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1. Introduction 

1.1 Coronaviruses 

Coronaviruses (CoV), a diverse group of single-stranded, positive-sense 

ribonucleic acid (RNA) viruses enveloped in a lipid layer, were first identified in 

the 1960s in patients exhibiting symptoms of the common cold (Tyrrell and 

Bynoe, 1965; Hamre and Procknow, 1966; McIntosh et al., 1967; Dorothy et al., 

1967). These viruses were subsequently classified within the Coronaviridae 

family and taxonomically divided into four distinct genera: alphacoronavirus, 

betacoronavirus, gammacoronavirus, and deltacoronavirus (Cavanagh et al., 

1994; Chang et al., 2020). While the alpha- and betacoronaviruses predominantly 

affect the respiratory and gastrointestinal systems of mammals, including 

humans, the gamma- and deltacoronaviruses primarily target avian species, 

though they can also infect mammals (Yu Chen, Liu, et al., 2020). 

Coronaviruses share a conserved genome organization and gene expression 

pattern, consisting of 16 non-structural proteins and four structural proteins spike 

(S), envelope (E), membrane (M), and nucleocapsid (N) (Burrell et al., 2017). The 

distinctive feature of coronaviruses is their crown-like appearance under an 

electron microscope, a characteristic derived from the S proteins that prominently 

protrude from their surface (Li, 2016). The spike proteins are key players in the 

virus's life cycle and represent a focal point in coronavirus research as the S 

protein facilitates the attachment and entry into the host cells by binding to 

specific receptors on the host cell surface (McCallum et al., 2020). The Receptor-

Binding Domain (RBD) affinity of the spike protein dictates the ability to infect 

different species and the tissue tropism (Fehr and Perlman, 2015; Ji et al., 2022).  

Once inside the cell, through hijacking the host cell machinery, the virus produces 

the components needed to create new virions. The N protein is self-assembled 

and binds to the viral RNA to protect the viral genome from extracellular agents 

and guarantee prompt replication and further transmission (McBride et al., 2014). 

The M protein represents the core membrane components and is the central 

organizer of the envelope formation by interacting with all other structural proteins 
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of the virus, although by itself is not able to produce new virions (Neuman et al., 

2011; Schoeman and Fielding, 2019). The E proteins are essential components 

for virus assembly and release, as deleting the E from the genome leads to 

impaired viral maturation and production of viruses incapable of effective 

propagation (de Haan et al., 2000; Ortego et al., 2007). This unique structural 

organization is crucial for the virus's life cycle and pathogenicity. The interaction 

of these structural proteins with the host's cellular machinery and innate immune 

system, in order to modulate the immune response, dictates the efficiency of viral 

spread and the severity of the disease (Fung et al., 2014; Fung and Liu, 2019). 

These interactions determine not only how rapidly and widely the virus can 

propagate within a host population, but also the extent and intensity of clinical 

symptoms experienced by infected hosts (Gordon et al., 2020; Kasuga et al., 

2021). 

Figure 1: General structure of the coronaviruses. The outer layer 

of the coronavirus consists of spike (S), membrane (M), envelope (E) 

glycoproteins. Enclosed within this structure is the viral RNA, wrapped 

around the nucleocapsid (N) protein. Created with BioRender.com. 
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Recent genomic sequencing data have significantly advanced our understanding 

of the origins of human coronaviruses, identifying zoonotic spillover events as 

one of the main cause for the emergence of major pathogenic strains of 

betacoronaviruses such as Severe Acute Respiratory Syndrome related 

Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus 

(MERS-CoV) (Forni et al., 2017), and SARS-CoV-2 (Wrobel et al., 2021; Wang 

et al., 2023). However, current evidence suggests that the human coronaviruses 

229E, OC43, NL63, and HKU1 are adapted to the human host, resulting in their 

persistent circulation within the human population, while there is no substantial 

evidence to indicate the ongoing maintenance of these viruses in any of the 

original bat or rodent animal reservoir (Su et al., 2016). Bats have been identified 

as the high-risk ideal reservoir for both alphacoronaviruses and 

betacoronaviruses and are considered as the probable source for the emergence 

of various diseases that have subsequently made the leap to humans (Woo et 

al., 2012; Letko et al., 2020). This inter-species transmission is facilitated by the 

plasticity of the spike protein, allowing coronaviruses to adapt to new host 

receptors (Tian et al., 2022). Additionally, domestic animals have been proven to 

serve as intermediate hosts in the emergence of novel coronaviruses pathogenic 

to humans (Cui et al., 2019). Significant populations of SARS-CoV-like viruses in 

southern China's horseshoe bats, emphasize the elevated risk of new viral 

pandemics emerging from the consumption of exotic wildlife (Cheng et al., 2007). 

Prominent betacoronaviruses, such as SARS-CoV and MERS-CoV, have been 

responsible for significant epidemics over the past two decades. SARS-CoV, first 

identified in Southeast Asia in 2002, led to over 8,000 cases of SARS  with a case 

fatality rate of approximately 11 % (Chan-Yeung and Xu, 2003). Similarly, MERS-

CoV, first reported in September 2012, resulted in 2,494 infections with a fatality 

rate of 37 % primarily due to acute respiratory failure or related complications (C. 

Huang et al., 2020). These outbreaks highlight the public health challenges posed 

by betacoronaviruses, particularly in terms of transmission and severity of clinical 

outcomes. 
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In late 2019, a novel betacoronavirus SARS-CoV-2 was first identified in China. 

Characterized by its rapid transmission rate and a case fatality rate of 5 %, the 

outbreak swiftly escalated into a pandemic, impacting nations worldwide (Shu 

Yang et al., 2020). Three years into the SARS-CoV-2 pandemic, the death rate 

has been reduced by extensive vaccination efforts and disease mitigation 

procedures, yet the virus has caused notable footprint on global healthcare 

systems, challenging hospital capacities and disrupting routine medical care. 

Additionally, the pandemic impacted remarkably the global economics and 

escalated psychosocial stress, underscoring the essential need for continued 

intensive virus and vaccine research and enhanced preparedness for future 

epidemics (Pak et al., 2020). 

1.2 SARS-CoV-2 

SARS-CoV-2, the pathogen responsible for the coronavirus disease 2019  

(COVID-19) pandemic, represents the seventh coronavirus identified to infect 

humans (Andersen et al., 2020). Early research efforts to classify the virus, 

discovered a 80 % similarity to SARS-CoV at nucleotide level (Zhang and 

Holmes, 2020; Lu et al., 2020). This genomic similarity has been crucial in 

understanding the virus's mechanisms of infection and pathogenesis. It is known 

that angiotensin-converting enzyme 2 (ACE2) serves as a cellular entry receptor 

for SARS-CoV, and it was investigated for its interaction with SARS-CoV-2 (Li et 

al., 2003; Kuba et al., 2005). Studies revealed infection of ACE2 expressing cells 

mediated by the S protein of SARS-CoV-2 with a 10- to 20-fold enhanced binding 

affinity to the receptor compared to SARS-CoV, confirming its use of the same 

receptor for host cell entry (Wrapp et al., 2020; F. Zhou et al., 2020).  

1.2.1 ACE2 expression and the putative impact of comorbidities 

ACE2 is a metalloproteinase ectoenzyme that acts as a catalyser of angiotensin 

II to angiotensin, the latter having a vasodilating function and thus playing an 

important role in the regulation of cardiovascular and renal functions (Keidar et 

al., 2007). Analyses of immunofluorescence staining and human transcriptome 

databases have demonstrated that ACE2 is expressed by the type II alveolar 
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cells (AT2) in the lower lung, while in the upper respiratory tract the expression is 

more abundant, largely in the ciliated cells (Zou et al., 2020; Hou et al., 2020). 

Unlike SARS-CoV, which primarily targets the lungs, SARS-CoV-2 can infect both 

the upper and lower respiratory tracts efficiently (Meyerholz et al., 2016; Lui et 

al., 2020). The variance in ACE2 expression across the respiratory tract is 

strongly reflected in the SARS-CoV-2 infection pattern, with nasal ciliated cells 

emerging as predominant site for the virus’ replication during initial phase of 

infection (Ahn et al., 2021). In the progressive stages of infection, the organ-

specific damage observed in correlates with the distribution of ACE2 expression 

across various tissues, highlighting the pivotal role of ACE2 availability on cells 

and the pathophysiological impacts of the virus at a systemic level (Du et al., 

2020).  

Throughout the body, ACE2 expression has been observed to be most 

pronounced in the intestine, with subsequent high levels identified in the testis, 

kidneys, and cardiac muscle tissue (Figure 2) (Y. Wang et al., 2020). In the 

intestine, the marker is more abundant on the enterocytes of the small intestine 

relative to the colon, and in patients infected with SARS-CoV-2 

immunofluorescence staining revealed the presence of N protein within the 

cytoplasm of gastric, duodenal, and rectal glandular epithelial cells, as well as in 

the upper and stratified epithelial cells of the oesophagus (Lamers et al., 2020; 

Xiao et al., 2020). Renal ACE2 is primarily membrane-bound found on the surface 

of epithelial and endothelial cells, but N protein was successfully stained in the 

renal tubules in post-mortem samples of patients who succumbed to SARS-CoV-

2 infection, validating the direct infection potential of renal cells by the virus (Kroll 

et al., 2023). In cardiac tissue, ACE2 expression is specifically localized to 

pericytes (Liang Chen, Li, et al., 2020). Analysis of myocardial tissue from 

autopsy samples has confirmed the presence of the SARS-CoV-2 viral genome. 

Notably, in situ hybridization techniques have identified that the predominant 

localization of SARS-CoV-2 is not within the cardiomyocytes themselves but 

rather in the interstitial cells or macrophages that infiltrate the myocardial tissue 

(Lindner et al., 2020). In the liver, ACE2 is not expressed in hepatocytes, Kupffer 
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cells, or endothelial cells but is detected in cholangiocytes, which can explain liver 

injury to some extent (Vabret et al., 2020). Although endothelial cells express 

ACE2, recent studies indicate that endothelial inflammation occurs independently 

of ACE2 enzymatic activity and viral replication (Montezano et al., 2023). 

1.2.2 Processing factors for cell infection  

While ACE2 acts as the primary binding receptor for host cells, the successful 

infection by SARS-CoV-2 depends on the proteolytic activation by cleavage of its 

S protein, a crucial step for facilitating the fusion between the host cell membrane 

and the virus (Fraser et al., 2022). The S protein is composed of two subunits: 

S1, containing the RBD, and S2, responsible for mediating membrane fusion 

(Walls et al., 2020). Two target-cell proteases have been identified to drive the S 

protein activation (Figure 3): transmembrane serine protease 2 (TMPRSS2) at 

the furin cleavage site during “early infection” via the plasma membrane and 

cathepsin L (CTSL) at the cathepsin cleavage site (CS-1 and CS-2) in the course 

of “late infection” via endosomal uptake (Essalmani et al., 2022; Jackson et al., 

Figure 2: Distribution of ACE2 protein expression across 
human organs. Summary of tissues expressing ACE2 including 

gastrointestinal and respiratory tract, heart, kidneys, testes and 

brain. Created with Biorender.com  
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2022; M.-M. Zhao et al., 2022). Inhibiting TMPRSS2 activity with a protease 

inhibitor significantly reduced SARS-CoV-2's infection efficiency in lung cells 

(Hoffmann et al., 2020). On the other hand, CTSL overexpression lead to 

enhanced infection while it’s blockage prevented infection both in vitro and in vivo 

(Zhao et al., 2021). Concurrently, removal of the virus's furin site results in 

asymptomatic disease in hamsters (Johnson et al., 2021). These findings 

suggest that the focus in combating SARS-CoV-2 should extend beyond just 

neutralizing antibodies that block the RBD-ACE2 interaction, by targeting the furin 

cleavage site as a viable strategy, thereby restricting viral infectivity by limiting its 

ability to effectively prime the spike protein for cell entry (Spelios et al., 2022).  

  

Figure 3: SARS-CoV-2 host cell entry pathways. Following initial binding to the 

ACE2 receptor via its receptor-binding domain (RBD), SARS-CoV-2 employs two 

main routes for cellular invasion. Through the “early pathway” (1A) the virus 

utilizes the host TMPRSS2 on the cell surface to cleave the S protein, thus 

allowing for the entry via the plasma membrane. Alternatively, in the “late 

pathway” (1B), SARS-CoV-2 undergoes endosomal uptake and relies on CTSL 

to cleave the S protein. In both pathways, the activation and cleavage of the S 

(2) lead to the fusion of the viral and host cell membranes (3), facilitating the 

release of the viral genome into the host cell's cytoplasm. 
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1.2.3 Factors contributing to adhesion of SARS-CoV-2 to host cells 

C-type lectins such as dendritic cell-specific intercellular adhesion molecule-3-

grabbing non-integrin (DC-SIGN), liver/lymph node-specific intercellular adhesion 

molecule-3-grabbing non-integrin (L-SIGN) and sialic acid binding 

immunoglobulin like lectin 1 (SIGLEC1) have been identified to be involved in 

viral dissemination and increased infectivity, however these cannot support 

efficient infection in the absence of ACE2 (Amraei et al., 2021; Jackson et al., 

2022). Activated dendritic cells (DCs) were observed to be resistant to direct 

SARS-CoV-2 infection, however these possess the ability to trans-infect cells 

expressing ACE2 and TMPRSS2 by transporting the virus via the SIGLEC1 

receptor to susceptible host cells. This process was significantly reduced in the 

presence of anti-SIGLEC1 antibodies, suggesting that SIGLEC1-mediated trans-

infection by DCs might facilitate the dissemination of the virus to pulmonary and 

distant tissues (Lempp et al., 2021). Studies indicate that C-type lectins bind the 

S protein through epitopes located outside the RBD in the S1 region. When 

mutations were introduced into the S1 RBD, the modified protein lost its ability to 

bind ACE2, but retained its affinity for C-type lectins. Furthermore, the 

introduction of soluble mannan, a mannose polymer acting as a ligand for C-type 

lectins, successfully blocked the S protein's binding to DC-SIGN and L-SIGN in a 

competitive manner without impacting its interaction with ACE2. Conversely, 

treatment with endoglycosidase, an enzyme that removes high-mannose 

oligosaccharides from N-linked glycans, specifically reduced the S protein's 

binding to DC-SIGN and L-SIGN (Q. Lu et al., 2021).  

Beyond the primary mechanisms, additional molecular players like the neuropilin 

(NRP1) receptor also contribute to the virus's infectious efficiency, serving as a 

critical component in the development of neurons and the cardiovascular system 

(Pizzato et al., 2022). The proteolytic cleavage at the S protein's furin site, reveals 

a region that can bind to and activate NRP1. While NRP1 does not sustain viral 

uptake, it’s co-expression with ACE2 and TMPRSS2 significantly increases viral 

infectivity, whereas its inhibition through antibodies or deletion reduces virus 

uptake in cells co-expressing NRP1 with the main cell entry factors (Cantuti-
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Castelvetri et al., 2020). Importantly, NRP1 is highly expressed in olfactory 

epithelial cells. The detection of the S protein in the olfactory epithelium of SARS-

CoV-2 infected individuals, despite the low ACE2 expression in this tissue, 

suggests that the virus utilizes additional factors to boost its interaction and 

infection efficiency, thereby enhancing its ability to infect tissues with low levels 

of the primary entry receptors (Daly et al., 2020). 

In addition, other elements such as cluster of differentiation (CD) 147 and 

heparan sulfate (HS) have been identified to promote SARS-CoV-2 infection of 

host tissues. HS plays a crucial role in the binding of the virus to the membrane 

of epithelial cells. Treatment with unfractionated heparin or heparin lyases 

significantly decreases the binding of S proteins to human primary bronchial 

epithelial cells, thus reducing infection rates by more than fivefold without 

affecting cell viability (Clausen et al., 2020). CD147 was reported as a potential 

alternative binding receptor for cell entry, considering that viral replication was 

diminished in CD147 knockdown immortalized human bronchial epithelium and 

anti-CD147 antibodies reduced infection of the cells in a dose-dependent manner 

(K. Wang et al., 2020). Additionally, overexpression of CD147 enhanced virus 

infection and viral presence was noted in the lungs of human CD147 (hCD147) 

transgenic mice following SARS-CoV-2 infection, a phenomenon not observed in 

wild-type (WT) mice 48 hours post-infection (K. E. Wang et al., 2020).  

The various strategies used by SARS-CoV-2 to invade host cells underscore its 

adaptability to infect the human system and provide insights into the 

pathogenesis of the disease it causes, offering explanations for the spectrum of 

symptoms observed in infected individuals. 

1.2.4 Proteins restricting infection 

The human immune system is continuously engaged in a dynamic confrontation 

with pathogens attempting to breach anatomical barriers. This requires a 

balanced and quick immune response that effectively eliminates the pathogen 

and the infected cells without disrupting the own biological system and also the 

beneficial symbiotic relationship with the hosts commensals (Latz et al., 2013). 
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Central to this defence mechanism is the innate immune response, characterized 

by a range of signalling receptors and cells proficient at recognizing both 

exogenous molecular structures and endogenous molecules that undergo 

modification or become abundant during infection (Hornung et al., 2006; Kawai 

and Akira, 2011). Specifically, in the context of viral infections such as those 

initiated by SARS-CoV-2, the innate immune machinery is instrumental in limiting 

viral entry and proliferation, identifying and annihilating the infected cells, and 

facilitating the transition to an adaptive immune response tailored to the invading 

pathogen (Diamond and Kanneganti, 2022). 

Key players of the innate immune system, including granulocytes, natural killer 

(NK) cells, monocytes/macrophages, innate lymphoid cells (ILCs), as well as 

many epithelial cells are equipped with a diversity of pattern recognition receptors 

(PRRs) located within endosomal compartments, the cytosol, and on the cell 

surface (Marshall et al., 2018). These receptors are specialized in detecting 

pathogen-associated molecular patterns (PAMPs) and damage-associated 

molecular patterns (DAMPs), which are indicative of non-self entities or cellular 

distress, respectively, thereby activating the immune cascade (Bianchi, 2007). 

PRRs have been classified in five principal categories: Toll-like receptors (TLRs), 

nucleotide oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-

inducible gene I (RIG-I)-like receptors (RLRs), C-type lectin receptors (CLRs), 

and absent in melanoma 2 (AIM2)-like receptors (ALRs) (Li and Wu, 2021). 

Activation of PRRs initiate signalling cascades that ultimately result in the 

transcription and generation of type I and type III interferons (IFNs), which play a 

pivotal role in the antiviral defense (Mesev et al., 2019). 

Apart from the large PRR classes, various cytosolic detectors also play a pivotal 

role in identifying viruses and initiating pro-inflammatory responses (Sun et al., 

2017; Franz et al., 2018). Among these, the cyclic GMP-AMP synthase (cGAS) 

and stimulator of interferon genes (STING) pathway is responsible for 

recognizing cytoplasmic deoxyribonucleic acid (DNA) (Sun et al., 2013; 

Schoggins et al., 2014). SARS-CoV-2 has been found to cause mitochondrial 

damage, potentially leading to the release of mitochondrial DNA into the 
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cytoplasm, thus activating the cGAS pathway and supporting the innate immune 

pathways (Singh et al., 2020). Nonetheless, SARS-CoV-2's accessory proteins, 

Open Reading Frame 3a (ORF3a) and 3C-like proteinase (3CLpro), are known 

to block the cGAS-STING pathway, dampening the body's antiviral immune 

responses (Rui et al., 2021). Treatment with the STING agonist diABZI, has been 

shown to limit SARS-CoV-2 replication in primary human bronchial epithelial cells 

and enhances survival rates in hACE2 transgenic mice (Humphries et al., 2021; 

Li et al., 2021). 

In this context, TLR7 and TLR2 play a crucial role in triggering the pro-

inflammatory response upon SARS-CoV-2 infection, leading to subsequent 

immune activation and cytokine production. TLR7, localized to endosomal 

compartments, recognizes G/U-rich single-stranded viral RNA (Campbell et al., 

2021). Notably, anomalies in the X-chromosomal gene encoding TLR7 have 

been correlated with severe disease course of coronavirus disease 2019 

(COVID-19) in younger demographics, suggesting a protective role for TLR7 

against SARS-CoV-2 infection (Van Der Made et al., 2020). Additionally, both 

murine and human macrophages reduced pro-inflammatory cytokine production 

when treated with TLR2 antagonist oxPAPC as well as in TLR2 deficiency when 

stimulated with SARS-CoV-2 E protein (Zheng et al., 2021). In lung epithelial 

cells, the melanoma differentiation-associated protein 5 (MDA5) receptor, a 

member of the RLR family located in the cytoplasm, detects RNA of replicating 

SARS-CoV-2 and triggers the production of IFNs, as the deletion or silencing of 

the MDA5 gene results in diminished IFN production in these cells upon exposure 

to SARS-CoV-2 (Rebendenne et al., 2021; Yin et al., 2021). While all types of 

PRRs play their role in activating the immune system and inducing IFNs, the 

specific contributions of each PRR during SARS-CoV-2 infection remain subjects 

of ongoing research. However, the critical role of IFNs in the defense against 

viruses, including SARS-CoV-2, is underscored by these often redundant 

mechanisms to ensure a robust antiviral response.  

The release of IFNs in response to PRR signalling represents the early defense 

mechanism against viral infections. IFNs, once secreted, bind to receptors on the 
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producing cells in an autocrine manner and on neighboring cells. This dual 

binding strategy not only amplifies the immune response within the initially 

affected cells but also prepares surrounding cells for potential viral threats, 

effectively limiting viral spread (Ivashkiv and Donlin, 2014). Moreover, IFNs play 

a pivotal role in modulating the immune landscape beyond their immediate 

vicinity. By binding to their receptors on the surface of antigen-presenting cells 

(APCs), IFNs activate specific signaling pathways with multiple effects (McNab 

et al., 2015). This activation induces cellular programming, enhancing the antigen 

presentation capabilities of APCs while simultaneously tempering the production 

of pro-inflammatory cytokines. This programming ensures that APCs adopt 

functions that balance immune activation and regulation, helping to prevent 

excessive inflammation that could lead to tissue damage. (Lee and Ashkar, 

2018). Furthermore, IFNs are involved in activating the adaptive immune 

response, facilitating the development of antigen-specific T and B cells crucial for 

long-term immunity (McNab et al., 2015). Upon binding to their receptors, IFNs 

trigger the phosphorylation of the janus kinase (JAK)-signal transducer and 

activator of transcription protein (STAT) pathway (Katze et al., 2002). This 

signalling cascade leads to the transcription of a broad array of interferon-

stimulated genes (ISGs), which possess diverse antiviral functions, from directly 

inhibiting viral replication to enhancing the immune system's ability to recognize 

and eliminate infected cells (Schoggins, 2019).  

Several ISGs have been identified to be involved in SARS-CoV-2 infection. 

Among these, interferon-induced transmembrane protein (IFITMs) have shown 

conflicting roles. Early studies reported that IFITMs restrict the human 

coronaviruses from cell entry (Huang et al., 2011). However, as more studies 

have been published, some suggest that SARS-CoV-2 S proteins may exploit 

IFITMs to enhance infectivity, with endogenous IFITM expression levels in tissue 

being sufficient to sustain infection and propagation (Nchioua et al., 2022). 

Targeting IFITMs with antibodies or usage of the IFITM-derived proteins has been 

shown to significantly reduce SARS-CoV-2 infection efficacy in lung, heart and 

intestinal cells (Prelli Bozzo et al., 2021). In individuals infected with SARS-CoV-

2 an increased mortality rate correlated with single nucleotide polymorphism in 
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the IFITM3 gene (Gholami et al., 2022). Interestingly, it has been observed that 

IFITM expression can trap the ACE2 receptor in the cytoplasm, thus reducing the 

infection (Xie et al., 2024).  

Lymphocyte antigen 6 family member E (LY6E), another ISG with dual roles in 

viral infections, facilitates the entry of influenza A virus and flaviviruses but blocks 

the fusion of the SARS-CoV-2 S protein with the cell membrane, thereby limiting 

infection (Pfaender et al., 2020). Additionally, CD74 has emerged from a 

transposon screening as an ISG capable of inhibiting the cathepsin-mediated 

cleavage of the SARS-CoV-2 S protein, thereby hindering the virus's endosomal 

entry route (Bruchez et al., 2020).  

Beyond entry inhibition, the interferon induced protein with tetratricopeptide 

repeats (IFIT) family have been described as a family of proteins to curtail viral 

replication. IFIT proteins specifically target and sequester viral RNA 

characterized by 5'-triphosphate ends or 2'-O-unmethylated caps, and IFIT1, 

IFIT3, and IFIT5 are noted for their roles in effective suppression of SARS-CoV-

2 viral replication processes (Martin-Sancho et al., 2021; Schindewolf et al., 

2023). Similarly, oligoadenylate synthases (OAS) also represent a class of 

interferon-stimulated proteins which can recognize viral ds-RNA, binding to these 

molecules and subsequently triggering RNase L activation to dismantle the viral 

RNA (Hornung et al., 2014). Emerging evidence underscores the critical role of 

the OAS1p46 isoform; its functional deficit is correlated with an escalated risk of 

advancing to severe disease in SARS-CoV-2 infected individuals (Wickenhagen 

et al., 2021; Soveg et al., 2021; Huffman et al., 2022).  

Furthermore, bone marrow stromal cell antigen 2 (BST2) was identified as an ISG 

to restrict viral egress by impeding the production of N protein. Overexpression 

of BST2 significantly reduced both SARS-CoV-2 replication and release of viral 

particles, while its deletion resulted in increased secretion of infectious virions 

(Martin-Sancho et al., 2021). SARS-CoV-2 has evolved a mechanism to 

circumvent the host defense mechanism, notably through Orf7a protein which 

counteracts the BST2 inhibitory effect (Shi et al., 2024). 
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Understanding the elements that sense and constrain the spread of SARS-CoV-2 

within the body is crucial for delineating the progression of the disease and 

developing targeted therapeutic strategies. 

1.3 COVID-19 

COVID-19 rapidly escalated into a global pandemic, exhibiting an overabundance 

of challenges for the health systems worldwide (Hu et al., 2021). The disease 

presents a wide array of symptoms impacting various organ systems such as the 

respiratory, cardiovascular, gastrointestinal, and nervous system (Cascella et al., 

2022). The clinical presentation of COVID-19 spans a broad spectrum, ranging 

from individuals who remain asymptomatic to those experiencing severe 

symptoms that require hospitalization and may ultimately result in death (F. Zhou 

et al., 2020). This variability in clinical manifestations underscores the complex 

pathophysiology of COVID-19, necessitating a sophisticated approach to 

diagnosis, treatment, and management. The pandemic's toll, as of March 2024, 

exceeded 7 million deaths, emphasizing the disease's severe impact worldwide 

(World Health Organization, 2024). 

1.3.1 Severity classifications 

The World Health Organization (WHO) has categorized the severity of the 

disease based on the spectrum of symptoms exhibited by patients (World Health 

Organization, 2023). Mild disease encompasses individuals presenting 

symptoms such as fever, cough, and shortness of breath, alongside additional 

symptoms like sore throat, nasal congestion, headache, muscle pain, fatigue, and 

sensory impairments, including anosmia (loss of smell) and ageusia (loss of 

taste) (Wiersinga et al., 2020). Moderate disease is characterized by patients 

showing signs of pneumonia, including fever, cough, dyspnoea, and rapid 

breathing, with an oxygen saturation level of ≥ 90% in ambient air (Feng et al., 

2020). Severe disease is identified by signs of severe pneumonia coupled with at 

least one of the following: a respiratory rate exceeding 30 breaths per minute, 

significant respiratory distress, or an oxygen saturation (SpO2) below 90 % in 

room air (World Health Organization, 2023). Critical patients are distinguished by 
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one or more severe clinical manifestations that necessitate immediate and 

comprehensive medical intervention. These include the development of Acute 

Respiratory Distress Syndrome (ARDS) within a week of a recognized clinical 

incident such as pneumonia or the emergence of new or exacerbated respiratory 

symptoms (Gibson et al., 2020). Additionally, critical severity may be evidenced 

by multi-organ dysfunction or sepsis, which indicates a systemic infection 

response that extends beyond the respiratory system (Zaim et al., 2020; Li et al., 

2020). Another hallmark of critical COVID-19 cases is septic shock, characterized 

by persistent low blood pressure despite the administration of fluids, requiring the 

use of vasopressors to maintain a mean arterial pressure (MAP) of at least 65 

mmHg and a serum lactate level greater than 2 mmol/L, indicative of severe 

metabolic distress (Tao Chen, Wu, et al., 2020). Acute thrombosis is a critical 

marker of severe COVID-19, characterized by conditions such as acute venous 

thromboembolism, including pulmonary embolism, acute coronary syndrome, 

and acute stroke (Gu et al., 2021). These manifestations indicate significant 

vascular complications, highlighting the extensive impact of the virus beyond the 

respiratory system. 

While most children experience mild or asymptomatic forms of COVID-19, a 

notable condition termed Multisystem Inflammatory Syndrome in Children (MIS-

C), emerges in a subset of youth around four up to six weeks following a mild or 

asymptomatic SARS-CoV-2 infection (Riphagen et al., 2020). MIS-C is 

characterized by a broad spectrum of symptoms that suggest a systemic cytokine 

storm, impacting various body systems including gastrointestinal, cardiovascular, 

hematologic, neurological, and respiratory systems (Whittaker et al., 2020; 

Ramaswamy et al., 2021). This syndrome often escalates to critical conditions, 

with up to 80 % of affected children developing distributive/cardiogenic shock, 

and it carries a mortality rate of 2 % (Feldstein et al., 2020). 

The diverse and potentially devastating impact of SARS-CoV-2 across different 

populations and organ systems, emphasizes the critical need for early 

identification of patients at risk for severe disease development and 

comprehensive treatment approaches. 
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1.3.2 Immunopathology 

1.3.2.1 Viral evolution and immune activation 

The increasing number of infections enhances the likelihood of the virus mutating, 

aiming to boost its infectivity and further evade the host immune system (Jiahui 

Chen, Wang, et al., 2020). Some variants were defined as variants of concern 

(VOC) due to their potential for increased pathogenesis, immune escape, and the 

capability to cause more severe disease, thus were encoded by the Greek 

alphabet (Harvey et al., 2021). Particularly, variants such as Alpha and Delta 

have shown to possess heightened transmissibility and viral loads, which 

complicates the task of distinguishing between elevated rates of infection and the 

intrinsic severity of the disease (Liu and Rocklöv, 2021; P. Wang et al., 2021; 

Merad et al., 2022). 

COVID-19 pathogenesis involves complex interactions between the virus and the 

host immune response, particularly within the respiratory system, the primary site 

for SARS-CoV-2 entry and subsequent immunological activation. In the lungs, 

where gas exchange is vital, SARS-CoV-2 infection triggers an immune response 

that can vary significantly in intensity (Paludan and Mogensen, 2022). While a 

balanced immune reaction can control the viral infection with minimal symptoms, 

an excessive or dysregulated response may lead to severe disease characterized 

by a "cytokine storm," extensive tissue damage, and impaired oxygen-carbon 

dioxide exchange (F. Zhou et al., 2020). This inflammatory overdrive is marked 

by the excessive production of pro-inflammatory cytokines and chemokines, such 

as Interleukin 6 (IL6), IL8, Tumor necrosis factor α (TNFα), and IL1β, which 

correlate with disease severity and poor outcomes (Del Valle et al., 2020). 

To understand the molecular mechanisms of COVID-19 pathology, various multi-

omics studies across tissues have been performed. In mild COVID-19, the 

pneumocytes and alveolar macrophages detect the viral presence and produce 

IFNs (Katsura et al., 2020; Yoshida et al., 2022). The macrophages contribute to 

the generation of an inflammatory environment to limit viral replication, increase 

antigen presentation in local and invading APCs, attraction of phagocytic cells to 

clear the virus and dead cells, and an overall activation of the adaptive immune 
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system (Lee et al., 2009; Iwasaki and Medzhitov, 2015; Barrat et al., 2019; 

Vanderheiden et al., 2020). Conversely, in the context of severe COVID19, the 

lung-resident immune cells along with AT2 cells, exhibit a compromised 

production of IFNs (Blanco-Melo et al., 2020; Hadjadj et al., 2020; Galani et al., 

2021). This deficiency, leads to infiltration of plasmacytoid dendritic cells (pDCs) 

to the lung tissue initiating a delayed production of high levels of IFNs (Yoshida 

et al., 2022; Venet et al., 2023).  

1.3.2.2 Innate immune dysregulation and hyperinflammation 

As the disease progresses, there is a notable reduction in alveolar macrophages 

that are essential for maintaining lung homeostasis. These macrophages are 

characterized by their anti-inflammatory actions, high phagocytic activity, and 

antigen-presentation capabilities, which include the expression of CCL18, 

CCL22, major histocompatibility complex (MHC) I/II, and MERTK genes. 

(Wauters et al., 2021). The persistent viral replication, coupled with increased 

levels of pro-inflammatory cytokines, promotes a pronounced dysfunction of 

endothelial and epithelial cells and extensive apoptosis (Varga et al., 2020; 

Ackermann et al., 2020; Melms et al., 2021). The impaired endothelial cells 

cannot support the homeostasis and promote arteriopathy and thrombosis (Gu et 

al., 2021). This is accompanied by the enhanced recruitment of inflammatory 

immune cells to the lung, including monocyte-derived macrophages, which 

excessively secrete pro-inflammatory chemokines and cytokines such as TNFα, 

IL6, CXCL10, IL8, and IL1β (Liao et al., 2020; Ren et al., 2021). It was previously 

shown that, in the peripheral blood of critically severe patients the HLA-

DRlowS100Ahigh monocytes are more abundant, indicating that the myeloid cells 

invading the lung tissue are already pre-primed in the periphery to express 

alarmins and pro-inflammatory cytokines, instead of presenting antigens and 

licensing T cells (Schulte-Schrepping et al., 2020; Gressier et al., 2023). 

Neutrophils are recruited to the lung during infection and play a pivotal role in 

exacerbating inflammation, cell death, and microthrombosis by releasing 

neutrophil extracellular traps (NETs), reactive oxygen species (ROS), and 

alarmins (Veras et al., 2020; Middleton et al., 2020). Moreover, neutrophils 
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secrete S100A8/A9, which act as DAMPs, initiating the TLR4 signaling pathway 

which promotes immunopathology (Chakraborty et al., 2017; Liting Chen et al., 

2020). Evidence from studies show that treatment with paquinimod, which inhibits 

the S100A8/A9 interaction with TLR4, significantly reduces exaggerated 

inflammatory responses in human macrophages and reduces fatalities in SARS-

CoV-2 infected mice (Tan et al., 2017; Guo et al., 2021; Sahanic et al., 2023; 

Nakazawa et al., 2023).  

The excessive secretion of pro-inflammatory cytokines such as TNFα, IL6, IL1β, 

and IFNγ activates caspase-8, leading to a type of unspecific programmed cell 

death known as PANoptosis (Christgen et al., 2020; Karki et al., 2021). This cell 

death process further releases more DAMPs, which then exacerbate the cytokine 

storm, amplifying the pro-inflammatory response. Consequently, this cycle of 

inflammation can result in multisystem immune dysregulation, multiorgan failure, 

and ultimately, death (Diamond and Kanneganti, 2022). 

1.3.2.3 Adaptive immune response and disease severity 

The complex interplay between the innate and adaptive immune systems during 

SARS-CoV-2 infection highlights the necessity of maintaining balance to ensure 

a coordinated immune response (Du and Yuan, 2020). This equilibrium is 

essential not only for an efficient clearance of the virus but also for preventing 

excessive inflammation that can lead to severe pathology (Shen et al., 2023). 

Central to the adaptive immunity are the T cells, which play a pivotal role in 

eliminating infected cells, facilitate antibody production and establishing lasting 

memory against SARS-CoV-2 (Sun et al., 2023). Upon SARS-CoV-2 infection, 

the adaptive immune system's primary goal is to tailor its response specifically to 

the invading pathogen (Chaplin, 2010).  

CD4+ T cells, also known as helper T cells, are crucial in this process, aiding both 

CD8+ T cells and B cells (Swain et al., 2012). The T follicular cells (Tfh) activate 

B cells that present the appropriate antigens on their surface, prompting these B 

cells to undergo class switching and affinity maturation (Crotty, 2014). For CD8+ 

T cells, the CD4+ T cells offer support by producing cytokines that enhance the 

cytotoxic function of CD8+ T cells, co-stimulate CD8+ T cells alongside antigen-
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presenting cells (APCs) to ensure their full activation, and help in the formation 

of memory CD8+ T cells (Laidlaw et al., 2016). The rapid induction of SARS-CoV-

2-specific CD4+ T cells is associated with milder disease courses and faster viral 

clearance (Tan et al., 2021). These specific CD4+ T cells can be detected early 

in the infection, as soon as 2–4 days post-symptom onset. Conversely, a delayed 

or absent CD4+ T cell response is correlated with severe disease and even death, 

underscoring the critical role of timely and effective CD4+ T cell activation on 

disease resolution (Moderbacher et al., 2020). In the context of SARS-CoV-2 

infection, CD4+ T cells predominantly adopt a Th1 phenotype, characterized by 

the production of pro-inflammatory cytokines such as IFNγ, TNFα, and IL-2 

(Sekine et al., 2020; Braun et al., 2020; Peng et al., 2020). Interestingly, some 

CD4+ T cells exhibit a cytotoxic transcriptional signature, expressing markers 

such as CD107a, PRF1, and GNLY, which suggests a direct involvement of 

CD4+ T cells in clearing the virus through cytotoxic activity against infected cells 

(Meckiff et al., 2020; Peng et al., 2020). The presence and level of activity of 

these cytotoxic CD4+ T cells can vary among individuals, indicating a degree of 

variability in the immune response to SARS-CoV-2. 

In acute COVID-19 virus specific CD8+ T cells present robust cytotoxic effector 

functions characterized by the production of IFNγ, granzyme B, perforin, and 

CD107a (Schulien et al., 2021). In patients with moderate COVID-19, cytotoxic 

CD8+ T exhibit a transcriptional profile that overlaps with the antiviral CD8+ T cell 

response, marked by high levels of IFNG, TNFA, CCL5, and PRF1, along with 

GZMB and GZMA, and the genes for cytotoxic receptors KLRB1, KLRC1, and 

KLRD1 (Chua et al., 2020). Severe COVID-19 cases further distinguish 

themselves from moderate disease by an increased abundance of naïve CD8+ T 

cell clusters and a reduced abundance of activated effector T cells (Su et al., 

2020). In contrast, cytotoxic CD8+ T cells in individuals with critical COVID-19 

show a notable decrease in the levels of CCL5, IFNG, and TNFA, yet 

paradoxically, they exhibit an enhanced cytotoxic capability, suggesting a 

complex modulation of CD8+ T lymphocytes function in dependence of disease 

stage (Chua et al., 2020). 
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The cytokine storm, alongside active killing of infected cells lead to extensive cell 

depletion and significant damage that increases the vascular permeability and 

impairs the humoral metabolism in the lung (Cui et al., 2021; Grant et al., 2021). 

Consequently this cascade causes fluid accumulation, impaired gas exchange 

and increased respiratory distress in infected individuals (Fernandes et al., 2019). 

Hypoxemia emerges as a significant indicator of severe COVID-19 pneumonia, 

with the potential to progress to ARDS, characterized by alveolar oedema and 

substantially increasing the risk of respiratory failure (Ferrando et al., 2020). 

1.3.3 Long COVID 

After the initial infection with SARS-CoV-2, some patients continue to experience 

persistent symptoms, even after the virus has cleared and regardless of whether 

their initial COVID-19 infection was mild or asymptomatic (Carfì et al., 2020). 

These ongoing and relapsing symptoms are recognized as post-acute sequelae 

of SARS-CoV-2 infection (PASC), commonly referred to as Long COVID (Bowe 

et al., 2023). According to the WHO Delphi Consensus, Long COVID is defined 

as a multisystem condition that typically emerges three months after the onset of 

COVID-19 in individuals with a confirmed past infection (Soriano et al., 2022). 

The symptoms, lasting at least two months, cannot be attributed to any alternative 

diagnosis (Altmann et al., 2023). Common manifestations include weakness, 

shortness of breath, general malaise, headaches, impaired concentration which 

significantly impact daily activities (Hastie et al., 2022). Symptoms can be newly 

developed following initial recovery or persist from the original illness and may 

fluctuate or relapse over time (Fernández-de-Las-Peñas, 2022). 

Studies indicate that between 8 % to 17 % of individuals report symptoms of Long 

COVID at 12 weeks post-infection, and several hypotheses regarding the 

underlying mechanisms have been proposed (Thompson et al., 2022). One 

theory suggests the presence of a gastrointestinal viral reservoir, with SARS-

CoV-2 detected in stool samples months after the acute infection phase (Y. Wu 

et al., 2020; Proal and VanElzakker, 2021; Swank et al., 2023). Additionally, 

reactivation of herpesviruses such as Epstein-Barr virus (EBV) and human 
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herpesvirus 6 (HHV-6) has been implicated in long COVID (Gold et al., 2021; 

Zubchenko et al., 2022). Patients with long COVID have shown increased 

antibody levels against these viruses and antigen compared to those who 

recovered from COVID-19 without persistent symptoms (Su et al., 2022; Klein et 

al., 2023). However, it is important to note that while there is a correlation 

between Long COVID and EBV reactivation, causality has not been established. 

Other multi-omics studies have identified low serum cortisol levels as a potential 

biomarker for Long COVID (Su et al., 2022; Klein et al., 2023). Immune 

dysregulation might drive the pathology in patients with prolonged symptoms. 

Studies have observed persistent alterations in T cell functions, including an 

increased number of exhausted T cells, reduced numbers of CD4+ and CD8+ 

effector memory cells, and elevated PD1 expression on central memory cells, 

persisting for at least 13 months post-infection in donors who experienced mild 

acute COVID-19 (Glynne et al., 2022; Davis et al., 2023). Additionally, the 

neuropathological aspects of Long COVID may involve several potential 

mechanisms, including neuroinflammation, vascular damage from coagulopathy 

and endothelial dysfunction, as well as direct neuronal injury (Charfeddine et al., 

2021; Proal and VanElzakker, 2021; Haffke et al., 2022; Glynne et al., 2022). 

These various observations highlight the complexity of Long COVID and 

underscore the need for continued research into its pathophysiology and 

treatment. 

1.3.4 Adaptive immune response and vaccination 

The adaptive immune response to SARS-CoV-2 is highly epitope specific and 

relies on both the B and T cell immune response against epitopes located within 

the structural and non-structural viral proteins (Cheng et al., 2021). From 

convalescent sera the majority of B cell produced antibodies target the S protein, 

especially the RBD domain, accounting for approximately 90 % of neutralizing 

activity (Lapuente et al., 2024). Vaccination is a crucial preventive measure in 

combating various viral infections, offering a primary line of defense by arming 

the immune system against future attacks. In the specific case of SARS-CoV-2, 

vaccination plays an essential role by introducing neutralizing antibodies (NAbs) 
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that actively prevent the virus from binding and infecting cells (Atyeo et al., 2020). 

Early research in a rhesus macaque model demonstrated that the level of NAbs 

targeting the S protein was the most reliable indicator of protection 

(Chandrashekar et al., 2020). As a result, the epitopes against the spike and it’s 

RBD are the primary target of the COVID-19 vaccines (Pinto et al., 2024). 

Unfortunately, as a result the immune pressure on these sites has driven the viral 

evolution to escape variants, as for example the Omicron variants carry mutations 

that escape the pre-existing antibodies against parental strains (Cao et al., 2022). 

Vaccines prepare the immune system for potential exposure to the virus, enabling 

it to quickly recognize and combat the virus upon contact by promoting an early 

IFN response, thus diminishing the likelihood of severe disease development 

(Guang Chen, Wu, et al., 2020; Hadjadj et al., 2020; McMahan et al., 2021). 

Furthermore, non-neutralizing antibodies (non-NAbs) also contribute significantly 

to protection through mechanisms such as Fc-mediated effector functions, 

including antibody-dependent phagocytosis, antibody-dependent cellular 

cytotoxicity, and antibody-dependent natural killer cell activation (Mercado et al., 

2020; Atyeo et al., 2020; Rieke et al., 2022). 

The T cell response was previously described to be targeted against a broad 

array of epitopes across spike and other proteins such as NSP7, NSP12 and 

NSP13 (Tye et al., 2022; Swadling et al., 2022). The breadth of of T cell 

immunogenicity against SARS-CoV-2 is spread across approximately 30 

epitopes and largely is preserved to induce cross-protectivity against multiple 

strains (Moss, 2022). Additionally, evidence shows that even individuals with 

compromised B cell response, such as multiple sclerosis patients treated with 

anti-CD20 monoclonal antibody, after mRNA vaccination against SARS-CoV-2 

induce a robust CD8+ T cell response thus likely to offer a protection against the 

SARS-CoV-2 severe disease (Apostolidis et al., 2021). Indeed, while new 

variants can evade many neutralizing antibodies, studies show that over 80% of 

vaccine-induced memory T cell responses still recognize variant epitopes (Wang 

et al., 2024). 
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Overall, the immune system’s focus on particular viral epitopes (such as the spike 

RBD) determines the efficacy of protection and memory, and antigenic drift within 

those epitopes can lead to immune escape, while the broad targeting by T cells 

provides a resilient layer of defense against evolving SARS-CoV-2 (Moss, 2022; 

Wang et al., 2024). 

As of 2024, six vaccines have been officially authorized by the European 

Medicines Agency (EMA) for the prevention of COVID-19 and severe disease 

progression (European Medicines Agency, 2024). These include recombinant 

protein-based vaccines such as Bimervax (HIPRA Human Health S.L.U) and 

Nuvaxovid (Novavax CZ), novel mRNA-based vaccines like Spikevax (Moderna) 

and Comirnaty (BioNTech Manufacturing GmbH), and adenovirus vector-based 

vaccines such as Jcovden (Janssen-Cilag International NV) and Vaxzevria 

(AstraZeneca AB). All of the vaccines were designed to induce production of 

NAbs against the S protein of SARS-CoV-2. Initially, a single dose of the vector-

based Jcovden (Sadoff et al., 2021) and two doses of Vaxzevria (Voysey et al., 

2021; Hung and Poland, 2021) were reported necessary for primary 

immunization. However, to enhance and prolong immune protection, a booster 

dose using an mRNA-based vaccine has been recommended (World Health 

Organization, 2022). For the mRNA-based vaccines, the typical regimen involves 

two initial doses spaced four to eight weeks apart, followed by a booster shot six 

months later (Polack et al., 2020; Jackson et al., 2020; Thomas et al., 2021). 

The COVID-19 pandemic caused significant advancements in vaccine research, 

marked by the deployment of novel technologies that promise utility beyond just 

infectious diseases (Lorentzen et al., 2022; Deng et al., 2022). The 

unprecedented speed with which these vaccines were developed and authorized 

for human use highlights a new era for drug discovery (Sadarangani et al., 2021). 

As SARS-CoV-2 continues to evolve and establish itself as one of the seasonal 

viruses, there remains a persistent need to adapt and improve vaccine 

formulations (Notarte et al., 2022; Khoury et al., 2023). 
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1.4 Aim of the thesis 

These three studies were initiated during the first wave of the COVID-19 

pandemic, a period marked by overwhelmed health systems worldwide, a surge 

in patients requiring medical assistance, and limited knowledge about the novel 

virus's pathological mechanisms and potential treatment strategies. At a time 

when every piece of information was critical to addressing the emerging crisis, 

this research aimed to provide comprehensive insights into the immune 

responses to SARS-CoV-2 using a multi-omics approach. 

The primary aim of the first study is to elucidate the complex immune responses 

to SARS-CoV-2. Through single-cell RNA sequencing, the study deciphers the 

immune pathways activated in various immune cells within peripheral blood. This 

analysis focuses on identifying the specific cell populations and pathways 

involved in the immune response to SARS-CoV-2. Particular attention is given to 

the low interferon response, antigen presentation capabilities, and the highly pro-

inflammatory state observed in severe COVID-19 patients. 

The second study delves into the development of antibodies in response to both 

SARS-CoV-2 infection and vaccination. By comparing antibody titers produced 

by individuals under different vaccination regimens, we aim to understand the 

dynamics of antibody development against the SARS-CoV-2 Spike protein. Given 

that precise infection-preventing antibody titers are still undetermined, this 

comparison is crucial for evaluating the efficacy of various vaccination strategies. 

Cytokine levels are also assessed to evaluate potential inflammatory responses 

to the vaccines, providing a comprehensive view of the immune response. 

In the third study, by employing bulk RNA-Sequencing, the study investigates 

gene expression profiles in monocytes isolated from patients with varying disease 

severities. This approach allows for the identification of transcriptomic 

programming that may contribute to the severity of SARS-CoV-2 infection, 

highlighting differences between severe and mild cases. 
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2. Material and methods 

2.1 Assessing the immune response in COVID-19 using single cell RNA 
sequencing 

2.1.1 Study design and data source 

A total of 139 donors were recruited from the COVIDBB, DISCOVER, DRASTIC, 

SETREP, and VDBR studies in Melbourne, Australia. From each donor, single-

cell RNA sequencing (scRNAseq) and Cellular Indexing of Transcriptomes and 

Epitopes by Sequencing (CITE-Seq) with 137 markers was conducted using 10x 

Genomics technology. The data generated were then aligned and demultiplexed 

by Peter Hickey at the Walter and Eliza Hall Institute of Medical Research. 

Stefano Mangiola (Walter and Eliza Hall Institute of Medical Research) carried 

out several preprocessing steps, including empty droplet filtering, doublet 

filtering, automatic annotation and count scaling. The processed data was 

subsequently organized into individual files for each donor, categorized by major 

immune cell type, and supplied as Seurat objects containing both RNA and CITE-

Seq (also called ADT) counts, as well as metadata for each donor and sample. 

2.1.2 Data preprocessing and background removal 

The h5 output files from the cellranger pipeline containing all droplets were 

processed using the CellBender package (version 0.2.2) to eliminate background 

noise (Fleming et al., 2023). The parameters configured for this procedure 

included setting the expected number of cells to 26,000, including a total of 

35,000 droplets, establishing a false positive rate of 0.01, and applying a low 

count threshold of 150. The model was trained over a period of 200 epochs. 

Following this cleanup process, the refined counts were added as a new layer to 

the original Seurat object, added to the pre-existing raw counts prior to 

background removal.  

For investigation of the efficacy of the background removal, the difference in 

counts pre- and post-correction was calculated using CellBender_Feature_Diff() 

function from the scCustomize package (Marsh, 2022). To easy access and 
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manipulate the data layers within Seurat objects tidyseurat package was used 

(Mangiola, Doyle, et al., 2021). 

Each Seurat object, representing different donors for the same cell type, was 

loaded into R (version 4.3.1) using the Seurat package (version 4.4.4) (Hao et 

al., 2021). For each donor and cell type, the most variable features were 

identified, explicitly excluding ribosomal, mitochondrial, TCR, and 

immunoglobulin genes from consideration. Across all donors for each cell type, 

an overlap of variable features, termed 'integration features', was established, 

from which 3,000 were selected for further analysis. These selected features 

were then utilized as variable features for downstream analysis specific to each 

cell type.  

The individual Seurat objects were merged, sctransform() normalized and scaled 

counts were uniformly rescaled using the same scaling factor through the 

PrepSCTfindMarkers() function (Hafemeister and Satija, 2019). Following this, 

the rescaled counts of the defined variable features were employed to compute 

the first 50 principal components (PCs), which are essential for dimensionality 

reduction and subsequent analysis. 

To mitigate the impact of donor variability on cell clustering, which is crucial for 

accurate subgroup identification, these principal components were then adjusted 

using the Harmony integration method by sex (Korsunsky et al., 2019). This step 

ensures that the clustering is more reflective of biological variations rather than 

inter-donor differences. The Harmony-corrected principal components were 

subsequently utilized to generate a uniform manifold approximation and 

projection (UMAP).  

To enhance the signal-to-noise ratio when calculating PCs and UMAP from ADT 

data, variable features have been selectively identified. This was achieved by first 

calculating the 0.9 quantile of counts for isotype controls to establish a baseline 

of noise or background expression levels. Subsequently, the same quantile was 

calculated for all markers in the assay data. Genes were then filtered to retain 
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only those whose quantile values exceed the highest quantile identified among 

the isotype controls or specified patterns. This method ensures that the selected 

genes are those with expressions significantly above the background.  

Subsequently, the ADT counts have been normalised using Centered Log-Ratio 

(CLR) transformation and subsequently scaled (Stoeckius et al., 2017). Utilizing 

the filtered variable features from the ADT data, the first 50 PCs were calculated. 

These principal components were integrated using the Harmony algorithm by 

sample. Using both RNA and ADT data, 'weighted-nearest neighbor' (WNN) 

analysis was applied to improve clustering resolution. 

2.1.3 Clustering and annotation of cell subtypes 

To achieve cell clustering that incorporates both RNA and ADT data, WNN 

analysis was performed. This unsupervised framework assesses the relative 

importance of each data type for each cell, facilitating an integrative analysis of 

multiple modalities. Specifically, the WNN was calculated using the first 30 

principal components of both RNA and ADT data, which had been previously 

harmonized. The parameters for this calculation included a k nearest neighbor 

(k.nn) value of 30, a k.nn range of 350, and a prune.SNN ratio of 1/30. 

Following the WNN analysis, a UMAP was generated to visually represent the 

data. Clustering of cells was performed based on the WNN using the Louvain 

algorithm with multilevel refinement to optimize community detection (Stuart et 

al., 2019). To annotate the cell subtypes identified through the Louvain clustering 

method, differentially expressed genes (DEGs) between the clusters were 

determined using the Wilcoxon Rank Sum test. This approach helped to pinpoint 

significant differences in expression levels between the clusters by plotting the 

expression of top 50-100 most differential genes per cluster, whereas in the thesis 

for visualization only top 20 are represented. Thus, accurate characterization of 

each cell subtype based on their unique gene expression profiles was performed. 

2.1.4 Compositional analysis 
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To investigate the differences in cell subpopulation proportions relative to disease 

severity, a compositional analysis was performed on the annotated cell types 

using the sccomp package (version 1.7.3) (Mangiola et al., 2023). This analysis 

was specifically focused on samples collected within the first eight days since 

symptom onset to capture the early immune response dynamics. 

The variability in cell composition was analyzed using the sccomp_estimate() 

function, which modeled the cell type composition as a function of several 

variables including disease severity, sex, study cohort, and intensive care unit 

(ICU) status. Before modeling, outliers were removed using the 

sccomp_remove_outliers() function to ensure the robustness of the analysis. 

Significant differences between groups were tested using the sccomp_test() 

function, with results considered significant if they demonstrated a log2 fold 

change of at least 0.2 and an False Discovery Rate (FDR) adjusted p-value less 

than 0.1. The significant findings were visualized using boxplots, where each dot 

represents the proportion of a specific cell subtype within a donor per cell type, 

clearly illustrating the variation across individuals and conditions. 

2.1.5 Pseudobulk analysis 

To perform pseudobulk analysis of the scRNA-seq dataset, RNA counts were 

aggregated by the aggregate_cells() function from the tidyseurat package, using 

sample and manually annotated cell type columns to guide the aggregation. The 

resulting matrix was then converted into a SummarizedExperiment object using 

the as_SummarizedExperiment() function from the tidybulk package (version 

1.15.6) (Mangiola, Molania, et al., 2021). 

Differential gene expression analysis for each cell type was carried out using the 

tidybulk package. The analysis pipeline included filtering, normalizing, and 

scaling genes using keep_abundant() and scale_abundance() functions. DE 

genes were identified with the test_differential_abundance() function, employing 

the "edger_robust_likelihood_ratio" method. A log2 fold change cutoff of at least 

0.2 and FDR corrected p-value of at least 0.1 was applied, and the analysis model 
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included the formula “~ age_scaled + study + sex*severity”. Several contrasts 

were tested, including complex comparisons of different severity levels: 

1. A combined effect of critical, severe, and moderate conditions compared 

against mild severity. 

2. A combined effect of critical and severe conditions compared against a 

combination of mild and moderate severity. 

3. A combined effect of severe, moderate, and mild conditions compared 

against critical severity. 

4. Additional contrasts factored in sex alongside severity conditions. 

For biological interpretation of the DE genes, pathway enrichment was performed 

using the enrichPathway() function from the ReactomePA package (version 

1.46.10). 

Expression of selected genes was visualized in boxplots that were prepared using 

normalized and scaled counts, adjusted for batch effects with 

adjust_abundance() function considering sex as the unwanted variable. The plots 

were generated using the ggplot2 package (version 3.4.4). 

2.2 Comparative analysis of antibody titers against the spike protein of 
SARS-CoV-2 variants in infected patient cohorts and diverse vaccination 
regimes 

2.2.1 Study design 

This study was performed at the University Hospital Bonn, where all participants 

were recruited. All participants were confirmed to have SARS-CoV-2 through 

quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) 

or antigen tests using nasopharyngeal swabs, along with assessments of N-

protein levels in SARS-CoV-2 and serum anti-N antibody titers. The specific virus 

strains were not identified. Samples from individuals with mild COVID-19 

symptoms were collected between January and March 2020, and from critically 

ill patients between November 2020 and February 2021, all within North-Rhine-
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Westphalia, Germany following the guidelines of the Declaration of Helsinki. The 

local ethics committee at the University Hospital Bonn (ethics approval number 

468/20) approved the collection of blood samples from individuals infected with 

or recovered from SARS-CoV-2, as well as from healthy volunteers. Detailed 

clinical, demographic, medical history, comorbidities, and vaccination data were 

gathered for all subjects. 

Participants were designated as having mild COVID-19 if they experienced 

symptoms like fever, loss of smell and taste, headache, and diarrhea, and 

recovered at home. To collect samples from these mildly infected individuals at 

their residences, the study was supported by the Medical Corps of the German 

Armed Forces, obtaining samples up to six times within the first 21 days of the 

study enrollment. 

Patients diagnosed with acute respiratory distress syndrome (ARDS) due to 

SARS-CoV-2 and required treatment with invasive mechanical ventilation or 

extracorporeal membrane oxygenation (ECMO), following the Berlin Definition, 

were classified as "Critical" and were enrolled into the study upon their ICU 

admission. These patients had samples collected up to six times in the 21 days 

after joining the study. 

Individuals who had recovered from SARS-CoV-2 infection but were experiencing 

persisting COVID-19 symptoms for eight weeks to 12 months were identified as 

"Long COVID" patients. Recruitment for these patients occurred at the Long 

COVID clinic of the University Hospital Bonn and through Long COVID support 

groups on social media platforms like Twitter and Facebook in the UK. Symptoms 

for this group included fatigue, reduced stamina, cognitive issues, headache, 

postural orthostatic tachycardia syndrome (PoTS), tachycardia, palpitations, 

chest pain, and difficulty breathing. 

Vaccinated participants were monitored at several points before and after 

receiving their vaccine doses (BNT162b2, Spikevax mRNA-1273, Vaxzevria, or 

Janssen), with follow-up extending to one year post-initial vaccination. Individuals 
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without a SARS-CoV-2 infection and no previous COVID-19 history were labeled 

as "Control" (Ctrl) and had samples collected up to five times over two weeks. 

2.2.2 Sample collection and storage 

For collecting peripheral blood, 7.5 ml Z-Gel S-Monovettes from Sarstedt 

(Nümbrecht, Germany) were used. Additionally, 9 ml of blood for flow cytometry 

analysis was drawn into K3E S-Monovettes (Sarstedt). The serum gel tubes 

underwent centrifugation at room temperature (RT) for 10 minutes (min) at a force 

of 2500 × g. After centrifugation, the cell-depleted serum was moved to sterile, 

barcoded polypropylene tubes from Azenta (Chelmsford, MA, USA) and stored 

at -80 °C until analysis was required. 

2.2.3 Quantification of SARS-CoV-2 N-Protein, α-Spike-Antibodies Titers and 
Neutralization 

Levels of SARS-CoV-2 N-protein in serum were quantified using the S-PLEX 

SARS-CoV-2 N Kit by Meso Scale Diagnostics, Rockville, MD, USA, following the 

provided guidelines. Likewise, the levels of α-SARS-CoV-2 IgG antibodies and 

their ability to neutralize were measured with the SARS-CoV-2 Plate 7 (Meso 

Scale Diagnostics). The MESO QuickPlex SQ 120 imager was used for capturing 

immune assay data, which was then processed using the MSD Discovery 

Workbench software, both provided by Meso Scale Diagnostics. 

2.2.4 Quantification of Cytokines and Markers for Neuroinflammation 

At selected timepoints during the course of SARS-CoV-2 infection, the presence 

of pro-inflammatory and anti-inflammatory cytokines in serum was assessed 

using the Simoa CorPlex Human Cytokine 10-plex Panel 1 assay (Quanterix, 

Billerica, MA, USA). This assay targeted a range of analytes, including IFNγ, IL1β, 

IL4, IL5, IL6, IL8, IL10, IL12p70, IL22, and TNFα. Moreover, indicators of 

neuroinflammation were evaluated with the Simoa Human Neurology 4-Plex E 

assay (Quanterix), which measured Abeta 40 (Aβ40), Abeta 42 (Aβ42), Glial 

Fibrillary Acidic Protein (GFAP™), and Neurofilament light (Nf-L). The CorPlex 

data were collected and analyzed using the SP-X Imaging and Analysis System™ 
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(Quanterix), while the Neurology 4-Plex E data were processed on the Simoa® 

HD-X Analyzer™ (Quanterix). Both assays were performed in strict accordance 

with the instructions from the manufacturer. 

2.2.5 Quantification of B Cell Subtypes and T Follicular Helper Cells by Flow 
Cytometry 

Blood samples collected in K3-EDTA tubes were centrifuged at 1200 × g for 10 

minutes, after which the cell pellet was washed with PBS once and the 

erythrocytes were lysed using ACK lysis buffer from Thermo Fisher, Waltham, 

MA, USA, for 5 minutes. The lysis reaction was halted with another PBS wash, 

and cells were then resuspended in PBS. Each sample, containing up to 2 million 

viable peripheral blood mononuclear cells (PBMCs), was stained to differentiate 

between living and dead cells as well as lineage markers using a cocktail of 

antibodies for 30 minutes at 4 °C: LIVE/DEAD™ Fixable Far Red Dead Cell Stain, 

FITC-labeled anti-CD45 (HI30), eFluor™ 506-labeled anti-CD19 (HIB19), PerCP-

eFluor™ 710-labeled anti-IgD (IA6-2), eFluor™ 450-labeled anti-IgM (SA-DA4), 

PE-labeled anti-CD38 (HB7), PE-eFluor610-labeled anti-CD27 or Super 

Bright™-labeled anti-CD24 (eBioSN3), PerCP-labeled anti-CD4 (SK3), PE-

Cyanine7-labeled anti-CD25 (CD25-4E3) and Alexa Fluor™ 660-labeled anti-

CD127 (eBioRDR5) from Invitrogen, alongside FITC-labeled anti-CD3 (OKT3), 

Brilliant Violet™ 650-labeled anti-CD4 (RPA-T4), Brilliant Violet™ 421-labeled 

anti-CXCR5 (J252D4) and FITC-labeled anti-CD3 (OKT3) from Biolegend. 

Following the surface staining, cells were rinsed and fixed with 4% PFA for 10 

minutes at room temperature. Flow cytometry analyses were conducted using an 

Attune Next Generation (Thermo Fisher) and FlowJo software (version 10.0.7, 

Tree star). 

2.2.6 Software and Tools for Statistical Analysis 

R software (version 4.1.2) was utilized for statistical analyses, with the rstatix 

package (version 0.7.0) aiding in these calculations. The gtsummary package 

(version 1.5.2) was used for table creation, while the ggplot (version 3.3.5) and 

ggpubr (version 0.4.0) packages were employed for figure generation. The 
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Kruskal-Wallis and Mann-Whitney U tests determined p values, considering 

adjusted p values below 0.05 as statistically significant. Any deviations are noted 

within the figure legends. 

2.3 Programming of peripheral classical monocytes during COVID-19 

2.3.1 Patient cohort 

Blood samples were collected from the same subjects in the critical cohort as well 

as from the healthy controls and donors with mild infections as described in the 

previous chapter on days 1, 3, 5, 8, and 15 following their inclusion in the study. 

These samples were processed within 2 hours of collection to ensure the integrity 

and reliability of the data. 

2.3.2 PBMC isolation 

Fresh blood was collected from SARS-CoV-2 infected patients and healthy 

controls using 9 ml S-Monovette K3 EDTA tubes (Sarstedt). Following collection, 

the blood was processed for automated PBMC isolation using the RoboSep™ 

(STEMCELL Technologies, Vancouver, Canada). PBMCs were extracted from 6 

ml of blood following the EasySep™ PBMC Isolation Kit (STEMCELL 

Technologies) protocol. 

For accurate quantification of PBMCs, the Tali Image Based Cytometer (Thermo 

Fisher Scientific, Waltham, MA, United States) was employed alongside Tali 

Cellular Analysis slides (Thermo Fisher Scientific) to reduce experimenter bias 

during cell counting. Subsequently, the isolated cells utilized for the negative 

selection of CD14+ monocytes. 

2.3.3 CD14+ monocyte isolation 

The isolated PBMCs were centrifuged for 5 minutes at 210 × g, after which the 

supernatant was removed and the cells were resuspended in 0.5 ml of 

RoboSep™ Buffer (STEMCELL Technologies). Using the EasySep™ Human 

Monocyte Isolation Kit (STEMCELL Technologies), CD14+CD16- monocytes 

were automatically separated from PBMCs through immunomagnetic labeling, 
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allowing for negative selection. Monocytes were then counted with the Tali Image 

Based Cytometer (Thermo Fisher Scientific), and 300,000 cells were transferred 

to a new Eppendorf tube for RNA extraction.  

These monocytes were subsequently centrifuged for 5 minutes at 250 × g at 4 °C, 

the supernatant was discarded, and the cell pellet was resuspended in 350 µl of 

RA1 lysis buffer from the NucleoSpin Mini kit for RNA Isolation (Macherey-Nagel, 

Düren, Germany), then stored at -80 °C until further use. Any remaining 

monocytes underwent another round of centrifugation under the same conditions 

and were resuspended in 1 ml of freezing medium (10 % DMSO in FBS) for long-

term storage at -80 °C.  

2.3.4 RNA isolation and quality control 

The cells stored in RA1 lysis buffer were thawed on ice, and RNA was 

subsequently extracted using the NucleoSpin Mini RNA kit (Macherey-Nagel) 

strictly according to the manufacturer's guidelines without any modifications. To 

evaluate the RNA quality, we utilized the Agilent High Sensitivity TapeStation 

(Agilent Technologies, Santa Clara, CA, United States) system with High 

Sensitivity RNA ScreenTape (Agilent Technologies). Meanwhile, RNA 

concentration was determined using the Qubit 4 Fluorometer (Thermo Fisher 

Scientific) and Qubit High Sensitivity Assay Kit (Thermo Fisher Scientific), 

adhering to the manufacturer's protocols. 

2.3.5 RNA sequencing and quality control 

The RNA samples were sent to the Next Generation Sequencing Core Facility at 

the University of Bonn, headed by Dr. rer. nat. André Heimbach, for sequencing. 

Libraries were prepared according to the QuantSeq 3’-mRNA sequencing 

protocol from Lexogen Inc by the core facility. Each sample was sequenced to a 

depth of 15 million reads, using single-end 100 base pair reads. The resulting 

sequencing counts were provided as FASTQ files. 

2.3.6 Data analysis 
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The reads were initially processed using Cutadapt (version 4.1) with the Trim 

Galore wrapper (Krueger, 2015), aimed at reducing low-quality bases and 

removing sequencing adapters, which are common artifacts in sequencing data. 

In the first step bases with a quality score below 30 were trimmed off to efficiently 

eliminate poor-quality segments of the reads. Cutadapt, is also designed to allow 

partial matches between the read and adapter sequences, thus sometimes 

leading to short, erroneous matches that result in the incorrect trimming of bases. 

In the second step, to minimize these false trims, the alignment algorithm of 

Cutadapt was adjusted to require a minimum match of five consecutive base 

pairs. 

Following trimming, the quality of the reads was assessed using FastQC (version 

0.11.9) (Andrews et al., 2012). The trimmed reads were then aligned to the 

human reference transcriptome (hg38) using the Salmon pseudo-aligner (version 

1.10.2) (Patro et al., 2017), which includes a built-in decoy for genomic regions 

to prevent the misalignment of reads to similar genomic sequences. Salmon was 

configured to run with a minimum score fraction of 0.5 and to perform Gibbs 

sampling iterations with the --numGibbsSamples 20 parameter, enhancing the 

accuracy of transcript quantification. 

To consolidate and summarize the statistics from alignment, quality control, and 

trimming results, MultiQC (version 1.13) was utilized to generate a 

comprehensive HTML report (Ewels et al., 2016). This report provides a unified 

view of the data, facilitating an efficient analysis of the sequencing workflow's 

overall performance. 

The transcript counts obtained from Salmon were subsequently aggregated 

transcript-level quantifications to gene-level data using tximport (version 1.28.0) 

(Soneson et al., 2015). The transcript annotation to RefSeq was performed using 

the tximeta (version 1.18.3) (Love et al., 2020) and the data matrix was contained 

in a SummarizedExperiment object (Morgan et al., 2023). 
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The count data were normalized using the DESeq2 package (Love et al., 2014), 

with a filtering criterion set to include only genes that exhibit a maximum 

expression of at least 100 counts across samples resulting in 10,725 genes 

further used in the analysis, here also referred to as present genes. 

Subsequently, a variance stabilizing transformation was applied to these 

normalized counts to create a matrix with constant variance across a range of 

mean values. 

To explore the relationship between gene expression and the disease severity 

over time, Weighted Correlation Network Analysis (WGCNA) (Langfelder and 

Horvath, 2008) was employed on the normalized and transformed counts. This 

analysis identified Eigengene modules that correlate with specific days of the 

disease state using the WGCNA package (v1.72.5) in R, configured for a signed 

network. The Module Eigengene Threshold (MEthreshold) was set at 0.28, and 

the minimum module size was defined as 30. Modules of interest were selected 

based on a Pearson correlation threshold of at least 0.3 and a p-value of no more 

than 0.05, ensuring statistical significance in the correlations found. The 

biological interpretation of the genes from the specific modules was performed 

with enrichGO() from clusterProfiler package (version 4.10) (Yu et al., 2012) or 

enrichPathway() from ReactomePA package (version 1.46.10) (Yu and He, 

2016).  

R software (version 4.3.1) was utilized for the usage packages. The gtsummary 

package (version 1.7.2) was used for table creation, while the ggplot (version 

3.4.4) package were employed for figure generation. 

3. Results 

The severity of SARS-CoV-2 infection varies widely among individuals, ranging 

from mild symptoms to critical cases requiring hospitalization, intubation, or 

leading to multi-organ failure and death. The factors behind these varying 

outcomes remain poorly understood, emphasizing a gap in our knowledge of the 

disease progression. This thesis aims to bridge this gap by examining the results 

of three separate studies investigating immune response to SARS-CoV-2 across 
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different disease severities and comparing these responses to those in healthy 

individuals by employing a range of techniques. 

3.1 Assessing the immune response in COVID-19 using single cell RNA 
sequencing 

The first cohort analyzed in this study comprises samples collected in Melbourne, 

Australia, from patients enrolled across several ongoing COVID-19-related 

clinical studies. Due to the nature of sample acquisition and integration from 

multiple sources, comprehensive patient metadata was limited. The primary 

objective of this investigation was to collect a broad and diverse set of samples 

to enable a robust single-cell RNA sequencing (scRNA-seq) analysis, focusing 

on maximizing cell numbers across a wide immune landscape. 

This section serves a dual purpose. First, to explore immune cell composition and 

transcriptional states across COVID-19 disease severities. The second, to 

develop a harmonized immune cell atlas that can support future analyses and 

translational research. By using multi-modal data, including both transcriptomic 

and surface marker information, this analysis provides foundational insights into 

the cellular mechanisms underlying COVID-19 immune responses. 
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To investigate the programming of immune cells and the shifts within these 

populations in the periphery, scRNA-seq and cellular indexing of transcriptomes 

and epitopes by sequencing (CITE-seq) were performed on PBMCs from 139 

donors with COVID-19 (Table 1). Donors for this study were recruited from five 

different sites, encompassing a broad spectrum of COVID-19 disease severity-

comprising 39 mild, 36 moderate, 28 severe, and six critical cases-along with 30 

individuals serving as healthy controls. The cohort was meticulously selected to 

ensure age and sex balance across groups. After processing and filtering, the 

generated dataset comprised a total of 822,221 cells.  

3.1.1 Droplet-based single cell experiments are prone to background 

To begin the analysis, all cells which passed the QC were initially loaded into a 

single Seurat object to ensure unified handling of the dataset. After performing 

normalization and log-transformation, automated annotation tools were used to 

assign major immune cell identities and generate a consensus annotation across 

the dataset. Given the large size of the dataset of approximately one million cells, 

we opted to streamline our analysis by dividing the cell populations according to 

Table 1: Metadata of the sampled donors. Indicated are the COVID-19 disease 

severity, study site of recruitment, sex and age of the participants. 
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major immune cell types (e.g., myeloid cells, CD4⁺ T cells, CD8⁺ T cells). This 

approach not only reduced computational resources and time but also 

circumvented the need for clustering all cells together and manually annotating 

them based on differentially expressed markers among identified clusters. Within 

each of these cell-type-specific objects, dimensionality reduction, dataset 

integration, and manual annotation of finer immune cell subsets were 

subsequently performed through clustering.  

To annotate cells into major immune cell types, we employed two automated and 

unbiased cell type identification tools, leveraging three reference transcriptomic 

datasets for annotation. Specifically, we used the SingleR tool, built on the celldex 

Monaco and Blueprint datasets, in conjunction with the Seurat package's built-in 

Azimuth tool, to achieve a consensus on unbiased cell annotation. This 

consensus was established by identifying common annotations across the three 

datasets. When annotations matched in two datasets, we accepted that 

consensus; if all three annotations diverged, the cell was excluded from further 

analysis. Due to the distinct transcriptional profiles characteristic of immune cells, 

this method yielded accurate annotations for the majority of cells. For instance, 

as illustrated in Figure 4, this approach was effectively applied to annotate CD8 

Figure 4: UMAP visualization of clusters identified using automated cell 
type identification tools (CD8 T and NK cells). Cells were annotated using 

SingleR with celldex Monaco (A) and Blueprint (C) reference databases, 

alongside Seurat built-in Azimuth mapping tool (B). A consensus annotation (D) 
was derived from all three databases to consolidate cell identities of CD8 T and 

NK cells. 
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T and NK cells. These were sub-setted and subsequently re-analysed for 

presence of subclusters. 

The identification of specific cell subpopulations of CD8 T and NK cells, based on 

their programming or function, involved categorizing the consensus-annotated 

cells into groups. This categorization was based on their transcriptional profiles 

using Louvain clustering. First, highly variable features were recalculated, data 

were normalized and scaled, and principal components (PCs) were computed. 

Integration was performed across donors, followed by UMAP generation based 

on integrated PCs. Using both RNA and ADT data, WNN analysis was applied to 

improve clustering resolution. 

Ten different clusters were identified (Figure 5A). To distinguish between these 

clusters, we conducted differential gene expression (DGE) analysis, identifying 

the top 20 most differentially expressed (DE) genes for each cluster. Among the 

top 20 DE genes across all clusters, 21 immunoglobulin (Ig) genes were 

Figure 5: Overview of identified clusters in CD8 T and NK cells and Ig gene 
expression. The CD8 T and NK cells were selected in a separate dataset and 

WNN analysis was performed on this subset. The two cell types were clustered 

to identify groups based on similar gene expression profiles. (A) UMAP 

representation of grouped cells based on Louvain clustering. (B) Proportion of 

cells expressing at least one Ig gene. (C) Exemplified expression of IGLV2-14 

across CD8 T and NK cells. 
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discovered. Notably, approximately 50 % of the cells within these clusters 

expressed at least one of the DE Ig gene (Figure 5B). Although the expression 

levels of Ig genes (e.g. IGLV2-14) were generally low the expression was not 

limited to a specific group of cells (Figure 5C).  

To determine whether the CD8 T and NK cells were incorrectly annotated by the 

automated tools or if the observed transcripts represent unspecific counts 

typically associated with B cells, the expression of the 21 DE Ig genes was plotted 

against the cell types predicted by Azimuth, alongside B-cell-specific epitopes 

such as Ig light chains κ and λ, IgD, and IgM (see Figure 6). The Ig transcripts 

Figure 6: Expression of Ig genes identified as DE across clusters and Ig 
expression on the surface of CD8 T and NK cells. (A) Expression of all 

identified DE Ig genes across cells. (B) Expression of Ig markers on the surface 

of the cells. Plotted annotation is the Azimuth predicted cell type across the 

consensus annotated CD8 T and NK cells. 
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were found to be uniformly distributed at low levels across all cell types. Notably, 

markers such as Ig light chains and IgM were present at low levels in about 90% 

of the cells. This consistent low-level expression of B-cell-associated genes and 
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proteins across the dataset suggests presence of technical artifacts in the 

populations of CD8 T and NK cells. 

To confirm the accuracy of the consensus annotation, the expression of marker 

proteins and gene specific to CD8 T, NK and B cells was analysed (Figure 7).  A 

random subset of 1,000 NK and CD8 T cells was selected for this analysis. 

Concurrent expression of CD8B, FCGR3A, and MS4A1, along with CD8, CD16, 

and CD20 was assessed, by mapping the connections between marker 

expressions within the same cell and overlaying the average expression across 

all selected cells (Figure 7A-B). The findings reveal exclusive expression of cell-

type-specific markers, namely CD8B and CD8 for CD8 T cells, and CD16 and 

FCGR3A for NK cells, without any expression of CD20 or MS4A1. Moreover, B 

cell markers (CD19, CD20) were not detected at either the transcript or protein 

level in any of the CD8 T or NK cells from the whole dataset (Figure 7 C-D). These 

results underscore the precise annotation of cells as either CD8 T cells, 

characterized by high expression of CD8 and CD3, or NK cells, marked by high 

expression of CD16 and CD56 at both the gene and protein levels. The absence 

of B-cell lineage markers, alongside the low expression of Ig genes and 

pronounced expression of NK and T cell lineage markers, validates the notion of 

contamination with ambient transcripts from other cell types. A correction of the 

Figure 7: Expression of B, CD8 T and NK cell markers on transcript and 
protein level in consensus annotated CD8 T and NK cells. Concomitant 

expression of CD8, CD16 and CD20 genes (A) and proteins (B) on the surface 

of 1000 randomly selected CD8 and NK cells. Grey lines interconnect gene 

expression of the markers within same cell, and the red line depicts the mean 

expression across cells. Expression of CD8 T cell (CD3E, CD8B, CD8 and CD3), 

NK cell (FCGR3A, NCAM1, CD16, CD56) and B cell (CD19, MS4A1, CD19, 

CD20) markers on transcript (C) and protein (D) level across all consensus-

annotated CD8 T and NK cells. 
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ambient noise is critical to improve the cell annotation and DGE analysis 

accuracy. 

3.1.2 CellBender accurately evaluates the contamination across cell types and 
corrects it  

Ambient RNA contamination is a recognized challenge in droplet-based scRNA-

seq techniques, with several tools available to address this issue. We employed 

a novel tool, CellBender, which utilizes a deep generative model to learn the 

background noise, thereby enabling a noise-free quantification of transcript 

counts. Prior to advancing to cell type identification, manual annotation curation, 

and DGE analysis, the extent of the count correction facilitated by CellBender 

was assessed.  
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For each predicted cell type, the difference in counts before and after correction 

was analysed, highlighting the genes and proteins that resulted in most and least 

change. In the case of CD8 T cells, the most changes at the transcript level were 

observed in Ig genes such as IGKV7-3, IGLV3-6, IGLV3-24, etc. The counts of 

Figure 8: Overview of most and least changed genes and proteins after 
ambient noise decontamination in CD8 T cells.  Comparison of genes (A) and 

protein (B) expression before and after correction with a change of at least 25 %. 

Red dots represent transcripts and proteins presenting reductions greater than 

80 % and 50 % post-correction, respectively. (C-D) Tables indicating initial and 

corrected counts of transcripts and proteins percentage decrease of marker 

genes for the CD8 T cell lineage.  
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Ig genes were dramatically reduced by more than 90 %, dropping from thousands 

of transcripts to fewer than ten (Figure 8A-B). At the protein level, the most 

substantial alterations were seen in markers typically associated with B cells 

(e.g., IgM, IgD, CD19) and myeloid cells (e.g., CD86, CD1c). Conversely, lineage-

specific T cell markers, such as CD45 and CD3, exhibited minimal corrections of 

less than 0.3 % at the gene level and 5.1 % at the protein level, respectively 

(Figure 8C-D). This precise correction process effectively reduced ambient noise 

in the CD8 T cells without impacting the expression of lineage markers, thus 

preserving their utility for subsequent analyses.  

Figure 9: Overview of most and least changed genes and proteins after 
ambient noise decontamination in B cells.  Comparison of genes (A) and 

protein (B) expression before and after correction with a change of at least 25 %. 

Red dots represent transcripts and proteins presenting reductions greater than 

80 % and 50 % post-correction, respectively. (C-D) Tables indicating initial and 

corrected counts of transcripts and proteins percentage decrease of marker 

genes for the B cell lineage. 
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A similar pattern was observed in myeloid and NK cells, where Ig gene counts 

significantly dropped, while core immune cell lineage marker CD45 and specific 

markers for myeloid (LYZ, CD14, S100A8/9) and NK cells (CD56, CD16) 

remained unchanged (Supplementary Figure 1). The corrections in B cells was 

assessed to ensure the changes were cell type-specific and did not result in the 

unreasonable deletion of Ig genes and B cell markers. In B cells, Ig genes 

remained largely uncorrected, while lineage markers such as CD79, CD19, and 

CD20 were only slightly altered-up to 1.6 % at the transcript level and 7.1 % at 

the protein level (Figure 9C-D). Notably, the most significant changes in B cells 

involved genes and proteins typically associated with T cells (genes: CD3E, 

TRDV2 genes; epitopes: CD3, TCR αβ), NK cells (genes: NKG7 and GNLY; 

epitope: CD56), and myeloid cells (genes: LYZ and S100A12) (Figure 9A-B).  

CITE-seq data is notably susceptible to ambient count contamination, with an 

average of 15 % of total counts being adjusted post-correction. This number was 

increased to as much as 50 % in pDCs (Figure 10A). In contrast, transcript-level 

corrections are more uniform, affecting about 10% of counts across all cell types. 

To evaluate non-specific antibody binding, isotype controls are incorporated into 

the experiments. These controls help identify the extent to which specific isotypes 

contribute to background signal detection. Interestingly, the corrections made to 

isotype control antibody counts are not as extensive as those for Ig gene counts, 

with the majority showing no change post-correction (Figure 10B-C). This 

observation is critical for filtering out weakly expressed epitopes from the 

analysis. Therefore, before conducting principal component analysis on CITE-

seq data, the epitope features were meticulously filtered. The 90th percentile of 

Figure 10: Overview of correction effects across platforms for all cells. (A) 
Average percentage change in count corrections per cell for both RNA and 

protein. Counts of isotype control antibodies pre- (B) and post-correction (C) with 

CellBender. The prefixes before the isotype controls denote the species origin of 

the antibodies: “mm” - Mus musculus, “rn” - Rattus norvegicus, and 'cm' - 

Cricetulus migratorius. 



48 

counts for epitope features and isotype controls were compared, retaining only 

those features with expressions surpassing the 90th percentile among the 

controls. This method effectively eliminates additional noise from the 

neighborhood calculations and subsequent clustering. Consequently, only ADT 

signals that are significantly higher than the background noise are included in 

further analyses, thus increasing the specificity and reliability of the protein 

expression data. 

3.1.3 Myeloid and T cell compartments show significant cell composition changes 
across severities 

To explore variations in immune cell populations and transcriptional changes 

across different severities of COVID-19, we performed a detailed analysis of 

major immune cell types. After data correction, we utilized weighted nearest 

neighbor algorithms, incorporating both RNA and epitope data, to cluster these 

cells into subgroups. To investigate the cell subtypes the Louvain algorithm 

clustered the cells into, DGE was performed on all present genes in the dataset 

without any filtering steps. 
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CD8 T cells were categorized into nine distinct clusters, with the top 20 

differentially expressed genes and proteins identified for each, to investigate their 

specific functional programming or subtype (Figure 11A-B-D). Cluster 0 is 

characterized by T cells with high expression of granzymes (GZMB and GZMH), 

perforin (PFR1), as well as CD226, CD57, and CD45RO proteins, indicating a 

stage of terminal differentiation, thus this group was designated as “effector 

cytotoxic CD45+ CD8 T cells.” Cluster 1 includes cells marked by naïve-

associated markers CCR7, CD45RA, and CD62L on both transcript and protein 

level, and was therefore labelled “naïve CD8 T cells.” Cluster 2 features a 

subpopulation that, alongside cytotoxicity and memory CD45RA markers, 

expresses the killer cell immunoglobulin-like receptor (KIR) at both protein and 

gene levels, markers typically associated with NK cells. This subgroup was 

annotated as “NK-like TEMRA.”  

Cluster 3 consists of cells expressing CD45RO, lacking CCR7 and SELL, and 

showing partial CD28 expression, classified as T effector memory (TEM).  In 

cluster 4, cells exhibit exhaustion markers such as CMIP and TOX, alongside a 

diminished expression of effector molecules, albeit higher than that of naïve T 

cells, leading to their identification as “exhausted terminal effector CD8.” The 

unique expression of T cell receptor (TCR) genes in cluster 5, with TCR Vα7.2 

indicative of mucosal-associated invariant T (MAIT) cells and TCR Vδ2 specific 

to γ/δ T cell subsets, marked it as “unconventional.” 

Cluster 6, showing expression of CCR7, SELL, and CCR4 with low cytotoxic gene 

expression, was identified as having a T central memory (TCM) phenotype. 

Figure 11: Defined clusters of CD8 T cells and their proportions in different 
disease severities. (A) UMAP overview of CD8 T cells split into 9 clusters. 

Expression of markers on gene (B) and protein (D) level used for annotation of 

the identified clusters. (C) Boxplots indicating significant changes in cell 

proportions across disease severities within the annotated CD8 T cell clusters. 

Statistical significance was calculated by sccomp. NS, FDR p-value > 0.1; *, FDR 

p-value < 0.1; **, FDR p-value < 0.05; ***, FDR p-value < 0.01. 
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Cluster 7, denoted as “terminal effector CD8,” expresses cytotoxic markers at 

levels lower than clusters 0 and 2 but also includes activation markers such as 

HLA-DR, CD71, and CD38. Finally, cluster 8 is defined by its response to type 1 

IFN, crucial during viral infections, expressing genes like OAS3, IFI6, and ISG15 

alongside cytotoxic markers, and is annotated as “IFN-stimulated terminal 

effector CD8. 

To investigate shifts in immune cell subpopulations within CD8 T cell clusters, we 

conducted a compositional analysis (Figure 11C). For enhanced statistical 

robustness, we combined the severe and critical patient groups. This analysis 

revealed notable changes in the proportions of naïve CD8 T cells between 

individuals with mild and moderate COVID-19, with the mild cohort exhibiting a 

mean proportion of 22 %, in contrast to 26 % in the moderate cohort. 
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Furthermore, healthy individuals demonstrated a lower mean proportion of TEM 

cells (12 %) compared to all disease-affected cohorts, which showed a consistent 

mean of approximately 14 %. In addition, both mild and severe/critical patients 

exhibited higher proportions of IFN-stimulated terminal effector CD8 T cells than 

seen in healthy controls, with mean proportions of approximately 0.75 % and 

0.35 %, respectively. Notably, the mild cohort displayed an increased proportion 

of this cell type (0.78 %) compared to the moderate disease cohort (0.45 %).  

CD4 T cells have been categorized into eight distinct clusters based on their 

expression profiles (Figure 12A-B-D). Cluster 0 is characterized by the 

expression of naïve lineage markers CCR7, CD62L, and CD45RA, leading to its 

designation as "naïve CD4." Cluster 1, identified as "activated memory CD4," 

contains cells that express memory-associated markers CD45RO and IL7R, 

alongside activation markers such as CD95 and CD49d. Cluster 2, termed 

"memory CD4 with tissue-homing potential," shares a similar marker profile to 

Cluster 1 but additionally expresses CD62L and ITGA4, indicative of cell 

adhesion and migration capabilities. Cluster 3, comprising cells expressing 

regulatory T cell markers including CD25, FOXP3, and IKZF2, thus has been 

annotated as “Tregs”. Cluster 4 has been labelled as “cytotoxic CD4” as it 

consists of cells with an enhanced cytotoxic profile, evidenced by markers like 

GZMH, FGFBP2, and CD57. The expression of a similar transcriptional profile to 

clusters 1 and 2 but distinguished by the expression of RORA and absence of 

activation markers, suggesting a Th17 phenotype of “memory CD4” T cells. 

Cluster 6 is characterized by its significant expression of transcription factors 

Figure 12: Defined clusters of CD4 T cells and their proportions in different 
disease severities. (A) UMAP overview of CD4 T cells split into 8 clusters. 

Expression of markers on gene (B) and protein (D) level used for annotation of 

the identified clusters. (C) Boxplots indicating significant changes in cell 

proportions across disease severities within the annotated CD4 T cell clusters. 

Statistical significance was calculated by sccomp. NS, FDR p-value > 0.1; *, FDR 

p-value < 0.1; **, FDR p-value < 0.05; ***, FDR p-value < 0.01. 
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IRF1, JUN, and FOSB, which are pivotal in the signaling pathways activated by 

Type 1 IFN response. Additionally, this cluster exhibits upregulation of CD69, a 

hallmark of immediate early activation, thus identifying these cells as "TCR and 

Type 1 IFN activated CD4 T cells". Conversely, Cluster 7 is characterized by a 

distinct transcriptional profile enriched with IFN-stimulated genes, including IFI6, 

MX1, and ISG15, without concurrent upregulation of TCR engagement-

associated genes, marking this subset as "Type 1 IFN activated CD4” T cells.  

In the CD4 T cell naïve compartment, a comparative analysis revealed a 

diminished proportion in mild COVID-19 cases (40.7 %) relative to moderate 

cases (46.6 %), similar to CD8 T cells (Figure 12C). Moreover, patients with 

moderate and severe/critical disease exhibited elevated proportions of regulatory 

T cells (Tregs), accounting for 6.9 % and 7.3 % respectively, in contrast to 5.9 % 

observed in mild cases. An uptick in the fraction of cytotoxic CD4+ T cells was 



53 

noted in mild cases, rising from 4.9 % in healthy individuals to 7.7 %. While a 

similar increase was noted in the severe/critical cohort, this change did not reach 

statistical significance. A marked imbalance was noted in the prevalence of TCR 

and Type 1 IFN activated CD4+ T cells; mild cases demonstrated the highest 

proportion at 5.1 %, compared to a decreased elevation of 1.4 % in moderate 

cases and 2.3 % in severe/critical cases, against a baseline of 0.9 % in healthy 

controls. A parallel trend was observed in Type 1 IFN activated CD4+ T cells, 

where an augmented proportion was evident in patients across all disease 

severities compared to healthy controls-1.06 % in mild, 0.97 % in moderate, and 

0.95 % in severe/critical cases, relative to 0.57 % in the healthy cohort. 

Myeloid cells and DCs play a pivotal role in viral infections by acting as first 

responders that detect pathogens through pattern recognition receptors and 

initiate innate immune responses. DCs bridge innate and adaptive immunity by 

processing and presenting viral antigens to T cells, thereby shaping the quality 

and magnitude of the antiviral adaptive response. The programming of these cell 

types was investigated in the context of SARS-CoV-2 severity. 

Within the myeloid cell compartment, five distinct clusters were delineated (Figure 

13A-B-D). Cluster 0, the largest, consists of classical CD14+ monocytes, 

characterized by the expression of LYZ, S100A8/9, and CD11b. Cluster 1 shares 

a similar profile with cluster 0 but is distinguished by additional markers crucial 

for responses to infectious diseases, including HLA-DR (noted at both transcript 

and protein levels), IFI30, and CD54. Cluster 2 encompasses non-classical 

monocytes, marked by CD16 and CDKN1C expression alongside inflammatory 

Figure 13: Defined clusters of myeloid cells and their proportions in 
different disease severities. (A) UMAP overview of myeloid cells split into 5 

clusters. Expression of markers on gene (B) and protein (D) level used for 

annotation of the identified clusters. (C) Boxplots indicating significant changes 

in cell proportions across disease severities within the annotated myeloid cell 

clusters. Statistical significance was calculated by sccomp. NS, FDR p-value > 

0.1; *, FDR p-value < 0.1; **, FDR p-value < 0.05; ***, FDR p-value < 0.01. 
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markers such as IFITM2, CD11c, and CD86. Cluster 3 is identified by its 

composition of myeloid DCs, expressing CD1c and FCεR1α alongside MHC class 

II molecules (HLA-DR/DP/DQ), at both protein and transcript levels. Lastly, 

smallest cluster 4, is recognized as hematopoietic stem and progenitor cells, as 

indicated by the presence of CD34, CD71, and CD82 markers. 

Compositionally, an elevated presence of classical monocytes was noted in 

patients with moderate and severe/critical COVID-19, reaching 73 % and 77 %, 

respectively, compared to 64 % and 62 % in healthy individuals and mild cases 

(Figure 13C). Conversely, the fraction of inflammatory classical monocytes 

surged to 17 % in mild cases, while remaining consistent with healthy control 

levels at approximately 12 % across moderate, severe, and critical disease 

cohorts. In the non-classical monocyte subset, a notable reduction was observed 

among moderate and severe/critical patients, decreasing from approximately 

14 % in mild and healthy cohorts to 6.7 % in moderate and 5.1 % in severe/critical 

cases. The myeloid DC compartment also exhibited a decline from 7 % in mild 

and healthy groups to 5 % and 3.8 % in moderate and severe/critical patients, 

respectively, although these differences did not reach statistical significance. 

This comprehensive analysis delineates the intricate alterations in immune cell 

populations across varying severities of COVID-19, by identifying heterogenous 

populations within major CD8 and CD4 T cell populations, as well as within the 

myeloid cell compartment. The results underscore the dynamic immune 

modulation in response to SARS-CoV-2 infection, highlighted by distinct shifts in 

the prevalence of identified T cell subsets and myeloid cells, particularly noting 

an increase in classical monocytes and regulatory T cells in more severe cases, 

alongside modulations in cytotoxic and activated T cell subsets. 

3.1.4 Hyperinflammation and Exhaustion of Monocytes and Myeloid Dendritic 
Cells in Patients with Severe and Critical COVID-19 

To investigate the transcriptional landscape of myeloid cells during disease 

progression, pseudobulk analysis was used to circumvent the limitations 

commonly encountered in scRNA-seq data. For this data from individual cells 
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was aggregated on cell type and donor level, significantly enhancing statistical 

power. By doing so, we aimed to mitigate the impact of dropout events, where 

the absence of detected gene expression can mask true biological signals. 

Furthermore, pseudobulk analysis allowed us to tackle the challenge of cellular 

heterogeneity, providing a more uniform and interpretable dataset to reveal 

intricate transcriptional variations within myeloid cells in various disease 

severities to elucidate their roles in disease mechanisms and progression.  

DGE analysis of classical monocytes between healthy individuals and mild 

COVID-19 patients revealed an upregulation of genes linked to the IFN response, 

including IFI27, IFITM3, and OAS2 (Figure 14A). Pathway enrichment analysis 

confirmed this observation, with the most enriched pathways being “IFN 
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signaling”, “antiviral mechanisms by ISGs”, and “antigen processing and 

presentation” (Figure 14B). Conversely, downregulated genes were 

predominantly associated with transcription and translation processes, such as 

IRF4, AFF3, and EIF4B, with pathway enrichment highlighting “translation 

initiation”, “peptide chain elongation”, and “viral mRNA translation” (Figure 

14A,C). 

To explore differential expression in more severe disease states relative to mild 

conditions, a weighted average comparison was employed that integrated the 

critical, severe, and moderate groups and compared against the mild group. This 

method allows for a comprehensive analysis that integrates the nuances of 

disease severity across a spectrum, rather than comparing individual severities 

in isolation against the mild condition. In more severe COVID-19 cases, a 

suppression of antigen presentation was noted, evidenced by reduced 

expression of HLA-DRB1 and HLA-DMB, alongside a diminished expression of 

genes implicated in the resolution of inflammation, such as DUSP6. This analysis 

also unveiled an upregulation of anti-inflammatory genes associated with the IL-

1 receptor, like IL1R2 and IRAK3, and markers of inflammation such as FKBP5 

Figure 14: Pseudobulk analysis of classical monocytes across COVID-19 
severity levels. (A) Volcano plot displaying significantly upregulated and 

downregulated genes between mild cases and healthy donors. (B-C) Top 10 

enriched pathways derived from differentially expressed (DE) genes comparing 

mild cases to healthy donors. (D) Volcano plot highlighting key upregulated and 

downregulated genes when comparing moderate, severe, and critical cases to 

mild cases. (E-F) Top 10 pathways enriched based on DE genes from 

comparisons between moderate, severe, and critical cases versus mild cases. 

(H) Overview of the number of DE genes identified across all tested contrasts. 

(G) Heatmap of the log2 fold changes of genes identified as differentially 

expressed in at least four contrasts, organized by their biological function. (I) 
Boxplots illustrating the expression patterns of selected genes (CLEC4A, IL10, 

FCER1G, FGL2) across different severity levels. 
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(Figure 14D). Enriched pathways in upregulated genes included signaling by 

receptor tyrosine kinases, extracellular matrix organization, and insulin receptor 

signaling, whereas downregulated pathways were centered on IFN signaling and 

MHC class II antigen presentation (Figure 14E-F). 

Additionally, a series of weighted comparisons was conducted to dissect 

transcriptional variations across different COVID-19 severity levels and examine 

the interplay between disease severity and patient sex (Figure 14H). By 
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aggregating gene expression data from various severity conditions, it was sought 

to identify genes with consistent differential expression patterns across the 

severity spectrum. These strategic comparisons aimed to delineate biological 

responses shared among severity groups and evaluate the combined effects of 

severity and sex on gene expression. The raw counts were aggregated at the 

donor level. Differential expression testing was performed using a combinatorial 

design to identify genes associated with COVID-19 severity and by taking into 

account the age, sex and study influence on the gene expression patterns. 

The analysis identified 39 genes overlapping within at least four comparisons, 

categorized by their biological functions in monocytes into four groups: immune 

response, proliferation, cell migration, and miscellaneous functions (Figure 14G). 

Among the immune response genes, we observed an elevation in genes 

associated with inflammation resolution, such as IL10, which progressively 

increased with severity. Conversely, genes like CLEC4A and FGL2, which are 

involved in homeostasis and exhibit anti-inflammatory properties, decreased with 

severity. Additionally, genes linked to inflammation and cytokine production, such 

as FCER1G, were identified, illustrating the complex interplay of immune 

Figure 15: Pseudobulk analysis of inflammatory classical monocytes 
across COVID-19 severity levels. (A) Volcano plot displaying significantly 

upregulated and downregulated genes between mild cases and healthy donors. 

(B-C) Top 10 enriched pathways derived from differentially expressed (DE) genes 

comparing mild cases to healthy donors. (D) Volcano plot highlighting key 

upregulated and downregulated genes when comparing moderate, severe, and 

critical cases to mild cases. (E-F) Top 10 pathways enriched based on DE genes 

from comparisons between moderate, severe, and critical cases versus mild 

cases. (H) Overview of the number of DE genes identified across all tested 

contrasts. (G) Heatmap of the log2 fold changes of genes identified as 

differentially expressed in at least four contrasts, organized by their biological 

function. (I) Boxplots illustrating the expression patterns of selected genes (HLA-

DPB1, S100A8, IL1R2, CD163) across different severity levels. 
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responses in monocytes across different stages of COVID-19 severity (Figure 

14I). 

In the subset of inflammatory classical monocytes, DGE analysis between 

healthy individuals and mild COVID-19 patients yielded a gene list characterized 

by upregulated genes involved in the interferon response and antigen 

presentation, similar to the previously described cluster, while genes related to 

translation were found to be downregulated (Figure 15A-C). Conversely, when 

examining more advanced disease severities compared to mild cases, 

upregulated genes included chemokines and those involved in chemokine 

production, such as CXCL2, CXCL3, and CEBPD, as well as anti-inflammatory 

genes like IL1R2 (Figure 15D). Pathway enrichment analysis of upregulated 

genes in COVID-19 highlighted “interleukin signaling”, “homeostasis”, and 

“extracellular matrix (ECM) organization” (Figure 15E). Downregulated genes 



60 

included HLA-DPA1 and genes implicated in “cell adhesion and migration”, such 

as TENM4 and OLFM1, with corresponding pathways showing reductions in 

“MHC class II antigen presentation” and “interferon signaling” (Figure 15D,F). 

Employing a similar methodological approach as described earlier, with a series 

of comparisons (Figure 15H), 50 genes were identified to be present in at least 

three contrasts. These were categorized into groups related to immune response, 

cell adhesion and migration, epigenetic and transcriptional regulation, and 

miscellaneous functions (Figure 15G). Among the immune response-related 

genes, those associated with inflammation, such as S100A8, showed increased 

transcript levels correlating with disease severity (Figure 15I). Conversely, genes 

related to antigen presentation, including HLA-DPA1 and HLA-DPB1, were 

diminished in more severe cases. Additionally, genes indicative of an anti-

inflammatory phenotype, such as CD163 and IL1R2, were upregulated with 

increasing disease severity. 

These findings suggest that the identified classical and inflammatory classical 

monocytes, pivotal for mounting an effective immune response against SARS-

CoV-2, exhibit reduced antigen presentation capabilities as disease severity 

Figure 16: Pseudobulk analysis of non-classical monocytes across COVID-
19 severity levels. (A) Volcano plot displaying significantly upregulated and 

downregulated genes between mild cases and healthy donors. (B-C) Top 10 

enriched pathways derived from differentially expressed (DE) genes comparing 

mild cases to healthy donors. (D) Volcano plot highlighting key upregulated and 

downregulated genes when comparing moderate, severe, and critical cases to 

mild cases. (F) Top 10 pathways enriched based on DE genes from comparisons 

between moderate, severe, and critical cases versus mild cases. (E) Overview of 

the number of DE genes identified across all tested contrasts. (G) Heatmap of 

the log2 fold changes of genes identified as differentially expressed in at least 

four contrasts, organized by their biological function. (H) Boxplots illustrating the 

expression patterns of selected genes (MERTK, HLA-B, MARCH3, FKBP5) 

across different severity levels. 
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escalates. Simultaneously, there is an enhanced expression of chemokines 

facilitating the further recruitment of neutrophils and monocytes, alongside a mix 

of inflammatory and anti-inflammatory genes, indicative of a state of exhaustion 

within this cell subset. 

DGE analysis in the non-classical monocyte subset of myeloid cells comparing 

healthy individuals to those with mild COVID-19 mirrored the transcriptional 

response observed in classical monocytes (Figure 16A-C). This included 

elevated interferon signaling and antigen presentation alongside reduced 

translation capacity. When examining the gene expression profile contrasting 

advanced disease states to mild, genes were identified which are implicated in 

tissue repair, such as AREG, and the production of anti-inflammatory cytokines, 
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notably MAF (Figure 16D). However, with only 38 genes showing significant 

upregulation, no pathways were markedly enriched. 

Analysis of downregulated genes highlighted pathways tied to “MHC class II 

antigen presentation” and “interferon signaling” (Figure 16F). An extensive 

comparison across disease severities revealed 21 genes consistently 

differentially expressed in at least four contrasts, categorized into groups of 

transcription and translation, cell matrix adhesion, and immune response (Figure 

16G). Notably, the majority of these genes are related to ribosomal function and 

translation factors. Only four genes were directly associated with immune 

regulation, including TLR2, which plays a role in pathogen recognition, and 

C1QBP, involved in the coagulation cascade. 

Furthermore, anti-inflammatory markers influencing IL-1 signaling, such as 

MARCH3, and the MHC class I gene HLA-B were found to be more prevalent in 

mild cases compared to more severe disease states (Figure 16H). Conversely, 

the anti-inflammatory marker MERTK and the inflammation-associated FKBP5 

gene exhibited higher expression in severe cases than in mild and healthy 

groups. 

Figure 17: Pseudobulk analysis of myeloid dendritic cells across COVID-19 
severity levels. (A) Volcano plot displaying significantly upregulated and 

downregulated genes between mild cases and healthy donors. (B-C) Top 10 

enriched pathways derived from differentially expressed (DE) genes comparing 

mild cases to healthy donors. (D) Volcano plot highlighting key upregulated and 

downregulated genes when comparing moderate, severe, and critical cases to 

mild cases. (F) Top 10 pathways enriched based on DE genes from comparisons 

between moderate, severe, and critical cases versus mild cases. (E) Overview of 

the number of DE genes identified across all tested contrasts. (G) Heatmap of 

the log2 fold changes of genes identified as differentially expressed in at least 

four contrasts, organized by their biological function. (H) Boxplots illustrating the 

expression patterns of selected genes (HLA-DOA, CD1C, FCER1A, IRAK3) 

across different severity levels. 
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These findings underscore a shared phenotype between non-classical and 

classical monocytes, characterized by diminished MHC class I/II antigen 

presentation. The variable regulation of anti-inflammatory markers points towards 

an exhausted monocyte phenotype within the progression of COVID-19, 

reflecting a complex interplay of immune responses across different disease 

severities. 

Myeloid DCs exhibited a transcriptional shift from healthy to mild disease 

conditions reiterated changes observed in other myeloid cell subsets, 

characterized by an upregulation of IFN signaling, cytokine signaling, and antigen 

presentation, alongside a suppression of translation processes (Figure 17A-C). 

In the comparison between complex advanced disease severities and mild cases, 

genes involved in the ubiquitination of MHC class II molecules, such as MARCH1, 

and markers related to cell adhesion and migration, including ADAMTS2 and 

SDC2, were upregulated (Figure 17D). However, due to a limited number of DE 

genes (50 genes), no pathways reached significant enrichment. On the 

downregulated side, genes that facilitate DC maturation, like NDRG2, as well as 

those involved in antigen presentation and immune response, such as FCER1A 

and HLA-DOA, were identified (Figure 17D). These downregulated genes were 

associated with pathways related to translation (Figure 17F). 

Through the series of set contrasts (Figure 17E), 57 genes were identified as 

differentially expressed in at least four contrasts with a log2 fold change cutoff of 

≥ 0.2 and a false discovery rate (FDR)-adjusted p-value threshold of ≤ 0.1 (Figure 

17 G). These genes were organized into five categories based on biological 

function: cell adhesion and migration, immune response, epigenetic and 

transcriptional regulators, transcription and translation, and miscellaneous. 

Among these, genes linked to antigen presentation and T cell licensing, such as 

HLA-DOA, CD1C, and LY75, were found to be downregulated with increasing 

disease severity (Figure 17G-H). Conversely, IRAK3, an anti-inflammatory 

regulator of IL1 receptor signaling, was upregulated in more severe cases (Figure 

17H). Additionally, FCER1A, known for its association with anti-inflammatory 
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properties and inflammation resolution, exhibited decreased expression in more 

severe disease states.  

This analysis highlights a shift towards immature DCs with altered antigen 

presentation and T cell activation capacity as the COVID-19 disease progresses.  

3.2 Comparative analysis of antibody titers against the spike protein of 
SARS-CoV-2 variants in infected patient cohorts and diverse vaccination 
regimes 

This study presented in this subsection was conducted at the University Hospital 

of Bonn, where patients and healthy donors were recruited with the goal of 

capturing a broad representation across different COVID-19 disease severities 

and immune backgrounds. The inclusion strategy prioritized diversity, aiming to 

integrate as many distinct patient cohorts as possible to enable meaningful 

comparisons within and between groups. 

The primary objective of this analysis was to assess how antibody titers against 

the SARS-CoV-2 spike protein vary across these cohorts. Particular emphasis 

was placed on evaluating how different vaccine formulations induce humoral 

responses, and how these responses compare to those generated by natural 

infection. This comparative framework also aimed to reveal the dynamics of 

antibody waning over time and the immunological benefits of hybrid immunity in 

convalescent individuals following vaccination. 

To explore the nuances of the adaptive immune response across varying disease 

severities of SARS-CoV-2 infection and their correlation with outcomes, this study 

delved into the dynamics of α-Spike-Ab titers among SARS-CoV-2-infected 

patients, encompassing a spectrum of disease outcomes including mild cases, 

critical illness, recovered, and Long COVID. Additionally, the investigation 

extended to different vaccination strategies, analyzing both mRNA and vector-

based vaccines, over a period of up to one year. Through longitudinal 

quantification of cytokines, neuroinflammation markers, and B and T cell 

population phenotypes using flow cytometry, comprehensive insights were 
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garnered. The findings have been documented in the publication Odainic et al., 

2022 and are recapitulated here in chapter 3.2.  

3.2.1 α-Spike-Ab titers differ with disease severity of COVID-19 and correlate to 
elevated numbers of class-switched B and Tfh Cells  
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In this study Ab development during the initial phase of SARS-CoV-2 infection 

Figure 18: Analysis of Ab titers against the Wuhan SARS-CoV-2 Spike 
protein across various stages of COVID-19, focusing on the correlation with 
B and T cell maturation. (A) Composition and size of patient cohorts in study. 

(B) Progression of α-Spike-Ab titers in patients with mild COVID-19, aligned to 

the peak N-protein concentration (t0) in serum, with the shaded area depicting 

the 95% confidence interval for N-protein levels. (C) Representative dot plot 

(upper panel) and a consolidated box plot (lower panel) illustrating B cell 

dynamics in patients with a mild course of the disease. (D) Contour plots (left 

panel) and a summarized box plot (right panel) showcasing T follicular helper cell 

distributions in mildly affected COVID-19 patients. (E) α-Spike-Ab levels in sera 

from critically ill COVID-19 patients, with non-filled points highlighting individuals 

exhibiting heightened Ab titers. (F) Neutralizing capability of antibodies targeting 

the Spike protein's receptor-binding domain (RBD) between healthy, non-

vaccinated controls and critically ill patients. (G) Pearson correlation plot for 

select patient parameters on day 1 of a critical disease phase, with bordered 

squares indicating statistically significant correlations. (H) Boxplot of IL-10 

concentrations in the serum of critical patients. (I) Contour plots of the critical 

patient cohort, with non-filled points identifying a subgroup with elevated Ab titers. 

(J) Representative dot plot (left panel) and a quantitative box plot (right panel) for 

T follicular helper cells in critically ill COVID-19 patients, where non-filled points 

represent the subgroup with enhanced Ab titers. (K) Ratio of T follicular helper 

cell frequencies to T regulatory cells (CD3+CD4+CD25highCD127-), with non-filled 

points indicating patients with increased Ab titers. "Ctrl" refers to a control group 

with similar symptoms but negative for SARS-CoV-2. The blue line represents 

the average concentration in healthy controls; the blue dashed line marks the 

95% confidence interval. Lower Level of Quantification (LLoQ) and Mann-

Whitney U test results are provided, with unadjusted p-values for panels B, C, E, 

G, H, I, J; * denotes p value < 0.05, ** denotes p value < 0.01, *** denotes p value 

< 0.001. 
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was tracked, monitoring its persistence throughout hospitalization and assessing 

the longevity of antibody presence for up to 21 days across three distinct cohorts 

(Figure 18A). The cohorts comprised patients of similar age ranges (average 

years: Controls = 57, Mild = 54, Critical = 63; Supplementary Figure 2A) and with 

a comparable prevalence of systemic diseases like hypertension (21-41 %) and 

diabetes (7–12 %). Notably, the sex distribution was balanced across all groups, 

with the exception of the critically ill cohort, where males predominated (88 %), a 

trend identified early in the pandemic's first year. 

Focusing on the early infection phase, α-Spike-Ab (specific to the Wuhan variant) 

development was evaluated in 15 patients with mild COVID-19, who recovered 

at home without the need for medical intervention. Blood samples were collected 

on multiple occasions within the first eight days and again on day 15 post-

enrollment (Figure 18B). Given the challenge of precisely determining infection 

onset, we utilized the peak serum level of SARS-CoV-2 Nucleoprotein (N-protein) 

as a reference point (t0) to standardize the analysis across the cohort. Samples 

from days preceding and following t0 were labeled accordingly. 

We observed α-Spike-Ab concentrations beginning to rise within one to three 

days post-infection, with a significant increase noted from day seven onwards (t2, 

Figure 18B). Conversely, N-protein levels decreased, indicative of viral 

clearance, a phenomenon we have previously documented. Furthermore, we 

measured α-Spike-Ab titers against the alpha, beta, and gamma SARS-CoV-2 

variants (Supplementary Figure 2B, C), noting low titers at t2 (Supplementary 

Figure 2B). Increased titers of α-Spike-Ab (Wuhan variant) led to noticeable 

differences in immunity against these variants at subsequent timepoints (t2 and 

t3, Supplementary Figure 2C). For comparative analysis of antibody responses 

against various virus strains, we calculated the percentage reduction in antibody 

concentrations against the alpha (17 %), beta (51 %), and gamma (50 %) variants 

compared to the Wuhan strain at t2 (Supplementary Figure 2C), facilitating 

insights into variant-specific immune responses. 
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To elucidate the roles of B and CD4+ T cells in the humoral response to SARS-

CoV-2 infection, we conducted flow cytometry analyses on various B cell 

subpopulations and Tfh cells within the peripheral blood of study groups. Our 

findings revealed that, compared to controls, SARS-CoV-2-infected patients 

exhibited a notable increase in the percentage of pro-B cells at the onset of 

infection (t0), with mean percentages rising significantly from 33 ± 3 % in controls 

to 93 ± 1 % in mild cases at t0 (Supplementary Figure 2D). Conversely, the 

proportion of mature B cells diminished at t0 (from 53 ± 4 % in controls to 3 ± 0 

% in mild cases), while immature B cell percentages saw an increase from t0 

onwards (from 3 ± 1 % at t0 to 7 ± 2 % at t2 in mild cases). 

A significant correlation was observed between the increase in IgD-

CD38lowCD27+ class-switched B cells-from 58 (52–64) % in controls to 78 (73-

80) % at t2 in mild cases (Figure 18C)-and elevated α-Spike-Ab concentrations 

seven days post-infection (t2), suggesting an enhanced humoral response (p = 

0.01, r = 0.59). However, the frequencies of non-class-switched B cells 

(IgD+CD38lowCD27+) remained unchanged (median, interquartile range for 

controls: 10 (6–16) % vs. mild cases at t2: 9 (9–10) %; Supplementary Figure 

2E). 

Moreover, we observed a substantial increase in the population of 

CD4+CXCR5+CD3+ Tfh cells, which are essential for driving B cell differentiation 

into antibody-producing plasma cells, in infected patients compared to uninfected 

controls (median, interquartile range for controls: 7 (6-9) % vs. mild cases from t-

2 to t2: 32-51 %; Supplementary Figure 2D). This upsurge underscores the critical 

engagement of Tfh cells in mounting an effective humoral response during SARS-

CoV-2 infection. 

The differences in α-Spike-Ab concentrations between mild and critical COVID-

19 cases have been explored, assessing their potential to forecast severe 

disease outcomes. Antibody titers were tracked from ICU admission through to 

hospital discharge, death, or up to 15 days of hospitalization (Figure 18E). A 

notable distinction in α-Spike-Ab levels was observed between mildly infected 
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individuals and critically ill patients who succumbed to the infection (pd1 value= 

0.005, pd8 value = 0.0006, pd15 value = 0.001, Figure 18E) as well as those who 

recovered (pd1 value = 0.04, pd8 value = 0.004, pd15 value = 0.03, Figure 18E). 

Despite this, the comparison of antibody concentrations between survivors and 

non-survivors over the study period showed no significant differences (Figure 

18E). Similar to mild COVID-19 cases, we noted that antibody titers against the 

alpha, beta, and gamma variants were lower in critically ill patients compared to 

those against the original Wuhan strain (Supplementary Figure 2F). 

Considering the hypothesis that severe disease outcomes might be associated 

with low IgG antibody affinity for the Spike protein’s RBD, neutralization assays 

were conducted against the initial strain as well as alpha, beta and gamma 

variants of concern. These assays measured the competitive interaction between 

neutralizing antibodies in patient sera and a human ACE2 protein standard for 

capture SARS-CoV-2 RBD antigens (Figure 18F, Supplementary Figure 2G). 

Unlike the control group, in which the presence of neutralizing antibodies was 

minimal (with mean and SEM values for the Wuhan strain at 2 ± 1 %, alpha variant 

at 3 ± 1 %, beta variant at 3 ± 2 %, and gamma variant at 10 ± 2 %), patients with 

severe COVID-19 showed detectable levels of neutralizing antibodies. These 

antibodies had varying effectiveness against the four SARS-CoV-2 variants, as 

well as between the survivor and deceased patients, yet these differences were 

found to be not significant (mean and SEM for Wuhan Surv.: 93 ± 1 %, Dec.: 70 

± 18 %; alpha Surv.: 86 ± 3 %, Dec.: 65 ± 18 %; beta Surv.: 45 ± 6 %, Dec.: 36 ± 

15 %; gamma Surv.: 59 ± 6 %, Dec.: 47 ± 14 %).  Regardless of whether patients 

survived or died, the antibodies showed the lowest neutralization rates against 

beta variant among all analyzed strains (Supplementary Figure 2G). 

Further analysis identified a split in α-Spike-Ab levels upon ICU admission among 

survivors, independent of viral load, while all deceased patients consistently 

showed high α-Spike-Ab levels throughout hospitalization. A Pearson correlation 

integrating cytokine levels and immune cell frequencies for critically ill patients 

suggested that lower α-Spike-Ab titers in survivors correlated with deviations in 
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immune response markers, like elevated IL10 levels and T cell counts (Figures 

18G,H).  

Without considering specific patient groups, those critically ill COVID-19 patients 

who survived showed a trend towards higher concentrations of the anti-

inflammatory cytokine IL10 (p value = 0.28, Figure 18H). This trend towards 

elevated IL10 serum levels became statistically significant when survivors were 

categorized based on their α-Spike-Ab levels, indicating that higher antibody 

levels were associated with increased IL10 concentrations. In contrast, critically 

ill patients who succumbed to COVID-19 had a lower count of mature B cells 

upon their admission to the ICU compared to the control group, but a greater 

number of pro B cells were observed (mean and SEM for controls: 33 ± 3 %; 

survivors: 17 ± 3 %; deceased: 58 ± 12 %, as detailed in Supplementary Figure 

2I). The proportion of immature B cells in uninfected controls was smaller than in 

both the deceased and surviving patients, with rates being similar between these 

last two groups (mean and SEM for controls: 3 ± 0 %; survivors: 15 ± 6 %; 

deceased: 10 ± 4 %). Notably, patients who died had a higher proportion of class-

switched memory B cells than those who recovered from the infection (median, 

interquartile range for survivors: 44 (37-51) %; deceased: 66 (57-76 %) (Figure 

18I). However, no significant variance was detected in the frequency of class-

switched memory B cells between survivors with differing levels of α-Spike-Ab (p 

value = 0.8). Similar trends were noted in the levels of Tfh cells, where survivors 

showed a median and interquartile range of 4 % (3-10 %), while deceased 

patients had significantly higher levels at 17 % (15-38 %) (Figure 18J). However, 

for non-class-switched B cells, both groups had similar proportions, with survivors 

at a median of 8 % (5-12 %) and deceased patients also at 8 % (4-24 %) 

(Supplementary Figure 2J). The relationship between the frequencies of Tfh and 

Treg cells serves as an indicator of an active inflammatory immune reaction and 

potential autoimmune conditions. In our study, critically ill patients who did not 

survive exhibited a Tfh/Treg cell ratio that was 3 times higher than that of 

survivors (Figure 18K), suggesting a complex dysregulated immune response. 

This dysregulation appeared to occur at multiple levels, including a deficiency in 
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anti-inflammatory cytokines like IL10 and a disruption in Treg cell function. 

Despite previous studies linking a low IFNγ to IL10 ratio with viral infections, our 

analysis showed no significant difference in this ratio between control individuals 

and critical patients, irrespective of their outcome from SARS-CoV-2 infection. 

Thus, we determined that using the IFNγ/IL10 ratio as a predictive marker for 

severe outcomes of SARS-CoV-2 is not effective. 

Additionally, this study aimed to understand whether the chronic persistence of a 

viral reservoir and an ongoing immune response, characterized by continuous 

antibody production against the Spike protein and cytokine secretion by immune 

cells, could underlie the pathogenesis of Long COVID. Our Long COVID patient 

cohort, comprising 20 individuals, experienced persistent symptoms including 

fatigue, tachycardia or elevated blood pressure ("cardiovascular system"), 

headaches, and insomnia (Figure 19A, Supplementary Figure 3A, B). These 

patients, closely age-matched with a control group presenting similar symptoms 
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(LC control, mean years: 40; Long COVID, mean years = 39; Supplementary 

Figure 3A, B), exhibited sustained elevated antibody (Ab) titers against various 

SARS-CoV-2 variants for up to eight months post-infection, which then declined 

over a 12-month observation period (Figure 19B, Supplementary Figure 3C). 

Conversely, α-Spike-Ab levels in the control group were significantly lower (392-

fold reduction) compared to the initial four months in Long COVID patients 

(median, interquartile range for LC controls: 1 (1-39) BAU/ml; Long COVID0-4 

months: 444 (278-600) BAU/ml), aligning with the antibody titers seen in healthy, 

age-matched controls  (median, interquartile range for Ctrl: 1 (0-1) BAU/ml) and 

confirming the absence of previous SARS-CoV-2 infection in the LC control group 

(Figure 19B). 

Despite these elevated α-Spike-Ab titers, no SARS-CoV-2 N-protein was 

detected in Long COVID patients (means for Long COVID0-12 months: 594 

pg/ml; LC control: 477 pg/ml), differing markedly from acutely infected individuals 

(means for Mildt2-4: 1072 pg/ml; Criticald1: 6927 pg/ml; Figure 19C). Serum 

samples were analyzed for classical inflammatory and anti-inflammatory 

cytokines as indicators of a prolonged immune response. An initial four-month 

Figure 19: Antibody titers against the Wuhan SARS-CoV-2 Spike protein 
and cytokine levels in Long COVID patients. (A) Patient cohorts analyzed in 

the study. (B) Comparative analysis of α-Spike-Ab titers in Long COVID 

participants across different post-infection timepoints, alongside data from 

healthy controls, and patients with mild and critical COVID-19 disease courses, 

as well as Long COVID control subjects. (C) N-protein levels, (D) a radar plot of 

normalized cytokine titers, and IL10 concentrations (E) in LC and LC Ctrl patients. 

"Ctrl" represents a control group exhibiting similar symptoms but which never 

experienced SARS-CoV-2 infection. The mean concentration in healthy controls 

is depicted by a blue line, with the 95% confidence interval shown by a blue 

dashed line. The Lower Level of Quantification (LLoQ) and Mann-Whitney U test 

results are provided, with significance levels marked as * p value < 0.05, ** p 

value < 0.01, *** p value < 0.001. 
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period post-infection showed a slight increase in cytokine levels such as IL8, 

TNFα, IL6, IL12p70, IL10, IL5, and IL4 (Figure 19D), with IL12p70 significantly 

elevated in Long COVID patient (means for LC control: 0.00 pg/ml; Long 

COVID0-4 months: 0.13 pg/ml; Supplementary Figure 3D). Notably, IL10 levels 

were significantly higher in the four to eight-month period post-infection (means 

for Long COVID0-4 months: 0.84 pg/ml; Long COVID4-8 months: 0.38 pg/ml; 

Figure 19E). Additionally, serum markers of neuroinflammation and degeneration 

were assessed, revealing no significant differences in Aβ40, Aβ42, GFAP, and 

NF-light concentrations between Long COVID patients and controls 

(Supplementary Figure 3E), indicating that neuroinflammation could not be 

directly linked to Long COVID symptoms.  

Our findings reveal an increase in class-switched memory B cells and α-Spike-

Ab titers starting from the seventh day post-infection. Patients across the disease 

spectrum-those with mild symptoms, those critically ill, and individuals with Long 

COVID-exhibited similar α-Spike-Ab levels. Notably, both survivors of critical 

COVID-19 and Long COVID sufferers had heightened levels of the anti-

inflammatory cytokine IL10, irrespective of N-protein levels. In contrast, those 

who succumbed to the virus had lower IL10 levels but a higher count of class-

switched memory B cells and Tfh cells. Furthermore, an increased Tfh/Treg cell 

ratio was observed, suggesting a potential trigger for an autoimmune response 

due to multiple organ damage in critically ill patients who did not survive the 

infection. 

3.2.2 mRNA-based COVID-19 vaccines provide time-limited titer of antibodies to 
SARS-CoV-2 

Since December 2020, Europe had access to three COVID-19 vaccines: 

AstraZeneca's vector-based ChAdOx1nCOV-19 Vaxzevria (AZ), and the mRNA-

based vaccines from Pfizer-BioNTech Comirnaty (BT) and Moderna Spikevax 

(MO). We recruited 76 volunteers across three cohorts, each following a slightly 

varied vaccination regimen, to evaluate the development and duration of α-Spike-

Ab in response to each vaccine type (Figure 20A, Supplementary Figure 4A). 
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Post-first AZ dose, α-Spike-Ab levels against the Wuhan strain and, to a lesser 

degree, the alpha, beta, and gamma variants rose to levels seen in ongoing 

infections (Figure 20B, Supplementary Figure 4B), accompanied by common 

adverse effects suggesting immune activation. Fourteen days following the first 

dose of the AZ vaccine, we measured the levels of 10 pro- and anti-inflammatory 

cytokines in peripheral blood of vaccinated individuals. Among these, IFNγ stood 

out as the sole cytokine to show a significant 10-fold increase even two weeks 

post-vaccination (with average levels for controls at 0.04 pg/ml and after the first 

AZ dose at 0.44 pg/ml; Figure 20C, D). 
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Administering the first dose of the Pfizer-BioNTech Comirnaty vaccine led to α-

Spike-Ab titers in healthy individuals that were equivalent to those seen in 

COVID-19 patients during the early stages of an active SARS-CoV-2 infection 

(with median levels for mild cases at days 2-4 being 369 BAU/ml, and after the 

first Pfizer-BioNTech dose at 272 BAU/ml; Figure 20E). Additionally, a pattern 

was observed similarly in the AZ vaccination and in those with ongoing SARS-

CoV-2 infections, where α-Spike-Ab titers against various SARS-CoV-2 variants 

decreased by as much as 50 % (Supplementary Figure 4C). The second Pfizer–

BioNTech shot significantly boosted α-Spike-Ab levels (with a median of 2488 

BAU/ml); however, this heightened response waned over time. By six months 

post-booster, α-Spike-Ab levels dropped to below what was observed two weeks 

following the first shot (median at 6 months post-booster: 164 BAU/ml). A third 

dose successfully reinstated and even surpassed the α-Spike-Ab titers seen 14 

days after the second shot (median for the third dose: 3920 BAU/ml). Titers 

decreased again by the six-month mark following the third vaccination, but 

Figure 20: Antibody titers development as response to inoculation with 
COVID-19 vaccine. (A) Overview of participant cohorts of donors after 

vaccination and SARS-CoV-2 infected. α-Spike-Ab levels (B), cytokine profiles 

(C), and specific IFNγ measurements (D) in sera of donors 14 days post-AZ 

vaccination. Depiction of BT (E) and MO (F) vaccination schedules alongside a 

time series of α-Spike-Ab titers post-multiple vaccinations. (G) Cytokine level 

heatmap, Z-score normalized, pre- and post-MO vaccination. (H) Specific 

cytokine levels for IFNγ and IL1β pre- and post-MO vaccination. (I) α-Spike-Ab 

titer comparison after various doses of mRNA vaccines. (J) Antibody 

neutralization potential against SARS-CoV-2 Spike-RBD comparing healthy 

controls, critically ill COVID-19 patients, and BT/MO vaccinated individuals six 

months post-second booster. Lower Level of Quantification denoted as LLoQ; 

Mann–Whitney U test applied for statistical analysis, with unadjusted p-values 

provided for (A) and adjusted for (B, E); Significance levels marked as * p value 

< 0.05, ** p value < 0.01, *** p value < 0.001. 
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remained at a robust level (median at 13 months post-first vaccination: 1283 

BAU/ml). 

The dynamics of α-Spike-Ab titers observed with Moderna's Spikevax vaccination 

mirrored those seen with other vaccines. Six days post-initial MO vaccination, α-

Spike-Abs were undetectable (median for days 6-7: 0 BAU/ml; Figure 20F). 

However, titers against the Wuhan strain of SARS-CoV-2 (and to a smaller extent 

other variants as shown in Supplementary Figure 4D) rose after four weeks. 

Following the booster dose, there was a sharp increase in titers after 20 (medians 

for before the second dose: 483 BAU/ml; days 18–20 after the second dose: 

12,221 BAU/ml). Similar to the BT vaccine, α-Spike-Ab levels dropped back to 

initial immunization levels six months after the booster (median before the third 

dose: 484 BAU/ml), but a third shot raised the titers to levels seen after the 

second dose (median 14 days after the third dose: 5001 BAU/ml). Participants 

receiving the MO vaccine reported flu-like symptoms, akin to those vaccinated 

with AZ. 

To explore whether the MO vaccine side effects are triggered by an excessive 

inflammatory response, we measured pro- and anti-inflammatory cytokine levels 

in participants' serum before and after the first and second vaccinations (Figure 

20G). Inflammatory cytokines such as IL6, IFNγ, IL1β, and TNFα spiked 24 hours 

post-first vaccine dose (Supplementary Figure 4E), with only IFNγ (medians for 

control: 0.03 pg/ml; day 1 post-first dose: 1.16 pg/ml) and IL1β (medians for 

control: 0.03 pg/ml; day 1 post-first dose: 0.06 pg/ml) showing significant 

increases (Figure 20H). This increase in pro-inflammatory cytokines was 

temporary, returning to baseline by day 2 post-vaccination. No significant rise in 

cytokine levels was observed after the second vaccination compared to levels 

before the initial vaccination. 

Fourteen days following both the second and third doses of the vaccines, there 

were no notable differences in Ab levels produced by the BT or MO formulations, 

nor were there differences between the vaccination strategies at this specific time 

(Figure 20I). Our evaluation of COVID-19 vaccine efficacy extended to analyzing 
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the neutralizing ability of α-Spike-Abs generated by the BT and MO vaccines six 

months after the second booster (third vaccination). The antibodies from 

vaccinated individuals exhibited a level of neutralization against the Spike RBD 

of both the Wuhan and alpha variants comparable to that observed in critically ill 

COVID-19 patients (Figure 20J, Supplementary Figure 4F). Although data points 

for the MO vaccine group were fewer, antibodies from the BT vaccine displayed 

a notably higher neutralization capacity against the beta and gamma variants of 

SARS-CoV-2 (Supplementary Figure 4F). 

In conclusion, both mRNA-based vaccines demonstrated comparable 

effectiveness in generating Ab titers against various SARS-CoV-2 variants. 

Furthermore, a decline in Ab titers targeting the Spike protein was noted across 

all the mRNA vaccines studied, occurring over a six-month period following 

vaccination. 

3.2.3 Comparative efficacy of mixed-vaccine regimens versus single-vaccine 
approaches on SARS-CoV-2 Spike Ab titers 

Due to vaccine shortages and multiple reports of severe adverse events such as 

cerebral vein thrombosis following COVID-19 vaccination (Sharifian-Dorche et 

al., 2021; Perry et al., 2021; Jaiswal et al., 2022), the recommendations for 

administering AZ, Jcovden Janssen-Cilag (JJ), BT, and MO vaccines were 

updated. The German Vaccine Committee (STIKO) at the Robert Koch Institute 

in Berlin recommended using AZ for the initial dose followed by an mRNA-based 

COVID-19 vaccine for the booster, or two doses of AZ exclusively for individuals 

over 60 years old. Our study included 3 healthy participants who received two 

initial doses of AZ followed by a booster dose of BT (Figure 21A, Supplementary 

Figure 5A). Previous findings confirmed that a single dose of AZ significantly 

raised α-Spike-Ab levels against the original Wuhan strain and other variants 

(Figure 21B, Supplementary Figure 5B). Following a booster with BT within 28 

days after the second dose of AZ, α-Spike-Ab levels surged 13-fold by day 7 

(medians for before BT: 181 BAU/ml; 7 days after BT: 3153 BAU/ml; Figure 21A), 

matching the antibody levels seen in participants who received two BT doses. 
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Additionally, we examined α-Spike-Ab titers in 4 participants adhering to another 

STIKO recommendation: one dose of AZ followed by two doses of BT. Their 

antibody levels were compared to those in control participants who received three 

BT doses. The interval between the first and second BT doses was less than 8 

weeks, resulting in already elevated α-Spike-Ab levels before the second BT 

dose (median before the second BT: 2781 BAU/ml), which were on par with levels 

seen after two or three BT doses (medians for after the second BT: 2488 BAU/ml; 
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after the third BT: 3920 BAU/ml). No significant increase in α-Spike-Ab levels was 

noted up to 21 days following the second BT dose (21 days after the second BT: 

3468 BAU/ml). 

Differing from the group that adhered to an AZ-BT-BT vaccination regimen, three 

individuals who received just a single JJ vaccine exhibited notably lower α-Spike-

Ab levels two months post-vaccination (median prior to boost: 61 BAU/ml; Figure 

21C). Introducing a booster dose of BT significantly elevated their antibody titers 

to 1007 BAU/ml within seven days, reaching levels seen in those who had 

received two or three doses of BT (medians for second BT dose: 2488 BAU/ml; 

third BT dose: 3920 BAU/ml). Thus, it's evident that individuals initially vaccinated 

with JJ can significantly benefit from a subsequent BT booster dose. 

Ultimately, it was noted that participants initially receiving two doses of the MO 

vaccine and then switching to BT for their third dose did not see an advantage 

from this vaccination strategy (Figure 21D). Their α-Spike-Ab levels were half 

those observed in participants who were administered three doses of MO 

(medians 14 days after BT: 2347 BAU/ml; after the third MO dose: 5001 BAU/ml). 

In conclusion, each of the varied vaccination approaches studied achieved 

acceptable α-Spike-Ab levels against the Wuhan strain and other variants 14 

days following the final booster dose (Figure 21E, Supplementary Figure 5B). 

Figure 21: Comparison of antibody levels against the SARS-CoV-2 Wuhan 
Spike across different vaccination regimes. (A–D) Depicted at the top are the 

vaccination sequences and timeline, whereas at the bottom are the α-Spike-Ab 

concentrations over time for groups vaccinated with various combinations as 

outlined in the sequences of AZ-AZ-BT (A), AZ-BT-BT (B), JJ-BT (C), and MO-

MO-BT (D). (E) Showcases a comparison across these different vaccination 

strategies; LLoQ stands for Lower Level of Quantification; the Mann-Whitney U 

test was used for statistical analysis, with unadjusted p-values in (A) and adjusted 

p-values in (C-E); significance levels are indicated as follows: * p value < 0.05, ** 

p value < 0.01, *** p value < 0.001. 
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However, it was noted that α-Spike-Ab levels in groups following a mixed 

vaccination regimen were significantly lower compared to those in the control 

groups receiving three doses of the same vaccine, either BT or MO. 

3.2.4 Cured COVID-19 donors benefit from vaccination after six months post 
infection 

Following infection with SARS-CoV-2, individuals rapidly produced antibodies 

targeting the virus's Spike protein within the first week (Figure 18B). However, for 

those experiencing Long COVID, α-Spike-Ab levels began to decline after eight 

months, continuing to drop through to 12 months (Figure 19B). In an effort to 

booster immunity against SARS-CoV-2 re-infection, three individuals who had 

recovered from COVID-19 received two doses of BT vaccine six months post-

infection (Figure 22A). These individuals were considered healthy, having no 

history of hypertension, diabetes, or obesity (Figure 22B). The antibody levels in 

these recovered patients were notably lower six months post-infection (median 

before first BT dose: 148 BAU/ml; Figure 22C) compared to healthy individuals 

who had received two doses of the BT vaccine (median after second BT dose: 

3488 BAU/ml). Interestingly, the recovered COVID-19 patients exhibited 

relatively higher antibody titers against the alpha and gamma variants of SARS-

CoV-2, similar to those with an active infection, when compared to vaccinated 

individuals (Supplementary Figures 2C,F, 4C,D, and 6A). Administering one dose 

of the BT vaccine resulted in a significant increase in α-Spike-Ab levels seven 

days later (median after 7 days: 3008 BAU/ml), matching levels seen in controls 

who also received the BT vaccine. A subsequent dose one month later did not 

further elevate α-Spike-Ab levels beyond those achieved with the initial BT dose 

(median after second dose, day 7: 3918 BAU/ml). It is critical to note that 

recovering from SARS-CoV-2 infection, followed by BT vaccination, did not 

sustain antibody production against the Spike protein in the long term; antibody 

levels dropped to a baseline of 544 BAU/ml 183 days post-vaccination (Figure 

22C). These findings reinforce the consensus in the scientific community that 

individuals who have recovered from COVID-19 still benefit from receiving an 

mRNA-based vaccine six months after their infection. A sole SARS-CoV-2 
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infection does not produce antibody levels that are either more durable or higher 

than those generated by vaccination. 

Figure 22: Ab titers targeting the Spike protein of the Wuhan SARS-
CoV-2 strain before and after immunization. (A) Graph depicts the 

vaccination timeline, (B) provides a table detailing patient clinical 

characteristics, and (C) shows the α-Spike-Ab concentrations in patients 6 

months after infection shortly before vaccination and subsequent 

inoculations at specified intervals. LLoQ stands for Lower Level of 

Quantification; the Mann-Whitney U test was employed for statistical analysis 

with unadjusted p-values in part (C); a significance level of *** indicates a p 

value < 0.001. 
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3.3 Programming of peripheral classical monocytes during COVID-19 

Since antigen-presenting cells play a central role in orchestrating immune 

responses during infection, particularly through antigen presentation and cytokine 

signaling. The study presented in this subsection of the thesis focused on 

examining their functional states during COVID-19. Due to the practical and 

ethical limitations of accessing dendritic cells and tissue-resident macrophages 

directly from infected human tissues, classical CD14⁺ monocytes were selected 

as surrogate immune cells. These cells circulate in peripheral blood, are readily 

accessible, and can migrate to infection sites where they differentiate into 

macrophages and contribute significantly to shaping local and systemic immune 

responses. 

To explore the transcriptional and functional programming of monocytes during 

varying severities of COVID-19, bulk RNA sequencing was performed on CD14⁺ 

monocytes isolated from 52 donors recruited at the University Hospital Bonn. 

Donors with a critical disease course were enrolled upon their first day of 

admission to the intensive care unit (ICU), while individuals with mild symptoms, 

along with healthy controls, were sampled at their homes at scheduled timepoints 

over a period of up to three weeks. This design enabled a detailed comparative 

analysis of monocyte gene expression patterns across different clinical severities 

and stages of infection. 

3.3.1 Study cohort and clinical parameters 

In this study, 37 patients were categorized as "critical," along with ten healthy 

control donors and five patients with mild symptoms (Table 2). The high mortality 

rate of 58 % among critical patients resulted in incomplete kinetic analyses of 

monocytic programming for some donors. However, the death of a patient did not 

lead to the exclusion from the study. The median age was 60 years for critical 

patients and 62 years for healthy volunteers, while the mild cohort had a median 

age of 41 years. Additionally, males constituted 81 % of the ICU cohort, indicating 

a male prevalence in this critical group. PCR tests were performed on all mild and 

critical donors at the time of their admission to the study; 89 % of critical donors 
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demonstrated viral replication in the upper respiratory organs, while all mild 

donors tested positive for viral RNA.  

Comorbidities were identified among the critical patients, and healthy volunteers 

were matched accordingly. Within the critical patient group, 57 % suffered from 

hypertension prior to contracting SARS-CoV-2, compared to 40 % among healthy 

controls (Table 3). Interestingly, 60 % of the healthy volunteers had Diabetes 

mellitus type 2, while only 41 % of the critical patients were affected by the same 

condition. Asthma was present in both groups, with 10 % in the healthy cohort 

and 30 % in the critical group. In the mild group, only one donor was affected by 

hypertension, others presenting no comorbidities. 

Additionally, two individuals in the healthy cohort were in remission from ovarian 

carcinoma and prostate carcinoma, respectively. These subjects were included 

in the study as they were no longer undergoing cancer therapy. Conversely, 

among the critical patients, one was diagnosed with chronic lymphocytic 

leukemia (CLL) and was excluded from the study due to the potential for altered 

immune responses caused by the cancer rather than the infection. Another critical 

patient with metastatic lung adenocarcinoma was included in the study, as the 

patient was not receiving cytostatic or immunomodulatory treatment, allowing for 

Table 2: Demographic and Clinical Characteristics of Study Participants. 
The table includes age, sex, mortality status during the study, and PCR test 

results at enrollment for each participant. 
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the assumption that his myeloid cell compartment was functional and not 

compromised. 

Complete blood counts indicated that patients admitted to the ICU were suffering 

from normocytic normochromic anaemia, with an average of 3.4 T/l cells and a 

haemoglobin level of 10.8 g/dl upon admission. This condition remained 

unchanged throughout the study period (Table 4). Moreover, the critically ill 

patients exhibited neutrophilia and lymphocytopenia even before ICU admission 

(Table 4). However, there was a notable improvement during the study period, 

with neutrophil percentages decreasing from 86 % to 77 % and lymphocyte 

percentages increasing from 7.7 % to 12.7 % of total peripheral immune cells. 

Table 3: Comorbidities of the participants. This table outlines the prevalence 

of comorbid conditions among the critical patients and the matched healthy 

volunteers, as well as donors with mild COVID-19 in the study. 
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Although there was a significant increase in the proportions of monocytes from 

4.5 % to 6.2 %, eosinophils from 0.9 % to 3.2 %, and basophils from 0.2 % to 

0.4 % among the critical patients, these changes remained within the normal 

reference ranges for these parameters (Table 4). Thus, while there were shifts in 

specific cell types, these either remained within clinically normal limits or 

improved. 

Table 4: Blood counts of critical donors during the study. This table presents 

complete blood counts performed at ICU admission and subsequently at the end 

of the study or shortly before death, detailing shifts in specific cell types by 

comparing results from the first and last tests conducted. The first column lists 

each cell type alongside the normal range for healthy individuals, with 

abbreviations such as G representing Giga (109), T for Tera (1012), and fl for 

femtoliters. Significant changes over time were assessed using the Welch two-

sample t-test, with significant findings highlighted by bolding the p-values. 
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3.3.2 Mild disease course correlates with interferon signature and antigen 
presentation 

Monocytes were isolated and 3' RNA sequencing was conducted to analyze their 

transcriptomes of critical patients, along with samples of monocytes from mild 

cases and healthy participants. In total, 131 samples were sequenced across the 

different groups. 

From the ten healthy volunteers, three samples were collected each within a two-

week period, resulting in 30 samples of healthy monocytes. For the critical 

patients, 31 monocytic RNA samples were sequenced on the first day of their 

enrollment in the study (Figure 23). However, by the next sampling day, six of 

these patients had passed away. On days three and five after admission, six 

samples were collected at each time point from the remaining critical patients. At 

Figure 23: Temporal distribution of monocyte RNA sequencing 
samples from critical COVID-19 patients. Numbers of sequenced 

samples for every timepoint of the study. For the days 1, 3, 5, 8, 15 

and 22 after enrollment into the study 31, 6, 6, 26, 17 and 6 samples 

of monocytic RNA from critical patients have been sequenced, 

respectively. In total 19 patients deceased during the study, leading 

to incomplete timecourse. Additional 5 patients passed away after 

completion of the study. 
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the later stages of the study, on days eight and 15, 26 and 17 samples were 

sequenced, respectively. During the interval between these two points, an 

additional nine critical patients deceased. At the conclusion of the study, six 

samples were collected, five of which were from critical patients who passed 

away shortly thereafter. 

The Principal Component Analysis (PCA) was performed on 10,725 genes to 

reduce the complexity of gene expression data into two principal dimensions, 

revealing distinct clustering patterns based on patient condition (Figure 24). The 

initial analysis shows that monocytes from healthy controls form a tight cluster, 

Figure 24: PCA of gene expression from bulk sequenced RNA 
of monocytes. The principal component analysis includes all 

present genes (10,725 genes) from 131 sequenced samples of 

monocytes. 
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remaining consistent regardless of sampling time, which suggests a stable 

transcriptomic profile across different time points. Conversely, monocytes from 

critical patients at early stages of their ICU are clustered distinctly far apart from 

the healthy control group. Over time, as the patients remain at the ICU, their 

monocytes undergo transcriptomic changes that make their profiles increasingly 

resemble those of healthy individuals. This trend may indicate a transcriptomic 

normalization associated with ongoing treatment. Monocytes from mild COVID-

19 cases initially position between the clusters of critical and healthy groups. As 

time progresses, these mild cases tend to shift closer to the cluster of critical 

patients. 

To further analyze these patterns and explore the relationships between gene 

expression, patient cohort, and time points in a systematic way, Weighted 

Correlation Network Analysis (WGCNA) was utilized. WGCNA is a robust data-

mining technique suitable for high-dimensional datasets, which constructs 

weighted correlation networks to identify clusters, or modules, of co-expressed 

genes. Given that samples from healthy individuals consistently clustered 

together across all time points, they were aggregated into a single group for 

comparative purposes to enhance the statistical power of the analysis. 

The comprehensive WGCNA, performed on the full set of 10,725 present genes, 

resulted in the identification of 20 distinct modules, labelled as colours (Figure 

25). These modules represent groups of genes that exhibit highly correlated 

expression patterns across the dataset. Each module's behavior can be 

summarized by a single representative expression profile, known as an 

Eigengene. 

An Eigengene is defined as the first principal component of a given module, 

acting as a representative weighted average expression profile for that module. 

It effectively encapsulates the dominant, collective expression changes within the 

module across various conditions or over time. By correlating eigengenes with 

disease severity at different time points, we can gain a deeper understanding of 

the complex biological changes occurring during the disease progression. 
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Since Module Eigengenes (ME) represent the overall expression profile of their 

respective modules, all genes within a module are subsequently associated with 

the phenotype being studied. This association simplifies the interpretation of 

large-scale gene expression data, making it easier to discern patterns and 

insights across different stages of severity and over time. 

The resulting modules were selected using the Pearson correlation coefficients 

with thresholds set at a minimum of 0.3 and a p-value of at least 0.05, calculated 

using the Student asymptotic test, to identify 17 distinct clusters that characterize 

the programming of monocytes throughout the study timeline (Figure 25). 
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Genes playing a role in the early disease were contained in the 'black' and 

'salmon' clusters, showing a strong positive correlation with the mild disease 

phenotype from the first day of inclusion. These clusters distinctly contrasted with 

the critical patients admitted to the ICU on the same day, where they showed a 

significant negative correlation. As the disease progressed, monocyte behavior 

shifted notably on days three and five. The 'grey60' and 'royalblue' clusters 

aligned more closely with the mild disease, suggesting adaptive changes in 

response to the ongoing infection.  

In contrast, the 'yellow', 'green', and 'blue' clusters displayed negative correlations 

with the healthy cohort while showing positive correlations with the critical cohort 

during the days three to five after admission to the study. The 'green' cluster also 

showed a negative correlation with the mild cohort within the first week after 

admission. Additionally, the clusters 'cyan', 'pink', and 'purple' presented a 

negative correlation with the critical cohort during the initial five days, with the 

'pink' and 'purple' clusters also showing a strong positive correlation exceeding 

0.7 with the healthy cohort. 

Figure 25: Weighted Correlation Network Analysis (WGCNA) Heatmap.  
Heatmap was generated from a WGCNA performed on 10,725 genes, identifying 

20 distinct clusters with a minimum module size of 30. The y-axis displays the 

module eigengene for each defined cluster, labeled by color with the number of 

genes in the module indicated in brackets. The coloring of the tiles corresponds 

to the Pearson correlation values, and only tiles representing significant 

correlations (p-value less than 0.05 calculated by the Student asymptotic test) 

are displayed. 
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During the initial days of inclusion into the study, the 'greenyellow', 'brown', and 

'tan' clusters were significantly negatively correlated with the mild cohort. In 

contrast, the 'red', 'midnightblue', 'lightgreen', and 'lightyellow' clusters showed 

Figure 26: Functional enrichment and gene expression correlating with 
mild COVID-19 in early stage. GO term enrichment of the 'black' cluster of 

genes (A) and pathway enrichment of the 'salmon' module (B). Heatmap of mean 

z-score normalized gene expression of selected genes from enriched GO (C). 
Boxplots indicating normalized gene expression of CX3CR1, CIITA, FCER1A (D). 
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significant negative correlation with healthy donors and a slight negative 

correlation with the mild, while being strongly correlated with the patients on the 

first day of admission to the ICU. 

To elucidate the genes driving the immune response in the early days during a 

SARS-CoV-2 infection, Gene ontology (GO) term enrichment analysis was 

performed on the genes from the 'black' module. Genes within this cluster are 

involved in “cytokine production”, “inflammatory responses”, and “chemokine 

responses” (Figure 26A). Notably, genes such as CIITA, FCER1A, and CD1A, 

which are essential for antigen presentation, along with CX3CR1, IRF1, and 

CCL3 that enhance the defense response to viral infections, exhibited higher 

expression levels in patients exhibiting mild symptoms compared to those in 

critical conditions (Figure 26C-D). A similar pattern was also observed in genes 

like CCR7, crucial for the migration of inflammatory monocytes to infection sites, 
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and AXL, which mediates apoptotic cell removal. Additionally, an analysis of the 

genes belonging to the 'salmon' cluster using pathway enrichment highlighted 

pathways associated with mitophagy, a key process in “regulating the immune 

response”, as well as “modulation by Mycobacterium tuberculosis (Mtb) of the 

host immune system”, a known intracellular pathogen which can also infect 

monocytes (Figure 26B).  

As the disease progresses, significant changes occur in monocyte programming, 

which were explored by examining gene expression in the 'grey60' and 'royalblue' 

modules. Although no significant enrichment for GO terms or pathways was 

observed in the 'grey60' cluster, the 'royalblue' module presented enriched for 

pathways involved in “type I interferon signaling”, “antigen processing”, and 

“antiviral mechanisms induced by ISGs” (Figure 27A). 

Genes such as IFIT1/2, IFITM2, ISG15, and OAS2 within these pathways 

exhibited high expression levels in patients with mild symptoms during the first 

week after admission to the study (Figure 27B-C). The peak expression of these 

genes occurred on day three, underscoring the critical role of type I interferon 

responses in the early stages of infection and suggesting a potential mechanism 

behind the milder symptoms observed in some patients.  

Upon admission to the ICU, the programming of monocytes was characterized 

through the analysis of the 'red', 'midnightblue', 'lightgreen', and 'lightyellow' 

modules, which are correlated with this specific phenotype. GO term enrichment 

Figure 27: Functional enrichment and gene expression correlating with 
mild COVID-19 in early disease progression. Pathway enrichment of the 

'royalblue' cluster of genes (A). Heatmap of mean z-score normalized gene 

expression of selected genes from enriched pathway (B). Boxplots indicating 

normalized gene expression of IFIT1, ISG15, IRF7 (C). 



94 

in the 'red' cluster identified an association with “cell division” (Figure 28A). The 
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'midnightblue' cluster, which encompasses 75 genes, is linked with the response 

to bacterial presence and inflammatory responses (Figure 28B). Notable genes 

within this cluster include S100A12, CXCL2, and ITGAM, which are pivotal in 

coordinating immune cell migration and adhesion (Figure 28E-F). These genes 

were consistently expressed at higher levels in the critical cohort over time, in 

comparison to both mild and healthy groups. The 'lightgreen' cluster is 

characterized by genes involved in TLR4 signaling and IL-1 family signaling, 

pathways critical for the innate immune response (Figure 28B). Key genes such 

as IL1R2, MAP2K6, TIFA, SYK, and TAB2 are notably expressed at higher levels 

in the critical cohort, highlighting their role in exacerbating inflammatory 

responses (Figure 28E-F). Lastly, the 'lightyellow' cluster includes genes 

associated with neutrophil degranulation, reactive oxygen species (ROS) 

production, and the epigenetic regulation of gene expression through histone 

demethylation (Figure 28D).  

The yellow, blue, and green modules consist of genes that correlate across days 

three and five of the study in the critical cohort. No module shows specific 

correlation with day three or day five individually, suggesting that there are only 

minor differences in monocyte programming between these two time points. This 

leads to a combined signature for these days, likely due to a limited number of 

samples available for each individual time point. 

In the 'green' module, although no pathways or GO terms were significantly 

enriched, but genes associated with pro-inflammatory immune response, such as 

S100A11, CD58, CD40, and C1QA were identified (Figure 29C). S100A11 

Figure 28: Functional enrichment and gene expression correlating with 
critical COVID-19 upon admission to the study. GO term enrichment of the 

'red' (A) and 'midnightblue' (B) modules. Pathway enrichment of the 'lightgreen' 

(C) and 'lightyellow' cluster of genes (D). Heatmap of mean z-score normalized 

gene expression of selected genes from enriched GO and pathways (E). Boxplots 

indicating normalized gene expression of S100A12, IL1R2, MAP2K6 (F). 
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showed higher expression in critical patients throughout the study compared to 

mild and healthy patients (Figure 29D). Additionally, markers involved in 

augmenting T cell activation, such as CD58 and CD40, were also identified in this 

cluster. CD58 was initially expressed during the first 3 days in the mild cohort but 

was subsequently downregulated, whereas CD40 showed persistent presence in 

the critical cohort and peaked on day five. C1QA, a gene associated with 

complement-induced phagocytosis, was also noted to increase over time in 

critical donors, peaking on day 15 post-inclusion in the study. 
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The 'yellow' and 'blue' modules presented significantly enriched pathways 

involved in neutrophil degranulation and NF-κB activation (Figure 29A-B). Key 

genes in these pathways include S100A8/9, Ca2+ binding proteins known as 

potent pro-inflammatory factors. These proteins are produced by various cells 

upon stimulation and are responsible for inducing neutrophil migration and 

degranulation. Their expression increased during the initial 5 days in the ICU and 

decreased subsequently (Figure 29C-D). A similar trend was observed in genes 

that promote the pro-inflammatory response, such as NFKB1 and MAPK1. 

Additionally, genes involved in MHC class I (HLA-B and HLA-C) were present in 

these modules, showing elevated expression on days three to five in the critical 

group and on day three in the mild cohort. Also within the yellow module, the 

granule release marker CD63 was identified as being more highly expressed in 

monocytes from critical patients throughout the study period compared to those 

from mild and healthy individuals. 

To elucidate the functions that are suppressed during the critical progression of 

the disease, the analysis focused on the modules that negatively correlate with 

this phenotype: 'cyan', 'pink', and 'purple'. Pathway enrichment analysis on the 

genes from the 'cyan' module revealed significant enrichment in pathways related 

to “iron uptake and transport”, as well as “heparan sulfate and heparin 

metabolism” (Figure 30A). In the 'purple' cluster, genes essential for antigen 

presentation on MHC class II were identified (Figure 30B). Notably, there was a 

downregulation of HLA genes, CD86, and CD1C, as well as genes associated 

with the macrophage differentiation of monocytes such as CCL5 in critical 

patients compared to mild and healthy donors (Figures 30C-D). 

Figure 29: Functional enrichment and gene expression correlating with 
critical COVID-19 during disease progression.  Pathway enrichment of the 

'yellow' (A) and 'blue' module genes (B). Heatmap of mean z-score normalized 

gene expression of selected genes from enriched pathways (C). Boxplots 

indicating normalized gene expression of S100A8, S100A9, S100A11 (D). 
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While no significant GO terms or pathways were enriched in the genes from the 

'pink' module, a manual search identified genes that play roles in modulating the 

immune response, including UNC93B1, IL5RA, and IL10RA. This highlights 

specific immune functions that are diminished in critically ill patients, providing 

insight into the mechanisms that may contribute to the severity of the disease. 

Figure 30: Functional enrichment and gene expression negatively 
correlating with critical COVID-19.  Pathway enrichment of the 'cyan' (A) and 

'purple' module genes (B). Heatmap of mean z-score normalized gene 

expression of selected genes from enriched pathways (C). Boxplots indicating 

normalized gene expression of CD86, CCL5, HLA-DRA (D). 
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The WGCNA revealed profound differences in gene expression and functional 

orientation of classical monocytes that correlate with disease severity of 

COVID-19. Mild disease course is associated with upregulated genes involved in 

antigen presentation, such as CIITA and CX3CR1, and in interferon signaling 

pathways, including upregulation of genes as IFIT1, ISG15, and OAS2. These 

findings suggest that in mild COVID-19, monocytes effectively support the 

adaptive immune system's response against SARS-CoV-2, enhancing virus-

targeted elimination. Conversely, in critical disease, there is a marked increase 

in the expression of genes associated with a pro-inflammatory immune response, 

including members of the S100 family like S100A8, S100A9, and S100A11, as 

well as NFKB1. This is accompanied by a negative correlation with the expression 

of MHC class II, CD1C, and CD86, indicating that although monocytes in severe 

cases are highly pro-inflammatory, they fail to perform adequately as professional 

APCs. This dysfunction may contribute to the lack of a targeted adaptive immune 

response, potentially explaining the cytokine storm, hyperactivation, and 

subsequent paralysis of T cells observed in severe COVID-19 cases. 

4. Discussion 

4.1 Assessing the immune response in COVID-19 using single cell RNA 
sequencing 

The first study described in this thesis was conducted in Melbourne, Australia and 

employed single-cell RNA sequencing to profile the immune landscape of T and 

myeloid cells across varying severities of COVID-19. By integrating 

transcriptomic and protein expression data from approximately one million cells, 

we characterized major shifts in immune cell composition and function during the 

early stages of infection. Within the investigated immune cell compartments 

signatures of hyperinflammation, immune exhaustion, and impaired antiviral 

signaling in severe and critical cases was revealed. These findings provide 

mechanistic insights into how immune dysregulation contributes to COVID-19 

severity and establish a high-resolution resource for future investigations. 
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Annotating sequenced single-cell datasets containing multiple cell types is a 

critical initial step before exploring functional changes across conditions of 

interest (Butler et al., 2018). Manual annotation involves clustering cells using 

community detection algorithms such as Louvain or Leiden, where each cell is 

treated as a node in a network and the connections, or edges, between these 

nodes represent the similarity in their gene expression profiles (Traag et al., 2019; 

Kiselev et al., 2019). This similarity is often quantified using the Jaccard index, 

which measures the ratio of the intersection to the union of the genes expressed 

by the compared cells. By retaining only those edges that surpass a specified 

similarity threshold, the algorithm ensures the formation of clusters composed of 

cells that are transcriptionally similar and belong to the same local neighborhood 

(Stuart et al., 2019). This method facilitates the identification of distinct cellular 

populations within the heterogeneous mixture, setting the stage for deeper 

analyses of their biological functions. 

After clustering, the defined clusters of cells are analyzed to identify marker genes 

that distinguish them (Ianevski et al., 2022). These markers can then be used to 

infer the cell types represented by each cluster or, in finer analyses, to 

differentiate cells within a type into specific subtypes based on their programming. 

However, manual annotation is inherently subjective and depends heavily on 

user-defined parameters such as clustering resolution, the number of neighbors 

in neighborhood graphs, and similarity thresholds. This variability can lead to 

irreproducibility across different users unless exact settings are known 

(Lähnemann et al., 2020; Heumos et al., 2023). 

To address these challenges, automated annotation frameworks like SingleR and 

Azimuth have been developed (Clarke et al., 2021). These tools use correlation 

measures, such as the Spearman coefficient, to compare gene expression in a 

target dataset against a reference dataset of known cell types, typically utilizing 

the most variable genes. However, these methods rely on reference datasets that 

may themselves contain sequencing noise, potentially leading to inaccurate 

annotations. Furthermore, the effectiveness of these tools diminishes when 

annotating cell types from tissues not represented in the reference datasets, as 
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cell programming can vary significantly between tissues. In our analysis to 

mitigate these issues, we have used a consensus annotation approach that 

combines results from multiple tools and reference datasets. For instance, 

SingleR has been applied using both the BlueprintEncode reference, based on 

259 bulk RNA-seq samples, and the Monaco reference, which includes 114 bulk 

RNA-Seq profiles of sorted PBMCs. Additionally, the Seurat-built Azimuth 

pipeline utilizes a reference dataset comprising 24 sequenced single-cell 

samples from PBMCs. By integrating these diverse sources, we enhance the 

robustness and accuracy of the annotations. 

Future enhancements to the proposed method could involve expanding the 

number of tools and reference datasets used for consensus annotation, 

potentially improving accuracy despite increasing computational requirements. 

Additionally, it would be advantageous to implement a weighting system for 

datasets and tools, tailoring their use according to their applicability to the specific 

dataset to study, such as compatibility with the tissue type or sequencing 

technology used. Moreover, the implementation of advanced machine learning 

techniques like scGPT, a pre-trained deep learning model developed with data 

from over 33 million single cells which has shown high accuracy and efficiency in 

cell type annotation. 

Once the cells were grouped into major immune populations by consensus 

annotation, they were further clustered to delineate subtypes. During this 

analysis, some clusters identified Ig genes as markers for CD8+ T cell subtypes. 

The detection of Ig genes in about 50% of the total cells, albeit at low expression 

levels in both RNA and CITE-Seq, suggested these were technical artefacts 

rather than biological signals. Such occurrences are common in scRNA-seq 

experiments, particularly when utilizing droplet-based methods like those offered 

by 10x Genomics (Young and Behjati, 2020). 

In a typical scRNA-seq workflow using droplet-based systems, a suspension of 

single cells is prepared, with each cell encapsulated into an individual oil droplet 

that contains barcodes and enzymes essential for reverse transcription and PCR 
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amplification (Kolodziejczyk et al., 2015). Every transcript from a cell within a 

droplet is tagged with a unique molecular identifier (UMI) barcode, and 

additionally, each transcript receives a cell-specific barcode (Jovic et al., 2022). 

This dual-barcoding allows for the precise identification and quantification of 

transcripts per cell, facilitating clear distinction between cells (Hwang et al., 2018). 

Ideally, each droplet should encapsulate a single cell, and the cell’s mRNA is 

released into the droplet for barcoding during cell lysis. However, during the 

passage of cells through the microfluidic channels, these can rupture or degrade 

and consequently release cell contents into the system (Muskovic and Powell, 

2021). This leads to cell-free mRNA molecules being co-encapsulated and 

barcoded within droplets containing other cells, making them indistinguishable 

from endogenous transcripts. Consequently, these ambient RNA molecules are 

incorrectly assigned to a cell's transcriptome, representing artefacts rather than 

genuine cellular transcripts (Alvarez et al., 2020). 

These artefacts can significantly impact downstream analyses, such as cell 

annotation, clustering, and the interpretation of biological changes, potentially 

leading to erroneous conclusions (Caglayan et al., 2022). To address these 

challenges, computational tools like DecontX and CellBender have been 

developed to improve data integrity. DecontX utilizes a Bayesian approach to 

estimate and remove artefact contamination from individual cells (Shiyi Yang et 

al., 2020). However, it depends on pre-existing cell group annotations or performs 

heuristic clustering to define cell populations. This dependency is problematic 

because clustering itself is based on the transcriptional profiles of cells, which 

may be skewed by the very contaminants DecontX aims to eliminate. This creates 

a cyclical issue, the effective decontamination requires accurate cell clustering, 

but accurate clustering depends on having decontaminated counts. 

Conversely, CellBender is an unsupervised machine learning model that 

identifies background noise by analyzing empty droplets within the dataset and 

subsequently subtracts this background from each cell-containing droplet 

(Fleming et al., 2023). This method has proven effective in our hands, as 

CellBender was able to specifically and accurately correct counts without 



103 

introducing off-target effects. This cell type-specific correction ensures that the 

clustering and subsequent analyses reflect true biological signals.  

Based on the analysis of isotype controls in our CITE-seq panel, it was observed 

that while CellBender effectively corrects for ambient RNA contamination, it does 

not address the issue of non-specific antibody binding during cell labelling, as the 

isotype controls ideally should not have counts. This problem is similarly 

encountered in flow cytometry experiments, where it is typically managed using 

compensation techniques and isotype controls to assess background signal 

(Andersen et al., 2016). For normalizing CITE-seq data, a tool known as dsb is 

available, which adjusts for background signal, however, it does not specifically 

incorporate isotype control data for each labelled antigen, and instead 

generalizes background correction without aligning it precisely with 

corresponding isotype controls (Mulè et al., 2022). Due to this limitation, we opted 

to refine our approach to influence clustering outcomes more accurately. We 

decided to filter the markers used to construct the principal components for every 

cell type based on their expression relative to isotype control background levels, 

specifically excluding those markers whose expression was below this threshold. 

In addition, a newly published Bayesian hierarchical model called DecontPro 

shows promise for addressing these complexities, as it is designed to correct for 

both ambient contamination and non-specific binding (Yin et al., 2024). 

Following the correction of counts, the major immune cell types were clustered to 

identify subgroups, revealing significant changes within the T cell compartment. 

Notably, there was a marked increase in the proportions of CD8+ TEM and IFN-

stimulated terminal effector CD8+ T cells in diseased individuals compared to 

healthy controls. These IFN-stimulated T cells play a pivotal role in mounting an 

effective immune response and controlling infections (Unterman et al., 2022). In 

the CD4+ T cell population, there was a notable rise in the proportions of Tregs 

in patients with moderate and severe/critical COVID-19 compared to those with 

mild symptoms. This increase suggests that Tregs may potentially inhibit effector 

T cells from clearing the viral infection while simultaneously exacerbating 

inflammatory responses, leading to poorer outcomes (Galván-Peña et al., 2021; 
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Saheb Sharif-Askari et al., 2023). While Tregs are crucial for preventing 

excessive inflammation and facilitating the resolution of infection, their premature 

or excessive activity could compromise viral clearance, thus contributing to more 

severe disease manifestations (Jovisic et al., 2023). Conversely, an increase in 

cytotoxic CD4+ T cells was observed in the mild patient group compared to 

healthy individuals, indicating that these CD4+ T cells might be assisting NK and 

CD8+ T cells in eliminating MHC class II-presenting infected cells (Devarajan et 

al., 2023). Although previous studies have correlated highly activated and 

cytotoxic CD4+ T cells with disease progression and increased hospitalization 

rates, no significant differences in the proportions of these cells across disease 

severities were observed in this dataset (Meckiff et al., 2020; Moss, 2022; Baird 

et al., 2023). Moreover, there was a notably lower proportion of both type I IFN 

and TCR-activated and type I IFN-activated CD4+ T cells in moderate and 

severe/critical cases compared to milder cases. This observation suggests an 

impaired development of T helper type 1 cells, which are crucial in coordinating 

antiviral immunity (Huber and David Farrar, 2011; Swain et al., 2012) . The 

deficiency in these cells likely contributes to an ineffective immune response in 

patients with more severe forms of the disease (Zheng et al., 2020; Gazzinelli-

Guimaraes et al., 2022). 

In the myeloid cell compartment, a significant increase in the proportion of 

inflammatory classical monocytes was observed in diseased patients compared 

to healthy donors. Furthermore, an increase in the proportions of classical 

monocytes was noted in patients with moderate and severe/critical disease 

relative to those with mild disease. Given that these populations express pro-

inflammatory markers such as S100A8/9 and LYZ, it is suggested that they are 

substantially involved in the production of pro-inflammatory cytokines during the 

acute phase of SARS-CoV-2 infection. The elevated levels of highly activated 

and pro-inflammatory monocytes are implicated in the progression of the disease 

(Schulte-Schrepping et al., 2020; Rajamanickam et al., 2021; Vanderbeke et al., 

2021). Conversely, there was a noticeable decrease in non-classical monocytes 

across increasing disease severities compared to healthy controls. Non-classical 
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monocytes, known for their high phagocytic potential, play a critical role in the 

antiviral immune response and in facilitating disease resolution (Wong et al., 

2011; Boyette et al., 2017). The reduction or depletion of these cells may 

contribute to the development of a severe disease course (Gatti et al., 2020; 

Vanderbeke et al., 2021). Although not statistically significant, a similar trend was 

observed in mDCs, which are crucial for bridging the innate and adaptive immune 

responses through antigen presentation and the licensing of T cells (Pérez-

Gómez et al., 2021). Other studies have also noted a correlation between disease 

severity and reduced numbers of DCs, suggesting that their depletion may delay 

effective T cell activation (Rajamanickam et al., 2022). This delay can lead to a 

extended pro-inflammatory immune response that causes extensive tissue 

damage instead of facilitating viral clearance (R. Zhou et al., 2020; Sánchez-

Cerrillo et al., 2020). This changes in the proportion of the myeloid cell 

compartment underscores the importance of maintaining a balanced myeloid cell 

response to prevent exacerbated inflammatory reactions and ensure effective 

viral control. 

Transcriptional changes were observed across the myeloid cells in patients with 

mild COVID-19 compared to healthy individuals. These changes included 

upregulation of ISGs and downregulation of genes involved in translation, a 

strategy commonly used to limit viral replication during infections. Such patterns 

are consistent with the body's typical response to viral infections, including 

influenza, and have been correlated with non-hospitalization in other studies 

(Zhai et al., 2015; Shaath et al., 2020; Pekayvaz et al., 2022). Additionally, 

pathway enrichment analysis revealed enrichment of interferon signaling and 

MHC II antigen presentation pathways among the downregulated genes in 

patients with moderate, severe, and critical COVID-19 compared to those with 

mild symptoms, aligning with findings from other studies (Hadjadj et al., 2020; Liu 

and Li, 2023).  The deficient or delayed interferon response, coupled with reduced 

antigen presentation by professional APCs may contribute to the severe disease 

progression observed in COVID-19, underscoring the importance of a robust and 
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timely immune response in mitigating severe outcomes (Robertson et al., 2023; 

Gressier et al., 2023; Lin et al., 2024). 

In classical monocytes, a gradual downregulation of CLEC4A was observed with 

increasing severity of COVID-19. CLEC4A, is a PRR that possesses an 

intracellular immunoreceptor tyrosine-based inhibitory motif (ITIM), and plays a 

crucial role in regulating immune responses by negative regulation of TLR 

signaling upon activation (Uto et al., 2016). The absence of CLEC4A has been 

demonstrated to enhance the activation of DCs and macrophages upon TLR 

stimulation (Nasu et al., 2020; Park et al., 2022). In the context of COVID-19, the 

downregulation of CLEC4A may lead to an hyperactivation of monocytes through 

TLR signaling by viral-induced cell death DAMPs, leading to an overdrive of pro-

inflammatory pathways. Additionally, classical monocytes in more severe cases 

of COVID-19 exhibited higher levels of IL10 transcripts, which is critical for 

resolving inflammation and maintaining homeostasis (Iyer and Cheng, 2012). 

However, a premature increase in IL10 has been linked to the induction of 

exhausted T cell phenotypes and an increased likelihood of hospitalization in 

COVID-19 patients (Hadjadj et al., 2020; Han et al., 2020; L. Yang et al., 2021). 

This suggests that while IL10 is generally beneficial, its early and elevated 

expression during acute COVID-19 may interfere with effective immune 

responses, ultimately affecting the disease outcome. 

Inflammatory classical monocytes in severe cases of COVID-19 showed an 

upregulation of the IL10 signaling pathway, alongside the expression of pro-

fibrotic markers such as CD163, which suggests an enhanced pro-fibrotic 

response that may contribute to the severity of lung pathology observed in ARDS 

in severely ill patients (Schulte-Schrepping et al., 2020; Wendisch et al., 2021; 

Kvedaraite et al., 2021). Furthermore, these monocytes exhibited high levels of 

transcripts for the pro-inflammatory gene S100A8 increasing with each severity, 

a potent chemoattractant and activator of neutrophils. S100A8 also activates 

other cell types through TLR4 signaling, playing a significant role in the pro-

inflammatory cascade (Chakraborty et al., 2017; Tan et al., 2017). The 

involvement of neutrophils is notable in the pathology of both COVID-19 and 
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influenza infections, underscoring the common inflammatory mechanisms these 

respiratory viruses induce leading to ARDS (Camp and Jonsson, 2017; Zuo et 

al., 2020; Cavalcante-Silva et al., 2021; Guo et al., 2021). 

The non-classical monocytes have been identified to present an anti-

inflammatory phenotype, displaying low antigen presentation capacity while 

expressing markers like MERTK, crucial for the efficient phagocytosis of apoptotic 

cells and the resolution of inflammation (Rothlin et al., 2007; Lemke, 2013). In 

severe cases of disease, however, these monocytes are significantly 

underrepresented, emphasizing the importance of a balanced immune response 

in managing inflammation effectively. The scarcity of non-classical monocytes in 

severe conditions highlights their vital role in controlling inflammatory processes 

and clearing dead cells, which, if accumulated, may trigger hyperinflammation 

through the release of DAMPs.  

In more severe cases of COVID-19, mDCs showed a significant transcriptional 

shift characterized by pro-inflammatory activation coupled with a decrease in 

antigen presentation capabilities, marked by the downregulation of genes 

associated with MHC class II and CD1C. Such changes suggest the 

predominance of immature dendritic cells in the periphery or the presence of 

exhausted and dysfunctional DCs (Jin et al., 2010). This impaired dendritic cell 

function can critically hinder the activation of CD8 T cells and their subsequent 

induction of IFN-γ, a key cytokine in mounting an effective antiviral response 

(Saichi et al., 2021). Consequently, the compromised ability of these dendritic 

cells to properly present antigens and activate T cells may be a contributing factor 

to the exacerbated severity observed in patients with severe COVID-19, reflecting 

a disrupted immune mechanism crucial for controlling viral infections. 

In summary, this study highlighted that severe COVID-19 is characterized not 

only by a shift towards increased pro-inflammatory cell populations but also by 

reduced populations of IFN-activated cells. Additionally, cells within the myeloid 

compartment exhibited diminished IFN signaling and antigen presentation 

capabilities while displaying enhanced pro-inflammatory activation. These 
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findings underscore the complex immunological dysregulation that contributes to 

the severity of the disease, pointing to critical areas for potential therapeutic 

intervention. 

4.2 Comparative analysis of antibody titers against the spike protein of SARS-
CoV-2 variants in infected patient cohorts and diverse vaccination regimes 

The second study presented in this thesis was conducted independently from the 

single-cell RNA-seq analysis and focuses on the humoral immune response to 

SARS-CoV-2. Performed at the University Hospital Bonn, this investigation aimed 

to quantify and compare antibody titers against the spike protein across various 

patient cohorts, including naturally infected individuals and those receiving 

different vaccination regimens. By evaluating how antibody levels vary with 

disease severity and vaccine type, this study provides important insights into the 

dynamics and durability of vaccine-induced and infection-induced immunity. 

At the outset of the SARS-CoV-2 pandemic, there was a critical need to reduce 

the number of severely ill COVID-19 patients as healthcare systems worldwide 

were overwhelmed with demands for beds in the ICU, with patients overflowing 

into hospital corridors. The crisis intensified when healthcare workers contracted 

the SARS-CoV-2, leading to a substantial reduction in medical staff. In response, 

pharmaceutical companies and governmental agencies rapidly mobilized to 

create an effective vaccine as fast as possible against SARS-CoV-2, designed to 

elicit a robust humoral response by generating neutralizing antibodies targeting 

the S protein. 

In March 2020, the U.S. Food and Drug Administration (FDA) and the EMA 

hosted the initial global regulatory meeting to strategize on expediting the 

development of vaccines against SARS-CoV-2 (The United States Food and 

Drug Administration, 2020). To speed up the testing and approval of the vaccines, 

there was an exception made and the traditional sequential conduct of clinical 

trial phases (1-3) was altered to a parallel execution (Kim et al., 2021). By 

December 2020, the safety and efficacy of the first COVID-19 vaccine Comirnaty 

was published and shortly afterwards the FDA and EMA granted an emergency 
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use authorization (EUA) for Comirnaty, targeting the prevention of COVID-19 in 

individuals older than 16 (Polack et al., 2020; Fortner and Schumacher, 2021). 

Following this, vaccines developed by Moderna, AstraZeneca, and Janssen-

Cilag were approved in that sequence, ensuring that by the year's end-merely 

one year from the pandemic's start, a number of vaccines had been authorized 

for use in the US and Europe (Hotez et al., 2021). The follow-up period for these 

approval studies was only about two months, leaving many questions about 

antibody dynamics unanswered. Numerous subsequent studies evaluated the 

differences among these vaccines (Rotshild et al., 2021; Meo et al., 2021; Fan et 

al., 2021; Xie et al., 2022). Importantly, the production of neutralizing antibodies 

against the S protein led to reduced viral loads and hospitalizations in vaccinated 

individuals, underscoring the effectiveness of vaccination (Favresse et al., 2021; 

Thompson et al., 2021; Andrews et al., 2022). 

Patients with comorbidities such as obesity and diabetes mellitus have been 

identified to be at risk of developing severe COVID-19 (Tao Chen, Wu, et al., 

2020; Brochot et al., 2020). However, in this study no significant correlations were 

found between these conditions and anti-spike antibody titers across the patient 

cohorts, which included individuals with obesity, hypertension, or diabetes. 

Regardless of the vaccine type administered or the stage of COVID-19, the range 

of maximum IgG anti-Spike antibody titers was consistent and similar to those 

observed in healthy participants who had received a single dose of any COVID-

19 vaccine. These results align with prior research indicating that IgG and IgM 

antibodies against the S and N proteins of the virus stabilize approximately two 

weeks after infection (Brochot et al., 2020; Bao et al., 2021; Wei et al., 2021). 

Additionally, it was documented a decline in anti-Spike antibodies six months 

post-infection in individuals who have recovered from COVID-19 as well as those 

suffering from long COVID. This trend overlaps with findings from a cohort study 

examining long-term health outcomes in COVID-19 patients after hospital 

discharge (Huang et al., 2021). Importantly, it was observed that administering a 

single dose of an mRNA vaccine six months post-infection significantly boosted 

antibody levels to those comparable with fully vaccinated control groups. This 
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enhancement suggests that vaccination after infection can be beneficial, even 

months following initial recovery, to sustain adequate antibody levels. These 

findings reinforce previous recommendations that advocate for the vaccination of 

individuals who have previously contracted the virus (Hall et al., 2022). 

It was observed that administering three doses of the BT vaccine generated long-

lasting α-Spike RBD antibodies with robust neutralizing capabilities, effective 

against not only the initial Wuhan strain but also subsequent VOC, including 

alpha, beta, and gamma. Notably, the beta variant showed the greatest 

resistance to neutralization among the initial four VOCs, including the delta 

variant (Corbett et al., 2021). This resistance was demonstrated by comparatively 

lower beta-specific antibody titers and neutralization capacity observed in both 

vaccinated individuals and patients with severe COVID-19, relative to other 

strains. In contrast, a separate study reported a lack of any neutralizing response 

against the beta variant in sera from elderly individuals who had received two 

doses of the BT vaccine (Newman et al., 2022). This discrepancy underscores 

the influence of factors such as age and vaccination dosage on the immune 

response, suggesting that vaccine efficacy may vary significantly across different 

subgroups of the population and SARS-CoV-2 variants. These results emphasize 

the need of a third vaccination or inoculations with vaccines tailored to newer 

variants to sustain a robust antibody response against evolving strains of SARS-

CoV-2. 

Although most COVID-19 vaccines were generally well tolerated, some recipients 

experienced mild side effects, such as flu-like symptoms (El-Shitany et al., 2021). 

Serious side effects, such as myocarditis and thrombosis, were also reported 

(Higgins et al., 2022; Ling et al., 2022). In this study, no participants reported 

severe side effects. Common mild side effects included pain at the injection site, 

headache, fatigue, and occasionally fever, all of which resolved within a day. 

Severe hyperinflammatory reactions are rare but have been documented in other 

studies following mRNA and vector-based COVID-19 vaccinations (Bindoli et al., 

2022). Abnormal cytokine levels might serve as the primary cause of 

hyperinflammatory reactions (Gustine and Jones, 2021). Previous investigations 
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of cytokine levels post-BT vaccination revealed a significant increase in IFNγ after 

the second dose (Arunachalam et al., 2021). This study confirms similar findings 

for AZ and MO vaccines. Specifically, an increase in the pro-inflammatory 

cytokine IL1β was observed in participants' sera 24 hours post-MO vaccination. 

Cytokine levels returned to normal within two days, indicating that mRNA-based 

COVID-19 vaccines induce a transient inflammatory immune response in healthy 

individuals. In cases of hyperinflammatory reactions due to COVID-19 

vaccination, the IL1 receptor antagonist anakinra effectively mitigated the 

excessive immune response (Perna et al., 2022; Conte et al., 2022; Bindoli et al., 

2022). 

COVID-19 vaccination has also been associated with adverse reactions in 

individuals treated with certain dermal fillers, such as hyaluronic acid, polymethyl-

methacrylate, and fluid silicone (Kalantari et al., 2022). In a case study, 20 

patients who had received dermal fillers reported swelling, redness, and other 

inflammatory reactions at the injection site immediately after receiving a COVID-

19 vaccine (Alijotas-Reig et al., 2022). It has been hypothesized that dermal fillers 

may sensitize the body to polyethylene glycol (PEG) particles, which are used as 

stabilizers in mRNA COVID-19 vaccines and are linked to anaphylaxis (Zerbinati 

et al., 2020; Sellaturay et al., 2021; Sellaturay et al., 2022; Kelso, 2022; Kozma 

et al., 2023). Given that PEG is widely used in pharmaceuticals, cosmetics, and 

food products, the immune system might have been pre-activated and may 

explain the adverse events following COVID-19 vaccination (Wylon et al., 2016; 

Cox et al., 2021; Mortz et al., 2022). Another possible source of inflammatory 

immune reactions to mRNA-based vaccines is the lipid compounds used to 

encapsulate the mRNA for transfection into human cells. Recent studies have 

shown that membrane-destabilizing lipids can activate the NLRP3 inflammasome 

and induce pro-inflammatory cytokine secretion in murine and human immune 

cells (Tahtinen et al., 2022; Forster et al., 2022). 

Notably, we found that patients with critical COVID-19 exhibited significantly 

elevated levels of IL10 in their blood. Similar findings by other researchers 

suggest that increased IL10 levels may contribute to the pathogenesis of severe 
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COVID-19 by exacerbating viral sepsis-related hyperinflammation and 

exhausting functional T cells (Diao et al., 2020; L. Lu et al., 2021). IL10 is 

produced by various immune cells to help re-establish immune homeostasis after 

an infection (Rojas et al., 2017). While this study did not pinpoint the exact source 

of IL10, it is plausible that Tregs (Neumann et al., 2020; Galván-Peña et al., 

2021), or monocytes, as discussed in a previous chapter, are responsible for the 

elevated IL10 levels observed in critically ill COVID-19 patients (Q. Yang et al., 

2021). 

Additionally, our study focused on examining the dynamics and expansion of 

class-switched memory B cells and circulating Tfh cells, which are crucial for 

establishing immunity against pathogens (Akkaya et al., 2020). Consistent with 

previous research, we observed that class-switched B cells expanded rapidly 

following the onset of symptoms (Hartley et al., 2020). This expansion correlated 

with increasing α-Spike-Abs titers and the number of Tfh cells during the initial 

stage of infection. At later stages of unresolved SARS-CoV-2 infections, higher 

frequencies of class-switched memory B cells and Tfh cells were noted in 

deceased critically ill patients compared to survivors, resulting in an increased 

Tfh/Treg ratio. An elevated Tfh/Treg ratio has previously been linked to 

autoimmune diseases such as systemic lupus erythematosus (Xu et al., 2017). 

Additionally, IL10-producing Tfh cells have been shown to contribute to impaired 

immune responses with age, potentially explaining the severe progression and 

increased mortality of COVID-19 in older patients (Almanan et al., 2020). 

The objective of this study was to investigate the dynamics of Ab development 

against SARS-CoV-2 Spike across various vaccination cohorts and SARS-CoV-

2 infected individuals. Since the precise infection-preventing Ab titers are still 

undetermined, the produced Ab titers by probands from different vaccination 

regimens were compared. Cytokine levels were assessed to evaluate potential 

inflammatory responses to the vaccines. In spite of the small sample size, a broad 

perspective on multiple vaccination strategies was created, demonstrating that 

even individuals who have recovered from COVID-19 benefit from vaccination. 

Regarding side effects, findings indicated that COVID-19 vaccination triggered a 
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low-grade, barely detectable systemic inflammatory response, which was quickly 

contained and reversed. 

4.3 Programming of peripheral classical monocytes during COVID-19 

The third study described in this thesis was independently conducted to 

investigate the transcriptional programming of peripheral classical monocytes 

during SARS-CoV-2 infection. Focusing on CD14⁺ monocytes as accessible 

surrogates for tissue-resident antigen-presenting cells, this analysis aimed to 

uncover how monocyte function varies with disease severity. Using bulk RNA 

sequencing of samples from donors with mild, critical, and no infection, the study 

revealed distinct gene expression patterns associated with antiviral responses, 

inflammation, and immune dysregulation. These results offer valuable insights 

into how early innate immune programming may influence disease progression 

and severity in COVID-19. 

The monocytes of patients hospitalized in the ICU due to severe COVID-19 

symptoms were isolated and their transcriptomes were analyzed to identify gene 

expression profiles differing from those of healthy individuals and patients with 

mild disease. This analysis aimed to uncover the transcriptomic programming of 

monocytes that may contribute to the severity of SARS-CoV-2 infection. A higher 

prevalence of males in the ICU with COVID-19 was observed in the study, a 

finding also reported by other studies that a greater proportion of males are 

admitted to the ICU and a three times higher mortality rate of men from COVID-

19 (Gebhard et al., 2020; Jin et al., 2020). 

Strong evidence suggests that sexual dichotomy plays a key role in the epigenetic 

and hormonal regulation of both the innate and adaptive immune systems during 

viral infections, potentially explaining the higher COVID-19 mortality in males 

(Bienvenu et al., 2020; Mangiola et al., 2024). In mouse models, estrogens have 

been shown to mitigate the severity of infections with influenza by reducing pro-

inflammatory cytokine secretion (Nguyen et al., 2011; Pazos et al., 2012; 

Vermillion et al., 2018). The removal of ovaries in female mice increased mortality 

due to infection with SARS-CoV to levels similar to those observed in male mice, 
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indicating that hormonal balance directly influences the antiviral response in 

infections with coronaviruses (Channappanavar et al., 2017). In humans, the 

mortality and intubation rate of males due to COVID-19 with prostate cancer was 

higher than in the males with any other oncological disease (Chakravarty et al., 

2020; Montopoli et al., 2020). 

Further reports indicate that macrophages from female mice exhibit higher 

expression of interferon-stimulated genes such as Irf7 compared to male mice, 

suggesting a potential for a stronger innate immune response to viral pathogens 

(Gal-Oz et al., 2019). Sex-related epigenomic changes have also been observed 

in PBMCs, with monocytes from males showing enrichment of several 

inflammation-related gene modules, with genes from these modules presenting 

enhanced gene expression, and increased chromatin accessibility (Márquez et 

al., 2020). This suggests that males may be predisposed to a higher baseline 

level of pro-inflammatory activity, which could contribute to the cytokine storm 

and increased likelihood of severe COVID-19 outcomes (Hadjadj et al., 2020; 

Blanco-Melo et al., 2020). 

The most frequently reported comorbidity among ICU-admitted COVID-19 

patients in this study was hypertension, affecting more than half of the patients. 

Early in the pandemic, it was reported that patients requiring hospitalization often 

had a history of hypertension, which was also associated with higher mortality 

rates (S. Huang et al., 2020; Sardu et al., 2020; Trump et al., 2021). While a direct 

causal relationship is fully established, older individuals, who have a higher 

incidence of hypertension, are more likely to develop severe COVID-19 (F. Zhou 

et al., 2020). On the other hand, multiple studies have demonstrated that 

hypertension is linked to hyperinflammation and oxidative stress (Patrick et al., 

2021). This pre-existing inflammation can be exacerbated during SARS-CoV-2 

infection, contributing to the cytokine storm during COVID-19 that leads to 

endotheliitis and increased vascular permeability (Gallo et al., 2022). Vascular 

inflammation also activates platelets and disrupts the clotting cascades, resulting 

in microthrombosis and potentially causing vascular events such as stroke, 
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myocardial damage, severe hypoxia, and respiratory distress (Gattinoni et al., 

2020; Lindner et al., 2020; Nannoni et al., 2021). 

The second most frequent comorbidity identified in this study in patitents at the 

ICU was Diabetes mellitus type 2. Earlier studies reported that underlying 

diabetes mellitus is common amont the patients admitted to the ICU, but since 

diabetes is typically a disease frequent in elderly it is not known whether diabetes 

is a risk factors for COVID-19 above the advanced age. Furthermore, usual 

complications of diabetes such as cardiovascular disease and chronic kidney 

disease also were shown to increase the COVID-19 mortality and severity rate. 

One potential explanation might be that hyperglycaemia sustains viral replication 

of SARS-CoV-2. Via ROS production and activation of hypoxia-inducible factor 

1α, and patients with poor glycaemic control were shown to have an increased 

need for medication, hospitalization and mortality. Additionally, it was previously 

shown that individuals with impaired glucose tolerance or diabetes mellitus have 

reduced NK cell activity, which might help to explain why patients with diabetes 

mellitus are more susceptible to COVID-19 and have a worse prognosis than 

those without diabetes mellitus.  

The second most frequent comorbidity identified in ICU patients in this study was 

Type 2 Diabetes Mellitus. Earlier studies have reported that underlying diabetes 

mellitus is common among patients admitted to the ICU (Piva et al., 2020; Myers 

et al., 2020). However, since diabetes is typically more prevalent in the elderly, it 

is unclear whether diabetes itself is an independent risk factor for severe COVID-

19 beyond the risks associated with advanced age (Lim et al., 2021). Additionally, 

common complications of diabetes, such as cardiovascular disease and chronic 

kidney disease, have been shown to increase COVID-19 mortality and severity 

rates (Goyal et al., 2020; Holman et al., 2020). One potential explanation is that 

hyperglycemia supports SARS-CoV-2 viral replication in infected monocytes, 

thus inducing ROS production and activation of hypoxia-inducible factor 1α, 

which further promotes glycolysis and viral transcription and translation (Codo et 

al., 2020). Patients on insulin required increasingly higher doses during SARS-

CoV-2 infection and those with poor glycemic control have been shown to have 
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an increased need for medication, higher rates of hospitalization, and greater 

mortality (Critchley et al., 2018; Zhu et al., 2020; L. Wu et al., 2020). Additionally, 

previous studies have shown that individuals with impaired glucose tolerance or 

diabetes mellitus exhibit decreased NK cell activity, suggesting that the 

ineffective clearing of infected cells may contribute to the development of severe 

disease (Kim et al., 2019). 

From the beginning of the pandemic, physicians have sought laboratory markers 

to identify patients at high risk of developing severe COVID-19, enabling timely 

supportive care and ensuring ICU access if necessary. One of the earliest 

identified indicators was lymphocytopenia and neutrophilia (Anurag et al., 2020; 

J. Liu et al., 2020). The neutrophil-to-lymphocyte ratio, a widely used parameter 

to assess systemic infection and inflammation, quickly became a predictive 

marker for COVID-19 severity, similar to its use in assessing pneumonia 

prognosis during bacterial infections (Curbelo et al., 2017; Kong et al., 2020). 

Consistent with other research, this study found that severe COVID-19 patients 

had a higher neutrophil-to-lymphocyte ratio which improved over the time on the 

ICU, reflecting the imbalance between inflammatory and immune responses (Y. 

Liu et al., 2020; Peñaloza et al., 2021). The neutrophil-to-lymphocyte ratio was 

previously shown to correlate with age, inflammatory markers such as C-reactive 

protein (CRP) and higher mortality rates (Jimeno et al., 2021). One potential 

explanation for the association between high neutrophil-to-lymphocyte ratio and 

severe COVID-19 is that a balanced immune response is crucial for clearing a 

viral infection such as SARS-CoV-2 (Li et al., 2022). A high number of neutrophils 

infiltrating the lungs can secrete pro-inflammatory cytokines directly and induce 

further cytokine secretion through NETosis (Zuo et al., 2020; Yaykasli et al., 

2021). The resultant high cell death rate caused by neutrophil-induced damage 

disrupts the microvasculature in the lungs, thus impairing its function and leading 

to thrombosis (Arcanjo et al., 2020; Veras et al., 2020; Middleton et al., 2020). 

Additionally, studies have shown that a robust CD8+ T cell response aided by 

helper CD4+ T cells is vital for clearing viral infections such as SARS-CoV-2 

(Janssen et al., 2005; Hamilton et al., 2006; Mazzoni et al., 2020; Kusnadi et al., 
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2021; Mallajosyula et al., 2021). Therefore, insufficient cellular immune response 

due to lymphopenia could be a key factor leading to severe COVID-19 (André et 

al., 2022). This supports the idea that a high neutrophil-to-lymphocyte ratio might 

contribute to severe disease by indicating an imbalanced immune response 

(Higaki et al., 2022). 

The WGCNA performed on the transcriptional profiles of monocytes isolated from 

patients with mild or severe COVID-19, as well as from healthy controls, over a 

two-week period identified various gene expression patterns in monocytes linked 

to immunological processes. These gene expressions correlated with the days 

following inclusion in the study, potentially providing insights into the development 

of critical COVID-19. This longitudinal analysis helps to identify specific 

immunological changes over time that may contribute to disease severity. 

In the early days following inclusion in the study, and potentially soon after the 

onset of symptoms, genes from two major pathways: interferon-stimulated genes 

and antigen presentation, were identified as correlating with mild disease and 

inversely correlating with critical COVID-19. The genes involved in antigen 

presentation that showed positive correlation and expression in SARS-CoV-2 

infected donors with mild symptoms compared to those with severe symptoms 

included CIITA, IRF1, and CCR7. CIITA, induced by IFNγ through the JAK-STAT-

IRF1 signaling pathway, is the master transcriptional regulator of MHC molecules. 

It induces the expression of MHC II and enhances the constitutive expression of 

MHC I, initiating antigen presentation to CD4 and CD8 T cells. Viruses have 

evolved mechanisms to interfere with the JAK-STAT pathway, thereby inhibiting 

the antiviral immune response by blocking ISGs and indirectly downregulating 

MHC through CIITA and antigen presentation. SARS-CoV-2's main protease, 

NSP5, has been shown to use HDAC2 to inactivate CIITA through deacetylation. 

Similar to the findings of this study, low CIITA expression has been shown to 

indicate severe disease, confirming that SARS-CoV-2 manipulates the antigen 

presentation pathway to evade the immune response by inhibiting the master 

regulator. CCR7 upregulation and expression, as a consequence of antigen 

encounter, leads to monocyte migration to the draining lymph nodes for antigen 
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presentation to T cells. This further suggests an impairment of antigen 

presentation and an inability to specifically activate T cells in critically ill COVID-

19 patients. 

Correlating with the mild disease within the first days after inclusion into the study 

and potentially not long after the onset of symptoms were identified genes from 

two major pathways, interferon stimulated genes and antigen presentation 

correlating with mild disease and inversely correlating with critical COVID-19 

phenotype.  

The genes involved in antigen presentation that showed positive correlation and 

expression in SARS-CoV-2 infected donors with mild symptoms, compared to 

those with severe symptoms, included CIITA, IRF1, CCR7, CD86, and HLA class 

II genes. CIITA, induced by IFNγ through the JAK-STAT-IRF1 signaling pathway, 

is the master transcriptional regulator of MHC molecules. It induces the 

expression of MHC II and enhances the constitutive expression of MHC I, 

initiating antigen presentation to CD4 and CD8 T cells (Chang et al., 2002). 

Viruses, including SARS-CoV-2, have developed mechanisms to interfere with 

the JAK-STAT pathway, thereby inhibiting the antiviral immune response by 

blocking ISGs and downregulating MHC through CIITA (Hegde et al., 2003; Da-

Yuan et al., 2021). SARS-CoV-2's main protease, NSP5, has been shown to use 

HDAC2 to inactivate CIITA through deacetylation (Taefehshokr et al., 2024). 

Additionally, low CIITA expression in monocytes and dendritic cells is indicative 

of severe disease, confirming that SARS-CoV-2 manipulates the antigen 

presentation pathway to evade the immune response by inhibiting this master 

regulator (Cai et al., 2021; Argüello González et al., 2022). This disruption of 

CIITA function is observed in this study due to the downregulation of HLA class 

II genes, such as HLA-DRA, HLA-DQB1, HLA-DPB1, HLA-DPA, HLA-DOA, HLA-

DMB, and HLA-DMA, aligning with findings from other studies indicating low 

expression in severe COVID-19 cases (Giamarellos-Bourboulis et al., 2020; 

Schulte-Schrepping et al., 2020; Hasan et al., 2022; Dobi et al., 2022; Henao-

Agudelo et al., 2024). Additionally, the co-stimulatory molecule CD86, necessary 

for efficient T cell activation after antigen presentation, was also identified to 
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negatively correlate with disease severity (Kreutmair et al., 2021). SARS-CoV 

has been shown to infect DCs to impede their maturation and maintain low levels 

of CD86, suggesting a similar strategy used by SARS-CoV-2 (Borcherding et al., 

2021). CCR7 upregulation and expression, following antigen encounter, lead to 

monocyte migration to draining lymph nodes for antigen presentation to T cells 

(Winkler et al., 2024). This indicates that in donors with mild symptoms, 

inflammatory monocytes capable of antigen presentation successfully relocate to 

the lymph nodes. In contrast, critically ill patients experience not only impaired 

antigen presentation but also limited access of monocytes to the lymph nodes 

(Hopkins et al., 2023). Overall, these results suggest that SARS-CoV-2 employs 

potential viral escape mechanisms by impeding antigen presentation, thus 

evading the immune response. 

Genes associated with the interferon signaling pathway identified in this study 

included AXL, IFIT1, IFIT2, IFITM2, IRF7, ISG15, and OAS2, which strongly 

correlated with donors experiencing mild COVID-19 in the initial days following 

their inclusion in the study. The IFIT gene family, a well-characterized group of 

ISGs, is induced shortly after infection (Sen and Sarkar, 2007), functioning to limit 

viral replication by inhibiting the translation of viral proteins from RNA through 

eIF3 and by directly binding to viral proteins essential for replication (Guo et al., 

2000; Wang et al., 2003; Hui et al., 2003; Saikia et al., 2010). Studies indicate 

that the IFIT family proteins can also limit the replication of SARS-CoV-2 by 

sequestering single-stranded 5′-ppp or 2′-O-unmethylated RNA, suggesting a 

critical host defense mechanism at the onset of COVID-19 infection (Martin-

Sancho et al., 2021; X. Zhao et al., 2022). Additionally, IFITM2, which is 

constitutively expressed in all cells and robustly induced upon interferon 

signaling, inhibits the entry of various viruses into the host cytoplasm, including 

Influenza, Ebola virus, and both SARS-CoV-1 and SARS-CoV-2 (Diamond and 

Farzan, 2013; Winstone et al., 2021). The interferon regulatory factor IRF7, 

involved in the positive regulation of type I interferon production, has been linked 

with severe COVID-19, as inborn deficiencies of the IRF7 gene have been 

identified in patients with life-threatening pneumonia due to COVID-19 (Zhang et 
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al., 2020). The SARS-CoV-2 papain-like protease was demonstrated to alter the 

interferon-induced ubiquitin-like modifier ISG15, known to limit the replication and 

egress of pathogens, thereby driving the aberrant macrophage immune response 

(Munnur et al., 2021). Mutations in the protein OAS2, which binds dsRNA 

products and marks them for degradation to limit viral replication, have been 

shown to be linked to MIS-C in children and to high-risk patients for developing 

severe COVID-19 (Schmiedel et al., 2021; Lee et al., 2022). The TAM family 

member protein AXL, primarily functioning to limit TLR signaling and induce 

apoptotic cell removal, was found to correlate with mild disease in this study 

(Lemke and Rothlin, 2008). Although other studies indicate that AXL expression 

is linked with increased infection of lung epithelial cells, with its soluble part in the 

serum correlating with disease severity and proposed as an indicator of 

deterioration and disease progression, it is important to note the identification of 

its expression in CD14+ monocytes in this study (S. Wang et al., 2021; You et al., 

2024). This suggests that the timing and the specific cell type expressing AXL 

might play a decisive role in COVID-19 disease severity. Taken together, these 

findings underscore the critical role of interferon pathways and the involved genes 

during the initial phase of the disease in controlling SARS-CoV-2 infection. 

Highly correlative with critical cohort were found genes involved in the pro-

inflammatory pathways. Genes from the S100 family of alarmins were strongly 

upregulated in the critical cohort compared to the mild ones including S100A8, 

S100A9, S100A11, S100A12. The primary role of the proteins is to modulate the 

immune response towards secretion of proinflammatory cytokines, reactive 

oxygen species and nitric oxide (Wang et al., 2018). Both S100A8 and S100A9 

proteins can be secreted by either macrophages or through the release of NETs 

by the neutrophils. It has been documented that S100A8/9 can serve as ligands 

for TLR4 to induce the pro-inflammatory cytokine secretion (Vogl et al., 2007; El 

Gazzar, 2015; Narumi et al., 2015). Taken into account the high correlation of the 

TLR4 signaling pathway genes as MAP2k6, TIFA, SYK, TAB2, NFKB1 with the 

critical cohort, confirms the interaction of this mechanism. The contained 

overexpression of S100 protein family, with high invading numbers of neutrophils 
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in the lung by high expression and potential secretion of the neutrophil 

chemoattractant CXCL2, their NET release in the lung, contribute to the to 

uncontrolled inflammation and cytokine storm, as has been observed in this and 

previous studies on COVID-19 cases (Kuipers et al., 2013; Freise et al., 2019; 

Liting Chen et al., 2020; Guo et al., 2021). Interestingly, infection of interferon-

gamma alpha receptor (IFNAR)-deficient mice were infected with murine 

coronavirus mouse hepatitis virus A-59 (MHV-59), showed a similar phenotype 

as in severe COVID-19 patients, with strongly upregulated S100a8 and neutrophil 

recruitment, suggesting that the exaggerated proinflammatory response in 

critically ill patients is linked with the dampened interferon response (Guo et al., 

2021). Additionally, high expression and correlation of T cell stimulation CD58, 

CD40 together with MHC I genes HLA-B and HLA-C suggest a delayed attempt 

to boost the CD8 T cell response, but coupled with already present tissue 

damage, high viral titers and low interferon response might be the cause for the 

unbalanced immune response, deteriorating health and fatal outcomes (Su et al., 

2020; Melms et al., 2021). Moreover, the monocytes in critical donors expressed 

high levels of the decoy receptor for interleukin1 IL1R2, overlapping with findings 

from other studies on fatal COVID-19 and sepsis cases, indicating a potential 

attempt to limit the inflammation leading to dynsfunctional monocytes (Reyes et 

al., 2020; Bost et al., 2021).  

In the critical cohort, genes involved in pro-inflammatory pathways were highly 

correlative. The S100 family of alarmins, including S100A8, S100A9, S100A11, 

and S100A12, were strongly upregulated compared to the mild cohort. These 

proteins primarily modulate the immune response by promoting the secretion of 

pro-inflammatory cytokines, reactive oxygen species, and nitric oxide (Wang et 

al., 2018). S100A8 and S100A9 can be secreted by macrophages or through the 

release of NETs by neutrophils and it has been documented that S100A8/9 act 

as ligands for TLR4, inducing pro-inflammatory cytokine secretion (Vogl et al., 

2007; El Gazzar, 2015; Narumi et al., 2015). The high correlation of TLR4 

signaling pathway genes such as MAP2K6, TIFA, SYK, TAB2, and NFKB1 with 

the critical cohort supports the interaction of this mechanism. The overexpression 
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of the S100 protein family, coupled with high numbers of neutrophils infiltrating 

the lungs and the secretion of the neutrophil chemoattractant CXCL2, leads to 

NET release and even higher alarmin secretion in the lungs, contributing to 

uncontrolled inflammation and cytokine storms observed in COVID-19 cases 

(Kuipers et al., 2013; Freise et al., 2019; Liting Chen et al., 2020; Guo et al., 

2021). Interestingly, studies on interferon-gamma alpha receptor (IFNAR)-

deficient mice infected with murine coronavirus mouse hepatitis virus A-59 (MHV-

59) showed a similar phenotype to severe COVID-19 patients, with strongly 

upregulated S100a8 and significant neutrophil recruitment, suggesting that the 

exaggerated pro-inflammatory response in critically ill patients is linked to a 

dampened interferon response (Guo et al., 2021). Additionally, high expression 

and correlation of T cell stimulation markers CD58 and CD40, along with MHC I 

genes HLA-B and HLA-C, suggest a delayed attempt to boost the CD8 T cell 

response. However, this response, combined with existing tissue damage, high 

viral titers, and a low interferon response, likely contributes to the unbalanced 

immune response, deteriorating health, and fatal outcomes (Su et al., 2020; 

Melms et al., 2021). Furthermore, monocytes in critical donors expressed high 

levels of the decoy receptor for interleukin-1, IL1R2, which overlaps with findings 

from other studies on fatal COVID-19 and sepsis cases, indicating a potential 

attempt to limit inflammation, leading to dysfunctional monocytes (Reyes et al., 

2020; Bost et al., 2021). Overall, these findings highlight the complex interplay of 

immune responses in critically ill COVID-19 patients, contributing to severe 

disease progression. 

In conclusion, this study highlights the multifaceted immune dysregulation in 

critically ill COVID-19 patients. The transcriptomic analysis of monocytes 

revealed distinct gene expression profiles associated with severe disease, 

emphasizing the role of immune pathways such as interferon signaling and 

antigen presentation. A higher prevalence of severe outcomes in males was 

noted, likely due to epigenetic and hormonal influences that exacerbate the 

inflammatory response. Comorbidities like hypertension and Type 2 Diabetes 

Mellitus further compounded the risk, contributing to hyperinflammation and 
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impaired immune function. The identification of key regulatory genes and 

pathways, including the JAK-STAT-IRF1 signaling pathway and the role of S100 

family proteins, underscores the importance of targeted therapeutic strategies to 

modulate the immune response. These findings provide valuable insights into the 

mechanisms driving severe COVID-19 and highlight potential avenues for 

improving patient outcomes through personalized medicine. 

5. Conclusion 

This thesis uses a multi-omics investigation into the immune responses to SARS-

CoV-2, presenting data from multiple patient cohorts, including those with varying 

disease severities, vaccine regimens, and individuals experiencing Long COVID. 

The main objective converges on the unified goal to investigate the outcome of 

SARS-CoV-2 infection. The presented results indicate a dynamic interplay 

between pro-inflammatory responses and effective antigen presentation being 

the key culprits in COVID-19 disease severity. 

In severe and critical COVID-19 cases, the innate immune system becomes 

dysregulated, marked by an accumulation of pro-inflammatory monocytes and 

dendritic cells that exhibit diminished interferon signaling and antigen-presenting 

capacity. This skewed activation leads to hyperinflammation and impairs the 

initiation of a protective adaptive immune response. Conversely, mild cases are 

associated with a stronger interferon signature and more functional antigen 

presentation, allowing for effective viral control. 

The adaptive immune response, particularly the development of antibodies 

against the SARS-CoV-2 spike protein, also varies significantly by disease 

severity and vaccination status. While both mild and critical patients generate 

high antibody titers, the immune quality differs. In mild cases, robust antibody 

responses are supported by coordinated T follicular helper and class-switched B 

cell activity. In contrast, critical cases, though capable of producing high antibody 

levels, show signs of immune imbalance, with increased Tfh/Treg ratios and 

potential immune exhaustion. 
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Vaccination induces a strong humoral response, particularly with mRNA 

vaccines, although the antibody titer diminishes over time. Notably, individuals 

who recovered from COVID-19 benefit substantially from vaccination, supporting 

the concept of hybrid immunity as a superior protective strategy. Additionally, as 

SARS-CoV-2 continues to mutate to evade antibody responses by altering the 

amino acid sequence of the spike protein, updated booster vaccinations targeting 

emerging variants are recommended to maintain effective immune protection. 

Together, these findings underscore the importance of a balanced immune 

response in achieving favorable outcomes during SARS-CoV-2 infection. The 

work highlights how both insufficient antiviral signaling and excessive 

inflammation can drive pathology, offering valuable insights for guiding future 

therapeutic interventions, vaccine strategies, and management of long-term 

COVID-related complications. 

While the multi-omics approach employed in this thesis enabled a comprehensive 

and integrative view of immune responses to SARS-CoV-2, several 

methodologies were not ideal and should be thus the results should be taken with 

a grain of salt. The single-cell RNA sequencing dataset, although large and 

informative, was limited by sparse clinical metadata and potential batch effects, 

which may have influenced the resolution of certain immune signatures despite 

harmonization efforts. In the antibody profiling study, the inclusion of diverse 

patient cohorts introduced biological richness but also confounding factors, such 

as differences in sampling time points and imbalance between numbers of 

participants in each cohort. The bulk RNA sequencing of peripheral monocytes 

provided valuable insights into systemic innate immunity, yet lacks spatial context 

and cellular heterogeneity, which would be better captured by single-cell or 

spatial transcriptomics. Nonetheless, by combining complementary 

methodologies and diverse clinical cohorts, this thesis offers a robust and 

multifaceted exploration of COVID-19 immunity, while also identifying key areas 

for future investigation, particularly in longitudinal and tissue-specific studies. 
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6. Abstract 

This thesis explores the immune mechanisms activated during SARS-CoV-2 

infection across different disease severities through a comprehensive multi-omics 

approach. It specifically emphasizes the role of peripheral monocytes, 

investigating their programming during infection using bulk RNA-Sequencing. 

Additionally, the study delves into the development of antibodies in response to 

both infection and vaccination against the virus. Through single-cell RNA 

sequencing, it further deciphers the immune pathways activated in various 

immune cells within peripheral blood. This research provides valuable insights 

into the complex immune responses to SARS-CoV-2, connected to low interferon 

response, antigen presentation and highly pro-inflammatory state of severe 

COVID-19 patients. 
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10. Appendix 

 
Supplementary Figure 1: Overview of most and least changed genes and 
proteins after ambient noise decontamination in myeloid and NK cells.  
Comparison of genes (A, C) and protein (B, D) expression before and after 

correction with a change of at least 25%. Red dots represent transcripts and 

proteins presenting reductions greater than 80% and 50% post-correction, 

respectively. Tables indicating initial and corrected counts of transcripts and 

proteins percentage decrease of marker genes for the myeloid (E-F) and NK (G-
H) cell lineages. 



184 

 
Supplementary Figure 2: Exploration of antibody titers against various 
SARS-CoV-2 strains across COVID-19 disease severities. (A) Table detailing 

patient demographics and comorbidities for cohorts infected with SARS-CoV-2 

and control groups. (B) Dot plot exhibiting concentrations of specific α-Spike-Ab 

against different SARS-CoV-2 variants at the peak N-protein concentration 

moment (t2) in the serum of patients with mild SARS-CoV-2 infection. (C, F) 
Lollipop plots depicting the percentage reduction in α-Spike-Ab levels against 

SARS-CoV-2 variants relative to the Wuhan strain in both mild (C) and critical (F) 

COVID-19 cases, and for Long COVID patients (H). (D, E, G, H) Immune cell 
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frequencies in mild (D, E) and critical (G, H) COVID-19 cases, focusing on B cell 

populations (D, G) and non-class-switched B cells (E, H). (G) Neutralizing 

potential of antibodies against the Spike-RBD for alpha, beta, and gamma SARS-

CoV-2 variants in healthy, non-vaccinated controls versus critically ill patients. (H) 
Pearson correlation matrix for selected metrics including the neutralizing capacity 

of α-Spike-Ab for RBD among critically ill patients on the first hospitalization day. 

The mean concentration in healthy controls is represented by a blue line, with the 

95% confidence interval indicated by a blue dashed line. Error bars in (C) and (F) 

denote the standard error of the mean; statistical significance is assessed via the 

Mann-Whitney U test with unadjusted p-values (H); significance levels are 

marked as * p value <0.05, ** p value <0.01, *** p value <0.001. 

 

Supplementary Figure 3: Antibody Titers and Cytokine Levels in Long 
COVID. (A) Clinical data comparison table for Long COVID patients vs. control 

group. (B) Symptom frequency table for Long COVID vs. LC control cohorts. (C) 
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Charts of relative α-Spike-Ab titers to SARS-CoV-2 variants in Long COVID 

subjects. (D) Time series boxplots of IL12p70 cytokine levels in sera from Long 

COVID vs. control individuals. (E) Concentrations of neuroinflammation markers 

Aβ40, Aβ42, GFAP, NF-light in sera of Long COVID patients and LC controls. 

Mean concentration in healthy controls is represented by the blue line, 95% 

confidence interval shown with a blue dashed line. Error bars in (D) and (E) for 

standard error of the mean. Statistical analysis via Mann-Whitney U test; 

significance levels denoted as * p value <0.05, ** p value <0.01, *** p value 

<0.001 for (D, E). 

 

Supplementary Figure 4: Antibody titers and cytokine concentrations post-
vaccination. (A) Demographic table detailing age and sex of participants 

receiving AZ, BT, and MO vaccines. Lollypop plots depicting percentage 
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reduction in α-Spike-Ab levels against SARS-CoV-2 variants relative to the 

Wuhan strain for AZ (B), BT (C), and MO (D) recipients at specified vaccination 

timepoints. (E) Cytokine levels of IL10, IL6, and TNFα measured in the peripheral 

blood of MO vaccine recipients pre- and post-inoculation. (F) Evaluation of the 

neutralizing ability of α-Spike-Ab against the RBD of SARS-CoV-2 alpha, beta, 

and gamma variants in non-vaccinated healthy controls, critically ill COVID-19 

patients, and individuals vaccinated with BT and MO six months post-second 

booster (3rd vaccination). Standard error of the mean denoted by error bars in 

(C), (F), and (J). Statistical analysis conducted using the Mann-Whitney U test 

with unadjusted p-values for (E). Significance levels are * p value <0.05, ** p 

value <0.01, *** p value <0.001. 

 
Supplementary Figure 5: Dynamics of Ab responses to SARS-CoV-2 
variants following cross-vaccination with different vaccine bases. (A) 
Presents a table detailing the ages and genders of participants who received 

various vaccines, including Vaxzevria AstraZeneca (AZ), Jcovden Janssen-Cilag 

(JJ), Comirnaty Pfizer-BioNTech (BT), and Spikevax Moderna (MO), in multiple 

doses. (B) Comparative lollipop plot illustrating the reduction in α-Spike-Ab levels 

against different SARS-CoV-2 variants after being vaccinated with a combination 

of vaccines across various immunization strategies. Error bars represent the 

standard error of the mean. 
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Supplementary Figure 6: Ab titer reduction in previously 

infected and subsequently vaccinated individuals. (A) A 

lollipop chart depicting the decrease in antibody titers against 

specified variants in comparison to the Wuhan strain. Error 

bars represent the standard error of the mean. Sample size: 

N = 3. 
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