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Zusammenfassung

Autonom operierende Roboter bieten das Potenzial Menschen in ihrem
täglichen Leben zu unterstützen. Roboter können Aufgaben erledigen,
die man selbst nicht lösen kann, oder einfach nicht lösen möchte. Ser-
viceroboter, selbstfahrende Taxis, Staubsaugerroboter oder autono-

me Rasenmäher werden wahrscheinlich für viele immer alltäglicher. Gleichzeitig,
schätzt die Industrie die Präzision, Effizienz und Effektivität von Robotern in
ihren Produktionslinien. Damit mobile Roboter sicher und zuverlässig operieren
können, sind sie oft auf eine Karte der Einsatzumgebung angewiesen. Der Roboter
muss seine eigene Position in der Karte kennen, um die darin befindlichen Infor-
mationen voll auszuschöpfen. Viele Roboter sind mit Sensoren wie Laserscannern
ausgestattet, welche die Positionsbestimmung durch Beobachtung der Umgebung
ermöglichen. Die Aufgabe, die eigene Position in einer Karte zu finden wird Lo-
kalisierung genannt, und ist ein geläufiges Problem in der Robotik. Etablierte
Lokalisierungsmethoden liefern zuverlässige Ergebnisse vor allem in kleineren,
räumlich stark begrenzten Gebieten. Mit der Entwicklung von komplexeren Sys-
temen, wie zum Beispiel autonom fahrenden Autos, bleibt die Frage offen, ob
diese Techniken skalierbar sind und dass bei fortwährend hoher Genauigkeit.

In dieser Dissertation fokussieren wir uns auf Karten mit Größen, wie sie in der
automobilen Welt anzutreffen sind. Durch die schiere Größe von dreidimensio-
nalen Karten benötigen wir Methoden zur effizienten Repräsentation um diese
praktisch nutzen zu können. Solche 3D-Karten müssen effizient speicherbar sein,
aber sie müssen auch eine Repräsentation haben, in der sich Roboter lokalisieren
können. Obwohl sich viele vorherige Arbeiten entweder mit dem Forschungsfeld
Datenkomprimierung oder mit dem Forschungsfeld der Lokaliserung beschäftigt
haben, ist die Schnittstelle weitestgehend unerforscht. Im Speziellen liegt eine
Forschungslücke im Bereich der speicher-effizienten Karten mit dem Ziel der Lo-
kalisierung vor.

Wir präsentieren mehrere Algorithmen zur Kartierung und Lokalisierung in grö-
ßeren Außengebieten. Unsere erste Methode stellt sich der fundamentalen Aufga-
be der Sensorkalibrierung von robotischen Systemen, welche notwendig ist, um
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konsistente und unverzerrte Beobachtungen der Umgebung aufzunehmen. Dies
ist notwendig damit die folgenden Methoden zuverlässige Ergebnisse liefern. An-
schließend beschreiben wir unsere Methode, um globale und konsistente dreidi-
mensionale Punktwolken aus Laserscannerdaten zu generieren. Unsere nachfol-
gende Methode beschäftigt sich mit der Komprimierung solcher Daten mithilfe
von maschinellem Lernen. Die restliche Dissertation beschäftigt sich mit der Lo-
kalisierung in solchen Karten. Wann immer man später durch die kartierte Um-
gebung fährt, wollen wir unsere Position in der komprimierten Karte finden, ohne
auf GNSS angewiesen zu sein. Dafür haben wir eine Methode entwickelt, die erst
grob abschätzt, in welchem Bereich man sich in der Karte befindet, um dann
in einem zweiten Schritt die Position Zentimeter genau zu bestimmen. Nachdem
wir unsere Position gefunden haben, können wir unsere Methode zur inkremen-
tellen Schätzung der Bewegung relativ zur Karte verwenden. Zu wissen, wo sich
der Roboter zu jedem Zeitpunkt befindet, ermöglicht, die beobachteten Daten
mit den Daten in der Karte abzugleichen oder auch zu kombinieren. Außerdem
können unsere vorgestellten Methoden darauf aufbauende Aufgaben ermöglichen,
wie zum Beispiel Routenplanung oder Navigation.

In dieser Dissertation stellen wir neue wissenschaftliche Methoden zur dreidimen-
sionalen Kartierung und Lokalisierung vor. Wir haben unsere Methoden auf öf-
fentlichen Datensätzen evaluiert und in begutachteten Fachzeitschriften und Kon-
ferenzen publiziert. Die Implementierungen und Software der hier vorgestellten
Methoden sind öffentlich zugänglich gemacht worden, um als Basis für zukünftige
Wissenschaft zur Verfügung zu stehen.
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Abstract

Autonomous robotic systems can help people in their daily lives.
Robots can do tasks people cannot or simply do not want to do.
Service robots like autonomous vacuum cleaner, lawn mower or even
autonomous driving taxis are likely becoming an integral part of our

lives. Meanwhile, the industry values the precision, efficiency, and capacity of
robots to support their production lines. For reliable and safe operation, mobile
robots usually rely on some sort of map of the target environment. For that, a
robot needs to know its location within the map to utilize the information that
is stored in there to the full extent. Many robots are equipped with sensors, like
laser scanners, which can be used to figure out their location within the map,
based on the current sensor observations. This task of finding the own position
within a given map is usually called localization, and is a well studied problem
in robotics. Established methods have shown great success, especially in smaller,
mostly indoor environments. However, with the rise of advanced systems, like
autonomous driving cars, it remains an open question if those techniques are
scalable to such an extent at high precision.

In this thesis, we focus on larger-scale maps in outdoor environments such
as those encountered in the automotive domain. Due to the sheer size of 3D
maps, we have to develop techniques for efficiently representing the data. The
resulting map needs to be compact in memory, but also usable for the localization
of the robots. Many previous works focus on either compressing the data, or the
localization algorithm. However, there is little research tackling both at the same
time: trying to build memory efficient maps which are well suited for localization.

To tackle these problems, we propose several algorithms towards city-scale
mapping and localization. We start with the fundamental task of calibrating the
sensors of robotic platforms to obtain consistent and undistorted data that is
needed for all the subsequent tasks. We then describe a method for building con-
sistent point cloud maps using the raw recorded sensor observations. Afterward,
we investigate how to utilize machine learning to compress our point cloud maps
to be more memory efficient. The remaining thesis focuses on localizing robots in
such maps. When navigating at a later point in time through the environment,
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we want to find out our position with respect to the compressed map without any
further cues such as GNSS. For this, we have developed an algorithm that first
coarsely figures out in which part of the map the robot is located. Afterward,
we look into a fine registration where we aim at centimeter-accurate localization.
Note that both, the coarse localization and the fine registration, operate directly
on the compressed representation to enable localization in a compressed map.
Once we have found our initial position, we can track the robots’ movements
within the map using our developed pose-tracking method. By this, we can es-
timate for any point in time the position of the robot in the map. Knowing
the robot’s position allows relating and fusing the measurements from the robot
with the available information that is stored in the map. Additionally, it enables
subsequent tasks, like path planning, which require the robot’s position.

In this thesis, we advanced towards mapping large-scale environments and
localizing in those resulting maps. The methods proposed here have been eval-
uated on publicly available datasets and are published in peer-reviewed journals
and conferences. The software and implementations of our methods are open-
source to enable new research to be built upon our works.
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Chapter 1

Introduction

Autonomously operating robots and vehicles are able to support hu-
mans in their daily lives. In many industrial areas, robots have be-
come indispensable: manufactures in the automotive domain value
the speed and precision robotic systems can offer, warehouses use

mobile robots to transport large amounts of goods autonomously, while chemical
factories assign robots to tasks that would be dangerous for human operators.
Utilization of robotic systems can increase safety, productivity, efficiency, and
precision, making it a key factor in modern production lines. However, robots
are not only used in industry but also play an increasing role in our personal
day-to-day life. Cleaning and lawnmower robots have become common house-
hold helpers available at low costs. Letting robots do the work that we do not
want to do is appealing to a broad audience. The dream for many car owners
that their car can drive autonomously might not be in a too far future. Even
though predicting when we are ready for fully autonomous driving is difficult, at
least first pilot projects are already running, and partially letting the car drive
autonomously is already a reality. Reading a book, watching a show, working on
a notebook, or playing with the kids are just a few options people would rather
do than the tiring focus on the traffic while driving the car. It is not only a
matter of convenience, but also of safety. Driving for a longer time can cause
fatigue. Most car accidents are caused by driving errors. Robots do not get tired
nor lose focus. Electrical signals propagate information millions of times faster
than neurons, potentially allowing robots to react faster than humanly possible.

To achieve autonomy robots need to know what the environment looks like
in order to operate safely and reliably. For example, an autonomous car needs to
detect other traffic participants and must be aware of its structural surroundings.
For this, typically, sensors like cameras, or light detection and ranging (LiDAR)
sensors are used. Cameras have the advantage of providing dense photometrical
information, but lack range information and thus only obtain 2D information.
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Figure 1.1: A point cloud of the Südstadt quarter in Bonn. In this thesis, we want to
investigate how to map outdoor environments like these. Additionally, we want to be
able to localize our robots within those maps when driving another time through the
same environment. The color of the full point cloud is based on the latitude, while the
points of the close-ups are colorized based on normals.

In contrast, LiDAR sensors are able to measure via time-of-flight the distance
to the surrounding objects, allowing them to generate a 3D point cloud of the
environment. In this work, we utilize mainly LiDAR point clouds as a direct
observation of the geometrical structures.

Although knowing the environment around the robot is crucial, for many tasks
the robot requires also broader knowledge about the world it should operate. This
information or context can be provided by a map. For an autonomous car, a map
is required to navigate from one place to another. A lawnmower robot needs to
know exactly in which area it has to trim and which parts to avoid. For the
robot to utilize the map, it first needs to know its location within this map. One
way to localize within a map is to use the sensor observations and compare them
with the given map. A main part of this thesis is about how to localize with our
observed LiDAR point cloud data in a previously constructed map.

Representing the environment can be done in various ways. Road maps,
topographic maps, topological maps, or landmark-based maps, are just a few
map representations used by humans, but also robots. In this thesis, we focus on
point cloud maps, where the 3D surface of the environment is represented by a
set of points with 3D coordinates. An illustration of those point clouds is shown
in Figure 1.1. This representation can provide rich geometrical structure and can
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Multi-Sensor
Calibration (3)

Mapping
Data

LiDAR Pose
Estimation (4)

Compact Map
Repr. (5,8)

Local Point
 Cloud Data

Coarse
Localization (6)

Fine
Localization (7)

Pose
Tracking (8)

Preliminary

Online Localization

Offline Mapping

Figure 1.2: Overview of the thesis. The numbers within the brackets denote the chap-
ters in which those topics are discussed. First, we investigate how to calibrate multi-
sensor systems. Those can afterward be used to record data, e.g., for mapping, and
later for localization. The mapping data needs to be registered to obtain a global map,
for this, we propose a method that estimates the poses of a LiDAR to estimate its tra-
jectory. Due to the large memory consumption of those maps, we investigated building
compact map representations. Once we have built our map, we can use the local point
cloud data for online localization. The first step is to do a coarse localization where we
want to roughly know where the robot is located on the map. The following fine local-
ization estimates the precise position and orientation with respect to the map. Once
the position is found, one can utilize pose tracking to estimate the movement within the
map. The arrows denote from which module information is passed to another method.

be obtained by processing the LiDAR data. Having a point cloud of city-scale
sized environments, e.g., for autonomous driving, requires a substantial amount
of memory storage and compute power to handle the vast amount of data. Point
clouds of that size can often contain billions to trillions of points, making efficient
storage techniques and scalable algorithms essential.

In this thesis, we investigate the problem of constructing point cloud maps of
outdoor environments and explore methodologies to localize within. A possible
workflow could look as follows: (1) Construct a map of the target environment in
which robots shall later localize. This requires a mobile mapping system or robot,
that can move around and obtain measurements of the scene. After collecting the
measurements, a map needs to be constructed from the data the robot recorded.
(2) Whenever a robot drives through the mapped scene, estimate the robot’s
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position with respect to the previously built map, and by this localize the robot.
Figuring out where the robot is located can be done by comparing the robot’s
current sensor data to the constructed map.

In this thesis, we tackle multiple steps along the previously mentioned work-
flow to enable LiDAR-based localization and mapping in outdoor environments.
An overview is given in Figure 1.2. First of all, we need to have an operating
mobile mapping system that needs to be properly calibrated to obtain consistent
and undistorted data about the environment. For this, we propose a method
for calibrating perception sensors in Chapter 3. For the map construction, the
recorded data needs to be geo-referenced, which we address in Chapter 4. Due to
the sheer size of the resulting 3D point cloud maps, we investigate in Chapter 5
a compressed map representation for efficient storage. Afterward, we propose
certain methods for localizing a robot in such compressed point cloud maps in
a hierarchical manner. In Chapter 6, we first try to coarsely localize our robot
in the compressed map using place recognition. The second fine localization step
estimates finally the position and orientation of the robot within the compressed
map as described in Chapter 7. Both localization methods directly operate on
the compressed point cloud representation and do not need to decompress the
map which is essential for large-scale operation. For tracking the movement of
the robots in a given map, we investigated the usage of neural implicit fields as
an alternative memory-efficient map representation in Chapter 8 and how they
can be constructed. Chapter 9 finally summarizes our achievements and discusses
future research directions that can build upon our proposed work.

1.1 Main Contributions

This thesis investigates the problem of localization and mapping of outdoor en-
vironments. Starting from calibrating a multi-sensor setup, over constructing a
memory-efficient map to finding the robot’s location at a different point in time
within the map. This section summarizes the main contributions of the individual
parts of this thesis.

The first contribution targets the calibration of our multi-sensor system in
Chapter 3. Having multiple perception sensors like cameras and LiDAR sensors
requires extrinsic and intrinsic calibration to jointly use the data. For this, we de-
veloped a calibration method that exploits the precise point clouds of a terrestrial
laser scanner (TLS) in our own developed calibration environment. By using a
fully designed calibration environment as a target for calibrating the sensors, we
can show that this is more precise than the most commonly used checkerboard
target. We show, that our system can be used to calibrate different multi-sensor

4



1. Introduction

systems with different sensor types and configurations, even when the sensors do
have non-overlapping field of view (FoV).

Second, we contribute to LiDAR mapping and pose estimation with our pro-
posed LiDAR bundle adjustment method as described in Chapter 4. Obtaining
globally and locally precise aligned point clouds is still a challenge in robotics,
but is a crucial task to generate precise maps. Our approach refines the vehicle’s
trajectory estimated, e.g., by LiDAR odometry, SLAM, or even combined with
global navigation satellite system (GNSS) measurements, such that the registered
point cloud map is globally well aligned. For this, we jointly register all the point
clouds to each other in a global LiDAR bundle adjustment approach. One major
focus of the work is to be able to handle the vast amount of LiDAR scans as
commonly encountered in the automotive domain. Our main contribution is a
system that estimates continuous trajectories for multiple sequences, by jointly
aligning all the available LiDAR data.

Our third contribution to the domain of point cloud compression is presented
in Chapter 5. Compressing the large point cloud maps has the potential to
reduce the memory footprint, which is especially interesting for dense large-scale
environments. We propose a fully convolutional autoencoder neural network that
produces an intermediate feature-based representation from which the input point
cloud can be reconstructed. To recover a dense point cloud from the feature-
based representation, we had to develop an upsampling block for the network
architecture. Our approach does not target lossless compression and belongs to
the class of lossy compression methods, therefore allowing for higher compression
rates. To the best of our knowledge, this method is the first deep learning-based
compression method for dense point clouds, that works for real-world point cloud
maps.

In the fourth contribution, we try to localize our vehicle within a precon-
structed compressed map using current LiDAR observation as described in Chap-
ter 6. The compressed map within we want to localize is the compact feature-
based representation that we previously discussed. For this, we directly operate
on the compact features from the compression network to estimate point cloud
descriptors which encode for each point cloud the structural information into a
single feature vector. Computing the descriptor at multiple locations serves as
keys for the database. Comparing the descriptor generated by the current LiDAR
data to the keys of the database allows for finding the corresponding area in the
map. We show that our approach, which works solely on a compressed represen-
tation, can provide competitive results with the current state-of-the-art in place
recognition. We contributed to this field by proposing novel neural network ar-
chitectures, faster training strategies, and investigating the usage of compressed
data.
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Fifth, we contribute to global point cloud registration in Chapter 7, which
allows us to estimate the transformation between two point clouds, regardless
of the quality of the initial guess – a key difference to standard methods such
as ICP. Our proposed method reinterprets the attention mechanism of trans-
former networks to allow for fully differentiable point cloud registration. This
enables us to learn features that are well-suited for feature-based matching in the
registration. Since we build upon our compressed features, we can even regis-
ter directly the compact representation of two compressed point clouds without
the need for decompression. Our main contributions lie in the investigation of
registering compressed point clouds, novel neural network architectures, and cor-
respondence weighting schemes, as well as formulating point cloud registration as
the transformer-based attention mechanism.

The sixth and last contribution tackles pose-tracking and is described in detail
in Chapter 8. Here, we assume to know the initial pose of our vehicle, e.g.,
estimated with the previous two approaches, and from there on want to track the
movement of the robot within the map. To achieve this, we investigated the usage
of neural distance fields for the task of point cloud alignment and localization. We
focus on generating a memory-efficient representation directly from sensor data
and how we can localize a LiDAR in such maps. Our contribution is regarding
the construction of those neural distance fields directly from sensor data, as well
as showing how established localization methods can utilize this representation.

By the end, we have contributed to many areas for mapping and localization in
outdoor environments. Beginning with the sensor-system calibration, over build-
ing precise and memory-efficient maps. We have developed multiple methods to
localize directly in our proposed compact map representations. First, estimating
a coarse location using place recognition, and second estimating the 6 DoF trans-
formation allows for finding the robot’s position in the compressed map. Once
we have localized our system, we can track our position using our neural implicit
representation. We will use the already shown roadmap in Figure 1.2 as guid-
ance through this thesis, which we will pick up later in the chapters to provide
a small overview of where we are in the grand scheme of this work. This thesis
contributes to robotics, machine learning approaches, and photogrammetry. We
exploit techniques from all fields including modern machine learning approaches,
as well as traditional photogrammetric methods such as bundle adjustment to
achieve top-level performance for mobile robotics.
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1.2 Publications
Most parts of this thesis have been published in peer-reviewed conferences and
journals:

• L. Wiesmann, A. Milioto, X. Chen, C. Stachniss, and J. Behley. Deep
Compression for Dense Point Cloud Maps. IEEE Robotics and Automation
Letters (RA-L), 6(2):2060–2067, 2021. DOI: 10.1109/LRA.2021.3059633

• L. Wiesmann, R. Marcuzzi, C. Stachniss, and J. Behley. Retriever:
Point Cloud Retrieval in Compressed 3D Maps. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2022. DOI:
10.1109/ICRA46639.2022.9811785

• L. Wiesmann, T. Guadagnino, I. Vizzo, G. Grisetti, J. Behley, and C. Stach-
niss. DCPCR: Deep Compressed Point Cloud Registration in Large-Scale
Outdoor Environments. IEEE Robotics and Automation Letters (RA-L),
7(3):6327–6334, 2022. DOI: 10.1109/LRA.2022.3171068

• L. Wiesmann, T. Guadagnino, I. Vizzo, N. Zimmerman, Y. Pan, H. Kuang,
J. Behley, and C. Stachniss. LocNDF: Neural Distance Field Mapping
for Robot Localization. IEEE Robotics and Automation Letters (RA-L),
8(8):4999–5006, 2023. DOI: 10.1109/LRA.2023.3291274

• L. Wiesmann, L. Nunes, J. Behley, and C. Stachniss. KPPR: Exploiting
Momentum Contrast for Point Cloud-Based Place Recognition. IEEE
Robotics and Automation Letters (RA-L), 8(2):592–599, 2023. DOI:
10.1109/LRA.2022.3228174

• L. Wiesmann, T. Läbe, L. Nunes, J. Behley, and C. Stachniss. Joint Intrinsic
and Extrinsic Calibration of Perception Systems Utilizing a Calibration
Environment. IEEE Robotics and Automation Letters (RA-L), 9(10):9103–
9110, 2024. DOI: 10.1109/LRA.2024.3457385

• L. Wiesmann, E. Marks, S. Gupta, T. Guadagnino, J. Behley, and C. Stach-
niss. Efficient LiDAR Bundle Adjustment for Multi-Scan Alignment Utiliz-
ing Continuous-Time Trajectories. arXiv preprint, arXiv:2412.11760, 2024.
DOI: 10.48550/arXiv.2412.11760
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1.3 Further Scientific Contributions
In addition to the aforementioned articles, which are covered in this thesis, I
furthermore had the opportunity to contribute to a number of research endeavors
leading to peer-reviewed conferences and journal articles of my colleagues:

• X. Chen, S. Li, B. Mersch, L. Wiesmann, J. Gall, J. Behley, and C. Stach-
niss. Moving Object Segmentation in 3D LiDAR Data: A Learning-based
Approach Exploiting Sequential Data. IEEE Robotics and Automation Let-
ters (RA-L), 6(4):6529–6536, 2021. DOI: 10.1109/LRA.2021.3093567

• R. Marcuzzi, L. Nunes, L. Wiesmann, I. Vizzo, J. Behley, and C. Stach-
niss. Contrastive Instance Association for 4D Panoptic Segmentation for
Sequences of 3D LiDAR Scans. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2022. DOI: 10.1109/LRA.2022.3140439

• I. Vizzo, B. Mersch, R. Marcuzzi, L. Wiesmann, , J. Behley, and C. Stach-
niss. Make it dense: Self-supervised geometric scan completion of sparse 3d
lidar scans in large outdoor environments. IEEE Robotics and Automation
Letters (RA-L), 7(3):8534–8541, 2022. DOI: 10.1109/LRA.2022.3187255

• N. Zimmerman, L. Wiesmann, T. Guadagnino, T. Läbe, J. Behley, and
C. Stachniss. Robust Onboard Localization in Changing Environments Ex-
ploiting Text Spotting. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2022. DOI: 10.48550/arXiv.2203.12647

• M. Arora, L. Wiesmann, X. Chen, and C. Stachniss. Static Map Gen-
eration from 3D LiDAR Point Clouds Exploiting Ground Segmentation.
Journal on Robotics and Autonomous Systems (RAS), 159:104287, 2023.
DOI: 10.1016/j.robot.2022.104287

• R. Marcuzzi, L. Nunes, L. Wiesmann, J. Behley, and C. Stachniss. Mask-
Based Panoptic LiDAR Segmentation for Autonomous Driving. IEEE
Robotics and Automation Letters (RA-L), 8(2):1141–1148, 2023. DOI:
10.1109/LRA.2023.3236568

• I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stach-
niss. KISS-ICP: In Defense of Point-to-Point ICP – Simple, Accurate, and
Robust Registration If Done the Right Way. IEEE Robotics and Automation
Letters (RA-L), 8(2):1029–1036, 2023. DOI: 10.1109/LRA.2023.3236571

• L. Nunes, L. Wiesmann, R. Marcuzzi, X. Chen, J. Behley, and C. Stach-
niss. Temporal Consistent 3D LiDAR Representation Learning for Se-
mantic Perception in Autonomous Driving. In Proc. of the IEEE/CVF
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Conf. on Computer Vision and Pattern Recognition (CVPR), 2023. DOI:
10.1109/CVPR52729.2023.00505

• E. Marks, M. Sodano, F. Magistri, L. Wiesmann, D. Desai, R. Marcuzzi,
J. Behley, and C. Stachniss. High Precision Leaf Instance Segmenta-
tion in Point Clouds Obtained Under Real Field Conditions. IEEE
Robotics and Automation Letters (RA-L), 8(8):4791–4798, 2023. DOI:
10.1109/LRA.2023.3288383

• I. Vizzo, B. Mersch, L. Nunes, L. Wiesmann, T. Guadagnino, and
C. Stachniss. Toward Reproducible Version-Controlled Perception Plat-
forms: Embracing Simplicity in Autonomous Vehicle Dataset Acquisition.
In Worshop on Building Reliable Ratasets for Autonomous Vehicles, IEEE
Intl. Conf. on Intelligent Transportation Systems (ITSC), 2023. DOI:
10.1109/ITSC57777.2023.10421988

• R. Marcuzzi, L. Nunes, L. Wiesmann, E. Marks, J. Behley, and C. Stachniss.
Mask4D: End-to-End Mask-Based 4D Panoptic Segmentation for LiDAR
Sequences. IEEE Robotics and Automation Letters (RA-L), 8(11):7487–
7494, 2023. DOI: 10.1109/LRA.2023.3320020

• Y. Wu, T. Guadagnino, L. Wiesmann, L. Klingbeil, C. Stachniss, and
H. Kuhlmann. LIO-EKF: High Frequency LiDAR-Inertial Odometry us-
ing Extended Kalman Filters. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2024. DOI: 10.1109/ICRA57147.2024.10610667

• D. Casado Herraez, L. Chang, M. Zeller, L. Wiesmann, J. Behley, M. Hei-
dingsfeld, and C. Stachniss. SPR: Single-Scan Radar Place Recognition.
IEEE Robotics and Automation Letters (RA-L), 9(10):9079–9086, 2024.
DOI: 10.1109/LRA.2024.3426369

• Y. Pan, X. Zhong, L. Wiesmann, T. Posewsky, J. Behley, and C. Stachniss.
PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Represen-
tation for Achieving Global Map Consistency. IEEE Trans. on Robotics
(TRO), 40:4045–4064, 2024. DOI: 10.1109/TRO.2024.3422055

9





Chapter 2

Basic Point Cloud Processing
Techniques

The focus of this work is to obtain globally aligned point cloud data from LiDAR
scans, representing this data efficiently, and localizing within the resulting maps.
All of our proposed methods utilize or process point cloud data in some form.
In this chapter, we explain some basic techniques that we used in this thesis to
process point clouds.

Formally, we define a point cloud P ∈ RN×3 as a matrix of N point coordinates
p ∈ R3 sampled from the surface of the environment. Often we not only have
point coordinates P but also features F ∈ RN×D corresponding to those points, so
that each point consists of its coordinate p ∈ R3 and its point features f ∈ RD.

Some features, like the timestamp of a measurement or the intensity, are
usually directly provided by the LiDAR sensor. However, features can also be
computed algorithmically, for example from the local neighborhood of a 3D point.
Many of the methods developed in this thesis compute and utilize point features
as an intermediate result for solving the respective task. One geometric point
feature that we often use is the normal of a point, and we discuss its computation
in Section 2.1. Furthermore, various deep learning-based approaches and net-
works exist that estimate point-wise features. In the following, we also look into
the main network architectures for 3D deep learning, and discuss shortly their
advantages and disadvantages.

2.1 Normal Computation
Point clouds are sampled coordinates from the surface of the environment. How-
ever, the individual point coordinates do not have any notion about how the world
around them looks like. One geometric feature to describe the local structure
around the point is the normal n ∈ R3 that depicts the direction perpendicular
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to the point’s surface. Knowing for each point the direction of the underlying
surface is key for many algorithms. The true point normal is often not available,
therefore is computed heuristically using the points’ local neighborhood N . One
way to compute the local neighborhood is based on the scatter matrix of the
neighborhood

M =
∑
p∈N

(p− p̄)(p− p̄)⊤ (2.1)

with the geometric mean
p̄ =

1

|N |
∑
p∈N

p. (2.2)

The scatter matrix M describes how the points are distributed in space. The
normal n can then be computed by a singular value decomposition (SVD)

U,D,V = SVD(M), (2.3)
n = V [:, 3], (2.4)

where V [:, 3] is the Eigenvector that corresponds to the smallest Eigenvalue. The
neighborhood N is often defined either by its k-nearest neighbors or by all the
points within a certain proximity r

N (p) = {(q,f) ∈ {P, F}) | ‖q − p‖< r} . (2.5)

The normal can play an important role, for example, when requiring point cor-
respondences between multiple point clouds. Assuming local planarity can relax
point-to-point correspondences to only require point-to-plane correspondences.
This means that instead of requiring the correct corresponding point, we only
require that the point lies on the same corresponding plane. Due to the typi-
cally large number of planar structures in man-made environments, e.g., walls or
streets, this assumption is often easier to fulfill.
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2.2 Neural Network Architectures for Point
Cloud Processing

Nowadays, point features are often computed using neural networks. In this part,
we want to focus on the most common neural network architectures to compute
features. Remark, that those networks can be used to compute features suitable
for different kinds of tasks. For which task a feature is well suited mostly depends
on the loss function used to train the network architecture and not on the type of
the used architecture. Here, we will solely discuss the different types of network
architectures while the individual training processes and used loss functions will
be covered in the individual approach sections.

2.2.1 PointNet
One of the earliest, but still relevant architectures is PointNet [180], which trans-
forms each point into a high-dimensional nonlinear space. There are many differ-
ent versions of PointNet, in the following we will describe the version used in this
thesis. The input to PointNet are the point coordinates P and point features F
concatenated to a single matrix F i = [P | F ] ∈ RN×Di . Optionally, PointNet
first estimates a transformation T ∈ RDi×Di of the N input points F i using
a so called T-Net : RN×Di 7→ RD2

i . The T-Net consists of a multi-layer percep-
tron1 MLP(64, 128, 1024), which is followed by global max pooling and a second
MLP(512, 256, D2

i ) that transforms the extracted descriptor to the dimensionality
of the desired transformation. The transformation T is then applied to the input
points

FT = F i(1d + T), (2.6)

where 1d corresponds to the identity matrix and therefore T is just a residual
added to the identity that facilitates learning. This provides the network with the
possibility to extract for each point cloud a specific transformation to transform
it into a common frame to achieve transformation invariance.

A following MLP(64, 128, Do) projects the transformed features FT ∈ RN×Di

of the T-Net into a higher-dimensional feature space F o ∈ RN×Do . In the following
sections, we will denote this architecture as

PointNet : RN×Di 7→ RN×Do , (2.7)

that follows the previous explained steps to transform F i into the output fea-
tures F o.

1Here, we use the convention that the argument of the MLP corresponds to the number of
channels of the output, e.g., MLP(4, 16) takes a not further specified input and produces 4 and
then 16 output channels in the intermediate and final feature map.
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Figure 2.1: Illustration of kernel point convolutions in 2D. The output features are
computed based on a weighted sum of the neighboring features. The filter weights are
defined on some kernel points, such that the weights in between are interpolated. In
this case, the filter values in the middle are high while the left and right values are
low. The resulting features will have a high response for vertical structures and a low
response for horizontal structures. Image courtesy by Thomas et al. [226].

Different variants of PointNet architectures utilize multiple T-Net’s, or utilize
global pooling on the output features to obtain only a single descriptor vector
per point cloud. Note, that the network only operates on the individual point
coordinates and does not propagate information from one point to another. The
goal of this small network is to transform the input points into a feature space
that is better suited for the final task.

2.2.2 KPConv
The previous PointNet architecture operates on each input point independently
of the others, solely based on the individual coordinates and features. However,
the way how the points are distributed in space, and how they are related with
respect to each other usually contains relevant information.

A common way to aggregate information based on spatial distribution is the
usage of convolutions. One way to define the convolutions directly on the point
coordinates is shown by Thomas et al. [226] which results in the so-called kernel
point convolution (KPConv). The convolution of the features F ∈ RN×Di at a
point p ∈ R3 with a convolutional kernel g is defined as a weighted sum of its
neighboring features [226] as

(F ∗ g)(p) =
∑

(pi,f i)∈N (p)

g(pi − p)f i, (2.8)
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Norm +
ReLu KPConv Norm +

ReLu Linear +

Linear

Figure 2.2: Schematic Overview of a ResNet-style KPConv block RKP. The features
Fn within the neighborhood of the query q are first normalized and pass through an
activation before they go into the convolution. The output of the convolution is again
normalized and passed through a ReLu. A linear layer projects the feature into the
desired dimension. Those features are added on a linear projection of the query features
such that only a residual feature has to be learned. The dimensions of the features are
denoted as Di for the input and D0 as the desired output dimension.

where N (p) = {(pi,f i) ∈ (P, F) | ‖pi − p‖< r} are the neighbors of p within
radius r. The convolutional weights are defined on M kernel points from which
the weight of the neighbors N (p) are interpolated using first-order splines of
size σ

g(yi) =
∑
m<M

max
(
0, 1− ‖yi − p̂m‖

σ

)
Wm, (2.9)

with the relative coordinate yi = pi − p and the weight Wm ∈ RDin×Dout of the
m-th kernel point p̂m. An illustration of the method can be seen in Figure 2.1.

The resulting kernel point convolution aggregates information from the neigh-
borhood based on their relative position. We use the convolutions in ResNet-
style [86] blocks RKP, as proposed by the Thomas et al. [226]. An illustration
of RKP is shown in Figure 2.2. Note, that we will use LayerNorm [6] instead of
batch normalization since we work with varying point cloud sizes which is not
compatible with batch normalization since it assumes fixed input sizes. Multiple
of those blocks are typically used in a network architecture to learn the desired
features.

Convolutional neural networks aggregate in each block information from the
neighboring points. However, incorporating information from faraway points into
the features is hard for such network architectures. It requires either a very
large neighborhood for the convolution or a very deep architecture. The problem
with very large neighborhoods is that the network will be less sensitive to high
frequency information, which usually degrades the performance. Since with each
layer in the network the receptive field increases, one just has to make the network
deep enough to have long range dependencies. However, very deep networks are
considered harder to train, need more computational power, and are prone to
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vanishing gradients. A network architecture which can better handle long-range
dependencies is the Transformer architecture that we will discuss in the following
section.

2.2.3 Transformer Architecture
Another architecture we will look at is the Transformer [238]. Here, we discuss the
Transformer in the context of point cloud processing instead of the original natural
language processing domain. While convolutions aggregate information based on
the spatial distribution, Transformers aggregate information based on feature
relation. Therefore, focusing more on semantic context, rather than only spatial
distribution. The fundamental method behind the Transformer architecture is
the attention mechanism, where the goal is to compute for some target features
F t ∈ RNt×D new features F o ∈ RNt×D based on the source features F s ∈ RNs×D.
Those features are in our case point features from a point cloud and might stem
from a convolutional backbone. From the input features, we first compute three
matrices: the keys K = W kF s and values V = W vF s which are linear projections
of the source features F s, and the queries Q = W vF t that are projections from
the target features F t. The naming of the matrices is an analogy from database
queries, which gives hints about their role in the method. We now want to query
our key and value pairs such that we get an output feature based on how similar
our query is to the keys.

For this, the attention mechanism in the Transformers computes new features
F o ∈ RNt×D by a linear combination of value vectors V ∈ RNs×D. The weighting
W ∈ RNt×Ns of the features depend on the outer product of the queries Q ∈ RNt×D

and the keys K ∈ RNs×D

F t = WV = softmax
(

QKT

√
D

)
V , (2.10)

computing the outer product for the weights means computing the dot product
for each query to each key (see Figure 2.3a for illustration). Since the dot product
is high when vectors are similar, zero when orthogonal, and negative when facing
in the opposite direction, it results in a weighting based on feature similarity.
The more similar a key to the query, the higher the corresponding weight.

Each row of W is first scaled by 1/
√
D, followed by a softmax to ensure

that the weights sum up to one and are always positive for each query. The
attention mechanism is often not directly done on the whole features, but the
features are split based on their dimension, such that the attention mechanism
is applied for each part individually. This is the so-called multi-head attention
which is depicted in Figure 2.3b. This could look like the following: you have a
feature dimension of 256, split it into 8 times 32-dimensional parts, and apply
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(a) Attention Mechanism

Multi-Head
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Linear

Attention

(b) Multi-Head Attention

Figure 2.3: The attention mechanism computes a weight matrix W based on the feature
similarity of the features Q and K . The resulting weights are used to compute a linear
combination of the features V to compute the output F . The multi-head attention
splits the input features into different parts and computes the attention for each part
individually. The outputs are stacked together and fed into a linear layer to yield the
output.

the attention mechanism to each of the 8 groups. This means that the weighting
does not only depend on the overall feature similarities, but on the similarities of
each group. The 8 resulting features are then concatenated and forwarded to a
final linear layer to form the output feature.

We have seen that the basic attention mechanism aggregates features solely
based on feature similarity. However, not considering spatial information at all
might not be optimal, since spatial context and relation can contain valuable
information. A positional encoder is often used to enable spatial awareness. The
positional encoder enhances the features by adding position information. In the
simplest case, one could just take the raw point coordinates and append them
to the features. However, passing the position through different trigonometric
functions has proven advantageous. An example of such a positional encoding is
depicted in Figure 2.4. After evaluating the trigonometric functions the resulting
positional encoding is added to the original feature.

If the source is equal to the target F s = F t it is called self-attention. Note that
for this case also the sequence lengths are equal Ns = Nt, meaning the weight
matrix W grows quadratically with respect to the sequence length. If the source
is different from the target it is referred to as cross-attention.

A transformer architecture can have several multi-head attention blocks
chained together. The original architecture did not contain any downsampling,
therefore for each input feature there will also be a corresponding output feature
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Figure 2.4: The positional encoding transforms the coordinates by applying trigono-
metric functions (sine and cosine) with different frequencies. Having a point p =

[−0.75,−0.25, 0.5] would generate for this example a positional encoding for the x-
coordinate of fx = [−0.07,−0.38,−0.07,−0.92,−0.75]. The final positional encoding
would be the concatenation of all dimension-wise features fpos = [fx,fy,f z]. Note
that the magnitude and number of frequencies are hyperparameters and can be chosen
freely.

generated. For point cloud processing, local attention [227, 296, 173] is often
used, where instead of computing the attention to all points, only the points in
a small neighborhood are considered.

2.2.4 Discussion

In this section, we briefly discuss the advantages and disadvantages of the meth-
ods. The PointNet architecture can not really aggregate information from other
points, but transforms the points from one feature space into another. We use
it in this thesis mostly if we have some features, which are already in a feature
space, but want to transform them into another that is better suited for a specific
task. Especially, when we take the output of a pretrained network for some task,
we can use the PointNet to refine the features for another task without chang-
ing the weights of the pretrained network, which therefore can still be used for
original task.

For aggregating information, we will mainly use KPConv. Convolutional neu-
ral networks have proven very descriptive, especially for generating local features.
Due to the bigger compute demand for Transformer architectures, we will use
them only rarely when we really want to have long range dependencies.
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2. Basic Point Cloud Processing Techniques

Note that there also exist different kinds of 3D convolutional neural networks.
The probably most common 3D representation for learning is the usage of sparse
voxel grids [38] with sparse convolutions. This extends the idea of images to
3D but exploits that many areas in the area are empty. The sparse grid-based
convolution is mathematically quite similar to KPConv, but instead of defining
it on the points, it can be defined directly on a grid. Sparse voxel grid-based
methods are usually a bit faster but incorporate discretization which can lead to
errors. We chose KPConv over sparse voxel grid-based convolutions to bypass
discretization.
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Chapter 3

Multi-Sensor System Calibration

Calibrating the sensors of any robotic system is a crucial prerequisite for map-
ping, localization, SLAM, and other state estimation tasks. Knowledge about the
properties of the sensors is required to obtain consistent and undistorted mea-
surements. In this thesis, we aim to build maps of the environment in which we
can later localize. Before we can even go out with our multi-sensor system to map
the environment, we first need to make sure we know our sensors’ properties and
how they are located on the robot. Each sensor measures in its own coordinate
system, therefore the relative transformations (extrinsics) between the sensors
must be known to operate in a common reference frame. For example, the point
clouds from two LiDAR sensors that are mounted on a robot can be fused to
one consistent map of the vehicle’s surroundings by knowing the sensors’ relative
transformation to each other. Intrinsic calibration, on the other hand, aims to ob-
tain a correct model between the measurements of a sensor and the corresponding
object properties in the physical world. An RGB camera, for example, provides
images that consist of pixels with color information. To infer information from
an image to an object (or vice versa), we need to precisely know, for each pixel
location in the image to which direction in the 3D world it corresponds. Once we
have our sensor system calibrated, we can move around, record data, and process
the data to obtain a map within we can localize, as depicted in Figure 3.1. In
this chapter, we investigate the problem of estimating the extrinsic and intrinsic
parameters of perception sensors.

The sensor system we mainly use in this thesis is shown in Figure 3.2 on
the top left, which is a car mount equipped with four wide-angle cameras, two
multibeam LiDAR sensors as well as navigation sensors, namely GNSS receiver
and inertial measurement unit (IMU). This setup is also later used to obtain
the measurements for the mapping in Chapter 4. Other systems we calibrate
have, e.g., four RGB-D cameras, an RGB camera, and two 2D profile LiDAR
sensors. The main challenges of these systems are no or limited overlap between
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Figure 3.1: Schematic overview of the thesis. In this chapter, we want to calibrate the
perception sensors of our multi-sensor systems to enable localization and mapping.

cameras and limited overlap between the LiDAR sensors. Furthermore, some
of the cameras have a fisheye lens, i.e., that has a projection that cannot be
described well using the pinhole model. Therefore, we need the calibration able
to work for different projection models (projection on a plane or a sphere) as
well. Additionally, we are interested in a calibration procedure that works with
multiple sensor setups, is easy to extend, and requires minimal user input. We
aim at millimeter accuracy and thus to be more precise than the sensors’ noise.

The main contribution of this chapter is a flexible calibration procedure that
allows to estimate the intrinsics and extrinsics of a combination of different per-
ception sensors. Instead of directly estimating the relative transformation be-
tween the sensors, we use an external high-accuracy sensor, a terrestrial laser
scanner (TLS), to obtain a reference target. This allows us to reliably and ef-
ficiently estimate the poses of each sensor. By doing so, we can exploit the
strengths of each sensor individually, making it suitable across varying sensors
with different configurations without the need for overlap between the sensors’
field of views. We propose to utilize a calibration environment instead of using
object-based targets such as checkerboards. Our calibration environment is a
room equipped with AprilTag [225] targets, i.e., printed QR-like codes for cal-
ibrating the cameras. For the LiDAR, we installed structural elements in the
calibration room which allows for reliable matching.

One exemplary use case would be, where we want to estimate the depth for
the pixels in an image using LiDAR data, as shown in Figure 3.2. For this, we
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Calibration Environment

Calibration Application

Joint Calibration

Camera

LiDAR
Multi-Sensor System 

Precisely aligned sensor data

Figure 3.2: Having a system that uses multiple sensors requires calibration. Our ap-
proach calibrates different perception sensors, like LiDAR sensors or cameras, by uti-
lizing a calibration environment. Jointly optimizing the intrinsics and extrinsics of the
sensors allows for different applications, such as sensor fusion. In this application, the
scan of the horizontal LiDAR is projected into the left camera, where the colors of the
points denote the distance to the sensor.

need to transform the observed LiDAR point cloud into the coordinate system
of the image. First, we need to acquire data with the multi-sensor system in the
calibration environment and measure with each sensor the environment multiple
times. The recorded data is jointly calibrated utilizing the point cloud from a
high-precision TLS, yielding the extrinsics and intrinsics of the sensors. After-
ward, the data of the camera and LiDAR can be fused. The point cloud of the
LiDAR must be transformed into the camera system using the extrinsics of the
sensors. Second, the intrinsics of the camera are used to project the point clouds
into the image, such that we can assign the range values of the LiDAR measure-
ments (in the camera frame) to the corresponding pixel. If the calibration was
successful the LiDAR range overlaid on the image should be well aligned, as in
Figure 3.2 on the bottom left.

In sum, our approach is able to reliably estimate the intrinsics and extrinsics
of perception systems; operate with different sensor types (e.g., LiDAR, and
camera) and modalities (e.g., profile scanner vs. multibeam LiDAR; wide-angle
vs. fisheye cameras); and calibrate different perception systems with varying
sensor configurations.
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3.1 Related Work

Approaches for calibration can be divided into two categories: Methods using
natural scenes, mostly outdoor, and methods using scenes with specific targets.

Early target-less approaches measured the correspondence between LiDAR
and camera image points manually [197]. Recently, LiDAR intensity was used
and compared with the camera image intensity for calibration [100, 115, 170]. We
aim for an automated approach without manual measurements and do not want
to rely on the quality of the LiDAR intensity. Geometrical approaches [93, 131]
for natural scene-based calibration utilize the onboard sensors to first estimate
the vehicle’s trajectory or build a map, which can then be taken for localizing the
other sensors. We believe that the calibration using natural scenes require a lot
of user input and experience to make it work for different sensors and perception
platforms.

Target-based approaches can be characterized by their targets: Planes with
black rings [186], trihedrons [69], two planar triangles [51], and spheres [119] are
among the less often-used objects. Some works [16, 274] define special objects
that have different properties to support the different sensor characteristics. One
of the most commonly used calibration targets is the checkerboard. While for the
detection in the image standard tools exist [25], for the detection in the LiDAR,
the methods usually vary. Some approaches [92, 251, 298] try to estimate the full
geometry of the board while others [169, 233, 239, 293] only use the plane normal
and the center point to estimate the transformation since the edges themselves
are too inaccurate. Verma et al. [239] use a genetic algorithm for the estimation,
while Tsai et al. [233] introduce a quality measure to select a subset of frames
used in the estimation procedure. All these approaches have the restriction that
the board must be seen completely in both, the LiDAR and the camera, which
reduces the possible positions and angles of the board and limits the calibration
to systems that have overlap between those sensors. Only a small fraction of
the LiDAR point cloud, usually significantly below 25%, can be used to estimate
the transformation between the LiDAR and the target. As our target is a 3D
terrestrial laser scan of a whole room (see Figure 3.2), we are able to use nearly
all points (except for some very small amount of outliers) of a LiDAR scan to
estimate the transformation between the LiDAR sensor and the target.

Some methods [58, 234], to which we would also associate our approach, do
not only rely on object-sized targets that need to be moved but rather use an
infrastructure-based calibration where the whole environment is the target. The
most similar approach compared to ours is the work by Xie et al. [234]. Like
us, they use a room with AprilTags, on the walls and perform and estimate
the extrinsics between all cameras and LiDAR sensors. The proposed method
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divides the estimation of the extrinsics from the cameras and LiDAR into two
parts. First, they estimate the extrinsics of the camera and the poses of the
sensor system using the image data of the cameras. They try to minimize the
reprojection error of AprilTag coordinates in the image, which is also the error
function we try to optimize for the cameras. In a second, independent step, they
optimize the extrinsics of the LiDAR using an ICP-like error function. One key
difference to our approach is that they assume that the intrinsics of the cam-
eras are already known. Thus, requires a calibration of the intrinsics beforehand.
In contrast, our approach estimates the intrinsics jointly with the other param-
eters; we do not assume them to be given. Independent optimization of the
extrinsics and intrinsics is statistically suboptimal since for the extrinsics estima-
tion assumes the intrinsics to be correct without incorporating their uncertainty.
Additionally, they split up the estimation of the LiDAR parameters from the
estimation of the poses and camera parameters. Consequentially, they assume
for this step the poses of the vehicle to be given and independent of the LiDAR
observations. Here as well, a joint optimization is statistically better since all
the observations from all the sensors are taken into account for the parameter
estimation. Consequently, we optimize the parameters of the poses, cameras, and
LiDAR sensors in a joint adjustment. A difference of the environments used is
that we equipped our calibration room additionally with structural elements to
have additional planes at different angles (c.f., Figure 3.2). This provides a more
stable solution especially when handling data from the 2D profile LiDAR scan-
ners. Fang et al. [58] also proposes an infrastructure-based calibration method.
The objective functions they minimize are quite similar to our and the previously
discussed approach [234]: reprojection error of markers for the camera, and ICP
for the LiDAR sensors. Instead of utilizing the TLS for generating the reference
point cloud, they use a stereo camera and bundle adjustment to reconstruct the
calibration environment. They separate the estimation of the LiDAR sensor pa-
rameters and camera parameters and do not optimize for the intrinsics, but in
contrast to Xie et al. [234] they do not fix the poses of the vehicle for the LiDAR.
Still, this does not provide a statistically optimal solution. Furthermore, they
do not use uniquely identifiable markers, which requires them to find the correct
correspondences first.
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3.2 Multi-Sensor Calibration Using a Precise
Calibration Environment

Our main idea for the calibration is to relate the measurements of each sensor
to a once created, precise reference map of the calibration environment. The
advantage of this is that we can exploit the strengths of each sensor, do not
rely on high FoV overlap between the sensors, and it is applicable to different
sensor configurations and types. Our method substantially simplifies the process
of obtaining a high-quality calibration, especially when using multiple different
robots or perception platforms. In this chapter, we look at robots and sensor
systems consisting of a combination of different cameras and/or LiDAR sensors.
Our calibration procedure can be summarized in five steps:

1. Generating a reference map of the calibration environment.

2. Defining for each sensor an error function between the observations and
the reference map based on the intrinsics and extrinsics of the respective
sensor.

3. Collecting measurements from the sensors in the calibration environment.

4. Estimating initial values for the parameters as needed.

5. Performing a joint optimization to obtain the extrinsics and intrinsics of
the whole sensor system.

Note that step 1 needs to be done only once for every calibration environment,
and step 2 once for each sensor. In the following, we describe the steps in more
detail.

3.2.1 Generating a Reference Map
Calibrating sensors with respect to a reference leads to some requirements on the
sensors and the target. In our case, the reference is a 3D point cloud map of
the calibration environment. The reference map should cover most of the scene
that will be seen by each individual sensor in the calibration process. We do
not rely on overlaps in the FoV between the sensors of the multi-sensor system,
but between the sensors and the reference map (a calibration room in our case)
instead. Additionally, the reference map should be as accurate as possible, since
errors in the map could propagate into the parameters of the calibration.

We rely on transformation estimation between the sensors and the reference
map. For the LiDAR, we utilize ICP to the reference map, and for the camera
images rely on automatically extracted coded targets with given 3D coordinates.
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We rely on the popular AprilTags [166]. A dense 3D map with the possibility
to extract the AprilTag positions is required. Consequently, we propose to use
a TLS as the sensor to obtain the reference point cloud map. A TLS produces
point clouds with millimeter accuracy, 360◦ FoV, and with a high density. The
3D coordinates of the coded targets must be in the same reference frame. Thus,
we extract them from the reference point cloud map.

For calibrating the LiDAR sensors, the target point cloud needs to have
enough geometric structure to reliably fix the 6 degree of freedom (DoF) of the
pose. Since we used an empty room for the calibration, we added some structural
elements in the form of pyramids to the walls. By doing so, we can ensure that
we have enough information to fix the degrees of freedom along the wall surfaces.
Without having enough structure, the point clouds can arbitrarily move along
the wall, which is especially a problem with data from 2D LiDAR sensors.

Given the 3D coordinates of AprilTags and their corresponding image coordi-
nates, we can directly use them in a bundle adjustment to obtain accurate poses
and intrinsics of the cameras. We directly use the positions of the AprilTags that
can be extracted from the TLS point cloud. Because this point cloud is highly
dense, the code of the AprilTags is clearly visible in the intensity channel of the
scan, as seen in Figure 3.4b. Thus, we create an image with orthographic projec-
tion, so-called orthophoto, of each wall in the room using the intensity channel of
the points. Then, we use the standard AprilTag library [225] to extract the 2D
subpixel-accurate image coordinates of the AprilTag corners in the orthophotos.
As every pixel in the orthophoto has its corresponding 3D coordinate in the TLS
point cloud, we can easily extract the 3D coordinates of the AprilTag corners by
bilinear interpolation with high precision.

This way, our reference map consists of a point cloud M = {(mpi,
mci)} with

i = 0, . . . , I points pi ∈ R3 in Euclidean coordinates with their associated inten-
sity ci ∈ R and a set of J AprilTag corner coordinates, both located in the
coordinate frame of the reference map m. The coordinate frame of m can be
chosen freely and might be the origin defined by the terrestrial laser scanner’s
internal frame.

3.2.2 Define Error Functions

To calibrate the sensor setup, we need to define the error function that we want
to optimize. Generally speaking, we want to minimize for all sensors, at each
timestamp, the errors between their observations and the reference map. In this
chapter, we focus on LiDAR and camera sensors, but the procedure can be used
for different sensors as long as it is possible to relate the sensor measurements
to the reference map. The relation is usually simply transforming sensor obser-
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vations from the reference map in an unified frame and computing the deviation
between those.

In the following, we denote the transformation of the frames by the right sub-
script and left superscript as commonly used in physics, e.g., the transformation
of a point from the frame i to frame j would be jp = jR i

ip+jti, where jR i ∈ R3×3

is the rotation matrix and jti ∈ R3 the translation vector. 3D point coordinates
are denoted by p ∈ R3, while image coordinates have the variable x ∈ R2.

3.2.2.1 Camera Error Function

For calibrating the cameras, we relate the sensor observations to the reference map
by using AprilTags. For the camera c, we extract for a specific timestamp t the
corners {itxj} of all AprilTags that are visible in the current image i. As an error
metric, we use the reprojection error ecamera(i, t, j) of the AprilTag coordinates,
such that for the jth observation, we yield:

ecamera(i, t, j) =
i
tx̂j − i

txj (3.1)
i
tx̂j = F c

d
tx̂j +

itd (3.2)
d
tx̂j = distort(utx̂j) (3.3)
u
tx̂j = project(c

t
p̂j) (3.4)

c

t
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bR⊤
c

b

t
p̂j −

bR⊤
c

btc (3.5)
b

t
p̂j =

m

tR⊤
b

mp̂j −
m

tR⊤
b

m
ttb. (3.6)

Namely, we transform the AprilTag coordinate mp̂j ∈ R3 in Equation (3.6)
first from the frame of the reference map m over the base-link b (a local coordinate
system on the robot) into its camera frame c using Equation (3.5). From there, we
project the point in Equation (3.4) depending on the type of camera into a unified
intrinsic free camera frame u in which we apply the non-linear camera distortions,
i.e., as seen in Equation (3.3). After the distortion, we obtain in Equation (3.2)
the AprilTag coordinate i

tx̂j ∈ R2 in the image frame i by applying the focal
length F c ∈ R2×2 and the principal point itd ∈ R2. The focal length matrix F c is
a diagonal matrix with [fx, fy] on the main diagonal. For the distortion, we use
tangential and radial distortions similar to OpenCV [25]:

d
tx̂j = distort(utx̂j) (3.7)

d
tx̂j =

u
tx̂j(1 +

N∑
n=1

kn,cr
2n)τ + 2 u

tx̂j
u

t
x̂⊤
j pc + r2pc, (3.8)

with the radial coefficients {kn,c}, and the tangential coefficients pc = [p2, p1]
⊤.

The parameter τ can be changed for different radial distortion modeling, i.e.,
the classical Brown’s distortion model has τ = 1, while the division model has
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τ = −1. For the projection, we either use the classical pinhole or equidistant
model [271] as follows:

project


xy
z


 =


[
x
z

y
z

]⊤
if c is pinhole x

rxy
atan2 (rxy, z)

y
rxy

atan2 (rxy, z)

 if c is fisheye,
(3.9)

with the Euclidean distance in the image rxy =
√

x2 + y2.
Additionally, we add a prior on the AprilTag coordinates p̂j, defined by:

eprior(j) = p̂j − p
(0)
j , (3.10)

where p
(0)
j denotes the initially extracted AprilTag coordinates from the TLS

point cloud map. By this, we can incorporate the uncertainty in the AprilTag
extraction without giving too much freedom for pushing errors from the camera
model into the AprilTag coordinates.

3.2.2.2 LiDAR Error Function

For estimating the extrinsics and intrinsics of the LiDAR sensors, we align the
point clouds as well as possible with the reference map. Therefore, this part is
similar to classical point cloud registration methods [21]. We use the classical
point-to-plane error function, as often used in ICP [36]. For this, we compute,
for the dense and accurate reference map, normals for each point based on their
local neighborhoods. More details on normal computation are provided in Sec-
tion 2.1. The key difference from most ICP-based methods is, that we do not try
to independently align each point cloud with the reference, but jointly optimize
all sensors and scans together. Thus, we optimize not only one pose per scan but
the whole kinematic chain. This results in

eLiDAR(l, t, j) =
m
n⊤

k (
m
tRb

bp̂j +
m
ttb − mpk) (3.11)

bp̂j =
bR l

lpj

(
sl +

ol
‖lpj‖

)
+ btl, (3.12)

where mpk and mnk are the corresponding map points and normals of the jth
LiDAR point lpj.

We estimate as intrinsics a scale factor sl and offset ol for each LiDAR to
address systematic errors in the range measurements. The correspondences are
obtained by searching for each LiDAR point lpj the closest point in the reference
map M. Due to structural elements, like the pyramids in our reference, we are
able to use this procedure not only for 3D multibeam LiDAR sensors but also for
the commonly used 2D profile LiDAR.
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3.2.3 Collecting Measurements
The measuring process for our calibration setup is rather straightforward: we only
assume that the measurements from each sensor are obtained at discrete points
in time. By this, we can optimize the pose of the sensor system rt based on all
the observations taken at the same timestamp t from all sensors. This does not
necessarily mean that all the sensors need to be hardware-triggered at the exact
same time and with the same frame rate (although a good time synchronization
is in general recommended). We only need to keep the scene and sensors static
while taking the measurements which is easy to realize in a dedicated calibration
room.

In general, we strongly suggest recording in a stop-and-go manner, i.e., (1)
move the sensor system, (2) measuring with each sensor while standing still, and
(3) repeat steps 1 and 2 as much as needed. Thereby, we also avoid the motion
distortion in the measurements, e.g., motion blur in the cameras, rolling shutter
effects, or motion distortion in the LiDAR scans.

For an optimal calibration result, the observations should cover the full field
of view of the sensor. For example, for a camera, we suggest to not only have
observations in the center but rather distributed over the whole image. In our
room, this recommendation is more or less fulfilled automatically, because all
walls, including the ceiling have a sufficient coverage of AprilTags.

Since we do not rely on any human interaction like moving checkerboards,
but only on a static environment (like a separate calibration room), this method
is well suited for full automation, e.g., in an industrial production line or for
repeated calibrations.

3.2.4 Initial Parameter Estimates
Using the Gauss-Newton model to solve the non-linear optimization problem
requires initial values for the parameters. As parameters, we have the 6 DoF
pose parameters {(mtRb,

m
ttb) ∀t}, i.e., the transformation parameters from the

frame of the base-link b to the frame of the reference map m, as well as the
extrinsics, i.e., the transformations {(bRs,

bts) ∀s} from the sensor frame s into
the base-link frame b. We chose the first camera as base-link, but this choice is
arbitrary. Additionally, we need for each sensor the intrinsics, e.g., focal length,
principal point, and distortion coefficients for each camera, as well as scale and
offset for each LiDAR. The offset can model a bias in the range measurements,
while the scale can compensate when the LiDAR sensor systematically over or
underestimates the ranges proportional to the distance.

As an initial guess for the intrinsics of the LiDAR sensors, we assume sl ≈ 1

and offset ol ≈ 0. The intrinsics of the cameras are estimated by the well-
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established method by Zhang [295]. Since this requires all points to lie on a
plane, we only use the AprilTags from the wall, which has the most visible tags.
We use multiple frames with at least 3 visible tags to ensure a reliable estimation.
The initial extrinsics {(bRs,

bts) ∀s} can be taken using construction plans of the
multi-sensor system, manual measuring, or computing the relative transformation
between the sensors and the base-link from a direct solution. In our experiments,
it was sufficient to provide the extrinsics with a couple of centimeters and degrees
accuracy, i.e., a simple ruler is sufficient.

We obtain the poses {(mtRb,
m
ttb) ∀t} by estimating independently for each

timestamp the pose of one of the sensors in the reference map. We use the
perspective-n-point [125] algorithm when taking one/ multiple cameras to esti-
mate the poses of the base-link sensor in the reference map. In the upcoming
experiments described in Section 3.4, we take for each timestamp the camera
with the most visible AprilTags to estimate the pose. In the case of calibrating
only multiple LiDAR sensors, we can also use global registration techniques. We
used, for example, the approach by Rusu et al. [194] that uses feature-based cor-
respondences with FPFH features, and searches for the best fit using RANSAC,
which provided a sufficient estimation for an initial guess.

3.2.5 Joint Optimization

To obtain the statistically optimal solution for the calibration parameters, we
optimize all the sensors in a joint least squares adjustment. Each sensor is rigidly
connected to the platform and thus correlated to the other sensors. We use the
Gauss-Newton model for optimization. We obtain an estimate of the accuracy of
the parameters using the inverse of the normal equation system. The covariances
of the observations should be chosen such that the standardized residuals are
approximately standard-normal distributed.

In each iteration of the Gauss-Newton algorithm, we update the correspon-
dences for the point clouds to ensure always having the closest points, as also done
in ICP. Errors in the initial parameters can lead to wrong associations. Therefore,
we use the Geman-McClure robust kernel to reduce the impact of those points.

Once the Gauss-Newton method is converged, we disable the robust kernel
and optimize a second time without the robust kernel, removing outliers that
are further away than three times the specified sensors standard deviation (3σ
bound).
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(a) Camera image (b) LiDAR point cloud

Figure 3.3: Measurement of cube corners for evaluation. In the camera image (a) the
corner point (yellow) is the intersection of the image edges (green). In the point cloud
(b), the corner (yellow) is the intersection of 3 planes estimated using RANSAC based
on the red, green, and blue points.

3.3 LiDAR-to-Camera Evaluation Method

Estimating all parameters in a joint least squares adjustment allows for obtaining
the analytical covariances, especially when choosing realistic covariances in the
optimization. But due to imperfect assumptions about the model, covariances,
correlations, and linearization, the estimated covariances might be too optimistic.
Thus, we evaluate the system separately. Additionally, it allows us to perform an
independent comparison to other calibration methods.

Since we are interested in using the camera data in combination with the
LiDAR sensors, for example, to project 3D LiDAR points into the images as
shown in Figure 3.2, we focus on the analysis of the calibration between these
sensors. We propose an evaluation method for the independent assessment of the
accuracy between LiDAR sensors and cameras. Finding reliable corresponding
points in both sensors allows us to compute the reprojection error.

Throughout our experiments, we saw that picking distinct points in the point
cloud or range image of the LiDAR sensors was not precise enough, due to the
limited resolution of the LiDAR. For an accurate evaluation, the resolution of
the evaluation method should be higher than the accuracy of the calibration,
otherwise, aliasing effects can occur. Therefore, we propose to use a physical
cube to find distinct corners in the image and in the point cloud. By extracting
three visible planes of the cube from the point cloud, we can precisely compute
the point of intersection. We guide this process by manually selecting a point
near the cube corner. The corresponding point in the image can be extracted by

32
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(a) Calibration room (b) Reference point cloud

Figure 3.4: The calibration environment is equipped with AprilTags for the camera
calibration and structural elements for the LiDAR. (a) shows a picture of the room,
and (b) shows the corresponding point cloud that is used as a reference target. The
point cloud is obtained using a Faro Focus3D-X130 terrestrial laser scanner.

finding the three edges between the three planes. The accuracy of the image can
be computed by projecting the detected corner from the LiDAR into the image
and calculating the residual at the intersection point of the three image edges.
Additionally, we use the distance between the estimated point in the LiDAR and
the viewing ray to the corner in the image. The first gives a residual in pixels,
while the latter provides a metric error in 3D space. A visualization of the cube
measurements is depicted in Figure 3.3. Note that the cube is not needed for
calibration, only to evaluate the calibration results independently.

3.4 Experimental Evaluation
The main focus of this chapter is a calibration procedure that reliably works
for different sensor setups. In the following, we will first look at the main sensor
setup and the used calibration environment. Afterward, we evaluate our proposed
method and compare it to other approaches. In the end, we will look at the
calibration results of different sensor setups to show that our method is of general
use.

3.4.1 Experimental Setup
In this chapter, we aim at calibrating multi-sensor perception systems with the
help of a specifically designed calibration environment. The calibration environ-
ment is depicted in Figure 3.4 and the main sensor system utilized can be seen
in Figure 3.6 (a). It is equipped with four Basler Ace cameras facing the front,
left, right, and to the rear of the vehicle. Additionally, the system has an Ouster
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OS1-128 LiDAR scanner with 128 beams and a 45◦ vertical field of view that is
mounted horizontally. A second Ouster OS1-32 is mounted vertically and has 32
vertical beams. All sensors are PTP time-synchronized.

As a calibration environment, we place 119 AprilTags at the four walls and the
ceiling in an otherwise empty room. The 3D coordinates of the tags are extracted
as described in Section 3.2.1. We mounted structural elements in the shape of
pyramids to the walls to fix all DoF of the pose for the LiDAR scan.

3.4.2 Calibration Evaluation
The main goal of this chapter is to provide a reliable calibration method for
multi-sensor perception systems. Therefore, we look in this experiment into the
accuracy of our method and compare it to other approaches. We compare our
calibration environment-based approach against Ca2Lib [66], a LiDAR-to-camera
calibration approach using a chessboard for calibration, and a natural scene-based
approach [115]. Since the approaches calibrate one laser with one camera, we per-
form this four times to obtain the calibration between all the sensors. Addition-
ally, the approach assumes the cameras to be intrinsically calibrated; therefore, we
provide the necessary intrinsics. Multi-sensor calibrations in a specially designed
calibration environment are very rare; therefore, we implemented a baseline using
standard tools provided by OpenCV [25] and Open3D [299], which we denote as
CV2O3D. For this, we register each sensor to the reference map. The extrinsics
between the sensors can be obtained by computing the relative pose between the
sensors. We can do this for each timestamp independently, and after removing
outliers, estimate the mean transformation. For the camera, we first estimate the
intrinsics using Zhang’s method [295], followed by estimating the pose in the map
using the classic PnP algorithm with the AprilTag coordinates. The poses of the
LiDAR in the map can be estimated using a RANSAC-based global registration,
followed by a point-to-plane ICP for fine registration between the scans and the
reference point cloud map. The difference between our approach is that the stan-
dard tools only allow for independent estimation of the sensor states, while our
approach optimizes all the poses, extrinsics, and intrinsics jointly.

We evaluated all approaches using the same cube dataset (see Section 3.3)
with 34 measured cube corners using the horizontal OS1-128 LiDAR and all
cameras. The position and distance to the cube vary such that we have a high
FoV coverage. Table 3.1 shows the RMSE errors. Our approach is outperforming
the scene-based calibration [115], checkerboard baseline Ca2Lib [66] as well as
CV2O3D, which uses exactly the same data as our approach. We believe that
our configuration in the calibration environment is more stable since we take in
each timestamp the observations of all sensors into account and thus obtain better
results. Additionally, with the checkerboard, only the few observations that lie
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Table 3.1: Calibration evaluation

Model RMSE [pix] RMSE [m]

Scene-based [115] 30.71 0.064
Ca2Lib [66] 11.13 0.024
CV2O3D 4.17 0.010

Ours 2.51 0.007

Table 3.2: Ablation of different models

Camera LiDAR Metric
Model Degree Bias Scale RMSE [pix] RMSE [m]

[A] D 3 7 7 3.91 0.008
[B] D 3 7 3 3.22 0.009
[C] D 3 3 7 2.62 0.008
[D] B 2 3 3 2.72 0.008
[E] B 3 3 3 2.54 0.008
[F] D 1 3 3 4.89 0.013
[G] D 2 3 3 2.75 0.008
[H] D 3 3 3 2.51 0.007

on the board are considered. The scene-based approach has a lot of potential
correspondences, but finding the correct ones, especially based on the not so
reliable intensity, might be hard without incorporating at least some outliers. In
the calibration environment, on the other hand, we can use all the points for the
ICP, and due to the AprilTags have fixed correspondences for the cameras.

3.4.3 Model Analysis

In this experiment, we want to show the impact of different parameterizations
of the sensor models to validate our design choices. Note, that this should be
done for each sensor system to choose the right model for each sensor. The
results are depicted in Table 3.2. When looking at the results of configurations
[A]-[C], and [H], we see the impact of estimating intrinsics of the LiDAR. The
results without estimating a scale and offset parameter [A] are notably worse
than estimating either of those ([B] or [C]), while the best is achieved when
estimating both as can be seen in [H]. When further analyzing the residuals
between the LiDAR points and the reference map after optimization, as depicted
in Figure 3.5, we can observe systematic errors when optimizing without the
intrinsics (blue). The residuals should be normal-distributed around zero, but
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Figure 3.5: Histograms of point-to-plane residuals between the LiDAR points and
the reference map after adjustment with and without estimating the LiDAR intrinsics
(range scale and offset). The vertical lines denote the mean. Without calibrating the
range measurements, we can see a constant offset of around 2 cm; both LiDAR sensors
underestimate the range.

both seem to systematically measure around 2 cm too short. Additionally, the
distributions of the residuals are not completely symmetric. When optimizing
with the intrinsics (green), the residuals look normal-distributed around zero,
therefore, indicating that no further systematics (like beam-wise intrinsics) are
needed.

Different image distortion parameterizations are depicted in [D] - [H], where
model B depicts Brown’s distortion model and D the division model as discussed
in Section 3.2.2.1. The degree column denotes the degree of the polynom used
to model the radial distortion. In summary, the first-degree polynomial is sub-
stantially worse than the second or third polynomial. Brown’s and the division
model evaluate quite similarly for the same degrees.

3.4.4 Evaluation on Synthetic Data
To validate our methodology, we evaluate our approach on a synthetic dataset.
This enables ground-truth reference parameters to which we can compare. For
generating realistic synthetic data, we utilize the terrestrial laser scan by render-
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Table 3.3: Synthetic dataset: RMSE of the parameters

Sensor Parameter CV2O3D Ours
C

am
er

as

Translation [mm] 4.11 0.79
Rotation [◦] 0.255 0.010

Principal Point [pix] 3.74 0.60
Focal Length [pix] 1.32 0.31

Distortion [pix] 0.94 0.11

Li
D

A
R

Translation [mm] 8.32 0.85
Rotation [◦] 0.524 0.010
Bias [mm] N/A 2.82

Scale N/A 0.0011

ing images and LiDAR scans from the dense point cloud (see Figure 3.4b) given a
predefined set of poses, extrinsics, and intrinsics of all the sensors. Those values
were chosen to be like [H] from Table 3.2 to have a realistic parameter set and
trajectory. We add 2 cm of isotropic Gaussian noise to the points of the LiDAR
scan. In Table 3.3 the RMSE’s of the individual parameters with respect to the
ground-truth parameters over all cameras and LiDAR sensors are displayed. Our
approach is able to outperform CV2O3D, the best-performing baseline in the
previous experiments. This shows the advantage of a combined adjustment over
an individual calibration.

3.4.5 Calibration of Different Perception Systems
To show the versatility of our system, we show the calibration results for different
perception systems with different sensors and configurations. For this, we provide
quantitative results in the form of the analytical covariances for the relative and
absolute poses, as well as qualitative results to provide a more intuitive way
to see how well the sensors are calibrated and the observations are aligned to
the map. The analytical standard deviations of the relative poses between the
sensors, i.e., their extrinsic, as well as the standard deviation of the absolute poses
are shown in Table 3.4. Both show that the translation can be estimated with
below millimeter accuracy, while the rotation angles have standard deviations of
around 0.06◦. Propagating these errors into the image leads to errors with around
2.6 pix standard deviation, which is in line with the measured 2.51 pix RMSE
from Section 3.4.2; indicating that our system can obtain realistic covariances.
Qualitative results can be found in Figure 3.6. For each sensor, the observations
from one timestamp can be seen in the calibration environment. The point clouds
from the LiDAR are well aligned with the walls. The camera observations of the
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Table 3.4: Standard deviation of the relative and absolute poses

Pose Platform x y z rx ry rz
[mm] [mm] [mm] [◦] [◦] [◦]

re
la

tiv
e IPB Car 1.26 1.24 1.04 0.0575 0.0578 0.0574

Youbot 1.06 1.06 1.06 0.0583 0.0594 0.0585
Dingo 1.07 1.06 1.08 0.0592 0.0634 0.0601

ab
so

lu
te IPB Car 1.01 1.0 1.02 0.0575 0.0578 0.0574

Youbot 1.03 1.03 1.06 0.0585 0.0592 0.0574
Dingo 1.04 1.03 1.03 0.0597 0.0621 0.0574

AprilTag coordinates are visualized by the corresponding ray in the reference
map frame. Furthermore, the camera rays intersect the AprilTag coordinates of
the reference point cloud map M . Note that for the estimation, not only the
observations from one timestamp but from around 50 timestamps at different
positions are used for a reliable estimation.

3.5 Discussion
In this section, we briefly want to discuss the advantages and disadvantages of our
proposed method, as well as possible future research directions that can emerge
from here. The main disadvantage we can see is that the setup can be costly; we
rely on a precise high-resolution point cloud obtained by a terrestrial laser scanner
(but needed only once) and have, in the best case, a dedicated room that we can
modify to be a good calibration environment. A great advantage however is that
once the calibration environment is prepared, the calibration does not require
any special knowledge, and the whole process can be completely automated. One
interesting future direction is to investigate how to reduce the costly hardware
without compromising on the calibration quality.

In our presented work, we focus on calibrating perception sensors. Odometry
sensors, IMU, or GNSS are harder to incorporate into the pipeline since our ap-
proach relates the measurements to the reference map and not between the poses
of the system at different timestamps. Incorporating an odometry sensor, or
IMU, probably requires the integration of the measurements between two times-
tamps and relating the measured movement to the poses of the system, while
when incorporating GNSS into the optimization, a globally referenced outdoor
environment is required. An additional, problem with GNSS is the accuracy of
the sensor observations and the correlations between the measurements due to
atmospheric influence and multi-path. Modeling the errors and correlations suf-
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3. Multi-Sensor System Calibration

(a) IPB-car

(b) Youbot

(c) Dingo

Figure 3.6: Visualization of the LiDAR scans and image rays to the reference map for
different sensor setups. (a) IPB Car is a roof-top mount equipped with 4 Basler Ace
wide-angle cameras and 2 Ouster OS1 multibeam LiDAR. (b) The Youbot is a ground
vehicle equipped with 2 Hokuyo UTM-30LX profile scanners and one Realsense T265
that has 2 fisheye lenses. (c) Our robot ”Dingo” is equipped with 2 SICK TIM781S
profile scanners and one FLIR Blackfly S fisheye camera. Both, the Dingo and the
Youbot have 4 Realsense D435 facing front, left, right, and rear. The point clouds are
well aligned with the reference scan. The camera rays corresponding to the detected
pixels as corners of the AprilTag intersect the corners of the reference point cloud.
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ficiently to obtain millimeter-accurate extrinsics is very challenging. Errors due
to wrong assumptions or modeling can propagate into the estimation of the other
parameters, potentially degrading the calibration quality of all sensors. There-
fore, we decided to not include the GNSS calibration in the optimization and
rather rely on independent manual measurements.

3.6 Conclusion
In this chapter, we presented an approach for calibrating the intrinsics and ex-
trinsics of perception sensors for robotic systems. The main idea is to exploit
a precise reference map from a calibration room as a common target for all the
sensors. This enables calibration of perception sensors that have limited or even
no overlapping FoV. We equipped the environment with structural elements and
uniquely identifiable targets to ensure correct correspondences and resolve am-
biguities for the calibration. A joint least-squares adjustment of all the sensor
observations is used to estimate the statistically optimal solution. This allows us
to successfully calibrate different multi-sensor systems. We calibrated different
modalities of multibeam LiDAR, profile scanners, wide-angle cameras, as well as
fisheye cameras. For evaluating camera-to-LiDAR calibration, we propose an in-
dependent method to compare different calibration approaches. Our experiments
show that our proposed approach provides accurate extrinsic and intrinsic cali-
bration. We estimated the parameters with millimeter and sub-degree accuracy.

In the grand scheme of this work, the ability to obtain accurate calibration
parameters is a necessary prerequisite for all the upcoming tasks, since we always
work with sensor data. This makes the calibration of the sensors indispensable.
Once we have our system calibrated, we can tackle the upcoming challenges
and take our robot out and map the environment. Our final goal is to localize
in the preconstructed map using the live LiDAR data. Potentially, multiple
robots, with different sensors and different tasks have to be localized in the map.
Having a calibration system that can handle different kinds of sensor systems
and configurations allows for a unified calibration procedure without relying on
different calibration methods for each individual setup.

In the next chapter, we will discuss our method for constructing a globally
aligned point cloud map. We will utilize a similar joint optimization of the LiDAR
data for the point cloud alignment as the one used in this chapter for the cali-
bration. However, due to the absence of a highly accurate target map (here we
used the TLS for this), we have to match the LiDAR point clouds with each
other instead. Additionally, in the following chapter, we have to deal with the
ego-motion of our vehicle while scanning, and the substantially larger amount of
data.
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Chapter 4

LiDAR Bundle Adjustment for
High Accuracy Simultaneous
Localization and Mapping

Constructing precise and consistent 3D maps is crucial for localization, surveying,
monitoring, or the generation of digital twins. Mobile mapping systems are often
used for constructing models in urban environments. Those systems are usually
equipped with 3D LiDAR sensors that scan the vehicle’s or robot’s surroundings,
obtaining each second millions of points sampled from the surfaces. Moving with a
LiDAR sensor through a scene allows for capturing large areas in a relatively short
time. The sensors however provide point cloud data in their own local coordinate
frames, such that the pure agglomeration of the raw point measurements does
not lead to a globally aligned map. To obtain such a globally consistent point
cloud map, one needs to register and align all LiDAR scans, and thus transform
each point into a unified coordinate frame. In other words, we need to know the
time-aligned trajectory of our LiDAR sensor to account for the ego-motion when
constructing a global point cloud.

In the previous chapter we have calibrated the sensors of our mobile mapping
system, allowing us to drive through the environment and obtain consistent and
undistorted measurements. This chapter investigates the problem of registering
large sets of LiDAR scans into a globally consistent point cloud map. This is the
second step towards localizing in a recorded map as depicted in Figure 4.1. In
the later chapters, we will first utilize such global point cloud maps to compute a
more memory efficient map representation, which we can afterward use to localize
our robots in.

The alignment of two point clouds with each other is a well-studied problem in
literature, where the most prominent method is the iterative closest point (ICP)
algorithm [21] and its variants [36, 193, 201]. For building large scale maps,
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Figure 4.1: Overview of the thesis. In this chapter, we want to process the raw mapping
data to generate a globally aligned point cloud map. For this, we need to estimate the
trajectory of the LiDAR, which we solve by LiDAR bundle adjustment.

two scans are not sufficient, but rather thousands to millions of scans need to
be registered. So instead of doing the registration once, one can apply ICP to
successive scans, which is often referred to as LiDAR odometry [206, 243, 247].
This usually provides relatively well-aligned point clouds for short to medium-
sized sequences. However, odometry systems suffer from drift, often leading to
bad globally aligned maps. To overcome this problem, one can incorporate loop
closures, which leads to a simultaneous localization and mapping (SLAM) system,
or exploit global positioning information, e.g., GNSS data, using a pose graph.
The optimization skews the whole trajectory to reduce the overall alignment error.
This usually leads to globally well-aligned maps but may lack local consistency,
as the pose graph redistributes the errors along the whole map proportional to
the uncertainty of the poses. One can try to increase the uncertainty for the
erroneous poses, but this requires knowledge about which pose or through which
observations the error was introduced, however, this information is usually not
available.

LiDAR bundle adjustment and some of the offline SLAM methods estimate
the trajectory jointly with the map, trying not only to reduce the global alignment
error but also to keep the map locally consistent. The big advantage over online
SLAM and odometry systems is that LiDAR bundle adjustment does not have to
work incrementally, but can utilize all the available information at once. LiDAR
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4. LiDAR Bundle Adjustment

Figure 4.2: We propose a LiDAR bundle adjustment approach for aligning multiple
point clouds. As shown here, our approach is able to generate a globally and locally
aligned point cloud map. The color of the full point cloud is based on the latitude,
while the points of the close-ups are colorized based on the direction of the normals.

bundle adjustment does not operate in real-time due to the large computation
needed to find data associations, and for optimizing the map and poses globally.
However, for several applications, the quality of the resulting map is the main
outcome and far more important than the runtime. In this thesis, we want to
have a precise globally and locally consistent map. Since, our goal is to store the
map and use it for later for localization, it is less crucial how long the construction
takes, and we can focus on obtaining a more precise solution.

”Rome was not built in one day.” (Medieval Phrase) – Nor can Rome
be mapped in one day.

Scanning large-scale environments can often not be performed in one session.
Either requiring to record multiple times or having multiple robots to map the
whole area. Processing data from different recordings poses a challenge for many
algorithms that try to align multiple point clouds. It leads to a discontinuous
trajectory and can lead to local inconsistencies through temporal changes of the
environment that need to be considered. Many algorithms exploit the fact that
the LiDAR sensor is measuring continuously, and thus the scans are spatially and
temporally adjacent. However, this assumption does not hold when having data
from multiple recordings. Our goal is to provide a method that can handle data
from multiple recording sessions to obtain a joint global map.

43



4.1. Related Work

The main contribution of this chapter is a LiDAR bundle adjustment approach
to globally align a large set of point clouds targeting high-quality reconstructions.
The final goal is to obtain a geo-referenced point cloud map as shown in Figure 4.2.
Starting from a set of scans and initial pose estimates, our approach tries to align
all the point clouds with each other. We jointly optimize the trajectory from
thousands of point clouds, resulting in a single big least squares adjustment.
Utilizing a continuous-time trajectory allows us to model the motion of the sensor
and the motion distortion of the scans without the need for odometry or IMU,
nor do we require synchronized triggered sensors. Thus, each individual laser
beam in a scan will be treated according to its measurement time. The usage
of an out-of-core circular buffer and pruning the search space of correspondences
allows us to run our approach on thousands of point clouds. Our approach is able
to perform single-session as well as multi-session alignment.

Overall, we propose a method that (1) estimates a continuous-time trajectory
of a 3D LiDAR scanner using LiDAR bundle adjustment, (2) which allows for the
efficient construction of high-quality large-scale maps, and (3) is able to handle
multi-session alignment to obtain a unified global map.

4.1 Related Work
Point cloud alignment is a well-studied problem in literature. Most approaches
that tackle the problem are based to some extent on the ICP algorithm [21].
ICP estimates the transformation between two point clouds iteratively by a set
of point correspondences, where in each iteration the correspondences are up-
dated by searching for each point the closest point in the other point cloud. The
classical point-to-point ICP [21] requires sometimes many iterations to converge,
which is why different error metrics [179], starting from point-to-plane [36] up to
entity-to-entity [201] relations, have been proposed to speed up the optimization.
The closest point assumption relies on a good initial pose estimate to find reliable
correspondences, which are necessary to converge to the correct solution. Feature-
based correspondence search can provide reliable data associations and can make
them more robust against the quality of the initial guess [64, 105, 111, 174].
However, the problem with feature-based matching is finding a suitable feature
extractor that works reliably in different environments and under different con-
ditions. Therefore, our approach uses the more classical closest point assumption
for all 3D points to be more independent of the sensor data.

Searching for correspondences is often the most time-consuming and also the
most difficult part. Acceleration structures, like hash maps [163, 168, 243], voxel
grids [255], octrees [216], or KDTrees [291], as well as projective correspondence
search [13, 110, 161, 256] are commonly used to speed up the search time.
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Mobile mapping systems often utilize modern multibeam LiDAR sensors that
can provide point cloud data of the surrounding environment at high frequency.
Building a globally aligned map requires registering the LiDAR scans to each
other. Sequentially aligning each incoming LiDAR scan to the previous one
allows results in an odometry-like estimate, which therefore is often referred
to as LiDAR odometry. Obtaining reliable correspondences between succes-
sive scans is unlikely due to the sparsity of the measurements. Therefore, it
has been proven beneficial to keep some sort of local map [13, 243, 291] of
the environment to which the new incoming frames are registered, and by this
the poses are estimated. Many different types of map representations have
been investigated: point-clouds [243, 291], voxels [161], normal distance trans-
forms [22, 42, 54, 195, 217], surfels [13, 53, 171, 219, 252], and implicit represen-
tations [48, 168].

LiDAR odometry estimates only the latest pose based on the previous obser-
vations, however, it does not update the former pose estimates. The problem with
any kind of odometry source, is that the small estimation errors accumulate and
the poses start drifting. Simultaneous localization and mapping (SLAM) tries to
tackle the problem by also updating the previous poses, which is especially valu-
able after revisiting a place, a so-called loop closure, to reduce the impact of the
drift substantially [84, 108]. A common representation for the SLAM problem is
to formulate it in a pose graph [44, 73, 74, 120, 137] where the poses are nodes
and constraints between the poses as edges in a graph. Odometry sources would
be edges between consecutive nodes, while loop closure constraints ensure global
consistency between nodes of revisited places. The underlying system can be
formulated as a least squares problem where a lot of research focuses on solving
this efficiently [74, 76, 167]. This is especially important for online SLAM which
tries to solve it incrementally, often even directly on the robot, which requires
the operation at sensor frame rate. Offline SLAM approaches try to estimate the
map and trajectory jointly using all available information [41, 228].

One important thing to consider is that the LiDAR measures while in mo-
tion which leads to a distortion in the scans, especially when moving at higher
speeds. For deskewing the scans, one can use a motion model [243, 291], mea-
sure the sensor’s motion using IMUs [205, 272], or estimate a continuous-time
trajectory [45, 53, 171, 172].

Classical photogrammetric bundle adjustment [232, 200] utilizes images to
jointly estimate poses as well as the 3D points. Similarly, LiDAR bundle adjust-
ment [17, 20, 133, 191] aims at globally aligning a set of point clouds into a consis-
tent map. Our approach belongs to this class of methods and tries to optimize the
whole trajectory jointly with the map. In contrast to pose graph-based SLAM ap-
proaches, LiDAR bundle adjustment tries to directly minimize the alignment error
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between the observed points. The foundation of jointly aligning multiple point
clouds with respect to each other dates back several decades [17, 137]. Benjemaa
and Schmitt [17] propose a joint alignment of multiple point clouds by minimiz-
ing the point-to-point error metric for all overlapping areas. This is the natural
extension of the ICP algorithm [21] for registering multiple point clouds and pro-
viding the fundamental principles of solving the multi-scan alignment problem.
We follow the core ideas of this approach: finding correspondences between over-
lapping point clouds, minimizing the distances between the correspondences in
a joint least squares adjustment, and repeating the process iteratively until con-
vergence. The problem with the original approach is regarding the scalability. It
was developed to align around ten point clouds, but not for aligning thousands
of scans that nowadays modern LiDAR can easily produce. Since each point
cloud is matched with each other, the method scales badly with the number of
point clouds. To overcome the problem, we propose to only associate each scan
to a few other scans to reduce the matching complexity from quadratic to linear.
Furthermore, the approach from Benjemaa and Schmitt [17] was not designed to
deal with the motion distortion introduced by the ego-motion of the LiDAR scan-
ner. We tackle the skewing of the moved LiDAR scans by modeling the sensors’
ego-motion using a continuous time trajectory.

Recent approaches like BALM [133] are developed to handle larger amounts
of scans. Instead of directly matching the scans, BALM [133] utilizes a feature
map of planar and line features that are optimized along the scan poses. Hav-
ing an external map representation bypasses the vast amount of matching, but
requires associating the scan points to the features. Similarly, Li et al. [128]
also tries to estimate the surface of the scene, but instead of approximating it
using planes and lines, they utilize local second-order polynomials. By doing so
they can approximate areas with curvature more accurately. The advantage of
utilizing such external map representations is that the estimated surfaces can
smooth out the noise of the point clouds. We decided against using an external
map representation since it always makes assumptions about the environment.
Approximating large smooth objects, e.g., streets or walls, with planes or poly-
nomials might be appropriate. But especially in natural environments with fine
detailed or uneven objects like trees, it remains an open question how well those
local assumptions still hold. Directly trying to align the point clouds does not
make any of those assumptions and represents the actual measurements. Another
approach that directly tries to optimize the point cloud alignment without any
additional map was proposed by Di Giammarino et al. [50]. Their photometric
bundle adjustment aims to minimize not only the geometric properties but also
a photometric error using the intensity channel of the LiDAR. To find fast cor-
respondences between the point clouds, projective data associations are made.

46



4. LiDAR Bundle Adjustment

This exploits the scanning pattern of the multibeam LiDAR sensors by utilizing
a range image-based representation. The main drawback of the approach is the
amount of RAM needed for larger sequences. To tackle the problem, only a sub-
set of scans, so-called key poses, are used for optimization. We instead utilize
out-of-core methods which allow us to align an arbitrary amount of point clouds
without running into RAM shortage. A different way to handle the vast amount
of data was shown by Liu et al. [129], which tackle the problem in a divide-and-
conquer manner. They split the trajectory hierarchically, reducing the large joint
optimization problem to aligning multiple smaller trajectories. The main problem
with hierarchical splitting is to tune the trade-off between local consistency and
global consistency accordingly.

4.2 LiDAR Bundle Adjustment

4.2.1 Problem Definition

Modern 3D LiDAR sensors, e.g., rotating multibeam LiDAR, provide point clouds
of the sensor’s surroundings. Assuming a dataset D = {(Pi, τ i)} of Nscans point
clouds Pi ∈ RNi×3 with the timestamps τ i ∈ RNi , where each point cloud Pi

consists of Ni points pj ∈ R3 and τ i of their corresponding timestamps tj ∈ R
at which the points are measured. Each point pj is located in the local coordi-
nate frame of the LiDAR at timestamp tj. To globally align the point clouds Pi,
we need to find the transformations T = {(Rtj , ttj) | ∀j} given by the rota-
tions Rtj ∈ SO(3) and translations ttj ∈ R3 for each beam that transforms the
point pj from the local coordinate frame at timestamp tj into a global coordinate
frame:

p̂j = Rtjpj + ttj , (4.1)

where p̂j denotes a point in the global coordinate frame. Point clouds from com-
mon LiDAR sensors, e.g., Velodyne HDL-64E, Ouster1-128, or similar, contain
points measured at different points in time due to their measuring process. This
requires either deskewing the scans (e.g., using a constant velocity model [243],
or an estimate of the sensor’s motion provided by an IMU [266]) or to estimate a
continuous trajectory [45, 53] over time to actually model the continuous motion
of the sensor in space. We utilize a continuous-time trajectory inspired by Del-
lenbach et al. [45] and interpolate the poses between the beginning and end of
each scan using spherical linear interpolation (SLERP) for the rotation and linear
interpolation for the translation. Applying the formulas for the continuous-time
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trajectory results the transformations

Rti = slerp(Rtb(j) ,Rte(j) , αj), (4.2)
tti = (1− αj)ttb(j) + αjtte(j) , (4.3)

where αj is the fraction of time between the start tb(j) and end te(j) of the corre-
sponding scan for a given point pj:

αj =
tj − tb(j)
te(j) − tb(j)

. (4.4)

In contast to Dellenbach et al. [45], we assume the end pose of one scan to be
the start pose of the successive scan, which results in a C0 continuous trajectory.
The objective function that we try to minimize is the squared distance of all
corresponding points between each scan D

E =
∑
j

∑
p̂c∈C(pj)

d(p̂j, p̂c)
2, (4.5)

where d(·) is a distance function (like point-to-point or point-to-plane), and
C(pj) = {pc | p̂c ≡ p̂j} is the set of points that correspond to the same loca-
tion as the point pj. For the point-to-plane distance function, we yield an error
function ej for an arbitrary point pj as

ej = n̂⊤
c (p̂j − p̂c), (4.6)

where n̂c = Rtcnc is the normal of the point pc computed based on the local
neighborhood within its scan. The derivatives1 [45] for the transformation of
point p̂j are given by

JR tb(j)

= −(1− αj)n̂
⊤
c Rtb(j) [pj]× (4.7)

JR te(j)

= −αjn̂
⊤
c Rte(j) [pj]× (4.8)

Jttb(j)
= (1− αj)n̂

⊤
c (4.9)

Jtte(j)
= αjn̂

⊤
c . (4.10)

The expression [·]× is the skew-symmetric matrix of a vector. Note that we
estimate the rotation increment as an axis-angle representation. The deriva-
tives of the error by the transformation parameters of the corresponding point

1Formulas from the official implementation [45].
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Ttc = {Rtc , ttc} can be derived analogously, i.e.,

JR tb(c)

= (1− αc)n̂
⊤
c Rtb(c) [pc]× (4.11)

JR te(c)

= αcn̂
⊤
c Rte(c) [pc]× (4.12)

Jttb(c)
= −(1− αc)n̂

⊤
c (4.13)

Jtte(c)
= −αcn̂

⊤
c . (4.14)

Each error equation given by Equation (4.6) contributes to the poses from two
scans in the optimization. Since generally only a small set of point clouds overlap,
the resulting normal equation system is relatively sparse. This allows us to utilize
sparse matrices and operations to solve the otherwise enormous equation system.

In reality, we do not know which points correspond to each other, nor can
we even ensure that a corresponding point was measured. Therefore, we use the
common assumption as in ICP and search for the closest point in a certain neigh-
borhood N (pj). We do not only have two point clouds, thus we have to search
for correspondences in multiple, and in the worst case, in all the point clouds. To
reduce the compute requirements, we sample a set of scans in which we look for
correspondences, as will be further explained in Section 4.2.2. Furthermore, we
need a sufficiently accurate initial guess required for solving the non-linear least
squares problem. In our experiments, having a LiDAR odometry system com-
bined with loop closures or with a low-cost GPS for global alignment obtained
a sufficient initial guess. To deal with outliers, e.g., caused by misalignment or
dynamic objects, we can use a Geman McClure-Kernel to reduce their impact in
the optimization.

4.2.2 Acceleration Strategies
Aligning all point clouds can be time-consuming. To tackle this problem, we
utilize three strategies to speed up operations. First, instead of matching each
point cloud Pi to all other point clouds, we randomly sample for each point
cloud Pi, Nmatches different point clouds Pk, within a radius τ

Ci = {Pk ∈ D \ Pi | ‖ti − tk‖≤ τ}, (4.15)

and only search for point associations in this subset of point clouds. This al-
lows us to reduce the complexity of the correspondence search from O(N2

Scans) to
O(NScans).

Second, we utilize a voxel hash map similar to Nießner et al. [163] with a
bucket size of one. We store in each voxel the index of the point closest to the
voxel center. Saving the index allows us to also access the point attributes without
occupying additional memory. The voxel hash map construction time is O(N),
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and performing a radius neighborhood search can be done in O(1). Note that
we have to construct the acceleration structure at each iteration of the optimiza-
tion, since the local point distribution changes due to the deskewing through the
continuous-time trajectory. Therefore, having an efficient acceleration structure
like the voxel hash map is crucial. Additionally, the hash map can be implemented
efficiently on the GPU to facilitate modern hardware accelerators.

Third, we subsample the point clouds. We utilize a grid-based subsampling,
where we can utilize the aforementioned voxel hash map. Subsampling is a sim-
ple but efficient way to save on redundant points which does not add a lot of
additional information [243, 291].

4.2.3 Memory Management

Storing all point clouds in memory is infeasible due to the sheer amount of data
when considering realistic setups. Loading each point cloud on demand from disk
is memory-efficient but slow since reading from RAM is usually way faster than
from disk. We compromise by using a circular buffer, only keeping the last Nbuffer

used point clouds in RAM. Whenever a point cloud is required that is not in
the buffer, we delete the scan from the buffer (but still keep it on disk) that was
used last and replace it with the new scan. Utilizing such out-of-core processing
allows for processing large amounts of data efficiently, without relying on large
RAM resources. Due to sampling the point clouds based on the distance τ , it
is quite likely to sample point clouds that are also close in time. Therefore, we
iterate sequentially through the point clouds to reuse, as much as possible, the
point clouds in the buffer before loading new ones in. Additionally, we reverse
after each optimization step the iteration order of the point clouds, such that the
end of the last iteration is now the beginning of the new one. By this, we exploit
that in the end the buffer is filled with point clouds close-by to the start of the
following sequence.

4.3 Experimental Evaluation
The main focus of this work is LiDAR bundle adjustment, where we want to
optimize from a set of scans and initial poses the continuous-time trajectory
that globally aligns the point clouds with respect to each other. We present our
experiments to show exactly the capabilities of our method.

In the following experiments, we precompute the normals of the point clouds
using the 30 nearest neighbors of each point in the scan. For each point cloud,
we search in Nmatches = 10 other clouds within τ = 30m radius for matches.
We downsample the scans to a resolution of 15 cm while we use for the voxel
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(a) TLS scan (b) LiDAR Scans aligned to TLS scan

Figure 4.3: (a) The ground truth for our dataset was generated using high-precision,
globally referenced TLS scans. (b) Close-by LiDAR scans (gray) are aligned to the
TLS scans to obtain reference poses. Note that we removed moving objects (cars,
pedestrians) and movable objects (parked cars, foliage) manually from the TLS to
allow precise scan alignment.

hash-map a grid size of 30 cm for finding the correspondences. We only look
for the correspondences in the adjacent voxels, resulting in 33 = 27 candidates.
Furthermore, we use a buffer size of Nbuffer = 1,000 point clouds, which practically
results in the same runtime as loading all point clouds in memory. For the non-
linear least squares adjustment, we stop at the latest after Niter = 100 iterations.
Usually, after around 10-30 iterations (depending on the quality of the initial
alignment), the adjustment converges. All experiments were conducted with an
NVIDIA RTX-A5000.

4.3.1 Results in Urban Environment

The first experiment evaluates the performance of our approach on our own col-
lected dataset, which we will refer, from here on, as the IPB-Car dataset. Our
setup consists of a car mount equipped with multiple sensors. We use a horizon-
tally mounted Ouster1-128 that provides us with point clouds recorded with 128
laser beams at 10 Hz, and a low-cost GPS receiver to provide global reference.
The dataset contains 11,702 scans with each up to N = 128 · 2,048 points. We
obtain the initial guess for all approaches by fusing the poses from KISS-ICP [243]
as odometry and GPS as unity factors in a pose graph.

For evaluation, a ground truth for more accurate reference data is needed. For
that, we selected key locations in the map, which we measured with a TLS. The
TLS scans are globally referenced using precise static dual frequency GPS with
long static recording per reference scan and using correction data from SAPOS
to mitigate atmospheric errors, resulting in centimeter-accurate global reference
poses with millimeter-accurate local accuracy. We align the recorded LiDAR
scans to the TLS ground truth scans similar to Nguyen et al. [162] for precise
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Table 4.1: Quantiative results on our recorded IPB-Car dataset

Approach ATE [m]
(trans)

ATE [◦]
(rot)

RPE [m]
(trans)

RPE [◦]
(rot)

KISS-ICP 2.28 1.21 0.023 0.121
KISS-ICP + GPS 1.34 2.79 0.025 0.131

PIN SLAM 1.76 1.43 0.020 0.122
PBA 0.99 3.53 N/A N/A
HBA 1.29 2.55 0.026 0.133

Our approach 0.90 0.63 0.014 0.055

reference poses, see Figure 4.3 for reference. In this dataset, the vehicle passed
8 times through reference locations. All vehicle LiDAR scans that are aligned
to a TLS scan will be used for quantitative evaluation. As metrics, we will
use the common absolute trajectory error (ATE) to obtain a measure for the
global positioning accuracy, as well as the relative position error (RPE) between
consecutive frames as a measure for local accuracy.

We also compare our approach against state-of-the-art baselines, here specif-
ically against PIN-SLAM [168] an online SLAM approach, as well as the LiDAR
bundle adjustment methods HBA [129] and PBA [50]. For completeness, we pro-
vide the results of KISS-ICP [243] solely as an odometry system and in a second
variant fused with GPS measurements as an initial guess. The results of our
collected dataset are shown in Table 4.1. Our approach is able to consistently
outperform all baselines regarding ATE, as well as RPE. Our approach takes on
average 45 min per iteration for the 11,702 scans, resulting in around two days
of overall optimization time. Note that PBA [50] only estimates the poses for
keyframes, which does not allow us to compute the RPE, since the metric is com-
puted between consecutive poses. HBA [129] requires around 160 GB of CPU
memory, while PBA [50] requires 43 GB GPU memory even though downsam-
pling the poses. With our out-of-core ring buffer containing the last 1,000 scans,
we only require 8 GB of GPU memory. Note that one can further reduce the
memory consumption by reducing the buffer size, but trading off slower process-
ing time. Just storing naively the full normal equation system without exploiting
the sparsity would alone require 40 GB memory, while solving would take over
150 days.
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200m

Figure 4.4: The estimated trajectory of our approach on the self-recorded IPB-Car
dataset overlayed on Google Maps. The trajectory contains multiple loop closures,
where some sections are mapped multiple times. This makes a global alignment nec-
essary to obtain a consistent trajectory. The red and green rectangles indicate the
location of the qualitative results in Figure 4.5.

4.3.2 Qualitative Results

Evaluating the accuracy of maps is a challenge, due to not having a ground truth
model, nor having known correspondences. Therefore, to convey the quality of the
estimated trajectory, we will show the resulting aggregated maps for qualitative
evaluation only. In Figure 4.4, we show our estimated trajectory (blue), as well as
a red and green rectangle, indicating the scenes shown in Figure 4.5. We visualize
the aggregated point cloud map using the estimated poses of the approaches,
where the color is coded based on the direction of the normals. In the green area
the car is driving through a parkway with a lot of trees, resulting in bad GPS
conditions. This leads to a translation error in the initial guess (KISS-ICP +
GPS), as can be seen by the walls not being aligned. Starting from this, HBA
is not able to resolve the local inconsistencies, while our approach successfully
aligns the point clouds.

The area denoted by the red frame is in an urban environment with high,
terraced houses, making it susceptible to GPS multipathing. Additionally, mis-
alignment in a sharp turn caused blurry maps. HBA can only reduce the blurring
slightly, while our approach is able to correct the pose errors and provide sharp
walls.
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KISS ICP + GPS

HBA

Ours

KISS ICP + GPS

HBA

Ours

Figure 4.5: Shown are two close-up parts of the IPB-car dataset to allow qualitative
evaluation. We obtain the initial guess for the methods using KISS-ICP fused with
GPS data (left). Due to bad GPS conditions, the map is misaligned after closing
longer loops, resulting in an inconsistent map. HBA can only slightly improve the local
map quality, while our approach is able to obtain a crisp point cloud map. The points
are colorized based on the direction of the normals.
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Table 4.2: Quantitative results on the MCD [162] dataset

Approach ATE [m]
(trans)

ATE [◦]
(rot)

RPE [m]
(trans)

RPE [◦]
(rot)

N
T

U
-d

ay
-1

KISS-ICP 7.21 3.54 0.133 1.056
KISS-ICP + Loop 2.08 3.66 0.129 1.059

PIN SLAM 1.34 2.20 0.086 1.069
HBA 1.79 2.81 0.129 1.060

Our approach 1.03 1.75 0.129 0.599

N
T

U
-d

ay
-2

KISS-ICP 0.27 0.86 0.094 0.663
KISS-ICP + Loop 0.35 1.64 0.092 0.665

PIN SLAM 0.28 1.29 0.063 0.636
HBA 0.19 0.87 0.092 0.665

Our approach 0.20 0.99 0.083 0.397

4.3.3 Results on Campus-Scale Data
To validate our performance in a different environment under different condi-
tions, we evaluate our approach on the Multi-Campus Dataset (MCD) [162]
dataset. We use this dataset due to the high-quality ground truth which also
utilizes precise TLS reference maps. Since our approach refines poses from, e.g.,
SLAM/odometry + GPS, comparing against ground truth generated with simi-
lar methods [63, 141] would not be significant, therefore using only datasets that
have TLS reference. In contrast to our dataset, where the sensor is mounted on a
car and the environment is in an urban environment, MCD [162] uses a handheld
device in a campus environment. The ntu-day1 sequence of MCD [162] has 6,010
scans, while ntu-day2 is with 2,274 scans substantially smaller. Due to a lack of
GPS reception, we use KISS-ICP [243] optimized with loop closures [83] using
pose graph optimization as an initial guess. The results are depicted in Table 4.2.
On the longer day1 sequence, our approach is able to estimate the most accurate
trajectory in terms of ATE (translation and rotation), and RPE (rotation), as
well as the second best regarding RPE (translation). On the shorter sequence,
the quality of the estimated trajectories is more similar, since the drift is very
small and the initial poses are already quite well aligned. Our approach provides
throughout competitive results. The overall higher errors with respect to the
IPB-car dataset can be explained by the higher motion profile due to holding
the sensor in hand. Due to our linear interpolation, we assume constant velocity
within the timeframe of one scan. It would be interesting to investigate higher
polynomial interpolation in the future.
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Table 4.3: Multi-Session alignment MCD-NTU day 1 & 2

Approach Inter RPE [m] (trans) Inter RPE [◦] (rot)

KISS-ICP + Loop 0.567 3.20
Our 0.085 0.08

4.3.4 Mutli-Session Alignment

The MCD [162] dataset provides different runs in the same location on different
days, enabling us to perform and test multi-session alignment. In this task, we
want to align multiple scans from multiple sessions together jointly, such that
they form a consistent map. This task is important when building maps of
areas that cannot be recorded in one session. For the initial guess, we take the
previously separately estimated KISS-ICP [243] poses and fuse them with loop
closures between the sequences. In other words, combining LiDAR odometry,
plus inter-loop closure within the first sequence and intra-loop closure from the
second sequence to the first sequence in a pose graph. Our approach is able to
align both trajectories jointly. The only thing one needs to deal with is the time
discontinuity between the sessions, i.e., for the trajectory estimation, the end pose
of the first session is not the start pose of the second session.

For quantitatively evaluating how well both trajectories are aligned to each
other, we compute the relative transformation between each pose of the second
trajectory to the corresponding pose in the first trajectory. This we do for the
ground truth trajectories, as well as for the predicted trajectories, such that we
have a set of relative transformations between the trajectories respectively. We
compute the root mean squared error between both sets of relative transforma-
tions. This is similar to the RPE but between two different sessions instead,
therefore we will denote it as inter-RPE. While the classical RPE computes the
error between consecutive poses in one session, the inter-RPE computes the error
between corresponding poses across two sessions. The correspondences are com-
puted on the ground truth poses by taking for each pose of the second session
the closest pose of the first session.

The results for the initial guess and for our approach are provided in Table 4.3.
The initial pose-graph-based alignment using KISS-ICP plus loop closures is off by
over half a meter and a few degrees. Our approach is able to reduce this initial
alignment error to a few centimeters and sub-degree accuracy. For qualitative
comparison, we refer to Figure 4.6. Although the trajectories of the initial guess
are globally well aligned, the resulting aggregated map is noisy, especially due to
errors in rotation. Our approach however is able to align the sessions, resulting
in a joint, globally and locally aligned map.
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(a) Initial guess

(b) Estimated alignment

Figure 4.6: For the multi-session alignment, we jointly optimize the scans from two
sessions (Session 1: Blue, Session 2: red). (a) Depicts the initial guess, where one can
see that the sessions are roughly aligned, but overall the map is quite noisy. In (b), we
show the aggregated map after our alignment. Seeing that both the red and blue point
clouds are well aligned; leading to crisp structures.
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4.4 Conclusion
In this chapter, we presented a novel approach for LiDAR bundle adjustment.
Our approach processes initial aligned LiDAR scans to compute a globally aligned
point cloud map. The proposed method refines the pose estimates from LiDAR
odometry or even SLAM systems on a scan level to obtain a more consistent and
precise map, as well as trajectory. We estimate a continuous-time trajectory to
account for the motion of the LiDAR sensor while scanning. For the optimization,
we minimize directly the alignment error between the points of overlapping scans
in a least squares fashion. Directly optimizing on a point level allows for generat-
ing precise poses and aligned point cloud maps. One of the major challenges for
aligning large sets of scans together is the required computations. We tackle this
problem by reducing the search space for potential correspondences between the
scans within a certain proximity due to the finite range of the LiDAR sensors.
Additionally, we utilize hash maps that allow for searching correspondences on a
GPU in a reasonable time. The usage of circular buffers allows for scaling up the
sequence length without running into memory problems. We implemented and
evaluated our approach on different datasets with TLS-based, accurate ground
truth information. This allows us to successfully estimate the trajectory of the 3D
LiDAR sensor and provide well-aligned point cloud maps. Our approach is able to
provide competitive results on different datasets. We show that our approach can
provide accurate trajectories, tested on sequences with up to 11,700 scans with
centimeter relative accuracy and below a meter global accuracy. Additionally,
we show that our approach can be used to jointly align multiple sessions.

In this thesis, we want to localize our robots in preconstructed maps using
LiDAR data. The method proposed in this chapter enables us to build these
large-scale maps by aligning the raw local point clouds and aligning them into a
global point cloud map. This globally aggregated map could theoretically already
be used for localization. The main problem with using the whole point cloud as
a map is the large amount of memory it requires. A quarter of a city can easily
require hundreds of Gigabytes to several Terabytes of memory. If we want to lo-
calize a robot within the map, then it also needs access to the map. Storing those
maps directly on the robot can exceed the available onboard storage quickly; at
the same time the amount of data is also too large for downloading on-demand
from a cloud service. Therefore, in the next chapter, we will discuss a way to
compress those point cloud maps to obtain a more memory-efficient representa-
tion. Afterward, in Chapter 6 and Chapter 7 we investigate how to localize in
those compressed maps.
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Chapter 5

Deep Compression for Dense
Point Cloud Maps

Maps are the foundation for robot navigation, involving tasks such as localiza-
tion, planning, or scene understanding. Large-scale point cloud maps can be
acquired using LiDAR sensors of modern mobile mapping systems as we have
demonstrated in the last chapter. For utilizing those maps, the robot needs to
somehow access the data: requiring either to store it on-board or downloading it
on-demand. However, the pure amount of data poses challenges to both options.
On-board storage is limited, costly, and requires physical space, which needs to
be considered especially for smaller robotic systems. The other option would be
to have the whole data stored on a server and only transfer the required parts to
the robot on-demand. Although upcoming 6G networks will enable higher data
transfer rates, the amount of data needed will exceed quite fast the available
network capacity. Furthermore, the memory consumption is only one side of the
medal: we do not only need to store the data, but also use it in our applica-
tions and algorithms. Processing these large-scale point clouds for downstream
tasks is compute-intensive and algorithmically challenging. Therefore, represent-
ing the 3D data in a compact and structured way is key for efficient storage and
processing.

In this chapter, we tackle the high memory demand of large-scale point cloud
maps. For this, we investigate the usage of deep neural networks to compress the
point clouds into a memory efficient representation. Our compact representation
can not only be used for decompression to restore the point clouds, but in Chap-
ter 6 and Chapter 7, we will also demonstrate the direct usage for localization.
By the end of this chapter, we will have built all the building blocks to construct
from the aggregated sensor observations a compact global map as illustrated in
Figure 5.1.
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Figure 5.1: Overview of the Thesis. While the last chapter dealt with constructing
large-scale point cloud maps, in this chapter we want to compress them, to enable effi-
cient storage. Additionally, this compressed representation will be used in the following
chapters for coarse and fine localization.

Representing 3D data in a memory-efficient way is a common problem in
robotics and computer graphics and several approaches exist that tackle this
challenge. Binary space partition approaches, like Octrees [150] or kD-trees [19],
utilize a hierarchical data representation that allows for efficient storage and fast
neighbor queries which is needed by many algorithms. Voxel grids [1] discretize
the world enabling fast access, however, at the cost of incurring a large memory
footprint. To overcome this problem, Octomaps [89] store voxels in a sparse
octree structure, thereby reducing the memory requirements.

So-called 2.5 D representations [121, 231] make strong assumptions that often
do not hold in natural scenes. Another technique is to use triangular meshes to
approximate the environment or use multiple primitives, like planes, cylinders,
or spheres [199], but such predefined geometries may not fully exploit the avail-
able potential of recurring structures. Learning-based methods enable capturing
common characteristics of the scene for further compression [190]. Recent deep
neural autoencoder networks [91, 95, 183] provide data compression for different
domains and they have also been successfully used to compress 3D point cloud
data. This work belongs to this class of approaches and proposes a novel archi-
tecture exploiting state-of-the-art representation learning for 3D point clouds to
achieve high compression rates.

60



5. Deep Compression for Dense Point Cloud Maps

Code:
0.19 GB

Input: 40.70GB

Encoder

Decoder

Reconstruction

Figure 5.2: 3D point clouds obtained by an autonomous car or robot require a large
amount of memory. Transferring this data to a fleet of cars or sending it to some cloud
service requires compression of the data. Our approach can reconstruct dense point
clouds from a highly compressed representation even when targeting low bit rates. The
point cloud color indicates the height above ground ranging from blue (low) to red
(high).

The main contribution of this chapter is a novel deep learning-based approach
for compressing 3D LiDAR point cloud data in a lossy fashion for large-scale out-
door environments (see Figure 5.2 for an illustration). Our approach exploits the
occurrence of common structures through local feature descriptors. It learns a
small and compact set of local feature descriptors that allows compressing and re-
constructing point cloud data. Our approach is end-to-end learnable and provides
dense point clouds even when targeting low bit rate compression. Additionally,
we propose a novel deconvolution for point clouds with feature propagation and
integration. Our deconvolutional kernel operates directly on a set of points, which
makes discretization unnecessary. We compare our approach with state-of-the-art
compression techniques such as Draco [70] and the octree-based approach from
Mekuria et al. [151]. In brief, we are able to provide higher quality maps after
decompression than the state-of-the-art compression approaches at the same bit
rate.
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5.1 Related Work
In recent years, we witnessed an increasing interest in deep learning using point
clouds from the computer vision and robotics community. Guo et al. [82] provide
a larger survey of the field, while here we concentrate on representation learning
and point cloud compression using neural networks.

5.1.1 Representation Learning on 3D Point Clouds
Point clouds in their rawest form are a set of coordinates, typically sampled from
the surface of an object or scene. Representation learning for 3D point clouds tries
to estimate useful features for solving specific tasks. Earlier works focus on hand-
crafted, mostly geometric features like histogram of normal orientations [230],
spin images [104], or spectral features [14, 157].

The ability of neural networks to reliably estimate patterns in the data has
motivated many researches to investigate how these methods can be applied on
point clouds. PointNet [180], one of the earliest works, uses multi-layer percep-
trons followed by pooling operations to extract pointwise, but also point cloud-
wise descriptors. The biggest shortcoming of this method is that it does not have
local awareness. The follow-up work PointNet++ [181] tries to overcome this
problem by hierarchically applying the PointNet structure repeatedly to local
neighborhoods for different scaling factors. Each layer downsamples the point
cloud by iteratively choosing the furthest point from the already collected subset
to keep a good coverage of the point cloud. Liu et al. [130] extend this idea by a
multi-level feature aggregation to increase the contextual information.

A different way to obtain locally descriptive features is the usage of convolu-
tional neural networks. In the 2D image domain, the convolution is defined on
the discrete pixel positions that naturally lie on a grid, which is still the standard
for convolutional neural networks that process images [123]. In the point cloud
domain, there does not exist such a clear standard formulation. The natural
extension from the 2D image domain to 3D is the discrete formulation of the
convolution on Voxel grids [149, 267]. However, 3D point cloud data differs more
from images than just through dimensionality: (1) point clouds are sparse, while
images are dense; (2) the coordinates in a point cloud are typically not located
on a raster, but arbitrarily in space. To address the sparsity, convolutions on
sparse voxel grids have been proposed [38, 39]. Those methods only compute the
convolution on occupied voxels, and therefore assume the empty voxels to have
a zero feature. Similarly, convolutions can also be defined on octrees [185, 249],
which hierarchically partition the space. The hierarchy leads naturally to differ-
ent abstraction levels. However, both methods, sparse voxel grids, and octrees,
need to discretize the scene, which leads to errors.
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To overcome this problem Thomas et al. [226] defines a convolution operation
for point clouds without discretization. They define a continuous convolution
for point clouds with the help of some predefined kernel points, which they call
KPConv. These kernel points are distributed in space and each has its own convo-
lutional weight associated. The 3D continuous weight space can be interpolated
from these discrete positions allowing to utilize this convolution for arbitrary
distributed point clouds. In this thesis, we will mainly utilize KPConv [226] to
extract local point features, without having any discretization effects.

Most convolutional networks utilize some sort of downsampling, and upsam-
pling to learn low-level and more abstract features [226]. Our key idea for
compression is to utilize these intermediate downsampled, low resolution, but
abstract features as compressed representation. The established network archi-
tectures [38, 226] do not target compression but are implemented for semantic
segmentation instead. This allows them to utilize information from the original
input point cloud in their decoder part. We are targeting compression, therefore
our decoder should only use the information from our compressed representation
to restore the input. Using information from the input point clouds would require
to store this data as well, and thus we would not efficiently compress. We ad-
dress the problem by defining our own deconvolution that is not only computing
features, but also upsamples the point coordinates. Our recovering of the point
coordinates is a similar problem to the point cloud upsampling task, which tries
to estimate a dense point cloud based on a low resolution point cloud. For this,
Yu et al. [284] propose a network to upsample point clouds using local feature
matrices. In contrast to their hierarchical purely point-based approach, our de-
convolution integrates and propagates features. We use multiple deconvolution
layers which allows for more flexible upsampling rates at inference time.

Transformer architectures have shown successful results, first in natural lan-
guage processing [238], and then also in image processing [52]. While convolutions
aggregate information based on their spatial distribution, Transformer architec-
tures utilize the attention mechanism to aggregate information based on feature
similarity. In the domain of point cloud processing, Transformer methods can be
split into two categories. (1) Global Transformers compute the attention mech-
anism over the full point cloud, but thereby is only feasible for smaller point
clouds, as often encountered in computer vision [81], or in robotics for radar
data [287, 288]. (2) Local Transformers compute the attention mechanism only
locally within the proximity of the points, thus only aggregate features from their
local neighbors as for convolutions [227, 296]. In this part of the thesis, we utilize
solely convolutional neural networks, while in later chapters we also incorporate
Transformer blocks and especially look into more detail in the attention mecha-
nism.
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Recently, the use of diffusion models [88, 210] has also been investigated in
the context of point cloud generation [124, 164]. Results from diffusion models
are often less noisy which makes it interesting also for compression [277]. We will
leave the investigation of compressing point clouds with diffusion models as an
open future research direction.

5.1.2 Point Cloud Compression
Many works in the field of robotics, computer graphics, and computer vision focus
on compressing point cloud data. Octrees [150] can be used to efficiently store
three-dimensional data and furthermore is also an efficient map representation in
the field of robotics [89, 56]. Binary octrees partition the space recursively into
octants until a certain depth is reached, or the octant does not contain any points.
The leaf octants describe finally the structure of the scene. A point cloud can be
restored by estimating the center points of each occupied leaf node. Schnabel et
al. [198] predict for each octant the number of non-empty cells, as well as the cell
configuration based on local surface approximations. The imbalanced occurrence
of these attributes allows for further compression using arithmetic coding. Huang
et al. [96] reorders the bits of the occupancy codes and quantizes the normals for
lowering the entropy. OctSqueeze [94] uses neural networks to learn a conditional
probability model, followed by entropy coding to compress frequent symbols with
fewer bits than rarer symbols. Octrees efficiently store three-dimensional coordi-
nates but require additional methods to compress attributes [290]. In the domain
of computer graphics, the similar VDBs [158] are more commonly used for effi-
cient representation. First robotic works [242] have shown success in applying
this compact map representation for LiDAR-based mapping.

Other approaches focus on an iterative prediction of neighboring points using
spanning trees [80, 153]. Tree structures are very memory efficient in most real-
world scenarios but do not exploit the full potential of recurring common objects.

The correlation between point clouds acquired from LiDAR or depth camera
streams offers a further possibility to save memory. A range-image-based rep-
resentation allows for the usage of image or video compression algorithms [106,
152, 160, 221, 235]. However, such a projective representation is not suitable for
large dense maps captured from many locations, since it represents well only the
environment of the actual viewpoint, while many parts are occluded.

Golla et al. [67] exploit standard image compression for static point clouds by
storing oriented compressed height and occupancy images for local patches. Deep
convolutional autoencoders can use a rate-distortion loss [182, 183] to ensure a
good trade-off between quality and memory consumption. Quach et al. [182] use
voxel grids to define the convolution, which is feasible for smaller objects but
can be very memory exhaustive for point clouds of outdoor environments like
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the ones we operate on. Note, that only the initial and predicted voxel grids
are memory exhaustive, while the intermediate results are still compressing the
data. In addition to the autoencoder, they utilize differentiable quantization for
further compression. The follow-up work [183] replaces the voxel grid with an
octree-based structure to reduce the initial memory demands, alongside improved
entropy modeling. In contrast, our KPConv-based network does not require to
voxelize the whole scene and works directly on the point clouds, making it suitable
for larger scale point clouds. For us, quantization after training was sufficient,
without the need to specially train for it.

Similar to Huang et al. [95], we also propose an end-to-end learnable point
cloud compression autoencoder network. In contrast to their approach embedding
the information of the whole point cloud into a single feature, we store a set of
local feature descriptors together with positions from which we can then restore
the point cloud.

5.2 Point Cloud Compression Using a
Convolutional Autoencoder Network

The idea of our novel approach for point cloud compression is to learn for a
small subset of points useful features from which we can recover the original
point cloud. To this end, we propose an autoencoder structure for point cloud
compression comprised of two parts. First, the encoder learns, from a given
input data, a reduced and often more abstract representation, which we denote
as embedding. The embedding is the input for the second part, the decoder
that tries to reconstruct the original data using this compressed representation.
By comparing the reconstruction with the original point cloud, the network can
learn self-supervised parameters via backpropagation [192]. An illustration of
our method is depicted in Figure 5.3. Compression is achieved as long as the
embedding is smaller than the original point cloud.

5.2.1 Encoder Blocks
In our case, the input of the encoder is a dense 3D point cloud with the coordi-
nates P ∈ RN×3 and point-wise features F ∈ RN×D. The encoder uses multiple
convolutional layers to learn local geometric features for each point. In Figure 5.3,
the coordinates P are denoted in blue and the learned features F in red. Each
layer reduces the number of points while increasing the receptive field. We use
kernel point convolutions (KPConvs) by Thomas et al. [226], which directly oper-
ate on the features of the points themselves to avoid discretization effects caused
by grid-based representations such as voxel grids or octrees. We use the ResNet-
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Loss

KPConv Cont. Deconv

Figure 5.3: Schematic overview of our proposed network. The encoder takes as input a
point cloud (P,F0) and computes subsequentially for each subset a feature descriptor
Ci, i ∈ {0, 1, 2} (red) using kernel point convolutions. The last feature descriptor will
be mapped using an multi layer perceptron (MLP) to the compact embedding space
E ∈ RNE×3 (yellow) to enable a memory-efficient representation. This embedding
E with its associated points can be used for storage or transmission and will later
be used by the decoder to decompress the point cloud. The decoder consists of four
deconvolutional layers which subsequentially upsample the point cloud (green). We use
the feature of the last layer as a refinement of the last coordinates. The loss enforces
a similar appearance of input and output. Additionally, we have a regularization term
for each upsampled cloud (denoted by the dotted line) to be lower-resolution versions
of the input.

style blocks that compute the output features F o based on the input features F i

and their corresponding coordinates Pi. The identity shortcuts in ResNet blocks
enable a more direct gradient flow to earlier layers to reduce the risk of encounter-
ing instabilities due to vanishing gradients [86]. For a more detailed explanation,
we refer to Section 2.2.2 or the KPConv paper [226]. In each encoding block, we
downsample the previous point cloud using grid-based subsampling. This returns
for each occupied voxel the point which is the nearest to its center. It provides
us with a homogenous point distribution without the risk of losing all points in
a certain sparser area (as random sampling) or incur long sampling times (as for
furthest point sampling). In contrast to skip connections between the encoder
and decoder, no additional information needs to be stored for the decompression.
The last layer consists of an MLP to compress the features of size RN×Dout to the
desired dimension RN×Demb .
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skip

Figure 5.4: Overview of our proposed deconvolution block. Our deconvolutional kernel
consists of two small MLP networks which serve as 1D convolutions. The first MLP
(upper part) transforms the old feature F into a new feature space. The second MLP
(lower part) predicts the offset to the new position p within the unit-square and scales
it to the desired size r. Depending on the number of deconvolutional kernels, in this
example K = 3, we upsample the point cloud by a factor of K.

5.2.2 Decoder Blocks
The task of the decoder is to reconstruct the original data from the embedding.
Most encoder-decoder networks use skip connections [156, 187] from the encoder
to the decoder to keep the high-frequency information. For compression, skip
connections cannot be used, since it would require storing additional data from
the encoder blocks for usage in the decoder. Hence, the whole signal must be en-
coded in the embedding to achieve effective compression. Therefore, we present a
decoder block that does not depend on any skip connections but rather estimates
the lost coordinates themselves. For a given point (pi,f i), we define the decon-
volution C−1 by a set of K MLP layers, as depicted in Figure 5.4. For each point,
we obtain K new points {(pk

i ,f
k
i )}, k ∈ {0, . . . K − 1} within a given radius r by

pk
i = pi + r ·∆k(f i), (5.1)

fk
i = Φk(f i). (5.2)

Let us call ∆k an offset block, which consists of an MLP with one hidden layer,
uses a ReLU activation after the first layer, and tanh after the second. The offset
block ∆k determines a coordinate increment by a nonlinear mapping of the feature
space into the coordinate frame of the kernel ∆k : RDin 7→ [−1, 1]3. The feature
block Φk : RDin 7→ RDout computes new features based on the old descriptor. Sim-
ilar to the offset block ∆k, the feature block Φk is also an MLP with one hidden
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layer but utilizes two ReLU activations instead. K offset and feature blocks form
the proposed deconvolution C−1 : {RN×3,RN×Din} 7→ {RKN×3,RKN×Dout} which
will be applied to each point {(pi,f i)} of the current layer. This upsamples the
point cloud by a factor of K.

5.2.3 Network Architecture
Figure 5.3 provides an overview of our proposed network architecture. We use
3 KPConv encoding blocks with grid-based subsampling followed by one MLP
layer for compressing the embedding. Experiments show that a deeper encoder
architecture leads to a lower decompression quality. We explain this behavior by
vanishing gradients due to the absence of skip connections between the encoder
and decoder. The radius of the convolution is equal to the resolution rs of the
sampling grid. This ensures that all points are part of at least one convolutional
operation.

We estimate the relation between the grid resolution rs and the sub-sampling
rate A(rs) to upsample the point clouds to their original size

A(rs) =
a

rbs
. (5.3)

Further derivation and reasoning of the chosen power function (with the pa-
rameters a and b) are provided in Section 5.3. We use the grid resolution rs
to control the compression rate. The sparser we sample, the higher the com-
pression will be and the more points we need to upsample. Each KPConv has
33 = 27 kernel points arranged in a grid with an influence radius of σ = r/2. The
feature dimension (the red blocks in Figure 5.3) for the KPConvs is 16, 32, 32

respectively, and 3 for the embedding (yellow block). We saw that these rela-
tively compact feature descriptors are sufficient to store the geometric information
about the neighborhood. If the original point cloud has no feature, we then use
the occupancy value (f i = 1) as advocated by Thomas et al. [226]. The decoder
consists of 4 deconvolutions to upsample the embedding to its original size. We
use 32-dimensional point features and 128-dimensional hidden layer spaces in the
deconvolution (expressed through the green blocks in Figure 5.3). The upsam-
pling factor Ki of the deconvolutional kernels is adapted to the sampling rate (see
Section 5.3.6.1). Since the feature of the last layer is unused otherwise, we feed
it to an MLP (R32 7→ R3) to refine the coordinates.
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5. Deep Compression for Dense Point Cloud Maps

5.2.4 Loss Function
We want to restore a point cloud, which is as similar as possible to the input. We
use the Chamfer distance DCD as a measure of similarity in our loss function L. It
is the average symmetric squared distance d̄2 of each point to its nearest neighbor
in the other point cloud

DCD(P in,Pout) =
d̄2(P in,Pout)

2
+

d̄2(Pout,P in)

2
, (5.4)

d̄2(Pi,Pj) =
1

|Pi|
∑
pi∈P i

min
pj∈Pj

‖pi − pj‖22, (5.5)

where P in denotes the input point cloud before compression and Pout the decom-
pressed point cloud. Using the symmetric distance prevents the network from
flooding the whole space with points but also from leaving out parts that have
been present in the original point cloud. We add the Chamfer distances between
the input point cloud and the output points P̂ of all deconvolutions as a reg-
ularization term to ensure valid intermediate results. The loss L is then given
by:

L = DCD(P in,Pout) + β
∑
j

DCD(P in, P̂j), (5.6)

where β is a weight to control the impact of the regularization term and we use
β = 0.2 in all of our experiments. For a more detailed analysis of the regulariza-
tion, see Section 5.3.6.2.

5.3 Experimental Evaluation
In this section, we validate that our proposed algorithm is able to compress point
cloud data efficiently. We compare our method to Draco [70] and the octree-based
compression algorithm by Mekuria et al. [151], which we will refer to as “MPEG
anchor”. Additionally, we will show the results for a binary Octree [150] that
distinguishes between free and occupied space.

5.3.1 Implementation Details
We use the octree implementation by Behley et al. [15] for an efficient radius
neighbor search in the KPConv blocks. Our model is implemented in Py-
Torch [176] and trained on a GeForce RTX 2080 SUPER and with an Intel CPU
with 3.5 GHz. We use the Adam optimizer [114] and the one-cycle learning
rate schedule proposed by Smith et al. [209] with a start learning rate of 10−6,
which will increase to 10−4 in the first 20 epochs and afterward decrease to
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10−5. We use the cosine annealing strategy and train for 200 epochs with a
batch size of 3. We limit the number of input points to 30,000 points to speed
up the training and reduce the memory footprint while training. Nevertheless,
we compare at test time our reconstructed point cloud to all available points.
We train four network architectures with varying sub-sampling resolutions
rs ∈ {3.0m, 2.0m, 1.2m, 1.0m} for different compression levels. The encoder
needs approximately 0.27 MB and the decoder between 0.30 MB and 0.62 MB
memory storage (depending on the upsampling rates), which is a one-time
investment and not depending on the number of compressed maps or points.

5.3.2 Experimental Setup
Our network is designed for compressing large-scale dense point clouds. We
evaluate our method on the SemanticKITTI [12] dataset. For obtaining highly
accurate and dense point clouds, we aggregate all scans using the ground truth
poses and divide the map into patches of size 40 × 40 × 15m3. The labels have
been used to remove the dynamic objects which otherwise will lead to artifacts
in the map. To remove redundant points in the original point cloud, we filter it
using a voxel grid with a resolution of 10 cm3. We use sequences 00 to 10 (except
08) for training. A small subset of the training data serves as a validation set and
the complete sequence 08 is used for testing and comparison with the baselines.

The quality of a compression algorithm is a trade-off between compression
ratio and reconstruction error. For the compression ratio, we use the average
bits per point required for storing the encoding of the point cloud. We use
three metrics for measuring the reconstruction error. Symmetric point cloud
distances Dd are widely used for measuring the quality of the point cloud recon-
struction. These metrics consist of two parts: the distance D̄d from the ground
truth point cloud P in to the reconstruction Pout and vise versa

Dd(P in,Pout) =
D̄d(P in,Pout)

2
+

D̄d(Pout,P in)

2
, (5.7)

D̄d(Pi,Pj) =
1

|Pi|
∑
pi∈P i

min
pj∈Pj

d(pi − pj). (5.8)

Thereby, the metric is sensitive to false positives (reconstructing points in
unoccupied areas) and false negatives (leaving out occupied areas). The Eu-
clidean distance De = Dd(P in,Pout) with d = ‖pi − pj‖2 is used as a metric for
reconstructing the points itself. However, for some robotics applications (e.g.,
point-to-plane ICP), it is less important to reconstruct the exact same point than
that it lies on the same surface. Therefore, we also show the symmetric plane
distance D⊥ = Dd(P in,Pout) with d = |nT (pi − pj)|. Where n ∈ R3 denotes the
ground truth normal of that point. The normals have been precomputed using

70



5. Deep Compression for Dense Point Cloud Maps

0.00 0.25 0.50 0.75 1.00 1.25
Bits per Point

0.0

0.1

0.2

0.3

0.4

D
e [

m
]

Draco
MPEG
Octree
ours:32bit
ours:16bit

0.00 0.25 0.50 0.75 1.00 1.25
Bits per Point

0.00

0.05

0.10

0.15

0.20

0.25

D
⟂

 [m
]

Draco
MPEG
Octree
ours:32bit
ours:16bit

0.00 0.25 0.50 0.75 1.00 1.25
Bits per Point

0.0

0.1

0.2

0.3

0.4

0.5

Io
U Draco

MPEG
Octree
ours:32bit
ours:16bit

Figure 5.5: Compression results on the test sequence 08 of the KITTI Vision Benchmark
dataset. We use Draco [70], the MPEG Anchor from Mekuria et al. [151], and our own
binary Octree implementation as baselines. Our approach can reconstruct the point
cloud for the same amount of memory at a higher quality level.
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Figure 5.6: Compression results on the nuScenes dataset. The model was trained on
SemanticKITTI and evaluated on nuScenes to show the generalizability of our approach.
The errors are slightly higher compared to the validation set of KITTI, but we are still
able to outperform the baselines.

the Eigenvalue decomposition of the covariance matrix from all points within a
50 cm radius around the query point, for more information we refer to Section 2.1.

The last metric is the intersection-over-union (IoU) between occupancy grids
G for both point clouds. The IoU is here defined as

IoU =
|Gin ∩Gout|
|Gin ∪Gout|

. (5.9)

The occupancy grids Gin and Gout have a resolution of 20 × 20 × 10 cm3 as
used by Huang et al. [94].

5.3.3 Compression Results
In this first experiment, we compare our compression results to the baselines to
quantify the compression performance of our proposed method. Our approach
stores the output of the encoder, namely a set of features and points, as the
compressed representation. We will show the results for storing the embedding as
32 and 16 bit floating-point values. The compression results of our approach and
the baselines on sequence 08 are presented in Figure 5.5. Our proposed method
outperforms the baselines in the distance-based metrics De and D⊥, as well as
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Input Draco MPEG Ours:	16	bit

BPP:	0.44BPP:	0.42BPP:	0.28BPP:	96

BPP:	0.16BPP:	0.13BPP:	96 BPP:	0.27

Figure 5.7: Qualitative results of our proposed method and the baselines for different
bits per point (BPP) as denoted in the pictures on two example point clouds. The
points are colored according to their height. Our approach is able to recover dense
point clouds also when targeting low bit rates.

in the IoU for the 16 bit representation. The small quality gain (< 2%) of the
32 bit representation is disproportional low concerning that the memory demand
doubles. The reduced density of the baselines leads to substantially higher errors
than our approach which can reconstruct for each bit rate the same number of
points. Our approach achieves over 2.4 times lower reconstruction errors for bit
rates under 0.1 bits per point compared to the baselines. We think that the
worse performance of the MPEG Anchor [151] compared to the plain occupancy
octree is due to some overhead for attribute compression and the ability to further
compress tele-immersive data streams.

5.3.4 Generalization Capability

Learning-based methods often degrade when applied in a different environment
due to over-fitting to the specific characteristics of the training set. We claim
that our method generalizes well by learning the local geometries rather than
remembering the global shape. To support this claim, we test our approach
on a completely different dataset without retraining the model. Here, we use
the nuScenes dataset [26], which not only has a different sensor setup (different
height, field-of-view, and the usage of 32 beams instead of a 64-beam LiDAR) but
is also recorded on a different continent which usually changes the appearance
of the scenes quite substantially. Note that there are no labels for the nuScenes
dataset available so that the dynamics will not be removed from the map, which
makes it more challenging due to the presence of new artifacts it has never seen
before. Figure 5.6 shows that we still outperform the baselines for the 16 bit
representation, even though the margin to the baselines got smaller.
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Figure 5.8: We estimate the dependency between the subsampling rate α and the sub-
sampling resolution r to predict the bit rate and to estimate the necessary upsampling
rate for the deconvolution. We use least squares fitting to estimate the parameters of
a power function A(r) = a · r−b with parameters a and b.

5.3.5 Qualitative Analysis
In this part, we will analyze the decompression results qualitatively. In Figure 5.7,
we show the decompressed maps of the baselines and our approach. For the
baselines, we have chosen the quality levels with the closest bit rates to our
approach. The points are colored according to their height. As we can see,
our approach is able to recover comparably dense point clouds even for varying
compression rates. The point clouds of the baselines are sparser, especially when
targeting low bit rates (see Figure 5.7 second row). When reducing the bit rate,
the decompressed maps of our approach get noisier while the baselines show larger
quantization errors. Structures like the curbs of the streets are only visible in our
denser maps.

5.3.6 Ablation Studies
To validate the choices made and to give a deeper understanding of the behavior
of the network, we conducted some ablation studies. We first investigate the
adaptive sampling strategy and then the regularization.

5.3.6.1 Adaptive Sampling

Each encoding block reduces the number of points by grid-based subsampling and
thus the number of embedding points depends on the resolution of the sampling
grid. In this experiment, we investigate the influence of varying grid resolutions rs
and the subsampling rate α of the points. This enables us to adapt the up-
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Figure 5.9: Intermediate point clouds after each deconvolutional layer C−1
j , j ∈

{1, 2, 3, 4} for the same networks but with different loss functions. The network of
the top is trained without the regularization term, whereas the bottom row is learned
with the regularization term. The lack of regularization leads to less homogeneous and
more noisy point clouds after each deconvolution. When trained with the regulariza-
tion, the intermediate point clouds can be used as lower lower-resolution model.

sampling rate to ensure that the input and output point clouds have similar
sizes. Additionally, it enables us to predict the bit rate based on the resolution rs
or vice versa. Therefore, we subsample the point clouds of the training set with
different grid resolutions rs and compute the mean subsampling rate α. We fit
a power function A(rs) which is proportional to the density distribution ρ(rs) of
the point cloud

A(rs) =
a

rbs
∝ ρ(rs). (5.10)

The parameter a denotes the magnitude of the density while the parame-
ter b describes the dimensionality of the point distribution. A fixed parameter
b ∈ {1, 2, 3} would correspond to a voluminous, planar, or linear distribution,
respectively. The result of A(rs) as well as for fix b ∈ {1, 2, 3} are shown in Fig-
ure 5.8. The best-fitted function is given by a = 0.006 and b = 1.80. The param-
eter b = 1.80 reflects the huge amount of planar surfaces (streets, walls, meadows,
etc.) in outdoor environments. Each deconvolutional block i up-samples the point
cloud by the factor Ki = dA(re)

−1/Ie, where I is the number of deconvolutional
blocks and re is the sub-sampling resolution of the last encoding layer.
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Table 5.1: Quantitative regularization impact

experiment De D⊥ IoU

without regularization 0.110 0.062 0.327
with regularization 0.077 0.039 0.332

5.3.6.2 Impact of Regularization

In this experiment, we show the importance of the regularization term. We
train the same network two times, first without and second with regularization.
In Figure 5.9, we can see the qualitative impact on the point clouds after each
upsampling step. The distribution of the points is more uniform and less noisy for
the point clouds of the regularized network. The regularization term penalizes big
point distances between the clouds. This leads implicitly to more homogeneous
regions so that we do not see the necessity of an additional repulsion loss as in
the PU-Net [284]. The quantitative results in Table 5.1 support our assumption
that more meaningful intermediate point clouds help the network reconstruct the
data. Additionally, the intermediate point clouds can, with regularization, be
used as lower-resolution versions of the point cloud.

5.4 Conclusion
In this chapter, we presented a novel approach for lossy point cloud compression
exploiting the pattern recognition ability of neural networks. The main idea is to
learn a convolutional autoencoder network that processes point clouds. An au-
toencoder utilizes first an encoder to obtain an intermediate embedding which the
decoder can use to reconstruct the input. The intermediate embedding consists
of a low-resolution point cloud with point-wise features that encode information
about their local neighborhood. For the decompression we propose a 3D decon-
volution that directly operates on the points to avoid discretization effects from
using voxel grids. The network is trained such that it reduces the error between
the input and the reconstructed point clouds. Since we enforce the intermediate
embedding to be substantially smaller than the input point cloud, we yield a
compressed representation of the point cloud. The advantage over traditional
methods is that we do not only have the compressed representation for encoding
the information, but also the decoder. The decoder is trained on a large set of
point clouds and therefore can exploit recurrent structures across different point
clouds. We have shown that training our network on dense point clouds of out-
door environments can reduce the memory footprint substantially while keeping
a relatively good reconstruction quality. Our method can reduce the memory
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footprint of dense point clouds by a factor of 1:100, enabling to store significantly
larger point cloud maps onboard. This is especially interesting for robots that
have to operate in outdoor environments and require a dense 3D map. In the
future, it would be interesting to investigate if such compressed 3D maps could be
stored on a server and only transmitted on demand due the increased efficiency.

In the previous chapters, we have seen how to generate consistent large-scale
point cloud maps. One major problem of those massive point clouds is memory
consumption, which we tackled in this chapter. Using our compression method
allows us to reduce memory consumption substantially. Potentially allowing for
on-board storage or even on-demand transmission. We will use this compact map
representation in the following chapters for localization. Notably, our compressed
representation consists of a low-resolution point cloud with point-wise features.
Those features must contain information about the local neighborhood of the
points, since they can be used to recover the input scene for decompression.
Utilizing those features directly for finding out if two point clouds are similar
will be investigated in the following chapter. The resulting place recognition
method will allow us to coarsely localize in a preconstructed compressed map.
Afterward, we will do a fine registration to obtain the actual 6 DoF pose of our
vehicle with respect to the compressed map. Once we have found our starting
position within the map, we can track our position from then on, as will be
discussed in Chapter 8.
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Chapter 6

Place Recognition in Compressed
Point Cloud Maps

The ability to localize in a map is a key ingredient of many robotic systems and
autonomous cars. The robots need to know where they are in a map, in order
to utilize the map data, e.g., for tasks like path planning, state estimation, or
manipulation. Place recognition tries to solve the task by finding the robot’s
location in a prerecorded map by comparing it with the robots surrounding. It
answers the question ”To which part of the map corresponds this place?”.

In the previous chapters, we have investigated how to build large scale point
cloud maps and how we can represent it in a memory efficient way. The resulting
compressed representation will now serve as our map, within we want to local-
ize the robots. A realization could look like the following: First, we have our
mobile mapping platform, that drives through the environment and scans with
the LiDAR sensor through the desired scene. In an offline post-processing step,
we can generate our global point cloud using the LiDAR bundle adjustment ap-
proach from Chapter 4. Afterward, we split the point cloud in smaller chunks, so
called submaps, and compress those with our compression network as discussed
in the previous chapter. We now want to drive through the same environments at
a different point in time, maybe even with a different robotic system, and localize
the robot within this compressed map. Our goal is to find the part of the map
that corresponds to the current location by comparing the current observations
to the map. An overview of this workflow is depicted in Figure 6.1, in which we
currently want to tackle the coarse localization task.

In this chapter, we try to find the submap that corresponds to the current
robot’s position by using point cloud-based place recognition, which we denote
as coarse localization. One common way to tackle this task is to compute for
each submap a descriptor that embeds the characteristics of the scene into a
single vector. So our map representation will be extended, not only storing the
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Figure 6.1: Overview of the Thesis. In the last chapter, we have seen how to compress
dense point cloud maps. In this chapter, we want to investigate how we can coarsely
localize a robot within the compressed maps, by using the current local point cloud of
the robot. The goal is to find in which part of the overall map is the robot located.
Afterward, we will look into obtaining a more accurate estimate using fine localization.

compressed point clouds, but also a vector that encodes the properties of the
scene, respectively. We will call the collection of our submap descriptors the
database. To retrieve the position of the robot, one also computes a descriptor
for the current scene, the so-called query descriptor, based on the observed LiDAR
point clouds. The query descriptor is then compared to the descriptors of the
database to retrieve the location. If the learned encoding precisely describes the
respective submap, then the most similar descriptor should correspond to the
desired region in which the robot is located. Due to ambiguities in the scene,
not only the most similar, but often a few possible positions are considered as
potential candidates.

Deep neural networks are nowadays often utilized to compute those descriptors
from the point clouds. For this, first local point features are computed, which
then are aggregated into a single global descriptor. Most works utilize contrastive
learning to ensure that the network produces descriptors that allow for finding
similar locations. In contrastive learning, the network is shown a lot of positive
examples from different point clouds of the same location, as well as negative
examples from point clouds of different locations during training. A contrastive
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Figure 6.2: Point cloud-based place recognition. We compress the point clouds from a
map using a compression network. The resulting compressed encodings can be stored
efficiently and later be used for decompression, transmission, or place recognition. For
place recognition, we extract descriptors from the compressed representation using our
place recognition network (P.R. Net). When revisiting an area, one can retrieve the
corresponding map by comparing the descriptors of the current position (query) and
the compressed descriptors in a database.

loss function enforces that the positive pairs should produce similar descriptor
vectors, while the negative pairs have low similarity.

In this chapter, we are going to exploit our compressed map representation
to directly localize in the compressed map. As previously mentioned, the first
step for the generation of the descriptors is to compute local point features. But
if we recall what our compressed map representation from Chapter 5 actually is,
then we see that it consists of a sparse point cloud with local features. In this
chapter, we try to leverage directly those compressed point features to obtain the
descriptors. By this, we can bypass the otherwise needed decompression, as well
as the computation of local features from the decompressed point cloud. The
compressed features already contain information about the local neighborhood,
since from those the local area can be restored. In Figure 6.2, we have illustrated
the localization process using our compressed map representation.

In this chapter, we propose two different place recognition methods, the Re-
triever and KPPR, to localize in compressed point cloud maps. The Retriever
is a more simplistic approach and a proof of concept that our compressed rep-
resentation can be used for place recognition. With KPPR, we propose a more
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sophisticated method that achieves state-of-the-art performance. Both methods
follow the descriptor generation paradigm of first computing local features and
then aggregating them into a global descriptor. In the following, we will inves-
tigate how we can take our compressed features and enhance them to be better
suited for place recognition. Additionally, we will look at a new method to ag-
gregate the resulting local features into a global descriptor. Furthermore, we will
focus on efficient training. For this, we adapt a training technique from the un-
supervised domain to train faster, while increasing the performance at the same
time over the conventional training scheme.

6.1 Related Work
Place recognition solves the problem of retrieving the current position based on
sensor observations (so-called queries) in a given map (also called database). Most
methods tackle this task by trying to find the entry from the database that is
most similar to the query. The similarity between positions is often computed
based on the similarity of global descriptors that are computed for the queries,
as well as for the database entries. Our related work section focuses on those
descriptor-based methods that try to estimate only the corresponding entry in
the database. For a more complete literature review, we refer to the work by
Yin [281] that also covers the areas of projective methods, place recognition with
pose estimation, as well as correspondence-based approaches.

Images have often been used to represent the local surroundings of the query
position and the entries in the database [136, 159, 203, 245, 246, 250]. However,
images are prone to appearance changes caused by illumination conditions or
seasonal changes. Point clouds from LiDAR sensors are less affected due to active
sensing and 3D geometric information [237].

Generating meaningful descriptors from point clouds is often done in two
steps: (1) computing local features, which (2) are aggregated into the global
descriptors. Local features can be computed using classical handcrafted meth-
ods [11, 135, 189, 214, 215] or can be computed by trained neural networks [29,
32, 57, 99, 117, 268]. Earlier works like PointNetVLAD [237], or PCAN [294]
utilize PointNet [180] as a backbone for feature computation. However, the local
features lack descriptiveness, due to the PointNet [180] architecture that does
not have a reliable notion of the point distribution. Convolutional neural net-
works provide more descriptive features, and can be defined on representations
like graphs [122, 220], sparse voxel grids [29, 116], range images [32], or directly on
the points [226]. The use of local features from convolutional neural networks in-
creased the place recognition performance significantly [57, 116, 132]. HiTPR [90]
computes local features using short-range Transformer architectures instead.
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6. Place Recognition in Compressed Point Cloud Maps

For computing the final descriptor those local features are aggregated through
methods like bag of words [49, 204, 208], vector-of-locally-aggregated-descriptors
as commonly referred to as VLAD [103], or its differentiable NetVLAD [3] version
for learning-based approaches [237]. While most learning-based approaches train
their networks directly for place recognition, some works [62, 222, 285] in the
image domain have exploited pretrained networks to provide the necessary fea-
tures. This motivates us to investigate if the features of our compression network
could also be suitable as local features for place recognition. Although the pre-
trained networks were not optimized for place recognition, the methods were still
able to localize successfully. This would allow localizing in the compressed map
representation, without the need for decompression. Our method exploits our
pretrained compression network for feature generation. We will investigate using
those features directly for the feature aggregation, as well as further enhancing
those features using an architecture developed based on KPConv [226].

The networks are optimized using contrastive learning to ensure that point
clouds from the same location have similar descriptors, and point clouds from
different locations are dissimilar. Most commonly, triplet or quadruplet losses
are used for place recognition [90, 116, 237]. The triplet loss computes for each
query descriptor the distance to a descriptor from the same location (positive)
and to a descriptor from a different location (negative). The query and positive
descriptor are pulled together, while the negative is pushed apart. The quadru-
plet loss extends the idea by a second negative to prevent the negatives from
collapsing. The challenge for training is to find hard cases, i.e., point clouds
that are structurally similar but from different locations, to ensure the network
is able to differentiate those from actual positive matches. Most methods try to
mine those hard negatives by sampling a lot of negatives to search for the hardest
ones [132, 237]. Instead of computing for each query multiple potential negatives,
Komorowski et al. [116] searches for hard negatives in the positives of different
queries in the same batch. Additionally, they utilize dynamic batching to prevent
the descriptors from collapsing. Hui et al. [98] on the other hand focus on efficient
inference by training a smaller student network with a bigger teacher model. We
on the other hand, exploit feature banks and a momentum encoder from momen-
tum contrast [85] which allows us to use an arbitrary number of negatives that
comes at basically no cost. Other contrastive learning approaches focus on large
batch size training [31], online clustering [27], or mining strategies [265] to deal
with negatives. In contrast, Zbontar et al. [286] does not need any of those tech-
niques, but rather simply introduces a loss based on cross-correlation. A different
direction in the unsupervised domain is to train entirely without negatives. To
optimize for only positive examples one either uses a momentum encoder [71] or
stops certain gradients [35]. Since in the unsupervised domain, the positive ex-
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6.2. Place Recognition in Compressed Maps

amples are usually only augmented views and the negatives are different images,
not pushing away negatives that might actually be structurally similar can be an
advantage. In the case of place recognition, which is usually done at least weakly
supervised, we know which point clouds correspond (positives) and which ones
do not (negatives) using GNSS data. Thus, the risk of having false negatives is
substantially smaller, and we even want to distinguish structurally similar nega-
tives for good performance. Therefore, we do not see an advantage in having no
negatives at all for place recognition.

Our contribution to the field of point cloud-based place recognition is to pro-
vide methods that can directly operate on a compressed map representation. In
this chapter, we propose the Retriever and KPPR for tackling place recognition.
The most related work to the Retriever is PointNetVLAD [237], where we both
use the same backbone for feature computation and the same training methods.
The main difference is that we first use our compression network to operate on the
compressed point clouds before passing it to the backbone. Besides that, we use
our proposed attention-based feature aggregation method for the descriptor gen-
eration instead of the standard NetVLAD [3]. MinkLoc3D [116] is most related
to our more sophisticated KPPR method. We both utilize a sparse convolutional
backbone for the local feature generation. However, we use kernel point convolu-
tions [226] and our compression encoder, while MinkLoc3D operates on a sparse
voxel grid. For efficient training, MinkLoc3D is performing hard negative mining
over the whole batch. In contrast to that, we exploit the ideas of a feature bank
from MoCo [85].

While most approaches tackle one-shot localization, the performance can be
improved substantially by taking sequential information into account to resolve
ambiguities [127, 142]. We will not exploit sequences of matches and leave this
open for future work.

6.2 Place Recognition in Compressed Maps
In this section, we propose different parts to create neural network architec-
tures for point cloud-based place recognition in our compressed map. We focus
on the local feature generation, and the effective aggregation of those into a
global descriptor, and investigate the training to enhance efficiency. This chap-
ter comprises the content from two of our works, namely the Retriever [258] and
KPPR [261]. Our first work, the Retriever is a proof of concept, where we inves-
tigate if our compressed representation can be used for localization, thus having
a fairly simple architecture. KPPR, our second work on point-cloud-based place
recognition, has a more sophisticated network architecture, and by this requires
also a more efficient training, to encounter the increased computational demand.
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Figure 6.3: Our proposed network architectures first compress the point clouds using
our compression network. The Retriever only modifies the resulting features using
a PointNet, while KPPR utilizes an additional stem architecture for further feature
enhancement. The final stage for both networks is to aggregate the point-wise features
into a global descriptor.

However, both network architectures follow the same paradigm: First, we take
our compressed representation and compute features that are better suited for
place recognition. Afterward, we aggregate the resulting enhanced local features
to build the point cloud-wise descriptors. Finally, we will look at the loss func-
tions and training strategies for effective and efficient training.

In the following, we will discuss each part in depth, and point out where and
for which method we use it. An overview of the architectures is illustrated in
advance in Figure 6.3.

6.2.1 Feature Propagation Network

Our goal is to estimate our position in a compressed point cloud map by exploiting
the features of our compressed representation without any further sensor data.
For creating this compressed representation in the first place, we use the encoder
we proposed in Chapter 5. For a given input point cloud P ∈ RN×3, the encoder
E : RN×3 7→ RNc×Dc samples a small subset of Nc � N points, with an expressive
feature representation F c = E(P) ∈ RNc×Dc from which the decoder can recover
the dense point cloud.

We want to use those features to generate descriptors that are usable for place
recognition. Having such an expressive representation does, however, not directly
mean that it is also the best representation for place recognition. For example, the
compressed feature representation cannot be rotational invariant since it must be
able to decompress the point cloud in the correct orientation. To compute features
that are better suited for place recognition, we utilize a small PointNet [180]
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6.2. Place Recognition in Compressed Maps

variant, which transforms each point feature into a high-dimensional nonlinear
space. For a detailed description of PointNet, see Section 2.2.1.

Note, that PointNet does not contain any convolutions or other means to
enhance the features with additional information. The only goal of this small
network is to transform the compressed feature representation into a feature space
that is better suited for place recognition. The compression encoder plus the small
PointNet is the foundation of our networks, and thus is part of the KPPR and
Retriever architectures.

6.2.2 Convolutional Stem
The features from the encoder contain local information but lack a broader con-
text due to the small receptive field of the compression encoder. Therefore, we
propose to use a convolutional stem to aggregate information from a larger area.
The convolutional stem consists of j = 1, . . . , J residual KPConv blocks

RKPj : RM×Do → RM×Do , (6.1)

which do not further subsample the already sparse point cloud. In the following,
we will first briefly revisit the concept of KPConv [226], to then show how we can
disentangle it into a block-dependent and a block-independent part. We will use
the superscript to denote block-dependent variables, e.g., F j are the features in
the jth block.

For a point p ∈ Pc, the convolution of the features F j−1 with the convolutional
kernel g is defined as

f j = (F j−1 ∗ gj)(p) =
∑

pi∈N j(p)

g(pi − p)jf j−1
i , (6.2)

where N j(p) = {pi ∈ Pj | ‖pi − p‖≤ rj} are all the points in the neighborhood
within the radius rj ∈ R. The kernel g is defined by a linear combination of the
weights {W j

k | k < K} of the K kernel points {pj
k | k < K}:

h(pi − p,pj
k) = max

(
0, 1− ‖pi − p− pj

k‖
σ

)
(6.3)

g(pi − p)j =
∑
k<K

h
(
pi − p,pj

k

)
W j

k, (6.4)

where its coefficients h decrease linearly with the distances from the neighbors to
the kernel points.

In contrast to the original KPConv implementation, we can make the fol-
lowing simplifications to the stem architecture. First, we do not further sub-
sample the points, therefore the coordinates in the point cloud stay the same,
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i.e., Pj = Pj−1 = P. Second, the neighborhoods will remain the same by always
using the same radius r ∈ R. Third, we arrange the kernel points always in
the same grid structure such that the coefficients are independent of the block.
Hence, h(pi − p,pj

k) = h(pi − p,pk), which allows us to precompute the term for
all J blocks. This includes the quite costly kNN search for the neighborhoods.

Consequently, the only variables that are changing in each block
j ∈ {1, . . . , J} are the kernel weights W j

k and the features of the target
point cloud F j−1. All KPConv blocks are residual with rectified linear unit
(ReLU) activation and layer normalization, similar to Thomas et al. [226].

The goal of the stem architecture is to refine the features and increase the
receptive field. In our more lightweight architecture of the Retriever, we do not
use the stem architecture and pass the local features directly from the feature
propagation network to the feature aggregation that we will discuss next. The
stem architecture is used in KPPR for feature enhancement, but comes at the
cost of substantial amount of additional compute.

6.2.3 Feature Aggregation

In the previous parts, we have described how to compute a set of local fea-
tures F ∈ RM×Do from the compressed representation using the feature propa-
gation network and optionally the stem architecture. Finally, we want exactly
one global descriptor d ∈ RDo for each point cloud, which can be used for place
recognition based on descriptor similarity. Consequently, we look for an aggre-
gation method A : RM×Do → RDo that takes those local features as input and
computes a single global descriptor.

There exist multiple methods to fuse the information from multiple features
into a single one. One of the most simplistic ones is global max pooling as
used in PointNet [180], while in the place recognition domain many approaches
[130, 237, 294] utilize the more sophisticated NetVLAD [3] layer for aggregating
the features.

Here, we want to investigate a different way to aggregate local point features.
We propose a novel attention-based aggregation method based on Perceiver [101],
which is a variant of the Transformer architecture [238]. A short summary of the
Transformer architecture and the attention mechanism is given in Section 2.2.3
and is recommended to be read for this section.

The attention mechanism in the Transformers computes features F t ∈ RNt×D

by a linear combination of a set of value vectors V ∈ RNs×D. Where the weight-
ing W ∈ RNt×Ns of the value features depend on the outer product of the queries
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6.2. Place Recognition in Compressed Maps

Q ∈ RNt×D and the keys K ∈ RNs×D

F t = WV = softmax
(

QKT

√
D

)
V , (6.5)

where the keys K = W kF s and values V = W vF s are linear projections of the
source features F s, while the queries Q = W qF t are projections from the target
feature F t. The softmax ensures that the weights of the linear combinations
sum up to one. For the case of self-attention, where F s = F t and thus Ns =

Nt, the weight matrix W grows quadratically with respect to the number of
features. Since point clouds usually have thousands to millions of points, this
is too memory-expensive for most modern GPUs. Therefore, instead of doing
self-attention on the input feature, Perceiver [101] uses cross attention with a
few latent vectors as target feature F t ∈ RNt×D with Nt � Ns. These latent
vectors are learned and optimized while training. Multiple self-attention layers
use a cross-attention block between the input feature and the latent vectors on
the latent features F . Since Nt is a constant and not depending on the number
of points Ns, the computational complexity and memory consumption decreases
from O(N2

s ) to O(Ns).
In our application, we use the features coming from our feature propagation

network as input sequence for the Perceiver P : RNs×Din 7→ RNt×Dout . Our Per-
ceiver uses two cross attention blocks for propagating the input features to the
latent vectors, where each cross attention block is followed by 4 self-attention
blocks working solely on the latent features. All perceiver blocks are also im-
plemented in a residual fashion blocks [86]. A fully connected layer projects the
flattened latent features in the end to the desired output dimension of the global
descriptor d ∈ RDo :

d = W gf + bg, (6.6)

with W g ∈ RDo×Nt·Dout , and bg ∈ RDo . Note that each operation is permuta-
tion invariant, which makes it perfectly suited for the unordered nature of point
clouds. As the Perceiver always produces a fixed output feature independent of
the number of inputs, we are able to process point clouds of arbitrary sizes.

Both, our Perceiver and the NetVLAD layer aggregate local features relative
to a common global context. This feature representation is, in the case of the
NetVLAD layer, a set of centroids that are learned while training. For the feature
aggregation, they accumulate for each centroid the residual to each input feature
weighted by their reciprocal squared distances.

Perceiver uses the latent vectors as a global context. Instead of accumulating
the residuals, it recombines the input features using the cross-attention mech-
anism. NetVLAD stops at this point with the feature propagation and uses a
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Figure 6.4: Training procedures without (a) and with (b) a feature bank. Both methods
use an attraction loss to make descriptors from the queries Q to the corresponding pos-
itives P similar while repulsing the negatives N away from Q. When using the classical
training procedure (a) one computes the queries Q, positives P, and negatives N all
with the same siamese network. The network is trained by backpropagation through
all the descriptors. With the feature banks (b) a second network (query encoder) is
introduced to compute the positives P. This network gets updated using a momentum
update rather than backpropagation. The negatives are not computed per query but
are taken from the past positives. The superscript denotes the index at which time t

the descriptors are computed.

fully connected layer for aggregating the global descriptor. In contrast to that,
our Perceiver uses multiple self-attention and cross-attention blocks allowing it
to propagate information also between the latent features for a more refined rep-
resentation.

While our Perceiver-based aggregation module has shown superior perfor-
mance for our simplistic Retriever network, the performance does not improve
for our KPPR architecture. Therefore, the Retriever uses our Perceiver-based
aggregation module, while KPPR uses the basic NetVLAD aggregation, to save
compute where possible.

6.2.4 Feature Banks and Momentum Encoder
The success of momentum contrast [85] in the domain of unsupervised represen-
tation learning motivated us to apply the ideas of a feature bank and momentum
encoder to the field of point cloud-based place recognition.

Traditionally, the positives P and negatives N are computed by the same
network as the query q (note that we talk here about our query location and
not the query features of the Transformer), as visualized in Figure 6.4 (a). The
problem is that one requires a lot of negatives to find hard cases. Most loca-
tions look completely different, therefore it is easy for the network to generate
dissimilar descriptors of locations. The hard part is to distinguish between point
clouds which look similar but are actually from different locations. Traditionally,
this is solved by mining a lot of negatives and checking which ones are actually
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Figure 6.5: Training time with the feature bank versus without at varying numbers of
negatives for the hard negative mining. The conventional method, without the feature
bank, requires more negatives to increase the performance, but at the same time also
increases the training time. Due to the recycling of the old negatives, the feature bank
does not need to recompute negatives for the mining and thus can use substantially
more negatives (15,000). The training with a feature bank of 15,000 old features is still
faster than even recomputing a single negative, thus not only increasing speed but also
performance.

hard. More concrete, for each query location, around 20 negative descriptors are
computed, while in the end the loss is only back-propagated through the hardest
one. So the majority of computations are used to mine those negatives where
most of them are not even used. A graphical illustration of the performance and
the training time for our network is depicted in Figure 6.5. Generally speaking,
the more negatives are mined, the better the performance, but also the slower
the training due to the hard negative mining.

In contrast, when using the feature banks, the negatives do not have to be
computed online, but rather the former positives get recycled. The feature bank B
is a queue of descriptors, buffering the latest ∆ descriptors from the previous
positive examples P . By this, the computation of the negatives can be bypassed
and therefore saves a lot of computations.
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Our loss will try to maximize the similarity between the query and the pos-
itives, while minimizing it between query and negatives. By rapidly changing
the weights of the network, the positive descriptors can simply diverge from the
negatives, just learning that the current descriptors should be different from the
negatives. To prevent this, He et al. [85] introduced a second encoder, the so-
called key encoder for computing the positives P . The weights wkey of the key
encoder are not updated by backpropagation but with a momentum update of
the weights wquery from the query network:

wt
key = γ wt−1

key + (1− γ)wt
query. (6.7)

The superscript denotes the index of the batch. The weights will be updated
at the beginning of the forward pass of each batch. Only slowly updating the
key encoder shall prevent the divergence of the positives with respect to the
negatives [85]. The gradients from the negatives in the feature bank are disabled,
which additionally saves computations and memory. Performing backpropagation
through tenths of thousands of descriptors would be computationally infeasible,
even for most modern accelerators. The pipeline for training with the feature
banks is illustrated in Figure 6.4 (b). In contrast to He et al. [85], our approach
is supervised, therefore allowing us to only use descriptors of the feature bank
as negatives when they are true negatives. For this, we additionally store the
indices of the point clouds in the feature bank and check for each query which
descriptors belong to point clouds from negative positions, which will then be
accounted for in the loss, see Equation (6.10). By using the feature banks, we are
able to increase the number of negatives drastically without scaling up in compute
and memory. For inference, we only require the query encoder, therefore we can
discard the key encoder after training. Remark, that the key encoder was only
needed to stabilize the training and prevent the descriptors from diverging.

The relatively small Retriever network can be trained in a reasonable time
using the classical hard negative mining method, due to the lightweight architec-
ture. Because of the more sophisticated and compute-demanding architecture of
KPPR, which has the convolutional stem, we utilize the feature bank to speed
up its training.

6.2.5 Loss Function
The global descriptors that we extract from the point clouds should have the
property that descriptors from the same location (positives) should be similar
while being dissimilar to descriptors from other locations (negatives). In the
following, we will look at two different loss functions to enforce the networks to
learn the desired property.
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6.2. Place Recognition in Compressed Maps

6.2.5.1 Lazy Quadruplet Loss

The most common loss function in point cloud-based place recognition is probably
the Lazy quadruplet loss proposed by Uy et al. [237]. Given a query descriptor
q ∈ RDo as well as a set of positive P = {pi}, i = 0, . . . , N+ and negative
N = {nj}, j = 0, . . . , N− examples, the lazy quadruplet loss is defined as

L = max(δ+ − δ− +m1, 0) + max(δ+ − δ∗ +m2, 0), (6.8)

where δ+ = ||q − n̂||2 is the Euclidean distance between the query q and the
hardest positive example n̂. Consequently, δ− = ||q − n̂||2 is the distance to
the hardest negative n̂ and δ∗ = ||n̂ − d̂

∗
||2 is the distance between the hardest

negative and a second negative n̂∗ ∈ N . The second negative n̂∗ is not only
far away from the query q but also from the hard negative n̂. By this, the loss
minimizes the distance between positive pairs and tries to maximize the distance
to the negative examples. The second negative is used to keep the distance from
other negatives that are also structurally dissimilar, therefore helps to distribute
the negatives better without letting the negatives collapse. The margins m1

and m2 are used to prevent the network from pushing the vectors as far as possible
apart. Our goal is to converge towards a feature space that is well distributed
such that structural point clouds are located together in the feature space, while
dissimilar point clouds are located in different regions of the feature space.

We use this commonly used loss function to train our Retriever network.
However, our special feature-bank-based training strategy, which we discussed in
Section 6.2.4, can not back-propagate through the negatives. Therefore, we can
not use this method for KPPR where we use the feature bank. The next loss
function we will look at has this in mind and will be the choice when training
KPPR.

6.2.5.2 Additive Supervised Contrastive Loss

For training with the feature bank, we propose to use the additive supervised
contrastive loss with differential entropy regularization similar to El-Nouby et
al. [55]. For a query descriptor, q ∈ RDo , a set of positive descriptors P and the
feature bank B the contrastive part Lc is defined as

Lc(q,P ,B) = 1

|P|
∑
p∈P

(
1− q⊤p

)
+

1

η

∑
b∈B

1bq
⊤b, (6.9)

where 1b indicates whether b is in the negatives N of q and is within the margin β,
i.e.,

1b =

1 , if b ∈ N and q⊤b > β

0 , otherwise,
(6.10)
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6. Place Recognition in Compressed Point Cloud Maps

and η =
∑

b∈B‖1b‖1 is the number of times, where 1b is 1. Intuitively, we try to
pull the positives to the query, while pushing the negatives away from the query.

The regularization loss is an entropy-based repulsion loss Lr to prevent de-
scriptors from collapsing

Lr(q,d
∗) = − log

(
1− q⊤d∗

2

)
, (6.11)

where d∗ = {argmax(q⊤d) | d ∈ P ∪ B} is the most similar descriptor. In con-
trast to El-Nouby et al. [55], we use the cosine distance instead of the Euclidean
distance to reuse intermediate results of Lc. The final loss L = Lc + αLr is the
sum of both loss terms with α to weight them accordingly.

6.3 Experimental Evaluation

The main focus of this chapter lies in localization using point cloud-based place
recognition. For the evaluation, we investigate the performance of our approach
for point cloud-based place recognition in terms of recognition accuracy and train-
ing efficiency. Furthermore, we show ablation studies to validate our design
choices.

6.3.1 Experimental Setup

The aim of our approach is to reliably retrieve the position in a given map based
on the point cloud of the local surrounding. For the evaluation, we use the Oxford
Robotcar [143] dataset for training and validation, as well as the three sequences
university sector (U.S.), residential area (R.A.), and business district (B.D.) [237]
for testing. We follow the common train/test splits and the evaluation metric
average Recall R at a specific threshold τ as in [237]. The recall will be denoted
as R@τ , e.g., R@1 is how often a positive database descriptor is within the top-1
most similar descriptors while R@1% denotes within the top-1%. Additionally,
we will provide the training time for the ablation studies, since one of our key
aims is to reduce the training time.

In the previous Section 6.2, we have discussed different building blocks for lo-
cal feature and global descriptor generation. We can assemble different network
configurations with different training strategies and loss functions using those
blocks. In the following, we want to summarize the two network architectures
and the used parameters, respectively. Retriever [258] is our first more simplis-
tic version, while KPPR [261] is our follow-up work with a more sophisticated
network and training schedule.
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6.3.1.1 Retriever

Retriever [258] is our first work on place recognition in our compressed map rep-
resentation and can be seen as a proof of concept. It tries to answer if our com-
pressed map representation can be used for place recognition, and by this bypass
decompression. The main idea is to directly use the compressed features for the
feature aggregation. The network consists of our feature propagation network,
as discussed in Section 6.2.1, followed directly by the attention-based feature
aggregation from Section 6.2.3. For the training, we use the standard training
technique of hard-negative mining and supervision with the Lazy Quadruplet loss
as described in Section 6.2.5.1. Due to the small network architecture and rela-
tively fast training, we do not require the feature bank for training in a reasonable
time.

We use AdamW [134] with a learning rate of 10−3 and weight decay of 0.01.
For the lazy quadruplet loss, we use the margins m1 = 0.5 and m2 = 0.2. We use
a batch size of 8 in all our experiments and use N+ = 2 positive and N− = 18

negative examples for the lazy quadruplet loss.

6.3.1.2 KPPR

Our second work, Kernel Point Place Recognition or KPPR, is more sophisti-
cated with a bigger and more complex network architecture, as well as an im-
proved training strategy. For the feature generation, we not only use the small
feature propagation network from Section 6.2.1, but also the convolutional stem
as discussed in Section 6.2.2 to further enhance the features. For the feature
aggregation, we utilize the standard NetVLAD layer. The increased compute de-
mand of the bigger network architecture motivated us to adapt the feature bank
idea for place recognition, as discussed in Section 6.2.4. Due to feature banks, we
use the additive loss as defined in Section 6.2.5.2.

In more detail, in the experiments, we use the following parameters unless
stated differently. The output feature size of the feature propagation network
and the stem blocks, as well as for the global descriptor are set to Do = 256,
while the intermediate kernel point convolution outputs 128-dimensional features
(similar to [226]), to save compute. We normalize the input coordinates to lay
within -1 and 1. The radius for the convolution is set to r = 0.05. We use
J = 7 stem blocks and a Feature Bank size of |B| = 15, 000. The weights wq

get updated with a momentum of γ = 0.999 and for the loss, we use α = 0.3

as well as β = 0.5. To enable batched training, we pad the compressed point
clouds to always have the same number of points. Padded points get masked
out in the blocks accordingly to not affect the training. We use AdamW [134]
with a learning rate of 10−5, which will be reduced to 10−8 in a cosine annealing
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6. Place Recognition in Compressed Point Cloud Maps

Table 6.1: Average Recall @1% on different datasets

Method Oxford U.S. R.A. B.D.

PointNetVLAD1 [237] 85.21 74.80 73.39 71.96
PCAN2 [294] 83.81 79.05 71.18 66.82
HiTPR2 [90] 94.64 94.01 89.11 88.31

LPD-Net2 [132] 94.92 96.00 90.46 89.14
SOE-Net2 [268] 96.40 93.17 91.47 88.45
SVT-Net3 [57] 97.80 96.50 92.70 90.70

MinkLoc3D3 [116] 97.90 95.00 91.20 88.50

Retriever (Ours) 92.22 91.88 87.44 85.53
KPPR (Ours) 97.08 98.01 95.10 92.09

schedule. When training with the feature bank, we use a batch size of 32 while
only being able to use a batch size of 16 for batch negative mining and a batch
size of 3 when training without the feature bank.

6.3.2 Place Recognition Performance

In the first experiment, we analyze the performance of our approach with respect
to the baselines. In Table 6.1 are the average recall rates @1% for different
datasets shown, while the networks are only trained on Oxford Robotcar [143].
This means the percentage of queries that can find a true positive match within
the top 1% of the database size. Our more sophisticated KPPR approach is
able to outperform all the approaches on the three test datasets (U.S., R.A. and
B.D. [237]). Being between 2.0 and 3.6 percent points better than the second-best
approaches on those datasets. Remark that our representation can achieve this on
top of our compressed representation, therefore would enable coarse localization
in a compressed map. On the other hand, the baselines have access to the full
input point clouds. Our rather simplistic Retriever network can outperform other
basic techniques like PointNetVLAD [237] and PCAN [294] but lacks behind the
methods with more sophisticated network architectures and training strategies.
Showing that using our compressed feature representation can even be directly
be used for place recognition. In Figure 6.6 are the results from KPPR for the

1Approach has been retrained using our own implementation. Due to better results, we
report those numbers rather than the original ones from the paper.

2Numbers provided by the authors or from the original repositories.
3Numbers from the original papers.
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Figure 6.6: Qualitative results for our approach in a business district (B.D.) [237] area.
The color of the points denotes at which position the most similar positive was ranked
within the database (the brighter the better). Most of the positions are successfully
retrieved by only looking at the most similar descriptor.

B.D. [237] dataset visualized. We can see that our approach seems to work very
well on straight streets but performs worse on crossings.

For completeness, we also show the validation results on the Oxford Robotcar
dataset, where KPPR ranked third. For a more in-depth analysis we can see
in Figure 6.7 the recall curves at different thresholds (percentage of successfully
finding a true positive in the top N). We can see that the most similar descriptor
corresponds 80% of the time to the closest match for the Retriever, and even 90%
of the time for KPPR.

6.3.3 Ablation Studies on Retriever

In this section, we validate the choices made in our architecture and evaluate the
importance of each part of the Retriever network. First, we look at the impact
of using the compressed feature representation produced by our convolutional
compression encoder. After this, we compare our Perceiver-based aggregation
module with the current state-of-the-art NetVLAD layer, which is typically used
in the place recognition domain. For this, we have trained different network ar-
chitectures. The results on the Oxford Robotcar dataset are shown in Figure 6.8.
We either use the original point cloud or the compressed representation (denoted
as ”Compr”) after the encoder as input to the PointNet block or directly to the
Perceiver aggregation. For aggregating the local features to a global descriptor,
we either use NetVLAD or our proposed Perceiver-based module.
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Figure 6.7: Average recall @N on the Oxford Robotcar dataset. Our approach is able
to reliably retrieve the position of query point clouds in a given database.

As we can see in Figure 6.8, using the compressed features in both the
NetVLAD aggregation and our aggregation module achieves better results than
using the raw input points (compare blue to red and orange to purple). This
suggests that using the compressed feature representation is not only advanta-
geous for storage or transmission due to the low memory footprint, but also the
information of the local neighborhood makes the global descriptors more distinct.
Additionally, it mitigates the information loss due to compression.

Exchanging the NetVLAD layer by the Perceiver-based aggregation module
increases the performance for the point and compressed feature-based versions
(compare Figure 6.8 blue to orange and red to purple). The NetVLAD layer ag-
gregates the local features without considering any relation between the features.
The attention mechanisms in the Perceiver allow for suppressing unimportant
features and concentrating more on especially descriptive features. Additionally,
the self-attention of the latent features incorporates information from the whole
sequence and can thus change the features based on the global context. This
potentially helps to describe the point clouds more accurately and, therefore, in-
creases the place recognition performance. Directly aggregating the compressed
features to a global descriptor without feeding it to the PointNet yields worse
results, showing that transforming the compressed features to a task-specific rep-
resentation is advantageous (Figure 6.8 green and purple).
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Figure 6.8: Average recall @N on the Oxford Robotcar dataset for different network
configurations of the Retreiver. Replacing the raw input point cloud (Points) with our
compressed feature representation (Compr) increases the retrieval accuracy. Similarly,
exchanging the NetVLAD layer with our Perceiver-based aggregation module allows
also for better place recognition.

6.3.4 Ablation Studies on KPPR

In the following, we will present ablation studies to show the impact of the pro-
posed design choices made for our KPPR method. The ablation studies have
been evaluated using a second feature bank of size |B| = 500 on the validation
dataset Oxford Robotcar [143].

6.3.4.1 Negative Mining and Loss Function

In this experiment, we analyze the impact of different mining strategies. The
first part focuses on the performance and how it is affected by the choice of
the loss function, while the second part focuses on the impact on the training
time. We show in Table 6.2 the results for our network trained with different
loss functions and under different mining strategies. Namely, first the classical
method of computing for each query 18 negatives ([A] - [C]). The second method
is batch negative mining where the negatives are searched within the positives
of the batch ([D] - [F]). For a batch size of 16 with two positives per query, we
have 32 negatives. False negatives are masked out in the same way as for the
feature banks, as in Equation (6.10). Finally, using the feature banks (FB) as
described in Section 6.2.4 ([G] - [I]). For the loss functions, we evaluate with
the lazy Triplet [237], lazy Quadruplet [237], and additive contrastive loss [55]
with (here denoted as Entropy) and without (denoted as Contrastive) entropy
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Table 6.2: Ablation: Negative mining and loss function

Loss Mining

[A] Triplet Classic
[B] Quadruplet Classic
[C] Entropy Classic

[D] Triplet Batch
[E] Contrastive Batch
[F] Entropy Batch

[G] Triplet FB
[H] Contrastive FB
[I] Entropy FB

R@1 R@1% Time

85.49% 93.59% 95.36h
84.94% 93.74% 102.06h
86.07% 94.63% 96.50h

86.41% 93.96% 6.68h
85.69% 93.68% 6.93h
89.04% 95.74% 7.71h

89.91% 95.71% 5.49h
88.73% 95.51% 5.50h
91.53% 97.08% 5.05h

regularization. Notably, the Quadruplet loss cannot be trained with the feature
bank since the descriptors of the negatives do not have gradients.

Independently of the mining strategy, we can see that the contrastive loss
with the entropy regularization ([C], [F], [I]) outperforms the networks trained
with different losses. Batch negative mining outperforms the classic method but
is worse than using the feature bank. From the training time perspective, we see
the huge impact of using a mining strategy rather than computing the negatives
classically. Additionally, the performance increases, which is likely due to the
higher amount of negatives (FB: 15,000; Batch: 32; Classic: 18) as well as a
bigger batch size (FB: 32; Batch: 16; Classic: 3), therefore compensating for
the problem of comparing descriptors that got computed at different stages in
the training. The training time using the feature banks is lower than the batch
negative mining, even though, the substantially larger amount of negatives. The
reason for this is that the gradients are not computed for the negatives in the
feature bank but are still needed for batch negative mining. When comparing
the contrastive loss with entropy regularization [I] against the training without
the regularization [H], we can see that the regularization boosts the performance.
Throughout our experiments, we did not see that the regularization also helps
with the other losses. Training with the exponential contrastive loss [112] was
more unstable and led to worse results in our experiments.

6.3.4.2 Feature Bank Size

In Table 6.3 are the results with respect to varying feature bank sizes. The best
result can be achieved by a feature bank with 15,000 descriptors [K], which cor-
responds to 2/3 of the size of the training set. As we can see the training time
does not vary a lot for changing feature bank sizes. Throughout the experiments,
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Table 6.3: Ablation: Feature bank size

#FB Size

[J] 10,000
[K] 15,000
[L] 20,000

R@1 R@1% Time

91.05% 96.66% 4.91h
91.53% 97.08% 5.05h
90.44% 96.15% 4.91h

Table 6.4: Ablation on the KPPR Architecture.

#Blocks Compr.

[M] 7 7

[N] 0 3

[O] 5 3

[P] 7 3

[Q] 9 3

R@1 R@1% Time

88.99% 95.66% 10.87h
68.00% 82.04% 0.21h
89.83% 95.92% 3.69h
91.53% 97.08% 5.05h
90.73% 96.39% 7.02h

where we do not use the feature banks, i.e., when computing the negatives explic-
itly, it scales linearly with the number of negatives (as in Figure 6.2). Training
with more negatives is not feasible due to the limiting memory resources of the
GPU.

6.3.4.3 Architecture

In this section, we analyze different parts of our network architecture. In Ta-
ble 6.4 are the results for different numbers of blocks in the convolutional stem
as well as the network without using the pre-trained compression encoder. Seven
convolutional blocks provide the best performance, additionally one can see that
the training time increases with the number of blocks. Not having any further
convolutional blocks [N] provides the worst results, showing that the convolu-
tional stem is necessary to yield good results. On the other hand, it can be
trained in under 13 min and already has a top 1 recall of 68%. We can see that
using the compression encoder [P] provides better results and trains faster than
without [M]. The slowing down of the training process can be explained by the in-
creasing number of points in the point cloud. The decreasing performance shows
that the features computed by the compression encoder are more valuable than
the higher number of points. The inference of a single compressed point cloud
runs at 95Hz. Precomputing the neighborhoods N and h in the convolutional
stem speeds up the inference by 44.8%, i.e. being almost twice as fast.
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Table 6.5: Ablation: Feature bank training with MinkLoc3D backbone

Loss Mining

[R] Triplet Classic
[S] Triplet Batch
[T] Triplet FB

[U] Entropy Classic
[V] Entropy Batch
[W] Entropy FB

R@1 R@1% Time

71.05% 86.71% 30.07h
73.94% 88.66% 2.72h
77.47% 89.96% 2.17h

73.41% 89.14% 30.14h
73.58% 88.86% 2.75h
78.07% 90.97% 2.15h

6.3.4.4 Backbone

In this section, we investigate if we are able to apply the proposed methodology
to a different backbone. For this experiment, we exchange the compression en-
coder plus the stem architecture with the sparse convolutional feature pyramid
network from MinkLoc3D [116]. For the network architecture, we use the same
hyperparameters as in the original work [116] and also train for the suggested 50
epochs. Based on a parameter sweep, we use a learning rate of 10−4 and a batch
size of 32 for these experiments. Additionally, we report the results for different
negative mining techniques as in Section 6.3.4.1. The results are depicted in Ta-
ble 6.5. First of all, we can see the same behaviors as for our network, i.e., using
the feature banks ([T], [W]) improves both training time and performance. The
entropy loss outperforms the triplet loss as used in the original work [116], also
for this network architecture. When comparing the performance of our network
Table 6.2 [I] with the feature pyramid network Table 6.5 [W], we see that our net-
work provides substantially better results (Mink: 78.07 % versus our: 91.53 %) at
the cost of training time (Mink: 2.15 h versus our: 5.05 h). Our proposed network
has roughly twice the amount of parameters, explaining the difference in runtime
and performance. The results suggest that the proposed methodology might also
increase the performance of other networks. Notably, the results with the feature
pyramid network do not perform as well as in Komorowski et al. [116]. Likely due
to the lack of data augmentation and using a different feature aggregation head,
which we did not apply for comparability to isolate the impact of the backbone.
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6.4 Conclusion

In this chapter, we investigated if we can use our previously built compressed
map representation for place recognition. For tackling the task of place recogni-
tion, we use point cloud descriptors that encode the characteristics of the scene
into a single feature vector. To retrieve the vehicles position in the map, one
can then compare the query descriptor, that is computed on the current vehicles
observations, to the descriptors in the global map. For the descriptor genera-
tion, we follow the paradigm of first computing local point features, which are
then aggregated to the global descriptor per point cloud. Since our compressed
feature-based representation contains already local information, it motivated us
to investigate if they could also be used as features for place recognition. As our
experiments suggest, those features are not only usable, but can even provide
information to obtain state-of-the-arts results. Additionally, we can bypass the
otherwise needed decompression and thus save compute. Our first work, the Re-
triever, showed that even with a minimal network architecture and basic training
techniques we are able to retrieve most positions correctly. Encouraged by the
promising results, we were motivated to develop the more sophisticated approach
KPPR. Enhancing the local compressed features with our stem architecture in-
creases the performance drastically. However, the more sophisticated network
architecture comes at a price: more computational demand, and therefore dras-
tically increasing training times. To tackle the problem, we adapted the idea of
a feature bank for point cloud-based place recognition. This allows us to search
in the training for hard cases without the need to recompute the descriptors. It
does not only speed up the training remarkably, but also further increases the
performance. For us, this led to a significant reduction of the training time by
a factor of up to 17 times, which enabled us to run more experiments and have
faster research cycles. The presented experiments with the feature banks took
around 47 h of training. If we had done those experiments by computing the
classical 18 negatives for each query as in literature [132, 237, 258], it would have
taken us around 800 h. Our network architecture is designed for efficient inference
and training but does not need to specially account for using the feature banks.
Experiments with different network architectures suggest that the advantage of
the feature banks (more negatives with less compute) can be applied also for
other kinds of place recognition architectures and approaches.

In the previous chapters we: (1) calibrated our mobile mapping systems which
enables us to obtain measurements of the desired area; (2) processed the collected
data to generate a globally and locally consistent point cloud map; (3) which
then was split into smaller submaps, which we compressed to obtain a memory
efficient representation. In this chapter, we have tackled how we can localize
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withinin our compressed representation. For this, we computed for each submap
a global descriptor that can be stored alongside. If a robot, e.g., the same as
used for data recording, drives at another time through the same area, then we
can also compute a query descriptor for the current robot’s observations. The
robot can estimate its position in the map by finding the submap descriptor
that is the most similar to the query. We call this coarse localization since it
can only answer us in which part of the map our robot is located, but does not
provide a full 6 DoF pose with respect to the map. In the next chapter, we
tackle the problem of fine localization, where we want to exactly find the full
metric pose. We again want to operate directly on the compressed feature-based
representation. Here we looked if we can use the local compressed features for
generating place recognition descriptors, while in the following we want to use the
local features to find correspondences for registration. Having those feature-based
point correspondences can then be used to estimate the transformation between
the robot and the map frame. Thus, at the end of the following chapter, we will
have the full 6 DoF pose of the robot in the compressed map. Once we have our
global pose within the map, we can use our pose-tracking method to track our
movement with respect to the map, as we will discuss in the last chapter.
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Chapter 7

Registration of Compressed
Point Cloud Maps

Point cloud registration is key for many robotic applications such as map
matching, pose tracking, loop closure, or simultaneous localization and mapping
(SLAM). Outdoor point clouds, as they are commonly used in the domain of
autonomous vehicles, are typically large-scale, contain dynamics, and may vary
a lot between different recording times. Thus, robust and reliable methods to
handle this challenging data are required.

In this chapter, we finalize our method for localization in a compact map
representation. While in the previous chapter, we focused on localizing our robot
coarsely, here we are interested in estimating the full 6 DoF transformation be-
tween the robot and the map. Our map consists of multiple smaller submaps in
the form of compressed point clouds. Additionally, we have for each submap the
transformation to the global coordinate system and from the last chapter also a
place recognition descriptor associated. We can use the descriptors to find the
submap our robot is located in by comparing the descriptor generated from the
current robot’s observations to the submap descriptors. Starting from there, now
that we know in which submap our robot is located, we want to precisely esti-
mate the pose with respect to to this submap. This is what we refer to as fine
localization in our overview provided in Figure 7.1.

We try to solve the fine localization part by point cloud registration, which
estimates the rotation and translation parameters between two point clouds such
that they align. This problem can be solved in closed form when having point
correspondences between the point clouds. Finding those correspondences reli-
ably is typically the most challenging part. The classic ICP method resolves this
problem by iteratively searching for spatially close correspondences in the target
point cloud, as well as using those correspondences to update the estimated trans-
formation. This typically converges to a stable solution. The problem with ICP
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Figure 7.1: In the previous parts, we have investigated how we can build memory-
efficient point cloud maps, and how to coarsely localize a robot in those maps. In this
chapter, we want to estimate a more precise location of the robot within the map using
scan registration.

is that it requires a good initial alignment to converge to the correct solution. In
our case, we do not have any prior on the position of the robot in the submap; the
coarse localization just provided us with the knowledge that the robot is located
in a submap (typically with a size of 40m× 40m), but not where in the submap
and not the orientation. Thus, the initial alignment can be off by up to 180◦ and
translated several meters within the submap.

To resolve the problem we try to find the point correspondences using feature-
based matching. We want to generate distinct features such that points of the
same object have a similar feature, while points from different objects are dis-
similar. Now instead of matching spatially near points, we would match points
that are close in the feature space. As long as the features are transformation
invariant, we should be able to find point correspondences reliably even under
extreme initial conditions.

As in the previous chapter, we aim to build directly upon the compressed
features to avoid decompression. We now want to compute local features for
all points that are well-suited for the correspondence search. Here, we can also
exploit our compressed representation that already consists of a low resolution
point cloud where each point has a feature associated to. We will investigate
how we can refine those compression features to be well-suited for feature-based
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Compression Compression

DCPCR:

Compressed Registration

5 MB
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Figure 7.2: In this chapter, we propose our method DCPCR to directly register point
clouds on a compressed representation. The point clouds are around 90◦ rotated and a
couple of meters translated to each other. Our method first compresse the point clouds,
finally aligns the point clouds directly using the compressed representation. For better
visualization, we show the estimated transformation on the input point clouds, rather
than the sparse compressed representation.

matching. Additionally, we have to deal with uncertain correspondences due to
ambiguities, or certain objects being in one point cloud, but not in the other.
Ambiguities are mostly coming from structureless areas, e.g. many points lie on
large surfaces like streets or walls. Finding correct point-wise correspondences
on those structureless surfaces is very challenging. The absence of parts of one
point cloud in the other can be either caused by a physical change (e.g., cars
moved, construction of a new building), or simply missing overlap, where both
point clouds cover slightly different areas. Therefore, we try to estimate how
certain we are with our correspondences to focus on the most distinct matches.

The main contribution of this chapter is an approach to perform global point
cloud registration in the context of outdoor environments and which operates
on a compressed representation. An example of this can be seen in Figure 7.2.
Specifically, we deal with large non-overlapping areas, dynamic scenes, changing
environments, while having no prior information about the initial pose. We utilize
the compact representation of our prior point cloud compression network to di-
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rectly operate on the compact representation and therefore bypass decompression
and reduce computations when compression is needed. We build upon the classi-
cal SVD-based pose estimation using feature matching with soft assignments. For
that, we propose a network architecture that consists of a convolutional backbone
with a Transformer [238] head to produce distinct features, which can directly be
optimized for point cloud registration. Additionally, the network learns to esti-
mate the quality of the correspondences to focus on points that are well-suited
for the registration. We investigate the performance of our approach when tar-
geting memory-constrained registration, as well as point cloud registration in the
classical setup without compression.

Our proposed point cloud registration method is able to register dense point
clouds without requiring an initial pose estimate, even when the point clouds
only partially overlap and were recorded at different points in time. Exploiting
our compressed point cloud registration allows us to directly register compressed
maps without decompression.

7.1 Related Work

In this chapter, we want to estimate the transformation between two point clouds
such that they are aligned. This task is referred to as point cloud registration,
which we have seen already in Chapter 4 for aligning the mapping data. The main
difference to Chapter 4 is, that we now want to register two dense 40m × 40m

submaps from different points in time, without prior knowledge about initial
pose estimates, while previously we registered sequential scans with relatively
good initial estimates. For related work on the topics of sequential alignment,
and the registration of multiple scans, we refer to Section 4.1. In this section, we
will summarize the field of local registration in preparation for the subsequent
section on global registration.

7.1.1 Local Registration

The most common approach for aligning two point clouds is ICP [21] with its
variants [24, 193, 201]. Here, the main challenge is to find the correct corre-
spondences. Looking only at spatially close points often fails when the initial
guess is too far from the correct transformation. Geometric [64] or photomet-
ric [105, 111, 174] features are often used to find suitable correspondences and to
resolve ambiguities. Projective data association [13, 193, 202] can be applied to
speed up the correspondence search, which usually takes a relatively large pro-
portion of the computation time. Point-to-plane [36] and GICP [201] on the other
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hand try to relax the assumption of point correspondences for faster convergence
and more precise results.

Outdoor environments often change, and therefore, assuming to have a lot of
one-to-one correspondences does not necessarily hold. Robust optimization [30,
65, 97] or a careful correspondence selection [193] is often needed to overcome
this issue.

Deep learning-based approaches have the advantage of computing more
distinct and sophisticated features than their handcrafted counterparts. Some
learning-based approaches [140, 253, 279] rely on the SVD-based closed-form
solution and soft assignments for end-to-end learning, as also our approach.
Other approaches [2, 196] try to estimate the transformation directly in the
network based on global features and thereby bypass the need to find suitable
correspondences. In general, local registration methods require a quite good
initial transformation to converge to the desired solution.

7.1.2 Global Registration

Global registration methods try to estimate the pose between the point clouds
without requiring a good initial guess of the transformation.

RANSAC [59] provides the opportunity to deal with large transformations as
well as outliers by repeatedly sampling correspondences, estimating the trans-
formation, and returning the most supported solution. The correspondences are
found through feature-based matching. For the matching, handcrafted features
like spin images [104], FPFH [194], or SGC [223] can be used. Contrastive learn-
ing is a powerful tool to train neural networks to generate descriptive features for
matching [8, 39, 46]. However, these approaches require ground truth correspon-
dences to learn which features should be similar, and which ones not. While this
is especially easy to realize for simulated scenes, on real world data this would re-
quire manual annotations or heuristics. One method to estimate correspondences
for the training is to utilize 3D reconstruction [278, 289]. A contrastive loss [289]
allows for self-supervised training to enforce similar features for similar areas,
while dissimilar features to all other areas at the same time. Pose invariant fea-
tures [46, 113, 178, 211] have the advantage that by design, can be matched under
arbitrary misalignment. These methods extract patches from which descriptors
are generated. The patches are transformed in a canonical orientation using the
distribution of the points in the patch. The main drawback of estimating such
transformation is that it is prone to varying densities, noise, and outliers, which
limits its application to point clouds outside simulated data. Data from LiDAR
sensors has naturally no homogeneous density due to the measuring process, i.e.,
the further from the sensor the lower the resolution.
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Branch-and-bound (BB) methods [275, 276] generate multiple hypotheses in
an evolutional manner and prune the search space. The biggest disadvantage of
those methods is typically the high computation time.

When having the information about the transformation between the point
clouds at training time, one can directly supervise the pose to get features that
are well suited for the matching [140, 279]. Ground truth poses can be either
artificially generated using data augmentation, or from SLAM [289]. We utilize
the Apollo-Southbay [139] dataset, where the ground truth poses are generated
by utilizing multiple sensors in their SLAM system. Some learning-based reg-
istration approaches let the network directly predict the pose [47]. Instead of
directly estimating the transformation in one shot, or iteratively, recently some
approaches [138, 248] propose a coarse to fine registration in a hierarchical man-
ner. DCP [253] is a supervised registration approach, and closely related to our
method. It utilizes a graph convolutional neural network and a transformer head
to compute features, which are later used to obtain soft correspondences for the
registration. The follow-up work PRNet [254] utilizes Gumbel-Softmax [102] for
sharper matching. DCP and PRNet are designed and successfully applied on
synthetic data with 1,024 points and Gaussian noise, but cannot deal efficiently
with a large number of points, or dynamics as they are common in the automo-
tive field. We overcome the scalability problem by integrating our compression
network from Chapter 5, which subsamples the point clouds significantly but
preserves the local information in the feature representation. To deal with points
that do not have a corresponding point in the other cloud, we propose a way to
weigh the correspondences. By this, we also do not rely on RANSAC to evaluate
the quality of the correspondences [289].

7.2 Feature-based Point Cloud Registration
For the alignment of two point clouds, we follow the classical paradigm of first
finding point correspondences, which are then used to estimate the relative trans-
formation. While in the classical ICP, correspondences are determined via ge-
ometric neighborhood, we follow a feature-based approach. The transformation
consisting of a rotation and a translation is estimated using the closed-form so-
lution [107].

In the following, we will first explain in Section 7.2.1 how to incorporate the
soft assignments and the feature-based matching of the attention mechanism [238]
into the Kabsch algorithm [107]. Afterward, we discuss our network architecture
to compute the features for the point matching (see Figure 7.3). In Section 7.2.3,
we will address the problem of ambiguities and errors in the matching by intro-
ducing a weight for each correspondence.
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Figure 7.3: Given two unaligned point clouds (target: blue, source: red), we first use a
compression encoder to compute local features and to subsample the point clouds. A
feature enhancement block increases the receptive field to create more distinct features
that serve as input to the transformer heads for global aggregation. The resulting
features are used for feature-based correspondence matching. Finally, the soft-assigned
source points are aligned to the target point cloud with a point-to-point registration.

7.2.1 Registration of Compressed Point Clouds
Given are two point clouds in different coordinate frames, where each point cloud
consists of Ni coordinates Pi ∈ RNi×3 and their corresponding Df dimensional
features F i ∈ RNi×Df . We want to estimate the transformation zTs from the
source frame s to the target frame z, such that both point clouds are aligned.
When having a correspondence matrix W ∈ RNz×Ns , we compute the correspond-
ing points P̃z of the target points by

P̃z = WPs. (7.1)

A row in the W matrix represents the corresponding point in P̃z by a linear
combination of the source points. In the case of one-to-one correspondences, this
is a row with 0 everywhere but a 1 at the index of the corresponding source point.
The rotation R ∈ SO(3) and translation t ∈ R3 of the transformation zTs can
then be estimated by the Kabsch algorithm [107] using SVD, as follows:

C = (P∗T
z P̃∗

z)
SVD
= UDL⊤ (7.2)

R = UL⊤ (7.3)
t = x∗

z − Rx̃∗
z, (7.4)

where P∗
i denotes a point cloud shifted by its mean x∗

i such that the point cloud
is centered around the origin. When dealing with uncertainties and partially
overlapping point clouds one can incorporate a weight w ∈ RNz for each cor-
respondence by computing weighted means in Equation (7.4) and a weighted
cross-covariance C in Equation (7.2).

Since the correspondences W are usually unknown, one estimates them by,
e.g., nearest neighbors, feature-based matching, etc., as in classical ICP meth-
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ods [193]. In this chapter, we use feature-based matching by utilizing the atten-
tion mechanism [7] as used in the Transformer [238]. For an explanation of the
attention mechanism and Transformer architecture we refer to Section 2.2.3. It
is defined by three matrices, namely the queries Q, keys K and values V , where
the attention A is computed by

A = attn(Q,K ,V ) = softmax
(

QK⊤√
Df

)
V . (7.5)

When choosing the target features as queries Q := F z, the source features
as keys K := F s and the source coordinates as values V := Ps, we can rewrite
Equation (7.5) resulting in the desired correspondences in Equation (7.1) with
A := P̃z as

P̃z = softmax
(

F zF⊤
s√

Df

)
Ps = WPs. (7.6)

In other words, we are computing a soft assignment between the target
points Pz and the source points Ps, based on the scaled cosine similarity between
their features F z and F s. In the following, we present our network architecture
for computing the point features.

7.2.2 Feature Generation
Our network architecture consists of three parts, namely a compression encoder
for memory and computational efficiency, a convolutional block to increase the
receptive field, and a transformer head for global feature aggregation.

7.2.2.1 Compression Network

Point clouds obtained with modern LiDAR scanners easily contain multiple hun-
dred of thousands of points, which is for most networks infeasible to process.
Our in Section 7.2.1 described attention-based registration relies on cross atten-
tion between the source and target point cloud and therefore grows quadratically
with the number of points. To overcome this issue, we use our compressed map
representation from Chapter 5, which substantially reduces the number of points
and provides locally-aware features. We use the memory-efficient representation
produced from the convolutional encoder as input for our network, which allows
us to run the full registration procedure on the compressed point clouds without
the need for decompression.

Additionally, we use a reduced PointNet [180] to transform the compressed
point representation to a localization-specific feature space, which is better suited
for matching than for reconstruction. We use a similar feature propagation net-
work as in the previous chapter. For more details, we refer to Section 2.2.1.
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7.2.2.2 Feature Enhancement Network

The features from the compression network contain local information about the
close neighborhood of the points but lack broader context, which might be useful
to create more distinct features for better matching and resolving ambiguities.
We use additional Bk KPConv [226] blocks in a ResNet-like fashion [86].

To compute richer features we can use the stem architecture which we intro-
duced in Section 6.2.2 to increase the receptive field. Note that we use the same
network architecture, but due to the training with a different loss the weights,
and thus the resulting features will change. Here, we learn features that are well-
suited for matching while in the previous chapter, we optimized the features to
generate meaningful global descriptors.

7.2.2.3 Transformer

We utilize a small Transformer head [238] consisting of an encoder and decoder.
The encoder operates on the target point features F z and utilizes multihead self-
attention for global feature aggregation.

F t
z = MultiHead(Q := F z,K := F z,V := F z) with (7.7)

MultiHead(Q,K ,V ) = [attn(QWQ
j ,KWK

j ,VW V
j )]WO | j ∈ {1, Nh}, (7.8)

where WQ, WK , and W V are projection matrices of the queries, keys, and val-
ues, respectively. WO projects the Nh concatenated heads to the desired feature
dimension.

The decoder uses multi head cross-attention between the source and the tar-
get, as follows:

F t
s = MultiHead(Q := F s,K := F t

z,V := F t
z). (7.9)

This decoder transforms the features of the source points into the feature
space of the target to increase the feature similarity and therefore should lead to
better matching. More information about the Transformer blocks are provided
in Section 2.2.3. We do not explicitly add any positional encoding since our
generated features already contain some positional information and we do not
want to add any bias to the Transformer, which could increase the influence of
the positions. Defined by our task, we know that the point clouds are each in
their respective coordinate frame, therefore trying to infer information based on
the coordinates is meaningless. The final features F t

z and F t
s are used for the

correspondence matching in Equation (7.6).
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7.2.3 Weighting Scheme
The problem with point-to-point correspondences is the ambiguity in the scene.
For example, estimating the correct location of a point on a wall or the street is
quite challenging. However, we also do not need to find all the correspondences,
having a few reliable matches is better than having many, but partially also
wrong correspondences. To account for this, we estimate for each correspondence
a weight w ∈ RN

z .
Intuitively, we have already some kind of measure to see how precise or

uniquely a point can be matched by our weight matrix W . A row in the weight
matrix W tells us for a specific point, how similar its point feature is to the point
features in the other point cloud. Note that we normalized these similarities to
add up to one. Having a point that can be matched uniquely would correspond to
a row with only zeros except a one for the corresponding point. Points which have
similar features to a lot of points would have similar but substantially smaller
weights for a lot of points. In the end, we want the points that can be matched
uniquely, therefore looking for points with a peaky distribution in the weight
matrix W . In the following, we will discuss different methods to estimate those
weights.

7.2.3.1 Maximum

Formulating the idea of a peaky distribution can be done by looking at the weights
of the weight matrix W . Having a good match would correspond to a high value,
i.e., close to one, for one of the candidates. Therefore, the first method we propose
is to simply use for each correspondence the maximum value in the respective row
of W as weight kw.

7.2.3.2 Entropy

We can also look at it from the opposite way. This would mean that when having
a uniform distribution of the weights, it would correspondend to an ambiguous
match. To quantify this, we can use the relative entropy, i.e., Kullback-Leibler
divergence, between each row of W and the uniform distribution as a weight kw.
The less our distribution is uniform, the higher will be the weight of the corre-
sponding match.

7.2.3.3 MLP

As the last option, we follow the idea by Tiziano Guadagnino, who proposes to
compute the weights based on the correspondence matrix W as follows: “For
each correspondence, we feed the top kw features into an MLP: RN×kw 7→ RN×1
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to obtain the respective correspondence weight. The MLP consists of three linear
layers with ReLU activation in the first two layers and a sigmoid activation after
the last one, to ensure that the weights are between 0 and 1.” [257], [79, p.44 f.]

7.2.4 Loss Function
The registration procedure described in Section 7.2.1, the feature generation from
Section 7.2.2, and the computation of the weights in Section 7.2.3 are fully differ-
entiable. This allows us to directly optimize for the correct pose to learn features
that are well suited for matching and therefore estimating the transformation.
We split the loss LT into a rotational part LR and translational part Lt. For
the rotation, we want to minimize the angle between the ground truth Rgt and
estimated rotation Rest

LR = trace(I3 − R⊤
gtRest), (7.10)

and for the translational part the Euclidean distance between the ground truth tgt
and estimated test translation vectors

Lt = ‖tgt − test‖. (7.11)

The overall loss LT is the weighted sum of both

LT = α1LR + α2Lt, (7.12)

where α1 and α2 are the respective weight factors.

7.3 Experimental Evaluation
Our goal is to estimate the transformation between point clouds, as they for
example are used in map matching or loop closure detection. For this, we want
to estimate the transformation from a local source point cloud to the target point
cloud which was recorded at a different point in time. Note that we do not utilize
the previous datasets, like KITTI [63] since the sessions do not overlap, or Oxford
Robotcar [143] which is the standard for point cloud-based place recognition, but
due to the profile scanner not commonly used for scan registration. Instead, for
registering point clouds across sessions, we evaluate our approach on the Apollo-
Southbay-ColumbiaPark dataset [139], which provides multiple runs, namely a
mapping, training, and testing run, as well as consistent ground truth poses.

By this, we can register point clouds from the training or testing runs with
the ones from mapping. Registering point clouds recorded at completely different
points in time is especially challenging due to objects which moved slightly or miss
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(a) Input Point Cloud (b) Compressed Point Cloud (c) Decompressed Point Cloud

Figure 7.4: Visualization of the different point cloud representations in different stages
of the network. (a) represents the original data like it is used as input for our network
and the baselines for the registration without memory constraints. In (b) the sparse
compressed representation is visualized, and colorized by the feature space. In (c) one
can see the decompressed point cloud, used for the baselines to register under memory-
constrained conditions. The color in (a) and (b) represents the height of the points for
visualization purposes.

completely, e.g., cars in parking lots exchanged or moved which often leads to
wrong associations. We generate local map patches as done in other works [237,
260] by aggregating the scans within a 2 s timeframe and a bounding box of size
[40 m×40 m]. We homogenize the patches using a voxel grid with 10 cm resolution,
resulting in point clouds with around 300,000 points, see Figure 7.4 on the top
left. We consider maps for registration that are within 10 m horizontal range
for a sufficient amount of overlap but still have a large non-overlapping area.
This can practically be accomplished even with cheap GPS sensors or with place
recognition as described in the previous Chapter 6. The initial rotations differ up
to 180◦ due to different driving directions, therefore making it pretty challenging
for local registration methods.

We compare our approach with respect to two geometric approaches:
RANSAC-based coarse registration with finetuning using GICP [201] as well as
Teaser [275]. For the comparison with learning-based baselines, we retrained
PCRNet [196] and HRegNet [138] on the Apollo data. We exchanged the loss
function of the PCRNet from the earth mover distance to our loss function in
Equation (7.12), which led to better performance for this data.

For the quantitative evaluation, we will evaluate the approaches based on the
mean absolute error MAE(·) in terms of the rotation MAE(R) and translation
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MAE(t), as follows

MAE(R) =
1

|I|
∑
i∈I

arccos
(trace(R⊤

gt(i)Rest(i))− 1

2

)
, (7.13)

MAE(t) = 1

|I|
∑
i∈I

‖tgt(i) − test(i)‖2. (7.14)

To measure the success rate of the registration, we always provide additionally
for each metric the recall rate of how often it is below a certain threshold, e.g.,
MAE(R)@5◦. We compute the mean absolute errors only for the inlier I, which
are below the threshold.

7.3.1 Implementation Details
For our network, we utilize our compression encoder from Chapter 5 which
achieves a compression ratio of around 1:100. For the feature enhancement net-
work in Section 7.2.2.2, we use Bk = 7 KPConv blocks with radius r = 2m.
We use the transformer blocks with pre-layer normalization [270] for faster con-
vergence and more stable training. In our experience, we saw that more than 2
transformer layers require substantially more training time and do not improve
the performance significantly. The final feature dimension of the PointNet in
Section 7.2.2.1, the ResNet blocks in Section 7.2.2.2, and the transformer in Sec-
tion 7.2.2.3 is set to 256. We use Layer normalization [6] in all blocks due to the
relatively small batch size of 8. Further, we use gradient accumulation over 4
batches and a learning rate of 5 · 10−5 with the AdamW optimizer [134].

During developement, we have seen our feature-based registration method
aligns the point clouds generally very well, but can sometimes still be slightly
misaligned. To fine register, we use standard GICP [201] with a Geman-McClure
kernel [65] on the compressed point clouds. The normals for the GICP fine regis-
tration are computed based on the 25 nearest neighbors. Registering a compressed
point cloud requires around 0.04 s for feature extraction and pose estimation, as
well as 0.02 s for the fine registration, i.e., in sum 60 ms for our approach. The
compression of a dense point cloud of around 300 thousand points requires an
additional 0.173 s but can be done in a preprocessing step and might be needed
anyway for operation or storage. All experiments and the runtime are evaluated
on an i7 @ 3.50 GHz with 8 cores and a GeForce RTX 2080 SUPER with 8 GB
GPU memory.
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7.3.2 Compressed Point Cloud Registration

This experiment investigates the registration quality of the aforementioned ap-
proaches when only the compressed representation is available, for example, due
to memory constraints on the vehicle. For a fair comparison with the baselines, we
will either provide them with the compressed (Figure 7.4b) or the decompressed
point clouds (Figure 7.4c), whatever works best for them. We will evaluate our
approach directly operating on the compressed point clouds. We want to note
that for our approach, we also do the fine registration with the compressed point
clouds (see Figure 7.4b) and not with the denser decompressed ones. In Table 7.1
the results for our approach and the baselines are shown. Our approach is the
only one that is able to consistently (over 95% of the time) estimate the trans-
formation within 1◦ and 0.3 m. The decompression of the point clouds leads to
artifacts or additional noise, which seem to deteriorate the performance of the
baselines. Our approach computes the initial guess in both cases on the com-
pressed representation, and therefore the recall does not drop significantly when
compared to the registration without memory constraints (compare Table 7.2).
The mean absolute errors on the other hand drop by a factor of 2 to 3 when
doing the fine registration on the compressed representation. The very low point
resolution (around 1.5 m) does not allow for accurate normal estimations, limiting
the performance of the GICP in the fine registration.

7.3.3 Comparison to General Point Cloud Registration
Techniques

In this experiment, we evaluate the accuracy of the point cloud registration with-
out aiming at compression. All methods have access to the original input data
(see Figure 7.4a). Note that our approach still uses the compression network
for feature extraction and subsampling, but uses the original input data (as in
Figure 7.4a) for more precise fine registration. The results are depicted in Ta-
ble 7.2. Our approach is able to outperform both, the classical, as well as the
other learning-based approaches. The RANSAC-based approach provides quite
similar results to ours. In Figure 7.5 we visualize some registration results of our
approach. Our approach shown in the middle is able to recover from the bad
initial guess depicted on the left. The fine-registration shown on the right allows
fixing the small remaining pose error.
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Table 7.1: Compressed registration

Approach MAE(R)
@0.5◦

MAE(R)
@1.0◦

MAE(R)
@5.0◦

MAE(t)
@0.1m

MAE(t)
@0.3m

MAE(t)
@0.5m

Teaser [275] 0.317
(19.90%)

0.545
(45.04%)

1.194
(79.84%)

0.071
(6.63%)

0.179
(46.23%)

0.239
(65.03%)

PCRNet [196] 0.353
(2.91%)

0.672
(13.32%)

2.117
(64.88%)

0.073
(0.87%)

0.200
(9.24%)

0.318
(21.98%)

HRegNet [138] 0.291
(56.99%)

0.390
(77.31%)

0.557
(86.55%)

0.067
(37.87%)

0.115
(79.89%)

0.126
(83.66%)

RANSAC + GICP 0.209
(51.69%)

0.299
(63.44%)

0.691
(78.39%)

0.062
(26.50%)

0.123
(57.43%)

0.159
(66.58%)

Ours 0.178
(91.95%)

0.207
(98.01%)

0.216
(98.55%)

0.064
(49.45%)

0.109
(96.61%)

0.113
(98.26%)

Quantitative Results on the Apollo-Southbay dataset using the compressed point clouds
as input to all methods. Presented numbers are the mean absolute errors of the trans-
lation in meters and the rotation in degrees, as well as the success rate in brackets.

Table 7.2: Classical registration

Approach MAE(R)
@0.5◦

MAE(R)
@1.0◦

MAE(R)
@5.0◦

MAE(t)
@0.1m

MAE(t)
@0.3m

MAE(t)
@0.5m

Teaser [275] 0.254
(62.02%)

0.369
(84.12%)

0.577
(97.80%)

0.060
(39.21%)

0.122
(87.30%)

0.141
(94.61%)

PCRNet [196] 0.366
(3.25%)

0.673
(14.57%)

2.071
(66.17%)

0.072
(1.18%)

0.198
(11.96%)

0.310
(26.62%)

HRegNet [138] 0.243
(74.90%)

0.296
(85.19%)

0.402
(90.86%)

0.060
(66.30%)

0.081
(88.07%)

0.085
(89.37%)

RANSAC + GICP 0.066
(97.52%)

0.067
(97.64%)

0.088
(98.43%)

0.048
(88.28%)

0.056
(97.46%)

0.057
(97.82%)

Ours 0.045
(98.95%)

0.045
(98.95%)

0.059
(99.35%)

0.047
(96.86%)

0.048
(98.69%)

0.048
(98.69%)

Quantitative Results on the Apollo-Southbay dataset with the regular, not compressed
point clouds, as input to all methods. Remark that our approach is still compressing
for the feature computation. Presented numbers are the mean absolute errors of the
translation in meters and the rotation in degrees, as well as the success rate in brackets.
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Input:
E(R) = 12.95°
E(t) = 9.12m

Deep Registration:
E(R) = 0.426°
E(t) = 0.273m

Fine Registration:
E(R) = 0.014°
E(t) = 0.009m

Input:
E(R) = 179.32°
E(t) = 2.84m

Deep Registration:
E(R) = 0.274°
E(t) = 0.061m

Fine Registration:
E(R) = 0.050°
E(t) = 0.097m

Example 1 Example 2

Figure 7.5: Qualitative results of our point cloud registration method on two example
scenes. In blue, the target point cloud is shown, while in red the source is transformed
by either the initial guess (top), the registration solely based on our network (middle),
and after the fine registration (bottom). Even under extreme conditions like 180◦

of wrong rotation, our network is able to align the point clouds properly. The fine
registration is there to fix the last slight misalignment. E(R) and E(t) denotes the error
in rotation and translation, respectively.
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Table 7.3: Ablation: Architecture

KPConv Transf. GICP MAE(R) @5.0◦ MAE(t) @0.5m

[A] 7 7 3

[B] 7 7 7

[C] 3 7 7

[D] 7 3 7

[E] 7 3 3

[F] 3 3 7

[G] 3 3 3

0.503 (48.89%) 0.120 (13.33%)

2.990 (40.13%) 0.304 ( 1.70%)
0.425 (98.69%) 0.101 (94.38%)
1.285 (89.80%) 0.252 (54.51%)
0.253 (94.64%) 0.121 (92.16%)
0.405 (99.74%) 0.099 (96.21%)
0.187 (99.87%) 0.115 (99.61%)

Mean absolute error for different network architecture configurations for translation in
meters and rotation in degrees, as well as the success rate in brackets.

7.3.4 Ablation on the Network Architecture

In this section, we will take a look at different parts of the network to provide
deeper insights into the approach. All the following results are evaluated on the
validation set.

In Table 7.3 we investigate the performance of the architectural choices by
enabling and disabling certain parts of the network. We can see that only using
the compressed features [B] is not sufficient to reliably estimate the transforma-
tions, leading to the worst performance. Increasing the receptive field by using
the proposed feature enhancement increases the performance drastically [C]. An
additional transformer head can slightly improve the performance [F], while only
using the transformer degrades the performance significantly [D]. These results
are in line with results from different domains, showing that the locally inductive
bias of convolutions speeds up the training and is especially helpful when having
smaller-sized datasets [269]. The best results can be achieved when enabling all
parts of the network and finetuning the results using GICP [G]. For completeness,
we show the results of only using the GICP without an initial guess from our net-
work [A]. ICP cannot deal well with large transformations, which therefore shows
the need for a good initial guess.

7.3.5 Ablation on the Weighting Schemes

In this ablation study, we will investigate the performance of the different weight-
ing schemes introduced inSection 7.2.3. Additionally, we compare against no
adaptive weighting, which results in a constant weight (w = 1N) as baseline.
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Table 7.4: Ablation: Weighting schemes

Metric Constant Entropy Maximum MLP

MAE(R)
@5.0◦

1.648
(89.28%)

0.725
(97.78%)

0.620
(98.04%)

0.405
(99.74%)

MAE(t)
@0.5m

0.304
(10.85%)

0.186
(82.22%)

0.156
(86.93%)

0.099
(96.21%)

Mean absolute error for different weighting of the correspondences for translation in
meters and rotation in degrees, as well as the success rate in brackets.

high
weights

Figure 7.6: Point clouds (target: left, source: middle) are visualized by the estimated
weights w to show which points contribute to the estimated transformation. The
brighter the color the higher the impact. On the right is a close-up view of the target.
Our network only considers static, structured areas for registration. Weights are up-
sampled on the input point cloud for better visualization.

The results are depicted in Table 7.4. The MLP-based method shows superior
performance over the max-pooling and entropy-based versions, which both per-
form quite similarly. Using for every correspondence a constant weight performs
substantially worse (with a 80 percent-point drop in the translation), showing the
importance of computing individual weights. In Figure 7.6, we additionally visu-
alize the weights for the correspondences to illustrate, which points the network
uses for the registration. For each target point, we have exactly one correspon-
dence weight and therefore can directly colorize the points based on the weight
magnitude. For the source, we compute the mean activation in W weighted by
the correspondence weight w to colorize the points. Bright colors indicate a
high weight and dark colors indicate a low weight. For better visualization, we
show the weights on the input point cloud based on its nearest neighbor in the
compressed point cloud. Big areas with a low structure like ground, and huge
walls have a very low weight and therefore are not considered for the registration.
Even though cars provide a lot of structure, they also have a low weight. The
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7. Registration of Compressed Point Cloud Maps

network did maybe learn that cars often move and therefore are not reliable for
the pose estimation. Only a few distinct and stable areas like trunks, small walls,
or poles have a high weight and therefore are used for the registration. Since our
approach relies on point-to-point correspondences, these results are in line with
our expectations.

7.4 Conclusion

In this chapter, we presented a novel architecture for point cloud registration
under arbitrary initial estimates. We exploited the point-feature-based represen-
tation from our former defined point cloud compression approach. This allows us
to directly estimate the transformation on the compressed point clouds without
the need for decompression. We used the representation as a basis for our feature
enhancement network to estimate features that are well-suited for matching. The
network consists of a stem architecture for increasing the receptive field, as well
as a Transformer network for propagating information between the point clouds.
We have reformulated the scaled dot product attention from the Transformer ar-
chitecture to estimate point correspondences. Having the set of correspondences
allows use to utilize standard closed form solutions for estimating the desired
transformation that aligns both point clouds. Our proposed method is completely
differentiable, such that we can directly optimize the whole network end-to-end
to find the best parameters for the pose estimation. The network needs to learn
during training to generate features that lead to correct feature-based matching
of the points to estimate a correct pose. By this, we can directly optimize the net-
work to learn correct matches, without directly supervising the matching, which
would require ground truth correspondences. Due to the presence of dynamic
objects, non-overlapping areas and changed scenes because of the time difference
in recording and mapping, we have to estimate for each correspondence a weight.
Therefore, our network also estimates a confidence weight for each correspondence
such that the network can focus on the unambiguous parts which are well suited
for matching. Our experiments have shown, that the weighting is necessary for
reliable registration. The proposed method can register compressed point clouds
over 95% of the time below 30 cm and 1◦. Additionally, we have shown that our
method can also be used for regular point cloud registration, when not targeting
compression. There, we achieve over 95% of the time registration errors even
below 10 cm and 0.5◦. By this, our method is able to outperform the baselines.
Working solely on compressed representations, which is two orders of magnitudes
smaller than the raw point cloud data has the potential to scale mapping-based
systems substantially, without compromising the systems’ performance.
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Even though our method showed very promising results, the main drawback
of this method is the runtime. The feature computation is quite time-intensive
even though the compressed features are already reused. Future work could
investigate how to speed up the method without compromising too much on
the registration quality. One possible direction would be to look into knowledge
distillation networks, where a teacher network supervises a smaller light-weight
student network. In the end, the significantly more compute-efficient student
network can often perform relatively well with substantially fewer resources. For
now, we exploited aggregated point clouds which have the advantage that they
cover bigger areas, are denser and potentially see objects from multiple sides.

With this work, we completed the full localization pipeline leveraging a
memory-efficient representation. From the initial system calibration, over
the map construction, to the coarse localization using place recognition, and
finishing now with the fine localization using place recognition. While in the
coarse localization, we have found in which part of the map our robot is located,
here we estimated the full 6 DoF transformation of the robot to the map.

The network architecture is quite compute-intensive and takes a couple of
seconds to compute the features. Additionally, we operate on aggregated point
clouds to obtain a denser and more complete representation. Therefore, this
method is not suitable to run at the sensor frame rate. That is not really prob-
lematic since often systems have not only the global relocalizer but also an online
odometry estimation to cover the time between two global estimates. However,
it might be advantageous to track the position of the robot directly in the map
once the initial position is computed. For the initial localization we require global
registration that can deal with arbitrary initial position estimates, but once the
position is found we could exploit the movement of the car. Estimating the
motion of the car, even with a simple model, can improve our initial position
estimate to a centimeter level. Thus, from then on we could rely on basic ICP-
based techniques to track the movement of the robot to the map, without the
need for compute-intensive feature estimation. In the next chapter, we want to
investigate how can we track our robots position within a map, when already hav-
ing a quite good initial pose estimate, as could be obtained by our coarse to fine
localization. Instead of relying on our compressed feature-based representation,
we will explore the neural implicit representations for mapping the environment.
As done so far, we will focus on memory efficiency to enable large-scale mapping
and efficient data storage.
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Chapter 8

Pose Tracking in Neural Distance
Field Maps

The ability to track the position of a robot within a given map is important for
localization, planning, and state estimation. When moving through an already
mapped area, the map can be used to estimate the ego motion of the robot. For
this, one can align the observations of the robot’s surroundings to the map. The
transformation needed for the alignment can then be used to estimate the robot’s
position within the given map. Modern robots often perceive the environment
at high frequency, which enables the tracking of the robot’s pose in the map
by successive alignment. This so-called map matching has a big advantage over
relative pose estimates, e.g., from inertial navigation, or odometry estimation, by
having a global reference. Relative estimates typically accumulate errors which
leads to a drift in position over time.

In this chapter, we want to investigate how to track the pose of a robot in a
given map. For clarification, we refer to pose tracking as the task of estimating
the movement of a robot or sensor with respect to a map using sequential sensor
observations. By this, it is a special form of localization, where we assume an
initial position given and from there on iteratively estimating the robot’s pose.
In the last two chapters, we have localized a robot based on a local dense point
cloud of the robot’s proximity in our compressed map representation. We first
computed in Chapter 6 in which part of our map the robot is located, while in
Chapter 7 we estimated the full 6 DoF pose. Starting from such an initial pose
estimate, we now want to track the movement of the robot in a map iteratively
using the current LiDAR scans. By operating on a scan level, but still exploiting
sequential data, we can estimate the motion without inducing latency for point
cloud aggregation as needed for our global registration methods. Therefore, our
proposed global registration methods can find the initial position in the map, and

123



Multi-Sensor
Calibration (3)

Mapping
Data

LiDAR Pose
Estimation (4)

Compact Map
Repr. (5,8)

Local Point
 Cloud Data

Coarse
Localization (6)

Fine
Localization (7)

Pose
Tracking (8)

Preliminary

Online Localization

Offline Mapping

Figure 8.1: With the last chapter, we have localized our robot precisely in a given
compressed map. In this chapter, starting from a known pose, we want to now track
the movement of the robot within the map by successively aligning local scans to a
neural distance field.

once the position is found, pose tracking can take over to estimate the motion
from then onwards.

Common map representations in mobile robotics are occupancy maps [89],
surfels [13, 219], distance fields [72, 188], NDTs [218], or raw point clouds [243,
260]. These representations are often combined with data structures for efficient
management: octrees, kD-trees, grid maps, or hash maps. In this work, we will
take a closer look at representing the scene with a distance field. The advantage
of this representation for mobile robotics is that the distance it provides can be
used for common robotic tasks like scan registration, Monte Carlo localization
(MCL), path planning, and even reconstruction.

In line with the previous chapters, one key focus is to have a compact repre-
sentation of the map to enable localization in city-scale environments. However,
instead of again relying on our compressed point-feature-based map from Chap-
ter 5, we will explore the usage of a neural implicit map representation for this
task. Neural implicit representations do not explicitly model the environment,
e.g., through points, triangles, or primitives, but rather implicitly as a function
of space. For this neural networks are learned such that they can predict for
every point in space certain attributes like density, color, or the distance to the
closest surface. Recent works in computer vision train neural networks to learn
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Figure 8.2: In this chapter, we will show how to learn a neural distance field from
point cloud data. Using this neural distance field as a map representation enables scan
registration and localization.

the distance field for a given scene. This so-called neural distance field (NDF) is
usually modeled by a simple multi-layer perceptron, which returns for each point
in space the distance to the closest surface. The advantage over the common
grid-based distance fields is the continuity of the prediction, therefore, it is not
limited by grid resolution. Additionally, a network has the ability to represent
low-dimensional information efficiently, whereas grid-based representations spend
a lot of grid cells to store low-dimensional objects like walls or a ground plane.
However, neural implicit representations learn a function that describes the scene
instead. Since, the network only has a certain amount of parameters and DoF,
it needs to use them efficiently. In computer vision, the training of the NDFs
is usually done by either using high-resolution ground truth meshes or normal
information or is directly supervised by a given distance field. So far, it has been
rarely investigated how the NDF can be trained from raw sensor data, such as
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raw LiDAR data. Additionally, it is not clear how well those NDFs are suited to
tackle mobile robotic tasks.

In this chapter, we propose our approach for learning NDFs based on point
cloud data as commonly obtained from real LiDAR sensors. Additionally, we
show how to localize in a given NDF, as visualized in Figure 8.2. In the domain
of autonomous driving, we look at pose tracking for odometry estimation in a
given map. As an additional experiment, we also look at indoor navigation where
we use MCL in combination with NDFs. In sum, we propose a method to learn
a neural distance field, which is well suited for scan registration and allows for
localization using MCL.

8.1 Related Work

8.1.1 Map Representations

Many different map representations have been used in the robotic context. The
point cloud representation is quite common since it can represent directly the
sensor observations. Naturally, a point cloud is an unordered list of coordinates,
which makes operations like finding neighbors, or computing distances to the
map computationally demanding. Therefore, point clouds are often combined
with acceleration structures like octrees [15, 150], hash maps [163, 243], or kD-
trees [19] to speed up such operations.

Although point clouds can be dense by having many points, the representation
can not produce close surfaces. Surfels [13, 219] approximate the underlying
surface by planar patches, thereby approximating surfaces usually better. These
patches are usually treated independently of each other which allows for easy
deformation, as it is needed for correcting the map, e.g., after a loop closure in
SLAM [13]. However, surfels usually do not form a watertight surface as often
present in the world. Triangle meshes, on the other hand, can be constructed
in a watertight fashion and can smooth out noise effectively, e.g., using Poisson
surface reconstruction [109, 240].

In the field of robotics, so-called 2.5D representations are often used for path
planning or localization. Elevation maps [9, 121, 177] store the height of each cell
in a 2D grid. To overcome the limitation of representing only a single height per
cell, multi-level surface maps [231] extend the idea by storing multiple levels.

Occupancy fields have the notion of free and occupied space and can even be
extended to represent unknown space in a probabilistic fashion [89]. These oc-
cupancy fields are often stored in image-like grids for 2D [75] and classically
in octrees for 3D [89]. Neural radiance field (NeRF) [10, 155] methods use
most commonly an MLP to learn the occupancy of a scene. While the original
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8. Pose Tracking in Neural Distance Field Maps

work [155] learns the underlying representation from image data, recent works
utilized LiDAR data either to complement the training [292] or directly to re-
place the images [224]. Neural occupancy fields learn for each position in space
to predict the respective occupancy value [154, 273].

Instead of storing the occupancy of a scene, another common representation
is to store for each position the distance to the closest surface [40]. A Euclidean
distance transform can be used to transform an occupancy grid [188] into a dis-
tance field. Traditionally, the distance values are stored in a grid. Nowadays,
more learning-based approaches emerge, which use neural networks to learn the
so-called NDF. Where instead of storing the distances into a grid, a network shall
learn for each position in space the distance to its closest surface. Such NDFs are
usually supervised either by density fields [236], normals [207, 264], or directly the
ground-truth distance [37, 175]. Learning them directly from sensor observations
is just rarely exploited [5, 297]. Azinovicć et al. [5] learn NDFs from RGB-D
camera data. The availability of color information is used in the training such
that the rendered images look like the observed images. While their approach
is refining the poses of the training data, our approach is focusing on estimating
the pose from data that is not used for the training. Their poses are directly
refined in the training using ADAM optimization. We instead, combine classical
pose estimation methods with the usage of NDFs. Azinovicć et al. [5] as also
we are representing a scene by one MLP for a compact representation. However,
some approaches learn local MLPs or embedding vectors that divide the space in
smaller chunks [184, 297]. This has the advantage that the individual MLPs or
embeddings are significantly smaller and thus faster to train. The cost for it is
that you require more MLPs and due to the locality, the network can not exploit
low-frequency information in the data. Similarly to SHINE-Mapping [297], we are
trying to learn NDFs directly from LiDAR data. However, the goals are differ-
ent; our approach aims at having a compact representation for localization, while
they focus on high fidelity reconstruction. Besides the architectural differences,
we propose to use the neural distance field for correcting the observed distances
while training.

8.1.2 Scan Registration
Scan registration is a common problem in robotics, that we encountered already
in Chapter 4 and Chapter 7. For a more extensive review of the field, we refer
to the respective parts, i.e., Section 4.1 and Section 7.1. Here, we only point out
the major works to set our work into perspective.

The most common method for aligning two point clouds is the ICP algo-
rithm [21]. It usually, consists of two steps: first finding correspondences between
the two point clouds, which can be then used to estimate the pose by optimiz-
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ing an error metric. For finding correspondences, one can search for the closest
point [21], use projective data associations [13, 161], or do feature-based match-
ing [78, 257] (as we have also done in Chapter 7). Point-to-point [21], point-to-
plane [36], or even plane-to-plane [201, 202] metrics are minimized for computing
the alignment. Our proposed point-to-NDF-based registration is conceptually
quite similar to classical registration to a distance field [161]. The potential over
the grid-based representation is that the neural-based representation is free of
discretization and does not require truncating the distance fields due to higher
memory efficiency.

Robust kernels and correspondence thresholds are used to reduce the impact
of outliers, low overlap, and dynamic objects [30, 65, 97].

8.1.3 Monte Carlo Localization

MCL is a method to localize a mobile robot in a given map using a particle fil-
ter [43, 60]. Its key idea is to represent the posterior belief about the robot’s pose
by a set of weighted samples, so-called particles. Each particle weight represents
the likelihood of the corresponding pose hypothesis, and can be computed by the
sensor observations. The basic idea is to compare the current sensor reading at
the particle location with the map, using the so-called observation model [229].
In the context of 2D global localization, the map is often represented as an occu-
pancy grid [43] which can be efficiently constructed from LiDAR data. Coverage
maps [212] extend the idea and not only distinguish between free and occupied
space but store a posterior of the coverage instead. Different methods address
the problem of changing or dynamic environments [68, 213, 300]. One way is
by not relying only on one version of the map, but storing patches of the map
and incorporating a map transition model [213]. Nowadays semantic cues in the
form of text [302], or fully semantic masks [68, 300, 301] are used to focus on the
static and stable parts. Precise plans from building information modeling (BIM)
are sometimes used for localization to exploit existing data [87, 282]. As demon-
strated by Boniardi et al. [23], or Zimmermann et al. [300], MCL does not always
require accurate maps, but can even work in imperfect floor plans.

The performance of MCL-based systems heavily relies on the number of par-
ticles used. The more particles, the higher the chance to converge to the right
position, but also the slower the method. Often methods have an initialization
phase where they use substantially more particles for global localization, and a
tracking phase with fewer particles once the system is converged [118]. Fox [61]
proposes a method for adaptively regulating the number of particles based on
their distribution. The most common observation model for LiDAR based local-
ization is the classical beam-end model [18, 43, 118, 213]. With the rise of neural
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networks, a semantic observation model can complement the geometric beam-end
model [68, 300] for faster convergence.

Besides the potential of using neural networks for the observation model,
learning based map representation have recently shown advantages over classical
maps. Standard grid-based maps are bound by the resolution of the underly-
ing grids, while implicit neural representations can estimate a continuous field.
Kuang et al. [118] therefore propose a neural occupancy field to overcome the dis-
cretization limitation to improve localization. However, their approach requires
computationally demanding ray casting-based rendering to evaluate the obser-
vation model and thus has to reduce the usable number of beams per scan for
online localization. Conversely, using our NDF, we predict the distances to the
closest surface directly for using it in the observation model. By this, we do not
require compute-heavy rendering. In the image domain, NeRFs have been used
to localize [144] by rendering images at the particles’ position from the neural ra-
diance field (NeRF) and compared to observed images to estimate the particles’
likelihood.

One major problem for particle filter-based methods is the scalability. Scaling
from a 2D map with typically 3 state parameters (2 for translation and 1 for
rotation) to 3D with 6 state parameters requires exponentially more particles to
have comparable particle coverage, also known as the curse of dimensionality.
Maps in the domain of autonomous driving cover usually large areas, that also
increases the amount of particles with respect to the classically smaller indoor
areas. To localize in a 3D large-scale map, methods estimate with the particle
filter only a 2D pose by using either point cloud descriptors, or overlap-based
observation models [33, 280, 283]. By this, they assume a mostly planar movement
and only little rotation in roll and pitch, which usually holds in the automotive
domain. A final 6 DoF pose can later be estimated using classical scan registration
methods.

8.2 Learning Neural Distance Fields for Robot
Localization

In this chapter, we aim at learning a neural distance field from point cloud data,
acquired by sensors, like LiDAR sensors, or RGB-D cameras as a representation
to explicitly support localization. We do not rely on point cloud normals, since
normal estimation heavily relies on the type of sensor and is prone to errors. The
above-mentioned range sensors have in common that they measure the distance
from the sensor origin to the surface. The only assumption we make is that the
space between the sensor and the measured point on the surface is free space.
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In the following, we will first explain how we train the NDF from the sensor
data. Second, we show two common localization methods for point cloud data
within the NDF, namely scan registration using ICP and global localization using
a particle filter.

8.2.1 Learning Neural Distance Fields from Sensor Data
Our goal is to be able to query the neural distance field D at an arbitrary point in
space p ∈ RD to obtain the distance d to the closest surface. In this work, we focus
on applications in outdoor robotics with D = 3, which covers localization and
registration using 3D point clouds produced by commonly employed automotive
LiDAR sensors or terrestrial laser scanners, but also indoor environments, where
we often use D = 2, for commonly equipped 2D LiDARs for localization and
navigation.

The representation of our map is a multi-layer perceptron D : RD 7→ R which
maps the input coordinates to the Euclidean distance space. We use a positional
encoding π : RD 7→ R2Iω with periodic activation functions,

π(p) = (p, sin(ω1p), cos(ω1p), . . . , sin(ωIωp), cos(ωIωp)), (8.1)

where ωi is the ith frequency. The positional encoding helps to retain high-
frequency information in the distance field [155].

In contrast to previous approaches which supervised the training process ei-
ther by ground truth distances [37, 175], occupancy fields [236], or given nor-
mals [207, 264], we exploit the measurement process of the LiDAR sensors similar
to truncated signed distance field (TSDF) fusion pipelines [161, 242]. However,
we are not directly supervising using the TSDF values like Zhong et al. [297], but
rather use an approximated distance as explained in the following.

Laser sensors measure the distance from the sensor origin to the surface,
which we will call the ray distance dp. Inspired by NeRFs, we sample points
{pi ∈ RD | i = 1, ..., N} along the LiDAR beam, i.e., pi = (1− λi)oi + λiei, be-
tween the sensor origin oi ∈ RD and the end of the beam ei ∈ RD. We sample
more points near the surface by sampling log-linearly along the ray, i.e.,

λi =
1− 10

i
N−1

−1

0.9
. (8.2)

Consequently, the ray distance di for each sampled point to the surface is given
by di = ‖ei − pi‖. Note that the ray distance di does not necessarily correspond
to the distance to the closest surface. Instead of searching for each sampled point
for the closest point on a surface, which is computationally expensive for large-
scale maps and requires determining first the surface by reconstruction, we can
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Figure 8.3: Instead of learning the distance between the point pi and the measured point
on the surface ei (red), e.g., as for TSDF, we project the beam along the direction of
the gradient (grey arrow) to supervise by the approximated distance d̃j to the closest
surface. The color of the background corresponds to the distance field; the brighter the
color, the higher the distance.

approximate the direction ni to the closest surface analytically using the NDF D

by using the gradient:

ni = −∂D(pi)

∂pi

. (8.3)

A visualization of this process is depicted in Figure 8.3. The gradient pro-
vides us with the direction of the steepest increase of the distance field, therefore
the negative gradient points toward the closest surface. In practice, we can use
automatic differentiation to compute ni. We project the distance di along the
direction ni to approximate the distance to the closest surface

d̃i =
(ei − pi)

⊤ni

‖ni‖
. (8.4)

We use the approximated distance d̃i as supervision signal during training.
Note that this is a circular problem: The better the approximated distance d̃i,
the better we can supervise the NDF. At the same time, the better the NDF,
the better we can estimate the direction to the surface, which finally should
result in a better-approximated distance. This circular dependency might raise
the question if the training is stable, especially when we initialize the NDF D
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with random weights. Practically, we did not notice any instabilities due to this
approximation in the training. We reason that this might be due to the fact that
the approximation error, ϵi = |d̃i − di|, is smaller, the closer the query point pi is
to the surface. Thus, for surface points or points close to the surface, i.e., di ≈ 0,
we approach ϵi ≈ 0 regardless of the gradient ni. Therefore, the correct distance
propagates from the surface to the free space while training the NDF.

Similar to TSDF fusion pipelines [242], we prioritize measurements ei with
lower distance di. For this, we introduce a weight wi given by

wi = (dmax − di)
γ, (8.5)

where dmax is the largest distance in a batch and γ is a hyperparameter that
regulates the impact of measurements from higher distances, i.e., the higher γ,
the lower the impact of far points. We supervise the NDF by minimizing the
weighted L1 loss of our approximated distances

Ldist =
∑
i

wi|D(π(pi))− d̃i|∑
j wj

. (8.6)

Additionally, we have an additional loss to enforce that the endpoints lie on
the surface

Lend =
∑
i

|D(ei)|. (8.7)

Similar to Zhong et al. [297], we add a regularization loss to enforce the
Eikonal equation ‖∇D‖= 1, which needs to hold for being a valid distance field

LEik =
∑
i

|‖ni‖2−1|, (8.8)

as well as a loss to enforce that neighboring points have similar normals

Ln =
∑
i

|∠(ni, n̂i)|, (8.9)

where ∠(·) is the cosine distance and n̂j is the gradient of the neighbor of pj.
The neighbors pj are sampled within a distance τ of pi, i.e., we randomly select
from all radius neighbors {p | ||pi − p|| < τ} an arbitrary point pj.

The final loss is a linear combination of the aforementioned losses

L = Ldist + αendLend + αEikLEik + αnLn. (8.10)
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Figure 8.4: Principle of scan registration in an NDF. Querying the NDF at the positions
of the input scan provides us with the distance and by differentiation also with the
direction we have to go, to align the scan to the NDF. This procedure can be solved
iteratively in an ICP fashion. The color of the background corresponds to the distance
field; the brighter the color, the higher the distance.

8.2.2 Scan Registration to a Neural Distance Field Map
In this section, we show how to leverage the learned NDF to register point clouds
to the map using ICP effectively. The objective is to find the rotation R ∈ SO3

and translation t ∈ R3 that aligns the point cloud P to the NDF map D, i.e.,
that reduces the distance between the point cloud and the surface

R∗, t∗ = argmin
R ,t

∑
pi∈P

D(Rpi + t)2. (8.11)

We solve the problem using non-linear least squares optimization, where the
Jacobians for the ith point are

Ji =

[
∂D(Rpi + t)

∂t
,
∂D(Rpi + t)

∂Θ

]
=
[
ni,pi × ni

]
, (8.12)

where Θ is the axis-angle parameterization of R.
As we can see in Equation (8.11) and Equation (8.12), we do not rely on

corresponding points. This has the advantage of not needing to search for corre-
spondences in contrast to classical ICP-based methods. We can solely solve the
problem by knowing in which direction (n) and how far (given by D(p)) we have
to go. This information is directly encoded in the weights of the network and
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8.2. Learning Neural Distance Fields for Robot Localization

learned in the generation of the map. A visualization of this for the 2D case can
be seen in Figure 8.4.

We know from theory [77] that the distance field needs to fulfill the Eikonal
equation ‖∇D‖= 1, or intuitively: if we move one meter away from the surface,
the distance needs to increase by one meter. Since we only approximate the
NDF by a neural network, this does not necessarily hold. If the norm of the
gradient is either larger or smaller, we would over or underestimate the distance
accordingly. To counter this phenomenon, we normalize the distance by the norm
of the gradient D(pi)/‖ni‖. If for example, the gradient would be ‖∇D‖> 1, one
would overestimate the distance and overshoot, ending up behind and not at the
surface. Therefore, by shortening the step to only move D(pi)/‖ni‖ towards the
surface, one would end up on, or at least closer to the surface, which enabled us
a more reliable registration.

8.2.3 MCL-based Localization in a Neural Distance
Field-based Map Representation

In this section, we explain how to globally localize within an NDF using Monte
Carlo localization. The belief bel(xt) about the robots position xt, at time t is
represented by as set of particles {(xi

t, w
i
t) | i = 1...I} each with a corresponding

weight wi
t. A motion model p(xt) ∼ p(xt | xt−1,ut) updates the particles based

on their previous position xt−1 and the control commands ut. The weight of the
particles is updated by the observation model wt

i ∝ p(zt | xt, D) which depends
on the observations zt, the pose xt, and the NDF D. Assuming we observe the
local surrounding with a LiDAR sensor, we can evaluate the distance field at the
observed point cloud {jzi

t | j = 1, ..., J} around the particle position jxi
t with the

classical beam-end model

jdit = D
(
R i

t
jzi

t + tit
)
. (8.13)

The terms R i
t and tit are the rotation matrix and translation of the particle’s

position xi
t respectively. Assuming a Gaussian noise model, we can compute the

weight for a particle by

p(zt | xi
t, D) ∝ wi

t = exp
(
−β

J

J∑
j=1

jdit

)
+ η. (8.14)

The parameters β and η are commonly used for robustness against outliers.
In other words, the lower the average distance between the observations and
the surface, the higher the weight (see Figure 8.5). The particles are resampled
after each observation step based on their weight wi

t to focus on the most likely
positions.
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8. Pose Tracking in Neural Distance Field Maps

Figure 8.5: The neural distance field can be used in a particle filter to evaluate the
likelihood of a measurement for each particle in the given NDF. The better the scans
are aligned with the zero level of the NDF, the higher the likelihood.

8.3 Experimental Evaluation
In this section, we evaluate the localization performance to validate our proposed
method. We show that our proposed training strategy can provide neural distance
field maps which are well suited for scan registration, as well as global localization
using MCL. To evaluate the scan registration performance, we will track the pose
of a LiDAR sensor mounted on a car in the given maps using our point-to-NDF
ICP. For global localization, we evaluate our method on a 2D indoor dataset of
our office environment. Eventually, we provide our ablation studies to validate
our proposed training methodology.
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8.3.1 Training Setup
In this section, we provide the hyperparameters used to conduct the experiments,
which, unless stated differently, are used throughout all experiments. We trans-
form the coordinates of the point clouds to be in the range of [0,1] before passing
them into the positional encoding. For the positional encoding, we sample Iω = 30

different frequencies. The default network uses a SIREN [207] backbone with a
hidden feature dimension of size 128. For the training, we sample Ni = 40 points
between the sensor origin and the endpoint to supervise the distance field using
Equation (8.5), as well as additional 20 pairs of points with a distance up to
10 cm, which are distributed randomly in space for the regularization terms in
Equation (8.8) and Equation (8.9). The coefficients between the different loss
terms are αend = 10−1, αEik = 10−4, and αn = 10−3, as well as γ = 3. We opti-
mize using AdamW with a start learning rate of 10−4, which gets decreased with
a cosine annealing scheduler to 10−7 over around 25,000 steps. The experiments
have been evaluated on a desktop PC with i7 @ 3.5 GHz×8 CPU and an Nvidia
RTX A5000.

8.3.2 3D Pose Tracking in Outdoor Scenes
For the 3D localization, we want to estimate the current vehicle pose by aligning
local LiDAR point clouds with the map. We assume a rough initial location to be
given, which is usually provided by a low-cost GPS sensor and track the vehicle’s
position using scan registration. The initial guess for ICP of the first timestamp
is provided by a rough GPS position, whereas, for the following scans, we use
a constant velocity model as the initial guess for ICP. We evaluate the registra-
tion performance on the Apollo-Southbay [141] dataset, which has multiple runs
through the same areas recorded at different points in time. Since the environ-
ments changed substantially between the different points in time, points cannot
always be matched, and therefore a robust kernel, here a Geman-McClure kernel
with the parameter k = 0.3m, is used.

For the map generation, we use the first 800 scans of the ColumbiaPark-3
mapping run and the provided poses, which were obtained using a combination
of GPS, IMU, and a SLAM system. Instead of training one big network for the
whole scene, we found it beneficial to follow the key pose paradigm. For this, we
use bounding boxes of 50 m size and 20 % overlap along the trajectory. We assign
to each bounding box an NDF and train them incrementally based on the weights
of the previous key pose. We fine-tune the maps for 10 epochs with the standard
parameters. The evaluation will be done on 700 scans in the same area (starting
at scan 5280) from the test run. Hyperparameters are tuned on 800 scans of the
training set (starting at scan 6880). We compare against VDBFusion [242] as a
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Table 8.1: Scan registration results

Approach MAE(t) [m] Memory [MB] Runtime [s]

VDBFusion (KDTree) 0.072 170.8 0.87
VDBFusion (Projective) 0.072 170.8 1.52

LOAM (KDTree) 0.0714 6.3 0.23
SHINE (KDTree) 0.070 154.1 0.83
SuMa (Projective) 0.085 240.7 0.03

Ours 0.059 5.1 0.42

highly effective, traditional TSDF fusion pipeline, as well as against the recent
learning-based SHINE mapping system [297], that utilizes also neural distance
fields for mapping. For these baselines, we do the registration based on point-
to-plane ICP using the same robust kernel using their meshes. Additionally, we
compare against the surfel-based method SuMa [13] and the grid-based method
LOAM [291], both in localization mode, i.e., first constructing the map on the
mapping run, and use the second run from a different point in time solely for
registration without updating the map. For the evaluation, we use the mean
average translation error MAE(t), the memory consumption of the maps, as well
as the average runtime for aligning a scan. The baselines either use a kD-tree or
projective data associations to find correspondences.

The results are presented in Table 8.1. Our approach is able to outperform the
baselines in mean average translation error MAE(t) while requiring also the least
memory. All the approaches have a mean average rotation error lower than 0.1◦.
In Figure 8.6, the registration of a scan with respect to the map representations
is depicted. Note that we use the mesh obtained using marching cubes [126] only
for visualization and not for registration. We can see that the points are clipping
inside our triangle mesh (Figure 8.6c), showing that the point cloud is well aligned.
The meshes from the other approaches are more detailed, but the aligned point
clouds seem like floating in the scene. This is due to the acquisition process of the
TSDF, where for each voxel a weighted average over the ray distances is stored.
This leads to an overestimation of the distance to the closest surface, resulting in
slightly smaller objects and the aligned point cloud seems to be always in front
of the surface. This effect is mitigated for our approach, due to projecting the
ray distance along the surface normal and having a special loss term given in
Equation (8.7) to enforce that the measured surface actually is the zero level of
the distance field. SHINE mapping [297] is also supervising using the ray distance
leading to similar effects as for TSDF.
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(a) VDBFusion [242] (b) SHINE mapping [297]

(c) LocNDF (Ours)

Figure 8.6: Qualitative results of registering a scan (red points) to the maps generated
by different distance field-based methods. The meshes are generated using the marching
cubes algorithm. We use the mesh only for visualization purposes, the registration is
done directly on the distance field.

8.3.3 2D Monte Carlo Localization
In this experiment, we evaluate the global localization performance using the
MCL in our office environment. The robot is equipped with a 2D laser scanner
(Hokuyo UTM-30 LX) and wheel odometry. We use directly the measurements
ut = (∆x,∆y,∆θ) of the wheel odometry as a motion model with a Gaussian
noise model of

Σut =

 5 · 10−1 2.5 · 10−2 1 · 10−2

2.5 · 10−2 5 · 10−3 5 · 10−3

5 · 10−2 5 · 10−4 2.5

 . (8.15)

We use the same sequences for mapping and evaluation used by Kuang et
al. [118] as well as the same setting using 100,000 particles for initialization for a
fair comparison. We assume the particle filter to be converged when the standard
deviation of the particle’s position is below 30 cm to switch into the pose tracking
mode with 10,000 particles. We reweight and resample the particles if the robot
moved by at least 5 cm or 0.1 rad. The hyperparameters for the observation model
are set to β = 100 and η = 10−8.
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Table 8.2: MCL results

Approach RMSE(t) @ 5cm RMSE(t) @ 10cm RMSE(t) @ 20cm
Se

q
1

AMCL - (0.0%) - (0.0%) - (0.0%)
SRRG 0.034 (57.1%) 0.047 (88.6%) 0.049 (90.3%)

IR-MCL 0.033 (60.3%) 0.047 (92.5%) 0.052 (95.7%)
Ours 0.031 (76.6%) 0.041 (96.2%) 0.047 (99.2%)

Se
q

2

AMCL 0.037 (26.5%) 0.061 (56.2%) 0.089 (80.6%)
SRRG 0.034 (41.4%) 0.059 (87.4%) 0.063 (92.6%)

IR-MCL 0.029 (60.1%) 0.048 (87.4%) 0.054 (93.8%)
Ours 0.028 (78.0%) 0.032 (83.0%) 0.042 (86.7%)

Se
q

3

AMCL 0.038 (20.0%) 0.066 (58.7%) 0.099 (81.3%)
SRRG 0.033 (36.5%) 0.050 (59.0%) 0.075 (71.0%)

IR-MCL 0.033 (68.2%) 0.043 (84.4%) 0.054 (89.8%)
Ours 0.028 (54.4%) 0.034 (62.0%) 0.053 (70.0%)

Se
q

4

AMCL 0.034 (63.1%) 0.048 (88.7%) 0.059 (98.8%)
SRRG 0.035 (54.1%) 0.052 (83.7%) 0.058 (88.2%)

IR-MCL 0.033 (33.7%) 0.054 (59.9%) 0.091 (85.2%)
Ours 0.031 (42.4%) 0.046 (64.5%) 0.069 (73.7%)

Se
q

5

AMCL - (0.0%) - (0.0%) - (0.0%)
SRRG 0.035 (48.8%) 0.051 (86.8%) 0.055 (89.0%)

IR-MCL 0.032 (41.4%) 0.057 (81.3%) 0.064 (89.8%)
Ours 0.027 (41.5%) 0.032 (45.0%) 0.071 (55.6%)

For constructing the map, we train for 15 epochs on the 31,608 training scans
with the default parameters for our network. The NDF has no notion about
unknown space by itself, i.e., areas that did not get supervised. Therefore, we
also store a low-resolution bitmap of size [100×100] voxels to know roughly, which
spaces are not supervised. Points that lie in an unknown area have the maximum
distance assigned, rather than querying the network. We use the standard root
mean squared error metric (RMSE) between the ground truth and estimated
positions. The RMSE is evaluated for converged positions at certain thresholds
(5 cm, 10 cm, 20 cm). Additionally, we provide the percentage of poses below
the given thresholds. The results are averaged over 5 runs where the RMSE is
only reported if all runs at least converged once, otherwise denoted as ”-”. We
compare against the standard ROS1 localizer AMCL [61], the MCL system by
Grisetti [72], as well as the recent, learning-based IR-MCL [118] approach.
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Sequence 1

Sequence 2

Sequence 3

Sequence 4

Sequence 5

Groundtruth

Figure 8.7: Qualitative localization results of our approach on the five sequences. The
estimated poses are mostly aligned with the ground truth. In sequence 5 our approach
converged to the wrong location but could recover later to the correct position. Se-
quence 4 took a long time to resolve ambiguities to finally converge to the correct
position.

The results are depicted in Table 8.2. As can be seen, our approach is able
to outperform the baselines in terms of RMSE on most sequences showing that
our approach can provide reliable pose information once it is converged. We
believe this is due to the continuous map representation and therefore we are
not limited by the grid resolution. The convergence rate of our approach to the
correct position is highly competitive with respect to baselines. Our approach
runs at an average frame rate of around 2.6 Hz. A visualization of the localization
is depicted in Figure 8.7.

8.3.4 Ablation Studies
In this section, we will provide ablation studies on certain hyperparameters to
validate our choices and provide a deeper insight in the behaviour of the ap-
proach. In the following, we will first look at the different loss terms, and later
the influence of the used backbone. We conduct the ablation studies on the scan
registration task, as described in Section 8.3.2. All numbers provided in the
following are evaluated on the validation set.

8.3.4.1 Loss Function

In this experiment, we validate the choice of our loss function. For this, we
enable (3; taking the default α) or disable (7; set α = 0) certain parts of the loss
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Table 8.3: Ablation: Loss function

project.
dist.

αEik αend αn MAE(t)
[m]

MAE(R)
[deg]

[A] 3 7 7 7 0.103 0.269
[B] 3 7 3 3 0.063 0.103
[C] 3 3 7 3 0.198 0.449
[D] 3 3 3 7 - -
[E] 3 3 3 3 0.062 0.100

[F] 7 3 3 3 0.313 0.886

functions. In Table 8.3 are the results of this experiment shown. Disabling all the
additional losses [A] increases the error by a factor of around 2 with respect to
enabling them [E], showing the importance of the regularization losses. Disabling
the regularizations of the gradients [B], [D] deteriorates the performance slightly
to completely. While only disabling αend [C] results in even worse performance
than disabling all [A], suggesting the loss is useful to mitigate undesired effects
of the other terms. Lastly in [F], we supervise by the ray distance di instead of
the projected distance d̃i where the performance substantially degrades. For a
better understanding of this phenomenon, we show a slice of the distance fields
in Figure 8.8. The gradient for the ray distance looks toward the LiDAR sensor,
pulling the points not toward the closest surface but along the ray. The projected
distance ni points more towards the closest surface.

8.3.4.2 Backbone and Feature Size

In this experiment, we investigate the impact of the backbone and the net-
work size on the localization ability. The first backbone we use is the classical
NeRF [155] architecture with a positional encoding and an MLP with 8 layers,
layer norm, and leaky ReLU. There is a skip connection from the positional en-
coding to the 6th layer. The second network is a SIREN [207], an MLP with
5 layers, layer norm, and sine nonlinearity. The results of this experiment are
depicted in Table 8.4. With both backbones, we can see that a bigger network
size does not necessarily mean a better localization performance. For the SIREN
network, the results look more stable with the best performance for a hidden fea-
ture dimension of 128 ([N]). The classical NeRF network has less consistent but
similar results ([G]-[K]). The results are in line with Sitzmann et al. [207] stating
that the supervision of derivatives works better for SIRENs than for ReLU-based
networks.
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Projected
Distance

Ray
Distance

Figure 8.8: A visualization of the distance fields when supervising the distance field
with the ray distance (top), as well as with the projected distance (bottom). The
distance fields are evaluated on a slice in the middle of the scene and depicted by the
color. When using the ray distance, one can see the field of view of the LiDAR sensor,
leading to a gradient from the surface to the LiDAR center. For the projected distance
on the other hand it looks more like a true Euclidean distance field where the gradient
ascents radialy from the surface. Note, that the NDF is only supervised for the regions
within the field of view of the sensor, leading to wrong values in unobserved areas.

8.3.5 Limitations

Despite these encouraging results, there is further space for improvement. The
training time at each key pose takes around 20 min, which makes it only suitable
for offline mapping but prohibits building the maps on the fly as it would be
needed for online SLAM applications. In our case, we only optimized for obtaining
the distance to the surface, but it would be interesting to regress point attributes
such as semantics or colors as obtained from RGB-D sensors.
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Table 8.4: Ablation: Backbone & feature size

Backbone Feature Size MAE(t) MAE(R) Memory
[m] [deg] [MB]

[G] NeRF 32 0.215 0.402 0.934
[H] NeRF 64 0.061 0.102 2.648
[I] NeRF 128 0.104 0.257 8.989
[J] NeRF 256 0.061 0.100 31.677
[K] NeRF 512 0.084 0.122 125.289

[L] SIREN 32 - - -
[M] SIREN 64 0.126 0.395 1.541
[N] SIREN 128 0.062 0.100 5.051
[O] SIREN 256 0.068 0.101 17.732
[P] SIREN 512 0.068 0.099 69.835

8.4 Conclusion

In this chapter, we investigated the usage of neural distance field (NDF) maps for
robot localization. We showed how to directly learn the NDF from range sensor
observations by projecting the measurements along the gradients of the network.
The NDF provides us with a discretization-free and highly memory-efficient dis-
tance field, that allows us to compute directions to the closest surface elegantly
through the Jacobian. As a result of that, ICP can be used to register point
clouds directly to the NDF without the need to search for data associations. We
have tested the point-to-NDF based registration in the context of pose tracking
where we want to estimate the robot’s motion with respect to the prebuild NDF
map. Our system requires an initial guess that can be acquired using global local-
ization methods or GNSS-based navigation solutions. From there on, the system
successively registers the scans to the NDF. A constant velocity model predicts
the motion of the robot such that the ICP only needs to correct for deviation to
this model. Our method is able to register the scans with up to a few centimeters
of accuracy.

With our described pose-tracking method, we propose an alternative way to
estimate the robot’s motion within the map after initial global localization. The
full framework for obtaining a compressed map to estimate the motion in this
map could look like the following: (1) as a prerequisite step all the robots are
calibrated to obtain the sensor characteristics using our approach described in
Chapter 3. Step (2) is to build the map where the robot drives through and
perceives the desired scene using LiDAR sensors. From this raw data, we can

143



8.4. Conclusion

obtain a global point cloud map using our global LiDAR-bundle adjustment from
Chapter 4. To have a memory-efficient representation that can be stored onboard
or even transmitted over the network, we (3) split the map into smaller submaps
that we compress using the compression approach from Chapter 5. In addition to
those submaps, we can compute global descriptors that can be stored alongside
our place recognition network as described in Chapter 6. To then (4) localize a
robot at a later point in time in the given map, we can first estimate the submap
in which the robot is located using the estimated global descriptors. Once we
know our coarse location, we (5) can use our compressed point cloud registration
method in Chapter 7 to obtain the 6 DoF of the robot with respect to the map.
Once we have found our position, we can (6) switch our system into tracking
mode. For this, we utilize precomputed NDFs for the submaps, in which we can
track the robot’s motion using point-to-NDF-based registration as described in
this chapter.

Additionally, we have investigated briefly localization in indoor environments.
Being spatially substantially smaller, and often only requiring a 2D position
makes the use of particle filters an excellent choice to solve localization in those
scenarios. A particle filter can track multiple potential paths until all ambigui-
ties are resolved. We have investigated how to combine particle filters with NDFs
for indoor localization. We have shown that using the NDF for the observation
model in a particle filter can yield precise position estimates. Unfortunately,
those methods scale badly with respect to environment size and estimation in
higher dimensions. Limiting it to indoor environments and 2D estimates.
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Chapter 9

Conclusion

Autonomous operating robots have the potential to take over tasks
that people do not want to do, or even cannot do. Robotic systems
are already driving automation in industrial production lines. How-
ever, robots are also becoming more and more part of our personal

daily lives. Autonomous lawnmower and vacuum-cleaner robots operate in many
households on a daily basis. However, letting robots operate in larger scale and
open environments like autonomous driving cars remains a challenge. Many of
those robotic systems rely on a map of the environment for navigation, planning,
and interaction. One prerequisite for the robot to utilize a map is the capability
to localize within the map. If you know where you are, then, you can plan where
and how to move next to fulfill your tasks. For localizing a robot within a given
map, one can compare the current surroundings of the robot with the map.

For this thesis, we developed multiple methods targeting LiDAR-based local-
ization and mapping of outdoor environments. However, before one can go out
to map the environment, one requires a well-calibrated sensor system to reliably
perceive the environment. Therefore, our first work aims at calibrating different
perception systems. Once our system is calibrated, we can start mapping the
desired environment. Our LiDAR bundle adjustment method processes the local
sensor data to obtain a global point cloud map. Due to the memory footprint of
those maps, we investigated a compression algorithm to learn a more memory-
efficient representation. Afterward, we looked into two methods for localizing a
robot into those compressed maps using only LiDAR data. First, we developed a
place recognition approach that coarsely finds the position of a robot in the map.
Second, once we find our rough location, we can use our point cloud registration
method to precisely estimate the pose with respect to the map. At last, we looked
into a method for tracking the pose of the robot within a given map assuming
we found the initial position already. We conducted experiments on publicly
available datasets for validation and compared them with the state-of-the-art.
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9.1 Our Key Contributions to LiDAR-based
Localization and Mapping

In this thesis, we investigated multiple methods for large-scale localization and
mapping of outdoor environments. Our first contribution tackles the calibra-
tion of different perception systems. Irrespective of localization, mapping, or any
other task, the sensors of the robots need to be calibrated to reliably perceive the
environment. We developed a calibration method that utilizes a calibration envi-
ronment to estimate the calibration parameters of different multi-sensor systems.
While other methods often rely on overlap between the sensors, our method uti-
lizes a high-precision point cloud map from a TLS instead. Therefore, our sensors
have no need of overlapping FoV, they just need to perceive parts that have been
mapped with the TLS. We designed our method and calibration environment
to exploit the characteristics of our sensors as well as possible. The calibration
parameters are estimated using least squares adjustment.

Our second contribution is a LiDAR bundle adjustment method that can
align thousands of point clouds into a consistent point cloud map. We estimate a
continuous-time trajectory to account for the ego-motion of the sensor platform
while scanning. The objective function we try to minimize is the alignment error
between corresponding points. Due to the sheer amount of scans we sample for
each point cloud a small amount of scans for the correspondence search. Due to
the subsampling and the usage of an out-of-core buffer, we are able to process
thousands of scans in a reasonable time. Our method is even able to jointly align
the scans from multiple sessions.

Our third contribution targets the compression of point cloud maps. Point
cloud maps can very quickly reach hundreds of gigabytes. To deal with large-scale
point cloud maps, we first divide them into smaller submaps. Those submaps
are compressed using our convolutional compression encoder which generates a
sparse point cloud that has for each point a compression feature associated. Our
specially designed compression decoder can then be used to recover the point
cloud densely.

Our fourth contribution exploits our compressed representation to localize
directly in the compressed maps. For this, we build upon the compression features
to estimate for each generated compressed submap a small descriptor vector using
a second convolutional neural network. To localize a robot a second time in the
compressed map, one can compute such a descriptor vector also for the current
robot’s observations and search for the most similar submap, based on the feature
similarity. To efficiently learn the weights of the neural network, we adjusted the
idea of a feature bank and momentum encoder from the unsupervised learning
domain to our supervised point cloud-based place recognition approach.
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While the previous method only estimates in which submap the robot is lo-
cated, our fifth contribution estimates the precise position and orientation of the
robot in the map. To solve this task, we take the compressed point cloud map in
which we are supposed to be and register the point cloud map from the current
robot’s observations. To register within a compressed map we estimate features
for both point clouds. Those features can be used to find correspondences be-
tween the point clouds that can be used to estimate the pose. We investigated
weighting schemes for the estimated correspondences to deal with ambiguities and
missing correspondences. To ensure that the estimated features are well suited
for matching, we directly optimized the features such that the matching will lead
to correct pose estimates. For this, we reformulated the attention mechanism of
the Transformer architecture to estimate corresponding points in a differentiable
manner.

Our last contribution targets tracking the movements of a robot within a
map. For this, we investigated the usage of implicit neural representations as an
alternative memory-efficient map representation. We have shown how to consec-
utively estimate the robot’s position in a neural distance field. Additionally, we
investigated how to learn a neural distance field directly from sensor observations
without requiring the ground truth Euclidean distance.

By this, we have made several contributions towards mapping and localization
in large-scale outdoor environments. Overall, this thesis provides a full pipeline to
realize mapping and localization from raw LiDAR sensor data. For the mapping,
we have investigated sensor calibration, the construction of consistent maps, and
representing the scenes in a compressed format. We contributed to localization,
especially by exploring if robots can be localized directly in compressed map
representations. Our proposed methods enable consistent mapping of larger areas,
as well as precise localization in those maps. With this thesis, we have not only
shown that it is possible to localize within compressed maps but even that we
can do it more precisely than methods without memory constraints.
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9.2 Open Source Contributions
The work discussed here in the thesis led to certain open-source software packages
that implement the methods described here in this thesis. Additionally, they
contain the optimized parameters of our learned neural networks, as well as data
that we recorded or processed. The main software packages that were developed
as part of this thesis are the following:

• IPB-Calibraiton from Chapter 3: https://github.com/PRBonn/ipb_
calibration

• Deep Point Map Compression from Chapter 5: https://github.com/
PRBonn/deep-point-map-compression

• Retriever from Chapter 6: https://github.com/PRBonn/retriever

• KPPR from Chapter 6: https://github.com/PRBonn/kppr

• DCPCR from Chapter 7: https://github.com/PRBonn/DCPCR

• LocNDF from Chapter 8: https://github.com/PRBonn/locndf

9.3 Future Work
In this work, we have investigated different localization and mapping methods for
outdoor environments. We have shown how to construct and store point cloud
maps efficiently, as well as a way to localize in our proposed map representations.
In the following, we want to discuss shortly potential new research directions that
could build upon our advances.

In this thesis, we have conducted a lot of experiments on different publicly
available datasets to test and develop our methods. However, none of those
datasets can really be used for evaluating every task. Therefore, it would be ben-
eficial to have a dataset that suits many different tasks. This dataset should cover
large areas, provide accurate ground truth, has repeated sessions for localization,
and different benchmarks for a unified evaluation.

In order to operate autonomously, robots need to know what the environment
looks like and require the ability to localize within the scene. However, these are
usually just the first steps towards solving a particular task. For example, if we
want a robot that shall pick up and deliver a package, the robot surely requires
knowledge about the world, and where it is. But once this is resolved, it needs to
plan a route to the destination, move there, and finally interact with the desired
object. Hence, it would be interesting to investigate if and how our methods can
be used for tasks like path planning, control, and manipulation.
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9. Conclusion

In this thesis, we focused on geometric maps which describe a scene struc-
turally. We have utilized LiDAR sensors which provide us with points sampled
from the scene’s surface. Although the pure geometric description of a scene is
important, many tasks require additional information. A semantic understand-
ing of the world is crucial for robots to operate autonomously. Estimating and
incorporating semantics in a compact, and efficient map representation could be
useful for solving many other tasks. Since geometry and semantics are often cor-
related, it has the potential to be stored together efficiently. On the other hand,
also the here proposed methods could benefit from semantic information.

When speaking of semantic information, one might want to explore different
types of scene representations. We as humans often think in terms of objects.
This raises the question if an object-based representation might also be beneficial
for robotic applications. This is especially relevant when robots have to interact
and communicate with humans. For this, it would be interesting to investigate
the usage of language models for robots.
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