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Abstract

Many geodesists worldwide deal with the modelling of functions to approximate or interpolate
measured data. For this purpose, a functional model is usually set up and adjusted by parameters
so that it fits as precisely as possible to the data. One of the most important questions is how to
select the functions of the model. One method, which has the advantage of being as independent
as possible from the choice of functions is provided by least-squares collocation. Here, function val-
ues are estimated from the dependencies (covariances) between the observations themselves. Even
though, when predicting values between the data, an analytic model, which describes the track of
the covariances, still must be specified.

This is where this dissertation starts. After a general introduction and the discussion of the
crucial terms (chapter 1) as well as the current state of the field (chapter 2), thus it is firstly
shown how the estimate of autoregressive (AR) processes can be used to create a continuation
of the sequence of variances, while the resulting function also must satisfy all requirements of a
covariance function (chapter 3). The benefit of this method lies in the fact that the estimate of
AR processes is data-driven. After finding the most suitable AR process of order p, uniquely given
by the p coefficients α1, α2,..., αp and the variance of the white noise σ2

E , a continuous continu-
ation of the discrete covariances is to be found which is (1) clearly assigned to the AR process,
(2) reproduces the discrete covariances and (3) is positive definite. Furthermore, I show - as the
spectrum of these covariance functions differ from the spectrum of the discrete variances - how and
why they can ultimately be transformed into one another by a multiplication with a dirac comb.
It must be mentioned that this thesis is limited to one dimensional time series associated with time.

The results of chapter 3 shows that instead of depending on the coefficients directly, the constructed
covariance function depends on the roots of the characteristic polynomial of the AR process. These
roots are also used to compute the spectrum of the AR process. Since many important properties
of the process can be derived from the shape of the spectrum, the characteristics of the AR process
are also discussed in this context. This is the starting point of chapter 4, where time variable AR
(TVAR) processes are estimated. As they offer the advantage of the coefficient being variable in
time, the approach of using a TVAR process with known root motion guarantees that the roots
of the characteristic polynomial of the process stay within the unit circle which implies that the
variance of the resulting process stays finite. From this, we derive three methods to estimate TVAR
processes, i.e. with linear, quadratic and piecewise linear root motion. Following the transforma-
tion from the coefficients of the AR process into the corresponding roots with linear or quadratic
motions, only TVAR processes of order one, two and three are estimated directly. Since there is
no analytic solution for computing the roots of a polynomial of order five or higher, the TVAR
processes of higher order are estimated by a successive calculation using TVAR(1) and TVAR(2)
processes.

As its title suggests, this study provides a method to compute the least-squares collocation under
the assumption of nonstationary time series. As such, chapter 5 combines the findings of chapter 3
and chapter 4. This way, an approximation by least-squares collocation can be computed, using a
TVAR process to create a covariance function and fill the needed covariance matrices. Therefore
the discrete covariances of a TVAR process are derived. In contrast to the discrete covariances of
the stationary AR process these discrete covariances not only depend on the lag, but also on the
epoch of the first observation as well as on the fact whether the second epoch relative to the first
is in the past or in the future. As a result, the continuous continuation of the discrete covariances
embodies a function of two parameters; the epoch of the first observation and the difference between
the second and the first epoch including the sign of the difference. This way for the first time an
analytical representation for a time variable covariance function is presented.

In chapter 6, the different theories are tested on discrete measurements. First, sea level anomalies



are estimated either by the Gauss-Markov model and trigonometric base functions, or by the least-
squares collocation with a covariance function from AR processes. Second, TVAR processes with
predetermined root motions are estimated by GNSS elevation measurements and validated over
the roots of stationary AR processes estimated for a moving window. In a final example, functions
are estimated by temperature anomalies, wherein the covariances for the least-squares collocation
come once from an AR(1) process estimate and another time from a TVAR(1) process estimate.



Zusammenfassung

Ein großer Teil der Geodäten weltweit beschäftigt sich mit der Modellierung von Funktionen um
gemessene Daten zu approximieren oder diese zu interpolieren. Dafür wird in der Regel ein funk-
tionales Modell aufgestellt, welches die gewählte Funktion möglichst genau die Daten anpasst.
Die größte Aufgabe dabei besteht darin, die Funktionen des Modells zu wählen. Eine Methode
möglichst unabhängig von der Funktionswahl zu sein ist die Kollokation, bei der Kovarianzen aus
den Abhängigkeiten zwischen den Beobachtungen selbst bestimmt werden. Jedoch wird bei der
Prädiktion mit dieser Methode immer noch eine Kovarianzfunktion benötigt, welche den Verlauf
der Abhängigkeiten analytisch beschreibt.

Hier setzt die vorliegende Dissertation an. Nach einer kurzen Einführung zur Einbettung meiner
Studie in den aktuellen Stand der Forschung (Kap. 1), und einer Darstellung wichtiger Definitionen
und benötigtem Vorwissen (Kap. 2) zeige ich in Kap. 3, wie autoregressive (AR) Prozesse genutzt
werden können, um den Verlauf der diskreten Kovarianzen kontinuierlich fortzusetzen und dabei
allen Anforderungen an eine Kovarianzfunktion zu genügen. Der Vorteil dieses Verfahrens ist, dass
die Schätzung von AR Prozessen bekannt und automatisiert ist. Der geschätzte AR Prozess der
Ordnung p wird durch p Koeffizienten α1, α2,..., αp und der Varianz des Rauschens σ2

E eindeutig
beschrieben. Ziel ist es, eine Methodik zu entwickeln, die aus diesen Parametern eine eindeutige
Funktion aufstellt, welche die Varianzen kontinuierlich erweitert. Dabei wird auch gezeigt, dass
die Funktion den Anforderungen einer Kovarianzfunktion genügt und wie sich das Spektrum der
diskreten Kovarianzen aus dem Spektrum der kontinuierlichen Kovarianzfunktion herleiten lässt.
Es sollte noch erwähnt werden, dass diese Arbeit auf eindimensionale Zeitreihen beschränkt ist.

Die Betrachtungen in Kap. 3 zeigen jedoch auch, dass die Kovarianzfunktion nicht von den Koef-
fizienten direkt abhängig ist, sondern dass die Kovarianzfunktion die Nullstellen des charakteris-
tischen Polynoms des AR Prozesses beinhaltet. Diese Nullstellen werden auch verwendet um das
Spektrum des AR Prozesses zu berechnen, aus dem sich viele wichtige Eigenschaften des Prozesses
ableiten lassen. Aus diesem Grund ist in diesem Zusammenhang auch von der Charakteristik des
AR Prozesses die Rede. Kap. 4 widmet sich daher der Schätzung zeitvariabler autoregressiver
(TVAR) Prozesse, bei denen die Variabilität nicht durch die zeitliche Änderung der Koeffizienten
vordefiniert ist. Statdessen werden Prozesse erstellt, bei denen die Änderung der Nullstellen über
die Zeit vordefiniert ist. Somit besteht eine direkte Verbindung zwischen der vorgegeben Bewegung
der Nullstellen der TVAR Prozesse und der später daraus zu bestimmenden Kovarianzfunktion. Ins-
besondere werden in dieser Arbeit Schätzverfahren für TVAR Prozesse mit linearen, quadratisch
und stückweise linearen Nullstellenbewegungen hergeleitet. Die Umrechnung der Koeffizienten in
die Nullstellen leitet sich aus dem Nullstellenproblem vom Charakteristischen Polynom her. Da
diese Nullstellensuche für Polynome höherer Ordnung (Ordnungen höher als 5) nicht analytisch
gelöst werden kann, wird hier ein Weg aufgezeigt, wie Prozesse höherer Ordnung über sukzessive
Schätzung von time variable autoregressive (TVAR)(1) und TVAR(2) Prozessen dargestellt werden
können.

Das Ziel dieser Dissertation ist es, eine Methode zu erarbeiten, um eine Kollokation nach kle-
insten Quadraten für zeitvariable (oder auch nicht stationäre) Prozesse, zu berechnen. In diesem
Sinne verknüpft Kap. 5 die Ergebnisse von Kap. 3 und Kap. 4 um eine zeitvariable Kovarianzfunk-
tion aus einem TVAR Prozess zu erstellen und damit die Kovarianzmatrizen für die Kollokation
aufzustellen. Zunächst werden die diskreten Kovarianzen des TVAR Prozesses bestimmt. Diese
sind nicht mehr, wie im stationären Fall, nur vom Lag abhängig, sondern auch vom Zeitpunkt der
Beobachtung, und davon ob die zweite Beobachtung in der Zukunft oder in der Vergangenheit liegt.
Dementsprechend ist auch die kontinuierliche Fortsetzung der Kovarianzen eine zweidimensionale
Funktion. Obwohl sich diese Ausarbeitung auf TVAR Prozesse der Ordnung 1 mit linearer Än-
derung der Nullstelle beschränkt, zeigt sich eine starke Flexibilität der Kovarianzfunktion über die
Zeit. Damit wird hier erstmals eine analytische Darstellung für eine zeitvariable Kovarianzfunktion



präsentiert.

In Kap. 6 werden letztlich die verschiedenen Theorien an diskreten Messungen getestet. So werden
Anomalien des Meeresspiegels mit dem Gauß-Markov Model und trigonometrischen Basisfunktio-
nen, beziehungsweise mit der Kollokation mit einer Kovarianzfunktion aus AR Prozessen, geschätzt
und verglichen. Anschließend werden TVAR Prozesse mit vorgegebenen Nullstellenbewegungen
durch GNSS Höhenmessungen geschätzt und über die Nullstellen von gefensterten stationären AR
Prozessen validiert. In einem abschließenden Beispiel werden Funktionen durch Temperaturanoma-
lien geschätzt, wobei die Kovarianzen für die Kollokation einmal aus einer AR(1) Prozessschätzung
und ein andermal aus einer TVAR(1) Prozessschätzung kommen.
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Chapter 1

Introduction

1.1 Motivation

A main task of geodesy is to approximate models from discrete observations in order to elimi-
nate noise in the measurements or to interpolate the values between the observation points. For
example Yuan et al. 2020 estimate the sea level from various satellite missions to interpolate
pseudo-observations of the sea level on a regular grid, or in Brockmann et al. 2021 the earth
gravity field is computed from GOCE (the Gravity Field and Steady-State Ocean Circulation Ex-
plorer) data. Since least-squares collocation (LSC) is the regular procedure to interpolate signals,
this method is used in this and many more applications. The procedure of LSC is for example
summarized in Schuh et al. 2019, where it is shown that in this method, predictions (or pseudo-
observations) are estimated from the values of a weighted sum of the original observations. The
weighting is determined by statistical similarities, the covariances between the predicted values
and the observations. These weights are computed by a matrix-vector product that includes the
covariances and the roots.
One problem of the LSC is given by the large dimension of the covariance matrices used. These are
the covariance matrix of the observations and the common covariance matrix of the observations
and the predictions. The problems of high dimensions concerns both covariance matrices. First
the autocovariance matrix of the observations is required. Here the memory demand increases
quadratically with the number of observations n. Second the covariance matrix of the observations
and the predicted values is required. This is a matrix of the dimension n × w, with w being the
numbers of predicted values. Furthermore computational challenges arise, as the autocovariance
matrix of the observations must be inverted. This operation corresponds to an effort of O(n3), i.e.
a cubic increase of the necessary operations of the number of observations.
This is where AR processes come into play. One important property of these processes is that the
inverse covariance matrix of a time series generated by an AR process of order p is a band matrix
with bandwidth p. The use of banded matrices results in the advantage that the inverse covariance
matrix which is required in least-squares collocation, despite its size, requires limited amount of
memory. Calculations can be optimized from the banded system, which plays an important role
for large observation systems. For this reason, the idea is to create covariance functions from the
estimated autoregressive processes, so that derived covariance matrices inherit this advantage.
A further disadvantage associated with the least-squares collocation lies in the fact that the stochas-
tic process (or the time series of observations) needs to be stationary. This means that the moments
of the process do not change over the entire observation period1.
In order to relax this constrain concerning the stationarity, the idea is to use time variable auto
regressive processes in least-squares collocation. In these processes, the influence of previous ob-
servations on the estimated observation changes over time. This has also already been applied by
current research, compare for example Kargoll et al. 2018. But in these applications, the spectral

1. In particular, this means that for normally distributed processes, the expectation value, the variance and the
covariance each only depend on the distances between the observations but not on the discrete times or locations
(see Khintchine 1934, p. 606)
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properties of the resulting process from the time variability were not taken into account. However,
since the characteristic of the process is shown in the spectrum, the predefined functions do not
describe the motion of time variable coefficients of the AR process, but the movements of the spec-
trum itself. This is achieved by approximating the movements of the characteristic polynomial’s
roots over time (e.g. by a linear function). This is possible because the AR coefficients, the roots
of the characteristic polynomial and the spectrum of the AR process are equivalent and can be
converted into one another (see Box et al. 1970, p. 55).
With the help of these time variable autoregressive processes, for which the temporal change of spec-
tral properties is known, a time variable covariance function can be created, and a nonstationary
least-squares collocation can be performed.

1.2 Level of Research

Three areas of the current level of research are relevant for this section: (1) least-squares collo-
cation in general; (2) methods for representing covariance functions and (3) stochastic, especially
autoregressive processes. The last section concerning autoregressive processes is further divided
into the discussion of time constant (or static) and time variable processes. Finally, a summary is
given, including the publications on which this thesis is based.

Least-squares collocation (LSC), which is also called kriging, Wiener filtering, or best linear un-
biased prediction (BLUP), is a method of filtering observations in order to separate them from
noise or to predict the values between observation points (e.g. Koch 1999). The basic idea of
least-squares collocation goes back to Krarup 1969 and Moritz 1973, who independently de-
rived the same calculation rule. The commonalities and differences of these three related methods
(i.e. least-squares collocation, BLUP and Wiener filtering) are discussed for example in Dermanis
1984 and Schuh 2016. Additionally Reguzzoni et al. 2005 introduced a more general approach
called ”general kriging”. However, since all methods require the same covariance functions, the
findings shown in the following thesis can be applied in any of these individual methods. In the
current research, least-squares collocation is particularly applied in satellite gradiometry such as in
Albertella et al. 2004, as well as during the calculation of the mean sea surface from different
satellites and measurement systems such as in Jin et al. 2016, Yuan et al. 2020 and Hamden
et al. 2021. Another typical application is found in the field of regional or general geoid mod-
elling, e.g. Reguzzoni et al. 2005, Gilardoni et al. 2012, Doganalp et al. 2015 and Ramouz
et al. 2019. Also, the location of the Moho depths (the interface between the earth’s crust and man-
tle) is estimated by inverting the GOCE second radial derivative using the least-squares collocation
method (see Rossi et al. 2022). A rather atypical application shown in Reguzzoni et al. (2022)
by calculating GNSS-based dam monitoring via LSC.
The methodology of least-squares collation has also been adapted for other applications. For ex-
ample, Schuh et al. 2023 and Jendges 2022 showed different examples how this method can be
extended for spatio-temporal data. Teunissen 2007 introduced modification of the BLUP for new
classes of predictors to improve the mean squared error performance.

The most important step in least-squares collocation is the modelling of covariance functions. These
functions are often manually chosen with respect to best fitting through the discrete variance and
covariances of the observations. This requires a considerable repertoire of functions to cover the
different characteristics of the time series. Schubert et al. 2020 develop conditions to determine
covariance functions from autoregressive moving average processes, which is further developed in
Schubert et al. 2021a. Compared to these papers, here in the following thesis the covariance
function is calculated from the estimated processes and not adjusted to the discrete covariance via
parameters. Based on this, Schubert et al. 2024 established a family of covariance functions which
have a high flexibility to respond to individual effects in the covariances from observation time series.

Furthermore autoregressive processes are used to decorrelate time series. In Schuh et al. 2019,
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Schubert et al. 2021b and Brockmann et al. 2021 autoregressive processes with time constant
coefficients are estimated to create filters, which are used to remove highly correlated noise from
GOCE (the Gravity Field and Steady-State Ocean Circulation Explorer) data. Over the years,
Schuh 1996, Schuh 2003a, Schuh 2003b, Siemes et al. 2007, and Krasbutter et al. 2011 have
continued to process the data with the help of adapted autoregressive processes. However, the gen-
eral estimate of autoregressive processes is also further investigated: for example Moon et al. 2020
as well as Schubert et al. 2021c show how autoregressive processes from time series with high
noise content can be robustly estimated.
The term time variable is often used differently. Following Priestley 1988, time variable processes
can be subdivided into models with a deterministic trend (e.g. polynomial or seasonal) or with
’explosive’ AR models where the roots of the characteristic polynomial are not only inside but also
outside the unit circle (Schuh et al. 2023). Another type of nonstationary processes can be deter-
mined by processes where the coefficients of the autoregressive process are variable in time (see e.g.
Dahlhaus 1997). The extension to time variable autoregressive processes with given functions
for the coefficients already exists: e.g. Grenier 1983 describes the motion of the coefficients via
trigonometric functions, while Hall et al. 1977 approximate the motion via Legendre polynomials.
Slepian 1978 represents the motion by spherical sequences and Alkhatib et al. 2021 use a time
variable autoregressive process with linear changing coefficients, and show that this method is more
suitable than using time stable autoregressive processes.

The problem with the least-squares collocation is that the size of the covariance matrices increase
quadratically with the number of observations. That is why Sansò et al. 1987 switched to using
finite covariance functions to be able to use band matrices in least-squares collocation. Arabelos
et al. 1998 used these finite covariance functions to estimate a global gravity field of the earth. The
use of finite covariance functions in least-squares collocation is as well pursued by Korte et al. 2018.
But in this presentation, there is discussed not only a banded covariance matrix based on finite
covariance functions, but also another covariance matrix generated from an AR(1) process. The
covariance matrix computed by the covariances of an AR process might not be a banded matrix,
but its inverse is. And the inverse is also used in the least-squares collocation. Based on this idea,
a method has been published in Korte et al. 2021, with which a continuous covariance function
can be derived from AR processes of any order. In order to arrive at a time variable least-squares
collocation in Korte et al. 2023b and Korte et al. 2023a the time variable AR processes of order
one, two and three as well as a successive method for estimating higher time variable AR processes
have been developed. The results of the last three papers will be presented in more detail and
expanded on the next pages.

1.3 Objectives

The aim of this thesis is to find a general representation for stochastic processes that change their
characteristic over the observation period, and to integrate them for covariance modelling in least-
squares collocations. These time variable processes are often needed to adapt the covariances for
real data series and are illustrated here in three steps:
In a first step, a method is required to calculate the continuous covariance function for time con-
stant processes by estimating the best fit autoregressive processes. In the second step, time variable
autoregressive processes are estimated using the Gauss-Markov model. The fact that the charac-
teristics of this autoregressive process change over time is shown by the spectrum in which the
peaks change in both amplitude and frequency. To model these spectra, the roots of the character-
istic polynomial are used, as these roots have a direct influence on the spectra. In the third part,
the continuous time variable covariance functions for a time variable autoregressive process with a
linear root motion are derived.

1. Construction of a continuous covariance function from an autoregressive process of order p
Through the Yule-Walker equations, any p successive covariances are connected to each other.



4 1. Introduction

These equations can also be converted into difference equations, for which there is a represen-
tation which allows the direct calculation of the covariances. This representation can also be
continuously expanded. Nevertheless, until now it has neither been investigated whether this
function is positive definite or not, nor how continuation of a discrete sequence has influence
on the spectrum. So in this work, first the continuous function is either proved or forced to
be positive definite. And second, it is shown that a change of the spectrum is only caused by
the transition from discrete values to a continuous function.

2. Estimation of time variable autoregressive processes whose spectral density (characteristic)
changes linearly or quadratically
In the estimation of time variable autoregressive processes, the change of the process over time
must be modelled. Hall et al. 1977 and Grenier 1983 analysed speeches with time variable
AR processes, where the coefficients were created by trigonometric functions or modified
Legendre polynomials. Also, Slepian 1978 showed how time variable AR processes whose
coefficients are defined via the discrete prolate spheroidal sequences are estimated. In all
theses approaches, the time variable autoregressive processes were defined via the motion of
the coefficients without paying attention to the effect on the temporal changes on the spectral
representation. The disadvantage of these methods lies in the time variable changes of the
spectrum, which can only be determined for discrete realizations of time variable coefficients of
the autoregressive processes, while no function being deduced for describing the motion of the
roots. To solve this problem, the roots of the characteristic polynomial of the autoregressive
processes are described by functions, which then represent the change of the spectrum, but
can also be converted into the change of the coefficients. In turn, this special time variable
coefficients can be estimated. In particular, the coefficients for linear, piecewise linear and
quadratic root movements as well as the additional necessary constraints are derived here.

3. Covariance function of a time variable autoregressive process of first order
The synthesis of the first two chapters leads to a time variable covariance function useable
for covariance modelling in least-squares collocation. Accordingly, a covariance function of
a time variable autoregressive process is determined from arbitrary lags in order to set up
the covariance matrices for the least-squares collocation. It should be noted here that this is
limited to time variable autoregressive processes of the first order.
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Chapter 2

Definitions and Prerequisite
Knowledge

2.1 Method of Least-Squares Collocation
In this thesis, the observations Lt are represented by the definition used in least-squares collocation
according to Krarup 1969 or Moritz 1972, i.e.

Lt = Atξ︸︷︷︸
trend

+St.

Here, Lt and St are random variables that represent the observation process and the signal at the
time t, respectively. Hereby the white noise is included as apart of St. At ∈ R1×m represents the
functional relationship between the observation Lt and the m (true) parameters ξ ∈ Rm, and the
product of Atξ is called the deterministic trend. Hereby ξ is unknow and it has to be estimated too.
t gives the index for the individual states of the random variables by assigning a unique description
of the situation to each random variable, (these situations can be defined, for example, by the time
t as done here or by the location).
Schuh (2016, section 3.1) shows that the trend can be estimated by an adjustment and removing
the trend from the observations in a further step, yields the stochastic part of the signal:

St = Lt −Atξ = S̃t +Nt.

The stochastic part is divided into the fully correlated part of the signal S̃, which should be
estimated by least-squares collocation and Nt, which is a purely random interference signal for
most occurrences (noise).

2.2 Least-Squares Collocation
In the least-squares collocation (LSC) a signal (S̃ = [S̃1, S̃2, ..., S̃r]) is estimated from an observed
time series (S = [S1,S2, ...,Sn]). Given that M{.} be the mean value of a given vector, and given
the assumption that both, the observations and the predicted values have the mean expected value
of zero:

M{E{S̃}} = 0 M{E{S}} = 0,

then Moritz (1980, p. 102 eq. 14-27) shows that the estimate of S̃ can be determined via the
least-squares collocation

S̃ = Σ{S̃,S} (Σ{S}+Σ{N })−1 S (2.2.1)

(see e.g. Schuh 2022, section 3.3.3). Here Σ{N } represents the covariance matrix of a vector of
normally distributed random variables. These random variables must also be independent of the
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signal whose covariance matrix is described by Σ{S}. The last matrix needed for the estimation
in (2.2.1) is the common covariance matrix Σ{S̃,S} with the entries

Σ{S̃,S}(r, c) = Σ{S̃r,Sc}

in row r and column c, representing the influence of the c-th observation (Sc) on the r-th estimation
(S̃r). The entries of the covariances are in general performed by the evaluations of covariance
functions. These have to fulfil the conditions described in section 2.6 under the assumption of
stationarity (see 2.5). In this thesis, in order to model the individual covariances, this method is
extended to special time variable processes as described in section 2.16.

2.3 Covariance Propagation

Moritz (1980, p. 86ff) shows, that a linear functional f(S̃) of a given signal S can be estimated
by LSC:

f(S̃) = Σ{f(S̃),S} (Σ{S}+Σ{N })−1 S

= f
(
Σ{S̃,S}

)
(Σ{S}+Σ{N })−1 S.

For example, with f
(
Σ{S̃,S}

)
= d

dh

(
Σ{S̃,S}

)
, the slope of the signal S̃ is predicted. The entries

in the common covariance matrix Σ{S̃,S} are interpreted as functions of a covariance function (CF)

Σ{S̃,S} =


γ(t′0 − t0) γ(t′0 − t1) γ(t′0 − t2) ... γ(t′0 − tn)
γ(t′1 − t0) γ(t′1 − t1) γ(t′1 − t2) ... γ(t′1 − tn)

...

γ(t′m − t0) γ(t′m − t1) γ(t′m − t2) ... γ(t′m − tn)


m×n

,

with ti i = 1, 2, ..., n are the epochs of the observations and t′j j = 1, 2, ...,m are the epochs of the
predicted values. The difference quotient is then calculated via the derivative of the distribution
functions:

d

dh
Σ{S̃,S} =


d
dhγ(h)|h=t′1−t1

d
dhγ(h)|h=t′1−t2

d
dhγ(h)|h=t′1−t3 ... d

dhγ(h)|h=t′1−tn
d
dhγ(h)|h=t′2−t1

d
dhγ(h)|h=t′2−t2

d
dhγ(h)|h=t′2−t3 ... d

dhγ(h)|h=t′2−tn

...

d
dhγ(h)|h=t′m−t1

d
dhγ(h)|h=t′m−t2

d
dhγ(h)|h=t′m−t3 ... d

dhγ(h)|h=t′m−tn


m×n

.

Here m is the number of predicted Signals S̃ and n is the number of used Signals in S. Since the
derivative can only be properly determined from a continuous function, it is necessary to switch to
the continuous CF γ(h) with h ∈ R, even if the entries of the covariance matrices are only evaluated
at discrete points ht′u−tv with u ∈ {1, 2, ...,m} and v ∈ {1, 2, ..., n}.

2.4 Stochastic Process
Brockwell et al. (1991, p. 8 Def. 1.2.1) define: A stochastic process is a family of random
variables {Stj , tj ∈ T} defined by a probability space (Ω,A ,Π). Here T denotes the index set (e.g.
N,Z,R), Ω is the set of all sub events, A is the σ-algebra of Ω, and Π is a function that assigns
a probability to each element in A . Schuh (2016, chapter 2) additionally differentiates between a
discrete stochastic process Stj with j ∈ Z in case of discrete sampling points tj and otherwise the
continuous stochastic process S(t) with t ∈ R.
Alternatively Watts et al. (1968, p. 134 f.) describe a stochastic process by defining a collection
of continuous observations St with a valid t ∈ R and a cumulative distribution function (CDF)
(F.(.)). In most observations, the data is associated with time or a location. This thesis is limited
to one dimensional time series associated with time.
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2.5 Stationary Process
A subclass of the stochastic processes defined in 2.4 are stationary processes. Khintchine (1934, p.
606) defines a process as stationary if for two sequences (St1 ,St2 , ...,Stn) and (St1+u ,St2+u, ...,Stn+u)
the distributions are identical, regardless of the choice of the number n ∈ Z, the times j ∈ Z and
the distance u ∈ R. In particular, this definition is equivalent to the definition of Priestley (1983,
p. 105), which defines stationarity as:

FSt1 ,St2 ,...,Stn
(s1, s2, ..., sn) ≡ FSt1+k,St2+k,...,Stn+k

(s1, s2, ..., sn),

where F.(.) is the CDF of {Sj}j∈Z. The term {.}j∈Z is used for the entire time series, and sj is the
parameter of the CDF, which refers to the random variable St.
Furthermore, Brockwell et al. (1991, def. 1.3.2) clarify the concept of strict stationary when
the properties of a process, defined by the moments of the process, are constant. In particular, the
expected value, variance and the covariances over the entire process are constant, i.e.

µj := E{Stj} =

∫ ∞

−∞
tjfStj

(tj)dtj = µ is constant for all j ∈ Z,

σ2
j := E{(Stj − E{Stj})2} =

∫ ∞

−∞
(tj − µj)

2 fStj
(tj)dtj = σ2 is constant for all j ∈ Z, and

σj,k := E{(Stj − E{Stj})(Stk − E{Stk})}

=

∫ ∞

−∞
(tj − µj) (tk − µk) fStj ,Stk

(tj , tk)dtjdtk

= σ|j−k|

only depend on the relative distance |j−k| for all j, k ∈ Z. Here f.(.) means the probability density
function (PDF), E{.} is the expected value of a random variable and σ2

j is the variance of the time
series St. Hamilton (1994, p. 46) differentiates between weak stationarity, in which only the first
two moments are independent of time or space, and strict stationarity, in which all moments are
independent of time or space. Since Gaussian-distributed (or normally distributed) observations
are assumed here, all moments with order greater than two are constants. Therefore, not only the
moments are always independent of time and space, but also weak stationarity is followed by strict
stationarity.

2.6 Covariance Functions
In Box et al. (1970, p. 27) it is shown that the condition of stationarity of section 2.5 requires that
the CDF is independent of the absolute time and depends only on the lag. Thus, the covariances
are only dependent on the lag j:

Σj = E{(St−j − µ) (St − µ)}. (2.6.1)

Here, a constant expectation value is used for the times t − j and t: µ = E{St} = E{St−j}.
Furthermore, Priestley (1983, p. 109) has shown that a CF {Σj}j∈Z must meet four conditions:

1. Σ0 > 0, i.e. the variance is always greater than zero.

2. |Σj | ≤ Σ0 ∀j ∈ Z, i.e. the absolute value of the variance does not exceed the variance.

3. Σj = Σ−j , i.e. the function is symmetrical.

4. Σj is a positive semi-definite function.

In this thesis we differentiate between the discrete CF ({Σj}j∈Z) for discrete stochastic processes
Stk with k ∈ Z and the continuous CF (γ(h)) for continuous stochastic processes S(t) with t ∈ R,
but the conditions apply to both.
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2.7 Autoregressive Processes
According to Wold 1938, any stationary process St can be divided into two parts: a moving
average (MA) part, in which the signal at any time is represented by a weighted sum of white
noise, and an autoregressive (AR) part that describes the process at any time as a weighted sum of
its predecessors. Thus, each stationary process can be easily described by an autoregressive moving
average (ARMA) process. This consists of a recursion formula for the autoregressive (AR) part
and a sum of weighted white noise Et for the moving average (MA) part (see e.g. Buttkus 2000,
p. 240):

St =

p∑
k=1

αkSt−k +

q∑
l=1

φlEl.

Here, p is the order of the AR part, and q is the order of the MA part. In addition, αk are the
coefficients of the AR part, respectively the weights for the sum of the AR part. φl are the weights
for the MA part.
In time series analysis, the AR processes are preferred, as this type of processes can be used to
decorrelate the observations or to determine the covariances between the discrete observations. So,
an autoregressive process of order p (AR(p)) for observations St is defined by:

St = α1St−1 + α2St−2 + ...+ αpSt−p + Et, (2.7.1)

where α1, α2, ..., αp are the coefficients of the AR process and Et is an independently and identically
distributed (i.i.d) noise sequence with variance σ2

E . The parameters uniquely describing an AR(p)
process are the p coefficients αk, k ∈ {1, 2, ..., p} and the variance of the noise σ2

E .

2.8 Yule-Walker Equations
The Yule-Walker (Y.-W.) equations provide a linear relation between the covariances and the
coefficients of a stationary AR(p) process. Schlittgen et al. (1991, p. 102) derive the equations
from the product of two arbitrary states of a time series {Sj}j∈Z:

StSt−j = α1St−1St−j + α2St−2St−j + ...+ αpSt−pSt−j + St−jEt. (2.8.1)

Here St is replaced by (2.7.1). Bearing in mind that

E{StSt−j} = Σj and E{EtSt−j} =

{
σE ² if j = 0

0 else

this allows the formation of the expected value on both sides of (2.8.1) to infer the Y.-W. equations
i.e.

Σ0 = α1Σ1 + α2Σ2 + ...+ αpΣp + σE ² (2.8.2)
Σj = α1Σ|j−1| + α2Σ|j−2| + ...+ αpΣ|j−p| ∀j ∈ Z \ {0}. (2.8.3)

2.9 Characteristic Polynomials
Some characteristics of the AR process can be seen by using the characteristic polynomial. For
example for example it can be proven whether or not the process is stationary. Therefore Box
et al. (1970, p. 55) defined the characteristic polynomial (CP) of an AR(p) process represented by
(2.7.1) as

χ̄(x) = 1− α1x− α2x
2 − ...− αpx

p

=

p∏
k=1

(1− ξkx).
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With regard to the stationarity of AR processes (see section 2.5 and 2.7), the roots of this equation
ξk must lie outside the unit circle. By redefining the CP as

χ(x) = xp − α1x
p−1 − α2x

p−2 − ...− αp (2.9.1)

=

p∏
k=1

(x− Pk), (2.9.2)

(like it is done in Priestley 1983, p. 133) the condition of stationarity changes to roots Pk within
the unit circle, with Pk=

1
ξk

. These roots Pk occur only as real numbers or as pairs of complex
conjugated numbers, as long as the coefficients are real-valued as in the case of the AR coefficients.

2.10 Auxiliary Equation/ Difference Equation
The characteristic polynomial from section 2.9 can be transformed into a difference equation, giv-
ing a formula to compute each signal directly. The homogeneous difference equation (DE) (or
alternatively, ’auxiliary equation’, see Goldberg 1986, p. 134, eq. {3.33 })) is defined by

Yt − φ1Yt−1 − φ2Yt−2 − ...− φpYt−p = 0, (2.10.1)

where Yt is a sequence of n variables for t ∈ [1, n], and φk with k ∈ {1, 2, ..., p} are the coefficients
of the differential equation (see Box et al. (1970, p. 115, eq. {A4.1.1})). YT from (2.10.1) has the
general solution (see e.g. Goldberg 1986, p. 163f.)

Yt =

p∑
k=1

AkP
t
k. (2.10.2)

Here Pk are the roots of the CP defined in (2.9.2) and the Ak are constant weights independent
of the time t. The calculation of the weights can be found in Appendix B.1. Hamilton (1994,
p. 34, eq. 2.4.7) shows that the difference equation is invertible exactly when the roots Pk are
unambiguous and lie within the unit circle, e.g. |Pk| < 1. Only in this case Yt can be calculated
directly using (2.10.2).

2.11 Visual Representation of the Coefficients of an AR(2) Process
For the AR(2) process Sansò (1985, p. 505, figure 3.5.2) has presented a visual method to show
whether the associated process is stationary and -if so- whether the roots are complex or real. The
limits for the triangle in Figure 2.1 are based on the consideration that for an AR(2) process the
roots of the CP follow from

P1,2 =
α1

2
±
√(α1

2

)2
+ α2 (2.11.1)

and must be within the unit circle as a stationarity condition. This results in the two conditions

1 < α2 − α1 and α2 + α1 < 1.

These inequalities can be used for each other to determine the limits of the parameter −1 ≤ α2 ≤ 1.
Also the condition of whether the roots are real or complex is missing. This depends only on the
sign of the term under the root in (2.11.1). This thus provides us with the conditions(α1

2

)2
< −α2 if the roots are complex valued,(α1

2

)2
> −α2 if the roots are real-valued and(α1

2

)2
= −α2 if there is a double real root.
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-2 -1 0 1 2

1

-1

-0.5

0

0.5

1

2

real roots

complex roots

Figure 2.1: Visual representation of the possible coefficient pairings for station-
ary AR(2) processes shown as triangular in a plane.

Visually, these boundaries can be merged into the diagram in Figure 2.1. In this representation,
the x-axis corresponds to the value of the first coefficient α1 and the y-axis corresponds to the
value of the second coefficient α2. If the coordinates are in the green area, then the resulting roots
are complex valued, if the coordinates are in the blue area, then the roots are real valued, and
outside the triangle the coefficients give a nonstationary process. The line between the two ranges
described by the equation (α1/2)

2 − α2 = 0 provide a special case. Here, the results pose a double
root, meaning that both roots assume the same real value.

2.12 Fourier Transformations
The Fourier transformation (FT) for nonperiodic continuous processes g(h) is given by the integral
(see e.g. Buttkus 2000, p. 13, eq. 2.1)

G(ν) := F{g(h)}(ν) =
∫ ∞

−∞
g(h)e−i2πνhdh.

The existence of this integral is guaranteed as long as the function g(h) is square integrable:∫ ∞

−∞
(g(h))2dh < ∞,

see Priestley (1983, p. 189). Furthermore, Buttkus (2000, p. 22, Table 2.1) shows some
important properties of this transformation:

1. Scaling:

F{cg(h)}(ν) = cG(ν) for any constant c. (2.12.1)

2. Addition:

F{g1(h) + g2(h)}(ν) = G1(ν) +G2(ν). (2.12.2)

3. Multiplication::

F{g1(h)g2(h)}(ν) = G1(ν)~G2(ν), (2.12.3)

here ~ means the convolution: g1 ~ g2 =
∫∞
−∞ g1(x)g2(t− x)dx.

4. Correlation:

F{g1(h) ? g2(h)}(ν) = G1(ν)G2(ν)
∗, (2.12.4)

here ? means the correlation: g1 ? g2 =
∫∞
−∞ g1(x)g2(x + t)dx and .∗ gives the complex

conjugated value of the input. So G2(ν)
∗ is the complex conjugated of G2(ν).
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Name Description g(x) Transform G(ν)

Fourier transformation∫∞
−∞ g(h)e−i2πνhdh Continuous function Continuous function

(aperiodic) (aperiodic)

Periodic Fourier transformation
1
T

∫ T
2

−T
2

g(h)e−i2πν/Thdh Continuous periodic Discrete sequence
function (Dirac delta function)

Table 2.1: Different types of Fourier transformations

5. Time shift:

F{g(h− c)}(ν) = G(ν)e−i2πcν for any constant c.

In this thesis, no distinction is made between discrete and continuous FT. Sequences of observations
are presented as the product of a continuous function with the Dirac delta comb, (for further
information see section 2.15) which in turn is a continuous function that always takes a non-
zero value only at equidistant intervals. Nevertheless, it should be noted that the result of the
Fourier transformation is still continuous, but also becomes periodic. The period corresponds to
the distance between two pulses of the Dirac delta comb (∆j). For symmetry reasons, this function
is fully described by the value of half the period. This frequency at the discrete value of half the
periodic

νn =
1

2∆j

is called the Nyquist frequency (see for example Grenander 1959, p. 316). It should be mentioned
that the researches distinguish between two FTs shown in Table 2.1 (see Watts et al. 1968, p. 26).
The inverse of the FT is called inverse Fourier transform (IFT) and is calculated by

F−1{G(ν)}(h) =
∫ ∞

−∞
G(ν)ei2πνhdν.

For the IFT, the conditions 1-4 of section 2.6 apply just as for the FT. And for its frequency shift

F−1{G(ν − c)}(h) = g(h)ei2πcν for any constant c (2.12.5)

applies. Moreover, the relation between the multiplication and the convolution in the FT and in
the IFT results in the so-called convolution theorem, which states that the convolution in the time
domain results in a multiplication in the frequency domain and vice versa (see Buttkus 2000, p.
26, Table 2.2).

2.13 Power Spectral Density
The energy E (.) of a time series {Sj}j∈Z can be calculated using

E (St) =

∫ ∞

−∞
S2
t dt,

but can also be calculated by the Parseval’s relation

E ({Sj}j∈Z) =
∫ ∞

−∞
|F{{Sj}j∈Z}(ν)|2dν
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in the spectral domain (see Priestley 1983, p. 204). Since |F{{Sj}j∈Z}(ν)|2 is not a measure
of energy but rather an energy density, it is also called the energy spectral density (ESD), or
power spectral density (PSD) like in Watts et al. (1968, p. 217). Using the convolution theorem
(see Priestley 1983, p. 211), the PSD can be interpreted as the FT of the discrete covariances
({Σj}j∈Z). This relation is shown in Appendix A.1:

F−1{|F{{Sj2}j2∈Z}(ν)|2}(t) = {Σj}j∈Z
⇔ |F{{Sj2}j2∈Z}(ν)|2 = F{{Σj}j∈Z}(ν). (2.13.1)

Here F−1 {.} (t) denotes the IFT (see Buttkus 2000, p. 13)

F−1{G(ν)}(t) := 1

2π

∫ ∞

−∞
G(ν)ei2πνtdν.

This is the Wiener-Khintchine theorem (see Priestley 1983, p. 219). The equation (2.13.1)
means that the FT of the discrete variances is a quadratic function, and thus can only assume
values greater than or equal to zero.
The FT of the discrete covariances, i.e. the PSD, of an AR(p) process is (see Box et al. 1970, p.
56)

H2(ν) := F{{Σj}j∈Z}(ν)

=
σE ²

|1− α1e−i2πν − α2e−i4πν − ...− αpe−i2pπν |2
. (2.13.2)

2.14 The Magic Square

In time series analysis, a distinction is made between two domains: the time domain in which time
series are represented, and the frequency (or spectral) domain (or spectral domain) for the FT.
This results in a transformation between these domains by the FT and the IFT. Krasbutter
et al. 2015 introduced the Magic Square as a well-arranged representation of four quantities of a
discrete finite moving average (MA) process in time and frequency domain. Loth et al. 2021 show
an extension of the magic square for AR(p) processes by replacing them by infinite MA processes,
i.e.

St = α1St−1 + α2St−2 + ...+ αpSt−p + Et

=
∞∑
j=1

θjEt−j + Et.

The illustration in Figure 2.2 of this magic square shows that there are always two paths from the
upper states to the lower states: first, the direct path, and second, the ’detour’ via a temporary
domain change to execute the corresponding application. In particular, Figure 2.2 illustrates the
relationship between the correlation and the Fourier transform found by a multiplication of two
complex conjugate Fourier transformations. This relation is represented mathematically in (2.12.4).

It should be mentioned that this Figure is constructed from Schuh (2016, Figure 6), which
shows the magic square for an AR process. Since in both representations, an integration of a
random variable is needed, a Lebesque integral is used to compute the FT of the signal. This FT
can then be used to compute the spectrum.

2.15 Dirac Delta Function and Dirac Comb

The Dirac delta function (DDF) (δ(h)) is a mathematical construct defined only by mathematical
formulas. Buttkus (2000, p. 41) defines the DDF with the help of a continuous function x(h) by
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St =
∑∞

j=0 θjEt−j with θ0 = 1

F{}

⇀↽
F−1{}

F{St}(ν)

← Correlation
E{St ? St}

Multiplication with the com-
plex conjugated
E{F{St}(ν)F{St}(ν)∗} ←

γ(h)

F {}

⇀↽
F−1{}

F{γ(h)}(ν)

time-domain frequency domain

Figure 2.2: Visualization of the transition from correlation to multiplication
with the complex conjugate counterpart by the FT.

the two equations

δ(h− j0) = 0 if h 6= j0∫ ∞

−∞
δ(h− j0)x(h)dh = x(j0). (2.15.1)

A geometric interpretation of the DDF is deliberately omitted, since only the mathematical prop-
erties of the function are used here. A periodic series of DDF with a period of ∆j is called a Dirac
delta comb (DC) (see Buttkus 2000, p. 61). This corresponds to an infinite number of DDFs
summed up, whose values j0 follow each other equidistantly with distance ∆j , e.g.

∞∑
l=−∞

δ(h− l∆j).

For the DC, there are again two important properties. On the one hand, multiplying the DC with
a continuous function x(h) results in a discrete series {xj}j∈Z:

∞∑
l=−∞

δ(h− l∆j)x(h) = {xj}j∈Z. (2.15.2)

And on the other hand, Buttkus (2000), p. 46, eq. (3.28) shows that the FT of the DC is provided
by:

F{
∞∑

l=−∞
δ(h− l∆j)}(ν) =

1

∆j

∞∑
l=−∞

δ(ν − l

∆j
).

In particular, for a DC with distance ∆j = 1, this means that the FT again is a DC with distance
1 (at least after the infinite sum has been rearranged):

F{
∞∑

l=−∞
δ(h− l)}(ν) =

∞∑
l=−∞

δ(ν − l). (2.15.3)



14 2. Definitions and Prerequisite Knowledge

2.16 Time Variable AR Process
Dahlhaus 1997 defines the TVAR1. process as:

St = α1(t)St−1 + α2(t)St−2 + ...+ αp(t)St−p + Et. (2.16.1)

Analogous to time constant AR(p) processes, there are p+ 1 summands, and Et is a constant i.i.d
sequence with s variance σ2

E over the entire time range. Here, the time series St no longer has to
be a stationary process, and the coefficients (αk(t), k ∈ {1, 2, ..., p}) are now functions in the time
domain with parameter t. Therefore, the number of parameters of a time variable autoregressive
process of order p (TVAR(p)) process is different from p.

2.17 Analytical Calculation of the Roots of a Polynomial
Given a polynomial of order p of the type

Pp(x) = xp + c1x
p−1 + c2x

p−2 + ...+ cp,

the fundamental theorem of algebra says that this polynomial has exactly p (maybe complex valued)
zeros (see Bronstein et al. 2006, p. 44). Unfortunately, there exists purely analytical solutions
for the problem if the order p ∈ {1, 2, 3, 4}, which furthermore dates back to the 19th century (see
Abel et al. 1889 or Galois 1846). In the following, the analytical solutions for polynomials up to
order 3 are presented. Polynomials of order four are not used in this work.

1. First order polynomials

P1(x) = x+ c1
!
= 0

The roots of this polynomial can be found directly with

P1 = −c1. (2.17.1)

2. Second order polynomials

P2(x) = x2 + c1x+ c2
!
= 0

The roots of this polynomial can be calculated using the so-called pq-formula (see Abramowitz
et al. 1964, p. 17 eq. 3.8.1):

P1,2 = −c1
2

±
√(c1

2

)2
− c2. (2.17.2)

3. Third order polynomials

P3(x) = x3 + c1x
2 + c2x+ c3

!
= 0

The analytic calculation of the roots for this polynomial is found in Abramowitz et al. (1964,
p. 17 eq. 3.8.1) and is much more complicated. Therefore, the calculation of the solution is
divided into three steps:

• Set auxiliary values q and r:

q =
c2
3

−
(c1
3

)2
(2.17.3)

r =
1

6
(c1c2 − 3c3)−

(c1
3

)3
. (2.17.4)

1. In literature TVAR also means time varying vector autoregressive processes. These are multivariate autoregres-
sive processes with correlated time series (see e.g. Haslbeck et al. 2021, Li et al. 2024 or Cubadda et al. 2025).
But these are not part of this thesis
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• Set auxiliary values s1 and s2:

s1 =
3

√
r +

√
q3 + r2 (2.17.5)

s2 =
3

√
r −

√
q3 + r2. (2.17.6)

• Calculation of the roots

P1 = (s1 + s2)−
c1
3

(2.17.7)

P2 = −s1 + s2
2

− c1
3

+ i

√
3

2
(s1 − s2) (2.17.8)

P3 = −s1 + s2
2

− c1
3

− i

√
3

2
(s1 − s2) . (2.17.9)

2.18 Akaike Information Criterium
Akaike 1974 has developed the Akaike information criterion (AIC) to compare models of different
complexity for estimation. He shows that the minimum of

AIC = 2m− ln(L(y,φ))

gives the best number of parameters m in the parameter vector φ. L is the likelihood function of the
observations (y) and the adjusted observations (ỹ(φ)). If there are n observations and assuming
that L(·) is the normal distribution, the residual sum of squares (RSS)

σ̆2
E :=

(y − ỹ(φ))T (y − ỹ(φ))

n
(2.18.1)

can be used instead. The AIC can then be represented in simplified terms by

AIC = ln(σ̆2
E) +

2(m+ 1)

n
. (2.18.2)

2.19 How to Determine the best Order of an AR Process
The order of an AR process plays a fundamental role for the approximation of a stationary time
series. According to Buttkus (2000, section 4.11), in case of the model order p, two things have
to be balanced against each other: on the one hand, using a low number of parameters results in a
model error. While on the other hand, using to many parameters leads to an error caused by over
parametrization. Buttkus (2000, section 4.11) also shows that the order p of an AR process can
be determined in three steps:

1. Set a lower (bl) and upper boundary (bu) for the order of the AR processes:

bl ≤ p ≤ bu.

2. Approximate the time series with AR process of all orders in the interval and determine the
corresponding AIC:

AIC = ln(σ̆2
E) +

2(p+ 1)

n
.

Here, p is the order of the AR Process, n is the number of observations and σ̆2
E is the variance

of the white noise computed by the mean of the RSS:

σ̆2
E =

1

n− p

n∑
j=p

(
Sj −

p∑
k=1

αkSj−k

)2

.

3. Find the first local minimum AIC in the interval [bu, bo] and use the corresponding AR process.
By choosing the first minimum, the modelling of the noise (over-fitting) should be prevented.
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2.20 Gamma Function and the Pochhammer Symbol
The gamma function (

L
(t)) is defined by the integral

L
(t) =

∫ ∞

0
xt−1e−xdx

(see Abramowitz et al. 1964, p. 255, eq. 6.1.1) and represents the continuation of the discrete
faculty function:

L
(t+ 1) = t!

(see Abramowitz et al. 1964, p. 255, eq. 6.1.5). The function
L
(t) is sketched in Figure 2.3 which

shows how the continuous function runs for the natural numbers t̂ ∈ N through the discrete values
(t̂−1)!. Another special function is the Pochhammer symbol (P(t, j)), which describes the quotient

-2 0 2 4

t

-5

0

5

(t)

(t-1)!

Figure 2.3: The track of the gamma function and how it proceeds through the
solutions of t! with t = 0, 1, 2, 3, ....

of two gamma functions, i.e.

P(t, j) : =
L
(t+ j)
L
(t)

=

j−1∏
k=0

t+ k

with j ≥ 0 (see p. 256, eq. 6.1.22) if t, j > 0.
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Chapter 3

Continuous Covariance Function for
Time Constant AR Processes

Although this thesis focuses on time-variable AR processes, this chapter provides new important
insights for the LSC of stationary processes. The results will be used as foundation for the nonsta-
tionary LSC.

When a signal has been measured, one is generally also interested in discrete values between the
individual measurements. These can be determined by LSC as presented in section 2.2, but only if
a valid CF is known that continues the discrete covariances of the process used to model the signal.
In this chapter, a continuous CF is created which is precisely matched by the discrete covariances
of a stationary AR process. The Y.-W. equations can be modified to the DE, which posses an
unambiguous solution. Its development demands two steps: first, the roots of the CP are derived.
In the second step, the weights can be determined from any p equations of the Y.-W. equations.
In order to prove that this function is a suitable and valid CF, it must be shown that it is positive
semi-definite. Furthermore the relation between the PSD of the discrete CF and the PSD of the
continuous CF is examined. Chapter 3 comply with Korte et al. 2021, but goes into more detail
and further provides an additional framework for AR processes with negative roots.

3.1 Construction of a Continuous Covariance Function
Section 2.8 has shown how to gain the Y.-W. equations for AR(p) processes. Combining both sides
of the Y.-W. equations of order j 6= 0 (see (2.8.3)) gives a difference equation (DE) as described in
section 2.10:

Σj −
p∑

k=1

αkΣ|j−k| = 0 ∀j 6= 0. (3.1.1)

It was shown in section 2.10 that for the DE any discrete covariance Σj can be calculated directly
from the sum of the p-th powers of weighted bases

Σj =

p∑
k=1

AkP
|j|
k , (3.1.2)

where Pk are the roots of the CP, and Ak are weights that can be uniquely determined from any
p discrete CF (for details see Appendix B.1).
It should be noted that Σ0 includes the variance of the white noise (σ2

E) (see (2.8.2)). The DE
deriving from the Y.-W. equation of order 0 then is

Σ0 − σ2
E −

p∑
k=1

αkΣk = 0.
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Nevertheless, the direct calculation in (3.1.2) is also valid for the variance Σ0. The reason for this
is that the DE are only defined for covariances Σk with k ≥ p, while the direct calculation is also
valid for Σk with j < p (since these are used in the DE of higher order). That means that the
variance of the signal and the variance of the noise cannot be separated from each other just via
the direct formula.
Nevertheless, (3.1.2) is only useful to determine the discrete covariances ({Σj}j∈Z), but not the
continuous CF (γ : R → R) we are looking for. This demands the replacement of the discrete
parameter j ∈ N0 in (3.1.2) with a continuous parameter h ∈ R in order to create continuous
function

γ(h) :=

p∑
k=1

AkP
|h|
k . (3.1.3)

If Pl is a negative real-valued number for any l ∈ {1, 2, ..., p}, then, due to

P
|h|
l = |Pl||h|eiπ|h|

with eiπ|h| ∈ C ∀h /∈ Z, the continuous function γ(h) becomes complex. But this contradicts
the definition in (2.6.1). The continuous CF must be limited to a section of real values, so the
construction of a continuous CF is precisely represented by

γ(h) = R

(
p∑

k=1

AkP
|h|
k

)
, (3.1.4)

with R(.) being the real part of the complex number. A more detailed explanation as well as a
comparison with absolute values can be found in Appendix B.2.
In the sections 3.2 and 3.2, the PSD of the discrete CF ({Σj}j∈Z) is firstly compared to the PSD
of the continuous CF γ(h) (see section 3.2) and then secondly, in section 3.3, the positive semi-
definiteness of the continuous CF is proven.

3.2 Comparison of the Spectra for the Discrete and the Continu-
ous Covariance Function

In order to compare the PSDs of both CFs, they must first be derived. In the case of the discrete
CF, the spectrum derives from (2.13.2). The PSD of continuous CF however must be derived via
the FT. Then the continuous CF is derived.

3.2.1 Power Spectral Density of the Discrete Covariance Function

The PSD of the discrete CF is known and has already been presented in section 2.13:

H2(ν) := F{{Σj}j∈Z}(ν)

=
σE ²

|1− α1e−i2πν − α2e−i4πν − ...− αpe−i2pπν |2
. (3.2.1)

in order to simplify its comparison with the PSD of continuous CF, this thesis limits its examination
to the AR(1) and AR(2) processes. This is acceptable since both the discrete CF and the continuous
CF are written as weighted potency sum of the roots Pk. These roots occur only as real numbers
or as complex conjugated pairs, whereby a real root corresponds to an AR(1) process, and a pair
of complex conjugated roots corresponds to an AR(2) process. Furthermore, it is appropriate to
perform a parameter change and to replace the coefficients αk with the help of the CP by the means
of the roots Pk. For the AR(1) process, the CP (from (2.9.1)) is

χ(x) = x− α1,
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immediately providing the roots

χ(P1) = 0 ⇒ P1 = α1. (3.2.2)

However, for the CP of the AR(2) process

χ(x) = x² − α1x− α2,

it is known that the roots could be calculated using the pq-formula (2.17.2) with c1 = −α1 and
c2 = −α2:

P1,2 =
α1

2
±
√(α1

2

)2
+ α2.

From this, it is easy to obtain that

α1 = P1 + P2 (3.2.3)
α2 = −P1P2. (3.2.4)

With the help of the general solution of the PSD and the conversion between coefficients (αk)
and roots (Pk), the PSD for the AR(1) and AR(2) process can be calculated directly. A detailed
derivation can be found in Appendix B.3. Using (3.2.2), the PSD for the AR(1) process is given by

H²(ν)= σE ²
1− 2P1 cos(2πν) + P1²

,

and for the AR(2) process the PSD derives from the use of (3.2.3) and (3.2.4)

H²(ν)

=
σE ²

1− 2(P1 + P2) cos(2πν) + P1² + P2² + P1P2(2 + 2 cos(4πν)− 2(P1 + P2) cos(2πν) + P1P2)
.

3.2.2 Power Spectral Density of the Continuous Covariance Function

To determine the PSD of the continuous CF, the Fourier transformation of γ(h) is needed. This
transformation is done in Appendix B.4 and results in

Γp(ν) : = F{γ(h)}(ν)

=

p∑
k=1

Ak
−2 ln(Pk)

ln(Pk)² + (2πν)²
.

Especially for the AR(1) and AR(2) process the weights for the CF have been derived (see Appendix
B.1), which results in the PSD for the AR(1) process

Γ1(ν) =
σE ²

1− P1²
−2 ln(P1)

ln(P1)² + (2πν)²
(3.2.5)

and for the AR(2) process

Γ2(ν) =
σE ²P1

(P2 − P1)(1− P1²)(P1P2 − 1)

−2 ln(P1)

ln(P1)² + (2πν)²
...

+
σE ²P2

(P1 − P2)(1− P2²)(P1P2 − 1)

−2 ln(P2)

ln(P2)² + (2πν)²
. (3.2.6)
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3.2.3 Relationship between the Covariance Functions

A direct comparison between the PSD of the continuous CF and the discrete CF is not neces-
sary, since H²(ν) 6= Γ(ν) applies without limitation to the general case. To establish a connection
between the CFs, γ(h) is converted to {Σj}j∈Z using the DC whose mathematical property is de-
scribed in (2.15.2). Figure 3.2 is a variation of the magic square from Krasbutter et al. 2015 (see
section 2.14) and represents exactly this transformation, i.e. shows the time-domain in relation to
the frequency domain with its Fourier transformed counterparts. The discretization of a continuous
function corresponds to the multiplication with a DC with period ∆l = 1 (see (2.15.2)). According
to the convolution theorem, the FT of the continuous CF can be transferred to the PSD of the
AR(p) process by convoluting it with a DC whose period is again 1/∆l = 1 (see (2.15.3)).
This is shown in Figure 3.1, where the dependencies of the discrete and continuous CF and its FT
are illustrated by the arrows. The arrow reaching from the right top to the right bottom deserves
special attention, as this correlation has not yet been proven and is derived via a ’detour’. Starting
in the upper right, the FT of the continuous CF (Γp(ν)), the function is transformed by the IFT
into the function γ(h) in the time domain. Here, the discrete covariances {Σj}j∈Z are extracted
by multiplying γ(h) with the DC. Finally, by computing the FT of the sequence of discrete co-
variances ({Σj}j∈Z), the PSD of the AR process is calculated. Applying the convolution theorem
(see Buttkus 2000, p. 22, Table 2.1), it follows that the function Γp(ν) is transformed into PSD
H²(ν) by convoluting Γp(ν) with the DC. For clarification, the magic square is demonstrated with
an AR(3) process in Figure 3.2. In this case, the variance of the noise (σ2

E) is equal to one and the
roots P1= 0.40 + 0.68i, P2= 0.40− 0.68i and P3= 0.64 all have a positive real part.

γ(h) =
∑p

k=1AkPk
|h| ←

F−1{Γp(ν)}(h)

Γp(ν) =
∑p

k=1Ak
−2 ln(Pk)

ln(Pk)2+(2πν)2

←

·
∑∞

l=−∞ δ(h− l)

multiplication
with a Dirac comb

~
∑∞

l=−∞ δ(ν − l)

convolution
with a Dirac comb ←

{Σj}j∈Z =
∑p

k=1AkPk
|j|

F {{Σj}j∈Z} (ν)→ H2
p(ν) =

σE ²
|1−

∑p
k=1 αke−i2πνk|²

time-domain frequency domain

Figure 3.1: Conversion of the PSD formula in the magic square, once by the
means of the ’detour’ in the time-domain, and once directly in the frequency
domain.

The transformation described in Figure 3.2 can also be represented pictorially by performing the
following two steps.

1. First the Γp(ν) is copied and plotted with its maximum at each integer (...− 2,−1, 0, 1, 2, ...),

2. then the values of all these functions are summed up for each frequency.

The general proof that, without limiting the general applicability, the convolution Γp(h)~
∑∞

l=−∞ δ(ν−
l) on the right side is equal to H2

p(ν), is given in the Appendix B.5.
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Figure 3.2: Example of a magic square for the PSD of an AR(3) process with
the roots: P1= 0.40 + 0.68i, P2= 0.40− 0.68i, P3= 0.64 and variance σ2

E= 1.

3.3 Suitability as a Covariance Function

Since the PSD of the discrete CF and the continuous CF do not coincide (H2
p(ν) 6= Γp(ν)), that

the continuous function (γ(h)) is a valid CF has yet to be demonstrated. So, it has to be proven
that γ(h) meets the conditions of a CF given in section 2.6:

1. γ(0) > 0.
The discrete CF meets the first condition due to the fact that it is a CF. From γ(0) = Σ0 > 0
follows that the first condition is also met for γ(h).

To prove the following conditions, it is sufficient to look at the individual summands of
γ(h) in (3.1.4) provided by AkP

|h|
k : if they meet the conditions, the sum does as well.

2. |γ(h)| ≤ γ(0) ∀h ∈ R.
Since every single root Pk lies within the unit circle (|Pk| < 1), each addend becomes smaller
with increasing distance |h|. In particular, γ(h) is largest at distance h = 0.

3. γ(h) = γ(−h).
Since the continuous distance h occurs only in a absolute value, this condition is fulfilled.

4. γ(h) is a positive semi-definite function.

In order to prove the last condition, it is not quite sufficient to only rely on the individual summand.
Rather, it demands a further differentiation depending on whether the roots are real valued, or
whether the roots occur as conjugate pairs. In the first case, a single summand, and in the latter
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case, both summands of a complex conjugated pair can be considered.
Beginning with the AR(1) process, (3.1.4) is used:

γ(h) = R
(
A1P

|h|
1

)
.

Since the coefficients Ak only appear as complex conjugated pairs or as real-valued numbers, A1 is
always a real number for the AR(1) process. Therefore:

γ(h) = A1R
(
P

|h|
1

)
.

If P1 is negative, it can be rewritten as

P
|h|
1 = (eiπ|P1|)|h| = (cos(π|h|) + i sin(π|h|))|P1||h|.

After taking the real part of the complex values, there is only

cos(π|h|)|P1||h| = cos(πh)|P1||h|

left, where due to the symmetry of the cosine relative to the y-axis the absolute value of h can
be exchanged with the distance itself: cos(|h|) = cos(h) = cos(−h). in the case of a negative root
P1 < 0, this means the function γ(h) is derived by the means of multiplication of

γ(h) = cos(πh)A1|P1||h| if P1 < 0.

As has been shown in Appendix B.8, the FT of a product of a positive definite function (A1|P1||h|)
with a cosine remains positive definite. However, the case of a positive root remains to be checked.
To do this, one needs to simply apply the general FT of γ(h) from Appendix B.4 to the AR(1)
process and replace A1 with σ2

E/(1− P 2
1 ) by using (B.1.3):

Γ(ν) =
σ2
E

1− P 2
1

−2 ln(P1)

(ln(P1))2 + (2πν)2
!
≥ 0.

The individual numerators and denominators are checked separately, while also showing that they
are all positive. The square terms (σ2

E , (ln(P1))
2 and (2πν)2) are all larger than zero. Furthermore,

P1 lies in the unit circle, which is equivalent to |P1| < 1. This results in the fulfilment of the two
conditions required to prove the positive definiteness of the CF of AR(1) processes: it holds P 2

1 < 1
and also 1 − P 2

1 > 0, while the property ln(P1) < 0 is valid. From this follows the last condition:
−2 ln(P1) > 0. Thus, all factors or the quotients are greater than zero, remaining the positive
definiteness is proven.
It remains the case of the AR(2) process with two complex conjugated roots (P1=P ∗

2 ). Here, the
covariance function is

γ(h) = A1P
|h|
1 +A2P

|h|
2 ,

i.e. the sum of two roots that are potentiated by h and multiplied by the weights A1 and A2. Since
both A1 = A∗

2, and P
|h|
1 =

(
P

|h|
2

)∗
apply, γ(h) is the sum of a complex number and its complex

conjugated counterpart. Since this is a real value, the real part operator in (3.1.4) is not necessary.
But it also applies for the FT Γ(ν) = F{γ(h)}(ν) it applies that Γ(ν) is the sum of two complex
conjugated values. This follows from section 2.12, especially from the linearity of FT in (2.12.1)
and (2.12.2). Thus, it follows for the FT:

Γ(ν) = F{γ(h)}(ν) = A1F{P |h|
1 }(ν) +A2F{P2

|h|}(ν).

Rewriting P1 and P2 as P1 = reiφ and P2 = re−iφ, it can be seen that

Γ(ν) = A1F{(reiφ)|h|}(ν) +A2F{(re−iφ)|h|}(ν)
= A1F{r|h|(cos(φ|h|) + i sin(φ|h|)}(ν) +A2F{r|h|(cos(φ|h|)− i sin(φ|h|))|h|}(ν).
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Also taking into account the linearity of the FT,

Γ(ν) = A1F{r|h| cos(φ|h|)}(ν) + iA1F{r|h| sin(φ|h|)}(ν)...
+A2F{r|h| cos(φ|h|)}(ν)− iA2F{r|h| sin(φ|h|)}(ν)

means that Γ(ν) is a sum of two complex conjugated values. This sum is equal to twice its real
part:

Γ(ν) = 2R
(
A1F{P |h|

1 }(ν)
)
.

Further (B.1.5) and (B.4.3) show that

A1 =
−σ2

EP1

(P2 − P1)(1− P 2
1 )(1− P1P2)

and F{P |h|
1 }(ν) = −2 ln(P1)

(ln(P1))2 + (2πν)2
,

are valid, remaining in

Γ(ν) = 2R
(

−σ2
EP1

(P2 − P1)(1− P 2
1 )(1− P1P2)

−2 ln(P1)

(ln(P1))2 + (2πν)2

)
= 2

2σ2
E

(1− P1P2)
R
(

P1

(P2 − P1)(1− P 2
1 )

ln(P1)

(ln(P1))2 + (2πν)2

)
. (3.3.1)

In this last step, 2, σ2
E and (1 − P1P2)

−1 were isolated from the function R(.) because they meet
two properties. First, the fraction has no imaginary part. This is easy to see if P1P2 is replaced by
r2. This is possible if

P1 = r(cos(φ) + i sin(φ)) and (3.3.2)
P2 = r(cos(φ)− i sin(φ)), (3.3.3)
with r ∈ (0, 1), and φ ∈ (0, π)

is used. Second, the fraction and the 2, which was previously outside the R(.) function, is greater
than zero. So it suffices to show that

R
(

P1

(P2 − P1)

1

(1− P 2
1 )

ln(P1)

(ln(P1))2 + (2πν)2

)
!
≥ 0, (3.3.4)

to prove the positive definiteness of γ(h).
This proof is separated into three steps: First, for each of the three fractions

P1

(P2 − P1)
,

1

(1− P 2
1 )

and ln(P1)

(ln(P1))2 + (2πν)2
,

the denominator is expanded so that these become real and positive. As a result, the individual
denominators no longer play a role in the positive definiteness and can be neglected. Secondly it
is necessary to multiply the numerators with each other and eliminate the imaginary part. These
two steps can be found in Appendix B.9. Finally, the terms greater than zero are eliminated from
(B.9.7): [

− ln(r) sin(φ)(1 + r2) + φ cos(φ)(1− r2)
]
[ln(r)2 + φ2]...

+
[
− ln(r) sin(φ)(1 + r2)− φ cos(φ)(1− r2)

]
(2πν)2, (3.3.5)

and a condition for positive definiteness is derived. First we show that the lower row is always
positive. Using the scopes for the parameters

r ∈ (0, 1), φ ∈ (0, π) and ν ∈ R,
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Figure 3.4: Function g(φ) = φ/ tan(φ)
with φ ∈ (0, π/2].

it is obvious that (2πν)2 ≥ 0 is always true. The same applies to − ln(r), sin(φ), (1 + r2), φ and
(1 − r2). Because of the negative sign of −φ cos(φ)(1 − r2), the lower row in 3.3.5 is positive if
cos(φ) ≤ 0. This is the case if φ ∈ (π/2, π). For φ ∈ (0, π/2], it remains to show

− ln(r) sin(φ)(1 + r2)− φ cos(φ)(1− r2)
!
≥ 0

− ln(r)1 + r2

1− r2
!
≥ φ

cos(φ)
sin(φ)

− ln(r) coth(− ln(r))︸ ︷︷ ︸
f(r)

!
≥ φ

tan(φ)︸ ︷︷ ︸
g(φ)

.

Since r and φ are independent, f(r) and g(φ) can also be analysed separately (see Figure 3.3 and
Figure 3.4). The figures show that Infimum{f(r)} = Supremum{g(φ)}, remaining f(r) ≥ g(φ) ∀
r ∈ [0, 1] and φ ∈ [0, π/2]. This means that the lower term of (3.3.5) is always greater or equal to
zero. To uniquely determine the positive definiteness, the lower row in (3.3.5) is set to zero, which
corresponds to the evaluation at the position ν = 0. This way setting the lower row to zero is
always feasible regardless of r and φ.
Only the first line of (3.3.5) remains, where again the quadratic terms ([ln(r)2 + φ2]) have no
influence on the positive definiteness. Furthermore, the contents of the brackets are similar ti their
counterparts in the second row, except for the minus, which has been replaced by a plus. So,
positive definiteness also applies if cos(φ) ≥ 0, which is equivalent to φ ∈ (0, π/2]. In the end, it
only remains to show that

− ln(r) sin(φ)(1 + r2) + φ cos(φ)(1− r2)
!
≥ 0 ∀r ∈ (0, 1) and φ ∈ (π/2, π).

Analogously, the same transformations can be made here which then leads to

− ln(r) coth(− ln(r))︸ ︷︷ ︸
f(r)

!
≥ − φ

tan(φ)︸ ︷︷ ︸
−g(φ)

.

However, since this problem cannot be solved analytically, the determination of the areas possessing
positive definiteness demands an empirical approach as provided in Figure 3.5. Although the border
to separate whether or not the AR(2) process is positive definite cannot be analytically represented
by a function, this range is nevertheless approximate via the angle φ < 2.029[rad] (or 116.24°),
which is symbolized by the yellow line.
To find a suitable CF generated by AR(2) processes with complex roots P1 and P2 including
negative real parts, we use the same idea as in the case of the TVAR(1) process with negative roots
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Figure 3.5: Areas for roots that lead to positive definiteness in the AR(2)
process. Depending on whether the roots are in the blue or the red area the CF
is positive definite or not. The yellow line approximates the border at φ = 2.028
[rad] between these areas.

(see Appendix B.2). So, P1 and P2 are exchanged for the roots P̄1 and P̄2 with positive real parts
multiplied with (−1) = eiπ. The transformations of P1 and P2 to P̄1 and P̄2 are shown in Appendix
B.7.1:

P1 = eiπP̄2, and P2 = eiπP̄1.

With this change of the used roots, the CF of an AR(2) process with a complex conjugated pair of
roots whose real parts are negative (P1 and P2), can be traced back to the AR(2) process based on
roots with positive real parts (P̄1, P̄2). Additionally, according to Appendix B.7.2, the indices of the
coefficients of the CF rotate, meaning that the new weights for a permissible CF Āk for k ∈ {1, 2}
derive from their permissible roots and the equations of A1 = Ā2 and A2 = Ā1. This leads to the
conclusion that if the roots P1, P2 have a negative real part, γ(h) is given as:

γ(h) = eiπ|h|(Ā1P̄
|h|
1 + Ā2P̄

|h|
2 ).

This equation as a whole is not positive definite but the sum in the brackets describes a positive
definite function. And furthermore, if (as in the AR(1) process,) eiπ|h| = cos(πh) + i sin(π|h|) is
exchanged for its real part (cos(πh)), the continuous covariance function is composed on the one
hand of the discrete covariances and on the other hand of the product of two positive definite
functions. In summary,

γ(h) =

{
A1P

|h|
1 +A2P

|h|
2 if R (P1) ≥ 0

cos(πh)(Ā1P̄
|h|
1 + Ā2P̄

|h|
2 ) else

(3.3.6)

results always in a positive definite covariance function for AR(2) processes.

3.4 Example of a Covariance Function Deriving from an AR(2)
Process

This section provides a simulation of an AR process and the determination of the resulting CF.
The applied parameters consists of the white noise and the two roots of the CP:

σ2
E = 1 and P1,2 = −0.6± 0.3i. (3.4.1)

The aim is to illustrate the problem of a CF of non-positive definiteness, if the real part of the roots
is negative. The simulated time series consists of fifty observations (see Figure 3.6). A subsequent
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Figure 3.6: Simulated time series of an
AR porcess of order 2 with the param-
eters in (3.4.1).

Figure 3.7: The roots P1,2 = −0.6±0.3i
plotted in the unit circle. These roots
lie within the part of a not usable CF.

estimation of the Y.-W. equations reveals the values α̃1 ≈ 1.2 and α̃2 ≈ 0.45 for the coefficients
of the AR(2) process. In addition, the variance of noise has been estimated with σ̃2

E ≈ 1 by the
means of the Y.-W. equation of order zero. If the roots of the CP are calculated from the estimated
coefficients, the parameters

σ̃2
E ≈ 1 and P̃1,2 ≈ −0.6± 0.3i (3.4.2)

are obtained. Comparing the parameters in (3.4.1), which were used to simulate the signal in Figure
3.6 with the estimated parameters in (3.4.2), reveals that the estimation leads to the parameters
used for the initialization. In addition the corresponding roots P1 and P2 are shown in Figure 3.7.
They are clearly located in the red area, where the simple representation of the covariance function

γ1(h) := A1P
|h|
1 +A2P

|h|
2

is not positive definite. The covariance function itself is shown in Figure 3.8, while

γ2(h) :=
(
Ā1P̄

|h|
1 + Ā2P̄

|h|
2

)
cos(πh)

is shown in Figure 3.9. The additional cosine is highlighted in grey in Figure 3.9 and shows that its
maxima and minima are always at the observation epochs. In contrast, the extrema of γ2(h) are
no longer exactly at the observation epochs. This is a result of the superposition of the oscillating
cosine and the function

γ3(h) := Ā1P̄
|h|
1 + Ā2P̄

|h|
2 ,

shown in Figure 3.10 (also see chapter 2). The resulting spectra Γ1(ν) = F{γ1(h)}(ν), computed
by (3.3.1) and Γ2(ν) = F{γ2(h)}(ν) are shown together in Figure 3.11. Appendix B.8 shows that
the construction of the spectrum of γ2(h) demands three steps:

1. Divide the CF of F{γ3(h)}(ν) into two functions with half amplitude height,

2. then shift one of these two functions by a = 1
2 and the other by −a = −1

2 .

3. Finally, at each frequency sum these shifted functions up.

It is of special interest here that, inside the Nyquist frequency [−νn, νn]), the two spectra are very
similar, only that Γ2(ν) > 0 ∀ν. So, Γ2(ν) not only remains positive, but also maintains the
characteristic of the PSD of the discrete CF shown in Figure 3.12. In comparison to the PSD of the
discrete CF in Figure 3.12 and the PSD of the continuous CF Γ2 in Figure 3.11, the amplitude is
twice as high. At first glance, this seems to be a contradiction, but it is consistent with the findings
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with P1,2 = −0.6± 0.3i.
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with P1,2 = −0.6± 0.3i.
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with P̄1,2 = 0.6± 0.3i.
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Figure 3.11: The PSD of the functions
Γ1(ν) in orange and Γ2(ν) in green.

of section 3.2.3 (the discretization always causes a sum of shifted PSDs). Here it was described
how in order to build the PSD of the discrete function, the transition from the continuous CF to
the discrete CF leads to a sum of infinitely many shifted PSDs of the continuous function (see
Appendix B.5). Two of these shifted functions are depicted in Figure 3.13. This figure also shows
that the maxima overlap exactly, meaning that they are doubled by the summation. This explains
why the amplitudes of the PSD of the continuous CF are only half as large as those of the discrete
CF.
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Chapter 4

Time Variable AR Processes

One of the main limitations of AR estimation is its requirement of stationarity, which imposes
a strong condition on the analysed data characteristics. In order to soften this condition, the
concept of nonstationary processes is introduced here, specifically the concept of nonstationary
AR processes. This study deals exclusively with nonstationary AR representations, in which the
coefficients are allowed to change over time, while the roots remain inside the unit circle for any
given time. Otherwise the covariance function might diverge. In comparison, a time constant
process with roots of the CP from (2.9.2) outside the unit circle is also classified as nonstationary,
but are excluded here. Accordingly, this chapter provides the discussion of the analytic relationships
between the time variable roots and the time variable parameters of TVAR processes. The roots
are developed according to these relation methods to estimate the TVAR coefficients from a given
motion model. In order to fully explain the process behind this result, the following chapter is
divided into seven sections: Section 4.1 provides a description of the estimation of the parameters
of a TVAR process using undefined basis functions. It shows that the estimation by using the Y.-W.
equations is not appropriate in this case, and that the unknown parameters of the coefficients need
to be determined by using the observation equations. This further means that the variance of the
noises must also be gained from the observation equation. In section 4.2, polynomials are used for
these basis functions. Following two examples, the roots of the TVAR processes at discrete times
are determined. These discrete values shows an unknown motions which are not controllable. This
is of special consequence when looking at their positioning inside or outside the unitary circle. To
solve this problem, the roots are defined as linear functions and the corresponding coefficients in
the TVAR process are derived in section 4.3. These coefficients have to meet additional constraints
to obtain the linear root motions for the TVAR process of orders 1 and 2. Processes of higher order
are estimated by successively estimating TVAR(1) and TVAR(2) processes. Then, the estimate of
TVAR processes with linear root motion will been modified in section 4.4. Here TVAR processes
with piecewise linear roots are estimated. Two more extensions are set up in section 4.5 to estimate
TVAR processes with quadratic root movements and to determine the TVAR(3) process without
recursion. Section 4.6 provides the synthesis of the derived estimation methods and gives an
evaluation of their individual advantages and disadvantages. These methods are then tested and
compared in section 4.7.

4.1 Representation of TVAR Processes by the means of Basis
Functions

This section deals with the estimation of time variable AR coefficients and their discrete covariances.
For this purpose, a purely mathematical construct is needed, which describes the calculation and
properties of the covariance of TVAR processes. Starting from the formula of TVAR processes
given in (2.16.1)

St = α1(t)St−1 + α2(t)St−2 + ...+ αp(t)St−p + Et, (4.1.1)
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the coefficients are functions in the time domain. In order to derive the parameters by the means
of a linear Gauss-Markov model, the functions αk(t) can be represented as linear combinations of
the unknown parameters β

(k)
l and the known basis functions bl(t):

αk(t) =

qk∑
l=0

β
(k)
l bl(t). (4.1.2)

The basis functions bl(t) can be specified, i.e. for example as polynomial bases (1, t, t2, ...), spline
functions or similar bases. The number of basis functions per coefficient (αk(t)) may vary for each
k and is denoted by qk. The total number of parameters defining the TVAR(p) process increases
from p to

∑p
k=1 qk, which in turn means that when estimating TVAR processes with high orders

the number of parameters increases significantly and thus the redundancy within the estimation
decreases.
In the following examinations the coefficients are calculated only for a limited time interval T =
[t1, tn]. For numerical stability, to transformation of the interval T to the unit interval T̄ = [0, 1] is
appropriate. It is required that for any time τ ∈ T , the TVAR process is stationary. This means
that the roots Pk(τ) of the time constant AR process at t = τ

S̆t = α1(τ)S̆t−1 + α2(τ)S̆t−2 + ...+ αp(τ)S̆t−p + Ĕt (4.1.3)

are inside the unit circle. In this process, t and τ are independent of each other and the functions
of αk(τ) are constant.

4.1.1 Yule-Walker Equations for TVAR Processes at a Specific Time

For the time constant AR process in (4.1.3), section 2.8 shows how the Y.-W. equations are con-
structed. For the case of (4.1.3), this results in

Σ̆0 = α1(τ)Σ̆1 + α2(τ)Σ̆2 + ...+ αp(τ)Σ̆p + σ̆E ² and
Σ̆j = α1(τ)Σ̆|j−1| + α2(τ)Σ̆|j−2| + ...+ αp(τ)Σ̆|j−p| ∀j ∈ Z \ {0},

where Σ̆j is the discrete covariance of the two observations S̆t and S̆t+j . In the following sections,
the Y.-W. equations for TVAR processes are derived and their properties are analysed in the context
of parameter estimation and determination of covariances.

4.1.2 Yule-Walker Equations of Time Variable AR Processes

This section shows how the Y.-W. equations for TVAR processes are derived. It argues that these
equations are not suitable to determine the desired coefficients β(k)

l from example (4.1.2). But they
are used to adapt many properties of the time constant AR processes to the TVAR process. First,
the Y.-W. equations for the general TVAR processes are derived (see Appendix C.1), which results
in

Σ−j(t) =

{
α1(t)Σ−j+1(t− 1) + α2(t)Σ−j+2(t− 2) + ...+ αp(t)Σ−j+p(t− p) + σ2

E if j = 0

α1(t)Σ−j+1(t− 1) + α2(t)Σ−j+2(t− 2) + ...+ αp(t)Σ−j+p(t− p) else
(4.1.4)

to compute the covariance of St and a past signal St−j . The following transformations are only
demonstrated with the Y.-W. equation for j 6= 0, as the special case of j = 0 can be dealt with
analogously. In the case that the time variable coefficients αk(t) of (4.1.4) are replaced by the linear
basis functions combinations in (4.1.2), then the known basis functions can be combined with the
time variable covariances into

Σ̂
(b(l,t))
−j+k (t− k) := bl(t)Σ−j+k(t− k)
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to obtain a linear equation for the unknown coefficients β
(k)
l :

Σ−j(t)

=

q1∑
l=0

β
(1)
l bl(t)Σ−j+1(t− 1)︸ ︷︷ ︸ +

q2∑
l=0

β
(2)
l bl(t)Σ−j+2(t− 2)︸ ︷︷ ︸ +...+

qp∑
l=0

β
(p)
l bl(t)Σ−j+p(t− p)︸ ︷︷ ︸

=

q1∑
l=0

β
(1)
l Σ̂

b(l,t)
−j+1(t− 1) +

q2∑
l=0

β
(2)
l Σ̂

(b(l,t))
−j+2 (t− 2) +...+

qp∑
l=0

β
(p)
l Σ̂

b(l,t)
−j+p,l(t− p).

The new parameters β
(k)
l can be determined by the means of the linear equations. Since the

covariances now depend on both the distance j between the observations, and the observation
time of the subsequent observation (t), there is exactly one realization for each covariance (Σ̂).
Accordingly, because the redundancy is missing, the derived covariances are too inaccurate to pose
an advantage to the estimations gained by the Y.-W. equations for TVAR processes.
The same applies for the case of Y.-W. equations for St and a Signal oriented towards future values
St+j . This can be seen when replacing the coefficients αk(t) in (C.1.3) with the linear combination
with basis functions from (4.1.2). The result is

Σj(t)

= α1(t+ j)Σj−1(t) +α2(t+ j)Σj−2(t) + ...+ αp(t+ j)Σj−p(t)

=

q1∑
l=0

β
(1)
l bl(t+ j)Σj−1(t)︸ ︷︷ ︸ +

q2∑
l=0

β
(2)
l bl(t+ j)Σj−2(t)︸ ︷︷ ︸+ ...+

qp∑
l=0

β
(p)
l bl(t+ j)Σj−p(t)︸ ︷︷ ︸

=

q1∑
l=0

β
(1)
l Σ̂

(b(l,t+j))
j−1 (t) +

q2∑
l=0

β
(2)
l Σ̂

(b(l,t+j))
j−2 (t) + ...+

qp∑
l=0

β
(p)
l Σ̂

(b(l,t+j))
j−p (t).

Since Σ̂ again depends on both the time (t) and the distance to the other observation (j), there is
exactly one realization for each state.

4.1.3 Estimation of Time Variable AR Processes

Since the covariances cannot be constructed without the coefficients of the TVAR process, an esti-
mation method based directly the observations has to be developed here. This is done in two steps.
First, the coefficients β

(k)
l ’s estimations are gained directly from the observations. Subsequently,

the residuals are used to determine the variance of the noise (σ2
E).

4.1.3.1 Parameters Estimation

This section shows how the time variable TVAR process coefficients can be estimated by a Gauss-
Markov model. For this, it is firstly assumed that all TVAR coefficients αk(t) in (4.1.2) have the
same order q = max{q1, q2, ..., qp}:

αk(t) =

q∑
l=0

β
(k)
l bl(t).

The general case with different qk can be created from this assumption, by eliminating the cor-
responding parameters β

(k)
l with l > qk and the corresponding columns from the design matrix.

This is shown in Appendix C.3. Since all TVAR coefficients now consist of the same number of
unknown parameters, the conversion of the coefficients αk(t) to the parameters β

(k)
l by a simple
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formula results in the matrix vector product:


α1(t)
α2(t)

...
αp(t)

 =


b0(t) b1(t) ... bq(t)

b0(t) b1(t) ... bq(t)
. . .

b0(t) b1(t) ... bq(t)





β
(1)
0

β
(1)
1
...

β
(1)
q

β
(2)
0

β
(2)
1
...

β
(2)
q

β
(p)
0

β
(p)
1
...

β
(p)
q



.

(4.1.5)

Here the increase of the number of parameters becomes clear. β
(k)
l are ordered according to k of

αk(j), but by a re-ordering according to the variable l of the sum in (4.1.2), a new parameter vector
is created:

β :=
[
β
(1)
0 β

(2)
0 ...β

(p)
0 β

(1)
1 β

(2)
1 ...β

(p)
1 ...β

(1)
q β

(2)
q ...β

(p)
q

]T
. (4.1.6)

This also causes a reorganization of the basis functions in (4.1.5):
α1(t)
α2(t)

...
αp(t)

 =


b0(t) b1(t) ... bq(t)

b0(t) b1(t) ... bq(t)
. . . . . . . . .

b0(t) b1(t) ... bq(t)

β.

This re-ordering results in a design matrix composed of diagonal matrices. Furthermore, each of
these diagonal matrices is a scaled identity matrix. Here, the unit matrix is denoted by 1. This
simplifies the representation of (4.1.5):

α1(t)
α2(t)

...
αp(t)

 =
[
1b0(t) | 1b1(t) | ... | 1bq(t)

]
[p×pq]

β. (4.1.7)

Converting (4.1.1) into a vector product yields

St =
[
St−1 St−2 ... St−p

]

α1(t)
α2(t)

...
αp(t)

+ Et

and inserting it into (4.1.7) results in

St =
[
St−1 St−2 ... St−p

]
[1×p]

[
1b0(t) | 1b1(t) | ... | 1bq(t)

]
[p×pq]

β + Et.

In this problem, neither the parameter’s vector β nor the residual’s vector Et is known. To determine
these vectors, the residual’s vector Et is subtracted on both sides of the equation, and then β is
used as a parameter’s vector from the Gauss-Markov model (Koch 1999, chapter 3):

St︸︷︷︸+(−Et)︸ ︷︷ ︸ = [St−1 St−2 ... St−p

]
[1×p]

[
1b0(t) | 1b1(t) | ... | 1bq(t)

]
[p×pq]︸ ︷︷ ︸ β

yi + ei = Xi β. (4.1.8)



4.2. Relevance 33

As mentioned at the beginning of this section, the adjustment model can be applied to any
parametrization of αk(t) with basis functions by subsequently removing columns from the design
matrix X as well as the corresponding parameters from β (see Appendix C.3).

4.1.3.2 Estimation of Noise Variance

In section 2.16, the TVAR process was defined by its time variable coefficients αk(t), but also by
the white noise process Et whose only parameter is its standard deviation σ2

E . These have yet to
be determined. In (4.1.8), the unknown residuals ei represented realizations of the process Et, but
with the opposite sign. Since the residuals in the Gauss-Markov model and the white noise in the
TVAR process both follow the same distribution (i.e. the i.i.d normal distribution with a mean
value of zero), they also share the same standard derivation. So, the variance of the white noise
process σ2

E can be approximated via an estimation of the variance of the observations provided by
the Gauss-Markov model. Therefore, each error can be resolved as

ei = Xiβ̃ − yi

∀i ∈ {1, 2, ..., n} or directly via the vector of errors

e = Xβ̃ − y.

An estimator for the white noise’s variance is then given by the a posteriori variance

σ2
E ≈ s̃2 =

eTe

r
.

Here, r refers to the redundancy calculated by the formula

r = (n− p)−m,

with m being the number of parameters in β. Actually, the redundancy is simply calculated by the
means of the difference between the number of observations (n) and the number of parameters (m).
Mathematically n and m are given by the length of the observation vector y and the parameter
vector β. Since the first p observations are not included in y (see Appendix C.2), the redundancy
must be additionally reduced by p.

4.2 Relevance
Until now, all sections of chapter 4 have been exclusively concerned with the modelling and esti-
mation of time variable TVAR process coefficients. The intention of this thesis, however, is the
creation of a TVAR process with known motion of the time variable roots of the CP. The goal, then,
is to select the basis functions of the coefficients in such a way that the type of movement of the
roots is predefined. However, this is not as simple, as the following two examples will demonstrate.

As described in section 4.1, the coefficients and the roots of a TVAR process are linked via the CP.
The CP is, as the name suggests, a special case of a polynomial. However, there is a difference in
sign and a difference in index change between the coefficients of a general polynomial Pp(x) (with
coefficients c1(t), c2(t), ..., cp(t)) and a CP χ(x) (with coefficients α1(t), α2(t), ..., αp(t)):

Pp(x) = xp + c1(t)x
p−1 + c2(t)x

p−2 + ...+ cp(t) (4.2.1)
χ(x) = xp − α1(t)x

p−1 − α2(t)x
p−2 − ...− αp(t). (4.2.2)

These two equations show that finding the roots of a difference equation or the CP of a TVAR
process in (4.2.1) is related to finding the zeros of a polynomial with time variable coefficients in
(4.2.2). This allows the application of experiences gained from general time variable polynomials
to the construction of TVAR processes with known root motion.
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4.2.1 Example 1: Contemporary Research

An example for time variable polynomials can be found in Kamen (1988, example 1). Here, the
roots of the time variable polynomial

P2(x) = x2 + c1(t)x+ c2(t) with c1(t) = −1 + 2.5t and c2(t) = 0.5

are determined. In this case t can assume all values between 0 and 1, whereby c1(t) is a linear
function with c1(0) = −1 and c1(1) = 1.5 and c2(t) remains constant at c2(t) = 0.5 ∀t ∈ [0, 1].
The motion of the roots for this polynomial can be determined by the pq-formula in (2.17.2), while
they are also functions in time:

P1,2(t) = −c1(t)

2
±

√(
c1(t)

2

)2

− c2(t). (4.2.3)

These are illustrated lying within the unit circle in Figure 4.2. The CP, which has the same root
motions as the exemplary polynomial, corresponds to the AR process coefficients:

α1(t) = −c1(t) = 1− 2.5t and α2(t) = −c2(t) = −0.5.

This follows from the comparison of (4.2.1) and (4.2.2) and results in

P1,2(t) =
α1(t)

2
±

√(
α1(t)

2

)2

+α2(t). (4.2.4)

The transition from the polynomial to the CP allows to use the representation of the TVAR(2)
process from section 2.9 to visualize the motion of the coefficients. To do this, the time variable
coefficients α1(τ) and α2(τ) are evaluated at discrete points t = τ . The normalized time t ∈ [0, 1]
is indicated as a colour gradient on the right edge of the graphic. For each discrete time t = τ
a three dimensional point is created. The dimensions are given by the x-value α1(τ), the y-value
α2(τ) and the colour of the point. The colour references to the colour of t = τ . The movement
of the coefficients is depicted in Figure 4.1 and takes the shape of a straight line. Then, at each
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Figure 4.1: Coefficient motion of a
TVAR process with the coefficients
α1(t) = 1 − 2.5t and α2(t) = −0.5 for
t ∈ [0, 1], or for t from blue to yellow.
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Figure 4.2: Root motion of a TVAR
process with the coefficients α1(t) =
1− 2.5t and α2(t) = −0.5 for t ∈ [0, 1],
or for t from blue to yellow.

point in time t = τ , a pair of coefficients α1(τ) and α2(τ) is given. The possibly complex-valued
roots P1(τ) and P2(τ) of the CP can be calculated via (4.2.4) for each pair of coefficients α1(τ)
and α2(τ). These roots are visualized in Figure 4.2. In this case, each three dimensional point
corresponds to a root Pi(t) with i ∈ {1, 2}. The x-value corresponds to the real part of Pi(t), whose
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y-value corresponds to the imaginary part of Pi(t), and whose colour is again associated with the
time on the right.
However, while the motion of the coefficients in Figure 4.1 has a constant velocity, both the roots
in Figure 4.2 initially have the same constant angular velocity but only as long as the roots are
complex valued, and then, as soon as they become real valued, assume different speeds in different
directions. Thus, this example shows that the complex representation of the roots as a coefficient’s
function (4.2.3) performs a motion that is difficult to predict. The challenge now is to specify a
simpler motion of the roots, from which the corresponding functions of the coefficients αk(t) can be
constructed. Finally, it should be mentioned that both figures show that the roots are inside the
unit circle at any given time of the open interval [0, 1). This means that any time constant process
of a fixed time τ ∈ [0, 1)

St = (1− 2.5τ)St−1 − 0.5St−2 + Et

is stationary.

4.2.2 Example 2: Higher Order Polynomials

To predict the motion of roots by the means of time variable coefficients with higher order polyno-
mials states a more complicated case. Section 2.17 has shown that, if the order is higher or equal
to five, a functional relationship between the polynomials and roots can no longer be established.
In these cases, in order to determine the roots of the time constant AR process, the coefficients of
the CP are evaluated for a specific τ ∈ [0, 1]. For this purpose, the coefficients

α1 = 1− 2.5t, α2 = −0.5, α3 = 0.3, α4 = 0.1, and α5 = −0.09

of a TVAR(5) process are chosen and evaluated at the equidistant times τj = 0.05j with j ∈
{0, 1, 2, 3, ..., 40} to construct a total of 41 AR processes. For each of them, the roots of the
corresponding CP are determined (see Figure 4.3). These discrete roots approximate five root
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Figure 4.3: Root motions of a stationary AR(5) process inside the unit circle.

motions. Of these five root motions, four differ: the roots on the right side change over time from
real-valued roots to a pair of complex conjugated roots. The roots in the upper left area, which
follow a quadratic track, as well as the real-valued root on the left, are non-linear. While the
complex roots seem to move in a quadratic motion, the non-linear motion of the real-valued root is
caused by the different distances between the discrete points. In this case, the roots are also always
within the unit circle and thus always provide a stationary process for any τ ∈ [0, 1]:

St = (1− 2.5τ)St−1 − 0.5St−2 + 0.3St−3 + 0.1St−4 − 0.09St−5 + Et.

4.2.3 Problematization

These two examples have shown that there are three fundamental challenges for TVAR estimation:
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1. We are looking for a parametrization of the functions αk(t), which allows that the function
of the roots Pk(t) can be represented as continuous functions,

2. while the function of the roots remain simple enough to check the stationarity of the TVAR
process for each point in time, and

3. an analytical way to determine the roots of TVAR(p) processes with p > 5.

The aim of the following sections is therefore to determine basis functions that allows the estimation
of the coefficients in (4.1.2) in such a way that both the coefficients and the roots can be represented
as functions in time (and which also remain as simple as possible).

4.3 Linear Root Motion
This section examines the root motion caused by the time variable approach. This estimation
method is influenced by many variables, such as the order of the TVAR process p, the number
of parameters in the coefficients qk and, of course, the choice of the basis functions. The main
challenge, however, lies in the ability to represent the root motions and the coefficients as functions.
The basic ideas of section 4.3 have been described in Korte et al. 2023b and are discussed here in
more detail.

4.3.1 The Conversion of Roots into Coefficients (Necessary Condition)

This section provides the construction of the AR process coefficients by the means of the roots of
the CP. In this context, Vieta’s formulas show that the coefficients −αk can be calculated by sums
and products of the roots (Pk) (see Bronstein et al. 2006, p. 44). This provides us with:

αk =(−1)k+1

(
p−k+1∑
m1=1

Pm1

)
·

(
p−k+2∑

m2=m1+1

Pm2

)
·

(
p−k+3∑

m3=m2+1

Pm3

)
... p−1∑

mk−1=mk−2+1

Pmk−1

 ·

 p∑
mk=mk−1+1

Pmk

 . (4.3.1)

To gain a transition to the time variable roots Pk(t), the formula is applied with linear combinations
of the basis functions b̄l(t):

Pk(t) =

q∑
l=0

ζ
(k)
l b̄l(t)

just as it has been done for the αk(t) in (4.1.2). This time, to distinguish them from the basis
functions bl(t) of the parameters, the basis functions are b̄l(t). They all have the same number of
parameters q. First, when considering any sum

∑p−k+c
mc=mc−1+1 Pmc(t) of (4.3.1), it is noticeable that

p−k+c∑
mc=mc−1+1

Pmc(t) =

p−k+c∑
mc=mc−1+1

q∑
l=0

ζ
(mc)
l b̄l(t)

=

q∑
l=0

 p−k+c∑
mc=mc−1+1

ζ
(mc)
l


︸ ︷︷ ︸

b̄l(t)

=

q∑
l=0

ζ̄
(mc)
l b̄l(t)

is valid, and thus each bracket in (4.3.1) again consists of a linear combination of the basis functions
b̄l(t). The number of used basis functions does not change. Second, if two roots are multiplied, the
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basis functions b̄l(t) are also multiplied. These products build the form of the basis functions of
the coefficients bl(t). Here, I provided an example with two roots:

Pmc(t)Pmd
(t) =

 q∑
l1=0

ζ̄
(mc)
l1

b̄l1(t)

 q∑
l2=0

ζ̄
(md)
l2

b̄l2(t)

 =

q∑
l2=0

 q∑
l1=0

ζ̄
(mc)
l1

b̄l1(t)

 ζ̄
(md)
l2

b̄l2(t)

=

q∑
l2=0

 q∑
l1=0

ζ̄
(mc)
l1

b̄l1(t)ζ̄
(md)
l2

 b̄l2(t)

=

q∑
l2=0

 q∑
l1=0

ζ̄
(mc)
l1

ζ̄
(md)
l2

b̄l1(t)

 b̄l2(t)

=

q∑
l2=0

 q∑
l1=0

ζ̄
(mc)
l1

ζ̄
(md)
l2︸ ︷︷ ︸ b̄l1(t)b̄l2(t)︸ ︷︷ ︸


=

q∑
l2=0

q∑
l1=0

ζ̂
mc,d

l1,l2
b̂l1l2(t). (4.3.2)

The number of basis functions has been squared from b̄l1(t), with l1 ∈ {0, 1, ..., q} to b̂l1l2(t) with
l1l2 ∈ {0, 1, ..., q2}. And with each further multiplication, the exponent of qk increases by one.
That means for example, that the product of three sums gives a total of q3 basis functions b̂l1l2l3 .
(4.3.1) shows that the coefficient α2(t) is calculated from the sum of all possible combinations of
Pmc(t)Pmd

(t) with mc < md. This results in α2(t) as a polynomial of degree q2. Similarly, αk(t) is
a polynomial of order qk. Therefore, it is efficient to keep the number of basis elements q as small
as possible.
In summary, two design choices suggested themself: (1) the basis functions b̄l(t) of the roots should
be as simple as possible and (2) the number of basis functions q per root should be as small as
possible. This keeps the number of basis functions low when estimating the coefficients αk(t). The
function that combines these properties the most is a polynomial of degree one:

Pk(t) = ζ
(k)
0 + ζ

(k)
1 t ∀ k = 1, 2, ..., p.

With applying this basis function to (4.3.1) and (4.3.2), the k-th coefficient αk(t) becomes a poly-
nomial of order k, and

αk(t) =

k∑
l=0

β
(k)
l tl (4.3.3)

can be used for the parameter estimation as described in section 4.1. Switching from αk(t) to β
(k)
l

increases the number of parameters from p to p2+3p
2 (see Appendix (C.7.3).

4.3.2 The Conversion of Coefficients to Roots (Sufficient Condition)

The most important statements in the last two sections seem to contradict each other, as the
parameters in the example in section 4.2

α1(t) = 1− 2.5t and α2(t) = −0.5 for t ∈ [0, 1]

fulfil the conditions of section 4.3.1 without possessing linear root movements. This shows that
parametrization of coefficients by ascending order polynomials in (4.3.3) poses only a necessary
but not sufficient condition for linear root motions. For further conditions, a transformation of
the coefficients αk from (2.9.1) to the roots Pk from (2.9.2) is required. Fortunately, the CP



38 4. Time Variable AR Processes

poses a special case of general polynomials (as described in section 2.17), which only demands the
specification of the coefficients ck as:

ck = −αk. (4.3.4)

This also means that the computation of the roots of the CP demands the same function as the
function for the zeros of a time variable polynomial -even if the coefficients and the roots are
functions of time.
In case of a first order polynomial, using

P1(t) = α1(t), (4.3.5)

(a combination of (2.17.1) and (4.3.4)), the root can be computed directly. It remains to determine
the restrictions of the parameters β

(k)
l with l ∈ {0, 1} and k = 1 in such a way that that the root

motion of the TVAR(1) process is linear. Fortunately, α1(t) is a linear function (see the construction
in (4.3.3)). This also means that the coefficient of the TVAR(1) process is calculated with

α1(t) = β
(1)
0 + β

(1)
1 t, (4.3.6)

and because of (4.3.5), the same applies to the time variable root P1(t) in the TVAR(1) process.
It is therefore always linear.
The next step poses the TVAR(2) process. According to (2.17.2), the conversion of the coefficients
to the roots is given via the quadratic formula for polynomials of order two:

P1,2(t) = −c1(t)

2
±

√(
c1(t)

2

)2

− c2(t)

=
α1(t)

2
±

√(
α1(t)

2

)2

+ α2(t).

Since the addition and the subtraction of linear functions yields a gain a linear function, it is
sufficient to show that α1(t)/2 is always linear, and then to establish a restriction that ensures that
the solution of the root (

√
(α1(t)/2)2 + α2(t)) is always a linear function. Since the calculation of

α1(t) from β
(1)
0 and β

(1)
1 does not change with increasing order, (4.3.6) still applies. This then also

means that
α1(t)

2
=

β
(1)
0 + β

(1)
1 t

2

is a linear function. So, it remains to identify the circumstances under which the restriction of the
roots P1(t) and P2(t) are linear √(

α1(t)

2

)2

+ α2(t)
!
= f1 + f2t (4.3.7)

is fulfilled. Here, f1 and f2 are two unknown constants. To find the restriction, both sides of (4.3.7)
are squared: (

a1(t)

2

)2

+ a2(t) = f2
1 + 2f1f2t+ f2

2 t
2. (4.3.8)

If α1(t) shown in (4.3.6) and α2(t) = β
(2)
0 + β

(2)
1 t+ β

(2)
2 t2 following (4.3.3) are inserted into the left

side of the equation (4.3.8), then(
a1(t)

2

)2

+ a2(t) =

(
β
(1)
0 + β

(1)
1 t

2

)2

+ β
(2)
0 + β

(2)
1 t+ β

(2)
2 t2

=
(β

(1)
0 )2 + 2β

(1)
0 β

(1)
1 t+ (β

(1)
1 )2t2

4
+ β

(2)
0 + β

(2)
1 t+ β

(2)
2 t2

=
(β

(1)
0 )2

4
+ β

(2)
0 +

(
β
(1)
0 β

(1)
1

2
+ β

(2)
1

)
t+

(
(β

(1)
1 )2

4
+ β

(2)
2

)
t2
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shows that there are polynomials of degree two on both sides of equations (4.3.8). To show that
these are equal, it must be shown that the coefficients on the left side are equal to the coefficients
on the right side. So, each coefficient provides us with one condition:

(β
(1)
0 )2

4
+ β

(2)
0

!
= f2

1 ⇒f1 =

√
(β

(1)
0 )2

4
+ β

(2)
0

β
(1)
0 β

(1)
1

2
+ β

(2)
1

!
= 2f1f2

(β
(1)
1 )2

4
+ β

(2)
2

!
= f2

2 ⇒f2 =

√
(β

(1)
1 )2

4
+ β

(2)
2 .

From the first restriction, f1 can be determined, and the same applies to the last restriction to
determine f2. Finally, these results can be used in the second restriction to find the parameter’s
restriction:

β
(1)
0 β

(1)
1

2
+ β

(2)
1 = 2

√√√√((β
(1)
0 )2

4
+ β

(2)
0

)(
(β

(1)
1 )2

4
+ β

(2)
2

)
.

To remove the root, both sides are squared:(
β
(1)
0 β

(1)
1

2
+ β

(2)
1

)2

= 4

(
(β

(1)
0 )2

4
+ β

(2)
0

)(
(β

(1)
1 )2

4
+ β

(2)
2

)
(β

(1)
0 )2(β

(1)
1 )2

4
+ β

(1)
0 β

(1)
1 β

(2)
1 + (β

(2)
1 )2 =

(β
(1)
0 )2(β

(1)
1 )2

4
+ (β

(1)
0 )2β

(2)
2 + β

(2)
0 (β

(1)
1 )2 + 4β

(2)
0 β

(2)
2

β
(1)
0 β

(1)
1 β

(2)
1 + (β

(2)
1 )2 = (β

(1)
0 )2β

(2)
2 + β

(2)
0 (β

(1)
1 )2 + 4β

(2)
0 β

(2)
2 .

Summarizing all terms on one side results in the non-linear restriction:

Clin(β) = (β
(1)
0 )2β

(2)
2 + β

(2)
0 (β

(1)
1 )2 − β

(1)
0 β

(1)
1 β

(2)
1 + 4β

(2)
0 β

(2)
2 − (β

(2)
1 )2

!
= 0. (4.3.9)

This states the sufficient restriction to calculate the TVAR(2) processes with linear root move-
ments. The resulting procedure for the adjustment problem is described in Appendix C.4. Finally,
while this section is limited to first and second order polynomials, section 4.3.3 provides a method
for approximating TVAR processes of higher orders by the means of successive estimation with
TVAR(1) and TVAR(2) processes. The TVAR(3) process is discussed separately in section 4.5.1.

4.3.3 TVAR Processes with Linear Root Movements of Higher Orders

This section explains how to derive the estimation of a TVAR process of any degree from TVAR(1)
and TVAR(2) processes and how to determine the most suitable order by the AIC. This allows a
TVAR(p) process with linear root motions to be estimated without having to impose additional
restrictions. To start, the TVAR(1) or TVAR(2) process is estimated for the time series St. The
residuals

Ŝt := Et = St −
p∑

k=1

αk(t)St−k

are then regarded as a new time series to again estimate a TVAR(1) or TVAR(2) process. This
procedure is repeatedly applied until the desired order of the TVAR process is reached. In Appendix
C.5, it is shown how a TVAR(p+1) or TVAR(p+2) process is generated by the TVAR estimation
for the residuals of a TVAR(p) process. A distinction between the extension with a TVAR(1) and a
TVAR(2) process is necessary, since the TVAR(1) process is unable to reveal complex-valued root
motions. This becomes a since the construction of TVAR processes of higher orders are ambiguous.
A TVAR(3) process can for example result from three different combinations:
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1. Triple estimation of a TVAR(1) process.

2. Estimation of a TVAR(1) process followed by a TVAR(2) estimation.

3. The estimate a TVAR(2) process followed by the estimate of a TVAR(1) process.

In Appendix C.6, it is shown that each combination demads different solutions, all of which have to
be tested with the AIC. For the AIC, Appendix C.7 shows that it is irrelevant of how many TVAR
processes of order one and two the estimate consists. Instead, only the total number of roots or -in
other words- the order of the process matters. Section 2.19 has shown how to estimate the order of
a time constant AR process is estimated. This procedure is adapted here for the TVAR estimation:

1. Set a lower and upper boundary (bl, bu) for the order p of the TVAR process:

bl ≤ p ≤ bu

and, in order to represent all processes, determine all possible permutations of sums including
one and two for each order, as it was done in the case of the TVAR(3) process.

2. Calculate the TVAR process and the AIC for all representations, whereby the AIC for this
estimate is given as

AIC = ln
(

eTe

n− p

)
+

2(2p+ 1)

n− p
,

where n is the length of the time series, p is the order of the TVAR process and

et =

{
S̄t − (β

(1)
0 + β

(1)
1 t)S̄t−1 for TVAR(1) process

S̄t − (β
(1)
0 + β

(1)
1 t)S̄t−1 − (β

(2)
0 + β

(2)
1 t+ β

(2)
2 t2)S̄t−2 for TVAR(2) process

are the residuals from the last TVAR process estimation (see Appendix C.7.2).

3. Find the minimum AIC in the interval [bu, bo] and use the corresponding TVAR process.

4.4 Piecewise TVAR Estimation
To create more complex root movements, the time series can be subdivided into several intervals
which in turn serve to estimate TVAR processes with linear root motions. As with the global
estimation of TVAR processes, processes with order higher than two can be approximated by
the means of a successive estimation, which is why again only processes with orders p ≤ 2 are
considered.

4.4.1 Division into Intervals

We begin with the discussions of this method’s main problem: The division of the observation into
smaller groups. These should be chosen in a way that a non-linear root movement is subdivided
into segments, so that each interval can be approximated by a TVAR process with linear root
movements. In order to detect these intervals, or respectively their borders, a moving window
should be used to estimate time stable AR processes for the individual windows. The roots of the
CPs can be calculated for each window and plotted into the unit circle. This way, the boundaries
between the intervals can be derived from visual inspection of the time tracks of the specific roots.
As such, the entire vector of the observations (y) is divided into observation groups. In order to
distinguish these groups, a new notation is introduced: Each observation group is indicated by a
superscripted roman number corresponding to the interval:

y =


y(I)

y(II)

y(III)

...

 with

y(I)

y(II)

y(III)

=
[
Sp+1 Sp+2 ... Sn1

]T
=
[
Sn1+1 Sn1+2 ... Sn1+n2

]T
=
[
Sn1+n2+1 Sn1+n2+2 ... Sn1+n2+n3

]T
...

.
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Here, nj denotes the number of observations in the j-th group. Note that, similar to the vector
of observations in the estimation of global time series, y(I) does not include the first p observa-
tions. When dividing the observations into intervals, it must be noted that the observations on
the boundary points always belongs to the preceding interval (e.g. the second interval is set to
(Sn1,Sn1+n2]).
To achieve a continuous function in both the roots and the coefficients of the TVAR process, the
root at the end of the k-th interval must match the beginning of the (k+1)-th interval, -regardless
of the order of the polynomial root motion. The vector t containing the time steps for all obser-
vations and the parameter vector β are adapted, to fulfil this condition. First, t is divided in the
same manner as y

t̂ =


t̂(I)

t̂(II)

t̂(III)

...

 with

t̂(I)

t̂(II)

t̂(III)

=
[
tp+1 tp+2 ... tn1

]T
=
[
tn1+1 tn1+2 ... tn1+n2

]T
=
[
tn1+n2+1 tn1+n2+2 ... tn1+n2+n3

]T
...

.

This partitioning allows the normalization of the time intervals of each individual group. The first
interval is the only one normalized to the interval [0, 1]. This is also the reason why the step width
in this interval must be reduced by 1 in addition to the p missing observations. Any following
interval with index j > 1 is normalised to [1/nj , 1], resulting in equidistant steps of 1/nj between
the time points in a single interval:

t =


t(I)

t(II)

t(III)

...

 with

t(I)

t(II)

t(III)

=
[
0 1

n1−p−1 ... 1
]T

=
[

1
n2

2
n2

... 1
]T

=
[

1
n3

2
n3

... 1
]T

...

.

This division allows the piecewise TVAR estimates to be directly merged into a continuous function.
This is so because for the second interval, t(II) = 0 is the time of the first interval boundary (t̂n1),
and thus results in:

Sn1 =

p∑
k=1

qk∑
l=0

β
(k,II)
l 0l =

p∑
k=1

β
(k,II)
0 ,

with β
(k,II)
l being the coefficient β

(k)
l of the second interval. Of course, for the first interval,

Sn1 =

p∑
k=1

qk∑
l=0

β
(k,I)
l 1l =

p∑
k=1

qk∑
l=0

β
(k,I)
l

is also true. It follows that
p∑

k=1

β
(k,II)
0 =

p∑
k=1

qk∑
l=0

β
(k,I)
l .

Since the roots of the CP for the first and second intervals must be similar at the point t̂n1 , this
must also be the case for each coefficient αk(t) of the TVAR process at time t̂n1 :

α
(I)
k (1) = α

(II)
k (0) ∀k = 1, 2, ..., p and

qk∑
l=0

β
(k,I)
l = β

(k,II)
0 ∀k = 1, 2, ..., p. (4.4.1)

This means that β(k,II)
0 is determined for k = 2, ..., p by the previous interval and no longer appears

in the adjustment. So, for the second interval, the parameter vector from (4.1.6) is shortened to
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β(II) =
[
β
(1,II)
1 β

(2,II)
1 ... β

(p,II)
1 β

(2,II)
2 ... β

(p,II)
2 ... β

(p−1,II)
p−1 β

(p,II)
p−1 β

(p,II)
p

]T
.︸ ︷︷ ︸

p elements
︸ ︷︷ ︸

p−1 elements
︸ ︷︷ ︸

2 elements
︸ ︷︷ ︸
1 element

This also accounts for all subsequent intervals III, IV, V, ... . With β(I) being the same as in the
global case shown in (C.4.2), the vector includes a total number of (Np2+(2+N)p)/2 parameters
for N intervals. Since the estimate for piecewise TVAR processes with orders greater than two is
reached by successive estimation again, it is sufficient to analyse the estimates for the piecewise
TVAR(1) and the piecewise TVAR(2) processes.

4.4.2 Piecewise TVAR(1) Processes over Two Intervals

The first step for calculating piecewise TVAR(1) processes with linear root motions lies in finding
the parameter vector. In the case of two intervals, the parameters per interval are given as:

β(I) =
[
β
(1,I)
0 β

(1,I)
1

]T
for the first interval, and

β(II) =
[
β
(1,II)
1

]
for the second interval.

For the adjustment, the joint parameter vector is then:

β =

[
β(I)

β(II)

]
=
[
β
(1,I)
0 β

(1,I)
1 β

(1,II)
1

]T
.

In the same way, the vector representing the observations is partitioned into

y(I) =
[
S2 S3 ... Sn1

]T and y(II) =
[
Sn1+1 Sn1+2 ... Sn1+n2

]T
.

For the least-squares estimate, the design matrices are created as in Appendix C.3, i.e. by first
calculating the columns of the Toeplitz matrices

T (I) =
[
S1 S2 ... Sn1−1

]T and T (II) =
[
Sn1 Sn1+1 ... Sn1+n2−1

]T
,

for the two intervals. The design matrix for the first interval (X(I)) is set up analogously to
the approximation with global functions, but then expanded with a zero column, as β

(1,II)
1 is not

estimated in the first interval:

X(I) =
[
T (I) T (I) � t(I) 0n1×1

]
.

The case is different for the design matrix of the second interval. Here, T (I) is not only replaced by
T (II), but the X(I)’s zero line is replaced by the element wise matrix vector product T (II) � t(II)

shown in (C.2.4). In all other columns, T (II) are used:

X(II) =
[
T (II) T (II) T (II) � t(II)

]
.

The entries for the first two columns of X(II) are the result of (4.4.1), because β
(k,II)
0 is replaced

by the sum of all previous β
(k,I)
l :

β
(0,II)
k = β

(0,I)
k + β

(1,I)
k .

Similar to the case of the global estimation, no further restrictions are needed in the TVAR(1)
process to obtain linear root movements. So, in order to determine the desired parameters and
their covariance matrix by the linear Gauss-Markov model, the matrices

X =

[
X(I)

X(II)

]
and y =

[
y(I)

y(II)

]
can be used in the global TVAR estimate in (C.2.6) and (C.2.7).
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4.4.3 General Estimate of Piecewise TVAR(1) Processes

Now, both the observation vector y and the design matrix X can be divided into distinguished
parts for each interval, and then set up individually. If η ≤ N is the placeholder for the Roman
numbering of an arbitrary interval, and further let nη be the number of observations in that interval,
then

y(η) =


[
S2 S3 ... Sn1

]T
if η = I[

S(
∑

nj<nη
nj)+1 S(

∑
nj<nη

nj)+2 ... S(
∑

nj<nη
nj)+nη

]T
else

(4.4.2)

are the observations in that interval and

t(η) =

{
[0, 1] with a uniform distance of 1

n1−2 if η = I[
1
nη
, 1
]

with a uniform distance of 1
nη

else
(4.4.3)

is the vector with the time steps.

T (η) =


[
S1 S2 ... Sn1−1

]T
if η = I[

S(
∑

nj<nη
nj) S(

∑
nj<nη

nj)+1 ... S(
∑

nj<nη
nj)+nη−1

]T
else

(4.4.4)

is the corresponding Toeplitz matrix (C.3.1). Then, the N + 1 parameters are given by

β =


[
β
(1,I)
0 β

(1,I)
1

]T
if N = 1[

β
(1,I)
0 β

(1,I)
1 β

(1,II)
1 β

(1,III)
1 ... β

(1,N)
1

]T
else

and the rows of the design matrix corresponding to the interval η can be expressed as

X(η) =
[
T (η) T (η) ... T (η) T (η) � t(η) 0nη×(N−η)

]
. (4.4.5)︸ ︷︷ ︸

η elements

Here, 0nη×(N−η) is a zero matrix of dimension nη × (N − η). After this has been done for all
intervals, the adjustment of the joint observations and the joint design matrices

y =



y(1)

y(2)

...
y(η)

...
y(N)


and X =



X(1)

X(2)

...
X(η)

...
X(N)


(4.4.6)

can be performed using (C.2.6) and (C.2.7).

4.4.4 Piecewise TVAR(2) Processes over Two Intervals

In order to be able to create a successive TVAR construction, the estimation of piecewise TVAR(2)
processes is still missing. Its first step is analogous to that of the piecewise TVAR(1) process. In
this case, there is not only the TVAR coefficient α1(t)

(I), but also the coefficient α2(t)
(I), causing

the parameters in the first interval to expand to

β(I) =
[
β
(1,I)
0 β

(2,I)
0 β

(1,I)
1 β

(2,I)
1 β

(2,I)
2

]T
. (4.4.7)
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For the second interval,

β(II) =
[
β
(1,II)
1 β

(2,II)
1 β

(2,II)
2

]T
is added. These are in turn merged with the vector

β =

[
β(I)

β(II)

]
=
[
β
(1,I)
0 β

(2,I)
0 β

(1,I)
1 β

(2,I)
1 β

(2,I)
2 β

(1,II)
1 β

(2,II)
1 β

(2,II)
2

]T
.

For the observation vector, only the contribution of the first interval -which starts from the third
observation- changes. The vector for the second interval remains the same. For this reason,

y(I) =
[
S3 S4 ... Sn1

]T and y(II) =
[
Sn1+1 Sn1+2 ... Sn1+n2

]T
apply, but the Toeplitz matrix (T ), which is derived by Y.-W. equations, changes fundamentally.
The reason for this is that according to (C.2.3)

T (I) =

[
S2 S3 ... Sn1−1

S1 S2 ... Sn1−2

]T
and T (II) =

[
Sn1 Sn1+1 ... Sn1+n2−1

Sn1−1 Sn1 ... Sn1+n2−2

]T
are now matrices instead of vectors. As in the TVAR(2) process estimate for only one interval,
the process of the estimation is again divided into two steps: In the first step the coefficients are
estimated by the means of a Gauss-Markov model. But for a TVAR(2) process, an additional
restriction is needed (see section 4.3.2). The same restrictions must be fulfilled for each interval.
However, the restrictions of an interval includes all parameters of the previous intervals.
For the first interval, the design matrices X(I) is computed as in (C.4.4), only that a zero matrix
has again been added:

X(I) =
[
T (I) T (I) � t(I) T

(I)
2 �

(
t(I)
)�2

0n1,3

]
,

with T
(I)
2 = T (I)(:, 2 : end) (as shown in (C.4.3)).

(
t(I)
)�2 means that the exponent is applied

element-wise for every entry in t(I), like it is used in (C.4.4). For the second interval, β(1,II)
0 and

β
(2,II)
0 must be replaced by all previous coefficients β

(k,I)
l :

β
(1,II)
0 = β

(1,I)
0 + β

(1,I)
1 and (4.4.8)

β
(2,II)
0 = β

(2,I)
0 + β

(2,I)
1 + β

(2,I)
2 . (4.4.9)

This again leads to the fact that all first interval’s coefficients are multiplied by T (II) or T
(II)
1 ,

resulting in the design matrix

X(II) =
[
T (II) T (II) T

(II)
2 T (II) � t(II) T

(II)
2 �

(
t(II)

)�2
]
.

With this, the first step can now be calculated by computing an adjustment with

X =

[
X(I)

X(II)

]
and y =

[
y(I)

y(II)

]
.

Finally, the restrictions of the parameters have to be satisfied, which means that the restriction for
the first interval again equals the one for the global approach:

CPW
1 (β) = (β

(1,I)
0 )2β

(2,I)
2 + β

(2,I)
0 (β

(1,I)
1 )2 − β

(1,I)
0 β

(1,I)
1 β

(2,I)
1 + 4β

(2,I)
0 β

(2,I)
2 − (β

(2,I)
1 )2. (4.4.10)

In the second interval, since this interval can satisfy the restriction for linear root movements
independently of the first interval, the underlying restriction remains the same. Only the end of
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the first interval and the beginning of the second one still need to match, so that β(1,II)
0 and β

(2,II)
0

must be replaced by the right sides of (4.4.8) and (4.4.9):

CPW
2 (β) =

(
β
(1,I)
0 + β

(1,I)
1

)2
β
(2,II)
2 +

(
β
(2,I)
0 + β

(2,I)
1 + β

(2,I)
2

)
(β

(1,II)
1 )2...

−
(
β
(1,I)
0 + β

(1,I)
0 + β

(1,I)
1

)
β
(1,II)
1 β

(2,II)
1 + 4

(
β
(2,I)
0 + β

(2,I)
1 + β

(2,I)
2

)
β
(2,II)
2 − (β

(2,II)
1 )2.

(4.4.11)

Since these restrictions are again nonlinear, for the determination of the parameter vector β via
the Gauss-Markov method, an adjustment in two steps as in Appendix C.4 is recommended.

4.4.5 General Estimate of Piecewise TVAR(2) Processes

There is also a general method for TVAR(2) processes to estimate linear root movements through
any number of intervals. To find this method, the observations y and the times t are divided into
individual intervals. The observations for each interval are defined by (4.4.2) and the times are
normalized for each interval as it is shown (4.4.3). Here, η ∈ {I, II, III, ...} is the number interval
currently being considered. So far, everything is analogous to the structure of the TVAR(1) process
with piecewise linear root motions. However, both the vector with the parameters (β) and the
Toeplitz matrix (T ) change to the pattern of the TVAR(2) process over two intervals discussed in
the previous chapter. β is composed of the five parameters of (4.4.7) from the first interval and
the parameters

βη =
[
β
(1,η)
1 β

(2,η)
1 β

(2,η)
2

]T
for each further interval, resulting in a total of 3N + 2 parameters. This means that first, the
Toeplitz matrix for the interval η has the dimension [(n1 − 1)× 2], just like the TVAR(2) process
for two intervals, and second, uses the same cases as the TVAR(1) process in (4.4.4):

T (η) =



[
S2 S3 ... Sn1−1

S1 S2 ... Sn1−2

]T
if η = 1 S(

∑
nj<nη

nj) S(
∑

nj<nη
nj)+1 ... S(

∑
nj<nη

nj)+nη−1

S(
∑

nj<nη
nj)−1 S(

∑
nj<nη

nj) ... S(
∑

nj<nη
nj)+nη−2

T

else.

The design matrix X(η) for the observations y(η) can be established with T (η), and using the same
logical continuation as in (4.4.5):

X(η) =[
T (η) T (η) T

(η)
1 T (η) T

(η)
1 ... T (η) T

(η)
1 T (η) � t(η) T

(η)
1 �

(
t(η)
)
.2 0nη×3(N−η)

]
.︸ ︷︷ ︸

interval I
︸ ︷︷ ︸

interval II
︸ ︷︷ ︸

interval (η−1)

︸ ︷︷ ︸
interval η

From this, X and y can then be constructed by the means of (4.4.6) to calculate the parameters
of the first step (see (4.4.6)). The second step, now demands the restriction for TVAR(2) processes
with linear root movements. This is done for each interval individually, resulting in exactly N
additional restrictions. The restrictions of the first two intervals are provided in (4.4.10) and
(4.4.11). For all subsequent intervals, they follow from the restrictions of the first interval by
replacing

β
(1,η)
0 = β

(1,I)
0 +

η−1∑
µ=1

β
(1,µ)
1 and

β
(2,η)
0 = β

(2,I)
0 +

η−1∑
µ=1

(β
(2,µ)
1 + β

(2,µ)
2 ).
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The restriction for the interval η can be expressed by the means of

CPW
η (β) =

β
(1,I)
0 +

η−1∑
µ=1

β
(1,µ)
1

2

β
(2,η)
2 +

β
(2,I)
0 +

η−1∑
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(β
(2,µ)
1 + β

(2,µ)
2 )

 (β
(1,η)
1 )2...

−

β
(1,I)
0 +

η−1∑
µ=1

β
(1,µ)
1

β
(1,η)
1 β

(2,η)
1 + 4

β
(2,I)
0 +

η−1∑
µ=1

(β
(2,µ)
1 + β

(2,µ)
2 )

β
(2,η)
2 − (β

(2,η)
1 )2.

As in the global case, this condition is approximated by a Taylor linearization expansion until the
conditions are sufficiently fulfilled. For this purpose, the derivatives of the conditions according
to the parameters are required for each individual interval. For any interval η the derivative of
the conditions can be found in Appendix C.11.1. These can be used to establish the conditional
matrix HT , which is then used in the second stage to compute the parameters β̂ by (C.4.10) and
the parameters Q-factor matrix Q{β̂} by (C.4.11).

4.5 Further TVAR Estimate Extensions with Given Root Motions
To increase the possible root movements, modifications for the estimation of TVAR processes are
included in this section. The extensions refer either to the movement of the roots by increasing the
degree of the polynomial, or to method of increasing the process order to TVAR(3) processes.

4.5.1 Root Motions from Quadratic Polynomials

The first method deals with estimating the root motion by the means of a polynomial of higher
orders. In particular, quadratic movements of the roots of TVAR processes are derived here:

Pk(t) = ζ
(k)
0 + ζ

(k)
1 t+ ζ

(k)
2 t2 ∀ k = 1, 2, ..., p.

According to section 4.3.1, quadratic root motions result in TVAR coefficients of polynomials whose
order is twice as large as the index k of the coefficients αk(t):

αk(t) =
2k∑
l=0

β
(k)
l tl. (4.5.1)

As for the linear root movements, this parametrization is not sufficient to guarantee a quadratic
movement. Therefore, it is again necessary to derive restrictions from the parameters which ensure
that the TVAR(1) and TVAR(2) process estimates resulting in quadratic root motions. For this
reason, again, a successive method of TVAR(1) and TVAR(2) process estimates is used. Even in
the case of quadratic motions, the root for the TVAR(1) process

St = α1(t)St + Et

derives from

P1(t) = α1(t) = β
(1)
0 + β

(1)
1 t+ β

(1)
2 t2

and thus always follows a parabolic motion without the need for further restrictions.
The need of the quadratic root movement of the TVAR(2) process demands the establishment
of restrictions paralleling the linear root case of section 4.3.2 while adapting them to the current
situation. This means that the same approach as in (4.3.7) can be used, but the coefficient α1(t)
needs to be changed into a polynomial of degree two, and α2(t) into one of degree four. Furthermore,
the right side needs to be a quadratic polynomial instead of a linear one, i.e.√(

α1(t)

2

)2

+ α2(t)
!
= f1 + f2t+ f3t

2.
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The squaring of both sides results in two polynomials of degree four. These are equal if -and only
if- all five coefficients are equal, equalling five restrictions. Out of these restrictions, three can be
eliminated by the free parameters f1, f2 and f3. The remaining two constraints are derived in
Appendix (C.8.8) and (C.8.9) and result in the non-linear restrictions

Cquad
1 (β) =

(
β
(1)
0 β

(1)
1 + 2β

(2)
1

)2 (
(β

(1)
2 )2 + 4β

(2)
4

)
−
(
β
(1)
1 β

(1)
2 + 2β

(2)
3

)2 (
(β

(1)
0 )2 + 4β

(2)
0

)
!
= 0

(4.5.2)

and

Cquad
2 (β)

= 4

(
(β

(1)
0 )2
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+ β

(2)
0

)(
(β

(1)
2 )2

4
+ β

(2)
4

)
−

(
β
(1)
0 β

(1)
2

2
+

(β
(1)
1 )2

4
+ β

(2)
2 − (β

(1)
0 β

(1)
1 + 2β

(2)
1 )2

4((β
(1)
0 )2 + 4β

(2)
0 )

)2
!
= 0.

(4.5.3)

Forcing the parameters to solve the conditions Cquad
1 (β) and Cquad

2 (β) with the procedure of the
TVAR estimate from Appendix C.2, it is now possible to estimate TVAR processes of any order with
quadratic root motions. After the parameters have been determined from the necessary condition
(like it is demonstrated in Appendix C.3), the conditions are applied in a second step. The partial
derivatives, as well as the resulting design matrix, are derived and documented in Appendix C.11.2.

4.5.2 Gaining Linear Roots from TVAR(3) Processes

It is also possible to determine the roots of the CP of higher order processes analytically -at least up
to and including TVAR processes of order four (see section 2.17). For this reason, the restrictions
of the TVAR(3) process with linear root movements have been determined in Korte et al. 2023a
and are further elaborated here.
To start with a TVAR(3) process with the coefficients

α1(t) = β
(1)
0 + β

(1)
1 t, (4.5.4)

α2(t) = β
(2)
0 + β

(2)
1 t+ β

(2)
2 t2 and (4.5.5)

α3(t) = β
(3)
0 + β

(3)
1 t+ β

(3)
2 t2 + β

(3)
3 t3, (4.5.6)

it has been shown in (2.17.7), (2.17.8) and (2.17.9) that the roots are provided by the functions

P1(t) = (s1(t) + s2(t))−
−α1(t)

3

= s1(t) + s2(t) +
1

3
α1(t),

P2(t) = −s1(t) + s2(t)

2
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3
+ i

√
3

2
(s1(t)− s2(t))

=
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√
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)
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2
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√
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)
s2(t) +

1

3
α1(t) and

P3(t) = −s1(t) + s2(t)
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− −α1(t)
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√
3
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(s1(t)− s2(t))

=

(
−1

2
− i

√
3

2

)
s1(t) +

(
−1

2
+ i

√
3

2

)
s2(t) +

1

3
α1(t).

By rewriting the functions of the time variable roots like this, it becomes clear that each is a linear
combination of s1(t), s2(t) and α1(t). It follows if s1(t), s2(t) and α1(t) are linear functions, so
are P1(t), P2(t) and P3(t). There may exist corner cases where the sum s1(t) + s2(t) is linear,
while s1(t) and s2(t) contain non-linear functions with opposing signs. This would result in their
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canceling in the sum. Those cases are excluded in the following elaborations.
Consequently, the problem simplifies to the equations

s1(t)
!
= f1 + f2t, (4.5.7)

s2(t)
!
= g1 + g2t and (4.5.8)

α1(t)
!
= h1 + h2t. (4.5.9)

Fortunately, because of (4.5.4), α1(t) is again a linear function, which means that the third restric-
tion of (4.5.9) is always fulfilled. However, s1(t) and s2(t) must also satisfy the condition

2r(t) = s31 + s32 and − q(t) = s1s2. (4.5.10)

Appendix C.9 shows, that r(t) and q(t) are expressed by the coefficients β
(k)
l , which must equal

the polynomials of (4.5.10). Since r(t) is a polynomial of degree three and −q(t) is a polynomial of
order two, their coefficient comparison results in seven restrictions, one for each coefficient. Four
of these restrictions can be solved by the free parameters f1, f2, g1 and g2 of (4.5.7) and (4.5.8).
The three remaining non-linear restrictions are derived in Appendix C.9:
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Also, the immediate calculation of the TVAR(3) process demands two steps. First, the necessary
condition leads to the approximation of the needed parameters, which then secondly allow the
calculation of the Taylor linearization for the constraints. In order to construct the conditional
matrix HT , Appendix C.11.3 shows the partial derivatives of the three conditions in accordance
to the parameters.

4.6 Evaluation
This section consists of a comparison and evaluation of the methods discussed above. These are:

1. The direct estimation of TVAR(1) and TVAR(2) processes with linear root movements (see
Appendix C.4, TVAR(1) and TVAR(2) process);

2. the estimation of higher order TVAR processes with linear roots (p > 2) by successive es-
timation of TVAR(1) and TVAR(2) processes with linear root motions (see section 4.3.3,
successive TVAR process);

3. the piecewise estimation of TVAR processes by the means of several observation intervals,
(also in combination with successive estimation) (see section 4.4, piecewise TVAR process);

4. the estimation of TVAR(1) and TVAR(2) processes with quadratic movements (see section
4.5.1 (TVAR process with quadratic root motion);

5. as well as the direct estimation of TVAR(3) processes with linear root movements (see section
4.5.2: TVAR(3) process).
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In order to obtain the most accurate result in TVAR estimation, the determination of the method
best suited for the given time series is crucial. The key factor in this is the correct identification
of the part of the root motion that poses the noise: if the roots are too rigid, the spectrum
characteristic caused by them and their motion cannot be accurately mapped. However, if the roots
are too flexible, one is prone to the risk of overparameterization, which results in the modelling of
the noise and thus a distortion of the signal. In addition, the order of the TVAR process must be
determined by estimating the TVAR process for several orders, while then further comparing the
solutions against each other by the means of the adapted AIC for TVAR processes from Appendix
C.7. In order to link the estimation methods to the different conditions, Figure 4.4 provides a
decision tree to find the best method for a given case.

Figure 4.4: Decision tree to select the optimal TVAR processes for the respective
problem.

4.7 Comparison of TVAR Estimates Based on Simulations

Two simulations are shown, to test the individual methods. The first one represents the advantages
and disadvantages of estimating a TVAR process with quadratic root motion or piecewise linear
root motions, and the second one shows the advantages and disadvantages of TVAR(3) with linear
root movements, which have either been successively estimated from a TVAR(1) and a TVAR(2)
process, or have been estimated directly by the means of the TVAR(3) process.

4.7.1 Piecewise Linear vs. Quadratic Root Motions

In order to compare the TVAR estimation with piecewise linear roots against the TVAR estimation
with quadratic root movements, the root movement from the first example in Kamen 1988 (from
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section 4.2.1) is used together with

P1,2(t) =
1− 2.5t

2
±

√(
−1 + 2.5t

2

)2

− 0.5 t ∈ [0, 1).

Using the time variable coefficients α1(t) = 1 − 2.5t and α2(t) = −0.5 in combination with the
variance of the noise σ2

E = 10−4, a time series of 512 observations is simulated via the recursion
provided in (2.7.1).
This simulation is computed in three steps: first a vector e of 512 i.i.d normal distributed random
variables with variance σ2

E is generated. Second, the coefficients α1(t) and α2(t) are evaluated for
t ∈ [−0.0179, 0) for 512 equidistant values. This way, the first 12 signals can be removed, and
the remaining observations lie within t ∈ [0, 1). These values are stored in the vectors a1 and a2.
Thirdly the e, a1 and a2 are used to compute the time series S by the recursive formula

Sj−12 = a1(j)Sj−13 + a2(j)Sj−14 + e(j), (4.7.1)

with j = 3, 4, ..., 512. Here, the initialization values are given by [S−11;S−10] = [e1; e2]. Further-
more the Signal is reduced by the first 12 observations. From all 512 observations the first 12
observations cannot be used, since two of them are needed for initializing the recursive formula in
(4.7.1), and the other ten are needed for warming up the process. So, a vector consisting of exactly
500 observations remains. This generated time series is depicted in Figure 4.5, and for this time
series a TVAR(2) process with quadratic root motion and a TVAR(2) process with piecewise linear
root motion is approximated.

0 0.2 0.4 0.6 0.8 1

Time normalized to the interval [0,1]

-0.05

0

0.05

Figure 4.5: A realization of a TVAR process with variance σ2
E = 10−4 and the

coefficients α1(t) = 1− 2.5t and α2(t) = −0.5 for t ∈ [0, 1].

In order to compare these findings, the resulting root movements of both estimations are calcu-
lated for discrete times and visualized in the unit circle. The approximation with quadratic root
motion is a better approximation of the circular motion, as can be seen in Figure 4.6. The figure
however also visualises that the quadratic movements show, in contrast, strong deviations from the
predetermined root movement towards the end (t → 1) and even leave the unit circle, so that the
TVAR(2) process with quadratic root motion no longer meets the requirements of stationarity at
any given time step. The piecewise estimate in Figure 4.7 maintains a similar deviation, but do
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Figure 4.6: TVAR estimate for the time
series with quadratic root movements,
and the root movement used for the
simulation of the time series (grey).

Figure 4.7: TVAR estimate for the time
series with piecewise linear root move-
ments, and the root movement used for
the simulation of the time series (grey).

Figure 4.8: TVAR estimate for the time
series with quadratic movements, and
the discrete roots of a moving window of
60 observations moving across the time
series (grey).

Figure 4.9: TVAR estimate for the time
with piecewise linear root movements,
and the discrete roots of a moving win-
dow of 60 observations moving across
the time series (grey).

not leave the unit circle. Therefore fulfils the requirements of stationarity at any time and thus
gives a more suitable approximation.
Both estimates have in common that they are continuously below the predetermined root movement.
The explanation of this phenomenon demands a further estimate. A window of 60 observations is
shifted in steps of one observation across the time series, and for each window, a time stable AR
process is estimated. The resulting time constant roots are displayed in the unit circle (see Figures
4.8 and 4.9).
These discrete roots are plotted together with one of the estimated root movements into the unit
circle. Figure 4.9 shows that the linear roots of the piecewise estimated TVAR process with linear
root motions are well in the track of the window function, while Figure 4.8 illustrates the same
for the TVAR estimation with quadratic root motions. For this specific example, the differences
between the discrete roots of the moving window and the estimated root motions result from the
fact that the simulated noise influences the TVAR coefficients during the simulation and therefore
draws the roots closer to the origin for this specific realization.

In a second example, a time series of 500 observations is simulated, but this time the root movement
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is reduced to 60% in comparison the root motion discussed in the previous example. This is done
by multiplying all the coefficients of the roots not by tl but by (0.6t)l, which means that in this
particular case, α1(t) is replaced by

ᾱ1(t) = 1− 1.5t

while α2(t) remains the same. With the new set of parameters, the new time series as shown in
Figure 4.10 is simulated like in the previous simulation. However this time Figure 4.11 shows that
the discrete roots for the moving window fit the root movement used for initialization very well. So,
there is no reason to differentiate between these two root movements, meaning that it is sufficient
to use the given root motion as a validation for the different TVAR estimates. For this time series,
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Figure 4.10: A realization of the TVAR
process with the coefficients α1(t) = 1−
1.5t and α2(t) = −0.5 for t ∈ [0, 1].

Figure 4.11: Roots of a moving window
for the time series, and the root move-
ment used in the simulation (grey).

a TVAR(2) process with piecewise linear root motions as well as a TVAR(2) process with quadratic
root motions was estimated, and the resulting root motions then depicted in Figure 4.12 (TVAR
estimation with restrictions of quadratic root motions) and in Figure 4.13 (piecewise estimation).

Figure 4.12: TVAR estimate for the
time series with quadratic root move-
ments, and the root movement used for
the simulation of the time series (grey).

Figure 4.13: TVAR estimate for the
time series with piecewise linear root
movements, and the root movement
used for the simulation of the time se-
ries (grey).

When comparing the two root movements, it is first to mention that both approximate well, but
that using quadratic root motions has one advantage: no further limit has to be specified. The
piecewise estimation, however, demands knowledges of the time at which the piece estimate is
separated for this has a big influence on the shape of the root movements.
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4.7.2 Direct vs. Successive Estimation of a TVAR(3) Process

In this section, a time series of 1000 observations (Figure 4.14) was simulated by a TVAR(3) process.
The process’ parameters are provided by the variance σ2

E = 10−6 and the time variable linear roots
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Figure 4.14: A time series process simulated by a TVAR(3) process with vari-
ance σ2

E = 10−6, and the roots P1(t) = −0.5 − 1t and P2,3(t) = −0.6 ± 0.3i +
(0.3± 0.2i)t for t ∈ [0, 1].

of the CP:

P1 = −0.5 + 1t P2 = −0.6 + 0.3i+ (0.3 + 0.2i)t P3 = −0.6− 0.3i+ (0.3− 0.2i)t

with t ∈ [0, 1]. These roots and their movement over time are shown in Figure 4.15. The discrete
roots from a moving window of 200 observations over the simulated time series are in comparison
shown in Figure 4.16. It is noticeable that the complex-valued roots in the representations differ,
which means that the example’s root motions do not reproduce the given roots. Therefore, the
validation is done by the roots of a moving window. To compare the estimations of a TVAR(3)
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Figure 4.15: Given roots of the
TVAR(3) process which were used to
simulate the time series in Figure 4.14.
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Figure 4.16: Roots of AR(3) processes
for a moving window of 200 observa-
tions sliding over the time series in Fig-
ure 4.14.

process given in 4.3.3 with the direct estimation of section 4.5.2, this time series is estimated by
applying both methods. The roots and their motions for the successive estimate are depicted in
Figure 4.17, which shows that all roots are real valued. This problem might occur when the complex
roots get too close to the x-axis that. In conjunction with the real root, they start to influence
the TVAR(1) estimate in the first iteration up to the degree that this solution compensates too
much influence of the complex roots in the characteristic of the time series. Nevertheless, the given
result of the successive TVAR estimation is also the one with the minimum AIC for successively
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Figure 4.17: Root motion of the successive estimate of a TVAR(3) process. The
process is simulated with the help of the roots of Figure 4.15.

estimated TVAR processes up to order six.
In the direct TVAR(3) computation, the estimation is carried out as in (4.5.4)–(4.5.6) without
using the additional constraints of (4.5.11)–(4.5.13). The resulting root movement is visualized in
Figure 4.18 and shows a strong similarity to the discrete roots of the moving window in Figure 4.16.
In order to obtain a TVAR(3) process with linear roots, an additional adjustment according to the
conditions in (4.5.11)–(4.5.13) is calculated (compare Appendix C.11.3). The linear root motions
of the directly estimated TVAR(3) can be seen in Figure 4.19. They are very similar to the root
motions used for the simulation of Figure 4.15. Based on this simulation, it is possible to show how
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Figure 4.18: Root motion of the direct
estimate of a TVAR(3) process with
polynomial coefficients simulated with
the help of the roots from Figure 4.15.
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Figure 4.19: Root motion of the direct
estimate of a TVAR(3) process with lin-
ear root motion simulated with the help
of the roots from Figure 4.15.

the direct determination of TVAR(3) processes extends the successive TVAR estimation in order
to detect hard-to-separate roots (like the one shown in Figure 4.15), and to distinguish them from
superimposed roots (as in Figure 4.17).
Admittedly, the successive estimate is very rarely as vague as shown here. In most cases, the roots
of the successive and the direct TVAR(3) process’ estimates matches -at least if the restrictions
linearization of the direct TVAR(3) process’ estimates converge.
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Chapter 5

Covariance Functions for Time
Variable AR(1) Processes with Linear
Root Motions

In this chapter, the nonstationary processes are prepared to be used as covariance models for LSC
(see section 2.2). In order to model the covariances of the signal, the necessary covariance matrix is
derived from the estimate of a TVAR(1) process with linear root motion (see chapter 4). With this
matrix, the adjusted observations are calculated by applying LSC for smoothing (or as a filter). In
order ot predict the values between the observations, a continuous covariance function is required.
This is derived from the discrete covariances by finding a continuous representation, as shown in
chapter 3.
Because of complexity, this chapter limits its examination to the TVAR process of order p = 1:

St = α1(t)St−1 + Et (5.0.1)

with linear root motion. Since it was shown in (4.3.5) that for the TVAR(1) process, the time
variable coefficient is equal to the root of the corresponding CP, i.e.

α1(t) = P1(t),

(as shown in (4.3.5),) the resulting covariances and covariance functions are directly related to the
coefficient α1(t).

5.1 Discrete Covariance Matrices of the TVAR(1) Process with
Linear Root Motions

In order to determine the covariance matrix of TVAR(1) processes, the variances as well as the
covariances must be calculated. To do so the subsection 5.1.1 provides the representation of the
time variable covariances of a TVAR(1) process as a function of the time variable variances. Since
section 4.1.2 and Appendix C.1, both illustrate that the direction in which the TVAR process’
development is decisive for the resulting covariances, this subsection is limited to the covariance
(Σj(t)) between an observation St at time t and an observation St+j , which is j time steps further in
the future. The second subsection 5.1.2 derives the time variable variances of TVAR(1) -mentioned
in section 5.1.1- as a function of the time variable parameters α1(t) and the variance of the noise
σ2
E . The third subsection 5.1.3 combines the results of sections 5.1.1 and 5.1.2, to compute the

values of the covariance matrix derived from TVAR(1) processes.

5.1.1 Representation of the covariances of a TVAR(1) process by the variances

Take a covariance of a TVAR(1) process with linear root motion from a signal St at a discrete time
t to a signal St+j with j steps in the future and applies the time variable Y.-W. equation from
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(C.1.3). This simplifies the computation of the variance to

Σj(t) = E{St+jSt} = α1(t+ j)Σj−1(t) for j ≥ 0.for j > 0. (5.1.1)

Just as in the case of the time stable Y.-W. equations, the covariance between two observations
with a distance j is reduced to the covariance between two observations with a distance of j − 1,
whereby the applies random variables are provided by St and St+j . This makes the same method
applicable to the covariance Σj−1(t), means that the equation

Σj−1(t) = E{St+j−1St} = α1(t+ j − 1)Σj−2(t) (5.1.2)

also applies. This way, Σj(t) can be represented by Σj−2(t). To do so Σj−1(t) in (5.1.1) is exchanged
by the right side of equation (5.1.2):

Σj(t) = α1(t+ j)α1(t+ j − 1)Σj−2(t).

Since the covariance Σj(t) at time t remains unaffected, and since the calculation is only applied
for for covariances covering future signals (i.e. j > 0), the recursion can be repeated j times until
the covariance reaches the variance Σ0(t). This results in

Σj(t) = α1(t+ j)α1(t+ j − 1) . . . α1(t+ 1)Σ0(t)

= Σ0(t)

j∏
`=1

α1(t+ `). (5.1.3)

The coefficients α1(t+ `) are known from the TVAR(1) estimate given in chapter 4, but note that
usage of the discrete times t, (t + `) ∈ [1, 2, ..., n], first demands a normalization to the interval t
and t+ ` ∈ [0, 1/(n − 1), 2/(n − 1), ..., 1]. The resulting conversion of the parameters can be seen
in Appendix D.1.

5.1.2 Discrete Variance of the TVAR(1) process

Equation (5.1.3) shows that the covariance Σj(t) between the signal St and St+j with j > 0 can be
traced back to the variance Σ0(t) at time t. Schuh et al. 2023 have proven that the variances of
a TVAR(1) process (Σ0(t)) can be determined for each time t: their proposed method demands a
recursive calculation. For this purpose, the variance Σ0(t) at a time t is rewritten as

Σ0(t) = E{StSt}
(1)
= E{(α1(t)St−1 + Et)(α1(t)St−1Et)}
= E{α1(t)

2St−1St−1 + 2α1(t)St−1Et + EtEt}
= α1(t)

2E{St−1St−1}︸ ︷︷ ︸+2α1(t)E{St−1Et}︸ ︷︷ ︸+E{EtEt}︸ ︷︷ ︸
(2)
= α1(t)

2 Σ0(t− 1) + 2α1(t) 0 + σ2
E

= α1(t)
2Σ0(t− 1) + σ2

E (5.1.4)

This way the variance at any time can be recursively represented by the variance at time t− 1. In
(1), the recursion formula for TVAR(1) processes of (5.0.1) is used. (2) uses the definitions of the
TVAR(1) process variance

Σ0(t− 1) = E{St−1St−1},

and the variance of noise

Σ(Et) = E{EtEt} = σ2
E .
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Furthermore, in our case,

E{St−1Et} = E{St−1}E{Et} = 0

remains applicable, as the white noise process at time t and the signal at time t−1 are independent
from each other, and E{Et} = 0. As such, the recursion from t to t− 1 can be successively applied,
until the time t = t0 is reached. This defines the start of the process

Σ0(t) = α1(t)
2[α1(t)

2Σ0(t− 2) + σ2
E ] + σ2

E

= ...

= α1(t)
2[α1(t− 1)2(α1(t− 2)2...(α1(t0 + 1)2︸ ︷︷ ︸

(t−t0)×α2

Σ0(t0) + σ2
E) + ...+ σ2

E)σ
2
E ] + σ2

E︸ ︷︷ ︸
(t−t0)×σ2

E

=
t∏

k=t0+1

α2
1(k)Σ0(t0) +

t−1∑
l=t0+1

t∏
k=l+1

α2
1(k)σ

2
E + σ2

E . (5.1.5)

Thus, the initial value problem of the variance at any time is reduced to the initial value problem
for the variance at time t0. To solve this problem, it is assumed that the TVAR(1) process starts
its motion at the time t0, while previously being a time constant stationary AR(1) process whose
coefficient is ᾰ1 = α1(t0). Under this assumption, the variance of the TVAR(1) process at time t0
is known, for it is the same as for the time constant AR(1) process provided by

S̆t = ᾰ1S̆t−1 + Et = α1(t0)S̆t−1 + Et. (5.1.6)

Furthermore Buttkus 2000, p. 243, eq. (11.15) argues that, if the AR process is stationary, the
variance of the AR(1) process provided in (5.1.6) derives from

Σ0(t0) =
σ2
E

1− α2
1(t0)

. (5.1.7)

The requirement of stationarity of the TVAR process to be stationary for all t (compare chapter
4), ensures that the variance is valid at all times due to the derivation of a stationary AR processes.
Thus, the time variable variance in (5.1.5) can be calculated from any discrete time t by the means
of a function depending only on the time variable coefficients α1(t) and the variance of the white
noise σ2

E :

Σ0(t) =

t∏
k=t0+1

α2
1(k)

σ2
E

1− α2
1(t0)

+

t−1∑
l=t0+1

t∏
k=l+1

α2
1(k)σ

2
E + σ2

E

= σ2
E

1 +
t∏

k=t0+1

α2
1(k)

1− α2
1(t0)

+
t−1∑

l=t0+1

t∏
k=l+1

α2
1(k)

 for t > t0. (5.1.8)

5.1.3 Discrete Covariance matrix of TVAR(1) process

Joining the variances of (5.1.3) with the covariances in (5.1.8) allows the construction of the co-
variance matrix of the process observations Σ{S}. Thus, exchanging the variance Σ0(t) in (5.1.3)
for (5.1.8) yields

Σj(t) = σ2
E

1 +
t∏

k=t0+1

α2
1(k)

1− α2
1(t0)

+
t−1∑

l=t0+1

t∏
k=l+1

α2
1(k)

 j∏
`=1

α1(t+ `), (5.1.9)

which can be used to fill the upper triangle of the covariance matrix

Σ{S} =


Σ0(1) Σ1(1) Σ2(1) ... Σn−1(1)
Σ−1(2) Σ0(2) Σ1(2) ... Σn−2(2)
Σ−2(3) Σ−1(3) Σ0(3) ... Σn−3(3)
. . .

Σ−n+1(n) Σ−n+2(n) Σ−n+3(n) ... Σ0(n)

 (5.1.10)
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of the observed signals. To complete the covariance matrix, it is necessary to also consider the
observations covariances in the past Σ−j(t). But due to

Σ−j(t) = E{StSt−j} = E{St−jSt} = Σj(t− j), (5.1.11)

the covariance between the observation St and an observation St−j do not have to be calculated by
(C.1.2), but can simply be traced back to the case of positive lag j.
In addition, the covariance transformations of (5.1.11) shows that the covariance matrix ΣS is
symmetrical. As can be seen in (5.1.10), where the entry of ΣS in row r and column c is provided
by

ΣS(r, c) = Σc−r(r).

In conjunction with the conversion (5.1.11) (which transforms a covariance of the past to a covari-
ance in the future),

ΣS(r, c) = Σc−r(r) = Σr−c(c) = ΣS(c, r)

shows that the matrix ΣS(r, c) is symmetrical and that (5.1.3) is sufficient to compute every entry
of the covariance matrix:

ΣS =



Σ0(1) α1(2)Σ0(1) α1(3)α1(2)Σ0(1) ...
(∏n−1

`=1 α1(1 + `)
)
Σ0(1)

Σ0(2) α1(3)Σ0(2) ...
(∏n−2

`=1 α1(2 + `)
)
Σ0(2)

Symmetrical Σ0(3) ...
(∏n−3

`=1 α1(3 + `)
)
Σ0(3)

. . . ...
Σ0(n)


.

With ΣS , the theoretical covariance matrix of the TVAR(1) process is found. In the next section,
a continuous representation of the time variable CF of a TVAR(1) will be derived.

5.2 Normalization of the Time Interval after TVAR Estimation
As mentioned before, this part’s contributions are limited to the TVAR(1) process whose coefficient
(and thus also the single root (P1(t)) of the CP) is linear

α1(t) = P1(t) = β
(1)
0 + β

(1)
1 t. (5.2.1)

To generalize the procedure for any given epoch, the time vector t is transformed into

t =

[
0,

1

n− 1
,

2

n− 1
, ...,

n− 2

n− 1
, 1

]
.

As a result, the following equations can be applied for any interval -regardless of how long it is or
where it starts. The transformation of the discrete times to the interval [0, 1], and the resulting
transformed lags j, are derived in Appendix D.1. They are provided by

t =
t− 1

n− 1
and j =

j

n− 1
. (5.2.2)

To ensure conformity of the equations, the coefficients α1(t) also have to be transformed according
to the shift in t:

α1(t) = β
(1)
0 + β

(1)
1 t = β

(1)
0 + β

(1)
1 t = ᾱ1(t̄).

Since α1(t) is still a function of t, t has to be transformed according to (5.2.2):

α1(t) = β
(1)
0 + β

(1)
1

t− 1

n− 1
. (5.2.3)
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The corresponding covariance representation in (5.1.9) is adjusted accordingly:

Σj(t) =σ2
E

1 +

t∏
k=t0+1

α2
1(k)

1− α2
1(t0)

+

t−1∑
l=t0+1

t∏
k=l+1

α2
1(k)

 j∏
`=1

α1(t+ `)

=σ2
E

1 +
t∏

k=t0+1

(
β
(1)
0 + β

(1)
1

k−1
n−1

)2

1−
(
β
(1)
0 + β

(1)
1

t0−1
n−1

)2 +
t−1∑

l=t0+1

t∏
k=l+1

(
β
(1)
0 + β

(1)
1

k − 1

n− 1

)2

 ...

·
j∏

`=1

β
(1)
0 + β

(1)
1

t+ `− 1

n− 1
. (5.2.4)

Linking β
(1)
0 and β

(1)
1 to j in (5.2.4) results in two advantages. On the one hand, β(1)

0 and β
(1)
1 are

independent of the time interval, so that the continuous continuation always has the same frame
given by [0, 1]; and on the other hand, the use of the discrete time points t ∈ [1, 2, ..., n] ensures
that the upper boundary of the product provided by the lag j remains a discrete number, which
is the prerequisite for exchanging the product of discrete values by the continuos function. The
discrete CF’s continuation is discussed in the next section.

5.3 Continuous Covariance Function for Time Variable AR(1) Pro-
cesses with Linear Root Motions

In this section, the discrete covariance section of (5.2.4) shall be broadened to a continuous function.
This is done in the following two subsections: In subsection 5.3.1 a continuous function γ(0, tc) with
tc ∈ [1, n] is set up to replace the time variable but discrete variances Σ0(t) of t ∈ {1, 2, ..., n}. In
the subsection 5.3.2, another continuous function γ(h, tc) is derived. This function allows the
computation of the time variable covariances of the process, while also possessing the characteristic
of being continuous in both time tc and lag h.

5.3.1 Continuous Representation of the Variances

The continuous covariance function requires the variances Σ0(tc) of the TVAR(1) process to be
known for any given time tc ∈ [0, 1]. Until now, the variances have been calculated only for the
discrete observation points t = {1, 2, ..., n} (see (5.1.8)). However, so far, the time variable TVAR(1)
coefficient has not been estimated as discrete values, but as a continuous function:

α1(tc) = β
(1)
0 + β

(1)
1 tc ∀tc ∈ [0, 1].

These time variable coefficients provides the basis for the creation of the continuous variance func-
tion γ(0, tc). γ(0, tc) is supposed to satisfy the condition (5.1.4), while also to reproduce the discrete
variances Σ0(tc) at the point of the observation epochs. Figure 5.1 shows discrete realisations of
variances over time of a TVAR(1) process for a different number of samples. The obtained variances
show a strong dependence on the sampling rate. This seems to contradict the idea of a continuous
function representing all variances. However, Figure 5.1 also shows that the variance functions
converge towards a limit value – the higher the sampling, the closer to the limit. Since it can be
evaluated at any time and satisfies the conditions of (5.1.4) for all time points, the very function of
this limit is thus used to obtain the continuous function of general variance over time. It is defined
by

γ(0, tc) =
σ2
E

1− α2
1(tc)

(5.3.1)

and is proved in Appendix D.2. The function of (5.3.1) depends only on the current state of the
coefficient and therefore it is independent of its predecessors.
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Figure 5.1: Variances of the TVAR(1) process with coefficient α1(tc) = 0.9 −
1.8tc with tc ∈ [0, 1] and σ2

E = 0.1 being the variance of the white noise process.
The variances are computed by the recursive formula (5.1.4) with the initial-
ization value of (5.1.7). Different sampling rates were used: 10 samples (blue),
30 samples (red), 70 samples (myOrange), 500 samples (violet), continuous
function (mygreen).

5.3.2 Continuous Representation of the Covariances

The CF for the TVAR(1) process with linear root motion is calculated similarly to the covariance
function of (3.3.6), where the continuous CF for AR processes distinguishes between positive and
negative real parts. In the case of the TVAR(1) processes (see (5.0.1)) with linear root motion
(5.2.3), there are six cases (see Figure 5.2). The individual cases are distinguished by three charac-
teristics of the coefficient α1(tc): (1) is α1(0) > 0 or α1(0) < 0, (2) does α1(tc) increasing decreasing,
and (3) is α1(tc) = 0 for any tc ∈ [0, 1] or not. These case distinctions can also be described by the
means of the parameters’ signs, resulting in:

case 1: β
(1)
0 , β(1)

1 > 0

case 2: β
(1)
0 , β

(1)
1 < 0

case 3: β
(1)
0 < 0, β(1)

1 > 0 and β
(1)
0 + β

(1)
1 > 0

case 4: β
(1)
0 > 0, β(1)

1 < 0 and β
(1)
0 + β

(1)
1 > 0

case 5: β
(1)
0 < 0, β(1)

1 > 0 and β
(1)
0 + β

(1)
1 < 0

case 6: β
(1)
0 > 0, β(1)

1 < 0 and β
(1)
0 + β

(1)
1 < 0.

For each of these six cases, the discrete covariances of (5.2.4) must be replaced by an individual
continuous function. This is done again by the means of a case distinction with the parameters
β
(1)
0 and β

(1)
1 . Although there are six case distinctions, only three distinct groups represent the

discretely covariances Σj(t) in (5.2.4). These are called Σ
(1)
j (t), Σ(2)

j (t) and Σ
(3)
j (t). Each of these

groups leads to their own continuous representation, which is respectively designated as γ(1)(h, tc),
γ(2)(h, tc) and γ(3)(h, tc).

Case 1: β
(1)
0 , β

(1)
1 > 0

For the first case, it is assumed that both β
(1)
0 and β

(1)
0 are greater than zero, since the product

of (5.1.3) has only positive entries and is constantly growing. For this product, section 2.20 has
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Figure 5.2: The different cases of linear root motions of a TVAR(1) processes.

shown that it can also be described with the Pochhammer symbol:

P(t, j) : =
L
(t+ j)
L
(t)

=

j−1∏
k=0

t+ k. (5.3.2)

This function has the advantage of being a continuous function, means that it can be computed for
the non-integer inputs t and j of (5.2.2). The extension of the product of (5.1.3) to the Pochhammer
symbol demands that two consecutive factors must always be spaced by one. This is achieved by
the transformation

j∏
`=1

β
(1)
0 + β

(1)
1

t+ `− 1

n− 1
=

j∏
`=1

β
(1)
1

n− 1

β
(1)
0 (n− 1)

β
(1)
1

+ t+ `− 1


=

 β
(1)
1

n− 1

j
j∏

`=1

β
(1)
0 (n− 1)

β
(1)
1

+ t+ `− 1. (5.3.3)

When comparing this function with Pochhammer’s symbol of (5.3.2), the demand for a shift by
one of the running variable (o = `− 1), so that both products start at zero, becomes obvious: β

(1)
1

n− 1

j
j∏

`=1

β
(1)
0 (n− 1)

β
(1)
1

+ t+ `− 1 =

 β
(1)
1

n− 1

j
j−1∏
o=0

β
(1)
0 (n− 1)

β
(1)
1

+ t+ o

=

 β
(1)
1

n− 1

j

P

β
(1)
0 (n− 1)

β
(1)
1

+ t, j

 . (5.3.4)

Until now t and j were needed in order to transform the product into Pochhammer’s symbol. Now,
to transform these parameters to the interval [0, 1], these can be modified by

t = t(n− 1) + 1 and j = j(n− 1) (5.3.5)

from (D.1). Inserting the normalized parameters into (5.3.4) results in β
(1)
1

n− 1

j(n−1)

P

β
(1)
0 (n− 1)

β
(1)
1

+ t(n− 1) + 1, j(n− 1)

 .
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Applying this together with the transformation of the parameters to the unit interval, (5.1.3)
changes to

Σ
(1)
j (t) = Σ0(t(n− 1) + 1)

 β
(1)
1

n− 1

j(n−1)

P

β
(1)
0 (n− 1)

β
(1)
1

+ t(n− 1) + 1, j(n− 1)

 (5.3.6)

for the calculation of the covariances between a discrete signal St and another signal St+j (if both
parameters β

(1)
0 and β

(1)
1 are greater than zero). Replacing the discrete values t and j with the

continuous parameters tc and h results in the continuous CF

γ(1)(h, tc) = γ(0, tc)

 β
(1)
1

n− 1

h(n−1)

P

β
(1)
0 (n− 1)

β
(1)
1

+ tc(n− 1) + 1, h(n− 1)

 (5.3.7)

with h ∈ [0, 1].1 (5.3.7) represents the continuous function continuing the discrete function in
(5.3.6), where the variances still have to be adjusted. Since t ∈ {0, 1, ..., n} has been transformed
into t ∈ [0, 1], the discrete variance Σ0(t) can be replaced by the continuous function γ(0, tc) (as
shown in section 5.3.1).

Case 2: β
(1)
0 , β

(1)
1 < 0

In this case, the time variable root P1(t) = α1(t) of (5.2.1) is negative for all t ∈ [1, 2, .., n].
The continuous CF is found by transitioning from (5.1.3) with negative coefficients to Case 1 by
exchanging β

(1)
0 for −|β(1)

0 | and β
(1)
1 for −|β(1)

1 |:

Σ
(2)
j (t) = Σ0(t)

j∏
`=1

β
(1)
0 + β

(1)
1

t+ `− 1

n− 1

= Σ0(t)

j∏
`=1

−|β(1)
0 | − |β(1)

1 | t+ `− 1

n− 1
.

Since the parameters in (5.3.1) are squared, this does not impact the computation of the time
variable variances Σ0(t):

Σ0(t) =
σ2
E

1− α2
1(t)

=
σ2
E

1− (β
(1)
0 + β

(1)
1

t−1
n−1)

2

=
σ2
E

1− (−|β(1)
0 | − |β(1)

1 | t−1
n−1)

2

=
σ2
E

1− (−1)2(|β(1)
0 |+ |β(1)

1 | t−1
n−1)

2

=
σ2
E

1− (|β(1)
0 |+ |β(1)

1 | t−1
n−1)

2
.

1. When the covariance between the signals Sτ1 and Sτ2 is calculated, in most cases only the times τ1 and τ2 are
known (instead of the lag h and the normalized time tc). The method of how to represent the covariance function
γτ2−τ1(τ1) by τ1 and τ2 is shown in Appendix D.3.
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For the product, proceed as in (5.3.3) to obtain:

j∏
`=1

−|β(1)
0 | − |β(1)

1 | t+ `− 1

n− 1
=

−|β(1)
1 |

(n− 1)

j
j∏

`=1

−|β(1)
0 |(n− 1)

−|β(1)
1 |

+ t+ `− 1

=

−|β(1)
1 |

(n− 1)

j
j∏

`=1

|β(1)
0 |(n− 1)

|β(1)
1 |

+ t+ `− 1.

Inserting this product into the formula of the covariance in (5.2.4) provides

Σ
(2)
j (t) = Σ0(t)

−|β(1)
1 |

(n− 1)

j
j∏

`=1

|β(1)
0 |(n− 1)

|β(1)
1 |

+ t+ `− 1

= (−1)j Σ0(t)

 |β(1)
1 |

(n− 1)

j
j∏

`=1

|β(1)
0 |(n− 1)

|β(1)
1 |

+ t+ `− 1

︸ ︷︷ ︸
= (−1)j Σ

(1)
j (t).

Here, Σ(1)
j (t) is the continuous CF from (5.3.7) of Case 1. The multiplication with (−1)j corre-

sponds to the negative real root in the time constant case from Appendix B.2. Again, (−1)j is
replaced by cos(jπ) in case of discrete values or by cos(h(n− 1)π) in case of continuous values:

Σ
(2)
j (t) = cos(jπ)Σ(1)

j (t).

γ(2)(h, tc) = cos(h(n− 1)π)γ(1)(h, tc).

Of course, as in Case 1, it still applies that h and tc ∈ [0, 1].

Case 3: β
(1)
0 < 0, β

(1)
1 > 0 and β

(1)
0 + β

(1)
1 > 0

The sign of the parameters makes this a special case:

β
(1)
0 = −|β(1)

0 | and β
(1)
1 = |β(1)

1 |. (5.3.8)

The roots of this case start with a negative sign and then become positive (as it is shown in Figure
5.2). Nevertheless, the process of the derivation of the continuous CF is similar to Case 1 and
Case 2. First, replace the parameters of (5.2.4) with their absolute values of (5.3.8):

Σ
(3)
j (t) = Σ0(t)

j∏
`=1

β
(1)
0 + β

(1)
1

t+ `− 1

n− 1

= Σ0(t)

j∏
`=1

−|β(1)
0 |+ |β(1)

1 |j + `− 1

n− 1
. (5.3.9)

This case cannot be traced back to one of the earlier cases, meaning that the creation of a new
function is necessary. This is, however, again done by Pochhammer’s symbol.
The variance Σ0(t) in (5.3.9) is still unaffected by the sign of the coefficients. Comparable to (5.3.3)

the factor
(

|β(1)
1 |

(n−1)

)
is isolated from the product. This way, the factors always differ by a value of

one:
j∏

`=1

−|β(1)
0 |+ |β(1)

1 | t+ `− 1

n− 1
=

 |β(1)
1 |

(n− 1)

j
j∏

`=1

−|β(1)
0 |(n− 1)

|β(1)
1 |

+ t+ `− 1

=

 |β(1)
1 |

(n− 1)

j

(−1)j
j∏

`=1

|β(1)
0 |(n− 1)

|β(1)
1 |

− t− `+ 1. (5.3.10)
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Isolating −1 from the product results in a negative sign of the variable `. Therefore, in each step,
the factors of the product become smaller by one instead of increasing by one. Since the faculty
function and thus also Pochhammer’s symbol is only defined for a product of ascending values, that
product must be rewritten according to the way described in (D.4.1) in order to obtain

j∏
`=1

|β(1)
0 |(n− 1)

|β(1)
1 |

− t− `+ 1 =

j∏
`=1

|β(1)
0 |(n− 1)

|β(1)
1 |

− t− j + `. (5.3.11)

Although the factors values increase by one at a time, it remains impossible to simply switch to
Pochammer’s symbol. The reason for this lies in the fact that individual factors can turn negative
and Pochhammer’s symbol only equals the product in cases of increasing positive factors (see section
2.20). To solve this problem, first, a function

f(β
(1)
0 , β

(1)
1 , t, j) =

|β(1)
0 |(n− 1)

|β(1)
1 |

− t− j (5.3.12)

is defined. And second a case distinction is made, whether f(β(1)
0 , β

(1)
1 , tc, h) > 0 or f(β(1)

0 , β
(1)
1 , tc, h) <

0:

Case 3.a: f(β
(1)
0 , β

(1)
1 , t, j) > 0

Since (5.3.12) is greater than zero, all factors are positive while also increasing by one. So, the
product can be replaced by Pochhammer’s symbol like it was done in (5.3.4):

j∏
`=1

|β(1)
0 |(n− 1)

|β(1)
1 |

− t− j + ` =

j−1∏
o=0

|β(1)
0 |(n− 1)

|β(1)
1 |

− t− j + 1 + o

= P

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t− j + 1, j

 . (5.3.13)

If finally (−1)j is modified by (−1)j = cos(jπ) as it was done in Case 2, and the product of (5.3.10)
is transformed into Pochhammer’s symbol as in (5.3.13), the discrete covariances of (5.2.4) can be
calculated via

Σ
(3)
j (t) = Σ0(t)

 |β(1)
1 |

(n− 1)

j

cos(jπ)P

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t− j + 1, j

 .

In this representation, the parameters can be transformed by (5.3.5) into the discrete parameters
t and j:

Σ
(3)
j (t) =Σ0(t)

 |β(1)
1 |

(n− 1)

j

cos(jπ)P

 |β(1)
0 |(n− 1)

|β(1)
1 |

− (t+ 1)− j + 1, j


=Σ0(t(n− 1) + 1)

 |β(1)
1 |

(n− 1)

j(n−1)

cos(j(n− 1)π)...

P

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t(n− 1)− j(n− 1)− 1, j(n− 1)

 .
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This can be converted into a continuous function

γ(3)(h, tc) =Σ0(tc(n− 1) + 1)

 |β(1)
1 |

(n− 1)

h(n−1)

cos(h(n− 1)π)...

P

 |β(1)
0 |(n− 1)

|β(1)
1 |

− tc(n− 1)− h(n− 1)− 1, h(n− 1)

 , (5.3.14)

which equals the continuous CF of Case 3.a. It must be noted that, although h and tc are con-
tinuous, they are still limited to the closed interval [0, 1].

Case 3.b: f(β
(1)
0 , β

(1)
1 , t, j) < 0

Now the sign of f(β
(1)
0 , β

(1)
1 , t, j) in (5.3.12) is negative, but it was reversed by multiplying with

(−1)j in (5.3.10). To change the sign of f(β
(1)
0 , β

(1)
1 , t, j), a further multiplication with (−1) is

required:
j−1∏
k=0

−|f(β(1)
0 , β

(1)
1 , t, j)|+ k = (−1)j

j−1∏
k=0

|f(β(1)
0 , β

(1)
1 , t, j)| − k

= (−1)j
j−1∏
k=0

|f(β(1)
0 , β

(1)
1 , t, j)| − j + 1 + k

= (−1)jP
(
|f(β(1)

0 , β
(1)
1 , t, j)| − j + 1, j

)
. (5.3.15)

Since both of the excluded (−1) of (5.3.10) and (5.3.15) posses the same power, and due to

(−1)h(n−1)(−1)h(n−1) = ((−1)2)h(n−1) = 1,

the (−1) disappears when Pochhammer’s symbol in (5.3.14) is replaced by (5.3.15):

γ(3)(h, tc) =γ(0, tc)

 |β(1)
1 |

(n− 1)

h(n−1)

· P
(∣∣∣∣f(β(1)

0 , β
(1)
1 , tc, h)

∣∣∣∣− h(n− 1) + 1, h(n− 1)

)
. (5.3.16)

It must be noted again, that h and tc are limited to the closed interval [0, 1] in the case 3.b as well.

Thus, the CF for Case 3 is defined by the case distinction

γ(3)(h, tc) =γ(0, tc)

 |β(1)
1 |

(n− 1)

h(n−1)

...


P
(
f(β

(1)
0 , β

(1)
1 , tc, h), h(n− 1)

)
cos(h(n− 1)π) if f(β(1)

0 , β
(1)
1 , tc, h) > 0

P
(∣∣∣∣f(β(1)

0 , β
(1)
1 , tc, h)

∣∣∣∣− h(n− 1), h(n− 1)

)
if f(β(1)

0 , β
(1)
1 , tc, h) < 0.

(5.3.17)

Case 4 to 6:

Cases 4 to 6 are not derived individually but solved by referring to Cases 1 to 3. In order to do
so, the given time series must be reversed in order to be transformed into the Signal S̆:

S̆t = Sn+1−t.

In Cases 4 and 5, the inversion only reverses the sign of β(1)
1 , while in Case 6, both the sign of

β
(1)
1 and β

(1)
0 are reversed (see Figure 5.2).
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• Case 4: β
(1)
0 > 0, β(1)

1 < 0 and β
(1)
0 + β

(1)
1 > 0

→ Figure 5.2 shows that the reversed time series S̆ equals Case 1: β
(1)
0 , β(1)

1 > 0.

• Case 5: β
(1)
0 < 0, β(1)

1 > 0 and β
(1)
0 + β

(1)
1 < 0

→ Figure 5.2 shows that the reversed time series S̆ equals Case 2: β
(1)
0 , β

(1)
1 < 0.

• Case 6: β
(1)
0 > 0, β(1)

1 < 0 and β
(1)
0 + β

(1)
1 < 0

→ Figure 5.2 shows that the reversed time series S̆ equals Case 3: β
(1)
0 < 0, β(1)

1 > 0 and
β
(1)
0 + β

(1)
1 > 0.

5.4 Simulation
This section is divided into two parts. The first part provides the derivation of a covariance function
for a TVAR(1) process, while the second part comprises the set up of the covariance functions for
a TVAR(1) process with purely positive, purely negative and changing signs.

5.4.1 Simulation of a TVAR(1) Process with Negative and Positive Coefficients

In order to demonstrate how the CF of TVAR(1) processes with linear root motions is constructed,
we define the root motion and the white noise’s variance to compute the corresponding CF without
further information. The root motion is given by

P1(t) = α1(t) = −
(
0.5 +

1

n− 1

)
+

1

n− 1
t, (5.4.1)

and it is evaluated for n = 20 discrete equidistant observations at epochs t ∈ {1, 2, 3, ..., 20}. This
motion is shown in Figure 5.3. In order to simplify (5.4.1), (D.1.1) is used to transform the time
vector t to t = t−1

n−1 :

α1(t) = −
(
0.5 +

1

n− 1

)
+

t(n− 1) + 1

n− 1

= −0.5 + 1t. (5.4.2)

If the variance of the white noise is defined as σ2
E = 5, it can be calculated at any time using (5.3.1)

by evaluating the function

γ(0, tc) =
σ2
E

1− α1(tc)
=

5

1− (−0.5 + tc)2
(5.4.3)

(which is shown in Figure 5.4). In order to visualize the flexibility of the CF of TVAR(1) processes,
the continuous CF γ(h, tc) is computed by (5.3.17) for the discrete times tc ∈ {0, 0.19737, 0.39474,
0.59211, 0.78947}. These times corresponds to the times t ∈ {1, 4.75, 8.5, 12.25, 16}, for which the
variances are visualized by the dots in Figure 5.4. Since the root changes the sign from negative
to positive (as can be seen in Figure 5.3), it stares an example for the CF of the third case from
section 5.3.2. So γ(3)(h, tc) is computed by the case distinction in (5.3.17).
The four resulting CFs are shown in Figure 5.5, wherein the CF for the first three epochs (t ∈
{1, 4.75, 8.5}) are computed by the means of the second case of (5.3.17). This leads to an os-
cillating CF, while the CF for the times t ∈ {12.25, 16} are decaying functions with no further
oscillations. These are computed by the first case of (5.3.17).
This simulation, shows that the CF of the TVAR(1) process covers a wide range of different func-
tions, while TVAR process of the order of one being states the lowest possible. This is most
impressively illustrated by the shape of the different CFs in Figure 5.5, which includes both oscil-
lating CFs with positive and negative covariances as well as CFs with positive covariances only.
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Figure 5.3: Given root movement of a TVAR(1) process with coefficient
α1(t) = −
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Figure 5.4: Variances of the TVAR(1) process of (5.4.3)
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tc ∈ {0, 0.19737, 0.39474, 0.59211, 0.78947}.
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5.4.2 Comparison of the three Cases

For the sake of completeness, all three cases of TVAR(1) processes are discussed. For the first one,
the coefficient

αpos
1 = 0.2 + 0.9t

is always positive, for the second one, the linear coefficient

αneg
1 = −0.9 + 0.5t

is always negative, and the third coefficient provided by

αind
1 = −0.5 + 1t

is the time variable root negative and positive. The last case was discussed in detail in the example
above. For each TVAR(1) process, the variance of the white noise is set to σ2

E = 5. The motion of
the root inside the unit circle, the variance and the CF resulting from TVAR(1) processes for all
three cases are juxtaposed in Figure 5.6.
The comparison of the three processes in Figure 5.6 reveals that the CFs γ(h, tc) vary greatly
according to the sign of the coefficient α1(tc) used to compute the variance Σ0(tc). Even though
the variance is not influenced by the sign of the coefficient, it has great influence on the shape
of the CF, depending on whether α1(tc) > 0 or not. If the variance is computed by a coefficient
α1(tc) > 0, (as it was done in the first case, or respectively, in the first half of the third case of Figure
5.6,) the continuous CF also only assumes positive values. However, if the variance is computed
by a negative coefficient (α1(tc) < 0), the continuous CF oscillates, whereby the frequency of this
oscillation is equal to the inverse of the sampling rate ∆j (ν = 1/(∆j)). This is shown in example
two and states the second part of the third case of Figure 5.6.
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(a) Root motion, variances over time and some covariance functions for a TVAR(1) process with only positive coefficients.
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(b) Root motion, variances over time and some covariance functions for a TVAR(1) process with only negative coefficients.

-1 -0.5 0 0.5 1

real part

-1

-0.5

0

0.5

1

im
a
g
in

a
ry

 p
a
rt

5

10

15

20

0 0.2 0.4 0.6 0.8 1

Normalized Time t
c

5

5.5

6

6.5

7

T
im

e
 v

a
ri
a
b
le

 V
a
ri
a
n
c
e
s

Discrete variances

Continuous variance function

t=1=> t
c
=0

t=4.75=> t
c
=0.19737

t=8.5=> t
c
=0.39474

t=12.25=> t
c
=0.59211

t=16=> t
c
=0.78947

0 0.05 0.1 0.15 0.2 0.25 0.3

Continuous lag h

-5

0

5

C
o
v
a
ri
a
n
c
e
s

t=1=> t
c
=0

t=4.75=> t
c
=0.19737

t=8.5=> t
c
=0.39474

t=12.25=> t
c
=0.59211

t=16=> t
c
=0.78947

(c) Root motion, variances over time and some covariance functions for a TVAR(1) process with positive and negative coefficients.

Figure 5.6: Ranges of linear TVAR(1) process covariance functions.
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Chapter 6

Application

In order to substantiate the findings of this thesis (a continuous CF from time stable AR processes,
TVAR process estimation with defined root motions and a continuation of the discrete covariances
of a TVAR(1) process), some applications will show how these CFs are computed. Furthermore
their strengths and weaknesses are shown as well. In comparison to the second application, the first
and the third application both use LSC (c.f. section 2.2). The first one generates CFs from AR
processes and the other one computes the CF by a TVAR(1) process. In the second application,
TVAR processes are estimated for time series derived from observations of Global Navigation
Satellite Systems (GNSS) altitudes to visualize their characteristic variability.

6.1 Covariance Functions Derived from Time Stable AR Estimates
This section shows how the automated calculation of CFs from AR processes can be either used to
filter a time series of observed sea level anomalies (SLA), or even to directly determine the derivative
of the estimated function. These derivatives are often used to compute geostrophic currents. For
reasons of numeracy and simplification, only one data set per 31 days will be used here to predict
a time series of daily SLA data. The observed SLA, however, will be available for each day.

Approximation of Sea Level Anomalies using AR Processes

In the purpose of factual verification of the theoretical methods of CFs from AR processes derived
from chapter 3, pseudo-observations between a time series of monthly SLA data will be predicted,
in a way that a time series of daily data results.
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Figure 6.1: Map of sea level anomalies around the Agulhas current (south
Africa) localizing the position of the used SLA time series of 01.01.1993. The
”+” marks the coordinates (16.875°, -36.625°).
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6.1.1 Data

The given SLA data1 have a local resolution of 0.25° for longitude and latitude. Our test area
is longitudinally bordered between [8.875°, 40.875°] and latitudinally between [−18.875°,−43.875°].
The study region is South Africa as can be seen in Figure 6.1.
For each individual grid cell of Figure 6.1, a time series of daily SLA data from 01.01.1993 to
31.12.2021 is provided. Furthermore, the time series is diluted by only taking every 31st observation,
remaining that the daily observations are reduced to monthly ones. In order to apply LSC, the
mean value of the observations must be zero. To achieve this, the observations L are reduced by
the linear trend (like it is shown in Appendix E.1.1) to obtain the signal S = [S1,S2, ...,Sn] with a
mean value M{E{S}} = −1.69 · 10−17 ≈ 0. The remaining time series of n = 342 observations is
shown in Figure 6.2.
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Figure 6.2: Time series of monthly SLA data at position (16.875°,−36.625°)
near the Agulas current. The dots are observations with a frequency of 31 days
and last from 01.01.1993 to 31.12.2021.

6.1.2 Approximation of SLA Data by Trigonometric Functions

The approximation of this time series by the means of deterministic functions (like splines or
trigonometric functions) requires a large number of parameters. In this approach, a signal St of
the time series depicted in Figure 6.2 is approximated by 20 cosine and sine functions:

St + vt =
10∑

m=1

ξ(2m− 1) cos
(

2π

365.25m
t

)
+ ξ(2m) sin

(
2π

365.25m
t

)
+ ...

10∑
l=2

ξ(200 + 2l − 1) cos
(

2π

365.25
lt

)
+ ξ(200 + 2l) sin

(
2π

365.25
lt

)
.

As the formula shows, a basic period of 365.25 days is assumed, which corresponds to a seasonal
signal. The other periods are multiples of the annual oscillation: in case of the first sum, the periods
are semi-annual, a time frame which is then successively reduced to quarterly up to 1/10 year. The
lower sum adds the oscillations with periods of two to one hundred years. The estimation of the

1. Global Ocean Gridded L 4 Sea Surface Heights, E.U. Copernicus Marine Service Information (CMEMS), Marine
Data Store (MDS). comp.:DOI: 10.48670/moi-00145 (accessed on 21-Sep-2023).
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parameters

ξ =



ξ(1)
ξ(2)

...
ξ(20)
ξ(21)
ξ(22)

...
ξ(40)


is again done using the Gauss-Markov method described in Appendix E.1.2. In this case o=10 which
leads to a total number of 4o = 40 parameters. But even with this large number of parameters,
the reproduction of the function does not work well: Figure 6.3 shows the poor approximation of
the monthly data. Increasing the number of parameters, i.e. a higher number of trigonometric
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Figure 6.3: Monthly SLA data for the coordinate (16.875°,−36.625°) in Figure
6.1 (blue) and the estimated approximation using trigonometric functions with
40 parameters in a least-squares adjustment (red).

functions for approximation, also does not yield a good result here. As Figure 6.4 shows the result
of approximation with trigonometric functions in (E.1.5) with o = 12. It is noticeable that the
approximation exceeds the area of the observations which are in between ±0.5.

6.1.3 Approximation of SLA by Least-Squares Collocation using AR Processes
for the Covariance Modelling

As a stochastic approach, LSC poses an alternative for the deterministic approximations. In this
method, the predicted signal is computed by using two covariance matrices and the observations.
As such, LSC as introduced in section 2.3, can be applied to approximate the daily observations S̃
from monthly SLA data (S = [S1,S2, ...,Sn]). Its application

S̃ = Σ{S̃,S} (Σ{S}+Σ{N })−1 S (6.1.1)

demands the generation of the covariance matrix of the signal Σ{S} as well as the joint covariance
matrix of the predicted and the estimated Signal Σ{S̃,S} from an estimated AR process describing
the signal S.
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Figure 6.4: Monthly SLA data for the coordinate (16.875°,−36.625°) in Figure
6.1 (blue) and the estimated approximation using trigonometric functions with
48 parameters in a least-squares adjustment (red).

6.1.3.1 AR Process Estimation

The first step consists of the determination of the appropriate AR process. For this purpose AR
processes of orders one (bl = 0) to ten (bu = 10) are estimated for the signal (compare section
2.19). In the second step, it follows the determination of the AR coefficients, the variance of the
noise and the AIC for each process. Therefore, the empirical covariances are estimated for the lags
j = [0, 1, 2, ..., n/2] by approximating (2.6.1) by the means of

Σj = E{(St−j − µ) (St − µ)} ≈ 1

n− j

n∑
t=j

St−jSt−j . (6.1.2)

The AR parameters are estimated by constructing the Y.-W. equations from section 2.8 for the
orders 0 to n/2. The adjustment according to the Gauss-Markov model from Koch (1999, chapter
3) is used to estimate the coefficients [α̃1, α̃2, ..., α̃p] and σ̃2

E . For each of these AR processes, the AIC
from section 2.18 is computed and the order generating the minimum AIC is determined. Figure
6.5 shows that the AR(3) process has the lowest AIC. This process is completely determined by
the coefficients

α1 = 0.3796 α2 = 0.1184 α3 = −0.1367 and σ2
E = 0.0555[m2].

The coefficients α1, α2 and α3 are converted via the CP from section 2.9 into the roots

P1 = −0.4751 P2 = 0.4274 + 0.3242i P3 = 0.4274− 0.3242i, (6.1.3)

which are shown in the unit circle in Figure 6.6. Since the roots are all inside the unit circle, it is
proven that the estimated AR(3) process is stationary.

6.1.3.2 Separation of the additional Noise

As a next step, the estimated variance σ̃2
E has to be divided into the variance of the AR process σ2

S
and into the variance of the noise σ2

N ; i.e.:

σ2
E = σ2

S + σ2
N .
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Figure 6.5: The AIC for the AR es-
timate of SLA data at the position
(16.875°,−36.625°) for order one to or-
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Figure 6.6: Roots of the AR(3) process
estimated by the SLA data at position
(16.875°,−36.625°).

This separation by variance component is based on the application of Förstner 1985. The ratio
between the variance of the AR process or the variance of the noise is determined through several
iterations, converging to the variances

σ2
S = 0.0296[m2] σ2

N = 0.0258[m2]. (6.1.4)

6.1.3.3 Determination of the Covariance Function

Now, a continuous covariance function has to be determined. This function also satisfies the
conditions of section 2.6 and approximates the covariances from (6.1.2). But now, the CF should
be determined by the parameters of the AR process found in the sections 6.1.3.1 and 6.1.3.2. With
the roots of the AR process of (6.1.3) and the variance of the AR process of (6.1.4), the reorganized
Y.-W. equations from B.1.1 can be used to calculate the discrete covariances Σj for the discrete
distances j = 0, 1, 2:

Σ0 = 0.0361[m2], Σ1 = 0.0143[m2] and Σ2 = 0.0077[m2].

These result in the system of equations (B.1.2) which has a unique solution for the coefficientsA1

A2

A3

 =

 1 1 1
P1 P2 P3

P 2
1 P 2

2 P 2
3

−1 Σ0

Σ1

Σ2

 =

 0.0064
0.0148− 0.0072i
0.0148 + 0.0072i

 .

The negativity of the real-valued root of (6.1.3) negates the usage of the CF γ provided in (3.1.3).
Instead, it must be expanded by the means of (3.1.4):

γ(h) : = R

(
3∑

k=1

AkP
|h|
k

)
= A1|P1|h cos(πh) +A2P

h
2 +A2P

h
3

= 0.0064 · 0.4751h cos(πh) + (0.0148− 0.0072i) · (0.4274 + 0.3242i)h...

+ (0.0148 + 0.0072i) · (0.4274− 0.3242i)h. (6.1.5)

In this form, the CF can be used to compute the covariances for any lag h ∈ R. Figure 6.7
depicts the empirical covariances of (6.1.2) and the covariances of the CF of (6.1.5) for comparative
purposes. This shows that, on the one hand, the CF of the AR process fits the empirical covariances
very well. On the other hand, the separation of the variance into a signal and a noise variance leads
to an offset between the empirical covariances and the variances of the AR process at lag h = 0.
This is called the ’nugget effect’ and describe the separation of the AR process’ CF and the white
noise’s variance.
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Figure 6.7: Covariance for monthly SLA measurements. With the CF from the
AR approach computed by (6.1.5) (red), and the discrete covariances estimated
by (6.1.2) (orange). Here the lag can either be in month (j = 0, 31, 62, ...)) for
the discrete covariances, or daily (h = 1, 2, ...,) for the CF from the AR process.

6.1.3.4 Least-Squares Collocation

The performance of the estimation of (6.1.1) demands the determination of the covariance matrices

Σ{S̃,S}, Σ{S} and Σ{N }. (6.1.6)

The entries of Σ{S} are calculated by the means of the CF from (6.1.5) for integer h = 31j with
j ∈ {0, 1, 2, ..., n− 1}, where j is always the distance from the main diagonal:

Σ{S} =


γ(0) γ(31) γ(62) ... γ(31(n− 1))
γ(31) γ(0) γ(31) ... γ(31(n− 2))
γ(62) γ(31) γ(0) ... γ(31(n− 3))
...

γ(31(n− 1)) γ(31(n− 2)) γ(31(n− 3)) ... γ(0)


n×n

. (6.1.7)

The common covariance matrix Σ{S̃,S} of the observed signal S and the predicted signal S̃ has a
column for each observation and a row for each predicted value. This matrix comprises of entries
calculated from the CF of (6.1.5) by using the lags h ∈ {0, 1, 2, 3, ..., 31(n− 1)}:

Σ{S̃,S} =


γ(0) γ(31) γ(62) ... γ(31(n− 1))
γ(1) γ(30) γ(61) ... γ(31(n− 1)− 1)
γ(2) γ(29) γ(60) ... γ(31(n− 1)− 2)
...

γ(31(n− 1)) γ(31(n− 2)) γ(31(n− 3)) ... γ(0)


(32n−31)×n

.

The covariance matrix of the white noise N is given by the variances of the extra noise of (6.1.4):

Σ{N } = σ2
N1n×n. (6.1.8)

With these three matrices, everything is given to compute (6.1.1) and thus to predict the daily
SLA (S̃) from the monthly observations of S. The result is shown in Figure 6.8:

6.1.4 Evaluation

Comparing the results of the estimation from the trigonometric functions of Figure 6.3 with the
results of the least-squares collocation of Figure 6.8, it becomes apparent that the latter is visually
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Figure 6.8: Monthly SLA data for the coordinates (16.875°,−36.625°) of Figure
6.1 (blue) and the estimated function using least-squares collocation and a
covariance matrix derived from an AR process (red).

more suitable to approximate a function through the observations. The mathematical validation of
this comparison demands the calculation of the root mean square error (RMSE) for both estimation
methods:

RMSE : =

√∑n
j=1(Sj − S̃j)2

n
(6.1.9)

RMSEAR = 0.1100 [m]

RMSETrigo = 0.2304 [m].

This solution verifies the correctness gained from the visual impression, i.e. that the method of
least-squares collocation using a CF from AR processes proves more accurate than an approxi-
mation based on some given basis functions. The detailed representation of LSC may give the
impression that it is more effort to compute the LSC than do an approximation with basis func-
tions, but this is in fact not the case. The steps of the AR processes estimation as well as computing
the covariance function are generalized methods. The adjustment with basis functions, however,
requires knowledge of possible basis functions. In this case, it was assumed that basis functions are
trigonometric functions with the frequency of a year or parts of it. This is a general function used
to describe SLA data, which in the end did not prove useful.

Approximation of the Derivative of SLA using AR Processes

When comparing the Gauß-Markow solution using a deterministic approximation with a LSC, the
Gauß-Markov estimation has the advantage that it can be used to compute the estimated function
derivative (the changes of the SLA data from application 1 in section 6.1, for example). The
following section now demonstrated, that this can also be done by LSC with a CF derived from
AR processes. Like it is shown in section 2.3, LSC in combination with covariance propagation can
build a suitable procedure to estimate the derivatives of the observed time series at any point:

d

dh
S̃ = Σ

{
d

dh
S̃,S

}
(Σ{S}+Σ{N })−1 S. (6.1.10)

Here h is the lag between the discrete observations.
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6.1.5 Data
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Figure 6.9: Time series of monthly SLA data at position (16.875°,−36.625°)
near the Agulas current. The dots are daily observations and cover a time frame
of 01.01.2018 to 31.12.2021.

To test the shown theory, we first compute the derivative of the daily SLA data. Secondly
we determine the extreme values of the approximate function, and thirdly prove the estimated
derivative by showing that whenever there is an extreme value in the estimated function, the
derivative is zero. For this, the time series at the coordinates (16.875°,−36.625°) from application
6.1 is again used. This time, the observed interval is reduced to daily observations of the period
from 01.01.2018 to 31.12.2021. Just like in the previous example, the trend is estimated by a linear
function (see Appendix E.1) and subtracted from the observations L to obtain the signal S =
[S1,S2, ...,Sn]. The mean value of the remaining signal used as observations in LSC is M{E{S}} =
−5.6 · 10−17 ≈ 0, and the resulting time series is depicted Figure 6.9.

6.1.6 AR Process Estimation

The use of daily data of a smaller time interval fundamentally changes the signal characteristic
and therefore has a strong impact on the choice of the best-fit AR process. Notwithstanding,
the procedure remains the same as in section 6.1.3: first, with the help of (6.1.2), the discrete
covariances Σj are determined, in order to estimate the coefficients αk and the variance of the noise
σ2
E for each AR process of order one to ten. Let n be the number of all observations, then, this

time, instead of the AR estimation of the covariances up to lag j = n/2, we use the unambiguous
solution of the Y.-W. equations (see section 2.8).2 The discrete CF in Figure 6.12 explains the
reason for the decision to use the Y.-W. equations here for the estimation. It shows an unmodelled
deformation in the discrete covariance with lag between 20 and 40 days. When estimating the roots
with the method used in the application in 6.1, this leads to AR processes with roots outside the
unit circle. The choice of the most appropriate AR process and its order is determined by the AIC
(see section 2.18). For the time series in Figure 6.9, the minimum AIC is found by order p = 7 (see
Figure 6.10). The resulting parameters of the AR(7) process are given by the variance of the noise
σ2
E = 3.0293 10−4[m2] and the coefficients

α1 = 1.6681 α2 = −0.3711 α3 = −0.2714

α4 = −0.1135 α5 = −0.0129 α6 = 0.0482

α7 = 0.0437.

2. This is necessary because of the lower number of observations, which results in a lower accuracy of the empirical
covariances of high lags.
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Figure 6.10: The AIC values for the
AR estimate of SLA data at the
position (16.875°,−36.625°) and from
01.01.2018 to 31.12.2021 for order one
to order ten with a minimum at seven.
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Figure 6.11: Roots of the AR(7) process
estimated by the SLA data at position
(16.875°,−36.625°).

These coefficients can be converted via the CP of section 2.9 into the roots:

P1 = 0.9518 P2,3 = 0.8547± 0.2041i

P4,5 = −0.0739± 0.5128i P6,7 = −0.0739± 0.5128i
(6.1.11)

which are depicted in Figure 6.11. The fact that all seven root lie within the unit circle proves that
the estimated AR(7) process satisfies the condition of stationarity.

6.1.7 Construction of the Covariance Function

After determining the AR process, it is necessary to divide the estimated variance σ2
E into the

variance of the AR process (σ2
S) and the variance of noise (σ2

N ). As in the previous application,
this is done like in section 6.1 with the method presented in Förstner 1985, resulting in

σ2
S = 2.9704 10−4[m²] and σ2

N = 0.0588 10−4[m²].

The low variance of the noise in relation to the variance of the AR process shows that in this
time series an AR process has been estimated which describes the process precisely and that the
process contains hardly any further noise. With σ2

S , the CF can be established aa in section 6.1.3.3.
Again, using the reorganized Y.-W. equations of (B.1.1) allows the determination of the first p = 7
covariances Σi with i = 1, 2, ..., 7. These covariances are then used in (B.1.2) to determine the
weights

A1 = 0.0898 A2,3 = 0.0018∓ 0.0104i

A4,5 = 7.6095 10−6 ∓ 3.1713 10−6i A6,7 = 4.908 10−6 ∓ 3.9009 10−7i

of the CF. From these and the roots of (6.1.11), the unambiguous CF of the AR(7) process is
computed. It is shown in Figure 6.12 allowing a comparison with the discrete covariances. The two
CFs differ greatly in the range between the lags of 20 and 40 days. In contrast to the method of
least-squares collocation, the modelling of this difference by the means of AR process demands the
estimation of an AR process of high order. For this reason, we again refer to the estimation based
on the Y.-W. equations, which, compared to the estimation method of the first example, only uses
the first p covariances and thus remains unaffected by this oscillation in the CF, while the roots all
remain inside the unit circle.

6.1.8 Filling the Covariance Matrices

The matrices Σ{S} and Σ{N } of (6.1.6) correspond to the matrices of (6.1.1) and are accord-
ingly described either by the CF of the AR process, or the CF of noise as described in (6.1.7)
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Figure 6.12: Covariances for the SLA measurement of Figure 6.9: the CF of an
AR(7) process (red), and the discrete covariances of (6.1.2) in (orange).

and (6.1.8). Thus, only Σ
{

d
dh S̃,S

}
, the common covariance function between the signal S and

the derivatives at the predicted locations d
dh S̃, is missing. To fill the entries of this matrix, the

covariance propagation of section 2.3 is used, after which the entries of this matrix are computed
from the derivative of the CF. Appendix E.2 provides the methods to compute the derivative of
CFs from AR processes. With (E.2.3) and (E.2.4) the derivative of the CF can be evaluated for
the corresponding lags h ∈ {0, 1, ..., n} and the joint covariance matrix accordingly filled:

Σ{ d

dh
S̃,S} =



d
dhγ(h)|h=0

d
dhγ(h)|h=1

d
dh(h)|h=2 ... d

dhγ(h)|h=n−1
d
dhγ(h)|h=1

d
dhγ(h)|h=0

d
dhγ(h)|h=1 ... d

dhγ(h)|h=n−2
d
dhγ(h)|h=2

d
dhγ(h)|h=1

d
dhγ(h)|h=0 ... d

dhγ(h)|h=n−3

...

d
dhγ(h)h=n−1

d
dhγ(h)h=n−2

d
dhγ(h)h=n−3 ... d

dhγ(h)h=0


n×n

.

These three covariance matrices allow the prediction of the derivative of the SLA data via LSC in
(6.1.10). The resulting derivative of the estimated function is shown in Figure 6.13.

6.1.9 Proof of Concept (Extreme Values Prediction)

To verify the LSC predicted derivative, we search for the times for which the derivative is equal to
zero. If the approximation is calculated by LSC for the observations of Figure 6.9, then the extreme
values of the function must be located at the same times when the derivative of this function shown
in Figure 6.13 is equal to zero. So Figure 6.14 visualizes the predicted function and highlights
the times with an ’x’, where the derivatives are zero. Since these highlights match the function’s
extreme values, this crossover in Figure 6.14 verifies the derivative’s correctness.
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Figure 6.13: Derivative of the continuous function estimated by least-squares
collocation for the SLA at position (16.875°,−36.625°), covering a time frame
of 01.01.2018 to 31.12.2021.
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Figure 6.14: Estimated time series of SLA data at position (16.875°,−36.625°)
with minima and maxima. The red function is the estimated function covering
a time frame of 01.01.2018 to 31.12.2021, and the purple crosses mark the
minima and maxima found by the interpolated zeros of the estimated derivative
function.
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6.2 GNSS Data Analysis Using Time Variable AR Processes

In this section, time variable AR processes are estimated to model the height component of GNSS
deviced coordinate time series.3 Here, the temporal changes of the roots are modelled by polynomial
functions (in particular linear, quadratic and piecewise linear functions) and validated by a sequence
of discrete roots derived from time stable AR processes estimated from data of a moving window.
This demands to detrend the time series. The trend is estimated by a Gauß-Markov model

Lk − Sk = ξ(1) + ξ(2)tk +
2∑

j=1

ξ(2j + 1) cos(j · tk2π) + ξ(2j + 2) sin(j · tk2π),

which is shown in Appendix E.1.3. This trend itself is depicted in both Figure 6.15 and Figure 6.37
(for each individual GNSS time series as a red line in the plots of the left columns).
The individual estimated parameters of the vector ξ are used to reduce the trend for each time series.
Afterwards, pseudo observations are predicted for equidistant times between the observations. This
is done with the help of a cubic spline interpolation derived from the signal giving equidistant
observations at these points, where the lag is equal to the original observations’ the median lag.
The resulting time series are shown in the right columns of Figure 6.15 and Figure 6.37. These
results can now be used for TVAR estimations.
In order to validate the TVAR estimates, the movement of the roots is approximated by the roots
of time stable AR processes estimated for every step of a moving window. Whereby, the estimation
in every window is done by the assumption of a stationary time series. This results in roots of
AR processes for each window. If the estimate of the TVAR processes succeeds, the root motion
should fit the point cloud of roots found by the AR processes estimated for each step of the moving
window. Since the spectrum and roots of the AR or TVAR processes can be clearly transformed
into each other, this corresponds to the modelling of the process characteristics.

6.2.1 TVAR Processes Estimate with Linear Root Motions

Figure 6.15 depicts the time series, which are used to estimates TVAR processes with linear root
motion. For all these time series successive TVAR process (derived in subsection 4.3.3), as well as
AR processes are estimated. While it is sufficient to estimate the TVAR processes from order one
to order five, the AR processes are estimated for the orders one to ten. The corresponding AIC
values are depicted in Figure 6.16 4.
When estimating TVAR processes with linear root movements, this study makes a distinction
between two approaches: first, the approach via direct estimates for TVAR processes of orders
one to three, and second there is the successive approach, which allows the estimation of higher
order TVAR processes estimated by the means of cascades of TVAR processes with orders one or
two. The AIC values of the TVAR estimate in Figure 6.16a depicts, that the time series shown in
Figure 6.15a is best fit by a TVAR(1) process. Figure 6.15b depicts a processes, which, according
to Figure 6.15b minimized the AIC by using a TVAR(2) process; and the AIC values in Figure
6.16c visualized a minimum of order three for the TVAR estimate of the time series in Figure 6.15c.
And even though, Figure 6.16d shows a minimum for the successive TVAR(3) process, it will be
shown, that a direct computation of the TVAR(3) process will be more suitable for the time series
in Figure 6.15d. The following subsections provides the analysis of these estimates.

3. The data is provided by La Rochelle Université: https://www.sonel.org/-GPS-.html (last accessed: 11.03.2025).
4. The reason for the repetition of the orders is, that in the successive estimation there are several possibilities to

produce a TVAR process (see section 4.3.3). The first TVAR estimate always only consists of TVAR(1) processes.
Then, successively the first two TVAR(1) processes are exchanged for a TVAR(2) process, which is then shifted step
by step. For example the possibilities for the TVAR(5) process. Let 1 denote a TVAR(1) estimate and 2 denotes a
TVAR(2) process, then the possibilities and sequence of the TVAR(5) processes are given by [1, 1, 1, 1, 1] [2, 1, 1, 1]
[1, 2, 1, 1] [1, 1, 2, 1] [1, 1, 1, 2] [2, 2, 1] [2, 1, 2] [1, 2, 2]. Furthermore the empty spaces on the right side of Figure 6.16c
are estimations where it is not possible to find suitable coefficients fulfilling the condition for the TVAR(2) (see
Appendix (C.4.7)).
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(a) DZYL in Delfzijl (Netherlands) from 2009 to 2013.
Analysis center: Nevada Geodetic Laboratory (NGL14).
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(b) BORJ in Brokum (Germany) from the middle of 2014 to 2020.
Analysis center: University of La Rochelle (URL7).
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(c) TGBF in Brokum (Germany) from the middle of 2009 to 2017.
Analysis center: Nevada Geodetic Laboratory (NGL14).
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(d) HOL2 in Kiel (Germany) from the middle of 2010 to the beginning of 2016.
Analysis center: Geoforschungszentrum Potsdamm (GT2).

Figure 6.15: GNSS heights used for TVAR estimates with linear root motions,
showing the observed GNSS heights (blue) and the estimated trends (red) on
the left side, and the reduced and interpolated time series on the right side.
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(a) AIC values of the time stable AR approximation of the reduced time series in Figure 6.15a (left) and the
AIC values for the TVAR approximation of the same time series (right).
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(b) AIC values of the time stable AR approximation of the reduced time series in Figure 6.15b (left) and
the AIC values for the TVAR approximation of the same time series (right).
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(c) AIC values of the time stable AR approximation of the reduced time series in Figure 6.15c (left) and the
AIC values for the TVAR approximation of the same time series (right).
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(d) AIC values of the time stable AR approximation of the reduced time series in Figure 6.15d (left) and
the AIC values for the TVAR approximation of the same time series (right).

Figure 6.16: AIC values of the AR and TVAR estimate of the reduced GNSS
heights shown in Figure 6.15. On the left side, the AIC values of the time stable
AR estimates are shown, and on the right side, there are the AIC values from
the TVAR estimations.
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6.2.1.1 TVAR(1) Process Estimate

Since section 4.3.2 shows that the estimation of TVAR(1) processes is done without additional
restrictions, section 4.3.2 demands the solution of the parameter by a Gauß-Markov model with
the design matrix of (C.4.5). According to Figure 6.16a the TVAR(1) process with parameters

β
(1)
0 = 0.7669 and β

(1)
1 = −0.1965. (6.2.1)

minimizes the AIC value for the estimate of the time series in Figure 6.15a. Respectively, the
resulting time variable root is given as

P1 = 0.7669− 0.1965t with t ∈ [0, 1]. (6.2.2)

To validate the estimation of the TVAR(1) process given in (6.2.1), I shift a moving window with a
width of 200 observations along the time series and a further estimated an AR(1) process for each
one of them. This assumes stationarity in each window. In Figure 6.17 the roots resulting from
the AR(1) estimates (violet) are depicted as well as the estimated linear root movement (orange).
Comparing these two reveals that the estimation is adequately. Further examples of the TVAR(1)
process estimates are provided in section 6.3 where annual temperature anomalies are interpolated
by least-squares collocation using TVAR(1) processes.

2009 2010 2011 2012 2013
0.4

0.5

0.6

0.7

0.8

A
R

/T
V

A
R

  
c
o
e
ff
ic

ie
n
t

Figure 6.17: The linear root of an estimated TVAR(1) process (orange) com-
pared to the roots of a AR estimation of a moving window with width of 200
observations (violet).

For the purpose of comparison, it is assumed, that the process is stationary. This way, an AR(1)
process and the AR process minimizing the AIC, both are computed. The left side of Figure 6.16a
shows that the minimum AIC is found for the AR(6) process. Figure 6.18 depicts the root of the
AR(1) process. The root of the AR(1) process (P1 = 0.6756), lies within the root motion of the
TVAR(1) process given by (6.2.2). (Especially the roots are the same if t = 0.4646).
The AR(6) roots are illustrated in Figure 6.19. Since there is no real-valued root in this figure, it
seems like the characteristic of this estimate does not fit the AR(1) and TVAR(1) estimate. But
computing the RMSE values by (6.1.9), evaluated for these two stationary processes as well as for
the TVAR(1) process provides

RMSETVAR(1) = 3.4[mm]

RMSEAR(1) = 5.4[mm] and
RMSEAR(6) = 3.4[mm].

This reveals that, not only the TVAR(1) process has a lower RMSE than the AR(1) process, but
also the TVAR’s RMSE is equal to the best AR estimations RMSE, but with less roots as well as
less parameters.
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Figure 6.18: Roots of the AR(1) process
of the GNSS heights of Figure 6.15a.
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Figure 6.19: Roots of the AR(6) process
of the GNSS heights of Figure 6.15a.

6.2.1.2 TVAR(2) Process Estimate

The right side of Figure 6.16b shows that the AIC for the TVAR estimation for the time series
in Figure 6.15b minimized for the direct TVAR(2) process estimation without further successive
estimation. This is surprising, since it shows that although the direct estimation of a TVAR(2)
process with linear root motions provides two real-valued roots, the solution still differs from
the successive estimation of two TVAR(1) processes with linear root motions. The method for
estimating the TVAR(2) process is shown in Appendix C.4, where the formula (C.4.6) provides
the design matrix for the TVAR(2) estimate. In this case, there is a further required restriction
to include. This restriction is shown in (C.4.7) and must be fulfilled to guaranty two linear root
motions. For this purpose, the design matrix of (C.4.8), as well as the covariance matrix of the
estimated parameters from the Gauß-Markov model without further restrictions by the formula
(C.4.9) is established. Then, according to the system in (C.4.10), the adjusted parameters are
determined iteratively. The TVAR(2) estimation with linear root motion results in the roots

P1 = 0.7345− 0.3192t and P2 = −0.1358 + 0.2061t with t ∈ [0, 1]. (6.2.3)

This is again verified by the means of a moving window. In this case, the width of the window is
given as 1000 observations. However, for each window an AR(2) process is again estimated, while
stationarity is assumed. Figure 6.20 provides the comparison of the individual roots of the AR(2)
estimates from the moving window with the linear roots of the TVAR(2) process. This validates
the TVAR(2) roots motion, as both show a similar variation over time.

2005 2010 2015 2020
-0.2

0

0.2

0.4

0.6

A
R

/T
V

A
R

  
c
o
e
ff
ic

ie
n
t

Figure 6.20: The linear root of an estimated TVAR(2) process (orange) com-
pared to the roots of an AR estimation of a moving window with a width of
1000 observations (violet).
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Furthermore, for this time series -and under the assumption of stationarity- time constant AR
processes are estimated and compared to the TVAR process estimation results. Again, the AR
processes of order one to ten are estimated revealing the best fit by minimizing the AIC. These
AIC values are depicted on the left side of Figure 6.16b, and show, on the one hand, that the first
minimum is found by using AR processes of order three, and, more importantly, on the other hand
side, that the AIC is nearly constant when approximating the time series by AR process of order
seven or higher. The roots of the AR(3) process are shown in Figure 6.23, where it can be seen
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Figure 6.21: Roots of the TVAR(2)
process of the GNSS heights of Figure
6.15b.
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Figure 6.22: Roots of the AR(2) process
of the GNSS heights of Figure 6.15b.
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Figure 6.23: Roots of the AR(3) process
of the GNSS heights in Figure 6.15b.
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Figure 6.24: Roots of the AR(10) pro-
cess of the GNSS heights in Figure
6.15b.

that, compared TVAR(2) process, the roots locations, and therefore the characteristic of the AR
process changes. The roots of the estimated AR(2) process shown in Figure 6.22 are provided by

P1 = 0.6381 and P2 = −0.0884.

On the one hand, comparing the root motion of Figure 6.21 with the roots of Figure 6.22 shows,
that the roots of the AR(2) lie in the centre of the linear root motion of (6.2.3). But on the other
hand, comparing the AIC for the AR estimate on the left side of Figure 6.16b with the AIC for
the TVAR estimate on the right side of Figure 6.16b, it follows, that the AIC for the AR estimate
decreased until it reaches order seven, and the other one increases after order two. This means,
that the AR processes of order higher than two do not have a linear trend. Furthermore, the RMSE
of the TVAR(2) estimation and the AR processes estimation of order two, three and ten given by
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(6.1.9) are all close to another:

RMSETVAR(2) = 3.3 [mm],

RMSEAR(2) = 3.3 [mm],

RMSEAR(3) = 3.2 [mm] and
RMSEAR(10) = 3.2 [mm].

This way, the higher orders of the AR processes do not generate a more suitable AR process to
detect the trend, but the AR processes start to model the white noise. This can be seen in Figure
6.24, where, in case of high order AR processes like order ten, the complex value roots form a circle
around the origin. They approximate a constant value in the spectrum, which equals the white
noise’s spectrum (see Appendix E.3). In other words: the AR estimation is over-fitting the time
series while the TVAR estimate cannot do this. The reason for this is the fact, that the white
noise consists of countless roots on a circle around the origin, which do not possess a trend in their
motion. Since the linear roots can not move in circles, and so can not form constant circles, the
TVAR estimation seems to be more robust to over-fitting.

6.2.1.3 Successive TVAR Process Estimate

Using the direct estimates of the TVAR(1) and TVAR(2) processes from the previous applications,
section 4.3.3 also allows the estimation of higher order TVAR processes by the means of successive
estimation of TVAR(1) and TVAR(2) processes. Therefore the residuals of one iteration is used as
new observations in the following iteration. The AIC for TVAR processes of section 4.3.3 is used to
find the most suitable TVAR process. The right side of Figure 6.16c depicts the AIC values of the
TVAR process estimation for the time series of Figure 6.15c. The TVAR process minimizing the
AIC is the TVAR(3) process. Its computation demands first the estimation of a TVAR(1) process,
and then the estimation of a TVAR(2) process from the former residuals. Estimating this TVAR(3)
process provides three time variable roots, including a complex conjugated pair and a real-valued
root:

P1 = 0.6955− 0.0201t P2,3 = −0.0085± 0.4090i+ (0.0173± 0.7379i)t t ∈ [0.1].

The validation of the estimation is again done by the means of a moving window, which this time
contains 700 observations. Under the assumption of stationarity, AR(3) processes are estimated
for each window and the resulting roots are shown as a time track in Figure 6.25. Comparing this
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Figure 6.25: Roots of an AR(3) pro-
cesses estimated for moving windows of
700 observations gliding over the GNSS
series of Figure 6.15c.

-1 -0.5 0 0.5 1

real part

-1

-0.5

0

0.5

1

im
a
g
in

a
ry

 p
a
rt

0

0.2

0.4

0.6

0.8

1

Figure 6.26: Time variable roots of the
successive TVAR(3) processes with lin-
ear root motion estimated for the GNSS
series of Figure 6.15c.

track of roots to the linear root of the successive TVAR(3) estimate depicted in Figure 6.26, shows
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that the oscillation around the center of the discrete roots in Figure 6.25 was realized by the TVAR
roots crossing the x-axis. This way, the linear root motion of the time variable estimate follows the
movement of the point cloud created by the root of the individual windows.
For further comparisons, an AR estimation (again under the assumption of stationarity) is com-
puted. Figure 6.16c depicts the AIC for the AR processes up to order ten. The most promising AR
processes with local minima in the track of the AIC is an AR(3) (Figure 6.27), an AR(5) process
(Figure 6.28) and an AR(10) process (Figure 6.29).
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Figure 6.27: Roots of the AR(3) pro-
cesses estimated for the time series of
GNSS heights in Figure 6.15c.
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Figure 6.28: Roots of the AR(5) pro-
cesses estimated for the time series of
GNSS heights of Figure 6.15c.
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Figure 6.29: Roots of the AR(10) pro-
cesses estimated for the time series of
GNSS heights of Figure 6.15c

The RMSE values can be computed for each of these AR processes as well as for the TVAR process
by the means of (6.1.9), which provides similar solutions:

RMSETVAR(3) = 4.4 [mm],

RMSEAR(3) = 4.4 [mm],

RMSEAR(5) = 4.4 [mm] and
RMSEAR(10) = 4.3 [mm].

These values in combination with the roots of the TVAR(10) process depicting a circle around the
centre (see Figure 6.29), proves that the AR estimation is over-fitting (see E.3). Since the order
three gives the minimum AIC value for the TVAR estimation, Figure 6.16c proves, that the TVAR
process estimation with linear root motions, is more robust to over-fitting than the AR estimation.
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6.2.1.4 TVAR(3) Process Estimates

Section 4.5.2 presented a last method to estimate TVAR processes with linear root movements, i.e.,
how to directly estimate TVAR(3) processes without using a successive method. In the previous
three examples, the Gauss-Markov model (see (C.4.10)) does not give a solution when estimating
the parameters by the non-linear conditions (4.5.11), (4.5.12), and (4.5.13). So these examples do
not provide a solution of the direct estimation of TVAR(3) processes with linear roots. This differs
from the example of Figure 6.16d. For this example AR processes, successive TVAR processes
with linear root motion, as well as the direct TVAR(3) process with linear root motion should be
estimated and compared with each other.
First we repeat the procedure of application 6.2.1.3. This means ten AR and eighteen TVAR
process estimations. The resulting AIC values are depicted in Figure 6.16d. In case of the AR
estimate there are three minima depicted: the AR processes of order three (see Figure 6.30), five
(see Figure 6.31) and ten (see Figure 6.32). These roots look similar to the roots in Figure 6.27,
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Figure 6.30: Roots of the AR(3) process
of the GNSS heights of Figure 6.15d.
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Figure 6.31: Roots of the AR(5) process
of the GNSS heights of Figure 6.15d.
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Figure 6.32: Roots of the AR(10) pro-
cess of the GNSS heights in Figure
6.15d.

Figure 6.28 and Figure 6.29. Therefore the discussion of these roots is similar to the one in section
6.2.1.3. This is why further discussions of these roots should be taken from the previous example.
However, in the case of the TVAR estimate there are two processes nearly equal with respect to the
AIC: first the TVAR(1) process (see Figure 6.33) and second the TVAR(3) process estimated(see
Figure 6.34). These root motions also show that this TVAR(1) process root movement corresponds
to the real root’s motion of the TVAR(3) process. This is the consequence of the fact, that the
TVAR(3) process is the result of the process of first estimating the TVAR(1) process with the root
of Figure 6.33, and then, estimating a TVAR(2) process whose root motion is described by the
motion of the complex conjugated pair of roots of Figure 6.34. These roots are also similar to those
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Figure 6.33: Roots of the TVAR(1)
process of the GNSS heights of Figure
6.15d.
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Figure 6.34: Roots of the TVAR(3)
process of the GNSS heights of Figure
6.15d.

of the earlier application (see Figure 6.15c).
Much more interesting, however, is the comparison with the roots of a moving window. This
window has a width of 450 observations and is applied as described in the previous sections. The
AR(3) process roots shown in Figure 6.30 fit approximate these root motions, while linear root
motions in Figure 6.33 and Figure 6.34 do not follow the movement of the window’s roots.
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Figure 6.35: Roots of the AR(3) pro-
cesses estimated for moving windows of
450 observations gliding over the GNSS
series in Figure 6.15d.
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Figure 6.36: Linear roots of a direct
estimate TVAR(3) process with linear
root motion for the GNSS time series
in Figure 6.15d.

The direct estimation of the TVAR(3) process poses the opposite. The roots of the direct estimation
are shown in Figure 6.36. They, as well as their motions, fit the root approximation of the moving
window of Figure 6.35. Furthermore, the complex conjugated pair of the direct estimated roots of
Figure 6.36 posses approximately the same angle as the pair of complex conjugated roots of the
moving window over time depicted in Figure 6.36. In particular, this means that for each fixed
point in time, the spectra of the direct estimation and the ones of the moving are similar.
To prove, that, in this case, the direct TVAR(3) process estimate is the one to choose, the RMSE
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is computed for all six estimations:

RMSEAR(3) = 3.6 [mm],

RMSEAR(5) = 3.6 [mm],

RMSEAR(10) = 3.5 [mm],

RMSETVAR(1) = 3.6 [mm],

RMSETVAR(3) = 3.6 [mm], and
RMSETVAR(3)direct = 2.3 [mm].
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6.2.2 TVAR Process Estimates with Non-linear Root Motions

Sometimes it is not sufficient to describe the root motion by the means of a linear function. There-
fore, this section shows how to estimate TVAR processes, in cases when the roots follow a quadratic
function or when their root movements are composed of linear pieces, which ultimately serves to
approximate complicated root motions. For this, two GNSS time series are used as examples. These
are shown in Figure 6.37. Here, the GNSS heights of Figure 6.37a are used to estimate a TVAR
process with quadratic root motions, while the TVAR process with piecewise linear root motion is
estimated for the time series of GNSS heights shown in Figure 6.37b.
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(a) ULLo00GBR in Ulapool (UK) from an early 2014 to the end of 2016.
Analysis center: Nevada Geodetic Laboratory (NGL14).
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(b) HELG on Helgoland (Germany) from the end of 1999 to the end of 2002.
Analysis center: University of La Rochelle (URL6B).

Figure 6.37: Heights from GNSS stations for TVAR estimates with non-linear
root motions, with the estimated trend (red), and on the right side the reduced
and interpolated time series.

6.2.2.1 TVAR Process Estimates with Quadratic Root Motions

Normally, the evaluation of the application starts with a TVAR estimation and then checks if the
estimated root motion fits the root motion of the moving window. However, the analysis of the
time series of Figure 6.37a is structured the other way around: we first have a look of the roots
of AR processes estimated for a moving window with the width of 500 observations, and then we
estimate the TVAR processes.
Figure 6.38 shows, that the track of discrete roots pass first from a pair of complex conjugated
roots to two real valued roots and then back again to a pair of complex conjugated roots.
The method of section 4.5.1 can be used, to estimate such complex root motion changes, as it
allows to derive coefficients of the TVAR process and the necessary restrictions to estimate TVAR
processes with quadratic root motion. The motion of the roots of the TVAR(2) estimation is
depicted in Figure 6.39, which shows that the challenge of transferring a pair of complex conjugated
roots first to two real valued roots and then back to a pair of complex conjugated roots has
succeeded. So, this motion of roots can be constructed by TVAR processes with quadratic root
motion.
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Figure 6.38: Roots of an AR(2) pro-
cess estimated for moving windows of
500 observations gliding over the GNSS
series of Figure 6.37a.
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Figure 6.39: Root motion of a TVAR(2)
process with quadratic roots, estimated
for the GNSS time series of Figure
6.37a.

Note, that a switch from two real valued roots to a pair of complex conjugated roots is impossible
for the case of TVAR estimations with linear roots. As such, it is not surprising that the TVAR(2)
estimate provides two real valued roots as solution. These are shown in Figure 6.40.
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Figure 6.40: Roots of the successive
TVAR(2) estimate with linear root mo-
tion for the time series from Figure
6.37a.
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Figure 6.41: The AIC values for the
TVAR process estimation wit linear
root motion of the time series of GNSS
heights in Figure 6.37a.

Additionally, Figure 6.41 provides a depiction of the AIC values for estimating TVAR processes.
Here, it is visualized, that the AIC value is minimized by an estimation of a TVAR(3) process.
This TVAR(3) process is constructed by first estimating a TVAR(1) process and then estimating
a TVAR(2) process using the residuals from the first estimation as observations. The linear roots
of the estimated TVAR(3) process are shown in Figure 6.43, while the corresponding roots of the
moving window are shown in Figure 6.42. Comparing these two root tracks, it seems that, in this
case, the TVAR(3) process with linear roots follows the roots of the moving window. This leads to
the conclusion, that the choice of the root motion has a strong influence on the estimation TVAR
process: it not only impacts the order, but also the movement of the roots and thus the change of
the shape of the spectrum.
To compare these estimates, the RMSE is used:

RMSETVAR(3) linear roots = 4.31 [mm] and
RMSETVAR(2) quadratic roots = 4.25 [mm].
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Figure 6.42: Roots of an AR(3) pro-
cess estimated for moving windows of
200 observations gliding over the GNSS
series in Figure 6.37a.
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Figure 6.43: Root motions of the
TVAR(3) estimate with linear root mo-
tion of the GNSS time series in Figure
6.37a.

This proves, that in this case, the TVAR process with quadratic root motion does not only ap-
proximate the roots from the moving window, but also has a smaller RMSE than the best TVAR
process with linear root motion (here best means lowest value for the AIC). This solution suggests,
that the restriction of TVAR processes with linear roots might not be flexible enough to compute
TVAR processes in cases when a pair of complex conjugated roots transforms into two real valued
roots, (or vice versa). Instead, a TVAR process is capable to achieve this.

6.2.2.2 TVAR Process Estimation with Piecewise Linear Root Motions

As soon as it is no longer enough to represent the root motion as a quadratic function, one should
switch to piecewise linear root motions. To demonstrate this method, a TVAR process with linear
root motion, as well as a TVAR process with piece wise linear root motions are estimated for the
time series in Figure 6.37b, and the results are compared with the roots of a moving window.
We start by estimating the TVAR process with linear root motion, looking for the process that
minimizes the AIC value (as it is done in application 6.2.1.1). Figure 6.44 shows, that the minimum
AIC value corresponds to the TVAR(1) process. The resulting root of this process is depicted in
Figure 6.45.
Then a moving window with a width of 20 observations is shifted over the time series and an AR(1)
process is estimated for each window. The resulting roots are shown in Figure 6.46. Comparing
the linear root movement of the TVAR(1) process (shown in Figure 6.45) with the track of the
roots of the moving window (shown in Figure 6.46), one notices that there is a little movement
shown in the linear approximation, while the moving windows’ roots, cover the interval [-0.3,0.9].
The discrepancy between the results is due to the fact, that the track of the roots in Figure 6.46
do not change linearly. Figure 6.47 depicted this root motion according to the time. This way, the
non-linear root motion is depicted.
Our goal is to remodel this track as accurately as possible, by estimating TVAR processes with
piecewise linear root movements. For this piecewise estimation the intervals should all be the same
width of 20 observations, which is the same size as the one of the moving window. Figure 6.47
shows how the approximation with piecewise linear roots follows the significant peaks, while strong
fluctuations (as seen midway between 2001 and 2002) is filtered. This is also evident in the RMSE.
When calculating these values for the estimations, using (6.1.9), the values

RMSETVAR(1) linear roots = 4.27 [mm],

RMSEAR(1) moving window = 4.09 [mm] and
RMSETVAR(1) piecewise linear root = 4.11 [mm]
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Figure 6.44: The AIC values for the
TVAR process estimation wit linear
root motion of the time series of GNSS
heights in Figure 6.37b.
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Figure 6.45: Root of a TVAR(1)
process estimated of the GNSS series
in Figure 6.37b.

are obtained. This concludes that complex root motions as in this example can be approximated
by a piecewise linear approach.
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Figure 6.46: Roots of AR(1) processes
estimated for moving windows of 20
observations gliding over the GNSS
series in Figure 6.37b.

2000 2001 2002 2003
-0.5

0

0.5

1

Figure 6.47: Comparison between the
TVAR(1) process estimate with piece-
wise linear root motion (in violet) and
the discrete roots of AR(1) estimates of
a moving window (in orange). Both are
estimated for the time series in Figure
6.37b.
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6.3 Covariance Functions Derived from a Time Variable AR(1)
Estimate

This section provide an investigation of global annual temperature anomalies. These time series
show global annual temperature anomalies in which the man-made climate change has been elimi-
nated.5 Before estimating the AR(1) or TVAR(1) process, a linear trend is estimated and deducted
from the data. This procedure as described in Appendix E.1.1. It will be shown, that the LSC
using a CF from an AR process do not provide an adequate solution. Instead the CF must be
provided by a TVAR process.

6.3.1 AR(1) Process with a Root near the Origin

If a AR(1) processes’ root is near the origin, the recursive part is approximately zero. In this case,
a large part of the signal is interpreted as noise, which in turn makes the result of the LSC nearly
useless. To avoid this problem, TVAR(1) processes can be used for covariance modelling in LSC.

6.3.1.1 Data

A time series of global annual temperature anomalies from 1904 to 2014 is used to illustrate LSC
using a TVAR(1) process. Before the AR estimation is calculated, this data is reduced by a
linear trend as shown in Appendix E.1. This way, the mean value of the time series is reduced to
M{E{S}} = −1.2 · 10−17 ≈ 0. The trend reduced time series shown in Figure 6.48.
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Figure 6.48: Annual temperature anomalies for the years 1904 to 2014 reduced
by a linear trend.

6.3.1.2 Least-Squares Collocation using AR Estimation

The method of applying LSC using an AR process for covariance estimation is identical to the
application of section 6.1. Due to this fact, the procedure will not be described in detail here again.
The AR coefficients and the noise’s variance are estimated by the Y.-W. equations. The AICs shown
in Figure 6.49 provides the lowest value for an AR(1) process with the variance σ̃2

E = 0.1690[°2]
and the coefficient α̃1 = 0.0028. Since the AR(1) process’ root corresponds to the coefficient,
P1 = 0.0028 can be determined directly. It is visualized in the unit circle in Figure 6.50. As
discussed in section 6.1.3.2, the estimated variance σ2

E is again divided into the variance of the AR
process σ2

S and the variance of the noise σ2
N :

σ2
S = 0.0640[°2] σ2

N = 0.1050[°2] (6.3.1)

5. The data is available as an open source and can be downloaded from the website: https://esgf-
data.dkrz.de/projects/esgf-dkrz/. The data itself was processed by different teams, how exactly this processing
took place is described in the paper Eyring et al. 2016.
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Figure 6.49: The AIC values for the
AR estimate of the annual temperature
anomalies of Figure 6.48 for order one
to ten (with a minimum at one).
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Figure 6.50: Roots of the AR(1) process
estimated for the temperature anoma-
lies of Figure 6.48.

Separating the variances, allows to determine the CF of the AR process. In the case of the AR(1)
process, the only weight A1 equals the variance (see Buttkus 2000, p. 247 eq. 11.30), i.e.

A1 = Σ0 =
σ2
S

1− α2
1

= 0.0640.

The CF can be determined by the means of

γ(h) = A1P
|h|
1 = 0.0640 · 0.0028|h|. (6.3.2)

Furthermore, the CF can be used to compute the entries of the covariance matrices for LSC (see
section 2.2). The noise’s covariance matrix (6.1.8) results directly from the noise’s variance itself:

Σ{N } = σ2
N1n×n = 0.0640 · 1n×n.

The covariance matrix of the signal is calculated in accordance to the CF of (6.3.2) and evaluated
using integer distances (h ∈ {0, 1, 2, ..., n− 1}):

Σ{S} =


γ(0) γ(1) γ(2) ... γ(n− 1)
γ(1) γ(0) γ(2) ... γ(n− 2)
γ(2) γ(1) γ(0) ... γ(n− 3)
...

γ(n− 1) γ(n− 2) γ(n− 3) ... γ(0)


n×n

. (6.3.3)

In addition the common covariance matrix is created. This includes 18 additional predicted
values between the observations, computed by the means of the CF evaluated for the distances
h{0, 1/19, 2/19, ..., n− 1}:

Σ{S̃,S} =



γ(0) γ(1) γ(2) ... γ(n− 1)
γ
(

1
19

)
γ
(
1 1
19

)
γ
(
2 1
19

)
... γ

(
n− 1− 1

19

)
γ
(

2
19

)
γ
(
1 2
19

)
γ
(
2 2
19

)
... γ

(
n− 1− 2

19

)
...

γ(n− 1) γ(n− 2) γ(n− 3) ... γ(0)


20n−19×n

. (6.3.4)

The result of LSC is depicted in Figure 6.51, which shows that the approximated signal does not
significantly differ from zero. The reason for that is, there is only one coefficient that is close to
zero. For this reason, most of the variance of the Y.-W. equations (σ2

E) is described by the variance
of noise (σ2

N ) rather than by the variance of the AR(1) process (σ2
S).
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Figure 6.51: Annual temperature anomalies between the years 1904 and 2014
and the approximation by least-squares collocation using a CF of a AR(1)
process.

6.3.1.3 Approximation of the Root Motion by a Moving Window

To check whether the process of Figure 6.48 is stationary, an AR(1) process is estimated for a
moving window with a width of 22 observations, then the AR roots are plotted, whereby the time
of the root is equal to the time in the moving window’s centre. These roots are depicted in Figure
6.52. It seems that the roots move linearly, which is suspicious in such a way, that the moving
window roots of a stationary process should be constantly the AR(1) coefficient. So the assumption,
that the observations generate a stationary process, is not correct. The evaluation of this time series
by the method of LSC demands an estimation by using a TVAR(1) processes.
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Figure 6.52: Roots of the AR(1) estimate using a moving window of 22 obser-
vations. Figure 6.48 provides the time series of temperature anomalies used for
the estimation.

6.3.1.4 Least-Squares Collocation using a TVAR(1) Estimate

For the time series of Figure 6.48, a TVAR(1) process with linear root motion is estimated directly
from the signal S (as described in Appendix C.2), while the matrices corresponding to the TVAR(1)
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process as discussed in Appendix C.4. This leads to the parameter estimates

β
(1)
0 = −0.2394 and β

(1)
1 = 0.4434,

which describe the TVAR(1) coefficient. And, as for the AR(1) process, this coefficient corresponds
to the time variable root of the CP shown in Figure 6.53:

P1(t) = α1(t) = β
(1)
0 + β

(1)
0

t− t0
tend − t0

= −0.2394 + 0.4434
t− 1904

110
with t ∈ [1904, 2014].

Here, t0 = 1904 is the start of the time series, and tend = 2014 is the last year of the observed
signal. For this example, the time variable coefficient α1(t) can be used to estimate the variance of
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Figure 6.53: The roots for the TVAR(1) estimate of the annual temperature
anomalies from Figure 6.48 for the continuous time tc ∈ [0, 1].

the process σ2
E (as already show in section 4.1.3.2), providing

σ2
E = 0.1682[°2]

In order to separate σ2
E by variance component estimation into the variance of the TVAR(1) process

σ2
S and the variance of the noise σ2

N , decorrelation as shown in Förstner 1985 is used. Unfortu-
nately, this method is only defined for time constant AR processes. However, it can be adapted to
TVAR processes. Since this method uses the AR coefficients to decorrelate the observations, this
can be done by the TVAR coefficient as well, results in the variances of the TVAR(1) process σ2

S
and the variance of the noise σ2

N , which in turn are the last parameters needed to calculate the CF:

σ2
S = 0.1394[°2] σ2

N = 0.0288[°2]. (6.3.5)
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Since β
(1)
0 = −0.2394 < 0, β(1)

1 = 0.4434 > 0 and β
(1)
0 + β

(1)
1 = 0.2039 > 0, case three of section

5.3.2 applies, resulting in the CF

γ(3)(h, tc) =γ(0, tc)

 |β(1)
1 |

(n− 1)

h(n−1)

...


P
(∣∣∣∣f(β(1)

0 , β
(1)
1 , tc, h)

∣∣∣∣ , h(n− 1)

)
if f(β(1)

0 , β
(1)
1 , tc, h) < 0

P
(
f(β

(1)
0 , β

(1)
1 , tc, h), h(n− 1)

)
cos(h(n− 1)π) else.

=γ(0, tc)

(
0.4434

110

)110h

...{
P (|f(−0.2394, 0.4434, tc, h)| , 110h) if f(−0.2394, 0.4434, tc, h) < 0

P (f(−0.2394, 0.4434, tc, h), 110h) cos(110hπ) else.
(6.3.6)

Here, n = 111 is the length of the signal, and γ(0, tc) comprises the time variable variances which
are computed by (5.3.1) for the times of the observed signal (tc ∈ [0, 1])

γ(0, tc) =
σ2
S

1− α2
1(tc)

=
0.1394

1− (−0.2394 + 0.4434tc)2
.

Figure 6.54 illustrates how the variance decreases as long as the absolute value of the time variable
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Figure 6.54: Variability in time of the variance for the TVAR(1) process with
linear root motion, estimated for to the time series of Figure 6.48. The variance
is evaluated by using the normalized time [0, 1].

coefficient α1(t) decreases. Since the variances increases if the absolute value of the coefficient
α1(t) increases, leading to the minimum of 0.1394[°2] occurs exactly at the point in time when the
TVAR(1) coefficient equals zero. Notice, the variance of the TVAR(1) process in this moment is
equal to σ2

S . The time variable variance and the time CF allow to set up the LSC matrices. It
results in the covariance matrix of the signal for the observed epoch

Σ{S} =


γ(0, 0) γ(1, 0) γ(2, 0) ... γ(n− 1, 0)

γ
(
1, 1

n−1

)
γ
(
0, 1

n−1

)
γ
(
1, 1

n−1

)
... γ

(
n− 2, 1

n−1

)
γ
(
2, 2

n−1

)
γ
(
1, 2

n−1

)
γ
(
0, 2

n−1

)
... γ

(
n− 3, 2

n−1

)
...

γ (n− 1, 1) γ (n− 2, 1) γ (n− 3, 1) ... γ(0, 1)


n×n

, (6.3.7)

and the covariance matrix of the noise

Σ{N } = σ2
N1n×n = 0.0288 · 1n×n.
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The joint covariance matrix of the time series and the predicted values is

Σ{S̃,S}

=



γ (0, 0) γ (1, 0) γ (2, 0) ... γ (n− 1, 0)

γ
(

1
19 ,

1
19(n−1)

)
γ
(
1 1
19 ,

1
19(n−1)

)
γ
(
2 1
19 ,

1
19(n−1)

)
... γ

(
n− 1− 1

19 ,
1

19(n−1)

)
γ
(

2
19 ,

2
19(n−1)

)
γ
(
1 2
19 ,

2
19(n−1)

)
γ
(
2 2
19 ,

2
19(n−1)

)
... γ

(
n− 1− 2

19 ,
2

19(n−1)

)
...

γ (n− 1, 1) γ (n− 2, 1) γ (n− 3, 1) ... γ (0, 1)


20n−19×n

.

(6.3.8)

Since it has not yet been proven that the covariance function of (6.3.6) is positive definite, it must
still be checked whether all eigenvalues of Σ{S} are positive or not. The eigenvalues are determined
by the means of the eigenvalue decomposition; since the smallest eigenvalue is λmin = 0.0947 > 0,
it follows, that the matrix is positive definite. This ultimately allows the LSC. The resulting
approximated time series is shown in Figure 6.55.
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Figure 6.55: Annual temperature anomalies between the years 1904 and 2014
and the approximation by LSC using a CF of a TVAR(1) process.

6.3.1.5 Comparing both Least-Squares Collocation Solutions

When comparing the two solutions, it becomes apparent that the estimated variances σ2
E are of

similar values. The same can be observed when the RMSE is calculated by (6.1.9). Hereby either
the residuals are computed by

Sj − S̃j = Sj −
p∑

k=1

αkSj−k

in the case of the time stable AR process is used, or

Sj − S̃j = Sj −
p∑

k=1

αk(j)Sj−k

in the case of TVAR processes. In both cases the RMSE values

RMSEAR = 0.4096 [°] RMSETVAR = 0.4064 [°].
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are nearly equal, but since the variance σ2
E is composed of the variance of the AR or TVAR process

and the variance of the white noise:

σ2
E = σ2

S + σ2
N ,

the variance component estimation shows, that in case of the AR estimation

σ2
S = 0.0640[°2] and σ2

N = 0.1050[°2],

meaning that the variance of the signal accounts for only one-third of the total variance. In case
of the TVAR estimation the variance components are estimated to

σ2
S = 0.1394[°2] and σ2

N = 0.0288[°2].

Since the LSC only reduce the part of the white noise, this means, that in case of the AR process
the large part of the variance σ2

E is eliminated by the LSC, while in case of the TVAR process the
large part of the variance σ2

E is modelled by the TVAR(1) process. This is also depicted in Figure
6.51, where the predicted values do not reproduce the observations. The solution of the LSC using
TVAR processes is depicted in Figure 6.55, showing a function following the observations.

6.3.2 Modelling of Significant Characteristic Changes

Another problem that can occur when estimating an AR process is a change in the processes char-
acteristics. This means, that the CF changes from a decreasing pure positive valued function to an
oscillating function (or vice versa) (compare Figure 5.5).
While the coefficient of an AR process can only assume negative or positive values, the coefficient of
a TVAR(1) process can change its sign. This sign change also changes the processes characteristic:
an AR(1) process with negative coefficients mostly changes its sign from one observation to the
other, while an AR(1) process with positive coefficients mostly retains the signs from one obser-
vation to the other. Figure 6.56 shows a time series changing this characteristic over time. The
following examination determines how this can be modelled and adjusted by LSC with TVAR(1)
processes.

6.3.2.1 Data

To illustrate how LSC performs with a signal with changing characteristics, a time series of annual
temperature anomalies is used again, but this time the observations are taken from the interval
1899 to 2014. This data is reduced by a linear trend exactly as described in Appendix E.1, which
reduced the mean value of the time series to M{E{S}} = −1.7 · 10−17 ≈ 0. The reduced time
series is shown in Figure 6.56. This seems to be the same data as the one in the last example in
section 6.3.1, but this time series of temperature anomalies was computed by another model and
with different starting conditions.

6.3.2.2 Least-Squares Collocation using an AR Estimate

The estimation of the AR coefficients and the corresponding variance of the process σ2
E is determined

by the Y.-W. equations of orders one to ten and then compared with each other according to the
AIC. Figure 6.58 visualizes these AIC values and shows, that the AR(1) with

α1 = 0.0443 and σ2
E = 0.1974[°2]

is the minimum. The root of the AR(1) process

P1 = α1 = 0.0443,

is very close to zero again, but this time, the variance component estimation states that
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Figure 6.56: Annual temperature anomalies between the years 1899 and 2014,
reduced by a linear trend.
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Figure 6.57: The AIC values for the
AR estimate of the annual temperature
anomalies of Figure 6.56 for order one
to order ten (with a minimum at one).
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Figure 6.58: Roots of the AR(1) process
estimated for the temperature anoma-
lies of Figure 6.56.
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σ2
S = 0.1654[°2] and σ2

N = 0.0320[°2],

meaning that, in this case, the variance of the AR process σ2
S embodies the main contribution to

the variance of the signal σ2
E .

This was the reason behind the discussion of changing to TVAR(1) processes in the previous
example of 6.3.1. The weight follows from (B.1.3) in Appendix B.1:

A1 = σ2
S/(1− α2) = 0.1657.

The CF is then

γ(h) = A1P
|h|
1 = 0.1657 · 0.0443|h|. (6.3.9)

The required covariance matrices are calculated the same way as in example 6.3.1. Thus, Σ{S}
equals (6.3.3), and Σ{S̃,S} equals (6.3.4), the only difference being that in this case, the CF of
(6.3.9) is used. Further more the white noise covariance matrix change to

Σ{N } = σ2
N1n×n = 0.0320 · 1n×n.

The approximation is again computed by the LSC of (6.1.1) again – Figure 6.59 show the results.
As mentioned before, in this case, σ2

S = 0.1653[°2] is much higher than the variance of the noise
σ2
N = 0.0640[°2] in application 6.3.1. As such, the predicted values of Figure 6.59 are much closer

to the observations than the prediction of Figure 6.51.
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Figure 6.59: Annual temperature anomalies between the years 1899 and 2014
and the approximation by LSC using a CF of a AR(1) process.

6.3.2.3 Approximation of the Root Motion by a Moving Window

In this section, it is illustrated that the TVAR(1) process describes the process shown in Figure
6.56 better than the AR process. Following the concept introduced in section 2.5, this means that
the time series is not stationary. For validation of the non-stationarity AR processes are estimated
using 23 observations in a moving window. The resulting roots are shown in Figure 6.60. revealing
a linear root motion.

6.3.2.4 Least-Squares Collocation using TVAR(1) Estimation

A time variable approach is chosen in which the root of the TVAR(1) process moves linearly, to
approximate the roots of Figure 6.60. The procedure is the same as shown in section 6.3.1.4,
providing the estimated coefficients

β
(1)
0 = −0.5423 and β

(1)
1 = 1.0486,



106 6. Application

1900 1920 1940 1960 1980 2000

Time [years]

-0.5

0

0.5

R
o

o
ts

Figure 6.60: Roots for the AR(1) estimate of a moving window of 23 observed
temperature anomalies of Figure 6.56.

which are equal to the root motion shown in Figure 6.61. The estimated noise σ2
E is separated into

the variance of TVAR process σ2
S and the part of the noise σ2

N :

σ2
E = 0.1843[°2], σ2

S = 0.1843[°2] and σ2
N = 5 · 10−5[°2],

revealing, that the variance of the noise is nearly zero. However, since

β
(1)
0 = −0.5423 < 0, β

(1)
1 = 1.0486 > 0 and β

(1)
0 + β

(1)
1 = 0.5063 > 0.

the CF is calculated using the third case from section 5.3.2 again.The CF of the time series of
n = 116 observations is given as

γ(3)(h, tc) =γ(0, tc)

(
1.0486

115

)115h

...{
P (|f(−0.5423, 1.0486, tc, h)| , 115h) if f(−0.5423, 1.0486, tc, h) < 0

P (f(−0.5423, 1.0486, tc, h), 115h) cos(115hπ) else,
.

(6.3.10)

including the time variable variances of (5.3.1):

γ(0, tc) =
σ2
E

1− α2
1(tc)

=
0.1843

1− (−0.5423 + 1.0486tc)

with tc ∈ [0, 1]. These are also depicted in Figure 6.62.
To perform a LSC based on (6.1.1), the covariance matrices are determined. Σ{S} is determined
exactly as in (6.3.7), providing the smallest eigenvalue by λmin = 0.0832. Thus, Σ{S} is positive
definite. While Σ{S̃,S} is set up using (6.3.8), by evaluating the CF of (6.3.10). The noise’s
covariance matrix is provided by:

Σ{N } = σ2
N1n×n = 5 · 10−5 · 1n×n.

The predicted values of the LSC are visualized as a function in Figure 6.63.

6.3.2.5 Comparison

In contrast to application 6.3.1, the reason for the successful application of LSC with a TVAR(1)
process in this example lies in the ability to switch from negative valued roots to positive valued
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Figure 6.61: Roots for the TVAR(1) es-
timate of the temperature anomalies of
Figure 6.48.
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Figure 6.62: Variability in time of the
variance for the TVAR(1) process with
linear root motion, estimated for to the
time series of Figure 6.56. The vari-
ance is evaluated by using the normal-
ized time [0, 1].
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Figure 6.63: Annual temperature anomalies between the years of 1904 and 2014
and the approximation by LSC using a CF of a TVAR(1) process.
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ones and the resulting change of the CF. While negative roots result in strongly oscillating signals,
a positive root result in a slowly oscillating signal. In our case, slowly oscillating means that
consecutive observations more likely have the same sign, wile strong oscillations means sign change
in nearly every consecutive observation. This advantage of the LSC using TVAR processes becomes
clear when comparing the solutions for the LSC with an AR process depicted in Figure 6.59 with
the solutions for the LSC with a TVAR process depicted in Figure 6.63: while the predicted values
from the AR approach in Figure 6.59 rapidly approaching zero in between the observations, the
TVAR approach shown in Figure 6.63 shows that the predicted values does not only fit better to
the given time series but also gives a smooth function in between the observations.
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Chapter 7

Concluding Remarks

This chapter is divided into three sections: the first part provides a summary of the results of the
previous chapters; the second part describes how far this work’s objectives have been achieved; and
the third part consists of the conclusions as well as further research.

7.1 Summary

Chapter 3: Continuous Covariance Functions for Time Constant AR Processes
In LSC, CFs are required to weights among observations. Since not every function fulfil the
conditions of a CF, much of the work of LSC consists of finding suitable CFs. This chapter
presented a method to automate the construction of CFs. It is called ’automatic’, because
-apart from the parameters of an AR process- no other estimated values are used. After the
AR process with the lowest AIC is estimated, the sequence of covariances is adapted according
to a continuous function by the use of the Y.-W. equations and the roots of the CP.

Chapter 4: Time Variable AR Processes
The problem solved in this chapter is to find a representation of a time variable process by
a time variable AR (TVAR) process. In this auto regressive process the coefficients change
over time. However, chapter 3 has also shown, that the CF does not directly dependent on
the coefficients of the AR process, but on the roots of the CP. Therefore, in this chapter a
method is developed that estimates TVAR processes with predetermined root motion. For the
purpose of this study, the discussed movement of the roots is restricted to linear, quadratic
and piecewise linear movements.

Chapter 5: Covariance Function of the Time Variable AR(1) Process
The use of nonstationary LSC requires the discrete covariances as well as the continuous CF
of a TVAR process. In this chapter, both the discrete covariance sequence as well as the
continuous CF of the TVAR(1) process with linear root motions are derived. In the time
stable case, both the covariance sequence and the CF, only depend on the lag. But in the
time variable case, these two functions first depend on the lag, second the epoch used to
determine the covariance, and third, the condition of whether the second epoch finds itself
earlier or later than the first one.

Chapter 6: Applications
Having derived these theories, there only remains their functional verification via practical
applications. That is done in this chapter. In the first example, a time series of SLA data
shows how a CF for a stationary process is determined using an AR estimation. With the help
of this CF, it is possible to estimate an approximated function based on the observation using
LSC. In addition, the representation of a CF from AR processes can be used to determine
functionals of the observations. In this thesis, a case study of the derivative of the SLA data
with respect to time was approximated.
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The second application investigates nonstationary time series of GNSS heights. These time
series were used to estimate TVAR processes with different yet predefined root motions. Sub-
sequently, the estimated TVAR processes were validated by comparing the resulting time
variable root with a sequence of discrete roots derived from AR processes, which were esti-
mated for the observations in a moving window.

The third application concerns the calculation of the LSC for annual temperature anoma-
lies. First, it was assumed that the time series was stationary. Thus, an AR process was
estimated and the LSC is used to predict the values between the observations. Next, it was
assumed that the same time series was nonstationary. Under this assumption, TVAR(1)
processes were estimated and the time variable LSC computed. Since the prediction on the
estimation times fits bedder to the observations, as well as the interpolated values does not
become zero so fast shows that the nonstationary approach yields better results.

7.2 Contribution to the Contemporary Field
The derivation of continuous CFs from AR processes poses the first contribution of this work
to current research. This method was used to construct CFs for LSC to predict values between
the observed stationary time series. Especially the fact that a unique CF can be derived from
each AR process, which does not demand further estimations, automates the modelling of CFs
for covariance sequences. The estimate of time variable (TVAR) processes is another important
contribution of this thesis. In this context, a method to estimate TVAR processes with
polynomial root motions was developed. This method can be used to estimate TVAR processes
whose roots of the CP move linearly, quadratically, or piecewise linearly over time. The most
important contribution of this thesis, however is the method of nonstationary least-squares
collocation. Deriving a discrete covariance sequence and a continuous CF from a TVAR(1)
process allow the computation of covariance matrices for nonstationary time series. Finally, an
algorithm was implemented for each method. This enables the application of these methods
to real data and the subsequent comparison with other estimation methods.

7.3 Outlook and Conclusions
Although this thesis provides a possibility for nonstationary LSC, there is still a lot of room for
further research. The estimation of the TVAR processes in this contribution, for example, is limited
to quadratic and linear root movements. Modelling the roots motion with polynomials of higher
order is an interesting topic for further investigations. However, other root movements (such as
circulations around the origin) might be of interest. Especially with the CF of TVAR processes,
a wide range of follow-up investigations still remains to be examined. Instead of calculating the
eigenvalues of the covariance matrix to check whether the matrix is positive (semi-)definite or not, it
would be interesting to investigate under which conditions the CF created by the TVAR(1) process
is positive (semi-)definite. Additionally, the structure of this matrix has to be studied further. This
applies to the inverse matrix and its structure as well. And finally, this remains also true for the
question whether there are methods to determine CFs from TVAR processes with orders greater
than one.
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Appendix A

Introduction

A.1 Transformation from the Power Spectral Density Function to
a Covariance Function

Given a time series {Sk}k∈Z and covariances {Σj}j∈Z between two observations with lag j. For this
time series, the PSD is computed by the formula

PSD({Sk}k∈Z) = |F{{Sk}k∈Z}(ν)|2.

It is necessary to show that the inverse FT of the PSD is equal to the discrete CF:

F−1{|F{{Sk}k∈Z}(ν)|2}(t)
(1)
= F−1{F{{Sk}k∈Z}(ν)F{{Sk}k∈Z}(ν)∗}(t)
(2)
= F−1{F{{Sk}k∈Z}(ν)}(t)~ F−1{F{{Sk}k∈Z}(ν)∗}(t)
(3)
= {Sk}k∈Z ~ {Sk}∗k∈Z
(4)
= {Sk}k∈Z ~ {Sk}k∈Z
(5)
=

∫ ∞

−∞
{Sk}k∈Z{Sk−j}j∈Z(dk)

(6)
= {Σj}j∈Z.

First, the definition for the absolute value function of complex functions

|F{{Sk}k∈Z}(ν)| =
√

F{{Sk}k∈Z}(ν)F{{Sk}k∈Z}(ν)∗

is used in (1). Here, F{{Sk}k∈Z}(ν)∗ is the complex conjugate of F{{Sk}k∈Z}(ν). Next, the
convolution theorem (see Buttkus 2000, p. 22, Table 2.1) is used in (2). The convolution theorem
is provided by the equation

F−1{X(ν)Y (ν)}(t) = F−1{X(ν)}(t)~ F−1{Y (ν)}(t).

since the FT and the IFT cancel out each other, both transformations can be omitted, in step
(3). And since St is real valued, it follows that {Sk}∗k∈Z = {Sk}k∈Z, as it was used in (4). In (5),
the definition of convolution is used, i.e. X(t) ~ Y (t) =

∫∞
−∞X(t)Y (t − j)dt. Finally, (6) is the

definition of the discrete CF.
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Appendix B

Continuous Covariance Function for
Time Constant AR Processes

B.1 Determination of the Weights for Covariance Functions

Assuming that the parameters of an AR(p) process, as well as, p coefficients and the variance of
noise σ2

E(see section 2.7) are given, the discrete covariances of this process are uniquely specified.
The reorganized Y.-W. equations (see Schuh et al. 2014) are used to generate these from the
parameters,



Σ0

Σ1

Σ2
...

Σp−1

Σp


=





−1
α1 −1
α2 α1 −1
...

...
... . . .

αp−1 αp−2 αp−3 . . . −1
αp αp−1 αp−2 . . . α1 −1


+



0 α1 . . . αp−2 αp−1 αp

0 α2 . . . αp−1 αp

0 α3 . . . αp
...

... ...
0 αp

0





−1 

−σ2
E

0
0
...
0
0


.

(B.1.1)

Further entries of the discrete CF (i.e. Σj for i > p) can then be calculated using the Y.-W.
equations for orders greater than p (see (2.8.3)).
As described in section 2.9, the determination of the required weights Ai of (3.1.2), demands the
calculation of the unique roots Pk of the CP. With the help of these roots, (3.1.2) can be set up
for p different yet arbitrary values (j = j1, j2, j3, ..., jp) and converted into the matrix vector
notation:


Σj1

Σj2
...

Σjp

 =


P

|j1|
1 P

|j1|
2 . . . Pp

|j1|

P
|j2|
1 P

|j2|
2 . . . Pp

|j2|

...
...

...
P

|jp|
1 P

|jp|
2 . . . Pp

|jp|



A1

A2
...
Ap

 .

The unique solution of


A1

A2
...
Ap

 =


P

|j1|
1 P

|j1|
2 . . . Pp

|j1|

P
|j2|
1 P

|j2|
2 . . . Pp

|j2|

...
...

...
P

|jp|
1 P

|jp|
2 . . . Pp

|jp|


−1 

Σj1

Σj2
...

Σjp

 . (B.1.2)

allows the calculation of the weights.
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B.1.1 Analytical Solutions for the Weights of AR(1) Processes

In particular, the discrete covariances Σj and the weights Ai can be computed analytically for
AR(1) processes.
In this case, the reorganized Y.-W. equations of (B.1.1) provide the covariances Σ0 and Σ1:[

Σ0

Σ1

]
=

([
−1 0
α1 −1

]
+

[
0 α1

0 0

])−1 [−σ2
E

0

]
=

[
−1 α1

α1 −1

]−1 [−σ2
E

0

]
=

1

1− α2
1

[
−1 −α1

−α1 −1

] [
−σ2

E
0

]
=

σ2
E

1− α2
1

[
1
α1

]
.

The system of equations in (B.1.2) is even easier to solve and directly provides the weight A1:

A1 = (P 0
1 )

−1Σ0

A1 = Σ0

A1
(1)
=

σ2
E

1− a21

A1
(2)
=

σ2
E

1− P 2
1

. (B.1.3)

(1) holds Σ0 = σ2
E/(1− a1) (see Hamilton 1994, p. 53, eq. 3.4.4), while P1 = α1 has been used in

(2) (comp. (3.2.2)).

B.1.2 Analytical Solutions for the Weights of AR(2) Processes with two Com-
plex Conjugated Roots

The derivation of the weights A1 and A2 in this case refer to the AR process, whose CP’s roots
form a complex conjugated pair. First the reorganized Y.-W. equations for the AR(2) process are
used to derive the formulas of the first three discrete covariances:Σ0

Σ1

Σ2

 =

−1 0 0
α1 −1 0
α2 α1 −1

+

0 α1 α2

0 α2 0
0 0 0

−1 −σ2
E

0
0


=

−1 α1 α2

α1 α2 − 1 0
α2 α1 −1

−1 −σ2
E

0
0


=

1

−α2³ + α2
2 + α2(1 + α2

1) + α2
1 − 1

 1− α2 α1α2 + α1 α2
2 − α2

α1 1− α2
2 α1α2

α2
1 − α2

2 + α2 α1α2 + α1 1− α2
1 − α2

−σ2
E

0
0


=

−σ2
E

−α2³ + α2
2 + α2(1 + α2

1) + α2
1 − 1

 1− α2

α1

α2
1 − α2

2

 .

To determine the weights of the AR(2) process, the coefficients α1 and α2 are replaced with the
roots P1 and P2. The transformation is calculated according to the relation given in (3.2.3) and
(3.2.4). Since the transition to the roots results in strong simplifications, the denominator must be
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specially considered here:

− α2³ + α2
2 + α2(1 + α2

1) + α2
1 − 1

=(P1P2)³ + (P1P2)
2 − (P1P2)(1 + (P1 + P2)

2) + (P1 + P2)
2 − 1

=P1³P2³ + P 2
1P

2
2 − P1P2 − P1³P2 − 2P 2

1P
2
2 − P1P2³ + P 2

1 + 2P1P2 + P 2
2 − 1

=P1³P2³ − P1³P2 − P 2
1P

2
2 − P1P2³ + P 2

1 + P1P2 + P 2
2 − 1

=(1− P 2
1 )(−P1P2³ + P1P2 + P 2

2 − 1)

=(1− P 2
1 )(1− P 2

2 )(P1P2 − 1)

=− (1− P 2
1 )(1− P 2

2 )(1− P1P2).

(3.2.3) and (3.2.4) renders the determination of the denominator rather simple, means that the
discrete covariances can now be specified directly. Also, the calculation only need Σ0 and Σ1 to
determine the weights: [

Σ0

Σ1

]
=

−σ2
E

−(1− P 2
1 )(1− P 2

2 )(1− P1P2)

[
1 + P1P2

P1 + P2

]
=

σ2
E

(1− P 2
1 )(1− P 2

2 )(1− P1P2)

[
1 + P1P2

P1 + P2

]
. (B.1.4)

Finally, the weights are calculated with regards to (B.1.2):

[
A1

A2

]
=

[
1 1
P1 P2

]−1 [
Σ0

Σ1

]
=

1

P2 − P1

[
P2 −1
−P1 1

] [
Σ0

Σ1

]
⇒ A1 =

P2Σ0 − Σ1

P2 − P1
.

Due to the fact that the variance of the AR(2) process with two complex roots is real valued, and
the fact that the roots are a complex conjugated pair (P1 = P ∗

2 ) it follows, that the weights must
build a pair of complex conjugated values as well (i.e. A1 = A∗

2). So, in order to determine the two
weights, it only requires the calculation of A1. With the discrete covariances of (B.1.4), the weight
A1 can be determined directly from the roots and the variance of the white noise:

A1 =
σ2
E(P2(1 + P1P2)− (P1 + P2))

(P2 − P1)(1− P 2
1 )(1− P 2

2 )(1− P1P2)

=
σ2
E(P2 + P1P

2
2 − P1 − P2)

(P2 − P1)(1− P 2
1 )(1− P 2

2 )(1− P1P2)

=
σ2
E(P1P

2
2 − P1)

(P2 − P1)(1− P 2
1 )(1− P 2

2 )(1− P1P2)

=
σ2
E(−P1)(1− P 2

2 )

(P2 − P1)(1− P 2
1 )(1− P 2

2 )(1− P1P2)

= −
σ2
EP1

(P2 − P1)(1− P 2
1 )(1− P1P2)

. (B.1.5)

And analogously, the second weight results in

A2 = −
σ2
EP2

(P1 − P2)(1− P 2
2 )(1− P1P2)

= A∗
1.
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In addition, we can now also determine the real and imaginary parts of A1 and A2, for the AR(2)
process with two complex conjugated roots. First of all, consider the variance (Σ0):

Σ0 = A1 +A2 = A1 +A∗
1 = 2R(A1).

Applying the first argument of (B.1.4) results in weight A1’s real part, (and thus directly in
weight’s A2’s real part as well):

R(A1) =
Σ0

2
=

σ2
E(1 + P1P2)

2(1− P 2
1 )(1− P 2

2 )(1− P1P2)
. (B.1.6)

And the imaginary part equals the difference between A1 (see (B.1.5)) and R(A1) (see (B.1.6))
divided by i:

I(A1) =
1

i
(A1 −R(A1))

=
1

i

(
−

σ2
EP1

(P2 − P1)(1− P 2
1 )(1− P1P2)

−
σ2
E(1 + P1P2)

2(1− P 2
1 )(1− P 2

2 )(1− P1P2)

)
=

1

i

−2σ2
EP1(1− P 2

2 )− σ2
E(1 + P1P2)(P2 − P1)

2(P2 − P1)(1− P 2
1 )(1− P 2

2 )(1− P1P2)

=
1

i

−σ2
E
(
2P1 − 2P1P

2
2 + P2 − P1 + P1P

2
2 − P 2

1P2

)
2(P2 − P1)(1− P 2

1 )(1− P 2
2 )(1− P1P2)

=
1

i

−σ2
E
(
P1 − P1P

2
2 + P2 − P 2

1P2

)
2(P2 − P1)(1− P 2

1 )(1− P 2
2 )(1− P1P2)

=
1

i

−σ2
E ((P1 + P2)(1− P1P2))

2(P2 − P1)(1− P 2
1 )(1− P 2

2 )(1− P1P2)

=
1

i

(
−

σ2
E(P1 + P2)

2(P2 − P1)(1− P 2
1 )(1− P 2

2 )

)
. (B.1.7)

Since the real part of A1 (see (B.1.7)) and the imaginary part of A1 (see (B.1.7)) are rather
similar, the can be transformed into each other by the formula

I(A1) =
1

i

(
−(P1 + P2)(1− P1P2)

(P2 − P1)(1 + P1P2)
R (A)

)
(B.1.8)

and vice versa.

B.2 Real Part and Absolute Values for the Continuous Covariance
Function

Section 3.1 introduced the continuous CF γ(h), which becomes complex valued if at least one real
root is negative. To understand this phenomenon, the negative real root Pl is rewritten in the
representation

Pl = |Pl|eiπ ⇒ P
|h|
l = |Pl||h|eiπ|h|.

Unfortunately, the imaginary part of the exponential function eiπ|h| = cos(πh) + i sin(π|h|) for
h ∈ R does not necessarily disappear, since sin(πh) only equals zero for h ∈ Z0. The method of
using the root as a suitable basis for the CF, demands its adaption in such a way that γ(j) = Σj

for all j ∈ Z0, while never becoming complex-valued.
However, the result of an exponentiation of a negative real root with h ∈ (0, 1) is complex valued.
In Figure B.1 the real part, the imaginary part and the sum of both parts are shown for P1 = −0.8.
Since the imaginary part (green) never intersects with the discrete covariances (blue quadrates
with red filling), this option is omitted. Since the global maximum should be localized at lag h = 0



B.3. Power Spectral Density for the AR(1) and AR(2) Process 117

(as required by the conditions from section 2.6), the sum of the complex and real part (red) is not
a suitable CF as well. Concerning these three functions, only the real part perfectly reproduces the
discrete covariances while having its global maximum at h = 0. Therefore the real part is used as
a CF.
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Figure B.1: Different ways to deal with the complex covariance function: only
using the real part (blue), only using the imaginary part (green) or forming
the sum of both (red). The blue quadrates with red filling represent the
discrete covariances.

B.3 Power Spectral Density for the AR(1) and AR(2) Process

This work makes repeated use of the PSD of the AR(1) and AR(2) processes. Therefore, these are
here both explicitly derived, which is done by evaluating (3.2.1). For the AR(1), process we obtain

H2(ν) =
σ2
E

|1− α1e−i2πν |2

=
σ2
E

(1− α1e−i2πν)(1− α1ei2πν)

=
σ2
E

1− α1(e
−i2πν + ei2πν︸ ︷︷ ︸

2 cos(2πν)

) + α2
1(e

−i2πνei2πν︸ ︷︷ ︸
1

)

=
σ2
E

1− 2α1 cos(2πν) + α2
1

(1)
=

σ2
E

1− 2P1 cos(2πν) + P 2
1

. (B.3.1)

Since (3.2.2) provides that for the TVAR(1) process α1 = P1 is valid, this can be used in (1) to
change from the coefficient α1 to the root P1.
For the AR(2) process, the calculation of the PSD is considerably more challenging. However,
regardless of whether the roots are real-valued or they build a complex conjugated pair, the here
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derived PSD is valid. Using the coefficients α1 and α2, the spectrum can then be calculated as

H2(ν) =
σ2
E

|1− α1e−i2πν − α2e−i4πν |2

=
σ2
E

(1− α1e−i2πν − α2e−i4πν)(1− α1ei2πν − α2ei4πν)

(1)
= σ2

E{1− α1(e
−i2πν + ei2πν︸ ︷︷ ︸

2 cos(2πν)

)− α2(e
−i4πν + ei4πν︸ ︷︷ ︸

2 cos(4πν)

)...

+ α2
1(e

−i2πνei2πν︸ ︷︷ ︸
1

) + α2
2(e

−i4πνei4πν︸ ︷︷ ︸
1

)...

+ α1α2(e
−i2πνei4πν︸ ︷︷ ︸

ei2πν

+ ei2πνe−i4πν︸ ︷︷ ︸
e−i2πν︸ ︷︷ ︸

2 cos(2πν)

)}−1

=
σ2
E

1− 2α1 cos(2πν)− 2α2 cos(4πν) + α2
1 + α2

2 + 2α1α2 cos(2πν)
. (B.3.2)

In step (1), the brackets are multiplied and rearranged with according to the coefficients. This
representation facilitates the transition from the coefficients (α1 and α2) to the roots (P1 and P2)
(as shown in (3.2.3) and (3.2.4)):

H2(ν) = σ2
E{1− 2(P1 + P2) cos(2πν)...

+ 2P1P2 cos(4πν) + (P1 + P2)
2︸ ︷︷ ︸

P 2
1+2P1P2+P 2

2

+P 2
1P

2
2 ...

− 2(P1 + P2)P1P2 cos(2πν)}−1

= σ2
E{1− 2(P1 + P2) cos(2πν) + P 2

1 + P 2
2 ...

+ P1P2(2 + 2 cos(4πν)− 2(P1 + P2) cos(2πν) + P1P2)}−1.

Thus the AR(2) process’ spectrum can be calculated as the fraction

H2(ν)

=
σ2
E

1− 2(P1 + P2) cos(2πν) + P 2
1 + P 2

2 + P1P2(2 + 2 cos(4πν)− 2(P1 + P2) cos(2πν) + P1P2)
.

(B.3.3)

B.4 Fourier Transformation of the Continuous Covariance Func-
tion

In order to compute the FT of the continuous CF γ : R → R provided by

γ(h) =

p∑
k=1

AkP
|h|
k ,

the linearity of this transformation is first exploited in order to simplify the integral:

Γ(ν) : = F{γ(h)}(ν)

=

∫ ∞

−∞

p∑
k=1

AkPk
|h|e−i2πνhdh

(1)
=

p∑
k=1

∫ ∞

−∞
AkPk

|h|e−i2πνhdh

(2)
=

p∑
k=1

Ak

∫ ∞

−∞
Pk

|h|e−i2πνhdh. (B.4.1)
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sum and integral are exchanged, during the transformation (1). This is only possible if the sum
converges absolutely, which is the case (due to having a finite sum, also converging absolutely).
In (2), the linearity of the integration is used to extract the scalar Ak. For further analysis, the
(potentially complex-valued) root Pk is replaced by

Pk = rke
iφk , (B.4.2)

which describes the complex number Pk by a radius rk and an angle φk. If the radius is rep-
resented by an exponential function (rk = eln(rk)), the exponential functions can be combined:
Pk = eln(rk)+iφk . This way, the integral in the FT simplifies to:∫ ∞

−∞
Pk

|h|e−i2πνhdh =

∫ ∞

−∞
e(ln(rk)+iφk)|h|e−i2πνhdh

(1)
=

∫ 0

−∞
e(ln(rk)+iφk)(−h)e−i2πνhdh+

∫ ∞

0
e(ln(rk)+iφk)he−i2πνhdh

=

∫ 0

−∞
e(− ln(rk)+i(−φk−2πν))hdh+

∫ ∞

0
e(ln(rk)+i(φk−2πν))hdh

=

[
1

− ln(rk) + i(−φk − 2πν)
e(− ln(rk)+i(−φk−2πν))h

]0
−∞

...

+

[
1

ln(rk) + i(φk − 2πν)
e(ln(rk)+i(φk−2πν))h

]∞
0

.

For step (1), the integral is divided into two parts at h = 0. The absolute value function can be
eliminated by replacing |h| = −h for the integral covering the negative area, and |h| = h for the
integral covering the positive area.
Solving the integral, requires the identification of the limits of the antiderivatives. Note that the
fractions are not dependent on h, meaning that it is sufficient to determine the limits for the ex-
ponential functions.
For h = 0, one easily sees that the exponential function in both antiderivatives becomes 1. Regret-
tably, it is not as easy for the boundaries ±∞. By rewriting the exponential function as

e(ln(rk)+i(φk−2πν))h = rhke
i(φk−2πν)h,

it is possible to dissect this exponential function into the radius of the root Pk with rk < 1 and a
value (ei(φk−2πν)) laying on the unit circle in the complex plane. If h is increased, the value of rhi
shrinks, while the expression ei(φk−2πν)h always remains a value on the unit circle in the complex
plane. That means that the function e(ln(rk)+i(φk−2πν))h for h ∈ [0,∞] describes a spiral starting
at one and running towards zero at infinity. This is depicted in Figure (B.2). It should not go
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Figure B.2: Spiral motion of Pk
|h| in the complex plane (if Pk is complex valued).

unmentioned that the case of the real root embodies a special case of the spiral, with an angle



120 B. Continuous Covariance Function for Time Constant AR Processes

-1 -0.5 0 0.5 1

real part

-1

-0.5

0

0.5

1
im

a
g
in

a
ry

 p
a
rt

Figure B.3: Linear motion of Pk
|h| in

the complex plane (if Pk is positive and
real valued).
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Figure B.4: Back and forth motion of
Pk

|h| in the complex plane (if Pk is neg-
ative and real valued).

of zero. The same applies to the real negative root. But even when only using the real part, it
still runs against zero. These special cases are illustrated in Figure B.3 and Figure B.4. Since the
convergence behaviour is equal for all three cases, these insights help to solve the integral, which
results in∫ ∞

−∞
Pk

|h|e−i2πνhdh =

(
1

− ln(rk) + i(−φk − 2πν)
− 0

)
+

(
0− 1

ln(rk) + i(φk − 2πν)

)
=

1

− ln(rk) + i(−φk − 2πν)
− 1

ln(rk) + i(φk − 2πν)

=
1

(− ln(rk)− iφk)− i2πν)
− 1

(ln(rk) + iφk)− i2πν

(1)
=

1

(− ln(rk)− iφk)− i2πν
+

1

(− ln(rk)− iφk) + i2πν

=
(− ln(rk)− iφk + i2πν) + (− ln(rk)− iφk − i2πν)

(− ln(rk)− iφk)2 − (i2πν)2

=
−2(ln(rk) + iφk)

(ln(rk) + iφk)2 + (2πν)2

(2)
=

−2 ln(Pk)

(ln(Pk))2 + (2πν)2
. (B.4.3)

Note that the minus sign between the fractions has moved, in step (1), into the denominator of
the second fraction. Step (2) is caused by replacing ln(rk) + iφk with ln(Pk). This corresponds to
(B.4.2) (if the logarithm is applied on both sides). Combined with (B.4.1), this result yields the
FT of the continuous CF:

Γ(ν) =

p∑
k=1

Ak
−2 ln(Pk)

(ln(Pk))2 + (2πν)2
. (B.4.4)
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B.5 Convolution of the Continuous Covariance Function with a
Dirac Comb

The magic square in Figure 3.1 shows that the FT of the continuous CF Γ(ν) (see (B.4.4)) can
be transferred to the FT of the discrete CF H2(ν) (see (3.2.1)) by convolution with the DC. This
process is developed in five steps. The first step is shown in section B.5.1, and solves the convolution
including the DDF and results in an infinite sum. In B.5.2, the individual summands are explicitly
specified by a finite sum of integrals, which are in turn solved in section B.5.3. With the help of
these integrals, the sum of the results from the convolution is solved in section B.5.4. It should
be noted that section B.5.3, and B.5.4 refer only to real roots. Finally, section B.5.5
summarizes these steps and provides an outlook for the case of complex roots.

B.5.1 Elimination of the Dirac Delta Function

Since the DC or DDF is only implicitly represented as a distribution and has not been introduced
as an explicit function, the first goal should be to remove it from the calculation:

Γ(ν)~
∞∑

l=−∞
δ(ν − l)

(1)
=

∫ ∞

−∞
Γ(u)

∞∑
l=−∞

δ(u− (ν − l))du

(2)
=

∫ ∞

−∞
Γ(u)

∞∑
l=−∞

δ(u− ν + l)du

(3)
=

∫ ∞

−∞
Γ(u)

∞∑
m=−∞

δ(u− ν −m)du

(4)
=

∫ ∞

−∞
Γ(u)

∞∑
m=−∞

δ(u− (ν +m))du

(5)
=

∫ ∞

−∞

∞∑
m=−∞

Γ(u)δ(u− (ν +m))du

(6)
=

∞∑
m=−∞

∫ ∞

−∞
Γ(u)δ(u− (ν +m))du︸ ︷︷ ︸

(7)
=

∞∑
m=−∞

Γ(ν +m). (B.5.1)

Not all of the transformations (1)–(7) used here are self-explanatory and therefore call for further
elaboration. The transformation (1) is the definition of the convolution. However, the argument of
DDF is given as ν − l and therefore this argument must be assembled in brackets. The transfor-
mations (2)-(4) deal only with the argument of the DDF. Thus, the extra bracket mentioned above
is resolved in (2), which changes the sign of the parameter l. This change of sign is a hindrance
and is undone in (3). For this, l is substituted by −m, which actually causes the limits of the sum
to exchange places. However, this can be compensated by reversing the order of the summands
in such a way, that the same sum limits remains the same. In step (4), ν and l are combined in
brackets, so that they build one parameter, just as in step (1). In (5) and (6), the sequences in
the calculation are swapped. Specifically, this means that in (5), Γ(u) is integrated into the sum.
This is possible because Γ(u) is independent from the sum and can therefore be multiplied directly
by the individual summands. And in step (6), the sum and the integral are exchanged, which is
only possible if all the functions involved absolutely converge. Since both Γ(ν) and the DC are
Fourier transformed functions, and IFT requires absolutely convergent functions, this condition is
fulfilled. The purpose of all previous steps is to remove the DDF from the equation of (7). Here, it
is possible to use the property of the DDF of (2.15.1), but one has still to make sure to use (ν+m)
as one variable.
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B.5.2 Rewriting Γ(ν +m) as a Sum

In this section, the PSD of discrete CF Γ(ν +m) is rewritten in a way, that it can be replaced by
a sum of p summands. For this, we use the IFT:

Γ(ν +m)
(1)
=

∫ ∞

−∞
γ(h) e−i2πmhe−i2πνhdh

=

∫ ∞

−∞

︷ ︸︸ ︷
p∑

k=1

AkP
|h|
k e−i2πmhe−i2πνhdh (B.5.2)

(2)
=

p∑
k=1

∫ ∞

−∞
AkP

|h|
k e−i2πmhe−i2πνhdh

(3)
=

p∑
k=1

Ak

∫ ∞

−∞
P

|h|
k e−i2πmhe−i2πνhdh. (B.5.3)

The transformation (1) corresponds to the frequency shift of the IFT (see Buttkus 2000, p. 26
Table 2.2). For step (2), sum and integral are exchanged. This is possible, due to the circumstances
mentioned above, i.e. if all summands absolutely converge. Finally, since the weights Ak do not
depend on the integration variable h, it is possible to extract the weights Ak from the integral in
(3).

B.5.3 Solving the Integral (for Real Roots)

When solving the integral of (B.5.3), the integral

∫ 0

−∞
P−h
k e−i2πνhe−i2πmhdh+

∫ ∞

0
P h
k e

2πνhe−i2πmhdh =

∫ ∞

−∞
(Pke

2πν)|h|e−i2πmhdh (B.5.4)

will frequently appear. Its solution is known from (B.4.3), except that Pk has to be replaced by
Pke

−i2πν :

F{Pke
−2πν︸ ︷︷ ︸
P̄k

)|h|}(m) =

∫ ∞

−∞
P̄

|h|
k ei2πmhdh

=
−2 ln(P̄k)

P̄ 2
k + (2πm)2

=
−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2
. (B.5.5)

One has to be careful to see that, in this case, ν is no variable but a set value. The variable of the
FT has been replaced by m.
Return to the integral in (B.5.3). In order to solve this integral, the absolute value function has to
be removed, which is easily achieved by a case distinction:

∫ ∞

−∞
P

|h|
k e−i2πmhe−i2πνhdh =

∫ 0

−∞
P−h
k e−i2πmhe−i2πνhdh︸ ︷︷ ︸

:=I

+

∫ ∞

0
P h
k e

−i2πmhe−i2πνhdh︸ ︷︷ ︸
:=II

. (B.5.6)



B.5. Convolution of the Continuous Covariance Function with a Dirac Comb 123

Furthermore, it is necessary to separate the integral II into its real and its imaginary part:

∫ ∞

0
P h
k e−i2πνh e−i2πmhdh

=

∫ ∞

0
P h
k (
︷ ︸︸ ︷
cos (2πνh)− i sin(2πνh))e−i2πmhdh

(1)
=

∫ ∞

0
P h
k (cos (2πνh)− i sin(2πνh) + i sin(2πνh)− i sin(2πνh)︸ ︷︷ ︸

=0

)e−i2πmhdh

=

∫ ∞

0
P h
k (cos (2πνh) + i sin(2πνh)︸ ︷︷ ︸−2i sin(2πνh))e−i2πmhdh

=

∫ ∞

0
P h
k ( e(i2πνh) − 2i sin(2πνh))e−i2πmhdh

(2)
=

∫ ∞

0
P h
k e

(i2πνh)e−i2πmhdh− 2i

∫ ∞

0
P h
k sin(2πνh)e−i2πmhdh. (B.5.7)

Zero is added, in (1), with 0 = i sin(2πνh) − i sin(2πνh), while in (2), the linearity of the integral
is exploited to split the integral into two parts. If the solution of integral II as given in (B.5.7) is
used in (B.5.6), the real-valued integrals can be combined with the integral in (B.5.5):

∫ ∞

−∞
P

|h|
k e−i2πmhe−i2πνhdh

=

∫ 0

−∞
P−h
k e−i2πmhe−i2πνhdh+

∫ ∞

0
P h
k e

−i2πmhe−i2πνhdh

=

∫ 0

−∞
P−h
k e−i2πmhe−i2πνhdh+

∫ ∞

0
P h
k e

(i2πνh)e−i2πmhdh︸ ︷︷ ︸ −2i

∫ ∞

0
P h
k sin(2πνh)e−i2πmhdh

=

∫ ∞

−∞
(Pke

i2πν)|h|e−i2πmhdh −2i

∫ ∞

0
P h
k sin(2πνh)e−i2πmhdh

=
−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2
−2i

∫ ∞

0
P h
k sin(2πνh)e−i2πmhdh︸ ︷︷ ︸

:=III

.

(B.5.8)

Thus, solving the integral III in (B.5.8) served to calculate the integral in (B.5.3). The solution of
integral III demands the trigonometric representation e−i2πmh = cos(2πmh)− i sin(2πmh) and the
further separation of the integral:

∫ ∞

0
P h
k sin(2πνh)e−i2πmhdh =

∫ ∞

0
P h
k sin(2πνh)(cos(2πmh)− i sin(2πmh))dh

=

∫ ∞

0
P h
k sin(2πνh) cos(2πmh)dh︸ ︷︷ ︸

:=IV

−i

∫ ∞

0
P h
k sin(2πνh) sin(2πmh)dh︸ ︷︷ ︸

:=V

.

(B.5.9)
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The integral V can be easily solved by adding the infinite sum with index m (see (B.5.1)), albeit∑∞
m=−∞ should only be considered in section B.5.4:

∞∑
m=−∞

∫ ∞

0
P h
k sin(2πνh) sin(2πmh)dh

(1)
=

−1∑
m=−∞

∫ ∞

0
P h
k sin(2πνh) sin(2πmh)dh+ 0 +

∞∑
m=1

∫ ∞

0
P h
k sin(2πνh) sin(2πmh)dh

(2)
=

∞∑
m=1

∫ ∞

0
P h
k sin(2πνh) sin(2π(−m)h)dh+

∞∑
m=1

∫ ∞

0
P h
k sin(2πνh) sin(2πmh)dh

(3)
= −

∞∑
m=1

∫ ∞

0
P h
k sin(2πνh) sin(2πmh)dh+

∞∑
m=1

∫ ∞

0
P h
k sin(2πνh) sin(2πmh)dh

= 0. (B.5.10)

In this calculation, (1) makes use of the fact that a sum can be divided. In particular, the sum
is divided into negative values (m ∈ (−∞,−1]), positive values (m ∈ [1,∞)) and m = 0. Since
sin(2π0h) = 0, the summand with m = 0 is equal to 0. The performance of a substitution in (2),
with replacing m by −m, demands the subsequence inversion of the sum’s summands. For the
transformation (3), the linearity with respect to the sign of the sine function and the integral is
used. At the end, there remains only the calculation of the integral IV. This is done by representing
sine and cosine again as exponential functions:∫ ∞

0
P h
k sin(2πνh) cos(2πmh) dh

=

∫ ∞

0
P h
k

︷ ︸︸ ︷
ei2πνh − e−i2πνh

2i

︷ ︸︸ ︷
ei2πmh + e−i2πmh

2
dh

=
1

4i

∫ ∞

0
P h
k (e

i2πνh − e−i2πνh)(ei2πmh + e−i2πmh)dh

(1)
=

1

4i

[∫ ∞

0
P h
k e

i2πνhei2πmhdh+

∫ ∞

0
P h
k e

i2πνhe−i2πmhdh ...

−
(∫ ∞

0
P h
k e

−i2πνhei2πmhdh+

∫ ∞

0
P h
k e

−i2πνhe−i2πmhdh

)]
(2)
=

1

4i

[∫ ∞

0
P h
k e

i2πνhei2πmhdh+

∫ 0

−∞
P−h
k e−i2πνhei2πmhdh ... (B.5.11)

−
(∫ ∞

0
P h
k e

−i2πνhei2πmhdh+

∫ 0

−∞
P−h
k ei2πνhei2πmhdh

)]
. (B.5.12)

The penultimate step (1) not only the brackets are multiplied, but also the linearity of the inte-
gral function is used to divide the individual integral into four smaller integrals. Subsequently, a
substitution is performed in (2) in which h is exchanged by −h, and the boundaries of integration
have been reversed. Both, the substitution and the reversal of the integration boundaries, change
the sign of the integral. Since this sign has been changed twice, it remains the same. (B.5.11) and
(B.5.12) now contain the sum of (B.5.4). Now we find Pke

i2πν in the top line, and Pke
−i2πν in the

bottom line. And now, due to (B.5.5), the integrals can be exchanged by the fractions:∫ ∞

0
P h
k sin(2πνh)cos(2πmh)dh =

1

4i

[∫ ∞

−∞
(P h

k e
i2πνh)ei2πmhdh−

∫ ∞

∞
(P h

k e
−i2πνh)ei2πmhdh

]
=

1

4i

[
−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2
− −2(ln(Pk)− i2πν)

(ln(Pk)− i2πν)2 + (2πm)2

]
.
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Since the difference between a complex number and its complex conjugated counterpart yields the
imaginary part (I(.)) two times, the equation is equal to

1

4i
(2i)I

(
−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
=

1

2
I
(

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
. (B.5.13)

To conclude these chapters, the solution (B.5.10) of the integral IV and the solution (B.5.13) of
the integral V are inserted into the integral III (B.5.9):∫ ∞

−∞
P

|h|
k e−i2πmhe−i2πνhdh

=
−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2
− 2i

1

2
I
(

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
=

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2
− iI

(
−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
.

Thus, this formula represents the difference between a complex value and its imaginary part,
therefore only leaving the real part of the complex value:∫ ∞

−∞
P

|h|
k e−i2πmhe−i2πνhdh = R

(
−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
.

For the FT of the continuous CF (see (B.5.3)), the result is:

Γ(ν +m) =

p∑
k=1

AkR
(

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
. (B.5.14)

B.5.4 Dissolving the Sum (for Real Roots)

Solving the integral and inserting Γ(ν +m) from (B.5.14) in (B.5.1) results in

Γ(ν)~
∞∑

l=−∞
δ(ν − l) =

∞∑
m=−∞

p∑
k=1

AkR
(

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
.

Now, the infinite sum has to be solved. The first objective is to exchange the orders of the two
sums and the real part:

∞∑
m=−∞

p∑
k=1

AkR
(

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
(1)
=

p∑
k=1

∞∑
m=−∞

AkR
(

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
(2)
=

p∑
k=1

Ak

∞∑
m=−∞

R
(

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
(3)
=

p∑
k=1

AkR

( ∞∑
m=−∞

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
.

(B.5.15)

For step (1), the order of the sums is exchanged. This allows to extract the weights Ap as constants
from the inner sum in (2), and finally include the sum into R(.) in (3) (which is valid as R(a+ b) =
R(a) +R(b) ∀a, b ∈ C). Now, the sum can be solved individually without taking the real part or
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the sum with index k into account. This way, the sum can be solved:

∞∑
m=−∞

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

(1)
=

−1∑
m=−∞

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2
+

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2
+

∞∑
m=1

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

(2)
=

∞∑
m=1

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2
+

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2
+

∞∑
m=1

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

(3)
=

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2
+ 2

∞∑
m=1

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

(4)
=

1

(− ln(Pk)− i2πν)/2
+ 2

∞∑
m=1

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

(5)
=

1

(− ln(Pk)− i2πν)/2
+ 2

∞∑
m=1

22(− ln(Pk)− i2πν)/2

((ln(Pk) + i2πν)/2)222 + 22(πm)2

(6)
=

1

(− ln(Pk)− i2πν)/2
+ 2

∞∑
m=1

(− ln(Pk)− i2πν)/2

((ln(Pk) + i2πν)/2)2 + (πm)2

(7)
=

1

(− ln(Pk)− i2πν)/2
+ 2

(− ln(Pk)− i2πν)

2

∞∑
m=1

1

((ln(Pk) + i2πν)/2)2 + (πm)2
(B.5.16)

(8)
=

1 + Pke
i2πν

1− Pkei2πν
. (B.5.17)

(1) divides the sum into three parts: the negative values (m ∈ [−1,−∞), the positive values
(m ∈ [1,∞)), and m = 0. Since m is squared, the sumands for −m and m are the same and
will therefore get replaced for each other in (2). As a result, the sums are equal and can be
summarised in (3). After that, the first summand has to be put into the form 1

x by dividing the
fraction by the numerator (step (4)). In (5), for each summand the sum, [− ln(Pk) ± i2πν] is
replaced by 2[− ln(Pk) − i2πν]/2. This is done for the denominators as well as for the counters.
This representation allows the simplification of the fraction in (6), whereby 22 was reduced in the
nominator and in the denominator. Finally, in (7), the numerator is extracted from the sum.
Step (8) is quite technical and is shown here separately: In Abramowitz et al. 1964, p. 83, eq.
(4.5.12), the transformation between the coth(x) and cot(x) is represented by

coth(x) = i cot(ix).

In addition, the sum representation of the cot(x) (see Abramowitz et al. (1964, p. 75, eq.
(4.3.91))) is given as:

cot(x) = 1

x
+ 2x

∞∑
k=1

1

x2 − (kπ)2
.
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The combination of both sums results in the following sum representatin of coth(x):

coth(x) = i

(
1

ix
+ 2ix

∞∑
k=1

1

(ix)2 − (kπ)2

)

=
1

x
+ 2(−1)x

∞∑
k=1

1

(ix)2 − (kπ)2

=
1

x
+ 2(−1)x

∞∑
k=1

1

−x2 − (kπ)2

=
1

x
+ 2x

∞∑
k=1

1

x2 + (kπ)2
.

Using x = (− ln(Pk)− i2πν)/2 gives that (B.5.16) is equal to coth((− ln(Pk)− i2πν)/2). If coth(x)
is replaced by cosh(x)/ sinh(x), with

cosh(x) = ex + e−x

2
and sinh(x) = ex − e−x

2

(see: Abramowitz et al. (1964, p.83, eq. (4.5.1), (4.5.2) and (4.5.6))), it becomes visible that

coth(x) = ex + e−x

ex − e−x
=

ex(1 + e−2x)

ex(1− e−2x)
=

1 + e−2x

1− e−2x
.

Since x = (− ln(Pk)− i2πν)/2 is still valid, it follows:

coth((− ln(Pk)− i2πν)/2) =
1 + Pke

i2πν

1− Pkei2πν
,

which proves that the transformation (8) in (B.5.16) is valid.

B.5.5 Conclusion

Thus, the convolution of the continuous CF and the DC can be described by inserting (B.5.17) in
(B.5.15), yielding the function

Γ(ν)~
∞∑

l=−∞
δ(ν − l) =

p∑
k=1

AkR
(
1 + Pke

i2πν

1− Pkei2πν

)
for real-valued roots. Facilitating the division into the real and the imaginary part, requiring the
multiplication of the fraction with the complex conjugated value of the denominator divided by
itself:

1 + Pke
i2πν

1− Pkei2πν
=

1 + Pke
i2πν

1− Pkei2πν
1− Pke

−i2πν

1− Pke−i2πν

=
1 + Pke

i2πν − Pke
−i2πν − P 2

k (e
i2πνe−i2πν)

1− Pkei2πν − Pke−i2πν + Pk
2(ei2πνe−i2πν)

=
1 + 2iI

(
Pke

i2πν
)
− P 2

k

1− 2R(Pkei2πν) + Pk
2
. (B.5.18)

Now the fraction’s real part can be separated by removing the imaginary part from the numerator.
This result, combined with (B.5.15), provides the general solution of the convolution in cases where
all roots are real valued:

Γ(ν)~
∞∑

l=−∞
δ(ν − l) =

p∑
k=1

AkR

(
1 + 2iI

(
Pke

i2πν
)
− P 2

k

1− 2R(Pkei2πν) + Pk
2

)

=

p∑
k=1

Ak
1− P 2

k

1− 2R(Pkei2πν) + Pk
2
. (B.5.19)
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The first three subsections of this section are valid, even if the roots are complex valued. Starting
in (B.5.2), it is possible to divide the sum into complex conjugated pairs of roots and real-valued
roots:

Γ(ν +m) =

p∑
k=1

Ak

∫ ∞

−∞
P

|h|
k e−i2πmhe−i2πνhdh

=

2p1∑
k=1

Ak

∫ ∞

−∞
P

|h|
k e−i2πmhe−i2πνhdh︸ ︷︷ ︸

sum of the complex-valued roots

+

p∑
k=2p1+1

Ak

∫ ∞

−∞
P

|h|
k e−i2πmhe−i2πνhdh

︸ ︷︷ ︸
sum of the real-valued roots

.

The derivative from the section B.5.1 and B.5.2 apply for the sum of the real roots, while the
formula for the complex conjugated pairs is found in section B.6.2.

B.6 Comparison between the Sampled Continuous CF and the
Discrete CF for AR Processes of Order 1 and 2

This section demonstrates, that the FT of the CF Γ(ν) (see (B.4.4)) can be transferred to the FT
of the discrete CF H2(ν) (see (3.2.1)) by a convolution with the DC (see (B.5.19)). This happens
is done for two cases: first, in case of the AR(1) process, it provides the proof that the formulas
(B.5.19) and (B.3.1) are identical. And secondly, it also proves that this equality holds also for the
AR(2) process with two complex roots. Since, as mentioned before, each AR(p) process is a com-
position of AR(1) processes and AR(2) processes with two complex conjugate roots, it is sufficient
to only consider these two cases.

B.6.1 Comparison of the Spectra for the AR(1) Process

It is now intended to prove that the PSD of the AR(1) process (which is shown in (B.3.1)):

H2(ν) =
σ2
E

1− 2P1 cos(2πν) + P 2
1

. (B.6.1)

and (B.5.19) for order p = 1:

Γ(ν)~
∞∑

l=−∞
δ(ν − l) = A1

1− P 2
1

1− 2R(P1ei2πν) + P 2
1

(1)
= A1

1− P 2
1

1− 2P1 cos(2πν) + P 2
1

(2)
=

σ2
E

1− P 2
1

1− P 2
1

1− 2P1 cos(2πν) + P 2
1

=
σ2
E

1− 2P1 cos(2πν) + P 2
1

. (B.6.2)

are the same formula. Here, due to the fact that P1 is real-valued for the AR(1) process, (1) derives
from the equations R(P1e

i2πν) = P1 cos(2πν). For A1, equation (2) uses the weight calculated in
(B.1.3). Since (B.6.1) and (B.6.2) are the same, the equality for the AR(1) process is proven.
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B.6.2 Comparison of the Spectra for the AR(2) Process

The same can be shown for the AR(2) process with two complex conjugated roots (P1 = P ∗
2 ). Here,

the PSD of the AR(2) process is obtained by the means of (B.3.3):

H2(ν)

=
σ2
E

1− 2(P1 + P2) cos(2πν) + P 2
1 + P 2

2 + P1P2(2 + 2 cos(4πν)− 2(P1 + P2) cos(2πν) + P1P2)
.

(B.6.3)

In order to compare this function with the result of the convolution (Γ(ν) ~
∑∞

l=−∞ δ(ν − l)),
and since (B.5.19) only applies to real roots, the convolution has to be derived again for a pair of
complex conjugated roots starting from (B.5.2). The derivative is then divided into several steps.
As such, section B.6.2.1 shows how the integral can be transformed from integrals including complex
values to integrals including the distance r. Here r is the absolute value of the complex value. This
results in two integrals, which are respectively solved in the sections B.6.2.2 and B.6.2.3. Section
B.6.2.4 brings these integrals together. In the end the result is summarized in section B.6.2.5 and
compared with the PSD in (B.6.3).

B.6.2.1 Conversion into Integrals via Real Values

The roots P1 and P2 of a TVAR(2) process are replaced by

P
|h|
1 = r|h|eiφ|h| P

|h|
2 = r|h|ei−φ|h|. (B.6.4)

These are used in (B.5.2) with the intent to transform the integral. For all following integrals, the
complex values are replaced by the radius r, for which the integral can be solved the same way as
it was in the case of the real roots:

∞∑
m=−∞

∫ ∞

−∞

A1P
|h|
1︸ ︷︷ ︸

∈C

+A2P
|h|
2︸ ︷︷ ︸

∈C


︸ ︷︷ ︸

∈R

e−i2πmhe−i2πνhdh.

This leads us to in the first step of the transformation, which consists of the conversion of the sum
of a complex conjugate pair into a real number

A1P
|h|
1 +A2P

|h|
2

(1)
= A1P

|h|
1 +A∗

1(P
|h|
1 )∗

= 2R
(
A1P

|h|
1

)
(2)
= 2

(
R (A1)R

(
P

|h|
1

)
− I (A1) I

(
P

|h|
1

))
.

This transformation is achieved by using A2 = A∗
1 if P2 = P ∗

1 for (1), while taking advantage of
the fact that for two complex values c1, c2 R (c1c2) = R (c1)R (c2)−I (c1) I (c2) applies (see (2)).
The real and imaginary part of A1 have already been derived in (B.1.6) and (B.1.7). For the root,
on the other hand, P1 must be exchanged by (B.6.4):

R
(
r|h|eiφ|h|

)
= r|h| cos(φ|h|) and I

(
r|h|eiφ|h|

)
= r|h| sin(φ|h|).
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The next step removes the sine and cosine by replacing them with the exponential function.

∞∑
m=−∞

∫ ∞

−∞
2
(
R (A1) r

|h| cos(φ|h|)− I (A1) r
|h| sin(φ|h|)

)
e−i2πmhe−i2πνhdh

=

∞∑
m=−∞

∫ ∞

−∞
2

R (A1) r
|h|

︷ ︸︸ ︷
eiφ|h| + e−iφ|h|

2
−I (A1) r

|h|

︷ ︸︸ ︷
eiφ|h| − e−iφ|h|

2

 e−i2πmhe−i2πνhdh

(1)
=

∞∑
m=−∞

∫ ∞

−∞
R (A1) r

|h|(eiφ|h| + e−iφ|h|)e−i2πmhe−i2πνhdh...

−
∞∑

m=−∞

∫ ∞

−∞
I (A1) r

|h|(eiφ|h| − e−iφ|h|)e−i2πmhe−i2πνhdh

= R (A1)

∞∑
m=−∞

∫ ∞

−∞
r|h|(eiφ|h| + e−iφ|h|)e−i2πmhe−i2πνhdh...

− I (A1)
∞∑

m=−∞

∫ ∞

−∞
r|h|(eiφ|h| − e−iφ|h|)e−i2πmhe−i2πνhdh

(2)
= R (A1)

∞∑
m=−∞

(∫ ∞

−∞
r|h|eiφ|h|e−i2πmhe−i2πνhdh+

∫ ∞

−∞
r|h|e−iφ|h|e−i2πmhe−i2πνhdh

)
︸ ︷︷ ︸

:=I

...

− I (A1)

∞∑
m=−∞

(∫ ∞

−∞
r|h|eiφ|h|e−i2πmhe−i2πνhdh−

∫ ∞

−∞
r|h|e−iφ|h|e−i2πmhe−i2πνhdh

)
︸ ︷︷ ︸

:=II

. (B.6.5)

In step (1) the linearity of the sum and the integral are used to separate the part with R(A1)
from the part with I(A1). In order to arrive at the solution (2), the integral is split at the minus
sign, allowing the application of the transformations from above in the resulting integrals. The
advantage of this procedure is that the R(A1) and I(A1) are now outside the integral, while this
formula, due to r, also states a FT of a real-valued number, like in the case of the AR(1) process.

B.6.2.2 Solving Integral I

To solve integral I, the first exponential function (eiφ|h|) has to be removed. This allows to get
the same representation as in the AR(1) process, for which the integral has already been solved in
section B.5. This is done simultaneously for the pair of integrals in I:∫ ∞

−∞
r|h|eiφ|h|e−i2πmhe−i2πνhdh+

∫ ∞

−∞
r|h|e−iφ|h|e−i2πmhe−i2πνhdh

=

∫ 0

−∞
r|h|eiφ|h|e−i2πmhe−i2πνhdh+

∫ ∞

0
r|h|eiφ|h|e−i2πmhe−i2πνhdh...

+

∫ 0

−∞
r|h|e−iφ|h|e−i2πmhe−i2πνhdh+

∫ ∞

0
r|h|e−iφ|h|e−i2πmhe−i2πνhdh

(1)
=

∫ 0

−∞
r|h|e−iφhe−i2πmhe−i2πνhdh+

∫ ∞

0
r|h|eiφhe−i2πmhe−i2πνhdh...

+

∫ 0

−∞
r|h|eiφhe−i2πmhe−i2πνhdh+

∫ ∞

0
r|h|e−iφhe−i2πmhe−i2πνhdh

(2)
=
∫ 0
−∞ r|h|e−i2πmhe−i2π(ν+φ/(2π))hdh +

∫∞
0 r|h|e−i2πmhe−i2π(ν−φ/(2π))hdh ...

+
∫ 0
−∞ r|h|e−i2πmhe−i2π(ν−φ/(2π))hdh +

∫∞
0 r|h|e−i2πmhe−i2π(ν+φ/(2π))hdh .
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(1), makes use of eiφ|h| = eiφh if the integration boundaries are positive, and of eiφ|h| = e−iφh if
the integration boundaries are negative. Since the first exponential function no longer contains the
absolute value of h, it can be combined with e−i2πνh in (2).
Submerging the green or yellow-backed integrals together in pairs results in two integrals, which
have already been solved for the AR(1) process in section B.5. ν+ := ν + φ/(2π) and ν− :=
ν − φ/(2π) are defined for further editing. Using this notation, the sums can be transformed by
(B.5.19):

∞∑
m=−∞

∫ ∞

−∞
r|h|e−i2πmhe−i2πν+hdh︸ ︷︷ ︸ +

∞∑
m=−∞

∫ ∞

−∞
r|h|e−i2πmhe−i2πν−hdh︸ ︷︷ ︸

=
1− r2

1− 2R(rei2πν+) + r2
+

1− r2

1− 2R(rei2πν−) + r2

=
1− r2

1− 2r cos(2πν+) + r2
+

1− r2

1− 2r cos(2πν−) + r2

=
1− r2

1− 2r cos(2πν + φ) + r2
+

1− r2

1− 2r cos(2πν − φ) + r2

(1)
=

1− r2

(1− rei(2πν+φ))(1− re−i(2πν+φ))
+

1− r2

(1− rei(2πν−φ))(1− re−i(2πν−φ))
,

where the last transformation (1) follows from (B.5.18). Now (1 − r2) is excluded and the two
fractions are expanded to the same denominator:

(1− r2)
(1− rei(2πν−φ))(1− re−i(2πν−φ)) + (1− rei(2πν+φ))(1− re−i(2πν+φ))

(1− rei(2πν+φ))(1− re−i(2πν+φ))(1− rei(2πν−φ))(1− re−i(2πν−φ))
.

Multiplying the two brackets allows to simplify the numerator. This result is already known from
the derivative of (B.3.1):

(1− r2)
(1− 2r cos(2πν − φ) + r2) + (1− 2r cos(2πν + φ) + r2)

(1− rei(2πν+φ))(1− re−i(2πν+φ))(1− rei(2πν−φ))(1− re−i(2πν−φ))

= (1− r2)
2− 2r cos(2πν − φ)− 2r cos(2πν + φ) + 2r2

(1− rei(2πν+φ))(1− re−i(2πν+φ))(1− rei(2πν−φ))(1− re−i(2πν−φ))
.

And the cosine terms can be put together with the help of the addition theorems:

∞∑
m=−∞

(∫ ∞

−∞
r|h|eiφ|h|e−i2πmhe−i2πνhdh+

∫ ∞

−∞
r|h|e−iφ|h|e−i2πmhe−i2πνhdh

)
= (1− r2)

2− 4r cos(2πν) cos(φ) + 2r2

(1− rei(2πν+φ))(1− re−i(2πν+φ))(1− rei(2πν−φ))(1− re−i(2πν−φ))
. (B.6.6)

B.6.2.3 Solving Integral II

Continue with integral II. Here, the first part, equals the steps undertaken for integral I, only that
the addition turns into a subtraction:∫ ∞

−∞
r|h|eiφ|h|e−i2πmhe−i2πνhdh−

∫ ∞

−∞
r|h|e−iφ|h|e−i2πmhe−i2πνhdh

=
∫ 0
−∞ r|h|e−i2πmhe−i2πν+hdh +

∫∞
0 r|h|e−i2πmhe−i2πν−hdh ...

−
∫ 0
−∞ r|h|e−i2πmhe−i2πν−hdh −

∫∞
0 r|h|e−i2πmhe−i2πν+hdh .
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While we again join the integrals of the same colour, we solve them separately. First, the borders
of the first yellow integral are swapped:∫ 0

−∞
r|h|e−i2πmhe−i2πν+hdh

(1)
=

∫ 0

−∞
r−he−i2πmhe−i2πν+hdh

(2)
= −

∫ 0

∞
rh̄ei2πmh̄ei2πν

+h̄dh̄

(3)
=

∫ ∞

0
rh̄e−i2πmh̄ei2πν

+h̄dh̄. (B.6.7)

Thus, the integral boundaries are reversed by three steps: first, I replacing the absolute function in
(1), then substitute −h with h̄ (which involves a sign change for step (2)) and finally (3) exchange
the integration boundaries, which reverses the sign changes. Since both yellow-coloured integrals
now have the same boundaries, they can be solved together:(∫ ∞

0
rh̄e−i2πmh̄ei2πν

+h̄dh̄−
∫ ∞

0
r|h|e−i2πmhe−i2πν+hdh

)
(1)
=

∫ ∞

0
rh
(
ei2πmh − e−i2πmh︸ ︷︷ ︸) e−i2πν+hdh

=

∫ ∞

0
rh 2i sin(2πνh)e−i2πν+hdh

= 2i

∫ ∞

0
rh sin(2πνh)e−i2πν+hdh.

In (1) integrals not only have been contracted, but the same factors also have been isolated, leaving
only the difference in brackets. This integral is equal to the integral III of (B.5.8), which has been
calculated using (B.5.13). Thus,

2i

∫ ∞

0
rh sin(2πνh)e−i2πν+hdh = 2i

1

2
I
(

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
= iI

(
−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
.

Up to now, the infinite sum has been neglected for this integral. Since I(.) is a linear function with
respect to addition, the infinite sum of the imaginary part is equal to the imaginary part of the
sums. For this sum, the result has also already been calculated and can be found in (B.5.18). This
time, we are interested in the imaginary part:

iI

( ∞∑
m=−∞

−2(ln(Pk) + i2πν)

(ln(Pk) + i2πν)2 + (2πm)2

)
= iI

(
1 + 2iI

(
Pke

i2πν
)
− |Pk|2

1− 2R(Pkei2πν) + |Pk|2

)

= i
2I
(
Pke

i2πν
)

1− 2R(Pkei2πν) + |Pk|2
(1)
= i

2r sin(2πν + φ)

1− 2R(Pkei2πν) + |Pk|2
(2)
= i

2r sin(2πν + φ)

1− 2r cos(2πν + φ) + r2
. (B.6.8)

For the transformation (1), we use P1 = reiφ to merge the exponential functions eiφ and ei2πν

as above. The same happens in (2) with the denominator with the real part -here |P1| = r is
additionally replaced. In the end, the only thing missing is the green-backed integral, which can
be traced back to the yellow-backed one:∫ ∞

0
r|h|e−i2πmhe−i2πν−hdh−

∫ 0

−∞
r|h|e−i2πmhe−i2πν−hdh

= −
(
−
∫ ∞

0
r|h|e−i2πmhe−i2πν−hdh+

∫ 0

−∞
r|h|e−i2πmhe−i2πν−hdh

)
.
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The Integrals in the brackets are the same as the first ones that are marked in yellow, except that
v+ has been replaced by v−. This allows the sum and the integral to be solved directly by (B.6.8):∫ ∞

0
r|h|e−i2πmhe−i2πν−hdh−

∫ ∞

0
r|h|e−i2πmhe−i2πν−hdh = −i

2r sin(2πν − φ)

1− 2r cos(2πν − φ) + r2
. (B.6.9)

In order to solve the integral II, the partial results of (B.6.8) and (B.6.9) are added and expanded
to the same denominator:

i
2r sin(2πν + φ)

1− 2r cos(2πν + φ) + r2
− i

2r sin(2πν − φ)

1− 2r cos(2πν − φ) + r2

=
2ir sin(2πν + φ)

1− 2r cos(2πν + φ) + r2
− 2ir sin(2πν − φ)

1− 2r cos(2πν − φ) + r2

=
2ir sin(2πν + φ)(1− 2r cos(2πν + φ) + r2)− 2ir sin(2πν − φ)(1− 2r cos(2πν − φ) + r2)

(1− 2r cos(2πν + φ) + r2)(1− 2r cos(2πν − φ) + r2)

=
2ir sin(2πν + φ)(1− 2r cos(2πν + φ) + r2)− 2ir sin(2πν − φ)(1− 2r cos(2πν − φ) + r2)

(1− rei(2πν+φ))(1− re−i(2πν+φ))(1− rei(2πν−φ))(1− re−i(2πν−φ))
.

The nominator is the only part that is relevant in the following transformations. So, for reasons of
simplicity, the denominator is omitted. In the first step, we dissolve the brackets:

2r sin(2πν + φ)(1− 2r cos(2πν − φ) + r2) −2r sin(2πν − φ)(1− 2r cos(2πν + φ) + r2)

= −2r sin(2πν + φ)2r cos(2πν − φ) +2r sin(2πν + φ)(1 + r2)...

+2r sin(2πν − φ)2r cos(2πν + φ) −2r sin(2πν − φ)(1 + r2).

Summing up the left and right columns individually, allows to use the addition theorem for the
sine in the first column:

− 2r sin(2πν + φ)2r cos(2πν − φ) + 2r sin(2πν − φ)2r cos(2πν + φ)

= −4r2(sin(2πν + φ) cos(2πν − φ)− sin(2πν − φ) cos(2πν + φ))

= −4r2 sin((2πν + φ)− (2πν − φ))

= −4r2 sin(2φ)
= −8r2 sin(φ) cos(φ). (B.6.10)

We now also apply the addition theorem of the sine in the right column, but the other way around:

2r sin(2πν + φ)(1 + r2)− 2r sin(2πν − φ)(1 + r2)

= 2r(1 + r2) (sin(2πν + φ) − sin(2πν − φ))

= 2r(1 + r2)(
︷ ︸︸ ︷
sin(2πν) cos(φ) + cos(2πν) sin(φ)−(

︷ ︸︸ ︷
sin(2πν) cos(φ)− cos(2πν) sin(φ)))

= 4r(1 + r2) cos(2πν) sin(φ) (B.6.11)

Finally, the two parts (B.6.10) and (B.6.11) are combined into the numerator, which is inserted
back into the fraction, thus solving the integral II:

∞∑
m=−∞

(∫ ∞

−∞
r|h|eiφ|h|e−i2πmhe−i2πνhdh−

∫ ∞

−∞
r|h|e−iφ|h|e−i2πmhe−i2πνhdh

)
=

sin(φ)[−8r cos(φ) + (1 + r2)4r cos(2πν)]
(1− rei(2πν+φ))(1− re−i(2πν+φ))(1− rei(2πν−φ))(1− re−i(2πν−φ))

. (B.6.12)

B.6.2.4 Merging of the Integrals

Since integral I with solution (B.6.6) and integral II with solution (B.6.12) have the same denomi-
nator

1

(1− rei(2πν+φ))(1− re−i(2πν+φ))(1− rei(2πν−φ))(1− re−i(2πν−φ))
, (B.6.13)
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the two integrals in (B.6.5) are subtracted from each other by subtracting the numerators. So, for
reasons of simplicity, the denominator is omitted once more. Rephrasing (B.6.5) should show that
the numerator

R (A1) (1− r2)(2− 4r cos(2πν) cos(φ) + 2r2)

− I (A1) sin(φ)(1 + r2)

[
−8r cos(φ)

1 + r2
+ 4r cos(2πν)

]
(B.6.14)

is equal to σ2
E . Unfortunately, the numerator’s terms still contain the real and the imaginary part

of weight A1, and must therefore be rewritten by the functions of r and φ. For this purpose, I(A1)
is converted by (B.1.8) into R(A1):

I(A1) =
1

i

(
−(P1 + P2)(1− P1P2)

(P2 − P1)(1 + P1P2)
R (A)

)
=

1

i

(
− 2r cos(φ)(1− r2)

−2ir sin(φ)(1 + r2)
R (A)

)
= −2r cos(φ)(1− r2)

2r sin(φ)(1 + r2)
R (A)

= −cos(φ)(1− r2)

sin(φ)(1 + r2)
R (A) .

If I(A1) is now inserted in (B.6.14), the denominator of I(A1) is eliminated and R(A1)(1− r2) can
be excluded:

R (A1) (1− r2)

[
2− 4r cos(2πν) cos(φ) + 2r2 + cos(φ)

[
−8r cos(φ)

1 + r2
+ 4r cos(2πν)

]]
=R (A1) (1− r2)

[
2− 4r cos(2πν) cos(φ) + 2r2 − 8r cos2(φ)

1 + r2
+ 4r cos(2πν) cos(φ)

]
=R (A1) (1− r2)

[
2 + 2r2 − 8r cos2(φ)

1 + r2

]
=2R (A1) (1− r2)

[
1 + r2 − 4r cos2(φ)

1 + r2

]
. (B.6.15)

Now, R(A1) is changed from (B.1.6) to

R(A1) =
σ2
E(1 + P1P2)

2(1− P 2
1 )(1− P 2

2 )(1− P1P2)

=
σ2
E(1 + r2)

2(1− P 2
1 )(1− P 2

2 )(1− r2)
,

and inserted into (B.6.15) to finally obtain the result

σ2
E

1

(1− P 2
1 )(1− P 2

2 )
(1 + r2)

(
1 + r2 − 4r cos2(φ)

1 + r2

)
=σ2

E
1

(1− P 2
1 )(1− P 2

2 )

(
1 + r2 + r2 + r4 − 4r cos2(φ)

)
=σ2

E
1

(1− P 2
1 )(1− P 2

2 )

(
1 + 2r2 + r4 − 4r cos2(φ)

)
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for the numerator. By calculating

(1− P 2
1 )(1− P 2

2 )

= 1− P 2
1 − P 2

2 + P 2
1P

2
2

= 1− r2[cos(φ) + i sin(φ)]2 − r2[cos(φ)− i sin(φ)]2 + r4

= 1− r2[cos2(φ) + 2i cos(φ) sin(φ)− sin2(φ) + cos2(φ)− 2i cos(φ) sin(φ)− sin2(φ)] + r4

= 1− r2[2 cos2(φ)− 2 sin2(φ)] + r4

= 1− r2[2 cos2(φ)
︷ ︸︸ ︷
−2 + 2cos2(φ)] + r4

= 1− r2[4 cos2(φ)− 2] + r4

= 1 + 2r2 + r4 − 4r2 cos2(φ),

everything except σ2
E is eliminated from the numerator in (B.6.14). We are now only left to show

that (B.6.13) is equal to the denominator for the PSD of the discrete AR(2) process in (B.3.3):

(1− rei(2πν+φ))(1− re−i(2πν+φ))(1− rei(2πν−φ))(1− re−i(2πν−φ))

(1)
=(1− P1e

i2πν)(1− P2e
−i2πν)(1− P2e

i2πν)(1− P1e
−i2πν)

=1− (P1 + P2)(e
i2πν + e−i2πν)...

+ P 2
1 + P 2

2 + P1P2(e
i2πνe−i2πν + e−i2πν + ei2πν + ei2πνei2πν + e−i2πνe−i2πν)...

− P 2
1P2(e

−i2πν + ei2πν)− P1P
2
2 (e

i2πν + e−i2πν)...

+ P 2
1P

2
2

=1− 2(P1 + P2) cos(2πν)...
+ P 2

1 + P 2
2 + P1P2(2 + 2 cos(4πν))...

− P 2
1P2 cos(2πν)− P1P

2
2 cos(2πν)...

+ P 2
1P

2
2

=1− 2(P1 + P2) cos(2πν) + P 2
1 + P 2

2 + P1P2(2 + 2 cos(4πν)− (P1 + P2) cos(2πν) + P1P2).

(B.6.16)

In (1), the definitions: P1 = rei2πφ and P2 = re−i2πφ are used. Showing that the numerator can
be simplified to σ2

E and that the denominator can be simplified to (B.6.16) provides the result of
the convolution of the FT of the continuous CF Γ(ν) and the DC for a pair of complex conjugated
roots as:

Γ(ν)~
∞∑

l=−∞
δ(ν − l)

=
σ2
E

1− 2(P1 + P2) cos(2πν) + P 2
1 + P 2

2 + P1P2(2 + 2 cos(4πν)− (P1 + P2) cos(2πν) + P1P2)
.

(B.6.17)

B.6.2.5 Conclusion

The comparison of (B.6.17) and (B.6.3) verifies that both spectra are the same. This proves that
the FT of the convolution of the continuous CF (3.1.4) and the DC is the same function as the
PSD of the discrete AR(2) process.

B.7 Sign Changes of the Real Part of the Roots
This section shows how a pair of complex conjugated roots Pk k ∈ {1, 2} with a negative real
part are converted into a representation of roots P̄k with k ∈ {1, 2} and a positive real part.
Furthermore, it provides a demonstration of how the conversion changes the weights Ak for the
covariance function in (3.1.3) to new weights Āk.
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B.7.1 Alternative Representation of the Roots

Given P1 = −a+ ib and P2 = −a− ib, with a, b ∈ R+ as a complex conjugated pair of roots with
negative real parts, they can be rewritten as

P1 = −a+ ib and P2 = −a− ib

= (−1)(a− ib) = (−1)(a+ ib)

= eiπ (a− ib)︸ ︷︷ ︸ = eiπ (a+ ib)︸ ︷︷ ︸
= eiπ P̄2 = eiπ P̄1.

It follows that the roots P̄1 and P̄2 form a complex conjugated pair with positive real parts. In
addition, the new roots are as far away from the origin as P1 and P2, and thus lie again in the unit
circle. Moreover, the sign of the imaginary part also change. That means, if P1 and P̄1 describe
the roots with positive imaginary part, and P2 and P̄2 describe the roots with negative imaginary
part, then P̄1 arises from P2 and P̄2 from P1.

B.7.2 Consequences for the Coefficients of the Covariance Function

The transition from the roots P1 and P2 with negative real part to the roots P̄1 and P̄2 with positive
real part also affects the coefficients A1 and A2 of the covariance function (see (3.1.3)). (B.1.5) is
used to calculate the weights A1 and A2 from roots with negative real part. However, this time,
the roots are exchanged by P1 = −P̄2 and P2 = −P̄1:

A1 =
σ2
EP1

(P2 − P1)(1− P 2
1 )(1− P1P2)

=
σ2
E(−P̄2)

((−P̄1 − (−P̄2))(1− (−P̄2)2)(1− (−P̄2)(−P̄1))

=
(−1)σ2

E P̄2

(−1)(P̄1 − P̄2)(1− P̄ 2
2 )(1− P̄2P̄1)

=
σ2
E P̄2

(P̄1 − P̄2)(1− P̄ 2
2 )(1− P̄2P̄1)

= Ā2.

The same analogy applies to the derivation of A2 = Ā1.

B.8 Fourier Transformation of a Positive Definite Function multi-
plied by Cosine

Let f(h) be a positive definite function (F{f(h)}(ν) > 0 ∀ν ∈ R). If the function

g(h) := f(h) cos(a2πh)

is the product of f(h) and a non-shifted cosine with a ∈ R, then g(h) is again positive definite.
The proof for this is provided by the convolution theorem (see (2.12.3)). It leads to:

F{g(h)}(ν) = F{f(h) cos(a2πh)}(ν)
= F{f(h)}(ν)~ F{cos(a2πh)}(ν).

By using

F{cos(a2πh)}(ν) = 1

2
(δ(ν − a) + δ(ν + a))
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(see Buttkus 2000, p. 46, eq. (3.26)), the FT of g(h) can be calculated as

F{g(h)}(ν) = F{f(h)}(ν)~
[
1

2
(δ(ν − a) + δ(ν + a))

]
=

1

2
[F{f(h)}(ν)~ δ(ν − a) + F{f(h)}(ν)~ δ(ν + a)] .

With the help of the definition of the DDF (in (2.15.1)), the convolution can be replaced with

F{f(h)}(ν)~ δ(ν − a) =

∫ ∞

−∞
F{f(h)}(x)δ(x− (ν − a))dx

=F{f(h)}(ν − a),

which results in a shifted FT of f(h). Analogously, it follows that

F{f(h)}(ν)~ δ(ν + a)=F{f(h)}(ν + a).

Which means that F{g(h)}(ν) is half of the sum of two shifted positive functions, and therefore is
also positive.
Only for the sake of completeness, let us also look at the inverse transformation. By using a
frequency shift of IFT (see (2.12.5)), it follows that

F{f(h)}(a+ ν) = F{f(h)}(ν)ei2πah and F{f(h)}(ν − a) = F{f(h)}(ν)ei2π(−a)h.

By inserting these equations, we can see that

F−1

{
1

2
(F{f(h)}(ν − a) + F{f(h)}(ν + a))

}
(h)

=
1

2

[
F−1 {F{f(h)}(ν − a)} (h) + F−1 {F{f(h)}(ν + a)} (h)

]
=
1

2

[
F−1

{
F{f(h)}(ν)ei2πah

}
(h) + F−1

{
F{f(h)}(ν)e−i2πah

}
(h)
]

=
1

2

[
f(h)ei2πah + f(h)e−i2πah

]
=f(h)

ei2πah + e−i2πah

2︸ ︷︷ ︸
=f(h) cos(2πah)

is valid.

B.9 Determining the Real Part of Fractions with Complex De-
nominators

For (3.3.4), it is necessary to show that

R
(

P1

(P2 − P1)

1

(1− P 2
1 )

ln(P1)

(ln(P1))2 + (2πν)2

)
=

− ln(r) sin(φ)(1 + r2)− φ cos(φ)(1− r2)

2 sin(φ)[(1− r2 cos2(φ) + r2 sin2(φ))2 + (2r2 cos(φ) sin(φ))2][(ln(r)2 − φ2 + (2πν)2)2 + (2 ln(r)φ)2]
(B.9.1)

in cases of the roots from (3.3.2) and (3.3.3):

P1 = r(cos(φ) + i sin(φ)) and
P2 = r(cos(φ)− i sin(φ))

with r ∈ (0, 1), and φ ∈ (0, π). (B.9.2)
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To prove this, two steps are necessary: first, the imaginary part must be removed from the denom-
inator in each fraction, which is done in section B.9.1. The imaginary part can simply be removed
from a fraction of a numerator a and a real-valued denominator b:

R
(a
b

)
=

R(a)

b
.

As such, secondly, we only need the real part of the product of the numerators, which is determined
in section B.9.2. This will prove the construction statement (B.9.1).

B.9.1 Elimination of Imaginary Parts from the Denominators

To eliminate the imaginary part of a fraction’s denominator, the fraction is expanded by the
complex conjugate counterpart of the denominator. This was already done with the second and
third fractions on the left side of (B.9.1). In the case of the first fraction, there is no real part in
its denominator. Here it is suffices to multiply nominator and the denominator with i:

1. the first fraction P1
P2−P1

gives

P1

P2 − P1
=

r(cos(φ) + i sin(φ))
r(cos(φ)− i sin(φ))− r(cos(φ) + i sin(φ))

=
r(cos(φ) + i sin(φ))

r(cos(φ)− i sin(φ)− cos(φ)− i sin(φ))

=
cos(φ) + i sin(φ)

(cos(φ)− i sin(φ)− cos(φ)− i sin(φ))

=
cos(φ) + i sin(φ)

−i2 sin(φ)
(1)
=

− sin(φ) + i cos(φ)
2 sin(φ)

, (B.9.3)

where (1) arises from an expansion with 1 = i
i .

2. For the second fraction 1
1−P 2

1
, the real and the imaginary part must first be separated in the

denominator, in order to convert them into

1

1− P 2
1

=
1

1− r2(cos(φ) + i sin(φ))2

=
1

1− r2[cos2(φ) + 2i cos(φ) sin(φ)− sin2(φ)]

=
1

[1− r2 cos2(φ) + r2 sin2(φ)]− i[2r2 cos(φ) sin(φ)]
(1)
=

1− r2 cos2(φ) + r2 sin2(φ) + i[2r2 cos(φ) sin(φ)]
(1− r2 cos2(φ) + r2 sin2(φ))2 + (2r2 cos(φ) sin(φ))2

. (B.9.4)

In (1), an expansion of the fraction is done, witch is provided by multiplication of the nomi-
nator and the denominator with the complex conjugated of the denominator: 1−r2 cos2(φ)+
r2 sin2(φ) + i[2 cos(φ) sin(φ)]. This way, the denominator becomes real valued.

3. Before the third fraction can be expanded, the imaginary and the real part must again be
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separated from each other:

ln(P1)

(ln(P1))2 + (2πν)2
(1)
=

ln(eln(r)+iφ)

[ln(eln(r)+iφ)]2 + (2πν)2

=
ln(r) + iφ

[ln(r) + iφ]2 + (2πν)2

=
ln(r) + iφ

ln(r)2 + 2i ln(r)φ− φ2 + (2πν)2

=
ln(r) + iφ

[ln(r)2 − φ2 + (2πν)2] + i[2 ln(r)φ]

=
[ln(r) + iφ][ln(r)2 − φ2 + (2πν)2 − i2 ln(r)φ]

(ln(r)2 − φ2 + (2πν)2)2 + (2 ln(r)φ)2
. (B.9.5)

In this case -contrast to the other two fractions- the numerator can be simplified, leading to

[ln(r) + iφ][ln(r)2 − φ2 + (2πν)2 − i2 ln(r)φ]
= ln(r)3− ln(r)φ2 + ln(r)(2πν)2+2 ln(r)φ2 +i[ln(r)2φ− φ3 + φ(2πν)2−2 ln(r)2φ]
= ln(r)3+ ln(r)φ2 + ln(r)(2πν)2 +i[− ln(r)2φ− φ3 + φ(2πν)2]

= ln(r)[ln(r)2 + φ2 + (2πν)2] +i(−φ)[ln(r)2 + φ2 − (2πν)2]

= ln(r)[ln(r)2 + φ2 + (2πν)2] −iφ[ln(r)2 + φ2 − (2πν)2]. (B.9.6)

B.9.2 Multiplication of the Numerators

This section calculates the product of the numerators from the previous section B.9.1. First, we
multiply the numerators of (B.9.3) and (B.9.4):

(− sin(φ) + i cos(φ))
(
1− r2 cos2(φ) + r2 sin2(φ) + i[2r2 cos(φ) sin(φ)]

)
=− sin(φ){1− r2 cos2(φ) + r2 sin2(φ)} − 2r2 cos2(φ) sin(φ)...
+ i[cos(φ){1− r2 cos2(φ) + r2 sin2(φ)} − 2r2 cos(φ) sin2(φ)]

(1)
= − sin(φ){1−r2 cos2(φ) + r2 sin2(φ) + 2r2 cos2(φ)}...

+ i[cos(φ){1− r2 cos2(φ) + r2 sin2(φ)−2r2 sin2(φ)}]
=− sin(φ){1 + r2 cos2(φ)+ r2 sin2(φ)}...
+ i[cos(φ){1− r2 cos2(φ)−r2 sin2(φ)}]

=− sin(φ){1 + r2
(
cos2(φ) + sin2(φ)

)
}...

+ i[cos(φ){1− r2
(
cos2(φ) + sin2(φ)

)
}]

=− sin(φ){1 + r2}+ i cos(φ){1− r2}.

In (1), −2r2 cos2(φ) sin(φ) is moved into the curly brackets of the real part by being divided by
− sin(φ). Furthermore, −2r2 cos(φ) sin2(φ) is shifted into the curly brackets of the imaginary part
by being divided by cos(φ).
The result must now be multiplied by the nominator of the third fraction (which is shown in
(B.9.6)):

{− sin(φ)(1 + r2) + i cos(φ)(1− r2)}{ln(r)[ln(r)2 + φ2 + (2πν)2]− iφ[ln(r)2 + φ2 − (2πν)2]}
=− ln(r) sin(φ)(1 + r2)[ln(r)2 + φ2 + (2πν)2] + φ cos(φ)(1− r2)[ln(r)2 + φ2 − (2πν)2]

+ i
[
ln(r) cos(φ)(1− r2)[ln(r)2 + φ2 + (2πν)2]− φ sin(φ)(1 + r2)[ln(r)2 + φ2 − (2πν)2]

]
.
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Only the real part is simplified as, for our case, the imaginary part is irrelevant:

− ln(r) sin(φ)(1 + r2)[ln(r)2 + φ2 + (2πν)2] + φ cos(φ)(1− r2)[ln(r)2 + φ2 − (2πν)2]

(1)
= − ln(r) sin(φ)(1 + r2)[ln(r)2 + φ2] − ln(r) sin(φ)(1 + r2)(2πν)2 ...

+ φ cos(φ)(1− r2)[ln(r)2 + φ2] −φ cos(φ)(1− r2)(2πν)2

(2)
=
[
− ln(r) sin(φ)(1 + r2) + φ cos(φ)(1− r2)

]
[ln(r)2 + φ2]...

+
[
− ln(r) sin(φ)(1 + r2)− φ cos(φ)(1− r2)

]
(2πν)2. (B.9.7)

In (1), the brackets [ln(r)2+φ2+(2πν)2] and [ln(r)2+φ2−(2πν)2] are dissolved, whereby (ln(r)2+φ2)
is used as one variable. This allows to combine the terms with (ln(r)2 + φ2) and (2πν)2 in (2).
Dividing this result by the product of the three real denominators given by 2 sin(φ) from (B.9.3),
(1 − r2 cos2(φ) + r2 sin2(φ))2 + (2r2 cos(φ) sin(φ))2 from (B.9.4) and (ln(r)2 − φ2 + (2πν)2)2 +
(2 ln(r)φ)2 from (B.9.5), shows that equation (B.9.1) is correct. In addition, as (B.9.2) only consists
of quadratic terms and sin(φ) with φ ∈ (0, π), the denominator is positive for all its permitted
values.
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Appendix C

Time Variable AR Processes

C.1 Using Yule-Walker Equations to Derive Time Variable AR
Processes

In this chapter, the Y.-W. equations for TVAR processes are derived in the same way as in the
case of time stable AR processes cf. section 2.8. Let St and St−j be two states of the time series of
equation (4.1.1) with t, j ∈ Z and j ≥ 0 (thus t ≥ t− j). We need to obtain the covariance between
a value and its predecessors. The product of these two states can be calculated as

StSt−j = (α1(t)St−1 + α2(t)St−2 + ...+ αp(t)St−p + Et)St−j

= α1(t)St−1St−j + α2(t)St−2St−j + ...+ αp(t)St−pSt−j + EtSt−j . (C.1.1)

In addition, the coefficients αk(t) =
∑qk

l=0 β
(k)
l bl(t) are continuous functions represented as a linear

combination of basis functions as introduced in (4.1.2). These basis functions are deterministic, even
though they are variable in time. Since αk(t) are all deterministic, it follows that E{αk(t)} = αk(t).
Applying the expectation operator to both sides of the equation (C.1.1) yields

Σ−j(t) : = E{StSt−j}
= α1(t)E{St−1St−j}+ α2(t)E{St−2St−j}+ ...+ αp(t)E{St−pSt−j}+ E{EtSt−j}

= α1(t)
︷ ︸︸ ︷
Σ−j+1(t− 1)+α2(t)

︷ ︸︸ ︷
Σ−j+2(t− 2)+...+ αp(t)

︷ ︸︸ ︷
Σ−j+p(t− p)+E{EtSt−j}

=

{
α1(t)Σ1(t− 1) + α2(t)Σ2(t− 2) + ...+ αp(t)Σp(t− p) + σ2

E if j = 0

α1(t)Σ1−j(t− 1) + α2(t)Σ2−j(t− 2) + ...+ αp(t)Σp−j(t− p) else.
(C.1.2)

The two resulting equations are very similar to the Y.-W. equations for time stable AR processes
described in (2.8.2) and (2.8.3). To determine the covariance between an initial observation St

and a subsequent observation St+j , this time St is expanded by (4.1.1). So first the product is
determined:

St+jSt =(α1(t+ j)St+j−1 + α2(t+ j)St+j−2 + ...+ αp(t+ j)St+j−p + Et+j)St

=α1(t+ j)St+j−1St + α2(t+ j)St+j−2St + ...+ αp(t+ j)St+j−pSt + Et+jSt.

And then, we use the expectation operator to calculate the covariance between an observation and
some point in the future:

Σj(t) := E{St+jSt}
=α1(t+ j)E{St+j−1St}+ α2(t+ j)E{St+j−2St}+ ...+ αp(t+ j)E{St+j−pSt}+ E{Et+jSt}
=α1(t+ j)Σj−1(t) + α2(t+ j)Σj−2(t) + ...+ αp(t+ j)Σj−p(t) + E{Et+jSt}

=

{
α1(t)Σ−1(t) + α2(t)Σ−2(t) + ...+ αp(t)Σ−p(t) + σ2

E if j = 0

α1(t+ j)Σj−1(t) + α2(t+ j)Σj−2(t) + ...+ αp(t+ j)Σj−p(t) else.
(C.1.3)
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While equation (C.1.2) shows that the coefficients αl(t) of the time variable Y.-W. equations con-
cerning previous observations are all evaluated at time t, the coefficients of the time variable Y.-W.
equation for subsequent observations in (C.1.3) are all evaluated for different times depending on
the lag j. In contrast, the covariances change in (C.1.2) according to the value of j, while remaining
constant in (C.1.3). This means that the development of CF depends on whether the covariance
concern a state in the future or the past.

C.2 General Estimate of Time Variable AR Processes Gained from
Basis Functions

Given a sequence S = [S1,S2, ...,Sn] of n observations. Then, a TVAR process gained from basis
functions and order p

St︸︷︷︸+(−Et)︸ ︷︷ ︸ = [St−1 St−2 ... St−p

]
[1×p]

[
1b0(t) | 1b1(t) | ... | 1bq(t)

]
[p×pq]︸ ︷︷ ︸ β

yi + ei = Xi β (C.2.1)

can be estimated by a least-squares adjustment. To find the unknown parameters in the vector β
, the matrices and vectors in (C.2.1) must be created. The following scheme shows how to create
these matrices and vectors, as well as how to compute the adjustment’s results:

1. Setting up the observation vector y:

y = ST (p+ 1 : n) =
[
Sp+1 Sp+2 ... Sn

]T
. (C.2.2)

Since (C.2.1) and (4.1.1) cannot be established for the first p observations, y does not contain
them.

2. Constructing the design matrix X by the means of the observation equation (4.1.1):

(a) General Layout and calculation Simplification
In order to obtain the matrix X, the observation equations cf. (4.1.1) are used and
grouped according to the observations in y:

X =


X1

X2
...

Xn−p



=


[
Sp Sp−1 ... S1

] [
1b0(p+ 1) | 1b1(p+ 1) | ... | 1bq(p+ 1)

][
Sp+1 Sp ... S2

] [
1b0(p+ 2) | 1b1(p+ 2) | ... | 1bq(p+ 2)

]
...

...[
Sn−1 Sn−2 ... Sn−p

] [
1b0(n) | 1b1(n) | ... | 1bq(n)

]
 .

Notice, that the vectors containing the signal St with t ∈ {1, 2, ..., n−1} are n−p vectors
of the same length p. These vectors combined to a matrix yields the Toeplitz form:

T =


Sp Sp−1 ... S1

Sp+1 Sp ... S2
...

Sn−1 Sn−2 ... Sn−p

 . (C.2.3)

Each multiplication of T with one column of the blocks of the right part of X yields a
matrix vector product. By the means of using the vectors

bk :=
[
bk(p+ 1) bk(p+ 2) ... bk(n)

]T
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with k ∈ [0, q] and the definition of the matrix-vector-product

T � bk :=


Sp+1bk(p+ 1) Sp−1bk(p+ 1) ... S1bk(p+ 1)
Sp+1bk(p+ 2) Spbk(p+ 2) ... S2bk(p+ 2)

...
Sn−1bk(n) Sn−2bk(n) ... Sn−pbk(n)

 , (C.2.4)

X can be calculated by the simplified formula

X =
[
T � b0 T � b1 ... T � bq

]
. (C.2.5)

(b) Adjustments for Cases of variations in Parameter Numbers
As specified in (4.1.2), the number of parameters qk of the coefficients αk(t) may vary.
In this case, follow step 2a) to gain

q = max
k=1,...,p

(qk)

and then eliminate the unused β
(k)
l by deleting the corresponding columns from X. Note

that the parameter vector β follows no specific order. So, it is up to the structure of the
design matrix to ensure the correct assignment of the parameters to the values in β (see
Appendix C.3).

3. Approximation of the estimated parameters β̃: using the Gauss-Markov model (Koch 1999,
chapter 3) now allows to estimate the parameter vector and the corresponding cofactor matrix
can now be estimated:

β̃ = (XTX)−1XTy (C.2.6)
Q{β̃} = (XTX)−1. (C.2.7)

C.3 Design Matrices of Coefficients with Different Parameter Num-
bers

Suppose a TVAR(3) process is given, where the first coefficient is represented by two parameters
(q1 = 1), the second by three parameters (q2 = 2), and the third by two parameters (q3 = 1):

α1(t) = β
(1)
0 b0(t) + β

(1)
1 b1(t)

α2(t) = β
(2)
0 b0(t) + β

(2)
1 b1(t) + β

(2)
2 b2(t)

α3(t) = β
(3)
0 b0(t) + β

(3)
1 b0(t).

For a time series S = [S1,S2, ...,Sn] and a time vector t = [t1, t2, ..., tn], this demands to find the
best fitting parameters β

(k)
(l) . To do so, first of all, the Toeplitz matrix T is set up:

T =


S3 S2 S1

S4 S3 S2
...

Sn−1 Sn−2 Sn−3

 . (C.3.1)

Second the q + 1 = max{1, 2, 1} + 1 = 3 vectors in which the basis functions are located are
demanded. For this example, these are

b0 =


b0(t4)
b0(t5)

...
b0(tn)

 , b1 =


b1(t4)
b1(t5)

...
b1(tn)

 , and b2 =


b2(t4)
b2(t5)

...
b2(tn)

 . (C.3.2)
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Now, we use the toeplitz matrix of (C.3.1), as well as the basis vectors of (C.3.2), to form the
matrix vector product of (C.2.4). (C.2.5) then provides the initial design matrix

Xq=3 =
[
T � b0 T � b1 T � b2

]
with

T � b0 =


S3b0(t4) S2b0(t4) S1b0(t4)
S4b0(t5) S3b0(t5) S2b0(t5)

...
Sn−1b0(tn) Sn−2b0(tn) Sn−3b0(tn)

 ,

T � b1 =


S3b1(t4) S2b1(t4) S1b1(t4)
S4b1(t5) S3b1(t5) S2b1(t5)

...
Sn−1b1(tn) Sn−2b1(tn) Sn−3b1(tn)

 and

T � b2 =


S3b2(t4) S2b2(t4) S1b2(t4)
S4b2(t5) S3b2(t5) S2b2(t5)

...
Sn−1b2(tn) Sn−2b2(tn) Sn−3b2(tn)

 .

This results in the design matrix Xq=3, which is needed to estimate the parameter vector

βq=3 =
[
β
(1)
0 β

(2)
0 β

(3)
0 β

(1)
1 β

(2)
1 β

(3)
1 β

(1)
2 β

(2)
2 β

(3)
2

]T
.

However, since the task specifically demands to determine the parameter vector

β =
[
β
(1)
0 β

(2)
0 β

(3)
0 β

(1)
1 β

(2)
1 β

(3)
1 β

(3)
2

]T
,

we also need to delete some columns from Xq=3. For example, this can be achieved by multiplying
it with the matrix

G =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0


:
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βq=3 =
[

β
(1)
0 β

(2)
0 β

(3)
0

∣∣∣ β
(1)
1 β

(2)
1 β

(3)
1

∣∣∣ β
(1)
2 β

(2)
2 β

(3)
2

]T

Xq=3 =


S3b0(t4) S2b0(t4) S1b0(t4)
S4b0(t5) S3b0(t5) S2b0(t5)

...
Sn−1b0(tn) Sn−2b0(tn) Sn−3b0(tn)

∣∣∣∣∣∣∣∣∣
S3b1(t4) S2b1(t4) S1b1(t4)
S4b1(t5) S3b1(t5) S2b1(t5)

...
Sn−1b1(tn) Sn−2b1(tn) Sn−3b1(tn)

∣∣∣∣∣∣∣∣∣
S3b2(t4) S2b2(t4) S1b2(t4)
S4b2(t5) S3b2(t5) S2b2(t5)

...
Sn−1b2(tn) Sn−2b2(tn) Sn−3b2(tn)



β = βq=3 ·G

yX = Xq=3 ·G

β =
[

β
(1)
0 β

(2)
0 β

(3)
0

∣∣∣ β
(1)
1 β

(2)
1 β

(3)
1

∣∣∣ β
(3)
2

]T

X =


S3b0(t4) S2b0(t4) S1b0(t4)
S4b0(t5) S3b0(t5) S2b0(t5)

...
Sn−1b0(tn) Sn−2b0(tn) Sn−3b0(tn)

∣∣∣∣∣∣∣∣∣
S3b1(t4) S2b1(t4) S1b1(t4)
S4b1(t5) S3b1(t5) S2b1(t5)

...
Sn−1b1(tn) Sn−2b1(tn) Sn−3b1(tn)

∣∣∣∣∣∣∣∣∣
S2b2(t4)
S3b2(t5)

...
Sn−2b2(tn)

 .
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C.4 Estimation of Time Variable AR(1) and AR(2) Processes with
Linear Root Movements

Here, the Gauss-Markov model from Appendix C.2 is adapted to the restriction, that the roots
movement is linear (discussed in section 4.3). From (4.3.3), it follows that the basis functions form
a polynomial ring with degree p:

bk(t) = tk for k = 1, 2, ..., p and t = p+ 1, p+ 2, , ..., n.

Therefore, it is possible to describe the vectors of basis functions for monomials as

bk =
[
t(p+ 1)k t(p+ 2)k ... t(n)k

]
=: t�k.

These vectors, in combination with the Toeplitz matrices T from (C.3.1), allows the creation of the
design matrix Xq=p by using the approach as shown in Appendix C.3:

Xq=p =
[
T T � t T � t�2 ... T � t.�p

]
. (C.4.1)

Now, the unused parameters must be deleted. Since the sum of (4.3.3) has the lover bound zero
and the upper bound k, (the order of the coefficient,) all β(k)

l with l > k must be deleted in the
parameter vector:[

β
(1)
0 β

(2)
0 ... β

(p)
0 β

(1)
1 β

(2)
1 ... β

(p)
1 β

(1)
2 β

(2)
2 ... β

(p)
2 ... β

(p)
1 β

(p)
2 ... β

(p)
p

]T
︸ ︷︷ ︸

p elements
︸ ︷︷ ︸

p elements
︸ ︷︷ ︸

p elements
︸ ︷︷ ︸

p elementsy[
β
(1)
0 β

(2)
0 ... β

(p)
0 β

(1)
1 β

(2)
1 ... β

(p)
1 β

(2)
2 β

(3)
2 ... β

(p)
2 ... β

(p)
p

]T
. (C.4.2)︸ ︷︷ ︸

p elements
︸ ︷︷ ︸

p elements
︸ ︷︷ ︸

p−1 elements
︸ ︷︷ ︸
1 element

The same has to be done for the corresponding columns in the design matrix Xq=p in C.4.1. In
order to easily represent X after the elimination of the parameters, the notation

Tj := T (:, j : end) =


Sp−j Sp−j−1 ... S1

Sp−j−1 Sp−j−2 ... S2
...

Sn−j−1 Sn−j−2 ... Sn−p


︸ ︷︷ ︸

p−j elements

n− p elements (C.4.3)

is introduced. Thus, the design matrix can be represented via

X =
[
T T � t T2 � t�2 T3 � t�3 ... Tp � t�p

]
. (C.4.4)

This design matrix and the observation vector from (C.2.2) now allow the performance of an
adjustment. However, as discussed in section 4.3.2, additional restrictions still need to be applied
to the parameters in cases where the orders of the TVAR process are higher than one.
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C.4.1 Design matrix of the TVAR(1) Process

It now follows that the TVAR(1) process can be computed by using the design matrix

X =




S1

S2

S3
...

Sn−1



∣∣∣∣∣∣∣∣∣∣∣


S1

S2

S3
...

Sn−1

�


0
1
n
2
n...
1



 (C.4.5)

and the observation vector:

y =
[
S2 S3 ... Sn

]T
.

Since section 4.3.2 has also shown that no further restrictions are required for the TVAR(1) process
with linear root motion, the parameter estimation is done after the estimation of β by the means
of the Gauss-Markov model (see (C.2.6) and (C.2.7)).

Design and Condition Matrix of the TVAR(2) Process

In case of the TVAR(2) process, we append another block to X, while T becomes a matrix,

T =


S2 S1

S3 S2

S4 S3
...

...
Sn−1 Sn−2

 .

Then the design matrix changes into

X =




S2 S1

S3 S2

S4 S3
...

...
Sn−1 Sn−2



∣∣∣∣∣∣∣∣∣∣∣


S2 S1

S3 S2

S4 S3
...

...
Sn−1 Sn−2

�


0
1
n
2
n...
1



∣∣∣∣∣∣∣∣∣∣∣


S1

S2

S3
...

Sn−2

�


0
1
n2

22

n2

...
1



 , (C.4.6)

while the observation vector

y =
[
S3 S4 ... Sn

]T
is shortened by an additional observation. To include the restriction of (4.3.9),

Clin(β) = (β
(1)
0 )2β

(2)
2 + β

(2)
0 (β

(1)
1 )2 − β

(1)
0 β

(1)
1 β

(2)
1 + 4β

(2)
0 β

(2)
2 − (β

(2)
1 )2

!
= 0, (C.4.7)

a adjustment depending on the restriction is used (see Koch 1999, chapter 3.5.5). The linearized
condition matrix derives from the partial derivatives:

HT =
[
δClin(β)

δβ
(1)
0

δClin(β)

δβ
(2)
0

δClin(β)

δβ
(1)
1

δClin(β)

δβ
(2)
1

δClin(β)

δβ
(2)
2

]
=
[
2β

(1)
0 β

(2)
2 − β

(1)
1 β

(2)
1 (β

(1)
1 )2 + 4β

(2)
2 2β

(2)
0 β

(1)
1 −β

(1)
0 β

(1)
1 − 2β

(2)
1 (β

(1)
0 )2 + 4β

(2)
0

]
.

(C.4.8)

The estimation also requires the cofactor matrix of the parameters, which can be calculated by
referring to

Q{β̃} = (XTX)−1 (C.4.9)
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(see Koch 1999, p. 158, eq. 3.23). These matrices, allows the calculation of the new parameters
-which now also fulfils the (linearized) conditions,

β̂ = β̃ − Σ{β̃}H
(
HTΣ{β}H

)−1
HT β̃ − (C.4.10)

in the following step. These parameters fulfil the non-linear condition of C(β), as well as they
minimize the sum of the residuals v = y −Xβ. The cofactor matrix of the parameters is then

Q{β̂} = Q{β̃} − Σ{β̃}H(HTΣ{β̃}H)−1HTΣ{β̃}. (C.4.11)

(C.4.7) is a non-linear equation. In order to apply the restrictions to the parameters, this equation
must be linearized and computed iteratively until the non-linearized conditions of (C.4.7) are met.
To keep the linear equations of the Gauss-Markov model outside of the iterative part, the application
of the restrictions following a separate, second step. This way, only the restriction (i.e. the non-
linear equation,) is used within the iterations, while the solution of the linear part is computed in
the first step.

C.5 Extending the Time Variable AR(p) Process to a Time Vari-
able AR(p+1) or Time Variable AR(p+2) Process

The extension of a TVAR(p) estimate to a TVAR(p+1) or TVAR(p+2) estimate, requires a process
St with the TVAR(p) coefficients αk(t):

St =

p∑
k=1

αk(t)St−k + Et.

Next we need to expand the TVAR(p) estimate by the means of a TVAR(1) or TVAR(2) process.
This requires to first separate the residuals (represented as the white noise part of the TVAR
estimate,) and then to declare them as new observations:

S̄t := Et

= St −
p∑

k=1

αk(t)St−k. (C.5.1)

With the TVAR(1) estimate for the process S̄t, which is described by

S̄t = ᾱ1(t)S̄t−1 + Ēt,

the entire process can also be rewritten as:

St −
p∑

k=1

αk(t)St−k =ᾱ1(t)

(
St−1 −

p∑
k=1

αk(t− 1)St−1−k

)
+ Ēt

⇔St =

p∑
k=1

αk(t)St−k + ᾱ1(t)St−1 −
p∑

k=1

ᾱ1(t)αk(t− 1)St−1−k + Ēt

(1)
=

p∑
k=1

αk(t)St−k + ᾱ1(t)St−1 −
p+1∑
m=2

ᾱ1(t)αm−1(t− 1)St−m + Ēt

=(α1(t) + ᾱ1(t))St−1...

+

p∑
k=2

(αk(t)− ᾱ1(t)αk−1(t− 1))St−k... (C.5.2)

− ᾱ1(t)αp(t− 1)St−(p+1) + Ēt.
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When transforming, note that in step (1), m = k + 1 has been substituted. Furthermore, the
evaluation of αk(t − 1) demands specific care as its ’−1’ refers to the continuous index of the
time vector. For example, when transforming the time vector into the interval [0, 1], t must not be
transformed individually, but must be considered together with t−1. Nevertheless, this result shows
that by the means of TVAR(1) estimation for Et, a TVAR(p+1) process for St can be established.
In case a TVAR(2) process is more suitable for S̄t, then

S̄t = ᾱ1(t)S̄t−1 + ᾱ2(t)S̄t−2 + Ēt.

If S̄t is here replaced by (C.5.1), then

St −
p∑

k=1

αk(t)St−k

= ᾱ1(t)

(
St−1 −

p∑
k=1

αk(t− 1)St−1−k

)
+ ᾱ2(t)

(
St−2 −

p∑
k=1

αk(t− 2)St−2−k

)
+ Ēt.

A TVAR(p+2) process is obtained by separating St and by spifflicating the term:

St =

p∑
k=1

αk(t)St−k + ᾱ1(t)

(
St−1 −

p∑
k=1

αk(t− 1)St−1−k

)
...

+ ᾱ2(t)

(
St−2 −

p∑
k=1

αk(t− 2)St−2−k

)
+ Ēt

=

p∑
k=1

αk(t)St−k + ᾱ1(t)St−1 −
p∑

k=1

ᾱ1(t)αk(t− 1)St−1−k...

+ ᾱ2(t)St−2 −
p∑

k=1

ᾱ2(t)αk(t− 2)St−2−k + Ēt

=

p∑
k=1

αk(t)St−k + ᾱ1(t)St−1 −
p+1∑
m=2

ᾱ1(t)αm−1(t− 1)St−m...

+ ᾱ2(t)St−2 −
p+2∑
m=3

ᾱ2(t)αm−2(t− 2)St−m + Ēt

=(α1(t) + ᾱ1(t))St−1...

+ (α2(t)− ᾱ1(t)α1(t− 1) + ᾱ2(t))St−2...

+

p∑
k=3

(αk(t)− ᾱ1(t)αk−1(t− 1)− ᾱ2(t)αk−2(t− 2))St−k... (C.5.3)

+ (−ᾱ1(t)αp(t− 1)− ᾱ2(t)αp−1(t− 2))St−(p+1)...

− ᾱ2(t)αp(t− 2)St−(p+2) + Ēt.

The transformations are done in the same way as described for the case of the TVAR(1) process.

C.6 Composition Options of the TVAR Process Estimate
In the case of computing a TVAR(p) process by the successive estimating TVAR(1) and TVAR(2)
processes, the order of these processes is essential. This is shown by the two examples in this
chapter. Therefore, we use the time series

S =
[
S1 S2 S3 ... Sn

]T
.

to estimate TVAR(p) processes successive by using different combinations of TVAR(1) and TVAR(2)
processes, and compare the results.
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In addition, to distinguish between the estimate of a TVAR(1) and a TVAR(2) process. Thus,
the coefficients of a TVAR(1) estimate are represented by θk(t), and the coefficients of a TVAR(2)
estimate by ϑk(t).

C.6.1 Iterative Estimation of a TVAR(2) Process with two Real Valued Roots

There are two ways to realize a TVAR(2) process consisting of two real roots when using successive
estimation: directly via a TVAR(2) process with two real-valued roots, and on the other hand via
two consecutive TVAR(1) estimates. In the first case, the model

St = ϑ1(t)St−1 + ϑ2(t)St−2 + Et ∀t > 2 (C.6.1)

is set up and solved. To replace the coefficients ϑk(t) by the roots of the CP Pk(t), (4.3.1) can be
used to obtain

ϑ1(t) = P1(t) + P2(t) and ϑ2(t) = −P1(t)P2(t).

Inserting this result in (C.6.1) gives

St = (P1(t) + P2(t))St−1 − P1(t)P2(t)St−2 + Et ∀t > 2. (C.6.2)

The case of the TVAR(1) estimation demands a two-step approach; i.e. first estimate the TVAR(1)
process

St = θ1(t)St−1 + Et ∀t > 1,

and then constructing the time series

S̄t := Et = St − θ1(t)St−1 (C.6.3)

by the means of (C.5.1). For this time series, a TVAR(1) process with coefficient θ̄1(t) is estimated:

S̄t = θ̄1(t)S̄t−1 + Ēt ∀t > 2.

Exchanging S̄t back to St − θ1(t)St−1 (see C.6.3) provides the representation

St − θ1(t)St−1 = θ̄1(t) (St−1 − θ1(t− 1)St−2) + Ēt.

To change this equation into the shape of a TVAR(2) process, St is separated and the factors of
St−1 and St−2 are separately combined:

St =θ1(t)St−1 + θ̄1(t) (St−1 − θ1(t− 1)St−2) + Ēt
=
(
θ1(t) + θ̄1(t)

)
St−1 − θ̄1(t)θ1(t− 1)St−2 + Ēt ∀t > 2. (C.6.4)

Since the root motions are retained in the iterative procedure for each iteration it applies that

P1(t) = θ1(t) and P2(t) = θ̄1(t),

meaning that it follows from (C.6.4) that

St = (P1(t) + P2(t))St−1 − P1(t− 1)P2(t)St−2 + Ēt ∀t > 2. (C.6.5)

The result of (C.6.5) can also be found in Kamen 1988, p. 267, eq.(11)–(12). Since the first
coefficient is only P1(t) and not P1(t − 1), the direct comparison with (C.6.2) shows that these
results are not only different, but, since P1(t) and P1(t−1) appear together, that they can also not
be translated into each other by a time shift in the root P1(t).
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C.6.2 The Successive Estimation of a TVAR(3) Process

There are three cases to represent a TVAR(3) process by TVAR(1) and TVAR(2) processes:

1. by successive estimation of three TVAR(1) processes,

2. by a TVAR(1) process followed by a TVAR(2) process estimation or

3. vice versa, first the TVAR(2) and then the TVAR(1) estimation.

That the first case differs from the following two is illustrated in section C.6.1. We now turn our
attention to the second and third case, which, as we will show, also differ. For this purpose, the
resulting TVAR(3) processes are explicitly set up and then compared to both estimation strategies.
When looking at the second possibility, it is apparent that, as in section C.6.1, a TVAR(1) process
is estimated. Since these steps are identical, the same time series (S̄t) of (C.6.3) is obtained. This
time series is now used to estimate a TVAR(2) process:

S̄t = ϑ̄1(t)S̄t−1 + ϑ̄2(t)S̄t−2 + Ēt ∀t > 3.

In this TVAR(2) process, S̄t is again replaced by (C.6.3) to get

St − θ1(t)St−1 = ϑ̄1(t) (St−1 − θ1(t− 1)St−2) + ϑ̄2(t) (St−2 − θ1(t− 2)St−3) + Ēt,

which is then converted into the TVAR(3) process

St =θ1(t)St−1 + ϑ̄1(t) (St−1 − θ1(t− 1)St−2) + ϑ̄2(t) (St−2 − θ1(t− 2)St−3) + Ēt
=
(
θ1(t) + ϑ̄1(t)

)
St−1 +

(
ϑ̄2(t)− ϑ̄1(t)θ1(t− 1)

)
St−2 − ϑ̄2(t)θ1(t− 2)St−3 + Ēt ∀t > 3.

(C.6.6)

Since the roots of the successively estimated TVAR(3) process coincide with the roots of the
estimated TVAR(1) and TVAR(2) process –we still needs to determine the roots of the CP of the
TVAR(3).
The third possibility requires the same transformations, only the other way around. Fortunately,
the method to estimate the TVAR(2) process by the means of observations is exactly the same as
the one used for the second case in section C.6.1. The correlating time series can thus be computed
via:

S̄t := St − ϑ1(t)St−1 − ϑ2(t)St−2 ∀t > 2. (C.6.7)

For this time series, we estimate a TVAR(1) process

S̄t = θ̄1(t)S̄t + Ēt ∀t > 3.

As in the second case, S̄t is replaced by (C.6.7):

St − ϑ1(t)St−1 − ϑ2(t)St−2 = θ̄1(t) (St−1 − ϑ1(t− 1)St−2 − ϑ2(t− 1)St−3) + Ēt.

To get the representation of the TVAR(3) process, we move −(ϑ1(t)St−1 + ϑ2(t)St−2) to the other
side and the simplify the expression, which results in

St =ϑ1(t)St−1 + ϑ2(t)St−2 + θ̄1(t) (St−1 − ϑ1(t− 1)St−2 − ϑ2(t− 1)St−3) + Ēt
=
(
ϑ1(t) + θ̄1(t)

)
St−1 +

(
ϑ2(t)− θ̄1(t)ϑ1(t− 1)

)
St−2 − θ̄1(t)ϑ2(t− 1)St−3 + Ēt ∀t > 3.

(C.6.8)

The comparison between the coefficients of (C.6.6) and (C.6.8) shows that a shift in time does not
work to convert them into each, which means that they are also two completely different TVAR(3)
processes.
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C.7 The AIC for Time Variable AR Processes
Section 2.18 shows that the AIC consists of several components that need to be adapted according
to the application in question. By inserting (2.18.1) in (2.18.2), we gain

AIC = ln
(

eTe

#obs

)
+

2(#param + 1)

#obs
(C.7.1)

with eTe = (y − ỹ(φ))T (y − ỹ(φ)) as the square sum of the residuals.

C.7.1 AIC for TVAR Processes with Polynomial Coefficients

In this section, we develop the AIC for the TVAR estimate with the design matrix of (C.4.4),
the parameter vector (C.4.2) and the observation vector (C.2.2). Note that, due to the lack of
restrictions, –like the one for the TVAR(2) process with linear root motion (see (C.4.7))– this
estimate does not necessarily result in linear root movements. To accommodate the AIC of (C.7.1)
for TVAR processes, it is sufficient to adjust the number of observations (#obs) and number of
parameters (#param).
Note that the term ’number of observations’ is here somewhat misleading. Since this number is
not about the number of observations (n) itself, but about the length of the observation vector y.
In section C.2, it is shown that this vector does not contain the first p elements, so:

#obs = n− p.

#param is the length of the parameter vector of (4.1.6). In Contrast to the time stable case, where
the number of parameters is equal to the order of the AR process, the number of parameters in
case of a TVAR estimation, is two (β(1)

0 and β
(1)
1 ) if the coefficient is α1(t), and increases by one

with each order, meaning that αk(t) consists of k + 1 parameters (cf. (4.3.3)). Thus, a TVAR(p)
process includes

#param = 2 + 3 + 4 + ...+ (p+ 1) =

p+1∑
k=2

k

parameters. It is further possible to simplify this sum by creating the Gaussian sum formula
(
∑p+1

k=1 k = (p+1)(p+2)
2 , see Bronstein et al. 2006, p. 19, eq. (1.55)). Therefore it is necessary to

expanding the equation with 0 = 1− 1:

#param = −1 + 1 +

p+1∑
k=2

k︸ ︷︷ ︸
= −1 +

p+1∑
k=1

k

= −1 +
(p+ 1)(p+ 2)

2
(C.7.2)

= −2

2
+

p2 + 3p+ 2

2

=
p2 + 3p

2
. (C.7.3)

Now that the number of observations and the number of parameters are known, (C.7.1) can be
expressed using (C.7.2) for the estimation of the parameters according to section 4.3.1:

AIC = ln
(

eTe

n− p

)
+

(p+ 1)(p+ 2)

n− p
.
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The computation of the AIC was undertaken under the assumption that

2

(
p2 + 3p

2
+ 1

)
= 2

p2 + 3p+ 2

2
= (p+ 1)(p+ 2)

is valid.

C.7.2 AIC for Successively Estimated TVAR Processes with Linear Root Mo-
tions

As described in Section 4.3.3, TVAR(p) processes can be estimated by the successive estimation
of TVAR(1) and TVAR(2) processes. However, in this case, we are confronted with a different
number of parameters. Using a TVAR(1) process, results in two additional parameters for every
estimation. Using a TVAR(2) process results in five parameters and one additional restriction.
This restriction, however allows to express one parameter by a linear combination of the others. In
this case:

β
(2)
1 =

√
(β

(1)
0 )2β

(2)
2 + β

(2)
0 (β

(1)
1 )2 − β

(1)
0 β

(1)
1 β

(2)
1 + 4β

(2)
0 β

(2)
2 .

This results in 5 − 1 = 4 additional parameters for the two complex conjugated roots, which
corresponds to two parameters per order (just like in the TVAR(1) process). Thus, regardless of
the choice of order, #param = 2p applies, whereby the AIC can be represented in a simplified way
as

AIC = ln
(

eTe

n− p

)
+

2(2p+ 1)

n− p
.

C.8 Conditions for Quadratic Root Movements for the TVAR(2)
Process Estimation

To ensure that the root motion of a TVAR(2) process follows a quadratic polynomial, the restriction√(
α1(t)

2

)2

+ α2(t)
!
= f1 + f2t+ f3t

2 (C.8.1)

must be fulfilled. Because of (4.5.1), the TVAR coefficients

α1(t) = β
(1)
0 + β

(1)
1 t+ β

(1)
2 t2 and α2(t) = β

(2)
0 + β

(2)
1 t+ β

(2)
2 t2 + β

(2)
3 t3 + β

(2)
4 t4 (C.8.2)

apply. Inserting the coefficients into the restriction (C.8.1) and squaring both sides, provides aa
polynomial of degree four. This way, the root in (C.8.2) vanishes. In addition, α1(t) and α2(t) are
replaced by (C.8.2), simplifying the term:(

β
(1)
0 + β

(1)
1 t+ β

(1)
2 t2

2

)2

+ β
(2)
0 + β

(2)
1 t+ β

(2)
2 t2 + β

(2)
3 t3 + β

(2)
4 t4

=
(β

(1)
0 )2

4
+

β
(1)
0 β

(1)
1

2
t+

β
(1)
0 β

(1)
2

2
t2 +

(β
(1)
1 )2
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=
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+
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+
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+
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t4. (C.8.3)
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The right side in (C.8.2) is simply squared:

(f1 + f2t+ f3t
2)2 = f2

1 + 2f1f2t+ (2f1f3 + f2
2 )t

2 + 2f2f3t
3 + f2

3 t
4. (C.8.4)

The variables f1 and f3 can be determined directly by comparing the coefficients of the monomials
t0 and t4 provided by (C.8.3) and (C.8.4):

f2
1 =

(β
(1)
0 )2

4
+ β

(2)
0 and f2

3 =
(β

(1)
2 )2

4
+ β

(2)
4 . (C.8.5)

Now, there are three terms, and one of them has to be selected to determine f2. Here, we use
the monomials of (C.8.3) and (C.8.4) with the basis t are to determine f2. Since only f2

1 can be
determined by C.8.5, the sign of f1 is undetermined. To circumvent this problem, we compute f2

2

instead of f2:

2f1f2 =
β
(1)
0 β

(1)
1

2
+ β

(2)
1

=
β
(1)
0 β

(1)
1 + 2β

(2)
1

2

⇒ f2 =
β
(1)
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(1)
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(2)
1

4f1

⇒ f2
2 =

(β
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(2)
1 )2

16f2
1

.

By inserting (C.8.5) for f2
1 , it follows that

f2
2 =

(β
(1)
0 β

(1)
1 + 2β

(2)
1 )2

16

(
(β

(1)
0 )2

4 + β
(2)
0

)
=

(β
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1 + 2β

(2)
1 )2

4((β
(1)
0 )2 + 4β

(2)
0 )

. (C.8.6)

The analogous transformation of the fourth term (the one including a monomial with the basis t3)
in (C.8.3) and (C.8.4) yields

f2
2 =

(β
(1)
1 β

(1)
2 + 2β

(2)
3 )2

16

(
(β
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2 )2
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=
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4 )

. (C.8.7)

By equating the formulas for f2
2 of (C.8.6) and (C.8.7), the restriction
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0 β
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1 )2
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0 )2 + 4β

(2)
0 )

!
= 0 (C.8.8)

is obtained, which provides the first of two restrictions for the parameters for quadratic root motion
of the TVAR(2) process. In the transformation to (1), both sides of the equation are multiplied
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by 4((β
(1)
0 )2 + 4β

(2)
0 )((β

(1)
2 )2 + 4β

(2)
4 ). The second restriction results again from a comparison of

(C.8.3) with (C.8.4), especially from the coefficient comparison of the monomials with the basis t2:

2f1f3 + f2
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=
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2
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2
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4
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2 − f2

2 .

Again, we are forced with the problem of the unknown sign of f1 and f3, and again both sides of
the equation are squared to obtain a unique solution:

4f2
1 f

2
3

!
=

(
β
(1)
0 β

(1)
2

2
+

(β
(1)
1 )2

4
+ β

(2)
2 − f2

2

)2

⇔4f2
1 f

2
3 −

(
β
(1)
0 β

(1)
2

2
+
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Using f2
1 , and f2

3 from (C.8.5) and f2
2 from (C.8.6) results in the restriction:

4

(
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4
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4
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+

(β
(1)
1 )2

4
+ β
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(C.8.9)

Altogether, this means that this section provides the development of the conditions (C.8.8) and
(C.8.9), which represent the sufficient conditions for the roots of a TVAR(2) process possessing a
quadratic track over time.

C.9 Transforming q(t) and r(t) from the TVAR(3) Estimation into
Polynomials

In this section, the auxiliary functions q(t) and r(t) (that arise in the TVAR(3) estimation in section
4.5.2) are rewritten as polynomials. In order to do so, the auxiliary values (2.17.3) and (2.17.4) are
converted into functions, by replacing ci by −αi(t):

r(t) =
1

6
(α1(t)α2(t) + 3α3(t))−

(
−α1(t)

3

)3

=
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q(t) =
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3
−
(
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3
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3
−
(
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3
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.
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Using the time variable coefficients of (4.5.4), (4.5.5) and (4.5.6), this can be rewritten as polyno-
mials. Thus r(t) provides a polynomial degree three:
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and q(t) results in a polynomial of degree two:
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C.10 Conditions for Linear Root Movement when using Direct
TVAR(3) Estimation

In order to fulfil the two restrictions (4.5.7) and (4.5.8) for the direct estimation of a TVAR(3)
processes with linear roots (see section 4.5.2), the conditions first demands rephrasing. Because of
(2.17.5) and (2.17.6),

s1(t)s2(t) = −q(t) and (C.10.1)
s31(t) + s32(t) = 2r(t). (C.10.2)

applies. Here, q(t) and r(t) are the time variable versions of (2.17.3) and (2.17.4), as derived in
Appendix C.9. This gives
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(C.10.3)
and

−q(t) =
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t2, (C.10.4)
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which, because of the conditions in (C.10.1) and (C.10.2), must simultaneously fulfil the equations

2r(t)
!
= (f1 + f2t)

3 + (g1 + g2t)
3

= (f3
1 + g31) + 3(f2

1 f2 + g21g2)t+ 3(f1f
2
2 + g1g

2
2)t

2 + (f3
2 + g32)t

3 (C.10.5)
and

−q(t)
!
= (f1 + f2t)(g1 + g2t)

= f1g1 + (f1g2 + f2g1)t+ (f2g2)t
2. (C.10.6)

If the polynomials in (C.10.3) and (C.10.5) are equal, each monomial must also be equal, which
results in four restrictions. The same happens if (C.10.4) and (C.10.6) are equal, which adds
another three restrictions. The resulting restrictions are shown in table (C.1). The next step is to

Monomial Restriction

2r(t) 1 2(β
(1)
0 )3

33
+

β
(1)
0 β

(2)
0

3
+ β

(3)
0

!
= f3

1 + g31 (C.10.7)
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+
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2) (C.10.9)
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2 + g32 (C.10.10)

−q(t) 1 (β
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= f1g1 (C.10.11)

t 2β
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= f1g2 + f2g1 (C.10.12)

t2 (β
(1)
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32
+

β
(2)
2
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!
= f2g2. (C.10.13)

Table C.1: Coefficient comparison for the restrictions of TVAR(3) estimates
with linear root motions

determine the variables f1 and g1. For this, both sides of restriction (C.10.11) are potentiated by
3: (

(β
(1)
0 )2

32
+

β
(2)
0

3

)3

= f3
1 g

3
1. (C.10.14)

If f3
1 and g31 are now considered as roots of a polynomial of order two, just as the polynomial given

by Bronstein et al. (2006, p. 44):

x2 + c1x+ c2 = (x− f3
1 )(x− g31) = x2 − (f3

1 + g31)x+ f3
1 g

3
1, (C.10.15)

then the coefficients in fact are already known. This is so, because (C.10.7) provides c1 = −f3
1 −g31,

while (C.10.14) provides c2 = f3
1 g

3
1, and so the first root f3

1 can be calculated directly by the means
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of the pq-formula (see 2.17.2):
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(C.10.16)

The root in (C.10.16) can be simplified to(
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Here, the red boxes in the first and second rows indicate identical terms with different signs that
cancel each other out, while the two blue boxes of the penultimate row are merged into the blue
box of the last row. Inserting the results in (C.10.16) yields:
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(C.10.17)

The same simplification can also be done for the second root g1 of (C.10.15):
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(C.10.18)

Notice the change of the sign (extra visualized by the red minus ’−’). For the variables f2 and g2,
we use the restrictions in (C.10.10) and (C.10.13) to reveal that
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is valid. These are the same equations as used in the case of f1 in (C.10.17) and of g1 in (C.10.18),
except that β

(1)
0 is exchanged for β

(1)
1 , β

(2)
0 by β

(2)
2 , and β

(3)
0 by β

(3)
3 . Thus, the result can be

represented directly by exchanging these variables in (C.10.17) and in (C.10.18):
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(C.10.19)
and
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(C.10.20)

Now that the third potency of the variables f1, f2, g1 and g2 are determined by (C.10.17), (C.10.18),
(C.10.19) and (C.10.20), we can use them in the restrictions with the mixed terms in (C.10.8),
(C.10.9) and (C.10.12):
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32
+

β
(1)
0 β

(2)
2 + β

(1)
1 β

(2)
1

3
+ β

(3)
2 − 3

[
3

√
f3
1

(
3

√
f3
2

)2

+ 3

√
g31

(
3

√
g32

)2
]

!
= 0 (C.10.22)

CTVAR(3)
3 (β)

=
2β

(1)
0 β

(2)
0

32
+

β
(2)
1

3
− 3

√
f3
1

3

√
g32 +

3

√
f3
2

3

√
g31

!
= 0 (C.10.23)

Ultimately (C.10.21), (C.10.22) and (C.10.23) provide the non-linear constraints of the parameters
β
(k)
l of the TVAR(3) process estimation. With that all roots move linear in time.

C.11 Derivation of the Conditional Matrices according to the Pa-
rameters

Section C.4 described the process of how to estimate a TVAR(2) process by the means of two
steps: in the first step, in order to fit the observations as closely as possible, the parameters β̃
of the TVAR process and its cofactor matrix Q{β̃} are estimated. In a second step, further re-
strictions are placed on the parameters, in such a way, that the root moves linearly in time. A
conditional matrix HT is derived, to apply the restrictions. This matrix allows the determination
of the parameters β̂ that best fit the observations and additionally fulfil the restrictions, while its
cofactor matrix (Q{β̂}) is derived in (C.4.11).
In order to add the restrictions for approaches with different TVAR estimation methods, the for-
mulas themselves remain the same, while the matrix HT has to be updated according to the
alternative restrictions.
In this section, we establish the condition matrices HT for the for the TVAR(2) estimation with
piecewise linear root motions (see section 4.4.5), for the TVAR(2) process with quadratic root
motions (see section 4.5.1), and for the TVAR(3) process with linear root motion (see section
4.5.2). For this purpose, the following sections specify the conditional functions C(β) and their
linearizations.
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C.11.1 Condition Matrix for the TVAR(2) Process with Piecewise Linear Root
Motions

In the case of piecewise estimation discussed in section 4.4, a distinction is made between two
intervals (see section 4.4.4) and any interval η of N intervals (see section 4.4.5). Since the case of
two intervals stats a special case of the general form (with η = 2), the section only discusses the
derivative of the general condition of (4.4.11):

CPW
η (β) =

β
(1,I)
0 +

η−1∑
µ=1

β
(1,µ)
1

2

β
(2,η)
2 +

β
(2,I)
0 +

η−1∑
µ=1

(β
(2,µ)
1 + β

(2,µ)
2 )

 (β
(1,η)
1 )2...

−

β
(1,I)
0 +

η−1∑
µ=1

β
(1,µ)
1

β
(1,η)
1 β

(2,η)
1 + 4

β
(2,I)
0 +

η−1∑
µ=1

(β
(2,µ)
1 + β

(2,µ)
2 )

β
(2,η)
2 − (β

(2,η)
1 )2.

CPW
η (β) provides a restrictions for each interval. The derivative of the condition of the η’s interval

with respect to the vector β is symbolized by

Hη :=

[
δCPW

η (β)

δβ
(1,I)
0

δCPW
η (β)

δβ
(2,I)
0

δCPW
η (β)

δβ
(1,I)
1

δCPW
η (β)

δβ
(2,I)
1

δCPW
η (β)

δβ
(2,I)
2

...
δCPW

η (β)

δβ
(1,N)
1

δCPW
η (β)

δβ
(2,N)
1

δCPW
η (β)

δβ
(2,N)
2

]
.

The vector Hη for η ∈ [1, N ] is the ηs column of HT . The sum representation of CPW
η (β) allows

the division of the derivatives into five groups (see Table C.2). The choice of the groups depends
on the parameters used for the derivative. The representation of the parameter as

β
(1,I)
0 +

η−1∑
µ=1

β
(1,µ)
1 and β

(2,I)
0 +

η−1∑
µ=1

(β
(2,µ)
1 + β

(2,µ)
2 )

helps by this choice of the right group. Furthermore, in each group, the derivative of CPW
η (β),

always gives the same result (see table C.2).

C.11.2 Condition Matrix for the TVAR(2) Process for Quadratic Root Motion

The TVAR(2) process with quadratic roots motions from section 4.5.1 must fulfil two condition
functions. In order to guarantee that these are fulfilled after the estimation, a matrix HT of two
columns is created, to symbolize the derivatives of a conditions Cquad

1 (β) and Cquad
2 (β) with respect

to the parameter vector β:

HT =

 δCquad
1 (β)

δβ
(1)
0

δCquad
1 (β)

δβ
(2)
0

δCquad
1 (β)

δβ
(1)
1

δCquad
1 (β)

δβ
(2)
1

δCquad
1 (β)

δβ
(1)
2

δCquad
1 (β)

δβ
(2)
2

δCquad
1 (β)

δβ
(2)
3

δCquad
1 (β)

δβ
(2)
4

δCquad
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δβ
(1)
0

δCquad
2 (β)

δβ
(2)
0

δCquad
2 (β)

δβ
(1)
1

δCquad
2 (β)

δβ
(2)
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δCquad
2 (β)

δβ
(1)
2

δCquad
2 (β)

δβ
(2)
2

δCquad
2 (β)

δβ
(2)
3

δCquad
2 (β)

δβ
(2)
4

 .

Table C.3 provides the derivatives of the first condition of (4.5.2)

Cquad
1 (β) =

(
β
(1)
0 β

(1)
1 + 2β

(2)
1

)2 (
(β

(1)
2 )2 + 4β

(2)
4

)
−
(
β
(1)
1 β

(1)
2 + 2β

(2)
3

)2 (
(β

(1)
0 )2 + 4β

(2)
0

)
!
= 0,

and Table C.4 provides the derivatives of the second condition of (4.5.3)

Cquad
2 (β)

= 4

(
(β

(1)
0 )2

4
+ β

(2)
0

)(
(β

(1)
2 )2

4
+ β

(2)
4

)
−

(
β
(1)
0 β

(1)
2

2
+

(β
(1)
1 )2

4
+ β

(2)
2 − (β

(1)
0 β

(1)
1 + 2β

(2)
1 )2

4((β
(1)
0 )2 + 4β

(2)
0 )

)2
!
= 0.

The derivatives are computed with respect to the parameters β.
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Parameter in Group Derivative of CPW
η (β)

β
(1,I)
0

β
(1,µ)
1 with µ < η

2

β
(1,I)
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β
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β
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1 2
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2 )

β
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β
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β
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1

β
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β
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(2,η)
1

β
(2,η)
2

β
(1,I)
0 +

η−1∑
µ=1

β
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2

+ 4
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(β
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
β
(l,µ)
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k ≤ 2, l ≤ k, µ > η,
0

Table C.2: Partial derivative of the condition for linear root motions of TVAR
processes with piecewise linear root motion for the η-th interval (with respect
to the parameters).

Parameter Derivative of Cquad
1
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(1)
0 2

(
β
(1)
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(1)
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(2)
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)(
(β
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2 )2 + 4β
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(β
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(1)
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(1)
1 β
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(2)
3

)(
(β

(1)
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2 2
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β
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(2)
1

)2
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β
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1 β
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(2)
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(1)
0 )2 + 4β

(2)
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)
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β
(2)
0 −4

(
β
(1)
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(2)
3

)2
β
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1 4
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β
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0 β

(1)
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(2)
1
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(β

(1)
2 )2 + 4β
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2 0
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3 −4

(
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1 β
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4 4
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0 β
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)2
Table C.3: Partial derivative of the first equations of condition Cquad

1 (β) for the
quadratic root motion (with respect to the parameters).



162
C

.T
im

e
Variable

A
R

Processes

Parameter Derivative of Cquad
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+

(β
(1)
1 )2

4
+ β

(2)
2 − (β

(1)
0 β

(1)
1 + 2β

(2)
1 )2

4((β
(1)
0 )2 + 4β

(2)
0 )

)(
β
(1)
2

2
− β
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+
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+
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+
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Table C.4: Partial derivatives of the first equations of condition Cquad
2 (β) for

the quadratic root motion (with respect to the parameters).
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C.11.3 Condition Matrix for the TVAR(3) Process with Linear Root Motions

Section 4.5.2 presents the conditions of the linear root motions of a TVAR(3) process, described by

CTVAR(3)
1 (β) =

2(β
(1)
0 )2β

(1)
1

32
+

β
(1)
0 β

(2)
1 + β
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+
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+
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with

f1 =
3
√
u1 + w1, f2 =

3
√
u2 + w2,

g1 =
3
√
u1 − w1 and g2 =

3
√
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The formulae have been simplified and the definitions
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+
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are introduced here. The division of each condition into three formulas helps in determining the
derivatives. These derivatives are again used to fill a condition matrix HT from the use in the
constrained adjustment. Note that the derivatives of f1, g1, f2 and g2 are very similar. Thus, for
f1 we can see that
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+
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apply. All other partial derivatives of f1 (with respect to the parameters) are equal to zero. Since
the difference between f1 and g1 is only the sign, while the difference between u1 and u2 are the
indices of the β

(k)
l :

β
(1)
0 = β

(1)
1 , β

(2)
0 = β

(2)
2 and β

(3)
0 = β

(3)
3 ,

the other functions do not require manual derivatives. Same is valid for the derivative of g2. The
derivatives of the three conditions can then be easily taken from Table C.5.
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Table C.5: Partial derivative of the first condition CTVAR(3)
1 (β) for linear root

movements of a TVAR(3) process (with respect to the parameters).
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Appendix D

Covariance Function of Time Variable
AR Processes with Linear Root
Motion

D.1 Conversion of TVAR(1) parameters between non-normalized
and normalized time intervals

In this section, we will first show how the transformation of the discrete epochs t ∈ {1, 2, ..., n}
into t̄ = {0, 1/(n−1), 2/(n−1), ..., 1} (or the normalization) affects the estimation of the TVAR(1)
process. And then, we will further show, how the coefficients β

(1)
0 and β

(1)
1 (estimated using t) can

be converted to the parameters β
(1)
0 and β

(1)
1 by the means of an estimate using t̄.

We need the transformation of t into t̄. Fortunately, this transformation is given by

t̄ =
t− 1

n− 1
,

with the inverse transformation

t = t̄(n− 1) + 1. (D.1.1)

The transformation for the required parameters follows from

α1(t) = β
(1)
0 + β

(1)
1 t

= β
(1)
0 + β

(1)
1 (t̄(n− 1) + 1)

= β
(1)
0 + β

(1)
1︸ ︷︷ ︸+β

(1)
1 (n− 1)t̄︸ ︷︷ ︸

= β
(1)
0 + β

(1)
1 t̄.

If both, the coefficients representation and the time vector change, it influences the lag of the
covariance of two signals j. These must then be replaced by

j = t+ j − t̄

=
(t+ j)− 1

n− 1
− t− 1

n− 1

=
t− t− 1 + 1 + j

n− 1

=
j

n− 1
.

Accordingly, the inverse transformation is given as:

j = j(n− 1).
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D.2 Proof of the Continuous Representation of the Variances of a
TVAR(1) Process with Linear Root Motion

In (5.3.1), it was shown that the continuous function

γ(0, tc) =
σ2
E

1− α2
1(tc)

,

serves to compute the variances of a TVAR(1) process. Section 5.3.1 had shown how the time
variable variance is converging to this function if the sampling rate becomes higher. In order to
verify this, we are demonstrating that –under the assumption that the variance at a discrete time
t−∆t follows from γ(0, t−∆t) =

σ2
E

1−α2
1(t−∆t)

– the equation is evaluated at the limes ∆t → 0, i.e.

γ(0, t) = lim
∆t→0

α2
1(t)γ(0, t−∆t) + σ2

E

= lim
∆t→0

α2
1(t)

σ2
E

1− α2
1(t−∆t)

+ σ2
E

= lim
∆t→0

α2
1(t)σ

2
E

1− α2
1(t−∆t)

+
σ2
E − α2

1(t−∆t)σ2
E

1− α2
1(t−∆t)

= lim
∆t→0

σ2
E [α

2
1(t)− α2

1(t−∆t) + 1]

1− α2
1(t−∆t)

=
σ2
E [α

2
1(t)− α2

1(t) + 1]

1− α2
1(t)

=
σ2
E

1− α2
1(t)

.

This proof is based on the induction principle and, gains its applicability from the fact that the
initialization with

γ(0, 0) = Σ0(1) =
1

1− α2
1(0)

is predefined.

D.3 Covariance Function between Discrete Values
When calculating covariances, individual observations with individual epochs τ1 and τ2 are rather
given than an epoch and a lag with h = τ2 − τ1 > 0. For this reason, we rewrite the covariance of
(5.3.7) into:

γ(h)(τ1)

= γτ2−τ1(τ1)

= Σ0(τ1)

 β
(1)
1

n− 1


τ2−τ1
n−1

P

β
(1)
0 (n− 1)

β
(1)
1

+ τ1(n− 1) + 1, (τ2 − τ1)(n− 1)

 .

D.4 Rewriting a Product of Decreasing Entries into a Product of
Increasing Entries

When looking at

j∏
`=1

|β(1)
0 |(n− 1)

|β(1)
1 |

− t− `+ 1,
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it is apparent that the factors in each step, become smaller by one. This is caused by the negative
sign of l. To rewrite the product into one with increasing factors thus demands to dissolve the
product sign:

j∏
`=1

|β(1)
0 |(n− 1)

|β(1)
1 |

− t− `+ 1

=

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t-1+1

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t-2+1

 ...

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t-(j-1)+1

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t− j+1

 .

In this representation, the bold part of the form −a + 1 with a ∈ [1, 2, ..., j] can now be replaced
by j − (j + a) + 1: |β(1)

0 |(n− 1)

|β(1)
1 |

− t+j − (j+1)+1

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t+j − (j+2)+1

 ...

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t+j − (j+(j-1))+1

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t+j − (j+j)+1


=

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t− j+j

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t− j+(j − 1)

 ...

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t− j+ 2

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t− j+ 1

 .

In the last step, the order of the factors is reversed in such a way that –with the help of |β(1)
0 |(n− 1)

|β(1)
1 |

− t− j+ 1

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t− j+ 2

 ...

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t− j+(j − 1)

 |β(1)
0 |(n− 1)

|β(1)
1 |

− t− j+j


=

j∏
`=1

|β(1)
0 |(n− 1)

|β(1)
1 |

− t− j + ` –

a product, whose factors are ascending again, results. So all in all, it is valid to replace

j∏
`=1

|β(1)
0 |(n− 1)

|β(1)
1 |

− t− `+ 1 =

j∏
`=1

|β(1)
0 |(n− 1)

|β(1)
1 |

− t− j + `. (D.4.1)
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Appendix E

Application

E.1 Trend Reduction
This section describes, the method of estimating a deterministic trend, approximating the obser-
vations L = [L1,L2, ...,Ln]. The estimate is used to detrend the observations, in order to obtain
the signal S̃ = L −Atξ. Due to the required prerequisite to use the LSC as shown in section 2.1,
the expected value of the detrended data must be zero: E{Sk} = 0 ∀k ∈ {1, 2, ..., n}. Here, the
parameters ξ are estimated in order to fit the observations L. They still including the additional
signal S, we want to filter later:

L− S = Aξ.

E.1.1 Trend reduction using a Linear Function

The observation equation for the linear approximation for the kth element in the vector L is
obtained by

Lk − Sk = Akξ = ξ(1) + ξ(2)tk. (E.1.1)

Here, ξ(1) is equal to the observation of tk = 0, while ξ(2) is the slope of the linear function. They
are joint together in the parameter vector

ξ =

[
ξ(1)
ξ(2)

]
. (E.1.2)

The entries of the kth row of the design matrix are found by deriving the observation equation
(E.1.1) with respect to the parameters from (E.1.2):

A =


1 t1
1 t2
1 t3
...

...
1 tn

 .

This way the parameters of the linear function in ξ can be estimated by a minimization of the
least-squares adjustment with the solution

ξ̃ = (ATA)−1AT (L− S). (E.1.3)

(This corresponds to the solution of the Gauss-Markov model from Koch 1999, chapter 3). These
parameters allow to reduce the observations L by the trend and thus to get the signal:

S = L−Aξ̃ (E.1.4)
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with

E{S} =


0
0
...
0

 .

E.1.2 Trend Reduction Using Trigonometric Functions

In cases when an oscillating trend has to be reduced, the design matrix contains cosine and sine
functions. For the purposes of this study, we estimate the oscillations whose periods of multiple
years or parts of one year. Since the observation are given in years, the linear relationship between
the observations and the parameters is easily obtained:

Lk − Sk = Akξ =

o∑
m=1

ξ(2m− 1) cos
(

2π

365.25m
t

)
+ ξ(2m) sin

(
2π

365.25m
t

)
+ ...

o∑
l=2

ξ(200 + 2l − 1) cos
(

2π

365.25
lt

)
+ ξ(200 + 2l) sin

(
2π

365.25
lt

)
, (E.1.5)

where Lk is the observation at time tk. This equation (E.1.5) shows that ξ(2m − 1), ξ(2m),
ξ(2o+ 2l − 1) and ξ(2o+ 2l) for j, l = 1, 2, ..., o are the 4o unknown coefficients in the vector

ξ =


ξ(1)
ξ(2)

...
ξ(4o)

 ,

The k-th row of the design matrix is provided by

Ak =
[
B1 B2

]
.

with B1 contains the entries derived by the derivative of (E.1.5) with respect to the parameters
ξ(1), ξ(2), ..., ξ(2o):

B1 =[
cos
(

2π
365.25 t

)
sin
(

2π
365.25 t

)
cos
(

2π
365.25·2 t

)
sin
(

2π
365.25·2 t

)
... cos

(
2π

365.25·o t
)

sin
(

2π
365.25·o t

)]
,

and with B2 contains the entries derived by the derivative of (E.1.5) with respect to the parameters
ξ(201), ξ(202), ..., ξ(400):

B2 =[
cos
(

2π
365.252t

)
sin
(

2π
365.252t

)
cos
(

2π
365.254t

)
sin
(

2π
365.254t

)
... cos

(
2π

365.25ot
)

sin
(

2π
365.25ot

)]
.

The vectors Ak allows to compute the Gauss-Markov model, which means that the estimation of
the unknown parameters is again given by (E.1.2). These parameters can finally be used to reduce
the observations by the trend (see (E.1.4)).

E.1.3 Trend Reduction Using a Combined Model of Linear and Trigonometric
Functions

To approximate the observations, the estimation of a linear trend and the estimation of a sum of
trigonometric functions can be combined as

Lk − Sk = Akξ = ξ(1) + ξ(2)tk +
o∑

j=1

ξ(2j + 1) cos(j · tk2π) + ξ(2j + 2) sin(j · tk2π).
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In this model, first, the number of unknown parameters in the vector

ξ =



ξ(1)
ξ(2)
ξ(3)
ξ(4)

...
ξ(2o+ 2)


equals o + 2, whereby the two addition entries are the parameters of the linear part. This means
that the design matrix also is increased by two columns, so that the k-th row is given by

Ak =
[
1 tk cos(tk2π) sin(tk2π) cos(4tkπ) sin(4tkπ) ... cos(2otkπ) sin(2otkπ)

]
.

Once more, to compute the signal by reducing the trend like it is shown in (E.1.4), the parameters
are estimated by the Gauss-Markov model given in (E.1.2).

E.2 Derivative of a Covariance Function from AR Processes
The CF and its derivative are required to fill the matrices needed to apply LSC. In the case of a
CF from AR processes, we see that the CF shows some advantages due to its generally simple form

γ(h) =

p∑
k=1

AkP̂k
|h|
. (E.2.1)

When deriving this function, we need to pay attention to the case distinction from Appendix B.2:

P̂k
|h|

=

{
Pk

|h| if R (Pk) ≥ 0

cos(πh)(−Pk)
|h| else.

(E.2.2)

To obtain the derivative of the CF, the linearity of the derivative function is used to show, that it
is sufficient to derive the roots P̂k in (E.2.2) with respect to the lag h and use it again in the CF
in (E.2.1):

d

dh
γ(h) =

p∑
k=1

Ak
d

dh
P̂k (E.2.3)

with

d

dh
P̂k

|h|
=

{
ln(Pk)Pk

|h| if R (Pk) ≥ 0

cos(πh) ln(−Pk)(−Pk)
|h| − π sin(πh)(−Pk)

|h| else.
(E.2.4)

Because, Pk
|h| as well as the trigonometric functions cos(πh) and sin(πh), they all are infinitely

differentiable, the CF is infinitely smooth, or in other words: arbitrarily differentiable.

E.3 Approximation of White Noise using an AR Process
The white noise process of variance σ2

N is defined as process with mean zero and discrete CF:

Σj =

{
σ2
N if j = 0

0 else.

The spectrum of this process is defined by a constant value, which further more, is equal to the
white noise’s variance σ2

N (see Schuh 2016, eq. 190). This process’ spectrum can be approximated
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by an AR process. In this case the roots of the AR process build a circle around the origin. In order
to prove this assumption the PSD of an AR process with equidistant root on a circle around the
origin is computed and compared to the PSD of a white noise process. The parameter of the white
noise’s variance is constant (σ2

N = 5), while the number of roots (or AR coefficients) increases for
each simulation. Since the visual proof can be seen for low order AR processes, the orders used
here are one, five and ten. These roots lie equidistant on a circle of radius 0.5 around the origin,
and they are further transformed into the AR process’ coefficients αp (as it is done in (4.3.1)). In
order to compute the AR process’ PDFs, these coefficients as well as (2.13.2) are used.
Figure E.2 shows that the PSD of an AR process with roots on a circle approximates a white noise
process with the same variance as the white noise part of the AR process. As the order of the AR
process increases, the PSDs of the white noise and the AR process becoming ever more similar.
In order to prove that this approximation does not require the circle of radius r = 0.5, the roots
of an AR(10) process are used to approximate the PSD of a white noise process once more. But
this time the roots form a circle of radius r = 0.7 and the white noise’s variance is σ2

N = 3. This
approximation is pictured in Figure E.1, and proves that, as long as enough roots are on a circle,
the approximation is successful, regardless of the white noise’s variance. Notice that with increasing
radius r the number of roots needed to approximate the white noise also increases.
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Figure E.1: The left coordinate system shows the AR(10) Process’s roots (red
cross) lying on the circle with radius r = 0.7 around the origin (in blue). And
the right figure shows the corresponding PDF (in blue) and the PDF of the
white noise with variance σ2

N = 3 (in red).
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(a) The left coordinate system shows the AR(1) Process’s root of 0.5 (red cross) lying on the circle with
radius r = 0.5 around the origin (in blue). The right figure shows the corresponding PDF (in blue) compared
to the PDF of the white noise with variance σ2

N = 5 (in red).

-1 -0.5 0 0.5 1

real part

-1

-0.5

0

0.5

1

im
a

g
in

a
ry

 p
a

rt

0 0.1 0.2 0.3 0.4 0.5

Continuous frequency [hz]

0

5

10

15

20

(b) The left coordinate system shows the AR(5) Process’s roots (red cross) lying equidistant on the circle
with radius r = 0.5 (in blue) around the origin. The right figure shows the corresponding PDF in blue
compared to the PDF of the white noise with variance σ2

N = 5 in red.
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(c) The left coordinate system shows the AR(10) Process’s roots (red cross) lying equidistant on the circle
with radius r = 0.5 around the origin (in blue). The right figure shows the corresponding PDF (in blue)
compared to the PDF of the white noise with variance σ2

N = 5 (in red).

Figure E.2: The left column shows the roots of three AR processes of order
one, five and ten. These roots all lie on a circle with radius r = 0.5. The
right column shows the corresponding PDFs. From top to bottom how the
approximation of the white noise’s PSD improves.
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Appendix F

Acronyms

AIC Akaike information criterion.

AR autoregressive.

AR(p) autoregressive process of order p.

ARMA autoregressive moving average.

BLUP best linear unbiased prediction.

CDF cumulative distribution function.

CF covariance function.

CP characteristic polynomial.

DC Dirac delta comb.

DDF Dirac delta function.

DE difference equation.

ESD energy spectral density.

FT Fourier transformation.

GNSS Global Navigation Satellite Systems.

i.i.d independently and identically distributed.

IFT inverse Fourier transform.

LSC least-squares collocation.

MA moving average.

PDF probability density function.

PSD power spectral density.

RMSE root mean square error.

RSS residual sum of squares.
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SLA sea level anomalies.

TVAR time variable autoregressive.

TVAR(p) time variable autoregressive process of order p.

Y.-W. Yule-Walker.
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Appendix G

Notation

αk/αk(t) k-th coefficient of an AR process/ k-th coefficient of a TVAR process.

ck k-th coefficient of a polynomial Pp(x).

β
(k)
l parameters for the representation of the coefficients of a TVAR process via basis functions;

i.e. αk(t) =
∑qk

l=0 β
(k)
l bl(t).

β
(1)
0 , β

(1)
1 parameters for the representation of the coefficients of a TVAR(1) process with linear
root motion and the temporal argument is normalized: α1(j) = β

(1)
0 + β

(1)
1 j̄, with j̄ = j−1

n−1 .

χ(x) the characteristic polynomial of an AR process with coefficients α1, α2, ..., αp given by:
xp − α1x

p−1 − α2x
p−2 − ...− αp.

θ, ϑ replacement for the coefficients αk(t) for the TVAR(3) processes to distinguish between the co-
efficients of the TVAR(1) process (θk(t)) and the coefficients of the TVAR(2) process (ϑk(t)).

.∗ given a complex value x = a+ bi, then x∗ = a− bi is the complex conjugated value.

C(β) a condition that depends on the parameters β that must return zero to maintain a given root
movement.

g1 ~ g2 =
∫∞
−∞ g1(x)g2(t− x)dx convolution of two continuous functions.

g1 ? g2 =
∫∞
−∞ g1(x)g2(x+ t)dx correlation between two continuous functions.

∑∞
l=−∞ δ(h− l∆j) Dirac delta comb.

{.}j∈Z discrete sequence of observations with equidistant lag.

h argument of the continuous covariance function: h ∈ R+.

∆h lag between two signals. Also used to define the argument of the continuous covariance function:
∆h ∈ R+.

j discrete integer value j ∈ N.

∆j discrete distance of a signal with equidistant observations. ∆j ∈ N.

j̄ representation of j ∈ {1, 2, ..., n} in the normalized interval [0, 1]. j̄ = j−1
n−1 .

∆j distance between the j̄ ∈ [0, 1]: ∆j = ∆j
n−1 .

E{.} mean operator/ expectation operator.
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E (.) energy of a sequence or function.

Et independently and identically distributed random variable with variance σ2
E .

F.(.) cumulative distribution function.

f.(.) probability density function.

F {.} (ν) Fourier transform with argument ν.

F−1 {.} (t) inverse Fourier transform with argument t.

γ(h)/γ∆h
(h) continuous covariance function evaluated at h/ continuous covariance function of a

TVAR process at time h, evaluated for a time in the future h+∆h.
L (.) the Gamma function is the faculty function extended for all values in R.

Γ(.) Fourier transform of the covariance function γ(.).

T � b matrix vector product of matrix T and vector b: X = T �b. The result X is a matrix with
the same dimension as T . Here, the i, j-th entry is calculated via Xi,j = Ti,jbi.

t�j the exponent j is applied element-wise for every entry in t. If t = [t1, t2, ...tn]
T , then t�j =

[tj1, t
j
2, ...t

j
n]T .

I(.) imaginary part of a complex value.

Lt observations/ random variable.

M{.} mean value of a given vector.

n number of observations.

m number of parameters.

P(t, j) Pochhammer’s symbol, which describes the product:
∏j

k=0 t+ k.

Pp(x) polynomial of order p with variable x described by the product: xp+c1x
p−1+c2x

p−2+...+cp.

Pk/Pk(t) k-th root of the CP for an AR Process / k-th root of the CP for a TVAR Process.

Q{.} cofactor matrix of the entries in a vector.

R(.) real part of a complex value.

ζ
(k)
l l-th parameter of the k-th time variable roots with basis functions: Pk(t) =

∑q
l=0 ζ

(k)
l b̄l(t).

St signal, corresponds to the trend reduced observations.

S̃ predicted Signal.

σ2
. variance.

Σ./Σ∆j(j) covariance between two times with distance ./ time variable covariance between two
times with distance ∆j starting from time j.

Σ{.}/Σ{., .} covariance matrix of the entries in a vector/ common covariance matrix between two
vectors.

Ak weight for the k-th root to calculate the covariance function: γ(j) =
∑p

k=1AkPk.
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