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Summary

In this thesis, we study the boundedness of several multilinear operators including singular
Brascamp-Lieb forms and certain multilinear Fourier multipliers with rough or oscillatory
multipliers.

Several important multilinear singular integral operators in harmonic analysis such as
the Coifman-Meyer multipliers, the bilinear Hilbert transform, and twisted paraproducts
all fall within the class of singular Brascamp-Lieb forms. The boundedness of a singular
Brascamp-Lieb form is invariant under certain linear changes of variables. Given specific di-
mension data, we classify singular Brascamp-Lieb forms up to equivalence and characterize
their boundedness in this setting.

Typically, for a given singular Brascamp-Lieb form, one imposes the Mihlin’s condition
on its multiplier, which is the Fourier transform of the singular kernel. This Mihlin’s con-
dition can be generalized to Hérmander’s condition, which allows for fractional regularity.
Naturally, this raises the question: what is the minimal regularity required of the multi-
plier to ensure boundedness? We address this question for multipliers that may exhibit
Lipschitz-type singularities.

Furthermore, the linear projections appearing in singular Brascamp-Lieb forms can
be replaced by nonlinear maps. This line of research traces back to the 1970s, when
singular Radon transforms were first studied. We also explore multilinear generalizations
of the singular Radon transform, where the associated multipliers may exhibit oscillatory
behavior. A crucial step in establishing the boundedness of such multilinear oscillatory
multipliers is to prove a suitable smoothing inequality. We provide partial answers regarding
which classes of multilinear oscillatory multipliers admit such smoothing effects.

This thesis consists of four chapters.

In Chapter 0, we introduce the historical background and explain how our work fits
into this broader framework.

In Chapter 1, we classify singular Brascamp-Lieb forms in ambient space of dimension 3,
involving functions of dimensions 1, 2,2, and a kernel of dimension 1. We also characterize
the boundedness of singular Brascamp-Lieb forms within this family. This chapter is based
on a single-author paper [71].

In Chapter 2, we establish a local L? bound for multilinear Fourier multipliers with
Lipschitz singularities under the sharp Hormander’s condition. This chapter is based on a

joint work with Jiao Chen and Martin Hsu [16].

In Chapter 3, we present a blueprint for Lean, a computer-assisted verification pro-



gram. This blueprint concerns a smoothing inequality for multipliers associated with the
triangular Hilbert transform along curves. It is a single-author work based on the paper
[53], jointly written with Martin Hsu.
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Introduction

The introduction is organized as follows. It consists of three sections, each corresponding
to one of the main topics of this dissertation. In each section, we first present the histor-
ical background and highlight key developments in that direction. This is followed by a
subsection that explains how our research fits within this framework, along with the main
ideas and techniques employed in our work.

0.1 Singular Brascamp-Lieb forms

Given linear maps B = {B; };‘:1, with B; : R% — R%, one may ask: for which exponents
p = (p1,--- ,pn) does the following inequality hold?

/d L1 fi(Bjz)dz| < Cp,p [T 15l pes - (0.1.1)
R Oj:l =1

Inequalities of this type are known as Brascamp-Lieb inequalities, a broad family that
encompasses several fundamental inequalities, including Hoélder’s inequality, Young’s con-
volution inequality, and the Loomis-Whitney inequality. In 2008, Bennet, Carbery, Christ,
and Tao [4] fully resolved this question, providing a sharp criterion to determine the range
of exponents p, based on the linear maps B.

Beyond the classical Brascamp-Lieb setting, there are other important multilinear forms
arising in harmonic analysis, especially those connected to singular integrals. Let B =
{Bj}?;l, with B; : R% — R%, be linear maps and let K be a singular kernel whose
Fourier transform satisfies the Mihlin’s condition:

(@ R)(©)| < Calel e (0.1.2)

for all £ # 0 and for all multi-indices « up to some large enough integer || < Ny. Analogous
to the Brascamp-Lieb setting, one may ask: for which exponents p = (p1,- - ,pn), does the
following singular Brascamp-Lieb inequality hold?

/Rd H fi(Bjz)K(Bjy1)dr| < CK,B,pH I fillzpi - (0.1.3)
0321

j=1

Note that, since K is a singular kernel, the integral should be considered in the prin-
ciple value sense though we omit writing the p.v. in front of the integral. The tuple



d = (do,dq,- - ,dny1) will be referred to as the dimension data associated with the sin-
gular Brascamp-Lieb form. Many objects within this class of multilinear forms have their
own distinct background and motivation. Establishing their boundedness has applications
across various areas of mathematics. In this work, we will not delve into the detailed his-
torical background of each individual object but will instead focus on how they fit into the
broader general framework.

This general form includes many well-known linear and multilinear singular integral
operators. For instance, when n = 2, d = (2,1,1,1), K(y) = %, the singular Brascamp-
Lieb form corresponds to the dual form of the Hilbert transform, defined by

Hf() = /Rf(x—y);dt, (0.1.4)

which serves as a prototype of the Calderon-Zygmund singular integral operator. The
boundedness of the Hilbert transform in LP(R) for 1 < p < oo was first established in 1928
by Riesz [86] using methods from complex analysis. Later, in 1952, Calderén and Zygmund
[12] gave a real-variable proof via their Calderén-Zygmund decomposition which becomes
an essential tool in modern singular integral theory.

Later in 1978, Coifman and Meyer [24, 26| initiated the study of multilinear singular
integrals, establishing boundedness results in the open Banach range for the following
bilinear operator:

T(f)a) = [, = mole = w) K m)dndy, (015

where the kernel K satisfies the Mihlin’s condition (0.1.2). The dual form of (0.2.3) cor-
responds to the case n = 3 and dimension data d = (3dy, do, do,do,2dp) in (0.1.3). If
we require that all functions are defined on spaces of the same dimension, and that the
bounds obtained are of Holder-type exponents, then by scaling, the dimension data must
take the form (a + b,a,--- ,a,b). Once the dimension a of the function is fixed and the
kernel dimension b becomes lower, the corresponding operator becomes more singular,
making boundedness results harder to prove. For the Coifman-Meyer multiplier, if we set
dp = 1, the dimension data is (3,1,1,1,2). There is a more singular case with dimension
data (2,1,1,1,1) corresponding to a kernel of lower dimension. In this context, Lacey and
Thiele [63] first established a local L? bound in 1997 and later in 1999 [64], they extended
the range for the bilinear Hilbert transform:

To(f.9)(x) = /R fla—y)gle+ ay>;dy, (0.1.6)

whose dual form fits into the dimension data (2,1,1,1,1). The method they introduced,
now known as time-frequency analysis, has become a fundamental tool in dealing with
operators exhibiting modulation symmetry, including the Carleson operator [65] which is
related to the almost everywhere convergence of Fourier series. The study of the bilinear
Hilbert transform was originally motivated by the work of Calderén, Coifman, McIntosh,
and Meyer [11, 25], which established the L” boundedness of the Calderén commutator
and, consequently, the Cauchy integral on Lipschitz curves.

Once uniform estimates in « for the bilinear Hilbert transform are obtained, we obtain
an alternative proof of the boundedness of the Calderén commutator. The first uniform



bounds were proven by Thiele [92] in 2002 for a certain range, and later, this range was
extended by Grafakos and Li [44], Li [67], and Uraltsev and Warchalski [96]. In 2014,
Muscalu [74, 75] provided a new proof of the boundedness of the Calderén commutator.
Instead of proving uniform bounds for the bilinear Hilbert transform, his approach directly
tackled Coifman-Meyer type multiplier operators, where the multipliers satisfy a weaker
regularity condition.

If we maintain the function and kernel in one dimension but increase the linearity to
n = 4, we encounter the trilinear Hilbert transform for which boundedness remains a major
open problem:

Conjecture 0.1.1 (Trilinear Hilbert transform). For f; € S(R), j = 1,2,3,4, the following
iequality holds:

4
<CT[Ifllzs- (0.1.7)

j=1

/R fi@+y) fae + 2y) f(z + 3y) f4(x);dyd:c

Alternatively, we may keep n = 3, but raise the dimension of the function to 2. In 2010,
Thiele and Demeter [28] studied the following two-dimensional bilinear Hilbert transform
whose dual form are of dimension data (4,2,2,2,2):

T(f,9)(x1,12) = /sz((xl,@) + A1(y1,y2))9((z1, 22) + A2(y1, y2)) K (y1, y2)dy1dy2,

(0.1.8)
where A1, As are 2 x 2 matrices. Bounds in certain range were obtained for most cases
except for one particularly case, which is now called the twisted paraproduct:

T(f,9) (w1, @2) = /11{2 f(z1+y1,22)9(21, 22 + y2) K (y1, y2)dy1dys - (0.1.9)

In 2012, Kovaé [59] proved boundedness for the twisted paraproduct in the loca L? using a
novel technique called twisted technology. In the same year, Bernicot [5] extended the range
of boundedness using a fiberwise Calderén-Zygmund decomposition. Through a change of
variables, the twisted paraproduct can be reformulated as a symmetric quadralinear form:

A(f1, f2, f3, f4) = /R4 J1(x1,22) fowa, 3) f3(23, T4) fa(xs, 21) K (21—23, To—24)dx1drodr3drs

(0.1.10)
with f; = 1. In [59], Kovac first established boundedness for A with f; = 1 in the Walsh
model, and then transferred the result to Euclidean space using the square function estimate
of Jones, Seeger, and Wright [55]. Later, in 2015 and 2017, Durcik directly prove bounds for
the entangled quadrilinear form A by further introducing a Gaussian domination techniques.

By keeping the functions two-dimensional but lowering the dimension of the kernel, we
arrive at a highly singular object with dimension data (3,2,2,2,1) known as the triangular
Hilbert transform, whose boundedness remains as another major open problem:

Conjecture 0.1.2 (Triangular Hilbert transform). For f; € S(R), j = 1,2, 3, the following
equality holds:

3
<CIJfze (0.1.11)

Jj=1

T

/]R3 f1($7y)f2(y7 Z)fg(z’w)—i—;—kzdxdydz




This operator is of particular importance because establishing its boundedness would
imply, as a consequence, the boundedness of both the bilinear Hilbert transform and the
Carleson operator within their respective ranges.

As we move to higher dimensions, we encounter increasingly diverse cases. Therefore,
it becomes essential to establish a complete classification and a clear hierarchy among
singular Brascamp-Lieb forms before addressing the estimates for each specific case. Our
primary focus lies in understanding the boundedness properties of these multilinear forms.
It is important to note that boundedness is invariant under changes of variables in the
ambient space and under shearing each functions by invertible linear transformations with
non-zero Jacobian. This observation naturally leads to the following notion of equivalence
for singular Brascamp-Lieb data. Specifically, we say that two singular Brascamp-Lieb
data B = {B;}_), B; : R® — R% and B’ = {Bj}"_, B; : R% — R% are equivalent if
and only if there exist invertible linear maps A : R% — R%, Cj - RLG - RY, 1<j<n
such that for all 1 < j <mn,

B;- = C;BjA. (0.1.12)

Singular Brascamp-Lieb forms that are equivalent in this sense share the same range of
boundedness exponents p. In Chapter 1, we first classify singular Brascamp-Lieb forms
with dimension data (3,1,2,2,1) under this equivalence and characterize the boundedness
properties of this class. Later, in collaboration with Lars Becker and Polona Durcik, and
using tools from quiver representation theory, we extend this classification to trilinear
singular Brascamp-Lieb forms with arbitrary dimension data [1], and establish boundedness
results for certain subclasses.

0.1.1 Our results

In Chapter 1, we study a special case of the singular Brascamp-Lieb form with dimension
data (3,1,2,2,1). Our interest in this particular dimension data arises from the question
of what kind of bounds one might obtain if, in the triangular Hilbert transform, one of
the two-dimensional functions is replaced by a one-dimensional function. Notably, due
to scaling considerations, the exponents p in this case do not correspond to Hoélder-type
exponents.

This object serves as a testing ground in several respects. First, we attempt to classify
this family of forms through the notion of equivalence introduced earlier. To our knowledge,
this is the first complete classification of a singular Brascamp-Lieb form with a specific
dimension data. Previous works have addressed partial classifications—for instance, in [28],
the authors divides the two-dimensional bilinear Hilbert transforms into different classes
according to the spectrum of the two matrices, but they did not establish that objects in
different classes are inequivalent. Later, we realized that establishing the inequivalence and
classification of trilinear singular Brascamp-Lieb forms is directly related to a well-known
problem in quiver representation theory, known as the four subspace problem. It is my
advisor Prof. Christoph Thiele who suggested us to take the approach through quiver
representation. By employing tools from quiver representation, and in collaboration with
Lars Becker and Polona Durcik, we were able to classify trilinear singular Brascamp-Lieb
forms for general dimension data [1].

Second, we develop an approach to argue the unboundedness of singular Brascamp-

1

Lieb forms when the kernel is a genuinely singular kernel, such as ;. Typically, singular



Brascamp-Lieb inequalities are stated for all kernels K satisfying Mihlin’s condition, and
one seeks to establish bounds within some range. To disprove such bounds, a common
strategy is to let K be a Dirac delta, reducing the singular Brascamp-Lieb form to a
classical Brascamp-Lieb form, and then verify whether the corresponding Brascamp-Lieb
criterion fails. However, our method tackles the unboundedness directly when K is a
genuinely singular kernel.

Our result shows that no bound exists in the open range for this particular form —
bounds hold only at certain endpoints. We conjecture this phenomenon reflects a general
principle for most non-Hélder-type singular Brascamp-Lieb forms.

0.2 Multilinear Fourier multipliers with rough multipliers

If a multiplier m satisfies the Mihlin’s condition (0.1.2) for all multi-indices o with |a| < s
for some integer s, then we say m satisfies the s-Mihlin’s condition. A natural question
arises: Given a multiplier m, how rough can m be? More precisely, what is the minimal
integer s for which the associated singular Brascamp—Lieb form remains bounded in a cer-
tain range? Moreover, we are interested in exploring the relationship between the regularity
exponent s and the range of exponents p for which boundedness holds.

Linear and multilinear singular integrals can often be reformulated in terms of multipli-
ers. In the linear setting, Mihlin’s classical theorem [73] from 1956 shows that if m satisfies
the (L%J + 1)-Mihlin’s condition then the associate multiplier operator T, defined below

~

Tof(x):= [ m(&)f(€)e’ ™ d¢ (0.2.1)

R4

is bounded in the open Banach range. Furthermore, the regularity requirement L%J +1
is sharp. There is also a weaker, yet closely related, condition known as the Héormander’s
condition. We say a multiplier m satisfies the s-Hormander’s condition if

supjez, [Im(27 )| s (may < 400 (0.2.2)

where v is a smooth bump function compactly supported away from origin and H*® de-
notes the L?-based inhomogeneous Sobolev norm. By direct calculation, if m satisfies
th s-Mihlin’s condition, then m also satisfies the s-Hormander’s condition. Note that
Hormander’s condition allows for fractional regularity exponents s. In 1960, Hormander
[52] proved that if m satisfies the s-Hormander’s condition for s > % then the multiplier
operator T, defined in (0.2.1) is also bounded in the open Banach range. Moreover, the
number % is also sharp.

In the multilinear setting, the Coifman—Meyer operator serves as a fundamental example
of a singular Brascamp-Lieb form. This operator can also be expressed via a multiplier

form

Ton(f1s--- 5 fu) () = /W m(€) [ [ Fi(gy)em=rt-+edg, - de,, . (0.2.3)
j=1

In a pair of seminal papers from 1978, Coifman and Meyer [24, 26] established that if m
satisfies s-Mihlin’s condition for sufficient large s, then T, defined in (0.2.3) is bounded in
the open Banach range. Later in 2010, Tomita [94] identified the sharp Hormander-type



condition for this class of operators, proving that if m satisfies the s-Hormander’s condition
with s > ”Qd, then T,, is bounded in the open Banach range. For results concerning
boundedness beyond the Banach range, we refer to [56], [47], [46], and [66].

Historically, another important class of kernels or multipliers has drawn significant

interest. These are homogeneous kernels of the form

Koy = 2 0214

where Q is a function defined on the unit sphere unit sphere S®~!. Remarkably, the asso-
ciated singular integral operator can sometimes be bounded over a certain range without
any regularity assumption on €. In the linear setting, Calderén and Zygmund [13] showed
in 1956 that if 2 has mean value zero on the sphere and belongs to the Orlicz space
LLog L(S?1), then the singular integral operator

Tf(x)= y flz —y)K(y)dy (0.2.5)

is bounded in the open Banach range. Moreover, there are notable endpoint results estab-
lished in 1988 by Christ, Rubio de Francia, and Hofmann [19, 22, 51], as well as further
results by Seeger in 1996 [89)].

In the multilinear setting, let us again consider a Coifman—Meyer-type operator, but
now associated with a rough kernel. Define

n

TE(fr, s fo)(@) o= - K(yi, -, yn) H (z — yj)dyr - - - dyn, - (0.2.6)

Starting around 2010, there has been a series of contributions by Grafakos, He, Honzik,
Lenka, and Dosidis [29, 42, 43, 49, 32, 31], investigating the boundedness of T{; under min-
imal integrability assumptions on 2. In particular, the recent work [31] in 2024 establishes
an estimate that can be applied to the boundedness of Coifman—Meyer type operators
involving both Hérmander multipliers and rough kernels.

It is natural to ask whether, for other singular Brascamp—Lieb forms, boundedness
can still be obtained when the multiplier is of Hormander type, or when the kernel is a
rough kernel. To explore this, we first reformulate some important examples of singular
Brascamp—Lieb forms in the multiplier setting. For instance, the dual form of the bilinear
Hilbert transform can be written as

3
/V sgn(&) — H (&)dH> (€ (0.2.7)

where V is the hyperplane & +&+&3 = 0 in R? and H? denotes the 2-dimensional HausdorfF
measure on V. Unlike the Coifman—Meyer operator, whose multiplier singularity is a single
point, here the singularity of the multiplier is one-dimensional. This higher-dimensional
singularity makes the associated multilinear form significantly harder to control and bound.

In general, let f; € S(R) and let V' be the hyperplane 2?21 ¢ = 0in R™. Suppose I' is
a linear subspace of V' and let m be a L* function defined on V' \I". We can then associate



to m the multilinear form
Al di) = [ m@ [] Eepan . (0.28)
Vv jaie

In 2002, Muscalu, Tao, Thiele [77] showed that if m satisfies the Mihlin-type condition
0%m ()] < dist(¢,T) 7! (0.2.9)

for all multi-indices o with |a| < Np, for some sufficiently large integer Ny, and if the
singularity I' is nondegenerate and satisfies dimI" < %, then A;, is bounded in a suitable
range of exponents. The singularity set can also be generalized. Curved singularites were
first studied by Muscalu [78] in 2000. Later, the bound of bilinear disk multiplier was
obtained by Grafakos and Li [45] in 2006.

In Chapter 2, we extend the notion of s-Hérmander condition to settings where the
singularity is no longer a point but a higher-dimensional set

sup H (Dilg‘;(ﬁ)_lTr_gm) < +o0. (0.2.10)

2|
BeV\I Hs(V)

where dr(3) is the distance between I' and 3. We then show that, when n = 3, the
multilinear form A,, is bounded in the local L? range with the sharp regularity exponent
s > 1. Furthermore, the singularity set I' can be generalized beyond linear subspaces to
Lipschitz curves in our work.

0.2.1 Our results

In Chapter 2, we study a trilinear Fourier multiplier form where the multiplier m satis-
fies the generalized Hérmander condition (0.2.10) for a Lipschitz singularity I'. The study
of such Lipschitz singularity was suggested by Prof. Thiele. Classically, to handle Coif-
man—Meyer operators with Hormander multipliers, one typically performs a global Holder
inequality, encodes the relevant information into a shifted square function, and then seeks
better bounds on that square function. However, in our setting, such a global Holder in-
equality is no longer viable. Instead, we apply a local Holder inequality on each tent object
which is analogous to a ”"tree” in some classical literatures.

Usually, when a multiplier satisfies Mihlin’s condition, the standard approach is to first
perform a Whitney decomposition around the singular set. Then, within each Whitney
cube, one applies a Fourier series decomposition, which expresses the multiplier as a tensor
product of exponential functions. The s-Mihlin condition ensures that the Fourier series
coefficients are summable when s is sufficiently large. Usually, through this approach,
we are not able to obtain the sharp exponent s. After this decomposition, one passes
back to the spatial side, where the projections of the center of the Whitney cube in three
different directions determine the frequency positions of the associated tiles. Since the
Fourier transform of an exponential is a Dirac delta, this spatial side is concentrated in the
diagonal, meaning that the three tiles share the same spatial interval.

However, when the multiplier satisfies only a Hormander condition rather than a Mihlin
condition, the associated tiles may correspond to three different spatial intervals, instead of



overlapping perfectly. This creates substantial new difficulties. Unlike the classical single-
tree estimate for the bilinear Hilbert transform, where a local Holder inequality on each
tree suffices, our situation requires a more delicate analysis.

In particular, we distinguish between two scenarios based on the relation between the
length of the spatial intervals and the distance separating them:

1. The number of scales for which the intervals are smaller than their mutual distance
is only logarithmic, we can apply a trivial estimate.

2. When the distance between intervals is less than their length, they are essentially
overlapped. By a fixed dilation factor, we can embed all three intervals into a common
one. In this case, similar to the classical single tree estimate, we perform a Hélder
inequality to decouple the three functions and bound them by the product some
suitable sizes.

This is the key how we handle the difficulties arising from the Hormander’s condition.

On the other hand, the Lipschitz nature of I' is addressed separately at the phase of
selection algorithm, and where we build strong disjointness among tents. To this end, we
develop geometric lemmas that ensure the projection of the frequency part of each tent
remains well-controlled, preventing certain ”leakage”. The key idea is that when the curve
does not oscillate excessively, the frequency components of the tents remain well-ordered
in a desirable way. However, we believe that the upper bound on the Lipschitz constant
may not be necessary, provided there is a method to effectively manage the leakage.

One feature of our approach is that we work entirely in the continuous setting, rather
than performing an initial discretization — marking a difference from some classical treat-
ments in time-frequency analysis. This approach is inspired by the work of Do and Thiele
[30], who introduced LP outer measure theory in 2015. Their framework reinterprets certain
arguments in time-frequency analysis as a form of generalized Carleson embedding. For
further developments in LP outer measure theory, see the work of Uraltsev [95]. However,
when the singularity is not a hyperplane, we currently have no clear way to reduce the prob-
lem to a form where the generalized Carleson embedding from [30] can be applied. This
limitation is why we did not work entirely within the LP outer measure theory framework.

Recently, Fraccaroli, Saari, and Thiele [36] introduced a new approach, constructing
phase space localization operators with useful properties. This method provides an al-
ternative to classical time-frequency analysis and LP outer measure theory for handling
multipliers with nontrivial singularities. An interesting question is whether these phase
space localization operators can also be applied to multipliers with curved singularities.

0.3 Multilinear Fourier multipliers with oscillatory multipli-
ers

In the singular Brascamp-Lieb form (0.1.3), it is natural to ask what happens if we replace
the linear projection maps B; with nonlinear ones. Can certain boundedness properties
still hold in such a nonlinear setting? In the linear operator case, beginning in the 1970s,
there has been a series of fundamental results by Stein, Wainger, Nagel, Christ, Seeger,
and Wright [91, 79, 17, 18, 14] on the Hilbert transform along various classes of curves,
culminating in the work [21] in 1999.



More recently, in the multilinear operator setting, consider the bilinear Hilbert trans-
form along a curve ~:

dt

T.(f.9)a) = [ Fa+ gl +(0)F 03.1)

In 2013, Li [68] established the L? x L? — L! boundedness for the parabola ~(t) = t2.
Later, in 2015, Lie [69] extended this result to certain non-flat curves 7, and in 2018, Lie
[70] further generalized it to a Holder-type bound in the full Banach range.

Pushing beyond bilinear settings, in 2023, Lie and Hu proved a Hélder-type bound in
the Banach range for the trilinear Hilbert transform along the moment curve:

T(f,g,h)(z) := /Rf(a: —)g(z + t*)h(z + t%% : (0.3.2)

Furthermore, moving to higher dimensions, in 2021, Christ, Durcik, and Roos [20] proved
a Holder-type LP x LY — L" bound for exponents p, q € (1,00), r € [1,2) for the triangular
Hilbert transform along parabola ~(t) = t2:

T(f.9)(x,y) == / f@ + b w)gle,y + (1) 2 (0.3.3)

t
An important step in their proof involves a powerful sublevel set estimate for certain mea-
surable functions. Most recently, in 2024, Gaitan and Lie [38] provided an alternative proof
of the boundedness of the triangular Hilbert transform along parabola, employing a novel
approach via the LGC method combined with the sparse-uniform dichotomy.
These multilinear operators can also be expressed in multiplier form. For example,
consider the bilinear Hilbert transform along a curve (0.3.1), which can be written as

T\(f,g)(x) = / i (6,7) FO)Fm) 2™ E = gy (0.3.4)

where the multiplier
, 1
my(€,1) = /R )t (0.3.5)

is an example of an oscillatory multiplier.
Similarly, the triangular Hilbert transform along a curve (0.3.3) can also be written in
multiplier form:

T,(f, 9)(x,y) = /R ma (&,1)(Fy F) (& y) (Fia)9) (z,m)e*™ v dedy (0.3.6)

where F(;) denotes the partial Fourier transform in the i-th variable, and m, is is the
same multiplier as in (0.3.5). One difference between the bilinear and triangular Hilbert
transforms along curves lies in how the parameter ¢ interacts with the functions: for the
triangular Hilbert transform, ¢ appears only in the first variable of f and the second variable
of g. As a result, partial Fourier transforms are applied to the relevant components of each
function, rather than full Fourier transforms.

How to utilize the oscillaotry nature of these multiplier in the high frequency regimes
becomes a main task when trying to bound these multilinear oscillatory Fourier multipliers.



Establishing suitable bounds for these operators often relies on a smoothing inequality,
which plays a crucial role in proving the boundedness of both the bilinear and triangular
Hilbert transforms along curves.

To illustrate this, let us focus on the case of the triangular Hilbert transform along
curves. By decomposing the kernel % into dyadic scales and localizing the operator in
space, one arrives at a localized single-scale multiplier operator:

Tyo(f,9)(x,y) == w(x,y)/Rmw(&n)(Fu)f)(&y)(f(z)g)(%?7)62”"(””5+y")d€d77, (0.3.7)

where ¢ is a bump function supported in the unit ball and
My o= / 2 &AM )y (1) dt (0.3.8)
R

with ¥ a bump function supported away from 0. Through a Littlewood-Paley decompo-
sition applied to both f and g on their respective components, the smoothing inequality
asserts that there exist constants C > 0, o > 0, such that for all A > 1 and for all functions
f, g satisfying the frequency localization conditions

supp F1)f € [N, 2A] x R, supp Fay9 € R x [\, 2}], (0.3.9)
the bilinear operator T satisfies the bound

1Ty 0(f, )l < CA|[ fll2llgll 2 - (0.3.10)

This smoothing inequality has several other important applications. One notable conse-
quence is a Roth-type theorem in the Euclidean setting. Specifically, consider a measurable
subset E C [0,1]? with Lebesgue measure € where 0 < & < % Then, there exists a triple of
points

(z,y), (z+ty), (z,y+t>)€E (0.3.11)

with ¢ > exp(— exp(¢~%)) for some constant C' > 0 not depending on E or . This means
that, we can find a ”corner-type” nonlinear configuration (0.3.11) within E with a large
gap t depending only on the measure €.

There is a rich and extensive history surrounding Roth’s theorem, which itself has
inspired a substantial body of literature. Here, we only briefly mention results related to
nonlinear Roth-type theorems, with a particular focus on the Euclidean setting.

The study of nonlinear Roth theorems in Euclidean space originates from the work
of Bourgain [9] in 1998, where he first established the existence of three-term nonlinear
patterns of the form

z,x+1t, x+v(t) € EC[0,N] (0.3.12)

for v(t) = t? with some large gap ¢ depending on the density of the set % and the scale

N. Later in 2019, Durcik, Guo, and Roos [33] extended Bourgain’s result the result to
v a polynomial. More recently, in 2024, Krause, Mirek, Peluse, and Wright [61] further
generalized this framework to m-term nonlinear patterns of the form

z, x+7(t), -,z +vm(t) € EC[0,N] (0.3.13)
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for v1, -+ ,vm some general polynomials with distinct degree and some large scale N with
some large gap t depending on the density of the set % and the scale N. The work [61]
builds on techniques developed over a series of works by Peluse and Prendiville [85, 81,
82, 84, 83|, beginning in 2014 where quantitative bounds for polynomial Roth theorems in
finite fields and integers were established.

Another line of research focuses on polynomial progressions that can be found within
fractal sets of large Hausdorff dimension, under additional constraints on the Fourier di-
mension. Notable contributions in this direction include works by Laba, Malabika, Henriot,
Guo, and Fraser [62, 50, 37].

These smoothing inequalities can also be applied to the linear and multilinear spherical
maximal operator. There is a long history of research in this direction, leading to several
related questions. For example, one may ask about LP improving estimates, generalize the
set to which the dilation parameter belongs, or consider surfaces of different codimensions.
The study of these questions has made this branch a vibrant and dynamic area in harmonic
analysis. In this last part on the introduction, In this final part of the introduction, I will
highlight several results that are important in this direction and relevant to the main theme
of this thesis. The linear spherical maximal operator is defined as follows:

S(f)(z) := sup

t>0

” fz —ty)do(y)| . (0.3.14)

Given a dimension d, one may ask for which exponents p the operator S(f) is bounded on
LP(R%)? This question was resolved by Stein by Stein [90] for d > 3 in 1976 and later by
Bourgain [8] for d = 2 in 1986.

f we replace the sphere with a curve of codimension d — 1 such as the moment curve,
several breakthroughs have been made in the past five years. The sharp result for d = 3
was obtained by Ko, Lee, and Oh [57], as well as by Beltran, Guo, Hickman, and Seeger
[3]. Partial results for d > 4 was obtained by Ko, Lee, and Oh [58].

Turning to the bilinear case, the natural analogue is given by the operator

S(f;9)(x) == sup

t>0

/Szdl fl@ —ty)g(x —tz)do(y, 2)| . (0.3.15)

Several recent works [54, 6, 23, 7] have investigated the boundedness of this bilinear oper-
ator, leading to important new developments in this area.

The final section of this dissertation is presented in the form of a ”blueprint” written
for Lean. To set the stage, we begin with a brief introduction to proof assistants, the
Lean programming language, and the ”blueprint” format. A proof assistant is a software
tool designed to verify the correctness of formal proofs written by humans. Typically, it
involves a specialized programming language based on logic and type theory. Since the
1960s, several proof assistants have been developed, including Mizar [72], Isabelle [80], and
Lean [27].

Lean, a programming language and proof assistant developed by Leonardo de Moura at
Microsoft Research in 2013. Over the past decade, Lean has gone through several updates.
Lean features a robust mathematical library known as mathlib including many formalized
definitions and theorems from modern mathematics.

The collaboration model behind Lean-based formalization works as follows. Starting
from an original mathematics paper, a group of contributors writes a detailed ”blueprint”.

11



This blueprint expands on the original work, spelling out every new definition not already
found in mathlib and elaborating on steps that may have been omitted in the original
paper. Collaborating with members of the Lean community, the team then works together
to formalize the content into Lean code.

This model has led to several successful projects in recent years. One notable example
is the formalization of Perfectoid spaces, sophisticated objects in arithmetic geometry in-
troduced by Scholze in 2012 [88]. This project was led by Buzzard, Commelin, and Massot
[10]. Another major achievement is the formalization of the Polynomial Freiman-Ruzsa
(PFR) conjecture [40], originally proved by Gowers, Green, Manners, and Tao in 2023. Re-
markably, the formalization was completed in just three weeks thanks to an extraordinary
collaborative effort within the Lean community.

This model demonstrates another significant advantage. By breaking down a complex
proof into smaller, manageable parts, it enables contributions from individuals who may
not be experts in the specific area of mathematics involved.

An ongoing example of this approach is the formalization of Carleson’s theorem in
harmonic analysis. Originally proved by Carleson in 1966 [15], with alternative proofs later
provided by Fefferman in 1973 [35] and by Lacey and Thiele in 2000 [65], this project is
currently being led by Becker, van Doorn, Jamneshan, Srivastava, and Thiele [2].

0.3.1 Our results

In Chapter 3, we study the class of multipliers m for which the associated localized single-
scale multiplier operator (0.3.7) satisfies the smoothing inequality (0.3.10). To structure
the argument clearly and for future reusability, we modularize the proof into several inde-
pendent parts, each of which can potentially be applied in other contexts.

The first part of the proof consists several inequalities of bounding the L' norm of
the operator by products of certain mixed LP norm of F()f and F (g, together with two
special quantities ||m/||, and ||m||y, which capture the oscillatory nature of the multipliers.
These quantities are defined as follows:

1
HmHU = “(f(l)D(O,s)m)(:Ev 77)| [2/?%[/326([_171]) ) (0316)
1
[m|u = H/ D0,5)Diu,vym(&,m)d€ ; (0.3.17)
R Ly LLL2
where D(, ) denotes the two-dimensional multiplicative derivative:

These quantities can be viewed as variants of the Gowers uniformity norm on a finite
abelian group G, defined by

d
I£1Eac =, E, P Dnf@). (0.3.19)

The key technical challenge lies in estimating || ||, and |[m. \|lv for multipliers of the
form ¢ ")
mya(€,7) = 1) <A> n (’”A> /]R 2FUEM(O) ) (). (0.3.20)
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Our main estimate shows that there exist constants ¢y, cy > 0 such that
[myallu S AT, Imyallu S (log M), (0.3.21)

which, after interpolation, still yields polynomial decay in A.

An interesting question is whether one can find explicit examples of multipliers, not nec-
essarily arising from singular Brascamp-Lieb forms along curves, that nevertheless satisfy
good bounds in terms || - ||4, || - [[o and hence the associate operator will admit a smoothing
inequality. Such results may have further applications in other areas.

Following a suggestion by Prof. Thiele, Chapter 3 is written in the form of a blueprint
for Lean, a computer-assisted formal verification system. In particular, we calculate explicit
dependencies on higher-order derivatives of the curve 7. A recent project on generalized
Carleson operators [2, 54| serves as a reference for this type of formalization.
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Chapter 1

On the family of singular
Brascamp-Lieb inequalities with
dimension datum (1,2,2 1)

1.1 Introduction

For F,G, H € S(R?), the triangular Hilbert form A is defined by

AF, G, H) = p.V./ Fla, )Gy, =) H(z, z)- LW (1.1.1)

R3 T+y+z

which has been introduced by Demeter and Thiele [28] motivated by an open probem
in ergodic theory, on the pointwise convergence of bilinear averages with respect to two
commuting transformations. A celebrated open problem in harmonic analysis is whether
there exists a constant C' such that for all Schwartz functions F, G, H, the a priori inequality

) = LP1(R2) LP2(R2) LP3(R2) o
ARG, H)| < C|IF| el 1| (1.1.2)

holds for any exponents pi,p2,ps > 1 with Pil + p% + pig = 1, in particular for the case
p1 = p2 = p3 = 3. Such bounds are stronger than several important results in harmonic
analysis related to Carleson’s operator [15], [35], [65] and the bilinear Hilbert transform
[63], [64] and also the latter’s uniform estimates [92], [44], [67], [96]. Inequality (1.1.2) falls
in the realm of singular Brascamp-Lieb inequalities as in the survey [34].

To make small progress towards the boundedness of the triangular Hilbert form, we
discuss a simpler related family of singular Brascamp-Lieb forms. If we consider a function

F of the form

F(z,y) := f(z + ay)
for a one dimensional Schwartz function f, then the integral (1.1.1) is still well defined and
becomes

dxdydz
rHy+z

This is a singular Brascamp-Lieb form with dimensions 1, 2,2 of the functions f, G, H and
dimension one of the singular kernel. If f is in L>°(R), then F is in L>°(R?) and singular

Ao(f, G, H) :=p.v. /]1&3 flz+ ay)G(y,z)H(z,x) (1.1.3)
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Brascamp-Lieb bounds for (1.1.3) can be viewed as special cases of (1.1.2) with p; = oc.
For f in LP(R) with p < oo, inequality (1.1.3) is not a special case of inequality (1.1.3).

More generally, our family of interest of singular Brascamp-Lieb forms with dimension
datum (1,2, 2, 1) is a generalization of (1.1.3) in the spirit of [34] towards general projections
with dimensions (1,2,2,1) in the arguments, that is

1
An(f,G,H) := p.v./ f(ILz)G(Ilax) H (II3x) ——dx, (1.1.4)
R3 H43§'
with the projection datum
IT = (I1y, Iy, I3, Iy), (1.1.5)
where
,,II, : R 5 R, I, II3: R3 —» R? (1.1.6)

are surjective linear maps. To avoid some trivial cases, we assume that
Im(IT}) ¢ Tm(IT}) (1.1.7)

for j = 1,2,3, where the star denotes the adjoint.
Our first theorem classifies the forms (1.1.4) up to equivalence, where Ay is equivalent
to Ay, if there exist

B € GL(R?), Ay, A; € GL(R), As, A3 € GL(R?),

such that for each 1 < j <4

H; = A;1L;B.
Note that then we have
1,22
s ’Anl(f,G,H)‘ _ Aéfl s ’AH(f7G7H)|
p i Sup

7o TGl Hlly ~ qom 12 cot(ay s 16t 10T IGTallE s
J:

Hence, it suffices to consider the boundedness of standard forms listed in Theorem 1.1.1.

Theorem 1.1.1. Let II be a datum as in (1.1.5), (1.1.6), and (1.1.7). If A is nonzero, it
1s equivalent to one of

Aw)(f, G, H) 3:P-V-/RS f(x)G(x,y)H(w,y+t)%dtdxdy, (1.1.8)

A@)(f, G, H) :Zp-v'/RS f(@)G(z,y)H(z + 1, y)%dtdxdy, (1.1.9)

Ay (f, G, H) :==p.v. | f(x —|—t)G(a;,y)H(a;,y—i—t)%dtdxdy, (1.1.10)
R3

or it is equivalent to
1
Mg (f, G, H) :=p. V-/ fla+8)G(x,y)H(z + bt,y); dtdzdy (1.1.11)
R3

for some B € R. Furthermore, any two forms in the above three discrete cases and in the
one parameter family are mutually not equivalent to each other.
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In particular, form (1.1.3) is equivalent to (1.1.10) if « = 1 and to (1.1.11) with = 1—«
otherwise.

Our second goal is to discuss LP bounds of the forms in Theorem 1.1.1. Although
there’s a singular kernel p.v. 1/t in our case, we may still able to perform a similar scaling
argument as in [4] and obtain the region of exponents where one may have such LP bounds:

1 1
pr=00, —+—=1,1<pa,p3 < 0. (1.1.12)
P2 p3
Theorem 1.1.2 describes the most interesting case (1.1.11), while Theorem 1.1.3 con-
siders the remaining cases.

Theorem 1.1.2. Let § # 0,1, assume (p1,p2,ps3) is in the range (1.1.12). There exists a
constant C such that for f € S(R), G, H € S(R?), the following holds:

(Aap) (f, G, H)| < CllfllLe )Gl Loz r2) | H | Lrs (r2)- (1.1.13)

If (p1,p2, p3) is not in the range (1.1.12), then there is no constant C such that the a priori
inequality (1.1.13) holds.

The proof of the positive result in this theorem by freezing a variable can easily be
adapted to the L case of an estimate in [60] in the dyadic setting. Somehow this easy
case of the family of estimates in [60] does not appear there. Note that the trick of freezing
a variable then apply bilinear Hilbert transform to bound certain trilinear singular integral
form has already appeared in [48].

For the remaining cases of the classification in Theorem 1.1.1, we summarize the much
easier LP theory in next theorem.

Theorem 1.1.3. The three variants of Theorem 1.1.2 with A4 gy replaced by Ay or Ay
or Ay 1y remain true. On the other hand, for any 1 < py,pa,ps < 0o, there is no constant
C such that the two variants of (1.1.13) with A g) replaced by A3 or Ay hold.

After discussing the boundedness of the family of singular Brascamp-Lieb form with
dimension datum (1,2,2,1), we end up with showing the unboundedness of triangular
Hilbert transform in the endpoint region (oo, p2, p3).

Theorem 1.1.4. Let A be the triangular Hilbert transform (1.1.1). Given exponents
p1,p2, p3 satisfying (1.1.12), and C be any constant, there exists F,G,H € S(R?) such
that

IA(F. G, H)| 2 C|F o< |G oz | H s (1.1.14)
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1.2 Proof of Theorem 1.1.1

Let IT be a datum as in (1.1.5),(1.1.6), and (1.1.7). For 1 < j < 4, let V; be the image of
H;‘-. As II; is surjective, the dimension of Vj is one if j = 1,4, and is two if j = 2,3. We
do a case distinction according to the relative positions of these subspaces. The following
diagram shows the case distinction.
Vigspan(VanVs,Vy)
~Aa,p), B#0

Vo # V3

/
Vi Cspan(VanVs, Vi
¢V v

\
/ Vo= V3~ Agp), 8 =0
Vo # Vi~ A
/
Vg Vs
/ \

VicVs Vo=V3~~0
T

Vi € V3~ Ao

We start with the most interesting case.

Case 1: On the one hand V; g V5 and on the other hand V5 = V3 or V4 Q span(Va N

Vi, Va).
As V} is not contained in V5 by (1.1.7), we have that V5 + Vj is the full space R3. Hence we
may pick v; € V5 and v3 € Vy such that v; 4+ v3 spans the one dimensional space Vi. The
vectors v1 and v3 are linearly independent, because V; is not in V5 by the first assumption
in Case 1, and not in V4 by (1.1.7). Now choose a vector vy in Vo N V3 which is linearly
independent of v1. This is possible if V5 = V3, because then V5N V3 is two dimensional. It is
also possible if V3 € span(Va2N Vs, Vy). Namely, let v2 be any nonzero vector in Vo N Vs and
assume to get a contradiction that vy is a multiple of vo. Then vy +wv3 is in span(VaNVs, Vy).
This contradicts that v; + vs spans V;. Hence we have seen that under the assumption of
Case 1, we can choose v as above.

As vy and vs are linearly independent and v3 is not in V3, there is a 8 € R such that
vy + Bug € V3. Since Vo + V4 = R3, span{vy,va} = Vi, and span{vs} = V4, we have found
a basis {v1, ve,v3} for R3.

We choose B so that B* maps v1,v9,v3 to the standard unit vectors e, ez, e3. We
choose A; so that A% maps the standard unit vectors of R! or R? to preimages under IT%
of the spanning vectors of V; expressed as above in terms of vy, vg, or v3. This allows to
directly write down the matrix for B*II¥A7 in the standard basis. The transposes of these
matrices are as follows.

100
AILB=(1 0 1), A2H23_<0 . 0),

1 0 8
A3H3B:<O . 0), AdLB=(0 0 1).
Hence .
p.v. /Rg f(AlHlBX)G(AQHQBX)H(A;J,HgBX)de (1.2.1)
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1
=p.v. | flz+8)G(@,y)H(z + ft,y)dtdedy,
R3

which is A(47@).
Case 2: Vi € Vs, Vo # V3, and V; C span(Va N V3, V).

By the last assumption of Case 2, pick v; € Vo NV3 and v3 € Vj such that v + vs spans
V1. The vectors v1,v3 are linearly independent, otherwise one of them is a nonzero vector
in V1 which is impossible by (1.1.7) and the first assumption of Case 2. Choose v to be a
vector in V5 which is linearly independent of v; such that vo 4 v3 is a nonzero vector in V3.
This is possible because Vo # V3 by the second assumption of Case 2 and V;NV3 = {0} by
(1.1.7). Since Vi € Vs, we have vy ¢ span{vi,vs}. Hence {v,vs,v3} forms a basis of R3.
Choosing A; and B similarly as above, we have

100
AILB=(1 0 1), A2H23_<O . 0),

1 00

Az B = (0 11

), AJdIuB=(0 0 1).

Hence (1.2.1) is equal to
1
p.v. | fle+t)G(z,y)H(x,y+ t)zdtd:cdy,
]Rii
which is As).
Case 3: V; C Vo and V4 € V5.

Let v be a vector in Vo N V3. Choose v1 € Vi and v3 € Vj such that v; + v3 € V3.
This is possible because Vi ¢ Vs and Vi € Vi. Since Vi € Vo and Vi C Vs, we have

VonVs & Vi + Vi This shows that {vy,vs,v3} is a basis of R3. Choosing A; and B
similarly as above, we have

100
AILB=(1 0 0), A2H23_<0 . 0),

1 01

Asllz B = (0 10

), AdLuB=(0 0 1).
Hence (1.2.1) is equal to

p.v. /]R3 f(:v)G(:U,y)H(:U+t,y)%dtdxdy,
which is A(g).

Case 4: V1 C Vs, V) C V3, and Vo # V3.
Let v1 be a vector in V; and w3 be a vector in V4. Choose another vector vy € V5 which
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is linearly independent of v1 such that vo + v3 € V3. This is possible because V5 # V3 and
Vi € V3. Since Vo + Vy = R3, we have that {vy,ve,v3} forms a basis of R3.
Choosing A; and B suitably as above, we have

100
AILB=(1 0 0), A2H23_<0 | 0),

1 00

A3H33:<0 L

), AJdIuB=(0 0 1).

Similarly as above, we obtain for (1.2.1)

1
p. V/ f(z (:B,y—%t)gdtd:ndy,

which is A(y).
Notice that beside the above cases, there’s a trivial case, V3 C V5 and Vo = V3. We
then have the following data.

1 00
AILB=(1 0 0), A2H23_<0 . 0)’
100

Asllz B = (0 10

>7 AdLuB=(0 0 1).

and the corresponding trilinear form

p.v. /RS f(x)G(xjy)H(x,y)%dtda:dy.

This integral is zero since the principal value is interpreted as limit as ¢ — 0 of the trun-
cation of the integral to t € [—e~ 1, e71]\ [—¢, €.

Since the inclusion relation of subspaces maintain the same after basis change, A1), A(2),
A@3), M), and Ay 1) are mutually not equivalent to each other and all not equivalent
to Ay gy for 8 # 0,1. In the following, we define a quantity in projective geometry to
distinguish A4 gy for different 8. Let V] be the space spanned by Vi and Vo N V3. Let V)
be the space spanned by V; and Vo N V3. We define the cross ratio of these four planes as
follows. Take an arbitrary line L in R3 not intersecting Vo N V3. Let z1,x2,x3, and x4 be
the intersection of L with these four planes then project to R respectively. Then the cross
ratio

(21 — 4) (23 — 72)

(21 — w2) (w3 — 74)
is independent of the choice of L and is an invariant under basis change. We calculate the
cross ratio for Ay g with 3 # 0,1. Consider the line L : x + z = 1, y = 0. The intersection
of L with these four planes are (%,0, %), (1,0,0), (1+6’0’ %) (0,0,1) respectively. To
calculate the cross ratio of these four points, it suffices to focus on its x variable.

-4

1 1
=75 (—32)

(-0,

With this invariant, we then finish all the classification in the last case.
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Example 1.2.1. We will write (1.1.3) in the standard form.

For a # 1, (1.1.3) is equivalent to Il(4_o). For a = 1 (1.1.3) is equivalent to Il().
Moreover, we can explicitly show Aj, Ag, Ag, Ay, and B. Let II be the datum of (1.1.3).

For o # 1, take

Al _ 1’ AQ _ <Oé 6 1 —11) : A3 _ (-104 _040+ 1> ’ A4 _

and
=1 —a 1
OCT]. OéI].
B=|s7 a1 0
0 1 0
Then

1 00
AILB=(1 0 1), A2H23_<O . 0)’

1 0 11—«

Aslls B = <0 1 0

>, AduB=(0 0 1).

For a = 1, take

01 1 0

and

Then

100
AILB=(1 0 1), A2H23_<0 . 0)’
100

A3H33=(0 L

>7 AduB=(0 0 1).

1.3 Proof of Theorem 1.1.2

(1.2.2)

(1.2.3)

(1.2.4)

(1.2.5)

Let 8 € R, assume (p1, p2, p3) is in the range (1.1.12). The letter C' will denote a sufficiently
large positive number that may be implicitly re-adjusted from inequality to inequality and
that may depend on § and p1, p2, p3. We write A < B if A < CB for such number C. We
write A ~ B if both A < B and B < A. We will adopt this convention in the rest of this

paper.

First consider exponents (pi1,p2,p3) in the range (1.1.12). Assuming momentarily that
we can pass the p.v inside, then freezing the y variable, we may identify the form as the
trilinear form associated with the bilinear Hilbert transform and obtain the desired estimate

(1.1.13) as follows:
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’p. v. /RS Pz + )Gz, y)Hz + B, y)idtdxdy‘

/ p.v. flz+t)G(z,y)H (z + St, y)ldtdxdy‘
R R2 t

< /R 1711 Gyl o |1y sy
<11 |Gl s | s

To show that we can pass the p.v. inside, by the dominated convergence theorem, it
suffices to show that M € L*(R), where

F@+ )G, y)H(z + Bt, y)%dtdm . (1.3.1)

M (y) := sup.g

[t|>e

We set Gy(z) := G(x,y), Hy(x) := H(z,y). We split the integrand into |t| > 1 and |¢| < 1.
By the triangle inequality we have

M (y)] < / .

°)
[t]<1

+ qu |f(2)Gy(z)Hy ()| dtdx

o
1<t|

Then by mean value theorem,

flat tz — 1@ 6 (@) H (2 + m)' dtde

Hy(z + Bt) — Hy(x)
t

dtdx

f(@)Gy(x)

flx +t)Gy(x)Hy(z + 5t)1‘ dtdx.

< [ I Gy iyt + )| dida
[t]<1

[ @G @ IHy | dide
[t]<1

+ / |f(2)Gy(z)Hy(x)| dtdx
[t]<1

+ / |f(x+t)Gy(x)Hy(x + Bt)| dtde.
1<t

Since f, G, H are all Schwartz functions, these four terms are all L' integrable. This
completes the proof of estimate (1.1.13) for (p1, pe2, ps) in the range (1.1.12).

Now assume (p1, p2, p3) do not satisfy (1.1.12), we will show that the a priori inequality
(1.1.13) does not hold. In this proof, we will use H to denote the Hilbert transform. To
distinguish from the Hilbert transform, we take F to denote the third function in our
trilinear form. We will prove by contradiction. Expanding the trilinear form, we obtain
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1
An(Trg, G, TB(?E) =Dp.v. fle —k+t)G(z,y)E(x — Bk + pt, y);dtd:vdy

R3

=p.v. | flx+t)G(z,y)E(x + ft,y) ——dtdzdy.

1
R3 t+k

Now fix a m € L! with suppm C (0,00). Pairing the above form with Hm(—k), we have

the following estimate

/R (Hm)(—k)An(Tig, G, TS E)dk

S [ 1Hm(=F)| - 1An(Tig, .75 B) dr

S [ V(R TSl |Gl | TS0 B s
S [ 1R 17l |Gl |

By Hm = —im, where H is the Hilbert transform,

On the other hand, by H?m = —m, i.e.

1
m(a) = =p.v. [ (Hm)(=9)——dy

we obtain

/R (Hm)(—k)AH(Tkg,G,Tg;)E)dk'

flx+t)G(z,y)E(x + pt, y)m(t)dtd:vdy‘ .
R3

It’s tempting to check the Brascamp-Lieb conditions in [4] at this point.

For scaling condition,
1 2 2
—+ —+—+1=3.
b1 P2 D3

As for dimension condition, we may take the subspace

span{(0,1,0)}, 01
1<—4+—4+—40.
b1 b2 p3

/R (Hm)(—k) A (T f, G,Tg?mdk\ SN oo Gl w2 |E | s [l 1

(1.3.2)

(1.3.3)

(1.3.4)

(1.3.5)

However, in this case, m is not an arbitrary function. We cannot take m as Gaussian,
hence we need to mimic the proof in [4J and modify it slightly. Take f(x) = e~
)

Gla,y) = e "+, Bz, y) = e ey
(0,00). Then

1
(52 +%s

_ 1
111 2o |Gl ooz || B pos Iml| 1 ~ €2 ).
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On the other hand
f@+0)G(z,y)E(x + Bt,y)m(t)dtdzdy
RS

= / o (2ey?) | o—m(Blz+g(14+50)]%) | e_“(%(262+5+2)t2)m(t)dyd:cdt. (1.3.7)
R3

First integrate in y, we may obtain a factor £3. Second, integrate in x, we may get a
constant. Hence, we may simplify (1.3.7) into

~eT2 / e_“(%(2’32+5+2)t2)m(t)dt. (1.3.8)
R3
By Plancherel identity, we may further reduce (1.3.8) to

= (%(23" +B42) s / O g )y, (1.3.9)
R

The integral in (1.3.9) is a positive constant away from 0 and 2% + 3 + 2 is positive for all
B € R. Taking ¢ — 0 and compare (1.3.6) and (1.3.9), we may have the exponents p1, p2, ps
in the quadrilinear form (1.3.2) is impossible to hold for the range other than (1.1.12),
which is a contradiction. Hence (1.1.13) cannot hold for exponents (pi1,p2,p3) other than
(1.1.12).

This completes the proof of Theorem 1.1.2.

1.4 Proof of Theorem 1.1.3

Now we discuss the LP bounded for the form (1.1.4). Since equivalent forms share the same
LP boundedness property, suffice to consider the boundedness of standard forms listed in
Theorem 1.1.1.

First, we deal with the endpoint range (1.1.12). The cases (1.1.10) and (1.1.11) with
f = 0 are not bounded. On the other hand, the cases (1.1.8), (1.1.9), and (1.1.11) with
B =1 are bounded.

For (1.1.10) and (1.1.11) with 8 = 0, we prove the unboundedness for the case (1.1.10),
the others are similar. Suppose we have the bound, take

Gz,y) = sgng(@)|g(x)|2 (DF¢)(y), H(z,y) = |g(z)|

N

(DY) (y)-

Then
v [ o+ 00 DR DF )+ ) oy

1 1 1 1
S llzee - (gl 2 N2) - (lgllz: N 2)
=N|fllze= - llgllre- (1.4.1)
Notice that taking N — oo and integrate over y, the quantity
1

N (DR W) (DR e)(y + 1)
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will tend to a constant. This implies Hilbert transform is bounded at L°°, a contradiction.

For the cases (1.1.8), (1.1.9), and (1.1.11) with 8 = 1, we prove the boundedness for
the case (1.1.11) with 8 = 1, the proof for other cases are similar.

1
‘p. V. flx+t)G(x,y)H(x +t, y)gdtdazdy
]R3
< /R 1 £ Hyl| o2 |Gyl s dy

<11l /R | H, 202 1| Gyl os dy
SI L= Gl o2 [|H | s - (1.4.2)

Freeze y, pair f and G, together and use the estimate of the Hilbert transform. Then use
the Holder inequality twice to get the desired estimate. For the impossibility of LP bound
of all other cases for exponents (p1, p2, p3) other than the range (1.1.12), the proof is similar
to the case in Theorem 1.1.2.

1.5 Proof of Theorem 1.1.4

Let exponents p1, p2, p3 be given satisfying (1.1.12), and let C' be any constant. Shearing
some functions, we rewrite the triangular Hilbert transform

AF,G, H) = p.V./

1
F(t =y —2y)Gly, 2)H(z,t —y — z) 7 didydz
RS

B B ] (1.5.1)
=p. v./ F(z—t,y)G(y,2)H(z,y — t)zdtdydz,
R3

where ﬁ(az, y):=F(—x—y,y), fl(x, y) = H(z,—y — x).
For a parameter N > 2¢%C let

GN (Y, 2) = Ljo,n)(¥) 10,1y (2),
erjJTN(Zay) = 1[0,N}(y)1[0,1](2)7

Fa,y) = 1—0—1)(2)-

Then the integrand of (1.5.1) is non-negative, and we may estimate (1.5.1) from below as

1 ~
AF, G, H) > / / Gly, 2V H(z,y — )~ dtdydz. (1.5.2)
0o JrJi<t t
T2 N N
> / / —dtdy = —log(—) > NC. (1.5.3)
N 5 o8y

From penultimate to ultimate line, the we integrated z from 0 to 1 and used that if
0 <y, t< %, then both y and y + ¢ are in [0, N]. On the other hand, as shearing leaves
the LP norm invariant,

- - 11
[E ool Gllpa[[H llps = [[Ellco|Gllps [ H |lps = NP2 N#s = N. (1.5.4)
This together with (1.5.3) shows (1.1.14) and completes the proof of Theorem (1.1.4).
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Chapter 2

A sharp Hormander condition for
bilinear Fourier multipliers with
Lipschitz singularities

2.1 Introduction

An n-linear Fourier multiplier m is a function on the space V of all points { = (&1, -+ ,&p41) €

R™t! such that
n+1

> &=0.
=1

It is associated with an (n + 1)-linear form acting on functions on the real line defined by

n+1

Aon(frs - s furn) = /V m(e) [] Fi(&)dmm ). (2.1.1)
j=1

Here H™ denotes the n-dimension Hausdorff measure on V.
We call such a multiplier n-linear as classically one associates to it an n-linear operator
dual to this (n + 1)-linear form.

For a multiplier m and a tuple p = (p1,--+ ,pn+1) of Lebesgue norm exponents in
(1,00)"*! with
n+1

> L_ 1, (2.1.2)

j=1 P
we define the constant C(m, p) to be the infimum of all constants C' > 0 satisfying

n+1

A (fr s fu )] S C T N5l s (2.1.3)

Jj=1

for all tuples of Schwartz functions f;.

We say the form A,, is bounded in the open Banach range if C(m,p) is finite on all
tuples p with (2.1.2) in the range (1,00)"*!. We say it is bounded in the local L? range if
it is bounded for all tuples p with (2.1.2) in (2, 00)™ 1.
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Classical works concern classes of multipliers singular at one point, typically the origin.
These include the Mikhlin class M, which is all multipliers satisfying away from the origin
the symbol bounds

[(0%m)(§)] < Cal€]™ (2.1.4)

for all multi-indices o up to order |a| < s. Another slightly larger class is Hormander class
H, which is the set of all multipliers satisfying

SUDjez, ||m(2j‘)‘1’||Hs(V) <00 (2.1.5)

where ¥ is a smooth bump function compactly supported away from 0. Here H® is the
L?-based inhomogeneous Sobolev norm defined by

£l e vy == H(l + |xy2)%fﬁn(x)) e (2.1.6)
where
fdH(z) = /V F(y)e ™= YaH™ (). (2.1.7)

The classical Mikhlin multiplier theorem [73] gives boundedness in the open Banach
range for linear multipliers m € M;j. In [52], Hormander proved boundedness in the open
Banach range for linear multipliers m in Hs; with s > % Boundedness for the general
n-linear case in the open Banach range was shown by Coifman and Meyer [24], [26] for
m € M, with s sufficiently large and by Tomita [94] for m € Hy with the sharp condition
s > 5. For results concerning exponents outside the Banach range, see [56],[47],[46],[66].

More recently, people studied multilinear multipliers with higher dimensional singu-
larities. Lacey and Thiele [63] proved bounds in the local L? range for n = 2 and
m = sgn(a1&1 + a2é2), the so-called bilinear Hilbert transform, for all vectors @ = (a1, ).
The bound is non-trivial only for @ outside the three so-called degenerate one-dimensional
subspaces. This result was extended to the open Banach range and beyond in [64]. That
this m is a particular instance of more general multipliers singular along a line was noted by
Gilbert and Nahmod [39], who extended the result accordingly. Muscalu, Tao, and Thiele

[77] proved bounds in the open Banach range for n-linear multipliers satisfying

10%m(€)| < dist(¢, 1)l (2.1.8)

for singularity I a non-degenerate subspace with dimI" < "TH and for o up to some large

degree that has not been specified in [77].

The bounds in [63] are not uniform in «. Uniform bounds were proven in [44], [67] by
Grafakos and Li, and later the range was extended by Uraltsev and Warchalski in [96].

Curved singularites were first studied by Muscalu [78]. Later, the bound of bilinear
disk multiplier was obtained by Grafakos and Li [45].

The main theorem of this paper establishes the sharp Sobolev exponent for the Hérmander
condition associated with bilinear multipliers whose singularities are unions of Lipschitz
curves away from degenerate directions. This is the first work that provides this sharp
Hoérmander condition for multilinear multipliers with singularities of dimension larger than
zero. Moreover, we work in a continuous model without discretization in the vein of [30] and
develop a suitable setting to analyze the geometry arising from the presence of Lipschitz
singularity.
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Define dilation, translation, and modulation operators
» _n /T
(D2f)(@)=a 7 f (%)

(Taf)(2) = f(z —a)
(Maof)(z) = *™4% f(z).
For B € V, define the distance function dr (8) := infgcr |3 — €|. Let B,.(z) denote the

open ball with radius r centered at . Let n be a L' normalized function supported on
[—1,1] defined by
L -1 —1
n(x) = </ eltzdt) cet=a? 1y gy(2).
~1

n:=1 x D!
n B%(O) Wloﬁ

Define

which is constant one in B 1 (0) and supported on B 2 (0). Define a smooth function ® on
%4

®(z) :=n(|z|).
For a subspace A C R™ and a vector v € R", we denote the orthogonal projection of v onto

Aas Pqv. Let 0 < 60y < §. For j € {1,2,3}, let K;(6p) be the open double cone of all
vectors 3 in V which have angle less than 6y to the line spanned by by Pye;j, i.e., as the

length of Pye; is ‘3[, KCj(0o) contains points B € V satisfying

(B.e5) | =18, Prey)| > %L 18] costo 2.19)

Theorem 2.1.1. Letn = 2. Let 2 < py,p2,p3 < 00 wzthp1 + = +p3 =1 Let0< 6y < g
Let s > 1. There is a constant C(p1,p2,ps3, 0o, s, N) such that the following holds.

For every 1 < + < N, let I'y, C V be a closed set such that there exists an index
J € {1,2,3} such that for every distinct v,~" € T',, we have v —~" € KC;(6p). Let T' be the
union of the sets I', for 1 <1< N. Let m be a function on V satisfying

s H (Dd“;(ﬁ),lT_ﬁm> -<1>HHS(V) <1. (2.1.10)

Then we have for the form bound (2.1.3) the inequality

C(m7p17p27p3) < C(p17p2ap37 90a S, N)

Note that the theorem applies in particular to the case

m(&1,&2,83) = m(§1 — &2)

with m satisfying the Hérmander condition on real line for s > 1.

The exponent s in this theorem is sharp. It suffices to establish the sharpness of the
exponent s in the case where I' is a point. This sharpness has been discussed in [41].

The assumption (2.1.9) says that the tangencies of each Lipschitz curve stay away from
a fixed angle from the degenerate direction. While bounds for specific examples such as
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Figure 2.1: We may view (2.1.10) as testing Sobolev norm of m on scaled Whitney bumps.

circular arcs with degenerate tangencies have been established in the literature [45], even
the question for convex arcs in general with degenerate tangencies appears to be very
difficult, as discussed in [87].

Acknowledgments. F.Y-H. Lin is supported by the DAAD Graduate School Schol-
arship Programme - 57572629 and the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy—EXC-2047/1-3 90685813 as
well as SFB 1060. This project was initiated and developed during Jiao Chen and Martin
Hsu’s visit to Bonn. The authors are grateful to Prof. Christoph Thiele for his generous
hospitality and countless inspiring insights.

2.2 Overview of the proof

For the proof of Theorem 2.1.1, fix 2 < p1,p2,p3 < oo with }% + }%2 + }%3 = 1. Fix also
0<6 < 5. Fixs>1 Let N€ N. For any quantities A, B depending on these and
possibly further parameters, which most prominently will be T', m, we will write A < B
whenever A < C'B for some number C' depending on p1, p2, p3, 0o, s, N only but not on the
parameters. Analogously, we write A 2> B whenever B < A. If in particular, A < B and
A 2 B simultaneously we write A ~ B.

For (S, A, 1) a measure space and f a measurable function on this space, the LP norm
of f will be expressed as

g0 = @y = [P @uta))

Furthermore, if 1(S) < oo, we define the average LP norm of f as

kg = 1@l 0= (g5 /. \frp<:c>du<x>)’l’ -(f rfrp<x>du<m>)‘1’.

If it’s clear from the context that the integration is over a space V isomorphic to an n-
dimensional Euclidean space with the usual n-dimensional Hausdorff measure, we simply
wiite |f(2) 3y instead of |1/(x)]]

28



Theorem 2.1.1 will be proven in Section 2.3 by reducing to Proposition 2.2.1 which
states a bound of a model form.

We write a = (a1, a2, a3) for a typical element in R® and B = (31, f2, 33) for a typical
element on V. Define i a measure on V which assigns zero measure to I' and has density

dH*(8)

dﬂ(lg) = dF(B)2

on V' \I'. Define a measure on R x V' by
dv(a, B) := da @ du(B).
Let Py be the orthogonal projection from R? onto V. Define a smooth function on R
@ = D3,

which is constant one in Bz (0) and supported on Ba: (0). The number ¢ is a small constant
10 1
which only depends on #y. The specific value of € will be determined in Section 2.9.

Proposition 2.2.1 (Bound of the model form). Let K : R® x V. — C be a continuous
function satisfying (2.2.1) and (2.2.2) below. For all a € R® and B €V,

K(a,B) = K(Pya, B). (2.2.1)

ForallBeV,s>1,

1oy Sr(B) (2.2.2)

|+ e @al)? - K(a.p)

Then for all Schwartz functions fi1, fa, f3 on R, we have the bound

3 3
/V [ K(e.p)- H ( (Modg, D} 5)-1¢) * fj) (o)) dudp(B H Filly,-  (22.3)

Proposition 2.2.1 is proven in Section 2.10 by first reducing to the special case N = 1.
Fix from now on K as in Proposition 2.2.1. Define dy := @ cos(fo + %)

Lemma 2.2.2. Assume N =1, for all j =1,2,3, we have for any v, €T,
(v =sei) [ =1{v =~ Prej) | > 0o |y =] (2.2.4)

Proof. The equality on the left of (2.2.4) is true because v —~’ belongs to V. Notice from
(2.1.9) that the angle between v — " and Pyej, is 6 < §. For j # jo, the angle between
the orthogonal complement of Pye; and Pyej, is §. Hence the angle between v — ~' and
the orthogonal complement of Pye; is a least § — 6o, and the angle between v — ' and

Pye; is at most 0g + 5. Then since |Pyej,| = @, we have (2.2.4). O
Let 01 = i -3 bea fixed constant such that Z 5+ 0o+ 061 < 5 and sint < V6 cos(% +

0o+ 61). Let 51 = Sln91 and dy = \[cos( + 0y + 91).
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(PVEQ)i

Ples Pyey

Figure 2.2: Lemma 2.2.2 explains that I' is also away from all the three degenerate direc-
tions.

Fory eI, t>0, and j € {1,2,3} define the sets W, ; and U.]; as follow
1
Waei= (B EV:t<18-11 < Sdr (B) (2.2.5)

U= {BeV: (8- v.c)l <5alB ]} (2.2.6)

Let Z be the collection of all intervals in R. Let T be the set of all pairs T' = (I,~)
with I € 7 and «v € T'. For such T', we associate a region Dy := I x W, 1/7). We choose
the letter T here because parts of the literature [30] refer to closely related objects as tents.
From here on, the term ”tent” refers to either the pairing T' = (I,~) or the region Dy,
which will be clear from the context. We define for j € {1,2,3} and a function f on R the
function F;f on R x V' by

(i), 8) = ((Mods, DY ) 10) % ) (0). (2.2.7)

For aset I x W, ; C RxV, anindex j € {1,2,3}, and a function F on R x V', we define
a local size S7 of F associated with I x W, 4

_1
HFHSJ'(I,'y,t) = |I‘ 2 HFHLI%(IX(W.,,t\UJ;)) \ HFHL"O(IXW%t) (2'2-8)

1
2

1 2
17 dad - ‘
<| |/IX(WW\U%.) |F (o, B) ["dav M(ﬁ)) VALEN oo (1w, 1)

If in particular t = ﬁ, we write

155 (1) = I F 55 (1,0)-
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We also define a global size
Fllgi :== sup || F| sy .
1F']| g5 IGZNJH |53 (1,)

The model form is estimated first on certain regions associated to tents in Proposition 2.2.3.
To obtain the sharp regularity s in the form of condition (2.1.10), we prove Proposition 2.2.3
in Section 2.4 by splitting the frequency region into small and large scale, then performing
different estimates on the respective pieces.

Proposition 2.2.3 (Tent Estimate). Assume N = 1. Leti € {1,2,3}. Let I € T and
~ € I'. Then we have the inequality

3 3
HFfJ (@, 8) SU-TTIE Al (22.9)

e
Ly s ((Tei®ei ) x Woy 1 p1) ’

Naturally, we aim to control the right-hand side of (2.2.9). On the one hand, a simple
L* bound can be obtained as follows.

Proposition 2.2.4 (Global Estimate). Assume N = 1. Given f € L? (R) N L*> (R), we
have

15 fll g5 S Ml poe - (2.2.10)

On the other hand, we aim to obtain a certain L? estimate to serve as the other
endpoint and perform an interpolation argument. At this stage, the main difficulty of
proving Proposition 2.2.1 is to be efficient in summing all the pieces on the left-hand side
of (2.2.9) in Proposition 2.2.3. Therefore, we must derive certain orthogonality among
objects associated with tents. To address the orthogonality issue, we build up Proposition
2.2.5 to treat the distribution and the interaction among Whitney balls associated with a
Lipschitz singularity.

Proposition 2.2.5 (Geometry of Tents). Assume N =1. Let 1 < j < 3. We define

09 — d1
= . 2.2.11
1+ 6 ( )
Let v,~" be two distinct points on T' and t > 0.
(1) Let 4" be another point on T satisfying
Y <" <A <+ do(1 = du)t. (2.2.12)
Then
W’Y”vt g W’Yaélt U W"‘//,(S1t' (2213)
(2) Given two points '
BeWy \UL, B €Wyo\Wys (2.2.14)
with B; < ~; <«';, then /
Bﬂdr‘(ﬁ)(ﬁj) N der(ﬁ/)(ﬁj) = . (2215)
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g g g Pye;

Figure 2.3: In (2.2.14) and (2.2.15), we describe certain orthogonality.

The geometry in Proposition 2.2.5 serves as a base for the two algorithms introduced
in Proposition 2.2.6 and 2.2.7. Essentially, both algorithms extract collections of countable
tents with desired geometric properties from collections of uncountable tents.

Proposition 2.2.6 (Selection Algorithm, L> Component). Let Q@ C Rx(V \ I') be compact
and X\ > 0 be a threshold. For j =1,2,3 and f € L* (R) N L (R), we have the following:
There is a countable collection of tents T and a countable collection of points P in € that
satisfy the following properties:

e Covering:
PCOn|Ef' (A2 c
T=(I,~y

Dr. (2.2.16)
Y)ET

o FEstimate:

0. B2
oo~ > a@® s Y IEif (. B (2.2.17)

d A2
T=(I)ET (a8)€P (@pep L B)

e Orthogonality: For distinct (o, 3),(a/,3") € P, at least one of the following state-
ments holds.

jo—a'| 22 (dar (8) " +dr (8) 7). (2.2.18)
|8; = Bj| = p (dr (B) +dr (8')) - (2.2.19)

To state the next proposition, we introduce two auxiliary sets. Given v € I" and t > 0,
we define

(Wa \UD ™ = {B eV : B <y} N (Woy \ UZ) (2.2.20)
and ' ‘
(W \UZ) T = {B eV : 8 > 7} N (Wya \UZ). (2.2.21)
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Proposition 2.2.7 (Selection Algorithm, L? Component). Let @ C Rx (V \ T') be compact
and X > 0 a threshold. For j = 1,2,3 and f € L?(R) N L> (R), we have the following:
There is a countable collection T of tents and a countable collection S of the form (1,7,S)

N\ <
with (I,7) a tent and S a measurable subset of QNI X <W‘771/|1| \ U%) " that satisfy the

following properties:

e Covering: For any tent (I,7),

I (2.2.22)

A
1 F; ‘ <) = V3
NUrer Dr if L2(Ix(Wy,1 1 \U3)<I) — V2

o Estimate: )
IE5£
R EEDY ]TLQ(S) (2.2.23)
I,y)eT (Iy,5)es (Iy,5)€es
In particular, for (I,7,5) € S, we have \I\_% HijHLQ(S) > A

~

e Orthogonality: For distinct (1,7, S),(I',v',S") € S withv; <+, any pair of (a, B) €
S and (o/,3') € S satisfies at least one of the following.

| — /| > 2|11 (2.2.24)
|8; = 85| = p (dr (B) +dr (8)) - (2.2.25)
Symmetrically, the proposition holds for (W,y 1\ U%)q replaced by
AN
(Wo \03)

V]
Once Propositions 2.2.6 and 2.2.7 guarantee the existence of well-behaved configurations
of tents, the proof of the next proposition mainly follows the same line of argument as in
[30] and [76]. For completeness, we include the proof in section 2.9.

Proposition 2.2.8 (Bessel Type Estimate). Assume N = 1. Given a compact set 2 in
R x (V\T), a function f € L? (R) N L*> (R), and X > 0, there is a countable collection of
tents T such that

2
g HfAHQLQ (2.2.26)
(I~)eT
and
Hlﬂ\UTGTDT -ijHSj <A (2.2.27)

2.3 Proof of Theorem 2.1.1

Define a smooth function on V'
X(B) == DZn(|8])-
For 3 € V' \ T, define the bump function adapted to position 3 by
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Define the normalized bump function as
)N(B =Xy L. X3,

where
Xp = / Xadu(B).
1%
Then we have the identity

1V\r=/v>~<ﬁdﬂ(ﬂ)c

As X is supported in Bz (0) and ¢ is constant one on Bz (0), we have
10 10

3
Linr(€) / U (T,B]de(,e ) (&5)du(B).

Inserting this into (2.1.1), in our case n = 2, we obtain for A(f1, f2, f3) the expression

/v/v (m©%s()) H (75, D5/) (€)55(&)) dH2€)du(B). (2.3.1)

Let mg =m-xg and Ff = fbe the Fourier transform of f. We define
K (a,B) := F(mg - dH)( / mg(€)e N> (). (2.3.2)

Note that K(a,3) satisfies the invariance property (2.2.1). Applying Plancherel to the
inner integral in (2.3.1), we obtain

A(f1, fa, f3) / K (e B)- [T ((Mody, D}, (5)-1¢) + f;) (a5)dexdia(B)

J=1

3
/ o Kl B) - [1(Fif)(e;, B)dadp(B) . (2.3.3)

J=1

where we use the notation F}j as defined in (2.2.7).
We verify the kernel condition (2.2.2) for K. Let 8 € V\ T and s > 1. Expanding the
kernel, we observe

Hdr(ﬁ)fl (1+ IdF(,@)a|2)§ K (a,ﬁ)’

234
L3(V) (2:3.4)

- Hd[‘(,@)_l (1+dr(B)al)? - F (m (TBDS?(,B)X> Xp ! d%Q) (a)‘

Applying the L? isometry Dgr( B)Mod_ s on the function inside the L? norm and distributing
powers of dp(8) equates (2.3.4) with

H(H o). F ((Dsi(,@)—leﬁm> e (Dgi(ﬁ)—lT*ﬂXF_l) 'de> (O‘)‘

L2,(v)

L2(v)’
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Applying the definition of H*(V') and the fact that H*(V') is a Banach algebra when s > 1,
we then estimate (2.3.4) by

H(Dﬁwriﬂﬁ”Q'Q'(DﬁwrﬂnﬂXfﬁ'XLFW>

(2.3.5)

1100 :100 —1
o K P [CE PSR B

The first factor in (2.3.5) is bounded by 1 by (2.1.10). We introduce three lemmas to
prove the bound for the second factor.

V)'H

Lemma 2.3.1. For 31,82 € V\ T, we have
dr(B1) < dr(B2) + 81 — B2| (2.3.6)
Proof. For all € > 0, there exists 2 € I' such that
|v2 — B2| < dr(B) + e (2.3.7)
By the triangle inequality,
dr(B1) < |v2 = Bil < |v2 — Ba| + |81 — B2| <dr(B2) +[B1 — B2| + ¢
Since (2.3.7) holds for all € > 0, we obtain (2.3.6). O
Lemma 2.3.2. For z € V\T, then
| Xr(x)] 2 1. (2.3.8)

Proof. For B € B,(z), where r = 55dr(z), by Lemma 2.3.1, we have

dr(2) < dr(B) + |8 — 2| < dr(B) + 55 dr(x).

Hence dr(z) can be dominated by a constant times dr(3).

1

dr(@) < =755

dr(B).

Then . .
-zl < — < — .
B — 2] < 5dr(x) < 5dr(B)

That is Xg(z) = 1. On the other hand, for 8 € B,(x),

dr(B) < dr(z) + |8 — x| < (1 + Q%)dp(:n).

Therefore, we obtain a lower bound of Xp(z).

_ dH*(B) V20 ()2 a2
Xe@ = [ NoGr 2 [ () e a9 21
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Lemma 2.3.3. For z € V\ T, and multi-index c,
(0 Xr) (2)| < dr(z) 1. (2:3.9)
Proof. Assume B € V \ T satisfies

2e

18—l < 1gdr(5)- (2.3.10)

Then

de(B) < de(a) +18 — o] < dr(o) + —

Hence dr(3) can be dominated by a constant times dr(z).

dr(B).

1

< - .
dr(B) = 75 qpdr (@)
Then 5 5
g g
—zl < <= .
B —z| < 0= ZEdF(fﬂ) <% dr ()

Also note that for 3 satisfies (2.3.10),

dr(@) < dr(B) + 18— 2] < (1 + 1) ().

Let r = %idp(x). We have an upper bound of derivatives of Xt (x).

2
(07 Xr) (2)] < /B RIS -dm)alm < dp(z) ol

O]

Back to the estimate of the second factor of (2.3.5). Let A be the least integer larger
than s. Denote Dilz‘;(ﬂ),lTr_gXp as Xt g and note that by Lemma 2.3.2 and Lemma 2.3.3,

we have |X1?1ﬁ\ <1 and |[0*Xr g| <1 on the support of X. By chain rule and Leibniz rule,
this implies

o (Xep-x)|

—1 -1
e X% s+ X | s

jal=A
S+ Y ‘ 8° (X;’b) HLOO(B% o) S (2.3.11)

| <A Iy

This completes the estimate of (2.3.5).
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2.4 Proof of Proposition 2.2.3: Tent Estimate

Let 4 be given, and let ¢' and " be the indices in {1,2,3} different from i. We decompose
the kernel K

K=Y Klg (2.4.1)
k
k>0

where

{(a,ﬁ) eR3 x V : |dr(8)Pral (Q'f—l,zk} } k€N,

EL =
k {(a,8) €R® x V : |dr(B) Pre| < 1}, k= 0.

(2.4.2)

Identity (2.4.1) holds because {Ej};o, partitions R® x V. To show (2.2.3), it suffices to
show for each k > 0

3 3
B - T1(Fifi) (e, B S (U4 k) 22N TTIE £l 0
=1 L}W(ﬁ)(Ekm(lei@ef)xwwﬂﬂ) =1
(2.4.3)
because summing the right-hand side over k gives the desired result since s > 1.
Lemma 2.4.1. For all k >0, (o, 3) € Ey, and j,5" € {1,2,3}
2k+1
‘aj - aj/‘ < i (8) (2.4.4)
Proof. Define ¢ implicitly by the condition
(a1, 9,a3) +¢(1,1,1) € V.
By construction, (2.4.2) implies
ok
(a1 +c,ag +c,as +¢)| < B
The triangle inequality yields
k+1
| — o] = [(ajr + ) + (e = ) < layr + ¢ +[aj +¢| < PRI
O

In the rest of this section, to simplify the notation, we denote Wv-ﬁ as W,. We apply

Cauchy Schwarz in the integration over oy and a;» to estimate the left-hand side of (2.4.3)
by

3
AT SIENOIP S | | (TR dosdp(B),  (2.45)

=1
J L?li/ Q11 (Q‘QIZ)
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where we use Lemma 2.4.1 to restrict the domain of the last L? norm to Q(QM_ with
ok+1 ok+1

Ty Qi+

dr(B) dr(B)

As K is constant on any fiber parallel to (1,1,1), the first factor in (2.4.5) is a universal
constant times

Qai = |04 —

| (1, K) (2, B) | 22 (v)- (2.4.6)
We estimate (2.4.6) via the kernel condition (2.2.2) and obtain for (2.4.5) the bound

3
s [zeae | [TEmes dodu(8).  (247)
Wy /I jaie 1o (Q2)
Now we split W7 as
(W1 \ War) U Wok.

We split (2.4.7) accordingly and estimate the pieces separately.
Starting with the ﬁ;SSt piece, estimating the triple product by its sup norm, and using
2
that length of @, is %7 we estimate this piece by

3

7] 27k0=9) HFfJ )(a,B) /W\ du(B). (2.4.8)
— 1
B L3 us)

By definition (2.2.5) and direct calculation via polar coordinates r = |3 — «|, we obtain

dH? dH? 2¢/111 ¢
/ aH(B) 5/ dHAB) 5/ = erdr Sk, (2.4.9)
Wi\, dr(B) Wi\, 18— Yy
This together with the definition of S; for (2.4.8) gives the bound
3
< k220 T 15l (2.4.10)
j=1

which completes our estimation of the first piece of (2.4.7).
Next, to calculate the second piece, we rewrite the remaining piece of (2.4.7) into L?
average

2029 [ [ (g @nB) TTIEL @Bl (g, desdn(®). (2411
Wor /1 J#
We decompose further the domain of integration into
Wor CV; UV U Vi (2.4.12)
where
Vo= | Wy \ | U |. (2.4.13)
b#a
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The inclusion (2.4.12) holds because US N Uf; = () for a # b. By the triangle inequality, it
suffices to estimate each piece independently. First, we deal with the piece V;;. The the
treatment of V;» is similar.

(1-s ,
1] 250~ lwﬂ/Fﬁ%7 TS0 D)l (o, o) (2414

We perform a Hoélder’s inequality over the measure do;du(8) where we place a L* norm
on i'-th coordinate and L? norm on the rest. Then (2.4.14) is dominated by

gk(i—s) [ L (e B) 2 de ’
12 Qﬂ/;ﬂuﬂm<“m|dﬂmm)

: H‘|(Fi,fi/)(ai',ﬂ)ubgi, (Qay)

oo

a;,u(B)

L }
| (m , e o do‘idu(ﬁ)) |

Then by definition of size, we can further estimate

<IN Bl [] (2.4.15)

JF#i

[(F f5) (e, 5)Hﬁ3j (Qe)

A .
SJ( Y ‘21‘)

Next, we deal with the piece V;. Again, We perform a Hoélder’s inequality over the
measure da;du(3) where we place a L norm on i-th coordinate and L? norm on the rest.
Then (2.4.14) with Vjs replaced by V; is dominated by

1] - 20— |(Fi i) (o, B )HL )

(ﬁkﬂwmwmw@wmm@@f,

(g1 L [t oty o, ) dostu®)”

Again, by the definition of size, the above term can be dominated by (2.4.15). We may
rewrite each factor in the product of (2.4.15) into

HH(ijj) (a + SC;:;), 5)

Since size is the maximum of a L? quantity and a L> quantity, by Minkowski inequality,
we can estimate (2.4.16) by

2k+1
H Fli) <a”dp(ﬁ) 6)

(2.4.16)

EZ([=1,1])

. k
SI(1.3)

(2.4.17)

s ) E2(-1,1))
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Fix x and consider the inner norm in (2.4.17). Observe that

o o)

is a map that preserves measure and for 3 € Wy

2k+1 2k+1 2k+1
z < <
dr (B8)| ~ 1|8 —~| ~ 6:12F/|1

Thus we have for C' = (1 + 451_1),

<257 |1).

T(IXWQk)gCIXWngCIXW%.

Then (2.4.15) can be estimated by

S - 2E s - T T
j#i

1(F)fi)(e, fB)HsJ(Cle

zk/ICII) E2([-1,1])

Then by the definition of size (2.2.8),
3
(24.18) S |11 - 2" TT I Fifill g -
j=1

Together with (2.4.10), we complete the proof of Proposition 2.2.3.

2.5 Proof of Proposition 2.2.4: Global Estimate

For (o, 3) € R x V, we introduce the L' normalized wave-packet
#a = TaMod_g; Dj ()
Since ¢ is even, direct calculation gives
(Fif){e,B) = (Mods, DY g-10)  f;) (@) = (5, 5)
By the definition of the global size, it suffices to show
1E5fllgs sy S Ifllpm s YIE Ly €T,

Fix a pair (I,7) € Z x I" and recall

_1
VEi s 1 gy 3= I o (v ) VT2 W ey )

Trivially, we have
Eif (@8] = [(£.h0)] < 1£11 1 -
Hence, the L> component in (2.5.2) is dominated by || f|| -
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To control the remaining L? component, we split the function f into the local part 157 f
and the tail part 137 f. By linearity of F; and the triangle inequality, it suffices to obtain
the following estimate for the local part

_1
[1]72 ||Fj(131f)||Lg(IX(W%1/m\U§)) Sl (2.5.4)
and the analogous estimate for the tail part
_1
‘I’ 2 ||Fj(1316f)||L,2J(IX(W771‘I‘\U.{,)) 5 ”fHLoc . (255)

Starting with the treatment of the local part (2.5.4), we observe that it’s enough to
show the following L? estimate

1591 22 (e (wy o\02)) < 119122 (2.5.6)
This can be seen by taking g = 137 f,
_1 _1 _1
1] ”Fj(13ff)”L%(Ix(W.,,m”\Uﬁ;)) < [ HFngLE(RX(WW,O\UZ,)) SHI2 gl -

The localization gives the trivial bound ]I]_% llgll 2 S || ]l oo, which finishes (2.5.4). Return
to the proof of (2.5.6). Recall that

Fig (o, B) := (Mﬁijlp(ﬂ)’lgO) xg(a).

Applying Plancherel on the spatial variable « to the left-hand side of (2.5.6) yields

HH (75, 050%) (€7, , (2.5.7)
1L (o) (W 0\U7)
then interchange the order of the L? norms equates (2.5.7) to
T5. DX, 5 g” G 2.5.8
HH< ) )( ) L) (Wr0\U3) () L2 o
It remains to show
Ty D A‘ <1 2.5.9
H ,3] dF(ﬁ)SO Li(,@) (W‘Y»O\U‘JY) ( )
By developing the L? norm, the left-hand side of (2.5.9) equals to
/ 2 (5_5]) B (2.5.10)
Wy.0\UZ dr (B)/ dr (8)°

Recall that for 8 € Wy o \ U%,

1
51|,8j—’7j|§51|13—7|§d1“(6)§|B_'Y|§$|Bj_'7j|'
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On the other hand, since supp @ C Bac (0),

2 (§—Bj 2¢ o
o (575) #0 =I5 < e 9 < 216, 1.
By triangle inequality,

185 = 5l = 1€ = Bil < 1€ =73l <185 — vl + 1€ = B3l

Hence,

2e
L= |18 =l < |€=vl < 1+* 1B — 5l -
582
This shows that |3 — | ~ dr (3)

|¢ —vj|. As a direct consequence, we can dominate
(2.5.10) by

131 - f B (8) ~ 1
{BeVIIB—I~Ig=;1}
and thus, verify (2.5.9) and complete the proof of (2.5.6)
As for the tail part (2.5.5), we have a trivial bound

1
] ||Fj(13lcf)”L3(1X(Wv,l/\I\\U%))

_1
< I[7% |y (Lare ) 2

1
. . F lare Eoo
LY (Ix(Waa)11\UF)) 1F (13 I}

(2.5.11)
By (2.5.3), we dominate (2.5.11) by
1 ! !
I|72 ||Fj(131e N oo -
1B Q1D oy I
Therefore, to show (2.5.5), it suffices to show the following inequality
T IE st Py vy ) S 1 (25.12)
We may dominate the left-hand side of (2.5.12) by
1| F [ || @ (8) dads
3¢ ST IWoy 1y
Then, it suffices to show
/ ][ / ¢l 5| () du (B) dadz < 1. (2.5.13)
3I¢ JIJW, 11 ’

Recall again that 8 € W, 1,7 implies that dr (3) ~ |8 — 7| and thus

| @ SIB=A (1 +18=] |z —a)™"

By polar coordinates with center at ~, we have

/Wml/l

; o _ndt
Aol @@ 5 [0t G
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As a result, the left-hand side of (2.5.13) is dominated by

dt
/ ][/ t(1+tlz—a))™ —dadz. (2.5.14)
3I¢ /1|

After a change of variable,

(2.5.14):/[_22/

It becomes apparent that the above quantity can be estimated by

o dt
/ / / Nz — o N dadx ~ / lz — oV dadz ~ 1.
8.3 1 t 31 J[-1.3]
27 2 2

This verifies (2.5.13) and completes the proof of (2.5.5).

/ tA+tlz—a)™ %dadm.
1

ll
22

2.6 Proof of Proposition 2.2.5: Geometry of Tents

For 1,5 € R™ 0 < r < 1, define the Apollonian circle

B, (x1,x9) := {y e R": ly = 2 < |y—1x2| } (2.6.1)
T

We begin with a geometric lemma concerning the relation between two Apollonian circles.

Lemma 2.6.1. Let xg,x1,22 € R™ and 0 < r < 1. Suppose that
r|lze — x| < |z2 — 20| — |21 — 20, (2.6.2)

then By (xo,x1) C By(x0,x2). This inclusion relation is equivalent to the fact that if y € R™
satisfies

rly = z2| < |y — @0l
it must also satisfy

rly =z < |y — 2ol.

Proof. By direct calculation, we have the center C(B,(zo,x;)) and radius R(By(zo,x;)) of
these two Apollonian circles

2

xo — X rlzo —
C(By(wo,2)) = =5 R(By(x0,2:) = oo — i (2.6.3)
- 1—7r
Then by assumption (2.6.2),
r(lxe — xo| — |z1 — @
R(B, (r0,22)) — R(By (o, 1)) = "7 =201 [ = 0]
r2|wy — 21|
=T 1_2 |C(By (w0, x2)) — C(Br (20, 21))|.

Hence B, (xg, 1) C By(xo,x2). O
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Figure 2.4: The inclusion relation between two Apollonian circles.

Lemma 2.6.2. Forv €l and j = 1,2,3, we have the inclusion relation

Ul C Wyp. (2.6.4)
Proof. Notice that
Wyo=V\ U Bs,(7.9)- (2.6.5)
vy'el’
For B € ,U Bs, (v, 7), there is 4" € T such that 8 € By, (7/,). Recall that Bs, (v/,7) is
a ball wighegenter 5y Vo
C(Bs,(v,7)) = 1_751% =7t
and radius ,
R(Bs, (v, 7) = 81 {5

The angle between ~ 3 and v C(Bs,(v',7)) is at most

. (C(Bs,(v,7)) — 7) .
arcsin = arcsind; = 6.
< R(Bs,(v,7)) e

Since v,v" € I', by Lemma 2.2.2, the angle between v 4" and Pye; is at most § 4 6p. Using
the fact that v,~', C(Bs,(v',7)) are on the same line, we conclude that the angle between
7B and Pye; is at most 5 + 6 + 61. Finally, we recall the definition (2.2.6) of U and

obtain UJ C W, . O

Lemma 2.6.3. For v,v',7" € T'. Suppose we have an order relation v; < ~v'; < ~"; in
some direction j € {1,2,3}, then the order is either preserved ~v; < ~'; < ~"; or reversed
v <4 < A5 in other directions i # j, i € {1,2,3}. Furthermore, ~,v',~" satisfy the
condition (2.6.2),

Ol =< =l =1 =1l (2.6.6)
Proof. Translate 4’ to origin. By condition (2.1.9), we have 4 and 4" in two octants
diagonal to each other. This implies that in ¢-th direction, the order is either preserved or
reversed. Notice that by (2.1.9), we have

/
|

1
y=7,7" -4 < —517—7’| ¥ =]
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Then
Y =P = =P+ =P -2 = A =)
> =P+ AP =
1 2
> <W —l+5h" - 7’) -
Take square root on both sides and by §; < %, we have the desired result. ]

Next, we prove the first statement in Proposition 2.2.5.

Proof of Proposition 2.2.5 (1). For 3 € V, since I is closed, there exists a point v(3) =

(v(B)1,7(B)2,7(B)3) on the singularity I' such that |3—~(8)| = dr(8). Suppose 3 € W ;.
First, we show that 3 ¢ B(vy, 61t). The argument for 3 ¢ B(«/, d1t) is the same. By (2.2.4)

and (2.2.12),
1
' =l < 5*0!7'3' — 7l < (L =du)t. (2.6.7)
Then we have
B=AZI8=" -1 =zt - (1=-d)t =0t
Second, we show either 01|83 — v| < dr(B) or 01|83 — v'| < dr(B). According to the
location of v(8);, we divide into three cases: (1) : v; < ¥(B); < 75, (2) : v(B); < V),

(3) :v'; <(B);. For case (1), via an augment similar to (2.6.7) with 4" replaced by v (8)
and the assumption 3 € W, ;, we obtain

B = <18 -B)| + (B) — 4| < dr(B) + (1 - &)t < idrw).

Case (2) and (3) are symmetric. Hence, we only prove the case (2). In this case,
~(B),v,v" satisfy the relation

(B); < <45
By Lemma 2.6.3,
Iy =A< =B = v —vB)l.
Then by Lemma 2.6.1,
(aB=v"1<1B=7B)) = (alB-~<B-7B)).

Since B € Wy,

018 —~"| < dr(B) = B —(B)|-
We then have

0|8 =~ < B —~(B)] = dr(B)

and complete the proof of statement (1) in Proposition 2.2.5. O

Before proving statement (2) in Proposition 2.2.5, we introduce a Lemma.

Lemma 2.6.4. We have the inclusion

Waro \ Wae € Bi(y) U (Waro \UZ) 77, (2.6.8)

where (W.,go \ U.]y) " consists of all the points B in W o \ U3 with 8; > ;.
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Proof. Let B € Wy o\ W4, we may split into four cases.

Case 1: v(8); < ;.
Since v(8); < v; < 7}, by Lemma 2.6.1 and Lemma 2.6.3,

(aB=~1<IB=~B)) = (alB-~<1B-~B)])- (2.6.9)
Since B € W, o, we then have 3 € W, 9. By assumption, 8 ¢ W, ;. Hence B € By(7).
Case 2: B € U%.
By Lemma 2.6.2, 8 € W4 o. By assumption, 8 ¢ W, ;. Hence 8 € B;(v).
Case 3: vj < ;.
. N >
Since, B € Woyr o\ Wayy C Worg \ UL, we have 8 € (Wﬂ,l,o \ U?,) S

Case 4: 3 ¢ U—]y‘ and ; < v; <v(B);.
Notice that

Wayo=V\ U Bs(3.7)- (2.6.10)

yel
Now that V'\ U%; has two connected components. On the one hand, v; < v(3); and thus,
Bs, (7(B), ) lies in the right component. On the other hand, 8; < v; and thus, 8 lies in

the left component. Hence 8 ¢ By, (7(83),y). Unpacking the definition of Bs, (v(8),~) and
W40, we obtain 8 € W, o. Together with 8 ¢ W+, we conclude 3 € B.(7). O

We finish this section with the proof of statement (2) in Proposition 2.2.5.
Proof of Proposition 2.2.5 (2). By Lemma 2.6.4,
Waro\ Wasit C Byt (7) U (Waro \ UZ) 77 . (2.6.11)
Suppose B’ € By, (), we have the following estimate
18 =l < 1B =~ < it <61|B — .
With the assumption that 8 € W, ; \ U%, we obtain
185 — B3] > 185 =5 — 18, — %] > (62 — 6|8 — 1. (2.6.12)
We then split the previous term and further estimate (2.6.12) by

1 01

(52—51)1+51|5—’)’|+(52—51)1+51

1B -]

>52—51
146

-\ >
Suppose 3 € (W'y’,O \ U%) ' then Bj < < p';. Hence

(IB=~+18"=~1) = p(dr(B) + dr(8)) .

185 = Bil = 18"y = vl +1vj = Bil 2 62(18" =¥ + B = ]) = p (dr(B') + dr(B)) -

We complete the proof of Proposition 2.2.5. O
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2.7 Proof of Proposition 2.2.6: Selection Algorithm, L Com-
ponent

Let to := dist(PyQ,T) = 5 ir}gf de(ﬁ). By compactness, there’s a positive distance between
ery

PyQ and T and therefore tg > 0. For 3 € V, j € {1,2,3}, we write the projection map
P;f3 := Pr.e; = f; for simplicity. Let 7o = &. Suppose we have Tj for 0 < k < ko we
define

Py, := (Q NEfI7 (A 200 {(a,,@) ERxV\I: 2%, <dr(B) < 2k+1t0}>

(U U »)

For next iteration, suppose we have Py and 7y, for 0 < k < kg, we construct 7,41 through
the following process. For (a,3) € R x V, t > 0 define rectangles

Ropy = <a+cts [—;;D x (y(ﬂ)j + gt [—;;D (2.7.1)

where ¢ and ¢y are two constants to be determined later. Let on be a finite subset of Py,
such that for distinct point («, 3), (o/,3') € P,

Rocﬂ Qkoto N RO/ B, 2k0t0 = J. (272)
and maximal in the sense that for any (a,3) € Py,, there exists a (o, 8') € P} such that

Ro g orot, N Bar g ghory 7 2- (2.7.3)

The existence of such finite set P} ~is guaranteed by the compactness of {2 and a greedy
algorithm. Given 3 € V\ T, and for i € Z, —M < i < M with M being the least integer
greater than %, we define

y:=TnP ! (7(5)j 4 6o(1 — 81)2% i — 1, i]) . (2.7.4)

If I’b # @, by closedness of I'Y, there exists 'y(_i)(ﬁ),'y_(:)(,@) € I’% such that Pj(I’%) C
[(8);,7(8);]. Define

Tonm U {(ar g [ 23] 00) @mem). e

i=—M

where ¢ = (3¢5 V %) We will show that P = (J P} and 7 = |J 7 satisfy the desired
k>0 k>0

properties in Proposition 2.2.6. To show the covering property (2.2.16), we first recall that

by construction P} C QN [F; f| L(X\,2)], and thus P . QN |Fjf|~! (A, 2)]. On the other

hand, for (o, 3) € Q NIEf|™ L(X,2)], there is ko such that 25ty < dp (8) < 2FT1¢,. By

construction, either

cUUpre U or

k=0T€Ty (I7)eT
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and the covering property (2.2.16) is verified, or the alternative (a, 3) € Py, happens. In

the case where (a, 8) € Py, the maximality of P}, guarantees the existence of a point
(o/,B') € Py, such that
Ra,ﬁ,QkOto N RO{,,B',QkOtO # .

As a direct consequence

(0.7 (8),) € <0/+2:Z§;0 {—;;D >< (v (8), + 3er2t, {_;;D

We now recall that M > %. This implies that v (3) € Fg, for some i € [-M, M]. In

particular, v(j) (,B)j <~ (ﬁ)j < VE:) (B)j < W(j) (ﬁ)j + 0o (1 — 67) 2kt for the same i. Using
statement (1) in Proposition 2.2.5 and the fact that ¢ > é, we obtain

(aaIB) € U DT - U DT.

(177)€n0+1 (I,'Y)GT

The estimate (2.2.17) holds directly by the construction of P and 7. We now verify the
orthogonality property for P. For (o, 8) € P} and (¢/,3") € P}, we split the argument
into two cases.

case 1: k=K. By (2.7.2), we have either

lor — | > es(28t9) 1 (2.7.6)

or
7V (B); —(B);] > ¢s2 . (2.7.7)
In case (2.7.6), taking ¢, = 4 gives

a—a| = S (de(B) " +de(8) ) 2 2(de(B) " +dr(8) 7).
In case (2.7.7), taking ¢y = % gives ¢y > 8 > 4(p + 1), and thus
18; = Bjl = v(B); — (851 — 18; = v(B);] — 18; — 7(8);]

> ¢;2%0 — dr(8) = dr(8)) > (L = 1)(dr(8) + dr(B) > p(dr(B) + dr(8)).

case 2: k < k'. Either

/
——, = 2.7.
a§éa+2kt0[ 2,2], (2.7.8)
or -
, c
— ==, = . 2.7.
a€a+2kt0[ 2,2] (2.7.9)
In the case (2.7.8), since ¢ > 3¢s > 12,
1 c c, 1 1
—d|> = > - —)>2(dp(B) +d -1
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In the case (2.7.9), notice that

In particular, since k < k/,
2’%0 .

02 U (v gitgdl)

Together with (2.7.9), and by ¢ > % and Proposition 2.2.5, we obtain

B ¢ U W kg, - (2.7.10)
~el
1y —(B);1< 3 cp2kto

On the other hand,
B/ € W‘Y(ﬁ’),Qk, C w. (ﬂ/) 2kt

Together with (2.7.10), we have
3
V(B =B = (B —1(B)i] = Ser2to. (2.7.11)
Note that 8" ¢ W, g) ok, and
18" =~(8)] = dr(B") = dr(B) = 2",
we have 3" ¢ W, (). That is,

01lB" = ~v(B)| = dr(B') = 18" — ~(8). (2.7.12)
Combining (2.7.11) and (2.7.12),

3
§Cf2kto < (B) =B <18 =~vB)+ 18 —~(B)] < (1+6)IB" =~(B)].  (2.7.13)
Since B' ¢ W ()0, by Lemma 2.6.2, we also have 3’ ¢ Ui(ﬁ)' Therefore,

18; = Bl = 18; = 7(B);] = 18 = 1(B)j] = 5218" = 7(B)| — 2" to. (2.7.14)

Together with (2.7.13) and the trivial estimate |3 — v(8)| > dr(8'), (2.7.14) can be
estimated from below by

@LZWO + 02 dr(,B) 2k,
2(1+d1)

- <8<3162+§1> - 1) ar(8) + 2 5 dr(8) = p(dr(B) + dr(8)).

This completes the proof of Proposition 2.2.6.
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2.8 Proof of Proposition 2.2.7: Selection Algorithm, > Com-

ponent
Since 2 is compact, we may assume Q C R x P]fl([—A, A]). We set up an iteration
algorithm. Let Qg := Q and ¢ty = ﬁ, where C' = C (6y) is the constant that realizes
L2

the estimate (2.5.6)
Hij”Lg(RX(W-y,o\U%)) <Cfllge- (2.8.1)

Suppose now );_1 is given, we define a collection of intervals Z; for integer k£ in the range

0<k< 24 _ 11. The collection Z, consists of interval I with the following properties:
S wHi-ah | .

there is a point ~ in the strip

r* ::rij—1<—A+6o(1—51)to-[k:—lvk]> cv (2.8.2)
such that
1172 |10, Fif| > (2.8.3)
| W1 B3 2 (1 (w1 \U3) ) T 2 -
The relation (2.8.3) and (2.5.6) imply the following estimate
A _1 _1
75 ST IE g ey ) < € M2 1o (28.4)

By the definition of to, ||f||z2 = C%/%, and thus (2.8.4) is equivalent to |I| < 1/tg. Once

we verify that all intervals I in Zj have their diameter bounded by a fixed number 1/t,, we
apply Vitali covering lemma on 57y := {5 : I € Z;;}. As a result, there is a subcollection
Jr C 7 such that for all distinct I, J € Jg,

5INdS =0

and
Uzk C U5Ik C U25Jk.

For I € Jy, let 47 € I'* be the point v that realizes (2.8.3) and v*,+* € I'* be the two
endpoints such that P; (F’“) C {vﬁ’j,y_’ﬁ,j]. Define
\ <j
Sk ::{(I,w,Qk_lﬂIx (W‘Y»ﬁ\U'JY> ) : IGJk} (2.8.5)

Ty = {(251,75[) : IEJk} U {(11,71> :IGJk}. (2.8.6)
51 (51

For the next iteration, we set

and

Qo= \ U UDr] | (2.8.7)

i=1 \T€T;



Eventually, we obtain
S=Jse. T:=T (2.8.8)
k=1 k=1

We will show that S and T satisfy the desired properties in Proposition 2.2.7. To show
the covering property (2.2.22), we assume the alternative that there is a tent (I,4) that
violates (2.2.22):

A (2.8.9)

1
I 2 . >
| | L%(IX(W7,1/|1|\U~]7)<j) \@

Loy 0r B3|

By construction, there is a k such that I € 7, and « € T'* realizes (2.8.3). As a result,

1
Vi< <Ak <A s (1 =61)to <AF + 60 (1—61) ik
By statement (1) in Proposition 2.2.5 and the construction of Jy, there exist a J € Jj such
that

Ig5Ig25J§§—5J
1

and

That is,
I x (Wy 11 \U']y)<j C D) C U Dy C U Dr.
TeT TeT

This is a contradiction, and thus (2.2.22) must hold. The estimate (2.2.23) follows directly
from the construction of S and 7. In the following, we check S satisfies the orthogonal
property. Given (I,7,S) € S, (o, 3) € S and (I',v/,5") € S, (¢!, 3") € S, without loss
of generality, we may assume ~; < ;7. We split into two cases according to whether they
are in the same strip.

case 1: k = k. By construction, we have S C I xV\T', S’ C I'xV\TI', and 5IN5I' = &.
Hence

jo—a'| > 22 (1) +17) > 21|
case 2: k < k’. By the construction of Sy,
Sw:rx<wy1 uﬂ><ﬁn%u1crx<wm 1\U%>q\<11xwfﬁ>.@81m
- il 7m Y - il T Y 51 Y777

We either have

1] = 2111,

1/61—1
]a—o/|2/12

and the orthogonality property (2.2.24) is verified, or the alternative

1/61 — 1
/‘</17m_

o — « 5

o1



Since « € I, we have o/ € %I. Then by (2.8.10), we have

\ <
/ J
/3 € <W7 \ U_Y/> \ W’vaTl .

s 1
17

By applying the statement (2) of Proposition 2.2.5, we obtain (2.2.25). This completes the
proof of Proposition 2.2.7.

2.9 Proof of Proposition 2.2.8: Bessel Type Estimate

Throughout the rest of the argument, we take € to be the specific value %.

Lemma 2.9.1. Let P and f be as in Proposition 2.2.6. We have

\Ei f (a, B))° ,
(a;)GP]dF@ ’g HfHL2 .

Proof. Direct calculation and Cauchy-Schwarz yield

<f, ‘Pi,ﬁ>m

Fif (o, B))
S R

(0 3)EP (a,B)€P dr (B)
F;f (a,B) sof;g> Fif(0,8) ¢l 4
— f7 Z ; S HfHL2 Z ot et
< (a,8)eP dr (B) (a,8)€P dr (B) 2

It suffices to show

. 2
Fif (0, B) ¢, F; f (a, B)
X —awm | S X Tnm

d d
(av/B)EP r (B) L2 (Oé7ﬂ)EP r

We develop the L? norm and introduce asymmetry

Fif(a,8) ¢l 5 A I K%O]a,ﬁ’ Wiaﬂ'>‘
L TE B | S e OIS O S )

(aﬁ)GP L2 (ayﬁ)’(alyﬁ/)ep

<905;,ﬁ7 wi/,ﬁ/>
dr (B)dr (8)

<2 Y |Ff(B)]|Fif (o8] ‘
(a,8),(/,B8)EP
dr(8)<dr(8')

We recall that P C |ij|_1 (A, 2A]. In particular,

V(a,B),(,8) eP, |Fif (o, 8)| ~|Eif (@, 8)].
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Consequently, we may perform the following substitution

3 Fif(,8) ¢l 5 <y |Fi f (o, B))? 3 ‘<¢a,ﬁ’§0a/ﬂ/>‘

d d d !
(aB)eP v (8) 2 (aB)eP rB) L Eer r(8)
dr(B)<dr(8')
It remains to show, for (o, 3) € P,
J J
O, 3P 3
> ‘< C’lﬁ (B’)ﬂ> <1 (2.9.1)
(o!,B)€P :
dr(B8)<dr(8')

We discard all terms with no contribution to the sum. Therefore, we may assume

(@hp o) #0.
This implies that the frequency supports of the two functions overlap. In other words,

4e

10 dr(8') < pdr(8').

(dr (8) + dr (8)) < =

|ﬁj*ﬁ;‘ < 10

As a result, for any other (o, 3”) remained in the summand,
185 = 87| < [B; = Bj| +18; = Bf| < p(dr (8") +dr (8")) -

This violates (2.2.19). Thus, for distinct (o, 3'), (&, 3”) remained in the summand, they
must satisfy (2.2.18)
jof = a"| 2 2 (dr (8) " +dr (8)7).

Finally, we apply the standard wave-packet estimate as in Lemma 2.1 of [93] and utilize
the physical separation to complete the proof

) ‘<¢5¥ﬁ’ “’ifﬂ'>

Z dr (B) (1—|—dp (B)‘a—a")_N

dr (8’ ~ dr (8
(a/,BI)EP F (B) (CV/,B/)GP F (ﬁ)
dr(B)<dr(8’) dr(B)<dr(8’)
~ik 3 A @ dr @)l )V ds
(o ,B")EP\{(,8)} dap(8')
dr(B)<dr(8’)

Sit [ ar@0+d@la—a) =1+ [ (+0) a1

O
Lemma 2.9.2. We define a constant
4 1
_ 10 ta _10p (2.9.2)
5 % 1 9.

93



\ <j
Let v,v' €T satisfy v; < ;. For B € (W%O \ U.],) and B € W ¢, suppose

|85 — 85| < % (dr (B) +dr (B)), (2.9.3)
then
dr (B) < cdr (8') . (2.9.4)
If additionally that B’ ¢ U2,
4 , ) 1 4 )
(52 - £ (1 +c)> dr (8') < [8; =] < (51 + 1—; (1 +c)> dr (8') - (2.9.5)

Proof. We first show (2.9.4) via estimating ‘ﬁj — ’y} from above and from below. On the

one hand, the triangle inequality gives
65 4] < 185~ 81 +18 ] 29

The point 3" € W,y satisfies

85| <18~ < 5-dr (8. (29.7

which controls the second term on the right-hand side of (2.9.6). We control the first term
on the right-hand side of (2.9.6)

4
18 = Bl < 35 r (8) + i ()
Hence, we obtain the following

4e 1

n > dr (B) . (2.9.8)

, 4
1B =] < %dr (B) + (10 5

On the other hand, by assumption, the three points 3,~,~’ satisfy the ordering relation
ﬂ] < 8 < ’}/3, and thus,

18 = j| = 185 = vl + v = ;| = 185 =il - (2.9.9)
N\ <J -\ C
Since 3 € (W%o \ U%) C (U,Jy) , the above quantity can be estimated from below by
2|8 — | = dadr (B) - (2.9.10)

Combining (2.9.8), (2.9.9), and (2.9.10), we obtain

e 1 ,

This completes the proof for (2.9.4). To show (2.9.5), we further assume 3’ ¢ U,JY', and
obtain a lower bound similar to (2.9.7)

Sadr (B') <82 |8 —~'| < |8~} -

S2dr (B) < |85 — )] < %dr (8) + <
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By triangle inequality

185 =il =185 = B3] < [B; — ;| <185 — vl + 185 — B3] -

Hence, we obtain
S2dr (B') — 185 = B < 185 =)l < *dr B +18; =B

It remains to control ) Bj — B;

from above with a small constant multiple of dr (3'), which

can be achieved via utilizing the consequence of (2.9.4)

8; — 65| < 10 (dr(6)+dr(ﬁ’)) S%-(l—l—c)dp(,@’).
O

Lemma 2.9.3. Let Q,\,S and f be as in the Proposition 2.2.7. Assume lq |F;f| < A,
then we have the following bound

ST IEf R S F12 (2.9.11)
(I7,9)€S

Proof. The following argument is parallel to the first parts of the proof of Lemma 2.9.1

> 1Bl = X [ (1) BT @ Bidodu(8)

(I7,9)€s (I,7,5)€s

<f, Z /Ff o.B) waﬁdadu<ﬂ>>

(I~,S

<1141l Z /Ffaﬂ sdadu (B)

([777 L2
Again, it suffices to show
2

Z / Fif (@B ¢ pdadn(B)| 5 3 1E s - (2.9.12)

( 777 L2 (I,V,S)GS
Developing the L? norm, we can estimate the left-hand side of (2.9.12) by

< X [Eres) [ 15 @)

(I,7,S9)€S
(I'~',8")es

do/dp (B8') dadp (8) .

The summation can be further decomposed into diagonal terms

Z //Ff (a, B)] ‘Ff( )}')<¢i,ﬂ7¢i’,ﬁ’>

1,7,5)eS

do/dp (ﬁ/) dadp (B).  (2.9.13)

95



and two copies of off-diagonal terms

Z /Ff o, B) !/ |[F5f (a ’<‘Pi,ﬁ7¢i’ﬁ’>
(I,8)
(]’,—y’S)eS
(7,8’ A',8")
75 <7j

do'dp (8') dadp (B) .

(2.9.14)
We treat diagonal terms and off-diagonal terms differently. Starting with the diagonal
terms (2.9.13), we rewrite the expression

S [ 1R @B [(dp )
(I.5)es” 579

1
2

* do’dp (8') dadp (8) .

L (o8] [(Fhp o)

Cauchy-Schwarz then gives

< X 181 @A [ (b )| dela (8) dadis(8).

(I,7,9)€S

Controlling (2.9.13) is reduced to showing that for all (a,3) € S,

/S ‘<¢iﬂ’ ¢i’,ﬁ/>‘ do'dp (') < 1. (2.9.15)
For the off-diagonal terms (2.9.14), we observe that

|E5f (o, B)],

1
Fif (80 < XS T2 IFfll s

After substitution, we can dominate (2.9.14) by

E ”F fHL2 (S) " |I‘ / Z / ‘ a[}?SOa 5’> do/ dp (ﬁ)dadu (8)-
(I7,9)es (I' v',58")es
(I, S)#(I’ ~',8")
75 <7}

Controlling (2.9.14) is reduced to showing for (I,,S) € S,

J J
’I’/ /S’ ‘<@a,ﬁ’¢a’,ﬁ’>

(r, ’S’ €S
(Im ) (I’ v,5")
75 <7j

do'dp (8') dadp (8) S 1. (2.9.16)

To prove (2.9.15) and control the inner-most integral of (2.9.16), we first focus on a fixed
(a, @) € S and discard all points (o/,3') in S" (in (2.9.15), we take S’ = S) that don’t
contribute to the integral. Therefore, we may assume

<‘Pa”37 Po! 3/> # 0.
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This implies the frequency supports of the functions overlap, and thus,
|18; — 85| < 10 (dr (8) +dr (8')) -

Recall that S C I x W, and &' C I’ x VV<J . Since 7; < fyj, Lemma 2.9.2 guarantees

‘Y"I‘ ‘7 II"

the following relations in both (2.9.15) and (2.9.16)
dr (B) < cdr (B') , (2.9.17)
8~ ) ~ o (8) ~ 8~ ). 2919
On the one hand, due to the relation (2.9.17), the standard wave-packet estimate gives
(&l o) S dr (8) (1 +dr (B)|a o)™
On the other hand, the relation (2.9.18) implies that

aH (B) _

P (S < dH? (B = 1.
u (P () /{ﬂ €Wy o |5 8T} dr (8)° ][{ﬁ'evnﬁjv;\rvlﬂ/v’l} #)

In combination, we obtain
J J
(st

- /PR(S') dr (B) (1+dr (B) [a —o') " da’ < /R(l +z) N dw ~ 1

do'dp (B / / (1+dr (B) ‘a - O/D_N da'dp (B')
Py(5") J Pa(s)

In particular, this proves (2.9.15) by taking S’ = S. To address the issue with summation
involved in (2.9.16), we utilize the relation (2.9.17) and infer that all points in (¢, 3") €
S” from any other (I”,4”,S5") that contribute to the integral in (2.9.16) satisfy also the
following relation

|85 = 87| < |85 = Bj| + |B; — B| < ﬁ ~ (2dr (8) + dr (8') +dr (8"))

<) (0 (8) i (3) < o (8) + o (87).

This forces that all pairs of points (/,3") € S" and (o, 3") € S” with distinct (I’,v,S")
and (I"”,~4"”,5") in (2.9.16) have their physical components separated in the following way

a—ao'|=2/1, |of=d"|=2(|'|A|I"])>o0.

In other words, the sets 31, Pg (S’), and Pg (S”) are disjoint from one another. Finally, we
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combine the result above,

ko 2 LI

da'dy (B') dovdy (B)

‘Pa ,3/>

(I'~',5"es
(1'7 S)#(I’ 'S
Vi <V;

NN 5
N!II/ Z /S’ ) (1+dr (B) |a—o/|)" do’dadp (8)

(I'~',8"es
(I:‘Y s 75(1’ ~'.S")
75 <5

gi/ l/lcdp B) (1+dr (8)|a — o|) ™ do'dy (8) da

S/W i( B N][/BICdF ) (1+dr (B) |a = o'[) ™ da/dadu (8)

"/u

< / (dr (8) 1T))>™ du ()
W 1

’Y,u‘

< I8 =A™V |17 dH? (B) = “NAH? (B) ~ 1.
<f oy 1B 2 Jr 1B @

]

We close this section with the proof of Proposition 2.2.8.
QO fI (N oo) = | | @n|FfI7H (251N 25 (2.9.19)
keN

For each k, apply Proposition 2.2.6 to the set 2N |ij\_1(2k_1)\, 2k )] with the threshold
2k=1 ), we obtain a set of countable points P, and a countable collection of tents T satis-
fying the properties stated in Proposition 2.2.6. Define P, = |J Py and 750 = J Tx. By

keN keN
(2.2.17),
o~ Y @S> D S A (2.9.20)
dp dr(B)(2F-1A)2
I7)€ET (a,8)€EPx k€N (a,8)ePy,
By Lemma 2.9.1, we can further bound (2.9.20) by

2 2
—2(k—1) y—2 |Fj f (e, B)] < 1f172
E 2 A E @)~ a2 (2.9.21)

As a direct consequence of (2.2.16), we have

H1Q\UT€TOO DTijHLOO <A (2.9.22)

Next, define Q = Q\ |J Dy C | f171[0, A]. Applying Proposition 2.2.7 to Q, we obtain a
TeT
countable collection T).¢; of tents and a countable collection S;. ¢, of the form (1, ~, ) with

o8



\ <j
(I,7) a tent and S a measurable subset of QNI x (W% = \ U%) satisfying Properties

stated in Proposition 2.2.7. By Lemma 2.9.3,

IF5 7205y _ 112
oo~ > 1S ). AQ“(),S AQLQ. (2.9.23)

(L) ETe st (I,7,S)€S ert (I,7,S)ESIest

Applying the dual version of Proposition 2.2.7to { @\ U Dr |\ U Dr with
TeT T€Tiest

N >
( ~ III L\ U ) replaced by (W% ﬁ \ U%) , we obtain another countable collection T'.;p

of tents and a countable collection S, of triples which satisfy equation similar to (2.9.23).
Define T = Too U Tieft U Tright. Direct calculation gives (2.2.26)

2
o= >0 1+ Y. 1+ Y mg”fA”QLQ. (2.9.24)

(177)67- (1’7)€TOO (177)€7zeft (1»7)67;‘ight

Finally, notice that by Proposition 2.2.7, T satisfies (2.2.22)

A
< = (2.9.25)

I <,
L2(Ix(Wa 11 \U<I) — /2

LUper D2 3]

and the dual statement of (2.2.22)

A
. < —,
L2 (Ix(Woa /i \UH>7) — V2

for all (I,~). Combining (2.9.22), (2.9.25), and (2.9.26) verifies that

by () + () =n o

That is, T also satisfies (2.2.27). This completes the proof of Proposition 2.2.8.

1|2 (2.9.26)

2.10 Proof of Proposition 2.2.1: Bound of Model Form

Notice that there is a decomposition V \ I' = |_|f\i1 V, with V, defined iteratively

Vo:=T, Vi:=<¢BeV\{JV;:dr(8) =dr, (8);. (2.10.1)

J<e

As a result, we obtain a decomposition on the trilinear form A,, = Zf\il A, where

3
Ao (fro for i) / [ K(p)- T] (51 (05, B)dadu(). (2.10.2)

Jj=1
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Thus, by triangle inequality, it suffices to deal with a single piece A,,,. Moreover, via a
standard limiting argument, it suffices to perform the estimate with R3 replaced by a set
of the form [—A, A]3 and V replaced by a compact subset V/ C V' \ T'. For simplicity, we
may fix ¢ and assume I' =T,, K = 1[—A,A]3x(me’)Kv and Ay, = Ay,

The remaining part is parallel to the restricted weak type estimate in (4.2) of [60]. Let
E; C R be measurable sets and |f;| < 1g;, it suffices to show

11 a
A (f1, f2, f3)] < a3ad (1+ log a—;), (2.10.3)

where a; = |E,(;)| is a decreasing rearrangement (a1 > ag > as). Since for any € > 0 and
x > 1, we have the the asymptotic 1 + logx = o(z°),

0t toe ™) = Cafad—al
ajas(1+log a—2) < Caja; a;.

Then, by interpolating the restricted weak type estimates, we obtain the strong bound in

the local L? range. By L? normalization, f; := ﬁ, (2.10.3) reduces to
j 2

o . .
A (f1, f2, f3)| S af (1 +log aé)_

Note that by Proposition 2.2.4 (Global estimate),

1E5fillss S [ fillzee < MIEGIT2 = a2y,

~ 1
and by normalization, | f;||z2 < 1. Let n; be the integer such that 2"~ < a; * <2%. By
design, n1 < ny < nz. We perform Proposition 2.2.8 (Bessel type estimate) iteratively. Let
Qs = [-A, AP x V' and m; : R® x V — R x V be the following projection:

T (auB) = (aiaﬁ) .
Given a compact set €, C [—A, A]® x V' with the properties that for i,i’ € {1,2,3},
Qp = my = 7y, (2.10.4)

and for all j € {1,2,3},
H1QnFjJ§HSj <on, (2.10.5)

we apply Proposition 2.2.8 with A = 2"~! for each j € {1,2,3} and obtained a collection
of tents T, ; such that
> s

(L'Y)eTn,j

Let T, := J? Tn,;- By triangle inequality,

j=1
dooge

(I, 7)ETx
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We can associate the data T’ = (I,~) with a region D% defined by
Dy = (Te; ® €f) x W11
and define the following compact subset:
Qo1 =0\ | Db
TET, i=1

By construction, the set €2, 1 satisfies (2.10.4) and (2.10.5) with n replaced by n — 1.
Through this iteration process, we obtain a nested sequence of compact sets

QngQQQn Qn—lg"'

1

and a countable collection of tents T := | J

A (]?1, fé, f},) in the following manner

Tn. Using the identity (2.10.2), we dominate

n<ng

(FjJ3)(a;, B) . (2.10.6)

L

=
—

INGESHED b 3p o) Y2

n<ng T€T, i=1

<.
Il
_

w3 (PF)

Apply Proposition 2.2.3 (Tent estimate), we obtain

| (flaf27f3 ‘ S Z Z |IT|HH1Q7LF fjHSJ (T) ~ Z 2- Z"Hmln 2” 2”1

n<ng TeT, n<ng

=2 Y M Y 2m e 2m T oM (g — )2 2™

n<ni ni<n<ng na<n<ns

N |=

(2 +log a—l).

=2"(24ny—n1) Sa;
a2

which completes the proof of Proposition 2.2.1.
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Chapter 3

A smoothing inequality related to
triangular Hilbert transform along
curves

3.1 Introduction

The third part of this thesis is a blueprint for the Lean project based on the paper [53]. We
begin with a brief introduction to proof assistants, the Lean programming language, and the
"blueprint” format. A proof assistant is a software tool designed to verify the correctness
of formal proofs written by humans. Typically, it involves a specialized programming
language based on logic and type theory. Since the 1960s, several proof assistants have
been developed, including Mizar [72], Isabelle [80], and Lean [27].

Lean, a programming language and proof assistant developed by Leonardo de Moura at
Microsoft Research in 2013. Over the past decade, Lean has gone through several updates.
Lean features a robust mathematical library known as mathlib including many formalized
definitions and theorems from modern mathematics.

The collaboration model behind Lean-based formalization works as follows. Starting
from an original mathematics paper, a group of contributors writes a detailed ”blueprint”.
This blueprint expands on the original work, spelling out every new definition not already
found in mathlib and elaborating on steps that may have been omitted in the original
paper. Collaborating with members of the Lean community, the team then works together
to formalize the content into Lean code.

This model has led to several successful projects in recent years. One notable example
is the formalization of Perfectoid spaces, sophisticated objects in arithmetic geometry in-
troduced by Scholze in 2012 [88]. This project was led by Buzzard, Commelin, and Massot
[10]. Another major achievement is the formalization of the Polynomial Freiman-Ruzsa
(PFR) conjecture [40], originally proved by Gowers, Green, Manners, and Tao in 2023. Re-
markably, the formalization was completed in just three weeks thanks to an extraordinary
collaborative effort within the Lean community.

This model demonstrates another significant advantage. By breaking down a complex
proof into smaller, manageable parts, it enables contributions from individuals who may
not be experts in the specific area of mathematics involved.
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An ongoing example of this approach is the formalization of Carleson’s theorem in
harmonic analysis. Originally proved by Carleson in 1966 [15], with alternative proofs later
provided by Fefferman in 1973 [35] and by Lacey and Thiele in 2000 [65], this project is
currently being led by Becker, van Doorn, Jamneshan, Srivastava, and Thiele [2].

We begin with some definitions.

Definition 3.1.1 (Exponential function). Define the exponential function e : R — C:
e(z) := 2™ (3.1.1)

Definition 3.1.2 (Translation and dilation operators). Given a function f : R — C and
parameters a € R, b € Ry, 1 < p < oo, define the translation and dilation operator

Tr, f(z) = f(z —a), (3.1.2)
Dﬂgf@g;:b—%f(%). (3.1.3)
Let S(R) denotes the space of Schwartz function on R.
Definition 3.1.3 (Fourier transform). Define the Fourier transform F : S(R) — S(R)

:/fMdﬂ@m. (3.1.4)
R

F(k)f(xh o 7xk—17£7xk+1>' T /f xkg dxk (315)

Define the partial Fourier transform

Definition 3.1.4 (Lebesgue norms). For measurable function f € R?, for exponent 1 <
p,q < 0o, define the LP norm of f

I = ( [ \f(xﬂpdx)’l’ . (3.1.6)

Define the partial LP norm of f on variable xy

||f(xla y Lky HLP = (/ |f |pd$k> . (317)

Define the mixed LPL? norm of f on variables xy,

T R | T H”f(xl"" s a)ll ||
T

k?l

(3.1.8)

Definition 3.1.5 (Multiplicative differences). For function f € R, define the multiplica-
tive differences

(Do ) ) (@1, wa) i= f(x1+ 91, s za +ya) f(o1, -+, 7a) - (3.1.9)

Define the partial multiplicative differences

Dl(lxk) (f(xlv yLhgy* >$d)) = f(xla"' YT T Y, 7~Td)f($17"' yLhgyt e 7$d)' (3110)
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Definition 3.1.6 (Bump function). Let p be the bump function
p(x) == 7?1 |zl <1 p(x):=0, |z >1. (3.1.11)
Given a number 0 < § < 1, we define the bump function
P(z) := (Try Dil§° p)(z) . (3.1.12)

Note that 1 is a bump function which is smooth, with |[¢|z~ < 1 and supported in
A:=[1-61+4] .

Definition 3.1.7 (Localized fiberwise bilinear Fourier multiplier). For multiplier m €
L>®(R), and f,g,F,G € S(R?) define the localized fiberwise bilinear Fourier multiplier
operator T}, and the associated bilinear operator 7,, by

Tin(fs9)(2,y) = 112 (, y) /Rz(f(nf)(f,y)(f(z)g)(wm)m(&n)e(xf +yn)dédn, (3.1.13)

To(F.G)aw) = Top(en) || FEGlamm(Enelat +ymiedy. (3114

Definition 3.1.8 (Main multiplier). For a curve v € C®(R), and a scale A > 0, define the
multiplier m, by

moaten =0 (5) o () [ecermow () e @

Definition 3.1.9 (Counting the sign change). Let ¢ : [a,b] — R be a C* function. Suppose
that for all = € [a, ], there exists a j € N with 1 < j < k such that ¢U)(z) # 0. Define

NUINE!
(Jkp)(t) == sup |V (t)]7 (3.1.16)
1<j<k
N S |
Bj = {t € [a,b] : |<pj(t)|; > Q(chp)(t)} , 1<j<k, (3.1.17)
Bf :={te[a,b] : ¢"(t)#0} . (3.1.18)
Iteratively define
J
By:=Bi, Bj:=B;\|JB. (3.1.19)
=1

For a set B C R, let C(B) be the number of connected components of B. Define a number

k
My(¢) ==Y C(B))+ C(B1NB;). (3.1.20)

inf [y"(£)] # 0, (3.1.21)



we have the phase function:

B(e) =~ o) to=tl6n) = ()7 (£). (31.22)
Now we justify the function ¢(§,n) is well-defined for &, 7 in the range (3.1.23). Note that
since 7" # 0 on [é, 3] and 4" is continuous, 7” has the same sign on [3, 3] and hence 7' is
monotone on [%, 5]. On the other hand, for the multiplier m, ) defined in (3.1.8), we need
to verified that for

EeM1—=6,1+6], ~()neAl—-461+4], (3.1.23)
we have % e ([%, %]) Note that for £, 7 in the range (3.1.23), we have
13 , 20 20
= 1) |1-— 1 =: . .1.24
77€’y() 53 +1_5 As (3.1.24)
Also we have -
Ay i=~'(1)+ inf |"(t)]- [—] 3.1.25
ERLOR GLCIR B (31.25)
inf |2 (¢ inf |y ()
te[L,3 te[L,3] 13
=49/(1) | 1- 22 1 22 <Y (=21 1.2
) s+ e | <7 ([23)) (3:1:20)

Comparing (3.1.24) and (3.1.26), we have that if
inf |y (¢
a0
4y'(1) + inf |y"(t)]

[575}

5 <

(3.1.27)

then As; C A, which together with the monotonicity of ~' imply that tg = t(&,n) =
(v')! (%) is well-defined for £, 7 in the range (3.1.23).
Define functions

@s,n,x(g) = (A(O,s)q))(g, 77) + 1z, ‘Es,u,v,n(g) = (A(O,S)A(u,v)q))(ga 77) ) (3'1'28)

where A is the difference operator defined as

Ay f(2,y) = fx+a,y+b) — f(z,y) (3.1.29)

for parameters a,b € R and function f : R? — R. Define the number

M(7) == supMa(psnz), M(y):= sup Mo(@suvn)- (3.1.30)

8,1,T S,U,V,1M

Definition 3.1.11 (Constants). Given v € C°(R), 6 := 3—/,,, ¥ #£0,0 < <1, we define
the following constants:

" "

gl
[llzee + 209"l 22 + ||
g

v
Cyo 1= <|WHL°° + 19" L2 + ‘

7

wup)
LOO

LOO
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/_y////
|| i), (3.1.31)
7' (1 2
Cy5,2 1= 2560|700 (1_(5))7,, ([[9]l e + |¥]] 1) (3.1.32)
LOO
~'(1 2
Cornss = 10245{Hw’um||w||%m o Wl + 1)
LOO
4 7/(1) ? / .
il | =557 (Wl +197020) - Coan g (3.1.33)
1
Cooa 1= p . (3.1.34)
1+ (0= ey ],
Y@ | 1
Consai= 2l | 7o g (W= +1Wl)* . 139)
LOO
Y@ | 1
Co ::2195{4||w’|rm||w||zm o5l + 1)
LOO
Ok 3
el | 2 o+ 1) i (3.1.36)
(1 )Y Lo
Cyg 1= ignf 06" —6'(1+6)| (&), (3.1.37)
7"7
o = inf - AT ) (3.1.38)
:=1n / NI 1.
WG NG (Be) —mearey)|
1
2 C 8)4
Coro=| 1A= | 3.1.39
o (s e (3:1:39)

AC Cynis+C ~
O = 88 Copy 5+ — g 22 (0 +67) + 41 ( e ‘”7%5’6) M(y)(1+4872)
7,10 v,10

1
C C 2 —
43 (G5 T 006 ) * T3 (10g(26))3 (3.1.40)
C%lO
Co~nos+ Cpns —~
Cyrysrz =41 ( L 50 s ’6> - M(y). (3.1.41)
7,10
Theorem 3.1.12 (Main theorem, smoothing inequality). Let v € C°([3,3]) be a curve

satisfying the following conditions and 6 = ;Y—,/, as defined in Definition 3.1.11:

inf |7/ (t)] #0, inf_ V') # 0, (3.1.42)

1
te[gé] te(3,3]
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inf |0'(t)] #0, inf |6-0" —60'(1+6)|(t) #0, (3.1.43)
telz.3 €l3:3

M(y) < 400, M(y) < +4o0. (3.1.44)

Let 6 be a constant with 0 < § < &g, where

inf_|"(t)]
dop < min{ -, SELEN =LA 3.1.45
" 2 H(W b= CraCoan’ 11+ in, 270 (3.1.45)
202

There exist constants ¢ > 0 and Cy, s > 0 such that for all X > 1, for functions f, g € S(R?)
we have the following smoothing inequality

[T 3 (s 9Lt < Cypy s A N fll 22 - N9l 2 (3.1.46)

Proposition 3.1.13 (Interpolation). Let ¢1,ca,¢3 > 0. Let T be a bilinear map. Assume
that for all functions F,G € S(R?) with

supp FF C R x [0,1] , (3.1.47)
suppG C [0,1] xR, (3.1.48)
we have the estimates:
IT(F.O)lls < er|l (&) 21y - GG m)l 3y (3.1.49)
1T(F,G)llpr < 2| Fllp2 - |G, m)llpazz (3.1.50)
1 1
|T(F, G2 < esllF (& y)llpzpa - 1G@mfapa - 1Gll s (3.1.51)
£y n-x

Then for all such F,G, we also have the estimate:
11 111
IT(F, Gl < (2%cfed +2%¢fee®) - |F| 2 |1Gll e (3.1.52)

Definition 3.1.14 (Definition of variant of Gowers norm). For m € L*(R), we define the
following three quasi-norms:

Hm”(L2®L2)* = sup
f.geL?
£l 25 llgll 2 <1

f(é)gm)m({,n)d&dn’ ; (3.1.53)

RQ

1
HmHu = H(F(I)D(O,s)m)(xan)| [21527[/920([71,1]) s (3154)
1
o = H [ P Pmis e (3.1.55)
R Ly L1L2
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Proposition 3.1.15 (Control by variant of Gowers norm of the multiplier). For all func-
tions F,G € S(R?) with
supp F C R x [0,1] , (3.1.56)

suppG C [0,1] xR, (3.1.57)

and for multiplier m € L*°(R), we have for the bilinear operator T, (F,G) as defined in
(3.1.14) the estimates:

[T (F, G)lpr < lmll 2@y - 1EE 92y - G (@)l 2y (3.1.58)
[T (F, Gl e < [lmllu - 1 F L2 - |G (2, m) i ze (3.1.59)
1 1
[T (F, Gl 2 < [lmllo - 1FE )l 2o - 1G (@) f2ps - 1GI s - (3.1.60)
£y nHx

Proposition 3.1.16 (Oscillatory Integrals). Suppose the number My(y) as defined in
(3.1.20) is finite. Then we have the estimate

My (o)
inf (Jre)(t) "

te(a,b]

b
/ 6(¢(t))¢(t)dt‘ < 4 ([l 2o + 19| 1) - (3.1.61)

Proposition 3.1.17 (Decomposition of multiplier). Let v:R — R be a C° function with
7'(t) #0 for allt € R. Let A=[1—6,1+6]. Letp: A — R be a C* function. We have
the decomposition

[ el=gt+ m©)ide = e (@c.m) - v(En) (3.1.62)
where

(&,n) == —Eto +y(to), to=t(&m) = ()" <f1) , (3.1.63)

as defined in (3.1.22) and V(&,n) satisfies the estimates:

1 1|2
W) <nz- 16‘ . ([l Lo + 19"l 1) (3.1.64)
pewicn <ot | L " o (3.1.65)
LOO

Proposition 3.1.18 (Gowers norm calculation for multiplier supported at high frequency).
Let m.  be the multiplier defined in (3.1.15) and v, 6 satisfy the conditions in Theorem
3.1.12, then we have the following estimates of m x:

1
T

: (3.1.66)
L()O

3
[myallLeore) < ¥l -

1

_1 Cyro2+ Cpns “\*
Il < X 4<23520i,7,5,2+logu7< s St ) )L e
’y?’

1
N
Hm%,\HU < (Cw’%(;’ll + Cw,%@lg(log /\)5) " (3.1.68)

68



3.2 Proof of Theorem 3.1.12: Smoothing Inequality

For f,g € S(R?), define the functions F,G:
F(y) = p2y —1)F0)f(&y), G(z,n):=p2z —1)Fg(z,n). (3.2.1)
The functions F, G then satisfy the conditions F, G € S(R?) and
supp F C R x [0,1] , (3.2.2)

suppG C [0,1] x R | (3.2.3)
which is the assumptions in the Proposition 3.1.13, Proposition 3.1.15.
Combining Proposition 3.1.13, Proposition 3.1.15, Proposition 3.1.18, we obtain
17

11 1
T n (F @)t = 1T, o (PG < (2%¢f 3 + 2% e ef®) - | Fll2l Gl (3.2.4)

< Oy sA NNz - Mgl (3.2.5)
for some Cy s > 0, ¢ > 0, where

1

€1 = Hm'y,)\”(L2®L2)* < WH?ioo ) 7 ) (3.2.6)

1
C C 2 4
e2 = [myalle < A7 (235205,%5,2+10gk-27( W"”CJF Y18 ~M(’y)> > . (3.27)
7v,0,4

1
N\ T

The line (3.2.5) comes from Plancherel identity and that polynomial grows faster than
logarithm.
3.3 Proof of Proposition 3.1.13: Interpolation

Let F, G be functions satisfying conditions (3.1.56), (3.1.57), (3.1.49), (3.1.50), (3.1.51).
For j, k.1 € Z, we first define the following level sets:

Pr={yeR : ¥V Fl2 < |FE )z <P Fllie} (3:3.1)
Qui={z R+ 274Gl < |G,z < 2°1G 2} (33.2)
Q"= {(wm € R : 27NG@ M)l 2, < G| <2|G )2 - (333)

The family {P;},cz forms a partition of R. Namely, for each y € R there is precisely
one j € Z such that y € P;. Similarly, the family {(Q x R) N Q'}1 ez is a partition of R2.
We then decompose the functions F, G with respect to these level sets.

F=YFj, Fji=lppF, G=Y Gri, Gri=1(gumno) G- (3.3.4)
JEZL k,l€Z
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By Chebyshev inequality, we have

. _9 2 .
P < @) [ (IPE ) dy < 2.
J

(3.3.5)

Since supp F' C R x [0, 1], we also have the trivial bound |P;| < 1. Combining this with

(3.3.5), we have 4
|Pj| <2272 A1

Similarly, we have
|Qk| < 22_2k A1 )

— 1_
gz mlly <2272, |[lgi(z,m)lles <22

Using above estimates, we now deduce a number of inequalities.
By construction (3.3.1) and by estimate (3.3.6), we have

N~

1P € lizey = [ IPEn)zdy < 1P| 2 Il < 427 A 2D)Fle.
J

By construction (3.3.1) and by estimate (3.3.6), we have

1
1

1 i J i
15560z = ( / HF(&y)H‘igdy> < P12 Fle < 22 AD)|F o
j
By construction (3.3.2) and by estimate (3.3.7), we have

1Grp(z, L2y < / G, m) | r2de < |Qul - 281Gl 2 < 427 A2M)|G| 2.

Qk

By construction (3.3.2) and by estimate (3.3.7), we have

1
4 1 k
IGrae ez < ( /Q HG(x,n)H‘igdw> < |QufF 251Gl < 2025 A28l e
k

By construction (3.3.3) and by estimate (3.3.8), we have

|Giatar, llzyz < Wi mllzy - I @unmingy - Glls | ,

< g mly -2 16Dl

By construction (3.3.3) and by estimate (3.3.8), (3.3.12), we have

1
12 <4.2 HGHLz

1Gralemlizges < 1@ mlley - 1 @uxmnan - Gl |,

L
< o mlug -2 - 16Dl |, <228 1k igs
<4-22-(25 A29)||Glpz .
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(3.3.6)

(3.3.7)
(3.3.8)

(3.3.9)

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)

(3.3.14)

(3.3.15)

(3.3.16)

(3.3.17)



Plug the above estimates (3.3.9), (3.3.10), (3.3.11), (3.3.12), (3.3.13), (3.3.15) into (3.1.49),
(3.1.50), (3.1.51), we then have

IT(Fy, Gra)llpr < 16e2(279 A 20)(27% A 28) - |[F| 2| Gl 2 (3.3.18)

IT(Fy, Gl < 4eo2™ - || F| 2 |Gl e » (3.3.19)

IT(F}, Gl < IT(Fy, Gra)llze < 4es(23 A29)(25 A2)27 - || F||12]|Glp2 . (3.3.20)
For j, k € Z,1 € Z>o, we compute the geometric mean of (3.3.18), (3.3.19) with ratio (1, 1),
IT(E;, Gl < 8cZed (273 A28) (275 A 28)275 - | F 121Gl e (3.3.21)

Hence we have

11
Yo NT(F, Grpllor < 4cfc3 42428 F| 2| G 2 < 213(:1 Cz [E | 2l|Gll 2 - (3-322)
JKELIEL >

On the other hand, for j, k € Z,1 € Z<0, we compute the geometric mean of (3.3.18),
(3.3.19) (3.3.20) with ratio (3, % % ), then we have

IT(F;, Gl < (16¢1)2 (4ep) 16 (deg) 16 (279 A 27)2 (278 A 28)2(271) 76 (3.3.23)

(28 A 27)16 (25 A 2)T5 (20) 16 - || P 2| G 2 (3.3.24)

< 8eFefoef (270 A 2Ry (27 A 288R)2 B G (3.3.25)

Hence we have

117
> IT(E, Gr)llpr < 8cies®cj® (16-4) - (16 - 4) - 32- || F|| 12| G 2 (3.3.26)
S RELIEL <o

< 2182 e | F | 211G 2 (3:3.27)
Combining (3.3.22), (3.3.27), we have the desired result.

3.4 Proof of Proposition 3.1.15: Control by Gowers Norm

We start with proving the inequality (3.1.58). Multiply and divide |7,,(F, G)(x,y)| by the
quantities ||F(§,y)HL§ and HG(LE,T])HL% and notice that

F(&,y)
(6 )l 2

G(x,n)

W = 16w i

e(yn)|| =1. (3.4.1)

L ‘
Then by the definition (3.1.53), we have

T (E, G) (@, 9)| < [1F(& y)ll 216G a,m)l 2

A (ECw o) (Clam o)
/Rz (IF(ﬁ,y)lng ( €)> <\|G(x,n)|L% @77)) (&, m)d&dn

FE Yl Gz -
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Then we take the L' norm of 7,,(F,G) and obtain the estimate

[T (F, Gt < Imll 2@ )+ 1€ )l 2y - |G (@l La s - (3.4.2)
This proves inequality (3.1.58).
Next, we prove the inequality (3.1.59). We do Fubini to first integrate over £ and then
over 7, then we do a trivial L! estimate in 1 to obtain

[T (F, G) (2, )| < (3.4.3)

/R F(&, y)m(E, me(x€)de - G, )

Ly

By the conditions (3.1.56), (3.1.57), the function 7,,(F,G) is supported on the square
[0,1]2. We take the L'(R?) norm of T,,(F,G), which is the same as the L'([0,1]?) norm.
By Fubini, we sort the iterated integral as

[T, )11 < HH [ Fepmieneeie o (3.4.4)

O L 0,1

Pulling out the constant G(x,n) of the innermost integral and using the nesting properties
of the LP norms on the space [0, 1] of measure 1, we estimate this by

HH [ Fevmenewet] atn) 3.4
e Eallzy o
Then by Li] X Lpe — L}, Holder inequality, we can bound (3.4.5) by
| [ Plemmientaetas)as Je@nly| - (348
R L0, [ 100
" L;([0,1])
We introduce a measurable function 7 : [0,1] — R to linearize the norm || - ||z and
equate (3.4.6) to
HH [ Fepmi e ey, (3.47)
" Ly LL(0.1)
Then by L2 x L2 — L. Holder inequality, we can bound (3.4.7) by
| [ Pemmientaetaeas NGy (3.4.8)
R Lz, ((0,1)?)

Let M(RR™) be the space of measurable functions on R™. The following are some useful
properties for multiplicative differences.

Lemma 3.4.1. For f € M(R?), u € R, we have

/Rf(w,y)dw

2

= /R 2 D@ (f(x,y))dudz . (3.4.9)
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Proof. By expanding the square and do a change of variable 2’ = x + u, we have

, -

] | 1wt = [ e’ [ (3.4.10)

= | fla+uy)fl@ y)dude = | D (f(x,y))dudz (34.11)
R2 R2

]

Lemma 3.4.2. For f € M(R?), 1 < p < oo, we have
1@ )liE = [ D@ w))

Proof. Expanding the right hand side of (3.4.12) and with the fact that integration is
invariant under translation , we have

(3.4.12)

p
La:u

[P, =@ +wnfEy), (3.4.13)
=+ vnirea],, (3414

wllLP(z)
= HHf(w + u7y)||LZ : f(xay)HLg = HHf(ua y)”Lﬁ : f(may)HLz (3415)
= 1w, )ll e - 1 @)l e = I (w)ll 7 - (3.4.16)
O

Lemma 3.4.3. For f € M(R?), A CR, we have

2

‘ [ tawds| = [ D padudsdy = [ [ (Do f) e dudsdy.
R rza)  JaJre A JR?
(3.4.17)
Proof. By developing the L? norm and by (3.4.9), we have
2 2
[tz = [ 1] fydel ay (3.4.18)
R L2(A) AlJR
— [ [ 2 gdudzay = [ [ (Do g)dudzdy. (3.4.19)
A JR? A JR2
O

Lemma 3.4.4. For f € M(R?), u € R, we have

D (f(2,9)) = (Duo)f)(@,y) - (3.4.20)

Proof. By the definitions of multiplicative derivative (3.1.9) and partial multiplicative
derivative (3.1.10), we have

D (f(z,y) = fle+wy) flz+u,y) = f@ +u,y+0)f (@ +u,y +0) = (Do) f)(z,y) .
(3.4.21)
O
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Lemma 3.4.5. For f;, € M(R?), u € R, we have

DW(Hﬂ@y) IID (fu(2,y))
k=1

Proof. By expanding the definition of multiplicative derivative, we have

fk(%y)) = (H fk($+uvy)> (H fk(%?ﬂ)
k=1 k=1

D) (
k

iéz =

n
fele +u,y) filzy) = [[ D (frla, )
k=1

Lemma 3.4.6. For f € M(R?), u,v € R, we have
DIDY f(x,y) = DYDP f(x,y).

Proof. Expanding the definition of multiplicative derivative, we have

DEDY f(2,y) = DY (f(wy + 0)F(w,y) )

= (f@+uy+ 0Tt wy) (fay+oiw)

= (f(x+u,y+v)m) f(eru,y)f(J:,y))

=D (f(z +u,9)f(@y)) = DYDY f(z,y).

VO

Lemma 3.4.7. For f € M(R?), u € R, 1 < p < oo, we have

H%“(f(rmy))“Lz < DO || f(9) 20

(3.4.22)

(3.4.23)

(3.4.24)

(3.4.25)

(3.4.26)

(3.4.27)

(3.4.28)

(3.4.29)

(3.4.30)

Proof. Expand the definition of multiplicative derivative and by Hoélder inequality, we have

HDykﬂ%wﬂw=wV@+uwﬁaﬁmhz

< N f (@ +wy)llzze - |1 f (@, )| g2 = D 1 (2 9)ll 2w -

To show (3.1.59), suffice to show the following estimate

H/ (&, ym(€, () e(at)

L2, ((0,1]%)
By (3.4.17), the square of the left hand side of (3.4.33) is equal to
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(3.4.31)

(3.4.32)
0

(3.4.33)



/ / [, DL (B (€ pym(€.n(@))e(w)) dedudady

By (3.4.22), we rewrite this as

1 1
— /0 /O RQDSE)(F(QZJ)).D&E)(m(g’,n(x))e(xf))dfdudxdy

By Fubini’s theorem, we rewrite this as

- [ ([ 29 wema) - ([ 29 ot ntonetseas ) ded

Then by L2, x Lgu — L%u Holder inequality, we bound (3.4.36) by

/ D(&) F(&,y) dy

/D@ (&, n(a))e(w6))da

Lgu

By (3.4.30), the first term in (3.4.37) is bounded by

[P (1wl ).

Then by (3.4.17), the term (3.4.38) equals to

2
l1FE o)l , = 1713

Again, by (3.4.17), the square of the second term in (3.4.37) equals to

[ 2 (o@D (me.n(w)e(w€)) ) dodded
R4

= Dq(f”)Dg) (1[071] (x)m(¢&, n(x))e(mf)) dvdxd&du .

R4
Then by (3.4.25), the term (3.4.41) equals to

= D@D“( 0.1 (x)m(€, n(2))e(w€)) dvdzdédu

H / D) (1. (@)m(sn(@))e(ae)) de|

2
Lvr

Expanding the multiplicative derivative, (3.4.43) equals to

| [ 1o+ o010y (0) - €t + 0)mE el + ) - a€)ae

H / Do o)) Eom())ewE)de|
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2
sz

L3 ([=z,1—=a]) LZ([0,1])

(3.4.34)

(3.4.35)

(3.4.36)

(3.4.37)

(3.4.38)

(3.4.39)

(3.4.40)

(3.4.41)

(3.4.42)

(3.4.43)

(3.4.44)

(3.4.45)



2
= [|(Fy P ntato)-n@ym @ n@ 22 (o 1—apyr2 (011 (3.4.46)
Then we can bound (3.4.46) by

2

HH yP0am) Dl L3 (121 -2]) L3 (0.1) (3.4.47)
2 4

<HH 1D(0,) )v’n)HLﬁ%’m([_m])_Hm”“' (3.4.48)

This completes the proof of (3.1.59).
Last, we prove the inequality (3.1.60). By (3.4.17), (3.4.22), we have

HTm<F7 G)H%Q :/Rfj(,D(uO )(57 )( Ov)G)(x n)(D(uv)m)(§7 ) (xu—i_yv)d‘rdydfdndUdv

(3.4.49)
- /R (FaPanF) €0) (Fiy DowG) (u,n)(Ppuym) (€ n)dédndudy — (3.4.50)
By L2, ¥ ng — L%uv Holder inequality, we bound (3.4.50) by
H ( 1D (u, O H/ (1) (0 v)G (’LL, 77) (D(u,v)m> (67 U)dn 5 (3451)
L

Euv

By Plancherel identity and (3.4.12), the first component in (3.4.51) equals

o LG

[Peor) €l = [P0 e ],

=||F Tapa -
) s = P02y
(3.4.52)
Next, by (3.4.17), (3.4.22), the square of the second component in (3.4.51) equals

/R 5 (D(O 9F 1D, U)G) (1) - (D(0.5) Diuym) (€, m)dndsdédudo (3.4.53)

Then by L}m x Loy — L}m Holder inequality, (3.4.53) is bounded by

(3.4.54)

L,

H H (DW)F o D(Omﬁ) (“ﬂﬂHL}w ‘ H /R (D0.) D) (€ m)dE

1
Lvs

Note that by Cauchy-Schwarz inequality and Plancherel identity, the first component in
(3.4.54) is bounded by

H( (0, )»7:(1)77(0 v)G> (U,U)HL}”] = H (.7:(_1)11)(071,)G) (u+s,m)- (.7—"(_1)17)(071,)6*) (u,m)

(3?%5)
< |[(FaiPon@) wrsn, |(FaPow@) @, 3459)
- (F5P00€) @], = 1Pen6) @l (3457
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Hence, (3.4.54) is bounded by

(P0G (. m)[7 - H / (D(0,5)Pu,0ym) (€,m)dE (3.4.58)
an R L%Lé I
Then by L2 x L? — L. Holder inequality, (3.4.58) is bounded by
H H (D(O,v) G) (1‘) 77) Hi2 ’ / (D(O,S)D(u,v)m) (57 U)d§ (3459)
en L3 R Lo LY || 12

By the definition (3.1.55), the second term in (3.4.59) is ||m/||{;. By Minkovski inequality
and L1 x L1 — L2 Holder inequality, the first term in (3.4.59) is bounded by

2
HH(D(O,U)G) (@7 QZHHG(CE,nJrv)G(x,n)‘ ) (3.4.60)
xn Lv %0 L,%
T/
< |IG @+ )l - G|, (3.4.61)
an
2
= [l o)y - el (3.4.62)
<G, )24, - 1G )35 (3.4.63)

3.5 Proof of Proposition 3.1.16: Oscillatory Integrals

We first establish two fundamental lemma which are considered to be the standard Van
der Corput lemma. The first one is without a bump function and the second one is with a
bump function.

Lemma 3.5.1. Let ¢ : [a,b] — R be a C* function and suppose that o®) () # 0 for some
k > 1 and for all x € [a,b]. If k = 1, we further assume that ¢' is monotonic. Then we
have the estimate

==

/ be(sa(t))dt\ < ¢

— : (3.5.1)
L) Lee

Proof. We prove (3.5.1) by induction. We begin with case k = 1. Since ¢’ # 0, we can
multiply and divide 27ig’(t) to e(p(t)). Then by integration by part, we have the identity

b b 1
/e(cp(t))dt:/ 27Ti<p'(t)e(<p(t))-mdt (3.5.2)
(ele®) ele@)\ [P (1Y
= (oo ~smeg) ~ | 0 () (35

Hence, by taking the absolute value, we have the estimate

b 1 1 b
/ e(*”“))dt‘ < o B,
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By the assumption that ¢’ is monotonic, for the third term of right hand side of (3.5.4),
we take the absolute value inside the integral outside the integral. Then by fundamental
theorem of calculus, we can bound the right hand side of (3.5.4) by

|27T<,i’(b)|+|27rg01'(a)|+ /ab (%)/dt‘ (3.5.5)
- |27rg01’(b)| * 27r<pl’(a)| + 277;/(1)) - le,(a) (3.5.6)
<2 o (@ * ) (357

=4 H;/ oo (3.5.8)

Now assume (3.5.1) holds for k — 1, we will show (3.5.1) also holds for k. Since ) # 0
and gp(k) is continuous, by intermediate value theorem, we know that gp(k) >0 or gp(k) < 0.
In either cases ©(*~1) is monotonic. If for all t € [a, b] we have

k

Pt > Hl

(3.5.9)
o)

Lo
Then by induction hypothesis, we have

b i
k-1 1 i k
a 1o

Suppose there is a point, say tg with the property that

k

1
(3.5.10)
o)

Lo

k

(3.5.11)

1
oD (t)] < H
gp(k) oo

Then we divide the integral into three regions

/t02
a

1
For t € |:a,t0—2Hg0(k)

1

L e(p(t))dt +/

to+2|| —L~
2| b

L= e(p(t))dt +/

to—2

1

(5

1

b
()

to+2

1 e(p(t))dt. (3.5.12)

k

==

1
k)

—

® Lo

1
i :|U |:7f0—|—2‘
LOO

and ¢F has the same sign, we have the estimate

Lo

1
o)

Zw ,b], by fundamental theorem of calculus

-1

1

(k)

[ D to) - p*Die)| = :
12

to
/ w(k’(é)di‘ - H

=

. (3.5.13)

1
k

7b:|7
oo

(3.5.14)

SO(k) Lo Lo

1
}U[m”Hw

k

By (3.5.11), (3.5.13) and triangle inequality, for ¢ € {a,to —9 Hﬁ :

we have the estimate

k

1
k—1
1002 | g

Lo
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We then estimate the first and the third term of (3.5.12) by the induction hypothesis and
put the absolute value inside the second term of (3.5.12) and estimate it by the measure
of the underlying set. Hence the modulus of (3.5.12) is bounded by

-5 = 1 ||* 1 ||*
2. 4kt 1/” +4H <4k || — (3.5.15)
( (k) ICOR P ") || Lo
By induction on k, we then finish the proof of (3.5.1). O

Lemma 3.5.2. Let ¢ : [a,b] — R be a C* function and suppose that o) (z) # 0 for
some k > 1 and for all x € [a,b]. If k = 1, we further assume that ¢’ is monotonic. Let
Y : [a,b] = R be a C' function. Then we have the estimate

1

b k
[ ctenwwa] < (ol + W) - 5| (3.5.16)

Proof. Now we prove (3.5.16). Define ®(t) := fj e(¢(€))dE. Then by integration by part,

we have )

b
[ ettt = jowe - [ (35.17)
< |®(b)6(b)| + sup [9(2) /|¢ )dt (3.5.18)
tela,b)
By (3.5.1), we have the estimate
@) < sup [o(6) < 4 | | (3.5.19)
t€[a,b] L

Hence (3.5.18) is bounded by

4k (3.5.20)

| (won+ [ woi) < ¢ Gt + 1) - |

Then we finish the proof of (3.5.16). O

1
k)

Lo

o>

Finally, with the two lemma above, we prove the inequality (3.1.61). By assumption
and the definition of (Jy¢)(t), for all ¢ € [a, b], there exists a j with 1 < j < k such that

(D)7 > (Jw)( ). (3.5.21)
Hence, we have
k
la,0] = | ) B;. (3.5.22)
j=1

By the construction of Ej (3.1.19), we further have

[a.0] = | | B, Bj. (3.5.23)

Jj=1



Notice that B; is the preimage of an open set (0, 00) under a continuous map |’ |% — 3 Jkp.
Hence B; is open under the subset topology of [a,b]. With the fact that an open set in R
is a disjoint union of countably many open intervals in the topology of R, Bj is a disjoint
union of countably many open intervals in the topology of R and at most with one interval
containing the left endpoint a and one interval containing the right endpoint b. Hence B;
is a disjoint union of countably many intervals. B

For 2 < j <1, let {I j,l}le E; be the collection of connected components of B; which is
a collection of disjoint intervals. For j = 1, let {I1,;};cr, be the collection of connected

components of Ej N By. Notice that on I,

1 —
J

= nf [t ))
L (1) (tefJ l

Notice that for each I, I € Eq, ¢ keeps the same sign and thus ¢’ is monotone.
We apply Vander Corput lemma (3.5.16) on each [;; and by (3.5.24)

S

1

1 2
o0

= < — .
( inf |o0) (1))} ) B Jke)®)

tel;;

(3.5.24)

1 k
<4 (o + 11 | (3525
4 L

/ (o (8))(t)dt

I

1
inf (Jpp)(t)

t€[a,b]

<A ([l oo + 141 - (3.5.26)

Since {Ej}le forms a partition of [a,b] (3.5.23) and that (Bj)° is of measure zero, we
decompose the domain into {/;;}1<j<k, ek, then apply (3.5.26) on each I,

b
‘/ e(p(t))¥( ‘ Z > / )Y (t)dt (3.5.27)
a j=1llekE;
< 4 ([l +10/r)- Zc JHCEBNB] | o (3529)
te(a,b]
_ 4k+1 (H"/}HL"O 4 ”w/HLl) . Mk—(go) . (3.5.29)
téffb](‘]’“@)(t)

Thus finish the proof of (3.1.61).

3.6 Proof of Proposition 3.1.17: Decomposition of multiplier

We prove the decomposition (3.1.62). We first analyze the phase. The critical point of the
phase

o= t(Esn) = (7)) (g) (3.6.1)

satisfies the equation
—&+ 1y (to) = 0. (3.6.2)
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We can then pull out the main oscillation and obtain the decomposition
| el=gtrmoea = e(=eto-+m(w)- | el=€—to) +ar() =) vl (3:63)

where we define
(&) == —Eto +my(to), (&) = /Re(—f(t —to) +n(y(t) —(to)))v(t)dt. (3.6.5)

By Vander Corput lemma (3.5.16), we have the estimate

-
(el < 16 (1l + 110) - | (36.6)
Y7 || oo
1 112 ,
=t )l ) (36.7)

Thus we finish the proof of (3.1.64).
Next, for estimate (3.1.65), through integration by part, we have the identity

D€, ) = /R Dmi-e(—E(t—to) +n((H) 7 (t))) (—(t )€ 885150 T 777/(750);5750) ()t

(3.6.8)
=- /R 2mi - e(=¢§(t —to) +n((t) —7(to))) - (¢ — L) (t)dt . (3.6.9)
Then by integration by part and that ¢ is a critical point (3.6.2), we equate (3.6.9) to
- /R 2mi(—€ + 0y (1)) - e(—€(t — to) +n(v(t) —(to))) - _;:T%%/)(t)dt (3.6.10)
N - (= unY
= ettt t0) 20 =) (g0 . (36,11
Notice that bytg is a critical point (3.6.2), we have
t—to t—to t—to
B R = = . (3.6.12
@ T Cerm® - e T i m vy '
Define .
B t—to
R(t) = (fy’(t) — fy/<t0)w(t)> . (3.6.13)
Apply Vander Corput lemma (3.5.16) to (3.6.11), we have the estimate
1 Loy |
U (TR I i WV R
=73 16 (IRl + 1R | | (36.15)

81



Remain to estimate the two quantities || R||fe, [|R'|| 1.
By fundamental theorem of calculus and change of variable, we have

t

1
Y (t) =+ (ty) = / 7' (s)ds = /0 7 (to + 0(t — to))dl - (t — to) . (3.6.16)

to

Place (3.6.16) into (3.6.13), we equate (3.6.13) to
_ V) =)\ (o 1 ’
(o) = (vt T =) (wt) T d9>

To do a further calculation on R(t), we introduce the following integral Cauchy mean value
theorem.

(3.6.17)

Lemma 3.6.1 (Integral Cauchy Mean Value Theorem). If f : [a,b] — R is continuous and
g is an integrable function which does not change sign on [a,b], then there exists a point
c € (a,b) such that

J2 f(@)g(x)dz
fabg(x)dac

Furthermore, if f/g is also continuous on [a,b], then there exists a point ¢ € (a,b) such

that X .
J, f@)de [[(f(2)/g(2)) - g(x)dz  f(c)

= f(c). (3.6.18)

= = ) 3.6.19
fab g(z)dx fab g(x)dx g(c) ( )
Continue the calculation of R(t) (3.6.17), we have
1 " (to + O(t — to))6de
R(t) =4'(t) - —a(t) - 0 (3.6.20)
Jo 7"(to + 6(t — to))do (o vt + 0t to))d0)2

By integral Cauchy mean value theorem (3.6.19), there exist 61,62 € (0,1) such that R(t)
(3.6.20) is equal to

1 1 " (to + O2(t — to))02
"(t) - —(t) - . 3.6.21
¥ ( ) ’y”(to+01(t—to)) w( ) ")/”(t()-l-el(t—to)) ’y'/(to-l-eg(t—to)) ( )
Hence we have the estimate
, 1 1 n
IRl < 16150 - ‘ (TR ‘ e ‘ i (3.6.22)
Lo Y llpee 1777 llLee
Next, we calculate R'(t). We have
1 1
R(t)= [ v(t)- (3.6.23)
( [ 4"t + 6(t — to))de
1 _m
to +0(t —tg))0do
_—0 1 — 2/ (t) - fo 7" (to + 0 o)) (3.6.24)

At + 0(t — to))do (Ji (2o + (¢ — 10))db)
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g " (o + O(t — t))0%d0 2 (fo1 7" (to +6(t ~ tO))edQ)Q
(o vt + ot tg))dé?) (o vtto + ot to))d0)3

By integral Cauchy mean value theorem (3.6.19), there exist 01, 62,603 € (0, 1) such that
R'(t) is equal to

+"(¢) - (3.6.25)

" 1 / 1 7" (to + 02(t — to))02
t) - — 29 (t) - . 3.6.26
VO S rat—w) Y s at—t) Vteroi—t) OO
) - 1 (=" + 05t — 10))05 (7”'(750+92(t—t0))92>2 .
’y”(to + 01 (t — tg)) ’Y”(to + 93(t — tg)) 7”(250 + 92(t — to))
(3.6.27)
Hence ||R/||11 is bounded by
1 1 ’7”/ ‘ 1 ‘ ,7//// ‘ ,7/// 2
Vi !
l=l +20¢n- = B I [ o I B .
A I o O R e € T et
(3.6.28)

Thus, we finish the proof of estimate (3.1.65).

3.7 Proof of Proposition 3.1.18: Calculation of Gowers Norm

We start with the proof of (3.1.66). By separating the variables ¢, n and L? x L? — L!
Holder inequality, we have

LN dﬁdn’ ‘ [, 1©stme(-gt+ mnwio <5> v (ml(”) dtdfdn|

! ’ (3.7.1)
=| [ 7 (Dt ) (@) 7 (- Dity8) (2000 - vt (3.7.2)
< IF (D)o - | (7 (9 DIty %) 07) - (3.73)

By Plancherel identity and L? x L>® — L? Hélder inequality, the first term in (3.7.3) is
bounded by

1f - DIl @l g2 < ([ fllz2 - DU Dl oo = I Fll22 - 9]l oo - (3.7.4)

By change of variable s = 7/(t) and Plancherel identity and L?x L>® — L? Hélder inequality,
the second term in (3.7.3) is bounded by

|7 (- 5)) - (o 2) o2 s
<[ (o D5 0] ‘(*[’Wl/) o (3.7.6)
= |lg- Dty |, ‘ 71, . (3.7.7)

83



1 1
< Ngllge - 1 DS,y Bl - [0z~ - \ L g )2 - ] 1 (3.78)
Y Lo Yy [,o©
Combining (3.7.4), (3.7.8), we have the bound
1
mma(&mdédn| < | flle2llglee - [9llze || = (3.7.9)
o>

Taking supreme on both sides of (3.7.9) over functions || f||;2 < 1, ||g]lr2 < 1, we obtain
the desired result (3.1.66).
Next, we will prove inequality (3.1.67). We first obtain a pointwise estimate on

(F)Po,5)my. ) (@, 1) - (3.7.10)

By Proposition 3.1.17, we have the decomposition

moate) = (§) o (T3 ) e@iem) - wiem) (3.7.11)
where by (3.1.63), ® is of the form
i I
B(e) = g+ o). o= tl6n) = ()7 (5] (3.7.12)

and ¥ satisfies the estimates (3.1.64), (3.1.65). Hence, by change of variable £ = )\g, n = A1,
s = A3, we have

(F)Po,symy ) (@,m) = /R (D(0,5)m,0) (€ m)e(x€)dE (3.7.13)
3 /' (1)

= [ e(@oo®en +2e) -0 (w (A> v ( N ) ‘P(ﬁ,n)) s (3.7.14)
/ e(A Ao ®)(E )+ a€] ) - ADD ($@v( (1)TOE D) d€  (3.7.15)

A
:/Ae(&)(A,x,”g@,m).EJ(A,g,E,md,E (3.7.16)

where

(N, 2,5,6,7) = A [(A 05 @) (&) + xg] (3.7.17)
T\ 5,€7) = D ((@wlr (1) FOE AD)) - (3.7.18)

We first obtain estimates of || ¥z~ and ||BE\T/||L1. By (3.1.64), we have

1@l < A6l - [T + 507 () LAGH () POEAG+5)EQEND)|  (3:7.19)

1
1 ")\ 2 1
<Al [A () 0

"

2
N (Illzee + Hl/J'HLl)] (3.7.20)

84



7'(1)
(1—38)y"

Next, by product rule and (3.1.65), we have

= 2569 £ (1llze + 19'll22)* =: Cyrp2- (3.7.21)

LOO

~ ~ /(1) 9
. < B < " 7 oo 3. L - /
los¥|| | <2s]o¥|| < 10245{,,¢ el | g (Wl +1s1)
(3.7.22)
4 fy/(]') ? / C . C
ol | 57 (lollzoe + [[¥'11L1) - Cypmysa ¢ =5 Copyis3 - (3.7.23)
(1—=10)y Lo

Hence, we finish the estimates for the amplitude function 0. Next, we establish an estimate
for the phase function .

Lemma 3.7.1. Suppose |Az| > 1, then we have the following estimate for the function ®
defined in (3.7.17)

1
max{‘(?gq)(/\,x, s,f,n)’ , 8§2<I>()\,x, s, &, 77)’2} > 0%534\)\.@]% . (3.7.24)

Proof. Recall that by (3.6.2), t(&,n) is the solution of the equation

—&+ny/(t(&,m) = 0. (3.7.25)
Hence we have
O ®(&,m) = O(— EL(E,m) +my(t(E,m))) (3.7.26)
= —t(&n) — €0t (&,m) +m (t(&m)) - Det(€,m) (3.7.27)
= —t(&n) + 0ct(&,m) - (=€ +m/(t(E,m)) = —t(&,m) . (3.7.28)

Take the partial derivative 0¢ on both side of (3.6.2), we obtain

1 (16, m)) - Bet(€.m) = 0. (3.7.20)

Hence we have

1
Oet(é,m) = ————. 3.7.30
eHE ) m"(&m) ( )
We also obtain )

DPP(E,n) = —Ot(&,n) = ———— . 3.7.31

Notice that from (3.6.2), we have

Y (¢(€,m))
to freely change between £ and 7.
Let ¢ be a constant to be determined later. Suppose

OB (0,5, 6,m)| = A [(B0,00®)(€,m) + 2| (3.7.33)
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1
= |-A (A& n) +z]| < clAz|z. (3.7.34)
In order to prove (3.7.24), we will find a small enough ¢ such that

1

1 1
O2B((\ w5, €. m)|* = |-2A (@et(&, )| (3.7.35)
’)\A(n) < 1 > 2 ‘)\A(Tl) <7/( (¢ ))) : (3.7.36)
=AW (— )| = |2a ([ L, .
" (¢(€,m)) § e
1
A\ ~ 2
-2 (%) @ @eanen (3.7.37)
1 7/ ! 2 1 1
> (5 m|(Z) 0]) l@anenlt zant. @
By assumption (3.7.34) and that |Az| > 1, we have
1
A (A0t (&) — ]| < cAz|2 < cAx]. (3.7.39)
Hence we have
AMA,5t)(&n) = (1 = c)[Az]. (3.7.40)
To show (3.7.38), suffice to find a small enough ¢ such that
I —e>(1-6)- ! — 20 5)H ! (3.7.41)
= ~ - U=l .
inf (l”) (t)‘ (7/’7) Lo
teR | \7
We may take
1
c=0C54= , (3.7.42)

1+ (1-9) | gy |

which is a constant that satisfies the above relation and thus finish the proof of this lemma.
O

For |Az| <1, we estimate (3.7.16) trivially by moving the modulus inside. By (3.7.21),
we bound the modulus of (3.7.16) by

25 - || ¥ oo = 20Cy 52 - (3.7.43)

Now suppose |Az| > 1, we combine Lemma 3.7 .1 which is an estimate of the phase ® and
the estimate (3.7.21), (3.7.23) of the amplitude ¥ then apply (3.1.61) in Proposition 3.1.16
to bound the modulus of (3.7.16) by

£ (1) + 06T ) - A (3744
inf (Jo®)(t)
tela,b]
o LGNS (3.7.45)

7,6,4
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Combining (3.7.43) and (3.7.45), we have

1
||m’77)\HU - H D(O )Ty, A )(xan)Hz%L%([le}) (3746)

* L7 .C Cp .6 2
< (2 / T (260 5.0) d + 2 /1 (43 02 T Cunds ey |Ax|—é> dz (3.7.47)
0 ~

Cy54

PN

C C 2\ 4
(226202 5, +logh - 27 (L2 T Cuads : (3.7.48)
b Croa

Hence we finish the estimate (3.1.67).
Finally, we will prove (3.1.68). We first obtain a pointwise estimate on

| PPy a(€me. (3.7.49)
By Proposition 3.1.17, we have the decomposition
moate) = (§) o (T ) e@iem)- wiem) (37.50)
where by (3.1.63), ® is of the form
BEn) =~ +mltn) . o=t =0 (£). (3.751)

and ¥ satisfies the estimates (3.1.64), (3.1.65). Hence, by change of variable £ = )\g, n = Ay,
s = As,u = Au,v = \v, we have

/R D0, Dlusoy i a (€. ) E (3.7.52)

_ (5
= [ clBamaameren oD (v(5) v ( )w,n)) i (3.753)
= [ e (Ma0n2anDE m) CODED (y(@wliy () UOE XD ) dE  (37.54)
:/ e (B 555.E7) - B\ 5.5,3.8 7)dE (3.7.55)

A
where

Ay f(&m) = f(E+u,n+v) = f(En), (3.7.56)
(N, 5,10,0,6,7) = AMA05HA @) )( £,1), (3.7.57)
TO,53,5,67) = AEDDED (w@uwr ()BOEND) . (B759)

We first obtain estimates of || U]z~ and H@g\IIHLl. By (3.1.64), we have

1|z < Al ][E [)\_ (’jf?)l . 16‘ ;

"

4
(Il + WIILl)] (3.7.59)

LOO
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161 18 Ok oA 1
=2 XHd}HLm =6y LOO(WHLOO—FW 1) ZXC¢,7,5,5~ (3.7.60)
Next, by product rule and (3.1.65), we have
log%| | < 20x[|05%| <263 4l il 2100 D g )
i oS G i Lo > (1 — 5)7” Lo oo Lt
(3.7.61)
: L (PONY 3
st A A (D16 ) 21 (i + 17120 (3.7.62
Yl oo
3
L (O [
(A : (1._5 16|27 oy (3.7.63)
LOO
_1 19 / 7 '7,(1) 2 / 4
S 5{4||w o1 | 2507 (llm + 1470) (3.7.61)
8 7'(1) ° ’ 3 1
Iz =AM (lollzee + 19" 21)" Cpys :ch,'y,é,6~ (3.7.65)

Hence, we finish the estimates for the amplitude function U, Next, we establish an
estimate for the phase function .

Lemma 3.7.2. Suppose 03710|)\’US| > 1, foru € (=0,0), s+ v € (—4,9), we have the
following estimate for the function ® defined in (3.7.57):

1
. . N1
max{‘@gb()\,s,u,v,f,n) , 852<I>(A,s,u,v,§,77) 2} > 50%10|)\vs|% (3.7.66)
where
Proof. We will first prove
855 855()\73,%11,5,77) 4
~ |l = ~ >C Avs| . 3.7.67
‘(a&b) ‘<0§®(A,S,u,v,£,n) = Guaolivs] (787

Since derivative can commute with difference, we have

De® (N, 5,u,0,8,7) _ ’(35 [)\<A(O,S)A(u,v)(b)(§a77)]>‘ (3.7.68)
852(1)()‘783“7’075’77) 852 [A(A(U,S)A(u,v)q))(gvn)] o

_ MA@@Amm@®M&m>‘
_W<Mﬁm@Amm%®x@m (3.7.69)

Lemma 3.7.3. We have the following identity for iterated finite difference:
u
Moo B € = s @ednf(m) Arem) (1) @)
for some & € [(,£+ul, m € [n,n+ s+l
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Proof. By mean value theorem, we have

(A(O s) A (u,v) )f(‘f? 77) = (A (u,v) f)(fﬂ? + 3) - (A(u,v)f)(gan) (3771)

for some 77 € [n,n+ s]. Then by fundamental theorem of calculus and mean value theorem
for integral, we can further equate the above expression to

1
s (O f(E+u,T+v) — 0, f(&M) = s-/o VO, f (€ + Ou, 7y + Ov) - (:f) o (3.7.73)

=5 (90, f(&,m) Orf(&1,m)) - (Z) (3.7.74)
for some & € [§,€ +ul, m € [, + v]. [

By Lemma 3.7.3, the term (3.7.69) equals to

00y(0:®)(E1,m)  OZ(0:®)(E1,m) u
AS‘<3s<92(6’§<1>)(£z,772) 82( )(527772))(@) (3.7.75)

Notice that

Oy ®(&,m) = =& - Ot (&, m) + (& m) + 1 (#(, ) - Ot (&, m) (3.7.76)
= (=E+ Y (4(&,))) Dy - t(&,m) + y(E(E,m) = (E(E,m)) - (3.7.77)
Hence, the term (3.7.75) equals to
02 (04 @) (&1,m) n ®)(&,m)\ (u
. <5 ¢ (07 ®)(62,m2) 2 52,,72> (v) (3.7.78)
(OFA(H(Em)) ded(t(&m)\  (u
- <3§7(t(62,n2)) D0 (t (52,772))) <U> (3.7.79)
_ . (F(tEm) 00 (€)Y (u
= \s (35’7(75(52,772)) 02Dy (t(E2,72) )> <U> (3.7.80)
s <3§7(t(€1,771)) 0? e (t(&2,m2)) OOy (t(€1,m1)) —(958,77@(52,772))) . (u) 3781)
0 0 o) BT

=Xs-A- (Z‘) —Xs-B- (Z) . (3.7.82)

For simplicity, define a function

/
t
o) = L0 (3.7.83)
7"(t)
Note that we have the following calculation of higher order derivatives of ~:

1 ! 1
Ot = —, Ot =———=——.0, (3.7.84)

my nmy n
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1
Oy = Ot =16, Oy =70yt = —% 9, (3.7.85)
1 1 1
By = 5' 0 = -0, (3.7.86)
1 1 1 1
0:0 :_.9+-9’-<—-9>:—9 1+6), 3.7.87
£O0nY 2 n n 02 ( ) ( )
1 1 | 1 1 !
3. _
%T=1p (7” ' 0l> Py <v” ‘ 9/> ’ (3759
1 1 1
2 _ / _ 4
Dgoyy = e (6(1406)) - T (6(1+06))", (3.7.89)
2~ 2010y Lo+ Ly 3.7.90
03 = 0(1+0) — 5 (0 +0)) - (- (3.7.90)
1
= $e (21+6)+0O1+6))) . (3.7.91)

Let 01,09 be the singular value of A. Hence, we have

As-A- <Z)’ > [As| - o - ‘C}‘)‘ (3.7.92)

WS | det A] ‘(u) ~ sl |det A] (u) (3.7.93)
o1 v [Allz2z2 [\v
By the calculation of higher derivatives of v, we have
7 = —9( +6")
|det A| = |det ! (&2,m2) (3.7.94)
o (F00) 00+ )Y
1
=thzweﬂ”—wu+¢»hémg (3.7.95)
> ! Sinf (00" — 0/(1+6)| (&,m) (3.7.96)
T (=0 e &m
25

On the other hand, we also have

-1

1 < 7 -0 —0(1+96") ) \
— >277 1nf 1 1 / (&n)=27"-Ch.
[l e (H-0) —dearen )|, .

3.7.98
Combining (3.7.93), (3.7.97), (3.7.98), we have
92
As-A- ( )‘ As|— S (“) (3.7.99)
H’y HLOO 7,9 v
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On the other hand,

< [As|-|1BllL2—r2 -

As-B.(Z’)

(2

(3.7.100)

By fundamental theorem of calculus and mean value theorem for integral, B equals to

<b11 512)
ba1  bao

where
bir = (27 (t(&,1m3))  Oz0yv(t(E3,m3)) - <7§1 _ i) ’
bia = (9Z0y(t(€3,m3))  Dedpy(t(€3,713))) - (fli :§722> 7
b1 = 07 ba2 = 0.
Since
(€1 — &l <28, [m —mf <24,
we have

1 . 1 .9 /
,.yll ,7//

+10 (21 +6) + (0(1+6")))] (&n)) =6-Cy10

1 19,’
7 \F

+10 (21 +60) + (0(1+60))] (&, n))

(2

Combine (3.7.99) and (3.7.110), then place in (3.7.82), we have

(&mn) +2

1 N
7(0(1+9))

(&m)

1Bl 2z < 46 23sup<
&m

where

(&mn) +2

Cyi0:= 25sup< 71// (6(1+ 0’)),‘ (&)

&m

Place (3.7.107) in (3.7.100), we obtain

As-B- (g) ‘ < |As[6C 10

855)0\75,“»%5,77) 22 0’78 u u

~ > |\ d — |As|6C

‘(agw,s,u,v,s,m P G [ \o) |~ P0G
22 C,3 > 2 C.g

> |Avs e _s5C > |Avs]| - 12— | \ws|C2

= | | <||7//||%oo C 9 7,10 - ’ | ”'}//”%oo C%g | | 7,10

where the last inequality comes from the assumption

< 2 Cy,s .
~ Y Cy9C 00
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(3.7.101)

(3.7.102)

(3.7.103)

(3.7.104)

(3.7.105)

(3.7.106)

(3.7.107)

(3.7.108)

(3.7.109)

(3.7.110)

(3.7.111)

(3.7.112)

(3.7.113)



Denote the left hand side of (3.7.66) by M:

M = max{)afzﬁ()‘a 57%07&77)‘ ) )ag(i(A’ S, U, qua 77)

}

> |)\vs\03710 .

Then we have

(M? + MYz >

De® (N, 5,u,v, )
8§¢<)‘7 37 ’LL, Uv ‘57 77)

Solving this second order inequality, we obtain

1

1 L 2 L e :
M Z —5 + 5 + 0%10‘)\'03‘ Z _5 + 07710’)\08’

1
1 EA| '
= (203,1o|)\08\> 2 5Cy0lAvs|2 .

N

\Y

(3.7.114)

(3.7.115)

(3.7.116)

(3.7.117)

O]

Back to the proof of (3.1.68). For Cg7lo|)\§§| < 1, we bound (3.7.55) trivially by

~ 1
2(5H\IIHLOO = Qéxcw’ny’575 .

(3.7.118)

For C2 1o|]A%%| > 1, by the modulus of (3.1.61), (3.7.60), (3.7.65), and Lemma 3.7.2, we

bound the modulus of (3.7.55) by

M5 (®)

inf (Jo®)(t
téfi,b](‘]“’ )(t)

(@ + 0¥ 1) -

1 1 — 1
3
<4 (Acw,v,éé + /\Cw,&ﬁ) M) 7

C 3 7675+C ) 7676 T 1 /US T2
:43< valoM M(V)X‘ K
’y7

Hence, we have

Il = H [ PPy (e e

L%LéL%

<2 H/RD(O,S)D(u,U)m(&ﬁ)dﬁ

Lgg LL([0,26A]) L2 ([0,25A])

20\ 1 ﬁ 1
s2 ‘ / 205 Cypy65 ds +2 / 710 25=Cly .65 ds
o A L3(0,1) 0 A
20\ C C N 1 1
+ / 43 ( 1/17%5:5 + ¢',’y,676> . M(’y) L= ‘ E ‘ 2 dS

2 C’y 10 ALA

vC2 10 ) L%([LQ(SAD
v
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(3.7.119)

(3.7.120)

(3.7.121)

(3.7.122)

(3.7.123)

(3.7.124)

(3.7.125)



After the integration in s, by triangle inequality, we move L2 norm inside and equate the
above term as

25C 1 Cyris+C ~
80°Clyr 5 +2< ks 2 +43( — W"*’G) M(y) (3.7.126)
7,10 L2([1,267]) 710
1 1
2‘ _— ) (3.7.127)
(26v)z  Cra0v £2([1,26))
1
45C 45:C
< 88°Cyprn + —gp 2 + - 0 (3.7.128)
~,10 7,10
C C ~ C C v
+44< w’%‘s’g’c;r W’M) -M(7)+44< v T fm’(m) M)A (37.129)
¥,10 C7 1002
C C —
ot < 8183 +10 wmﬁﬁ) M (7) (log (462 \)) (3.7.130)
’\/7

Since A > 1, we have A3 < 1 and can bound the above expression by

4C. C +C ~ _1
7,10 7,10

N

+43 <C¢m5,5 + C¢,%5,6>

G M (7)? (log(20))? + 4* (Cw’%“ hi CW"S’G) - M(7)(log )2
~,10

C’y,lO
(3.7.132)
= Cyyo11 + Cyys12(log )2 . (3.7.133)

D=
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