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Abstract

In the face of climate change and a growing global population, it’s important
to increase the output of agricultural systems and improve crop resilience to
challenging environmental conditions. Achieving these objectives requires
monitoring crop health in the field, as well as breeding more resilient crop

varieties. However, these tasks are labor-intensive and not economically sus-
tainable. Remote sensing tools, such as uncrewed aerial vehicles (UAVs), have
demonstrated their potential to successfully measure crop parameters while min-
imizing the need for human and financial resources.

The mapping of crop parameters has been widely studied in both the satellite and
UAV research communities. The UAV community typically uses data-driven and
parametric models to predict crop parameters, while satellites rely on physical
models called radiative transfer models (RTMs) to retrieve these variables. How-
ever a key drawback of using satellites is their low spatial and temporal resolution
for applications in precision agriculture.

This thesis explores the use of radiative transfer model PROSAIL to retrieve crop
variables with UAVs and multispectral imaging. First, we examine the reflectance
calibration workflows of the optical sensor, vital for time-series image analysis.
We propose a multi-panel approach for calibrating reflectance of a multispectral
sensor, which our analysis shown to perform better than the one-point calibration.
Next we address the challenges of retrieving structural and biochemical variables
in complex and homogeneous crop canopies. Our findings confirm that the higher
spatial resolution provided by UAVs doesn’t disrupt the fundamental assumptions
of the PROSAIL, which was originally developed for simpler canopies. Finally,
we investigate the sensor synergies for crop stress detection. In one study we
explore the synergy between terrestrial laser scanner, multispectral imaging, and
RTMs to track drought-induced leaf movement in soybean. We show that it’s
possible to track leaf orientation using just multispectral cameras. Another study
discusses the challenges associated with using multiple sensors together to detect
crop stress.
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Zusammenfassung

Der fortschreitende Klimawandel und die wachsende Weltbevölkerung
erfordern sowohl eine Steigerung der landwirtschaftlichen Produktiv-
ität als auch eine verbesserte Widerstandsfähigkeit von Nutzpflanzen
gegenüber sich wandelnden Umweltbedingungen. Um diesen Her-

ausforderungen zu begegnen, sind eine zielgerichtete Überwachung von Pflanzen-
beständen im Feld als auch die Züchtung widerstandsfähigerer Sorten unverzicht-
bar. Herkömmliche Methoden der Pflanzenüberwachung sind jedoch zeit- und res-
sourcenintensiv sowie ökonomisch ineffizient. Fernerkundungstechnologien, wie
der Einsatz von Drohnen, bieten großes Potential Pflanzenparameter objektiv
und effizient zu erfassen und dabei den Bedarf an personellen und finanziellen
Ressourcen zu reduzieren.

Die Anwendung von Satelliten- und drohnenbasierten Ansätzen zur Erfassung
von Pflanzenparametern ist bereits intensiv erforscht. Drohnenbasierte Methoden
nutzen häufig datengetriebene oder parametrische Modelle, während satelliten-
basierte Ansätze physikalische Modelle, sogenannten Strahlungstransfermodelle,
einsetzen. Allerdings sind Satelliten durch ihre begrenzte räumliche und zeitliche
Auflösung limitiert, was ihre Anwendung in der Präzisionslandwirtschaft erschw-
ert.

Diese Arbeit untersucht die Integration des Strahlungstransfermodells PROSAIL
mit drohnengestützter multispektraler Bildgebung zur Bestimmung von Pflanzen-
variablen. Im ersten Teil charakterisieren wir das Reflexionsvermögen des optis-
chen Sensors, eine wesentliche Voraussetzung für die zuverlässige Zeitreihenanal-
yse von Bilddaten. Unsere Studie stellt einen Multi-Panel-Ansatz zur Kalib-
rierung der Reflektanz eines multispektralen Sensors vor, der sich in unseren
Analysen als präziser im Vergleich zur herkömmlichen Einpunktkalibrierung er-
wiesen hat. In zwei darauf folgenden Publikationen beleuchten wir die Heraus-
forderungen bei der Anwendung von PROSAIL zur Erfassung struktureller und
biochemischer Variablen in komplexen und homogenen Pflanzenbeständen. Un-
sere Ergebnisse zeigen, dass die höhere räumliche Auflösung von Drohnenbildern
die Modellannahmen in PROSAIL nicht beeinträchtigt, obwohl das Modell ur-
sprünglich für wenig komplexe Pflanzenbestände entwickelt wurde. Abschließend
untersuchen wir die Synergien zwischen verschiedenen Sensortypen zur Detek-
tion von Pflanzenstress. Eine Publikation widmet sich den Synergien zwischen
terrestrischem Laserscanning, multispektraler Bildgebung und RTMs zur Un-
tersuchung dürrebedingter Blattbewegungen in Sojabohnen. Unsere Ergebnisse
zeigen, dass die Blattorientierung allein durch multispektrale Kameras erfasst
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werden kann. Eine weitere Publikation adressiert die Herausforderungen bei der
kombinierten Nutzung verschiedener Sensoren zur Detektion von Pflanzenstress.
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Chapter 1

Introduction

Remote sensing platforms and sensors allow monitoring of crop per-
formance, vital for implementing sustainable farming practices and
breeding new crop varieties. Uncrewed Aerial Vehicles (UAVs) are an
emerging technology in agriculture. Their potential in agricultural

research and practical applications has been extensively studied. A key use of
UAVs in agriculture is phenotyping, deriving plant charachteristics from the im-
age data. These parameters often relate to the plant performance. However, there
is a challenge in ensuring the reproducibility and the interpretation of approaches
used to obtain these plant parameters from the UAV data.

In Section 1.1, the motivation of this thesis is stated. In Section 1.2, a list of
publications that constitute this thesis is provided, and lastly, in Section 1.3, the
main contributions of this thesis are outlined.

1.1 Motivation

In the face of the rising global population [72], degradation of soil and water
resources [193] and climate change-induced extreme environmental events, global
food security is compromised. To ensure that agricultural production is resilient
to adverse environmental effects, intensification of farming, and rising food de-
mand, we need to adopt sustainable farming practices and develop resilient crop
varieties [105]. In this effort, remote sensing plays a vital role. It can assist
farmers and plant breeders in monitoring crop parameters and quickly identify
high-performing crop varieties through the means of phenotyping.
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Plant phenotyping refers to describing a plant’s outer characteristics either using
the human eye and/or various tools. These characteristics can be important agro-
nomic variables, such as biomass, the number of grains in the wheat head, or the
leaf area. Some variables are indicative of stress, such as changes in chlorophyll
content and leaf angle, stunted growth, etc. The standard practice in the past has
been to record and monitor these plant characteristics using human labor. Since
the task of measuring large fields or different crop varieties in breeding trials is
labor-intensive, technologies have been developed to assist the farmers and breed-
ers in this task. These are called high-throughput phenotyping platforms. While
some platforms operate close to the plants in the greenhouse setting, monitoring
plant characteristics in the field to cover large areas is practically only possible
with aerial platforms.

Among aerial platforms, UAVs have demonstrated strong monitoring and pheno-
typing capabilities due to their versatility, high spatial and temporal resolution,
and ease of use [224]. UAVs can deliver very high-resolution image data over
large areas which enables the high-throughput phenotyping of various crops and
crop varieties within the breeding trials. UAVs can carry different sensors (RGB,
multispectral, thermal, lidar. etc.) [1] at the same time and these sensors can
capture different information on the crop parameters (structural or biochemical).
In this thesis the focus is on optical multispectral sensors that capture images
in different wavelengths. There are different ways of getting to crop parameters
from such sensors.

The most widely used approach uses so called vegetation indices (VIs), quantities
derived from the optical measurements performed in separate spectral bands to
relate to the plant parameter such as chlorophyll content. While VIs are power-
ful tools for mapping relationships with various plant parameters, they often lack
transferability to different scenarios, such as across different growth stages, dif-
ferent crops or even varieties. Another widely used approach is machine learning,
which has demonstrated promising retrieval capabilities. However, a significant
drawback of this method is its reliance on the training data used to develop the
model. Applicability of ML models may be limited when the training set lacks rel-
evant information about the crop of interest. A third approach, radiative transfer
models (RTMs), simulate the interaction of light with vegetation canopies, mod-
eling how radiation is absorbed, reflected, and transmitted by leaves and other
canopy elements and how vegetation parameters affect the distribution of this
radiation. Inversion of these models enables retrieving crop parameters. RTMs
address the problem of transferability, but they introduce several challenges. One
major issue is their complexity; RTMs, especially 3D RTMs require detailed infor-
mation about canopy parameters, which can be difficult to obtain. More complex
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RTMs can be computationally intensive, especially for large-scale applications.
Nevertheless, because RTMs simulate the physical processes of radiative transfer,
they can be applied to a wide range of scenarios without requiring recalibration.
This contrasts with empirical models, which are often site-specific or limited
to the conditions under which they were developed. Hybrid retrieval combines
RTMs with ML models. ML algorithms can be trained on RTM simulations to
create fast and accurate retrieval models. This approach uses the physical basis
of RTMs while benefiting from the speed and generalization capabilities of ML.

RTMs have been developed for satellite-level imaging data and extensively ap-
plied in that context. However, their use in UAV applications remains relatively
unexplored, raising questions about how high-resolution UAV data would per-
form with RTMs. Addressing this knowledge gap is the primary motivation for
this thesis. We have identified several research questions:

• What are the necessary steps before attempting crop parameter retrieval
via RTMs? Before generating satellite products, rigorous radiometric cali-
bration is typically performed, which is often not the case with consumer-
grade UAV sensors. Additionally, research on the radiometric calibration
of UAV sensors is limited. Proper calibration is crucial for ensuring accu-
rate comparisons with other sensors and datasets collected throughout the
measurement season.

• How does spatial resolution impact the retrieval? Since RTMs were origi-
nally designed for satellite-level, spatially coarse data, it is unclear whether
high-resolution image data from UAVs will perform similarly, better, or
worse.

• Which crop parameters can potentially be retrieved, and how can these
results be interpreted? Is it easier to retrieve biochemical parameters, such
as chlorophyll content, using UAV data, given that sun-lit leaves can be
more easily identified in high-resolution images compared to those from
satellites?

• Can the retrieved products be used for stress detection? If so, does the use
of multiple sensors improve retrieval results, and what are the best scientific
practices for utilizing multiple sensors? Crop stress is a significant research
topic in the context of climate change, and it has been established that
employing multiple sensors enhances the detection of specific and/or early
signs of crop stress.

Based on these research questions, the thesis is grouped in three main topics. The
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first topic introduced in 3.1, explores the importance of high-quality reflectance
calibration of multispectral UAV sensors, which is an essential step before crop
parameter retrieval. The second topic covered in section 3.2, examines the ap-
plication of high-resolution UAV imagery in crop parameter retrieval using the
PROSAIL model. Finally, the third topic presented in section 3.3, investigates
the synergistic use of UAV-based optical sensors in crop stress detection.

1.2 Publications

Parts of this thesis have been published in peer-reviewed conferences and journal
articles. The research questions are addressed in the next chapters.

• Publication 1 (Peer-reviewed, conference proceedings)
E. Chakhvashvili, B. Siegmann, J. Bendig and U. Rascher, ”Comparison
of Reflectance Calibration Workflows for a UAV-Mounted Multi-Camera
Array System,” 2021 IEEE International Geoscience and Remote Sensing
Symposium IGARSS, Brussels, Belgium, 2021, pp. 8225-8228,
doi: 10.1109/IGARSS47720.2021.9555143.

• Publication 2 (Peer-reviewed, conference proceedings)
E. Chakhvashvili, J. Bendig, B. Siegmann, O. Muller, J. Verrelst and U.
Roscher, ”LAI and Leaf Chlorophyll Content Retrieval Under Changing
Spatial Scale Using a UAV-Mounted Multispectral Camera,” IGARSS 2022
- 2022 IEEE International Geoscience and Remote Sensing Symposium,
Kuala Lumpur, Malaysia, 2022, pp. 7891-7894,
doi: 10.1109/IGARSS46834.2022.9883446

• Publication 3 (Peer-reviewed, Journal)
E. Chakhvashvili, B. Siegmann, O. Muller, J. Verrelst, J. Bendig, T. Kraska,
U. Rascher, ”Retrieval of Crop Variables from Proximal Multispectral UAV
Image Data Using PROSAIL in Maize Canopy”. Remote Sens. 2022, 14,
1247. doi: 10.3390/rs14051247

• Publication 4 (Peer-reviewed, Journal)
E. Chakhvashvili, L. Stausberg, J. Bendig, L. Klingbeil, B. Siegmann, O.
Muller, H. Kuhlmann, U. Rascher, ”Multispectral imaging and terrestrial
laser scanning for the detection of drought-induced paraheliotropic leaf
movement in soybean”, International Journal of Applied Earth Observa-
tion and Geoinformation, 2024a, 135, p.104250.
doi: 10.1016/j.jag.2024.104250
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• Publication 5 (Peer-reviewed, Journal)
E. Chakhvashvili, M. Machwitz, M. Antala, O. Rozenstein, E. Prikaziuk, M.
Schlerf, P. Naethe, Q. Wan, J. Komárek, T. Kloucek, S. Wieneke, B. Sieg-
mann, S. Kefauver, M. Kycko, H. Balde, V. Sobejano Paz, J. A. Jimenez-
Berni, H. Buddenbaum, L. Hänchen, N. Wang, A. Weinman, A. Rastogi,
N. Malachy, M.L. Buchaillot, J. Bendig, U Rascher, ”Crop stress detection
from UAVs: best practices and lessons learned for exploiting sensor syner-
gies”, Precision Agriculture, 2024b, 25, pp. 2614–2642,
doi: 10.1007/s11119-024-10168-3

1.3 Main Contributions

In the following, we state the main scientific contributions of each part of the
thesis:

Reflectance calibration

Calibration of images acquired from the aerial platforms is an initial and essential
step before analyzing and deriving products from them. Reflectance calibration
ensures that the datasets acquired on different dates can be compared with one
another and that comparisons can be made with other sensors. Most of the
consumer-grade multispectral cameras that are equipped for vegetation research
come with a single panel with known reflectance. The image of the panel is taken
before the flight at the ground and used later to calibrate each image channel
using the known reflectance values of the panels. While this approach has been
tested to deliver sufficiently good information for vegetation research, it does
not account for atmospheric scattering. A more robust approach would be to
use multiple panels with varying reflectance factors and take the images from
the flight altitude to remove any atmospheric effect. In our first publication
(Chakhvashvili et. al, 2021), we applied this method and showed that the multi-
panel approach produces better calibration results, compared to the single-panel
approach, especially in red-edge and NIR regions, which were relevant bands for
the 4th publication.

Crop parameter retrieval

Crop parameters can be retrieved with various methods from UAV platforms.
The most widely used approaches either are data-driven, such as VIs or ML, and
lack transferability. ML methods are dependent on data that is being trained
to retrieve the variable of interest. If the training dataset never contained e.g.
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a specific growing stage of the plant, it will fail to estimate the parameter. As
empirical models, VIs lack a strong physical basis. They are typically developed
and calibrated for specific conditions, which can limit their transferability to other
scenarios. This empirical nature means they may not always accurately represent
the underlying biophysical processes. Additionally, VIs typically use only a few
spectral bands, potentially overlooking important information contained in other
parts of the electromagnetic spectrum. Radiative transfer models, owing to their
physical nature overcome the pitfall of transferability. RTMs have been mostly
applied to low spatial resolution satellite data. They have not been well-tested for
UAV applications. The most widely used RTM is PROSAIL (refer to Chapter
2 for more information on it). In publication 2 (Chakhvashvili et al. 2022),
we explored the application of PROSAIL on high-resolution UAV imagery in
soybeans to retrieve leaf area index (LAI) and leaf chlorophyll content (LCC).
Our results show that PROSAIL can be used to successfully retrieve both of the
variables and that high-resolution images allow us to accurately remove the soil to
retrieve the LCC. Also, the method could be applied to different dates without the
need to tweak the model. In publication 3 (Chakhvashvili et al. 2022), PROSAIL
was applied to the maize dataset. The results showed that, while PROSAIL may
not be ideal for complex canopies due to factors like leaf clumping and shading,
it still allowed for reliable retrieval of LAI and LCC. For row crops, where greater
detail is needed, more advanced RTMs would provide better accuracy.

Sensor synergies for crop stress detection

Crop stress is posing an increasing threat to agricultural systems in face of the
growing number of extreme weather events. For example, the largest share of
negative economic impacts on European agriculture has been caused by drought
and heat, and this is expected to persist in the future [60]. Crop stress monitoring,
especially early stress detection and stress attribution to a certain event, are vital
to managing agricultural systems. Stress can be detected using various optical or
non-optical sensors at different stages. It has been shown that sensor synergies,
the usage of multiple sensors, delivers more robust results [29]. Early stress
detection as well as attribution of stress to certain biotic or abiotic events is a
challenging task. The plant response to the stressors is not necessarily visible to
the naked eye. Additionally plants might be affected by several stressors at the
same time.

Some crops have developed an evolutionary mechanism to combat various ad-
verse biotic or abiotic stressors. One of such mechanisms is paraheliotropism, a
movement of the leaf parallel to the incoming radiation to combat water scarcity.
This is also a process that has been overlooked in the scientific community for a
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long time due to difficulty of measuring it. In Publication 4 (Chakhvashvili et.
al 2024a.) we explored the application of a multispectral sensor and terrestrial
laser scanner to track the diurnal changes of leaf angles in the soybean varieties
under drought stress. We found critical regions in the spectrum that correlate
well with the leaf angle and successfully developed a simple ratio index for this
purpose. PROSAIL was also used to retrieve leaf angle from the data but it was
not as good as a simple relationship between the developed vegetation index and
the leaf angle.

Since sensor synergy provides a better understanding of plant responses to stress,
it is important to consider the potential challenges in collecting data from differ-
ent UAV platforms. In the 5th publication (Chakhvashvili et al. 2024b) sensor
synergies for crop stress detection were discussed in terms of practical recommen-
dations. How multiple sensors could be used successfully to observe the stress
at different stages and what aspects of data collection and processing have to be
taken into account to have a successful measurement campaign using UAVs.
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Chapter 2

Basic Techniques

2.1 Remote Sensing of Crops

Remote sensing is a technique for observing objects or phenomena without direct
physical contact [41]. It uses various methods to detect and measure different
types of signals, mainly electromagnetic radiation (EMR). Imaging sensors are
the predominant type of RS technology due to their ability to generate data that
is easily interpretable across various scientific fields. Early image capture relied
on hot air balloons, kites, and pigeons [52]; today, we use sensors mounted on
satellites, airplanes, and UAVs. These sensors fall into two main categories: pas-
sive and active. Passive sensors, like multispectral, hyperspectral, and thermal
sensors, measure energy that is naturally available from the environment, e.g. re-
flected sunlight. Active sensors, such as radar and lidar, provide their own energy
source for illumination of targets and measure the radiation that is reflected back
[41]. Unlike passive sensors they can operate day or night and in most weather
conditions.

Passive sensors record EMR that is reflected or emitted from an object’s surface.
In case of this thesis the surface is a crop canopy. These waves vary in wavelengths
and frequency, which includes ultraviolet, visible, infrared, and other bands of
electromagnetic spectrum [147]. Before reaching the canopy, light has to pass
through different parts of atmospheric layers, where it is reflected, scattered, or
absorbed by different atmospheric constituents such as ozone and water. Only
a fraction of light reaches the canopy after this process. Upon reaching the
canopy, EMR follows different paths: some is reflected from the top of the canopy,
some is absorbed, and some is transmitted through the leaves before either being
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absorbed, transmitted, or reflected to other canopy layers. The sensors record
this combination of reflected light.

Remote sensing platforms

The era of modern vegetation research using RS began with satellite technology,
specifically the launch of the Landsat satellite mission in 1972, which employed
a multispectral scanner to capture the optical properties of the Earth’s surface
using just four spectral bands. The foundational work established by Landsat 1
has paved the way for over fifty years of continuous monitoring and innovation in
remote sensing technologies. E.g the data from Landsat 1 led to the development
of the normalized difference vegetation index (NDVI) [174], a widely used veg-
etation index (VI) that correlates well with, many agronomic parameters. The
creation of NDVI prompted the exploration of other vegetation indices and later
facilitated the development of hyperspectral sensors with more spectral bands to
study Earth’s surface. Nowadays, satellite constellations such as Sentinel 2 [30]
and Planet Labs [79] provide frequent, high-resolution Earth observation data.
While traditional satellites faced limitations, these modern constellations now of-
fer significantly improved spatial resolution (down to 30 cm) and revisit rates as
frequent as multiple times per day, addressing many of the historical constraints.

Satellite-based imaging sensors provide essential data for global and regional re-
search. They cover large swaths of the Earth’s surface and deliver well-calibrated
products with automated pipelines. However, satellites face limitations such as
coarse resolution, infrequent revisit times, and an inability to see through the
clouds. Improving one of these factors often requires compromising on others.
For example, increasing spatial resolution (i.e., pixel size is decreased) will im-
pact signal-to-noise ratio (SNR). As spatial resolution increases, each pixel covers
a smaller ground area, capturing less energy and reducing signal strength relative
to noise. Similarly, higher spectral resolution (narrower bandwidths) also means
fewer photons per band. In this context, UAVs are playing an important role
in filling the gap between satellite and ground-based RS measurements. UAVs
can achieve much higher spatial resolution than satellites, usually in the range of
centimeters per pixel. They also offer the flexibility of being deployed frequently
and on-demand allowing for high temporal resolution. While satellite imagery
may be affected by cloud cover, UAVs can often fly below cloud level, providing
clear imagery more consistently.

UAVs have occupied their niche within the RS community. They are compact,
portable, accessible, and much cheaper than traditional aerial surveys or satellite
imagery acquisition. UAVs can be launched close to fields and experimental plots.
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They allow for sensor data collection from various angles, that enable 3D modeling
of crop canopies. They can be equipped with different sensors, be it spectral
imaging sensors (multispectral, hyperspectral, thermal) or laser scanners. They
can be combined with ground-based sensors for comprehensive data collection.
For the review and the history of UAVs the reader is referred to [50].

While UAVs offer the flexibility mentioned above, they also come with trade-offs.
Increasing spectral resolution in UAVs comes at the cost of spatial resolution.
Still, their ability to fly at lower altitudes helps mitigate this trade-off at the
expense of the coverage area. Low-altitude flights also increase the flight times.
This can be problematic due to limited battery life and may require multiple
flights or battery changes to complete a mapping mission. Additionally, the
perspective distortion in images can increase, potentially affecting the accuracy
of photogrammetry and 3D modelling. As a result, UAV operators must carefully
balance these factors based on their specific research or operational needs.

Remote sensing sensors

RGB cameras are among the most prevalent and accessible sensors used in UAV-
based remote sensing. They offer high spatial resolution at a relatively low cost,
making them an attractive option for many applications. However, RGB sensors
are limited in their spectral performance, capturing only three channels—red,
green, and blue. This means they do not provide information beyond the visible
spectrum, such as near-infrared which is often crucial for vegetation analysis and
other applications.

Despite these limitations in spectral information, RGB sensors and their products
are widely used due to their high spatial resolution. One notable application is the
Structure from Motion (SfM) technique, which relies on overlapping 2D images to
reconstruct three-dimensional structures. SfM is particularly effective with RGB
images because it prioritizes spatial detail over spectral information. As a result,
UAVs equipped with RGB cameras can produce detailed digital elevation models
(DEMs), 3D models and orthomosaics that are valuable for deriving structural
crop parameters, such as canopy height and volume.

While most UAVs are currently equipped with RGB sensors, more advanced crop
trait estimation relies on multispectral or hyperspectral imaging. This data offers
better insights into the structure and biochemistry of the canopy, providing more
detailed information on plant performance. As light interacts with a crop canopy,
its behaviour is largely determined by the canopy’s structural and biochemical
properties. Vegetation exhibits a distinct reflectance profile, with high absorp-
tion in the blue and red spectral regions and high reflectance in the green and
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near-infrared regions (Figure 2.1). These characteristics are valuable for deriving
various crop parameters. For example, in denser canopies the absorbance of red
and blue light is higher due to more leaves, hence the reflectance is lower.

Figure 2.1: Typical reflectance profile of a vegetation canopy with highlighted features.

Relevant crop parameters

Among the crop parameters leaf area index (LAI), leaf chlorophyll content (LCC)
and average leaf inclination angle (ALIA) are interesting from RS perspective
(Figure 2.2). LAI is defined as the total one-sided area of a leaf per unit of
ground surface area. It’s a key biophysical parameter that characterizes plant
canopies and is critical for understanding various ecological processes such as
photosynthesis and primary productivity [12, 10]. It is widely used in climate
modelling and crop yield estimations. Similarly, LCC provides valuable infor-
mation on photosynthetic capacity, overall primary production, and the nitrogen
status of the plant [91, 47, 53]. ALIA refers to the angle between a leaf and
the horizontal plane. It’s an important structural parameter that affects light
interception, canopy reflectance, water use efficiency and plant adaptations to
various stressors. These three parameters are often interrelated in their effects
on plant functioning and remote sensing observations. They contribute to the
overall signal in different wavelengths and sometimes this contribution overlaps.
For example, leaf area index significantly impacts canopy reflectance in visible
and NIR range, while ALIA impacts the red edge and NIR part of the spectrum.
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Figure 2.2: Crop parameters that were explored in this thesis. Only chlorophyll content was
studied form the leaf pigments.

Structure from motion pipeline

Single images usually are not the end product of UAV campaigns. They are used
to create a larger image of the area, known as an orthomosaic. Orthomosaics
are created in specialized SfM software where images are uploaded and stitched
together. Image stitching is a complex process and involves several steps. In
the first step, key points, such as edges or other noticeable geometrical features
are identified in overlapping images and across the whole image dataset to create
a sparse point cloud [195]. If the key point identification is successful, a more
precise point cloud can be calculated, followed by the creation of a digital elevation
model, upon which all the images can be overlayed to create an orthomosaic.
A significant part of this pipeline involves georeferencing the orthomosaics by
providing points with known geographical coordinates (latitude, longitude, and
altitude) measured before or after the flight. This ensures that the orthomosaic
is correctly placed on the Earth’s surface, usually with centimetre accuracy.

2.2 Trait Retrieval Problem

How can one extract plant structural and biochemical traits from imaging data?
There are various methods to retrieve crop parameters from optical data, which
can be classified into four categories: parametric, non-parametric, physical and
hybrid [207].
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Parametric methods

Parametric methods use simple calculations on measured spectra to derive vege-
tation indices such as NDVI, which is a ratio of NIR and red band. Compared to
single bands VIs are more sensitive to the variable of interest and enable compar-
isons across different time points. E.g NDVI is sensitive to leaf area index (LAI)
more than just the reflectance in red and NIR bands, especially when compared
across datasets. Standard practice is measuring variable of interest and relating
it to the VI to create a simple model, be it linear, exponential etc. The pitfall
of the VI-based models is that they are not transferable to other conditions: to
different sensors, crops, maybe even varieties, so the new models have to be cre-
ated for each application. Despite this, VIs hold immense importance in RS and
vegetation monitoring.

Non-parametric methods

The second retrieval family includes non-parametric models. These are data-
driven machine learning (ML) models that take large amounts of training data to
predict the variable of interest. In this case, both spectra and the ground observa-
tions are used to train the model and test it on the test sample. There are many
machine learning models. Random forests and support vector machines, neural
networks, have been widely used in the RS community to predict different crop
parameters. The primary limitation of data-driven models is their dependence
on the quality and availability of data [207]. As long as the models are trained on
sufficiently large amount of data, predictions can be accurate, but oftentimes this
is not the case. E.g if a training set does not contain different soil shading due
to the water content or different stages of the plant growth, variable estimation
may not be robust.

RTMs and hybrid methods

The physical retrieval family includes radiative transfer models (RTMs). RTMs
simulate the interaction of the light with the canopy. They are based on the
principles of radiative transfer which describe how a photon is propagated in
different media such as crop canopy: absorbed, transmitted, scattered or reflected.
The transfer of the light is dependent on the biochemical and structural properties
of the canopy. The biochemical properties include the leaf pigments such as
chlorophyll, carotenoids, anthocyanins, leaf optical thickness, leaf water and dry
matter contents. The structural variables include the leaf orientation, leaf area
index, height etc. The combination of these parameters determines how the
light will be transferred within the canopy. E.g with LAI of 5 the reflectance
in the near-infrared region will be much higher compared to LAI of 1. This
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is explained by the fact that vegetation does not absorb the light in the NIR
spectrum as much, so with more leaves stacked on top of each other the reflected
signal will be much larger compared to areas with low LAI where the soil is more
exposed. Canopy RTMs operate in two modes: forward and inverse. In forward
mode, RTMs simulate canopy reflectance based on input parameters describing
the canopy structure and leaf properties. In inverse mode, RTMs are used to
estimate canopy properties from observed reflectance data.

RTMs can simulate a wide range of scenarios by adjusting input parameters, al-
lowing for the exploration of hypothetical conditions. RTMs developed for one
sensor can often be adapted for use with other sensors by accounting for dif-
ferences in spectral response function. Unlike empirical models that are often
site-specific, RTMs can be applied to different vegetation types and environmen-
tal conditions with appropriate parameterization. They require knowledge on
the state variables and the choice and the complexity of the RTMs depend on
the canopy architecture: heterogeneous canopies cannot be modelled in simple
RTMs like PROSAIL, while complex RTMs like DART require knowledge on
large amount of input parameters. The hybrid retrieval family combines RTMs
with non-parametric models. In this case MLs are used to predict variables based
on the RTM simulations.

Radiative transfer model PROSAIL

RTMs can have a very simple representation of the canopy e.g. turbid medium
of PROSAIL or can have a large amount of the input parameters and near-
real world 3D representations of objects like 3D RTM DART [81]. PROSAIL
has been widely used in the RS community. The model combines leaf op-
tical property (PROSPECT) with structural property (SAIL - Scattering by
Arbitrarily Inclined Leaves) models (Figure 2.3). PROSPECT was designed
to simulate the directional-hemispherical reflectance and transmittance of plant
leaves across the optical spectrum, typically ranging from 400 to 2500 nm [113].
It relies on several key parameters to model leaf optical properties. The leaf
structure parameter (N) represents the number of compact layers within the
mesophyll. Leaf chlorophyll, carotenoid and anthocyanin content charachterize
the leaf pigments. Equivalent water thickness, and dry matter refer to leaf’s
water content and the dry mass. The PROSPECT model has gone through
several versions, including PROSPECT-4, PROSPECT-5, PROSPECT-D, and
PROSPECT-PRO. Each new version added capabilities or refined existing ones.
For example PROSPECT-PRO added protein content (related to nitrogen) and
cellulose + lignin content(constituents of dry matter other than proteins). SAIL
is a one-dimensional radiative transfer model that simulates the interaction of
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light with plant canopies. Key input parameters for SAIL include LAI, ALIA,
soil reflectance and observation and illumination parameters. LAI represents the
total one-sided area of leaf tissue per unit ground surface area; ALIA describes
the average leaf inclination angle in the canopy; soil reflectance represents the
optical properties of the background; parameters such as solar zenith angle, ob-
server zenith angle and relative azimuth angle between the sun and the observer
describe illumination and viewing geometries. The model assumes a horizon-
tally homogeneous canopy structure, which is represented as a turbid medium of
randomly distributed leaves. This is a very simplistic representation and often
does not apply to the real world. PROSAIL has been mostly used in satellite
applications, but the usage is increasing in the UAV community [202, 172].

Figure 2.3: Graphical representation of the PROSAIL model. PROSAIL is a coupling of leaf
PROSPECT model (on the left) and canopy SAIL (on the right) models. Parameters that are
needed to run the PROSAIL simulations are listed for each model.
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PROSAIL inversion

In this thesis we focus on the inversion of the PROSAIL model to retrieve the
parameters. There are different inversion methods. The Look-Up Table (LUT)
approach uses a database of simulated spectra which is generated using PROSAIL
with various parameter combinations. The measured spectrum is then compared
to the LUT to find the best matching simulated spectrum and its corresponding
parameters. Optimization methods involve iteratively adjusting model param-
eters to minimize the difference between simulated and measured spectra. ML
approaches like neural networks or support vector regression are trained on simu-
lated PROSAIL data to learn the relationship between reflectance and biophysical
parameters.

The inversion of PROSAIL faces several challenges. Multiple combinations of
input parameters can produce very similar canopy reflectance spectra, leading to
non-unique solutions. This is known as an ill-posed problem and makes it diffi-
cult to reliably retrieve specific vegetation parameters. Uncertainties in both the
model assumptions/simplifications and the remote sensing measurements propa-
gate through the inversion process, affecting the accuracy of retrieved parameters.
Many inversion approaches, especially optimization methods, can be computa-
tionally demanding when applied to large datasets or when using complex models.
Strong correlations between some vegetation parameters (e.g., LAI and ALIA)
can make it difficult to separately retrieve these properties. Simplified assump-
tions in PROSAIL may not accurately represent complex real-world canopies,
leading to inversion errors. There are several strategies to address some of these
challenges. E.g. Isolating spectral bands most sensitive to the parameters of in-
terest or using prior information or constraints to limit the parameters has shown
to help with the ill-posed problem.

2.3 Validation

An important aspect of crop parameter retrieval is the validation. For this pur-
pose the variables of interest are measured close (during, before or after) to the
overflights. In this thesis we have focused on the ground validation of three main
variables: LAI, LCC and ALIA. LAI and LCC can be measured destructively
(taking plant samples) or non-destructively (without damaging the plant). ALIA
can only be measured non-destructively.

For destructive LAI measurements, a small representative area within the exper-
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mental plot, typically 40x40 cm, was selected, and the above-ground biomass was
collected. The leaves were then analyzed using a LI-3100C leaf scanner (LI-COR,
Lincoln, Nebraska, USA) to measure the total leaf area. Leaf scanner features two
transparent conveyor belts that rotate to move leaves across a scanning bed. As
leaves pass through, the instrument uses an electronic method to scan and mea-
sure the leaf area. LAI was calculated by dividing the total leaf area by the soil
area of the selected plot. Non-destructive measurements were conducted with the
SunScan Canopy Analysis System (Delta-T Devices, Cambridge, United King-
dom), which consists of two main components: a sunshine sensor that measures
total incident PAR above the canopy (both diffuse and direct light components),
and a probe that measures PAR along its length 1m length using 64 PAR sen-
sors. The standard procedure involves placing the rod beneath the canopy and
comparing the PAR levels under the canopy with those above it, as measured
by the sunshine sensor. The LAI calculation in the SunScan system is based on
an inversion of Beer’s Law, which describes light attenuation through a medium.
However, the system uses a more complex model to account for the intricacies of
plant canopies: information on canopy architecture such as leaf angle distribution,
solar position and different light components (diffuse and direct). This approach
allows the SunScan system to provide LAI estimates that are more accurate and
robust across a range of canopy types and lighting conditions compared to simpler
light transmission models.

Non-destructive LCC measurements were taken using a SPAD meter (Konica
Minolta, Tokyo, Japan). The SPAD device measures the transmittance of red
(650 nm) and near-infrared (NIR, 940 nm) light through the leaf, providing a
value related to chlorophyll content [198]. The procedure involves taking multiple
readings from the leaf and averaging the results. It is essential to collect as many
measurements as possible within the experimental plot to obtain a representative
value. Since the SPAD reading is not a direct measure of chlorophyll content, it
must be converted using a calibration formula, typically linear or exponential, as
found in the literature.

For ALIA measurement we used a terrestrial laser scanner. The plots were
scanned from different positions, which resulted in 3D point clouds. These 3D
point clouds were then meshed and average leaf inclination angle per plot was
calculated. For more detailed description of the measurements refer to Chapter
5.

All sensor and ground measurements discussed in this thesis have been acquired
in the PhenoRob Central Experiment, at Campus Klien-Altendorf, near the city
of Bonn, Germany. The measurements were conducted in various experiments in
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the span of 2020-2022 vegetation seasons.
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Chapter 3

Summary of Relevant
Publications

This thesis is structured in three main topics. The distribution of publi-
cations to their respective topics can be seen in Figure 3.1. Publication
4 falls into both ’Retrieval of crop parameters’ and ’Sensor synergies
for crop stress detection’ topics.

Figure 3.1: Publications and their allocation to respective topics.

3.1 Reflectance Calibration

Scientific context

Reflectance calibration of the optical sensors is an important step to preparing
image data for analysis and ensuring the accuracy and reliability of final re-
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sults [46]. It also allows for the comparison of datasets acquired throughout the
measurement season with one another and with the datasets derived from other
optical sensors. Many UAV sensors that have recently flooded the market lack
proper reflectance calibration pipelines. Even when such pipelines are provided,
the accuracy assessment of these calibrations is often overlooked, inadequately
addressed or is not transparent enough. This oversight can lead to unreliable
data, as users may not be aware of the limitations or potential errors in their
sensor measurements. Additionally, it hinders the development of large-scale,
multi-sensor remote sensing projects. Before the reflectance calibration, raw im-
ages have to be converted to radiance (W · sr−1 · m−2 · nm−1). This requires
correcting for sensor-specific parameters, including variations in exposure times,
the vignetting effect, and dark current levels.

Next step involves the relation of radiance images to reflectance of a known ob-
ject. Calibration is done using spectrally flat surfaces also known as lambertian
surfaces. This means that the reflectance across the electromagnetic spectrum
remains nearly constant. Generally, for UAV applications small aluminium pan-
els coated with special paints with varying shades of gray from white to black
are used and the reflectance of these panels are measured in the lab. Before the
take-off the panel images are taken and used to calibrate images to reflectance.
Calibration is then performed by applying a simple linear function to relate the
radiance of the image to the reflectance of the panel (see Figure 3.2). The as-
sumption is that the relationship between the radiance and reflectance is linear,
but since that is not always the case due to the characteristics of different sensors,
it’s recommended to use several panels with varying reflectance factors to inspect
for the linearity [186].

Many optical imaging sensors come with the reflectance calibration pipelines us-
ing just one panel. This approach neglects the effect of atmospheric scattering
and assumes that the target with 0% reflectance will produce 0 at sensor-radiance.
Several studies have shown that single panel approach for UAV-mounted multi-
spectral cameras overestimates the reflectance especially in red edge and NIR
bands [74, 164]. The cause of this overestimation could be attributed to the ab-
solute radiometric calibration of the camera or ’spectral pollution’ of the dark
panels by the surrounding vegetation.
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Figure 3.2: Depiction of linear relationship between band-specific at sensor radiance (L) and
reflectance of factors of the calibration panels (left). The usage of contrasting (dark and light)
panels confirms that the relationship is indeed linear. Figure is adapted from Smith et al.
(1999); Representation of reflectance panels with different reflectance factors depicted in per-
centages (%). a is radiance caused by atmospheric scattering between sensor and the target.

Publication 1 (Peer-reviewed, conference)

Chakhvashvili, E., Siegmann, B., Bendig, J., & Rascher, U. (2021, July). Com-
parison of reflectance calibration workflows for a UAV-mounted multi-camera
array system. In 2021 IEEE International Geoscience and Remote Sensing Sym-
posium IGARSS (pp. 8225-8228). IEEE.

In this publication we explored different calibration approaches: the one used by
the camera manufacturer which involves taking close images of the single panel
before and after the flight and the approach that we developed which involves
taking images of multiple panels from the flight altitude. Our approach ensured
that atmospheric column and thus the effect of atmospheric scattering would
be accounted for while flying the UAV. While our results show that single panel
approach is good enough for visible bands, it delivers less accuracy in the NIR and
red edge bands compared to multiple panel approach. These are the bands that
are vital for vegetation research so they should be well calibrated. We propose
to use gray-gradient panels with varying reflectance factors (at least 3 in the
range of 5-40% reflectance factor) to ensure the linearity of the calibration model.
Additionally we inform the future users that panels with reflectance factors higher
than 60% are often oversaturated in visible bands and can’t be used for the
calibration for the MicaSense Dual camera system used in this study. This is not

23



the case for Red Edge and NIR bands.

3.2 Retrieval

Scientific Context

Once the image processing chain is established and reflectance products (orthomo-
saics) are finished, it is time to test the retrieval of crop variables using PROSAIL.
For the description of PROSAIL please refer to Chapter 2.

The applicability of PROSAIL to UAV data has been explored in various studies
and for various crops. The most widely retrieved variables are green fraction
(GF), LAI, LCC and canopy chlorophyll content (CCC) [172, 202, 117, 3, 63,
191]. In the majority of these studies, UAVs were either flown at high altitudes
to produce coarse-resolution imagery that mimics airborne or satellite data [172,
202, 63], or the resolution of the final orthomosaic was artificially reduced [172].
This reduction was done to meet the assumption of a turbid medium model such
as PROSAIL. While reducing the spatial resolution might be sensible for struc-
tural variable retrieval, it has an adverse effect on the estimation of biochemical
variables: image data become affected by mixed pixels, meaning that it is no
longer possible to separate shaded and soil pixels from vegetation (leaves). This
blending effect in turn influences the proper estimation of leaf variables per plot.
Images of higher spatial resolution allow the separation of only vegetated pixels
from the scene to better estimate the leaf variables. Additionally, in the major-
ity of the above-mentioned studies, hyperspectral sensors were employed. While
these sensors deliver spectrally contiguous data, their applicability in breeding
and precision agriculture is currently limited due to their high cost and com-
plex data post-processing. Multispectral sensors, on the other hand, are much
cheaper and provide information of important spectral regions, which proved to
be sufficient to retrieve crop biophysical variables of comparable quality [202].

A common method of retrieving vegetation variables at plot level is averaging the
measured spectra per plot and applying the inversion scheme to it. While this
method works well for coarse-resolution imagery and for structural variables, we
assume that leaf biochemical variables could be better estimated by applying the
inversion scheme to the reflectance maps and then averaging the variables per
plot. In this way, valuable information on each canopy feature can be obtained.

Publication 2 (Peer-reviewed, conference)
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Chakhvashvili, E., Bendig, J., Siegmann, B., Muller, O., Verrelst, J., & Rascher,
U. (2022, July). LAI and leaf chlorophyll content retrieval under changing spatial
scale using a uav-mounted multispectral camera. In IGARSS 2022-2022 IEEE In-
ternational Geoscience and Remote Sensing Symposium (pp. 7891-7894). IEEE.

PROSAIL was created for spatially coarse satellite data. One of our primary
objectives was to test whether PROSAIL could be effectively applied to UAV data.
For this purpose we have resampled orthomosaics to lower spatial resolutions to
simulate flights at maximum 100 m altitude, without simulating the effect of the
atmosphere between the sensor and the crop. We collected ground measurements
of LAI and SPAD in two soybean varieties, extracted the spectra from their
respective plots and applied the RTM inversion scheme. For chlorophyll content
retrieval we tested two approaches: where soil and shaded pixels were removed
from the scene and where soil and shade were intact.

In this study, we have demonstrated that with decreasing spatial resolution the re-
trieval accuracy of both structural and biochemical parameters slightly decreases.
The results show that coarsening spatial resolution had less impact on the retrieval
of LAI. However, it had a significant impact on the retrieval of LCC, especially
when soil and shaded areas were masked from the orhtomosaics. This study
confirmed that UAVs can be successfully used for pigment retrieval as its’ high
spatial resolution allows for the discrimination of different canopy constituents,
such as soil, sun-lit leaf and shaded leaf.

Publication 3 (Peer-reviewed, Journal)

Chakhvashvili, E., Siegmann, B., Muller, O., Verrelst, J., Bendig, J., Kraska, T.,
& Rascher, U. (2022). Retrieval of crop variables from proximal multispectral
UAV image data using PROSAIL in maize canopy. Remote sensing, 14(5), 1247.

The third publication tests PROSAIL’s application in more complex row crop:
maize. It explores the retrieval of LAI, LCC and CCC from two distinct maize
types: silage and sugar corn, with complex architectures. The row structure
of maize canopies creates gaps and a non-uniform distribution of plant mate-
rial, which conflicts with the turbid medium assumption of the PROSAIL model.
Additionally, row crops typically have a pronounced vertical stratification of leaf
area and other canopy components, which affects the distribution of light and nu-
trients throughout the canopy. In this publication we tested LUT-based retrieval
on differently processed reflectance data with soil and shade removed. We first
averaged the reflectance per plot and inverted the model. The second approach
involved applying the inversion scheme to each pixel.
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Compared to spatially lower-resolution satellite and airborne imagery, high-resolution
UAV images allowed the separation of soil, shaded and sunlit pixels. Thus, it was
possible to retrieve the leaf chlorophyll content (LCC) by applying the inversion
scheme only to green sunlit pixels. The LCC retrieval yielded promising results
in comparison to ground measurements when using both retrieval approaches
and led to higher accuracies compared to satellite or airborne studies. The mea-
surement uncertainties associated with LCC retrieval could be further reduced
by acquiring destructive chlorophyll measurements for a more accurate SPAD
to LCC conversion equation. The retrieval accuracy of LAI was differed for the
growth stages. The best results were obtained for early growth stages (leaf devel-
opment, early and late stem elongation). We observed a significant improvement
in the estimation of CCC when the pixel-based retrieval approach was used. We
argue that high-resolution UAV imagery is well suited for biochemical variable
retrieval, as shadows and background soil can be precisely removed, leaving only
green plant pixels for the analysis. Further research is needed to validate the
transferability of the model using similar sensor settings to the maize canopies.
Furthermore, a more detailed characterisation of the canopy structure could im-
prove the retrieval results, specifically of LAI. In addition, 3D RTMs would enable
such a canopy characterization and should be explored in future studies.

3.3 Crop Stress Detection

Scientific context

Environmental stressors pose a significant threat to the crop production [236].
These stressors can be broadly categorized into abiotic and biotic factors, with
abiotic stressors including extreme temperatures, drought, flooding, salinity, and
nutrient deficiencies, while biotic stressors encompass pests, diseases, and weed
competition. Monitoring crops for possible stress is vital to avoid the losses
caused by these stressors. Manual monitoring of large areas is time-consuming,
additionally the farmers and breeders are not able to get a larger picture of the
area under stress and identify the cause. UAV RS methods enable to monitor
the fields at high frequency and cover areas up to 500 ha depending on the flight
parameters, sensor and the location of the field.

Drought is posing a significant challenge for agricultural systems worldwide. Some
plants have evolved mechanisms to combat water scarcity. One of such mecha-
nisms is paraheliotropism also known as light-avoidance through leaf movement
[163, 136]. While the leading factor in paraheliotropic leaf movement is excess
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light, temperature and water availability also influence the process [170]. Para-
heliotropism causes the leaves to align parallel to the incident light. This way
plants avoid high leaf temperature and high evapotranspiration [65, 78]. Despite
many observations, the significance of this adaptive mechanism remains poorly
understood [228].

Leaf movement can be described by leaf orientation parameters, one of which is
the average leaf inclination angle (ALIA). ALIA is the angle between the leaf
normal and the zenith, influencing light interception, photosynthetic efficiency,
canopy competition, and serving as an early indicator of plant stress [179, 228].
Despite its significance in plant physiology and crop production, ALIA has been
relatively underexplored due to the labor-intensive and error-prone nature of in-
situ measurements. As a result, many studies have favored indirect methods such
as photographic [34, 153, 110, 241] and laser scanning approaches [237, 15], which
allow for diurnal and near-instantaneous ALIA measurements in field conditions.
Although these methods yield reliable results, they struggle with scalability due to
the time-intensive procedures, especially as study areas increase. The challenge is
compounded by rapid changes in leaf orientation over time, further complicating
measurements in larger areas. A promising, though underutilized, alternative
involves using radiative transfer models (RTMs) and optical data from airborne
platforms. This approach offers faster and more efficient data acquisition, making
it a viable option for broader applications compared to photographic and laser
scanning methods.

While single optical sensors may be sufficient for monitoring crop status, in-
tegrating multi-sensor data from airborne or UAV platforms provides a more
comprehensive understanding of plant responses to various biotic and abiotic
stressors [162, 2, 149, 86]. For instance, combining multispectral (MS, discrete
spectral bands) or hyperspectral (HS, continuous spectral coverage) sensors with
thermal infrared (TIR) sensors offers a broad spectral range for detecting and
quantifying early-stage crop stress. By measuring leaf or canopy temperature,
rapid changes in plant traits like stomatal conductance can be detected within
minutes to hours, providing an early, pre-visual indication of stress [92]. Addi-
tionally, incorporating VIS-NIR data allows for the analysis of stress responses
linked to pigment levels, such as chlorophyll, carotenoids [90], and anthocyanins
[89], which are crucial for photosynthesis and productivity. The combination of
different spectral resolutions and sensor types enhances spectral coverage and
provides complementary insights into plant stress responses.

The synergistic use of sensors across different spectral domains enhances the abil-
ity to monitor both early and long-term crop responses to external stressors that
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impact growth and productivity [167]. For instance, integrating MS VIS-NIR
sensors with a broadband SWIR sensor or an NIR+SWIR multi-camera array
has proven effective for assessing leaf water status and nitrogen concentration
in crops [122, 119]. This VIS-NIR+SWIR combination is particularly beneficial
for detecting medium- to long-term stress responses. Moreover, the simultaneous
collection of hyperspectral (HS) and thermal infrared (TIR) imagery, along with
solar-induced fluorescence (SIF) data, offers valuable insights intothe mechanistic
understanding of the link between SIF and plant stress [86, 38]. Additionally,
data from RGB, MS, HS, and TIR sensors can be used to derive biophysical
traits and aid in the quantification and interpretation of physiological changes
reflected in SIF measurements. These physiological changes include photosyn-
thetic efficiency, non-photochemichal quenching, stomatal conductance, changes
in chlorophyll content etc. Integrating data from multiple sensors is essential for
advancing our mechanistic understanding of plant responses to stress.

Publication 4 (Peer-reviewed, Journal, submitted)

Chakhvashvili, E., Zabawa L., Siegmann, B., KLingbeil, L., Bendig, J., Kuhlmann,
H., & Rascher, U. (2024 ). Multispectral imaging and terrestrial laser scanning
for the detection of drought-induced paraheliotropic leaf movement in soybean.
International Journal of Applied Earth Observation and Geoinformation, 135,
104250.

In publicaiton 4 we describe methods how leaf angle can be measured using TLS
and UAV and relate our measurements to the drought. We have established that
two very distinct soybean varieties have different response to the drought, where
chlorophyll-deficient variety (Minngold) shows less change in leaf angle during
diurnal measurement compared to dark-leaf variety (Eiko).

Our environmental data confirmed meteorological drought in the study area and
soybeans were expected to display a paraheliotropic response. We demonstrated
for the first time that it is possible to conduct diurnal TLS measurements to re-
veal differences between the soybean varieties. In the mornings, both had similar
leaf angles, but by the afternoon, Eiko’s leaves became vertical, showing a classic
paraheliotropic response, while Minngold’s leaves remained unchanged. As the
drought persisted, Eiko’s response intensified, with leaves becoming vertical ear-
lier in the day and, by August, even inverting to expose the abaxial side. This
response, previously documented, has now been tracked using remote sensing
methods.

Unlike Eiko, Minngold showed a weaker paraheliotropic response, with minimal
variation in leaf angles throughout the day. This subdued reaction is linked to
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a genetic mutation causing its upper leaves to be more yellow, reducing light
absorption and evapotranspiration. This adaptation allows Minngold to conserve
water more effectively.

Our findings suggest a strong relationship between the reflectance in the red edge
(740 nm) and near-infrared (842 nm) spectral bands and the ALIA. However,
this relationship is not consistent during morning and afternoon measurements,
with the latter showing a stronger correlation. Moreover, the near-infrared band
at 840 nm is influenced by LAI, complicating the decoupling of the effects of
ALIA and LAI on top of canopy reflectance. The ratioing of the 740 and 842
nm bands to eliminate the effects of sun-target-sensor viewing geometries proved
successful in combining morning and afternoon measurements and establishing
correlation with ALIA. Additionally, we observed that LAI has no significant cor-
relation with the 740/842 index. Inversion of PROSAIL had different outcomes
for the constrained and non-constrained with the latter significantly underesti-
mated, compared to the former. ALIA retrieval worked significantly better for
Minngold than Eiko. Future research should explore whether this relationship is
applicable to ALIA estimations in other crops than soybean.

Publication 5 (Peer-reviewed, Journal)

Chakhvashvili, E., Machwitz, M., Antala, M., Rozenstein, O., Prikaziuk, E.,
Schlerf, M., ... & Rascher, U. (2024). Crop stress detection from UAVs: best
practices and lessons learned for exploiting sensor synergies. Precision Agricul-
ture, 1-29.

Using multiple sensors comes with its challenges, which at first glance might
be trivial but that will have a large impact on the time-sensitive measurement
campaigns. The number of sensors is constantly increasing on the market. At the
same time, these sensors are becoming smaller while UAVs are becoming more
versatile. This allows for multiple sensors to be mounted on the UAV platforms.
It is already a standard practice to fly high-resolution RGB cameras together
with multispectral cameras.

Measuring with multiple sensors requires careful planning. In publication 5 we
discuss steps that need to be taken into account when planning multiple sensor
campaigns. These steps include UAV mission planning, the optimal time for data
acquisition, calibration targets and ground control points, etc.

The first part of the manuscript focused on acquiring high-quality multi-sensor
imagery, highlighting several key points: (i) Optimal timing for data collection
is essential, as some sensors have specific timing requirements. (ii) Sensor char-
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acteristics must be considered in mission planning. (iii) Calibration targets with
varying properties are needed for sensors from different optical domains. (iv) It
is highly recommended to use ground control points that are recognizable by all
sensors to ensure accurate image co-registration. (v) Incorporating additional
measurements, such as weather data, is advisable for atmospheric correction.

The second part of the guideline addressed data analysis, emphasizing the follow-
ing points: (vi) Data fusion for synergistic use should occur at Level 1C (physical
units). (vii) Data quality flags should filter out unstable or biased measurements.
We presented simple methods, such as vegetation indices, to integrate information
from various spectral domains, alongside more complex techniques like retrieving
biophysical variables through radiative transfer model (RTM) inversion. This
latter area requires further research, and it is anticipated that future studies will
follow the recommendations by [29].
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Chapter 4

Comparison of reflectance
calibration workflows for a
UAV-mounted multi-camera
array system

This chapter is published as:

E. Chakhvashvili, B. Siegmann, J. Bendig and U. Rascher, ”Comparison of Re-
flectance Calibration Workflows for a UAV-Mounted Multi-Camera Array Sys-
tem,” 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS,
Brussels, Belgium, 2021, pp. 8225-8228,
doi: 10.1109/IGARSS47720.2021.9555143.

E.C. acquired the image data, conducted the analysis, and drafted the manuscript.
B.S. measured panels with ASD and contributed to the review process. J.B. and
U.R. provided supervision and review feedback. The content of the text remains
identical to the published work. However, the format has been adjusted to align
with the requirements of the thesis.
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Abstract

Well radiometrically calibrated UAV-derived reflectance maps are important when
analysing time series of vegetation canopies. In this paper, we assessed the qual-
ity of reflectance calibration of a multispectral camera system, MicaSense Dual,
using two different methods: a single-panel approach offered by the camera manu-
facturer and an empirical line method. The results show a significant discrepancy
between the reference reflectance measurements, and the single-panel approach
in the NIR and the red edge bands. This discrepancy is especially pronounced for
dark targets. The empirical line correction method has proven to be more accu-
rate, yet for shaded and densely vegetated areas it has led to negative reflectance
values in the visible bands. Hence, we argue that users should be aware of the
caveats of both reflectance calibration pipelines when working with time-series
UAV data.

4.1 Introduction

Low-cost multi-camera arrays (MCAs), which are easily mounted on UAVs, are
increasingly used for vegetation mapping. The main output from mapping mis-
sions with these cameras are reflectance orthomosaics. It is important to assess
the quality of the reflectance products, especially when working with time-series
analysis and radiative transfer models for canopy biophysical variable retrieval,
like chlorophyll content and leaf area index (LAI). Camera manufacturers provide
consumers with reflectance calibration workflows, which are often implemented
in several photogrammetric software. These calibration procedures are usually
based on capturing a single gray panel with a known reflectance factor before and
after the flight campaign. It is assumed that the relationship between the mea-
sured reflectance and the radiance of the panel is linear. Nevertheless, the single
panel approach is known to overestimate the reflectance of the NIR and red edge
bands in some MCAs, especially for dark targets [74, 164]. Furthermore, as pan-
els are imaged lose to the ground and not at the flight altitude, the atmospheric
effects cannot be accounted for. The more robust way of calibration, which has
been largely applied to satellite data, is the empirical line method (ELM), where
at least two targets with contrasting and known reflectance factors are used to
create a simple linear model which is subsequently applied to the radiance image
data [186].
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In this paper, we explored two calibration workflows for the MicaSense Dual cam-
era [MicaSense Inc, USA] system mounted on an UAV: a single panel approach
provided by the camera manufacturer and the ELM using several panels. Two
flight campaigns were conducted over two crop breeding trials on the same day.

4.2 Material and Methods

4.2.1 Study area and materials

The study area was located at the agricultural research station Campus Klein-
Altendorf in the western part of Germany (latitude 50◦37′N, longitude 6◦59′E, el-
evation 176 m). Two sets of calibration panels [Mankiewicz Gebr. & Co. (GmbH
& Co. KG), Germany], referred to as set A and set B, were placed next to two
experimental fields, denoted as BreedFACE (BF) and PhenoRob (PR). Each set
was comprised of nine 30x30 cm panels with varying reflectance factors (Fig. 1).
The reflectance profiles of the panels were nearly flat across the VIS-NIR range.
The optical properties of the panels were close to that of Lambertian surfaces.
A single gray calibration panel (52% reflectance over MicaSense Dual spectral
region), provided by the camera manufacturer, was placed next to the depar-
ture point of the UAV. BF was a wheat experiment, while PR was covered by
wheat, maize and sugar beet. The MicaSense Dual camera system, comprising
of two cameras – the MicaSense RedEdge- MX and the RedEdge-MX Blue - was
mounted on the DJI Matrice Pro 600 [SZ DJI Technology Co., Ltd, China] UAV
platform. The camera captured images in 10 spectral bands (see Table 1).

Table 4.1: Centre wavelengths and bandwidths of the MicaSense Dual camera system

Band names Centre Wavelength [nm] Bandwidth [nm]
Blue444 444 28
Blue475 475 32
Green531 531 14
Green560 560 27
Red650 650 16
Red668 668 14
RE705 705 10
RE717 717 12
RE740 740 18
NIR840 842 57
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Figure 4.1: NIR images of panel set A (left) and panel set B (right) as seen from the flight alti-
tude of 20 m; numbers on each panel represent average reflectance factors across the MicaSense
wavelengths.

The flight campaigns took place on the June 23rd, 2020 under sunny conditions
around solar noon (13:08 – 13:25 for PR and 13:55 – 14:09 for BF, UTC+1). The
UAV was flying at 20 m above ground level in a survey pattern with 80% forward
and 70% side overlap. Directly before and after the flights, images of the MicaS-
ense calibration panel were taken from chest level ( 1m) without casting shadow
on the panels. Images of panel sets A and B were captured during the flight
survey. Additionally, reflectance measurements of the panel sets were collected
timely close to the UAV image data acquisition using ASD FieldSpec4 spectrora-
diometer [Malvern Panalytical Ltd, UK]. From each panel, three measurements
were recorded, averaged and spectrally resampled to match the spectral properties
of the MicaSense cameras.

4.2.2 Photogrammetric processing

The datasets were processed in the photogrammetric software Agisoft Metashape
[Agisoft LLC, Russia] using two approaches. For the ELM approach, before im-
porting the images into the software, digital numbers were converted to radiance,
using the radiometric calibration model (1) provided by the camera manufacturer
[4]:

L = V (x, y) · (a1
g

· p− pBL

te + a2y − a3tey
) (4.1)

where L is the radiance in W/m2/sr/nm, V(x,y) is the vignette polynomial
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function for pixel location (x,y), a1,m a2, a3 are the radiometric calibration coef-
ficients, g is the sensor gain setting, p is the normalized raw pixel value (divided
by 2N, where N is the number of bits in the image), x and y are pixel row and
column numbers, respectively, pBL is the normalized black level value, and te is
the image exposure time. Afterwards, the common Agisoft Metashape workflow
was applied to align and georeference the images using ground control points
distributed across the investigated fields. The generated orthomosaics were con-
structed with the mosaic blending mode enabled. For the single panel approach,
the raw images were imported into Agisoft Metashape and the reflectance cali-
bration workflow proposed by MicaSense and Agisoft was applied to the datasets
[5]. The software employs the same reflectance calibration formula as described
in [1]:

K =
ρref

Lref
(4.2)

ρ = KL (4.3)

where K is a calibration coefficient, �ref is an average reflectance of the panel, Lref
is the mean radiance of the panel and � is a surface reflectance of the orthomosaic.
The reconstruction settings remained identical to those used in the first approach.
No sun sensor data was included in the workflow, as the clear sky condition
remained throughout the flight. As a last step, the mosaics were exported for
further processing.

4.2.3 Empirical line method

For the empirical line method, panel radiances of set A and B were extracted
from the central part of each panel (96 pixels on average per panel) from the
orthomosaic and the linear model was built based on the measured reflectance
factors. Before the ELM application, it was observed that the images of spectral
bands in the visible domain were saturated in the panels with high reflectivity
(22%, 24%, 37%, 40%, 56%, 63%). For this reason, the saturated panels for
each spectral band were removed from further analysis. This limitation has also
been reported in another study using automatic exposure times on a different
MCA [1]. To check the linearity of the model and validate the results, the panels
were divided into calibration and validation sets. For calibration purposes, three
panels were used, including the non-saturated brightest and the darkest panel.
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4.3 Results

Results of the comparison between the two calibration workflows can be found
in Table 2. Panel reflectance derived from MicaSense single-panel and ELM
approaches plotted against reference measurements of the panel sets A and B from
the field spectroradiometer can be seen in Figure 2. For single-panel approach,
every non-saturated panel was used for validation. Results are plotted only for
NIR and red edge bands.

Table 4.2: Comparison of calibration workflows against reference measurements. Values repre-
sent average RMSEs (%) of reflectance factors of the panels. A and B refer to the panel set
names.

Bands MicaSense Panel ELM
BF (A) PR (B) BF (A) PR (B)

Blue444 0.005 0.002 0.001 0.001
Blue475 0.007 0.004 0.001 0.001
Green531 0.002 0.004 0.002 0.001
Green560 0.002 0.006 0.001 0.001
Red650 0.002 0.006 0.002 0.002
Red668 0.003 0.008 0.002 0.002
RE705 0.005 0.011 0.002 0.003
RE717 0.006 0.012 0.002 0.002
RE740 0.007 0.018 0.002 0.001
NIR840 0.031 0.038 0.002 0.003

4.3.1 Single panel approach

The mean reflectance values were extracted from the central areas of the panel
sets A and B to avoid adjacency effects. Standard deviations over the pixels were
negligible. The single panel approach is overestimating the reflectance values over
all wavelengths for both datasets. The overestimation is especially noticeable
in the NIR and the red edge bands (Fig. 2), in both datasets for the darker
targets with reflectance factors below 20%. The deviations from the 1:1 line are
noticeably higher for the PR dataset than for the BF (Table 2).
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Figure 4.2: Comparison of panel reflectance as derived with MicaSense single-panel approach
and the ASD measurements (upper plots) and with ELM approach (lower plots) for PR (crosses)
and BF (circles) datasets. For the description of band names refer to table 1.
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4.3.2 Empirical line method

The ELM approach yielded more precise calibration results compared to the single
panel approach. The overestimation was not observed, including the dark targets
(Table 2). It has to be noted that negative reflectance values were present in both
datasets. These values were most pronounced in the blue and the red bands in
the PR dataset with dense winter wheat and heavily shaded areas. Some negative
reflectance values were also obtained for BF, but they were sparse, and mostly
located near artificial surfaces.

4.4 Discussion and conclusion

We observed some errors with deriving surface reflectance using the single panel
approach for the MicaSense Dual camera system. The errors were mostly pro-
nounced in the NIR and the red edge bands, which is in accordance with findings
reported in a previous study [6]. The highest inaccuracies were found for the
dark panels with reflectance factors lower than 20% and were the lowest for the
brighter panels with reflectance factors higher than 20%. It is not clear why the
differences were generally higher for the PR than the BF dataset. Errors from
the reference measurements can be ruled out, since panel set B was additionally
measured several times during later flight campaigns and the measurements re-
mained consistent. Negative reflectance values were already reported with other
MCAs and several solutions were proposed [1,6]. The first one entails forcing the
intercept of the empirical line method through zero. Another method proposes to
shift the reflectance values in each band, by subtracting the maximum negative
value recorded in the vegetated area. In both cases, the determined reflectance
values are altered. This alteration might not have a significant effect on a single
dataset when working on a regression or classification problem, but may cause
issues for time-series analysis and radiative transfer modeling. One way to reduce
the appearance of negative reflectance values, without compromising the accuracy
of the calibration, would be to fly the UAV at higher altitudes and thereby avoid
the acquisition of pixels only containing spectral information of shadows. In that
case, panel dimensions need to be increased to allow extraction of sufficient num-
ber of pixels per panel. In conclusion, ELM delivers more accurate reflectance
values than the single panel approach for the bands that are important in veg-
etation mapping. Unlike the single panel approach, it accounts for atmospheric
effects that might become significant when flying at high altitudes. Nevertheless,
users should be aware of the shortcomings of ELM described in this paper.
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retrieval under changing spatial
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multispectral camera
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Abstract

Recent advancements in unmanned aerial vehicle (UAV) technologies made it
possible to monitor agricultural fields at higher spatial and temporal resolution
than commonly possible by aerial and satellite surveys. Mapping crop variables
such as leaf area index (LAI) and leaf chlorophyll content (LCC) from low-cost
UAV-based multispectral cameras can deliver vital information about crop status
to farmers and plant breeders. Retrieval of these variables using radiative transfer
models (RTMs) has been widely studied in the satellite remote sensing community
but is still not well explored in the UAV remote sensing community. This study
aims to investigate the advantages of high spatial resolution UAV image data for
retrieving LAI and LCC using RTM inversion. A breeding experiment consisting
of soybean plots has shown that high-resolution imagery (0.015m) delivers bet-
ter retrieval accuracy compared to coarser resampled image data. Particularly,
biochemical parameters, such as LCC, benefit from high spatial resolution.

5.1 Introduction

Leaf area index (LAI) and leaf chlorophyll content (LCC) are two key variables
that play a critical role in photosynthesis and plant functioning. They can be
used as a proxy of nitrogen content, biomass, transpiration and photosynthetic
capacity [12, 53]. Mapping these variables can help farmers to optimize their
management and help breeders to select resilient varieties. Unmanned aerial
vehicles (UAVs) enable mapping these variables at high temporal and spatial
resolution. Among the variable retrieval approaches, radiative transfer models
(RTMs), have been known to provide a robust and transferable solution to the
retrieval problem. The majority of the vegetation RTMs have been tailored for
satellite data, mapping the variables at global or regional scales. Meanwhile,
UAV-based variable retrieval has shown promising results [172, 117]. However, it
has not yet been explored how plant parameter retrieval benefits from the high-
resolution UAV imagery. This study investigates the effect of changing spatial
resolution on LAI and LCC retrieval in soybean using RTM inversion. High
resolution orthomosaics were resampled to coarser spatial resolution to mimic the
image data acquisition at higher altitudes and retrieval accuracies were assessed
for image data with the different resolutions.
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5.2 Materials and Methods

5.2.1 Study area and ground measurements

The study area is located at the agricultural research station Campus Klein-
Altendorf, Germany (50°37’N, 6°59’E, 176m). Two varieties of soybean (Eiko
and Minngold), were sown in 3x3 m plots in late May 2021. The plots were
divided into destructive and non-destructive subplots of 1.5x3 m size. Eiko is a
wild soybean variety, while Minngold is a chlorophyll mutant, characterised by
extremely low chlorophyll content [39].

Two variables, LAI and LCC were measured on three different dates (July 1, July
7, August 4) during the vegetation period in 2021. The large measurement gap
between 7th of July and 8th of August is attributed to a major flooding event in
the region, which prevented the sampling of more reference data. LAI was mea-
sured non-destructively using SunScan canopy analyzer (Delta-T Devices Ltd,
UK). The SunScan probe was connected to the irradiance sensor, which mea-
sures total incident PAR. After placing the probe under the canopy, a fraction of
penetrating PAR through the plants is recorded by the probe and the LAI is cal-
culated. Measurements were acquired by placing the probe ten times diagonally
in each plot (five times in each 1.5x3 m subplot) and averaging the values. Ad-
ditionally, plant samples were taken from the destructive subplots (three plants
per subplot) and analysed in the leaf area meter (LI-3100C Area Meter, LI-COR
Biosciences, Lincoln, USA) to validate the SunScan measurements (R2=0.93).

Chlorophyll measurements were taken with a SPAD-meter (Konica Minolta Inc,
Marunouchi, Japan). Six elementary sampling units (ESUs) were identified in
each subplot (four near the edges and two in the middle as shown in Figure 5.1).
In each ESU three plants were randomly selected and two upper leaves of each
plant were measured three times by placing the measurement clip on the leaf.
SPAD measurements were averaged per plot and the calibration formula derived
from [141] was applied to convert SPAD values to LCC values.

5.2.2 Image data acquisition and processing

Image datasets were acquired a day before, or on the date of parameter sampling
on the ground. We used the MicaSense Dual camera system (MicaSense Inc,
USA), comprising of two cameras the MicaSense RedEdge-MX and the RedEdge-
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Figure 5.1: Schematic representation of a soybean plot consisting of two subplots with the
different positions of LAI and LCC measurements. ESU stands for elementary sampling unit.
Left subplot is non-destructive, right-destructive.

MX Blue. The camera system acquires images in ten spectral bands (centre wave-
lengths[nm]: 444, 475, 531, 560, 650, 668, 705, 717, 740, 842). A DJI Matrice
PRO 600 UAV (SZ DJI Technology Co., LTd, China) served as sensor carrier
platform. The UAV was flown at 20 m above ground level, which resulted in a
ground sampling distance (GSD) of 0.014 m. Images were acquired under differ-
ent illumination conditions (sunny and cloudy). A close to lambertian calibration
panel set comprising of nine panels with varying reflectance factors, ranging from
3%-56%, were placed in the field during data acquisition. The reflectance factor
of each panel was measured using an ASD Spectroradiometer (Malvern Pana-
lytical Ltd, UK). The panels were used for calibrating radiance orthomosaics to
reflectance.

Images were processed in the photogrammetric software Agisoft Metashape v.1.7.4
(Agisoft LLC, Russia, St. Petersburg). After the initial image alignment, image
locations were optimized based on ground control points (n=20) that were evenly
distributed in the field and which had been measured with a Trimble R4 real-time
kinematic global navigation satellite system with an overall accuracy of 0.0115
m. Dense point clouds and DEMs were produced under low quality settings in
Agisoft Metashape. Raw digital numbers (DN) were converted to radiance in the
software by applying a radiometric calibration model, which accounts for lense vi-
gnetting, sensor gain and exposure time. For the detailed description of radiance
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Figure 5.2: Depiction of resampled orthomosaics of soybean plots. The number above the plots
shows the spatial resolution. The white areas show the buffer used for calculating mean spectra
per plot and the number of pixels per area. The same process was applied to orthomosaics with
removed soil pixels.

calibration refer to [43]. Orthomosaics were produced with the blending mode
enabled and exported at 0.015 m spatial resolution. The empirical line method
(ELM) for reflectance conversion and atmospheric correction was applied to the
orthomosaic as described in [43]. We excluded saturated panels in each band
from the ELM. After applying ELM, orthomosaics were resampled to lower spa-
tial resolution by doubling the previous resolutions (Figure 5.2). The first three
generated spatial resolutions are achievable with normal UAV operation (data
acquisition below 100 m flight altitude), while the rest mimic image acquisitions
with airborne sensors. Average spectra per plot were calculated using plot shape-
files with a negative buffer of 0.2 m to cancel out border effects and used as inputs
for the RTM inversion.

Additionally, for the LCC retrieval soil was removed from every resampled ortho-
mosaic by applying the Overall HUE index [67] thresholding to work with pure
plant pixels. Values above 0 were considered as non-vegetated pixels and were
removed.
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5.2.3 PROSAIL inversion

For the retrieval of the LAI and LCC we used the PROSAIL model [115] in the
ARTMO Toolbox [205]. The model was parameterised using the information ac-
quired in the field as well as based on the information available in the literature
(LAI range 0-6 m2/m2; LCC range 5-60 µg/cm2). The model was run in forward
mode to produce a look up table (LUT) containing 5000 simulations. A sampling
constraint was applied to the variables (setting upper limits as observed in the
field data) to avoid the ill-posed problem of the inversion. A LUT-based inversion
scheme was then applied to the observed spectra. We used the root mean square
error (RMSE) as cost function to reduce the error between simulated and mea-
sured reflectances and used the 2% mean of multiple best solutions. The retrieved
variables then were compared to the reference measurements. The accuracy of
the retrieval was assessed using RMSE and coefficient of determination (R2).

5.3 Results

Results of the retrieval can be seen in the Figures 5.3 and 5.4. As shown in
Figure 5.3, LAI retrieval accuracy decreased slightly with coarsening resolutions.
It remained constant at ∼ 0.2 m2/m2 for the first four studied resolutions and
increased at > 0.24 m. A similar trend can be seen for LCC retrieval when using
orthomosaics with soil (Panel B in Figure 5.3).

No changes were observed for the chlorophyll-deficient variety Minngold, whereas
the wild variety Eiko showed a similar trend as observed for the LAI retrieval
characterised by a decreasing accuracy at spatial resolutions > 0.24 m. As for
the orthomosaics with removed soil (Panel C in Figure 5.3) we observed an over-
all decrease of accuracy for Minngold compared to Panel B, but no significant
changes when comparing different resolutions. On the other hand, RMSEs for
Eiko decreased from 3.51 to 2.10 at 0.15m resolution. Similar to Panel B, the
accuracy decreased slightly for spatial resolution > 0.24 m .

5.4 Discussion and outlook

Generally, LAI retrieval worked well across all resolutions (R2 > 0.9 and RMSEs
below 0.3 m2/m2). Even at 0.48 m resolution (corresponding to 690 m flight
altitude) sufficient number of plot pixels could be discerned to deliver satisfactory

44



Figure 5.3: RMSE plots of LAI (A), LCC (B) and LCC with soil removed (C) for different
spatial resolutions. For LCC a distinction between two varieties was made due significant
difference observed after the retrieval.

results. As expected, LCC retrieval clearly benefits from high resolution image
data due to the ability of high-resolution data to distinguish between different
features such as shadows, soil, and plants, which is hardly possible in satellite or
airborne images. The LCC overestimation observed in Minngold with removed
soil could be attributed to the constraints of the PROSAIL model: Minngold is
charaterised by two distinct canopy layers, low LCC in upper leaves and high
LCC in lower leaves. This two layer canopy structure is not accounted for in
PROSAIL, leading to overestimation. Better results for Minngold when using an
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Figure 5.4: Scatter plots of variable retrieval at 0.015 m resolution. Accuracy metrics (R2 and
RMSE) were calculated using datasets from three dates. The upper panel shows LAI retrieval;
the lower left panel shows LCC retrieval with orthomosaic containing soil pixels; lower right
panel shows LCC retrieval results for orthomosaics with soil removed;. In LCC plots Minngold
and Eiko clusters were marked to show differences between varieties.

unmasked orthomosaic can be attributed to the large contribution of soil signals
that lower the LCC values.

In this study we have demonstrated that with decreasing spatial resolution the re-
trieval accuracy of both structural and biochemical parameters slightly decreases.
The results for LAI retrieval are comparable with the findings of [191], where au-
thors reported decrease of LAI accuracy with increasing resolution. Our study
further demonstrates that soil removal is beneficial for estimating LCC with high
precision. Even though soil removal was possible even for 0.48 m data, it is as-
sumed that in more heterogeneous plots it may be more challenging and higher
resolution data would deliver more precise results.
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It needs to be noted that UAV operation in airspace is limited to a certain height
and that some of the spatial resolutions tested here cannot be flown under cur-
rent regulations. We demonstrated that the coarser resolution data that can be
acquired from airborne sensors (0.48 m), would still deliver good retrieval results.
In this project no additional atmospheric effects were applied to the resampled
image data. It is assumed that correcting for atmospheric attenuation at higher
altitudes might not deliver such good results as has been demonstrated in this
study. For future research atmospheric simulations could be applied to the image
data.
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Chapter 6

Retrieval of Crop Variables from
Proximal Multispectral UAV
Image Data Using PROSAIL in
Maize Canopy
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Abstract

Mapping crop variables at different growth stages is crucial to inform farmers
and plant breeders about the crop status. For mapping purposes, inversion of
canopy radiative transfer models (RTMs) is a viable alternative to parametric
and non-parametric regression models, which often lack transferability in time and
space. Due to the physical nature of RTMs, inversion outputs can be delivered in
sound physical units that reflect the underlying processes in the canopy. In this
study, we explored the capabilities of the coupled leaf–canopy RTM PROSAIL
applied to high-spatial-resolution (0.015 m) multispectral unmanned aerial vehicle
(UAV) data to retrieve the leaf chlorophyll content (LCC), leaf area index (LAI)
and canopy chlorophyll content (CCC) of sweet and silage maize throughout one
growing season. Two different retrieval methods were tested: (i) applying the
RTM inversion scheme to mean reflectance data derived from single breeding
plots (mean reflectance approach) and (ii) applying the same inversion scheme
to an orthomosaic to separately retrieve the target variables for each pixel of the
breeding plots (pixel-based approach). For LCC retrieval, soil and shaded pixels
were removed by applying simple vegetation index thresholding. Retrieval of LCC
from UAV data yielded promising results compared to ground measurements
Sweet maize RMSE = 4.92 µg cm−2, silage maize RMSE = 3.74 µg cm−2 when
using the mean reflectance approach. LAI retrieval was more challenging due to
the blending of sunlit and shaded pixels present in the UAV data, but worked
well at the early developmental stages (sweet maize RMSE = 0.70m2 m−2, silage
RMSE = 0.61m2 m−2 across all dates). CCC retrieval significantly benefited from
the pixel-based approach compared to the mean reflectance approach (RMSEs
decreased from 45.6 to 33.1 µg m−2). We argue that high-resolution UAV imagery
is well suited for LCC retrieval, as shadows and background soil can be precisely
removed, leaving only green plant pixels for the analysis. As for retrieving LAI, it
proved to be challenging for two distinct varieties of maize that were characterized
by contrasting canopy geometry.
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6.1 Introduction

With the recent technological advancement of UAV platforms and diversification
of sensor types, it became possible to retrieve and map crop biophysical vari-
ables from high-resolution imagery (<0.1 m) [178]. Biophysical and biochemical
variable maps can support agricultural field management, by providing vital in-
formation on the plant status throughout the growing season [94]. Apart from
supporting farmers in decision-making, spatial information on crop biophysical
variables derived from UAV image data can assist the plant breeding community
in the high-throughput phenotyping of large quantities of breeding plots [102,
220]. Leaf area index (LAI), which is linked to the absorption of photosyntheti-
cally active radiation, transpiration, energy exchange and other phytophysiologi-
cal variables [12, 10], is one of the most widely explored structural state variables
in the crop modeling community. Similar to LAI, leaf chlorophyll content (LCC)
can also deliver crucial information on photosynthetic capacity, primary produc-
tion and the nitrogen status [91, 47, 53]. For this reason, quantification of both
variables is important to monitor the crop’s status.

Various plant variable retrieval methods have been developed in the remote sens-
ing community in the past few decades [207]. From these methods, parametric
regression models have been used to establish an empirical relationship between
the variable of interest and vegetation indices, such as for retrieving LAI [87, 130]
and LCC [94]. Non-parametric models, e.g., machine learning algorithms, have
also been explored to retrieve biophysical and -chemical variables [206, 182, 213].
Often, these methods are characterized by a lack of transferability in space and
time and to different environmental conditions and sensors, which might limit
their usability to the datasets they were calibrated for. Unlike these methods,
vegetation radiative transfer models (RTMs), which describe the radiation inter-
action with the canopy based on physical laws, are not bound by the constraints
of geographical location, time of data acquisition or the sensor configuration.
Compared to parametric regression models, RTMs could make use of the whole
spectrum, instead of exploiting subsets of the electromagnetic spectrum. This
ability is crucial since plant biophysical variables are sensitive across spectral do-
mains, not at specific wavelengths [88]. The inversion of RTMs allows us to derive
a large variety of state variables from multi- and hyperspectral remote sensing
image data. RTMs have been successfully applied to airborne and satellite data
to retrieve plant variables [25, 214].

Multiple vegetation RTMs with varying complexity have been developed for spe-
cific purposes and are thus bound by conceptual and computational assump-
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tions [139]. For example, 3D radiative transfer models enable us to calculate the
radiation budget in a more complex 3D plant canopy, considering the vertical
profile and shadows, but require a higher number of input variables to be taken
into account [83]. Due to this fact and the demand for more computing power,
until now, they have been mainly used for vegetation variable retrieval in complex
canopies within a limited spatial extent [148, 116]. In contrast, the combination
of the leaf RTM PROSPECT-D [75] and the canopy bidirectional reflectance
model (4SAIL) [204], known as PROSAIL [115], requires only a few input vari-
ables. However, the assumptions imposed by the simplicity of the model limit its
applicability to various scenarios and complex canopy types. Nevertheless, PRO-
SAIL offers a well-balanced compromise between model complexity and required
computational effort, and therefore is especially efficient when it comes to large
images [26].

In order to retrieve plant variables, the RTM inversion scheme needs to be applied
to the reflectance data. RTM inversion is inherently an ill-posed problem: similar
simulated reflectance spectra can lead to a wide range of solutions [19]. To over-
come the issue of ill-posedness, several inversion schemes have been proposed:
numerical optimization (i), look-up table (LUT)-based inversion (ii) and hybrid
approaches (iii). (i) Numerical optimization minimizes a cost function value be-
tween the measured and predicted reflectance spectrum in an iterative manner.
This method requires significant computing power and is time-intensive if applied
to a huge number of pixels. (ii) In contrast, the LUT-approach uses a high number
of simulations to produce several hundred or thousand reflectance spectra from
numerous combinations of input variables. The subsequent inversion is based on
finding the best match between a simulated and measured reflectance spectrum
by applying a cost function, with the aim to minimize the summed error between
a simulated and observed reflectance spectrum. The approach requires a moder-
ate amount of time to build up the LUT, but the subsequent error minimization
is very fast [221]. (iii) Hybrid approaches combine the fast computation power
of machine learning and generalization level of RTMs [207]. In this approach,
RTM simulations are used as training data, leaving ground measurements only
for validation.

Ill-posedness can be further alleviated by constraining the variables during the
LUT generation. Variables can be constrained based on a priori knowledge about
a certain variable and its value range observed in the field [19, 57]. Another way to
reduce ill-posedness is exploring different cost functions [207, 56], the application
of multiple best solutions instead of a single best solution [17, 126] and adding
artificial noise to include uncertainties during the measurements [56, 128].
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The applicability of PROSAIL to UAV data has been explored in various studies
for various crops. The most widely retrieved variables are green fraction (GF),
LAI, LCC and canopy chlorophyll content (CCC) [172, 202, 117, 3, 63, 191].
In the majority of these studies, UAVs were either flown at high altitudes to
produce coarse-resolution imagery that mimics airborne or satellite data [172,
202, 63], or the resolution of the final orthomosaic was artificially reduced [172].
This reduction was done to meet the assumption of a turbid medium model such
as PROSAIL. While reducing the spatial resolution might be sensible for struc-
tural variable retrieval, it has an adverse effect on the estimation of biochemical
variables: image data become affected by mixed pixels, meaning that it is no
longer possible to separate shaded and soil pixels from vegetation (leaves). This
blending effect in turn influences the proper estimation of leaf variables per plot.
Images of higher spatial resolution allow the separation of only vegetated pixels
from the scene to better estimate the leaf variables. Additionally, in the major-
ity of the above-mentioned studies, hyperspectral sensors were employed. While
these sensors deliver spectrally contiguous data, their applicability in breeding
and precision agriculture is currently limited due to their high cost and com-
plex data post-processing. Multispectral sensors, on the other hand, are much
cheaper and provide information of important spectral regions, which proved to
be sufficient to retrieve crop biophysical variables of comparable quality [202]. A
common method of retrieving vegetation variables at plot level is averaging the
measured spectra per plot and applying the inversion scheme to it. While this
method works well for coarse-resolution imagery and for structural variables, we
assume that leaf biochemical variables could be better estimated by applying the
inversion scheme to the reflectance maps and then averaging the variables per
plot. In this way, valuable information on each canopy feature can be obtained.

Therefore, the objective of this study is to explore the potential of PROSAIL
LUT inversion for estimating LAI, LCC and CCC from spatial high-resolution
multispectral imagery. The specific questions that we aim to answer are:

1. How well can LAI, LCC and CCC be retrieved from high-resolution UAV
multispectral image data for complex canopies such as maize?

2. Which inversion scheme, mean reflectance (applying the scheme to a single
spectrum averaged per plot) or pixel-based approach (applying the scheme
to every pixel and then averaging), leads to more accurate results?

3. How does the retrieval accuracy vary within the growing season for different
growth stages?

For this purpose, we have acquired a time-series of image data over a maize canopy
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throughout the growing season in 2020. Two types of maize (sweet and silage),
which have contrasting structural and functional canopy traits, were sampled
during the vegetation period. We have compared estimated variables to non-
destructive ground measurements of LAI and LCC conducted shortly before or
after UAV data acquisitions.

6.2 Materials and Methods

6.2.1 Study Area

The study area is located at the agricultural research station Campus Klein-
Altendorf in the western part of Germany (50◦37′ N, 6◦59′ E, altitude 176 m)
(Figure 6.1). The average annual precipitation is 603 mm and the long-term
average annual temperature is 9.4 ◦C. Two cultivars of silage (Zea mays) and
seven cultivars of sweet maize (Zea mays convar. saccharata var. rugosa) were
sown in a field experiment. The total area of the maize trial was 0.12 ha. Silage
maize was represented by two varieties, Sunshinos and Stacey, and a mixture of
these varieties. Sweet maize was represented by seven varieties: Caramelo, Khan,
Mirza, Sweet Nugget, Tatonka, Sweet Nugget and MS Vega. A total of 84 plots,
each with the size of 3 × 3 m, were divided into non-destructive and destructive
subplots, each 1.5 × 3 m in size. Moreover, 23% of the total plots had two maize
rows. The varieties Sweet Nugget and MS Vega were sown in 1 row per subplot.
The other sweet maize varieties, except for Tatonka, were sown either in two or
one rows. The middle plots of the silage maize part of the trial were a mixture
of two silage maize varieties.

6.2.2 Aerial Campaigns

A DJI Matrice Pro 600 (SZ DJI Technology Co., Ltd., Shenzhen, China) served as
a sensor carrier platform. The MicaSense Dual camera system, consisting of two
multichannel cameras—the MicaSense RedEdge-MX and the RedEdge-MX Blue
(AgEagle Sensor Systems Inc., Wichita, KS, US)—was mounted on a Ronin MX
gimbal attached to the UAV. The cameras capture images synchronously in ten
spectral bands and store them as separate image files (Table 6.1). Each camera
has a field of view (FOV) of 47.2° and focal length of 5.4 mm. The images were
geotagged with the help of a global navigation satellite system (GNSS) receiver
mounted on the UAV. A downwelling light sensor (DLS) provided by the camera

54



Figure 6.1: Map of the maize trial in PhenoRob Central Experiment, at agricultural research
station of campus Klein-Altendorf. Two-row sweet maize plots are depicted in green, one-row
sweet maize plots are depicted in blue, and silage maize plots are shown in yellow gradient
colors. Inset map shows the location of the experimental field within Germany.

manufacturer was installed at the top of the UAV. The DLS measures irradiance
for each band and saves this information in the image metadata. The UAV
acquired image data at 20 m above ground level, which resulted in 1.39 cm ground
sampling distance (GSD). The flight altitude was set as low as possible to ensure
high spatial resolution, but high enough to guarantee proper scene reconstruction
with a sufficient number of matching features in image pairs. The UAV was
flown at a speed of 3 m/s, resulting in a forward overlap of 80% and sidelap of
70%. Setting these parameters to be high is crucial for achieving good geometry
and successful scene reconstruction. Flights were conducted around solar noon
on days with stable illumination conditions (Table 6.2). A set of nine near-
Lambertian panels (Mankiewicz Gebr. & Co. (GmbH & Co. KG), Hamburg,
Germany) with varying reflectance factors and a flat spectral response across
the VNIR spectral range, ranging from dark (2%) to bright (63%), was placed
within the experiment on bare soil before each flight. The panels were recorded
from the same height as the experimental plots (20 m). During post-processing,
the panels were used to convert the radiance orthomosaic of the study area to
top-of-canopy reflectance [43]. Panel reflectances were measured in the field on 23
June 2020 under sunny conditions using an ASD FieldSpec 4 spectroradiometer
(Malvern Panalytical, Malvern, UK). The collected spectral measurements were
resampled to match the spectral bandwidths of the MicaSense sensor. In total,
eight flight campaigns were carried out throughout the growth season of maize,
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which lasted from early June until the harvest in late September (Table 6.2).
The measurement dates covered principal growth stages of maize (BBCH scale),
which are important from an agronomic perspective for fertilizer application,
irrigation and disease control: leaf development, stem elongation, inflorescence,
flowering fruit development and ripening.

Table 6.1: Centre wavelengths and bandwidths of the MicaSense Dual camera system.

Band Names Centre Wavelength [nm] Bandwidth [nm]

Blue444 444 28
Blue475 475 32
Green531 531 14
Green560 560 27
Red650 650 16
Red668 668 14
RE705 705 10
RE717 717 12
RE740 740 18
NIR840 842 57

Table 6.2: Details about flight campaigns in 2021. The scale of the Biologische Bundesanstalt,
Bundessortenamt und CHemische Industrie (BBCH scale) was used to identify crop growth
stages. SZA stands for solar zenith angle and was calculated for each date at 13:00 local time.

Date Flight Time (CEST) SZA BBCH Weather Conditions

23 June 13:08–13:25 27.81° 13–34 sunny
14 July 13:03–13:21 29.52° 39–55 partially sunny, few clouds
21 July 13:21–13:38 30.73° - sunny
30 July 13:20–13:37 32.71° 53–65 sunny, few clouds

6 August 13:19–13:40 34.55° 65–68 sunny, few clouds
19 August 13:35–13:53 38.55° 68–71 sunny, few clouds
27 August 13:17–13:33 41.33° 71–73 sunny, few clouds

14 September 13:27–13:40 48.14° 83–87 sunny, few clouds

To assess the illumination conditions during the flights, we mapped the irradiance
measurements collected by the DLS. A seamline file was exported from Agisoft
MetaShape (v. 1.6.5 photogrammetric software, Agisoft LLC, St. Petersburg,
Russia), containing the information for the image footprint that was used to
create an orthomosaic. Seamlines corresponded to the borders between parts
of images that were used for orthophoto generation. The mosaic blending mode
was chosen to minimize optical disruption, i.e., to generate a smooth orthomosaic
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without any texture differences between blended images. The DLS measurements
were assigned to each respective footprint. Due to rapidly changing illumination
conditions, the dataset recorded on 14 July was removed from further processing.

6.2.3 Image Processing

Raw MicaSense images were converted to radiance using the equation provided
by the camera manufacturer [169],

L = V (x, y) ∗ a1
g

∗ p− pBL

te + a2y − a3tey
(6.1)

where L is the radiance in W/m2/sr/nm, V(x, y) is the vignette polynomial func-
tion for pixel location x, y), a1, a2, a3 are the radiometric calibration coefficients,
g is the sensor gain setting, p is the normalized raw pixel value (divided by 2N,
where N is the number of bits in the image), x and y are the pixel row and column
numbers, respectively, pBL is the normalized black level value, and te is the image
exposure time in ms. The MicaSense python library [146] was used to convert
raw images to radiance.

Radiance images were stitched in Agisoft Metashape. They were georectified
using 15 ground control points (GCPs) distributed in the field. GCPs were mea-
sured with a real-time kinematic GNSS (Trimble R4 GNSS system) with a hor-
izontal accuracy of 8 mm and vertical accuracy of 15 mm. Orthomosaics were
generated with mosaic blending mode enabled and exported with the highest res-
olution shared between all flight campaigns (0.015 m). To correct spectral data
for atmospheric attenuation with the empirical line method (ELM) [186], mean
radiance values were extracted from the central parts of the panels located within
the orthomosaic. Panels with a reflectance factor of >22% were saturated in the
visible spectral bands and thus were not considered in the ELM. The same bright
panels were not saturated in red-edge and NIR regions and were used in ELM.
A simple linear regression was calculated based on the mean radiance values of
the panels in the orthomosaic and the measured and resampled reflectance spec-
tra of the panels collected with the ASD spectroradiometer. The resulting linear
equations determined for each spectral band were applied to the orthomosaic to
convert the radiance values of the image pixels to reflectance, which were used as
the basis for the RTM inversion.

For the retrieval of leaf chlorophyll content, shaded and soil pixels were removed
from the orthomosaics using a threshold of 0 based on the Hue index [67] in the
R package FIELDimageR [143]. Soil removal was problematic for the dataset
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acquired on 14 September, since a considerable number of leaves in sweet maize
were brown and had a spectral reflectance similar to soil. Thus, soil removal
with the index thresholding approach also removed brown leaves from the scene.
To avoid this, a crop surface model approach [84] was explored. We subtracted
the digital terrain model (DTM) produced from the image dataset acquired before
sowing from the digital surface model (DSM) based on the dataset recorded on
14 September to create a crop height model. We removed all pixels with values
close to zero from the scene by employing manual thresholding and applied the
resulting mask to the orthomosaic.

6.2.4 Field Measurements

Field measurements were conducted before and/or after each aerial campaign.
On every measurement date, 18 plots were sampled (seven silage and eleven sweet
maize plots). From 30 July onward, more plots (Table 6.3) were measured. LAI
was sampled non-destructively using the SunScan plant canopy analyzer (Delta-T
devices Ltd., Burwell, United Kingdom). The SunScan system consists of a probe,
a sunshine sensor and a personal digital assistant (PDA). The probe has 64 PAR
sensors placed on a 1-m-long probe. During data acquisition, the measurements
of all sensors are transferred to the PDA. A sunshine sensor, transmitting infor-
mation on direct and diffuse light to the probe via radiolink [199], was placed
between the plots at a height of 1.5 m to avoid shading. The probe was used
to collect measurements at six different positions in a non-destructive subplot.
According to the SunScan user instructions for each reading, the probe was di-
agonally placed on the crop rows [199]. The ellipsoidal leaf angle distribution
parameter (ELADP) value was set to 1.37, based on the average value for maize
taken from the SunScan user manual [40]. Measurements were performed in the
period three hours before to three hours after solar noon, as recommended by the
manufacturer. LAI readings were averaged for each subplot.

Chlorophyll measurements were collected with a SPAD-502 Chlorophyll Meter
(Konica Minolta, Tokyo, Japan). In each subplot, five plants were randomly
selected to measure the five upper leaves. Each leaf was measured three times
by placing the SPAD at the base, middle and the tip of the leaf. All SPAD
readings were averaged per plot. The calibration equation that was used to con-
vert SPAD readings into chlorophyll content (µg cm−2) has been adopted from
Haboudane [94]:

LCC = 9.1411e0.0318∗SPAD (6.2)

58



Table 6.3: Statistics of leaf area index (LAI) and leaf chlorophyll content (LCC) field measure-
ments collected for silage and sweet maize at CKA throughout the growing season; n—number
of plots; Stdev—standard deviation, CV—coefficient of variation.

Variable Maize Type Stat 23.06 21.07 30.07 6.08 19.08 27.08 14.09

LCC [µg/cm2]

Sweet

n 11 11 11 11 6 20 13
Min 39.0 46.9 41.8 34.2 30.3 31.6 19.0
Max 53.1 54.3 53.2 54.7 53.5 53.4 42.6

Mean 47.6 50.4 45.9 43.4 43.2 43.1 30.7
Stdev 5.1 2.2 3.5 6.8 6.6 6.2 6.5

CV 0.11 0.04 0.08 0.16 0.15 0.15 0.21

Silage

n 7 6 7 - 7 6 6
Min 30.6 48.9 46.1 35.5 41.9 40.8 35.3
Max 44.2 56.9 56.5 56.8 57.9 61.4 53.6

Mean 38.1 52.8 52.2 46.0 50.2 50.4 42.6
Stdev 6.0 3.0 3.6 7.8 5.8 5.6 5.4

CV 0.16 0.06 0.07 0.17 0.12 0.11 0.13

LAI [m2/m2]

Sweet

n 6 8 9 8 14 7 -
Min 0.5 1.5 2.1 1.9 1.4 1.6 1.4
Max 1.6 3.7 5.0 5.5 5.1 3.2 3.9

Mean 0.9 2.9 3.5 3.5 2.9 2.6 2.9
Stdev 0.3 0.8 0.8 1.0 0.8 0.5 0.6

CV 0.37 0.27 0.22 0.30 0.28 0.19 0.22

Silage

n 7 7 15 27 6 4 -
Min 0.5 2.0 1.9 1.6 2.1 2.8 1.6
Max 0.7 3.3 4.6 5.3 5.6 5.2 5.2

Mean 0.5 2.5 3.5 3.9 4.1 3.9 3.6
Stdev 0.1 0.5 0.9 0.9 1.2 0.9 1.3

CV 0.18 0.21 0.24 0.24 0.30 0.23 0.35
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CCC is the product of LAI and LCC:

CCC = LCC ∗ LAI (6.3)

6.2.5 LUT-Based PROSAIL Inversion

Variable retrieval was conducted in the ARTMO toolbox (Automated Radiative
Transfer Models Operator) [205]. The ARTMO toolbox is a software package
written in MatLab that provides various tools for running different RTMs in
forward or inverse mode, both at leaf and canopy scale. We used PROSAIL [115],
a coupled RTM model consisting of the leaf model PROSPECT-5 [75] and the
canopy model 4SAIL [203].

For the retrieval of LAI, LCC and CCC, PROSAIL model inversion was conducted
using a LUT-based approach. To parameterize the model, we used the variable
ranges observed in the field during each measurement date (Table 6.3) or took
values from the literature. Separate LUTs were constructed for each date to
constrain the model and reduce the effect of ill-posedness [19].

Leaf structure index N was set to a value range of 1.2–1.8, as has been reviewed
in the literature for maize [26]. Brown pigment content was set to zero for the
datasets acquired at early crop development. For datasets from 19 August on-
ward, the range of 0–0.5 with uniform distribution was used, as the leaf browning
was observed in the majority of the sweet maize plots. The range of dry matter
content was set to 0.004–0.0075 (g/cm2), according to a literature review [26].
Since silage and sweet maize had visually different leaf inclination angles, the leaf
angle variable was set to a range of 20–70. Silage maize varieties had predomi-
nantly erectophile/spherical leaves, while sweet maize leaves had predominantly
planophile/spherical leaves. Soil reflectance information was extracted from pure
soil pixels from the radiometrically calibrated orthomosaics. From every ortho-
mosaic, several areas with visually differentiable soil characteristics (compressed,
ploughed) were extracted using the mean reflectance of different regions of inter-
est. Soil spectra were extracted for dry and wet soil separately. For LCC retrieval,
the soil reflectance was of low importance in this study, as the high-resolution
image data allowed us to easily differentiate soil from plant pixels and remove
them when necessary. The hot spot parameter was set to the range given in the
literature of 0–0.2 [26]. Fixed sun zenith angles were used as input for different
dates. Observer zenith angle (OZA) was fixed to 0°, as the images were acquired
from the nadir position. We did not calculate the OZA [172] for every pixel as
it was beyond the scope of this study. However, the reader should keep in mind
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that in the generation of orthomosaics, not only the nadir part of the images was
used but, to some degree, the peripheral parts as well.

Table 6.4: PROSAIL variables used in the construction of individual LUTs. LAI and LCC
ranges were adjusted for each LUT separately.

Variable Description Range Distribution

PROSPECT-5
N Leaf structure index 1.2–1.8 [26] Uniform

Cab/LCC [µg/cm2] Leaf chlorophyll content 0–70 Gaussian
Ccx [µg/cm2] Leaf carotenoid content Default value -
Cbp [unitless] Brown pigments 0–0.5 Fixed/Uniform
Cm [g/cm2] Dry matter content 0.004–0.0075 [26] Uniform
Cw [g/cm2] Leaf water content Default -

4SAIL
LAI [m2/m2] Leaf area index 0–7 Uniform

ALIA [°] Average leaf inclination angle 20–70 [26] Step of 1
Hot Hot spot parameter 0.01–0.5 [26] Uniform

ρsoil [%] Soil reflectance Extracted from image -
SZA [°] Sun zenith angle Different for each date -
OZA [°] Observer zenith angle 0 -
rAA [°] Relative azimuth angle 0 -

To produce LUTs, PROSAIL was first run in forward mode separately for each
date. We used either Gaussian or uniform distributions for the variables (Table
7.2). Multiple studies have successfully used Gaussian distributions for chloro-
phyll content retrieval [27]. It has been demonstrated that applying sampling
constraints to the LUT generation based on a priori information may increase
the retrieval accuracy [19]. Combination of these variables resulted in LUTs hav-
ing hundreds of thousands of entries. We used the Latin hypercube sampling
(LHS) [176] method implemented in ARTMO to select only a subset of 10,000
entries for each LUT.

Gaussian noise of 2% was added to the LUTs to account for variable measurement
uncertainties. We used the mean (5%) of the multiple best solutions to find
the best match between simulations and measurements to reduce the effect of
ill-posedness. Two different approaches were applied to retrieve the variables:
(1) the inversion scheme was applied to mean reflectance spectra calculated for
each plot (mean reflectance approach) to retrieve the variables; (2) the inversion
scheme was applied to orthomsoaics with reduced spatial resolution (GSD = 0.09
m) to retrieve LAI and CCC, with the aim to speed up the mapping procedure.
It was also applied to the orthomosaics with the original spatial resolution to map
LCC. Afterwards, mean LCC values for each plot were determined and compared
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to the ground measurements (Figure 6.2).

Figure 6.2: General workflow for the retrieval of LAI and chlorophyll content using different
software packages: (1) conversion of raw images to radiance, (2) scene reconstruction in pho-
togrammetric software, (3) application of ELM, (4) soil/shadow removal for pigment retrieval
and (5) LUT construction and inversion, (6–7) application of inversion scheme using two dif-
ferent approaches. LHS—Latin hypercube sampling.
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6.2.6 Statistical Analysis

To study the accuracy of the plant trait retrieval, several metrics were employed:
root-mean-square error (RMSE), relative RMSE (rRMSE) and the coefficient of
determination (r2):

RMSE =

√√√√ 1

n

n∑
i=1

(
di − fi

)2

(6.4)

rRMSE = 100 ∗ RMSE

⟨d⟩
(6.5)

where di are observations, fi are the estimates and ⟨d⟩ is the statistical mean.

6.3 Results

6.3.1 Variable Retrieval

A visual overview of the retrieval results for all dates can be found in Figure 6.3.
Results of the LAI, LCC and CCC retrieval using the mean reflectance approach
and pixel-based approach can be found in Figures 6.4 and 6.5, respectively.
For LCC retrieval, mean reflectance values were calculated on pure green, sunlit
pixels. For LAI and CCC retrieval, mean reflectances of soil, shadows and plant
pixels were included. In the following sections, each variable will be analyzed by
comparing the two above-mentioned approaches.
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Figure 6.3: Maps of LAI, LCC and CCC on acquisition dates. RGB orthomosaics are depicted
at 0.015 m spatial resolution. The first RGB map (23.06.) displays the separation between the
two maize types. For fast processing, LAI and CCC maps were created using 0.09 m resolution
orthomosaics. LCC maps are displayed at original resolution of 0.015 m.

64



Figure 6.4: Comparison of predicted mean LAI, LCC and CCC values per subplot to the
reference measurements throughout the growing season. The first row represents the inversion
results for the mean reflectance approach applied to the sweet maize plots (A-C), second row—
silage maize plots (D-F) and third row—both maize types (G-I). rRMSE plots for each date
and variable are displayed in the lowermost row (J-L).

6.3.1.1 LAI

The accuracy of the LAI retrieval for silage maize is higher (RMSE = 0.604
m2/m2) compared to sweet maize (RMSE = 0.714 m2/m2) when looking at the
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pooled data of the mean reflectance approach (Panels A and D in Figure 6.4).
There is a general trend of overestimation for the silage maize and underestima-
tion for the sweet maize. When looking at separate dates (Figure 6.4J), the re-
trieval accuracies were higher in earlier plant growth stages (23.06., 21.07., 30.7.)
compared to late stages. This is well depicted in Figure 6.6. Among these dates,
the highest prediction accuracy could be achieved on 23.06., which corresponds
to the growth stage of early stem elongation (rRMSE = 14.9%, Figure 6.4J),
followed by late stem elongation (21.07., rRMSE = 17.6%) and start of heading
(30.07., rRMSE = 17.5%). Retrieval accuracy decreased for sweet maize on 06.08.
(flowering, rRMSE = 30%), while it remained stable for silage maize (rRMSE =
15%). The reason for this substantial decrease in the retrieval accuracy for the
sweet maize might be attributed to the pollination, which covered plant leaves
with a thin layer of yellow pollen, affecting the reflectance signal. On 19.08.
(end of flowering, start of fruit development), we observed the opposite trends:
low retrieval accuracy for silage maize (rRMSE = 31%) and high accuracy for
sweet maize (rRMSE = 15.1%). This was unexpected, since, for the following
measurement date (27.08.—fruit development), the trend again reversed (silage
maize, rRMSE = 9%; sweet maize, rRMSE = 34%). One of the explanations for
this shift might be the illumination conditions on 19.08. (cloudy) compared to
other dates, when it was predominantly sunny. The underestimation of LAI in
sweet maize might be attributed to the SunScan measurements, during which a
fixed ELADP value was used. As mentioned before, sweet and silage maize had
different LADs (leaf angle distribution). We used average ELADP for both maize
types, as suggested in the manual. Thus, differences in LAD were not taken into
account. Furthermore, LAD slightly changes over the plant growth period and
this change was not reflected in the selected ELADP value.

In the pixel-based approach (Figure 6.5G), the total accuracy decreased only
slightly (RMSE = 0.65 m2/m2) compared to the mean reflectance approach. Ac-
curacy slightly increased for sweet maize (average rRMSE = 22%) and decreased
for silage maize (average rRMSE = 20%) (Figure 6.5J). The highest rRMSE was
determined for the silage maize dataset recorded on 23.06. (rRMSE = 36%),
while sweet maize rRMSE also increased (23%) compared to the mean reflectance
approach. In both cases, the models were overestimating.
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Figure 6.5: Comparison of predicted mean LAI, LCC and CCC values per subplot to the
reference measurements throughout the growing season. The first row represents the inversion
results for the pixel-based approach applied to the sweet maize plots (A-C), second row—silage
maize plots (D-F) and third row—both maize types (G-I). rRMSE plots for each date and
variable are displayed in the lowermost row (J-L).
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Figure 6.6: LAI retrieval using two approaches (left mean reflectance, right pixel-based) for
early and late growth stages. BBCH principal growth stages 1, 3 and 5 correspond to leaf
development, stem elongation and the start of inflorescence. Stages 6, 7 and 8 correspond to
flowering, fruit development and ripening.

6.3.1.2 LCC

Compared to LAI, LCC retrieval produced more reliable results when using the
mean reflectance approach. RMSE for silage maize (RMSE = 3.74 µg/cm2) was
lower than for sweet maize (RMSE = 4.88 µg/cm2) (Panels B and E in Figure 6.4).
It has to be noted that the numbers of samples taken in sweet maize plots were
double the size compared to silage maize. Additionally, sweet maize in general
was characterized by a larger variation in chlorophyll content at later growth
stages, while LCC in silage maize within single dates showed little variation, ex-
cept for 06.08., when the pollination was observed (Table 6.3). The coefficient of
determination for pooled data is also higher for silage maize (r2 = 0.76) than for
sweet maize (r2 = 0.63; Figure 6.4H). As for the single dates, the highest rRM-
SEs were recorded on 23.06. (early stem elongation, rRMSE = 14.5%) and 14.09.
(start of senescence, rRMSE = 17.4%) for sweet maize (Figure 6.4K). The low-
est rRMSEs were recorded for the datasets where LCC ground measurements
had small Stdev (Table 6.3). The lowest chlorophyll content for sweet maize
was retrieved for the dataset acquired on 14.09., when all sweet maize varieties
were approaching senescence (Figure 6.4H). On the same date, the upper leaves
of silage maize were still green, but decreased chlorophyll values were observed
compared to 27.08. (Table 6.3). A general trend of overestimation is observed for
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low chlorophyll content, while higher LCC is characterized by underestimation
(Figure 6.4H).

When looking at the pixel-based approach, the total estimation accuracy in-
creased slightly (RMSE = 4.318 µg/cm2), driven by the accuracy increase in sweet
maize (Figure 6.5H). Here, again, we observe overestimation with low LCC values
and underestimation with high values Figure 6.5H). For silage maize, accuracy
slightly decreased on 23.06. (rRMSE = 12%) and increased on 14.09. (rRMSE
= 7.4%; Figure 6.5K).

6.3.1.3 CCC

CCC retrieval is largely influenced by the LAI when looking at the mean re-
flectance approach (Figures 6.4I and 6.5I). The observed underestimation of
LAI for sweet maize also caused an underestimation in the CCC (RMSE =
52.21 µg/m2, Figure 6.4C). When looking at single dates, the highest rRMSE
(58%) was produced for the 06.08. (flowering) followed by 27.08. sweet maize
datasets (rRMSE = 45.4%; Figure 6.4L). For silage maize, the achieved results
were better (rRMSE across all dates ≈ 20%; Figure 6.4L). The retrieval accu-
racy drastically changed when applying the pixel-based approach (Figure 6.5I).
A distinct decrease in RMSE from 52.21 to 33.18 µg/m2 (Figure 6.5C) could be
observed for sweet maize. The main reason for the improvement was the distinctly
reduced underestimation of predicted sweet maize LAI values (Figure 6.5I).

6.4 Discussion

In this study, the advantages of high-resolution imagery for maize crop variable
retrieval using the PROSAIL model were demonstrated. The retrieval of LCC
benefited from using a high spatial resolution to differentiate between distinct
features in the scene, such as soil, shadow and plant pixels. For LAI, retrieval
appeared to be challenging for the maize canopy. A clear discrepancy in LAI re-
trieval accuracy between different growing stages could be observed. We achieved
an RMSE of 0.65 m2/m2 for the combined maize dataset retrieving LAI using the
PROSAIL model (Figure 6.4G), which is comparable with the results observed
for maize in satellite-based studies [25, 95, 214]. Comparison of our results to
other UAV-based studies is challenging due the low number of studies focusing
on high-resolution UAV-based variable retrieval with PROSAIL. Su et al. [189]
reported an RMSE of 0.33 m2/m2 for a maize experiment with different sowing
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densities and across the entire growth period (which relates to our study) using
a four-band multispectral camera. Our experiment, however, did not include dif-
ferent sowing densities, which tend to create significant contrasts in LAI. These
contrasts are largely driven by the exposed soil, which differs by area based on
the sowing density. In another study [63], the authors achieved an RMSE of 0.58
m2/m2 using hyperspectral UAV data of maize with a spatial resolution of 0.7
m. It has to be noted that the number of samples they used was very limited
(four samples in total), and thus the comparison across growing stages cannot
be made.

One of the reasons for the different LAI prediction accuracies achieved for sweet
and for silage maize (RMSE = 0.714 and 0.628 m2/m2, respectively) might be the
particular choice of the ELADP value used for leaf angle distribution during the
SunScan measurements. In both maize types, a fixed value was used; however,
the LAD visually differed between the two maize types. Therefore, the observed
overestimation of LAI in the case of silage, and underestimation in the case of
sweet maize, could be attributed to the fixed ELADP value chosen for the ground
measurements. Additionally, the SunScan measurement results varied strongly
depending on the probe placement in the canopy during data acquisition, which
had a significant effect on the LAI estimation. Neighboring silage maize plots
might also cast shadows on the sugar maize plots, distorting the measurements
in the latter.

The discrepancy in LAI estimation at early (stem elongation) and late growth
stages (flowering, etc.) is another point that requires attention. Better estima-
tion results for early stages can be attributed to the smaller number of leaves
compared to later growth stages, when leaf clumping is more pronounced, es-
pecially for nadir imagery, where row effects are clearly discernible [69, 104].
It is known that PROSAIL simulations have limited applicability in row crops
such as maize [13], which are characterized by large gaps between the rows and
rather open canopies. Similar to [104], the underestimation observed specifically
in sugar maize (Figure 6.4A) could be attributed to the absence of leaf clump-
ing correction in the PROSAIL model. While these canopy characteristics were
partially considered when conducting ground measurements, they cannot be pa-
rameterized in PROSAIL. PROSAIL assumes a homogeneous and closed canopy,
the condition partially met by the satellite and airborne images but not by the
high-resolution UAV images. For better estimation of LAI in maize, RTMs that
account for leaf clumping and shading can be explored. Moreover, 3D radiative
transfer models such as DART [83] consider the complex canopy structure and
thus leaf clumping. However, for practical purposes, 3D RTMs have some dis-
advantages, such as their high computational demand and the larger number of
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parameters needed for model parameterization, which limits their application for
agricultural practices.

Regarding the comparison of the pixel-based and mean reflectance approaches,
we did not see significant improvements when using the pixel-based approach
for LAI estimation. The latter generally overestimates the LAI values for both
maize types compared to the mean reflectance approach (Figure 6.5). In the case
of silage maize in the early growth stages, the measured RMSE for the mean
reflectance approach was lower than for the pixel-based approach, yet underesti-
mation was observed for high LAI values. This is not the case for the pixel-based
approach, which is characterized by overestimation at all growth stages, resulting
in a slope value of 1.02, as contrasted to a slope of 0.90 for the mean reflectance
approach (Figure 6.6). The general overestimation of the pixel-based approach
can be attributed to the usage of every pixel in the inversion. The shaded pixels,
which cover larger areas in silage maize plots than the sunlit leaf pixels, result in
higher LAI values compared to the sunlit green pixels (Figure 6.3). This in turn
results in overestimation of LAI. The overestimation is apparent with the mean
reflectance approach for the silage maize, where the shaded pixels distinctly con-
tribute to the overall reflected radiation. The sugar maize is mostly characterized
by a denser canopy, with shaded pixels only between the rows (see RGB images
in Figure 6.3) and overall smaller areas covered by shaded pixels as compared to
silage maize. The amont of LAI underestimation observed in sugar maize is in
agreement with the findings of [104, 114].

Although there is evidently a substantial benefit in using the very high-resolution
imagery for LAI retrieval in breeding plots, for agricultural applications, it is not
so beneficial. High-resolution imagery has proven advantageous for better dis-
crimination between the pure plant pixels and the soil/shadows for biochemical
parameter retrieval. We achieved high accuracy in LCC estimation by removing
soil/shadows from the scene, when using the mean reflectance approach (com-
bined RMSE 4.6 µg/cm2). Additionally, LCC retrieval benefited from the pixel-
based approach (combined RMSE from 4.6 to 4.3 µg/cm2; combined r2 from
0.69 to 0.75). The results deliver better estimates than satellite-based studies
(RMSE 8–10 µg/cm2) [114, 58, 104]. LCC estimation worked better for sweet
than for silage maize. A possible explanation could be the low fractional cover in
silage compared to sweet maize during the early growth stages—for example, on
23.06.—which led to limited vegetation pixels retrieved from the scene.

Furthermore, the in situ, non-destructive measurements may contribute to uncer-
tainties in LCC retrieval. SPAD calibration equations are species- and variety-
specific [42, 171], but a fixed equation adopted from the literature was used in
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this study. Retrieval accuracy could be improved by deriving separate calibration
equations per maize type, converting SPAD measurements to chlorophyll content
in physical units. The constant overestimation of low LCC and underestimation
of high LCC values by both approaches (Figures 6.4H and 6.5H) for each date
may be attributed to the use of a calibration equation that does not reflect the
actual relationship between SPAD values and real chlorophyll content.

We used all available spectral bands provided by the MicaSense Dual camera
system for the LCC estimation. It is known that chlorophyll retrieval is mostly
sensitive in the visible spectral range [27]. One of the ways to increase the LCC
retrieval accuracy would be to apply a spectral constraint to the model. This
would entail removing the spectral bands that are not sensitive to chlorophyll
content from the reflectance data. As demonstrated previously [27], the removal
of red-edge bands, characterized by the largest error between simulated and mea-
sured reflectance in maize, enabled higher retrieval accuracy.

Being a product of LAI and LCC, CCC retrieval accuracy depends on the retrieval
of the two state variables. We found significant improvements in CCC retrieval
when using the pixel-based approach (RMSEs reduced from 45.6 to 33.1 µg/cm2,
and r2 from 0.64 to 0.75). This increase in accuracy is driven by the better
estimation of LCC when applying the pixel-based approach.

Although the pixel-based approach delivers better results for LCC and CCC re-
trieval, the computing time of applying a LUT-based inversion scheme to each
pixel is not practical. Compared to numerical optimization, the LUT-based ap-
proach is not as computationally intensive when the inversion scheme is applied
to single plots, but it becomes inefficient when mapping the high-resolution ortho-
mosaics of large areas. In this regard, hybrid approaches, which employ the power
of machine learning combined with simulated spectra produced by an RTM, can
distinctly speed up the process [28, 207].

We demonstrated that high spatial resolution is beneficial for pigment retrieval,
as well as LAI retrieval for small breeding plots, but we did not explore the impact
of artificially reducing the spatial resolution on the final results. For application
in large farming fields, UAVs need to be flown at much higher altitudes, pro-
ducing orthomosaics with lower resolution. Thus, the effects of different spatial
resolutions on the retrieval accuracy has to be better understood and studied in
the future. Furthermore, a better understanding of the impact of LAD in both
maize types is required. In this regard, plant architecture reconstructed from
terrestrial laser scanners (TLS) [15] could potentially deliver information on leaf
inclination angles that can be used to better parameterize the model and explore
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their impact on the parameterization.

6.5 Conclusions

In this study, we investigated the potential of the inversion of the radiative trans-
fer model PROSAIL to retrieve LAI, LCC and CCC of sweet and silage maize,
using spatial high-resolution UAV data acquired throughout one growing season.
Two different retrieval approaches were investigated: (1) the mean reflectance
approach—applying the inversion scheme to the mean reflectance spectrum per
plot; (2) the pixel-based approach—applying the inversion scheme to all pixels of
an orthomosaic and then calculating the variable mean for each plot. The perfor-
mance of both approaches was evaluated based on the goodness of fit parameters
RMSE and rRMSE by comparing the estimated variables to ground-truth mea-
surements collected in the field.

Compared to spatially lower-resolution satellite and airborne imagery, high-resolution
UAV images allowed the separation of soil, shaded and sunlit pixels. Thus, it was
possible to retrieve the leaf chlorophyll content (LCC) by applying the inversion
scheme only to green sunlit pixels. The LCC retrieval yielded promising results
in comparison to ground measurements when using both retrieval approaches
and led to higher accuracies compared to satellite or airborne studies. The mea-
surement uncertainties associated with LCC retrieval could be further reduced
by acquiring destructive chlorophyll measurements for a more accurate SPAD to
LCC conversion equation. Furthermore, the impact of constraining the spectral
range used for the retrieval of the different parameters should be further inves-
tigated. The retrieval of the structural variable leaf area index (LAI) was more
challenging due to the mixing of sunlit and shaded pixels present in the UAV
data. Further difficulties arose from plants grown in rows and having a complex
canopy structure with varying leaf angles. The best results were obtained for early
growth stages (leaf development, early and late stem elongation). We observed a
significant improvement in the estimation of canopy chlorophyll content (CCC)
when the pixel-based retrieval approach was used. We argue that high-resolution
UAV imagery is well suited for biochemical variable retrieval, as shadows and
background soil can be precisely removed, leaving only green plant pixels for
the analysis. Compared to empirical approaches, vegetation RTMs offer a more
robust, transferable solution to the retrieval problem and deliver results in real
physical units. Further research is needed to validate the transferability of the
model using similar sensor settings to the maize canopies. Furthermore, a more
detailed characterisation of the canopy structure could improve the retrieval re-
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sults, specifically of LAI. In addition, 3D RTMs would enable such a canopy
characterization and should be explored in future studies.
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Multispectral imaging and
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detection of drought-induced
paraheliotropic leaf movement in
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Abstract

Plant foliage is known to respond rapidly to environmental stressors by adjusting
leaf orientation at different timescales. One of the most fascinating mechanisms
is paraheliotropism, also known as light avoidance through leaf movement. The
leaf orientation (zenith and azimuth angles) is a parameter often overlooked in
the plant and remote sensing community due to its challenging measurement
procedures under field conditions. In this study, we investigate the synergistic
potential of uncrewed aerial vehicle (UAV)-based multispectral imaging, terres-
trial laser scanning (TLS) and radiative transfer model (RTM) inversion to iden-
tify the paraheliotropic response of two distinct soybean varieties: Minngold, a
chlorophyll-deficient mutant, and Eiko, a wild variety. We examined their re-
sponses to water stress during the boreal summer drought in 2022 in western
Germany by measuring average leaf inclination angle (ALIA) and canopy re-
flectance. Measurements were taken in the morning and at midday to track leaf
movement. Our observations show significant differences between the parahe-
liotropic response of both varieties. Eiko’s terminal and lateral leaves became ver-
tically erect in the midday (54 → 63◦), while Minngold’s ALIA remained largely
unchanged (52 → 57◦). Apart from the vertical leaf movement, we also observed
leaf inversion (exposing the abaxial side of the leaf) in Eiko under extreme water
scarcity. The red edge band at 740 nm showed the strongest correlation with
ALIA (r2 = 0.52 − 0.76), as predicted by sensitivity analysis of the PROSAIL
radiative transfer model (RTM). The ratio of the far red edge to near infrared
(RE740/NIR842) vegetation index compensated for varying light levels during
morning and afternoon measurements, exhibiting strong correlations with ALIA
when considering only sun-lit leaf spectra (r2 = 0.72). In contrast, the correlation
of leaf area index (LAI) with RE740/NIR842 was low (r2 = 0.35). The retrieval
of ALIA with PROSAIL varied based on ALIA constraints and the spectra used
for retrieval (full spectrum or the combination of bands 742 and 842), resulting
in a root mean square error (RMSE) of 7.7-12.9°. PROSAIL faced challenges in
simulating the spectra of plots with very low LAI due to the soil background.
The exclusion of these plots from the analysis resulted in RMSEs of 3.7-13.0°,
depending on ALIA constraints. This study made the first attempt to observe
different paraheliotropic responses of two soybean varieties with UAV-based mul-
tispectral imaging. Proximal sensing opens up the possibilities to observe early
stress indicators such as paraheliotropism, at much higher spatial and temporal
resolution than ever before.
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7.1 Introduction

Monitoring crop biophysical parameters has gained increased importance due
to the challenges arising from extreme climatic and biotic events [48]. Wa-
ter, heat and light stress are the leading causes of crop yield reduction [71].
Plants have evolved various adaptations to cope with these stressors, includ-
ing chloroplast movement [98], changes in chlorophyll concentration [154], non-
photochemichal quenching (NPQ) [152] and paraheliotropism also known as light-
avoidance through leaf movement [163, 136]. While the leading factor in para-
heliotropic leaf movement is excess light, temperature and water availability also
influence the process [170]. Paraheliotropism involves turgor pressure changes at
the base of lamina [156], which causes the leaves to align parallel to the incident
light. This way plants avoid high leaf temperature, high evapotranspiration [65,
78], and excess light during drought (photoinhibition) [136]. Despite many obser-
vations, the significance of this adaptive mechanism remains poorly understood
[65, 145, 228].

Paraheliotropism is commonly seen in legumes such as soybean [145, 160, 173,
124]. Soybean accounted for approximately 29% of oilseed production in 2022
[73]. Its production increased nearly 13-fold from 1961 to 2017, owing to its
significance as a vital source of protein for both humans and animals [133]. Given
its widespread importance, monitoring the health status of soybean in the face of
adverse environmental events, such as drought, is important. An early indicator
of water scarcity in soybeans is the paraheliotropism [145]. Typical leaf movement
patterns involve erecting leaves vertically during midday as well as leaf inversion
(exposing the abaxial side) in the presence of extreme drought.

Leaf movement can be characterised by leaf orientation parameters, one of which
is the average leaf inclination angle (ALIA). ALIA is described as an angle be-
tween leaf normal and the zenith. It influences light interception, photosynthesis
efficiency, competition in plant canopies and acts as an early stress indicator
[179, 228], making it an essential parameter in plant physiology and crop pro-
duction. Despite its importance, ALIA has been relatively overlooked due to the
challenges associated with in-situ measurements being laborious and error-prone.
Many studies opt for indirect retrieval methods instead of in-situ ones, which
include photographic [34, 153, 110, 241] and laser scanning approaches, [237, 15]
allowing diurnal and almost instantaneous measurements of ALIA under field
conditions. While these systems deliver good results, they face limitations in
scalability due to their labor-intensive measurement procedures. The efficiency
of these systems diminishes as the study area expands. The challenge arises from
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the rapid changes in leaf orientation parameters over time, making the measure-
ment process more difficult for larger areas. An alternative, yet under-explored,
approach to measure ALIA involves radiative transfer models (RTMs) using op-
tical data acquired from airborne platforms. This method holds considerable
potential for wider application as data acquisition is faster and easier compared
to the photographic or laser scanning methods.

Together with leaf area index (LAI), ALIA is an important parameter for radia-
tion transfer within the canopy and significantly contributes to the signal detected
by optical sensors. While a substantial research attention has been given to LAI
as a proxy for physiological processes [11] retrieval of ALIA using RTMs has been
understudied [26]. RTMs simulate absorption, transmittance and reflectance of
single leaves or plant canopies. Due to their physical nature, RTMs can be univer-
sally applied, which eliminates the need to calibrate the model to specific sensor,
crop or geographical location. The most widely used RTM, PROSAIL, which is a
coupled leaf- (PROSPECT) [113] canopy (SAIL) [203] model, employs ALIA as
one of the main structural input parameters. In the electromagnetic spectrum,
ALIA is most sensitive in the far red edge and near-infrared (NIR) regions and
shares this sensitivity with LAI [115, 241]. Since these two parameters have a
similar effect on the reflectance spectrum of vegetation, a constraint, specifically
a priori knowledge of the parameter should be introduced [112]. To obtain this
knowledge, field-based ALIA measurements are integral.

RTMs have primarily been applied to satellite data, which often lacks the nec-
essary spatial and temporal resolution to be effective in high-throughput field
phenotyping applications. In contrast, uncrewed aerial vehicles (UAVs) deliver
both the required spatial and temporal resolution.

Miniaturisation of optical imaging sensors and rapid developments in UAV tech-
nology opened up ways for retrieving crop parameters at centimeter-level spatial
scales [32, 233, 224]. UAVs are versatile in terms of sensor payloads, flight altitude
and direction, and angle of image acquisition, which in turn enables exploring pa-
rameter retrieval using various flight configurations. Additionally, UAV images
allow the user to discriminate between different canopy constituents (soil, shaded
leaves, sun-lit leaves) and study them separately. UAVs have been used to retrieve
structural and biochemical crop parameters using parametric [32, 123], machine
learning [62] and physical models [202, 44]. While there is a considerable research
on the retrieval of LAI from UAV-based multispectral or hyperspectral imaging,
only a few studies have explored ALIA retrieval [240], particularly in the context
of paraheliotropic response of the plants.
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The objective of this study is to explore paraheliotropic response of two soybean
varieties by quantifying ALIA through terrestrial laser scanning, multispectral
imaging and RTM inversion. For this purpose we have employed TLS and very
high-resolution multispectral UAV image data in combination with the radia-
tive transfer model PROSAIL. Both measurements were conducted at three time
points throughout the vegetation period close to each other. To follow the di-
urnal leaf movement, morning and afternoon measurements were taken on two
occasions. PROSAIL was parameterised using field-collected data and ALIA was
retrieved using the lookup-table (LUT)-based inversion approach.

7.2 Materials and methods

7.2.1 Study area

The study area is located at the agricultural research station Campus Klein-
Altendorf, in the federal state of North-Rhine Westphalia, west of the city of Bonn
(50◦37′N, 6◦59′E, altitude 176 m) in Germany. The annual average precipitation
is 603 mm, while the long-term average annual temperature is 9.4◦ C. Soil can
be classified as luvisol. A soybean experiment, consisting of two varieties (Eiko
and Minngold) was sown in two densities (30 and 60 seeds/m2) in 1.5x3 m plots
(Fig. 7.1). Minngold (University of Minnesota) is a chlorophyll-deficient mutant
characterised by lower chlorophyll content in the upper leaves compared to the
lower leaves ([39]). Several studies have assessed the photosynthetic performance
of this mutant [177, 85]. Meanwhile, Eiko (Asgrow, USA) is a commercial soybean
cultivar. Sowing happened on the 4th of May, herbicide treatment on the 5th of
May and fungicide treatment on the 2nd of June.

7.2.2 UAV data collection

A DJI Matrice PRO 600 (SZ DJI Technology Co., Ltd., Schenzhen, China) served
as a sensor carrier platform for image data acquisition. The Micasense dual cam-
era system, consisting of two multi-camera arrays, MicaSense RedEdge-MX and
the RedEdge-MX Blue (AgEagle Sensor Systems Inc., Wichita, KS, USA), was
mounted on a Ronin MX gimbal attached to the UAV. The images are captured
synchronously for each band as separate files. Each camera has a field of view
(FOV) of 47.2° and focal length of 5.4 mm. The images were geotagged through
the camera’s global navigation satellite system (GNSS) receiver. Images were
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Figure 7.1: Experimental design of soybean density experiment and measurement locations (A);
RGB image of two soybean varieties taken from UAV (B); 3D point cloud of soybean plot (C).

acquired at 20 m above ground level, which resulted in 1.39 cm ground sam-
pling distance (GSD). The flight altitude was set as low as possible to ensure
high spatial resolution, but high enough to guarantee proper scene reconstruc-
tion with a sufficient number of matching features in image sets. The UAV was
flown at a speed of 3 m/s, resulting in a forward overlap of 80% and sidelap of
70%. For more details on flight and camera setup see [43]. Afternoon flights
were conducted between 12:00-13:00h local time on days with stable illumination
conditions. Morning flights were conducted at 8:00 - 9:00h (Table 7.1). A set
of nine near-lambertian panels (Mankiewicz Gebr. & Co. GmbH & Co. KG,
Hamburg, Germany) with varying reflectance factors and a flat spectral response
across the VNIR spectral range, ranging from dark (2%) to bright (63%), was
placed within the experiment on bare soil during each flight. A large enough gap
was left between the panels to avoid adjacency effects of the panels. The pan-
els were recorded from the same height as the experimental plots (20 m). Panel
reflectances were measured in the field on 23 June 2020 under sunny conditions us-
ing an ASD FieldSpec 4 spectroradiometer (Malvern Panalytical, Malvern, UK).
The collected spectral measurements were resampled to match the spectral band-
widths of the MicaSense sensor.
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Table 7.1: Flight times during summer season of 2022. SZA - solar zenith angle; DAS - days
after sowing.

Date Time of the day Flight time SZA DAS Illumination conditions
June 14 Afternoon 12:37 - 12:56 29 42 Sunny
July 13 Morning 9:00 - 9:20 60 71 Sunny

Afternoon 14:00 - 14:20 29 Sunny
August 10 Morning 8:30 - 8:40 70 98 Sunny

Afternoon 13:05 - 13:15 35 Sunny

7.2.3 Image processing

Image data was processed in Agisoft Metashape Professional (Agisoft LLc, St.
Petersburg, Russia). Images were stitched and georeferenced using ground control
points that were evenly distributed in the field. At sensor radiance orthomosaics
were generated by applying the Micasense radiometric calibration model using
a python script within Metashape and exported for reflectance calibration as
described in [43]. Saturated reflectance panels were removed from the empirical
line correction. Reflectance was compared to airborne imaging spectroscopy data
acquired with the HyPlant sensor [183] conducted in summer 2022. To remove
soil pixels from the UAV orthomosaics, we calculated the Excess Green (ExG)
index [223] and used manual thresholding to separate soil from plant pixels. A
manual threshold was used on the blue band to remove shaded pixels.

7.2.4 Reference measurements

For the parametrisation of the PROSAIL model, LAI and SPAD measurements
were taken directly before or after the overflights. LAI measurements were also
important for discerning the impact of ALIA from LAI on canopy reflectance. LAI
was sampled non-destructively using a SunScan canopy analysis system (Delta-T
Devices, UK). Destructive samples of both varieties were taken in selected plots
in 2021 and 2022 after the overflights to validate SunScan measurements and
calibrate the Ellipsoidal Leaf Angle Distribution Parameter (ELADP) value for
LAI calculation. Four plants were randomly selected in each plot and leaf area
was measured with a leaf area meter (LI-3100C Area Meter, LI-COR Biosciences,
Lincoln, USA). Prior to derivation of LAI from destructive samples, the number
of plants per plot was manually counted. For the non-destructive measurements,
the SunScan rod was placed diagonally to the crop rows into the canopy seven
times in each plot (see Figure 7.1) and the result was averaged. The largest un-
certainties were found in plots with heterogeneous distribution of soybean plants,
which resulted in individual plants growing at different speeds. Hence, the sam-
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pling with four plants in these plots was not sufficient. Compared to these plots,
homogeneous plots showed higher accuracy between SunScan LAI and destruc-
tive sampling. For SPAD measurements, two plants were randomly selected in
each plot. Measurement procedure differed for Minngold and Eiko. For Eiko
three upper leaves were measured, each leaf four times. For Minngold the three
upper and three lower leaves were measured, each leaf four times to account for
variability in chlorophyll content in Minngold canopy layers.

7.2.5 TLS measurements

Terrestrial laser scanning (TLS) measurements were taken prior to the UAV
flights at two different times on the same day. For data acquisition, four Le-
ica tilt-and-turn targets were positioned at the four corners of the field and one
in the middle (Fig. 7.1). Scans were conducted with a Leica ScanStation P50
(Leica Geosystems, Heerbrugg, Switzerland) with a spatial resolution of 6.3 mm
at 10 m distance to the scanner. In order to scan the entire field at a sufficiently
high resolution, the TLS was placed at 15 different positions in and around the
field. These different scans were spatially registered to each other by a target-
based registration using the software Leica Cyclone. The result is a 3D point
cloud, which contains x, y and z components. The whole measurement with the
15 positions took 3 h.

7.2.6 ALIA estimation

To estimate ALIA values from TLS measurements, a surface representation of
the plants in each plot was produced. A fully automated pipeline was employed,
which takes a 3D point cloud as input and generates a meshed surface (TIN) as
output, implemented in Open3D [238]. As the data was acquired under real-world
conditions noise and outliers had to be removed. A statistical approach was used
that removes points that are farther away from their neighbours compared to the
average point distance of the entire point cloud. In empirical experiments it was
shown that five neighbours and a standard deviation of 1.0 are suitable parame-
ters. To reduce the computation time, the point cloud is uniformly sub-sampled
which reduced the point number P to P/k. The down-sampling parameter k was
determined directly from the data set by choosing a point density of 40 points
per 1 cm2. The surface was reconstructed using the Ball-Pivoting algorithm [31]
to create a triangular mesh from the point cloud. In this algorithm, a virtual ball
with a certain radius ρ is randomly placed onto the point cloud. The radius is
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automatically generated depending on the average point distance. To ensure that
all points are connected with triangles, this process is repeated three times with a
scaling factor of 10, which has been shown to be appropriate for plants. As a last
step, the remaining holes in the meshed surface are detected, extracted, and filled
with a flat surface. Holes are detected due to the fact that they are surrounded
by boundary edges (edges that only belong to a triangle). It should be noted that
all edges of the sheet are also defined as boundary edges in this step. To correct
only the holes within the surface, the threshold value of the boundary edges e is
set to e ≤ 30. All holes with a lower number of boundary edges than e are filled
with flat triangles, resulting in an almost completely closed surface model.

After generating the meshed surface of joined triangles, this representation was
used to calculate the ALIA values for each experimental plot. First the normal
vectors n⃗ = (nx, ny, nz) of the triangles were calculated and aligned in one direc-
tion. Afterwards, the different components of the normal vectors were used to
determine the distribution of the leaf inclination angles θ (see Figure 7.2) using
θ = arccos (nz). The median value of the resulting distribution than is calculated
to get the ALIA value as ALIA = θ.

Figure 7.2: Leaf orientation parameters: θ is zenith angle; φ is azimuth angle; −→n is a normal
on the surface of the leaf.

7.2.7 Environmental data collection

Environmental data (precipitation, temperature and soil water content) were
collected at the study site. A weather station (Wilmers Messtechnik GmbH,
Hamburg, Germany) was located 200 m away from the experimental setup and
was logging temperature, precipitation and other parameters every 10 minutes.
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SoilNet [35] sensors that measure soil water content (SWC) and several other pa-
rameters were installed within the same field in a wheat subexperiment at three
different depths (10, 20 and 50 cm). The sensor was logging SWC at 15 min
intervals.

7.2.8 PROSAIL parametrisation and inversion

PROSAIL parametrisation was done partly based on the reference measurements
(Table 7.2) and partly using the parameter ranges available in the literature
([26]). The leaf optical depth (N-parameter) was calculated using PROSPECT-
PRO [76] and the leaf optical measurements (leaf reflectance and transmittance
measured with a field spectrometer) acquired during the SoyFlex campaign in
2016 (SoyFlex 2016). N-parameter was sampled using uniform distribution. A
range of leaf chlorophyll content (LCC) with Gaussian distribution (mean 30
[µg/cm2], standard deviation 5) was used to construct the look-up table (LUT).
LAI was fixed to avoid confounding effects on ALIA. Two ALIA scenarios were
simulated: a) no constrain of ALIA, b) ALIA constrained to the values that were
observed (+- 5 added to upper and lower limits) in the field. Soil reflectance
was extracted from the bare soil areas in the multispectral UAV orthomosaics
distributed over the whole field to account for variations in soil conditions (com-
pact, plowed). Solar zenith angles were calculated for each date and time. A
global sensitvity analysis was performed to confirm the sensitivity of ALIA and
LAI in the red edge and NIR bands of the multispectral sensor.

Table 7.2: PROSAIL variable ranges used in the construction of individual LUTs. LAI and
LCC ranges were adjusted for each LUT separately.

Variable Description Range Distribution
PROSPECT-5

N Leaf structure index 1.2–1.8 Uniform
Cab/LCC [µg/cm2] Leaf chlorophyll content 0–70 Gaussian

Ccx [µg/cm2] Leaf carotenoid content - -
Cbp [unitless] Brown pigments 0–0.5 Fixed/Uniform
Cm [g/cm2] Dry matter content 0.004–0.0075 Uniform
Cw [g/cm2] Leaf water content - -

4SAIL
LAI [m2/m2] Leaf area index 3 Fixed

ALIA [°] Average leaf inclination angle 0–90 / 35–70 Step of 1
Hot Hot spot parameter 0.01–0.5 Uniform

ρsoil [%] Soil reflectance Extracted from image -
SZA [°] Sun zenith angle Different for each date -
OZA [°] Observer zenith angle 0 -
rAA [°] Relative azimuth angle 0 -

The Look-Up-Table (LUT) inversion scheme was used to retrieve ALIA. For this
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purpose, 10.000 simulations were selected out of every possible combination, using
latin hypercube sampling. The full spectrum was used for the model inversion
with 2% of Gaussian noise added to the spectra. To find the best match between
simulated and measured reflectance we used simple RMSE (root-mean square
error) as a cost function.

7.3 Results

7.3.1 Hydrometeorological conditions at the study site

The Figure 7.3 displays environmental data, including weekly temperature and
precipitation measurements, as well as continuous SWC measurements at three
different depths. The summer of 2022 exhibited exceptionally dry conditions,
as evident from the climate diagram. There was little to no precipitation in
the months of June (26.9 mm), July (4.2 mm) and August (0.6 mm). For ref-
erence, the long term average precipitation (1961-1990) recorded at DWD sta-
tion (Deutscher Wetterdienst), located 30 km northeast from the study site at
Cologne-Bonn Airport for the months June, July and August are 86, 84 and 77
mm, respectively [59]. The mean daily temperatures during June, July, and Au-
gust (18° C, 19° C, and 20° C, respectively) exceed the corresponding long-term
averages of 16° C, 18° C, and 18° C [59]. Due to an extended period of drought,
the soil water content (SWC) in the soil profile, extending to a depth of 50 cm,
remained exceptionally low throughout the entire summer. Specifically, in the 10
cm layer, the SWC percentages were 12%, 12%, and 10% for the months of June,
July, and August, respectively. In the 20 cm layer, the corresponding values were
16%, 14%, and 14%, while in the 50 cm layer, they were 22%, 19%, and 19%. In
comparison, the average nFK% (plant available water) at Cologne-Bonn Airport
station is 75%, 70% and 67% for the respective months.

7.3.2 ALIA measurement results

The results of TLS measurements can be found in Figure 7.4 represented as dis-
tribution plots with median values marked with vertical lines. Minngold and Eiko
exhibited different diurnal patterns of leaf movement during every measurement.
On the 14th of June a strong difference between ALIA of Minngold (51°) and
Eiko (60°) was observed in the afternoon. The plants were still very small (BBCH
stages (Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie)
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Figure 7.3: Soil water content (upper plot) during January-October timespan and climate
diagram (April-October) of the CKA study site in 2022.
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22-26) as can be seen on the RGB images.

Figure 7.4: (L)ALIA distributions of Minngold and Eiko varieties derived from TLS measure-
ments acquired on 15th June, 13th July and 10th August in the morning and afternoon; (R)
Example RGB images of soybean plots recorded during the morning and afternoon overflights
at the respective days. The left subplots within each image had 30 kernels per square meter,
the right subplot - 60.

On the 13th of July both varieties show similar ALIAs in the morning: 52°
- Minngold and 54° Eiko. This trend changed in the afternoon measurement:
Eiko’s ALIA increased to 61°, while Minngold’s remained stable at 54°. On
the 10th of August, ALIA values of Eiko were higher (57°) compared to previous
measurements, but increased further towards the afternoon (63°). In comparison,
Minngold’s leaf angle increased only slightly.
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7.3.3 Relationship between ALIA and spectral bands

The results of global sensitivity analysis (7.5) confirm the impact of ALIA on
red edge and NIR regions (740-842nm, light blue). ALIA shares this sensitivity
with LAI (purple). Simulated reflectance of two spectral bands (742 and 842nm)
with changing sun zenith angle (morning and afternoon) displays that the canopy
reflectance is not affected by the SZA.

Figure 7.5: Left plot: Results of the global sensitivity analysis (GSA) applied to reflectance
spectra simulated with PROSAIL having the spectral resolution of the MicaSense Dual camera
system. SI stands for Sobol Index. The sobol index helps to identify the importance of input
variables, in this case crop parameters, on the model output. Right plot: PROSAIL simulated
reflectance representative for morning (SZA 60-70°) and afternoon data acquisitions (SZA 30-
35°) of the MicaSense dual red-edge (740nm) and NIR (842nm) spectral bands. SZA: sun zenith
angle.

To illustrate the relationship between ALIA and the visible/near-infrared bands
of the multispectral camera, reflectance of each spectral band with soil and shaded
pixels removed was compared to the median morning and afternoon TLS-derived
ALIA measurements for both varieties (see Figure 7.6). Morning measurements
showed no correlation in the spectral bands that are expected to be sensitive to
ALIA, specifically at 740 nm (r2 = 0) and 842 nm (r2 = 0.2). Minngold exhibits
a generally higher correlation in the green (531 and 560 nm), red (650 and 668
nm) and red edge bands (705 and 717 nm) compared to Eiko.

The afternoon measurements show strong correlation in visible and red edge
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bands. For Minngold, the r2 values range from 0.51 to 0.88, while for Eiko,
they are between 0.47 and 0.74. Correlations are still higher for Minngold than
Eiko. Compared to morning measurements correlations are much higher for both
varieties, especially at 560 nm. Correlations are low for the bands located at
740 and 842 nm. For Minngold r2 are 0 and 0.36, and for Eiko r2 0.35 and 0.16
calculated for the bands at 740 and 842 nm, respectively.

To see the effect of plots with low LAI on the relationship with bands 740 and 842
nm, the June measurement was removed (Figure 7.7). The correlation between
band 740 (r2 = 0.5−0.7) and ALIA improved significantly for the afternoon when
removing June measurement, but did not change for the morning measurement
and band 842. In order to differentiate the effects of LAI on spectral signature
compared to ALIA, LAI was plotted against 740 and 842nm bands. We observed
higher correlations between LAI and the two bands (r2 = 0.4−0.7) in the morning
compared to ALIA and no correlation in the afternoon.

Figure 7.6: Relationship between LIDAR-based ALIA and spectral bands from the UAV image
data of Eiko and Minngold recorded during the morning and afternoon data acquisitions.
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Figure 7.7: (l) Correlations between ALIA, LAI and bands 740 and 842 nm with the June
measurements removed during the morning ; (r) correlations between ALIA, LAI and bands
740 and 842nm during the afternoon with June measurements removed. The legend for color
coding can be found in Figure 6

Since the anticipated correlations of ALIA with the reflectance data at 740 nm
and 842 nm were not observed, we explored the ratio of the two bands. The
results are depicted in Figure 7.8. We examined the relationships using different
image processing approaches: a) averaging spectra per plot using every pixel (soil,
plants, and shade), b) averaging spectra without soil pixels (but including shade),
and c) averaging spectra without soil and shade (pure plant pixels). The highest
correlation was found for approach c) using pure plant pixels, with an r2 value
of 0.72. The relation between LAI and the RE/NIR ratio was also tested to rule
out the influence of LAI on the ALIA RE/NIR ratio relationship. The lower row
in Figure 7.8 shows the low correlations (r2 = 3.55 − 0.44) determined for the
three approaches.

7.3.4 ALIA retrieved using PROSAIL

The results of ALIA retrieved with PROSAIL using the full spectrum are depicted
in the Figure 7.9. In Panel b) and d) in Figure 8 the measurements recorded
on the first data acquisition day (16 June) were removed from the analysis as
uncertainties associated with PROSAIL simulations of very low LAI canopies
was high. ALIA for the non-constrained case are significantly underestimated
(Figure 7.9 a, b; RMSE 13°), compared to the constrained case (Figure 7.9 c, d;
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Figure 7.8: Scatter plots showing the relationship of ALIA (A-C) and LAI with the Red Edge
(740 nm) - near infrared (840 nm) ratio (D-F) using the three different image processing ap-
proaches. (A and D)) soil and shaded pixels included in the image data (B and E)) soil pixel
removed but shaded pixels included in the image data; (C and F)) soil and shaded pixels re-
moved from the image data.
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RMSE 7.7 and 3.8 degrees, respectively). ALIA estimation based on PROSAIL
worked significantly better for Minngold than Eiko. The PROSAIL simulation for
Eiko having high ALIA does not match well the ALIA reference measurements.

Figure 7.9: Retrieval of ALIA using different approaches: (a) ALIA not constrained, data
from 06.14 included; (b) ALIA constrained and 06.14 measurements removed; (c) ALIA’s lower
limit constrained and 06.14 data included; (d) ALIA’s lower limit constrained and 06.14 data
removed. Only the sunlit spectra were used for validation. Retrieval is based on the full
spectrum; A stand for afternoon and M for morning measurements

Results depicting only selected bands (740 and 842nm) and June measurements
removed without constraining the model is displayed on Figure 7.10. Compared to
the full spectrum method the RMSE here is lower (6.68°), but r2 is higher (0.64).
There is a significant underestimation of the Minngold July measurement.

7.4 Discussion

This study presents the first attempt to observe paraheliotropic leaf movement
using TLS and optical remote sensing approaches. We characterised leaf move-
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Figure 7.10: ALIA retrieved using only bands 740 and 842 nm without constraining ALIA to
the observed values.

ment throughout the dry boreal summer months and evaluated the relationship
between the canopy reflectance and the leaf movement.

7.4.1 Paraheliotropic response of soybean varieties

Environmental variables collected at the study site strongly indicate drought dur-
ing the boreal summer (Figure 7.3). The area experienced an abnormal summer
precipitation deficit of 215 mm and high temperature anomalies (>1.5° C). Data
from the German Drought Monitor [239] also confirm extreme drought through-
out most parts of Germany by the end of August (reference period 1951-2015).
According to the analysis conducted by [196], the self-calibrated Palmer Drought
Severity Index (PDSI) in large parts of Europe dropped below -3, including Ger-
many. For reference, a value that is -3 or below is classified as drought.

Leguminous plants are known to exhibit paraheliotropism when exposed to wa-
ter scarcity and high temperatures ([145, 124]). As the local environmental data
indicate drought conditions in the study area, soybeans were expected to show
the paraheliotropic response. The results of diurnal TLS measurements reveal an
interesting discrepancy in the paraheliotropic response of Eiko and Minngold. In
the mornings (8:00 - 9:00 AM local time), Eiko and Minngold had similar leaf
angles (Figure 7.4). In the afternoon the leaves of Eiko became vertical, while
Minngold’s remained almost unchanged. Eiko’s response is a classical example
of paraheliotropism, which has been documented in several other studies [145,
160, 124], but has not been tracked before using remote sensing methods. As the
drought persisted throughout the entire boreal summer, we observed the gradual
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impact of water scarcity on Eiko. Our measurements revealed that the parahe-
liotropic response in June and July was characterized by terminal and lateral
leaves becoming vertical in the afternoon. By August, when SWC was at its
lowest, Eiko’s leaves were already vertical in the morning. In the afternoon, we
observed the inversion of the leaves, exposing the abaxial side. This phenomenon
has been documented and various explanations have been proposed by [124]. The
higher reflectance of the abaxial side, attributed to reflective trichomes, allows
plants to reduce the thermo-radiative load, thereby lowering temperature and
evapotranspiration rates and minimizing the inhibition of photosystem II. Ad-
ditionally, the abaxial surface exhibits higher conductance under water stress
compared to the adaxial side, which, in the case of leaf inversion, helps the plant
to conserve more water.

In contrast to Eiko, Minngold exhibited a less pronounced paraheliotropic re-
sponse. In fact, diurnal morning and afternoon measurements throughout the
boreal summer showed minimal variation (range 51-58°). This subdued response
in Minngold can be attributed to an additional defense mechanism against high
light intensity and water scarcity. The genetic mutation causing the upper leaves
to appear more yellow allows Minngold to reduce evapotranspiration rates by
receiving a lower thermo-radiative load compared to the dark-leaved Eiko. Less
chlorophyll content leads to decreased absorption of photosynthetically active ra-
diation (APAR), thus more light is transmitted and reflected. Consequently, the
paraheliotropic response in the upper leaves of Minngold is less evident. Previ-
ous studies have proposed that chlorophyll-deficient mutants, characterized by a
higher surface albedo, could lead to significant water savings and help mitigate
the effects of future heatwaves [61, 230, 177], further highlighting the importance
of breeding climate-resilient crop varieties.

Together with photosynthetic activity, variations in leaf temperature, and changes
in the xanthophyll cycle, leaf movement serves as an important early stress indi-
cator [29, 228]. Unlike leaf-level measurements of photosynthetic activity, which
are often labor-intensive, possess limited spatial coverage, or lack sufficient res-
olution, tracking leaf movement using proximal multispectral imaging can be
promising to be used in breeding applications to identify varieties better adapted
to higher temperatures and lower water availability. This characteristic makes
ALIA particularly compelling as one of the parameters to investigate early stress
responses in various crops.
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7.4.2 Effect of changing ALIA on the spectral reflectance
of different soybean varieties

The red-edge and NIR part of the spectrum are most sensitive to changes in ALIA,
as evident from the sensitivity analysis of the PROSAIL model [112](Figure 7.5).
This sensitivity is shared with LAI, particularly in the NIR, creating challenges
in disentangling the magnitude of the effects these two variables have on canopy
reflectance. For example, the spectral signature of a sparse planophile canopy
(horizontal leaves) is similar to a dense erectophile canopy (vertical). [241] have
demonstrated a negative correlation between canopy reflectance at 748 nm and
ALIA across various crops, by using a hyperspectral image dataset acquired at a
single time point.

In our results (Figure 7.6), the interaction between ALIA and the single spectral
bands differed with the time of the measurement. The high correlation coeffi-
cient observed for Minngold in both morning and afternoon, specifically in the
visible range, can be attributed to variations in leaf chlorophyll content (LCC)
throughout the summer. This variation was manifested by the increase of LCC
of the upper and lower leaves in the canopy from July to August. In contrast,
Eiko showed minimal changes in LCC during the same period. This leads us to
infer that the correlation across most visible bands is driven by variations in LCC
rather than by ALIA. This explanation does not hold true in the blue bands (444
and 475 nm), where a lower r2 was observed for Minngold compared to Eiko.
A possible reason for this discrepancy could be the significant reflectance of the
blue light by the Minngold canopy, attributed to its transparent upper leaves and
high light penetration rates, in contrast to Eiko.

The afternoon measurements reveal distinct trends in the correlation patterns
between ALIA and the single spectral bands. In this context, both Eiko and
Minngold exhibit high correlations in the visible range up to the red edge (740
nm) driven possibly by the variation in LCC rather than ALIA. Both varieties
show lower correlations in the blue bands, albeit higher than those observed dur-
ing the morning measurements. This discrepancy can be attributed to variations
in photosynthetically active radiation (PAR) intensity between morning and af-
ternoon, with the latter period providing higher PAR (stronger signal and lower
signal to noise ratio) for plant canopies to redistribute energy (absorb, transmit,
or reflect). The varying correlations observed between 650 and 668 nm and ALIA
for both varieties can be explained by differences in LCC between two varieties
and light penetration, rather than disparities in ALIA.
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At first glance in the Figure 7.6, the low r2 at 740 nm and 842 nm in the after-
noon appears inconsistent with the literature. However, these instances involve
outliers, specifically plots with very low LAI values measured in June. When
these extremely low LAI plots were removed from the analysis, the r2 increased
significantly for both varieties (Figure 7.7). These results align with the findings
of [241], where the authors established a similar negative relationship between
ALIA and the far red edge band (748 nm). The reflected light from the low LAI
plots do not provide sufficient information on canopy architecture as reflectance
is mostly from soil and only a small number of plant pixels are left after removing
the soil background. The strong correlation does not extend to the NIR band,
where a more substantial spread is observed. However, when combining data
from both varieties, a general negative trend becomes apparent (Figure 7.7).

The results for LAI and RE-NIR bands show an opposite trend when low LAI
plots are removed. Here, a positive and strong correlation for both bands is
observed in the morning, with no correlation in the afternoon. This suggests that
we observe the effect of LAI in the spectral data during the morning measurement
and the combined effect of changing ALIA and LAI during the afternoon.

Since no similar trend in relationship was found in the morning and afternoon
between ALIA and the spectral bands at 740 nm and 842 nm, respectively, in
comparison to the visible bands, it is suggested that the relationship is influenced
by environmental factors, in this case difference in light intensity. Vegetation in-
dices, compared to individual spectral bands, exhibit more pronounced sensitivity
to vegetation parameters. This is due to the normalisation of spectral bands as
part of a vegetation index, which enhances the data and removes environmental
effects [101]. These effects, including different sun-target-sensor geometries, have
been demonstrated by multiple studies to be mitigated with the help of ratioing
[129, 211]. Since the main difference between morning and afternoon measure-
ments was the difference in sun-target-sensor geometry, using the RE and NIR
bands ratio, which is sensitive to ALIA (Figure 7.8), seemed reasonable.

Using the RE-NIR band ratio also helped in identifying whether changes in
canopy reflectance were driven by ALIA or LAI. Figure 7.9 shows that vari-
ability of RE/NIR cannot be explained by variability in LAI. The RE/NIR ratio
remains constant during one measurement (either morning or afternoon) while
the LAI changes.
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7.4.3 ALIA retrieval

A limited number of studies have explored the retrieval of ALIA using imaging
spectroscopy data, making the comparison of results rather challenging. [241,
238] used a hyperspectral imaging sensor to retrieve ALIA of various crops (faba
beans, narrow-leafed lupin, turnip rape, oat, barley and wheat) in combination
with PROSAIL modelling. The authors used a single band (748 nm) to retrieve
ALIA (range 18-62°) with a reasonable accuracy (root mean squared error =
11.4°).

In our study we used ten wider spectral bands across the visible-near infrared
range to explore the capacity of PROSAIL to retrieve ALIA , while fixing the
LAI to 3. One noticeable aspect of the retrieval was the difficulty in simulating
the reflectance of plots with low LAI values, particularly in the June data. As
illustrated in the Figure 7.4 plants were still relatively small and surrounded by
large soil areas. Our assumption here is that after soil removal, little vegetation
spectra were left which led to noisy data in the early growth stage. As can be seen
in Figure 7.9 after the removal of the first June date, the outliers that remained
were mostly plots with extremely low LAI values from the remaining two days,
suggesting that our initial assumption was correct. Since we found correlations
of ALIA with the spectral bands at 740 and 842 nm, it is also reasonable to
assume that these two bands are sufficient for ALIA retrieval (Figure 7.10). In
the future different PROSAIL simulation configurations and retrieval algorithms
should be explored to optimize ALIA retrieval. For example, hybrid approaches
that combine RTMs with machine learning, can provide estimation uncertainties
and provide parameter importance.

There was a discrepancy between the retrieval of ALIA of both soybean varieties.
Eiko’s ALIA retrieved from August 10 data exhibits almost no variation in predic-
tions between morning and afternoon. This observation can be explained by the
leaf inversion that was recorded on that day. The abaxial sides of the leaves have
higher albedo and hence different spectral properties than the adaxial side of the
leaf. Since the percentage of inversed leaves were much higher in the afternoon
measurement, it had significant impact on the spectral signature (high reflectance
over the entire visible-near infrared spectrum) of the whole canopy. This in turn
made it difficult to simulate reflectance using PROSAIL, as it does not account
for leaf inversion and assumes uniform distribution of plant pigments.

97



7.5 Conclusion

With this study, we present the first attempt at a novel approach to observe
the drought-induced paraheliotropic response of two distinct soybean varieties,
using multispectral imaging and terrestrial laser scanning. The extremely dry
summer in the study area in 2022 unveiled differences in response mechanisms
between the chlorophyll-deficient mutant Minngold and the wild variety Eiko. We
observed an increase in the leaf angle (with leaves becoming vertical) of Eiko from
morning to afternoon and leaf inversion when extremely dry conditions occurred.
Meanwhile, Minngold did not exhibit pronounced signs of paraheliotropism. This
observation can be attributed to its low chlorophyll content, allowing it to avoid
photoinhibition. In the face of future extreme drought events predicted by climate
models, it becomes increasingly important to study the defense mechanisms of
crop varieties for breeding purposes.

Our findings suggest a strong relationship between the reflectance in the red edge
(740 nm) and near-infrared (842 nm) spectral bands and the ALIA. However, this
relationship is not consistent during morning and afternoon measurements, with
the latter showing a stronger correlation. Moreover, the near-infrared band at
840 nm is influenced by LAI, complicating the decoupling of the effects of ALIA
and LAI on top of canopy reflectance. The ratioing of the 740 and 842 nm bands
to eliminate the effects of sun-target-sensor viewing geometries proved successful
in combining morning and afternoon measurements and establishing correlation
with ALIA. Additionally, we observed that LAI has no significant correlation
with the 740/842 index. Future research should explore whether this relationship
is applicable to ALIA estimations in other crops than soybean. Even though
a simple parametric model using a ratio index was sufficient to retrieve ALIA,
further research is needed if the same correlations are valid for other crops and
sensors. In this regard, RTMs like PROSAIL offer a transferable solution to the
retrieval problem and should not be underestimated.

We successfully retrieved ALIA using PROSAIL with reasonable accuracy. For
very low Leaf Area Index (LAI) values, ALIA could not be reliably retrieved. In
future studies, it is recommended to only consider plots with LAI values higher
than 1. Constraining ALIA to observed values resulted in higher prediction ac-
curacy (RMSE 3.7°) compared to an unconstrained model (RMSE 13.0°). The
parametrization of PROSAIL significantly influenced the retrieval process. While
we explored both constrained and unconstrained ALIA simulations with fixed
LAI, future studies should delve into the impact of other parameters, especially
those related to leaf chlorophyll content and other leaf pigments. Our findings
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indicate that Look-Up Table (LUT)-based inversion is sufficient for ALIA re-
trieval. However, hybrid methods incorporating machine learning approaches
could enhance retrieval accuracies and reduce the computing time of the inver-
sion pipeline.
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Chapter 8

Crop stress detection from UAVs:
Best practices and lessons
learned for exploiting sensor
synergies
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Abstract

Detecting and monitoring crop stress is crucial for ensuring sufficient and sustain-
able crop production. Recent advancements in unoccupied aerial vehicle (UAV)
technology provide a promising approach to map key crop traits indicative of
stress. While using single optical sensors mounted on UAVs could be sufficient to
monitor crop status in a general sense, implementing multiple sensors that cover
various spectral optical domains allow for a more precise characterization of the
interactions between crops and biotic or abiotic stressors. Given the novelty of
synergistic sensor technology for crop stress detection, standardized procedures
outlining their optimal use are currently lacking. This paper provides practical
information on how to combine different UAV-mounted optical sensors and dis-
cuss the proven scientific practices for image data acquisition and post-processing
in the context of crop stress monitoring. The first part covers aspects that lead
to the acquisition of high quality image data (radiometric calibration targets,
ground control points) suitable to detect the type of crop stress or related traits
(timing, pixel size). The second part deals with data pre-processing (georectifica-
tion, atmosphere correction) and the use of radiative transfer models for crop trait
retrieval and their integration with crop growth models. The last part explores
the best practices and lessons learnt that can help scientists and practitioners in
making informed decisions regarding sensor selection, mission planning and the
challenges associated with multiple sensor data processing.

8.1 Introduction

Climate change is expected to increase crop abiotic (heat, drought, etc.) and
biotic (pests, diseases, etc.) stresses, putting crop productivity at risk [71, 33].
Therefore, detecting and identifying crop stress prior to irreversible damage is
essential to support management decisions and minimize stress impacts on crop
growth and yield. While well-planned studies and experiments are essential for
detecting and identifying crop stress, these endeavors are not exempt from tech-
nical challenges.

Optical remote sensing (RS) is an established method to detect the impact of
different stressors on agricultural crops [29]. Several optical sensors based on
imaging spectroscopy, fluorescence spectroscopy, and thermal imaging have been
developed and are being used in unoccupied aerial vehicles (UAVs), and airborne
science campaigns [4, 16, 144]. Over the past decade, combinations of differ-
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ent spectral domains have been used in agriculture to estimate plant traits, and
productivity [221, 55]. These spectral domains include the visible (VIS; 400-700
nm), near-infrared (NIR; 700-1300 nm), which are also used for sun-induced fluo-
rescence (SIF) retrieval, shortwave infrared (SWIR; 1300-2500 nm) and thermal-
infrared (TIR; 8-14 µm).

The spectral signature of vegetation in the optical region is primarily determined
by the plant’s biochemical and structural properties, related to plant vegetative
growth and canopy development [114]. Consequently, various plant traits are
often estimated based on empirical relations with different spectral bands [125],
or they are retrieved with radiative transfer models (RTMs). Another promising
approach for monitoring vegetation dynamics is to combine RTMs with plant
physiological models [200, 82, 227, 161]. The assimilation of multi-sensor data
from complementary spectral domains into crop models has the potential to facil-
itate decision-making by identifying specific stressors and even predicting stress
before it occurs [29].

While using single optical sensors may suffice to monitor crop status, integrating
multi-sensor data acquired from airborne/UAV platforms is more powerful for
understanding plant responses to different biotic or abiotic stressors [162, 2, 149,
86]. For example, the combination of multispectral (MS, discrete spectral bands
of a predetermined wavelength range) or hyperspectral (HS, continuous spectral
coverage across a spectral domain) with TIR sensors provides broad spectral cov-
erage for detecting and quantifying crop stress at an early stage of development.
By measuring the leaf or canopy temperature, changes in plant traits such as
stomatal conductance can be observed in minutes to hours, providing an early
(and pre-visual) indication of the plant responses to stress [92] (Figure 8.1). Ad-
ditionally, the incorporation of VIS-NIR information enables the analysis of stress
responses related to pigment contents, such as chlorophylls, carotenoids [90] and
anthocyanins [89] that are critical for photosynthesis and net primary productiv-
ity. In this context, the combination of different spectral resolutions and sensor
types may complement the combination of spectral domains for increased spectral
coverage.

The synergistic use of sensors from different spectral domains also improves the
capacity for the observation of early to long-term crop responses to external
stressors that affect growth and productivity [167] (Figure 8.1). The integrated
use of MS VIS-NIR together with a broadband SWIR sensor or NIR+SWIR multi-
camera array was shown as an efficient way to obtain information about crops’ leaf
water status or nitrogen concentration [122, 119]. The VIS-NIR+SWIR synergy is
particularly useful for medium-term but also long-term stress response detection
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(Figure 8.1.). The simultaneous collection of HS and TIR images in synergy with
SIF data provides valuable insights into the response of SIF to crop stress [86,
38]. Additionally, RGB, MS, HS, and TIR image data can be used to derive
biophysical traits and to assist in the quantification and interpretation of plant
physiological changes reflected in SIF measurements.[24, 226, 232, 184, 219].

Figure 8.1: Optical sensor synergies for stress detection: different sensor combinations are useful
to estimate different plant traits according to the period of time after plants started experiencing
stress. Faded colors are used when the plant trait could still be measured but is less relevant
than it was earlier. ETR = electron transport rate; ALIA = average leaf inclination angle;
Cab = leaf chlorophyll a and b content; Car = leaf carotenoids content; LWC = leaf water
content; LAI = leaf area index; RGB = red, green, blue; VIS = visible; NIR = near infrared;
MS = multispectral; HS = hyperspectral; SWIR = shortwave infrared; SIF = sun-induced
fluorescence.

Currently, few studies are available that make synergistic use of UAV-mounted
sensors covering different spectral domains from which guidelines or best practice
protocols can be derived. One exception is the use of MS or HS in combination
with TIR for assessing crop water status and estimating crop evapotranspiration
(ET). This approach, with a history in airborne science research [20], has been
successfully adapted to UAV VIS-NIR and TIR sensors [155, 22]. By leverag-
ing the higher spatial resolution of UAV sensors, researchers have improved ET
calculations by extracting separate surface temperatures for soil and crops, en-
hancing accuracy. In another example, [231] employed high-resolution (40 cm)
HS and TIR images, combined with radiative transfer model, to detect traits
related to Xylella fastidiosa (XF) in olive trees, achieving over 80 percent accu-
racy in detection. Although the method section of the above-mentioned studies
describe various aspects, including leaf physiological measurements, image data
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collection and processing, RTM inversion methods, statistical analysis, detailed
protocols and guidelines for combining multiple sensors from different spectral
domains are scarce. Therefore, an integrated guideline is deemed beneficial for
less experienced researchers to conduct similar experiments.

The guidelines that we present here are based on the collective expertise of a
diverse group of remote sensing specialists, represented in the working group
(WG3) of the [51]. They are a result of years of experience and professional
collaboration within our group. Our aim is to enhance the synergistic use of
sensors by offering recommendations and advice in situations where single-sensor
protocols prove to be insufficient. In addition to best practice recommendations,
we have gathered bad practice examples from our group’s experiences (see Section
8.4), to help users avoid repeating them. However, guidelines, by their nature, are
suggestive, not compulsory; they are intended to help practitioners follow some
rules while allowing for flexibility and common sense in different scenarios.

The following outlines the structure of the paper: Data acquisition (Section 8.2)
data analysis (Section 8.3), and Lessons learnt / Bad Examples (Section 8.4). In
Section 8.4 we discuss lessons learned from selected examples that illustrate the
loss of data or deterioration in data quality that could occur if certain prepara-
tions, installations, or rules have not been followed.

8.2 Pre-considerations on synergistic sensor
use

Acquiring image data using multiple sensors poses unique challenges that would
otherwise be approached differently when using only a single optical sensor. With-
out adequate preparation, users may face difficulties that cannot be easily resolved
on-site, jeopardising the field campaign or research project. This chapter reviews
pre-considerations for data acquisition with multiple sensors and briefly reviews
important aspects of the process. These recommendations are summarized in
Figure 8.2 and Table 8.1.

8.2.1 Mission planning

Mission planning for any airborne science campaign depends on various factors
such as atmospheric conditions, illumination conditions, and optimal time of day,
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Figure 8.2: Overview of attention points during the data acquisition process for UAV-campaigns
with multiple sensors. The items are described in more detail in the main text.

considering detailed sensor properties, targeted spatial resolution, and associated
ground components of the field campaign. The initial factor to consider for any
UAV or airborne campaign should involve conducting a comprehensive assess-
ment of atmospheric conditions. While the suitability of flight conditions is of
paramount importance, it is noteworthy that several factors affecting flight - such
as wind, rain, clouds, humidity, and air temperature - can also significantly in-
fluence crop conditions during the time of measurement. Oftentimes, acceptable
conditions for UAV flight will not be adequate for image data acquisition, but
weather circumstances for flight and data capture should both be conceptual-
ized as a range from optimal to adequate. Suboptimal conditions may require
additional calibration measures, whereas some risks are not worth it for gather-
ing unsalvageable data. Furthermore, when acquiring images via aerial platforms
using multiple sensors, mission planning becomes crucial, and an accurate consid-
eration of the diversity of sensor specifications is necessary. While recent reviews
have addressed this issue [197], current mission planning applications do not sup-
port multi-sensor campaigns. Most UAV manufacturers include flight planning
applications that consider only the basic camera characteristics like field of view,
resolution, and pixel size. However, other aspects like sensor stabilisation and
illumination conditions require extra attention or may need additional consider-
ations in windy conditions. This section will briefly review the mission planning
aspects that need to be taken into account when conducting multiple sensor cam-
paigns. Finally, it is strongly recommended to conduct a test flight of all sensors
and sensor combinations before conducting experimental flights in order to test
for aeronautical stability, flight times, and to address any unexpected issues.
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Table 8.1: Considerations for data acquisition; GCP - ground control point

Sensors Calibration targets GCPs Illumination
conditions

Weather station
data

VIS-NIR Gray-gradient black and white Stable (fully cloudy
may be acceptable for
RGB or broadband)

Not mandatory

SWIR Gray-gradient black and white Direct sunlight Recommended (water
vapor)

TIR Thermal calibration
plates (warm/dry and
cold/wet target - like
a basin, dry and wet
leaves, fabric)

Thermal high
contrast

Direct sunlight, no
wind

Highly recommended

SIF Active/passive
reference targets

Black and white or
high contrast

Direct sunlight Highly recommended

• Optimal timing for data acquisition (#1 in Fig. 8.2). Selecting
the best time to perform data acquisition with UAV flights depends on the
nature of the trait of interest, as well as the technical demands of optical
sensors. For MS, HS, SIF, or TIR sensors, it is generally recommended to
fly under clear sky conditions and around solar noon to minimize the ef-
fects of bidirectional reflectance distribution function (BRDF) and changes
in irradiance (or temperatures). Not only are BRDF effects less at times
closer to solar noon, but the sun angles are also changing slower, result-
ing in reduced changes in light conditions between the start and the end
of flights. As crops often experience diurnal cycles of temperatures, it is
important to consider the exact time of day for the level of stress (Figure
8.4). However, image data acquisition that targets structural traits [23]
(i.e., 3D point clouds built using structure-from-motion (SfM) workflows)
or texture-based object identification [77] (i.e, counting yield or crop com-
ponents/organs) might be collected with overcast sky conditions to avoid
shadows. Additionally, for dynamic traits like photosynthetic parameters
such as stomatal conductance or SIF, repetitive sampling on the same day
may be required to determine diurnal patterns [184]. Since some sensors,
such as TIR, are influenced by shadow, image acquisition needs to consider
shadowing, which is changing during the day and season. For the TIR sig-
nal wind might have higher priority than clear sky. For all sensors, it is
important to be aware that solar azimuth and elevation change during the
season, and protocols need to be adapted accordingly. The timing of image
acquisition can be crucial for measuring certain phenomena. For instance,
in crop water stress detection using TIR data, the typical recommendation
is to acquire TIR data in the early afternoon around solar noon (Fig. 8.3).

In case not all sensors fit on one platform, the sensors need to be flown
separately, which thus requires defining an acceptable time gap between
flights, and prioritization between optimal flight times. In those cases, the
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Figure 8.3: Daytime change of Pearson correlation coefficient (r) and slope and intercept of the
linear model between Crop Water Stress Index and soil moisture in Hamerstorf, Germany (Lat:
52.91◦, Long: 10.46◦). Data stems from ground measurements of canopy temperature and soil
moisture over an experimental potato field in 2019 during periods of water stress. Periods of
water stress were the following days: DOY 158-160, 181-185, 208-210, 224-225 (in total 13 days),
n=39 for the statistical measures. In the early to mid-afternoon (12-15 hours) the correlation is
strongest and the linear model parameters reach relatively stable values which indicates a robust
relation between the thermal infrared measurements and soil water availability. This illustrates
the typical recommendation to acquire TIR measurements in the early afternoon for crop stress
applications. Details on the computation of CWSI can be found in [66]. (Figure generated
using data from the project ”Sensor-based irrigation management in potatoes” funded by the
program ”European Innovation Partnership Productivity and Sustainability in Agriculture”, as
described in [66])

order of flights is vital as certain sensors favor specific environmental con-
ditions. For example photosynthesis-related traits that can be obtained
from SIF sensors are time-critical and could change in a matter of minutes,
which is also true for TIR information with respect to crop evapotranspira-
tion estimations. In contrast, plant pigment content or biomass are not as
time-critical as flux-related traits but critical with respect to stable/clear
sky illumination conditions. In general, flux-related traits such as photo-
synthesis rates derived from SIF or evapotranspiration from TIR are highly
variable in time and should be prioritized over collecting data on plant
pigments and/or biomass. Nonetheless, the latter are dependent on stable
illumination conditions (i.e. clear-sky) but with respect to the phenological
stage and stress intensity, these flights could also be postponed for a few
days.

• Ground sampling distance (GSD; #2 in Fig. 8.2). GSD is a function
of flight altitude, focal length, sensor resolution, and pixel size. This means
that GSD will differ from sensor to sensor as well as between flights. In
some cases, adjustments in focal length can offset minor differences in sen-
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Figure 8.4: Relative uncertainties associated with diurnal measurements of SIF at 760 nm in
June 2019 HyPlant campaign. The study area (Lat: 50.6◦, Long: 6.9◦) covered summer and
winter varieties of wheat and barley, as well as sugar beet and winter rapeseed. The relative
uncertainty is a combination of the uncertainty of the SIF retrieval, as well as the uncertainties
associated with data pre-processing and the sensor measurement itself. For detailed description
of uncertainty calculation please refer to FLEXSense 2019 report [168].

sor resolution, but for other cases, the differences in sensor resolution will
be too large and require separate flights. Therefore, if the user is targeting
a specific GSD when performing multiple-sensor campaigns, they should
consider all the above-mentioned attributes for GSD calculation, most im-
portantly, flight altitude. Users need to be aware that HS, MS, and TIR
sensors generally have different spatial resolutions (Fig. 8.5) as well as flight
acquisition requirements, so if there is interest in acquiring plant-level in-
formation at a specific spatial resolution, flight altitude must be adjusted
according to the sensor with the lowest resolution. This consideration may
lead to long flight times, which can be limited by UAV battery capacity. If
multiple flights are planned, the number of available batteries and charg-
ing opportunities (including cables and multi-plugs) in the field have to be
taken into account in the flight planning as well. Varying terrain elevation
of the study area has an effect on GSD. If these variations are large e.g
more than 10m, the flight altitude needs to be adjusted accordingly. In
these scenarios the terrain following option in the flight planning software
should be used to ensure consistent GSD.

• Image overlap and flight patterns. The choice of image overlap de-
pends on many factors including but not limited to: type of the targeted
crop traits (morphological, physiological or biochemichal), complexity of
the terrain (homogeneous or heterogeneous), UAV battery capacity, type
of the sensor and sensor resolution, data storage capacity etc. [68]. When
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Figure 8.5: An example of the different fields of view between data of a MS (a) and TIR (b)
sensor acquired during the same UAV flight over viticulture.
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flying frame (camera array) imaging sensors over homogeneous agricultural
fields characterised by a low number of discerning features, a high lateral
(between flight lines) and longitudinal (along a flight line) overlap of >70%
ensures the correct stitching of the images in the mosaicking process. Be-
sides, it is important to optimize the placement of the different sensors
on the UAV to ensure a high degree of overlap between images. During
a multi-sensor mission, image overlap has to be computed for the sensor
with the narrowest field of view. This will ensure that they capture images
of the same area. Planning flight patterns with sufficient overlap so that
every section of the ground is imaged close enough to nadir direction will
ensure the mitigation of BRDF effects. Many SfM processing software will
help to minimize BRDF effects by using the whole of the image overlapping
regions to align the images [1], but then use only the central most nadir
portion of each individual image for the final mosaic. High image overlap
>70% substantially increases the generated image data volume and flight
duration. Since for certain sensors time and duration of acquisition is criti-
cal, the image overlap settings as well as flight altitude should be reviewed
(e.g lowering lateral overlap close to the recommended minimum of 60%
and increasing flight altitude) and sensors prioritised during a multi-sensor
campaign. For more details refer to [68].

• Sensor stabilisation (#2 in Fig. 8.2). Specific instruments, such as
uncooled TIR cameras, require thermal stabilisation after take-off to mini-
mize temperature drift that occurs when the camera temperature changes
over time. Warming up on the ground, using an external heated shutter
[212], hovering, or loitering over 5-10 minutes can minimise these effects.
However, this extra flight time has to be considered and will reduce the use-
ful time available for the actual mission [127]. Field spectrometer systems
for SIF retrieval theoretically require less warming-up in the field, however,
during laboratory calibration, a warming-up time of around 15 - 20 minutes
has often yielded the most stable results. Thus, we recommend powering up
the instrument approx. 20 minutes prior to critical measurements. When
fusing information across different sensors, it is recommended to minimize
biases due to drifting of individual sensors by giving each sensor sufficient
time to stabilize in the ambient air temperature. The stabilization time may
vary depending on sensor type and the environmental conditions. Thermal
expansion or contraction of lens materials and mechanical components can
alter the physical distance between the lens elements, thereby affecting the
focal length. Additionally, temperature variations can affect the properties
of electronic components within the camera, such as sensors, circuit boards
and calibration materials. This affects the imaging performance and accu-
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racy and needs to be taken into account.

8.2.2 Ancillary data

• Calibration targets (#3 in Fig. 8.2). Proper radiometric calibration
with calibration targets is required for accurate crop trait mapping using
imaging spectroscopy data. Different sensor types have unique require-
ments, and when using multiple sensors, each must be met for high-quality
data acquisition. A standard approach for VIS-NIR sensors is the empiri-
cal line correction method (ELM) [186]. Here it is recommended to use at
least 2 gray-gradient targets with different reflectance factors and a Lam-
bertian surface [135, 43]. Targets for VIS-NIR sensors should be placed
on a non-vegetated surface, not too close to each other to minimise adja-
cency effects, and cover several pixels from the desired flight altitude. This
point is especially important when performing multiple sensor campaigns
with varying spatial resolutions. For more detailed information on best
practices of calibration targets refer to [1]. TIR sensors require tempera-
ture calibration plates (TCPs) with a large temperature range and built-in
insulation to avoid temperature fluctuations [138, 144]. Standard prac-
tice is to place contrasting TCPs at different locations in the field. TCP
material should have high emissivity, be stable over time, have a uniform
surface and be durable. Certain materials such as painted black and white
polypropylene or aluminium plated panels have proven to be satisfy the
above requirements [127, 144]. Similar to VIS-NIR sensors, TCPs are used
for radiometric calibration with ELM.

Reference targets to verify SIF retrievals require mimicking the double peak
emission of chlorophyll fluorescence, ideally against a spectral signature
background that is close to that of vegetation. Active SIF reference tar-
gets with LED panels are recommended for signal intensity validation and
correction, but they require a time-consuming setup and management [37].
Passive SIF reference targets based on a dye that has a similar spectral
shape as chlorophyll fluorescence are easier to set up but they rapidly age
under sunlight and require continuous monitoring [168]. Both types have
spectral differences compared to SIF in natural vegetation. It is recom-
mended to characterize both types of reference targets on the ground and
continuously monitor them during the experiment to consider ambient in-
fluences.

• Ground control points (GCPs; #4 in Fig. 8.2). The installation of
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GCPs is strongly recommended, even if the UAV is equipped with real time
kinematic (RTK) positioning. This is particularly important for wavelength
ranges with less reflected or emitted energy like SWIR or TIR, where the
spatial contrasts are less sharp and the identification of targets in the image
might be challenging. SIF sensors typically require the same GCP charac-
teristics as other hyperspectral sensors do. Suitable GCPs are aluminium
panels, which are well visible in the thermal but also in all other spectral
domains. In the context of multi-sensor operations GCP dimensions are
of high importance. They should be large enough to be discernible from
sensors with different spatial resolutions. Covering panels (for example
thin wood) with standard household aluminum foil is an economic solu-
tion and they are easy to carry and install in the field. It should be noted
that aluminum foil possesses highly reflective properties within the visible
light spectrum. To mitigate specular reflection, the panels should be posi-
tioned in shaded areas, oriented appropriately to minimize direct exposure
to sunlight, or be covered with crinkled aluminium foil. Furthermore, it is
advisable for the GCPs to have a distinct shape, such as a square, rather
than, for example, circles, to facilitate clear identification of positions. In
addition, the GCPs should have a visible mark in the center to allow exact
coordinate identification in post-processing. Black and white GCPs may
also be discernable for VIS-NIR and TIR; if placed in the field 1-2 hours
before UAV flights the black and white panels should achieve an adequate
temperature differential compared to soil and vegetation. For more detailed
information on GCPs refer to [1] and [54].

• Weather data (#5 in Fig. 8.2) Local weather data is important for
many applications, especially for TIR and SIF. TIR data is often normalised
using air temperature, solar irradiance, and wind speed. Normalizing SIF
by solar irradiance brings more insight into the crops’ physiological status.
In the case of optical sensors, the use of a sun photometer can provide
aerosol optical depth (AOD) and atmospheric water content for calculating
irradiance and determining reflectance. Alternatively, irradiance measure-
ments can be performed in the field [96] using spectroradiometers or cosine
irradiance sensors mounted on the UAVs. Monitoring the environmental
conditions is also essential for comparing measurements across multiple
days or environments. If local weather stations are nearby, their data could
be used to characterize weather conditions during the flight. However, due
to significant variations in parameters such as wind speed or irradiance over
short distances and the typically limited temporal resolution of recorded pa-
rameters, it is generally recommended to use portable weather stations to
more accurately characterize instantaneous weather conditions.
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• Annotation. Acquired data must be adequately annotated to make the
fusion of various spatial, spectral or temporal resolutions possible. General
attention should be paid to the geocoding including the used geographic
coordinate system and time of the acquisition. The annotation of mea-
surements with meta-data provides the first level of data products and is
crucial for data quality and control and the potential usefulness for further
studies. It is also needed to combine the data from the different sensors
without mistakes like a mix-up of time or location etc.

8.3 Data analysis

Data analysis encompasses the pre- and post-processing of the imagery, starting
from georectification and ending with retrieving crop traits using parametric and
non-parametric methods (Figure 8.6). In this process, data products are classified
into different levels based on the extent of processing they undergo. These levels,
denoted as (Level 0), (Level 1c), and (Level 3), represent distinct grades of pre-
processing. Level 0 refers to raw data as digital numbers (DNs) recorded by the
sensor and metadata, Level 1c involves radiometrically processed and calibrated
data in absolute SI units, while Level 3 corresponds to higher-level information
extraction such as SIF and vegetation indices (VI).

The level of pre-processing determines the usability and generality of data prod-
ucts, depending largely on the desired application. Synergistic use of multiple
sensors requires a standardization of data products enabling the valid fusion of
information. Fusion of raw data (Level 0) from multiple sensors is possible in
principle if proper annotation is provided along with complete meta-data. This
Level 0 information is sensor specific and therefore, cannot be generalized eas-
ily. We recommend pre-processing data to Level 1c, which provides absolute and
comparable, physical SI units together with relevant meta-data to enable trans-
ferable results. It is advisable to keep a record of the used sensor calibration in the
meta-data after processing to Level 1c. Furthermore, we recommend the use of
data quality flags, that provide uncertainties and error budgets in the meta-data
to filter unstable or biased measurements [49, 109].

One of the prerequisites of hyperspectral and multispectral data fusion across
different sensors are spectral re-sampling and convolution [2]. In this context,
temporal and spatial aspects need to be considered carefully and may require
aggregation methods for combining data of different temporal resolutions and of
different spatial extents. For example, to compare datasets pixel-to-pixel, spatial
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resampling for matching GSD is necessary as well as pixel-to-pixel co-registration
of orthomosaics. Temporal mismatches may be addressed by normalisation such
as vegetation indices, or by applying corrections e.g. for changes in PAR, e.g.
relevant for data in radiance units such as SIF. Researchers are advised to make
sure to always record the appropriate time-stamp, time-zone, field of view, sensor
elevation and location with each measurement to ease the combination of infor-
mation from sub-plots and experiments later on. When combining higher level
information (Level 3), for example SIF or VI, from multiple sensors, ensure that
the retrieval methods or band combinations for their retrievals were identical or
at least as similar as possible.

Figure 8.6: Consideration points for pre and post processing of UAV data from several spectral
domains; CRS - Coordinate Reference System, RTM - Radiative Transfer Model, VI - Vegetation
Index, ET - Evapotranspiration, CGM - Crop Growth Model

8.3.1 Pre-processing: level 0 to level 1c

Georeferencing The synergistic use of image data from multiple sensors with
different spectral domains requires careful geometric processing. Different sen-
sors often have varying spatial resolutions and geometric accuracies. Addition-
ally, data may have been acquired at different times or on different days. Two
approaches for georeferencing the image data include image-to-image georefer-
encing and absolute georectification. Image-to-image georeferencing is suitable
for sensor fusion with significantly different spatial resolutions or different acqui-
sition times, while georectification is necessary when using other spatially aligned
imagery, such as satellite scenes.
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Radiometric calibration. To perform accurate multi-temporal crop stress anal-
ysis and correct for minor atmospheric influences in UAV data, raw DN pixel val-
ues are not sufficient [187] and need to be converted to reflectance. Reflectance
calibration slightly differs for visible (RGB), multispectral [164], hyperspectral
[134, 106] and thermal sensors [127], due to varying atmospheric attenuation
effects. A common and easy-to-use approach is one-point calibration, which in-
volves using a single calibration panel and performing empirical line correction
[216]. However, using multiple panels yields more accurate results [43]. For more
information on calibration targets refer to subsection 8.2.2. In recent years, stan-
dalone physical-based atmospheric correction software, such as DROACOR [180],
has emerged, offering a more streamlined approach to atmospheric correction,
particularly beneficial for newcomers in the field.

More precise reflectance calibration approaches monitor the atmosphere at all
times using downwelling light sensors (DLS) and correct for short-term changes
in the atmosphere [159]. Some MS sensors may have a single band broad range
DLS, while other sensors may have dedicated DLS band filters for the separate
calibration of each band, with the latter providing improved accuracy. However,
under certain conditions, DLS mounted on UAVs are biased due to in-flight yaw
and pitch angles. When using DLS synergistic application of multiple sensors,
assure valid and congruent correction for all used sensors.

For thermal data, it is essential to understand the relationship between acquired
DN values and targeted surface temperature [127, 144]. Radiometric correction in
the field is done by empirical line calibration regressing the measured TCPs tem-
perature and DN values at the TCPs. This approach assumes high emissivities
of TCPs (> 0.98). The validation may be done using linear regression of defined
homogeneous regions measured by infrared thermometers. Even if absolute tem-
perature is desirable, it is rather challenging [99]. In some cases, just relative
differences are sufficient or a simple correction with the ambient temperature of
the closest weather station might be suitable. The calculation of a simplified,
image-based version of the CWSI (crop water stress index) [111] can also be an
option to combine TIR data with further sensor information (see section 8.3.2.1).
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8.3.2 Post-processing: level 1c to level 3

8.3.2.1 VIs

In this section we are going to show how UAV-acquired data from different spec-
tral domains were used together in vegetation studies. The synergies we are going
to describe are VIS-NIR, VIS-NIR-SWIR, VIS-NIR-TIR.

The most common example of sensor synergy is the usage of VIS-NIR for vegetation-
soil separation with, for example, NDVI and further processing of vegetated pix-
els. Masking soil pixels with NDVI, [122] retrieved water stress as stomatal
conductance from SWIR and [14] retrieved water stress from TIR. The SWIR re-
gion is affected by water availability in the vegetated canopy, highlighted in the
synergy with NIR in normalized difference water index (NDWI) for vegetation
water content [80] and normalized difference infrared index (NDII) for canopy
water stress [97]. NIR/SWIR indices were applied for grass [119, 18] and wheat
[119] biomass mapping from a UAV NIR/SWIR imaging system [118]. Several
attempts were made to reconstruct SWIR regions from VIS-NIR images with
machine learning for estimation of fuel moisture content (FMC) [7, 8, 210, 209].

8.3.2.2 ET (TIR)

For VIS-NIR-TIR synergy, the group of trapezoid (also known as triangular)
approaches is used to explain the variation in land surface temperature (LST)
with a variation in vegetation index, usually NDVI, to estimate the vegetation
water stress [131]. The first application was developed for Water Deficit Index
(WDI) [151]. Lately, the method was used with UAV-borne data for crop water
stress mapping [100] and ET computation [150]. Many ET models (TSEB [157],
SEBS [190], METRIC [5]) develop this LST-NDVI relation further, including
shortwave albedo.

8.3.2.3 RTMs

One of the advanced methods for making use of VIS-NIR-SWIR synergy is ex-
emplified by the RTMs, most of which function in the shortwave radiation range,
400-2500 nm. The models such as SAIL [203], INFORM [181] and DART [81]
upscale leaf reflectance, simulated usually with the PROSPECT model [115], to
the canopy level. The inversion of RTMs enables retrieving leaf (chlorophyll and
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water content) and canopy (LAI) parameters, which can be further correlated
with stress levels [207]. As mentioned earlier, SWIR-carrying UAV systems were
developed relatively recently [118, 9], therefore UAV studies that use RTM in-
version are limited to the VIS-NIR domain, sampled either hyperspectrally [63,
132, 215, 217, 3, 229] or multispectrally [202, 172, 117, 191, 44, 6, 185]. As a
guideline, we advise to degrade the spatial resolution of a UAV image to satisfy
turbid-medium models, such as SAIL, or to mask shaded and bare soil pixels
before the inversion [44].

The incorporation of the TIR domain in RTMs remains less studied due to chal-
lenges with temperature-emissivity separation. Some attempts have been made
with codes like SAIL-Thermique [158] and 4SAIL [204]. Although it was shown
that the SCOPE model has the potential to use TIR to retrieve leaf biophys-
ical traits (maximum carboxylation capacity of RuBisCO, Vcmax25, related to
the photosynthesis rate and Ball-Berry slope, BBS, related to stomatal conduc-
tance, photosynthesis and transpiration) [165], the practical attempts required
additional constraints with the flux data (GPP, ET) [64, 166] or look-up tables
[21]. The main challenge for RTM applications with UAV-borne TIR data is the
accurate absolute radiometric calibration of UAV-TIR data, because RTMs work
with absolute physical quantities.

In spite of being more temporally dynamic than TIR, SIF was successfully intro-
duced into leaf (FLUSPECT [208]) and canopy (SCOPE, CliMA [217], DART[140])
RTMs. [219] used UAV-borne VIS-NIR-SIF synergistic retrieval of leaf and
canopy traits and fluorescence quantum yield (fqe) with the SCOPE model for
sugar beet under water stress. Additional TIR constraint was needed as a proxy
of stomata closure. The UAV-borne systems suitable for SIF retrievals are being
developed actively [24, 45, 201, 218, 235] and we expect more studies to use RTM
for SIF data processing.

Overall, the inversion of RTMs in the VIS-NIR-SWIR domains sampled hyper-
spectrally can be considered a routine operation. In relation to multispectral
UAV sensors, the success is limited by the number of bands (constraints) in the
UAV system, plant phenological stage, time of the day, spatial resolution, view-
ing angle etc. The application of RTMs with SIF and TIR data is an emerging
field and currently requires a two-step procedure [219]. In the first step, biophys-
ical parameters retrievable from multispectral and hyperspectral are obtained.
In the second step, plant physiological parameters such as Vcmax25 and fqe are
retrieved from SIF or TIR.
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8.3.2.4 Integration with crop models

[29] had elaborately portrayed the advantages and potential of combining crop
growth models with remotely sensed data obtained by several types of imaging
instruments. While crop models focus on simulating the complex process of crop
development and biomass accumulation, some only provide an output of plant
and soil properties [107], and other, more complex CGMs, do account for the
interaction of soil and plant with radiation by modeling the energy balance in
the soil-plant-atmosphere but do not produce output variables directly related
to remote sensing measurements (e.g., surface reflectance, etc.). Thus, some
important aspects should be considered to assimilate remote sensing data into
crop models, specifically data from multiple sensor types.

There are several crop models commonly used in the literature, which vary in
aspects such as crop growth driving mechanism, simulated state variables, and
model parameters [120]. These differences might determine the adequacy of a
certain crop model to benefit from integration of RS data in different domains.
For example, canopy cover, used in AquaCrop to describe the canopy develop-
ment [188], is a property that can be evaluated either from plain RGB images
or from VIS-NIR data [234]. More complex crop models, such as DSSAT [121]
or APSIM [103], differ from AquaCrop in two major aspects: (a) plant growth
is driven by the amount of intercepted radiation, and (b) they simulate more
processes including the soil-plant-nitrogen balance [36]. Following the example
of canopy development simulation, these two crop models use LAI to describe
canopy expansion, which can be obtained, e.g., by empirical relations to vege-
tation indices [142]. This approach, of using data from one spectral domain to
evaluate a single property is straight forward, but still limited to very specific
simulated state variables and data types.

To use data from several spectral domains with varying spectral resolution in a
synergized way, and to utilize more crop related properties, one can couple the
crop model with a radiative transfer model. This means to choose mathematical
equations that relate the crop model’s state variables with the RTM input pa-
rameters. Since crop models are dynamic and usually use daily time steps, while
RTMs are instantaneous, one should consider the rate of change of the simulated
properties. Most previous studies that used this approach used different versions
of SAIL [203] for the choice of RTM [222, 137, 108], but this group of models,
along with its diverse capabilities, is limited to the optical domain of the elec-
tromagnetic spectrum. Thus, to facilitate the use of SIF and thermal data, a
more comprehensive model, such as SCOPE, is recommended, and the coupling
relations should be extended to include relations between crop state variables and
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RTM parameters that affect thermal emission and SIF.

In previous studies, this framework was mainly used to improve prediction of
yield and other crop traits[93], but in the context of this paper, it might as well
be used for crop stress detection since GCMs (e.g., APSIM, DSSAT) simulate
the daily stresses (water and nitrogen) that impact photosynthesis and growth
processes (e.g. expansive growth processes) in a dynamic way. For this purpose,
the method for integration of the RS data in the coupled model should be care-
fully chosen. Due to the dynamic nature of crop models, either a calibration or
sequential updating are commonly used. Calibration methods consider the course
of a full season, and determine the values of the crop model parameters, which
does not directly relate to stress indicators and are less suitable for our purpose.
In contrast, sequential updating methods (e.g, Kalman filter or particle filter),
usually used to update the state variables, and thus they are more recommended
in the context of stress detection. Following this approach, by assimilating RS
data, both RTM parameters and stress-related crop model state variables can be
evaluated dynamically. Finally, it should be noted, that although most of the
previous studies used space-borne RS data because yield prediction does not re-
quire very high spatial resolution [107], stress detection requires the use of UAVs
to obtain much higher spatial resolution.

8.4 Lessons learnt / Bad Examples

Sensor synergies can be challenging, above all due to inconsistencies arising from
differences in overpass time and resolution (spatial, temporal, and spectral). To
assist new users and avoid pitfalls and frustration, we compiled recommendations
derived from real-world examples where data acquisition did not go as planned by
experienced UAV operators using multiple sensors. These recommendations, are
not strictly limited to multi-sensor synergies and apply to UAV field campaigns
in general.

8.4.1 Checklist, Protocols, Fieldbook

First and foremost, we advise every operator to design/modify checklists and
standardized protocols adequate to their respective field campaigns. Besides pre-
venting rather apparent mistakes such as forgetting critical parts of the equipment
in the lab, variations due to changing operators are minimized and the procedure
can be reproduced at a later time [194, 70, 192] Similarly, we recommend pre-
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cisely documenting the metadata such as weather conditions, handling person,
time, and any other source of information that appears to be useful while be-
ing in the field to comprehend eventual issues occurring when processing the
data. Short and precise checklists and metadata documentation are most ef-
fective. They should focus on essential information to prevent user frustration.
Lengthy checklists are less likely to be thoroughly reviewed by users. Often, not-
ing metadata is overlooked during UAV operations as field campaigns typically
require multitasking. To address this, we suggest taking photos of screens, the
sky, instruments, and watches, and recording voice messages as reminders. Ad-
ditionally, a pre-populated text on a mobile phone or tablet, or printed on paper
can aid in remembering crucial information during fieldwork. This allows for
quick data capture on-site, with more comprehensive documentation completed
later in a quieter setting.

8.4.2 Solar illumination

We advise users to critically check their protocols based on daily and seasonal
cycles of solar azimuth and zenith angles. Variations of these angles potentially
induce uncertainties and change the distribution of direct and diffuse illumination
of vegetation. Although not completely avoidable, it is advisable to minimize
this effect, quantify the related uncertainties or consider strategies such as BRDF
modeling where appropriate. Related to this, variation in illumination leads to
variation in shading which can hinder successful analysis but, also allow for easier
object detection (e.g. trunks not visible in nadir). Especially for thermal sensors,
shaded objects can induce variations in radiometric temperature. These should
be treated adequately as they might significantly affect derived variables (e.g.
ET).

8.4.3 Test flights, GCP visibility, ROI markers

We also advise performing test flights and quickly analyzing the corresponding
data as we encountered cases where we found an insufficient overlap of images,
although image acquisition protocols provided by the manufacturer were met.
While performing these test flights, we further recommend ensuring that GCP
placement is correct and the markers are clearly visible through all spectral do-
mains, with special emphasis on the thermal domain. We encountered problems
with permanently placed markers which had poor visibility in certain spectral do-
mains due to dirt accumulation and/or wear due to exposure to UV radiation (see
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Fig. 8.7). Additionally, we recommend using additional markers (again, visible
in all spectral domains) defining regions of interest as differences in the field of
view and spatial resolution can hinder identification, especially in homogeneous
environments such as crop rows as shown in Fig. 8.5. From our experience, invest-
ing in high-quality reference panels can significantly improve radiometric quality,
especially when dealing with narrowband hyperspectral sensors. Therefore, we
recommend allocating a budget for suitable reference panels for the correspond-
ing sensors. Lastly, ensure reference targets receive regular cleaning, especially
in dry summer conditions when dust accumulates quickly.

Figure 8.7: Visibility of markers in different spectral domains. Yellow circles show panels made
from aluminium foil, while blue circles represent panels with printouts of markers (i.e. white
squares with geometric patterns). In RGB (left) both marker types are easy to spot, while the
visibility of the standard panels is clearly restricted in the thermal image (right).

8.4.4 Instantaneous weather conditions

Most of us found ourselves tackling problems due to weather conditions during
image acquisition on many occasions. As the majority of flights are performed on
sunny days, we encountered issues regarding equipment overheating (e.g. tablets
for UAV operation, UAV batteries, spectrometers etc.) hindering the successful
acquisition of data. Recommended practices are scheduling with breaks to let
the equipment cool down, avoiding direct sunlight exposure (e.g. through a para-
sol) or the usage of active cooling systems in extreme environments. Also, we
advise allocating resources carefully: Cancelling or delaying flights due to unfa-
vorable weather conditions is regrettable but often a more prudent decision than
collecting inaccurate data, which could result in even greater resource wastage.
From our experience, decision-making is often not straightforward and discussions
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within teams are common. We, therefore, recommend defining clear criteria (e.g.
maximum wind/gust speed thresholds) beforehand which are monitored during
the campaign and allow to make an informed decision on campaign cancellation.

8.4.5 Flight and irrigation timing

Crop water status is dependent on the timing of irrigation, not only irrigation
dose. When measuring Crop Water Stress Index (CWSI) from thermal imaging,
one must take into account when the last irrigation was applied; if irrigation
is applied just before or during the imaging, differences between irrigation treat-
ments may be less pronounced compared to taking a thermal measurement before
irrigation is applied. Whenever possible, we recommend scheduling the irrigation
after the measurement flight. An example is given in Fig. 8.8, where the visibility
of the different treatments is strongly reduced in the left panel.

Figure 8.8: Surface temperature and NDVI from UAV observations in two different days of
an experiment in processing tomatoes in Israel in the summer of 2020. The figure shows
experimental blocks with two different treatments: the right block features full irrigation (i.e.,
best practice irrigation, the control treatment), while the left block was given 50% of full
irrigation. Each block comprises three crop rows (outer boxes), but the irrigation effect was
measured only for the middle row (inner boxes), as the outer rows serve as buffers from adjacent
treatments. If irrigation is applied just before or during the imaging, differences between
irrigation treatments may be less pronounced compared to taking a thermal measurement before
irrigation is applied.

8.5 Conclusion and outlook

This manuscript summarises relevant aspects important to consider when exploit-
ing multiple sensors onboard UAVs for crop stress and trait detection. The need
for such guidelines has been identified as a result of increased stress occurrence
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caused by climate change effects, the increased availability of optical sensors on-
board UAVs, and the current lack of existing protocols on how to collect and
analyze such data.

The first part of the manuscript covered data acquisition of high-quality multi
sensor imagery. The most relevant points to consider were: i) Optimal timing
for data acquisition is crucial. The order of the flight is detrimental as some
sensors have very specific timing requirements. ii) Sensor characteristics need
to be taken into account for mission planning. iii) Sensor from different optical
domain require calibration targets with different properties. iv) Use of ground
control points that are discernible from every sensor are strongly recommended
to ensure accurate image co-registration. v) Use of additional measurements (e.g.
weather data) for atmospheric correction is advisable.

The second part of this guideline dealt with the data analysis. The most relevant
points to consider were vi) Data fusion for synergistic usage should be done at
data level 1c (physical units). vii) Data quality flags should be used to filter
unstable or biased measurements. We presented some straightforward methods
like vegetation indices to combine information from different spectral domains,
along with some more complex processing such as retrieving biophysical variables
from RTM inversion. The latter necessitates further research, and it is hoped that
numerous studies will be conducted in line with the recommendations made by
[29].

Finally, the recommendations are rounded up by bad examples that scientists
experienced during their research work. This collection of best practices and
lessons learnt can help scientists and practitioners in making informed decisions
regarding sensor selection, mission planning and the challenges associated with
multiple sensor data acquisition and processing to advance crop stress monitoring
with UAVs.
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Chapter 9

Synthesis

Uncrewed aerial vehicles have great potential in agriculture re-
search and plant breeding due to their versatility, ability to deliver
high-resolution image data, and size that makes them accommodate
different sensors. For these reasons, they are perfect phenotyping

platforms allowing agriculture practitioners to save time and resources. The crop
breeding community is under pressure to develop resilient and productive crop
varieties in response to climate change, new sustainable agriculture policies, and
growing skepticism towards GMOs. This includes developing crops that can
withstand, drought, heat stress, and changing pest and disease pressures. In ad-
dition to improving climate resilience, breeders also need to maintain or improve
yield, quality, and other important agronomic traits. Monitoring these amount
of varieties in the field and studying the effects of the different environmental
conditions, be it biotic or abiotic stress is a challenging task and is not feasible
if done by manual human labor. This is a niche that UAVs could fill well since
they can carry various sensors to retrieve information on plant parameters in a
standardised manner.

This thesis aimed to explore the application of UAVs in retrieving crop parameters
and exploring sensor synergies for crop stress detection. For this reason, several
field experiments have been conducted to acquire image and plant data. These
experiments served to ask and answer questions about three main contribution
topics that will be discussed below.

125



9.1 Reflectance Calibration

A well-defined reflectance calibration pipeline served as a foundation of this the-
sis. In this study we demonstrated the advantage of the ELM to single-panel
approach that is often offered by camera manufacturers. We identified errors
in surface reflectance derivation using the MicaSense Dual camera system (pro-
duction date: 2019), particularly in the NIR and red-edge bands, with the most
significant inaccuracies occurring for dark panels (reflectance factors lower than
20%). Negative reflectance values were also observed, as reported in other studies.
Several points need to be discussed that could not be included in this publication.

The first point involves the linearity assumption between target reflectance and
radiance. Our study indeed shows that the relationship of measured panels and
at-sensor-radiance is linear. However, the response of each sensor and calibration
target is different and might be non-linear. Non-linearity may arise from the
sensor itself. To investigate we started to characterize the sensor which proved
to be non-trivial as a variety of integration times and sensor gains were used in
different datasets. This is why it’s recommended to use more than 2 calibration
targets to check for the sensor response. ELM comes with limitations one of which
is the assumption of constant illumination. During the aerial campaigns, the solar
angle changes constantly. It can be assumed that this change is negligible if the
campaign is short and around the solar noon when the rate of solar angle change
is at its minimum. Additionally flying over the panels more than once during
the campaign and averaging the change will mitigate the effects of illumination,
but only when it’s completely overcast or clear sky day. In our studies we have
conducted campaigns on clear sky days, but in reality UAV users in most cases
are challenged by suboptimal weather conditions (e.g changing illumination due
to the clouds). In such cases irradiance sensors could be used to record irradiance
for each image and band during the flight and use that information to normalize
the illumination.

Another point that has not been discussed with reflectance calibration is a Bidi-
rectional Reflectance Distribution Function, shortly BRDF effect. The BRDF
effect captures how the reflectance of a surface changes with different combina-
tions of light source and sensor viewing geometry. The magnitude of BRDF effect
depends on the magnitude of solar and viewing geometry, sensors with narrow
field of view having less pronounced BRDF effect [175]. There are models for cor-
recting for BRDF and these corrections have been primarily made and applied to
satellite imagery. Such models have been also recently developed for UAV appli-
cations [180]. The BRDF effect during the UAV overflight could be mitigated by
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increasing side and front overlap. This will ensure that during the SfM processing
only the central parts of the images are used for stitching, artificially reducing
FOV.

Flight altitude is another point that needs special attention. In our studies we
used 20 m as flight altitude, meaning that the atmospheric column between the
sensor and the surface was negligible. The multiple panel approach is especially
important when performing flights at higher altitudes where the effects of atmo-
spheric scattering will be much higher. We tested our approaches at 20 m height
and therefore the differences we found between both approaches may not hold for
other heights. In order to understand better the impact of single-panel and multi-
ple panel approach in the future it would beneficial to conduct a study exploring
reflectance calibration at different flight altitudes. This will allow to better iden-
tify the effect of the atmosphere on both reflectance calibration pipelines.

9.2 Retrieval

The advantage of UAVs over the coarse satellite data, apart from their versa-
tility, when it comes to the retrieval using PROSAIL proved to be the ability
to discriminate between different canopy constituents. This enabled successful
retrieval exemplified by the 2nd study.

In this study we have demonstrated that with increasing spatial resolution the
retrieval accuracy of both structural and biochemical parameters increases. The
results for LAI retrieval are comparable with the findings of [191], where authors
reported decrease of LAI accuracy with increasing resolution. Our study further
demonstrates that soil removal is beneficial for estimating LCC with high preci-
sion. Even though soil removal was possible even for 0.48 m data, it is assumed
that in more heterogeneous plots it may be more challenging and higher resolution
data would deliver better results.

It needs to be noted that UAV operation in airspace is limited to a certain height
and that some of the spatial resolutions tested here cannot be flown under cer-
tain regulations. We demonstrated that the coarser resolution data that can be
acquired from airborne sensors (0.48 m), would still deliver good retrieval results.
Flights above 100 m will be significantly influenced by some atmospheric effects,
especially in conditions with high aerosol content or humidity. In this project no
additional atmospheric effects were applied to the resampled image data. For fu-
ture research atmospheric simulations or experimental flights could be conducted
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at different altitudes, humidity levels and illumination conditions.

Another point that needs to be addressed is the retreival of LCC for chlorophyll-
deficient mutant Minngold. The LCC overestimation observed in Minngold with
removed soil could be attributed to the constraints of the PROSAIL model: Min-
ngold is characterised by two distinct canopy layers, low LCC in upper leaves
and high LCC in lower leaves. This two-layer canopy structure is not accounted
for in PROSAIL, leading to overestimation. PROSAIL assumes a homogeneous
canopy with uniform leaf properties throughout. This assumption breaks down
when dealing with canopies that have distinct vertical stratification. Solution to
this problem would be to use more complex models as M-SCOPE, where more
than one optical property could be assigned to the plant [225]. Better results for
Minngold when using an unmasked orthomosaic can be attributed to the large
contribution of soil signal that lowers the LCC values.

While 2nd study explored the impact of resolution on the retrieval, the 3rd study
tested the PROSAIL capability in retrieving the same crop parameters in a more
complex, maize canopy.

Key point to highlight is the difference in LAI retrieval between the two maize
varieties. One of the reasons for the different LAI prediction accuracies achieved
for sweet and silage maize might be the particular choice of the ELADP value
used for leaf angle distribution during the SunScan measurements. In both maize
types, a fixed value was used; however, the leaf angle distribution visually dif-
fered between the two maize types. Therefore, the observed overestimation of
LAI in the case of silage, and underestimation in the case of sweet maize, could
be attributed to the fixed ELADP value chosen for the ground measurements.
Additionally, the SunScan measurement results varied strongly depending on the
probe placement in the canopy during data acquisition, which had a significant
effect on the LAI estimation. Neighboring silage maize plots might also cast
shadows on the sugar maize plots, distorting the measurements.

The discrepancy in LAI estimation at early (stem elongation) and late growth
stages (flowering, etc.) is another point that requires attention. Better estimation
results for early stages can be attributed to the smaller number of leaves com-
pared to later growth stages, when leaf clumping is more pronounced, especially
for nadir imagery, where row effects are discernible. It is known that PRO-
SAIL simulations have limited applicability in row crops such as maize which
are characterized by large gaps between the rows and rather open canopies. The
underestimation observed specifically in sugar maize could be attributed to the
absence of leaf clumping correction in the PROSAIL model. While these canopy
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characteristics were partially considered when conducting ground measurements,
they cannot be parameterized in PROSAIL. PROSAIL assumes a homogeneous
and closed canopy, the condition partially met by the satellite and airborne im-
ages but not by the high-resolution UAV images. For better estimation of LAI
in maize, RTMs that account for leaf clumping and shading can be explored, e.g
3D radiative transfer model such as DART [83]. However, 3D RTMs are compu-
tationally demanding compared to simpler 1D models. This high computational
cost can limit their use in operational settings. Additionally 3D models require
detailed parameterization of canopy properties that may be uknown to the user.
This level of detail can be challenging to obtain and may introduce additional
sources of uncertainty.

Furthermore, the in-situ, non-destructive measurements may contribute to uncer-
tainties in LCC retrieval. The relationship between SPAD readings and chloro-
phyll content is often non-linear, particularly at high chlorophyll concentrations
[198]. Different species may require different mathematical models (e.g., linear,
polynomial or exponential functions) for accurate calibration. The relationship
between SPAD values and chlorophyll content could also change throughout a
plant’s growth cycle, requiring calibrations for different developmental stages.
Retrieval accuracy could be improved by deriving separate calibration equations
per maize type, and converting SPAD measurements to chlorophyll content in
physical units. The constant overestimation of low LCC and underestimation of
high LCC values by both approaches for each date may be attributed to the use
of a calibration equation that does not reflect the actual relationship between
SPAD values and real chlorophyll content.

We used all available spectral bands provided by the MicaSense Dual camera
system for the LCC estimation. It is known that chlorophyll retrieval is sensitive
in the visible and red edge regions [27]. One of the ways to increase the LCC
retrieval accuracy would be to apply a spectral constraint to the model. This
would entail removing the spectral bands that are not sensitive to chlorophyll
content from the reflectance data.

Another topic that has not been discussed in the papers is the uncertainty esti-
mation in PROSAIL. Uncertainty information serves as a key indicator of data
quality, helping to assess the reliability and limitations of RS products. This un-
derstanding is essential for determining whether a particular dataset is suitable
for a specific application. Moreover, uncertainty estimates provide valuable in-
sights into the sources and magnitudes of errors in RS measurements. There are
several sources of uncertainties in the parameter retrieval pipeline. The first is
input parameter uncertainties and the errors attributed to measuring them. We
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have briefly touched this in case of SPAD value conversion to LCC. The second is
model uncertainties: simplifying assumptions in PROSAIL may not fully repre-
sent real-world complexity, hence the parameter estimation will not be accurate.
Some inversion methods, e.g Bayesian inversion frameworks can provide inversion
uncertainties and could be better alternatives for the future use.

9.3 Crop Stress Detection

We demonstrated the potential of synergistic sensor use to detect paraheliotropic
leaf movement due to drought stress for the first time. Owing to their versa-
tility, miniature size, and ease of use, UAVs are and will remain the preferred
RS platform for phenotyping research. The 4th study presents the first attempt
to observe paraheliotropic leaf movement using TLS and optical remote sensing
approaches. We characterised leaf movement throughout the dry boreal summer
months and evaluated the relationship between the canopy reflectance and the
leaf movement.

Together with photosynthetic activity, variations in leaf temperature, and changes
in the xanthophyll cycle, leaf movement serves as an important early stress indica-
tor [29, 228]. Unlike leaf-level measurements of photosynthetic activity, which are
often labor-intensive, possess limited spatial coverage, or lack sufficient resolution,
tracking leaf movement using proximal multispectral imaging can be promising
to be used in breeding applications to identify varieties better adapted to higher
temperatures and lower water availability. This characteristic makes ALIA par-
ticularly compelling as one of the parameters to investigate early stress responses
in various crops. A limited number of studies have explored the retrieval of
ALIA using imaging spectroscopy data, making the comparison of results rather
challenging. This is partly due to the complexity of estimating ALIA and its
relatively subtle impact on canopy reflectance. ALIA is a challenging parameter
to retrieve from spectral data alone because its effect on canopy reflectance can
be confounded with other structural parameters like LAI.

The parametrization of PROSAIL significantly influences the retrieval process.
While we explored both constrained and unconstrained ALIA simulations with
fixed LAI, future studies should delve into the impact of other parameters, es-
pecially those related to leaf chlorophyll content and other leaf pigments. Our
findings indicate that Look-Up Table (LUT)-based inversion is sufficient for ALIA
retrieval. However, hybrid methods incorporating machine learning approaches
could enhance retrieval accuracies, reduce the computing time of the inversion

130



pipeline and provide uncertainty estimates of the retrieval.

Our study focused exclusively on soybeans for leaf angle retrieval. Soybean was
a convenient choice due to its paraheliotropism and its architecture, which is
well-suited for reconstruction using TLS data. Soybeans typically exhibit an
upright, bushy growth habit with distinct leaves and branches, making it easier
to capture the overall plant structure and enhancing visibility of individual plant
components. Future research should investigate the application of our method
to other crops to determine if the ratio index is transferable. These crops should
preferably have leaves of a detectable and discernible size by TLS. For example,
it would be challenging to create a 3D model of the wheat using TLS data, due
to resolution limitation, density of the crop canopy and susceptibility of cereal
crops towards slight wind. Another challenge with other crops may be the lack
of significant variation in leaf angle. Crops exhibiting any form of heliotropism
would be of particular interest for further study.

With 4th study, we reviewed the advantage of the multiple-sensor approach in
studying crop stress. The 5th study emphasized this importance and reviewed
important aspects in the form of a guideline that need to be considered when
planning multiple sensor campaigns. The need for such guidelines has been iden-
tified as a result of increased stress occurrence caused by climate change effects,
the increased availability of optical sensors onboard UAVs, and the current lack
of existing protocols on how to collect and analyze such data. The recommen-
dations are rounded up by bad examples that scientists experienced during their
research work. This collection of best practices and lessons learned can help
scientists and practitioners in making informed decisions regarding sensor selec-
tion, mission planning and the challenges associated with multiple sensor data
acquisition and processing to advance crop stress monitoring with UAVs. In this
study the main focus has been on optical RS sensors. In addition to optical sen-
sors that were reviewed in this guideline, UAVs can be equipped with LiDAR,
multispectral LiDAR or SAR. These sensors can be used for high-resolution 3D
canopy structure mapping, assessing crop moisture, simultaneous measurement
of canopy structure and biochemical properties.

Our project explored UAV remote sensing in a direction that had not been pre-
viously investigated. While we made significant contributions by applying PRO-
SAIL for UAV use, further research is needed to test its effectiveness with a variety
of crops. While ML approaches have gained prominence in today’s data-driven
landscape, RTMs remain valuable for their grounding in physical principles. Re-
cent advancements in explainable ML and physics-informed ML are bridging the
gap between these approaches. Therefore, future UAV studies should integrate
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RTMs with ML to harness their combined potential.
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Acronyms
aPAR Absorbed Photosynthetically Active Radiation

AOD Aerosol Optical Depth

ALIA Average Leaf Inclination Angle

BBCH Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie

BRDF Bidirectional Reflectance Factor

Cab Chlorophyll a and b

Car Leaf Carotenoid Content

CCC Canopy Chlorophyll Content

CGM Crop Growth Model

DLS Downwelling Light Sensor

DN Digital Numbers

DSM Digital Surface Model

DTM Digital Terrain Model

DWD Deutscher Wetterdienst

ELADP Ellipsoidal Leaf Angle Distribution Parameter

ELM Empirical Line Method

ESU Elementary Sampling Unit

ET Evapotranspiration

ETR Electron Transport Rate

FOV Field of View

GCP Ground Control Point

GF Green Fraction

GNSS Global Navigation Satellite System

GSD Ground Sampling Distance
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HS Hyperspectral

LAI Leaf Area Index

LAD Leaf Angle Distribution

LCC Leaf Chlorophyll Content

LHS Latin Hypercube Sampling

LUT Look-up Table

LWC Leaf Water Content

MCA Multispectral Camera Array

ML Machine Learning

MS Multispectral

NDVI Normalized Difference Vegetation Index

NIR Near Infrared

NPQ Non-photochemical Quenching

OZA Observer Zenith Angle

PDA Personal Digital Assistant

PDSI Palmer Drought Severity Index

rRMSE Relative Root Mean Squared Error

RMSE Root Mean Square Error

ROI Region of Interest

RS Remote Sensing

RTK Real-Time Kinematic

RTM Radiative Transfer Model

SfM Structure-from-Motion

SIF Sun-Induced Chlorophyll Fluorescence

SWC Soil Water Content

SWIR Shortwave Infrared
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SZA Sun Zenith Angle

TCP Temperature Calibration Plate

TIN Triangular Irregular Networks

TIR Thermal Infrared

TLS Terrestrial Laser Scanner

UAV Uncrewed Aerial Vehicle

VI Vegetation Index

VIS Visible
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