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Abstract
The maximum cut problem, MaxCut for short, is one of the fundamental problems in
combinatorial optimization. It is part of a large family of graph partitioning problems
that ask for a division of all vertices of the graph into disjoint sets. In its optimization
form MaxCut is about finding a bipartition that maximizes the value of a cut. A cut
in the context of a vertex partition is defined as the set of edges connecting vertices of
different partitions. The value of a cut is the sum of all weights associated with the
edges of the cut.

Although MaxCut allows for a compact description, it has highly relevant modeling
power. Many real-world applications for MaxCut have been described in the literature
over the years; these range from chip design to scheduling sports leagues and, more
recently, the benchmarking of certain quantum algorithms and computers. Depending
on the application, good solutions do not suffice and practitioners and researchers are
interested in optimal solutions. Unfortunately, MaxCut is NP-hard in general, and it is
still unknown whether we can solve NP-hard problems fast, that is, in time polynomial
in the input size. However, practical algorithms for solving MaxCut to optimality have
been designed in the past, and this thesis aims to improve them and develop new ones.
We focus especially on techniques for sparse graphs, as real-world instances often turn
out to be sparse.

An important way to speed up algorithms for hard problems is to reduce the search
space before even exploring it. The process of performing these reductions without
sacrificing optimal solutions is called presolving. We develop new presolving algorithms
for MaxCut in three categories. One of these is based on vertex separators that have
not been explicitly considered for MaxCut so far.

For exploring and further pruning of the search space for MaxCut we resort to integer
programming and the branch-and-cut algorithm, which has yielded good results for exact
MaxCut algorithms in the past. We extend previous work and suggest a refined integer
program. This model has implications for other modules part of the branch-and-cut
algorithm that we present in detail. Examples are the generation of cutting planes and
problem-specific branching rules. From these we derive new and concrete algorithms
that can be employed in MaxCut solvers based on branch-and-cut.

To evaluate the practical relevance of our new techniques, we perform elaborate ex-
perimental studies and compare them against the state of the art. For this we carefully
engineered a new solver that contains state-of-the-art techniques and our new ones. The
solver is competitive to the fastest MaxCut solver in general and clearly outperforms
the state of the art for certain inputs. In detailed ablation studies, we track these im-
provements down to our new techniques. Especially, our presolving and cutting plane
generation offers significant speed-up potential of up to one order of magnitude over the
state of the art.
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1. Introduction

Many real-world networks and network-like structures can be modeled as so-called
graphs. This includes, but is not limited to, road networks, chemical molecules, so-
cial networks, and the World Wide Web. One branch of computer science is concerned
with algorithms that help to analyze properties of these graphs.

An Optimization Problem Consider the graph depicted in Figure 1.1. Imagine each
vertex of the graph representing one account in a social network. The numbers next to
the edges (we call these edge weights) indicate how often two persons were talking to
each other recently; the higher the number, the more the two accounts were chatting.

a

b c

d

ef

7
5

2

5

7

3
9

Figure 1.1.: A graph with six vertices (the blue cycles) {a, b, c, d, e, f} and seven edges
(the black connections).

Now, let us say that we want to test a new feature for the social network on a subgroup
of people. Clearly, it might make sense to pick a diverse group of accounts to properly
evaluate feedback on the new functionality. One possible measure for the diversity of
a set of accounts is to sum over all edge weights of edges leaving the set of selected
accounts. If this results in a large number, most of the communication happens between
the selected group and the rest, and there is little interaction inside of our selected group.

We can formulate this scenario as what we call a combinatorial optimization problem
in computer science and mathematics. Every such problem has some kind of input, in
our case a graph. Additionally, every problem has some kind of output, in our case,
a subset of all vertices. Finally, combinatorial optimization problems are not satisfied
with any solution, but ask for a solution that maximizes (or minimizes) some value.

The Maximum Cut Problem Formally describing our example of selecting a group of
users for a feature test reveals that we actually want to solve what the literature calls
the Maximum Cut Problem, or MaxCut for short. MaxCut is the central problem
of this thesis and a classical combinatorial optimization problem on graphs, part of
the large family of graph partitioning problems. More than 50 years of research on
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1. Introduction

MaxCut resulted in a multitude of theoretical results and practical algorithms for
the problem, many of which were motivated by real-world applications of the problem.
Unfortunately, MaxCut belongs to an important class of problems, for which we have
not found provably fast algorithms in the general case (or a proof that none exist), yet.

Clearly, a necessary condition for a combinatorial problem to be hard is the existence
of many possible solutions. Otherwise, one could always just enumerate all possible
solutions and pick one with the highest objective value. When solving MaxCut on a
graph, we ask for a subset of all n vertices. This results in 2n possible solutions. It
is important to note, that an exponentially sized solution space does not generally rule
out fast (that is, faster than full enumeration) algorithms. Had we asked for a group
of people in our example around Figure 1.1, that has as little contact as possible to the
rest of the network, we would have been in the territory of the so called Minimum Cut
Problem. For this problem researchers have presented multiple fast algorithms in the
past. But even if a problem like MaxCut turns out to be hard in theory, this does not
mean that tackling it in practice is unlikely to succeed.

1.1. Integer Programming and Algorithm Engineering
Many problems arising from real-world applications can be modeled as integer programs
(MaxCut being one of them). Finding optimal solutions for integer programs also
belongs to the class of problems for which we do not know whether or not fast algorithms
exist. However, integer programming is quite popular in theory and practice. For one,
using a common modeling language has the advantage that algorithmic advances for
integer programming can directly impact many different problems. In addition, very
powerful solvers (many of which are based on the branch-and-cut algorithm) have been
developed in academia and industry. They solve many integer programs in reasonable
time, despite missing theoretical guarantees on their running time.

In fact, this discrepancy between the real-world performance of algorithms and the
theory surrounding them can be observed throughout the field of computer science. The
branch of research that deals with this gap between theory and practice is called algo-
rithm engineering. It lies at the intersection of theoretical computer science and practical
software engineering and involves a cycle of systematic design, analysis, implementation,
and experimental evaluation of algorithms, ensuring their efficiency and effectiveness in
real-world applications.

1.2. Overview and Contribution
The core contribution of this thesis are new techniques for faster exact solving of Max-
Cut on sparse graphs and the evaluation of these in extensive experimental studies. We
develop novel theoretical results for presolving techniques and branch-and-cut modules.
From these we derive new practical algorithms and their impact on a new state-of-the-art
solver is tested with a diverse set of established benchmark instances. Speedups of up to
one order of magnitude over the already sophisticated state of the art can be observed.

2



1.2. Overview and Contribution

In the following, we summarize the contents of each chapter of this thesis and highlight
scientific contributions.

Chapter 2 introduces mathematical basics and notation relevant throughout this thesis
and some basic algorithms.

Chapter 3 elaborates on MaxCut, some related problems, and highlights the corre-
sponding applications. We also introduce our new solver as a web-service (McSparse)
and the benchmark instances for the next two chapters here. McSparse is the first integer
linear programming solver directly available to the general public and has received more
than 45 000 instance submissions since its introduction, of which most could be solved
to optimality. This clearly shows the public interest in solving MaxCut to optimality.

Chapter 4 is concerned with the theory and practice of presolving techniques for
MaxCut. Presolving generally consists of the two components decomposition and data
reduction. For MaxCut related data reduction, we suggest a unified view on existing
presolving techniques. Concretely, we categorize them into the three main groups: vertex
similarity based, edge separator based, and vertex separator based. We introduce one
new rule for each of the first two categories. The last category (vertex separator based
reduction) has, to our knowledge, not been explicitly considered for MaxCut. Through
a new framework for vertex separators, we extend previous work and derive multiple new
data reduction rules. We carefully engineered an algorithm that incorporates previous
rules and our new ones. In the experiments, we then see that our new algorithm is more
effective in reducing graphs than the state-of-the-art approaches. Additionally, our new
presolving algorithm turns out to be highly efficient. When paired with a state-of-the-
art heuristic, we get better solutions in the same amount of time, and when paired with
state-of-the-art exact solvers, we see speedups of up to one order of magnitude.

Chapter 5 introduces an exact algorithm based on branch and cut and the theory
behind its components. The branch-and-cut framework allows for the integration of
many different modules. We focus on fundamental ones: presolving, binary program-
ming formulations, cutting plane generation, branching rules, and primal heuristics. Our
theoretical analysis of a new model, which we call the root-triangulated model, uncov-
ers implications for cutting plane generation and branching rules that allow algorithmic
exploitation. Concretely, we show that for two important types of cutting planes, the
structure of the model allows more efficient separation, when other branch-and-cut com-
ponents have fixed certain variables of the model. Additionally, the analysis gives clear
motivation for our new branching rule, called degree-dynamic. We also uncover the
relation of certain cutting planes and xor-constraints and present new ideas to fully ex-
ploit symmetry in a shortest path subroutine for the generation of cutting planes. All
ideas are tested by implementing them in a new solver (called SMS) that turns out to
be competitive to the state of the art. An ablation study reveals the influence of the
different new components we suggested and shows that they result in speedups of up to
one order of magnitude.

Finally, Chapter 6 summarizes our results and discusses open problems and future
work for research on exact MaxCut solving.

3



1. Introduction

1.3. Relevant Publications
The author of this work was involved in three published peer-reviewed publications
relevant to this thesis. They constitute the building blocks for the results presented
throughout this work.

• A new publicly available solver, which we will discuss in Section 3.3, and an ex-
perimental study were presented in:
Jonas Charfreitag, Michael Jünger, Sven Mallach, and Petra Mutzel (2022). “Mc-
Sparse: Exact Solutions of Sparse Maximum Cut and Sparse Unconstrained Bi-
nary Quadratic Optimization Problems”. In: Proceedings of the Symposium on
Algorithm Engineering and Experiments, ALENEX 2022, Alexandria, VA, USA,
January 9-10, 2022. Ed. by Cynthia A. Phillips and Bettina Speckmann. SIAM,
pp. 54–66. doi: 10.1137/1.9781611977042.5.

• The main results for Chapter 4 were first developed in:
Jonas Charfreitag, Christine Dahn, Michael Kaibel, Philip Mayer, Petra Mutzel,
and Lukas Schürmann (2024a). “Separator Based Data Reduction for the Max-
imum Cut Problem”. In: 22nd International Symposium on Experimental Al-
gorithms, SEA 2024, July 23-26, 2024, Vienna, Austria. Ed. by Leo Liberti.
Vol. 301. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 4:1–4:21.
doi: 10.4230/LIPICS.SEA.2024.4.

• The basis for Chapter 5 was first introduced in:
Jonas Charfreitag, Sven Mallach, and Petra Mutzel (2023). “Integer Programming
for the Maximum Cut Problem: A Refined Model and Implications for Branching”.
In: SIAM Conference on Applied and Computational Discrete Algorithms, ACDA
2023, Seattle, WA, USA, May 31 - June 2, 2023. Ed. by Jonathan W. Berry,
David B. Shmoys, Lenore Cowen, and Uwe Naumann. SIAM, pp. 63–74. doi:
10.1137/1.9781611977714.6.

4

https://doi.org/10.1137/1.9781611977042.5
https://doi.org/10.4230/LIPICS.SEA.2024.4
https://doi.org/10.1137/1.9781611977714.6


2. Preliminaries

In this chapter, we introduce some notation and mathematical basics that are relevant
throughout this thesis. In general, we follow the notation of Schrijver (2003) and Korte
and Vygen (2018). We also present some basic graph algorithms that will form the
building blocks of more involved techniques later.

2.1. Sets and Graphs

For two sets S and T , S ⊆ T denotes that S is a subset of T . To describe a proper subset
T (T ⊆ S and T ̸= S), we use S ⊂ T . The symmetric difference of two sets S1 and S2
will be denoted by S1 ⊕ S2. A bipartition of a set S is a pair (P1, P2), of two disjoint
sets P1 ∩ P2 = ∅ whose union is S, so P1 ∪ P2 = S. We also define a partial bipartition
P ′ = (S′

1, S′
2) of a set S, with again S′

1 ∩ S′
2 = ∅, but S′

1 ∪ S′
2 ⊂ S.

The most important combinatorial structures of this work are simple graphs. A simple
graph is a tuple (V, E), where V is a finite set containing all vertices of the graph and
E ⊆ V × V is the finite set of all edges (all connections between vertices from V ).
We differentiate between directed and undirected simple graphs. For undirected simple
graphs, E consists of unordered pairs of two vertices {u, v}, with v ∈ V ∧ u ∈ V ∧ v ̸= u
. For directed simple graphs, the edges in E are ordered pairs (u, v), with v ∈ V ∧ u ∈
V ∧ v ̸= u. The graphs just described are called simple, as, by their definition, there is
either one edge connecting two vertices u and v or none. This disallows parallel edges.
In addition, an edge may never be of the form {u, u} or (u, u). Hence, all graphs we
consider do not contain self-loops. As nonsimple graphs are of no interest in this work,
we will use graph and simple graph synonymously. We call two vertices adjacent to
each other if they share an edge. For an undirected edge e = {u, v} or a directed edge
e = (u, v) the two vertices u and v are said to be incident to the edge e.

A graph G′ = (V ′, E′) is called a subgraph of G = (V, E) if V ′ ⊆ V and E′ ⊆ E. If
E′ contains all edges of E incident to vertices of V ′, G′ is called an induced subgraph.
Our notation for an induced subgraph of a vertex set V ′ is G[V ′].

To keep the notation compact, for a graph G we often refer to the set containing a
single vertex only by the vertex itself, instead of {v} we just write v. Sometimes we also
shorten the notation for edges from e = {u, v} to uv. G− v for a vertex v is G[V \ {v}].

The neighborhood of a vertex v is denoted by N(v) and the degree of a vertex by
d(v), therefore d(v) = |N(v)|. For sets S ⊂ V we write N(S) to capture the union of
all neighborhoods of vertices in S excluding all vertices in S. The two-neighborhood
N2 of a vertex u is the set of all vertices adjacent to u or a neighbor of u: N2(u) =
N(u) ∪⋃v∈N(u) N(v) \ {u}.

5



2. Preliminaries

Most graphs we are going to deal with have a weight associated with each edge. In
these cases we call them weighted graphs, consisting of the triple G = (V, E, w), where
w is a weight function w : E → R. For compact notation, we often write we or wuv for
the weight of the edge e = {u, v} instead of w({u, v}).

An important operation on graphs we will make use of is what we call an edge con-
traction. We define the contraction of an edge e = {u, v} as replacing u and v by a new
vertex a. For every vertex b ∈ N({u, v}) an edge {a, b} is added with weight wub + wvb

if both u and v are adjacent to b and the same weight as the edge between u or v and b
otherwise.

Graph properties There are many metrics that capture the overall structure of graphs.
We present two fundamental ones for undirected graphs here. Let G = (V, E), n = |V |
and m = |E|. A relevant graph property is the average vertex degree:

∑
u∈V d(v)

n
= 2m

n

Another relevant property is the density of a simple undirected graph G = (V, E) is the
fraction of edges in G compared to all possible edges:

m
1
2 ·
(n

2
) = 2m

n2 − n

The number of edges of a graph relative to its number of vertices is often used to
discriminate between different types of graphs. Graphs with many edges, formally graphs
where |E| ∈ Ω(|V |2), are usually called dense. Graphs with |E| ∈ O(|V |) on the other
hand, are called sparse. Observe that the definition for sparse graphs implies a constant
average degree.

2.1.1. Paths, Cycles and Distances

Given a simple graph G = (V, E), a walk P is a sequence of vertices and edges of G:
v0, {v0, v1}, v1, . . . {vk, vk+1}, vk+1. If all vertices of a walk are pairwise different, we call
the walk a path. A chord of a path is an edge not part of the path, but incident to two
vertices of the path. If a path has no chord, we call it chordless. A cycle is a walk, but
the first and last vertex are the same. If all vertices apart from the start and end vertex
of a cycle are pairwise different, we call the cycle simple. Similarly to paths, a cycle in
a graph G is chordless, if there is no edge connecting two vertices in the cycle, which is
not part of the cycle itself.

The weighted length (or just length) of a path P is the sum of all edge weights of
edges in P . The hop length of a path P is the number of edges in P . If all edges of a
graph have a weight of 1, the weighted length is equal to the hop length.

6



2.2. Cuts in Graphs

2.1.2. Classes of Graphs
Many different classes of graphs have been described over the years. Relevant for this
work are the following.

• Complete graphs: We call a graph G = (V, E) a complete graph if it has a
density of one.

• Bipartite graphs: Graphs without cycles of odd length are called bipartite. Their
vertices can be partitioned into two sets in such a way that no edge connects two
vertices from the same set.

• Planar graphs: A graph is said to be planar if it admits an embedding into the
plane, without any edges crossing.

• Regular graphs: A graph in which all edges have the same degree is called
regular.

• Grid graphs: A square grid (also called a mesh or lattice) graph of dimension
d, is a graph with V = {1, . . . , n}d and vertices with Euclidean distance of 1
are adjacent to each other. If additionally each vertex whose i-th entry is a 1 is
connected to the vertex whose i-th entry is n and all other entries are the same,
we call the graph a torus graph.

• Trees and forests: Forests are graphs G = (V, E) without cycles. If additionally
|E| − 1 = |V |, a forest is called a tree.

2.2. Cuts in Graphs
Of central interest in this work are bipartitions S = (S1, S2) of the vertex set of a given
weighted graph G = (V, E, w). Depending on the context, it is sometimes more compact
to talk about the characteristic vector of a vertex bipartition z ∈ {0, 1}|V | with

zS(u) =
{

1, if u ∈ S2

0, otherwise
(2.1)

Every vertex bipartition (S1, S2) of a graph induces a cut:

Definition 2.2.1 (Cut). For a graph G = (V, E) a cut δ ⊆ E is a set of edges induced
by a vertex bipartition (S1, S2). Every edge that is part of the cut is incident to exactly
one vertex in S1 and one vertex in S2.

Depending on the context, we either represent a cut δ ⊆ E by the set of its edges or
by its characteristic vector x ∈ {0, 1}|E|, where we define the incidence vector to be

xδ(e) =
{

1, if e ∈ δ

0, otherwise
(2.2)

7
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Figure 2.1.: A graph G and a MaxCut solution. An optimal bipartition is given by
({a, c, e}, {b, d, f}). Because of the inherent symmetry of MaxCut, the
other optimal bipartition is ({b, d, f}, {a, c, e}). Edges of the optimal cut
are dashed. The optimal value is ∆(G) = 23.

Note that every vertex bipartition induces one unique cut, but, because of symmetry,
there are always two vertex bipartitions inducing the same cut. Therefore, we sometimes
simplify our wording and also call a vertex bipartition a cut when we refer to the cut
induced by the vertex bipartition. Directly following from the definition of a cut in a
graph G, one may see:

Observation 2.2.2 (Cuts and Cycles). For every graph G = (V, E) and every cut in
this graph:

• Every cut in G induces a bipartite (sub-)graph

• A cut cannot contain a cycle of odd length

• A selection of edges F ⊆ E forms a cut in a graph G, if and only if it contains an
even number of edges of each cycle of G.

Cut Problems The weight of a cut δ is the sum of all edge weights in δ: ∑e∈δ we.
The combinatorial optimization problem of finding a cut of maximum value is called
MaxCut. We define ∆(G) as the value of a maximum cut. For a given (partial)
bipartition P ′ = (S′

1, S′
2) we write ∆(G, P ′) to denote the maximum value of all cuts

in G respecting P ′. A cut respects a partial bipartition if none of its edges connects
vertices from the same set in P ′. To define the core problem of this thesis formally:

Definition 2.2.3 (MaxCut Problem).
Input: A weighted undirected graph G = (V, E, w).
Objective: Find a cut of maximum value.

Figure 2.1 illustrates the MaxCut problem in an example. The problem of finding a
cut of minimum value is called MinCut and usually has some additional constraints on
the input and solution:

Definition 2.2.4 (MinCut Problem).
Input: A weighted undirected graph G = (V, E, w), where we ≥ 0 ∀e ∈ E.
Objective: Find a nonempty cut δ with minimum value.

8
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Sometimes we are interested in cuts for which two specific vertices are in different
partitions. The literature usually calls those s-t-cuts:

Definition 2.2.5 (s-t-cut). A cut δ implied by the vertex bipartition (S1, S2) is called
an s-t-cut for two vertices s and t, if s ∈ S1 and t ∈ S2.

A data structure to compactly represent all minimum s-t-cuts of a graph was intro-
duced by Gomory and Hu (1961) and is generally called the Gomory-Hu tree. Gusfield
(1990) introduced an algorithm for the same problem, which is considered easier to
implement (Goldberg and Tsioutsiouliklis 2001), but has the same running time.

2.3. Connected Components and Vertex Separator

A connected component of a graph G is a maximal subgraph of G in which any pair of
vertices can reach each other by a walk. If a graph has exactly one connected component,
it is called a connected graph. A graph with more than k ≥ 1 vertices is called k-connected
if it is connected, and the deletion of an arbitrary set of up to k − 1 vertices does not
change this property. A k-connected component of a graph G is a maximal subgraph of G
in which every vertex can reach every other vertex via at least k vertex disjoint paths in
G. For k = 2 k-connected components are also called biconnected components or blocks.
A structure capturing the biconnected components of a graph and their relation is called
a block cut tree. Each vertex of the tree represents one biconnected component of the
graph, and two vertices share an edge if the biconnected components they represent have
a vertex of the original graph in common. The concept has been extended to 3-connected
(tri-connected) components. Hopcroft and Tarjan (1973) showed how to calculate the
tri-connected components in linear time and the tree capturing the relation between
the components was later formalized under the name of SPQR-trees by Battista and
Tamassia (1990).

Vertices whose removal increases the number of connected components of a graph
are called vertex separators or vertex-cuts, articulation-sets or separating-sets (Schrijver
2003). Vertex separators of size one are called articulation points. Formally:

Definition 2.3.1 (Vertex Separator). Let G = (V, E) be an undirected graph. A vertex
separator is a set of vertices S ⊂ V for which removing S from G (G[V \ S]) increases
the number of connected components by at least one. A vertex separator is minimal, if
and only if no proper subset S′ ⊂ S forms a vertex separator. A vertex separator of
minimum size is called a minimum vertex separator.

The definition for vertex separators can be modified for edge separators, leading to an
alternative definition of cuts:

Definition 2.3.2 (Edge Separator). Let G = (V, E) be an undirected graph. An edge
separator is a set of edges T ⊆ E for which removing T from G increases the number of
connected components by at least one.

9
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Algorithm 1: Heuristic Vertex Separator Search
Input: G = (V, E), k ≥ 1, s ≥ 1
Output: U ⊂ V

1 S ← {v}
2 T ← N(v)
3 U ← ∅
4 while |S|+ |T | ≤ s do
5 if |T | ≤ k then
6 U ← U ∪ T

7 u← arg minu∈T |N(S ∪ {u})|
8 S ← S ∪ {u}
9 T ← N(T ∪ {u})

10 return U

The literature offers two types of algorithms for finding vertex separators: One class of
algorithms finds vertex separators of a certain size. The other is concerned with finding
a minimum vertex separator.

Vertex Separator of Fixed Size Finding vertex separators of size k ∈ 1, 2 is similar
to finding the k + 1-connected components of a graph. The linear-time algorithm of
Tarjan (1972) for calculating the biconnected components of a graph via depth-first
search implies a linear time algorithm for finding 1-separators. Similarly, the linear time
algorithm for calculating the SPQR-tree of a graph, forms a basis for an algorithm for
finding separators of size two. For separators of size three, there is an algorithm based
on ear decomposition by Kanevsky and Ramachandran (1991) with runtime in O(n2).

Minimum Vertex Separators An algorithm for finding the smallest vertex separator of
a graph was presented by Even and Tarjan (1975). The algorithm employs MaxFlow as
a subroutine and when paired with Dinics MaxFlow algorithm, they show the smallest
vertex separator can be found in O(|V |1/2 · |E|2) time. Galil (1980), Esfahanian and
Hakimi (1984), and Henzinger et al. (2000) presented improvements of this technique
and Kanevsky (1993) extended the algorithm for the enumeration of all vertex separators
of minimum size. For randomized algorithms, Li et al. (2021) recently introduced the
state-of-the-art Monte Carlo algorithm that essentially runs in the time of a MaxFlow-
algorithm.

Finding Small Vertex Separators Heuristically Hüffner et al. (2010) describe a fast
heuristic for finding small vertex separators. Algorithm 1 describes our version of their
technique. Although this procedure is not guaranteed to find all vertex separators, it
has the benefit of not having requirements on the structure of the input graph and finds
vertex separators of size [1, . . . s]. This algorithm has a O(n + s3) runtime implemen-
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tation. Setting up a simple ID based lookup table, which allows to query if a vertex
is in S, T or neither in constant time, requires O(n) time. The while loop is executed
at most s times, as S increases by exactly one in each iteration. Inside the while loop,
only finding the arg min requires non-constant time. For finding the vertex that mini-
mizes the size of the neighborhood one can make use of the following equation in line 7:
N |(S ∪ {u})| = |T | − 1 + ∑

v∈N(u)((v /∈ S) ∧ (v /∈ T )). If u has more than 2 · s many
neighbors, we do not need to consider it for the arg min, as adding u to S would always
result in |S|+ |T | > s. There are at most s vertices in T , therefore finding the arg min
requires O(s2) time.

2.4. Mathematical Programming
Combinatorial optimization problems can be described in declarative programming style
as a mathematical programs, or MPs for short. A mathematical program consists of three
main parts:

• A set of (decision) variables encoding solutions
• A set of constraints, defining the set of feasible solutions
• An objective function, assigning a value to each solution

If we are interested in finding a solution with maximum value, we call the problem a
maximization problem, otherwise a minimization problem. Every minimization problem
can be transformed into a maximization problem, by multiplying the objective coeffi-
cients of all variables by −1. Therefore, when not explicitly stated otherwise, w.l.o.g. we
assume all mathematical programs in the following to be of maximization type.

Depending on the type of variables, constraints, and objective function, the literature
differentiates between types of mathematical programs. If the objective function is
linear and all constraints are linear, the program is called a linear program. Quadratic
programs allow for linear and quadratic objective functions and constraints. If variables
are required to be integer, the program is usually called an integer program and a binary
program, if all variables are required to take on binary values. When variables may be
of mixed types, the program is called a MIP (mixed integer program). Sometimes, it
allows for a more compact and / or intuitive formulation to express the objective of a
binary program in terms of boolean algebra. It is important to note that every boolean
expression on binary variables can be translated into an equivalent quadratic expression.
For example, a logical expression on two variables x∧y for example simply becomes x ·y
and a logical xor expression on two variables x⊕ y becomes x + y − 2xy.

Of most interest for this thesis are binary linear programs. One in maximization form
with n variables looks like this:

maximize c⊺ · x
s.t. Ax ≤ b

x ∈ {0, 1}n

11
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Here c is the cost vector of the objective function, A is the constraint matrix, b is the
right-hand side.

Solving Integer Linear Programs Solving integer linear programs is NP-hard in gen-
eral. But because of their broad applicability, a lot of effort has been put into the design
of algorithms for integer linear programs. Many successful ones are based on the branch-
and-cut framework. Branch and cut is an extension of branch and bound and consists of
two main components. In general branch-and-cut algorithms explore the solution space
via a search tree and try to prune as many nodes of the tree as early as possible. The
pruning is achieved through bounding: By employing primal heuristics the algorithm
searches for good feasible solutions. The value of the best solution currently is referred
to as primal bound. At each node of the tree the algorithm then calculates an upper
bound, the dual bound, on the objective value achievable in the (sub-)solution space the
node represents. If the primal bound exceeds or matches the dual bound, the current
node can be pruned. Otherwise, the algorithm splits the solution space into two and
creates a child node for each sub-problem. The process of splitting the solution space is
called branching.

This framework suits integer linear programs quite well, as for the calculation of lower
bounds the LP relaxation of the integer linear program comes in handy. By dropping
the integer constraints on variables, the resulting program becomes a linear program and
linear programs can be solved in polynomial time. The solution of the linear program is
an upper bound on the solution of the integer linear program. The cut in branch and cut
refers to a technique to further strengthen the LP relaxation. By generating additional
valid inequalities and adding them to the LP relaxation one aims for

2.5. Benchmarking Algorithms and Solvers
When benchmarking algorithms or solvers, one has to carefully choose the metrics used
for comparisons. Runtimes are often aggregated into an average, but the average is quite
susceptible to outliers. Therefore, a special version of the geometric mean, the shifted
geometric mean is often to be preferred. Already in its general form, the geometric mean
is less sensitive to large values. Furthermore, shifting all values reduces the impact of
small values.

Definition 2.5.1 (Shifted Geometric Mean). Let t1, . . . , tk ∈ R≥0 be a series of mea-
surements and s ∈ R≥0: (

n∏
i=1

(ti + s)
) 1

n

− s (2.3)

is called the shifted geometric mean, with shift s.

For large n or large values of ti, the product may grow quite fast, which can result in
numerical problems for computer programs. Hence, a practical implementation might
resort to the following equivalent formula instead:
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exp
(

1
n

n∑
i=1

log(ti + s)
)
− s (2.4)

Performance Variability and Seeding Solvers in general and especially MIP-solvers
tend to perform differently, even when seemingly neutral changes are made to the input
or the solver. The concept behind this observable noise is called performance variability
(Lodi and Tramontani 2013). To allow for a statistically sound analysis of benchmark
result, it is important to run the same experiment multiple times with different random
seeds. Random seeds or seeds for short serve two main purposes in the context of our
experiments. 1) They permute the input instance, by assigning each vertex of the input
a new ID. For presolving this can result in rules being applied in different order and
therefore lead to different results. For MIP-solving this implicitly shuffles the rows and
columns of the corresponding MIP, which may change the tie-breaking order for e.g.
the branching heuristic. 2) They define the sequence of pseudo random numbers for
all algorithmic components making use of (pseudo) randomness. As a result primal
heuristics relying on randomness might perform better / worse with different seeds.
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3. MaxCut and Related Problems

Research on MaxCut is strongly motivated by its many applications in, e.g., image
processing (Rother et al. 2007), sports tournament schedules (Elf et al. 2003) or VLSI
design (Barahona et al. 1988), and its importance for quantum annealing (Jünger et
al. 2021). In the first part of this chapter we will introduce the central optimization
problem of this thesis, MaxCut, in more detail and discuss its complexity. Next, we
investigate the relation between MaxCut and other optimization problems and high-
light the corresponding real-world applications. For all the selected problems originally
defined on graphs, the transformation to MaxCut results in the same set of vertices
and edges and only requires the modification of edge weights. Not increasing the size
of the input when transforming to MaxCut highlights the broad scope of algorithms
for solving MaxCut in theory and practice. The second to last part of this chapter is
concerned with MaxCut solvers. We discuss existing solvers along with our web-solver
first introduced in a peer-reviewed publication in 20221. Finally, we present instances
(more precisely, graphs) that solvers usually get benchmarked on and that serve as a
benchmark set for our computational experiments later.

3.1. MaxCut

Recall Definition 2.2.3: The maximum cut problem (MaxCut) takes an edge weighted
graph G = (V, E, w) as input and asks for a vertex bipartition V maximizing the value of
its implied cut. The cut is defined as the set of edges connecting vertices from different
partitions and its value is the sum over all weights of edges forming the cut.

MaxCut on a weighted input graph G = (V, E, w) can be formulated as a compact
mathematical program with one binary variable per vertex. The variable encodes the
partition of the corresponding vertex and the vector of variables is the characteristic vec-
tor of a bipartition. The objective function sums over all edges and if the two endpoints
belong to different partitions the edge contributes with its weight to the objective value.

max
∑

{i,j}∈E

(zi ⊕ zj)wij (3.1)

z ∈ {0, 1}|V | (3.2)

1Jonas Charfreitag, Michael Jünger, Sven Mallach, and Petra Mutzel (2022). “McSparse: Exact So-
lutions of Sparse Maximum Cut and Sparse Unconstrained Binary Quadratic Optimization Prob-
lems”. In: Proceedings of the Symposium on Algorithm Engineering and Experiments, ALENEX
2022, Alexandria, VA, USA, January 9-10, 2022. Ed. by Cynthia A. Phillips and Bettina Speck-
mann. SIAM, pp. 54–66. doi: 10.1137/1.9781611977042.5.
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3. MaxCut and Related Problems

Transforming the logical expression in the objective function leads to the following un-
constrained binary quadratic program for MaxCut (we will cover different binary linear
programming formulations for MaxCut in more detail later in Section 5.1):

max
∑

{i,j}∈E

(zi + zj − 2zizj) · wij (3.3)

z ∈ {0, 1}|V | (3.4)

MaxCut Complexity

In general, MaxCut is NP-hard (Karp 1972) which means that no one has yet found
an algorithm solving MaxCut in polynomial time and we do not even know if such an
algorithm exists. Furthermore, MaxCut is APX-hard (Papadimitriou and Yannakakis
1991). This implies that unless there is a polynomial-time algorithm for MaxCut no
polynomial-time approximation scheme for MaxCut exists. However, for some spe-
cial classes of graphs, polynomial-time algorithms have been developed over the years
(Hadlock 1975; Liers and Pardella 2012; Barahona 1983; Chimani et al. 2019; Galluc-
cio et al. 2001; Grötschel and Nemhauser 1984; McCormick et al. 2003). For some
additional classes of graphs FPT-algorithms are known (parameterized e.g. in crossing
number (Chimani et al. 2020), or MaxCut-value above certain bounds (Crowston et al.
2015; Madathil et al. 2020)). We want to discuss three special cases here, for which
MaxCut can be solved in polynomial time. The resulting algorithms will be part of our
experiments later.

No / Few Positive Weights Clearly, the optimal cut in a graph where all edges have
negative weight is empty and has a value of zero. Therefore, in these cases, it only takes
one loop over all edges, O(m) time, to find the optimal solution. This can be generalized
as follows: If only one edge has positive value, either this edge is part of the maximum
cut or the optimal cut is empty. Finding the cut with highest value containing the edge
u, v comes down to finding a minimum s-t-cut in a graph with positive edges only.

Perfect Cuts We call a cut in a graph perfect if it contains all edges with weight > 0
and no edges with weight < 0. Finding a perfect cut in a graph G, or proving that no
such cut exists, takes O(n + m) time. This can be achieved by a simple graph traversal,
which greedily partitions every vertex once it is explored. For graphs with positive edge
weights only, this is the same as checking whether or not the graph is bipartite.

Perfect Cardinality Cut We say that a cut δ in a graph G with n vertices has per-
fect cardinality if no cut in any graph with n vertices consists of strictly more edges.
Therefore, a perfect cardinality cut always contains ⌊n

2 ⌋ · ⌈
n
2 ⌉ many edges. Finding a

perfect cardinality cut, or proving that no such cut exists, takes O(n + m) time and
comes down to checking if G contains a K⌊ n

2 ⌋,⌈ n
2 ⌉ subgraph. The algorithm is related to

ideas presented by Arbib (1988) and we sketch it below.

16



3.2. Related Problems and Applications

1. If m < ⌊n
2 ⌋ · ⌈

n
2 ⌉, the graph can not have a K⌊ n

2 ⌋,⌈ n
2 ⌉ subgraph.

2. Else: Check for the existence of a K⌊ n
2 ⌋,⌈ n

2 ⌉ subgraph by using the following obser-
vation about the connected components of the complement graph of G, say G:
There is a K⌊ n

2 ⌋,⌈ n
2 ⌉ subgraph in G iff there is a bipartition (V1, V2) of V with

|V1| = ⌊n
2 ⌋, |V2| = ⌈n

2 ⌉ such that in G there is no edge connecting vertices from V1
to vertices in V2. We can check for the existence of such a bipartition, by solving
the SubsetSum Problem. The input is a list of the sizes of every connected com-
ponent in G. We use the fact that SubsetSum reduces to Knapsack by making
one item per given number xi, which has a weight of xi and a value of xi. Then we
can use the dynamic programming algorithm for Knapsack by Dantzig (1957),
which runs in time O(nC) where C is the capacity of the knapsack and n the num-
ber of items. As there are at most n inputs for the SubsetSum problem and our
target sum is n this yields an O(n2) algorithm to check if a graph has a K⌊ n

2 ⌋,⌈ n
2 ⌉

subgraph. As this case is only relevant when m ∈ Ω(n2), the whole algorithm runs
in O(n + m).

If for a graph G all edges have the same positive weight, finding the maximum cut is
the same as finding a cut of maximum cardinality. Therefore, the above algorithm solves
MaxCut in linear time for such graphs, if they allow for a perfect cardinality cut.

3.2. Related Problems and Applications
We now turn to a whole family of problems related to MaxCut, which all have their
own branch in the literature. All of these problems allow for a simple and straightfor-
ward transformation to MaxCut, operating on the same graph structure as the original
problem.

One such example is the MaximumBipartiteSubgraph problem (Poljak and Tuza
1993), which is equivalent to MaxCut. Finding the largest (as in number of edges)
bipartite subgraph of any graph is the same as finding a maximum cut in the same
graph, where all edges have a weight of 1 (compare Observation 2.2.2).

3.2.1. MinUncut and EdgeBipartization
Another problem related to MaxCut is MinUncut: The problem of finding a vertex
bipartition minimizing the sum over all weights of uncut edges. A corresponding binary
program can be modeled like this:

min
∑

{i,j}∈E

(1− (zi ⊕ zj))wij (3.5)

z ∈ {0, 1}|V | (3.6)

A bipartition maximizing the weight of edges part of the implied cut also minimizes the
weight of all uncut edges, as the transformation to MaxCut is straight forward and
results in the same binary program.
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MinUncut is also known as the optimization version of EdgeBipartization (Guo
et al. 2006), which asks for the minimum number of edges one has to delete to form a bi-
partite graph (the direct relation follows as for MaximumBipartiteSubgraph directly
from Observation 2.2.2).

3.2.2. Balanced Subgraph and Signed MaxCut

Signed graphs (introduced by Heider 1946; Harary 1953) are unweighted graphs, where
each edge is assigned to one of two categories (has one of two signs): = and ̸=. A graph
is called balanced if it admits a vertex bipartition, where all vertices connected by an
̸=-edge are in different partitions and all vertices incident to a =-edge are in the same
partition.

Balanced Subgraph The problem of finding the minimum number of edges that need to
be removed from a signed graph to get a balanced graph is called BalancedSubgraph
(Hüffner et al. 2010) and this number is also known as the frustration index of the graph
(Facchetti et al. 2011). The frustration index has been used, to e.g. identify coalitions
in social networks (Aref and Neal 2020). A compact formulation of the problem asks
for the vertex bipartization minimizing the number of =-edges connecting vertices in
different partitions and ̸=-edges incident to vertices in the same partition:

min
∑

{i,j}∈E=

(zi ⊕ zj) +
∑

{i,j}∈E̸=

(1− (zi ⊕ zj)) (3.7)

z ∈ {0, 1}|V | (3.8)

Transformation to MaxCut Transforming the above objective into a maximization
problem results in the following.

max
∑

{i,j}∈E=

−(zi ⊕ zj) +
∑

{i,j}∈E̸=

(zi ⊕ zj)− |E̸=| (3.9)

z ∈ {0, 1}|V | (3.10)

Therefore, BalancedSubgraph for a signed input graph G = (V, E) is equivalent to
MaxCut on a graph G′ = (V, E) with the same vertices and edges, but edge weights
we of 1 for e ∈ E̸= and −1 for every e ∈ E=. The transformation results in a constant
objective offset of −|E̸=|.

SignedMaxCut Very similar to BalancedSubgraph is the SignedMaxCut problem
(Ferizovic et al. 2020) (they mainly differ in their optimization sense). Here, the edges
of an input graph G = (V, E) are assigned to the + set (E+), or − set (E−). The
corresponding optimization problem is the following.
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max
∑

{i,j}∈E−

(zi ⊕ zj) +
∑

{i,j}∈E+

(1− (zi ⊕ zj)) (3.11)

z ∈ {0, 1}|V | (3.12)

Transformation to MaxCut A simple transformation of the objective results in:

max
∑

{i,j}∈E−

(zi ⊕ zj)−
∑

{i,j}∈E+

(zi ⊕ zj) + |E+| (3.13)

z ∈ {0, 1}|V | (3.14)

Clearly, the transformation is similar to that for BalancedSubgraph. SignedMax-
Cut for an input graph G = (V, E) is equivalent to MaxCut on a graph G′ = (V, E)
with the same vertices and edges, but edge weights we of 1 for e ∈ E− and −1 for every
e ∈ E+. The transformation results in a constant objective offset of |E+|.

3.2.3. Ising Spin Glasses
Ising spin glasses (Binder and Young 1986) come from statistical physics and their
ground states are of particular interest. They are defined on a graph G = (V, E), where
each vertex gets assigned a spin. There are two types of spin, up and down, modeled
by one variable si per vertex with si ∈ {−1, 1}. Spins connected by an edge interact
with coupling strength Jij . The objective function (without an external magnetic field),
called Hamiltonian in the physics community, is:

min H(ω) = −
∑

{i,j}∈E

Jijsisj

The explicit negative signs in the objective allow for a straightforward transformation
into a maximization problem:

max H(ω) =
∑
i,j

Jijsisj

Transformation to MaxCut Clearly, if two neighboring vertices have the same spin,
their coupling strength contributes positively to the objective and negatively if they have
different spins. We therefore can rewrite the problem as follows:

max
∑
i,j

Jij(1− (zi ⊕ zj))−
∑
i,j

Jij(zi ⊕ zj) (3.15)

z ∈ {0, 1}n (3.16)

Or more simplified:
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max
∑
i,j

−2 · Jij(zi ⊕ zj) +
∑
i,j

Jij (3.17)

z ∈ {0, 1}n (3.18)

Therefore the problem of finding the ground state of an ising spin glass on a graph
G = (V, E) with coupling strengths Jij can be transformed into MaxCut on the same
graph with edge weights wij = −2 · Jij and an offset of ∑i,j Jij . Note: When h ̸= 0 the
transformation to MaxCut still works, but the introduction of an additional vertex is
necessary. We omit the details here.

3.2.4. QUBO
The quadratic unconstrained binary optimization problem (QUBO) asks for the optimal
{0, 1} assignment to n binary variables with a quadratic objective function of the form
max xT Qx. QUBO models have been applied in many different contexts, as highlighted
in the survey by Kochenberger et al. (2014). QUBOs in standard form are sometimes
defined as minimization problems and sometimes as a maximization problem. We opt
for minimization problems here:

min
∑
ij

xixjqij (3.19)

x ∈ {0, 1}n (3.20)

MaxCut as a mathematical program with logical objective only requires an xor.
QUBO has an and-only objective:

min
∑
ij

(xi ∧ xj)qij (3.21)

x ∈ {0, 1}n (3.22)

Transformation to MaxCut Transforming a QUBO defined on n variables to a Max-
Cut problem results in a graph G with n + 1 vertices. Each vertex vi ∈ {v1, . . . vn+1} of
G is in one-to-one correspondence with the variable xi QUBO, except the special vertex
vn+1. We call this special vertex r and fix the partition of its variable to 0. We also
assume w.l.o.g. that this vertex is connected to all other vertices u with weight cir. Let
Er̄ be the set of all edges of G not incident to r. The corresponding MaxCut objective
can be written as follows:

max
∑

{i,j}∈Er̄

(zi + zj − 2zizj)wij +
∑

i∈V \r

zi · wir (3.23)

⇐⇒ max
∑

{i,j}∈Er̄

−2zizjwij +
∑

i∈V \r

zi(wir +
∑

{i,j}∈Er̄

wij) (3.24)
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Assuming w.l.o.g. the matrix Q to only have entries in the upper triangle and slightly
transforming the objective of QUBO results in:

min
∑
ij

xixjqij (3.25)

⇐⇒ min
∑
i<j

xixjqij +
∑

i

xiqii (3.26)

⇐⇒ max
∑
i<j

−xixjqij +
∑

i

−xiqii (3.27)

The objective functions 3.24 and 3.27 already look quite similar and can be trans-
formed into each other by simple substitution. Applying a one-to-one mapping of xi = zi

we directly get cij = qij/2. With this cir = −qii −
∑

i<j 1/2 · qij follows. Note: We
transformed QUBO into a maximization problem by multiplying the objective by −1,
therefore all (optimal) solutions for the original problem and the MaxCut version differ
in their sign. For the transformation in the other direction (MaxCut to QUBO) see
(Barahona et al. 1989).

3.3. State-of-the-Art MaxCut Solvers

Motivated by the many applications of MaxCut, a whole family of exact MaxCut
solvers has been developed over the years. All MaxCut solvers (sometimes tailored to
specific types of graphs) that have been developed in recent years are based on branch
and bound. We list them in order of their first public appearance:

• Biq Mac (Rendl et al. 2010) makes use of semidefinite and polyhedral relaxations
for bounding. The solver is closed source, but is available as a webservice https:
//biqmac.aau.at/.

• BiqCrunch (Krislock et al. 2017) uses semidefinite programming for the bounding
procedure. The solver is open source and available as a webservice https://
biqcrunch.lipn.univ-paris13.fr/.

• BiqBin (Gusmeroli et al. 2022) incorporates semidefinite programming relaxations
and an enhanced version of BiqMac. The solver is open source and available as a
webservice http://biqbin.eu/.

• MADAM (Hrga and Povh 2021) builds on the ideas of BiqBin. The source code is
available online https://github.com/HrgaT/MADAM.

• McSparse (Charfreitag et al. 2022) is based on integer linear programming and
branch and cut. The solver is closed source, but is available as a webservice
https://mcsparse.uni-bonn.de/.
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• QuBowl (Rehfeldt et al. 2023) is also based on branch and cut. The solver is closed
source.

Some of these solvers are featured in the benchmarks of Hans Mittelmann for QUBO
instances (https://plato.asu.edu/ftp/qubo.html) of the QPLIB (Furini et al. 2019).
Of the tested solvers and for the considered instances, QuBowl is currently the fastest.

McSparse: A new MaxCut Solver as a Webservice
Before 2022 no state-of-the-art integer linear programming MaxCut solver was available
to the general public and the research community. To fill this gap, we created

mcsparse.uni-bonn.de

The website serves as a frontend for the McSparse solver, which was introduced by us
(Charfreitag et al. 2022). Users can submit MaxCut instances in mc format or QUBO
instances in bq format (see Appendix A.1 for details on the file formats used). To
also offer researchers and practitioners interested in spin glasses a simple interface, we
also added a special version of McSparse, called McGroundstate: http://mcsparse.
uni-bonn.de/mcgroundstate. This solver accepts input in sg and gsg format (again
see Appendix A.1). Table 3.1 summarizes some statistics on the usage of our two solvers.
Its broad acceptance in the community is also underlined by its appearance in e.g. (King
et al. 2023) and (Tarabunga and Castelnovo 2024).

Solver unique e-mails instances submitted opt solution found
McSparse 24 633 283

McGroundstate 39 44 710 44 222

Table 3.1.: Usage statistics for our online solver (collected in October of 2024). A user
submission may contain multiple files and we report the total number of sub-
mitted files and the total number of files for which our solver calculated the
optimal solution before reaching the timelimit of 30 minutes. The McSparse
row reports MaxCut submissions and McGroundstate Ising spin glass sub-
missions.

3.4. MaxCut Benchmark Instances
Depending on their main application, different MaxCut solvers and algorithms have
been benchmarked on many different inputs over the years. We collected a representative
set of sparse instances that will be the focus of our experiments later. This section
describes the origin of our benchmark instances and their characteristics.

Most instances considered in the literature are part of at least one publicly available
library. For MaxCut specific instances, we are aware of libraries 1., 2., 4. and 5. of the
following list. 3. contains many graphs from a variety of different real-world applications.
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3.4. MaxCut Benchmark Instances

1. The library of the 7th DIMACS implementation challenge (2000):
http://dimacs.rutgers.edu/archive/Challenges/Seventh/Instances/

2. The Biq Mac Library (Wiegele 2007):
https://biqmac.aau.at/biqmaclib.html

3. The Network Repository (Rossi and Ahmed 2015):
https://networkrepository.com/

4. MQLib (Dunning et al. 2018):
https://github.com/MQLib/MQLib

5. The MaxCut and BQP Instance Library (Mallach 2021):
http://bqp.cs.uni-bonn.de/library/html/index.html

Instances from these libraries can be divided into two main groups: Real-world instances
and instances that were artificially generated. We describe our selection and the struc-
ture of the graphs next.

Generated Instances

Often authors not only benchmark their solver on real-world graphs but also consider
generated instances. For MaxCut three types of generated instances have been used for
benchmarking especially often and are part of the Biq Mac Library. The first type are
the so-called Erdős–Rényi random graphs (Erdős and Rényi 1960). As we will see later,
they turn out to be hard to solve to proven optimality, even for relatively few vertices
and edges. For Erdős–Rényi random graphs every edge exists with equal probability.
The graphs are parameterized in their number of vertices and edges. The other two types
of graphs are certain torus graphs and so-called ising chains, of interest in the context of
statistical physics (Liers 2004; Bonato et al. 2014). Table 3.2 and Table 3.3 summarize
the characteristics of these instances. Details of their generation are discussed below.

• t2g and t3g: All 18 torodial square grid instances from the Biq Mac Library. The
weights are drawn from a Gaussian distribution, multiplied by 105 and rounded to
the nearest integer; see (Bonato et al. 2014) for details.

• t2pm and t3pm: 13 torodial square grid instances; 10 2d instances of size 70× 70
and 3 3d instances of size 3×3×3, with all weights ∈ {−1, 1} and an equal number
of each, as described by Bonato et al. (2014). All instances were generated by us,
as instances of this type are considered regularly (Bonato et al. 2014; Nguyen and
Minoux 2021), but not publicly available.

• ising: All 30 ising chain instances from the Biq Mac Library. These instances con-
sist of fully connected graphs, where the number of vertices is in {100, 150, . . . , 300}.
To calculate the edge weights, all vertices are placed equally spaced on a cycle and
the weight of an edge depends linearly on the distance of its incident vertices and
a random value drawn from a Gaussian distribution, see (Liers 2004) for details.
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• pm1s: All 10 graphs from the Biq Mac Library. Erdös-Renyi random graphs with
|V | = 100, |E| = 495 and integer edge weights drawn at random from {−1, 1}.

• pw01: All 10 graphs from the Biq Mac Library. Same as pm1s, but edge weights
are from [−10, 10].

• w01: All 10 graphs from the Biq Mac Library. Same as pm1s, but edge weights
are from [1, 10].

Real-World Instances

Table 3.4 shows all the real-world instances that we added to our benchmarks set. We
again explain the four sets of instances in more detail.

• mannino: 4 instances stemming from a frequency assignment problem first in-
troduced in work by Bonato et al. (2014) available from the MaxCut and BQP
Instance Library (Mallach 2021).

• easy: 19 instances first considered by Ferizovic et al. (2020). All of them can be
solved fast by state-of-the-art solvers, as we will see later. All instances stem either
from the Network Repository or the MQLib.

• medium: 7 instances from the same sources and of similar structure as the easy
instances (MQLib and Network Repository). We selected these instances to fill
the gap between the easy instances and the big instances (see next bullet point);
the largest easy instance has about 6k vertices and the smallest big instance close
to 300k.

• big: 5 instances from the network repository, also considered by Ferizovic et al.
(2020) as part of their large instance set.

QUBO Instances

This work focuses on solving MaxCut on sparse graphs. Nevertheless, we include a
small and diverse subset of well-known quadratic unconstrained binary optimization
problems from the Biq Mac Library (Wiegele 2007). Table 3.5 introduces these QUBO
instances. The gka instances were originally suggested by Glover et al. (1998), the bqp
instances by Beasley (1998), and the be instances by Billionnet and Elloumi (2007). See
Section 3.2.4 for their transformation to MaxCut.
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set instance |V | |E| d d w w

pm1s pm1s_100_0 100 495 3 15 -1 1
pm1s pm1s_100_1 100 495 3 20 -1 1
pm1s pm1s_100_2 100 495 1 18 -1 1
pm1s pm1s_100_3 100 495 3 18 -1 1
pm1s pm1s_100_4 100 495 3 17 -1 1
pm1s pm1s_100_5 100 495 2 17 -1 1
pm1s pm1s_100_6 100 495 4 22 -1 1
pm1s pm1s_100_7 100 495 4 18 -1 1
pm1s pm1s_100_8 100 495 3 17 -1 1
pm1s pm1s_100_9 100 495 2 23 -1 1

pw01 pw01_100_0 100 495 3 15 1 10
pw01 pw01_100_1 100 495 3 20 1 10
pw01 pw01_100_2 100 495 1 18 1 10
pw01 pw01_100_3 100 495 3 18 1 10
pw01 pw01_100_4 100 495 3 17 1 10
pw01 pw01_100_5 100 495 2 17 1 10
pw01 pw01_100_6 100 495 4 22 1 10
pw01 pw01_100_7 100 495 4 18 1 10
pw01 pw01_100_8 100 495 3 17 1 10
pw01 pw01_100_9 100 495 2 23 1 10

w01 w01_100_0 100 466 3 15 -10 10
w01 w01_100_1 100 468 3 20 -10 10
w01 w01_100_2 100 460 1 17 -10 10
w01 w01_100_3 100 475 3 18 -10 10
w01 w01_100_4 100 464 3 17 -10 10
w01 w01_100_5 100 473 2 17 -10 10
w01 w01_100_6 100 474 4 19 -10 10
w01 w01_100_7 100 476 4 17 -10 10
w01 w01_100_8 100 473 3 17 -10 10
w01 w01_100_9 100 475 2 23 -10 10

Table 3.2.: Our benchmark instances from the Biq Mac Library with Erdös-Renyi struc-
ture. The columns d and d capture the min and max degree, w and w the
min and max edge weight respectively.
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set instance |V | |E| d d w w

t2g t2g10_5555 100 200 4 4 -294 541 290 339
t2g t2g10_6666 100 200 4 4 -239 344 238 268
t2g t2g10_7777 100 200 4 4 -238 936 301 004
t2g t2g15_5555 225 450 4 4 -294 541 290 339
t2g t2g15_6666 225 450 4 4 -240 195 268 055
t2g t2g15_7777 225 450 4 4 -247 819 375 001
t2g t2g20_5555 400 800 4 4 -294 541 308 059
t2g t2g20_6666 400 800 4 4 -271 149 315 291
t2g t2g20_7777 400 800 4 4 -288 410 375 001
t3g t3g5_5555 125 375 6 6 -294 541 290 339
t3g t3g5_6666 125 375 6 6 -240 195 268 055
t3g t3g5_7777 125 375 6 6 -238 936 375 001
t3g t3g6_5555 216 648 6 6 -294 541 308 059
t3g t3g6_6666 216 648 6 6 -265 601 271 240
t3g t3g6_7777 216 648 6 6 -288 410 375 001
t3g t3g7_5555 343 1 029 6 6 -294 541 308 059
t3g t3g7_6666 343 1 029 6 6 -271 149 315 291
t3g t3g7_7777 343 1 029 6 6 -298 103 375 001
t2pm t2pm_70_* 4 900 9 800 4 4 -1 1
t3pm t3pm_7_* 343 1 029 6 6 -1 1

ising ising25-100_5555 100 4 950 99 99 -151 693 239 752
ising ising25-100_6666 100 4 950 99 99 -212 231 170 713
ising ising25-100_7777 100 4 950 99 99 -181 596 220 276
ising ising30-100_5555 100 4 950 99 99 -153 151 242 057
ising ising30-100_6666 100 4 950 99 99 -214 271 172 355
ising ising30-100_7777 100 4 950 99 99 -183 342 222 394
ising ising25-150_5555 150 11 175 149 149 -172 274 167 990
ising ising25-150_6666 150 11 175 149 149 -219 729 176 376
ising ising25-150_7777 150 11 175 149 149 -192 807 182 372
ising ising30-150_5555 150 11 175 149 149 -173 927 169 602
ising ising30-150_6666 150 11 175 149 149 -221 838 178 068
ising ising30-150_7777 150 11 175 149 149 -194 657 184 121
ising ising25-200_5555 200 19 900 199 199 -211 364 239 764
ising ising25-200_6666 200 19 900 199 199 -231 636 190 865
ising ising25-200_7777 200 19 900 199 199 -162 372 206 896
ising ising30-200_5555 200 19 900 199 199 -213 390 242 063
ising ising30-200_6666 200 19 900 199 199 -233 857 192 695
ising ising30-200_7777 200 19 900 199 199 -163 929 208 879
ising ising25-250_5555 250 31 125 249 249 -174 893 277 406
ising ising25-250_6666 250 31 125 249 249 -193 801 194 985
ising ising25-250_7777 250 31 125 249 249 -183 293 174 714
ising ising30-250_5555 250 31 125 249 249 -176 569 280 065
ising ising30-250_6666 250 31 125 249 249 -195 658 196 854
ising ising30-250_7777 250 31 125 249 249 -185 050 176 389
ising ising25-300_5555 300 44 850 299 299 -172 591 201 189
ising ising25-300_6666 300 44 850 299 299 -244 104 192 991
ising ising25-300_7777 300 44 850 299 299 -218 021 210 331
ising ising30-300_5555 300 44 850 299 299 -174 244 203 116
ising ising30-300_6666 300 44 850 299 299 -246 443 194 841
ising ising30-300_7777 300 44 850 299 299 -220 110 212 347

Table 3.3.: Our benchmark instances from statistical physics. The columns d and d
capture the min and max degree, w and w the min and max edge weight
respectively.
*The t2pm and t3pm graphs all share the exact same metric, hence we ag-
gregated the rows.
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set instance |V | |E| d d w w

easy soc-firm-hi-tech 33 91 1 16 1 1
easy g001207 84 149 1 5 1 100 000
easy g000981 110 188 2 6 1 100 000
easy ENZYMES_g295 123 139 1 5 1 1
easy g000292 212 381 2 4 5 13
easy g000302 317 476 1 4 5 13
easy ca-netscience 379 914 1 34 1 1
easy bio-diseasome 516 1 188 1 50 1 1
easy rt-twitter-copen 761 1 029 1 37 1 1
easy g001918 777 1 239 1 4 5 13
easy imgseg_271031 900 1 027 1 518 93 839 059 285 968 046 836
easy imgseg_35058 1 274 1 806 1 587 -55 510 850 118 112 271 093 673
easy bio-yeast 1 458 1 948 1 56 1 1
easy imgseg_106025 1 565 2 629 1 902 93 981 365 136 834 528 589
easy ca-CSphd 1 882 1 740 1 46 1 1
easy ego-facebook 2 888 2 981 1 769 1 1
easy imgseg_105019 3 548 4 325 1 2 753 109 623 218 236 593 516 427
easy imgseg_374020 5 735 8 722 1 2 213 -46 639 208 299 407 957 172 555

medium web-google 1 299 2 773 1 59 1 1
medium inf-power 4 941 6 594 1 19 1 1
medium ca-Erdos992 5 094 7 515 1 61 1 1
medium imgseg_138032 12 736 23 664 1 2 204 -316 609 100 242 466 687 931
medium g000677 17 127 27 352 1 4 1 126
medium g001075 27 019 39 407 1 4 1 228 668
medium imgseg_147062 28 552 65 453 1 925 -1 567 963 186 67 209 950 110
medium g000087 38 418 71 657 2 4 1 198
medium road-luxembourg-osm 114 599 119 666 1 6 1 1

big web-Stanford 281 903 1 992 636 1 38 625 1 1
big ca-MathSciNet 332 689 820 644 1 496 1 1
big web-it-2004 509 338 7 178 413 1 469 1 1
big ca-coauthors-dblp 540 486 15 245 729 1 3 299 1 1
big ca-IMDB 896 305 3 782 447 1 1 590 1 1

mannino mannino_k48 48 1 128 47 47 13 146 841 699
mannino mannino_k487a 487 1 435 0 52 101 33 631
mannino mannino_k487b 487 5 391 2 109 5 176 030
mannino mannino_k487c 487 8 511 3 140 5 203 785

Table 3.4.: Our collection of benchmark instances of real-world structure. The columns
d and d capture the min and max degree, w and w the min and max edge
weight respectively.

set instance |V | |E| d d w w

qubo gka7a 31 241 10 30 -734 976
qubo gka2c 51 813 26 50 -892 852
qubo gka5c 81 721 11 80 -926 504
qubo gka4d 101 2100 31 100 -858 886
qubo be120_3_5 121 2248 26 120 -912 1 024
qubo be250_3 251 3279 12 250 -950 946
qubo bqp250-3 251 3313 12 250 -1 460 1 368

Table 3.5.: Our collection of QUBO benchmark instances. All values refer to the graph
resulting from the transformation of QUBO to MaxCut. The columns d
and d capture the min and max degree, w and w the min and max edge
weight respectively.
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4. Presolving

Presolving, also called preprocessing, describes the algorithmic process of simplifying
or strengthening a problem description before handing it over to a solver. Numerous
experimental studies have shown solvers benefiting significantly from carefully engineered
preprocessing, see (Gamrath et al. 2015; Achterberg et al. 2020; Gleixner et al. 2023) for
MIP-solving or (Abu-Khzam et al. 2022) and references therein for purely combinatorial
approaches. Preprocessing often consists of two different components: Data reduction
and decomposition.

Decomposition divides the problem into smaller components that can be solved in-
dependently of each other. Data reduction is the process of taking the input of an
algorithmic problem and applying so-called reduction rules with the aim of reducing the
size of the input. These reductions preserve optimal solutions and hopefully speed up
the solver.

In this chapter we review presolving techniques for the MaxCut problem from the
literature and introduce new ones. Most of the novel concepts in this chapter were first
published in a peer-reviewed paper in 20241. We start of with decomposition techniques
before moving on to data reduction rules. Afterwards, we design a full presolving frame-
work, that incorporates all presented techniques. Finally, we perform an experimental
study to evaluate the framework.

4.1. Decomposition
One relevant aspect of preprocessing is decomposition. If the input graph G for a
MaxCut problem consists of multiple connected components, each can be solved in-
dependently. Calculating an optimal bipartition on one connected component has no
side effects on others. Furthermore, as is characteristic for combinatorial optimization
problems on graphs (Hochbaum 1993), the input can also be split into its biconnected
components, which again can be solved independently, and the partial solutions can
be merged into a solution for the complete input efficiently (Grötschel and Nemhauser
1984). For MaxCut the process of calculating the optimal solution to the original
problem takes linear time and only requires the block-cut tree of the input graph. After
calculating the optimal solution for each block (biconnected component), start at any
block and traverse the tree in a DFS fashion (or BFS etc.) and build the final solution

1Jonas Charfreitag, Christine Dahn, Michael Kaibel, Philip Mayer, Petra Mutzel, and Lukas Schürmann
(2024a). “Separator Based Data Reduction for the Maximum Cut Problem”. In: 22nd International
Symposium on Experimental Algorithms, SEA 2024, July 23-26, 2024, Vienna, Austria. Ed. by
Leo Liberti. Vol. 301. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 4:1–4:21. doi:
10.4230/LIPICS.SEA.2024.4.
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by flipping the blocks solution if needed. Decomposition into (bi-)connected components
has not only been discussed in theory, but has also been used for practical MaxCut
solving in the past; see e.g. (Rehfeldt et al. 2023).

4.2. Data Reduction
In general, data reduction algorithms for MaxCut employ different data reduction rules
to shrink the input graph by reducing the number of vertices and / or edges. The overall
goal is to make the graph easier to handle for heuristics or exact solvers. The concept
of data reduction stems from research on parameterized complexity (Flum and Grohe
2006). Formally, we define:

Definition 4.2.1 (Valid Data Reduction). Let G = (V, E, w) be a weighted undirected
connected graph. A data reduction rule, which transforms G into G′ is valid, if
1) every optimal solution in G′, can be mapped to an optimal solutions in G, where the
values of the solutions differ by a constant offset β.
2) the rule can be applied in polynomial time and β can be calculated in polynomial time.

Note that the above Definition 4.2.1 does not include the process of finding candidates
for a specific data reduction rule. We call a data reduction rule feasible, if it is valid and
candidates can be found in polynomial time. We will summarize data reduction rules
from the literature in the following. They can be grouped into different categories and
we will introduce new data reduction rules for each one. The general structure of their
proofs is often quite similar and we suggest to view them through the lens of so-called
improving mappings, introduced by Shekhovtsov (2014). For simplicity, we narrow their
scope to MaxCut:

Definition 4.2.2 (Improving Mapping). Let G = (V, E, w) be a weighted input graph for
MaxCut. A mapping f : {0, 1}|V | → {0, 1}|V | from MaxCut solutions (bipartitions)
to MaxCut solutions for G is called improving if for every solution s it holds, that
∆(G, s) ≤ ∆(G, f(s)).

As Lange et al. (2019) describe, there are two types of trivial improving mappings for
MaxCut: The identity that maps any solution to itself, with the same objective value,
and the optimal mapping, which maps any solution to the optimal solution. The first has
no benefit at all; the second is in general NP-hard to compute. The interesting mappings
fall between these two and form the basis for data reduction rules; the existence of certain
improving mappings allows for the removal of vertices or edges in the input graph.

One example of this is, if we find an improving mapping that always assigns two
vertices (say u and v) to the same partition. In this case, we can limit the search
space for finding an optimal MaxCut solution for the input graph G, by discarding all
solutions with u and v in different partitions. This shrinkage of the search space can be
encoded in G by transforming it into G′ via the contraction of the two vertices u and
v. Also, the existence of such an improving mapping implies, that there is at least one
optimal solution in G with u and v in the same partition.
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Proposition 4.2.3. Let G = (V, E, w) be the input of a MaxCut problem. If for
two vertices u, v ∈ V we can prove the existence of an improving mapping that always
assigns u and v to the same partition, the contraction of u and v is a valid data reduction,
with β = 0.

Proof. The data reduction is valid, because
1) Every solution in G′ can be mapped to a solution in G with the exact same solution
value and there is at least one optimal solution in G′ with value ∆(G).
2) The contraction can be performed in polynomial time and β is always 0.

If an optimal solution with u and v in different partitions is guaranteed to exist, we
need an intermediate step to make use of this in a data reduction rule.

Proposition 4.2.4. Let G be an undirected weighted graph G = (V, E, w) and δ′ ⊆ E
some cut in G. G′ = (V, E, w′) is the graph resulting from G by negating the weights of
all edges in δ′. The transformation from G to G′ is valid with offset β = ∑

e∈δ′ we.

Proof. G and G′ only differ in some edge weights and any cut in G is a cut in G′ and
vice versa. The symmetric difference between all cuts in G and δ′ is a bijection from
cuts in G to cuts in G′. This bijection maps any cut with value c in G to one in G′ with
the exact same value (because of the definition of β). Therefore, ∆(G) = ∆(G′) + β and
the transformation is valid.

By combining Proposition 4.2.4 and Proposition 4.2.3 we get a general reduction
technique when an improving mapping with u and v in different partitions exists:

Proposition 4.2.5. Let G = (V, E, w) be the input of a MaxCut problem. If for
two vertices u, v ∈ V we can prove the existence of an improving mapping that always
assigns u and v to different partitions, negating all edge weights of edges incident to u
and contracting u and v afterward is a valid data reduction with β = ∑

e∈δ(u) we.

Types of MaxCut Data Reduction We categorize MaxCut valid data reduction rules
based on the type of graph structure they are working with. Some rules require two
vertices to have similar neighborhoods, some rules consider certain edge separators of
the input and some work on vertex separators.

Additionally, we call a data reduction rule weight stable, if applying the rule does
not introduce new weights. This characteristic can be useful for the interplay between
certain rules. Some rules require certain subgraphs to only have edges with the same
weight, therefore it might be beneficial to apply these rules first to a graph where all
edges have the same weight, before applying other rules that introduce new weights.

4.2.1. Similar Neighborhood Vertices
Vertices with similar neighborhoods give rise to the first category of data reduction rules
that we are introducing. The first rule for MaxCut of this type was presented by
Rehfeldt et al. (2023) and is discussed next.
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Proposition 4.2.6 (Similar Vertices). Let G = (V, E, w). If for two vertices u, v ∈ V
N(u)\{v} = N(v)\{u} there exists an α ≥ 1 or α ≤ −1 with wux = αwvx∀x ∈ N(u)\{v},
then, if

• α > 0 and ({u, v} /∈ E or wuv ≤ 0), there is at least one optimal cut with u and v
in the same partition

• α < 0 and ({u, v} /∈ E or wuv ≥ 0), there is at least one optimal cut with u and v
in different partitions

Proof. Consider the case for α > 0 (for α < 0 the proof is symmetric). If {u, v} ∈ δ for
some cut δ in G let w.l.o.g. ∑e∈δ∩N(u)\{u,v} we ≥ α

∑
e∈δ∩N(v)\{u,v} we. The assignment

of v to the same partition as u is improving, because wuv ≤ 0 and wux = αwvx∀x ∈
N(u) \ {v}.

Next we suggest a new rule, also based on two vertices with a similar neighborhood.
The rule is applicable in cases not covered by Proposition 4.2.6 of Rehfeldt et al. (2023).

Proposition 4.2.7 (Twin Vertices). Let G = (V, E, w). If for an edge e = {u, v} ∈ E
all of the following conditions hold

• N(u) ∪ {u} = N(v) ∪ {v}

• 0 ≤ wux = wvx ∀x ∈ N(u) \ {v}

• wuv ≤ wvx ∀x ∈ N(u) \ {v}

• d(u) mod 2 = 0

there is an optimal solution with u and v in the same partition.

Proof. All cases with wuv ≤ 0 are already covered by Proposition 4.2.6. We show that for
the remaining cases there also exists an improving mapping, which always assigns u and
v to the same partition. If {u, v} ∈ δ let w.l.o.g. u be the vertex, whose incident edges
contribute more (or equal) to the cuts value ∑e∈δ∩N(u) we ≥

∑
e∈δ∩N(v) we. Because

|N(u) \ v| = |N(v) \ u| is odd, the cut value contribution from u is at least wuv higher
than of v. Therefore assigning v to the same partition as u is always (not necessarily
strictly) improving.

For finding candidates for Proposition 4.2.7, Rehfeldt et al. (2023) suggest the same
hashing techniques that MIP-solvers employ to find parallel rows (Achterberg et al.
2020). Clearly, the same applies for 4.2.6. To possibly achieve better performance in
practice, the cases for Proposition 4.2.7, in which the two vertices u and v are adjacent,
can also be covered without hashing, by looping over all edges once. Figure 4.1 shows
two graphs on which the rules for vertices with similar neighborhood can be applied.
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Figure 4.1.: Example structures, where the data reduction rules for similar vertices (left)
and twin vertices (right) can be applied. In both cases an optimal solution
with u and v in the same partition is guaranteed to exist.

4.2.2. Edge Separator based Data Reduction

Some data reduction rules for MaxCut (at least implicitly) work on edges that form
an edge separator (which is the same as a cut) in G. The following rule of Lange et al.
(2019) is of this type:

Proposition 4.2.8 (Dominating Edge).
Let G = (V, E, w). If for any edge e = {u, v} ∈ E and a subset U ⊂ V with e ∈ δ(U)
and u ∈ U the inequality

|we| ≥
∑

e′∈δ(U)\{e}
|we′ | (4.1)

holds, then there exists a cut δ̂ with maximum value with e /∈ δ̂ if we ≤ 0 and e ∈ δ̂ if
we ≥ 0.

Proof. Consider the case of we < 0 and let δ′ be any cut with e ∈ δ′. Assigning all
vertices in U to the opposite partition they are currently assigned to worsens the cuts
value by at most ∑e′∈δ(U)\{e} |we′ |−we. If inequality 4.1 holds, this implies an improving
mapping. For when we ≥ 0 and e /∈ δ′ the construction of an improving mapping follows
analogously.

The fastest way to find candidates for this rule is to only consider the cases where
|U | = 1. This leads to an O(m) algorithm for finding all candidates consisting of a single
vertex. To efficiently consider any set U , Gomory-Hu trees (Gomory and Hu 1961) can
be used, although this is considerably slower, as their construction requires |V |−1 many
MaxFlow computations.

Lange et al. (2019) also present a data reduction rule for triangles. Their rule has two
natural extensions. The first one was found by Rehfeldt et al. (2023) and the second
was not covered in the literature before. This results in three data reduction rules for
triangles, which we summarize in the following. Figure 4.2 visualizes the two types of
rules.

33



4. Presolving

Proposition 4.2.9 (Triangles).
Let the edges {a, b}, {a, c} and {b, c} form a triangle in G. Additionally, let U1 ⊂ V
such that {{a, b}, {a, c}} ⊆ δ(U1) and U2 ⊂ V such that {{a, b}, {b, c}} ⊆ δ(U2).

1) If the two inequalities (introduced by Lange et al. 2019)

−wab − wac ≥
∑

e′∈δ(U1)\{{a,b},{a,c}}
|we′ |

−wab − wbc ≥
∑

e′∈δ(U2)\{{a,b},{b,c}}
|we′ |

hold, there exists a cut δ̂ with maximum value with {a, b} /∈ δ̂.
2) If the two inequalities (introduced by Rehfeldt et al. 2023)

wab + wac ≥
∑

e′∈δ(U1)\{{a,b},{a,c}}
|we′ |

wab − wbc ≥
∑

e′∈δ(U2)\{{a,b},{b,c}}
|we′ |

hold, there exists a cut δ̂ with maximum value with {a, b} ∈ δ̂.
3) If the two inequalities (new)

−wab + wac ≥
∑

e′∈δ(U1)\{{a,b},{a,c}}
|we′ |

−wab + wbc ≥
∑

e′∈δ(U2)\{{a,b},{b,c}}
|we′ |

hold, there exists a cut δ̂ with maximum value with {a, b} /∈ δ̂.

We sketch a proof for 1) (see Lange et al. 2019 for details) and show how 2) and 3) can
be deduced from 1). For 2) Rehfeldt et al. (2023) already present a proof, but we suggest
a more compact one based on Proposition 4.2.4, which also shows the correctness of our
new implication, 3).

Proof. For proving 1): As {a, b, c} forms a triangle in G, if {a, b} ∈ δ then either {a, c} ∈ δ
or {b, c} ∈ δ. If both inequalities hold, there is always an improving mapping which
assigns a and b to the same partition.

Now 2) and 3) follow: If we apply the technique from Proposition 4.2.4 to G, by
choosing δ∗ = δ(u) for the transformation, resulting in G′ and 1) holds for G′, we see that
there is maximum cut δ̂′ in G′ with {a, b} /∈ δ̂′ and therefore, because of Proposition 4.2.4,
a maximum cut δ̂ in G with {a, b} ∈ δ̂. But for 1) to hold in G′, 2) needs to hold in G
proving the correctness of 2). Following the same pattern, 3) can be derived from 2).
Just choose δ∗ = δ(v) for the transformation from G′ to G′′ and 2) holds in G′′ iff 3)
holds in G.
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Figure 4.2.: Example structures, where the data reduction rules for dominating edges
(left) and triangles (right) can be applied. In both cases an optimal solution
with a and b in the same partition exists.

4.2.3. Vertex Separator based Data Reduction

Vertex separators (see Definition 2.3.1) have been used for data reduction in the past,
by e.g. Polzin and Vahdati Daneshmand (2006) for the SteinerTree problem or by
Hüffner et al. (2010) for the BalancedSubgraph problem. For MaxCut on the other
hand, they have, to the best of our knowledge, not been exploited in practice so far.
Still, they implicitly appear in some algorithmic proofs (Barahona 1983; Chimani et al.
2019) and existing rules from the literature can be generalized through the lens of vertex
separators. We harmonize the results from the literature, derive a practical framework
for data reduction based on vertex separators and introduce new rules based on the
framework. All rules we consider in this section have similar structures, captured by the
following definition.

Definition 4.2.10 (Data reduction rule type Separator).
For a vertex separator S in G = (V, E, w) separating H ⊂ V from the rest of the graph,
a rule is of type Separator, if it reduces G to G′ = G[V \H], effectively deleting all
vertices in H from G. All edges keep their original weights, apart from those in G′[S].

What differentiates the rules of this type from the rules of the previous two sections
is that they not only allow for the contraction of two vertices, but remove full sets of
vertices (see Figure 4.3 for a visualization). Clearly, a rule of this type is only valid if
no information relevant for finding optimal solutions is lost. This fact can be captured
in a compact condition.

Theorem 4.2.11. Let S be a vertex separator in G = (V, E, w) separating H ⊂ V from
the rest of the graph, and PS be the set of all possible bipartitions of vertices in S. Then
a data reduction rule of type Separator is valid for G if the system of equations∑

e∈δG[S](P )
(w(e) + γe) + β = ∆(G[H ∪ S], P ) ∀P ∈ PS

has a feasible solution for the variables γe and β.
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Figure 4.3.: Example of a reduction rule of type vertex separator. Left: Original graph
G with vertex separator S = {a, b, c} separating H from the rest of the
graph. Right: The resulting reduced graph G′ with adapted edge weights,
i.e., H has been deleted from the remaining graph clearly reducing the size
of the instance.

Proof. Let G′ = G[V \ H] and all edges in G′[S] get their weight updated by adding
the corresponding γe. This transformation fulfills Definition 4.2.1 and is a valid data
reduction as:
1) For any bipartition (U ′, Ū ′) in G′ with MaxCut value c′ we can find a bipartition
(U, Ū) in G with a cut value of c ≥ c′ + β, because by construction of G′ combining
(U ′, Ū ′) with the optimal partitioning of the vertices in V (G) \ V (G′) we get one for G
with a cut value of exactly c′ + β.
2) For any bipartition P = (U, Ū) in G with MaxCut value c we can make sure we can
map it to a bipartition (U ′, Ū ′) in G′ with a cut value c′ +β ≥ c, as again by construction
of G′ the bipartition resulting from removing all vertices from P which are not in G′

results in a bipartition whose cut value in G′ is at least as high as the one of P in G.

Note that in the following we will assume the graph G[S] to always be fully connected.
This is a valid assumption, as one can always add missing edges with a weight of zero.

Small Vertex Separators Separators of size one allow to decompose the graph into
independent components (Section 4.1). Other small vertex separators, more specifically
those of size two and three, give rise to data reduction rules through Theorem 4.2.11, as
we will show next.
Proposition 4.2.12. Let G = (V, E, w) be a graph and S = {a, b} a 2-separator in G
separating H ⊂ V from the rest of the graph. For more compact notation define H̃ :=
H∪S. Then the data reduction rule of type Separator is valid with the following values:
β = ∆(G[H̃], ({a, b}, ∅)) and γab = ∆(G[H̃], ({a}, {b}))−∆(G[H̃], ({a, b}, ∅))− wab.
Proof. There are two possible bipartitions for vertices in S and G[S] contains one edge
(e = {a, b}). Therefore the equation system of Theorem 4.2.11 gives two equations and
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two variables.

β = ∆(G[H̃], ({a, b} : ∅)) wab + γab + β = ∆(G[H̃], ({a} : {b}))

Solving the system for β and γab yields the stated equations.

This general concept for vertex separators of size 2 covers some existing rules, like rule
2 and 6 of Ferizovic et al. (2020) as special cases. Their rule 6 operates on vertices with
degree two and results in exactly the same reduction as the rule for dominating edges
4.2.8 for vertices with two neighbors. We restate their rule 2, as it is weight stable as
opposed to the general rule for 2-separators (4.2.12).

Proposition 4.2.13 (3-paths). Let G = (V, E, w) be a graph where all edges have a
weight of 1 and the edges {v1, v2}, {v2, v3} and {v3, v4} form a path of length three and
{v1, v4} /∈ E and d(v2) = d(v3) = 2. Creating G′ by deleting v2 and v3 from G, and
adding the edge {v1, v4} is a valid MaxCut data reduction and ∆(G) = ∆(G′) + 2

Proof. As d(v2) = 2 the rule for 2-separators is applicable. In the resulting graph d(v3)
is still 2 and the 2-separator rule is applicable again, leading to the described reduction
with β = 2.

Vertex separators of size 3 also allow for a generalized data reduction rule:

Proposition 4.2.14. Let G = (V, E) be a graph and S = {a, b, c} a 3-separator in G
separating H from the rest of the graph. For more compact notation define H̃ := H ∪S.
Then the data reduction rule of type Separator is valid with the following constant
offset β and values for γ:

c0 :=∆(G[H̃], ({a, b, c}, ∅)) β = c0

c1 :=∆(G[H̃], ({a, b}, {c})) γac = 1/2 · (c1 + c3 − c0 − c2)− wac

c2 :=∆(G[H̃], ({a, c}, {b})) γab = 1/2 · (c2 + c3 − c0 − c1)− wab

c3 :=∆(G[H̃], ({b, c}, {a})) γbc = 1/2 · (c1 + c2 − c0 − c3)− wbc

Proof. There are four possible bipartitions for vertices in S and G[S] contains three
edges. Therefore, the equation system of Theorem 4.2.11 gives four equations and four
variables. The constants c0, . . . , c|P|, introduced for better readability, represent the
right-hand sides of the equation system (that is, the optimal MaxCut values for the
corresponding partial bipartition). Solving this system for the constant offset β and the
edge weights gives the presented equations.

Vertex Separators of Arbitrary Size For vertex separators larger than three, the above
techniques only work in specific cases, since the number of potential bipartitions exceeds
the number of possible edges in G[S], resulting in an overdetermined system of equations.
For a 4-separator we already get eight partitions (resulting in eight equations), but only
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Figure 4.4.: Example of a same neighborhood clique reduction. Left: The original graph
(all edges have a weight of one). The vertices {e, f, g} form a clique and
have all neighbors outside of the clique in common. Right: The graph after
applying the data reduction rule.

seven variables (six for edges and β). Nevertheless for graphs with unit weights special
rules have been described, for which their proof can be simplified through the lens of
our framework and a new and more general one can be deduced. Ferizovic et al. (2020)
present a number of data reduction rules based on cliques, namely their rules 1, 3, 4, 5
and 7. We discuss these rules in a moment, but we start with our generalization of their
rules 1, 5, and 7. The rule operates on special cliques, as illustrated in Figure 4.4.

Proposition 4.2.15 (Same Neighborhood Clique). Let G = (V, E, w). If for a clique
C ⊂ V in G, for which we = 1 for all edges e incident to at least one vertex u in C,
|C| + 1 ≥ |N(C)| ≥ 1 and N(C) = N(u) \ C ∀u ∈ C, removing vertices in C from the
graph and updating weights of edges between vertices in N(C) is a valid data reduction
of type Separator. The constant offset is β = ⌊(|N(C)|+ |C|)/2⌋ · ⌈(|N(C)|+ |C|)/2⌉.
All weights of edges in G[N(C)] get reduced by 1.

Proof. The vertex set S := N(C) forms a vertex separator of G with C on one side.
Recall, we assume w.l.o.g. G[S] to be fully connected. Consider the equations from
Theorem 4.2.11: Subtracting the weight of edges contributing to the value of the cut
from both sides, leaves ∑δG[S](P )(γe) + β as the left-hand side. The resulting right-hand
side ∆(G[S ∪ C], P ) −∑δG[S](P )(we) can be interpreted as the value of the maximum
cut in G′: ∆(G′, P ), where G′ is G[S ∪ C], except all edges incident to two vertices in
S have a weight of 0. Because of |S| ≤ |C| + 1, no matter how vertices in G′[S] get
partitioned, ∆(G′, P ) can always be maximized by partitioning vertices in S ∪ C into
two partitions, whose sizes differ by at most one. Therefore, for the partial bipartition
P = (S, ∅), the value of ∆(G′, P ) is β = ⌊(|S|+ |C|)/2⌋ · ⌈(|S|+ |C|)/2⌉. For general P
this value has to be reduced by the number of edges cut in G′[S], as they have a weight
of 0 in G′: β−|δG[S](P )|. With γe = −1 this is equal to the left-hand side of the equation
(β +∑

δG[S](P )(−1)).
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Candidates can be found fast exactly as described by Ferizovic et al. (2020) for their
rules 5 and 7.

If G[N(C)] is fully connected with weight 1 edges, then G[C ∪N(C)] forms a clique
and thus Proposition 4.2.15 leads to the same reduction as rule 1 of Ferizovic et al.
(2020). Their rule 1 is always weight stable, therefore we restate it here.

Proposition 4.2.16 (Cliques). Let G = (V, E), U ⊆ V form a clique in G and U ′ ⊆ U
be the set of ”inner” vertices a ∈ U ′, for which N(a) ⊆ U . If |U ′| ≥ ⌊|U |/2⌋, creating
G′ by removing all vertices in U ′ from G and all edges between vertices in U \ U ′ is a
valid MaxCut data reduction with β = ⌊|U |/2⌋ ∗ ⌈|U |/2⌉.

Rule 5 and 7 of Ferizovic et al. (2020) have the same type of clique as their nucleus as
our rule 4.2.15, but only allow the removal of vertices from C until |C| = |N(C)|. Still,
these rules are useful special cases, as they are weight stable:

Proposition 4.2.17 (Clique+, rule 5 of Ferizovic et al. (2020)). Let G = (V, E, w). If
for a clique C in a graph G, |C| = |N(C)| ≥ 1 and N(C) = N(u) \C ∀u ∈ C deleting a
vertex from C is a valid data reduction with β = |C|.

Proposition 4.2.18 (Clique++, rule 7 of Ferizovic et al. (2020)). Let G = (V, E, w).
If for a clique C in a graph G, |C| > max{|N(C)|, 1} and N(C) = N(u) \ C ∀u ∈ C
deleting two vertices from C is a valid data reduction with β = |N(C)− 1|.

4.2.4. Additional Rules
Ferizovic et al. (2020) introduce two additional rules (their rules 3 and 4), which we have
not yet covered. They do not directly fit into our framework, but can enable other rules
in our algorithm, and hence we consider them now. The two rules are the reverse of
each other and are concerned with the so-called near cliques. A near clique in a graph
G = (V, E) is a set C ⊆ V of vertices for which the induced subgraph G[C] is only
missing one edge. For a near clique C let Cint ⊆ C be the set of vertices that do not
have neighbors outside of C. Rule 3 of Ferizovic et al. (2020) states:

Proposition 4.2.19 (Near Clique+). Let G = (V, E, w) and we = 1 for all edges. In
addition, let C ⊆ V form a near clique for which the missing edge e = {u, v} connects
two vertices, which only have neighbors in C. Then adding the edge {u, v} does not
change the MaxCut value of G if |C| is odd or |Cint| > 2.

This rule can be reversed, leading to rule 4 of Ferizovic et al. (2020):

Proposition 4.2.20 (Near Clique-). Let G = (V, E, w) and we = 1 for all edges. In
addition, let C ⊆ V form a clique. Then removing an edge {u, v} between two internal
vertices does not change the MaxCut value of G if |C| is odd or |Cint| > 2.

In our algorithm, we apply rule 4.2.19 if it enables the application of rule 4.2.16.
Because rule 4.2.20 can enable rule proposition 4.2.6, we apply it to cliques for which
rule 4.2.16 is not applicable.
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Algorithm 2: Data Reduction Algorithm
Input: G = (V, E, w)
Output: G′

1 G′ ← copy(G)
2 redFound← true // reduction found
3 while redFound do
4 while redFound do
5 while redFound do
6 redFound← fastReductions(G′)
7 redFound← neighborhoodHashReductions(G′)
8 redFound← vertexSeparatorReductions(G′)
9 return G′

4.3. Presolving Algorithm
Applying the data reduction rules we described on their own is more or less straight
forward, but when they are combined into an algorithm together, some engineering
decisions have to be made. We discuss our complete presolving algorithm, which employs
the decomposition from Section 4.1 and all state-of-the-art MaxCut data reduction
techniques from Section 4.2. Our presolving algorithm consists of the typical two phases:
Decomposition and data reduction.

Decomposition In the decomposition phase, the input graph is divided into its con-
nected and biconnected components, which can be solved independently. This step can
be implemented in linear time, O(|V | + |E|) to be specific. For each of the resulting
(bi)connected components, we first check if they allow for polynomial-time solving. To
this end, we apply the algorithms from Section 3.1. If none of these algorithms are
applicable, the core data reduction algorithm is invoked.

Data Reduction Sophisticated presolvers operate in rounds and apply data reduction
rules of different complexity in each round (Achterberg et al. 2020; Gleixner et al. 2023).
For the commercial solver Gurobi for example, this strategy is realized by three nested
loops, as Achterberg et al. (2020) report. In the inner most loop only the fastest re-
ductions are performed and if only a few new ones are found, the middle loop performs
more expensive checks. In the same manner, expensive reductions in the outermost loop
are performed if neither of the two other steps finds sufficiently many reductions. Our
presolving algorithm for MaxCut operates in a similar way, but as we observed that our
implementation performed well in general, we exhaustively search for applicable rules in
each step. We stop the algorithm if no new reductions have been found by any of the
rules we implemented. This avoids the need for fine-tuning the algorithm for good defi-
nitions of "sufficiently many" reductions. Algorithm 2 sketches our core data reduction
algorithm. Each while-loop has one or more rules assigned to it.
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Most of the rules that we implemented are part of the innermost loop. For all of
them, it is enough to explore the neighborhood or the two-neighborhood of a vertex,
which tends to be small for sparse graphs. To make this part of our algorithm especially
fast, we keep track of which rules have been checked for which vertex. As soon as the
neighborhood of a vertex changes, the relevant check labels get reset. Additionally, we
define an order over all rules and maintain all vertices in a priority queue. The labeling
and the priority queue allow us to always check the fastest of the fast rules first in an
efficient and exhaustive manner. As long as all edges have a weight of 1, we order the
rules from fast to slow as follows: Degree zero, degree one, three path, clique, separated
clique. Once all weight-stable rules have been applied exhaustively or the graph has
edges with weights ̸= 1, we apply all rules in this order: Degree zero, degree one, degree
two, dominating edge, similar neighborhood with edge and twins, triangles, degree three.
The degree three rule is used last, because it is the only rule that may add new edges
to the graph, which we try to avoid as long as possible.

The second loop hashes vertices based on their neighborhood and applies the reduction
for similar non-adjacent vertices (Proposition 4.2.6).

The outermost performs the data reductions based on small vertex separators. Here we
originally experimented with the an implementation of the SPQR algorithm for finding
vertex separators of size two. The implementation is part of the OGDF (Chimani et
al. 2013) and the only publicly available one we are aware of (note: implementing the
algorithm from scratch is quite involved (Gutwenger and Mutzel 2000)). After some
testing, we settled for using the heuristic Algorithm 1 for finding small vertex separators,
because 1) the OGDF implementation is recursive and allocates excessive amount of
stack memory, requiring potentially non-portable configurations of the operating system
to work, and 2) the heuristic finds separators of size two and three simultaneously. For
vertex separators of size three, we are also not aware of any specialized implementations,
and implementations of exact techniques would again be either quite involved or way
slower (see Section 2.3).

We limit the search to vertex separators for which the graph H of Theorem 4.2.11
has at most a constant number of vertices. This allows for fast solving of the two (for
vertex separators of size two) or four (for vertex separators of size three) MaxCut
subproblems one has to solve for Proposition 4.2.12 and Proposition 4.2.14 respectively.
For easy replicability, we implemented a simple enumeration-based solver that solves
MaxCut problems on graphs with 21 or less vertices clearly below 1 second.

Planarity Preserving Some real-world instances for MaxCut are planar graphs. These
can be tackled by specialized MaxCut solvers, with polynomial worst-case running time.
In general, these algorithms are out of scope for this thesis, but we still want to highlight
a property of the above presolving algorithm useful in this context.

Proposition 4.3.1. Let G = (V, E, w) be a planar input graph to a MaxCut problem.
Applying our data reduction framework to G results in a planar graph G′.

Proof. Applying data reduction that deletes vertices and / or edges from a planar graph
does never result in a non-planar graph. Therefore, we only need to argue why the rules
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that add edges and / or contract vertices do not interfere with planarity. Contracting
vertices that have the same neighborhood is planarity preserving. Also, contracting
vertices connected by an edge never results in a non-planar graph. Therefore, the rules for
vertices with similar neighborhood and all edge separator based rules preserve planarity.
The general rules for vertex separators of size 2 and 3 also preserve planarity, because
when edges have to be added, the removal of the separated component "makes room"
in a planar embedding, which is sufficient for the planar embedding of potentially new
edges, connecting vertices of the vertex separator. Finally, no planar graph may contain
a K3,3 (minor) and therefore the same arguments works for all clique based rules.

4.4. Experimental Evaluation

In the following sections, we evaluate the different preprocessing techniques and compare
their ability to reduce the size of the input graph. We also investigate the impact the
presolving has on the solving time of exact and heuristic solvers.

4.4.1. Implementation Details and Setup

We first describe the relevant details of our experimental setup.

Hardware All experiments were carried out on servers equipped with an AMD EPYC
7543P 32-Core CPU2, 256GB of RAM and have Ubuntu 22.04 installed. Our code is
written in C++20 and compiled with GCC 11.4. All code is free and open source software,
publicly available at github3 and archived by Zenodo (Charfreitag et al. 2024b).

Solver To analyze the impact of our new preprocessing algorithm on exact solvers, we
use Gurobi (Gurobi Optimization, LLC 2024) and sms (the solver introduced in detail
in Chapter 5). We use Gurobi 11.0.3 for the experiments, as Gurobi also served as
the baseline for QuBowl (Rehfeldt et al. 2023) and is publicly available for academia
(QuBowl itself is not publicly available). To allow Gurobi to solve MaxCut right
away, we convert the problem to an unconstrained binary quadratic problem (compare
Section 3.2.4). Both solvers were restricted to one thread only and we set the MIP-Gap
to 10−6. To make the comparison more interesting, we also give Gurobi a hint on the
reducibility of the instances, by setting the presolve parameter to aggressive.

For the analysis of the impact on a state-of-the-art MaxCut heuristic, we opted for
the heuristic of Burer et al. (2002) implemented by Dunning et al. (2018)4. We choose
the algorithm of Burer et al. (2002), as it is also the primal heuristic of choice for the
state-of-the-art MaxCut solver QuBowl (Rehfeldt et al. 2023).

2https://www.amd.com/en/products/processors/server/epyc/7003-series/amd-epyc-7543p.html
3https://github.com/CharJon/SMS
4We added some quality of life changes to their publicly available code: https://github.com/CharJon/

MQLib
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V [%] E [%] pr [s]

set sota new sota new sota new

easy 9.23 4.53 12.90 7.35 0.01 0.02
medium 19.37 8.33 27.01 13.89 0.07 0.18
big 37.81 29.52 53.32 46.55 26.45 39.26
mannino 63.16 61.33 68.73 67.03 0.00 0.00

pm1s 99.60 99.00 99.94 99.92 0.00 0.00
pw01 98.90 98.60 99.78 99.78 0.00 0.00
w01 99.00 98.60 99.79 99.79 0.00 0.00
t2g 62.14 55.43 72.33 66.75 0.00 0.00
t2pm 100.00 100.00 100.00 100.00 0.05 0.06
t3g 94.90 94.76 98.15 98.06 0.00 0.00
t3pm 100.00 100.00 100.00 100.00 0.00 0.00
ising 2.84 2.78 0.38 0.40 0.01 0.02

Table 4.1.: Average effectiveness of our implementation of the state-of-the-art (sota) pre-
processing of Rehfeldt et al. 2023 and our algorithm (new). Percentage of
remaining vertices (|V |%) and edges (|E|%), as well as average runtime in
seconds (pr [s]).

Seeding To compensate for performance variability (see Section 2.5), we run each ex-
periment five times with different seeds and treat each seed-instance pair as a separate
data point.

4.4.2. Effectiveness

We first highlight the effectiveness of our new techniques. To this end, we compare it
with our implementation of the state-of-the-art MaxCut presolving of Rehfeldt et al.
(2023). The performance of a data reduction framework not only depends on the rules
in use, but also on the order of their application, the way candidates are searched for
and on whether or not the search is done exhaustively. This is why we opted for our
own implementation of the state-of-the-art as a baseline.

Table 4.1 highlights the overall effectiveness of our framework compared with our
implementation of the state of the art. As can be seen, our algorithm improves over the
state of the art on nearly all instance sets. Especially for the sets containing real-world
graphs, our preprocessing often removes significantly more vertices and edges than the
state-of-the-art algorithm. For the "easy" set, we see that 13 instances get solved to
optimality by presolving alone, including all 5 image segmentation instances. Instances
from the "medium" set have on average close to 50 % less vertices, when our preprocessing
is applied instead of the state-of-the-art algorithm. On most of the generated instances
(see the lower half of Table 4.1) the difference between our algorithm and the state of
the art is small. A notable exception here is the t2g set. Originally, all graphs in this
set are 4-regular, but we observed edge contractions resulting in vertices with degree
three. As a result, our algorithm applied the rule for three separators, which explains
the removal of about 8 % more edges.

We also see that our presolving is quite fast in general. Only for instances from the
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"big" set, preprocessing takes more than 0.2 s and applying our additional rules does not
influence the runtimes most of the time. These positive trends give motivation to further
analyze the performance of our presolving algorithm. Specifically, we want to answer
the following two questions next.

• Does the higher effectiveness of our framework also help exact or heuristic solvers
to be faster / calculate better solutions in less time?

• How much does each of our new techniques contribute to the overall performance?

We will investigate the first question by evaluating the efficiency next and then proceed
to perform an ablation study for the second one.

4.4.3. Efficiency
To analyse the the efficiency of our presolving framework we focus on instance sets, for
which 1) the presolving has a reasonable impact and 2) the instances are non trivial for
state-of-the-art solvers in their original form (not like e.g. instances from the easy set).
The relevant instances then are all from the "medium" and "big" sets and mannino_k487b
and mannino_k487c (the other two mannino instances can be solved very fast).

Exact Solving

|V | [%] |E| [%] pr [s] Gurobi [s] sms [s]

sota new sota new sota new sota new sota new

g001075 11.17 1.21 15.65 2.11 0.06 0.09 12.96 1.69 3.34 0.20
g000677 21.81 7.21 28.62 11.28 0.04 0.12 18.33 5.10 4.17 0.75
g000087 32.07 18.85 37.10 23.79 0.12 0.16 1370.61 129.46 108.36 31.12
ca-Erdos992 14.86 10.46 36.35 33.42 0.05 0.06 670.19 814.79 77.82 53.14
imgseg_138032 12.86 3.73 19.21 5.87 0.04 0.05 12.12 2.22 1.08 0.21
imgseg_147062 49.15 24.68 56.21 30.03 0.09 0.58 1217.40 202.15 47.96 17.01
inf-power 17.20 5.12 24.76 10.24 0.04 0.15 6.20 1.90 1.25 0.41
road-lux 4.57 0.41 6.76 0.83 0.23 0.31 14.01 2.28 5.70 0.62
web-google 10.76 3.31 18.82 7.34 0.01 0.12 0.27 0.21 3.32 1.43

mannino_k48 100.00 100.00 100.00 100.00 0.00 0.00 0.10 0.10 2.44 2.44
mannino_k487a 37.78 31.83 67.67 61.18 0.00 0.00 1.11 1.22 1.55 1.45
mannino_k487b 48.53 47.36 43.52 43.21 0.00 0.00 8.22 8.17 6.81 5.96
mannino_k487c 66.32 66.12 63.75 63.72 0.01 0.01 162.73 273.42 279.84 257.37

Table 4.2.: Efficiency of our (new) presolving algorithm compared to the efficiency of the
state-of-the-art (sota) when paired with the exact solvers Gurobi and sms.
Column two and three report the percentage of vertices / edges left after the
presolving and pr [s] is the reduction runtime only. The two solver columns
show the total runtime (including preprocessing) for solving the respective
instance to optimality. All values are averages over 5 seeds per instance.

Table 4.2 summarizes our results on the efficiency of our presolving when paired with
exact solvers. The instances from the "big" set are to large for current exact solvers,
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baseline |V | [%] |E| [%] pr [s] improvement

presolving sota new sota new sota new sota new
instance

ca-IMDB 3 381 673 46.73 40.86 87.17 86.96 9.71 12.21 19 891 21 486
ca-MathSciNet 602 191 31.87 22.08 53.66 45.61 1.77 2.36 1 167 1 768
ca-coauthors-dblp 8 223 016 70.42 63.90 85.19 80.64 17.30 25.98 2 403 3 390
inf-road_central 15 678 818 21.05 3.35 28.83 6.32 123.79 150.91 456 396 514 978
web-Stanford 1 591 307 53.12 43.48 61.54 56.29 6.24 37.80 11 476 12 026
web-it-2004 4 053 078 3.68 3.48 3.55 3.51 3.79 3.71 1 1

Table 4.3.: Solution value comparison on the "big" instances. The heuristic of Burer et
al. (2002) was run for 3600 s (baseline). When paired with the sota or our
preprocessing, the runtime was reduced by the time the preprocessing took
(pr [s]). The improvement column shows the absolute improvement over the
baseline. The remaining columns report the percentage of vertices and edges
left after the preprocessing. All values are averages over 5 seeds per instance.

hence we do not benchmark on these here. As can be seen, both tested solvers profit
significantly, if instances get preprocessed before they get handed over to the solver. For
both solvers, some instances get solved to proven optimality up to an order of magnitude
faster: Gurobi is more than 10x faster on g000087 and SMS on road-luxembourg-osm
and g001075. While SMS nearly always benefits from our additional presolving, this
does not hold true for Gurobi on ca-Erdos992 and two of the mannino instances (one
possible reason is discussed later in Section 5.5). However, the geometric mean of the
speedups is 2.4 for Gurobi and 2.8 for SMS.

Heuristic Solving

To test the impact of our preprocessing on instances too large for the exact solvers
(the instances in the "big" set), we employ the heuristic MaxCut algorithm of Burer
et al. (2002). Table 4.3 compares the solution values of the MaxCut heuristic, when
paired with the state-of-the-art preprocessing versus when paired with our algorithm.
The heuristic clearly benefits from the additional preprocessing. For all graphs applying
either the state-of-the-art preprocessing our ours first, before handing over the graph to
the heuristic, improves the values of the solutions found. For five of the six graphs, the
heuristic finds better solutions if our preprocessing is applied instead of the state-of-the-
art one. Only for the web-it-2004 graph we observe no difference in the final solution
value. This is expected, as also the number of remaining edges is pretty close for the
state-of-the-art algorithm and ours. For the other instances even small changes in the
number of vertices or edges remaining like for ca-IMDB led to better solutions. We also
want to highlight the moderate increase in the running time of the preprocessing for
most instances. Only web-Stanford takes significantly more time. We profiled the code
and observed that preprocessing spends about 50 % of its time calling the enumeration
solver to apply the rule for vertex separators of size three. This part of the algorithm
could probably be improved using a more sophisticated algorithm.

45



4. Presolving

4.4.4. Ablation Study

The two previous sections have shown that exact and heuristic solvers benefit from
our new preprocessing techniques introduced earlier in this chapter. We now want to
investigate the influence of our five new rules in detail. As we are mainly concerned with
solving MaxCut to optimality, we will only consider the impact on the exact solver
SMS in this section.

There are different possibilities to analyze the benefits that a specific data reduction
rule offers. One could, for example, simply count the number of vertices or edges that
could be removed by this specific rule, but this does not fully capture the usefulness of a
data reduction rule. A rule that helps to enable other rules and allows for some type of
chain reaction might be extremely important, even if the rule itself only removes a few
vertices or edges. This is why we use our full preprocessing algorithm in our ablation
study and only turn off the component for which we want to analyze its impact.

Twins, Cliques and Triangles

We start off by analyzing the impact of the three non-vertex separator related rules.
Our presolving algorithm found very few cases in which the new twin rule (Proposi-

tion 4.2.7) was applicable. There was no instance where more than five vertices were
removed, and turning it off made little difference in general. We therefore conclude that,
for the benchmark set we are working with, the rule does not seem to be helpful for our
presolving algorithm. Our new rule for cliques (Proposition 4.2.15), is applicable to the
same graph structure as the two rules already described by Ferizovic et al. (2020). In
their experiments, they observed few instances that have this specific sub-structure, and
we made the same observation. In general, there are few cases where our new rule for
cliques helps to improve over the state of the art. Still, there is one notable exception:
The web-it-2004 graph. Here, turning off our new rule only slightly increases the size
of the resulting graphs (about 1 % more edges), but only due to the special structure
solver (Section 3.1). This solver removes significantly more edges when the new rule is
turned off. This shows that real-world graphs do contain the clique structure on which
our new rule operates, but often they are part of small (bi)connected components.

The new rule for triangles from Proposition 4.2.9 has a noticeable impact on the size
of the graph and the solving time of SMS, as shown in Figure 4.5. Making use of all three
rules for triangles helps to further reduce most of the 11 graphs (for mannino_k487b and
ca-Erdos992 the triangle rules have very little effect and for web-google all remaining
graphs were extremely small anyways - they had less than 45 vertices). Especially for the
weighted g00 and imgseg instances, the rules tend to remove many edges. Also, including
our new rule for triangles ("all") mostly improves over deactivating it individually ("no-
new"). Sometimes the benefit seems small, but we clearly observed diminishing returns
for all triangle rules in our preliminary experiments. When activating triangle rules,
independent of order, every additional rule yields less benefit. As it requires very little
code to implement an additional triangle rule, if one is already there, we strongly suggest
implementing all of them (including our new one).
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Figure 4.5.: Effectiveness and efficiency of our full algorithm, with certain triangle-
related rules turned on and off. The variant with all triangle rules deac-
tivated is "no" and "all" has all rules activated. In "no-new" only our new
rule is deactivated. Top: Relative number of remaining edges. Bottom:
Total runtime in seconds (data reduction + SMS, logarithmic scaling). Re-
sults shown are for five seeds per instance. Bar height is mean and error
bars show min and max.

Vertex Separators

We now turn to our rules for vertex separators of size two (Proposition 4.2.12) and
three (Proposition 4.2.14). To investigate their impact, we compare three settings of our
algorithm in Figure 4.6. Most of the time, the use of 2-separators only slightly reduces
the size of the reduced graph. Still, the full runtime (presolving time + SMS) never
worsens, and for g001075 even improves by about 5 %. Note: Although the baseline for
this experiment does not apply the 2-separator rule, vertices with a degree of two still
get reduced, because the rule for dominating edges will always contract one of the two
incident edges (Proposition 4.2.8).

Our rule for 3-separators, on the other hand, is not only extremely fast and effective
but also attributes to much of the speedups over the state of the art seen earlier (compare
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Figure 4.6.: Effectiveness and efficiency of different settings of our presolving: The full
algorithm including rules for 2- and 3-separators is setting "3". The ver-
sion of our algorithm, where only the rule for 3-separators is turned off is
"2". For "1", the data reduction making use of 2-separators is disabled as
well (apart from vertices with degree 2, as they are always covered by the
dominating edge rule). Top: Relative number of remaining edges. Bottom:
Total runtime in seconds (data reduction + SMS, logarithmic scaling) for
each instance. Results shown are for five seeds per instance. Bar height is
mean and error bars show min and max.

Table 4.2). In general, there is not a single instance for which considering separators of
size two and three does not result in a speedup for the overall solving time. For g001075
the total solving time decreases by about an order of magnitude (from 2.2 s to 0.19 s).
Most reductions based on vertex separators of size three stem from vertices of degree
three; on average 88 % of all vertex separator based reductions (not including reductions
based on vertices with degree two) are degree-three reductions. Sparse graphs have
many vertices with a low degree by definition and our benchmark set has many sparse
real-world graphs. This is one reason for the good performance of our degree-three rule
in practice.
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4.5. Conclusion
The literature already offers many different preprocessing techniques and experimental
results on presolving for MaxCut (Lange et al. 2019; Ferizovic et al. 2020; Rehfeldt
et al. 2023). In this chapter, we extended the theory around data reduction rules,
by introducing five new rules, and investigated their performance. One of our new
rules complements the rule of Rehfeldt et al. (2023) for pairs of vertices with a similar
neighborhood, and one complements the rules for triangles in the input graph of Lange
et al. (2019) and Rehfeldt et al. (2023). Of these two, especially the new rule for triangles
helps to shrink the input graph. The other three rules are derived from our suggested
framework for making use of vertex separators. The analysis of these rule showed that
vertex separators of size three allow for significant reduction of the input. Overall, our
data reduction rules not only turned out to be effective in removing vertices and edges
from the considered input graphs but are also beneficial to exact and heuristic solvers.
The exact solvers became faster by up to one order of magnitude on our benchmark
set and for large graphs (with at least 820 000 edges) a state-of-the-art heuristic finds
considerably better solutions when paired with our new techniques.
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5. Exact Branch-and-Cut Algorithm

Integer programming and branch and cut have been employed for numerous combinato-
rial optimization problems in the past and are well established for MaxCut (Barahona
et al. 1988; Barahona et al. 1989; De Simone et al. 1995; De Simone et al. 1996; Liers
2004; Bonato 2011; Rehfeldt et al. 2023). In general, sophisticated branch-and-cut al-
gorithms employ a multitude of different components. Fundamental ones are (in no
particular order): Presolving, which was already discussed in Chapter 4; cutting plane
generation, which is the process of strengthening a given MIP model by adding addi-
tional constraints; branching and node selection strategies, which decide how to explore
the search tree; primal heuristics, which try to generate good primal feasible solutions,
which allow early pruning of branch-and-bound nodes.

In this chapter, we review frequently used concepts in the context of solving MaxCut
to optimality through branch and cut. Building on these, we establish new theoretical
results and derive novel techniques from the deepened insights. To test our new concepts,
we engineered the MaxCut solver SMS, for which we implemented existing and all our
new techniques. Many of them were first presented in a peer-reviewed paper in 20231.

At its core, our solver is based on the free and open-source MIP-solver SCIP (Achter-
berg 2007; Bolusani et al. 2024). The solver allows for nearly unlimited customization
and we implemented many new MaxCut-specific modules. All components of our solver
that are not part of SCIP itself are visualized in Figure 5.1. The presolving is performed
as discussed in Chapter 4. Special exact and purely combinatorial algorithms for Max-
Cut we implemented are covered in Section 3.1. The remaining components will be
discussed in this chapter as follows: Before employing branch and cut, one has to pick
an MIP model, in our case for the MaxCut problem. Different MIP models and their
properties are discussed in Section 5.1. Afterwards, Section 5.2 is concerned with cutting
planes and Section 5.3 with general and MaxCut specific branching heuristics. Next, we
move on to the primal heuristics in Section 5.4. Section 5.5 discusses an important detail
for LP relaxation based bounding in the context of MaxCut. This chapter ends with
an experimental study (Section 5.6), which investigates the performance of our solver
and analyzes the impact of our new proposed concepts and the solvers’ components in
detail.

1Jonas Charfreitag, Sven Mallach, and Petra Mutzel (2023). “Integer Programming for the Maximum
Cut Problem: A Refined Model and Implications for Branching”. In: SIAM Conference on Applied
and Computational Discrete Algorithms, ACDA 2023, Seattle, WA, USA, May 31 - June 2, 2023.
Ed. by Jonathan W. Berry, David B. Shmoys, Lenore Cowen, and Uwe Naumann. SIAM, pp. 63–74.
doi: 10.1137/1.9781611977714.6.
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Figure 5.1.: The different components of our integer programming based solver for Max-
Cut: SMS.

52



5.1. ILP Formulations

5.1. ILP Formulations
In Chapter 3 basics of modeling MaxCut as a mathematical program have been dis-
cussed. Here we introduce and compare different relevant models in more detail. All
models will be stated for an undirected weighted input graph G = (V, E, w).

Edge Based Models In their seminal work, Barahona and Mahjoub (1986) introduced
the following ILP for MaxCut, which we are going to call the edge based model, or (E)
for short.

maximize
∑
e∈E

wexe (5.1a)

s.t.
∑
e∈S

xe −
∑

e∈C\S

xe ≤ |S| − 1 ∀cycles C ⊆ E (5.1b)
and ∀S ⊆ C, |S| odd

xe ∈ {0, 1} ∀e ∈ E (5.1c)
The (E) model has exactly |E| many variables in total, one per edge. These edge

variables encode whether an edge is part of the cut and the solution vector x of all these
variables forms a characteristic vector of a cut. Although the number of variables is
linear in the input, the number of constraints can grow exponentially with the size of
the input graph. An arbitrary graph might contain exponentially many cycles in the
input size, and for each cycle there are exponentially many constraints of type (5.1b).
Therefore, explicitly representing all of these is computationally expensive. Fortunately,
it is also unnecessary. Despite the exponential number of constraints, the LP relaxation
can be solved in polynomial time. A famous result of Grötschel et al. (1981) shows that
if at least one violated constraint can be found in polynomial time, the LP relaxation
can be solved in polynomial time. Barahona and Mahjoub (1986) describe a separation
routine to find violated inequalities in polynomial time of type (5.1b), which we will
discuss in detail in Section 5.2.1. The integrality gap of (E) depends on the input. For
planar graphs e.g. the relaxation has integer optimal solutions.

A simple way to reduce the potentially exponential number of constraints of (E)
is to extend G to a complete graph, by adding all missing edges with a weight of 0.
The resulting model has O(n2) variables and O(n3) constraints. This model is easy
to formulate, but because of the cubic number of constraints, it scales quite badly in
practice (Frangioni et al. 2005). This might be the reason why we are not aware of any
empirical work on this augmented model. However, the literature offers some alternative
compact models based on (5.1b). Lancia and Serafini (2011) extend (E) and encode the
separation routine of Barahona and Mahjoub (1986) into their model. This results in
O(n ·m) constraints, which is already quadratic for sparse graphs. We do not consider
this model any further, as a quadratic number of constraints seems unappealing for
practical applications.

Mallach (2024) recently suggested a family of binary programming formulations for
MaxCut based on spanning trees and (5.1b). These models work with a sufficient selec-
tion of subsets of constraints of type (5.1b). Therefore, the value of their LP relaxation
is upper bounded by the one of the (E) model and we do not go into more detail here.
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Models Based on Vertices and Edges A compact IP formulation of linear size can
be derived from the concepts of Simone (1990), explicitly described by, e.g., Deza and
Laurent (1997) and later reconsidered by Nguyen and Minoux (2021). We will call this
model the vertex-edge model, or (VE) for short.

maximize
∑

{i,j}∈E

wijxij (5.2a)

xij + zi + zj ≤ 2 ∀{i, j} ∈ E (5.2b)
xij − zi − zj ≤ 0 ∀{i, j} ∈ E (5.2c)
−xij + zi − zj ≤ 0 ∀{i, j} ∈ E (5.2d)
−xij − zi + zj ≤ 0 ∀{i, j} ∈ E (5.2e)

zi ∈ {0, 1} ∀i ∈ V (5.2f)
xij ∈ {0, 1} ∀{i, j} ∈ E (5.2g)

The zi variables encode a vertex bipartition: In every integer solution, every vertex i
is either assigned to subset zero (xi = 0) or to subset one (xi = 1). The xij variables
are the same as for the (E) model and encode the cut induced by the vertex bipartition
of the z variables. What might make the model appealing is that it is compact by
design; it only requires |V |+ |E| many variables and has 4|E| constraints. Its integrality
gap on the other side is as bad as possible: By setting all zi to 0.5, all constraints are
satisfied, independent of the values of the x variables. As a result, all xij with positive
coefficient wij will have a value of 1 and all xij with negative coefficient wij a value of
0. The objective value then becomes the trivial MaxCut upper bound: ∑e∈{e:we>0} we.
Note: For edges with positive weight, one can drop (5.2d) and (5.2e) and for edges with
negative weight (5.2b) and (5.2c). In addition, the integrality requirement on the edge
variables can be dropped. Every solution with integral z variables will also have integral
x variables (assuming that there are no zero-weight edges).

The Root-Triangulated Model The (VE) model involves at least one symmetry: As
each cut in a graph is implied by two different vertex bipartitions, there are at least two
different solution vectors z in (VE) resulting in the same optimal solution values. This
type of symmetry can lead to the exploration of many unnecessary branch-and-bound
nodes. However, this symmetry can be broken quite easily. Frangioni et al. (2005)
introduced a model for MaxCut in the context of Lagrangian relaxation that can also
be employed as a binary program for branch-and-cut solvers. The underlying idea is
that one vertex in (VE) can be assigned freely to any of the two partitions. We pick an
arbitrary vertex r ∈ V , the root, and assign it to subset zero by setting zr = 0. This
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Figure 5.2.: Left: The input graph. Right: The root triangulated version of the graph.
The vertex e became the root and dashed edges got added to the graph.

leads to the root triangulated model for MaxCut, (RT) for short:

maximize
∑

{i,j}∈E

wijxij (5.3a)

xij + xri + xrj ≤ 2 ∀{i, j} ∈ E : r /∈ {i, j} (5.3b)
xij − xri − xrj ≤ 0 ∀{i, j} ∈ E : r /∈ {i, j} (5.3c)
−xij + xri − xrj ≤ 0 ∀{i, j} ∈ E : r /∈ {i, j} (5.3d)
−xij − xri + xrj ≤ 0 ∀{i, j} ∈ E : r /∈ {i, j} (5.3e)

xri ∈ {0, 1} ∀i ∈ V \ {r} (5.3f)

This model has one variable per edge and one variable per vertex u ̸= r that is not
neighboring r in the original graph, so |E| + |V | − d(r) − 1 in total. Intuitively, the
model is the result of adding edges with a weight of zero to all non-neighbors of r.
This is visualized in Figure 5.2. The model has strictly fewer variables and constraints
compared to the (VE) model, while at least maintaining the same integrality gap (in
practice it is often better). The model only restricts the variables corresponding to
edges incident to the root to binary values (5.3f) since binary values for these variables
already imply a feasible solution. The model can be viewed as a vertex-edge based, as
the xri variables encode a bipartition the same way as the zi variables in the (VE) model
do and every edge of the input has a corresponding variable. Additionally, the model is
also related to the purely edge based spanning tree models of Mallach (2024): All edges
incident to the root in the root-triangulated input graph form a spanning tree.

We will base the solver for our experiments on the root-triangulated model for three
main reasons. First of all, its compact form makes it well suited for sparse graphs,
the focus of this work. Second, as the variables form a superset of the variables of the
edge based model. Therefore, all techniques developed for the edge based model can be
applied to the root triangulated model as well. Finally, we will show special properties of
the model in the following sections, from which we derive new and fine-tuned algorithms
that might help to improve the performance of branch-and-cut MaxCut solvers.
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5.2. Cutting Planes
We will further discuss two types of MaxCut-valid inequalities, originally presented
by Barahona and Mahjoub (1986). Both help to tighten the LP relaxation of our (RT)
model when added as cutting planes.

Independent of the concrete inequality, Barahona and Mahjoub (1986) describe a
technique for deriving facet-defining inequalities from other facet-defining inequalities:

Proposition 5.2.1. Given any MaxCut-valid facet inequality defined on variables cor-
responding to edges from some edge set T of the form:

∑
e∈T

ae · xe ≤ k (5.4)

A new facet-defining inequality can be derived by picking some cut δ(S) and trans-
forming (5.4) into:

∑
e/∈δ(S)

ae · xe +
∑

e∈δ(S)
ae · (1− xe) ≤ k (5.5)

In practice, we sometimes want to find inequalities that have maximum violation. For
this, the following observation of Liers (2004, p. 24) is helpful.

Proposition 5.2.2 (Switching). Finding the cut δ(S) for which the transformation from
inequality (5.4) to inequality (5.5) results in the most violated inequality is equivalent to
finding a maximum cut in a graph G[T ], with edge weights ae(1− 2xe).

Proof. To find the most violated inequality, we want to find the cut δ(S) that maximizes
the left side. Let G′ = G[T ] be the graph induced by all edges in T . All variables of
the original constraint contribute 1− xe if they are in δ(S) or xe if they are not in δ(S).
Transforming this cut / uncut problem into MaxCut results in a graph, where all edges
have weights ae(1− 2xe) and the objective has a constant offset of ∑e∈T xe. Any cut in
G′ with objective value > k −

∑
e∈T xe violates the inequality.

5.2.1. Odd-Cycle Inequalities
One central class of valid inequalities, first described by Barahona and Mahjoub (1986)
and at the core of the MIP model (5.1), is often referred to as odd-cycle inequalities. The
basic intuition behind these inequalities is the fact that for any cut in a graph G and any
cycle C in G, the number of edges part of the cut and part of the cycle has to be even.
More formally, for any cycle C and any set F ⊆ C of odd cardinality (|F | mod 2 = 1),
the following inequality has to hold:∑

e∈C∩F

xe −
∑

e∈C\F

xe ≤ |C| − 1 (5.6)
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∑
e∈C∩F

1− xe +
∑

e∈C\F

xe ̸≥ 1

C = {{a, b}, {b, c}, {c, d}, {d, e}, {e, f}}
F = {{a, e}, {d, e}, {b, c}}

Figure 5.3.: Left: A graph forming a cycle. All solid edges have a weight of 1, the dashed
edges have a weight of 0. Right: A violated odd-cycle inequality formed from
the cycle to the left. The resulting left hand side of the inequality is zero.

Slightly modifying the inequality gives the alternative form:∑
e∈C∩F

1− xe +
∑

e∈C\F

xe ≥ 1 (5.7)

As can be seen, the "odd" in odd-cycle inequalities does not refer to the length of the
cycle but to the cardinality of the set of edges F . Although this may lead to confusion,
we stick to the established naming scheme to avoid divergence from the literature. As a
side note: Transforming odd-cycle inequalities by Proposition 5.2.1 gives a new odd-cycle
inequality for the same cycle, with a different set F . Figure 5.3 visualizes the inequalities
in an example.

Relation to xor-Constraints

Inspired by the analysis of Zhang and Siegel (2012) we want to highlight the direct
relationship between MaxCut specific odd-cycle inequalities and general parity con-
straints. This has, to the best of our knowledge, not been discussed in the MaxCut
related literature so far. In fact, odd-cycle inequalities are just the linear relaxation of
the corresponding xor (exclusive-or) or even-parity constraint.

Theorem 5.2.3. Let G = (V, E), C ⊆ E be some cycle in G, and xe ∈ {0, 1} for
all e ∈ C. Then

⊕
e∈C xe = ⊥ if and only if

∑
e∈S(1 − xe) + ∑

e∈C\S xe ≥ 1 for all
S ⊆ C, |S| odd.

Proof. Suppose that ⊕e∈C xe = ⊥ and let T = {e ∈ C : xe = 1}. Since |T | is even, for
any S ⊆ C, |S| odd, it follows that either ∃e ∈ S : e /∈ T , or ∃e ∈ T : e /∈ S, i.e.,
e ∈ C \ S. Since in the first case, xe = 0, and in the second case, xe = 1, both clearly
satisfy ∑e∈S(1− xe) +∑

e∈C\S xe ≥ 1.
On the other hand, if ∑e∈S(1 − xe) + ∑

e∈C\S xe ≥ 1 for all S ⊆ C, |S| odd, then
|{e ∈ C : xe = 1}| must be even and thus ⊕e∈C xe = ⊥.
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Figure 5.4.: Illustration of the asymmetric formulation for an XOR-constraint with five
binary variables x1, x2, x3, x4, x5 (left) and its simplification (right) resulting
in a "pointed triangulation" (Nguyen and Minoux 2021).

Throughout the branch-and-cut algorithm, the variables will be fixed to a value
of 0 or 1. As the boolean XOR operation is associative, we can state the following
observation.

Observation 5.2.4. If, for any cycle C, all but one (xe) or all but two edge-variables
(xe, xf ) are fixed (binary), all odd-cycle inequalities related to C collapse into a single
equation (xe = 0 or xe = 1, respectively xe = 1− xf or xe = xf ).

For an XOR expression on n binary variables, let pk := ⊕k
i=1 xi, for k ∈ {1, . . . , n}

capture the "intermediate" parity of the expression, if only the first k variables are
considered. Clearly ⊕n

i=1 xi = xn ⊕ pn−1. Also, pn captures the parity of the full
expression, so constraints of the odd-cycle type require pn = ⊥. With this we can
see that applying a pointed triangulation, described by Nguyen and Minoux (2021),
to a chordless cycle leads to the same constraints, as described by Carr and Konjevod
(2005) as part of their "asymmetric formulation" for the parity polytope. This previously
unreported relation is illustrated in Figure 5.4.

Due to the direct correspondence between xor-constraints and odd-cycle inequalities, a
result of Taghavi and Siegel (2008, Theorem 1) implies that only one odd-cycle inequality
associated with the same cycle may be violated at a time. We formalize this result in
the context of odd-cycle constraints in the following.

Lemma 5.2.5. Let C ⊆ E be a cycle in a graph G = (V, E) and let x̄ ∈ RE with 0 ≤ x̄ ≤
1. If S ⊆ C is an odd-cardinality subset that admits a odd-cycle inequality violated by x̄,
then the odd-cycle inequalities w.r.t. any other odd-cardinality subset S′ ⊆ C, S′ ̸= S,
are strictly satisfied by x̄.

Proof. W.l.o.g., let S ⊆ C with |S| odd be a largest subset of C that admits a violated
odd-cycle inequality for some given x̄ ∈ RE . Rewrite this inequality as ∑e∈S(1− x̄e) +∑

e∈C\S x̄e < 1.
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Algorithm 3: Maximize LHS for Odd-Cycle Inequality
Input: Cycle C and values in LP relaxation x
Output: F ⊆ C, with |F | odd

1 F, f ← (∅, none)
2 for e ∈ C do
3 if x(e) > 0.5 then
4 F ← F ∪ {e}
5 if f = none or |0.5− x(e)| < |0.5− x(f)| then
6 f ← e

7 if |F | is even then
8 if f ∈ F then
9 F ← F \ {f}

10 else
11 F ← F ∪ {f}

12 return F

Now, any subset S′ ⊆ C, S′ ̸= S, (with |S| = |S′|) differs from S in at least one
variable. If C = S, then S is clearly the only odd subset of this cardinality. So, let
S ⊊ C, and choose e1 ∈ S and e2 ∈ C \ S arbitrarily. By a simple transformation
of the violated constraint, we obtain 1 < (1− x̄e2) + x̄e1 . It follows that assigning any
arbitrary e1 ∈ S to C \ S′ and any arbitrary e2 ∈ C \ S to S′ leads to a strictly satisfied
odd-cycle constraint.

Similarly, if |S′| < |S|, then S′ needs to differ from S in at least two elements. Now
choosing e1, e2 ∈ S, again simple transformations show that 1 < xe1 + xe2 , i.e., an
odd-cycle inequality associated to S′ must be strictly satisfied.

Taghavi and Siegel (2008) show how to find a violated inequality in linear time. Their
procedure is practically the same as that suggested by Liers (2004, p. 20) for finding the
inequality most violated for a given cycle. Note: The fast algorithm also follows from
Proposition 5.2.1. Finding the most violated odd-cycle inequality is the same as solving
a MaxCut problem on a cycle. Algorithm 3 shows a one-pass version of the algorithms
of Taghavi and Siegel (2008) and Liers (2004).

Interplay with the root-triangulated model

The MIP-formulation we use is the (RT) model, which always has one variable for each
edge of the input (and potentially some additional variables). Therefore, we can add
odd-cycle constraints to tighten the LP relaxation. We now present structural results
on these inequalities in the (RT) model.

Lemma 5.2.6. No solution of the LP relaxation of the root-triangulated model violates
an odd-cycle inequality whose corresponding cycle contains the root vertex.
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Proof. Nguyen and Minoux (2021) show, that whenever a cycle is triangulated in a
vertex v, the triangle inequalities corresponding to the triangulation imply every odd-
cycle inequality through v. In the (RT) model, every cycle is triangulated in the root
r. Therefore, all odd-cycle inequalities of cycles that go through r are implied by the
(triangle) constraints of the model.

During the branch-and-cut algorithm, some vertices might be assigned to a fixed par-
tition. This happens, for example, for each branching decision. Insights into the effects
of those fixings might help speed up the overall algorithm. In fact, in the root triangu-
lated model, fixings impact the odd-cycle inequalities, as first discussed by Nguyen and
Minoux (2021). As it turns out, their result can be generalized to the following.

Lemma 5.2.7. In the root-triangulated model, whenever a variable xru corresponding
to a vertex gets fixed (e.g. via branching), no solution of the LP relaxation of the root-
triangulated model violates an odd-cycle inequality whose corresponding cycle contains
the vertex u.

Proof. Consider some chordless cycle C ⊆ V , with edge set T , with u ∈ C. Clearly
|C| ≥ 3. Let a and b be the neighbors of u in (C, T ). Differentiate two cases: xru = 0
and xru = 1. Start with xru = 0: The triangle inequalities on {xra, xru, xua} collapse in
this case to xra = xru. And those on {xrb, xru, xub} to xrb = xub (see Observation 5.2.4).
If there was a violated cycle through u of the form ∑

e∈C∩F xe−
∑

e∈C\F xe ≤ |C|−1 we
could replace the two edges incident to u via the equations and get a violated odd-cycle
inequality through r. But the odd-cycle inequalities are already implied by the model;
see Lemma 5.2.6. The proof for xru = 1 works in the same way.

Separation

Barahona and Mahjoub (1986) showed, that odd-cycle constraints can be separated
in polynomial time. Their procedure operates on an auxiliary graph: For a given input
graph G = (V, E) and a solution x̃ ∈ {0, 1}|E| to the LP relaxation create a new weighted
graph H, which contains two copies ul and ur for each vertex u ∈ V . We call ul and ur

twins. The set of edges of H consists of four copies of each edge e = {u, v} ∈ E: {ul, vl}
and {ur, vr}, each with weight x̃e and {ul, vr} and {ur, vl}, each with weight 1− x̃e. This
auxiliary graph H allows efficient separation of violated inequalities of type (5.7). To
find violated inequalities of type (5.7), start once at every vertex ul and find a shortest
path p to ur. If p is shorter than 1, we found a violated inequality. First, observe that
any path in H from some vertex ul to its twin ur corresponds to a closed walk / cycle in
G. In addition, the number of edges in p that connect the vertices on the left and right
sides is always odd (due to the construction of H). Another observation that follows
from Hs special structure is the following:

Observation 5.2.8. Due to the inherent symmetry of the auxiliary graph H, we always
have dist(ul, vl) = dist(ur, vr) and dist(ul, vr) = dist(ur, vl). As a consequence, we get
dist(ul, ur) = dist(ul, vl)+dist(ul, vr) = dist(ur, vl)+dist(ur, vr) for every v on a shortest
path from ul to ur.
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Fast shortest path The shortest path in H = (V, E) can be computed with the algo-
rithm of Dijkstra (1959) and a binary heap (Williams 1964) in O((n + m) · log(n)) time;
for sparse graphs with m ∈ O(n) this is in O(n log(n)). This is quite efficient, but for
even better performance in practice, further speedup techniques have been employed to
modify the vanilla algorithm:

The first is to stop the search if all upcoming paths would be longer than 1. Let dist(v)
be the current distance label of every vertex v. If, while executing Dijkstras algorithm,
the smallest distance label of every unprocessed vertex v is dist(v) ≥ 1, no new paths
of length < 1 will be found and the algorithm can be aborted. This potentially reduces
the number of vertices that the algorithm explores.

Second, Jünger and Mallach (2019) suggest to take advantage of the symmetry of the
auxiliary graph H. If a vertex vl and its twin vr have been assigned their final distance
label and dist(vl) + dist(vr) ≥ 1, outgoing edges of vl and vr can be ignored for finding
shortest path, as no path of length < 1 can pass through them (the proof follows directly
from Observation 5.2.8).

The symmetry of H allows for a generalization of the above ideas, which has (to the
best of our knowledge) not been reported so far. First note, when exploring H via
Dijkstras algorithm from ul we implicitly also explore the graph from ur, the target
(see Observation 5.2.8). This bi-directional search can lead to significant speedups in
practice (Pohl 1969). Because of this implicit bi-directional Dijkstra, the algorithm
may stop if it encounters a vertex with distance ≥ 0.5, instead of one with distance
≥ 1. An explicit bi-directional search, as suggested by Nguyen and Minoux (2021) adds
unnecessary overhead.

Also note, there is no need to construct the separation graph H explicitly. Neigh-
borhood queries for the Dijkstras algorithm can be performed on the original graph,
and edge weights from the current LP relaxation can be stored separately (potentially
reducing the algorithm’s memory footprint and improving its cache locality).

Blocklist To further speed up the algorithm, we also suggest the use of a blocklist.
Vertices on the blocklist get ignored when searching for shortest paths. One straightfor-
ward application for this list is Lemma 5.2.7: Every vertex whose partition is already
fixed (via e.g. branching) can be put on the blocklist, as it will never be part of a vio-
lated odd-cycle inequality. The blocklist also helps to speed up the algorithm when calls
to the separation algorithm result in no violated cycle (when no ul-ur path of length
< 1 exists). This happens especially often, when no violated odd-cycle constraints exist
anymore. There are two types of vertices that can be put on the blocklist in this case:
The starting vertex u: If no path of length < 1 from ul to ur exists, there is no need to
consider ul or ur for other shortest paths. Furthermore, all vertices reachable from ul in
H, by only traversing edges with weight 0 can be put on the blocklist as well: let vl be
a vertex reachable by a zero-weight path from ul. Assume there was a path of length
< 1 from vl to its twin vr. If vl is reachable by a zero-weight path from ul, vr must
be reachable by a zero-weight path from ur (Observation 5.2.8). Therefore, a path of
length < 1, should have been found from ul (the same argument holds with the roles of
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vr and vl exchanged), and hence not only u, but also v can not appear on any shortest
path of length < 1.

Post-processing The shortest path found by the above procedure may not be chordless.
Jünger and Mallach (2019) designed techniques to extract chordless cycles from results of
the separation algorithm. They found them to be beneficial for the overall performance
of their branch-and-cut algorithm. Therefore, we also extract short chordless cycles from
a closed walk, employing a two-step approach, introduced by Rehfeldt et al. (2023):

First, we extract all simple cycles from a closed walk using the technique of Jünger and
Mallach (2019). Next we check for each simple cycle if it contains chords and whether
or not these chords allow to construct shorter violated odd-cycle constraints. This not
only has the benefit of extracting chordless cycles, but also might yield multiple violated
odd-cycle inequalities per separated shortest path.

An additional technique to ensure the separation of chordless cycles is to explicitly
enumerate short chordless cycles of length, e.g. three and four, as already suggested by
Barahona et al. (1988). This can be done quite fast for sparse real-world structured
graphs, hence we cache all chordless cycles of length 3 (triangles) and length 4 (often
referred to as 4-holes) and separate all violated odd-cycle constraints for these cycles
fast via Algorithm 3.

5.2.2. Clique Inequalities
Barahona and Mahjoub (1986) not only introduced the odd-cycle constraints but also
facet-inducing inequalities derived from cliques. Let C ⊆ V form a clique in G with
|C| ≥ 3 and |C| mod 2 = 1. Furthermore, let T be the edge set of G[C]. Then

∑
e∈T

xe ≤
⌈ |C|

2

⌉
·
⌊ |C|

2

⌋
(5.8)

is a facet-inducing and valid inequality for MaxCut. Note: For cliques of size 3, that is
triangles, the inequalities for cliques (5.8) and for cycles (5.6) are identical. The intuition
behind these inequalities is straightforward. No cut in a clique may include more edges
than the perfect cardinality cut has (compare Section 3.1). With the transformations
of Proposition 5.2.1 every clique in the input of size k gives rise to 2k−1 different facet-
defining inequalities.

Separation

Unfortunately, there is no known polynomial-time algorithm to separate clique inequal-
ities (5.8). Even finding a clique of maximum cardinality is NP-hard (Karp 1972). Still,
clique inequalities have been shown to improve branch-and-cut algorithms for MaxCut
in the past, therefore we employ a heuristic to separate violated clique inequalities. For
a given clique, the violation check can be performed by solving the MaxCut problem
resulting from Proposition 5.2.1. We solve this MaxCut problem to optimality for small
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Figure 5.5.: Left: A graph G = (V, E) forming a clique with values of the current LP
relaxation assigned to its edges. All solid edges have a weight of 1, the grey
dashed edges have a weight of 0 and the dashed yellow edge (bottom right)
has a weight of 0.1. Right: Two violated clique inequalities formed from
vertices and edges of the left clique.

cliques and employ a heuristic (see Section 5.4.1) for bigger cliques. The procedure in
more detail looks like this:

1. Enumerate and cache maximal cliques of size at least 5 using the algorithm of
Eppstein et al. (2013). This algorithm has a running time in O(dn3d/3), where d
is the degeneracy of the graph (which is typically small for sparse graphs).

2. For each clique C in the cache, employ one of the following two subroutines, de-
pending on the size of C.

a) For small cliques, enumerate all subcliques of odd cardinality and check for
violation of inequalities of type (5.8).

b) For large cliques, checking all subcliques would result in many checks. There-
fore, we only check for violation of the clique inequality of all vertices if the
large clique is of odd size. Or all |C| subcliques of size |C| − 1, if the clique
has even size. For the violation check, we employ the Kernighan-Lin heuristic
(Section 5.4.1) on the MaxCut problem resulting from Equation (5.5).

Note: Although we showed that for every cycle there might only be one violated odd-
cycle inequality (5.6) for the current lp-solution (Lemma 5.2.5), clique inequalities do not
have the same property. For a given clique, there might be multiple violated inequalities,
see Figure 5.5 for an example. However, we do not separate all the inequalities per clique.
Once step a) from above has found a violated clique on, say, vertices S ⊂ C, it only
searches for more violated inequalities in C \ S.

Interplay with the root-triangulated model

When variables corresponding to vertices get fixed to zero or one, they are combina-
torically merged into the root. By construction of the RT binary program, the root is
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connected to every vertex and, therefore, part of every maximal clique. Thus, merg-
ing vertices into the root makes their corresponding variables obsolete in the clique-
inequalities, effectively shrinking the size of a cached clique. Our implementation of the
separation procedure takes this into account.

5.2.3. Cut Selection and Cutpool

Modern MIP-solvers like SCIP (Bolusani et al. 2024) do not add all violated cutting
planes found in one separation round to the current LP relaxation, but employ filter and
caching mechanisms. To filter cuts, the so-called cut selection algorithms are used, and
cuts are cached by a data structure called cutpool. The details are beyond our scope
here, and we refer to the work of Wesselmann and Suhl (2012) and Dey and Molinaro
(2018) for more information on this topic. However, we sketch the relevant basics of the
default behavior of SCIP, which we use for our algorithm.

The cutpool, first introduced by Padberg and Rinaldi (1991), works as a cache for
cutting planes. In its modern version (e.g. in SCIP) each cut has an associated age that
increases each time its violation is checked and it is found to be satisfied. If the age of
a cut reaches some predefined limit, it is removed from the global cutpool.

The cut selection tries to select a good subset of all known cuts. A good selection
is small, to keep lp solving times low, but also contains many diverse cuts, to cut off
as much as possible from the current polyhedron. To balance these two objectives, cut
selection assigns a score to each cut, groups all cuts based on their score, and greedily
picks cuts that are not similar (parallel) to other selected cuts. The scoring is a weighted
sum over the cuts efficacy (the Euclidean distance between the LP optimal solution and
the cut hyperplane), its parallelity to the objective function, and its integer support (the
relative number of integer variables with non-zero coefficient).

5.3. Branching

If the LP relaxation of a MIP model does not result in an integer feasible solution, the
branch-and-cut algorithm tries to add cutting planes to improve the relaxation. In the
best case, this leads to an integer-feasible solution. If not, the branching module of
branch and cut comes into play. Branching rules (also called branching heuristics or
branching strategy) decide which variable to use for branching. Branching is the process
of splitting the search space by creating (usually) two subproblems. For binary programs,
this (usually) comes down to creating one subproblem where a certain variable xi is fixed
to 0 and one, where xi is fixed to 1. The overall goal is to branch in a way that results
in the smallest number of branch-and-bound nodes. Finding an optimal strategy here is
an open problem. There are two types of branching rules: General-purpose branching
rules, applicable on any MIP model, and problem-specific ones, which consider e.g. the
combinatorial structure of the underlying problem, the MIP is modeling. Often, they
calculate a score for each variable with a fractional value and then choose the best
variable to branch on based on the score.
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5.3.1. General Branching Rules

Many general purpose branching rules have been developed over the years, see e.g. (Mor-
rison et al. 2016). Two of the first sophisticated rules are pseudocost-branching (Bénichou
et al. 1971) and strong-branching. The latter was first suggested in the context of the
traveling salesman problem (Applegate et al. 1995; Applegate et al. 2006). They form
the basis for the state-of-the-art rule reliability pseudocost branching by Achterberg et
al. (2005). All these rules try to pick the variable that has the most local impact. The
impact is usually measured in terms of change of the objective value of the LP relax-
ation of the two created children. Pseudocost branching calculates its score based on
the historical impact a variable had throughout the branch-and-cut search. Whenever
a variable is branched, the pseudocost is updated. In the implementation of SCIP (Bo-
lusani et al. 2024) ties are broken via what is called root difference in the code: The
absolute difference of the current value of a variable compared to the value the same
variable had after solving the root relaxation. Pseudocost branching has very little over-
head, but has no information to work with for the first couple of branching decisions.
Strong-branching does not suffer from this limitation. It performs (often expensive)
lookaheads to find the best variable to branch on. To calculate the branching score for
all or a set of variables, the two subproblems for branching on the variable are created
and their LP relaxation gets solved. The rule then picks the best candidate. Reliability
pseudocost branching combines pseudocost branching and strong branching. It works
on the pseudocosts, but calculates them via strong-branching in case they turn out to
be unreliable. Unreliable here means either not known yet, or they differ considerably
(for some definition of considerably) throughout the branch-and-cut tree.

5.3.2. MaxCut Specific Branching Rules

The results on fixing implications in the RT model from the previous chapter (especially
Lemma 5.2.7) show promising impact for branching on variables corresponding to ver-
tices. To the best of our knowledge, there are no theoretical results on the impact of
branching on variables corresponding to edges. Therefore, our algorithm only branches
on the vertex variables.

This is in line with the problem-specific branching rule of Nguyen and Minoux (2021).
They suggest branching on the variable of a vertex that has more neighbors with binary
(fixed) vertex variables than the average vertex degree of the graph. If multiple such
variables with a fractional value exist, they select one that has been chosen the least in
previous branching decisions. If no such variable exists, they leave the branching decision
to the default branching strategy of the closed-source solver CPLEX. This approach is
motivated by their (weaker) version of Lemma 5.2.7 i.e., shall promote propagations
and reduce the set of edges with possibly violated odd-cycle inequalities. However, their
branching rule might only have an effect rather late in the branch-and-cut tree, as it may
require at least as many branching decisions as the average vertex degree in the graph
to obtain a candidate variable for it. Moreover, if all vertices have the same degree, the
rule cannot determine a fractional branching candidate: It only considers a vertex for
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Algorithm 4: Degree-Dynamic Branching Rule
Input: X = [x1, x2, . . . , xk] (variables with fractional value in LP relaxation)

D (dynamic degrees of all vertices with variables in X)
Output: A branching candidate xi ∈ X

1 i← arg maxi∈{1,...,k} D[i]
2 return X[i]

branching if the variables of all its neighbors are binary, but as Observation 5.2.4 states,
in this case the variable of the respective vertex would itself already be binary in an
optimal solution for the current relaxation.

We suggest two related, but different approaches, which take our new results on fixing
into account and aim to overcome shortcomings. It might seem intuitive that branch-
ing on variables corresponding to vertices with a high degree potentially has the most
impact on the overall problem structure. Hence, we suggest simply prioritizing vertices
for branching based on their degree in the original graph; the higher the degree, the
higher the priority. This rule is easy to implement and can serve as a baseline for all
degree-based branching rules. We are going to call it degree-static. Also, if a high
degree corresponds to many chordless cycles containing a specific vertex, Lemma 5.2.7
gives a theoretical basis for this rule. However, if the input graph is regular, this rule
degenerates into branching on random variables. It also does not consider the structure
of the subproblems corresponding to the branch-and-bound nodes: Previous branching
decisions might have led to fixed variables associated with either many or few neighbors
of a vertex with a high degree, which is expected to have an impact on the effectiveness
of their selection for the local branching decision to be made.

To improve degree-static, we suggest the new branching rule degree-dynamic described
in Algorithm 4. Similarly to degree-static, it prioritizes variables corresponding to ver-
tices with high degree. But instead of considering the degree in the original graph, all
vertices whose corresponding variables have integer values in the current LP relaxation
are ignored for the degree calculation. We call this alternative degree the dynamic-degree.
In this way the structure of the current subproblem is taken into account and the rule
does not necessarily degenerate to random branching on k-regular graphs. Unlike the
rule of Nguyen and Minoux (2021), this new rule generally prioritizes vertices with many
fractional neighbors over vertices with many fixed neighbors.

5.4. Primal Heuristics
In the context of MIP-solving heuristics calculating feasible solutions for MIPs are usually
called primal heuristics. They are essential for the speed of any branch-and-cut solver,
because the faster good solutions can be found, the quicker potential cut-offs happen
(Berthold 2013).

There are many categories of primal heuristics, differing in their strategy, the type of
input they operate on, and their running time. The tree heuristics involved in MaxCut
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solvers based on branch and cut can be put into two categories: Heuristics from the first
category take any MaxCut solution as their starting point and try to construct solutions
with a better objective value. We will call heuristics of this type improvement heuristics.
Note: If no solution is available, it’s always possible to construct the trivial MaxCut
solution, where all vertices belong to the same partition, or a random bipartition. The
second category takes the values of the current LP relaxation into account. Based on
these, the heuristics try to make informed decisions when constructing solutions step by
step.

5.4.1. Kernighan-Lin

The Kernighan-Lin heuristic (Kernighan and Lin 1970) is one example of an improve-
ment heuristic and related to the famous heuristic of the same authors for the traveling
salesperson problem (Lin and Kernighan 1973). In its most general form, the heuristic
tries to find good solutions for the restricted k-way partitioning problem on graphs. But
the authors also sketch how to modify the algorithm in order to deal with unrestricted
bipartition problems, e.g. MaxCut.

We describe the basic concepts of our version of the Kernighan-Lin heuristic (which
slightly differs from the version Bonato (2011) employed for exact MaxCut-solving, as
we will explain below) and sketch its running time (the original analysis did not explicitly
differentiate between sparse and complete graphs). In general, the algorithm operates
in two phases to improve the objective value of any starting solution:

Phase 1 greedily explores sets of k-moves and picks the best one, until it fails to
find a k-move improving the solution. A k-move for a given vertex bipartition moves
k many vertices to their respective opposite partition. As considering all k-moves is
way to expensive, the inner loop greedily selects the best (not necessarily improving)
one or two move until every vertex has been switched to its opposite partition exactly
once. Afterwards the algorithm reevaluates the history of swaps considered and picks
the best subset of swaps, which then forms the k-move that is performed (if the solution
value improves). Algorithm 5 shows phase 1 in more detail. We deviate from the
implementation of this heuristic by Bonato (2011, p. 29), by not only considering the
best 1-move (line 8), but also the best 2-move, involving the best 1-move vertex. This
extends the overall search space of the heuristic and comes at close to no cost.

Runtime: The number of outer loops depends on the starting bipartition, but is
empirically low for our input graphs. Before starting the inner loop the improvement
values need to be calculated, which takes O(n+m) time. Each inner loop has to calculate
the arg max (line 8) first, which can be realized with a max-heap data structure. Every
vertex gets extracted once from the heap and there will be up O(m) update calls to the
heap. For evaluating the 2-move and updating the improvement values, one needs to loop
once over the neighborhood of the corresponding vertex. Overall, the heap operations
dominate the worst-case complexity and we get O(n · log(n)+m · log(n)) when employing
binary heaps.

Phase 2 tries to further improve the solution of the previous phase. Kernighan and
Lin observed in their experiments, that if their heuristic did not find the optimal solution,
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Algorithm 5: Kernighan-Lin MaxCut Heuristic
Input: G = (V, E, w) (weighted input graph)

(S1, S2) (initial biparition)
Output: (S′

1, S′
2) (locally optimal bipartition)

1 (S′
1, S′

2)← (S1, S2)
2 gain← 1
3 while gain > 0 do
4 V ′ ← V // vertices not moved yet
5 D ← [ ]
6 I ← improvement_values(G, (S′

1, S′
2)) // O(n + m)

7 while V ′ ̸= ∅ do
8 a← arg maxu∈V ′(I[u]) // best 1-move
9 ga ← I[a]

10 b← arg maxv∈N(a)∩V ′(I[a] + I[v]± 2wau) // best 2-move
11 gab ← I[a] + I[b]± 2wau

12 V ′ ← V ′ \ {a}
13 I ← update_improvements(G, I, a) // O(d(a))
14 if ga ≥ gab then
15 D.append(move=(a), value=ga)
16 else
17 V ′ ← V ′ \ b
18 I ← update_improvements(G, I, b) // O(d(b))
19 D.append(move=(a, b), value=gab)

20 p← arg maxk∈{1,...,|D|}
∑k

i=1 D[i].value
21 gain←∑p

i=1 D[i].value
22 if gain > 0 then
23 (S′

1, S′
2)← perform_k_move((S′

1, S′
2), D[1, . . . , k])

24 return (S′
1, S′

2)

the output of phase 1 was about a n/2-swap away from the global optimal solution. To
guide the heuristic to solutions that require a large swap, they consider the two graphs
induced by each of the two partitions of the best found bipartition individually, say
H1 and H2. The algorithm calls phase 1 with H1 and H2 as its input. There are two
possibilities to merge the two resulting partial bipartitions and the algorithm chooses
the one that results in a better MaxCut-value. We do not go into more details here, as
our solver does not incorporate phase 2. Because the other two heuristics we talk about
next, generate diverse solutions for phase 1, we did not see any benefit in phase 2 in our
setting.
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Figure 5.6.: Different steps of the Burer et al. (2002) heuristic. (a): A possible solution
after solving unconstrained (5.9) via gradient descent. (b): Step 2 searches
for the best diameter split, for which the corresponding bipartition maxi-
mizes the cut value. (c): The bipartition from the previous step is translated
back into an angle representation. (d): All angles of the current solution
are slightly perturbed.

5.4.2. Burer
The improvement heuristic presented by Burer et al. (2002) is inspired by the approxi-
mation algorithm of Goemans and Williamson (1995). Their algorithm achieves the best
known approximation ratio for MaxCut on graphs with only non-negative weights of
0.879. However, it is generally considered impractical (Burer et al. 2002), as it requires
to solve potentially large semidefinite programs. The basic idea of the heuristic of Burer
et al. (2002) is to consider a "rank-2" relaxation of the semidefinite program. Each vertex
of the input graph is associated with a point on the unit circle, represented by an angle
φ. The corresponding mathematical program for MaxCut looks like this:

minimize
∑

{i,j}∈E

cos (φi − φj) · wij

φi ∈ {0, π} for all i ∈ V

(5.9)

A slightly simplified version of the overall algorithm, with the non-convex program
(5.9) at its core, is summarized in Algorithm 6. An iteration of the for loop is shown in
Figure 5.6. The two most fundamental steps are performed in lines 4 and 5.

In line 4, the mathematical program (5.9) is relaxed by allowing φ ∈ R|V|. The
resulting unconstrained non-convex optimization problem is then solved by gradient
descent, starting from the current vector of angles φi. The authors suggest employing a
backtracking Armijo line search (Armijo 1966) as the gradient descent routine.

In line 5, the vector of angles is transformed into the characteristic vector of a cut.
The candidate vectors z that are considered have entries zj of the form

zj =
{

0 if φj ∈ [α, α + π)
1 else
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for some α ∈ [0, π). Visually, the bipartition is the result of drawing a diameter into the
unit circle with an angle of α and assigning vertices based on the resulting left-right split
(compare Figure 5.6b). The vertex bipartition resulting in the best cut value is chosen.

Note: For good practical performance Burer et al. (2002) actually suggest to not
perform a fixed number of iterations of the for loop (input parameter k), but looping
until the value of the best solution found did not improve for a fixed number of times.
When this limit is met, they further suggest restarting the algorithm (and sample a new
starting solution φ0).

Algorithm 6: Burer et al. MaxCut Heuristic
Input: G = (V, E, w) (weighted input graph)

k (iteration limit)
Output: z∗ (characteristic vector of best bipartition found)

1 z∗ ← {0}|V |

2 Sample φ0 ∼ [0, 2π)|V | // random start vector
3 for i← 0 . . . k do

// find local minimum of unconstrained version of (5.9) via
gradient descent

4 φi ← gradient_descent(start = φi)
// find bipartition with maximal cut value that results from a

diameter split
5 zi ← best_bipartition(φi)
6 if ∆(zi) > ∆(z∗) then
7 z∗ ← zi

8 φi+1 ← zi ∗ π // transform to {0, π} vector
9 φi+1 ← slightly perturb all angles of the vector by adding small random

pj ∈ [−π, π] values to each entry
10 return z∗

Runtime: Burer et al. (2002) do not analyze the theoretical computational complex-
ity of their algorithm. The runtime of each iteration of the loop is dominated by the
gradient descent (which is highly non-trivial to analyze for worst-case performance). All
other steps allow for linear-time implementations. Finding the best bipartition in line 5
can be realized in O(m + n · log(n)) time. First, sort all vertices based on their current
angle in φi. Next, treat all angles in φi between 0 and π as candidates for α that result
in the best cut value (α ≥ π can be skipped, due to symmetry). When going through
these candidates for α in order, only one vertex switches the subset in the corresponding
vertex bipartition. In this way, the MaxCut value of the last bipartition can be updated
efficiently, resulting in an overall runtime of O(n · log(n)) for sorting and O(m + n) for
calculating all O(n) MaxCut values. The remaining lines take at most O(n) time (if
the MaxCut values for zi and z∗ are cached in previous steps). We will see in our
computational experiments that the heuristics is usually quite fast in practice.
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Figure 5.7.: Visualization of the MST heuristic by Barahona et al. (1989). Left: A graph
G and the values of all edge variables in the current LP relaxation. Right:
The transformed graph H and its maximum spanning tree (non-dashed
edges). The spanning tree implies the vertex bipartition ({b, d}, {a, c, e, f}).

5.4.3. MST-Heuristic
A heuristic that makes use of the values of variables corresponding to edges in an LP
relaxation was suggested by Barahona et al. (1989). It is based on the observation that
a selection of edges of a spanning tree fully defines a bipartition of all vertices / a cut.
The heuristic consists of three steps:

1. Construct a graph H with the same set of vertices and edges as the input G,
but where the weights of an edge {u, v} depend on the value of its corresponding
variable xuv in the LP relaxation. Concretely wuv = |xuv − 0.5|.

2. Calculate a maximum spanning tree on the resulting graph H.

3. Convert the spanning tree into a bipartition: Pick any vertex, say u, and assign
u to the first partition. Perform a graph exploration through all edges of the
maximum spanning tree (via e.g. DFS or BFS) starting at u. When traversing an
edge from vertex a to vertex b assign b to the same partition as a if the lp value
xab of the corresponding edge is < 0.5 otherwise to the opposite partition of b.

Figure 5.7 shows an example. The underlying intuition is that the closer the lp value
of a variable is to zero, the more likely it might be to not be part of an optimal cut,
and the closer the lp value of a variable is to one, the more likely it might be that the
corresponding edge is part of an optimal cut.

Runtime The MST-heuristic has a guaranteed polynomial running time. When em-
ploying Kruskals Algorithm (Kruskal 1956) for finding a maximum spanning tree, the
algorithm requires O((m + n) · log(m)) time.

5.5. Objective Integrality and Scaling
Clearly, if for an integer program all coefficients of the objective have integer values,
all primal solutions also have integer values. In this case, the dual bound of the LP
relaxation can always be rounded down, potentially leading to earlier pruning of nodes
during the branch-and-bound algorithm.
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To further abuse this observation, IP-solvers test if the coefficients of the objective
function can be scaled down. If all objective coefficients are divisible by k, scaling
the objective by 1/k improves the upper bound from the LP relaxation. For example,
consider an IP where all values of the objective function are divisible by 5 and for which
the LP relaxation gives a value of 7.5. If the best primal solution found has a value of 5
the branch-and-cut algorithm needs to proceed. If we scale the objective by 0.2, the LP
relaxation will have a value of 1.5 which can be rounded down to 1.0. The primal bound
will be 1 in the scaled down version of the problem, leading to a cutoff of the current
node. In our algorithm, we simply search for the greatest common divisor (if all edges
of the input graph have integer weights) to find the best value to scale down.

Liers (2004, p. 72) shows that in k-regular graphs, if all edge weights are from {−t, t}
with t ∈ N and either k or t is even, all possible cuts have even values. As a result,
all objective coefficients can be divided by two in these cases, again giving better LP
relaxation bounds via rounding down. The result allows for a generalization, with a less
strict requirement for the edge weights that we present next.

Proposition 5.5.1. Let G = (V, E, w) be a weighted undirected graph, with w ∈ Z|E|.
If all vertices in G′ = G[Eodd], where Eodd ⊆ E contains all edges with odd weight, have
even degree, then every cut in G has even value.

Proof. We show that every cut in G′ and every cut in G\G′ has even value. This already
implies that all cuts in G have even value, as the cut value of any vertex-bipartition in
G, is the sum of the cut value of the same bipartition in G′ and G \G′. If both values
are even, the result follows immediately.

All cuts in G \ G′ have even value, as by definition of Eodd, all edges in G \ G′ have
even weight and the sum over even values is always even.

For G′ we show, that every cut in G′ has even cardinality. As a direct consequence,
every cut in G′ has even value, because the sum over even many odd numbers is even.
Let δ be any cut in G′ with odd cardinality and (S1, S2) be a bipartition inducing δ.
Clearly, ∑u∈S1 degree(u) is even (all degrees in G′ are even). The difference between |δ|
and ∑u∈S1 degree(u) has to be even as well, as all edges incident to vertices in S1 but
not in δ have been counted twice in the sum over all degrees. If these two values are
always even, a cut δ with |δ| mod 2 = 1 can not exist in G′.

Proposition 5.5.1 is especially relevant for e.g. some of the torus graphs from our
benchmark set, where all vertices have degree 4 or 6 and edge weights are in {−1, 1}.

5.6. Experimental Evaluation
We now put the improvements and concepts from the previous sections to the test, and
explore the actual performance of our solver and benchmark the impact of its different
components (compare Figure 5.1). To this end, we first describe some implementation
details and the hardware that we used for our evaluation. We then highlight the gen-
eral performance of our solver compared to similar software. Finally, we performed an
ablation study to analyze the different components in detail.
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5.6.1. Implementation Details and Setup

Our implementation integrates multiple open-source libraries. For graph algorithms,
we build on NetworKIT (Staudt et al. 2016), for a simple and reproducible experiment
pipeline, we employ simexpal (Angriman et al. 2019). The MIP solver our project
is based on is SCIP 9.1. (Bolusani et al. 2024) combined with the commercial solver
CPLEX 22.1. (Cplex 2022) as the lp-solver. For the primal heuristic of Burer et al.
(2002) our project incorporates the code developed by Dunning et al. (2018). All of
these libraries (apart from CPLEX) are published under free and open-source licenses.
For non-scientific libraries in use, we refer to the source code of our project.

ILP Model Our branch-and-cut algorithm is based on our root-triangulated model
(5.3) from Section 5.1. We chose this model because of the promising novel results
from the previous sections on the interplay of the (RT) model and odd-cycle and clique
inequalities, and branching rules.

Branch-and-Cut Algorithm Our solver is based on SCIP (Bolusani et al. 2024), which
is highly configurable. We turn off many general purpose modules of SCIP, specifically:
General purpose primal heuristics, branching rules, cutting planes, restarts, and general
presolving. All of theses would either require modifications to our new modules or turned
out to be non-beneficial for solving times anyways (as we will see in a moment). The
integrality of all solutions is checked on the original graph (see Section 5.5). In case our
presolving introduces fractional weights, even if all optimal solutions have integer values,
we inform SCIP accordingly. Before handing over the input to our solver, we employ
the presolving of Chapter 4. For primal heuristics, we call the spanning tree heuristic
after each separation round. We employ the heuristic of Burer et al. (2002) once at
the root node with a timelimit of 2 seconds. Our implementation of the improvement
heuristic of Kernighan and Lin (1970) is called after each branch-and-bound node. For
branching, we use our new rule degree-dynamic (Algorithm 4) by default. Our solver
runs on one thread only, as parallelizing MIP-solvers is non-trivial and out of scope for
our investigation. Details of our separation procedure to augment the initial (RT) model
with cutting planes are visualized in Figure 5.8.

Hardware All experiments were carried out on servers equipped with an AMD EPYC
7543P 32-Core CPU2, 256GB of RAM and have Ubuntu 22.04 installed. Our code is
written in C++20 and compiled with GCC 11.4. All code is free and open source software,
publicly available at github3 and archived by Zenodo (Charfreitag et al. 2024b).

Seeding In all of our following experiments, we run each one at least five times with
different seeds, to compensate for performance variability (see Section 2.5). We treat
each seed-instance pair as a separate data point.

2https://www.amd.com/en/products/processors/server/epyc/7003-series/amd-epyc-7543p.html
3https://github.com/CharJon/SMS
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Figure 5.8.: The core of our cutting plane separation at the root node.
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Instance SMS QuBowl Gurobi
bab nodes time [s] bab nodes time [s] bab nodes time [s]

pm1s_100_3 273 16.5 741 48.0 10 210 97.5
pw01_100_0 70 7.5 179 8.5 2 244 15.7
mannino_k487b 2 4.7 15 4.3 850 7.4
mannino_k487c 63 232.4 not avail. >3 600.0 921 172.4
bio-diseasome 2 0.3 1 0.6 462 1.7
ca-netscience 1 0.3 1 0.0 26 0.4
g000981 1 0.0 1 0.0 1 0.1
imgseg_138032 1 0.2 1 3.9 741 34.3
gka7a 1 0.0 1 0.0 1 0.1
gka2c 1 0.3 1 0.3 441 0.2
gka5c 1 0.1 1 0.1 1 0.2
gka4d 38 43.4 9 43.7 853 52.2
be120_3_5 40 54.2 15 46.6 1 434 108.6
be250_3 79 166.3 47 150.7 >11 996 >3600.0
bqp250-3 13 56.6 17 84.1 10 819 3422.5

Table 5.1.: Comparison of our new solver (SMS) with the solvers QuBowl (Rehfeldt
et al. 2023) and Gurobi 11 (Gurobi Optimization, LLC 2024). Results are
shifted geometric means (shift is one) on our hardware, apart from those for
QuBowl; they are copied from the corresponding paper (therefore runtimes
are not directly comparable).

5.6.2. General Performance

To first present the general performance of our project, Table 5.1 shows a comparison
with other solvers: The general purpose solver Gurobi and the MaxCut specific solver
QuBowl of Rehfeldt et al. (2023). All MaxCut instances (upper half of the table)
and QUBO instances (lower half of the table) are introduced in Section 3.4. We chose
these instances because Rehfeldt et al. (2023) report detailed results of their state-of-
the-art closed-source solver on them, and they form a diverse subset of instances from
our benchmark set. The runtimes for QuBowl are not directly comparable, as this solver
was benchmarked on different and potentially slower hardware (single threaded about
22 % according to benchmarks4). In general, QuBowl and SMS perform similarly for
easy instances. When hardware is taken into account, QuBowl is generally faster for
QUBO instances. For the MaxCut instances, the picture is more diverse: On pm1s_-
100_3 and pw01_100_0 SMS creates significantly fewer branch-and-bound nodes and
this results at least for pm1s_100_3 in a runtime difference much larger than hardware
differences can explain. The same holds true for mannino_k487c. Here, the run-time
difference is even larger (one order of magnitude), which is clearly above the threshold
for differences based on the hardware. The speedup by a factor of 30 for imgseg is due
to better and possibly faster presolving, discussed in Chapter 4. In the following, we

4https://www.cpubenchmark.net/singleThread.html#server-thread
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analyze which components contribute to the overall good performance in detail. For
this, we first examine the influence of our new custom branching rule, which could be
responsible for the smaller number of branch-and-bound nodes. Up to now, the influence
of primal heuristics has not been discussed in detail for state-of-the-art solvers. We fill
this gap by analyzing their influence in the context of our solver. Lastly, we investigate
the influence of our cutting plane separation strategies, which helps with the fast solution
times for instances like mannino_k487c.

5.6.3. Cutting Planes

The (RT) model (5.3), on which our solver is based, is compact and in theory does not
require the separation of cutting planes. Nevertheless, we opt for their addition, as Re-
hfeldt et al. (2023) did for their state-of-the-art solver QuBowl and others in previous
work (Barahona et al. 1988; De Simone et al. 1996; Liers 2004; Bonato 2011). In prelim-
inary experiments, we observed that not adding cutting planes at all makes the solver
slower by orders of magnitude. Although we separate the same types of constraints,
there are still two main differences between our solver and recent projects:

1. We not only calculate and cache triangles, but also chordless 4 cycles, as already
suggested by Barahona et al. (1988). For the fast generation of facet-inducing
sparse inequalities, we then loop over the cached short chordless cycle in each
separation round.

2. We consider cliques of arbitrary size for the separation of clique-inequalities. Other
recent solvers only consider small cliques, e.g. QuBowl (Rehfeldt et al. 2023) em-
ploys an upper limit of 9.

Caching short chordless cycles (1. from above) is a small modification (recall that
using the exact separation routine for odd-cycle constraints finds the same cycles in
theory), but it might have a strong impact on overall performance, especially on grid
graphs. We therefore further analyze whether this caching is helpful by comparing our
solver in default settings with the solver when the module for 4-holes is turned off. For
most of the instances from the medium, mannino, torus, and er set, the default setting
is slightly faster (around 10 % for the shifted geometric mean over five seeds). Only
for the pw01 set and the mannino_k487c instance the solver becomes slightly slower
(slowdown of around 10 % for the shifted geometric mean over five seeds). However,
a significant benefit can be observed for the t2pm set; see Figure 5.9. Here, explicitly
considering chordless cycles of length four cuts solving times in half on average. This is
not surprising, as these instances consist of 2D-grids and therefore the shortest chordless
cycles in these instances have length four and are fundamental to their structure. It
seems like only running the general separation of odd-cycle cycle inequalities misses
some of these facet-inducing cutting planes. We conclude that the 4-hole module is
helpful most of the time and especially useful if the input is of grid structure.

Considering cliques of arbitrary size (difference 2. from above) might be especially
interesting in the context of the mannino instances. Table 5.1 showed a speedup of at
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Figure 5.9.: Runtime of our solver for the 10 instances from the t2pm set. With and
without the explicit separation of chordless cycles of length 4. All results
are aggregated over ten seeds per instance. The width of each box indicates
the 50th, 75th, etc. percentile.

least one order of magnitude for our solver on mannino_k487c when compared with
QuBowl. As this instance has the most cliques of all graphs in our benchmark set, we
investigate how big of an influence the clique-based cutting planes have. When limiting
the size of the subcliques to consider to 11, the runtime increases significantly. None
of the five seeded runs we tested was able to solve the instance to optimality in less
than 3600 seconds. This clearly shows the importance of a well-tuned separation of
clique-based inequalities for these types of real-world graphs.

5.6.4. Primal Heuristics

The compactness of the (RT) model (5.3) makes general-purpose primal heuristics ap-
plicable; any solution with integer values only is primal feasible. Hence, MIP solvers
like SCIP can use their default heuristics to find good primal solutions. Therefore, it
is not directly clear whether or not the problem-specific heuristics introduced in Sec-
tion 5.4 offer any benefit to the overall runtime of our solver. This is what we want to
investigate in this section. The state-of-the-art solver QuBowl of Rehfeldt et al. (2023)
includes versions of the same heuristics discussed in Section 5.4, but the corresponding
experimental study does not investigate the influence of the primal heuristics in detail.

When presolving already solves the instance to optimality, shrinks it to trivial size, or
the LP relaxation at the root node is integer, primal heuristics are of less benefit. Thus,
we benchmark the solver on instances regularly requiring multiple branch-and-bound
nodes (excluding instances from our easy and ising set) and compare two settings: 1)
Our solver in default settings: All of SCIPs primal heuristics turned off and only our
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runtime [s] bab nodes
set parameter min max sgm min max sgm

mannino default 2.28 356.50 10.93 1 297 5.58
scip-heur-only 1.70 336.09 9.70 1 241 6.06

medium default 0.17 49.64 2.86 1 69 2.79
scip-heur-only 0.21 116.17 4.51 1 67 2.81

pm1s default 4.33 18.23 9.43 27 363 103.54
scip-heur-only 2.46 21.36 9.25 31 404 116.14

pw01 default 4.34 11.61 7.24 13 195 62.37
scip-heur-only 2.81 11.21 6.34 14 239 70.02

w01 default 1.09 10.54 4.10 1 155 20.10
scip-heur-only 1.22 11.50 2.81 1 256 21.95

t2g default 0.01 2.13 0.17 1 3 1.09
scip-heur-only 0.02 0.18 0.09 1 3 1.03

t3g default 0.12 13.60 1.20 1 79 2.50
scip-heur-only 0.13 22.56 1.17 1 142 2.61

t2pm default 32.71 1 939.75 202.64 1 1 126 12.44
scip-heur-only 71.40 1 612.67 342.49 1 833 15.64

t3pm default 2.76 22.45 8.40 1 107 13.63
scip-heur-only 6.40 31.11 14.21 7 150 36.52

Table 5.2.: Comparison of the performance of our solver in default settings and our
solver when only SCIPs general purpose primal heuristics are active. The
sgm colum refers to the shifted geometric mean (shift is 1) and all results are
aggregated per instance set over 5 seeds per instance.

implementation of the spanning tree heuristic of Barahona (1983), the improvement
heuristic of Kernighan and Lin (1970) and the heuristic of Burer et al. (2002) from the
library of Dunning et al. (2018). 2) Our solver, but all default general purpose primal
heuristics part of SCIP are turned on and our MaxCut specific heuristics are turned
off.

Table 5.2 shows the results. For the Erdős–Rényi graphs (pm1s, pw01, w01) the
runtime slightly increases when we only employ our primal heuristics. However, the
number of branch-and-bound nodes for these instances is smaller in our default setting.
This might indicate that our setting of running the heuristic of Burer et al. (2002)
at the root node for exactly 2 s is not fine-tuned for these types instances (that get
solved in between 1 to 22 seconds range). For the two torus sets t2pm and t3pm our
MaxCut specific heuristics turn out extremely helpful. The shifted geometric mean of
the runtimes decreases by close to 50 %. For real-world instances in the medium set, we
also see a significant reduction in running times.
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5.6.5. Branching

To evaluate the performance of our new branching rules degree-static and degree-dynamic
(Algorithm 4), we aim to answer the following question: How do these two perform,
compared to general-purpose branching rules (SCIPs default branching rule and SCIPs
implementation of pseudocost branching) and the other MaxCut specific one of Nguyen
and Minoux (2021)?

Clearly, the comparison only makes sense for instances where the solver creates mul-
tiple branch-and-bound nodes, and thus we again leave out the easy and ising set.

For the rule of Nguyen and Minoux (2021), we can draw a compact conclusion: For
their implementation, CPLEX 12.7 performs branching decisions until there exists a
variable that corresponds to a vertex that has more neighbors with integer value (in the
current LP relaxation) than the average vertex degree. By default, CPLEX is assumed
to perform some kind of reliability pseudocost branching (the code of this commercial
solver is closed source). If we leave the branching to SCIPs version of this rule, our
solver produces branch-and-bound trees much smaller than in the study of Nguyen and
Minoux (2021) and the condition for their branching rule is never met. Hence, we only
compare our rules against SCIPs general-purpose branching in the following.

Table 5.3 shows the runtime and the number of branch-and-bound nodes for our
solver, when either one of our or SCIPs general-purpose branching rules is enabled on
the instance sets requiring a relevant number of branch-and-bound nodes. As is to be
expected, SCIPs reliability pseudocost branching always creates the smallest number
of branch-and-bound nodes. But the extra time invested into the strong-branching
lookahead does not always pay off; often it is better to just stick to pure pseudocosts. The
MaxCut specific rules are always the better choice (considering the shifted geometric
mean of the runtimes). For the three Erdös-Renyi instance sets (pm1s, pw01, w01),
there is little difference between degree-dynamic and degree-static. But for the most
difficult set of torus instances (t2pm), we see our new rule degree-dynamic outperforming
the degree-static rule. The solving times for these instances fluctuated the most, so
we present them in more detail in Figure 5.10. Pure pseudocost branching performed
extremely poorly, hence we did not include it in this plot.

As all vertices have a degree of four in these 2D torus graphs, degree-static degenerates
to random branching. The fact that it often outperforms reliability pseudocost branching
in runtime shows that most variables (with a fractional value in the current lp solution)
are good branching candidates, and expensive lookaheads are rarely worth their runtime.
Still, degree-static produces outliers that require significantly more branch-and-bound
nodes. By employing degree-dynamic instead of degree-static the number of outliers can
be reduced. The mean runtime drops significantly (33 %) and even the shifted geometric
mean of runtimes decreases by about 6 % (compare Table 5.3).

The degree-dynamic branching rule leads to fewer ties than degree-static, but for some
graphs, there are still many equal branching candidates. We also experimented with
tie breaking based on SCIPs pseudocost branching, but this led to worse performance
overall.
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runtime [s] bab nodes
set parameter min max sgm mean min max sgm mean

m
an

ni
no deg-dynamic 2.28 356.50 10.93 62.28 1 297 5.58 25.70

deg-static 2.29 339.31 10.88 61.55 1 415 5.28 31.85
pscost 2.29 1 732.56 14.43 189.62 1 1 650 10.96 137.45
relpscost 2.29 615.85 12.51 98.16 1 212 3.14 15.50

m
ed

iu
m deg-dynamic 0.17 49.64 2.86 9.34 1 69 2.79 7.40

deg-static 0.17 49.43 2.86 9.31 1 91 2.87 8.69
pscost 0.17 49.87 2.85 9.27 1 93 2.83 8.11
relpscost 0.16 49.56 2.86 9.28 1 20 2.40 4.16

pm
1s

deg-dynamic 4.33 18.23 9.43 10.34 27 363 103.54 137.92
deg-static 4.41 20.27 9.70 10.72 29 413 112.07 153.72
pscost 4.81 39.69 14.90 17.57 39 921 217.70 325.16
relpscost 9.37 32.20 20.00 21.16 7 351 78.01 132.88

pw
01

deg-dynamic 4.34 11.61 7.24 7.46 13 195 62.37 75.12
deg-static 4.35 11.90 7.15 7.35 13 189 61.22 73.16
pscost 4.45 22.36 10.23 11.04 15 505 116.31 152.20
relpscost 6.78 21.66 15.22 15.92 3 151 33.53 50.04

w
01

deg-dynamic 1.09 10.54 4.10 4.47 1 155 20.10 34.92
deg-static 1.09 10.36 4.08 4.45 1 183 20.02 35.88
pscost 1.09 19.39 4.72 5.53 1 439 30.13 63.68
relpscost 1.09 18.44 7.16 8.35 1 119 7.10 16.36

t2
g

deg-dynamic 0.01 2.13 0.17 0.25 1 3 1.09 1.13
deg-static 0.01 2.14 0.17 0.25 1 3 1.09 1.13
pscost 0.01 2.14 0.17 0.25 1 3 1.09 1.13
relpscost 0.01 2.13 0.17 0.25 1 1 1.00 1.00

t3
g

deg-dynamic 0.12 13.60 1.20 2.24 1 79 2.50 9.00
deg-static 0.12 13.65 1.20 2.22 1 75 2.61 9.53
pscost 0.12 14.30 1.22 2.35 1 73 2.54 8.82
relpscost 0.12 31.22 1.49 4.34 1 51 2.00 5.33

t2
pm

deg-dynamic 32.71 1 939.75 202.64 268.12 1 1 126 12.44 57.47
deg-static 33.13 11 536.18 216.57 401.08 1 10 776 14.47 190.76
pscost 33.12 17 019.63 433.58 1 365.85 1 11 962 74.27 741.70
relpscost 33.12 1 078.78 252.06 313.36 1 228 6.67 15.82

t3
pm

deg-dynamic 2.76 22.45 8.40 9.98 1 107 13.63 29.93
deg-static 2.76 22.39 8.48 10.09 1 107 14.42 32.33
pscost 2.78 20.96 9.06 10.88 1 87 15.55 33.93
relpscost 2.79 33.92 13.82 18.89 1 37 6.32 11.00

Table 5.3.: Comparison of runtime and number of branch and bound nodes of our solver
when paired with different branching rules. Aggregated results for each
benchmark sets are for five random seeds per instance and sgm refers to
the shifted geometric mean (with a shift of 1).
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Figure 5.10.: Comparison of runtime and number of branch and bound nodes of our
solver when paired with different branching rules on the ten instances from
the t2pm set, each solved with 10 different seeds. Top: Runtime of our
solver in seconds, logarithmic scale. Bottom: Number of branch-and-bound
nodes, logarithmic scale. The width of each box indicates the 50th, 75th,
etc. percentile.

5.7. Conclusion

We presented novel theoretical results for integer programming for MaxCut and intro-
duced a new exact MaxCut solver that allowed us to benchmark the impact of our new
techniques in practice. In general, the solvers performance is competitive to the state of
the art, giving empirical evidence that our new concepts are helpful.

The refined integer programming model for MaxCut, (RT), is compact and pairs well
with existing techniques for branch and cut, and we based our solver on this model.

Conveniently, established algorithms for the generation of cutting planes can be ap-
plied to the (RT) model and our theoretical results reveal tuning potential for them.
Fixed variables (by e.g. branching decisions) in this model can be ignored for the sepa-
ration of odd-cycle inequalities, resulting in less work.

Additionally, the model also has implications for branching rules themselves. In gen-
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eral, our model allows for branching on variables corresponding to vertices or variables
corresponding to edges, but our results give theoretical evidence that branching on vari-
ables corresponding to vertices can be beneficial. For graphs that can be solved fast (in
less than 1 minute), our degree-dynamic and degree-static rules perform very similarly
and outperform two state-of-the-art branching heuristics (pseudocost branching and re-
liability pseudocost branching). The 2D torus instances from statistical physics in our
benchmark set turn out to be the most difficult instances when it comes to calculating
optimal solutions. For them, our new rule degree-dynamic performs best on average as
it has fewer outliers than our degree-static rule.

In our analysis of the impact of primal heuristics on our solver, we saw that the solver
clearly benefits from fine-tuned MaxCut specific heuristics.
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In this chapter, we draw a brief conclusion of the results presented in this thesis and
discuss open problems and possibly fruitful future directions for research.

Conclusion The diverse real-world applications of MaxCut and its special combina-
torial structure have led to the development of many different theoretical algorithms and
practical solvers in the last decades.

Often real-world input has structure that can be exploited to reduce its size without
sacrificing optimal solutions. This process is called presolving, consists of two techniques
(data reduction and decomposition) and is generally considered one of the most crucial
components for fast integer programming solvers (Achterberg et al. 2020). We suggested
categorizing data reduction for MaxCut into three main groups: Reductions based on
edge separators, vertex separators, and vertex similarity. For each of these categories, we
presented new reduction rules. Those for vertex separators come from a new and unified
framework. The most potent rules exploit vertex separators of sizes two and three.

One type of exact MaxCut algorithm from the literature is based on integer pro-
gramming and branch-and-cut. Almost 40 years after the seminal ILP-based techniques
for the MaxCut problem were introduced by Barahona and Mahjoub (1986), they still
form the foundation for modern solvers and allow for new theory and engineering. We
discussed a refined model and its implications for cutting plane generation and branching
decisions. These implications gave intuition for new MaxCut specific branching rules.
By revisiting the separation algorithms for well-known cutting planes, we also uncovered
advanced engineering techniques.

Each of our new techniques showed promising performance when integrated into our
solver. For real-world instances our presolving allows for speed-ups of up to one order
of magnitude when compared against the state of the art. For a real-world instance,
on which our presolving only slightly outperformed earlier approaches, our fine-tuned
separation of certain clique inequalities allowed for a significant reduction in solving
time. Our analysis of MaxCut specific primal heuristics from the literature gave new
and explicit empirical evidence on their good performance; their inclusion in the solver
resulted in speedups between a factor of two and three. And finally, our MaxCut
specific branching rules always outperformed the general purpose once.

Outlook and Future Work Our MaxCut solver was well suited to test our new tech-
niques; its performance is comparable to the state-of-the-art solver QuBowl of (Rehfeldt
et al. 2023), allowing evaluation of the different components in a reasonable setting. To
further improve its practical performance, the parallelization techniques Rehfeldt et al.
(2023) might be promising.
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We implemented special algorithms that allow us to solve MaxCut for certain classes
of graphs to optimality in polynomial time. The literature offers some more algorithms
of this type, e.g. for planar graphs, and adding them to the solver would clearly expand
its capabilities.

Also, MaxCut presolving might benefit from revisiting presolving for quadratic un-
constrained binary optimization and unconstrained pseudo-boolean optimization (and
vice versa). Although these problems allow for structure-preserving transformations
into each other, it is not directly obvious whether all techniques from one branch of the
literature have been explored in the others.

Finally, we want to stress the importance of real-world data and good instance libraries
for algorithm engineering. By offering our McSparse solver as a web-service, we hope
to collect many instances interesting for practitioners. A good next step would be to
analyze these instances, extract a diverse set, and make them publicly available as a part
of some (possibly new) instance library. Ideally, this library should be enriched with
structural insight into the instances contained. Including nontrivial graph properties,
such as biconnectivity or planarity. In addition, adding presolved versions of instances to
the library might be helpful to allow other researchers to experiment with hard instances,
without the need to reimplement sophisticated presolving algorithms.
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A. Appendix

A.1. File Formats
All files used for our MaxCut experiments were in ".mc" format. The McSparse web
solver also accepts graphs in ".mc" format, as well as QUBO instances in ".bq" format.
For spinglass submissions, McGroundstate uses the ".sg" and ".gsg" formats. We sketch
the basics of the file formats here to allow for easier use of our solvers.

All file formats are based on pure files and allow for an arbitrary number of comments
at the beginning of each file. The comment lines must be prefixed with "#".

mc The ".mc" file format describes a one-indexed simple undirected graph. The first
non-comment line has the number of vertices (n) and the number of edges (m), separated
by a single space character. After this line there are m additional lines, each describing
one (unique) edge. An edge is a space-separated list of the form "vertex-ID vertex-ID
weight", where the vertex-IDs are from {1, . . . n}.

bq The ".bq" file format describes a square matrix. The first non-comment line has
the dimension (n) and the number of non-zero entries (m), separated by a single space
character. After this line there are m additional lines, each describing one (unique) non-
zero entry. A non-zero entry is of the form "row column entry", where row and column
are from {1, . . . n}.

sg The ".sg" file format describes a spin glass. The first non-comment line has the
number of spines (n) and the number of interactions (m), separated by a single space
character. After this line, there are m additional lines, each describing one (unique) inter-
action. An interaction is a space-separated list of the form "spin-ID spin-ID interaction-
strength", where the spin-IDs are from {1, . . . n}.

gsg The ".gsg" file format describes a square 2D or cubic 3D spin glass of size l. It
inherits all properties from the ".sg" format, but additionally assumes all spins to be
aligned in a 2D or 3D grid. Let (d1, d2, d3) ∈ {1, l}3 be the position of a spin in a 3D
spin glass. The ID of each vertex must be d1 + (d2 − 1) · l + (d3 − 1) · l2.
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