Σ. (B.4.40)

Moreover, since f (K,ε,−)
vk+1,vk (s) is piecewise constant and the defining inequality of ŘKk+1 is strict,

there is a small δ > 0 (not scaling with K) such that, with probability 1,

f (K,ε,−)
vk+1,vk (ŘKk+1 + t) > 0 ∀t ∈ (0, δ). (B.4.41)

As argued above, the interval [R̃Kk+1, Ř
K
k+1 + δ] is of length O(λK). Hence from Corollary

B.7.2 and an application of the Markov property at time R̃Kk+1, we can deduce that, for δ
small enough,

P

 sup
t∈[R̃K

k+1,Ř
K
k+1+δ]

∑
w 6=vk

NK
w (t) < εkK

 K→∞−→ 1, (B.4.42)

P
(
NK
vk+1(ŘKk+1 + δ) > ε2

kK
)
K→∞−→ 1. (B.4.43)

The statement of (B.4.42) tells us that the mutant population is still bounded from above
and thus the assumptions for Theorem B.4.1 are still satisfied up to time ŘKk+1 + δ. Hence
we know that the resident population only fluctuates inside the φ-tube. This implies

ŘKk+1 + δ ≤ θKk+1. (B.4.44)

Finally (B.4.43) together with (B.4.41) leads to RKk+1 ≤ ŘKk+1 + δ. This eventuelly gives

RKk+1 ≤ θKk+1, (B.4.45)

i.e. we are still allowed to use the couplings with birth death processes to approximate the
mutant population up to RKk+1.

Step 5 (Lotka-Volterra): At time RKk+1, we are in position to use the convergence result
for the fast Lotka-Volterra phase. By definition of this stopping time, we know that the
invading trait vk+1 is fit with respect to the resident vk and of a size that does not vanish
as K → ∞ when rescaled by K. Moreover, termination criterion (d) of the algorithm in
Theorem B.2.4 ensures that the resident trait is unfit with respect to the invading mutant.
By standard arguments, the corresponding deterministic system gets close to its equilibrium
in finite time and we have convergence of the stochastic process towards the deterministic
system on finite time intervals [75]. This implies the existence of a finite and deterministic
time T ′εk+1 <∞ such that

σKk+1 ≤ RKk+1 + T ′εk+1 . (B.4.46)

Moreover, the condition f ivk,vk+1 < 0, for all i = 1 . . . `, guarantees that (with probability
converging to 1 asK →∞) the former resident population cannot reach the threshold εk+1K
any more after time σKk+1.
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Overall, we have proved that, with probability converging to 1 as K →∞,

RKk+1 ≤ θKk+1 ≤ σKk+1 ≤ RKk+1 + T ′εk+1 , (B.4.47)

which means that on the logarithmic time-scale there is no difference between RKk,vk+1
, θKk+1

and σKk+1 and dividing by lnK they all converge to sk+1 as claimed.

This finishes the proof of Theorem B.2.4.

B.4.3. Sequence of resident traits

We now turn to the proof of Corollary B.2.5. To prove the convergence with respect to
M(V ), equipped with the weak topology, we have to study the integrals 〈ν, h〉 =

∫
hdν of

all bounded and continuous functions h : V 7→ R with respect to the measures νKε (s lnK).
Since V is discrete and finite, all finite functions satisfy these conditions. For later purpose
we denote h̄ := maxv∈V |h(v)|. Under use of (B.4.19), we have

∑
k∈N0

(
−1θK

k
≤s<σK

k
2h̄+ 1σK

k
≤s<θK

k+1
h(vk)

)
≤
〈
νKε (s lnK), h

〉
(B.4.48)

≤
∑
k∈N0

(
1θK

k
≤s<σK

k
2h̄+ 1σK

k
≤s<θK

k+1
h(vk)

)
,

〈ν(s), h〉 =
∑
k∈N0

1sk≤s<sk+1h(vk). (B.4.49)

Since we want to show convergence in Lp([0, T ],M(V )), for p ∈ [1,∞), we have to compute
the distance between the two integrals in the ‖·‖Lp([0,T ])-norm, which can be estimated as
follows ∥∥∥〈νKε (· lnK), h

〉
− 〈ν(·), h〉

∥∥∥p
Lp([0,T ])

≤
∑

k∈N0:sk<T

(
(3h̄)p

∣∣∣∣∣ θKklnK −
σKk

lnK

∣∣∣∣∣+ (2h̄)p
∣∣∣∣∣ σKklnK − sk

∣∣∣∣∣+ (2h̄)p
∣∣∣∣∣sk+1 −

θKk+1
lnK

∣∣∣∣∣
)

≤(5h̄)p
∑

k∈N0:sk<T

(∣∣∣∣∣ σKklnK − sk

∣∣∣∣∣+
∣∣∣∣∣θKk+1
lnK − sk+1

∣∣∣∣∣
)
. (B.4.50)

Here the last step consists of an application of triangle inequality at sk to estimate the first
term, followed by a reordering of the sum. Since for fixed T > 0 the sum in fact only
consists of finitely many summands and moreover σKk / lnK → sk and θKk+1/ lnK → sk+1 in
probability, for K →∞, we deduce, for all δ > 0,

P
(∥∥∥〈νKε (· lnK), h

〉
− 〈ν(·), h〉

∥∥∥
Lp([0,T ])

> δ

)
K→∞−→ 0, (B.4.51)

which is the claimed convergence.
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B.5. Birth death processes with self-competition

In this chapter, we prove some general results on birth death processes with self-competition
that are used to obtain bounds on the resident’s population size in Section B.4.1. In the
first section, we quantify the asymptotic probability of such processes to stay close to their
equilibrium state for a long time as K tends to infinity. In the second section, we derive
asymptotics for the probability of these processes to stay close to the corresponding determ-
inistic system for a finite time.

Both results apply to processes with constant parameters. More precisely, we study stochastic
processes (XK

t )t≥0 with birth rate b, natural death rate d and self-competition rate c/K, i.e.
with infinitesimal generators(

LKf
)

(n) = nb(f(n+ 1)− f(n)) + n

(
d+ c

K
n

)
(f(n− 1)− f(n)), (B.5.1)

for bounded functions f : N0 → R.

B.5.1. Attraction to the equilibrium

We study the probability of birth death processes with self-competition to stay close to their
equilibrium (b − d)K/c for a long time. In order to be able to concatenate this result for
infinitely many phases in Section B.4.1, we need to bound the probability of diverging from
the equilibrium by a sequence that tends to zero fast enough as K tends to infinity. We
start by proving a general result for time horizons θK . The proof uses a potential theoretic
approach, similar to the proof of [7, Lem. 6.3].

Theorem B.5.1. Let XK be a birth death process with self-competition and parameters
0 < d < b and 0 < c/K. Define n̄ := (b−d)/c. Then there are constants 0 < C1, C2, C3 <∞
such that, for any ε small and any K large enough, any initial value 0 ≤ |x−dn̄Ke| ≤ 1

2

⌊
εK
2

⌋
,

any m ≥ 0, and any non-negative sequence (θK)K∈N,

Px(∃ t ∈ [0, θK ] : |XK(t)− dn̄Ke| > εK) ≤ mC1e
−C2ε2K +

∞∑
l=m

(
4
(
1− e−C3KθK/l

)1/2
)l
.

(B.5.2)

Proof. We start by defining a couple of new processes based on XK . Let

V K(t) := |XK(t)− dn̄Ke| (B.5.3)

be the distance of XK from its equilibrium state n̄K at time t. Note that this is no longer a
Markov process. For V K , let (Y K

n )n∈N0 be its discrete jump chain (taking values in N, not
Markovian) and (SKn )n∈N its jump times.

The proof is divided into multiple steps:

1) Bound the transition probabilities of Y K .
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2) Define a discrete time Markov chain (ZKn )n∈N0 such that ZKn ≥ Y K
n , for all n ∈ N.

3) Derive an upper bound for the probability of ZK hitting bεKc before 0.

4) Derive an upper bound for the probability of ZK returning to 0 at most m times before
hitting bεKc.

5) Consider a continuous time version Z̃K of ZK to deduce the final result.

Step 1: The discrete-time process Y K changes its state due to either a birth or a death
event in the original process XK and hence moves by increments of ±1 in each step. It is
therefore a random walk on N0 that is reflected in 0. For the boundary case, we obtain

P(Y K
n+1 = 1|Y K

n = 0) = 1. (B.5.4)

For any other 1 ≤ i ≤ εK, using that cdn̄Ke/K ∈ [b− d, b− d+ c/K], we can bound

P(Y K
n+1 = i+ 1|Y K

n = i)
=P(birth event if XK = dn̄Ke+ i or death event if XK = dn̄Ke − i)

≤ b

b+ d+ c
K (dn̄Ke+ i) ∨

d+ c
K (dn̄Ke − i)

b+ d+ c
K (dn̄Ke − i)

≤ b

2b+ c
K i
∨
b− c

K (i− 1)
2b− c

K i
=
(

1
2 −

c
2K i

2b+ c
K i

)
∨
(

1
2 −

c
2K (i− 2)
2b− c

K i

)

≤1
2 − C

i

K
=: pK+ (i), (B.5.5)

for some constant C > 0, as long as ε ≤ n̄ and hence ci/K ≤ cε ≤ b− d.

Step 2: Define a discrete-time process (ZKn )n∈N0 that is coupled to (Y K
n )n∈N0 by

− ZK0 = Y K
0

− Whenever ZKn = Y K
n = i and Y K

n+1 = i+ 1, we set ZKn+1 = i+ 1.

− Whenever ZKn = Y K
n = i and Y K

n+1 = i − 1, we set ZKn+1 = i + 1 with probability
(pK+ (i)− P(Y K

n+1 = i+ 1|Y K
n = i))/P(Y K

n+1 = i− 1|Y K
n = i) and ZKn+1 = i− 1 else.

− Whenever ZKn = i > Y K
n , we set ZKn+1 = i+ 1 with probability pK+ (i) and ZKn+1 = i− 1

else.

Then ZK is a discrete-time Markov chain such that ZKn ≥ Y K
n , for all n ∈ N0, and

pK(i, j) := P(ZKn+1 = j|ZKn = i) =


1 i = 0, j = 1,
pK+ (i) i ≥ 1, j = i+ 1,
1− pK+ (i) i ≥ 1, j = i− 1,
0 else.

(B.5.6)

Step 3: For the Markov chain ZK , we define the stopping times

τ
(Z,K)
j := inf{n ∈ N0 : ZKn = j}. (B.5.7)
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By standard potential theoretic arguments (see [30, Ch. 7.1.4]), we obtain, for initial values
0 ≤ z ≤ bεKc,

Pz
(
τ

(Z,K)
bεKc < τ

(Z,K)
0

)
=
∑z
i=1

∏i−1
j=1

p(j,j−1)
p(j,j+1)∑bεKc

i=1
∏i−1
j=1

p(j,j−1)
p(j,j+1)

=

∑z
i=1 exp

(∑i−1
j=1 ln

(
1+2C j

K

1−2C j
K

))
∑bεKc
i=1 exp

(∑i−1
j=1 ln

(
1+2C j

K

1−2C j
K

)) . (B.5.8)

Using that ln(1 + ξ) = ξ +O(ξ2), as ξ → 0, and j ≤ bεKc, we can approximate, as ε→ 0,

ln
(

1 + 2C j
K

1− 2C j
K

)
= ln

(
1 +

4C j
K

1− 2C j
K

)
=

4C j
K

1− 2C j
K

+O

( 4C j
K

1− 2C j
K

)2
= 4C j

K

(
1 +

2C j
K

1− 2C j
K

)
+O

((
j

K

)2
)

= 4C j

K
+O

((
j

K

)2
)

= 4C j

K
+O(ε2). (B.5.9)

Plugging these asymptotics back into the above expression yields

Pz
(
τ

(Z,K)
bεKc < τ

(Z,K)
0

)
=
∑z
i=1 exp

(∑i−1
j=1 4C j

K +O(ε2)
)

∑bεKc
i=1 exp

(∑i−1
j=1 4C j

K +O(ε2)
)

≤
∑z
i=1 exp

(
4C i(i−1)

2K +O((i− 1)ε2)
)

∑bεKc
i=b εK2 c

exp
(
4C i(i−1)

2K +O((i− 1)ε2)
)

≤
z exp

(
2C z2

K +O(zε2)
)

⌊
εK
2

⌋
exp

(
2C
K

(⌊
εK
2

⌋2
−
⌊
εK
2

⌋)
+O(Kε3)

)
= z⌊

εK
2

⌋ exp
(

2C
K

(
z2 −

⌊
εK

2

⌋2
+
⌊
εK

2

⌋)
+O(zε2) +O(Kε3)

)

≤ z⌊
εK
2

⌋ exp
(

2C
K

(
z2 −

⌊
εK

2

⌋2
+
⌊
εK

2

⌋
+O(K2ε3)

))

≤ 1
2 exp

(
−2C
K

1
4

⌊
εK

2

⌋2
)

≤ C1e
−C2ε2K , (B.5.10)

for some uniform constants C1, C2 > 0, as long as 0 ≤ z ≤ 1
2

⌊
εK
2

⌋
and ε small enough such

that
⌊
εK
2

⌋
+O(K2ε3) ≤ 1

2

⌊
εK
2

⌋2
for large K.

Step 4: Let BK be the random variable that describes the number of visits to 0 of ZK
before first hitting bεKc (not counting the first visit/start in case ZK0 = 0). First consider
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1 ≤ z ≤ 1
2

⌊
εK
2

⌋
. Then, for ε small and K large enough,

Pz
(
BK = 0

)
= Pz

(
τ

(Z,K)
bεKc < τ

(Z,K)
0

)
≤ C1e

−C2ε2K (B.5.11)

and, for all l ≥ 1, due to the strong Markov property,

Pz
(
BK = l

)
= Pz

(
τ

(Z,K)
0 < τ

(Z,K)
bεKc

) (
1− P1

(
τ

(Z,K)
bεKc < τ

(Z,K)
0

))l−1
P1
(
τ

(Z,K)
bεKc < τ

(Z,K)
0

)
≤ C1e

−C2ε2K . (B.5.12)

For z = 0 and l ≥ 0,

P0
(
BK = l

)
= P1

(
BK = l

)
≤ C1e

−C2ε2K .

Hence, for 0 ≤ z ≤ 1
2

⌊
εK
2

⌋
, ε small and K large enough, and any m ≥ 0,

Pz
(
BK ≤ m

)
≤ (m+ 1)C1e

−C2ε2K .

Step 5: Finally, let Z̃K be the continuous time process that has (ZKn )n∈N0 as a jump chain
and the same jump times (SKn )n∈N as the original process XK . By the above construction,
for all t ≥ 0, we have

Z̃K(t) ≥ V K(t) = |XK(t)− dn̄Ke|.

We can therefore deduce that, for ε small and K large enough, initial value x = dn̄Ke ± z
such that 0 ≤ z ≤ 1

2

⌊
εK
2

⌋
, and any m ≥ 0,

Px(∃ t ∈ [0, θK ] : |XK(t)− dn̄Ke| > εK)
≤ Pz(∃ t ∈ [0, θK ] : Z̃K(t) > εK)

=
∞∑
l=0

Pz(∃ t ∈ [0, θK ] : Z̃K(t) > εK,BK = l)

≤ Pz(BK ≤ m− 1) +
∞∑
l=m

Pz(∃ t ∈ [0, θK ] : Z̃K(t) > εK,BK = l) (B.5.13)

Now let (IKj )j≥1 be the times in between visits to 0 of Z̃K , i.e., for j ≥ 1,

IKj := inf
{
t > 0 : ∃ 0 < s < t : Z̃K

s+
∑j−1

i=1 I
K
i

6= 0, Z̃K
t+
∑j−1

i=1 I
K
i

= 0
}
. (B.5.14)

Then, since each return takes at least the time of a single jump in the original Markov chain
XK , as long as Z̃K does not surpass 2n̄K > dn̄Ke + εK, there are independent identically
distributed exponential random variables (EKj )j≥1 with parameter 4n̄K(b+ d+ cn̄) =: C̄K
such that, for each a ∈ R,

P(IKj < a) ≤ P(EKj < a) = (1− e−aC̄K)+. (B.5.15)
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To bound the probabilities Pz(∃ t ∈ [0, θK ] : Z̃K(t) > εK,BK = l), we argue as follows: If
there were at least l/2 occurrences of IKj ≥ 2θK/l (out of the l times between visits to 0),
the time until Z̃K first surpasses εK could be bounded from below by

l∑
j=1

IKj ≥
l

2
2θK
l

= θK . (B.5.16)

Hence, by contradiction we can bound

Pz(∃ t ∈ [0, θK ] : Z̃K(t) > εK,BK = l) ≤ Pz

 l∑
j=1

1IKj <2θK/l >
l

2 , B
K = l


≤ Pz

(
l∑

j=1
1EKj <2θK/l︸ ︷︷ ︸

∼Bin
(
l,1−e−C̄K2θK/l

)
>
l

2

)
=

l∑
j=dl/2e

(
l

j

)(
1− e−C̄K2θK/l

)j (
e−C̄K2θK/l

)l−j

≤ l

22l
(
1− e−C̄K2θK/l

)l/2
≤
(

4
(
1− e−C̄K2θK/l

)1/2
)l
, (B.5.17)

where we used that
(l
j

)
≤ 2l and l/2 ≤ 2l.

Combining this with step 4 yields

Px(∃ t ∈ [0, θK ] : |XK(t)− dn̄Ke| > εK)

≤ Pz(BK ≤ m− 1) +
∞∑
l=m

Pz(∃ t ∈ [0, θK ] : Z̃K(t) > εK,BK = l)

≤mC1e
−C2ε2K +

∞∑
l=m

(
4
(
1− e−C̄K2θK/l

)1/2
)l
. (B.5.18)

This concludes the proof with C3 = 2C̄.

From this general theorem, we can now derive the result necessary for the proof in Section
B.4.1, considering time horizons of size θK = lnK as an upper bound for phases with length
of order λK and bounding the probability of diverging from the equilibrium in o(λK/ lnK)
to concatenate O(lnK/λK) many phases.

Theorem B.5.2. Let XK be a birth death process with self-competition and parameters
0 < d < b and 0 < c/K. Define n̄ := (b − d)/c and let 1 � λK � lnK as K → ∞. Then,
for ε small enough and any sequence of initial values 0 ≤ |xK − dn̄Ke| ≤ 1

2

⌊
εK
2

⌋
,

lim
K→∞

lnK
λK
· PxK (∃ t ∈ [0, lnK] : |XK(t)− dn̄Ke| > εK) = 0.
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Proof. We apply Theorem B.5.1 with θK = lnK and mK = K2 to obtain that, for ε small,
K large enough and 0 ≤ |xK − dn̄Ke| ≤ 1

2

⌊
εK
2

⌋
,

PxK (∃ t ∈ [0, lnK] : |XK(t)− dn̄Ke| > εK)

≤K2C1e
−C2ε2K +

∞∑
l=K2

(
4
(
1− e−C3K lnK/l

)1/2
)l

≤K2C1e
−C2ε2K +

∞∑
l=K2

(
4
(
1− e−C3K lnK/K2)1/2

︸ ︷︷ ︸
<1 for K large enough

)l

≤K2C1e
−C2ε2K +

(
42
(
1− e−C3K lnK/K2))K2/2 1

1− 4
(
1− e−C3K lnK/K2)1/2︸ ︷︷ ︸

≤C4<∞ for K large enough

≤K2C1e
−C2ε2K + C4

(
16C3

lnK
K︸ ︷︷ ︸

<1 for K large enough

)K2/2

≤K2C1e
−C2ε2K + C416C3

lnK
K

. (B.5.19)

Now, for fixed ε2,

e−C2ε2K � λK
K2 lnK ⇔ K2e−C2ε2K � λK

lnK (B.5.20)

and 1� λK implies

(lnK)2

K
� λK ⇔

lnK
K
� λK

lnK . (B.5.21)

Hence we obtain that, for fixed ε > 0,

PxK (∃ t ∈ [0, lnK] : |XK(t)− dn̄Ke| > εK) = O(K2e−C2ε2K) +O(lnK/K) = o(λK/ lnK),
(B.5.22)

which yields the desired result.

B.5.2. Convergence to the deterministic system

We now provide a result on the convergence of stochastic birth death processes with com-
petition to the corresponding deterministic system, for finite time horizons. The proof is
similar to the one of [75, Ch. 11, Thm. 2.1]. Instead of almost sure convergence, we derive
convergence in probability, but are able to quantify the convergence speed in return, which
again allows us to concatenate the result for infinitely many phases in Section B.4.1.
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Theorem B.5.3. Let XK be a birth death process with self-competition and parameters
0 < d < b and 0 < c/K. Assume that XK(0)/K → x0 and 1 � λK � lnK, as K → ∞,
and let (x(t))t≥0 be the solution of the ordinary differential equation

ẋ(t) = x(t) [b− d− c · x(t)] (B.5.23)

with initial value x(0) = x0. Then, for every 0 ≤ T <∞ and ε > 0,

lim
K→∞

lnK
λK
· P
(

sup
t≤T

∣∣∣∣∣XK(t)
K

− x(t)
∣∣∣∣∣ > ε

)
= 0. (B.5.24)

Proof. We start be writing XK in terms of independent standard Poisson processes Yb and
Yd,

XK(t) (d)= XK(0) + Yb

(
K

∫ t

0
b
XK(s)
K

ds
)
− Yd

K ∫ t

0
d
XK(s)
K

+ c

(
XK(s)
K

)2

ds

 .
(B.5.25)

Note that we only have equality in distribution here, since we choose Yb and Yd uniformly
across different values of K and the XK stand in no specific relation to each other. We
will omit this from the notation for the remainder of the proof, as we are only proving
convergence in probability and equality in distribution is therefore sufficient.

Setting Ỹb(u) := Yb(u)− u and Ỹd := Yd(u)− u (i.e. centering the Poisson processes at their
expectations), this representation yields

XK(t)
K

= XK(0)
K

+
∫ t

0

(
b− d− cX

K(s)
K

)
XK(s)
K

ds

+ 1
K
Ỹb

(
K

∫ t

0
b
XK(s)
K

ds
)
− 1
K
Ỹd

K ∫ t

0
d
XK(s)
K

+ c

(
XK(s)
K

)2

ds

 .
(B.5.26)

Now we introduce the stopping time

τK := inf
{
t ≥ 0 : X

K(t)
K

6= [0,M ]
}
, (B.5.27)

for some large M (e.g. M ≥ 2(n̄∨x0), where n̄ = (b− d)/c). Up to time τK , the population

117



B. Effective growth rates in a periodically changing environment: From mutation to invasion

size of our process is bounded by KM and, using the integral form of (B.5.23), we deduce

∣∣∣∣∣XK(t ∧ τK)
K

− x(t ∧ τK)
∣∣∣∣∣

≤
∣∣∣∣∣XK(0)

K
− x(0)

∣∣∣∣∣+
∫ t∧τK

0
(b+ d)

∣∣∣∣∣XK(s)
K

− x(s)
∣∣∣∣∣+ c

∣∣∣∣∣∣
(
XK(s)
K

)2

− x(s)2

∣∣∣∣∣∣︸ ︷︷ ︸
≤2M

∣∣∣XK (s)
K
−x(s)

∣∣∣
ds

+ 1
K

∣∣∣∣∣Ỹb
(
K

∫ t∧τK

0
b
XK(s)
K

ds
)∣∣∣∣∣

+ 1
K

∣∣∣∣∣∣Ỹd
K ∫ t∧τK

0
d
XK(s)
K

+ c

(
XK(s)
K

)2

ds

∣∣∣∣∣∣
≤
∣∣∣∣∣XK(0)

K
− x(0)

∣∣∣∣∣+
∫ t

0
C

∣∣∣∣∣XK(s ∧ τK)
K

− x(s ∧ τK)
∣∣∣∣∣ ds

+ 1
K

sup
u∈[0,t∧τK ]

∣∣∣Ỹb (KbMu)
∣∣∣+ 1

K
sup

u∈[0,t∧τK ]

∣∣∣Ỹd (K(dMu+ cM2u)
)∣∣∣ .

(B.5.28)

Here, C := b + d + 2Mc and in the last line we used that, even though the centred Pois-
son processes can take positive and negative values, we can bound their absolute value by
considering the supremum over all possible rates.

Next, Gronwall’s inequality implies that

∣∣∣∣∣XK(t ∧ τK)
K

− x(t ∧ τK)
∣∣∣∣∣ (B.5.29)

≤
[∣∣∣∣∣XK(0)

K
− x(0)

∣∣∣∣∣+ 1
K

(
sup
u∈[0,t]

∣∣∣Ỹb (KbMu)
∣∣∣+ sup

u∈[0,t]

∣∣∣Ỹd (K(dMu+ cM2u)
)∣∣∣)] eCt.

Now fix a T ≥ 0. With probability 1, for some large enough K0 and all K ≥ K0,
|XK(0)− x(0)| ≤ e−CT ε/2.
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Hence, for ε < M/2 and K ≥ K0,

P
(

sup
t≤T

∣∣∣∣∣XK(t)
K

− x(t)
∣∣∣∣∣ ≤ ε

)

= P
(

sup
t≤T

∣∣∣∣∣XK(t)
K

− x(t)
∣∣∣∣∣ ≤ ε, τK > T

)

= P
(

sup
t≤T

∣∣∣∣∣XK(t ∧ τK)
K

− x(t ∧ τK)
∣∣∣∣∣ ≤ ε

)

≥ P
([∣∣∣∣∣XK(0)

K
− x(0)

∣∣∣∣∣+ 1
K

(
sup

u∈[0,T ]

∣∣∣Ỹb (KbMu)
∣∣∣+ sup
u∈[0,T ]

∣∣∣Ỹd (K(dMu+ cM2u)
)∣∣∣)] eCT ≤ ε)

≥ P
(

1
K

(
sup

u∈[0,T ]

∣∣∣Ỹb (KbMu)
∣∣∣+ sup

u∈[0,T ]

∣∣∣Ỹd (K(dMu+ cM2u)
)∣∣∣) eCT ≤ ε

2

)

≥ 1− P
(

sup
u∈[0,T ]

∣∣∣Ỹb (KbMu)
∣∣∣+ sup

u∈[0,T ]

∣∣∣Ỹd (K(dMu+ cM2u)
)∣∣∣ > Ke−CT ε

2

)

≥ 1− P
(

sup
u∈[0,T ]

∣∣∣Ỹb (KbMu)
∣∣∣> Ke−CT ε

4

)
− P

(
sup

u∈[0,T ]

∣∣∣Ỹd (K(dMu+ cM2u)
)∣∣∣> Ke−CT ε

4

)
.

(B.5.30)

To finish the proof, it is left to show that the two probabilities in the last line are of order
o(λK/ lnK). We run through the calculation for Ỹb, the other summand works equivalently.

Since Ỹb is a martingale, |Ỹb| is a submartingale. We set T̃ = bMT and ε̃ = e−CT ε/4. Then,
using Doob’s maximum inequality [30, Thm. 3.87], we obtain

P
(

sup
u∈[0,T ]

∣∣∣Ỹb (KbMu)
∣∣∣ > Ke−CT ε

4

)
= P

 sup
u∈[0,T̃ ]

∣∣∣Ỹb(Ku)
∣∣∣2 > (Kε̃)2


≤ 1

(Kε̃)2E
(∣∣∣Ỹb(KT̃ )

∣∣∣2) = 1
(Kε̃)2E

(
〈Ỹb(KT̃ )〉

)
= KT̃

(Kε̃)2 = T̃

Kε̃2 = o

(
λK

lnK

)
. (B.5.31)

This concludes the proof.

B.6. Branching processes at varying rates

In this chapter, we collect some technical results for birth death processes with time-
dependent rates. These are used to approximate the micro- and mesoscopic populations
in the proof of the main result of this paper in Section B.4.2. In Section B.6.1 we focus on
pure birth death processes and then add on the effects of immigration in Section B.6.2. We
build on the results of [45] and work out the averaging effects of growth in a periodically
changing environment.
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The particular form of time-dependent parameters in this chapter depicts two different ef-
fects. Firstly, the system parameters jump periodically between finitely many values on the
divergent time-scale λK . Secondly, after each parameter change, the macroscopic subpopula-
tion restabilizes at the corresponding equilibrium, which takes a finite time (independent of
K). During this short re-equilibration time, we only have weaker estimates on the effective
parameters for the growth of the micro- and mesoscopic subpopulations. However, part of
the following results is that the general behaviour of the branching processes is not effected
significantly by these short phases.

B.6.1. Pure birth death processes

Let us first consider pure birth death processes with time-dependent rates. As before, take
1 � λK � lnK and ` ∈ N. Let bi, di, bi,∗, di,∗, > 0, Ti > 0 and T∗,i ≥ 0, for i = 1, . . . , `.
Writing TΣ

i :=
∑i
j=1 Tj , we define the rate functions for birth and death to be the periodic

extensions of

bK(t) =
{
b∗,i : t ∈ [TΣ

i−1λK , T
Σ
i−1λK + T∗,i),

bi : t ∈ [TΣ
i−1λK + T∗,i, T

Σ
i λK),

dK(t) =
{
d∗,i : t ∈ [TΣ

i−1λK , T
Σ
i−1λK + T∗,i),

di : t ∈ [TΣ
i−1λK + T∗,i, T

Σ
i λK).

(B.6.1)

Moreover, for i = 1, . . . , `, we write ri := bi − di and rK(t) := bK(t) − dK(t) to refer to the
net growth rate. Finally, we define the average growth rate by rav := (

∑`
i=1 riTi)/TΣ

` .

We analyse the processes
(
ZKt

)
t≥0

, which are Markov processes with ZK0 =
⌊
Kβ − 1

⌋
, for

some β ≥ 0, and with generators(
LKt f

)
(n) = bK(t)n (f(n+ 1)− f(n)) + dK(t)n (f(n− 1)− f(n)) , (B.6.2)

acting on all bounded functions f : N0 → R. We refer to the law of these processes by
ZK ∼ BD

(
bK , dK , β

)
.

Our aim is to show that, under logarithmic rescaling of time and size, such population
processes grow (or shrink) according to their average net growth rate. Note that the process
becomes trivial if β = 0. We therefore exclude this case in the entire section without further
announcement.

Theorem B.6.1. Let ZK follow the law of BD
(
bK , dK , β

)
, where β > 0. Then, for all

fixed T ∈ (0,∞), the following convergence holds in probability, with respect to the L∞([0, T ])
norm,  ln

(
ZKs lnK + 1

)
lnK


s∈[0,T ]

K→∞−→ ((β + ravs) ∨ 0)s∈[0,T ] . (B.6.3)
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The rest of this section is dedicated to the proof of this theorem and we split up the claim
into several lemmas.

Remark 21. To avoid complicated notation, we only conduct the proofs for the case of ` = 2
and T∗,1 = 0. The general case is proven analogously and there is no deeper insight or
additional difficulty to it. This choice allows us to use the shorthand notation b∗ := b∗,2,
d∗ := d∗,2, and T∗ := T∗,2, which leads to the rate functions taking the form

bK(t) =


b1 t ∈ [0, λKT1),
b∗ t ∈ [λKT1, λKT1 + T∗),
b2 t ∈ [λKT1 + T∗, λK(T1 + T2)),

dK(t) =


d1 t ∈ [0, λKT1),
d∗ t ∈ [λKT1, λKT1 + T∗),
d2 t ∈ [λKT1 + T∗, λK(T1 + T2)),

(B.6.4)

with periodic extension.

We start by stating an explicit representation of the processes in terms of Poisson measures
and derive the corresponding Doob’s martingale decomposition.

Poisson representation: Let Q(b)(ds, dθ) and Q(d)(ds, dθ) be independent homogenous
Poisson random measures on (R2

≥0, ds, dθ) and denote by Q̃(∗) = Q(∗) − dsdθ, for ∗ ∈ {b, d},
their normalized versions. Then we can represent ZK as

ZKt = ZK0 +
∫ t

0

∫
R≥0

1θ≤bK(s−)ZK
s−
Q(b)(ds, dθ)−

∫ t

0

∫
R≥0

1θ≤dK(s−)ZK
s−
Q(d)(ds, dθ). (B.6.5)

In particular we have the martingale decomposition ZKt = ZK0 +MK
t +AKt , where

MK
t =

∫ t

0

∫
R≥0

1θ≤bK(s−)ZK
s−
Q̃(b)(ds, dθ)−

∫ t

0

∫
R≥0

1θ≤dK(s−)ZK
s−
Q̃(d)(ds, dθ). (B.6.6)

and

AKt =
∫ t

0
(bK(s)− dK(s))ZKs ds. (B.6.7)

In terms of Itô’s calculus this implies dZKt = dMK
t + rK(t)ZKt dt. Therefore, we directly

obtain the bracket process

〈MK〉t =
∫ t

0
(bK(s) + dK(s))ZKs ds. (B.6.8)

Towards proving Theorem B.6.1, we first determine the expected value of the process and
check that it satisfies the desired convergence.

Lemma B.6.2. Let ZK follow the law of BD
(
bK , dK , β

)
. Then

E
[
ZKt

]
=
⌊
Kβ − 1

⌋
egK(t), where gK(t) =

∫ t

0
rK(s)ds. (B.6.9)
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Proof. Using the martingale decomposition and (B.6.7) we obtain the integral equation

E
[
ZKt

]
= E

[
ZK0

]
+ E

[
AKt

]
=
⌊
Kβ − 1

⌋
+
∫ t

0
rK(s)E

[
ZKs

]
ds. (B.6.10)

Due to existence and uniqueness of the solution to this integral equation, this directly gives
the claim.

Lemma B.6.3. For all fixed T <∞ we have the uniform convergence

sup
s≤T

∣∣∣∣∣∣
ln
(
KβegK(s lnK)

)
lnK − (β + ravs)

∣∣∣∣∣∣ K→∞−→ 0. (B.6.11)

Proof. We slice the whole time span [0, T lnK] into equal pieces of order λK . Since rK has
a period of length λK(T1 + T2) and is piecewise constant, we obtain, for all n ∈ N,

gK(nλK(T1 + T2)) = n[λKT1r1 + T∗r∗ + (λKT2 − T∗)r2]
= n[λK(T1r1 + T2r2) + T∗(r∗ − r2)]. (B.6.12)

Moreover, within such a period the growth of gK is linearly bounded, i.e. for all 0 ≤ s ≤ t
such that t− s ≤ λK(T1 + T2), one has∣∣∣gK(t)− gK(s)

∣∣∣ ≤ (t− s) max {r1, r∗, r2} ≤ CλK , (B.6.13)

for some uniform finite constant C. Hence, we can estimate (in the case of rav > 0),

gK(s lnK) ≥ gK
(⌊

s lnK
λK(T1 + T2)

⌋
λK(T1 + T2)

)
− CλK

=
⌊

s lnK
λK(T1 + T2)

⌋
[λK(T1r1 + T2r2) + T∗(r∗ − r2)]− CλK

≥ ravs lnK + s
lnK
λK

T∗(r∗ − r2)
T1 + T2

− 2CλK , (B.6.14)

where we use in the last inequality that the term in the brackets is positive for K large
enough. Similarly, we obtain

gK(s lnK) ≤ ravs lnK + s
lnK
λK

T∗(r∗ − r2)
T1 + T2

+ 2CλK . (B.6.15)

Both estimates can be achieved in the same way for rav < 0. With this at hand, the claim
can be shown directly.

Our next aim is to study the deviation of the original process ZK from its expected value.

Lemma B.6.4. For all T < ∞ and all δ > 0, there exists a K0 ∈ N such that, for all
K ≥ K0 and all η ∈ (0, β), it holds that

P
(

sup
t≤T lnK

∣∣∣e−gK(t)ZKt −Kβ
∣∣∣ ≥ Kη

)
≤ (b̄+ d̄)Kβ+δ−2η 1

rav

(
1−K−ravT

)
, (B.6.16)

where b̄ := maxt∈[0,TΣ
`
λK ] b

K(t) and d̄ := maxt∈[0,TΣ
`
λK ] d

K(t).
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Proof. The main idea is to use Doob’s maximum inequality for a rescaled martingale. We
introduce the process

M̂K
t :=

∫ t

0
e−gK(s)dMK

s , (B.6.17)

which is a martingale since MK is a martingale. Following the techniques of proof step 1 of
[45, Lem. A.1] using Itô’s isometry, Itô’s formula and Doob’s maximum inequality, we get

P
(

sup
t≤T lnK

∣∣∣e−gK(t)ZKt −Kβ
∣∣∣ ≥ Kη

)
≤
(
b̄+ d̄

)
Kβ−2η

∫ T lnK

0
e−gK(t)dt

≤
(
b̄+ d̄

)
Kβ−2η

∫ T lnK

0
e−ravtKδdt

=
(
b̄+ d̄

)
Kβ+δ−2η 1

rav

(
1−K−ravT

)
. (B.6.18)

Here, for the last inequality, K has to be choosen large enough, such that

gK(t)
lnK ≥ rav

t

lnK − δ, ∀t ∈ [0, T lnK], (B.6.19)

which is possible by Lemma B.6.3.

With the above results, we are now able to prove the desired convergence for populations
that tend to grow (i.e. for rav > 0).

Lemma B.6.5. Let ZK follow the law of BD
(
bK , dK , β

)
and assume that rav > 0, then the

convergence of Theorem B.6.1 holds true.

Proof. Fix T <∞ and choose δ = β/4 and η = 3β/4. Moreover, define the set

ΩK
1 :=

{
sup

t≤T lnK

∣∣∣e−gK(t)ZKt −Kβ
∣∣∣ ≤ Kη

}
. (B.6.20)

Then limK→∞ P
(
ΩK

1

)
= 1 by Lemma B.6.4 since β+δ−2η < 0 and an analogous computa-

tion to proof step 2 of [45, Lem. A.1] together with Lemma B.6.3 and the triangle inequality
yield the claim.

In order to study birth death processes with tendency to shrink (i.e. with rav < 0), we
have to take care of the extinction event. Let us point out that in our situation of the
changing environment, this is a little more involved and we cannot use the results for time-
homogenoeus branching processes. To this end, we first determine the probability generating
function of general birth death processes with piecewise constant rates, which we then use
to establish bounds on the distribution function of the extinction time.
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B. Effective growth rates in a periodically changing environment: From mutation to invasion

Lemma B.6.6 (generating function). For ` ∈ N, let bi, di, Ti > 0, 1 ≤ i ≤ `, and write
T :=

∑`
i=1 Ti and ri := bi − di. We consider the birth death process (Xt)t∈[0,T ] with initial

value X0 = 1 that is driven by the birth and death rates bi, di on
[∑i−1

j=1 Tj ,
∑i
j=1 Tj

)
. Then

the (probability) generating function g of XT is given by

g(s) := E
[
sXT

]
(B.6.21)

= 1− er1T1+···+r`T`

b1
r1

(er1T1 − 1) er2T2+···+r`T` + b2
r2

(er2T2 − 1) er3T3+···+r`T` + · · ·+ b`
r`

(er`T` − 1)− 1
s−1

.

Proof. For homogeneous birth death processes (Yt)t≥0 with constant rates b and d and initial
value Y0 = 1, the probability generating function at time t > 0 is given by

F (s, t) := E
[
sYt
∣∣Y0 = 1

]
= d(s− 1)− e−rt(bs− d)
b(s− 1)− e−rt(bs− d)

= 1− ert
b
r (ert − 1)− 1

s−1
. (B.6.22)

Due to independence, for initial values Y0 = k ∈ N we obtain E
[
sYt
∣∣Y0 = k

]
= F (s, t)k.

Let us first consider the case ` = 2. Studying X at time T1 + T2, we can interpret it as a
birth death process on [T1, T1 + T2] with rates b2 and d2, initialized with XT1 individuals.
Letting F1 and F2 be the generating functions corresponding to the parameters of the two
phases (again assuming initial values of 1), this leads to

E
[
sXT1+T2

]
= E

[
E
[
sXT1+T2

∣∣XT1

]]
= E

[
F2(s, T2)XT1

]
= F1(F2(s, T2), T1)

= 1− er1T1

b1
r1

(er1T1 − 1) + (b2/r2)(er2T2−1)−1/(s−1)
er2T2

= 1− er1T1+r2T2

b1
r1

(er1T1 − 1) er2T2 + b2
r2

(er2T2 − 1)− 1
s−1

(B.6.23)

The claim for larger ` ∈ N follows by induction.

With this preparation, we can now prove the following helpful bounds for the extinction
time.

Lemma B.6.7 (extinction time). Let ZK be the birth death process with varying rates defined
above. Denote by TZKext := inf

{
t ≥ 0 : ZKt = 0

}
the extinction time of ZK . Then, for all

δ, δ1, δ2 > 0 and all M > (T1 |r1| + T2 |r2|)/(T1 + T2) there exists a K0 < ∞ such that, for
all K ≥ K0 and all t ≥ 0,

P
(
TZ

K

ext > t lnK
∣∣ZK0 = 1

)
≤ exp [((rav + δ1) t+ δ2) lnK] , (B.6.24)

P
(
TZ

K

ext > t lnK
∣∣ZK0 = 1

)
≥ exp [− (Mt+ δ) lnK] . (B.6.25)
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Proof. Let us first consider a time discretisation
(
Y K
n

)
n∈N0

of ZK , namely Y K
n := ZKnλK(T1+T2).

Then, by periodicity of the rate functions, Y K is a Galton-Watson process. An application
of Lemma B.6.6 (with ` = 3) yields that the one-step offspring distribution is determined by
the generating function

g(s) = E
[
s
ZK
λK (T1+T2) |ZK0 = 1

]
(B.6.26)

=1− eλKT1r1+T∗r∗+(λKT2−T∗)r2

b1
r1

(eλKr1T1−1) er∗T∗+(λKT2−T∗)r2+ b∗
r∗

(er∗T∗−1) e(λKT2−T∗)r2+ b2
r2

(
e(λKT2−T∗)r2−1

)
− 1
s−1

.

Therefore, the probability for ZK to go extinct in the first step is

pK0 = g(0) (B.6.27)

=1− eλKT1r1+T∗r∗+(λKT2−T∗)r2

b1
r1

(eλKr1T1−1) er∗T∗+(λKT2−T∗)r2+ b∗
r∗

(er∗T∗−1) e(λKT2−T∗)r2+ b2
r2

(
e(λKT2−T∗)r2−1

)
+1

.

Moreover, for the mean offspring we obtain

mK = g′(1) = eλKT1r1+T∗r∗+(λKT2−T∗)r2 = eλK(r1T1+r2T2)+T∗(r∗−r2). (B.6.28)

Denote now by gn(s) = E
[
sY

K
n

]
the generating function of the n-th generation of Y K . Then

it is well known [4] that gn = gn−1 ◦ g = g ◦ gn−1. Since g : [0, 1] → [0, 1] is convex and
strictly increasing, we can deduce that (see Figure B.4)

(1− pK0 )(1− s) ≤ 1− g(s) ≤ mK(1− s) ∀s ∈ [0, 1]. (B.6.29)

This can be iterated (cf. [4, eq. I.11.7]) to obtain

(1− pK0 )n(1− s) ≤ 1− gn(s) ≤ (mK)n(1− s) ∀s ∈ [0, 1], ∀n ∈ N. (B.6.30)

Together with gn(0) = P
(
Y K
n = 0

)
= P

(
T Y

K

ext ≤ n
)
, where T Y Kext := inf{n ≥ 0 : Y K

n = 0} is
the extinction time of Y K , this leads to

(1− pK0 )n ≤ P
(
T Y

K

ext > n
)
≤ (mK)n. (B.6.31)

Let us now check the upper bound. For rav ≥ 0, the claim is trivially satisfied since the
right hand side is larger than 1. In the case of rav < 0, which, for K large enough, implies
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1

1

0

s 7→
1−

m
(1
− s

)s 7→
p0+

(1−
p0)

s

p0 s 7→ g(s)

Figure B.4.: Generating function g(s) and the corresponding affine upper and lower bounds
from (B.6.29).

mK < 1, we can estimate

P
(
TZ

K

ext > t lnK
∣∣ZK0 = 1

)
≤ P

(
TZ

K

ext >

⌊
t lnK

λK(T1 + T2)

⌋
λK(T1 + T2)|ZK0 = 1

)
= P

(
T Y

K

ext >

⌊
t lnK

λK(T1 + T2)

⌋
|Y K

0 = 1
)

≤
(
eλK(r1T1+r2T2)+T∗(r∗−r2)

)⌊ t lnK
λK (T1+T2)

⌋

≤
(
eλK(r1T1+r2T2)+T∗(r∗−r2)

)( t lnK
λK (T1+T2)−1

)
≤ exp

[
ravt lnK + T∗(r∗ − r2)

λK(T1 + T2) t lnK + CλK

]
≤ exp [ravt lnK + δ1t lnK + δ2 lnK]
≤ exp [((rav + δ1) t+ δ2) lnK] , (B.6.32)

again for K large enough.

To obtain the lower bound, for rav ∈ R, we we first calculate that

(
1− pK0

)−1
= b1
r1

(1− e−λKT1r1) + b∗
r∗

(1− e−T∗r∗)e−λKT1r1

+ b2
r2

(1− e−(λKT2−T∗)r2)e−λKT1r1−T∗r∗ + e−λKT1r1−T∗r∗−(λKT2−T∗)r2

≤
(
b1
|r1|

+ b∗
|r∗|

+ b2
|r2|

+ 1
)

exp [λKT1 |r1|+ T∗ |r∗|+ (λKT2 − T∗) |r2|]

= C exp [λK(T1 |r1|+ T2 |r2|) + T∗(|r∗| − |r2|)]
≤ exp[λKM̃ ], (B.6.33)
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for all M̃ > T1 |r1| + T2 |r2| and K large enough. This gives 1 − pK0 ≥ exp[−λKM̃ ]. Using
again the connection between ZK and Y K , we can finally estimate similarly to (B.6.32)

P
(
TZ

K

ext > t lnK
∣∣ZK0 = 1

)
≥ exp

[
−t M̃

T1 + T2
lnK − λKM̃

]
≥ exp [−(tM + δ) lnK] , (B.6.34)

for all M > (T1 |r1|+ T2 |r2|)/(T1 + T2) and K large enough.

Now we have collected all the tools to derive the convergence for shrinking populations and
thus conclude the proof of Theorem B.6.1.

Lemma B.6.8. Let ZK follow the law of BD
(
bK , dK , β

)
and assume that rav < 0, then the

convergence of Theorem B.6.1 holds true.

ε

Tε

β

Figure B.5.: Graph of the limiting exponent β + ravs and the time Tε that separates steps 1
and 2 of the proof of Lemma B.6.8.

Proof. Fix ε ∈ (0, β) and set δ = ε/4, η = β − ε/3 and Tε = (β − ε)/ |rav| (see Figure B.5).

Step 1 We first show convergence on [0, Tε]. The computations are very similar to the proof
of Lemma B.6.5 and proof step 3(i) of [45, Lem. A.1], respectively. Here one uses the event

ΩK
2 :=

{
sup

t≤Tε lnK

∣∣∣e−gK(t)ZKt −Kβ
∣∣∣ ≤ Kη

}
, (B.6.35)

which by Lemma B.6.4 has probability converging to 1.

Step 2 Next up, we show that extinction occurs before Tε+3ε/ |rav|. From the previous step,
we know that, with high probability, the population at time t = Tε lnK can be bounded from
above by 2Kε, for large K. Moreover, the first part of Lemma B.6.7 provides an estimate
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on the extinction time of a subcritical birth death process initialized with one individual.
Thus, we obtain the upper bound

P
(
TZ

K

ext > s lnK
∣∣ZK0 = 2Kε

)
= 1−

(
1− P

(
TZ

K

ext > s lnK
∣∣ZK0 = 1

))2Kε

≤ 1− (1− exp [((rav + δ1) s+ δ2) lnK])2Kε

= 1−
(
1−K(rav+δ1)s+δ2

)2Kε

= 1−
(
1−K−2ε

)2Kε

∼ 2K−ε K→∞−→ 0. (B.6.36)

Here, the inequality is a consequence of (B.6.24), while for the last equality we set

s = 2ε+ δ2
|rav + δ1|

<
3ε
|rav|

, (B.6.37)

for proper choice of δ1, δ2 > 0. The final asymptotic behaviour can be deduced using the
limit representation of the exponential function and a first-order approximation.
This now allows to deduce

P
(
TZ

K

ext >
3ε
|rav|

lnK
∣∣ZK0 = 2Kε

)
K→∞−→ 0. (B.6.38)

Step 3 To finally conclude the convergence on the whole interval [0, T ], we have to ensure
that the process stays bounded in the time interval [Tε, Tε + 3ε/ |rav|]. To this end, it is
sufficient to consider the very rough upper bound obtained from the coupling with a Yule
process (a pure birth process) with constant birth rate b̄ = max {b1, b∗, b2}. Since those pro-
cesses are non-decreasing, we just need to control the endpoint. The size of a family at time
(Tε+3ε/ |rav|) lnK, stemming from a single (ith) individual at time Tε lnK, is given by a geo-
metric random variable GKi with expectation K3b̄ε/|rav|. Since families evolve independently
of each other, we obtain by Chebyshev’s inequality, for d := b̄+ |rav|,

P
(

sup
s∈[Tε,Tε+3ε/|rav|]

ZKs lnK ≥ K3dε/|rav|
)
≤ P

(2Kε∑
i=1

GKi ≥ K3dε/|rav|
)
K→∞−→ 0. (B.6.39)

Overall, this means that, with probability converging to 1, we have

sup
s∈[Tε,Tε+3ε/|rav|]

ln(1 + ZKs lnK)
lnK ≤ 3d

|rav|
ε. (B.6.40)

B.6.2. Branching processes with immigration

We now turn to the study of birth death processes with immigration. In addition to the
birth and death rates defined in the beginning of Section B.6.1, we introduce the following
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parameters connected to the effects of immigration. Let c ∈ R describe the initial order
of incoming migration, i.e. initially immigrants arrive at overall rate Kc. When applied in
Section B.4.2, this is representing the initial size of the neighbouring population multiplied
by the mutation rate. Let ai, a∗,i ∈ R, for i ∈ {1, . . . , `}, be the immigrants net growth rates
in the respective (sub-)phases. Thus, we define the time-dependent net growth rate of the
immigrants as the periodic extension of

ãK(s) :=
{
a∗,i : s ∈ [TΣ

i−1λK , T
Σ
i−1λK + T∗,i),

ai : s ∈ [TΣ
i−1λK + T∗,i, T

Σ
i λK). (B.6.41)

Moreover, (corresponding to gK(t) and rav) we define the time integral

aK(t) :=
∫ t

0
ãK(s)ds. (B.6.42)

and the average growth rate of the immigrants aav :=
(∑`

i=1 aiTi
)
/TΣ

` . Hence, the overall
rate of immigration at time t is given by KceaK(t). We can define the Markov processes
(ZKt )t≥0 generated by(
LKt f

)
(n) =

(
bK(t)n+KceaK(t)

)
(f(n+ 1)− f(n)) + dK(t)n (f(n− 1)− f(n)) (B.6.43)

and with ZK0 =
⌊
Kβ − 1

⌋
. We refer to the law of such processes by ZK∼ BDI

(
bK, dK, β, aK, c

)
.

As in the previous section, we derive a convergence result for the logarithmically rescaled
process.

Theorem B.6.9. Let ZK follow the law of BDI
(
bK , dK , β, aK , c

)
. Then, for all fixed

T ∈ (0,∞), the following convergence holds in probability, with respect to the L∞([0, T ])
norm,  ln

(
1 + ZKs lnK

)
lnK


s∈[0,T ]

K→∞−→
(
β̄s
)
s∈[0,T ]

, (B.6.44)

where

β̄s =



(c+ (rav ∨ aav)s) ∨ 0 : c > β,
(β + ravs) ∨ (c+ aavs) ∨ (c+ ravs) ∨ 0 : β > 0, c ≤ β,
(rav ∨ aav)(s− |c| /aav) ∨ 0 : β = 0, c ≤ 0, aav > 0,
0 : β = 0, c < 0, aav ≤ 0,
0 : β = c = 0, aav ≤ 0, rav ≤ 0.

(B.6.45)

Note that the one case that is not cover by this result is that of β = c = 0, aav ≤ 0, rav > 0.

The remainder of this section is dedicated to the proof of this theorem. We first study a
number of specific cases in a series of lemmas and then outline how these can be combined
to prove the final general result.

Since aK is of the same form as gK , we directly obtain.
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Lemma B.6.10. For all fixed T <∞ we have the uniform convergence

sup
s≤T

∣∣∣∣∣∣
ln
(
KceaK(s lnK)

)
lnK − (c+ aavs)

∣∣∣∣∣∣ K→∞−→ 0. (B.6.46)

Proof. See the proof of Lemma B.6.3.

As before, we can construct the processes ZK in terms of the Poisson random measures
Q(b)(ds, dθ) and Q(d)(ds, dθ) and derive the martingale decomposition ZKt = ZK0 +MK

t +AKt ,
where

ZKt = ZK0 +
∫ t

0

∫
R≥0
1
θ≤bK(s−)ZK

s−
+KceaK (s)Q

(b)(ds, dθ)−
∫ t

0

∫
R≥0
1θ≤dK(s−)ZK

s−
Q(d)(ds, dθ),

(B.6.47)

MK
t =

∫ t

0

∫
R≥0
1
θ≤bK(s−)ZK

s−
+KceaK (s)Q̃

(b)(ds, dθ)−
∫ t

0

∫
R≥0
1θ≤dK(s−)ZK

s−
Q̃(d)(ds, dθ),

(B.6.48)

AKt =
∫ t

0
rK(s)ZKs +KceaK(s)ds, (B.6.49)

〈MK〉t =
∫ t

0

(
bK(s) + dK(s)

)
ZKs +KceaK(s)ds, (B.6.50)

dZKt = dMK
t +

(
rK(t)ZKt +KceaK(t)

)
dt. (B.6.51)

Note that, as in Section B.6.1, Q̃(∗) := Q(∗)−dsdθ and equalities only hold in distribution.

As in the case without immigration, we first take a look at the expected value. Moreover,
we derive a bound on the variance of the process.

Lemma B.6.11. Let ZK follow the law of BDI
(
bK , dK , β, aK , c

)
and assume that rav 6= aav.

Then, for fixed T <∞ and all t ∈ [0, T lnK],

zKt := E
[
ZKt

]
≈
(

eravt
(
Kβ − 1

)
+ Kc

aav − rav

[
eaavt − eravt

])
K±3δ. (B.6.52)

Moreover, under the additional assumption of rav 6= 0 and 2rav 6= aav, one obtains

Var
(
ZKt

)
≤
[
(b̄+d̄)

(
Kβ−1+ Kc

rav−aav

)e2ravt−eravt

rav
+Kc

(
1− b̄+ d̄

rav−aav

)
eaavt−e2ravt

aav−2rav

]
K5δ

(B.6.53)

Here and in the remainder of the appendix, these kind of approximation results are meant
in the following way: For any δ > 0, there exists K0 ∈ N such that, for all K ≥ K0, plugging
in K+3δ yields an upper bound and K−3δ a lower bound for the left hand side.
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Proof. As in Lemma B.6.2, we use the martingale decomposition to derive the integral
equation

zKt =
⌊
Kβ − 1

⌋
+
∫ t

0
rK(s)zKs +KceaK(s)ds. (B.6.54)

By variation of constants, this leads to

zKt = egK(t)
(⌊
Kβ − 1

⌋
+Kc

∫ t

0
e−gK(s)eaK(s)ds

)
. (B.6.55)

Using the convergence of gK and aK (Lemmas B.6.3 and B.6.10), we can estimate, for any
t ∈ [0, T lnK], fixed δ > 0, and K large enough,

zKt ≈ eravt
(
Kβ − 1 +Kc

∫ t

0
e(aav−rav)sds

)
K±3δ. (B.6.56)

This directly gives the first claim.

For the estimate on the variance, we see that

d
(
ZKt

)2
= 2ZKt dZKt + d〈ZK〉t= 2ZKt dMK

t + 2ZKt
(
rK(t)ZKt +KceaK(t)

)
dt+ d〈ZK〉t.

(B.6.57)

Define uKt := E
[(
ZKt

)2
]
, then uK0 =

⌊
Kβ − 1

⌋2
and

u̇Kt = 0 + 2rK(t)uKt + 2KceaK(t)zKt +
((
bK(t) + dK(t)

)
zKt +KceaK(t)

)
= 2rK(t)uKt +

(
2KceaK(t) + bK(t) + dK(t)

)
zKt +KceaK(t). (B.6.58)

Using variation of constants, we deduce

uKt = e2gK(t)
(⌊
Kβ − 1

⌋2
+
∫ t

0
e−2gK(s)

[(
2KceaK(s) + bK(s) + dK(s)

)
zKs +KceaK(s)

]
ds
)
.

(B.6.59)

We now focus on the integral term, where we plug in B.6.55 and treat each summand
separately. For the first summand, involving 2KceaK(s), we obtain

2Kc
∫ t

0
e−gK(s)eaK(s)

(⌊
Kβ − 1

⌋
+Kc

∫ s

0
e−gK(w)eaK(w)dw

)
ds

= 2
⌊
Kβ − 1

⌋
Kc

∫ t

0
e−gK(s)eaK(s)ds+ 2K2c

∫ t

0
e−gK(s)eaK(s)

∫ s

0
e−gK(w)eaK(w)dwds

= 2
⌊
Kβ − 1

⌋
Kc

∫ t

0
e−gK(s)eaK(s)ds+

(
Kc

∫ t

0
e−gK(s)eaK(s)ds

)2
. (B.6.60)
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Together with the term
⌊
Kβ − 1

⌋2
and the prefactor e2gK(t) from B.6.59, this is equals to

the square of zKt . Thus, the other two summands of B.6.59 give us the desired variance.
Overall, using the convergence of gK and aK as above and plugging in B.6.55, this yields

Var
(
ZKt

)
= uKt − (zKt )2

=e2gK(t)
(∫ t

0
e−2gK(s)

(
bK(s) + dK(s)

)
zKs ds+Kc

∫ t

0
e−2gK(s)eaK(s)ds

)
≤e2gK(t)

((
b̄+ d̄

) ∫ t

0
e−gK(s)

(
Kβ−1+Kc

∫ s

0
e−gK(w)eaK(w)dw

)
ds+Kc

∫ t

0
e−2gK(s)eaK(s)ds

)
≤K5δe2ravt

((
b̄+ d̄

) ∫ t

0
e−ravs

(
Kβ−1+Kc

∫ s

0
e−ravweaavwdw

)
ds+Kc

∫ t

0
e−2ravseaavsds

)
=K5δ

((
b̄+ d̄

)(
Kβ − 1 + Kc

rav − aav

) e2ravt − eravt

rav
+Kc

(
1− b̄+ d̄

rav − aav

)
eaavt − e2ravt

aav − 2rav

)
.

(B.6.61)

Similar to the model without immigration (c.f. Lemma B.6.4), the starting point for proving
the different parts of Theorem B.6.9 is an estimate on the bracket of the rescaled martingale,
which will be used in combination with Doob’s maximum inequality.

Lemma B.6.12. Let ZK ∼ BDI
(
bK , dK , β, aK , c

)
. Then the process

M̃K
t := e−gK(t)

(
ZKt − zKt

)
, (B.6.62)

with zKt being defined in (B.6.52), is a martingale. Assuming that rav /∈ {aav, 2aav}, for all
T <∞ and all δ > 0, there is a K0 ∈ N such that, for all K ≥ K0, it holds that

E
[
〈M̃K〉T lnK

]
K−5δ ≤ KcK

(aav−2rav)T − 1
aav − 2rav

+
(
b̄+ d̄

)((
Kβ − 1

) 1−K−ravT

rav
+ Kc

aav − rav

[
K(aav−2rav)T − 1

aav − 2rav
− 1−K−ravT

rav

])
.

(B.6.63)

Proof. Using Itô’s formula and the martingale decomposition (B.6.51), we get

dM̃K
t = e−gK(t)dMK

t , (B.6.64)

which yields that M̃K is a martingale. Moreover, an application of Itô’s isometry gives

d〈M̃K〉t = e−2gK(t)d〈MK〉t = e−2gK(t)
((
bK(t) + dK(t)

)
ZKt +KceaK(t)

)
dt. (B.6.65)

Thus,

E
[
〈M̃K〉T lnK

]
=
∫ T lnK

0
e−2gK(t)

((
bK(t) + dK(t)

)
zKt +KceaK(t)

)
dt, (B.6.66)
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and finally, using Lemma B.6.11 and the asymptotics of gK , we obtain, for K large enough,
∫ T lnK

0
e−2gK(t)zKt dt ≤ K5δ

∫ T lnK

0
e−ravt

(
Kc e(aav−rav)t − 1

aav − rav
+ (Kβ − 1)

)
dt, (B.6.67)

which yields the claimed estimate.

Now we can start checking the convergence of Theorem B.6.9 in the cases without extinction
or newly emerging populations.

Lemma B.6.13. The claim of Theorem B.6.9 holds true for c ≤ β, β > 0 and all T < ∞
such that

inf
t∈[0,T ]

(β + ravt) ∨ (c+ aavt) > 0. (B.6.68)

Proof. We split the proof into several steps. First, in step 1, we apply Doob’s maximum
inequality for the rescaled martingales M̃K to prove the convergence in most of the possible
cases. Next, in step 2, we make use of another maximum inequality to check the convergence
for some other cases. Finally, in step 3, we go through a case distinction of all the possible
scenarios of the lemma and explain the strategy of glueing together parts 1 and 2 with the
help of the Markov property to cover the remaining cases.

Step 1: Let us consider the case where we can find an η such that

1
2 [β ∨ (β − ravT ) ∨ (c+ (aav − 2rav)T )] < η < β. (B.6.69)

Then, applying Doob’s maximum inequality to M̃K and adapting the computations of case
1(b) of the proof of [45, Lem. B.1] one obtains the desired convergence.

Step 2: Let us now consider the specific case of β = c and aav > rav. Then we can
apply the maximum inequality of [60, Ch. VI.1.2. p. 66] to the supermartingales(
e−(aavt−ravt)M̃K

t

)
t≥0

to obtain, for K large enough,

P
(

sup
t≤T lnK

e−aavt
∣∣∣ZKt − zKt ∣∣∣ > Kη

)
= P

(
∀t ≤ T lnK : e−(aavt−ravt)

∣∣∣M̃K
t

∣∣∣ > eravt−gK(t)Kη
)

≤ P
(

sup
t≤T lnK

e−(aavt−ravt)
∣∣∣M̃K

t

∣∣∣ > Kη−δ
)

≤ 3K−η+δ sup
t≤T lnK

e−(aavt−ravt)E
[
〈M̃K〉t

] 1
2

≤ CK−η+δ sup
s≤T

K−(aav−rav)s+ 1
2 (β∨(β−ravs)∨(c+(aav−2rav)s)).

(B.6.70)

To conclude, we again proceed as in proof step 2 of [45, Lem. B.1].
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Step 3: Now we can check whether all cases are covered. Under the assumptions of the
lemma, i.e. β > 0, c ≤ β, T ∈ (0,∞) and infs∈[0,T ](β + ravs)∨ (c+ aavs) > 0, we see that the
constraint (B.6.69) of step 1, which is equivalent to

rav > −
β

T
and c+ (aav − 2rav)T < 2β, (B.6.71)

holds true, if

(i) rav ≥ 0, aav ≤ 2rav,

(ii) rav ≥ 0, aav > 2rav and T < T ∗ := (2β − c)/(aav − 2rav),

(iii) rav < 0, aav ≤ rav,

(iv) rav < 0, aav > rav, c+ aavβ/ |rav| ≤ 0 (in this case T < β/|rav|),

(v) rav < 0, aav > rav, c+ aavβ/ |rav| > 0 and T < T ∗ (in this case T ∗ ≤ β/|rav|).

Hence the only remaining cases are (see Figure B.6)

− rav ≥ 0, aav > 2rav and T > T ∗ := (2β − c)/(aav − 2rav),

− rav < 0, aav > rav, c+ aavβ/ |rav| > 0 and T > T ∗.

The strategy for these is the following: Take t∗ < T1 < T ∗, where t∗ := (β−c)/(aav−rav) ≥ 0
is the first time when (s 7→ β+ravs) crosses (s 7→ c+aavs). Now apply step 1 on the interval
[0, T1] to get the desired convergence up to T1. In particular, 1 + ZKT1 lnK ≈ Kc+aavT1±ε for
K large enough. On [T1, T ] we apply step 2 to the approximating processes Z(K,+), Z(K,−),
with parameters b±i := bi, d

±
i := di, a

±
i := ai, for i ∈ {∗, 1, 2}, and β± = c± := c+ aavT1 ± ε.

Together with the Markov property these approximations give the claim.

Tt∗ T1 T ∗

β

c Tt∗ T1 T ∗

β

c

Figure B.6.: Illustration of the two remaining cases of step 3 of the proof of Lemma B.6.13.

Let us now collect some technical results on the (non-)emergence, extinction and instantan-
eous immigration of populations, as well as the continuity of the exponent, to complete the
proof of Theorem B.6.9.
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Lemma B.6.14 (Non-emergence of any new population). Let ZK∼ BDI
(
bK , dK , β, aK , c

)
such that β = 0 and c < 0. Then, for all T > 0 such that c+ aavT < 0 it holds

lim
K→∞

P
(
∀s ∈ [0, T ] : ZKs lnK = 0

)
= 1. (B.6.72)

Proof. This can be shown by following the proof of [45, Lem. B.7].

β = 0

c < 0

|c|
aav

β = 0
c < 0

aav < 0

Figure B.7.: Illustrations of the two possible situations for non-emergence of any new popu-
lation, as in Lemma B.6.14.

Lemma B.6.15 (Emergence of a new population). Let ZK ∼ BDI
(
bK , dK , β, aK , c

)
such

that β = 0, c = −ε < 0 and aav > 0. Then, for all η > (1 ∨ 2rav/aav)ε, it holds that

lim
K→∞

P
(
Kε/2 − 1 ≤ ZK2ε

aav
lnK ≤ K

η − 1
)

= 1. (B.6.73)

Proof. Let us first consider the lower bound. The number of immigrant families that arrive
within the time interval [0, (2ε/aav) lnK] and that survived up to time (2ε/aav) lnK, is, by
thinning, a Poisson random variable with parameter

ϑ =
∫ 2ε

aav
lnK

0
K−εeaK(t)P

(
T Z̃

K

ext >
2ε
aav

lnK − t
∣∣Z̃K0 = 1

)
dt, (B.6.74)

where Z̃K is the corresponding birth death process without immigration. Hence we can
apply the second part of Lemma B.6.7 and bound this from below, for all δ > 0 and K large
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enough,

ϑ =
∫ 2ε

aav

0
K−εeaK(s lnK)P

(
T Z̃

K

ext >

( 2ε
aav
− s

)
lnK

∣∣Z̃K0 = 1
)

lnKds

≥
∫ 2ε

aav

0
K−εK−δeaavs lnK exp

[
−
(
M

( 2ε
aav
− s

)
+ δ

)
lnK

]
lnKds

= K−ε−2δ−M 2ε
aav

∫ 2ε
aav

0
e(aav+M)s lnK lnKds

= K−ε−2δ−M 2ε
aav

K
2ε
aav

(aav+M) − 1
aav +M

≥ 1
2

1
aav +M

K−ε−2δ−M 2ε
aav

+ 2ε
aav

(aav+M)

= CKε−2δ. (B.6.75)

Therefore, taking δ > 0 small enough, we have

lim
K→∞

P
(
ZK2ε
aav

lnK ≥ K
ε
2

)
= 1 (B.6.76)

and can continue as in the proof of [45, Lem. B.8].

β = 0

c = −ε
ε
aav

2ε
aav

Figure B.8.: Illustration of the situation for emergence of a new population, as in Lemma
B.6.15.

Lemma B.6.16 (Continuity of the exponent). Let ZK ∼ BDI
(
bK , dK , β, aK , c

)
such that

c ≤ β. Then there exists a constant c̄ = c̄(b̄, d̄, aav) such that, for all ε > 0, it holds that

lim
K→∞

P
(
∀s ∈ [0, ε] : Kβ−c̄ε − 1 ≤ ZKs lnK ≤ Kβ+c̄ε − 1

)
= 1. (B.6.77)

Proof. Using the estimate of Lemma B.6.10 one can adapt the proof of [45, Lem. B.9].

Lemma B.6.17 (Extinction). Let ZK ∼ BDI
(
bK , dK , β, aK , c

)
such that rav < 0.
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(a) If in addition c < 0 and c+ aavβ/ |rav| < 0, then, for all 0 < η < T with the property
c+ aav(β/ |rav|+ T ) < 0, it holds that

lim
K→∞

P
(
∀s ∈

[
β

|rav|
+ η,

β

|rav|
+ T

]
: ZKs lnK = 0

)
= 1. (B.6.78)

(b) If in addition aav < 0 and c+ aavβ/ |rav| > 0, then, for all 0 < η < T , we have

lim
K→∞

P
(
∀s ∈

[
c

|aav|
+ η,

c

|aav|
+ T

]
: ZKs lnK = 0

)
= 1. (B.6.79)

Proof. The proof follows the lines of the one for [45, Lem. B.10]. We emphazise, that the
results of Lemma B.6.7 on the extinction time are crucial for the processes studied in the
present paper.

β
|rav|

c

c+ aav
β
|rav|

β

β

c

c
|aav|

β
|rav|

Figure B.9.: Illustration of cases (a) and (b) for extinction in Lemma B.6.17.

Lemma B.6.18 (Instantaneous immigration). Let ZK ∼ BDI
(
bK , dK , β, aK , c

)
such that

0 ≤ β < c. Then, for all ε > 0 and all ā > |rav| ∨ |aav| it holds that

lim
K→∞

P
(
ZKε lnK ∈ [Kc−āε,Kc+āε]

)
= 1. (B.6.80)

Proof. With the help of Lemma B.6.2, this is verified as for [45, Lem. B.4].

Having all tools at hand, we can now prove the main convergence result step by step.

Proof of Theorem B.6.9. The previous lemmas cover all the different scenarios of Theorem
B.6.9 either directly or in combination, under application of the Markov property and the
continuity result in Lemma B.6.16. For convenience, we provide a summary of how to treat
each case:
First, we check all the different cases with c ≤ β.
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− If β = 0, c < 0 and aav ≤ 0, we apply Lemma B.6.14.

− If β = 0, c < 0 and aav > 0, we apply Lemma B.6.14 up to time (|c| − ε)/aav.
On [(|c| − ε)/aav, (|c| + ε)/aav], we use Lemma B.6.15, and finally, Lemma B.6.13 on
[(|c|+ ε)/aav, T ].

− If β > 0, the case rav ≥ 0 is already checked in Lemma B.6.13.

− If β > 0, rav < 0 and aav ≥ 0 such that c+ aavβ/ |rav| > 0, we can also apply Lemma
B.6.13.

− If β > 0, rav < 0 and aav > 0 such that c + aavβ/ |rav| < 0, we use Lemma B.6.13 on
[0, β/ |rav| − ε]. After that time, an application of Lemma B.6.17 leads to extinction
until (|c| − ε)/aav. On [(|c| − ε)/aav, (|c|+ ε)/aav], we use Lemma B.6.15, and finally,
Lemma B.6.13 on [(|c|+ ε)/aav, T ].

− If β > 0 and either (rav < 0, aav < 0) or (rav < 0, aav = 0, c < 0), we use Lemma
B.6.13 on [0, β/ |rav| ∨ c/|aav| − ε] or [0, β/ |rav| − ε], respectively. After that time, an
application of Lemma B.6.17 leads to extinction.

− Cases (β = c = 0, aav > 0), (β = c = 0, aav ≤ 0, rav ≤ 0), (β > 0, rav < 0, c = aav = 0),
as well as (β > 0, rav < 0, aav > 0, c < 0, β/ |rav| = |c| /aav) can be treated using
comparisons.

Finally, for c > β, we apply Lemma B.6.18 on [0, ε] and then continue with the previous
results.

B.7. Phase of invasion

In contrast to the results of Appendix B.6, in this chapter we focus on birth and death pro-
cesses with many individuals on shorter but still divergent time horizons. These restrictions
allow for relatively strong bounds on the growth of these processes. The results are used in
the proof of the main theorem of this paper to control the mutant population when it gets
almost macroscopic, to ensure that this happens in the right (fit) phase.

Lemma B.7.1. Let ZK be birth death processes with constant parameters b, d ≥ 0 and
r = b− d. Moreover, for q ∈ (0,∞) and α ∈ R, assume initial values ZK0 = qeαλKK. Then,
for all T ≥ 0 and all γ ∈ (0, 1),

(a) P
(
ZKTλK < perTλKZK0

)
= o(K−γ) K→∞−→ 0, for p ∈ (0, 1),

(b) P
(
ZKTλK > perTλKZK0

)
= o(K−γ) K→∞−→ 0, for p ∈ (1,∞).
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Proof. For this proof we make use of the rescaled martingale M̂K
t = e−rtZKt − ZK0 . Then

dM̂K
t = e−rtdMK

t and thus d〈M̂K〉t = e−2rtd〈MK〉t (cf. (B.6.8) and corresponding discus-
sion). Therefore, in the case of r 6= 0, we can compute

E
[
〈M̂K〉t

]
=
∫ t

0
e−2rs (b+ d)E

[
ZKs

]
ds

= (b+ d)ZK0
∫ t

0
e−rsds

= (b+ d)ZK0
1− e−rt

r
. (B.7.1)

An application of Doob’s maximum inequality [30, Thm. 3.87] yields that, for 0 < p < 1,

P
(
ZKTλK < perTλKZK0

)
= P

(
e−rTλKZKTλK − Z

K
0 < −(1− p)ZK0

)
≤ P

(
sup

t≤TλK

∣∣∣e−rtZKt − ZK0 ∣∣∣ > (1− p)ZK0

)

= P
(

sup
t≤TλK

∣∣∣M̂K
t

∣∣∣ > (1− p)ZK0

)

≤ (1− p)−2
(
ZK0

)−2
E
[
〈M̂K〉TλK

]
= Ce−αλKK−1

∣∣∣e−rTλK − 1
∣∣∣

|r|
≤ C̃e−αλKK−1e|r|TλK

= C̃ exp (−αλK − lnK + |r|TλK)

≤ C̃ exp (−γ lnK) K→∞−→ 0. (B.7.2)

The last inequality is true for every γ ∈ (0, 1) and K large enough since, in the limit of large
K, one has (|r|T − α)λK/ lnK < 1− γ in the limit of large K.

If we now consider r = 0, we see that in this case

E
[
〈M̂K〉t

]
= (b+ d)ZK0 t. (B.7.3)

Plugging this into the above estimate of the probability leads to an even better bound.

For p > 1, we adapt the first calculations as

P
(
ZKTλK > perTλKZK0

)
= P

(
e−rTλKZKTλK − Z

K
0 > −(1− p)ZK0

)
≤ P

(
sup

t≤TλK

∣∣∣e−rtZKt − ZK0 ∣∣∣ > (p− 1)ZK0

)
, (B.7.4)

from where we can continue as before.

Remark 22. Note that we do not only prove the convergence to zero here but also determine
the speed of convergence, which is o(K−γ), for all γ ∈ (0, 1).
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Corollary B.7.2. Let ZK be birth death process with time-dependent rates bK , dK as intro-
duced in Appendix B.6.1 and recall that gK(t) =

∫ t
0 r

K(s)ds, where rK(s) = bK(s) − dK(s)
is the net growth rate. For initial values ZK0 = ε2K, for all 0 < p1 < 1 < p2, all T ≥ 0, and
all γ ∈ (0, 1), we obtain

P
(
p1egK(t)ZK0 < ZKt < p2egK(t)ZK0 ∀t ∈ [0, TλK ]

)
= 1− o(K−γ) K→∞−→ 1. (B.7.5)

Proof. The corollary can be deduced easily by iterative application of Lemma B.7.1, com-
bined with the Markov property at the times TΣ

i .
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C. Preprint: Crossing a fitness valley in a
changing environment: With and without
pit stop

This appendix is available as a preprint as joint work with Anna Kraut [70],

M. Esser and A. Kraut, Crossing a fitness valley in a changing environment: With
and without pit stop. Preprint, arXiv:2503.19766.

We consider a stochastic individual-based model of adaptive dynamics for an asexually re-
producing population with mutation. Biologically motivated by the influence of seasons or
the variation of drug concentration during medical treatment, the model parameters vary
over time as piecewise constant and periodic functions. We study the typical evolutionary
behavior of the population by looking at limits of large populations and rare mutations. An
analysis of the crossing of valleys in the fitness landscape in a changing environment leads
to various interesting phenomena on different time scales, which depend on the length of the
valley. By carefully examining the influence of the changing environment on each time scale,
we are able to determine the crossing rates of fit mutants and their ability to invade the res-
ident population. In addition, we investigate the special scenario of pit stops, where single
intermediate mutants within the valley have phases of positive fitness and can thus grow to
a diverging size before going extinct again. This significantly accelerates the traversal of the
valley and leads to an interesting new time scale.

C.1. Introduction

Adaptation to the environment is one of the key factors of biological evolution. Condensed
in the principle of survival of the fittest, it is known since Charles Darwin [51], that among
several individuals of a species, the ones that are better adapted to their natural environment
transmit their characteristics to a larger number of descendants than the ones that are less
adapted. In the long run, this leads to the persistence of the adapted individual traits and the
disappearance of disadvantageous traits. This general principle seems to be nicely short and
satisfying. However, the observation of nature gives suggests that the underling mechanisms
are somewhat more involved. There are two specific aspects that we like to point out in the
following.

First, let us turn to the micro evolutionary perspective by looking at a cell’s DNA. Most of
the time, the DNA is replicated exactly during cell division, however, sometimes this process
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is effected by errors, called mutations. Changing a single base-pair can likely cause a defect
in the encoded gene, which makes us believe that most mutations are disadvantageous. In
some cases, the accumulation of multiple mutations can lead to an advantage by changing
the function of a particular gene. Since effective mutations (altering the coding region of the
DNA) are rare, these mutations have to be collected one by one. This means that, in order
to reach a state of higher fitness, there is a temporary decrease in fitness in between. This
phenomenon is called a fitness valley and is for example observed in the initiation of cancer
[137], the formation of the flagella apparatus of bacteria [152], and other fields [50, 59, 133].

A second observation is that the environment that populations adapt to underlies ongoing
changes. Even if we restrict to purely abiotic factors such as temperature, humidity, or
accessibility and concentration of nutrients, fluctuations are ubiquitous and have a big impact
on the process of selection. In addition to random or chaotic fluctuations of the environment,
there are cases of regular and recurrent changes. One can think of seasonal changes or the
variation of drug concentration during medical treatment as simple examples.

The present article aims to study the interplay of these two aspects, extending the basic
picture of selection. Stochastic individual-based models of adaptive dynamics, as introduced
by Fournier and Méléard [83], have turned out to be a useful model type that allows to depict
many different mechanisms. A first key result about the basic model was the separation of
ecological and evolutionary time scales, studied by Champagnat [40]. In the last decades,
this model has been developed and extended in multiple directions, e.g. studying diploidy
[28, 126, 148], dormancy [22, 20], the canonical equation of adaptive dynamics [7, 42, 153],
or Hamilton-Jacobi equations [44]. At its core, these model rely on the simple biological
principles of asexual clonal birth, natural death, additional competition-induced deaths,
depending on the population density, and the possibility of mutation at birth.

From the various scaling parameters that have been studied for this class of models, we
focus on large populations of order K → ∞ and small mutation probabilities µK → 0 that
vanishes as power law, i.e. µK = K−1/α, for some α > 0. This regime has been studied in
various works e.g. [29, 48, 34, 153, 69, 71]. Under these assumptions, it has been shown that
the dominating types within the population move fast towards an equilibrium, in a time
of order 1, while newly appearing mutants with a positive (invasion) fitness need a time of
order lnK to reach a macroscopic size.

To depict repeating changes of the environment, we let all of the model parameters vary over
time as piecewise constant, periodic functions and introduce a new parameter λK to control
the speed of environmental changes. Branching processes in changing environments have
previously been studied in the discrete-time, single-type setting [15, 23, 113, 163], answering
questions about population size growth, genealogies and tree structures. A deterministic
differential equation model for a multi-type non-competitive population spreading across a
sink of negative fitness was considered in [9]. Other works have focused on either fast changes
on time scales O(1) (cf. [78, 87] for deterministic models of interacting populations), which
hinder the resident population’s ability to stabilize close to an equilibrium, or very slow
changes on time scales larger than the lnK-times of mutant growth and invasion (cf. [49] for
a multi-type Moran-like model). Our work, on the other hand, allows for an intermediate
speed of environmental changes, choosing 1 � λK � lnK. As previously worked out in
[71], this means that the effective growth rates on the lnK-time scale of mutant populations
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are given as weighted averages over all phases. On this time scale, the population’s traits
evolve until it gets stuck in a local fitness maximum. In this present work, we study how
the population can leave such a local maximum, traversing a valley in the fitness landscape
on a more accelerated time scale.

Based on the notion of phase-dependent and average fitness, we distinguish two scenarios.
We first consider a strict fitness valley, which means that all intermediate traits between the
current resident trait and the advantageous mutant are unfit in every phase, resulting in a
scenario as in the (constant environment) considerations of [29]. In this case, successfully
invading mutants can be observed on the time scale of 1/KµLK , where L describes the width
of the valley. Since the environment changes on a much shorter time scale, the rate of
crossing the valley is given by the weighted average of the crossing rates computed for
constant environments in [29]. The main difficulty arising in this case is the fact that the
probability for the mutant population to fixate and finally grow to a macroscopic size is not
only determined by its average fitness or its fitness in the phase of arrival alone. Instead,
it strongly depends on the arrival time within the phase since one has to ensure that the
new mutant grows enough during fit phases to not go extinct during potential unfit phases.
In our result, we make this precise by defining a set A ⊆ [0,∞) of possible arrival times of
successful mutants, and incorporating it when computing the effective crossing rate.

To relax the assumptions of the strict valley, the second scenario allows for a single pit stop
within the fitness valley. This means that there is a single trait w in the valley that has a
positive fitness during one phase, while maintaining a negative average fitness. In contrast
to the approximating subcritical birth death processes in [29], this trait can grow for a short
but diverging time of order λK . Therefore, we see a speed up in the crossing rates for the
fitness valley and the respective time scale. Since the growth behavior of w, and hence also
the acceleration of the time scale, strongly depends on the equilibrium size of the resident
population, we need to derive more accurate estimates on the resident’s stability. Another
challenge in this second scenario is to distinguish typical crossings from other possibilities.
A crossing is more likely when the population of trait w can grow the most. This is exactly
the case when a mutant of trait w is born at the very beginning of its fit phase and hence
produces the next order mutants at the highest possible rate when it is at its peak population
size, at the end of the fit phase or the beginning of the next one, respectively.

The remainder of this article is structured as follows. In Section C.2.1, we introduce the
individual-based model for a population in a time-dependent environment and point out some
key quantities, such as equilibrium states and invasion fitness. Section C.2.2 and Section
C.2.3 provide our two main convergence results for strict fitness valleys and valleys with a
pit stop, respectively. We discuss the proof heuristics, the necessity of some assumptions,
and possible generalizations of our results in Chapter C.3. Chapter C.4 is dedicated to the
proofs of the main results, and in the Appendix C.5 we collected some technical results on
birth death processes.
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C.2. Model and Results

C.2.1. Model introduction: Individual-based adaptive dynamics in changing
environment

We consider a population that is composed of a finite number of asexually reproducing
individuals. Denote by V = [[0, L]] := {0, 1, . . . , L} the space of possible traits, characterising
the individuals. To model a periodically changing environment, we consider a finite number
` ∈ N of phases. For each phase i = 1, . . . , ` and all traits v, w ∈ V , we introduce the
following biological parameters:

− biv ∈ R+, the birth rate of an individual of trait v during phase i,

− div ∈ R+, the (natural) death rate of an individual of trait v during phase i,

− civ,w ∈ R+, the competition imposed by an individual of trait w onto an individual of
trait v during phase i,

− K ∈ N, the carrying capacity that scales the environment’s capacity to support life,

− µK ∈ [0, 1], the probability of mutation at a birth event (phase-independent),

− mv,· ∈Mp(V ), the law of the trait of a mutant offspring produced by an individual of
trait v (phase-independent).

For simplicity, we focus on the situation of nearest neighbour forward mutation without
backwards mutation. That is mv,· = δv+1,·, for v ∈ [[0, L− 1]], and mL,· = δL,·, where δ
denotes the Dirac measure. Moreover, to ensure logistic growth of the total population and
thus in particular non-explosion we assume that civ,v > 0, for all v ∈ V and all i = 1, . . . , `.

To describe the time-dependent environment, we take, for each i = 1, . . . , `, Ti > 0 as the
length of the i-th phase and refer to the endpoints of these phases by TΣ

j :=
∑j
i=1 Ti. Now

we can define the time-dependent birth rates as the periodic extension of

bv(t) :=
∑̀
i=1

1t∈[TΣ
i−1,T

Σ
i )b

i
v, (C.2.1)

and analogously for the death rates dv(t) and competition rates cv,w(t).

In the following, we consider three scaling parameters. As already mentioned, K denotes
the carrying capacity of the environment and will correspond to the typical population size,
see below. The probability of mutation at birth is denoted by µK and is chosen as a power
law µK = K−1/α, for some α ∈ R+\N0, here. Lastly, we let λK describe the time scale on
which parameter changes occur. In order for environmental changes to happen slow enough
such that the resident populations can adapt, but fast enough such that they influence the
growth of mutants, we choose

1� λK � lnK (C.2.2)
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as an intermediate scale and set

bKv (t) := bv(t/λK), dKv (t) := dv(t/λK), and cKv,w(t) := cv,w(t/λK). (C.2.3)

This means that the parameters of the i-th phase now apply for a time of rescaled length
TiλK . Note that biv and bKv are very similar in notation. To make the distinction clear, we
always use the upper index i to refer to the constant parameter in phase i and the index
K to refer to the time-dependent parameter function for carrying capacity K, and use the
same convention for the other parameters.

For any K, the evolution of the population over time is described by a Markov process NK

with values in D(R+,NV0 ). NK
v (t) denotes the number of individuals of trait v ∈ V that are

alive at time t ≥ 0. The process is characterised by its infinitesimal generator(
LKt φ

)
(N) =

∑
v∈V

(φ(N + ev)− φ(N))
(
Nvb

K
v (t)(1− µK) +

∑
w∈V

Nwb
K
w (t)µKmw,v

)

+
∑
v∈V

(φ(N − ev)− φ(N))Nv

(
dKv (t) +

∑
w∈V

cKv,w(t)
K

Nw

)
, (C.2.4)

where φ : NV0 → R is measurable and bounded and ev denotes the unit vector at v ∈ V .

Dividing the competition kernel by K in the quadratic term of the stated generator leads to
a total population size of order K. In the following, we will refer to subpopulations with a
size of order K as macroscopic, while we call populations with a size of order 1 microscopic,
and intermediate sizes of order strictly between 1 and K mesoscopic. We are interested in
studying the typical behaviour of the processes (NK ,K ∈ N) for large populations (i.e. as
K → ∞). A classical law of large numbers result states that the rescaled processes NK/K
converge on finite time intervals to the solution of a system of Lotka-Volterra equations.

ṅv(t) =
(
biv − div −

∑
w∈V

civ,wnw(t)
)
nv(t), v ∈ V, t ≥ 0. (C.2.5)

We are interested in the process started with a monomorphic resident population of trait 0,
studying the transition towards a new monomorphic subpopulation of trait L. This means
that, apart from the invasion phase, only one single (fit) subpopulation is of macroscopic
size and fluctuates around its equilibrium size. Taking into account the phase-dependent
parameters, we denote these monomorphic equilibria by

n̄iv := biv − div
civ,v

, v ∈ V, i = 1, . . . , `, (C.2.6)

and introduce the corresponding time-dependent versions

n̄v(t) :=
∑̀
i=1

1t∈[TΣ
i−1,T

Σ
i )n̄

i
v and n̄Kv (t) = n̄v(t/λK). (C.2.7)

Starting with such a monomorphic equilibrium, a natural question is to ask for the approx-
imate growth rate of a smaller population of different trait w in the presence of the bulk
population of trait v. This leads to the concept of invasion fitness.
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Definition C.2.1 (Invasion fitness). For each phase i = 1, · · · , ` and for all traits v, w ∈ V
such that the equilibrium size of n̄iv is positive, we denote by

f iw,v := biw − diw − ciw,vn̄iv (C.2.8)

the invasion fitness of trait w with respect to the monomorphic resident v in the i-th phase.
Moreover, we define the time-dependent fitness and its rescaled version by the periodic
extension of

fw,v(t) :=
∑̀
i=1

1t∈[TΣ
i−1,T

Σ
i )f

i
w,v and fKw,v(t) := fw,v(t/λK). (C.2.9)

C.2.2. Main Result 1: Strict fitness valley

Our aim is to study the crossing of a fitness valley of length L. By this we mean to start
initially with a monomorphic wild-type population of trait 0, near its equilibrium n̄1

0K,
and wait until mutants have transitioned through a number of unfit intermediate traits to
eventually produce a mutant of trait L that forms a subpopulation of macroscopic order K
and replaces the wild-typ as the resident trait. To depict this situation, we fix the initial
condition as follows.

Assumption 5 (Initial condition).

(i) NK
0 (0) = bn̄1

0Kc,

(ii) NK
v (0) = 0 , for all v ∈ [[1, L]].

Moreover, we introduce the following stopping time that marks the time when the L-trait
has taken over the population.

T
(K,ε)
inv = inf

t ≥ 0 :
∣∣∣∣∣NK

L (t)
K

− n̄KL (t)
∣∣∣∣∣ < ε and 1

K

L−1∑
j=0

NK
j (t) < ε

 . (C.2.10)

To ensure that an L-mutant subpopulation is able to fixate and invade in a phase when it is
fit with respect to the resident 0-trait, we make the following assumptions.

Assumption 6 (Guaranteed invasion).

(i) f i0,L < 0, whenever f iL,0 > 0,

(ii) f iL,0 6= 0, for all i = 1, . . . , `.
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Note that while the first part of the assumption prevents coexistence, the second part is only
technical and avoids the situation of critical branching process approximations.

To precisely define the notion of a fitness valley, let us note that, as shown in [71], the growth
of a mutant subpopulation is effectively driven by its average fitness

fav
v,0 :=

∑`
i=1 f

i
v,0Ti

TΣ
`

. (C.2.11)

One might now simply require this quantity to be negative for all intermediate traits in
[[1, L− 1]] to define a fitness valley. However, a negative average fitness only prevents long-
term growth on the lnK-time scale, as studied in [71]. On the λK-time scale of environmental
changes, there might still be phases i of positive invasion fitness f iv,0 > 0, for some trait
v ∈ [[1, L− 1]], which would allow for temporary growth to a mesoscopic size of this mutant
subpopulation. Such a short-term growth significantly complicates the study of a fitness
valley transition. We therefore distinguish two scenarios: Our first result is restricted to
the case of a strict fitness valley in the sense that the traits within the valley are unfit
in every phase (cf. Assumption 7). In the second result we then present an extension by
allowing exactly one trait to have positive fitness in one phase (cf. Assumption 8) and call
this conditions a pit stop.

Assumption 7 (Strict fitness valley).

(i) n̄i0 > 0, for all i = 1, . . . , `,

(ii) f iw,0 < 0, for all w ∈ [[1, L− 1]] and all i = 1, . . . , `,

(iii) fav
L,0 > 0.

As outlined in the heuristics in Section C.3.1, the crossing of the fitness valley is very rare but
itself a fast event. Therefore, we can treat it phase by phase and define the phase-dependent
crossing rates, for i = 1 . . . `,

RiL := n̄i0

 bαc∏
v=1

biv−1∣∣∣f iv,0∣∣∣
 bibαc

 L−1∏
w=bαc+1

λ(ρiw)


(
f iL,0

)
+

biL
, (C.2.12)

where

ρiw = biw
biw + diw + ciw,0n̄

i
0

and λ(ρiw) = ρiw
1− 2ρiw

= biw∣∣∣f iw,0∣∣∣ . (C.2.13)

The effective crossing rate is then given by

Reff
L = 1

TΣ
`

∫ TΣ
`

0

(∑̀
i=1

RiL1t∈[TΣ
i−1,T

Σ
i )

)
1t∈Adt, (C.2.14)
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where A denotes the set of possible arrival times of successful mutants and is given by

A :=
{
t ≥ 0 :

∫ t+s

t
fL,0(u)du > 0 ∀s ∈ (0, TΣ

` ]
}
. (C.2.15)

Again, we refer to Section C.3.1 for a heuristic explanation of these rates and the corres-
ponding time scale for crossing the fitness valley.

Using the above notation, we can describe the crossing times of a strict fitness valley as
follows.

Theorem C.2.2. Suppose that Assumptions 5, 6, and 7 is satisfied. Then there exist ε0 > 0
and c ∈ (0,∞) such that, for all 0 < ε < ε0, there are exponential random variables E(K,±)(ε)
with parameters (1± cε)Reff

L such that

lim inf
K→∞

P
(
E(K,−)(ε) ≤ T (K,ε)

inv KµLK ≤ E(K,+)(ε)
)
≥ 1− cε. (C.2.16)

Remark 23. Originally, it was introduced λ(ρ) =
∑∞
k=1

(2k)!
(k−1)!(k+1)!ρ

k(1−ρ)k+1 in [29], which
incorporates the combinatorial origin related to the number of birth events in a subcritical
branching process excursion. We decide for the simpler representation here, as it points
out the similarity to the other factors. Using complex integration, one can show that both
definitions are equivalent.

C.2.3. Main Result 2: Valley with pit stop

After the analysis of the crossing of a strict fitness valley in the previous section, it is natural
to ask how we can extend this result to more general fitness landscapes. In order to stay
in the setting of a fitness valley, we still ask for the traits within the valley to be unfit in
the sense of average fitness, i.e. fav

v,0 < 0, for all v ∈ [[1, L− 1]]. In contast to the previous
setting, this does allow for a positive invasion fitness of intermediate traits in the valley for
some phases. Since this little change leads to a totally different development of the crossing,
we keep the situation manageable by restricting to an environment changing only between
two different phases and allowing only one stand-out trait w in the valley to be fit in one
of the phases. Moreover, we assume that the equilibrium size of the wild-type trait 0 is the
same in both phases. In Section C.3, we discuss some conjectures of how these assumptions
might be relaxed in future work.

Assumption 8 (Fitness valley with pit stop).

(0) ` = 2,

(i) n̄1
0 = n̄2

0 > 0,

(ii) f1
w,0 > 0, fav

w,0 < 0, for a unique w ∈ [[bαc+ 1, L− 1]], and
f iv,0 < 0, for all v ∈ [[1, L− 1]] \{w} and i = 1, 2,

(iii) f iL,0 > 0, for i = 1, 2.
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C.3. Heuristics and Discussion

The short but significant growth phases of trait w in phase 1, before going extinct again in
phase 2, give rise to a partially changed crossing rate,

Rpitstop
L = n̄1

0

 bαc∏
v=1

b1v−1∣∣∣f1
v,0

∣∣∣
b1bαc

 w−1∏
z=bαc+1

λ(ρ1
z)

 1
f1
w,0

×
[
b1w
f1
w,0

(
L−1∏

z=w+1
λ(ρ1

z)
)
f1
L,0
b1L

+ b2w
|f2
w,0|

(
L−1∏

z=w+1
λ(ρ2

z)
)
f2
L,0
b2L

]
1
TΣ

2
.

(C.2.17)

Moreover, the refreshments at this pit stop causes a speed up of the crossing that is depicted
in an additional term in the corresponding time scale. Overall, we obtain the following
result.

Theorem C.2.3. Suppose that Assumptions 5, 6 and 8 is satisfied. Then there exist ε0 > 0
and c ∈ (0,∞) such that, for all 0 < ε < ε0, there are exponential random variables E(K,±)(ε)
with parameter (1± cε)Rpitstop

L such that

lim inf
K→∞

P
(
E(K,−)(ε) ≤ T (K,ε)

inv KµLKe
λKT1f1

w,0/λK ≤ E(K,+)(ε)
)
≥ 1− cε. (C.2.18)

A heuristic explanation of the rate and the time scale can be found in Section C.3.1.

C.3. Heuristics and Discussion

The proofs in the field of adaptive dynamics are often quite technical. Therefore, we use this
chapter to first provide some heuristics behind the main results of this paper and work out
the details in the next chapter. Moreover, we have kept our results in their simplest form
to avoid even more technicalities but want to discuss possible extensions or generalizations
here.

C.3.1. Explanation of the main results

Theorem C.2.2

We begin by explaining the rational behind the phase-dependent crossing rate in (C.2.12).

Under the assumption that α < L, all mutant traits within an α-distance of the initial
resident trait 0 (and beyond, up to trait L − 1) are initially unfit. As a consequence, their
population size is fed by incoming mutants from left neighbors but otherwise declines. During
a given phase i, and as long as all mutant traits are small enough such that they essentially
do not contribute to competitive interactions, we can hence iteratively estimate their sizes
as follows:

149



C. Crossing a fitness valley in a changing environment: With and without pit stop

The resident trait 0, which does not get any incoming mutants, is approximately at its equilib-
rium size NK

0 = n̄i0K. Trait 1 has incoming mutants at rate NK
0 · bi0µK and otherwise decays

at rate NK
1 ·f i1,0, which yields an equilibrium size of NK

1 = NK
0 b

i
0µK/|f i1,0| = KµK n̄

i
0b
i
0/|f i1,0|.

Trait 2 then has incoming mutants at rate NK
1 · bi1µK and decays at rate NK

2 · f i2,0, yield-
ing an equilibrium of NK

2 = Kµ2
K n̄

i
0(bi0/|f i1,0|)(bi1/|f i2,0|) and so on. Iterating, we obtain an

equilibrium of trait bαc of

NK
bαc = Kµ

bαc
K n̄i0

bαc∏
v=1

biv−1∣∣∣f iv,0∣∣∣ . (C.3.1)

Note that, since KµbαcK � 1, as K →∞, all of these traits have a diverging population size
and hence an argument via a deterministic approximation can be applied.

As above, trait bαc produces mutants of type bαc+1 at rate NK
bαc ·b

i
bαcµK . This rate however

is now of order Kµbαc+1
K � 1. As a consequence, mutation events are separated and occur

on a longer time scale of order 1/Kµbαc+1
K � 1. Assuming that trait bαc+ 1 < L is unfit, its

population can be approximated by a subcritical birth death process and the descendants of
a single arriving mutant go extinct within a finite time of order 1. The only chance for an
bαc+ 2 mutant to occur is therefore the unlikely case that the bαc+ 1 population produces
a mutant in this order 1 time before its extinction. The probability of this event can be
estimated by λ(ρibαc+1)µK , where λ(ρibαc+1) is the expected number of birth events in an
excursion of a subcritical birth death process with birth probability of ρibαc+1.

In order for an L-mutant to occur across the fitness valley, every mutant trait in between
bαc and L must produce the next mutant before going extinct in finite time, which has a
combined probability of

µ
L−bαc−1
K

L−1∏
w=bαc+1

λ(ρiw). (C.3.2)

Note that, since extinction occurs within a time of order 1 and phases change on a time scale
of order λK � 1, this crossing of the fitness valley will take place within a single i-phase and
hence all parameters are chosen accordingly.

Finally, if an L-mutant occurs in an i-phase, according to classical branching process theory,
it has a chance of (f iL,0)+/b

i
L to initially survive and not go extinct within a finite time

due to random fluctuations (or being unfit, which is covered by taking only the positive
part of f iL,0 here). Overall, the rate at which successful L-mutants - those that foster an
initially growing population - occur in phase i can be found as the product of the rate at
which bαc+ 1 mutants occur, times the probability of crossing the valley and producing an
L-mutant, times the survival probability of that L-mutant, i.e.

KµLKR
i
L = KµLK n̄

i
0

 bαc∏
v=1

biv−1∣∣∣f iv,0∣∣∣
 bibαc

 L−1∏
w=bαc+1

λ(ρiw)


(
f iL,0

)
+

biL
. (C.3.3)
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To conclude the effective rate at which an L-mutant occurs and not only initially survives but
invades the population - i.e. reaches a size of order K and out-competes the current resident
trait - we need to consider the growth dynamics of an L-population over the course of many
phases. During an i-phase, the L-population grows approximately at exponential rate f iL,0.
Hence, starting with a size of order 1 at time TλK , after a time SλK the population would
have grown to a size of order

e

∫ (T+S)λK
TλK

fL,0(t/λK)dt = eλK
∫ (T+S)
T

fL,0(u)du. (C.3.4)

To guarantee survival, this order of the population size needs to stay larger than 1 (and in
fact almost sure extinction can be shown in the case where it drops below 1), i.e. one needs∫ (T+S)

T
fL,0(u)du > 0. (C.3.5)

Since by assumption fav
L,0 > 0, this can only fail within the first cycle of phases and we

therefore introduce the set of possible arrival times of successful L-mutants of

A =
{
t ≥ 0 :

∫ t+s

t
fL,0(u)du > 0 ∀ s ∈ (0, TΣ

` ]
}
. (C.3.6)

Finally, the effective crossing rate, i.e. the rate at which L-mutants occur, initially survive,
and grow to a population size of orderK, can be calculated by averaging the phase-dependent
rates over a full cycle of phases and taking the above set A into account, which yields

KµLKR
eff
L = 1

TΣ
`

∫ TΣ
`

0

(∑̀
i=1

KµLKR
i
L1t∈[TΣ

i−1,T
Σ
i )

)
1t∈Adt. (C.3.7)

Since this is an exponential rate of order KµLK , the crossing event itself occurs on a time
scale of order 1/KµLK . The exponential growth of the L-mutant from a population size of
order 1 to a size of order K occurs within a lnK-time and the Lotka-Volterra dynamics of
the L-mutant taking over the resident population plays out in a time of order 1 once both
populations are of the same order. Both of these events are negligible on the 1/KµLK time
scale, which leads to Theorem C.2.2.

Theorem C.2.3

We now turn to the case of a fitness valley with a pit stop trait bαc < w < L and the
heuristics for (C.2.17). For technical reasons, we restrict this result to the case of only two
parameter phases, where w is fit during phase 1 and unfit during phase 2. Possible extensions
are discussed below.

During phase i, new mutants of trait w occur at approximate rate

KµwK n̄
i
0

 bαc∏
v=1

biv−1∣∣∣f iv,0∣∣∣
 bibαc

 w−1∏
z=bαc+1

λ(ρiz)

 (C.3.8)
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C. Crossing a fitness valley in a changing environment: With and without pit stop

and mutants of trait w + 1 foster a successfully invading L population with probability

µ
L−(w+1)
K

(
L−1∏

z=w+1
λ(ρiz)

) (
f iL,0

)
+

biL
, (C.3.9)

as in the previous case of Theorem C.2.2 (here the set A is dropped since L is assumed to be
fit in both phases). However, the probability of a trait w mutant fostering a w + 1 mutant
is only λ(ρiw)µK in phase i = 2.

If the w mutant occurs in phase 1, it is temporarily fit and grows exponentially at rate
f1
w,0 until the next phase change. To get the average/effective rate of crossing the fitness
valley, one needs to average the crossing rate over all possible arrival times of the w mutant.
Since trait w produces w + 1 mutants at rate NK

w b
i
wµK , the dominating rate - and hence

typical case - occurs when the w population reaches its highest possible population size before
becoming subcritical and going extinct again. This is the case when w mutants arise right
at the beginning of a phase 1 and hence grow to an approximate size of eλKT1f1

w,0 , yielding
the maximal mutation rate of eλKT1f1

w,0biwµK at its highest peak at the transition from phase
1 to phase 2. Here both values of i = 1, 2 are relevant since the w + 1 mutant typically
arises either right before or after the change from phase 1 to phase 2. The probability of
a w mutant to occur right at the beginning of phase 1 is of order 1/λK since arrival times
are roughly uniform within a phase. Up to some remaining constants that stem from the
averaging integration and that we do not want to discuss in detail here, these heuristics
combine to the overall crossing rate of Rpitstop

L KµLKe
λKT1f1

w,0/λK in (C.2.17), which yields
Theorem C.2.3.

On some simplifying assumptions

To simplify the already complicated proofs, we have made some assumptions on the ini-
tial condition of population sizes (Assumption 5) and the possible directions of mutations
(mv,z = δv+1,z). These are not necessary assumptions and we want to briefly explain why
relaxing them would not change the overall results.

First, we assume that the population starts out with a monomorphic population of trait 0,
close to its equilibrium size Kn̄1

0. This assumption could be relaxed to a trait 0 population
of order K and traits v ∈ [[1, bαc]] of any order smaller or equal to KµvK . In this case, trait 0
gets close to its equilibrium within a time of order 1, following the deterministic single-trait
Lotka-Volterra dynamics. Within an additional time of order 1, traits v ∈ [[1, bαc]] also
reach their respective (lower-order) equilibria due to incoming mutants from traits v − 1,
see Lemma C.4.2. This order 1 time is negligible on the time scale of our result and the
probability of a fitness valley crossing to occur during this time converges to zero.

In addition, we could also allow for positive initial population sizes for traits
v ∈ [[bαc+ 1, L− 1]], as long as they are of order 1, as K → ∞. Any one of these fi-
nitely many individual has a probability of producing a successful L-mutant that converges
to 0, as K →∞, and hence the probability of all of their offspring going extinct (in a time
of order 1) without crossing the fitness valley converges to 1. The important heuristic here
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C.3. Heuristics and Discussion

is that the each of the finitely many initial individuals only has a one time shot to cross the
valley (through its offspring) that is unlikely to succeed. A successful crossing only occurs
through infinitely many of such unlikely attempts, occurring on the diverging time scale of
our results.

Finally, note that we do need to assure that NK
L (0) = 0 in order to guarantee that a

successful L population stems from a crossing of the fitness valley and does not just start
growing immediately.

On another note, we assume that mutation can only occur to neighboring higher traits, i.e.
from v to v + 1. We could allow for backwards mutation, i.e. from v to v − 1, without
changing the outcome of the main results. This is true because the crossing rate of order
KµLK in Theorem C.2.2 and the respective adjusted rate in Theorem C.2.3 stem from tracking
mutations along the shortest possible path from 0 to L. Taking a “detour” via forwards and
backwards mutation would only add additional factors of µK due to additional mutation
steps and hence produce lower order crossing rates. When determining the overall crossing
rates in this case, one can write them as the sum of rates of L-mutants arising along different
paths from 0 to L, where the dominant summands will be exactly the respective rates of
our theorems here. We refer to [29, 69] for the precise arguments in the case of constant
parameters.

C.3.2. Possible generalizations of the pitstop result

There are a number of ways in which we conjecture Theorem C.2.3 could be extended and
that we briefly want to discuss in the following.

Non-constant resident trait

In contrast to Theorem C.2.2, for Theorem C.2.3 we require that n̄1
0 = n̄2

0 in Assumption 8.
We conjecture that the same result is still true for n̄1

0 6= n̄2
0, as long as both equilibria are

strictly positive. However, this cannot be argued with our current proof techniques for the fol-
lowing reason: In order to ensure the correct order of the crossing rate of KµLKe

λKT1f1
w,0/λK ,

one needs to approximate the w population by birth death processes with a fitness that only
deviates from f1

w,0 by an error that vanishes as K → ∞. To do so, we pick a threshold of
εKK, where εK → 0, to bound both the size of the mutant populations and the deviation
between the resident 0 trait and its equilibrium, since these two quantities are the source of
errors in the actual fitness of w. Now for Theorem C.2.2, the proof relies on bounding the
resident population size NK

0 in two ways. Once the population is close to its equilibrium,
potential theoretic arguments are applied to ensure it staying close. Initially after a para-
meter change however, the approximating deterministic system is used to ensure that the
population gets close to its new equilibrium in a negligible time of order 1. If one requires
this “closeness” to be of an order εKK for the pitstop result, it would take a diverging time
in the deterministic system to be achieved. The classical results for deterministic approx-
imations are however only valid on a finite time scale and, moreover, this adaptation time
would now no longer be a negligible order 1 time, during which mutations do not occur with

153



C. Crossing a fitness valley in a changing environment: With and without pit stop

probability 1 (a fact that is necessary to justify using only the equilibrium population sizes
in the transition rate).

More than two distinct phases

When there are more than two parameter phases (` > 2), even if the target mutant trait
L remains fit throughout all of them, the description of the crossing rate becomes more
intricate and the proof would require a lot more notation. Heuristically, for every specific
example, one must determine the corresponding maximal possible population size of the
pitstop trait w, which replaces the factor eλKT1f1

w,0 in the transition rate in Theorem C.2.3.
In accordance with (C.3.4), and setting gw(t, s) =

∫ t+s
t fw,0(u)du, this population size can

be written as

max
t∈[0,TΣ

`
]

max
s∈[0,TΣ

` ]:
gw(t,s′)>0 ∀s′∈(0,s]

eλKgw(t,s). (C.3.10)

The maximizers t∗ and and s∗ correspond to the optimal time t∗λK of occurrence of a w
mutant with a successive growth period of length s∗λK , at the end of which the w population
reaches its peak size before shrinking again and eventually going extinct (see Figure C.1 for
an exemplary plot). Note that it is possible that the w population temporarily has a negative
fitness during this period, as long as it grows to a larger size afterwards and never shrinks to
a size of order 1 in between. Moreover, t∗ and t∗+s∗ will always coincide with beginning and
endpoints of fit phases for trait w, respectively, in order to maximize the time of growth.

gw(0, s)

s
t∗

t∗ + s∗

gw(t
∗, s∗)

TΣ
ℓ

Figure C.1.: Exemplary plot of gw(0, s) for ` = 4 parameter phases. The blue dot marks
the optimal/typical occurrence time t∗ of a w mutant to initiate a population reaching its
highest possible size. The blue line marks this growth phase, at the end of which (at time
t∗ + s∗), L-mutants are produced with the highest possible rate.

Temporarily unfit trait L

Another possible generalization of the pitstop result is to drop the assumption that trait L is
always fit. In this case, one needs to determine the maximal possible population size of the
transitional trait w within the times of set A, as defined for Theorem C.2.2 (see heuristics
above).
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C.3. Heuristics and Discussion

For two parameter phases, there are two distinct scenarios, see Figure C.2 below (where gL is
defined analogously to gw, using fL,0(u)). If the fit phases of trait w and L are asynchronous,
the typical transition time from w to L is at the end of the fit phase of trait w, or rather right
at the beginning of the fit phase of trait L. This is when the w population has is maximal
population size, while the L trait is also fit and has a positive fixation probability. If the
fit phases are synchronized, the typical transition time would be at the point within the set
A, when w is not at its global maximum but the largest population size that also allows the
L-trait to survive the first cycle of phases (and hence long-term) after the transition.

In the general case of more than two phases, the typical transition time from w to L will
still either be the time of a phase change and/or at the boundary of the set A. To our
knowledge there is no nice and concise general formula to describe this time point and the
corresponding population size of w but for any specific case it can be determined similar
considerations to the above two-phase examples.

A

s

s

gw(0, s)

gL(0, s)

TΣ
ℓ

TΣ
ℓ B

s
gw(0, s)

gL(0, s)

TΣ
ℓ

TΣ
ℓ

s

Figure C.2.: Exemplary plot of gw(0, s) and gL(0, s) for ` = 2 parameter phases, temporarily
unfit trait L and A) asynchronous or B) synchronous fit phases. Blue dots and trajectories
mark the optimal/typical occurrence time w mutants and their successive growth phase.
Dashed arrows mark the typical transition time to trait L and red dots and trajectories mark
the occurrence and growth of L-mutants. The set A of possible arrival times of successful
L-mutants is marked in orange.

Multiple pitstops

One could also study a scenario where more than one, e.g. two, intermediate pitstop traits
bαc < w1 < w2 < L exist. In the case of two parameter phases, with L always being fit, there
are again two scenarios. If the fit phases of w1 and w2 are asynchronous, the considerations
are similar to above. The typical time to transition from w1 to w2 is the end of the fit phase
of w1, while the typical transition time from w2 to L is at the end of the fit phase of w2.
Assuming that w1 is fit in the first phase, this would then lead to a transition time scale of
KµLKe

λKT1f1
w1,0e

λKT2f2
w2,0/λK .
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The case of synchronized fit phases becomes more involved. The transition from w2 to L
will still occur at the end of the fit phase. For the transition from w1 to L however, a late
transition in the fit phase would result in a large w1 population but would not give w2 much
time to grow, while the situation is reversed for an early transition. Which of these is more
beneficial (in terms of maximizing the corresponding factor of the transition rate) depends
on the relation between f1

w1,0 and f1
w2,0. Essentially, the time span T1λK for growth gets

split between the two traits w1/2 and the highest transition rate is obtained when the trait
with the higher fitness grows for almost the full duration of T1λK . Hence, the corresponding
time scale for crossings of the fitness valley ends up as KµLKe

λKT1 max{f1
w1,0

,f1
w2,0
}
/λK .

Pitstop trait w < α

Lastly, one could also consider a pitstop trait w ∈ [[1, bαc]]. This will be an interesting topic
of future research but will require quite different considerations to the present paper since it
is no longer a matter of small excursions of populations before going extinct again. Instead, a
temporarily growing w population would also trigger a temporary growth of the neighboring
w+1 population through mutation, and so on. We hypothesise that, at least under similarly
restrictive assumptions of a single fit phase for a single intermediate trait, the transition rate
and time scale will look very similar to the one in Theorem C.2.3. This is because again
only the peak possible population size of trait w needs to be considered for the dominating
rate.

C.3.3. Beyond the valley

The results of this paper only consider the transition of a fitness valley up to the point when
the (single) fit trait L beyond the valley takes over the resident population. Similar to the
results in [29], one could also consider the following decay and eventual extinction of the
remaining traits on the lnK-time scale. To ensure this extinction however, one would need
to make the additional assumption of fav

v,L < 0, for all v ∈ [[0, L− 1]].

If this assumption is not satisfied, or if there were more traits beyond the valley (L+1, L+2,
etc), one could apply the results of [71] to study the following dynamics of consecutively
invading mutant traits on the lnK-time scale in a changing environment. Note that, in case
there are multiple traits L1, L2 that have a positive average fitness with respect to trait 0,
the shortest fitness valley, i.e. the trait closest to 0, will determine the time scale of the first
transition.

These kinds of considerations, as well as the option of a more complicated trait space (e.g.
a finite graph instead of a simple line of traits) lead to considerations as in [69], where
metastable transitions through fitness valleys of varying width are studied as transitions
within a meta graph of evolutionary stable conditions. These results apply to the case of
constant model parameters but could be generalised to changing environments as future
work.
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C.4. Proofs

C.4.1. Proof of Theorem C.2.2

The proof of Theorem C.2.2 is split into several steps:

− First, we ensure that the resident population stays close to its phase-dependent equi-
librium size, except for very short adaptation times at the beginning of each phase,
yielding bounding functions φ(K,ε,±)

0 (t).

− Next, we show that the subpopulations of traits close to 0 (v ∈ [[1, bαc]]) follow a peri-
odic equilibrium a

(K,±)
v (t), scaled with their respective mesoscopic orders of population

sizes KµvK .

− These approximations allows us to precisely determine the rate R̃(K,±)(t) at which
single L-mutants arise.

− We then analyze how and under which conditions a single L-mutant can fixate and
grow to a macroscopic size ε2K.

− Finally, we show that a macroscopic L-mutant quickly outcompetes and replaces the
resident trait 0.

− Combining these steps allows for the computation of the overall time scale 1/KµLK and
effective rate Reff

L of crossing the fitness valley.

Resident stability

To bound the population size of the resident trait v = 0, we define the threshold-functions

φ
(K,ε,+)
0 (t) =

{
max{n̄i−1

0 , n̄i0}+Mε if t ∈ (TΣ
i−1λK , T

Σ
i−1λK + Tε),

n̄i0 +Mε if t ∈ [TΣ
i−1λK + Tε, T

Σ
i λK ],

(C.4.1)

φ
(K,ε,−)
0 (t) =

{
min{n̄i−1

0 , n̄i0} −Mε if t ∈ (TΣ
i−1λK , T

Σ
i−1λK + Tε),

n̄i0 −Mε if t ∈ [TΣ
i−1λK + Tε, T

Σ
i λK ],

(C.4.2)

with periodic extension, where, for i = 1, n̄i−1
v := n̄`v, and φ

(K,ε,±)
0 (0) = n̄1

0 ±Mε. Note that
these functions also depend on the choices of M and Tε. To simplify notation, we however
do not include those parameters in the functions’ names. We denote the first time that these
bounds on the resident 0-population fail by

T
(K,ε)
φ = inf

{
t ≥ 0 : N

K
0 (t)
K

/∈ [φ(K,ε,−)
0 (t), φ(K,ε,+)

0 (t)]
}
. (C.4.3)

To mark the time at which the mutant populations become too large and start to significantly
perturb the system, we moreover introduce the stopping time

S(K,ε) := inf

t ≥ 0 :
∑
w 6=0

NK
w (t) ≥ εK

 . (C.4.4)
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With this notation, the resident’s stability result can be stated as follows.

Lemma C.4.1. There exists a uniform M <∞ and, for all ε > 0 small enough, there exists
a deterministic Tε <∞ such that, for all T <∞,

lim
K→∞

P
(
T

(K,ε)
φ ≤ T

KµLK
∧ S(K,ε)

∣∣∣∣NK
0 (0)
K

∈ [φ(K,ε,−)
0 (0) + ε, φ

(K,ε,+)
0 (0)− ε]

)
= 0. (C.4.5)

Proof. We can proceed exactly as in the proof of [71, Theorem 4.1] and make use of the
improved estimates of Corollaries C.5.2 and C.5.5 (replacing Theorems A.2 and A.3 in [71])
to concatenate the increased number of phases due to the longer time horizon.

Equilibrium of mesoscopic traits

Despite the negative fitness of the traits v ∈ [[1, L− 1]] inside the valley, we can observe
non-vanishing subpopulation of the traits v ∈ [[1, α]] that are close to the resident trait 0.
This is due to the frequent influx of new mutants. Because of the changing environment,
these populations vary in size over time. By the following lemma, we can determine not
only their order of population size, which only depends on the mutational distance from the
resident, but also their exact equilibrium size that is reached (up to a small error) within
each phase.

Lemma C.4.2 (Equilibrium size of mesoscopic traits). Fix ε > 0, let the initial condition
be given by Assumption 5 and let the fitness landscape satisfy either Assumption 7 or As-
sumption 8. Then, for all v ∈ [[0, bαc]], there exist constants cv, C±v , τ εv ∈ [0,∞) and Markov
processes

(
N

(K,±)
v (t), t ≥ 0

)
K≥1

such that, for all T <∞,

lim
K→∞

P
(
∀t ∈ (0, (T/KµLK) ∧ S(K,ε)), ∀v ∈ [[0, bαc]] : N (K,−)

v (t) ≤ NK
v (t) ≤ N (K,+)

v (t)
)

= 1
(C.4.6)

and

a(K,−)
v (t)KµvK ≤ E

[
N (K,−)
v (t)

]
≤ E

[
N (K,+)
v (t)

]
≤ a(K,+)

v (t)KµvK , (C.4.7)

where the bounding functions are the periodic extensions of

a(K,±)
v (t) =

{
C±v : t ∈ [λKTΣ

i−1, λKT
Σ
i−1 +

∑v
w=0 τ

ε
w),

a
(i,±)
v : t ∈ [λKTΣ

i−1 +
∑v
w=0 τ

ε
w, λKT

Σ
i ),

(C.4.8)

a(i,±)
v = (1± cvε)n̄i0

v∏
w=1

biw−1∣∣∣f iw,0∣∣∣ . (C.4.9)
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Remark 24. Note that for initial conditions NK
v (0) = 0, v ∈ [[1, L]], we need to choose C−v = 0

in (C.4.8). After the first phase however, C−v can be chosen as strictly positive. Since the
number of traits is finite, the constants C±v , cv can be chosen uniformly for all traits by
simply taking the minimum and the maximum, respectively. The same is true for the times∑v
w=0 τ

ε
w, v ∈ [[0, bαc]]. We therefore no longer indicate this trait dependence when applying

Lemma C.4.2 in the following considerations.

Proof. This proof follows the strategy of [29] and [69], which goes as follows: We first define
the event, on which we have good estimates on the resident population size for a sufficiently
large time horizon. Then we represent the process by an explicit construction involving
Poisson measures and use this to introduce the estimating processes N (K,±)

v by couplings.
Finally, we deduce an ODE for the expectation of the coupled processes that can be solved
approximately to derive the desired bounds.

Let us first define the event on which we have good control on the resident population

ΩK :=
{

(T/KµLK) ∧ S(K,ε) < T
(K,ε)
φ

}
. (C.4.10)

Since Lemma C.4.1 states that limK→∞ P
(
ΩK

)
= 1, we can restrict our considerations to

this event for the remainder of this proof. Moreover, this already provides the desired bounds
for v = 0 with N

(K,±)
0 = NK

0 , τ ε0 = Tε from Lemma C.4.1, and appropriate choices of c0,
C±0 .

To define the coupled processes, we follow the notation of [83] and give an explicit construc-
tion of the population process in terms of Poisson random measures. Let (Q(b)

v , Q
(d)
v , Q

(m)
w,v :

v, w ∈ V ) be independent homogeneous Poisson random measures on R2 with intensity
dsdθ. Then we can write

NK
v (t) = NK

v (0) +
∫ t

0

∫
R+

1θ≤bKv (s)(1−µK)NK
v (s−)Q

(b)
v (ds, dθ)

−
∫ t

0

∫
R+

1θ≤[dKv (s)+
∑

w∈V c
K
v,w(s)NK

w (s−)/K]NK
v (s−)Q

(d)
v (ds, dθ)

+
∫ t

0

∫
R+

1θ≤µKbKv−1(s)NK
v−1(s−)Q

(m)
v−1,v(ds, dθ). (C.4.11)

Using the shorthand notation čv := maxw∈V \0, i=1,...,` c
i
v,w and the same Poisson measures

as before, we inductively, for v ∈ [[1, bαc]], introduce the coupled processes

N (K,−)
v (t) = NK

v (0) +
∫ t

0

∫
R+

1
θ≤bKv (s)(1−ε)N(K,−)

v (s−)Q
(b)
v (ds, dθ)

−
∫ t

0

∫
R+

1
θ≤[dKv (s)+cKv,0(s)φ(K,ε,+)

0 (s)+εčv ]N(K,−)
v (s−)Q

(d)
v (ds, dθ)

+
∫ t

0

∫
R−

1
θ≤µKbKv−1(s)N(K,−)

v−1 (s−)Q
(m)
v−1,v(ds, dθ) (C.4.12)
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and

N (K,+)
v (t) = NK

v (0) +
∫ t

0

∫
R+

1
θ≤bKv (s)N(K,+)

v (s−)Q
(b)
v (ds, dθ)

−
∫ t

0

∫
R+

1
θ≤[dKv (s)+cKv,0(s)φ(K,ε,−)

0 (s)]N(K,+)
v (s−)Q

(d)
v (ds, dθ)

+
∫ t

0

∫
R−

1
θ≤µKbKv−1(s)N(K,+)

v−1 (s−)Q
(m)
v−1,v(ds, dθ). (C.4.13)

Restricting to the event ΩK and times up to S(K,ε), these coupled processes then satisfy

N (K,−)
v (t) ≤ NK

v (t) ≤ N (K,+)
v (t), ∀v ∈ [[1, bαc]] , (C.4.14)

for K large enough such that µK < ε.

On closer inspection, the approximating processes N (K,−)
v , N

(K,+)
v are nothing but sub-

critical birth death processes with immigration stemming form incoming mutations.

Similar to the proof of [29, Equation (7.8) et seq.], we can use the martingale decomposition
of N (K,+)

v and N (K,−)
v to derive the differential equation

d
dtE

[
N (K,∗)
v (t)

]
=
(
bKv (t)(1−1{∗=−}ε)−dKv (t)−cKv,0(t)φ(K,ε,∗̄)

0 (t)−1{∗=−}εčv
)
×E

[
N (K,∗)
v (t)

]
+ µKb

K
v−1(t)E

[
N

(K,∗)
v−1 (t)

]
= f

(K,∗)
v,0 (t)E

[
N (K,∗)
v (t)

]
+ µKb

K
v−1(t)E

[
N

(K,∗)
v−1 (t)

]
, (C.4.15)

where ∗̄ = {+,−}\∗ denotes the inverse sign. Moreover, we introduce f (K,∗)
v,0 (t) as a shorthand

notation for the first factor to indicate that this is nothing but a perturbation of the invasion
fitness fKv,0(t).

The solution to this ODE is generally given in a closed form by the variation of constants
formula. However, it makes more sense here to study the solution phase by phase and use
the estimates we already have. To this end, assume that we had shown (C.4.7) already for
the sub-population of trait v− 1, for all times t ∈ [0,∞), and for the trait under observation
v < α up to time λKTΣ

i−1, for some 1 ≤ i ≤ `, which is the beginning of the i-th phase.
We now show that it also holds true for trait v < α during the interval [λKTΣ

i−1, λKT
Σ
i ).

Since we only have rough bounds on the ancestor v − 1 and the resident 0 populations at
the beginning of the phase, up to time λKTΣ

i−1 +
∑v−1
w=0 τ

ε
w, the ODE for the upper bound

can be estimated by

d
dtE

[
N (K,+)
v (t)

]
≤
(
biv − div − civ,0

(
(n̄i−1

0 ∧ n̄i0)−Mε
))

E
[
N (K,+)
v (t)

]
+ biv−1C

+
v−1Kµ

v
K ,

(C.4.16)

with initial condition

E
[
N (K,+)
v (λKTΣ

i−1)
]
≤ a(i−1,+)

v KµvK . (C.4.17)
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This implies at most exponential growth for a finite time and thus we can bound the expect-
ation of N (K,+)

v at the beginning of the phase by

E
[
N (K,+)
v (t)

]
≤ C+

v Kµ
v
K , t ≤ λKTΣ

i−1 +
v−1∑
w=0

τ εw. (C.4.18)

From this time on until the end of the i-th phase, we have good bounds on both the resident
and the ancestor. Hence the ODE for the upper bound reads as

d
dtE

[
N (K,+)
v (t)

]
≤
(
f iv,0 + εC

)
E
[
N (K,+)
v (t)

]
+ biv−1a

(i,+)
v−1 Kµ

v
K . (C.4.19)

Together with the estimate on the initial condition, this gives

E
[
N (K,+)
v (t)

]
≤ e(f iv,0+εC)

(
t−(λKTΣ

i−1+
∑v−1

w=0 τ
ε
w))
) C+

v −
biv−1∣∣∣f iv,0 + εC

∣∣∣a(i,+)
v−1

KµvK
+

biv−1∣∣∣f iv,0 + εC
∣∣∣a(i,+)
v−1 Kµ

v
K .

(C.4.20)

Note that the term in brackets can be bounded uniformly, for ε small enough, and is in-
dependent of K. Together with the fact that the perturbed fitness f iv,0 + εC < 0 is still
negative, for ε small enough, the first summand can be made smaller than εKµvK by waiting
an additional finite time τ εv <∞. Finally one just has to take cv slightly larger than cv−1 to
bound this small term and the perturbation of the fitness to achieve the claim

E
[
N (K,+)
v (t)

]
≤ a(i,+)

v KµvK , t ≥ λKTΣ
i−1 +

v∑
w=0

τ εw. (C.4.21)

Note that during the additional time of length τ εv , we can still use the rough bound instead,
potentially taking C+

v a bit larger. This procedure can now be continued periodically for
times t ≥ λKT

Σ
` . Moreover, the estimates for the N (K,−)

v (t) follow exactly the same steps,
using the lower bounds for all relevant parameters.

Crossing the fitness valley

To see a successful invasion of the mutant trait L, several attempts of crossing the fitness
valley might be necessary. We track this carefully by introducing the processes

MK
v (t) =

∫ t

0

∫
R+

1θ≤µKbKv−1(s)NK
v−1(s−)Q

(m)
v−1,v(ds, dθ), (C.4.22)

which are the cumulative numbers of mutant individuals of trait v that arose as mutants of
the progenitor trait v − 1, as well as the respective occurrence times of these mutants,

TKv,j := inf
{
t ≥ 0 : MK

v (t) ≥ j
}
. (C.4.23)
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Lemma C.4.3. Fix ε > 0, let the initial condition be given by Assumption 5 and let the
fitness landscape satisfy Assumption 7. Then there exist constants 0 < c,C <∞ (independ-
ent of ε) such that, for each K ∈ N, there exist two Poisson counting processes M (K,±) with
intensity functions t 7→ R̃(K,±)(t)KµLK such that, for all T <∞,

lim inf
K→∞

P
(
∀t ∈ [0, (T/KµLK) ∧ S(K,ε)) : M (K,−)(t) < MK

L (t) < M (K,+)(t)
)
≥ 1− cε,

(C.4.24)

where the rescaled intensity functions are given by

R̃(K,±)(t) = a
(K,±)
bαc (t)bKbαc(t)

L−1∏
w=bαc+1

bKw (t)
|fKw,0(t)|

(1± Cε). (C.4.25)

Proof. We apply the same arguments as previously used in the case of a constant environment
(cf. [29, Ch. 7.3]). In order to reduce to this situation, we have to first ensure that, with
high probability, the mutants of type bαc + 1 appear after the living populations of types
0, ..., bαc have adapted to the new environment in a particular phase. The second step is
then to show that, in the case of a successful cascade of accumulating mutations, the mutant
of trait L is born before the environment changes again.

On the event ΩK , defined in the proof of Lemma C.4.2, we bound the mutant counting
process of trait bαc+ 1 by

M
(K,−)
bαc+1(t) ≤MK

bαc+1(t) ≤M (K,+)
bαc+1(t), ∀t ≤ (T/KµLK) ∧ S(K,ε), (C.4.26)

where the bounding processes are given by

M
(K,±)
bαc+1(t) =

∫ t

0

∫
R+

1
θ≤µKbKbαc(s)N

(K,±)
bαc (s−)Q

(m)
bαc,bαc+1(ds, dθ). (C.4.27)

Note that, in contrast to MK
bαc+1, this definition is based on the bounding processes N (K,±)

bαc
from Lemma C.4.2.

As explained in detail in [29, 69], for the following considerations it is sufficient to continue
with a simplified version of these processes, based on the expectation of N (K,±)

bαc ,

M̄
(K,±)
bαc+1(t) =

∫ t

0

∫
R+

1
θ≤µKbKbαc(s)E

[
N

(K,±)
bαc (s−)

]Q(m)
bαc,bαc+1(ds, dθ) (C.4.28)

and

T̄
(K,±)
bαc+1,j := inf

{
t ≥ 0 : M̄ (K,±)

bαc+1(t) ≥ j
}
, (C.4.29)

since they do not differ too much from the original processes, particularly on the considered
time scales. For details, see [29, p. 3583]. Lemma C.4.2 guarantees, that M̄ (K,±)

bαc+1 are Poisson
counting processes with intensity functions bounded by bKbαc(t)a

(K,±)
bαc (t)Kµbαc+1

K . Moreover,
we know that these functions are constant for phases with length of order O(λK), while the
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short adaptation intervals after an environmental change are only of order O(1). Therefore,
the number of possible mutants appearing within these adaptation intervals is negligible
compared to the ones falling into the long constant phases, as K →∞.

Now at each time T̄ (K,±)
bαc+1,j an individual of trait bαc+1 is born, e.g. during an i-th phase, and

its descendant population can be approximated by classical sub-critical birth death processes
with constant rates

b
(i,+)
bαc+1 = bibαc+1, d

(i,+)
bαc+1 = dibαc+1 + cibαc+1,0(n̄i0 −Mε), (C.4.30)

b
(i,−)
bαc+1 = bibαc+1(1− ε), d

(i,−)
bαc+1 = dibαc+1 + cibαc+1,0(n̄i0 +Mε) + εčbαc+1. (C.4.31)

Here we utilise that such processes go extinct within a time of order O(1) almost surely, i.e.
before the next phase change, and hence the parameters can be assumed to be constant.
This approximation allows us to continue exactly as in [29] and apply Lemma C.5.6, which
shows that a single mutant of trait bαc + 2 is produced before the family of trait bαc + 1
goes extinct with probability

µK
b
(i,±)
bαc+1

d
(i,±)
bαc+1 − b

(i,±)
bαc+1

, (C.4.32)

while the probability of two or more such mutants is of smaller order O(µ2
K). Since the total

excursion of the trait bαc + 1-population only lasts a time of order O(1), we conclude that
an bαc + 2-mutant, if it arises, does so shortly after T̄ (K,±)

bαc+1,j and we can assume the same
constant phase-i-environment also for its descendants. Iterating this thinning mechanism
for the whole cascade of mutations from trait bαc + 1 to trait L then yields that a mutant
of trait bαc+ 1 leads to a mutant of trait L with probability

µ
L−bαc−1
K

L−1∏
v=bαc+1

biv
div + civ,0n̄

i
0 − biv

(1 +O(ε)) = µ
L−bαc−1
K

L−1∏
v=bαc+1

biv
−f iv,0

(1 +O(ε)) (C.4.33)

and this chain of mutations occurs within a finite time, not scaling with K.

Thus the mutant counting processMK
L can be approximated by the corresponding thinnings

of the processes M̄ (K,±)
bαc+1. We denote these thinnings by M (K,±) to deduce the claim of

the lemma. The small correction term cε in (C.4.24) stems from the approximation of the
birth and death rates used to compute the thinning-probability under use of (C.5.17) (see
[29]).

Fixation and growth to a macroscopic size

From the previous lemma, we know that mutants of type L are born at a rate of order KµLK
with a specific phase-dependent prefactor. However, we cannot expect the L-individual
appearing first to necessarily be the ancestor of a successfully invading new subpopulation.
Instead, the subpopulation founded by a single L-mutant appearing might go extinct in finite
time. This can happen for multiple reasons: Firstly, we do not assume that the invasion

163



C. Crossing a fitness valley in a changing environment: With and without pit stop

fitness f iL,0 of trait L is positive in all phases. Secondly, even in phases of positive invasion
fitness, we have to account for the risk of extinction due to stochastic fluctuations. Lastly,
in the case of a changing environment, even if the L population initially survives with a
positive invasion fitness, it might still go extinct in a subsequent phase if the fitness becomes
too negative.

In the following, to simplify notation, we only study the fate of the first L-mutant’s subpop-
ulation and its probability to go extinct or reach a macroscopic size. It turns out that one
of these outcomes is obtained in a time of order O(lnK). Since new L-mutants arise on the
longer time scale of order O(1/KµLK), all later L-mutant subpopulations following previous
extinction events can be regarded as independent and the same probabilities of different
outcomes carry over (with probability tending to 1 as K →∞).

To state the lemma on the first mutant’s fate, we require a number of stopping times. Recall
that S(K,ε) is the first time when the total population of mutants of traits [[1, L]] reaches the
size of εK and that T (K,ε)

φ is the first time that the bounds on the resident 0-population fail.
In addition, we introduce the first time that the L-mutant population goes extict after the
j-th mutation,

TKext,j = inf
{
t ≥ TKL,j : NK

L (t) = 0
}
, (C.4.34)

and the first time that the L-mutant population reaches a certain size M ,

TKM = inf
{
t ≥ 0 : NK

L (t) ≥M
}
. (C.4.35)

Finally, to characterize the mutation times for which an L-invasion is possible, we introduce
the function

g(t) =
∫ t

0
fL,0(u)du, t ∈ [0,∞) (C.4.36)

and sets

Ã = {t ≥ 0 : ∃ s ∈ (0, TΣ
` ] : g(t+ s) < g(t)}, (C.4.37)

A = {t ≥ 0 : ∀ s ∈ (0, TΣ
` ] : g(t+ s) > g(t)}. (C.4.38)

These definitions allow us to distinguish the following cases in our lemma, where it will be
part of the claim to argue that these are exhaustive for large K:

ΩK,Ã =
{
TKL,1/λK ∈ Ã

}
∩
{(

TKL,1 + 2
fav
L,0

lnK
)
∧ TKε2K ≤ T

K
L,2 ∧ S(K,ε) ∧ T (K,ε)

φ

}
(C.4.39)

ΩK,A,i =
{
TKL,1/λK ∈ A, (TKL,1/λK mod TΣ

` ) ∈ [TΣ
i−1, T

Σ
i )
}

∩
{(

TKL,1 + 2
fav
L,0

lnK
)
∧ TKε2K ≤ T

K
L,2 ∧ S(K,ε) ∧ T (K,ε)

φ

}
, 1 ≤ i ≤ `. (C.4.40)
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Lemma C.4.4. Fix ε > 0 small enough, let the initial condition be given by Assumption
5 and let the fitness landscape satisfy Assumption 7. Then there exist constants C, Ĉ < ∞
(independent of ε) such that we obtain the following:

(i) The sets ΩK,Ã and ΩK,A,i, 1 ≤ i ≤ `, are pairwise disjoint and

lim inf
K→∞

P
(

ΩK,Ã ∪
⋃̀
i=1

ΩK,A,i

)
≥ 1− 2cε, (C.4.41)

where c <∞ is the constant from Lemma C.4.3.

(ii) The probability of extinction for a mutation event at a (rescaled) time in Ã satisfies

lim
K→∞

P
(
TKext,1 < TKL,1 + λKT

Σ
` | ΩK,Ã

)
= 1. (C.4.42)

(iii) The probability of extinction for a mutation event at a (rescaled) time in A satisfies

lim sup
K→∞

∣∣∣∣∣P (TKext,1 < (TKL,1 + λKT
Σ
` ) ∧ TKε2K | ΩK,A,i

)
−
(

1−
f iL,0
biL

)∣∣∣∣∣ ≤ Cε, 1 ≤ i ≤ `.

(C.4.43)

(iv) The probability of growth to a macroscopic size for a mutation event at a (rescaled)
time in A satisfies

lim sup
K→∞

∣∣∣∣∣P
(
TKε2K < TKL,1 + 1 + Ĉε

fav
L,0

lnK | ΩK,A,i

)
−
f iL,0
biL

∣∣∣∣∣ ≤ Cε, 1 ≤ i ≤ `. (C.4.44)

Essentially, what this lemma entails is the following: If an L-mutant arises at a (rescaled)
time in Ã, its offspring is guaranteed to go extinct within one cycle of parameter phases. If
it occurs at a (rescaled) time in A, during an i-phase, its offspring can still go extinct, at a
probability of roughly 1−f iL,0/biL. It again does so within one cycle of parameter phases and
in the meantime never reaches a population size of ε2K. If the offspring population survives,
which it does at the counter probability of roughly f iL,0/biL, it grows to a macroscopic size
of ε2K within a time that is not much larger than lnK/fav

L,0. Moreover, these are all the
possible cases.

Proof. The proof can be broken down into six steps:

1. Proof of claim (i)

2. Introduction of coupled birth death processes N (K,±)
L with time-dependent parameters

to bound NK
L

3. Proof of claim (ii)

4. Introduction of coupled birth death processes Zi,± with constant parameters to bound
NK
L during an i-th phase
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5. Lower bound for extinction probability in claim (iii)

6. Lower bound for fixation probability in claim (iv) and conclusion of claims (iii)&(iv)

Step 1: By Lemma C.4.2 and the fact that all mutant traits [[bαc+ 1, L− 1]] are unfit, at
the time when the total mutant population surpasses an εK threshold, S(K,ε), the L-mutant
population is required to be of order K and all other mutant populations are of lower order.
In particular, this cannot occur before time TKL,1 or TKε2K .

Moreover, from the result of Lemma C.4.3, it is not hard to see that there exists a T̂ε <∞
such that

lim inf
K→∞

P
(
TKL,1 ≤ T̂ε/KµLK

)
≥ 1− cε. (C.4.45)

Taking T̂ε < Ťε <∞ slightly larger,

lim inf
K→∞

P
(
TKL,1 + 2

fav
L,0

lnK ≤ Ťε/KµLK

)
≥ 1− cε (C.4.46)

holds true as well. Again by Lemma C.4.3, we obtain that

lim inf
K→∞

P
(
TKL,1 + 2

fav
L,0

lnK ≤ TKL,2

)
≥ 1− cε. (C.4.47)

Finally, from Lemma C.4.1 we deduce that

lim
K→∞

P
(
S(K,ε) ∧ Ťε/KµLK ≤ T

(K,ε)
φ

)
= 1. (C.4.48)

Combining all of the above facts eventually yields

lim inf
K→∞

P
((

TKL,1 + 2
fav
L,0

lnK)
)
∧ TKε2K ≤ T

K
L,2 ∧ S(K,ε) ∧ T (K,ε)

φ

)
≥ 1− 2cε. (C.4.49)

Claim (i) now immediately follows since the rate of newly arriving L-mutants is bounded
uniformly (of order KµLK) and, by Assumption 6(ii), (A ∪ Ã)C is a Lebesgue nullset.

Step 2: To prove claims (ii)-(iv), we introduce coupled pure birth death processes to bound
the population NK

L . For ε > 0 and some small δ > 0 that will be fixed later, define

b+L (t) = bL(t), (C.4.50)
b−L (t) = bL(t)(1− ε), (C.4.51)

D+
L (t) = dL(t)+cL,0(t)

[
−Mε+

L∑
i=1

(
1t∈[TΣ

i−1,T
Σ
i−1+δ) min{n̄i−1

0 , n̄i0}+1t∈[TΣ
i−1+δ,TΣ

i )n̄
i
0

)]
,

(C.4.52)

D−L (t) = dL(t)+εčL+cL,0(t)
[
Mε+

L∑
i=1

(
1t∈[TΣ

i−1,T
Σ
i−1+δ) max{n̄i−1

0 , n̄i0}+1t∈[TΣ
i−1+δ,TΣ

i )n̄
i
0

)]
,

(C.4.53)
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with periodic extensions, n̄0
v := n̄`v, čL := max1≤w≤L,1≤i≤` c

i
L,w, and M the (ε-independent)

constant from Lemma C.4.1. Then, for ε > 0 small enough, K large enough such that
Tε < δλK and µK < ε, and all times t ≤ S(K,ε) ∧ T (K,ε)

φ ,

b−L (t/λK) ≤ bKL (t) ≤ b+L (t/λK), (C.4.54)

D−L (t/λK) ≥ dKL (t) +
L∑

w=0

cKL,w(t)
K

NK
w (t) ≥ D+

L (t/λK) ≥ D, (C.4.55)

for some D > 0. We can hence, for all K large enough, define a collection of pure birth
death processes (N (K,±)

L (t))t≥TKL,1 with time-inhomogeneous birth rates b±L (t/λK) and death
rates D±L (t/λK), coupled to (NK

L (t))t≥TKL,1 such that

N
(K,−)
L (TKL,1) = NK

L (TKL,1) = N
(K,+)
L (TKL,1) = 1, (C.4.56)

N
(K,−)
L (t) ≤ NK

L (t) ≤ N (K,+)
L (t), for TKL,1 ≤ t ≤ TKL,2 ∧ S(K,ε) ∧ T (K,ε)

φ . (C.4.57)

This coupling can for example be constructed using a Poisson measure representation, as in
the proof of Lemma C.4.2.

Moreover,

|(b±L (t/λK)−D±L (t/λK))− fKL,0(t)|

≤
{
C1 for t/λK ∈ [jTΣ

` + TΣ
i−1, jT

Σ
` + TΣ

i−1 + δ), j ∈ N, i = 1, ..., `,
C2ε for t/λK ∈ [jTΣ

` + TΣ
i−1 + δ, jTΣ

` + TΣ
i ), j ∈ N, i = 1, ..., `,

(C.4.58)

for some constants C1, C2 <∞.

Step 3: With these couplings in place, we start by considering the case of claim (ii), i.e.
TKL,1/λK ∈ Ã. We set

g(K,±)(s) :=
∫ s

0
b±L (u/λK)−D±L (u/λK)du. (C.4.59)

Then, for all s ∈ [TKL,1, TKL,1 + TΣ
` λK ],

g(K,+)(s)− g(K,+)(TKL,1) ≤
∫ s

TKL,1

fL,0(u/λK)du+
∫ s

TKL,1

∣∣∣b+L (u/λK)−D+
L (u/λK)− fKL,0(u)

∣∣∣ du
≤
∫ s/λK

TKL,1/λK
λKfL,0(u)du+ C1δ`λK + C2εT

Σ
` λK

≤ λK
[
g (s/λK)− g

(
TKL,1/λK

)
+ C3(δ + ε)

]
, (C.4.60)

for some C3 <∞. Since TKL,1/λK ∈ Ã, there exists a u0 ∈ (TKL,1, TKL,1 + TΣ
` λK ] such that

g(u0/λK)− g(TKL,1/λK) < 0. (C.4.61)
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Note that the choice of u0 depends on the random stopping time TKL,1 and is hence also
random. Since g is a continuous function, for δ, ε > 0 small enough, there exist 0 < u1 < u2 ≤
TΣ
` and c > 0 (each also dependent on TKL,1) such that, for all s ∈ [TKL,1 +u1λK , T

K
L,1 +u2λK ],

g(K,+)(s)− g(K,+)(TKL,1) ≤ −λKc. (C.4.62)

Using an identity for the generating function of time-inhomogeneous birth death process from
[95, Ch. 6.12] and the fact that d/ds

[
g(K,±)(s)− g(K,±)(TKL,1)

]
= b±L (s/λK)−D±L (s/λK), we

conclude that, on the event ΩKÃ,

P
(
TKext,1 < TKL,1 + λKT

Σ
`

∣∣ TKL,1) ≥ P
(
N

(K,+)
L (TKL,1 + λKT

Σ
` ) = 0

∣∣ TKL,1)
= 1−

(
e−(g(K,+)(TKL,1+λKTΣ

` )−g(K,+)(TKL,1))+
∫ TKL,1+λKTΣ

`

TKL,1

b+L (s/λK)e−(g(K,+)(s)−g(K,+)(TKL,1))ds
)−1

= 1−
(

1 +
∫ TKL,1+λKTΣ

`

TKL,1

D+
L (s/λK)e−(g(K,+)(s)−g(K,+)(TKL,1))ds

)−1

≥ 1−
(∫ TKL,1+λKTΣ

`

TKL,1

De−(g(K,+)(s)−g(K,+)(TKL,1))ds
)−1

≥ 1−
(∫ TKL,1+u2λK

TKL,1+u1λK
DeλKcds

)−1

= 1− 1
λK(u2 − u1)DeλKc , (C.4.63)

which converges to 1 as K → ∞. This convergence holds true for every TKL,1/λK ∈ Ã and
hence the conditioning on TKL,1 on the left hand side can be dropped.

Step 4: Next, we turn to the case of claims (iii) and (iv), i.e. TKL,1/λK ∈ A, with the L-mutant
appearing during an i-th phase, such that bKL (TKL,1) = biL etc. Note that the definition of the
set A automatically implies that f iL,0 > 0, hence we can make use of couplings to supercritical
birth death processes and existing results for the latter.

For the following argument, we restrict to the event of

ΩK,A,i
δ = ΩK,A,i ∩

{
(TKL,1/λK mod TΣ

` ) ∈ [TΣ
i−1 + δ, TΣ

i − δ)
}
, (C.4.64)

i.e. exclude the cases where TKL,1 falls into the short δλK-interval at the beginning of a new
phase or close to its end. Since, by Lemma C.4.3, L-mutants arrive at a uniformly bounded
rate of order KµLk , it follows that

lim
δ→0

lim
K→∞

P
(
ΩK,A,i
δ |ΩK,A,i

)
= 1. (C.4.65)

Hence it is sufficient to derive the claim on ΩK,A,i
δ and pick δ > 0 arbitrarily small in the

end.

For large enough K,
√
λK < δλK and hence, on ΩK,A,i

δ , time TKL,1 +
√
λK is smaller that the

time point of the next phase change. As a result, the i-phase parameters are applicable for
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the entire time horizon of [TKL,1, TKL,1 +
√
λK). Moreover, during this time, for ε > 0 small

enough,

b±L (t/λK)−D±L (t/λK) ≥ f iL,0 − C2ε > 0. (C.4.66)

Considering the coupled processes defined above, this implies that (N (K,±)
L (TKL,1+s))s∈[0,

√
λK)

have the same distribution as supercritical birth death processes (Zi,±(s))s∈[0,
√
λK) with

initial condition Zi,±(0) = 1, birth rate biL or biL(1−ε), and death rate diL+ciL,0(n̄i0−Mε) or
diL + εčL + ciL,0(n̄i0 +Mε), respectively. Importantly, the same processes Zi,± can be chosen
for all (large enough) K here.

Step 5: One can now bound the probability of extinction from below by

lim
K→∞

P
(
TKext,1 < TKL,1 + λKT

Σ
` |Ω

K,A,i
δ

)
≥ lim

K→∞
P
(
TKext,1 < TKL,1 +

√
λK |ΩK,A,i

δ

)
≥ lim

K→∞
P
(
N

(K,+)
L (TKL,1 +

√
λK) = 0|ΩK,A,i

δ

)
= lim

K→∞
P
(
Zi,+(

√
λK) = 0

)
= lim

s→∞
P
(
Zi,+(s) = 0

)
= P

(
lim
s→∞

Zi,+(s) = 0
)
. (C.4.67)

By a standard branching process results (e.g. Theorem 1 in Chapter III.4 of [4]), this extinc-
tion probability is equal to

diL + ciL,0(n̄i0 −Mε)
biL

= 1−
f iL,0
biL
−
ciL,0Mε

biL
≥ 1−

f iL,0
biL
− Cε, (C.4.68)

for some C <∞ independent of i, ε > 0, and δ > 0.

To ensure that this extinction occurs before reaching a threshold of ε2K, we can bound
(NK

L (TKL,1 + s))s∈[0,λKTΣ
`

) from above by a coupled pure birth process (Z(s))s∈[0,λKTΣ
`

) with
birth rate b̄ = max1≤j≤` b

j
L and Z(0) = 1 and deduce

lim
K→∞

P
(
TKL,1 + λKT

Σ
` < TKε2K | ΩK,A,i

δ

)
≥ 1− lim

K→∞
P
(
Z(λKTΣ

` ) ≥ ε2K
)

= 1− lim
K→∞

P
(
Z(λKTΣ

` )e−b̄λKTΣ
` ≥ ε2Ke−b̄λKT

Σ
`

)
.

(C.4.69)

On one hand, by Theorems 1 and 2 in Chapter III.7 of [4], limK→∞ Z
i(λKTΣ

` )e−b̄λKTΣ
` exists

almost surely and has expectation 1. On the other hand, since λK � lnK,
limK→∞ ε

2Ke−b̄λKT
Σ
` = ∞, for any ε > 0. Hence the limit on the right hand side above is

equal to 0 and consequentially, together with (C.4.67) we can conclude that

lim
K→∞

P
(
TKext,1 < (TKL,1 + λKT

Σ
` ) ∧ TKε2K |Ω

K,A,i
δ

)
≥ 1−

f iL,0
biL
− Cε. (C.4.70)
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Step 6: Deriving the corresponding lower bound on the fixation probability of the L-mutant
is a little more involved and can be broken down into three substeps: First, we consider
the probability of initial survival, similar to Step 5, to prove (C.4.72). Second, once a small
but diverging population size is obtained, we can show that a size of order Kεγ is reached
within a small lnK-time, proving (C.4.80). Finally, once this positive K-power is reached,
the time to grow to a macroscopic size of order K can be approximated using results from
[71], concluding (C.4.84).

To derive the lower bound, we consider the coupled birth death processes N (K,−)
L and Zi,−.

On the event of ΩK,A,i
δ , setting f i,−L,0 := biL(1− ε)− (diL + εčL + ciL,0(n̄i0 +Mε)) > 0,

lim
K→∞

P
(
N

(K,−)
L (TKL,1 +

√
λK) ≥ ef

i,−
L,0
√
λK/2 | ΩK,A,i

δ

)
= lim

K→∞
P
(
Zi,−(

√
λK) ≥ ef

i,−
L,0
√
λK/2

)
= lim

s→∞
P
(
Zi,−(s) ≥ ef

i,−
L,0s/2

)
= lim

s→∞
P
(
Zi,−(s)e−f

i,−
L,0s ≥ e−f

i,−
L,0s/2

)
.

(C.4.71)

Now again, by Theorems 1 and 2 in Chapter III.7 of [4], lims→∞ Z
i,−(s)e−f

i,−
L,0s = W exists

almost surely (and hence in distribution), is non-negative, has expectation 1, and has a
density on {W > 0}. Moreover, P (W > 0) = f i,−L,0/(biL(1− ε)). Consequentially, we can find
cε > 0 such that

lim
K→∞

P
(
N

(K,−)
L (TKL,1 +

√
λK) ≥ ef

i,−
L,0
√
λK/2 | ΩK,A,i

δ

)
≥ lim

s→∞
P
(
Zi,−(s)e−f

i,−
L,0s ≥ e−f

i,−
L,0s/2

)
≥ lim

s→∞
P
(
Zi,−(s)e−f

i,−
L,0s ≥ cε

)
= P

(
lim
s→∞

Zi,−(s)e−f
i,−
L,0s ≥ cε

)

≥ P (W > 0)− ε =
f i,−L,0

biL(1− ε)
− ε

≥
f iL,0
biL
− Cε, (C.4.72)

where C < ∞ can be chosen independently of i, ε > 0, and δ > 0 (possibly larger than in
Step 5).

Recalling (C.4.58), for all s ∈ [TKL,1 +
√
λK , T

K
L,1 +

√
λK + λKT

Σ
` ] we obtain

g(K,−)(s)− g(K,−)(TKL,1 +
√
λK)

≥
∫ s

TKL,1+
√
λK

fL,0(u/λK)du−
∫ s

TKL,1+
√
λK

∣∣∣b−L (u/λK)−D−L (u/λK)− fKL,0(u)
∣∣∣ du

≥
∫ s/λK

(TKL,1+
√
λK)/λK

λKfL,0(u)du− C1δ`λK − C2εT
Σ
` λK

≥ λK
(
g (s/λK)− g

(
(TKL,1 +

√
λK)/λK

)
− C3(δ + ε)

)
, (C.4.73)
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for some C3 <∞. Since TKL,1/λK ∈ A, it follows that

g(s/λK)− g(TKL,1/λK) > 0, ∀ s ∈ (TKL,1, TKL,1 + λKT
Σ
` ]. (C.4.74)

Since
√
λK/λK → 0 and g is continuous, this implies that, for δ, ε > 0 small enough and K

large enough,

g(K,−)(s)− g(K,−)(TKL,1 +
√
λK) > 0, ∀ s ∈ (TKL,1 +

√
λK , T

K
L,1 +

√
λK + λKT

Σ
` ]. (C.4.75)

Hence we can apply Lemma C.5.8 to deduce that, since 1 � ef
i,−
L,0
√
λK/2 � Kε, for any

p ∈ (0, 1),

lim
K→∞

P
(
N

(K,−)
L (TKL,1 +

√
λK + ε lnK) ≥ peg

(K,−)(TKL,1+
√
λK+ε lnK)−g(K,−)(TKL,1+

√
λK)ef

i,−
L,0
√
λK/2

∣∣∣
N

(K,−)
L (TKL,1 +

√
λK)≥ef

i,−
L,0
√
λK/2

)
= 1.

(C.4.76)

Similar to above, for some C4 <∞,

g(K,−)(TKL,1 +
√
λK + ε lnK)− g(K,−)(TKL,1 +

√
λK)

≥
∫ (TKL,1+

√
λK+ε lnK)/λK

(TKL,1+
√
λK)/λK

λKfL,0(u)du−
∫ TKL,1+

√
λK+ε lnK

TKL,1+
√
λK

∣∣∣b−L (u/λK)−D−L (u/λK)−fKL,0(u)
∣∣∣du

≥ ε lnKfav
L,0 − TΣ

` λK max
1≤i≤`

|f iL,0 − fav
L,0| − C1`

ε lnK
TΣ
` λK

δλK − C2ε
2 lnK

≥ ε lnK
(
fav
L,0 − C4(δ + ε)

)
≥ ε lnK

fav
L,0
2 , (C.4.77)

as long as δ, ε > 0 small enough and K large enough. This yields

lim
K→∞

P
(
N

(K,−)
L (TKL,1 +

√
λK + ε lnK) ≥ Kεfav

L,0/3 | N (K,−)
L (TKL,1 +

√
λK) ≥ ef

i,−
L,0
√
λK/2) = 1.

(C.4.78)

Summarizing so far, setting γ = fav
L,0/3 and

T
(K,−)
M = inf{t ≥ 0 : N

(K,−)
L (t) ≥M}, (C.4.79)

the last limit and (C.4.72) yield

lim
K→∞

P
(
T

(K,−)
Kεγ ≤ TKL,1 +

√
λK + ε lnK | ΩK,A,i

δ

)
≥ lim

K→∞
P
(
T

(K,−)
Kεγ ≤ TKL,1 +

√
λK + ε lnK | N (K,−)

L (TKL,1 +
√
λK) ≥ ef

i,−
L,0
√
λK/2

)
× P

(
N

(K,−)
L (TKL,1 +

√
λK) ≥ ef

i,−
L,0
√
λK/2 | ΩK,A,i

δ

)
≥
f iL,0
biL
− Cε. (C.4.80)
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Finally, now that a population size of some positive power of K is reached, we can apply
Theorem B.1 of [71]. Setting

rav = 1
TΣ
`

∫ TΣ
`

0
b−L (t)−D−L (t)dt > fav

L,0 − cr(δ + ε), (C.4.81)

for some cr <∞ independent of ε and δ, we obtain that, for any η > 0 and S > 0,

lim
K→∞

P
(
∀s ∈ [0, S] : N

(K,−)
L (T (K,−)

Kεγ + s lnK) > Kεγ+[fav
L,0−cr(δ+ε)]s−η

)
≥ lim

K→∞
P
(
∀s ∈ [0, S] : N

(K,−)
L (T (K,−)

Kεγ + s lnK) + 1 > Kεγ+ravs−η
)

= lim
K→∞

P
(
∀s ∈ [0, S] : ln

(
N

(K,−)
L (T (K,−)

Kεγ + s lnK) + 1
)
> (εγ + ravs− η) lnK

)
≥ lim

K→∞
P

∀s ∈ [0, S] :

∣∣∣∣∣∣
ln
(
N

(K,−)
L (T (K,−)

Kεγ + s lnK) + 1
)

lnK − (εγ + ravs)

∣∣∣∣∣∣ < η

 = 1.

(C.4.82)

Hence,

1 = lim
K→∞

P
(
T

(K,−)
ε2K < T

(K,−)
Kεγ + 1− εγ + η + logK(ε2)

fav
L,0 − cr(δ + ε) lnK

)

≤ lim
K→∞

P
(
T

(K,−)
ε2K < T

(K,−)
Kεγ + 1 + η

fav
L,0 − cr(δ + ε) lnK

)

≤ lim
K→∞

P
(
T

(K,−)
ε2K < T

(K,−)
Kεγ + 1 + ĉε

fav
L,0

lnK
)

(C.4.83)

for some ĉ <∞ and as long as 0 < δ, η < ε sufficiently small. Combining this with (C.4.80)
yields

lim
K→∞

P
(
TKε2K < TKL,1 + 1 + Ĉε

fav
L,0

lnK | ΩK,A,i
δ

)

≥ lim
K→∞

P
(
T

(K,−)
ε2K < TKL,1 + 1 + Ĉε

fav
L,0

lnK | ΩK,A,i
δ

)
≥
f iL,0
biL
− Cε, (C.4.84)

for some ĉ < Ĉ <∞.

Since all the above bounds in the limiting probabilities hold true for any choice of δ > 0
small enough and C and Ĉ can be chosen independent of δ > 0 and ε > 0, we can pick δ
arbitrarily small in the end and combine (C.4.65), (C.4.70), and (C.4.84) to deduce claims
(iii) and (iv), for a possibly slightly larger choice of C.
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Lotka-Volterra step and conclusion

To finally conclude Theorem C.2.2, we have to show that if a mutant population of trait L
has successfully grown up to the macroscopic size ε2K, it invades and finally outcompetes
the resident trait 0 population very fast and with high probability.

Lemma C.4.5. For ε > 0 small enough and under the Assumptions 5, 6 and 7, there exists
C <∞ such that

lim
K→∞

P
(
TKε2K ≤ T

(K,ε)
inv ≤ TKε2K + CλK

∣∣TKε2K < S(K,ε) ∧ T (K,ε)
φ

)
= 1. (C.4.85)

Proof. We would like to make use of the macroscopic population size of the L-mutant to
approximate the total population process under use of a law of large numbers for dynamical
systems, valid on time intervals of finite length (not scaling with K). However, this can
only be helpful if the mutant trait L is currently fit with respect to the resident and thus
has a positive growth rate, ensuring that the invasion takes place in such a finite time span.
Unfortunately, the assumptions only guarantee the average fitness fav

L,0 > 0 to be positive.
We work around this by introducing the alternative stopping time

T
(K,fit)
ε2K := inf

{
t ≥ 0 : NK

L (t) ≥ ε2K and f (K,−)
L,0 (t) > 0

}
, (C.4.86)

which indicates the starting point of the approximation with the corresponding deterministic
Lotka-Volterra system. For the definition of f (K,−)

L,0 (t), we refer to (C.4.15) in the proof of
Lemma C.4.2, where we use analog bounding processes.

Following the lines of Step 4 in the proof of Theorem 2.4 in [71], one can show that, condi-
tioned on fixation,

TKε2K ≤ T
(K,fit)
ε2K < TKε2K +O(λK). (C.4.87)

The main idea is to utilize that g(K,−) is a continuous function and, because of the assumption
fav
L,0 > 0, it holds that g(K,−)(TKε2K + λKT

Σ
` ) − g(K,−)(TKε2K) > 0, for ε > 0 small enough.

Looking at the first time after TKε2K when this difference is positive, one can show that this
must fall into a phase of positive fitness, i.e. f iL,0 > 0. Moreover, by Lemma C.5.8, the
population size of the mutants must exceed ε2K, possibly shortly afterwards but still during
the same phase. Therefore, T (K,fit)

ε2K is hit within a time of order O(λK) after TKε2K . Notably,
between TKε2K and T (K,fit)

ε2K the total mutant population does also not exceed a size of εK and
hence the approximating birth death processes can still be used for this argument.

At time T (K,fit)
ε2K , it is now guaranteed that on the one hand, exactly the resident trait 0

and the mutants of trait L have a macroscopic population size, and on the other hand,
the invading trait L is fit with respect to the resident trait while the resident is unfit with
respect to trait L. This puts us into the position to apply the standard arguments of [75] to
approximate the system by the corresponding deterministic two-type Lotka-Volterra system.
This yields the existence of a finite and deterministic time T (ε) <∞ such that

T
(K,ε)
inv ≤ T (K,fit)

ε2K + T (ε), (C.4.88)
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with probability converging to 1 as K → ∞. For more details on this type of argument we
refer to e.g. [40, Prop. 2(b)].

We are now well prepared to put everything together and finally prove Theorem C.2.2.
From Lemma C.4.3 we know that, until time S(K,ε), single L-mutants appear approximately
as a Poisson process with intensity function KµLKR̃

(K,±)(t). From Lemma C.4.4, remem-
bering that the claim transfers from TKL,1 to general TKL,j due to a separation of the time
scales of mutant appearance and invasion/extinction, we know however that not all of these
L-mutants lead to a macroscopic mutant population. Instead, there is a thinning probability
(dependent on the appearance time), that can be estimated by

1t/λK∈A
fKL,0(t)
bKL (t)

(1± Cε). (C.4.89)

Therefore, successful L-mutants are born approximately according to a Poisson process with
new intensity function given by the product of the former one and the thinning probability.

Now, asking for birth of the first successful mutant, we see directly that this happens on a
time scale of order 1/KµLK . Moreover, we know that the new intensity function is periodic
with period length TΣ

` λK , which is much shorter than the expected waiting time. Thus,
effectively the intensity function can be replaced by its average over one period, i.e. for
every T <∞, we have

∫ T/KµLK

0
KµLKR̃

(K,±)(t)1t/λK∈A
fKL,0(t)
bKL (t)

(1± Cε)dt

= (1± Cε) T

TΣ
` λK

∫ TΣ
` λK

0
a

(K,±)
bαc (t)bKbαc(t)

L−1∏
w=bαc+1

bKw (t)
|fKw,0(t)|

fKL,0(t)
bKL (t)

1t/λK∈Adt+O(λKKµLK)

= (1± Cε) T
TΣ
`

∫ TΣ
`

0
a

(K,±)
bαc (tλK)bbαc(t)

L−1∏
w=bαc+1

bw(t)
|fw,0(t)|

fL,0(t)
bL(t) 1t∈Adt+O(λKKµLK)

= (1± Cε) T
TΣ
`

∫ TΣ
`

0

(∑̀
i=1

RiL1t∈[TΣ
i−1,T

Σ
i )

)
1t∈Adt+O(1/λK) +O(λKKµLK)

= T (1± Cε)Reff
L + o(1). (C.4.90)

Here we utilize in the first equality the periodicity of all integrands and have to pay the
error of counting at most one integral too much. In the second equality we make a change of
variables to reduce from the K-dependent the functions bKw (t), fKw,0, to the unscaled versions
bw(t), fw,0. The additional error of order 1/λK stems from the short O(1) phases in the
definition of aK,±bαc . Finally we realize in the last step, that all errors vanish as K → ∞ and
we remember the definition of Reff

L in (C.2.14).

Lemma C.4.5 now states that, if the L-population reaches a macroscopic size, it directly
invades into the resident population and stabilizes near its equilibrium, with probability
converging to one. All in all, this means that the appearance of a single mutant of trait
L that grows and eventually invades and replaces the former resident population can be
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approximated by two exponentially distributed random variables with constant rate (1 ±
Cε)Reff

L , on the time scale 1/KµLK . Compared to this, the total growth time between birth
of the founding successful mutant and the final invasion time is of lower order, namely
O(lnK) + O(1). Hence, it can be neglected and we can approximate the rescaled invasion
time T (K,ε)

inv KµLK by exponential random variables with rate (1±cε)Reff
L , by possibly enlarging

the constant slightly. This observation implies the claim of Theorem C.2.2.

C.4.2. Proof of Theorem C.2.3

For the proof of Theorem C.2.3, we can re-use some parts of the previous section, with
small extensions and refinements. To obtain better bounds on the resident population and
hence the approximate invasion fitnesses, we replace the previous ε by an εK → 0, satisfying
K−1/max{α,2} � εK � λK

−1. In particular, this yields

µK � εK , ε2
KK � 1, εKλK � 1. (C.4.91)

Assuming that the resident equilibrium sizes n̄1
0 = n̄2

0 coincide for both phases (Assumption
8(i)), one can show that Lemma C.4.1 still holds true when using such an εK and considering
the slightly extended time horizon T/KµL+1

K . Notably, the proof even slightly simplifies since
there is no adaptation step at the beginning of each phase and one only need to apply a
version of Corollary C.5.2. The introduction of a decaying εK is necessary to achieve better
approximations for the invasion fitness and a precise time scale at the end.

Moreover, for the traits v ∈ [[1, bαc]] close to the resident, Lemma C.4.2 is still valid when
extending the time horizon to T/KµL+1

K .

The crucial part of proving Theorem C.2.3 lies in analyzing the probability of a successful
crossing of the valley. We proceed by first estimating the population size of the pit stop trait
w population in Lemma C.4.6, dependent on the time the first mutant arises. Second, in
Lemma C.4.7, we use this and arguments adapted from [29] to compute the probability that
a single w-mutant induces the fixation of an L-mutant population.

Due to the Assumption 6, we can conclude exactly as in Lemma C.4.4 and C.4.5 that
after fixation the L-population grows to a macroscopic size and finally replaces the resident
population quickly.

Growth of the pit stop population

Recall that TKw,j = inf
{
t ≥ 0 : MK

w (t) = j
}
is the time when the j-th mutant the trait w is

born as offspring of an individual of trait w − 1. Since w is the only trait within the valley
that has some phases of positive invasion fitness (f1

w,0 > 0), the descendant population might
start growing significantly. However, due to the negative average fitness (fav

w,0 < 0) it is clear
that it will die out again within one period. An explicit quantification is given in the following
Lemma. As before, in Lemma C.4.4, we focus on the case of the first arriving w mutant.
Due to separation of time scales, the results are transferable to all following mutants that
occur before the invasion of the L trait.
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Similar to before, we can couple the population process of trait w to branching processes
such that

N (K,−)
w (t) = NK

w (t) = N (K,+)
w (t) = 0, ∀ 0 ≤ t < TKw,1, (C.4.92)

N (K,−)
w (t) ≤ NK

w (t) ≤ N (K,+)
w (t), ∀ TKw,1 ≤ t ≤ TKw,2 ∧ S(K,εK) ∧ T (K,εK)

φ , (C.4.93)

where N (K,−)
w (TKw,1) = N

(K,+)
w (TKw,1) = NK

w (TKw,1) = 1 and the coupled processes follow the
law of time-dependent birth death processes with rate functions

B(K,∗)
w (t) = bKw (t)(1− µK), (C.4.94)

D(K,∗)
w (t) = dKw (t) + cKw,0(t)φ(K,εK ,∗̄)

0 (t) + 1∗=−εK čw, (C.4.95)

for ∗ ∈ {+,−} and ∗̄ denoting the inverse sign. This coupling can be made explicit through
a construction via Poisson measures, as outlined in the proof of Lemma C.4.2. We refer to
this section for further details.

To formulate the growth results precisely, let us introduce the time-dependent invasion fitness
for the coupled processes, as well as their integrals, which appear as the exponent of the
expected population size.

f
(K,±)
w,0 (t) := B(K,±)

w (t)−D(K,±)
w (t) = fKw,0(t) +O(εK) (C.4.96)

h(K,±)(t) :=
∫ t

TKw,1

f
(K,±)
w,0 (s)ds (C.4.97)

Note that h(K,±) depends on the random time TKw,1.

In what follows, we are only interested in the case of the first w-mutant being born in a
fit phase, i.e. there exists an n ∈ N0 such that λKnTΣ

2 ≤ TKw,1 < λK(nTΣ
2 + T1). In this

situation, we know that the function h(K,±) grows linearly with slope f1
w,0 + O(εK) until

the change of phases. At that time, an approximate value of
(
λK(nTΣ

2 + T1)− TKw,1
)
f1
w,0

is reached. Afterwards, h(K,±) decays with approximate slope f2
w,0 and crosses the x-axis

before the end of the second phase. Let us denote this time by

TKh=0 := inf
{
t > TKw,1 : h(K,−)(t) = 0

}
, (C.4.98)

which is the predicted time when the subpopulation of trait w becomes extinct again.

Lemma C.4.6. Fix ε > 0 small enough, let the initial condition be given by Assumption 5
and let the fitness landscape satisfy Assumption 8. Assume that TKw,1 falls into a fit phase,
i.e. there exists an n ∈ N such that λKnTΣ

2 ≤ TKw,1 < λK(nTΣ
2 + T1)−

√
λK . Then we have

the following limit results:

(a) (Fixation probability)

lim
K→∞

P
(
N (K,−)
w

(
TKw,1 +

√
λK
)
≥ ef

1
w,0
√
λK/2

)
≥
f1
w,0
b1w

, (C.4.99)

lim
K→∞

P
(
N (K,+)
w

(
TKw,1 +

√
λK
)

= 0
)
≥ 1−

f1
w,0
b1w

. (C.4.100)
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(b) (Initial boundedness) For every diverging sequence AK →∞,

lim
K→∞

P
(
∀t ∈

[
TKw,1, T

K
w,1 +

√
λK
]

: N (K,+)
w (t) ≤ ef

(1,+)
w,0 (t−TKw,1)AK

)
= 1. (C.4.101)

(c) (Short-term growth) There exist families of independent random variables
(
W

(K,±)
n

)
n∈N

with distribution

W (K,±)
n

d= Ber

f (1,±)
w,0
b1w

⊗ Exp

f (1,±)
w,0
b1w

 (C.4.102)

such that, for 0 < p1 < 1 < p2 <∞ and IK :=
[
TKw,1 +

√
λK , T

K
h=0 −

√
λKf

1
w,0/

∣∣∣f2
w,0

∣∣∣],
lim
K→∞

P
(
∀t ∈ IK : N (K,−)

w (t) ≥ p1eh(K,−)(t)W (K,−)
n

)
= 1, (C.4.103)

lim
K→∞

P
(
∀t ∈ IK : N (K,+)

w (t) ≤ p2eh(K,+)(t)W (K,+)
n

)
= 1. (C.4.104)

(d) (Extinction)

lim
K→∞

P
(
N (K,+)
w

(
TKh=0 +

√
λKf

1
w,0/

∣∣∣f2
w,0

∣∣∣) = 0
)

= 1. (C.4.105)

(e) (Final boundedness) There exists a constant C <∞, such that,
for JK := [TKh=0 −

√
λKf

1
w,0/

∣∣∣f2
w,0

∣∣∣ , TKh=0 +
√
λKf

1
w,0/

∣∣∣f2
w,0

∣∣∣],
lim
K→∞

P
(

sup
t∈JK

N (K,+)
w (t) ≤ eC

√
λK

)
= 1. (C.4.106)

Proof. (a) We imitate the strategy of Step 6 in the proof of Lemma C.4.4 and improve the
estimates slightly. To this end, fix some ε > 0 and let

B(ε,−)
w = b1w(1− ε), D(ε,−)

w = d1
w + c1

w,0n̄0 + ε
(
Mc1

w,0 + čw
)
, (C.4.107)

be the time-independent rates of a birth death process Z(ε,−). Moreover, set f (ε,−)
w = B

(ε,−)
w −

D
(ε,−)
w . Then f (ε,−)

w > f1
w,0/2 for ε > 0 small enough.

Since εK → 0 and µK → 0, this process (Z(ε,−)(s))s≥0 is stochastically dominated by the
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processes (N (K,−)
w (TKw,1 + s))s≥0, for K large enough. Therefore we can estimate

lim
K→∞

P
(
N (K,−)
w

(
TKw,1 +

√
λK
)
≥ ef

1
w,0
√
λK/2

)
≥ lim

s→∞
P
(
Z(ε,−)(s)e−f

(ε,−)
w s ≥ e

(
f1
w,0/2−f

(ε,−)
w

)
s
)

≥ lim sup
δ↓0

lim
s→∞

P
(
Z(ε,−)(s)e−f

(ε,−)
w s ≥ δ

)
= lim sup

δ↓0
P
(

lim
s→∞

Z(ε,−)(s)e−f
(ε,−)
w s ≥ δ

)
= lim sup

δ↓0
P
(
W (ε,−) ≥ δ

)
= P

(
W (ε,−) > 0

)
= f

(ε,−)
w

B
(ε,−)
w

=
f1
w,0 − Cε
b1w(1− ε) . (C.4.108)

Here, W (ε,−) = lims→∞ Z
(ε,−)(s)e−f

(ε,−)
w s, as in Theorems 1 and 2 in Chapter III.7 of [4].

This gives a lower bound for every ε > 0, and the limit on the left hand side is independent
of ε. Hence, we can take the limes superior as ε ↓ 0 of the inequality to obtain the sharp
bound that is claimed in the lemma.

The opposite estimate for N (K,+) can be shown in the same manner (similar to Step 5 in
the proof of Lemma C.4.4), under use of the birth death process corresponding to the rates

B(ε,+)
w = b1w, D(ε,+)

w = d1
w + c1

w,0n̄0 − εMc1
w,0. (C.4.109)

(b) The proof is similar to Lemma C.1 in [71] and relies on an application of Doob’s maximum
inequality to the the rescaled martingales M̂ (K,+)(t) = e−h(K,+)(t)N

(K,+)
w (t). By assumption,

the considered time interval is entirely part of the fit 1-phase. For the counter event of the
desired probability, we hence obtain

P
(
∃ t ∈

[
TKw,1, T

K
w,1 +

√
λK
]

: N (K,+)
w (t) > ef

(1,+)
w,0 (t−TKw,1)AK

)

= P

 sup
t∈[TKw,1,TKw,1+

√
λK ]

∣∣∣M̂ (K,+)(t)
∣∣∣ > AK


≤A−2

K E
[〈
M̂ (K,+)

〉
TKw,1+

√
λK

]

=A−2
K C

∫ TKw,1+
√
λK

TKw,1

e−f
(1,+)
w,0 (t−TKw,1)dt

=A−2
K

C

f
(1,+)
w,0

(
1− e−f

(1,+)
w,0

√
λK

)
K→∞−→ 0, (C.4.110)

which proves the claim.

(c) Again, this proof is similar to Lemma C.1 in [71], this time applying Doob’s maximum
inequality to both rescaled martingales M̂ (K,±)(t) = e−h(K,±)(t)N

(K,±)
w (t). As a preparation
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we remind ourselves of the results of [4, Ch. III.7], already mentioned in the proof of part
(a), from which we deduce that, at the divergent time TKw,1 +

√
λK , M̂ (K,±) is close to a

random variable W (K,±)
n . It has been shown in [68] that this random variable has exactly

the distribution stated in this lemma.

Let us focus on the first claim and consider the counter event. It suffices to condition on the
non-extinction-event from part (a) since under extinction the claim is trivial. Instead of com-
paring directly toW (K,−) we insert the exact rescaled population size of M̂ (K,−) at the initial
time of the interval. We use the short notation IK =

[
TKw,1 +

√
λK , T

K
h=0 −

√
λKf

1
w,0/

∣∣∣f2
w,0

∣∣∣],
as introduced in the lemma. Then we have

P
(
∃ t ∈ IK : N (K,−)

w (t) < p1eh(K,−)(t)e−h
(K,−)(TKw,1+

√
λK)N (K,−)

w

(
TKw,1 +

√
λK
)

∣∣∣N (K,−)
w

(
TKw,1 +

√
λK
))

≤ P
(

sup
t∈IK

∣∣∣e−h(K,−(t)N (K,−)
w (t)− e−h

(K,−)(TKw,1+
√
λK)N (K,−)

w (TKw,1 +
√
λK)

∣∣∣
> (1− p1)e−h

(K,−)(TKw,1+
√
λK)N (K,−)

w

(
TKw,1 +

√
λK
) ∣∣∣N (K,−)

w

(
TKw,1 +

√
λK
))

= P
(

sup
t∈IK

∣∣∣M̂ (K,−)(t)− M̂ (K,−)
(
TKw,1 +

√
λK
)∣∣∣

> (1− p1)e−h
(K,−)(TKw,1+

√
λK)N (K,−)

w

(
TKw,1 +

√
λK
) ∣∣∣N (K,−)

w

(
TKw,1 +

√
λK
))

≤
E
[〈
M̂ (K,−)

〉
TK
h=0−

√
λKf

1
w,0/|f2

w,0|
−
〈
M̂ (K,−)

〉
TKw,1+

√
λK

∣∣∣N (K,−)
w

(
TKw,1 +

√
λK
)]

[
(1− p1)e−h(K,−)(TKw,1+

√
λK)N (K,−)

w

(
TKw,1 +

√
λK
)]2

= C
(1− p1)e−h

(K,−)(TKw,1+
√
λK)N (K,−)

w

(
TKw,1 +

√
λK
)

[
(1− p1)e−h(K,−)(TKw,1+

√
λK)N (K,−)

w

(
TKw,1 +

√
λK
)]2 ∫ TKh=0−

√
λKf

1
w,0/|f2

w,0|

TKw,1+
√
λK

e−h(K,−)(t)dt

≤ Ce−f
1
w,0
√
λK/2ef

(1,−)
w,0

√
λK

 1
f

(1,−)
w,0

+ 1∣∣∣f (2,−)
w,0

∣∣∣
(e−f

(1,−)
w,0

√
λK − e−f

(1,−)
w,0 [λK(nTΣ

2 +T1)−TKw,1]
)

= Ce−f
1
w,0
√
λK/2

(
1− e−f

(1,−)
w,0 [λK(nTΣ

2 +T1)−(TKw,1+
√
λK)]

)
≤ Ce−f

1
w,0
√
λK/2 K→∞−→ 0, (C.4.111)

where the value of the constant C < ∞ changes between lines. Here we apply Doob’s
maximum-inequality, make use of the bracket computations in [71] and recall that εKλK � 1.
Finally, we utilize that, on the non-extinction-event, the population size at the beginning of
the interval can be bounded from below by N (K,−)

w

(
TKw,1 +

√
λK
)
> ef

1
w,0
√
λK/2, for K large

enough.

The second claim is proven analogously.
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(d) Using part (c) and noticing that

lim
K→0

h(K,+)
(
TKh=0 −

√
λKf

1
w,0/

∣∣∣f2
w,0

∣∣∣)− h(K,+)
(
TKw,1 +

√
λK
)

= 0, (C.4.112)

since εKλK � 1, we can bound the number of individuals being alive shortly before we
expect extinction from above by

lim
K→∞

P
(
N (K,+)
w

(
TKh=0 −

√
λKf

1
w,0/

∣∣∣f2
w,0

∣∣∣) ≤ ef
(1,+)
w,0

√
λKAK

)
= 1, (C.4.113)

for every diverging sequence AK →∞.

We then remind ourselves that within the time interval[
TKh=0 −

√
λKf

1
w,0/

∣∣∣f2
w,0

∣∣∣ , TKh=0 +
√
λKf

1
w,0/

∣∣∣f2
w,0

∣∣∣] (C.4.114)

the process N (K,+)
w is just a subcritical birth death process with parameters B(2,+)

w < D
(2,+)
w .

If we denote by Z(K,+) a process with the same birth and death rates but initialized with a
single individual, i.e. Z(K,+)(0) = 1, it is well known for the probability of extinction up to
time t (cf. [95]) that

P
(
Z(K,+)(t) = 0

∣∣∣Z(K,+)(0) = 1
)

= 1−

∣∣∣f (2,+)
w,0

∣∣∣ ef (2,+)
w,0 t

D
(2,+)
w −B(2,+)

w ef
(2,+)
w,0 t

. (C.4.115)

Since the families of all individuals alive at the beginning of the interval evolve independently
of each other, we can estimate the probability of extinction by

P
(
N (K,+)
w

(
TKh=0 +

√
λKf

1
w,0/

∣∣∣f2
w,0

∣∣∣) = 0
)

≥
[
P
(
Z(K,+)

(
2
√
λKf

1
w,0/

∣∣∣f2
w,0

∣∣∣) = 0
)]ef(1,+)

w,0
√
λKAK

=

1−

∣∣∣f (2,+)
w,0

∣∣∣ ef (2,+)
w,0 2

√
λKf

1
w,0/|f2

w,0|

D
(2,+)
w −B(2,+)

w ef
(2,+)
w,0 2

√
λKf

1
w,0/|f2

w,0|


ef

(1,+)
w,0

√
λKAK

≈

1−

∣∣∣f (2,+)
w,0

∣∣∣ e−2f1
w,0
√
λK

D
(2,+)
w −B(2,+)

w e−2f1
w,0
√
λK

ef
1
w,0
√
λKAK

(C.4.116)

Here we used in the last line, that f (1,+)
w,0 = f1

w,0(1 + CεK) and f
(2,+)
w,0 = f2

w,0(1 − CεK) as
well as εK

√
λK � 1. As the only condition on AK is to be a diverging sequence, we choose

AK := e
1
2f

1
w,0
√
λK . Then, for K large enough, the above probability can be bounded by

1−

∣∣∣f (2,+)
w,0

∣∣∣A−4
K

D
(2,+)
w −B(2,+)

w A−4
K

A
3
K

≥

1−

∣∣∣f (2,+)
w,0

∣∣∣
D

(2,+)
w A4

K/2

A
3
K

K→∞−→ e0 = 1. (C.4.117)
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(e) The strategy is the same as in the proof of Lemma A.1 in [45], Step 3(iii). As already
seen in the proof of part (d), the number of individuals alive at time TKh=0−

√
λKf

1
w,0/

∣∣∣f2
w,0

∣∣∣
is bounded from above by AKef

(1,+)
w,0

√
λK , which is still diverging. By the nature of branching

processes, we can consider the evolving family of each individual at this time independently.
Now we disregard possible death events, which leads to a collection of independent Yule-
processes Yi with birth rate b2w since the considered time interval lies entirely within the
second parameter phase. Since the Yi are monotonously increasing, it is sufficient to look
at their endpoints. We use the fact that these have the same distribution as iid. geometric
random variables Gi ∼ Geo(p) with p = e−2

√
λKb

2
wf

1
w,0/|f2

w,0|. An application of the law of
large numbers finally yields

lim
K→∞
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)
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√
λK

≤ e2
√
λKb

2
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1
w,0/|f2

w,0|

 = 1. (C.4.118)

Choosing AK appropriately and rearranging this estimate allows us finally to conclude the
claim.

Crossing the fitness valley and fixation

Lemma C.4.7. Let the initial condition be given by Assumption 5 and let the fitness land-
scape satisfy Assumption 8. Then there exists a C < ∞ such that, for every ε > 0 small
enough, for all 0 < p1 < 1 < p2 <∞, and K large enough,

PK(TKw,1) = P
(
TKw,1 < T

(K,ε)
inv < TKw,1 + 1 + Cε

fav
L,0

lnK
∣∣∣ TKw,1

)
. (C.4.119)

satisfies

PK(TKw,1) ≥
∞∑
n=0

1λKnTΣ
2 ≤T

K
w,1<λK(nTΣ

2 +T1)p1W
(K,−)
n µL−wK (C.4.120)

×
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PK(TKw,1) ≤
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2 +T1)p2W
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×

 b1w

f
(1,+)
w,0
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(ef
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where W (K,±)
n are the same iid. random variables as in Lemma C.4.6.
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Proof. In order to simplify the following proof, we do not document the exact form of the
approximation error in every step. All estimates stemming from the branching process
approximation enter the proposed probability as a multiplicative error of the form (1±CεK)
and can hence, for large K, be treated by slightly changing the choices of p1 and p2.

We know from [29], for the case of fixed environments i = 1, 2, that once a mutant of
trait w + 1 is born the probability of accumulating further mutants during the subcritical
excursions and finally producing a mutant of trait L is approximately given by

µL−w−1
K

L−1∏
v=w+1

λ(ρiv) = µL−w−1
K

biw+1 · · · biL−1∣∣f iw+1
∣∣ · · · ∣∣∣f iL−1

∣∣∣ =: µL−w−1
K Λi. (C.4.122)

Moreover, we know that, if this happens, the transition of the valley takes only a short time
of order O(1) and thus is finished within one phase. This inspires us to introduce a time-
dependent periodic version of this probability in the same way as for previous quantities:

ΛK(t) :=
{

Λ1 : t ∈ [0, λKT1),
Λ2 : t ∈ [λKT1, λKT

Σ
2 ).

(C.4.123)

The next question we address is the probability that a w-mutant born in the first phase
(which is the fit one) leads to a successfully growing population of trait L. To this end we use
the results of the preceding lemma to estimate the size NK

w of the founded w-subpopulation
until its extinction, which is with high probability before the end of the period. During this
time, it produces w+ 1-mutants at rate NK

w (t)bKw (t)µK . These mutants then get thinned by
the probability ΛK(t) and moreover we have to multiply by the probability that an L-mutant
fixates and invades successfully, which is the well known fixation probability (fKL,0(t))+/b

K
L (t).

Overall, we obtain that, in the case of λKnTΣ
2 ≤ TKw,1 < λK(nTΣ

2 +T1)−
√
λK , the probability

to observe a fixating L-subpopulation is approximately

PKn (TKw,1) :=
∫ λK(n+1)TΣ

2

λKnT
Σ
2

NK
w (t)bKw (t)µKµL−w−1

K ΛK(t)
fKL,0(t)
bKL (t)

dt. (C.4.124)

Our first observation is that the population size NK
w vanishes before TKw,1 and shortly after

TKh=0 by definition and part (d) of Lemma C.4.6, respectively. Moreover, it is not hard to
see from part (b) and (e) of the same lemma that the contribution of the intervals

[
TKw,1, T

K
w,1 +

√
λK
]

and

TKh=0 −
√
λK

f1
w,0∣∣∣f2
w,0

∣∣∣ , TKh=0 +
√
λK

f1
w,0∣∣∣f2
w,0

∣∣∣
 (C.4.125)

is negligible compared to the rest of the integral.

On the remaining interval, we can use the bounds of part (c) of the lemma already mentioned
to estimate NK

w (t) ≤ eh(K,+)(t)p2W
(K,+)
n , with high probability. Inserting this bound into the
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integral yields, with probability converging to 1, as K →∞,

PKn (TKw,1) ≤
∫ λK(n+1)TΣ

2

λKnT
Σ
2

p2W
(K,+)
n eh(K,+)(t)bKw (t)µL−wK ΛK(t)

fKL,0(t)
bKL (t)

dt (C.4.126)

= p2W
(K,+)
n µL−wK

(∫ λK(nTΣ
2 +T1)
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b1L

dt+
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2 +T1)

eh(K,+)(t)b2wΛ2 f
2
L,0
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)
.

We notice that the only non-constant term in both integrals is h(K,+)(t), which is piecewise
linear. To be precise, in the first integral it growths linearly with slope f (1,+)

w,0 > 0 starting
at 0 and decays in the second integral with slope f (2,+)

w,0 < 0 until getting close to 0 again.
Therefore, evaluating the integrals gives, with probability converging to 1,

PKn (TKw,1) ≤ p2W
(K,+)
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By the same strategy we achieve a lower bound.

PKn (TKw,1) ≥ p1W
(K,−)
n µL−wK
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We notice that the dependency on TKw,1, only enters the bounds for PKn (TKw,1) in the difference
λK(nTΣ

2 +T1)−TKw,1. Consequently, only the point of time within the parameter phase, and
not the cycle n, is important. Hence we can approximate PK(t) by

∞∑
n=0
PKn (t)1λKnTΣ

2 ≤t<λK(nTΣ
2 +T1) (C.4.129)

and conclude the claim.

We can now argue to conclude the final result of Theorem C.2.3. The function PK(t)
in Lemma C.4.7 can be seen as a thinning probability of the arrival rate of w-mutants.
Moreover, let us notice that mutants arriving in the second phase of a period are always
unfit and thus get thinned by a probability that is of strictly lower order than the PK ,
namely µL−wK . We can hence neglect those cases. By Lemma C.4.3, new w-mutants are
known to occur approximately as a Poisson process with rate function

KµwKa
(K,±)
bαc (t)bKbαc(t)

w−1∏
v=bαc+1

bKv (t)∣∣∣fKv,0(t)
∣∣∣(1± Cε). (C.4.130)
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Hence the birth times of successfully invading L-mutants follow approximately a Poisson
process with intensity function RK , which we can estimate by the product of the above
terms,

R(K,±)(t) = KµLKp∗(1± Cε)a
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bαc (t)bKbαc(t)
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Here we set p∗ = p1 for the lower bound and p∗ = p2 for the upper bound. Due to our
previous observations, this is almost a periodic function. It differs between the periods only
by the iid. random variables W (K,±)

n . Moreover, we see that the leading order term is of
order KµLKef

1
w,0T1λK � 1, when integratet over one period of length λKT

Σ
2 . We therefore

expect the first successful L-mutant to be born on the time scale λKe−f
1
w,0T1λK/KµLK . As

argued in the final step of proof of Theorem C.2.2, the periodic variations of the intensity
function average out since these are on the much shorter time scale λK . Effectively, for every
T <∞, we compute the Poisson intensity of successfully fixating L-mutants by
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(C.4.132)
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If we now focus on the integral term, this can be rewritten and bounded from below by
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Here, in the first equality, we used the periodicity of the integrands and a change of variables.
In the second step, we reduced the K-dependent functions a(K,±)

bαc , bKv , f
K
v,0 to their unscaled

versions, which are constant. Note that this comes at the expense of adding an error of order
O(ef

(1,±)
w,0

∑bαc
w=0 τ

ε
w/λK), stemming from the short O(1) phases of adaptation in the definition

of a(K,±)
bαc . Finally, we just rearrange the constant prefactor at the front of the sum and

estimate the lower order terms.

A corresponding upper bound is obtained by considering the sum running up to
⌈
T
TΣ

2

e−f
1
w,0T1λK

KµLK

⌉
and using the parameters a(1,+)

bαc etc., corresponding to the upper bounding branching pro-
cess.
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Putting things together, we obtain
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Here, besides using the fact that f (i,±)
w,0 → f iw,0, for K →∞, we applied the law of large num-

bers to the sum of iid. random variablesW (K,±)
n , which have expected value 1. Implementing

the corresponding upper bounds results in a limit of (1 + C̃ε)TRpitstop
L accordingly.

Choosing ε arbitrarily small and remembering that growth of the L-mutant population and
invasion of the resident population occur on a shorter time scale, as analogously to the proof
of Theorem C.2.2, yields the claim of Theorem C.2.3.

C.5. Appendix

In this chapter, we collect and prove a number of technical results about branching processes
that are related to the resident trait’s stability, excursions of subcritical processes, and the
short-term growth dynamics of mutants in a changing environment.

C.5.1. Resident stability

The following results build on and extend the results of [71]. They apply to what we refer to as
birth death processes with self-competition, i.e. birth death processes X with individual birth
rate b and a density-dependent individual death rate d+ cX. In the results, the competitive
term cX is rescaled by the carrying capacityK, as it is for the processes introduced in Section
C.2.1. We start by citing a bound for the probability of deviating from the equilibrium
population size on an arbitrary time scale θK , based on a potential theoretic argument.
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Theorem C.5.1 ([71, Lemma A.1]). Let XK be a birth death process with self-competition
and parameters 0 < d < b and 0 < c/K. Define n̄ := (b − d)/c. Then there are constants
0 < C1, C2, C3 < ∞ such that, for any ε small and any K large enough, any initial value
0 ≤ |x− dn̄Ke| ≤ 1

2

⌊
εK
2

⌋
, any m ≥ 0, and any non-negative sequence (θK)K∈N,

Px
(
∃ t ∈ [0, θK ] : |XK(t)− dn̄Ke| > εK

)
≤ mC1e

−C2ε2K +
∞∑
l=m

(
4
(
1− e−C3KθK/l

)1/2
)l
.

(C.5.1)

We can now apply this result to general time scales of the formKp, p > 0, which in particular
covers the time scale of interest 1/KµK , on which the crossing of the fitness valley occurs.

Corollary C.5.2. Let XK be the processes from Theorem C.5.1. Then, for all p, q > 0,

Px
(
∃ t ∈ [0,Kp] : |XK(t)− dn̄Ke| > εK

)
= O(1/Kq). (C.5.2)

In particular, for all L > α,

lim
K→∞

1
λKKµLK

Px
(
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[
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]
: |XK(t)− dn̄Ke| > εK

)
= 0. (C.5.3)

Proof. We use the estimate of Theorem C.5.1 with θK = Kp. Choosing m = mK = Kp+q+1

we see that the first term mKC1e
−C2ε2K is still exponentially decaying in K. Moreover, note

that, for l ≥ mK ,(
4
(
1− e−C3KθK/l

)1/2
)l
≤
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4
(
1− e−C3Kp+1/mK

)1/2
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≤
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4
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)1/2
)l
. (C.5.4)

This allows us to estimate the sum by a geometric series
∞∑

l=mK

(
4
(
1− e−C3KθK/l

)1/2
)l
≤
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l=mK

(
4
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)l
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1− 4
(
1− e−C3/Kq)1/2 ≤ C4

(
16
(
1− e−C3/Kq

))mK/2
≤C4

(
16C3K

−q)mK/2 ≤ 16C3C4K
−q. (C.5.5)

Here we used that, for K large enough, 1 − 4
(
1− e−C3/Kq

)1/2
≥ C−1

4 to get rid of the
fraction. Moreover, we made use of the standard estimate 1 − e−x > x. This yields the
first claim. To conclude the second claim, we simply take p = q = (L/α) − 1 and use that
λK � 1.

To estimate the process during the short adaptation phase after a parameter change, we
derive a comparison result to the corresponding deterministic differential equation. We begin
by providing two technical lemmas on properties of the Poisson distribution and Poisson
processes, respectively.
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Lemma C.5.3. Let Y be a Poisson distributed random variable with parameter λ > 0 and
denote its central moments by

µp := E [(Y − λ)p] , p ∈ N0. (C.5.6)

Then we have, for n ∈ N0, the following leading order result in λ,

µ2n = anλ
n +O

(
λn−1

)
, µ2n+1 = bnλ

n +O
(
λn−1

)
, (C.5.7)

where the prefactors are given by

an =
n−1∏
k=0

(2k + 1) = (2n− 1)!!, bn =
n−1∑
k=0

k + 1
2k + 1

(
k−1∏
i=0

(2i+ 1)
)
. (C.5.8)

Proof. It is easy to verify that all moments exist. By differentiating with respect to λ > 0,
we obtain, for p ≥ 1, the recursion

µp+1 = λ

(dµp
dλ + pµp−1

)
. (C.5.9)

From this, we get the induction step

µ2n+2 = (2n+ 1)anλn+1 +O (λn) , µ2n+3 = [(n+ 1)an + (2n+ 1)bn]λn+1 +O (λn) ,
(C.5.10)

which, together with the base cases µ0 = 1 and µ1 = 0, directly implies the claim.

Lemma C.5.4. Let Y ∼ PPP ([0,∞), du) be a homogeneous Poisson point process on [0,∞)
and denote by Ỹ its compensated version, i.e. Ỹ (u) = Y (u) − u. Then, for all n ∈ N, all
1 ≤ T <∞ and all ξ ∈ (0,∞),

P
(

sup
u∈[0,T ]

∣∣∣Ỹ (u)
∣∣∣ > ξ

)
≤ Cnξ−2nTn, (C.5.11)

where Cn ∈ (0,∞) only depends on n.

Proof. Since Ỹ is a martingale,
∣∣∣Ỹ ∣∣∣2n is a submartingale. Therefore, we can apply Doob’s

maximum inequality

P
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≤ ξ−2nE

[∣∣∣Ỹ (T )
∣∣∣2n] ≤ Cnξ−2nTn.

(C.5.12)

Here we used in the last step that Ỹ (T ) is a centered Poisson random variable with parameter
λ = T and we know from Lemma C.5.3 that its (2n)-th moment is a polynomial of degree n
in T .

188



C.5. Appendix

This bound now allows us to extend a previous result from [71] on the convergence of the
stochastic process to the solution of the corresponding differential equation, which is itself a
quantification of the classical convergence result in [75].

Theorem C.5.5. Let XK be a birth death process with self-competition and parameters
0 < d < b and 0 < c/K. Assume that XK(0)/K → x0 as K → ∞ and let (x(t))t≥0 be the
solution to the ordinary differential equation

ẋ(t) = x(t) [b− d− c · x(t)] (C.5.13)

with initial value x(0) = x0. Then, for all n ∈ N, there exists C̃n ∈ (0,∞) such that, for
every 0 ≤ T <∞ and ε > 0,

P
(

sup
t∈[0,T ]

∣∣∣∣∣XK(t)
K

− x(t)
∣∣∣∣∣ > ε

)
≤ C̃nTnε−2nK−n. (C.5.14)

Proof. The proof follows along the lines of Theorem A.3 in [71], with the only difference of
using the higher moment estimates of Lemma C.5.4 in the final step.

C.5.2. Subcritical excursions

The following result describes the distribution of the number birth events in a subcritical
birth death process before extinction. While the result is already derived in [29], we want
to mention a simplification of the expected value.

Lemma C.5.6 (extension of [29, Lemma A.3]). Consider a subcritical birth death process
with individual birth and death rates 0 < b < d. Denote by B the total number of birth events
during an excursion of this process initiated with exactly one individual. Then, for k ∈ N0,

P (B = k) = (2k)!
k!(k + 1)!

(
b

b+ d

)k ( d

b+ d

)k+1
(C.5.15)

and in particular

e(b,d) := E [B] = b

d− b
. (C.5.16)

Moreover, we have the following continuity result: There exist two positive constants c, ε0 >
0, such that, for all 0 < ε < ε0 and 0 < bi < di, if |b1 − b2| < ε and |d1 − d2| < ε, then∣∣∣e(b1,d1) − e(b2,d2)

∣∣∣ < cε. (C.5.17)

Proof. The claim of (C.5.15) and the continuity result can be obtained by studying a discrete-
time simple random walk on Z with probability of jumping up equal to ρ = b/(b+ d), which
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is the probability that the next event in the birth death process is a birth. Details can be
found for example in [69, Lemma 17]. This also implies that

E [B] =
∞∑
k=1

(2k)!
(k − 1)!(k + 1)!ρ

k(1− ρ)k+1. (C.5.18)

This expression can be shown to be equal to ρ/(1 − 2ρ), for ρ < 1/2, e.g. by rewriting the
binomial coefficients using the residue theorem. Plugging back in the value of ρ then yields

E [B] = b/(b+ d)
1− 2b/(b+ d) = b

d− b
. (C.5.19)

C.5.3. Short-term growth

Finally, we present a result on the short-term growth dynamics for birth death processes
with time-dependent rates on the lnK-time scale. As introduced in C.2.1, the rates of the
birth death processes vary on the time scale 1� λK � lnK with ` ∈ N different parameter
phases, where ` is possibly different from the one in the main results. Denoting by Ti > 0
the single and by TΣ

i :=
∑i
j=1 Tj the accumulated lengths of parameter phases, and by bi

and di the corresponding birth and death rates, the time-dependent rate function are given
by the periodic extensions of

b(t) :=
∑̀
i=1

1t∈[TΣ
i−1,T

Σ
i )b

i, d(t) :=
∑̀
i=1

1t∈[TΣ
i−1,T

Σ
i )d

i. (C.5.20)

We set ri := bi − di and r(t) := b(t) − d(t) to refer to the net growth rate and rav :=
(
∑`
i=1 r

iTi)/TΣ
` to refer to the average net growth rate. Moreover, on the time scale λK we

consider bK(t) := b(t/λK), dK(t) := d(t/λK), and rK(t) := r(t/λK).

To prove the desired result, we first derive an equivalent formulation of the set of possible
arrival times of successful mutants.

Lemma C.5.7. For a piecewise constant, right-continuous, periodic function r such as the
one above, let

g(t) :=
∫ t

0
r(u)du. (C.5.21)

The the following definitions of the set A ⊂ [0,∞) of possible arrival times of successful
mutants are equivalent:

A1 =
{
t ≥ 0 : ∀s ∈ (0, TΣ

` ] g(t+ s) > g(t)
}
, (C.5.22)

A2 = {t ≥ 0 : ∀s ∈ (0,∞) g(t+ s) > g(t)} , (C.5.23)
A3 = {t ≥ 0 : ∃ γ > 0 ∀s ∈ (0,∞) g(t+ s) > g(t) + γs } . (C.5.24)
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Proof. The inclusions A3 ⊆ A2 ⊆ A1 are somewhat trivial and we hence focus on A1 ⊆ A3.
To this end, take t ∈ A1 and note that it suffices to show that

inf
s>0

g(t+ s)− g(t)
s

> 0. (C.5.25)

Since g is continuous and the defining inequality of A1 is strict, it still holds true for t̃ = t+ε,
with ε > 0 sufficiently small. Hence, for s ∈ [ε, TΣ

` ], we get

g(t+ s)− g(t) = g(t+ s)− g(t+ ε) + g(t+ ε)− g(t) > g(t+ ε)− g(t). (C.5.26)

Moreover, for such s, we can make the rough estimate

g(t+ s)− g(t)
s

>
g(t+ ε)− g(t)

TΣ
`

=: γ̃ > 0. (C.5.27)

Now, since r is piecewise constant and right-continuous, we can take ε > 0 sufficiently small
such that r is constant on [t, t + ε], which implies that g(t + s) = g(t) + r∗s, for s ∈ [0, ε],
where r∗ ∈

{
ri : i = 1, . . . , `

}
. The defining inequality of A1 immediately implies that r∗ > 0.

Lastly, we note that every s ≥ TΣ
` can be split uniquely into s = nTΣ

` + s̃, with n ∈ N and
0 ≤ s̃ < TΣ

` . Thus

g(t+ s)− g(t) > g(t+ s)− g(t+ s̃) = ravnTΣ
` (C.5.28)

and hence

g(t+ s)− g(t)
s

>
ravnTΣ

`

(n+ 1)TΣ
`

≥ rav

2 > 0. (C.5.29)

The positivity of rav is a direct consequence ofA1 6= ∅. We can thus take γ = min {γ̃, r∗, rav/2}
to show that t ∈ A3 and hence A1 ⊆ A3, which concludes the proof.

With this characterization at hand, we can now prove the following lemma, which is an
extension of Lemma C.1 in [71].

Lemma C.5.8. Let ZK be birth death process with time-dependent rates bK , dK and let
gK(t) =

∫ t
0 r

K(s)ds, where rK is the net growth rate. Assume that rav > 0 and the initial
time lies in the set of possible arrival times of successful mutants defined in Lemma C.5.7
corresponding to the growth function f = r, i.e. 0 ∈ A. Then, for all ε > 0, 0 < p1 < 1 < p2,
and all initial values satisfying 1� ZK(0)� Kε, we obtain

P
(
p1egK(t)ZK(0) < ZK(t) < p2egK(t)ZK(0) ∀t ∈ [0, ε lnK]

)
= 1−O((ZK(0))−1) K→∞−→ 1.

(C.5.30)
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Proof. Checking the counter probabilities, we observe that

P
(
∃ t ≤ ε lnK : ZK(t) ≤ p1egK(t)ZK(0)

)
= P

(
∃ t ≤ ε lnK : ZK(0)− e−gK(t)ZK(t) ≥ (1− p1)ZK(0)

)
≤ P

(
sup

t≤ε lnK

∣∣∣e−gK(t)ZK(t)− ZK(0)
∣∣∣ ≥ qZK(0)

)
, (C.5.31)

P
(
∃ t ≤ ε lnK : ZK(t) ≥ p2egK(t)ZK(0)

)
= P

(
∃ t ≤ ε lnK : e−gK(t)ZK(t)− ZK(0) ≥ (p2 − 1)ZK(0)

)
≤ P

(
sup

t≤ε lnK

∣∣∣e−gK(t)ZK(t)− ZK(0)
∣∣∣ ≥ qZK(0)

)
, (C.5.32)

for some q > 0. For both bounds we apply Doob’s maximum inequality to the rescaled
martingale M̂K(t) = e−gK(t)ZK(t)− ZK(0) to obtain (see [71, Lemma C.1] for details)

P
(

sup
t≤ε lnK

∣∣∣e−gK(t)ZK(t)− ZK(0)
∣∣∣ ≥ qZK(0)

)
= P

(
sup

t≤ε lnK

∣∣∣M̂K(t)
∣∣∣ ≥ qZK(0)

)

≤ C

ZK(0)

∫ ε lnK

0
e−gK(s)ds ≤ C

ZK(0)

∫ ε lnK

0
e−γsds = C

ZK(0)
1−K−γε

γ
≤ C̃

ZK(0) .

(C.5.33)

Here we used that, by Lemma C.5.7, gK(s) = λKg(s/λK) ≥ γs, for some γ > 0 and all
s ≥ 0, since 0 ∈ A.
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