EFFICIENT LEARNING AND OPTIMIZATION FOR
ROBOTIC MANIPULATOR MOTION GENERATION

DISSERTATION
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultat
der
Rheinischen Friedrich-Wilhelms-Universitat Bonn

vorgelegt von
DMYTRO PAVLICHENKO
aus
Odesa, Ukraine

Bonn, Dezember 2024

UNIVERSITAT @

Angefertigt mit Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultat der

Rheinischen Friedrich-Wilhelms-Universitit Bonn

Gutachter / Betreuer
Gutachter
Tag der Promotion

Erscheinungsjahr

Prof. Dr. Sven Behnke

Prof. Dr. Gerhard Neumann
07.07.2025

2025

ABSTRACT

A central goal of robotics research is to develop autonomous systems
capable of achieving and ultimately surpassing human-level task per-
formance in unstructured environments. Robotic manipulation plays
a critical role in this aspiration. In this thesis, we address the prob-
lem of robotic manipulator motion generation with data-driven and
optimization-based approaches. The high-dimensional state spaces
with complex underlying dynamics and real-time operational con-
straints pose major challenges. Our methods address these problems
and provide solutions to a sequence of interconnected tasks. These
include planning and tracking manipulator trajectories followed by
dexterous object manipulation.

First, a feed-forward open-loop reference correction policy improves
the joint trajectory tracking accuracy. The policy is learned offline in
a supervised manner on a small real-world dataset. We propose to
incorporate a hardwired one-step future prediction into the model
to facilitate planning behavior. Next, we introduce a methodology
for learning a closed-loop policy with deep reinforcement learning
directly on the real robot. Our policy leverages the advantages of
online feedback to significantly improve trajectory tracking accuracy.

Second, we address dual-arm trajectory optimization with multi-
ple constraints. We propose an obstacle cost function based on the
estimation of the worst-case overlap volume. Additionally, we handle
the closed kinematic chain constraint by subdividing the system into
active and passive sub-chains, with an implicit redundancy resolution
for the passive sub-chain. These components significantly decrease
the method’s runtime when optimizing high-dimensional dual-arm
trajectories.

Third, we propose a method for learning dexterous pre-grasp manip-
ulation for functional grasping using a human-like hand. The policy is
trained with deep reinforcement learning. Our dense multi-component
reward function and curriculum avoid the need for expert demonstra-
tions and other costly data collection processes. We propose two target
grasp representations and analyze their effects on the behavior of
the policy. The policy quickly learns to dexterously manipulate novel
object instances of known categories and achieve provided functional
grasps that enable object use, such as operating a drill.

We showcase the effectiveness of our methods in simulation and real-
world experiments. Our approaches significantly improve trajectory
tracking accuracy, quickly generate high-dimensional trajectories that
satisfy multiple constraints, and dexterously manipulate complex
objects using a human-like hand.

iii

ZUSAMMENFASSUNG

Ein zentrales Ziel der Robotikforschung besteht darin, autonome Syste-
me zu entwickeln, die in der Lage sind, menschliches Leistungsniveau
in unstrukturierten Umgebungen zu erreichen und letztendlich zu
tibertreffen. Die robotische Manipulation spielt eine entscheidende
Rolle in diesem Bestreben. In dieser Dissertation wird das Problem
der Bewegungserzeugung von Roboterarmen mit einer Kombination
aus datengetriebenen und optimierungsbasierten Ansitzen behan-
delt. Hochdimensionale Zustandsrdume mit komplexen zugrunde lie-
genden Dynamiken sowie Echtzeitanforderungen stellen wesentliche
Herausforderungen dar. Unsere Ansétze adressieren diese Probleme
und bieten Losungen fiir eine Reihe miteinander verbundener Aufga-
ben. Dazu gehoren die Planung und Ausfithrung der Trajektorie von
Roboterarmen, sowie die geschickte Manipulation von Objekten.

Zunéchst verbessert eine Feedforward-Referenzkorrekturstrategie
mit offenem Regelkreis die Genauigkeit der Gelenktrajektorie. Die
Regelstrategie wird offline in einer tiberwachten Weise auf wenigen
realen Daten gelernt. Wir schlagen vor, eine Vorhersage fiir den nichs-
ten Zeitschritt fest in das Modell zu integrieren, um ein planungs-
orientiertes Verhalten zu erleichtern. Anschlieffend stellen wir eine
Methodik vor, um eine geschlossene Regelstrategie mithilfe von Deep
Reinforcement Learning direkt auf dem realen Roboter zu erlernen.
Unsere Regelstrategie nutzt die Vorteile von Online-Feedback, um
die Genauigkeit bei der Abarbeitung der Trajektorien erheblich zu
verbessern.

Zweitens behandeln wir die Optimierung von Trajektorien fiir zwei-
armige Roboter unter mehreren Nebenbedingungen. Wir stellen eine
Hinderniskostenfunktion vor, die auf der Abschiatzung des Uberlap-
pungsvolumens im schlimmstmoglichen Fall basiert. Zuséatzlich wer-
den die Nebenbedingungen der geschlossenen kinematischen Kette
durch die Unterteilung in aktive und passive Teilketten behandelt,
wobei eine implizite Redundanzauflosung fiir die passive Teilkette
erfolgt. Diese Komponenten reduzieren die Laufzeit bei der Optimie-
rung hochdimensionaler zwei-armiger Trajektorien erheblich.

Drittens wird eine Methode zur Erlernung geschickter Vorgriff-
manipulation fiir funktionales Greifen mit einer menschendhnlichen
Hand durch Deep Reinforcement Learning vorgestellt. Wir schlagen
eine mehrkomponentige Belohnungsfunktion mit zugehoriger Trai-
ningsstrategie vor, die den Bedarf an Expertendemonstrationen oder
anderen kostspieligen Datenerfassungsprozessen eliminiert. Wir schla-
gen zwei Reprdsentationen fiir gezielte Griffe vor und analysieren
deren Auswirkungen auf das Verhalten der Regelstrategie. Die Re-

gelstrategie lernt effizient, neuartige Objekte bekannter Kategorien
geschickt zu manipulieren und funktionale Griffe zu erreichen, die den
praktischen Gebrauch von Objekten ermdglichen, wie beispielsweise
die Bedienung einer Bohrmaschine.

Wir demonstrieren die Wirksamkeit unserer Methoden in simu-
lierten Experimenten wie auch Versuchen in der realen Welt. Unsere
Ansitze verbessern die Genauigkeit bei der Trajektorienumsetzung
erheblich, generieren schnell hochdimensionale Trajektorien, unter
Beachtung mehrerer Nebenbedingungen, und erméglichen eine ge-
schickte Manipulation komplexer Objekte mit einer menschendhnli-
chen Hand.

vi

ACKNOWLEDGMENTS

First, I would like to express my gratitude to Prof. Dr. Sven Behnke for
sharing his invaluable experience and for his guidance throughout my
research. His profound advice, insightful discussions, and inspiring
ideas have played a key role in shaping this thesis.

I would like to thank my colleagues Grzegorz Ficht, Dr. Diego Ro-
driguez, Dr. Philipp Allgeuer, Dr. Hafez Farazi, Angel Villar-Corrales,
Malte Mosbach, Jan Quenzel, Max Schwarz, Christian Lenz, Dr. Si-
mon Bultmann, Dr. Marius Beul, Arul Selvam Periyasamy, Michael
Schreiber, Mojtaba Hosseini, André Brandenburger, and Luis Den-
ninger for our memorable performances and achievements at numer-
ous robotic competitions as well as for our collaboration on multiple
projects. I also extend my gratitude to all members of the Autonomous
Intelligent Systems group for their mutual support and fostering a
collaborative and productive environment.

My deepest gratitude goes to my parents Valeriy and Olga, and
older brother Evgeniy, for nurturing my enduring curiosity and pas-
sion for science. Their unwavering support helped me throughout this
challenging path.

This work was supported by the European Union’s Horizon 2020
Programme under Grant Agreement 644839 (CENTAURO) and the
German Research Foundation (DFG) under grant BE 2556/12 AL-
ROMA in priority programme SPP 1527 Autonomous Learning, and
grant BE 2556/16-2 (Research Unit FOR 2535 Anticipating Human
Behavior), German Ministry of Education and Research (BMBF) un-
der grant No. 011S21080, project “Learn2Grasp: Learning Human-like
Interactive Grasping based on Visual and Haptic Feedback”.

vii

CONTENTS

1

INTRODUCTION
1.1 Key Contributions
1.2 Publications
1.3 OQutline
TRAJECTORY TRACKING WITH SUPERVISED LEARNING
21 Introduction
22 RelatedWork
23 Background
2.4 Two-stage Model with One-step Future Prediction . . .
25 Model Training
2.6 Evaluation
2.6.1 Quantitative Evaluation
2.6.2 Practical Example
2.7 Discussion
TRAJECTORY TRACKING WITH DEEP REINFORCEMENT
LEARNING
3.1 Introduction
3.2 Related Work
33 Background
34 Method
341 ActionSpace
342 StateSpace.
343 Reward Function
344 Model
345 Learning Process
34.6 Informed Initialization
3.5 Evaluation
351 Setup
352 Experiments
3.6 Discussion
DUAL-ARM TRAJECTORY OPTIMIZATION
41 Introduction
42 Related Work
43 Background
431 STOMP. i
432 STOMP-New
44 Method
441 ObstacleCost
442 Closed Kinematic Chain Constraint
45 Evaluation
451 Setup o
452 Unconstrained Scenario

O] U1 = W =

10
13
15
18
20
21
27
28

29
30
31
34
35
37
38
39
40
41
41
42
42
43
50
53
54
55
58
58
59
60
61
64
67
67
68

ix

CONTENTS

45.3 Closed Kinematic Chain Constraint Scenario . .
454 Real-robot Experiments
46 Discussion
DEXTEROUS MANIPULATION WITH DEEP REINFORCE-
MENT LEARNING
51 Introduction
52 Related Work
53 Background
5.4 Explicit Target Grasp Representation
541 ActionSpace
542 StateSpace.
543 Reward Function
544 Curriculum
5.5 Constraint-based Target Grasp Representation
551 ActionSpace
552 StateSpace.
553 Reward Function
554 Curriculum
5.6 Evaluation
561 Setup
5.6.2 Explicit Target Grasp Representation
5.6.3 Constraint-based Target Grasp Representation .
5.7 Discussion
CONCLUSION

LISTS OF FIGURES, TABLES, AND ACRONYMS

BIBLIOGRAPHY

71

INTRODUCTION

Robots are being employed for an increasingly broad range of tasks
due to their advanced automation capabilities. In particular, robotic
manipulators, either independently or in combination with mobile
platforms, are used to perform tasks ranging from simple pick-and-
place operations to complex assembly processes. While automation in
highly structured factory settings is largely a solved problem, repli-
cating such performance in unstructured environments remains a
significant challenge. Tasks such as assisting in households, facilitating
search-and-rescue operations in hazardous areas, or handling various
tools continue to pose considerable difficulties. These domains share
a high degree of uncertainty. Efficiently acting in such scenarios re-
quires accurate and dexterous robotic manipulator motions that are
generated quickly and can generalize across variability in hardware
and environments.

In this thesis, we study the three fundamental capabilities of robotic
manipulators: trajectory tracking, trajectory generation, and object
manipulation. These methods allow robotic manipulators to traverse
their workspace with precision, avoiding obstacles and adhering to
kinematic constraints. Upon reaching the target location, the manipula-
tor can then interact directly with the environment. A major challenge
in motion generation for robotic manipulators is the high-dimensional
state spaces. Combined with complex underlying dynamics and com-
putational time constraints, planning and control become significantly
more difficult. The methods presented in this thesis leverage recent
advancements in the field of artificial intelligence and classical opti-
mization techniques to address these challenges.

Trajectory tracking control of robotic manipulators requires highly
accurate dynamics models. When robots are deployed outside of
controlled factory settings, particularly in shared workspaces with
humans, additional safety measures are often necessary. One such
measure is the use of series-elastic actuators, which provide enhanced
compliance, ensuring safer interaction between robots and humans.
This further complicates system identification. Even when accurate
models are available, the use of low-cost hardware introduces lim-
itations. Over time, wear and tear accumulate, affecting the perfor-
mance negatively. As a result, frequent adjustments to the models
are required. Additionally, parameters of classical controllers must be
regularly fine-tuned to maintain optimal operation. This process is
time-consuming and, to be executed effectively, requires the expertise

INTRODUCTION

of a skilled engineer. Such procedures necessitate stopping the normal
operation of the robot, reducing its efficiency.

Many tasks demand not only accurate trajectory tracking but also an
ability to avoid obstacles in unstructured environments while adhering
to kinematic and dynamic constraints. Manipulators often have a high
number of degrees of freedom (DoF), introducing redundancy to
expand their effective workspace. Moreover, dual-arm systems are
commonly utilized to significantly expand the range of tasks that
can be performed. These applications include handling large, heavy
objects that exceed the payload capacity of a single arm, as well as
scenarios where one arm supports the object while the other conducts
complex manipulations. Generating trajectories for efficient motion
of multiple high-DoF manipulators under multiple constraints while
maintaining low computation times is a complex problem.

Finally, once the robotic manipulator moves through its workspace
safely and efficiently, one of the primary objectives is manipulating an
object. Interacting with the environment involves making sustained
contacts over time, governed by complex dynamics. In particular,
grasping objects for functional use, as opposed to simple pick-and-
place tasks, is difficult. Many objects have complex shapes, and achiev-
ing a functional grasp often requires very specific grasp configurations.
A direct functional grasp may not always be feasible depending on
the object’s position. That necessitates intricate pre-grasp manipula-
tions, including repositioning and reorienting the object. To enable this
level of versatility, human-like multi-fingered hands are frequently
employed. Achieving dexterous manipulation with a high-DoF multi-
finger hand, however, is non-trivial.

In this thesis, we propose methods to tackle the aforementioned
challenges. We do so by employing learning-based and classical
optimization-based approaches. We aim to achieve efficient motion
generation for robotic manipulators. For learning-based approaches,
efficiency is achieved through the use of compact models with low
runtimes, short training times, and modest hardware requirements.
For the optimization-based methods, efficiency is characterized by low
computation times, enabling fluid, on-demand robot operation. We
accomplish this by thoughtfully incorporating prior knowledge of the
problems into the model architectures, the design of cost functions,
and the formulation of learning pipelines.

We improve the trajectory tracking control accuracy by introduc-
ing outer-control-loop reference correction policies. First, we explore
offline supervised learning for open-loop feed-forward reference cor-
rection policy. Second, we propose a methodology to learn a closed-
loop policy online directly on the real robot with deep reinforcement
learning (DRL). The fast generation of feasible trajectories for dual-
arm systems, satisfying multiple constraints, is achieved with our
optimization-based method through a multi-component cost function.

1.1 XEY CONTRIBUTIONS

Finally, to achieve dexterous manipulation, we train a policy with DRL
in highly parallelized simulation. We avoid the need for expert demon-
strations by utilizing the proposed dense multi-component reward
function and curriculum.

1.1 XEY CONTRIBUTIONS
The main contributions of this thesis are summarized as follows:

TRAJECTORY TRACKING WITH SUPERVISED LEARNING. We pro-
pose to learn open-loop reference correction policy in a supervised
manner. We incorporate a one-step future prediction module within
the model to move away from pure reactive behavior towards a more
planning-oriented strategy. The policy is trained offline on a small
real-world dataset. Since the ground-truth optimal reference trajec-
tories are unknown, the policy is trained with inverted data, lever-
aging hindsight experience replay (HER). At the same time, the in-
troduced one-step prediction module is trained on the original data.
This allows for reusing the same dataset while learning two different
modalities, improving the data efficiency of the method. The linear
time-invariant (LTI)-based layers are used in the model to facilitate
approximating complex dynamics.

TRAJECTORY TRACKING WITH DEEP REINFORCEMENT LEARNING.
We employ DRL to train a closed-loop reference correction policy.
The policy is trained online directly on the real robot. To ensure
that the actions of the policy stay within safe margins, the stochastic
policy is represented with a beta distribution. State, action, and reward
formulations enable quick and stable convergence on a single robot,
using an ordinary laptop for computations. Additionally, we propose
to learn a coarse simulation from a small real-world dataset to pre-train
the policy before starting learning on the real robot. This mitigates the
negative effects of the initial exploration of the action space.

DUAL-ARM TRAJECTORY OPTIMIZATION. We introduce a multi-
component cost function, facilitating optimization of dual-arm trajec-
tories with respect to several costs and constraints simultaneously. To
better account for collisions in the obstacle cost term, an estimation
of the worst-case overlap volume is calculated. To address the closed
kinematic chain constraint, we subdivide the kinematic chain into
active and passive sub-chains. Given the active chain configurations,
the passive sub-chain configurations are projected to satisfy the con-
straint. We propose an implicit redundancy resolution for the passive
sub-chain through the optimization of the initial configurations for
the inverse kinematics (IK) solver.

INTRODUCTION

DEXTEROUS PRE-GRASP MANIPULATION WITH DEEP REINFORCE-
MENT LEARNING. DRL is utilized for learning a dexterous pre-
grasp manipulation policy for functional grasping. We propose two
distinctive target functional grasp representations and analyze their
influence on the learned behaviors. First, explicit representation is
defined with six-dimensional (6D) pose of the end-effector and finger
positions. Second, constraint-based representation is defined with a
three-dimensional (3D) index fingertip position and end-effector ori-
entation. The constraint-based target grasp representation enables the
policy to freely learn a way to grasp each object category, as opposed
to achieving strictly defined grasps in the case of the explicit grasp
representation. We propose compact state and action representations,
as well as a dense multi-component reward function. They are agnostic
of the arm, hand, and object types. That facilitates learning of intuitive
dexterous behaviors from scratch, without the need for costly expert
demonstrations.

1.2 PUBLICATIONS

Parts of this thesis have been published in peer-reviewed journals and
conference proceedings. The most relevant publications are presented
below in chronological order:

D. Pavlichenko, D. Rodriguez, M. Schwarz, C. Lenz, A. S.
Periyasamy, and S. Behnke (2018). “Autonomous dual-arm
manipulation of familiar objects.” In: IEEE-RAS International
Conference on Humanoid Robots (Humanoids). DOL: 10.1109 /HU-
MANOIDS.2018.8624922.

D. Pavlichenko and S. Behnke (2021). “Flexible-joint
manipulator trajectory tracking with learned two-stage
model employing one-step future prediction.” In: IEEE
International Conference on Robotic Computing (IRC). DOIL
10.1109/IRC52146.2021.00008.

D. Pavlichenko and S. Behnke (2022a). “Flexible-joint manipu-
lator trajectory tracking with two-stage learned model utilizing
a hardwired forward dynamics prediction.” In: International
Journal of Semantic Computing (IJSC) 16.03, pp. 403—423. DOI:
10.1142/51793351X22430036.

https://doi.org/10.1109/HUMANOIDS.2018.8624922
https://doi.org/10.1109/HUMANOIDS.2018.8624922
https://doi.org/10.1109/IRC52146.2021.00008
https://doi.org/10.1142/S1793351X22430036

1.3 OUTLINE

D. Pavlichenko and S. Behnke (2022b). “Real-robot deep rein-
forcement learning: improving trajectory tracking of flexible-
joint manipulator with reference correction.” In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2671-
2677. DOL: 10.1109/ICRA46639.2022.9812023.

D. Pavlichenko and S. Behnke (2023). “Deep reinforcement
learning of dexterous pre-grasp manipulation for human-
like functional categorical grasping.” In: IEEE International
Conference on Automation Science and Engineering (CASE). DOIL:
10.1109/CASE56687.2023.10260385.

D. Pavlichenko and S. Behnke (2025). “Dexterous pre-grasp
manipulation for human-like functional categorical grasping;:
Deep reinforcement learning and grasp representations.” In:
IEEE Transactions on Automation Science and Engineering (T-ASE).
DOL: 10.1109/TASE.2025.3541768.

The following publication is closely related to the topics presented
in this thesis and was written during the time in which the presented
research has been conducted.

D. Pavlichenko, D. Rodriguez, C. Lenz, M. Schwarz, and S.
Behnke (2019). “Autonomous bimanual functional regrasping
of novel object class instances.” In: IEEE-RAS International
Conference on Humanoid Robots (Humanoids), pp. 351-358. DOIL:
10.1109/HUMANOIDS43949.2019.9035030.

1.3 OUTLINE

This thesis is composed of six chapters. The scientific contributions
are presented in Chapters 2 to 5. Each of the chapters starts with an
introduction of the problem and the proposed solution, followed by
a review of related work. After that, the method is presented, and
the conducted experiments together with their analysis are described.
Finally, the discussion section summarizes the findings of a chapter.
Each chapter is written to be self-contained and can be read indi-
vidually. The methods are ordered by their position in the software
hierarchy, from the low-level to the high-level.

Chapter 2 presents a method for improving trajectory tracking
accuracy based on reference correction with supervised learning. The
policy is learned offline from a small real-world dataset in a supervised
fashion. A one-step future prediction is hardwired within the model

https://doi.org/10.1109/ICRA46639.2022.9812023
https://doi.org/10.1109/CASE56687.2023.10260385
https://doi.org/10.1109/TASE.2025.3541768
https://doi.org/10.1109/HUMANOIDS43949.2019.9035030

INTRODUCTION

to facilitate planning behavior. The policy is serving as an open-loop
feed-forward controller on top of the underlying classical controller.
The method is evaluated in the real world on a 7 DoF arm of the Baxter
robot and is compared to model architectures without the prediction
step as well as against the vendor-provided controller.

Chapter 3 presents a DRL-based method for improving trajectory
tracking accuracy. The policy is learned online directly on the real
robot from scratch. The policy is serving as a closed-loop reference
correction controller on top of the underlying classical controller. The
stochastic actions of the policy are drawn from the beta distribution
to ensure that the action magnitude stays within safe margins. In
addition, a one-step future prediction model from Chapter 2 is used as
a simulator to pre-train the policy. This approach offers an alternative
to starting learning on the real robot with a random policy. The
method is evaluated on the real 7 DoF arm of the Baxter robot and is
compared to the approach presented in Chapter 2 as well as against
the vendor-provided controller.

Chapter 4 presents an optimization-based method for dual-arm
trajectory planning. The method leverages a multi-component cost
function, enabling optimization with respect to multiple costs and
constraints simultaneously. In the cost function, the obstacle cost term
is improved by defining the cost through the estimation of the worst-
case overlap volume. Closed kinematic chain constraint is addressed
by splitting the chain into active and passive sub-chains. The con-
figurations of the passive sub-chain are obtained by projecting the
sampled active sub-chain configurations. We introduce an implicit
redundancy resolution for the passive sub-chain. The method is evalu-
ated in simulation and on the real robot and is compared to several
well-established planners.

Chapter 5 presents a DRL-based method for learning policy for dex-
terous pre-grasp manipulation for functional grasping. The approach
leverages a dense multi-component reward function that is agnostic
of the arm, hand, and object types. This enables learning of dexterous
manipulation behaviors without expensive expert demonstrations. A
compact state representation together with highly-parallelized simula-
tion enables quick learning on a single computer. Two possible target
grasp representations are studied. The method is evaluated in simula-
tion on previously unseen instances of objects of three categories.

Finally, Chapter 6 concludes this thesis. The scientific findings and
developed approaches are summarized and discussed. The possible
directions for future work are proposed.

TRAJECTORY TRACKING WITH REFERENCE
CORRECTION: SUPERVISED LEARNING

PREFACE

This chapter is adapted from Pavlichenko and Behnke, 2021, previ-
ously published by IEEE and presented at the 5th IEEE International
Conference on Robotic Computing (IRC 2021), and Pavlichenko and
Behnke, 2022a, previously published by World Scientific Publishing in
the International Journal of Semantic Computing (IJSC).

Statement of Personal Contribution

The author of this thesis substantially contributed to all aspects of
the publication (Pavlichenko and Behnke, 2021), including the litera-
ture survey, conception, design, and implementation of the proposed
method, the preparation and conduct of experiments and evaluation
of the proposed approach, the analysis and interpretation of the exper-
imental results, drafting the manuscript, as well as the revision and
final editing of the version to be published.

The author of this thesis substantially contributed to the following
aspects of the publication (Pavlichenko and Behnke, 2022a), including
the literature survey, conception, design, and implementation of the
proposed method, the preparation and conduct of experiments and
evaluation of the proposed approach, the analysis and interpretation
of the experimental results, drafting the manuscript, as well as the
revision and final editing of the version to be published.

The content presented in this chapter, unless otherwise stated, is the
contribution of the author of this thesis.

ABSTRACT

In this chapter, we present an approach for improving trajectory track-
ing accuracy with an open-loop feed-forward reference correction
policy. It acts as an outer-loop controller on top of the underlying
classical controller. We propose a two-stage model that is composed of
a one-step future prediction and a reference correction module. The
future prediction module is designated to move towards planning-
oriented behavior. We train the model on a small real-world dataset in
a supervised manner and evaluate it on the Baxter robot. We compare
our method to several popular model architectures and to the vendor-
provided classical controller. The conducted real-world experiments

TRAJECTORY TRACKING WITH SUPERVISED LEARNING

RO0.6| T T T —— N
= I
S04
%0.2 —— Reference -
E ----- Baseline execution =
S

2.2 2.4 2.6 2.8 3.0 3.2 3.4

Time [s]

Figure 2.1: Typical challenge of using a flexible-joint manipulator to reach
a pre-grasp pose. Top: Baxter arm tips over an object due to
inaccurate reference trajectory tracking. Bottom: Shoulder yaw
joint position vs. time during execution with the baseline vendor-
provided classical controller. Large portions of the trajectory are
tracked with significant errors.

indicate that the hard-wired one-step future prediction substantially
improves the trajectory tracking accuracy compared to other models
and to the proposed model without the prediction step.

2.1 INTRODUCTION

The ability to accurately follow a planned trajectory is a fundamental
prerequisite for the majority of robotic manipulator applications. For
traditional industrial manipulators, methods such as iterative learning
control (ILC) (Arimoto, 1990) have proven effective in achieving this
objective. ILC is predicated on the assumption that identical trajecto-
ries are repeated within a highly structured environment.

Recently, however, the application of robotic manipulators has ex-
panded beyond these contexts: direct human-robot collaboration in
shared workspaces necessitates significantly higher safety require-
ments. Often, these requirements are initially met at the hardware
level through the use of compliant series-elastic actuators. Neverthe-
less, flexible manipulators tend to output less accurate motions, and
their complex underlying dynamic models are frequently unknown.
Designing a classical controller for such manipulators is a challenging
task. Fig. 2.1 demonstrates a shortcoming of poorly tracked trajec-
tory in practice. The simplest approach to mitigate this issue is to
operate at low velocities, but this compromises the system’s efficiency.
In this chapter we present an approach to attain accurate trajectory
execution at high velocities for inexpensive flexible-joint manipulators
by complementing a classical controller with an open-loop reference
correction model obtained through offline supervised learning.

2.1 INTRODUCTION

Reference Forward Inverse
Trajectory Dynamics Dynamics

! Inner Loop :
| S |
I |
1 u :
: Classical |
: e Controller :
|

. |
. |Manipulator)
I |
I |

Figure 2.2: Open-loop reference correction control architecture with one-step
future prediction step. Given reference trajectory q,, the learned
one-step future prediction model produces a prediction g.. The
prediction is combined with the reference g, forming an input for
the learned reference correction model, which outputs a modified
reference g;. The classical controller produces the control signal u
for the actuators and receives feedback e. (C): concatenation.

Artificial neural networks (NNs) are known for their ability to gen-
eralize and model complex non-linear relations. We present a method-
ology for neural-learned feed-forward outer-loop control based on
LTT dynamical operators. In particular, as a part of our model, we use
the dynoNet (Forgione and Piga, 2021), which resembles the features
of a recurrent neural network (RNN) (Greff et al., 2017) and one-
dimensional (1D) convolution (Z. Wang, Yan, and Oates, 2017). The
LTI layers are specifically designed for sequence modeling and sys-
tem identification. They successfully approximate complex non-linear
causal dynamics while being differentiable and suitable for backprop-
agation. Thus, we utilize them for learning reference correction of a
flexible-joint manipulator.

We propose a two-stage model. The first part predicts the manipu-
lator state one step into the future. The output of this model is used
to augment the input to the LTI-based model, which produces the
feed-forward joint position and velocity commands, representing a
modified reference trajectory, which is then fed to the inner-loop clas-
sical feedback controller. The control architecture is shown in Fig. 2.2.
The motivation for such model architecture is to hardwire the “Infer
what will happen in the future, then think what would be the best action now
to prevent the foreseen inaccuracies” structure within the network. We
elaborate that such an architecture moves away from the pure reactive

TRAJECTORY TRACKING WITH SUPERVISED LEARNING

policy towards a more intelligent planning-ahead behavior. This can
be viewed as a simplistic model-predictive framework.

Such model architecture helps to maximize the extraction of infor-
mation from the scarce real-world data. That is achieved by using the
same data twice to learn two different modalities. First, to learn the
one-step future prediction. Second, to learn the reference correction
from the inverted data. The models are trained on the real-robot data
in a supervised manner using plain backpropagation. We evaluate the
performance of our method on the real Baxter robot against a vendor-
provided baseline classical controller, a multi-layer perceptron (MLP)
and RNN. Our approach significantly improves trajectory tracking
accuracy compared to the baseline controller and outperforms other
models. The method allows executing fast trajectories with higher
accuracy.

In summary, our main contributions are:

e Two-stage model architecture, explicitly utilizing one-step fu-
ture prediction to maximize knowledge extraction from a small
dataset, trained with backpropagation,

e hardwired one-step future prediction step, reinforcing planning
behavior within the network, and,

e investigation of the effectiveness of LTI-based models for robotic
manipulator reference correction.

2.2 RELATED WORK

Trajectory tracking has been extensively researched for decades. A
notable classical method is ILC (Arimoto, 1990) which incrementally
refines the control input using tracking errors. After a few iterations,
it achieves nearly perfect tracking of a reference trajectory. However,
a key drawback of ILC is its lack of transferability, as the optimiza-
tion must be repeated from the beginning for each new trajectory.
Alternatively, differential dynamic programming (DDP) (Mayne, 1966)
employs a linear quadratic regulator (LQOR) to iteratively refine the
control inputs. This method is computationally intensive, making it
impractical for real-time applications.

Trajectory tracking is often addressed by means of NNs (Q. Guo
et al., 2019; He et al., 2018; Jin et al., 2018; Yiming et al., 2017). Such
increased attention is due to their comprehensive ability to generalize
and model complex nonlinear dynamics. Radial basis function (RBF)
NN are a popular model choice (Q. Chen et al., 2016; H. Han, X. Wu,
etal., 2019; H. Han, L. Zhang, et al., 2016; Qiao, Meng, and W. Li, 2018;
F. Wang et al., 2017; C. Yang et al., 2016). Xia, L. Wang, and Chai, 2014
use RBF-NN to mitigate the effects of friction in swing-up control of a
two-joint manipulator. However, such models contain a large number

10

2.2 RELATED WORK

of parameters, and it is challenging to tune the hyperparameters, such
as the number of Gaussian kernels, their centers, and their shapes.

A wavelet fuzzy NN is proposed for predictive control by Lu, 2011.
The model is based on a set of fuzzy rules. Each rule is linked to
the wavelet function from the consequent rules. The model is trained
with backpropagation. The main disadvantage of this architecture
lies in its complexity and high computational cost. Nevertheless, it
is successfully applied for control of nonlinear systems (F.-J. Lin,
S.-G. Chen, and IL.-F. Sun, 2017; Sheng, Xiaojie, and Lanyong, 2017;
Zhao, C.-M. Lin, and Chao, 2019). Rueckert et al., 2017 use Gaussian
process regression (GPR) to perform kinematic control of a surgical
cable-driven manipulator. Saveriano et al., 2017 model the residual
dynamics using a Gaussian process (GP)-based model together with
reinforcement learning. The main drawback of GP-based models, in
comparison to NN, is that they grow together with the data, thus
requiring a lot of resources for evaluation and execution.

Mahler et al.,, 2014 demonstrate that long short-term memory
(LSTM) NNs can outperform the GP-based method for modeling
inverse dynamics. While many works focus on the model architecture,
Morse et al., 2020 apply meta-learning to obtain state-dependent loss
functions, which demonstrates another viable approach. M. Wang,
Ye, and Z. Chen, 2017 propose a method for neural learning from
adaptive neural control (ANC). The authors introduce an adaptive
neural dynamic surface control scheme, which reduces the dimension
of neural inputs and the number of neural approximators. The ANC
scheme is shown to be capable of storing knowledge of unknown
system dynamics through experiments on a single-link robot in
simulation and on the real Baxter robot.

Much research is built around ILC (K. Patan, M. Patan, and
Kowaléw, 2017; Y. Yang, D. Huang, and X. Dong, 2019; G. Zhang
et al., 2021; Zuo and Cai, 2010). For instance, in work by Schwarz and
Behnke, 2014 the compliant position control is achieved through learn-
ing the parameters of direct current motors and friction models with
the help of ILC. The method is tested in the real world with humanoid
robot gait. This approach avoids performing a separate run for each
parameter but instead identifies all parameters at once. A combination
of £ adaptive control and ILC is used for transfer learning between
systems with different dynamics by Pereida et al., 2018. An extended
L4 controller runs in the inner closed-loop control level and achieves
robust and repeatable behavior. ILC is used as an outer-loop control,
where the transfer of learned experience is realized. The system
is tested on two quadrotors with different dynamics and outper-
forms systems composed of ILC and proportional-derivative (PD) or
proportional-integral-derivative (PID) controllers.

Another use of ILC involves the production of the ground truth
input trajectories to train NNs that approximate the inverse dynamics

11

TRAJECTORY TRACKING WITH SUPERVISED LEARNING

of the system by D. Chen et al., 2021. The authors apply this approach
to an industrial manipulator, training the model in simulation. The
model is then applied to the real robot with transfer learning. A
separate NN is trained for each joint using backpropagation. The
approach demonstrates a significant improvement of the trajectory
tracking accuracy both in simulation and in the real world. However,
this method cannot be applied to systems that do not have good
dynamics approximation for simulation, which is frequently the case
for compliant systems. In addition, the assumption of decoupled joints
does not hold when dealing with flexible joints.

A relevant area of research lies in the area of motion planning. For
instance, Qureshi, Bency, and Yip, 2019 and Qureshi, Miao, et al., 2021
introduce computationally efficient motion planning network (MPN).
The architecture consists of an encoder and planning network, which
bidirectionally generate connectable paths. Moreover, the model can be
merged with classical planning algorithms to provide the worst-case
guarantees.

L. Li et al., 2021 use imitation learning to train a scalable model-
predictive motion planning networks framework. The method quickly
finds near-optimal paths with worst-case guarantees. NN-based ap-
proaches are applied to motion planning in various ways (Ha, J. Xu,
and Song, 2020; Johnson et al., 2020; Qureshi,]J. Dong, et al., 2020;
Qureshi and Yip, 2018). In this work we address the problem of
trajectory tracking, which does not require an extensive search in high-
dimensional spaces. Nevertheless, we encourage a simplistic planning
behavior within the proposed model by hard-wiring the future predic-
tion step, which is related to the works mentioned above. Moreover,
the proposed two-stage architecture has certain similarities with an
encoder-decoder structure. We discuss it in more detail in Section 2.7.

S. Chen and Wen, 2019 present two approaches for performing
feed-forward trajectory tracking with series-elastic actuators. The first
approach uses RNN. It approximates forward dynamics in combi-
nation with ILC. It in turn utilizes this model to find an optimal
command sequence. The main drawback of this approach is the signif-
icant runtime required for ILC to converge, which makes this method
impractical to be applied online. The second approach utilizes bi-
directional recurrent neural network (BRNN) (Schuster and Paliwal,
1997) to approximate the inverse dynamics directly, such as by Talebi,
Patel, and Khorasani, 1998 and Q. Li et al., 2017. This allows directly
obtaining the required control inputs in a short time. Both approaches
are trained with backpropagation on three hours of sinusoidal and ran-
dom trajectories recorded on the real Baxter robot. Resulting models
improve the trajectory tracking over the baseline PD controller.

Callar and Bottger, 2022 present an approach for learning inverse
dynamics models in robotic systems, particularly focusing on locally
isotropic robot motion. The authors propose a hybrid learning frame-

12

2.3 BACKGROUND

work that combines data-driven learning with model-based methods.
This allows for more accurate inverse dynamics modeling by leverag-
ing both physical insights from traditional models and the flexibility
of machine learning techniques. In particular, LSTM and Transformer
network topologies. The method is evaluated on the KUKA iiwa 14
manipulator.

W. Huang et al., 2024 propose a LSTM-based model that is enhanced
with velocity-awareness, allowing the system to capture the temporal
dependencies in the manipulator’s motion and improve predictions by
explicitly incorporating velocity information into the learning process.
In contrast, we propose a model that utilizes causal LTI dynamical
operators. In addition, we also encapsulate a pre-trained model for one-
step future prediction to augment the input to the reference correction
model. This two-stage approach, inspired by Zeng et al., 2020, allows
the model to take the prediction of the future into account. This
increases the effectiveness of the produced feed-forward command
that helps minimize future inaccuracies. The proposed model uses a
more abstract input representation. It considers two timesteps of joint
positions, velocities, and accelerations, instead of multiple timesteps
of joint positions.

In combination, this allows the model to learn and generalize ef-
fectively from a smaller amount of real-world data. In addition, our
model produces not only feed-forward joint position commands but
also velocities, which allows us to further improve the trajectory track-
ing accuracy. Finally, we train the model on a smaller dataset of
functional trajectories, imitating learning from a regular operation, as
opposed to learning from trajectories of specific artificial shapes, such
as sine waves.

2.3 BACKGROUND

In this chapter we use LTI dynamical operators as building blocks for
the proposed model. They are introduced as a part of the dynoNet
architecture (Forgione and Piga, 2021) and can be trained end-to-end
by backpropagation. In this section we briefly review the concept
behind such building blocks.

LTI layers are parametrized using rational transfer functions, en-
abling them to perform infinite impulse response (IIR) filtering on
their input sequences. In the dynoNet architecture, the input-output
relationship for an individual single-input single-output (SISO) LTI
layer is defined by the dynamical rational operator G(s), given the
input signal u(t) € R and output y(t) € R at time ¢:

y(t) = Gloyu(t) = 7 55ult) @)

13

TRAJECTORY TRACKING WITH SUPERVISED LEARNING

where A(s) and B(s) are polynomials in the time delay operator
slisTlu(t) = u(t—1):

A(s) =1+a;s 1 +...+a,s ™, (2.2a)
B(s) =bo+bis '+ ...+ bys . (2.2b)

The filtering operation through G(s) in Eq. 2.1 is equivalent to the
input/output equation:

A(s)y(t) = B(s)u(t), (2.3)

which is equivalent to the recurrence equation:

y(t) = bou(t) + byu(t —1) + ...+ byu(t — ny)
—ay(t—1)... —apy(t —n,). (2.4)

The coefficients of the polynomials A(s) and B(s) are the configurable
parameters of G(s). For simplicity, these coefficients are assembled in
vectors a = [ay,az,...,a,,) € R"™ and b = [by, by, ..., by,] € R™ T

To integrate the linear dynamical operator into a deep learning
framework, it is essential to define both the forward and backward
operations. During the forward pass, an input sequence u < RT
is filtered through a dynamical system G(s) characterized by the
structure specified in Eq. 2.1 and parameters a and b. The resulting
block output is a vector y € R that contains the filtered sequence:

y = G.forward(u,b,a) = G(s)u. (2.5)

In the backward pass, G receives the vector y € R” containing the
partial derivatives of the loss £ w.r.t. y, specifically:

¥, =—,t=0,...,T—1 (2.6)

Given v, it is necessary to compute the derivatives of the loss £ with
respect to its differentiable inputs b, a, and u. The structure of the
backward operation is as follows:

b,a,u = G.backward(b, a,u,y). (2.7)

The detailed derivation of each respective partial derivative is avail-
able in the original dynoNet paper (Forgione and Piga, 2021). With
the forward and backward operations defined, integrating the linear
dynamical operator into a NN alongside classical building blocks for
inference and training becomes straightforward.

14

2.4 TWO-STAGE MODEL WITH ONE-STEP FUTURE PREDICTION

24 TWO-STAGE MODEL WITH ONE-STEP FUTURE PREDICTION

Given a reference trajectory g,, our objective is to produce a modified
reference trajectory g; that would lead the manipulator to follow g,
more accurately using an underlying classical feedback controller.
Each trajectory g consists of N equally spaced in time keyframes
q(t;) : g = [q(t1)...q(tn)]- Bach keyframe q(t;) € RM represents
a manipulator configuration in joint space with M joints: g(t;) =
9(t1,1) ... q(tn, M)].

We propose a two-stage model that consists of two main parts. The
tirst part is the forward-inference network (FIN): a MLP that produces
one-step future prediction. Provided with two consequent reference
trajectory points, it outputs a predicted state of the manipulator at the
following timestep. The second part of the model takes the original
input, augmented with the FIN prediction, to produce the corrected
reference.

The second part of the model is based on LTI dynamical operators,
as implemented in the dynoNet!. LTI operators were shown to be
efficient when learning the complex causal non-linear dynamics while
being suitable for an end-to-end backpropagation (Forgione and Piga,
2021). These properties are advantageous for learning the dynamics of
the flexible-joint manipulator. That is why we choose LTI-based blocks
to be the core of our model. The model resembles a multiple-input
multiple-output (MIMO) Wiener-Hammerstein structure, according
to the block-oriented modeling framework (Giri and Bai, 2010). Thus,
it is referred to as the dynoNet Wiener-Hammerstein (DWH) model.
Finally, we refer to the whole model as FIN-DWH. The two-stage
architecture with one-step future prediction aims to push the model
from purely reactive policy behavior towards more intelligent plan-
ning ahead. That allows achieving a higher accuracy of the trajectory
tracking.

In this chapter we apply the proposed method to the arm of the
Baxter robot. Thus, below we describe the approach within the context
of that robot. However, it is straightforward to apply the method to
an arbitrary robot manipulator. The Baxter arm has M = 7 joints,
thus g(t) € R. Since the joints of Baxter are coupled (S. Chen and
Wen, 2019), a common approach of training a separate model for
approximating the dynamics of each joint is not feasible. Instead, we
approximate the underlying dynamics by considering all joints simul-
taneously. We represent each point of the manipulator trajectory as a
tuple (q(t), q(t),§(t)). Explicit inclusion of velocity and acceleration
provides information about the dynamics to the NN directly, as op-

1 https://github.com/forgi86/dynonet

15

https://github.com/forgi86/dynonet

TRAJECTORY TRACKING WITH SUPERVISED LEARNING

Reference Correction

.] FC FC |
One-step Future Prediction + 1
q.(t) | @sassssssgssscnesccocons a=2 [|ReLU a2 T
{ _o e —o| 1 oa(t+1)
q.(t) i b=2 b 14
i 56 x14) lax32) (32x7 x | Tx1
q.(t) i | FC FC]
+ H o+ '
¢ |ReLU RelU —_— — — —
q.(t+1) ! |
: 12 x 64 64 x 32 LTl FC FC o
q.(t+1) L + 1
P To I 2 RelU m 20—
G (t+1) 2 b=2| 1 qg(t+1)
Uox 1 Wxs2) (B2x7) 7x7) | 7x1

'
12 % 1 gy g

Figure 2.3: Two-stage reference correction model. Input is the current refer-
ence state of the manipulator, expressed with joint positions g, (t),
velocities §,(t), accelerations §,(t), and the reference state at the
next keyframe at ¢ + 1. Blue: FIN, one-step future prediction block.
Green: DWH model, that takes the same input, augmented with
the future state estimation from FIN. It outputs the feed-forward
joint positions and velocities, forming a corrected reference. (c):
concatenation. FC: fully-connected layer. LTT: linear time-invariant
dynamical operator-based block.

posed to forcing the NN to infer it from the series of joint positions.
The input to the FIN-DWH model is a 42-element vector:

[9:(8),4.(), 4,(), 4, (¢ + 1), 4, (£ + 1), 4, (£ + 1)), (2.8)

where g,(t) is the reference keypoint of the manipulator at time ¢
and ¢q.(t + 1) is the next reference keypoint, correspondingly. The
output of the network is then a 14-element vector [g,(t + 1), g;(t + 1)]
where g;(t + 1) is the corrected reference point which should lead
the manipulator to the state g,.(f + 1), after being supplied to the
underlying classical controller. The diagram of the model is shown in
Fig. 2.3.

The proposed method is open-loop and does not include live feed-
back from the robot. This imposes an assumption that the consequent
execution of the corrective feed-forward commands should result in
the manipulator following the reference trajectory perfectly. This as-
sumption allows training the model offline using the collected data
as is, without the need to introduce an additional dynamics model to
produce the ground-truth control inputs. This significantly simplifies
the data collection process, making the integration and execution of
the approach more transparent.

We analyze the practical shortcomings of the aforementioned as-
sumption by performing the experiments with a previously unseen
payload. Since the complete feed-forward command sequence from
our model is available before it is executed, we apply a zero-phase
Savitzky-Golay filter to each individual joint position and joint velocity
trajectory with window 21 and polynomial order 2 to alleviate any
potential non-smooth fragments in the control signal.

The best-performing Baxter vendor-provided controller is an In-
verse Dynamics Feed Forward Position Controller. We use it as a
baseline in this work. This controller calculates the necessary torque

16

2.4 TWO-STAGE MODEL WITH ONE-STEP FUTURE PREDICTION

from the supplied positions, velocities, and accelerations using the
internal dynamics model. Thus, we train our model to produce ve-
locities g;(t+ 1) as well. We do not train the model to output joint
accelerations ¢(t + 1) because they can not be measured by the robot
hardware.

To give an intuition about how the position vendor-provided con-
troller and the inverse dynamics feed-forward vendor-provided con-
troller compare, the average cumulative joint position tracking error
per point is 0.157 + 0.082 rad in the first case against 0.069 4= 0.032 rad
(mean = standard deviation) in the second case. The latter is more
than two times accurate. Thus, we train the model to provide feed-
forward velocity input and compare it against this more accurate
vendor-provided controller. Note that it is straightforward to use only
the position or velocity vector from the output in case when position
or velocity control is used. The existing error in trajectory tracking
accuracy shows that the internal dynamics model does not represent
the complex, coupled-joints real-robot dynamics accurately enough.
The proposed data-driven method does not replace the classical base-
line controller but forms an outer-loop, complementing the existing
dynamics model and learning to compensate for the observed inaccu-
racies.

By explicitly including velocity and acceleration in the input, we pro-
vide enriched information about the manipulator state without forcing
the network to infer derivatives from the time series of joint positions.
In addition, since a tuple of (g, 4, §) contains certain information about
the dynamic state of the manipulator, we can significantly reduce the
number of timesteps needed as an input.

In this work, we use only two timesteps, as described above. More-
over, velocity and acceleration represent certain patterns in robot
dynamics in a more general way, as opposed to sequences of joint posi-
tions alone. The trajectories used for training contain points separated
by At = +s where F = 20Hz. In case of any encoder inaccuracies
of consistent magnitude, a larger time span between sample points
allows decreasing their influence. In addition, larger At also reduces
the influence of latency. The inner-loop feedback controller of the
Baxter joints operates at a much higher frequency.

To perform a one-step future prediction of the manipulator, we
define the FIN model: a MLP with three fully connected layers. It
takes a 42-element vector as an input and produces a 14-element
vector [q) (t+1),4.(t +1)], where g/ (t + 1) is a predicted state of the
manipulator after executing the command ¢q,(¢ + 1) as it is. We use the
rectified linear unit (ReLU) activation function as non-linearity. FIN
model has 5,294 weights in total. The following DWH model performs
the reference correction and consists of two identical independent
branches.

17

TRAJECTORY TRACKING WITH SUPERVISED LEARNING

Figure 2.4: Region of workspace for data collection for the left arm of the
Baxter robot. Keypoints of the sampled trajectories are shown as
green points, representing the corresponding end-effector posi-
tions. We focus on the most used portion of the workspace in the
front and to the side of the robot.

Each branch takes in the original 42-element input concatenated
with the 14-element output of the FIN model, resulting in a 56-element
input. Each branch then outputs a 7-element vector. One branch pro-
duces positions, the other — velocities. The architecture of a branch is
as follows. First, the LTI block with 2 = 2 and b = 2, which outputs
14 features, motivated to represent a rough position + velocity approx-
imation. 4 and b define the polynomial order for the denominator and
nominator of a rational transfer function (Forgione and Piga, 2021).
The LTT block is followed by two fully connected layers. The result of
these layers is then fed to the last LTI block, which also has a = 2 and
b = 2 and produces the final 7-element vector.

The architecture of the model is shown in Fig. 2.3. Each branch
has 4,043 parameters, which results in a total of 4,043x2 = 8,086 pa-
rameters for the DWH model. The LTI layers are parameterized in
terms of rational transfer functions and thus apply IIR filtering to
the input. Stacking this hardwired linear structure in multiple layers
together with fully connected layers was shown to approximate the
complex non-linear dynamics (Forgione and Piga, 2021). By providing
the one-step future prediction obtained from the FIN, we allow the
model to take into account the predicted future in which we would
execute the next command as it is. This can be interpreted as a simplis-
tic version of model-predictive control with only one step of looking
ahead. As we show in our evaluation, this additional input improves
the performance of the model.

25 MODEL TRAINING

In order to learn the reference correction model, we generate 45 min-
utes of functional reference trajectories g, for the left arm of the Baxter
robot. Random sinusoidal trajectories are often used to form the base
of the training set (S. Chen and Wen, 2019, 2021). However, recording

18

2.5 MODEL TRAINING

such a dataset takes the valuable robot hours away from the user. Thus,
we imitate learning from the data that is collected while performing
actual tasks. That is why we refer to such trajectories as functional. This
approach is advantageous as it facilitates data collection seamlessly
while the robot executes relevant tasks. Subsequently, the learned
model reduces execution time by achieving more accurate reference
trajectory tracking at higher speeds, extending the overall capabilities
of the flexible-joint manipulator.

The training set consists of pick-and-place trajectories with equal
portions executed with different joint speeds: 0.6, 0.8, and 1.0rad/s
maximum speeds, respectively. The sampled trajectories cover the
major part of the workspace in front and to the side of the robot
with approximate dimensions of 1.4 x 0.7 x 1.0m, as shown in Fig. 2.4.
When executing a reference trajectory g,, the actual observed trajectory
g, and g, are recorded. Since Baxter has no way to measure the
acceleration §_, we approximate it by a cubic spline interpolation.
Approximately 60% of the trajectories contain 1-2 additional waypoints
between the start and the goal. All waypoints are sampled from a
uniform distribution and are constrained to be at least 15cm apart
from each other to prevent executing extremely short motions. This
increases the variety of the movements and simulates maneuvers such
as avoiding an obstacle.

Given the set of reference trajectories g,, 4, and §,, as well as the set
of the observed robot responses g, 4, and §,, we train the two-stage
model in two steps.

First, we train the FIN model. Since we have the reference and ob-
served trajectories, the composition of the training input-output tuples
is straightforward. We train the network using stochastic gradient
descent (SGD) with a minibatch of 32 data points in a fully super-
vised manner. We use the Adam optimizer with a learning rate of
10~* to minimize the mean square error (MSE) loss and employ L?
regularization.

The training of the full FIN-DWH model is not as straightforward,
because the ground-truth modified reference trajectories g, that would
lead to g, following q, perfectly are unknown. It would be possible
to employ ILC to obtain them, but since we do not have a good
model for simulation, this would have to be done on the real robot,
exponentially increasing the number of robot-hours needed to produce
such a dataset. Instead, we use the same data as for FIN training
and apply the HER technique (M. Andrychowicz et al., 2017). This
method can be described in short as pretending that what we achieved
was what we actually wanted. It is commonly used in reinforcement
learning (RL) to mitigate the negative effects of sparse delayed rewards.
We use g, as the goal reference trajectory, and then g, becomes the
corresponding ground-truth input.

19

TRAJECTORY TRACKING WITH SUPERVISED LEARNING

8y S e Il

Data FIN Data FIN-DWH Real-robot
Collection Training Inversion Training Application

Figure 2.5: Two-stage training process. First, the FIN model, which performs
a one-step future prediction, is learned. Second, data is inverted,
and the complete FIN-DWH model is trained to perform reference
correction. Reusing the same data to learn two different modalities
improves data-efficiency.

After inverting the training examples, we perform the same training
procedure as above: 32 data points per minibatch, Adam optimizer
with a learning rate of 10~* with the MSE loss and L? regularization.
Note that we keep the weights of the FIN frozen during the whole
training of the FIN-DWH model. This ensures that the DWH model
is supplied with one-step future prediction. We have observed that
allowing the network to update the FIN weights during the train-
ing leads to inferior performance. This supports our idea that when
training on a limited dataset, careful hard-wiring of NN structure
is of high importance. To demonstrate that in our experiments, we
also evaluate the performance of the FIN-DWH version, where FIN
weights are updated freely. The diagram of the training process is
shown in Fig. 2.5.

Although we train the model directly with trajectories with different
velocity profiles, it is also possible to train the model by gradually
increasing the difficulty. Such a training curriculum would fit transpar-
ently into the real-world application scenario when allocating robot
hours solely for the purpose of training is infeasible and learning from
the real tasks is required instead. In this setting, arm movements are
initially executed at lower velocities to minimize trajectory tracking in-
accuracies and ensure successful task completion. Then, as the model
improves the tracking accuracy, the maximum velocity of the arm is
gradually increased.

2.6 EVALUATION

To evaluate the presented approach, we conduct experiments on the
real Baxter robot. We compare the performance to the baseline vendor-
provided Baxter controller: Inverse Dynamics Feed Forward Position
Control. In addition, we also compare our method against the three
other models. The first model is a MLP, consisting of three fully con-
nected layers: 42 x 64 — 64 x 32 — 32 x 14. It has 5,294 parameters.
Note that we also experimented with a larger MLP with four layers
and 16,302 parameters. However, it did not demonstrate a superior
performance. The second model is a three-layer RNIN, which has 7,772
parameters and is referred to as RNN. It has the structure analogous to

20

2.6 EVALUATION

_0'100 —— Mean ?0 4 —— Mean
E SD A SD
=0.075 £

S § 0.3

o)

50050 Zo2

2 E

80.025 So1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Maximum speed [rad/s] Maximum speed [rad/s]

Figure 2.6: Tracking errors vs. maximum joint speed in a trajectory. Left:
Joint position tracking error. Right: Joint velocity tracking error.
The errors are averaged per trajectory point. The trajectories are
executed with a vendor-provided controller.

MLP: (42 4+ h) x 64 — 64 x 32 — 32 x 14, with two additional layers
to produce a 14-element hidden state h: (42 + 1) x 32 — 32 x h. The
third model is the DWH model with 6,518 parameters. It has the same
structure as the second part of the network described in Section 2.4,
omitting the FIN model. In addition, we perform an ablation study
of the proposed model, introducing two model variants: FIN,-DWH
and FINg-DWH. In FIN,-DWH, we let the weights of FIN model be
updated during the second stage of training. In FIN;-DWH, we keep
the weights of FIN model fixed during the second stage of the training
instead. Such comparison allows investigating the effectiveness of the
one-step future prediction, since in FIN,-DWH the network is given
the freedom to update the weights of the FIN model.

All models take 42-element vectors as input and produce a 14-
element vector of feed-forward joint positions and velocities. All mod-
els use ReLU non-linearity and are trained on the same dataset until
convergence, minimizing MSE loss with the Adam optimizer. The
models are trained on a regular laptop, with each training procedure
taking less than 2 hours. We do our best to find the best set of hyper-
parameters for each model using the grid search. For the MLP, they
are a learning rate of 2.0 x 10~ and a minibatch size of 24 data points.
For the RNN model, they are a learning rate of 1.5 x 10~* and a mini-
batch size of 48 data points. For the DWH and both versions of the
FIN-DWH, we use the same hyperparameters: a learning rate of 10~*
and a minibatch size of 32 data points, as the core of these models is
the same. This allows us to better observe how the proposed two-stage
architecture influences the performance of the model compared to the
same model without the one-step future prediction.

2.6.1 Quantitative Evaluation
To quantitatively evaluate the proposed approach, we generate 100

unseen trajectories for the left arm of Baxter. Although our model
can be used for trajectories with arbitrary speed profiles, we find it

21

TRAJECTORY TRACKING WITH SUPERVISED LEARNING

especially interesting to evaluate the methods on trajectories with high
speeds. In that case the compliance of the manipulator causes the
most inaccuracies due to complex inertia effects on flexible joints, as
shown in Fig. 2.6. Data shown in these plots was collected by executing
random trajectories with the baseline controller. Clearly, the higher
the maximum allowed speed is, the less accurate the movements of
the manipulator are. The error grows slower with maximum speed
increase because not all joints are able to reach this speed during the
trajectory execution. Thus, in our experiments, the maximum joint
speed was set to 1.0rad/s.

We measure the average cumulative error per point in a trajectory
for joint position, joint velocity, and end-effector position. We also
measure the extra time needed to converge to the final point in a
trajectory, as well as the runtime of each model. Given an observed
trajectory q, and a reference trajectory g, with N keyframes and M
joints, we calculate the average cumulative joint position error e, per
point as follows:

1
eqzﬁ

=
M=

| (tn, m) — qo(tn, m)]. (2.9)

Il
—_

n=1m

The procedure is analogous for the average joint velocity error:

1
eq:N

1=
™M=

|Ge(tn, 1) — o (tn, m)]. (2.10)

Il
—

n=1m

Finally, the average end-effector position error is computed given a
forward kinematics (FK) function F:

N
et = 5 1 |17 (a,(10)) — Flao(t0))]]2 @11)
n=1

In Table 2.1, the average cumulative joint position and velocity errors
are shown. In all tables we provide 95% confidence intervals of the
mean. One can see that all the models make an improvement over
the sole baseline controller. However, MLP clearly shows the worst
performance. This is the case because fully-connected layers do not
have an underlying structure to capture the unknown dynamics. RNN
and DWH models show similar performance, although DWH has
slightly better results. Finally, both versions of FIN-DWH improve
over the plain DWH, demonstrating that the one-step prediction of
the future allows producing a more accurate control input. Notably,
FINg-DWH outperforms FIN,-DWH. Our intuition is that it is very
challenging for the internal FIN model to implicitly learn one-step
future prediction during an end-to-end training procedure on a limited
dataset. On the other hand, having explicit targets during the first step
of the training allows to learn the desired behavior. Consequently,

22

2.6 EVALUATION

Table 2.1: Comparison of average cumulative joint position and velocity er-
rors per point.

Joint position error

Joint velocity error

Method
[rad x1072] [rad/s x1072]

Baseline 6.90+0.62 (—) 32.554+2.83 (—)
MLP 4.681+0.61 (32%) 24.32+2.13 (25%)
RNN 4.201+0.42 (39%) 22.71+1.74 (30%)
DWH 4.02+0.37 (42%) 21.8441.68 (33%)
FIN,-DWH 3.83+0.36 (44%) 21.68+1.64 (33%)
FIN-DWH 3.64+0.33 (47%) 21.26+1.51 (35%)

95% confidence interval is provided after "+". Improvement over the baseline is
in brackets.

this results in a superior performance of the network with fixed
FIN weights, preserving the learned one-step future prediction. This
signifies the importance of hard-wiring a structured framework within
the network architecture to facilitate planning behavior, particularly
when learning from the limited real-world data.

In Table 2.2, the average end-effector position error per point is
shown. We also report the extra time to converge to the final point
of the trajectory. The extra time is defined as a difference between
the actual trajectory execution time and the desired execution time.
This difference arises when the state of the manipulator in the final
trajectory point differs significantly from the desired state and extra
time is needed to reach it. A similar tendency in the performance of
the models can be observed.

On average, the baseline controller has a 3 cm deviation from the de-
sired path, while our method achieves an improvement of three times,
reducing it to 1cm on average. The extra time to arrive at the desti-
nation point is reduced by a significant 92%. That happens because

Table 2.2: Comparison of average end-effector position error per point and
average extra time to reach the endpoint.

Method EEF position error [cm] ~ Extra time [s]

Baseline 2984035 (—) 0.75-£0.091 (—)
MLP 1.4040.24 (53%) 0.2840.029 (62%)
RNN 1.15+0.14 (61%) 0.124+0.013 (84%)
DWH 1.11-£0.13 (62%) 0.09--0.010 (88%)
FIN-DWH 1.0840.13 (63%) 0.0940.010 (88%)
FIN;-DWH 1.01£0.12 (66%) 0.06+0.008 (92%)

95% confidence interval is provided after "+". Improvement over the baseline

is in brackets.

23

TRAJECTORY TRACKING WITH SUPERVISED LEARNING

0.75

&)]

& 050 !

E —

S e

S 025 =

= g

g s

2 0.00 2

g B3

[=} o

= -0.25 ~

0 i 2 3 4

0.20

o)

S 0.00%

s+

H

~.-0.20

b=

@)

S-0.40

v

>

& 060

(=}

™ .0.80

o

Time [s]

(© (d)

—— Reference -« Corrected reference ----- Corrected execution ——— Baseline execution

Figure 2.7: Shoulder yaw joint trajectory. (a) Position vs. time. (b) Position
error vs. time. (c) Velocity vs. time. (d) Velocity error vs. time. The
baseline controller alone leads to several major deviations, while
our method compensates for the inertia affecting the elastic joints
and follows the trajectory with higher accuracy.

the motion is much smoother overall, making the immediate, accurate
arrival at the final point possible. The average runtimes per trajectory
(usually consisting of 60-90 timesteps) are as follows. MLP: 0.031s,
RNN: 0.062s, DWH: 0.067 s, FIN-DWH: 0.085s. All computations are
executed on an Intel i7-6700HQ 2.6 GHz central processing unit (CPU).
Further improvements of the runtimes are possible. By listing them
here, we give an intuition about the relative computational load of the
compared models.

In Fig. 2.7, we show an example test trajectory of the shoulder
yaw. One can see that the trajectory achieved solely by the baseline
controller deviates from the target much more than the trajectory
obtained with FIN-DWH. There are four big peaks of the position
error and three big peaks of the velocity error. It can be noticed that
the minima of the position error correspond to the maxima of the
velocity error and vice versa. This can be explained by the controller
trying to compensate for the position error by increasing velocity to
"catch up". However, this consequently leads to the overshooting of
the velocity. The whole cycle is then repeated. We attribute this effect
to the compliance of the manipulator. It can be seen that our model
learns to compensate for this effect, modifying the joint commands

24

2.6 EVALUATION

~

Es
55
=)
Dy n
= !
/
-8 3 i
£ 7
o
a2 / !
[i |
m 1 I N
25 SN S A
" :
1 2 3 4
Time [s]
(b)
0.45 _5
I E f
[Sy /
0.40{ ! — = |
i i o
i ! =
—035] i T3
| =1
| 2
>0.30 g2
o
(=9
0.25 SES w1
[=a]
[=a]
02047 038 0.9
x [m]
(©)
—— Reference @ ——- Baseline = ----- Ours

Figure 2.8: Example end-effector trajectories. (a) Path of the end-effector in
3D in one of the test trajectories. (b) Corresponding end-effector
position error. (c) Path of the end-effector for a square-shaped
trajectory, projected onto the XY plane. (d) Corresponding end-
effector position error. Execution with the baseline controller
leads to several major deviations, while our approach tracks the
trajectories with higher accuracy.

when needed. In this way, our method achieves a much more accurate
trajectory tracking of both joint position and velocity.

In Fig. 2.8a, we show the path of the end-effector in one of the
test trajectories. One can see that with the baseline controller, the
end-effector makes several swings, deviating significantly from the
reference trajectory. The peaks of the deviations (Fig. 2.8b) correspond
to the peaks of the shoulder yaw deviations. That is because shoulder
joints are affected by inertia the most, bearing the weight of the whole
arm. It is also worth noticing that the baseline trajectory takes around
half a second of extra time to reach the final keyframe. Our method
requires almost no extra time. In Fig. 2.8c we show the path of the end-
effector for a square-shaped trajectory, projected onto the XY plane.
This trajectory has a shape that differs drastically from the trajectories
in the training and test sets. Nevertheless, our method significantly
improves the accuracy of its execution. Overall, our approach shows
better performance in comparison with the other three models and
significantly improves over the baseline controller, leading to smoother

25

TRAJECTORY TRACKING WITH SUPERVISED LEARNING

Table 2.3: Comparison of average cumulative joint position and velocity er-
rors per point while carrying a payload.

Payload Method Joint position Joint velocity
kgl error [rad x1072] error [rad/s x1072]
Baseline 7.37+1.47 (—) 34.144+6.417 (—)
MLP 5.06+1.36 (31%) 25.944+4.78 (25%)
0.25 RNN 4.5141.17 (39%) 23.7143.93 (30%)
DWH 4.34+1.13 (41%) 23.16+3.74 (32%)
FIN,-DWH 4.1241.08 (44%) 22.5343.61 (34%)
FIN;-DWH 3.9240.87 (47%) 21.77+3.56 (36%)
Baseline 8.01+1.59 (—) 34.69+6.77 (—)
MLP 5.60+1.43 (30%) 26.47+4.91 (24%)
05 RNN 5.11+1.24 (36%) 24.66+4.17 (29%)
DWH 4.754+1.01 (41%) 23.8343.94 (31%)
FIN,-DWH 4.5440.98 (43%) 23.214+3.98 (33%)
FIN;-DWH 4.21+0.93 (47%) 22.66+3.81 (34%)
Baseline 10.83+1.97 (—) 37.80+8.27 (—)
MLP 8.53+1.71 (21%) 29.161+6.92 (23%)
11 RNN 7.78+1.68 (28%) 27.3245.78 (27%)
DWH 7.45+1.56 (31%) 26.014+5.14 (31%)
FIN,-DWH 7.23+1.39 (33%) 25.53+4.65 (32%)
FINi-DWH 7.13+1.32 (34%) 25.60+4.63 (32%)

95% confidence interval is provided after "+". Improvement over the baseline
is in brackets.

trajectories at high speeds. Achieving higher accuracy over the raw
DWH model, the addition of the FIN module is shown to be beneficial.

To further evaluate the efficiency of the proposed approach, we
execute 20 random trajectories from the previous experiment with
payloads of 0.25, 0.5, and 1.1kg. Note, that the maximum payload of
Baxter is 2.3kg. Same as in the previous experiment, we measure the
average cumulative joint position and velocity errors. These metrics
are shown in Table 2.3.

It is possible to see that while carrying the smallest payload of
0.25kg, all methods perform similarly to the run without the payload
(Table 2.1). Increasing the payload to 0.5 kg causes a more noticeable
decrease of the trajectory tracking accuracy. Finally, with a significant
load of 1.1kg, the trajectory tracking accuracy deteriorates substan-
tially, influenced by the inertia forces of larger magnitude. The largest
deviations are observed in parts of the trajectories with rapid changes
in acceleration. Overall, the model ranking is the same as for the exper-
iment without the payload. FIN;-DWH demonstrates the best results.

26

2.6 EVALUATION

LepR
MEARAN

Y i Baseline

)
= =

D

v
<

i N T T Ours

>
=

- N
)
Sis.
]
o
<
\
N
.r\‘_—
~
3
8
~
\
\
&
I}
\\
\
\

EEF position error [cm]

Figure 2.9: Pre-grasp trajectory execution. Top row: Using only the baseline
controller. Middle row: Using our model as an outer-loop controller.
Bottom: Corresponding end-effector position errors vs. time. In
the case of the baseline controller, inaccurate motion leads to a
collision with the object and a failed grasping attempt. With our
approach, the arm successfully reaches the goal position without
colliding with the object.

The velocity is tracked slightly better by FIN,-DWH in the case of the
payload of 1.1kg. The proposed model is trained on the trajectories
without the payload. Nevertheless, this experiment demonstrates that
the learned dynamics model of the manipulator helps to reduce the
negative impact of the previously unseen payload, achieving more
accurate trajectory execution.

2.6.2 Practical Example

In Fig. 2.8a, one can see that under the control of the baseline controller,
the end-effector arrives at the goal pose in a curve, overshooting the
desired path. Such behavior makes it very difficult to perform picking
tasks with high speeds because the end-effector often collides with
objects at the pre-grasp pose. This often results in failed grasping
attempts and can potentially damage the robot and its surroundings.
A typical mitigation approach is to define another pre-grasp pose and,
upon arrival there, continue at a very low speed to the final pre-grasp
pose. However, this slows down the execution of the task.

In this example, we demonstrate the effectiveness of our approach
by reaching a pre-grasp pose at high speed. We execute the same
trajectory first with the baseline controller and then with the proposed
model as an outer loop controller. Two sequences of pictures in Fig. 2.9
show the execution of these trajectories. The baseline controller de-

27

TRAJECTORY TRACKING WITH SUPERVISED LEARNING

viates from the path, leading to the collision with the object. This
results in tipping over the object. In contrast, our method tracks the
trajectory more accurately and has a smoother velocity profile, avoid-
ing the typical overshooting problem. This results in the successfully
reached pre-grasp pose without colliding with the object. A video of
the experiment is available online?.

2.7 DISCUSSION

In this chapter, we presented a two-stage model based on LTI dynam-
ical operators for feed-forward outer loop control of a manipulator
with flexible joints and unknown complex dynamics. The first part
of the model estimates the future state of the system one step ahead,
assuming an unchanged control command. This estimation is used to
augment the input to the second part of the model, which produces
feed-forward joint position and velocity commands. The aim of this
two-stage architecture is to push the model from reactive policy behav-
ior towards more intelligent planning. Additionally, such an approach
facilitates data-efficiency of the method, because the same dataset can
be utilized to learn two different modalities: one-step future prediction
and reference correction.

The approach was evaluated on the Baxter robot. The model was
trained with backpropagation on a small 45 min real-robot dataset us-
ing an ordinary laptop for computations. Data collection and training
combined took less than three hours, signifying time-efficiency of the
proposed method.

An ablation study showed that the hardwired one-step future pre-
diction improved the trajectory tracking accuracy. In particular, the
variant of the model that had the weights of the future prediction
model frozen during the final stage of the training outperformed the
variant where these weights were updated freely. This signifies the
importance of hard-wiring the planning behavior when training on
small real-world datasets.

Our approach improved the trajectory tracking accuracy over the
baseline controller both without and with previously unseen payloads.
Without the payloads, the improvements were 47% and 35% for the
joint position and velocity tracking accuracy, respectively. That re-
sulted in a 66% improvement of the end-effector position tracking
accuracy compared to the baseline. This contributed to smooth tra-
jectory executions at high velocities that required 92% less extra time
to reach the endpoint, allowing performing the tasks faster. The pro-
posed model architecture with a hard-wired one-step future prediction
outperformed several other models.

https://www.ais.uni-bonn.de/videos/IRC_2021 Pavlichenko

28

https://www.ais.uni-bonn.de/videos/IRC_2021_Pavlichenko

TRAJECTORY TRACKING WITH REFERENCE
CORRECTION: DEEP REINFORCEMENT LEARNING

PREFACE

This chapter is adapted from Pavlichenko and Behnke, 2022b, previ-
ously published by IEEE and presented at the 39th IEEE International
Conference on Robotics and Automation (ICRA 2022).

Statement of Personal Contribution

The author of this thesis substantially contributed to all aspects of
the publication (Pavlichenko and Behnke, 2022b), including the litera-
ture survey, conception, design, and implementation of the proposed
method, the preparation and conduct of experiments and evaluation
of the proposed approach, the analysis and interpretation of the exper-
imental results, drafting the manuscript, as well as the revision and
final editing of the version to be published.

The content presented in this chapter, unless otherwise stated, is the
contribution of the author of this thesis.

ABSTRACT

In this chapter, we present an approach for improving trajectory track-
ing accuracy with a closed-loop stochastic reference correction policy.
The policy acts as an outer-loop controller on top of the underlying
classical controller. We propose a pipeline to train the policy directly on
the real robot with DRL. The reference correction actions are bounded
by using beta distribution. This, together with a compact state for-
mulation and a dense reward function, enables starting the learning
directly on the real robot. In addition, we propose an informed policy
initialization, where the agent is pre-trained in a learned simulation.
We demonstrate that the proposed method learns consistently across
multiple runs when applied directly on the real robot. The informed
initialization significantly reduces the inaccuracies at the start of the
learning. In under two hours of training, our method yields a policy
that significantly improves the trajectory tracking accuracy in compar-
ison to the vendor-provided controller and the open-loop approach
from the previous chapter.

29

TRAJECTORY TRACKING WITH DEEP REINFORCEMENT LEARNING

3.1 INTRODUCTION

In Chapter 2 the trajectory tracking of a flexible-joint manipulator is
improved through an open-loop reference correction. This correction is
provided by a policy represented by a NN. The training of the model
is conducted offline using a small real-world dataset in a supervised
manner. The proposed method functions as an open-loop feed-forward
controller, complementing the underlying classical controller.

The open-loop nature of the method from Chapter 2 restricts the
improvement in trajectory tracking accuracy, as the observed track-
ing error is not accounted for during the reference correction phase.
Additionally, the entire pipeline is divided into three stages: data col-
lection, model training, and model deployment for trajectory tracking.
This segmented pipeline makes method integration more challenging.
In this chapter, we address the trajectory tracking problem with a
closed-loop reference correction.

Similarly, the correction is performed by a learned policy, but the
learning is conducted online, directly on the real robot. That unifies
data collection, training, and model application into one coherent
block. To achieve this, we transition from supervised learning to DRL,
which is well-suited for the problem where ground-truth reference
corrections are unknown and only the observed deviations from the
reference are available. Finally, the policy is transparently integrated
on top of the classical inner-loop controller.

DRL methods have generated effective policies for a wide range
of control tasks (Hwangbo et al., 2019; Z. Li et al., 2021; Rodriguez
and Behnke, 2021). Most DRL approaches depend on learning in sim-
ulation and the consequent sim-to-real transfer. However, accurate
simulations of robots are often unavailable. In this chapter, we present
an approach capable of learning an outer-loop control policy with DRL
online, directly on the real robot. The policy operates at a lower fre-
quency than the underlying classical controller and provides bounded
reference correction actions, as shown in Fig. 3.1. These corrections
are applied to the reference trajectory before it is fed to the classical
controller.

This formulation makes the method agnostic of the underlying
classical controller type. Our approach can also be interpreted as an
online closed-loop trajectory optimization. The corrective actions of
bounded magnitude alleviate safety concerns while training the model
online on the real robot. To shorten the real-robot training time, we use
an off-policy soft actor-critic (SAC) method, which has been shown
to have a lower sample complexity and more stable convergence
compared to other DRL approaches (Haarnoja, A. Zhou, Hartikainen,
et al., 2018). To further accelerate learning, we propose an informed
initialization: policy pretraining in a learned simulation.

30

3.2 RELATED WORK

—— Reference
---------- Corrected reference S
----- Corrected execution Stochastic

. . Policy
——- Baseline execution

Joint position

Figure 3.1: Stochastic reference correction policy learned directly on the
real robot. Left: The policy learns to produce actions a; from the
states s¢, which correct an arbitrary reference trajectory (blue solid
line) with frequency At, resulting in a corrected reference (ma-
genta dotted line), which is fed to the vendor-provided controller
and leads to an improved trajectory tracking accuracy (green
dashed line) as opposed to the sole vendor-provided controller
(red dash-dotted line). Right: Baxter executes a trajectory while
carrying a payload.

The evaluation is conducted on the 7 DoF arm of a Baxter robot. The
policy is learned in less than two hours. Our experiments show that
incorporating the learned high-level control policy significantly en-
hances trajectory tracking accuracy compared to the vendor-provided
classical controller. We also assess the policy’s performance under
changes in the dynamics by conducting experiments with a previ-
ously unseen payload. The results indicate a sustained improvement
in trajectory tracking accuracy. Finally, the proposed method outper-
forms the open-loop approach presented in Chapter 2, underscoring
the importance of integrating live feedback for reference trajectory
correction.

In summary, our main contributions are:

e Action, state, and reward formulation to learn a reference cor-
rection policy directly on the real robot with DRL,

e informed initialization of the policy through a coarse dynamics
model learned from data, which is used as a simulator.

3.2 RELATED WORK

Trajectory tracking control methods can generally be categorized into
model-based (An, Atkeson, and Hollerbach, 1988) and model-free
approaches (Longman, 2000). Model-free methods are particularly
effective for addressing the limitations posed by imperfect models.
Classical examples of such approaches include ILC (Bristow, Tharayil,
and Alleyne, 2006) and repetitive control (RC) (Cuiyan, Dongchun, and
Xianyi, 2004). Nevertheless, these techniques are specifically designed
for the repetitive execution of predefined trajectories. In contrast,
policies modeled by deep neural network (DNN) and trained using

31

TRAJECTORY TRACKING WITH DEEP REINFORCEMENT LEARNING

DRL exhibit a strong capacity to generalize to new trajectories while
effectively approximating complex, nonlinear dynamics (Haarnoja,
A. Zhou, Abbeel, et al., 2018).

First, we make a brief overview of the widely used DRL algo-
rithms. On-policy methods, such as trust region policy optimiza-
tion (TRPO) (Schulman, Levine, et al., 2015), proximal policy opti-
mization (PPO)(Schulman, Wolski, et al., 2017), and asynchronous
advantage actor-critic (A3C) (Mnih et al., 2016), do not utilize past ex-
perience. Consequently, their high sample complexity poses significant
challenges for learning directly on a real robot.

In contrast, off-policy algorithms leverage past experiences, substan-
tially reducing sample complexity. A well-known example is deep
deterministic policy gradient (DDPG) (Lillicrap et al., 2015), which,
however, is very challenging to tune. DreamerV2 (Hafner et al., 2021)
learns a latent dynamics model of the environment, enabling it to plan
and simulate trajectories in the latent space. However, that introduces a
significant computational overhead. SAC (Haarnoja, A. Zhou, Abbeel,
et al., 2018) is much more computationally efficient. It modifies the RL
objective by introducing a maximum entropy term (Haarnoja, Tang,
et al., 2017). This feature enhances both sample efficiency and learning
stability. Because of that, we utilize this approach in our work.

There are numerous RIL-based approaches to robotic manipulator
control (Franceschetti et al., 2022). Pradhan and Subudhi, 2012 use
actor-critic RL to adjust the model parameters in response to the pay-
load variations on a two-link manipulator. Z. Xu et al., 2021 propose
to learn a policy with DDPG to control a two-link manipulator in
simulation. An RL agent acting as a nonlinear input compensator over
the traditional controller is presented by Bayiz and Babuska, 2014.
It is applied to a 1 DoF robot in simulation. This idea is further ex-
plored (Pane et al., 2019), and applied to a 5 DoF UR5 manipulator,
introducing a notion of RL-based reference compensation. A corrective
controller is trained for each joint. Our action definition resembles the
formulation of reference compensation. However, we train a single
policy for all joints at once, which is advantageous when dealing
with coupled flexible joints. Finally, we train the policy with DRL
online on the real robot, promoting generalization to a broad range of
trajectories.

In some works, the approaches operate in task-space (Shao, Migi-
matsu, and Bohg, 2020; Y. Zhu et al., 2018). While this may be beneficial
in certain cases, we focus on the joint space since it avoids redundancy.
Cao et al., 2023 present a RL-based fixed-time trajectory tracking con-
trol method for uncertain robotic manipulators with input saturation.
The proposed approach aims to ensure accurate trajectory tracking
within a fixed time, regardless of the system’s initial conditions or
uncertainties, such as unknown dynamics and external disturbances.
By incorporating input saturation constraints, the method enhances

32

3.2 RELATED WORK

real-world applicability where actuators have limited control input.
X. Li, Shang, and Cong, 2024 utilize physics-inspired deep models to
learn both the kinematics and the dynamics of a robotic manipulator.
The model-based learning is done offline and is combined with a
traditional computed-torque controller. The method is evaluated both
in simulation and on a real 7 DoF arm. The advantage of our method
is that it is transparently applied to the real robot online, on top of
the classical controller, avoiding the need for an accurate simulation
model.

Hu and Si, 2018 control a two-link robotic manipulator by means of a
NN-based model in simulation. An approach to mobile manipulation
pick-and-place tasks is demonstrated by Iriondo et al., 2019. The
authors train a policy to control a mobile base with PPO and DDPG.
The policy input is provided directly from the arm manipulation
planner and is used to determine positions where the arm can reach
an object for picking.

Kumar et al., 2021 present a joint-level controller for robotic manip-
ulators, trained with PPO. The policy maps reference trajectory from
joint to task space and is trained in simulation. It is also applied to
the real robots via sim-to-real transfer and is shown to achieve similar
accuracy as traditional controllers. The method is extended to facilitate
obstacle-avoiding behavior by augmenting the input to the network
with obstacle proximity information. Calderon-Cordova and Sarango,
2023 propose an approach to learn reaching policies in simulation
with advantage actor-critic (A2C). The method is applied to a 7 DoF
Franka Emika Panda arm.

Y. Li et al., 2024 introduce Cluster-SAC framework. There, a given
trajectory is divided into segments, and a separate SAC agent is
assigned to track the segment. Such an approach can be beneficial for
very complex trajectories. The learning and evaluation are done in
simulation.

These methods train policies in simulation that are then transferred
to a real robot. This makes the availability of an accurate simulation
necessary. The resulting controller is used as a final product, which
discards advantages of learning while interacting with the real system.
Moreover, in this case, retraining is needed if the dynamics change,
for instance, due to wear and tear over time. Such retraining requires
the aforementioned changes to be transferred back to the simulation
first.

In contrast, we present an approach to learn a policy directly on
the real robot. This eliminates the need for simulation and enables
continuous learning from new experiences, allowing the system to
adapt to changes such as wear and tear. Furthermore, instead of
fully replacing the classical controller, we enhance it with a reference
correction policy as an outer-loop controller. This integration allows
the two methods to complement each other.

33

TRAJECTORY TRACKING WITH DEEP REINFORCEMENT LEARNING

3.3 BACKGROUND

The essence of RL is learning through interaction with the environ-
ment. The agent observes its current state, performs an action, and
receives the reward, quantifying how good the action was. By do-
ing this repeatedly, the policy is updated so that the taken actions
yield higher rewards. Thus, the objective of RL is to find a policy
7t that maximizes the expected discounted sum of rewards. In the
context of DRL, a policy 7y is represented by a DNN, parameter-
ized by learnable weights 6. The problem is modeled as a Markov
decision process (MDP): {S, A, P,r} with state space S € R", action
space A € R™, state transition function P: S X A — S, and a reward
function r: S x A — RR. Thus, the objective is formulated as:

T
J(7t9) = Z’Y]E[”(St/ at)], (3.1)
t=0

where 7 € [0,1] is a discounting factor.

In this work, we address the problem with continuous state and
action space. Thus, we define a stochastic policy 7g(als), representing
an action probability distribution when observing a state s; at timestep
t. We use the off-policy SAC algorithm (Haarnoja, A. Zhou, Abbeel, et
al., 2018) to train the policy. SAC is based on an actor-critic approach,
where an actor provides actions and a critic represents the value
function. SAC follows a maximum entropy RL formulation, which
optimizes both expected reward and the entropy of the policy:

T
J(rte) = Y E[y'r(st, ar) + a H(mo(-|se))], (3.2)

t=0

where H is the entropy of the stochastic policy and « € [0, 1] is the tem-
perature parameter. Note that with « = 0 the above equation reduces
to the conventional RL objective (Eq. 3.1). SAC is defined through a
soft Q-function Qg(st, a;) and a policy 714(a;|s;), parameterized by
parameters ¢ and 0 respectively. The soft Q-function parameters can
be trained to minimize the soft Bellman residual:

F(Q0) = E(syay | 5 (Qolst,a1) — (st ar) +1Es, ,p [V(see1)]))],
(3.3)

where ¢ are the parameters of the target soft Q-function and are
obtained as an exponentially moving average of the soft Q-function
weights. The value function V is implicitly parameterized through the
soft Q-function parameters:

V(st) = Eaqnrn[Q(st, ar) — alogrr(a|se)]. (34)

34

3.4 METHOD

The soft Q-function can be optimized with stochastic gradients:

Vil (Qp) = VQp(ar, s1)(Qp(st, ar)—
(r(st, ar) + vQg(st+1, ar41) — alog(me(ai1]si+1)))). (3.5)

Finally, the policy parameters can be learned:

J(79) = Es,up[Ea~my[alog(ma(ar[st)) — Qgp(st, ar)]]. (3.6)

The policy is reparameterized using the neural network transforma-
tion:

a; = fo(es; st), (3.7)

where €; is an input noise vector, sampled from some fixed distribu-
tion, such as a spherical Gaussian. Now Eq. 3.6 can be rewritten as:

J(76) = Eg,np,e,n[alogTta(fo(€t; 5t)) — Qp(st, foler; st))]. (3.8)

The maximum entropy formulation incentivizes the policy explo-
ration and was shown to produce robust policies and achieve stable
learning. In this work, we use a SAC version with automatic tuning of
the temperature parameter a. A detailed description of the algorithm
can be found in the original paper by Haarnoja, A. Zhou, Abbeel,
et al., 2018.

34 METHOD

We propose an approach to improve joint trajectory tracking by em-
ploying a stochastic reference correction policy, learned with DRL
directly on the real robot. The policy serves as an outer-loop con-
troller over the underlying classical controller. Given an arbitrary
reference trajectory g, of N equally spaced in time joint configura-
tions q,.(t1)...q,(tn),i € [1...N] with At = t; — t;_1 and duration
T =ty — t1, our goal is to minimize the trajectory tracking error. The
notation for trajectory, keyframes, and joint angles is identical to the
previous Chapter 2. Given a baseline with a subpar tracking accuracy,
we propose to improve its performance by augmenting the control
loop with an outer-loop learned policy.

The underperformance of the baseline occurs when the available
model is not accurate enough, the baseline was not tuned well enough,
or the robot hardware accumulated significant wear and tear. Thus,
achieving higher accuracy with the baseline requires developing a
better baseline or performing tedious, instance- or task-specific tuning.
These solutions are time-consuming and require a highly skilled pro-
fessional. We propose to utilize recent developments of DRL in order

35

TRAJECTORY TRACKING WITH DEEP REINFORCEMENT LEARNING

e e e

Outer Loop q, Inner Loop

Classical u

Reference Stochastic Controller

Trajectory Policy

\
1
I
I
I
1
I
I
I
I
I
I
1
I
]

\

Figure 3.2: Closed-loop reference correction control architecture. Given ref-
erence trajectory g, and feedback e, which form a state s, the
learned stochastic policy corrects the reference g, with action
a, resulting in a corrected reference g;. The classical controller
produces the control signal u for the actuators. (C): concatenation.

to learn a policy that compensates for the inaccuracies of the baseline.
The learning is done online on the real robot, which avoids the need
for an accurate simulation and consequent sim-to-real transfer.

In the absence of an accurate model, DRL allows for efficient learn-
ing of the control policy, guided by the reward function. The trajectory
tracking problem has dense rewards, which facilitates the learning pro-
cess. Since we aim to perform the learning directly on the real robot,
the DRL system should have high robot persistence (Ibarz et al., 2021),
consisting of two components.

The first component is self-persistence. The robot must not damage
itself while training. We use strictly bounded actions, which represent
a corrective term for the reference trajectory. Thus, at any given time,
the potential deviation from the reference trajectory is bounded. Se-
lection of the maximum allowed magnitude of the corrective action
provides a necessary flexibility when setting up the learning system.
In addition, the corrective actions are filtered with a low-pass filter.
Note that we assume that the reference trajectories are collision-free.
Hence the safety concerns raised here are related solely to the influ-
ence of models” actions on the movement of the arm but not on the
interactions with the environment.

The second component is fask-persistence. The robot must learn
and collect data with minimal human assistance. The state of the
manipulator at any time step is determined from the actuator encoders.
Although there is noise, its magnitude is negligible since the learned
policy operates at a relatively low frequency. Thus, there is no need
for any additional software or hardware, which makes the learning
setup and process coherent: the manipulator learns online from its
own trial and error.

We choose a reference correction instead of input correction because,
first, input correction has to be done with a much higher frequency,
which decreases the influence of a single action, obstructing the learn-
ing. Moreover, higher frequencies mean higher impact of latencies
and noise, which makes the learning even more challenging. Second,

36

3.4 METHOD

reference correction is agnostic of the underlying baseline control
law, which makes the approach more flexible. The control diagram is
shown in Fig. 3.2.

3.4.1 Action Space

The action a(t) € RM for a robot with M joints, produced by a
learned stochastic continuous control policy, represents a reference
correction term, such that g;(t + 1) = q,.(t + 1) + a(t), where q_(f + 1)
is a reference trajectory point in joint space and g;(t + 1) is a resulting
corrected reference. The corrective action a(t) produced at timestep ¢
is designated to change the next reference trajectory point at timestep
t +1 such that commanding the inner-loop classical controller to
reach g(t + 1) would result in the manipulator reaching g, (t + 1).
We strictly bound the actions a(t) € [—dmax, @max] by a predefined
constant vector amax. The stochastic policy runs at a frequency of
20Hz, so At =t; —t;_1 = 0.05s. The produced actions a are filtered
by a low-pass filter with a cutoff frequency of 4 Hz to smooth out any
inconsistent signal. The predefined constant am.x regulates the amount
of influence the learned policy has over the reference trajectory. In this
work, we choose to define am,x as:

Amax = %‘]hmm, (3.9)
where g, is a joint velocity limit vector. Thus, having two consecutive
actions a(t) = —amax and a(t + 1) = amax would satisfy the velocity
limit q;; .. Indeed, as the corrective action is applied to the reference
trajectory, this does not guarantee preserved velocity limits. However,
it is a meaningful standardized formulation of ama.x which can be
used as a baseline value. Each point q(t) is checked for joint, velocity,
and acceleration limits before being commanded to the underlying
controller. In case a limit violation is detected, a point is clipped to the
corresponding limit.

In this work we use a classical vendor-provided Baxter robot con-
troller as an inner-loop controller. It takes both joint positions as well
as joint velocities to produce torque controls. Hence, in our case we
define action a(t) € R*M, such that a = [Ag, Ag]. It is still straightfor-
ward to define the second term of amay, using the acceleration limits
in Eq. 3.9. Note that the presented action representation is generic,
and it is straightforward to have any combination of joint positions
and their derivatives as action representation.

37

TRAJECTORY TRACKING WITH DEEP REINFORCEMENT LEARNING

. [Observation Action [current Current |1 1 Future :
: History History \ ! | Observation Error = Targets I
! — — - 1 |
| | o o (.

i p()(t—l) a(t— 1) = [p[.(t+2) :
' | % [
i Past ' Present ' Future |

Time

Figure 3.3: State representation. The state contains information about the
manipulator from three major periods along the time axis. The
past: History of observations and actions. The present: Currently
observed manipulator state and deviation from the reference. The
future: The next upcoming reference trajectory points. Such state
representation reflects the dynamics of the manipulator and helps
to mitigate the effects of latency.

3.4.2 State Space

The state s(t) of a robotic manipulator is a column vector:

po(t — 2)/po(t - 1)/
a(t—2),a(t—1),
Po(t), Ap,(t),
p.(t+1),p.(t+2)

(1) = (3.10)

where point p contains joint positions and velocities: p = [g, 4], p, is
an observed point, read from the joint encoders, p, is a point from the
reference trajectory, Ap (t) = p,(t) — p,(t) is an observed error. Such
state representation contains information about the manipulator from
the past, the present, and the future.

The first four components contain past observations and actions.
The next two components contain current observations, augmented
with the observed error. The last two components contain the future
desired joint positions and velocities. Our state representation provides
the policy with information about the past, the current state, and the
future targets. Inclusion of the past observations and actions helps to
combat the negative effects of latency (Ibarz et al., 2021; Riedmiller,
2012). In addition, it provides information about the dynamics of the
manipulator, further strengthened by the inclusion of joint velocities §.
The state representation diagram is shown in Fig. 3.3.

Several future reference points p, provide more information about
the desired motion of the manipulator. Each term in the state s(t) is
rescaled to the [—1,1] interval. It is straightforward to do so for g,
q, and a, given joint limits g, joint velocity limits ¢4,, , and action
magnitude amax. However, there is no obvious way to choose a re-
scaling interval for Agq and A4. In this work, we interpolate them
within [—(u; + 307), pj + 30;], where p; and o are the measured per-
joint errors of positions and velocities. These parameters have to be

38

3.4 METHOD

estimated empirically by executing several random trajectories with
the baseline controller.

3.4.3 Reward Function

For each timestep t, we define the reward function:
r(t) = wrg(t) + (1 —w)ry(t), (3.11)

where 7, € [0,1] is a reward term encouraging joint position tracking,
ry € [0,1] is a reward term encouraging joint velocity tracking, and
w € [0,1] is a relative importance scaling factor. Given that, r € [0, 1].
To compute r; and r,;, we first define the cumulative absolute errors
eq for the joint position and e, for the joint velocity:

=M

eq(t) = Y |q0(t,) — ge(£, 7)1, (3.12)
j=0
j=M

eg(t) =) 19o(t,) — Ge(t,)1, (3.13)
j=0

where M is the number of joints, g,(t, j) is the observed position of
joint j, and g,(t,) is the desired position at time step . The procedure
is analogous for e;. Finally, we use the smooth logistic kernel function
K (Rodriguez and Behnke, 2021):

2
K(x,l) - W (3.14)
to define the reward terms:
rq(t) = K(eq(t),1q), (3.15)
ry(t) = K(ey(t),1q), (3.16)

where [is the kernel sensitivity parameter. When a trajectory is tracked
perfectly, r = 1. We use the L! norm in the error calculations (Eq. 3.12
and Eq. 3.13). When we experimented with using the L? norm, we
noticed that while learning, the policy would aggressively abuse joints
with smaller errors to compensate for joints with bigger errors. That
led to learning the unstable and counterintuitive motions of the ma-
nipulator.

We include the joint velocity tracking term r,4(t) into the reward
function to promote trajectory smoothness. We observed that without
this term, the policy would often learn a bang-bang style of control,

39

TRAJECTORY TRACKING WITH DEEP REINFORCEMENT LEARNING

leading to non-smooth motions. Adding an explicit action cost term
often leads to abusive behavior when the policy learns to generally
avoid making any corrections for a while, followed by sudden cor-
rections of large magnitude in-between. Tuning this action cost such
that the policy achieves an intended trajectory tracking behavior is
extremely challenging. Thus, we argue that rewarding joint velocity
tracking is a natural way to promote trajectory smoothness by en-
couraging following the derivative of the reference path. Since the
objective of this work is to improve joint position tracking accuracy,
we set w = 0.75.

3.4.4 Model

In this work, we train the stochastic policy using the SAC algo-
rithm (Haarnoja, A. Zhou, Abbeel, et al., 2018). The method is off-
policy, making this choice natural for the real-robot learning due to its
increased sample efficiency.

In the original SAC, the actions supplied by the actor network are
bounded to a finite range through the use of a Gaussian policy with
the squashing function. Instead, we use a beta policy (Chou, Maturana,
and Scherer, 2017), which is bounded in the [0, 1] range by definition.
This is an advantage in the context of real-robot learning, since the
maximum magnitude of the actions can be guaranteed, making the
learning safer with an option to choose an optimal action magnitude,
depending on the system and the task.

Each of the actor and critic networks is an MLP. Both of them have
similar structures, consisting of two hidden fully-connected layers
with tanh activation functions. The output layer of the Q-networks,
when supplied with a state-action pair {s(t), a(t)}, provides a single
Q-value. The actor network outputs two values for each dimension of
the action space, resulting in 2 - |a| outputs. Each pair of these values
parameterizes a beta distribution, from which the actions are sampled.
The sampled actions are in the [0,1] range. It is straightforward to
rescale them to the range of choice, such as [—dmax, @max], used in this
work.

We use the sigmoid activation function in the output layer of the
actor network, as it resembles well the (0, oo] ranges of beta distribution
parameters « and B. Since beta distribution parameters € (0, c0], the
outputs of the actor are clipped to [¢, 1], where € = 1 x 10~°. Finally,
we scale them up by a factor of 10 to provide the actor with enough
freedom for distribution selection. During training, the actions are
sampled from the distributions, while during inference we use their
modes.

40

3.4 METHOD

3.4.5 Learning Process

A single episode corresponds to an execution of a reference trajectory
consisting of N joint positions g(¢) and velocities g(t), equally spaced
in time with interval At. Assuming that an underlying low-level clas-
sical controller is capable of bringing the arm into the final keyframe
of the trajectory, every episode has a finite duration.

During each episode, at each time step t with the observed state sy,
the policy provides a reference correction action a(t). The correction
is then added to the next keyframe of the reference trajectory. The
modified reference is fed to the classical controller, leading to a state
s(t + 1) with reward r(t). The tuple {s(t), a(t),r(t),s(t + 1)} is stored
in the replay buffer for experience replay. We perform SAC update
iterations with a replay ratio (Fedus et al., 2020) of 1: one update
per one point added to the buffer. The weights of the actor network
are updated after each episode. For each SAC training iteration, a
minibatch of uniformly sampled datapoints is generated.

3.4.6 Informed Initialization

It is beneficial to have a deliberate initialization of the model before
applying it to the real robot, since a randomly initialized policy yields a
low-reward behavior. Such exploratory behavior can be dangerous for
the robot and its environment. Additionally, in case of the integration
of the learning pipeline into the system while continuing normal use,
low-reward behavior may cause the tasks to be failed. To mitigate
these risks in the absence of an accurate simulation, we propose to
learn a coarse simulation, represented by a NN, to pre-train the policy.

First, a small sample of random trajectories from the real robot
is recorded. Then, we train an MLP consisting of three fully con-
nected layers to predict [g,(t +1),4,(t +1)], given [q,(t), 4, (t)] and
[q.(t+1),4.(t +1)]. The network architecture and training procedure
are identical to the FIN from Section 2.4. Finally, we use this learned
coarse dynamics model as a simulation environment to pre-train the
stochastic policy before applying it to the real robot.

This pre-training step keeps the approach generic, as it does not
require any additional knowledge about the manipulator dynamics. At
the same time, it approximates latencies and noise from the real system,
informing the policy about its future experiences. Thus, we refer to
this approach as informed initialization. The training of the policy using
this learned simulation is structurally identical to the learning on the
real robot and is performed as described in Section 3.4.5. In addition,
the data collected for the informed initialization is used to determine
scaling factors for Aq and Ag (Section 3.4.2).

41

TRAJECTORY TRACKING WITH DEEP REINFORCEMENT LEARNING

3.5 EVALUATION

To evaluate the proposed approach, we apply it to the left arm of
the Baxter robot. It is a 7 DoF manipulator with flexible joints. The
underlying dynamics model is unknown, and flexible joints with
coupled dynamics are challenging to control. In this evaluation we
aim to answer the following questions:

e Does our approach improve the joint position trajectory tracking
accuracy?

e Does it generalize to handle an unseen payload?

e Is the learning consistent and safe for the hardware?

351 Setup

The classical inner-loop controller, which we further refer to as the
baseline, is the Baxter inverse dynamics controller. It calculates com-
manded torques from the supplied joint positions and velocities. We
choose it as the baseline in our experiments because it shows the
best joint position tracking accuracy compared to the Baxter posi-
tion and velocity PD controllers. In the case of this baseline, we em-
ploy reference correction for both joint position and velocities; hence
a(t) = [ag(t), a4(t)] € R*M, where a,(t) is the reference joint position
correction and a,(t) is the reference joint velocity correction. With
M =7 this results in a 14-element action vector. The maximum mag-
nitude of the part of the action designated for velocity correction is
defined as described in Section 3.4.1, but using joint acceleration limits
instead of the velocity limits.

According to the state representation from Eq. 3.10 and the provided
14-element a and p, we obtain a state vector of 8 x 14 = 112 elements.
We use the same size of 80 neurons for hidden layers for both critic and
actor networks. This results in a 112 x 80 — 80 x 80 — 80 x 28 actor
network and a (112 + 14) x 80 — 80 x 80 — 80 x 1 critic network, as
shown in Fig. 3.4.

We use the Adam optimizer with triangular learning rate scheduling,
ranging from 1 x 10~* to 4 x 10~* with a period of 100 episodes. We
set the discount factor v = 0.85 and perform a hard critic update with
T = 1 every 1000 iterations. We use a minibatch of 128 datapoints. The
kernel sensitivities were set to [; = 32 for the joint position tracking
reward term and [; = 7 for the joint velocity tracking reward term.

Since the reward scale is critical for SAC due to the entropy maxi-
mization (Haarnoja, A. Zhou, Abbeel, et al., 2018), we set its value to
10, as we empirically found that larger or smaller values resulted in
inferior learning. The training is performed on a regular laptop with
an Intel i7-6700HQ CPU and 16 GB of random-access memory (RAM).

42

3.5 EVALUATION

Actor Network

| |

| |

L po(t=2) po(t—1) :

I lat—2) a@—1) | s FC FC FC I

I - + + M + p—=a®)

! P, (t) Ap,(t) |112x1| tanh tanh sigm 28x1 |

| E+1) p(t+2) I

| 112 x 80 80 x 80 80 x 28 |

)

Critic Network

[e e e
! I
| |
! Po(t —2) po(t—1) |
1| a(t—2 a(t—1 s(t FC FC FC '
B R ol BU o gl S, Q) |
N EXO) Ap,(t) 112 x 1 \f/ 126x 1| tann tanh el]
Vet Pt 2) !
| a(t) 126 x 80 80 x 80 80 x 1 !
I\ 14 x1 |

Figure 3.4: Actor and critic network architectures. Given a state s(t), the actor
network outputs a corrective action a(t). Given a state-action pair
s(t), a(t), the critic network outputs state-action value estimate
Q(#). (C): Concatenation.

3.5.2 Experiments

To learn the stochastic reference correction policy (SRCP), we generate
random trajectories from the workspace of Baxter’s left arm. We cover
the region Y in front and to the side of the robot with approximate
dimensions of 1.4 x 0.7 x 1.0m. Each trajectory is defined by a start
and a goal, plus 1-3 intermediate points. Each point represents a 6D
end-effector pose and is drawn randomly from Y. An IK solver is
used to convert trajectories to joint space. A trajectory is checked for
joint, velocity, and acceleration limits, as well as for collisions, before
execution. If the trajectory is unfeasible, it is discarded and a new one
is generated.

To evaluate the effectiveness of the informed initialization, as pro-
posed in Section 3.4.6, we also train the coarse dynamics model to
represent the simulation. The model is a MLP and has three fully
connected layers: 28 x 64 — 64 x 32 — 32 x 14. We train this model
with the Adam optimizer and a learning rate of 10~* until convergence
on a small real-robot dataset of 200 trajectories with a total duration
of 20 min. Finally, we train two variants of SRCP. The first one has
random weights. The second one is first pre-trained in the learned
simulation. We refer to the latter as SRCP+InformedInit.

We perform three training runs for each model. A run consists
of 1000 random trajectories. One run completes in under 2 hours,
with approximately 100 min dedicated to the trajectory execution.
In Fig. 3.5, we show the training reward curves as well as the joint
position and joint velocity tracking errors, averaged over the three runs.
Since each trajectory has a different number of points, the cumulative

43

TRAJECTORY TRACKING WITH DEEP REINFORCEMENT LEARNING

0.8 0.8

0.6
o
o)
]
204
9]
[a

0.2

0'00 20 40 60 80 100 120 0'00 20 40 60 80 100 120

Iterations [thousands] Iterations [thousands]
(@) (b)

_0.10 =05
2 <
3]
=0.081 1B e £o04
5 =
= e
< 0.061 £03
g 2
-‘g‘ 0.044 § 0.2
2 g
*é' 0.024 = 0.1
2 : kS

0.00 y y y y . = 0.0

0 20 40 60 80 100 120 0 20 40 60 80 100 120
Iterations [thousands] Iterations [thousands]
(0) (d)
—— SRCP in Simulation —— SRCP —— SRCP+InformedInit
---- Baseline = e Baseline best

Figure 3.5: Training curves with 1000 trajectories. (a) SRCP reward in learned
simulation. (b) Rewards on the real robot. (c) Average joint po-
sition tracking error. (d) Average joint velocity tracking error.
Both variants of our approach achieve stable learning. SRCP with
informed initialization (green) outperforms the baseline (red)
directly from the start. Lines represent the mean, and shaded
regions represent 95% confidence intervals, averaged over three
runs. Baseline best: the best result achieved by the baseline con-
troller. Average iterations per trajectory: 118. 10K iterations ~
9min of real time.

values would not be representative, and we show all values averaged
per-point.

The values for the baseline are calculated from 100 random trajecto-
ries. While training in a learned simulation, the SRCP quickly reaches
relatively high rewards, as can be seen in Fig. 3.5a. The training in the
simulation takes less than 20 min. On the real robot, the policy learns
high-reward behaviors slower (Fig. 3.5b) due to the latencies and com-
plex dynamics. One can see that SRCP+InformedInit directly starts in
the reward region above the baseline, achieving higher rewards faster
than the randomly initialized policy. Note that SRCP+InformedInit
becomes twice as accurate as the baseline only in 18 min. Both policies
converge to a similar performance in the end. The per-joint learning
curves are shown in Fig. 3.6. Note that our method improves the

44

3.5 EVALUATION

20 40 60 80 100 120 (] 20 40 60 80 100 120
Iterations [thousands] Iterations [thousands]

Joint 3 position error [rad]

<
0.000 :2 0.000
20 40 60 80 100 120 ’ 0 20 40 60 80 100 120

Iterations [thousands] Iterations [thousands]

F‘E 0.010

5 0.008

St

5

= 0.006

=)

'S 0.0041 "]

(=W b

LB 0002 .. P A A hAdA A)

5

< 0.000 < 0.000

’ 0 20 40 60 80 100 120 ’ 0 20 40 60 80 100 120

Iterations [thousands] Iterations [thousands]

E 0.008

Ft

e

£ 0.006 —— Ours

o .

o ——

2 0.004 Ours+InformedInit

S P ML |00 Baseline

E 0.002 Baseline best

< 0.000

o

20 40 60 80 100 120
Iterations [thousands]

Figure 3.6: Individual joint position errors during training. Note that our
method (blue and green) improves joint position tracking accuracy
for every joint compared to the baseline classical controller (red).
Lines: means. Shaded regions: 95% confidence intervals.

trajectory tracking accuracy of each joint. The joints are numbered
from the lowest to the highest in the kinematic chain, as shown in
Fig. 3.7.

The average cumulative joint position error ¢, for a trajectory with
M joints consisting of N points is calculated according to Eq. 3.12,
summed over all points, and averaged over N. The average cumulative
joint velocity error is calculated analogously. One can observe that
the joint position tracking error, which we prioritize in Eq. 3.11, is

45

TRAJECTORY TRACKING WITH DEEP REINFORCEMENT LEARNING

2p 3r 4p 5r 6p 7r

ly

noton_ o

Figure 3.7: Joints of the left arm of Baxter. Letters "r", "p", "y" correspond
to roll, pitch, and yaw. Joints 1 and 2: Shoulder. Joints 3 and 4:
Elbow. Joints 5, 6, and 7: Wrist.

being reduced considerably during training. The joint velocity tracking
error declines as well, serving as a smoothness term. SRCP inference
takes 0.005 £ 0.002s on average per point, not causing noticeable
delay compared to the original control loop. The entropy temperature
parameter converges to & = 0.05 & 0.01.

We observe that the discount factor <y significantly influences the
learning process. For our case, we find y € [0.75,0.85] to be the best. A
small value, such as y = 0.5, typically results in a poor performance of
the velocity component r; and non-smooth trajectories. High values,
like v € [0.95,0.99], result in much slower learning. We explain this
observation by the fact that in our problem setting the policy does not
have full control over the state and is always tied to the reference. Since
the policy does not have access to the complete reference trajectory at
once, accounting for the rewards that are far in the future makes the
learning more challenging due to the inherent uncertainty.

There are two task-specific aspects in the presented approach. First,
the low-pass filter of the actions introduces an additional delay that
the model has to learn. However, removing the filtering step leads
to frequently occurring jerky motions. Second, the scaling of Ag and
Ag components is determined empirically. In contrast to the filtering,
these components can be removed for increased generality of the
method without significantly harming the performance. However, we
observe a speed-up of the learning process when these components
are included in the state representation. The key hyperparameter for
our approach is the maximum magnitude amax of the corrective action
a. While it is not trivial to choose its value, it provides an increased
control over the learned policy. For example, in cases when the method
is tried for the first time on a new manipulator, it is easy to safely test
the approach using a small value of amax.

We evaluate the learned SRCP by executing 100 unseen test tra-
jectories and comparing the joint position tracking accuracy of the
baseline + SRCP control against the vendor-provided baseline and to
the open-loop method from Chapter 2. In addition, we perform the

46

Table 3.1: Comparison of joint position tracking errors [rad x1072].

3.5 EVALUATION

Joint Baseline = Open-loop Ours
1 275+£183 0.75+0.62 0.52=+0.43
2 113+1.08 079 £0.67 0.36 + 0.27
3 1.07+087 047 +£044 0.21+0.19
4 066+071 043 +£046 0.19 £ 0.20
5 0514+035 0.37£030 0.27+0.22
6 038+028 044 +035 0.31+0.27
7 035+ 026 039 +042 0.19 £ 0.15
Y, 687+315 3.64+1.68 2.08+0.87

*Mean = SD is shown.

same test with a payload of 0.9 kg to evaluate the performance in the
presence of altered dynamics. Maximum payload for Baxter is 2.2 kg.

In Table 3.1 we show the average per trajectory point joint position
tracking error for each joint. The joints are numbered from the start
of the arm kinematic chain, as shown in Fig. 3.7. For all methods,
the tracking error decreases with the ascending joint number. This
happens due to the fact that the lower the joint is in the kinematic
chain, the more weight it has to bear. Additionally, joints that are
closer to the bottom of the chain are also affected by all the remaining
joints that are higher in the chain. Combined together, these factors
create complex disturbances that are making the trajectory tracking
challenging.

In the conducted experiments, the shoulder joint tracking errors
represent 56% of the total tracking error, and the elbow joints repre-
sent 25%, together representing 81% of the total error. The open-loop
NN-based method from Chapter 2 significantly reduces the trajectory
tracking error by a factor of two. Most of the improvement comes
from the first three joints. It is worth noticing that the last two wrist
joints have slightly higher tracking errors compared to the baseline.
The method proposed in this chapter reduces the total joint position
tracking error by more than a factor of three compared to the baseline
and almost by a factor of two compared to the open-loop method from
Chapter 2. It is worth noting that the proposed approach improves the
tracking accuracy of each individual joint. We attribute this observa-
tion to the fact that the policy is trained online on the real robot and
is applied in a closed-loop fashion, leveraging the advantages of live
feedback.

In Table 3.2 we show joint position tracking errors for the same
experiment as described above, but with a 0.9kg payload. In the
presence of an additional disturbance in the form of the weight held
in the gripper, the joint position tracking accuracy decreases in all
methods. The same observations from the experiment without the

47

TRAJECTORY TRACKING WITH DEEP REINFORCEMENT LEARNING

Table 3.2: Comparison of joint position tracking errors with 0.9 kg payload

[rad x1072].
Joint Baseline = Open-loop Ours
1 332£232 095=£084 047 £ 0.42
2 231+173 258+149 1.17 +0.62
3 138+110 0.60+0.59 0.27 + 0.25
4 079+074 058 +0.84 0.25=+0.20
5 0.62+053 046+040 0.38+ 0.32
6 062+052 057+054 041+ 0.37
7 030+024 041+044 0.6+ 0.14
Y, 936+4.07 615+3.05 313 +£1.16

*Mean =+ SD is shown.

payload apply: the error is the largest for the joints at the start of the
kinematic chain. One can observe that joint 2 has the highest increase
in tracking error when the payload is added. We explain this by the
fact that it has a passive external spring, which further complicates
its dynamics. The baseline demonstrates the worst trajectory tracking
accuracy. The open-loop method reduces the trajectory tracking error,
however, to a much smaller degree, compared to the experiment
without the payload. That is natural when the live feedback is not
utilized. At the same time, our method keeps the corresponding three-
and two-fold accuracy improvement compared to the baseline and
the open-loop method. Similarly, the proposed approach improves the
tracking accuracy of each individual joint, as opposed to the open-loop
method.

In Table 3.3 the average end-effector position tracking errors are
shown for both experiments with and without the payload. Although
the proposed approach focuses on improving the joint position track-
ing, the end-effector position tracking is improved implicitly, since a
zero tracking error in the joint space corresponds to zero tracking error
of the end-effector position. At the same time, such a metric is more
intuitive for humans, compared to high-dimensional joint position
configurations.

The overall results show the same tendencies as described in the
joint position tracking error analysis. Specifically, the baseline shows

Table 3.3: Comparison of end-effector position tracking errors [cm].

Baseline Open-loop Ours
No payload 312 £1.81 1.01 £0.61 0.66 + 0.42

Payload 09 kg 4.35+232 227 +1.13 1.19 &+ 0.60
*Mean =+ SD is shown.

48

3.5 EVALUATION

Joint position [rad]

—
B
£ 0.06 7
= ! A
o P i \ /-I \,\
=) 7 Vi ! \ iA
@ 0.04 / i sk i Y
= i \ VN ! / \
9 / | A L |
= ! [vl ‘\ i i
8 1 [vl i \
2.0.02 / i v i \
- / \i V! L \
E ! A 7 A \
2 // \)\\ /‘,’\ ’/ A |
0.00 s =
0 1 2 3 4 1 2 3 4
Time [s] Time [s]
(a) (b)
6
E A i
N \
o5 S I
= P
~ i)i \
o X /N ! \ d \
= 4 /.’ N\, FE II Vool i
m PR AU A j Lo A
= \ \ | '
c3 ,’l i ,'I \ ! (] i
S L i !
= i (] v i 1, i
@ i [\ | i
Q2 / i ,' [v i
0 N AL VAN VA A S
N \ ¥! \
m ! / Al A AN
=N ”~ CAVNRE 1Y AR
0 1 2 3 4
Time [s]
—— Reference e Corrected reference ~ ----- Corrected execution =~ ——— Baseline execution

Figure 3.8: Example test trajectory. (a) Shoulder yaw position trajectory. (b)
Tracking error of shoulder yaw. (c) Path of the end-effector. (d)
End-effector position tracking error. While the baseline controller
(red dash-dotted line) leads to significant deviations from the
desired trajectory (blue line), combination with our learned con-
troller leads to a more accurate tracking (green dashed line),
achieved by reference correction (magenta dotted line).

the poorest performance, followed by the open-loop approach. Our
method improves the trajectory tracking accuracy more than three
times in both cases: without and with a previously unseen payload,
achieving an average end-effector tracking error of 0.66 cm without a
payload that is more than four times more accurate than the baseline.
For reference, advanced model predictive control (MPC) controllers
applied to Baxter (Rupert, Hyatt, and Killpack, 2015; Terry, Rupert,
and Killpack, 2017) achieved 1-2.5 cm average steady-state error.

An example trajectory of the shoulder yaw position and the result-
ing end-effector path are shown in Fig. 3.8. The baseline controller
frequently deviates from the reference trajectory while accelerating
(seconds 0-1 and 2.5-3.5) or decelerating (seconds 1-2 and 3.5-4.5). The
addition of the learned SRCP compensates for these deviations. An
example trajectory from the experiment with the payload is shown in
Fig. 3.9. A video of the experiment is available online!.

1 https://www.ais.uni-bonn.de/videos/ICRA_2022_Pavlichenko

49

https://www.ais.uni-bonn.de/videos/ICRA_2022_Pavlichenko

TRAJECTORY TRACKING WITH DEEP REINFORCEMENT LEARNING

—— Reference
————— Baseline

-0.10

-0.15

. 7"
© 08 0.8 x [m]
y [m]
—_
E 8 VR - Baseline
— /N
5 . 7N, i A Ours
=6 N VAR i A
o A ; i \
(3] / \ / \\ i \
5 4 PN I'I \ /'I \ il \-\ ~\
S } | | I !
= / Y\ v ‘-\ I v
8 / vl v I e \
(=% ! (I V! L \/ S N
2 7 [V! Vg . <
L / T~ i Vi N el N
23] ; \/ A AN N - ~— Sy
s /A Vol T S A e ~——m—m]
0 1 2 3 4 5 6
Time [s]

Figure 3.9: Trajectory with a payload. Upper left: Baxter executing the tra-
jectory. Upper right: The resulting trajectory of the end-effector.
Bottom: The resulting end-effector position tracking error. Our
method (green dashed line) enables more accurate tracking of the
reference (blue line), compared to the execution with the baseline
(red dash-dotted line).

Overall, the conducted experiments show that the proposed ap-
proach consistently improves the performance of the policy while
learning directly on the real robot. The proposed informed initializa-
tion through a learned simulation significantly reduces the tracking
error at the beginning of learning. Thanks to the bounded reference
correction actions, filtered by a low-pass filter, we do not observe
jerky motions while training. The resulting stochastic policy improves
the trajectory tracking accuracy more than three times, compared to
the baseline, achieving sub-centimeter accuracy of the end-effector
tracking. Finally, it demonstrates a persistent improvement of accuracy
in the experiment with a previously unseen payload, suggesting that
the policy learns to use live feedback from the robot, instead of simply
memorizing the necessary corrections.

3.6 DISCUSSION

In this chapter we presented a model-free approach to learn a stochas-
tic policy for improving joint trajectory tracking accuracy of a flexible-
joint manipulator. The learning is performed with DRL directly on the
real robot. The obtained policy serves as an additional outer-loop con-
troller on top of the existing classical controller and provides reference
correction actions.

50

3.6 DISCUSSION

We proposed to perform an informed initialization that uses a
learned coarse dynamics model as a simulation, building on the find-
ings from Chapter 2. The experiments indicated that the pre-training
in this learned simulation significantly reduced the consequent trajec-
tory tracking accuracy at the start of the training on the real robot. In
fact, the warm-started policy outperformed the sole classical controller
in trajectory tracking accuracy.

We demonstrated that the proposed method achieved consistent
learning on the real 7 DoF manipulator of a Baxter robot without the
need for an accurate hand-crafted simulation and a consecutive sim-
to-real transfer. Our experiments indicated that the policy improved
the trajectory tracking accuracy by more than a factor of three over
the vendor-provided baseline controller. Dense reward formulation
combined with bounded action definition allowed to learn the policy
in less than two hours directly on the real robot, utilizing an ordinary
computer for computations. This highlights the time-efficiency of the
proposed approach.

The learned policy was general enough to demonstrate a persistent
improvement when handling an unseen payload. The closed-loop
nature of the method allowed for significantly more accurate trajec-
tory tracking accuracy compared to the open-loop approach from
Chapter 2.

51

DUAL-ARM TRAJECTORY OPTIMIZATION

PREFACE

This chapter is adapted from Pavlichenko, Rodriguez, Schwarz, Lenz,
Periyasamy, and Behnke, 2018, previously published by IEEE and pre-
sented at the 18th IEEE-RAS International Conference on Humanoid
Robots (Humanoids 2018).

Statement of Personal Contribution

The author of this thesis substantially contributed to the following
aspects of the publication (Pavlichenko, Rodriguez, Schwarz, Lenz,
Periyasamy, and Behnke, 2018), including the literature survey, con-
ception, design, and implementation of the proposed method for
dual-arm trajectory optimization, the preparation and conduct of ex-
periments and evaluation of the proposed approach, the analysis and
interpretation of the experimental results, drafting the manuscript, as
well as the revision and final approval of the version to be published.

The content presented in this chapter, unless otherwise stated, is the
contribution of the author of this thesis.

ABSTRACT

In this chapter, we present an optimization-based method for dual-
arm trajectory planning which is an extension of stochastic trajectory
optimization for motion planning (STOMP). A multi-component cost
function, enabling optimization with respect to multiple costs and
constraints simultaneously, is introduced. We define an obstacle cost
term based on the estimation of the worst-case overlap volume. Addi-
tionally, we address the closed kinematic chain constraint by splitting
the chain into active and passive sub-chains. An implicit redundancy
resolution for the passive sub-chain through the optimization of the
initial configurations for the IK is proposed. We compare our ap-
proach to several planners and perform extensive ablation studies.
Evaluations in simulation and in the real world demonstrate that our
method consistently and quickly produces feasible trajectories that are
optimized with respect to several costs and constraints.

53

DUAL-ARM TRAJECTORY OPTIMIZATION

Figure 4.1: Typical scenario for dual-arm trajectory optimization. Left: The
robot has to reach the pre-grasp pose next to the watering can
with both arms moving independently. Once the can is grasped
with both hands, moving the can is subject to the closed kinematic
chain constraint. Middle: Trajectory obtained with our method
that moves both arms simultaneously to a configuration above
the shelf. Right: Trajectory obtained with our method that moves
both arms back to the starting pose while satisfying the closed
kinematic chain constraint.

41 INTRODUCTION

In previous Chapters 2 and 3, the trajectory tracking was improved by
means of offline supervised learning and online DRL. The described
approaches serve as outer-loop controllers and significantly increase
the trajectory tracking accuracy utilizing reference correction method-
ology. In this chapter, we move up within the software hierarchy to
address the problem of trajectory optimization. We present an efficient
method for generating collision-free dual-arm trajectories from the
given start to the goal configuration.

Trajectory generation is one of the essential components for au-
tonomous robotic manipulators. The trajectory generation methods
should facilitate the rapid planning of smooth, collision-free trajecto-
ries in unstructured environments. In addition, optimizing the dura-
tion of the trajectory, minimizing the torques, or adhering to the end-
effector orientation constraints is often necessary. This is a challenging
task that has been an active topic of research in the last decades (Gha-
farian Tamizi, Yaghoubi, and Najjaran, 2023). In many scenarios, not
one, but two manipulators require simultaneous trajectory generation.
Such scenarios include manipulating bulky or heavy objects and using
tools that require two hands to activate (Fig. 4.1). The doubling of DoF
significantly increases the computational complexity. Moreover, certain
dual-arm tasks necessitate satisfying additional constraints, such as
the closed kinematic chain constraint. In the presence of obstacles in
an unstructured environment, these aspects make generating feasible
trajectories a challenging task.

In this chapter, we extend our previous work (Pavlichenko and
Behnke, 2017), which is based on STOMP (Kalakrishnan et al., 2011)
to facilitate efficient optimization of dual-arm trajectories. To achieve
that, we adapt the existing multi-component cost function to support
the dual-arm scenario. We propose a modified version of the obstacle
cost function component that is based on an estimation of the worst-

54

4.2 RELATED WORK

case overlap volume. Such an obstacle cost function shows to be
more effective for guiding the dual-arm setup out of collision regions,
yielding faster convergence to the collision-free trajectories. Finally,
we address the closed kinematic chain constraint for a dual-arm robot
by introducing a corresponding cost term, penalizing deviations from
the desired transformation between the end-effectors.

STOMP is based on exploration of the solution space by randomly
sampling trajectories. Since stochastically selecting configurations that
satisfy the closed kinematic chain constraint with strict margins has
a near-zero probability (Kingston, Moll, and L. E. Kavraki, 2018),
we introduce an IK-based approach. For that, we split the closed
kinematic chain into active and passive sub-chains (Cohn et al., 2024;
Xie and Amato, 2004). We refer to this approach as active-passive
methodology (APM). In our case, the sub-chains correspond to the
first arm and the second arm. The random sampling is performed
for the trajectory of the active sub-chain, while the configurations of
the passive sub-chain are obtained with IK so that the closed-chain
constraint is satisfied.

This methodology, however, does not take the redundancy of the
passive sub-chain into account. This may degrade the performance
when applying the approach to manipulators with a high number of
DoF. We address the passive arm redundancy resolution by optimizing
the initial pose for the IK solver individually for each keyframe. At the
same time, the closed-chain constraint cost term implicitly penalizes
sampling in the regions where the IK problem can not be solved. In
this way, we combine the benefits of the optimization method, such
as STOMP, together with the APM for the closed kinematic chain
problem.

We evaluate the proposed method quantitatively in simulation and
qualitatively on the real robot. For the experiments, we use the Cen-
tauro robot (Klamt et al., 2020) that has two redundant 7 DoF arms
attached to a human-like torso. We compare our method to several
planning and optimization algorithms and perform ablation studies.

In summary, our main contributions are:

e a multi-component reward function for the dual-arm robot, en-
abling optimization with respect to six different costs,

e an obstacle cost term based on an estimation of the worst-case
overlap volume, and

e an implicit redundancy resolution for an APM when optimizing
under the closed kinematic chain constraint.

42 RELATED WORK

Generating collision-free trajectories for robotic manipulators is a
fundamental task that has been studied thoroughly (H. Guo et al,,

55

DUAL-ARM TRAJECTORY OPTIMIZATION

2023). The methods for trajectory generation can be subdivided into
sampling-based and optimization-based.

One of the fundamental sampling-based approaches is rapidly-
exploring random tree (RRT) (Lavalle, 1998). Given the start and goal
configurations, the algorithm iteratively explores the configurations
adjacent to the leaves of the tree, starting at the start configuration,
until the goal is reached. The main drawback of the approach lies in
the nature of random exploration, resulting in a large number of states
that have to be evaluated, and hence, slow convergence.

Multiple approaches were proposed to overcome this challenge (Bur-
get, Bennewitz, and Burgard, 2016; Gammell, Srinivasa, and Barfoot,
2014; Gammell, Srinivasa, and Barfoot, 2015; James and Steven, 2000;
Janson et al., 2015; Kunz and Stilman, 2014; Perez et al., 2011). An-
other fundamental sampling-based approach is probabilistic roadmap
(PRM) (L. Kavraki et al., 1996). PRM pre-builds a map of waypoints
in the configuration space, enabling quick multiple-query planning
requests. However, these approaches often produce unnecessarily long
or non-smooth trajectories, requiring an additional post-processing
step (Geraerts and Overmars, 2007).

In contrast, optimization-based methods enable obtaining smooth
trajectories that are ready to be executed. The covariant Hamiltonian
optimization for motion planning (CHOMP) (Ratliff et al., 2009) em-
ploys a covariant gradient approach, which relies on the gradient of
the cost function. This concept is similar to the elastic bands plan-
ning (Brock and Khatib, 2002), where repelling forces push the trajec-
tory away from the obstacles. CHOMP quickly converges to a locally
optimal trajectory using a signed distance field (SDF) to represent the
environment, enabling gradient calculation even for parts of the tra-
jectory that are not collision-free. However, like many gradient-based
techniques, CHOMP is prone to getting trapped in local minima.

T-CHOMP (Byravan et al., 2014) is an extension of CHOMP that
adds an extra dimension for the time, enabling optimization in both
space and time. The authors note that the method is highly sensitive
to parameter settings and may produce an infeasible "collision-free"
solution where the robot moves slowly through the obstacles if not
tuned properly.

STOMP (Kalakrishnan et al., 2011) builds on the environment rep-
resentation used in CHOMP but differs by employing a sampling
technique for cost minimization instead of relying on the gradient of
the cost function. This approach allows the use of non-differentiable
cost functions and reduces the likelihood of getting stuck in local
minima. A local multiresolution approach for STOMP is introduced
by Steffens, Nieuwenhuisen, and Behnke, 2016. This method plans the
initial part of the trajectory with high resolution, while the segments
of the trajectory that are further away in time are planned with lower
resolution. This strategy reduces the computation time and enables the

56

4.2 RELATED WORK

application of the method in dynamic environments. However, similar
to the original STOMP method, the total duration of the trajectory
remains fixed.

Schulman, Ho, et al., 2013 introduce TrajOpt, a method for integrat-
ing collision avoidance into trajectory optimization for robotic motion
planning. The approach uses sequential convex optimization with a
hinge loss penalty for collisions, adjusting penalties as needed, and
implements a continuous-time no-collision constraint to efficiently
solve complex motion planning problems, even in environments with
thin obstacles. It has been demonstrated to perform well for problems
with many DoF, such as dual-arm mobile manipulation with PR2 and
whole-body motion planning for the Atlas robot.

Some approaches focus on combining methods from the two fami-
lies, attempting to combine exploration from sampling-based meth-
ods and exploitation from optimization-based methods. For example,
batch informed trees (BIT*) (Gammell, Srinivasa, and Barfoot, 2015).
Regionally-accelerated BIT* (Choudhury et al., 2016) extends BIT* by
using an optimizer to adjust infeasible edges and move them out of
collision. This method often results in a lower solution cost compared
to BIT*. However, the frequent use of an optimizer can be computa-
tionally expensive, leading to longer runtimes.

Alwala and Mukadam, 2021 implement a similar idea using a
roadmap planner to interleave edge creation and optimization steps.
Another methodology in that direction builds on the idea of the
planner proposing diverse plans that are consequently sent to the
optimizer (Kuntz and Alterovitz, 2020; Xanthidis et al., 2020). Such
plans can be efficiently generated using sparse roadmaps (Orthey,
Frész, and Toussaint, 2020).

Although all previously mentioned methods can be applied to
dual-arm setups directly or with slight modifications, there are nu-
merous approaches designed specifically to tackle dual-arm planning
problems. Szynkiewicz and Blaszczyk, 2011 introduce an optimization-
based method for path planning for closed kinematic chain robotic
systems. The problem is formulated as a function minimization task
with both equality and inequality constraints expressed in terms of
the joint variables. Vahrenkamp et al., 2009 propose two approaches
for dual-arm planning: J* and IK-RRT. While the ™ method does
not require an IK solver, the IK-RRT approach demonstrates superior
performance in both single and dual-arm tasks.

Alternatively, Cohen, Chitta, and Likhachev, 2014 introduce a
heuristic-based approach that constructs a manipulation lattice graph
and utilizes an informative heuristic. Although the algorithm’s suc-
cess is heavily dependent on the effectiveness of the heuristic, it
demonstrates strong performance compared to several sampling-
based planners. Shi et al., 2022 extend RRT by biasing the exploration
process through child node selection that minimizes a cost function.

57

DUAL-ARM TRAJECTORY OPTIMIZATION

Manipulator number one only avoids collisions with the environment,
while manipulator number two avoids both the environment and the
self-collisions with moving manipulator number one. Although this
extension can be effectively applied to the dual-arm system:s, it still
suffers from the main drawbacks of RRT.

Byrne, Naeem, and Ferguson, 2015 propose a method that integrates
goal configuration sampling, sub-goal selection, and artificial potential
fields (APF) motion planning. This approach has been demonstrated
to enhance APF performance in both independent and cooperative
dual-arm manipulation tasks. Jang et al., 2022 propose a PRM-based
approach. The approach focuses on improving the sampling efficiency
of the new connected nodes under the closed-chain constraint. The
planner assumes an object being held by a multi-arm system and
samples feasible configurations by directly sampling the object poses
and solving the IK for each arm. The drawback of the approach is that
an IK problem has to be solved for each manipulator.

Cohn et al., 2024 propose to leverage the analytic IK to parameterize
the configuration space, obtaining a lower-dimensional representation.
The parameterization can be applied to a broad range of existing
planners. Similar to our method, a subdivision into active and passive
kinematic chains is performed. In contrast, we propose a methodology
that does not rely on the availability of an analytical IK solution and
instead optimizes the initial poses for an underlying IK solver to
implicitly resolve the redundancy of the passive sub-chain. Overall,
our approach stands out thanks to the ability to optimize trajectories
with respect to multiple constraints, while allowing for influencing
the qualitative properties of the obtained solutions by adjusting the
cost importance weights.

43 BACKGROUND

In this chapter, we present our method for dual-arm trajectory
optimization. It builds on top of the approach from our Master
Thesis (Pavlichenko, 2016), results of which were also published
in (Pavlichenko and Behnke, 2017). In this section we briefly introduce
the preliminaries for our method: first, the original STOMP (Kalakrish-
nan et al., 2011) followed by its extension STOMP-New (Pavlichenko
and Behnke, 2017).

431 STOMP

In STOMP (Kalakrishnan et al., 2011), the planning task is framed
as an optimization problem, with the goal of finding a trajectory
that minimizes the cost defined by a given cost function. The input
of STOMP is an initial trajectory g composed of N keyframes g, €
RM in joint space with M joints: ¢ = [q; ...qy]. Each keyframe is

58

4.3 BACKGROUND

a configuration in joint space: g; = [g;1...q;m], where g;; is a joint
angle of joint j at keyframe i. The keyframes are equally spaced in
time, discretizing a predefined fixed duration T. A common naive
initial trajectory is the linear interpolation between the given start
and goal configurations g, and g,,;. Throughout the optimization
process, these start and goal configurations remain unchanged. The
output of STOMP is an optimized trajectory, with the optimization
problem being formulated as follows:

N
mqin]E Y c(4,)+ %Fqu , (4.1)
i=1

where § = N'(g,%) is a noisy joint parameter vector, given that g is
the mean and X is the covariance. C(4;) is a state cost function that
includes obstacle costs, torque costs, and constraint costs. Each state 4;
of the trajectory g has a cost assigned by this cost function. The term
4" Rg represents the sum of squared accelerations along the trajectory,
which are calculated using a finite differencing matrix.

STOMP iteratively samples noisy trajectories, evaluates them with a
cost function, and updates the noise distribution parameters, moving
in the direction of the cost gradient. In this way, STOMP is able to find
locally optimal trajectories, oftentimes escaping the local minima.

432 STOMP-New

The approach described in this chapter is based on our earlier work:
STOMP-New (Pavlichenko and Behnke, 2017), which is the exten-
sion of STOMP. The main differences to the original STOMP are the
following:

e Multi-component cost function, evaluating transitions between
keyframes, as opposed to evaluating single keyframes,

e adaptive collision checking density, and

e two-phased optimization, first considering only the kinematic
costs and in the second phase considering kinematic and dy-
namic costs at the same time.

In the original STOMP, the cost of a trajectory is defined as a sum
of costs of individual keyframes g;. It is not trivial to estimate the
length of the final solution in advance. Thus, one has to pre-define the
fixed number of keyframes N, ensuring adequate collision checking
density. If N is too small, the algorithm may position keyframes so
that they skip over an obstacle, keeping the cost small and leading
to a false-positive solution which is infeasible. That is why typically
a large number of keyframes is chosen, such as N = 100. However,
when moving through the obstacle-free regions, such dense collision

59

DUAL-ARM TRAJECTORY OPTIMIZATION

checking is unnecessary. Moreover, noise distribution updates for a
larger number of keyframes are computationally more expensive.

In STOMP-New we propose to alleviate these drawbacks by in-
troducing a cost function that evaluates transitions between the two
consecutive keyframes q; and q; ;. With this change, one can now
safely choose a much smaller number of keyframes for the trajectory,
such as N = 10. The collision checking density is defined online for
each specific transition between the keyframes. The density is inverse-
proportional to the distance to the closest obstacle at the start and
the end of the transition. The multi-component transition-based cost
function is defined as:

C(q; ‘1i+1) =Co(q;, qi+1) +Ci(q;, qi—l—l) +Ce(q;, qi—i—l)

4.2)
+Ca(q;, %H) + Ci(q; qi+1)/

where C, is an obstacle cost that penalizes proximity to the obstacles,
C is a joint limit cost that penalizes violations of joint limits, C. is
a constraint cost that penalizes violations of any custom constraints
on the end-effector position or orientation, C4 is a duration cost that
penalizes long duration, and C; is a torque cost that penalizes high
torques. Each cost component function C(q;,4;,) € [0,1], enabling
straightforward relative importance scaling by adding an importance
weight to each cost component. In this manner, one can influence
the qualitative properties of the obtained trajectories. Note that costs
for violations of constraints of each component, such as a collision,
are much greater than 1 and make a trajectory with such a violation
infeasible.

Finally, the optimization is performed in two stages. At the first
stage, only the kinematic cost components C,, C; and C. are consid-
ered. Once a feasible trajectory is found, the optimization continues
through the second stage with the full cost, including both kinematic
and dynamic cost components. In this way, the algorithm first aims at
leaving strictly infeasible collision regions, speeding up the optimiza-
tion process. Altogether, the described changes significantly improve
the runtime of the algorithm and provide control over the qualitative
properties of the obtained trajectories.

44 METHOD

Both STOMP and STOMP-New have a complexity linear in the number
of DoF, and the optimization is taking place in the joint space. Thus,
it is straightforward to add the second arm into the optimization
problem. Moreover, the arms may have different kinematic structures
and numbers of joints. Note that although in this chapter we focus on
the dual-arm scenario, the proposed approach is generic and can be
directly applied to an arbitrary number of arms without fundamental
modifications.

60

44 METHOD

The state cost function has the same structure as in the base STOMP-
New method (Eq. 4.2):

C(q, ‘11'+1) =Co(q;, ‘11'+1) +Ci(q;, ’1i+1) +Ce(q;, ’1i+1)

4.3)
+Cal(q;, ‘71‘+1) + Ci(q;, ‘71‘+1) + Cec(q;, ‘71‘+1)r

where the first five terms are obstacle, joint limits, end-effector ori-
entation constraints, duration, and torque costs, as discussed in Sec-
tion 4.3.2. The new term C, is an additional sixth term that penalizes
violations of the closed kinematic chain constraint. This allows opti-
mizing for coordinated arm movement, such as moving a bulky object
that is held with both hands. The cost terms can be split into two
categories: joint-related: C,, C), C4, Ct and end-effector-related: C, Cc..

The joint-related terms do not have to be changed for the dual-arm
scenario. Keeping the duration term C4 identical to the STOMP-New
constitutes that both arms will have the same duration within their
individual trajectories, independent of the lengths of the individual
paths. This comes with two advantages: first, only one additional
dimension is required for both arms; second, self-collision checking
is not affected by the relative velocities of the arms and can be per-
formed directly since both arms will move through the corresponding
keyframes at the same timesteps. The drawback of such a duration
cost design is that in the case of significantly different individual
trajectory lengths, the arm with the shorter path length will be forced
to move with a significantly lower velocity.

The terms related to end-effectors require modifications. The end-
effector orientation constraint term C. is applied separately to both
end-effectors:

1 1 cor
Ce(q; qi—H) = ECC(‘#I ‘#H) + ECC(qi/qH-l)/ (4.4)

where g! is a joint configuration for the left arm and 4! is a joint
configuration for the right arm respectively.

Subsequently, we describe two fundamental modifications intro-
duced in this chapter. First, we modify the obstacle cost term C,,
grounding it on the estimation of the worst-case collision overlap
volume, increasing the convergence speed. Second, we define the new
closed kinematic chain constraint term C, increasing the range of
dual-arm motion generation problems that can be solved with the
proposed approach and an IK-based methodology with redundancy
resolution.

4.4.1 Obstacle Cost

We assume that the environment is static, with only the robot arms
moving. Under this assumption, it is possible to represent the environ-

61

DUAL-ARM TRAJECTORY OPTIMIZATION

ment as a SDF, which is obtained with a signed Euclidean distance
transform (Kalakrishnan et al., 2011). The moving part of the robot
body is approximated with a set of overlapping spheres B. Such en-
vironment and robot representation allows for very efficient collision
checking. Moreover, it provides signed obstacle proximity information
for any particular sphere b € B.

This enables formulating a smoother cost function so that it is effi-
cient at steering the optimization towards the collision-free regions. We
adopt the representation of the static components of the environment
with two SDFs: one for the external objects and one for the static part
of the robot body (Pavlichenko and Behnke, 2017). Such representation
allows defining two independent obstacle proximity margins: high
for the external objects and smaller for the robot’s static part. This is
motivated by the assumption that the poses of the robot’s body parts
are much more accurate compared to those of the external objects.

In our previous work (Pavlichenko and Behnke, 2017), the minimal
distance from the collision model to the obstacles is used for obstacle
cost computation. While that works well for one arm, such obstacle
cost representation leads to a very complex gradient profile in the
dual-arm scenario, slowing down convergence. For example, when
one arm has a much greater collision depth than the other arm, that
disguises the collision with lower depth from the algorithm.

On the other hand, in the original STOMP, the obstacle cost is
represented as a sum of collision depths across all arm approximation
spheres b € B. While such obstacle cost certainly represents the
severity of a collision better, all spheres have equal contribution. This
results in very coarse obstacle costs in cases when spheres are of
different sizes and are distributed unequally along an arm. In fact,
most arms have to be represented with spheres of different sizes to
adequately represent the complex geometry of a gripper. For the same
reason, a non-uniform sphere density is present as well, with more
spheres typically located in the region of the gripper. In these cases, a
direct sum of collision depths of individual spheres results in much
higher costs in regions where spheres are placed with the highest
density. This often creates multiple local minima, slowing down the
convergence of the algorithm.

In contrast, we propose an obstacle cost based on estimation of the
worst-case overlap volume. The severity of a collision is represented
through an estimate of the worst-case colliding volume, as opposed
to a direct sum of collision depths (Fig. 4.2b). Given a sphere b; with
radius ry, and its obstacle penetration depth d, : 1, > d}, > 0 obtained
from the environment SDF, the worst-case overlap volume Ufj]_ of the
sphere b; is a volume of a spherical shell (Fig. 4.2a):

vy, = —n(rgi — (1, — dp)?). (4.5)

62

44 METHOD

B
®)
®)

(@) (b)

Figure 4.2: Estimation of the worst-case overlap volume. Projection from 3D
onto two-dimensional (2D) plane is shown. (a) Given a sphere
with center s and radius r, the distance d to the closest obstacle
(gray rectangle) is queried from the SDF. Given only the distance
d, it is not possible to calculate the actual overlap volume (red).
Instead, we estimate the worst-case overlap volume, which is a
spherical shell (red and orange combined). (b) Manipulator ap-
proximated with a set of spheres colliding with the two obstacles
(gray rectangles A and B). The sum of collision depths of spheres
colliding with A equals the collision depth of the sphere collid-
ing with B. However, the corresponding overlap volume is much
greater in B than in A. Obstacle cost based on the worst-case
overlap volume reflects this aspect.

An estimate of the total overlap volume of the arms in case of a self-
collision can be done directly by iteratively computing v}, for each
colliding sphere b; and summing up the values. Finally, given an
estimate of the total volume of the robot collision approximation, it is
straightforward to compute the collision severity factor 7:

B YbeB Uii

— . 4.6
YbeB U, (.6)

This value represents an estimate of the portion of the robot body
that is colliding with the environment. We utilize 7 in the obstacle cost
computation to obtain continuous and smooth collision penalties:

Co + 77Co/ if dopst < dmin
Co(q;) = 40, if doper > dmax 7 (4.7)

Ao+ (1— %), otherwise
where A, € [0,1] is the importance weight for the obstacle costs,
Amin is @ minimum acceptable distance to the obstacles, and dmayx is a
maximum distance to the obstacles that should be considered. d g is
the distance to the nearest obstacle. C, > 1 is a predefined constant
that ensures that infeasible configurations have very high costs. In case
a configuration g, is feasible and the distance to the nearest obstacle
falls in the interval (dpmin, dmax], the cost is within the interval [0, 1].

63

DUAL-ARM TRAJECTORY OPTIMIZATION

442 Closed Kinematic Chain Constraint

Given a start and goal configuration 4, and g,,,, defining config-
urations of two arms in joint space, we compute the desired trans-
formation Tgesired = T1-52 between the two 6D end-effector poses T
and T», both at start and goal configurations. Since start and goal
configurations stay fixed during the optimization, Tgesireq should be
the same at both the start and the goal in order to optimize under
the closed kinematic chain constraint. The new cost term C. for the
closed-chain constraint is formulated as:

Cec(qi/ 4i41) = %mjaxcct(qj) + %mjaxccr(qj),j €{L....k},
(4.8)

where C.(-) penalizes deviating from T gegireq Within the translation
component between the end-effectors and C.(-) penalizes deviating
from T gesireq Within the corresponding rotation component. The con-
figurations g; are the intermediate equidistant configurations for the
transition between ¢, and g, ; sampled to cover the transition with the
desired density, defined by the distance traveled by the end-effector.
In this work we use the density of one check per 1cm traveled by the
end-effector. This density defines the number of intermediate config-
urations k for each transition. The translation cost component C; is
defined as:

Cot+ Cot - Ad if Ad > Adax
Calg) =4 © "¢) (4.9)

Ad .
Ao’ otherwise

where Ad is an L? norm of the translation component of the 6D
transformation from the current 6D transformation between the end-
effectors Tcyrrent and the desired transformation T gegired- Finally, Admax
is the maximum allowed deviation of the translation component, and
Cet > 11s a predefined constant. Thus, C.¢ € [0,1] if the deviation of
the translation is below the threshold and C.; > 1 otherwise.

Similarly, we define the term Cq(+) for penalizing deviations in the
rotation component. Given the transformation between Tcyrrent and
T gesired, We compute the corresponding angular difference Ax and
compute the C, term:

Cor+ Cor - Aa if A& > Atimax
Cer(g;) = oo Far B HEA% 2 Bltmax (4.10)

Ax :
Y= otherwise

where Aapay is the maximum allowed angular difference, and Cer > 1
is a predefined constant.

64

44 METHOD

Incorporating the cost term C.. into the cost function enables op-
timizing trajectories under the kinematic chain closure constraint.
However, the probability of randomly sampling a configuration that
satisfies the closure constraint is approaching zero (Kingston, Moll,
and L. E. Kavraki, 2018). In order to increase the probability and,
hence, the convergence speed, one can increase the values of maxi-
mum allowed translation and rotation deviations Admax and Aamax.

While this allows the algorithm to converge quicker, the obtained
trajectories are not strictly satisfying the closed-chain constraint. Thus,
an additional post-processing step to satisfy the constraint is required.
Such an approach fails in cases when desired end-effector poses that
satisfy the constraint are not reachable due to joint limits or obstacles.
Moreover, such a post-processing step can potentially deteriorate other
properties of the trajectory obtained during the optimization. For
example, maintained distance to the obstacles or trajectory duration.

To overcome these challenges, we further extend our approach with
an APM. There, the kinematic chain is split into two sub-chains: active
and passive. For the dual-arm setting, the division is already existing
naturally and the sub-chains are arm number one and arm number
two. The optimizer performs an optimization for the trajectory of an
active chain, while the trajectory of the passive chain is determined
with the IK, given the trajectory of the active chain, such that the con-
straint is satisfied. In this way, trajectories satisfying the closed-chain
constraint can be reliably obtained by sampling random trajectories
for the active chain. The drawback of such an approach is that the com-
putational time is significantly affected by the IK computation, which
is expensive in the case of high-DoF manipulators with redundancy.
Furthermore, it is challenging to find locally optimal configurations
for the passive chain from a set of viable IK solutions.

To address the challenges introduced by utilizing an IK solver, we
enable the optimization algorithm to indirectly steer the IK solutions
by having control over the initial configuration for the underlying
IK solver. In such a manner, we allow the method to influence the
resulting IK solution for each specific keyframe online. Since one of
the arms is passive and does not require the method to directly opti-
mize its configurations, its place is taken by the initial configuration
for the IK solver. In this way, the number of the DoF on which the
optimization is conducted remains the same.

Even though the configurations for the passive chain are obtained
with IK, the introduced closed-chain constraint cost term C.. remains
useful when the IK runs out of allotted time or does not find an
accurate solution. In these cases this term produces a high cost, which
subsequently influences the starting position for the IK, chosen by the
optimizer. This in turn, can lead to an IK solution with lower cost. It
also implicitly penalizes long IK computation times in cases when the
solution is not found and the IK returns an approximate solution that

65

DUAL-ARM TRAJECTORY OPTIMIZATION

N

)

\ Initial pose
- \ P IK Solver
-
q,
Start and Goal Start b .
C .:, p Pa
sTomp | Trajectory /
Optimizer
q; = [qm qi)]
State
Cost
Goal
ql‘c)
State Cost -
Function q; = (.. q,)

Figure 4.3: Optimization under the closed kinematic chain constraint with
APM with an implicit redundancy resolution. STOMP optimizes
a trajectory consisting of keyframes g; in joint space. The first half
q, of a keyframe g is a configuration of the active arm, and P,
is a 6D pose of the corresponding end-effector. Given a desired
transformation T of the closed-chain constraint, 6D pose P}, of
the passive arm is obtained. The second half ¢’ p of the keyframe

is an initial pose for the IK solver. Given P, and q’ P/ the IK
produces a joint configuration dp for the passive arm, satisfying
the constraint. Together with the obtained ¢, the already known

g, forms the configuration ¢q’; that is evaluated with the state cost
function. Optimizing for g’ p implicitly resolves the redundancy.

also yields high C.. cost. Finally, other cost components, such as the
obstacle cost term, also implicitly steer the IK solutions towards the
regions with lower costs. The diagram of this approach is shown in
Fig. 4.3.

The smoothness of the passive arm trajectory is implicitly imposed
first by the fact that the passive arm trajectory is directly linked to
the trajectory of the active arm, the smoothness of which is achieved
through STOMP smoothness cost. Additionally, the initial configura-
tions for the IK sampled by STOMP that are also subject to smoothness
cost contribute to the overall coherency of the consequent arm configu-
rations obtained through the IK. Finally, each transition of the passive
arm from configuration g; to g;_; is evaluated by computing closed-
chain constraint cost and checking the intermediate configurations for
joint velocity and acceleration limits violations with desired density.
This ensures that the transition is feasible. By combining STOMP and
APM for handling the closed kinematic chain constraint, we aim to
combine the benefits of both approaches.

66

45 EVALUATION

Figure 4.4: Model of a dual-arm Centauro robot. Left: Detailed model. Right:
Collision model that is split into static and dynamic parts. The
dynamic part (orange) is approximated with a set of spheres. The
static part (blue) is approximated with a convex hull of the torso
and the base.

4.5 EVALUATION

To evaluate the proposed approach, we perform quantitative exper-
iments in simulation and qualitative experiments on the real-world
system. First, we evaluate the runtime, success rate, as well as obtained
trajectory lengths for an unconstrained problem. Second, we evaluate
the same metrics while optimizing under the closed kinematic chain
constraint.

451 Setup

We perform the evaluation on the Centauro robot (Klamt et al., 2020).
It is a centaur-like mobile manipulation robot with a human-like torso
and two 7 DoF arms. Each arm has a different hand. The left arm has
a robust Heri hand (Ren et al., 2017) with four fingers that features
robustness and capability of handling considerable payloads. The right
arm has a dexterous human-like Schunk SVH hand with five fingers
capable of dexterous manipulation. Both arms collision models are
represented with a set of overlapping spheres: 18 for each arm, 37
for the left hand, and 39 for the right hand, resulting in a total of 112
spheres, as shown in Fig. 4.4. The collision model is split into two
parts: dynamic, which includes the arms, and static, which includes
the torso.

The static part is represented with a separate SDF. That is ben-
eficial since a separate collision safety margin can be defined for
self-collisions with the torso and the base. Typically, this safety margin
can be lower compared to the safety margin for collisions with the
environment. That is because the poses of the robot body parts are

67

DUAL-ARM TRAJECTORY OPTIMIZATION

| 2% 78 1

Figure 4.5: Shelf experiment environment. From left to right, three configura-
tions used in the shelf experiment: Neutral, hands in the bottom
row, hands in the top row.

known with higher confidence compared to the poses of external
objects in the environment.

All evaluated methods use this collision model. For our method,
we used the SDF discretization of 1 cm and collision model padding
of 1cm to compensate for the inaccuracies in the SDF due to the
discretization. All experiments are performed on a laptop with an Intel
Core i7-6700HQ 2.60 GHz CPU, 16 GB of RAM, and 64-bit Kubuntu
18.04 OS with robot operating system (ROS) Melodic. Experiments
with TrajOpt are performed on the same laptop using Kubuntu 20.04
OS with ROS Noetic due to the software dependencies. All evaluated
algorithms run on a single CPU core.

4.5.2 Unconstrained Scenario

We conduct simulation experiments to evaluate our method’s ability
to produce feasible trajectories for unconstrained problems. The exper-
iments focus on optimizing the trajectories of two independent arms
in a shelf environment. The robot is positioned in front of a shelf with
four 40 x 40 x 40 cm cells with walls that are 4 cm thick. The arms can
be in one of the three configurations: neutral outside the shelf cells;
inside the bottom row of the shelf cells; or inside the top row of the
shelf cells.

The task is to obtain feasible trajectories for both arms, traversing
between all combinations of the three configurations. This results in a
total of six planning problems. In addition, we perform the task with
two difficulties: "Easy" and "Hard." In "Hard" difficulty, the shelf is
moved 10 cm closer towards the robot. In this case, the configurations
with the hands inside the cells are immersed deeper. Such modification
makes the task more challenging. The environment is shown in Fig. 4.5.

We compare our approach to two methods from open motion
planning library (OMPL) (Sucan, Moll, and L. E. Kavraki, 2012):
RRTConnect (James and Steven, 2000) and kinodynamic planning by
interior-exterior cell exploration (KPIECE) (Sucan and L. E. Kavraki,
2010). These algorithms previously demonstrated a consistent perfor-
mance (Meijer, Lei, and Wisse, 2017). Furthermore, we also compare

68

45 EVALUATION

our approach to Tesseract implementation! of TrajOpt (Schulman, Ho,
et al., 2013).

In addition, we conduct an ablation study of the proposed obstacle
cost component. First, with the obstacle cost function from the original
STOMP (Kalakrishnan et al., 2011). We refer to this method as Ours.
Second, with the proposed obstacle cost component based on the esti-
mation of the worst-case overlap volume, as described in Section 4.4.1.
We refer to this method as Ours-OV (Ours with overlap volume).
Each task is attempted 100 times, resulting in a total of 600 runs per
difficulty setting for each method. We fine-tune the parameters for
RRTConnect and KPIECE using the grid search. For RRTConnect the
obtained parameters are:

1. range = 3.3,
2. goal bias = 0.4.
For KPIECE the obtained parameters are:
1. range = 1.8,
2. goal bias = 0.4,
3. border fraction = 0.5,
4. failed expansion score factor = 0.7,
5. minimum valid path fraction = 0.2.

Both TrajOpt and our method performed well out of the box with the
default parameters and did not have to be fine-tuned for the specific
task in this experiment. Each method is given 60s for an attempt. If
this duration is exceeded, the attempt is considered as failed. If the
final trajectory violates joint limits or collides with the environment
or the robot itself, the attempt is considered as failed. We record the
success rate and runtime for each method, as well as the resulting
path lengths in joint space and Cartesian space for the end-effectors.

In Table 4.1, success rates and average runtimes are shown. We use
only the successful attempts in the runtime calculation. In the case of
the "Easy" difficulty level, almost all methods achieve a success rate of
1.0. Only RRTConnect fails several times, achieving a 0.98 success rate.
All methods demonstrate relatively low runtime, with RRTConnect
achieving the fastest average runtime of 1.1s. Our method with both
obstacle cost variations achieves a similar average runtime of 1.52s
and a success rate of 1.0. The SDF computation for our method takes
0.32 £0.012's on average in this experiment and is incorporated in the
presented runtime. It is worth noting that our method achieves lowest
maximum runtime and lowest standard deviation.

1 https://github.com/tesseract-robotics/trajopt

69

https://github.com/tesseract-robotics/trajopt

DUAL-ARM TRAJECTORY OPTIMIZATION

Table 4.1: Comparison of success rates and average runtimes in the shelf

experiment.

Task Method Success Runtime [s]
rate Mean SD Min Max
RRTConnect 0.98 1.1 125 007 6.62
KPIECE 1.0 198 261 0.05 212
Easy = TrajOpt 1.0 227 1.69 019 5.0
Ours 1.0 1.51 028 1.02 291
Ours-OV 1.0 152 031 1.0 272
RRTConnect 0.87 815 9.07 017 50.2
KPIECE 0.69 778 998 025 59.8
Hard TrajOpt 1.0 528 277 145 116
Ours 1.0 3.67 373 119 268
Ours-OV 1.0 204 099 1.07 9.3

SD: standard deviation.

In "Hard" difficulty level, however, the difference in performance be-
comes more significant. RRTConnect and KPIECE show higher rates of
failures, achieving 0.87 and 0.69 success rates, respectively. At the same
time, both these methods demonstrate significantly longer runtimes
of around 8s. TrajOpt and both variations of our method maintain a
success rate of 1.0. However, there is a significant difference in run-
times. TrajOpt has an average runtime of 5.28 s, while our method with
the worst-case overlap volume obstacle cost function demonstrates an
average runtime of only 2.04 s, which is more than two times faster.

Notably, our method with the obstacle cost function from the origi-
nal STOMP still outperforms TrajOpt, demonstrating an average run-
time of 3.67 s, but is significantly slower than our method with the
proposed worst-case overlap volume obstacle cost. Moreover, Ours-OV
also achieves the lowest standard deviation and maximum runtime by
a large margin.

We argue that the effect of the proposed obstacle cost component
is revealed in the "Hard" difficulty level because the arms have to
go deeper inside the cells of the shelf, creating more cases when
the algorithm has to leave extended collision regions. Overall, the
proposed method successfully solves all 1200 tasks combined across
both difficulty levels and consistently achieves low runtimes. Example
trajectories from this experiment are shown in Fig. 4.6. Notice how in
the last trajectory the arms avoid self-collision with each other.

In Table 4.2 we show average trajectory lengths in joint space as
well as average end-effector path lengths for the left, right, and both
arms combined. RRTConnect and KPIECE produce trajectories with
a lot of unnecessary movements that result in very long trajectories
in joint and Cartesian space, especially in the "Hard" difficulty. Such

70

45 EVALUATION

Table 4.2: Comparison of average trajectory lengths in joint and Cartesian
space in the shelf experiment.

Task Method Joint End-effector [cm]
space [rad] | Left Right Combined
RRTConnect 18.6 130 139 269
KPIECE 18.9 142 141 283
Easy TrajOpt 10.8 67 69 137
Ours 11.1 71 70 141
Ours-OV 11.1 71 70 141
RRTConnect 31.6 197 226 423
KPIECE 26.5 180 199 379
Hard TrajOpt 12.0 77 79 156
Ours 12.6 83 80 163
Ours-OV 124 81 79 160

trajectories are very inefficient and require heavy post-processing to
make them shorter and smoother before the execution.

TrajOpt and both variants of our method produce trajectories with
short end-effector paths consistently across the difficulty levels. Our
method yields trajectories that are slightly longer compared to TrajOpt.
On average, the trajectories produced by our method are 3.5% longer
in both joint and Cartesian space. We attribute it to the fact that
STOMP, which is the base of our method, has a random sampling
step that is beneficial for overcoming the local minima but may result
in a sub-optimal solution. Both obstacle cost function variations result
in trajectories of similar lengths.

Our approach is capable of obtaining qualitatively different tra-
jectories when the cost component weights are adjusted. In Fig. 4.7
we show two trajectories obtained with low and high obstacle cost
weights. A trajectory with a low obstacle cost weight is short but
avoids obstacles with a low margin. In contrast, a high obstacle cost
weight yields a longer but safer trajectory, avoiding the obstacles with
a higher margin.

45.3 Closed Kinematic Chain Constraint Scenario

In this section we evaluate the performance of our method while
optimizing trajectories under the closed kinematic chain constraint
in the presence of obstacles. For that, we use the following problem
setting. The robot has both arms in a neutral configuration, and the
task is to bring the hands up while satisfying the closed kinematic
chain constraint. The environment contains an obstacle placed in
one of the three configurations: obstructing the direct path of the

71

DUAL-ARM TRAJECTORY OPTIMIZATION

Figure 4.6: Example trajectory rollouts from the shelf experiment. Top to
bottom: moving from neutral configuration to the bottom row
of the shelf; moving from neutral configuration to the top row
of the shelf; moving from the bottom row of the shelf to the top
row of the shelf. Perspectives from the left and right sides of the
robot are shown on the left and right, respectively. End-effector
trajectories are shown in green.

right end-effector, obstructing the direct path of the left end-effector,
and obstructing the direct path of both end-effectors. We refer to
these scenarios as "Right", "Left", and "Middle", correspondingly. The
environment is shown in Fig. 4.8.

Each scenario has two possible permutations of start and goal
configurations: starting with hands below an obstacle and moving
them above, and vice versa. Same as in the previous experiment,
we perform 100 planning attempts per configuration permutation.

72

45 EVALUATION

Figure 4.7: Example of qualitatively different trajectories obtained with dif-
ferent obstacle cost weights. Blue: Low weight, short trajectory
with a minimal distance to the obstacles. Green: High weight,
longer but safer trajectory, avoiding the obstacles with a higher
margin.

That results in 200 attempts per scenario and 600 attempts in total.
Each method is given 120s per attempt. An attempt is considered
successful if the runtime does not exceed 120, the obtained trajectory
is collision-free, and the closed-chain constraint is preserved along the
whole trajectory.

We compare the performance of our method to TrajOpt. We do not
present the results for RRTConnect and KPIECE in this scenario, since
both approaches fail to solve the task. In addition, we perform an
ablation study to evaluate the method proposed in Section 4.4.2. We

Figure 4.8: Closed kinematic chain constraint environment. From left to right:
obstacle on the left, obstacle in the middle, obstacle on the right.
Red: obstacle. Gray: start configuration. Yellow: goal configura-
tion. Green: initial trajectories that are straight interpolation in
Cartesian space, shown as trajectories of the end-effectors. Blue:
initial trajectories that are straight interpolation in joint space,
shown as trajectories of the end-effectors.

73

DUAL-ARM TRAJECTORY OPTIMIZATION

refer to it as Ours with APM with redundancy resolution (APMRR)
(Ours-APMRR). The methods for the ablation study are the following.

First, we use APM with a convenient pose used as an initial pose for
the IK solver: Ours with APM with convenient configuration (APMCC)
(Ours-APMCC). The convenient configuration for each keyframe is
defined as a corresponding pose from the shortest path between the
start and the goal that satisfies the closed-chain constraint, without
considering the obstacles.

Second, APM where the convenient configurations defined above
have a random component added to them: Ours with APM with
convenient configuration random (APMCCR) (Ours-APMCCR). The
random component is drawn from a normal distribution with mean
u = Orad and standard deviation ¢ = 0.3 rad.

Finally, we also test an approach where the APM that relies on IK is
omitted, and the closed-chain constraint is attempted to be satisfied
solely using the cost term C. as defined in Section 4.4.2. This approach
samples trajectories of both arms directly in the joint space and is
referred to as Ours joint space (Ours-JS).

For the APM-based variants of our method, we use selectively
damped least squares (SDLS) (Buss and Kim, 2005) to solve the IK.
We choose the left arm of the robot as the active sub-chain and the
right arm as the passive sub-chain. This choice is arbitrary, and the
APM sub-chains can be chosen freely for each optimization task. We
use the maximum allowed translation deviation dmax = 0.015cm and
maximum allowed orientation deviation &y, = 0.02 rad.

For Ours-JS variant, the choice of these parameters is crucial to
achieving reliable performance. Setting them to the same strict values
as for APM-based variants leads to 0 success rate. Thus, we relax them
to enable Ours-JS to achieve a non-zero success rate: dmax = 1.5cm
and amax = 0.15rad. Note that the trajectories obtained with Ours-
JS are then checked for satisfaction of the kinematic chain closure
constraint with the same increased thresholds. Thus, such trajectories
can be executed in practice only after a post-processing step where the
constraint is strictly enforced. Such post-processing may not always
be successful due to other constraints that have to be satisfied, such as
obstacles and workspace boundaries.

In Table 4.3, success rates and average runtimes are shown. We
use only the successful attempts in the runtime calculation. APMRR
and APMCC variants of our method show a consistent success rate
of 1.0 for each of the three tasks. TrajOpt and APMCCR fail in some
of the attempts, demonstrating a success rate slightly below 1.0. The
pure joint space variant of our method Ours-JS shows the lowest
success rate of 0.71 for all tasks combined, even though it uses relaxed
thresholds for the closed kinematic chain constraint. Ours-JS also
shows the highest average and maximum runtime. This demonstrates
that a naive attempt to optimize under the closed-chain constraint

74

45 EVALUATION

Table 4.3: Comparison of success rates and average runtimes in the closed
kinematic chain experiment.

Task Method Success Runtime [s]
rate Mean SD Min Max
TrajOpt 0.94 36.9 27 271 463
Ours-APMRR 1.0 10.2 72 3.4 455

Right Ours-APMCC 1.0 143 158 3.8 933
Ours-APMCCR 1.0 163 124 4.0 583

Ours-JS 083 | 392 325 7.8 1183
TrajOpt 099 | 283 11 275 355
Ours-APMRR 10 | 123 94 29 568

Left Ours-APMCC 1.0 157 137 34 1145
Ours-APMCCR 0.99 147 11.8 32 821

Ours-JS 059 | 470 289 63 1159
TrajOpt 099 | 340 40 291 513
Ours-APMRR 1.0 | 169 108 55 826
Middle Qurs-APMCC 1.0 | 175 109 66 985
Ours-APMCCR 099 | 241 158 78 1177
Ours-JS 071 | 476 331 74 117.8

SD: standard deviation.

directly does not yield good results. At the same time, all APM-based
variants of our method outperform both Ours-JS and TrajOpt.

Noticeably, the proposed APMRR outperforms both APMCC and
APMCCR, where convenient configurations are used as start configu-
rations for the IK. The random component added to the convenient
configurations in APMCCR makes the optimizer converge longer com-
pared to APMCC. It is worth noting that the biggest improvement of
runtime of APMRR compared to APMCC is achieved in the "Right"
task, where the obstacle is obstructing the path of the right end-effector.
That is explained by the fact that we set the left arm to be the active
sub-chain. The optimization of the initial configurations for the IK
in APMRR helps to converge to the collision-free regions quicker
compared to APMCC, where the algorithm can only influence the IK
solution by changing the trajectory of the active arm.

Overall, the proposed method Ours-APMRR consistently demon-
strates the lowest average runtimes as well as the lowest minimum
runtime, outperforming TrajOpt by more than a factor of two and
Ours-APMCC by 15%. The SDF computation for our method takes
0.19 £ 0.01 s on average and is incorporated in the total runtime.

In Table 4.4 we show average trajectory lengths in joint space as
well as average end-effector path lengths for the left, right, and both
end-effectors combined. Ours-APMCCR, followed closely by TrajOpt,

75

DUAL-ARM TRAJECTORY OPTIMIZATION

Table 4.4: Comparison of average trajectory lengths in joint and Cartesian
space in the closed kinematic chain experiment.

Task Method Joint End-effector [cm]
space [rad] | Left Right Combined

TrajOpt 23.3 129 107 236
Ours-APMRR 15.1 70 78 148

Right Qurs-APMCC 15.4 70 81 152
Ours-APMCCR 24.1 75 90 166

Ours-JS 16.9 86 88 174

TrajOpt 22.5 106 106 212
Ours-APMRR 15.8 75 81 156

Left Qurs-APMCC 15.9 78 82 160
Ours-APMCCR 22.3 76 81 157

Ours-JS 16.2 82 80 162

TrajOpt 22.9 115 118 233
Ours-APMRR 20.7 91 106 197

Middle OQurs-APMCC 20.4 91 105 196
Ours-APMCCR 26.9 90 104 194

Ours-JS 18.1 87 90 177

produces the longest trajectories, both in Cartesian and joint spaces.
Ours-APMRR produces the shortest trajectories in "Right" and "Left"
tasks, closely followed by Ours-APMCC and then — by Ours-JS. In
the "Middle" task, Ours-JS shows the best result. We explain it by the
fact that given relaxed deviation tolerances for the closed kinematic
chain constraint, Ours-JS has an option to avoid the obstacle in the
middle following the shortest path while not strictly satisfying the
constraint. In "Right" and "Left" tasks, that is not the case, since an
obstacle is only on one side. The shortest paths of the arm avoiding the
obstacle allow for the closed-chain constraint to be satisfied strictly by
the other arm that has the freedom to move freely in the obstacle-free
region.

It is worth noting that a shortcoming of using the APM-based
approaches is that the end-effector of the passive chain usually has
longer trajectories than the end-effector of the active chain. TrajOpt and
Ours-JS do not share this property. Thus, they yield trajectories that are
more similar in length for the left and the right arm correspondingly.

Example rollouts from this experiment are shown in Fig. 4.9. In
addition, we show qualitatively different trajectories that avoid an
obstacle while maintaining the kinematic chain closure constraint in
Fig. 4.10. In Fig. 4.11, trajectories optimized with respect to torque
and duration are shown. Even though the available range of motion

76

45 EVALUATION

Figure 4.9: Trajectory rollouts from the closed kinematic chain constraint
experiment. Top to bottom: avoiding the obstacle on the right;
avoiding the obstacle in the middle; avoiding the obstacle on the
left. In all examples, the end-effectors are constrained to preserve
the closure constraint along the whole trajectory. Two different
perspectives are shown per trajectory. End-effector trajectories are
shown in green.

is heavily restricted by the kinematic constraints, our method still
enables obtaining qualitatively different trajectories, depending on the
requirements introduced by each specific task.

One important aspect to consider when using a planner such as
STOMP is that the initial trajectory is extremely important and can
affect the runtimes, success rates, and the resulting trajectories. For
this reason, we compare two common initial trajectory choices for the
Ours-APMRR method. The two types of initial trajectories we consider
are straight-line interpolation in joint and Cartesian space.

77

DUAL-ARM TRAJECTORY OPTIMIZATION

Figure 4.10: Qualitatively different trajectories obtained with different ob-

stacle cost weights while satisfying the closed kinematic chain
constraint. Blue: low weight, short trajectory at a minimal dis-
tance to the obstacle. Green: high weight, longer trajectory that
maximizes the distance to the obstacles and is safer. Grey: start
configuration. Yellow: goal configuration.

Torque [Nm]

—— High torque cost weight
------ Low torque cost weight

0.0 2.5 5.0 7.5 10.0 12.5

Time [s]
(b)
0.30
0.25
2020
£
20.15
g
§ 0.10
0.05
0 2 4 6 8 10
Time [s]
(c) (d)

Figure 4.11: Trajectories with torque and duration optimization, avoiding an

78

obstacle and satisfying the closure constraint. (a) Torque opti-
mization. Trajectories of the end-effectors are shown. Blue: low
torque cost weight. Green: high torque cost weight. Increasing
the torque cost weight results in a trajectory with hands be-
ing closer to the torso, reducing the torque. (b) Total torque
vs. time plot. (c) Duration optimization. The trajectory of the
end-effectors is color-coded. The brighter, the higher the velocity.
(d) Velocity profile of the joint with longest path.

45 EVALUATION

Table 4.5: Average runtimes and success rates with closure constraint and
different initial trajectories: straight-line interpolation in joint and
Cartesian spaces.

Task Initialization Success Runtime [s]
type rate Mean SD Min Max
Right Cartesian space 1.0 102 72 34 455
Joint space 1.0 121 99 29 603
Left Cartesian space 1.0 123 94 29 56.8
Joint space 0.97 221 271 31 1169
Middle Cartesian space 1.0 169 108 55 826
Joint space 1.0 182 121 56 63.5

SD: standard deviation.

For problems involving closed kinematic chain constraint, the
straight-line interpolation in Cartesian space appears to be more natu-
ral, since the optimizer starts with a trajectory that already satisfies
the constraint. To verify that, we perform the same experiment as
described previously, analyzing the optimization performance with
these two common initial trajectories.

In Table 4.5, success rates and average runtimes are shown. We
use only the successful attempts in the runtime calculation. Both
initialization types resulted in all tasks being solved, except for the
"Left" scenario with the joint space interpolation initialization. That
is because in this case such an initialization makes the trajectory of
the active arm lie deep inside the obstacle, and the feasible solution
is far away (Fig. 4.8). For the same reason, runtimes for this scenario
with joint space initialization are also considerably higher compared
to the straight line in Cartesian space initialization. Nevertheless, even
less feasible joint space interpolation initialization yields consistent
performance, solving almost all tasks and demonstrating a runtime
lower than TrajOpt.

Table 4.6: Average path lengths with closure constraint and different initial
trajectories: straight-line interpolation in joint and Cartesian spaces.

Task Initialization Joint End-effector [cm]
type space [rad] | Left Right Combined

Right Cartesian space 15.1 70 78 148
Joint space 17.2 75 87 162

Left Cartesian space 15.8 75 81 156
Joint space 16.9 81 86 167

Middle Cartesian space 20.7 91 106 197
Joint space 20.3 90 103 193

79

DUAL-ARM TRAJECTORY OPTIMIZATION

Figure 4.12: Snapshots of trajectory executions on Centauro robot. Top: Reach-
ing a pre-grasp pose for the drill. Bottom: Reaching a pre-grasp
pose for the watering can. In both cases, the arms successfully
avoid the table and reach the required pre-grasp poses.

In Table 4.6 we show average trajectory lengths in joint space as well
as average end-effector path lengths for the left, right, and both arms
combined. The straight-line interpolation in Cartesian space initializa-
tion yields shorter paths in "Left" and "Right" environments, producing
only slightly longer trajectories in the Middle environment. This exper-
iment highlights the importance of the choice of the initial trajectory.
At the same time, our method demonstrates consistent performance
even when initialized with unfavorable trajectories, advocating for its
robustness.

4.5.4 Real-robot Experiments

We apply our method on the real Centauro robot to plan for dual-arm
trajectories with independent arm movement. The robot starts next to
a table with its arms in a neutral configuration. The task is to reach
given pre-grasp configurations for the objects on the table. Snapshots

80

4.6 DISCUSSION

of the trajectory executions from this experiment are shown in Fig. 4.12.
We perform the experiment six times and in all the trials the robot
successfully avoids the table and reaches the goal configuration. The
average runtime of our method is 1.07 & 0.34 s. This experiment
demonstrates that our method can be efficiently applied in the real
world. Videos of the experiments are available online?®.

4.6 DISCUSSION

In this chapter, we presented an approach for dual-arm trajectory
optimization. The method leverages a multi-component cost function
to optimize for multiple costs and constraints. We introduced an
obstacle cost term that speeds up the convergence of the algorithm
towards the collision-free regions. That was achieved by employing
the proposed obstacle cost component based on the estimation of the
worst-case overlap volume. The performed ablation studies indicated
that the proposed modification of the obstacle cost term substantially
decreased the average runtime of the method.

Finally, we addressed the closed kinematic chain constraint with
a dedicated cost term and an APM that relies on an IK solver. We
optimize for favorable initial configurations for the IK solver, im-
plicitly resolving the redundancy. The method was quantitatively
evaluated in simulation on the Centauro robot, featuring two 7 DoF
arms. The experiments demonstrated that the proposed approach out-
performs RRTConnect, KPIECE, and TrajOpt in terms of success rate
and runtime for unconstrained planning problems. The approach also
demonstrated lower runtime and a higher success rate compared to
TrajOpt in obstacle avoidance tasks under the closed kinematic chain
constraint. At the same time, qualitative experiments demonstrated
that our method is capable of optimizing for several different costs
while satisfying strict kinematic constraints.

The study of the effects of different initial trajectories showcased that
our method reliably converged to a feasible solution even when initial-
ized with unfavorable trajectories. Qualitative evaluation performed
on the real robot demonstrated that the method can facilitate efficient
dual-arm trajectory optimization in unstructured environments.

2 https://www.ais.uni-bonn.de/videos/Humanoids_2018_Pavlichenko
3 https://www.ais.uni-bonn.de/videos/Pavlichenko Dual Arm_Optimization

81

https://www.ais.uni-bonn.de/videos/Humanoids_2018_Pavlichenko
https://www.ais.uni-bonn.de/videos/Pavlichenko_Dual_Arm_Optimization

DEXTEROUS PRE-GRASP MANIPULATION WITH
DEEP REINFORCEMENT LEARNING

PREFACE

This chapter is adapted from Pavlichenko and Behnke, 2023, previ-
ously published by IEEE and presented at the 19th IEEE International
Conference on Automation Science and Engineering (CASE 2023), and
Pavlichenko and Behnke, 2025, previously published by IEEE in the
IEEE Transactions on Automation Science and Engineering (T-ASE).

Statement of Personal Contribution

The author of this thesis substantially contributed to all aspects of
the publication (Pavlichenko and Behnke, 2023), including the litera-
ture survey, conception, design, and implementation of the proposed
method, the preparation and conduct of experiments and evaluation
of the proposed approach, the analysis and interpretation of the exper-
imental results, drafting the manuscript, as well as the revision and
final editing of the version to be published.

The author of this thesis substantially contributed to the following
aspects of the publication (Pavlichenko and Behnke, 2025), including
the literature survey, conception, design, and implementation of the
proposed method, the preparation and conduct of experiments and
evaluation of the proposed approach, the analysis and interpretation
of the experimental results, drafting the manuscript, as well as the
revision and final editing of the version to be published.

The content presented in this chapter, unless otherwise stated, is the
contribution of the author of this thesis.

ABSTRACT

In this chapter, we present a methodology for learning a dexterous pre-
grasp manipulation policy to achieve human-like functional grasps
using DRL. Many objects, such as tools, can be used only if grasped
in a very specific way—grasped functionally. Often, a direct functional
grasp is not possible. We introduce a dense multi-component reward
function that enables learning a single policy, capable of dexterous
pre-grasp manipulation of novel instances of several known object
categories. The policy is learned purely by means of DRL without any
expert demonstrations. In addition, we propose two different ways to
represent a desired grasp: explicit and more abstract, constraint-based.

83

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

The policy is trained in a highly-parallelized simulation on a single
graphics processing unit (GPU) in under three hours. We show that
our method consistently learns to successfully manipulate and achieve
the desired functional grasps on previously unseen instances of known
categories using both grasp representations.

51 INTRODUCTION

In Chapter 4 we addressed dual-arm trajectory optimization by intro-
ducing several modifications to the STOMP, including an improved
obstacle cost function component and methodology with implicit re-
dundancy resolution to optimize under the closed kinematic chain
constraint. This approach efficiently finds trajectories to bring the
robotic arms from given start to given goal configurations. After reach-
ing the desired location, the next task is often to manipulate an object.
This typically involves complex hand-to-object interactions.

In this chapter we address the problem of pre-grasp manipulation
with a dexterous anthropomorphic hand through a DRL. Many objects
are made for human hands and require a specific grasp for use. For
example, a drill requires a power grasp with the index finger on the
trigger. We refer to such grasps as functional. Often, a functional grasp
cannot be achieved directly because the object is in the wrong pose.
This can be addressed with pre-grasp manipulation: repositioning and
reorienting the object until the desired functional grasp is achieved.
However, robustly performing interactive functional grasping with a
dexterous multi-finger hand is challenging. Addressing this problem
will enable robots to utilize tools and functional objects designed for
human use.

Inspired by our earlier work on functional re-grasping with a dual-
arm setup (Pavlichenko, Rodriguez, Lenz, et al., 2019), we introduce
a methodology that replaces several intricate classical components
with a single data-driven approach. DRL has been applied to multiple
complex robotic domains (D. Chen et al., 2021; Hwangbo et al., 2019;
Pane et al., 2019; Rodriguez and Behnke, 2021). In this chapter, we
utilize a highly efficient GPU-based simulation (Makoviychuk et al.,
2021) in conjunction with DRL to train a policy for dexterous pre-grasp
manipulation.

Many approaches focus on learning the policies directly from
the low-level sensory inputs, such as camera images and point
clouds (Mandikal and Grauman, 2020; Qin et al., 2022). We argue,
however, that the majority of data points in these inputs, such as
background pixels in an image, are irrelevant to the manipulation
policy. Therefore, we assume that perception is performed by an exter-
nal method, and our approach is provided with high-level semantic
information. For example, such external methods could reconstruct
the object shape from partial observations (X. Han, Laga, and Ben-

84

5.1 INTRODUCTION

Figure 5.1: Dexterous functional grasping. Top to bottom: Learning human-
like functional pre-grasp manipulation in multiple parallel envi-
ronments; Dexterous pre-grasp manipulation that includes reori-
enting and repositioning a drill; Intuitive human-like functional
grasps for three object categories, achieved only with a target
index fingertip position and desired object orientation.

namoun, 2021; Rodriguez, Huber, and Behnke, 2020; D. Yang et al.,
2021; L. Zhou et al., 2024), transfer the functional grasp (Rodriguez
and Behnke, 2018; Wei et al., 2024; R. Wu et al., 2023; Y. Zhang et al.,
2023), and estimate the 6D pose of the object (Amini, Periyasamy,
and Behnke, 2022; Deng et al., 2020; Hofer et al., 2021; G. Wang et al.,
2024).

This assumption enables speeding up the learning process since
the policy can be represented by a model with fewer parameters. In
addition, the expensive image rendering is avoided. By considering
multiple object instances within the same category during training, we
further reduce the inputs to the policy, as category-specific features of
the object geometry and dynamics are implicitly learned. Finally, we
eliminate the need for expert demonstrations by introducing a dense
multi-component reward function that naturally encourages dexterous
manipulation.

85

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

An ability to successfully achieve target functional grasp is the
desired behavior of the learned policy. A target grasp representation
greatly influences the speed of learning as well as the final result. In
this work, we explore two possible target grasp representations. Each
of them comes with its own strengths and weaknesses.

An explicit target grasp representation strictly defines desired hand
and finger poses relative to an object. It introduces a clear desired
result and prevents the policy from being stuck in a certain category of
sub-optimal behaviors. However, it comes at the cost of having an ex-
ternal oracle defining these explicit targets, which may be challenging
for novel object instances.

Alternatively, we propose to represent functional grasps more ab-
stractly, through a constraint. As such, in this work, we select index
fingertip position and hand orientation relative to an object. Such rep-
resentation is more compact and enables the policy to learn a variety
of different grasps that satisfy the constraint, such as the index finger
on the trigger of a drill. Defining this constraint for novel instances
is an easier task compared to an explicit grasp representation since
accurate finger positions are not required. However, this comes at
the cost of ensuring that the learned grasps are sufficient to securely
lift and utilize the objects. We show that the proposed dense multi-
component reward function can be effectively applied to both grasp
representations with minimal modifications and consistently yields
meaningful policies.

To evaluate the proposed method, a single policy is learned in sim-
ulation on three conceptually distinct rigid object categories: drills,
spray bottles, and mugs. Using dense multi-component reward, the
policy learns to perform dexterous pre-grasp manipulation on pre-
viously unseen object instances of known categories (Fig. 5.1). The
learning is performed in simulation in less than three hours on a single
GPU.

In summary, our main contributions are:

e a multi-component dense reward formulation that quickly yields
policies capable of dexterous pre-grasp manipulation of novel
objects using a multi-finger hand,

e a constraint-based target functional grasp representation, which
is easier to define compared to an explicit grasp representation.
Such representation enables exploring different grasp configura-
tions, satisfying the functionality constraint, and

e a functional grasping object mesh dataset with three object cate-
gories.

86

5.2 RELATED WORK

5.2 RELATED WORK

Dexterous pre-grasp manipulation has been an active area of research
for decades. Multiple classical model-based approaches have been
proposed (L. Y. Chang, Srinivasa, and Pollard, 2010; Dogar and Srini-
vasa, 2010; L. Han and Trinkle, 1998; K. Hang, Morgan, and Dollar,
2019; Muhayyuddin et al., 2018). They work well with known objects
and exact models but require carefully hand-crafted, task-dependent
algorithms. Moreover, such approaches suffer from uncertainties in-
troduced by highly dynamic, contact-rich manipulation.

In our prior research (Pavlichenko, Rodriguez, Lenz, et al., 2019), we
address functional grasping of novel object instances of known cate-
gories by means of re-grasping with a dual-arm robot. There the main
idea is to perform an arbitrary grasp with one hand, gaining control
over the pose of the object. Then, position the hand that is holding
the object in such a way that a direct functional grasp can be achieved
by the other hand. The described manipulation pipeline is imple-
mented with several classical approaches. While humans commonly
employ both hands simultaneously for manipulation tasks, the dexter-
ity of a single human hand significantly exceeds the requirements for
functional pre-grasp manipulation. Building upon our prior work, a
natural progression toward achieving comparable performance with
robotic manipulators involves executing the same task using a single
hand. However, achieving such highly dynamic manipulation with
classical approaches is very challenging.

A promising solution to such problems is to leverage data-driven
methods. In particular, DRL and imitation learning (IL) using NNs to
represent policies for dexterous manipulation have gained much pop-
ularity in recent years (O. M. Andrychowicz et al., 2020; Levine et al.,
2016; H. Zhu et al., 2019). By learning purely from observed experi-
ences and/or provided demonstrations, these methods yield highly
reactive policies capable of dexterous multi-finger manipulation.

W.-M. Zhou and Held, 2022 address pre-grasp manipulation of ob-
jects in ungraspable configurations through extrinsic dexterity. Their
method uses model-free RL to learn to push objects against a wall
to achieve a graspable pose. The method uses minimalistic object
representation, similar to our approach. However, it has difficulties
generalizing to objects with complex non-convex shapes. In our ap-
proach, this issue is resolved by learned implicit category-specific
geometry knowledge. Similarly, Z. Sun et al., 2020 use model-free RL
to obtain a policy for a dual-arm robot that pushes an object next to a
wall and achieves a grasp with the other hand. Both works use parallel
grippers, which limits the manipulation dexterity.

Qin et al., 2022 train a dexterous manipulation policy for an Allegro
hand to grasp novel objects of a known category. Their approach uses
point clouds as input to provide information about object geometry:.

87

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

o

Figure 5.2: Example of a functional and an arbitrary grasp. Left: Arbitrary
grasp. Right: Functional grasp. Note that an arbitrary grasp is suit-
able for pick-and-place tasks. At the same time, only functional
grasp with an index finger on the trigger enables the designated
use of the spray bottle.

The difference to our work is that the grasps are arbitrary, while
we specifically address functional grasping, as shown in Fig. 5.2.
Mandikal and Grauman, 2020 propose to learn a policy with object-
centric affordances to dexterously grasp objects. Notably, the policy is
learned with a prior derived from observing manipulation videos. This
requires tedious annotation of human grasp regions in the images.

A wide range of works is based on real-world expert demonstra-
tions (Mandikal and Grauman, 2022; Radosavovic et al., 2021; Ra-
jeswaran et al., 2018). These approaches have to deal with the chal-
lenges of mapping human motion to the kinematics of the robot arm
and hand. Hence, the direct applicability to different robotic setups
is not straightforward. Z. Chen et al., 2022 address this issue by boot-
strapping a small dataset of human demonstrations with a larger
dataset including novel objects and grasps. The objects are deformed,
and dynamically consistent grasps are generated. The policy is then
trained in a supervised manner in simulation, followed by a direct
transfer to the real world. This method struggles with objects of com-
plex shapes. Palleschi et al., 2023 utilize human demonstrations to
teach the policy to grasp a wide range of objects. The approach is
evaluated on two grippers: soft and rigid. In contrast, in our work,
we avoid using explicit demonstrations and instead rely on a gen-
eral dense reward function to guide the policy towards dexterous
manipulation.

A completely different approach is proposed by Dasari, Gupta, and
Kumar, 2023: a combination of exemplar object trajectories with pre-
defined pre-grasp configurations as training data. The policy learns
to perform a wide variety of tasks in simulation without any task-
specific engineering. The key difference to our work is that learned
behaviors directly depend on supplied exemplar trajectories. Addi-

88

5.3 BACKGROUND

tionally, the manipulation is performed by a freely floating hand. Such
an approach relaxes several constraints imposed by the kinematics
of the robotic arm. This makes manipulation easier but less realistic,
especially in cases when objects are on the edge of the workspace. The
pre-grasp-based approaches were also introduced in (Baek et al., 2021;
Kappler, L. Chang, et al., 2010; Kappler, L. Y. Chang, et al., 2012).

T. Wu et al,, 2024 utilize a teacher-student approach combined
with policy distillation. This method produces a policy capable of
repositioning and reorienting objects across a wide range of categories.
The goal is to achieve the required functional grasp object poses
without actually grasping the object. In contrast, our approach focuses
on achieving required functional grasps while simultaneously learning
to perform the pre-grasp manipulation.

Agarwal et al., 2023 propose an object-hand manipulation repre-
sentation for dexterous robotic hands, followed by a functional grasp
synthesis framework, and evaluate the approach in the real world.
The main disadvantage of this method is the necessity to compose a
complex and large dataset. T. Zhu, R. Wu,]. Hang, et al., 2023 propose
to use eigengrasps to reduce the search space of RL using a small
dataset collected from human expert demonstrations. The target func-
tional grasps are predicted with an affordance model. The approach is
successfully transferred and evaluated in the real world.

In contrast to these approaches, we avoid any expert demonstra-
tions. Instead, we focus on obtaining dexterous manipulation policies
solely by means of a dense multi-component reward function that is
formulated without using specific hand, arm, or object details.

5.3 BACKGROUND

The objective in this chapter is to learn a policy 7t that achieves pre-
grasp manipulation of novel object instances with the aim of reaching
a given functional grasp. The policy 7ty is represented by a DNN and
is parameterized by weights 6, learned with DRL. The problem is
modeled as a MDP: {S, A, P, r} with state space S € IR", action space
A € R™, state transition function P: S x A — S, and reward function
r: S x A — R. Since the problem has continuous state and action
space, the policy 719(a|s) represents an action probability distribution
when observing a state s(t) at a timestep ¢.

The objective of DRL is to maximize the expected reward:

T

J(rre) =) _E[y'r(s(t), a(t))], (5.1)

t=0

where 7 € [0,1] is the discounting factor.
In this chapter, the policy is provided with a target functional grasp
to be reached. In the case of the explicit grasp representation, the

89

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

target is a pre-grasp, defined as a 6D hand pose in an object frame
plus hand joint positions. This pre-grasp is very close to the desired
functional grasp, so closing the hand will guarantee a successful grasp.
The advantage of a pre-grasp is that it can be reached more freely,
and slight inaccuracies in its definition are negligible, as discussed by
Dasari, Gupta, and Kumar, 2023. In the case of the constraint-based
target grasp representation, the target can be exact, as it does not
include finger positions, making it less likely to have an unreachable
target.

5.4 EXPLICIT TARGET GRASP REPRESENTATION

A target functional grasp is explicitly represented by a 6D pose of the
end-effector in the object frame of reference and the joint positions of
the fingers. This representation has the advantage of providing the
policy with a concrete goal, which typically enhances learning speed
and convergence stability. A disadvantage of such representation is
twofold. First, very specific grasps that lead to a desired outcome have
to be produced, which is not straightforward, especially for novel
object instances. Second, an explicit target grasp disallows the policy
to explore other grasp configurations. Oftentimes there are multiple
grasp configurations that make the grasp functional but are different
from the given explicit target grasp. In this section, we present the
methodology for learning pre-grasp manipulation with explicit grasp
representation with DRL.

5.4.1 Action Space

The policy produces actions a(t) with a frequency of 30 Hz. An action
represents a relative displacement in 3D hand position, hand orienta-
tion, and hand joint position increments. With this action definition,
hand joint targets are straightforward to obtain. The arm joint tar-
gets are calculated via IK. Finally, the joints are controlled with PD
controllers.

In this work we apply the proposed method to a 6 DoF URbe robotic
arm with an attached 11 DoF Schunk SIH hand. The joints of the hand
are coupled, leaving five controllable DoF. Thus, in this work, an action
is an 11-element vector, where three elements define a displacement
of the 3D hand position, three elements define a displacement of the
hand rotation as Euler angles, and five elements define a displacement
of the hand joint positions. We further assume a five-fingered hand
with five controllable DoF. However, it is straightforward to apply
our approach to a hand with an arbitrary number of fingers and DoF.
We use Euler angles representation for the rotation-related part of the
action, as it is straightforward to obtain the next target with small
iterative increments while using a minimal number of variables.

90

5.4 EXPLICIT TARGET GRASP REPRESENTATION

~

Object pose

I

Object B-box [Grasp poseo I

Dist. to fingers

I
I

[Grasp joints I

4 I

Reward

Reach grasp
position

Reach grasp
rotation

Reach grasp
hand joints

Figure 5.3: State representation and the reward function diagram. The state
consists of information about the hand, the object, and the target
functional grasp. "O" denotes object frame of reference. The re-
ward function consists of a term encouraging reaching the target
grasp, a term encouraging pre-grasp manipulation, and a low
manipulability score penalty.

&

5.4.2 State Space

The top part of Fig. 5.3 illustrates the state vector s(t), which consists
of three distinctive parts: information about the hand h, information
about the object 0, and information about the target functional grasp

g
s=[h,o0,g] (5.2)
Information about the hand is a column vector:
h = [hp, e, Ty, 5, 1Y), (5.3)

where hp, = [hpx' hpy, hpz] is a 3D hand position vector, h, is a 4-element
hand rotation vector represented by a quaternion, and h; is a 5-element
hand joint position vector; hg and h? are hand position and rotation
in the object frame of reference O. Thus, information about the hand h
is a 19-element vector. In this chapter we frequently use the following
subscripts: x,, denoting 3D position, x, denoting rotation expressed as
a quaternion, and x; denoting joint positions.

91

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

Information about the object is a column vector:
0= [opr Or, Opb, Os, Oc]/ (54)

where o, is a 3D object position, o is a 4-element object rotation vector
represented by a quaternion, oy, is a 6-element vector representing an
object bounding box by the two 3D positions of diagonally opposing
bounding box corners, os is a 10-element vector of signed distances
between fingertips and middles of the fingers to the object surface,
and o is a C-element one-hot vector representing object category.
Distances from fingers to object surface are efficiently calculated from
a precomputed object SDF. We adopt this approach from the work
of Mosbach and Behnke, 2022. Thus, information about the object is
a (23 4 C)-element vector. Such representation is compact; however,
the general geometric features of the object categories are learned
implicitly from the experience.

The desired functional grasp is provided as a column vector:

=188 8l (5.5)

where gg is a 3D hand position in the object frame of reference, g is
a 4-element hand rotation vector represented by a quaternion, and g;
is a 5-element hand joint position vector. The target functional grasp
is represented by a 12-element vector. In practice, functional grasps
can be provided by methods such as (Rodriguez and Behnke, 2018;
T. Zhu, R. Wu, X. Lin, et al., 2021).

In this work we have the number of categories C = 3. Thus, the state
is a 57-element vector. It resembles a high-level semantic representation
of the scene. This compact state can be computed fast on a GPU and
thus facilitates quick learning. Moreover, compared to DRL models
that learn directly from raw visual inputs, smaller models with fewer
parameters can be used.

5.4.3 Reward Function

The bottom part of Fig. 5.3 illustrates the composition of the reward
function r(t) that is defined as:

r(t) = rgrasp(t) + rman(t) +rmpe(t) +77(t), (5.6)

where 7g.5p €ncourages movement towards the target grasp g, "man
encourages pre-grasp manipulation of an object, ryp penalizes being
in configurations with low manipulability, and rr rewards reaching
the target functional grasp g. Each reward component is defined to
be in [—1,1] and is described in detail below. For brevity, we omit
specifying a dependency on time ¢, unless necessary.

92

5.4 EXPLICIT TARGET GRASP REPRESENTATION

First, we define the distance function ¢ between two quaternions ¢,
and g, as the rotation between them:

¢(q,4q,) = 2arccos((q; - ‘12_1)4)~ (5.7)

The grasp reward 7gasp is defined as:
Tgrasp = T, + T, + /\rh]-/ (5.8)

where rj,, encourages moving the hand position towards the target 3D
grasp position, 1, encourages moving the hand rotation towards the
target grasp rotation, and rj, encourages moving hand joint positions
towards the target grasp joint positions. A € [0,1] is the grasp joint re-
ward importance factor. Overall, the 7gsp reward encourages aligning
the hand pose and joint positions with the target grasp pose and joint
positions correspondingly. The hand position reward T, is defined as:

Ahy(t—1) — Ahy(t)
rny(t) = —F e B, Al = ||1g - 87|, (5.9)
p

where Ahy, is the Euclidean distance from the hand position hg to
the target grasp hand position g}?. AhZ™ is a maximal hand position
change during the step duration Af: ART® = vﬁ;axAt with v}l‘;ax being

the maximal linear velocity of the hand. Given the UR5e arm that is
used in this work, vmax =1m/s and At = 0.0333s.
The hand rotation reward is defined as:

1) = BB = (02,49, (510)

where A, is a distance from the hand rotation k¢ to the target grasp
hand rotation g9, calculated according to Eq. 5.7. Ah™® is a maximal
hand rotation change during time At. It is defined analogously to
AhT*™. We use vj!® = rrrad/s.

Fmally, the hand joint reward is defined as:

Ahj(t—1) — Aly(t) 1M
iy (£) = — v j ,Ahjzﬁgjmji—gji‘, (5.11)

where M is the number of controllable hand joints, Ah; is an average
per-joint distance to the target grasp joint positions, and AL is a
maximal joint position displacement during time At. It is defined
similarly to the maximal position and rotation displacements through
the maximal joint velocity. We use vﬁax = rrrad/s.

93

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

The hand joint importance factor A is defined as:

min(hgrox, Ahy)) (1 B min(hY, Ahy))

A= (1 - hgrox hgrox

(5.12)

where 1™ is a predefined constant, representing a proximity distance
between the hand position and the target grasp position. When the
displacement between the target and the hand is less than this distance,
the hand joint position reward rj, becomes active. Otherwise, A = 0
disables the contribution of Tn, as shown in Eq. 5.8. We set the distance
hgrox to be equal to the length of the hand. Similarly, i} is a rotation
proximity distance; we use hY'"* = 1rad. Overall, incorporating A
leads to ignoring the hand joint reward when the hand is far from the
target grasp pose. This facilitates using the fingers for manipulation
rather than pursuing yet distant target grasp positions.

The manipulation reward 7man is defined as:

"man = "reach T "hold + "orient, (513)

where 7each €ncourages moving the hand towards the object, 1014
encourages holding the object in the hand, and 7¢ient €ncourages
orienting the object towards a nominal rotation, where the target
grasp is more likely to be reachable. Thus, the manipulation reward
term encourages an intuitive reach — hold — orient behavior for the
pre-grasp object manipulation. All terms in this reward function are
strictly positive.

The hand reach reward is defined as:

_ Yh_y (d(Hp, (t—1)) —d(Hp, (1))
Al /

Treach <t> (514)

where d is a function that takes a set of 3D points and returns signed
distances from the points to the object surface, utilizing the precom-
puted object SDF. Ah7®* is a maximal position displacement, defined
in Eq. 5.9. Hp is a set of K 3D points located between the thumb
and the other fingers, described in detail below. In the context of this
reward, these points guide the hand towards a position where the
object is contained between the thumb and the other fingers, which is
advantageous for manipulation.

The object hold reward is defined as:

1 K d(Hpk) _p
Thold = 7 " Jmax ’

(5.15)

where p is a predefined constant radius of spheres with positions H,
as centers and ;" is a per-point maximum possible distance from
the point to the closest finger surface. The set of hold-detect points
H,, is positioned between the tip of the thumb and between the tip

94

5.4 EXPLICIT TARGET GRASP REPRESENTATION

Figure 5.4: Manipulation reward rman is composed of three components:
reach, hold, and orient, representing a sequence of interconnected
tasks. Equidistant points between the thumb tip and middle fin-
gertip & center, used to query distances to the object, are red,
blue, and green crosses. Rewards: plus signs, size is proportional
to the reward value. First, the motion of the equidistant points
to the object surface is rewarded by the reach reward. Second,
equidistant points that are inside the object yield a bigger hold
reward. Finally, orienting the object towards the nominal orien-
tation yields an even bigger reward. Note that closing the hand
brings the equidistant points closer together, often pushing them
inside the object. Such design implicitly rewards grasping behav-
iors without using expensive contact information or explicitly
rewarding specific movement primitives.

and middle of the rest of the fingers. Thus, points between fingertips
represent positions where objects can be pinch-grasped, and points
between the thumb tip and middles of the fingers represent positions
where objects are grasped more securely. Each direction tip — tip or
tip — middle of a finger has three equidistant points. This ensures
a positive response when an object is positioned between the thumb
and other fingers imperfectly.

When the hand closes, the equidistant points come closer to each
other, which promotes closing the hand around an object. Note that
the maximum 11,14 is achieved when fingers evenly embrace the object,
which naturally resembles a grasp. For simplicity, we use only the
thumb — middle finger lines in this work, which yields six equidistant
points, as shown in Fig. 5.4.

The intuition behind this design choice is that in the case when an
object is contained between the middle finger and the thumb, it is
also contained between the index and the ring fingers, as defined by
the hand topology. While it is straightforward to utilize several finger
pairs at the same time, we observed in practice that using only middle
— thumb lines for this reward term was sufficient to learn grasping
behaviors. At the same time, having all other fingertips close to the
object is simultaneously encouraged by the reach reward term #yeqch.
The object orient reward is defined as:

Ao (t—1) — Ao, (t :
rorient(t): Or(31, Or(>1A0r:4)(0r/0?0mma1)/ (5.16)

where Ao, is the distance from the object rotation to the nominal
object rotation oP°™i"!, A nominal rotation resembles a natural object

95

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

orientation as intended for functional use: the object Z-axis points
upwards, and the object X-axis (the direction of the tool tip) points
away from the hand. Although there are many other feasible object
orientations to perform a functional grasp, we find that such definition
is generic and not too biased. In practice, it provides good guidance on
how to reorient an object when it is in a state where a direct functional
grasp is not possible. Together, the reach, hold, and orient rewards
represent a sequence of interconnected tasks that help to steer the
policy towards dexterous manipulation behaviors (Fig. 5.4).

The manipulability penalty reward is defined as:

e =1 -2/ (14 (Rafllned)?), (5.17)
where |J| is a determinant of the end-effector Jacobian J and |J|max
is a maximum determinant value that is penalized. We define |J|max
to be 15% of maximal observed |J| across 100 random arm configura-
tions. This reward penalizes coming close to singularities and leads to
learning more intuitive motions.

Finally, the target grasp reward is defined as:

1 if Ahy < Ty AARy < T, AAR < T,
pp={4 0 BN S Ip SIS e ASH S (5.18)

0 otherwise,

where T, T;, T are the distance thresholds for hand position, rotation,
and hand joint positions to the target grasp. They define the accuracy
with which the target grasp has to be achieved. We use T, = 1cm,
T; = 0.15rad, and Tj = 0.1rad. The episode ends when the target
grasp is reached, as defined by the discussed thresholds.

In the proposed reward function, we widely use the differential
distances. Compared to directly using the velocities, such an approach
naturally avoids learning overshooting behaviors, which oftentimes
may slow down the convergence. Note that all reward terms are
defined in a generic way and can be easily configured for an arbitrary
robotic arm, hand, and a set of rigid objects. All reward components
are defined to be in the interval [—1,1] or [0, 1]. This allows applying
relative scaling easily. For the best performance, we scale the rewards
inverse-proportionally to the frequency of their achievement: rr >
Torient = Thold > Treach- Reward terms that are harder to achieve
receive a larger scaling factor. We leave the other reward components
unscaled. This reduces the probability that the policy gets stuck in
the local minima created by accumulating rewards granted for actions
that can be achieved easier than the final goal.

To summarize, the multi-component reward function can be split
into three terms:

1. the grasp reward rgrasp €ncourages reaching the given functional
grasp,

96

5.5 CONSTRAINT-BASED TARGET GRASP REPRESENTATION

2. the manipulation reward 7man encourages reaching, holding, and
reorienting the object, and

3. the manipulability penalty reward rp penalizes being close to
singularities and thus helps to avoid unintuitive behavior.

Each component is a continuous dense reward. The components com-
bine to effectively guide the policy towards learning a robust, dexter-
ous pre-grasp manipulation. Finally, a sparse component r1 rewards
reaching the target grasp.

5.4.4 Curriculum

In this work, we avoid having any explicit expert demonstrations and
focus on learning robust and natural policies for object pre-grasp ma-
nipulation through pure DRL with dense reward shaping. To facilitate
faster and more stable learning, we propose a simple two-stage cur-
riculum. In the first stage, we place the objects in poses where target
functional grasps can be reached directly. After that, the second stage
has full difficulty, taking advantage of the warm-start provided by the
first stage.

During the first stage, the objects are positioned on the table in their
nominal poses 5cm away from the inner side of the hand. The arm
is set to a neutral configuration with a high manipulability score. We
disable the rman reward term during the first stage so that the policy
can converge faster without being stuck in potential multiple local
minima. Note that this curriculum is agnostic to object-specific details.
Thus, we keep the approach general while achieving faster policy
convergence.

55 CONSTRAINT-BASED TARGET GRASP REPRESENTATION

In Section 5.4 we presented a DRL problem formulation with an
explicit target grasp representation. Alternatively, a target functional
grasp can be represented using a constraint that defines the grasp
as functional. For instance, with a drill, such a constraint might be
positioning the index fingertip on the trigger to make the activation
of the drill possible. In this section, we propose a methodology for
learning a pre-grasp manipulation policy using a constraint-based
target grasp representation. Specifically, we represent the target grasp
as a 3D target position of the index fingertip and the end-effector
rotation in the object frame of reference.

This representation offers two advantages. First, it allows the agent
to explore various grasp configurations that satisfy the given target
functional grasp constraint. This facilitates the learning combinations
of manipulation strategies and grasp configurations end-to-end. Sec-
ond, it relaxes the requirements for an external oracle that has to

97

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

Finger joint

positions 3D index

fingertip position
+
EEF orientation

Figure 5.5: Two proposed target grasp representations. Left: Explicit grasp
representation, consisting of 6D end-effector pose and finger
positions. Right: Constraint-based representation. The grasp is
represented with a 3D position of the index fingertip and end-
effector orientation. Note that this representation allows the policy
to explore different grasp configurations, satisfying the constraint.

provide the target grasp. This is because identifying keypoints like
the trigger and the desired end-effector orientation is easier than
specifying a full explicit grasp configuration.

We argue that both grasp representations require the orientation
of the object. Additionally, they both need two distinct 3D positions.
These include the object position in one case and a specific point of
interest in the other. However, the explicit grasp representation also re-
quires the exact joint angles of all fingers. This additional requirement
introduces more possibilities for errors. Consequently, it increases the
likelihood of failed grasps. This is especially important when deal-
ing with previously unseen object instances. Defining specific joint
angles for each finger is more challenging than defining a 3D position
of the point of interest on the object, such as a trigger of the drill,
spray bottle, or handle of a mug. The downside of this approach is a
more complex learning pipeline. Both target grasp representations are
shown in Fig. 5.5.

5.5.1 Action Space

We keep the action representation unchanged, as in Section 5.4.1. The
6D pose of the end-effector is controlled through the IK, and finger
positions are controlled directly in joint space through a coupled-joints
embedding. Such action representation is generic and fits learning
with constraint-based target grasp representation well.

98

5.5 CONSTRAINT-BASED TARGET GRASP REPRESENTATION

5.5.2 State Space

The state representation is almost identical to the one described in
Section 5.4.2. The grasp representation part is changed to reflect the
constraint target grasp representation, addressed in this section. The
desired functional grasp is thus provided as a column vector:

g = s 87) (5.19)

where gi?p is a 3D index fingertip position in the object frame of

reference, g? is a 4-element hand rotation vector represented by a
quaternion. Thus, the target functional grasp is represented implicitly
through a functional grasp constraint with a 7-element vector. The full
state is a 52-element vector.

5.5.3 Reward Function

To reflect the semantic changes introduced by the constraint-based
target grasp representation, we change the definition of a successfully
achieved functional grasp from Eq. 5.18 accordingly:

1 if Adp <Tp ANARy < Ty Nop, > T

rr = (5.20)

0 otherwise,

where Ai is the distance from the current index finger position i,
to the desired one, Ah; is the distance from the current end-effector
rotation to the desired one, and op_ is the Z coordinate of an object. We
use T, = 1cm, Ty = 0.15rad, and T = Zgaple + Zoffset CM, Where Zipe
is a height of the surface of the table and zyfset = 15cm is an offset
chosen such that any object from the dataset positioned at such height
above the table can not touch the surface of the table.

The last condition requires an object to be lifted off the table. This
is necessary because without it the policy could learn to satisfy the
functional grasp constraint without achieving a stable grasp. Thus,
by accepting only grasps that are having an object lifted off the table,
we introduce an implicit grasp stability constraint. Note that it is
not necessary in the case of an explicit target grasp representation.
In that case we assume that provided explicit grasps are feasible,
allowing for lifting and using the object. This, however, is one of the
drawbacks of the explicit target grasp representation, as it adds more
responsibility to the external oracle. In contrast, in constraint-based
grasp representation, this responsibility is transferred to the policy.

Given the modifications from above, we modify the reward function
from Eq. 5.6 accordingly:

T(t) = rgrasp<t) + rlift(t) + rman(t) + rMP(t) + VT(t), (5.21)

99

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

where T'grasp €NcCourages movement towards target grasp g, Yman €N-
courages pre-grasp manipulation of an object, r\ip penalizes being in
configurations with low manipulability, and rr rewards reaching the
target functional grasp g, and the new term ry;, encourages lifting an
object off the table:

rige(£) = min(max((op, — Zable) / Zoffset, 0), 1) (5.22)

The term ry; € [0, 1]. Not having negative rewards allows the agent to
explore freely. Not having an increment-based reward (as in Eq. 5.9)
prevents the agent from maximizing the reward by simply repeatedly
moving an object up and down.

Finally, the grasp reward term rgasp is modified such that:

Tgrasp = Ti, +n,, (5.23)

where r; encourages moving the index fingertip position towards
the target index fingertip position, rj, encourages moving the hand
rotation towards the target grasp rotation. Both position and rotation
are in the object frame of reference. The r; term is defined in the same
way as Eq. 5.9:

Nip(t—1) — Aip(t)
- Aimax ’

ri, (t)

(5.24)

where Aij, is the Euclidean distance from the index fingertip position
ig to the target grasp index fingertip position g}? - Aig'™ is a maximal
index fingertip position change during the step duration At, which
is computed as a sum of maximal possible end-effector velocity and
maximal possible index fingertip velocity relative to a hand.

Overall, the reward function has the same structure and ideas as de-
scribed in Section 5.4.3, with modifications that reflect a more compact
and abstract target grasp representation through an index fingertip po-
sition constraint. All reward terms are dense and continuous, defined
to be in the range [—1, 1] or [0, 1], such that relative reward component
scaling is straightforward.

5.5.4 Curriculum

Lifting an object above the table introduces an additional complexity
on the way to learning a meaningful policy. To compensate for that
and keep the learning time short, we modify the curriculum described
in Section 5.4.4 by introducing an additional curriculum step. The
three-step curriculum now is formulated as follows:

1. Learning how to reach the target grasp without lifting an object.
The objects are spawned upright in nominal configuration, very

100

5.6 EVALUATION

close to the hand. Lifting an object is excluded from the success
criterion formulation.

2. Learning how to reach the target grasp and lift an object. The
hand is further away and lifting the object is required. Otherwise
this step is the same as Step 1.

3. Learning the complete objective of the pre-grasp manipulation.
The objects are initialized in any combination of roll and yaw on
the table.

The three-step curriculum subdivides the given learning problem into
stages of gradually increasing difficulty while maintaining a generic
formulation that is straightforward to apply to arbitrary objects, arms,
and hands.

5.6 EVALUATION

To evaluate the proposed approach, we apply it to the 6 DoF UR5e
robotic arm with the attached 11 DoF Schunk SIH hand. The joints of
this wire-driven hand are coupled, leaving 5 controllable DoF. In this
evaluation we try to answer the following questions:

e Does our approach reliably produce robust manipulation poli-
cies, capable of dexterous pre-grasp manipulation of unseen
object instances of a known category?

e Does the multi-component manipulation reward rman lead to
policies with higher success rates?

e Does the curriculum improve convergence stability?

e Does our approach enable learning of feasible manipulation
policies for both target grasp representations?

5.6.1 Setup

We use PPO (Schulman, Wolski, et al., 2017) to train the policies.
We employ the RL Games (Makoviichuk and Makoviychuk, 2021)
high-performance implementation for GPU parallelization. We use
the findings of Mosbach and Behnke, 2022 as a base, and keeping the
learning algorithm hyperparameters the same, with 5 x 104 learning
rate and discounting factor v = 0.95. The policy is represented by a
three-layer fully-connected NIN. In our case, the input is a 57-element
vector. The network is a MLP and has the following structure:
57 x 512 — 512 x 256 — 256 x 128 — 128 x 11.

In our experiments, we pursue the objective of learning a single
functional grasping policy for three rigid object categories: drills,
spray bottles, and mugs. To this end, we prepared a mesh dataset of

101

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

Figure 5.6: Functional grasping dataset with three object categories: drills,
spray bottles, and mugs. Each category has 10 train objects (gray
background) and 3 test objects (green background).

39 objects: 13 of each category, where ten objects are for training and
the remaining three objects are used for testing (Fig. 5.6). The dataset
is composed of meshes from (Rodriguez, Di Guardo, et al., 2018) and
of meshes available online!. The dataset is available online?.

We select these three specific object categories as they represent
objects that are functionally grasped in three different ways relative
to their center of mass (CoM). Drills are functionally grasped roughly
at the CoM. Spray bottles are functionally grasped far from the CoM
along the Z axis of the object. Finally, mugs are grasped far from the
CoM along the X axis of the object. At the same time, these categories
have diverse geometrical shapes. Drills have complex shapes with
multiple graspable regions. Spray bottles are elongated, making them
difficult to position upright. At the same time, some of them feature
smooth cylindrical shapes that can be easily rolled, while the others
resemble parallelepiped-like shapes. Finally, mugs feature a design
with two distinct cavities: a large, open space for containing liquid

https://free3d.com, https://3dsky.org
https://github.com/AIS-Bonn/fun_cat_grasp_dataset

102

https://free3d.com
https://3dsky.org
https://github.com/AIS-Bonn/fun_cat_grasp_dataset

5.6 EVALUATION

and a smaller, through-passage formed by the handle. These three
categories differ fundamentally in their geometry and functional grasp
regions. These differences make them suitable candidates for forming
a compact but diverse dataset. Due to the high variability in grasping
strategies, this dataset requires a certain level of generalization.

In this work, we use the high-performance GPU physics simulator
Isaac Gym (Makoviychuk et al., 2021). The experiments are performed
on a single NVIDIA RTX A6000 GPU with 48 GB of VRAM.

We assume that the objects are located on a table in front of the
robot. Thus, there are three possible natural poses in which drills,
spray bottles, or mugs can be. They include standing upright and
lying on their left or right side. All other possible poses on a flat
surface are unstable and transition quickly to one of the described
poses. Mugs can additionally be positioned upside down. However,
we do not use this configuration in our experiments to ensure that the
results are comparable across all object categories.

Actions are generated with a frequency of 30 Hz. The objects are
positioned on the table in front of the robot, such that at least 75%
of their bounding box is in the manipulation workspace. Poses in
which objects are lying on their sides are the most challenging for
functional grasping because of the occlusion created by the table. For
this reason, we focus on such poses and use the following object
rotation distribution: 20% of the objects are upright, 40% are on their
left side, and 40% are on their right side. The yaw angle and the object
position are sampled uniformly. The hand starts at a random 6D pose
above the table. Notably, objects lying on the right side require more
complex pre-grasp manipulation for functional grasping with the right
hand. Learning is performed on the training set of 30 objects. A target
functional pre-grasp and the constraint for the index fingertip are
manually defined for each object.

To make the simulation setup more realistic, Gaussian noise is
applied to all observations supplied to the policy. For positions and
distances, the zero-mean noise has a standard deviation ¢ = 3 mm.
For rotations, the zero-mean noise has a standard deviation ¢ = 5°.
Before each action is generated, the noise values are drawn from the
distribution specified above and added to the ground truth values
from the simulation. The only two observations that do not have noise
are the object category and the target grasp.

In each environment, an object is assigned a realistic random mass.
The mass distribution in kg per category is represented by a Gaussian:
N (1.4,0.2) for drills, N'(0.5,0.15) for spray bottles, and N (0.3,0.07)
for mugs. Both noise and mass are limited to deviate from the mean
for not more than 3c. The new mass values are set before each episode.

We keep the reward value for reaching the target grasp rr = 5000, as
it is the default value in the RL. Games framework. We scale the reward
components: orienting reward 7grient by 500 and holding reward 014

103

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

Wall time (Curriculum) [h]

0.0 0.5 1.0 1.5 2.0
1.0 i(- Curriculum stage 1 end
i
0.8
Q
2 0.6
7 N B 0
9] a0 A
3 . Ay 4
S 0.4+
%! i
]
H
0.2 .': i Curriculum stage 1
i —— Curriculum stage 2
i i ----------- No curriculum
0.0 H-Lt . i ; ;
0 1 2 3 4
Step 1e8

Figure 5.7: Training curves in the curriculum ablation experiment for explicit
target grasp representation. The two-stage curriculum signifi-
cantly improves convergence stability compared to the runs with-
out the curriculum. Lines: means. Colored areas: 95% confidence
intervals.

by 25. The other reward components are not scaled. Both scaling
factors are chosen to be one order of magnitude less than the final
reward and the corresponding reward component with the higher
scaling. The order of scaling is defined by the desired action sequence:
first the hand approaches the object (scale 1), then it gains control over
the object by holding it (scale 25), then it orients the object (scale 500),
and finally, after repositioning the object, the target grasp is achievable
(scale 5000).

Switching the order of scaling often hinders the progress of learning
to achieve the target grasp. That is because the policy greedily max-
imizes reward through, for example, holding an object, rather than
exploring more difficult and failure-prone orienting the object if it
is yielding less reward. The exact values of these scaling factors are
not affecting the learning speed significantly, as long as the overall
proportions reflect the desired logical sequence: approach, hold, orient,

grasp.
5.6.2 Explicit Target Grasp Representation

In this section, we evaluate the approach using an explicit target grasp
representation that is presented in Section 5.4. We train the policy
on a single GPU with 16,384 parallel environments. Each policy in
this evaluation is trained three times with three different seeds to
assess convergence stability. An episode terminates when: (i) a target
functional pre-grasp is reached, (ii) an object falls from the table, or

104

5.6 EVALUATION

(iii) a maximum number of steps is reached. We set the maximum
number of steps to 200, which corresponds to ~6.7s.

We assume that the provided explicit target pre-grasps are valid and
enable lifting and manipulating an object. Thus we do not require the
policy to lift objects off the table once the grasps are achieved during
the training stage. First, we perform an ablation study of the two-stage
curriculum proposed in Section 5.4.4. During the first stage, the objects
are positioned with a nominal rotation and close to the hand. Since at
this stage the grasp is easily reachable, we disable the manipulation
reward rman to ensure quicker convergence. The first stage continues
until at least a 50% success rate is achieved for each object. During
the second stage, the objects are spawned with the rotations described
above, and the full reward is used.

Fig. 5.7 shows training curves obtained with and without the cur-
riculum. In addition, the wall time is shown for the curriculum runs.
The wall time of the other runs is similar (10 min). The first stage of
the curriculum is completed quickly. The second stage takes longer,
but all three runs reliably converge and achieve a success rate of 97%
in under three hours with little variance.

Without the curriculum, the policy achieves only ~50% success rate
and has a large variance within runs. Hence, the two-stage curriculum
significantly improves convergence speed, stability, and the resulting
success rate. We use a default discounting factor v = 0.95 in all exper-
iments. Lower values, such as v = 0.9, decrease the learning speed
significantly. This is explained by the fact that in such cases, only short
time spans are represented in rewards, leaving out longer-term con-
sequences of complex manipulation. We observed that higher values,
such as y = 0.975, did not provide any significant improvement.

Next, we perform an ablation study of the proposed reward function,
analyzing the contributions of each individual component. We train
five policy variants. First, the proposed method with a full reward.
Second, a variant with a disabled reward component encouraging
moving the hand towards the object 7yeych. Third, a variant with a dis-
abled reward component encouraging holding the object ry,,14. Fourth,
a variant with a disabled reward component encouraging rotating the
object towards the nominal rotation 7orient. And finally, the fifth variant,
where the whole manipulation component #man = "reach + "hold + Torient
is disabled.

Each variant is trained with three different seeds and the same hy-
perparameters as in the curriculum experiments, as described before.
Fig. 5.8 shows training curves for this ablation study. One can observe
that when a single component of the manipulation reward is disabled,
the policy learns to achieve the goal slower but still reliably makes
progress towards a high success rate.

The most influential factor is the removal of the 1, component.
Without rpo1q, the policy has the highest variance within the runs and

105

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

Wall time (Full reward) [h]

0.0 0.5 1.0 1.5 2.0
1.0 : . . .
0.8
L
s 0.6
A
9]
3
s 04
n
0.2
0.0 :
1 2 3 4
Step le8
—— Fullreward - No rhold - NO 'man
_____ No rreach - = No lorient

Figure 5.8: Training curves in the manipulation reward ablation experiment
for explicit target grasp representation. Disabling individual re-
ward components slightly reduces the convergence rate and stabil-
ity. Disabling the whole manipulation reward component makes
the learning process significantly slower and less stable. Lines:
means. Colored areas: 95% confidence intervals.

achieves the lowest success rate among the single-component ablations.
This shows that the reward component encouraging holding behavior
is the most important within the proposed manipulation reward.

A deteriorated but still reliable convergence without single reward
terms suggests that although each component is important, the formu-
lation is generic enough to not depend on every detail of the reward
function. In contrast, disabling the whole manipulation reward #man
has a drastic negative effect on the performance of the policy. Al-
though it achieves a success rate of ~ 50%, it struggles to learn a
robust behavior for objects in difficult configurations. Overall, this
ablation study demonstrates that the proposed manipulation reward
component significantly speeds up the learning of dexterous pre-grasp
manipulation.

To evaluate the generalization capability of the learned policy, we
measure the success rate of the policy learned with a curriculum and
full reward on the training and test sets. The training set consists of
30 objects, ten for each of the three categories. The test set consists of
nine novel objects of the known categories. We perform 100 grasping
attempts for each object. This results in 3000 attempts for the training
set and 900 attempts for the test set. Object initial poses are sampled
as during learning: 20% upright, 40% on the left side, and 40% on the
right side.

106

5.6 EVALUATION

Table 5.1: Average success rates per category in % with the explicit target
grasp representation.

Category Training set Test set

Drills 96.0 =12 943 +£26
Spray bottles 977 =09 923 £ 3.0
Mugs 993 £05 95.6£23
z 977 £05 9414+15

*Mean + 95% confidence interval is shown.

Once the target pre-grasp is reached, the success is tested by closing
the hand. If the object stays in the hand and the key condition of a
functional grasp, such as an index finger on the trigger, is satisfied,
an attempt is considered successful. We allocate 300 steps or 10s per
episode.

The observed success rates for all object categories are reported in
Table 5.1. On the training set, the learned policy shows a high success
rate of 97.7%. As expected, on the test set the success rate is lower, but
still a high value of 94.1%. The highest success rates are achieved for
mugs. This is because they are relatively easy to flip over from the
side position and have a simple geometry. The hardest object category
is the spray bottles. This is because spray bottles are narrow, have a
high CoM, and can be tipped over easily.

Fig. 5.9 shows example rollouts of the policy for three objects from
the test set. One can observe that dexterous interactive pre-grasp
manipulation has been learned that leads to functional grasps for all
three object categories. Videos of the learned interactive functional
grasping behaviors are available online®. It can be seen that complex
pre-grasping strategies such as repositioning the object, reorienting
and up-righting, and re-grasping have been attained. The policy also
learned to reattempt the grasping in case of failures.

5.6.3 Constraint-based Target Grasp Representation

In this section, we evaluate the approach using a more abstract
constraint-based target grasp representation, presented in Section 5.5.
The policy is represented with the same model as in the experiments
with an explicit target grasp representation (Section 5.6.2). The training
procedure, simulation setup, and hyperparameters are also identical.
An episode is terminated when: (i) a provided target constraint, defin-
ing the functional grasp, is satisfied and the object is lifted off the
table, (ii) an object falls from the table, or (iii) a maximum number of
200 steps is reached.

3 https://www.ais.uni-bonn.de/videos/TASE_2024_Pavlichenko

107

https://www.ais.uni-bonn.de/videos/TASE_2024_Pavlichenko

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

Figure 5.9: Rollouts of policy manipulating unseen objects of known cat-
egories, positioned in a way that a direct functional grasp is
impossible. An explicit target grasp representation is used. Top
to bottom: drill, spray bottle, and mug. The policy demonstrates
advanced capabilities in repositioning and reorienting objects.
Note the functional grasps achieved in the end.

First, we perform an ablation study of the proposed three-stage
curriculum described in Section 5.5.4. The first stage is dedicated to
learning to satisfy given functional grasp constraints while the objects
are in easily accessible configurations. The second stage requires the

108

5.6 EVALUATION

Wall time (Curriculum) [h]
5

0.0 0.5 1.0 1 2.0
1.0 i(— Curriculum stage 1 end
| 1« Curriculum stage 2
1
0.87 4
r:l i,
.
& i
s 0.6/ : i
A TR B A R P
[5) IR B A e
3 T Y A D ==
S 0.4 aB e B
n] P .
N @ 0 |- Curriculum stage 1
T A o S . »
0241 Curriculum stage 2
! —— Curriculum stage 3
i ----------- No curriculum
0.0+ t ! i y
0 1 2 3 4
Step le8

Figure 5.10: Training curves in the curriculum ablation experiment with
constraint-based target grasp representation. The three-stage
curriculum significantly improves learning speed. Lines: means.
Colored areas: 95% confidence intervals.

policy to lift the objects off the table. With this stage, we implicitly
enforce the policy to learn reliable grasp configurations. At the third
stage, the objects are positioned in configurations where a direct
functional grasp cannot be reached. The training curves averaged over
the three runs are shown in Fig. 5.10.

One can see that with the curriculum, the policy reliably converges
to a success rate of ~ 93% in under three hours, with the two first
stages of the curriculum being completed quickly. In contrast, without
the curriculum, the policy reaches only a subpar success rate of ~50%.
It is worth noting that there is not much variance between runs without
the curriculum compared to a lot of variance between runs without
the curriculum in the case of an explicit target grasp representation
(Fig. 5.7). We attribute it to the fact that the learning problem has higher
difficulty in the case of the constraint-based target grasp representation.
The policy has to find on its own a way to grasp the objects to enable
successful lifting. Given that, the probability of having a lucky run
where the policy learns how to manipulate and grasp all different
categories of objects without the curriculum is much lower compared
to runs with an explicit target grasp representation.

Additionally, we also perform an ablation study of the proposed
multi-component reward function in the context of the constrained
target grasp representation. We train five policy variants. First, a
variant with a full reward. Second, a variant with a disabled reward
component 7yeach, €ncouraging moving the hand towards the object.
Third, a variant with a disabled reward component r,44, encouraging
holding the object. Fourth, a variant with a disabled reward component

109

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

Wall time (Full reward) [h]

0.0 0.5 1.0 15 20
1.0 i‘— rriculum stage 1 end
i Curriculum stage 2
(ERE B RS e mm———
I PRI smreed
8 i
s 0.6
2 i
(] 1
P
Q
ms . E —— Full reward
I /A A NoO I'reach
SR E | /S — Noris
i = = Nororient
i ______ NoO I'man
0.0+ '
0 1) 3)
Step le8

Figure 5.11: Training curves in the manipulation reward ablation experiment
with constraint-based target grasp representation. Disabling in-
dividual reward components slightly decreases the convergence
rate and stability. Disabling the whole manipulation reward com-
ponent makes the learning process slower and less stable. Lines:
means. Colored areas: 95% confidence intervals.

Torient, €NCOUraging rotating the object towards the nominal rotation.
Fifth, a variant, with the whole manipulation component rman =
Treach T+ Thold 1 Torient being disabled.

Fig. 5.11 shows the training curves for this ablation study. One can
see that, similar to Fig. 5.8, all ablation runs yield worse success rates
compared to the policies with full reward. However, the difference is
less significant compared to the explicit grasp representation ablation.
While disabling the whole manipulation reward component signif-
icantly decreases learning speed, disabling individual components
affects the learning performance only slightly. We attribute this to
the fact that in the case of the constraint-based target grasp repre-
sentation, the policy has to figure out the way to grasp objects by
itself, forced by the requirement to lift the objects. While doing that,
the policy implicitly acquires holding behaviors. Nevertheless, the
ablation study demonstrated that the proposed manipulation reward
facilitates quicker and more stable convergence for policies learned
with the constraint-based grasp representation as well.

To quantitatively evaluate the learned policy, we perform 100 at-
tempts for each object from the training set and for novel instances of
known categories in the test set, same as in Section 5.6.2. This results
in 3000 attempts for the training set and 900 attempts for the test
set. The resulting success rates are shown in Table 5.2. As expected,
the policy has a higher success rate on the training set. On the novel
instances from the test set, the policy achieves a 90% success rate,

110

5.6 EVALUATION

Table 5.2: Average success rates per category in % with the constraint-based
target grasp representation.

Category Training set Test set

Drills 927 +£17 903 £33
Spray bottles 93.8 1.7 88.6 £ 3.5
Mugs 920+18 91.1+£3.1
z 928 £1.0 90.1+19

*Mean + 95% confidence interval is shown.

which is slightly lower than 94% in the case when an explicit target
grasp representation is used (Table 5.1).

We attribute it both to a more difficult task, which includes lifting
an object, as well as to a more abstract grasp representation. How-
ever, such a policy has the advantage of relaxed requirements for an
external oracle that provides grasp targets, compared to the policy
with an explicit target grasp representation. In particular, in our ex-
periments we had to put a lot of effort into specifying feasible explicit
target grasps in the previous experiment, while defining the target
constraints in this experiment was quick and straightforward.

Example policy rollouts can be seen in Fig. 5.12. The policy learns
complex repositioning and reorienting behaviors to eventually satisfy
the given target grasp constraints and successfully lift the objects.
Close-up snapshots of the achieved grasps using policies trained with
different grasp representations can be seen in Fig. 5.13. Note that for
the explicit grasp representation, the targets are carefully designed by
hand. In addition, after the target pre-grasp is reached, the hand is
closed and the object is lifted to confirm success. Such an approach is
chosen since it is extremely challenging to provide an explicit grasp
pose that has all fingers positioned perfectly and maintains consistent
tight contact with the object.

In the case of the constraint-based grasp representation, the policy
has to learn grasps that enable lifting the objects on its own. One obser-
vation is that in the case of the constraint-based grasp representation,
the spray bottles and mugs have the middle finger fully extended. For
mugs, our observation is that the policy often uses the middle finger
to support the mug from the side, also tilting the hand to the right
side to facilitate such a supporting approach. For spray bottles, our
intuition is that it is challenging to place the middle finger below the
trigger. While trying to do so, the target index fingertip position may
be disturbed, resulting in smaller reward.

It is worth noting that the policy learns natural human-like ways to
grasp the objects without having any explicit instructions on how to do
so. We attribute it to a generic multi-component dense reward function
and an introduced requirement to lift the objects while satisfying the
target grasp constraint. Thus, our methodology implicitly guides the

111

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

Figure 5.12: Rollouts of policy manipulating unseen objects of known cat-
egories. Top to bottom: drill, spray bottle, and mug. The
constraint-based target grasp representation is used. Note com-
plex repositioning and reorienting behaviors for the drill and
spray bottle. The mug task usually can be solved with a straight-
forward manipulation strategy.

112

5.6 EVALUATION

Figure 5.13: Close-up snapshots of functional grasps achieved by policies
learned using two different grasp representations. Top: Using an
explicit grasp representation. Bottom: Using a constraint-based
grasp representation. In the second case, given only an abstract
constraint, the policy learned to produce natural-looking grasps.
Note that grasp targets for the explicit grasp representation were
carefully designed by hand.

policy to discover effective object grasping strategies, often aligning
with the ways they are naturally designed to be grasped by humans.

The policies achieve success rates of 94% for the explicit target grasp
representation and 90% for the constraint-based target grasp represen-
tation. In both cases, failures occur when the object is repositioned and
reoriented to a workspace location with low manipulability, leading
the policy to become stuck in repetitive local minima behavior. To
address this issue, an additional later stage in the training curriculum
could be introduced, where most of the reward components have a
negative range. Having all reward components with a negative range
from the start results in very slow learning, with policies often being
unable to discover complex manipulation behaviors.

This evaluation shows that the proposed approach consistently
yields robust dexterous manipulation policies for functional grasping
in simulation. The main strength of the approach is the generality of
the proposed reward function and curriculum, which do not require
any category- or instance-specific engineering. At the same time, the
multi-component reward function provides dense, continuous rewards
that quickly guide the policy towards general and robust behavior
without a need for expert demonstrations. In combination with a high-
performance GPU simulation, complex pre-grasping strategies are
learned in under three hours. The state and the reward are formulated
in a way that is agnostic of the robotic arm kinematics and can be easily

113

DEXTEROUS MANIPULATION WITH DEEP REINFORCEMENT LEARNING

adapted to a hand with an arbitrary number of fingers and controlled
DoF. Two possible target grasp representations are explored. In both
cases, stable learning that yields policies that successfully manipulate
previously unseen object instances is demonstrated.

The main limitation of the proposed approach is its reliance on
frequent and accurate estimation of the target object pose. In the
real world, in the presence of the interacting robotic hand, 6D object
pose estimation is challenging (Amini, Periyasamy, and Behnke, 2022).
Transferring our approach to a real robot is a prominent future work.
Although the learned policies show robust behavior, additional real-
world learning is likely necessary to close the sim-to-real gap. For this,
we envision learning the weights of the last layer of our policy online
on the real robot. A DRL approach presented in Chapter 3 can be
utilized to achieve this goal.

5.7 DISCUSSION

In this chapter, we presented a DRL approach for dexterous categorical
pre-grasp manipulation for functional grasping with an anthropomor-
phic hand. We proposed two target grasp representations: explicit
and a more abstract, constraint-based one. We introduced a dense
multi-component reward function and a curriculum for each grasp
representation that share the same basic principles. They allowed to
quickly learn policies for dexterous manipulation of complex objects
of three categories with both target grasp representations.

Our experimental results demonstrated that the proposed approach
reliably converged during training and generated policies yielding
high success rates, even when applied to novel object instances of
known categories. The method successfully learned complex pre-
grasping strategies, including repositioning, reorienting, re-grasping,
and up-righting the objects. A single policy successfully manipulated
novel instances of three known object categories.

The performed ablation studies confirmed the importance of the
proposed multi-component reward function and the curriculum. Our
approach utilizes a high-performance GPU-based simulation, and the
policies for both target grasp representations were learned on a single
GPU in less than three hours. The policy using an explicit target grasp
representation achieved a 94% success rate for functional grasping of
novel object instances. The policy utilizing a constraint-based target
grasp representation achieved a 90% success rate. It simultaneously
learned human-like grasp configurations solely from the provided
functional grasp constraints. The stable convergence of both policies,
along with their consistently high success rates, underscores the ro-
bustness and generality of the proposed learning framework.

114

CONCLUSION

"The impediment to action advances action.
What stands in the way becomes the way.”

— Marcus Aurelius

In this thesis, we presented several novel approaches that enable
efficient robotic manipulator motion generation. We utilized both
learning-based and optimization-based approaches. In particular, we
addressed trajectory tracking control, dual-arm trajectory planning,
and dexterous manipulation with a human-like hand.

Initially, a method for improving trajectory tracking accuracy with
reference correction through a policy learned with supervised learning
was proposed. The policy was learned offline from a small real-world
dataset. The model represented an open-loop feed-forward outer-loop
controller that ran on top of the underlying classical controller. We
introduced a one-step future prediction module, hardwired within the
model architecture to facilitate elements of planning-oriented behavior,
as opposed to a purely reactive policy.

Such a module enabled reusing the same dataset to learn two differ-
ent modalities, first providing a one-step future prediction, followed
by the reference correction. In this way, we increased the data efficiency
of the method. The approach was evaluated in the real world on the
7DoF left arm of the Baxter robot. The arm features flexible joints
that increase the safety of the system. However, combined with inex-
pensive hardware, they significantly increase the difficulty of control.
We compared the proposed method with several alternative model
architectures that were trained on the same dataset as well as with the
vendor-provided classical controller.

The conducted experiments demonstrated that the proposed method
increased trajectory tracking accuracy the most, compared to other
approaches. Even in the presence of previously unseen payloads,
the method demonstrated a persistent improvement of the trajectory
tracking accuracy. The ablation study of the one-step future predic-
tion indicated that incorporating such a module within the network
architecture resulted in higher accuracy of trajectory tracking.

To further improve the trajectory tracking accuracy, we introduced
a methodology to learn a reference correction policy online, directly
on the real robot. In this way, our method does not require a separate
data collection step and can be seamlessly applied to a robot during

115

CONCLUSION

its normal operation. The policy was learned with DRL using a data-
efficient SAC approach.

The stochastic policy was represented with a beta distribution to en-
sure that the generated actions are within the provided safety margins.
The compact state representation that included observations from
the past, the present, and the future reference targets, together with
the proposed dense reward function, enabled the method to achieve
a stable convergence while learning on a single robot instance. The
policy converged within two hours of training on a regular laptop,
showcasing the efficiency of the proposed learning pipeline.

In addition, we explored a possibility of using a coarse dynamics
approximation learned from a small real-world dataset as a simulation
to pre-train the policy before the learning process on the real robot is
started. Although our approach can be safely and efficiently applied
from scratch directly on the real robot, it is always beneficial to reduce
the effects of the initial exploration actions of a policy initialized with
random weights. The experiments demonstrated that the policy, pre-
trained in the learned simulation, had a substantial improvement in
the trajectory tracking accuracy at the start of the learning.

It was shown that the presented approach significantly improved
the trajectory tracking accuracy of a 7 DoF arm of the Baxter robot
compared to the open-loop approach presented in Chapter 2 and to
the vendor-provided classical controller.

After addressing the trajectory tracking, we proposed an optimiza-
tion approach based on STOMP to achieve efficient dual-arm trajectory
planning. A multi-component cost function was adapted for the dual-
arm setup. It allowed obtaining trajectories that satisfy several costs
and constraints while moving two arms simultaneously. To improve
the speed of convergence towards obstacle-free regions, we introduced
an obstacle cost term based on estimation of the worst-case overlap
volume. Together with collision approximation defined as a set of
spheres, such a cost function better reflects the severity of a collision
in the presence of two independent controllable kinematic chains. This
contrasts with traditional estimations based on the sum of penetration
distances, which typically work well for a single arm.

To address the closed kinematic chain constraint, we split the chain
into active and passive sub-chains. The trajectory of the active sub-
chain is optimized directly. At the same time, the trajectory of the
passive sub-chain is defined by projection given the trajectory of the
active sub-chain. Although such an approach has been previously
applied to different planners, we further enhance it by implicitly
resolving the redundancy of the passive sub-chain by optimizing for
the initial configurations of the IK solver. We applied our approach
to a Centauro robot that has two 7 DoF arms, resulting in a total of
14 controllable DoF in the context of arm trajectory optimization. We
evaluated the proposed method both in simulation and on the real

116

CONCLUSION

robot. It was shown that our approach achieved faster runtimes while
maintaining high success rates and short trajectory lengths compared
to several well-established planners.

Finally, we addressed dexterous object manipulation by means of a
stochastic policy learned with DRL. In particular, we tackled a problem
of a pre-grasp manipulation for functional grasping. In order to be
functional, a grasp should satisfy strict criteria, such as the index finger
on a trigger of a drill. Because of that, the direct functional grasp can
not always be achieved, thus requiring the pre-grasp manipulation.

We studied two possible target grasp representations: an explicit
one and a constraint-based one. While the first one requires the policy
to exactly achieve a specific provided configuration, the latter one
only specifies the constraint to be fulfilled, such as the index fingertip
position. The advantage of the latter is that the policy is free to explore
the ways to grasp objects while satisfying the provided constraint.
This reduces the requirements on the external oracle that provides the
grasp targets. Additionally, it creates an opportunity to learn the way
to grasp the objects in conjunction with the respective manipulation
strategies.

The proposed multi-component dense reward function, together
with the learning curriculum, enabled fully omitting any expert
demonstrations and other expensive data collection procedures. The
policies were learned from scratch in a highly-parallelized GPU-based
simulation. For both target grasp representations, intuitive dexterous
behaviors were achieved, utilizing a multi-finger hand to reposition
and reorient the objects before grasping. The policies achieved stable
convergence and high success rates on a single computer in under
three hours.

We evaluated the method in simulation on previously unseen in-
stances of the three known object categories: drills, spray bottles, and
mugs. Both grasp representations yielded robust policies that could
recover from failed manipulation attempts while utilizing all fingers
of the dexterous human-like hand. A single policy was shown to suc-
cessfully achieve target functional grasps for objects of three different
categories.

OUTLOOK AND FUTURE WORK

The methods introduced in this thesis open several directions for
future research. The two-stage model for feed-forward open-loop tra-
jectory tracking with reference correction can be extended to look
several steps into the future. This would enhance the planning capa-
bilities of the resulting policy and further improve trajectory tracking
accuracy.

The closed-loop reference correction approach for trajectory track-
ing, learned directly on the real robot with DRL could benefit from

117

CONCLUSION

adaptive learning of maximum allowed action magnitude. In this work
we utilize an analytical methodology to define this parameter, using
joint velocity and acceleration limits. However, dynamically learned
maximum action magnitude could make the method more flexible
and automatically adjust to safety requirements for each specific robot
and environment.

In the presented approach on dual-arm trajectory optimization, the
trajectory duration is shared among both arms. This results in self-
collision avoidance that is easier to achieve. However, in some cases an
arm with a geometrically short trajectory moves unnecessarily slowly,
sharing the duration with the other arm. The approach could be
extended to support independent duration for each arm. In addition,
consideration of dynamic obstacles is another interesting direction for
research. These improvements would enable the method to effectively
address a broader range of tasks.

Finally, the proposed dexterous manipulation policy relies on con-
tinuous and accurate information about the object shape and pose. In
real-world scenarios, observations are often noisy, and object geome-
try estimations are incomplete. Producing a more robust policy that
requires less accurate information about an object could be achieved
with policy distillation techniques. An additional reward term, penal-
izing occluding the perception sensor while manipulating an object,
would bring the approach even closer to the real-world application.

In this thesis we consider only visual perception in the context of
object manipulation. However, humans heavily rely on tactile sensing
when performing manipulation, especially when it comes to highly
dynamic motions. Incorporating additional sensory modalities into
the input of the policy, such as the measurements of the force-torque
sensors, could significantly increase the range of tasks that can be
tackled successfully.

118

LIST OF FIGURES

Figure 2.1
Figure 2.2

Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 2.7
Figure 2.8
Figure 2.9
Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

Figure 4.8
Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 5.1

Figure 5.2
Figure 5.3

Inaccurate manipulator trajectory tracking
Open-loop reference correction control archi-
tecture.o oo
Two-stage reference correction model
Region of workspace for data collection
Two-stage training process diagram
Joint position and velocity tracking errors vs.
maximumspeed L
Shoulder yaw joint trajectory
End-effector trajectories
Pre-grasp trajectory execution snapshots
Reference correction with stochastic policy . .
Closed-loop reference correction control archi-
tecture.o oo
State representation
Actor and critic networks architectures
Reward and tracking error training curves
Joint position errors during training
Joints of the left arm of Baxter
Shoulder yaw and end-effector trajectories
Trajectory with a payload
Typical scenario for dual-arm trajectory opti-
mization
Estimation of the worst-case overlap volume .
Optimization under loop closure constraint . .
Centauro model and collision approximation .
Shelf experiment environment.
Trajectory rollouts from the shelf experiment .
Qualitatively different trajectories with differ-
ent obstacle cost weights
Closed kinematic chain constraint environment
Trajectory rollouts from the closed kinematic
chain experiment
Qualitatively different trajectories with closure
constraint and varying obstacle cost weights
Trajectories with optimized total torque and
duration
Trajectory execution snapshots on the real robot
Learning human-like pre-grasp manipulation .
Example of a functional and an arbitrary grasp
State representation and reward function . . .

16
18
20

21
24
25
27
31

36
38
43
44
45
46
49
50

54
63
66
67
68
72

73
73

77

78

78
80
85
88
91

119

LIST OF FIGURES

Figure 5.4
Figure 5.5

Figure 5.6
Figure 5.7

Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12

Figure 5.13

120

Manipulation reward diagram
Explicit and constraint-based grasp representa-
tions
Functional categorical grasping dataset

Training curves with explicit grasp representa-
tion and curriculum ablation
Training curves with explicit grasp representa-
tion and reward ablation
Rollouts of policy learned with explicit grasp
representation,
Training curves with constraint-based grasp
representation and curriculum ablation

Training curves with constraint-based grasp
representation and reward ablation
Rollouts of policy learned with constraint-
based grasp representation.
Snapshots of achieved functional grasps

LIST OF TABLES

Table 2.1
Table 2.2
Table 2.3
Table 3.1
Table 3.2
Table 3.3
Table 4.1
Table 4.2
Table 4.3

Table 4.4

Table 4.5

Table 4.6
Table 5.1

Table 5.2

Joint position and velocity errors 23
End-effector position errors 23
Joint position and velocity errors with payloads 26
Joint position tracking error 47
Joint position tracking error with payload . . . 48
End-effector position tracking error. 48
Success rates and average runtimes 70
Average joint and end-effector path lengths . . 71
Success rates and average runtimes with closure

constraint 0L 75
Comparison of average joint and end-effector

path lengths with closure constraint 76
Influence of the initial trajectory on runtime

and successrate 79

Influence of the initial trajectory on path lengths 79
Average success rates with explicit grasp repre-

sentation 107
Average success rates with constraint-based
grasp representation 111

121

ACRONYMS

1D one-dimensional

2D two-dimensional

3D three-dimensional

6D six-dimensional

A2C advantage actor-critic

A3C asynchronous advantage actor-critic
ANC adaptive neural control

APF artificial potential fields

APM active-passive methodology

APMCC APM with convenient configuration
APMCCR APM with convenient configuration random
APMRR APM with redundancy resolution

BIT* batch informed trees

BRNN bi-directional recurrent neural network

CHOMP covariant Hamiltonian optimization for motion planning

CoM center of mass
CpPU central processing unit
DDP differential dynamic programming

DDPG deep deterministic policy gradient
DNN deep neural network

DoF degrees of freedom

DRL deep reinforcement learning

DWH dynoNet Wiener-Hammerstein

FIN forward-inference network
FK forward kinematics

GP Gaussian process

GPR Gaussian process regression

GPU graphics processing unit
HER hindsight experience replay

IR infinite impulse response
IK inverse kinematics
IL imitation learning

122

ILC
KPIECE
LQR
LSTM
LTI
MDP
MIMO
MLP
MPC
MPN
MSE
NN
OMPL
PD
PID
PPO
PRM
RAM
RBF
RC
ReLU
RL
RNN
ROS
RRT
SAC
SDF
SDLS
SGD
SISO
SRCP
STOMP
TRPO

ACRONYMS

iterative learning control
kinodynamic planning by interior-exterior cell exploration
linear quadratic regulator

long short-term memory

linear time-invariant

Markov decision process
multiple-input multiple-output
multi-layer perceptron

model predictive control

motion planning network

mean square error

neural network

open motion planning library
proportional-derivative
proportional-integral-derivative
proximal policy optimization
probabilistic roadmap
random-access memory

radial basis function

repetitive control

rectified linear unit
reinforcement learning
recurrent neural network

robot operating system
rapidly-exploring random tree
soft actor-critic

signed distance field

selectively damped least squares
stochastic gradient descent
single-input single-output
stochastic reference correction policy
stochastic trajectory optimization for motion planning

trust region policy optimization

123

BIBLIOGRAPHY

Agarwal, A., S. Uppal, K. Shaw, and D. Pathak (2023). “Dexterous
functional grasping.” In: Conference on Robot Learning (CoRL).

Alwala, K. and M. Mukadam (2021). “Joint sampling and trajec-
tory optimization over graphs for online motion planning.” In:
IEEE/RS] International Conference on Intelligent Robots and Systems
(IROS), pp. 4700-4707.

Amini, A., A. S. Periyasamy, and S. Behnke (2022). “YOLOPose:
Transformer-based multi-object 6D pose estimation using keypoint
regression.” In: International Conference on Intelligent Autonomous
Systems (IAS). Vol. 577, pp. 392-406.

An, C. H,, C. G. Atkeson, and J. M. Hollerbach (1988). Model-based
control of a robot manipulator. MIT Press, p. 254.

Andrychowicz, M., F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba (2017).
“Hindsight experience replay.” In: Advances in Neural Information
Processing Systems (NeurIPS), pp. 5048-5058.

Andrychowicz, O. M., B. Baker, M. Chociej, R. J6zefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider,
S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba (2020).
“Learning dexterous in-hand manipulation.” In: The International
Journal of Robotics Research (IJRR) 39.1, pp. 3-20.

Arimoto, S. (1990). “Learning control theory for robotic motion.”
In: International Journal of Adaptive Control and Signal Processing 4.6,
pp- 543-564.

Baek, I., K. Shin, H. Kim, S. Hwang, E. Demeester, and M.-S. Kang
(2021). “Pre-grasp manipulation planning to secure space for power
grasping.” In: IEEE Access 9, pp. 157715-157726.

Bayiz, Y. E. and R. Babuska (2014). “Nonlinear disturbance compensa-
tion and reference tracking via reinforcement learning with fuzzy
approximators.” In: IFAC Proceedings Volumes 47.3, pp. 5393-5398.

Bristow, D., M. Tharayil, and A. Alleyne (2006). “A survey of iterative
learning control.” In: IEEE Control Systems Magazine 26.3, pp. 96-114.

Brock, O. and O. Khatib (2002). “Elastic strips: A framework for motion
generation in human environments.” In: The International Journal of
Robotics Research (IJRR) 21.12, pp. 1031-1052.

Burget, F., M. Bennewitz, and W. Burgard (2016). “BI2RRT*: An effi-
cient sampling-based path planning framework for task-constrained
mobile manipulation.” In: IEEE/RS] International Conference on Intel-
ligent Robots and Systems (IROS), pp. 3714-3721.

Buss, S. R. and J.-S. Kim (2005). “Selectively damped least squares for
inverse kinematics.” In: Journal of Graphics Tools 10, pp. 37—49.

125

BIBLIOGRAPHY

Byravan, A., B. Boots, S. Srinivasa, and D. Fox (2014). “Space-time
functional gradient optimization for motion planning.” In: IEEE
International Conference on Robotics and Automation (ICRA), pp. 6499-
6506.

Byrne, S., W. Naeem, and S. Ferguson (2015). “Improved APF strategies
for dual-arm local motion planning.” In: Transactions of the Institute
of Measurement and Control 37.1, pp. 73-90.

Calderon-Cordova, C. and R. Sarango (2023). “A deep reinforcement
learning algorithm for robotic manipulation tasks in simulated
environments.” In: Engineering Proceedings 47.1, p. 12.

Callar, T.-C. and S. Bottger (2022). “Hybrid learning of time-series
inverse dynamics models for locally isotropic robot motion.” In:
IEEE Robotics and Automation Letters (RA-L) 8, pp. 1061-1068.

Cao, S., L. Sun, J. Jiang, and Z. Zuo (2023). “Reinforcement learning-
based fixed-time trajectory tracking control for uncertain robotic
manipulators with input saturation.” In: IEEE Transactions on Neural
Networks and Learning Systems 34.8, pp. 4584—4595.

Chang, L. Y., S. S. Srinivasa, and N. S. Pollard (2010). “Planning
pre-grasp manipulation for transport tasks.” In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 2697-2704.

Chen, D., Q. Qi, Z. Zhuang,]. Wang, J. Liao, and Z. Han (2021). “Mean
field deep reinforcement learning for fair and efficient UAV control.”
In: IEEE Internet of Things Journal 8.2, pp. 813-828.

Chen, Q., L. Shi, Y. Nan, and X. Ren (2016). “Adaptive neural dynamic
surface sliding mode control for uncertain nonlinear systems with
unknown input saturation.” In: International Journal of Advanced
Robotic Systems (IJARS) 13.5, pp. 1-14.

Chen, S. and J. T. Wen (2019). “Neural-learning trajectory tracking con-
trol of flexible-joint robot manipulators with unknown dynamics.”
In: IEEE/RS] International Conference on Intelligent Robots and Systems
(IROS), pp. 128-135.

— (2021). “Industrial robot trajectory tracking control using multi-layer
neural networks trained by iterative learning control.” In: Robotics
10.50, pp. 1-20.

Chen, Z., K. V. Wyk, Y.-W. Chao, W. Yang, A. Mousavian, A. Gupta,
and D. Fox (2022). “Learning robust real-world dexterous grasping
policies via implicit shape augmentation.” In: Conference on Robot
Learning (CoRL).

Chou, P-W., D. Maturana, and S. Scherer (2017). “Improving stochastic
policy gradients in continuous control with deep reinforcement
learning using the beta distribution.” In: International Conference on
Machine Learning (ICML), pp. 834-843.

Choudhury, S., J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and
S. A. Scherer (2016). “Regionally accelerated batch informed trees
(RABIT*): A framework to integrate local information into optimal

126

BIBLIOGRAPHY

path planning.” In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 4207—-4214.

Cohen, B, S. Chitta, and M. Likhachev (2014). “Single- and dual-arm
motion planning with heuristic search.” In: International Journal of
Robotics Research 33.2, pp. 305-320.

Cohn, T., S. Shaw, M. Simchowitz, and R. Tedrake (2024). “Constrained
bimanual planning with analytic inverse kinematics.” In: IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 6935—
6942.

Cuiyan, L., Z. Dongchun, and Z. Xianyi (2004). “A survey of repetitive
control.” In: IEEE/RS] International Conference on Intelligent Robots
and Systems (IROS). Vol. 2, pp. 1160-1166.

Dasari, S., A. Gupta, and V. Kumar (2023). “Learning dexterous manip-
ulation from exemplar object trajectories and pre-grasps.” In: IEEE
International Conference on Robotics and Automation (ICRA), pp. 3889—
3896.

Deng, X., Y. Xiang, A. Mousavian, C. Eppner, T. Bretl, and D. Fox (2020).
“Self-supervised 6D object pose estimation for robot manipulation.”
In: IEEE International Conference on Robotics and Automation (ICRA),
pp- 3665-3671.

Dogar, M. R. and S. S. Srinivasa (2010). “Push-grasping with dexter-
ous hands: Mechanics and a method.” In: IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS), pp. 2123-2130.

Fedus, W., P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle,
M. Rowland, and W. Dabney (2020). “Revisiting fundamentals of
experience replay.” In: International Conference on Machine Learning
(ICML).

Forgione, M. and D. Piga (2021). “dynoNet: A neural network archi-
tecture for learning dynamical systems.” In: International Journal of
Adaptive Control and Signal Processing 35.4, pp. 612-626.

Franceschetti, A., E. Tosello, N. Castaman, and S. Ghidoni (2022).
“Robotic arm control and task training through deep reinforcement
learning.” In: Intelligent Autonomous Systems 16, pp. 532-550.

Gammell, J. D., S. S. Srinivasa, and T. D. Barfoot (2014). “Informed
RRT*: Optimal sampling-based path planning focused via direct
sampling of an admissible ellipsoidal heuristic.” In: IEEE/RS] Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 2997—
3004.

Gammell, J. D., S. S. Srinivasa, and T. D. Barfoot (2015). “Batch in-
formed trees (BIT*): Sampling-based optimal planning via the heuris-
tically guided search of implicit random geometric graphs.” In: IEEE
International Conference on Robotics and Automation (ICRA), pp. 3067—
3074.

127

BIBLIOGRAPHY

Geraerts, R. and M. H. Overmars (2007). “Creating high-quality paths
for motion planning.” In: The International Journal of Robotics Research
(IRR) 26.8, pp. 845-863.

Ghafarian Tamizi, M., M. Yaghoubi, and H. Najjaran (2023). “A re-
view of recent trend in motion planning of industrial robots.” In:
International Journal of Intelligent Robotics and Applications 7, pp. 1-22.

Giri, F. and E.-W. Bai (2010). “Block oriented nonlinear system identifi-
cation.” In: Lecture Notes in Control and Information Sciences, pp. 746—
758.

Greff, K., R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmid-
huber (2017). “LSTM: A search space odyssey.” In: IEEE Transactions
on Neural Networks and Learning Systems 28.10, pp. 2222-2232.

Guo, H., F. Wu, Y. Qin, R. Li, K. Li, and K. Li (2023). “Recent trends
in task and motion planning for robotics: A survey.” In: ACM
Computing Surveys 55, pp. 1-36.

Guo, Q., Y. Zhang, B. G. Celler, and S. W. Su (2019). “Neural adaptive
backstepping control of a robotic manipulator with prescribed per-
formance constraint.” In: IEEE Transactions on Neural Networks and
Learning Systems 30, pp. 3572-3583.

Ha, H., J. Xu, and S. Song (2020). “Learning a decentralized multi-arm
motion planner.” In: Conference on Robot Learning (CoRL), pp. 21-36.

Haarnoja, T., H. Tang, P. Abbeel, and S. Levine (2017). “Reinforce-
ment learning with deep energy-based policies.” In: International
Conference on Machine Learning (ICML), pp. 1352-1361.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine (2018). “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor.” In: International Conference on Machine Learning
(ICML). Vol. 80, pp. 1861-1870.

Haarnoja, T., A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-
mar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine (2018). “Soft actor-
critic algorithms and applications.” In: preprint arXiv:1812.05905.

Hafner, D., T. P. Lillicrap, M. Norouzi, and J. Ba (2021). “Mastering
atari with discrete world models.” In: International Conference on
Learning Representations.

Han, H., X. Wy, L. Zhang, Y. Tian, and J. Qiao (2019). “Self-organizing
RBF neural network using an adaptive gradient multiobjective par-
ticle swarm optimization.” In: IEEE Transactions on Cybernetics 49,
pp. 69-82.

Han, H., L. Zhang, Y. Hou, and J. Qiao (2016). “Nonlinear model
predictive control based on a self-organizing recurrent neural net-
work.” In: IEEE Transactions on Neural Networks and Learning Systems
27, pp- 402-415.

Han, L. and J. Trinkle (1998). “Dextrous manipulation by rolling and
finger gaiting.” In: IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 730-735.

128

BIBLIOGRAPHY

Han, X., H. Laga, and M. Bennamoun (2021). “Image-based 3D object
reconstruction: State-of-the-art and trends in the deep learning era.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 43.5,
pp. 1578-1604.

Hang, K., A. S. Morgan, and A. M. Dollar (2019). “Pre-grasp sliding
manipulation of thin objects using soft, compliant, or underactuated
hands.” In: IEEE Robotics and Automation Letters (RA-L) 4.2, pp. 662—
669.

He, W., Z. Yan, Y. Sun, Y. Ou, and C. Sun (2018). “Neural-learning-
based control for a constrained robotic manipulator with flexible
joints.” In: IEEE Transactions on Neural Networks and Learning Systems
29, pp- 5993-6003.

Hofer, T., F. Shamsafar, N. Benbarka, and A. Zell (2021). “Object
detection and autoencoder-based 6D pose estimation for highly
cluttered bin picking.” In: IEEE International Conference on Image
Processing (ICIP), pp. 704-708.

Hu, Y. and B. Si (2018). “A reinforcement learning neural network for
robotic manipulator control.” In: Neural Computation 30.7, pp. 1983—
2004.

Huang, W, Y. Lin, M. Liu, and H. Min (2024). “Velocity-aware spatial-
temporal attention LSTM model for inverse dynamic model learning
of manipulators.” In: Frontiers in Neurorobotics 18, p. 1353879.

Hwangbo, J., J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter (2019). “Learning agile and dynamic motor skills for
legged robots.” In: Science Robotics 4.26, pp. 58-72.

Ibarz, J., J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine
(2021). “How to train your robot with deep reinforcement learning:
Lessons we have learned.” In: The International Journal of Robotics
Research (IJRR) 40.4-5, pp. 698-721.

Iriondo, A., E. Lazkano, L. Susperregi, J. Urain, A. Fernandez, and
J. Molina (2019). “Pick and place operations in logistics using a
mobile manipulator controlled with deep reinforcement learning.”
In: Applied Sciences 9.2, p. 348.

James J. Kuffner, J. and M. Steven (2000). “RRT-Connect: An efficient
approach to single-query path planning.” In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 995-1001.

Jang, K., J. Baek, S. Park, and J. Park (2022). “Motion planning for
closed-chain constraints based on probabilistic roadmap with im-
proved connectivity.” In: IEEE/ASME Transactions on Mechatronics
27.4, pp. 2035-2043.

Janson, L., E. Schmerling, A. Clark, and M. Pavone (2015). “Fast
marching tree: A fast marching sampling-based method for optimal
motion planning in many dimensions.” In: The International Journal
of Robotics Research (IJRR) 34.7, pp. 883-921.

129

BIBLIOGRAPHY

Jin, L., S. Li, J. Yu, and J. He (2018). “Robot manipulator control using
neural networks: A survey.” In: Neurocomputing 285, pp. 23-34.

Johnson, J. J., L. Li, E Liu, A. H. Qureshi, and M. C. Yip (2020). “Dy-
namically constrained motion planning networks for non-holonomic
robots.” In: IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS), pp. 6937—-6943.

Kalakrishnan, M., S. Chitta, E. Theodorou, P. Pastor, and S. Schaal
(2011). “STOMP: Stochastic trajectory optimization for motion plan-
ning.” In: IEEE International Conference on Robotics and Automation
(ICRA), pp. 4569-4574.

Kappler, D., L. Chang, M. Przybylski, N. Pollard, T. Asfour, and R.
Dillmann (2010). “Representation of pre-grasp strategies for object
manipulation.” In: IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pp. 617-624.

Kappler, D., L. Y. Chang, N. S. Pollard, T. Asfour, and R. Dillmann
(2012). “Templates for pre-grasp sliding interactions.” In: Robotics
and Autonomous Systems 60.3, pp. 411-423.

Kavraki, L., P. Svestka,]J.-C. Latombe, and M. Overmars (1996). “Prob-
abilistic roadmaps for path planning in high-dimensional configura-
tion spaces.” In: IEEE Transactions on Robotics and Automation 12.4,
pp- 566-580.

Kingston, Z., M. Moll, and L. E. Kavraki (2018). “Sampling-based
methods for motion planning with constraints.” In: Annual Review
of Control, Robotics, and Autonomous Systems 1, pp. 159-185.

Klamt, T., M. Schwarz, C. Lenz, L. Baccelliere, D. Buongiorno, T. Ci-
chon, A. DiGuardo, D. Droeschel, M. Gabardi, M. Kamedula, N.
Kashiri, A. Laurenzi, D. Leonardis, L. Muratore, D. Pavlichenko,
A. S. Periyasamy, D. Rodriguez, M. Solazzi, A. Frisoli, M. Gust-
mann, J. Roffmann, U. Siiss, N. G. Tsagarakis, and S. Behnke (2020).
“Remote mobile manipulation with the centauro robot: Full-body
telepresence and autonomous operator assistance.” In: Journal of
Field Robotics (JFR) 37.5, pp. 889-919.

Kumar, V., D. Hoeller, B. Sundaralingam, J. Tremblay, and S. Birchfield
(2021). “Joint space control via deep reinforcement learning.” In:
IEEE/RS] International Conference on Intelligent Robots and Systems
(IROS), pp. 3619-3626.

Kuntz Alan adn Bowen, C. and R. Alterovitz (2020). “Fast anytime
motion planning in point clouds by interleaving sampling and
interior point optimization.” In: Robotics Research, pp. 929-945.

Kunz, T. and M. Stilman (2014). “Probabilistically complete kinody-
namic planning for robot manipulators with acceleration limits.”
In: IEEE/RS] International Conference on Intelligent Robots and Systems
(IROS), pp. 3713-3719.

Lavalle, S. M. (1998). “Rapidly-exploring random trees: A new tool for
path planning.” In: The annual research report 98.11.

130

BIBLIOGRAPHY

Levine, S., C. Finn, T. Darrell, and P. Abbeel (2016). “End-to-end
training of deep visuomotor policies.” In: Journal of Machine Learning
Research (JMLR) 17.1, pp. 1334-1373.

Li, L., Y. Miao, A. H. Qureshi, and M. C. Yip (2021). “MPC-MPNet:
Model-predictive motion planning networks for fast, near-optimal
planning under kinodynamic constraints.” In: IEEE Robotics and
Automation Letters (RA-L) 6.3, pp. 4496—-4503.

Li, Q. J. Qian, Z. Zhu, X. Bao, M. K. Helwa, and A. P. Schoellig
(2017). “Deep neural networks for improved, impromptu trajectory
tracking of quadrotors.” In: IEEE International Conference on Robotics
and Automation (ICRA), pp. 5183-5189.

Li, X.,, W. Shang, and S. Cong (2024). “Offline reinforcement learn-
ing of robotic control using deep kinematics and dynamics.” In:
IEEE/ASME Transactions on Mechatronics 29.4, pp. 2428-2439.

Li, Y., Y. Wang, G. Wang, and T. Shi (2024). “A multi-policy framework
for manipulator trajectory tracking based on feature extraction and
rl compensation.” In: International Conference on Automation, Robotics
and Applications (ICARA), pp. 191-195.

Li, Z., X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and
K. Sreenath (2021). “Reinforcement learning for robust parameter-
ized locomotion control of bipedal robots.” In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 2811-2817.

Lillicrap, T. P, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra (2015). “Continuous control with deep
reinforcement learning.” In: CoRR abs/1509.02971.

Lin, F-J., S.-G. Chen, and I.-F. Sun (2017). “Intelligent sliding-mode
position control using recurrent wavelet fuzzy neural network for
electrical power steering system.” In: International Journal of Fuzzy
Systems 19, pp. 1344-1361.

Longman, R. (2000). “Iterative learning control and repetitive con-
trol for engineering practice.” In: International Journal of Control 73,
pp- 930-954.

Lu, C.-H. (2011). “Wavelet fuzzy neural networks for identification
and predictive control of dynamic systems.” In: IEEE Transactions on
Industrial Electronics 58, pp. 3046-3058.

Mahler, J., S. Krishnan, M. Laskey, S. Sen, A. Murali, B. Kehoe, S. Patil,
J. Wang, M. Franklin, P. Abbeel, and K. Goldberg (2014). “Learning
accurate kinematic control of cable-driven surgical robots using data
cleaning and gaussian process regression.” In: IEEE International
Conference on Automation Science and Engineering (CASE), pp. 532—
539.

Makoviichuk, D. and V. Makoviychuk (2021). rl-games: A high-
performance framework for reinforcement learning. https://github.
com/Denys88/rl_games.

131

https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games

BIBLIOGRAPHY

Makoviychuk, V., L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State (2021).
“Isaac Gym: High performance GPU-based physics simulation for
robot learning.” In: preprint arXiv:2108.10470.

Mandikal, P. and K. Grauman (2020). “Learning dexterous grasping
with object-centric visual affordances.” In: IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 6169-6176.

- (2022). “DexVIP: Learning dexterous grasping with human hand
pose priors from video.” In: Conference on Robot Learning (CoRL).
Mayne, D. (1966). “A second-order gradient method for determin-
ing optimal trajectories of non-linear discrete-time systems.” In:

International Journal of Control (IJC) 3, pp. 85-95.

Meijer, J., Q. Lei, and M. Wisse (2017). “An empirical study of single-
query motion planning for grasp execution.” In: IEEE International
Conference on Advanced Intelligent Mechatronics (AIM), pp. 1234-1241.

Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu (2016). “Asynchronous methods for
deep reinforcement learning.” In: International Conference on Machine
Learning (ICML). Vol. 48, pp. 1928-1937.

Morse, K., N. Das, Y. Lin, A. Wang, A. Rai, and F. Meier (2020).
“Learning state-dependent losses for inverse dynamics learning.”
In: IEEE/RS] International Conference on Intelligent Robots and Systems
(IROS), pp. 5261-5268.

Mosbach, M. and S. Behnke (2022). “Efficient representations of object
geometry for reinforcement learning of interactive grasping poli-
cies.” In: IEEE International Conference on Robotic Computing (IRC),
pp- 156-163.

Muhayyuddin, M. Moll, L. Kavraki, and J. Rosell (2018). “Random-
ized physics-based motion planning for grasping in cluttered and
uncertain environments.” In: IEEE Robotics and Automation Letters
(RA-L) 3.2, pp. 712-719.

Orthey, A., B. Frész, and M. Toussaint (2020). “Motion planning ex-
plorer: visualizing local minima using a local-minima tree.” In: IEEE
Robotics and Automation Letters (RA-L) 5.2, pp. 346-353.

Palleschi, A., F. Angelini, C. Gabellieri, D. W. Park, L. Pallottino, A.
Bicchi, and M. Garabini (2023). “Grasp It Like a Pro 2.0: A data-
driven approach exploiting basic shape decomposition and human
data for grasping unknown objects.” In: IEEE Transactions on Robotics
39.5, pp. 4016-4036.

Pane, Y., S. Nageshrao, J. Kober, and R. Babuska (2019). “Reinforce-
ment learning based compensation methods for robot manipula-
tors.” In: Engineering Applications of Artificial Intelligence 78, pp. 236—
247.

132

BIBLIOGRAPHY

Patan, K., M. Patan, and D. Kowaléw (2017). “Neural networks in
design of iterative learning control for nonlinear systems.” In: IFAC-
PapersOnLine 50, pp. 13402-13407.

Pavlichenko, D. (2016). “Efficient stochastic multicriteria arm trajectory
optimization.” MA thesis. Bonn, Germany: University of Bonn. URL:
https://www.ais.uni- bonn.de/theses/Dmytro_Pavlichenko_
Master_Thesis_12_2016.pdf.

Pavlichenko, D. and S. Behnke (2017). “Efficient stochastic multicriteria
arm trajectory optimization.” In: IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS), pp. 4018-4025.

- (2021). “Flexible-joint manipulator trajectory tracking with learned
two-stage model employing one-step future prediction.” In: IEEE
International Conference on Robotic Computing (IRC).

- (2022a). “Flexible-joint manipulator trajectory tracking with two-
stage learned model utilizing a hardwired forward dynamics pre-
diction.” In: International Journal of Semantic Computing (IJSC) 16.03,
pp- 403-423.

- (2022b). “Real-robot deep reinforcement learning: improving trajec-
tory tracking of flexible-joint manipulator with reference correction.”
In: IEEE International Conference on Robotics and Automation (ICRA),
pp. 2671-2677.

— (2023). “Deep reinforcement learning of dexterous pre-grasp manip-
ulation for human-like functional categorical grasping.” In: IEEE
International Conference on Automation Science and Engineering (CASE).

- (2025). “Dexterous pre-grasp manipulation for human-like func-
tional categorical grasping: Deep reinforcement learning and grasp
representations.” In: IEEE Transactions on Automation Science and
Engineering (T-ASE).

Pavlichenko, D., D. Rodriguez, C. Lenz, M. Schwarz, and S. Behnke
(2019). “Autonomous bimanual functional regrasping of novel object
class instances.” In: IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pp. 351-358.

Pavlichenko, D., D. Rodriguez, M. Schwarz, C. Lenz, A. S. Periyasamy,
and S. Behnke (2018). “Autonomous dual-arm manipulation of
familiar objects.” In: IEEE-RAS International Conference on Humanoid
Robots (Humanoids).

Pereida, K., D. Kooijman, R. Duivenvoorden, and A. P. Schoellig (2018).
“Transfer learning for high-precision trajectory tracking through L1
adaptive feedback and iterative learning.” In: International Journal of
Adaptive Control and Signal Processing 33, pp. 388—409.

Perez, A., S. Karaman, A. Shkolnik, E. Frazzoli, S. Teller, and M. R. Wal-
ter (2011). “Asymptotically-optimal path planning for manipulation
using incremental sampling-based algorithms.” In: [EEE/RS] Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 4307-
4313.

133

https://www.ais.uni-bonn.de/theses/Dmytro_Pavlichenko_Master_Thesis_12_2016.pdf
https://www.ais.uni-bonn.de/theses/Dmytro_Pavlichenko_Master_Thesis_12_2016.pdf

BIBLIOGRAPHY

Pradhan, S. K. and B. Subudhi (2012). “Real-time adaptive control
of a flexible manipulator using reinforcement learning.” In: IEEE
Transactions on Automation Science and Engineering 9.2, pp. 237-249.

Qiao, J., X. Meng, and W. Li (2018). “An incremental neuronal-activity-
based RBF neural network for nonlinear system modeling.” In:
Neurocomputing 302, pp. 1-11.

Qin, Y., B. Huang, Z.-H. Yin, H. Su, and X. Wang (2022). “DexPoint:
Generalizable point cloud reinforcement learning for sim-to-real
dexterous manipulation.” In: Conference on Robot Learning (CoRL).

Qureshi, A. H., M.]J. Bency, and M. C. Yip (2019). “Motion planning
networks.” In: IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 2118-2124.

Qureshi, A. H., J. Dong, A. Choe, and M. C. Yip (2020). “Neural
manipulation planning on constraint manifolds.” In: IEEE Robotics
and Automation Letters (RA-L) 5, pp. 6089-6096.

Qureshi, A. H., Y. Miao, A. Simeonov, and M. C. Yip (2021). “Mo-
tion planning networks: Bridging the gap between learning-based
and classical motion planners.” In: IEEE Transactions on Robotics 37,
pp- 48-66.

Qureshi, A. H. and M. C. Yip (2018). “Deeply informed neural sam-
pling for robot motion planning.” In: IEEE/RS] International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 6582-6588.

Radosavovic, I., X. Wang, L. Pinto, and J. Malik (2021). “State-only
imitation learning for dexterous manipulation.” In: IEEE/RS] Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 7865—
7871.

Rajeswaran, A., V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E.
Todorov, and S. Levine (2018). “Learning complex dexterous manip-
ulation with deep reinforcement learning and demonstrations.” In:
Robotics: Science and Systems (RSS).

Ratliff, N., M. Zucker, J. A. Bagnell, and S. Srinivasa (2009). “CHOMP:
Gradient optimization techniques for efficient motion planning.”
In: IEEE International Conference on Robotics and Automation (ICRA),
pp- 489-494.

Ren, Z., C. Zhou, S. Xin, and N. Tsagarakis (2017). “HERI hand: A
quasi dexterous and powerful hand with asymmetrical finger di-
mensions and under actuation.” In: IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS), pp. 322-328.

Riedmiller, M. A. (2012). “10 steps and some tricks to set up neural
reinforcement controllers.” In: Neural Networks: Tricks of the Trade
(2nd ed.) Springer, pp. 735-757.

Rodriguez, D. and S. Behnke (2018). “Transferring category-based
functional grasping skills by latent space non-rigid registration.” In:
IEEE Robotics and Automation Letters (RA-L) 3, pp. 2662-2669.

134

BIBLIOGRAPHY

- (2021). “DeepWalk: Omnidirectional bipedal gait by deep reinforce-
ment learning.” In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 3033-3039.

Rodriguez, D., A. Di Guardo, A. Frisoli, and S. Behnke (2018). “Learn-
ing postural synergies for categorical grasping through shape space
registration.” In: IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pp. 270-276.

Rodriguez, D., F. Huber, and S. Behnke (2020). “Category-level 3D non-
rigid registration from single-view RGB images.” In: IEEE/RS] Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 10617—
10624.

Rueckert, E., M. Nakatenus, S. Tosatto, and J. Peters (2017). “Learning
inverse dynamics models in O(n) time with LSTM networks.” In:
IEEE-RAS International Conference on Humanoid Robots (Humanoids),
pp- 811-816.

Rupert, L., P. Hyatt, and M. D. Killpack (2015). “Comparing model
predictive control and input shaping for improved response of
low-impedance robots.” In: IEEE-RAS International Conference on
Humanoid Robots (Humanoids), pp. 256-263.

Saveriano, M., Y. Yin, P. Falco, and D. Lee (2017). “Data-efficient control
policy search using residual dynamics learning.” In: IEEE/RS] Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 4709—
4715.

Schulman, J., J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel
(2013). “Finding locally optimal, collision-free trajectories with se-
quential convex optimization.” In: Robotics: Science and Systems IX.

Schulman, J., S. Levine, P. Abbeel, M. Jordan, and P. Moritz (2015).
“Trust region policy optimization.” In: International Conference on
Machine Learning (ICML). Vol. 37, pp. 1889-1897.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov
(2017). “Proximal policy optimization algorithms.” In: preprint
arXiv:1707.06347.

Schuster, M. and K. K. Paliwal (1997). “Bidirectional recurrent neural
networks.” In: IEEE Transactions on Signal Processing 45, pp. 2673—
2681.

Schwarz, M. and S. Behnke (2014). “Compliant robot behavior using
servo actuator models identified by iterative learning control.” In:
RoboCup 2013: Robot World Cup XVII. Springer, pp. 207-218.

Shao, L., T. Migimatsu, and J. Bohg (2020). “Learning to scaffold the
development of robotic manipulation skills.” In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 5671-5677.

Sheng, L., G. Xiaojie, and Z. Lanyong (2017). “Robust adaptive back-
stepping sliding mode control for six-phase permanent magnet
synchronous motor using recurrent wavelet fuzzy neural network.”
In: IEEE Access 5, pp. 14502-14515.

135

BIBLIOGRAPHY

Shi, W., K. Wang, C. Zhao, and M. Tian (2022). “Obstacle avoidance
path planning for the dual-arm robot based on an improved RRT
algorithm.” In: Applied Sciences 12.8, pp. 87-97.

Steffens, R., M. Nieuwenhuisen, and S. Behnke (2016). “Continuous
motion planning for service robots with multiresolution in time.”
In: International Conference on Intelligent Autonomous Systems (IAS),
pp- 203-215.

Sucan, I. A. and L. E. Kavraki (2010). “Kinodynamic motion planning
by interior-exterior cell exploration.” In: Algorithmic Foundation of
Robotics VIII: Selected Contributions of the Eight International Workshop
on the Algorithmic Foundations of Robotics. Springer, pp. 449-464.

Sucan, I. A., M. Moll, and L. E. Kavraki (2012). “The Open Motion
Planning Library.” In: IEEE Robotics & Automation Magazine 19.4,
pp. 72-82.

Sun, Z., K. Yuan, W. Hu, C. Yang, and Z. Li (2020). “Learning pre-
grasp manipulation of objects from ungraspable poses.” In: IEEE
International Conference on Robotics and Automation (ICRA), pp. 9917-
9923.

Szynkiewicz, W. and]. Blaszczyk (2011). “Optimization-based ap-
proach to path planning for closed chain robot systems.” In: In-
ternational Journal of Applied Mathematics and Computer Science 21.4,
pp- 659-670.

Talebi, H. A., R. V. Patel, and K. Khorasani (1998). “Inverse dynam-
ics control of flexible-link manipulators using neural networks.”
In: IEEE International Conference on Robotics and Automation (ICRA),
pp- 806-811.

Terry, J. S., L. Rupert, and M. D. Killpack (2017). “Comparison of
linearized dynamic robot manipulator models for model predictive
control.” In: IEEE-RAS International Conference on Humanoid Robots
(Humanoids), pp. 205-212.

Vahrenkamp, N., D. Berenson, T. Asfour, J.]. Kuffner, and R. Dillmann
(2009). “Humanoid motion planning for dual-arm manipulation and
re-grasping tasks.” In: IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS), pp. 2464-2470.

Wang, F,, Z. Chao, L. Huang, H. Li, and C. Zhang (2017). “Trajectory
tracking control of robot manipulator based on RBF neural network
and fuzzy sliding mode.” In: Cluster Computing, pp. 5799-5809.

Wang, G., F. Manhardt, X. Liu, X. Ji, and F. Tombari (2024). “Occlusion-
aware self-supervised monocular 6D object pose estimation.” In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 46.3,
pp- 1788-1803.

Wang, M., H. Ye, and Z. Chen (2017). “Neural learning control of
flexible joint manipulator with predefined tracking performance
and application to baxter robot.” In: Complexity 2017, pp. 1-14.

136

BIBLIOGRAPHY

Wang, Z., W. Yan, and T. Oates (2017). “Time series classification from
scratch with deep neural networks: A strong baseline.” In: IEEE
International Joint Conference on Neural Networks (I[CNN), pp. 1578-
1585.

Wei, W., P. Wang, S. Wang, Y. Luo, W. Li, D. Li, Y. Huang, and H. Duan
(2024). “Learning human-like functional grasping for multifinger
hands from few demonstrations.” In: IEEE Transactions on Robotics
40, pp. 3897-3916.

Wu, R, T. Zhu, W. Peng, J. Hang, and Y. Sun (2023). “Functional grasp
transfer across a category of objects from only one labeled instance.”
In: IEEE Robotics and Automation Letters (RA-L) 8.5, pp. 2748-2755.

Wu, T,, Y. Gan, M. Wu, J. Cheng, Y. Yang, Y. Zhu, and H. Dong (2024).
“Unidexfpm: Universal dexterous functional pre-grasp manipulation
via diffusion policy.” In: preprint arXiv:2403.12421.

Xanthidis, M., N. Karapetyan, H. Damron, S. Rahman, J. Johnson, A.
O’Connell, J. M. O’Kane, and I. Rekleitis (2020). “Navigation in the
presence of obstacles for an agile autonomous underwater vehicle.”
In: IEEE International Conference on Robotics and Automation (ICRA),
pp- 892-899.

Xia, D., L. Wang, and T. Chai (2014). “Neural-network-friction com-
pensation based energy swing-up control of pendubot.” In: IEEE
Transactions on Industrial Electronics 61, pp. 1411-1423.

Xie, D. and N. Amato (2004). “A kinematics-based probabilistic
roadmap method for high DOF closed chain systems.” In: IEEE
International Conference on Robotics and Automation (ICRA), pp. 473
478.

Xu, Z., W. Huang, Z. Li, L. Hu, and P. Lu (2021). “Nonlinear nonsin-
gular fast terminal sliding mode control using deep deterministic
policy gradient.” In: Applied Sciences 11.10, p. 4685.

Yang, C., X. Wang, L. Cheng, and H. Ma (2016). “Neural-learning-
based telerobot control with guaranteed performance.” In: IEEE
Transactions on Cybernetics 47.10, pp. 3148-3159.

Yang, D., T. Tosun, B. Eisner, V. Isler, and D. Lee (2021). “Robotic
grasping through combined image-based grasp proposal and 3D
reconstruction.” In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 6350-6356.

Yang, Y., D. Huang, and X. Dong (2019). “Enhanced neural network
control of lower limb rehabilitation exoskeleton by add-on repetitive
learning.” In: Neurocomputing 323, pp. 256-264.

Yiming, J., Y. Chenguang, N. Jing, L. Guang, L. Yanan, and Z. Junpei
(2017). “A brief review of neural networks based learning and
control and their applications for robots.” In: Complexity, pp. 1-14.

Zeng, W., S. Wang, R. Liao, Y. Chen, B. Yang, and R. Urtasun (2020).
“DSDNet: Deep structured self-driving network.” In: European Con-
ference on Computer Vision (ECCV), pp. 156-172.

137

BIBLIOGRAPHY

Zhang, G.,]. Wang, P. Yang, and S. Guo (2021). “Iterative learning
sliding mode control for output-constrained upper-limb exoskeleton
with non-repetitive tasks.” In: Applied Mathematical Modelling 97,
pp. 366-380.

Zhang, Y.,]. Hang, T. Zhu, X. Lin, R. Wu, W. Peng, D. Tian, and Y. Sun
(2023). “FunctionalGrasp: Learning functional grasp for robots via
semantic hand-object representation.” In: IEEE Robotics and Automa-
tion Letters (RA-L) 8.5, pp. 3094-3101.

Zhao, J., C.-M. Lin, and F. Chao (2019). “Wavelet fuzzy brain emo-
tional learning control system design for MIMO uncertain nonlinear
systems.” In: Frontiers in Neuroscience 12, p. 918.

Zhou, L., H. Wang, Z. Zhang, Z. Liu, F. E. Tay, and M. H. Ang (2024).
“You only scan once: A dynamic scene reconstruction pipeline for
6-DoF robotic grasping of novel objects.” In: IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 13891-13897.

Zhou, W.-M. and D. Held (2022). “Learning to grasp the ungraspable
with emergent extrinsic dexterity.” In: Conference on Robot Learning
(CoRL).

Zhu, H., A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar (2019).
“Dexterous manipulation with deep reinforcement learning: Effi-
cient, general, and low-cost.” In: IEEE International Conference on
Robotics and Automation (ICRA), pp. 3651-3657.

Zhu, T., R. Wu,]. Hang, X. Lin, and Y. Sun (2023). “Toward human-like
grasp: Functional grasp by dexterous robotic hand via object-hand
semantic representation.” In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 45.10, pp. 12521-12534.

Zhu, T.,, R. Wy, X. Lin, and Y. Sun (2021). “Toward human-like grasp:
Dexterous grasping via semantic representation of object-hand.”
In: IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 15721-15731.

Zhu, Y., Z. Wang,]. Merel, A. A. Rusu, T. Erez, S. Cabi, S. Tunya-
suvunakool, J. Kramar, R. Hadsell, N. de Freitas, and N. Heess
(2018). “Reinforcement and imitation learning for diverse visuomo-
tor skills.” In: Robotics: Science and Systems (RSS).

Zuo, W. and L. Cai (2010). “A new iterative learning controller using
variable structure Fourier neural network.” In: IEEE Transactions on
Systems, Man, and Cybernetics 40, pp. 458—468.

138

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Key Contributions
	1.2 Publications
	1.3 Outline

	2 Trajectory Tracking with Supervised Learning
	2.1 Introduction
	2.2 Related Work
	2.3 Background
	2.4 Two-stage Model with One-step Future Prediction
	2.5 Model Training
	2.6 Evaluation
	2.6.1 Quantitative Evaluation
	2.6.2 Practical Example

	2.7 Discussion

	3 Trajectory Tracking with Deep Reinforcement Learning
	3.1 Introduction
	3.2 Related Work
	3.3 Background
	3.4 Method
	3.4.1 Action Space
	3.4.2 State Space
	3.4.3 Reward Function
	3.4.4 Model
	3.4.5 Learning Process
	3.4.6 Informed Initialization

	3.5 Evaluation
	3.5.1 Setup
	3.5.2 Experiments

	3.6 Discussion

	4 Dual-Arm Trajectory Optimization
	4.1 Introduction
	4.2 Related Work
	4.3 Background
	4.3.1 STOMP
	4.3.2 STOMP-New

	4.4 Method
	4.4.1 Obstacle Cost
	4.4.2 Closed Kinematic Chain Constraint

	4.5 Evaluation
	4.5.1 Setup
	4.5.2 Unconstrained Scenario
	4.5.3 Closed Kinematic Chain Constraint Scenario
	4.5.4 Real-robot Experiments

	4.6 Discussion

	5 Dexterous Manipulation with Deep Reinforcement Learning
	5.1 Introduction
	5.2 Related Work
	5.3 Background
	5.4 Explicit Target Grasp Representation
	5.4.1 Action Space
	5.4.2 State Space
	5.4.3 Reward Function
	5.4.4 Curriculum

	5.5 Constraint-based Target Grasp Representation
	5.5.1 Action Space
	5.5.2 State Space
	5.5.3 Reward Function
	5.5.4 Curriculum

	5.6 Evaluation
	5.6.1 Setup
	5.6.2 Explicit Target Grasp Representation
	5.6.3 Constraint-based Target Grasp Representation

	5.7 Discussion

	6 Conclusion
	 Lists of figures, tables, and acronyms
	List of Figures
	List of Tables
	Acronyms

	 Bibliography

