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Abstract

The Standard Model of particle physics and Big Bang cosmology have been successfully used to
describe the evolution and current state of the Universe. However, they are known to be incomplete as
they leave several unanswered questions, including inflation, dark matter, dark energy, the baryon
asymmetry of the universe, and neutrino masses. This thesis presents several models that aim to
answer these questions within the framework of supersymmetry and supergravity. We begin by
constructing scalar potentials that support slow roll inflation using a single chiral superfield and
discuss how to satisfy cosmic microwave background constraints. We then consider how to incorporate
supersymmetry breaking effects into account, which leads to a bound on the supersymmetry breaking
scale and the inflation scale. After finishing this simple model, we turn to consider how to apply
modular symmetry in inflation. Modular symmetry is a strong constraint as well as a useful handle in
understanding the dynamics of inflation. In particular, we consider how to construct scalar potentials
that resolve the flavor puzzles and simultaneously give rise to inflation. This combination naturally
provides the necessary channels for reheating and predicts that the inflaton primarily decays to heavy
right-handed neutrinos. By explicit calculation, we show that if the inflaton mass is high enough,
this process can be used to produce the baryon asymmetry of the universe. In the end, we discuss a
mechanism that produces dark matter at the end of inflation, known as gravitational particle production.
We compare the relic abundance of dark matter in supergravity models and non-supersymmetric
models, identifying the parameter space that generates sufficient dark matter.
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CHAPTER 1

Introduction

The rapid development of physics and astrophysics in the late 20th century has significantly changed
our view of and deepened our understanding of the nature of our universe. At the microscopical scale,
the fundamental particles, those not composed of other particles, were discovered in various laboratory
and collider experiments. During this period, the intensive collaboration between theoretical and
experimental physicists drove the development of the Standard Model (SM), which describes three
of four fundamental interactions, i.e. electromagnetic, weak and strong interactions, and classifies
the fundamental particles. The 17 confirmed fundamental particles are shown in Fig. 1.1. They are
classified into fermions and bosons by their spin. Fermions that can interact via the strong interaction
are called quarks, while the others are referred to as leptons. The last fermion, tau neutrino, was
detected by the DONUT collaboration in 2000 [1]. While the last boson, the Higgs boson, was
discovered by the Large Hadron Collider (LHC) in 2012 [2, 3]. In Fig. 1.2 we show the chronology of
the SM from the experimental side.

On cosmological scales, astrophysical observations provide a distinct channel for advancing our
understanding of physics beyond the standard model (BSM). The accidental discovery of the cosmic
microwave background (CMB) in 1965 [19] and subsequent precise observations of it suggested that
our universe had experienced a period of exponential expansion, known as inflation. The origin of the
inflation is not identified yet. After this expansion, the universe was filled with hot, compact plasma,
composed of the SM particles, such as photons and electrons, as well as other possible particles. One
example is dark matter, which has a very weak interaction with SM particles, but still influences
the evolution of the universe through gravitational interactions. The first evidence of dark matter
was observed in the flat rotation curves of galaxies in 1970 [20]. Another important constituent is
dark energy, which is responsible for the current accelerating expansion of the universe. The first
observational evidence of it came from measurements of high-redshift Type Ia supernovae in 1998 [21].
Physicists are currently working on determining the nature of dark matter and dark energy.

There are two more hits for new physics worth mentioning. In the early universe, baryonic matter
and antimatter should have been created equally. However, the rich structures of our universe, i.e.,
galaxies, stars, and the Earth, are made almost entirely of baryonic matter. All known processes in the
SM, can not account for such a difference. This is called the matter-antimatter asymmetry problem.
Another hit comes from the neutrinos produced in the atmosphere. In 1998, the Super-Kamiokande
experiment found a zenith angle dependent deficit of muon neutrinos, which could be interpreted as
oscillations between muon neutrinos and tau neutrinos [22]. Oscillation between different flavors of
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Figure 1.1: Standard model of elementary particles: the 12 fundamental fermions and 5 fundamental bosons.
Particle masses are listed in the bottom right corner.

neutrinos was confirmed later in reactor neutrino measurements [23]. These neutrino oscillations are
one of the evidence indicating neutrino masses, while in the SM neutrinos are precisely massless.
These incontrovertible evidences for new physics:

e dark matter;

* dark energy;

¢ cosmic inflation;

¢ the baryon asymmetry of the universe (BAU);
* neutrino masses and mixing;

are the primary motivations to extend the SM. Among the possible theoretical extensions, supersym-
metry and supergravity are among the most studied ones. Even though they originated from the
intrinsic structure of SM, they have motivated many models that successfully solve above cosmological
problems. In this thesis, we will follow the same spirit and focus on their cosmological phenomenology,
the "celestial story", instead of their well-discussed collider searches.

With the exception of dark energy, this thesis covers four out of the five aspects of new physics. We
will use inflation as the core, and try to connect different topics with it. We will show that dark matter
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Figure 1.2: Timeline of the discoveries of SM particles. The x-axis is the time when each particle is discovered.
The y-axis is the energy scale of the corresponding experiments. The electron was found in 1897 through the
observation of Cathode rays by J. J. Thomson. The voltage of such a Cathode-ray tube should be around 400 eV.
The muon u was found much later in 1936 by measuring its trajectories in the cloud chambers [4, 5]. The
magnetic field applied across the cloud chamber was around 10° Gauss, which could be roughly converted
into 1eV? in the natural units. Electron neutrino was confirmed at the Cowan—Reines neutrino experiment in
1956 [6], where they used 511keV photon as the signal of antineutrino-proton interactions. The rest of the SM
particles are all discovered at particle accelerators and colliders, operated at different energy scales[1-3, 7-18].

and the baryon asymmetry, can be generated during a phase called reheating, when inflaton energy is
supposed to transfer to radiation plasma. In some concrete models respecting additional symmetry,
this process is related to neutrino masses and mixing.

This thesis is organized as follows: In chapter 2, we provide a brief introduction to the background
related to this thesis, including the SM, the evolution of the early universe, canonical solutions to new
physics, supersymmetry, supergravity, and modular symmetry. In chapter 3 and chapter 4 we will
build two inflation potentials and compare their predictions with CMB observables. In chapter 5, we
discuss reheating as well as how to generate BAU in a modular invariant theory. In chapter 6 we
turn our attention to dark matter, and analyze how dark matter can be generated through gravitational
interactions after inflation. In chapter 7, we summarize the findings in this thesis.






CHAPTER 2

Background Knowledge

2.1 The Standard Model

In this section we recall the basic concepts of the Standard Model (SM). Fundamental particles are
described by quantum field theory, where each particle is an irreducible unitary representation of the
Poincaré group. These representations are classified by a number called spin, which may take an
integer or a half-integer value. In the SM, 12 particles have half-integer spin and are called fermions,
while the other 5 particles have integer spin and are called bosons. In addition to the space-time
symmetry group, SM particles are also representations of internal symmetry groups. For example,
quarks (gluons) form fundamental (adjoint) representations of an SU(3) group, which corresponds to
the strong interaction. Similarly, the electro-weak interaction is associated with an SU(2) group and
U(1)y group. The 12 fermions can be grouped into three generations, each with identical charges
under SU(3) x SU(2) x U(1)y but different masses.

The special transformation properties of SM particles under the gauge groups SU(3) x SU(2) x
U(1)y regulate possible forms of the SM Lagrangian, which should be invariant under the gauge
transformations. As an example, the SU(3) invariance requires the relevant Lagrangian to take the
following form':

6 8
-£ = Z &i(iy'uD,u - mi)wi + Z Fa,ﬂvFa,'uv ’
i=1 a=1 (21)
Dylﬁi = aﬂwi + igGa,/,tTawi s
. b
Fa,uv = a,uGa,v - avGa,,u + lgfach/JG\C/ ’

where the Greek alphabet y, v is used for spacetime components, which runs from 0 to 3. y* is the
Gamma matrices. i, is the quark field, y; = 1//"')/0 is the product of complex conjugate of ¢; and vy, ,
G, is the gluon field and F, ,,,, is the corresponding energy-momentum tensor. i labels the quark
species, which runs from 1 to 6 in the SM. Each quark field ¥; should be understood as a SU(3) triplet
with 3 color indices omitted. The color indices of the gluon field a run from 1 to 8§, and f,,. is the
structure constant of the SU(3) group. The difference in color indices comes from the fact that the

1 . . . . ..
We always use the Einstein summation convention, where repeated indices are summed.
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quark field forms the fundamental representation while the gluon field forms the adjoint representation
of SU(3).

The SU(3) symmetry is not chiral in SM, i.e., it does not distinguish left-handed and right-handed
quarks. The SU(2) symmetry, instead, treats them differently. The left-handed fields:

1_ (UL 2 _[cL 3_ (I
¢ _(dL)’ ¢ _(SL)’ ¢ _(bL)’

(2.2)
Ll — (Ve,L) L2 — (V,u,L) L3 — (VT,L)
er )’ ur )’ 7]’
transform as the SU(2) doublets while the right-handed fields:
Ug, dp, Cr, Sg, tgs br, €g, UR> TR (2.3)

are SU(2) singlets. This difference leads to P violation in the weak sector, which was shown by the
Wu experiment [24]. As a consequence, the mass term in eq.(2.1) is not gauge invariant under SU(2)
since it involves one left-handed field and one right-handed field. In the SM, the generation of gauge
invariant mass terms requires an additional Higgs field, which transforms as an SU(2) doublet :

_ (e

where ¢ and a,, are the CP-even and CP-odd neutral components, and ¢* is the complex charged
component of the Higgs doublet. Under the SU(2); x U(1)y group, the most general renormalisable
scalar potential of H reads:

V(H) = m*H'H + A(H'H)* (2.5)

where H' denotes the complex conjugate of H field. If the first parameters is negative m? < 0, then

this potential is minimized at ¢5 = v = @ , which is known as the vacuum expectation value
of ¢,. This transition from (¢,) = 0 to (¢,) = v is called spontaneous symmetry breaking. In
this case, the Lagrangian is invariant under the symmetry, but the ground state of the theory is not.
After spontaneous symmetry breaking, SM gauge symmetry breaks from SU(3) x SU(2) X U(1)y to
SU(3) X U(1)gy,» Where U(1),,, corresponds to the electromagnetic force. The vacuum expectation
value induces fermion mass terms through the following Yukawa Lagrangian:

L=-YL'He}, - Y3Q'Hd}, - Y}5Q'Hul + h.c. (2.6)

where H = io,H" is defined via the second Pauli matrices o,. i, j are generation indices that run
from 1 to 3. We collectively write e}ie = (eg, Mg, Tr) and so on. Note that there are no right-handed
neutrinos, and neutrinos are exactly massless in the SM. We will discuss a possible extension in
section 2.3.3.

Before the spontaneous symmetry breaking, the boson part of the SM Lagrangian under SU(2) X
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U(1)y read:
1 2 1 2 +\2
L= (wi) - 780+ (D, H) (D, H)+mH o= (H H)
1 @.7)
D,H=0,H~-igWyt“H - ~ig’'B,H

2

where W;’ and B, are SU(2) and U(1)y gauge bosons and W;’V and B,,,, are their field strength tensor.
¢ = %0’“ is the canonically normalized SU(2) generators defined via the Pauli matrices . g and

g’ are the respective gauge couplings. For fermions and their interactions, we have:

L =il (0-igWc® —ig'Y, B) L' +iQ' (a —igWir — ig’YQB) 0

: : : : . , (2.8)
+ieg (0 —ig'Y,B) e +iiig (0 —ig'Y,B) ug +idg (0 —ig'Y,B) dg.

where the Hypercharges Y; read Y; = —%,YQ = é,Ye =-1Y, = %,Yd = —%, respectively. This is
chosen such that after symmetry breaking SU(2) x U(1)y — U(1),,. the electric charge Q = T3 +Y
is correctly reproduced. Here T3 is the isospin charge for SM particles, which read T3 = i% for SU(2)
doublet and T° = 0 for SU (2) singlets. The gauge bosons Ws and B, become W*, Z bosons and

photon A ,. They are related by:

Z, =cosfy W, —sin6yB,, A, =sin6y,W, +coséyB,, W;= FiW,. (29

u

where tan fy, = %. Their masses read:

gv

My ==, My = ¢ +g” M,=0. (2.10)

1%
2 E

The Lagrangian for fermionic particles with these bosons after symmetry breaking is:

LZZJ/i y*

8 R —
- == > YY1 —ys)(T"W, +T"W,)¥,
where ; is an arb1trary SM fermion, e = g sin Oy, is the unit electric charge, Q; is the electric charge
of the fermion, gy, = 7}’ — 2Q; sin GW , g4 = T; are the vector and axial-vector couplings. P, is an
arbitrary SU(2) doublet and T* = 1, + it, are the weak isospin raising and lowering operators. The
first line contains the electromagnetic interaction and neutral-current weak interaction, while the
second line describes the charged-current weak interaction.

(i(’)# —eQ;A, - 20 (gv g4r’)Z ) i] ¥
@2.11)

Before closing this section, we show the timeline of the milestones of the SM theory in Fig. 2.1. It
took more than 50 years for physicists to formulate and understand the SM theory. We would expect
there is another long and arduous journey to find its successor.
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Figure 2.1: Timeline of the milestones of the SM theory. Dirac was the first person who used the term "quantum
electrodynamics" (QED) to discuss the emission and absorption of radiation in quantum theory [25]. It was
later realized that precise predictions of QED would require a procedure named renormalization [26-30]. In
1954, Yang-Mills theory was proposed and eventually became the basis of the understanding of strong and weak
interactions [31]. Based on it, weak and electromagnetic interactions were combined into electroweak theory in
1961 [32]. The Higgs mechanism, which generates masses for most of the fundamental particles, was proposed
in 1964 [33-35] and incorporated into electroweak theory in 1967 [36, 37]. The modern understanding of
the strong interaction dates back to 1964, when the quark model was proposed [38, 39]. Renormalization
of Yang-Mills theory and asymptotic freedom of quantum chromodynamics (QCD) were found later in the
1970s [40-42].

2.2 The Early Universe

General relativity (GR) is our cornerstone in understanding the evolution of the universe. Upon initial
publication, GR manifested itself through the explanation of Mercury’s anomalous perihelion shift.
Since then, it has been validated through accumulated evidence from observations of gravitational time
dilation, redshift, lensing, and most recently, the gravitational waves [43]. In this thesis, we will assume
that GR is adequate to describe gravity. The early universe is supposed to be flat, highly isotropic and
almostzhomogeneous, which is described by the FLRW (Friedmann-Lemaitre—Robertson—Walker)
metric”:

d 2
ds* = g, dx!dx” = di* — a(1)* | —F— + r*(d6” + sin® 0dg?) | . (2.12)
1—kr

where ds is the line element, g,,,, is the metric tensor with inverse g"”, x* includes the cosmic time

x% = ¢ and the polar coordinates (xl,x2,x3 ) = (r,0,¢), a(t) is the time dependent scale factor, k is

the curvature of the space which may take +1,0. The FLRW metric is diagonal (We omit the ¢ in
scale factor for simplicity):

2.2 2.2 -2
goo = 1, gll = g22 =—ar , g33 =—adr sin 9 . (213)
r

2 We use the natural units and set ¢ = 1 throughout the thesis unless a unit of time and distance appears explicitly.
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From the metric tensor, we can deduce the Ricci curvature R, and Ricci scalar R = g""R vt

. —gi.
Ry = 32, Rij:(aa+2a2+2k)—2’, R=6
a a

(2.14)

a a’

g a2+k)

where a dot (") refers to the derivatives with respect to cosmic time ¢ and , j refers the spatial indices
1,2, 3. Einstein’s field equations governs the dynamics of the evolution:

1
R, - ERg“V + Agﬂv = 871'GT#V, (2.15)
where A is the cosmological constant. We assume ingredients in the universe can be described by
a perfect fluid. The energy momentum tensor 7,,,, is characterized by the energy density p and the
pressure density p:

Too=p, Tij=-8;p, (2.16)

The expansion of the universe under FLRW metric with perfect fluid is described by the Friedmann
equations:
A 8nG

) [a 2_871Gp k _
H" = ~] =3 _P+§=T(pr+pm+pk+pA) 2.17)

where G is the Newton constant, H is the Hubble parameter which measures the expansion rate of the
universe, p, ,, are the matter and radiation energy density of the universe. As we will see shortly, they
behave differently under the expansion of the universe. In order to treat curvature and cosmological
constant on an equal footing, we have defined:

3kR? A

_ 3kR” _ N 2.1
8zG ° A (2.18)

Pk 872G

The current Hubble parameter is well constrained through CMB and Baryon Acoustic Oscillations
(BAO) observations [44]:

Hy = 67.66 +0.42kms ' Mpc™' = hx 100kms™" Mpc™ (2.19)
The right hand side of eq.(2.17) can be re-parameterized through the critical energy density p:

3H} s ,GeV ;
po= 2l = 1.05x 107°n2 21, = 2o
8nG cm Po

(2.20)

where the subscript O refers to their current value and €; represents their relative contributions to the
expansion of the universe with }}; Q; = 1. Their current values read:

Q, =0.3111+0.0056,
Q, =0.6889 + 0.0056, (2.21)
€, =0.0007 + 0.0019
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The current energy density of radiations p,. ,, including photons p,, ; and other particles p,, (, like
neutrinos, is parameterized through the CMB temperature 7;, = 2.7255 + 0.0006 K 3 and the effective

number of relativistic neutrino species N g :

4
GeV 7(4) Pyo*p -
o (H) Neﬁp)’,o’ Qr=M=9,O9XIO 5'

Po
(2.22)
where N g ~ 3.046 in the SM. It is not exactly 3 since neutrinos have decoupled from photon thermal
bath and have a different temperature from photon temperature. The CMB and BAO constrains read
Neg = 2.99%03%, which agrees with SM predictions [44].

Different energy density in eq.(2.17) has different behavior under the expansion of the universe:

2
Tt =26x%10"

py,O = E cm3 s Pyvo = g

ap ag ap

4 3 2
Pr = Pr,o( ) v Pm = Pm,o( ) » Pr = Pk,o( ) s PA = PAO- (2.23)

a a a
Using the central values in eq.(2.21) and eq.(2.22), we can solve the time evolution of the scale factor
in eq.(2.17). Result is shown in Fig. 2.2. The evolution features three distinct epochs, where the first
two of them are power-law growths and the third one is an exponential growth. This is due to the fact
that different components of the energy density dominate the equation in different regions. In the
earliest epoch, radiation is the major contribution to the Hubble parameter. As the energy density of
radiation dilutes faster than that of matter, this epoch ends when their energy densities are equal. We

will denote this time as 7., which numerically reads:

-5 feq -4 a 3
1 ¥ 5.03% 107 Gyrs, 12292107,z = =L —1~3.42x10". (2.24)
0 eq

where we have introduced the red shift z as an equivalently characterization of time. After the
radiation-dominated epoch is the matter-dominated epoch. Again, as the energy density of matter
dilutes faster than the vacuum energy, this epoch ends at 7., when they become comparable:

t.q = 10.18 Gyrs, “a—“(‘)d =0.76, z,4~ 0.30. (2.25)

The cosmological constant term dominates the current expansion of the universe. The total age of the
universe with the chosen parameters reads:

ty = 13.74 Gyrs. (2.26)

Assuming a single component dominating the energy density in the Friedmann equation, we can
analytically solve it for different epochs. The time dependence of the scale factor reads:

VY 2, for radiation domination

a(t) o« 23, for matter domination (2.27)

e H A=A /% for cosmological constant domination

3 In natural units, Ty = (2.3486 + 0.0005) x 107%eV.
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Figure 2.2: Evolution of the scale factor with current values Q,, = 0.3111, €, = 9.09x 1072, Qy=1-Q,-Q, =

0.6888 and €, = 0. The purple, green and yellow points refer to the time of matter-radiation equality ¢
matter-vacuum energy equality #,,4 and present f.

eq’

These different time dependencies can be clearly seen in Fig. 2.2. In this thesis, we are interested in
the processes that happen well before the 7., in the very early universe. In particular, we would like to
answer how to generate a flat and radiation-dominated universe, which will be discussed in the next
section.

2.3 New Physics beyond the Standard Model

2.3.1 Inflation

The CMB observation indicates that the universe is almost flat, isotropic, and homogeneous. Moreover,
different regions across the sky, which seem to be causally disconnected at the time of recombination,
share the same temperature. Assuming our universe started from a radiation-dominated era cannot
explain its current properties.

Inflation is one of the most compelling hypotheses that addresses the above problems and generates
proper initial perturbations for the universe’s evolution [45-48]. Inflationary theory predicts that our
universe undergoes an exponential expansion, resulting in a homogeneous, isotropic, and spatially flat
universe. Due to this expansion, the different causally disconnected region at the CMB is actually
connected before inflation and share the same physical properties. After inflation, the energy density
responsible for the expansion is transferred into radiation, leaving us with a radiation-dominated
universe. This energy transfer process is called reheating.

Currently, the simplest realization of inflation is through the dynamics of a scalar field. If the energy
density of the scalar field is dominated by its potential energy, it will induce an exponential expansion
of the universe. To ensure inflation happens over a sufficiently long time, this potential must be very

11



Chapter 2 Background Knowledge

flat, and the scalar field should move at a very slow speed. This is the basic idea of the slow-roll
inflation.

A scalar field in an FLRW universe can be described through the following action:

1
S = / d*xy—=gL = / d4x\/§(§8”¢8”¢—V(¢) , (2.28)

where g is the determinate of the FLRW metric in eq.(2.12). The energy-momentum tensor of the

field reads:
2 65

from which we can extract the energy density and pressure:

= 0,00,6 — g, L. (2.29)

I, |
p=58+V@), p=58-V(®). (2.30)

where a dot (") denotes the derivative with respect to cosmic time . The action in eq.(2.28) can also
be used to derive the equation of motion of the scalar field:

d+3Hd+V' () =0

1 (1. 1 (2.31)
H® = — (§¢2 + V(¢)) =—5Py
3My, 3M,
. 7 . . . 18 :
where a prime (° ) denotes the derivative with respect to ¢ and M, = \/8+T ~ 2.4 x 10°° GeV is the

reduced Planck mass. The scalar field that corresponds to inflation is called an inflaton field. The
slow-roll inflation occurs when the kinetic energy of the scalar field is much smaller than its potential
energy, and the Hubble friction term 3H¢ dominates over the acceleration term:

. .
—¢* <V, ‘i <1, (2.32)
2 3H¢

where the first condition ensures that the inflaton field behaves like cosmological constant, and the
second condition ensures that the speed of the inflaton field does not vary significantly, allowing
inflation to last long enough. These conditions strongly constrain the shape of the potential. We define
two slow-roll parameters:

M2 V/ 2 V//
_ ol a2

€y = T (7) 5 Ny = Mplv . (233)

Slow roll inflation occurs when both parameters are much smaller than 1, and terminates when they

become of order one: €y (¢.nq) = 1 or [y (Peng)| = 1. The rapid expansion is reflected by the growth

of the scale factor a. We define the number of e-folds as:

¢end
N.(6,) = 1In (aend) ~ / _d¢ (2.34)
¢

b
a; M\2ey

i

where a; represents the initial scale factor and a,, is the scale factor at the end of inflation. The slow
roll approximation allows us to express this growth in terms of the scalar field value during inflation,

12



2.3 New Physics beyond the Standard Model

and we use ¢, and ¢4 as their corresponding field values respectively.
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Figure 2.3: Observation constraints on the spectral index n, and tensor to scalar ratios r compared to the
theoretical predictions of selected inflationary models. For more information, see [49].

The constraints on inflation phenomenology mainly arise from the CMB. The CMB photons can be
described by black body radiation such that their number density has the following distribution:

2
R 23
dEy n BT 1

where n,, is the number density of CMB photons and E.,, is the photon energy. The photon temperature
T, is a function of sphere coordinates 6 and ¢, and averaged to be:

1
(T = e / T(0,¢)sinfdode ~ 2.7255K.. (2.36)
with a small variation: 12
T(6,¢) - <T>)2 s
—7 7 ~1.1x107". (2.37)
(e

The overall isotropy of the CMB tell us that the number of e-folds must be sufficiently large. Its small
anisotropy characterize the primordial cosmological perturbations (X) generated by the fluctuation
of the inflaton field. These perturbations translate into temperature variations in the CMB through the
Sachs-Wolfe effect [50].

It is more convenient to treat space-dependent perturbations £ (X) in the Fourier space:

£(F) = / Ere® (@) . (2.38)

where k is a 3-dimensional vector and we denote k as its norm. The two point correlations for
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statistically homogeneous perturbations then read:

2

(& (K (&) = @)’ 6> (K - k) (%%(k) (2.39)

where (53(12’ - /2) is the 3-dimensional delta function. The spectrum of curvature perturbations is
usually parameterized by a power law:

ng—1
Pr(k) = A (i) , (2.40)
kO

where k, serves as a reference scale. A is the amplitude n, is the spectral index of the perturbations.
When extracting information from CMB, a specific pivot scale k, = 0.0SMpC_l is commonly used.
This defines a scale factor a, during inflation when such a mode leaves the horizon:

This scale factor can be used in eq.(2.34) as a;. When fixing the number of efolds, eq.(2.34) also fixes
the field value ¢, through its functional dependence. For single field slow roll inflation, the spectral
index is given by the slow roll parameters at ¢, :

ng =1+2ny(¢,) — 6€,(4,) (2.42)

The running of spectral index @ = dn,/dlog k, which describes the scale dependence of spectral index,
can also be calculated from derivatives of the potential: @ = 16€y,(¢,)ny, (4,) —24€y, (¢S*)2 -2¢y (¢*)2
where &, = My V'V [V?.
The tensor perturbations induce primordial gravitational waves, exhibiting a similar power-law
behavior: L\
P, (k) =A, (k_) . (2.43)
In the single field slow roll inflation, the amplitude A, and tensor spectral index #n, are related with
the scalar perturbations by r = A, /A = 16€y,(¢,), n, = —r/8 = —2€y,(¢,). The later is know as the
consistency relation. The current bounds on the spectral index and tensor-to-scalar ratio are important
for constraining inflationary models [49, 51]:

*

In (10'°A,) = 3.044 + 0.014 (68%CL) ,
n, = 0.9649 + 0.0042 (68%CL) ,
a = 0.0045 + 0.0067 (68%CL) ,
r < 0.036 (95%CL) .

(2.44)

The detailed bound on the number of e-folds depends on the post-inflationary dynamics [52, 53],
and it is usually chosen to be 50 < N, < 60. The current limit on inflation models can be found
in Fig. 2.3. Recently, the Atacama Cosmology Telescope measured a different spectral index
ng = 0.974 £ 0.003 [54]. This result is not included when we build inflation models in this thesis.

After inflation, inflaton will oscillate around its minimum. A direct way to transit into a radiation
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2.3 New Physics beyond the Standard Model

dominated universe is to assume the inflaton field decays into relativistic particles, creating a radiation
thermal bath. Assuming this process does not break the isotropic and homogeneous property of the
inflaton field and can be tracked perturbatively, it can be described by adding an additional friction
term into the equation of motion:

¢+ (BH+T46+V (4) =0,

. +4Hp, =T s
pr pr ¢)p¢ (245)

1
H = ——(ps+p,).

3M3

where p,. is the energy density of the radiation bath, p , is the energy density of the inflaton as in
eq.(2.31), I'y, is the decay width of the inflaton.

As a concrete example, we solve the eq.(2.45) with a specific a attractor models:

¢
V(¢) = V, tanh? ( ) , (2.46)
° VoM,

and choose H;; = A‘;—Ozzl = 10"GeV, r,= 10"°GeV as an illustration. Evolution of the energy density
can be seen in Fig. 2.2. The inflaton field moves towards its minimum at ¢ = 0 and oscillates around it.
The scale factor first grows exponentially and then grows polynomially during the inflaton oscillation.
When H < I, inflaton energy density decreased mainly due to the expansion of the universe. Once
two scales become comparable, the friction term becomes important, causing the energy density

to decay exponentially. We also see that radiation gets produced during inflation, in the level of

o, = I—I‘f’l p4- Once inflation ends, its energy density also starts to decrease. However, this decrease is
compensated by inflaton decay, and radiation energy density eventually exceeds the inflaton energy
density. Under certain assumptions, eq.(2.45) can be solved approximately. If the mass of the inflaton
field m, > H, then in a Hubble patch, the inflaton field will oscillate many times and we can take an
average on the inflaton energy density:

1. ,
Py = pg) = (58" +V(9) = (4, (2.47)
The eq.(2.45) can be simplified into:

Pyt 3Hpy=-Typ,,

. +4Hp, =T ,
pr pr ¢p¢ (248)

1
H = 3?(/% +p,).

pl
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Figure 2.4: Evolution of inflaton field, scale factor and energy densities around the end of inflation. The time is
rescaled by the inflation Hubble scale H,;.

With the following solutions [55]:

-3
a T (t-
plf’(t) = Pend (Cl ) e (1= lena) s

end
o, (2.49)
_ a ¢ a(f) Ugng—U _ =
pr(t) = Pend | T — € du, u= F¢t .
Qend L tend Qend

Thus, the inflaton energy density redshifts like matter, with a damping rate proportional to its decay
width. One more simplification can be made if we use the instant reheating paradigm: The inflaton
energy density dominates the evolution of the scale factor, and inflaton decays into radiations at a
given time 7., = F;l when H(t,,) = %Fq). Energy density of radiations at #,.;, will be:

2 4
”g*Treh_ -3 2 2_4 22 o)
— % = () = 3MuH = M Ty, (2.50)

pr (treh) = 30 3
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2.3 New Physics beyond the Standard Model

which determines the reheating temperature:

1/4
40 12
Trehz(z_) (MplF¢) . (2.51)
g,

Reheating temperature represents the initial stage when radiations start to dominate the evolution
of the universe. Numerically, we can define the reheating temperature when p ,(f,ep) = P, (fren)-
corresponds to the intersection of blue and orange curves in Fig. 2.4. As one can see, the actual
reheating temperature is lower than the estimated ones in eq.(2.51) as reheating takes a finite time,
which dilutes both inflaton and radiation energy densities.

Based on our current understanding, reheating is not only a perturbative process. During inflaton
oscillations, it should be treated as a coherent oscillating homogeneous condensate. For inflaton itself,
many inflatons can decay simultaneously instead of independently. For the produced particles, the
Bose condensation effects can be important, which will enhance the production rates. With this in
mind, we will only use eq.(2.51) as a rough estimate.

In this thesis, we will discuss different inflation models and their reheating channels in detail.
Contents related with inflation can be found in chapter 3, 4, 5, 6 and contents related with reheating
can be found in chapter 5.

2.3.2 Dark Matter

The current matter density ,, in eq.(2.21) contains two parts:

Q, =Q,+Q.
Q, h* = 0.02242 + 0.00014, (2.52)
Q_h* =0.11933 + 0.00091 ,

where €, refers to the normal, baryonic matter and Q. refers to the cold dark matter (DM) which
interacts very weakly with the electromagnetic force. As DM barely absorbs, reflects, or emits light, it
is very hard to detect through optical means. However, we can infer the existence of DM through its
gravitational effects on visible matter. DM energy density contributes to the expansion of the universe,
which is encoded in the CMB photon spectrum. On the other hand, DM is involved in the dynamics,
evolution and formation of galaxies. One of the most well-known examples is the flat rotation curves
of spiral galaxies [56]. From Newton’s law, the rotation curve of the galaxy should obey:

R
v(R):JG@, M(R)=47r/0 p(r)r’dr. (2.53)

Hence, we can infer the mass distribution of the galaxies through the distance dependence of the
rotation speed. On the other hand, we can estimate the mass distribution of visible matter through
optical observations. Most observations indicate that these two distributions do not agree with each
other. Fig. 2.5 shows the observed rotation curve of a barred spiral galaxy NGC 3198. Without the
DM contribution, the velocity should fall at large radii while the observed rotation curve is flat. Fitting
of the rotation curve requires two components: a thin exponential disk, representing the distribution
of visible matter and a spherical halo, representing the distribution of DM.
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DISTRIBUTION OF DARK MATTER IN NGC 3198

NGC 3198

150

100

Vo (km/s)

50 H

0 T - — l 1 1 L1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
0 10 20 30 40 50
Radius (kpc)

Figure 2.5: Observed rotation curve (dots with error bars) of a barred spiral galaxy NGC 3198, which can be
modeled by two components: a thin disk, representing the distribution of visible matter and a spherical halo,
representing the distribution of DM. This figure is taken from [57].

Rather than its observational evidence, we are more interested in understanding how DM can be
produced in the early universe. If the coupling strength between DM and SM particles is large enough,
DM can stay in thermal equilibrium with the SM thermal bath. Assuming the dominant interaction
between DM y and SM particle g is a 2 <> 2 scattering y ¥ < Ysmi¥sm» the DM number density
n, obeys the following Boltzmann equations:

dn, )
= +3Hn, = —(ov)(ny, =1, .,) (2.54)

where (ov) is the thermally averaged cross section between DM and SM particles. n, ,, is the number
density of DM particles in the full thermal equilibrium. The left hand side of the equation describes
the time evolution and dilution of the number density by expansion of the universe. The right hand
side of the equation describes the pair production and annihilation of DM particles. There are three

additional assumptions we implicitly made:

* There is no asymmetry between y and its antiparticle y such thatn, = ng.

* y particles are in the kinetic equilibrium, their distribution follows the thermal distributions.

* CPis conserved in the 2 < 2 scattering, thus the thermally averaged cross section is the same
for production and annihilation processes. The effective degrees of freedom g, around the
relevant temperature is also a constant.
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2.3 New Physics beyond the Standard Model

Before solving the equations, we would like to get rid of the expansion term by introducing the
following dimensionless quantities:
n 2 2 3 m %

Yy =% =" o.T =%, 2.55
X S, § 45g* > X T ( )

where s is the entropy density of the universe. The modified Boltzmann equation reads:

dx 3vV10 ¥

Let’s first consider the case that DM was in thermal equilibrium with the SM thermal bath. The
number density of the y particles in the comoving volume n Xa3 becomes a constant when the right
hand side of eq.(2.54) becomes much smaller than the friction term 3Hn . This usually happens
when DM y is non-relativistic and the number density of y field becomes exponentially suppressed.

(VY] =Y, ) (2.56)

In this region, n . follows the Boltzmann distribution:
m- T 3/2
Ny,eq = 8x (%) eIt (2.57)
Eq.(2.56) can be solved approximately to give:
-1
35 1 g m My (ov)
Y, (c0) = A& . x;=log % , (2.58)
Vg, m Myx (o) (271‘/ )VE:
where Y, (o) refers to its current value. The current energy density reads:
2m syY, (o0) GeV? 1 g.m M (ov)
Q= T o 18X 10710 Jog | AP (2.59)
Po (@) VB o\ Py

We can see from eq.(2.59) that DM energy density is mostly sensitive to the inverse of the thermally
averaged cross-section. One of the typical solutions that gives the correct DM abundance is called a
weakly interacting massive particle (WIMP):

m, ~100GeV, (ov)~107°GeV 2, (2.60)

as the averaged cross-section is comparable to weak interaction cross-sections at energies of order 100
GeV. Numerical solutions of eq.(2.54) can be found in Fig. 2.6. We fixed the DM mass and varied
(ov) for illustration purposes. As we expected, higher (ov) keeps DM in the thermal bath longer and
suppresses its final abundance.

In contrast, if the coupling between DM and SM particles is small, DM may never reach thermal
equilibrium with the SM thermal bath. Solution of the Boltzmann equation eq.(2.54) in this case can
be found in Fig. 2.7. This is known as the freeze-in mechanism, where DM final abundance scales
proportional to the cross-section.

We would like to point out that DM does not need to be produced from the SM thermal bath.
Another interesting case is that DM is directly produced from inflaton decays, such that DM gets
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Figure 2.6: DM abundance for different choices of the thermally averaged cross-sections via freeze-out
mechanism. We have fixed m, = 100GeV, g, = 1 and g, = 100. The purple line represents the DM abundance
in the thermal equilibrium.
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Figure 2.7: DM abundance for different choices of the thermally averaged cross-sections via freeze-in mechanism.
We have fixed m,, = 100GeV, g, = 1 and g, = 100. The purple line represents the DM abundance in the
thermal equilibrium.

populated at the end of inflation. In this thesis, we will focus on a similar but slightly different case.
As a non-perturbative effect, DM can be produced from the oscillation of the space-time background
at the end of inflation [58]. This is known as gravitational particle production, which we will present
in chapter 6.

2.3.3 Neutrino Mass

As we already mentioned, neutrinos appear to have very tiny but non-zero masses. Currently, we only
know the mass difference among three mass eigenstates and the sum of three neutrino masses with a
slight preference for normal ordering(m% < m% < m%) [44, 59]:

Am3y = 7491510 x 107°6V2, Am3y = 25347008 x 1076V, Y m, <012V (2.61)

2 22 : . o . .
where Am;; = ‘m i—m j‘, the first two constraints come from neutrino oscillation experiments while
the third one is a cosmological constraint.
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2.3 New Physics beyond the Standard Model

However, neutrinos are precisely massless in the SM. At the tree level, due to the absence of
right-handed neutrinos, there are no Yukawa mass terms for left-handed neutrinos. In principle, one
may expect that the neutrino mass term could be generated from loop corrections. However, in the
SM, the neutrino mass term can only arise from L; L :

L,.:(;i) CLs-cIl. (2.62)
L

1

This term would violate the accidental symmetry of the SM, both the total lepton symmetry and B — L
symmetry. If they are exact, loop corrections will not break them, and they will not be able to generate
such a mass term.

We can make an analogy to introduce three additional right-handed neutrinos v, and simply write
down their Yukawa interactions: ' .
£=Y,L AV, (263)

If this single term corresponds to the neutrino mass, the neutrino Yukawa couplings would range
from 10~ to 10™!%, which are much smaller than other Yukawa couplings, which vary from 107 to
1 in the SM. One of the possible ways to avoid the small Yukawa couplings is called the "see-saw
mechanism", where two types of mass terms determine the neutrino masses:

_ 1 _ e
where the first term, arising from Yukawa interactions, is called a Dirac mass term. The second term,
including the charge conjugated matrix C and charge conjugated field vy = C V,Te, is called a Majorana
mass term. In the matrix form, both terms can be described as:

0 M} -
-L, =7 (MD Mﬁ) v, v=(v,vg) . (2.65)
If the Majorana mass matrix M, are much larger than the Dirac mass matrix M, then the
diagonalization of the mass matrix in eq.(2.65) leads to three light neutrinos v; and three heavy
neutrinos N with:
M~ v MiMy MY, MP =~ VMV, (2.66)

where V; and V;, diagonalize MlT) M;,lM p and M, respectively. In this case, the masses of heavy
neutrinos are proportional to M, while the light ones are suppressed by the ratio of Majorana and
Dirac mass terms M[T, M ;,1. This suppression offers an elegant answer to the smallness of the observed
neutrino masses. This mechanism will be used in chapter 5.

2.3.4 Baryon Asymmetry

Our world is made from matter, outnumbering antimatter by many orders of magnitude. In the baryon
sector, this asymmetry is parameterized by the baryon-to-photon ratio [60]:

n _ —
np=—20="B""B 605%10710. (2.67)
n,y’o n,y
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This ratio remains constant at the hot stage of cosmological evolution, up to 7 = 100 GeV in the SM,
as there are no physical processes that violate baryon numbers. This ratio is mostly constrained by the
Big Bang Nucleosynthesis(BBN), where the light elements including D.>He,*He,” Li are produced
through nuclear reactions. The rates of these reactions depend on the density of baryons, which gives
the constraint we listed above.

We take the point of view that such a ratio must come from a physical process, referred to as
baryogenesis. It could happen either at the radiation dominated stage or even at the reheating epoch.
To generate a baryon asymmetry, three physical conditions, known as the Sakharov conditions, have to
be satisfied [61]:

* Baryon number violation.
* C- and CP-violation.
* Departure from thermal equilibrium.

The first condition is necessary for a baryon-symmetric universe with 17, = 0 to evolve into a universe
with 5 # 0. The second condition ensures that for any given process that produces net baryons, there
is no process that produces net anti-baryons at the same rate. The third condition ensures that the
inverse process does not wash out the generated baryon number.

The first two conditions exist in the SM. Non-perturbative effects in the electroweak sector could
violate the combination B + L but preserve B — L [62]. Such a process could play a significant role in
the early universe [63], it is refereed to as sphaleron process [64]. One of the possible mechanisms to
generate baryon asymmetry, leptogenesis, where lepton asymmetry is produced first and transferred
into baryon asymmetry, relies on the sphaleron process.

CP violation also exists in the quark sector of the SM. The Yukawa interaction term in eq.(2.6) is
not invariant under CP transformations if the Yukawa matrices Y",Y d, Y? are not real. In the SM,
there are no right-handed neutrinos, and we can always make Y° real. However, it is impossible
to make both Y* and Y real. The CP-violation of quark sector can be parameterized through the
Cabibbo—Kobayashi—-Maskawa (CKM) matrix:

-is
€12€13 ) $12€13 ) S13¢€
Mg = | =S12€23 = 012S23S13?1613 C12€23 ~ 512523513elfS $23€13 (2.68)

613

i i
$12823 — €12023513€ —C12523 — §12€23513€ €23C13

where ¢;; = cos;; and s;; = sin6;;. 6 is known as the CP-violating phase. The CKM matrix relates
the flavor eigenstates of down-type quarks to the mass eigenstates:

d; d,
el = M| m | (2.69)
by b,

where the subscript f refers to the flavor eigenstates and m refers to the mass eigenstates. CKM matrix
is mostly constrained by meson decays, the parameters in eq.(2.68) read [60]:

sin @y, = 0.22501 = 0.00068, sin 6,3 = 0.0037329 7000 .

(2.70)
sin 6,5 = 0.0418379.0007° § = 1.147 £ 0.026 .

22



2.4 Supersymmetry

Once we introduce nonzero neutrino masses through right-handed neutrinos, lepton mixing will also
break CP. This leads to the Pontecorvo—-Maki—Nakagawa—Sakata (PMNS) matrix, which relates the
flavor eigenstates of neutrinos to their mass eigenstates:

Ve 141
VIJ = MPMNS V2 . (271)
VT V3

The PMNS can be parameterized in the same way as the CKM matrix, with different parameters [59]:
sin? 6, = 0.307709'% sin® 6,3 = 0.56179.012 |
. 2 +0.00054 +190 (2.72)
Out of thermal equilibrium process doesn’t exist in the cosmology history with pure SM. Electroweak
and QCD sectors experience a smooth crossover rather than a phase transition in the early universe [65].
Electroweak phase transition can be a first-order phase transition only after adding new fields. Hence
in this thesis, we will consider another scenario rather than phase transitions. If the right-handed
neutrino has a mass higher than the reheating temperature, its decay naturally happens out of thermal

equilibrium. When CP is violated in this process, it will generate lepton asymmetry, which can be
transferred into the baryon sector through the sphaleron process. This will be discussed in chapter 5.

2.4 Supersymmetry

Supersymmetry (SUSY) is one of the frameworks that systematically extend the SM. It is based on
space-time symmetries which relate fermions with bosons and vice versa. In this section, we will give
a brief introduction to the basics of SUSY. For detailed instructions, we refer to [66].

Given the success of using symmetry groups to describe fundamental physics in the SM. One would
wonder how non-trivial the symmetry group could be from a theoretical point of view. Historically,
there was a no-go theorem indicating that for any physical theory, the symmetry group of the theory is
necessarily locally isomorphic to the direct product of an internal symmetry group and the Poincaré
group [67]. Later people found that a non-trivial extension of the Poincaré group is only possible if
we introduce spinorial generators [68]. Recall the Poincaré algebra reads:

[P, PY] =0 [M*Y,P7] =i (P'n"7 - P'p7)

[M*Y M7 ] =i (P MM =" M T MY - M) @73)

where P" is the generator for space translation and M*” is the generator for space time rotations.
Adding this spinorial generator Q leads to the following extensions:

{Qa’ Qd} = ZO-ZdPﬂ ’ [M#V’Qa] = (O-#V)'(By Q,B ’ [MHV’ Q_d] = (&”V)(.YBQ_B >

2.74)
[Qa’Pﬂ] = {Qa’ Qﬁ} =0.

where o* is the Pauli matrix. The combination of egs.(2.73, 2.74) is the SUSY algebra we are
interested in [69]. Several consequences are related to this algebra:
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» Energies are necessarily positive definite.

* The supercharges change the spin of the particle by 1/2:

Q|boson) = |fermion), Q|fermion) = |boson) . (2.75)

» If SUSY is exact, the masses of symmetry partners would be the same.

In the SM, particles are described as representations of the both gauge groups and Poincaré groups.
In the supersymmetric theories, this means particles are representations of gauge groups and extended
Poincaré group. The basic objects we would like to study have hence changed. Instead of a single
particle of definite spin, we will start from the superfield which contains particles with different spins:

F(x,0,0) =f(x) + V20£(x) + V200 (x) + 00M (x) + 6N (x),
2.76
+ 00 GA (x) + 0001(x) + G00L (x) + %eeééD ) (270

where (x, 6, 0) is the superspace coordinates, an extension to regular 4-dimensional coordinates. 6, 6
are complex grassmann variables conjugating to each other. f(x), M(x), N(x), D(x) are scalar fields,
£(x), ¥ (x), A(x), £ (x) are Weyl spinor fields and A (%) is a vector field. Eq.(2.76) forms a linear and
reducible representation of the SUSY group. Some fields are redundant and do not contribute to actual
physics. In practice, two of the irreducible representations, chiral superfield @ and vector superfield V,
will be used to construct the physical Lagrangian. They read:

O(y,0) = d(x" —i65"8,0) = ¢(x) - i05" 0, ¢(x) — ieaééa”ay(p(x) + V20&(x)
i
V2

_ ~ . __ 1 -
Viwz(2) = Viy,(x,0,0) = 90"“914# (x) + 6004(x) + 06064 (x) + EHHQQD(X)

+ 996”50'”9_ + 06F (x) 2.77)

where we have used the Wess-Zumino gauge to simplify the expression for the vector field. Note that
the chiral superfield contains a scalar field ¢ (x) and a spinor field £(x). The vector superfield contains
a vector field A, (x) and a spinor field A(x). We can obtain a supersymmetric Lagrangian through the
product of left chiral superfields ®;:

L=, +[W(@)+nel,

1 1 (2.78)
W (®;) = h;®; + Emij(lDi(I)j + Efijktl)iq)jd)k

where dﬁfbi is a vector superfield and ‘W (®;) is a chiral superfield called superpotential. The

sub-indices refer to the D field and F field in eq.(2.77). In terms of the component fields, the

Lagrangian reads:

L=igo" [0, & +0"970,¢, + F'F,

(2.79)
+

1§i§j (mij + fijk¢k) + h-C-] .

1
(hk +md; + Efijk¢i¢j) Fr =3
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2.5 Supergravity

As the F(x) field has no derivatives, it has no dynamics and can be integrated out by using its equation
of motion. This leads to our final expression:

_ . 1 *
L= l'in"u [ay] &+ aﬂﬁbi aﬂ¢i - (Eglflew)) + h'c') -V (¢i’ ¢1) (2.80)

V(6::07) = WA oW (@) = FIF,.

The subscript of the superpotential W;(¢), W;;(¢) refers to the derivative respective to the superfield
@, and picking the scalar field ¢, i.e.

ow

*w
Wi(¢) = . Wii(e) = (2.81)

d—-¢

The first two terms in eq.(2.80) are the kinetic term for spinor fields and scalar fields, respectively.
The third term contains the mass term of spinor fields as well as the Yukawa interaction terms. Note
that gauge interactions are not included in eq.(2.80). As we are mostly interested in gauge invariant
scalar fields in this thesis, we will not discuss how to include gauge interactions here.

The simplest realization of SM with SUSY is known as the Minimal Supersymmetric Standard
Model (MSSM). For each particle in the SM, it predicts a superpartner associated with that particle.
If SUSY is exact, the electron and its superpartner should have degenerate masses. However, collider
experiments haven’t found any scalar with the electron mass. This means SUSY must be broken in
specific ways. With some algebra, one can show that spontaneous SUSY breaking means the global
minimum of the scalar potential in eq.(2.74) has a non-zero value. One example is SUSY breaking
from the O’Raifeartaigh model [70]:

W (D, ®,,®;) = mD,d, + 1D, (q>§ - ,ﬁ) . (2.82)
The equation of motion of F; fields reads:
F=-2 (¢§ —#2),

Ff = —ms, (2.83)
F§ = —m¢, - 21¢,¢5.
One can see from above that it is impossible to set all three terms to zero. The minimum of the scalar

potential would be non-zero and breaks the SUSY. Breaking of the SUSY will induce a mass splitting
between SM particles and their superpartners, making superpartners much heavier.

2.5 Supergravity

Just like gauging internal symmetry groups leads to strong and electroweak interactions in the SM.
SUSY can also be gauged, which leads to gravitational interaction. Such a field theory with gauged
SUSY is referred to as supergravity (SUGRA). For a detailed introduction, please consult [71]. As we
are primarily interested in the scalar potential in this thesis, we will briefly discuss how to describe
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Chapter 2 Background Knowledge

spin-0 and spin-1/2 fields in SUGRA.

In SUGRA, the scalar potential is generated by the Kéhler potential K and the holomorphic
Superpotential W. Both of them are supposed to be functions of the superfield ®“. We define the
Kihler covariant derivative and Kéhler metric as:

2
ow oK = oK =0 0E7< (2.84)

1
a T 5 a > B — a

D, W =

For a given Kihler potential K and superpotential ‘W, interaction Lagrangian with scalar and spinor
field reads [72]:

'L = -K,50,°0"F +id’ 5 ox") - "

3 — 3
KD, WD W - — | W
M,
1 2
—5e™ICM [(DaDﬂ(W) v h.c.] , (2.85)
where we denote the scalar field as ¢ and the 2 component spinor field as y, where a runs over all

the chiral supermultiplets in the theory. e = 4/— det g is the determinant of frame field. K B is the
inverse of the Kdhler metric. The scalar potential:

V(®) = X/ My

3 — 3

KD, WDy W - —2|W|2) . (2.86)

M,
pl

is known as the F-term potential. One can see that if we take the limit M, — oo, the scalar potential

reduces to the global supersymmetric case in eq.(2.80).

Like the global SUSY, gauged SUSY can also be broken spontaneously. This requires DgW # 0
at the minimum of the scalar potential. Let us focus on the case where SUSY is broken by a Polonyi
field spontaneously. This can be done by considering the following superpotential [73]:

W, = uMy(z+ ), K = zZ, (2.87)

where z is a chiral superfield, p is an energy scale in O(TeV) and g is of order M. From now on, in
the SUGRA part (including the following chapters), we will set M, = 1 for simplicity. The scalar
potential and its derivative generated from this superpotential read:

Vo= 12 11+ 22+ BIP =31z + BP).

_ (2.88)
OV = 2V + 1P (2 + B)[-2+ 2(Z+ B)] +z[1 + 2(z + B)]}.
One of the solutions satisfying V), = 0:V}, = 0 is:
B=2-V3, z3=V3-1. (2.89)

It leads to a SUSY breaking vacuum with the SUSY breaking scale m3,, = /.182_\@. We will study the
role of Polonyi field during inflation in chapter 3.
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2.6 Modular symmetry

2.6 Modular symmetry

Modular symmetry is another symmetry that BSM physics could have, which naturally arises in the
string theories. If the extra dimensions of any string model are compactified on the torus, one would
expect the 4-dimensional theory to respect modular symmetry. It is an internal, global symmetry that
acts on the SM particles. It can be used as a flavor symmetry [74], which tries to answer the "flavor
puzzle" of the SM, namely:

* Why are the mixing angles in lepton fields and quark fields so different? In the lepton sector,
we have two large mixing angles and one small mixing angle, while in the quark sector, three
mixing angles are all small.

* Why are there mass hierarchies for the three generations of lepton and quark fields?
* Why are neutrino masses so small?

One possible approach to answering these questions is to use fewer parameters to build models that
can reproduce SM masses and mixing angles, with the hope that this will help us understand the
relationships among them. This will be used in this thesis.

We start by introducing the basics of the modular symmetry. The homogeneous modular group I" is
the group of linear fraction transformations:

at+b
+d’

Im(t) >0, (2.90)

T YT =

where a, b, ¢ and d are integers satisfying ad — bc = 1. It acts on the complex number 7 in the upper-
half complex plane. Each linear fractional transformation can be associated with a two-dimensional
integer matrix:

y = (‘; z) 2.91)

with unit determinant. Since y and —y lead to the same linear fraction transformation, the homogeneous
modular group I" can be reduced into inhomogeneous modular group I', which is isomorphic to
the projective special linear group PSL(2,Z) = SL(2,Z)/{x1}. It has two generators: the duality
transformation § : 7 — —1/7 and the shift transformation 7 : T — 7 + 1. In the matrix form, they

read:
0 1 1 1
S = (_1 0), J = (0 1) . (2.92)

These linear fraction transformations can map the upper half complex plane into the fundamental
domain for which two interior points are not related to each other under Eq. (2.90). The standard
fundamental domain 9 denotes the set

D= {T| 7] > 1, |Re(7)| < 1/2 and In(7) > o} . (2.93)

with three fixed points which are invariant under S or 7~ or their combinations:

27



Chapter 2 Background Knowledge

In this thesis, we will intensively study functions that transform specially under modular transform-
ations:
fO) = (et +d f(r), yeT, (2.94)

which are called modular forms. k is the weight of the modular form. When k£ = 0, we refer to it as a
modular function. There is an important recursion relationship of modular forms, which indicates
how derivatives of modular forms transform:

£ (y1) = (et + )2 (1) + %C(CT + )" (1), yer, (2.95)

Especially, for a weight O modular form, its derivative is a weight 2 modular form. Eq.(2.95) then tells
us that for a modular function, its derivative vanishes at the fixed points of modular symmetry. This
plays a crucial role in our construction of inflation potentials, as the first slow-roll conditions require
its first derivative to be small. In this sense, modular symmetry does half of the job for inflation model
buildings.

Applying modular symmetry to SM not only requires our scalar potentials to be modular functions,
but it also adds new structures to the Yukawa sector. We require the matter multiplets to be
representations of finite modular groups Iy, = SL(2,Z)/+I"'(N), where I'(N) is a principal congruence
subgroup of SL(2,Z) and N is an integer:

F(N)={(Z Z)ESL(Z,Z), ‘(2‘ Z):((l) (1)) (modN)}. (2.96)

Finite modular groups I'y; are generated by S, 7 transformations with the following constraint:
TN =1. (2.97)

When N = 2,3,4,5, I'; are isomorphic to the permutation groups S3, Az, S4, Ay4.
Formally, this means under the action of y € I, the chiral supermultiplets ®; (matter fields) should

transform as
o' L (cr+d)Fip" ()0’ (2.98)

where k; is the modular weight of @,, and p is a unitary representation of the finite modular group.
We can write the superpotential as follows:

W@ =Yy, , @l ol (2.99)

For the n-th order term to be modular invariant the functions Y; _; (7) should be modular forms of
weight ky (n) transforming in the representation p of I'y; :

Y0, (v0) = (et + )Y Vp)Y, 4 (1) (2.100)

with ky (n) and p such that:

* The weight ky (n) should compensate the overall weight of the product go(l Do ‘,0(1") :
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2.6 Modular symmetry

* The product p x pl Ix... X pI" contains an invariant singlet.

Eq.(2.99) will reduce to eq.(2.78) when the modulus field acquires a vacuum expectation value.

When working in the framework of SUGRA, we also need to include the transformations of the
Kéhler potential. This depends on the field content present in the Kihler potential. In this thesis, we
will consider the following supermultiplets:

* The Kéhler modulus 7, which transforms as eq.(2.90).
e The dilaton field S, which is invariant under modular transformations.

* The matter fields ®@; which transforms as eq.(2.98).
The modular invariance of the SUGRA theory requires the combined function G:
G(1, 75,5, @, ®;) = K(r, 75,5, @, &) + In|[W(r,S,®,)| . (2.102)

to be invariant under modular transformations. They can be separately invariant, or the modular
transformations of K and ‘W compensate each other so that the function G is modular invariant. We
will deal with the second option in this thesis. We consider the following form of the Kihler potential
K:

K(r, 78,50, ) = K(S.8)-3In[-i(r =D+ ) (=it +iD) M@, >, (2.103)
1

The Kihler potential for the dilaton field will be omitted here as it does not transform under modular

. . S 2, .= . .
transformation. Since (—i7 + iT) = |cT + d| 2(—zT + iT), the modular transformation of the Kéhler
potential K is

K L K +3In(er +d) +3In(c +d) . (2.104)

The superpotential ‘W is a holomorphic function of 7, § and ®@,. For our interest, we will decompose
it as

WS, ®) = Woani(T:S) + Winier (1. D)) . (2.105)

atter

where the first term generates the inflaton scalar potential and the second term generates the Yukawa
term of the SM. It is required that ‘W has to be a modular function of weight -3, i.e.,

WL 0 (er +d) W, (2.106)
up to a phase () factor.

The matter superpotential ‘W,

natter €20 be expanded in power series of the supermultiplets ®; as
before,

W, otier(T: @) = Z“Y,]m,n(r)cp,1 L0 (2.107)
where Y; _; (7) is a modular form multiplet and it should transform as,

Y (D) 5Y, (1) =Pt d)rpy (0, (7). (2.108)
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with
ky =k, +...+k; =3,
ook L (2.109)
Py Qe Q.- Qpp, 21,
where 1 refers to the trivial singlet of I'y;. Note that the first condition is changed compared with the
SUSY case in eq.(2.101). We will show some concrete examples of modular invariant inflation with a
specific choice of ‘W, 4. (7, S) in chapter 4,5.

oduli

30



CHAPTER 3

Inflection Point Inflation in SUGRA

As we mentioned in chapter 2, recent observations of the cosmic microwave background (CMB) by
the Planck and BICEP/Keck experiments strongly favor an exponentially expanding period of the early
universe [49, 51], which is called inflation [45-48]. The simplest implementation, slow roll inflation,
needs a single scalar field “inflaton” ¢ rolls over a flat region in the potential.

Power law potentials V « ¢" offer one of the most elegant and simplest realizations of inflation.
However, such potentials with n > 1 have been ruled out by the CMB observations, due to the
large tensor-to-scalar ratio predicted by these models. Given this fact, a broad program has been
pursed to investigate alternative models for inflation. Among them are the so-called inflection point
inflation models, where different ¢" terms collectively provide an inflection point in the potential and
accommodate inflation around it. Inflection point models have attracted much attention in recent years
[75-87]. They have been well studied both during and after inflation [88-92].

Loop corrections can easily spoil the flatness of the inflaton potential, while supersymmetry (SUSY)
provides a convenient way to protect it. For this reason, different inflation models have often been
considered in a supergravity (SUGRA) framework [93—110]. This chapter will follow the same spirit
to consider a supersymmetric inflection point inflaton model. We want to present a systematic study
allowing us to scan over the possible parameter space. We will focus on the similarities and differences
between the previously studied non-supersymmetric, renormalizable models and SUGRA models.

SUSY must be broken since no superpartner of a Standard Model particle has as yet been detected.
Once SUSY breaking terms are included, they may modify the form of the inflaton potential, thereby
breaking the slow-roll conditions. Thus, the SUSY breaking scale must be bounded from above for
successful inflation. To investigate this effect, we will focus on the case where SUSY is broken by the
Polonyi model [73]. We find two limiting cases by comparing the relative strength of the inflation
sector and the SUSY breaking sector. They lead to very different bounds on the SUSY breaking scale.

To be more precise, we consider a SUSY-preserving inflaton field ¢, which accommodates a near
inflection point in the scalar potential at ¢ = ¢,. We find that the Hubble parameter and the inflaton
mass both increase with ¢, when ¢ < 1. They reach a maximum around ¢, ~ 1, then start to decrease
because of the exponential factor in the potential. Thus, in such a model, the Hubble parameter can
not exceed O(lOlO)GeV. The tensor-to-scalar ratio » is much smaller than the current upper bound.
The model also predicts a near constant running @ ~ —0.003, a unique feature that the next generation
of observations might be able to test [111-116].

The remainder of this chapter is organized as follows. In section 3.1 we recap basic results obtained
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Chapter 3 Inflection Point Inflation in SUGRA

in the non-supersymmetric, renormalizable version of the model and argue why it is interesting to
consider this scenario in the SUGRA framework. In section 3.2 we present our model’s analytic and
numerical results. We further discuss the SUSY breaking effects in our model. In section 3.3 we
summarize and draw some conclusions.

3.1 Renormalizable Inflection Point Model and Beyond

3.1.1 Potential setup and CMB observables

We start from the most general renormalizable potential of a single real scalar inflaton field ¢:
V() = bg” + c¢” + dg*, 3.1)

where we have removed the constant and linear terms, so that the minimum of the potential is defined
to be at ¢ = 0 with vanishing vacuum energy'. Requiring an inflection point, V' (¢,) = V"' (¢) = 0,

then leads to: 5
9¢ 3c
b=—, =——". 32
3247 "7 78a 6.2
CMB observations indicate the potential is not exactly flat, but rather concave. One way to realize
this is to introduce a small deviation from the inflection point conditions in the cubic term. For our
purpose it is more convenient to write the coeflicients in terms of the inflection point position ¢,. The

modified potential then reads:

8
V(g)=d|¢* - 3001 -p)¢" + 2¢§¢2) : (3.3)

There are three free parameters in the potential, d, ¢, and 8. In eq.(3.3), d determines the overall
normalization of the potential, which can be matched to the power spectrum of curvature perturbation
P, once the other parameters are fixed. The other two parameters govern the shape the potential and
hence determine the CMB observables, such as the number of e-folds when the CMB pivot scale left
the horizon, N, and the spectral index n,. In a “small field” set—up, i.e. for sub-Planckian field
values, ¢, < 1, fixing N, = 65 and eq.(2.44) require [88]:

cmb —

d=6.61x10""°¢7:

3.4
B=9.73x10""¢;. G5

This leads to the following predictions:
b=13%x10"¢5: c=18x10""¢;;
Hpe=8.6x107 ¢35 m,=52x10""¢5; (3.5)
r=71x107¢5; a=-14x107.

The same ansatz for the potential can also describe “large field” scenarios, where ¢, > 1. However, in
this case no analytical treatment is known. Numerical studies showed that this model can cover the

LA tiny cosmological constant can be added.
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whole allowed parameter space in the n, — r plane and may even lead to double eternal inflation [89].

3.1.2 Possible Realization in SUGRA and Associated Problem

As we mentioned in chapter 2, in SUGRA the scalar potential is generated by the Kéhler potential K
and the holomorphic Superpotential W. A canonically normalized field requires K = —®®" and we
will use this Kéhler potential throughout this chapter. For simplicity we choose the superpotential to
be a polynomial function of the complex field ®:

W(®) = BO* + CO° + DO, (3.6)

where we neglect the constant and linear terms as in the renormalizable case. The ansatz (3.6) ensures
that V(0) = W(0) = 0, i.e. the potential has a supersymmetric stationary point at ® = 0. The three
coefficients B, C, D are chosen to be real. The complex ® can in general be written as @ = (¢+iy)/V2,
where ¢ and y are real fields. We want to identify ¢ with the inflaton field. By choosing the coefficients
in eq.(3.6) to be real we make sure that the potential V (¢, y) depends only on even powers of y.
Moreover, we make sure that 82V(¢, x)/0 )(2 > 0 for y = 0 and ¢ € [0, ¢,]. We therefore can
assume that y = 0 throughout, so that we can ignore this imaginary component when computing the
inflationary dynamics. It is not hard to write down the scalar potential V(¢) = V(¢, y = 0) in this
setup:

s
)

V($) = eT |2B2¢* + 3V2BCH® + %¢4 (32 +16BD + 9C2) + %¢5 («/EBC + 6\/§CD)

1 |
- (32 +6BD +3C* + 16D2) + 297 (\/ch + 4\/§CD) 3.7)

CD¢9 . D2¢10
82 32

In order to try to match to the renormalizable case, we expand V up to the fourth order:

+ 11—6¢8 (2BD +C*+ 5D2) +

B

1
V(¢) ~ 2B*¢* + 3V2BC® + Z(SBZ +9C* + 16BD) " . (3.8)
Matching eq.(3.8) to eq.(3.1) and using eqs.(3.4) and (3.5) implies:

B=2.571x107%¢5,
C=1615x10"¢,x (1-p), (3.9)
D=7210x10"""-8.034 x 107%¢5 - 5.7x 107328 - 7).

Hence for ¢, < 1 the coeflicients of the superpotential would have to scale as B o ¢(2), C ¢(1), D « ¢8.

The problem emerges when we substitute these matching conditions back into the full potential
eq.(3.7). Writing the latter as:

10
V(g)=e* > a4, (3.10)

n=2
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the coeflicients a,, have the following scaling behavior for ¢, < 1:

4 3 2 i 0
ay < pg; Az <Py Ay X Py as X P ag < Py 311
1. 0. 1. 0 G.1D)
az < ¢g;  ag X oy dg < Py Ay < Py.

Thus, when we evaluate the value of the potential and its first and second derivatives at ¢ ~ ¢, the first
five terms (from ¢2 to ¢6) would contribute with comparable magnitude. Therefore the terms o ¢5 and
¢6 can easily spoil the flatness of the potential, i.e. the expansion only to order ¢4 is not self—consistent.
For this reason, it is necessary to consider an inflection point model in the full potential eq.(3.7) (or at
least up to ¢6) rather than trying to directly match the renormalizable, non-supersymmetric potential.

3.2 Inflection Point Model in SUGRA

3.2.1 Analytic Analysis of the Model

Requiring that the full potential eq.(3.7) has an inflection point at ¢ = ¢, i.e. V'(¢,) = V" (¢,) = 0,
leads to the following solutions®:

8 (1152 + 48002 + 7208 + 1298 + ¢§)

B=b 2 6, 48
2192+ 9647 + 49§ + o)
$o +4¢o + do (3.12)
V2, (384 + 19205 + 2444 + 8§ + 4
C=-D 2 6 .8
192 + 96¢; + 49, + ¢
For ¢, < 1 we can approximate the above solutions by their leading order results:
B~DxX3¢:, C=~Dx(-2V2¢,).
The full potential at ¢ < ¢, can be further simplified if we only include terms up to ¢8:
V(¢) ~ 2D*¢*(9* ~ 3¢, + 367)° (3.13)

This expansion now is self-consistent, i.e. the higher order terms, starting at O(¢7), are indeed
suppressed. At the inflection point ¢, the potential reads:

V(o) ~ 2D*¢}. (3.14)

The potential (3.13) has a minimum at ¢ = 0 and is positive semi-definite, i.e. V(¢) > 0 V¢. Asin
the non-supersymmetric case, in the small field scenario ¢, < 1 we can get semi-analytic results for
inflationary observables by expanding the slow-roll parameter around the inflection point via the ansatz

% Since we are dealing with high-order polynomial equations there often are several solutions. However, we find that the
others usually have V < 0 at the minimum, leading to a very large and negative cosmological constant.
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¢ = ¢o(1—0¢), and adding a deviation from the strict inflection point condition via B — B+ D X 6 B:
2
26B + 6¢§5¢2)

1(V'\* 1
€E=—\|— = —
21V 2 ¢(3)

V' 10.56B - 246¢

_Y 3.15
TV 203 ¢
N V'V 2468 + 120360

V2 ¢ '

We only keep terms up to linear order in § B and quadratic in d¢; this will turn out to be sufficient.

We are now ready to discuss which ¢ and 6B reproduce the CMB observations. In our model
the duration of inflation is controlled by 7 since € <« n. The beginning (when the pivot scale
k,=0.05 Mpcf1 crossed out of the horizon) and end of observable inflation are given by:

_ ol =1 3.16
Nemb = 2 ’ Hend = — 1> ( )

Solving the second eq.(3.15) for 6¢, we get:

2¢%n - 10.56B

0p = 7 (3.17)
The number of e-folds N, is given by:
Pena 1
o= J s N2
_ /¢end ¢(3) _ 4
bemy 20B + 6¢0¢ (3.18)

5o, 4
=- / S S— ——dog
X% 20B + 6¢06¢

2
= % (arctan (6¢_\/%nd) — arctan (&qs_\/clgb)) .

In the last step we have switched from the absolute deviation d B to the relative one 8§ = D X §B/B =
0B/ (3¢%) in order to factor out ¢, in the denominator; except for the first line, eq.(3.18) also only
holds for ¢, < 1. Recall that the arc-tangent functions can be at most /2. Numerically, requiring
Ny = 50 yields g = 2.7 X 10_5¢3 and 0B = 8.2 X 10_5¢8. From the second eq.(2.44) and
remembering |e| < || we see that || > 0.015 when and after CMB scales crossed out of the horizon.
Hence we can neglect the second term in eq.(3.17) for ¢, < 1, and determine the inflation period by:

_ %

. 1
K (3.19)
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Inserting this into the last line of eq.(3.18) yields

N_ . = ¢—% arctan m — arctan m (3.20)
™ " 6B 12VB 1248 ||

which can be solved numerically. For example, setting n; = 0.9659, N_,, = 45 would result in
6B =6.1x107¢;.

Having fixed 6 B and the initial 6¢, the overall scale of inflation, and hence D, is determined by the
power of Gaussian curvature perturbations. To this end we first calculate € at ¢,

€onpy = 8.88 X 107765, (3.21)

Using eqs.(2.44) and (3.14) we find that the normalization factor is independent of ¢:

6
D2 = 2¢,

=——3 — =452x10". (3.22)
P§247r €cmb

It is then straightforward to evaluate the value of the Hubble parameter during inflation and the
physical mass of the inflaton after inflation:

Hiy =

%
(;%) =3.84x107%¢;, my=V4B* =281 x107¢;. (3.23)

The running of the spectral index « can also be determined:
26,2
246B + T2¢50¢
%

This running of the spectral index is a feature of our model, since it does not depend on ¢,,.

a = 16en — 24€* — 28% ~ =287 = 2 ~ —0.0030. (3.24)

However, our numerical results do depend on N_,;,. Taking as second example the rather large
value N, = 65 while keeping n; = 0.9659, we get:

0B =2.60x 10700, € = 1.59% 1070 ,
D?=253x10", Hy;=162x107¢], (3.25)
my=1.19%x10""¢5, a=-0.0015.

The tensor-to-scalar ratio r = 16€ is always too small to reach the sensitivity of any currently
conceivable observation. However, the S4CMB experiment, together with small-scale structure
information (e.g. on the Lyman-a forest) could achieve 1073 sensitivity for @, which would test our
model [111-116].

By comparing with the predictions of the renormalizable model given in egs.(3.5), we see that
of H;yr and m , scale with ¢, in the same way in both cases, with roughly a factor 2 difference in
coefficients. Even though the SUGRA potential is more complicated and scales as ¢6 in the simplest
limit, they thus make very similar predictions for the inflationary observables. In particular, the overall
coefficient D of the sixth order SUGRA potential is independent of ¢, while in the non-SUSY case

36



3.2 Inflection Point Model in SUGRA

the coefficient of the quartic potential d o q%; hence in both cases V(¢ = ¢) o« ¢8.

We also note that the curvature of the potential is negative for an extended range of ¢ below ¢,. In
the non-SUSY case, this holds for ¢/¢, € [1/3, 1], independently of the value of ¢,; in the SUGRA
case with ¢, < 1, this region extends to ¢/¢, € [1/4,1]. The minimum of the curvature occurs
at ¢ = 0.54¢,, closer to the origin than in the non-SUSY case, with a value just below —0.23 mfp
smaller in magnitude than in the non-SUSY case. The latter reduces the tachyonic instability while
the former increases it. Hence, we expect the non-perturbative effects after inflation studied in [92] for
the non-SUSY case would be similar in the SUGRA version of the model.

When ¢, is larger than unity, it is hard to make a comprehensive analytic analysis, but we can still
understand the model qualitatively. To this end we first formally rewrite the potential as:

V() =¥ P(g). (3.26)

The slow roll parameter then scales like 7 o< ¢2 X f(6¢) with f(0) =~ 0. The duration of inflation
is still controlled by 61 = 7., — Meng = 1. the larger ¢, the smaller 6¢ should be. The resulting
decrease in the integration range in eq.(3.18) has to be compensated by increasing the integrand, by a
reduction of €. Since the ratio between the potential V(¢,) and € is fixed by the power of curvature
perturbations, an increase of ¢, would eventually lead to a decrease of the potential and hence of
the Hubble parameter. Moreover, the potential near ¢, is increased by the exponential factor, which

becomes unity at the origin. Hence, the mass of inflaton should be suppressed by e_%‘ﬁ‘z).
As a brief summary, by fixing n, and N_,,;,, we find the inflection point model would always give a
tiny tensor-to-scalar ratio r and a constant running of spectral index «. The Hubble scale of inflation
first increases with increasing inflection point position ¢, and then decreases once ¢, exceeds 1. The
inflaton mass follows the same pattern but drops much faster in the second phase. In the next section,

we confirm these expectations by showing some numerical results.

3.2.2 Numerical Results of the Model

In this section, we present our numerical results. We introduce three steps to scan the allowed
parameter space of our model, following the same spirit as our analytic treatment:

+ We choose ¢, as a free parameter and solve the inflection point equations V' = V"’ = 0 to find
corresponding values of B/D and C/D. We pick the solution that will generate a positive
semi-definite potential, see eqs.(3.12).

» We slightly deform the potential by B — B + 6 B. CMB scales start to leave the horizon at ¢,
which is determined by 1 + 25 = n since still € < || in all cases. Inflation ends at ¢,,,4, which
is determined by 7 = —1. We find that both the start point and the end point mildly depend on
0B. The correct 6B is given by fixing N ;. for which we consider the range from 45 to 65.

mb>

» Having fixed 6 B, we can recalculate the slow roll parameters at the pivot scale 7., and €,,-
We then determine the correct normalization D of the potential by requiring P, = 2.1 X 107,

This allows us to compute the Hubble value and the inflaton mass.

We begin by showing four inflaton potentials with different choices of ¢ in Fig. 3.1. For comparison,
these potentials are rescaled by their values at the inflection point. When ¢, < 1, the shape of the
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Figure 3.1: Resealed inflation potential for different choices of the location of the inflection point ¢,. Here
Vo = V(@) is the value of the potential at the inflection point. Blue, orange, green, and red curves corresponding
to ¢o = 0.1, 1, 3 and 5, respectively.

potential becomes independent of ¢, for ¢ < ¢,. Increasing ¢, beyond 1 shortens the flat plateau; it
also makes it even flatter, which is difficult to see in this figure.

The corresponding values of the Hubble parameter during inflation can be found in the top left
frame of Fig. 3.2, where we use blue and orange lines to represent different values of N .. As
expected the Hubble scale first increases with increasing ¢, then drops once ¢, > 1. There is no
lower bound on H;; from the pure model perspective. However, the maximum value is determined by
the special shape of the potential and can never exceed 10" Gev. It obeys a power law when ¢ is

small, which agrees with our analytic estimation.

The relation between inflaton mass m ;, and inflection point ¢, shown in the top right frame, follows
the same pattern as the Hubble scale when ¢ is small. However, the inflaton mass drops dramatically
for ¢, > 1, due to the exponential suppression discussed at the end of the previous section. When
¢o = 10, the inflaton mass could be as low as 1 GeV. This tiny value differs from the Hubble scale by
more than nine orders of magnitude. Thus our model offers a way to separate the Hubble and inflaton
mass scales.

The running of spectral index « is shown in the bottom right frame. It remains independent of ¢,
even for ¢, > 1. In contrast to the non-SUSY version of the model,  strongly depends on N_,,,. When
Nomp = 45 @ = —0.0032. Increasing N, reduces the absolute value of «, reaching o ~ —0.0013 for

Finally, the bottom left frame of Fig. 3.2 shows the relationship between the tensor-to-scalar ratio r
and ¢,. It follows the same pattern as the Hubble scale. However, since we find r < 107, a positive
detection of tensor modes by current or near-future experiments would exclude our model.
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Figure 3.2: The dependence of the Hubble parameter H;,; during inflation, the inflaton mass m;, tensor-to-scalar
ratio r, and the running of spectral index a on the position ¢, of the inflection point. Different lines represent
different choices of the number of e-folds: N, = 65 (blue) and N, = 45 (orange). We fixed n; = 0.9659
and P, =2.1x107°.

3.2.3 SUSY Breaking by a Polonyi Field

Clearly SUSY must be broken in any realistic model. In this subsection we investigate if the existence of
a SUSY breaking sector would change the inflation potential significantly. For simplicity we consider
the classical Polonyi ansatz [73], where a single chiral superfield Z with a linear superpotential is
introduced to break SUSY:

W = B + C®° + DO* + M, (Z + Bp)

3.27)
= WI + WP

where p1 essentially sets the SUSY breaking scale; we explicitly include a factor M, here to ensure
the correct dimension of . Both ® and Z are complex fields. As before, we want the real part of
@ to be the inflaton field ¢. Z is the Polonyi field whose vacuum expectation value (Z) is the only
source of SUSY breaking after inflation, when (¢) = 0. The SUSY breaking with vanishing vacuum
energy requires Sp = 2 — V3, which gives the gravitino mass ms, = ,uez_‘/5
SUSY breaking minimum at Z = (Z) = (V3 — DM,

Let’s first consider the case where the Polonyi sector gives a small perturbation to the inflation

when Z stays at the
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potential. For ¢, < 1 our previous results suggest:

. B,

B=— =3¢,
D b0

~ C

¢=S < avig,, (3.28)
D

D~47x107%,

We require that the Polonyi field does not change the inflation potential significantly, which means
|[Wi| > |Wp|. The existence of the SUSY breaking term will not alter the slow roll parameters
significantly if

€ < €mp and m, <My, (3.29)
where the subscript 4 means the additional contribution to the slow roll parameter due to the SUSY
breaking term.

We assume that during inflation the Polonyi field stays at the origin, Z = 0, which will be verified
later. Under this assumption, the additional contribution to the inflaton potential reads:

2

30
V(@) = i (<48, B9 + 26p(B + D)¢* + V255C9” + fpD®) + u(4 = 128 +2630°) )
(3.30)
After substituting Sp =2 — V3, the additional contributions to slow roll parameters are:
(8\/5 - 13) 24 + (4x/§ - 8) g
€, AV 2€cmp G ,
269 (3.31)
p. B3 13 + (5V3 - 10)i¢g
p ,

245

where we have introduced the rescaled parameter g = u/D to simplify the expression. The first
term in eq.(3.31) is the cross term between the original and SUSY breaking induced derivatives of
the potential in (V)% Using €., = 8.88 x 10_9¢8 and requiring €, < 0.05 €, which ensures
Ny < Nemp as well, we get an upper bound on SUSY breaking scale y:

6

S0 GeV. (3.32)

pl

1 <3.4x%x10°

Since we have not found any SUSY particle in collider searches, we conservatively require u > 1TeV.
From eq.(3.32) this implies ¢, > 0.3, corresponding to H > 10® GeV.

If we increase the SUSY breaking scale while keeping the inflation scale fixed, the Polonyi field
will move from the origin to its present minimum at V3 — 1. In Fig. 3.3 we show the position of the
Polonyi field during inflation, by minimizing V (¢, z) with respect to z for fixed ¢ = ¢; here we only
consider the real part z of Z, fixing the imaginary part to the origin throughout. We see that z tends
to stay near the origin when g < ¢%, and slowly moves to its own vacuum at V3 — 1 as /i becomes
comparable to ¢(2).

On the other hand, if Wp > W, the Polonyi field will stay at Z = V3 — 1. In this case, the inflection
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Figure 3.3: Position of the Polonyi field z during inflation. Different colors represent different choices of the
relative SUSY breaking scale f. When i > ¢(2), the Polonyi field stays at V3 — 1, whereas for i < ¢(2) the
Polonyi field stays close to the origin.

point conditions V' (¢,) = V' (¢,) = 0 up to ¢ read:
V' = 0= 88 + 18V2BCo, — 4 (\/5 - 2) Ba +18C2¢% - 3\2 (\/3 - 3) Cligy + 23> = 0,
V' =0= 4B+ 18V2BC¢, -2 (\/§ - 2) Ba+21C%¢% - 3\2 (\/§ - 3) Ciigy + @ = 0(3.33)

with the following solutions:

_ . 0.49967
B~04952i, C~- ;9 ) (3.34)
0

The potential at the inflection point is then:
V(gy) ~ 0.1872 147 . (3.35)

By Taylor expanding around the inflection point and substituting B — B(1 = 6B), ¢ — ¢y(1 — 6¢),
we find:

2
12.1 (53 + 2.445¢2)
€~ 3 ,
% (3.36)
 21.65B - 24.05¢

¢

This expansion is similar in structure from the previous cases. Following the same procedure and

n
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using n, = 0.9659, N, = 65, we have:

OB =4.45x107%¢%, €. =3.92x107"%5 o~ —0.0013. (3.37)

C

We can further deduce the scales of SUSY breaking scale and inflation:
p=iD=482x 10703, Hyp=457x 10763, my~2u. (3.38)

If the Polonyi field already sits in its SUSY breaking minimum during inflation, all relevant energy
scales, i.e., Hubble scale H;,, the SUSY breaking scale y, and inflaton mass m 4, are completely
determined by the position of inflection point ¢,. The scaling of Hj,¢ and m , with ¢, is also as in the
non-SUSY version of the model, or as in the SUGRA model without Polonyi sector. The new feature
is that ¢, or H;,¢, also determines y; again demanding ¢ > 1 TeV therefore implies ¢, > 2 X 1074
in this set-up. This strong correlation can only be relaxed by lifting the Polonyi field away from the
SUSY breaking point V3 — 1.

In Fig. 3.4, we show how different quantities depend on ¢,. For ¢, < 1 this is described by
eqs.(3.38) and (3.37), while ¢, > 1 can again only be treated numerically. As before, we fix the
spectral index ng and the number of e-folds N, and additionally /i for better illustration.

The Hubble parameter H, ; and the tensor-to-scalar ratio r have the same scaling with ¢, as before.
They both increase as ¢, approaches unity, and start to decrease for ¢, > 1. The running of the
spectral index is again almost independent of ¢, and of the order of 107°. The scaling of the SUSY
breaking scale y is rather different. When ¢, < 0.1, the Polonyi field stays around the SUSY breaking
point, and increases with ¢, as eq.(3.38) suggested. When ¢, > 0.1, the Polonyi field is shifted away
from the SUSY breaking point during inflation. This also leads to a milder increase of u along ¢,.
Once ¢, exceeds 1, the SUSY breaking scale drops dramatically, which is similar to the behavior of
m 4 in the previous case. Requiring p > 1 TeV therefore implies ¢ < 5 for this value of /.

So far we fixed g = 0.01. For ¢, < 1 this choice is in fact irrelevant, since the physical parameters
B, 6B, C and p are all fixed uniquely for given ¢, see eqs.(3.34), (3.37) and (3.38). However, we
see in Fig. 3.5, which shows the relation between u and H;, that this is no longer true for ¢, > 0.1.
Nevertheless, for a given Hubble scale during inflation there will be a maximum SUSY breaking scale
it can host, corresponding to the case where SUSY is already broken by the Polonyi field:

4 4 Hinf 23
po< o 3% 10 5| Gev. (3.39)
0

Once the Polonyi field moves away from the SUSY breaking point, one will have more freedom to
set the SUSY breaking value, depending on the position of the Polonyi field during inflation. If the
Polonyi field stays at the origin and only perturbs the potential, the SUSY breaking scale would simply
be 4 = i X D, where D can be treated as a constant. This explains why the relative ratio of three
different cases when they deviate from the straight line in Fig. 3.5 is almost a constant.

We conclude that only the light cyan region below the topmost line in Fig. 3.5 is accessible in our
model. Different choices of [ will leave the straight line at different Hubble scales, and can thus
populate this region, always keeping in mind that ¢ > 1 TeV is needed for phenomenological reasons.
The resulting lower bound on the Hubble scale during inflation is around 1 GeV. This bound is much
smaller than the naive estimate of 10® GeV we derived below eq.(3.32) from the requirement that the
Polonyi sector can be treated as a small perturbation.
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Figure 3.4: The dependence of the Hubble parameter during inflation H,; (top left), the SUSY breaking scale u
(top right), the tensor-to-scalar ratio r (bottom left), and the running of spectral index @ (bottom right) on ¢,.
Different lines represent different choices for the number of e-folds: N, = 65 (blue) and N, = 45 (orange).
We fixed i = 0.01, ng = 0.9659 and P, = 2.1 X 107 in this graph.

3.3 Summary and Conclusions

In this chapter we revisited the renormalizable inflection point inflation model in the SUGRA
framework. We adopted the minimal assumption that only one canonical field drives inflation. While
SUSY protects the flatness of the potential from radiative corrections, local SUSY or SUGRA also
modifies the potential through non-renormalizable terms. These new terms contribute to slow roll
parameters on an equal footing. As in the non-supersymmetric case the shape of the potential is
determined by the position ¢ of the inflection point, which is a free parameter of our model. When
fixing the well-constrained power spectrum of curvature perturbations and its spectral index, we find
¢, controls the tensor-to-scalar ratio r, the running of the spectral index «, the Hubble scale during
inflation Hj,, and the physical inflaton mass m 4.

For ¢, < 1 aperturbative treatment is possible. In this case, r, H;,s and m , are monomial functions
of ¢, and reach their maximum around ¢, ~ 1. The running of the spectral index a is almost
independent of ¢ but depends more strongly on N, than in the non-supersymmetric, renormalizable
version of the model. The tensor-to-scalar ratio r is always smaller than 1077, which is below the
sensitivity of any current or planned experiments. The running of the spectral index, which lies in
order of O(— 10_3), might be probed by the next generation of CMB experiments. The predictions of
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Figure 3.5: The scale of SUSY breaking u vs. the inflationary Hubble scale H,,; on a log-log scale. Different
colors represent different choices of relative scale . The straight line is the Polonyi field dominated case, where
the SUSY breaking scale only depends on the inflection point positions. The right, flat region is an inflation
field-dominated region, where the SUSY breaking scale depends linearly on the relative scale .

this SUGRA model are quite similar to those from the renormalizable model. All observables have
the same scaling with respect to ¢,. Thus, even though the SUGRA potential contains terms up to
¢6 while the renormalizable potential only has terms up to ¢4, it still provides a relatively reliable
estimate of inflationary quantities.

The main difference between the SUGRA case and the renormalizable case appears when ¢,

2
exceeds 1. In this region the exponential factor ¢'??" in the SUGRA case becomes large, which

suppresses r, H;ye and m 4. The energy scales are therefore bounded from above: H;ye < 10" Gev

and m, < 10'2 GeV. The renormalizable potential is not able to capture this behavior, which leads to
a very different prediction of inflationary observables in this large field scenario.

We further added a SUSY breaking Polonyi sector to the model. If the SUSY breaking scale is
much smaller than the Hubble scale, the Polonyi field will stay at the origin and serve as a perturbation
to the field. When these two energy scales become comparable, the Polonyi field will move away from
the origin and modify the inflation potential. These effects lead to a nontrivial bound between the
SUSY breaking scale and the inflation scale. We find that for a TeV scale SUSY breaking, we need the
Hubble scale to be larger than 1 GeV.

It has been pointed out that in the KKLT model, the Hubble scale is always smaller than the gravitino
mass ms, (or SUSY breaking scale u) [117]. In our model, we find a slightly different conclusion: in
some regions, the Hubble scale can be larger than the gravitino mass. In such a scenario SUSY will
protect the inflaton potential from loop corrections. This should allow larger couplings of the inflaton
to Standard Model (super)fields, and thus larger reheat temperature than in the non—supersymmetric
version.

In this chapter, we tried to be as simple as possible to relaize inflation in SUGRA. We have to pay
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the price that our model parameters become finetuned and there is no symmetry which can protect
them. In the next chapter, we will consider a slightly complicated model, but the flatness of the
potential is linked with a certain symmetry.
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CHAPTER 4

Modular Invariant Inflation

Modular symmetry and moduli fields (modulus) are ubiquitous in higher dimensional theory such
as superstring theory [118-120]. The modulus generally denote the scalar degrees of freedom in
the effective action of the four dimensional spacetime and describe low energy excitations in the
extra dimensions such as the shape and size of the extra compact space. In the torus or orbifold
compactification, the shape of the torus is determined by the complex modulus 7. The Yukawa
couplings arise from the overlap integral of the zero mode profiles of the matter fields, and they are
functions of 7 transforming nontrivially under the modular symmetry group. The modulus 7 and
modular flavor symmetry are used to explain the flavor structure of quarks and leptons [74], see
Refs. [121, 122] for reviews.

The modulus and modular symmetry could have phenomenological implications in cosmology, and
the modulus can be a candidate for the inflaton to realize inflation in the early Universe [123]. It has
been showed that successful inflation can not be realized with a single moduli field for the logarithmic
Kéhler potential [103, 124, 125]. A stabilizer field X besides the modulus 7 was introduced in
Refs. [126, 127] to build an inflation potential, and the Kéhler potential modified by X was considered
to flatten the scalar potential in the whole complex plane. Higher powers of T are included in the
logarithm of the Kéhler potential to realize modular inflation in [128]. The modular invariance puts
strong constraints on the scalar potential of the modulus [129-131], and the Starobinsky like model
can arise in the context of modular symmetry [132].

The modular symmetry is broken by the vacuum expectation value (VEV) of the modulus field 7,
and there is no VEV of 7 which preserves the full modular symmetry group. Only after the complex
modulus 7 obtains a VEV, the modular forms and the Yukawa couplings get fixed. Hence the VEV of
the complex modulus 7 has to be dynamically stabilized. The extrema of the modular invariant scalar
potentials tend to be close to the boundary of fundamental domain or the imaginary axis [133—-142].
Particularly the fixed points 7 = i, w are preferred extrema. Recently it is shown that either Minkowski
minima or De Sitter (dS) minima at the fixed points can be achieved by considering non-perturbative
corrections to the dilaton Kéhler potential [133, 138, 140]. The scalar potential of the modulus can
not only dynamically fix its VEV, but can also possibly accommodate inflation. It has been noticed
that realizing slow roll inflation in the moduli sector is closely related to admitting metastable dS
vacua [125].

The purpose of this chapter is to investigate whether the supergravity motivated potential [133]
for modular stabilization, including dilation and non-perturbative effects, could also realize slow roll
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inflation driven by the modulus 7. Motivated by the vacuum structure of 7 and the special properties
of the fixed points i, w = o273 , 100 under modular transformation, we shall consider inflationary
trajectories along the boundary of fundamental domain, moving from one fixed point to another.
After inflation, the modulus stays around the fixed point, which can be used to address the flavor
mixing and fermion mass hierarchy in the SM [143—153]. We find that the scalar potential is strongly
constrained by modular symmetry and a class of inflation potentials can be generated in this approach.
The resulting predictions are all compatible with current cosmological observations. It is promising
that the modular symmetry approach can help to explain the flavour puzzle and cosmic inflation in a
coherent way.

The remainder of this chapter is organised as follows. In section 4.1, we introduce the setup of our
model. The explicit form of the scalar potential is presented, and we emphasize its special features due
to modular invariance. We study the slow roll inflation of the modulus 7 rolling along the boundary
of the fundamental domain in section 4.2. For the case that inflationary trajectory lies on the unit

. L2
arc in the 7 plane, the quadratic polynomial function P(j(7)) = 1 + (1 - Jlgg) +y ( - %)

is considered. Either of 8 or y should be non-zero in order to reproduce the observed value of the
spectral index. The ultra slow roll inflation could be realized if the inflaton 7 rolls along the vertical
boundary of fundamental domain. Section 4.3 contains a summary of our result and discussions
of some possible further developments. We present the basic aspects of relevant modular forms in
Appendix A.1. We present the numerical results for some examples of modular inflation models in
Appendix A.2. Finally, we briefly discuss the stabilization of dilaton in Appendix A.3.

4.1 The Framework

Supergravity is the low-energy limit of superstring theory which is a promising candidate of quantum
gravity, and it is predictive framework allowing to address both inflation and beyond standard model
physics. Consequently we adopt the framework of supergravity in this thesis. In order to be more
general, we do not use any concrete models of string theory and any specific compactification
mechanism. In the following, we present the superpotential and Kihler potential from which the
modular invariant scalar potential is derived. Then the properties of the scalar potential and the
constraints on the parameter space of the scalar potential are explored.

4.1.1 Modular Invariant Scalar Potential in SUGRA

As an effective theory of superstring theory, the spectrum of a N = 1 supergravitry theory normally
contains the dilaton, Kéhler moduli, complex structure moduli, gauge fields, and twisted and untwisted
matter fields after heterotic orbifold compactifications. Given the fact that a single K&hler moduli is
not enough to realise inflation [103, 125], we find it is natural to include dilaton field into our analysis.
This choice has been adopted in existing literature to study different phenomenon [133, 138]. In this
chapter, the Kédhler modulus field 7 plays the role of inflaton field. The Kéhler potential K can be
expressed as

CK(1,7,8,8) =K(1,7,5,5) - hin[-i(t - T)] , (4.1)

where K (7,7, S, S ) is the Kéhler potential for the dilaton, the parameter 4 is a dimensionless constant
which depends on the choice of the number of compactified complex dimensions [126]. The effective
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SUGRA description of the low-energy limit of superstring theory gives h = 3 I At the tree level,
there is no 7-dependence in the dilaton Kéhler potential, hence K (7,7, S, S )=— ln(S +S ) When we
consider the non-perturbative contributions, the corresponding dilaton Kihler potential is given by

K(7,7,5,8) = =In(S + §) + 6k,,(S,5) = K(S,9), (4.3)

where the additional term 6k, ,, denotes the non-perturbative contribution from Shenker-like effects in
heterotic string theories [154]. It provides non-perturbative corrections to Kéhler potential within the

2
4D low-energy effective field theory, of the order of O(e_l/ 8s), where g? represents the closed string

coupling constant. A general parametrization of 6k,,, is provided by [155, 156]:

- p/2 _
S+S) S+S 44)

Sky, :d(

where p, b > 0 and d is a real constant. The Shenker-term 6k, , is crucial to stabilize the dilaton and
realize heterotic de Sitter vacua [138].

The most general non-perturbative superpotential invariant under the modular symmetry reads [133]:

2 QOH)
W 6
n (1)
where Ay is the characteristic energy scale for this interaction. The function Q(S) is technically
arbitrary. It could take the form Q(S) = ¢ + ¢~ S/Pa [157], which arises from gaugino condensation.
Here c is a constant and b, is related to the beta function of gauge group factor. We will assume
the dilation field is stabilized as a premise. We leave a short discussion on dilation stabilization in

Appendix A.3. The modulus field T would serve as the inflaton. The modular function H(7) is regular
in the fundamental domain without singularities, and its most general form is [133]:

WS, 1) = 4.5)

H(7) = (j(7) = 1728)"2j (0)"*P(j (7)), (4.6)

where j(7) is the modular invariant j function given in eq.(A.20), £ (j (7)) is an arbitrary polynomial
function of j(7), and both m and n are non-negative integers. To simplify the analysis, we choose the
polynomial to be second order in j(7):

o j(7) Jj(@\

where S, y are free real parameters. An equivalent parameterization of the H function is given by [133,

'In corresponding theory, the compactification of six dimensions will bring about three moduli 7; (i = 1,2,3) that
corresponds to the radii of the three two-tori of the internal space and its standard form of Kihler potential [133]

3
K =-In(S+8)+ Y In[-i(r;-7)] , 4.2)
i=1

for which K is completely symmetric under the exchange of the three ;. We consider the minimal case, the symmetric
point with 7, = 7, = 73 = 7 that freezes all moduli fields except the single modulus 7. This gives i = 3.
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138]:

n m

SZLCON Y (C7ICOR Y (4.8)

(@) ] \n"(x)
where G, and G4 are Eisenstein series of weight 4 and 6 respectively and their definition of G, and
G is given in eq.(A.4). From eqgs. (A.20) and (A.21), one can see that the two expressions of the H
function in eq.(4.6) and eq.(4.8) are equivalent up to a normalization constant. Notice that H(w) = 0
forn > 1 and H(i) = 0 for m > 1, as shown in eq.(A.28).

The scalar potential for dilaton field and modulus field with the Kéhler potential in Egs. (4.2,4.1)
and the superpotential in eq.(4.5) is:

H(t) =

V(r,S) = A*Z(1,7) |(A(S, ) - 3)|H(7)|> + V(, f)] , (4.9)

where we have defined A = (AgvkzeK(S’S) |Q(S)|2)1/4 with

S - S 2
K*>DgWDsW _ K%%1Qg + K5Q|

A(S,S) = ,

&9 Wi QP

N —(t - f)2 3i =~ NG (4.10)
V(T’T) = T HT(T) - EH(T)GZ(T’T) P ’
Z(t,7T) = !

i(r =1

where the subscript in Qg = d€Q/4S and H, = 0H /07t denotes the derivative with respect to the
specific field. @2 is the non-holomorphic modular form of weight 2, and its definition can be found in
the Appendix A.1. In addition, we see both the functions V and Z are modular functions with weight
0. We have assumed that the dilaton sector is stabilized, thus A(S, S) is treated as a free parameter in
the model. The A(S, S) term is crucial for uplifting the potential. Once A(S, S) > 3, we can guarantee
that the potential in eq.(4.9) is positive semi-definite.

4.1.2 The Properties of the Modular Invariant Scalar Potential

The vacuum structure of this potential at 7 =i and at 7 = w = ">/ has been extensively studied
in [138], where they find the following results based on the choice of (1, n) in eq.(4.6):

* If m = n = 0, then both fixed points can have a de Sitter (dS) vacuum.
e If m>1,n=0,then 7 = w is a dS minimum, while T = i/ is Minkowski minimum.

e Ifm =0,n > 1, then T =i is a conditional dS minimum, which depends on the value of A(S, S).
T = w is always a Minkowski minimum.

e Ifm=1,n>00rn=1,m >0, the vacuum is unstable.
e If m > 1,n > 1, then we always have Minkowski extrema in these two fixed points.

The scalar potential in eq.(4.9) is modular invariant. Consequently the derivatives 0,V and 9;V are
weights (2,0) and (0,2) non-holomorphic modular functions respectively. Hence, they vanish at the
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fixed points:
ov

ar

oV

=1, ot

=0. 4.11)

T=I,w

Moreover, the scalar potential is also invariant under 7 — —7. This can be proven by noticing the
following transformation properties2:

7) - n(r)", H(r) > H(t)",
n(7) n(z A()A*() @.12)
HT—>_HT’ G2—>G2.
This fact comes from the reality of the scalar potential. Together with the modular transformations
T — 7+ 1 and T — —1/7, they ensure the first derivative along certain directions at the boundary of
the fundamental domain vanishes [133]°:

—élfe‘z‘r) =0, Z_V =0, (4.13)
Re(7)=+1/2,0 Plp=1
where we have used 7 = Re(7) + iIm(7) in the first equality and T = pei % in the second equality. If
Re(7) or p sits in a local minimum, we can neglect the motion of them at the corresponding boundaries.
In this case, we have a single field inflation. One explicit example can be find in section 4.2. Thus
the modular symmetry provides a good reason to separate the modulus field to one inflaton field and
another one perpendicular to inflation direction.

Motivated by the vacuum structure of modulus [138] and the special properties of fixed points
T=Il,w= ¢">"/3 under modular transformation, we shall consider two different trajectories of inflation
along the boundary of fundamental domain:

* m =0,n > 2, we consider slow roll along the lower boundary (arc) from one fixed point i to
another fixed point w.

* m >2,n > 2, we consider slow roll along the left boundary from ico to the fixed point w.

We illustrate these two trajectories in Fig. 4.1. We will show some concrete examples below where the
scalar potential is flat enough to accommodate inflation.

2 We have assumed that the coefficients of the polynomial () to be real.

3 Let's write 7 = x +1 vy, where x and y are the real and imaginary parts of 7, respectively. The combined modular symmetry
T — 7 + | and reality condition 7 — —7 tell us that the potential is invariant underx — —x— 1,y —» yandx = —1/2isa
fixed point of the symmetry. Hence we have V(x) = V(—x — 1). Taking derivative with respect to x on both sides yields:

oV (x)
ox

_0V(=x-1)
x=—1/2 Ox

0V
x=—1/2 du

s

u=-1/2

where we have deﬁned u = —x — 1. Hence, the derivative vanishes at the fixed points x = +1/2. For the second case, we
can express T = pe’g. The combined transformations of 7 — —1/7 and T — —7 indicate that the potential is invariant
under p — 1/p, 6 — 6. Hence V(p)=V(1/p) and p = 1 is a fixed point of this transformation, and consequently we get

wvp)| _ ov(/p)
p oo ap

oV (u)
ou

_0V(w)
u=l B ou

2
=-U
p=1

s
u=1

with u = 1/p. Thus the identiy a‘;—i}’))‘ = 0 is satisfied.
o=
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Figure 4.1: The light blue region represents the fundamental domain D of the modular group, while the blue
line denotes the inflationary trajectory from maxima 7 =i to minima 7 = w = e 3, Additionally, the blue

dashed line depicts the inflaton slowly rolls from i to —w? = ¢'™/3. Meanwhile, the orange line signifies the

occurrence of accidental inflation to the point w.

4.1.3 Constraints on the Scalar Potential from Inflation and Modular Stabilization

Let’s first focus on the case where inflation occurs at the lower boundary. The modular symmetry fixed
points T = i, w play a special role in moduli stabilization, where they are separately considered to be
a minimum [133, 138]. For inflation, we would like to have one of them to be the minimum of the
scalar potential and another one to be the saddle point. We are interested in how they are connected.
The saddle point of the potential could serve as the starting point for inflation. The minimum of the
potential has to be stable, hence the possibility of m = 1 or n = 1 is excluded. The whole potential has
to be non-negative in the fundamental domain, consequently we always require A(S, S) > 3.

In the following, we explore the constraints on the parameters of the scalar potential from modular
inflation. As mentioned earlier, in order to realize the slow roll inflation drived by 7, we would like
one of the fixed points to be a saddle point and the other to be the minimum. This can not be achieved
for m > 2 and n = 0, as both fixed points are local minima of the scalar potential. In principle, there
exists a parameter space for m = 0 and n = O where T = i is a saddle point and 7 = w is a dS minimum.
We may refer to V(i) as the inflation scale and V(w) =~ 107122 as the cosmological constant today.
However, the ratio of their value reads:

v@i)  T'(1/3)|P(1728)
V(w)  1'2(1/4) PO

(4.14)
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Thus for a TeV scale inflation where V (i) ~ 107%°, we need |P(1728) |2/|¢’(0)|2 ~ 10°°. Given that
Jj (1) varies by only 10° from 7 = i to T = w, it seems very unnatural to consider such a huge difference
in the polynomial #(j). Hence we do not consider the choice m = n = 0 in this chapter.

Another possibility is n > 2 and m = 0 where 7 = i is a saddle point and 7 = w is a global minimum
with V(w) = 0. To explicitly discuss this possibility, we should calculate the Hessian matrix at the fix
points. The first derivative of the scalar potential vanishes and the second derivatives at T = i read:

2V =-C,(A-1B,. 8,0,V =C,(A-2+[8,[). (4.15)
where the functions 8, and C,, are:
r3(1/4) P’(1728)
B = 1+8n+41472———""]| |
" 1927 " P(1728)
2 942”-1321’!+1
¢, = ! P (1728)2 (4.16)
r'2(1/4)

where P’(j) = dP/dj is the derivative of the polynomial function # () with respect to j. For
inflation along the unit arc in the complex 7 plane, it is convenient to calculate the Hessian matrix in
the polar coordinates 7 = pem, and the elements of the Hessian matrix at the starting point 7 = i are
determined to be:

2
5_‘; =2C, [A 248,17+ (A~ I)Re(Bn)] ;
dp
2
‘;7‘2’ =2C, [A-2+18, - (A~ DRe(8,)] 17
a*V
Trrh —2C,(A - DNIm(8B,) .

From eq.(4.16), we see that C,, is a positive number and the imaginary part of 8, vanishes at T = i,
since the coefficients of the polynomial P () are real in our setting and thus ? is real at 7 = i.
Consequently the cross derivative a‘z)z—gp is exactly zero at 7 = i. In fact, this cross derivative is always
vanishing anywhere at the boundary |7| = 1 of the fundamental domain, as can be seen from the
footnote 3. For the inflaton 7 rolling along the unit arc, the scalar potential at the starting point 7 =i
should reach a maximum along angular direction 6 while it gets a minimum along the radial direction

p. As a consequence, the following conditions should be satisfied 4

2 2
6_\; >0, (9_‘2/ <0, V(@) >0, 4.19)
8,0 T=i 00" |r=i
* The scalar potential at T =i is
9
V(i) = A (A - 3)122"% P(1728)]% . (4.18)
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which leads to
A>2+8,, B,>1. (4.20)

The condition $B,, > 1 restricts the polynomial parameter in eq.(4.7) as follow,

1 1927*
B<o|8n+1- 2. “.21)
24 r(1/4)
Moreove, another condition A > 2 + $,, can be written into a more suggestive form:
r(1/4
A>£(1+8n—24ﬁ)+2. (4.22)

1927*

In particular, when § = 0 and n = 2, the parameter A should be greater than 29.132. Besides the local
properties of the scalar potential at the fix points, we would also like to impose an additional constraint
along the inflationary trajectory 7/2 < 6 < 27 /3:

ov

v v
00 ’

> >0, (4.23)
=1 ap

p=1

where the first condition ensures that the inflaton smoothly rolls down to the minimum at 7 = w,
and the second one ensures p = 1 is a local minimum along the inflation trajectories. The algebraic
expression for this condition is rather complicated and we solve it numerically. The first constraint is
demonstrated in Fig. 4.2 and the second one is verified for each inflation potentials.

[ L L N L BRI LR B BRI BN
o 1 o ]
ol S ]
b | ]
—3::....|....|....|....|....~r —3::....|....|....|....|....~r
0 20 40 60 80 100 0 20 40 60 80 100

A A

Figure 4.2: In the left panel, we examine the parameter space (A, 8) with y = 0, constrained by the condition
0V /06 < 0. Similarly, the right panel explores the parameter space (A, y) with § = 0. Here, we illustrate this
concept using the example n = 2.

The potential at the fixed point 7 = wor 7 = —w? is much simpler, we have:

Vw)=0, 8V(w)=0, 8.0.V(w)>0. (4.24)
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From eq.(4.9), as long as A > 3 the potential is non-negative in the whole complex space. Hence,
V(w) = 0 is enough to ensure 7 = w is a global minimum of the scalar potential.

4.2 Modular Invariant Inflation

In this section, we shall show that the scalar potential in eq.(4.9), which has been used to address the
modulus stabilization [133, 138], can also naturally realize the slow roll inflation. We are concerned
with the inflationary trajectories along the boundary of fundamental domain in the following.

4.2.1 Slow Roll along the Unit Arc

In this scenario, it might be useful to rewrite the scalar potential in terms of the radial and angular
components, T = pelg. The kinetic term of the modulus reads as,

*K 3 3 (1
Ly =——0,170"tT=————0 10"T = —a,p0"p +0,00"6] . (4.25)
n T gror H (it + ii’)2 H 4sin® 6 p2 H H
As shown in eq.(4.13), the modular invariance of the scalar potential requires dV/dp|,-; = 0. Here

and hereafter, we will always set p = 1 and keep 6 as the only degree of freedom. To normalize the
kinetic term of @, we further introduce the canonical field ¢ = 4/3/21n(tan(6/2)). As an example, we
have ¢ = 0 when 6 = /2.

In this section, we consider the case where m = 0,n > 2 in eq.(4.6). This potential has a local
maximum at 7 = { and a local Minkowski minimum at 7 = w. As mentioned earlier, the modular
symmetry ensures that the first derivative of the potential vanishes at T = i, which motivates us to
investigate the inflation near this point. The inflation trajectory is shown in Fig. 4.1. The inflation
phenomenology can be approximated by its Taylor expansion near 7 = i (¢ = 0). The full potential in
€q.(4.9) can be approximated by the following term during inflation:

V(g) = Vo(1 =) Cutt™), (4.26)
k=1

where each coefficient depends on the choice of A(S,S), (m,n) and the parameterzation of the
polynomial function $(j). Note that the potential is an even function of ¢, which arises from the S
symmetry of the modular group. Along the arc, the S symmetry T — —1/7 indicates a Z, symmetry
in terms of the canonically normalised field ¢ — —¢. We will focus on the case where ¢ > 0.
During inflation, we find the potential is mostly dominated by the terms C2¢2 and G,,, ¢*P, where
p is a specific integer. This implies that 0 < |C2p/| < Cy,, for all p’ < p. Let’s first investigate this
simplified potential:

V() = Vo(1 = Cy¢° = Cyp07P) (4.27)
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The slow-roll parameters read:
122
~2Cy¢ — 2pC,,¢°""!

1 (V’)2 1
& = — | — = —
AN 2\ 1-C¢° - C2p¢2p
~2C, = 2p(2p — 1)C,, 67"
1- C2¢2 - C2p¢2p

(4.28)

_V,I_
Ny = v

where €, < G, and C,,, > 1. We are interested in the region where ¢ < 1, which means

gy ® (nv¢)2 < 7ny. Note the starting point of the observable inflation, ¢,, can be calculated from:
ny = 1-6e(¢,) +20(8.) ~ 1+27(4,) ~ 1 -4C, — O(41) , (4.29)

and the CMB observation suggests n, ~ 0.9649 [49]. For our setup, we would require 1 —4C, > ng;
otherwise, the spectral index will be smaller than the observed value of CMB. This approximately
implies 0 < C, < 0.008.

The starting point ¢, and end point ¢, of observable inflation are controlled by 77 and corresponding
field values are given by,

¢ ( n, + 2C2 )21’12
) 2p(2p - 1)Cy, ’

n,+2C, \72
R v IR
2p(2p - )Gy,

(4.30)

where we have defined , = (n; — 1)/2, 7, = —1, and used approximation 1 — C2¢2 - Cngbzp ~ 1.
This can be verified by substituting the above solution into the expression, which is suppressed by
large C,,,. The number of e-folds is given by,

be 1

N, = —d¢
P, Vzgv(¢)

be 1
z/ 2p—ld¢
¢. 2,9 +2pC,,¢
2-2pn |2 (4.31)

In (2pC2p +2C2¢ P) ¢
- 2G,(2p -2)
__ 1 ne+(4-4p)C; | 1.+ (4-4p)G

2C,(2p -2) n, +2C, n, +2C, ’

which initially decrease with C, and then increases with it in the region where 0 < C, < 0.008. The
minimum of e-folds, N, .., is approximately 77 for n; = 0.9649 and p = 2, and approximately 50
for n; = 0.9649 and p = 3. Thus p = 2 always generates too many e-folds, while p > 3 could be
consistent with our current observations. It is therefore necessary to ensure C, and C, are much

smaller than C in the expansion.
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We will address the coefficients C,,, in the following section. To do this, we need the local expansion
of the j-invariant and 5 functions in terms of the canonically normalized field ¢:

J($) = 1728(1 - 9.579¢% + 40.1424" — 102.618¢%) + 0 (¢°) ,
4.32)
17(8)] ~ 0.768 + 0.083¢* — 0.028¢* + 0.005¢° + O (¢8) :

and the explicit form of the polynomial (). For illustration, we will consider the quadratic form of
P(j) parameterized as:

. . 2
(1)) = - I
P(J(T))_1+ﬂ(1 1728)+7(1 1728) +o (4.33)

As one can see from eq.(4.32), the parameter 8 controls the ¢2 term, while y governs the ¢4 term in
the polynomial #(j). The overall factor V|, of the scalar potential is determined to be

12" 2n)° 4 _
= 2 NS, 8) - 3] . 4.34
0 (1) [A(S,$) - 3] (4.34)

We start our study by considering the simplest case, P(j) = 1. In this scenario, the shape of
the potential is entirely determined by the dilaton contribution A(S, S). The potential can then be
approximated by:

0.178 + (7.617 + 81.554n)n
A-3 ’
0.992 + 14.387n — 122.250n> + 520.779n°
A-3 ’ (4.35)

C, =0.298 + 6.386n —

C, = —0.438 + 1.917n — 20.389n> +

Ce =0.234 +9.024n — 18.321n* + 43.398n°

.\ ~1.998 — 23.1951 — 718.051n> + 1247.593n° — 1662.767n*
A-3 '

The requirement for 0 < C, < 0.008 imposes an algebraic constraint on A:
3.596 + 12.771n < A < 3.612 + 12.771n, (4.36)
which suggests that A is tightly constrained. In this case, the corresponding C, and C are given by:
C, ~ 1.228 + n(-9.571 +20.389n) ,

0.206 (4.37)

For n = 2, this roughly means A ~ 29.142, C, = 63.640 and C4 = —455.408. One can extend these
results easily for general n. Even though |C6| > C,4, we have verified that the ¢4 contribution is larger

than the ¢6 contribution during inflation, and the end of the inflation is controlled by the ¢4 term. It is
also interesting to consider the cases with large n. Note C, scales as n* while C scales as n®, which
might raise concerns that the later term will eventually outgrows the former. However, this is not the
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case. We can examine their relative contributions at the end of inflation, where the C6¢6 contributes
the most. Using eq.(4.30) with p = 2 and maintaining the assumption that C4¢4 is much larger than
C6¢6, we have:
2L Ced® _ Co
12€, C,0' 1203

S|

(4.38)

which tells us that the relative contribution of the C6¢6 term is suppressed by large n. These results
perfectly align with our assumption, confirming that higher-order terms never dominate the potential.
Meanwhile, the relative large coeflicient C, leads to an overproduction of the number of e-folds if
we choose 7 to be around its central value. i.e. To achieve 50 < N, < 60, n, must be smaller than
the CMB measurement. Theoretical prediction for this case can be found in Fig. 4.3. We use solid
and dashed lines to represent the results for N, = 50 and N, = 60, respectively, with different colors
labeling different choices of n. Increasing n does not change the preferred region of the spectral index
but does decrease the tensor to scalar ratio. However, the spectral index lies between 0.942 and 0.955,
which is excluded by the Planck 2018 results. Thus, we conclude that while the simplest choice of
P(j) can support inflation, it does not fit our observational constraints within this framework.

The next simplest choice would be 8 # 0. In this case, we have two free parameters: A and 3, with
two algebraic constraints: 0 < C, < 0.008 and 0 < C, < C4. The additional 5 dependent terms in
C,, C,, Cg are given by:

Cy =Gl + Gy

~733.9878% + 22.8513 + 489.3250n

:C2|ﬁ:0_ 19157ﬂ+ A—3

Cy =Cylpo+ Cup
:C4|ﬁ:0 — 91.748ﬂ2 + B(85.997 + 122.331n)

B2(12741.904 + 9374.025n) + B(—262.043 — 3953.512n — 4687.013n%)
+ i C(439)

Co =Celp=0 + Co
=Celg=o + B(796.369 + 585.877n) — (237.566 + 475.949n + 390.584n")
N B2(106147.206 + 133975.980n + 52377.172n%)
A-3
_ B(1383.980 + 16226.188n + 26183.928n° + 19953.208n°)
A-3 ’

where we have separated the coeflicients into 8 dependent and independent terms. The C, 4 ¢| 5 are
the same as those given in eqs. (4.35). The solution for 0 < C, < 0.008 is:

3.596 —38.3148 + 12.771n < A < 3.612 - 38.3148 + 12.771n.. (4.40)

We further choose -2 < C, < 5, such that |C4| < Cg. If C; > 1, the inflation potential will be
dominated by the ¢4 term. We have argued such a case is ruled out by the small spectral index 7.
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Figure 4.3: We present theoretical predictions of modular invariant inflation with different choices of the
polynomial (). When P(j) = 1, the parameter A varies within the region 3.596 + 12.771ln < A <
3.612 + 12.771n given by eq.(4.36). Conversely, when P(j) # 1, we fix n = 2 for plotting purposes.
Additionally, we select C, and C, as the physical parameters and plot the lines by varying C, while holding C,
constant. In the last panel, we set A(S, 5) = 25. The x-axis represents the spectral index of the CMB power
spectrum ng, while the y axis is the tensor-to-scalar ratio r on a logarithm scale. Solid lines indicate predictions
for N, = 50, whereas dashed lines are the predictions for N, = 60. Different colors denotes varying choices of
C,.

When C, < -2, it will create additional maximum along the inflation trajectory. The solution reads >,

n=2, 0.1261 < <0.1268,
n =3, 0.2450 < 5 <0.2454, (4.41)
n=4, 0.3752 < <0.3755.

5 There are other solutions; however, they introduce additional barriers between the inflation point and the minimum of the
potential. Thus we will ignore them in this chapter. 59
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Plugging the above solution into Cg, we find Cg = 350 for n = 2. As in this case C,, C; < Cq, We
find that this setup can generate inflation potential that agrees with CMB observations. We show a
possible shape of the potential and its cross-section in Fig. 4.4. Theoretical predictions for this case
can be found in Fig. 4.3 where n = 2 is used as an example. It is straightforward to extend our results
to n > 2. We use different colors to label different choice of C,. Solid and dashed lines represent
results for N, = 50 and N, = 60, respectively. The latter cases are slightly shifted towards a smaller
tensor-to-scalar ratio and lager spectral index. Increasing C, will decrease the spectral index and vice
versa, as expected. As one can see from the figures, the spectral index n, can be in the 1o region
constrained by the CMB observation, while the tensor-to-scalar ratio r is of order O( 10_6). This is
well below the current sensitivity. The running of spectral index « is of order O(~10"%), which might
be testable in the CMB S4 mission [112, 113] and future observations of 21 cm fluctuations [111, 114].
We also show the parameter space spanned by A(S, S) and S in Fig. 4.5. The left and right segments
are results for N, = 50 and N, = 60, respectively. We use different color to represent different values
of spectral index n.
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Figure 4.4: When the potential has parameters m = 0, n = 2, A = 24.3091, and 8 = 0.126425, the left panel
demonstrates the cross-section of the scalar potential via p = 1 during inflation. Similarly, the right panel
displays the cross-sections of scalar potential via various 8 values throughout the inflationary process.

The next simple choice would be to turning on the ¢4 contribution in () by introducing a non-zero
value of y. In this case, C, remains unchanged while C, and Cg get additional contribution, which we
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Figure 4.5: These panels illustrate contour plot of the spectral index n across the parameter planes (A, 3)(upper
sector) and (A, y)(lower sector). In the left segment, the deep green region displays the 68% CL region, with
the red line indicating the contour of central value of n; for 50 e-folds. The right segment demonstrates the
distribution of n, with the deep red region and blue line representing 68% CL region and its isopleth of central
value for 60 e-folds, as documented in [49]. Furthermore, it’s important to note that these panels adhere entirely
to the constraint specified in eq.(4.22).

denote by C, ,, and C

G :C2|y:0’

Cy =Cylyo + Gy,
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=Cyl,—o — 183.497y +

Co =Cgly=0 + G
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=Cgl,—o +y(1171.753n + 1592.738)
. ~269368.3119° — 6821.952y — 113625.201ny — 74824.531n%y
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Chapter 4 Modular Invariant Inflation

Since C, is unchanged, the solution for 0 < C, < 0.008 remains the same as in the £ (j) = 1 case:
3.596 +12.771ln < A < 3.612 + 12.771n. (4.43)
Again requiring —2 < C, < 5, y is constrained to be:

2, -0.119 <y < —0.106,
3, —0.287 <y <—0.274, (4.44)
4, —0.529 <y <-0516.

n
n
n

These conditions ensure C, and C, are much smaller than Cg, so that the ¢2 and ¢6 terms dominate
during inflation. We demonstrate the theoretical prediction for n = 2 in Fig. 4.3. There is no surprise
that the prediction is similar to the previous case where we choose 8 # 0. Both cases have similar local
expansion and inflation trajectory. The spectral index ng can again lie in the 1o region constrained
by the CMB observation, while the tensor-to-scalar ratio r is of order 0(10_6) and the running of
spectral index « is of order O(—~10"*). We also show the parameter space spanned by A(S, ),y in
Fig. 4.5. The left and right segments represent results for N, = 50 and N, = 60, respectively. We use
different color to represent different values of spectral index n.

In the last example, we can choose A as a free parameter and deduce the value for 8 and y
accordingly. The expression for C,,, now include the mixing terms between § and y, and they read:

C, =Cylpoy0 + Cr .,

28122.076
Cy =Cylpoyo + Cop+ Cyy — ,BYA—_3 , (4.45)
314263.030n + 603954.174

C6 :C6|ﬁ=‘y:() + C4,ﬁ + C4,‘}/ +ﬁ'y —-1757.630 + A-3

For any arbitrary A there are always two possible values of § that ensure the quadratic coefficient C,
sufficiently small:

B = 0.016 + 0.333n,

4.46
By = 0.094 — 0.026A + 0.333n. (446)

The second solution encompasses the previous case withn = 2, 8 = 0 and A = 29.142. One can
then determine the appropriate y value to ensure C; < Cg. We find that the most favored region
is C, = 0.004, C4 < 2 and Cg = 900. The theoretical prediction for A = 25 and n = 2 is shown in
Fig. 4.3. The physics of inflation remains nearly identical to the previous cases, yielding a similar
prediction. The tensor-to-scalar ratio r and the running of spectral index a are very small, while
the spectral index n, remains within the 1o region of the observational constraints. We use A = 25
and n = 2 as an example, some typical values of 3, y and the corresponding predictions for inflation
parameters are listed in table A.1.

One may wonder if it is possible to achieve successful inflation in the opposite direction, where the
modular field slowly roll from 7 = w to T = i. This scenario requires the potential to have a maximum
at 7 = w and a minimum at 7 = i. The latter condition can be easily fulfilled by choosing m # 0.
However, satisfying the former condition necessitates n = 0. In this case, 7 = w is always a local
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4.2 Modular Invariant Inflation

minimum of the potential if A > 3, regardless of the form of £ (). This behavior can be seen from
their local expansion:

i(¢) ~ 1728 [—9.36(¢ —$,)° —1.56(60 ¢w)5] +0 ((¢ - ¢w)6) ,

1A-2 2 3 4
1+55750-0,+C3(0-0,)° | +0((0-4,)").

(4.47)
V(g) =V

1728 A*[ A(S.9)-3)] 2 _ . .
Ss @ B) (@)[ |P(0)|” and ¢, = +/3/8 In3 is the value of canonical field when
7 = w. Thus, as long as A(S, S) > 3 (a condition necessary to ensure the potential remains positive
during inflation), 7 = w is always a local minimum of the potential. Consequently, we will not

consider slow-roll inflation in this case.

where V, =

4.2.2 Slow Roll along the Left (or Right) Boundary

We would extend our discussion to the case where m,n > 2. In this case, T = i, w are both minima
of the potential and we consider an inflation trajectory at the left boundary (or the imaginary axis)
of the fundamental domain. Unlike the previous case where we have good understanding of both
inflation point and minimum of the potential, we can not make any assumption where inflation will
happen. Thus it is generally difficult to give analytic expressions so we will only show an example
here. However, the treatment here is using the rich vacuum structure of the modular potential and it
should be very generic.
Let’s first find the canonical field at the left boundary. The kinetic term for imaginary part of T
reads:
P (a hm)2 (4.48)
T2 (Imr)? U ’ '

One can make a field redefinition, Im7t = exp(\IZ/ 3 ¢), to introduce the canonical field ¢. The

minimum of Imt is V3/2, which corresponds to ¢ = \/3/_2 In (v3/2) ~ -0.17.

It has been noticed that there exist multiple local minima along the left boundary of the fundamental
domain [138]. In the specific case where m = 2, n =2, A(S,S5) =0, P(j) = 1 + 107°}, they find an
additional AdS minimum at the left boundary. This minimum can be uplifted into a dS minimum by
turning on the A(S, S) term. This was called Accidental Inflation in String Theory [158], where the
up-lifting of adjacent minimum leads to inflation.

We exploit this idea and show how the potential are shaped by different A(S, S) values. One can see
from the Fig. 4.6, when A is small, this additional minimum located at ¢ ~ 0.13 is a (A)dS minimum,
which is separated from the minimum at ¢ = ¢, by a barrier. If one increases the value of A, the
potential becomes flat and an inflection point will emerge. This very flat region in the potential may
break up the normal slow roll inflation approximation and lead to so called ultra slow roll (USR)
inflation [159-161]. It might enhance the curvature perturbation and leads to production of primordial
black holes [162-164].

We find a narrow region where a SR-USR-SR transition occurs:

357.85 < A <358.75. (4.49)
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Figure 4.6: When m = 2, n = 2 and § = —0.633431, we show the scalar potential at the left boundary of
the fundamental domain across different values of the parameter A. Notably, we observe the emergence of
almost flat potential when A ~ O(100). The flat plateau occurs around 7; = 1.11 or ¢ = 0.13. In addition,
the corresponding potential attains its minimum at T = w when A > 3. Particularly noteworthy is the case
when A = 3, where the vacuum becomes degenerate. Conversely, for A < 3, such as A = —20, the AdS global
minimum is located at T = 1.10714i, while the fixed point T = w serves as a Minkowski local minimum.

This case needs a very careful treatment and we leave it for further works.

4.3 Summary and Conclusions

In this chapter, we try to combine the ideas of modular stabilization and modular inflation. Inspired
by the vacuum structure of the modular potential, we successfully find two different trajectories that
can accommodate inflation phenomenology and agree with CMB observations. Those trajectories
follow the boundaries of the fundamental domain and the property of modular symmetry plays a
significant role in our construction. Modular symmetry ensures the flatness of the potential in the
inflationary domain and the stabilization of the perpendicular field during inflation. We also find
that modular symmetry is a very strong constraint that prevents us from approximating it as a simple
hilltop inflation.

We have three different sets of parameters in our model. The first one is A(S, S) in eq.(4.10), which
determines the relative contribution from the dilaton sector. It has to be non-zero for successful
inflation to happen. It is also the reason why we could evade some no-go theorem stated in previous
studies on logarithmic Kéhler potential inflation [103, 124, 125]. The second set of parameters is
a pair of integers (m, n) from the H function in eq.(4.6), which determines the vacuum structure of
the inflation potentials. We have constructed different trajectories based on that. We keep (m, n)
as free parameters. They are relevant to the reheating process after inflation as they also affect how
the inflaton oscillates at the minimum. This is not discussed in this chapter, we leave it for further
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exploration. The third set of parameters (3, y) is coefficient of the j-invariant polynomial in eq.(4.7).
These coefficients actually shape the potential and are essential for constructing inflation potentials.

In summary, the special properties of fixed points under modular symmetry motivate us to consider
the following inflation scenario: when n > 2, m = 0, we find the scalar potential near the fixed point i
can be flat enough to accommodate inflation. In this scenario, inflation occurs along the unit arc of
the fundamental domain. It is necessary to include one of the parameters in (8, y), otherwise, the
predicted spectral index n, is smaller than observed. When n = 2, m = 2, we find the possibility of
realizing (ultra) slow-roll inflation by uplifting the adjacent minima of the potential. In this scenario,
inflation occurs along the left boundary of the fundamental domain. The contribution from the dilaton
sector A(S, S) is important for such an uplifting. We do not consider the case when m > 2, n = 0, as
both fixed points are local minima.

The fine-tuning problem still exists in our model. Once we fix the parameter (m,n), A(S, S)
and (B, y) have to be fixed accordingly. There is no theoretical evidence, besides the argument for
accidental inflation, suggesting that they should take these specific values. In this sense, we can only
answer the question how a modular invariant inflation would look like. We can not ensure that modular
stabilization naturally leads to inflation. In particular, we have followed a bottom-up approach to
inflation instead of a top-down approach. Here we have assumed that the dilaton is stabilized. The
stabilization of dilaton field during inflation could be achieved if the stabilization happens at a much
higher energy scale than the inflation scale. The stabilization of the dilaton sector and its dynamics
deserve further research. It is also interesting to consider a scenario in which the dilaton field serves
as the inflaton field.

In this chapter, we have only considered inflation driven by modulus field and leave reheating
part untouched. In the next chapter, we will treate the reheating dynamics more concretely. As we
mentioned, modular symmetry has been applied in the flavor sector. We will show in the next chapter
that the same Lagrangian can be used to reheat our universe.
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CHAPTER D

Modular Invariant Inflation, Reheating and
Leptogenesis

We continue our study on modular invariant inflation theories in this chapter, focusing more on the
post-inflationary histories. Due to the exponential expansion, the Universe at the end of inflation is
non-thermal. Any viable inflationary scenario must also explain how the Universe reheats and achieves
thermal equilibrium with a temperature above the MeV scale, necessary for Big Bang Nucleosynthesis
(BBN) [165-168]. In this chapter, we revisit modular slow-roll hilltop inflation [169] with a particular
focus on the postinflationary reheating process. Notably, we find that inflaton-matter coupling required
for reheating naturally arises from the modular symmetry approach to solve the flavor puzzles [74]. In
the framework of using modular symmetry to explain lepton masses and mixing angles, it is required
that the Yukawa couplings be modular forms which are holomorphic functions of the complex modulus
T; see Refs. [121, 122] for recent reviews. This naturally gives rise to couplings between the inflaton
field and SM particles, which facilitate the production of these particles and reheat the universe
following inflation. Analyzing reheating after modular slow-roll inflation is one of the main objectives
of this chapter.

We briefly outline our approach. Since the modular forms and Yukawa couplings are determined by
the vacuum expectation value (VEV) of the modulus field, our primary objective is to construct a
scalar potential that supports inflation and has a minimum at the required VEV, which also fits the
lepton data. The process of dynamically fixing the VEV of the modulus field is referred to as modulus
stabilization. It has been shown that the extrema of modular invariant scalar potentials are typically
located near the boundary of the fundamental domain or along the imaginary axis [133-142]. Flavor
models with VEV around the fixed points 7 =i, T = w = 13 are particularly interesting to us, as a
small deviation from the fixed point can be used to naturally explain the lepton mass hierarchy and CP
violation [143, 144, 153, 170, 171]. Inspired by this, we investigate the possibility that the inflaton
slowly rolls from i and oscillates around a point near w.

To provide a concrete example, we construct a model with A, modular symmetry. In this model,
light neutrino masses are generated via the Type-I seesaw mechanism. Modular symmetry requires the
mass terms for the right-handed neutrinos (RHNs) to be modular forms, which also induce couplings
between the inflaton and RHNs. We find that inflaton dominantly decays into RHN after inflation.
Although the corresponding inflaton decay rates are suppressed by the Planck scale, the reheating
temperature can still be high enough to ensure successful Big Bang nucleosynthesis (BBN). We also
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find that the reheating temperature is lower than the RHN mass scale, which gives the possibility to
generate the baryon asymmetry in the universe via non-thermal leptogenesis [90, 172-177].

Our results suggest that modular symmetry can be a good organising principle to solve flavor puzzle,
inflation as well as postinflationary reheating. Modular invariant models for flavor problems are hard
to distinguish from each other since they give more or less the same predictions in lepton masses and
mixing patterns. However, their cosmology implications might be different and offer another window
to probe modular symmetry.

The chapter is organized as follows. A specific lepton flavor model A, is presented in section 5.1.
We focus on a modified modular slow-roll inflation in section 5.2 and the post-inflationary reheating in
section 5.3. Our main results are summarized in section 5.4. We give a short introduction to modular
group I'; in Appendix A.4. The vacuum structure of the scalar potential at the fixed point T = w and
global minimum 7 = 7, are investigated in Appendix A.S5. The two-body and three-body decays of the
inflaton are studied in Appendix A.7.

5.1 Lepton Flavor Model with I'; = A, Symmetry

In the following, we focus primarily on a specific model with A, symmetry, and the light neutrino
masses are generated by the Type-I seesaw mechanism. We will present the lepton sector and omit the
quark sector, since the modulus 7 has the largest couplings with the right-handed neutrinos because of
their heavy masses. The quark sector contributes sub-dominantly to reheating process. The model is
specified by the following representation assignments and modular weights of the lepton fields:

L~3, ¢ ~1, u“~1, °~1", N°={Nj,N;,N5} ~3,
kL:17keC:1’k/.lC:5’ kTCZS, kNZI (51)

The two Higgs superfields H,, and H; transform trivially under modular symmetry. The modular
invariant superpotentials responsible for the mass of lepton are

Whater = Wg + W, (5.2)
where'
Wy = Y1eC(LY3(2))1”Hd + Y2NC(LY;16))1"H4 + Y3/~tC(LY3<2)1"Hd
+}’4TC(LY3(16))1'Hd + ysTC(LY;?I))er ,
W, = & (WD) Hyr e (V0 1P) Hy+ sy (VN D) 63

Here, the couplings y,, y,, ¥, and A can be taken to be real since their phases can be absorbed by
field redefinition, while the phases of y5, y5 and g, can not be removed. The definitions of modular
forms Y;Z), Y;Iﬁ), Y3f161) and group contractions can be found in Appendix A.4. The Yukawa term for

leptons and neutrinos, expressed in the flavor basis, can be written as

L=Y](0)L{L;H;+ Y (t)N;L;H, + Ey,’vf (T)N; N§ +h.c., (5.4)

" In this case, the superpotential ‘W, .., should have the same modular transformation property as W, 4.;- Thus unlike
the global SUSY scenario, we introduce an extra function 17_6 in the matter superpotential.
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where the yg , yg and y;\; are some linear combinations of modular forms, and i, j = 1,2, 3 are
indices of generation. The corresponding charged lepton and neutrino mass matrices read as

Y3y Yy VY 6
Mg = vgp() =| yo¥y s+ vy va¥as+33Ya s »a¥apy +¥sty) deo ;
Y4Y:fz6,)z + y5Y3(161),2 y4Y3(16,)1 + y5Y3161),1 y4Y3(16,)3 +ys¥ap) 5
281Y;,21) —81Y3(,23) - gzyg,%) —81Y3(,22) + gzys(,zz) 6
Mp = vYp()= _leg,%) + nggfé) 281Y3,(,22) _81Y3(,21) - nggf,zl) VMZO )
_g1Y3(’22) - 82Y3(,22) _81Y3(’21) + 82Y3(,21> Zlezf,%) 7
S A
My = AyYy(m=| ¥ @ y® |2N 5.5)
VR ol

where we have rescaled parameters y;, g;, Ay by 77(6) to compensate the existence of r]6, and 7, is
defined at the benchmark point n, = 17(7). Fitting results will be the same as the global SUSY case.
The light Majorana neutrino mass matrix is obtained through the Type-I seesaw as follows:

m, = -MEMy' M, . (5.6)

We can perform the transformation from the flavor basis to the mass basis by

Up"MgU; = diag(mg,m,,m.),
U Tm, Uy = diag(m,,m,, m3), (5.7)

where Uj, Ug, U] and Uy are unitary matrices; m; and M, denote the masses for active neutrinos
and right handed neutrinos, respectively. We consider (7) to stay at the arc, i.e. [t| = 1. We use the
following benchmark values of the free parameters:

70 = (1) = —0.4847 + 0.8747i ,
yo/y; = 5.1844 X 10%,  y3/y; = 1.4659¢ >4 5 107,

vy, =2.3952x10%,  ys/y, = 1.2117e7 %29 x 107, (5.8)
_ _ (817)° _
82/81=02465. yyv,=0249 MeV, == =19.9673 meV .
N

69



Chapter 5 Modular Invariant Inflation, Reheating and Leptogenesis

Notice that 7, is close to the modular symmetry fixed point w = ¢*™i3

for mixing parameters of leptons and masses are given by

. The corresponding observables

sin 6, = 0.307, sin?6;3 = 0.022, sin’ 63 = 0.454,

2

Amy,
me/m” =0.00474, mﬂ/mT = 0.0588, = 0.0296,
Am3,
my =25.725meV, m,=27.127TmeV, mz=>56.274meV,
Mg = 9.615meV, (M, M,, M;)=Ap(1.372,1.447,2.818), 5.9

where mg is the effective mass in neutrinoless double beta decay, M, , 5 are the masses of heavy
right-handed neutrinos. All the above lepton masses and mixing angles are within 10 region of the
experimental data [59, 60]. Remarkably, M, and M, are quasi-degenerate, which plays a crucial role
for leptogenesis.

5.2 Modular Invariant Inflation with Shifted Minimum

In the last chapter, we have discussed the modular invariant inflation model, where the inflationary
trajectory follows the lower boundary of the fundamental domain between the two fixed points, 7 = i
and T = w = €23, In this setup, modular symmetry plays a crucial role in ensuring the flatness of
the inflationary potential and justifying the single-field approximation.

Although the fixed point w is a promising candidate for the potential vacuum, the residual symmetry
preserved at this point complicates addressing the lepton flavor problem within this framework. It
has been noted that a slight deviation from this fixed point can naturally account for the lepton mass
hierarchy and CP violation [143, 144, 153, 170, 171].

In this chapter we will construct an inflationary potential with a minimum located at T = 7 (cf.
eq.(5.8)). Inflation occurs around the fixed point 7 = i and then oscillates around the minimum of
T = 71, after inflation, during the reheating process. Building on the previous chapter 4, we continue to
analyse the most general superpotential in eq.(4.5). As before, we treat A(S, S) as a free parameter
and use a special form of H(7) to realize inflation:

. . 2
H() = (j(7) = j(1))? [1 B (1 - M) vy (1 - ](T)) ] , (5.10)

1728 1728

where the first part (j(7) — (TO))2 is used to determine the vacuum position of the potential. In this
setup, the scalar potential vanishes at 7 = 7, as both H(7,) = H,.(1,) = 0. Since we can ensure
the potential is non-negative by setting A(S, S) > 3, 7, is a Minkowski minimum of the potential.
The rest ensures the flatness of the potential during inflation (around 7 = i). As we demonstrated in
Appendix A.5, T = w becomes a local minimum, while 7 = 7 is the global minimum of the potential.

The analyze of inflation dynamics does not differ from the previous chapter. To show some
representative examples for the inflationary predictions, we consider two benchmark parameters below.
The first one is the minimal case with model parameters

BPl: A=552783, B=06516, y=0. (5.11)
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Figure 5.1: Shape of the potential along the angular and radial directions with A = 55.2783, 8 = 0.6516 and
v = 0. The top-left panel depicts the inflation potential with p = 1, where 6 = 7/2 marks the starting point
of inflation. The top-middle panel provides a zoomed-in view of the inflation potential around the desired
minimum at 7 = 7. Note that § = 27/3 corresponds to a local minimum, whose potential energy does not
vanish, while 8 ~ 0.661x represents the global minimum. The top-right panel shows the radial potential with a
fixed angular coordinate, where the inflationary trajectory remains at the minimum in this direction. Finally, the
bottom panel is a contour plot of the inflation potential, with the red arrow indicating the trajectory of inflation.

We show the shape of this potential along the radial and angular direction in Fig. 5.1. Note T =i isa
saddle point of the potential. Its a local maximum in # direction and a minimum in p direction. Our
inflation trajectory lies in the valley of radial direction. The prediction for (ng,r) is depicted by the
black solid line in Fig. 5.2, along with constraints from Planck 2018, BICEP/Keck 2018, and BAO
data [51]. The two red dots correspond to N, = 50 and N, = 60, respectively. The predicted value
of r is of order 0(10_7), a typical feature for small-field inflation models [79, 88]. The prediction
for n lies within the 20" region of the Planck 2018 results. Note that a larger N, implies that the
inflaton field is closer to the saddle point, where the potential is flatter, resulting in a smaller r and a
more scale-invariant spectrum with a larger n,. Consequently, r decreases with increasing ng as N,
increases, as shown by the black lines in Fig. 5.2. The second benchmark example corresponds to

BP2: A =80.2435, p=0, y=-1.2314. (5.12)

The corresponding prediction is shown by the black dotted line in Fig. 5.2 with a slightly smaller 7. In
both cases, we find « is of order —0(10_3), and the predictions for g, as shown in Fig. 5.2, can lie
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Figure 5.2: The black lines represent the predictions for (ng,r) with model parameters: A = 55.2783,
B =0.6516,y = 0 (solid line) and A = 80.2435, 8 =0, y = —1.2314 (dotted line). The yellow shaded region
corresponds to constraints from the combined results of Planck 2018, BICEP/Keck 2018, and BAO data [51].
The small and large red dots indicate N, = 50 and N, = 60, respectively.

within the 20 range of the Planck 2018 results presented in eq.(2.44). To illustrate the difference, we
consider the central value of the spectral index ng = 0.9659. This corresponds to

r~1.6x107, a~-7.078x107%, (5.13)

for BP1, and
r~9.0x10%, a@~-7.083x107%, (5.14)

for BP2. For the number of e-folds, we find that N, ~ 52 and N, = 53 for BP1 and BP2, respectively.
Note that both BP1 and BP2 correspond to C, = 0.004 and C, = 0. The difference for the inflationary
prediction for » and « arises from higher order terms in the inflaton potential eq.(4.9). Note that the
two sets of benchmark parameters under consideration are representative of those that fit the CMB
observables.

As in the last chapter, the prediction for r is far below the sensitivity of next-generation CMB
experiments, such as CMB-S4, which has a sensitivity of » ~ 0(10_3) [178]. However, the prediction
for a negative running & ~ —O(10™?) could be tested within the sensitivity range of future CMB
measurements, especially when combined with significantly improved investigations of structures at
smaller scales, in particular the so-called Lyman-a forest [113].

Before closing this section, we note that the total energy scale of the inflaton potential depends
on the overall pre-factor A in eq.(4.9), which is a function of the value of A. Larger A corresponds
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to smaller A, implying a smaller inflaton mass parameter. For example, for BP1 and BP2, we find
mgy = 4.5 X 10’ GeV and m o = 39X 10° Gev, respectively. This suggests that the inflaton mass
changes with the value of A. If we insist on the monotonic inflation potential between 7 = i and 7 = 7,
A should be larger than 43, which gives us an upper bound on inflaton mass m, < 1.5 X 10® GeV.
This bound only applies to the special form of H function in eq.(5.10). We note that the inflaton mass
could be larger in other inflationary scenarios based on modular symmetry [132, 179, 180]. We give a
toy model of large field inflations in the appendix.

5.3 Reheating from Modulus Decay

After inflation, the inflaton field generally oscillates around its minimum of the potential and eventually
decays into other particles in the Standard Model, which then thermalize, leading to a thermal bath.
This process is called reheating [181-184]. The temperature at the end of reheating is referred to as
the reheating temperature, which is the highest temperature2 of the radiation dominated era, can be
defined via H(T,) = %F¢, where I, denotes the inflaton decay rate and H(7;,) denotes the Hubble
parameter at T = T,. This gives [90]

2 (10\'/*
1] :J;(Z) Mplr s (515)

T

where g, is the number of relativistic degrees of freedom contribution to the total radiation energy
density. It reads g, = 106.75 in the Standard model and roughly doubles in the MSSM, g, = 228.75.

After inflation, the Hubble scale of the universe decreases significantly during the oscillation of the
inflaton field. Specifically, the relevant energy scale becomes much smaller than the Planck scale.
Therefore, in the next section, it is sufficient to work in the global SUSY limit and neglect SUSY
breaking effects. On one hand, SUSY breaking is highly model-dependent; on the other hand, for the
canonical choice of a SUSY breaking scale around O (1) TeV, the mass splitting between particles and
sparticles is not expected to significantly affect our results. Additionally, the expansion of the universe
can also break SUSY, at the scale of the Hubble parameter [97, 187-190]. As mentioned above, the
Hubble scale during reheating is approximately equal to the decay width of the inflaton and does not
exceed O(1) GeV, provided the reheating temperature remains below 10° GeV. SUSY can also be
broken by thermal effects, see [191] for a possible application in cosmology. This effects will also be
small due to small Yukawa coupling in the neutrino sector. Hence, we will perform the calculation
using the same mass for particles and the corresponding sparticles.

Decay Channels and Reheating Temperature

In this section we analyse the possible inflaton decay channels within the current setup, with which we
aim to compute the reheating temperature.

We first evaluate the couplings in the SM sectors, where one can obtain the three point and four point
vertices by expanding the mass matrices and Yukawa terms around the minimum of the canonically

% We note that the maximum temperature can exceed T, in non-instantaneous reheating scenarios [185]. It has also been
shown that if reheating occurs via inflaton decays to heavy neutrinos, the temperature approaches a constant, causing the
maximum temperature to be close to the reheating temperature [186].
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normalized field ¢. Three point vertices arise from inflaton-(s)neutrino-(s)neutrino interaction, and
their Lagrangian reads’:

1A 1A%
L= 2MN/I”¢>N NS +§M—/1”¢N°*N +hec., (5.16)
p!

where N{ is the right handed neutrino and N is the right handed sneutrino. We work in the basis
where right handed neutrinos mass matrix is diagonal, and the coefficient matrices A i , for benchmark
values of the free parameters in eq.(5.8) read:

3 dy ij 1.248 + 0.490i 1.420i -1.017
a7 U};d—NUN] = 1.420i ~1.863 +0.517i 1.080i ,
¢ =, -1.017 1.080i -0.616 + 1.006i
5.17)
and

3 a1 3423 -0.106i —4.262
A UL+NUN] =| 0.106i -5390 -1.481i |. (5.18)

¢ pmo, \ —4262  1.481i  —3.470

The relevant two-body decay widths are given by
2 2 2
My Ay ij[? M; + M; ijy2, MiM;
(¢ > NNS) = —2 1- —— ] —2Re[(AV) ] L
Y 8(1+9; )” M, ! m%p : mé
M; - M;)? M; + M;)?

XJ(1_¥) (1_¥), (5.19)

Mg Mg

ij? 2 2

o A Y M; - M; M;+ M,

e e | Lol LR R
M, 167tm my my

where M; and M; denote the right handed neutrino masses. We note when M; + M; — m, the
two-body rates vanish, as expected due to the kinematic threshold.
Analogously the Lagrangian relevant to the three body decay of inflaton is given by

Ay Ay Ay
L="¢N(L, -H)+-—¢N (L, -H)+——¢N(L, H,)
ANy o
+ 4M—N¢N;*(Lj ‘H,) +hec., (5.21)
pl

T T
where L; = (Vj,lj) ,H, = (H;r ,Hg) are SU(2) doublet and (L, - H,) = ijg - le;. The

3 We refer to Ref. [192] for a detailed discussion on sneutrino mass matrix and Ref. [193] for Feynman rules in 2 component
notation.
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contraction is the same for slepton L and higgsino H.

The coefficients matrices in eq.(5.21) read:

B 4y ij —0.490 + 1.248; —1.347-0.124i  —0.003 + 0.748i
Ay U]Tvd—DUz =| -1.492+0.124i —0.517 — 1.864i 0.830 g1
¢ ¢=¢, \ —0.003—1.288; —1.328—-0.001i  1.006 + 0.616i
(5.22)
t ij 2.921i  -0.225  3.902i
A= U, d(ygy’) ) Uy =| -0.849 4896 -1.831 |g,. (5.23)
¢ om0, \ —5.404i —1.827  3.462i

The decay width reads (see Appendix A.7 for details):

T(¢ — NE(L; - H) =T(¢ — NE(L, - H))
2 m:;)
7687°

ij
A
Mpl

=2X

[1 by + 3 + 20 — 61 log(,uN)] . (5.24)

where we use (L; - H) to indicate there are two possible final states v jHS or/ jH;' . The factor 2
accounts for two terms in SU(2) contraction. It is also possible that inflaton decays into sneutrino,
and the rates are

2
1]
[(¢— Nf(L; H)) =2x |-
pl
3
My 2 3 2
e [1 +9un = iy — iy + Opy log(uy) + 6uy 10g(ﬂN)] ; (5.25)
T
ATA ? m
SC /T N
(¢ — NI, H)) =2x | - [1—y%V+2uNlog(uN)], (5.26)
M, 512n

where uy = Ml-2 / m?b The three-body decay rate approaches zero when u, — 1, which is expected,
as the decay channel becomes kinematically blocked in this case.

By comparing the decay rates, we find that the channel in which the inflaton decays into two right-

2
) GeV < M, < m,/2.

Mg

handed neutrinos (i.e. €q.(5.19)) dominates in the regime 0(102) (m

)

For M, < 0(102) (m)z GeV and m /2 < M; < m, the three-body channels eq.(5.24) and
€q.(5.25) dominate. The decay widths discussed above are suppressed by the ratio of the inflaton
mass to the Planck mass. Consequently, if the inflaton decays only into Standard Model particles, the
reheating temperature remains relatively low.

In Fig. 5.3, we show the reheating temperature as a function of the lightest right-handed neutrino
mass, M, for various inflaton masses: m 6= 102 Gev (solid red), m 6= 10'° Gev (dashed red),

mgy = 108 Gev (dash-dotted red), and m 6= 3% 10° GeV (dotted red). These results are obtained by
summing over 54 channels from the two- and three-body decays discussed earlier. Larger inflaton
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Figure 5.3: Reheating temperature as function of the lightest right handed neutrino mass M and inflaton mass
m , by considering inflaton two and three body decays.

masses correspond to higher decay rates, resulting in larger reheating temperatures (cf. eq.(5.15)).
This explains why the solid red line with m = 10'% GeV lies above the lines for smaller inflaton
masses.

2
As mentioned above, in the regime M; < 0(102) (10":)1%) GeV, the three-body channels,

egs. (5.24) and (5.25), dominate, resulting in T, oc 4/M;. Beyond this regime, T, o M, due to the
dominance of the two-body rate, eq.(5.19). This explains the change in slope of the red lines when
Mg

M, = 0(10°) (1o‘°GeV
dotted line, where T,;, = M. It is also evident that within the current setup, the reheating temperature
remains below the mass of the lightest right handed neutrino. We also note that the red lines feature a
kink as M| — m, /2, where the three-body decay becomes dominant in this region.

To preserve the successful predictions of Big Bang Nucleosynthesis (BBN), it is required that
T4, > 4MeV [165-168]. Therefore, T;, < 4MeV is disallowed, as indicated by the gray region in
Fig. 5.3. For the current model setup, we find that the inflaton mass must satisfy m, 2 3 X 10° GeV
to be consistent with BBN constraints. We note that our inflationary setup satisfies this condition as
discussed at the section 5.2.

Given that the inflaton dominantly decays to right-handed neutrinos, we also investigate the
possibility of realizing baryogenesis via non-thermal leptogenesis in the next section 5.3.1. We find
that achieving this within the current small-field hilltop inflationary framework is highly challenging
due to the suppressed inflaton mass and low reheating temperature. A large-field inflationary scenario
may provide a more viable solution. We leave this for a future work.

) GeV. The change in slopes is evident when compared to the reference black
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5.3.1 Baryon Asymmetry from Non-thermal Leptogenesis

In this section, we discuss baryogenesis via leptogenesis [194, 195]. There are two possible scenarios
depending on the relative magnitudes of the reheating temperature, 7, and the right-handed neutrino
masses. If the reheating temperature is high enough for the thermal production of right-handed neutrinos
to be efficient, the subsequent out-of-equilibrium decay of these neutrinos can generate a baryon
asymmetry through the sphaleron process. This mechanism is known as thermal leptogenesis [196].
In thermal leptogenesis, inverse processes act as washout effects that suppress the resulting asymmetry.
Consequently, thermal leptogenesis typically requires a high reheating temperature, which can lead to
the gravitino problem [197-199]. On the other hand, if the reheating temperature is low, the thermal
production of right-handed neutrinos will be Boltzmann suppressed. However, it has been noted that
the inflaton’s non-thermal two-body decay into pairs of right-handed neutrinos can still account for
the baryon asymmetry of the universe [173, 174, 200]. More recently, it was shown that the inflaton’s
non-thermal three-body decay can also successfully lead to leptogenesis [90].

For baryogenesis via leptogenesis, it is typically required that the reheating temperature be higher
than the electroweak scale to ensure the sphaleron process is efficient. In the current inflationary
setup, the inflaton mass has been shown to be smaller than 0(108) GeV, as discussed at the end
of section 5.2. Consequently, the reheating temperature remains below O(100)GeV, assuming the
inflaton decays into neutrino channels (cf. Fig. 5.3). Nevertheless, given the novel feature of the
current lepton flavor model, which not only resolves the lepton flavor puzzle but also naturally provides
channels for reheating, it remains interesting to investigate the lower bound on the inflaton mass that
would lead to the observed baryon asymmetry of the universe (BAU). To this end, we treat the inflaton
mass as a free parameter.

As discussed in the previous section, in our scenario reheating temperature is lower than the lightest
right-handed neutrino mass, which implies that the thermal leptogenesis is suppressed in our scenario.
In this section, we will focus on the non-thermal case, the produced baryon asymmetry from right
handed neutrino decay can be estimated as [90, 173]:

8 3T,
Yp = nTB = =53 X é_lm_rz, Z € X [2Br(¢ — N; + N;) + Br(¢ — N, + others)| , (5.27)
where i sums over all the right handed neutrinos produced from inflaton decays. The first factor —8/23

is the conversion factor which transfer lepton asymmetry to baryon asymmetry [201, 202]. The ¢;
measures the asymmetry in the right handed neutrino decays:

B I'(N; - H,+L)-T'(N; — ﬁu +Z) (5.28)
I'(N, >H,+L)+T(N, > H,+L)’ '

4

€;

where the decay process should also include SUSY channels. i.e. N; — H,, + L. In our model, we
have two semi-degenerate right handed neutrinos M; = Ay (1.372,1.447,2.818). This leads to an
enhancement of ¢;, which should be evaluated as [203]:

m{(hh")} (M- MBM, Ty 529)
€ = .
l T T 2 252 22

(W) (hhY);; (M7 = M2)* + M2 T,
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where i, j runs over 1,2 in our model. When i = 1, one should take j = 2 and vice versa. & is the
Yukawa coupling between right handed neutrino, lepton and higgs field. In the bases where right
handed neutrinos are diagonal, it reads:

1.372i  —0.347  0.009i
h=ULY,UY =| 0347 14470 0001 |g,. (5.30)
0.009 —0.001 -2.818i

Iy, is the decay width of right handed neutrinos. At tree level, it reads:

(hh"),;
[y =——4%M (5.31)

i Arx i
We note that the decay of sneutrinos can also generate a CP asymmetry, analogous to eq.(5.28).
However, their contribution to the BAU is small due to the domination of the branching ratio into
heavy neutrinos from inflaton decays (cf. eq.(5.19) and eq.(5.20)). The BAU at present is given by
[204]

np= 8oL (”—B) ~7.02% Y, (5.32)
n, My ) S
where n,, = 24(3” is the photon number density and s = 45 g*sT corresponding to the entropy

density. The subscrlpt 0 refers to the current time, where T = T, ~ 2.73 K and g, , ~ 3.9. Using the
baryon asymmetry of the Universe (BAU) value based on Planck 2018 [205],

P~ (6.143 £0.190) x 10717, (5.33)

we can obtain the required Y to match the observation, which is Y5 = &1 x %P ~8.75x 107",

5.3.2 Parameter Space

Now we have all the relevant ingredients to calculate the baryon asymmetry in this model. The
results are shown in Fig. 5.4. As an example, in the left panel, we consider an inflaton mass of
mgy = 10" GeV. The blue line represents the parameter space for 7, as a function of M, required to

yield Yz = 8.75 X 107", Note the branching ratios change with reheating temperature. To achieve
this, we treat Ty, as a free parameter. When considering inflaton two-body and three-body decays
account for reheating, the corresponding reheating temperature is shown as the red line. It intersects
the blue curve at M, =~ 5.3 x 10" GeV and T, ~ 6.1 x 10° GeV, as indicated by the blue dot, which
represents the allowed parameter space in our scenario when m j, = 10"* Gev. Varying the inflaton
mass shifts the intersection point of the red and blue lines. Moreover, we note that as M, — m,, /2,
the red line tends to merger with the blue curve due to the contribution of three-body decay to Y. In
other words, in the regime where M, < m,/2, two-body decays dominate, and three-body decays
take over when m /2 < M, < m,,. This also explains the features of the blue curve between the two
vertical black dotted lines. Finally, we note that M > T, validating the assumption of non-thermal
leptogenesis.

In the right panel, we show a (m 4, M) scan that results in Y = 8.75x 107" (red), Y5 = 8.75x107 "
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Figure 5.4: Left panel: T}, as function of M to yield Y5 = 8.75 x 10" with m,, = 10'* GeV (blue line) by
considering T, as a free parameter. The red line corresponds to the minimal reheating temperature in our
scenario. Right panel: (m ,, M;) scan by assuming the minimum reheating scenario, i.e. the reheating channel
also sources leptogenesis with Y = 8.75 x 107" (red), Y = 8.75 x 107! (blue) and Y, = 8.75 x 107 '°
(green).

(blue) and Y = 8.75 X 10710 (green), assuming the reheating channel also accounts for leptogenesis.
We note that all the curves would approach to the black dotted line with M; = m,, as explained and
implied by the figure in the left panel. To explain the BAU observed in our universe, the allowed
parameter space is indicated by the blue curve, with the blue dot corresponding to the same point as
shown in the left panel. For a fixed Yp, in the region where M; < m /2, the inflaton mass scales as

mgy o< M 12 , as shown in the right panel of Fig. 5.4, due to the dominance of two-body decays. We find

that a lower bound on the inflaton mass around m 4 2 101 GeV is required to explain the entirety of
the observed baryon asymmetry, as shown in the edge of the blue line in the right panel of Fig. 5.4.
This also implies the lightest right handed neutrino mass should satisfy M, > 10" GeV to give rise to
the observed BAU.

We note that the lower bounds mentioned above could be relaxed if we assume that the non-thermal
leptogenesis under consideration accounts for only part of the observed baryon asymmetry. For
instance, m, can be as small as 10" GeV if we assume that non-thermal leptogenesis contributes only
10% of the BAU, as demonstrated by the red line in the right panel of Fig. 5.4. For a much smaller
inflaton mass with m 4 < 10® Gev (corresponding to a very low reheating Ty, < 100 GeV), it is very
challenging to generate a sizable contribution to the observed BAU. An alternative way forward is to
investigate the possibility of raising the inflationary scale, such as through large field inflation [45, 89,
206, 207], which could give rise to inflaton mass as larger as 0(10") GeVv.

Recent developments in realizing large-field inflation within the modular invariant framework are
discussed in Ref. [132] for Starobinsky inflation and Refs. [179, 180] for the a-attractor scenario. In
these frameworks, the reheating temperature could be higher due to an increased inflaton mass scale,
potentially facilitating successful baryogenesis.
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5.4 Summary and Conclusions

In this chapter, we present a minimal model that attempts to simultaneously address the lepton flavor
puzzle, inflation and post-inflationary reheating based on modular symmetry. We show that all the
three aspects can be achieved collectively through the modulus field, without the need to introduce
any additional new physics.

In the lepton sector, we employ a Type-I seesaw modular A, model to explain the smallness of
neutrino masses. By assigning the standard mode (SM) fields and right handed neutrinos (RHNs)
different modular weights and irreducible representations, modular symmetry determines the possible
forms of the Yukawa interactions. After the modulus field acquires a VEV, modular symmetry is
broken, and the Yukawa coefficients become fixed. We find that the VEV 7, = —0.484747 4+ 0.874655i,
located around the fixed point w = 273
sectors as demonstrated in section 5.1.

We show that the same scalar potential that fixes the VEV of the modulus field can also account for
inflation. To this end, this scalar potential must be sufficiently flat in a certain region. We consider
inflation occurring around the fixed point 7 = i and inflaton oscillating at T = 7, which can be realized
with an appropriate superpotential, as demonstrated in section 5.2. In this setup, the inflationary
trajectory follows the arc of the fundamental domain, as shown in Fig. 5.1, where the special properties
of modular symmetry are maximally pronounced. Consequently, the inflationary scenario is similar to
the hilltop model. We find that the model can perfectly fit the CMB observations, featuring a very
small tensor-to-scalar ratio r ~ O( 1077). Additionally, the prediction for the running of the spectral
index, @ ~ —O( 10_3), could be tested in the near future.

Any viable inflationary scenario must also explain how the Universe reheats. A novel feature of
our setup is that the channels for post-inflationary reheating are automatically generated to explain
the observations in the lepton sector. In particular, the expansion of the modular forms around the
minimum gives rise to interactions between the inflaton and other particles, including the SM Higgs,
leptons, and RHNSs. After inflation, the inflaton decays through these channels, which can reheat
the universe. We compute all relevant channels, including inflaton two- and three-body decays. We
find that, due to the Planck-suppressed interactions, the reheating temperature tends to be low unless
the inflaton mass is larger, as depicted in Fig. 5.3. The highest reheating temperature occurs when
the RHN masses approach their kinematical threshold. Interestingly, we find a parameter space that
yields a sufficiently high reheating temperature to preserve the successful predictions of Big Bang
Nucleosynthesis (BBN). This requires the inflaton satisfy m , > 0(10°) GeV.

We further explore the possibility of explaining the baryon asymmetry of the Universe (BAU) via
leptogenesis in section 5.3.1. We apply the non-thermal leptogenesis mechanism, as the temperature
in our framework is lower than the RHN mass, implying that the thermal production of RHNs is
Boltzmann-suppressed. We find that, in order to account for the observed BAU, the inflaton and the
lightest RHN masses must satisfy m , 2 0(10“) GeV and M, > 0(10“) GeV, as shown in Fig. 5.4.
We note that the small-field hilltop inflationary model considered in the current setup cannot satisfy
this condition. An interesting direction is to explore other inflationary setups, such as those presented
very recently in Refs. [132, 179, 180]. Although our current setup does not fully account for the BAU,
we believe that our approach provides a valuable basis for further exploration of post-inflationary
cosmology within the framework of modular invariance.

, can successfully reproduce SM observations in the lepton
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CHAPTER O

Gravitational Dark Matter Production in
Supergravity a-Attractor Inflation

In this chapter we will study a different mechanism to produce dark matter (DM). This is known as the
gravitational particle production (GPP), where inflation source particle production due to the time
evolution of the background spacetime [58, 208].

GPP is inevitable for any degree of freedom as long as it couples to gravity. This production channel
can contribute significantly to the DM abundance, and can generate subsequently DM isocurvature
perturbations. For a comprehensive review, we refer to [209]. If gravity is the only interaction between
DM and the Standard Model (SM) particles, DM from GPP will never be in thermal equilibrium
with the rest of particles, unlike canonical thermal freeze-out mechanism. GPP has been extensively
studied in the past decades, leading to a rich phenomenology for scalar and higher spin fields [208,
210-231]. Meanwhile, analytic treatments to track particle production have been developed in certain
cases [232-242].

Although the precise results of GPP depend on the inflation model, some general statements can be
made without specifying inflation dynamics. For a scalar field y lighter than the inflation scale H,, its
number density spectrum will feature an infra-red (IR) divergence, which has to be regulated through
a cut-off in momentum space. Its isocurvature spectrum will be almost scale-invariant, which might
conflict with CMB observations. In contrast, if the field is heavier than H,, its number density will
converge without cutoff, and the isocurvature signal can be negligible.

Since gravitational interactions at sub-Planckian energies are weak, the above conclusion can be
easily modified. Corrections may appear from various sources. Introducing a non-minimal coupling
between DM and gravity can greatly change the efficiency of GPP. A conformally coupled scalar
experiences less GPP, has no IR divergence and leaves negligible isocurvature perturbations at CMB
scales, larger interaction will enhance the GPP production [214, 234, 243-246]. Introducing a direct
coupling between the inflaton field and DM leads to a similar effects [247, 248]. In this chapter we
would like to focus on another possibility, where such corrections comes from supergravity (SUGRA)
effects.

SUGRA is a local gauge theory of supersymmetry (SUSY), which generally predicts non-
renormalizable interactions between the inflaton field and DM. These interactions can play a significant
role in cosmology [249-253]. The previous study of GPP in SUGRA setting focuses on the case
where m v > H [254] (which comes from their inflationary model with H; < m ) and we would
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like to have a comprehensive understanding of the entire parameter space. Even for light DM, SUGRA
correction lifts its effective mass naturally higher than the Hubble scale. This correction has the same
origin as the n-problem in SUGRA inflation research [97].

In this chapter, we focus on the a-attractor model, which is realized in SUGRA using a stabilizer
field [255, 256]. This framework allows us to introduce an arbitrary SUSY breaking scale m3,. Even
though for the canonical choice of m3,, ~ 1TeV, its impact on GPP can be safely neglected, it is
still interesting to investigate how a larger m3,, could change GPP. Compared with previous study,
our model can have m, ~ H;, and our embedding of e-attractor model also introduces additional
contributions to the (effective) mass of the DM field. We numerically calculate the number density
of a scalar DM, as well as its isocurvature contribution. Compared with non-SUSY GPP, SUGRA
models need a higher reheating temperature to produce the same amount of DM.

In this chapter, we use the reduced Planck mass M, = ( 87TG)_1/ 2 =244 x 10" Gev, except in
section 0.1.3 where the Planck units are used, i.e. M, = 1. This chapter is organized as follows. In
section 6.1, we introduce the inflation model, the basics of GPP, and show how to embed our model in a
SUGRA framework. Numerical results for GPP are presented in section 6.2 and its phenomenological
consequences are discussed. Section 6.3 contains our conclusion and outlook of this work. We give a
short derivation of DM relic abundance in Appendix A.8.

6.1 The Framework

6.1.1 Inflation Model

For the purpose of this chapter, its more convenient to work with conformal time 7. It is related
with the cosmic time ¢ by dt = adt. The equation of motion of the inflaton field and the Friedmann
equations of first and second kind are

Y
¢" +2aH¢ +a2% =0, (6.1a)
7\ 2 72
1
H? = (%) == (% + v) , (6.1b)
pl \<d
144 1
a_ (4a2v _ ¢'2) , (6.1¢)
a  6M;

where the ” denotes the derivative with respective to conformal time 7 and H is the conformal Hubble
parameter.

In this work, we investigate the possibility that T-mode a-attractor is the inflation model, which can
be easily realized in the SUGRA context, see section 6.1.3. It has the following potential [257]

V,($) = V, tanh®" (\/%) . (6.2)

Here, the potential parameter o has a mass dimension 2 and controls the inflationary predictions of the
model. V;, has mass dimension 4 and is related with inflation Hubble scale. We use n = 1 throughout
this chapter. The slow roll parameters for this model are
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oMo !
Y 3a sinh2(¢/\/@) coshz(qﬁ/\/@) ’
_ My (1 - tanh® (¢/V6a))? - 2 tanh® (¢/ V6a) (1 — tanh’(¢/V6a))

3a tanh?(¢/V6a)

(6.3)

Ny

The spectral index of the scalar perturbation n; can be given by the two slow-roll parameters at the
CMB scale
ng=1+2n, —6e€,. 6.4)

Here we denote quantities at such scale with subscript ,. Any viable inflation model has to give a
consistent prediction on ng with the observed value, n, = 0.965 + 0.004 by Planck 2018 [44]. One
can use n; to compute the field value ¢, at the CMB scale [258]

2 2 4

¢* 1 4 Mpl 2 8 Mpl 16 Mpl
e - leno+ P =n)?+ 22 1oy + =222 (65
cos (\/—60) 20-ny| 73 a (I =n) 43 (U-n)+3 o2 6.5

The potential parameter @ can be expressed in terms of the tensor-to-scalar ratio r and the spectral

index n
64
== L M. (6.6)
38 =n)-r)y—r
Currently, the BICEP/Keck 2018 results only impose an upper limit on r [51]
r <0.036 at95% C.L.. (6.7)

This can be transferred into an upper bound on @ < 20 Msl. At last, the energy scale V|, can be
determined by the normalization of the curvature perturbation power spectrum A [49]

_ 1 Vv 1
A=(21+0.1)-10 9=—2—4— (6.8)
247 Mpl €y b=,

There are two important energy scales associated with inflation, the first one is the Hubble scale during

inflation
V
H ~ . (6.9)
3Mpl

The second one is the inflaton mass m e which reads

W
T 3’
$=0

my = — (6.10)

The ratio between the inflation Hubble scale and inflaton mass Hi2mc/ mé =af Mgl depends on the
potential parameter @. Thus, the DM field can have mass much lighter than the inflation scale
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m, < mgy~ Hy.
The end of slow-roll inflation is marked by either one of the magnitude of slow roll parameters
being unity. The field value ¢, at the end of inflation can be obtained through

2M; sMy (M
pl 2ol el
¢e) 1+ = +\/1+3a (60 ], a<q

6.11)

2 cosh® (
6a

with @; = 0.17M§1.

6.1.2 Gravitational Particle Production

In addition to the inflaton field, we also assume there exists a spectator scalar field y with the following
action

1 y
Se=-5 / dy v=g (2§X2R + 88,0, x + mf()/) : 6.12)

where g is the determinant of g” and R is the Ricci scalar. Higher order self-interactions of y have
been neglected and m)z( could be a function of other fields. Here, we use the FLRW metric with
conformal time.

We can rescale the field y(7) = a(7) x (7). Then, after Fourier decomposing the field y through
comoving momentum k

-4 d377 l'_'." ~ >
p(k) = / " TR, (6.13)
(27)
its equation of motion turns into the equation for the mode function v, = v (k)
Wit =0, wl=k+dmd g=k +a*md —(1- 65)% , (6.14)

where k = |7€| and spatial isotropy is assumed. In this work, we only consider vanishing coupling
(to gravity) ¢ = 0. When a)i varies non-adiabatically with time, the field y can get excited and
corresponding particles are produced.

The same phenomenon can also be understood in terms of the Bogoliubov coeflicients. Assume
that the spacetime is asymptotically flat at early and late times. The Bogoliubov coefficients describes
how the orthonormal basis functions at early and late times relate to each other. The eq. (6.14) can be
formulated in terms of the Bogoliubov coefficients @, and S,

’ ’

’ Wi« ’ % W
XV = 5= ViBrs Bivk = 20 Kk (6.15)
k k

\/;Tkexp(—i/ka d‘r'). (6.16)

We note it is more numerically efficient to solve eqgs. (6.15) instead of eqs. (6.14), except in the
presence of tachyonic instability.

with

vp(7) =
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The comoving number density spectrum of y field is given by

fo (k1) =181 (6.17)

and the comoving number density can be obtained from it by

1
a’n, = e / dk k> f,, (k, 7). (6.18)
JT

We assume that the comoving number density doesn’t change after production and y field behaves as
the cold DM. The comoving energy density can be approximated as

1
a'p, = = [ akkig o (6.19)
T

where we only include terms up to second order in |83, | and ignore the terms suppressed by the Hubble
parameter and Ricci scalar (which decay away quickly).
The produced y field also generates isocurvature perturbation. The isocurvature power spectrum is
defined as ;
1k -
A5 = = [ &7 T (6p(0)5p(P). (6.20)
p 2m
where we have decomposed the energy density p(7) = p + 6p(7). Their time-dependencies have been
omitted. The isocurvature power spectrum can be written in terms of the mode functions [209, 213,

259]

1K ,
A% (n, k) = oy / @k 10 Ploxp g +a*m Lo Pheg_g P

(6.21)
2 2 * * * *
+a'm (Xk,axk,)(“;,_,glax‘z,_,;l +Xk’an’X|12'_1}’|aX|E’—l§|) ] .

as well as the Bogoliubov coefficients with momenta relabeled through (k, k’, |l? - I—c)|) — (k,p,q)
[248]

Wyl = e 2K [T an [ daq (18, ¢ el 8,8 0 ] 622
T (alp) 2o kep ’ Trirfalat

6.1.3 SUGRA Embedment

In this section we discuss how to realize « attractor models in a SUGRA framework. Recall the scalar
potential reads:

V8L = ~K 50,6 3 ~ V.

. (6.23)
V=e («“ﬁp(;wz)ﬁ(w 3w,

The factor e’ in the scalar potential leads to the so-called n problem in early studies of SUGRA
inflation [97]. For any field with canonical Kihler potential K = ®®, the second order derivative of
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the potential:
oV
0po¢
leads to a O(1) slow roll parameter n,, = V"' /V ~ 1. This holds true for the possible inflaton field
and any other fields present in the Kéhler potential. In this chapter, we will assume this correction
indeed exists for DM field, which means DM gets an effective mass on the order of the Hubble scale

during and after inflation. As we will show in this chapter, this significantly alters the results for GPP
production of DM field.

~ V + others... (6.24)

One elegant solution of the i problem is imposing a shift symmetry, which ensures that the inflaton
field doesn’t appear in the Kihler potential. In this way, one can realize most inflation models in [260].
To embed the aforementioned inflation model in , we use the formalism proposed in [255, 256], which
can accommodate an arbitrary inflationary model with arbitrary supersymmetry (SUSY) breaking
scale. Our model thus has three superfields: the inflaton superfield @, the stabilizer superfield S and
the DM superfield y, with the following Kéhler potential K and superpotential ‘W

1 - _
K(@.S,x) = —5(® = B)* + 55+ x¥.
. (6.25)
W(®.S.x) = f(®) +S(®) + 5m, "

We also assume both Im(®), S, ¥ = 0 during inflation as in [260]. The Kihler covariant derivative of
each field reads

DeW = f(®) + g'(®)S - (© - D)W,
DgW = g(®) + SW, (6.26)
D W=mx+xW.

We set g(®) = V3 £(P). Up to second order in y and ignoring the contribution from Im(®) and S,
we have from eq. (6.23)

1 1 a a 1 o
Ve =mixt = 3m 7 f = smF+x@ (17 + 7 7). (6.27)

where f’ f " = V,(¢) is the inflaton potential and ¢ = V2Re(®) is the actual inflaton.

For a attractor inflation defined in eq. (6.2), the f function has the following form

F(®) = \3aV, log (cosh(\/%)) + % . (6.28)

In the global Minkowski minimum where © = 0, the SUSY is broken in the S direction. We have:
2
IDgW|" =3I WP =m3,. (6.29)

We can split the complex DM field into two real fields, y = (xg +ix;)/ V2, with the following mass
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Figure 6.1: Terms in eq. (6.31) evaluated at the end of slow-roll inflation as functions of @. The colored lines,
from bottom to top, are me(¢e)/mi, with mX/md, =0.1,0.4, 1, 3. The discontinuity at @ = @; comes from
eq. (6.11), as different slow roll parameters €y, = 1 and 17y, = 1 are used on both side of a;. This figure is simply
for illustration purpose; the discontinuity plays no role in our final results.

term:
2 2 2
myg=m,+Vy+ If1" = me, (6.30a)
ml =my AV |f m, f (6.30b)

where we have used f € R as only Re(®) is non-zero during and just after inflation and there is no
mixing between the real and imaginary parts. After the rescaling ¥; = ay;, their effective masses read

e =@ (0 + B+ P, f). (6.31)

Compared with the effective mass in eq. (6.14), the first distinction is that we have H ? instead of
-a”’/ a>. Thisis a general feature of SUGRA correction and a result of eq. (6.24), see also [254]. As
we used a different implementation of inflation to account for SUSY breaking effects, two extra terms
|f |2 and m f arise in our calculation compared with [254]. We can roughly estimate the relative
strength of the last three terms at the end of slow-roll inflation using eq. (6.11). By normalizing them
to m 4, and taking m3,, ~ 0, we have:

H? ~ am> tanh? ( P ),
¢ ¢ Véa

1f(¢)I° = am}y - 3alog® (cosh (\%)) , (6.32)
m, f(¢,) = amfl, -3 (::—Z) log (cosh (%)) .

Whena > a;andm, < my, H_ is the dominant contribution to 7.eff among the three time-dependent
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terms. Taking @ = 1 as an example, we have

2 m m
H. ~0.2lam}, M ~ 0.6, Lfe) ~1.7(-2], (6.33)
He He md)

and the last two term are equally important to the Hubble term. However, contribution from the last
term increases with decreasing @. When a < «;, it could dominate the effective mass for a extended
range of parameter space. For @ = 0.01, Hg = osz,j , and the ratio reads:

2
|f(¢§)| ~0.14, m)(f(2¢6) ~ 6.29 (&) , (6.34)
H, H, Mg

In this case, as long as m, > 0.15m 4, the last term contributes most to the effective mass. This is
confirmed numerically in the next section. We also want to emphasize that the estimation is without
graviton mass contribution, and should be considered as conservative. Moreover, during inflation
¢ > ¢,, the relative contribution from | f |2 and m, f can be even larger.

6.2 Numerical Results

In this section, we show the necessary numerical results for calculation of DM relic abundance in
the current Universe. The first step is to solve the background evolution of inflaton field through
egs. (6.1). In practice, we use the slow-roll solution as initial conditions for the inflaton field. As
slow-roll inflation is an attractor, the trajectory converges to the “true” one after a sufficient time.
By choosing the above conditions for the background, we also need to ensure that every mode is
well inside the horizon upon simulation start and can be described by the Bunch-Davies vacuum

Xk = s Xi = , orequivalently, a, =1, 8, =0, (6.35)

where w; = w;(7;) is taken at the time of initialization 7; and it approaches k in the infinite past
T; — —oo. Consequently, long wavelength modes need to be initialized early. The largest scale
considered here is k/(a H,) = 1072, and it requires initialization at ~ 10 e-folds before the end of
inflation.

We show the relevant background quantities in Fig. 6.2. They are computed using the inflation
potential given in eq. (6.2) with a fixed tensor to scalar ratio r = 0.0035 (a = Mgl). For a better display
of data, the number of e-folds N = In a(¢), instead of the cosmic time ¢, is chosen as the time variable.
The scale factor has been rescaled so that the scale factor at end of inflation is unity a(z,) = 1, which
was determined by the condition that the first Hubble slow-roll parameter equals 0.1:

€ =

2= 2
H*  2M

H 1 (d¢)\ .
(W) =0.1. (6.36)

Here we use dot to denote derivative with respect to the cosmic time ¢ and the second equality follows
from the Friedmann egs. (6.1). Thus, the number of e-folds at the end of inflation is defined as zero.
The first diagram shows the evolution of the field value ¢(N). It smoothly rolls down to the minimum
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Figure 6.2: Background evolution: inflaton field value ¢, Hubble parameter H and Ricci scalar R, with a ~ M;l

corresponding to the tensor to scalar ratio r = 0.0035. The time variable has been transformed to number of
e-folds N(t) = In(a(t)).

at ¢ = 0 and starts to oscillate around it. This oscillation process induces the decrease of Hubble scale
H as well as an oscillation of the Ricci scalar R. During slow roll inflation, both two quantities are

more or less constants: .

R = -6 X —12H ~ constant. (6.37)
a
However, the Ricci scalar oscillates around zero after inflation, while H decays exponentially and
slightly oscillates. Note that the Ricci scalar R appears in the effective y mass for non-SUGRA case
in eq. (6.14), and the (square of) Hubble parameter H? for the SUGRA case in eq. (6.31).
Let us first consider the effective frequency squared without SUGRA correction; it takes the
following form during slow-roll inflation

R 2M?
wi =k*+d’ (m)z( + g) T2y (m)z( - plm%/,) , (6.38)
a

where the second Friedman equation in egs. (6.37) have been used. The last equality only holds during
slow-roll inflation. For light DM field, the oscillation of R leads wi to cross zero and thus induces a
tachyonic instability, especially for low momentum modes.

One can then solve the differential equation associated with w; to get the phase space distribution
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Figure 6.3: Phase space distribution of y quanta without SUGRA correction. In the vanishing mass limit, the
phase space distribution approaches |,8k|2 o« k7.

of the DM field. It proves to be more efficient to use eq. (6.14) due to the tachyonic instability. We
show some examples with different DM mass in Fig. 6.3. For light fields, the effect of the tachyonic
instability is significant, which leads to the typical scaling behavior in the low momentum region
[y & k>. In contrast, for heavier DM field, /, approaches a constant for small momentum. The
threshold DM mass is roughly the inflaton mass, as expected from eq. (6.38). Heavier DM fields are
generally harder to get excited. Their f, are much smaller than those of light fields.

Now let us consider the GPP of DM particles with SUGRA correction. The spectra for two distinct
values of mj , are shown in Fig. 6.4. The most striking feature is that the spectrum has no infrared
divergence. Due to the additional terms in the effective mass in eq. (6.31), the tachyonic instability
doesn’t exist in SUGRA case. Again, higher m, gives less y particles. When m, < mjy,, the spectra
is controlled by the inflation potential and size of m5 . All light fields share basically indistinguishable
spectra.

It is beyond the scope of the current work to have an analytic understanding of the particle number
spectra. For a qualitative understanding, the time evolution of the effective mass might give some
insights. We show the effective mass of DM fields during and after inflation in Fig. 6.5. The solid
and dashed lines are the effective mass of real and imaginary fields, respectively. We also plot the
effective mass with f(¢) = 0 to illustrate the difference from pure H 2 in effective mass as in [254].
Our estimate in eq. (6.32) is taken at time of end of slow-roll inflation, which corresponds to N ~ 1.66
in the plot, and agrees with numerical results. When ¢ < ¢,, the difference between the two cases is
even more pronounced, as the extra contributions increase faster with ¢ than H % term. The imaginary
field has higher mass during inflation and the rate of change in effective frequency is higher for
m, < m,. Thus, as one can see from the Fig. 6.4, in SUGRA the imaginary part has higher production

in such case. On the contrary, for m, 2 m,, the real part is produced in greater amount. When

My, < amgy/ M;l, the mass splittings prior to reheating are similar among ms ,’s, as the first term in
the f-function dominates, see eq. (6.28). Although the splitting at the end of the particle production
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Figure 6.4: Phase space distribution of y quanta with m3,, = 0 (left) and m3, = 0.1m 4 (right). Dashed line
represents the imaginary field and solid line the real field.
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Figure 6.5: Effective mass squared in the appropriate units with m3,, = 0.0 (left) and ms,, = 0.1m 4 (right)
respectively. Solid (dashed) line is for effective mass of real (imaginary) field. Dotted lines are the effective
mass with f = 0 (which is the effective mass in [254]).
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clearly depends on the gravitino mass

2
m m m
2 2 3/2 327y
mypp=m,+—/—F ———, (6.39)

ERNG

the ultimate rate of change for m)z(’eﬂr and wi are largely unaffected by it. Thus, the phase space
distributions are very similar with light gravitino masses.

From the phase space distribution, the isocurvature spectrum can be calculated via eq. (6.22).
It has been shown (semi-)analytically that |/5’k|2 o« k73 (in the low momentum side) produces a
nearly scale-invariant isocurvature spectrum in the low momentum side and | ﬂk|2 oc const. gives
blue-tilted spectrum [261]. In the vanishing mass limit m, — 0, the isocurvature spectrum indeed
approaches scale invariance, see Fig. 6.6(a). This can be potentially dangerous when considering
CMB isocurvature constraints [213]. In the SUGRA case, the isocurvature spectrum always holds a K>
scaling in the low momentum limit. The spectra are shown in Fig. 6.6(b). Thus, the CMB isocurvature
constraint poses no limitation on the model parameters, when SUGRA corrections are present.

We show the energy densities of DM in the current universe in Fig. 6.7. We assume that the DM
particle does not interact with other (standard model) particles and their comoving number density
is conserved after production. Thus, its current energy density can be expressed as p, o ~ m,n, .
On the vertical axis, we use the energy density of the DM particles divided by the entropy density
and reheating temperature p, /(s9Ty,). This quantity is obtained from comoving number via the
eq. (6.40). To get the desired relic abundance QDMh2 ~ 0.12, we need

o .
20 4% 107°Gev. (6.40)

So
This means different m  ’s will need different reheating temperature to satisfy this condition.

The phase space distribution of non-SUGRA case scales like k™3 in the infra-red limit. This
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(b) With SUGRA correction and vanishing m3,. Computed
(a) Without SUGRA correction. Computed from the phase from the phase space distribution shown in Fig. 6.4. Only
space distribution shown in Fig. 6.3. the real field contributions are shown here.

Figure 6.6: Isocurvature power spectrum calculated using eq. (6.22).
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leads to an IR divergence in the total number density eq. (6.18) with n ~ fooo dk k™. To cure this
divergence, one can set an IR cutoff at CMB scale, since DM perturbations larger than the horizon
at recombination are just part of the background. As it is expensive to track modes across so many
number of e-folds in our numerical computation, we choose to extrapolate the phase space distribution
to the CMB scale. We take 60 e-folds of inflation since CMB scale. It can be shown that the final
abundance is proportional to the number of e-folds, if the number of e-folds is chosen differently. The
abundance without SUGRA correction can be found in Fig. 6.7. As we see, the abundance saturates at
the low mass limit, as expected from the phase space distribution in Fig. 6.3. The tachyonic instability
goes away with increasing m, , therefore, the abundance decreases rapidly.

The number density with SUGRA correction is more straightforward to compute and it is shown
in Fig. 6.7 with r = 0.0035. When m, < m 4, the abundance from GPP increases with m, linearly,
which comes from the linear mass dependency in energy density of non-relativistic particles. The
abundance then decreases exponentially when m, > m . There is an interesting bump for small m5,
around m, ~ m 4. This primarily comes from the real field contribution, and one can see this for
k/(a,m,) 2 1alsoin Fig. 6.4. As one can anticipate from eq. (6.32) and Fig. 6.5, the DM abundance
with f(®) = 0 (ala [254]) is more suppressed than ours, although not by much.

Mg/ = 0.00mg

Mgy = 0.01mg
o \ g/ = 0.10m,
— mys = 0.20mg
—— no SUGRA
=== mgs =00, f =00

10794

P/ (50Tm)
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10-13 4

10-15 4

my/my

Figure 6.7: Comoving energy density of the DM field y divided by the reheating temperature. Higher values
require lower reheating temperatures. The tensor-to-scalar ratio is fixed to r = 0.0035. Solid black line show
the abundance without SUGRA correction, while dashed shows the abundance with SUGRA correction but
f(®) =0,ala[233].

The abundances with various desired values of tensor-to-scalar ratio are plotted in Fig. 6.8. As
we wish y to be the only DM around, eq. (6.40) leads to certain reheating temperature for a set of
fixed model parameters (mj3,, m, and r). In SUGRA a high reheating temperature may lead to the
gravitino problem [197-199]. If ms3,, ~ 1TeV, this means an upper bound on reheating temperature
T, < 10°GeV. Our results are compatible with this bound. As implied in Fig. 6.7, required reheating
temperature Ty, for all values of r goes like m);l for small m, until m, ~ m, where the produced
comoving number density drops dramatically and high reheating temperature is necessary. Effects
of my, is still very minimal. Lower desired tensor-to-scalar ratio reduces the Hubble scale H,,
suppresses the GPP production and demands higher reheating temperature.
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Figure 6.8: DM abundance p, /(s¢7;,) and required reheating temperature for y to be the only DM. Different
colors correspond to different ms ), c.f. Fig. 6.7.

6.3 Summary and Conclusions

In this chapter, we looked at gravitationally produced DM particles with SUGRA corrections. The
a-attractor inflation model was chosen for this investigation. It is theoretically well-motivated and fits
the observation well. We solve the equation governing Fourier modes of the DM field, eq. (6.14), on
top of the evolving background. Then, the Bogoliubov coefficients are reconstructed and (its modulus
square) can be interpreted as particle number spectrum. In the vanilla scenario without SUGRA
corrections, the produced particle number decrease exponentially once the DM particles are roughly
heavier than the inflaton and there is clear tachyonic instability. However, the particle production with
SUGRA correction has some distinctive features. The phase space distribution shows no infra-red
divergence due to the lack of tachyonic instability. Computation of the current abundance, thus,
requires no cut-off. The isocurvature power spectrum is blue-titled (oc K ) and not constrained by CMB
isocurvature non-detection. The required reheating temperature is shown to increase with decreasing
tensor-to-scalar ratio r, and higher than non SUGRA cases. We also highlighted the difference from
the usually SUGRA scenario in [254]. In particular, we find that the SUGRA suppression is still
present even in models with m, ~ H;. Due to the additional contribution from the f-function, the
GPP suppression gets reduced.

There are a couple of directions for further investigation. We focus only on the a-attractor potential
with n = 1. One can then ask how different assumptions would change our results. The potential can
be written as V o« |¢|2" near the origin. This changes the inflaton mass (there is no quadratic term in
potential with n > 2) and the equation of state during the reheating phase changes. The formula (6.40)
is derived assuming matter domination for reheating. Additionally, there are non-linear phenomena in
the inflaton sector, which can further change the background evolution, see e.g. [262] and the review
[263]. In this work, the results are all computed numerically. One might gain additional insight by
deriving analytical results. How to incorporate non-minimal coupling in SUGRA setting would be an
interesting direction. Introduction of a non-minimal coupling to the scalar field famously introduces
massively different spectrum. It would be interesting to see such effects with SUGRA correction as
well. We leave these for further works.
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6.3 Summary and Conclusions

The y field does not have to be the DM; instead there are several other possibilities. GPP can also
be used as a portal to reheating the hidden sector [264]. GPP could also be an important channel to
produce the observed baryon-asymmetry, where heavy X particles are produced gravitationally, where
decay violates baryon number and CP conservation [265].

GPP can also be applied to other fields with higher spin. The spin-1/2 superpartner of y field will be
produced on an equal footing. As the expansion of the universe can also break SUSY characterized by
the Hubble parameter [97, 187-190], the mass splitting between scalar and its fermionic superpartner
becomes time dependent, which may lead to novel result. Another important example is the tensor
modes (spin-2 field) in the metric perturbations which (can) corresponds to the gravitational waves.
Gravitational waves are inevitably produced via the same mechanism as the scalar field: they have the
same dispersion relation as massless non-minimal scalar field (at least in the non-SUGRA case). The
only difference is that tensor mode has two polarizations. They would correspond to frequencies from

radiation-matter equality scale f,, ~ 5 X 1077 Hz to S ~ 200Hz (IOQTE}“ V) [209]. As the required
€

reheating temperature is different between SUGRA and non-SUSY case, these frequencies shifts to
~ 1 Hz — 10"*Hz in our model. It is well within accessible frequency ranges of e.g. LISA. However,
the energy density parameter would be ng’oh2 ~ 107" below LISA sensitivity [266].

95






CHAPTER [

Conclusions

The thesis contains a collection of work on the cosmology of the early universe, aiming to understand
the origin of our current observable universe. Based on the cosmic microwave background (CMB), it
is almost isotropic and presumably also homogeneous, contains dark matter (DM) that interacts weakly
with ordinary matter, and has more baryonic matter than antibaryonic matter. We use cosmic inflation,
where the universe experiences an exponential expansion, as a tool to understand the flatness of our
universe, as well as the origin of DM and baryon matter asymmetry. This includes inflation model
building, DM production after inflation, as well as their possible connection with supersymmetry and
modular symmetry.

We first study the inflection point inflation generated by a polynomial superpotential and a canonical
Kéhler potential under the supergravity framework, where only one chiral superfield is needed. We
find that the special form of the scalar potential limits the inflationary Hubble parameter to values
< 10'° GeV and the inflaton mass to < 10" GeV. We obtain analytic results for small field cases and
present numerical results for large field cases. We find the tensor-to-scalar ratio r < 1078 is always
suppressed in these models, while the running of spectral index a = O(—10_3) may be testable in
next-generation CMB experiments. We also discuss the possible effects of SUSY breaking Polonyi
term presented in the superpotential where we find a general upper bound for the SUSY breaking
scale for a given value of the Hubble parameter.

As the next step, we propose new classes of inflation models based on modular symmetry, where
the modulus field 7 serves as the inflaton. We establish a connection between modular inflation and
modular stabilization, wherein the modulus field rolls towards a fixed point along the boundary of
the fundamental domain. We find the modular symmetry strongly constrains the possible shape of
the potential and identifies some parameter space where the inflation predictions agree with cosmic
microwave background observations. The tensor-to-scalar ratio is predicted to be smaller than 10%in
our models, while the running of spectral index is of the order of 1074

We further use modular symmetry as an organizing principle that attempts to simultaneously address
the lepton flavor puzzle, inflation, and post-inflationary reheating. We demonstrate this approach using
the finite modular group A, in the lepton sector. In this model, neutrino masses are generated via the
Type-I see-saw mechanism, with modular symmetry dictating the form of the Yukawa couplings and
right-handed neutrino masses. The modular field also drives inflation, and inflaton-matter interactions
required for reheating naturally arise from the expansion of relevant modular forms. Although the
corresponding inflaton decay rates are suppressed by the Planck scale, the reheating temperature can
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still be high enough to ensure successful Big Bang nucleosynthesis. The same couplings responsible
for reheating can also contribute to generating baryon asymmetry of the Universe through non-thermal
leptogenesis. With the given couplings, successful leptogenesis requires the inflaton mass to be higher
than 10" GeV.

We also consider gravitational particle production of dark matter within a supergravity framework,
utilizing the a-attractor inflation model. The particle spectrum is computed numerically, and
the DM number density is obtained. We show how the DM mass, gravitino mass, and inflation
model parameters modify the results, and find the reheating temperature that leads to sufficient
DM production. In our setup, supergravity corrections suppress the efficiency of GPP, making the
isocurvature constraint significantly weaker compared to the normal case. With tensor-to-scalar ratio
ranging from 107 = 10* and DM mass from 10_2m¢ — m,, the required reheating temperature

should be around 10°GeV — 10’ GeV.

The models we have presented are only a small step towards adaquate answers to existing puzzles.
An improved understanding of nature requires advances in both the theoretical and experimental sides.
With more data from cosmological observations and, hopefully, collider experiments, we are awaiting
the final confirmation of whether SUSY is realized in nature and other novel ideas that provide a
compelling and systematic description of BSM physics.
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APPENDIX A

Appendix

AA

Relevant Modular Forms

In this section we discuss some useful modular forms which will present in our modular invariant
potentials, including Dedekind eta function, Eisenstein series and j invariant. We also list some
results related with our superpotentials.

Dedekind eta function
The Dedekind eta function is a modular function of “weight 1/2” defined as

nm=q"*[|0-¢" q=77, (A1)
n=1

which satisfies the identities (7t + 1) = ei”/lzn(r) and n(—1/7) = V=itn(r). The g-expansion
of eta function is given by

1/24[1

n=gq ~q-+¢ +q —q7-¢" +0(™)]. (A2)

At the modular symmetry fixed points T = w, i, the eta function takes the following values,

I'(1/4) L 318 132(1)3)

Eisenstein series
The Eisenstein series G, (7) of weight 2k for integer k > 1 are defined as [267]:

2k
Gou () =2220) + 27 Dy (A4

where {(z) denotes the Riemann’s zeta function, and o, (n) is the sum of the pth power of the
divisors of n,

o, (n) = Z dv, (A.5)

dln
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where d|n is shorthand for “d divides n”. The Eisenstein series G,; (7) are modular forms of
weight 2k for any integer k£ > 1. However, G,(7) is not a modular form and its transformation
is given by

G,(y7) = (¢ +d)*Gy(1) = 27ic(cT + d) . (A.6)

Note the modular functions G, (7) and the Dedekind eta are related by

On(t) _ i
n(r) ~ 4n

G,(7). (A7)
The modified weight 2 Eisenstein series 62 is defined by

~ 2r

G =G + —, A8
(0 =Gofm) + (AS)

which is a non-holomorphic function but preserves modularity. Consequently 62(7) vanishes

at the fixed points:

G,(i) = G,(w) = 0. (A.9)

Sometimes it is more convenient to work with the normalized Eisenstein series E,; (1), which
differ from G, in the normalization constant [267]:

_ Gy (1)
Ey(7) = 270 (A.10)
We provide some values of E,,; (7) relevant to this paper:
3 2V3
B0 = =, Ey(w) = T\/_ (A.11)
3r%(1/4
E4(l) = ﬁ, E4((1)) = 0, (A12)
Ve
6’T'*(1/3
E¢(i) = 0, E¢(w) = # (A.13)

As regards the derivatives of the Eisenstein series, Ramanujan-Shen’s differential equation [268]
is useful:

k-1
k-1
qEy_y = —————— Y £(2n)¢(2k = 2n)(EypEqp—op — Eo) > for k=2,  (A.14)
2k-2 271'2{(2/6—2); 2n=2k-2 2k
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where E};_, = dE,;_,/dq. The first several relations read:

, 1
qEy(q) = E(Ei ~Ey),
, 1
qE.(q) = §(E2E4 - Eg),
, 1
qE¢(q) = §(E2E6 - Ei) . (A.15)

Using the first identity in eq. (A.15) and d/dr = 27ig d/dq, we find the derivative of 62 is as
follows:

. 3
-~ in 2n
0,Gy(1) = —(E; —E)) - ——— . (A.16)
18 i(t—17)
and the numerical values of 0, @2(7) at the fixed points are
~ r%(1/4 ~
0,.G,(i) =—i ( /3) , 0,.Gy(w)=0. (A.17)
384n
The anti-holomorphic derivative of 62(7, 7) is
~ = 2n
0:G,(1) = =0.G,(7) = - — (A.18)
i(t—17)
the corresponding numerical values at the fixed points are
—~ = 7T
0:Gy(0| _=-0.Gy(r| _=iZ,
T=I T=I (A.19)

—~ = 2
afG2(7)| - —aTG2(T)| ) =i?ﬂ.

These relations are useful when calculating the derivatives of the scalar potential.

Klein j-invariant function

The Klein j-invariant function is a modular form of weight zero, defined in terms of Dedekind
eta function and Eisenstein series as follows [133, 137]

_3°5°Gi(n) _3°5° Gy(n)

. _ .24
](T) - 7'[12 7724(T) - 7-[12 A(T) [} A(T) = T] (T) ’ (AZO)
which implies
2
_ 945\ [ G¢(1) (945)2 Gi(7)
- 1728 = [ — =— . A21
1 (2776) 7712(7) 27%) A7) ( )

From eqs. (A.20, A.21), we can see that the two expressions of H function in eq. (4.6) and
eq. (4.8) are equivalent. Given the identity of eq. (A.10), j and j — 1728 can also be compactly
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written as 5

. J(n) =

E6(T) ’
n'* (1)

E4(T)
n° (1)

Jj(r) = 1728 = (A.22)

This j-function is a one-to-one map between points in the fundamental domain and the whole
complex plane. At the fixed points, one has

jio) = 400,  j(w) =0,  j(i)=1728=12>. (A.23)

For convenience, the g-expansion of j-function is given by

1
j(r) = 744+ = +196884q + 214937604 + 8642999704° + 202458562564"
q
+3332026406004° + 42520233000964° + 44656994071935¢" + O(¢%) (A.24)

The derivatives of the j-function read as,

9j _ 5 E(ME()
5 = ;24’2 : [5E2<T>E§<T>E6<r>—5Ei<r>—§E§<T>E4<T> . (A29)

which are useful to calculate the second derivative of scalar potential. The derivative of
Jj-function also vanishes at the fixed points:
aj
ot

_9
‘r:i_aT

=0. (A.26)

T=Ww

H function
Using eq. (A.22), the H function in eq. (4.6) can also be written as,

E ) (B .
H(t) = ( o ) ( 2 P(j(1)). (A.27)
n-(m)) \n(7)
The numerical values of the H function at the fixed points are determined to be
0 0
H(i) = ) m > ,
12"P(1728) m=0
(A.28)
0 n>0
H(w) T Y ma3ma e :
i"27"3 2 P(0) n=20

The derivative of the H function is found to be:

8_H=—inH|m=2 + + , A29
O\ E, T3 E, n dj dr (&.29)

T

(E2 mEs idln®dj
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and the corresponding numerical values at the fixed points are:

0 m=0orm>1
a H = 5
HO| =) e DU (1708) =
(27) (A.30)
o H(D) 0 n=0orn>1
T = . B
T T—w _im+123m+333m/2+161§(27_[)—31—6(1/3)?(0) n= 1

When determining the Hessian matrix of the scalar potential, the second order derivative of the
H function is needed. It is found that 83H takes the following value at the fixed points:

0 m>2
8
X 3t —F( 2(;/);‘)50(1728) m=2
0;H(T ’ = 4 ’
HO| 3t P (1728) m=1
T
2n—1,nT8(1/4) 4~6 P’ (1728) _
213 U 1725 (n+3°2° 5 7)) m=0 (A31)
0 n=0orn>2
Y e m 12
(’)ZH(T) _ _imel%23m+7337+2 F(z(l)/s)P(O) n=>2
T
T=W
m i % 53m+d 3m+iT(1/3) —
i"e'32 32 2—(2n)3 P(0) n=1

A.2 Concrete Examples of Modular Inflation

In this section we list some concrete examples where modular inflation is realized with different
choices of parameters and their predictions, as shown in table A.1. All the cases share same features:
The tensor to scalar ratio r is smaller than 10™°, while the running of spectral index @ =~ —25%, is of
order O(—=10"%). Tt is hard to detect such a small tensor to scalar ratio r but we might have enough
sensitivity on « in the future CMB S4 mission and observation of 21 cm fluctuations [111-114].

A.3 A Toy Model of Dilaton Stabilization

In this thesis we have assumed that dilaton field S is stabilized while the modulus field T remains
dynamic. We would like to justify this assumption using a toy model, where stabilization of dilaton
filed does not constraint the modulus potential. This toy model is inspired by the racetrack scenario,
which has been used to study moduli stabilization and inflation [269-273]. Here we consider a
two-component superpotential with different energy scales:

W = AA(S)g(T) + Ay Q(S) f(71) (A.32)

where g(7) and f(7) are weight —3 modular functions, both of them can be parameterized by
H (T)T]_()(T) with different m, n and polynomial P (j(7)). A(S) and (S) are holomorphic functions
of S. The second term A,Q(S) f(7) was used in our paper to generate the inflation potential. A, is
the inflation scale and A refers the mass scale of dilaton field, which can be much larger than the
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N, | 50
A 29.1470 24.3060 29.1495 25
B 0 0.126434 0 0.108376
y 0 0 ~0.115590  —0.016932
n, 0.9462 0.9637 0.9643 0.9639
10g,0 7 ~7.39 ~6.03 ~6.30 ~6.04
&y 25x107°  67x107° 3.1x107° 56x107°
ny ~0.0269 -0.019 ~0.018 -0.018
£ 0.00054 0.00028 0.00035 0.00033
oy || -77x107% -12x107° -12x10°  -12x107°
N, | 55
A 29.1470 24.3091 29.1441 25
B 0 0.126425 0 0.108152
y 0 0 ~0.115640  —0.017168
ng 0.9510 0.9649 0.9649 0.9650
10g,0 7 ~7.50 —6.04 ~6.60 ~6.42
&y 1.9%x107°  57x10%  1.6x107® 1.5x107°
ny -0.024 -0.018 ~0.018 -0.018
& 0.00045 0.00021 0.00038 0.00037
oy || -59%x107° -86x10° -85x10° -7.8x107°
N, | 60
A 29.1470 243108 29.1548 25
B 0 0.126420 0 0.108104
y 0 0 -0.115567  —0.017219
n, 0.9551 0.9649 0.9649 0.9654
10g,0 7 -7.61 -6.09 ~6.34 ~6.61
&y 15107 51x107® 28x107%  1.54x107
ny ~0.0225 -0.018 ~0.018 -0.017
£ 0.00037 0.00013 0.00012 0.00033
oy || -47x107° -59%x107° -58x10° —54x107°

Table A.1: Numerical results of the slow-roll parameters {&y,, 7y, f%,, wg,} and inflationary predictions 7
and r for various combinations of A, 8 and 7 in the inflation potential. Notably, we highlight the results for
distinguished values of A. It’s worth noting that the spectral index n; is a bit small in the cases of 8 =y =0, as
indicated by data plotted in red.
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inflation scale A| > A,. Then it would be the first term dominate the potential while the second term
only perturb it. One can suppose the first term determines the minimum of S. If the dilaton field is
stabilized at S, with the following property:

A(Sy) = Ag(Sy) =0, Qg(Sy) + KsQ(Sy) #0, (A.33)
the full potential

14

AT [R5 ($)g(7) + KsAS)g (@ + IAS)IPK ™D g(1)D (1) = 3IAS)g (1) |

+

K05 | K519 ()£ (2) + KsQS) F(D + 12()PKT D f(1)D £ F() = 31(S) £ ()]’

Cross terms, (A.34)

+

would reduce to the potential used in the paper at the minimum of S:
_ K A\2[p-SS 2 27T Yy
V(Sp.7) = e Ay [K 1Q25(5) f(7) + KsQ(S) f (D" + [QS)I"K" "D f(1)D 7 f (7)

-31Q(S) f (T)Iz] |S=S : (A.35)

Phenomenally, this means the mass of dilaton is much larger than the energy scale of inflation. The
influence of inflaton to dilaton stabilization would be suppressed by A, /A,;.

A.4 Finite Modular Group I'; = A, and Modular Forms of Level 3

The level 3 finite modular group I'; is isomorphic to the A, group which is the even permutation group
of four objects, and it can be generated by the modular generators S and 7 satisfying the following
relations

S?=(ST)’=7>=1. (A.36)

The I'y = A, group has three singlet representations 1, 1" and 1”, and one triplet representation 3. In
the singlet representations, the generators S and T are represented by ordinary numbers. From the
multiplication rules in eq. (A.36), it is straightforward to obtain the singlet representations as follows,

= B Z )2, (A.37)

22 1 0 0
3:s=5(2 -1 2 T=(0 w o0]. (A.38)
2 2 -1 0 0

The tensor products of singlet representations are

'e1'=1", 1"91"=1, 191" =1. (A.39)
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The tensor product of two A, triplets is
3e3=10l 01" ®3,03,, (A.40)

where 3¢ and 3, denote the symmetric and antisymmetric triplet contractions respectively. In terms
of the components of the two triplets a = (a;, a,, a3)T and b = (b, by, b3)T, we have

(a®b)1 =a1b1 +azb3+a3b2,
(a®b)1’ =alb2+a2b] +a3b3,
(a®b)1” =alb3+azb2+a3b1,

2a,b| — ayb; — azb, a,by —asb,
(a®b)3s = 2a3b3 —albz—a2b1 s (a®b)3A = albz—azbl . (A41)
2a,b, —a bz — azb, azb; —a by

A.4.1 Modular Forms of Level 3

The even weight modular forms of level 3 can be arranged into multiplets of A, up to the automorphy
factor. At weight k = 2, there are only three linearly independent modular forms Y, (7), ¥,(7) and
Y;(7) which form a A, triplet Y3(2) (1) = (Y,(7),Y2(7) .13 (T))T [74]. One can express Y| 5 5(7) in
terms of the product of Dedekind eta-function [274] or its derivative [74]. In practice, the first few
terms of the g-expansion of Y| , 3(7) provide sufficiently accurate approximation [74],

Y (1) = 1+ 12g +36¢% + 12¢° + 84¢" + 72¢° + ... .,
Yy(7) = —64'" (1 +7q +8q% +18¢° + 14g* +314° + .. ) ,
Y, (1) = —18¢%"° (1 +2g+5¢% +44° +8¢* +6¢° + .. ) . (A.42)

Using the tensor product decomposition in eq. (A.41), the higher weight modular forms of level 3 can
be written as polynomials of Y, (7), ¥, (1) and Y5(7). At weight 4, the tensor product of Y;Z) ® Y;Z)
gives rise to three linearly independent modular multiplets,

4 2 2
o= @ er?) =1 +21y,

4 2 2
vV o= P er)y =y +2my,,

2

@ _ 1y@gyp@ Yo hh

pY o= swYer =l vi-nn |, (A43)
Y, -1
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The weight 6 modular forms of level 3 decompose as 1 & 3 @ 3 under A,, there are two independent
triplet modular forms and they can be chosen as

B = (nPe Y;‘”)l =Y+ Y+ Y3 -3,
Y,
st16) - (Y3(2) ®Y1(4))3 =P +2nYy)| Y |,
Y3
r;
ry = (Wer) =@ +anyy n (A.44)
2

The Dedekind eta function 1(1), is a modular function of “weight 1/2” defined as

2nit
e

nm=q"*[]0-4" 4 : (A45)
n=1

which satisfies the following modular transformation identities: n(7 + 1) = e 1217(7') andn(-1/7) =
V—itn(t). The g-expansion of eta function is given by
n=q""[1-q-¢+4q’ +q 4" - 4" +0(g™)]. (A.46)

The j function is related to the Dedekind eta and its derivatives as follow,

72 ’” 72 3 72 7\’ 3
. m —-n _ n
n n Tn \n

where prime denotes derivative with respect to 7.

A.5 Vacuum Structure of Modulus

In this section, we exam the properties of T = w and 7 = 7 in details. Both are minima, but they have
different potential values. For convenience, we denote

o Jj (1) J(0\
P(](T)) =1+p (1 - 1728) +y (1 — 1728) (A.48)

in eq. (5.10). For 7 = w, the potential and its first-order derivatives read

(27)12

A
Viw) 3’8 (1/3)

(A=3)|* ()P O, 8,V(w)=8;V(w) =0, (A.49)

implying V(w) will be positive-definite as long as A > 3. As w is a fix point under modular
transformation, Modular symmetry ensures the first-order derivatives to vanish. The second-order
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derivatives of the potential, forming the Hessian matrix, are

8p2

96*

T=w

. (2m)" 2 , OV
38(1/3) (A=2)j"(r)P(0)]", 5605 _

=0. (A.50)

w

T=w

Because the Hessian matrix is positive-definite, 7 = w is a local minimum.
Unlike w, the property at 7, heavily rely on the special form of H(7). Using that H(7y) = 0,H(7;) =
0, the potential and its first-order derivatives are

V(ty) =0, 09,.V(1y) =0;V(w) =0. (A.51)
and the second-order derivatives read
2
4|0, ()P i) a2y

o’V
oV = : o - 0, 000
3 sin(arg())|n(7o)] P

6,02

06>

T=T,

=0. (A.52)

T=T, T=T

In this case, the Hessian matrix is positive-definite when 7, stays in the fundamental domain. Since
our potential is semi-positive, the vanishing potential at 7, ensures it is a global minimum.

The property at T = i is rather non-trivial. In this paper we need i to be a saddle point, which is not
a general conclusion. The Hessian matrix now depends on the parameters in £ (j(7)). Thus, we only
show the numerical result in Fig. (5.1).

A.6 A Toy Model of Large Field Inflation

As a concrete example, we illustrate such a possibility by following the proposal in Ref. [179], where
the authors showed that at large Im(7) one can have T-mode « attractor large field inflation model. At
large Im(7), the squared norm of j-invariant can be approximated as

(o)) = 7O (A.53)
In Ref. [179], the authors proposed to use the following I function:

In (1 ()P + 8°)
lnﬁ2

dr

Im(7)—>00 ln(lB2)

I(t,7T) = , I(7,7T) Im(7) = cIm(7), (A.54)

to construct inflationary potential as follow,

I(rt,T) -1

2
m) , V(T,‘I_')

8
V(T,f) =V()( zVO (1—m+) . (A.55)

The above potential features a plateau behavior at large Im(7). As a specific example, they considered
B = j(i), thus I(w, @) = 1 and the potential has a Minkowski minimum at 7 = w.

To incorporate the idea of Ref. [179] into our work, a shift of potential minimum from 7 = w to
T = T is necessary in order to be compatible with the lepton sector within our setup. We noticed that

Im(7)—>00
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Figure A.1: Feynman diagrams for inflaton two-body decay.

this can be done via a redefinition of / function:

In (1 (D)1 + £°)
. 2

In (|J ()| + /32)

- 47
- . 2
Im(7)—>o0 In (|] (TO)| + Bz)

I(1,7) = , I(1,7) Im(7) ="' Im(7). (A.56)

This redefinition ensures /(7y, 7;) = 1 and does not modify the expansion of / function in the limit of
large Im(7). Moreover, the plateau behavior of potential in eq. (A.55) is preserved. We notice that the
mass of canonically normalized infaton field ¢ = 4/3/21n [Im(7)] decrease with increasing 3. As a

4
rough estimate, taking V, = (1015 GeV) — the typical energy scale of « attractor models, the mass of

inflaton can be as large as 10" GeV for B = 1. This inflaton mass exceeds the lower bound 10" Gev
derived in our paper and successful leptogenesis could be realized.

However, the following challenge arises. As noted in Ref. [179], both Re(7) and Im(7) become
dynamical fields as the system approaches the minima. This transition requires a treatment beyond our
current single-field framework, which we have assumed throughout both the inflationary phase and
the reheating dynamics. A similar difficulty emerges when incorporating the proposal in Ref. [17]
for Starobinsky inflation. Given that the primary objective of this work is to investigate the post-
inflationary single-field dynamics within the modular slow-roll inflation framework, a thorough study
of multi-field effects in these large-field scenarios is an interesting direction for future research.

A.7 Inflaton Decay Rates

In this section we will present calculations about inflaton decays. As we are dealing with Majorana
fermions, this calculation will be carried out in the two component notations.
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A.7.1 Inflaton 2-body Decay

We consider the inflaton two body decay in the following Lagrangian:

2

1A 1A%
L=3 MN AV NSNS + EM—/I”szC*N +he. (A.57)

where N; is a Majorana particle with mass M, and ﬁi" is corresponding sfermion. We first consider
inflaton decay to two fermions, in the two component notation, matrix element reads:

iM=y(p,s)” (,_m )Y(Br5y)g +x (Bras)g (z N5 x (P )P (AS8)
P P

where x, y are the two component spinor wave functions, which play the same role as u, v in four
component notation. After taking hermitian conjugate and performing spin sum, we have:

2
A . iy
2 N ij2 ij\2
IM[" = 4(M_p1) (|/11]| pi-pj—Re [(/111) ]MiMj)
2 2 2 2
A s — (M5 + M) y
= 4(M—N) (|/111|2 ¢ 2] —Re [(/111)2] MiMj) , (A.59)
pl

where M;, M j are mass of N f , N;, respectively. For inflation decay to two scalars, the matrix element
is much simpler:

2
A3
IMP? = |2AY] (A.60)
Mpl
The phase space integral can be performed as usual, the total decay rates are:
_ AV 1 (M; — M) (M; + M)
[(¢ — NENST) = |2 - ——)1-—. (A.61)
My | l67m, myg mg
for inflaton decay to two sfermions and:
2 2 2
L m A 2 M+ M: o MM .
6= NiNp) = s (| (] (1= == | - 2Rel ()1 —
8(1 + 6l-j)7T Mpl m¢ m¢
(M; - M,)* (M, + M,)*
XAl[1-—]—]|1-—L—", (A.62)
Mg Mg

for inflaton decay to two fermions. Note ¢, ; accounts for the effects of identical particles when i = ;.
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Figure A.2: Feynman diagrams for inflaton three-body decay.

A.7.2 Inflaton 3-body Decay

For three-body decays, there are four channels as shown in Fig. (A.2(a)) -Fig. (A.2(d)). We first
consider the inflaton three body decay ¢(p) — H(k,)L(k,)N°(k5), namely the process shown in
Fig. (A.2(a)). The relevant Lagrangian is:

ij
L="¢N{(L; -H,)+hc., (A.63)

M,

T T
+ 0 _ 0 +
where L; = (vj , lj) JH, = (Hu ,Hu) are SU(2) doubletand (L; - H,) =v;H, - ;H".

In the following, we will neglect the Higgs and light neutrino masses, as they are much smaller
compared to the inflaton mass and the right-handed neutrino mass. The spin summed, squared matrix
element for a single combination (ij(,j or l_iH ) reads:

)
ij
ey

My,

IM|)? = 4(ky - k), (A.64)
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With the squared matrix element, we can further compute the three-body decay rate, which is:
1
I'i¢p — Nf(Lj -H)) = —— / dH3|M|2. (A.65)
2mg

The three—body phase space integral can be further written as (see e.g. Sec. 20 of Ref. [275] or
step-by-step computation in Appendix C of Ref. [276])

2 1— 1=HN
m¢ HN 1-x

dlly = —" dx, dx, , (A.66)
12877 Jo 1=xy—pupn

where x; = 2E;/m i = 1,2, where E is the energy of the Higgs boson, and E}, is the energy of the

charged lepton in the inflaton rest frame, with up = MIZV / mfb We have neglected all final state masses
except for that of the right-handed neutrino (RHN). Using eq. (A.66), we find that the three-body
decay rate eq. (A.65) becomes

¢ _ [ my 2 3 2
My | 7687

where we use 2 to count 2 possible combinations in the SU(2) contraction. We note that in the limit
puy — 1 therate I'y_, 5y n — 0, as expected, since the decay becomes kinematically blocked in this
scenario.

For other channels, the procedure is similar. In particular for ¢(p) — H (kl)L(kz)ﬁc(k3)
(Fig. (A.2(b))), we find the squared matrix element is given by

)
tj

il

Mp]

IMJ* = Ak - ky)., (A.68)

with which corresponding decay rate is shown to be

ij 2 3
~ ~ my,
P NE(L; ) = 2% |2 2 [1 +9up — 9y — iy + 6uy log(uy) + 613 log(uN)] .
pl T
(A.69)
For ¢(p) — ﬁ(kl)Z(kz)NC(k3) (Fig. (A.2(c))), the the squared matrix element is
ij |2
IMP> = || 4k, - k), (A.70)
pl
and decay rate
2 2 .
C(6 > Ny ) = 2% |2 2 [1 — Gy + 3+ 20 — 61 log(,uN)] . (A7)
pl 76871
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A.8 Calculation for DM Energy Density to Entropy Density Ratio

Finally, for the inflaton decays into three scalars ¢(p) — H(k;)L(ky)N€(k3) (Fig. (A.2(d))), the

squared matrix element is
2

27N
IMP === (A.72)
Mpl
and decay rate reads
— AT Ay 2 mg,
(¢ — NS(L, - H)) =2 ‘]‘wl x5 [1 A+ 2y log(,uN)] . (AT3)
p

A.8 Calculation for DM Energy Density to Entropy Density Ratio

t oo te tp trh tO

ds MD MD RD, MD, AD

Figure A.3: Thermal history of our model. Here ¢__, represents the initial time in our simulation. ¢, represents
the time when inflation has ended and inflaton starts to oscillates around its minimum. 7, denotes the time
when GPP is almost finished and #,;, denotes the time when reheating is complete. We also use 7, to denote the
current time.

In this section we briefly review the thermal history of our universe and explain how we calculate
the density-to-entropy ratio explicitly. Our simulation starts when the inflaton ¢ field stays in the
inflation region, which we will formally denote it by 7_,. At ¢ = ¢, the (Hubble) slow roll conditions
are broken and ¢ field starts to oscillate around its minimum. In this paper we consider the case where
the oscillation part can be approximated by ¢2, which means the energy density of the inflaton field
red-shifts as matter. This transition from de Sitter spacetime to matter-dominated space also triggers
the gravitational production of the super heavy DM. Most of the super heavy DM are produced at the
beginning of the oscillation part, and we assume at 7 = ¢, this production is basically complete and its
energy density also red-shifts as matter. Hence we have the following identity

p/\/(tp) _ p/\((trh) _ p/\/(trh)
p¢>(tp) - pgb(trh) - pr(trh),

(A.74)

where we have used that DM y field redshifts in the same way as the inflaton ¢ field, and we define
the reheating temperature when p , (1)) = p, (t). Here, p, denotes the energy density in radiation.
After the reheating is complete, we have

p/\((trh) _ PX(tO)E
pr(trh) - pr(tO) Trh.

(A.75)
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The entropy density and energy density in today’s Universe reads

27'['2 3
So = g*ETO’
(A.76)
T 4
pr,O = 8« %TO .
Hence, we can rewrite p,. o = %STO and the energy density to entropy density reads
p/\/(tO) _ § p/\/(tO) _ 3m/\/Trh n/y(tp) (A77)

so 4%t 4 put,)

where we have used p = mn for non-relativistic particles (CDM). The energy density of p ,(7,,) can
be connected to the energy density of inflaton at the end of inflation

a(te))3 2 142 (a(te))3
= —| =3M H . AT8
The finial expression reads
p (ty)  m TyuH(t,) (@ (t,)n,(t,)
- = X (3"”;"). (A.79)
0 4Mpl a (te)H (te)

Current observation suggests this quantity should be equal to 4 x 107" GeV to contribute the full
amount of DM.
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