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Abstract

by Sovan Biswas
for the degree of

Doctor rerum naturalium

Human actions are often complex and occur in dynamic contexts, posing
a challenge for traditional recognition models. This challenge is further ex-
aggerated due to humans’ innate multi-tasking nature, i.e. a person typically
performs multiple actions at the same time. This thesis delves into multi-label
human action recognition and analysis, bridging the gap between single and
group activities. Furthermore, the thesis acknowledges the cost of labeled data
required for training and discusses novel approaches to develop models in var-
ious fully supervised settings to data-scarce, weakly supervised environments.

The core contributions lie in developing novel neural network architectures
that can capture the intricacies of multi-label action recognition. Our first
contribution is on Structural Recurrent Neural Networks (SRNNs) for group
activity analysis. These networks capture individual actions, interactions be-
tween individuals, and the overall group activity, agnostic to the size of the
group. Moving from group activity, we also proposed a Hierarchical Graph-
RNN that specifically tackles multiple individual actions. This architecture
incorporates the temporal context and relationships between different actions
to achieve accurate multi-label recognition in space and time.

Beyond fully supervised settings, we also explored weakly supervised learn-
ing, where action annotations are scarce. Here, our approaches rely on sets of
actions instead of individual classes as annotations that are cost and time-
effective to obtain. Our initial approach uses Multi-Instance Multi-Label
(MIML) Learning followed by constraint-based Linear programming to map
the set of actions to individual humans in a video. Furthermore, the thesis
addresses the challenge of longer videos in weakly supervised settings. Here,
a novel Multiple Instance Triplet Loss (MITL) exploits temporal similarity
across consecutive frames in comparison to temporal distant frames to train
the action recognition model effectively.

Through this dissertation, we advanced the state-of-the-art in multi-label
action analysis, proposed novel architectures for group and individual action
recognition exploiting temporal and spatial context, and finally, explored ap-
proaches to develop models for weakly supervised settings. We demonstrated
the effectiveness of our approaches through comprehensive experimentation
and by comparing them with existing state-of-the-art on well-known public



VI

benchmarks. In the end, we conclude by discussing the open challenges and
possible future research directions for multi-label human action analysis.

Keywords: multi-label action recognition, spatio-temporal action detection,
weak-supervision.
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1.3 Contributions . . . . . . . ¢t i i i e e e e e e e e e e e e e e

We have all heard a famous quote, “A picture is worth a thousand words”. This
phrase highlights the depth of information a single image can convey. A picture
captures basic details, like colors and objects, at an elementary level. Nevertheless,
in conjunction with other characteristics, this elementary information may convey
higher-level details, such as the scene or the background location that a picture
contains, for example, indoor or outdoor etc.

A video is a series of moving images. Thus, if an image is equivalent to a thousand
words, a video is a million words due to the additional information captured by
the changes in the series of images. This additional ability of videos to capture
changes enables humans to utilize videos in many applications. Further, the massive
technological developments in the ease of making, storing, and transmitting a video
have made them ubiquitous. One can find them from short-duration clips captured
on apps such as TikTok or Instagram to long-duration movies that convey a story
or a movie, from the fixed viewpoint of surveillance cameras to live transmission
of a football match. It is challenging to imagine a current or future world without
videos.

On Youtube, a widely known site dedicated to storing and distributing video
content, it has been reported that more than 500+ hours of video content are up-
loaded there every minute!. This massive quantity of videos needs to be analyzed
for their content to perform meta-information generation, catalog videos in any stor-
age system, recognize and filter violent content/illegal content, or retrieve specific
content retrieval. This analysing task at this enormous scale is outside the scope
of human capabilities and thus, the need for developing technologies for automated
video analysis. Automated video analysis is also crucial to diverse applications such
as surveillance systems, traffic analysis, Al assistance in human activity, etc. where
high speed of processing and low margin of error are of utmost importance.

"https://blog.youtube/press/



2 Chapter 1. Introduction

a) b)

Figure 1.1: Few varieties of videos capturing human actions: a) An example of
simple action of Walking based on distinct motion pattern. (Schuldt et al., 2004) b)
An example of complex activity of Making Sandwich. (Zhou et al., 2018) ¢) Complex
group action (e.g. Ice hockey) with multiple persons involved. (Carreira and Zisser-
man, 2017)

Typically, most of the captured videos consist of humans as the protagonists.
Thus, in this thesis, we analyze the content of the video through the lens of human
behavior and actions.

1.1 Motivation

Any short-time distinct motion pattern that a human performs in the video is an
action. An action can range from a short atomic pattern, such as standing or
walking (Figure 1.1a), to a very complex one, such as gymnastics. Sometimes,
a temporal sequence of such actions can form a complex activity (Figure 1.1b e.g.
making sandwich). Further, actions can also involve single person or multiple persons
as seen in playing ice hockey (Figure 1.1¢). Identifying a wide variety of actions or
activities can help in many applications. Traditionally, the significant focus of recent
research is limited to such atomic actions or complex activities, ignoring a wide
variety of other challenges with understanding the actions or activity. One of the
guiding factors of the thesis is to explore human group activity analysis and multi-
label action recognition/detection, unexplored research problems within action and
activity understanding.

In many naturalistic settings, humans are in a group and interact with each other.
This interaction could be synchronized, such as Dancing, or unsynchronised, such as
walking in a crowd. In both cases, the action of one person in a group is highly con-
textualized based on the action of another person in the same group. For example,
if a person in a group is speaking the other people in the group are listening. Apart



1.2. Challenges 3

Figure 1.2: Example of key action based group behavior: The moment of a shooting
in a soccer match, just before the goal. In this, the group action of "goal" is defined
by the key actors of the striker, defender and the goalkeeper (marked by bounding
boxes in Red). (Jiang et al., 2020)

from the neighbor context, people behave in tandem with others or individually to
display a group behavior or activity. Understanding such nuances of individuals or
groups is critical in various applications. For example, understanding and analyzing
the behavior of each football player or the whole team in a sports video analysis can
improve the player’s and the team’s performance. Alternatively, analysing each in-
dividual’s behavior within a crowd can help in security or preemptive/quick nabbing
of a rogue actor or crowd management.

Furthermore, humans are multi-taskers in nature. They perform multiple actions
in a single time. For example, a person can be sitting and reading a book simulta-
neously, or a person can be walking and talking simultaneously. It is preposterous
to have an automatic system to recognize only a single action of either sit or read
at any given instant, resulting in incomplete information capture. This detailed
understanding of nuances of human actions and their co-occurrence is vital for a
holistic understanding of the content of the video or to generate grounded textual
scene descriptions or summaries. In applications such as Al assistance to humans in
their daily activities, understanding multi-label actions is crucial to provide holistic
feedback to humans.

The thesis aims to explore new and feasible approaches to identify human actions
in group and multi-label settings for a diverse range of real-world applications.
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1.2 Challenges

Human actions are highly contextual. Typically, the context is temporal as exploited
by temporal models (Richard et al., 2018; Kiihne et al., 2018). In other words, there
exist temporal relationships over time. However, actions could also be due to certain
spatial situations. In this case, the actions depend upon the spatial context, such
as object or persons and their actions. This interdependence on objects or (other)
people is apparent in group activities like football, volleyball, or dancing, where
the action of one person can directly influence the actions of others. It is there-
fore essential to distinguish each individual’s actions and understand their impact
on the group as a whole. Group behavior can be synchronized or unsynchronized.
Synchronized group behavior, such as dancing, is when each actor behaves in a co-
ordinated manner. On the other hand, humans in crowds are not synchronized due
to their individuality and independence. The challenge for the group and individ-
ual action analysis lies in modeling the dependencies between actors despite this
difference in coordination. Group behavior can also be considered of two types: a)
key action-based group behavior or b) generalized group behavior. This is shown
in Figure 1.2. A key action-based group behavior, especially in sports, is highly
dependent on the key actions of a few players. The rest of the actors and their
actions are generic/regular and occur in almost all other categories of group behav-
ior. Thus, identifying the key actors and their actions is essential to identifying the
group behavior and vice versa. For example, the group action of "goal" in football
depends on identifying the striker’s shoot action and the defender’s block action.
Other players are just running or walking, which is not distinctive. On the other
hand, within generalized group behavior such as crowd, multiple people perform the
same one or two individual actions and lack any distinctive action. This is a signifi-
cant challenge as group characteristics are determined by different combinations of
individual actions and their interactions between one or two actors within the group.

The basic assumption of humans performing a single action at a time is restric-
tive. Humans are multi-taskers. This is shown in Figure 1.3. However, identifying
the open set of actions humans perform is difficult, as humans can perform one or
multiple actions at a time. Specific actions such listening or speaking are ubiquitous
and can occur in various scenarios such as indoor or outdoor. These background
variations result in fewer visual cues to identify the actions with high accuracy. Ad-
ditionally, this ubiquitous occurrence of some actions more than others results in a
high class-imbalance. Despite these limitations, one can assume it is improbable that
a person would be listening and speaking simultaneously at the same time. How-
ever, these actions are highly dependent on past temporal information and spatial
information of other humans. In other words, a temporal dependency of action, for
example, is when a person was speaking in recent past frames, then it is probable
the person will continue speaking in the current and near-future frames, too. The
spatial dependency is when a person speaks; it is evident that other persons in the
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Left: Sit, Talk to, Watch; Right: ! Left: , Carry/Hold, Listen to; Middle:
Listen to, Watch Carry/Hold, Talk to; Right: Sit, Write

Left: Sit, Ride, Talk to; Right: Sit, Drive, Leﬁ:?_ “, Watch; Middle: , Play
Listen to instrument; Right: Sit, Play instrument

Figure 1.3: Example of Multi-Label Actions by human. Note, each actor performs
variable number of actions. (Gu et al., 2018)

scene are listening. These minor details can help to identify the actions despite class
imbalances, occlusions, and background variations and thus need spatio-temporal
relationships.

Building a model with such spatio-temporal relations needs a considerable
amount of annotated data. This is primarily a challenge regarding the cost and
time needed to annotate a scene with multiple humans performing multiple actions.
This limits the scalability of training data needed for effective real-world models.
Reliability of annotations in such cases is another challenge as it requires significant
focus and patience from the annotator. It is far easier to capture scalable and ex-
tensive training data with fewer details such as list of all actions in a video. Thus, in
similar budget for cost and time allocated for annotation, one can have significantly
more training data samples with fewer details as opposed to few detailed, reliable
and accurate training data. Despite the huge amount of data in these cases, training
a model from such partial and obscure annotations is a challenge.

1.3 Contributions

People can casually and effortlessly understand complex multi-label actions and
group activities, making the task look easy. However, such an essential human ca-
pability has many layers of high-level semantical meanings. Thus, it is difficult for
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computers to comprehend this task accurately despite recent research progress. As
described in Section 1.2, understanding human group activities poses several diffi-
culties, that range from group dynamics, class imbalances, open-set variations, an-
notations, etc. We now present our contributions in thesis that tackle the challenges
of multi-label and group activity understanding tasks.

e In our first work presented in Chapter 4, we present a solution for the problem
of group activity recognition. As explained before, the behavior of a group
is defined by the interactions and behaviors of various individuals within the
group. The proposed solution is focused towards joint (spatial and temporal)
capturing of those interactions to identify the action of each person and the

group.

e In Chapter 5, we present a solution for multi-label action recognition in group
settings. In this research problem, the training data consists of the location
of the humans and multiple the action labels for each humans. The proposed
fully-supervised solution mainly focuses on capturing interactions between hu-
mans that aids in mutli-label action recognition.

e Chapter 6 proposes a semi-supervised solution for the multi-label action recog-
nition and detection similar to Chapter 5. It is well known that annotating
multiple labels for every human in a long video can be very slow and cost-
intensive. Thus, this chapter presents a viable solution to learn multi-label
action recognition and detection using semi-supervision.

e Chapter 7 proposes another semi-supervised solution for multi-label action
recognition and detection overcoming the speed bottleneck of the earlier ap-
proach (Chapter 6). The approach uses a contrastive learning paradigm as
opposed to discovering the pseudo-labels for each person through iterations,
making the approach faster and less computationally expensive.
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Now we review the key past work related to the research topic of the thesis. We
start with our discussion and insights of the past works on group activity recognition.
This is followed by discussions on the past works related to spatio-temporal and
multiple activity detections. In the end, we briefly discuss some of the works on
contrastive learning and multi-instance and multi-label learning as Chapters 6 and
Chapters 7 heavily use these concepts.

2.1 Group Activity Recognition

As early in 2009, researchers (Choi et al., 2009) started analyzing the activities of a
group or crowd. The authors (Choi et al., 2009) introduce crowd context in recog-
nizing the activity being performed by each individual in the group. Traditionally
graphical models with key contextual features (Choi et al., 2011; Choi and Savarese,
2014) have been deployed rigorously towards group analysis. However these models
with handcrafted features (Ryoo and Aggarwal, 2009) of person tracks and move-
ments, were outperformed by newer deep neural network architectures such as (Deng
et al., 2016; Alahi et al., 2016; Shu et al., 2017). For group activity recognition,
most of these deep neural networks are inspired by (Ibrahim et al., 2016a) which
uses a multi-level cascade of recurrent neural networks for group activity recog-
nition. In this approach, humans are detected and tracked to form multi-person
tracklets. These tracklets along with their deep visual features are fed to the lower-
level RNNs. The focus of these lower-level RNNs is to understand and model the
actions of the individual persons. The higher level RNNs in the architecture instead
focus on understanding the group activity. The individual actions and group activity
predictions are done using Softmax in a feed-forward way. However, each method
tackles a very different problem in the same framework. In (Shu et al., 2017), the
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authors use a similar hierarchical architecture but the approach differs from pre-
vious work by proposing an energy-based approach that works significantly better
if the amount of data is small. Furthermore, this approach also explores human
interaction, but holistically by convolutional features extracted from both humans.
In (Bagautdinov et al., 2017), the authors propose a joint approach for detecting
humans and predicting their actions. Recently, approaches based on attention have
been explored in (Yuan et al., 2021; Li et al., 2021). Due to the attention mecha-
nisms, transformer-based architectures (Tamura et al., 2022; Zhou et al., 2022) have
performed significantly better in recent past. However, these methods also require
large amount of data and large attention computation memory to train effectively.
To overcome the data requirement, variations of self-supervised contrastive learn-
ing have been used in (Chappa et al., 2023) to improve the performance. Recently,
in (Wen et al., 2024) the authors explore the skeleton based features for multi-label
group activity understanding.

Spatio-temporal graphs have been used in computer vision for various applica-
tions such as predicting human movements (Ionescu et al., 2014) or learning human
activities and object affordances (Koppula et al., 2013). The spatio-temporal graphs
presented in these works spatio-temporal relations between joints or joints and ob-
jects in a video. The methods (Koppula and Saxena, 2016; Amer et al., 2014) use
handcrafted features along with graphical models, conditional random fields, or ran-
dom forests for the aforementioned applications. Recently, neural networks have
been deployed to solve spatio-temporal graph problems. For example, in (Deng
et al., 2015), the authors use deep networks followed by inference using a proba-
bilistic graphical model to recognize the actions in a group. The graph formulation
with spatial and temporal relations was even used and extended in implicit trans-
former blocks of Groupformer (Li et al., 2021). Our approach, in Chapter 4, builds
on the work (Jain et al., 2016) where a set of coupled RNNs are used to represent
spatio-temporal graphs.

2.2 Spatio-Temporal Action Detection and Recognition

A common approach for action recognition and localization (Gkioxari and Malik,
2015; Hou et al., 2017; Kalogeiton et al., 2017; Singh et al., 2017) comprises the
detection of the bounding boxes in each frame using object detectors (Girshick,
2015; Chao et al., 2018). The detected bounding boxes are then linked to obtain
action tubes, which are then classified. These approaches, however, assume that
every frame is annotated. Since such dense annotations are very time-consuming,
many approaches (Weinzaepfel et al., 2016; Girdhar et al., 2018; Li et al., 2018) deal
with sparse annotations where the action labels and locations are annotated only for
a subset of frames, e.g., each frame per second. These works, however, treat each
person independently despite in reality persons tend to interact with each other.
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In the context of group activity analysis (Ibrahim et al., 2016a; Tang et al., 2018),
the relations between various individual persons are used to infer the action label of
the group as well as the individuals. The works (Ibrahim et al., 2016a; Tang et al.,
2018) propose hierarchical models where the individual actions are modeled at the
lower level and the group activity at the top level. While (Tang et al., 2018; Li et al.,
2021; Tamura et al., 2022) assume that each individual is part of a sports team or
group and each individual performs only one action as part of a group, (Gu et al.,
2018) contains multiple activities per individual and only a subset of the actions are
based on interactions with other individuals. Past works (Feichtenhofer et al., 2019;
Fan et al., 2021), have shown improving underlying feature representation improves
the multi-label action recognition even in group settings. Building upon stronger
features, in (Pan et al., 2021; Rajasegaran et al., 2023), the authors further explored
attention over human to human interactions within a group to improve multi-label
spatio-temporal action detection. Recently, in (Gritsenko et al., 2024), the authors
explored the advancements in detection transformers (DETR) (Carion et al., 2020)
to form action tubes that are later used to perform multi-label action recognition.

There are several types of networks that can be applied to graphs like Graph
Convolutional Networks (GCN) (Kipf and Welling, 2017; Duvenaud et al., 2015) or
Graph Recurrent Neural Networks (Graph RNN) (Scarselli et al., 2009; Li et al.,
2016; Jain et al., 2016). These graph networks have been used in various computer
vision applications such as object detection (Qi et al., 2018), semantic segmenta-
tion (Qi et al., 2017), or visual question answering (Teney et al., 2017). For instance,
in (Yang et al., 2018) the authors use an attentional GCN to model spatial relations
between objects in an image. Recently, graph based audio-video understanding (Min
et al., 2022; Min, 2023) was explored for ego-centeric videos and active-speaker detec-
tion over a very long temporal windows. In our work, in Chapter 5, we use a Graph
RNN combined with a Scene RNN to model relations between different persons as
well as temporal context.

2.2.1 Actor-Action Associations

Actor-action associations have been key to identify actions both in fully supervised
and weakly supervised settings. In (Ghadiyaram et al., 2019), the authors per-
form soft actor-action association using tags as pre-training on a very large dataset
for fully supervised action recognition. With respect to weak supervision, a few
approaches use movie subtitles (Bojanowski et al., 2013; Laptev et al., 2008) or
transcripts (Kiihne et al., 2018; Richard et al., 2018) to temporally align actions to
frames. In terms of actor-action associations for multiple persons, few approaches,
such as (Ramanathan et al., 2016; Li et al., 2020), associate a single action to vari-
ous persons. Recently, the authors of (Ulutan et al., 2020) explored actor associated
action feature maps for implicit actor-action association as an alternative to region
of Interest (Rols). To the best of our knowledge, our work (Chapter 6) is the first
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to perform explicit multi-person and multi-label associations.

2.3 Contrastive Learning

Contrastive learning, that maximises the intra-class similarity and minimises the
inter-class similarity, has been used extensively over the years in various computer
vision applications such as image representation learning (Chen et al., 2020; He
et al., 2020; Oord et al., 2018), video representation learning (Qian et al., 2021;
Behrmann et al., 2021), face recognition (Schroff et al., 2015; Deng et al., 2019),
image captioning (Liu et al., 2018), phase grounding (Gupta et al., 2020), multi-view
action recognition (Shah et al., 2023) or future prediction (Wu et al., 2020). Even
though the objective of contrastive learning largely remained the same, the diverse
formulations for intra-class and inter-class similarity has lead to various distinct
loss functions such as the triplet loss (Hoffer and Ailon, 2015; Schroff et al., 2015),
lifted-structure loss (Oh Song et al., 2016), N-pair loss (Sohn, 2016), angular loss
(Wang et al., 2017), margin-based loss (Wu et al., 2017), multi-similarity loss (Wang
et al., 2019), circle loss (Sun et al., 2020) and infoNCE loss (Oord et al., 2018). Our
approach, in Chapter 7, proposes a loss that is based on the triplet loss (Schroff
et al., 2015) but extends it to multiple instance learning in order to deal with the
task of weakly supervised multi-label action localization.

2.4 Multi-instance Multi-label learning

In the past, many MIML algorithms (Nguyen et al., 2013; Nguyen, 2010) have been
proposed. For example, (Zhou et al., 2012) propose the MIMLBoost and MIMLSVM
algorithms based on boosting or SVMs. (Briggs et al., 2012) optimize a regularized
rank-loss objective. MIML has been also used for different computer vision appli-
cations such as scene classification (Zhou and Zhang, 2006), multi-object recogni-
tion (Yang et al., 2017), and image tagging (Zha et al., 2008). (Lai et al., 2023)
explored inter-label correlations and inter-instance correlations within the MIML
framework for medical image classification. Recently, MIML based approaches have
been used for action recognition (Li et al., 2020; Zhang et al., 2020).
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In this chapter, we present an overview of concepts that are discussed throughout
this thesis. The chapter starts with an introduction to neural networks, convolutional
neural networks, and recurrent neural networks. This is followed by discussion on
various video representation that is used for human activity analysis. We then briefly
describe the localization task used for person identification. In the end, we discuss
linear programming and techniques that are essential to understanding optimization
for multi-label weak supervision.
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Figure 3.1: A standard feed-forward network with an input layer, two hidden layers
and an output layer

3.1 Artificial Neural Networks

A biological neural network (McCulloch and Pitts, 1943) is a group of interconnected
biological neurons to carry out a specific function when activated. Each neuron in the
network is connected by a synapse. Motivated from the biology, an artificial neural
network (Rosenblatt, 1958; Rumelhart et al., 1986) is defined as a group of artificial
neurons called layers, where each layer receives information from the layer before.
An artificial neuron is a processing unit that combines and applies transformations
to the information from the previous layer. A standard layer of an artificial neural
network can be divided into three categories: an input layer, hidden layers, and an
output layer as shown in Figure 3.1.

The first layer is known as the input layer that predominantly intakes the data
to be processed by the neural network. The last layer is known as output layer that
generates the desired output post the processing of the input data. The hidden layers
are the one or more layers that are sandwiched between the input and output layers.
A standard neural network also known as feed-forward neural network or multi-layer
perceptron (MLP) (Rumelhart et al., 1986) consists of one or more hidden layers.
Each neuron, also known as node, is connected with edges to form a directed acyclic
graph. Mathematically, the neurons are matrices, also known as parameters of the
neural network, whose values are computed to achieve desired objective.
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In recent times, the neural networks are being widely used in the field of pat-
tern recognition due to advancement of hardware computations and the ability of
neural networks to approximate any function (Hornik et al., 1989). We, now, briefly
describe the different key components of neural networks.

3.1.1 Artificial Neuron

An artificial neuron or simply Neuron is the building block of neural networks. It
can be viewed as a system that takes inputs, applies a transformation on them, and
produces an output which is called activation. A neuron is shown in Figure 3.2

A basic neuron computes a weighted sum of the input values, adds bias and
then applies an activation function to the sum. The weighted sum and bias addi-
tion is a linear transformation function. However, the activation function, which is
differentiable, is always a non-linear function. This non-linearity is crucial to create
multi-layer neural network, otherwise the combination of all linear transformations
at different layers is mathematically equal to a single linear transformation. A simple
neural network is formed by stacking layers of neurons as shown in Figure 3.1. The
weights and bias are learned based on the input data and desired output, through
backpropagation as explained in Section 3.1.3. Mathematically, a neuron is explained
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as follows:

of; = ngjaéfl + bé (3.1)
at = o(oh) (3.2)

Here, the equations show the i*" output for neuron a; at layer . aé-_l is the j
output from the previous layer I — 1. a!~' € RY. (3.1) is the linear operation of the
neuron and o (3.2) is the non-linear activation function applied on the sum. wéj and
bﬁ are weights and bias, respectively. They both together are also known as learned
parameters (6!) of the neuron. Some of the commonly used activation functions are
Sigmoid, Hyperbolic Tangent, Relu, Softmax, etc.

The goal of a neural network is to map a specific input to a desired output. The
desired output is generated by the output layer. As such, the non-linear function
of the output layer is sometimes different and specifically designed to generate the
desired output. For example, Sigmoid function is used for binary classification or
Softmax function is used for multi-class classification.

3.1.2 Loss functions

A loss function computes the difference between the predicted output of the neural
network and the desired output. This helps in evaluating how well the algorithm
models the desired data. If the predictions are incorrect, the difference by the loss
function is high. On the other hand, if the predictions are correct, the difference is
low. Mathematically, a loss function is defined as:

L(z,y;0) = L(fo(x),y) = L(7,y) (3-3)

Here, (z,y) is a tuple of data. fp is the neural network that maps the input z
to desired output y. 6 are all the learnable parameters of the neural network, i.e.
weights and biases of each neurons at different layers. ¢ is the predicted output of
the neural network. A loss function L is a measure of the difference between the
prediction and the desired output.

Typically, a loss function can be any function that measures the difference. How-
ever, for neural network it is important that the loss functions are differentiable as
shown in Section 3.1.3. Depending upon the task and objective, various loss func-
tions are popular such as Mean Squared Error and Cross Entropy loss.

3.1.3 Parameter Estimation

A neural network has multiple neurons at various layers and each neuron has pa-
rameters (f). Typically, gradient descent is used as an optimization algorithm to



3.2. Convolution Neural Network 15

minimize the value of the loss function with respect to a given set of tuples of data
(z,y) and initial value of the parameters. The optimisation is done by computing
the change in the parameters 6 iteratively for each tuple of data (z,y) by following
the opposite direction of the gradients (6L /d6). This process is known as stochastic
gradient descent (Robbins and Monro, 1951; Kiefer and Wolfowitz, 1952).

0L

Here, 0 are the parameters of the network after the iteration k. n is the learning
rate that controls the updation of the parameters in the direction of gradient. The
learning rate can impact the performance of the model as large value might result in
oscillation around the minima whereas a low value can result in long training time.
In practice, batch gradient is used instead of single tuple of data to minimize the
errors by average gradient approximation over a batch.

A typical neural network consists of multiple layers and large number of param-
eters. Any update of parameters at any layer impacts the values in the subsequent
layers. Instead of computing the gradient for each weight individually, that can be
intractable, Backpropagation (Rumelhart et al., 1986; LeCun et al., 1998) is used.
This is done by computing gradient §L /6! for each parameter 6! at i** position and
layer [ by using chain rule. This chain rule computation is performed using dynamic
programming by iterating the computation one layer at time from last layer to avoid
redundant calculations of intermediate terms.

3.2 Convolution Neural Network

Convolutional Neural Networks (CNNs) are the widely utilized type of artificial
neural network in computer vision currently. It came into prominence with LeNet-
5 (LeCun et al., 1998) where the authors used it for first time to recognize images of
handwritten digits. Later, Alexnet (Krizhevsky et al., 2012) and VGG (Simonyan
and Zisserman, 2014b) showcased its capability to understand real-word natural
images. In videos, C3D (Ji et al., 2013) and I3D (Carreira and Zisserman, 2017) are
popular architectures to capture the video’s 3-D (spatial and temporal) information.

A standard multi-layer perceptron (MLP), where each neuron in a layer is con-
nected to all the neurons of the previous layers, uses matrix multiplication in all the
layers. However, in comparison, CNN uses convolution in atleast one of the layers.
The use of convolution enables the network to exploit the information from spatial
or temporal or other types of structural coherence. A standard convolution network
consists of convolution layer, pooling layers and fully connected layers as seen in the
architecture of LeNet-5 (LeCun et al., 1998) (Figure 3.3). We now describe briefly
the two key types of layers used in CNNs.
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Figure 3.3: The network architecture of LeNet-5 (LeCun et al., 1998)
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Figure 3.4: Functioning of a convolution layer

3.2.1 Convolutional Layer

Convolutional layers convolve the input from the previous layer and pass its result
to the next layer, similar to any standard neural network. However, each convolu-
tion operation in a layer is defined by a kernel that shares parameters. They only
process data within their receptive field. A kernel slides over the whole input in a
fixed manner to generate a feature map. Due to the shared parameters within a
kernel, CNNs have significantly less number of parameters in comparison to stan-
dard ANNs. Typically, 2D kernels are used to exploit spatial coherence, whereas 3D
kernels are used for spatiotemporal coherence. Figure 3.4 shows the functioning of
a convolutional layer.

3.2.2 Pooling Layer

A pooling layer is utilized to downsize the size of the feature map. This is done by
combining the localized outputs of the previous layers into a single output. Two types
of pooling layers are widely used a) Max pooling, where the output is the maximum
value of each local region, or b) Average pooling, where the output is the average
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Feed Forward Neuron Recurrent Neuron

Figure 3.5: Comparison of feedforward neuron to recurrent neuron. In a recurrent
neuron, the output of the neuron is feedback additionally as input.

value of each local region. Due to this, the pooling layer provides translational
invariance that focuses on feature detection instead of their location.

3.3 Recurrent Neural Network

A recurrent neural network (RNN) is a type of artificial neural network that uses
recurrent neurons instead of the standard feed-forward neurons. A recurrent neuron
(also known as a cell) has feedback loops that connect the output back to its input.
Further, RNNs have a hidden state that acts as a memory of the neuron. As such,
this memory and recurrent neuron suits RNNs to process sequential or temporal,
or serial data, where the value at the current time is related to the values in the
past. RNNs have been very popular in applications with temporal problems, such
as natural language processing (NLP), speech recognition, and image captioning.
Figure 3.5 shows the difference between feedforward neurons and recurrent neurons.

Assuming a RNN is processing sequential data z1.7 = (z1,...,z7). Mathemati-
cally, a simple recurrent neuron is written as:

h: = O’h(tht + Uphs—1 + bh) (3.5)
yr = oy(Wyhi + by)

Here, x¢, hy and y; are the input data, hidden vector/ memory and output at
time t. W, U and b are the weights and biases that are shared over all the time
inputs. o, and oy are the activation functions.

Eventhough RNNs are designed for sequences, they are found to be inadequate
for long sequences. This is because as the length of the sequence increases, backpro-
gation suffer from vanishing or exploding gradients (Bengio et al., 1994). To over-



18 Chapter 3. Preliminaries

09!39?.%

Ct

hy

Figure 3.6: Block diagram of a LSTM cell

come this problem, two variants namely LSTM (Hochreiter and Schmidhuber, 1997)
and GRU (Cho et al., 2014) have been developed, that are widely used. Moreover,
due to its inherent sequential nature and backpropagation through time (BPTT),
RNNs can’t process each input in the sequence parallelly, leading to a slower training
speed. To tackle this issue, modern variations of RNNs such as Linear Recurrent
Unit (LRU) (Orvieto et al., 2023), minLSTM (Feng et al., 2024), minGRU (Feng
et al., 2024), etc. have been developed that focuses on using parallel scan (Martin
and Cundy, 2018) and linear sequential dependencies. We now describe the two
major types of RNNs briefly, that we used in the thesis.

3.3.1 Long short-term memory (LSTM)

LSTM was first proposed by (Hochreiter and Schmidhuber, 1997), to handle the
vanishing gradient problem of standard RNN. This was done by introducing gating
mechanism that regulates the flow of information in and out of the memory. A
simple LSTM cell is composed of an input gate, an output gate and a forget gate.
The inputs to the cell are a) cell state - that holds the long term memory, b) hidden
state - that holds the output of the previous point in time and c¢) input data at
the current time step. Despite such an intricate architecture, it may still exhibit
exploding gradient issues. A simple LSTM cell is shown in Figure 3.6.

The aim of input gate is to retain only the relevant input that needs processing
by the LSTM cell. Similarly, the output gate is applied only to output the knowl-
edge pertaining to the task at hand. In sequential data, sometimes past memory is
required to processing the current data. Thus, a forget gate is used to refresh or
retain the memory of the LSTM cell.
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Mathematically, the functions of a LSTM are defined as:

fi=04Wysxe+Ushi—1 + by) (3.7)
it = og(Wixe + Uihi—1 + b;) (3.8)
or = 0g(Woxy + Ushy—1 + b,) (3.9)
¢y = tanh.(Wexy + Uchy—1 + be) (3.10)
c=fiOc-1+1i 06 (3.11)
hy = o¢ © tanhy,(¢¢) (3.12)

Here, ¢, ¢; and h; are the input, cell state and hidden state of LSTM cell at
time t respectively. The input to a LSTM cell consist of x¢, ¢;—1 and hs_1. i, o and
fi are the activation vectors for input gate, output gate and forget gate respectively.
W, U and b are the parameters of the cell. ® is the hadamard product.

3.3.2 Gated Recurrent Unit (GRU)

Motivated by the gated mechanism of LSTM, in (Cho et al., 2014), the authors
proposed gated recurrent unit with a simpler architecture with less number of gates.
Mathematically, a GRU is defined as:

2z = 0g(Woae + Ushy—1 + bs) (3.13)
ry = og(Wray + Uphy—1 + by) ( )
he = ¢n(Whay + Un(re © he—1) + bp) (3.15)
ht:Ztthfl"_(l_zt)@]tLt ( )

Here, x; and h; are the input vector and output vector at time t. z; and r; are the
activation vector for forget gate and input gate, respectively. W, U and b are the
parameters of the cell.

3.4 Video Representation

Typically, video is considered as a 3D input of H x W x T dimension, where H x W
denotes the visual frame at any given time and T denotes the total number of frames
in the video. This 3D input contains a huge amount of information with a lot of
redundancy and thus, any good model needs to capture only relevant information
ignoring the redundancy effectively. One widely known approach is to apply convo-
lutions over the video. Depending upon the application and goal, this convolution
could be a 2D or a 3D operation of A x w or h X w X t, respectively. In the following,
we discuss a few representation learning approaches that we utilize in the thesis.
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2D convolution 3D convolution

Figure 3.7: Comparison of 2D and 3D convolutions. The 2d convolution consists
of a 2d kernel in contrast to 3d kernels for 3d convolution. The kernel may have
different sizes in each dimension. Typically the time dimension of incase of a video.

3.4.1 Neural Representation: 2DCNN vs 3DCNN

Convolutional Neural Networks (CNNs) can be categorized based on the convolu-
tional kernel’s dimension. A 2D CNN uses 2D convolutional kernels in contrast to
a 3D CNN which uses 3D convolutional kernels. These kernels are applied on a
single frame or a clip of the video respectively. Because a 2D CNN is applied on
a single frame as input, they inherently fail to leverage temporal context. Despite
the capability of the 3D convolution kernels to handle 3D video input, SDCNNs are
constrained by GPU memory while processing very long videos and as such may
need to be divided temporally in sub-clips as seen in (Richard et al., 2018; Vicol
et al., 2018). Figure 3.7 shows the two different convolution operations.

There exist various efficient architectures such as Alexnet (Krizhevsky et al.,
2012), VGGnet (Simonyan and Zisserman, 2014b), etc. for 2D representation and
I3D (Carreira and Zisserman, 2017), Slowfast (Feichtenhofer et al., 2019), etc. for
3D representation.

Due to their limited receptive field of the convolution in the CNNs, they are
limited in capturing global relations. This has paved way for global attention based
transformer architectures such as ViViT (Arnab et al., 2021), Swin Transformer (Liu
et al., 2021, 2022), etc. We will now briefly discuss the few CNNs and architectures
used for video representation in the thesis.

3.4.2 Two-Stream Networks

The two-stream network architecture (Simonyan and Zisserman, 2014a) is inspired
by the two-stream hypothesis for biological visual cortex (Goodale and Milner, 1992).
The hypothesis indicates that the brain has separate pathways for static objects
and motion-related information. The two-stream networks mimic the hypothesis by
applying two different networks (or streams) to process static spatial information
and temporal /motion information respectively as shown in Figure 3.8.
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Figure 3.8: Overview of the two stream architecture (Simonyan and Zisserman,
2014a). The spatial stream ingests a single frame to parse the spatial information
whereas the temporal stream focuses on an optical flow field to capture the motion
information.

The input is a clip H x W x T' (a set of T consecutive frames of height H and
width W), where the center frame is passed into the spatial stream to parse the
spatial information. The whole set of T' consecutive frames is then used to compute
optical flow fields of size H x W x T. These optical flow fields are then passed as
input for the temporal stream to process motion information. Once the output of
each stream is computed, representations from both are fused together to make a
spatiotemporal representation. These fused representations are used for predictions.
Many sophisticated fusion strategies were later developed that helped to enrich the
spatio-temporal representation.

3.4.3 13D

Inflated 3D or I3D (Carreira and Zisserman, 2017) is a 3D CNN that extends a 2D
architecture to perform action recognition. The core idea is to inflate the 2D square
filters of size N x N by adding a new dimension to make them 3D cubic filters of
N x N x N. This is done by repeating the weights of the 2D filters N times along
the time dimension. This enables the architecture to bootstrap the new 3D filters
from pretrained 2D filters. In other words, they initialize the 3D filters with the
weights of the 2D filters trained on large image datasets like ImageNet (Deng et al.,
2009) for significantly improved performance. The initialization also includes that
the average and max-pooling layers be the same for the 2D case as the 3D case.
Thus, if one repeats a single image N times to make a static video, the output of
3D architecture remains the same as that of the single image with 2D architecture.
I3D also suggests the kernel should not be symmetric in time rather depend upon
the frame rate and image dimensions. This is because if the receptive field are large
in time, it may conflate the edges of different moving objects, messing up the early
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Figure 3.9: Overview of the Slowfast architecture. The slow pathway operates at
a lower frame rate with to capture static content. The fast pathway, in contrast,
operates at a higher frame rate focusing on identifying the dynamic content of a
video. (Feichtenhofer et al., 2019).

edge features. Similarly, if the receptive field are small, it may not capture scene
changes and dynamics as well. To further incorporate motion information, I3D can
be deployed in two stream architecture where one stream ingests NV set of consecutive
frames and the other stream takes the corresponding set of IV optical flow fields.

3.4.4 Slowfast

A standard two-stream architecture captures spatial and motion information via two
similarly arranged parallel streams with different inputs of RGB frames and optical
flow field. Though, effective they require explicit computation of the optical flow
field. The use of a similar architecture for both RGB frames and optical flow field
limits their ability to harness motion information effectively. These limitations are
overcome by a 3DCNN architecture called Slowfast (Feichtenhofer et al., 2019) as
shown in Figure 3.9.

At the heart, Slowfast uses two parallel pathways (similar to two streams), each
designed to process different aspects of the video. The slow pathway operates at
a lower frame rate with higher image resolution, enabling it to capture static or
slow-moving content and provide a comprehensive understanding of the scene. In
contrast, the fast pathway processes the video at a higher frame rate with reduced
image resolution, allowing it to focus on capturing dynamic, fast-moving content.
This is partially inspired by the retinal ganglion in primates (Derrington and Lennie,
1984; Van Essen and Gallant, 1994) that has P-cells and M-cells. P-cells operate on
a low temporal frequency that helps in recognizing spatial details, whereas M-cells



3.5. Localisation Task 23

operate at a high temporal frequency and are responsive to swift changes.
The Slow pathway uses a large temporal stride (i.e. number of frames skipped
per second) 7 resulting in a sparse sampling of frames in time. The Fast pathway

T

uses a much smaller temporal stride 7 resulting in a dense temporal sampling of

frames. To manage the computations, the Fast pathway is kept lightweight by using
% times smaller channel size compared to the slow pathway. As a result, the Fast
pathway requires 4x less computing than the Slow pathway despite having a higher

temporal frequency.

3.5 Localisation Task

The localization task in computer vision deals with predicting class and their location
in visual content. For example, an object recognition algorithm (Ren et al., 2015;
Redmon et al., 2016) deals with recognizing the object as well as localizing the
object via a set of 4 continuous numbers namely, x and y coordinates & the height
and width to draw a bounding box around the object. The location information is
obtained by performing a regression task. Person detection is a specific type of object
localization where the object to be localized is a human. Person localization can be
performed on a single frame or a set of frames capturing the action in consideration.
In the following section, we briefly introduce two localization algorithms related to
the thesis.

3.5.1 Fast RCNN

The basis of Fast RCNN (Girshick, 2015) lies in RCNN (Girshick et al., 2014). In
RCNN, the authors use selective search to generate 2000 region proposals that are
warped and passed through a convolutional network for classification and bounding
box regression. However, the speed of detection is bottlenecked by the convolutional
computations for a large number of proposals.

To overcome the multiple CNN computations for each proposal, Fast RCNN
uses a single convolutional network for the whole image and generates a feature
map. The authors parallelly identify the proposals through selective search and
generate a fixed-size vector using a Rol pooling layer from the feature map followed
by a fully connected layer. The overview of the approach is shown in Figure 3.10

3.5.2 Faster RCNN

For faster RCNN (Ren et al., 2015), similar to Fast RCNN, an image is passed
through a convolutional network to generate a feature map. Typically, the computa-
tion of proposals using the selective search algorithm of RCNN (Girshick et al., 2014)
and Fast RCNN (Girshick, 2015) is expensive and results in low recall. Thus, the
authors for Faster RCNN proposed using a proposal network over the feature maps.
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Figure 3.10: Overview of the Fast-RCNN architecture. An input image and mul-
tiple proposals or Rols are input into a fully convolutional network. Each proposal
is pooled into a fixed-size feature map and then mapped to a feature vector by fully
connected layers. (Girshick, 2015).

This proposal network generates quick and accurate proposals for object detection
and localization. The novel region proposal network uses a sliding window over the
feature map. This feature map generates multiple proposals based on fixed-shaped
k-anchor boxes. Each proposal has 4 values for location and 2 values for objectness
score. The Rol pooling for object detection and localization remains the same as
Fast-RCNN. The overall architecture of the approach is shown in Figure 3.11a and
the details of the region proposal are shown in Figure 3.11b.
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[ 4 coordinates | fmm  kanchor boxes
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256-d
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Figure 3.11: a) Overview of the Faster-RCNN architecture. An input image is
passed through a fully convolutional network to generate feature maps. It uses
region proposal and Rol pooling to perform object detection and localization (Ren
et al., 2015). b) Overview of the Region Proposals. Region Proposals uses a sliding
window over the feature map. For each sliding window location, k anchor boxes are
generated characterized by objectness score and its coordinates.
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3.6 Linear programming and optimization

Linear programming (LP) is an optimization method to achieve a solution that aims
to maximize or minimize any linear mathematical function subject to any given linear
constraints. The linear constraints could be defined as linear equality or inequality.
A standard form of such problems is defined as:

argmin ¢! (3.17)
st. Ax <b
x>0

Here, x are the variables for which the optimal solution is to be found such that

T2 is minimized. ¢ is the coefficient vector. Az < band x > 0

the objective function ¢
are the constraints over the solutions for x. It is also known as the feasible region or
convex polytope. A is a given weight matrix for the constraints. Figure 3.12 shows a

simple plot of the feasible region and the multiple constraints for two variables.

X2

Figure 3.12: A simple plot of feasible region and constraints (edges) resulting in
corner points/vertices for two variables

A standard linear objective function without constraints is a convex function.
Thus, an optimal solution will definitely exist. However, due to the linear constraints,
such an objective function might have no optimal solutions. This could be due to
the fact that a) the constraints might result in a no-feasible solution and b) the
direction of the objective gradient is unbounded due to constraints.

Linear programming is widely used in various fields such as business, economics,
and many engineering problems. One of the widely used applications of linear pro-
gramming lies in cost-effective planning and resource utilization in industries such as
transportation, energy, telecommunications, and manufacturing to maximize output.
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3.6.1 Special cases of Linear Programming

The optimal solution for the variable x is typically considered to be real numbers.
i.e. x € R. However, two special cases of linear programming exist:

1. Integer programming: In these types of linear programming, the optimal solu-
tion needs to be an integer. In other words, x € I. Due to this constraint, these
integer programs may not be solved efficiently and are considered NP-hard.
Graph coloring problems are a type of Integer programming. 0-1 programs
or binary programming are a special case of Integer programming where the
optimal solution can only have values 0 or 1. Despite being NP-hard many
algorithms exist that are able to generate approximate solutions in polynomial
time (Hansen et al., 2013; Lee and Sidford, 2015).

2. Mized integer programs: If the optimal solution for some of the variables (x)
are integers and the rest could be real numbers, such integer programs are
called Mixed integer programs. They are also NP-hard problems.

3.6.2 Algorithms

Linear programs such as the above can be solved by various algorithms. All the set
of such algorithms can be divided into two categories as follows:

1. Simplex method: The simplex method (Dantzig, 1990) was developed by
George Dantzig. These categories of methods typically follow an iterative
process that relies on mathematical calculations and logical reasoning over the
corner points to find the optimal solution to a linear programming problem.

Despite its simplicity, the simplex method has the worst time complexity. In
some cases, it may result in cycles and result in non-polynomial time compu-
tations.

Some recent approximate methods such as (Hansen et al., 2013) are based on
simplex methods.

2. Interior point method: In contrast to the simplex algorithm that achieves an
optimal solution by iterating over the edges between the corner points of a
feasible region, the interior-point methods move through the interior of the
feasible region.

The most famous interior point method is called Karmarkar’s algorithm (Kar-
markar, 1984; Adler et al., 1989) which was introduced by Narendra Kar-
markar. It is able to find the optimal solution in a polynomial time. If n
denotes the number of variables and L denotes the number of bits of input,
then the time complexity of Karmarkar’s algorithm is found to be O(n3°L).
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The recent and updated versions of Karmarkar’s algorithm such as (Lee

and Sidford, 2015) are able to achieve better worst-case time complexity of
O(n?5L).

Despite polynomial time computations, it is sometimes beneficial to achieve ap-
proximate solutions in a faster time. This is critical in the case of Binary Linear
programming that is NP-hard. Many such approximate solutions are based on branch
and bound algorithms (Mitra, 1973) or cutting plane methods (Gilmore and Gomory,
1961, 1963) or combinations of their-of. Multiple commercial solvers such as CPlex!
or Gurobi? exist that generates exact or approximate solutions for practical usage.

"https:/ /www.ibm.com/docs/en /icos/20.1.0?topic=cplex-users-manual
https://www.gurobi.com/






CHAPTER 4

Structural Recurrent Neural
Network (SRNN) for Group
Activity Analysis

In this chapter, we present a solution for group activity recognition that uses struc-
tural recurrent neural networks (SRNN) to jointly identify individual actions and
overall group activity. Understanding group behaviors requires capturing the spatial
and temporal interactions among individuals within the group. Our solution consists
of two SRNN variants designed to model these relationships explicitly using multiple
RNNs and trained together using a single loss function.

Individual Contribution

The following chapter is based on the publication (Biswas and Gall, 2018):

Structural Recurrent Neural Network (SRNN) for Group Activity
Analysis

Sovan Biswas, and Jiirgen Gall.

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2018.

This publication was done by Sovan Biswas and Jiirgen Gall provided scientific
guidance and supported this work with very valuable feedback and suggestions.
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Figure 4.1: A frame labeled as group activity “Left Spike" and bounding
boxes around each team player are annotated in the dataset with individual ac-
tions (Ibrahim et al., 2016b).

4.1 Introduction

Activity analysis has been of great interest in computer vision since decades. In
recent years, deep learning approaches such as (Carreira and Zisserman, 2017; Ji
et al., 2013; Simonyan and Zisserman, 2014a; Singh et al., 2016; Karpathy et al.,
2014) have been proposed to recognize activities in videos. Most of these approaches,
however, focus on single person activity analysis and estimate only one activity per
video clip. Similar to other recent works (Ramanathan et al., 2016; Deng et al.,
2016; Alahi et al., 2016; Shu et al., 2017), the goal of this chapter is to understand
and analyze the actions of individuals and their interactions, and subsequently use
them for predicting the group activity.

Recent deep learning approaches for group activity analysis such as (Ibrahim
et al., 2016a; Shu et al., 2017) use a multi-level hierarchy of recurrent neural networks
(RNNs) for group activity recognition. In these approaches, the lower level RNNs
focus on understanding and modeling the actions of individuals and the higher level
RNNs in the architecture model the group activity. These approaches are trained
using a two-step process. The first step focuses on improving the recognition of
the actions of each individual independently and the subsequent step focuses on
recognizing the group activity given the recognized actions of the individuals.

Apart from the hindrance of two-step training, these methods lack the capability
of capturing interactions between individual persons when present within a group.
For example, in a volleyball game as shown in Figure 4.1, a person from the team
on the left-hand side of the volleyball court performs the individual action “spiking"
whereas the player from the opponent team performs a “blocking" action. Looking
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only at the individuals makes it difficult to distinguish between the individual ac-
tions, but there is a strong correlation between the two activities. Similarly, when
walking in a crowd, people move and walk in various directions just to avoid collid-
ing with each other. In general, the action of an individual in a group is influenced
by the actions of the other individuals in the group. This phenomenon not only
provides context that helps to recognize the individual actions but also provides a
key information about the group level actions such as in the case of volleyball as
shown in Figure 4.1. Thus, there is an imperative need to analyze interactions be-
tween individuals and to capture the influence over time when analyzing a group of
humans.

The main focus of the chapter is to harness such interactions within a group
to improve the recognition of the group activity as well as the individual actions.
To this end, we build on the recently proposed structural recurrent neural network
(SRNN) (Jain et al., 2016) which has the unique capability of capturing interactions
as contextual information using an interconnected set of RNNs. While in (Jain
et al., 2016), the number of nodes and edges and therefore the number of RNNs is
constant, we extend the approach to handle a varying number of nodes and edges
as it is required for analyzing group activities.

The rest of the chapter is structured as follows. We start with a brief introduction
of SRNNs in Section 4.2. In Section 4.3, we introduce two variants of an SRNN.
We then evaluate the two variants in Section 4.4 and conclude with a summary in
Section 4.5.

4.2 Structural RNN

Recurrent neural networks are very effective in modeling temporal sequences. In
case of a single person, features f! are extracted at each frame and used as input
for an RNN to predict the action classes y' over time. However when in a group,
a person performs an action based on its interaction with other persons and the
group objective. So, a single recurrent neural network is incapable of capturing
the interactions and group dynamics, thus reducing its effectiveness. For solving
similar problems, in (Jain et al., 2016), the authors proposed an interconnected set
of recurrent neural networks that not only captures the individual behavior over
time but also integrates the interactions between the individuals through edges.
An example of an SRNN is illustrated in Figure 4.2. It consists of three nodes v;,
vj, and vy and the goal is to predict for each node the class labels over time, which
are denoted by yf,i, yf)j, and yf)k, respectively. Each node is modeled by an RNN,
termed nodeRNN. It takes as input some features fﬁi, which are extracted for a node
v;, but also the output of RNNs that model the interactions with other nodes. The
second type of RNN is termed edgeRNN. The edgeRNNs take as input some features
féij based on the spatio-temporal relation between two nodes v; and v; and predicts
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Figure 4.2: Feedforward network of a Structural RNN (SRNN) when trained with
respect to node labels.

a latent representation h';ij, which is forwarded to the corresponding nodeRNNs.

The advantage of such an SRNN is that the nodeRNNs and the edgeRNNs can be
trained jointly such that the prediction of the node labels depends not only on the
features that are extracted for each node but also on the interactions between the
nodes.

4.3 Group Activity Analysis

In this section, we will first briefly introduce the problem in Section 4.3.1. This
is followed by introducing two different variants of an SRNN for group activity
recognition in Section 4.3.2.

4.3.1 Problem Formulation

Our objective is to predict jointly the group activity label yg of a group as well as the
action label y,f,z for each individual v; of the group over time. We assume that the
bounding box for each person has been already extracted and we compute features
for each individual person féz and for each edge f;,j between two individuals. The
features are described in Section 5.2.3 and we denote the set of all node and edge
features for a frame by F*. In order to learn the parameters 6 of the models which
are described in Section 4.3.2, we minimize the loss

arg min [L (1/19 (Ft; 9) 7y;)
(%
+ %ZL (¥ (F*%:0) 7951')]’ 1)
=1

where L denotes the cross-entropy loss, 14(.) the prediction function of the model for
the group activity, and v, (.) the prediction function for the actions of the individuals.
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Figure 4.3: SRNN-MaxNode: Feedforward SRNN where max pooling is performed
over the nodeRNNs. The nodeRNNs are enriched using the output of the edgeRNNs
using a novel grid pooling approach.

4.3.2 SRNN for Group Activity Analysis

The proposed group activity recognition approach is formulated as a two-level hier-
archy of recurrent neural networks similar to (Ibrahim et al., 2016a; Shu et al., 2017).
The lower level predicts individual actions followed by the higher level recurrent net-
work that estimates the group activity. In Section 4.3.2.1 and Section 4.3.2.2, we
discuss two SRNN variants that jointly estimate the group activity and the individ-
ual actions by modeling the interactions between individuals. The two SRNNs are
shown in Figure 4.3 and Figure 4.4.

4.3.2.1 SRNN-MaxNode

As shown in Figure 4.1, when a person on the left hand side jumps to perform
the action “spiking", the opponents jump to block the spike, resulting in the action
“blocking" across the volleyball net. This is an example where persons in a group
perform contextual actions. Structural RNNs are an efficient approach to model
such relations.

As discussed in Section 4.2, SRNNs are a hierarchy of RNNs consisting of
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Figure 4.4: SRNN-MaxEdge: Feedforward SRNN where max pooling is performed
over the edgeRNNs. The edgeRNNs are enriched using the output of the nodeRNNs.

edgeRNNs and nodeRNNs. The first variant that we propose for group activity
analysis is shown in Figure 4.3. The lowest level consists of edgeRNNs that model
interactions between two individuals based on their relative position, which is en-
coded by the feature vector f;J The output of the edgeRNNs is feedforwarded to
the nodeRNNs. The number of individuals, however, varies in a group and each
individual might have a different number of neighbors and in very dense crowds the
number of neighbors could be very high. The approach proposed in (Jain et al.,
2016) cannot handle such cases since it concatenates the features, assuming that the
number of edges and nodes is constant. To address this problem, we propose a grid
pooling layer that combines for a node v; the output from all edgeRNNs e;; based
on the position of the neighboring persons v; in a prescribed grid. The prescribed
grid regions are arranged as shown in Figure 4.5. If several neighbors are in the
same grid cell, we sum the output of the edgeRNNs instead of averaging them. This
means that the values are usually larger when more persons are in a cell. The grid
pooling provides for each node v; features for 8 cells that are then concatenated with
additional CNN features fﬁl, which are extracted from the frame ¢ for each person.
The output of the nodeRNNs is used in two ways. First, the action class yfjl of the
person v; is predicted using an additional softmax layer. Second, the group activity
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is estimated similar to (Ibrahim et al., 2016a) by max-pooling the outputs of the
nodeRNNs of a group at a time instant ¢, which is then used as input for an RNN
that predicts the group activity yf] over time.

In summary, the SRNN-MaxNode model is defined as follows:

hi, = RNN.(hI ', f)
JESc;
Bl = [htLi...hz?i]
h, = RNNu(RL ' AL, fl). (4.2)

While hfzij denotes the output from the edgeRNN for the nodes v; and v;
at frame t, Sc, denotes the set of neighboring nodes of v; in the cell C; €
{L, R, A, B', Q%, Q%, Q%, Q% }, which are the grid regions for v; as shown in Fig-
ure 4.5. The accumulated values for each cell htci are then concatenated to the vector
h%. and the output of the nodeRNN is denoted by h! .

The full architecture can thus be defined as:

yfll = (bv(h;th? W’U)
R, = max(hl ...hl )

p
hf = RNNg(h, ', hj)

where hf,i denotes the output after the SRNN (4.2) and W, denotes the weights used
in the softmax function ¢,(.) to predict the individual actions yf)i. h;; denotes the
max-pooled representation over the complete group and hz denotes the output of
the group RNN, which is then used by a softmax function ¢(.) with weights W, to
predict the group activity yé.

4.3.2.2 SRNN-MaxEdge

While the SRNN in Figure 4.3 uses the edgeRNNs to provide contextual information
for the nodeRNNs, we also compare it to an SRNN where the nodeRNNs are at the
lowest level of the hierarchy. In this case, the max pooling is not performed over the
nodeRNNs but over the edgeRNNs and an additional grid pooling is not required
since each edge consists of two nodes. We denote the second variant, which is shown
in Figure 4.4, SRNN-MaxEdge.

For SRNN-MaxFEdge, the lower level of the hierarchy consists of nodeRNNs that
predict the individual actions based on the individual CNN features qui. The output
from the nodeRNNs is forwarded to the corresponding edgeRNNs, which also take
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Figure 4.5: Grid pooling. Left: 1, 2, 3 and 4 denote four persons in the neighbor-
hood of the person e. Right: We define three grid structures (top) and we sum the
outputs of the edgeRNNs where the neighbors of e are in the same cell. We then
concatenate the features of the eight cells. If a cell is empty, the feature vector is
set to zero.

the edge features f;j as input. The output of the edgeRNNs at a time instant ¢ is
max pooled and then used as input for an RNN that predicts the group activity yf]
over time.

In summary, the SRNN-MaxEdge model is defined as follows:

hi, = RNNy(RL ', fl)

yf)l = ¢U (hf:/)l 9 W’U)

Rt = RNNg(RL 1 Rt (Al £, (4.4)
¥ J

€ij » g €ij

where hf)i denotes the output of the nodeRNN for person v; at a given time ¢ and W),
are the weights used in the softmax function ¢,(.) to predict the individual action
yfh héij denotes the output of the edgeRNNs.

The full architecture can thus be defined as:

h; = max(hl,...hl )
hi = RNNy(n, ' nl)

where h;j denotes the output from the SRNN (4.4). While h;, denotes the max
pooled representation over all edges in the group, hg denotes the output of the
group RNN, which is then used by a softmax function ¢(.) with weights W, to
predict the group activity y;.
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Method Group A?t.ivity Individual.éction
Recognition Recognition

Hierarchical LSTM (1 group) 70.3% -
Hierarchical LSTM V1 (1 group) 68.37% 76.32%
Hierarchical LSTM V2 (1 group) 73.89% 76.32%
Hierarchical LSTM V3 (1 group) 74.01% 75.96%

Hierarchical LSTM (2 groups) 81.9% -
Hierarchical LSTM V1 (2 groups) 78.37% 76.32%
Hierarchical LSTM V2 (2 groups) 81.33% 76.32%
Hierarchical LSTM V3 (2 groups) 83.12% 75.96%

Table 4.1: Comparison of various variations of the Hierarchical LSTM (Ibrahim
et al., 2016b) using Alexnet features.

4.4 Experiments

4.4.1 Datasets

We evaluate our framework on the recently introduced volleyball dataset (Ibrahim
et al., 2016b). This dataset has 55 volleyball game video sequences with 4830 labeled
frames, where each player is labeled and subsequently annotated with the bounding
box. Each player performs one of the 9 individual actions resulting in one of the 8
group activity labels. Furthermore, the whole dataset is divided into non-overlapping
sets of 24 sequences for training, 15 sequences for validation and the remaining
sequences are used for testing. Similar to (Ibrahim et al., 2016a; Shu et al., 2017),
we have used both training and validation sequences for training. Since not all
frames are annotated by bounding boxes, the Dlib tracker (King, 2009) is used to
propagate the ground-truth bounding boxes to the unannotated frames.

4.4.2 Implementation Details

For the RNNs, we use standard LSTMs (Hochreiter and Schmidhuber, 1997) and the
implementation is done using the Tensorflow library. At the node level, each LSTM
is connected with a deep convolutional network such as Alexnet (Krizhevsky et al.,
2012) or VGG 16 (Simonyan and Zisserman, 2014b) to compute the visual features
fv; based on the annotated and tracked bounding boxes of the persons. Similar
to (Ibrahim et al., 2016a; Shu et al., 2017), we initialize the CNNs by a model that
has been pre-trained on ImageNet. During training, we fine-tune only the last two
fully connected layers of the CNNs.

The edge features fet” model spatio-temporal relations between the bounding
boxes of two persons. We take the center of each bound box and compute the differ-
ence vector (dz, dy). We then compute the basic distance values (|dz|, |dy|, |dz+dy|,
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(dx)? 4 (dy)?) and add the direction of the translational vector (arctan(dy,dzx),
arctan2(dy,dx)). To further enhance these simple 6 interaction features, we also
compute the difference of the 6 features between two consecutive time frames, which
results in 6 additional features. We finally compute the 12 features not only for
frame t, but also for the neighboring frames ¢ — 1 and t + 1 to capture some short
temporal information. All features are concatenated to obtain a 36 dimensional
feature vector.

The training is performed in two stages. In the first stage, the nodeRNNs are
trained independently using individual actions and the cross-entropy as loss function.
For this stage, we have used a batch size of 36 for our experiments. In the next step,
we train the whole architecture by minimizing the loss (4.1). We use Adam as
optimizer with a learning rate of 0.00001. During training, the parameters of the
nodeRNNs and the last two layers of the CNN are updated as well. The nodeRNNs
have 3000 hidden units and the group RNN has 2000 hidden units. The number
of nodes for the edgeRNNs differs between the SRNN-MaxNode and the SRNN-
MaxEdge due to differences of the input features. While the edgeRNNs in the
SRNN-MaxNode take as input the low dimensional features fgi]_, the edgeRNNs in
the SRNN-MaxEdge use the additional output of two nodeRNNs as input. For the
edgeRNNs in the SRNN-MaxNode, we use therefore only 30 hidden units whereas
1000 hidden units are used for the edgeRNNs in the SRNN-MaxEdge. Since the
two variants differ in memory consumption and the GPU memory is limited, we use
a batch size of 30 for SRNN-MaxNode and a batch size of 16 is used for SRNN-
MaxEdge.

In accordance with other approaches Hierarchical LSTM (Ibrahim et al., 2016a),
CERN (Shu et al., 2017) and Social Scene (Bagautdinov et al., 2017), we have also
performed experiments where we divide the individuals in two groups. For this, we
use the same approach as in (Ibrahim et al., 2016b).

4.4.3 Experimental Evaluation
4.4.3.1 Variation of Hierarchical LSTM

As the proposed approaches are inspired by Hierarchical LSTMs (Ibrahim et al.,
2016b), we have first performed a few baseline experiments to evaluate versions of
the Hierarchical LSTM (Ibrahim et al., 2016b):

e 2-layer LSTMs (V1): This is similar to (Ibrahim et al., 2016b) with a two-step
training for person level RNNs followed by training of the group level RNN
given the pre-trained person RNNs. Unlike (Ibrahim et al., 2016a), the group
level takes as input only the output of person RNNs and does not use any
additional CNN features.

e 2-layer LSTMs (V2): Reimplementation of (Ibrahim et al., 2016b).
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Method Group Activity Individual-A-ction
Recognition
Hierarchical LSTM (1 group) 70.3% -
Hierarchical LSTM V3 (1 group) 74.01% 75.96%
CERN (1 group) 73.5% 69%
SRNN-MaxNode (1 group) 74.39% 76.65%
SRNN-MaxEdge (1 group) 68.39% 76.03%
Hierarchical LSTM (2 groups) 81.9% -
Hierarchical LSTM V3 (2 groups) 83.12% 75.96%
CERN (2 groups) 83.3% 69%
SRNN-MaxNode (2 groups) 83.47% 76.65%
SRNN-MaxEdge (2 groups) 79.86% 76.03%
’ Social Scene (2 groups) ‘ 89.9% \ 82.4% ‘

Table 4.2: Comparison of the proposed SRNN approaches to the state-of-the-art.

Group | Individual Action

Feature Method Activity Recognition
H. LSTM V3 - (1 group) | 74.01% 75.96%
Alexnet | SRNN-MaxNode - (1 group) | 74.39% 76.65%
SRNN-MaxEdge - (1 group) | 68.39% 76.03%
H. LSTM V3 - (1 group) | 70.34% 75.30%
VGG 16 | SRNN-MaxNode - (1 group) | 71.20% 74.85%
SRNN-MaxEdge - (1 group) 68.29% 75.96%
H. LSTM V3 - (2 groups) 83.12% 75.96%
Alexnet | SRNN-MaxNode - (2 groups) | 83.47% 76.65%
SRNN-MaxEdge - (2 groups) | 79.86% 76.03%
H. LSTM V3 - (2 groups) 81.34% 75.30%
VGG 16 | SRNN-MaxNode - (2 groups) | 82.86% 74.85%
SRNN-MaxEdge - (2 groups) | 79.92% 75.96%

Table 4.3: Comparison of the proposed SRNN approaches with Hierarchical LSTM
V3 using Alexnet or VGG 16 as CNN.
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e 2-layer LSTMs (V3): This is similar to V1 but person RNNs and group RNN
are jointly trained using the loss (4.1). As described in Section 5.2.3, the last
two layers of the Alexnet are fine-tuned.

The accuracy of recognizing the group activity as well as the actions of the
individuals is reported in Table 4.1. The results show that training the person
RNNs and the group RNN jointly (V3) using the loss (4.1) improves the accuracy
of the group activity also for the Hierarchical LSTM (Ibrahim et al., 2016b), but it
slightly decreases the individual action recognition results. Dividing the individuals
into two groups as in (Ibrahim et al., 2016b) improves the accuracy by a large margin
due to the volleyball scenario where two teams play against each other.

4.4.3.2 Comparison to state-of-the-art

Table 5.5 compares the proposed SRNN approaches with the Hierarchical LSTM
V3 that is trained with the same loss function and uses the same Alexnet CNN.
While SRNN-MaxNode outperforms the Hierarchical LSTM both for group activity
recognition as well as the recognition of the individual actions, SRNN-MaxEdge
achieves a lower group activity accuracy than SRNN-MaxNode and Hierarchical
LSTM. It shows that the max pooling over the nodeRNNSs is better than pooling over
the edgeRNNs on this dataset since the max pooling over the nodeRNNs forwards
the features of the most important individual to the group RNN. This works for
group activities as shown in Figure 4.1 very well since the group activity can be
well inferred from the “spiking" person. Our proposed approach SRNN-MaxNode
also outperforms the approach CERN (Shu et al., 2017), which also uses Alexnet
features. However, the recent approach (Bagautdinov et al., 2017), which builds on
the Inception-V3 CNN (Szegedy et al., 2016), achieves the highest accuracy on this
dataset.

4.4.3.3 Impact of CNN architecture

We have also analyzed the impact of the CNN architecture and compare the used
Alexnet CNN with the larger VGG 16 network. The results are reported in Table 4.3.
The accuracy of the VGG 16 network decreases the accuracy of the Hierarchical
LSTM as well as the proposed SRNN-MaxNode. For SRNN-MaxEdge the accuracy
remains nearly the same. The decrease in accuracy might be due to overfitting, but
it needs further investigation to analyze the impact of the used CNN model in more
detail.

4.4.3.4 Impact of deep edge features

For the model SRNN-MaxNode, we use a low dimensional feature vector fé,-j that
encodes simple spatio-temporal relations between two bounding boxes. We also
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Edge feature Group Activity Individual Action
Accuracy Recognition Accuracy
f;,j (1 group) 74.39% 76.65%
( gw_, L 53) (1 group) 74.48% 75.89%
fetij (2 groups) 83.47% 76.65%
(f;j, ft., f,ﬁ]) (2 groups) 83.27% 75.89%

Table 4.4: Comparison of edge features using SRNN-MaxNode.

investigated if the accuracy can be improved when the edgeRNNs not only take
f;j as input feature but also ff and féj. Since this increases the dimensionality of
the input feature from 36 to 8228 (4096+4096+36), we also increase the number of
hidden units of the EdgeRNNs from 30 to 1000 to address the higher dimensionality.
As shown in Table 4.4, adding ff,fi and f;fj does not improve the accuracy. This is
expected since the features fﬁz are already added to the nodeRNNs and adding them
twice does not provide additional information for the model.

4.5 Conclusions

In this chapter, we have proposed two variants of structural recurrent neural net-
works (SRNN) to recognize the actions of individuals as well as the activity of the
entire group jointly. The advantage of the SRNN approach is that it explicitly mod-
els relations between individuals and all RNNs can be trained together using a single
loss function. We evaluated the models on the Volleyball Dataset and showed that
the SRNN model outperforms hierarchical LSTMs.






CHAPTER 5

Hierarchical Graph-RNNS for
Action Detection of Multiple
Activities

In this chapter, we introduce a method for multi-label action detection that uses
hierarchical graph RNN that combines both temporal scene context and human
interactions. The idea of using human interactions for spatio-temporal action de-
tection was developed from concepts of group activity recognition discussed in the
previous chapter.

Individual Contribution

The following chapter is based on the publication (Biswas et al., 2019):

Hierarchical Graph-Rnns for Action Detection of Multiple Activities
Sovan Biswas, Yaser Souri and Jiirgen Gall.
IEEE International Conference on Image Processing (ICIP), 2019.

This publication was done by collaboration between Sovan Biswas and Yaser Souri.
The core idea took shape as the result of multiple discussions between Sovan
Biswas and Yaser Souri. The implementation and the experimentation was done by
Sovan Biswas. Jiirgen Gall provided scientific guidance and supported this work
with very valuable feedback and suggestions.
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5.1 Introduction

With the advent of deep neural networks and the availability of large datasets in
the last decade, the performance of recent algorithms for action recognition has
improved drastically. Annotating large amount of data, however, is very expensive.
In particular for spatio-temporal action recognition and localization where multiple
actions occur at the same time, action labels and bounding boxes would be required
for each frame in order to learn a model using full supervision. The large-scale
AVA 2.1 dataset (Gu et al., 2018) for recognizing and localizing multiple actions in
videos, therefore, provides only temporally sparse annotations, i.e., the persons and
the actions the people perform are annotated for only one frame per second. This
requires to develop methods that can be trained with such sparse annotations (Gu
et al., 2018; Sun et al., 2018; Girdhar et al., 2018; Stroud et al., 2018).

While these works take temporal information into account, they do not model
the interactions of the individual persons. While some actions of different persons
are uncorrelated, other actions refer to interactions between persons like ‘talk to’
and ‘listen to’. There are also actions that are often performed by several persons
at the same time like ‘sit’, ‘stand’, ‘walk’, or ‘play instrument’, but there are also
actions that exclude each other. For instance, if a person ‘drives’ a car, it is very
unlikely that the other persons in the car ‘stand’ or ‘play an instrument’.

In this work, we, therefore, propose an approach that learns the relations of
actions that occur at the same time and that can be learned using only sparse
annotations. In order to address the sparseness of the annotations, we do not rely on
tracked bounding boxes, which can be unreliable. Instead, we propose a hierarchical
model that models the temporal scene context in the lower level and the relations
of actions of the detected persons on the top level as illustrated in Figure 5.1. The
temporal scene context is important since the relations of the actions depend on the
scene. For instance, it matters if persons are inside of a moving car or a parking car.
We model the scene context by a recurrent neural network (RNN) that uses 13D
features (Carreira and Zisserman, 2017) as input. The RNN models the temporal
context of the entire frames. At the top level of the hierarchy, we combine the hidden
states of the scene context RNN with I3D features extracted for all detected persons
in a frame. To learn the relations of the actions of all detected persons, we use a
graph recurrent neural network (Scarselli et al., 2009; Gori et al., 2005; Li et al.,
2016). The proposed model therefore learns the scene RNN and the graph RNN
together.

We evaluate our approach on the large-scale AVA 2.1 dataset (Gu et al., 2018)
where the approach achieves state-of-the-art results for action detection of multiple
activities.
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Figure 5.1: The proposed network jointly captures temporal context and the re-
lations between different persons by a hierarchy. Scene RNNs; at the lower level,
are used to model the temporal context of a scene. The Graph-RNN on top of it,
models the relations of the actions of the detected persons.

5.2 Detection of Multiple Activities

As it is defined in the AVA 2.1 dataset (Gu et al., 2018), the goal of the approach
is to estimate for a frame the bounding boxes of all persons performing an action
and for each bounding box the action labels. In contrast to other datasets, each
bounding box is annotated by multiple labels. For instance, a person might ‘stand’,
‘carry /hold” an object, and ‘listen to’ another person at the same time.

5.2.1 Features

As illustrated in Figure 5.2, the proposed approach consists of two steps. We first
detect the persons in a frame and then we use the hierarchical graph RNN to infer
the action labels for each detected bounding box. For detecting the bounding boxes,
we use Faster RCNN (Ren et al., 2015) with a ResNet architecture (He et al., 2016).
The detector is fined-tuned on the dataset and the detections are performed in an
action class agnostic way.

For the temporal context of a frame ¢, we extract I3D features (Carreira and
Zisserman, 2017) for ¢ and its neighboring frames. We only consider the frames
t that are annotated in AVA, i.e., one frame per second, but a single I3D feature
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Figure 5.2: After detecting bounding boxes using Faster RCNN and pooling I3D
features for each detected bounding box, the proposed hierarchical Graph-RNN pre-
dicts multiple class labels for each bounding box. In this example, the network
detects two persons and infers the activities ‘sit’, ‘watch (a person)’, and ‘listen to
(a person)’ for the red bounding box and ‘stand’, ‘talk to (a person)’, and ‘watch (a
person)’ for the green bounding box.

is computed over a temporal context of 33 frames. This means that the temporal
receptive fields of the extracted features for the annotated frames t and ¢+ 1 slightly
overlap. Given [ annotated frames before and after frame ¢, we get a sequence of
L =20+ 1 13D features

t—I o t—1 .t CL‘?_l

ool (5.1)
which corresponds to a temporal context of approximately L seconds for AVA.

We also use the detected bounding boxes for each sparsely sampled frame and
use region pooling to extract I3D features per detected bounding box as in (Gu

et al., 2018). This gives for each detected bounding box 4 in frame ¢ another 13D

t

p;- We will use these features as input for the

feature vector that is denoted by z
hierarchical graph RNN.

5.2.2 Hierarchical Graph RNN (HGRNN)

The proposed hierarchical graph RNN as illustrated in Figure 5.1 comprises two
types of RNNs that are trained together. At the lower level, the scene RNN, which
is described in Section 5.2.2.1, models the temporal scene context. The scene context
estimated by the scene RNN is then used as input for the graph RNN, which models
the relations of the actions performed by the detected persons. The graph RNN,
which is described in Section 5.2.2.2, predicts then for each bounding box multiple
action labels.

5.2.2.1 Scene RNN

t
c

in all L frames as input and predicts a hidden state kY only for

The scene RNN takes all L scene features ¥, as well as the features extracted for each

t
pi
frame ¢. Since it uses the frames before and after the frame ¢, we use a bidirectional

detected person x

RNN with GRUs. At this stage, we do not model any relations between the persons
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t

and simply perform maxpooling over all features x;, at each frame.

p
Tt = maxpooli(x;i) (5.2)
= xi@x’}p
hl = biGRU(z'; ALY RETD). (5.3)

While x%, denotes the maxpooled person feature for all detected persons in frame ¢,
@ denotes the concatenation of two vectors.

5.2.2.2 Graph RNN

¢
y2
the hidden scene representation h! estimated by the scene RNN, we now model the

relations of the detected persons to infer the activities for each of them. To this end,
we represent each detected person as a node (v; € V) of a fully connected graph.

Given ¢ detected persons in frame ¢ and the corresponding features x} as well as

This means that we consider all possible relations how an action of a person effects
the actions of the other persons.

As in (Scarselli et al., 2009; Gori et al., 2005; Li et al., 2016), we use a graph
RNN that iteratively updates the hidden representation for each node v; based on
the intermediate representations of the other nodes. In our case, the equations for
the graph RNN are given by

331()31) = mampoolviev(hq(g_l))
2 = o(U%al) + WZh{™Y)

rf){) = U(Urag) + W7h,, U1
s = tanh(Usag,Z) + Ws(hgz_l) o rf)z)))

B = (=2 ohi™ 420 os (5.4)
where we omitted the frame index t for the ease of reading and o denotes the
Hadamard product. At each iteration j, the hidden representation for a detected
person is given by hg). To update the representation, we first maxpool the hidden
representation over all nodes and concatenate it with the original person feature
xp;, as well as the temporal scene context h. estimated by the scene RNN, which
provides a longer temporal context for the graph RNN than the person features x, .
Using a GRU variant, hq(fi‘) is then updated. After a fix number of iterations, the
estimated hidden representation for each detected person hS,{f) is then fed to a fully
connected layer with sigmoid as activation function to infer all action classes that
are simultaneously performed.

The entire hierarchical graph RNN consisting of the scene RNN and the graph
RNN is trained jointly using the focal loss (Lin et al., 2017) for multi-label classifi-
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Temporal context [ 0 1 3
mAP 19.0% | 19.5% | 20.9%

Table 5.1: Impact of the temporal context [.

cation.

5.2.3 Implementation Details

The person detector is initialized by a ResNet-101 architecture trained on ImageNet.
We finetune the person detector using Adam optimizer with a variable learning rate
starting from 0.00001 and dropping by 0.5 at regular intervals. This fine-tuning is
done for 100K steps with an effective batch size of 20. The I3D network is pre-
trained on Kinetics (Carreira and Zisserman, 2017). Due to memory reasons, we
reduce the size of the I3D features from 1024 dimensions to 256 dimensions using
a fully connected layer on top of the I3D network and finetune the network on the
dataset. For finetuning, we use Adam optimizer with a variable learning rate starting
from 0.0005 and dropping by 0.5 at various intervals. This fine-tuning is done for
50K steps with an effective batch size of 50. To make our model robust, we perform
data augmentation using random flips and crops as in (Gu et al., 2018).

The hierarchical graph RNN is randomly initialized and trained from scratch us-
ing 1000 steps with a batch size of 50 using Adam optimizer with a constant learning
rate of 0.0001. Furthermore, we use the focal loss (Lin et al., 2017) with v = 2. We
train the network on the annotated ground-truth bounding boxes. For inference,
we use the detected bounding boxes and we perform a simple multiplication of the
person detection confidence with the corresponding action prediction score to obtain
the final class predictions for each detection. Finally, class specific non-maximum
suppression is used to remove duplicate detections.

5.3 Experiments

For evaluation, we use the AVA 2.1 dataset (Gu et al., 2018). It contains 60 action
classes across 235 videos of 15 minutes each for training and 64 videos of the same
length for the validation set, which we use for evaluation. Sparse annotations in form
of action labels and bounding boxes are provided for a single frame every second.
The evaluation is performed using frame-level mean average precision (frame-AP)
at IoU threshold 0.5, as described in (Gu et al., 2018).

Temporal Context: To analyze the effect of increasing the temporal support,
we evaluate various values for the temporal context [ (5.1). Since the frames are
sparsely sampled, [ = 3 corresponds to a temporal context of 7 seconds while I =0
corresponds to 1 second. For the experiment, we use only RGB data without optical
flow. The results in Table 5.1 show that increasing the temporal context increases
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Models | Graph-RNN | Scene-RNN | HGRNNs
mAP 19.0% 19.8% 20.9%

Table 5.2: Comparison of the Scene-RNN and Graph-RNN with the HGRNN.

Iterations 1 2 3
mAP 20.6% | 20.9% | 20.8%

Table 5.3: Impact of the number of iterations.

the accuracy. This is due to the fact that certain actions such as ‘open’ and ‘close’
can be better recognized with a larger temporal receptive field.

Joint Temporal and Interaction Modeling: In Table 5.1, the accuracy for
I = 0 corresponds to the case where only the Graph-RNN but not the Scene-RNN
is used. In Table 5.2, we also report the accuracy if we use only the Scene-RNN but
not the Graph-RNN. In both cases, the proposed Hierarchical Graph-RNN, which
combines both RNNs in a single model, achieves a higher accuracy. This shows that
both the temporal context as well as the interactions between the persons contribute
to the action detection accuracy.

Number of Iterations: As discussed in Section 5.2.2.2, the HGRNN block is
iterated. The results in Table 5.3 show that not many iterations are required. This
can be attributed to the fact that our Graph-RNN already incorporates temporal
information through the hierarchy and it requires only two iterations to update the
hidden state of each person based on the hidden states of the other persons. In all
other experiments, we use 2 iterations.

Ground Truth (GT) Bounding Boxes: In order to understand the effect
of the accuracy of the person detector on the action detection accuracy, we used
ground truth bounding boxes during inference. The fine-tuned Faster RCNN person
detector achieves an mAP of 89.09% for detecting the annotated bounding boxes
on AVA. If ground truth detections are used instead, the action detection accuracy
increases by 5 — 6% as shown in Table 5.4. We also report the results if we use
RGB and optical flow for computing the 13D features. The additional optical flow
increases the accuracy by 2.7% and 3.9% for detected and GT bounding boxes,
respectively.

Comparison with State of the Art: The proposed approach outperforms
the approaches (Gu et al., 2018; Sun et al., 2018) by a large margin. Most inter-
esting is the comparison to (Gu et al., 2018) since it uses the same features but a
vanilla I3D head for action detection. The proposed hierarchical Graph-RNN im-
proves the accuracy by 6.4% on RGB data and 8.0% on RGB+Flow data. This
clearly demonstrates the capability of the proposed hierarchical GRNN in compar-
ison to the I3D head (Gu et al., 2018). We also compare our approach with the
very recent works (Girdhar et al., 2018; Stroud et al., 2018). While our approach
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Method GT | Detected
RGB 25.2% 20.9%
RGB+Flow | 29.1% 23.6%

Table 5.4: Quantitative comparison of the proposed method with ground truth
bounding boxes and detected bounding boxes.

Method flow | mAP

AVA (Gu et al., 2018) 14.5%
ACRN (Sun et al., 2018) 17.4%
Better AVA (Girdhar et al., 2018) 21.9%
HGRNN - RGB 20.9%

AVA (Gu et al., 2018) v 15.6%

D3D (Stroud et al., 2018) v 23.0%
HGRNN - Flow v 23.6%

Table 5.5: Comparison of the proposed method with other state of the art methods.
A Vvat the flow column indicates if optical flow has been used.

outperforms (Stroud et al., 2018), (Girdhar et al., 2018) achieves a higher accuracy
for RGB data. The gain of the accuracy is the use of a single Faster RCNN frame-
work that detects the bounding boxes and the action classes together. Using the
proposed hierarchical Graph-RNN within a Faster RCNN framework is therefore a
future research direction to improve the accuracy further. However, it is unclear how
much gain can be achieved if optical flow is used in addition since (Girdhar et al.,
2018) does not report any results for optical flow.

5.4 Conclusion

In this chapter, we proposed hierarchical Graph Recurrent Neural Networks for rec-
ognizing and localizing multiple activities that occur at the same time. The model
learns the temporal context as well as the interactions of the detected persons to
recognize the actions. In our experimental evaluation, we have shown that the pro-
posed model outperforms a temporal as well as a graph RNN and that the proposed
approach achieves state of the art results on the AVA dataset.



CHAPTER 6

Discovering Multi-Label
Actor-Action Association in a
Weakly Supervised Setting

In the previous chapter, we introduced a fully supervised multi-label action detection
method that requires detailed annotation for each person. This annotation is costly
and time-consuming to obtain. As such, in this chapter, we presented a method for
weakly supervised action detection. Our approach focuses on solving actor-action
association using linear programming to assign each actor with multiple actions. We
build on the top of the HGRNN architecture introduced in the previous chapter to
obtain SOTA results on weakly-supervised action detection.

Individual Contribution

The following chapter is based on the publication (Biswas and Gall, 2020):

Discovering Multi-label Actor-Action Association in a Weakly Supervised
Setting

Sovan Biswas, and Jiirgen Gall.

Asian Conference on Computer Vision (ACCV), 2020.

This publication presents the algorithm and experiments for trimmed videos devel-
oped by Sovan Biswas. Jiirgen Gall provided scientific guidance and supported this
work with very valuable feedback and suggestions.

The idea of temporal linear programming and the additional experiments on
untrimmed videos presented in this chapter are not yet published.
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6.1 Introduction

In recent years, we have seen a major progress for spatially and temporally detecting
actions in videos (Gkioxari and Malik, 2015; Hou et al., 2017; Kalogeiton et al.,
2017; Singh et al., 2017; Sun et al., 2018, 2019; Girdhar et al., 2019; Wu et al., 2019;
Feichtenhofer et al., 2019). For this task, the bounding box of each person and
their corresponding action labels need to be estimated for each frame as shown in
Figure 6.1. Such approaches, however, require the same type of dense annotations
for training. Thus, collecting and annotating datasets for spatio-temporal action
detection becomes very expensive.

To alleviate this problem, weakly supervised approaches have been pro-
posed (Mettes et al., 2017; Soomro and Shah, 2017; Chéron et al., 2018) where the
bounding boxes are not given, but only the action that occurs in a video clip. Despite
the promising results of the weakly supervised approaches for spatio-temporal action
detection, current approaches are limited to video clips that predominantly contain
a single actor performing a single action as in the datasets UCF 101 (Soomro et al.,
2012) and JHMDB (Jhuang et al., 2013). However, most real world videos are more
complex and contain multiple actors performing multiple actions simultaneously. In
this chapter, we move a step forward and introduce the task of weakly supervised
multi-label spatio-temporal action detection with multiple actors in a video. The
goal is to infer a list of multiple actions for each actor in a given video clip as in the
fully supervised case (Sun et al., 2018, 2019; Girdhar et al., 2019; Wu et al., 2019;
Feichtenhofer et al., 2019). However, in the weakly supervised setting only actions
occurring in each training video are known. Any spatio-temporal information about
the persons performing these actions is not provided. This is illustrated in Figure 6.1
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Figure 6.1: The image shows a scene where two persons are talking. In this case
there are two person that perform multiple actions at the same time. Person A
indicated by the bounding box performs the actions Stand, Listen to, and
Watch. Person B indicated by the bounding box performs the actions
Stand, Talk to, and Watch. While in the supervised setting this information is also
given for training, we study for the first time a weakly supervised setting where the
video clip is only annotated by the actions Stand, Listen to, Talk to, and Watch
without any bounding boxes or associations to the present persons.

that shows two people standing and chatting. The video clip is only annotated by
the four occurring actions Stand, Listen to, Talk to, and Watch. Additional infor-
mation, like bounding boxes or the number of present persons, is not provided. In
contrast to previous experimental settings for weakly supervised learning (Mettes
et al., 2017; Soomro and Shah, 2017; Chéron et al., 2018), the proposed task is much
more challenging since a video clip can contain multiple persons, each person can
perform multiple actions at the same time, as well as multiple persons can perform
the same action. For instance, both persons in Figure 6.1 perform the actions Stand
and Watch at the same time.

Traditionally, weakly supervised methods (Mettes et al., 2017; Chéron et al.,
2018) temporally localize actions by harnessing the fact that two neighboring video
frames are likely to have the same action labels. This is performed by forming
tubelets that are linked using a greedy algorithm or dynamic programming over
mutually exclusive action scores. In a multi-label setting, actions are also likely to
be similar in the temporal neighborhood. However, the temporal extent of each
action performed by the same actor can vary as shown in Figure 6.2. For example,
person A continues to “listen” and “stand” during the entire video clip but performs
“watch” towards the end of the clip. This restricts the usage of traditional greedy
algorithms or dynamic programming over a set of co-occurring actions. Nevertheless,
the temporal similarity of actions is still a strong clue for action localization in a
multi-label setting.
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(listen, stand)

(listen, stand)

(listen, stand, watch)

Figure 6.2: The video clip of time ¢ shows a scene where two persons are chatting.
Person A indicated by the red bounding box performs the actions Stand, Listen
and Watch over time. Person B in cyan bounding box performs the actions Stand,
Talk, Carry and Listen. The weak video clip annotation only contains the list of
actions Stand, Listen, Talk, Carry and Watch without any bounding boxes or any
annotation for person re-identification.

In order to address multi-label spatio-temporal action detection in the proposed
weakly supervised setup, we first introduce a baseline that uses multi-instance and
multi-label (MIML) learning (Zhou and Zhang, 2006; Zhou et al., 2012; Yang et al.,
2017). Second, we introduce a novel approach that is better suited for the multi-
label setting. Instead of modeling the class probabilities for each action class, we
build the power set of all possible action combinations and model the probability for
each subset of actions. Using a set representation has the advantage that we model
directly the combination of multiple occurring actions instead of the probabilities
of single actions. Since computing the probabilities for the full power set becomes
intractable as the number of action classes increases, we assign an action set to
each detected person under the constraint that the assignment is consistent with the
annotation of the video clip. This is done by linear programming, which maximizes
the overall gain across all plausible actors and action subset combinations. Lastly,
we incorporate a soft temporal consistency measure in the proposed framework that
ensures temporal consistent actor-action assignments. This consistent assignment is
of higher importance for longer clips as seen in improvements in the performance for
those clips. Note, the proposed soft temporal consistency measure considers that an
actor can transits from one action to another as shown in Figure 6.2.

We evaluate the proposed approach on the challenging AVA 2.2 dataset (Gu
et al., 2018), which is currently the only dataset that can be used for evaluating
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this task. In our experiments, we show that the proposed approach outperforms the

MIML baseline by a large margin and that the proposed approach achieves 83% of

the mAP compared to a model (on same backbone) trained with full supervision.
In summary, the contribution of this approach is three-fold:

e We introduce the novel task of weakly supervised multi-label spatio-temporal
action detection with multiple actors.

e We introduce a first baseline for this task based on multi-instance and multi-
label learning.

e We propose a novel approach based on an action set representation.

e We explore temporal label consistency to prune noisy action set representation.

6.2 Multi-instance and Multi-label (MIML) Learning for
Action Detection and Recognition

Given a video clip with multiple actors where each actor can perform multiple actions
at the same time as shown in Figure 6.1 and Figure 6.2, the goal is to localize these
actors and predict for each actor the corresponding actions. In contrast to fully
supervised learning (Gkioxari and Malik, 2015; Sun et al., 2019; Girdhar et al., 2019;
Wu et al., 2019; Pan et al., 2021), where bounding boxes with multiple action labels
are given for training, we address for the first time a weakly supervised setting
where only a list of actions is provided for each video clip during training. This
is a very challenging task as we do not know how many actors are present and
each actor can perform multiple actions at the same time. This is in contrast to
previous weakly supervised spatio-temporal action localization (Mettes et al., 2017;
Soomro and Shah, 2017; Chéron et al., 2018) where it is assumed that only one
person is in the video and that the person does not perform more than one action
at a given point in time. Further, this weakly supervised spatio-temporal action
localization presents additional challenges such as temporal consistency of actions,
memory limitations, etc. for long untrimmed video.

One way to address the weakly supervised learning problem is to use multiple-
instance learning. Since we have a multi-label problem, i.e., an actor can perform
multiple actions at the same time, we use the concept of multi-instance and multi-
label (MIML) learning (Zhou and Zhang, 2006; Zhou et al., 2012; Yang et al., 2017).
We first use a person detector (Xie et al., 2017) to spatially localize the actors
in a frame ¢ and use a 3D-CNN such as I3D (Carreira and Zisserman, 2017) or
Slowfast (Feichtenhofer et al., 2019) for predicting the action probabilities similar to
fully supervised methods (Girdhar et al., 2019; Wu et al., 2019). However, we use
the MIML loss to train the networks.
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Figure 6.3: Overview of the proposed approach. Given a training video clip with
action labels {A1,A2,A3,A4}, we first detect persons in the video. We then train
a 3D CNN with a graph RNN that models the spatio-temporal relations between
the detected persons using the MIML loss to obtain initial estimates of the action
logits. During actor-action association, subsets of the action labels are assigned to
each detected person. The training of the network is continued using the MIML loss
and the actor-action associations.

We denote by A; = {al,d},...,al,} the detected bounding boxes and by f(af)
the class probabilities that are predicted by the 3D-CNN. Let Y be the vector which
contains the annotations of the video clip, i.e., Y(¢) = 1 if the action class ¢ occurs
in the video clip and Y (¢) = 0 otherwise. In other words, the bag A; is labeled by
Y (c) = 1 if at least one actor performs the action ¢ and by Y (¢) = 0 if none of the

actors performs the action. The MIML loss is then given by
Eim = £ (Y mas( ) ) (6.1)
Lyn ==L (Y, maa:(f(af))) + logo? (6.2)

where L is the standard binary cross entropy loss function. The standard MIML
ensures that the class probability should be close to one for at least one bounding
box if the action is present and it should be close to zero for all bounding boxes if the
action class is not present as shown in (6.1). On the other hand, uncertainty aware
MIML (Arnab et al., 2020) (6.2) re-scales the loss function based on the uncertainty
of the prediction. ¢ is the uncertainty of the prediction.
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6.3 Actor-Action Association: Trimmed Videos

While multi-instance and multi-label learning discussed in Section 6.2 already pro-
vides a good solution for the new task of weakly supervised multi-label action de-
tection, we propose in this section a novel method that outperforms the results by
a large margin. We first change the representation from individual action labels to
sets of actions by building power set of all possible action combinations. The objec-
tive is then to assign each person with a set of actions such that each person has at
least one action and all the actions of the annotation exists. For example, the power
set Q for the three action labels Listen, Talk, and Watch is {@, {Listen}, { Talk},
{ Watch}, {Listen, Talk}, { Listen, Watch}, { Talk, Watch}, {Listen, Talk, Watch}}.
With that formulation in mind, then we assign one set w! € Q\ @ to each actor al
under the constraint that each action ¢ occurs at least once, i.e., ¢ € Uf w!. Using
a set representation has the advantage that we model directly the combination of
multiple occurring actions instead of the probabilities of single actions. This means
that we have one probability for a subset of actions w € €) instead of C probabilities
where C is the number of action labels. We propose a novel method to compute the
probability of a set actions in Section 6.3.1. Due to the weakly supervised setting
not all combinations of subsets are possible for each video clip. We therefore assign
an action set w! €  to each actor a! under the constraint that the assignment is
consistent with the annotation of the trimmed video clip, i.e., each annotated action
¢ needs to occur at least once and actions that are not annotated should not occur.
The assignment is discussed in Section 6.3.2.

Figure 6.3 illustrates the complete approach. As described in Section 6.2, we use
a 3D CNN such as I3D (Carreira and Zisserman, 2017) or Slowfast (Feichtenhofer
et al., 2019) as backbone. Since the actors in a frame often interact with each other,
we use a graph to model the relations between the actors. The graph connects
all actors and we use a graph RNN to infer the action probabilities for each actor
based on the spatial and temporal context. In our approach, we use the hierarchical
Graph RNN (HGRNN) (Chapter 5) where the features per node are obtained by
ROI pooling over the 3D CNN feature maps. The HGRNN and 3D CNN are learned
using the MIML loss (6.1). From the action class probabilities, we infer the action
set probabilities as described in Section 6.3.1 and we infer the action set for each
actor as described in Section 6.3.2. Finally, we train the HGRNN and the 3D CNN
based on the assignments. This will be discussed in Section 6.5.

6.3.1 Power Set of Actions

In principle, we could modify our network to predict the probability for each subset
of all action classes instead of the probabilities for all action classes. However, this is
infeasible since the power set of all actions is very large. If C' is the number of actions
in a dataset, the power set for all actions consists of 2¢ subsets. Already with 50
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action classes, we would need to predict the probabilities for over one quadrillion
subsets. Instead, we use an idea that was proposed for HEX graphs (Deng et al.,
2014) where the probabilities of a hierarchy are computed from the probabilities of
the leave nodes. While we do not use a hierarchy, we can approximate the probability
of a subset of actions from the predictions of a network for individual actions.

Let s, € (—o0, 00) denote the logit that is predicted by the network for the action
class ¢. The probability of a subset of actions w can then be computed by

exp (ZCEUJ SC)
Zw’ exp (Zcew’ SC) ‘

The normalization term, however, is still infeasible to compute since we still need to

Puw = (6.3)

sum over all possible subsets (w’) for the dataset.

Since our goal is the assignment of a subset of actions w to each actor, we do
not need to compute the full probability (6.3). Instead of using the power set of all
actions, we build the power set only for the actions that are provided as weak labels
for each training video clip. This means that the power set will differ for each video
clip. For the example shown in Figure 6.1, we build the power set €2 for the actions
Stand, Listen, Talk, and Watch. In this example, |Q] = 16. We exclude @ since
in the used dataset each actor is annotated with at least one action. Furthermore,
we multiply p, with the confidence d of the person detector. The scoring function
Pw,i that we use for the assignment of a subset w € Q\ @ to a detected actor a; is
therefore given by

exp (Zc@u SC»") di
ZW’EQ\@ exp (ZCEUJ/ chi)

where s.; is the predicted logit for action ¢ and person a;. Taking the detection

pw,i = (6.4)

confidence d; of person a; into account is necessary to reduce the impact of false
positives that usually have a low detection confidence.

6.3.2 Actor-Action Association

While the scoring function (6.4) indicates how likely a given subset of actions w €
O\ @ fits to an actor a;, it does not take all information that is available for each video
clip into account. For instance, we know that each annotated action is performed
by at least one actor. In order to exploit this additional knowledge, we find the
optimal assignment of action subsets to actors based on the constraints that each
actor performs at least one action and that each action ¢ occurs at least once, i.e.,
c € |J; w;. Since we build the power set only from the actions that occur in a video
clip, which we denote by L, the power set Q(L) varies for each training video clip.
The association of subsets w € Q(L) \ @ to actors A = {a1,aq,...,a,} can be
formulated as a binary linear program where the binary variables z,,; are one if the
subset w is assigned to actor a; and it is zero otherwise. The optimal assignment is de-
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fined by the assignment with the highest score (6.5). While the first constraint (6.6)
enforces that exactly one subset w is assigned to each actor a;, the second con-
straint (6.7) enforces that ¢ € J,., ._jw for all ¢ € L, where {w : x,; = 1} is the
set of all subsets that have been assigned. Note that (6.7) rephrases this constraint
such that it can be used for optimization where the indicator function 1,,(c) is one if
¢ € w and it is zero otherwise. The left hand side of the inequality therefore counts
the number of assigned subsets that contain the action class ¢. Since this number
must be larger than zero, it ensures that each action ¢ € L is assigned to at least
one actor. The complete binary linear program is thus given by:

arg max Z Z De,iTei (6.5)

Tort =1 weQ(L)\@

subject to Z Ti=1 Vi
wGQ(L)\z

Z Z 1,(e)zyw,; > 1 Yee L (6.7)

=1 weQ(L)\@
T, € {0,1} VweQUL)\2; Vi=1,..,n

I
“H
3
—~
>
D
~—

Figure 6.4 illustrates the constraints.

6.4 Actor-Action Association: Untrimmed videos

Even though the iterative approach of actor-action association based on linear pro-
gramming is suitable for trimmed videos, the same formulation does not work for
untrimmed videos due to possibility of action transitions as shown in Figure 6.2.
Moreover, the assumption that each detected person must be associated with an
action is flawed, as person detections can include false positives or some individuals
may be engaged in irrelevant background actions in video. Therefore, we propose
modifications to the previously proposed linear programming (Section 6.3.2) to han-
dle long untrimmed videos. We also replace the Hex-graph based subset scores
(Section 6.3.1) to a novel assorted scores that allows for null-set (&) assignments
and integrates temporal consistency to ensure stable action labels across time.

6.4.1 Temporal Linear Programming

Similar to trimmed videos, each untrimmed video clip is annotated by a set of weak
action labels (L) as shown in Figure 6.2. The powerset of labels Q(L) provides all
possible subset actions for each actor a;; at any given time t. The objective of
the actor-association is still to associate one of such subset w € (L) to each actor
a;t based on its subset score. However, in contrast to trimmed videos, untrimmed
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Figure 6.4: For the annotated actions L = {1,2,3} and the actors A =
{a1,ag,as3, a4}, the figures demonstrate various actor-action assignments. While the
assignment a) satisfies all constraints, b) violates (6.6) since two subsets are assigned
to actor a; and c) violates (6.7) since the action 1 is not part of any assigned subset.

videos can contain action transitions. Yet, most of the actions in action subset for
an actor is relatively consistent over time (as seen in Figure 6.2). To incorporate
the ability to handle action transitions, we divide the untrimmed videos into T
equal-sized trimmed clips. We assume that actions remain consistent within each
trimmed clip, and that transitions of one action to another can only occur between
two adjacent clips. Using this premise, we modify the above linear programming, to
find the optimal assignment of actions to each actor based on the similar constraints
of Section 6.3.2, i.e. each actor performs at least one action and that each action ¢
occurs at least once in whole untrimmed video clip ( ¢ € [J;,wit). We build the
power set only from the actions based on the weak annotations (L). The power set
Q(L) varies for each untrimmed video clip. The association of subsets w € Q(L)

to actors A = {A;, Ag, ..., Ar} (where Ay = {a14,a2¢,...,an,}) can be formulated
into a binary linear program as:

T \At

arg max Z Z Z it Lot (68)

Teit - Leq(r) t=1 i=1
Vi=1,...,|A
s.t. T =1 6.9
2 Tt Vt=1,..,T (6.9)
we(0)

T |A¢

Z Zzﬂ C)Ty i > 1 Vee L (6.10)

weQ(L) t=1 i=1

Vw € Q(L)
Twit € {0, 1} Vi=1,..., ‘At|
vVi=1,..,T

Here, the non-negative a;+ is the assorted subset score (explained in detail in
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Section 6.4.2) and z,,;; is the binary variable whose value is 1 if the subset w is
assigned to actor a; ;. Note, the linear program along with its constraints, is applied
to the entire untrimmed video that was divided into 7" trimmed clips. This setup
enables action transitions between consecutive clips. However, because we have not
used actor tracking, the optimal actor-action assignments in successive clips may
exhibit temporal inconsistencies. Thus, we incorporate temporal consistency score
within ay, ;¢ to prevent such inconsistent label assignments.

6.4.2 Assorted Subset Scores

The effectiveness of this actor-action association using the linear program heavily
relies on the scoring (a,;¢) for each possible subset for the it" actor at time t.
These scores must not only accurately represent each subset but also favour tem-
poral consistency. Moreover, even highly accurate person detectors can produce
false positives, so the non-negative subset scores should be low for such cases. To
achieve this, we proposed an assorted subset score a,,;; that combines three terms
to represent each subset w:

Oyt = Puw,int + Tw,it + Twyit- (611)

It includes a subset score (p, ;) computed from the probabilities of individual ac-
tions, a temporal consistency score () to ensure consistent action assignment
for each actor over time, and a re-scaled subset score (7, ;+) to boost the low action
probabilities for the tail classes.

Subset score (pu,it)

We proposed to compute the score for a subset w € (L) for a detected actor a;,
using initial action probabilities p.; and the detection confidences d; ;. pc,i is the
probability score for ¢ class from the model for it* detection at time ¢. L is the set
of action labels for the untrimmed video clip. The score for any given action subset
w is computed as

1— (pecsi d; fw=0g
Posist = {HCEL( el B (6.12)

dit * Hcew Peint otherwise

This scoring function has the advantage that it not only takes the detection con-
fidences into account but also provides a score for w = @. Indeed, if the person
detection confidence is very low or if the action scores p.;; are low for all ¢ € L,
then it is likely to be a false positive. In such case, p,;; is low for all non empty
subsets and close to one for the null-set (w = @). Furthermore, by multiplying the
individual class probabilities, the scoring function is designed to encourage smaller
sized subset w to have high score. This avoids a trivial solution where all the actions
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Figure 6.5: After initial estimation of the action labels for each actor proposal, we
use the neighboring frames to update the labels based on temporal consistency.

labels (L) are assigned to a single person and rest persons are assigned null-set i.e.
w=g.

Temporal Consistency Score(7, ;)

Actions performed by an actor often span multiple frames as shown in Figure 6.2,
where both individuals are standing throughout the entire clip. To obtain this
temporally consistent behavior, we begin by solving the above linear programming
without temporal consistency score to obtain an initial label assignment for each
person in the entire untrimmed clip. Then, for all proposals A; at time ¢, we con-
sider the action subset assignment of the neighboring frames ¢ — 1 and ¢ 4+ 1 into
account as shown in Figure 6.5, to compute the temporal consistency score (6.13)
and update the assorted scores o, ;;. Consequently, the computation of the tempo-
ral consistency score is an iterative process, with each score being updated based on
label assignments from the previous iteration.

The idea is that the score 7, ;¢ for a; is high for a subset w when proposals a;
in neighboring frames are spatially close to a; and share a similar assignment to w.

[A¢—1]
Twit = Z I(ait, aji—1)S(w,wjt—1)B(Gw,jt—1)
j=1
[Agqa]
+ Y Iaig aj041)S(w, wje41) B(Gu i) (6.13)
j=1
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where

I(a;,a;) = 10U (a;, a;)
Swi,w]' = exXp (_Qh(wl’wj))
max, it

B (dw,i,t) =

The spatial similarity I(a;,a;) is measured by the intersection-over-union of the
bounding boxes of the persons. The similarity S, ., of two action sets is measured by
the Hamming distance h. B(dy, ;) denotes the confidence of the previous assignment
where @, j¢—1 denotes the assorted score. In this way, the temporal consistency score
favours action subsets that are consistent with its temporal neighbourhood.

Re-scaled Subset Score (7, ;+)

If a video clip contains difficult examples for an action class (c), the highest recog-
nition probability for that action over all the proposals can be very low (< 0.5).
Due to the constraints and subset scoring function (6.12), solving the linear pro-
gram with such low score can produce trivial solutions. To tackle the issue, we
perform class-wise re-scaling of each action score (pc;+) with respect to maximum
score (m, € (0,1)) of the untrimmed clip as shown in (6.14). This boosts the confi-
dence of difficult examples of an action class independent of the confidence of other
action classes. Mathematically,

me = m%X Dcyit

1/7
P = ot (6.14)
me
where, p.;+ denotes the cth action score for it? proposal at time t. m, is the maximum
score of action ¢ in the untrimmed clip. This rescaled action score (7. ;) replaces
Pe,it i (6.12) to compute re-scaled subset score (7,+¢).

6.5 Training

6.5.1 Negatives Mining

Due to weak training annotations, MIML is prone to over-fitting the training data.
To address this issue and enhance robustness during training, we use negative min-
ing. For each video clip, we randomly generate by proposals such that the IOU of
these new proposals with actor-proposals a; is less than 0.2. In other words, these
generated proposals do not overlap with any actor in the video and serve as negative
examples for every action, providing additional supervision during training. Train-
ing with such negatives not only strengthens model robustness but also improves
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the model’s ability to identify false positives among actor proposals. We have set by
to the batch size.

6.5.2 Loss Functions

The proposed approach uses an iterative strategy that alternates between model
training and actor-action assignment multiple times. In our first iteration, we train
the model using the MIML loss (6.1) or uncertainty-aware MIML loss (6.2) with
negative mining (Section 6.5.1) to account for the lack of any detailed annotation
to the proposals. This is done to obtain initial estimates of the action probabilities
Pe,it- We then assign subsets of actions to the detected persons using the scoring
function (6.4) and (6.11) for trimmed and untrimmed videos respectively. In the
subsequent iterations, we train our model using the actor action associations, the
loss is denoted by Lgqq and Lygq+ for trimmed and untrimmed videos respectively,
as shown below:

Loint = £ (Vomga( 1))

Lun = %ﬁ <Y, marc(f(aﬁ))) + loga®

ﬁneg =L (Yﬁa f(bi)))

['pos =L <YA;;Z?7 f(a€)>

ﬁaaa - ﬁmiml + 77£pos (615)
Eaaa+ = Lyn + Eneg + nﬁpos (616)

where, £ is binary cross entropy loss. o denotes the uncertainty in the predic-

tion (Arnab et al., 2020). al is the " actor-proposal and bl is the k' negative

proposal at time t of the video clip. Y is list of actions (C) represented as binary

vector with Y(c) =1lifc e Cand Y(c) = 0 otherwise. Y is a vector with Y (c) =0

Ve € U. w! denotes the action subset that has been assigned to actor a} in frame

t and Yt is a vector with Y, wilc)=1lifce w! and Y, wt(¢) = 0 otherwise. We use
— 0.1 based on the experlments as shown later.

6.6 Experiments

6.6.1 Dataset and Implementation Details

We use the AVA 2.2 dataset (Gu et al., 2018) for evaluation. The dataset contains
235 videos for training, 64 videos for validation, and 131 videos for testing. The
dataset contains 60 action classes. Each individual often performs multiple actions
at the same time and the videos contain multiple persons. For each annotated person
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Method 3D CNN | Val-mAP
MIML I3D 14.1
MIML + HGRNN I3D 15.2
Loaa I3D 17.3
MIML SF-101 21.8
MIML + HGRNN | SF-101 23.1
Loaa SF-101 25.1

Table 6.1: Comparison of MIML with proposed method on trimmed videos. The
proposed approach outperforms MIML in case of I3D and Slowfast 101 (SF-101).

a bounding box is provided. An example is given in Figure 6.1. Only one frame per
second is annotated. The accuracy is measured by mean average precision (mAP)
over all actions with an IoU threshold for bounding boxes of 0.5 as described in (Gu
et al., 2018). In the weakly supervised setting, we use only the present actions for
training, but not the bounding boxes.

To detect persons, we use Faster RCNN (Ren et al., 2015) with ResNext-101 (Xie
et al., 2017) as backbone. The detector was pre-trained on ImageNet and fine-tuned
on the COCO dataset. In our experiments, we report results for two 3D CNNs,
namely I3D (Carreira and Zisserman, 2017) and Slowfast (Feichtenhofer et al., 2019).
I3D is pre-trained on Kinetics-400. For Slowfast, we use the ResNet-50 and ResNet-
101 + NL (8 x 8) version that is pre-trained on Kinetics 600, indicated by SF-50
and SF-101 respectively. The temporal scope was set to 64 frames with a stride of
2. For HGRNN we use a temporal window of 11 frames. For training, we use the
SGD optimizer until the validation error saturated. The learning rate with linear
warmup was set to 0.04 and 0.025 for 13D and Slowfast (both SF-50 and SF-101),
respectively. The batch size was set to 16. We used cropping as data augmentation
where we crop images of size 224 x 224 pixels from the frames that have 256 x 256
image resolution.’

In this dataset, the untrimmed videos can have scene-changes within them. We
set the temporal context of the neighbour to 0, if the corresponding neighbouring
trimmed video belongs to a different scene. This reduces the impact of erroneous
temporal context in lie of scene change. We use PySceneDetect (Castellano, 2018)
to perform the off-the-shelf scene change detection.

6.6.2 Actor-Action Assignment on trimmed videos without @
Comparison of MIML with proposed method.

Table 6.1 shows the comparison of the proposed approach with the multi-instance
and multi-label (MIML) baseline on the validation set. When I3D is used as 3D

1Code: https://github.com /sovan-biswas/MultiLabel Actor Action Assignment
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Figure 6.6: Comparison of MIML with proposed method on trimmed videos. The
plot shows the per class mAP for the 10 most frequently occurring classes in the
training set. The actions are sorted by the number of occurrences in an decreasing
order from left to right.

CNN, the proposed approach improves the MIML baseline by +3.2%. When SF-101
is used, the accuracy of all methods is higher but the improvement of the proposed
approach over the MIML approach remains nearly the same with +3.3%. We also
report the result when HGRNN is trained only with the MIML loss. In this case, the
actor-action association is not used and we denote this setting by MIML-+HGRNN.
While HGRNN improves the results since it models the spatio-temporal relations
between persons better than a 3D CNN alone, the proposed actor-action assignment
improves the mAP compared to MIML+HGRNN by +2.1% and 42.0% for 13D and
SF-101, respectively. Figure 6.6 shows the improvement of the proposed approach
over the MIML baseline for the 10 action classes that occur most frequently in the
training set. A few qualitative results are show in Figure 6.8.

Impact of Linear programming for actor-action assignment

In Table 6.1, we have observed that the actor-action association improves the ac-
curacy. In Table 6.2, we analyze the impact of the actor-action association more
in detail. We use HGRNN using both 13D and Slowfast as 3D CNN backbone. In
case of MIML+HGRNN, the actor-action association is not used. We also report
the result if we perform the association directly by the confidences without solving
a binary linear program. We denote this setting by Lgqq w/0 LP. In this case, we
associate an action to an actor if the class probability is greater than 0.5. For I3D,
the association without LP improves the results mainly for the most frequent classes
with almost no improvement on least frequent classes. For SF-101, the performance
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Actor-action association | Backbone | Val-mAP | Frequent-5 | Least-10
MIML+HGRNN 13D 15.2 51.5 2.0
Laaa W/0o LP 13D 16.4 52.8 2.1
Laaa 13D 17.3 53.7 3.4
MIML+HGRNN SF-101 23.1 65.7 7.3
Laaa W/0o LP SF-101 22.9 65.9 6.8
Laaa SF-101 25.1 67.5 7.6

Table 6.2: Results of various actor-action assignment approaches using HGRNN
over different 3D CNNs. The Frequent-5 column and the Least-10 column show
the average mAP over the 5 most frequently and 10 least occurring classes in the
training set.

Method 3D CNN | Detected bb | GT bb
MIML 13D 14.1 21.2
Laaa I3D 17.3 24.3
Full Supervision I3D 20.7 25.4
MIML SF-101 21.8 30.6
Laaa SF-101 25.1 32.3
Full Supervision | SF-101 30.1 35.7

Table 6.3: Performance with ground-truth bounding boxes for evaluation. The
results show the improvement in mAP on the validation set when ground-truth
bounding boxes (GT bb) instead of detected bounding boxes (Detected bb) are used
for evaluation. Furthermore, the results are reported when the model is trained with
full supervision.

even decreases in comparison to MIML+HGRNN without LP. Instead, solving the
linear program results in better associations for both I3D and Slowfast.

Impact of the object detector

We use the Faster RCNN with ResNext (Xie et al., 2017) person detector which
achieves 90.10% mAP for person detection on the AVA training set and 90.45% on
the AVA validation set. Irrespective of the high detection performance, we analyze
how much the accuracy improves if the detected bounding boxes are replaced with
the ground-truth bounding boxes during evaluation. Note that the ground-truth
bounding boxes are not used for training, but only for evaluation. The results are
shown in Table 6.3. We observe that the performance improves by +7.0% and +7.2%
mAP on the validation set for I3D and Slowfast, respectively. We also report the
results if the approach is trained using full supervision. In this case, the network is
trained on the ground-truth bounding boxes and the ground-truth action labels per
bounding box. Compared to the fully supervised approach, our weakly supervised
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Method Backbone t=1
T | seao | G
'Cﬁ”:ml SF-101 + HGRNN | 20

Table 6.4: Results of various actor-action assignment approaches using SF-101 and
HGRNN for label assignment. HGRNN helps in better label assignment.

Method Backbone | t=1|¢t=5|t=10
Loniml 20.8 | 184 | 171
Loimi + Lneg SF-50 21.8 | 18.8 17.8
Loaat 22.2 | 20.2 | 19.0
ﬁmiml 23.1 - -
Lomimi + Lneg SF-101 24.0 | 21.1 19.0
Laaat 24.8 | 22.1 | 20.2

Table 6.5: Performance of the proposed approach in comparison to baseline and
impact of negative mining. Note: ¢ is the length of the untrimmed videos in seconds.

approach achieves around 83% of the mAP for both 3D CNNs (17.3% vs. 20.7%
for I3D and 25.1% vs. 30.1% for Slowfast) if detected bounding boxes are used for
evaluation. The gap gets even smaller when ground-truth bounding boxes are used
for evaluation. In this case, the relative performance is 95.7% for I3D and 90.5%
for Slowfast. This demonstrates that the proposed approach learns the actions very
well despite of the weak supervision.

Impact of HGRINN for Actor-Association

In Table 6.4, we analyze the impact of HGRNN in weak supervised action detection.
In case of proposed L4, w/0 HGRNN, actor-action assignment is performed with
MIML logits and HGRNN is not used at any stage. The proposed actor-action
assignment improves the result in both cases. In case of HGRNN, the improvement
is more due to HGRNN’s ability to incorporate spatial and temporal information as
seen in Table 6.4.

Effect of n

7 from (6.15) seems to have minor effect on performance of the proposed approach as
seen in Figure 6.7. Here, n = 0 corresponds to L, When actor-action assignment
is not used. It is clear that emphasing more on the assignment can be detrimental.
This is because of the fact that these assignment contains errors which could lead
the model towards poor performance as seen with 7 = 1 in Figure 6.7.
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Figure 6.7: Effect of varying n of (6.15)

6.6.3 Actor-Action Assignment on untrimmed videos with null-set
%]

Baseline MIML and negative mining

For our actor-action assignment with null-set &, we obtain our initial estimation with
miml loss with negative mining. Thus, we first explore the impact of negative min-
ing on the performance as shown in Table 6.5. We start our experiments with stan-
dard MIML loss for different backbones and different values of ¢ i.e. different video
length. We have not used HGRNN in this experiment. The standard MIML loss
(Lmimi) results in a mAP of 20.8% and 23.1% with SF-50 and SF-101, respectively
for trimmed videos (i.e. ¢ = 1). The negative mining uses random proposals from
non actor locations as negatives for action detection as suggested in Section 6.5.1.
This enables our approach to better discriminate between actual person and false
positives. As a result, our approach achieves the mAP scores (Lyimi + Lneg) of
21.8% and 24.0%, which is an improvement of +1.0% and 0.9% respectively than
the standard MIML. In fact, the negative mining even improves the mAP by 0.4%
and 0.7% for untrimmed videos of length ¢t = 5 and ¢t = 10 seconds, respectively,
when compared to standard MIML on SF-50.

Impact of Actor-Action Assignment on untrimmed videos

We now analyze the impact of actor-action assignment on overall performance in
Table 6.5. The proposed actor-action assignment results in 22.2%, 20.2% and 19.0%
mAP for ¢t =1, ¢t =5 and ¢t = 10 respectively with backbone of SF-50. This is an
improvement of +1.4%, +1.8% and +1.9% mAP in comparison to standard miml
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Backbone | video length | w/o assignment | Iteration 1 | Iteration 2
t=1 21.8 22.2 22.1
SF-50 t=5 18.8 19.8 20.2
t=10 17.8 18.8 19.0
t=1 24.0 24.8 23.8
SF-101 t=5 21.1 21.8 22.1
t=10 19.0 19.4 20.2

Table 6.6: Improvement of results over number of iterations. The experiments are
performed using all the scores during linear programming.

loss. It is well established that SF-101 is better than SF-50 for action recognition
and video understanding (Feichtenhofer et al., 2019). With SF-101 backbone, our
approach achieves state-of-the-art mAP of 24.8%, 22.1% and 20.2% for t =1,t =5
and t = 10 respectively, re-imphazing the need for powerful backbone even for weakly
supervised action detection.

Performance variation across iterations

The proposed method for multi-label action detection iteratively alternates between
model learning and action assignment, as shown in Figure 6.3. In Table 6.6, we
evaluate the performance of this approach over multiple iterations with different
backbones. For short videos of length ¢ = 1, assignment initially improves the per-
formance by +0.4% and +0.8% for SF-50 and SF-101, respectively. However, the
performance decreases in the subsequent iteration, suggesting that explicit annota-
tions for each person may be needed to improve results. This performance drop is
more pronounced with the SF-101, likely due to its size (i.e. more number of pa-
rameters), which can amplify the negative effect of wrong assignments more quickly
than SF-50. In contrast, for untrimmed video clips of length ¢t = 5 and ¢ = 10, the
final performance is improved by +1.0% and +1.2% for SF-50 and SF-101 respec-
tively, over multiple iterations. This indicates that multiple iteration of detection
and assignment are needed to improve the performance for longer untrimmed videos.

Analysis of assorted subset scores

The actor-action assignment with @ uses assorted scores (Section 6.4.2) in the linear
programming to achieve the state-of-the-art result. To quantify the effect of each
individual scores in the overall method, we evaluate the method first with only a
subset score (p,;+). We then incorporate the temporal consistency score () and
followed by self re-scaled score (ry ;). All the experiments are done with SF-50
at t = 1, t = 5 and t = 10 setting. Table 6.7 tabulates the results with each of
the components. p, ;+ achieves a mAP of 22.0%, 19.3% and 18.1%, respectively for
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Puw,it ‘ Tw,it ‘ Tw,it ‘ t=1 ‘ t=2>5 ‘ t =10
Y - - 22.0 19.3 18.1
Y Y - 22.2 19.6 18.6
Y Y Y 22.2 | 19.8 18.8

Table 6.7: Result of the proposed approach with various parts of assorted subset
scores as discussed in (6.11). The results are with SF-50 after only a single iteration

different values of t. 7, ; is used to incorporate temporal consistency. The absolute
gain in performance by +0.2%, +0.3% and +0.5% respective time ¢, showcases the
impact of incorporating the temporal consistency. r,;; is used to re-scale the score
of low scoring samples. Adding this only improves the performance by a minor
margin of +0.2% for both ¢ = 5 and ¢t = 10. At the same time, r,;; doesn’t
improve the performance for ¢ = 1. Based on the experiments, it is clear that
temporal consistency is critical for better the actor-action assignment and subsequent
improvement in action detection.

Impact of null-set assignment (&)

False positive person removals: The off-the-shelf person detector (Xie et al., 2017)
can result in false detections. Our actor-action assignment helps in handling such
false detections by assigning them with null-set (&), i.e. subset with action no-
labels. This approach enables us to filter out these detections with null-set (&),
ensuring better samples for subsequent training iterations. To evaluate our null-
set assignment, we compare the mAP of the off-the-shelf person detections (only
detection more than 0.8) to the mAP of all detections associated with one or more
action labels across iterations, excluding those assigned to @ from the comparison.
Our experiments, in the Table 6.8, show that our assignment approach increases
mAP from 88.1% to 90.1% for short videos, while for longer untrimmed videos, the
performance improves from 88.1% to 88.8% after multiple iterations. This increase
in mAP highlights the effectiveness of the null-set assignment (&) in pruning false
actor proposals. Without this null-set assignment and the resulting false-positive
pruning, the person detection performance would remain constant at 88.1%.

Action Detection: Apart from the impact on pruning of some false positives in
subsequent training, null-set (&) assignment also improves the overall performance
in action detection. This is shown by the improvement of +0.4% mAP (in Table 6.8)
after single iteration when compared to without null-set (&) assignment.

6.6.4 Comparison to state-of-the-art weakly supervised methods

Table 6.10 shows the comparison of the proposed approach with other weakly su-
pervised methods. Our approach achieves state of the art results for both trimmed
and untrimmed videos of various lengths as highlighted. L4444 achieves 22.1% and
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length of video Initial
method (t in secs) (Threshold of 0.8) Tter 1 Iter 2
Logat+ W/0 @ 1 88.1 88.1 -
Laaat 1 88.1 90.1 -
Loga+ W/0 O 5 88.1 88.1 88.1
Laaat 5 88.1 88.6 | 88.8

Table 6.8: Evaluation of False Positive Pruning: This table compares person-
detections post label assignment showcasing the ability of the algorithm to prune
false positive proposals. Experiments are conducted with SF-50 backbone on the
training set.

Methods ‘
Logar W/o @ | 194
Laaat 19.8

Table 6.9: Results of actor-action assignment with and without null-set (&) on
overall performance (results are presented after only 1 iteration of assignment). All
the experiments are performed with SF-50 at t =5

20.2%, beating other weakly supervised method (Arnab et al., 2020) with a gap of
+4.1% and +4.4% for t = 5 and t = 10 respectively with untrimmed setting. As dif-
ferent backbones can have different impacts, we thus compare the results with same
backbone. Lgqq+ still achieves +2.2% and +3.2% mAP with same SF-50 for ¢t = 5
and 10, respectively. This showcases the impact of iterative approach of assignment
and retraining. For trimmed video (length ¢t = 1), the L4454 and Lgqq+ achieves
23.1% and 24.8% mAP respectively with SF-101. The improvements in the perfor-
mance of L4444+, in comparison to L444, are due to the combined influence of negative
training, null-set (@) assignment and temporal consistency. HGRNN (Chapter 5)
explicitly incorporates the temporal context. We thus add HGRNN to the 3DCNN
backbone. This further improves the performance by +0.8% for Lg4.+ at trimmed
video length of t = 1. These results indicate that the assignment approach is robust
across various the backbone.

6.6.5 Comparison to fully supervised methods

In the end we compare the results of the proposed approach for ¢ = 1 setting with
fully supervised action detection in Table 6.11. Despite of having weak supervision,
the proposed approaches are competitive to fully supervised approaches and even
outperforms some of them (Sun et al., 2018, 2019; Girdhar et al., 2019). The pro-
posed weakly supervised approach achieves 25.6% mAP, a relative performance of
77.3% to the state of the art fully supervised method that uses more powerful back-
bone and explicit action labels. Based on our experiments on various backbones,
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Method Backbone t=1|t= t=10
Uncertanity (Arnab et al., 2020) SF-50 224 | 18.0 | 15.8
Laaat SF-50 22.1 | 20.2 | 19.0
Laaa SF-101 + HGRNN | 25.1 - -
Laaat SF-101 24.8 | 22.1 | 20.2
Lagat SF-101 + HGRNN | 25.6 - -

Table 6.10: Comparison of the proposed method with state-of-the-art weakly super-
vised methods

we believe incorporating the recent state-of-art backbones to this approach, can fur-
ther improve the performance of the proposed weakly supervised approach and thus
reducing the gap to the state of the art fully supervised method.

6.7 Conclusion

In this chapter, we introduced the challenging task of weakly supervised multi-label
spatio-temporal action detection with multiple actors. We first introduced a base-
line based on multi-instance and multi-label learning. Furthermore, we presented
a novel approach where the multi-label problem is represented by the power set of
the action classes. In this context, we assign an element of the power set to each
detected person using linear programming. Additionally, we introduced a tempo-
ral consistency measure within the constrained linear programming framework that
favours consistent action labels across time. We evaluated our approach on the
challenging AVA dataset where the proposed method outperforms the SOTA ap-
proach by a gain of > 4% mAP, especially over longer-length video clips. Despite of
the weak supervision, the proposed approach is also competitive to fully supervised

approaches.
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Weakly Supervised Approaches

Methods Val | Test
Uncertainty (Arnab et al., 2020) 224 -
Loaaa 25.1 | 23.5
Loga+ 25.6 -
Fully Supervised Approaches
Methods Val | Test
HGRNN (Chapter 5) 20.9 -
ATN (Girdhar et al., 2019) 95.0 | 24.9
LFB (Wu et al., 2019) 27.7 | 27.2
X3D (Feichtenhofer, 2020) 274 -
MVIiT (Fan et al., 2021) 28.7 -
Slowfast (Feichtenhofer et al., 2019) 29.4 -
HGRNN* (Chapter 5) 30.1 -
Slowfast++ (Feichtenhofer et al., 2019) 30.7 | -
Object Transformer (Wu and Krahenbuhl, 2021) | 31.0 -
ATA++ (Tang et al., 2020) 33.1 | 32.3

Table 6.11: Comparison to fully supervised approaches for ¢ = 1 second settings.
We also report the result of using HGRNN with full supervision and Slowfast-101.
Note,“++" denotes the usage of multi-scale and horizontal flipping augmentation.
Note HGRNN* is the HGRNN implementation with Slowfast-101.
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Figure 6.8: Qualitative results. The left column shows the ground-truth annota-
tions. The middle column shows the results of the MIML baseline. The right col-
umn shows the results of the proposed method (L44q). The colors distinguish only
different persons, but they are otherwise irrelevant. The predicted action classes
with confidence scores are on top of the estimated bounding boxes. The proposed
approach recognizes more action classes per bounding box correctly compared to
MIML. Both methods also detect genuine actions that are not annotated in the
dataset as seen from the missing persons in the second and the fourth row. The bias
of the proposed method towards the background is visible in last row, where the
“swim” action is associated to both persons. Best viewed using the zoom function
of the PDF viewer.
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Figure 6.9: Qualitative results of label assignment and false-positive pruning. The
leftmost column shows the ground-truth annotations of the training-set. The 274
column shows proposals used during the training. The 3™ and 4** columns show-
case the labels after the assignment. Proposals with empty-set assignments are not
displayed. The colors of the bounding boxes do not convey any information but are
used to distinguish different persons. Best viewed using the zoom function of the
PDF viewer.



CHAPTER 7

Multiple Instance Triplet Loss for
Weakly Supervised Multi-Label
Action Localisation of Interacting
Persons

In Chapter 6, we introduced an iterative method for weakly supervised action de-
tection that alternates between model training and actor-action assignment. Due to
this iterative nature, the model training is slower and time-consuming. Furthermore,
the label assignment without the null-set limits the use of the earlier approach only
for trimmed videos. To tackle both these limitations, we introduce another method
for weakly supervised action detection that uses multiple instance triplet loss for
training in this chapter.

Individual Contribution

The following chapter is based on the publication (Biswas and Gall, 2021):

Multiple Instance Triplet Loss for Weakly Supervised Multi-Label Action
Localisation of Interacting Persons

Sovan Biswas, and Jiirgen Gall.

IEEE/CVF International Conference on Computer Vision Workshops (ICCVW),
2021

This publication was done by Sovan Biswas and Jiirgen Gall provided scientific
guidance and supported this work with very valuable feedbacks and suggestions.
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Chapter 7. Multiple Instance Triplet Loss for Weakly Supervised
Multi-Label Action Localisation of Interacting Persons
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Figure 7.1: Overview of the Multiple Instance Triplet Loss (MITL) during training,.
A video shows a scene where two persons are interacting with each other. Person
A indicated by the green bounding box performs the actions bend, get up, lift and
listen, where the action bend changes to get up. Person B indicated by the blue
bounding box performs the actions stand and talk consistently over time. These two
frames build a positive pair of bags since there is at least one person (person B)
that performs the same set of actions. For the negative bag, we sample more distant
frames where there is at least one person that does not share any action with one
person from the first frame. In this example, the person C indicated by the
bounding box performs the actions open door and stand, which are not performed
by person B. Note that the bounding boxes are not provided during training and
are only used for visualisation.
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7.1 Introduction

Humans are multi-tasking by nature, i.e., they perform multiple actions such as read-
ing, sitting, etc. simultaneously. Furthermore, they interact with each other in small
groups. For instance, when a person talks, the other persons in the group listen.
This led to a recent focus on multi-label action recognition datasets like (Gu et al.,
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2018; Diba et al., 2020; Ji et al., 2020; Sigurdsson et al., 2016) and networks (Feicht-
enhofer et al., 2019; Girdhar et al., 2019) that can be applied to multi-label action
detection problems.

One of the main limitations of these existing multi-label action detection ap-
proaches lies in the requirement for a high amount of annotated action labels and
bounding boxes for action localisation. This requirement of high initial cost and
human effort for building suitable models and algorithms limits the usage for large-
scale real-world deployment. To circumvent the cost and time associated with data
annotation for supervised training, new approaches for weakly supervised multi-label
action detection in videos (Arnab et al., 2020) have been proposed. The focus of
these approaches is on learning suitable models only from a set of actions that occur
in a given video clip as seen in Figure 7.1 without any bounding box annotations.
These weak annotations are much easier to obtain and reduce the cost and time
associated with data annotation drastically. Even though an off-the-shelf person
detector can provide very accurate location information, substantial challenges still
exist to learn representations for action detection due to the lack of location-action
association within the video clip. While this is not an issue for videos that show
only one person as in (Jhuang et al., 2013), it is very challenging for videos where
persons interact in small groups and perform multiple actions at the same time as
in (Gu et al., 2018) and shown in Figure 7.1.

Weakly supervised multi-label action detection becomes even more challenging
as the length of the video clips increases since the action labels are not provided
per keyframe but per video clip. While in the initial part of Chapter 6 considered
short video clips of 1 second, (Gu et al., 2018) proposed a protocol also for longer
video clips. In this setting, the chances that an actor leaves or enters the scene, or
changes the actions increase over time as shown in Figure 7.1. The approach (Arnab
et al., 2020) deals with long video clips by subdividing a long video clip into multiple
shorter clips. These shorter clips have the same action set annotation as the long
video clip during training. This approach, however, discards temporal information
like transitions between actions and temporal relations of actions. The accuracy
thus decreases rapidly as the clips get longer.

In this chapter, we propose a novel approach for weakly supervised multi-label
action detection that addresses these limitations for long video clips. The approach
is inspired by the triplet loss that aims to learn a representation such that the
similarity of a positive instance to an anchor instance is higher than the similarity of
a negative instance to the anchor. In the weakly supervised and multi-label setting,
however, it is not straightforward to build triplets consisting of an anchor, positive
and negative instance as we do not know the corresponding actions of each detected
person. We, therefore, extend the triplet loss to bags where a triplet consists of
an anchor bag, a positive and a negative bag, and each bag contains all detected
instances of a keyframe. The positive bag is from a keyframe that is temporally
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Figure 7.2: Overview of the network. We use a 3D CNN as backbone and a person
detector to get bounding boxes. For each detected bounding box, we extract features
from the 3D CNN using region-of-interest pooling. The features are passed through
the classification head that predicts the class probabilities for the multi-instance and
multi-label (MIML) loss and a contrastive head that predicts an embedding for the
multi-instance triplet (MITL) loss.

close to the anchor keyframe whereas the negative bag is from a keyframe that is
substantially distant as shown in Figure 7.1. For the multiple instance triplet loss,
we define the similarities for positive and negative pairs of bags such that the loss
selects the instances that are most consistent or least consistent, respectively. For
instance in Figure 7.1, only person B (blue) of the positive pair of bags performs
the same combination of actions in both keyframes while one action of person A
( ) changes. For the negative pair, only person C ( ) and person A do not
share any common action while person C and person B both stand. We evaluate the
proposed approach on the challenging AVA 2.2 dataset (Gu et al., 2018), where we
outperform the state-of-the-art for weakly supervised multi-label action localisation
for training on video clips between 5 and 30 seconds.

7.2 Weakly Supervised Multi-Label Action Localisation

The task of multi-label action localisation requires to detect and recognise all actions
that are performed by each person in a video as shown in Figure 7.1. In contrast to
standard action localisation, where it is assumed that one person performs only one
action in a video clip, here each person can perform multiple actions at the same
time. Further, the actions, as well as the number of persons that are performing these
actions, can vary over time as shown in Figure 7.1. Nevertheless, we can assume
some temporal consistency where at least a subset of the actions is continued in
neighbouring frames. Recently, approaches for multi-label action localisation have
been proposed that can be trained with weak supervision (Arnab et al., 2020), i.e.,
without any bounding box annotations for the training videos. In this setting,
only the set of actions performed by all persons occurring in a video is provided as
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annotation. In this work, we follow this protocol for weakly supervised multi-label
action localisation, but we focus on learning from temporal consistency.

To exploit the temporal consistency, we propose a triplet loss across time for
training. It requires to define triplets (s, p,n) where the positive sample p contains
the same actions across time as s and the negative example n contains different
actions. Despite the temporal consistency assumption, we cannot assume that all
actions are consistent as shown Figure 7.1. We also do not know who is performing
the given actions in the training video due to the weak supervision. We therefore pro-
pose a multiple instance triplet loss that is computed for bags of instances (S, P, N)
as shown in Figure 7.3, instead of single instances (s,p,n). The loss then aims to
minimise the distance between S and P, which will be defined for bags instead of
instances, and maximise the distance between S and N. We will first describe the
network architecture, which is illustrated in Figure 7.2, in Section 7.2.1 and then
describe the novel multiple instance triplet loss, which is illustrated in Figure 7.3, in
Section 7.2.2. Finally, we summarise the entire loss function in Section 7.2.3.

7.2.1 Network

As the objective is to detect actions, we first generate multiple proposals to locate
various actors similar to (Arnab et al., 2020) and Chapter 6. The proposals are gener-
ated using an image-based off-the-shelf person detector based on Faster-RCNN (Ren
et al., 2015) using the ResNeXt backbone (Xie et al., 2017). We denote the detected
person proposals at time t by A; = {a;} where a; is the ith person and A; is the set
of all detected persons at t. As in (Gu et al., 2018; Girdhar et al., 2019), we then use
these person locations to generate person-specific representations from a 3D CNN
by applying 2D region of interest pooling at the same spatial location for a temporal
window of 1 second as shown in Figure 7.2.

These person specific features are passed through two different heads, namely
a classification head f(-) and a contrastive head g(-), as shown in Figure 7.2. The
classification head consist of a single layer MLP with a sigmoid activation function
o to predict the probabilities for each class, i.e., f(a;) = 0(Weassi), where x; is
the person specific feature representation from the 3D CNN and Wijass € RPXN
are the weights of the layer. D is the dimension of the feature representation and
N is the number of action classes. The contrastive head consists of an MLP with
two layers similar to (Chen et al., 2020), i.e., g(a;) = norm(Ws ReLU(Wjz;)), where
Wy € RPX512 117, € R?12%512 and norm denotes L2 normalisation.

7.2.2 Multiple Instance Triplet Loss

The objective of contrastive learning is to learn a representation such that similar
instances are close to each other, while dissimilar ones are far apart. One common
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loss for contrastive learning is the triplet loss:

Liripiet(s, p,n) = max(0,sim(s,n) — sim(s, p) + a) (7.1)
where sim(i, j) = g(a;)”
for the detected persons a; and a; with —1 < sim(4,j) < 1. a denotes the margin
between the positive pair (s,p) and the negative pair (s,n).

g(aj) is the cosine similarity of the L2 normalised embedding

In the context of weakly supervised learning, we do not know the labels of the
detected bounding boxes a; and it is therefore not straightforward to generate triplets
of instances where a, contains the same actions as as whereas a,, contains different
actions. We therefore propose to extend the triplet loss (7.1) to bags, which contain
multiple instances. While we describe in Section 7.2.2.1 how an anchor bag S and a
corresponding positive bag P and negative bag N are selected, we define the multiple
instance triplet loss for a triplet of bags (S, P, N) by

Liripiet(S, P, N) = max(0, simy, (S, N) — sim (S, P) + «) (7.2)

where sim,, (S, N) defines the similarity for a negative pair of bags and sim, (S, P)
the similarity for a positive pair. We will describe the similarity measures for bags
in Section 7.2.2.2.

7.2.2.1 Triplet Selection

In order to build triplets of bags (S, P, Ny) for each frame ¢ in the training videos,
we first take all detections of the frame ¢ as anchors, i.e., S; = A;. Since persons are
likely to perform similar actions over a short period of time as shown in Figure 7.1,
we select randomly frame ¢, € {t — 1,¢,£+ 1} and take all detections in frame ¢, as
positive bag, i.e., P, = Ay,. In case of t, = t, a random transformation like random
cropping and mirroring is applied such that P; is not exactly the same as S;. For
the negative bag Ny, a random frame t,, with |t, —¢| > 100 is selected and Ny = Ay .
Since there is a large temporal gap between N; and S, it is very unlikely that all
persons perform the same actions in frame ¢ and t,.

However, we cannot assume that all persons in S; and P; perform the same
set of actions over time as shown in Figure 7.1. Similarly, it might be possible
that persons in S; and Ny perform some common actions. While it is in principle
possible to select negatives from other videos that do not share any actions, this does
not provide many negatives for the AVA 2.2 dataset (Gu et al., 2018) since basic
actions like stand occur in most frames and videos. We therefore need to define
the similarity measures simy, (S, N) and sim (5, P) that are robust to missing and
overlapping actions, which we will discuss next. For the ease of reading, we omit the
frame index ¢t and denote triplets by (S, P, N).
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Figure 7.3: Illustration of the Multiple Instance Triplet Loss (MITL). Any triplet
(S, P,N) comprises an anchor S, positive P and negative N bag, where each bag
contains a set of detected bounding boxes. As the anchor and positive bag are from
the temporal neighbourhood, we assume that they contain at least one instance
that is consistent in both bags. This is found by the maximum similarity among
the persons in the two bags. The anchor and negative bag are temporally distant.
Nevertheless, they can share persons performing the same actions. We thus assume
that there is at least one pair of instances that are dissimilar, which is obtained by
the minimum similarity. The Multiple Instance Triplet Loss (MITL) thus aims to
minimise the distance between the green instances from S and P and to maximise
the distance between the green instance from S and the pink instance from N.

7.2.2.2 Similarity of Bags

While we cannot assume that each person in S performs the same set of actions in
P or is even present in P, we assume that there is at least one close match such
that a;, € S and a, € P should be similar as shown in Figure 7.1 and Figure 7.3.
For instance, the person in the blue bounding box in Figure 7.1 continues the same
actions, while the person in the green bounding box changes one of the three actions.
In order to measure the similarity between the bags S and P, we therefore only
consider the best match. In addition, we also consider that persons performing the
same actions are spatially consistent. We thus define simj by

simg (S, P) = max_ {exp(—lls — l3)g(a,) g(a)} (73)
s "p
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where [ and [, are the centroid locations of the detections as and a,, respectively,
and g(as)"
ap.

g(ap) is the cosine similarity of the L2 normalised embedding for as and

For the negative pair of bags (S, N), we have to consider the possibility that
persons as € S and a, € N perform the same actions. We therefore assume that
there is at least one pair of persons in S and N that do not perform the same
combination of actions. We thus define sim, by

simy, (S, N) = . eglineNg(as)Tg(an). (7.4)

7.2.3 Loss Function

In order to train the network, we use besides the multiple instance triplet loss Ly ipies
two additional loss functions:

L= ['miml + £triplet + ﬁsim (75)

where Lysrarr is a loss for multi-instance and multi-label learning (7.6) and Ly, is
a similarity loss (7.7) that encourages that the absolute value of two similar samples
is high. We add the additional loss functions without weighting them.

The multiple instance triplet loss does not take any supervision into account.
Instead we build triplets based on temporal proximity. In order to train the network
using the set of labels that is provided for each video clip (Arnab et al., 2020) and
contains all actions that are performed by all persons in a video clip, we use a loss
for multi-instance and multi-label (MIML) learning (Nguyen et al., 2013; Nguyen,
2010; Yang et al., 2017). The MIML loss 6 is defined by

Loimi = L (Y, m?x(f(ai))> (7.6)

where Y is a vector that is one for all classes that are present in the video clip and
zero otherwise, f(a;) is the vector that contains the predicted class probabilities for
the detection a;, and max is the class-wise maximum over all detections. L is the
binary cross entropy.

While the triplet loss encourages the network to learn a representation in order
distinguish persons performing similar or dissimilar actions and the margin o can be
increased to increase the difference, we show in the experiments that the accuracy
decreases when « is too large. For small values of «, however, the absolute similarity
for correct pairs can remain low as long as the difference between positive and
negative pairs is larger than the margin «. In order to also encourage that the
absolute similarity of positive pairs is larger equal to 8, we add the similarity loss:

Lsim = max (0, f — simp (S, P)). (7.7)
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In the experiments, we evaluate the impact of the loss terms.

7.3 Experiments

7.3.1 Dataset

We evaluate our approach on the AVA 2.2 dataset (Gu et al., 2018). The dataset
contains 235 videos for training and 64 videos for evaluation. Each video is 15
minutes long. The annotation is provided for each person with 60 action classes
and bounding box locations at keyframes with a sample rate of 1Hz for the fully
supervised setting. The accuracy is measured by mean average precision (mAP)
over all actions with an IoU threshold of 0.5 at the key-frames as described in (Gu
et al., 2018). In the weakly supervised setting, the bounding box information is not
used during training. Following the protocol of (Arnab et al., 2020), the training
videos are subdivided into ¢ = 1, 5, 10, and 30 keyframes, i.e., clips of 1, 5, 10,
and 30 seconds, respectively. For each clip, the list of actions that are present in the
keyframes is provided. This means that the protocol for ¢ = 30 is much more difficult
than the protocol for t = 1 since we do not know when and where the actions occur
in the video clip.

We use Faster RCNN (Ren et al., 2015) with ResNeXt-101 (Xie et al., 2017)
as backbone to detect persons. This detector is pre-trained on ImageNet and fine-
tuned on the COCO dataset. We perform our experiments with SlowFast-50 and
SlowFast-101 pre-trained on Kinetics 600. The temporal scope for SlowFast (SF)
was set to 64 frames with a stride of 2. We used random cropping and flipping for
data augmentation. We randomly crop images of size 224 x 224 pixels from the
resized frame of 256 pixels at its shorter side.

7.3.2 Comparison to the state-of-the-art

Table 7.1 shows the comparison of the proposed approach with other state-of-the-art
methods. The proposed approach outperforms the state-of-the-art method (Arnab
et al., 2020) by +2.7%, +4.0% and +5.8% for untrimmed videos of length ¢ = 5, 10
and 30 seconds, respectively. This gain can be partly attributed to the better 3D
CNN. Thus, we compare the approach with the same Slowfast-50 as (Arnab et al.,
2020). With the same backbone, the proposed approach is still +1.3%, +1.8% and
+4.2% better for untrimmed videos of length ¢t = 5, 10 and 30 seconds, respec-
tively. This gain shows that the proposed approach resolves temporal ambiguity in
untrimmed videos. The approach performs better as the length of the untrimmed
video increases as seen by the increase in mAP difference compared to (Arnab et al.,
2020). Interestingly, the proposed approach achieves a lower accuracy for trimmed

Code: https://github.com/sovan-biswas/MITL
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Methods 3D-CNN |t=1|t=5|t=10|t=30
Uncertainty (Arnab et al., 2020) SF-50 224 | 18.0 15.8 11.4
Actor-Action (Chapter 6) SF-50 21.6 - - -
Actor-Action (Chapter 6) SF-101 | 25.1 - - -
Proposed Approach SF-50 20.7 | 19.3 17.6 15.6
Proposed Approach SF-101 22.1 | 20.7 | 19.8 17.2

Table 7.1: Comparison of the proposed method with other state-of-the-art methods.
The clip length of the training videos with weak annotations is denoted by ¢t = 1, 5,
10, and 30 seconds. The larger t is, the more difficult is the task.

ﬁmiml ﬁtriplet Esim t=5|t=30
Y - - 18.6 14.4
Y Y - - 14.9
Y Y Y 19.3 | 15.6

Table 7.2: Impact of loss functions for ¢ = 5 and 30 seconds. L,y is the MIML
loss, Liripier is the multiple instance triplet loss and Ly, is the similarity loss. Y
denotes that the loss function has been used.

videos of t = 1 seconds. With Slowfast-50, it is by —1.7% and —0.9% mAP lower
compared to (Arnab et al., 2020) and Chapter 6, respectively. For t = 1 second,
the actions for each keyframe are provided such that a temporal association is not
required and the provided labels only need to be assigned to the persons in each
keyframe. This is explicitly addressed in Chapter 6 and the method thus achieves
the highest accuracy for ¢ = 1 i.e. trimmed videos. The approach, however, cannot
be directly applied to a setting with ¢ > 1 and needs modification as discussed in
Chapter 6 for untrimmed videos. In contrast, the multiple instance triplet loss and
the similarity loss are only suitable for a setting with ¢ > 1.

7.3.3 Ablation Studies

7.3.3.1 Impact of Loss Functions

In (7.5), we use the loss functions Ly,imi, Liriplet and Lgim. While Lo is always
required since it is the only loss function that takes the weak annotations into ac-
count, Table 7.2 shows the quantitative impact of the other loss functions for ¢t =5
and 30 seconds, respectively. Lypiprer increases mAP by +0.5% at ¢ = 30 seconds,
indicating the impact of contrastive learning in removing temporal ambiguity in long
untrimmed videos. When both Lyyipier and Ly, are used, mAP increases by 4+0.7%
and +1.2% mAP for ¢t = 5 and 30 seconds, respectively. L, ensures that the
absolute similarity of positive matches over time is large.
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o 0 0.05 | 0.1 | 0.3
Overall | 15.1 | 15.6 | 15.6 | 14.5
Least 10 | 1.7 1.9 2.7 | 2.8

Top 5 55.4 | 55.4 | 55.3 | 54.2

Table 7.3: Impact of the margin « for ¢ = 30 seconds. The Least 10 and Top 5
indicate the least 10 frequently and top 5 frequently occurring classes in the training
dataset.

I} 1 0.8
Overall | 139 | 15.6

Table 7.4: Impact of the margin 5 for t = 30 seconds.

7.3.3.2 Impact of «

In (7.2), a causes the model to separate negative and positive bags, and as « increases
the distance becomes larger. Due to the multi-label scenario, persons often share
some actions as shown in Figure 7.1. If a positive pair does not share all actions or
a negative pair shares some actions, a large value of a can have a negative impact.
In Table 7.3, we thus quantitatively analyse the impact of a using SlowFast-50 as
backbone for the t = 30 setting. As expected, the accuracy decreases for @ = 0.3
and the best mAP of 15.6% is obtained for o between 0.05 and 0.1. In all other
experiments, we use a = 0.05. Interestingly, the approach is able to classify the
least 10 frequently occurring classes better with @ = 0.3 as seen by an increase of
mAP to 2.8%. This is in contrast to the deteriorating performance of the top 5
frequently occurring classes with an increasing value of a. This is due to the fact
that frequently occurring classes are more likely to be present both in an anchor and
negative bag and are thus more likely to be shared by a negative pair.

7.3.3.3 Impact of §

The loss (7.7) encourages that the absolute similarity of positive pairs is larger equal
to 8. While we evaluated the impact of the loss already in Table 7.2, we evaluate
the impact of 8 in Table 7.4 for ¢ = 30 seconds. In case of § = 1, the loss aims to
maximise the absolute similarity since sim, cannot be larger than 1. This reduces
the accuracy compared g = 0.8, which we use in our experiments.

7.3.3.4 Variants of sim,

As we discussed in Section 7.2.2.2, we assume that there is at least one pair of
persons in the anchor and negative bag that do not perform the same combination
of actions and thus take the minimum over all pairs to compute simy (7.4). If we
take the maximum instead of the minimum, we would assume that none of the pairs
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Negative-Bag Similarity | max | min
Overall 14.9 | 15.6
Least 10 1.7 1.9
Top 5 54.7 | 55.4

Table 7.5: Comparison of taking the min or max to compute sim, (7.4) for ¢ = 30
seconds. Least 10 and Top 5 indicate the least 10 frequently and top 5 frequently
occurring classes in the training dataset.

shares any action. In Table 7.5, we compare the maximum and the minimum using
SlowFast-50 as backbone for the ¢ = 30 setting. The approach achieves mAP of
15.6% for the min and 14.9% for the max operation. Taking the minimum for the
negative pairs of bags also outperforms the maximum for the least 10 and top 5
occurring classes. However, the gain of min is larger for the top 5 occurring classes
since they are more likely to be shared by a negative pair.

7.4 Conclusion

In this chapter, we proposed a novel approach based on contrastive learning for
weakly supervised multi-label action localisation. In this setting, only the list of
actions occurring in each training video is provided. So, in order to learn a better
representation despite weak annotation, we introduced the novel Multiple Instance
Triplet Loss (MITL) which takes the similarity of bags instead of instances into
account. Later, we evaluated our proposed approach on the challenging AVA dataset,
where it is difficult to define negative pairs since some actions like standing occur
very frequently. We therefore addressed this issue by defining different similarity
functions for positive and negatives bags. For the setting where the training videos
are longer than 1 second, our approach achieved state-of-the-art results.
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In this chapter, we conclude the thesis by summarizing the contributions toward
modeling human actions in multi-label settings. Ultimately, we discuss the possible
future research directions and exploration needed to improve the state-of-the-art in
respective tasks.

8.1 Summary and Contributions

In this thesis, we have delved into the intricacies of modeling human actions in
multi-label settings, a challenging task in computer vision. With the ever-increasing
prevalence of video data and the growing demand for real-time action recognition and
localization, accurately identifying and interpreting multi-label actions are crucial
for many applications.

We have presented novel approaches that use RNNs, CNNs, and GNNs to tackle
this challenge effectively. These techniques have been extensively evaluated on
benchmark datasets, outperforming existing methods in various scenarios.

The primary contributions of this thesis can be categorized into two sections as
follows:

e Group Activity Analysis

e Multi-Label Action Detection and Recognition

8.1.1 Group Activity Analysis

As outlined in Section 1.2, human actions in group settings exhibit two distinct
characteristics: individual actions and group interactions. To effectively capture
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these characteristics, we proposed a modified Structural Recurrent Neural Network
(SRNN) architecture (Chapter 4), which explicitly models individual actions and
the interactions between individuals. The approach drastically differs from existing
two-stage hierarchical recurrent neural networks (RNNs) for group activity analysis
that suffers from a lack of joint group and individual action training and a lack
of ability to capture interactions between individuals. This lack of joint analysis
leads to suboptimal performance. The SRNN architecture is based on a graph
representing individuals as nodes and interactions between them as edges. The
SRNN architecture uses interconnected RNNs to process the information within the
graph. In Chapter 4, we proposed two variations of SRNN architecture: SRNN-max
node and SRNN-max edge. SRNN-max node focuses on pooling node characteristics,
whereas SRNN-max pools edge characteristics for group activity recognition.

Our results on the Volleyball dataset demonstrate that the SRNN architecture
outperforms previous methods in accuracy. In particular, the SRNN-max node vari-
ant, which focuses on pooling hierarchical node features to recognize the group ac-
tion, achieves the best results. This is because the SRNN-max node variant can pool
the relevant information about the key actor in a group activity. For example, in
the case of a "left spike" in volleyball, the key individual action is "spiking" on the
left side of the volleyball field.

8.1.2 Multi-label Action Detection and Recognition

Humans are naturally multi-taskers, capable of performing multiple actions simul-
taneously. Unlike recognizing actions in short clips with only one action label, we
focus on recognizing multiple actions that co-occur within a video.

8.1.2.1 Modelling Scene and Spatial dependencies of actions

Actions have several types of dependencies: temporal, exclusionary, and interac-
tive. As seen in group activity analysis, temporal dependencies capture the long-
term scene relationships, while interactional dependencies capture the relationships
between humans. Exclusionary information captures the improbability of specific

" occurring together.

actions, such as "driving" and "standing,

In Chapter 5, our proposed approach is a hierarchical model that models the
temporal scene using an RNN at the lower level and the occurrence of simultaneous
actions, exclusions of actions, and interactions of detected persons at the top level
using a graph-RNN. All detected persons in a frame represent the nodes of the
graph-RNN. The lower-level scene RNN and higher-level graph RNN are trained
jointly.

The proposed approach achieves high results on the AVA multi-label action
dataset by capturing the temporal, exclusionary, and interactive context of actions.

We also demonstrated that using longer temporal scene RNN improves scene con-
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text and representation of both persons and frames and is essential to significantly
improved performance.

8.1.2.2 Weakly Supervised Approaches for Multi-Label Action Localisa-
tion

Traditional action recognition approaches require extensive person-specific action
class annotations for training. These annotations are time-consuming and expensive
to obtain. This limitation hinders the development of real-world applications that
require quick deployment and adaptation. To address this challenge, we explored
weakly supervised learning methods for multi-label action recognition ( Chapter 6
and Chapter 7), where only a subset of video frames are annotated with action labels.
The weakly supervised learning framework is based on the multi-instance and multi-
label learning (MIML) paradigm. In MIML, each video clip containing multiple
person instances is treated as a bag and a list of actions as the weak annotation. This
framework allows efficient training of action recognition models without requiring
detailed per-person annotations.

The first approach employs an iterative strategy alternating between training
the multi-label action detection model and inferring actor-action associations. The
actor-action association problem is formulated as an assignment task, where the goal
is to assign the most likely actions to each detected person based on their features and
the video’s action annotations. This assignment is solved using linear programming.
Our experiments show that multiple iterations of the training and inference process
lead to significant performance improvements. This iterative approach effectively
leverages the information extracted from the action detection model to refine the
actor-action associations, ultimately improving the overall recognition accuracy.

The second approach further enhances the MIML framework by incorporating
contrastive learning. A contrastive loss compares anchor, positive, and negative bags.
Positive bags are defined as those with high temporal similarity to the anchor bag,
while negative bags have low temporal similarity. This contrastive loss mechanism
encourages the model to learn more robust representations of actions, even when
dealing with weaker annotations over longer video durations.

Both proposed weakly supervised learning methods demonstrate competitive per-
formance compared to fully supervised approaches, especially when annotating over
shorter durations. It highlights the effectiveness of the weakly supervised learning
framework in reducing the annotation burden while maintaining high recognition
accuracy.

8.2 Outlook

Research on recognizing and detecting multi-label human activities is developing
quite rapidly. While many of the proposed approaches in this area have shown good
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performance, reliably deploying them in real-world critical applications requires more
improvements and addressing their current limitations. We now briefly discuss some
of the open challenges and possible extensions to the proposed approaches in this
thesis.

8.2.1 Advancing Group Activity Analysis
8.2.1.1 Approaches based on Transformer and Attention

Our group and individual activity analysis approaches used Recurrent Neural Net-
works and Convolutional Neural Networks. These approaches are easy to imple-
ment and deploy and suitable for small-scale data. However, modern transformer
architectures are more powerful and effective, resulting in increased performance.
Transformers are effective due to their multi-headed attention. This could be key
as not all pairs of interactions are equally significant in group activities. Thus, us-
ing attention can result in prioritizing the significant interactions for individual and
group activity recognition. Similar ideas with attention have been explored in (Yuan
et al., 2021; Li et al., 2021). Transformer-based architectures require a large amount
of data to learn effectively. As such, variations of self-supervised contrastive learning
have been used in (Chappa et al., 2023) to improve the performance.

8.2.1.2 Weakly supervised and unsupervised learning

One of the critical issues for the real-world deployment of algorithms is the availabil-
ity of annotations. It is primarily an issue for group activities where annotations are
required for every person within the group. As mentioned in Section 1.2, most people
within a group perform the same individual action. Thus, approaches that require a
sparse or weak list of annotations can be explored using the assumption that most
people will have the same individual actions. Recently, (Zappardino et al., 2021) ex-
plored group activity analysis without individual labels. Due to the high likelihood
of various people performing the same individual action in a group, unsupervised
and self-supervised approaches can be explored in the future.

8.2.1.3 Group activity analysis based on textual descriptions

Modern models and approaches to person detectors are highly accurate. Fur-
thermore, the recent exploration with weak supervision and multimodal supervi-
sion (Zappardino et al., 2021) has shown much promise. A critical future direction
to explore is to perform group activity analysis from human descriptions. This is of
high importance as the availability of large-scale data with detail annotation remains
a significant bottleneck, as explained before. However, one can easily retrieve group
videos with textual descriptions through movie dialogues or sports commentary.
Developing group activity analysis with such noisy and sparse textual descriptions
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would pave the way for real-world deployment of these algorithms in new and previ-
ously unexplored applications. Recently, (Mkhallati et al., 2023) generated textual
descriptions based on group action analysis that can be used as a substitute for
commentary.

8.2.2 Advancing Multi-label Activity Recognition and Detection
8.2.2.1 Short-term temporal action consistency

In Chapter 6, we explored the consistency of action labels over a short period.
However, our approach and consistency exploration were limited to the label space
without explicit matching of actors and the similarity of features. Thus, exploring
models and loss functions that ensure temporal consistency in the feature space
across two frames can improve the performance of multi-label action recognition
and detection. One of the key issues in such problems is identifying the same actors
across two different frames, as the actors could have moved locations across frames.
Recognizing and tracking persons can help identify the same person in two nearby
timestamps. The authors of (Vicol et al., 2018) and (Kukleva et al., 2020) explore
this research direction.

8.2.2.2 Long-term Scene Relations

Videos are seldom short, as in typical clip-based action recognition (Carreira and
Zisserman, 2017). Mostly, videos are long, and they have long-term temporal de-
pendencies. It is apparent during movies an actor is present in different scenes with
some temporal dependencies. These scenes can occur more than 10 minutes apart.
Thus, modeling such long-term dependencies can improve multi-label action detec-
tion and recognition. In (Vicol et al., 2018), the authors show that such temporal
relationships exist over a significantly longer time than the capability of current
approaches.

8.2.2.3 Multi-Label Activation Functions

Current approaches (as also used in Chapter 5, Chapter 6 and Chapter 7) that per-
form multi-label action recognition typically utilize Sigmoid as activation function
over the label space. Though simple, it performs poorly during class imbalance.
Furthermore, applying label space constraints, such as ‘sit’ and ‘stand’, which can
not co-occur on the same person, is challenging. It requires further exploration to-
wards better activation functions that tackle the class imbalance and label space
constraints. In (Kerrigan et al., 2021), the authors use the label space constraints
in the zero-shot implementation.
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8.2.2.4 Attention based architectures for label dependencies

In Chapter 5, we exploited the human and scene dependencies for multi-label action
recognition. However, all the dependencies in our approach were weighted equally
and pooled using a max pool operation. It is a clear limitation as each action la-
bel within the multiple labels can have different priority label dependencies. For
example, a person who is walking, carrying a bag, and listening have different de-
pendencies. Walking and carry a bag have temporal dependencies whereas listening
have spatial dependency of another person speaking. Thus, label-specific attention
can disambiguate the dependencies and improve representation for better perfor-
mance. In (Kovtun et al., 2023), the authors explore the idea in label space for
future customer purchase prediction.

8.2.2.5 Multi-modal Models

Actions such as speaking and listening have limited visual cues. As such, they are
difficult to disambiguate, primarily with multi-label activation functions such as
sigmotd. Incorporating modalities such as speaker and audio information can help
disambiguate these classes. With this in mind, the AVA-active speak dataset (Zhang
et al., 2019) was formed, showing improved performance than on the AVA dataset.

Recently, large multimodal models (Alayrac et al., 2022) are being developed
as foundational models. These models can provide additional context for zero-shot
learning or improve the performance of existing models when trained on limited
annotations. It is very effective as specific actions, though not distinguishable in
visual embedding space, are significantly different in textual embedding space. For
example, in (Kerrigan et al., 2021), the authors use a textual modality for zero-shot
learning.
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