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List of Abbreviations  

 

AI    Artificial Intelligence 
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Definitions  

 

AI tool/AI solution A technology such as a software or device “that relies upon an 

AI/ML component to serve its purpose” (Cruz Rivera et al., 2020, 

p. 1353). 

Algorithm “Mathematical model responsible for learning from data and 

producing an output” (Vasey et al., 2022, p. 930). 

Artificial Intelligence  “The ability of computers to perform tasks that normally require 

human intelligence“ (Ahmad et al., 2021, p. 1). 

Barrier “A barrier is defined as any factor that limits or restricts the 

integration or use of the AI system” (Wenderott et al., 2022, p. 

3). 

Clinical Setting “Relating to the observation and treatment of actual patients 

rather than in silico or scenario-based simulations” (Vasey et al., 

2022, p. 930). 

Efficiency “Resources used in relation to the results achieved. Typical 

resources include time, human effort, costs and materials” 

(International Organization for Standardization, 2018). 

Results in healthcare can be either intermediate (e.g. patients 

treated, waiting time) or final health outcomes (e.g. lives saved, 

quality adjusted life years) (Palmer & Torgerson, 1999). 

Facilitator “A facilitator is defined as any factor that promotes or expands 

the integration or use of the AI system in the workflow” 

(Wenderott et al., 2022, p. 3). 

Healthcare 

Professionals 

They “maintain health in humans through the application of the 

principles and procedures of evidence-based medicine and 

caring“ (World Health Organization, 2013, p. 57).  

„A minimal list would include physicians, nurses, nurse 

practitioners, physician’s assistants, pharmacists, social 
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workers, dietitians, physical and occupational therapists, and 

medical technologists“ (Institute of Medicine, 2009, p. 118). 

Human Factors “The scientific discipline concerned with the understanding of 

interactions among humans and other elements of a system, and 

the profession that applies theory, principles, data, and methods 

to design in order to optimize human well-being and overall 

system performance" also called Ergonomics (Carayon et al., 

2020; International Ergonomics Association, n.d.).  

Machine Learning “A field of computer science concerned with the development of 

models/algorithms which can solve specific tasks by learning 

patterns from data, rather than by following explicit rules. It is 

seen as an approach within the field of AI” (Cruz Rivera et al., 

2020, p. 1353). 

Medical Devices “Products with a medical purpose, intended by the manufacturer 

for human use” (Federal Institue for Drugs and Medical Devices, 

Germany, n.d.). 

Medical Imaging “Medical imaging is a broad term that encompasses a variety of 

techniques or processes to create visual representations of the 

body for diagnosis, treatment, and management of diseases. […] 

medical imaging includes a variety of other specialties where 

images are acquired in order to help clinicians better understand 

the characteristics and mechanisms underlying disease 

processes that cannot be acquired simply by viewing a patient, 

analyzing lab reports, or asking them about their symptoms” 

(Krupinski, 2016, p. 545). 

Medical Purposes “Purposes that are intended to treat, diagnose, cure, mitigate, or 

prevent disease or other conditions” (U.S. Food and Drug 

Administration, 2019, p. 2). 
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Perceived 

Usefulness 

“The degree to which a person believes that using a particular 

system would enhance his or her job performance" (Davis, 1989, 

p. 320). 

Perceived Ease of 

Use 

“The degree to which a person believes that using a particular 

system would be free of effort" (Davis, 1989, p. 320). 

Routine Care Actual clinical routine care how patients are being treated without 

any evaluation ongoing and “in which the decisions made have 

a direct effect on patient care” (Vasey et al., 2022, p. 930). 

Sociotechnical 

Perspective 

“Sociotechnical perspectives focus on understanding the 

interaction between two interrelated systems, the technical 

system and the social system, within a particular environmental 

context” (Whetton & Georgiou, 2010, p. 221). 

Stakeholder “Person or organization that can affect, be affected by, or 

perceive themselves to be affected by a decision or activity” 

(International Organization for Standardization, 2018). 

Usability “Extent to which a product can be used by specified users to 

achieve specified goals with effectiveness, efficiency, and 

satisfaction in a specified context of use” (International 

Organization for Standardization, 2018). 

User “Person interacting with the AI system to inform their decision-

making [or care procedure]. This person could be a healthcare 

professional or a patient” (Vasey et al., 2022, p. 930). 

Workflow “The flow of people, equipment (including machines and tools), 

information, and tasks, in different places, at different levels, at 

different timescales continuously and discontinuously, that are 

used or required to support the goals of the work domain” 

(Carayon et al., 2012, p. 509). 
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Workflow Integration “The technology is seamlessly incorporated within the work 

system elements (i.e. people, tasks, other technologies/tools, 

physical environment, organization) and their interactions over 

time (i.e. process), specifically considering the temporal order in 

which work is accomplished and the point in time in which the 

technology will be used. This includes how the technology fits 

within the sequence and flow of tasks, people, information, and 

tools/technologies; at the individual, team, and organizational 

level; across different scopes of the patient journey” (Salwei et 

al., 2021, p. 3). 

Work System “The work system represents the context within which 

organizational members perform their assigned work” 

(Jasperson et al., 2005, p. 535).  

Workload “The relationship between a group or individual human operator 

and task demands. […] it is the volume of work expected of a 

person”(Campbell et al., 2013). 
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1. Abstract 

Artificial intelligence (AI) is increasingly being integrated into healthcare to support 

clinicians, reduce workloads, and improve workflow efficiency. AI is particularly beneficial 

in image-based and data-driven medical fields due to its pattern recognition capabilities. 

While extensive research has been done to explore the potential of AI under experimental 

conditions, the knowledge about the intricacies of its real-world implementation in clinical 

settings remains scarce. Consequently, a human factors approach that considers 

healthcare’s complexity as a sociotechnical system is essential. 

In this dissertation an examination of the AI integration into clinical workflows is presented, 

offering a comprehensive view of human-AI interaction in healthcare’s complex 

environment. The theoretical background of this work is the System Engineering Initiative 

for Patient Safety Model, with the related Conceptual Model of Workflow Integration and 

the Technology Acceptance Model. Three research projects – one systematic review and 

two use cases – are presented in this dissertation. 

The systematic review involved an assessment of AI’s impact on efficiency, clinician 

outcomes, and workflows in medical imaging, revealing a positive effect on time for tasks 

and leading to the identification of different AI-augmented workflows. A novel framework 

was also introduced to categorize the level of AI implementation in the studies. The first 

considered use case involved an AI implementation in a radiology department, where the 

AI tool under study was not yet fully integrated into the routine workflow. While the users 

who participated in the study initially had a positive attitude, the poor fit and longer reading 

times for complex cases led to workarounds and frustration. The second considered use 

case, a fully implemented AI tool in human genetics, highlighted that usability and 

organizational factors were key to successful adoption, as most users incorporated the 

tool into their daily routines. 

The work for this dissertation combined various study designs across different medical 

specialties. By identifying multiple variations of AI-facilitated clinical workflows, it was 

emphasized that the context of AI implementation is often unique and AI implementation 

requires local adaptation. Moreover, recommendations drawing upon identified facilitators 

and barriers are proposed which should be considered for safe and effective future 

implementation processes of AI in clinical care.  
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2. Introduction and Aims with References 

Technological advances such as the wide-spread availability of artificial intelligence (AI), 

such as generative AI, are not only changing our daily lives, but are also being applied 

across various industries and public sectors, including healthcare. Given the increasing 

number of patients who are seeking treatment due to an aging society and the 

corresponding high work demands for health care professionals (HCPs), the healthcare 

sector is the subject of many promises regarding the introduction of AI (Ahmad et al., 

2021; He et al., 2019; Wenderott et al., 2023). The uptake of AI-driven technological 

solutions in healthcare is associated with many potential benefits, such as the reduction 

of documentation burden, increase in medication safety, better accessibility of expertise, 

or advances in personalized medicine (Graafsma et al., 2024; Huang et al., 2024; Lee et 

al., 2024; van Leeuwen et al., 2021).  

In some publications and from opinion leaders the threat that AI could replace clinicians 

in the future has been expressed, but in more recent work the perspective has been 

supported that AI will rather augment clinicians in their work (Ahuja, 2019; Langlotz, 2019; 

Pinto Dos Santos et al., 2019; Topol, 2019; Wong et al., 2019). That AI holds a large 

potential for augmenting the healthcare sector is also demonstrated by the growing 

number of patents of AI-enabled medical devices that has been registered in the US and 

EU as well as a rise in FDA approvals (Aboy et al., 2023; Joshi et al., 2024). While the 

number of available AI-enabled medical devices is constantly growing, in the past the 

majority of studies have been focused on the technological features of these solutions, 

whereas little research has involved the evaluation of their actual impact in clinical practice 

(Han et al., 2024; Wolff et al., 2021; Yin et al., 2021). The evaluations undertaken have 

predominantly involved the testing of AI solutions only with retrospective data or in 

laboratory settings, with the obtained results not necessarily being transferable to the 

complexities of real-world clinical settings (Han et al., 2024; Park et al., 2020; Widner et 

al., 2023).  
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2.1. Theoretical Background 

2.1.1. Sociotechnical Systems Perspective – Work System Model 

Work in healthcare is characterized by high uncertainty, dynamic changes, and multiple 

interacting people or elements, therefore creating a highly complex sociotechnical work 

system (Carayon, 2006; Carayon et al., 2014). To effectively analyze healthcare 

interventions, such as the introduction of AI in clinical settings, it is crucial to assess their 

impact within this intricate work system. The scientific discipline which involves studying 

work systems and their interactions is Human Factors. 

A model that is grounded in Human Factors and provides a useful conceptual background 

for understanding these complex interactions is the work system model of healthcare, also 

called the Systems Engineering Initiative for Patient Safety (SEIPS) model (Carayon et 

al., 2006, 2014). In the SEIPS model (Fig. 1) five key elements are identified that form the 

work system (Carayon et al., 2006, 2014): 

1. Person: The individual or group, which is the center of the work system, such as a 

patient or caregiver. 

2. Tasks: The physical or psychological demands that are placed on individuals. 

3. Tools and Technologies: Instruments like medical devices or electronic patient 

records, which are used in the work system. 

4. Physical Environment: Factors like lighting or noise in the workplace that affect the 

individuals. 

5. Organization: The hospital or clinic where individuals work or seek care. 

These five elements are affected by the external environment, such as regulations or 

policies. Additionally, the model integrates the Structure-Process-Outcome (SPO) Model 

of Healthcare Quality (Carayon et al., 2014; Donabedian, 1978). In this sequential model 

it is illustrated how the work system, through specific processes or workflows like clinical 

care, results in outcomes for both patients and caregivers (Carayon et al., 2012). 

Previously, workflows were defined as a linear sequence of tasks aimed at achieving a 

specific goal. Carayon et al. (2012) expanded this definition to highlight the dynamic 

interaction of work system elements, describing a workflow as the “flow of people, 

equipment (including machines and tools), information, and tasks, in different places, at 
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different levels, at different time scales continuously and discontinuously, that are used or 

required to support the goals of the work domain” (Carayon et al., 2012, p. 509).  

Additionally, the SEIPS model has also been proven useful in identifying work system 

barriers and facilitators (Carayon & Perry, 2021; Hoonakker et al., 2013; Hose et al., 2023; 

Xie et al., 2014), which are factors that hinder or promote the performance or fulfillment of 

certain tasks or processes with regard to reaching specific goals (Wooldridge et al., 2020). 

By identifying facilitators and barriers which are associated with different work system 

elements, a deeper understanding of the system performance can be achieved 

(Wooldridge et al., 2020). While traditionally, factors that affected a process or outcome 

were categorized either as a facilitator or barrier, Hoonakker et al. (2017) have proposed 

a more nuanced view, suggesting that there are different dimensions, instead of fixed 

categories, where the same factor within a dimension can be both a barrier and a 

facilitator, depending on the unique implementation context. 

 

 

Fig. 1: Work System Model of Healthcare, also called the Systems Engineering Initiative for Patient Safety (SEIPS) 
Model (Carayon et al., 2006, 2014) 
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2.1.2. Conceptual Model of Workflow Integration 

Based on the SEIPS model, one model that has involved the specific addressing of the 

integration of novel technologies in healthcare is the Conceptual Model of Workflow 

Integration (Fig. 2) by Salwei et al. (2021). In this model it is described how the introduction 

of a technology can reshape the work system, involving the novel technology as a new, 

distinct element that interacts with the other work system elements. The authors describe 

workflow integration as “system interactions and how well the new technology fits (or does 

not fit) within the temporal flow of work (i.e. process). A technology is integrated in the 

workflow if the system interactions resulting from the introduction of the new technology 

fit in the flow of work” (Salwei et al., 2021, p. 4). By also integrating the SPO-model, 

according to Salwei et al. (2021), the workflow integration of a technology results in work 

system outcomes. For instance, with regard to HCPs, positive outcomes may include 

increased acceptance of the new technology or reduced workload, whereas negative 

outcomes could involve workarounds or frustration. 

The model by Salwei et al. (2021) has also been applied to the introduction of AI in medical 

settings, where workflow integration has been identified as a central challenge to the 

introduction of AI in medical settings (Matheny et al., 2019; Salwei & Carayon, 2022; Wolff 

Fig. 2: Conceptual Model of Workflow Integration (Salwei et al., 2021) 
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et al., 2021). Furthermore, Salwei and Carayon (2022) outlined key sociotechnical 

considerations when applying the model to AI integration in healthcare:  

1. The interaction between AI technology and other work system elements. 

2. The integration of AI within the temporal aspects of work.  

3. The role of AI in supporting decision-making processes while ensuring transpa-

rency and trust. 

2.1.3. Technology Acceptance Model 

While in the work for this dissertation a systemic perspective has been adopted on AI 

implementation, relying solely on the SEIPS-based approach seemed insufficient (Salwei 

et al., 2021; Wenderott, Krups, Luetkens, et al., 2024). Particularly in the context of AI in 

healthcare, where not all users are willing to accept AI, the individual’s decision to adopt 

and use the technology plays a critical role (Choudhury & Asan, 2022). In the Technology 

Acceptance Model (TAM), developed by Davis (1989), the importance of this individual-

level decision is highlighted, which is essential for the successful implementation of AI. 

Furthermore, in the TAM (Fig. 3) it is stated that the intention to use a technology and its 

actual use are influenced by the individual’s attitude toward this technology. This attitude 

consists of the perceived usefulness and the perceived ease of technology use (Davis, 

1989). These perceptions are influenced by external variables which have been further 

defined in the second and third version of the TAM, for example including subjective norms 

Fig. 3: Technology Acceptance Model (Davis, 1989) 
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(TAM 2) or computer self-efficacy (TAM 3) (Venkatesh & Bala, 2008; Venkatesh & Davis, 

2000). By combining the systemic approach of SEIPS with the individual-focused TAM, a 

better understanding of both the organizational and individual factors that influence the 

successful implementation of AI in a healthcare setting can be achieved (Choudhury, 

2022). 

2.2. Empirical Background 

In addition to the theoretical foundation of this dissertation, previous research has shaped 

and informed its different projects. In 2021, marking the start of this dissertation, only a 

few AI solutions had been translated into clinical practice (Wolff et al., 2021; Yin et al., 

2021). Among the early adopters were medical specialties that rely on image-based data, 

such as radiology, pathology, and dermatology, as they are particularly suited to AI 

algorithms due to their ability to analyze patterns in data (Hosny et al., 2018; Tang et al., 

2018). Additionally, these specialties face an increase in quantity and quality of medical 

imaging data, while the number of trained professionals is not rising at the same rate. To 

alleviate this growing workload AI is hoped to support medical imaging analysis by 

creating more efficient workflows and reducing reading times (Hosny et al., 2018; van 

Leeuwen et al., 2021). This potential is also mirrored by the high number of AI algorithms 

in these specialties that have received FDA clearance (Joshi et al., 2024). As AI 

technologies have also already been integrated in routine care in these specialties, the 

research reported in this dissertation was focused on image-based specialties.  

At the same time as more AI algorithms for healthcare have been approved for the market, 

their potential benefits have been highlighted in numerous studies. However, a significant 

gap remains between research on the technological features or theoretical potential of 

these solutions and their practical implementation in real-world clinical care (Yin et al., 

2021). This has also come to attention of human factors and ergonomics researchers, 

who emphasize the need for comprehensive, system-based research that addresses the 

ecological validity, the users, and the clinical environment (Asan & Choudhury, 2021; Lau 

et al., 2020). A further point underscoring the importance of such evaluations, is the 

observation that the efficacy of an AI tool depends not only on the accuracy of the 

algorithm but also on its seamless integration into the local context and smooth fit with its 

users (Marco-Ruiz et al., 2024). Therefore, the work for this dissertation involved an 
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examination of the integration of AI into routine care from a human factors perspective, 

aiming for an evaluation beyond technical model performance. 

For studying AI integration within the system of healthcare, the study by Strohm et al. 

(2020) served as a best practice example at the time of this dissertation’s planning. They 

established an interview-based study involving various stakeholders, such as radiologists, 

data scientists, and managers, to explore the implementation of a specific AI tool in 

different radiology departments. They provided an in-depth analysis of an AI 

implementation process, but only conducted interviews after the AI system had been in 

use, without considering any professionals’ perceptions beforehand. Strohm et al. (2020) 

identified barriers and facilitators for the implementation of this AI system, such as 

inconsistent trust and acceptance among radiologists or the anticipated benefits of the 

technology. However, they did not describe how the workflow actually changed during 

technology implementation, despite this being proposed as a key implementation factor - 

both as a facilitator (i.e., minimizing workflow changes) and a barrier (i.e., unstructured 

implementation). The importance of workflow integration has been further emphasized by 

researchers such as Wolff et al. (2021) and Yin et al. (2021). In combination with the 

Conceptual Model of Workflow Integration, their research led to the positioning of workflow 

integration as a central topic in this dissertation and also sparked the research on related 

facilitators and barriers. 

A review of the literature on AI workflow integration revealed that AI can be incorporated 

in various ways, each with distinct implications for the resulting changes. For instance, 

reviewing AI-generated information and results may enhance existing tasks or introduce 

an additional step to the workflow (Agarwal et al., 2024). In image-reading tasks, AI can 

serve as a gatekeeper, presenting only flagged images to the human reader. Alternatively, 

AI and human analysis can occur sequentially, with either the AI or the clinician reviewing 

the data first. In a concurrent design, both the AI and the human reader review the data 

simultaneously, with the AI's findings being integrated later (Beyer et al., 2007; Dahlblom 

et al., 2023). These designs can impact reading time and sensitivity, therefore it is 

important to consider how the AI solution has been implemented into the respective 

workflow (Dahlblom et al., 2023; Miyake et al., 2013). Reporting guidelines such as 

DECIDE-AI, CONSORT-AI, and SPIRIT-AI include a detailed description of the intended 

use and integration of an AI tool in the clinical pathway, aiming to ensure transparency 



18 

 
 

 

and a high quality of reporting for AI implementation studies (Cruz Rivera et al., 2020; Liu 

et al., 2020; Vasey et al., 2022). Whereas in some studies detailed descriptions of AI-

supported workflows have been provided (e.g. Diao et al., 2022; A. E. Hassan et al., 

2023), this is not yet standard. Therefore, in the work for this dissertation, the conditions 

and effects of different AI-supported workflows were examined and contextualized with 

the identified facilitators and barriers to AI implementation. 

Consequently, the work for this dissertation involved the integration of a human factors 

perspective, which has a crucial role for the successful bridging of the gap between AI 

development and implementation in healthcare (The DECIDE-AI Steering Group, 2021). 

While incorporating human factors early in development is essential, the full impact and 

consideration of these factors can only be evaluated within actual clinical practice (The 

DECIDE-AI Steering Group, 2021; Vasey et al., 2022). As these solutions become more 

widely accessible, there is a growing need for thorough evaluations of AI systems’ real-

world implementation (Han et al., 2024; Wenderott, Krups, Zaruchas, et al., 2024; Yin et 

al., 2021).  

2.3. Aims 

To meet the previously identified need for research, the aim of the work for this dissertation 

was to investigate the workflow integration of AI in clinical practice. A further aim was to 

generate a holistic assessment of the human-AI interaction in the complex sociotechnical 

work system of healthcare. Due to the vast advances of AI within image-based medical 

specialties as well as to enable a comparison across the conducted studies, the work for 

this dissertation was focused on this particular area of AI application in healthcare. 

To fulfill the overarching aim, the following objectives were defined:  

1. Assess and synthesize the current knowledge and literature base on how AI 

impacts clinical workflows, their efficiency, and clinician outcomes.  

2. Prospectively map the changes that occur through the integration of an AI-based 

application within the work system and determine the effects on healthcare 

professionals in a clinical use case. 

3. Identify barriers and facilitators of AI integration into clinical workflows and derive 

best practices for future implementation scenarios.  
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Abstract

Background: When introducing artificial intelligence (AI) into clinical care, one of the main objectives is to improve workflow
efficiency because AI-based solutions are expected to take over or support routine tasks.

Objective: This study sought to synthesize the current knowledge base on how the use of AI technologies for medical imaging
affects efficiency and what facilitators or barriers moderating the impact of AI implementation have been reported.

Methods: In this systematic literature review, comprehensive literature searches will be performed in relevant electronic
databases, including PubMed/MEDLINE, Embase, PsycINFO, Web of Science, IEEE Xplore, and CENTRAL. Studies in English
and German published from 2000 onwards will be included. The following inclusion criteria will be applied: empirical studies
targeting the workflow integration or adoption of AI-based software in medical imaging used for diagnostic purposes in a health
care setting. The efficiency outcomes of interest include workflow adaptation, time to complete tasks, and workload. Two reviewers
will independently screen all retrieved records, full-text articles, and extract data. The study’s methodological quality will be
appraised using suitable tools. The findings will be described qualitatively, and a meta-analysis will be performed, if possible.
Furthermore, a narrative synthesis approach that focuses on work system factors affecting the integration of AI technologies
reported in eligible studies will be adopted.

Results: This review is anticipated to begin in September 2022 and will be completed in April 2023.

Conclusions: This systematic review and synthesis aims to summarize the existing knowledge on efficiency improvements in
medical imaging through the integration of AI into clinical workflows. Moreover, it will extract the facilitators and barriers of
the AI implementation process in clinical care settings. Therefore, our findings have implications for future clinical implementation
processes of AI-based solutions, with a particular focus on diagnostic procedures. This review is additionally expected to identify
research gaps regarding the focus on seamless workflow integration of novel technologies in clinical settings.

Trial Registration: PROSPERO CRD42022303439; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=303439

International Registered Report Identifier (IRRID): PRR1-10.2196/40485

(JMIR Res Protoc 2022;11(12):e40485) doi: 10.2196/40485
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Introduction

In medicine, vast changes in patient care because the
development of artificial intelligence (AI) is foreseen and
ongoing. AI is broadly defined as “the ability of computers to
perform tasks that normally require human intelligence” [1].
The introduction of these technologies in medicine promises to
improve the quality and safety in health care and accessibility
of medical expertise [1]. In the future, AI-human collaboration
can augment the ability of clinicians in health care delivery by
extracting relevant information from big data sets or performing
tasks with higher precision [2,3]. The areas where AI
technologies can assist the health care professionals are
manifold, for example, clinical diagnostics, decision-making,
or health care administration [2,4,5]. These technologies “can
be used as powerful tools and partners to enhance, extend, and
expand human capabilities, delivering the types of care patients
need, at the time and place they need them” [4].

When integrating AI applications into clinical practice, these
technologies will become part of highly complex sociotechnical
work systems. A model that considers the complexity and scope
of the clinical care work environment is the systems engineering
initiative for patient safety (SEIPS) 2.0 model [6]. On the basis
of SEIPS 2.0, the conceptual model of workflow integration
was developed to investigate the integration of a new technology
into clinical work processes, which has also been applied to the
integration of AI [7,8]. The model uses a sociotechnical system
approach and proposes that the whole work system and
workflow must be considered to evaluate the success of an AI
technology implementation [8].

Some work systems in medicine are faster or more suitable in
adopting AI-facilitated technologies. Especially, in specialties
that are largely image-based or process big amounts of data, AI
is expected to support physicians and improve patient care by
leading to more effective and efficient diagnostics [9,10]. Health
care providers in image-based medical disciplines handle a
growing amount of imaging data that require thorough
interpretation [11]. Moreover, the shortage of physicians in
radiology and a limited time available per image to meet the
current workload are common challenges [12]. The introduction
of AI into clinical practice holds a significant potential for
changes in clinicians’ duties and improvements such as
advancing routine tasks and freeing clinicians’ time for other
important tasks [1,2].

One of the main objectives in introducing AI into health care
is efficiency improvement because AI is expected to take over
not exceedingly complex but time-consuming tasks [1,13,14].
This goal can only be achieved if these technologies are
seamlessly integrated into the existing clinical workflow [15].
Therefore, a correlation between workflow integration and
usability outcomes, which include efficiency, effectiveness, and
satisfaction, has been proposed [7,16]. Efficiency is defined as
“resources used in relation to the results achieved. […] Typical
resources include time, human effort, costs and materials” [16].
Drawing upon the conceptual model of workflow integration,
efficiency-related clinician outcomes include the adaptation of
workflow, time to complete tasks, and workload [7,13].

To our knowledge, there is currently no systematic literature
review or structured synthesis available on whether the
integration of AI into the clinical workflow is associated with
improved efficiency. Therefore, comprehensive evidence is
necessary, concerning the major promise of freeing physician
time for other care activities, for example, direct patient care.
As the potential fields of application for AI technologies in
health care are diverse, we focus on AI used for medical imaging
to enable comparability. In this review, efficiency-related
clinician outcomes such as workflow adaptation, time to
complete tasks, and workload will be considered. Moreover,
reported facilitators or barriers for the successful integration of
AI into the workflow will be reviewed as “workflow integration
is crucial for making this kind of software [computer-aided
detection based on AI] a success” [13].

Our systematic review addresses the following question: how
do AI technologies influence the efficiency of workflows in
medical imaging?

Specifically, it aims to synthesize the literature base concerning
two specific objectives: (1) Identification and overall
aggregation of the effects of AI technology implementation on
efficiency-related clinician outcomes such as workflow
adaptation, time to complete tasks, and clinicians’ workload;
and (2) Description of the facilitators and barriers for the
integration of AI into the workflow of medical imaging.

Methods

Protocol Registration and Reporting Information
A systematic literature review will be performed to assess the
existing literature base and findings. The review’s protocol is
registered in the PROSPERO database (registration:
CRD42022303439). The protocol and subsequent systematic
review follow the reporting guidelines of preferred reporting
items for systematic review and meta-analysis protocols
statement. The checklist is included in Multimedia Appendix
1.

Eligibility Criteria and Study Design
Only original studies retrieved in full-text and published in
peer-reviewed journals will be included. The review will include
prospective observational and interventional studies such as
randomized controlled trials and nonrandomized studies of
interventions, for example, before–after studies and those with
an interrupted time series design.

Population
We will include studies conducted in health care facilities such
as hospitals, clinics, or outpatient settings using medical
imaging. All types of health care professionals, including all
age groups, sexes, professions, and qualifications, will be
included from the hospital and clinical care settings.

Exposure and Intervention
Studies targeting AI used for medical imaging and its effects
on health care professionals interacting with the technology will
be eligible for inclusion in this review, including a broad range
of AI solutions and clinical work settings. Regarding clinical
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medical imaging and diagnostics, AI can be defined as “any
computer system that can correctly interpret health data,
especially in its native form as observed by humans” [17]. AI
is often used in this context to identify or forecast a disease state
[17]. This review will exclusively focus on AI used for image
data interpretation for diagnostic purposes as well as medical
imaging [2]. Therefore, our working definition for AI used for
medical imaging activities as well as clinical diagnostics in this
study will be as follows: any computer system used to interpret
imaging data to make a diagnosis, support an image-based
clinical (intervention) task, or screen for a disease, a task
previously reserved for specialists.

Comparators
Studies comparing the use of AI in clinical diagnostics and
medical imaging with only human specialists will be the

comparison of interest; however, it is not a necessary condition
for studies to be included in this review.

Outcomes

Overview

Our central study objective is to investigate the impact of AI
solutions for clinical diagnostics on the workflow efficiency in
clinical care settings. On the basis of our theoretical background,
we will focus on three associated outcomes, namely, (1)
workflow adaptation, (2) workload, and (3) time-to-complete
tasks. In addition, we will systematically assess any facilitators
and barriers of AI integration into practice that are mentioned
in eligible studies (Figure 1).

Figure 1. Outcomes and measures of effect in this review. AI: artificial intelligence.

Workflow Adaptation

Workflow is defined as “the automation of a business process,
in whole or part, during which documents, information or tasks
are passed from one participant to another for action, according
to a set of procedural rules” [18]. This definition was given by
the workflow management coalition for business processes but
can be also used for clinical contexts [18]. Thus, we will
systematically evaluate the adaptation of the workflow in form
of any reported changes to the existing processes due to the
introduction of an AI technology.

Workload

Workload is defined as “the task demand of accomplishing
mission requirements for the human operator” [19,20].
Measuring and analyzing clinical workload is “dependent on
the tasks performed, the total time needed to complete the tasks
and other care delivery needs of patients” [20,21]. Workload
can be measured using objective measures, for example, cases
seen or physiological data, and subjective measures such as
questionnaires [22]. We will include all forms of quantitative
workload measurements that compare the use of an AI software
to traditional or previous methods such as pre-existing IT
solutions, tools, and technologies in the workplace.

Time to Complete Tasks

New technologies provide opportunities to reduce the time
needed to complete tasks, such as the time needed to examine
magnetic resonance (MR) or computed tomography images
[7,13]. Therefore, we will consider all reported measures on the
time-to-task completion or duration. Time to complete tasks
will be included if time changes on tasks of interest, such as
diagnostic reading of MR images or writing of patient reports,
are reported quantitatively with a comparison between the use
of AI and traditional methods.

Facilitators and Barriers

A facilitator is defined as any factor that promotes or expands
the integration or use of the AI system in the workflow. A barrier
is defined as any factor that limits or restricts the integration or
use of the AI system. The definitions were developed based on
a systematic review by Niezen and Mathijssen [23], and the
reported results will be classified according to these definitions.
We will extract and synthesize facilitators and barriers in a
narrative form using the Nonadoption, Abandonment, Scale-Up,
Spread, and Sustainability framework for novel medical
technologies in health care organizations [24].
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Publication Types
We will include studies published from January 2000 onward
because deep learning was developed in the early 2000s, which
is thus marked as the beginning of a new area of AI use in
medicine [25]. The article must be in English or German to be
eligible for this review.

Owing to our rigorous scope, we limit our review to
peer-reviewed journal articles and exclude dissertations, theses,
and conference proceedings; as for the latter, the peer-review
standards differ across conferences or disciplines. Furthermore,
research on AI in medicine not used for medical imaging or
diagnostics or research excluding the effects on the work system,
such as studies on human interaction with the technology, will
not be considered in this review.

Search Strategy
Literature will be retrieved through a structured literature search
in several electronic databases: MEDLINE (PubMed), Embase,
PsycINFO, Web of Science, IEEE Xplore, and Cochrane Central
Register of Controlled Trials. We will use further the snowball
method to identify literature not detected through electronic
databases, thus screening through the references of identified
studies and using Google Scholar. Table 1 outlines the search
strategy, following the PICO framework. Because we have
decided that comparator is not a necessary condition to be
included in this review, we did not list it in the search strategy
(see eligibility criteria above). To expand the list of search terms,
a preliminary search will be performed before the main search.

Table 1. Search strategy according to the PICO framework.

Search termConnectorClassification

“hospital” OR “clinic” OR “healthcare” OR “health care delivery” OR “clinical care” OR “medical” OR physician*
OR clinician* OR doctor* OR nurse* OR “health care professional” OR “patient care” OR patient* OR surg* OR
“oncology” OR “radiology” OR “health information”

—aPopulation

“artificial intelligence” OR “machine intelligence” OR “machine learning” OR “deep learning” OR “neural network”
OR “natural language processing” OR “AI ” OR “automated image recognition” OR “decision-support” OR “AI
application*”

ANDIntervention

“adoption” OR “deploy*” OR “implementation” OR “integration”ANDIntervention

diagnos* OR “Magnetic Resonance Imaging” OR MRI OR “computer tomography” OR imag* OR detect* OR
“data interpretation” OR “information system*” OR “health information technology*” OR “health IT*” OR “medical
informatics” OR “electronic health record*” OR “medical record*” OR “patient data”

ANDIntervention

“workload” OR “work reduction” OR load* OR “cognitive load” OR demand* OR time* OR stress* OR “satisfaction”
OR “usability” OR “workflow” OR efficienc* OR “work system” OR “work adaptation” OR “turnaround” OR
“clinician outcome” OR “performance”

ANDOutcomes

aNone.

Screening and Selection Procedure
All retrieved articles will be imported into the software Zotero,
an open-source reference management software [26]. For title
and abstract screening, Rayyan, a web application for an initial
title and abstract screening, will be used [27,28]. In the first
step, the titles and abstracts will be independently screened by
2 reviewers who will undergo training to increase interrater
agreement. In case of disagreement, a third researcher from the
team will be consulted to solve the conflict in a discussion. If
the disagreement cannot be solved through obtaining consensus,
the 3 researchers will solve the conflict democratically, that is,
majority vote. In the second step, full texts of all eligible
publications will be retrieved. These will also be screened by
2 reviewers, and potential conflicts on whether the articles
should be included will be resolved in a discussion moderated
by a third member of the study team. Studies that are excluded
in the process will be recorded. A flow diagram presenting the
study selection process will be prepared, following the PRISMA
(Preferred Reporting Items for Systematic Reviews and

Meta-Analyses) 2020 flow diagram for new systematic reviews,
which included searches of databases, registers, and other
sources [29].

Data Collection Procedure
The study data will be extracted by 1 author and imported into
MS Excel (Microsoft Corp). The study data contain details on
study characteristics, sample, setting, type of intervention, type
and assessment of outcomes, statistical analyses, reported
results, moderators or control of confounders, and further
information of interest (Textbox 1). The studies and extracted
data will be checked at random by another reviewer from the
study team. To obtain an agreement on relevant data to be
extracted, data from the first 5 studies will be extracted by both
reviewers, and a guideline for data extraction will be developed.
The extracted data will be divided into several main categories.
If any information is missing, the authors of that particular study
will be contacted for further details. In case of multiple
publications on 1 study, only the key publication will be
included.
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Textbox 1. Main categories for data to be extracted.

1. Study characteristics

• Authors

• Year of publication

• Location

• Study design

2. Sample

• Sample size

• Participants: demographics and professional characteristics

3. Setting

• Type of clinic

• Medical specialty

• Task

4. Type of intervention

• Artificial intelligence technology (category, reliability, and source)

5. Type and assessment of outcomes

• Workflow adaptation, workload, and times other reported outcome variables

• Facilitators and barriers (if reported)

• Sources of outcomes

• Assessment method (eg, interview, questionnaire, and observation)

6. Statistical analyses

• Types of statistical methods and analyses

• Means and variance metrics of outcomes (eg, standard deviations and confidence intervals)

7. Reported results

• Quantitative results

• Coefficients (β, γ) and measures of strength of association between artificial intelligence and changes in outcome variables

• Effect sizes (if reported or calculable)

• P values

• Qualitative results

• Named facilitators and barriers

• Any reported analysis

8. Moderators or control of confounders

• Potential moderators or confounding variables (if reported)

9. Further information of potential interest

• Further information, for example, on limitations

Study Appraisal and Risk of Bias (Quality) Assessment
To assess the methodological quality of the included studies, a
standardized risk of bias assessment will be performed. Three
established tools to assess the risk of bias, applied by two
independent reviewers, will be used. Cochrane Risk of Bias

Tool (Rob2) [30] will be used for randomized controlled trials.
For nonrandomized studies, the risk of bias in nonrandomized
studies of interventions tool [31] will be used. These tools
address different sources of bias, including the steps from
selection to reporting. For observational studies, a checklist of
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quality of reporting of observational longitudinal research [32]
will be used. In case of disagreement, a third reviewer will be
consulted until consensus is achieved.

Strategy for Data Synthesis
First, we will qualitatively describe the overall sample and
summarize the information extracted from each study. We will
then provide an overview concerning the classification in our
main categories (Textbox 1). The results of the risk of bias
assessment will be provided in a narrative and tabular format.
If an adequate set of studies of 5 or more studies is found eligible
and the homogeneity level allows, we will perform a
meta-analysis that reviews the effects of the introduction of AI
on efficiency-associated outcomes. We will quantitatively
synthesize data from the retrieved studies using the metafor
package in R (R Core Team, R Foundation for Statistical
Computing), which contains a set of functions for calculating
meta-analyses such as effect-size calculation or model fitting
to the data [33]. As we expect a level of heterogeneity of effects
in the included studies, a random effects model will be used to
estimate the average effect across studies. The heterogeneity
across the included studies will be assessed using the Cochran

Q test [34] and I2 statistic [35]. If the number of studies (at least
5 studies per group) and heterogeneity among them allow,
subgroup analyses concerning specific characteristics within
our eligibility criteria (ie, participants’demographics, particular
work settings, outcomes, study designs, and quality) will be
performed.

If a meta-analysis is not possible, the results will be summarized
in a narrative form and will also be presented in a tabular format.
Regardless of the possibility of a meta-analysis, the results will
be presented graphically to summarize the retrieved information
in a user-friendly manner. We will also adopt a narrative
synthesis approach for our additional outcomes, namely,
facilitators and barriers. The narrative synthesis will be
consistent with that of Strohm et al [36] who conducted an
interview study on the factors facilitating and hindering the
implementation of AI in radiology. They used the nonadoption,
abandonment, scale-up, spread, and sustainability framework
for new medical technologies in health care organizations, which
will be also used in our data analysis [24,36].

Meta-biases
Regarding the potential sources of meta-bias (eg, publication
bias across studies and selective reporting) in the results of the
review and meta-analysis, we plan to create a funnel plot, which
plots study size against the reported effect size. If a publication
bias occurs, the resulting scatterplot is asymmetric with more
studies showing a positive than a negative result [37]. We will
include at least 10 studies (if possible) to check for small-study
effects [38-40]. Additionally, we will use the critical appraisal
tool for systematic reviews on randomized or nonrandomized
studies of health care interventions AMSTAR-2, which consists
of 16 items assessing the quality of conduct of our systematic
review [41].

Confidence in Cumulative Evidence
The strength of the body of evidence will be assessed by using
the Grading of Recommendations Assessment, Development

and Evaluation, a system for rating the quality of evidence and
strength of recommendations [42,43]. This rating system has
been successfully used in clinical medicine, public health, and
policy making, and more recently, in occupational and
environmental health [44]. It supports the authors in rating their
confidence whether the estimate of an effect is correct. In
systematic reviews, the quality of evidence is rated separately
for each outcome on a scale from high to very low [45].

Results

The search and screening for the systematic literature review
are anticipated to be finished in October 2022. Data extraction,
quality appraisal, and subsequent data synthesis will begin in
November 2022. The review is expected to be completed by
April 2023, and the study results will be published in 2023.

Discussion

Principal Findings
We propose a protocol for a systematic review on the influence
of AI technologies on workflow efficiency in clinical care
settings. Our review will summarize the existing literature and
provide a comprehensive overview on the work system effects
of AI technologies in clinical care. This will focus on efficiency
outcomes as these are promising factors in the integration of
AI into clinical practice. To our knowledge, no systematic
overview has been yet conducted on this subject.

The focus in our review will be on workflow and clinician
outcomes in imaged-based disciplines as in these fields AI
technologies are predominantly and continuously integrated
into clinical care practice. Presumably, in the future, almost
every medical specialty will interact with AI-based technologies
because of a broad range of potential AI application fields in
this domain [46]. Contrary to the popular belief that AI will
replace radiologists or other health care staff, the future of
medicine will rather depend on optimized interactions between
AI and humans, enabling AI systems to augment the physician’s
performance [12,47]. AI is foreseen to change clinicians’ work
environments and affect their work processes such as task flow
and workload [3,46]. Notwithstanding the various promises
being proposed with the introduction of AI in real-world care
environments, current evidence concerning its effects on
clinicians’ workflow and practices is missing. Our review will
therefore provide valuable insights into the existing evidence
base on the immediate effects of AI implementation on work
systems and clinician outcomes. Thus, our research synthesis
will facilitate understanding if the current AI technologies live
up to the expectation of significantly supporting clinicians in
their work [48].

Comparison to Previous Research
Notably, in light of the current gap between the broad utilization
of AI for research purposes and few AI applications being
applied in routine patient care, facilitating AI implementation
and adoption into clinical care has become essential. Although
academic publications on AI solutions for medical imaging,
diagnostic, and therapeutic contexts are numerous, only a few
real-world solutions have been yet officially approved and
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implemented in the health care sector [49]. Furthermore, we
expect that only a fraction of these solutions has been
systematically evaluated regarding their impact on clinician
outcomes or workflow integration. This expectation is supported
by the review of Asan and Choudhury [3] who demanded
systematic research that addresses AI’s impact on clinical
workflow and usability with emphasis on the importance of
human factor research.

Because the seamless integration of AI is crucial for unfolding
its potential in clinical practice, our review will specifically
address the facilitators and barriers of implementation practices
elicited from the retrieved studies [13]. The consideration of
facilitating and hindering factors of AI adoption is an essential
step in gaining a more detailed understanding of how AI
implementation can be optimized in hospital and other clinical
care settings. A study suggests that various process factors affect
seamless AI adoption into hospital practices, such as a perceived
high added value or hospital-wide innovation strategies,
technical performance, and well-structured implementation
processes [36]. We acknowledge that we will only extract the
process characteristics from studies found eligible regarding
clinician outcomes. Nevertheless, our synthesis approach, which
draws upon a previously established framework, allows for a
comprehensive understanding of AI implementation experiences
and will expand the existing preliminary findings [36].

Limitations
Our review will focus on AI used for medical imaging used for
diagnostic purposes. AI applications offer a great potential for
image-based specialties and address a pressing issue, namely,
the vastly growing amount of imaging data that need thorough
interpretation [15,47]. Significant technological advancements
have been made recently through the development of AI
solutions and their application into clinical practice [1,50,51].
We solely focus on this clinical domain and a specific clinical
task (eg, image-based tasks and diagnostics) to strengthen
internal and external validity as well as to allow comparability
across the work settings included. Nonetheless, we capture a
medical field with the most extensive availability of AI
technologies already integrated into clinical routine practices.

The algorithms or features used in the AI technologies included
in this review might be different; however, this is not of central
interest for answering our research question. We will not assess
the quality or clinical effectiveness of the AI systems because
this is covered by numerous systematic reviews with regard to
the specific task for which comparable AI solutions were
developed, such as in the reviews by Kunze et al [52] or
Chidambaram et al [53]. Therefore, no specific conclusions
regarding the technologies or characteristics of AI will be drawn
as we will focus solely on the work system effects.

To achieve our goal of summarizing the existing literature on
the impact of AI implementation on clinician outcomes, we will
establish a rigorous list of exclusion criteria regarding study
design, setting, and population. Therefore, conclusions will only
be drawn for the specific setting of work environments where

AI is used for image-based and diagnostic purposes. We
acknowledge that this may result in limited generalizability of
our results. In future research, it would be valuable to compare
the workflow integration of AI across different health care
settings such as ambulant care settings or nursing facilities. Our
review approach may be an exemplary approach on how to
systematically aggregate research findings on AI workflow
integration, which can be transferred to other health care sectors
and clinical domains.

Our outcome variables of interest draw upon the conceptual
model of workflow integration [7]. Our key focus will be on
clinician outcomes, workflow, and efficiency—the key issues
for AI introduction. Notably, we will only address clinician
outcomes named in the model, namely, those related to workload
and efficiency. For future research, it would be valuable to
include further outcomes such as perceived use and acceptance.
Furthermore, it would be interesting to augment research with
concepts such as trust and technology characteristics as these
are important determinants of AI adoption [36,54,55].

Regarding our key concepts extracted from the conceptual model
of workflow integration [7], there is substantial heterogeneity
of applicable terms in the literature; for example, time to
complete tasks is a collective term for measures such as
physician’s reading times [13] or time undertaken to review an
image [56]. Moreover, some concepts used in this literature
review, such as the use of AI in clinical diagnostics or
facilitators and barriers for AI implementation, do not have a
consistent definition in the literature. Therefore, we propose
working definitions on the background of existing research
[2,19,23]. Nonetheless, we acknowledge that key terms might
be conceived differently in other contexts or publications. Thus,
we limited the deviation from previous studies by conducting
a pilot search and expanding our search terms to include
common variants of key concepts.

Conclusions
Our review and meta-analysis or systematic narrative data
analysis will allow first systematic conclusions on how AI for
medical and diagnostic imaging affects clinician efficiency
outcomes. We expect to provide a structured overview and
systematic synthesis of the current literature. Thus, the findings
of our review are expected to expand the existing knowledge
on how AI affects clinical efficiency in medical imaging.
Particularly, by providing a quality appraisal of the included
studies, we will identify shortcomings of the current research.
Moreover, our review will help to recognize research gaps
regarding the seamless workflow integration of novel
technologies into clinical settings. Our findings will eventually
also provide guidance on provider-centered design and
application of AI-based solutions in clinical settings, with
potential improvements in clinical safety and performance.
Furthermore, our consideration of the facilitators and barriers
of AI implementation will provide an evidence-based foundation
for hospital leadership and practitioners to successfully manage
AI implementation in patient care.
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Effects of artificial intelligence
implementation on efficiency in medical
imaging—a systematic literature review
and meta-analysis
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Katharina Wenderott , Jim Krups , Fiona Zaruchas & Matthias Weigl

In healthcare, integration of artificial intelligence (AI) holds strong promise for facilitating clinicians’
work, especially in clinical imaging. We aimed to assess the impact of AI implementation for medical
imaging on efficiency in real-world clinicalworkflowsandconducted a systematic reviewsearching six
medical databases. Two reviewers double-screened all records. Eligible records were evaluated for
methodological quality. The outcomes of interest wereworkflow adaptation due to AI implementation,
changes in time for tasks, and clinician workload. After screening 13,756 records, we identified 48
original studies to be incuded in the review. Thirty-three studies measured time for tasks, with 67%
reporting reductions. Yet, three separate meta-analyses of 12 studies did not show significant effects
after AI implementation. We identified five different workflows adapting to AI use. Most commonly, AI
served as a secondary reader for detection tasks. Alternatively, AI was used as the primary reader for
identifying positive cases, resulting in reorganizing worklists or issuing alerts. Only three studies
scrutinizedworkload calculations based on the time saved through AI use. This systematic review and
meta-analysis represents an assessment of the efficiency improvements offered by AI applications in
real-world clinical imaging, predominantly revealing enhancements across the studies. However,
considerable heterogeneity in available studies renders robust inferences regarding overall
effectiveness in imaging tasks. Furtherwork is neededonstandardized reporting, evaluationof system
integration, and real-world data collection to better understand the technological advances of AI in
real-world healthcare workflows. Systematic review registration: Prospero ID CRD42022303439,
International Registered Report Identifier (IRRID): RR2-10.2196/40485.

With a rising number of patients and limited staff available, the need for
changes in healthcare is a pressing issue1. Artificial intelligence (AI) tech-
nologies promise to alleviate the current burdenby takingover routine tasks,
such as monitoring patients, documenting care tasks, providing decision
support, and prioritizing patients by analyzing clinical data2,3. AI-facilitated
innovations are claimed to significantly reduce the workload of healthcare
professionals4,5.

Several medical specialties have already introduced AI into their rou-
tine work, particularly in data-intensive domains, such as genomics,
pathology, and radiology4. In particular, image-based disciplines have seen
substantial benefits from the pattern recognition abilities of AI, positioning
them at the forefront of AI integration in clinical care3,6. AI technologies

expedite the processing of an increasing number of medical images, being
used for detecting artifacts, malignant cells or other suspicious structures,
and optionally for the succeeding prioritization of patients7–9.

To successfully adopt AI in everyday clinical practice, different
ways for effective workflow integration can be conceived, largely
depending on the specific aim, that is, enhancing the quality of diagnosis,
providing reinsurance, or reducing human workload10,11. Efficiency
outcomes related to AI implementation include shorter reading times or
a reduced workload of clinicians to meet the growing demand for
interpreting an increasing number of images12–14. Thus, whether AI
fulfills these aims and enables higher efficiency in everyday clinical work
remains largely unknown.
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Healthcare systems are complex, combining various components and
stakeholders that interact with each other15. While the success of AI tech-
nology implementation highly depends on the setting, processes, and users,
current studies largely focus on the technical features and capabilities of AI,
not on its actual implementation and consequences in the clinical
landscape2,3,6,16,17. Therefore, this systematic review aimed to examine the
influence of AI technologies on workflow efficiency in medical imaging
tasks within real-world clinical care settings to account for effects that stem
from the complex and everyday demands in real-world clinical care, all not
being existent in experimental and laboratory settings18.

Results
Study selection
We identified 22,684 records in databases and an additional 295 articles
through backward search. After the removal of duplicates, the 13,756
remaining records were included in the title/abstract screening. Then, 207
full texts were screened, of which 159 were excluded primarily because of
inadequate study designs or not focusing on AI for interpreting imaging
data (Supplementary Table 1). Finally, 48 studies were included in the
review and data extraction. Twelve studies underwent additional meta-
analyses. A PRISMA flow chart is presented in Fig. 1.

Study characteristics
Of the 48 extracted studies, 30 (62.5%) were performed in a single institu-
tion, whereas the 18 (37.5%) remaining studies were multicenter studies.
One study was published in 2010, another in 2012, and all other included
studies were published from 2018 onward. Research was mainly conducted

in North America (n = 21), Europe (n = 12), Asia (n = 11), and Australia
(n = 3). Furthermore, one study was conducted across continents. The
included studies were stemming from themedical departments of radiology
(n = 26), gastroenterology (n = 6), oncology (n = 4), emergency medicine
(n = 4), ophthalmology (n = 4), human genetics (n = 1), nephrology (n = 1),
neurology (n = 1), and pathology (n = 1). Most studies used computed
tomography (CT) for imaging, followed by X-ray and colonoscopes. The
most prominent indications were intracranial hemorrhage, followed by
pulmonary embolism, and cancer screening. Table 1 presents the key
characteristics of all included studies.

Concerning the purpose of usingAI tools in clinical work, we classified
the studies into threemain categories. First,five studies (10.4%)describedan
AI tool used for segmentation tasks (e.g., determining the boundaries or
volume of an organ). Second, 25 studies (52.1%) used AI tools to examine
detection tasks to identify suspicious cancer nodules or fractures. Third,
18 studies (37.5%) investigated the prioritization of patients according to
AI-detected critical features (e.g., reprioritizing the worklist or notifying the
treating clinician via an alert).

Regarding the AI tools described in the studies, 34 studies (70.8%)
focused on commercially available solutions (Table 2). Only Pierce et al. did
not specify which commercially available algorithm was used19. Thirteen
studies (27.1%) used non-commercially available algorithms, detailed
information on these algorithms is provided in Table 3. Different measures
were used to evaluate the accuracy of these AI tools, including sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV),
and area under the curve (AUC). Sensitivity and specificity were the most
commonly reported measures (see Tables 2 and 3).

Fig. 1 | PRISMAflowchart.Visual representation of
the search strategy, data screening and selection
process of this systematic review.
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Table 1 | Key characteristics of included studies

Study Year Country Setting Medical specialty Number of
professionals

Imaging
modality

Number of cases/
patients/ scans

Arbabshirani
et al.7

2018 USA Single-Center Radiology 1 CT 347 patients

Batra et al.34 2023 USA Single-Center Radiology 32 CT 2501 examinations of 2197
patients

Carlile et al.80 2020 USA Multi-Center ED 112 X-Ray 1855 scans, survey on
202 scans

Cha et al.38 2021 USA Single-Center Oncology 18 CT 173 patients

Cheikh et al.81 2022 France Multi-Center ED 79 CT 7323 examinations

Chen et al.53 2022 China Multi-Center Radiology 4 CT 85 patients

Conant et al.28 2019 USA Single-Center Radiology 24 DBT 260 cases

Davis et al.39 2022 USA Multi-Center Radiology / ED NI CT 50,658 cases

Diao et al.20 2022 China Multi-Center Radiology 7 CT 251 patients

Duron et al.21 2021 France Multi-Center Radiology / ED 12 X-Ray 600 cases

Elijovich et al.82 2022 USA Multi-Center Neurology NI CT 680 patients

Ginat83 2021 USA Single-Center Radiology 5 CT 8723 scans

Hassan et al.40 2022 USA Single-Center Radiology / Neurology NI CT 63 patients

Hong et al.84 2022 South Korea Single-Center Radiology 60 X-Ray 1352 chest radiographs of
1319 patients

Jones et al.85 2021 Australia Multi-Center Radiology 11 X-Ray 2972 scans of 2665
patients

Kanagasingam
et al.22

2018 Australia Single-Center Ophthalmology 4 Photographs 386 images of 216 patients

Kiljunen et al.86 2020 Finland/ Estonia/
Singapore

Multi-Center Oncology 13 CT 45 scans of 30 patients

Ladabaum
et al.41

2023 USA Multi-Center Gastroenterology 52 Colonoscopy 2329 patients

Levy et al.87 2022 Israel Single-Center Gastroenterology 30 Colonoscopy 4414 patients

Liu et al.35 2022 China Multi-Center Ophthalmology 2 OCT 1257 patients

Marwaha et al.88 2021 Canada Single-Center Human Genetics 15 Photographs 72 patients

Mueller et al.8 2022 Denmark Single-Center Radiology 2 CT 90 scans

Nehme et al.29 2023 USA Single-Center Gastroenterology 39 Colonoscopy 1041 patients

O’Neill et al.89 2021 USA Single-Center Radiology NI CT 6696 cases

Oppenheimer
et al.90

2023 Germany Single-Center Radiology 2 X-Ray 1163 exams of 735 patients

Pierce et al.19 2021 USA Single-Center Radiology NI X-Ray 30,847 examinations

Potrezke et al.54 2023 USA Single-Center Nephrology 12 MRI 170 cases of 161 patients

Quan et al.91 2022 USA Multi-Center Gastroenterology 6 Colonoscopy 600 patients

Raya-Povedano
et al.36

2021 Spain Single-Center Radiology 5 DM/DBT 15,986 patients

Repici et al.24 2020 Italy Multi-Center Gastroenterology 6 Colonoscopy 685 patients

Ruamviboonsuk
et al.92

2022 Thailand Multi-Center Ophthalmology 12 Photographs 7651 patients

Sandbank et al.93 2022 Israel Single-Center Pathology NI Microscope 5954 cases

Schmuelling
et al.94

2021 Switzerland Single-Center Radiology 3 CT 1808 scans of 1770
patients

Seyam et al.95 2022 Switzerland Single-Center Radiology NI CT 4450 patients

Sim et al.96 2022 Singapore Single-Center Radiology NI X-Ray 9431 datasets

Strolin et al.97 2023 Italy Single-Center Oncology NI CT 111 patients

Sun et al.55 2022 USA Multi-Center Radiology NI X-Ray 5335 images

Tchou et al.31 2010 USA Single-Center Radiology 5 DM 267 cases

Tricarico et al.56 2022 Italy Single-Center Radiology NI X-Ray 2942 scans

Vassallo et al.32 2019 Italy Single-Center Radiology 3 CT 225 patients

Wang et al.26 2019 China Single-Center Gastroenterology 8 Colonoscopy 1058 patients

Wang et al.98 2020 China Multi-Center Radiology 2 CT 2120 patients
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In total only four studies followed a reporting guideline, three
studies20–22 used Standards for Reporting of Diagnostic Accuracy (STARD)
reporting guideline23 and Repici et al.24 followed the CONSORT guidelines
for randomized controlled trials25. Only two studies24,26 pre-registered their
protocol and none of the included studies provided or used an open-source
available algorithm.

Appraisal of methodological quality
When assessing the methodological quality of the 45 non-randomized
studies only one (2.2%) was rated with an overall “low” risk of bias. Four
studies (8.9%) were rated “moderate”, 28 studies (62.2%) were rated “ser-
ious”, and 12 studies (26.7%) were rated “critical”. All three randomized
studieswere appraisedwith anoverall high riskof bias. Summaryplots of the
risk of bias assessments are shown in Fig. 2, full assessments can be found in
Supplementary Figs. 1 and 2. The assessment of the quality of reporting
using theMethodological Index for Non-randomized Studies (MINORS) is
included in Supplementary Figs. 3 and 4. Higher scores indicate higher
quality of reporting, with the maximum score being 24 for comparative
studies and 16 for non-comparative studies27. Comparative studies reported
a Median of 9 of 12 criteria with a median overall score of 15 (range: 9–23)
and noncomparative studies reported a Median of 7 of 8 checklist items,
with a median overall score of 7 (range: 6–14).

Outcomes
Ofall included studies, 33 (68.8%) surveyed the effects ofAI implementation
on clinicians’ time for task execution. The most frequently reported out-
comes included (1) reading time (i.e., time the clinicians required to inter-
pret an image); (2) report turnaround time (i.e., the time from completing
the scan until the report is finalized); and (3) total procedure time (i.e., the
time needed for colonoscopy)28–30. Times were assessed via surveys, recor-
ded by researchers or staff, retrieved via time stamps, or self-recorded.
Seventeen studies did not describe how they obtained the reported times.

Regarding our research question, whether AI use improves efficiency,
22 studies (66.6%) reported a reduction in time for task completion due to
AI use, with 13 of these studies proving the difference to be statistically
significant (see Table 4). Eight studies (24.2%) reported that AI did not
reduce the time required for tasks. The remaining three studies (9.1%) chose
a design or implementation protocol in which the AI was used after the
normal reading, increasing the task time measured by study design31–33.

For our meta-analyses, we established clusters with studies deploying
similar methods, outcomes, and specific purposes. Concerning studies on
detection tasks, we identified two main subgroups: studies using AI for
interpreting CT scans (n = 7) and those using AI for colonoscopy (n = 6).
Among studies using AI for interpreting CT images, a meta-analysis was
performed for four studies reporting clinicians’ reading times. As shown in
Fig. 3a, the reading times for interpreting CT images did not differ between
the groups: standardized mean error (SMD): −0.60 (95% confidence
interval, −2.02 to 0.82; p = 0.30). Furthermore, the studies showed sig-
nificantly high heterogeneity: Q = 109.72, p < 0.01, I2 = 96.35%. This het-
erogeneitymaybe associatedwith thedifferent studydesigns includedor the

risk of bias ratings, with only one study being rated having a low risk of bias.
Furthermore, Mueller et al.8 reported no overall reading time but separated
it for resident and attending physician, which we included separately in our
meta-analysis. Concerning the use of AI for colonoscopy, five studies
reported comparable measures. Our random effects meta-analysis showed
no significantdifference between the groups: SMD:−0.04 (95%CI,−0.76 to
0.67; p = 0.87), with significant heterogeneity: Q = 733.51, p < 0.01,
I2 = 99.45% (Fig. 3b). Four of the included studies had a serious risk of bias,
whereas one randomized study included was rated with a high risk of bias.
Among 11 studies that reported AI use for the prioritization of patients’
scans, fourmeasured the turnaround time. The studybyBatra et al.34 didnot
report variance measures and was therefore excluded from the meta-
analysis. The remaining three studies used theAI toolAidoc (Tables 2 and4)
to detect intracranial hemorrhage and reported the turnaround time for
casesflagged positive. Themeta-analysis showedno significant difference in
turnaround time between cases with and without AI use: SMD: 0.03 (95%
CI, −0.50 to 0.56; p = 0.84), with a significant heterogeneity across studies:
Q = 12.31, p < 0.01, I2 = 83.75% (Fig. 3c). All included studies were non-
randomized studies, with two studies being rated with a serious risk of bias
and one with a moderate risk of bias.

In total, 37 studies reported details on the actual workflow adapta-
tions due to AI implementation, which we classified into four main var-
iants (depicted exemplarily in Fig. 4). 16 studies (43.2%) used anAI tool as
a triage system, i.e., theAI tool reprioritized theworklist or theAI tool sent
an alert to the clinician or referred the patient to a specialist for further
examination (Fig. 4a: AI triage). In two studies (5.4%), the AI tool acted as
a gatekeeper, only referring cases labeled as suspicious to the clinician for
further review, while excluding the remaining cases (Fig. 4a: AI gate-
keeper). In 13 studies (35.1%), AI tools were used as a second reader for
detection tasks in two variants (Fig. 4b: AI second reader). Eight studies
reported that the AI tool functioned as a second reader in a concurrent
mode, presenting additional informationduring the task to clinicians (e.g.,
in colonoscopy studies, where the workflow remained the same as before
displaying additional information during the procedure). Five studies
described a workflow in which the AI tool was used additionally after the
normal detection task, resulting in a sequential second readerworkflow. In
five segmentation studies (13.5%), the AI tool served as a first reader with
the clinician reviewing and then correcting the AI-provided contours
(Fig. 4c: AI first reader).

In a single study (2.7%), the type of actual workflow implementation
was at the radiologist’s choice. Three studies used a study designwith theAI
tool as a second reader in a pre-specified reading sequence; therefore, we did
not classify them as workflow adaptations. The remaining studies did not
provide sufficient information on workflow implementation.

In our initial review protocol, we also aimed to include investigations
on clinician workload14. Apart from three studies, Liu et al.35, Raya-
Povedano et al.36, andYacoub et al.37,which calculated the savedworkload in
scans or patients because of AI use, no other study reported AI imple-
mentation effects on clinicians’workload (besides the time for tasks effects,
see above). Other reported outcomes included evaluations of the AI

Table 1 (continued) | Key characteristics of included studies

Study Year Country Setting Medical specialty Number of
professionals

Imaging
modality

Number of cases/
patients/ scans

Wittenberg
et al.33

2012 Netherlands Single-Center Radiology 6 CT 209 patients

Wong et al.99 2021 Canada Multi-Center Oncology 39 CT 606 radiotherapy plans

Wong et al.100 2023 USA Single-Center Radiology 17 X-Ray 214 scans

Yacoub et al.37 2022 USA Single-Center Radiology 3 CT 390 scans

Yang et al.101 2022 China Multi-Center Ophthalmology NI Photographs 1001 patients

Zia et al.30 2022 Australia Single-Center Radiology 49 CT 1446 scans

ED Emergency Department, CT Computed Tomography, DBT Digital Breast Tomosynthesis, DM Digital Mammography,MRIMagnetic Resonance Imaging, OCT Optical Coherence Tomography.
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performing the task (i.e., satisfaction)8,38; frequency of AI use29,30; patient
outcomes, such as length of stay or in-hospital complications39,40; and sen-
sitivity or specificity changes8,21,24,28,41.

Risk of bias across studies
Funnel plots for the studies included in the meta-analyses were created
(Supplementary Figs. 5–7). 19 studies declared a relevant conflict of interest
and six other studies had potential conflicts of interest, which sum up to
more than 50% of the included studies.

Additionally, we ran several sensitivity analyses to evaluate for
potential selection bias. We first searched the dblp computer science bib-
liography, yielding 1159 studies for title and abstract screening. Therein, we
achieved perfect interrater reliability (100%). Subsequently, only thirteen
studies proceeded to full-text screening, with just one meeting our review
criteria. This study by Wismueller & Stockmaster42 was also part of our
original search. Notably, this study was the only conference publication
providing a full paper (refer to Supplementary Table 2).

Moreover, to ensure comprehensive coverage and to detect potentially
missed publications due to excluding conference proceedings, we screened
2614 records from IEEE Xplore, MICCAI, and HICSS. Once again, our title
and abstract screening demonstrated perfect interrater reliability (100%).
However, despite including 31 publications in full-text screening, none met
our inclusion criteriaupon thoroughassessment.Altogether, this additionally
searches showed no significant indication for a potential selection bias and
potentiallymissing out keywork in othermajor scientific publication outlets.

Using AMSTAR-2 (A MeaSurement Tool to Assess Systematic
Reviews)43, we rated the overall confidence in the results as low, mainly due
to ourdecision to combinenon-randomized and randomized studieswithin
our meta-analysis (Supplementary Fig. 8).

Discussion
Given the widespread adoption of AI technologies in clinical work, our
systematic review and meta-analysis assesses efficiency effects on routine
clinical work in medical imaging. Although most studies reported positive
effects, our three meta-analyses with subsets of comparable studies showed
no evidence of AI tools reducing the time on imaging tasks. Studies varied
substantially in design and measures. This high heterogeneity renders
robust inferences. Although nearly 67% of time-related outcome studies
have shown a decrease in time with AI use, a noteworthy portion of these
studies revealed conflicts of interest, potentially influencing study design or
outcome estimation44. Ourfindings emphasize the need for comparable and
independent high-quality studies on AI implementation to determine its
actual effect on clinical workflows.

Focusing on how AI tools were integrated into the clinical workflow,
wediscovereddiverse adoptions ofAI applications in clinical imaging. Some
studies have provided brief descriptions that lack adequate details to com-
prehend the process. Despite predictions of AI potentially supplanting
human readers or serving as gatekeepers, with humans primarily reviewing
flagged cases to enhance efficiency10,11, we noted a limited adoption of AI in
this manner across studies. In contrast, most studies reported AI tools as
supplementary readers, potentially extending the time taken for inter-
pretation when radiologists must additionally incorporate AI-generated
results18,45. Another practice involved concurrent reading, which seems
beneficial because it guides clinicians’ attention to crucial areas, which
potentially improves reading quality and safetywithout lengthening reading
times45,46. Regardless of how AI was used, a crucial factor is its alignment
with the intended purpose and task15.

Although efficiency stands out in the current literature, we were also
interested in whether AI affects clinicians’ workload, besides the time
measurements, such as number of tasks or cognitive load. We only found
three studies on AI’s impact on clinicians’ workload, but no study assessed
workload separately (e.g., in terms of cognitive workload changes)18,35–37.
This gap in research is remarkable since human–technology interaction and
human factors assessment will be a success factor for the adoption of AI in
healthcare47,48.

Our study included a vast variety of AI solutions reported in the
publications. Themajority was a large number of commercially available AI
solutions which mostly had acquired FDA or CE clearance, ensuring safety
of use in a medical context49. Nevertheless, it is desirable that future studies
providemore detailed information about the accuracy of theAI solutions in
their use case or processing times, which both can be crucial to AI
adoption50. Regarding included studies which used non-commercially
available algorithms, some of the studies did not specify the origin or source
of the algorithm (i.e., developer). Especially with the specific characteristics
and potential bias being introduced through the specific algorithm (e.g., for
example stemming from a training bias or gaps in the underlying data), it is
essential to provide information about the origins and prior validation steps
of the algorithm in clinical use51,52. Interestingly, only four included studies
discussed the possibility of bias in the AI algorithm53–56. Open science
principles, such as data or code sharing, aid to mitigate the impact of bias.
Yet, none of the studies in our review used open-source solutions or pro-
vided their algorithm52. Additionally, guidelines such as CONSORT-AI or
SPIRIT-AI provide recommendations for the reporting of clinical studies
using AI solutions57, as previous systematic reviews have also identified
serious gaps in the reporting on clinical AI solutions58,59. Our results cor-
roborate this shortcoming, as none of the studies reporting non-commercial
algorithms and only four studies overall followed a reporting guideline.
Notwithstanding, for some included studies, AI-specific reporting guide-
lines were published after their initial publication. Nevertheless, compre-
hensive and transparent reporting remains insufficient.

With our review,wewere able to replicate some of thefindings byYin
et al., who provided a first overview on AI solutions in clinical practice,
e.g., insufficient reporting in included studies60. By providing time for
tasks and meta-analyses as well as workflow descriptions our review
substantially extends the scope of their review, providing a robust and
detailed overview on the efficiency effects of AI solutions. In 2020,
Nagendran et al. provided a review comparing AI algorithms for medical
imaging and clinicians, concluding that only few prospective studies in
clinical settings exist59. Our systematic review demonstrated an increase in
real-world studies in previous years and provides an up-to-date and
comprehensive overview on AI solutions currently used in medical ima-
ging practice. Our study thereby addresses one of the previously men-
tioned shortcomings, that benefits of the AI algorithm in silico or in
retrospective studies might not transfer into clinical benefit59. This is also
recognized by Han et al.61 who evaluated randomized controlled trials
evaluating AI in clinical practice andwho argued that efficiency outcomes
will strongly depend on implementation processes in actual clinical
practice.

The complexities of transferring AI solutions from research into
practice were explored in a review by Hua et al.62 who evaluated the
acceptabilityAI formedical imaging by healthcare professionals.Webelieve
that forAI to unfold its full potential, it is essential to pay thorough attention
to the adoption challenges and work system integration in clinical work-
places. Notwithstanding the increasing number of studies on AI use in real-
world settings during the last years, many questions on AI implementation
and workflow integration remain unanswered. On the one hand, limited
consideration prevails on acceptance of AI solutions by professionals62.
Although studies even discuss the possibility of AI as a teammate in the
future63,64, most available studies rarely include perceptions of affected
clinicians60. On the other hand, operational and technical challenges as well
as system integration into clinical IT infrastructures aremajor challenges, as
many of the described algorithms are cloud-based. Smooth interoperability
between new AI technologies and local clinical information systems as well
as existing IT infrastructure is key to efficient clinical workflows50. For
example, the combination of multimodal data, such as imaging and EHR
data, could be beneficial for future decision processes in healthcare65.

Our review has several limitations. First, publication bias may have
contributed to the high number of positive findings in our study. Second,
despite searching multiple databases, selection bias may have occurred,
particularly as some clinics implementing AI do not systematically assess or
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Table 2 | Overview of the commercial AI tools used in the included studies

Source Clearance Body part Purpose Technology Study Sensitivity Specificity Processing time

Aidoc Medical, Tel Aviv, Israel/New
York, NY, USA

FDA Head Prioritization Convolutional neural network Davis et al.39 95.0% 99.0% near real-time

Ginat 83 88.4% 96.1% 3min

O’Neill et al.89 95.0% 99.0% 30–45 sec

Seyam et al.95 87.2% 93.9% NI

Zia et al.30 85.7% 96.8% NI

Aidoc Medical, Tel Aviv, Israel CE, FDA Chest Prioritization Convolutional neural network Batra et al.34 83.3% 97.1% NI

Cheikh et al.81 92.6% 95.8% NI

Schmuelling et al.94 79.6% 95.0% 12.6 min

AITEM Solutions, Turin, Italy NI Chest Prioritization Convolutional neural network Tricarico et al.56 78.2% 64.2% NI

Annalise AI, Sydney, Australia Pre-existing regulatory
approval

Chest Detection Convolutional neural network Jones et al.85 NI NI NI

Digital Diagnostics, Coralville,
IA, USA

FDA Eye Prioritization Deep learning and rule-based
models

Kanagasingam et al.22 NI 92.0% <3min

EndoVigilant Inc., MD, USA NI Colon Detection NI Quan et al.91 90.0% 97.0% 30 frames per sec

FDNA Inc., Sunrise, FL, USA NI Face Detection NI Marwaha et al.88 NI NI NI

Gleamer, Paris, France NI Whole
body

Detection Convolutional neural network Duron et al.21 79.4%
(reader + AI,
patient-wise)

93.6%
(reader + AI,
patient-wise)

NI

Oppenheimer et al.90 86.9% 84.7% 3min

Hologic, Marlborough, MA, USA NI Breast Detection NI Tchou et al.31 NI NI NI

iCAD, Nashua, NH, USA NI Breast Detection Convolutional neural network Conant et al.28 85.0% (reader + AI) 69.6% (reader + AI) NI

Infervision Technology Co., Ltd.,
Beijing, China

CE, FDA Chest Detection Deep learning Diao et al.20 NI NI NI

Limbus AI, Regina, Saskatchewan,
Canada

NI Whole
body

Segmentation Deep learning Wong et al.99 NI NI NI

Lunit, Seoul, South Korea NI Chest Detection Deep learning Hong et al.84 74.8% 99.8% NI

Medtronic, Minneapolis, MN, USA FDA Colon Detection NI Ladabaum et al.41 NI NI NI

Levy et al.87 NI NI NI

Nehme et al.29 NI NI NI

Repici et al.24 99.7% NI real-time

MVision AI Oy, Helsinki, Finland CE, FDA Whole
body

Segmentation Convolutional neural network Kiljunen et al.86 NI NI NI

Strolin et al.97 NI NI 2.3 min

Philipps Healthcare, Best, The
Netherlands

NI Chest Detection NI Wittenberg et al.33 96.0% 22.0% NI

ScreenPoint Medical, Nijmegen,
The Netherlands

CE, FDA Breast Prioritization Deep learning Raya-Povedano et al.36 84.1% (reader + AI) NI NI

Shanghai Wision AI Co., Ltd.,
Shanghai, China

NI Colon Detection Deep learning Wang et al.26 94.4% per image 95.9% per image real-time

Shenzhen SiBright CO. Ltd.,
Shenzen, China

NIFDC Eye Detection Ensemble of 3 convolutional
neural networks

Yang et al.101 86.7% 96.1% 24 sec per eye
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Table 3 | Non-commercially available AI algorithms

Study Developers Body part Purpose Technology Sensitivity Specificity Processing time Notes

Arbabshirani et al.7 SD Head Prioritization Convolutional neural network 70.0% 87.0% 2.3 sec

Carlile et al.80 SD Lung Detection Convolutional neural network 82.8% 72.6% real-time

Cha et al.38 Elguindi et al.102 Multiple Segmentation Deep learning NI NI NI

Chen et al.53 SD Head Detection Deep learning 33.3% (reader + AI) 91.5% (reader + AI) NI

Liu et al.35 Wang et al.103 Eye Detection Deep learning and rule decision
models

98.5% 96.2% 21.4 hours

Potretzke et al.54 SD Kidney Segmentation NI NI NI NI

Ruamviboonsuk et al.92 Gulshan et al.104 Eye Detection Deep learning 91.4% 95.4% real-time Validated in Krause et al.105, Ruamviboonsuk
et al.106

Sandbank et al.93 SD Breast Detection Multilayered convolutional neural
networks

98.1% 96.2% real-time

Sim et al.96 SD Lung Detection Deep learning 78.8% 97.1% NI

Sun et al.55 SD Lung Detection NI 67.0% 77.0% real-time

Vassallo et al.32 Retico et al.107 Lung Detection NI 85.0% for
lesions >3mm

NI 19min Validated in Torres et al.108

Wang et al.98 SD Lung Prioritization U-Net-based deep learning model 92.3% 85.1% 0.55min

Wong et al.100 Brown et al.109 Chest Detection Open-Source framework (SimpleMind) 88.0% NI 3–4min

NI No information, SD Self-developed by authors, as described in respective publication.

Table 2 (continued) | Non-commercially available AI algorithms
Source Clearance Body part Purpose Technology Study Sensitivity Specificity Processing time

Siemens Healthcare, Erlangen,
Germany

FDA Chest Detection NI Mueller et al.8 NI NI NI

Yacoub et al.37 NI NI NI

Viz.ai, San Francisco, CA, USA FDA Head Prioritization NI Elijovic et al.82 81.0% NI NI

Hassan et al.40 87.6% 88.5% NI

NI No information, CE Conformité Européenne, FDA Food and Drug Administration, NIFDC National Institutes for Food and Drug Control.
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publish their processes in scientific formats60. Moreover, we excluded con-
ference publications which could be the source for potential biases.
Nevertheless, we ran different sensitivity analyses for publication and
selectionbias, anddidnotfindevidence formajorbias introduceddue toour
search and identification strategy. Yet, aside from one conference paper, all
other conference publications merely provided abstracts or posters, lacking
a comprehensive base for the extraction of required details. Third, we
focusedexclusively onmedical imaging tasks to enhance the internal validity
of clinical tasks across diverse designs, AI solutions, and workflows. Fourth,
the low quality rating of our review on the AMSTAR-2 checklist, which is
due to the diverse study designs we included, calling for more comparable
high quality studies in this field. Nevertheless, we believe that our review
provides a thorough summaryof the available studiesmatchingour research
question. Finally, our review concentrated solely on efficiency outcomes
stemming from the integration of AI into clinical workflows. Yet, the actual
impact of AI algorithms on efficiency gains in routine clinical work can be
influenced by further, not here specified local factors, e.g., existent IT
infrastructure, computational resources, processing times. Next to the
testing of the AI solutions under standardized conditions or in randomized
controlled trials, which can indicate whether AI solution are suitable for the
transfer into routinemedical care, careful evaluations of howAI solutionsfit
into everyday clinical workflow should be expanded, i.e., ideally before
implementation. Exploring adoption procedures along with identifying key
implementation facilitators and barriers provides valuable insights into
successful AI technology use in clinical routines. However, it is important to

note thatAI implementation can address a spectrumof outcomes, including
but not limited to enhancing patient quality and safety, augmenting diag-
nostic confidence, and improving healthcare staff satisfaction8.

In conclusion, our review showed a positive trend toward research on
actual AI implementation inmedical imaging, withmost studies describing
efficiency improvements in course of AI technology implementation. We
derive important recommendations for future studies on the implementa-
tionofAI in clinical settings. The rigorous use of reporting guidelines should
be encouraged, as many studies reporting time outcomes did not provide
sufficient details on theirmethods. Providing a protocol or clear depictionof
how AI tools modify clinical workflows allows comprehension and com-
parisonbetweenpre-andpost-adoptionprocesseswhile facilitating learning
and future implementation practice. Considering the complexity of
healthcare systems, understanding the factors contributing to successful AI
implementation is invaluable. Our review corroborates the need for com-
parable evaluations to monitor and quantify efficiency effects of AI in
clinical real-world settings. Finally, future research should therefore explore
success and potential differences between different AI algorithms in con-
trolled trials as well as in real-world clinical practice settings to inform and
guide future implementation processes.

Methods
Registration and protocol
Before its initiation, our systematic literature review was registered in a
database (PROSPERO, ID:CRD42022303439), and the reviewprotocolwas

Fig. 2 | Quality assessment of included articles. Summary plots of the risk of bias assessments via Risk of Bias in Non-randomized Studies of Interventions tool (ROBINS-I)
for non-randomized studies and the Cochrane Risk of Bias tool (Rob 2) for randomized studies.
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Table 4 | Outcomes organized by time type measured

Study Time Type Assessment Method Statistical
measures

Pre/
Without AI

Post/
With AI

Absolute
Difference (%)

Significance Workflow
Adaptation

Batra et al.34 Reading timea Timestamps extracted from EMR and
radiologist dictation system

Mean 00:26:30 00:26:18 −00:00:12
(−0.75%)

n.s. Triage

Cheikh et al.81 Reading timea Survey Mean (SD) 00:14:33
(00:09:05)

00:15:36
(00:09:46)

+00:01:03
(+ 7.22%)

*** Triage

Chen et al.53 Reading time NI Mean (SD) 00:03:39
(00:00:24)

00:02:56
(00:00:01)

−00:00:43
(−19.77%)

* NI

Conant et al.28 Reading time NI Mean (CI) 00:01:04
(00:00:25)

00:00:30
(00:00:12)

−00:00:34
(−52.57%)

** Second reader,
concurrent

Diao et al.20 Reading time Automatically recorded Mean (SD) 00:04:30
(00:02:24)

00:03:43
(00:02:26)

−00:00:47
(−17.41%)

*** Second reader,
sequential

Duron et al.21 Reading time Automatically recorded Mean 00:01:07 00:00:57 −00:00:10
(−14.93%)

n.s. Second reader,
concurrent

Mueller et al.8 Reading time −
resident

NI Mean (SD) 00:06:10
(00:02:49)

00:07:17
(00:02:29)

+00:01:07
(+ 18.11%)

n.s. Depending on
radiologist’s choice

Mueller et al.8 Reading time −
consultant

NI Mean (SD) 00:06:06
(00:01:50)

00:06:20
(00:02:01)

+00:00:14
(+ 3.83%)

n.s. Depending on
radiologist’s choice

O’Neill et al.89 Reading timeb NI Median (CI) 00:04:50
(00:00:27)

00:06:14
(00:05:28)

+00:01:23
(+ 28.73%)

n.s. Triage

Schmuelling
et al.94

Reading timea Timestamps in the clinical information
system

Mean (SD) 01:25:30
(04:42:00)

01:18:30
(04:33:00)

−00:07:00
(-8.19%)

n.s. Triage

Vassallo et al.32 Reading time Recorded by investigator Mean (SD) 00:04:56
(00:01:20)

00:05:29
(00:01:23)

+00:00:33
(+ 11.15%)

* Sequential due to
study design

Yacoub et al.37 Reading time Self-measured with digital stopwatch Mean (SD) 00:07:01
(00:02:55)

00:05:28
(00:02:02)

−00:01:33
(−22.09%)

*** Second reader,
concurrent

Cha et al.38 Contouring time Self-report Median (IQR) 00:40:00
(00:43:00)

00:28:00
(00:10:00)

−00:12:00
(−30.00%)

** First reader

Kiljunen et al.86 Contouring time NI Mean 00:27:00 00:15:00 −00:12:00
(−44.44%)

NI First reader

Strolin et al.97 Contouring time NI Median
(Range)

00:25:00
(01:47:00)

00:12:18
(00:46:54)

−00:12:42
(−50.80%)

*** First reader

Potretzke et al.54 Segmentation
timec

.. .. .. .. .. NI First reader

Tchou et al.31 Time to review AI
results

Timestamp macro in Excel/ recording by
investigator

Mean (SE) 00:01:58
(00:00:04)

.. 00:00:23d

(00:00:02)
NI Sequential due to

study design

Wittenberg et al.33 Time to review AI
results

NI Mean (Range) 00:01:15
(00:01:02)

.. 00:00:22d

(00:00:18)
NI Sequential due to

study design

Arbabshirani et al.7 Time to
interpretationb

NI Median (IQR) 08:32:00
(01:51:00)

00:19:00
(00:22:00)

−08:13:00
(−96.29%)

*** Triage

Ginat83 Wait time (ED
cases)b

Automatically recorded Mean (SD) 01:25:00
(03:14:00)

01:12:00
(02:57:00)

−00:13:00
(−15.29%)

n.s. Triage

Ginat83 Wait time
(inpatient cases)b

Automatically recorded Mean (SD) 06:30:00
(06:08:00)

05:52:00
(05:15:00)

−00:38:00
(−9.74%)

** Triage

Ginat83 Wait time
(outpatient
cases)b

Automatically recorded Mean (SD) 11:14:00
(13:45:00)

01:10:00
(02:21:00)

−10:04:00
(−89.61%)

*** Triage

O’Neill et al.89 Wait timeb NI Median (CI) 00:15:45
(00:00:46)

00:12:01
(00:01:55)

−00:03:44
(−23.75%)

*** Triage

Elijovich et al.82 Time to
notification

Retrospective documentation Median (IQR) 00:26:00
(00:14:00)

00:07:00
(00:04:00)

−00:19:00
(−73.08%)

*** Triage

Hong et al.84 Time to treatment Retrospectively through analysis of
electronic medical records

Mean (SD) 02:30:00
(03:24:00)

01:12:00
(19:30:00)

−01:18:00
(−4.91%)

n.s. Second reader,
concurrent

Batra et al.34 Report
turnaround time

Timestamps Mean 00:59:54 00:47:36 −00:12:18
(−20.53%)

*** Triage

Davis et al.39 Report
turnaround timea

NI Mean (SD) 01:03:30
(01:02:36)

00:52:30
(00:53:55)

−00:11:00
(−17.32%)

** Triage

Seyam et al.95 Report
turnaround timeb

Timestamps extracted from the electronic
medical record and PACS

Mean (CI) 01:00:00
(00:17:00)

01:03:00
(00:11:00)

+00:03:00
(+ 5.00%)

NI Triage

Sim et al.96 Report
turnaround time

Extracted timestamps from thehospital’sRIS Mean 00:09:00 00:07:00 −00:02:00
(−22.22%)

NI Triage

Zia et al.30 Report
turnaround timeb

NI Mean (SD) 01:06:42
(00:41:30)

01:20:00
(01:04:24)

+00:13:18
(+ 19.94%)

* Second reader,
sequential

Schmuelling
et al.94

ED
turnaround timea

Timestamps in the clinical information
system

Mean (SD) 02:06:00
(01:04:12)

01:59:00
(01:41:00)

−00:07:00
(−5.56%)

n.s. Triage

Hassan et al.40 DIDO time at PSC NI Mean (SD) 03:46:42
(04:02:54)

02:04:24
(00:57:36)

−01:42:18
(−45.13%)

* Triage
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peer-reviewed (International Registered Report Identifier RR2-10.2196/
40485)14. Our reporting adheres to the Preferred Reporting Items for Sys-
tematic Review and Meta-Analysis (PRISMA) statement reporting guide-
lines (SupplementaryTable 3).During the preparation of thiswork, we used
ChatGPT (version GPT-3.5, OpenAI) to optimize the readability and
wording of the manuscript. After using this tool, the authors reviewed and
edited the content as required and take full responsibility for the content of
the publication.

Search strategy and eligibility criteria
Articles were retrieved through a structured literature search in the
following electronic databases: MEDLINE (PubMed), Embase,

PsycINFO,Web of Science, IEEE Xplore, andCochrane Central Register
of Controlled Trials. We included original studies on clinical imaging,
written in German or English, retrieved in full-text, and published in
peer-reviewed journals from the 1st of January 2000 onward, which
marked a new area of AI in healthcare with the development of deep
learning14,66. The first search was performed on July 21st, 2022, and was
updated onMay 19th, 2023. Furthermore, a snowball search screening of
the references of the identified studies was performed to retrieve relevant
studies. Dissertations, conference proceedings, and gray literature were
excluded. This review encompassed observational and interventional
studies, such as randomized controlled trials and nonrandomized stu-
dies on interventions (e.g., before–after studies). Only studies that

Table 4 (continued) | Outcomes organized by time type measured

Study Time Type Assessment Method Statistical
measures

Pre/
Without AI

Post/
With AI

Absolute
Difference (%)

Significance Workflow
Adaptation

Yang et al.101 Time for diagnosis NI Mean (SD) 00:00:38
(00:00:32)

00:00:24
(00:00:08)

−00:00:14
(−36.84%)

NI NI

Ladabaum et al.41 Withdrawal time NI Mean (CI) 00:17:30
(00:01:30)

00:18:00
(00:01:36)

+00:00:30
(+ 2.86%)

n.s. NI

Nehme et al.29 Withdrawal time NI Median (IQR) 00:17:00
(00:15:00)

00:18:00
(00:16:00)

+00:01:00
(+ 5.88%)

n.s. NI

Repici et al.24 Withdrawal time Stopwatch Mean (SD) 00:07:15
(00:02:29)

00:06:57
(00:01:41)

−00:00:18
(−4.14%)

n.s. NI

Wang et al.26 Withdrawal time NI Mean (SD) 00:06:23
(00:01:13)

00:06:53
(00:01:47)

+00:00:30
(+ 7.82%)

*** Second reader,
concurrent

Ladabaum et al.41 Total
procedure time

NI Mean (CI) 00:26:06
(00:01:36)

00:26:42
(00:01:48)

+00:00:36
(+ 2.30%)

n.s. NI

Levy et al.87 Total
procedure time

Recorded by endoscopy nurse Median (IQR) 00:24:00
(00:17:00)

00:22:00
(00:12:00)

−00:02:00
(−8.33%)

*** NI

Nehme et al.29 Total
procedure time

NI Median (IQR) 00:23:00
(00:16:00)

00:24:00
(00:19:00)

+00:01:00
(+ 4.35%)

n.s. NI

Quan et al.91 Total
procedure time

NI Mean (SD) 00:19:30
(00:07:12)

00:21:24
(00:09:06)

+00:01:54
(+ 9.74%)

** NI

Wang et al.26 Total
procedure time

NI Mean (SD) 00:12:06
(00:04:05)

00:12:31
(00:04:23)

+00:00:25
(+ 3.47%)

n.s. Second reader,
concurrent

Carlile et al.80 .. .. .. .. .. .. .. Second reader,
concurrent

Jones et al.85 .. .. .. .. .. .. .. Second reader,
concurrent

Kanagasingam
et al.22

.. .. .. .. .. .. .. Triage + notification

Liu et al.35 .. .. .. .. .. .. .. Triage + notification

Marwaha et al.88 .. .. .. .. .. .. .. Sequential

Oppenheimer
et al.90

.. .. .. .. .. .. .. Second reader,
sequential

Pierce et al.19 .. .. .. .. .. .. .. Triage

Raya-Povedano
et al.36

.. .. .. .. .. .. .. Gatekeeper

Ruamviboonsuk
et al.92

.. .. .. .. .. .. .. Gatekeeper

Sandbank et al.93 .. .. .. .. .. .. .. Second reader,
sequential

Sun et al.55 .. .. .. .. .. .. .. Second reader,
sequential

Tricarico et al.56 .. .. .. .. .. .. .. Triage

Wang et al.98 .. .. .. .. .. .. .. Triage + notification

Wong et al.99 .. .. .. .. .. .. .. First reader

Wong et al.100 .. .. .. .. .. .. .. Second reader,
concurrent

n.s. Not significant, AI Artificial intelligence, CI 95% confidence interval, DIDO Door-in-door out time, ED Emergency department, EMR Electronic medical record, IQR Interquartile range, NI No
information, PACS Picture archiving and communication system, PSC Primary stroke center, RIS Radiology information system, SD Standard deviation, SE Standard error.
Time formats are hh:mm:ss. *p < 0.05, **p < 0.01, ***p < 0.001.
a Time measurements for scans that have been classified positive for pulmonary embolism.
b Time measurements for scans that have been classified positive for intracranial hemorrhage.
c Potretzke et al. reported a reduction in segmentation time but no concrete numbers.
d Additional reading time for AI use.
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introduced AI to actual real-life clinical workflows were eligible, that is,
those not conducted in an experimental setting or in a laboratory. The
search strategy followed the PICO framework:
• Population: This review included studies conducted in real-world

healthcare facilities, such as hospitals and clinics, using medical

imaging and surveying healthcare professionals of varying expertise
and qualifications.

• Exposure/interventions: This review encompassed studies that focused
on various AI tools for diagnostics and their impact on healthcare
professionals’ interaction with the technology across various clinical

a

b

c

Fig. 3 | Results ofmeta-analyses.Graphical display and statistical results of the three
meta-analyses: a Studies using AI for detection tasks in CT images and reported
clinicians’ reading time. b Studies using AI to detect polyps during colonoscopy and

measured the total procedure time. c Studies that used AI for reprioritization and
measured the turnaround times for cases flagged positive. All included studies used
AIDOC for intracranial hemorrhage detection.
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imaging tasks67.Weexclusively focusedonAI tools that interpret image
data for disease diagnosis and screening5. For data extraction, we used
the following working definition of AI used for clinical diagnostics:
“any computer system used to interpret imaging data to make a
diagnosis or screen for a disease, a task previously reserved for
specialists”14.

• Comparators: This review emphasized studies comparing the work-
flow before AI use with that after AI use or the workflow with AI use
with that without AI use, although this was not a mandatory criterion
to be included in the review.

• Outcomes: The primary aim of this study was to evaluate how AI
solutions impact workflow efficiency in clinical care contexts. Thus,
we focused on three outcomes of interest: (1) changes in time
required for task completion, (2) workflow adaptation, and (3)
workload.

(1) Changes in time for completion of imaging tasks were considered,
focusing on reported quantitative changes attributed to AI usage (e.g.,
throughput times and review duration).

(2) Workflowadaptation encompasses changes in theworkflow that result
from the introduction of new technologies, particularly in the context
of AI implementation (i.e., specifying the time and purpose of AI use).

(3) Workload refers to the demands of tasks on human operators and
changes associatedwithAI implementation (e.g., cognitive demandsor
task load).

The detailed search strategy following the PICO framework can be
found in Supplementary Table 4 and Supplementary Note 1.

Screening and selection procedure
All retrieved articles were imported into the Rayyan tool68,69 for title and
abstract screening. In the first step, after undergoing a training, two study
team members (KW and JK/MW/NG) independently screened the titles
and abstracts to establish interrater agreement. In the second step, the full
texts of all eligible publications were screened by KW and JK. Any potential
conflicts regarding the inclusion of articles were resolved through discus-
sions with a third team member (MW). Reasons for exclusion were docu-
mented, as depicted in the flow diagram in Fig. 170.

Data extraction procedure
Two authors (JK and KW/FZ) extracted the study data and imported them
into MS Excel which then went through random checks by a study team
member (MW). To establish agreement all reviewers extracted data from
the first five studies based on internal data extraction guidelines.

Study quality appraisal and risk of bias assessment
To evaluate the methodological quality of the included studies, two
reviewers (KWand JK) used three established tools. TheRisk of Bias inNon-
randomized Studies of Interventions tool (ROBINS-I) for non-randomized
studies and the Cochrane Risk of Bias tool (Rob 2) for randomized studies
were used71,72. To assess the reporting quality of the included studies, the
MINORS was used27. The MINORS was used instead of the Quality of
Reporting of Observational Longitudinal Research checklist73, as pre-
specified in the review protocol, because this tool was more adaptable to all
included studies. Appraisals were finally established through discussion
until consensus was achieved.

Fig. 4 | Prototypical workflows after AI implementation.Visual representation of
the different workflows when using AI as reported in the included studies:
aWorkflows when using AI for prioritization tasks. bWorkflow when using AI for

detection. cWorkflow when using AI for segmentation tasks. Figure created with
Canva (Canva Pty Ltd, Sydney, Australia).
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Strategy for data synthesis
First, we describe the overall sample and the key information from each
included study. Risk of bias assessment evaluations are presented in nar-
rative and tabular formats.Next,where comparable studieswere sufficient, a
meta-analysis was performed to examine the effects of AI introduction.We
used the method of Wan et al.74 to estimate the sample mean and standard
deviation from the sample size, median, and interquartile range because the
reported measures varied across the included studies. Furthermore, we
followed the Cochrane Handbook for calculating the standard deviation
from the confidence interval (CI)75. Themetafor package in R76 was used to
quantitatively synthesize data from the retrieved studies. Considering the
anticipated heterogeneity of effects, a random-effects model was used to
estimate the average effect across studies. Moreover, we used the DerSi-
monian and Laird method to determine cross-study variance and the
Hartung–Knapp method to estimate the variance of the random effect77,78.
Heterogeneity was assessed using Cochran’sQ test79 and the I2 statistic75. In
caseswhere ameta-analysiswas not feasible, the results were summarized in
narrative form and presented in tabular format.

Meta-biases
Potential sources of meta-bias, such as publication bias and selective
reporting across studies, were considered. Funnel plots were created for the
studies included in the meta-analyses.

To assesswhether our review is subject to selectionbias due to the choice
of databases and publication types, we conducted an additional search in the
dblp computer science bibliography (with our original search timeframe). As
this database did not allow our original search string, the adapted version is
found in Supplementary Note 2. Additionally, we performed searches on
conferenceproceedingsof the last three years, spanningpublications fromthe
January 1st 2020 until May 15th 2023. We surveyed IEEE Xplore and two
major conferences not included in the database: International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI)
and Hawaii International Conference on System Sciences (HICSS). We
conducted an initial screening of titles and abstracts, with one reviewer (KW)
screening all records and JK screening 10% to assess interrater reliability. Full-
text assessments for eligibility were then performed by one of the reviewers,
respectively (KWor JK). Furthermore, the AMSTAR-2 critical appraisal tool
for systematic reviews of randomized and/or non-randomized healthcare
intervention studies was used43.

Data availability
All data generated or analyzed during this study is available from the cor-
responding author upon reasonable request.

Code availability
Code for meta-analyses available via https://github.com/katwend/
metaanalyses.
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Abstract

Background: Artificial intelligence (AI) is rapidly advancing in health care, particularly in medical imaging, offering potential
for improved efficiency and reduced workload. However, there is little systematic evidence on process factors for successful AI
technology implementation into clinical workflows.

Objective: This study aimed to systematically assess and synthesize the facilitators and barriers to AI implementation reported
in studies evaluating AI solutions in routine medical imaging.

Methods: We conducted a systematic review of 6 medical databases. Using a qualitative content analysis, we extracted the
reported facilitators and barriers, outcomes, and moderators in the implementation process of AI. Two reviewers analyzed and
categorized the data separately. We then used epistemic network analysis to explore their relationships across different stages of
AI implementation.

Results: Our search yielded 13,756 records. After screening, we included 38 original studies in our final review. We identified
12 key dimensions and 37 subthemes that influence the implementation of AI in health care workflows. Key dimensions included
evaluation of AI use and fit into workflow, with frequency depending considerably on the stage of the implementation process.
In total, 20 themes were mentioned as both facilitators and barriers to AI implementation. Studies often focused predominantly
on performance metrics over the experiences or outcomes of clinicians.

Conclusions: This systematic review provides a thorough synthesis of facilitators and barriers to successful AI implementation
in medical imaging. Our study highlights the usefulness of AI technologies in clinical care and the fit of their integration into
routine clinical workflows. Most studies did not directly report facilitators and barriers to AI implementation, underscoring the
importance of comprehensive reporting to foster knowledge sharing. Our findings reveal a predominant focus on technological
aspects of AI adoption in clinical work, highlighting the need for holistic, human-centric consideration to fully leverage the
potential of AI in health care.

Trial Registration: PROSPERO CRD42022303439; https://www.crd.york.ac.uk/PROSPERO/view/CRD42022303439

International Registered Report Identifier (IRRID): RR2-10.2196/40485

(J Med Internet Res 2025;27:e63649) doi: 10.2196/63649
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systems analysis; ergonomics; workflow; Systems Engineering Initiative for Patient Safety; SEIPS
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Introduction

Background
Advancements in the development of artificial intelligence (AI)
have increased the accessibility and awareness of AI solutions
in health care [1,2]. AI in health care has numerous potential
applications, which can be categorized into 4 areas of
application: diagnostics, therapeutics, administration and
regulation, and population health management [3]. AI is mostly
applied to data-driven tasks due to its ability to adapt to input
data. It can process and analyze large volumes of health care
data more quickly [4,5].

In the United States and Europe, AI technologies in health care
can be categorized as software as a medical device, referring to
software designed for medical purposes without requiring
hardware integration [6]. These purposes, as defined by the
Food and Drug Administration, encompass treating, diagnosing,
curing, mitigating, or preventing diseases or conditions [7]. The
growing recognition of the potential of AI algorithms in health
care is supported by the surge of Food and Drug Administration
approvals since 2016 for AI-enabled devices [8]. Notably, >75%
of approvals are related to radiology [8]. These numbers are
consistent with reports that highlight image-based disciplines
at the forefront of AI integration in clinical practice due to their
data-driven nature and continuously increasing workload
demands [3,5,9].

Despite the increasing availability of AI algorithms, there
remains a limited understanding of their integration into clinical
practice. A critical gap persists between broad research on
algorithm development and limited evaluation of their actual
use in clinical practice [10,11]. Most AI solutions are tested
under controlled experimental conditions, which may
underestimate the real-world impact of contextual factors on
their utility and are therefore not necessarily transferable to
clinical applications [12]. Depending on the users, the
implementation process, and the clinical setting, the usefulness
of AI solutions can significantly differ from previous evaluations
or applications [13,14].

Complex sociotechnical systems, such as health care, “can be
characterised by high uncertainty, multiple interacting elements
and dynamic change” [15]. According to the sociotechnical
systems theory, a sociotechnical system refers to the integration
of humans, machines, environments, and organizational
processes working together toward a shared objective. It consists
of 2 interconnected subsystems: the technology subsystem,
which encompasses tools and work organization, and the social
subsystem, which involves individuals, teams, and coordination
needs [15,16]. Sociotechnical frameworks of real-world clinical
care offer a valuable approach to scrutinizing implementation
complexities as well as the multiple intricacies of technology
adoption [17,18].

A framework based on the sociotechnical systems theory that
captures these complex demands and relations in health care
settings is the Systems Engineering Initiative for Patient Safety
(SEIPS) model [17]. The SEIPS model—most recently refined
as SEIPS 3.0 [19]—proposes that sociotechnical systems consist

of 5 interacting components: people, tasks, tools and
technologies, organization, and environment. When one of the
components changes, it affects the other components of the
work system and subsequently the outcomes, that is, for patients,
health care professionals, or organizations [17]. The model
emphasizes the human as the center of the work system, which
should be designed to support human performance and minimize
negative impacts resulting from the work setting [17,19]. The
SEIPS model can be applied to identify barriers and facilitators,
which result from 1 element or the interaction between elements
[20]. Hoonakker et al [21] introduced the concept of dimensions,
which can function as either facilitators or barriers.

While the SEIPS model is useful for understanding work system
dynamics, other frameworks also help analyze health care
technology implementation. The Consolidated Framework for
Implementation Research (CFIR) evaluates implementation
processes in health services through 5 domains: intervention
characteristics, outer setting, inner setting, individual
characteristics, and the implementation process, overlapping
with SEIPS in addressing the involved people and their
environment [22,23]. The nonadoption, abandonment, scale-up,
spread, and sustainability (NASSS) framework examines factors
influencing each of these outcomes and is specifically designed
for technology implementation, while SEIPS covers broader
work system design [24,25]. The integrate, design, assess, and
share (IDEAS) framework, focusing on the full development
cycle, is more suited for creating health technology solutions
but less relevant to our study, which focuses on evaluating
already implemented AI solutions [26]. The key distinction of
SEIPS 3.0 is its human-centered approach, placing patients,
clinicians, and caregivers at the core of the work system and
emphasizing human-technology interaction and alignment in
real-world clinical environments [19].

A thorough understanding of how professionals in real-world
clinical settings use AI technologies and how these tools can
support their performance seems imperative, given the
increasing availability of AI in health care [27]. While current
literature extensively addresses the potential of AI in overviews
and opinion articles, limited empirical evidence stems from
actual clinical care [11,28-30]. This leads to a critical lack of
comprehensive understanding of AI implementation challenges
and processes, potentially limiting the future development of
evidence-based recommendations for successful AI technology
implementation in clinical practice.

Objectives
Given the growing number of AI solutions in imaging-based
disciplines, we aimed to explore and synthesize the existing
literature on facilitators and barriers to AI implementation in
routine medical imaging. We explored the relationships among
AI implementation factors by drawing upon the SEIPS model.
This approach allows for a concept-based and comprehensive
synthesis of the available literature, generating a nuanced
understanding of key process facilitators and barriers and their
interactions in the implementation of AI technology into
sociotechnical work systems in health care. Moreover, it
contributes to a holistic picture of AI implementation in clinical
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work with consideration of important outcomes and moderating
factors.

Methods

Registration and Protocol
Before starting, we registered our systematic literature review,
which included qualitative analysis and synthesis, in the
PROSPERO database (CRD42022303439) and published the
review protocol (RR2-10.2196/40485) [28].

The primary aim of this study was to assess and synthesize
facilitators and barriers to AI workflow integration in medical
imaging. This study was part of a larger review project on the
impact of AI solutions on workflow efficiency in medical
imaging, with a separate publication on the effect of AI on
efficiency outcomes [31]. Our report follows the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) reporting guidelines (Multimedia Appendix 1).

Eligibility Criteria
We analyzed original clinical imaging studies in German or
English published in peer-reviewed journals from January 2000
onward. Eligible studies implemented AI into real-world clinical
workflows; therefore, we included observational and
interventional studies (eg, randomized controlled trials)
conducted in health care facilities using medical imaging. We
focused on AI tools interpreting image data for disease diagnosis
and screening.

We excluded dissertations, conference proceedings, and gray
literature. In addition, due to our focus on real-world
implementation of AI, we excluded studies conducted in
experimental or laboratory settings.

Search Strategy
We searched the following electronic databases: MEDLINE
(PubMed), Embase, PsycINFO, Web of Science, IEEE Xplore,
and Cochrane CENTRAL. The databases were selected to reflect
the interdisciplinary research on AI implementation in health
care by including sources from medicine, psychology, and IT.
Databases such as Cochrane, which only list systematic reviews
or meta-analyses, were excluded in accordance with our
eligibility criteria.

The detailed search strategy followed the PICO (population,
intervention, comparison, and outcome) framework and can be

found in the study by Wenderott et al [31]. The searches were
performed on July 21, 2022, and on May 19, 2023. In a
backward search, we identified additional relevant studies
through screening the references of the included studies from
the database search. Due to the time-consuming process of a
systematic review with the in-depth qualitative analysis of the
included studies, we performed an additional search on
November 28, 2024, to identify relevant, recently published
studies on facilitators and barriers to AI implementation in
medical imaging [32]. This additional step ensured an update
as well as the incorporation of interim published evidence on
the topic. Further details are provided in Multimedia Appendix
2 [29,33-40].

Screening and Selection Procedure
All gathered articles were imported into the Rayyan tool
(Rayyan) [41] for initial title and abstract screening. Two study
team members (KW plus JK, MW, or Nikoloz Gambashidze),
trained beforehand, individually assessed the titles and abstracts
and reviewed their decisions in a consensus-oriented discussion.
Subsequently, KW and JK screened the full texts of all eligible
publications. Any disagreements regarding article inclusion
were resolved through discussions with a third team member
(MW). Exclusion reasons were documented and presented a
flow diagram [42].

Data Extraction
For qualitative data extraction, full texts of all eligible articles
were imported into MAXQDA 22 (VERBI Software GmbH)
[43]. This program allows users to mark text segments with
different semantic codes, in this case the key characteristics,
and automatically creates Excel (Microsoft Corporation) files
of all the marked segments. Two researchers (JK and Fiona
Zaruchas) extracted key study characteristics, including country,
sample size, and any reported conflicts of interest (for more
details, refer to the study protocol [28]). Countries and authors
were imported into RStudio (2025.05.1+513; Posit PBC) to
create a map of the geographical distribution [44].

Regarding the reported stage and status of AI tool
implementation in clinical practice, we used the studies by
Bertram et al [45] and Pane and Sarno [46] to develop our
classification of “level of implementation.” We defined 3 distinct
levels: external validation, initial implementation, and full
implementation (Textbox 1). We categorized all the included
studies accordingly.
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Textbox 1. Levels of artificial intelligence (AI) implementation in clinical practice.

External validation

• Evaluation of the AI solution using real-world data

• Participants (ie, clinicians) recruited for the study

• Participants potentially blinded to other patient data

• Approximate simulation of the routine workflow

Initial implementation

• Partial implementation into the usual workflow

• Participants recruited in their usual work

• Different study groups possible

Full implementation

• Used for all eligible patients

• Implemented into the routine workflow of clinicians

Data Analysis
We applied a multistep procedure for data analysis. We first
used a structured qualitative content analysis in a stepwise
process [47]. In the initial phase, JK and KW independently
classified the following key content categories of AI technology
process factors in all the retrieved study texts:

• Facilitators, defined as “any factor that promotes or expands
the integration or use of the AI system in the workflow”
[48].

• Barriers, defined as “any factor that limits or restricts the
integration or use of the AI system” [48].

• Outcomes of AI use, defined as the impact the AI use has
on clinicians, patients, organizations, or the workflow.

• Moderators, defined as external factors, independent of the
AI tool, that influence its use, for example, the setting or
user [33].

Subsequently, JK and KW engaged in a consensus-oriented
discussion to reconcile all coded text segments [47,49]. In the
following step, we defined subcategories following an inductive
process. We noted a thematic overlap between topics being
reported as a facilitator or barrier, depending on the study.
Therefore, we decided to code categories that encompass
facilitators as well as barriers, noting their valence (ie, positive
or negative) separately. We organized the categories in a
comprehensive codebook with corresponding definitions [47].
To establish consistency between raters throughout the coding
process, the codebook underwent testing across 5 publications,
where we discussed any coding issues and adjusted definitions
as needed. Moving forward, both researchers (KW and JK)
independently coded segments and subsequently discussed their
codes to establish a consensus. Two researchers (KW and ARW)
independently identified the proximally involved work system
elements of the dimensions and then met to discuss their
categorization and reached a consensus [20,50]. Using an
inductive methodology, individual statements per dimension
were clustered into themes that were mentioned frequently.

Epistemic Network Analysis
Epistemic network analysis (ENA) examines relationships
between codes by modeling how frequently they co-occur in
datasets. ENA was developed, validated, and widely applied in
engineering education studies and has subsequently been used
in research focused on human factors in health care [51-56].
ENA quantifies qualitative data by applying mathematics similar
to social network analysis and principal component analysis to
generate a weighted network of co-occurrences of codes. The
matrix is then depicted graphically for each unit within the
dataset. In each graph, the node size represents how frequently
a code occurred in that unit; the thickness of the edges between
the nodes corresponds to the weight, or frequency, at which a
pair of codes co-occurred. The placement of each node is based
on plotting vectors from the weighted co-occurrence matrix in
a high-dimensional space, normalizing the vectors, reducing
the dimensions using singular value decomposition (similar to
principal component analysis), and then performing a rigid body
rotation to preserve meaning. The x-axis is the dimension that
accounts for the highest variation in the dataset, and the y-axis
is a dimension orthogonal to the first that explains the next
highest percentage of variance. Due to the preservation of
meaning, these dimensions can be interpreted conceptually
based on the qualitative data analysis. The fit of the resulting
model can be evaluated both with Spearman and Pearson
correlation coefficients. Importantly, ENA evaluates all
networks concurrently, yielding a collection of networks that
can be compared both visually and statistically. For more details
on the method, including the mathematics and validation, please
refer to the studies by Andrist et al [57], Bowman et al [58],
Shaffer [59], Shaffer et al [56], and Shaffer and Ruis [60].

ENA serves as a valuable method to analyze and visualize the
findings of our qualitative content analysis, that is, the
co-occurrence of the dimensions of facilitators or barriers in the
included studies [56,58-60]. In this study, we used the ENA
web tool (version 1.7.0) [61]. The data were uploaded to the
ENA web tool in a .csv file, with each row representing a barrier
or facilitator identified through qualitative analysis; the columns
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included metadata such as the study, type of implementation,
if that row contained a barrier or a facilitator, the dimension
that specific barrier or facilitator was categorized as, and the
coded excerpt from the study. ENA was used to generate 6
network graphs that depict the relationships between barriers
or facilitators reported in each study, separated by the level of
implementation. Thus, in each graph, the node size corresponds
to the frequency that a barrier or facilitator occurred across all
studies in that type of implementation; the thickness of the edges
between nodes indicates how often a pair of barriers or
facilitators co-occurred within the same study.

Results

Study Selection
We identified 22,684 records in the databases and an additional
295 articles through a backward search. After the removal of
duplicates, 13,756 remaining records were included in the title
and abstract screening. Afterward, 207 full texts were screened,
of which 169 were excluded primarily because they did not
meet the inclusion criteria, that is, experimental studies or
studies not focusing on AI tools for interpreting imaging data
(for more details, refer to the study by Wenderott et al [28]). A
total of 10 studies were excluded because they did not describe
any facilitator or barrier in the course of clinical implementation.
Finally, 38 studies were included in the review and data
extraction. A PRISMA flowchart is presented in Figure 1.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart.

Study Characteristics
Of the 38 included studies, 24 (63%) were performed in a single
institution and 14 (37%) were multicenter studies. Only 5%
(2/38) of the studies were published before 2012, whereas all

others (36/38, 95%) were published from 2018 onward. The
geographical distribution of the studies is depicted in Figure 2.
On the basis of the heterogeneity in the regulatory frameworks
of AI in health care, we included a comparison across
dimensions between the 2 main geographical clusters, the
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European Union and the United States (Multimedia Appendix
3 [62-64]). Most studies (25/38, 66%) were conducted in
radiology, followed by gastroenterology (5/38, 13%; Table 1).
A total of 47% (18/38) of the studies reported a potentially
relevant conflict of interest. For the risk of bias assessment, we
used the Risk of Bias in Nonrandomized Studies of Interventions
tool and the Cochrane Risk of Bias version 2 tool for the 1
included randomized study [65,66]. From the included 37

nonrandomized studies, only 1 (3%) study was classified as
having a low risk of bias. In total, 11% (4/37) of the studies
were rated as having a moderate risk, 65% (24/37) of the studies
had a serious risk, and 22% (8/37) of the studies were assessed
as having a critical risk of bias. The included randomized study
was determined to have a high overall risk of bias. For a detailed
risk of bias and quality of reporting assessment, refer to the
supplementary material of the study by Wenderott et al [31].

Figure 2. Geographical distribution of the included studies (created with RStudio).
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Table 1. Reported key characteristics of the included studies.

Level of implementa-
tion

Cases, patients, or
scans, n

Professionals, nSource of dataData collectionStudy

Full347 patientsRadiologists (not specified)No informationProspectiveArbabshirani et al [67]

Full2501 examinations
of 2197 patients

32 radiologistsTime stampsRetrospectiveBatra et al [68]

Initial1855 scans and a
survey on 202 scans

112 EDa physiciansSurveyProspectiveCarlile et al [69]

Full173 patients18 physiciansSurveyProspectiveCha et al [70]

Initial7323 examinations79 radiologistsPerformance metrics
and survey

RetrospectiveCheikh et al [71]

External85 patients4 radiologistsPerformance metrics
and time measure-
ment

RetrospectiveChen et al [72]

External260 cases24 radiologists (including 13
breast subspecialists)

Performance metrics
and time measure-
ment

RetrospectiveConant et al [73]

Full50,654 casesRadiologists (not specified)Time stampsProspectiveDavis et al [74]

Initial251 patients7 radiologistsTime stamps and
survey

ProspectiveDiao et al [75]

External600 cases6 radiologists and 6 ED physi-
cians

Performance metrics
and time stamps

RetrospectiveDuron et al [76]

Full680 patientsNeurologists and neurointerven-
tionalists (not specified)

Chart reviewRetrospectiveElijovich et al [77]

Initial8723 scans5 radiologistsTime stampsRetrospectiveGinat [78]

Full63 patientsTechnologists, radiologists, ED
physicians, neurologists, and in-
terventionalists (not specified)

Chart reviewRetrospectiveHassan et al [79]

Initial2972 scans of 2665
patients

11 radiologistsSurveyProspectiveJones et al [80]

Initial2329 patients52 endoscopistsChart reviewRetrospectiveLadabaum et al [81]

Full4414 patients30 gastroenterologistsPerformance metrics
and time stamps

RetrospectiveLevy et al [82]

Initial72 patientsGenetic counselors and trainees
(15 in total)

SurveyRetrospectiveMarwaha et al [83]

Full90 scans2 radiologistsObservation, inter-
view, and survey

ProspectiveMueller et al [84]

Initial1041 patientsEndoscopists and staff members
(45 in total)

Performance met-
rics, time stamps,
and surveys

ProspectiveNehme et al [85]

Full1163 examinations
of 735 patients

2 radiologistsPerformance metricsProspectiveOppenheimer et al [86]

Full30,847 examinationsRadiologists (not specified)Case reviewRetrospectivePierce et al [87]

Initial170 cases of 161 pa-
tients

49 radiologists and 12 medical
image analysts

Performance metricsProspectivePotrezke et al [88]

Full600 patients6 endoscopistsPerformance metrics
and time measure-
ment

ProspectiveQuan et al [89]

External15,986 patients5 breast radiologistsPerformance metrics
and workload

RetrospectiveRaya-Povedano et al
[90]

Full7651 patientsStaff members and nurses (12 in
total)

Performance metrics
and surveys

ProspectiveRuamviboonsuk et al
[91]

Full5954 casesPathologists (not specified)Performance metricsProspectiveSandbank et al [92]

J Med Internet Res 2025 | vol. 27 | e63649 | p. 7https://www.jmir.org/2025/1/e63649
(page number not for citation purposes)

Wenderott et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

67

http://www.w3.org/Style/XSL
http://www.w3.org/Style/XSL
http://www.renderx.com/
http://www.renderx.com/


Level of implementa-
tion

Cases, patients, or
scans, n

Professionals, nSource of dataData collectionStudy

Full1808 scans of 1770
patients

Radiologists (not specified)Performance metrics
and time stamps

RetrospectiveSchmuelling et al [93]

Full4450 patientsRadiologists (not specified)Performance metrics
and time stamps

RetrospectiveSeyam et al [94]

External267 cases5 radiologistsObservationProspectiveTchou et al [95]

Initial2942 scansRadiologists (not specified)Performance metricsProspectiveTricarico et al [96]

External225 patients3 radiologistsObservation and
performance metrics

RetrospectiveVassallo et al [97]

External1058 patients8 endoscopistsPerformance metrics
and time measure-
ment

ProspectiveWang et al [98]

External2120 patients2 radiologistsChart reviewRetrospectiveWang et al [99]

External209 patients6 radiologistsPerformance metrics
and time measure-
ment

RetrospectiveWittenberg et al [100]

Full174 casesRadiation therapists and oncolo-
gists (39 in total)

SurveyProspectiveWong et al [101]

Initial214 scansRadiologists and internists (17 in
total)

Performance metrics
and survey

ProspectiveWong et al [102]

Initial1001 patientsOphthalmologistsPerformance metrics
and time measure-
ment

ProspectiveYang et al [103]

Initial1446 scans49 radiologistsPerformance met-
rics, time stamps,
and survey

ProspectiveZia et al [104]

aED: emergency department.

Regarding the level of AI implementation, we identified 24%
(9/38) of the studies evaluating external validation, 34% (13/38)
of the studies focusing on initial implementation, and 42%
(16/38) of the studies focusing on an AI tool being fully
integrated in the clinic. Table 1 presents the key characteristics
of all the included studies. There was a substantial variety of
AI technologies, with 42% (16/38) of the studies using
commercial AI solutions and 55% (21/38) of the studies
evaluating self-developed tools (1 study did not specify the
source of the AI solution [87]). More details about the AI tools
are provided in Multimedia Appendix 4 [67-104]. The methods
that were most frequently used were the analysis of performance
metrics (21/38, 55%) or time stamps (10/38, 26%). In total,
29% (11/38) of the studies used some form of survey or
questionnaire to gather the opinions and experiences of
clinicians. Most commonly, they used self-reports on the impact
of AI use on the diagnosis and efficiency, followed by their
attitude toward AI, their satisfaction or usefulness, as well as
the usability of the AI tool. Notably, only the study by Jones et
al [80] used an established tool, that is, the Systems Usability
Scale. Further details on the surveys described in the studies
are provided in Multimedia Appendix 5 [69,71,75,80,83-85,91,
101,102,104].

Facilitators and Barriers to AI Implementation

Identification and Classification of Process Factors
(Qualitative Content Analysis Results)

Overview

Drawing upon the qualitative analyses of the included studies,
we identified 180 statements from the included publications
that described the factors influencing AI implementation in
clinical practice. These statements were systematically
categorized into 12 overarching dimensions, as described in
detail in Table 2. Within each dimension, we clustered recurring
themes. This resulted in a total of 37 themes; the details and
example quotations from the studies are listed in Multimedia
Appendix 6 [67-104]. Many themes were stated simultaneously
as facilitators and barriers, mostly depending on the presence
or absence of the mentioned theme in the study (Figure 3). For
example, the theme impact on decision-making was referenced
positively in the study by Cheikh et al [71]:

Radiologists stressed the importance of AI to
strengthen their conclusions, especially to confirm
negative findings, or to ensure the absence of distal
PE [pulmonary embolism] in poor-quality
examinations.

In contrast, Oppenheimer et al [86] stated the following:

In some edge cases, both residents reported feeling
somewhat unsure of their diagnosis, in particular if
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they decided on a fracture and the AI result was
negative.

With 64% (115/180) of the segments, we identified more
facilitators in general than barriers (65/180, 36% segments).
The dimensions attitudes and values and stakeholder

engagement were mostly stated as facilitators, highlighting their
positive impact on AI implementation. Medicolegal concerns
was the only dimension that was exclusively mentioned as a
barrier. In the subsequent sections, we describe the 3 dimensions
with the most frequently coded segments in more detail.

Figure 3. Themes of reported facilitators and barriers to the implementation of artificial intelligence (AI) in medical imaging.
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Table 2. Dimensions of facilitators and barriers to artificial intelligence (AI) implementation, including definitions and examples.

Work system elementsCodes, nDefinitionDimensions

EEcPEbOrganizationTTaTasksPeople

✓✓✓37Clinicians’ or patients’ evaluation
of the usefulness of the AI tool im-
pacting its integration.

Evaluation of AI use

✓✓✓29The AI is embedded into the work-
flow or processes of the local health
care facility, including both clinical
workflows and technical aspects
such as data processing.

Fit into the workflow

✓✓✓24The AI implementation follows an
implementation protocol or a pre-
specified plan, including users re-
ceiving training on the AI tool.

Implementation procedure

✓13The capability of understanding and
justifying the decisions made by the
AI tool.

Explainability of AI

✓✓12The beliefs, ethical principles,
judgments, or priorities that might
have been present before using AI
influence clinicians’ acceptance,
adoption, and use of AI.

Attitudes and values

✓✓12Ensures that AI can seamlessly
communicate and share data with
other technologies used.

Interoperability

✓✓✓✓12In the course of implementing or
using AI, important stakeholders are
included in the process.

Stakeholder involvement

✓✓12Users can interact effectively and
intuitively with the AI tool to accom-
plish their goals.

Usability

✓11The reliability of the AI tool that
impacts its use in the workflow.

Reliability

✓✓✓7Fit of the AI tool with the individual
preferences of the users’work orga-
nization.

Individual work organiza-
tion

✓✓✓6AI use alters the role of clinicians,
how they perceive autonomy, and
whether they feel responsible for
their diagnosis.

Impact on the role of clini-
cians

✓✓✓5Intersection of medical practice and
legal regulations, mitigation of legal
risks, and safeguarding of patients
and their rights when using the AI
tool.

Medicolegal concerns

aTT: tools and technologies.
bPE: physical environment.
cEE: external environment.

Evaluation of AI Use

The dimension evaluation of AI use reflected whether a positive
or negative evaluation of the use of the AI solution aided the
AI integration. This dimension was most frequently mentioned,
reflecting the focus of the included studies on AI evaluation in
clinical practice. We identified people, tasks, and tools and
technologies as proximally involved work system elements.

Two themes emerged in this dimension. Overall, the usefulness
was the most frequently mentioned theme. This is supported by
evidence that perceived usefulness or performance expectancy
are strong determinants of the actual use of technologies
[105,106], focusing on the behavior of users. The impact on
decision-making emerged as a second theme in this dimension.
Positively, clinicians valued the support provided by the AI
tool, as AI use can increase the confidence of clinicians [107].
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Negatively, the studies mentioned risks, such as alert fatigue
[104], over trust [81,82], or insecurities due to diverging
diagnostic decisions [86].

Fit Into the Workflow

The dimension fit into the workflow focused on how well AI
technology fits into the workflow, which is an important factor
to consider during the implementation of a novel technology
[108,109]. The proximally involved work system elements were
tasks, tools and technologies, and organization. In this
dimension, 5 themes were identified. The most frequently and
favorably mentioned theme was the accessibility of results, for
example, by results being forwarded automatically to the
clinicians [77] or providing a notification platform [78]. This
also applied to the theme of data processing, where automatic
and fast processing was a facilitating factor [67,68,77,78,97].
Regarding the themes distractions or disruptions due to AI, the
facilitating factors were characterized by the absence of these,
whereas the barriers reflected the negative influence of the AI
tool on the workflow of the users, for example, through alarms
that potentially distracted the clinicians. The theme additional
work steps was only mentioned in the study by Batra et al [68].

Implementation Procedure

The dimension implementation procedure focused on the
descriptions of the implementation process to install the AI
system in the clinical workflow. The related work system
elements were people, tools and technologies, and organization.
In this dimension, the themes internal testing of the AI tool;
continuous maintenance, that is, the ongoing monitoring of the
AI tool with adaptations if necessary; and the training of users
were exclusively mentioned as facilitators. Of the 38 studies,
only 3 (8%) described a deployment strategy [81,87,88], with
Ladabaum et al [81] describing that their minimalist approach
was not sufficient to successfully implement the AI tool. In
total, 13% (5/38) of the studies discussed the strategies or
preconditions to the technology readiness of the organization,
which can be defined as the willingness to “embrace and use
new technologies to accomplish goals.... It is a combination of
positive and negative technology-related beliefs” [110]. In the
study by Ruamviboonsuk et al [91], the authors encountered
the challenge that the hospital was still working with
paper-based records, and the internet connectivity was slow,
highlighting the role of the pre-existing digital infrastructure.

Comparison of Facilitators and Barriers Across the
Levels of Implementation (Results of ENA)
We used ENA to model the differences in facilitators and
barriers across the level of implementation, resulting in 6 distinct

network graphs (Figure 4). The axes identified in our ENA can
be associated with work system elements of the SEIPS model
[17]. The x-axis represents the work system element people in
the negative direction, as indicated by the dimensions attitudes
and values and stakeholder involvement being the farthest in
this direction, and the work system element technology in the
positive direction, which we concluded from the dimensions
reliability, interoperability, and usability presented in this
direction. For the x-axis and the y-axis, the coregistration
correlations were 1 (both Pearson and Spearman), showing a
strong goodness of fit [111]. The x-axis accounted for 37.2%
of the variance. The y-axis accounted for 21% of the variance.
The positive direction of the y-axis can be associated with the
work system element tasks, with the ENA showing the
dimension usability as the farthest node in this direction. In
contrast, the negative side of the y-axis represents the work
system element organization, which we inferred from the
dimensions fit into the workflow and interoperability being the
most distant nodes in this direction.

For the studies describing external validations of AI solutions,
a total of 19 coded segments (segments per study: mean 2.11,
SD 1.27; median 2, IQR 1-2) were included in the ENA. The
resulting networks showed a small number of involved
dimensions and connections, highlighting the dimensions
evaluation of AI use and explainability of AI as facilitators and
the dimension usability as a barrier (Figures 4A and 4D).

For the initial implementation studies, we analyzed 85 coded
segments (segments per study: mean 6.54, SD 4.74; median 5,
IQR 3-9). The facilitators showed an accumulation in the
quadrant of the work system elements tasks and people, with
the dimensions implementation procedure and evaluation of AI
use being the largest nodes. The strongest connection for the
facilitators was between the dimensions evaluation of AI use
and implementation procedure, whereas the strongest connection
for the barriers was between the dimensions evaluation of AI
use and attitudes and values, with the dimension implementation
procedure being also mentioned frequently (Figures 4B and
4E).

Regarding the publications reporting the full implementation
of AI solutions, the network graphs were based on 76 coded
segments (segments per study: mean 4.75, SD 4.11; median
3.5, IQR 2.5-7). The frequently mentioned facilitators were the
dimensions fit into the workflow and evaluation of AI use, with
a strong connection between these dimensions (Figure 4C). The
barriers centered on the dimension reliability, with a strong
connection to the dimension fit into the workflow (Figure 4F).
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Figure 4. Facilitators and barriers to artificial technology (AI) technology implementation in medical imaging: network diagrams resulting from an
epistemic network analyses separated by the level of implementation.

Reported Outcomes of AI Implementation
The included studies examined various outcomes stemming
from the implementation of AI tools in medical imaging tasks.
Of the 38 included studies, 31 (82%) reported efficiency
outcomes, with 71% (22/31) of the studies showing enhanced
efficiency, while 6% (2/31) of the studies reported a negative
impact, and 23% (7/31) of the studies indicated no changes in
efficiency. 13% (5/38) of the included studies assessed the
impact of AI on workload or required work steps, with 80%
(4/5) of the studies reporting reductions and 20% (1/5) of the
studies indicating an increase. Of the 38 included studies, 16
(42%) reported on the performance of AI solutions in terms of
changes in detection rates, need for human oversight, or quality
of the AI-based results. In addition, 34% (13/38) discussed
outcomes for patients, such as enhanced safety or quality control
due to AI; a reduced time to diagnosis or treatment; prolonged
stay in the emergency department; and increased detection rates,
possibly leading to additional unnecessary treatments or
increased workload [98]. The full details on the reported study
outcomes are provided in Multimedia Appendix 7 [67-95,98,99,
101-104].

Moderating Factors of AI Implementation
Of the 38 included studies, 18 (47%) identified moderators,
which are defined as factors that influence AI use but are
independent of the AI itself, such as the setting or the users.
Details on the studies reporting moderators are provided in
Multimedia Appendix 8 [69,70,75,77,78,80-82,84-86,91,93,
95,98,100,102,103].

The setting, precisely the shifts, times of the day, or whether it
was a weekday or a weekend, was mentioned by 5% (2/38) of
the studies [78,86]. Schmuelling et al [93] and Wong et al [102]
also highlighted the significant influence of the clinical
environment or pre-existing clinical workflows on AI
implementation [93,102].

In addition, 21% (8/38) of the studies described that the
implementation and use of AI are impacted by how health care
professionals use the AI system, such as through personal
preferences concerning their workflow or change in behaviors
when they are not being observed. In total, 11% (4/38) examined
the impact of human behavior on the evaluation of AI solutions
in terms of interobserver variability or the missing reporting of
errors.

In total, 26% (10/38) of the studies listed task-related factors,
for example, differences due to input image quality, task type,
or criticality of the findings. Moreover, 18% (7/38) of the studies
noted that job experience or familiarity with AI has an impact
on AI use.

Of the 38 included studies, 5 (13%) investigated physician
performance when using AI regarding their job experience, with
20% (1/5) of the studies reporting no association [80].
Furthermore, 40% (2/5) of the studies reported a more positive
AI use evaluation [69,84] or an enhanced detection rate [85]
for less experienced readers, while 20% (1/5) of the studies
reported that “the time to review the CAD images increased
with the experience of the reader” [95].
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Additional Search to Include Recent Evidence
We searched 6 databases (PubMed, Web of Science, Embase,
CENTRAL, Cochrane, and IEEE Xplore) to further identify
recently published, relevant evidence, including review articles,
in contrast to our original review process. While we retrieved
and screened 1016 records, we identified 9 studies investigating
facilitators and barriers of AI implementation in medical
imaging. Among the 9 studies, 5 (56%) were scoping reviews,
with 40% (2/5) of them focusing on AI implementation in health
care in general [29,34], 40% (2/5) of the reviews studying AI
for breast imaging [35,36], and 20% (1/5) of the reviews
focusing on AI in radiology [37]. Only Chomutare et al [29]
used a theoretical framework, the CFIR, to guide their analysis.
All reviews provided a narrative synthesis of the results. In
addition, of the 9 studies retrieved through the additional search,
we identified 4 (44%) original studies, all using interviews as
a qualitative methodology for studying facilitators and barriers
of AI in medical imaging. Among those, 50% (2/4) of the studies
did not study a specific AI implementation [38,39] and the other
50% (2/4) of the studies focused on specific AI solutions and
were published after our second search [33,40]. Further details
on these studies are provided in Multimedia Appendix 2.

Discussion

Principal Findings
Our systematic review provides, to the best of our knowledge,
the first qualitative and quantitative synthesis that analyzes
facilitators and barriers reported in studies on AI implementation
in real-world clinical practice. Using our differentiation between
the 3 levels of implementation, we were able to delve into the
complexities of transferring AI technologies from model
development and testing into the actual clinical environment
[30]. To strengthen our conclusions, we used the SEIPS model,
which is a strong asset for the system-based analysis of health
care work environments [50]. In our analysis, we found that the
frequency of various facilitators and barriers differed
significantly across the stages of implementation. However, a
consistently wide range of factors was identified, emphasizing
the complex interplay of various elements when integrating AI
into routine care processes. Consequently, our study offers a
consolidated list of key factors that should be considered during
AI implementation.

Focusing on categories across the implementation levels and
matching them to work system elements can guide future
implementation processes. In the conducted ENAs, the work
system elements tasks, tools and technology, organization, and
people were associated with the different axes, which provided
a visualization of the importance of interactions between the
work system elements. Missing in this categorization was the
work system element physical environment, likely due to the
diverse study settings and minimal impact of AI on work
environments in the included studies. All studies focused on
software as a medical device solutions that mostly did not alter
their physical environment, and only 2 studies [89,104] reported
physical changes because the AI solution was displayed on
separate monitors. Referring to our resulting network graphs
(Figure 4), it is noteworthy that the dimension implementation

procedure was linked to work system elements tasks and people,
while typically it is associated with organizational decisions
[39,112]. Our classification showed that the included studies
focused on evaluating AI on a microsystem level, that is, the
individual health professionals and the tasks associated with AI
use [113,114].

Studies describing external validations of AI solutions reported
facilitators mostly related to the dimension evaluation of AI use,
which was also the most prominent dimension overall. Barriers
often stemmed from the AI technology itself, especially from
the issues with usability. The focus of these networks highlights
that external validation is still a part of the algorithm
development process in which the clinical applicability of the
AI solutions is being assessed. This is also supported by the
outcomes reported in these studies, which were mostly time
related, such as efficiency, treatment times, or workload.
Moderating factors were not very prominent in these studies
and were predominantly task related. These studies usually test
the algorithm’s interaction with various work system elements
for the first time under realistic conditions, which is often not
done during the AI development phase before clinical validation
[115].

Studies focusing on the initial implementation tested how AI
solutions can be fitted into the existing workflow, while not yet
being applied to all patients or cases. Barriers and facilitators
in these studies mainly focus on the work system elements
people and tasks, with most connections in the ENA stemming
from this quadrant. In addition, these studies presented a broader
spectrum of outcomes, such as satisfaction or patient outcomes.
Moderating factors to AI use in these studies were also diverse,
including experience of clinicians and their behavior. This focus
aligns with the SEIPS model, which prioritizes the people and
a human-centered design [19]. This resonates well with the
identified initial implementation studies that tested and studied
AI integration into the work system, and determined the
necessary optimizations. The rising recognition of the
significance of human-centered design and stakeholder
engagement in the adoption of AI in health care is supported
by our findings [14,35,116-118].

In the network analysis of studies assessing AI solutions that
have been fully integrated into routine care, the dimension fit
into the workflow emerges as the largest node of facilitators,
with also the most connections, supporting the literature that
highlights the integration of AI into work processes as crucial
for success [10,12,109]. The themes we observed as being most
important were accessibility of results and no disruptions due
to AI, with the latter being mentioned positively by the absence
of AI-related disruptions to the workflow. As workflow
disruptions can increase the procedure duration, this is highly
relevant in medical imaging, as radiologists and other physicians
face increasing workloads and time pressures due to the large
amount of medical imaging data to be interpreted [119,120].
Interestingly, barriers in these studies showed a strong
connection between the dimensions reliability and fit into the
workflow. This aligns with our recent findings that technical
issues can largely impact the workflow, contrasting with the
literature that often emphasizes ethical debates, medicolegal
concerns, or AI explainability, which were less prominent in
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our analysis [112,121]. Nevertheless, most outcomes reported
in these studies were positive, such as increased efficiency,
improved detection rates, or reduced treatment times, potentially
reflecting that only the AI solutions that have overcome most
barriers manage the transfer from the initial development stage
to full implementation [29].

Comparison to Previous Work
Compared to previous research in the field, our results contribute
important insights and show consistencies and discrepancies in
AI implementation research. Few reviews have focused on the
implementation of AI in clinical practice, and even fewer have
specifically examined the facilitators and barriers to AI
implementation. In our additional search, we only identified 5
scoping reviews targeting this topic in relation to AI for medical
imaging. Hassan et al [34] provided a recent review on the
facilitators and barriers to AI adoption, noting that most of the
included studies focused on radiology and oncology. The authors
identified 18 categories of facilitators and barriers, and similar
to our findings, they observed that the same factor can be
described as both a facilitator and a barrier [34]. However,
because Hassan et al [34] do not offer a detailed overview of
the included studies and only present a narrative synthesis, the
comparison with our included studies, their settings, and designs
is limited.

Lokaj et al [35] reviewed AI development and implementation
for breast imaging diagnosis, identifying clinical workflow as
a key facilitator. However, they emphasized technical aspects
and algorithm development, with barriers such as data,
evaluation, and validation issues. They noted the inclusion of
very few prospective studies. In contrast, our review focuses
on AI solutions evaluated after the development phase, in
real-world clinical settings; therefore, technical aspects do not
play a significant role in our developed set of facilitators and
barriers.

Chomutare et al [29] also reviewed AI implementation in health
care using the CFIR focusing on late-stage implementations.
Despite including only 19 studies, they identified dimensions
similar to ours, such as interoperability and transparency. Using
ENAs based on implementation levels, our study provides a
detailed overview of the facilitators and barriers at different
implementation stages. Our findings further support the claim
of Chomutare et al [29] that limited knowledge exists about the
clinicians working with AI. Our review found that 29% (11/38)
of the included studies incorporated user feedback, revealing a
significant research gap. This underscores the need for research
to adopt human-centered design, defined by the International
Organization for Standardization standard 9241-210:2019 as
follows: “an approach to interactive systems development that
aims to make systems usable and useful by focusing on the
users, their needs and requirements, and by applying human
factors/ergonomics, and usability knowledge and techniques.
This approach enhances effectiveness and efficiency, improves
human well-being, user satisfaction, accessibility and
sustainability; and counteracts possible adverse effects of use
on human health, safety and performance” [122]. Using
human-centered design principles is crucial for developing AI
systems that benefit clinicians and patients [116,118].

Factors influencing AI adoption in health care are similar to
those for other health information technologies, for example,
electronic health records or e-prescription systems [123-125].
Key success factors, such as stakeholder involvement and system
usability, are comparable across these technologies [126,127].
Recommendations for AI implementation can be drawn from
health information technology research, such as that by Yen et
al [128], who emphasize the importance of the sociotechnical
context and longitudinal studies over cross-sectional outcomes.
Although few of our included studies reported on the
implementation process over time, our network analyses by
implementation level can help identify the criteria that must be
met in the course of AI tool transitions from research to clinical
practice. AI introduces unique considerations to health care
workflows, such as shared decision-making and human oversight
[129], and presents new challenges requiring a broader
understanding of the technology [130].

Clinicians need to understand the data used to train AI tools, as
biases and limitations can arise, a point highlighted by Pierce
et al [87] through their educational campaign before AI
implementation. As AI solutions present the possibility of
algorithmic bias, which might not be detected by clinicians, it
is noteworthy that we identified user training and transparency
as facilitators of AI implementation. The diverse nature of
algorithmic biases, for example, stemming from biased training
data, data gaps on underrepresented groups, human bias of the
developers, or a lack of data standards, is an important
information to be considered by the users [131-133].
Algorithmic bias holds the potential for patient harm, especially
for populations considered disadvantaged [132]. While we
identified strategies that can limit the impact of bias, such as
user training, continuous monitoring, or transparency, most of
the included studies did not explicitly mention bias, as described
in by Wenderott et al [31]. Beyond algorithmic bias, it is also
essential to address the legal and ethical challenges surrounding
AI-supported decisions in health care [134]. Although these
topics are widely discussed in research and politics, only 13%
(5/38) of the studies we reviewed discussed medicolegal
concerns in terms of data privacy concerns and legal
implications. Thus, although AI solutions have been successfully
implemented into routine medical care, issues of liability remain
unresolved [135,136]. As AI continues to evolve and becomes
more integrated into clinical practice, it is crucial to carefully
consider these factors to ensure its safe, effective, and
responsible use in health care settings.

Limitations
Our study has a few limitations worth noting. First, we focused
exclusively on AI tools in medical imaging, aiming to ensure
the comparability of our findings. However, we encountered
significant diversity in study settings, AI solutions, and purposes
for decision-making or diagnostics. Because we only reviewed
peer-reviewed original studies, some evaluations of AI
implementation in health care might have been missed. Second,
our findings showed more facilitators than barriers, which could
be associated with a potential publication bias toward a more
positive reporting of AI implementation, especially in
combination with the high number of studies that reported a
conflict of interest. In addition, we only searched for
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peer-reviewed literature, possibly missing reports on AI
implementation from gray literature. AI implementation might
also occur in clinical practice without scientific evaluation or
reporting of results, which could also contribute to a publication
bias. Third, the rapidly evolving nature of AI research indicates
that certain processes or issues discussed in the studies may
already be outdated by the time of publication, a challenge
particularly relevant to the time-consuming process of systematic
reviews, which often face delays from the literature search to
final publication [32]. Therefore, while our review provides the
first comprehensive, thorough, and methodologically rigorous
overview of the facilitators and barriers to AI implementation
in medical imaging, we recommend that future studies consider
adopting shorter review cycles to ensure more timely publication
and greater relevance in light of ongoing technical
advancements. Fourth, facilitators and barriers were mainly
extracted from study discussions, with separate reporting being
rare, possibly introducing bias. In general, we noted that the
descriptions of the implementation procedure and setting were
sparse. Future research should provide details on their
implementation strategy, processes, and subsequent adjustments
to best integrate technology into the unique workflow [112].
This would enable comparisons across studies and facilitate
learning in the scientific community. In addition, our established
dimensions were formed inductively, requiring further
validation. Fifth, while we used the SEIPS model for our
analysis, we acknowledge that other frameworks exist such as
the CFIR; the IDEAS framework; or the NASSS framework

[22,24,26]. We planned to use the NASSS as specified in the
review protocol but eventually chose the SEIPS model due to
its human-centered and system-based approach [28]. Finally,
our focus was on real-world investigations in clinical settings.
Although our classification of “level of implementation” was
useful for comparing different studies, its applicability to other
clinical tasks, medical specialties, and work settings needs
further examination. Furthermore, future studies should explore
the impact of regulatory settings on research outcomes. While
this was not feasible in our review due to the limited number
of studies, the growing number of available AI algorithms and
academic publications on AI in medicine will potentially provide
sufficient data for these analyses [11,63].

Conclusions
In conclusion, the facilitators and barriers identified in medical
imaging studies have produced a comprehensive list of
dimensions and themes essential for AI implementation in
clinical care. Our research underscores the pressing necessity
for holistic investigations into AI implementation, encompassing
not only the technical aspects but also their impact on users,
teams, and work processes. Furthermore, our results corroborate
the future need for transparent reporting of AI implementation
procedures. This transparency fosters knowledge exchange
within the scientific community, facilitating the translation of
research findings into actionable strategies for clinical care. A
deeper understanding of how AI solutions affect clinicians and
their workflows can help reduce clinician workload and improve
patient care.
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Research article 

Prospective effects of an artificial intelligence-based computer-aided 
detection system for prostate imaging on routine workflow and 
radiologists’ outcomes 

Katharina Wenderott a,*, Jim Krups a, Julian A. Luetkens b, Nikoloz Gambashidze a, 
Matthias Weigl a 

a Institute for Patient Safety, University Hospital Bonn, Germany 
b Department of Radiology and Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Germany   

A R T I C L E  I N F O

Keywords: 
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Prostate 

A B S T R A C T

Objectives: Artificial intelligence (AI) is expected to alleviate the negative consequences of rising case numbers for 
radiologists. Currently, systematic evaluations of the impact of AI solutions in real-world radiological practice are 
missing. Our study addresses this gap by investigating the impact of the clinical implementation of an AI-based 
computer-aided detection system (CAD) for prostate MRI reading on clinicians’ workflow, workflow throughput 
times, workload, and stress. 
Materials and methods: CAD was newly implemented into radiology workflow and accompanied by a prospective 
pre-post study design. We assessed prostate MRI case readings using standardized work observations and 
questionnaires. The observation period was three months each in a single department. Workflow throughput 
times, PI-RADS score, CAD usage and radiologists’ self-reported workload and stress were recorded. Linear mixed 
models were employed for effect identification. 
Results: In data analyses, 91 observed case readings (pre: 50, post: 41) were included. Variation of routine 
workflow was observed following CAD implementation. A non-significant increase in overall workflow 
throughput time was associated with CAD implementation (mean 16.99 ± 6.21 vs 18.77 ± 9.69 min, p = .51), 
along with an increase in diagnostic reading time for high suspicion cases (mean 15.73 ± 4.99 vs 23.07 ± 8.75 
min, p = .02). Changes in radiologists’ self-reported workload or stress were not found. 
Conclusion: Implementation of an AI-based detection aid was associated with lower standardization and no ef
fects over time on radiologists’ workload or stress. Expectations of AI decreasing the workload of radiologists 
were not confirmed by our real-world study. 
Pre-Registration: German register for clinical trials https://drks.de/; DRKS00027391.   

1. Introduction

Artificial intelligence (AI) is increasingly utilized and integrated into
medical practice, especially in largely image-based disciplines such as 
radiology [1,2]. Despite the previous advancements in AI technologies, 
there is a significant knowledge gap concerning the actual imple
mentation of AI technologies in clinical routines [3,4]. 

In radiology, there are many areas for applying AI, i.e. automating 

tasks that were previously reserved for humans such as medical image 
interpretation, quality evaluation or providing personalized reports 
[5,6]. AI is expected to improve efficiency, diagnostic accuracy, and 
standardization while decreasing radiologists’ workload, costs or the 
number of errors [5,7,8]. Workload issues in radiology are pressing due 
to increased case volumes and enhanced image quality, coupled with 
limited trained radiologists, resulting in high workforce demands [7,9]. 
Next to image interpretation, radiologists have multiple other 

Abbreviations: AI, Artificial intelligence; CAD, Computer-aided detection system; CE, Conformité Européenne; DWI, Diffusion weighted imaging; FDA, Food and 
Drug Administration; NASA-TLX, National Aeronautics and Space Administration-Task Load Index; PI-RADS, Prostate Imaging Reporting and Data System Guide
lines; PSA, Prostate specific antigen; STAI, Spielberger State – Trait Anxiety Inventory; WTT, Workflow throughput time. 
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concurrent tasks such as reporting, consultations, or direct patient 
interaction [10,11]. 

Current research on AI applications in radiology is not taking the 
complexity of this work setting into account. Available studies focus 
mostly on model validation or diagnostic accuracy while being con
ducted retrospectively or in experimental settings [12,13]. When inte
grating AI in existent clinical workflows, it interacts with several 
components of the socio-technical work system, with important in
fluences on radiologists [14]. To analyze how AI solutions improve 
healthcare delivery, it is imperative to evaluate not only the technolo
gies themselves but also their actual implementation into clinical work 
systems [6,15]. 

To address this current lack of studies targeting real-world AI ap
plications in everyday clinical practice and to respond to the demand for 
prospective studies on AI integration in radiology displayed [6,8,16], we 
thus studied the implementation process of an AI software into radiol
ogists’ routine workflow. As a use case, we focused on an AI-based 
computer-aided detection system (CAD) for the reading of prostate 
MRI scans. Prostate cancer is the second most frequent cancer type in 
men and the amount of cases is growing, with first AI solutions being 
released to meet rising diagnostic demands [13,17]. Given the 
increasing introduction of AI-facilitated diagnostic and decision-support 
tools in everyday radiological practice, empirical insights into work 
practices and user experiences in actual clinical settings are necessary. 
We hypothesized that the CAD introduction alters the workflow and 
impacts workflow throughput times per case reading thus affecting cli
nicians’ workload and stress. 

2. Materials and methods

2.1. Ethics committee approval

The study was part of a larger project which was reviewed by the 
Ethics committee of the medical faculty at the University of Bonn (Nr. 
449/21). All participants provided informed consent. The study protocol 
was pre-registered in the German Register for Clinical Trials 
(DRKS00027391). 

2.2. Study design 

This study’s reporting follows Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) guidelines [18]. A 
prospective pre-post-design utilizing an interrupted time series was 
established to accompany the CAD implementation in a radiology 
department with a mixed-methods assessment. The department has an 
annual throughput of around 650 prostate MRI scans. We assessed the 
workflow by combining standardized expert observation with radiolo
gists’ self-reports for workload and stress. Data collection before 
implementation was scheduled on 17 days (12/2021–02/2022) and 
post-implementation within 16 days (06–09/2022). After CAD imple
mentation and two months to familiarize with the system, data collec
tion was repeated. Patient cases included incoming patients, who were 
not preselected, aligning with the study’s intention to avoid altering 
everyday work practices. Patient cases were only read either during pre- 
or post-implementation i.e. only in one study phase, as the diagnostic 
reading was part of the routine patient journey. 

The CAD system Quantib® Prostate (Version 1.2.0, Quantib® BV), a 
web-based deep-learning prostate MRI reading and reporting platform, 
which is FDA-cleared and CE-marked, was implemented in a radiology 
department. The CAD system offered a semi-automated process support, 
and aided prostate segmentation, calculating PSA density, creating heat- 
maps highlighting regions of interest, and guiding the PI-RADS assess
ment through a structured questionnaire. Additionally, it generated 
automatic patient reports based on the marked lesions and assessed PI- 
RADS scores. A detailed description of Quantib® Prostate was presented 
by Forookhi et al. [19]. Radiology residents received a training on 

Quantib® Prostate in the course of the CAD implementation. 

2.3. Participants 

This single-center study was conducted in the Radiology Department 
of the University Hospital Bonn, Germany. Eligible participants (N = 10) 
were radiology residents conducting prostate MRI readings, chosen 
through a convenience sampling approach. The study focused on resi
dents as they were responsible for prostate MRI readings and was con
ducted within their routine work practices. We ran a-priori power 
analysis using G*Power version 3.1.9.7 [20] to determine the minimum 
sample size. To achieve 80 % power for detecting a medium effect, at a 
significance criterion of α = 0.05, a sample size of N = 54 case readings 
for linear multiple regression with random effects was calculated. 

2.4. Materials 

2.4.1. Procedure of expert observations and questionnaire application 
On-site expert observations were used to assess the workflow during 

pre- and post-CAD implementation. A pilot observation was conducted 
prior and local senior radiologists were consulted for testing observation 
procedure and defining specific time markers for the routine workflow. 
Three task steps with observable time markers were defined: prepara
tion, diagnostic reading, and review. The preparation and the diagnostic 
reading task step were observed in our study, as the review with the 
responsible senior radiologist did not happen consecutively. After every 
case reading, the observed radiology resident was asked to fill in a short 
questionnaire assessing workload and stress. An overview of the process 
is presented in Fig. 1. As part of the larger project, radiologists were also 
interviewed on their work experience. 

The observers were two trained researchers with a background in 
human factors and work psychology from the study team (KW and JK). 
Before starting, both had three to five training sessions on using the 
observer guideline. Times were taken with a digital stopwatch 
(Renkforce RF-SW-110). 

2.4.2. Outcomes 

2.4.2.1. Observational workflow measures. Expert observations 
measured the workflow throughput time (WTT) for the prostate MRI 
case readings. To assess use and effect of the CAD in the different task 
steps, separate WTT for preparation and diagnostic reading were noted 
(Fig. 1). Duration of interruptions was recorded to adjust the WTT. The 
highest PI-RADS score of the respective patient was also noted. Post 
implementation, observers noted when and how the CAD was used. 

2.4.2.2. Radiologists’ outcome reports. Immediately after each finalized 
case reading, radiologists were surveyed with a short, standardized 
questionnaire consisting of 12 questions (Appendix 1). A short, self- 
generated identifier was used to track radiologists over time. The 
questionnaire contained the German version of the National Aeronautics 
and Space Administration-Task Load Index (NASA-TLX) with six items 
assessing workload due to the performed task with a scale from 0 to 100 
[21]. Radiologists’ stress was measured using the short version of the 
Spielberger State-Trait Anxiety Inventory (STAI) with six items on a 
scale from 0 to 3 [22]. It indicates cognitive, emotional, and physical 
stress at work [23]. 

2.5. Statistical analysis 

First, all WTT data was corrected for the duration of interruptions. 
Mean scores of NASA-TLX and STAI were calculated. Case readings with 
irregularities, such as technical problems or missing images, or in
terruptions of more than 45 min were excluded. Data was checked for 
outliers via the interquartile range rule [24]. Case readings with missing 
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values in the preparation task step were included in the overall WTT 
analysis using imputation with the mean of all case readings in this task 
step, to limit the loss of data. We performed pre-specified separate 
subgroup analyses for the two task steps (preparation and diagnostic 
reading). 

For our main analyses, linear mixed models with random effects for 
radiologists were used. Predictors were CAD implementation and PI- 
RADS score. Additionally, the interaction between CAD implementa
tion and PI-RADS score was included, to explore whether the effect of 
CAD implementation differed in relation to the case’s PI-RADS score. 
Outcome variables were WTT corrected for interruptions, workload, and 
stress. The WTT corrected for interruptions and stress scale were 
transformed using logarithmic transformation to better fit the model 
assumptions. Statistical evaluation was conducted using RStudio 
(Version 2022.12.0, RStudio Team, 2020) [25]. Code for statistical 
analysis is available on GitHub (https://github.com/katwend/CA 
D_WorkflowRadiology). 

3. Results

3.1. Participant and patient characteristics

Altogether, 106 case readings were observed, which were performed 
by nine radiology residents. A flow chart of the observations is presented 
in Fig. 2. Regarding the work experience of the radiologists, two were in 
the second year of their residency, three each in the third and fourth 

year, and one person in the fifth year. We did not record any details 
besides the work experience of the radiologists to ensure anonymity. For 
33 days, observers were on-site in the department. On 9 days, no ob
servations were conducted, due to no-show of patients, non- 
participation, or technical problems. Prior to CAD implementation, 50 
case readings were conducted by five radiology residents, and post-CAD 
implementation, 56 performed by seven radiology residents were 
recorded. 16 observations post-CAD implementation were excluded due 
to technical issues, long interruptions or being identified as outliers via 
the interquartile range rule [24]. Finally, 41 observations post-CAD 
implementation were analyzed. 

3.2. Descriptive data 

Descriptive data of study variables are depicted in Table 1. We found 
no difference in mean PI-RADS scores between pre- and post- 
implementation case readings (t(87.85) = − 0.68, p =.50), nor for 
interruption rates per hour (t(81.22) = 1.85, p =.06), therefore assuming 
that difficulty levels were comparable across pre- and post- 
implementation. Six case readings were observed by both observers 
and interrater reliability was calculated. There was a very good agree
ment between the two raters in the double-coded case readings, using 
the two-way random effect models and “single rater” unit, kappa = 1, p 
<.001. 

Fig. 1. Procedure of expert observations of prostate MRI case reading workflow: Radiologist‘s workflow assessment, task steps, and respective observable time.  

Fig. 2. Flowchart of observations.  
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3.3. Workflow observation 

The pre-implementation MRI case reading workflow consists of 
various steps including marking of possible lesions, followed by the 
calculation of prostate-specific antigen (PSA) density, analysis of 
diffusion-weighted imaging (DWI), and PI-RADS classification. After 
finishing the diagnostic reading, radiologists are drafting the report and 
upload it into the system (see Fig. 3A). 

Since the transfer and upload of the MRI images into the CAD system 
took between 10 and 20 min, in most case readings (n = 36) radiologists 
used the CAD as a second opinion after going through the conventional 
diagnostic reading workflow during the upload time (see Fig. 3B). In five 

observed case readings, however, radiologists bridged the upload time 
by performing other clinical tasks and used the CAD during the diag
nostic reading for lesion detection and segmentation as well as calcu
lation of PSA density, DWI analysis, and PI-RADS classification (see 
Fig. 3C). All cases were reviewed with the responsible senior radiologist, 
which we did not observe (cf. Procedure and Fig. 1). 

3.4. Mixed-linear models for effect identification 

3.4.1. Workflow throughput times per case reading 
Detailed results of the mixed linear regression with workflow 

throughput time per case reading as outcome variable can be found in 
Table 2. CAD implementation did not predict the WTT (p =.51). The PI- 
RADS score significantly predicted WTT (p <.01). We found no effect of 
the interaction between the PI-RADS score and the CAD implementation 
(p =.06). 

Table 1 
Descriptive data for observational and radiologists’ self-reported outcomes.   

Pre-implementation Post- 
implementation  

n M SD n M SD 

Total workflow throughput time 
(min)a 

50  16.99  6.21 41  18.77  9.69 

WTT: Preparation (min)a 43  3.23  2.93 40  2.96  3.25 
WTT: Diagnostic Reading (min)a 50  13.77  5.22 41  15.81  8.72 
Workload (TLX Mean) 50  34.98  13.78 41  25.41  21.75 
Stress (STAI Mean) 50  1.32  0.26 39  1.38  0.25 
Interruption rate (per h) 50  10.17  8.43 41  13.67  9.41 
PI-RADS score 50  3.02  1.74 41  2.81  1.27 

n Number of analyzed cases, M Mean, SD Standard Deviation, WTT workflow 
throughput time, TLX National Aeronautics and Space Administration-Task Load 
Index, STAI Spielberger State-Trait Anxiety Inventory. 
acorrected for duration of interruptions. 

Fig. 3. Observed MRI prostate case reading workflows in the radiology department. (A) Workflow pre-CAD implementation. (B) Variant 1 of workflow post-CAD 
implementation. (C) Variant 2 of workflow post-CAD implementation. 

Table 2 
Results of linear mixed model with workflow throughput time per case reading 
as outcome variable (n = 91).  

Predictor b SE(b) t p 

(Intercept)  6.57  0.13  48.90  0.00 
CAD implementation  0.09  0.13  0.67  0.51 
PI-RADS  0.18  0.03  5.60  <0.01 
CAD implementation x PI-RADS  − 0.07  0.04  − 1.89  0.06 

R2
GLMM(c) = 0.64, R2

GLMM(m) = 0.27 

K. Wenderott et al.

88



European Journal of Radiology 170 (2024) 111252

5

3.4.2. Additional analyses per task step 
For the preparation task step, we found neither an effect of CAD 

implementation for WTT (b = − 0.15, SD = 0.32, t(71) = − 0.46, p =.65) 
nor for the PI-RADS score (b = 0.03, SD = 0.08, t(71) = 0.40, p =.70). We 
also observed no effect for the interaction between PI-RADS score and 
CAD implementation (b = 0.07, SD = 0.10, t(71) = 0.76, p =.45). 

For the diagnostic reading task step, we found no effect of the CAD 
implementation on WTT (b = 0.13, SD = 0.16, t(79) = 0.79, p =.43). Yet, 
the PI-RADS score predicted the WTT (b = 0.20, SD = 0.04, t(79) = 5.25, 
p <.001). Moreover, we identified a significant interaction between the 
PI-RADS score and CAD implementation for WTT (b = − 0.10, SD = 0.05, 
t(79) = − 2.15, p =.03; see Fig. 4). For descriptive data grouped by PI- 
RADS scores see Appendix 2, PI-RADS scores four and five were 
considered high and scores one, two and three as low. 

This interaction was broken down by conducting separate mixed 
linear models for the high and low PI-RADS scores. The models included 
the CAD implementation as a predictor and random intercepts for ra
diologists. The analyses showed that CAD implementation predicted the 
WTT for PI-RADS scores of four or higher (b = − 0.33, t(25) = − 2.9, p 
=.02) and not for cases with a PI-RADS score lower than four (b =
− 0.18, t(48) = − 1.51, p =.14). 

3.4.3. Radiologists’ outcome reports 
The mixed linear regression analyses for stress and workload as 

outcome variables are summarized in Table 3. CAD implementation did 
not predict radiologists’ workload (p =.60) or stress (p =.66). Higher PI- 
RADS scores were associated with increased workload reports (p <.01), 
but not with changes in radiologists’ perceived stress (p =.37). We found 
neither an effect of the interaction between PI-RADS score and CAD 
implementation on the workload (p =.14) nor stress (p =.90). 

4. Discussion

Our prospective observations revealed variations in how radiologists
utilized the CAD, resulting in a decreased standardization of the work
flow. CAD use did not result in shorter workflow throughput times for 
post-CAD implementation case readings. Yet, CAD use was associated 
with significantly longer workflow throughput times for diagnostic 
reading in cases with high PI-RADS scores. Interestingly, we did not 
observe any changes in radiologists’ self-reported stress or workload 
following CAD implementation. 

Our results do not support the broadly proposed expectation that AI 
leads to an increased efficiency in radiology in form of decreased 
workflow throughput times per case [7,26]. Our real-world observations 
thus contradict the findings of Cipollari et al. [27], who studied the same 
CAD in an experimental setting. A study which evaluated another AI tool 
for prostate MRI scan reading, also found an increase in radiologists’ 
reading times when using the AI system with, yet, improved lesion 
detection performance [28]. We studied radiology residents i.e. readers 
with potentially less experience performing MRI scan readings, who in 
previous studies, benefitted more from using AI [29,30]. While we 
observed that the WTT increased for cases with high PI-RADS scores, 
subjective workload or stress assessments do not reflect this increase. 
This resonates well with previous studies: Rodriguez-Ruiz [31] found an 
increase in reading times for high suspicion cases in AI use on evaluating 
breast MRI scans; Shin et al. [32] had similar findings studying AI use for 
chest radiographs. A possible explanation for higher WTT for higher PI- 
RADS scores could be that additional work steps or editing had to be 
done for marking and evaluating lesions. 

Our study corroborated empirically, that implementation of CAD in 
radiology does not necessarily lead to expected standardization [33]. 
There are several reasons for this discrepancy, mainly due to the com
plex socio-technical work system and environment of clinical workplace 

Fig. 4. Significant interaction of workflow throughput time with PI-RADS score for the diagnostic reading task step.  
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in radiology, often being highly disruptive and loaded with multiple, 
simultaneous task demands. These real-world challenges and obstacles 
for clinical implementation are usually not reflected in experimental 
settings or preliminary tests of new clinical AI tools outside of the actual 
work environment. In fact, according to a study by Dhanoa et al. [10], 
image interpretation accounted for only 36.4 % of the total workload. 
On the days we observed the radiologists, prostate MRI readings 
accounted for a large proportion of their reading tasks. We assessed 
stress and workload after each MRI reading, using the NASA-TLX, a 
widely accepted measure in similar populations [34]. The STAI, chosen 
for its brevity, has been used previously in healthcare studies [35]. 
Questionnaires aimed for a balance between accuracy and brevity to 
minimize burden on clinicians, as well as showing a trade-off between 
specialized and established measures. Nevertheless, a bias due to the 
questionnaires cannot be ruled out, especially for the STAI as the an
swers were not normally distributed. Therefore, validating our findings 
with objective stress measures is warranted. 

While technical aspects are often emphasized in AI development and 
user testing, there is a growing focus on challenges in the course of 
incorporating AI into routine care processes. Since the specific CAD tool 
in our study had already demonstrated its potential clinical efficacy in 
previous research, we did not specifically examine its diagnostic per
formance [27,36]. Nevertheless, CAD usage can have benefits in terms of 
increased diagnostic accuracy or as an educational tool for radiology 
residents [29,37,38]. As clinician acceptance is key to the imple
mentation of innovative technology, we investigated rigorously the 
actual impact on workflow and radiologists. This is of particular 
importance, as radiologists who face constraints in workload or work
flow will eventually not adopt AI tools, with, eventually, persistent 
shortcomings in patient care [39]. 

Our design was a prospective study assessing CAD implementation in 
a real-world clinical practice. To be emphasized is that we conducted the 
study in a pre-post design not relying on historic controls while using a 
combination of objective and subjective data. Beyond the benefits and 
valuable insights stemming from our approach, there are a few limita
tions inherent to our observational design (e.g., observer effects). In 
future studies, efforts could be made to automatically assess workflow- 
throughput times, e.g. through automatic recording on the worksta
tion, limiting potential bias. A convenience sampling approach, with 
non-blinded radiologists in a single institutional setting, was estab
lished, and neither radiologists nor cases could be randomized. It is 
important to note that we focused on radiology residents, who might not 
be directly comparable to more experienced radiologists. However, this 
aligns with the department’s standard practice, as they handle the initial 
reading of prostate MRI scans. Due to these factors, the generalizability 
of our findings may be limited. To address this limitation, a larger 
sample size could be considered. We did not track whether the reading 
results were confirmed by a second reader and whether the use of the 
CAD had an impact on clinical outcomes (i.e., diagnostic performance or 
patient morbidity). This might be an interesting approach for future 
study design also assessing the impact of AI technologies on quality of 

care and patient safety. Additionally, a comparison between experi
enced and inexperienced readers using the CAD in their routine would 
provide valuable insights into how work experience affects CAD use and 
acceptance. 

From our study, we can further derive suggestions for workflow 
integration of AI tools in the future: First, prior to implementation, 
workflow analysis should be conducted to determine work system-level 
challenges in the course of appropriate AI utilization, taking into ac
count previous studies on AI solutions [7]. Second, it will be crucial to 
involve radiologists in early stages of development and implementation 
processes, as they are key stakeholders with valuable insights into 
existent work practices, technology integration, and challenges in re- 
designing workflows [40]. Third, our findings may contribute to 
future research including prospective, multi-center studies in routine 
radiology settings. It may also innervate further investigations into AI 
implementation in everyday radiological work practices including lia
bility, transparency, explainability, as well as workflow changes. 

Our study evaluates the impact of AI implementation on radiologists 
and their routine workflow. We established a prospective study with 
very high ecological validity. By combining observations and self- 
reports we provide a thorough investigation into the effects of AI 
implementation on the workload of radiologists. As our findings do not 
support the widely proposed assumptions that AI reduces radiologists’ 
workload, our study highlights the urgent need for high-quality research 
evaluating AI tools in routine clinical workflows. At the same time, 
carefully considering implementation issues around AI-facilitated tech
nologies can improve the integration of AI solutions into routine 
workflow and help to solve the pressing issues of radiologists’ workload 
and the rising number of cases while safeguarding patient care. 
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Table 3 
Results of linear mixed models with radiologists’ outcome reports (i.e. workload and stress) as outcome variables.  

Predictor n R2
GLMM(c) R2

GLMM(m) b SE(b) t p 

Workload 91  0.56  0.06     

(Intercept)     28.47  7.84  3.63  0.00 
CAD implementation     3.75  7.18  0.52  0.60 
PI-RADS     3.95  1.45  2.72  <0.01 
CAD implementation x PI-RADS     − 2.64  1.76  − 1.50  0.14 

Stress 89  0.04  0.04     

(Intercept)     0.4  0.08  2.98  0.00 
CAD implementation     − 0.04  0.10  − 0.44  0.66 
PI-RADS     0.02  0.03  0.90  0.37 
CAD implementation x PI-RADS     − 0.00  0.03  − 0.12  0.90  
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Radiologists’ perspectives on the workflow integration of an artificial 
intelligence-based computer-aided detection system: A qualitative study 
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A B S T R A C T

In healthcare, artificial intelligence (AI) is expected to improve work processes, yet most research focuses on the 
technical features of AI rather than its real-world clinical implementation. To evaluate the implementation 
process of an AI-based computer-aided detection system (AI-CAD) for prostate MRI readings, we interviewed 
German radiologists in a pre-post design. We embedded our findings in the Model of Workflow Integration and 
the Technology Acceptance Model to analyze workflow effects, facilitators, and barriers. The most prominent 
barriers were: (i) a time delay in the work process, (ii) additional work steps to be taken, and (iii) an unstable 
performance of the AI-CAD. Most frequently named facilitators were (i) good self-organization, and (ii) good 
usability of the software. Our results underline the importance of a holistic approach to AI implementation 
considering the sociotechnical work system and provide valuable insights into key factors of the successful 
adoption of AI technologies in work systems.   

1. Background

Artificial intelligence (AI) is increasingly used in various domains of
our lives, such as in sensor devices, robots, and decision-support sys
tems. These advancements in technology have the potential to automate 
tasks that were previously performed by human experts (Howard, 2019; 
Bruun and Duka, 2018). As a result, the way we work is changing, and 
there is even a possibility of jobs being replaced by technology. This shift 
due to large technological advancements, similar to the introduction of 
electricity or the internet, highlights the importance to work collabo
ratively, establishing a partnership between humans and AI, where AI 
technology ideally enhances and complements human capabilities 
(Howard, 2019; Jarrahi, 2018). As AI solutions might integrate differ
ently depending on the setting and the users, it is indispensable to 
evaluate human factors integrating for example user experiences, 
workflow characteristics or user preferences (Asan et al., 2020; Fel
mingham et al., 2021; Asan and Choudhury, 2021). Next to known 
challenges, new problems arise that are unique to AI such as trans
parency, liability, or trust in human-machine interaction (Wang and 
Siau, 2019; Von Eschenbach, 2021; Esmaeilzadeh, 2020). 

A discipline in the focus of AI-driven changes is healthcare. AI 
technologies hold immense potential to assist healthcare professionals in 

various tasks and processes, currently being implemented in largely 
image-based disciplines such as radiology (Ahmad et al., 2021; He et al., 
2019). Potential tasks that can be augmented by AI are for example 
clinical diagnostics or decision-making (He et al., 2019; Chen and 
Decary, 2020; Reddy et al., 2019). In hindsight, the introduction of 
previous technological advancements in healthcare such as robotic 
surgery or electronic patient records showed the intricate challenges of 
the successful adoption of innovative technologies into the real-world 
complexities of clinical workplaces (Catchpoole et al., 2022). To 
analyze how AI solutions actually can improve healthcare delivery, it is 
necessary to evaluate not only the technologies themselves, but also 
their actual implementation into clinical practice (Li et al., 2020). Li 
et al. (2020) propose a delivery science for AI in healthcare with three 
basic principles: First, AI must adapt to the highly complex 
socio-technical work system. Second, AI should be perceived as part of a 
system-based solution and not a single product. Third, AI-driven solu
tions build a complex system including people, processes, and technol
ogies. These three components offer a holistic approach to a seamless AI 
implementation into healthcare, highlighting that a successful imple
mentation is not only dependent on the software, such as its technical 
features, but more importantly, on the work system it is implemented in 
(Salwei and Carayon, 2022). 

Our study adds to the existing research by investigating the 
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implementation process of an AI system in a routine clinical workflow in 
a radiology department. It thus provides a thorough evaluation of pro
cess factors affecting AI adoption in healthcare. Current evaluations of 
AI solutions in healthcare are mostly focused on technical features, 
effectiveness, and performance in contrast to human performance, and 
to a much lesser extent, on their implementation (Wolff et al., 2021; The 
DECIDE-AI Steering Group, 2021). Therefore, several studies call for 
prospective studies to gather evidence from AI implementation in 
routine clinical care (Turkbey and Haider, 2022; Sunoqrot et al., 2022; 
Twilt et al., 2021; van Leeuwen et al., 2021; Yin et al., 2021). This urgent 
need has been emphasized by the World Health Organization in their 
recent report on big data adoption in healthcare and a systematic review 
by Abell et al. (2023), highlighting the frequent mention of a lack of 
integration as a significant barrier (Wolff et al., 2021). Previous research 
identified multiple barriers and facilitators to AI adoption in clinical 
settings, which also deserve attention as they can ease future imple
mentation processes (Hemmer et al., 2022; Strohm et al., 2020). 

The attitude towards AI and its future are especially in radiology a 
heated topic, as in 2009 an article stated that AI would take over much of 
radiologists’ work (Langlotz, 2019; Obermeyer and Emanuel, 2016). 
This provoked discussions in publications and on conferences in the last 
years, with the current trend of striving for a human-AI collaboration 
and replacing radiologists who do not use AI (Strohm et al., 2020; 
Langlotz, 2019; Chockley and Emanuel, 2016; Meskó et al., 2018). 
Nevertheless, in diagnostic radiology AI technologies are already inte
grated into practice, as deep learning AI applications facilitate screening 
big amounts of data in shorter times (Ahmad et al., 2021; Wong, 2018). 
The hope of AI supporting clinicians is of particular importance in 
radiology, as the discipline has been facing a rising number of cases in 
the last years, while there is only a limited number of trained radiolo
gists to interpret these images (van Leeuwen et al., 2021; Hosny et al., 
2018; Litjens et al., 2017). Therefore, we chose as a use case for our 
study the implementation of an AI-based computer-aided detection 
(AI-CAD) system in the routine radiology workflow. 

We used two models as a theoretical foundation for our study: Firstly, 
the Model of Workflow Integration by Salwei et al. (2021) is a concep
tual framework designed to analyze the introduction of a novel tech
nology in a highly complex socio-technical work system. It is based on 
the SEIPS (Systems Engineering Initiative for Patient Safety) model 
(Carayon et al., 2006), which provides a coherent base for understand
ing the role of human factors in healthcare work systems (Holden et al., 
2013; Carayon et al., 2014). When integrating AI in the clinical work
flow, it interacts with several components of the system, influences 
processes, and shapes provider as well as care outcomes (Salwei et al., 
2021). The impact of technology on clinicians and patients can vary 
depending on how well it integrates with their workflow. Clinicians can 
experience positive effects such as acceptance, satisfaction, or a decrease 
in their workload. Conversely, they may also face negative consequences 
like stress, dissatisfaction, or an increase in their workload (Bates et al., 
2021; Miles, 2020). Secondly, the Technology Acceptance Model (TAM) 

is commonly used to assess new technologies (Davis, 1989; Holden, 
2011). TAM explains why people choose to use or not to use a tech
nology, stating that perceived ease of use and usefulness influence at
titudes towards it. Attitudes affect the intention to use the technology, 
which determines its acceptance and eventual usage (Holden and Karsh, 
2010). 

Drawing upon both models, our study aims to answer the following 
questions:  

(a) What are radiologists’ attitudes towards AI as well as their
perceived benefits and risks before implementing the AI-CAD in
their department?

(b) How is the AI-CAD implemented into the radiologists’ workflow?
(c) What are facilitating and hindering factors in the course of the AI- 

CAD implementation process in radiology?
(d) How do radiologists evaluate the AI-CAD and its implementation

process?

2. Material and methods

2.1. Study design

This prospective interview study with radiologists during the 
implementation of an AI-based computer-aided detection system was 
approved by the Ethics committee of the medical faculty, of Bonn Uni
versity (no. 449/21). Participants gave oral and written consent directly 
before the interviews. This study was part of a larger research project, 
which was pre-registered in the German Register for clinical trials 
(DRKS00027391) (Wenderott et al., 2024). Study reporting follows the 
COREQ checklist (COnsolidated criteria for REporting Qualitative 
research; Appendix 1) (Tong et al., 2007). 

Our study investigated the implementation of the AI-CAD Quantib® 
Prostate (Version 1.2.0, Quantib BV, Rotterdam, The Netherlands), an 
online platform for interpreting and documenting prostate MRIs. This 
software has obtained clearance from the FDA and has been marked 
with the CE certification. The AI-CAD system provided partial automa
tion for prostate MRI reading, assisting in the segmentation of the 
prostate, generation of heat maps to emphasize areas of interest, and 
facilitation of the standardized prostate MRI assessment using a struc
tured questionnaire. Furthermore, it automatically produced patient 
reports derived from identified lesions (Wenderott et al., 2024). For
ookhi et al. (2023) provide an in-depth overview of Quantib Prostate. 
The workflow still comprised viewing of the cases with an attending 
radiologist and another second reader, ensuring quality and diagnostic 
safety. 

Data collection was conducted in two waves: we interviewed par
ticipants before the AI-CAD was implemented, i.e., pre-AI-CAD imple
mentation, when only the forthcoming implementation was announced. 
Pre-implementation interviews were conducted between January 2022 
and March 2022. Prior to the implementation of the AI-CAD system, 
radiology residents underwent a training specifically focused on utiliz
ing Quantib Prostate, where representatives of the company explained 
the AI-CAD and did some example cases using the software. Imple
mentation into the radiology workflow started with a familiarization 
phase, where radiologists could test the software and initial problems 
were solved with the IT department. After this phase of approximately 
two months, the AI-CAD was used in the routine workflow, marking the 
start of our post-implementation evaluation. In the routine workflow 
radiologists were obliged by the departments’ management to use the 
software. We conducted the post-AI-CAD implementation interviews 
between June 2022 and October 2022. 

2.2. Setting and participants 

Eligible participants were radiologists and radiology residents in 
training of the local radiology department where the AI-CAD system was 

Abbreviations 

AI Artificial Intelligence 
AI-CAD Artificial Intelligence-based Computer-aided Detection 

System 
CE Conformité Européenne 
COREQ Consolidated Criteria for Reporting Qualitative 

Research 
FDA Food and Drug Administration 
MRI Magnetic Resonance Imaging 
SEIPS Systems Engineering Initiative for Patient Safety 
TAM Technology Acceptance Model  
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implemented (i.e., convenience sampling). All had prior training in 
diagnostic imaging of prostate tumor evaluation and associated work
flows. Clinicians work in shared offices located right next to the MRI 
scan rooms. Each workstation has three monitors equipped with stan
dard technology and a speech-recognition dictation system. Their pri
mary role does not involve direct interaction with patients, unless there 
is a shortage of staff or a privately insured patient requested a vis-à-vis 
explanation of their results. For additional information on the imple
mentation process, a person from the hospital’s IT department was 
interviewed (i.e., who was in charge of the AI-CAD deployment). 

2.3. Interview procedure 

The study was announced via e-mail, participants were approached 
in-person and prior to the interview informed about study goals, 
voluntary participation, and data protection measures. Interviews were 
semi-structured, conducted in German and audio recorded. To minimize 
disruptions, participants were interviewed in a separate room. All in
terviews were conducted in-person by KW (first author), a female 
researcher with a Master of Science in psychology. The interviewer 
introduced herself to the radiologists prior to data collection and pre
sented the study as a part of her PhD project. Due to the routine rotations 
in the radiology department, we were not able to provide feedback to all 
participants after data analysis. 

2.4. Measures and interview contents 

During the study development, unstructured preliminary interviews 
were done with the head of the department and an unstructured work
flow observation was made to identify relevant aspects for the interview 
guideline. After development, the interview guideline was tested be
forehand with a team member to test for comprehensibility and clarity. 
The pre-implementation interviews aimed for a duration of 10–15 min 
and post-implementation of 15–20 min. Interview guidelines can be 
found in Appendix 2-3. 

2.4.1. Work setting evaluation 
Clinicians were asked to report on their average workload based on 

the assessment of prostate MRI scans. Additionally, clinicians were 
questioned about their satisfaction regarding the general procedure of 
prostate MRI assessment and technical equipment in use. We spoke with 
a radiologist and a urology expert in preliminary interviews and found 
that effective communication and sharing of information between 
different departments are crucial for ensuring high-quality care and 
patient safety. 

2.4.2. Attitude towards AI 
For the assessment of attitudes towards AI, we only asked one open 

question on general expectations regarding AI in medicine. Participants 
were asked to elaborate their answer. Post-implementation, participants 
were asked whether and how their attitude towards AI had changed. 
Additionally, participants were asked about the potential benefits and 
risks associated with the implementation of AI. 

2.4.3. AI-CAD intention to use 
Pre-implementation, participants were asked about their attitudes 

about an AI software for MRI prostate scan analysis, including its 
perceived usefulness, perceived ease of use, and their intention of using 
it. These dimensions were derived from the Technology Acceptance 
Model (TAM; Holden and Karsh, 2010). 

2.4.4. Workflow integration 
To assess the actual usability of the AI-CAD, workflow integration as 

well as facilitators and barriers after the implementation, we modified 
the interview guide for a semi-structured interview by Salwei et al. 
(2021) based on the SEIPS 2.0 and the conceptual Model of Workflow 

Integration. The original questionnaire was in English, and the adapted 
version was translated into German. 

2.5. Analysis 

All interviews were audio-recorded and transcribed verbatim. Only 
anonymized transcripts were then used for data analysis with MAXQDA 
Version 22.2.0 (Software, 2021), therefore we could not return the 
transcripts to the participants for comments or correction. Data analysis 
was done separately after both data-collection phases. During the tran
scription process, data saturation became clear on the basis of many 
repetitions across interviews and statements. We used structuring 
qualitative content analysis with a step-wise process to analyze the data 
(Kuckartz and Rädiker, 2022). In the first step, main content categories 
were derived deductively from the interview guide based on the Model 
of Workflow Integration (Salwei et al., 2021) and the TAM (Holden and 
Karsh, 2010), and a codebook was developed. To ensure interrater 
reliability across the coding, the researchers tested the codebook in two 
interviews and discussed problems with the codes and adjusted the 
definitions when necessary. Second, two researchers (KW, JK) coded 
separately all interviews and discussed all coded segments in a 
consensus-oriented approach (Kuckartz and Rädiker, 2022; Hopf and 
Schmidt, 1993). Third, subcategories were developed from the coded 
segments and also defined in a codebook. Fourth, both researchers 
coded independently all the interviews using the subcategories and then 
re-discussed all coded segments to reach a consensus. 

3. Results 

3.1. Participants 

We conducted 19 interviews, 10 during pre- and 9 during post- 
implementation phase. Pre-implementation interviews took M =

08:27 min, SD = 01:48, and post-implementation M = 15:21 min, SD =
02:51. The study involved 9 radiology residents who looked at the initial 
prostate MRI scans and 3 attending radiologists who reviewed their 
interpretations. Seven radiologists were interviewed in both study 
phases. Among all potentially eligible participants, i.e. radiologists in 
the department involved with the prostate MRI reading process, we had 
in each phase one attending and one resident who chose not to partic
ipate. Therefore, we interviewed above 80 % of overall eligible radiol
ogists. Due to routine rotations, five radiology residents were only 
interviewed in one study phase. To ensure anonymity, we did not collect 
any personal or demographical data except for interviewee’s work 
experience. Eight radiologists had 2–4 years of work experience and four 
had over 5 years. In the department, five participants had an organiza
tional tenure less than a year, four for 1–3 years, and three for 4–5 years. 
Since most participants were interviewed in both study phases, all study 
questions could be addressed by combining the interviews of both study 
phases, as they focused on different aspects and captured different ex
periences. A table on radiologists’ work experience and the phase in 
which they were interviewed is included in the supplements (Appendix 
4). 

3.2. Work setting 

Participating radiologists rated their average workload of prostate 
MRI readings being between 3 and 20 % of their weekly workload. 
Among radiology residents, seven rated their average workload for 
prostate MRI reading as 10 % or higher, and two answered their 
workload being around 5 %. This did not change from pre- to post- 
implementation. Supervising radiologists deemed their weekly work
load for this task being between three and eight percent per week. Two 
of them reported an increase due to AI-CAD implementation from pre- to 
post-implementation. Generally, radiologists were quite satisfied with 
the prostate MRI reading workflow and the technical equipment in the 
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department (each mentioned by ten participants). Residents highlighted 
the standardized procedure due to the reporting criteria and diagnostic 
reading process being very well-structured. Additionally, they 
mentioned a good personal connection to referring clinicians (10 out of 
10 pre-implementation interviews), but noted that the transfer of writ
ten patient information could be improved (8 out of 10 pre- 
implementation interviews). 

In the following, we present the resulting content categories of our 
interviews concerning AI workflow implementation with supplementary 
quotes to highlight meaning and key statements. 

3.3. Attitudes towards AI, perceived benefits and risks 

All but one radiologist expressed a positive attitude towards AI, 
while one radiologist remained undecided. After implementation, seven 
reported that their attitude remained unchanged after using the 
computer-aided detection (AI-CAD) system. One radiologist felt disap
pointed with their expectations, while another experienced a positive 
shift in attitude. Most radiologists (7 out of 12) considered AI as a form 
of backup or reinsurance. One participant viewed AI as relevant for 
training purposes. Five radiologists mentioned the possibility of auton
omous AI, i.e. AI working without interaction with the radiologist, but 
only one favoured this idea: “So the best thing would be a software that I 
have to interact with as little as possible. That just somehow gets the images 
and then spits out something on its own […]. I just want so see an assessment 
or a report” (IV1 pre). Four radiologists believed human supervision was 
still necessary in such cases, an exemplary quote is: “It [the AI] is not 
always right, either. […] you have to sit behind it and see if it is right or not” 
(IV6 pre). 

Two radiologists mentioned unclear liability and ethical consider
ations regarding AI usage. Nine radiologists (out of 12) mentioned that 
they do not believe that AI will substitute radiologists in the future. 

Concerning the opportunities due to AI adoption in radiology, in
terviewees mentioned an increase in efficiency through prioritising 
tasks, speeding up the diagnostic process, and highlighting automati
cally detected lesions. They also mentioned higher standardization and 
improvement of quality, for example, by not being dependent on human 
concentration, and a high sensitivity (see Table 1). For example, one 
stated:“[…] I see an opportunity in that we can perhaps guarantee consistent 
quality and, above all, simplify and accelerate the workflow and generate 
more volume overall […].” (IV12 pre). 

Risks associated with the use of AI were loss of competencies (i.e., 
concerns if future radiologists will be able to detect lesions themselves), 
mistakes or inaccuracies proposed by the AI software, relying and 
trusting completely on the AI system, and radiologists becoming 
dependent on using AI for diagnostics (see Table 2). An exemplary quote 
regarding the potential loss of competencies was: “The main problem I see 
is that in the future, [radiologists] who grew up with many AI solutions […] 
may no longer be able to check [MRI scans] because they simply lack the 
engrams regarding physiological or […] pathological findings.” (IV10 pre). 

3.4. AI-CAD implementation 

Before being implemented, nine out of ten radiologists expected that 
the AI-CAD would be useful, but highlighted the importance of the tool’s 

usability in determining its actual adoption and effectiveness. Radiolo
gists identified several conditions for utilizing the AI-CAD, namely the 
seamless integration into the workflow, smooth technical interfaces, 
user-friendly operation, and the absence of additional time re
quirements. Eight radiologists emphasized the tool’s user surface and its 
ease of use. Seven radiologists were concerned about potential time 
constraints associated with the software. Seven out of ten said they 
intend to use the AI-CAD after implementation; the other three linked 
their decision to AI-CAD’s usability. 

After AI-CAD implementation, three of the radiology residents stated 
they were using the AI-CAD for all patients, and the other three merely 
for a part of their assigned patients. Among the attending radiologists 
who were reviewing the prostate MRI readings, two were using AI-CAD 
and one person was not. When using the system, six radiologists used the 
system as an add-on (i.e., as a supplement to their traditional workflow, 
mentioned 12 times) and seven also as a reinsurance (i.e., confirmation 
for preliminary diagnostic evaluations and decisions, mentioned 11 
times). Post-implementation, residents described different workflows 
for current AI-CAD operation: three described a workflow where the AI- 
CAD was used parallel to their standard procedure, integrating the AI- 
CAD results when writing the radiology report (see workflow version 
1, Fig. 1). One radiologist framed this as the desired workflow in the 
department. One person reported a workflow where the AI-CAD was 
only used after writing the radiology report as an add-on due to the time 
constraints (see workflow version 2, Fig. 1). The clinician stated: “I al
ways do my sessions in Impax [a digital working environment] in parallel 
and, yes, we are not actually supposed to do that at this time, but sometimes I 
also write the report if it all takes too long for me. And when the images can 
then be viewed in [AI-CAD], yes, then I do the evaluation there.” (IV6 post) 
Two radiologists used upload time of the images for the diagnostic 
reading of other patients, and after the completed uploads, proceeded 
with the AI-CAD for the initial diagnostic reading (see workflow version 
3, Fig. 1). 

The person from the IT department who was in charge of the AI-CAD 
system integration stated that an automatic upload into the system 
would have been beneficial for the workflow, minimizing the effort that 
radiologists need to invest to use the system. 

When using the AI-CAD, seven radiologists reported AI-CAD- 
associated interruptions to their workflow, but only two radiologists 
reported them impacting the use of the AI-CAD. Other influential factors 
were patient characteristics, time pressure, workload, work organiza
tion, program default settings, such as that it always opened on a specific 
monitor and needed one specific browser, and study participation (see 
Table 3). 

3.5. Facilitators and barriers for AI-CAD implementation 

Main barriers in course of AI-CAD implementation into the workflow 
were the time constraints using the program, technical requirements not 
met, and an unstable performance of the AI-CAD (see Table 4): “[ …] 
that we simply have the problem that there are somehow technical, i.e. any 
problems with uploading images. This delays the diagnosis enormously.” (IV2 
post). Furthermore, radiologists described a delay in the workflow due to 
additional work steps to be taken when using the AI-CAD: “The disad
vantage is that at the moment we have to do some things twice, so to speak. So 

Table 1 
Benefits through AI adoption (content categories and individual statements).  

Benefit Definition Frequency (Times topic was 
mentioned) 

Number of interviewees 
mentioning topic 

Quality improvement Benefits for improving the quality of care through AI, e.g. by detecting more lesions. 19 9 
Increase in efficiency Acceleration or optimization of the work process and measurable outcome through AI e.g. 

increase of the amount of lesions detected. 
18 11 

Standardization Contribution of AI to improve standardization and comparability of diagnostic tasks and 
the workflow. 

10 7  
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we evaluate visually and then again with the [AI-CAD] software.” (IV8 post). 
Further barriers named were lack of integration in other programs or the 
interoperability with other software: “The problem is that these are 
external and not integrated solutions, [ …] and they are only tailored to a 
specific problem.” (IV12 post). This was also mentioned by the IT 
department. 

The facilitator named most frequently was a good self-organization 
when using the software: “If you use it, you have to be well organized, 
because you always have to send the images directly away and have to wait.” 
(IV6 post). Moreover, radiologists mentioned the training and the 
familiarization phase for learning how to use the software and a good 
usability as facilitating factors (see Table 5). Also named were the 

Table 2 
Risks through AI adoption (content categories and individual statements).  

Risk Definition Frequency (Times topic 
was mentioned) 

Number of interviewees 
mentioning topic 

Overreliance on AI Risk that radiologists do not critically appraise AI results and rely on AI results for their 
diagnosis, with the possible risk of false diagnosis when AI is incorrect. 

11 7 

Loss of competencies Risk of losing their reading skills due to frequent AI use/radiologists in-training do not acquire 
manual reading skills due to learning MRI readings with AI assistance only. 

6 4 

Mistakes through AI Risk of errors by AI such as incorrect classifications or biases in the training data. 1 1 
Dependence on AI Risk of being dependent on the AI for a diagnosis i.e. diagnostic decision making is not possible 

without AI, which is problematic when AI is not available or working. 
1 1  

Fig. 1. Reported variety of workflows using the AI-CAD for prostate MRI readings after implementation.  

Table 3 
External factors influencing AI-CAD use.  

Factor Definition Frequency (Times topic was 
mentioned) 

Number of interviewees 
mentioning topic 

Patient characteristics Patient characteristics influencing the workflow, e.g. impeding prostheses, previous 
prostate operations, private insurance. 

12 8 

Time pressure Time pressure in the department influencing AI-CAD use. 11 8 
Workload Workload in the radiology department, e.g. amount of MRI scans. 4 4 
Work organization Way of organizing the work personally or in the department, e.g. radiologists using the 

AI-CAD simultaneously. 
3 2 

Program default settings Default settings of the AI-CAD, e.g. need for a specific browser. 2 2 
Interruptions Interruptions of the workflow, e.g. colleagues asking questions. 2 2 
Participation in study Study participation leading to AI-CAD use. 1 1  
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transparency of the AI-CAD (no black box system), clear agreements 
between colleagues when using the AI-CAD, as simultaneous use led to 
problems, and the motivation through colleagues. 

3.6. Post-hoc evaluation of AI-CAD implementation 

The evaluation of the AI-CAD was largely heterogeneous, which is 
also demonstrated by the comparison of the statements in Table 6. Six 
radiologists evaluated the usefulness of the AI-CAD negatively. In 
contrast, eight radiologists appraised it positively. Altogether this led to 
mixed assessment, i.e., with various, contradictory statements in the 
interviews. One clinician gave a negative evaluation of the workflow 
integration, while two clinicians negatively assessed the standardiza
tion. Radiologists appraised the usability, graphical representation of 
lesions, standardization, and interoperability with other programs. Two 
radiologists saw future potential in substituting the traditional work
flow, using it for research, the visual presentation of diagnosis, and in 
developing further AI solutions. Limitations were the editing needed in 
the AI-CAD, no report interpretation by the program, critical assessment 
of findings, and that the software was still under development. Addi
tionally, the interviewee from the IT department stressed the high 
technical, administrative, and managerial effort when setting up such a 
software, for example for setting up the servers, providing user accounts, 
and ensuring data security. 

4. Discussion 

In course of the successful adoption of AI-tools in work systems, 
various system-related challenges for workflow implementation need to 
be mastered. Key findings are that participating clinicians generally held 
a positive attitude towards AI in radiology, but were viewing it primarily 
as a backup tool. Benefits radiologists named were increased efficiency, 

standardization, and quality. However, they also acknowledged risks 
such as competency loss and overreliance. Workflow integration 
differed substantially among radiology residents which led to a lower 
standardization of the workflow. The findings contribute to the current 
literature base and theoretical concepts in various ways. 

When embedding our results in the theoretical framework of the 
Technology Acceptance Model (Holden, 2011; Holden and Karsh, 2010), 
it becomes evident why our observations on the actual use were mixed 
(see Figs. 2 and 3). Prior to implementation, the perceived usefulness has 
been high, but radiologists highlighted the ease of use as a major 
precondition for their further use. Beyond an overall positive attitude, 
most radiologists intended to use the AI-CAD prior to the implementa
tion. After the implementation process, the perceived usefulness 
post-implementation was characterized by contradictory statements 
within the interviews. Nonetheless, ease of use was evaluated mainly 
positively. The intention to use was influenced by the management’s 
decision that residents were supposed to use the AI-CAD for all patients. 
Though, radiologists listed further influential factors for their decision to 
use the system for case readings, such as time pressure, patient char
acteristics or workload. Finally, the actual use was mixed and incon
sistent, with half of the radiology residents using the system for all and 
the other half for parts of the patients. When referring to the TAM, as 
shown in Fig. 3, the evaluation and the actual use are heterogeneous, 
highlighting the multiple challenges to AI adoption that arise in a 
real-world clinical implementation. 

Drawing upon the Model of Workflow Integration, we obtained 
comprehensive information concerning the fit of the AI-CAD software 
into the sociotechnical work system and its integration into the clinical 
workflow (see Fig. 4). This study thus contributes to previous work on 
this model and expands its application, to the best of our knowledge, for 
the first time to AI-facilitated tools in clinical practice. We discovered 
various factors within the work system that affect how the AI-CAD is 

Table 4 
Barriers for AI-CAD implementation into the workflow.  

Barriers Definition Frequency (Times topic was 
mentioned) 

Number of interviewees 
mentioning topic 

Time delay in the work process Time delays in the workflow due to AI-CAD use, e.g. upload time. 27 8 
Additional work steps Additional work steps to be taken to use the AI-CAD, e.g. sending images 

to server. 
14 6 

Unstable performance Unstable performance of AI-CAD, e.g. program crashes. 13 6 
Technical requirements not met Technical requirements needed for AI-CAD use (server, specific browser). 9 7 
Lack of flexibility Lack of flexibility in the AI-CAD’s design, e.g. not being able to open two 

patients simultaneously. 
6 4 

Lack of agreements on use Unstructured or parallel AI-CAD use of radiologists influencing the 
system’s performance. 

6 2 

Poor interoperability with other programs Poorly designed interoperability with standard programs influencing AI- 
CAD use. 

5 3 

Poor usability AI-CAD not being intuitive or user-friendly. 4 2 
Lack of integration into standard programs AI-CAD not being integrated into standard programs like PACS etc.  3 
Lack of guidelines for handling errors No standardized guidelines for handling of errors. 3 2 
Summary of results Results being displayed in English (not in German) or having a different 

format than traditional radiology reports. 
2 1 

Unclear purpose of use Purpose and benefit of AI-CAD use not being transparent. 1 1  

Table 5 
Facilitators for AI-CAD implementation into the workflow.  

Facilitators Definition Frequency (Times topic was 
mentioned) 

Number of interviewees 
mentioning topic 

Good self-organization Radiologists being well-organized in their workflow to optimally use 
the AI-CAD. 

8 5 

Good usability AI-CAD system being user-friendly. 4 4 
Familiarization phase Familiarization phase to get used to the AI-CAD after its 

implementation. 
4 4 

No black box AI-CAD system being transparent. 2 2 
Motivation by colleagues Other colleagues using the AI-CAD system led to motivation. 2 1 
Clear agreements on the work process No simultaneous AI-CAD use by more than one resident to improve 

the system’s performance. 
1 1  
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integrated, which are depicted in detail in Fig. 4. The system element 
“technologies” has been highlighted throughout the interviews mostly 
targeting migration issues and interoperability of the AI-CAD tool with 
available technologies such as the slow server connection and poor 
alignment with standard radiology programs. Another significant factor 
is the “organization” element, which has been discussed regarding an 
unclear purpose for using AI-CAD or a positive evaluation of enabling a 
training with a subsequent familiarization phase for the AI-CAD system. 
The “tasks” element was mentioned mainly in relation to barriers and 
conditions for use, such as workload or time pressure due to scheduled 
discussions with privately insured patients. On the other hand, the 
“person” element had facilitating attributes, such as good self- 
organization or motivation through colleagues. Our observations 
corroborate the multiple interactions of the work system components 
when adopting new AI tools. Most importantly our study supports the 
claim of Salwei et al. (Salwei and Carayon, 2022; Salwei et al., 2021) 
regarding the importance of temporal nature of workflow integration – 
which has also been a major barrier in our use case. Next to the extended 
upload time, also the when and how to use the AI software differed 
among radiologists, leading to workarounds in the workflow and a lack 
of sustained use. 

The Model of Workflow Integration also highlights four dimensions 
that help to understand how and to what extent the AI-CAD system is 

eventually adopted into clinical practice (Salwei et al., 2021). The first 
dimension is time, focusing on how well the technology fits into the 
workflow schedule. Radiologists used the AI-CAD either in parallel to 
their old workflow or sequentially after their conventional evaluation 
routine. Yet, this added extra tasks and time pressures, conceived as 
important barriers. Interviewees highlighted that there was a familiar
ization phase facilitating system integration. The second dimension – 
flow – consists of four parts: When it comes to task flow, barriers 
emerged due to additional work steps, inflexibility, and performance 
issues, causing interruptions. This also aligns with some radiologists 
reporting an increased workload, which is evidently a major barrier to 
routine use of the AI-CAD. Good self-organization was perceived helpful, 
which could also hint to a suboptimal fit, making adaptations and 
workarounds necessary. The second sub dimension, focusing on the flow 
of people, highlighted a problem: When multiple people tried to use the 
AI-CAD simultaneously, performance problems occurred, requiring 
mutual agreements when to use the software. This was a major barrier 
regarding multiple dimensions such as time, flow, and level of workflow 
implementation, and, eventually, impeding its actual adoption into the 
work process. Support from colleagues and clear process agreements 
aided adaptation. Flow of information barriers included lack of 
error-handling guidelines, results being presented in an incompatible 
format, and unclear usage purposes, impeding communication within 
the workflow. Analyzing the flow of technologies, issues like unmet 

Table 6 
Examples of contradictory statements regarding AI-CAD implementation.  

Category Definition Positive evaluation Negative evaluation 

Usefulness Clinical usefulness and 
benefits of the AI-CAD 
system. 

“[…] the reporting is very well possible with 
Quantib and [it] also gives you all the results, so that 
you can dictate it directly in the report.” (IV9 post) 

“So at the moment Quantib is not yet clinically 
useful, I would say, because it simply leads to 
longer time expenditure.” (IV8 post) 

Standardization The AI-CAD system’s 
potential for standardization 
of diagnostics. 

“[…] you can also transfer the whole thing to a sheet 
in a standardized way, so [it] also contributes to the 
standardized handover to the clinical colleagues and 
so on.” (IV4 post) 

“And do you feel that this has changed anything in 
the standardization […] of your findings?” – 
“Standardization? No, not so far actually.” (IV6 
post) 

Interoperability with other programs The AI-CAD system’s 
interoperability with other 
(standard) programs. 

“So the good thing is that in Impax, with one mouse 
click, you can […] load it onto the [Quantib] server.” 
(IV11 post) 

“[…] but unfortunately we are still lacking a few 
basic requirements, including how interfaces can 
be […] integrated into our PACS, RIS, CAS.” (IV11 
post) 

Usability The AI-CAD system’s 
usability and user- 
friendliness. 

“[…] once you’ve done it once or twice, it’s de facto 
self-explanatory and easy, yes.” (IV11 post) 

“It was unfortunately not intuitive, even though it 
is beautifully colorful.” (IV10 post) 

Presentation of results Graphic and linguistic 
presentation of the diagnostic 
results. 

“What it does totally well is visualize […] the results 
that it spits out. […] This volumetry and then the 
findings and then you get a result sheet directly.” 
(IV2 post) 

“Quantib also doesn’t give a German report […]. A 
large part is actually English, so we can’t copy and 
paste that directly into our findings.” (IV9 post)  

Fig. 2. Technology Acceptance Model (Holden and Karsh, 2010) with results 
from the pre-implementation interviews. 

Fig. 3. Technology Acceptance Model (Holden and Karsh, 2010) with results 
from the post-implementation interviews. 
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technical requirements, poor interoperability, and lack of integration 
with standard programs hindered AI-CAD’s integration. The third 
dimension, patient journey scope, showed that radiologists used the 
AI-CAD mostly after the patients’ visit but also appreciated the AI-CAD’s 
graphical lesion presentations during the patient interaction. On the 
fourth dimension, workflow implementation level, we identified that the 
software was used by the radiologists in their individual workflow, but 
was implemented upon a decision by department management, limiting 
radiologists’ autonomy in their individual workflow design. Usability 
was critical, seen as both a barrier and facilitator based on individual 
assessments. Interestingly, there were no reported differences in AI-CAD 
perception between radiology residents and attending physicians. We 
identified, however, differences in AI use that might be attributed to the 
organizational structure in the department. Normally, residents are 
responsible for MRI readings and attending radiologists are responsible 
for review, therefore usually not directly operating the AI system. 

As demonstrated, the actual implementation of AI is impacted by a 
variety of facilitators and barriers (Wenderott et al., 2022). A study by 
Hemmer et al. (2022) conducted interviews with healthcare pro
fessionals on AI adoption factors, identifying user adaptiveness and time 
efficiency as most important factors for AI adoption. This is in line with 
the empirical findings in our study. Strohm et al. (2020) performed an 
interview study on another AI software in radiology, including radiol
ogists but also hospital managers. Yet, our empirical results on facili
tating process factors do not show much overlap with their findings. We 
assume that it could be attributed to the rather organizational-level 
perspective of their research and interviewees, whereas our sample 
only consisted of professionals who utilize and operate the AI-tools 
frequently. Our list of barriers for AI-CAD implementation, on the 
other hand, replicates and augments previous findings, such as incon
sistent technical performance, absence of guidelines or best practices, 
and unstructured implementation in the workflow. Our results thus 
complement the research of Strohm et al. (2020), addressing the 
research gap on factors of AI workflow integration especially in 
real-world clinical work settings. 

We found that technical features and disruptions to the standard 
workflow had an important impact on radiologists’ use and the evalu
ation of the AI software. Usability aspects emerged as a key focus during 
the interviews, supporting previous research (Esmaeilzadeh, 2020). 

Nevertheless, these aspects are not unique to AI but are well known from 
previous software design and human-computer interaction as well as 
technology implementation processes. Specifically for healthcare, a 
variety of studies showed the adoption of electronic health records and 
health information systems in the hospital is driven by user acceptance 
and ease of use – especially in dynamic hospital environments 
(Schwappach and Ratwani, 2023). However, AI-specific aspects such as 
trust, black-box algorithms, regulatory concerns or liability issues were 
not in the primary focus of the reports, even though they are highlighted 
in current literature on AI implementation (Wang and Siau, 2019; Von 
Eschenbach, 2021; Esmaeilzadeh, 2020; Ferretti et al., 2018; Gille et al., 
2020). Of greater concern was the potential of AI replacing radiologists 
which is also a topic fueled by discussions in the literature, with some 
radiologists stating their intention to only use the AI as back-up or 
reinsurance rather relying on their own competencies (Strohm et al., 
2020; Langlotz, 2019; Obermeyer and Emanuel, 2016; Chockley and 
Emanuel, 2016; Meskó et al., 2018). Adding to this, it is worth noting 
that contrary to trending visions of the future current literature, our 
study did not find a prevalent view of human-AI collaboration (Asan 
et al., 2020; Sezgin, 2023; Lai et al., 2021). 

4.1. Limitations of our study 

Next to the strength of our study in evaluating a real-world imple
mentation of AI, our study comes with several limitations inherent to 
this study design. Firstly, the study is limited to one department and one 
AI software. Therefore, its external validity may have limits due to its 
focus. At the same time, we were able to deeply analyze this imple
mentation process over an extended period of time. Due to the organi
zational structure of the department, we were also not able to interview 
all radiologists pre- and post-implementation as routine rotations 
happened in the meantime. Additionally, as we relied on convenience 
sampling, we were only able to recruit from the department staff, 
resulting in a limited sample size. Furthermore, we had a relatively short 
interview duration, to not impose more time pressure on the partici
pating radiologists and to ease compliance. Secondly, participants were 
aware of this study’s objectives and socially desirable response behavior 
cannot be ruled out. This is particularly noteworthy, as study partici
pation has been even mentioned by a participant as a factor for AI use or 

Fig. 4. Key factors for successful CAD implementation into the radiology work system based on the Model of Workflow Integration (Salwei and Carayon, 2022).  
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when describing the workflow as how it should be done vs. how it was 
actually done. Also, the researchers obtained the impression that the 
self-reported evaluation of the AI-CAD software has been more positive 
in the interviews than when observing the workflow in the department. 
Thirdly, we did not conduct a follow-up at a later time point, what limits 
inferences concerning long-lasting effects or sustainability of identified 
factors over time. Thus, we heard from the head of the radiology 
department that they stopped using the AI-CAD software not that far 
after our data collection. It is important to note that AI adoption can be 
influenced by multiple factors, some of them exceeding the scope of our 
study, such as trust in AI, explainability, regulatory concerns, or ques
tions on liability. These AI-specific factors should be targeted in future 
studies determining their influence on actual AI adoption into practice. 

4.2. Implications and conclusion 

Our empirical findings revealed that AI technologies might be 
adopted differently into the workflow in real-world usage than in 
experimental studies. Since this approach of work-as-imagined is often 
in stark contrast to actual work practices (work-as-done), future 
research should focus on the transfer from experimental to actual clin
ical settings. Taking up the proposed delivery science for AI in health
care by Li et al. (2020), our study also highlights the importance of a 
holistic approach to AI implementation with taking the users, work 
processes, and the technology itself into account. Additionally, our study 
showed that generic technological and user aspects were very relevant, 
thus they are not unique to AI technologies. In the future, the socio
technical work system should already be considered during develop
mental stages of AI systems, potentially mitigating problems arising 
from a deficient fit into the workflow. In these vendor-based stages of 
AI-tool development, radiologists as well as human factors or systems 
engineering experts should be included, since they are important 
stakeholders and can provide valuable insights to the workflow or AI 
implementation. In our use case, the usability has been evaluated very 
differently by the radiologists showing that extensive user testing prior 
to implementation with a variety of different skill levels is advised to 
optimize these systems. 

When implementing AI tools in clinical care, the following implica
tions of our study may be taken into account: it would be helpful to 
analyze and describe the everyday workflow and its potential variations 
before implementing an AI tool. This provides a reliable foundation and 
specifies when and how the new software should be used, as well as what 
kind of everyday variations need to be considered in the adoption pro
cess. The prior testing of interfaces with other programs used and 
exploring the possibility of integrating AI tools into standard programs 
should be taken carefully into account, i.e., through simulation on site or 
pilot runs. Before actual adoption in routine clinical work, a thorough 
training on the software and a following familiarization phase are 
necessary. Additionally, clinical users should know whom to contact 
when running into problems. 

To conclude, our study provides valuable recommendations for the 
future implementation of AI technologies in healthcare. Our investiga
tion addressed the existing research gap pertaining to the integration of 
AI solutions into routine workflows. By embedding our findings on a 
real-world AI implementation in a radiology department into the theo
retical frameworks of the Model of Workflow Integration (Salwei et al., 
2021) and the Technology Acceptance Model (Holden and Karsh, 2010) 
our research may inform future work in this area as well as serve as a 
resource for guiding the successful adoption of AI in healthcare. 
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Workflow analysis and evaluation of a next-generation
phenotyping tool: A qualitative study of Face2Gene
Katharina Wenderott 1✉, Jim Krups1, Fiona Zaruchas1, Peter Krawitz 2, Matthias Weigl 1,4 and Hellen Lesmann 2,3,4
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The diagnosis of rare genetic disorders often involves prolonged delays, with facial features serving as key diagnostic clues. Next-
Generation Phenotyping (NGP) tools, such as Face2Gene, utilize Artificial Intelligence (AI)-driven algorithms to analyze patient
photographs and list differential diagnoses based on facial dysmorphism. Despite their growing use and proven clinical value,
their integration into clinical workflows remains poorly understood. This study evaluates Face2Gene’s implementation into
routine clinical care with barriers and facilitators to successful adoption. We conducted a literature review, followed by
in-depth interviews with 15 geneticists across university hospitals in Germany. Results showed an overall positive appraisal of
the tool among clinicians with emphasis on its usability. Key workflow barriers comprised IT integration and patient consent
process. Despite being an additional step in the diagnostic pathway, Face2Gene has been effectively incorporated into
geneticists’ diagnostic routines, facilitating decision processes, and potentially expediting diagnoses for some patients. Our
findings contribute to the existing literature on NGP technologies by demonstrating that effective integration of Face2Gene can
enhance clinicians’ efficiency and quality of work. To maximize impact of NGP technologies in genetic medicine, future
implementation efforts should strive for clinicians’ acceptance particularly through user-friendly design and sustained
organizational support in course of workflow implementation. Study registration: German Register for Clinical Trials (DRKS)
DRKS00032436

European Journal of Human Genetics; https://doi.org/10.1038/s41431-025-01875-0

BACKGROUND
Despite ongoing advances in sequencing technologies, diagnos-
ing rare genetic disorders remains a lengthy and complex process,
often leading to a prolonged diagnostic odyssey for affected
individuals. On average, the time to diagnosis is 4–5 years, with
some cases extending beyond a decade [1]. A key element in
achieving a reliable diagnosis is often the phenotype of the
patient. Since approximately 40% of rare diseases are associated
with facial abnormalities, facial features can provide valuable
diagnostic clues, particularly in disorders linked to facial
dysmorphism [2, 3].
Alongside significant advancements in Next-Generation

Sequencing, a growing array of Next-Generation Phenotyping
(NGP) algorithms has emerged that are mostly based on recent
advancements in computer vision and Artificial Intelligence (AI).
The integration of such AI algorithms into more complex user
interfaces results in NGP tools that are used in clinical practice to
analyze phenotypes and suggest differential diagnoses based on
facial images of patients [4–7]. The primary goal of these tools is to
streamline the diagnostic process and reduce the time to
diagnosis. Numerous studies have already demonstrated the
technical validity and clinical utility of NGP by assessing its
performance [8–10]. A recent large-scale study in Germany
reported a significant improvement in the prioritization of exome
data by using AI-based results of image analysis (PEDIA approach)

[11, 12]. Face2Gene (F2G) is a software suite that provides access
to NGP algorithms, namely DeepGestalt and GestaltMatcher, and
is widely used by clinicians for analyzing patient photographs. F2G
is also already implemented in clinical routine care in some clinics
for human genetics [6, 7, 13].
Despite the growing use of NGP tools such as F2G in clinical

practice, systematic investigations are lacking on how these tools
are integrated into everyday clinical workflows or how efficiently
they are utilized in routine care. Additionally, the factors
influencing clinicians’ acceptance of these technologies have not
been thoroughly assessed. Understanding these challenges is
crucial to evaluating the real-world impact of NGP tools, as their
true value depends on their acceptance, effective integration, and
consistent use in clinical settings [14]. The work system model
developed by Carayon [15, 16] provides a useful framework to
study the implementation of novel technologies such as NGP
tools. This sociotechnical model conceives workflows as an
interaction between five key elements: people, tasks, tools and
technologies, physical environment, and organizational structures
[15]. Introducing a new technology, such as an AI-driven or NGP
tool, affects all elements of clinical work systems altering the
relationships between these elements [17]. By adopting this
systemic approach, the model captures significant changes in the
work system as well as the impact on human interaction with the
technology [14, 18, 19].
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This study aims to conduct a provider-focused evaluation of the
integration of NGP tools into clinical workflows, using F2G as a use
case. Furthermore, it seeks to identify the barriers and facilitators
to adopting NGP tools across different clinical settings, offering
insights to support their broader implementation in the future.

MATERIALS AND METHODS
Study design
In a multi-stage study design, we first conducted a literature review assessing
studies which applied F2G, which was followed by a cross-sectional interview
study. The study was pre-registered (DRKS00032436) and approved by the
Ethics Committee of the Medical Faculty, Bonn University (2023-161-BO). The
reporting of this study adheres to the COREQ checklist (COnsolidated criteria
for REporting Qualitative research) [20].

Use case: Face2Gene
Face2Gene (https://www.face2gene.com/; FDNA, Atlanta, GA) uses a deep
convolutional neural network called DeepGestalt to detect syndromic
phenotypes in facial photos [6]. DeepGestalt classifies 300 syndromes, with
a 90% accuracy rate for including the correct diagnosis among the top
10 suggestions. F2G is offered as a web service accessible for healthcare
providers and is currently used in 130 countries across 2.000 clinics
according to the manufacturer FDNA [21].

Literature review
To provide a better foundation and contextualization of our results a
literature review was conducted using ‘Face2Gene’ as a search term in the
databases PubMed, Embase, Web of Science, and CENTRAL. The search
was finalized on May 2nd 2024. Publications were de-duplicated in Rayyan
and screened in Zotero. Inclusion decisions adhered to the PICOS
framework and were conducted by one researcher (KW) (see Appendix
1). After screening the full-texts of studies matching the selection criteria,
one researcher (KW) extracted the study design, condition, case/s, controls,
population, F2G application used and outcomes assessed in regard to F2G
into MS Excel. The extracted data were reviewed by a second
researcher (JK).

Interview study with clinicians
Participants. A convenience sampling approach was applied. In Germany,
F2G has already been widely adopted within clinical genetic departments
and, to a growing extent, in pediatric settings. Clinicians from pediatric and
genetics departments in German university hospitals were invited, with an
expected sample size of 30. Licensed physicians in human genetics or
pediatrics with B2-level German language proficiency were included.
Excluded were professionals with no experience with F2G.

Measures and content. The semi-structured interview guide (Appendix 2)
was adapted from a German study on AI integration [22]. During the study
development, the research team met and discussed relevant aspects for
the interview guideline and adapted it to the specific context. Following its
development, the interview guide underwent preliminary testing with a
team member to assess its comprehensibility and clarity. The interviews
lasted approximately 30min. After mutual introductions, participants were
asked about their age, gender, clinic, department, job title, and their
professional experience.
For the assessment of attitudes towards AI, participants were asked one

open question on general expectations regarding AI in their medical discipline.
Additional questions addressed chances, risks, and perceived effects of AI-
based technology use on patient safety. If necessary, interviewees were asked
to elaborate their answers. Additionally, they were asked if their appraisal on AI
changed since they started working with an AI tool.
Regarding use and usability, participants were asked about their perceived

usefulness, perceived ease of use, and actual use of F2G. In terms of workflow
integration, the questions primarily focused on how F2Gwas incorporated into
clinical routines. We explored factors that influenced the decision to use or not
use the AI tool before its application, as well as conditions that facilitated or
hindered its use after the decision was made, i.e., during its integration into the
workflow. Facilitators were defined as “any factor that promotes or enhances
the integration or use of the AI system in the workflow,” while barriers were
described as “any factor that limits or restricts the integration or use of the AI
system” [23].

Procedure. Departments were contacted via email with a study descrip-
tion and Unipark survey link to schedule the interview and obtain informed
consent. Interviews were conducted either in person or via telephone, for
both settings it was ensured that the interviews took place in a separate
room to minimize disturbances. For compensation, participants received a
60€ incentive. Semi-structured interviews in German were audio-recorded
and conducted by graduate assistants with a background in medicine (FZ)
and psychology (JK), after training by lead researcher KW. Demographic
data was collected separately on paper (Appendix 3). Data saturation was
indicated by no novel ideas emerging from the interviews and repetitions
occurring across interviews and statements.

Analysis. Interviews were transcribed using audio.whisper in RStudio [24].
Data extraction on the use of F2G which were usage, frequency of use,
purpose and medium was done by KW and checked by JK.
Next, we used qualitative content analysis following the method of

Kuckartz and Rädiker [25] to identify barriers and facilitators clinicians
experienced when using F2G. To guide this process, we created a
codebook, which is a set of instructions defining the goals of the
analysis, the structure, and the meaning of different codes. Two
researchers (KW, JK) independently coded the transcripts using MAXQDA
24, resolving discrepancies through discussion or by consulting a third
researcher. The list of main categories and their definitions can be found
in Appendix 4. In the next step, we created subcategories using an
inductive approach. We compiled these categories into a detailed
codebook with clear definitions. To ensure consistency among raters, we
tested the codebook in three interviews, discussed any coding
discrepancies, and refined the definitions as necessary. Additionally,
authors JK and KW individually identified the work system elements
relating to the dimensions of facilitators and barriers, establishing a
consensus through discussion; consistent to Wooldridge et al. [26, 27]
and Wenderott et al. [14].

RESULTS
Literature review
The search yielded 192 publications, of which 40 were included
after screening (see Fig. 1), a list of excluded studies is provided in
Appendix 5. Appendix 6 lists key characteristics, populations, and
outcomes of the included studies. Included studies comprised 11
case-control, 11 retrospective validations, 10 single-case, 5 multi-
case, and 2 prospective studies. One study did not clearly describe
the study setup [10].
Only one study, Marwaha et al. [13], assessed clinicians’

experiences with F2G, while the vast majority of studies focused
on case descriptions or accuracy. Marwaha et al. [13] used a six-
question survey with ten respondents to evaluate F2G’s use and
usefulness one year after implementation. They also assessed its
use as an educational tool for trainees. Overall, usability was rated
positively, though participants expressed concerns about its
usefulness, informed consent, and data security. To summarize,
our literature review showed that the literature concerning
systematic evaluations of clinicians’ experiences is missing, while
F2G has been integrated into routine use and demonstrated a
good accuracy.

Clinicians’ interviews
Sample. Seventeen interviews were conducted between October
2023 and April 2024, with two excluded due to no contact with
F2G, leaving a final sample of 15 clinicians (see Table 1).
Participants from six German cities were affiliated with human
genetics departments at university hospitals. One was also a
pediatric specialist. Mean age was 40.07 years (Standard deviation
[SD]= 10.33), with 11 females and 4 males.
The interview duration was on average 22:08 min (SD= 06:16

min). Ten participants used F2G in their routine workflow, three
used it occasionally, and two used it before but did not continue.
These experience- and usage-levels were used to distinguish
between the three user groups: (1) Non-Users, who had tried F2G
but did not continue to use it; (2) Occasional Users, clinicians who
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Fig. 1 Literature review flow chart.

Table 1. Details on interviewees.

No. Position Work experience (in
years)

Use User Group Purpose for use Medium Reported frequency of tool use

2 Attending 14 No Non-User Patient care Computer 10 times

4 Resident 1 Yes Routine Patient care Computer Almost daily, 1–2 times per day

5 Resident 5 Yes Occasionally Research, patient
care

Smartphone 1–2 cases & a research project

6 Resident 2 Yes Routine Patient care,
research

Computer All patients with dysmorphic
features

7 Attending 22 Yes Routine Patient care Computer Half of patients

8 Attending 19 Yes Occasionally Patient care Computer Two times a month

9 Resident 2 Yes Routine Patient care,
research

Computer All patients with dysmorphic
features

10 Attending 25 No Non-User Patient care No
information

No use

11 Resident 2 Yes Routine Patient care Computer Once a week

12 Attending 23 Yes Occasionally Patient care Computer Every third patient (30–40 times
a year)

13 Attending 14 Yes Routine Patient care Computer All patients with suspected
genetic syndrome

14 Attending 21 Yes Routine Patient care Computer Twice a month

15 Attending 15 Yes Routine Patient care,
research

Computer All patients

16 Attending 15 Yes Routine Patient care Computer Almost all patients with
dysmorphic syndrome

17 Resident 0.8 Yes Routine Patient care Computer All children
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used it only occasionally for specific cases; (3) Routine Users, who
used it repeatedly for almost all their eligible patients.

Clinicians’ reports on AI use in genetics. When participants were
asked about their expectations regarding the use of AI in their field,
they most frequently described several potential benefits: support-
ing clinical care processes (10/15; 10 out of 15 interviewees),
enhancing efficiency (8/15), improving diagnostics (7/15), and
easing the burden on healthcare professionals (4/15). However,
they also expressed concerns about various risks associated with AI
use, such as the potential for misuse (9/15), overtrust (8/15), bias in
AI solutions (3/15), and the possible loss of professional skills (2/15).
Details can be found in Appendix 7 and 8. Concerning factors that
would encourage their acceptance of AI solutions, participants most
often emphasized the importance of data protection (10/15),
particularly when handling medical data. Transparency (9/15) was
also a key factor, with one participant stating, “I definitely want to
know how something works when I upload patient data there. Even
if I can’t always fully understand everything, I think such
transparency greatly helps in the acceptance of these tools” (ID:
IV08). Additionally, the source of the AI solution (6/15) and the data
used to train the AI (6/15) were significant considerations. As one
participant noted, “Those are definitely things I would question, just
like whether a university hospital is behind it or if it’s a commercial
provider. And who is financing these commercial providers or what
kind of organization is behind them” (IV09).

Evaluation of Face2Gene. Drawing upon the clinicians’ reports
of F2G use, we identified the following F2G workflow. It starts
with patient consultation, where clinicians obtain consent from
patients or guardians and take photographs. A separate informed
consent is required for uploading these images to F2G

for processing and providing diagnostic suggestions for report
generation.
Only two participants used F2G during patient consultations.

For using F2G after the patient contact, interviewees described
three distinct workflows: nine clinicians used it sequentially before
molecular genetic testing for initial diagnostic impressions; four
applied it concurrently and combined the results from both
methods when generating the diagnostic report; and three
sometimes used it afterwards to describe cases or evaluate
molecular results. These workflows are illustrated in Fig. 2.
Participants reported to switch between different workflows, as

their actual decision whether and when they use F2G in routine
patient care was influenced by various factors. Most interviewees
(12/15) noted that time pressure significantly affected its use,
while 11 mentioned that patient characteristics influenced their
decision to use. Organizational factors, including workspace,
digitalization level, and overall acceptance were also important,
and three participants indicated that F2G’s reputation in the
professional community impacted their usage decisions. For
detailed definitions and examples, refer to Table 2.
Twelve of the 15 participants reported positive experiences with

F2G. One noted, “Yes, F2G is very useful, […] We would never
make a diagnosis based on this alone without molecular
correlation, but as a decision-making aid, it’s definitely a good
one” (IV07). In contrast, three participants shared negative
experiences, including a non-user (IV02) who said, “I used it in
its very early stages, and it didn’t really help me. I was more
frustrated. […]”. Participants also indicated that the tool’s
usefulness varied based on factors like the specific patient
(6/15), purpose of use (4/15), and the clinician’s experience (3/
15). One participant (IV06) remarked that “the usefulness is very
high, especially at the beginning of one’s career. […] Once you

Fig. 2 Prototypical workflows for using F2G after the patient consultation.
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gain experience, you might be able to figure things out on your
own. I often see this with experienced colleagues—they already
have their own ideas, which Face2Gene might then support”.

Facilitators and barriers of using Face2Gene. A total of 87
statements was collected on facilitators and barriers for success-
fully integrating F2G into clinical work. Facilitators were men-
tioned more frequently (51/87 statements, 15/15 interviews) than
barriers (36/87 statements, 12/15 interviews). These were categor-
ized into eight dimensions, with definitions provided in Table 3.
When examining the identified dimensions of workflow integra-
tion, usability, time investment, and accessibility emerged as the
dimensions with the highest number of facilitators. These
facilitators were largely related to the AI solution itself. Two
dimensions—obtaining consent and additional work steps—were
identified solely as barriers and related to tasks required of the
users. Mixed evaluations were reported regarding local support
and IT integration, which varied across organizations.

DISCUSSION
Artificial Intelligence in genetic medicine offers great potential for
improving diagnosis and treatment. However, sustainable AI
implementation in clinical settings presents challenges for
providers and organizations. This study evaluates the use of
Next-Generation Phenotyping tools in the diagnostic process,
focusing on F2G. Our review revealed only one study addressing
F2G user evaluations [13]. This lack of including healthcare
provider viewpoints in AI integration is not unique to genetics,
also appearing in other medical fields [28–30]. Our research
contributes critical factors influencing the adoption and rejection
of NGP tools and elucidates the conditions that either facilitate or
hinder their utilization within clinical workflows in genetics.
Our review highlighted that F2G has successfully mastered

the translation from usage in a research context into routine care,
a critical step for AI tools in healthcare [29]. Although numerous
studies utilizing F2G to report case descriptions, they frequently
fail to include specific workflow details. The predominant focus
on performance metrics, such as the accuracies of DeepGestalt
or GestaltMatcher, often neglects clinicians’ experiences,
which is essential for the successful adoption of novel technol-
ogies [31, 32]. Marwaha et al. employed a brief questionnaire to
capture user opinions one-year post-implementation at a single
institution, providing an initial overview of user experiences [13].
Building on this, our study employed a semi-structured interview
methodology with participants from diverse hospitals to enhance
these findings. Although Marwaha et al. found F2G to be
beneficial for diagnostic decision-making, they also identified
significant reservations concerning accuracy, informed consent,
confidentiality, and patient uptake [13]. In alignment with these
findings, our participants reported favorable usability of F2G;
however, they expressed concerns regarding the informed
consent process.
Our interviewees highlighted that the use of F2G is just one

component of the diagnostic process. Moreover, all users reported
using it in addition to molecular genetic analyses. The extracted
workflows align with research on integrating AI into work
processes [28]. Interviewees described F2G as easy to use and
evaluating its usefulness positively, which are key contributors for
the intention to use of a novel technology [33]. Additionally, we
identified several key factors impacting the decision to actually
use F2G. Time pressure was the most frequently cited factor
influencing participants’ use of F2G, aligning with findings from
other AI integration studies [18, 22]. However, time pressure was
noted as less intense in genetics than in other specialties like
pediatrics. Most users reported utilizing F2G for dysmorphic
patients, while some did so out of curiosity or when a suspected
condition was unclear. This is noteworthy, as the performance ofTa

bl
e
2.

R
ep

o
rt
ed

fa
ct
o
rs

in
fl
u
en

ci
n
g
cl
in
ic
ia
n
s’
d
ec
is
io
n
to

u
se

Fa
ce
2G

en
e.

Fa
ct
or

D
efi

n
it
io
n

N
um

b
er

of
St
at
em

en
ts

N
um

b
er

of
In
te
rv
ie
w
s

Ex
am

p
le

St
at
em

en
t

Ti
m
e
p
re
ss
u
re

W
o
rk
lo
ad

an
d
ti
m
e
p
re
ss
u
re
s
in

th
e
d
ep

ar
tm

en
t

in
fl
u
en

ci
n
g
th
e
u
se

o
f
F2

G
.

14
12

“I
th
in
k
if
th
er
e
is
ti
m
e
p
re
ss
u
re
,I

w
o
u
ld

u
se

Fa
ce

to
G
en

e
[…

]
le
ss

th
an

I
n
o
rm

al
ly

w
o
u
ld
.”
(IV

09
)

Pa
ti
en

t
ch

ar
ac
te
ri
st
ic
s

Pa
ti
en

t
ch

ar
ac
te
ri
st
ic
s
w
h
ic
h
in
fl
u
en

ce
th
e
d
ec
is
io
n

to
u
se
,e

.g
.h

ig
h
ly

d
ys
m
o
rp
h
ic

fa
ci
al

fe
at
u
re
s
o
f
a

p
at
ie
n
t.

12
11

“S
o,
if
Ih

av
e
a
p
at
ie
n
t
w
h
o
lo
o
ks

n
o
ti
ce
ab

ly
d
ys
m
o
rp
h
ic
fo
r

m
e,

th
en

I
d
efi

n
it
el
y
w
an

t
to

u
se

it
.”
(IV

15
)

O
rg
an

iz
at
io
n
al

fa
ct
o
rs

H
o
sp
it
al

o
rg
an

iz
at
io
n
p
ro
vi
d
in
g
su
p
p
o
rt
,t
ec
h
n
ic
al

eq
u
ip
m
en

t
o
r
a
p
o
si
ti
ve

at
ti
tu
d
e
to
w
ar
d
s
th
e
u
se

o
f
F2

G
.

10
6

“[
…
]
if
Ih

ad
a
p
ro
fe
ss
io
n
al
sm

ar
tp
h
o
n
e,
It
h
in
k
Iw

o
u
ld

u
se

it
m
o
re

lik
el
y.
”
(IV

05
)

Po
p
u
la
ri
ty

o
f
F2

G
Th

e
p
ro
m
in
en

ce
an

d
/o
r
re
p
u
ta
ti
o
n
s
o
f
F2

G
h
av
in
g

an
im

p
ac
t
o
n
F2

G
u
sa
g
e.

4
3

“[
…
]
yo

u
si
m
p
ly

h
ea
r
fr
o
m

o
th
er

co
lle
ag

u
es

at
co

n
g
re
ss
es

th
at

th
ey

al
so

u
se

it
an

d
th
at

it
h
as

al
so

co
n
tr
ib
u
te
d
to

so
lv
in
g
th
e
d
is
ea
se

in
q
u
es
ti
o
n
.”
(IV

13
)

Tr
u
st
w
o
rt
h
in
es
s
o
f
th
e

so
u
rc
e
o
f
F2

G
Tr
u
st
w
o
rt
h
in
es
s
at
tr
ib
u
te
d
to
w
ar
d
th
e
so
u
rc
e
an

d
/

o
r
d
ev

el
o
p
er
s
o
f
F2

G
im

p
ac
ti
n
g
th
e
d
ec
is
io
n
to

u
se

F2
G
.

2
1

“[
…
]
m
an

y
co

lle
ag

u
es

[…
]
d
o
n’
t
g
et

in
vo

lv
ed

w
it
h
p
ro
je
ct
s

lik
e
F2

G
fo
r
d
at
a
p
ro
te
ct
io
n
re
as
o
n
s,
b
ec
au

se
th
ey

sa
y

Fa
ce
2G

en
e
[…

],
th
ey

h
av
e
th
ei
r
se
rv
er
s
in

th
e
U
SA

[…
]”
(IV

06
)

K. Wenderott et al.

5

European Journal of Human Genetics

109



Table 3. Definitions, frequency, and exemplary statements of facilitators and barriers for Face2Gene implementation.

Dimension Definition Work System Elements Facilitators Barriers

P T T/T O PE EE No. of
Statements

No.
of
IVs

Example No. of
Statements

No.
of
IVs

Example

Usability Users can interact
effectively and
intuitively with F2G to
accomplish their goals.

x x 34 15 “So, I think it’s a very clear
program, you can very
easily create new cases
and simply upload the
image by drag & drop
[…]” (IV 04)

8 5 “When you’ve uploaded the
picture, where you then
enter the features, so it’s
somehow not so clearly
separated, so every time I
stumble over it again […]”
(IV 14)

Time
investment

The amount of time
needed to integrate
and use F2G in the
daily clinical workflow.

x x 6 3 “So, it’s also something
you can use very quickly.
It’s not particularly time-
consuming.” (IV 07)

5 4 “You are dependent on the
photos, which can take a bit
of time, that you can’t do it
straight after the
consultation [..]” (IV 11)

Obtaining
consent

The process of getting
the patients’/legal
guardians’ consent is
affecting the use of
F2G.

x x x 0 0 NA 9 4 “And all the paperwork,
maybe you forgot to get the
declaration of consent. You
then have to obtain it
afterwards.” (IV 06)

Additional
work step

Using F2G is an
additional work step in
the process.

x x 0 0 NA 6 5 “Well, it’s just another chunk
of work, I say, that you don’t
necessarily have to do to get
a diagnosis most of the
time.” (IV 02)

Local IT
integration

Ensures that F2G can
seamlessly
communicate and
share data with other
technologies used.

x x 1 1 “And the sending of
patient photos via email
works quite well for us, as
we have a secure cloud
for that.” (IV 05)

6 6 “So that was not integrated
and is not integrated yet. So,
we have to download the
images manually and then
upload them back into
Face2Gene. […]” (IV 02)

Accessibility The accessibility of
F2G, e.g. being
accessible on multiple
devices, influences its
workflow integration.

x x 5 5 “It fits in well, because
you can do it whenever
you want, even on your
PC, and you can
theoretically log in
anywhere, no matter
which device you’re
working on […]” (IV 04)

0 0 NA

Local support At the institution
clinicians have support
when using F2G.

x x x 3 3 “There is support for it
and some use it more,
some use it less, but it is
generally accepted […].”
(IV 14)

1 1 “At the moment, it’s more
the case that only a few
people even know about
the app.” (IV 05)

Influence by
direct
supervisor

The supervisor or head
of the team is being
supportive or
unsupportive for using
F2G.

x x 2 2 “[…] my boss, who keeps
suggesting that we
should do it […]“ (IV 02).

1 1 “And I definitely notice that
not everyone is equally
enthusiastic about these
things and this influences
people’s use and sometimes
also their interpretation.” (IV
06)

No number, IV interview, P people, T tasks, T/T tools and technologies, O organization, PE physical environment, EE external environment, F2G Face2Gene, IT Information technology, NA not applicable.
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these tools relies on the distinctiveness of facial dysmorphisms [7].
To optimize the cost-benefit ratio of time and AI performance,
participants reported to select suitable patients for facial analysis,
as indicated by their usage patterns. For most users, specific
patient characteristics were central to their decision to use F2G, as
reflected in their responses about how frequently they utilize the
tool. Given the high proportion of diseases with facial dysmorph-
ism [2, 3], NGP tools will continue to have ample use cases. In a
scientific context, however, the analysis of less distinct disorders
could also be useful, as AI can also recognize patterns that are not
always apparent to humans [34].
An analysis of the workflow revealed that the consultation and

patient photography are standard steps of genetic assessments.
This may account for the observed absence of specific facilitators
or barriers linked to F2G in this stage. However, from obtaining
patient consent onward, additional implementation factors for
successful F2G integration were identified. We observed more
facilitators than barriers, potentially indicating a good workflow fit.
The distribution of facilitators and barriers across different
elements of the work system model highlights the complexity of
adopting AI tools like F2G. Facilitators such as usability, time
investment, and accessibility are closely tied to the AI solution
itself namely the element of tools and technology, emphasizing
the importance of good design when implementing AI in clinical
settings. In contrast, barriers like obtaining consent and additional
work steps are linked to the element of tasks, suggesting that
administrative processes may hinder smooth integration. Addi-
tionally, the lack of work-issued smartphones or tablets for many
participants presents a significant obstacle, forcing a reliance on
external photographers and desktop computers, which compli-
cates the workflow. These issues point to broader organizational
challenges, such as the need for better local support and more
seamless IT integration, which were met with varying levels of
satisfaction among participants. The amount of barriers and
facilitators associated with the element organization highlights
the impact organizational support could have, especially as it was
also among the factors the inform users’ decision to use F2G. For
example, the process of obtaining consent was a central barrier to
use, which could be mitigated by the organization providing
standardized forms for using F2G. It is crucial to clarify that patient
consent is only required for research-related activities, such as the
technical validation of the AI algorithm’s performance. Similar to
numerous Next-Generation Sequencing (NGS) platforms, NGP
software is frequently designated ‘for research purposes only’,
which may lead to user confusion. If these tools are approved as
medical devices for decision support in the future and become
part of accredited workflows, this usage would typically not
necessitate additional patient consent. The work system element
‘people’ was identified mostly for task-related facilitators and
barriers, but three users also identified their supervisor as having a
strong impact on their workflow using F2G. We identified no
facilitators or barriers related to the environment, likely because
the introduction of F2G as a web-based AI solution did not lead to
any changes.
Salwei and Carayon outlined three essential sociotechnical

considerations for integrating AI into healthcare systems: the
alignment with work systems, compatibility with existing work-
flows, and enhancement of clinical decision-making processes
[17]. Through analyzing the work system barriers and facilitators,
our study was able to demonstrate an overall good fit of F2G in
the work system, supporting their first consideration. In
examining how F2G fits into the workflow and the positive
feedback regarding the time required to use it, we found that it
integrates well with the existing workflow, which supports the
second consideration. Although F2G is not a mandatory step in
the diagnostic process, participants found it valuable for
diagnostic purposes and case discussions, which aligns with
findings from Marwaha et al. [13]. This supports the third

consideration regarding workflow integration. Overall, we found
that F2G is a well-integrated AI solution, yielding positive
outcomes such as enhanced user satisfaction, shorter time to
diagnosis, and greater acceptance of the technology. Clinicians’
positive appraisal regarding the use of F2G corresponds with the
primary advantages participants sought from AI in genetics,
namely improved diagnostics and increased efficiency, which
are relevant across healthcare setting [35, 36]. The information
gained from this study can be used to successfully implement
other NGP tools such as GestaltMatcher and Phenoscore [4, 7].
Even though the scientific benefit of these tools has been
already proven by demonstrating their accuracy, their seamless
transfer into clinical routine is essential to actually promote
significant improvements in diagnoses of rare genetic disorders.
This can only be achieved by identifying and addressing
concerns of clinicians during the implementation ensuring a
smooth fit into the workflow.
Participants generally viewed AI and NGP tools as beneficial for

improving care processes, efficiency, diagnostics, and reducing
healthcare workloads. However, they expressed concerns about
potential misuse, over-reliance, bias, and loss of professional skills.
This resonates with a study by Hallowell et al. which explored
stakeholder perspectives on NGP technology [37]. They addition-
ally highlighted that NGP tools could democratize access to
diagnoses—an aspect not raised in our interviews, likely due to
the widespread availability of genotyping methods in Germany.
This shows a limitation of our study: all participants were recruited
within Germany to ensure comparable workflows. Given that F2G
is deployed globally, future studies should examine workflow
integration across different countries and healthcare settings to
identify universally applicable recommendations. Additionally, our
literature review featured a rapid synthesis of available studies
involving F2G, whereas a more systematic and rigorous approach
might have been more effective in ensuring that all relevant
studies were included (i.e., from gray literature). Although our
response rate was lower than expected, sufficient data saturation
was achieved, as later interviews did not reveal new themes. It
must be noted, that we aimed to include both pediatricians and
geneticists; however, only geneticists responded. Pediatricians,
who may benefit most from NGP for patients with facial
dysmorphism, often have shorter visit times, making their
perspective on the cost-benefit ratio of NGP particularly valuable
[38, 39]. Future studies should prioritize this user group to assess
their specific needs and challenges. Finally, the limited number of
interviews, particularly with non-users, may have introduced bias.
Future research should explore detailed comparisons between
various user groups, possibly examining correlations with diverse
user characteristics [40].
Our study enhances the existing literature on NGP technologies

by evaluating the integration of F2G as a specific use case across
various institutions. Through clinician interviews, we mapped the
workflow of using F2G, which has been effectively incorporated
into routine practice, despite being an additional step in the
diagnostic process without replacing molecular genetic testing.
This indicates that NGP technology can significantly improve
healthcare efficiency and quality, provided that clinicians’
acceptance is further enhanced. Our analysis of facilitators and
barriers using the work system model underscores essential
considerations for future design and implementation, particularly
the importance of user-friendly design and ensuring organiza-
tional support.
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4. Discussion with References

The work on this dissertation was influenced by major technological advances from 2021 

to 2025, such as the widespread availability of generative AI, which have shaped both the 

research itself and the growing public interest in this topic (Grzybowski et al., 2024; Mishra 

et al., 2024). While AI is being increasingly adopted into healthcare, the aim of the work 

for this dissertation – studying the workflow integration of AI into the complex 

sociotechnical work system present in healthcare – remains as relevant as when this 

dissertation topic was proposed (Agarwal et al., 2024). While working on the topic of this 

dissertation, various reviews on factors influencing AI implementation in healthcare were 

published; however, few included only real-world clinical studies, potentially because only 

a limited number of prospective studies of AI implementation have been published (Ahmed 

et al., 2023; Chomutare et al., 2022; Hassan et al., 2024; O. Higgins et al., 2023; Hua 

et al., 2024; Lambert et al., 2023; Lokaj et al., 2023; Mennella et al., 2024; Tricco et al., 

2023). 

Therefore, a systematic review which only included studies that focused on AI 

implementation in clinical care was undertaken as the first major step of the work for the 

dissertation to synthesize the current literature base. This review (Chapters 3.1.-3.3.), 

including 48 studies, involved the systematic exploration of the impact of AI integration in 

routine clinical workflows in medical imaging on efficiency, clinician outcomes, and 

workflows (Wenderott, Krups, Zaruchas, et al., 2024). Overall a positive trend towards the 

impact of AI on the time clinicians needed for tasks was identified, which could help to 

accelerate the diagnostic process and reduce clinicians’ workload (Khalifa & Albadawy, 

2024; Marco-Ruiz et al., 2024). The identified AI-augmented workflows aligned with 

strategies from recent publications and matched the specific tasks for which AI was 

employed (M. Chen et al., 2024; Dahlblom et al., 2023; Ng et al., 2022). For example, in 

detection tasks, AI served as a second reader, either sequentially or concurrently, while 

in segmentation tasks, it typically was used as the first reader (Wenderott, Krups, 

Zaruchas, et al., 2024). These findings mirror those of M. Chen et al. (2024), who reviewed 

AI's impact on medical imaging, identifying reading paradigms (concurrent, second, or first 

reader) and noting significant time savings through the use of AI, particularly when AI 

served as a pre-screening tool. In contrast to their work, the systematic review presented 

in this dissertation was focused solely on studies conducted in real-world clinical settings. 
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To further enhance the understanding of AI implementation in clinical settings, in the third 

publication (Chapter 3.3.) a novel framework was introduced for comparing the extent to 

which AI tools are integrated into routine workflows (Wenderott, Krups, Weigl, et al., 

2025). This new framework allowed for more meaningful comparisons across studies by 

differentiating the level of AI implementation. The added value has been also 

demonstrated by the epistemic network analysis (ENA) of facilitators and barriers 

identified in the included studies in relation to the different work system elements, which 

differed between the level of implementation (Wenderott, Krups, Weigl, et al., 2025).  

The work for this dissertation also comprised two empirical investigations (Chapters 3.4.-

3.6.) on use cases from real-world clinical care. The aim of both was to map the changes 

that occur through the introduction of an AI tool, to determine the effects on HCPs, and to 

identify barriers and facilitators of AI implementation. The first use case (Chapters 3.4. 

and 3.5.) involved the study of an AI tool which was an initial implementation, as it had not 

yet been fully integrated into clinical routines (Wenderott, Krups, Weigl, et al., 2025). In 

the second use case (Chapter 3.6.) most clinicians used the AI tool under study for nearly 

all eligible patients, therefore it was classified as a full implementation study. 

The considered first use case (Chapters 3.4. and 3.5.) was the introduction of an AI tool 

designed to support prostate MRI scan interpretation. A unique feature of this empirical 

investigation was the opportunity to conduct work observations and interviews with 

radiologists both before and after the AI tool’s introduction (Wenderott, Krups, Luetkens, 

Gambashidze, et al., 2024; Wenderott, Krups, Luetkens, & Weigl, 2024). Even though 

clinicians expressed a positive attitude towards the AI solution and their intentions to use 

it before the implementation, their actual use was largely dependent on existing time 

pressure and their workload. The tool was associated with an increase in reading time for 

more complex cases, which differed from previously published experimental studies on 

this AI solution (Cipollari et al., 2022; Faiella et al., 2022). This highlights the need for 

studies in actual clinical practice assessing the impact of AI under realistic conditions, 

including the complexities of the hospital work system (Choudhury & Asan, 2020). 

Notably, on-site workflow observations revealed variations in AI-tool use among surveyed 

radiologists, including both concurrent and sequential reading paradigms, which reflected 

that there were no organizational guidelines for integrating the AI tool into their processes 

(Wenderott, Krups, Luetkens, & Weigl, 2024). In contrast to the findings of the systematic 
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literature review (Chapter 3.2.), the most common workflow involved radiologists using the 

AI tool as an add-on, incorporating its findings during the writing of the final report, after 

completing their traditional workflow. This was primarily due to long upload times, which 

was perceived as unhelpful and caused delays, ultimately leading to a deficient fit of the 

AI tool into the workflow (Wenderott, Krups, Luetkens, & Weigl, 2024). In agreement with 

the Conceptual Model of Workflow Integration this poor operability and fit caused negative 

clinician outcomes such as increased workload or workarounds as mentioned in the 

interviews, though these were not evident in the radiologist’s answers to the 

questionnaires on stress and workload (Salwei et al., 2021; Wenderott, Krups, Luetkens, 

Gambashidze, et al., 2024; Wenderott, Krups, Luetkens, & Weigl, 2024). In contrast to the 

negative evaluation of this AI tool and its workflow integration, the second use case 

(Chapter 3.6.) involved the study of a well-integrated AI tool in human genetics 

departments. Although the AI tool was also used as an add-on to the traditional procedure 

involving molecular genetic testing in different workflow variations, it was positively 

evaluated for its ease of use, its quick generation of results and its ability to provide an 

initial idea of the patient's diagnosis. 

In addition to the analysis of the workflows and the AI tool adoption, in both use cases 

facilitators and barriers to AI integration were analyzed. When matching these to the 

different work system elements, it was evident that in the first use case (Chapter 3.5.) the 

identified facilitators were mostly linked to the task and the people, such as usability and 

the implementation process. Nevertheless, the primary barrier was the technology’s poor 

interoperability and poor fit with the workflow, resulting in a negative evaluation by the 

participants. As the technical problems stemmed from the interaction with the 

organization’s IT infrastructure, the barriers were linked to the people and the 

organization. These findings resonate well with the ENA results (Chapter 3.3.) for initial 

implementation studies, highlighting the key role of clinicians’ expectations and attitudes. 

This conclusion is also strengthened by the theoretical foundation in the TAM, which 

sheds light on the individuals’ decision to adopt a novel technology. In the second use 

case (Chapter 3.6.) a SEIPS-based examination of facilitators and barriers, comparable 

to the approach by Wooldridge et al. (2020), was included. In contrast to the ENA (Chapter 

3.3.) for full implementation studies the results of this study revealed that facilitators were 

more attributable to task- and technology characteristics, instead of being linked to the 
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organization and people. The identified barriers underscored the significant role of 

organizational factors in successful AI integration (Wenderott, Krups, Zaruchas, et al., 

2025). This finding is particularly noteworthy as the multicenter nature of the study allowed 

for the inclusion of diverse organizational measures, enabling an assessment of their 

impact on AI workflow integration. Overall the results of the research underline the 

diversity of facilitators and barriers the can impact AI implementation into real-world 

clinical practice. By analyzing the associated work system elements, it was evident how 

complex the workflow integration is and how many different stakeholders on different 

levels are involved in the process (Choudhury, 2022; Salwei et al., 2021).  

4.1. Strengths and Limitations of this Dissertation 

To meet the diversity of AI workflow integration the work for this dissertation involved the 

employment of a variety of research methods, including workplace observations, time 

measurements, questionnaires, and interviews. Additionally, it incorporated three distinct 

study designs to offer a comprehensive as well as complementary analysis. While the 

systematic review established a baseline of existing research, the two use cases provided 

detailed analyses and enhanced the findings with profound insights and examples from 

clinical practice. However, it should be noted, that a systematic review is a time-intensive 

process and the rapid advancements in AI might lead to some methods, technologies, or 

conclusions being outdated upon publication (Borah et al., 2017; Mahuli et al., 2023). 

A major strength of the work for this dissertation is the consistent use of theoretical 

frameworks (SEIPS and TAM), which provide a strong conceptual foundation, and 

emphasize the role of human factors in AI implementation (Carayon et al., 2006; 

Choudhury, 2022; Davis, 1989; Salwei & Carayon, 2022). To amplify this research 

perspective, the research teams for the empirical investigations in this dissertation always 

included a clinician or someone with a medical background from the relevant specialty. 

This interdisciplinary approach is noteworthy, as it ensured that the domain expertise 

needed for effective analysis and interpretation was an integral part of the research. 

All research was conducted with a focus on real-world clinical settings to address the 

research-practice gap for AI in healthcare. However, this research focus and 

methodological approach also presents potential limitations. Since the studies were 

conducted in clinical environments, they were limited to specific use cases and rather 
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small participant samples. Although working in real-world clinical settings allowed for a 

more valid and accurate depiction of the complexities of sociotechnical work systems and 

their impact on AI implementation, it limits the generalizability across different contexts 

and settings (Hettinger et al., 2015). Additionally, the studies did not involve any reporting 

on the technical properties of the AI systems (e.g., algorithm performance, training data), 

what may limit the scope of the holistic analysis and ability to draw conclusions concerning 

other AI tools or even updated versions of the studied AI tools. However, this research 

was focused on AI tools that were chosen by the organization or department to be used 

in clinical care, involving one commercial tool and one publicly available online tool, 

thereby presenting real-life organizational procedures. 

Since AI implementation was and still is relatively new at the time of the work for this 

dissertation, standardized survey instruments were not yet available, resulting in a 

significant reliance on qualitative research. Despite adhering to quality standards, such as 

interviewer training, double coding, and use of reporting checklists, certain biases – 

including selection bias from convenience sampling or potential biases in data analysis – 

cannot be entirely ruled out (Williams et al., 2020). 

A recurring question throughout this dissertation was what the novelty of AI is and what 

distinguishes it from other technologies that are used in healthcare. AI has unique 

capabilities that include processing large datasets, handling unstructured data, and 

learning from its input (Bajwa et al., 2021; Buch et al., 2018; Dipaola et al., 2024). In the 

past, the introduced algorithms were mostly frozen, which prevented the self-learning 

features (Mashar et al., 2023). Therefore, a majority of the extracted facilitators, barriers, 

and implementation strategies for AI that were observed are similar to those of other 

technologies used in healthcare such as electronic health records (Gagnon et al., 2010, 

2014; Mennella et al., 2024). Nevertheless, the algorithms' opaque decision-making 

processes can create issues of trust, liability, and cognitive challenges for users, which 

will be even more important when algorithms change over time (Choudhury & Asan, 2020; 

Mennella et al., 2024; Pashkov et al., 2020). As a result, current research is focused on 

improving algorithm explainability and governments strive for regulatory frameworks such 

as the EU AI Act, where it is even more important to understand the users’ and patients’ 

needs (Aboy et al., 2024; H. Chen et al., 2022; Pierce et al., 2022). While these regulatory 

and policy challenges were not the focus of this dissertation, these questions should also 
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be continuously considered with respect to future challenges of AI integration into 

sociotechnical systems in healthcare (Habli et al., 2020; Mennella et al., 2024). 

4.2. Implications for Practice and Research 

To optimize the integration of AI into healthcare settings, this dissertation includes several 

implications and recommendations for AI implementation for practice and research. 

Drawing upon the identified facilitators or barriers of AI implementation, best practices for 

future implementation processes were developed which should be considered when 

implementing AI. Nevertheless, since each clinical work setting is to some extent unique 

– as demonstrated by the human factors approaches which served as the theoretical 

foundation of the work for this dissertation – each implementation process should be 

adapted to the local context and the respective users. Thus, three key aspects evident in 

the included studies should be highlighted that can serve as best practice 

recommendations: First, successful AI implementation benefits greatly from the early 

inclusion of relevant stakeholders, such as clinicians, local supervisors, or the IT 

department. They should be involved in evaluating the need for an AI tool for a specific 

task, selecting a suitable solution, and designing the implementation process. Second, 

organizational support was frequently identified as a facilitator, or as a barrier when 

absent, therefore adequate change management procedures should be employed (Kim 

et al., 2023; Petersson et al., 2022). Examples from the conducted studies include user 

training, procedures for informing patients, and protocols for handling errors. Third, 

seamless integration with the local IT infrastructure is essential for implementing any new 

technology; without it, workarounds and frustration, as seen in the radiology use case, can 

occur. Additionally, designing an AI-augmented workflow that is iteratively tested and 

refined could be a beneficial strategy to ensure a good fit of the technology and that it is 

safe and reliable to use, as suggested by Agarwal et al. (2024). 

The results of the work for this dissertation also highlight the importance of research on 

AI solutions in real-world conditions and emphasize that "work-as-imagined" often differs 

from "work-as-done" (Wenderott, Krups, Luetkens, & Weigl, 2024). Therefore, comparing 

results from experimental studies with real-world implementation settings is crucial for 

determining the impact of an AI tool in clinical care. Additionally, experimental studies can 

offer insights into factors like user training or varying levels of explainability that mostly 
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influence user acceptance. These findings can then be used to inform real-world 

implementation processes. It should be noted that at every stage of technology 

development, appropriate study designs are necessary to determine the safe and effective 

use of the technology (D. Higgins & Madai, 2020; Marcus et al., 2024; Park et al., 2022). 

However, to draw a conclusion across different studies it was highlighted in the systematic 

review presented in this dissertation that there is a need for more comprehensive reporting 

and adhering to published reporting guidelines. Additionally, research independent from 

manufacturers and developers is necessary, as many studies identified in the systematic 

review were conducted by authors with potential conflicts of interest. Nevertheless, there 

are significant opportunities for researchers and practitioners to evaluate the introduction 

of AI in healthcare institutions, as many are implementing it without any thorough and 

systematic assessment concerning assumed effects and outcomes (Yin et al., 2021). The 

research presented in this dissertation also leads to the suggestion of the development of 

a checklist for AI implementation in clinical settings which could help to bridge the gap 

between research and practice. Owoyemi et al. (2024) are currently working on such a 

checklist and have published a pre-print of their work. Their work takes into account the 

complex sociotechnical work system in healthcare and involves the aim of facilitating the 

seamless integration of AI into clinical workflows. 

4.3. Conclusion  

To investigate the workflow integration of AI in clinical practice, the work for this 

dissertation covered a range of clinical workflows and AI solutions, by providing a 

systematic literature review and two in-depth analyses of clinical AI use cases. The 

conducted studies were focused mostly on the individual level, where a seamless fit into 

the workflow and a good usability of the AI tool were highlighted. Additionally, strong 

organizational influences, particularly regarding supportive IT infrastructure and change 

management procedures, were observed as relevant factors. By analyzing facilitators and 

barriers through the SEIPS model, recommendations for future AI implementation 

processes in healthcare were extracted and underline the practical relevance of the work 

for this dissertation. For research, the need for holistic assessments of AI implementation 

is emphasized to ensure that AI augments clinical workflows and reduces healthcare 

providers' workload. Thus, the work for this dissertation contributes to the safe and 
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effective integration of AI in healthcare, hopefully in the long term leading to positive 

outcomes of AI integration for providers and patients such as improved care and reduced 

waiting times. 
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