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1 Introduction

The theory of optimal transport (OT) has experienced a surge in interest over recent years that can be
attributed to several factors spanning new theoretical and computational advancements, the rise of data-
driven applications and a growing applicability across diverse fields. Optimal transport is a mathematical
framework initially introduced by Gaspard Monge in 1781 and later formalized by Leonid Kantorovich
[Kan42] as an optimization tool for supply chain problems. Nowadays, it has become a cornerstone in
various fields due to its ability to compare probability distributions and its connections to, among others,
geometry, statistics, and machine learning.

One of the primary reasons for the growing interest in OT are the recent advances in computational
methods. Aided by advances in GPU computing, efficient algorithms such as the Sinkhorn algorithm
introduced by Cuturi [Cutl3] and the sliced Wasserstein distance [KPT™17] have significantly extended
its scope by making OT practical for high-dimensional data. Moreover, the proliferation of open-source
software tools, such as POT [FCT21], OTT [CMPT"22] and GeomLoss [FSV*19], has made OT acces-
sible to a broader audience. Some of the aforementioned tools are extensively used in this work.

Optimal transport has found extensive use in machine learning and data analysis, particularly in tasks
involving distributional data. For instance, it serves as the foundation for Wasserstein generative ad-
versarial networks (WGANSs), where the Wasserstein distance improves training stability and conver-
gence [ACB17]. In domain adaptation, OT facilitates the alignment of source and target distributions,
enabling robust knowledge transfer across domains [CFTR17]. Additionally, it is applied in cluster-
ing [HNY17] and dimensionality reduction through barycenter computation [PC*19] and Wasserstein
PCA [Big20]. This thesis further contributes to this field by leveraging our Wasserstein interpolation
algorithm with the introduction of a variational Wasserstein regression algorithm in measure spaces (cf.
Section 3.8) and a new data interpolation method aided by variational autoencoders (VAEs) ( Sectioncf.
3.7). In medical imaging, OT is used to compare and analyze cell distributions, such as mapping the spa-
tial organization of gene expression patterns [ST19] and single-cell omics (cf. [WOS™10], [BSK™24]).
Furthermore, it aids in tasks like shape analysis, where the Wasserstein distance quantifies differences
between anatomical structures [HZTA04]. Owing it to the Benamou-Brenier formulation of OT [BB0O]
OT is used in physics to study phenomena like mass transport quantum mechanics, and density functional
theory [BT12]. In statistics, OT provides a powerful tool for comparing distributions through metrics like
the Wasserstein distance. It is extensively used in robust statistics and generative modelling [GPC18].
OT also aids in Bayesian inference by aligning posterior distributions [Z*21]. In natural language pro-
cessing, OT helps in tasks such as word embedding alignment and topic modelling. The Wasserstein
distance measures the similarity between word distributions, improving translation and semantic simi-
larity tasks [KSKW15].

In computer vision, OT has gained prominence due to its ability to compare, interpolate, and trans-
fer complex distributions. This versatility makes OT an effective tool for solving problems in image
processing, shape analysis, and rendering, among other areas. It provides a principled way to transfer
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color distributions [RDG14] and styles [PKDO0S5] between images. In image segmentation, OT is em-
ployed by Courty et al. [CFT18] to model spatial dependencies and enhance segmentation performance
in complex datasets. Similarly, the Wasserstein distance is used in texture mixing and color transfer be-
tween images [BRPP15]. It has also been utilized for texture synthesis by aligning feature distributions
of textures. Peyré [Pey09] proposed a method using sliced Wasserstein distances for computational ef-
ficiency in high-dimensional texture applications. As shown in the work of Alaya et al. [AFC20], OT
enables efficient and robust alignment of point clouds for applications in robotics and virtual reality. In
motion estimation, OT models the transport of features across frames, aiding in tasks such as optical
flow computation and video synthesis. Papadakis et al. [PMP14] explored OT-based motion estima-
tion with promising results in video processing. OT has been employed in rendering applications to
optimize sample distributions for Monte Carlo methods. Georgiev et al. [GT19] demonstrated how OT
improves the efficiency of sampling strategies in physically-based rendering. Moreover, OT provides a
natural framework for interpolating between images by finding geodesics in Wasserstein space. Bonneel
et al. [BRPP15] applied OT to achieve transitions between images, widely used in computer graphics
and animation. In this thesis, we contribute by introducing algorithms that leverage OT to compute dis-
crete interpolations of probability measures, textures and images (cf. Chapters 3 and 4) that allow for
smoother and more visually appealing transitions in time.

Optimal transport theory has also become a pivotal tool in economics, providing a rigorous frame-
work for modelling resource allocation, market equilibria, and income inequality. By leveraging the
mathematical foundation of OT, economists can address problems involving the transfer of resources
and distributions in a variety of contexts: In matching theory, OT has been extensively applied to study
markets where agents must be matched, such as job markets, marriage markets, and school assignments
[Gall6]. It provides a robust method to analyze income inequality and intergenerational mobility. For in-
stance, Ekeland et al. [EGH10] utilized OT to measure disparities and the redistribution of wealth across
populations. By comparing distributions of wealth before and after policy interventions, OT aids in
evaluating economic policies’ effectiveness. In general equilibrium theory, OT facilitates the modelling
of market equilibria by describing how resources are allocated across markets. Carlier et al. [CE03]
demonstrated how OT can be used to compute equilibrium distributions in multi-market economies, pro-
viding insights into the efficiency and stability of resource allocations. Dynamic OT models have been
employed to study international trade and economic growth. By modelling the evolution of resource
distributions over time, Dessein and Szymanski [DS20] explored how OT can analyze trade patterns and
the long-term effects of policy changes on economic growth. In urban economics, OT is used to study
spatial equilibrium models, such as the distribution of housing, firms, and workers in cities. Ahlfeldt et
al. [ARSW15] applied OT to model the spatial distribution of economic activity, helping to optimize
urban planning and zoning policies. OT has applications in auction theory and mechanism design, where
the goal is to design systems that allocate resources efficiently and fairly. For example, Ma [MF18] used
OT to study revenue-maximizing auctions, showing how OT can address multi-objective optimization in
auction mechanisms. Related to these topics, we offer in Chapter 5 computationally efficient algorithms
aided by semi-discrete OT to compute optimal designs in information design, as well as giving a short
additional overview of applications in gerrymandering.

Finally, the relevance of optimal transport does not limit itself to probability measures, and multiple
generalizations of this framework have been proposed and have been gaining ground in the last few years.
The quantum Wasserstein distance generalizes the classical Wasserstein distance to a setting where states
are represented by density matrices instead of probability distributions. This framework is designed to
account for the structure and dynamics of quantum systems, incorporating concepts such as entanglement



and non-commutativity, cf. [DPMTL21]. Adapted Optimal Transport (AOT) is a specialized extension
of the classical optimal transport framework that incorporates temporal or sequential dependencies into
the transport process. This generalization is particularly relevant in stochastic processes, financial math-
ematics, and control theory, where the transported measures evolve over time or are subject to dynamic
constraints, cf. [BVBBE20]. The Wasserstein-Gromov distance, introduced in [Mém11] is a powerful
mathematical framework that generalizes the optimal transport paradigm to compare structured datasets,
such as graphs, networks, or metric spaces. While classical optimal transport measures the cost of align-
ing two probability distributions in a shared metric space, the Wasserstein-Gromov distance addresses
situations where the underlying spaces of the distributions differ and no direct correspondence exists
between their elements. These generalizations have greatly expanded the versatility of optimal transport,
making it a powerful tool for applications in mathematics, physics, computer science, and beyond.

Measure and Image Interpolation

In recent years, advanced interpolation methods have gained significant attention for tasks like time-
sequence interpolation or regression in data analysis. These methods are widely applied in fields such as
computer graphics, computer vision, and medical imaging. The entities being interpolated are typically
viewed as shapes within an infinite-dimensional manifold, equipped with a Riemannian metric tailored
to the specific application.

One prominent approach is to extend the concept of path energy on a Riemannian manifold to a
second-order spline energy functional. Given a sequence of objects (referred to as key frames) at different
time points, the spline curve is determined by minimizing the spline energy while ensuring it passes
through these key frames.

In Euclidean space, cubic splines z : [0,1] — R? are well-known as the solutions that minimize the
integral of squared acceleration, fol |i|2 dt, a result established by de Boor [dB63]. Our approach extends
this concept to the Wasserstein space in discrete time. To achieve this, we approximate the integral using
a rectangular quadrature rule and use second-order central differences to estimate the acceleration. This
leads to the expression:

2
Tp—1+ Tir1

5 (1.0.1)

1 K-1

/ i2 dt ~ 4K3 > |y —
0 k=1

Numerous spline interpolation methods have been developed for non-linear spaces. Noakes et al.
[NHP89] generalized de Boor’s result to finite-dimensional Riemannian manifolds by introducing Rie-
mannian cubic splines. These are defined as paths that minimize the integrated squared covariant deriva-
tive of their velocity. Trouvé and Vialard [TV12] explored a second-order functional for shapes in land-
mark spaces, using an optimal control framework. Singh et al.[SVNI15] proposed a functional mea-
suring motion acceleration in diffeomorphic flows for image regression. Tahraoui and Vialard [TV19]
introduced a second-order variational model for diffeomorphic flows, leading to a relaxed Fisher-Rao
functional on the space of measures. Vialard [Via20] demonstrated the existence of a minimizer for the
Riemannian acceleration energy on a group of diffeomorphisms with a high-order Sobolev metric.

For smooth interpolation of data distributions, Chen and Karlsson [CK18] studied an optimal control
problem constrained by transport equations and interpolation conditions, particularly focusing on Gaus-
sian distributions. Julien Clancy [Cla21] compared various spline techniques in probability measure
spaces, incorporating entropy regularization and extending these methods to unbalanced measures.
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Another higher-order approximation was proposed by Karimi and Georgiou [KG21]. They addressed a
regression problem involving polynomial measure-valued curves, approximating distributional snapshots
through a least-squares approach in Wasserstein space. This involved a multi-marginal optimal transport
formulation and an efficient computation by using the Sinkhorn algorithm. Zhang and Noakes [ZN19]
analyzed Riemannian cubic splines within the manifold of symmetric positive definite matrices, lever-
aging Lie algebra and the Riemannian geometry of Gaussian densities (Bures-Wasserstein manifold
[Bur69], [FK16], [BJL17]) based on the Wasserstein distance [MMP18].

Rajkovié et al. [JRR23] investigated spline interpolation of images, adopting a model rooted in the
metamorphosis framework. This approach distinguishes between the Eulerian flow acceleration and the
second material derivative of image intensity. Unlike Riemannian splines [NHP89, TV19, Via20], this
model does not minimize the squared covariant derivative of the velocity. Instead, it avoids intertwining
different acceleration types. Their study included a rigorous Mosco convergence analysis [Mos69], a
stronger form of I'-convergence, for the time-discrete to time-continuous model. They also proved the
existence of minimizers for the continuous spline energy.

On the front of measure interpolation, several methods have been introduced in recent years. Notably,
Benamou et al. [BGV19] and Chen et al. [CCG18] independently developed an approach now referred to
as P-splines (short for path splines). P-splines are stochastic processes (X¢);c[o,1] valued in R?, defined
on a probability space (€2, IP). These processes are solutions to the following optimization problem:

1
min/ /||Xt||2det, (1.0.2)
XoeJo Ja
subject to a set of I > 2 prescribed marginal constraints, Xz ~ 11, for specified times 0 = t<...<
t; = 1, where Ji; are given probability measures fori = 1,..., 1.

Numerically, solving this problem is computationally intensive. To address this, the problem is of-
ten relaxed using multi-marginal optimal transport with a quadratic cost and entropic regularization.
However, this method has a notable limitation: solutions to the problem above may not always be deter-
ministic. Specifically, there is no guarantee of the existence of a Monge map ¢; : R? — R< such that
X: = ¢¢(Xp), even if the marginal constraints are smooth and well-behaved, as noted by Chewi et al.
[CCLG™21].

To overcome this limitation, Chewi et al. [CCLGT21] introduced an alternative framework known
as transport splines (T-splines). This method focuses on the smooth interpolation of probability mea-
sures within the optimal transport setting, using a particle flow approach. Their work also explores the
connection between transport splines and energy splines, particularly for Gaussian distributions in one
dimension.

From a theoretical perspective, both P-splines and T-splines adopt a Lagrangian view of optimal trans-
port. Instead of working directly with probability measures, these approaches model stochastic processes
X; with C? smooth sample paths and corresponding laws ;. This Lagrangian viewpoint is advantageous
in certain applications, as it allows for the tracking of particle trajectories in continuous time. The cited
works also provide algorithms for computing sample trajectories of both P-splines and T-splines, further
contributing to their practical applicability. On the other hand, E-splines are based on the Eulerian per-
spective of optimal transport, focusing on the evolution of densities and particle velocities through fixed
points in time and space.



Splines in Wasserstein Spaces

In Chapter 3 we will study a time discrete variational model to compute spline paths in the space of
probability measures equipped with the Wasserstein-2 metric. The spline paths are defined as measure-
valued paths minimizing a spline energy subject to interpolation constraints and boundary conditions.

In light of (1.0.1), it is natural to replace the Euclidean norm | - | with the Wasserstein L? distance
between probability measures, and use a notion of barycenter between measures p, 1 and px 1, denoted
as Bar(ug—_1, ptg+1), instead of the middle point xk‘lfw The proposed discrete spline functional
studied in Chapter 3 will therefore be given by

K-1

AR W2 (g, Bar(ftp—1, firs1))- (1.0.3)
k=1

To define continuous splines within the space of probability measures, as studied in this work, an anal-
ogous geometric framework is necessary. Fortunately, the renowned Benamou-Brenier formula [BB0O]
provides the foundation for formally equipping the Wasserstein space P2 (R¢) with a Riemannian struc-
ture, as initially described in [OttO1]. However, extending this analysis to incorporate second-order path
properties in Wasserstein spaces is essential. This has been systematically developed by Gigli in [Gig12],
where the acceleration of a measure-valued curve is defined as the covariant derivative of its velocity.

Energy splines (E-splines) are then characterized as the minimizers of the total squared acceleration,
as formalized in (3.2.2). However, this functional poses significant challenges: it is computationally
intractable and, unlike the standard action functional (3.1.2), is non-convex.

In this chapter, we introduce a consistent variational time discretization for E-splines and outline an
algorithm for their construction. We demonstrate that this approach aligns with the Riemannian geometry
of the Wasserstein space in the Gaussian case. Additionally, we construct simple counterexamples in one
dimension where E-splines differ from P-splines and/or T-splines. In both cases, our method accurately
and precisely reproduces the theoretical E-spline values up to machine precision, as shown in Fig. 1.1.

Our discretization method relies on the general variational framework for time-discretized splines on
Riemannian manifolds, as proposed in [HRW18]. The key components of this approach are a functional
W, approximating the squared Riemannian distance between nearby objects on the manifold, and a suit-
able notion of an approximate average. This methodology has been previously applied in [HRST16] to
achieve smooth interpolation of triangulated surfaces in computer graphics, leveraging the concept of
discrete thin shells. In the context of probability measures, the local functional VW corresponds to the
squared Wasserstein distance, while the approximate average is represented by the Wasserstein barycen-
ter.

Chapter 3 is an extended version of the journal article [JRE24], published in the peer-reviewed journal
ESAIM: Control, Optimisation and Calculus of Variations, to which the author of this thesis contributed
as its main author. In addition, a few additional numerical examples are computed, and an application to
discrete Wasserstein regression was added.

Organization.  Chapter 3 is structured as follows: Section 4.1 provides a concise overview of the
Wasserstein distance between probability measures, introduces the Riemannian framework underpinning
Wasserstein spaces, and discusses the flow-based formulation of optimal transport. In Section 3.2, we
derive the time-continuous spline energy through the Riemannian lens and introduce a variational time
discretization of the continuous spline energy. Section 3.3 delves into the specific case of Gaussian
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Figure 1.1: A comparison of the different spline models sampled at nine equidistant times in 1D for
Gaussian probability distributions as interpolation constraints depicted in grey. Sampled random vari-
ables are drawn as black dots, and their optimal sample trajectories are depicted by the connecting black
curves: top left: continuous P-spline (red); top middle: continuous E-spline/T-spline (orange) sampled
at nine equidistant times; top right: standard deviations for both the P-spline (red) and E-spline/T-spline
(orange). Orange dots represent the discrete values obtained with our method; bottom left: continuous
T-spline (blue) sampled at nine equidistant times; bottom middle: continuous E-spline (orange) sampled
at nine equidistant times; bottom right: standard deviations for both the T-spline (blue) and E-spline
(orange). Orange dots represent the discrete values obtained with our method.



distributions, establishing the consistency of the discrete functional with the continuous one in this set-
ting. Section 3.4 focuses on demonstrating the convergence of temporally extended discrete Wasserstein
spline energies to their time-continuous counterparts. This is done in the sense of Mosco convergence,
specifically for Gaussian distributions with diagonal covariance matrices. In Section 3.5, we outline
the fully discrete scheme, which leverages the Sinkhorn algorithm and entropy-regularization to achieve
computational efficiency. Additionally, we describe how to implement suitable variants of accelerated
gradient algorithms [Nes05] to compute spline interpolations for a given set of key frames. This section
also includes experimental results showcasing the application of the algorithm to probability measures.
Section 3.6 illustrates the flexibility and robustness of our method through experiments, applying spline
interpolation to image and texture interpolation tasks. In Section 3.7, we combine our interpolation
method with variational autoencoders to tackle the problem of general data interpolation. Finally, we
give a brief overview of discrete linear regression in Wasserstein spaces in Section 3.8.

Unbalanced Transport Splines

The main aim of Chapter 4 is to extend the results obtained in Chapter 3 for more general measure spaces,
in regards to total mass. The motivation for this extension is rooted on two key observations in practical
applications:

* Handling mass differences in images: In Chapter 3, a necessary condition for the spline interpola-
tion was that all the measures have equal mass. In many cases, objects or structures within images
that correspond to one another may have varying masses. Treating images strictly as probability
distributions often proves too limiting on a global scale. This approach requires prior contrast
adjustment, which can feel artificial. In classical optimal transport models, local mass imbalances
result in artifacts, as excess mass must be arbitrarily redistributed without preserving structural cor-
respondence. To address this, we relax the mass-preservation constraint by allowing for a source
term in the path energy, explicitly accounting for density modulation.

* Topological consistency and dissipative effects: Unlike the flow of diffeomorphisms approach, op-
timal transport maps are not inherently homeomorphic. However, in many scenarios, maintaining
topological consistency is critical. Simultaneously, the physical context of certain applications
may necessitate incorporating a dissipative term into the path energy. To accommodate these re-
quirements, we augment the classical transport cost framework with a weighted viscous dissipation
term.

A few relaxations of the concept of optimal transport have been developed, which relax the mas con-
servation constraint. This extension is unbalanced optimal transport. This is achieved by introducing
penalization terms for mass creation or destruction, allowing the model to handle measures with dif-
ferent total masses. For instance, the unbalanced transport framework has been formalized through the
Kantorovich-Fisher-Rao distance [CPSV 18], combining ideas from optimal transport and the Fisher-Rao
metric.

In Chapter 4, we will recall the unbalanced optimal transport model originally introduced in [MRSS15].
Therein, a viscous dissipation term originating from the flow of diffeomorphisms model is used as a reg-
ularizer, which ensures that the maps remain orientation-preserving diffeomorphisms. On that basis, the
basic optimal transport and the flow of diffeomorphisms models are then combined into a generalized
image transport model for measures with different masses. We then derive the novel generalized spline
energy functional as a natural extension of the path energy functional in [MRSS15]. Given a set of key
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frames at disjoint times a spline curve is then given as a minimizer of this generalized spline energy
respecting the key frame images as interpolation constraints. Furthermore, we will study a suitable time
discrete variational model, which generalizes the time discrete first-order image transport model pro-
posed in [MRSS15]. The central contribution of this paper is the consistency and Mosco convergence
of this time discrete spline energy to the time continuous image transport spline energy. Finally, we dis-
cretize the model in space and we derive an efficient numerical scheme to solve for fully discrete image
transport spline paths in the space of image densities, and present some numerical experiments.

Chapter 4 is not based on any publication, though we adhere to the same structure and incorporate
multiple flow-related theoretical results obtained in [JRR21] and [JRR23], publications to which the
author of this thesis contributed as one of the main authors.

Organization. In Section 4.1, we revisit the key properties of the optimal transport model and the
flow of diffeomorphism model.

Section 4.2 is dedicated to deriving the time-continuous spline energy. It also explores the crucial
interaction between the Lagrangian and Eulerian perspectives within the framework of the combined
model of unbalanced transport and the flow of diffeomorphisms.

In Section 4.3, we introduce a variational time discretization of the continuous spline energy and
investigate the existence of discrete splines.

Section 4.6 details the fully discrete scheme, while Section 4.7 describes the setup of an appropriate
iPALM algorithm to numerically compute a spline interpolation for a given set of key frames.

Finally, Section 4.8 presents experimental results that illustrate the characteristics of the spline ap-
proach for optimal transport with source term and demonstrates applications and advantages of the pro-
posed method.

Optimal Transport in Information Design

Mechanism Design is a fundamental branch of Game Theory and Economics that examines the creation
of optimal institutions (often termed game-forms) to govern the interactions of self-interested, strategic
agents possessing private information. The goal of an optimal mechanism is to resolve two critical
challenges: the aggregation of information and the alignment of incentives, enabling the realization of
a desired collective decision (see the introductory textbook [Bor15] for an overview). This field has
found significant applications in social choice [Ser04] and voting systems [LW 18], market design such
as auctions [JMS99] and matching, and contracting [Wat07]. Theoretical and applied advancements
in this area have garnered several Nobel Prizes, including recognition of Myerson’s seminal work on
optimal auctions [Mye81].

In classical analyses of mechanism design, agents’ private information about the environment is treated
as exogenously determined. A more recent line of research, termed Information Design, shifts the focus
to endogenizing the information structure while considering the governing institution as fixed. In this
framework, the information structure is strategically designed to achieve a predefined objective.

A prominent subfield within Information Design is the study of the Bayesian Persuasion problem.
A notable and highly relevant subclass is the moment Bayesian persuasion problem, explored in works
such as Kamenica and Gentzkow [KG11], Kolotilin [Kol18], and Dworczak and Martini [DM19]. Most
research in this area has been constrained to one-dimensional settings, with only a few exceptions ad-
dressing multi-dimensional cases.
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In Chapter 5, we address this gap by proposing an efficient algorithm to solve multi-dimensional
moment Bayesian persuasion problems within certain subclasses. Specifically, we focus on settings
where a sender designs an information policy to influence a receiver’s actions, such as making a purchase
decision, thereby maximizing the sender’s utility.

In mathematical terms, the sender has full knowledge of the realization of a prior (probability measure)
v. She then decides how much information to give to an uninformed receiver to maximize her utility

max/ O(y) dA(y). (1.0.4)
D

AEF,

This information policy can be encoded by another probability measure A, carrying less information than
v, belonging to a subset of permissible measures F},. Due to the properties of the set £}, the functional in
(1.0.4) and results by Klee [KJ58], it suffices to consider only exposed points of F}, in the above formula-
tion. The analysis in this chapter further builds upon the work of Kleiner et al. ([KMS21], [KMSW24]),
which characterizes a large subset of finitely-supported, exposed information policies ) being induced by
power diagram partitions of the domain. To solve this problem, we employ entropy-regularized optimal
transport, enabling the development of an efficient computational framework. Numerical experiments
are presented, showcasing the structural properties of the optimal configurations.

Furthermore, we extend the application of our framework to address monopolist problems involving
multiple products, where the sender provides information about product qualities. Additionally, we
explore the versatility of this approach by applying it to problems such as gerrymandering, yielding
satisfactory results.

This chapter draws upon the preprint [JKM*25], to which the author of this thesis contributed as the
main author. A condensed version of this work is currently under submission. Compared to the pre-print,
this thesis includes additional complete proofs, extended numerical results, and an entirely new section
dedicated to applying the framework to the gerrymandering problem, showing its versatility.

Organization. The structure of this chapter is as follows. Section 5.1 introduces the moment
Bayesian persuasion model, emphasizing the role of optimizing over the closure of Lipschitz-exposed
points in a subset of measures induced by information policies. This leads to a focus on measures repre-
sented by Laguerre partitions.

In Section 5.2, the optimization problem is reformulated over Laguerre partitions, accompanied by
a relaxation strategy ensuring the existence of optimal designs. Section 5.3 reviews the connection
between Laguerre diagrams and semi-discrete optimal transport, while Section 5.4 derives the entropy-
regularized optimal transport formulation. . In this setting, we prove the convergence of maximizers of
the relaxed problems to maximizers of the non-relaxed problem. This formulation facilitates an efficient
computational algorithm for solving the moment Bayesian persuasion problem.

Section 5.5 provides a detailed account of the spatial discretization process, ensuring reproducibility
of computational results. Therein, the convergence of discrete maximizers to maximizers of the original
functional is also studied. Section 5.6 illustrates the algorithm’s qualitative properties, and Section 5.7
applies the algorithm to compute optimal information policies for a multi-product monopolist. Finally,
Section 5.8 briefly introduces the gerrymandering problem, along with a model thereof, and outlines
ways to leverage our algorithm to solve that type of problems.
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2 Preliminaries

Throughout this thesis, we assume an understanding of undergraduate calculus, i.e. multi-variate dif-
ferential and integral calculus. Beyond this, we introduce in this chapter some basic notation and recall
general definitions and relevant results. In this chapter, we recall the basic definitions of function classes
on Euclidean spaces and their properties, outline some relevant results from measure theory, and intro-
duce the notions of convergence that will be the subject of study in the central theoretical results of this
thesis.

2.1 Function Spaces on Euclidean Spaces

In this section, we recall the definitions and fundamental properties of classical function spaces on Eu-
clidean spaces. This includes key inequalities, embeddings, and convergence results. For detailed proofs,
we refer the reader to classical texts on functional analysis, partial differential equations, and measure
theory, such as [AF03, Alt16, Brell, Leo24, Eval8].

Let f : 2 C R" — R be a sufficiently smooth function. For j-times partial derivatives in the direction
of z;, we write d7,. Using a multi-index 3 = (81, .., 3,) € N", we define:

Dif=00t---ofnf, |Bl=> B andforkeN: D*f={D°f:|8 =k}, D°f=F
1=1

For k € N, the Banach space of continuous or continuously differentiable functions C*() on a
compact set {2 C R™ is equipped with the norm || - [| 1 i, and seminorm | - | )

k
HfHCO(ﬁ) = SU% |f(@)], |f’ck(ﬁ) = Z HD’BfHCo@), ”f”ck(ﬁ) = Z ’f‘cl(ﬁ)-
re 1Bl=k 1=0

We define C>°(Q) = ;>0 C*(Q). For k € Nand a € (0, 1], the space of Hélder continuously
differentiable functions C*(Q) is a Banach space with the norm || - ||Ckva(§) and seminorm | - |Ckvo‘(§):

sup =
18|=k z,yezy |z —y|

DPf(z) - DPf(y
Flera@ = . Do) ( )‘, 1fllora@ = Ifllcr@) + [flore@)-

For simplicity, we set C¥9(Q) = C¥(Q) forany k € N. If k = 0 and o = 1, we call f a Lipschitz
function, with | - |co1 being the Lipschitz constant, often denoted L. If o > 1, we interpret C5® as
Chtlale—lal Fora deeper study of Holder continuous functions, see [Fiol7].

13
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Definition 2.1.1 (Modulus of Continuity). A monotonically increasing function w : [0, +00) — [0, +00)
is called a modulus of continuity for f : Q — R if

F@) = )l <@z —yl) VoyeQ, and w(0) = limw(h) =0,

The space of k-times differentiable functions on 2 whose k-th derivative has modulus of continuity
w is denoted C*(€2). The subscript ¢ always indicates compactly supported continuous or differentiable
functions.

For Lebesgue spaces, the norm is given by:

1
p
1f e (@) = (/Q 1P dw) for1<p<oo, [fllpee(n) = _ inf sup [f(z)].

NCQN|=0 ze\ N

For Sobolev spaces, denoted W™P () with m € N and p € [1, co], the norms and seminorms are:

1
[flwme@y = Y ID flloy  Ifllwme(e) = <Z!f\wzp ) for 1 <p < oo,
|B|l=m

| Flwmosqay = max S D? fl e

0<I<m
|B|=t

We define W"” () as the closure of C2°(€2) with respect to || - ||yym.» (), and set WOP(Q) = LP(1).
For Sobolev spaces, we refer to [AF03, Alt16, Brell1].

Bochner Spaces

We extend the above notation to Bochner spaces of the form X (I,Y"), where I is an interval and X, Y
are function spaces. The time derivative of a function f is denoted f. For details, see [HYNV*16].

2.2 Convergence of Sequences in Function Spaces

In this section, we introduce fundamental concepts of convergence for sequences of functions in various
function spaces. These notions are pivotal for the analysis throughout this thesis.

Definition 2.2.1 (Strong Convergence). Let {f7} jen be a sequence of functions in a normed space. We
say that { f7} converges strongly to a function f if

lim |[f — f7[| =0,
J—00
where || - || is the norm defined on the function space.

Definition 2.2.2 (Weak Convergence). Let X be a function space and X' its dual space. A sequence
{f7}en is said to weakly converge to a function f, denoted by f7 — f, if for every ¢ € X',

S(f7) = ¢(f) asj— co.
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For more details on weak convergence, we refer the reader to [Alt16, Chapter 8] and [Brel1, Chapter
3].

Theorem 2.2.3 (Reflexivity of Lebesgue and Sobolev Spaces). Let 1 < p < oo. The function spaces
LP(Q) and Wwhp (Q) are reflexive, meaning that every bounded sequence in these spaces has a weakly
convergent subsequence.

Proof. See [Alt16, Section 8.8] and [Brel1, Section 3.5]. O

Remark 2.2.4. A key application of compact embedding theorems (see Theorem 2.2.13) is the ability to
transfer weak convergence in a function space to strong convergence in a larger space.

Definition 2.2.5 (Sequential Weak Lower Semicontinuity). A functional F' : X — R is said to be
sequentially weakly lower semicontinuous if for every sequence { f7} jen with f7 — f, it holds that

lim inf F(f7) > F(f).

J—00

Proposition 2.2.6. Any functional that is strongly lower semicontinuous and convex is also weakly lower
semicontinuous.

Proof. See [Brell, Proposition 3.5 and Corollary 3.9]. U
In the subsequent sections, we recall some basic inequalities, embedding theorems, and convergence

criteria that will play a significant role in the analysis of function spaces.

2.2.1 Inequalities and Embeddings

The following fundamental results are of the vital importance throughout this thesis. While we use a
special notation for some of the constants in the following results, we remark that throughout the thesis
the symbol C' frequently indicates a generic finite positive constant.

Theorem 2.2.7 (Fatou’s lemma, [Alt16, Theorem A3.20]). Let (S, X, 11) be a measure space and { f7} jen
be a sequence of Y-measurable non-negative functions from S to R. Then it holds

/ liminf f7dp < hm mf/ A dp.
S

j—)OO

Theorem 2.2.8 (Dominated convergence theorem, [Alt16, Theorem A3.21]). Let (S, X, 1) be a measure
space and { f7} jen and g be Y-measurable functions from S to R. Furthermore,

* g is integrable, i.e., [¢|g|dp < oo,
s |f7| < g p-almost everywhere for all j € N,
o f1 = f u-almost everywhere as j — oc.

Then {f7};en and f are integrable and

im [ 7= / fdu.

j*)OO
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Theorem 2.2.9 (Poincare’s inequality, [Alt16, Theorem 6.7]). Let 2 C R"™ be a open and bounded set.
Then there exists a constant Cp = Cp(€2,n, p) such that

I fllzo () < CPID Sl o), Vf € WoP().

Theorem 2.2.10 (Gagliardo—Nirenberg interpolation inequality, [Nir66]). Let 0 C R" be a bounded
domain satisfying the cone condition. If f € L*(Q) and D™f € L*(Q), then there exist constants
Cang = Can1(Q,m,n) > 0and Can2 = Can2(2,m,n) > 0 such that for every j € {1,...,m —

1}

| flai) < Cann HfHLz yTCan2llfllzz@) < Conalflum@) +(Cana+Can2)llfll2e) -

Theorem 2.2.11 (Korn’s 1nequa11ty, [Cia88, Section 6.3]). Let 0 C R™ be a bounded domain with a
Lipschitz boundary. Then there exists a constant Cg o, = Ciorn (2, n) > 0 such that

Ckorallfll@) < IDF)™r2(0) < Crornllfllmi(), Vf € Hy(%),

where (Df)¥™ := 2(Df + (Df)T) is the symmetric gradient.
The following classical result allows for an approximation of LP-functions, for 1 < p < oo, with
smooth functions, and it will be used throughout this thesis.

Theorem 2.2.12 ([Alt16, Theorem 4.15]). Let @ C R™ be a bounded domain. Then the set C2°(2) is
dense in LP(Q) for 1 < p < oo. In particular, given f € LP(QQ) there exists a sequence of functions
{f7}jen € C2() and a function C : RT x N — [0, 00) such that

If = Flleey <277, IDf|Ipeo() < CUIf oy 4), Vi €N
The following theorem comprises the central embedding theorem for Sobolev and Holder functions

that we will frequently refer to.

Theorem 2.2.13 (Embedding theorem for Sobolev and Holder functions, [Alt16, Theorem 10.13]). Let
Q) C R"™ be a bounded domain with a Lipschitz boundary.

(i) If mi,m2 € Nand p1,ps € [1,00) satisfy
mi— = >me— =, my>mg, 2.2.1)
P D2

then a continuous embedding W™1P1(Q) — W'™2P2(Q) exists and for all f € W™1PL(Q) one
obtains

||JL1”VV""2’1‘72 () < C(Qv n,my, m27P1aP2)HfHWm1vm Q) -
If both inequalities in (2.2.1) are strict, then the embedding is compact.

(ii) If m € N* and p € [1,00) are given such that
m—%Zk—l—a forany a € (0,1) ,k e N (2.2.2)
holds true, then a continuous embedding W™P () — Ck(Q) exists such that for all f €
WP () a representative f of f exists with f(x) = f(z) for ex € Q and
1 Fll ey < CQn,m,p,k, Q)| fllwmr o) -

If the inequality (2.2.2) is strict, then the embedding W™P(Q) — C*(Q) is additionally com-
pact.
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For the space of continuous functions, we have a classical criterion for convergence and compactness.

Theorem 2.2.14 (Arzeld—Ascoli, [Alt16, Theorem 4.12]). Let K be a compact subset of R™ and let a
sequence of functions { f7};en € CO(K) satisfy

o {fI }jen is uniformly bounded in CY(K),

* {f7},en is uniformly equicontinuous, i.e., for every e > 0, there exists a § > 0 such that
|f7(x) — f7(y)| < eforevery |x —y| < § and for all j € N.

Then { f7};en has a subsequence which converges to some f € C°(K) in CY(K)-norm.

The following result is a corollary of the above theorem and the fact that uniformly bounded Holder
continuous families of functions (same applies for other choices of the joint modulus of continuity)
satisfy the equicontinuity conditions.

Corollary 2.2.15 ([Alt16, Theorem 10.6]). Let k1, ks € N and oy, s € (0,1] with k1 + a1 > ko + .
Let Q C R™ be open and bounded (with Lipschitz boundary if k1 > 0). Then C*1:01(Q) < Ck2:22(Q). If
the inequality is strict the embedding is in addition compact. The analogous results hold for the Bochner
spaces C4A([0, 1], CF*(Q)).

2.3 Convergence of Measures and Related Theorems

Definition 2.3.1. A Polish space is a topological space that is separable and completely metrizable.

Definition 2.3.2 (Narrow Convergence of Measures). Let {u, },cn be a sequence of Borel probability
measures on a metric space (X, d), and let . be another Borel probability measure on X . The sequence
{ptn }nen is said to converge narrowly to p (denoted p,, — p) if:

/fd,un—>/fdu forall f € Cp(X),
X X

where Cy(X) denotes the space of bounded continuous functions on X.

Theorem 2.3.3 (Portmanteau Theorem). Let { (i, }nen be a sequence of Borel probability measures on a
metric space (X, d), and let ji be another Borel probability measure on X. The following statements are
equivalent:

L pin — p

2. For every lower semi-continuous function f : X — R that is bounded from below,

liminf/ fdunz/ fdu.

3. For every upper semi-continuous function f : X — R that is bounded from above,

limsup/ fd,ung/ fdu.
n—oo JX X
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4. limsup,, o pin(F) < u(F) for every closed set F' C X.
5. liminf, o pn(G) > u(QG) for every open set G C X.

Theorem 2.3.4 (Prokhorov’s theorem, [Pro56]). Let (X, 7) be a Polish space, and let {jin}nen be a
sequence of probability measures on the Borel o-algebra B(X ). Then the following are equivalent:

1. The sequence { i, }nen is tight, i.e., for every € > 0, there exists a compact set K. C X such that

pn(X \ K:) <e foralln € N.

2. The sequence { i, }nen has a subsequence that converges narrowly to a probability measure (i on
B(X).

2.4 I'- and Mosco-convergence

A central theme across the first two main chapters of this thesis involves analyzing the convergence
behaviour of functionals that are inherently discrete or non-local, towards a limiting functional that can be
described as continuous or local in nature. To rigorously address this, we will introduce and formalize the
specific definitions of convergence that underpin our analysis. Additionally, we will examine several key
properties exhibited by sequences that demonstrate this type of convergence. For a deeper exploration of
these concepts and their theoretical foundations, the reader is encouraged to consult the works in

Definition 2.4.1 (I'- and Mosco-convergence). Let X be a metric vector space. Consider the sequence
of functionals {FX} gen : X — RU {oo} and F : X — R U {oo} that satisfies:

(i) for every sequence {2% } xcn C X with 2% — 2 € X, the “lim inf-inequality”

lim inf FX 5] > Flz]
K—o0
is valid,
(ii) for every x € X there exists a recovery sequence {z%} ey C X satisfying 2 — 2 in X such
that the “lim sup-inequality”

limsup FX 2] < Flz]
K—oo

holds true.

Then {F5} kcn is said to T'-converges to F. In case X is a Banach space, some authors only require
the recovery sequence to be weakly convergent, i.e. X — z. On the other hand, if condition (ii) is left
as above, and the first condition is changed to

(i) for every sequence {x”} xcny C X with 2 — z € X the “weak lim inf-inequality”

lim inf 7% [2%] > Flx],

K—oo

holds, we say that {75} xcn converges to F in the sense of Mosco.
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Definition 2.4.2 (Equicoercivity, [Bral4, Definition 2.9]). Let X be a Banach space. A sequence of
functionals {FX} en : X — RU {00} is said to be equicoercive if for all 7 € R there exists a compact
set K, C X such that {z € X : FX[z] <r VK € N} C K,.

Theorem 2.4.3 (Fundamental theorem of I'-convergence, [Bral4, Theorem 2.10]). Let X be a Banach
space and {F¥} gen : X — R U {oo} an equicoercive sequence of functionals that T-converges to
F: X — RU{oc}. Then, it holds mingcx Flz] = limg o0 infrex FX[z].

As a result, for a sequence of minimizers {2} x-cn of the functionals {F %} k- satisfying the uni-
form energy bound FX[z%] < r, the property of equi-coercivity ensures the existence of a subsequence
that converges to some = € X. Moreover, the I'-convergence of FX to F implies that z is a minimizer
of F. In the case of Mosco-convergence, the requirement of compactness for the set K, can be replaced
by weak compactness.






3 Approximation of Splines in Wasserstein
Spaces

This paper investigates a time discrete variational model for splines in Wasserstein spaces to interpolate
probability measures. Cubic splines in Euclidean space are known to minimize the integrated squared
acceleration subject to a set of interpolation constraints. As generalization on the space of probability
measures the integral of the squared acceleration is considered as a spline energy and regularized by
addition of the usual action functional. Both energies are then discretized in time using local Wasserstein-
2 distances and the generalized Wasserstein barycenter. The existence of time discrete regularized splines
for given interpolation conditions is established. On the subspace of Gaussian distributions, the spline
interpolation problem is solved explicitly and consistency in the discrete to continuous limit is shown.
The computation of time discrete splines is implemented numerically, based on entropy regularization
and the Sinkhorn algorithm. A variant of Nesterov’s accelerated gradient descent algorithm is applied
for the minimization of the fully discrete functional. A variety of numerical examples demonstrate the
robustness of the approach and show striking characteristics of the method. As a particular application
the spline interpolation for synthesized textures is presented.

3.1 Background

In this section, we briefly review the classical theory of optimal transport (OT), and the Riemannian
structure of the Wasserstein space induced by this OT metric.

3.1.1 Review of Optimal Transport

Let €2 be a Polish space (separable, completely metrizable) that additionally satisfies the Heine-Borel
property, i.e. its compact sets are exactly the closed and bounded ones. Moreover, we introduce the set
of probability measures P(€2) on 2. The subset of probability measures p with finite second moment,
ie. [, d*(wo,x)dp < oo, for some (and any) zo € € and a fixed metric d(-, -) that completely metrizes
 will be denoted as P2(€2). For two probability measures u, v € P(2), we shall denote with U (, /)
the set of couplings between them, that is, the set of (probability) measures IT € P(922?) with TI(Ax Q) =
p(A) and IT(Q2 x A) = v(A) for all Borel sets A in Q. For p, v € P(12), the set U, (p, v) is the set of all
couplings IT between y and v that minimize [, d*(z,y) dII(z,y), i.e. the set of optimal couplings for
the cost d?(-, -).

Definition 3.1.1 (Wasserstein distance). The squared (L2-)Wasserstein distance between two probability
measures p1, v € P() will be denoted by W2, and is defined as

2 = inf / 2 11 .
W= (i, v) neith ) md (z,y)dIl(z,y)

21
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Note that an optimal coupling is guaranteed to exist, and hence the infimum is actually a minimum.
Furthermore, restricting to the space P2(2) x Pa(2) actually leads to a complete metric space, cf.
[Vil09]. With this in mind, we define a Py (2)- Valued curve (f1)se[0,1] as absolutely continuous, if there
exists m € LY(]0,1]), so that W (g, pis) < f r)drforall0 < s <t <1.

Moreover, let C’l? (€2) be the set of continuous, bounded functions on 2. We then say that the sequence
of measures (u) converges narrowly to some p € P(2), if

/Qfduwfﬂfdu,

for all f € CP(Q). This will be denoted by py, — pu.

The concept of tightness of probability measures will play a key role in the sequel: A set L C P(Q)
is said to be tight, if for any £ > 0 there is a compact set 2. C €, such that (2 \ Q.) < e forall 4 € K.
Prokhorov’s theorem states that tightness of a set of measures is equivalent to relative compactness in the
topology induced by the narrow convergence of measures, cf. [Pro56].

3.1.2 Wasserstein spaces as a Riemannian Manifold

In this section we consider the spline interpolation problem from a geometric perspective. To this end,
we will rely on the formal definition of a Riemannian metric on Pg(Rd) given in [Lot06] and chapter
8 of [AGS08]. We first introduce a characterization of absolutely continuous measure-valued curves
(14¢)ee(0,1]- Indeed, absolute continuity of a curve (41 ) is equivalent to the existence of a velocity field
vy : RY — R? for t € [0, 1], satisfying certain estimates, and solving the continuity equation (CE):

Oy + V- (vgee) = 0 in (0,1) x RY, (3.1.1)

encoding the conservation of mass (see [AGS08], Theorem 8.3.1. for a thorough proof). The above
equation is to be understood in the sense of distributions. Moreover, due to the Benamou-Brenier formula
(cf. [BBOO], Proposition 1.1) one recovers the following definition of the Wasserstein distance in terms
of the velocity field (v;):

W2 (1, 1) = inf / / ve|? dp dt,
(ko 1) (,0)ECE(po,p1) Rd ol dp

where C'E(fig, 1) is the set of pairs (1, v), such that ;1 = (p): is an absolutely continuous curve in

Po(R?), and v = (v;); is a time-dependent vector field, such that it satisfies (3.1.1) in the distributional

sense, with py = fip and uy = 7. For a fixed curve (u¢ ), the optimal velocity field (v;); of the above

problem can be characterized as belonging to the set

2 d
T, = {Ve: v € CR®} )
for almost every ¢ € [0, 1] (cf. [AGS08], Proposition 8.4.5), where C>°(R%) is the set of all real-valued,
smooth, compactly supported functions on R%, and the bar notation denotes the closure of a set with
respect to the L?(p¢, R?) norm. This fact justifies the suggestive definition of the set T,, as the tangent
space of the Wasserstein space Po(R?) at the point . The Riemannian metric on Py(R%) at y is then
simply given by the L? product

<1}, w>TM = / <U7 U}> d:u't7
R4
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where (-, -) on the right hand side represents the usual inner product on R?. Then, the path energy & of
the measure-valued curve (y); can be expressed by

E((m)e) = inf / /Rd || ? d ey dt. (3.1.2)

vi(p,v) ECE(po,11)

In their landmark paper [BB0OO], Benamou and Brenier showed that the functional being minimised in the
last line is convex in the variables 1 and w = vu. In [dB63], classical splines are defined as minimizers
of the squared acceleration, integrated over time. The Riemannian counterpart to the acceleration of a
particle is the covariant derivative of its velocity field (v;);. To define this let us call a curve (p); in
Po(RY) regular, if it is absolutely continuous and the optimal velocity vector field (v;); satisfying the
continuity equation is Lipschitz in space and satisfies

1
/ Lip(v) dt < o0,
0

where Lip(v) denotes the Lipschitz constant of v. Then, by [AGS08], Proposition 8.1.8, there exists a
unique family of flow maps T7(-) : R? — R that satisfy

LT @) = w(TH @), Toa)=w (3.13)

We have that p; = (7})xus for all s < t. The total derivative of an absolutely continuous vector field
(w;); along a regular curve (y1;); on Po(R%) is then defined for almost all ¢ € (0, 1) as

h
. Wiyp O 7;“ — Wy
—wy = lim ,
dt h—0 h

in the sense of L?(y). For a smooth vector field (w;); along a regular measure curve ()¢, we can use
(3.1.3) to obtain explicitly

a’wt = atwt + th * Ut.

Finally, the covariant derivative can be given by projecting onto the tangent space
Vvtwt = Pm(ﬁtwt + Vwy - ’Ut), (3.1.4)

where P, is the orthogonal projection in L?(u) onto the tangent space T},. For a thorough derivation of
the covariant derivative on P2 (£2), we refer to [AG13], chapter 6.

3.2 Splines in Wasserstein Spaces

3.2.1 Definition of splines

Based on the discussion in the previous section, for v; = Vi, € T),, one may use V,,v; as the accelera-
tion of a regular measure-valued curve p;. This leads to

Vvtvt = Pm(atvt + Vvt . ’Ut) = Put(i]t + %V!vt|2) = i)t + %V!vt|2, (321)
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where the last equality holds due to v; = V¢, € T}, and the second term already being in gradient-field
form. This naturally leads to the following notion of a continuous-time spline energy functional. For a
general curve (py); : [0, 1] — P2(R?) we set

1
f((ﬂt)t):mf/ /dyw;vw dy dt, (3.2.2)
vJo Jr

where the infimum is taken over sufficiently regular time-dependent vector fields v = (v;)¢, such that
(n,v) € CE(po, p11), and vy € Ty, forall t € (0, 1). The spline interpolation problem in the Wasserstein
space is then to find a curve (1), : [0, 1] — P2(R?) that minimizes the functional (3.2.2), subject to a
set of I > 2 point-wise interpolation constraints

pi, =M, i=1,...,1, (3.2.3)

for prescribed times ; € [0,1],4 =1,..., I, with#; < ... < 7 and [i; € P2(R?). As already discussed
in [dB63] for the Euclidean case, and [HRW18] for the Riemannian case, we may impose one of the
following boundary conditions (b.c.):

natural b.c.:  no additional condition, 3.2.4)
Hermite b.c.: vy = g, v1 = vy for given vy € T),, and vy € T}, (3.2.5)
periodic b.c.: g = p1,v9 = v1. (3.2.6)

In the case of Hermite (also known as clamped) boundary conditions, we assume that t; = 0 and t; = 1,
so that po and pq are prescribed as well.

From a theoretical point of view, it will be advantageous to regularize the above spline energy by
adding the path energy £ multiplied by a regularization parameter § > 0. Hence, we introduce the
regularized spline energy functional

Fo= F 4 §€. (3.2.7)

This will ensure tightness of all probability measures with finite energy, and consequently existence in
the time-discrete case.

Definition 3.2.1. For given times #; € [0,1] and prescribed probability distributions f7; € P2(R?),
i = 1,...,I, we define a (regularized) spline interpolation (1;); as a minimizer of the spline energy
functional (3.2.2) (resp. (3.2.7)) subject to (3.2.3) and at most one of the boundary conditions (3.2.4)-
(3.2.6).

Example 3.2.2 (Euclidean space). The Wasserstein distance between two delta distributions located at x
and y is equal to the Euclidean distance |x — y|, and the associated Wasserstein geodesic is given by the
curve of delta distributions at the locations of the Euclidean geodesic interpolating the end points. We
now briefly check whether our definition is also consistent with cubic splines in R? when considering
delta distributions.

Let z : [0,1] — R9 be a twice-differentiable curve, and define the measure-valued curve p; = dy,.
Then, one checks that with the choice v; = 4, (CE) is satisfied in distributional sense:

1 1
/ / (106 (t, 2) + oV o(t, ) dt da — / (u(t, 2()) + i - Vo(t, 2(2))) dt = 0,
0 R4 0
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for all ¢ € C°((0,1) x R?). Moreover, as v; is constant in space, we have Dv; = 0. Due to (3.2.1), we
obtain V,,v; = I+, so using (3.2.2) one gets

1 1
Fllpe)e) = / / o dpy dt = / ) dt,
0 R4 0

for which the minimizer is given by the cubic spline subject to the interpolation constraints [dB63].

The Wasserstein space P5(R?) is isometrically isomorphic to R x P9(R?), where the factor R?
represents the center of mass and PS(Rd) is the space of probability distributions centered around 0. In
this spirit the dynamic of spline paths can be split into the time evolution of the center the mass and the
time evolution of the distribution around it, as we shall now demonstrate.

Let (u,v) € CE be a solution to the continuity equation, with v = (v;); being optimal. Hence, for
all t € [0,1], vy is a gradient field, and in particular Dv] = Duvy. Let m; :== [ 2 dyu(x) be the center of
mass and let fi; () := p(- + my) be the re-centered distribution. Furthermore, we define the re-centered
velocity field o(z) = vi(x + my) — 1. Then one easily checks that (i, 0) € CE. Now, we first show
a decoupling of the (first-order) action functional, i.e.

1 1 1
/ / |6t‘2 dﬂt dt = / / "Ut(' + mt) — mt\Z d(Id — mt)#ut dt = / / "Ut — mt|2 dNt dt
0 JRd 0 JR4 0 JRd

1 1 1 1 1
= / ”Ut|2d/1,tdt+/ |mt\2dt—2/ / <Ut,mt> d,utdt: / ’Ut‘Qdutdt— / |mt‘2dt,
0 0 0 JRd 0 0

where we used that by the continuity equation

. d
my = d/ xdu(z) = / V- v du(x) = / vedp(x) . (3.2.8)
t Rd Rd R4

Next, we consider the decoupling of the (second-order) spline energy fol fRd |0y + %V!vt|2\2dut dt.
Taking into account

’Dt(l‘) = at(vt(x —|— mt) — mt) = Ut($ —|— mt) —|— (D’Ut)(.’E —|— mt) . mt — mt,
V|52 = Vgl + Vv (z + my)|? — 2V (vs(z 4+ my), 170)
= 2(Dvg)(x 4+ my) - ve(x + my) — 2(Dvy) (T + myg )iy

we obtain

I L

1
:/ / [0¢(x + my) + (Dug)(x + my) - 1y — my — (Dog)(x + my) - i
0 JRd

+(Dvg)(z 4 my) - ve(z 4+ myg)|* dfig(z) dt

R R
w+§WWF<MMt

1
N / / |6e(@ 4 my) = i + (Dvg) (4 my) - v+ my)[* djie(x) dt
0 JRd

1
:/’/\m_ﬁu+pw@m2m%a
0 R4
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1 1 1
= / / ‘@t—Fth(?}t)‘Qd/Lt dt—‘r/ ‘thdt— 2/ / <mt,®t+th(Ut>> d,ut dt.
0 JRd 0 0 JR4

Now, differentiating (3.2.8) in time we achieve

; d .
my = d/ vedpy = / Oy + Dug(vg) dpsy -
t R4 Ra

Finally, plugging this back into the previous computation we get

LY R N _ L1 b
// |vt+Vvt|2|2dutdt:/ / |vt+V|vt\2|2d,utdt—/ |7 |2 dt (3.2.9)
0 JRrd 2 0 JRrd 2 0

This decoupling is advantageous for the numerical implementation. In fact, it leads to a reduced com-
puting time (cf. Figure 3.6).

3.2.2 Variational discretization of splines

The temporal discretization of (regularized) Wasserstein spline energies will be based on a variational
problem. To motivate the proposed discrete spline energy functional, let us consider the situation in
Euclidean spaces, in which the velocity field v of a smooth curve z : [0,1] — R? coincides with i. By
sampling this curve uniformly, i.e. taking z, = x(t}) for tX = k/K, k = 0,..., K, we are able to
approximate the velocity at a time ¢ by finite differences, that is, #(t5 ) ~ K ()41 — ). Therefore,
we obtain

[ (t5)]? ~ K| — aal*.

Similarly, in Euclidean spaces the covariant derivative of the velocity field coincides with the acceleration

2. We approximate this by central second order difference quotients, i.e. :n(tkK )~ K%(2py1 — 22 +

Th+1+TE—1
2

x—1). Thus, defining Bar(xg41, 2x—1) == one obtains

2
Tkl T

2t ? ~ 4K* 5

Ty, = 4K* |z}, — Bar(zpi1, 7p-1)]” -

A simple rectangular quadrature rule fol f(t)dt ~ K1 ZkK:_ll FE) for th = % leads to the following
approximations of the Euclidean velocity and acceleration functional, respectively:

1 K
E(z) = / ot~ K fopsr — 2l (3.2.10)
0 k=1
1 K-1
F(z) = / || dt ~ 4K3 Z |xg — Bar(xk+1,a:k_1)|2 ) (3.2.11)
0 k=1

Recall that the Euclidean barycenter is the solution to the following minimization problem:

Bar(z,y) = argmin (| — 224y — 212) ,
z€Rd



3.2 Splines in Wasserstein Spaces 27

for some z, y € RY. Hence, it is intuitive to replace the Euclidean L?-norm with the Wasserstein distance,
giving rise to the following discrete path energy

K-1
EX (™) = K Y Wi, pi), (3.2.12)
k=0

for a (K + 1)-tuple of probability measures p := (ul, ..., uf) € Py(Q)E+L. Moreover, we will also
give suitable definitions of a Wasserstein barycenter:

Definition 3.2.3. Let u,v € P(Q), and ¢ € [0, 1]. The set of ¢-barycenters Bar®(u, /) between p and v
is the set of solutions of the following minimization problem

argmin (1 — t)W?(p, ) + tW?(p, v). (3.2.13)
PEP()

For the sake of readability, we shall usually omit the ¢-index from both the notation and nomenclature

when ¢t = %

Remark 3.2.4. If p,v € Py(R2), then we can guarantee the existence of a solution of (3.2.13) (cf.
[Lot06]). Indeed, let IT € U,(u, ), and let 7* be the projection operators onto the i-th coordinate. Then,

(L =t)m +tm), Il € Bar' (1, v). (3.2.14)

Let Q C R? and define P§¢(Q2) C P2(Q) as the set of all absolutely continuous probability measures
in Py (£2) with respect to the Lebesgue measure on RY. If, in addition, at least one of x or v belong to
the set P5¢(€2), then Brenier’s theorem [Bre91] and McCann’s interpolation [McCO1] even guarantee
uniqueness of the t-barycenter, given explicitly by

Bar' (u,v) = {(1 =)L +¢T} ) up} (3.2.15)
where T/ is the optimal transport map from 1 to v.

In Wasserstein spaces, there is another related notion of barycenter, which will be called generalized
Wasserstein barycenter:

Definition 3.2.5. Let 1, pa2, u3 € P(€). Let now II be a three-measure coupling between them, i.e. I €
P(Q23), and IT(AxQxQ) = 1 (A), I(Qx AxQ) = pz(A), and II(QxQx A) = uz(A) for all Borel sets
A C Q. If furthermore, we have that (7!, 72) I € U, (u1, p2), and (72, %) 211 € Uy(pa, u3), we say
IT € Uy(u1, 12, 13). A measure p is in the set of generalized (Wasserstein) ¢-barycenters Barfm (1, p3)
between 41 and 3 with base point ug, if it is of the form p = ((1 — t)7! + tn®) 41l for a II €
Uo (1, 2, pi3). When t = %, we shall omit ¢ from the notation.

Remark 3.2.6. Similarly as above, if 2 C R% and wa € PIE(£2), then Brenier’s theorem guarantees
uniqueness of the generalized ¢-barycenter, given explicitly by

Barl,, (11, u3) = {((1 — )Ty + tT5) wpua} (3.2.16)

where T4 is the optimal transport map from s to j;, i = 1,3. Note that (1 — )Ty + T is again an
optimal map (since it inherits the structure of being the gradient of a convex function from 73).
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In analogy to equation (3.2.11) we will define two notions of time discrete spline energies related to
the different kinds of barycenters introduced above:

Definition 3.2.7 (Discrete spline energy). Let p := (uf, ..., uf) € P(Q)E*! be a (K + 1)-tuple of
probability measures. The discrete spline energy FX of /€ is then defined as

K-1
FX () = inf 4K > W2 (g, i), (3.2.17)
A k=1
where the infimum is taken over all 2 = (af),—1 g1 with @ € Bar(pX |, uﬁl). Similarly, one
defines the generalized discrete spline energy Fg of uX as

K-1

FE(uX) = ianf AR W (g i), (3.2.18)
k=1

77777

ized discrete spline energies are given by
FOK — FK L 6EX, F3F = FE 4+ 6EX (3.2.19)

for § > 0 (for § = 0 we retrieve the non-regularized spline energy). Computing a (regularized) time-
discrete spline interpolation now consists in finding a tuple p® = (,ué( Yy ug) that minimizes the
functional (3.2.19) in some sense to be defined, subject to a set of I > 2 point-wise interpolation con-
straints

pE —q, =1, (3.2.20)

for fixed prescribed times #; € [0, 1], which fulfil K#; € N, with#; < ... < f; and Ji; € Po(R?) for
i=1,...,1.

The discrete counterparts of boundary conditions, one of which may be additionally imposed, can be
written as follows:

natural b.c.:  no additional condition, (3.2.21)
: . K_— K_— K _ — K _ —

Hermite b.c.:  py = o, g1 = fy, Hg—1 = fx—1, KK = K, (3.2.22)

periodic b.c.:  pfS = pff, plf = puf . (3.2.23)

Now we are in position to define regularized time-discrete spline interpolations:

Definition 3.2.8 (Regularized discrete spline interpolations). For 2 < I < K, given data points t; €
[0,1] fulfilling Kt; € Ny, § > 0 and fixed data i; € P(Q2) for i = 1,...,I, we define the tuple
€ Po(Q)5+! to be a regularized (generalized) discrete spline interpolation if it is a minimizer of the
discrete spline energy functional Fé’é( with § > 0 (cf. (3.2.19)) that satisty the interpolation constraints

(3.2.20) and one of the boundary conditions (3.2.21)-(3.2.23).

We will now show existence of a minimizer of the regularized spline energy functional introduced
above, for all 6 > 0. First, let us show a technical lemma:
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Lemma 3.2.9. Let Q) be as in Subsection 3.1.1 and let (p,)n, C P(2) be tight, and (vy,), C P(Q). If
sup,, W2 (jin, vn) < C < oo, then (vy,)y, is also tight.

Proof. We will argue by contradiction: Assume that (1, ),, is not tight. Then, there is an ¢ > 0, so that
forall R > Othereis a k = k(R) € N that fulfils 14 (2 \ Br(w)) > ¢ for some fixed w € Q.

Let » > 0 be chosen so that R > r, and p,,(Q2 \ B,(w)) < ¢/2 for all n € N. This is possible due to
the tightness of (/i ),,. For any coupling IT € P(0?) of pi(r) and vyg) we have that

I({(z,y) : d*(z,y) = (R—1)°}) > €/2.

Hence, we obtain

3
WQ(,uk, V) > §(R — 1")2.

Since ¢ and r are fixed, and k only depends on R, we can choose R big enough so that W2 (uy,, v) > C,
which leads to the desired contradiction. O

Theorem 3.2.10. Forall 6 > 0, K € N, 2 < I < K, given times t; € [0, 1] and prescribed probability
measures Ti; € Po(R?) for all i = 1,...,1I, there exists a discrete regularized (generalized) spline
interpolation in the sense of Definition 3.2.8.

Proof. Any choice of i, € P(R?) for k = 0,..., K gives a finite regularized spline energy F =
FOX ((ug)r). Let (u™),, be a minimizing sequence for F®X under the given constraints. In particular,
sup,, FOX (u(™) < F. Thus,

F > sup FOK (™) > sup sW2(ul™, ")),

gz) = Tz, for all n. Since any constant measure-valued sequence is
(n)

tight, by the previous lemma the sequence (,u 2 > is also tight. We can use the previous lemma
n

for any k. Fort = 1,...,1, u

Kt;+1
multiple times and "propagate" tightness by induction. Next, by Prokhorov’s theorem we can choose
a subsequence, so that for all & € {0,..., K} the sequence (,u,gn))n is narrowly convergent to some

px € P(RY). In fact, we have by the triangle inequality
W™ 820) S W™ ™) + W, 6o),

for a point zg in R%. If k — 1 = K7; for some i = 1,..., 1, then ux_1 = fi; € P2(R%) and hence, the
second term on the right hand side is uniformly bounded in n. Since the first term on the right hand side
is one term in the discrete path energy contained in F%¥ it is uniformly bounded in 7 as well. We now

use u,(cn) — g and the lower semi-continuity of ¥/ under narrow convergence to show that

W2(juk; 0z, ) < lim inf W2, 64) < o0.

Proceeding by induction, we obtain that ji, € Po(R?) forall k = 0, ..., K. Let us now rewrite (3.2.17):

K-1
FY (™) = 4K inf Wy

1 i eBar(u™) i)
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= 1 1
K Z inf )W (“l(cn)’ <2 * 2W2>#H§cn)1 k+1>

(n) n) (n)
k=1 Hk 1k+1EUO(“k 1M1

Next, we denote the value of the inner infimum above I () and assume that ngn)l Kt IS

U, ((M,(C”)l,u,(ﬁr)l)) is chosen such that /2 (u,(cn), (Art + 3 )# Hl(gi)lka) < Ikn) + 1/n. By the sta-

bility of optimal couplings [AG13, Prop. 7.1.3], H,(C_)1 k-1 converges (up to a subsequence) to an optimal
coupling 111 g1 of p—1 and 1 1. This entails narrow convergence of the barycenter

L 5

1 1 1 -
Bar(/ﬁi(c )17M;(c+)1) > (271 + 27T2> Hén)l kel (27T +am > i1 k41 =: fix € Bar(pp_1, pt1)
#

due to the continuity of the projections 7’ (for i = 1, 2), and Remark 3.2.4.
Finally, we use the lower semi-continuity of the Wasserstein distance under narrow convergence and
the fact that the spline energy contains a minimization over the choice of barycenters, to obtain

K-1
FON () < 4K5 3" W2 (g jix) + 6B (1) < lim inf F*K (™),
el n—oo
where o == (po,...,px). As the right-hand sequence was assumed to be a minimizing sequence,

p is indeed a spline interpolation according to Definition 3.2.8. The proof of existence of gener-
alized spline interpolations is by analogy. The only remarkable difference is to prove that general-
ized barycenters narrowly converge to a generalized barycenter, up to a subsequence. To see this, let
H,(:_)l,k,k 41 € P(R3?) be a three-measure optimal transport plan between ,u,(f )1 u,(fn) and u,(ﬁ_)l, i.e.

H,@Lk,k“ € Uo(u,gn_)l, u,g ), “k+1) (cf. Definition 3.2.5). Once again, as the marginals of H,g )1 Kkl

(n)

are tight, the sequence of optimal couplings (I, , , +1)" is also tight, and due to the lower semiconti-
nuity of WV, it narrowly converges (up to a subsequence) to an optimal coupling ITj_1 x r4+1 Of frr—1, pik
and pg1. From this, narrow convergence (up to a subsequence) of the sequence of generalized barycen-

ters (%ﬂ'l + %773)# H,(:L_)1 ki1 to the generalized barycenter (%wl + %773)# IT}—1 k k+1 follows, again
due to the continuity of the projections 7’ (for i = 1, 3), and Definition 3.2.5. U

Sampling spline trajectories. As mentioned in the introduction, our interpolation method signifi-
cantly differs from P-splines (cf. [BGV19] and [CCG18]) and T-splines (cf. [CCLG"21]) in the sense
that the two aforementioned methods are primarily trajectory-based, while ours focuses on the densities
themselves. Hence, it is a priori unclear whether sample spline trajectories can also be constructed that
are consistent with our method. It turns out the answer to the previous question is positive. Next, we shall
describe the different trajectory sampling methods for P-splines T-splines and E-splines (our method),
and state algorithms to compute them:

P-splines: Any solution (X¢); of (1.0.2) has spline trajectories ¢ — X;(w) for P-almost all w € €,
which formally follows from rewriting (1.0.2):

min / /||Xt||2dIP’dt min / mm/ lie||? dt dQ (1, . . ., 1)
(Xt)t QeP(]Rd‘i) Rd-I t—vt

X~ () 4 Q=14
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1
= min / /HétHthdQ(xl,...,:c]), (3.2.24)
QeP®dIy JpdI Jg

(7m4) 4 Q=Tt;

where ¢ — s is the classical Euclidean spline interpolating the points (t;, ;) and 7; : R*! — R is the
projection onto the i-th d-sized batch of coordinates, i.e. 7;(y1, ..., Yda.1) = (Yd-it1,-- - Ydi+d)- Hence,
any solution (X;); of (1.0.2) has spline trajectories ¢ — X;(w) for P-almost all w € €2 (see Fig. 1.1, top
left), cf. Algorithm 1

Algorithm 1: Algorithm for sampling P-spline trajectories.

1 Function PSplineSample ((fiq,-..,1;), (f1,-.-,t1)):
2 |fori=1to/do
3 LSample X ~ 1,

4 | return CubicSplinelInterpolation ((t1,X1),...,(tr, X))

T-splines: Samples are first drawn from one of the prescribed distributions, usually X; ~ 7i;, where
X is a random variable with distribution z;. These samples are then pushed by the Monge maps 7;
between consecutive prescribed distributions fi;, z;,  and the resulting tuple of points z; = (Tj—1 o
...0T; o X7)(w) at the prescribed times Z;, fori = 1,. .., I, is interpolated using classical cubic spline
interpolation (see Fig. 1.1 top middle and bottom left). cf. Algorithm 2

Algorithm 2: Algorithm for sampling T-spline trajectories.

1 Function TSplineSample ((fy,..., &), (f1,...,t1)) ¢

2 | Sample X7 ~ 11y

3 |[fori=1to] —1do

4 T; =OptimalTransportMap (;, ;1)

5 LXi—l—l =T;(X;)

6 | return CubicSplinelInterpolation ((t1,X1),..., (tr, X))

E-splines: We assume we have already found a discrete-time interpolation (uy, . .., ux ). Similarly

to the T-spline method, samples are first drawn from one of the interpolated measures. Unlike before, we
are allowed to choose any of the measures, not just one of the prescribed ones. Without loss of generality,
assume Xg ~ g is the random variable to be sampled. Next, we compute the Monge maps T; between
measures f; and y;11 and push the sample zy := X (w) iteratively through them, i.e. z; := T;_1(x;—1).
Finally, the tuple (zo,...,zx) is interpolated once again through Euclidean cubic spline interpolation,
cf. Algorithm 3

3.3 Gaussian E-splines

In this section we will explicitly derive the continuous spline energy for measure-valued curves restricted
to the space of Gaussian distributions, i.e. minimizers of the spline energy among Gaussian curves, and



32 3 Approximation of Splines in Wasserstein Spaces

Algorithm 3: Algorithm for sampling E-spline trajectories.

1 Function ESplineSample ((fy,...,1y), (t1,...,t1)):
2 (,u,()7 . ,IU,K) =ESpline ((ﬁl, R ,ﬁl), (Zl, .. ,E]))

3 | Sample Xy ~ pg

4 |fori=0to K —1do

5 T; =OptimalTransportMap (i, i+1)

6 LXH-I = T;(X;)

7 | return CubicSplineInterpolation ((to, Xo0)s---, (tx, XK))

show its consistency with the discrete spline energy notions we defined in the previous section. Let us
first introduce some notation:

dxd

Definition 3.3.1. Let ]Rif;)l,m be the space of symmetric, positive definite d x d matrices, and Ry 3, C

R4 the space of diagonal, positive definite d X d matrices. Then, one can identify the space of

+7Sym

Gaussian probability measures with the set R% x Rﬂlf’;}im through the bijective map

O :RYx RYY — R x RYY) € Po(RY)
(m,0) = N(m,0?),

where A (m,o?) is the Gaussian probability measure with mean m and standard deviation matrix o,
i.e. the absolutely continuous probability measure with respect to the Lebesgue measure £ on R? with

1 -
density dN((+’JZ) given by (2%)7% det(a)_le_i(z_m)% Ha—m), Defining mean : Py(R?) — R%
(= Jea zdpu(z), and cov : Po(RY) — ]Rifs‘;m, = fa(z — mean(p))(z — mean(u))” du(z) as the
mean and covariance matrix of a probability measure p, respectively, one can straightforwardly check
that the inverse &1 : B(R? x R4 ) — R? x R4 s explicitly given by yu — (mean (), std(s)),

-+,sym ~+,sym
where the standard deviation matrix std(s) is the unique element in Rifs‘;m with std? () = cov(p).

3.3.1 The case of general Gaussian distributions

In what follows, we explicitly compute the spline energy for curves in the space of Gaussian distributions.
To this end, we will first list some facts about optimal transport in this restricted setting. Since the space
of Gaussian distributions is contained in P$¢(R?), we shall from now on abuse notation and denote with
Bar(u, v) the unique element in the set of barycenters, rather than the set itself.

Rdxd

Proposition 3.3.2. Let m,my € RY and 01,09 € Yoyme Define p1 = N(mq,0?) and py =

N (ma, 03). Then, the following statements hold:

1
1. The optimal transport map T from py to g is given by x v T(x) = ma+oy *(010301)207 (v —
myq). If o1 and o9 are simultaneously diagonalizable, T is simplified to T (x) = mg + Jflag (z—
ml).

2. The squared L2 —Wasserstein distance between w1 and o is Wz(ul,,u,g) = |mp — m2\2 +
B2%(01,09), where B%(0y,09) = tr(c} + 03 — 2(010301)"/?) is the squared Bures-Wasserstein
metric defined in [Bur69]. If o1 and oo are simultaneously diagonalizable, B? is given by
B%(01,02) = |01 — 02|, where ||A||% = tr(AT A) is the Frobenius norm of a matrix A € R,
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3. Forallt € (0,1], Bar'(uy, u2) is a Gaussian distribution with
mean (Bar(p1, p2)) = (1 — t)my + tma,

1

T12
std (Bart(,ul,,ug)) = [<(1 — t)O'l + tO’ll(UlU%Ul);> <(1 — t)o'l + to’ll(o'lo'%o'l)2> ]

4. Letm € R% o € Rifs‘;’m, and i = N(m,0?). Forall t € [0,1], Bar (11, p2) is a Gaussian
distribution with

mean (Barz(,ul,ug)) = (1 —t)my + tmeo,
std (BarL(,ul,,ug))

1
2

T
= [((1 - t)ofl(aafa)% + tal(aaga)%> <(1 - t)ail(aa%a)% + tal(oaga)%> ]

Proof. 1. : See [PC*19], equation (2.40).

2. : See [PCT19], equations (2.41)-(2.42).

3. and (4) : It is straightforward to prove that for a,b € R, A € R¥% and ¥ € Rif;;m then for

the map F : z — Az + b, it holds FgN(a,X) = N(Aa + b, ACAT). Plugging in the explicit
expression for 71" given in (1), and using Remarks 3.2.4 and 3.2.6 respectively, one obtains the

desired results.
O

Remark 3.3.3. The above proposition implies that Wasserstein geodesics (ut)¢c[o,1) between two Gaus-
sian distributions are also Gaussian distributed for all ¢ € [0, 1]. However, at this point we are not able to
prove an analogous statement for Wasserstein splines.

Proposition 3.3.4 (Consistency). Let (my, a;); be a curve in C3([0, 1], R? x Rix,;im), and let () =
N (my, 02) be the respective Gaussian-valued curve. Moreover, for k = 0,. .., K, define Mﬁ( =K

with tf = k/K. Then, we have

1
O

1[)? L
(o107, p00)2|| dt+ /0 g | dt = BE((ul, ..., uf) + O(KY),
F

(3.3.1)

9
1
(0107, 101)2

1
a + / g2 dt = FE ((u . 1)) + O(K D),
0
3.3.2)

1
Fu) = [ o 4

F

where the implicit constant in O(K ~1) is independent of K.

Proof. Recall from Proposition 3.3.2 that the optimal transport map 7° from i, to ps is given by T (z) =
1
Aj(x — my) + mg where A7 == o, ! (atagat) 20, L. Further we note that the optimal velocity field v;

in the continuity equation solved by p is given for almost all t € (0, 1) by (see [AGS08, eq. (8.4.8)])
ve(x) = as‘s:tTts(x) = 85}S:tAf(x —my) + 1y .
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By the assumptions on the curve (u, o), the matrix-valued function Aj is continuously-differentiable
in t and s with all derivatives up to order 3 uniformly bounded for s,¢ € [0,1]. Hence also 7(x) is
continuously differentiable in ¢ and s and all derivatives up to order three can be bounded by C||z|| for a
constant C' independent of s, € [0, 1] and x € R?. In particular, v;(x) is continuously differentiable in

t with derivatives up to order two bounded by C'||z||.

. Tt+h thh
Slnce %

that

is the optimal map between Bar,, (14—, fte+r) and piz, cf. Remark 3.2.6, we have

4

W (e, Baty, (p—n, pu1)) _ / T -2 W T
Rd

> > (33.3)

By Taylor expansion, we have

1 1
t+h _ t+h 292 t+h 393 t+h
TP =1 = hos| TS + 5h°05] T = ShP0)] T
1 1

—h
T/ =1d = hoy| T + Sh205| T — 00| 7

for some u € (t,t+ h) and v € (t — h,t).
Taking into account the fact that 7} o 7! = Id and taking first and second derivatives in s of this
identity at s = ¢ we readily deduce that

85|s:tT§ = _85}8:151}8 =T,
and
|, Tt =-02| _T7 — 2(Dds| _,T7)0s|,_,TE .
The last term evaluates to
—2D(0s|,_,T7)0s| ,_, Tt = 2(Dvy)vy = V> .
Collecting these observations, we obtain

THh _ord+ T 1 1
t t o+ [ _ 53‘ Ttt+h _ as\s:tTf} i = [82] Th+h 4 852’5:t1_;55:| +O(h)

h2 h s=t+h™ S Sls=t+h™ S
1 1 s s
= E(Ut-i-h —v) + B [ - 63’32t+h1—;€+h +O2,_ T + V\Ut+h|2} + O(h)
1
=0 + §Vlvt!2 +O(h) , (3.3.4)

where the terms O(h) are bounded by C'h||x|| for a constant C' independent of ¢, h and =. Hence,

W2 (g, Bary, (1, fre1n))
WA

1
4 :/ o0+ 5 Vo[ dpe + O(h)
Rd

with O(h) bounded by Ch for a uniform constant C'. Finally, recall the rectangular quadrature rule
fol f(t)ydt = K1 ZkK:_ll f(tE) + O(K~1) with tf := k/K for a Lipschitz function f, where the
implicit constant in the O(K ~!) term depends only on Lip(f). Setting h = K ! and defining ,uf =
1K > We obtain for a uniform constant C":

1
. 1 )
‘/0 /]Rd ‘”t+§V’”t\2]2d,utdt—Fg((%{w-wﬂﬁ)) <CK L



3.3 Gaussian E-splines 35

The continuous spline energy on Gaussian distributions is given by

! g 1 2|2 ! d2 t+h
/0 /Rd ]vt+§V\vt| | thdt:/O /Rd |, <Tt )
' (@ 2 0N Lo
:/0 tr (O‘t <dh2 (O’tO'H_hO't)Q) o )dt—l—/o || dt
1 . 42 2
-,

1
ot — dt+/ g |? dt |
b dn? F 0
where we have used in the first step the expansion (3.3.4) and in the second step the decoupling of the
energies from (3.2.9). The first equality in (3.3.1) can be proven once again by using (3.2.9) and the
explicit form of v;. Finally, the corresponding estimates for (3.3.1) can be proven similarly by Taylor
approximation of the optimal map to first order. Namely, in place of (3.3.3) one uses that

2
th dt

h=0

2 l
(01071 p0t)2
h=0

1. T —1d)?
i (1t, pien) = /Rd gz dm,

as well as T/ ™" = 1d 4 hvy + O(h?) with O(h?) being bounded by C/|z|| with a uniform constant C, so
that

1
Lt = B )] < ok
O

Remark 3.3.5. We expect the previous consistency result for the generalised discrete spline energy to
hold for general curves (u;); with suffuciently regular densities and velocity fields. In fact, we note that
the argument relies on the Gaussian structure essentially only for the explicit error estimates in the Taylor
expansion of the optimal maps. In particular, we expect the identity V,,v; = % ]hZOTtHh to hold true
for general sufficiently regular curves. However, obtaining a general consistency result for the discrete
spline energy with the true barycenter seems much more delicate.

To show the consistency of the proposed non-generalized discrete spline energy functional
FE((uf, ..., pn)), we shall need the following lemmata (which are restricted to the case d = 2), which
relate the barycenter with the generalized barycenter:

Lemma 3.3.6. Let mi,ms € R? and 01,09 € Rixyfym, such that o1 — o2||p < 2h < 2. Then, one
obtains
o1+ 02

std (Bar(p1, p2)) — < Ch?,

F

where iy = N(my,0%), ua = N(mag,03) and the constant C only depends on max{Amax (1),
Amax(02) } and min{ A\yin (1), Amin(02) }, where Apax(A) and Ain(A) denote the largest and smallest
eigenvalue of a symmetric matrix A, respectively.

. . . . . . a c\ .
Proof. Recall that in 2D, the positive definite square root of a positive definite matrix o = <c b) is

given by the following explicit formula:

03 = (tr(0) + 21/det(0)) "2 (o + \/det(@)1).
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Indeed,

tr(o) + 2v/det(a)) " (o 4 /det(o)1)?

= (a +b+2y/det(0)) (0% 4 20+/det (o) + det(0)1)

= (a+b+2y/det(0)) (o + 2¢/det(0)1 + det(c)o ™ )o

= (a4 b+ 2y/det(o)) ! ((i Z) + 24/det(0)1 + (_bc —ac>> o

= (a+b+2y/det(0)) Ha+b+2¢/det(0))o =
Let us now define ¢ = "1;“72, and 0’ = 2237 and 0y = o + to’, fort € [~h,h]. Moreover,
we define i = N(0,0%) and F : R — RY st +— F(t) = std(Bar(u_y,)), which implies

std (Bar(u1, p2)) = F'(h). Since F' is actually smooth, we have by Taylor’s theorem
F(h) = F(0) + F(0)h + F(s)h?,

for some s € [0,A]. It is straightforward to see that F(0) = std(uo) = Z5%2. Next, we prove that

F(0) = 0. To this end, we show that if o : [0,1] — ]Rixsgym,t = oy 1S C’ with 6; = 0 for some

d

1
4 [Ut ] = 0. This is easily verified using the matrix square root formula above:

t € [0, 1], then we have
d [ 3 L 3 . o
w1 = — 5(tr(or) +2v/det(oy))” 2(o¢ + v/det(oy) 1) (tr(6¢) + v/ det(oy) tr(i0; 7))
1
(tr(oy) + 2+/det(0y)) "2 (64 + 3+/det(oy) tr(oro; 1) = 0.

Hence, it will be sufficient to prove % ‘ 0 F2(t) = 0. This is obviously true since F'? is symmetric with
respect to ¢ = 0.

)_l

. .1 d? 2 2
Bls) = 5 (F)2(s) = — (6r(F2(s)) + 2/det (F2(s)) ) ( det(F2(s)1).

Recall that
1 1
F2(s)=1 <st + 02+ 0, o402 ,04)204 4 05(0s02 05)20_1> .
Due to the formula of the matrix square root for 2 x 2 matrices, in order to find upper bounds of || F'(s)||

los | Fs tr(os), tr(os 1), and det(o)
we have the following sequence of

which are independent of s € (—h,h). For a matrix A € R +Xsym’
inequalities:

tr(A-1) < —||All[[Llr = |4l r = /tx(AT 4)

—
V2
tl“(A2) = \/)\% + )\% <A+ Ay = tr(A).

Hence, it will suffice to prove upper and (positive) lower bounds of ||o||r, ||o5!||F and det(oy), inde-
pendent of s € (—h, h). Indeed, note that for s € (—h, h), we have that

B 1_s—i—h +s+h
- on )t Top 7%
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is the sum of positive definite, symmetric matrices. By Weyl’s inequality, we obtain that the smallest
eigenvalue of o, denoted as Amin (o) is bounded from below by (1 — S;“hh) Amin(01) + %)\min(@)
which is bounded from below by £ : = min(Amin(01), Amin(02)), and is in particular independent of s.
Similarly, one obtains Apax(0s) < ¢, where ¢ := max(Amax(01), Amax(02)). Hence, one finally obtains
V26 < los|| < 2¢,V2¢7 < |lot|| < 2671, €2 < det(os) < (2 forall s € [—h, h]. O

Remark 3.3.7. This can be considered as the analogue (with a slight improvement on the exponent) of
[RW15], Lemma 5.7.

Lemma 3.3.8. Let m; € R? and 0; € Rixgmfori = 1,2,3 such that ||o; — o3||p < 2h fori = 1,3,

and Hag — %H P < h2. Then, we can verify the estimates

W2(,u27 BarMQ (Hl, M3)) = W2(M2) Bar(ula M3)) + O(h5)’ (335)

and

W? (g, Bary, (u1, p3)) = W2 (1, p2) + 3W (i3, pa) — $W° (1, p3) + O(h°), (3.3.6)
where p; == N (m;, o) fori =1,2,3.

This lemma can be proven fully analogously to the previous one. However, as one needs to expand the
terms up to the fifth order, the computations become extremely lengthy, so we will leave out the explicit
computations and simply give a sketch of the proof:

Let (0(t)):e[—n,n) be the uniquely determined second-order ]R%rxszym valued curve, such that o(—h) =
01,0(0) = 02 and o(h) = 03, and let (41);c[—p,p] e the respective measure-valued curve. Then, define

Fl (t) = WQ(/’L27 Bar,U»2 (:u’—ta ,ut))v
Fy(t) = W (uz, Bar(pi—, ),
F3(t) = %W2(H—ha IU’Q) + %Wz(/’bha /”’2) - iwz(/‘b—hnuh)‘
Then, one has Fl(h) W2(,u2,Baru2 (p1, 13)), Fo(h) = W?(u2, Bar(u1, 13)), and Fy(h) =

IW2(p1, p2) + $W2 (s, o) — W2 (1, pi3). Now, we can explicitly compute any derivatives of the
F;, and expand them att = 0 up to the fifth order, i.e.

n=3 4

k=0

1
0)R* 4+ S E (si)h”,

#‘;_n

for some s; € (0,h). Now, one checks that all derivatives up to the third order vanish for i = 1,2, 3.
The zeroth-order derivative vanishing is trivial, while the first and third order derivatives vanish at 0 due
to the symmetry of the derivatives of lesser order. For the fourth order derivatives, one checks that they
all coincide for ¢ = 1,2, 3. Now, it remains to show that the fifth-order derivative can be bounded by a
constant independent of /. To this end, one uses Lemma 3.3.6 and the same estimation strategy as inside
the proof of this lemma.

Remark 3.3.9. Lett — (my,0;) fort € [0, 1] be a curve in RY x Rixsim, such that (o);¢[o,1) is simul-
taneously diagonalizable. After choosing a common diagonal basis, one may without loss of generality
regard (0¢)4e[,1] @S a curve in RY x Rifd‘fa instead.
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3.3.2 The case of Gaussian distributions with diagonal covariance matrices

Definition 3.3.10. Let ® be the map from Definition 3.3.1, i.e. ®(m,0) = N(m,o?) for (m,0) €

RY x ]Rifsay{m. Then, we define PQG 4= d(RY x Rifd‘fa) as the space of non-degenerate Gaussian

distributions with diagonal covariance matrices.

Corollary 3.3.11. Let (my, 01); be a curve in C3([0, 1], R? x lefd(fa), and let (p;)y == N (my, o?) be the

respective PQG 4 _valued curve. Then, we have
1 ) 1
() = [ Nz e+ [ o, (33.7)
0 0

1 1
H%MZ/HM%&+/hm%L (3.3.8)
0 0

where F is the spline energy on the space of diagonal Gaussian distributions @(Rd X Riﬁz ) CPo (Rd).

Proof. Using eq. (3.3.1) and (3.3.2), and assuming o; € R¥*Z for all t € [0, 1], we have

+,dia
1 d 1 1 d d .
o ! T (01071 401)2 =07 " T Ot+h0t = " Ot+h = Ot;
h=0 h=0 h=0
2 2 2
ot % (O'to'?.:,_hat)% =o; ! % Ot+h0t = % Oth = Ot,
h=0 h=0 h=0
which proves the claim. O

Alternatively, one can "brute-force" this:

Example 3.3.12. Let U C R™, V C R™ be open subsets. Then, H*(U, V) := W¥2(U, V) denotes the
Sobolev space of functions f : U — V/, such that f and its weak derivatives up to order k have finite L?-
norm. Let t — (my, o) for t € (0,1) be a curve in H2((0,1), R? x Rifdcila). Then, by abusing notation
1 _

we can define G; = (277)7% det(at)_le_i(z_mt)%t Q(I_mt), i.e. the Lebesgue density function of
p = N(my, 0?). We have

0:Gy = [—tr(oy '60) + (1, 0 2 (& — my)) + (@ — my, 0, %64(x — my))] G,

VGt = [—O't_z(l’ - mt)] Gt.

Take ¢4(z) == (x,7) + & (x — my, 610, ' (v — my)). Then, we obtain
Vior = 1y + 6oyt (z —my), (3.3.9)
Ay = tr(d0;h).
Thus, the pair (p, v) with v, = Vg satisfies (CE), i.e.
Ospig + V- (Voo pig) = Ogpey + Appiy + Vi - Vg = 0.

Moreover, we have that

1

Vi, =y + 6tat_l(x —my) — 0oy Ty — c'f?at_2(a: —my),
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IVIVe|? = V2V = 6r0; ' (1 + 60y Nz — my))

and hence we finally compute
Vv ((,Ot + %|V(pt‘2) =m; + (.j'tO't_l(Jl‘ — mt) — é’tUt_lmt — 07520;2(3? — mt)
+ 0"t0't_1 (mt + é’tUt_l($ — mt)) =my + &tUt_l((L‘ — mt).

The continuous spline energy is then given by

1
F(w) =/ /N‘mt"i_&tg;l(x_mt)‘Qthdt (3.3.10)
0 JR
1
—/ /N\mt!2+!&tafl(x—mt)Pdutdt (3.3.11)
0 JR
1
=/ [ |* + tr(57) dt, (3.3.12)
0

where in the second equality we used the fact that the p;-integral of an antisymmetric function (with
respect to my) vanishes, and [pq |[A(z — my)[2dpe = tr(Ao?AT) in the last equality (cf. proof of
Proposition 3.3.4). One can simplify the above expression even further:

1 d 1 P
f(u)z/ Imt\th+§ /M?dt, (3.3.13)
0 . 0
Jj=1

where (/\i) j=1,...,d are the eigenvalues of o;. In view of (3.3.13), one might be tempted to assert that
a spline interpolation on the space of Gaussian distributions with simultaneously diagonalizable covari-
ances can be obtained by spline interpolating each eigenvalue independently (after choosing a fixed
common eigenbasis). However, this assumption ignores the restriction that oy is required to be positive
definite. Indeed, the spline interpolation of some given Gaussian key-frames amounts to solving the
following minimization problem

1 d
inf / i |2 dt + Z/ |X|2 dt,
mi€RI N >0J0 =170

together with some point-wise evaluation constraints. If the above minimization problem has a solution,
then the spline interpolation results from a classical cubic spline interpolation of m; and A]. The posi-
tivity constraint, however, implies that whenever the interpolating eigenvalue-spline becomes negative,
it can not coincide with the Wasserstein E-spline.

The above equation (3.3.10) allows us to canonically identify any 732G “_valued functional F with a
(R4 x Rix(ﬁa)—valued functional F via

F((me, 00)e) = F((N(mg, 07)).-

Lemma 3.3.13. The regularized spline energy F° is lower semi-continuous under weak and continuous

under strong convergence in H?((0,1), R?% x ]Rﬂlrfd‘fa).
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Proof. First, let us note that by (3.3.7) and (3.3.8), for any curve (m;, O’t)te[ojl] the path energy & and

the spline energy F coincide with the squared semi-norms | - 2.1 and | - |32, respectively, both of which
are weakly lower semi-continuous on H?. Thus,

lim inf ﬁé((mg"’, O',En))t) > FO((me, 00)e)s

n—o0

for a H2((0,1);R? x Rifd‘fa)-weakly convergent sequence (m\™, ™), — (my,04);. Moreover, if

the sequence converges strongly we also obtain lim inf,, s F 5((m§"), aﬁ”))t) = FO((my, 0¢);), since
strong convergence implies convergence in norm. O

3.4 Convergence of discrete Gaussian E-splines

In this section we will discuss the convergence of discrete Gaussian spline curves to continuous Gaussian
E-splines. For the sake of presentation, we will at first only consider centered Gaussian curves, i.e.
my = 0 for all t € [0,1]. As the energy of the mean and standard deviation matrices decouples (cf.
equations (3.2.9) and (3.3.8)), this is a very natural approach: for the general non-centered case, one
can directly apply the results from [HRW18] to obtain Mosco convergence (cf. [Mos69]) of the mean
term of the functionals. As the space of standard deviation matrices Rixd‘fa has a non-trivial boundary
the results of [HRW 18] do not apply to the standard deviation matrix term. Nevertheless we follow the
general procedure of the proof in this paper.

In the sequel, we will focus on natural boundary conditions with a comment on the periodic case
below. We will now use a suitable interpolation to identify discrete curves with continuous ones to
be able to rewrite the discrete energy as a functional on time-continuous curves. As in [HRW18] and
[JRR23], this will be done via cubic Hermite interpolation at time interval midpoints. For a tuple o =

(00,...,0K) € (Rifd(fa)KH, we define the temporal extension 7, x of o€ as
oo+ (01 —o0)Kt, if t € [O,t{(/z],
— (t_tK; )2
Nk (t) = PG A ok — o) K (- tiil/Q) + (041 — 204 + oppq ) K2 —2522—,
o b . K K
if te [tk—l/Q’tk+1/2])

o1+ (o —ox_1)K({t—tE ), if te [tﬁm, 1],

where tfﬂ o = kﬁ/ 2 for k = 0,...,K — 1. For periodic boundary conditions, we can neglect the
definition on the starting and final half-intervals, identifying [t5 | /2 th 1 /2] with [0, tfm] Utk | /20 1].

Next, we recall the following convergence of a piecewise cubic Hermite interpolation from [HRW18,
Lemma 4.3].

Lemma 3.4.1 (Strong convergence of piecewise cubic Hermite curves to smooth Gaussian curves). Let
o = (0(t))sefo,1] be a C° curve in RY i and define ol = (aj[-()jzo,._,,K = (0(j/K))j=o.. K i.e. 7
is an equidistant sampling of the continuous curve o with K 4+ 1 samples. Then, 1, converges strongly
in H([0,1],RY ) to o for K — .

The next two lemmas compare the discrete path and spline energy with the corresponding continuous
counterpart evaluated on the piecewise cubic Hermite interpolation. To this end, we define the hat op-

erator for discrete functionals: for a functional FX on (PQG K+ we define FX on (R? x Rixdcila)K +1
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via

X ((mk, 0} k=o,....) = FF (N (mi, 07) )r=0,....K)-

emma 3.4. ath energy estimate). Let 0 = (o(¢ 11 € and define o as
L 3.4.2 (Path gy esti ). L t€[0,1] H?*((0,1 Rixﬁa dd K

above. Then, for K big enough, we have |E[n,x] — EX[a®]| < CK~', where & and EX have been
defined in (3.1.2) and (3.2.12), respectively, and the constant C' depends only on the curve o.

Proof. By the definition of 7, x (t), and using (3.3.7) and Proposition 3.3.2 (2) for the expressions of é
and E, respectively, we obtain

If[nak] *EK[ ]

k+1/2
KZ o —of )P + Z/ loF1 = 200 + o PR -t 172)%dt

e 1/2
— [ K _ K K K K 3 K K _ K |2
+2> . (0 — 04=1)(Oky1 — 203 + o) K (E =ty ) dt — KZ o — 1]
k=1 tk—1/2 k=1
K-1 =
<K Z loF — oot — 204 + ofoy |+ o Z ok — 200 + ojy [
k=1 k=1
1 1
K-1 2 /K-1 2 K K-1
<r (ot ) (3wt el ) S ot 2ot o
k=1 k=1 k=1
1 3
< C'KK 2|o|gn K 2|o|g2 + C"K 20|} < CK 1,
where we used K Y 1! [of — o |2 < C*|o]%1, and K2 S5 MoK, | — 208 + 0K |2 < o2
(cf. proof of [HRW18, Lemma 4.2]). The final inequality holds for K chosen big enough. 0

Lemma 3.4.3 (Spline energy estimate). Let o = (0(t))ieo.1) € H?((0,1), Rixd‘fa) and define o as

above. Then, we have F[n,x] = FX[oX], where F and FX have been defined in (3.2.2) and (3.2.17),
respectively.

Proof. Recall that 7j,x () = (cr/l€+1 208 + of |)K? fort € [tI 1/2: k+1/2] k=1,...,K—1,and
0 otherwise. We then obtain by using (3.3.8) and Proposition 3.3.2

2
—FE[eK] = 0.

A

ok 4ok
]:[770'1(] FK k+1 k—1

O

We are now in the position to prove the convergence of the discrete spline functional to the continuous
one. To this end, we introduce two indicator functions to filter the constraints. For the continuous
problem Z[o] = 0 if u; == N(0,07) satisfies the evaluation constraints (3.2.3) (with 7z; == N(0,57?)
for given interpolation constraints (;, Ei)i:17..,7 1) as well as the corresponding boundary condition from
(3.2.4)-(3.2.6) and oo else. Furthermore, for the discrete problem Z% o] =0ifo = N(oo,...,05c) fOr some
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(00,...,0K) € (Rixdcila)K +1 where N'(0,02)i—o.._ K satisfies the evaluation constraints (3.2.20) as well

as the corresponding discrete boundary condition from (3.2.21)-(3.2.23), and oo else.

Regarding the compatibility (cf. equation (3.2.20)) of the given interpolation times ¢; and the number
K + 1 of points along a discrete curve, we shall in the following and without explicit mention always
interpret K — oo as a sequence of natural numbers approaching infinity, such that Kt; € Ny for
i=1,...,1.

We are now in position to state the main result of this section, which is concerned with the Mosco
convergence (cf. Definition 2.4.1) in the restricted Gaussian case:

Theorem 3.4.4 (Mosco convergence and convergence of discrete minimizers). Let EX [o] be given by
E[oX] if o = n,x, and co otherwise. Similarly, define FElo] be given by FloX] if o = n,x, and

0o otherwise. Then, set FOK = F + 6€. With respect to the weak topology in H?((0,1); ]R‘frxd‘fa)

we have im0 FOX + TK = FO 4 T in the sense of Mosco, for 6 > 0. Moreover, any sequence
(") i with FOK o] + T5[oK] uniformly bounded contains a subsequence that converges weakly in
H2((0,1); R‘ixj ). As a consequence, any sequence of minimizers of F 0K 4 TK contains a subsequence
converging weakly to a minimizer of Fo4+T.

Proof. We have to show the weak liminf and the strong limsup inequalities defining Mosco conver-
gence. Concerning the weak lim inf-inequality, we need to show that for every sequence (AO'K Jken C
H2((0,1); Rixdcfa), such that ¢ — o, it holds that lim inf o FOK[o5] + ZK[cK] > Flo] + Z[o].
Let o — o in H?((0,1); Rifd‘fa). Upon taking a subsequence, we may replace the lim inf by an actual
lim and may assume without loss of generality 7% [0%] 4+ ZK 0] < C for some constant C' < occ.

Thus, we have o = Ul for some (off,... oK) e (]Rﬂlrxd‘fa)K +1 and this estimate implies

K
5 C
— K K _
dic = max, o — o] < ; ol — ok |2 = \[EK[oK]/K < \/;{

which converges to zero as K — oo. Next, we show that Z[g] = 0. It is straightforward to see

that 7, (t) is in the convex hull of o1, ok, and oy for t € [tf—l/w tfﬂ/ﬂ. Thus, the evaluation

constraint is satisfied in the limit. To conclude, by the weak lower semi-continuity of F? due to Lemma
3.3.13, and by Lemmas 3.4.2 and 3.4.3 we obtain

K K
U() 77"'70K)

Folo] + Z[o] = Folo] < liminf FO[oX] < lim inf FOK [oX] 4+ 6C |0 g1 |0 ™ | e
K—oo K—oo

< lim inf (ﬁé’K[UK] —I—IK[UK]) )
K—oo

where we used the uniform boundedness of || ;1 and |05 2 due to the weak convergence of o
Concerning the strong lim sup inequality, we need to show that for every o € H?((0,1); Rixd‘fa) there
is a sequence (05)xeny € H2((0, 1);R‘ixd‘fa) with o — &, such that F%[o] + Z[o] > limsupy_,
FOR[oK) + TK[0K]. Let o € C3([0,1], R‘ifdcila) with finite energy (in particular, Z(o) = 0), and choose
o = n,x as the recovery sequence. By definition, we have ZX [0X] = 0. As K — oo, we have
di = maxg g} ]a(tf) — a(tkK_l)| — 0, as well as 0 — o strongly in H? by Lemma 3.4.1. Thus,

by the strong H?-continuity of F9 from Lemma 3.3.13 and by Lemma 3.4.3 we have

Polo)+Tlo) = Flo] = lim P[]
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> limsup FOX [oX] — 6C Ko | 1 |0% | g2 = limsup (]:"‘5’K[nf |+ K [aK]) :

K—oo K—oo

where we again used the uniform boundedness of |07 | ;1 and |0/ | 72, now due to the strong convergence
of 0. Thus, we obtain lim sup FoX + 7K < 79 + T on C3([0, 1], Rixd‘fa) By a density argument (C*
functions fulfilling interpolation constraints are dense in the space of H? functions satisfying the same

interpolation constraints, cf. [HRW 18, Lemma 4.6]) and the strong H? continuity of F9, we obtain

Folo] + Z[o] > limsup FOX [0 5] + 7K [oK].
K—oo
To show the convergence of discrete minimizers it remains to establish equicoercivity. Here we will
follow the same strategy as in the proof of [HRW18, Theorem 4.9]. Let (c°)x be a sequence with
FoK oK) + TK[oX] uniformly bounded. As before, we can assume without loss of generality that

= 7oK, oK) for some (olf,...,0K) € (Rixdcfa)K“ Following the proof of Lemma 3.4.2 and
also recalling the estimate K Z |ak — ol || < C*|o|3, we obtain a uniform bound of the

H'-seminorm |¢% ;1. By Pomcare s inequality, one even obtains uniform boundedness of the norm
|o® | 1. It remains to show the uniform boundedness of the H2-seminorm |0 | ;2. Indeed, we obtain
the estimate

2 K-1
ok —1—0
0" 2 = oot T2 = M =4K* Y W?[of Bar(of 1, of )]
k=1
F [JO 7"'7UK] < ]:671([0— }

The statement about the convergence of minimizers is now a standard consequence of the Mosco con-
vergence from the previous theorem, cf. [Bral4]. 0

3.5 Fully discrete Wasserstein splines and numerical results

3.5.1 Algorithmic foundations

To implement Wasserstein splines numerically, we have to further discretize the time-discrete spline
energy in space. With the application to images in mind, we consider 2 := [0,1]? (d = 2) and an
"Eulerian’ discretization of probability measures: Let 4 € P(€2). Here, the image intensities on each
colour channel are encoded as Lebesgue densities. We can obtain the discretized version of a density u
by first defining the computational mesh

0 1 M-1 0o _1 N-1
Oy = {prpr-- , M= 1} X {Nfl’Nflf"’Nfl} for M, N > 3.
Next, we integrate the mass of 1 on each cell Q! = [, EEL] [l L] and define the weight

W = / dp,
Okl

obtaining the spatially discrete measure ;”[w] = Zk,l Wk, Where w = (wi)ky € Xy = {w €
Rf N, Zmn Wmn = 1}, and Jy; is defined as the delta distribution located at the center of the cell
(pixel) Q. Alternatively, for other applications the *Lagrangian’ discretization might be more useful:
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In this case, one considers 2 = R¢, and independently samples a measure i € Po(£2) a total of L times.
One then defines the spatially discrete measure pP[z] == + 31 | §,,, where z == (2;); € R?. Since
obtaining the exact Wasserstein distance between two discrete measures with L = M N atoms comes
with a cost of O(M3N?3), we approximate the Wasserstein distance between two discrete measures
w1 and v by the entropy-regularized Wasserstein distance W, introduced originally in [Cutl3], with
regularization parameter ¢ > 0. The loss W, can be very efficiently computed in an auto-differentiable
manner, i.e. the gradients of W (-, -) with respect to both the weights w and locations = are obtained
as a by-product of the evaluation of this function (cf. [CD14]) with state-of-the-art implementations of
the Sinkhorn algorithm, such as in [Sch19] and [CFG™21]. Correspondingly, we take into account the
entropy-regularized approximation Barf.) (cf. [BCC™15]) of the (generalized) barycenter, which, once
again, can be efficiently computed in an auto-differentiable fashion. The entropy-relaxed, regularized
spline objective functional will then look as follows:

K-1
6,K e . € —
FOK (P00, ..., 05) = 4K S W2 [0%) Barf i (uP [0, i, [071])) (35.1)
k=1
K-1
+ 0K Y WE(u (0], i1 [071)),
k=0

where we omitted the K super-index. For a fixed computational domain 2,5, temporal resolution
K, entropy-regularization ¢ > 0, regularizer § > 0, interpolation constraints and a chosen boundary
condition, our aim in the first discretization variant is to minimize the previous functional with respect
to the weights #* = w* € ¥,y of the discrete probability measures ukD = ZyGQJ\JN w’zjéy for indices
k that are not fixed by the interpolation conditions. The explicit minimization of functional (3.5.1) as a
function of weights is performed by Algorithm 4. For the second variant, one can instead fix a number
of samples/locations L, and straightforwardly minimize the above functional over the positions #* =
2% € R of atoms of the discrete probability measures pf = 1 f: 1 5x§c. This can be implemented

completely analogously to Algorithm 4.

3.5.2 Numerical results

In what follows, we investigate and discuss qualitative properties of the spline interpolation in the space
of probability distributions, being aware that the superior temporal smoothness of this interpolation is
difficult to show with series of still images.

Figure 3.1 shows discrete piecewise geodesic and discrete spline interpolations of three two dimen-
sional Gaussian distributions 7z; = N (m;, af) for i = 1,2,3 at the prescribed times t; = 0,2 =
%,53 = 1, where the interpolation is computed as a minimizer of FX over all Gaussian parameters
(mp, 0r) € RY x Riﬁf;m for k =0, ..., K. For the discrete splines the center of masses of spline inter-
polation correspond almost perfectly to the cubic spline interpolation of the center of masses of the key
frames. The third row shows the spline interpolation result for the same key frames. This time, we instead
optimize functional (3.5.1) over all weights 0¥ = w* € Syn fork =0,...,K and M = N = 128.
In particular, the solutions need not to be Gaussian distributions. The fourth row shows the difference
between the first and second row, i.e. between the piecewise geodesic and spline interpolations.

The next example in Figure 3.2 investigates the interpolation of three key frames with constant density
on an annulus for the first and constant density on a disk for the second and third (at times t; = 0,y =
%, t3 = 1). In case of the piecewise geodesic interpolation one observes a decreasing density on the
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Algorithm 4: Algorithm for minimizing F‘(;ég’e as a function of weights w°, ..., w" € Yy/n.
The product ® and the exponential function e act component-wise on vectors, and 1y =
(1,...,1) € RMN,
1t=0;
2 for k = 0 to K and k not fixed do
3 | @ =aF =1yn/MN;

4 while not converged do

5 | B=(t+1)/2;
6 | for £k = 0to K and k not fixed do
/+ update weights (Nesterov’s accelerated gradient update) «/
7 Wk = (1 - Hok + gtk
/* compute gradient (Sinkhorn algorithm) x/
67K7 .
8 grady, = Vo F ) (PO, ... wk]);
/* update weights %/
9 ok = ok ® eftﬁgradk;
10 OF = oF /(@) T 1w
u | | ofF=Q1-p""or+ 1ok
12 j =t4+1;
%
o0
5
[="

spline

spline

difference

Figure 3.1: First two rows: A comparison of discrete piecewise geodesic interpolation (first row) and
discrete spline interpolation (second row) for 6 = 0 is shown for key frame distributions framed in
red. The optimization was done on PZG ! Third row: Same as second row, except the optimization was
performed in the full space Po(R?). Bottom row: Difference between spline and piece-wise geodesic
interpolations. Top right: Plot of the center of masses as a polygonal curve in R2. Bottom right: Plot of
the standard deviations as a polygonal curve in R
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closing annulus in between the first two key frames and obviously constant interpolation in between the
second and third key frames. In case of the spline interpolation (6 = 0) the annulus also closes between
the first and second key frames but shows a strong overshooting at the center between the second and
third key frames.

In Figure 3.3 a thin annulus shaped distribution and two times an equal square shaped frame are taken
into account as key frame distributions (at times t; = 0,ty = %,fg = 1). Different from Figure 3 in
[JRR23] in the case of spline interpolations in the metamorphosis model, one does not observe strongly
inward pointing edges between the equal square shaped frames. Instead strong overshooting effects are
visible at the corners of the squares.

In Figure 3.4 the key frames consist of pairs of Gaussians with constant mass and constant variance,
which are far apart for the first and fourth key frame and close by for the second and third key frame
(at times £, = 0,y = %,%3 = %,54 = 1). Piecewise geodesic interpolation leads to piecewise linear
trajectories of the center of masses, whereas trajectories are curved in the spline case with a merger of
the two bumps in between the second and third key frame.

In Figure 3.5, three key frames represent a single Gaussian, a pair of vertically displaced Gaussian of
half the mass, and the vertically displaced configuration rotated by —7 (at times ; = 0,72 = %, ts3 = 1).
The piecewise geodesic shows the splitting of mass and approximately straight line trajectories between
the pairs of key frames. For the spline interpolation one observes an overshooting with a positive rotation
angle in between the first and the second key frame.

In Figure 3.6, we leverage the results of equation (3.2.9). An implementation of the decoupling leads
to a significant decrease of the computing time and the number of iterations with no apparent loss of

detail.

Piecewise Geodesic
Spline

p-w. geodesic

spline

1 2 3 4 5 6

- 4

Figure 3.2: Discrete piecewise geodesic interpolation (top) and discrete spline interpolation for § = 0
(middle) of three key frames with constant density on an annulus for the first and constant density on a
disk for the second and third (framed in red). Bottom: Contribution of each time-step k = 1,..., K — 1
to the spline energy, i.e. W?(uy, Bar(ug_1, ptr1)) for the spline interpolation (orange) and piecewise
geodesic interpolation (green).
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Figure 3.3: Piecewise geodesic (top) and spline interpolation (middle) are shown for key frames (framed
in red) consisting of a thin annulus-shaped distribution and two equal thin square-shaped distributions,
using the color map () s 4e—4. Bottom: Difference between the spline and piecewise geodesic
interpolations, using the color map —6e—5 m =m Ge—5.

Figure 3.4: The key frames represent two Gaussians that are far apart from each other (first and fourth
key frames) and close to each other (second and third key frames). Piecewise geodesic (top) and spline
(bottom) interpolations are shown.

p-w. geodesic

spline

difference

spline  p.w. geodesic

3.6 Generative texture synthesis based on Wasserstein spline
interpolation of feature distributions

The flexibility of our model will be tested in this section to generate spline interpolations in the space of
textures. Recently, Houdard et al. [HLPR20] proposed GOTEX, a generative model for texture synthesis
from a single sample image. There, the parameters of the generator are chosen such that the distribution
of features extracted from the generated textures is close in Wasserstein distance to the corresponding
empirical feature distribution for the given sample image. In what follows, we shall outline how we
leverage our spline interpolation model within the GOTEX framework. To this end, we proceed as
follows:

- First, for a vector of feature maps, we compute empirical feature distributions 7; € P(R?) for all
input images w; at times ¢; for¢ = 1,..., I and some d € N.

- Next, we use the discrete spline approach presented in the preceeding sections to compute a
discrete spline interpolation (u,f )k=o0,....kc for prescribed distributions 7; at times k; = t; K for
k; € {0,...,K}.

- Finally, in a post processing, we train a generative texture model to obtain image representations
u = gp, (z) for the computed probability distributions V,f , where 0 is a set of optimal parameters
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Figure 3.5: From left to right the key frames represent a single Gaussian, a pair of vertically displaced
Gaussian of half the mass, and the vertically displaced configuration rotated by —7. Discrete piecewise
geodesic (top) and spline (bottom) interpolations are shown.

p-w. geodesic

spline

400 4 °
300 e
t 200 1
1
00 o
0 [ o o o o
0.0 1.0 2.0 3.0 4.0 T

Figure 3.6: Time ¢ (in seconds) until convergence of the fully discrete spline interpolation problem is
reached, for a series of five interpolation problems P(z) depending on parameter =z € {0,1,2,3,4}
(z-axis). The interpolation problem P(x) is defined as follows: The prescribed times are {5 = 0,
t; = 0.5 and o = 1, and the prescribed probability measures are given by 77, = N((0,0),03),
1, = N((z,7),0?), and 11, = N((0,0), 03), for diagonal standard deviation matrices o = diag(1, 2),
o1 = diag(1,1) and o9 = diag(2, 1). Dots denote the computation time of the algorithm solving prob-
lem P(z), both with implementation of the decoupling of the means as described by equation (3.2.9)
(orange), and without it (green).

of a generative neural network gy, applied to a sample z of a regular distribution.

In explicit, to generate a texture spline interpolation, we follow these steps cf. Fig. 3.7.

1. Extracting empirical feature distributions. Let I > 2 be fixed, and consider a vector F' =
(Fm)m:L,__7 m of d-dimensional local feature maps F,, : RY — R9 defined on images with NV
pixels. Each component F,,, operates on small pixel neighbourhoods (patches). Given the images

u;, = 1,...,1 to be spline interpolated the associated empirical feature distributions are
= . 1
Vi=ar D, Or.m)
m=1,....M
in P(R?) fori = 1,...,I, with §, being the Dirac measure at z in R?.

2. Computing discrete splines in the space of feature distributions. Given the set of feature dis-
tributions 7; with ¢ = 1,..., I, obtained from the first step with associated interpolation times
0<ty<...,t; <1andsome K € N, we compute a discrete spline interpolation (I/é{)k:ow"](
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Figure 3.7: Schematic plot of our algorithm to generate texture interpolations based on Wasserstein
spline interpolation of feature distributions. The step from the first row to the second one corresponds to
the extraction of empirical feature distributions. The step from the second row to the third describes the
use of our interpolation algorithm to compute feature distributions in-between. The final step (from the
third to the fourth row) represents mapping back features into textures.

of the prescribed feature distributions 7; at times #; in Ps (Rd) as described in the previous sec-
tions. Here, we constrain the discrete spline to lie in the space of feature distributions, i.e. each
distribution 1/,5 must be represented as the sum of M delta distributions in R? with equal weights.
To this end, we minimize the fully discrete spline energy functional (3.5.1) with respect to the

locations zF,, where
M
1
K
i = g 2 e
m=1

and keep the distributions 7; at times k; = ;K for k; € {0, ..., K} fixed.

Retrieving image representations via a generative texture model based on neu-

ral networks. Different samples of a synthesized texture for a given feature distribution 1/,5(

(obtained in the previous step) are regarded as samples of a probability distribution, which is de-
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Wasserstein  metamorphosis

Figure 3.8: Time discrete metamorphosis (top) and Wasserstein spline interpolations (bottom) with
framed prescribed images/feature distributions for K = 16. For the metamorphosis spline the key
frames are chosen identical to the synthesized texture of the Wasserstein splines. Due to symmetry, only
the first half of the interpolations is shown.
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Figure 3.9: Five spline interpolations in the MNIST-Dataset. Each of them has 11 frames; the fixed
keyframes are at k = 0, £ = 5, and k£ = 10 for each row.

fined as the push-forward of a fixed distribution ¢ defined on a latent space Z, with a generator
go : 2 — RY with parameter vector 6 in a set of admissible parameters ©. Typically, one may
assume ( to be the uniform distribution on the space Z = [0, 1]V and g to be a feed-forward neural
network with a fixed architecture. Hence, one is looking for an optimal parameter vectors 6 € ©,
which minimizes the Wasserstein distance W (g, , u,f ) of the resulting feature distribution

po, =11 Y. (Fmogs)s
m=1,....M

from the given feature distribution 1/,5 of the discrete spline.

The minimization of W(py, , 1/,5 ) with respect to the parameter vector 6 can be numerically real-
ized via a stochastic gradient descent approach. After obtaining the optimal parameter vectors 6,
fork =0,..., K, one then samples z ~ (, and generates the resulting texture spline interpolation
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(uk)k=0,... K as a set of images
Uk = 9o, (2)

for k = 0,..., K. For different samples z one obtains different images (uj)r—o,. x representing
the spline interpolation of the textures.

The multi-scale architecture of the generator network g is made up of chains of convolutional,
non-linear activation and upsampling layers that take a noise sample z as an input and terminate
by producing the final image, cf. [ULVL16]. Each convolution block in the generator network con-
tains three convolutional layers followed by a non-linear ReLLU activation layer. The convolutional
layers contain 3 x 3,3 x 3 and 1 x 1 filters, respectively. Next, nearest-neighbour interpolation is
used in the upsampling layers to obtain a tensor with the desired full resolution. For the last step,
this tensor is mapped to an RGB-image by a batch of 1 x 1 filters.

Numerical results. In Figure 3.8 we compare our spline interpolation method with the alternative
metamorphosis spline interpolation (middle) as described in [JRR23] with the same prescribed feature
distributions/frames in each case. The key frames consist of a close-up of a leaf (at times 1 = 0,3 = 1),
and a close-up of a cork (at o = %). Clearly, the leaf creases inherited from the first and last key frames
are simply blended out in the first method. On the other hand, our approach ensures that the features are
interpolated smoothly: Both the boundaries and the surface area covered by the creases change smoothly
over time.

Fig. 3.10 shows discrete texture curves resulting from a discrete spline interpolation (V,f ) for K = 20
in the space of feature distributions as described above. The texture samples which have been synthesized
from the prescribed feature distributions have been framed in red, and the prescribed times are given by
ti =i/4,i = 0,...,4. Two different texture realizations u,, := gp, (21), us = gp, (22) for 21, 22 ~ ¢
are shown on top of each other for a normalized random distribution ¢ and 6 minimizing the entropy
regularized Wasserstein distance between i, and 1/,5 . The weights of the neural network used to gener-
ate these textures are kept unchanged between both interpolations (and along each interpolation between
different time frames). Hence, even though for a fixed time step k the spatial arrangement of the texture
pattern varies substantially between both samples, it becomes apparent that the texture characteristics
described by the distribution of features u,f coincide and vary smoothly along the curve.

Fig. 3.11 serves as a benchmark for our spline interpolation model on how well it can predict the
texture patterns in comparison to the ground truth. Therein, the prescribed feature distributions are
extracted from equally spaced still frames of a video showing the life cycle of a patch of mango skin.
As the mango peel goes from green to ripe and eventually rots away, not only the colors but the texture
of the peel changes significantly. In the frame of generative texture synthesis our method (top rows on
each panel) matches both structure and coloring of the actual textures (bottom row on each panel) at
corresponding times.

3.7 Generative spline interpolation of data aided by variational
autoencoders

A variational autoencoder (VAE) is a type of neural network designed for generating new data similar to
a given dataset (e.g., images or text) and learning meaningful data representations. Here we give a short
breakdown of how a VAE works:
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3¢ Encoder: The encoder ¢ maps input data = (like an image) to a lower-dimensional space called the
latent space. In contrast to traditional autoencoders, encoders of VAEs do not map the input to a
single point in the latent space. Instead, the encoder predicts a probability distribution (a Gaussian
distribution with a mean and diagonal covariance matrix) in this space. This particular step makes
VAE:s specially suitable to combine with the spline interpolation method we have introduced in
previous sections.

» Latent Space Sampling: A sample is drawn according to the predicted distribution. This sampling
step adds randomness, making the VAE capable of generating diverse outputs.

* Decoder: The decoder v takes the sample from the latent space and reconstructs the input data,
aiming to make it as close to the original input as possible.

The VAE is trained with two goals in mind: Minimize the reconstruction error (i.e. how well the output
matches the input). Ensure the latent space distributions are close to a standard normal distribution by
minimizing the KL divergence between them. After the learning process on a given dataset, VAEs can
generate new data by sampling from the latent space and decoding it, while also providing structured
representations of the input data.

Now we give a brief description on how to leverage our proposed interpolation method with VAEs to
greatly increase its reach. Consider a VAE with encoder ¢ : RY — PQG 4 and decoder ¥ R 5 RN
that have been pre-trained on a dataset for which we want to generate similar data. For a given temporal
resolution & € N and prescribed data Z1,...,Z; € RY at prescribed times %1, ..., %;, we follow the
following steps:

1. Run the prescribed data through the encoder, i.e. compute the diagonal Gaussian measures fi; ==
o(z;) € 732G 4 for all i = 1,..., 1. This is the analogue of step 1 in the texture interpolation
algorithm (cf. 3.6).

2. Next, apply our interpolation method (the version restricted to Gaussian measures with diagonal
covariance matrices) to the prescribed measures iy, . .., 7i; € R at prescribed times 71, ..., ;.
This generates a discrete-time spline interpolation (1i;)r—0,... .k C (732G ’d)K +1, This is equivalent

to step 2 in the texture interpolation algorithm.
3. Subsequently, use Algorithm 3 to sample a spline trajectory  : [0, 1] — R? in the latent space R?.

4. Finally, evaluate the sampled spline trajectory at times tkK = % for k = 0,..., K and apply the
decoder v on these evaluations to translate them back to the input space R” . In explicit, compute
zp = P(y(t)) € RN forall k = 0,..., K. The resulting tuple (z,...,xx) is the spline
interpolation of the data.

To check the feasibility and robustess of our approach, in Fig. 3.9 we plotted a few sample splines on
the MNIST dataset

3.8 Variational-time Wasserstein regression

This section focuses on deriving a straightforward (linear) regression model in Wasserstein spaces, which
serves as a generalization of linear regression in Euclidean space. Specifically, for a given set of distri-
butional data points, the goal is to find a geodesic measure-valued curve that best fits the data. This
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approach is motivated by the fact that geodesics in Wasserstein space are the equivalent of linear curves
in Euclidean space. Both linear and geodesics share two key properties:

- They are the shortest paths between two points.
- They have zero (Riemannian) acceleration.

To characterize geodesic regression curves, we use the vanishing acceleration property rather than the
shortest-path property, as the latter can lead to degenerate solutions when the endpoints are not fixed.
Instead of strictly enforcing a vanishing acceleration condition, we opt to use a penalty-based method,
which augments the objective functional (the data term) with the spline energy term introduced in Section
3.2. This penalty-based approach makes use of the spline energy as a regularizer and thus allows control
over the shape of the regression curve. The analogous method has been successfully applied in the
context of viscous fluidic objects (cf. [BFHT13]). In this section, we present the continuous version of
the Wasserstein regression model, followed by its variational-time formulation.

Let us consider sets of input probability measures {ﬁz}lzlzk C P2(2), for k = 0,..., K that
correspond to statistical measurements recorded at specific times ¢, € [0, 1]. To simplify the notation,
we assume that all times at which input measures are given are multiples of the time step size 7 := %
of the discrete model introduced later. This assumption is not too restrictive, as extending the model to
allow non-uniform time step sizes is straightforward.

To motivate this approach, we first consider the Euclidean case, equipped with the standard Euclidean
metric. In this setting, the classical linear regression problem involves finding a linear function y :
[0,1] — RY, typically expressed as y(t) = mt + b, with m, b € R? that minimizes the least squares error
term (also called data term)

K i '
o> Iyt =Tl
k=0 i=1
where {%} C Rflzl,...,ik’ for k = 0,..., K are the given (measured) data points.

In the Wasserstein framework, and similar to the motivation given in the introduction of this thesis,
the linear function y(¢t) = mt + b is instead replaced by a geodesic curve p : [0,1] — P2(2), and the
Euclidean distance is substituted with the Wasserstein distance.

The geodesic regression problem in Wasserstein space involves minimizing the data term

K i
Dip) = > W (u(te) — 1i}), (3.8.1)

k=0 i=1

while ensuring that p is a geodesic curve. As discussed earlier, we shall relax this strict constraint using
a penalty method. The penalty functional, given by the spline energy functional F (cf. (3.2.2)), penalizes
deviations from the geodesic equation. In the continuous-time Wasserstein regression model, the goal is
to minimize the penalty-augmented objective

D%[u] = Dlu] + e~ Fu] (3.8.2)
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for a small penalty parameter € > 0.
We now derive a discrete-time version of this continuous variational problem, focusing on discrete

geodesic regression curves. For this purpose, we consider discrete measure paths (uo, ..., ux) and
assume (possibly after re-indexing) that the input measures {fi; } are associated with times t;. Using
this notation, the discrete Wasserstein regression problem seeks a discrete path == (,ug Yy ug) €

Po(2)K+1 that minimizes the data term

D[] =" WAl —m), (3.8.3)

while ensuring that 1€ is a discrete geodesic, i.e., it minimizes the energy E among all discrete paths
with fixed endpoint measures £ and M? As in the continuous case, this strict constraint is relaxed by
replacing the continuous spline functional F with its discrete counterpart FX, as defined in (3.2.17). The
discrete (linear) Wasserstein regression problem then becomes a minimization of the objective

D[ K] = D[] 4+ e 1R[] (3.8.4)

Alternatively, one could use the discrete path energy E (cf. (3.2.12)) as a penalty term (cf. [BvTH16]).
However, for decreasing ¢, this approach results in degenerate curves because the discrete path energy pe-
nalizes the curve’s total length, causing the resulting regression curve to collapse into the global Wasser-
stein barycenter of all the input measures i, over all time steps. The discrete spline energy penalizes
instead its discrete acceleration, and hence, the deviation from a geodesic.
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Figure 3.10: Two realizations of a texture spline for different starting latent space samples, top and
bottom of each panel respectively with parameters K = 20, § = 0.01. Let us remark that not only the
actual spline interpolated textures but also the key frame textures differ as they are all different samples
of the underlying spline probability distributions 1/,5 .
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Figure 3.11: Top: A realization of a texture spline with parameters X = 20, § = 0.01. Bottom: Textures
sampled at the interpolated times of the actual video from which the texture constraints were extracted
from. As in Figure 3.10 the key frame textures from the spline interpolated path differ from the true
images at the corresponding times as they are samples of the underlying spline probability distributions

K
V.
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Figure 3.12: Schematic plot of our algorithm to generate data interpolations based on Wasserstein spline
interpolation on the latent space of a VAE. The step from the first row to the second one corresponds to
the encoder. The step from the second row to the third describes the use of our interpolation algorithm
to compute Gaussian distributions in-between. The next step illustrates the sampling algorithm, and the
final step (from the fourth to fifth row) represents the decoder part of the VAE.






4 Unbalanced Transport Splines with Source
Term

This paper investigates a variational model for splines in the image metamorphosis model for the smooth
interpolation of key frames in the space of images. The Riemannian manifold of images based on the
metamorphosis model defines shortest geodesic paths interpolating two images as minimizers of the path
energy which measures the viscous dissipation caused by the motion field and dissipation caused by the
material derivative of the image intensity along motion paths. In this paper we aim at smooth interpo-
lation of multiple key frame images picking up the general observation of cubic splines in Euclidean
space which minimize the squared acceleration along the interpolation path. To this end, we propose the
spline functional which combines quadratic functionals of the Eulerian motion acceleration and of the
second material derivative of the image intensity as the proper notion of image intensity acceleration. We
propose a variational time discretization of this model and study the convergence to a suitably relaxed
time continuous model via I'-convergence methodology. As a byproduct, this also allows to establish
the existence of metamorphosis splines for given key frame images as minimizers of the time continu-
ous spline functional. The time discretization is complemented by effective spatial discretization based
on finite differences and a stable B-spline interpolation of deformed quantities. A variety of numerical
examples demonstrates the robustness and versatility of the proposed method in applications. For the
minimization of the fully discrete energy functional a variant of the iPALM algorithm is used.

4.1 Review of the Flow of Diffeomorphisms model and Optimal
Transport Model with Source Term

In this section, we will briefly review the flow of diffeomorphisms model and the generalized optimal
transport model with source term.

4.1.1 Flow of Diffeomorphisms

The flow of diffeomorphisms model [DGM98, BMTYO05, JM00, MTYO02] is based on Arnold’s paradigm
[Arn66] that studied the flow of ideal fluids transported by geodesics living in the space of orientation-
preserving diffeomorphisms. Given a domain 2 C R?, one considers a family of diffeomorphisms
(Vt)eeqo ) : Q — R? determined by its time-dependent Eulerian velocity v; via

v (e (x)) = Ui (x), Yo(z) = =, 4.1.1)

where each 1), is an element of the space of Sobolev diffomorphisms on €, denoted as D"*(2), and
defined by

D™(Q) = {p € H™(Q,Q),det(Dy) > 0,lgo =1}, m > 1+ g. (4.1.2)

59
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Functions in this space are indeed C'* (2, Q2)-orientation preserving diffeomorphisms since

[IKT13, Lemma A.1] guarantees the existence of ¢) 1 € D™ (€2) and, by the Sobolev embedding theorem
2.2.13, we have D™(Q2) C C'(,9Q). By [IKT13, Lemma 2.18], the set of all H™(,2) functions
which are orientation preserving diffeomorphisms is an open subset of the Hilbert space H™(£2, ()
and can be seen as C'°°-manifold embedded in this space. For every ¢y € D" (), the tangent space
TyD™(Q) =V = H™(Q,R") N HJ(Q,R") at ¥ (¢f. ...) is the velocity space of smooth curves with
origin at that point. The Riemannian structure on this space is defined via the metric

Gn (G0, ) = / Liv, ] dz,

Q

and the path energy
1
Eulrenn] = | guinin)at

Here, L defines a quadratic form corresponding to a higher order elliptic operator. The particular choice
used throughout this chapter is

Llv, v]:=tr(e[v]*) + v|D"v|*, m > 1 + g,’y > 0. (4.1.3)
In physical terms, the metric gy, (@Z.)t, ¢t) describes the viscous dissipation in a multi-polar fluid model
as investigated by Necas and Silhavy [NS91]. The first term of L represents the local dissipation density
in a simple Newtonian fluid and the second term can be regarded as a higher order measure of the fluid
friction. Using that the metric g, is H ™(Q2)-coercive, [DGM98, Theorem 3.1] guarantees the existence
of a flow of diffeomorphisms as a minimizer of the above path energy. This minimizer represents a
geodesic path connecting two given diffeomorphisms.

In the context of image morphing, the flow of diffeomorphism consists in transporting densities along
particle paths describing the temporal change of c-channel image densities (ﬂt)te[o,l} : 2 — R This
transport is given in terms of the equation ¥4 (-) == g o ¢; *(-), also known as the brightness constancy
assumption [HS81], which is equivalent to a vanishing material derivative %19 = 9 + v - DV. Given
two image density functions 9 4,9 p, an associated geodesic path is a family of densities subject to the
constraint ¥ = ¥4, 91 = Ip and 94(-) = Va0, 1(.) where the underlying family of diffeomorphisms
Wt)te[o,l] minimizes the path energy above.

The Flow Equation

For the sake of self-containment, here we re-state some technical on the existence, uniqueness, and
regularity of diffeomorphic flows given as a solution to (4.1.1), originally proven in [Raj23] and the
textbook [YoulO]:

Theorem 4.1.1. For every velocity field v € L*((0,1),V), there exists a unique flow

v € HY([0,1], H™(Q, R™)) which is a solution to the flow equation (4.1.1), in the sense that 1(x) =
x4+ fg vs 0 Ygs(x) ds holds for all x € Q and t € [0,1). In particular, 1y € D™(QY) for all t € [0, 1].
Furthermore, for o € [0,m — 1 — %) the following estimate holds

1
[lleogo,1y,01e @y + 18 oo cre@) < G (/o lvsllene @ ds) ’ @19
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where G(z) = C(z + 1) exp(Cx). The solution operator L*((0,1),V) — C°([0,1], H™(2,9)), v
VY, assigning a flow 1 to every velocity field v, is continuous w.r.t. the weak topology in L*((0,1),V)
and the C°([0,1] x Q)-topology for 1.

Proof. See [Raj23, Theorem 3.2.1.]. O

Remark 4.1.2. If V is replaced by C1%(£2, R™) with zero boundary condition [You10, Chapter 8], anal-
ogous existence results and estimates as in Theorem 4.1.1 hold. In addition, the mapping v — 9" is
Lipschitz continuous in v and it holds

i t
107 = Vil oy < (1+ Cexp(C)) /0 [vs — sl oo ds,

where C' = fg 10|01 ) ds.
Proof. See [YoulO, Proof of Theorem 8.10]. O

Remark 4.1.3. By the Sobolev embedding theorem 2.2.13, we have ¢ € %2 ([0,1],CH*(£2,9Q)) and

we obtain the following estimates for |¢’CO’ Y (oaLche @)’

1
1
i = Dl one < 61 ([ Bolero d ) ollaqom el = sl

for a positive, monotonically increasing function (1. Analogous results hold for the inverse flow

-1
V7 o o1y, c0 @)
Proof. See [Raj23, Remark 3.2.3]. O]

We refer the reader to [Raj23] for further details about the flow equation.

4.1.2 Generalized Optimal Transport Model with Source Term

In the sequel, we shall make no distinction between a measure ¥ € M () or its Radon-Nikodym density,
and we will use both terms interchangeably. In the flow formulation of the Wasserstein distance proposed
by Benamou and Brenier (cf. [BB0O0]), the distance between two probability measures was computed
by minimizing over measure-valued paths (;); determined by velocity fields (v;);. In this setting, mass
particles of the initial measure move along the family of flow paths 7, which is uniquely determined by
the velocity field via (3.1.3). This transport does not induce any change in the total mass of the involved
measures, known as the mass conservation assumption. This assumption is equivalent to a vanishing
source term Z; in the continuity equation (cf. (3.1.1))

5= + V- (09y), (4.1.5)

for a path (¥¢),¢[,1) in the more general space of signed measures (which do not necessarily have the
same total mass).

In concrete applications, such as computer vision, objects of generally different masses are expected
to be matched between images. This could be induced, for instance, by the expansion of an object
without any change in its intensity, or alternatively by a change in lighting that affects the intensity
without changing the size of the object in question. Hence, the assumption that different images are to
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be encoded as probability measures is too restrictive, and leads to artifacts stemming from the attempt
to compensate local mass surpluses/deficits in an artificial manner. The generalized optimal transport
model with source term, originally proposed by Maas et al. in [MRSS15], relaxes the optimal transport
model by defining a metric on the space of general (signed) measures that allows for a non-vanishing
source term z;, and penalizes its squared L?-norm instead, thus allowing for changes in mass along
measure-valued paths. Under the assumption that the measure-valued path « is sufficiently smooth, the
metric and the path energy read as

1
gi(0.0) = min [P0+ glePde, £ = [ gt ar,
v:Q—>R" JQ 0
for a penalization parameter 6 > 0. The term |v|>¥ quantifies the underlying cost of the transport of
mass, while the second term 2 reflects the penalization of the changes in mass that cannot be explained
by transport of mass. Hence, the original optimal transport model can be seen as the limit case of the
generalized optimal transport model with source term for § — 0.

Another issue that arises in the optimal transport model is that, as opposed to the setting in the flow of
diffeomorphisms model, the optimal transport flow maps (3.1.3) are not necessarily homeomorphisms.
In practice, however, one is interested in topological consistency. Due to the often times physically
motivated background of applications, Maas et al. [MRSS15] propose to incorporate a dissipative term
in the metric. This term not only endows the mass transport with a physical meaning, but also asserts
some additional regularity on the resulting flow maps. In the combined optimal transport model with
source term and a weighted viscous dissipation model, the metric and the path energy are explicitly
given by

. 1 1 .

P 0.0) = win [ oo+ IR 4 ALl e, €M)= [ gl i ar,
v:Q—=R" JQO 0 0

for penalty parameters J, A > 0, and a local rate of viscous dissipation L given as in (4.1.3). Notably,

this definition of the metric has two major drawbacks:

- In general, paths in the space of measures do not exhibit any smoothness properties (neither
spatially nor temporally), and therefore the point-wise evaluation of the source term is not well-
defined.

- Different pairs (v, 2) of velocity fields and source terms can induce the same temporal variation 0
of the measure-valued path.

To tackle both of these problems, Maas et al. proposed a non-linear geometric structure in the space
of measures with L? Radon-Nikodym densities Z = L?(£2,R®) with respect to the Lebesgue mea-
sure. More specifically, for a given density path ¢ € L?(]0,1],Z) and an associated velocity field v €
L?((0,1),V), where V := H™(Q,R") N H} (2, R™) denotes the velocity space, the weak first-order
source term 2 € L?((0,1), Z := L*(Q,R3)) is incorporated in the model and it is implicitly given by

1 1
/ / nzZdxdt = —/ / (O +v-Vn)ddedt (4.1.6)
0 Jo 0 JQ

forall n € C2°((0,1) x Q). Here, we consider (v, Z) as a tangent vector in the tangent space of Z at ¥.
Indeed, (v, 2) represents a variation of the measure 1) via transport and change of density. For a density
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¥ € Z, we define the non-linear structure on V X Z by
Ny = {(U,é) €EVX2Z: / nz+Yv-Vndr =0, Vn € C°([0,1] x ﬁ)}
Q

This allows for a restriction to the equivalence classes of pairs, where two pairs are equivalent if and only
if they induce the same temporal change ¥ of the image path ¢. Then, the tangent space at ¥ is defined
as the quotient space

TﬁI = (V X Z) /Nﬁ,

giving rise to the associated tangent bundle 7'Z. The path energy can now be rigorously defined for a
density-valued path ¥ by

1

1

£59] :_/ inf /]v|219+\2\2+)\L[v,v]d:rdt. @.1.7)
0 (U,,’g’)ETlg(”I Q 5

We say 9 is H'([0,1],Z)-regular if ¥ € C°([0,1],Z) and £%*[¥] < oco. Given this path energy, we
can now define a (generalized) Riemannian Wasserstein distance Wj (94,9 p) between two densities
V4,95 € T as

Wix(0a,9p) = inf{€2[J] : J € H'([0,1], ), = V4,01 =I5} (4.1.8)

A geodesic curve in the space of densities connecting ¥ 4,9p € T is defined as a regular curve ¥ €
H([0,1],7) with 99 = 94,91 = Up, such that

EMMY) = Wi\ (9a,0B).

The existence of a geodesic curve for the non-viscous case (A = 0) is proven in [MRSS15, Theorem
2.5].

4.2 Time Continuous Splines in the Generalized Model

In this section, we expand on the unbalanced optimal transport model introduced by [MRSS15] and
briefly explained in the previous section to study spline interpolations for a set of given key frame den-
sities at given time stamps in a time continuous setting. In mathematical notation, given a set of J > 2
key frames 91, ..., 9 € T and time stamps 0 < #; < ... < t; < 1, we ask for a spline interpolation
(9e)iep,1) € L*([0,1],Z), which satisfies the constraints

Oy, =05, t; €[0,1), j=1,...J. 4.2.1)
To this end, we recall that cubic splines in Euclidean space were introduced by de Boor [dB63] as
minimizers of the integral over the squared acceleration, subject to position constraints, whereas linear
interpolation is instead associated with the minimization of the integral over the squared velocity. In our
case, density morphing via minimization of the path energy (4.1.7) corresponds to this linear interpo-
lation. In this section, we introduce the relevant second-order quantities which will be penalized in the
spline energy:
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Flow acceleration.

In the original flow of diffeomorphisms model, we observed a diffeomorphic flow v determined by the
Eulerian velocity v € L%((0,1), V), cf. (4.1.1). For our second order model, we now consider the pairs
(v,a) € L%((0,1),V) x L?((0,1),V) which determine the system

ar(Pe(x)) = Pi(a), ve(We(x)) = Pr(2), Polz) = a, (4.2.2)

and the corresponding diffeomorphic flow ¢» € L2((0,1), H™(2,€2)). By using the same arguments
as in Theorem 4.1.1, we obtain existence and uniqueness of a flow v € H?((0,1), H™(,Q)) C

clz ((0,1),CH2(£2,9)) as a solution to the above system. In this case, the C1([0, 1], C1*(£2))-norm of
¢ depends on ||| £2((0,1),) and ||v|| 12((0,1),v)- In particular, it holds ve H'((0,1),V) C 03 ((0,1),V).
Notice that from the following interdependency between a and v

. d
ag o Py =Py = a(vt o 1hy) = (vy + Dvgvy) o 1y, (4.2.3)

one would expect the acceleration to have one fewer spatial derivative compared to the velocity. However,
the approach we later take allows us to have the same number of derivatives. A similar gain of smoothness
was observed in [Via20] and [JRR23].

Second order source term.

In order to derive a suitable formulation for the second-order source term, let us first prove a few technical
lemmas in the smooth case, which will then be adapted for the second order calculus.

Lemma 4.2.1. Let (9t)c(0,1) € C([0, 1], C°°(€2)) be a smooth family of densities, and
<1/}t)t€[0,1]€C°°((0,1),000(5,5)) Wlth det(Dwt) > Ofor all t E (O, ].) The”l, lt hOldS

s = det(Du ) (5 detDU)Iwn) ) 0 (424

Proof. Using vy = 1y 0 ¢, 1, % det(A;) = det(Ay) tr(A; ' A;) and tr(Dvy) = div(v;), we obtain
det(Dth_l) <(§1t det(Dwt)ﬁt(l/;t)) ) wt_l
= det(Dy; ') (det(Dwt) (D) (D) ™) 94(tr) + det( Dby )De (141
o+ det(De) V9 ()3 ) oy

— det(Di;) det(Di) o ) (tr(D (@ 0 67))00 + 91+ V90, - (o w7))
= di’U(Ut)’ﬂt + ’Lét + Vl?t VU = 19{/ + div(ﬁtvt) = ft

O
In light of Lemma 4.2.1, it is then natural to consider
. _ d? _
Wt = det(Dth 1) <dt2 det(Dwt)'Lgt(lbt)) (¢] wt 1, (425)

as the second order source term. For the smooth case, we obtain
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Lemma 4.2.2. Let (9t)c(0,1) € C*([0, 1], C>°(€2)) be a smooth family of densities, and
(Ve)sepo11ec (0.1),c @q)) With det(Diy) > 0 for all t € (0,1). Then, it holds

Wy = di’l)(vt)219t + di’u(atﬁt) — tr((th)z)ﬂt +2 div(vtﬁt) + 2 diU(Ut)Vﬁt - U + 'l§t (4.2.6)
+ Hess 9¢ (v, vt).

Proof. Using the same facts as in the proof of Lemma 4.2.1, we have

2 .
det(Dy; 1) (;ﬁ det(Dwt)ﬁt(zpt)> oyt = det(Dy; ) ((i det(Day) tr((De) (D) )0 (1)

+ det (D) dy (1) + det(Dwt)vz9t(¢t)z/}t) o

= det(Dy; ) (det(D¢t) (D) (Depe) ™1 )29 (t01) + det(Daby) tr((Defy) (Depe) ™ )04 ()

— det(Dyy) tr((De) (D)~ (D) (Do) )0 (1) + 2 det(Dapy) tr (D) (D)~ )da(t)

+ 2det (D) tr((Diy) (D) ™ )V (W) + det(Drpr) Dy () + 2 det(Dey) Vi (1by )y

+ det (D) V9y () oy + Hess 0 () (¢, ?l)t)) oy !

= tr(D (v 09y ))? e + tr(D (W 0 P 1))y — tr(D (W 0 9y 1)?)0y + 2tr(D (e 0 9y 1))
+2r(D (W 0t )V - by 0t 4 04+ 2V - oy 4 V- o gy

= div(vy)?9; + div(a)9; — tr((Dv)?)Vy + 2 div(ve); + 2 div(v)Vy - vp + 0y + 2V - vy

+ V9 - ar + Hess 94 (v, vr)

= div(vt)Qﬁt + div(ady) — tr((th)Q)ﬂt +2 div(vt'lét) + 2 div(vg) VI - vy + J; + Hess Pe(vg, vt)

O]

Once again, (4.2.6) should be understood in weak form. Our proposed spline energy then consists of
the integral over the three squared second order quantities:

1
1
FOANW) = min/ / |ag |04 + 5 lw¢|* + ALlay, ag) dz dt
v Jo Ja

where for simplicity we use the same elliptic operator L as in (4.1.3). As already mentioned in the
introduction, the splitting of the spline energy into a flow acceleration and a second order source term is
not fully consistent with the Riemannian structure defined in Subsection 4.1.2, since one would expect
an interaction between the two terms in the second order calculus. However, we have seen the analogous
approach in the metamorphosis setting (cf. [JRR23]) yield very good results.

As in the case of geodesic path energy, we shall now give rigorous formulations for general paths
¥ € L*([0,1],Z) that may lack enough regularity to define the quantities (4.1.5) and (4.2.6) point-wise.
By equations (4.2.4) and (4.2.5), the integral Lagrangian formulations of the first and second order source
terms 2,1 € L?((0,1),Z) are formally given by

t
/ det(Dy )2, 0 ¥, dr = det(Dvy) 0 o 1y — det(Da)s)ds o g, 4.2.7)

T t T
/ / det( Dy 1)y 0 hpyydrdl = / det(Dv11) 241 © Vit — det(Dips i) 241 0 s dl
0 s 0
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= det(DYt4r)Vtpr © Yryr —det(Dr) 0y 0 Yop—det(Disyr ) s ir 0 Ysir+det(Dips)ds o s,
(4.2.8)

respectively forall s,¢ € (0,1) and every 7, such that ¢t + 7, s+ 7 € [0, 1]. Observe that for s = ¢t — 7 the
right hand side of (4.2.8) is an integral version of the second order central difference. Because there is no
differentiation involved in these definitions, they work for general density paths. Analogous to [JRR23],
we introduce the scalar quantities z,w € L2((0,1) x ) as relaxations of the weak first and second order
source terms, respectively:

¢
(det(Diy)d; 0 vy — det(Dis )i o b g/ det(Dy )z 0 4y dr, ¥s<te0,1], 4.2.9)
|det(Digr ) tigr © Ypyr —det (D) ug o hy—det(Dipsyr )tusir © Psyr+det(Dibs)us o 1hg|
T t
§/ / det(DY,y)wpiy 0 Ypyydr dl, V7, s+7<t+7€]0, 1]. (4.2.10)
0 s

forevery s <t € (0,1),7 > 0,t + 7 < 1. This relaxed Lagrangian approach is substantially more
elegant in comparison to the Eulerian approach (4.1.5) and (4.2.6), which will be exploited in the proof
of consistency of continuous and time discrete approaches.

We can show the equivalence of the two approaches corresponding to (4.2.8) and (4.2.10) (cf. [ENR20,
Proposition 8]).

Proposition 4.2.3. Let ) € H?((0,1), H™(Q,Q)) be determined by the flow system (4.2.2). For every
vector valued (2,w) satisfying (4.2.7) and (4.2.8) there exist scalar quantities (z,w) satisfying (4.2.9)
and (4.2.10) with z = |Z| and w = |W|. Conversely, for every (z,w) satisfying (4.2.9) and (4.2.10) there
exists (Z,w) satisfying (4.2.7) and (4.2.8) with z > |Z| and w > ||.

Proof. The first claim is obvious by the triangle inequality. To prove the converse, let z satisfy (4.2.9).
We take the L2(£2)-norm on both sides and use the triangle inequality to obtain

t
(| det(Dvp )¢ 0 by — det(Drps)ds 0 Ysl| 2y < / | det(Dvr) 2 © P [| L2 () 7.

By Theorem 4.1.1, we know that the function r > [| det(Dy) 2, 0 9, || 12(q) is in L?(0,1) from where
we conclude that the function ¢ — det(D1);)0; o 1y is in AC?(0,1; L?(2,IR®)), which implies the a.e.
differentiability and the existence of a metric derivative 2’ € L?((0, 1), L*(Q, R¢)), such that

t t
det(D)y)0 o ¢y — det(Dps)Is 0 b = / 2l dr = / det(Dy )z, 0 . dr

where 2, = det(e;1)2) o 91 (cf.[AGS08, Remark 1.1.3]). Next, by [AGS08, Theorem 1.1.2]), we
obtain | det (D)2 oy < det(Diy)z 09y forae. t € (0,1). Since det(Dv,) is bounded from below
by ¢, > 0, and 9, is a diffeomorphism, we finally obtain z > |Z| for a.e. ¢ € (0,1). Thus, we have
verified (4.2.7). This now implies

T T rt
‘ / det(D¢t+l)2t+l o ¢t+l - det(Dws+l)ZAjs+l o ’(/}S+l dl) < / / det(’l/)r+l)w7«+l o ¢T+l dr dl,
0 0 Js
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forevery s <t € [0,1] and 7 > 0 with t + 7 < 1, and the same holds for integration on interval [—7, 0]
for s — 7 > 0. Taking the limit as 7 tends to zero and using Lebesgue’s differentiation theorem [Fol99,
Theorem 3.21] we conclude that for all s < ¢ € [0,1] and a.e. = € §2 we have

t
det(Dy) 2 0 ¢y — det(Dps)Zs 0 1hg| < / det (D )w, o b, dr.

Thus, we can iterate the procedure from above to conclude the existence of w € L?((0,1), L?(Q, R))
satisfying

t
det (D) 0y — det(Diby)2s 0 1y = / det(D, )b, o v dr, ] < w,

from where the claim directly follows. O

In [HRW 18] a regularization of the spline path energy by addition of weighted geodesic path energy
was necessary for existence and further analysis of the splines. We follow an analogous approach which
also seems to be indispensable in our model.

Definition 4.2.4 (Regularized spline energy). Leto >0, m > 1+ % be an integer, and ¥ € L%([0,1],7)
be an image curve. Then, the regularized spline energy is defined by

! 1 1
FoOON[9] = » Ziggecw]/o /Q |lag|?9; + AL[ay, as] + gwf +0o (y»ut\?ﬁt + AL[vg, ve] + 5z§) dz dt,

4.2.11)

where C[9] C L2((0,1),V)x L2((0,1), V) x L2((0,1) x ) x L2((0, 1) x ) consists of tuples (v, a, z, w)
satisfying

ve(e(t, ) = Pu(x), Yo(@) = =, 4.2.12)
ar(e(2)) = Pu(x), Yo € Q, t € [0,1], 4.2.13)
(det(Dir)0 0 by — det(Dibg)ds 0 1] < / " det(Din) 2y 0t dr, Vs <t [0,1], 4.2.14)
|det( Dty r)Vt17 0 Vg —det( D)y o Jt—det(D¢s+r)T95+T 0 Ysir+det(Dips)ds o s

</OT /t det(Dyy1)wpyg 0 Ypyy dr dl, V7, s+7<t+7€[0,1]. (4.2.15)

Remark 4.2.5. One observes that a path ¥ € L?([0,1],Z) with finite energy F*[)] < oo exhibits
additional smoothness properties in time. Indeed, from (4.2.14), by using Jensen’s inequality, we have

t 2 %
I det(Deir)0s 0 r — det(Dibs) s © sz < (/Q </ det(Dipn) 2 0 1y dr) dx)

1
<[t — s|2|| det(Dy)zr o Yrll2((0,1)x Q)
1 1
<[t = sl2ll2ll 2.0 xe | det Dl 2o g 11,

1
<Cult = sl2 |||l L2 ((0,1)x )
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where we further used (4.1.4), so that the constant C,, depends on |[v||z2((,1),1)- Thus, det(Dy)d o

Y € CY([0,1],Z), for the modulus of continuity w(t) = C’U||Z||L2((0,1)XQ)’7€’%. Furthermore, for every
t € [0, 1], we have

[9¢llz < Col| det(Dey) s 0 yllz < Cy o (1+ || det(Dy)d o 4|l 12(0.11.7)) » (4.2.16)

so that 9 € L°°([0,1],Z). Here, Cy . depends on [|v[[2((0,1),v) and ||z]|2((0,1)xq)- Then, to show the
improved regularity for the feature curve ¢ — o, we can take functions 9" e L=([0,1],C°(, R%))
such that ||¢ — 'l’gi”Loo([O,lLI) < 27" and || DY’ ||L°° (0.1,co@)) < Cu,i» where the constant Cyy; depends
on |9 < ((0,1),7) and i (¢f. Theorem 2.2.12). We have

19 — 0.l
<[[9: — det(D(ths oty ))s 0 b5 0 ¥y |z + || det(D(3hs 0 b)) 0 g 0 byt — Vsl

<[y — det(D(s 0 vy 1)) 0 o 0 0y iz + | det(D (s 0 9 1)) IE 0 9hs 09 — DIz

+[ det(D(3hs 0 b 1))Ds 0 s 0 ;' — det(D (1, o ¢t_1))1§i01/1501/1t_1||1+||1§i—195||z

<|| det(Dp )0y 0 ¢y — det(Des)ds 0 s z]| det DT/’tHCO(Q

ths 0 ;)DL 0 9hs 0 1p; !t — det(D (s 0 b 1))Di|z

[ det(D(s 0w )~ Tz + 19, — T4zl det Dy 0 ;)| 2y +27

<G| det(D¢t)19t oy — det(Dvs)ds o Y5z

+[| det D(p5 0 177 co e 1 Dl o HDwsuCom 1™l coggo.1y, 0ot — 512

+[0%1 ]| det(D (wsowt 1) = det(D (s 0 95"l oy + Coll9s —Wuﬁzz
<om|t—s|2+om|t—s|2+cmqus||co Y™ oo, comlt — 12 + Co27 + 27

(
+|| det(D(

<Cu (It = 5% +27) + Copilt - 5|3,

where the corresponding constants depend on |[v||z2((0,1)), 121l 22((0,1)x)> 9]l Lo ([0,1),7)> and i. Al-
together, choosing a suitable i, we see that ¥ € C°([0, 1] I) is unlformly continuous, and we have
¥ € C9([0, 1], T), where the modulus of continuity w depends on v and z.

In a completely analogous manner, we obtain by using (4.2.15) and Proposition 4.2.3

~ N 1
(| det(D1py) 2, 0 by — det(Dips)zs o Ysllz < Cualt — 82 [[wllL2((0,1)x0)-

Moreover, we also obtain the analogous results det( D)2 o) € C9([0,1],Z) and 2 € C9([0, 1], Z) for
a modulus of continuity w depending on v, a, 2, w.

Motivated by [dB63], we now define the continuous time spline interpolation for given key frames.

Definition 4.2.6 (Continuous time regularized spline interpolation). Let J >2,0<t; < ... <ty <1,
{19]1}] 1.7 € Z7 and 5, A > 0. We call a minimizer ¥ € L?((0,1),Z) of F*%* that satisfies (4.2.1) a
continuous time regularized spline interpolation of {1 i }j=1,...,; with a regularization parameter o > 0.
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Boundary conditions. If we do not impose any additional conditions on top of (4.2.12)-(4.2.15),
we say the continuous time spline interpolation has natural boundary conditions. In the case of Hermite
boundary conditions (also called clamped boundary conditions) we additionally prescribe the values and
tangent vectors of the interpolated curve at #; = 0 and t; = 1, i.e. ¥1,9% € T and (29, v0) = (20,70) €
Tyr and (%1,v1) = (31,71) € T, 91 - Note that, by Remark 4.2.5, the point-wise prescription of 9, v and
z are well defined. Finally, imposing periodic boundary conditions is equivalent to defining the density
curve ¥J; on the sphere S! instead of the interval [0, 1].

4.3 Variational Time Discretization

In this section we study the variational time discretization of the time continuous (regularized) spline
energy. To this end, we pick up the approach of [BER15, EKP'21] for the variational time discretization
of the geodesic energy. We consider a discrete density curve ©® = (g, ..., 0x) € ZX+! and define a
set of admissible deformations

D:={¢p € H™(Q,Q), det(D¢p)>¢€, p=1 on 9N}, 4.3.1)
for a fixed (small) € > 0, which consists of C' (€2, Q)-diffeomorphisms [Cia88, Theorem 5.5-2].
Remark 4.3.1. The case ¢ = 0 is discussed in Remark 4.3.8.

Considering ® € ZX+1 as time sampling at times %, k =0,..., K, of a smooth curve (79),56[071]
and ® = (¢1,...,0K) € DK as relative flow (¢, = ¥ o ;') and using forward finite difference
- k=1

K
approximations we obtain the discrete version of the Eulerian velocity vy, = K(¢p — 1) and 2, =
K (det(Da¢y )0 o ¢, — V1) for the discrete first order source term. Furthermore, by using central finite
differences we define the discrete acceleration

ar, = K*(¢r110 ¢ — 21, + 1) (4.3.2)
and
’lf]k ::KQ (det(D<¢k+1 o ¢k))19k+1 (e] ¢k+1 (¢] (bk -2 det(D(bk)’l?k 0] ¢k + 19]{71) (433)

as the discrete version of the second order source term. Following [BER15, EKP*21], we consider the
discrete path energy

—2

K
K==
EXPOANO, ®]:=K > / |6 — 1*0k—1 + A (Wp (D) +v|D™ ¢ *) + —— 2| da,

k=13

where Wp(B) = |B*¥™ — 1|? is a simple elastic energy density, and 6, A > 0. Then, the discrete
counterpart of the spline energy is defined as

K-1
1 L
FADOA O, &]=— :/ k"1 + A (Wa(Day) + 7D axl*) + 5 g |* de, (4.3.4)
k=1g

with the energy density W4(B) := |B*¥™|*. Without loss of generality, and for the sake of clarity,
we shall assume from now on that 6 = A = 1, and omit both symbols from the indices. We note that
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ap € H™(Q,R%) by [IKT13, Proposition 2.19]. Finally, the regularized discrete spline energy is given
by
Fo5Ple, @] = FEP(@, @] + cEXP[O, 8.

As in the continuous time model we have interpolation constraints. Let I :=(iy,...,i,x ) be an index
tuple with 2 < JX < K, i; € {0,...,K} for j = 1,...,JK. We consider a JX-tuple IJ{( =
Wi ..., 19{] « ) and define the set of admissible image vectors

Ihm={©@ e I8 9, =0l j=1,...,J5} (4.3.5)

We are now in a position to define discrete splines.

Definition 4.3.2 (Discrete time regularized spline interpolation). Let ® = (¥o, ..., V) € ijlm Then
we set

F7 K@) := R Fo5P(@, ®|. (4.3.6)
S

A discrete time regularized spline interpolation of
J]} j=1,...7K 1s a discrete (K + 1)-tuple that minimizes F?’ K over all discrete paths in I

The presented discretization is valid in the case of natural boundary conditions, to which we will
restrict ourselves in the sequel We remark that in the case of periodic boundary conditions we make an
identification K = 0, K41 =1 and the sum in (4.3.4) goes up to K. For the discrete Versmn of Hermlte
boundary conditions we prescribe c;Sl qbl, oK = gZ)K, ug = ug, U = ug and 21 = 21, 2g = Zx for
given ¢y, ¢y € D, g, Uy € T and 21, 2 € L?(Q,RC).

Next, we follow ideas from [EKP'21] in order to prove the existence of discrete spline interpola-
tions. The following lemma is the analogous result to [EKP*21, Lemma 1] and we only state it for
completeness.

Lemma 4.3.3. There exists a constant C which only depends on ), m, d and , such that

N|—

16 thinioy < € ([ WoDe)+olD" o)
forall p € D.
Proof. An application of the Gagliardo—Nirenberg inequality [Nir66] yields

1 =Wl gm0y < Cll¢ — Ll 20) + ¢ — Lpm(q)) - (4.3.7)

The last term in (4.3.7) is bounded by

_ /Co
To estimate the lower order term on the right hand side we use Korn’s and Poincare’s inequality and write
¢ — Ll 20y < Clleld] — Ll 20y < C/Cy 4.3.9)
Thus, the lemma follows by combining (4.3.7), (4.3.8) and (4.3.9). ]

The analogous result holds for the boundedness of acceleration:
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Lemma 4.3.4. There exists a constant C which only depends on ), m, d and , such that

BO[—

lallgm @) < C </Q WA(Da)+’y]Dma\2d$>

forall € D.

Proof. An application of the Gagliardo—Nirenberg inequality [Nir66] for bounded domains yields
lallzm ) < Clllallr2@) + lalamq)) - (4.3.10)

The last term in (4.3.10) is bounded by

lal gmay < /<2, (4.3.11)

with C, == [ Wa(Da)+~|D™al? dz. To estimate the lower order term on the right hand side we use
Korn’s and Poincare’s inequality and write

|| ”LQ(Q < CHE HLQ < C\/ (4312)
Thus, the lemma follows by combining (4.3.10), (4.3.11) and (4.3.12). ]
Now, we show the well-posedness of (4.3.6).

Proposition 4.3.5. For every K € N and every image vector ® = (¥, ..., 0k) € Ilﬁm there exists a
deformation vector ® = (¢1, ..., ¢r) € DX such that

FoRP[@, @)= inf FPP(O, ).
®cDK

Proof. Let {®7} ey C DX be a sequence for which it holds FolP@, &) < FoK .= FolP[@, 1]
and lim;_, F7*P[©, @/ =inf 4 ., F**P[©, ®]. By Lemma 4.3.3 we have

1 _
b) FO’K
167, — 1]l rma <c</wD D¢J)+7]Dm¢7|2da:> <c\/  VjeN k=1,...,K,

where the constant C' only depends on Q,m,d, A and . Thus, {®/ }jen is uniformly bounded in
H™(Q,Q)%. Due to the reflexivity of this space, there exists a weakly convergent subsequence (for
the sake of clarity, we will assume it has the same label) such that ®/ — & in H™(Q,Q)%. By the
compact Sobolev embedding, we have &/ — & in C1*(Q, Q)X for a € (0,m — 1 — £), which gives us
that & € DX.

Analogously, we recall that by [IKT13, Proposition 2.19.], a’ is in H™(Q, Q)% for all j € N.
By Lemma 4.3.4, we obtain the boundedness of {a’};cy in H™ (12, Q)%=1, and similarly as before, a
weakly convergent subsequence satisfying a’ — a in H™(Q,Q)* ! and a/ — ain C1*(Q, Q)51
Here, for every j € N we have a’ = (a], ... , @) _,) given by (4.3.2). From the strong convergence of
deformations we have that aj, = K?(¢p41 0 ¢p — 2¢ + 1) forall k = 1,..., K — 1. Using the weak
lower semi-continuity of the H"*-seminorm and the continuity of energy densities we have for all k, as
Jj — oo:

lim inf | @), grm > || o, lim inf |ad| m > Jag| gm, (4.3.13)
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IWo (D)) = Wo(Dop Iy, Wa(Dai)lpay = IWa(Da)li), (4.3.14)
/](Z)i—]l|219kdx—>/ o — 120 d, /\agwkdx %/ |ay| >0y, da (4.3.15)
Q Q Q Q

To handle the rest of the terms we show that for all ¥ € Z we have det(D¢’)d o ¢/ — det(Dg¢)d) o ¢
in Z for {qu}jeN € D with ¢ — ¢ in CI(Q Q) as j — oo. To see this, we approximate ¥ by smooth
functions {9 };cny € C(Q, Q) with || — 9?[|z — 0. Then, using the transformation formula we obtain
|| det(D¢? )9 o ¢ — det(Dep)d o ¢||z
< [|det(D¢")(9 © ¢ " 0 @) |2+ det( DY) (9" © 6= 0 §) 1
+| det(D¢? )P o ¢ —det(D)I o ¢||z

<119 31| det( D)1 3c gy + | det (DY) [ )+l det( D) 0 &7 ~det( D) o b2
+ [l det(Dg )’ o p—det(D@)J" o ¢||z

~. .1
< 9 = 3|1z (|| det(D")| 7

1 ~. . .
11 det(D6) 7 g ) + DTl e | det (D) | oy 167 — Dl 22qey

+ || det(D¢’) — det(D)|| oo 0| det(D(6 ™)) 17w o) 10" 1 - (4.3.16)

By first fixing ¥ and then choosing a suitable j, we have that this expression converges to 0. Hence, for
every k = 1,..., K we have || det(Ddy )k o ¢ — ﬂk,lﬂzjgm‘jﬁm | det (D¢ )0k © ¢, — p—1]|z-
Furthermore, since ¢k 410 @1 — i1 0 Py strongly in C1¥(©, Q), we can prove the analogous estimate

| det(D(drr1 © ¢))Vns1 © Prgr © b — 2det(Dop)x © b + Vp—1llz = limjoo || det(D( 110
1)) 0kq1 0 B yq © @), — 2det(Dey )0y o ¢y, + V1|7 for k = 1,..., K — 1, which together with
(4.3.13)-(4.3.15) finishes the proof.

]

In the next step, under suitable conditions, we prove that there exists a minimizing vector in Z
(4.3.5)) for a fixed deformation vector & € DX.

adm (see

Proposition 4.3.6. Let K > 2, I]If and ® € DX be fixed. Assume that the deformations satisfy, for
every x € §Q,
Caet > det(Dog(z)) >cqet >0, k=1,..., K. (4.3.17)

Then there exists a vector of images ® &€ I(fjm such that

FoED@, @) = inf Fo 5Py, @),
vel

adm

Proof. Let {®7} jen € Iﬁlm be an approximation sequence such that

lim Fo5P[@) & = inf F”KD[V ®] < FokD,
J—ro0 vezk

Here, Fo.K.D = Fo.K.D [, ‘I’] < oo represents a finite upper bound for the energy with the vector of
images 9 satisfying 9 = 9! for 0 < k < iy, V), = 19 fori; <k <i;4pwithl <j < JE — 1 and
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@k:’ﬂ{]KfOI‘Z'JK S/{?gK

193]l < || det(D¢k+1)19i+1 o drr1 — Vhllz + || det(D¢k+1)l9i+1 o prt1llz

| sFo. KD 1 j
= FK +Cdzet||19?c+l||z’

. _1 . _1 . . .
194112 < e | det(Dons)0y 00nsa 2 e (| det(Dos) 00 =0 Jz+[19] )

(4.3.18)
-5 (,/6FoKD j
<ot (VERZ +19]1z).
from where we have, by induction, that {1% }jen is uniformly bounded in Z for every k = 0,..., K. By

the reflexivity of Z, there exists a subsequence (not relabeled) such that 19{C — 9J;, for some © € Iﬁlm. It
remains to verify the weak lower semi-continuity of the matching functional, i.e. we have to show that

| det(Déw) ik o é — di |7 < liminf || det(Dox) 9}, o dr — 3, |7, (4.3.19)
| det(D(¢pi1 © dk))Ths1 © Grr1 © i — 2det(Dey) Uy 0 by + 1|17
< lim inf || det(D(@r1 © k)01 © By © 0 — 2det(Dor) o o + 9L, |7, 4320

foreveryk=1,...,Kandk =1,..., K—1, respectively. To this end, we will first show det(ngk)ﬁi o
¢ — det(Dey )V o ¢y, in Z. Indeed, for every 7 € Z, the transformation formula yields

/ det(Doy) (9% 0 ¢p, — Uy, 0 ¢y,) - nda = /(79?; —9)(2) - n(¢y () dz,
0 Q

which converges to 0 since 7 o ¢;1 € 7 due to (4.3.17) and the weak convergence 79‘,7; — ;. Hence,
V5.0 =04 — Ur0odr—Vk_1 in Z, which readily implies (4.3.19) and by applying the same technique
in a nested fashion we get (4.3.20). Since |¢y, — 1|2, |ax|? € L=() C Zforallk =0,... K — 1, we
also obtain

/ |1 — ]1\2191_1 dz —>/ |pr — ]1\2?91%1 dz, / ]ak]219i_1 dz —>/ \a;ﬁﬁk,l dz.
Q Q Q Q

Altogether, we have
FoEP@, @] < liminf F75 P07 @],

Jj—00

from where the optimality follows. 0

We are now in position to show the existence of discrete time spline interpolations.

Theorem 4.3.7 (Existence of discrete time spline interpolations). Let K > 2. Then for every ij( there
exists © € Iﬁlm such that

FoX @] = inf FoK[@].
Oczk

adm
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Proof. Consider a sequence {®7},;cy € IE,  for which it holds lim; ., FOX[©7] = mf@eﬂfi
FoK[©] < Fo K, where Fo-K := FoXP[©, 1K), Here, 9, = 9(L£,-) for k = 0,..., K, where J
is a smooth in time curve with J(3,-) = u] forevery j = 1,..., J¥. Then, we have

K K-1
pok.D[gh 1K] :JKz/ [Opr — O [2dz + K3y / 0, — 20, + 05,2 da
k=0 "5 k=179
<C (/ﬂ @\%{1((071)) + ]5@12((0,1)) dr + 1> , (4.3.21)

where the constant C' is independent of K. Furthermore, for every j let F*X[@7] = Fo5-P (@7 &7,
where ® € H™ (£, ) are the optimal deformation vectors guaranteed to exist by Proposition 4.3.5.
Using the above uniform bound, we may proceed as in the proof of Proposition 4.3.5 to obtain weak
convergence of {®7};cn in H™(2, Q)% and strong convergence in C1(€, Q)X to some ® € DX.
Furthermore, we once again have ai — ay, in H™(Q,Q), and strongly in C*%(Q,)), where a; =
KQ(gka o ¢ — 2¢; + 1) and estimates from (4.3.13) and (4.3.14) are satisfied.

By Proposition 4.3.6 we may replace ®7 by an energy optimal image vector (which would not increase
the spline energy) for every j € N. We assume without loss of generality that @7 are already the optimal
image density vectors, and following the same arguments as in (4.3.18) we conclude that {®7} jeN 18
uniformly bounded in Z, containing a weakly converging sequence (not relabeled) that converges to
some ® € Z. By the weak convergence ®/ — © and the strong convergence ®/ — &, we obtain the
estimates in (4.3.15). Finally, we verify the estimates

| det(Dx)ds 0 6 — Dp-a[[F < liminf || det(Dg}) o o o, — 712

| det(D(dp+1 © Pk))0p41 © ¢k+1 o ¢y, — 2det(Dy) Iy, o ¢p, + Vp—1]7
< J J V9T o AT 2
_hjxgggfndet( (67,11 0 01)) 9941 © By © 1 — 2det(DG] ), 0 ¢ + 9, |13,

forevery kK = 1,..., K and k = 1,..., K — 1, respectlvely To that end, it is enough to show

det(DqS])ﬁj o qﬁj — det(Dqﬁk)ﬂk o Ok and det(D(¢! ka1 © ¢1)) Vg © ¢k+1 o ¢ — det(D(¢g41 ©
Ok)) V%41 © Pr+1 © ¢ in Z. To see this, we first take into account the decomposition

det (D)9 o¢h—det(Dey)dy0h), = det(Del) (9 ogl—Iy, 06\ H{det( D) )0k opl—det( Dy )0 by -
(4.3.22)

The second term is handled as in (4.3.16). It remains to consider the convergence properties of the first
term. For a test function 7 € Z we obtain using the transformation rule

‘Amwdwbﬁ—mw@mm=/w ) ()~ () de.

The right hand side converges to O due to the strong convergence 7o (qu )yt = o (gbk)_ in I and 19?% —
Iy in 7 for j — oo. Flnally, one relterates the above argument replacing ?9] by det(DgZ)k +1) J41© gbi: Iy

which yields det(D(¢y, ; o qﬁ])) bt ¢k+1 o (bj det(D(¢gr1 © Pk))Iks1 © Gpa1 © ¢y in Z. This
proves our claim and finally proves the theorem. O

Remark 4.3.8. The results of this section remain valid for any W satisfying conditions (W'1) — (W2)
from [EKP121]. Furthermore, let us observe the case when 1j = K -t; and 19ij = uf fort; € [0,1] and
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1931- € Zforeveryj=1,...,J (cf. (4.2.1) and (4.3.5)). Then for every large enough K (depending on u]I
and ¢;) one can show the existence of the discrete time spline interpolation even if € = 0 in the definition
of the admissible set (4.3.1). Indeed, by (4.3.21) we have that Fo-K is a fixed finite upper bound for the
discrete spline energy, independent of K. Then, using Lemma 4.3.3 and the Sobolev embedding theorem
we have

Fo.K
K

(ax, (1o = Llora <O max |¢x —Lam@) < C

By the Lipschitz continuity of the determinant we have

o, K

_ oo <
k:H117a}fK H det(D¢k) 1HL Q) = C <1,

-----

4.4 Temporal Extension Operators

In this section, we define the suitable time extensions of the time discrete quantities from the previous
section in order to allow the study of spline interpolations.

Let K > 2,7 = &, tF = kaorkzo,l,...,Kandtfil = (k£ i)r,fork=1,...,K and
2

k =0,1,...,K — 1, respectively. Consider a vector of images @% = (9, ... ,0%) € 7K+l and a
vector of deformations ®% = ( {( ey d)%) € DX, We first define the (incremental) discrete transport

path y& by yl* = y¥(t,-) for t € [0,tX], y& = y£(t,-) for t € (t;i(,lvtk[i;] withk =1,..., K — 1,
2 2 2

and yX = yK(t, ) fort € (tﬁ_%, 1], where

t t—th_

and, fork=1,... K —1

K K 1 t_tk’K—l K (t_t’lﬂ(—l)z K K K
ye () =y (6) =14 | 5+ ——— ) (&% _]1)+T22(¢k+1°¢k — 20K +1). (44.1)

This can be seen as a cubic Hermite interpolation (see [de78, Chapter IV] for details) on intervals
(t5 | +K ], and an affine interpolation on [0, t{] and (tﬁ, 1, 1]. In particular, observe that yX (t5 | ) =
2 2

k— é? k+3 p 3 ) k-1
1 1+¢] . . —1
+2¢’“ and y (tfJr L )= M, with the corresponding slopes Ok = and

(¢§+1_ﬂ)o¢£{ . P .
—=——=, respectively. This is sketched on Figure 4.1 left.

Next, we define the image extension operator 05 [@% ®K] ¢ L%(]0,1],7) as 05 [©F, ®K|(t,z) =
9K (t, ), where

t
det(Dy, )9 0y =0y + ~(det(De1 )91 0 o1 =), t € [0, 1],
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t—th_
det(Dyf )0f oy =0y + ——— (det(DR)IR 0 o — V1), t € (t 1],

2

and, fork=1,...,K —landt € (¢ | t&X ]

k—21"k+3
b=t
det(Dyf)9E oyl = 9E | + 5+ % (det(DE)IE o oK — 9k ) (4.4.2)
(t— tK 2

+ g (det(D(G1s1 © 61))0i © B © 61

—2det(Dép )08 o dr + I y).
It is well defined if the spatial inverse of y/ exists. The existence of this object, which we denote by =<,
follows from [Cia88, Chapter 5] if det(Dy/<) > 0, which is guaranteed if || Dy — Llcoq) < cfora
small enough constant ¢ > 0, the latter being satisfied in Section 4.5 (see (4.5.3)).

The discrete velocity field v € L?((0,1),V) corresponding to the discrete transport path (y/* )te[o,l]
is given by

1 1
= ;((ﬁ{(—]l)’ UtK = ;(ng_]l)?

fort € [0,t5] and t € (tﬁi 1, 1], respectively, and
2 2

K
t=1" 1

1
vt = ;(qbfffﬂw —— (90 0f — 20 +1),

fort € (tkK 1’tkK+ ] with & = 1,..., K — 1. The corresponding discrete acceleration field a’* €
L?((0,1),V) is given by af = aff = 0fort € [0, tK] and t € (tﬁ_l, 1], respectively, and, for
2

te(tfl,thr]Wlthk—l ,K —1,by

1
aft == (0k41 00 — 20 +1).
We define the velocity and the acceleration along the incremental transport path by

vtK = vtK o ItK, dtK = af o xf (4.4.3)

Now, the discrete flow given as the map (¢, z) — ¥} (x) is defined recursively by
U=yt e 0,65] v =yt o te (G bt U=t ol s te (e gt
(4.4.4)

_1 1
2 2

Following the same arguments as in [JRR23, Section 5], one shows that (4.4.4) is well-defined in the
sense of equations (4.2.12) — (4.2.13), i.e., for every x € Q and ¢ € [0, 1] we have

O =0 ol Y (2) == (4.4.5)
OF =af ot (4.4.6)
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Figure 4.1: Left: Schematic drawing of the Hermite interpolation y,f (x) (blue) on the time interval
[(k — 1)/K, (k + 1)/K] together with the discrete acceleration af (z) (red). Right: Image extension
oK [@F, ®X](-, ) along a path (yf< (2))¢efo,1]> plotted against time. Dots represent the values 9K,
k = 0,...,K, and crosses the “half-way” values %(19? + 9K ),k = 1,..., K, along the discrete
transport path.

Based on this, the first order scalar weak source term of (95 )te[0,1) can be defined as the absolute value
of the time derivative along the paths ¢ + 1 (z) with

1
det(Dyj; )z oy, = —| det(D1 )91 o 61" — 95 |, € [0, 117),
1
det(Dyg )2 oy, = —| det(Do) iy 0 6 — Vi, t € (t_s.1],

and, fort € (t& | t5 ], k=1,...,K —1,

k=17 k+1
1
det(Dy[)f oyl = |~ (det( DS I o off Vi) (44.7)
t—ti
k=3 K K\ 9K K K
t—a (det(D(dp 1 0% )Vt © Prvr © Pk (4.4.8)
—2det(Dgf )0 o 6 + 9K ) ) (4.4.9)
For the second order scalar weak source term, we have, for t € [tf:ﬁ 1, tﬁr W k=10, K -1,
2 2

1
det(Dy;" Jwi oy, = — |det(D(¢1i41 © 65 ) Vi1 © $iivr © 61 — 2det(D )0 0 6 + 934,
(4.4.10)

and wf* := 0 elsewhere, which is the absolute value of the second time derivative of 9 = X [@F K]
along the path ¢ — ¢/ (z). Indeed, as in [ENR20, Proposition 9], one verifies that (z/),c[o,1) and
(w )te[o,1) are admissible in the sense of equations (4.2.14) and (4.2.15), i.e.,

t
[det(DU)II 0 6l — det(DUE)0 0 wl| < [ det(Dul): 0wl ar, Ws <t € 0,1)
| det(DYE )0 0wl — det(DUF NI 0 wff — det(DYI )08, 0 I, + det(DE)9E o v

T t
g/ / det(DYS w0k didr, V7, s+7 <t+71€(0,1].
0 s
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Let us finally notice that these quantities, together with the image extension operator (4.4.2), can be
defined in an explicit manner by using the inverse transport path (z}< )te[o,l]-

Remark 4.4.1. For periodic boundary conditions, we use the cubic interpolation definition on ¢ &€

(e i k+ | fork =1,..., K, with the convention K = 0, K +1 = 1and (X _ 1,t§+ =X _,,1Ju
2
[0, tff].
2
Finally, we define the extension of the energy F7X to a functional Fo* by
FoE[9] = inf inf {FOEP@K &K . uKeFf, K] = v}, (4.4.11)

OKecIK+1 K DK
if there exists such ®%, X and +oco otherwise.

Lemma 4.4.2. If for a fixed image path 9 € L*([0,1],Z) there exist a vector of images OFr ¢ 7K+
and a vector of deformations ®% € DX such that 6% [@K oK | = ¥, the infimum in (4.4.11) is attained
for some (©F, ®K) ¢ TK+1 x DK,

Proof. The existence of an infimum follows from the continuity of the constraint 6% [QJK , &K = ¥ with

respect to the weak convergence of @ and strong convergence of ®.
O

4.5 Convergence of Discrete Splines

In this section, we study the Mosco-convergence (see Definition 2.4.1), as K — oo, of {F7%} gen,
the extensions of the time discrete regularized spline energies, to the time continuous regularized spline
energy F°. As a corollary, we also obtain the convergence of the corresponding minimizers: the time
discrete regularized spline interpolations converge to a time continuous regularized spline interpolation.

Theorem 4.5.1 (Mosco-convergence of the discrete spline energies). Let o > 0. Then, the time discrete
spline energies {Fo X} e converge to F7 in the sense of Mosco in the topology L?((0,1),T) for
K — o0. In explicit

(i) for every sequence {95} en C L%((0,1),Z) which converges weakly to ¥ € L?((0,1),Z) as
K — 00, it holds lim inf i, o FOE[E] > Fo[9] (“lim inf-inequality”),

(ii) for every ¥ € L?((0,1),Z), there exists a sequence {9X} ey such that 95 — 9 in L2((0,1),T)
as K — oo and limsupy_, ., FOK[WE] < Fo[9] (“the existence of a recovery sequence and
lim sup-inequality”).

Remark 4.5.2. The above result holds for any choice of W satisfying assumption (W1)—(W3) from
[EKP*21], though we restrict ourselves to the special case Wp =A™ — 1|2,

Remark 4.5.3. In the case of periodic boundary conditions the same applies in the topology L?(S!, T).
The proof only requires minor alterations.

Proof. We will prove the conditions separately and split the proofs into respective steps.
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Proof of the lim inf-inequality

(1):

(ii):

Construction of the flow and image intensity quantities.

Suppose we have a sequence {9} ey C L2((0,1),Z) such that 95 — 4 in that space, as
K — oo. To avoid the trivial case of an infinite limit, we suppose that FoX [9K] < F < oc.
Then, by definition (4.4.11) and Lemma 4.4.2, for every K large enough, an optimal vector of
images ®% ¢ ZK+! and a corresponding optimal vector of deformations ®% € DX exist, such
that

,ng _ 91([@[(7 @KL .FU’K[’ﬁK] — FJ,K,D[@K’ @K]

For the vectors of images ©X and the vectors of deformations &% we define the discrete velocity
and acceleration, v,ﬁ( and akK , respectively, and the discrete source term of the first and the second
order, éf and w{f , respectively, as in the previous section. Using Lemmas 4.3.3 and 4.3.4, we
obtain

1

k_m,waHm 1 e <CK ™2, (4.5.1)
K B 1

et llalore@ < CK2, 4.5.2)

and hence, by the definition of the discrete incremental transport path (4.4.1), we have

3 1
mase |3~ Ulono@ <5, mox 16~ Lono + gz _max_ lafllcroay
C(K’E + K 2). 4.5.3)

This implies that y/< converges to the identity in C'*(€2, Q), uniformly in ¢, and that it is invertible
for all t € [0, 1] and every large enough K. Moreover, from (4.5.3) and the smoothness of the
inversion, we have

1
lzf Nl crag@ < 1+C (k:HllaXK o8 = Loy + i Kg”akK”cmm))
<1+C(K 2+ K 2).

Thus, we are able to define all the temporal extended quantities introduced in Section 4.4.

Proof of the actual inequality.

Using the definition of the discrete acceleration w,f (¢f. (4.3.3)) and its time extension wtK

(cf. (4.4.10)), together with (4.5.3) and the locally Lipschitz property of the determinant func-
tion, we get

1
. . el
Klg}r(l)@/0 /Q(wtK)QdQUdt—KllgéO E // 12 | det(DzF) ik o K2 dt dz
-2
— 1 k+2 ~K 2 DK
A E // |wy, |“ det(Dzy*) dt dx

1
2
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1 K-1
= lim — Y [ [&f*dz.
K—oo K Q
k=1
K K

Using the same ideas, together with 2% < [det(Dzf)2f o 2f| + }|det(Dzf )0k o
(cf. (4.4.7)) on every subinterval, we have

1
li d dt<1 = det(D d K1
Kl_r>noo/0 /Q(zt x im_ Z/| et(Dxf) 2 o aK P da 4 C
_1
Kh_I}n()OZ/| 2dz 4+ CK™2

%&xz/'

This implies the uniform boundedness of {2} ey and {w}xen in L2((0,1) x Q), and, by
reflexivity of the space, the existence of weakly convergent subsequences (with the same labeling)
to z and w, respectively. Then, by the weak lower semicontinuity, we have

||Z||%2((0,1)x9) < li}gn_)iéqof HZKH%?((O,I)XQ)? Hw||L2( 0.1)x0) = hmmf [’ ||L2( 0,xq): (434)

Using Korn’s inequality 2.2.11 and Poincare’s 2.2.9 inequality, we get

K—

/ /|a{<y2dxdt Z/“?/\ K2z dt < IC(Z/WA (Dalf)dx < CF,

k=1
K—-1
1 __
/ /|Dm dxdt—Z/ /ypmak 2dzdt < ZK/Q|Dma§|2dx§Cf.
k=1

The analogous estimates are obtained for v and D™v¢, with the additional use of ’vt |vk ] |

\a K| on every subinterval. Hence, by the Gagliardo-Nirenberg inequality, we have that {v" } xen
and {a®} ken are uniformly bounded in H™((0,1), V), and they have the corresponding weak
limits v and a in that space.

We compute the Taylor expansion of W ((t — tfﬁ 1)2Daf(t,-)) around t£ ,, evaluated at t =

1>
3 k=3

K
thr%,toget

1

1
D?WA(0)(Dak, Dal¥) + rfk = i tr(elal]?) + rfk. (4.5.5)

ﬁWA(DCLkK) =

1
2K*4
For the remainder term, we have X, = O(K~5|Daf |3), and by using Lemma 4.3.3 and (4.5.2),
we obtain

K-1
. C 3—
3 K K2 -3
> K [ rifear < 5w o H@(Wijuak By SCKTHF. (456)
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Then, we use weak lower semicontinuity of the energy to write

liminf — Z / Wa(Dal) 4+ ~|D™ak|? dz (4.5.7)

K—oo

—hmlan/tr e[af]?) + v|D™ak)? dz

K—o0

zliminf/ /tr(s[af]2)+’y]Dmaf(]2dxdt

K—o00
/ / tr(e[a]?) 4+ v|D™al? dz dt. (4.5.8)
Analogously, the Taylor expansions of Wp(1 + (t — ¢, 1 )DvE(t,-)) around ¢, 1, evaluated at
o1, fork=1,..., K — 1, and correspondingly for the intervals of size %, give
2

K—oo

K
limianZ/ WD(D¢kK) + ’Y‘Dmd)kK 2
k=179

K—
:l}(ﬂl_)lglof/gﬂ((tr(s[ KJ2) 4 4| D™y ? ;_: 2) 4 | Dk P

(tf( [o]%) + 4 D™of ) da
:liminf/ /tr e[vE)?) + v| D™ |2 —|——(tr( [v} ]2)+7|DmvtK|2) dz dt
K—oo
/ /tr 3 + 4| D™v|? dz dt, (4.5.9)

where we once again used that ‘vt v H +|af | on every subinterval.

For the optimal transport terms, it holds

1
lim / /|a{<y%9§<dxdt
K—oo 0 9]

1
= lim / /|atKoytK]2det(DytK)ﬁf<oyt dz dt

K—oo

< lim Z/ /|at oyKPPWE |+ Ok |+ CK 20 dz dt

K—oo

K
< hm (1+CK™! Z/ lal o yK POk | dadt
=1 th -1

Q2

(laf I* + ClIDaf | colyf — Lllgo) 95 dadt
t

2

K tif
< lim (1+CK™!
< pmoeorhy [
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(iii):

. 2 —1\ 9K
gKlgnool—erK Z/ / laf >+ CK z)ﬁk,ldxdt
< lim. (1+CK™2) Z/ /|a 29K | dzdt

< . 2
< lim Z/mk OF | dadt,

where we used the definition of the image extension operator, the fact that al o yf < aff +
| Daf||collyf — 1||co and equation (4.5.3). The analogous inequality for the first order term
follows completely analogously.

Finally, it remains to show that the estimates

1 1
/ /|vt]2q9td:cdt§liminf/ /|v{<2z9{<dxdt,
o Ja
1
/ /|at]219tdxdt<hm1nf/ /|a 29K dz dt (4.5.10)
0

hold. This is a direct result of the weak Z-convergence ¥ — 1 coupled with the strong C1“-
convergence v — v and a® — a.

Altogether, (4.5.4), (4.5.8), (4.5.9) and (4.5.10) give

lim inf FOK [9X] = lim inf FOFP [@F | @K

K—oo K—o0

1 1
> / lag|*0 + Llag, az] + 5117,52 +o (]vt|219 + L[vg, ve] + 62t2> dz dt.
Q

Proving the admissibility of the limit of the discrete velocities and acceleration fields, and the
discrete first and second order source terms, respectively.

In this step, we show that the limit objects v, a, z, w are indeed corresponding quantities for the
image curve 9, i.e., (v,a,z,w) € C[¥] and they satisfy relations (4.2.12)—(4.2.15). Once again,
we limit ourselves to the second order quantities here.

By [Fiol7, Propositions 1.2.4 and 1.2.7], we have
155 @) < Cllvi lore@ (1 + 12 leney + 125 16 )
K 1
||at ||cla(Q) < Clla; ||cla (1+ ||~’Ut ||cla @ T H‘Tt ’acta(g))) (4.5.11)

where /€ and @< are defined by (4.4.3). In particular, this implies the uniform boundedness of
{55} ken in L2((0,1), C1¥(Q, R™)). Then, applying Remarks 4.1.2 and 4.1.3 to (4.4.5), we have
that {¢/%} ey is uniformly bounded in H! ¢ C%2([0,1], C1*(%,)). Furthermore, by the
compact embedding of Holder spaces (cf. Corollary 2.2.15), we have, for all mm( a)> >0,
that % — 4 in C%8([0, 1], C1#(Q,Q)). To show that 1 is indeed the solution corresponding

. K . . . . .
to v, we consider ¢V, the solution corresponding to v’. By the weak continuity of the solution
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operator mapping velocities to the flows (Theorem 4.1.1), we have 1" — ¥ in C°([0, 1] x ).
Furthermore, by Remark 4.1.2, we have the Lipschitz continuity of the solution operator, and
using the spatial Lipschitz property of v together with (4.5.1), we have % — 1/1”K — 0 in
C9(]0,1] x Q), finally confirming that 1) = ".

To show that the equation &t = ay o ¥y is satisfied, first observe that (4.4.6), i.e., 1#{( = ELtK o wtK ,
ensures the uniform boundedness of {1/% } xcxy in L2((0,1), C1*(€, Q). To this end, we used
the uniform boundedness of {a’} ke in L2((0,1), C1%(Q,Q)), following from (4.5.11), and
the uniform boundedness of {1/%} xcn in C°([0, 1], C1(Q, Q)), together with the estimate on
composition of Holder functions [Fiol7, Propositions 1.2.4 and 1.2.7]. Together with the previ-
ous paragraph, we conclude that {¢)} rcy is uniformly bounded in H2((0, 1), C**(Q,)), and
converges weakly to 1 in H2((0,1), C1#(Q,9)), and strongly in C1#([0, 1], C*?(Q,Q)), for
mm(;,a) > 3 > 0. In particular, we have that ¢» € H?((0,1),C"?#(Q,Q)) and a¥ o ¥ =
UK — 4pin L2((0,1) x Q). Hence, it suffices to verify a® o)X — go)in L2( ,1) x Q). Since,
by the proof of 4.3.7, we already have a’* o ) — @ o in L2((0,1) x ), we conclude the proof
by checking that @’ o & — a® o & — 0in L2((0,1),C%(Q, Q)). Indeed,

HdKOwK OwKHL2 01 C’O(Q))

K—

k+d o
Z/K o gl — aff ol 2o
k=1 k%

K—-1 K

k
<CY [ ol N I (1) — Lo
tK

<Ol sy, Clm))( max, [off = gy + o | K- 2of g

-----

<CK IHCLKH Cl(ﬁ))a
where we used the Lipschitz property of af, the transformation formula, and finally, (4.5.1) and
(4.5.2).

In order to show that z and w are indeed scalar weak source terms of J, first observe that, from
9K — 9 and Y& — 1, by the proof of Theorem 4.3.7, we obtain det(Dy™)9% o p& —
det(Dv)¥ o ¢ in L%((0,1) x ), and analogously det(Dy5)zK o & — det(D1))z o 1) and
det(Dy™)w o & — det(Dy)w o 1). Next, note that, for s, € [0, 1], we have

t
| det (D)0 o 6 — det(Dup)9X 0 X2 <[t — 5| / / (det(DYE) =K 0 )2 de dr
s Q

< Clt = sl12% 122 (0,1yxe) < Clt = sl

where we used Jensen’s inequality, the transformation formula, and, finally, the uniform bound-
edness of {¢)%}xen and {25} ey in the spaces C1A([0, 1], CHP(Q,Q)) and L2((0,1) x Q),
respectively. Thus, {det(Dy )9 o &} gey is in C2([0,1],Z), where w(t) = Ct2 for some
constant C' depending on the corresponding norms of v and z. Then, by the the weak closedness of
this setwe obtain det(D)d o1 € C9([0, 1], T). Further using the properties of this set, we have
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that, for every Q C Q, the functional b Ja 1begr () = by () — beyr () + bs(2)| daz is continuous
on CY([0,1],7) and convex, which implies weak lower semicontinuity. This finally gives

19D )17 0 e = et (D)0 o = Aot (D s
+ det(Ds)s 0 Y| dx

< lim inf / | det(DYS )0 - 0l — det(DY[)IF ol — det(DpE 0%, o vk |

+ det(DyE)9E o X dz

gnminf// /det DyE Ywk, opE  drdide

K—oo

= /~/ / det(D¢r+l)wr+l Olbyur[ drdldz.
QJ0o s

Since this holds for any Q C Q, we have that w is the second (scalar) weak source term for ¢}. The
proof of z being the first weak source term is analogous.

This finally finishes the proof of the lim inf-inequality. We now state a corollary of the preceding proof
that shows that the infimum in (4.2.11) is actually attained.

Proposition 4.5.4. For 9 € L?([0,1],Z) with F°[J] < oo there exists an optimal tuple (v, a, z,w) €
C[V] such that

1
Fo) = / |9 + Lla, a] + %wz +o <]’U!2'l9 + L[v,v] + (1522) dz dt.
0

Proof. The functional F¢ is coercive by Korn’s inequality 2.2.11 and Gagliardo-Nirenberg interpolation
estimate 2.2.10, and it is clearly weakly lower semicontinuous. Since C[?J] is a subset of a reflexive
Banach space, then we just have to show the weak closedness of the set. This is verified as above. O

Proof of the existence of a recovery sequence and the lim sup-inequality

(i) Construction of a recovery sequence.

Consider an image curve ¥ € L2([0,1],Z) with F°[¥] < oo. Then, the previous proposition
guarantees the existence of an associated optimal velocity field, an acceleration field, and the first
and second order weak (scalar) source terms, denoted by (v, a, z,w) € C[J], respectively, such
that

! 1 1
:/ / lal*9 + L]a, a]—i-ng - a(v|219 +L[v,v]+5z2> dz dt.
0JQ

We define
O =y tK—zbtKowtK yk=1,... K, (4.5.12)

k—1'"k

where 1) is the flow associated with velocity v and y¥g = 1 (¢f. (4.2.12)). We have

K
a -1 o < S -1 _
k:Hll}fK o ”Cl(ﬂ) a It—SIL;I;(—l 1.1 ler@)
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(i)

< sup /HvrowTHHm
|t s|<K-1
sup ’UTHHM(Q) dr
|t s|I<K— 1
<CK} sup /|u,ﬁ||Hm(Q o <or—EJF, @5.13)
t—s|<K—1

by Lemma 4.3.3 and Cauchy’s inequality. For the second inequality, we used [BV17, Lemma 3.5]
which states that

or 0 Wl gy < Cllonl| e (4.5.14)

Thereby, for K large enough, we have &% € DX, and we are in a position to define
K _ pKiK &K K ._
9t =07 [0, e, OF = (19t5<,...,19t§),

where the point evaluation in time is possible since 99 € C1([0, 1], Z) (cf. Remarks 4.2.5).

Proof of the actual inequality.

The arguments for the estimates and the convergence of the first order terms are the easier part
of the proof, so we shall focus only on the second order terms; the first-order terms can be then
trivially obtained. In what follows, we state those for the reference and present more detailed
arguments for the second order terms.

First, we are able to relate the discrete second order source term u?,f ,k=1,..., K — 1 given by
(4.3.3) and its continuous counterpart w, via

[ 1k P da
[9]
_ K / [ det (D1 0 B0 0 6f5y 0 6 — 2det(DF)IK 0 6 + 9k | da

_ K4 / | det(Dibye g Wy 0wy e — 2det(Difye )y 0wy e + Ve [P d

17 k+1 k+1 k—17

_K4/Q‘det(D¢t;§+1) K owtK _Qdet(DwtK) tKowtkK

k+1

+det(D¢tKl)19tK Owtk ‘ det(DwtK )_ dz
2
< K* / ( / / det( D¢r+s)wr+50¢r+sdrds> det(Dihc ) 7' da

< K2/ / / det DwtK r+s) 'lpr_}_&té(_l) dzdsdr

<K21+CK_7 / / / T+8dxdsdr

Here, we first used (4.5.12) and the transformation formula for the second and third equalities,
respectively, then the variational definition of the second order source term (4.2.10) for the first
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inequality, and, finally, Jensen’s inequality and (4.5.13) in the last two estimates. Averaging the

above expressions over k = 1,..., K — 1, we obtain

K-

1 1
1 / 1 [x [IT=x )
— lwE?de <K(1+CK 2)/ / /wr sdxdsdr
R & AN

o [E [
K(1+0K—z)/ //wfdxdtdr
0 0 JQ
1
g(1+0K%)//w§da:dt. (4.5.15)
0 JQ

Completely analogously, we show

K

1 .

EE /Q\z dx_K§ /\detD¢k)z9k ol — 9K [Pdx
k=1

1+0K—% //zfdxdt. (4.5.16)
0 JOQ

Next, we express the discrete acceleration af ,k=1,..., K — 1in terms of its continuous coun-

terpart a:
= K*(¢fi 10 0 —20% +1)
= K2(¢tK K 2¢tK 1K +1ﬁtk Lt )

k—1""k+1 k-1
i 0 1/ft1<1 dt)

tK

I

9 k+1 . 1
=K Pt o 1/th dt —
te t

( / / Jrer 007 drdt)
(/ / at+Toz/;tK17+Tdet>, 4.5.17)

where in the second equality we used (4.5.12), and in the last equality (4.2.13). Then, using the
Cauchy-Schwarz inequality and (4.5.14), we obtain the following estimate

t+27 9
/t s 2mc ds

The same Taylor expansion arguments as in (4.5.5) and (4.5.6) now imply, together with (4.5.18)

1
2

(4.5.18)

1

2 sup
t€[0,1], O<T<K—1

K _
g ol oy < OK

)

/WA(DCL?)—F’meakKQd:E S/L[af,a§]+CK_2|DakK\3dx
Q )
S/L[ak,ak |de + CK™2 \/]-"U (4.5.19)
Q
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Applying Jensen’s inequality twice on L, and taking into account (4.5.17), we get

/ LiaX, a du
Q

N 0ok
:/QK L /K / at+Towt§_17t+Tdet, /K / at+70¢t§_l7t+7d7dt dz
t& Jo t& Jo

ok
2
</K / / L[at_,_Tol/)tK s Qtr 0 Uy ,m} drdtda.
Q ti{ L 0 k—1 k—1

We now estimate the summands of L individually. For the first term, we use | tr(AB)| <|tr(A)|+
|tr A(B — 1)|, (4.5.13), and the transformation formula, to get

K1
o tr (5[@ o ]2) drdtdx
X i O K tr
/s Jo
ok 2
< tr(satTowK T))
/ /K [ (o

+tr ((5[%—1-7] 0 Py t+r)2(€[¢tk}(_l,t+7’}2 _]1)) drdtdz

k-1
worw 2 ! 2
<// / tr (elag4-]*) +CK ™2 tr (elags,)°) drdtda.
QJtE Jo

For the second term, we use (4.5.13), (4.5.14) and the fact that for any 0 < m < m and f €
H™(Q,R"),g € H™(,R") we have | fgllgn@)y < Clflam@llgllamg) IKT13, Lemma
2.3], implying

|at Owtﬁl,t’Hmm)

< |Day o ¢t§_1,t|H’”*1(Q) + || Dat o wtf_l,tD(djtK t ]l)HHm—l(Q)

k—1°

< |[Dag oy (lam-1(0) + Cllaclgmo b o = Llam e

< [Day oty ylgm-1(0) + Cllatl pmo) K2

By iterating this argument and applying a change of variables (under consideration of (4.5.13)),

we obtain
K K
F a0t Lo dt < [ ooy + Cllarl i K= dt (4.5.20)
. t tiilvt H™ () = )i tIH™(Q) til ™ () . D.
k—1 k—1

For the optimal transport term, we obtain

JAC R

4 t§> j% 2 I(
=& /Q /tK /0 Qt4r O ¢tkK_17t+T drdt| ¥, dx
k—1
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5 G S 2 .
<K // / (arer o Vs ir) O drdida
QJitk Jo v

e L
§K2//k /Kdet(Dz/JtK Vs 0 Ypr2 0 oy drdtds
Q ti(l 0 k—1 k—1 k—1
N
§K2(1+CK2)/ / /det(Dl/JH_T)|at+Toq/;t+7]219t+70¢t+7dxd7'dt
tk  Jo  Ja

2 -1 S 2
<K*(1+CK™2) B lasr|” Opir dz dr dt,
t£ Jo Ja

where we used the fact that det(D1);)9; o by € Cy([0,1],Z), and once again the local Lipschitz
property of the determinant and (4.5.13). In combination with (4.5.18) and (4.5.19), we have

K-1

1

e 2 [ 1K PO + WaDat) + 10" el da
k=1

< K/O;( /01;{ /ﬂ | ir |0 r + Llarir, atyr] + (’)(Kﬁé)dx dtdr
< /01 /Q |las|*9; + Llag, az] + O(K*%) dx dt.
Altogether, taking into account (4.5.15), we obtain
FRWK] < Fl) + O(K ).

This readily implies the lim sup-inequality for the pure spline part of the functional 7%, Analo-
gously to the above, we have

K 1
KZ/WD(D¢§)+7Dm¢§y2dx§/ /L[vt,vt]JrO(K%)dxdt,
179 0 Ja

which, together with (4.5.16), gives
XK < EW] + O(K7),
finally proving the lim sup-inequality.

(iii) Proof of the convergence of the recovery sequence.

As the final step, we are left to show that 9% — ¢ in L2((0,1),Z) as K — oo. To this end, we
introduce the piecewise constant interpolation

I, te [0,k
2
oK ={9K . te (tf_%,tkﬁ%], k=1,...,K —1,
K K
U 4, tE€ [tK_%,l].
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We will show -
95 — 9% 5 0in L°°((0,1), 7). (4.5.21)

To this end, for t € (tf L tk+ Jwithk =1,..., K — 1, we estimate

[0F — OF |17
< C (|| det(Daf ) (051 —det(Dg )05 ot Jowf |24 det (D )95y ozl — 974 [|7)

+ || det(Dzf) (det(D (6K 0pf))IE, 0, | 0pl —2 det(DOE )IE 0 pf +0E l)oxt [
< C(K_2||5k 72l det D[ oo 0,1y x) + K 07 1172 0 Il det Dz || oo 0,1y <)

+ 1l det(Dmf{)ﬂkK_l owy —ﬁkK—l ”%)

< O (K7 220 ayxey + OK 2 wla 0,1y + | det(Daf)0 yoal —0f |13
(4.5.22)
For every t € (0, 1), we can find a sequence {k(K)}xen such that ¢ € (tf:(K) 1, tkK(K)-o—l] for
any K large enough. As before, we uniformly approximate the sequence {ﬁk( K) } KeN by smooth
functions, and use (4.5.13) and (4.5.18), to prove

I det(Dmf)ﬁﬁK)floxf—ﬂkK(K)flH% — 0, uniformly in ¢.

Plugging this back into (4.5.22), we get (4.5.21). Furthermore, as {9% } xcy is a sequence of
piecewise constant approximations of ¥ € C*([0, 1], Z), we have that 9% — ¢ in L2([0,1],Z) as
K — oco. Thus, we can finally conclude 9% — o in L?((0,1),Z), as we wanted to show. This
finally finishes the proof of Theorem 4.5.1.

O]

As a corollary of the previous theorem, we are able to show the existence of the time continuous
regularized spline interpolation (¢f. Definition 4.2.6) as the corresponding limit of the time discrete spline
interpolations. To this end, let J > 2 and (tl, ...,ty) C [0,1] N Q be a sequence of fixed times. Then,
for infinitely many K € N, one can choose i zj K tj € Nforallj =1,...,J. Let (19§)j:1,...,J cT
be the set of constraint images at the corresponding constraint times (cf. (4. 2 1) and (4.3.5)).

Theorem 4.5.5 (Convergence of discrete spline interpolations). For every K that satisfies the above

condition, let 9% ¢ L2([0,1],T) be a minimizer of F°X among the image curves satisfying 9% =

K@K ®K] with 1925{ = 19]1- forall j =1,...,J. Then, a subsequence of {0™} ke converges weakly
i

in L*([0,1],Z) as K — oo to a minimizer of the continuous spline energy F°. This minimizer satisfies

Uy, = 19JI- forall j =1,...,J, and the associated sequence of discrete energies converges to the minimal
continuous spline energy.

Proof. Forj = 1,...,J,letn/ : [0,1] — R be smooth functions with nt = J;j. We define a smooth
interpolating curve of the fixed images J; := 57 =1 19[ Let OF = (19tK, e ﬂtx) and define 0% :=
oK [@K , 1X]. This image curve gives an admissible candidate for a minimizer of the functional F¥.
Indeed,

fcr,K[,gK] SFU’K’D[(:‘)K, ]lK]
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_O'KZ/ ’19K 195 1\2dx+K3Z/ ‘ﬁk+1_21§§+1§§71‘2dx
<C (/Q |1§|?{1((0,1)) + |1§\§{2((0’1)) dz + 1) =7

where the upper bound F is independent of K. As defined above, let {95 = 0K [@K &K|} ey,
where {(@%, &%)} ¢ are the optimal pairs for the discrete spline (see Theorem 4.3.7). In particular,
for K large enough, we have F@X[9X] = FoK[@K &X] < F. Then, from Lemma 4.3.3, we have
the uniform boundedness of {¢X } ey in C1*(Q, (), and, as in (4.3.18), we can show the uniform
boundedness of {z9kK }ken in Z, for every k = 0, ..., K. Furthermore, using the boundedness of the
discrete incremental transport paths, following from (4.5.3), we can show that {95} i< is uniformly
bounded in Z, uniformly in ¢ € [0, 1]. Therefore, {9"} x <y is uniformly bounded in ([0, 1],Z), and
a subsequence converges weakly to some 9 € L%([0,1],Z).

Let us show that 19t]. = 19JI- forall j = 1,...,J. To this end, we can analogously to (4.5.21) show
9K — 9K — 0in Z, uniformly in ¢ € [0, 1]. Together with 9/ — 9, in Z for every ¢ € [0, 1],we have
the needed result since @fj. = 195- .

Now, we follow the usual argument and assume that there exists an image path 0 e L2([0,1],Z) with
a finite energy, and ¥, = 191 forall j =1,...,J, such that F7[¥] < F?[1J]. By the lim sup-part of The-

orem 4.5.1, there exists a sequence {J% } Ken C LQ((O 1),Z) of time extensions of admissible vectors
of images such that lim sup_, .. FOX[95] < F[1J]. Now, we apply the lim inf-part of Theorem 4.5.1
to obtain
F719) < lim inf FoEW9E] < liminf oo F@E[0K] < FOL0), (4.5.23)
—00
which is a contradiction to the above assumption. Hence, ¥ minimizes the continuous spline energy over

all admissible image curves and the discrete spline energies converge to the limiting spline energy along
a subsequence, i.e., limg_,o, F@X [0X] = F7[0], which follows from (4.5.23) by using ¥ = ¥ O

The analogous result for arbitrary (t1,...,t;) C [0, 1] follows from the density of Q in [0, 1]. Let
us remark that, in light of Proposition 4.2.3, we have that for the optimal scalar quantities z, w it holds
z =2l and w = |w|.

4.6 Fully Discrete Metamorphosis Splines

To numerically implement splines for image metamorphosis we have to further discretize the space.
Here, we present a model for ¢ image channels and a two dimensional image domain € := [0, 1]? and
follow the fully discrete version of image metamorphosis introduced in [EKP*21]. Before presenting
the details of the space discretization, to avoid double warping in the second-order source term (4.3.3)
and to further increase the robustness of the model we explicitly introduce a vector valued slack variable
z € L*((0,1), L?(©2,R°)). This leads to a relaxation of (4.2.11):

1
Fo[9] = inf / / la|*9 4+ AL[a, a] + %]w\Q + o (|v]*9 + AL[v,v] + %\512)%]2 — 2|?dzdt,
Q

(Uza’évng) 0



4.6 Fully Discrete Metamorphosis Splines 91

with a penalty on the misfit of the new variable z and the actual first-order source term 2, while w is the
first-order source term of z, i.e.,

¢
det(Dy)0¢ o 1y — det(Da)g)ds 0 s = / det(D,) 2, o 1, dr,
¢
det(Dy)z, 0 Yy — det(Dps)zs 0 s = / det(D, )w, o . dr, Vs, t € [0, 1].

The time discrete counterpart F[@] is defined by

FX (@] = inf F5P@,z, @],
zeL2(Q,Re)K DK
where, for z = (z1,..., ZK) we write
K-1
FoR(0,2, 8= [ S (Wa(Dax) #1107 ?)+ K det(Dér)ans 0 61— 2
Q
k=1
K
+o | Y MEWp(Dér) + Ky D™ ¢y |*) + (ﬁ<|5k\2>
k=1
K
Z K (det(Dey)0, 0 dr, — 9p—1) — zx|” da.

Here, wy, := K (det(D¢y)zZx+1 © ¢ — Zx), while the corresponding second order source term is wk =

K(det(Dgf)k)ék_H o ¢ — 2k)
For M, N > 3 we define the computational domain

0. =] 0 1 M-11, [ 0 1 N-1
MN=\M—-1>M—-1"""> M—1 N—1'N—1>'"" ) N—1[°

with discrete boundary 9y x:=,x N A([0,1]%) and |97, =-L [9(x,y)||b. The
M

~MN (x%,y)EQMm N
discrete image space is Z,,y := {9 : Q,n — R} and the set of admissible deformations is

DMN::{¢ = (¢1a ¢2) Qi — [0, 1]2a P=10n0yy, det(Viyne)> 0} )

where the discrete Jacobian operator of ¢ at (x,y) € €, is defined as the forward finite difference
operator with Neumann boundary conditions. Here and in the rest of the paper we used bold faced letters
for fully discrete quantities. A spatial warping operator T that approximates the pullback of an image
channel ¥’ o ¢ at a point (x,¥) € Qun is defined by

T, ¢l(x,y)= > s(¢'(xy) —%)s(¢’(x,y) -9V (X,7),
(X,3)EQmuN

where s is the third order B-spline interpolation kernel. This form of warping is also used for composition
of deformations, i.e we define the fully discrete acceleration as an approximation of (4.3.2) by

al = KX(T[¢],, — 1, — (¢, — 1)), j = 1,2.
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In summary, the fully discrete spline energy in the metamorphosis model for a (K + 1)-tuple (95)5_ of
discrete images, a K-tuple (Zk)ff:l of discrete derivatives and a K -tuple (d)k)kK:1 of discrete deforma-
tions reads as

o, K . o,K,D —
Fin [(ﬂk)kK:O]:: g inf X Fyn [(ﬂk)llc{:Oa (Zk’)gzlv (¢k)§:l]
z€Lly v PED Y N
K-1

= inf Z%HWA(vMNak)HL}VIN+%DLN[21€’Zk?-‘rlu¢/€]

zeIﬁN,@eDﬁN 1

FY e (K Tl + ok,

+ W MN[ﬂk?_l’ Vi, Zr, ¢k] )

where

D;, [z, ZHdeth) 2 Rl

DY\ [9,9, 2, )= ZHK (det(DS)T[Y, ¢] — ) — 27|

2
L]MN

While in the spatially continuous context the compactness induced by the H"*-seminorm is indispens-
able, in this fully discrete model grid dependent regularity is ensured by the use of cubic B-splines. Thus,
we dropped the higher order Sobolev norm terms in this fully discrete model.

To improve the robustness of the overall optimization, we take into account a multiresolution strategy.
In detail, on the coarse computational domain of size M; x Ny with M = 2=(L=DAf and N, =
2~ (=1 N for a given L > 1, a time discrete spline sequence (ﬂk)szo is computed as minimizer of
F&KN subject to given fixed images ¥;; = 19JI- , 3 =1,...,J. In subsequent prolongation steps, the
w1dth and the height of the computatlonal domain are successively doubled and the initial deformations,
images and derivatives are obtained via a bilinear interpolation of the preceding coarse scale solutions.

4.7 Numerical Optimization Using the iPALM Algorithm

In this section, we discuss the numerical solution of the above fully discrete variational problem based
on the application of a variant of the inertial proximal alternating linearized minimization algorithm
(iPALM, [PS16]). Using this algorithm, effective optimization results were achieved for a wide range of
non convex and non smooth problems. In particular, it was already used for numerical optimization in
the context of the deep feature metamorphosis model [EKPT21]. Following [EKP*21], to enhance the
stability the warping operation is linearized with respect to the deformation at ¢!®) € D,y coming from
the previous iteration which leads to the modified energies

ﬁim[z,z,cb,cb“ﬂJ::;ciHdet(vMNd)[ﬁbT[iﬂ‘,¢[ﬁ]]+< A; (2,7, 617, 617 !

2
L]\IN

DY, [9. 9,2, 6,617 = 1ZHKdet (Vaux VT, 67+ (A (K0+2, KD, ¢17), 6~ 917
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(Kﬁj —i—zj HL2 ,

MN
with B » '
A;(9,9, 1) = 1(V,n det (V@) T[S, ¢7)] 4+ V7).
To further stabilize the computation, the Jacobian operator applied to the images is approximated using

a Sobel filter. Here, (-, -) represent the pointwise product of the involved matrices. We use the proximal
mapping of a functional f : D,y — (—00, 00| for 7 > 0 given as

1@).

ZW N

Then, with the function values on 0f2,,y remaining unchanged, the proximal operator we are interested
in is given by

pro 6] = g (5 o~

dEDMN

prOXTI‘S(D?”NJr 75 DN [¢t ]

- nm@mk\? CTQKZ\ARF (¢ - MZA (det(Vandy )Tl 0 0] - (A3 1
) MZA (det(VandlYTED], )1 (M%) 9~ K0, ~3]) ),

where A% = A(z, Ziﬂ’ 10 ’B]) and A%, = ANKY,_ +7], K9, [5]) The first terms in both brackets
are activated only for k < K.

The actual minimization F%g is performed by Algorithm 5. We used the following notation for the
extrapolation with 3 > 0 of the k** path element in the i*" iteration step

WO a1 4 8 A,
kil _ (pli+]] (4]
Rkl — (hy ket e i)
Jesd] [‘+1] [i+1] 7 (8] 4 [1] (2]

hBRI = (ny h,jl,h e hi),s
while the acceleration al®l is computed with correspondingly updated ¢!%/ values. Furthermore, IX is
the set of fixed indices (cf. (4.3.5)) and we denote by L[h] the Lipschitz constant of the gradient of the
function h, which is determined by backtracking [BT09]. The discrete deformations are initialized by

the identity deformation, the discrete images by piecewise linear interpolation of the key frame images,
while the discrete derivatives are initialized as differences of two consecutive images in the sequence.

4.8 Applications

In what follows, we investigate and discuss qualitative properties of the spline interpolation in the space
of images, being aware that the superior temporal smoothness of this interpolation is difficult to appreci-
ate with sequences of still images. For all the examples we use L =5 levels in the multi-level approach
and I = 250 iterations of the iPALM algorithm on each level with the extrapolation parameter 5 = %
For the first example M =N = 64, while for the others M =N = 128. Also, for all examples we used
K = 8. For plotting the resulting images we clip the values to [0, 1].
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Algorithm S: Algorithm for minimizing F%\f
1 fori=1todo

2 |fork=1to K do
/* update deformation x/
3| o =" - o Ve (oK||WD<vMN¢Lﬁ*”>HL}M + & IWa(Taval )+
k
WA(VMNaLﬁ_Jb ||L}LIN> 5
[i+1] _ KDY v+ s Dl ity
4 ¢, = proxL“[d)gﬁN ROTMN (@]
/* update derivative x/
i ; 2 FU’K’D 19[]6,2] =[8,k,1] [k+1,0]
5 ZL+H _ ZL,B,} . Vz, Fan [ a[; o ];
Lz, |
6 if k ¢ IS then
/* update image ny
o,K,D il = i i
7 9t — Bl Vo, Fain [ }a‘z[kﬂ’ L gt ]].
o L))

All examples in this chapter have been inspired by the numerical experiments from the previous chap-
ter. In Fig. 4.2, we have three Gaussian distributions with different mass as keyframes. In the unbalanced
spline case, mass is first annihilated in the first half, and then created again. This helps keep the intensity
constant in time, unlike in the classic Wasserstein case. Fig. 4.3 depicts one Gaussian distribution that
splits in two and drift apart in different directions. Unlike the experiment in the previous chapter, we are
now allowed to have each Gauss distribution have the same mass (and hence, the latter frames will have
more mass than the first frames). Once again, the unbalanced transport spline looks more natural, as the
density modulation to keep mass constant is no longer necessary. Finally, Fig. 4.4 shows the equivalent
"circle-annulus” example from the previous chapter. Once again, a spline is possible to be computed

even if keyframes have different masses.
Figure 4.2: Top: Classic Wasserstein spline between three Gaussian distrbutions. Bottom: Unbalanced
transport spline between three re-scaled Gaussian distributions.
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Figure 4.3: Top: From left to right, the key frames represent a single Gaussian, a pair of vertically
displaced Gaussians of half the mass, and the vertically displaced configuration rotated by —7. Bottom:
From left to right, the key frames represent a single Gaussian, a pair of vertically displaced Gaussians of
with each having the same mass as the left, and the vertically displaced configuration rotated by —7.

Figure 4.4: Unbalanced transport spline (top) and classic Wasserstein spline (bottom) of three key frames

with constant density on an annulus for the first and constant density on a disk for the second and third
(framed in red). The keyframes at the top have different masses.

spline

spline
(classic) (unbalanced)

(1€
o|0
olo

olo
aaQ

Acknowledgements This work was partially supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) via project 211504053 - Collaborative Research Center 1060 and
project 390685813 - Hausdorff Center for Mathematics.






5 Entropy-Regularized Optimal Transport in
Information Design

5.1 Information Design and the Moment Bayesian Persuasion
Problem

In this section we will rigorously formulate the moment Bayesian persuasion problem. Let (D, D, v)
be a probability space, where D C R? is compact and convex, D is its Borel c—algebra, and v is a
probability measure which is assumed to be absolutely continuous with respect to the Lebesgue measure
L. For later usage, we assume throughout this paper that the Radon-Nikodym density % € L>(L).
The state of the world w is a realization of a random variable that is distributed according to the prior v.
An informed sender wants to persuade an uninformed receiver to take an action that the sender prefers.
The receiver’s optimal action depends on her information about the state, and initially she only knows
that the state of the world is distributed according to v. The sender, who knows v and observes the
realization of the state of the world w, may reveal information to the receiver about the realized state.
This revelation may often be strategic if the goals of sender and receiver are different. For example, if
the state is represented by a one-dimensional random variable, the sender could reveal to the receiver if
the realized state is above or below a certain threshold but provide no additional information — this may
be better for the sender than revealing all information.

Specifically, the sender commits to an information policy (S, ), where S is a measurable space, P(.5)
is the space of probability distributions on S, and 7 : D — P(S). If the sender commits to information
policy (S, 7) and if the realized state of the world is w, the receiver observes the information policy and
the realization of a random variable with values in .S that is drawn according to the probability distribution
7(w). The prior v and the information policy 7 induce a joint probability distribution v on D x S defined
by y(E x T) := [pm(w)(T)dv(w) for any measurable sets E C D, T C S. After seeing a realization
s € S, the receiver updates her beliefs about the state of the world according to Bayes’ rule to a posterior
belief given by v(- x {s}|D x {s}) € P(D), which is a regular conditional probability measure of ~.
This posterior belief determines the receiver’s optimal behaviour and implicitly the sender’s payoff. The
expected value of the posterior belief is called the posterior mean; therefore, each information policy
induces a probability distribution over posterior means.

As an example, consider the fully revealing information policy given by S = (D, D) and 7(w) = .,
where §,, denotes the Dirac measure at w. Under the fully revealing information policy, the random
variable observed by the receiver equals the realized state of the world with probability 1 and hence the
receiver perfectly learns the state of the world. For an example of a partially informative information
policy, let {Bj, ..., By} be a partition of D, S = ({1,... ,n},2{17"""}), and 7(w) = 0; if w € B;.
Under this information policy, the receiver learns in which partition element the realized state lies, and
updates her prior belief accordingly.

In the moment Bayesian persuasion model it is assumed that the sender’s payoff from inducing a
posterior belief depends only on the posterior mean, and is given by an upper semicontinuous function

97
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® : D — R. Note that, in reduced form, this formulation allows for the sender’s payoff to depend on an
action taken by the receiver. To characterize the distributions of posterior means that can be induced by
some information policy we use the following stochastic dominance concept.

Definition 5.1.1 (Shaked and Shanthikumar [SS07], Cartier et al. [CFM64] and Phelps [PheO1]). For
measures v and p, we say that v dominates p in the convex order (or that p is a fusion of v/), denoted by
v = p,if [¢dv > [ 1) dp for all convex functions 3 for which both integrals exist. We write v > p if v
dominates p in the convex order and v # p. We denote by F,, = {p : p =< v} the set of fusions of a given
measure .

Any information policy necessarily reveals weakly less information than the state of the world and
the generated distribution of posterior means is dominated in the convex order by the prior. Conversely,
for any probability measure p =< v there exists an information policy that generates p as its probability
measure of posterior means (see Blackwell [Bla53] and Strassen [Str65]).

Therefore, instead of modeling the sender’s choice of an information policy we can assume that the
sender directly chooses a probability measure that is dominated in the convex order by v. The sender
chooses such a probability measure to maximize her expected payoff, and therefore solves the problem

max/ O(y) dA(y). (5.1.1)
D

AEF),

This is the information design problem in the focus of this paper.

To deduce qualitative properties of solutions, let us recall some basic concepts of convex analysis. An
extreme point of a convex set A is a point y € A that cannot be represented as a convex combination of
two other points in A. Le. y € A is an extreme point of A if y = aw + (1 — a)z, for w,z € A and
a € [0, 1] jointly imply that y = w ory = z.

The Krein—Milman Theorem states that any convex and compact set A in a locally convex space is the
closed, convex hull of its extreme points. In particular, such a set has extreme points. The usefulness
of extreme points for optimization stems from Bauer’s Maximum Principle, which states that a convex,
upper semicontinuous functional on a non-empty, compact and convex set A of a locally convex space
attains its maximum at an extreme point of A. An element y of a convex set A is called exposed if there
exists a supporting hyperplane H such that H N A = {y} or, equivalently, there is a continuous, linear
functional that attains its unique maximum on A at y. Every exposed point is extreme, but the converse
is not true in general.

The set of fusions F,, appearing in the above maximization problem is convex and compact in the
weak™ topology of measures. As the objective is linear in the measure A\, a maximum is attained at one
of the extreme points of F},. It is thus of interest to further explore the structure of extreme and exposed
points, and we focus here on those measures that have a finite support.

For any measure p on D and a measurable set B C D, we denote by p|p the restriction of p to B.
As stated in the following theorem a key feature of any extremal measure in F) with finite support is
that there is a partition of the domain D into convex sets B such that all the original mass restricted to
B, v(B), remains within B and is fused into a measure p|p whose support is an affinely independent set
of points.

Theorem 5.1.2 (Kleiner et al. [KMSW24]). Let D C R" be compact and convex, and let v be an
absolutely continuous probability measure on D. Suppose that p is an extreme point of F,, with finite
support. Then there exists a finite partition P of D into convex sets such that, for each B € P, p|gp =< v|p
and p|p has affinely independent support.
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The above result generalizes a unidimensional result found in Kleiner et al. [KMS21] and Arieli et al.
[ABSY23]. In fact, more precise information is available about the geometric structure of the following
subset of extreme points.

Definition 5.1.3. A measure p € F, is a Lipschitz-exposed point of F), if there exists a Lipschitz-
continuous function ®: D — R such that p is the unique solution to the problem

max / D(y) dA(y).

AEF,

The following theorem provides a characterization of Lipschitz-exposed points with finite support
using Laguerre diagrams, also known as power diagrams, see Aurenhammer [Aur87]. Given an n-tupel
X = (z1,...,z,) of pairwise distinct sites z; € R? and a weight vector g = (g;,...,g,) € R, the
associated Laguerre cells L;[X, g] € D are the convex polyhedra

LiiX.gl={yeQ:ly—ml —g <|ly—az;"—g; V 1<j<n}, (5.1.2)
fori =1,...,n. The ensemble of all Laguerre cells forms the Laguerre diagram.

Theorem 5.1.4 (Kleiner et al. [KMSW24]). Let D C R"™ be compact and convex, and let v be a
probability measure with full support on D that is absolutely continuous with respect to the Lebesgue
measure. Let p € F,, have finite support. Then p is a Lipschitz-exposed point of F,, if and only if there
exists a Laguerre diagram P of D such that, for all probability measures \, if A, < v|r forall L € P
and supp(\) C supp(p) then A = p.

In particular, p € F, is a finitely supported Lipschitz-exposed point if there is a Laguerre diagram
such that for each Laguerre cell L with non-vanishing measure v(L), the relation p|; < v|z holds and
if the support of p|y, is affinely independent. Indeed, in this case \|;, < v|z implies that A|z and p|,
have the same mean. In turn, this implies that if supp(\) C supp(p) and if the support of p is affinely
independent then p|;, = A|L.

For any compact convex set in a normed vector space, the set of exposed points is dense in the set
of extreme points of F;, (Klee, [KJ58]). Therefore, to optimize a continuous linear objective functional
on such a set, it would be sufficient to optimize over the closure of exposed points. In the following,
we will focus on the subset of exposed points that are Lipschitz-exposed and where, on each cell L of
the corresponding Laguerre diagram, the mass within the respective cell is fused to a unique mass point.
These extreme points have received considerable attention in the Economics literature in one-dimensional
settings (see for example Dworczak and Martini [DM19] or Ivanov [Iva21]). They are simple to use in
practice because they can be implemented by only revealing, for a partition of the state space into convex
sets, in which partition element the realized state lies. Finally, the relation to Laguerre diagrams makes
these exposed points numerically tractable. Our computational method derived below focuses on solving
the sender’s problem among such exposed points.

5.2 The optimization task

Motivated by Theorem 5.1.4 we discuss in this section the optimization problem (5.1.1) of moment
Bayesian persuasion as an optimization over Laguerre partitions along with a relaxation strategy. At
first, we study the case where the sender commits to an information policy induced by general partitions.
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To this end, we consider a probability space (€2, D, ) on a compact and convex domain Q C R? for
d > 2, equipped with a probability measure v € P(2) on the Borel-o-algebra D, which is assumed to
be absolutely continuous with respect to the Lebesgue measure £ with Radon-Nikodym density % €
L>(L). For fixed n € N, let (B;)i=1,..n C D be a v-partition of €, i.e. v(B; N Bj) = 0 fori # j,

information policy w : D — P(S), with m(w) = §; € P(S) if and only if w € B;. After receiving the
signal realization i € S, the receiver updates her belief to the posterior y(- x {i} | D x {i}). It holds that

_ Jpr{iPdv(w) _ [pls (W) dv(w) v»(BNB;)
Jpmw){iP) dv(w)  [p1p(w)dv(w) v(Bi)

For any non-v-null set B € D, we define the v-barycenter

_ Jpy dv(y)
v(B)

V(B x {i} | D x {i}) — u(B|B,).

b[B] :

The v-barycenter of B; coincides then with the mean of the posterior v( - | B;). To conclude, the posterior
mean distribution generated by the information policy  is given by > ;" ; V(Bl-)éb[ B, € Fy. Inthis case,
for a continuous function ¢ : 2 — R the functional (5.1.1) takes the following explicit form:

| > u(B)®(B[BI]). (5.2.1)

Now, in the light of Section 5.1 we focus on partitions described by Laguerre diagrams. In this case,
we may optimize the cost functional (5.2.1) directly on the parameters (X, g) describing Laguerre cells

FalXogl= > miX gl®milX, g)), (52.2)
nzl:[)l(’,g]’go

where m;[X, g| == v(L;[X, g]), and b;[X, g] := b[L;[X, g]] (cf. equation (5.1.2)), to be maximized over
n-tuples of pairwise distinct sites X, := {X = (z1,...,2,) € (Rd)n cx; € RY, xy # xj for i # j}
and weight vectors g € R™. Note that Laguerre cells might be sets of vanishing measure. Since Laguerre
cells are by definition a v-partition of €2, the set of associated characteristic functions xr,(x g of the
Laguerre cells L;[X, g] fori = 1,..., n forms a partition of unity of ,i.e. >_;  xr1,x,g = 1 ae.in
). We define the power diagram associated with an n-tuple of sites X and a weight vector g as

L[X, g = (XLl[X,g}v e 7XLn[X,g])~ (5.2.3)

Along maximizing sequences for the functional F,[-, ] it might happen that subsets of Laguerre cells
collapse, or that sites as well as weights diverge. Here, the notion of power diagram as partitions of unity
helps to deal with these degenerate cases. At first, we obtain the following relative compactness result:

Lemma 5.2.1. The set & = L(X,, x R") is relatively compact in L*(v)" and any limit of a converging
sequences in £ is a partition of unity a.e. on ).

Proof. Let v be trivially extended onto R? with density 0 outside 2. Each non-empty Laguerre cell
L;[X, g] is convex and its boundary in the interior of € is polygonal and consists of at most n — 1 planar
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interfaces. Each of these interior interfaces has at most a H%~! measure diam(2)?~! inside of Q. Thus,
for h € R we observe that

XL (- — 1) = Xpxgllniw) < (n—1) ]9, diam(Q)?"h.

This, together with the compactness of €2, implies by the Fréchet-Kolmogorov theorem the relative com-
pactness of L(X,, x R") in L'(v). Let (X*), C A, and (gF), C R™. Since Xr,[x* gk = 0 outside
Qany L' (v)-limit of (xz,(xk gk])i=1,...n for k — oo is of the form (x',...,x") € L'(v;{0,1})" and
suppx; C Q. Finally, |37, X = 1 = limg oo || > ie1...n XLixk gk] — [z = 0 and thus
(Xl, el X”) is a partition of unity. ]

Let us denote by .Z“ the closure of .# = L(X, x R") € L*(v;{0,1})". For L¢ = (x',...,x") €
Z¢ we define the relaxed functional

FalL] = > mx] 2(bx) (5.2.4)

where we define with a slight misuse of notation the v-mass m|[x] = fQ x dv of a characteristic function
x and its v-barycenter b[x] := m[x] ™" [,  x dv for m[x] > 0. Let us remark that some of the x* in L*
(but not all) might have zero mass m/[x’]. For this relaxed functional we obtain the following existence
result of a maximum.

Theorem 5.2.2. Assume ® to be a upper semicontinuous function on ). Then F;, attains its maximum

on L°¢.

Proof. At first, we recall that upper semicontinuous functions on compact domains are bounded from
above. Let ® denote the maximum of ® on 2, which exists due to the upper semicontinuity of ®. Let

( i:(XIlm-._aXZ))ngcgc

be a maximizing sequence of (5.2.4). Due to the compactness of £, we obtain that, up to the selection
of a subsequence, (x4, ..., x%) converges in L!(v) to a limit L¢ = (x!,...,x™). Foralli € {1,...,n}
with m[x?] = 0 it holds that m[x}] — 0 for ¥ — oo and thus m[xk]q)(b[xi]) < m[x}]® — 0. For
m[x'] > 0 the sequence of barycenters (b[x}]) ren converges to bl ?]. Taking into account the upper
semicontinuity of ®, this implies that lim supj,_,, ®(b[x%]) < ®(b[x']). Altogether, we obtain

limsup F5[Lf] =limsup Y mlx}i] 20xi) < Y mlx'] @(b[x]) = Fy[L].
k—o0 k—oo =7 i=1,...,n
m[x7;1>o m[x?]>0
Hence, the relaxed functional F;; attains its maximum on .Z’¢ at L°. O

Example 5.2.3. Letd =2, D = [0,1]2, v = Land ®: D — R,y s ®(y) = — [[>_, ly — i|?, where
Yy = (%, 4) Yo = (%,%), and y3 = (4, 4) Then, the unique maximizer of (5.2.4) lies in Zc\g
Indeed, max,cp ®(y) = 0, so we obtain

FalL] = Z mx'] 2(b[x']) <0,
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for all L¢ € £°. On the other hand, let B; = [0,1] x [0, %}, By = [%,1] X [%,1], and B3 =
[0,2] x [3,1]. Then, B == (xp,)i=1,2,3 € -£¢\ .Z. Clearly, as the interfaces B; N By and By N B
build an angle of 7, then B ¢ .¥. However, let x; = (%, i), 5 = (% + €, %), 5 = (% — €, %),
and g = 0. Then, L((z1,25,25)) — B in L'(v) as € approaches zero. Hence, B € ¢\ ¢, and
by the definition of @, it holds F5[B] = 0, so by the previous inequality it is a maximizer. Moreover,
it is the unique maximizer, since any maximizing measure needs to be supported in {y1,y2,y3}. Let

W= Z?Zl m;d,, be any such measure. Then, it must hold

my +mg +m3 =1
mi1yi1 + may21 + msys1 =

1

2
miYi12 + MaY22 + M3Ys2 = %7
with the unique solution m; = %, mg = m3 = i. The only element in .Z¢ satisfying the mass and
barycenter conditions is then given by B (up to v-null sets).

Remark 5.2.4. The relation to the concept of stochastic dominance is as follows. As an upper semicon-
tinuous function, ® is a v-measurable function on (). Given a polyhedral partition of €2 into Laguerre
cells (L;[X, g])i:l,“.,n’ one may collapse the mass of each cell at its barycenter. This induces an atomic
probability measure

pi= > milX g dxg

on 2. Recall that a probability measure v dominates a probability measure p in convex order if and only
if Ex oy [®(X)] > Ex.,[®(X)] for all convex functions ® : R? — R such that both expectations exist.
By Jensen’s inequality, this indeed holds for the initial probability measure v and the atomic probability
measure p considered here. Hence, in our ansatz we consider the expected value of the given function ¢
with respect to an atomic measure associated with some power diagram L and maximize this expected
value over all atomic measures induced by power diagrams L°.

To avoid the relaxation, one might consider hard constraints to ensure that pairwise distances between
sites and cell masses do not vanish in the limit along a maximizing sequence. Alternatively, a penalty
formulation can be used as a more robust and effective alternative. To this end, we define for a penalty
parameter 7 > 0

Fl(X,g) = Fu(X,8) —1Ru(X, g), (5.2.5)

where the penalty term R, is given as

iX7 AX7
RiXg) = Y [b-efuxa@am s Y MEEURE 6o

i=1,...,n 1<i,j<n | — ]

i7j
my [X,g],nLj [X,g]>0

Here, the cell masses as scaling factors and the characteristic functions of cells as weight functions are
to be understood as the natural scaling of the corresponding penalty terms. In particular, we observe a
stronger penalization of the drift of sites away from the associated cell and the fusion of pairs of sites in
case of larger cell masses.

It might happen that in the limit along a maximizing sequence (XV,g"V)y C &} x R! of ]-'Z7 for
some [ € N Laguerre cells collapse and the effective number of cells decreases. The following existence
theorem takes this into account.
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Theorem 5.2.5. Let us assume that ® € C(Q) with maximum ® on D. Then, for given number of sites
| € N there exists an n < I, such that a maximizer (X*,g*) of F, exists with m;[X*,g*|] > 0 for
i=1,...,nand F(X*,g*) > sup(x ) F/' (X, g).

Proof. Consider a maximizing sequence for 7. Since m;[X”",g"] € [0,1], and b;[X",g"] € Q for
m;[X,gN] > 0, we may assume that, up to the selection of a subsequence, the sequences of masses
and barycenters converge to limits m; and b}, respectively, and that there exists an n < [ with m; > 0 if
and only if ¢ < n. Then, we obtain

sup .7-';7(X,g) hm ]:”(XN N) < lim sup F;(X ,gN) — nl%vrgiglole(XN,gN)

(X.g) N—o0
< limsup F,, (XY, g") + lim sup Z m [ XN, g b;[XY, g™))
N—o00 N—o00

— nliminf R,,(XY, g") — nlim inf (RZ(XN, gV) - R (XY, gN))
N—ro0 N—ro0
= lim F,(XY,g") +0 -7 lim R,(XY,g") — nliminf (R;(X",g")
N—o0 N—o0 N—o0

—Rn (XY, g"))
< lim F, (XN, g™) -9 hm Ro(XY,g™) = lim F,(XY,g™)—nR,. (XY, g"V)
N—oo N—oo

— 1im FxXY,g).
N—oo

Hence, if it exists, a maximizer of F,, attains a greater or equal objective value than a maximizer of ]-'l".

Now, let (X", gV)y C &, x R™ be a maximizing sequence for 7] and in analogy to before assume
that m;[X", g™V] and b;[ X%, g"] have limits m} > 0, and b} € D fori = 1,...,n, that /(X" g")
is monotonically increasing in N and that m;[ X", gV] > %mj Consequently, for ® being the maximal

value of ® on D the estimate

_ ‘XN N
R0 <uD)B | 3 /\y—xz xp g i)+ 3 X ’g il bl
1<i,5<n .] ’
i#]
<d-— Z dist 2 ymg +f Z (5.2.7)
Z 1y LN 1<zg<n
i#]

is obtained. This implies the following a priori bounds:

2(® — F(X0, g" mim;
dist(mﬁV,Q)g\/( Ful ,g))’ |;cN—a;N‘Z\/4((i) " J

] ~ FIXO. )

for all V. For the uniform bound on g, recall that g and g+ A1,, both induce the same Laguerre diagram.
Hence, we may assume without loss of generality that g{v = 0forall N € N. Then, limy_, o gév =0
for j = 2,...,n would imply limy_,, m1[X", g"] = 0, which contradicts our choice of n. Similarly,
limpy o0 gj = —00 would imply limpy o0 m; [XN , gN | = 0, which again is a contradiction. Hence,
lg™| < C for some C' > 0 and all N € N. Finally, given these a priori bounds, the existence of a
maximizer of F, follows directly from the WeierstraB extreme value theorem. 0
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5.3 Semi-discrete optimal transport revisited

In the previous section we stated existence results of maximizers of the sender’s revenue over the class of
Laguerre partitions. To compute these optimal Laguerre partitions we recall in this section the connection
of Laguerre diagrams to solutions of semi-discrete optimal transport problems and the associated dual
formulation.

In optimal transport theory, one considers optimal couplings IT € P(Q x Q) € U(u,v) of two
probability measures i, v € P(2). Here, U (1, v) is the set IT € P(Q x ) with II(A x Q) = p(A) and
(2 x A) = v(A) for all Borel sets A C Q. For the given cost function (z,y) — |z — y|?> on Q x Q
measuring the cost of transport from x to y on €2, a coupling II is optimal if it minimizes

W2[u,v] = inf / x —y|? dll(z, y). (5.3.1)
(11, V] et ng‘ y|” dll(z,y)
The functional WW(u, v) is called the 2-Wasserstein distance and defines a metric between the probability
measures 4 and v in P () (cf. [Sanl5, Chapter 5]). In semi-discrete optimal transport the measure f is
assumed to be a discrete (empirical) probability measure, i.e.

o= Z mlémz

i=1,...,n

with Zi:l,...n m; = 1 and m; > 0. The minimization of (5.3.1) is a constrained linear minimization
problem and denoted the primal Kantorovich problem. As such, it can naturally be paired with a con-
strained linear maximization problem as the dual problem, the dual Kantorovich problem [AG13, Section
6.1]. We obtain

W2, v] = Sup m - g—i—/f ) du(y (5.3.2)
(fg

where m = (mq,...,my), g = (g,...,8,), and

R={(fg) €CQ) xR": f(y)+g < |zi—y|*foralli=1,...,n}.

For given g € R™ we obtain for the optimal f which is consistent with the constrained condition (f, g) €
R that f(y) = g(y) for all y € D with
C o _ 2 _

(y) = 11213 ly — i — g;. (5.3.3)
Given the C-transform gC : Q — RP one can reformulate the dual Kantorovich problem (5.3.2) as the
unconstrained convex program

2
W=, v] = Iax Dlg] (5.3.4)
Dlg] :=/gc(y)dv(y)+m‘g= > / (ly — l* — g)dv(y) + m - g, (5.3.5)
Q i=1,...n L;[X,g]

where L;[X, g] are the Laguerre cells associated with the weight vector g and the vector of fixed sites X
defined in (5.1.2). Hence, solving (5.3.5) for v and m consists in finding a Laguerre cell partition of 2
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described via the weight vector g € R™ with cells centered at the given X, and with m = (m;)i—o,... »
and m; = m(L;[X,g]) foralli € {1,...,n}. In what follows, we will need to differentiate the functions
JF defined in (5.2.2) with respect to the weights g;. For the differentiation of D(g) we obtain

04, Dlg] = — /Q XL, [X.g V(y) +mj. (5.3.6)

If g* is optimal for (5.3.4), it holds

mj = /S)XLj[X’g] dv(y). (5.3.7)

5.4 Entropy regularization

Let us recall that our goal is to maximize the function F, via an optimization of the Laguerre cells
L;[X, g] described in terms of the sites z; and the weights g; for j = 1,...,n. In general, changing
the sites and the weights fosters topological changes in the diagram’s topology, leading to a challenging
combinatorial optimization problem. To avoid this, we introduce in this section the entropy relaxed
optimal transport formulation [PC19] of the associated semi-discrete optimal transport described in
Section 5.2, which will allow us to derive a computationally efficient algorithm to optimize over Laguerre
partitions and thus solve the moment Bayesian persuasion problem numerically. An extensive overview
on entropy regularization of optimal transport is also given by Chewi et. al. in [CNWR24].
We begin by considering the regularized Wasserstein distance

W2l o] = inf / e(@,y) dTI(z, y) + eKL[T[¢] (5.4.1)
Heu(u,u) {$1,...,£L‘n}><Q

with transport cost ¢(z, y) = | — y|? from z to y and for a regularization parameter £ > 0. We consider
ameasure £ € P({x1,...,2,} x Q) with suppp ® v C suppé for p and v as above, and we define the
Kullback-Leibler divergence

kL) = [

log (dH<x, y>> dl(z, y) + (dé(a,y) — dTT(z,y) (5.42)
{z1,.. 0y } XQ d¢

between the measures I and ¢ in the case that I1 is absolutely continuous with respect to &, and otherwise
KL[II|{] := co. The Kullback-Leibler divergence is a concave functional measuring the dissimilarity of
the measures II and £ and acts here as a regularizing entropy functional. The standard choice for £ is
¢ = p® v. In fact, as long as the above support property holds the functional in (5.4.1) only changes by
an additive constant and hence, the minimizer remains the same. To simplify the optimization algorithm
for an entropy regularization of the functional 7" defined in (5.2.5) £ = N ® L is a particularly suitable
choice where N' = 3 i=1,m dz; is the counting measure on the support of ;1 and L the Lebesque
measure. For this choice we proceed as follows.
Associated with the constraint optimization problem (5.4.1) is the Lagrangian

s [

QxQ

B ( [ ) NGy~ /Q 1) dv(y)) - < /QXQW) d“@’y)/gg(x) e (x)) '

c(x,y) dll(z,y) + 8/

d
- <log dlg - 1) (z,y) dll(z, y)
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Now, assume that IT has the density p with respect to &, i.e. dll(z,y) = p(x,y)d&(x,y). Then, a
necessary condition of a saddle point is that the derivative of £’ vanishes in all directions ¢ : (z,y) —
q(x,y). Hence,

0= (8;2; : <p>) @=[ _coapdea)+e [ (opey) ~Dalwy) ez

te / o(z,y) dé(z,y) (54.3)
QxQ

[ F@aley) dea,y) - / o(2)a(e, ) dé(z, y).
QxQ QxQ

Hence, we obtain c(x, y) + ¢log(p(z,y)) — f(y) — g(x) = 0 pointwise, or equivalently

p1) = ) = exp (LT TS0

and
L0 ) = [ 16 W)+ [ o) auto) 2 [ exp (ABDEAD LI gz,

~ [ i) +meg-c [ T e (A IO gy

3

Finally, we obtain a dual, entropy regularized, unconstrained formulation for the Wasserstein functional

W2[u,v] = sup Z°(II(f,9), f,9)

fec(Q)
geR™
—ly —z]* + f(y) + g
= sup (m~g+/f(y)dl/(y)€/ > eXP( : L) dL(y)
fec() Q Qiz1,..n €
g€eR™ Y

(5.44)

Here, the exponent exp(e 1 (f(y) + g — |y —xj 2)) acts as a soft penalty in place of the original hard
constraint f(y) +g; < |y — z; |2. The optimal f for fixed g is characterized by

exp <—C($,y) +g($) + f(y)> T(y) df(l}y)
xQ

€

0= 0,24 (1(1.9). £.0)(r) = [ ) dvin) — |

Q

= [ (§5) racw - [ exp (ZHEDEADEIDN ) anvie) s aciy)

€

for all directions . Hence, we obtain

0— (dV) (y)_/gexp(—C(fr,y)Jrg(w)Jrf(y)) AN (),

dl €
and finally

gC,e(y) =clog (dﬁ) (y) — elog exp (J] (5.4.5)
j=1,...n
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defines the optimal f for given g € R™ and all y € . Given this C-transform, the regularized dual
formulation in (5.4.4) can be rewritten as W2[v, ] = maxgern D°(g) with

D[g] = £*(11(g“*, 9). 8%, 9) (5.4.6)
~ [ e rem—c [ (47) 0acw = [ e ) +gm -
5.4.7)

A necessary and sufficient condition for a vector g € R" to maximize (5.4.6) for given sites X and
masses m is

0 = 0, D°[g] = Oy, ( /Q g (y)dv(y) + g - m) = /Q g, 8 (y) dv(y) + m; (5.4.8)
. exp (Agi_‘ya_xie)
with 9, g7 (y) = — s
Z]*l ..... n €XP ( ’ € )
(5.4.9)

for i = 1,...,n. The set of functions {x{[X, g]}i=1,..n With X{[X,g](y) = —0,,8“°(y) fory € Q
forms a partition of unity on 2. Furthermore,

L B
lim \F[X, 8] = XL;x g (5.4.10)

fori = 1,...,n, where the convergence is in L'(v). For given [X, g] withe > 0, X = (z1,...,7,) €
Q" zj #xiforj, i=1,...,n

y X; (X, gl(y) dv(y)
m;[X, g]

mf[X, g] = /Q X glw) duly), B[X.g] = /Q (5.4.11)

define regularized masses and regularized barycenters, respectively. By the L'-convergence of X;[X, gl
to xz, and by the compactness of €2, one gets

lim m;[X, g] = m;[X, g], 213% b; [ X, g] = bi[X, g] for m;[X, g] > 0. (5.4.12)

e—0
Consequently, we obtain the entropy-regularized cost functional
FilX.gl= Y miX, g®®X,g]) (5.4.13)
i=1,...,n

as an approximation of the original cost functional F,, on power diagrams defined in (5.2.2). Analo-
gously, one finally obtains the entropy-regularized cost functional with penalty parameter > 0:

FrelX, gl = Fi[X, gl — nRL[X, g], (5.4.14)
where the regularized penalty term is defined as

m; (X, glm;[X, g

|z — 4]

RiXogl= 3 [ -aliX e vm+ 3 (5.4.15)

i=1,...,n 1<i,j<n
iF#]
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in analogy to (5.2.6).
We are now in the position to prove the convergence of maximizers of the entropy regularized func-
tional F,° given in (5.4.14) to a maximizer of the original functional defined in (5.2.5) for ¢ — 0.

Proposition 5.4.1. Let (sy)y C RY, (XN, gV)y € X, x R? so that ey — 0 and (XN, gV) —
(X,g) € &, x R" for N — oo. Then, we have that

. N N N7y _
Jmoxg (XL e = xrix g

where the limit is taken in L*(v).

Proof. Let y € D be in the interior of L;(X,g). Then, there is § > 0, such that |y — z;]* — g; <

ly — x;]? — g; — 30, for all j # 4. and by the continuity of the function (X, g) — [y — zi|? — g we

obtain that |y — va = gZN <l|y-— xﬁv |2 — gév — ¢ for sufficiently large N. This implies that
N_{,_.N

exp <7gi EJN = 2)

XN, gV (y) = FT
n g _‘y_xj |
23:1 exXp <€N >

N_, N2
exp (220
>
= N a2 N a2
exp (7& 'i’N”“ | > + (n—1)exp (7;;2 IgNmz | )exp(—d/eN)

1
1+ (n—1)exp(=d/eN)

—1

for N — oo. Now, lety ¢ L;(X,g). Then, there is j # 4, and § > 0, such that |y — z;]*> — g, >
ly — ;> —g; +30.and |y — 2] [* — gl > |y — 2V [* — gl + & for sufficiently large N. From this it
follows that
N _|p_»N|2 N_|,,_.N|2
exp (gi lngi = > exp <gi Ingi | )

<
N N2\ — N N|2
n g; _‘y_xj | g _ly_xj |
ijl €xp < =N €xp =N

(gfv—gév—ly—fﬂfvl2+ly—x§-v2>
=exp

gN
)
Sexp <_N) — O,
e

as N — oo. By the absolute continuity of v with respect to the Lebesgue measure, we have proven that
M XN, gN -al h d by the dominated h btai

X; [XY,8"%] = Xr,[x,g]> V-almost everywhere, and by the dominated convergence theorem, we obtain

the claim. ]

Xi[XM, gM(y) =

In preparation for the convergence of maximizers, we now state the entropy-regularized "pendant” of
Theorem 5.2.5.

Theorem 5.4.2. Let us assume that ¢ > 0, and ® € C() with maximum ® on D. Then, for given
number of sites | € N there exists an n < I, such that a maximizer (X*,g*) of Fi'° exists with
m[X*,g*] > 0fori=1,...,nand F;)*(X*,g*) > sup(x ) F;"* (X, g).
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Proof. The proof is analogous to Theorem 5.2.5: Consider a maximizing sequence for ]-';7’5. Since
ms[ XN, gN] € [0,1], and b5[ XV, gV] € 2, we may assume that up to the selection of a subsequence
the sequences of masses and barycenters converge to limits m; and b}, respectively, and that there exists
ann < [ with m} > 0if and only if i < n. Then, we obtain

sup F"° (X, g) = hm FrEXN, g™y < limsup Ff (XN, gV) - nl}\rfriglofRf(XN,gN)

(X,g) N—oo
< limsup F5(XV,g") + limsup > mi[XY, gV@ b [XY, g"])
N—oo N2 nt1,.

— nliminf RS (XY, g") — nliminf (R§ (XY, g") — RE (XN, g))
N—oo N—o0

= lim Fi(XY,g¥)+0—n lim RS (XY, g") — nliminf (ng(XN,gN)

N—oo N—o0 N—oo

~R;, (XY, g"))
< lim FR(XY,g")—n lim RE (XY, g")= lim F(XY,g") - nR; (XY, g")

N—o00 —00

= hm Fre(xXN gy,

Nﬁoo
Hence, a maximizer of F,)’°, if it exists, attains a greater or equal objective value than a maximizer of
F°. Now, let (X, gV)n C A, x R" be a maximizing sequence for 7,/ and in analogy to before
assume that m$ (XY, g"] and b5[X", gV] have limits m} > 0, and b} € D fori = 1,...,n, that
F¥ (XN, gN) is monotonically increasing in N and that m$[XY, gV] > %m;" Consequently, for ®
being the maximal value of ® on D the estimate

Fre(X0, g% <uv(D)® — 1 /]y—xl 2 XL (XN gN] dv(y)
i=1,...,n

ms[ XN, gNmS[XN, gV

g (5.4.16)
J

o —

mims

1 i
Z dlSt )m +Z Z W

i=1,...n 1<i,j<n J
i#j

IN
reu

is obtained. This implies the following a priori bounds:

2(P — FF(X0, g0 mim};
dist(sciv,mg\/( Fn (X0.80) |x£V—x§V|z\/4(— il

nmy © - F°(X0,g%))

for all N. For the uniform bound on g, recall that g and g + A1,, both result on the same Laguerre

diagram. Hence, we may assume without loss of generality that g’ = 0 for all N € N. Then,
limpy o0 g§v = oo for j = 2,...,n would imply limy_,o, m5[X",g"] = 0, which contradicts our
choice of n. Similarly, limy_, g; = —oc would imply limy_,c m5 [XN,gN] = 0, which again is a

contradiction. Hence, |g given these a priori bounds the
existence of a maximizer of ) follows directly from the WeierstraB extreme value theorem. 0
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We are now in the position to prove the convergence of maximizers of the entropy regularized func-
tional F,° given in (5.4.14) to a maximizer of the original functional 7,/ defined in (5.2.5) for ¢ — 0.

Theorem 5.4.3. Let ® € C(Q),1 € Nand n > 0. For each N € N, consider maximizers (X~ gV) €
Xpg(n) X RN where 3 : N — {1,...,n}, so that .Fg(ivN) (XN, gy > man:Lm,n{Sup(X,g)e‘){kX]Rk
]:Z’EN (X,g)}. Then, thereisn € {1,...,1} such that up to the selection of a subsequence (X", g™) yen
C X, x R™ converges to a limit (X*,g*) € X, x R™ for which it holds

Fi(X*,g") > max sup  FI(X.g) ¢
k‘=1,...,l (X,g)eXkXRk
Proof. The proof of the first statement follows the proof of Theorem 5.2.5 very closely, albeit with a few
key differences, which will be highlighted now: Letn’ € {1,...,1}, suchthat [{N : 3(N) =n'}| =
Choose a subsequence such that up to relabeling of indices (X, g™ )yeny C X x R™, such that
the seguence of masses (m{™ [XY, g"], ..., m¥ XV, g"]) e converges to some (m],...,m},) €
[0,1]™. Moreover, assume without loss of generality that there is n € {1,...,n'} with m] > 0 if and
only if i < n, and miV[X"N,g"] > im7 forall N € N, i < n. It then holds for all k € {1,...,1} and

all (X, g) € Xy x RF with m;[X,g] > 0fori=1,..., k:

FX.gl = hm FPEVX,g) < limsup 757V (XY, g

N—oo
< limsup 7N (XY, g") — nlim inf REY (XY, g™)

N—o00
< limsup F¥ (XN, gV) +limsup > miV[XN, gV 05N (XN, gV])
N—oo N—oo i=nt1,...n!

- lim inf RN (XN gy —p lim inf (RENV (XN, gN) — REM (XN, g™))

= lim sup fEN(XN, gV)+0-— 7711m mf RENV (XN, gV) — nlim inf (R;I,V(XN, gh)

N—o00 N—o00
—RY (XY, ™))
< limsup F2¥ (XN, g") — pliminf REN (XY, gV) < @ — pliminf REN (XY, g™).

N—oo N—oo N—oo

We obtain lim inf y o, REN (XN gV) < 8l Without loss of generality, we can assume that for

N N @—f”[i,g}-ﬂS
all 6 > 0, RN (XY, g) < TTEXK B

2@ — F[X,g]+ 6 mrim*
dist(a:lN,Q)<\/( FilX 8l + ), ]a;fv—xév|>\/ @ T

nm 4<I>—f,?[X,g]—|—5)’

b—F) X
n

holds forall N € N, ¢ = 1,...,l. Then, we obtain the bounds

for all pairwise different 2,7 = 1,...,n. Using the same arguments as in the proof of Theorem 5.2.5,
one also finds analogous uniform bounds on |g¥|. Hence, up to a subsequence, (X*V, g"V) yey converges
to some (X*, g*) € A}, x R™. By the above computations, we finally obtain

FiiX,gl < lim Fv (XY, g") - RN (XN, g") = lim Frev (XN, gV) = FI(X*, g").

N—o0 N—o0
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For the last equality, we used the fact that the masses m;”~ do not vanish in the limit and Proposition
5.4.1 for the convergence of masses m;™ [ XV, g™] — m;[X*, g*]. For the convergence of barycenters
bN[XN, gV — b;[X*,g*], we additionally use the fact that the function y +— y is bounded in Q.
Finally, for the convergence of

= PgIX® ) duty) %/\y PralX7, 27 () du(y),
Q

we also use the fact that the family of functlons (y = |y — 2V|?) yen is uniformly bounded in L>(v)

and converges in L™ (v) toy — |y 2 and the uniform boundedness principle. O

To numerically implement the maximization of 5.4.13 or 5.4.14 via a gradient ascent approach we

need to compute the gradient of 7. Using z = x; or z = g, for k = 1,...,n we obtain
O.F[X.gl = ) 9:m5X,gle(hi[X, g]) + m5[X, g]0.®(h5[X. g]),
Jj=L..n

1=

0 R (X ] = /Q 2k — 91X, g](y) dv(y) + / ly — 120X, 2] (v) dv(y)
1,...,n

N Z ((%km X, glm [X,g] Z-[X,g]azkmj[X,g]

1<i,5<n _x]‘Q ’mz _x]‘2
i#]
m; [ X, gJmj[X, g]
-2 i — ;,‘4 ((zi — )0 + (25 — l’z‘)%’k)) ;
J

0 RiXE = Y [ =Xl dvly)

i=1,....,n

+ Z <8gkm X g] [X7g] +m§[X,g]0gkm§[X,g]>’

—%P |z — x4]?

1<4,j<n
i#£]

d.mi X, g] = /Q 0C X, &](y) du(y),

Ei[)l(?g] / y0:x;(X, g](y) dv(y) —

Ou XG[X. 8](y) = 22 (5[X. g](y) — k) X5 X, g](v),
g, X5[X., &) (y) = —% (XG1X, gl (y) — 0ks) X5

b3[X, glo.m5[X, g]
mi(X,gl? 7

0:b5(X, 8] =

Hence, since the gradient of F* has the form of an integral with respect to v, a stochastic gradient
ascent is a very suitable method to numerically obtain an optimizer of this problem: since evaluating
the integral of gradients becomes very expensive, one can save computational costs at every iteration by
sampling the measure v, and by approximating the integral by the sum of the integrand evaluated at the
samples’ values, cf. [BBO7]. This method has the advantage of not having to discretize the measure v in
space, which might lead to further inaccuracies. Alternatively, to implement the maximization of 5.4.13
numerically, we have to further discretize the continuous given measure v in space.
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5.5 Spatial discretization

As the next step, we have to discretize our optimization problem in space. To this end, we restrict
to the domain D = [0,1]? and consider a dyadic mesh with grid size h = 2=~ for N € N. The
domain is subdivided into cells DY = x1__glajh, (aj + 1)h] where « is a multi-index in (Z"*)¢ for
the index set Z" = {0,...,2Y — 1}. We consider a discrete measure " = 3" 74 VaOye with v, =
v(Dy), where yjf = ((aj + %)h)jzl,..., , are the cell centers. This discretization ansatz gives rise to
discrete counterparts of the continuous, regularized characteristic functions x:[X, g], masses m;[X, g],
and barycenters b5[X, g]:

|2
eXp (gz ‘y}; xl‘)

h .
XialXo 8] = xi (X, g](uy) = T (5.5.1)
> j=1,..n €XP (%)
@ ‘C‘:vh X
mit X gl = Y AfhX gl X gl =) WV”‘- (55.2)
aez? aczd M X, g]
Based on this discretization, we obtain a discrete functional
FohX,gl= Y mi"[X glob" X, g), (5.5.3)
i=1,...,n
and the usual penalty-enhanced discrete functional
FretXogl= Y m[X gle;" X, g]) — 7RG X, g], (5.5.4)
i=1,...,n
where the discrete penalty term is defined by
,g] 2'[X, g
h{
REMX, g] = Z >R = mlPG X gl + Z 7%’2 . (555)
_____ n CMEId 1<7,;Z <n
i#]

Now, in analogy to Proposition 5.4.1 we demonstrate the consistency of entropy regularized and discrete
characteristic functions and the continuous counterpart. To this end, let us define the v-almost surely
piecewise continuous function Xe’ [X,g] € L'(v) as follows:

(o}

X gl(y) = Xin " for v — almost all y in a cell interior Q .

Proposition 5.5.1. For (ey)ny C R, (XY, gV)y € X, x R* withey — 0, (XY, gV) = (X,g) €
X, xR" for N — oo and for grid sizes hy = 27 we obtain that im0 X; NN XN gM]

in Lt (v).

Proof. By the triangle inequality, we have that

envvhn i~ N N
S x , — . < ‘
‘Xz [ g ] = XrLx L) =

h
G N[XN,gN]—fo[XN,gN]‘

L)
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EN [XN

+ i g - XLi[X,g]HLl(y)

In Proposition 5.4.1, we already showed that the second term converges to zero. To verify that the first
term vanishes as well in the limit for N — oo, we estimate the norm of the gradient of x;" XN, gV]
given by

N gN ly— J?N\2

v X2y — 2 exp ( &
EN ly—a|?
ENZ _, €exp <EN )

Let y € D be in the interior of L;(X,g). Then, as in the proof of Proposition 5.4.1, there is a § > 0,
such that

ViV XN, gV(y) = SV XN, gV(y) | -2

ly =o'~ <ly-=

for for j # 4 and for sufficiently large N. Then, one obtains
VN XY, g™ ()]
N —|y— 90N|2
2N [XN gN] (y) Zj;éi(y - ) exp ( TN >

=2 (v — 2z OGN XN, gV(y) — 1) + I
eN S exp <glw)
7j=1 EN

2 y-2Ma fo[XN,gN](y)HZywﬁylexp(;j)

N i#i
zjv ly — arN\ < —(i_n(; i)le)x;fp 5/:;;; > Z ly — N| exp <€]\(j>

2
JGXP(—(S/gN) \y—wfv\(n—l)JrZ!y—wﬁy\ — 0,
J#i

i g =0

IN

IN

IN

for N — oo. Next, let y ¢ L;(X, g). Then, it holds

N ‘y IN|2
(y xN) exp gj J
2 XY, gV () it =N
VY (XY gV (y)) = = —(y—2M)+ e
EN n |y IE |

EN N
= {X ‘— —aN +x‘<iexp( d/en) |x —y+i| =0,
EN

where & = 3. ;(y — xév)x?v [XN, gV](y) is an element in the convex hull of (y — :cé\’)j:l,”_,n. and
thus due to the convergence of (X*V)y uniformly bounded. This implies that |z¥ — y + Z| is uniformly

bounded.
For every y € (2 in the interior of L; (X, g) and sufficiently large N we observe that y is in the cell

Q%Z for some multi-indices oV and Q“ is completely contained in the interior of L;(X,g). There is
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ad > 0suchthat |y — 2|2 — g < |y - x§V|2 — gév — d holds for j # iand all y € Q;’;z Hence, the
restriction of x; [XM gM] onto this grid cell for M > N is a family of uniformly Lipschitz functions,

and in particular equicontinuous. It follows that

VXN gM(y) — xSV XY, gN] (y)( = ;Y

XY, gVI(wi) — VXY, V()

N
< ( sup Lip(x;~¥[X", N])> Yy —yhy| =0
N>Ng

The analogous statement holds for y ¢ L;(X,g) as well. Thus, XfN’hN XN, gN] converges to
“NIXN gN] v-almost everywhere and, by the dominated convergence theorem, one obtains the de-
sired convergence in L (v). O

We obtain the entropy-regularized, fully discrete analogue of Theorem 5.2.5.

Theorem 5.5.2. Let us assume that €,h > 0, and ® € C(Q) with maximum ® on D. Then, for given
number of sites | € N there exists an n < I, such that a maximizer (X*,g*) of fﬁ’a’h exists with
mf’h[X*, g*] > 0fori=1,...,nand FI*"(X* g*) > SUD(X g) ]:l"’s’h(X, g)

Proof. The proof is completely analogous to the proof of Theorem 5.2.5: Consider a maximizing se-
quence (XN, g™y for F7*". Since m5"[XN,gN] € [0,1], and b;"[XV, gV] € Q, we may assume
that up to the selection of a subsequence the sequences of masses and barycenters converge to limits m;
and b7, respectively, and that there exists an n < [ with m; > 0 if and only if 7 < n. Then, we obtain

sup F (X, g) = Jim ]:"’Eh(XN Ny < limsup F (XY, gV) —nl}\g&fRf’h(XN g™)

(X.g) N—o0
< limsup Fo (XN, gV) 4 lim sup Z m;’ MXN gNo (bf’h[XN, g™
N—oo N—oo i=nt1,..1

— pliminf REM(XY, gV) — g lim inf (ng’h(XN ,g™) — REMXN, gV ))
N—o00 N—o00
< lim FoMXN gV) -5 lim REM(XY, gV)
N—oo N—o0
= lim FRM(XY, g") — RGN (XN, gY)
= lim FrehXN gV,
N—o00
where for the sake of clarity, we denote by (XV, g both itself and its truncation to the first n com-
ponents. Hence, a maximizer of Fg’s’h , if it exists, attains a greater or equal objective value than a
maximizer of F;7*". Now, let (X", g")y C X, x R" be a maximizing sequence for F;7*" and in
analogy to before assume that m;’ "IXN gN] and by "IXN g have limits mj > 0, and b} € D for
i =1,...,n, that FP=" (XN, gN ) is monotonically increasing in N and that m‘E MIXN N > L
Consequently, the estimate

= h
Frehx0 g <vdy@—n| Y D lur -2 PN, g e

ag(Zh)di=1,..,n
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h h
m; " (XN, gNm7" (XN, g]

+ - (5.5.6)
1#3
_ 1 mim*
<oon|y X asielamie] Yo
i=1,..,n 1<i,j<n | Tj
i#]

is obtained. This implies the following a priori bounds:

2(d — Freh(x0 g0 mim*
dist(xf-v,ﬂ)g\/( Fn (X0.8%) |va—w§~v|z\/( il

nm; A(D — FM(X0, g0))

for all N. For the uniform bound on g, recall that g and g + A1,, both result on the same Laguerre

diagram. Hence, we may assume without loss of generality that g’ = 0 for all N € N. Then,
Iimpy oo gév = oo for j = 2,...,n would imply limy_,co mi’h[XN ,g"N] = 0, which contradicts
our choice of n. Similarly, limy_cc g; = —o0 would imply limy mE h[XN N1 = 0, which again

gV| < C forsome C' > Oandall N € N. Flnally, given these a priori bounds
the existence of a maximizer of fﬁ’a’h follows directly from the Weierstral extreme value theorem. [

is a contradiction. Hence,

Next, we investigate the convergence of maximizers of the fully discrete, entropy regularized func-
tional ]-";Z’a’h given in (5.5.4) to a maximizer of the original functional 7,/ defined in (5.2.5) for both
e —0and h — 0.

Theorem 5.5.3. Let ® € C(Q),1 € Nand n > 0. For each N € N, consider maximizers (X~ gV) €

h
X () xRN where 5 : N — {1,...,n}, sothat Fg(jVN) N(XN gy > man:L“_?n{Sup(X,g)e‘){kXRk

f,?’EN’hN(X,g)}. Then, there is n € {1,...,l} such that up to the selection of a subsequence
(XN, gM)ven C &, x R™ converges to a limit (X*,g*) € X,, x R". Furthermore, it holds

Fl(X*,g") > max sup  F/(X,g) -
k=1,...,0 (X,g)€X), xRF

Proof. The proof of the first statement is along the same lines as the proof of Theorem 5.2.5. For the last
statement, notice that

ENANTYN N h N _N
B (XY ] = 3 Ui Xio X7 8 ]Ua:/g () x;™" (XN, g"]
Q

dv(y)
h h
o m VN XN gl m; VXN, gV (y)
h
REN,hN XN N Z Z ‘yh 2szx N[XN,gN}VO‘

1= 17 5T aGId

>

1<i,5<n
i#]

= [ XY gV vy

i=1,...,n

5N:hN [XN ] m;N,hN [XN, gN}

N2
x]-|

’331
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h Jh
. m?N N[XN7gN] ij N[XN’gN}
N N ’
1<i,j<n ’xz - xj |2
i
(¢} o
where fV(y) = y& for y €Q%, and ¢V (y) = |yp — x]|? for y €QF are the piecewise constant
approximations of the functions y — y and y — |y — xZN |2 consistent with our grid cells. The rest of the
proof is then completely analogous to the proof of the respective statement in Theorem 5.4.3. O

To numerically implement the maximization of 5.4.13 via a gradient ascent approach we need to com-
pute the gradient of F;;. We specifically obtain the following derivatives for spatially discrete quantities
using z = xporz =g, fork=1,...,n

0. FMX gl = Y 0.m"[X, glo(b" (X, g]) +mS" (X, g]0-2(b7" X, g]),

Jj=1...,n
O, REMX gl =2 Y (me —yXin[Xogl® + > D i — wif0u Xin X, glv”
aeZd i=1,...,n aqeTd
e,h g, h e,h e,h
Oy’ [X glm; " [X,g]  m;"[X,g]0ym;" (X, g]
+ Z —m|2 \:n-—ac-|2
1<4,5<n J 1 7
i#]
s h g, h
X glm X, g]
-~ P x]|4 ((zi — x5)0ik + (75 — 7))
h
8gkR€h[ Z Z |yh x7«| agkx;a[X,g]z/o‘

1= 17 5T OéEId

+ Z <3gkm [Xa g} [X7 g] mE h[ ) g} agkm [Xa g] > 7

1<4,j<n _:r-7|2 ’xl _ﬂf]|2
i£]
azcb(bef’“”[x g}) = Vo ("X, g]) - 0- bs-’h[x, g,
0, m Z 82,)(]& X, glv
acTd
b?’h X, gla,mS" X,
0" X gl = ——— > YOGl X, gl — - | Eg]h ’ 2[ g],
X, gl aeTd m; X, g

Do XhIX, g] = 22 (xw[X gl — 5kj> XhiX. gl,

) s ,h
Oy X5nlX, gl = —1 (x?,a[X, gl - %) XjalX, g].

5.6 Numerical experiments

Now, we will apply the above derived method to compute the optimal partition of the unit cube [0, 1]? for
given n, a function ® and a probability density v. In the presented numerical results, we assume v to be
the Lebesgue measure on the unit cube. Moreover, for every numerical experiment in this and the next
section, we made use of the sparse multi-scale algorithm by Schmitzer [Sch19] and the implementation
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in [CFG™21] to efficiently compute the Sinkhorn iterations. To optimize the parameters of the power
diagrams, we used the Adam optimizer (cf. [Kinl4]) as a stochastic gradient ascent method. Unless
otherwise explicitly stated, we use n = 0, N = 256 (i.e. grid size h = 1/256), and initialize our
algorithm with n = 12 sites/weights for each of the experiments in this and the next section. On each
plot in this section, the barycenters (triangles) and sites (circles) are plotted, for visualisation purposes
the latter ones only if inside the unit cube. On the left of each plot, the respective values of the component
of the g vector is also plotted.

In Figure 5.1 we show the dependence of the optimal numerical solution on the entropy parameter ¢.
The interfaces between the Laguerre cells become fuzzier with increasing €, whereas the structure of the
optimal solutions does not change much.

4
02

00 00

Figure 5.1: Convergence of the optimal power diagram for different entropy parameters ¢ = 25,5, 1,0.2.
(four right-most plots), where the blur parameter values are given in units of 1/N, for N = 128. The
function @ is plotted on the left-most panel.

Next, we plot in Figure 5.2 the optimal configurations for different values of 7 for a function & (left),
which has global/local maxima of equal value at the points (3,%), (2, 2), and (1,32). We know that
the solution for 77 = 0 is not contained in the space of power diagrams, but we observe for  — 0 the
convergence of the solutions. Indeed, for large values of 1 a single cell has positive mass and no other
cells contribute to the cost. For vanishing 7, two additional cells appear as optimal configurations and

the three cells meet in a triple-point converging to (%, %) with one angle converging to 7.

Figure 5.2: Convergence of the optimal power diagram for a function ® (column (i)) with global
maxima at (0.25,0.75), (0.75,0.75) and (0.5,0.25) for regularization parameters given by n =
le—1,1e—2,1e—3, le—4, 1e—>5 (columns (ii)-(vi)).

Finally, we check how our algorithm deals with fusing/pushing cells away, when the optimal solution
requires a smaller number of sites/weights than what the algorithm was initialized with. To this end,
in Figure 5.3 we consider a concave function ®, that has the trivial partition as solution, and plot some
iterations of our algorithm that show the proper recovery of this solution, i.e. cells disappear by either
pushing the respective sites away (orange, green cells), or by increasing the difference between the g-
values of the purple cell and those of the respective cells (beige, blue).
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Figure 5.3: Convergence of the optimal power diagram for a concave function ® (left). One sees how
the algorithm automatically pushes cells outside of the relevant unit square to enact the trivial solution.
Plotted are the computed power diagrams after iterations it = 1, 2,4, 8, 16 (five right-most plots).

5.7 Application to information design

Finally, we consider the application of our algorithm to a particular problem in information design: the
monopolist’s problem. In this problem, a seller (sender) can disclose information about the qualities of
the products she sells. There are two objects available individually at fixed prices p1, p2, and the bundle
of both objects can be bought at fixed price p3 = p1 + p2 + A for some bundling “surcharge” A > 0
or “discount” A < 0. A consumer (receiver) has valuations v = (v1, v2) per unit of quality, distributed
according to the Lebesgue measure on the unit square [0, 1]2. The quality of the objects q = (g1, g2) is
distributed on [g, g]? according to a measure y that is absolutely continuous with respect to the Lebesgue
measure. Throﬁghout this section, we assume that y is the (re-scaled) Lebesgue measure; the general
case works analogously. The realized qualities are known to the seller but not to the buyer, and the
realized valuations are known to the buyer but not to the seller.

We first consider a buyer with unit demand and then consider a buyer who demands more than one
object and has additive valuations. A buyer has unit demand if she values at most one object. If the seller
provides a signal about the qualities such that the buyer believes the expected qualities of the objects are
(g1, g2), then a buyer with unit demand buys only good i = 1, 2 if

qivi — p; > max{0, ¢_;v_; —p_;}

and buys nothing if
mzax{qivi —pi} <O0.

Here, we ignore ties, which have probability zero of occurring. If a buyer with additive valuations buys
only object ¢, her payoff is g;v; — p; but if she buys both objects her payoff is ¢; v1 + gav2 — p3. Therefore,
a buyer with additive valuations buys only object 7 if

qivi — p; > max{0, ¢_;v_; — p—i, q1v1 + q2v2 — p3},

buys both objects if
q1v1 + qav2 — p3 > max{0, q1v1 — p1, V2 — P2},

and buys nothing otherwise.

For fixed expected qualities (g1, g2), let C;(q1, g2) be the probability assigned to the set of valuations
for which the buyer only buys object i = 1, 2, let C5(q1, g2) denote the probability assigned to the set of
valuations for which the consumer buys both objects, and let C(q1, g2) be the probability assigned to the
set of valuations where the consumer buys nothing. Recall that these depend on whether we consider a
consumer with unit demand or with additive valuations, and are computed from the uniform distribution
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of valuations: these are the areas of the respective convex polygons defined by the above inequalities.
The seller’s revenue is then given by

3
R(q1,92) = Y piCilq1, @2)-
i=1

Recalling the characterization of exposed points, the seller chooses a Laguerre diagram 7w = {D', D?,
..., D"} of [q,q]? with respective barycenters ¢/ = (q{,q3), 7 = 1,2,...,n. In other words, for each
realization ofiqualities the seller reveals to the consumer only to which cell the qualities belong. The
consumer then updates her belief about the expected qualities to the barycenter g of the cell D7 which
contains the true qualities.

The designer’s expected revenue is then given by
n - .
> (D) R(q].3)
j=1
and the designer chooses a Laguerre diagram to maximize this expected revenue.

Unit demand. We first consider a buyer with unit demand. Figure 5.4 shows that the seller discloses
only a coarse signal about the qualities of the products. Each cell corresponds to one expected quality
pair of the products which we indicate by a triangle in the figure. There are at most 4 cells in the optimal
signal: These cells can be roughly interpreted as corresponding to different quality pairs: (1) the orange
cell corresponds to both products being of low expected quality, (2) the purple cell corresponds to product
1 being of low quality and product 2 being of high quality, (3) the red cell corresponds to product 1 being
of high quality and product 2 being of low quality, and (4) the green cell corresponds to both products
being of high quality. In the orange cells, the expected qualities are so low that the buyer never buys
either of the products, independent of their valuations. In the red and purple cells, the expected quality
of the lower-quality object is so low, that the buyer will never buy the lower-quality object; the buyer
will either buy the higher-quality object or buy nothing at all. As the price of product 2 increases, in the
optimal information policy, a signal indicating a high quality of product 2 becomes more informative in
that it indicates a higher expected quality. This offsets the higher price and still induces some buyer types
to purchase the more expensive product. If the price of product 2 becomes too high, no types will buy
product 2 and the optimal Laguerre diagram has only two cells, as the right-most panel illustrates.
Under the optimal Laguerre diagram, the seller does not provide full information to the buyer even
though that would raise efficiency. By revealing only imprecise information, the buyer’s information
rents are reduced and the seller’s revenue raised. To evaluate the benefit of choosing an optimal informa-
tion policy induced by a Laguerre diagram, we consider additional, non-optimal information policies, as
benchmarks. Table 5.1 specifies the revenue generated under various information policies. It shows in
row (i) the different values of the price ps, in row (ii) the revenue R,,; induced by the optimal Laguerre
diagram partition computed with our algorithm, in row (iii) the revenue R(1, 1) for an information policy
where no information is given to the buyer, and in row (iv) the revenue for an additional benchmark infor-
mation policy based on a partition generated with Lloyd’s algorithm. Here, for the same number of cells
as in the computed optimal Laguerre diagram, we generate with Lloyd’s algorithm a Laguerre diagram
partition which imposes the barycenter of each cell to coincide with the respective site, cf. [L1082]. The
respective Lloyd diagrams used for benchmarking are exemplified in Figure 5.7. Row (v) of Table 5.1
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shows the revenue E(R) in case of the full information policy, and in row (vi) the percentage increase in
revenue of the optimal power diagram policy compared to the full information policy is displayed. As
one can see, optimal information design creates significant value to the seller: in this example it increases
profits relative to full information in excess of 10%.

Figure 5.5 shows the optimal Laguerre diagrams for prices p; = 1 and p, = 1.25 and various values
of the lower bound on the quality. As the lower bound increases, the optimal signals become less likely to
contain significant information about the quality of object 2. The corresponding revenue and the revenue
under alternative benchmarks is shown in Table 5.2.

D2 1 1.25 1.5 1.75 2

Rope | 0.3153 | 0.2648 | 0.2175 | 0.1839 | 0.1716
R(1,1) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Ritopd | 0.3056 | 0.2543 | 0.1667 | 0.1667 | 0.1667
E(R) | 0.2833 | 0.2407 | 0.1977 | 0.1657 | 0.1534
pp(%) | 11.30 | 10.01 | 10.01 | 10.98 | 11.86

Table 5.1: Monopolist’s problem with unit demand, price p; = 1, quality boundaries ¢ = 0 and g = 2
for different prices pa (first row) under selected information policies.

a

: - D . D I

q2 q2 q2 q2 q2

Figure 5.4: Optimal configurations for the monopolist’s problem with unit demand, with prices p; = 1
and po = 1,1.25,1.5,1.75, 2 (second row, from left to right) and quality boundaries ¢ = 0 and g = 2.
The respective revenue function R for each case is plotted in the first row.

Additive valuations. Figure 5.6 illustrates optimal information policies induced by Laguerre dia-
grams if the buyer has additive valuations. The optimal Laguerre diagrams become richer, with up to
seven cells. Moreover, there is significant variation in the shape of the diagrams as the bundling sur-
plus/discount varies. As Tables 5.3 and 5.4 show, there is again a significant benefit to only partially
revealing information compared to fully revealing the qualities.
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q 0.25 0.5 0.75 1. 1.25

Rope | 0.2999 | 0.3457 | 0.4074 | 0.4853 | 0.5687
R(1,1) | 0.1111 | 0.2000 | 0.3564 | 0.4757 | 0.5687
Riioga | 0.2838 | 0.3105 | 0.3604 | 0.4583 | 0.5687
E(R) | 0.2728 | 0.3146 | 0.3714 | 0.4528 | 0.5508
pp(%) | 11.30 | 10.01 | 10.01 | 10.98 | 11.86

Table 5.2: Monopolist problem with unit demand, prices p; = 1, p2 = 1.25, upper quality bound ¢ = 2
for different lower quality bounds ¢ = 0.25,0.5,0.75,1.,1.25 (first row) under selected information
policies.
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o g2 °® 06 ot g2
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06 06
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q 0z oo q 0z oo
N a
(h . .
A
q2 q2 q2 q2 q2

Figure 5.5: Optimal configurations for the monopolist’s problem with unit demand, prices p; = 1
and p; = 1.25, upper quality bound § = 2 and, from left to right, lower quality bounds ¢ =

0.25,0.5,0.75,1,1.25 (second row). The respective revenue function R (defined above) is plotted in
the first row.

A -1 -0.875 -0.75 -0.625 -0.5 -0.375 -0.25 -0.125

Rope | 0.6577 | 0.5914 | 0.5215 | 0.4602 | 0.4196 | 0.3944 | 0.3754 | 0.3582
R(1,1) | 05000 | 0.4307 | 0.3516 | 0.2686 | 0.1875 | 0.1143 | 0.0547 | 0.0146
Rl | 0.6528 | 0.5868 | 0.4824 | 0.3843 | 0.3510 | 0.3433 | 0.3533 | 0.3436
E(R) | 0.6417 | 0.5196 | 0.4578 | 0.4138 | 0.3803 | 0.3544 | 0.3343 | 0.3188
pp(%) | 249 | 13.82 | 13.91 | 11.21 | 10.33 | 11.29 | 1229 | 12.36

Table 5.3: Monopolist’s problem with additive valuations for different bundling discounts A (first row),
quality boundaries ¢ = 0 and ¢ = 2 and prices p1 = p2 = 1, under selected information policies.

5.8 Applications to Gerrymandering

As an additional application of the framework developed in this chapter, we present here an extension
thereof to the optimal gerrymandering problem. When speaking of the problem of gerrymandering, one
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A 0 0.125 0.25 0.375 0.5 0.625 0.75

T T T T T T T

Ropt | 0.3432 [ 0.3303 | 0.3205 | 0.3154 | 0.3153 | 0.3153 | 0.3153
R(1,1) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Rijoya | 0.3333 | 0.3231 | 0.3142 | 0.3079 | 0.3056 | 0.3056 | 0.3056
E(R) | 0.3069 | 0.2979 | 0.2916 | 0.2875 | 0.2851 | 0.2839 | 0.2834
pp(%) | 11.83 | 10.88 | 9.91 9.70 | 1059 | 11.06 | 11.26

Table 5.4: Monopolist’s problem with additive valuations for different bundling surcharges A (first row),
quality boundaries ¢ = 0 and ¢ = 2 and prices p; = p2 = 1 under selected information policies.

q2 q2 q2 q2 q2

Figure 5.6: Optimal configurations for the monopolist’s problem with additive valuations, with prices
p1 = p2 = 1, quality bounds ¢ = 0 and § = 2 and, from left to right, bundling surcharges/discounts
A = —0.75,—0.5,—0.375, 0, 0.375 (second row). The respective revenue function R (defined above) is
plotted in the first row.

almost exclusively refers to the problem that arises in two-party systems, such as in the American demo-
cratic system. Therein, the process of redistricting , i.e. the drawing of electoral boundaries, is left to the
state legislatures and governors themselves. History has shown that these institutions (independently of
the political affiliation) are self-interested and have used the redistricting process to achieve political ob-
jectives. When the redistricting process turns partisan, one speaks instead of a gerrymandering process.
In explicit, in the gerrymandering problem, a gerrymanderer observes a noisy signal from a continuous
distribution of voter preferences, and, taking into account an aggregate preference shock, creates N con-
tiguous districts with an equal amount of voters to maximize the number of districts (or seats) that she
wins.

As of 1980, the main requirements of the drawn districts are both contiguity and population size
equality across districts. The contiguity constraint, however, has been stretched to the limit in some
cases, having multiple clusters of voters far away from eachother, only joined by narrow strips of land
between them. Numerous tests have been developed to prevent gerrymandering to take place; however,
none of these tests were deemed to be workable or justiciable by Supreme Court decisions. For a deeper
insight in the legal and institutional backdrop against which gerrymandering takes place, we refer to
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Figure 5.7: Plot of the Lloyd’s centroidal power diagrams for n = 1,2,4,5,7 cells from left to right.
The sites coincide with the barycenters of the cells.

[FHOS, Section I].

In this section, we will detail a voter distribution model, inspired by the examples in [FHO8, Section
II]. Furthermore, as a continuation of the discussion in this chapter, we will restrict the gerrymandering
problem to partitions of the district (usually a federal state) induced by power diagrams. We will prove
that under this framework, an optimal gerrymandering exists, and develop tests to detect and prevent said
gerrymandering from happening.

Similarly as above, let (D, D, v) be a probability space, where D C R¢ is a compact and convex
domain, D is its Borel o —algebra, and v a probability measure which is assumed to be absolutely con-
tinuous with respect to the Lebesgue measure £, with Radon-Nikodym density STV: € L*°(L). More-
over, let n € N be a fixed number of districts for D to be partitioned in. Given a vector of sites
X = (x1,...,Ty) € Xy, define the discrete measure

puX] ::% Z Oz,

i=1,...,n

with equal mass concentrated on each site, and let g[X]| € R”™ be an optimal vector for (5.3.4) for the
L2-Wasserstein distance between v and u[X]. Then, (L;[[X], g[X]])i=1..., defines a partition of D
induced by a power diagram in n subsets, each of which has equal v-mass. Given a partition of D in n
subsets of equal mass induced by an n-tuple of sites X as above, define the voter density in district ¢ by
vi[X] = v[ - |Li[X, g[X]]] =n fLi[X,g[X]] X[ dv.

Let P € C (D;R) be a political preference function, i.e., it maps voters located at x € D to their
political preference bliss point 15(:1:) € R. In particular, we make the simplifying assumption that all
voters in the same location have the same bliss point. Given voter densities v;[X] fori = 1,...,n as
above, let \; == f’# v; be the political preference distribution of voters in the i-th district, and p; a random
variable distributed according to \;. To account for the uncertainty with which the individual preferences
are measured by the political parties (through polls, studies, etc.), we instead consider the true political
preference random variable p = p; + 7., where 7. is a random variable with distribution N (s, 62),
and independent of p;. Let A{ be the law of p§. Then, A{ is absolutely continuous with respect to the
Lebesgue measure on R, and its Radon-Nikodym density 5\§ is explicitly given by

Se(s) = /R Tie(s — £) (1),

where 7. is the density function of a centered one-dimensional Gaussian distribution with covariance
equal to 2. Note that we are not concerned with the limit ¢ — 0, as we always assume the voter
preference is always measured with some degree of noise.
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Define now the cumulative distribution function of \§ as C(t) = f(f AS(s)ds . Recall that by the
definition of A{, it is absolutely continuous with respect to the Lebesgue measure on R. Moreover, the
Radon-Nikodym derivative of this measure is also strictly positive. As a result, C is strictly increasing,
with limy—, oo C£(t) = 0 and lim;_, o, CS(¢) = 1. This means that the inverse function Q5 = (Cf)~! :
(0,1) — Ris well defined.

In this framework, we assume that there are only two parties involved, L and R. Each party has a
party policy x® > x, and base party strengths g, ¢ € R. In more rudimentary models, a voter
with bliss point P(z) € R will cast their vote for the party that minimizes the cost |P(x) — 27|? — g/
for j € {L, R} with probability 1. We instead assume that an aggregate preference shock between the
drawing of districts and the actual vote might affect the party strengths g” and g* and thus influence
the choice of said voter in the future. Hence, we assume that the realized party strengths §7%, g~ are
non-deterministic random variables with mean given by g%, g%, respectively. Since only the difference
g — gl play a role, we may assume without loss of generality that gL = 0 and only § varies. Examples
of events that might induce an aggregate preference shock include political events, economics news,
events of force majeure such as natural disasters, likeability of candidates or how the different campaigns
are run. Accounting for this, we will explicitly assume that a voter with bliss point p casts her vote for
party j € {L, R} with probability

exp (_ Ipi—i\z’—gﬂ'>
_ \pif:v"’\tgk) ’

Zke{L,R} exp ( €

where ¢, is a regularization parameter encoding the uncertainty of an aggregate preference shock.

A peculiarity of this model is that if a voter with bliss point p§ casts their vote for party 2, then each
voter with p > p¢ will cast their vote for the same party. Similarly, if said voter casts their vote for
party L, then each voter with p < p5 will cast their vote for party L as well. Hence, voter preferences
satisfy the single-crossing property (cf. [FHO8]. In particular, this means that whichever party receives
the vote of the median voter in the ¢-th district (which has voting preference Qj(%)) will end up winning
it. Hence, a gerrymanderer belonging to party j € {R, L} will try to maximize the expected value of
total won seats/districts

Gn[X] i P <_ |Q§(1/2)[§7$j|27gj> (5.8.1)
nl = QE[X](1/2)—ak|2—gh "o
pot Zke{L,R} exp (_\ (X]( /Ei [>—g )

among all permissible partitions of the domain D. In this chapter, we restrict ourselves to power diagram
partitions, in order to leverage the algorithm introduced in previous sections. In contrast to the informa-
tion design functional defined in (5.2.2), note that G, is no longer maximized over the weights g. This is
a result of the fact that in the gerrymandering problem, the cell masses are fixed. Hence, choosing a set
of location sites X already completely determines (up to an additive constant) the resulting weight vector
g that is required to realize the cell masses. To guarantee a resulting maximizer of (5.8.1), we proceed
as before with the addition of a penalty term

GnX] = Gn[X] = nRa[X, g[X]], (5.8.2)

where R,, is the penalty term defined in (5.2.6). We obtain the following existence result:
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Theorem 5.8.1. Let D C R? be a compact an convex domain, v € P (D) that is absolutely continuous
with respect to the Lebesgue measure on D, and n € N be a fixed number of districts. For X € X,
let (L;[X, g[X]])iz1....n be the resulting power diagram with cells of equal mass n~', and v;[X](-) =
n fLi[X,g[X]] X[ dv. Moreover, let P € C(D;R) be a continuous function and \[X](s) = Jp 7e(s
P(y)) dv;[X](y), where ne is the Gaussian probability density function centered at 0 with covariance
€2. Define the cumulative distribution function C;[X](t) = ffoo XS[X](s) ds, and its inverse QS[X] =
(C£[X])~L. For all party policies & < x* and base party strengths g*, g'* € R and for all > 0 and
€y > 0, there exists a maximizer X* € X, of (5.8.2).

Proof. Let (X™) yen be a maximizing sequence for G/, and define G = G,1[X°] > —oo. Notice that
Fc < n by its definition. Moreover, it holds for sufficiently large K € N:

n

G<GIXM] <n— R, [XF XK <n—n| Y %3

Hence, we obtain the estimates

_Cc -2
dist (2N, Q) < n’ g, |va—x§\[] > m o
n n—g

As before, the sequence (X™V)y is in a compact subset of &;,, so up to a subsequence, it is convergent
to some X* € X,,. First, note that R is continuous in X. Next, for u[X"] :== Y 6 v let g[X "]

1=1"z;

be optimal for (5.3.4) (for u[X™] and v). The optimal coupling II[X"] € P(R? x D) for the primal
problem (5.3.1) can then be explicitly given by

dII[XN](z, y) Z A, () © du[XV)(y).

Recall that since X is a convergent sequence, we have in particular that the measure sequence (1[X™])x
narrowly converges to (u[X*])y. In particular, this measure sequence is tight, and hence, the sequence
of optimal couplings IT[X™] is tight as well, and by Prokhorov’s theorem (cf. [Pro56]) a subsequence
is narrowly convergent to some IT* € P(R? x D). By the stability of optimal couplings under narrow
convergence of measures, we have that IT* = II[X*], which implies the narrow convergence of

Wil XM = wi[XH],

foralli=1,...,n
By the definition of narrow convergence and the continuity and boundedness of P and 1), we then
obtain

SX(s) = /D (s — P(y) d[X](y) = / (s — P(y)) dui[X*)(y) = XX (s),

forallt =1,...,n and all s € R. Furthermore, we have

X (s)] < /D

iie(s = Pw))| d[X](y) < C(e) < oc.
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By the dominated convergence theorem, we obtain

lim C;[XN](t) = lim AS[X N (s)ds = / AS[X*¥](s) ds = C;[X¥](t)

N—o00 N—oo J_ —00

foralli = 1,...,n and all t € R. Since C;[X"] and C;[X*] are strictly increasing functions, their
inverses Q;[X™V] : (0,1) — R and Q;[X*] : (0,1) — R exist and are also continuous. Together with
limy 00 C;[XNV](t) = C;[X*](t), one finally obtains

lim Q;[XM](t) = Qi[X*](2).
N—o00
Combined with the estimates shown in the beginning of this proof, the above implies the claim. O

Using a slightly adapted version of our original algorithm for information design, we compute max-
imizers of (5.8.1) from the perspective of a republican gerrymanderer for the 2018 gubernatorial race
in the US State of Ohio in Figure 5.8. In 2018, the republican party defeated the democratic party in
the gubernatorial election, with a margin of 50.40% to 46.67%. Yet, due to the highly gerrymandered
landscape of this state, the republican party won 12 out of the total 16 seats, cf. middle picture. In Fig.
5.8, our algorithm was able to find a power diagram re-districting of Ohio, such that this margin was even
higher, 14 to 2, cf. fourth picture from the left (if the winner of each district is determined by the party
with the higher probability of winning it). Tweaking our algorithm, one can instead optimize from the
perspective of a democratic gerrymanderer. In this case, our algorithm was able to find a partition with a
7-9 democratic-favoured split, which is still surprisingly high accounting for the fact that they obtained
fewer votes than their rival party.

Figure 5.8: Left: Population density v map of Ohio. Middle-left: Political preference map P, with values
—1me m+1. Middle: Map showing the current congressional map of Ohio with current majorities.
Middle right: Optimal power diagram gerrymandering (from the point of view of the Republican party)
of Ohio. Right: Optimal power diagram gerrymandering (from the point of view of the Democratic
party) of Ohio. The colorbar represents the expected percentage of republican voters in the rightmost
two figures:Ome =m100. All computations were made with n = 16.
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Approximation of Splines in Wasserstein Spaces
Conclusions

In Chapter 3, a time-discrete variational model was examined to compute spline paths within the space
of probability measures equipped with the Wasserstein-2 metric. These spline paths were defined as
measure-valued trajectories that minimized a spline energy while satisfying interpolation constraints and
boundary conditions. Our method represents a significant improvement in terms of temporal smoothness
of the interpolated frames, similar to how cubic splines in Euclidean spaces are a smoother interpolation
method

To extend this framework to continuous splines on the space of probability measures, a compatible
geometric structure was required. Leveraging the geometric structure of Wasserstein spaces as outlined
in [BB0OO] and [Ott01] as well as the second-order analyisis in this space (cf. [Gigl2]), energy splines
were defined as the minimizers of total squared acceleration (i.e. the covariant derivative of the velocity)
(3.2.2) under additional boundary conditions, given in (3.2.4)-(3.2.6). However, this functional posed
challenges, being computationally intractable and, unlike the action functional (3.1.2), non-convex.

To remedy this last issue, a consistent variational time discretization of E-splines was proposed in-
stead, accompanied by an efficient and robust algorithm to construct them. The time discretization of
energy splines relied on a general framework for variational time discretization of splines on Riemannian
manifolds, originally introduced in [HRW18]. This framework’s core elements included a functional W,
which approximated the squared Riemannian distance between nearby objects on the manifold. In our
case, for probability measures the local functional VW corresponded to the squared Wasserstein distance,
and the approximate average was naturally defined as the Wasserstein barycenter. In the variational-time
setting, we were able to show existence of discrete splines, defined as minimizers of the discrete spline
energy functional (cf. (3.2.17)) in the general case. A key role for this result was played by the addition
of a small fraction of the usual discrete path energy functional to the pure spline functional, which seems
to be indispensable. Furthermore, it was analytically demonstrated that this approximation aligned with
the Riemannian geometry of Wasserstein spaces in the restricted Gaussian case, in the sense of Mosco
convergence.

We validated our interpolation method through extensive numerical experiments, including synthetic
examples and real-world applications. The results highlighted its versatility and capability to produce
smooth, meaningful interpolations in scenarios ranging from image and measure morphing to synthesis
of texture interpolants. Moreover, we were able to leverage recent advances in machine learning in
the form of variational autoencoders to dramatically increase the scope of our interpolation method to
any type of data that can be represented as realization of a VAE. Finally, by using our proposed spline
functional as a penalty for the deviation from a geodesic, we proposed an efficient algorithm to construct
discrete linear regressions on distributional data.
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The computational framework, powered by entropy-regularized optimal transport and state-of-the-art
implementations of the Sinkhorn algorithm, demonstrated scalability and efficiency, making it viable for
large-scale problems.

Outlook and Extensions

Even though very important insights were won in this chapter, there are still some open questions that
could be explored further in future research. For instance, the result on the Mosco convergence of dis-
crete splines to continuous ones was only proven in the restricted case of diagonal Gaussian probability
measures; a more general result would be desirable. Moreover, error estimates of the form

W(n(tis), i ),

where 4 is a continuous measure curve, and u? is the computed interpolant evaluated at time tf are
interesting from an analytical point of view.

An extension of our interpolation method would be interpolations of an even higher order (i.e. the
equivalent of quintic, septic, etc. splines). Even though these kind of splines are sparsely used in the
Euclidean setting, they could still be relevant in light of Section 3.8, since penalizing higher order deriva-
tives would lead to more general polynomial regressions of higher order. In fact, using the fact that the
third-order forward differences have the following form

3 3 _
o K3 (Thy2 — 3Tp41 + 32 — 1) = AK3 <33k+2 + 0Tk STpq1 + Tk 1) 7

4 4

we conjecture that the corresponding third-order discrete spline energy might be given by

K-2
1 1
16K5 § W2 (Bar4 (Mk+27ﬂk)7Bar4 (Mk-&-l;ﬂk—l)) .
k=1

Unbalanced Transport Splines
Conclusions

In Chapter 4, we provided a detailed review of the foundational models underlying our study, including
the optimal transport framework, the flow of diffeomorphisms, and the associated path energy function-
als. These path energies are characterized by their minimizers, which represent geodesic paths within
the respective shape spaces. Building on this theoretical groundwork, we combined the two models
to develop a generalized image transport framework for measures that account for differences in mass,
following the approach introduced in [MRSS15].

From this foundation, we derived a novel generalized spline energy functional, which serves as a
natural extension of the existing framework. This functional enabled us to define spline curves that
minimize the generalized spline energy while satisfying interpolation constraints imposed by a given
set of key frames at distinct times. In addition to the continuous formulation, we also explored a time-
discrete variational spline interpolation model as a generalization of the first-order time-discrete image
transport model initially proposed in [MRSS15]. The central theoretical contribution of this chapter
was demonstrating the consistency and Mosco convergence of the time-discrete spline energy to the
continuous spline energy in the context of image transport.
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To make this approach computationally practical, we further discretized the model in space and devel-
oped an efficient numerical scheme based on the iPALM algorithm [PS16]. This scheme enabled us to
compute fully discrete image transport spline paths in the space of image densities. Finally, we were able
to successfully test the robustness and flexibility of our method in the numerical experiments presented
in Section 4.8.

The resulting methodology not only extended the existing theoretical framework but also provided a
robust numerical tool for solving real-world problems involving image transport and interpolation. In
doing so, we also managed to solve the two issues that we identified at the beginning of this thesis, and
which were the main motivation for this chapter: difference in mass images, and topological consistency
of the transport maps.

Outlook and Extensions

As mentioned multiple times throughout this thesis, the spline functional (4.2.11) we considered in this
chapter is not intended nor expected to be Riemannian in nature. Even though the numerical experiments
show an improved quality and visual appeal with respect to the piecewise geodesic interpolation, we
ignore the interplay between different terms in the second order; as a result, there are no cross-terms in
4.2.11. Regarding the discrete spline functional, we conjecture it has the following form

K-1

> Wi\ (Vk, Bar(—1, Vii1))
k=1

where Wg y 1s the generalized Riemannian Wasserstein distance defined in (4.1.8). Moreover, as in
the previoﬁs chapter one could consider higher order interpolation, which would be defined mutatis
mutandis. The related work on metamorphosis splines (cf. Fig. 6.1) can also be considered an extension
of this method.

Entropy-Regularized Optimal Transport in Information Design
Conclusions

Inspired by a challenging multi-dimensional information design problem, we embarked on developing
a framework that utilizes the theoretical insights obtained in [KMSW24] regarding Lipschitz-exposed
points of sets of fusions Fj, for a given probability measure . Building upon these findings, we re-
formulated an associated information design problem that focuses on optimizing over power diagrams,
a mathematical representation well-suited to this context. This approach allowed us to connect the theo-
retical underpinnings of information design with practical optimization techniques.

To make the problem computationally tractable, we re-framed it using the perspective of semi-discrete
optimal transport, a versatile and powerful tool in this domain. By further incorporating entropy regu-
larization and a penalty term into this reformulation, we additionally enhanced the model’s numerical
stability and efficiency. In doing so, we also obtained theoretical guarantees of existence of optimal
solutions. This enabled us to derive a practical and highly effective numerical, fully discrete algorithm,
specifically tailored to solving the class of optimization problems at hand.

We subjected the proposed method to rigorous synthetic numerical evaluation to validate its effective-
ness and robustness. Additionally, we applied it to a specific instance of an information design problem
involving a multi-product monopolist. In this scenario, the monopolist strategically designs the informa-
tion to disclose to buyers about the qualities of various products, with the goal of maximizing utility. Our
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results demonstrated the potential of this approach to address complex information design challenges,
offering both theoretical advancements and practical solutions, and allowing us to extract useful insights
from the solutions of the problem at hand.

The method’s relevance extends beyond information design, as optimization over power diagrams
naturally appears in other mechanism design problems and gerrymandering problems, the latter of which
we demonstrated in a short excerpt in the last chapter of this thesis. This suggests broader applications
across economics and political science.

Outlook and Extensions

As mentioned before, the method we developed in this chapter can easily be adapted to other problems
in which an optimization over power diagrams is required. In explicit, one can think about the following
variation of the original functional (5.2.1)

Additionally, one could be interested in more general partitions, such as
LZ(.p)[X,g] ={yeQ:ly—off —g <|ly—=z;/P —¢g; V1<j<n}

which could enjoy similar properties as power diagrams and thus be suitable to optimize over. Finally,
one could think about addressing the issue of convergence of maximizers in the n — 0 case, where 7
was the penalty parameter, possibly using a different penalization term. This would completely close the
gap between power diagrams and finitely-supported Lipschitz-exposed points of F},.
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Figure 6.1: Time discrete spline with framed fixed images (first and second row), first order material
derivative slack variable Z (third and fourth row), second order material derivative w;. (fifth and sixth
row) and color-coded acceleration field aj, (seventh and eight row)
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