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1 Abstract 
Diet is an important determinant of health and well-being. Epidemiologic studies link 

higher habitual intake of sweetened beverages (SBs), sweet and fatty snacks, and the 

broad range of ultra-processed foods (UPF) with an increased risk of obesity. Poor 

nutritional profiles, higher caloric intake, and energy imbalance are some of the proposed 

mechanisms, but other biological pathways underlying diet-related weight gain and 

regulation are not fully defined. Human metabolome provides a rich resource for 

understanding metabolic alterations associated with diet. Here, we conduct a literature 

review on biomarkers of SBs (study 1); investigate the metabolomic signatures of SBs 

and added sugar intake in children, adolescents, and young adults and their association 

with adiposity measures (study 2); investigate the reproducibility of urine biomarkers of 

sweet and fatty snacks across two independent cohorts (study 3); and investigate the 

metabolomic profiles of UPF intake in adolescents and young adults and their association 

with adiposity (study 4). 

In study 1, we conducted a systematic review of the literature on biomarkers of SBs and 

their levels of validity. In study 2, we used 3 data sets across 3 age groups: children (3.0–

10.3 y), adolescents (14.9–18.4 y), and young adults (18.0–21.9 y), from the DONALD 

cohort study. In study 3, we included the previously defined sample of children and 

children from an external cohort, the IDEFICS/I.Family cohort. In study 4, we included the 

adolescent and young adult analytic samples defined in study 2. We used untargeted 

metabolomics in urine and plasma across all studies and additionally conducted lipidomics 

on plasma. We applied multiple machine learning methods because of the high-

dimensional data: the random forest, partial least squares, and LASSO for joint metabolite 

selection (study 2 and 3); particle swarm optimization and extreme gradient boosting for 

investigating metabolite data missing mechanisms (study 4); and robust sparse PCA for 

deriving metabolite patterns (study 4). We used linear and mixed effects for covariate 

adjustments (study 2-4). 

We identified metabolomic signatures of SBs, added sugar, sweet and fatty snacks, and 

UPF intake in young individuals. Some of these metabolomic changes were related to 

adiposity measures and may be important research targets for better understanding of the 

mechanisms through which these foods contribute to weight gain and adiposity. 
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2 Introduction and aims with references 

2.1 Introduction 
Diet is a well-established modifiable lifestyle factor for health and well-being. Healthy 

dietary habits from childhood can improve long-term health outcomes by reducing the risk 

of diet-related diseases (Neuhouser et al., 2023; Lane et al., 2024). A major concern 

regarding the modern dietary patterns is the regular and often excessive consumption of 

sweetened beverages (SBs), which broadly include sugar-sweetened beverages (SSB) 

and low- and no-calorie sweetened beverages (LNCSB). SSBs are a major public health 

nutrition issue because of the added sugars (AS), which contribute to excessive caloric 

intake and overall poor diet (Marriott et al. 2019; Endy et al. 2024). Individuals with higher 

intake of SSBs also tend to consume other foods of poorer quality compared with non-

SSB consumers (Doherty, Lacko, & Popkin, 2021), suggesting the need for a broader 

focus on diet quality beyond SSBs. This evidence is consistent. For example, dietary 

patterns across the primary-secondary school transition showed that SBs are habitually 

consumed alongside other discretionary and energy-dense foods e.g., cakes, pastries, 

crisps, and savory snacks (Peral-Suárez et al., 2024).  

These foods are main subgroups of ultra-processed foods (UPF) as defined by the NOVA 

food classification system, which broadly includes soft drinks, flavored yoghurts, sweet 

and savory snacks,  cakes and confectionery, chocolates, pizza, chips, mass-produced 

breads and buns, breakfast cereals, sausages, processed and reconstituted meats, 

margarine and spreads, pasta, noodles and a wide range of ready-to-eat or-heat 

convenient food products, primarily or entirely derived from food ingredients and additives 

of exclusive industrial use  (Monteiro et al., 2019).  Some of the factors that contribute to 

their widespread popularity and consumption include convenience, accessibility, 

affordability, and a long shelf-life (Monteiro et al., 2019). There is widespread debate on 

UPFs, unsurprisingly on the degree of processing in relation to healthy food: “Even we are 

confused,” admitted an interdisciplinary consortium drawn from nutrition, food technology, 

industry, policy, and civil society (Sadler et al., 2022).  

One point is evident, though. UPFs as currently defined are the fastest growing segment 

of the global and largely industrialized food systems (Northcott et al., 2023); a growth 

consistent with an incremental shift in dietary patterns from traditional to more Western-
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style diets (Beslay et al., 2020). In line, the global prevalence of obesity has also been on 

a consistent trajectory with this worldwide shift toward more processed diets (Monteiro et 

al. 2019; Baker et al. 2020). For example, in 2022, the World Health Organization (WHO) 

estimated that over 390 million children and adolescents (aged 5–19) were overweight, 

with 160 million classified as obese (WHO, 2024). While the role of dietary guidelines in 

reducing the global burden of obesity is certainly clear, the specific foods and mechanisms 

that more significantly explain weight  gain and adiposity beyond the traditional energy 

balance models are widely debated (Hall et al., 2022). This is compounded by another 

long-standing problem: challenges in dietary assessment. 

So far, evidence from nutritional epidemiologic studies is based on self-reported intakes 

using food frequency questionnaires (FFQ), 24h-dietary recalls (24h-DRs), and food 

records, which are prone to random and systematic errors. This constitutes a significant 

challenge that, an increasing number of studies are dedicated to measurement bias and 

correction of errors in self-reported dietary intakes (Keogh et al., 2020; Hu et al., 2022). 

Foods traditionally believed to contribute more to obesity risk such as SBs are also likely 

to be underreported because of social desirability bias  (Knox et al., 2020). Indeed, an 

earlier study on the tendency to report and the portion size if reported, showed that low 

energy reporters were more likely to report smaller sizes across several food groups, 

including soft drinks (Krebs-Smith et al., 2000). It is, therefore, difficult to differentiate true 

null associations between diet and health status from those due to misreporting and 

measurement errors. For example, there are inconsistent findings on the associations 

between SBs and UPF and health outcomes (McGlynn et al., 2022; Steffen et al., 2023; 

Kermani-Alghoraishi et al., 2024).  

Beyond the diet-disease associations, assessment of diet using two different instruments 

on the same individual also shows inconsistencies in self-rated diet quality, mainly due to 

subjective interpretation of dietary questions, framing effects of these questions, and self-

awareness of nutritional status (Nouve, Zhao, & Zheng, 2024). To address some of these 

challenges, some studies combine data from FFQs and 24-h DRs with unbiased 

biomarkers, such as those for nutrients, using regression calibration approaches (Looman 

et al., 2019), which has been shown to provide more accurate assessments of the 

associations of habitual intakes with health outcomes (Looman et al., 2019; Huang et al., 
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2022). This approach is promising for improving dietary assessment, but few validated 

biomarkers of intake exist. 

Metabolomics techniques for profiling small molecules in biosamples have emerged as 

promising tools in dietary biomarker research. The human metabolome comprises the 

endogenous metabolome, consisting of metabolites from own cells; the food metabolome, 

which includes nutrients and end products of biotransformation of food substrates; and 

xenobiotics from drugs and chemicals, environmental and other exposures (Scalbert et 

al., 2014). There is a rapidly growing interest in metabolomics given that metabolites 

represent the most proximal layer to phenotypes; hence, they reflect phenotypic variations 

due to a disease state, diet, or environmental exposures (Scalbert et al., 2014; Auwerx et 

al., 2023). 

A recent large cohort study identified serum and 24-h urine metabolites of red meat and 

the combination of red and processed meat, and applied calibration approaches (like the 

aforementioned approaches for single nutrients) to correct systematic measurement 

errors in their habitual intakes. This achieved a better estimation of the association 

between these intakes and cardiovascular disease, cancer, and diabetes incidence 

(Zheng et al., 2022). Urinary proline betaine has also been used to correct self-reported 

usual intakes of citrus fruits (Hu et al., 2024). Regarding SBs, a study comparing self-

reports (FFQ and 24h-DRs) with urinary biomarkers of LNCSB intake demonstrated that 

these dietary instruments underestimated overall dietary exposures to low calorie 

sweeteners (Buso et al., 2024). These studies demonstrate significant progress in the 

application of metabolomics to improve nutrition research. 

A particular strength of metabolomics is that, apart from identifying biomarkers of dietary 

intake, the molecular fingerprints of intake also provide biological insights into the 

mechanisms through which these dietary exposures influence metabolism and health. For 

example, phosphatidylcholine and lysophospholipid have been proposed as modulating 

pathways linking SSB intake and obesity risk (Zhou et al., 2020) and lipids and glutamate 

metabolism as some of the biological links between SSB and dairy intakes and obesity 

and type 2 diabetes (Parnell et al., 2021). 
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We propose to use untargeted metabolomics approaches to investigate the biological 

mechanisms through which SBs and AS, sweet and fatty snacks, and UPF influence 

metabolism and their association with adiposity. This is particularly important given the 

overwhelming epidemiologic evidence linking habitual intake of UPF or its subgroups with 

a higher risk for obesity (Beslay et al., 2020; Endy et al., 2024; Lane et al., 2024). To 

achieve this, we use data from the DONALD cohort study, which uses 3-d weighed dietary 

records and provides rich data on intake at the food item level rather than food group level, 

characteristic of FFQs. This granular, food item level approach provides a better 

separation of SBs into SSB and LNCSB, a better estimation of AS from all food items 

consumed, and a more precise categorization of the UPF. The regular urine, diet, and 

adiposity assessments further enable this study to investigate metabolomic changes 

associated with both short-term and long-term intake of these foods, and their relationship 

with adiposity phenotypes.   

2.2 Aims 

The overarching objective was to gain a better understanding of urine- and plasma-based 

metabolomic changes of short-term and long-term intakes of SBs, sweet and fatty snacks, 

and UPF; and to investigate whether these metabolic alterations are related to adiposity. 

Therefore, we defined the following specific objectives:  

1. To perform a systematic review of metabolomic biomarkers of SSB and LNCSB

intake (see 3.1, publication 1).

2. To identify the plasma and urine metabolomic signatures of SBs and AS intake

across various age groups various age groups (children, adolescents, and young

adults) and to evaluate their relationship with BMI, %BF, and WC (see 3.2,

publication 2).

3. To identify and replicate urine metabolites associated with short-term and habitual

intake of sweet and fatty snacks in European children and adolescents (see 3.3,

publication 3).

4. To investigate the associations of UPF intake with urine and plasma metabolomic

profiles in adolescents and young adults (see 3.4, publication 4), and their

association with BMI, %BF, and WC (see 3.4, extended analyses on publication 4).
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Abstract: Intake of added sugars (AS) is challenging to assess compared with total dietary sugar
because of the lack of reliable assessment methods. The reliance on self-reported dietary data
in observational studies is often cited as biased, with evidence of AS intake in relation to health
outcomes rated as low to moderate quality. Sugar-sweetened beverages (SSBs) are a major source
of AS. A regular and high intake of SSBs is associated with an overall poor diet, weight gain, and
cardiometabolic risks. An elevated intake of low-calorie sweetened beverages (LCSBs), often regarded
as healthier alternatives to SSBs, is also increasingly associated with increased risk for metabolic
dysfunction. In this review, we systematically collate evidence and provide perspectives on the
use of metabolomics for the discovery of candidate biomarkers associated with the intake of SSBs
and LCSBs. We searched the Medline, Embase, Scopus, and Web of Science databases until the end
of December 2020. Seventeen articles fulfilled our inclusion criteria. We evaluated specificity and
validity of the identified biomarkers following Guidelines for Biomarker of Food Intake Reviews
(BFIRev). We report that the 13C:12C carbon isotope ratio (δ13C), particularly, the δ13C of alanine is
the most robust, sensitive, and specific biomarker of SSBs intake. Acesulfame-K, saccharin, sucralose,
cyclamate, and steviol glucuronide showed moderate validity for predicting the short-term intake of
LCSBs. More evidence is required to evaluate the validity of other panels of metabolites associated
with the intake of SSBs.

Keywords: sugar-sweetened beverages; low-calorie sweetened beverages; metabolomics; biomarkers

1. Introduction

Added sugar (AS) refers to sugars, syrups, or caloric sweeteners added to foods during
preparation, processing in the industry, or by consumers at the table [1]. A high intake
of AS is a public health concern, because of its associated health risks. The World Health
Organization (WHO) recommends less than 10% of the total daily energy intake from free
sugars, which includes AS and sugars naturally present in honey, syrups, fruit concentrates,
and juices [2]. In reference to a total energy intake of 2000 kcal per day, the WHO recom-
mendation corresponds to 50 g of free sugars [3]. Despite the imprecise definition of AS
and free sugars in epidemiologic studies, there is consensus that consumption significantly
exceeds WHO recommendations. In a German cohort study, the median intake of AS
ranged between 11.6% and 13.3% and free sugars between 15.2% to 17.5% in children and
adolescents aged 3 to 18 years [4]. In the USA, a national survey reported a mean adjusted
estimate of AS intake in children aged 2–18 years as 14% of their daily energy intake [5].
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A major source of dietary AS is sugar-sweetened beverages (SSBs). A regular and
high intake of SSBs is associated with overall poor diet quality [6], weight gain and
progression of obesity [7], increased risk for diabetes [8], cardiovascular diseases [9–11],
and a low-grade inflammatory state [12,13]. Low-calorie sweetened beverages (LCSBs),
which contain non-nutritive sweeteners, are commonly marketed as healthier alternatives
to SSBs [14]. However, emerging evidence from observational studies suggests their inverse
association with cardiometabolic health [15], including risk for ischemic stroke and all cause
dementia [16], impaired insulin sensitivity in healthy individuals [17], and increased risk
for cardiovascular diseases [18]. A causal link between SSBs/LCSBs intake and negative
health effects is yet to be established.

As all consumed foods like SSBs/LCSBs are metabolized, their metabolites could be a
window to their intake and may also improve our understanding of the causal link with the
aforementioned health conditions. This is especially important because varying opinions
persist about evidence from self-reported dietary assessment tools, such as dietary food
records, 24-h dietary recalls, and food frequency questionnaires (FFQs). These instruments
are often cited as having inherent biases of recall and misreporting, which may lead to
incorrect estimations of the associations between intake and health outcomes [19]. Evidence
from studies suggest that foods considered socially undesirable, such as those high in AS
like SSBs, are mostly underreported [20,21]. In part, such challenges have continued to fuel
the debate on the validity of the associations between the intake of SSBs/LCSBs and health
risks. This potentially undermines public health messages that urge the public to reduce
the intake of AS and SSBs. Objective biomarkers for the dietary intake of SSBs/LCSBs
could aid in overcoming this longstanding challenge by complementing the existing dietary
instruments to strengthen the evidence on connection between intake and health status [22].

The discovery and validation of biomarkers of SSB and LCSB intake remains a high-
priority research area, with rapidly growing evidence of dietary signatures in blood, urine,
fingernails, hair, and other human tissues [23]. Some biomarkers have been proposed
through targeted metabolomics methods, and have been validated in small, controlled
feeding studies. However, untargeted methods of biosamples following exposure to SSBs
and LCSBs have also produced panels of novel metabolites that need further investigation
and validation. Therefore, this study collates the latest evidence from studies applying
metabolomics methods for the discovery of candidate biomarkers associated with the
intake of SSBs and LCSBs.

2. Materials and Methods
2.1. Literature Search

To identify the biomarkers of food intake (BFI) for SSBs and LCSBs, an extensive litera-
ture search was conducted following the Guidelines for Biomarker of Food Intake Reviews
(BFIRev) [24] and the PRISMA statement for systematic reviews [25], whenever meaningful.
We registered the review project with the OSF Registries (DOI: 10.17605/OSF.IO/97VFY,
https://osf.io/2pvr3/, accessed on 19 August 2021). We comprehensively searched four
electronic databases, Medline, Embase (in OVID SP), Scopus, and Web of Science, using the
following search terms, adapted appropriately to each database: (sugar*sweet*beverage*
OR SSB* OR beverage* OR added sugar* OR caloric*sweet* OR soda* OR diet*beverage*
OR soft drink* OR low*calorie*sweet*beverage* OR LCSB* OR artificial*sweet*beverage*
OR ASB* OR fruit flavored drink* OR carbonated drink* OR juice*) AND (biomarker* OR
marker* OR metabolite* OR metabolom* OR biomonitor* OR biosignature* OR bioavail-
ability) AND (intake OR diet OR dietary pattern* OR dietary habit* OR eating pattern*
OR food* OR meal* OR nutrition*assessment OR nutrition* survey*) AND (plasma OR
urin* OR serum OR blood OR hair). The search was limited to papers published on human
studies and in English, from inception dates until the end of December 2020. Studies on
animal models were excluded. We used EndNote (version X9) and Rayyan QCRI programs
for reference management and abstract screening, respectively. Two independent reviewers
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(S.M. and J.G.) screened all the titles and abstracts, and conducted full text reading and
subsequent data extraction.

2.2. Evaluation of Specificity of Identified Biomarkers

We performed an extensive literature search, as recommended in the BFIRev guide-
lines [24], to evaluate the specificity of the identified candidate biomarkers. In a sec-
ond search step, we evaluated the specificity of the candidate biomarkers in the Human
Metabolome Database (HMDB), the Food Database (FooDB), and the Phenol-Explorer. If
the reported compound was identified as a biomarker for non-SSBs and non-LCSBs food
items, such a compound would be removed from further selection. Next, to confirm if
the identified potential biomarkers were detected in other foods, further literature search
was performed: (“name and synonyms of biomarker candidate”) AND (biomarker* OR
marker* OR metabolite* OR metabolom* OR biomonitor* OR biosignature*), which was
executed on the Google Scholar search engine. Compounds present in other foods were
determined as lacking specificity for SSBs or LCSBs.

2.3. Evaluating of Validity of Biomarkers

We adopted the framework proposed by Dragsted et al. [26] to assess the validity of
the identified biomarkers of SSBs and LCSBs. This framework provides eight groups of
validity criteria for assessing the validation and application of BFIs, namely, plausibility,
dose−response relationship, time−response (single-meal time response and repeated
intakes), robustness, reliability, stability, analytical performance, and reproducibility. In
total, the validity of the candidate biomarkers was assessed by answering nine questions,
with either a yes, no, or uncertain/unknown. Selected biomarkers were then graded,
with the scores reflecting the current validity rating of the biomarker as informed by
available evidence.

2.4. Evaluating Quality of Evidence

Because of the lack of standard validated tools for evaluating the quality of evidence
of the metabolomics studies, we applied two assessment tools to assess the risk of bias and
biomarker measurement characteristics. For quality assessment of the evidence (i.e., risk
of bias and study quality), we applied the NutriGrade scoring system, which uses the
Grading of Recommendations, Assessment, Development, and Evaluations (GRADE)
approach [27]. To evaluate the quality of the biomarker measurement, we applied the
Biomarker-based Cross-sectional studies (BIOCROSS) evaluation tool, which is especially
adapted for biomarker measurement, representing biosample and assay methods, labora-
tory measurement, and biomarker data models [28].

3. Results

The systematic literature search strategy yielded 1130 non-duplicated records from the
four electronic databases. After abstract reading, full text reading for eligibility assessment,
and secondary search, 17 studies were included [29–45], as shown in Figure 1.

Table 1 summarizes the study characteristics and candidate biomarkers identified.
There were eight cross-sectional studies [29,30,33,34,36,38,39,44,45] and eight controlled
intervention studies [31,32,35,37,40–43]. For comparison with dietary intake, dietary assess-
ment tools such as 24-h recall, 4-day and 7-day food records, and FFQS were used. Four
studies were conducted in children and adolescents [35,38,39,44], two in postmenopausal
women [41,42], one in predominantly obese population [31], and one study in an inpatient
hospital setting [40]. Two studies used an untargeted metabolomics approach [33,39], while
the rest used a targeted metabolomics approach.
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Figure 1. PRISMA flowchart on the screening process and selection of papers reporting biomarkers of SSBs and LCSBs as of
December 2020.
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Table 1. Studies on the association between consumption and potential candidate biomarkers for sugar- and low-calorie sweetened beverages.

Study,
Country,

[Reference]
Number of
Participants

Age Range
(Years)

Dietary Assessment
Method Sample Type Chemical

Analytic Method
Analytic

Approach Candidate Biomarker of Food Intake/Metabolite

Davy et al.
2017, USA [31] 301 ≥18 24-h recall

(×3) Fasting fingerstick blood NA-SIMS Targeted δ13C
Choy et al.

2013, USA [29] 68 14–79 24-h recall
(×4) Red blood cells, hair GC-IRMS Targeted δ13C–alanine

Davy et al.
2011, USA [30] 60 ≥21 4-d DR fingerstick blood NA-SIMS Targeted δ13C
Fakhouri et al.
2014, USA [32] 144 25–79 24-h recall

(×2)
Serum,

after 8-h fast IRMS Targeted δ13C
Hedrick et al.

2016, USA [34] 216 ≥18 24-h recall
(×3) Fasting fingerstick blood IRMS Targeted δ13C

Nash et al.
2014, USA [45] 68 14–79 24-h recall

(×4)
Red blood cells,

plasma, hair IRMS Targeted δ13C
Votruba et al.

2019, USA [40] 32 46.2 (10.5) a 7-d DR Plasma, hair, Red blood cells IRMS Targeted δ13C
Liu et al.

2018, USA [35] 33 12–18 24-h recall
(×8) Fasting fingerstick blood NA-SIMS Targeted δ13C

Yun et al.
2018, USA [41] ** 153 75 (4) a 4-d DR Serum IRMS Targeted δ13C

Yun et al.
2020, USA [42] 145 75 (73, 78) b 4-d DR Serum AAs GC-IRMS Targeted δ13C–alanine

MacDougall et al.
2018, USA [38] 126 6–11 24-h recall

(×4) Fingerstick blood IRMS Targeted δ13C
Valenzuela et al.
2018, USA [44] 212 9–16 FFQ Hair, Breath GC-IRMS Targeted δ13C
Gibbons et al.

2015, Ireland [33] 565 ≥18 4-d DR Urine H-NMR Untargeted Formate, citrulline, taurine, and isocitrate

Perng et al.
2019, Mexico [39] 242 8–14 FFQ Fasting serum LC/MS Untargeted

Girls: 5-methyl-tetrohydrofolate, phenylephrine, urate,
nonanoate, deoxyuridine, and
sn-glycero-3-phosphocholine

Boys: 2-piperidinone, octanoylcarnitine, and catechol
Logue et al.

2020, NL [36] 79 19–70 7-d DR 24-h urine LC-MS Targeted acesulfame-K, saccharin, cyclamate, and sucralose
steviol glycosides

Logue et al.
2017, NL [37] 21 25.7 (4.9) a 7-d DR Fasting spot and

24-h urine LC-MS Targeted Acesulfame-K, saccharin,
sucralose, cyclamate, and steviol glycosides

Sylvetsky et al.
2017, USA [43] 18 18–35 7-d DR Spot urine LC/MS Targeted Sucralose

a and b—values are mean (standard deviation) and median (interquartile range), respectively; δ13C—carbon isotope ratio biomarker, 13C:12C; AAs —amino acids; IRMS—isotope ratio mass spectrometry;
GC-IRMS—gas chromatography with IRMS; NA-SIMS —natural abundance stable isotope mass spectrometry; H-NMR—proton (hydrogen) nuclear magnetic resonance; LC/MS—liquid chromatography–mass
spectrometry; NL—Netherlands; 24-h recall—24 h dietary recall records; 4-d/7-d DR—4/7 day dietary records; FFQ—food frequency questionnaires. ** This study was conducted in postmenopausal women and
reported negative results that, δ13C was not associated with an intake of sugar, both total and AS/SSBs.
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3.1. Carbon Isotope Based Biomarkers for SSBs Intake

The stable carbon isotope ratio 13C:12C, denoted as δ13C values in blood samples, plasma
glucose, hair, and alanine, is significantly correlated with SSB intake [29–32,34,35,38,40,42,44,45].
Even though these studies were carried out in different settings and populations, they
employed a targeted approach for biomarker discovery. Davy et al. [30] investigated
the δ13C values of non-fasting fingerstick blood, complemented by four-day food intake
records, in healthy participants. To minimize the order effects due to the sequence of
dietary intake assessment, investigators randomly assigned participants to either of the
two sequences for their laboratory visits, which determined the sequence of the beverage
intake assessment and the four-day food intake assessment. Habitual intake of SSBs in the
past month was assessed with a separate questionnaire. The δ13C values were correlated
with the AS and SSB intakes [30].

Davy et al. [31], in a separate study, investigated the δ13C values of fasting fingerstick
blood in a randomized controlled trial, using predominantly obese participants to assess
whether a 6-month intervention for reducing SSBs intake was reflected on the δ13C values.
This study concluded that, indeed, changes in δ13C values were associated with the AS and
SSBs intake, supporting δ13C as an objective biomarker of AS and SSBs intake. Similarly,
Fakhouri et al. [32] examined the δ13C values of the serum in response to an 18-month
behavioral intervention program for reducing the SSBs intake in adults. Analyses of
blinded serum samples confirmed the mean change in δ13C values, consistent with the
self-reported dietary intake SSBs—further confirming earlier studies that δ13C values could
be used to measure small changes in the intake of AS or SSBs.

Nash et al. [45] compared the dietary intake of sugars (total, added, and SSBs) among
the Yup’ik people, as reflected in the δ13C values in the red blood cells, hair, and fasting
plasma glucose. Their dual-isotope model approach measured the values of both the δ13C
and stable isotopes of nitrogen, δ15N, which controlled feeding studies have suggested
as a potential biomarker for the dietary intake of meat and fish [40,41]. As other dietary
components such as animal protein, honey, and beet sugar may confound the association
between the AS/SSBs intake and δ13C values [23], there is potential utility of the dual-
isotope method. Moreover, given that the δ13C and δ15N values in the red blood cells,
serum, and hair have been shown to be correlated [46,47], Nash et al. [45] further examined
whether the dual-isotopic model explained a similar variance in the intake of total sugars,
AS, and SSBs, as reflected in the red blood cells, plasma, and hair. They observed that
the three models using red blood cells, plasma, or hair isotopes explained nearly similar
amounts of variance in the dietary intake of total sugar, AS, and SSBs. The strongest
associations of sugar intake and δ13C values were observed in red blood cells and hair
samples. There were strong, positive correlations in δ13C and δ15N values of red blood
cells, plasma, and hair. Collectively, these results demonstrated that the δ13C biomarker, as
reflected in red blood cells, plasma, and hair, but not in the fasting plasma glucose, may be
useful in assessing the sugar intake in this Alaska Native community.

Votruba et al. [40] used the dual-isotope model approach to measure the values of
δ13C and δ15N in the red blood cells, plasma, and hair as potential biomarkers for the
dietary intake of SSBs, fish, and meat in a 12-week controlled feeding trial. In this study,
they observed that the δ13C values were significantly elevated by the dietary intake of SSBs
and meat, while the δ15N values were significantly associated with the dietary intake of
fish and meat. Specifically, the plasma δ15N predicted the dietary intake of fish (area under
the receiver operating curve (AUC) = 0.97) and meat (AUC = 0.92), while plasma δ13C
predicted the SSBs intake (AUC = 0.78). In all of the sample types—red blood cells, plasma,
and hair—the dual-isotope approach accurately distinguished consumers of meat and fish,
with a modest discrimination power for consumers of SSBs [40].

Two studies measured the δ13C of alanine as a potential biomarker of SSB intake.
Choy et al. [29] investigated the association between the δ13C of nonessential amino acids
(δ13C NEAA) in red blood cells and the intake of total sugar, AS, and SSBs, as well as the
foods rich in animal protein such as corn-fed meats, fish, and marine mammals. Of the
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non-essential amino acids considered (alanine, aspartate, glutamate, glycine, proline, and
serine), only the δ13C of alanine was strongly associated with sugar intake—total sugar,
AS, and SSBs—with a moderate association between the δ13C of proline and SSB intake
only [29]. In a subset of the study population (n = 30), δ13C of alanine in red blood cells was
correlated with δ13C of alanine in hair samples, and intake of SSBs. As the intake of meat
and fish may also elevate δ13C values in some populations [23,48], Choy et al. [29] further
tested the specificity of the δ13C of alanine for SSB intake by modelling the δ13C of alanine
as a dependent variable and adding SSBs; commercial meat, fish, and marine mammals;
and intake of corn as independent variables. Unlike the findings of Votruba et al. [40], the
δ13C values of alanine were significantly associated with SSB intake only, but not with any
other dietary component, including meat and fish [29]. These findings were replicated in
a recent two-week controlled feeding trial in postmenopausal women [42]. The δ13C of
seven amino acids (alanine, glycine, valine, leucine, isoleucine, proline, and phenylalanine)
in the fasting serum were measured. Like in Choy et al. [29], AS intake was associated with
elevated values of δ13C of alanine, but was not associated with meat or any other animal
protein. These two controlled studies demonstrated the specificity of δ13C of alanine to AS.

Hedrick et al. [34] compared δ13C values of fingerstick blood with self-reported AS
and SSBs intake in a cross-sectional study of adults who consumed at least 200 kcal/d from
SSBs. In their multiple linear regression of δ13C values on other variables, they observed a
significant variation in δ13C values across different age groups, indicating the highest intake
of SSBs and AS in younger adults. Overall, SSB intake was significantly associated with
δ13C values. Similarly, MacDougall et al. [38] explored the comparative validity, reliability,
and sensitivity of δ13C values to reflect AS and SSBs intake in children and adolescents over
a 3-week period. Their findings confirmed that δ13C values discriminated between high and
low consumers of SSBs and between high and low consumers of AS in general (AUC = 0.75
and AUC = 0.62, respectively). In a similar study in adolescents by Liu et al. [35], but
using a controlled feeding design, the δ13C values of the fasting fingerstick blood reflected
changes in AS and ASSB intakes in different feeding periods. Valenzuela et al. [44] also
focused on adolescents, and measured multiple stable isotopes, namely δ13C, and δ15N, and
stable isotopes of sulfur δ34S, in hair and breath samples in order to evaluate the potential
biomarkers for protein and carbohydrate dietary components. In this study, the intake
of SSBs and C4 derived-sweets was associated with δ13C values from the carbon dioxide
in the breath samples, both in the baseline (morning upon waking up) and post-lunch
samples (1–2 h after lunch), showing the strongest correlations in the baseline samples [44].
Expectedly, significantly elevated δ13C values were observed among Hispanic children
who were also reported to have a higher consumption of SSBs relative to non-Hispanic
white children [44]. Additionally, the δ13C values in the hair samples were also significantly
correlated with the baseline breath samples.

Yun et al. [41] examined whole serum in postmenopausal women in a 2-week con-
trolled diet study. This was the only study that found no association between sugar intake
and δ13C values. Yun et al. [41] measured the values of multiple isotopes, δ13C, δ15N, and
δ34S, in relation to the habitual intake of total sugars, AS, SSBs, animal protein, fish/seafood,
red meat, dairy, poultry, and eggs. While δ15N predicted the intake of fish/seafood, δ13C
moderately predicted the intake of red meat and eggs, but did not meet the biomarker
threshold for the intake of sugars—total, AS, and SSBs [41]. It should be emphasized
that the population in this study had limited heterogeneity in their diet, as some dietary
components such as AS and SSBs were consumed in low amounts.

3.2. Other Candidate Biomarkers of SSBs Intake

Some studies used untargeted metabolomics approaches to discover panels of metabo-
lites in biosamples that could indicate the dietary intake of SSBs. Gibbons et al. [33]
identified a panel of four metabolites (i.e., formate, citrulline, taurine, and isocitrate) that
were significantly associated with SSB intake. They further validated these metabolites
in a small acute intervention study using first-void-urine and postprandial urine samples
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collected at time intervals of 2, 4, and 6 h after SSB intake (i.e., a 330 mL of caloric cola).
Elevated levels of the four biomarkers were recorded in the urine samples following the
acute consumption of sweetened cola, and their presence was further confirmed in the
chemical analysis of the cola drink [33].

Perng et al. [39], using an untargeted approach, also identified a novel set of metabo-
lites associated with the intake of SSBs using fasting serum samples and an FFQ instrument
for the intake assessment in children and adolescents. In this study, SSBs included non-diet
sodas, fruit juices with AS, and any other beverage (e.g., tea, coffee, or water) with AS.
The authors discovered sex-specific panels of biomarkers that were associated with SSB
intake. They reported six biomarkers in girls—5-methyl-tetrohydrofolate, phenylephrine,
urate, nonanoate, deoxyuridine, and sn-glycero-3-phosphocholine—and three biomarkers
in boys—2-piperidinone, octanoylcarnitine, and catechol.

3.3. Candidate Biomarkers of LCSBs Intake

Three studies investigated the potential biomarkers of low-calorie sweeteners (LCSs)
commonly used in LCSBs, identifying urinary excretion of acesulfame-K, saccharin, cycla-
mate, sucralose, and steviol glycosides among the consumers of LCSs/LCSBs [36,37,43].
Logue et al. [37] investigated the urinary excretion of commonly used LCSs following
dietary exposure to LCSBs, using a double-blind, randomized crossover dose−response
study. For method development and validation, participants (n = 12) were advised ver-
bally and through written materials to avoid the intake of foods and beverages known to
contain the five LCS compounds, at least 3 days before the 24-h urine protocol date. After
the analyses, samples without concentrations of LCS (n = 6) were adopted for method
validation. For the dose−response study, 21 participants were examined in a double-blind,
randomized crossover design, lasting 3 weeks, during which participants consumed three
doses of five LCSs, namely acesulfame-K, saccharin, sucralose, cyclamate, and steviol
glucuronide [37]. Fasting spot and 24-h urine samples were collected at each dosing date.
The 500 mL LCSBs were consumed over two consecutive days at specific times during
the study period, but for the purpose of blinding the participants, 75 mL of an orange
Cordial was added during LCSBs preparation. As long as the consumption did not exceed
500 mL within the 24-h period, participants were encouraged to assume normal patterns
of beverage intake throughout the day. Regression analyses with the LCS dose set as
the dependent variable and 24-h urinary concentrations of the LCS compounds as the
independent variable explained 99% variability for acesulfame-K, 87% for saccharin, 35%
for sucralose, 91% for cyclamate, and 75% steviol glucuronide [37]. These compounds were
indicative of LCSBs intake.

In a separate study, Logue et al. [36] further investigated the use of a 24-h urinary
biomarker approach to detect dietary exposure to LCSB in two adult population-based
studies, targeting the five LCSs investigated previously in their controlled study [37]. The
24-h urinary biomarker was compared with LCSB consumption, as self-reported in 7-d
food diaries of the participants (n = 79), who were randomly selected from a large study
regarding the prevalence of the widespread consumption of LCSs (n = 357). Participants
were grouped into consumers and non-consumers of LCSBs on the urine protocol date. The
novel urinary biomarker approach identified proportions of consumers of LCSBs enriched
with various sweeteners, namely saccharin (82%), acesulfame-K (51%), cyclamates (34%),
sucralose (30%), and steviol glycosides (11%) [36].

Sylvetsky et al. [43] investigated whether non-consumers of LCSs could be correctly
characterized as unexposed using the urinary biomarker approach, in a small randomized
controlled trial lasting two weeks. Participants were scheduled to attend three visits—all of
which were one week apart for urine sample collection and other measurements. As they
were confirmed as non-consumers of LCSs during recruitment into the study, participants
were counselled to avoid dietary intake of LCSs. At baseline, their dietary intake was also
recorded. After a 1-week run-in period, using sex-matched paired design, participants were
randomly assigned to consume diet soda containing sucralose or unsweetened carbonated
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water, three times a day for a week. Other dietary components were also reviewed if they
contained sucralose. At the end of the trial period, the urinary sucralose concentrations
in the exposed group were consistent with the LCSB dietary intake–significantly higher
than the expected residual sucralose from the occasional consumption of other dietary
components containing sucralose [43].

3.4. Evaluation of Validity of Candidate Biomarkers

Table 2 summarizes the results of the evaluation of the candidate biomarkers for the
dietary intake of SSBs. The number of times a compound is rated “Y” across validation cri-
teria reflects the current validity of the candidate biomarker, while the “N” and “U” ratings
represent areas where more research should be conducted. Candidate biomarkers δ13C
and δ13C of alanine had the highest validity, with an affirmative rating on the specificity,
dose−response, time−response, robustness, reliability, stability, and analytical perfor-
mance. This carbon isotope ratio biomarker was also studied in many studies, consistently
reporting an association with the dietary intake of SSBs or AS [29–32,34,35,38,40,42,44,45].

Evidence of the δ13C of alanine as a potential biomarker for SSBs [29,42,49] is also con-
sistent with the long established glucose−alanine cycle in humans. The glucose−alanine
cycle explains the link between carbohydrate and amino acid metabolism, in which alanine
is synthesized from pyruvate, a product of glycolysis. The biochemical plausibility of δ13C
of alanine is, therefore, demonstrable. The C4 derived AS has distinctly high δ13C values
compared with any other dietary source, which proves the distal cause of the biomarker
signal, while the proximal link between serum alanine and glucose is explained by the
glucose−alanine cycle [50]. This also improves our understanding on the accumulating
evidence demonstrating strong δ13C of alanine correlation with dietary AS, but not with
other dietary components [41,42,49].

Uncertainty on the validity of the δ13C and δ13C of alanine as biomarkers of SSB
intake remains regarding reproducibility across laboratories, as inter-laboratory results
have not been described in literature. To fulfil this validation criterion, targeted analysis of
the candidate biomarker in common set of samples is recommended, maintaining blind
testing across testing laboratories [26]. If an untargeted metabolomics approach is used, a
standardized analytical approach should be used by all participating laboratories.

Even though formate, citrulline, taurine and isocitrate, were discovered in an ob-
servational study and were validated in a small intervention study [33], these candidate
biomarkers were rated 4/9, meeting criteria for dose−response, single meal time−response,
robustness, and analytical performance. Lastly, 5-methyl-tetrohydrofolate, phenylephrine,
urate, nonanoate, deoxyuridine, sn-glycero-3-phosphocholine, 2-piperidinone, octanoylcar-
nitine, and catechol showed the lowest validity scores, with a positive rating on robustness
and analytical performance only. The low scores identified areas of further research to
improve the validity of these candidate biomarkers for the dietary intake of SSBs.

A summary of the evaluation of the validity of the candidate biomarkers for the
dietary intake of LCSBs is provided in Table 3. Briefly, acesulfame-K, saccharin, sucralose,
cyclamate, and steviol glucuronide showed moderate validity (6/9) in predicting LCSBs
intake. All of these compounds are commercially used as low-calories sweeteners. As such,
their plausibility as biomarkers of specific LCSBs is fulfilled, but additional qualitative
assessments of the dietary intake should rule out other dietary sources. Uncertainty remains
regarding their kinetics after repeated or habitual intake, as the compounds were assessed
in urine, which reflects recent intake. Accumulation of the compounds as a consequence
of habitual intake is inconclusive, as none of these studies investigated the usual intake.
Moreover, evidence on the stability and reproducibility of these compounds in the same
set of samples across various laboratories has not been described.
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Table 2. Evaluation of the validity of the identified candidate biomarkers for dietary intake of SSBs.

Compound/Metabolite HMDB ID Sample Type Validation Criteria

1 2 3a 3b 4 5 6 7 8 Max. Points = 9 References

δ13C - RBCs, plasma, breath, hair Y Y Y Y Y Y Y Y U 8 [6,23,30–32,34,35,38,40,41,44,45,48,51]
δ13C of alanine HMDB0000161 Blood, serum, hair Y Y Y Y Y Y Y Y U 8 [29,42,49,50,52]

Formate HMDB0000142 Urine N Y Y U Y U U Y N 4 [33,53]
Citrulline HMDB0000904 Urine N Y Y U Y U U Y N 4 [33,54]
Taurine HMDB0000251 Urine N Y Y U Y U U Y N 4 [33,55]

Isocitrate HMDB0000193 Urine N Y Y U Y U U Y N 4 [33,56]
5-Methyl-tetrohydrofolate HMDB0001396 Serum N Y U U Y U U Y N 2 [39]

Phenylephrine HMDB0002182 Serum N U U U Y U U Y N 2 [39]
Urate HMDB0000289 Serum N U U U Y U U Y N 2 [39]

Nonanoate HMDB0031264 Serum N U U U Y U U Y N 2 [39]
Deoxyuridine HMDB0000012 Serum N U U U Y U U Y N 2 [39]

Sn-glycero-3-phosphocholine HMDB0000086 Serum N U U U Y U U Y N 2 [39]
2-Piperidinone HMDB0011749 Serum N U U U Y U U Y N 2 [39]

Cctanoylcarnitine HMDB0000791 Serum N U U U Y U U Y N 2 [39]
Catechol HMDB0240490 serum N U U U Y U U Y N 2 [39]

SSBs—sugar-sweetened beverages; RBCs – red blood cells; Y—yes; N—no; U—unknown/uncertain (validation criteria adapted from [26]). 1: Plausibility—Is the marker compound plausible as a specific
BFI for the food or food group (chemical/biological plausibility)? 2: Dose Response—Is there a dose−response relationship at the relevant intake levels of the targeted food (quantitative aspect)? 3: Time
Response—(a) Single dose: meal time−response relationship of the BFI has been described for a defined sample type and time window in a meal study. (b) Multiple doses: the kinetics of the BFI after repeated
intakes has been described for a defined sample type in a meal study or the accumulation of BFI in certain sample types has been observed. Is the biomarker kinetics for the repeated intake of the food/food
group described adequately providing the frequency of sampling needed to assess the habitual intake (e.g., cumulative aspects). 4: Robustness—Has the marker been shown to be robust after the intake of
complex meals reflecting the dietary habits of the targeted population? 5: Reliability—Has the marker been shown to compare well with other markers or questionnaire data for the same food/food group
(reliability)? 6: Stability—Is the marker chemically and biologically stable during bio specimen collection and storage, making measurements reliable and feasible? 7: Analytical Performance—Are analytical
variability, accuracy, sensitivity, and specificity known to be adequate for at least one reported analytical method? 8: Reproducibility—Has the analysis been successfully reproduced in another laboratory?
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Table 3. Evaluation of the validity of the identified candidate biomarkers for the dietary intake of LCSBs.

Compound/Metabolite HMDB ID Sample Type
Validation Criteria

1 2 3a 3b 4 5 6 7 8 Max. Points = 9 References

Acesulfame-K HMDB0033585 Urine Y Y Y U Y Y U Y U 6 [36,57]
Saccharin HMDB0029723 Urine Y Y Y U Y Y U Y U 6 [36,37,58]
Cyclamate HMDB0031340 Urine Y Y Y U Y Y U Y U 6 [36,37,57,59,60]
Sucralose HMDB0031554 Urine Y Y Y U Y Y U Y U 6 [36,43,57,61]

Steviol glycosides HMDB0036707 Urine Y Y Y U Y Y U Y U 6 [14,37,57,62]

LCSBs—low-calorie sweetened beverages; Response: Y—yes; N—no; U—unknown/uncertain (validation criteria adapted from [26], as
explained under Table 2).

3.5. Risk of Bias and Quality of Study Assessment

The risk of bias and quality of evidence assessment for the included studies is presented
in Supplementary Table S1 for the observational studies, and Supplementary Table S2 for the
controlled intervention studies. Overall, the quality assessment scores for the observational
studies ranged between 9 and 12.5 out of the attainable 14.5 points for this study design.
Therefore, they were rated moderate to high quality. The quality scores for the interven-
tional studies ranged between 7.5 and 9.5 out of the attainable 13 points for the controlled
intervention studies. Given the high threshold for assessing the risk of bias and outcomes
in controlled studies, evidence from these interventional studies was considered to be of a
moderate quality.

4. Discussion

The main ingredient of SSBs is AS, and it is estimated that nearly half of AS is
consumed through SSBs [63]. Long established biomarkers for sugar intake are 24-h
urinary sucrose/fructose biomarkers [64–67] or sucrose/fructose in spot urine [68,69].
The sucrose/fructose biomarker, however, reflects the total sugar intake from all dietary
components; it lacks specificity for AS and is thus not plausible for assessing SSBs in-
take. The carbon isotope method, demonstrated by elevated carbon isotope signatures,
e.g., in urine, serum amino acids, red blood cells, or hair, reflects the dietary intake of
AS [29–32,34,35,38,40,42,45]. When SSBs, which are highly correlated with AS, are con-
sumed, the carbon isotopes are also absorbed and become available in the tissues. The
δ13C biomarker values reflect the carbon isotopic composition of the plant from which
the AS was refined, which could either be C3 or C4 photosynthetic plants [23]. For some
regions, an illustrative example being the USA, sweeteners are mostly refined from corn
syrup and cane sugar, which all utilize the C4 photosynthetic pathway [23]. SSBs with
AS derived from C4 plants have high C4 isotope signatures. We consider this is the rea-
son that all studies included in this review on the δ13C biomarker for SSBs are based on
USA populations. In regions where the main source of AS is sugar beets (e.g., in Europe),
which utilize C3 photosynthetic pathway, δ13C is not an appropriate biomarker for AS
intake [6,35,50,70]. There are differential biochemical processes in C4 and C3 plants, in
which C4 plants extract heavier 13CO2 from the atmosphere than C3 plants. Sugars refined
from C4 plants are consequently more enriched with 13C isotopes. This means that the
stable carbon isotope method can be applied to predict high consumers of SSBs—containing
C4 derived AS—because of their elevated δ13C values [23,70].

The use of a stable carbon isotope as a biomarker of SSB intake has specific strengths.
The fingerstick sample collection method is simple to conduct a minimally invasive and
not burdensome task for the participants [23,70,71]. The 24-h urinary collection may be
burdensome for some participants, eliciting concerns about compliance. Stable carbon
isotopes of hair and breath, as shown in [44], are especially useful in large-scale epidemio-
logic studies. As the carbon isotopes integrate diet over a long period, typically weeks to
months [40,45,72], they provide better estimates of habitual sugar intake compared with
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fructose and sucrose urinary biomarkers, which integrate short-term dietary intake. δ13C
has also been shown to be stable and readily assayed in tissues such as red blood cells,
serum amino acids, and human hair, for short-term and long-term exposure to AS [23,40].
As δ13C is more enriched in C4 photosynthetic plants compared with C3 plants, it can
discriminate between AS and naturally occurring sugars (e.g., from fruits), which are
mostly C3 plants. As such, beverages with high fruit concentrates are shown to have a
significantly lower δ13C content than beverages enriched by cane sugar or corn syrup [23].

In a recent controlled feeding study [42], the biological plausibility for use of δ13C
alanine as a biomarker for AS was demonstrated, as amino acid carbon isotope signatures
discriminated AS from red meat/protein intake; specifically, the δ13C of alanine reflected
a primary intake of AS. Additionally, the rest of the amino acids carbon isotope values
showed an inverse association with sugar intake—total sugar, AS and SSBs—but a positive
association with the intake of animal proteins and animal-derived dietary components
such as red meat [42]. These findings are consistent with the results of Choy et al. [29],
which demonstrated the δ13C of alanine of red blood cells was significantly associated with
total sugar intake, AS, and SSBs, notwithstanding their differences in analytical approach,
population, and dietary assessment methods. By targeting specific serum amino acids only,
Yun et al. [42] further advanced the field, as previous approaches based on whole serum
suggested that δ13C values were also associated with other dietary factors such as animal
proteins sources, e.g., meat and other protein intake [41].

A recent study [49], not included in Table 1 because it was published outside the
records search period, corroborates evidence on the specificity of δ13C alanine for AS and
SBBs. In this study, the δ13C of alanine and δ13C of glutamate were individual predictors
of SSBs intake, with a predictive accuracy of AUC ≥ 0.97 and no evident association with
meat intake. The findings also suggested that using a multiple amino acids approach could
improve the biomarker estimation of the SSBs intake [49]. On the other hand, the δ13C of
essential amino acids, especially the δ13C of leucine, was the most promising predictor of
meat intake (AUC ≥ 0.92). Moreover, an important addition of this study to the current
literature was the observation that the concentration of δ13C of non-essential amino acids
is not influenced by meat intake, reflected greater sensitivity, and was more specific to
SSBs intake, unlike when the δ13C values of the total tissue (plasma and red blood cells)
were measured [49]. Previous studies showed that δ13C total tissue was more strongly
related to meat and/or animal protein intake than AS and SSBs [40,41]. The results of Yun
et al., Choy et al., and Johnson et al. collectively validate the specificity of δ13C alanine
as a biomarker for SSBs intake and not animal proteins [29,42,49]. Given that these three
studies were conducted in diverse populations, this also demonstrates the robustness of
this biomarker. What remains inconclusive from these studies is whether individual or
multiple amino acid δ13C values best estimate AS and SSB intake, given that they used
different blood fractions, derivatization, and analyses of amino acids, leading to slightly
different sets of amino acids that were reliably measured [49].

A major limitation of the δ13C biomarker is its limited specificity and sensitivity with
respect to AS and metabolically different sources of such sweeteners [6,38,50]. Theoretically,
δ13C values reflect all dietary items from plants utilizing the C4 photosynthetic pathway.
Hence, the biomarker may not reflect the SSBs intake alone. Moreover, the δ13C is limited
to AS refined from C4 plants (cane sugar and corn syrup), and not sugar refined from C3
plants like the beet sugar [6,23]. Therefore, the application of the δ13C biomarker of SSBs is
limited to populations that consume sugars refined from C4 sources. Furthermore, even
though dietary glucose and fructose moieties are assumed to have similar metabolic fates,
this is unpredictable and unlikely to hold true if high inter-individual variability exists [6].
Additionally, none of the studies included in this review demonstrated the validity of the
δ13C biomarker in populations that consume a large proportion of dietary energy from
corn-based foods. The values of δ13C in the blood samples may also be influenced by the
dietary intake of meat from livestock fed corn-based diets, which potentially confounds the
specificity of the δ13C biomarker [6,23,50]. Attempts to control this potential confounder
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with use of the nitrogen isotope, δ15N—found in proteins and not in sugar—yielded mixed
findings [6,48,51], with nearly two thirds variation in the self-reported dietary intake of
AS being attributed to other factors beyond the scope of the δ13C biomarker analysis
approach [48]. The use of δ15N in another study only marginally increased the correlation
between AS and δ13C values [51]. Given that the majority of studies relied on self-reported
dietary data, this warrants further analyses in controlled feeding settings. However, it
should be emphasized that in a recent controlled feeding study, δ13C in the serum amino
acids rather than in whole serum or in red blood cells, was correlated with AS intake but
not dietary intake of animal protein or red meat [42,49].

Even though the δ13C alanine biomarker for SSBs, as proposed by Choy et al. [29], is
biochemically plausible and specific as validated in controlled feeding studies [40,42,49],
values of the δ13C of alanine may be influenced by complex metabolic processes along the
chain of inference, including extraneous factors such as fasting state, dietary composition,
overweight, and obesity [50]. For example, the proximal link between δ13C of glucose
and serum alanine in the glucose−alanine cycle. Additionally, because of the lack of
accepted reference methods for estimating the habitual AS intake, validation studies rely
on short-term controlled feeding measures, as observed in the Yun et al. study [42]. For
example, they conducted a controlled feeding study for 2 weeks, yet the half-life of δ13C
in plasma is estimated at 2.5 weeks [40]. Hence the dietary period falls short of the
residence time of the serum δ13C of alanine [40,42]. This potentially biased the AS-δ13C
association towards the null by attenuating the effect sizes [49]. In another study, it was
determined that stable isotope ratio signatures in the plasma and red blood cells required
8–12 weeks and 15–19 weeks, respectively, to reach isotopic equilibration [40]. In the study
of Johnson et al. [49], the carbon isotope ratios of the amino acids in the red blood cells
were not at or near equilibrium at the end of the 12-week study. Therefore, the process of
validating stable isotope biomarkers using short-term controlled feeding programs raises
methodological concerns [50].

As for the panel of biomarkers identified in Gibbons et al. [33], none of these candidate
biomarkers have been validated by another study; thus, more mechanistic investigations,
besides the validation process, are warranted. Their presence in urine could be confounded
by extraneous factors other than the intake of SSBs. The proposed compounds are not
normally added in their pure form during the processing of cola drinks [73]. For instance,
formate has been cited as an intermediate in normal metabolism, produced from different
metabolic sources [53]. Taurine, commonly used as a dietary supplement in energy drinks,
is also present in other food items, e.g., naturally occurring in shellfish, meat, and dairy
products [55], which limits its specificity for AS. Similarly, watermelons are known to
be rich dietary sources of citrulline [54]. Isocitrate, which essentially is an isomerized
citrate, is used as a food additive, but dietary sources includes fruit juices, especially
blackberries and vegetables such as carrots [56]. This panel of biomarkers, therefore,
requires more investigations regarding their biological plausibility and robustness in other
study settings. Importantly, validation study designs should account for the potential
confounding effect of other dietary sources, as well as intermediates of metabolic processes
that may be transformed into these candidate biomarkers. Similarly, this applies to the set
of metabolites indicative of SSBs consumption in the study of Perng et al. [39]. Some of
the candidate biomarkers (e.g., nonanoate) are dietary supplements and may be derived
from other food groups, including fruit flavored SSBs and alcoholic drinks [39]. As none
of them has been validated in intervention studies or any other general population study,
their specificity and sensitivity for AS or SSBs, therefore, remains inconclusive.

Until recently, there were almost non-existent metabolomics, population-based studies
on the biomarkers of dietary LCSBs [73]. The present review identified three recent studies
that have explored this research area, identifying common LCSs namely, acesulfame-K,
saccharin, cyclamate, sucralose, and steviol glycosides in urine as indicative of LCSB
intake. These findings support the hypothesis that a biomarker approach has potential to
objectively assess the intake of common LCSBs, especially, given that most of these LCSs
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are excreted unchanged in urine [73]. Moreover, these compounds (i.e., acesulfame-K,
saccharin, sucralose, cyclamate, and steviol glycosides) are not produced endogenously,
and are highly specific to the ingestion of the parent compound [73]. However, as these
LCSs are also used in other foods as sweeteners, relying on LCSBs alone as the surrogates
for LCS intake may be misleading, because this biomarker approach does not discriminate
specific sources of LCSs within a diet. More comprehensive methods are needed for
the assessment of dietary intakes, including qualitative data and review of all foods for
presence of LCSs [36]. As observed in Sylvetsky et al. [43], the presence of sucralose in
urine of LCSs non-consumers confirms that people consume LCSs inadvertently in other
dietary sources other than LCSBs. Other non-dietary sources of LCSs, such as personal
care products (e.g., oral hygiene products), may also potentially bias the results [43,57].
Taken together, even though the urinary excretion of LCSs reflects its dietary intake [36,37],
this novel approach should be further developed to account for inter-and intra-individual
variations with respect to dietary intake and urinary excretions in different study settings,
populations, and health status [36].

5. Conclusions

This review observed that the most promising candidate biomarker of SSBs is δ13C,
with δ13C of alanine being the most robust, sensitive, and specific to SSBs. Improved esti-
mation of the SSB intake may be realized by measuring the δ13C of multiple non-essential
amino acids. Stable carbon isotopes in the total tissues, such as plasma and red blood
cells, were observed to be confounded by other dietary components, particularly, meat,
fish, and/or animal protein, therefore, showed modest discrimination power for AS and
SSBs intake. A major limitation in the application of carbon isotope-based biomarkers is
the inability to detect AS refined from sources that utilize the C3 photosynthetic pathway
and other sources. The panel of candidate biomarkers of SSBs, as identified via untargeted
metabolomics studies, require further investigation regarding their biochemical plausibility
and validation in dose−response studies before they can be used in epidemiological studies.
We also observed that LCSs, particularly acesulfame-K, saccharin, sucralose, cyclamate,
and steviol glucuronide, may predict the intake of LCSBs in regions where such sweeteners
are approved for commercial use. This is a promising area of research, as some of LCSs
compounds are excreted unchanged via urine, are not produced endogenously in other
metabolic processes, and are highly specific to dietary intake. However, other sweeteners
may undergo metabolism into metabolites chemically indistinguishable from those pro-
duced from other dietary sources. The differences in the metabolic fates of LCSs should,
therefore, be considered in biomarker discovery studies. Moreover, these sweeteners are
also used in other foods. As such, the urinary concentration of these metabolites may
not reflect the LCSB intake alone, unless qualitative data on other food group intake are
properly assessed. In addition, given that these are urinary-based biomarkers that reflect
short-term exposures, further research needs to characterize the habitual intake of LCSBs.
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Metabolomics signatures of sweetened beverages and added sugar are
related to anthropometric measures of adiposity in young individuals: results
from a cohort study
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A B S T R A C T

Background: The associations of sweetened beverages (SBs) and added sugar (AS) intake with adiposity are still debated. Metabolomics could provide
insights into the mechanisms linking their intake to adiposity.
Objectives:We aimed to identify metabolomics biomarkers of intake of low- and no-calorie sweetened beverages (LNCSBs), sugar-sweetened beverages
(SSBs), and ASs and to investigate their associations with body mass index, body fat percentage, and waist circumference.
Methods: We analyzed 3 data sets from the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) cohort study, of children
who provided 2 urine samples (n ¼ 297), adolescents who provided a single urine sample (n ¼ 339), and young adults who provided a single plasma
sample (n ¼ 195). Urine and plasma were analyzed using untargeted metabolomics. Dietary intakes were assessed using 3-d weighed dietary records. The
random forest, partial least squares, and least absolute shrinkage and selection operator were jointly used for metabolite selection. We examined asso-
ciations of intakes with metabolites and anthropometric measures using linear and mixed-effects regression.
Results: In adolescents, LNCSB were positively associated with acesulfame (β: 0.0012; 95% confidence interval [CI]: 0.0006, 0.0019) and saccharin (β:
0.0009; 95% CI: 0.0002, 0.0015). In children, the association was observed with saccharin (β: 0.0016; 95% CI: 0.0005, 0.0027). In urine and plasma,
SSBs were positively associated with 1-methylxanthine (β: 0.0005; 95% CI: 0.0003, 0.0008; and β: 0.0010, 95% CI 0.0004, 0.0015, respectively) and 5-
acetylamino-6-amino-3-methyluracil (β: 0.0005; 95% CI: 0.0002, 0.0008; and β: 0.0009; 95% CI: 0.0003, 0.0014, respectively). AS was associated with
urinary sucrose (β: 0.0095; 95% CI: 0.0069, 0.0121) in adolescents. Some of the food-related metabolomics profiles were also associated with adiposity
measures.
Conclusions:We identified SBs- and AS-related metabolites, which may be important for understanding the interplay between these intakes and adiposity
in young individuals.

Keywords: metabolite biomarkers, metabolomics, sweetened beverages, added sugar, adiposity
Introduction

High consumption of sweetened beverages (SBs) or “soft drinks”
and added sugars (ASs), particularly among children and adolescents
Abbreviations: AAMU, 5-acetylamino-6-amino-3-methyluracil; AS, added sugar; CI, co
Designed; IARC, International Agency for Research on Cancer; LASSO, least absolute shr
machine learning; PLS, partial least squares; RF, random forest; SB, sweetened beverage; SD
%BF, body fat percentage; 3d-WDR, 3-d weighed dietary record.
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has emerged as an important nutrition and public health issue [1]. SBs
are generally divided into 2 categories, sugar-sweetened beverages
(SSBs) and low-calorie and no-calorie sweetened beverages
(LNCSBs). SSBs are a major source of ASs in the diet [2] and are
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argued to contribute to excess caloric intake and poor nutrition [3,4].
Regular consumption of SBs is associated with various health condi-
tions, such as weight gain, obesity, type 2 diabetes, cardiovascular
diseases, and some cancers [5–7]. However, some of these associations
are not consistent across studies [8,9].

Dietary intake is typically assessed by self-reported dietary ques-
tionnaires, which are fraught with measurement errors [10]. Indeed,
underreporting of SB and AS intake because of social desirability bias
has been described [11]. In recent years, biomarkers of dietary intake
have been proposed as one of the ways to improve dietary exposure
assessment [12]. To date, however, few reliable biomarkers have been
identified and validated for use in epidemiologic studies [13–15]. Some
gains include the 24-hour urinary sucrose and fructose, which has been
applied in calibrating total sugar intakes in diverse populations [16,17]
although it does not distinguish intrinsic from AS. In our previous work
[18], we outlined that the 13C:12C carbon isotope ratio (δ13C),
measured in whole blood, red blood cells, hair, breath, and plasma
correlates with AS and SSB intake. However, sucrose from C4
photosynthetic plants (e.g., corn, sugarcane) moderately correlates with
δ13C compared with sucrose from C3 plants (e.g., sugar beets, most
fruits). Thus, the utility of this biomarker is limited by the source of the
sucrose [19]. Consistent with the earlier reviews [18,19], an updated
review on validity of biomarkers of food intake emphasizes the sus-
tained interest in discovery and validation of new biomarkers, partic-
ularly for foods like SSBs [20].

One issue that may have influenced the progress of biomarkers of
dietary intake such as for SBs and AS is that many candidates are
selected based on putative mechanisms. However, given the afore-
mentioned potentially complex metabolism of these foods, targeting
single or multiple selected pathways may be suboptimal. Large-scale
metabolite measurement through untargeted metabolomics ap-
proaches across multiple data sets and biosamples could help uncover
biomarkers of SBs and AS. Further, because metabolites of these foods
might exist in a continuum in body fluids, profiling of the plasma and
subsequently the urine could be an important research advance. Be-
sides, changes in the metabolome are likely to represent important
drivers of the relationship between the intake of intake of SBs and AS
and adiposity. Interestingly, limited studies have investigated untar-
geted metabolomics biomarkers of SSB intake [21–24], as well as the
metabolic changes of SSB intake with adiposity [24].

Leveraging 3 data sets across 2 biosamples within a well-
characterized cohort of children and adolescents, we aimed to
explore metabolomics biomarkers of SBs and AS intake and to
investigate their associations with 3 anthropometric measures of
adiposity: BMI, body fat percentage (%BF), and waist circumference
(WC).

Methods

Study design
The Dortmund Nutritional and Anthropometric Longitudinally

Designed (DONALD) study is an open cohort in Dortmund, Germany,
that has been recruiting infants in their first year of life since 1985.
Participants undergo their first examination at 3 mo of age, followed by
3 additional visits in their first year of life, 2 visits in the second year,
and then annually until young adulthood. Regular examinations
include dietary intake, anthropometrics, urine samples (starting at age
3–4 y), blood samples (starting at age 18 y), and interviews on lifestyle,
sociodemographics, and medical history. A more detailed description
of the DONALD study is described elsewhere [25]. The DONALD
880
study was approved by the Ethics Committee of the University of Bonn
and conducted according to the guidelines of the Declaration of Hel-
sinki. Written informed consent was obtained from the parents and
from adolescents aged 16 y and above.

Study population
This analysis included 3 study samples, hereinafter termed children

urine, adolescent urine, and young adult plasma. The eligible partici-
pants for children urine were individuals with two 3-d weighed dietary
records (3d-WDRs) and 2 urine collections, and for adolescent urine,
individuals with one 3d-WDR and 1 urine collection. Young adult
plasma comprised individuals with 3 or more 3d-WDR assessments
within the last 5 years preceding the date of blood draw. Figure 1
provides an overview of the 3 study samples and the analytical plan.
Supplemental Figure 1 provides a detailed flowchart and the overlap of
participants across the samples.

Measures

Dietary intake assessment
Study participants themselves, or assisted by their parents, weighed

all foods and beverages consumed as well as leftovers using electronic
food scales to the nearest 1 g. In situations where weighing is not
feasible, for example, out-of-home consumption, participants estimated
their intakes semiquantitatively using common household measures
(e.g., spoons, cups, portions). Participants provided information on
specific food items, their brands, ingredients, and preparation. Trained
dieticians entered the dietary records in the database after reviewing
them for completeness and plausibility. Using a continuously updated
in-house food composition database [26], food group intakes were
determined. The nutritional content of staple foods was based on
German food composition tables, while the energy and nutrient values
of commercial food products were determined by recipe simulation.

Four food groups were included in this analysis: SSB included a
diverse group of nondairy beverages with AS, including sweetened
fruit juice drinks, sodas, sport energy drinks, and other flavored,
carbonated, and noncarbonated soft drinks. LNCSB included afore-
mentioned beverages but artificially sweetened with low- or no-caloric
sweeteners, without AS. SBs included both SSB and LNCSB. AS
included all sugars added to foods either during processing or
manufacturing or during preparation or at the table [27]. The individual
average of food intake from 3 recording days in grams per day was
calculated.

Anthropometric measurements
Experienced nurses conducted different sets of anthropometric

measurements. BMI (in kg/m2) and WC (centimeters) were determined
by standard procedures. In children, BMI standard deviation scores
(SDSs) were calculated using the national age- and sex-specific BMI
percentiles as per Kromeyer–Hauschild method [28]. %BF was esti-
mated from 4 skinfold thickness measurements (biceps, triceps, iliaca,
and scapula), following age- and sex-specific equations by Deurenberg
et al. [29]. Anthropometric measurements for this analysis were taken
on, or nearest to, the date of urine collection and blood draw.

Other covariates assessment
Habitual leisure time physical activity was assessed using a ques-

tionnaire based on the Adolescent Physical Activity Recall Question-
naire [30], considering participation in organized (e.g., club sport, gym)
and unorganized sports (e.g., cycling) over the previous year. Energy



FIGURE 1. Study design and analysis. (A) Analytic samples and data collection. Children urine included 2 dietary assessments and 2 urine collections.
Adolescent urine included single dietary assessment and urine collection. Young adult plasma included multiple (3–6) dietary assessments within 5 y preceding a
single blood draw. (B) Study analytic plan. %BF, body fat percentage; 3d-WDR, 3-d weighed dietary record; LASSO, least absolute shrinkage and selection
operator; T1–T6, dietary assessments; WC, waist circumference.
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expenditure from these activities was quantified in metabolic equiva-
lent of task hours per week. Self-reported smoking and alcohol status in
adolescents and young adults was categorized into current, former, or
never. Lifestyle factors (physical activity, smoking, and alcohol use)
were assessed in adolescents and young adults only.

Urine samples
The 24-h urine samples were collected on the third day of their

dietary assessment, following a standardized protocol. Within this
period, urine was collected in preservative-free plastic containers and
stored at less than �12�C until transferred to the study center where
they were stored at �22�C until thawed and analyzed.

Blood samples
A fasting blood sample was drawn from participants and centri-

fuged at 4�C for 15 min (3100 U/min, 2000 G). Serum, plasma (citrate,
EDTA) and buffy coat aliquots (500 μL each) were subsequently stored
at �80�C. EDTA plasma was used in this study.

Metabolite profiling
Two independent laboratories, Metabolon and International Agency

for Research on Cancer (IARC), performed untargeted metabolomics
analysis, as shown in Figure 1. Metabolon used ultra–high-perfor-
mance liquid chromatography-tandem mass spectroscopy to identify
metabolites in adolescent urine and young adult plasma samples.
Briefly, Metabolon carried out a set of standardized procedures from
sample accession and preparation to analysis, raw data extraction and
peak identification, following their internal standards [31]. In profiling
the plasma samples, both metabolomics and lipidomics techniques
were applied. In adolescent urine samples, 1407 features were anno-
tated: 940 with known biochemical identity and 467 with no assigned
chemical identity. In plasma samples, 1042 features were annotated:
811 with known chemical identity and 231 unknown.

IARC performed untargeted metabolite profiling using a ultra–high-
performance liquid chromatography-tandem mass spectroscopy system
(Q Exactive; Thermo Fischer Scinetific). Children urine samples (n ¼
600, representing 2 collections per participant at 2 time points) were
analyzed next to each other in random order, and sample pairs were
randomized across the batch. There were 4 independent analytical
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batches consisting of 2 individual 96-well plates. The mass spec-
trometer was operated in a positive/negative switching polarity. Pre-
processing was performed using Compound Discoverer 3.3 software
(Thermo Fisher Scientific) with minimum peak intensity threshold at
500,000, mass tolerance at 5 ppm, and feature alignment between
samples performed with maximum retention time window of 0.05 min
and mass tolerance of 5 ppm. Unlike Metabolon’s approach, metabolite
features from IARC were first analyzed with dietary intake, and only
features related to dietary intake were subsequently annotated. A
detailed description of the analytical, quality control standards, and
annotation procedures for both laboratories, is provided in Supple-
mental Methods.
Statistical analyses

Participant characteristics
We calculated the median (25% and 75% percentile) for continuous

variables and count (percentage) for categorical variables.

Preprocessing metabolomics data
We excluded metabolites that had missing values in >30% of the

consumers of each food group. Missing values were imputed with half
of the minimum value observed within each batch, with the assumption
of missing due to low concentration below the instrument’s detection
limit. Subsequently, these were natural log-transformed and standard-
ized to have a mean of zero and unit variance. We corrected analytical
batch effects by ber bagging method using the ‘dbnorm’ R package
[32].

Metabolites selection
We applied 3 machine learning (ML) methods to first select and

validate food-related metabolites, acknowledging the high dimen-
sionality of the data sets and correlation among metabolites. These
were random forest (RF), partial least squares (PLS), and least absolute
shrinkage and selection operator (LASSO) with a bagging strategy. The
PLS and RF were implemented using the multivariate modeling with
minimally biased variable selection in R algorithm, a statistical vali-
dation framework that integrates a recursive ranking and backward
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elimination of variables within a repeated double cross-validation
scheme [33]. The models were tuned following author recommenda-
tions [33] and were repeated 50 times to identify a stable set of me-
tabolites ranked based on their importance to predict the respective
dietary variable. The LASSO models were implemented using a
variable-selection oriented LASSO bagging algorithm, combining
LASSO regression with bootstrap aggregating to enhance stability and
robust selection of biomarkers [34]. We generated 1000 bootstrap
samples from the original data sets, and LASSO models were fitted on
each sample using 5-fold cross-validation, all other parameters as per
author description [34]. We applied the curve elbow point method to
detect sharp drops in the observed frequency of variable selection.
Metabolites with selection frequencies at and above the last elbow
point were retained, if more than 1 point existed. For downstream
analyses, we considered only metabolites selected by �2 ML methods
to reduce the likelihood of selecting metabolites due to noise or
method-specific bias. An overview of these steps is provided in Sup-
plemental Figure 2.

Associations of food groups with metabolites
We used multivariable linear regression and linear mixed-effects

models to examine the association of dietary intake and individual me-
tabolites, for cross-sectional and repeated measures, respectively. In all
regression models, we regressed each metabolite on intake (grams per
day) adjusting for age, sex, and energy intake. For adolescents and young
adults, we further adjusted for lifestyle factors (physical activity, alcohol,
and smoking status). In children urine samples, the linear mixed-effects
models included a random intercept for each participant. Because of the
analytic design of long-term dietary assessment, plasma models were
additionally adjusted for the difference in time between dietary assess-
ment and blood draw (i.e., difference¼ age at blood draw –mean age of
dietary assessments) and the number of dietary assessments. To account
for multiple testing, we applied the Benjamini–Hochberg procedure to
control the false discovery rate at 5%.

Associations of food-related metabolites with anthropometric
measurements

To assess the associations of the food-related metabolites and
adiposity, separate linear regression and linear mixed-effects models
were constructed for each adiposity measure (BMI, %BF, andWC). We
modeled these as response variables and sets of food-related metabo-
lites and covariates [age, sex, energy intake, birthweight, and time
difference (in days) between biosample collection and anthropometric
measurements, and additionally, in adolescents and young adults,
physical activity, alcohol, and smoking status] as predictor variables. In
children urine samples, a random intercept for each participant was
specified. To assess multicollinearity of the predictor variables, we used
the variance inflation factor, and whenever appropriate, removed
redundant metabolites with variance inflation factor of >10 [35],
progressively starting from the highest. Considering the strong corre-
lation between anthropometric measurements, we applied the modified
Bonferroni method [36] to adjust the significance level for multiple
testing.
Missing covariates
We used the K-Nearest Neighbor algorithm to impute the missing

values in birthweight, physical activity, alcohol, and smoking status,
with 10 nearest neighbors based on nonmissing values in other cova-
riates (sex, age, BMI, energy intake, birthweight, physical activity, and
alcohol and smoking status) implemented in the VIM R package. All
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statistical analyses were conducted using R 4.1.3 (The R Foundation
for Statistical Computing).

Results

Participant characteristics
The median ages at biosample collection were 7.0 y (T1) and 8.0 y

(T2) for children, 18.0 y for adolescents, and 18.1 y for young adults.
Sex distribution was 52.9% female for T1 and 51.5% for T2 in children;
49.0% for adolescents; and 55.4% for young adults (Table 1).
Metabolite selections
There was good agreement in metabolite selections across the ML

approaches. The PLS consistently selected more metabolites and
shared common selections with the LASSO bagging algorithm,
compared with the RF. The metabolite selections are provided for
children urine, adolescent urine, and young adult plasma in Supple-
mental Tables 1–3, respectively.
Associations of food groups with urine metabolites in
children

LNCSB, SSB, SBs, and AS were associated with 4, 18, 18, and 28
metabolite features, respectively (Supplemental Table 4). Of the 8
biochemically identified metabolites, 7 associations were food specific
(LNCSB positively associated with saccharin; SSB negatively associ-
ated with 4-pyridoxic acid; SBs negatively associated with kynurenic
acid; and AS positively associated with theobromine, 7-methylguanine,
aspartyphenylalanine, and negatively associated with uric acid). There
was 1 common food-metabolite association: SSB, SBs, and AS were all
associated with higher urinary concentrations of decadienoyl carnitine
C10:2 (Table 2).
Associations of food groups with urine metabolites in
adolescents

Figure 2 summarizes metabolites associated with SBs and AS.
LNCSB intake was associated with 11 metabolites (6 of them were
specific to LNCSB), SSB intake with 37 metabolites (12 specific), SBs
intake with 34 metabolites (9 specific), and AS intake with 32 me-
tabolites (24 specific). All food-specific and nonspecific associations in
adolescent urine samples can be found in Supplemental Table 5.

Briefly, LNCSB intake was associated with higher concentrations of
acesulfame (β: 0.0012; 95% confidence interval [CI]: 0.0006, 0.0019)
and saccharin (β: 0.0009; 95% CI: 0.0002, 0.0015). SSB intake was
associated with higher concentrations of caffeine metabolites: 1-meth-
ylxanthine (β: 0.0005; 95% CI: 0.0003, 0.0008) and 5-acetylamino-6-
amino-3-methyluracil (AAMU; β: 0.0005; 95% CI: 0.0002, 0.0008).
Notably, SSB and SB intakes were also associated with elevated con-
centrations of unknown metabolites X-17679 (β: 0.0010; 95% CI:
0.0008, 0.0013; and β: 0.0010; 95% CI: 0.0007, 0.0012); X-19497 (β:
0.0005; 95% CI: 0.0003, 0.0008; and β: 0.0005; 95% CI: 0.0003,
0.0008); and X-17328 (β: 0.0005; 95% CI: 0.0003, 0.0008; and β:
0.0006; 95% CI: 0.0003, 0.0008), respectively. Other noteworthy as-
sociations included N1-methyl-2-pyridone-5-carboxamide (2PYr) with
SSBs (β: 0.0004; 95% CI: 0.0002, 0.0007) and SBs (β: 0.0004; 95%
CI: 0.0002, 0.0007) and N,N-dimethylalanine with SSBs (β: 0.0005;
95% CI: 0.0002, 0.0007) and SBs (β: 0.0005; 95% CI: 0.0003, 0.0008).
AS intake was associated with higher concentrations of sucrose (β:
0.0095; 95% CI: 0.0069, 0.0121), X-17679 (β: 0.0098; 95% CI:



TABLE 1
Basic characteristics of the study population1

Children urine Adolescent urine Young adult plasma

n T1, n ¼ 297 n T2, n ¼ 270 n Urine, n ¼ 339 n Plasma, n ¼ 195

Sex: female 297 157 (52.9) 270 139 (51.5) 339 166 (49.0) 195 108 (55.4)
Age at biosample collection (y) 297 7.0 (7.0, 7.2) 270 8.0 (8.0, 8.2) 339 18.0 (17.0, 18.1) 195 18.1 (18.1, 18.2)
BMI (kg/m2) 297 15.8 (15.0, 17.1) 270 16.2 (15.1, 17.5) 339 21.9 (19.9, 24.0) 195 22.2 (20.1, 24.5)
Body fat percentage 296 17.3 (14.7, 20.4) 270 17.5 (14.8, 21.1) 339 22.6 (18.4, 27.1) 195 23.6 (19.2, 28.1)
LNCSB (g/d) 297 0.0 (0.0, 1022.3) 270 0.0 (0.0, 443.3) 339 0.0 (0.0, 0.0.0) 195 0.0 (0.0, 54.2)
Sugar-sweetened beverage
(g/d)

297 44.0 (0.0, 163.3) 270 55.8 (0.0, 166.9) 339 133.3 (0.0, 418.3) 195 124.9 (51.2, 324.4)

Total sweetened beverages
(g/d)

297 66.7 (0.0, 198.3) 270 66.7 (0.0, 216.9) 339 166.7 (0.0, 508.3) 195 163.8 (72.8, 408.4)

Added sugar (g/d) 297 46.5 (33.7, 64.7) 270 49.9 (35.0, 72.3) 339 62.2 (35.7, 89.9) 195 62.2 (43.8, 82.2)
Added sugar (% energy) 297 12.5 (9.4, 16.3) 270 12.5 (9.1, 17.2) 339 11.6 (7.4, 16.0) 195 12.5 (9.6, 15.3)
TEI (kcal/d) 297 1527.3 (1310.0, 1736.2) 270 1635.2 (1402.2, 1840.3) 339 2126.9 (1748.5, 2582.1) 195 1978.1 (1697.0, 2390.1)
Dietary assessments 297 1.0 270 1.0 339 1.0 195 4.0 (4.0, 5.0)
Physical activity (MET-h/w) — — — — 215 34.0 (14.1, 54.8) 184 30.1 (12.1, 52.9)
Smoking status — — — — 211 142
Never — — — — — 155 (73.5) — 98 (69.0)
Former — — — — — 23 (10.9) — 21 (14.8)
Current — — — — — 33 (15.6) — 23 (16.2)

Alcohol status — — — — 179 153
Never — — — — — 24 (13.4) — 20 (13.1)
Former — — — — — 27 (15.1) — 31 (20.3)
Current — — — — — 128 (71.5) — 102 (66.7)

Abbreviations: LNCSB, low- and no-calorie sweetened beverages; MET-h/w, metabolic equivalent of task-hours per week; TEI, total energy intake.
1 Data are given as n (%) and median (25%, 75%) for categorical and continuous variables, respectively. In children analytic sample, of the 297 participants in

T1, 270 had repeated measures (T2). Although blood samples are collected at the age of 18 y or older, the dietary assessments in “young adults” mostly occurred
during adolescence. Differences in n are due to missing data.

TABLE 2
Multivariable linear regression estimates of the associations of food groups with urine metabolites in children (n ¼ 297)

Food Metabolite HMBD ID β 95% CI

Lower Upper

LNCSB Saccharin HMDB0029723 0.0016 0.0005 0.0027
SSB Decadienoyl carnitine (C10:2) 0.0014 0.0009 0.0019

4-pyridoxic acid HMDB0000017 �0.0006 �0.0011 �0.0002
SBs Decadienoyl carnitine (C10:2) 0.0013 0.0008 0.0017

Kynurenic acid HMDB0000715 �0.0008 �0.0013 �0.0003
AS Decadienoyl carnitine (C10:2) 0.0120 0.0085 0.0155

Theombromine HMDB0002825 0.0080 0.0044 0.0116
7-Methylguanine HMDB000089 0.0055 0.0020 0.0092
Aspartylphenylalanine HMDB0000706 0.0050 0.0016 0.0084
Uric acid HMDB0000289 �0.0038 �0.0072 �0.0003

Abbreviations: AS, added sugar; CI, confidence intervals; HMBD ID, human metabolome database identification; LNCSB, low- and no-calorie sweetened
beverages; SB, total sweetened beverage; SSB, sugar-sweetened beverage.
Models adjusted for age, sex, and energy intake, with a random intercept for each participant. Only biochemically identified metabolites with false discovery
rate–adjusted q value <0.05 are shown. Complete list is given in Supplemental Table 1.
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0.0073, 0.0124), and 1-methylxanthine (β: 0.0084; 95% CI: 0.0057,
0.0111).
Associations of food groups with plasma metabolites
The associations of SBs and AS intakes with plasma metabolites are

provided in Table 3. LNCSB intake was associated with 3 metabolites
(2 of them specific to LNCSB intake), SSB with 11 metabolites (5
specific), SBs with 15 metabolites (8 specific), and AS with 3 metab-
olites (1 specific). Notably, 1-methyxanthine and AAMU were posi-
tively associated with SSBs (β: 0.0010; 95% CI: 0.0004, 0.0015; and β:
0.0009; 95% CI: 0.0003, 0.0014); SBs (β: 0.0010; 95% CI: 0.0005,
0.0015; and β: 0.0008; 95% CI: 0.0003, 0.0013); and AS (β: 0.0089;
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95% CI: 0.0029, 0.0150; and β: 0.0091; 95% CI: 0.0031, 0.0151),
respectively. Moreover, SSBs and SBs were associated with higher
concentrations of caffeine (β: 0.0010; 95% CI: 0.0004, 0.0015; and β:
0.0009; 95% CI: 0.0005, 0.0014) and 1-3-dimethylurate (β: 0.0009;
95% CI: 0.0003, 0.0014; and β: 0.0008; 95% CI: 0.0004, 0.0013),
respectively. All food-specific and nonspecific associations in plasma
can be found in Supplemental Table 6.
Associations of food-related metabolites with
anthropometric measures

In children, 4 AS-related metabolite features, but of unknown
biochemical identities, had mixed associations with BMI SDS and %



FIGURE 2. The associations of food groups with urine metabolites in adolescents. All models were adjusted for age, sex, energy intake, physical activity,
alcohol and smoking status. Metabolites with false discovery rate–adjusted q value <0.05: AS, n ¼ 32; LNCSB, n ¼ 11; SSB, n ¼ 37, and SBs, n ¼ 34. The
histogram bars represent the log-transformed P values: turquoise, positive association; light red, negative. *Metabolites not confirmed based on authentic
standard, but Metabolon are confident in its identity. AS, added sugar; LNCSB, low- and no-calorie sweetened beverage; SB, total sweetened beverage; SSB,
sugar-sweetened beverage.
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BF (Table 4). One metabolite feature “214.08427@3.876” was posi-
tively associated with both BMI SDS (β: 0.08; 95% CI: 0.01, 0.014)
and %BF (β: 0.59; 95% CI: 0.16, 1.02).

In adolescent urine samples, acesulfame was positively associated
with BMI (β: 0.82; 95% CI: 0.43, 1.22) and %BF (β: 0.92; 95%CI: 0.36,
1.47). 2PYr was positively associated with BMI (β: 0.63; 95% CI: 0.21,
1.05),%BF (β: 0.86; 95%CI: 0.27, 1.44), andWC (β: 1.98; 95%CI: 0.64,
3.32). Decanoylcarnitine (C10) was also positively associated with BMI
(β: 1.09; 95%CI: 0.62, 1.56),%BF (β: 1.56; 95%CI: 0.92, 2.20), andWC
(β: 4.41; 95% CI: 2.85, 5.96). Two metabolites were inversely associated
with all adiposity measures: N,N-dimethylalanine with BMI (β: �0.61;
95% CI: �1.03, �0.18); %BF (β: �1.18; 95% CI: �1.78, �0.58); and
WC (β: �2.27; 95% CI: �3.66, �0.89); and 3-hydroxyhexanoate with
BMI (β:�0.96; 95%CI:�1.49,�0.42);%BF (β:�1.43; 95%CI:�2.15,
�0.71); and WC (β: �3.14; 95% CI: �4.86, �1.42) (Table 4).

In young adult plasma samples, 2 unknown metabolites showed
positive associations: X-17340 with BMI (β: 1.02; 95% CI: 0.31, 1.74)
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and %BF (β: 1.26; 95% CI: 0.26, 2.26); and X-24337 with BMI (β:
0.76; 95% CI: 0.18, 1.33) only. Carotene diol (1) was inversely asso-
ciated with WC (β: �2.04; 95% CI: �3.50, �0.58) (Table 4).

Post-hoc exploration and analysis of bias
We sought to understand the overlapping of caffeine-related me-

tabolites with SSB and AS across biosamples and whether these as-
sociations were confounded by other dietary sources of caffeine, such
as coffee, chocolate, and other powdered instant beverages, including
tea. Indeed, caffeine and caffeine-related metabolites measured in our
study were associated with coffee intake, further providing plausibility
of our results (Supplemental Table 7), but the main findings were
robust to further adjustment with these foods (Supplemental Table 8).
Next, we determined the correlation between SSB and AS intake and
found a moderately strong Pearson correlation in adolescent urine (r:
0.65; 95% CI: 0.58, 0.71) and in young adult plasma (r: 0.78; 95% CI:
0.72, 0.83) samples.



TABLE 3
Multivariable linear regression estimates of the associations of food groups with plasma metabolites (n ¼ 195)

Food Metabolite HMBD ID β 95% CI

Lower Upper

LNCSB Octadecanedioylcarnitine (C18-DC)1 �0.0022 �0.0034 �0.0009
Adipoylcarnitine (C6-DC) HMDB61677 �0.0022 �0.0035 �0.0008
3-bromo-5-chloro-2,6-dihydroxybenzoic acid1 0.0020 0.0007 0.0033

SSB 1-methylxanthine HMDB10738 0.0010 0.0004 0.0015
Caffeine HMDB01847 0.0010 0.0004 0.0015
1,3-dimethylurate HMDB01857 0.0009 0.0003 0.0014
AAMU HMDB04400 0.0009 0.0003 0.0014
X-16087 �0.0008 �0.0014 �0.0003
3-CMPFP HMDB61643 �0.0008 �0.0014 �0.0002
X-13866 �0.0007 �0.0013 �0.0002
Cyclopropyl 10:1 fatty acid (1)1 �0.0007 �0.0013 �0.0001
Carotene diol (1) �0.0006 �0.0011 �0.0001
4-cholesten-3-one HMDB00921 �0.0007 �0.0013 �0.0001
X-24669 0.0007 0.0001 0.0012

SBs 1-methylxanthine HMDB10738 0.0010 0.0005 0.0015
Caffeine HMDB01847 0.0009 0.0005 0.0014
AAMU HMDB04400 0.0008 0.0003 0.0013
1,3-dimethylurate HMDB01857 0.0008 0.0004 0.0013
X-24951 0.0008 0.0003 0.0012
X-16087 �0.0007 �0.0012 �0.0003
X-24337 0.0007 0.0003 0.0012
3-CMPFP HMDB61643 �0.0008 �0.0012 �0.0003
X-11308 0.0007 0.0002 0.0012
Hydroquinone sulfate HMDB02434 �0.0007 �0.0012 �0.0002
X-17340 �0.0006 �0.0010 �0.0001
N-formylphenylalanine �0.0006 �0.0011 �0.0001
Dihomo-linolenoylcarnitine (C20:3n3 or 6)1 0.0005 0.0001 0.0009
Adipoylcarnitine (C6-DC) HMDB61677 �0.0006 �0.0011 �0.0001
Glutamine conjugate of C6H10O2 (1)1 �0.0006 �0.0010 �0.0001

AS Etiocholanolone glucuronide HMDB04484 �0.0115 �0.0177 �0.0053
AAMU HMDB04400 0.0091 0.0031 0.0151
1-methylxanthine HMDB10738 0.0089 0.0029 0.0150

Abbreviations: 3-CMPFP, 3-carboxy-4-methyl-5-pentyl-2-furanpropionate; AAMU, 5-acetylamino-6-amino-3-methyluracil; AS, added sugar; HMBD ID,
human metabolome database identification; LNCSB, low- and no-calorie sweetened beverage; SB, total sweetened beverage; SSB, sugar-sweetened beverage.
All models adjusted for age, sex, energy intake, physical activity, alcohol and smoking status, number of dietary assessments, and the difference in time between
dietary assessment and blood draw. Only metabolites with false discovery rate–adjusted q value < 0.05 are shown. The identities of X-, followed by a number
(e.g., X-16087), are unknown.
1 Metabolites not confirmed based on an authentic standard, but Metabolon are confident in its identity.
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Further, we examined potential bias due to half-minimum imputa-
tion of metabolite data in our analysis, as suggested previously
[37–39]. We compared our results with those from quantile regression
imputation, argued to be most optimal for limit of detection missing-
ness [37] and RF imputation, favored for missing completely at random
[39]. We observed comparable results across these imputation methods
(Supplemental Figure 3).

Finally, we investigated the robustness of the observed associations
of food-related metabolites with adiposity in adolescent urine and
plasma using a different approach. For each anthropometric measure-
ment, confounder-adjusted food-related metabolites were jointly fit in
adaptive elastic-net regularized linear regression models as described
previously [40]. We demonstrate that our main findings were robust
and invariant to statistical modeling approach (Supplemental Tables 9
and 10).

Discussion

This epidemiologic investigation, using 3 analytic data sets and
both urine and plasma samples, identified robust metabolomics bio-
markers of SBs and AS. In this study, we confirmed some previously
reported metabolite biomarkers of SBs and AS and, to our knowledge,
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uncovered new ones that are robust across analytic samples. We also
observed food-related metabolites that were consistently related to
multiple anthropometric measures of adiposity.

Our children and adolescent data showed that urinary acesulfame
and saccharin reflect LNCSB intake, with saccharin robust in both
analytic samples. Given that LNCSB represent one of the main dietary
sources of artificial sweeteners [41], acesulfame and saccharin are
plausible urinary metabolite biomarkers of LNCSB intake. The 2
metabolites share similar biochemical properties, including absorption,
distribution, metabolism, and excretion [42,43]. We did not detect the
other artificial sweeteners in our urine samples. Their specific meta-
bolism and excretion pathways may explain this result: metabolism
into other compounds diluted in a large plasma/urine pool (e.g.,
aspartame into aspartic acid and phenylalanine), not detected by our
analytical methods (e.g., steviol glycosides into glucuronides), or not
absorbed in the gut (e.g., sucralose) [42,43]. Taken together, these re-
sults also suggest that our findings for other food-related metabolites
are unlikely to be spurious and their relationship is metabolically
plausible.

Moreover, our results indicated that caffeine metabolites, particu-
larly 1-methylxanthine and AAMU, are consistently associated with
SSB intake in adolescent urine and plasma samples, independent of all



TABLE 4
Associations of food-related metabolites with adiposity measures

Food-metabolite β 95% CI P β 95% CI P β 95% CI P

Lower Upper Lower Upper Lower Upper

Children urine BMI SDS, n ¼ 297 %BF, n ¼ 297 WC
165.07939@2.148 0.04 0.01 0.08 0.00921 0.06 �0.17 0.30 0.5927 — — — —

214.08427@3.876 0.08 0.01 0.14 0.01561 0.59 0.16 1.02 0.00781 — — — —

153.04277@2.289 �0.03 �0.06 0.00 0.0515 �0.28 �0.51 �0.05 0.01761 — — — —

166.04911@1.902 �0.10 �0.18 �0.01 0.0293 �0.77 �1.39 �0.15 0.01581 — — — —

Adolescent urine BMI, n ¼ 339 %BF, n ¼ 339 WC, n ¼ 231
X-24333 1.31 0.70 1.92 <0.00011 1.10 0.25 1.95 0.01131 2.31 0.20 4.42 0.0321
Acesulfame 0.82 0.43 1.22 0.00011 0.92 0.36 1.47 0.00131 1.40 0.10 2.70 0.0352
2PYr 0.63 0.21 1.05 0.00341 0.86 0.27 1.44 0.00421 1.98 0.64 3.32 0.00401

N,N-dimethylalanine �0.61 �1.03 �0.18 0.00551 �1.18 �1.78 �0.58 0.00011 �2.27 �3.66 �0.89 0.00141

X-17679 �0.67 �1.20 �0.14 0.01281 �0.41 �1.15 0.33 0.2721 �2.47 �4.15 �0.80 0.00401

X-17010 �0.56 �1.00 �0.11 0.01391 �0.63 �1.25 �0.01 0.0470 �1.13 �2.56 0.30 0.1198
X-17328 0.51 0.09 0.93 0.01761 0.59 �0.00 1.18 0.0504 1.13 �0.16 2.43 0.0856
Decanoylcarnitine (C10) 1.09 0.62 1.56 <0.00011 1.56 0.92 2.20 <0.00011 4.41 2.85 5.96 <0.00011

3-hydroxyhexanoate �0.96 �1.49 �0.42 0.00051 �1.43 �2.15 �0.71 0.00011 �3.14 �4.86 �1.42 0.00041

γ-CEHC taurine2 �1.15 �1.89 �0.40 0.00261 �1.57 �2.58 �0.56 0.00241 �2.65 �4.90 �0.41 0.0209
X-18887 �0.77 �1.36 �0.18 0.01031 �0.67 �1.47 0.13 0.1018 �2.15 �3.92 �0.37 0.01791

Glucuronide of C8H14O2 (6)2 0.57 0.02 1.12 0.0422 1.17 0.43 1.91 0.00221 2.44 0.68 4.20 0.00691

X-24330 0.52 0.02 1.02 0.0434 0.85 0.16 1.53 0.01521 0.77 �0.93 2.46 0.3731
X-13844 �0.30 �0.78 0.18 0.2210 �0.79 �1.44 �0.13 0.01881 �1.33 �2.79 0.14 0.0751
Cis-urocanate �0.41 �0.82 �0.00 0.0488 �0.21 �0.78 0.36 0.4678 �1.55 �2.82 �0.29 0.01641

Young adult plasma BMI, n ¼ 195 %BF, n ¼ 195 WC, n ¼ 195
X-17340 1.02 0.31 1.74 0.00531 1.26 0.26 2.26 0.01351 2.05 0.31 3.79 0.0209
X-24337 0.76 0.18 1.33 0.01011 0.42 �0.38 1.22 0.2991 1.52 0.13 2.92 0.0326
Carotene diol (1) �0.67 �1.27 �0.07 0.0279 �0.73 �1.57 0.10 0.0855 �2.04 �3.50 �0.58 0.00631

Abbreviations: %BF, body fat percentage; 2PYr, N1-methyl-2-pyridone-5-carboxamide; SDS, standard deviation score; WC, waist circumference.
Children urine: Adjusted for age, sex, energy intake, birthweight, and time difference between biosample collection and anthropometric measurements (in their original scale). WC measurements not available.
Adolescent urine included all confounder adjustments for children samples, plus physical activity, smoking, and alcohol status. Young adult plasma included all confounder adjustments for adolescent urine samples,
plus time difference between dietary assessment and blood draw and number of dietary assessments. The identities of X, followed by a number (e.g., X-24333), and the format “165.07939@2.148” are unknown.
1 Significant results: children urine, P< 0.0211; adolescent urine, P< 0.0205; and young adult plasma P< 0.0199 (modified Bonferroni method). Only food-related metabolites considered significant with either

of the adiposity measures are shown.
2 Metabolites not confirmed based on authentic standard, but Metabolon are confident in its identity.
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other plausible sources of caffeine as shown in our sensitivity analysis.
Our study, therefore, confirms the association of SSB intake and
elevated concentrations of AAMU in plasma [44] and additionally
reports its reflection in urine.

A previous study proposed that SSB ingredients or their combina-
tions could be explored as potential biomarkers for SSB as a group or
subtypes of SSBs [19]. Although caffeine is one of the main ingredients
of most SSBs, and multiple caffeine metabolites were consistently un-
covered in adolescent urine and plasma, an important question remains
as to whether a single metabolite biomarker of caffeinated SSB is
possible. Based on our findings, it appears that a more promising
approach to advance this science should consider combining metabolite
biomarkers. We suggest that AAMU and 1-methylxanthine are prom-
ising urine and plasma metabolite biomarkers for caffeinated SSB and
could be considered alongside other biomarkers such as isotopic
signature δ13C or metabolite biomarkers of SSB ingredients such as
taurine [21]. Besides, the SSBs are diverse, with varied concentrations of
caffeine, taurine, and other ingredients, making it unlikely that a single,
ingredient-based metabolite could reliably reflect overall SSB intake.
The unknown biochemical compounds X-17679, X-19497, and
X-17328, associated with SSB intake, represent an additional challenge.

Our untargeted metabolomics approach also confirmed the well-
established association between AS intake and 24-hour urinary su-
crose, reported in targeted approaches [16,45,46]. Our AS variable
reflects intakes from various dietary sources. Despite a substantial
portion originating from SSB and sugary snacks (e.g., cakes, candies,
and desserts), 24-h urinary sucrose does not discriminate specific
sources and would not be an ideal biomarker for SSB. This limitation of
urinary sucrose, as well as of the isotopic signature δ13C, is extensively
discussed elsewhere [47].

Besides the aforementioned putative metabolite biomarkers of SBs
and AS, we also uncovered other metabolomics profiles worth high-
lighting. In children, SSB, SBs, and AS intake correlated with higher
concentrations of decadienoyl carnitine (C10:2), a medium-chain acyl-
carnitine involved in energy metabolism pathways [48]. We note that
medium-chain acyl-carnitines are increasingly investigated as links to
various metabolic dysfunctions [48–50] and depression [51]. To our
knowledge, the association of C10:2 with SBs and AS intake has not
been reported, but elevated concentrations of C10:2 with pork intake
have been described [52].

The association between AS and aspartylphenylalanine may reflect
the biochemical conversion of aspartame into aspartyl, phenylalanine,
and methanol [53], and could indirectly relate to the positive correla-
tion between SBs (sweetened with aspartame) and AS intakes as shown
in our sensitivity analysis. The underlying mechanism of AS intake and
elevated urinary 7-methylguanine, a biomarker of DNA damage and
metabolic rate [54] is unclear. However, in another study, higher con-
centrations of 7-methylguanine were associated with unhealthy dietary
habits [54].

Lower concentrations of kynurenic acid with intake of certain
foods, such as SBs in our study, has been described in a longitudinal
study [55], and this association has been observed in western-style
dietary pattern [56]. Of note, kynurenic acid is an important metabo-
lite of the tryptophan–kynurenine pathway, which is involved in
modulation of inflammation and oxidative stress [57].

In adolescent urine and young adult plasma samples, SBs were
associated with lower concentrations of 3-carboxy-4-methyl-5-pen-
tyl-2-furanpropanoic acid, a metabolite of furan fatty acids.
Humans acquire dietary furan fatty acids mainly from fish and fish
oil [58] and are metabolized into 2 major metabolites:
887
3-carboxy-4-methyl-5-pentyl-2-furanpropanoic acid and 3-carbox-
y-4-methyl-5-propyl-2-furanpropanoic acid. Our findings across
biosamples are therefore of interest, considering the important role
furan fatty acids and health [58–60]. It is unclear whether there
exists any interaction between SBs and furan fatty acid metabolism
or this association is simply because dietary patterns characterized
by higher intakes of SBs and AS correlate with overall poor diet
quality [61,62]. In parallel, in adolescent urine and young adult
plasma samples, we also observed an inverse association between
SBs and hydroquinone sulfate, a specific marker of pear intake [63].
Pears are rich in dietary fibers, antioxidative flavonoids, and
anti-inflammatory properties [64].

Regarding food-metabolite associations with adiposity, 4 metabo-
lites in children urine samples showed mixed direction of associations
with BMI and %BF. Their biochemical identities could not be identi-
fied. In adolescent urine samples, acesulfame was positively associated
with both BMI and %BF. Acesulfame is not only a common sweetener
for beverages but also added in confectionery, sweet, and savory
snacks. Our sensitivity analysis showed poor correlation between
acesulfame and self-reported intakes of these food items. Thus, we
considered that LNCSBs were the likely primary source. This associ-
ation could also suggest reverse causation and residual confounding,
wherein individuals consuming LNCSB may already be overweight,
and their beverage choices may be motivated by the intention to lose
weight or to restrict their energy intake [65].

Similarly, the 2PYr concentrations were elevated with higher SSB
and SBs intakes and positively with BMI, %BF, and WC. SBs are
fortified with niacin, whose main metabolites are 2PYr and N-1-
methylnicotinamide. Beneficial effects of niacin include neuro-
protection, anti-inflammation, and immune modulation [66]. However,
short-term metabolic effects of overconsumption of fortified beverages,
such as glucose metabolism insulin secretion, have been observed in
adolescents [67]. Their long-term effects on adiposity warrant further
investigation.

Decanoylcarnitine (C10), positively associated with all adiposity
measures in our study, is one of the medium-chain acyl-carnitines
linked to body weight [68]. N,N-dimethylalanine and 3-hydroxyhexa-
noate were inversely associated with all adiposity measures; however,
their biological basis remains unclear.

In plasma, carotene diol, a marker of leafy green and cruciferous
vegetable intake [20], showed an inverse association with WC. This is
consistent with findings from a large cohort study, where serum ca-
rotenoids correlated negatively with visceral adiposity [69]. We note
that carotenoids are involved in oxidative and lipid metabolism [69]
and higher concentrations of carotenoids are favorable for metabolic
health. The biological role of X-17340 (associated with higher BMI
and %BF) and X-24337 (higher BMI) are unknown.

This study also contributes to the public health discourse on caffeine
and sugar pairing and health risks [70,71], by showing that caffeine
added to SBs is also reflected at molecular level. Two randomized
controlled trials showed that co-ingestion of carbohydrate load and
caffeine impaired glucose and insulin responses in young, healthy males
[72] and caffeine-containing energy drinks and shots resulted in acute
impaired glucoregulation in healthy adolescents [73]. It appears that
regular pairings of sugar and caffeine through SBs may influence
adiposity through some of these mechanisms. Indeed, a recent study
based on 3 large cohorts found that drinking unsweetened coffee, may
prevent weight gain, but this benefit was negated by adding sugar [74].

A key strength of our study lies in the dynamic DONALD cohort
design, which enables repeated dietary and biosample collections from
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the same individuals. The repeatedly measured metabolome in children
uncovered potentially transient diet-metabolome associations, which
may be missed in single point measurement. Our study applied multiple
robust ML approaches, which generally yielded comparable selections;
yet, the discrepancies also underscore the drawbacks of single-method
reliance in high-dimensional data.

Further, the use of 3 standard adiposity measures, which assess the
general and abdominal adiposity, enhances the translational utility and
potential for our findings to be replicated by larger epidemiologic
studies. To our knowledge, this study represents the first comprehen-
sive exploration of the metabolome with SB and AS intakes and their
associations with adiposity in young individuals. We demonstrate that
our approach lends more insights, providing complimentary informa-
tion on metabolic changes associated with intake, and their differences
may reflect biologically meaningful processes.

Our study had some limitations such as potential measurement er-
rors in self-reported dietary intakes. The interpretation of the associa-
tions of food-related metabolites and adiposity was limited by their
concurrent measurements. Future studies may investigate the longitu-
dinal associations of these metabolites with adiposity. We also
acknowledge that, even with the repeated double cross-validation and
bootstrap procedures, metabolite selection and the subsequent analysis
were conducted on the same data set for maximum use, which could
result in overly optimistic results in downstream regression analysis.
The biochemical names of many metabolites in children samples could
not be identified, limiting the comparison of our findings across age
groups. Finally, the DONALD cohort’s homogeneity and higher so-
cioeconomic status than the general population [25] warrants cautious
interpretation of the results. Nonetheless, its adiposity trends from birth
to 14 y are comparable with 2 other German cohorts [75], thus our
findings have reasonable generalizability.

In conclusion, we identified metabolomics signatures of SB and AS
intake and their associations with anthropometric measures of adiposity
in a well-characterized German birth cohort. If validated in other
studies, these metabolomics profiles could further elucidate the un-
derlying mechanisms through which these foods influence adiposity.
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A B S T R A C T

Background: Intake of sweet and fatty snacks may partly contribute to the occurrence of obesity and other health conditions in childhood.
Traditional dietary assessment methods may be limited in accurately assessing the intake of sweet and fatty snacks in children. Metabolite
biomarkers may aid the objective assessment of children’s food intake and support establishing diet–disease relationships.
Objectives: The present study aimed to identify biomarkers of sweet and fatty snack intake in 2 independent cohorts of European children.
Methods: We used data from the IDEFICS/I.Family cohort from baseline (2007/2008) and 2 follow-up examination waves (2009/2010 and
2013/2014). In total, 1788 urine samples from 599 children were analyzed for untargeted metabolomics using high-resolution liquid
chromatography-mass spectrometry. Short-term dietary intake was assessed by 24-h dietary recalls, and habitual dietary intake was
calculated with the National Cancer Institute method. Data from the Dortmund Nutritional and Anthropometric Longitudinal Designed
(DONALD) cohort of 24-h urine samples (n ¼ 567) and 3-d weighted dietary records were used for external replication of results. Multi-
variate modeling with unbiased variable selection in R algorithms and linear mixed models were used to identify novel biomarkers.
Metabolite features significantly associated with dietary intake were then annotated.
Results: In total, 66 metabolites were discovered and found to be statistically significant for chocolate candy; cakes, puddings, and cookies;
candy and sweets; ice cream; and crisps. Most of the features (n ¼ 62) could not be annotated. Short-term and habitual chocolate intake were
positively associated with theobromine, xanthosine, and cyclo(L-prolyl-L-valyl). These results were replicated in the DONALD cohort. Short-
term candy and sweet intake was negatively associated with octenoylcarnitine.
Abbreviations: BFI, biomarkers of food intake; DONALD, Dortmund Nutritional and Anthropometric Longitudinal Designed; FFQ, food frequency questionnaire;
IARC, International Agency for Research on Cancer; IDEFICS, Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants;
MUVR, multivariate modeling with minimally biased variable selection in R; NCI, United States National Cancer Institute; PLS, partial least squares; RF, random forest;
24-HDR, 24-h dietary recall; 3d-WDR, 3-d weighted dietary record.
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Conclusions: Of the potential metabolite biomarkers of sweet and fatty snacks in children, 3 biomarkers of chocolate intake, namely
theobromine, xanthosine, and cyclo(L-prolyl-L-valyl), are externally replicated. However, these potential biomarkers require further vali-
dation in children.

Keywords: biomarker identification, metabolite biomarkers of food intake, untargeted metabolomics, sweet and fatty snacks, children and
adolescents
Introduction

In epidemiologic studies, dietary intake is commonly assessed
through self-reports using instruments such as food frequency
questionnaires (FFQs), 24-h dietary recalls (24-HDRs), and 3-
d weighted dietary records (3d-WDRs) [1]. These dietary
assessment methods present some challenges, such as the po-
tential for misreporting [2]. Although progress has been made in
generating evidence for diet–disease relationships in adults, ev-
idence is lacking for children and adolescents [3]. This might be
partially due to the additional difficulties in dietary intake
assessment for children and adolescents, namely, unstructured
eating patterns, concerns with self-image, or problems in
conceptualizing time, to mention only a few [4]. Hence, objec-
tive measures of nutrient and dietary intake are needed to aid or
even replace the traditional assessment methods. Indeed, dietary
biomarkers, such as urinary nitrogen [5] or vitamin C [6], have
been used as objective indicators of dietary intake in dietary
validation studies [7,8].

The rise of omics technologies has paved the way for objective
measures of dietary intake, also known as biomarkers of food
intake (BFI) [1,9,10]. Specifically, metabolomics has emerged as
a powerful discovery method for the analysis of biospecimens,
such as urine, allowing for the subsequent identification of novel
BFIs [11]. In untargeted metabolomics, low molecular weight
compounds, called metabolites, are comprehensively analyzed
without previous selection of targeted analytes. Metabolites are
the end products of metabolism, many of which reflect short-term
or habitual food intakes [10]. Furthermore, measuring the food
metabolome through untargeted metabolomics can yield a vast
number of metabolites [10]. Urine biosamples are a great
resource because the collection is noninvasive and can be
collected at home by the study participants [12]. Therefore,
analyzing the urine-based food metabolome offers a unique op-
portunity to identify novel BFIs.

Over the last decade, there have been enormous efforts to
identify biomarkers of various nutrients, foods, food groups, or
dietary patterns [13–23]. However, most of the studies have
focused on adult populations, with only a few including children
and/or adolescents [13,24,25]. Furthermore, most studies only
internally validated their findings and lack external replication
[26]. External validation is an important step in increasing the
reliability of BFI.

For children and adolescents, the most studied BFIs are for
fruit and vegetable intake [25,27]. Additionally, 1 study identi-
fied BFIs for meat and fish intake [24]. To date, to our knowledge,
there are no candidate BFIs for sweet and fatty snacks in children
and adolescents. This gap exists partly because few biomarker
discovery studies focus on children and partly because sweet and
fatty snack intake is especially difficult to assess [4]. Moreover,
only a few candidate BFIs exist for adult populations, mainly for
cocoa, liquorice, and potato crisps [17,23].
3275
BFIs for sweet and fatty snacks in children are missing. If
identified, these BFIs may provide important insights into un-
derstanding childhood diet–disease associations. Hence, this
study aimed to identify novel BFIs of short-term and habitual
intake of sweet and fatty snack foods in the repeatedly measured
food metabolome from 2 independent longitudinal cohorts of
European children and adolescents.
Methods

IDEFICS/I.Family
The Identification and Prevention of Dietary- and Lifestyle-

induced Health Effects in Children and Infants (IDEFICS) and
I.Family cohort served as the main cohort for identifying bio-
markers [28,29]. Data were gathered in 8 study centers across
Europe—Belgium, Cyprus, Estonia, Germany, Hungary, Italy,
Spain, and Sweden [29]. The study aimed to determine the eti-
ology of overweight, obesity, and related health outcomes. Thus,
repeated measurements of lifestyle, behavior, and medical pa-
rameters were taken, at baseline and over 5 follow-up time
points. Children were recruited from kindergarten and school
settings [28]. The baseline examination, conducted between
2007 and 2008, included >16,000 children aged 2 to10 y [29].
Ethical approval was obtained from the corresponding national
or local ethics committees of the participating countries. A more
in-depth description of the IDEFICS/I.Family cohort can be
found elsewhere [28,29].

For this study, a random subsample (N ¼ 600) of the original
cohort was selected. Sample size calculations were performed a
priori based on metabolite measurements at 1 time point. We
expected a statistical power of >80%. Eligible participants had
available urine samples, dietary, demographic, and anthropo-
metric data at baseline and 2 follow-up time points. Figure 1
shows flow diagram of the study sample selection. Data from 3
time points, including baseline, were used in this study. These
time points are referred to as baseline (W1), second examination
wave (W2), and third wave (W3) hereafter. W2 data were
collected from 2009 to 2010, and data collection for W3 took
place between 2013 and 2014.
Covariate assessment
Anthropometric data from all participants were collected

using standardized methods [28–30]. Body weight of the study
participants was measured by a trained study nurse using a
TANITA 418/420 digital scale [31]. Height was measured using
a Seca 225/213 stadiometer [31]. BMI was calculated by
dividing the weight in kilograms by the squared height in metres.
Age-specific and sex-specific BMI z-scores according to Cole and
Lobstein [32] were used in the statistical analysis. Demographic
data, such as age, sex, and country of residence were routinely
collected during baseline and follow-ups [28,29].



IDEFICS W0, n= 16,228

n= 684 children with the following Information available
at all three examination waves: 

 − Urine samples available 
 − CEHQ−FFQ data available 

 − at least one complete 24−HDR 
 − Antrophrometic and demographic data available

Random sample n= 600

Habitual intake sample 
W0 n= 597
W1 n= 596
W3 n= 595

Short−term intake sample 
W0 n= 116
W1 n= 105
W3 n= 223

Not eligible n= 15,544

Excluded n= 304 
missing metabolomics data

W0 n= 0
W1 n=1
W3 n=2

24−HDR and urine date
not 1 or 2 days apart

W0 n=484
W1 n=494
W3 n=375

Excluded n= 1 
missing metabolomics data

W0 n= 3
W1 n=4
W3 n=5

FIGURE 1. Flow diagram of the study sample selection in the discovery cohort (IDEFICS/I.Family). Abbreviations: CEHQ, Children’s Eating
Habits Questionnaire; FFQ, food frequency questionnaire; 24-HDR, 24-h dietary recall.
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Dietary assessment
The dietary intake of participants was recorded using the

24-HDR and FFQ instruments. For the 24-HDR, a computer-
based program, the Self-Administered Children and Infant
Nutrition Assessment, was used at W1 and W2, and a web-
based program, the Self-Administered Children, Adolescents,
and Adult Nutrition Assessment, was used at W3. The FFQ
section of the Children’s Eating Habits Questionnaire was
applied at each follow-up time point [33,34].

Study participants were asked to complete �2 weekday 24-
HDRs and 1 on the weekend. If these were not completed, par-
ticipants were reminded by telephone or e-mail [35]. The
24-HDR recorded the dietary intake (ie, the type and amount of
foods and beverages) over the last 24 h [36]. The intake was
structured into 6 meal occasions: breakfast (first intake after
waking up), mid-morning snack, lunch, afternoon snack, dinner,
and evening snack, with the possibility to add more eating oc-
casions if required. Quantities of foods were estimated using
standardized photographs of serving sizes, standard portions,
customary packaging sizes, and meals in pieces or slices. For the
24-HDR based on the Self-Administered Children and Infant
Nutrition Assessment program, a proxy respondent, that is, pri-
mary caretaker of the child, recalled the dietary intakes. Other-
wise, children or adolescents recalled the dietary intake of the
last 24 h themselves, with the help from primary caretakers if
needed. A dietician or trained study nurse was present during
each 24-HDR to answer any questions [30]. Several studies were
undertaken to validate the 24-HDR in the IDEFICS/I.Family
cohort [33].
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The FFQ comprised 60 food items grouped into 15 food
groups: specifically, vegetables, fruit, breakfast cereals, milk,
yogurt, cheese, fish, meat and meat products, eggs, meat
replacement products and soy products, spreadable products,
cereal products and snacks, plant oil, and beverages [37].
Possible answers for the FFQ section were never/less than once a
week, 1–3 times a week, 4–6 times a week, 1 time a day, 2 times a
day, and 3 times or more a day. The previous month was set as
the reference period for the FFQ. During W1 and W2, specif-
ically, the primary caretaker of the child responded on behalf of
the child. However, in W3, adolescents aged 12 y and over
completed the FFQ section themselves. The measured food
consumption of the FFQ was previously validated against nutri-
ents measured in blood and urine [35,38].

Short-term dietary intake
Short-term dietary intake was defined as any food intake the

day or 2 d before the urine collection. To derive the short-term
dietary intake of chocolate candy (including cocoa powder
used for chocolate beverages); chocolate and nut spread; potato
crisps; jelly candy; candy and sweets (nonchocolate); cakes,
puddings, and cookies; and ice cream, the dietary intakes of
these foods were estimated in grams from the 24-HDR data. If
several foods could be classified as the defined food group, the
intake amounts were summed up. An overview of the food names
used from the 24-HDR to derive the food group intakes is pro-
vided in the Supplemental Material. For some children, the dif-
ference between urine sample collection and assessed dietary
intake was>2 d. These children were excluded from the analysis
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of short-term food intake. Children for whom no metabolomics
data were available owing to laboratory error were also
excluded. Thus, the final study sample for short-term dietary
intake was as follows: n ¼ 444—for W1: n ¼ 116, W2: n ¼ 105,
and W3: n ¼ 223. There were 45 participants with 3 repeated
measurements, 58 had 2, and 193 had 1 measurement.

We performed 2 sensitivity analyses. In the first, the short-
term intake sample was limited to study participants with
urine samples collected on the same day of the 24-HDR. In the
second, we included coffee and tea intake as a further covariate
in the statistical model to investigate any changes in the results
for chocolate candy intake. Coffee and tea intake was derived
from the 24-HDR (Supplemental Material).
Habitual dietary intake
Habitual dietary intake was defined as the estimated usual

dietary intake per day for each participant. The method devel-
oped by the United States National Cancer Institute (NCI) was
used to estimate individual habitual dietary intake (grams per
day) [39]. To calculate habitual dietary intake for the study
population the food groups defined from the 24-HDR and the
dietary frequency questions from the FFQ were grouped (Sup-
plemental Material) and analyzed according to Kipnis et al. [40].
24-HDRs with an estimated total energy intake below 500 kcal
were excluded from the analysis. The computation of the
habitual dietary intake was stratified by sex and adjusted for age
and BMI z-score. The habitual dietary intake was calculated for
chocolate candy (including cocoa powder); savory and fatty
snacks; candy and sweets (nonchocolate); crisps (potato and
other); cakes, puddings and cookies; and ice cream. Metab-
olomics data were unavailable for very few children owing to
laboratory errors. Thus, the final study sample consisted of n ¼
1788—for W1, n ¼ 597; for W2, n ¼ 596; and for W3, n ¼ 595,
respectively. All children who were included in the study sample
for short-term dietary intake were also included in the study
sample for habitual dietary intake.
Urine sample collection
Sample collection for the IDEFICS/I.Family cohort followed a

standardized procedure across all participating study centers
[41]. The morning urine was collected at home by the primary
caregivers directly after waking. The caregivers received a urine
collection kit and an instruction sheet [41]. Caregivers were asked
to cool the urine sample in the refrigerator if the time until arrival
at the study center was longer than 2 h. At the study center, the
urine samples were cooled to �20 �C. At regular intervals, the
biosamples were shipped on dry ice to the central biorepository,
where they were frozen at �20 �C and stored [35,42].
Dortmund Nutritional and Anthropometric
Longitudinal Designed

For the external replication of the identified metabolites the
Dortmund Nutritional and Anthropometric Longitudinal
Designed (DONALD) cohort was used [43]. The DONALD cohort
is an open cohort study with 2375 participants recruited between
1985 and 2022 [44]. The participants were followed from in-
fancy (3 mo of age) to adulthood at regular intervals during
which dietary, health, and developmental data were collected.
Dietary data were collected with 3d-WDR at each examination
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interval. Parents or children were asked to weigh their food and
fill in the dietary records. Dieticians checked the records for
plausibility. 24-h urine samples were collected at every interval
from age 3 y onward. The urine samples were collected by the
parent at home on the third day of the 3d-WDR. The biological
samples were stored at the DONALD study center. Details of the
DONALD cohort are available elsewhere [43,44].

For this project, a random sample of 300 children with �2
available urine samples and 2 3d-WDR were selected. In total,
600 urine samples were available. The final DONALD replication
sample included 297 participants, of whom 270 had repeated
measurements and 27 had single measurements available. The
reduction in participants was due to an incomplete 3d-WDR and/
or a mismatch between the 3d-WDR date and the urine collection
date. This resulted in 567 measurements in the replication
cohort.

Sample preparation and randomization
For this study, 1800 urine samples from the IDEFICS/I.Family

cohort and 600 urine samples from the DONALD cohort were
initially shipped from Bremen and Bonn, both in Germany, to the
laboratory at the International Agency for Research on Cancer
(IARC) for metabolomics analyses. The study samples were
anonymized and randomized before shipment. The repeated
samples for each study participant were analyzed next to each
other in random order, and sample pairs were randomized across
the batch. Randomization of the samples was further stratified by
country for the multicenter IDEFICS/I.Family cohort samples, to
ensure an equal proportion of samples from each country on each
plate. Quality control samples were prepared from a sample pool,
which was created by mixing small aliquots of all urine samples.
Blank samples were also prepared in the same way as the urine
samples, with only the urine being omitted in the process. Each
96-well plate included 4 individually prepared quality control
samples and 2 blanks. Further details on the sample preparation
can be found in the Supplemental Material.

Laboratory analysis and preprocessing
Study samples were analyzed using a Q Exactive mass spec-

trometer with heated electrospray ionization (HESI-II) coupled
to a Dionex UltiMate 3000 Binary UHPLC system (ThermoFisher
Scientific Inc.). Ten independent analytical batches consisting of
2 individual 96-well plates were analyzed. The mass spectrom-
eter was operated in polarity-switching electrospray ionization
mode (positive and negative ionization mode) to expand the
coverage of the metabolome.

Preprocessing of the raw data was performed using Com-
pound Discoverer 3.3 software (ThermoFischer Scientific).
Metabolomic feature alignment between samples was performed
with a maximum retention time window of 0.05 min and a mass
tolerance of 5 ppm. Metabolite features were put forward into
the feature table only if they were present in �2% of the overall
samples. Metabolite features present in every blank sample were
excluded, unless 5-fold greater in average intensity in samples.
Furthermore, metabolite features absent in >95% of the study
population were removed, and metabolite features that were
missing in �30% of consumers (participants who habitually/
acutely ate a food) were excluded. For the remaining metabolite
features, missing values were imputed with half of the minimum
value, that is, intensities, in each analytical batch, assuming
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missingness due to limits of detection [45]. See the Supplemental
Material for more information on the data preprocessing.
Statistical analyses
All analyses were performed using R 4.2.2 [46], primarily

with the following packages: tidyverse (version 1.3.2) [47], nlme
(version 3.1-160) [48], and multivariate modeling with mini-
mally biased variable selection in R (MUVR; version 0.0.975)
[49]. Before statistical analyses, all metabolite feature variables
were log-transformed and z-standardized.

MUVR algorithm was used to identify the most predictive
metabolite features for the dietary intakes (short-term or
habitual) [50]. This algorithm incorporates recursive variable
selection within a repeated double cross-validation scheme.
MUVR offers approaches for feature selection in the presence of a
large number of variables, namely partial least squares (PLSs) and
random forest (RF). Both modeling approaches can be performed
as either a regression or a classification analysis. Furthermore,
MUVR can handle repeated measurements over time; this can be
included in the algorithms by providing the subject ID.

For the short-term intake analysis, a classification analysis
was performed for which the intake variables were dichotomized
(0 for nonconsumers with intake ¼ 0 g and 1 for consumers with
intake >0 g). The dichotomization was done because the short-
term intake variables showed pronounced right-skewed distri-
butions. For the habitual intake analysis, the intake variables
were kept as continuous variables, and regression analysis was
applied.

The MUVR analysis had 2 initial steps: 1) a test run was
performed for each food group with PLS and RF with a low
number of repetitions (nRep ¼ 6), and 2) the modeling approach
(PLS or RF) with the best performance, that is., highest Q2 or
lowest number of misclassifications, for the specific food group
was selected. Both PLS and RF have been used in biomarker
discovery in the past and have strengths andweaknesses [26,50].
However, this initial 2-step approach ensures that the
best-performing modeling approach is selected for each specific
food group. Furthermore, step 1 provided valuable information
on whether PLS or RF could identify predictive metabolite fea-
tures; if the initial model could not predict intake, that is,
negative Q2 or zero correctly classified consumers, no further
analysis was performed for that food group.

For the main analysis, the parameter configuration was set to
nRep ¼ 50 (number of repetitions), varRatio ¼ 0.85 (ratio of
variables retained per iteration), and nOuter ¼ 8 (number of
outer test segments) for all models, in accordance with the rec-
ommendations by Shi et al. [50]. We selected metabolite features
from the minimal-optimal model, representing the minimal
variable set necessary for optimal method performance.
Furthermore, after the initial feature selection by RF or PLS,
linear mixed models were applied for the final metabolomic
feature selection. An unstructured covariance structure was
assumed, and the subject ID, unique to each participant, was set
as a random effect. In the linear mixed models, each preselected
feature (dependent variable) was regressed on the dietary intake
variable (independent variable) and adjusted for the covariates
age, sex, country, batch, BMI z-score, and energy intake. These
covariates were selected as a minimal necessary set of individual
characteristics; Supplemental Figure 1 shows a directed acyclic
graph showing the theoretical framework for the adjustment in
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the statistical models. To account for multiple hypothesis testing,
the Benjamini–Hochberg procedure was applied to control the
false discovery rate at 5%, considering results with a q value of
<0.05 to be statistically significant. In the DONALD cohort, an
identical statistical pipeline was applied (Supplemental
Material).
Metabolite annotation
After the final feature selection, the list of metabolite features

was sent back to IARC for annotation. The metabolite features
were compared with the in-house database of analytical stan-
dards with a 10-ppm mass and a retention time tolerance of 0.25
min. in addition, the m/z values were searched in the human
metabolome database [51] with a 10-ppm mass tolerance. The
quality of the chromatographic peaks and spectra was inspected,
and the plausibility of database candidates was assessed based on
retention time, isotope pattern, adduct formation, and neutral
losses. The best matching identities were confirmed by matching
the MS/MS spectra and retention time from the metabolite and
the corresponding standard. When standards were not available,
MS/MS spectra were compared against those in mzCloud or
METLIN [52]. The level of identification was determined as
proposed by Sumner et al. [53].

Results

The baseline and follow-up characteristics were stratified by
study sample, being presented in Table 1. At baseline, the me-
dian age for both study samples was 6.4 y, and almost half of the
participants were female. Most of the participants in the short-
term intake sample were from Germany, whereas most partici-
pants in the habitual intake sample were from Italy at baseline. In
total, 11,397 metabolite features were analyzed in negative
ionization mode and 16,559 metabolite features in positive
ionization mode in the repeated urine samples. After the initial
filtration (i.e., removal of features with >95% missing values),
1616 and 1567 metabolite features remained in negative ioni-
zation mode and 2055 and 1984 metabolite features in positive
ionization mode, for the short-term and habitual intake samples,
respectively (Supplemental Figures 2 and 3 show flow diagrams
of the filtration process).
Identification of metabolites in the IDEFICS/
I.Family cohort
Short-term intake

Table 2 presents an overview of the number of consumers for
each food group and time point. After the initial MUVR test runs,
the food groups potato crisps and jelly candy were excluded from
the main MUVR analysis. Furthermore, for the food groups
chocolate and nut spread and ice cream, the negative and posi-
tive ionization mode metabolite features were not included in
the main MUVR analysis, respectively. For an overview of the
test runs and main analysis with the MUVR algorithms, see
Supplemental Tables 1 and 2. After MUVR and linear mixed
model analyses, while accounting for repeated measures, 16
metabolite features were associated with chocolate candy intake
and 8 metabolite features were associated with candy and sweet
intake and were issued for annotation. Of the 24 metabolite
features, 4 metabolites were annotated, namely theobromine,



TABLE 1
Baseline and follow-up characteristics of the study samples from the IDEFICS/I.Family cohort for short-term and habitual dietary intake.

Habitual dietary intake study sample, n ¼ 599 Short-term dietary intake study sample, n ¼ 296

W1, n ¼ 597 W2, n ¼ 596 W3, n ¼ 595 W1, n ¼ 116 W2, n ¼ 105 W3, n ¼ 223

Median (range)
Age, y 6.4 (2.1–9.3) 8.4 (4–11.1) 12.3 (8–15.2) 6.4 (2.7–9.3) 8.5 (4.0–11.1) 11.8 (8.2–15.2)
BMI z-score 0.42 (�2.79 to 5.07) 0.48 (�3.3 to 4.18) 0.66 (�2.13 to 3.64) �0.01 (�1.80 to 2.34) 0.13 (�1.75 to 2.64) 0.48 (�2.13 to 3.64)
Energy intake
(kcal)1

1642 (1136–2409) 1613 (900–2802) 1643 (779–2656) 1462 (213–2426) 1597 (266–3551) 1462 (274–4346)

n (%)
Female 281 (47) 282 (47) 280 (47) 52 (45) 53 (51) 107 (48)
Country2

Italy 288 (48) 287 (48) 288 (48) 3 (3) 7 (7) 46 (21)
Estonia 140 (23) 140 (23) 139 (23) 2 (2) 0 97 (43)
Belgium 12 (2) 12 (2) 12 (2) 10 (9) 3 (3) 6 (3)
Sweden 51 (9) 50 (8) 49 (8) 47 (41) 43 (41) 35 (16)
Germany 62 (10) 63 (11) 63 (11) 53 (46) 45 (43) 23 (10)
Hungary 30 (5) 30 (5) 30 (5) 1 (0.9) 5 (5) 5 (2)
Spain 14 (2) 14 (2) 14 (2) 0 2 (2) 11 (5)

Abbreviations: FFQ, food frequency questionnaire; IDEFICS, Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in
Children and Infants; NCI, United States National Cancer Institute; 24-HDR, 24-h dietary recall; 3d-WDR, 3-d weighted dietary record.
1 Usual energy intake calculated from 24-HDR and FFQ data with NCI method; short-term energy intake from 24-HDR.
2 Summed percentage over 100% due to rounding.

TABLE 2
Number of short-term consumers of the food groups in the IDEFICS/
I.Family cohort by study time points.

Consumers W1, n ¼ 116 W2, n ¼ 105 W3, n ¼ 223

n (%)

Chocolate candy 34 (29) 27 (26) 57 (26)
Chocolate and nut
spread

18 (16) 8 (8) 20 (9)

Potato crisps 4 (3) 6 (6) 17 (8)
Jelly candy 6 (5) 9 (9) 9 (4)
Candy and sweets 25 (22) 14 (13) 25 (11)
Cakes, puddings, and
cookies

59 (51) 54 (51) 86 (39)

Ice cream 13 (11) 10 (10) 21 (9)
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cyclo(L-prolyl-L-valyl), xanthosine, and octenoylcarnitine.
Table 3 provides the overview of the annotated metabolites and
Supplemental Tables 3 and 4 an overview of the selected
metabolite features that could not be annotated.

The first sensitivity analysis showed an association between
chocolate candy intake and theobromine and cyclo(L-prolyl-L-
valyl), but not with xanthosine, and between candy and sweets
intake and octenoylcarnitine. Additionally, some newmetabolite
features were identified for chocolate candy, jelly candy, choc-
olate and nut spread, candy and sweets, and cakes, puddings and
cookies (Supplemental Tables 5 and 6). The second sensitivity
analysis showed no attenuation of the associations between
chocolate candy intake and theobromine, cyclo(L-prolyl-L-valyl),
and xanthosine (results not shown).

Habitual intake
Table 4 depicts an overview of the median intake in grams per

day for each food group and time point. After the initial MUVR
test runs, the food group savory and fatty snacks was not selected
for the main MUVR analysis. Results of the test runs and main
analysis with the MUVR algorithms are provided in the Supple-
mental Tables 7 and 8. We accounted for repeated measures
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duringMUVR and linear mixedmodel runs. The analyses showed
that 45 metabolite features were associated with chocolate
candy intake; 5 metabolite features were associated with candy
and sweet intake; 1 metabolite feature was associated with crisp
intake; 9 metabolite features were associated with the intake of
cakes, puddings, and cookies; and 2 metabolite features were
associated with ice cream intake. Of these metabolite features, 3
metabolites could be annotated. Same as for short-term intake,
habitual intake of chocolate candy was associated with theo-
bromine, cyclo(L-prolyl-L-valyl), and xanthosine. Additionally,
intake of cakes, puddings, and cookies was associated with
theobromine. Table 3 presents the overview of identified and
annotated metabolites and Supplemental Tables 3 and 4 an
overview of the selected metabolite features that could not be
annotated.

Replication of metabolites in the DONALD cohort
During the initial MUVR analysis, only chocolate candy intake

was moved forward to the final metabolite feature selection.
Supplemental Table 9 presents an overview of the individual
characteristics and the median intake for chocolate candy in the
DONALD replication cohort.

In the independent DONALD cohort, chocolate candy intake
was associated with 45 metabolite features. Of these metabolite
features, 4 were annotated, namely theobromine, cyclo(L-prolyl-
L-valyl), xanthosine, and 3-hydroxyphenylacetate (Table 5).

Discussion

Using data from a large European cohort of children and ad-
olescents, we were able to identify potential biomarkers of short-
term and habitual intake of sweet and fatty snacks. Importantly,
3 putative biomarkers of chocolate intake, namely theobromine,
xanthosine, and cyclo(L-prolyl-L-valyl), were externally repli-
cated in the German DONALD cohort.

Most studies in children have focused on identifying bio-
markers of fruit and vegetable intake. Furthermore, many studies
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have used cross-sectional data or data from dietary interventions
for biomarker identification [25]. Only 2 studies have used
cohort data to identify BFIs in children [24,54]. Our study used
longitudinal cohort data with the repeatedly measured urine
metabolome to identify biomarkers of fatty and sweet snack
intake in children. This approach highlights the novelty of this
study and can contribute to the further use of cohort data in the
field of biomarker identification.

Before discussing the results, it is important to highlight the
main challenges of ourmethodologic approach. The analyseswere
based on large cohort studies but still depended on self-reported
dietary intake data. In this study, the 24-HDR and FFQ were
used to assess the dietary intake of the participants of the main
cohort, methods often criticized for their questionable validity in
accurately reflecting children’s diets [4]. The 24-HDR, used as
short-term intake measurement, likely introduces a bias toward
the null, because sweet and fatty snack intakes might be under-
reported [4,55]. Nevertheless, efforts were made to validate the
24-HDR and FFQ, enhancing accurate dietary assessment [33,35,
38]. Furthermore, the combination of 24-HDRand FFQdata in this
study reduces biases and increases the accuracy of individual
habitual dietary intake estimates [56,57].Our approach, however,
would not be suitable to capture biomarkers of rarely consumed
foods, which would require feeding studies. However, this study
focused on regularly consumed snacks. Only biomarkers with
longer half-lives and foods frequently consumed would be useful
for cohort studies that typically rely on single urine sample col-
lections. We studied acute intake biomarkers as a proof of princi-
ple by linking 24-HDR with urine samples from the previous day.
The successful replication of 3 biomarker candidates can also be
seen as a proof of concept for our methodologic approach.

In this study, besides the 4 annotated metabolites, 62 unique
metabolite features were selected but could not be annotated.
Unfortunately, it is possible neither to provide any further in-
formation on the identity of these metabolite features nor to
assess biological plausibility. This is common in untargeted
metabolomics analysis due to the vast number of features
detected by mass spectrometry [58]. Additionally, ~60 more
unknowns were selected in the sensitivity analysis. The mass of
these unknowns is provided in the Supplemental Material for
future studies to use for reference.

The candy and sweets–related metabolite in the discovery
cohort, octenoylcarnitine, belongs to the class of acylcarnitines
and is a medium-chain acylcarnitine. Increased concentrations of
octenoylcarnitine are associated with obesity and fatty acid
metabolism disorders [59]. Only 2 studies have reported asso-
ciations between diet and octenoylcarnitine [60,61]. In this
study, we found a negative association between candy and sweet
intake and octenoylcarnitine. According to the validation criteria
by Dragsted et al. [62], a metabolite should increase in response
to dietary intake, that is, there should be a positive association
with dietary intake. Therefore, octenoylcarnitine is unlikely a
relevant BFI of candy and sweet intake in our cohort.

Theobromine is an organic compound and belongs to the class
of xanthines [63]. In humans, this metabolite is a product of
caffeine breakdown by CYP1A2 in the liver [64]. Measured in
blood, theobromine has a half-life of 6–8 h. Theobromine is found
in the highest concentrations in cocoa products and in smaller
concentrations in coffee and tea [63,65]. Accordingly, many
studies have identified theobromine as a potential BFI of cocoa



TABLE 4
Median habitual dietary intake of the food groups in the IDEFICS/I.Family cohort by study time points.

Dietary intake (g/d) W1, n ¼ 597 W2, n ¼ 596 W3, n ¼ 595

Median (range)

Chocolate candy 7.8 (1.2–55.6) 6.8 (2.1–52.2) 11.4 (2.7–71.2)
Savory and fatty snacks 62.1 (30.3–119.4) 70.2 (2.5–153.8) 63.2 (21.2–153.7)
Candy and sweets 0.6 (0.2–27.1) 3.1 (0.5–21.4) 1.4 (0.1–39.8)
Crisps 1.3 (0.4–138.9) 1.2 (0.3–119.7) 6.2 (2.4–42.4)
Cakes, puddings, and cookies 65.3 (34.8–99.2) 60.8 (19.4–121.4) 55.0 (24.5–140.2)
Ice cream 4.1 (1.4–152.5) 16.0 (0.9–204.1) 11.9 (4.4–70.4)

TABLE 5
Overview of the annotated metabolites measured in negative and positive ionization mode associated with chocolate intake in the DONALD
cohort—results from the replication analysis.

Food group Coefficient1 SE q2 Metabolite Ionization mode Mass Identification
level3

Regulation

Chocolate candy 0.02 0.003 <0.001 Theobromine Positive 180.06467 1 Up
Chocolate candy 0.02 0.003 <0.001 Cyclo(L-prolyl-L-valyl) Positive 196.12136 1 Up
Chocolate candy 0.01 0.003 <0.001 Xanthosine4 Positive 366.14252 1 Up
Chocolate candy 0.01 0.003 0.001 Xanthosine4,5 Positive 284.07553 1 Up
Chocolate candy 0.01 0.003 0.003 Xanthosine4 Positive 244.14232 1 Up
Chocolate candy 0.01 0.003 0.001 3-hydroxyphenylacetate Negative 152.04745 2 Up
Chocolate candy 0.01 0.003 0.01 Xanthosine4 Negative 366.14261 1 Up
Chocolate candy 0.01 0.003 0.03 Xanthosine4,5 Negative 284.07574 1 Up

1 Coefficients are on the log scale and adjusted for age, sex, BMI, and energy intake.
2 The q value is a p value that has been adjusted for the false discovery rate.
3 Identification level, see Sumner et al. [53].
4 Metabolite features belong to the same metabolite.
5 Main metabolite.
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products [17]. However, Michielsen et al. [17] dismissed theo-
bromine as a potential BFI of cocoa products, arguing that it is not
specific to the consumption of cocoa products. Indeed, in our
study, theobromine was also associated with intake of cakes,
puddings, and cookies, but this may reflect the cocoa ingredients
in these snacks.

Xanthosine is a purine nucleoside and an intermediate in the
purine metabolism [66]. It is produced during the breakdown of
theobromine, which is derived from caffeine [67]. Xanthosine is
expected to be present in cocoa beans, and other foods but has
not been quantified in these until now [66]. Several studies have
associated methylxanthines, such as 7-methylxanthosine, which
is the precursor of xanthosine, with cocoa (products) consump-
tion [17]. However, our literature search found no evidence
linking chocolate intake and xanthosine in previous literature.

Cyclo(L-prolyl-L-valyl) belongs to the class of α-amino acids
and derivatives [68]. Few studies have been published about
this metabolite. Nonetheless, it is linked to cocoa (products)
and coffee intake [69]. One study found a correlation between
cyclo(L-prolyl-L-valyl) and chocolate intake [70], whereas
another study found a correlation between cyclo(L-prolyl-L-valyl)
and habitual coffee intake [71]. Beyond these findings, we could
not identify any study that reported an association between
chocolate or cocoa (products) and cyclo(L-prolyl-L-valyl).

Theobromine, xanthosine, and cyclo(L-prolyl-L-valyl) may be
potential candidate biomarkers of coffee and/or black tea intake,
making them unsuitable for identifying chocolate intake. How-
ever, this issue is less relevant for younger children, who are
typically nonconsumers of coffee and black tea, although it may
be relevant for adolescents. A sensitivity analysis was performed
3281
by adding short-term coffee and tea intake as a covariate into the
linear mixed model, which did not alter the results of the short-
term chocolate intake analysis. Only very few children reported
consuming coffee or tea (W1, n¼ 16;W2, n¼ 16; andW3, n¼ 55).

Notably, Europe is among the largest chocolate consumers
globally, followed closely by the United States [72]. According to
the European Food Safety Agency, chocolate (beverages) is the
main source of caffeine intake for children aged 3–10 y [73].
Therefore, these BFIs could be valuable in assessing chocolate
intake in children. From a public health perspective, the detec-
tion of metabolites from caffeine pathways in children
consuming chocolate may be controversial. Future studies
should evaluate the half-life and pharmacologic properties of
xanthines like theobromine for children.

Indeed, the elimination half-life of the metabolites might be
an important aspect. In the first sensitivity analysis, we restricted
the short-term sample to participants with a 1-d interval between
urine collection and dietary intake. We could identify theobro-
mine, cyclo(L-prolyl-L-valyl), and octenoylcarnitine, as well as
additional metabolites for 6 food groups not found in the main
analysis. The closer timing between dietary intake and urine
collection enabled us to detect associations between short-term
dietary intake and metabolites that might have been cleared in
those with a longer interval between intake and collection.

All 3 chocolate metabolites were replicated in the DONALD
cohort, adding to the evidence that theobromine, xanthosine,
and cyclo(L-prolyl-L-valyl) are potential biomarkers of chocolate
intake in children and adolescents. In addition, 3-hydroxypheny-
lacetate, a metabolite not previously identified as a chocolate
intake biomarker, was found in the replication cohort. The
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differences between the main and replication cohort, such as
dietary assessment methods (24-HDR compared with 3d-WDR),
urine collection modes (morning urine compared with 24h-
urine), and country of residence (European countries compared
with Germany), could explain the different results. The 24-h
urine collection may present higher validity and could capture
a wider range of metabolites, whereas the timing of morning
urine samples might miss some metabolites due to their elimi-
nation half-life [74]. Although 1 study suggested only small
differences between the applied dietary assessment methods, the
impact on the study outcome is still uncertain [75]. Furthermore,
the country of residence may be an important factor and explains
a part of the variance in the urine metabolome [24,76].

Lastly, we could not identify potential BFIs for all snack food
groups we investigated. This may be due to the nonspecific na-
ture of some of the food groups, for example, combining cakes,
puddings, and cookies into 1 group; and the low number of
consumers for certain items, like jelly candy. For an in-depth
study of biomarkers of other snack foods, a more specific di-
etary assessment of the nature, ingredients, and brands of these
convenience snack foods, along with higher sample sizes, would
be recommended.

That said, the limitations of this studymust be highlighted: The
main limitation is the reliance on self-reported dietary intake, as
discussed in the beginning. Additionally, the half-life of elimina-
tion may have affected the short-term analysis, where metabolite
features were found for only 2 of 7 food groups. Although we
sought to identify the best statistical pipeline for the available
data, the use of machine learning (MUVR algorithms), and stan-
dard statistical techniques (linear mixed models) is not common
practice in biomarker discovery [26,77]. Furthermore, the dif-
ferential analysis mode for short-term intake (dichotomization
and classification analysis) and habitual intake (continuous and
regression analyses) could have influenced the number of me-
tabolites related to short-term and habitual intake, although the
number of features in both analyses was comparable.

This study has several strengths. We made use of 2 indepen-
dent longitudinal cohorts of European children, which allowed us
to evaluate the consistency of the results. The 3 chocolate me-
tabolites were identified by a 2-step statistical analysis strategy,
which was also applied in the DONALD cohort. The application of
repeated double crossvalidation with unbiased variable selection
algorithms provided a stable selection of metabolite features in
the face of a large number of initial metabolite features [50].
Additionally, we applied linear mixed models to account for
important individual characteristics. In both cohorts, the whole
(food) metabolome was measured by untargeted metabolomics,
covering a large number of available metabolites in the urine
samples. Repeatedly measured food metabolome data were
available in both cohorts. The laboratory and statistical analysis
pipelines were streamlined for both cohorts, making the analysis
approaches as identical as possible. Combining the FFQ and
24-HDR data with the NCI method potentially increased the
precision of the predicted habitual dietary intakes over merely
averaging dietary intakes from the repeated 24-HDR [40].

In conclusion, in this study, we analyzed untargeted metab-
olomics data measured in repeatedly collected urine samples. We
were able to identify and replicate theobromine, xanthosine, and
cyclo(L-prolyl-L-valyl) in 2 independent cohorts of children and
adolescents. This approach is novel and demonstrates the
3282
potential use of cohort data for the identification of biomarkers.
Nonetheless, further research is needed to assess the validity and
specificity of these potential chocolate BFIs in children, espe-
cially in light of coffee and tea intake. Controlled feeding studies
with targeted metabolomics measurements would be needed for
further validation.
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A B S T R A C T

Background: High consumption of ultraprocessed foods (UPFs) continues to draw significant public health interest because of the asso-
ciated negative health outcomes. Metabolomics can contribute to the understanding of the biological mechanisms through which UPFs may
influence health.
Objectives: To investigate urine and plasma metabolomic biomarkers of UPF intake in adolescents and young adults.
Methods: We used data from the Dortmund Nutritional and Anthropometric Longitudinally Designed study to investigate cross-sectional
associations of UPF intake with concentrations of urine metabolites in adolescents using 3d weighed dietary records (3d-WDR) and 24-h
urine samples (n ¼ 339), and associations of repeatedly assessed UPF intake with concentrations of circulating plasma metabolites in
young adults with 3–6 3d-WDRs within 5 y preceding blood measurement (n ¼ 195). Urine and plasma samples were analyzed using mass
spectrometry-based metabolomics. Biosample-specific metabolite patterns (MPs) were determined using robust sparse principal components
analysis. Multivariable linear regression models were applied to assess the associations of UPF consumption (as a percentage of total food
intake in g/d) with concentrations of individual metabolites and MP scores.
Results: The median proportion of UPF intake was 22.0% [interquartile range (IQR): 12.3, 32.9] in adolescents and 23.2% (IQR: 16.0, 31.6)
in young adults. We identified 42 and 6 UPF intake-associated metabolites in urine and plasma samples, respectively. One urinary MP,
“xenobiotics and amino acids” [β ¼ 0.042, 95% confidence interval (CI): 0.014, 0.070] and 1 plasma MP, “lipids, xenobiotics, and amino
acids” (β ¼ 0.074, 95% CI: 0.031, 0.117) showed positive association with UPF intake. Both patterns shared 29 metabolites, mostly of
xenobiotic metabolism.
Conclusions: We identified urine and plasma metabolites associated with UPF intake in adolescents and young adults, which may represent
some of the biological mechanisms through which UPFs may influence metabolism and health.

Keywords: ultraprocessed foods, dietary biomarkers, metabolomics, metabolites, metabolite patterns
Introduction

Industrial food processing, which combines ingredients and
additives, is important for improving food safety, nutritional
access, and in reducing food waste across the supply chain [1].
Ultraprocessed foods (UPFs) as defined by the NOVA classifica-
tion system [2], includes a broad range of industrially processed
food products such as soft drinks, flavored yogurts, packaged
Abbreviations: 3d-WDR, 3-d weighed dietary record; CI, confidence interval; DON
metabolite pattern; PCA, principal component analysis; UMF, unprocessed or minim
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snacks, confectionery, pasta and pizza dishes, processed meat
products, instant noodles, soups and sauces, among other
ready-to-heat or -eat food products [2–4]. Broadly, most UPFs
contain a mix of food-derived or reconstituted ingredients and
other industrially isolated components such as lactose, casein,
gluten, whey, hydrogenated oils, variety of sugars (e.g., high
fructose corn syrup), cosmetic additives such as colorants, dyes,
flavors enhancers, bulking agents, emulsifiers among others,
ALD, Dortmund Nutritional and Anthropometric Longitudinally Designed; MP,
ally processed food; UPF, ultraprocessed food.
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mostly of exclusive industrial use [2,3,5]. These formulations
provide convenience, affordability, and enhance shelf-life and
sensory properties [2].

The consumption of UPFs has been rising, contributing to
more than half of the total daily energy intake in some countries,
for example, the United States [6]. In 22 European countries,
UPF intake varies markedly, ranging from 14% to 44%, as re-
ported in a recent study [7]. An increasing number of epidemi-
ologic studies suggest that high consumption of UPFs is
associated with increased health risks—including obesity [8],
cardiometabolic diseases [4,9], chronic kidney disease [10],
cancer [9,11], irritable bowel syndrome [12], and depression
[13]. Some of these health risks have been shown to be partic-
ularly significant for higher intake of animal-based products and
sweetened beverages [9].

Several mechanisms have been proposed to explain ways
through which UPFs may influence health. These include poor
nutrient profiles: excessive added sugars, salts, unhealthy fats,
and high energy density but low in protein and dietary fiber [2,
14]. Furthermore, the physical and chemical properties associ-
ated with industrial processing, ingredients, and their
by-products may also contribute to these increased health risks
[4]. Nevertheless, the debate, widespread disagreement, and
uncertainty on the links between UPFs and increased health risks
still exists [15–19].

Untargeted metabolomics is a promising approach for inves-
tigating the relationship between the consumption of UPFs and
health status, as dietary intakes elicit metabolic changes that can
be related to health indicators. Urine and blood matrices may
reflect different aspects of dietary intake and metabolic changes,
with urine more reliably reflecting short-term changes in con-
centrations of diet-responsive metabolites, and blood a more
stable overview of an individual’s metabolic state [20]. These
insights could improve our understanding of pathways through
which UPF may affect health, encouraging more nuanced dis-
courses on these biological mechanisms. Indeed, some
metabolomics-based studies have investigated the links between
individual foods within the UPFs such as sweetened beverages
[21], processed red meats [22,23], and metabolic health. Such
studies are valuable, particularly in identifying biomarkers
associated with the intake of specific foods. However, consid-
ering UPFs as an aggregate dietary pattern may more accurately
reflect actual dietary habits, as foods and nutrients are typically
consumed in combinations [24–26].

So far, the associations of various dietary patterns and
metabolomics profiles have been extensively described [27], but
studies on UPF-metabolome associations are markedly fewer.
This gap is evident across all age groups, with only a handful of
studies conducted in adults [10,28,29] and in younger pop-
ulations [30,31]. Therefore, our study investigates the associa-
tion between UPF intake and untargeted urine and plasma
metabolomics profiles in adolescents and young adults from a
well-characterized German cohort.
Methods

Study design and population
The Dortmund Nutritional and Anthropometric Longitudi-

nally Designed (DONALD) study is an open dynamic cohort on
3256
children and young individuals residing in Dortmund, Germany.
Since 1985, 30–40 healthy infants are recruited annually during
their first year and are regularly assessed and followed up until
adulthood. Regular assessments include dietary intake, anthro-
pometric measurements, urine sample collection (from the ages
3–4 y), blood samples (from 18 y), medical, lifestyle, and other
sociodemographic data [32].

The DONALD study was approved by the Ethics Committee of
the University of Bonn (ethics numbers: 098/06 and 185/20). All
procedures and assessments followed ethical standards of the
Declaration of Helsinki, with written informed consent from
parents and from adolescents from the age of 16 y.

Study sample
The current analyses included 2 analytic samples termed

adolescent urine n ¼ 339, and young adult plasma n ¼ 195,
previously described in [33]. In brief, the adolescent urine
sample included individuals who provided a 3-d weighed dietary
record (3d-WDR) and a single 24-h urine sample (age at urine
sample, 14.9–18.4 y). The young adult plasma sample included
individuals who completed 3 or more 3d-WDRs within the 5-y
period preceding a single blood measurement (age at blood
sample, 18.0–21.9 y). The 2 analytic samples had an overlap of
139 participants. A study flowchart is provided in Supplemental
Figure 1.

Dietary assessment
In the 3d-WDRs, the study participants, or with parental

assistance, weighed all foods and beverages consumed and left-
overs to the nearest 1 g using electronic food scales. Semi-
quantitative estimates (e.g., portion sizes, cups, or spoons) were
acceptable if weighing the food was not possible such as for
meals consumed away from home. Information on recorded food
products, including brands, ingredients, declared nutrients, and
methods of preparation were also collected. Each product
recorded for the first time receives its own entry in an internally
maintained and regularly updated food composition in-house
database (LEBTAB) [34]. The nutritional profiles of staple
foods were derived from German food composition tables,
whereas the caloric and nutrient content of packaged food
products (e.g., processed items, convenience meals, and snacks)
were determined through recipe simulation from their in-
gredients and nutrients labels.

Food and beverage groupings
All food and beverage items recorded by the participants were

assigned into 1 of the NOVA categories according to the purpose,
nature, and extent of their processing [2]: NOVA-1 [unprocessed
or minimally processed foods (UMFs)], NOVA-2 (processed
culinary ingredients), NOVA-3 (processed foods), and NOVA-4
(UPF). Food items with unclear NOVA classification were
documented and classified on the basis of internal consensus and
the Federal Ministry of Food and Agriculture guideline for spices
and other seasonings [35]. A summary of food and beverage
groups according to the NOVA system is provided in Supple-
mental Table 1.

This study primarily focused on the UPFs. Daily intakes were
calculated as individual means from the 3d-WDR.We defined the
long-term UPF intake variable as the mean intake across all 3d-
WDRs within the 5-y period preceding blood draw. In our
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main analysis, we calculated the proportion of UPF intake as a
percentage of total weight of food and beverages consumed in
grams. This weight-based ratio instead of the energy-based
ratio acknowledges food and beverages that provide low or
zero calories [11,36,37] as well as nonnutritive ingredients and
additives that may be used in food processing [37].

Other covariate assessment
Experienced nurses conducted anthropometric measurements

following standardized procedures. BMI (kg/m2) was calculated
from these measurements. Leisure time physical activity was
assessed using a questionnaire adapted from the validated
Adolescent Physical Activity Recall Questionnaire [38]. Partici-
pants estimated the time spent on a range of organized and un-
organized sports over the past 12 mo, and the reported activities
quantified in metabolic equivalent of task-hours per week.
Self-reported alcohol use and smoking status were assessed using
a questionnaire, and participants categorized as current, former,
and never for each of these lifestyle factors. The covariate data
represent measurements closest to or on the date of biosample
collection.

Urine and blood samples
Following a standardized protocol, participants collected

their 24-h urine samples on the third day of the 3-d dietary
assessment. These were then stored in sterile, preservative-free
plastic containers at temperatures below �12�C. Upon transfer
to the DONALD study center, the urine samples were stored at
�22�C until processed. Fasting blood sample were drawn,
centrifuged at 4�C for 15 min (3100 U/min, 2000 � g), ali-
quoted and stored at �80�C. EDTA plasma was used in this
analysis. Detailed procedures for urine and blood samples are
provided [32].

Metabolite profiling
Metabolon Inc. conducted untargeted metabolomics analysis

on the urine and plasma samples using ultrahigh performance
liquid chromatography-tandem mass spectroscopy. Metabolon
followed their standardized protocol for sample handling, raw
data extraction, and peak identification and analysis as outlined
in their procedures [39]. For plasma samples, Metabolon applied
both metabolomics and lipidomics approaches. Overall, 1407
metabolites were annotated in urine and 1042 features in plasma
samples. We provide a detailed description of the metabolomics
procedures for both urine and blood samples in the Supple-
mental Methods.

Statistical analyses
Descriptive statistics

Characteristics of study participants were expressed as me-
dians (25th and 75th percentile) for continuous variables and
frequencies (percentages) for categorical variables.

Processing of metabolite data
We performed mechanism aware imputation of missing

values in 2 steps. First, we applied a novel method that combines
particle swarm optimization (to search for metabolite concen-
tration thresholds and the proportion of low concentration de-
letions) and extreme gradient boosting as classifier method for
mechanism underlying each missing value, following procedures
3257
provided by Yuan et al. [40]. These were implemented in Python
using NumPy, Pandas, scikit-learn, and XGBoost libraries. Our
data predominantly showed missing not at random values in
urine (86.1%) and in plasma (83.2%) samples. Therefore, me-
tabolites with >20% missing data were excluded according to
the “80% rule” [41], and the rest were imputed by quantile
regression imputation of left-censored data using MetImp 1.2
[42]. Batch normalization were conducted using ber bagging
method implemented in the dbnorm R package [43]. Subse-
quently, the data were natural log-transformed, mean centered,
and scaled to unit variance.

Deriving metabolite patterns
We used the robust sparse principal component analysis

(Robust SPCA) to compute the metabolite patterns (MPs)
because of better interpretability of its components through
sparse vectors, as the loadings are determined from a subset of
the original variables, and its robustness to outlying observations
[44]. We implemented these steps using the sparsepca R pack-
age. The optimal PCA components retained were determined by
scree plots using the PCAtools R package.

Associations of UPF with metabolites and MPs
Using multivariable linear regression, we regressed 1) each

of the single metabolites and 2) each of the MPs on the UPF
intake, adjusting for age, sex, energy intake, BMI, physical
activity, smoking, and alcohol status. The plasma models were
additionally adjusted for the time difference between dietary
assessments and blood draw (time difference ¼ age at blood
draw � mean age of dietary assessments) and the number of
dietary assessments per participant. We applied the Benjami-
ni–Hochberg procedure to control the false discovery rate at
5% within each set of regression analyses. For the main results,
we assessed model assumptions (i.e., normality of residuals,
linearity, and homogeneity of variance) using the performance
R package.

Missing covariates
Considering the DONALD’s longitudinal design, we first

applied backward filling for “never” alcohol intake (or smokers)
to fill missing data for earlier time points. We then imputed the
rest of missing data for physical activity, alcohol use, and
smoking status (Table 1) using the K-nearest neighbor algorithm,
with 10 nearest neighbors on the basis of other nonmissing co-
variate data. These were implemented using the VIM R package.

Additional analyses
Considering differences in UPF variable definition in litera-

ture, such as absolute intakes, weight-based ratio, and energy-
based ratio [9–11,28–31,36,37], we conducted secondary
analysis to compare our main results (weight-based ratio) with
absolute (g/d) and energy-based ratio (energy from UPFs as a
percentage of total energy intake). We also computed correlation
(Pearson) between UPF and UMF intakes to investigate the hy-
pothesis that a higher UPF consumption is related to reduced
UMF intake [2,4]. Lastly, we performed sensitivity analyses on
urine samples, n ¼ 260, and plasma, n ¼ 137, after excluding
potentially implausible 3d-WDR reporting on the basis of sex-
and age-specific thresholds for underreporting [45].

All statistical analyses were conducted using Python (v3.8)
and R (v4.1.3).



TABLE 1
Basic characteristics of the study participants.

n Adolescent urine (N ¼ 339) n Young adult plasma (N ¼ 195)

Sex: female 339 166 (49.0) 195 108 (55.4)
Age at biosample collection (y) 339 18.0 (17.0, 18.1) 195 18.1 (18.1, 18.2)
BMI (kg/m2) 339 21.9 (19.9, 24.0) 195 22.2 (20.1, 24.5)
UPF, % total food intake (g/d) 339 22.0 (12.3, 32.9) 195 23.2 (16.0, 31.6)
UPF, % TEI 339 42.0 (32.2, 52.0) 195 45.0 (36.8, 50.8)
Energy intake (TEI, Kcal/d) 339 2126.9 (1748.5, 2582.1) 195 1978.1 (1697.0, 2390.1)
3d-WDR assessments 339 1.0 195 4.0 (4.0, 5.0)
Physical activity (MET-h /w) 215 34.0 (14.1, 54.8) 184 30.1 (12.1, 52.9)
Smoking status 211 142
Never 155 (73.5) 98 (69.0)
Former 23 (10.9) 21 (14.8)
Current 33 (15.6) 23 (16.2)

Alcohol status 179 153
Never 24 (13.4) 20 (13.1)
Former 27 (15.1) 31 (20.3)
Current 128 (71.5) 102 (66.7)

Abbreviations: 3d-WDR, 3-d weighed dietary records, MET-h /w, metabolic equivalent of task-hours per week; TEI, total energy intake; UPF,
ultraprocessed food.
Data are presented as n (%) and median (25th and 75th percentile) for categorical and continuous variables, respectively. Differences in n are
because of missing data values.
The young adult label reflects age at blood sample collection (min-max. 18.0–21.9 y) but the repeated dietary assessments were conducted over the
5 y preceding the blood draw.
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Results

Descriptive characteristics
The adolescent urine samples (49.0% female) and young adult

plasma samples (55.4% female) had median ages of 18.0 and
18.1 y, with median BMIs of 21.9 and 22.2, respectively. The
median proportion of UPF intake to total food intake by weight
was 22.0% (IQR: 12.3%, 32.9%) in adolescents and 23.2% (IQR:
16.0%, 31.6%) in young adults (Table 1). The foods with highest
mean contribution to total UPF intake in both analytic samples
were sweetened beverages (nondairy soft drinks) and conve-
nient, ready-to-heat or -eat food products, contributing 31.3%
and 11.5% (adolescents) and 28.1% and 11.2% (young adults),
respectively (Figure 1). Regarding energy intake, however,
sweets, chocolates, and ice cream; cereals and industrial breads;
and processed meats and sausages had the highest energy
contribution to the total calorie intake from the UPFs in both
adolescents and young adults (Supplemental Figure 2).
FIGURE 1. Mean contribution of various food groups to the total UPF con
urine and (B), young adults’ plasma analytic samples. UPF, ultraprocessed
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Associations between UPF intake and urine
metabolites

In adolescent urine samples, of the 42 urine metabolites
identified in our fully adjusted model, 21 metabolites were
positively associated with UPF intake (Table 2). In accordance
with the Dragsted et al. [46,47] framework for evaluating food
biomarker plausibility, which suggests that biomarkers of intake
should demonstrate dose–response relationship (i.e., increase in
human sample with higher food intake), in this section, we
highlight the positive associations of UPF intake and urine me-
tabolites and provide all associations observed in Supplemental
Table 2.

Among the known metabolites, higher UPF intake was asso-
ciated with higher concentrations of indoxyl glucuronide β ¼
0.013 [95% confidence intervals (CIs): 0.007, 0.019] and other
partially characterized glucuronides: glucuronide of C10H18O2
(1), β ¼ 0.015 (0.008, 0.021); glucuronide of C10H14O2 (2), β ¼
0.015 (0.008, 0.021); glucuronide of C10H18O2 (7), β ¼ 0.014
sumption, as a percentage of the total weight (g/d) in (A), adolescent
food.



TABLE 2
Regression estimates of the associations between UPF intake and urine metabolites in adolescents (n ¼ 339).

Metabolite Model 1, β (95% CI) Model 2, β (95% CI) Model 3, β (95% CI)

X-17679 0.026 (0.021, 0.032)1 0.026 (0.020, 0.032)1 0.027 (0.021, 0.033)1

X-19497 0.013 (0.007, 0.019)1 0.014 (0.008, 0.020)1 0.016 (0.010, 0.022)1

Glucuronide of C10H18O2 (1)2 0.014 (0.007, 0.020)1 0.014 (0.007, 0.020)1 0.015 (0.008, 0.021)1

Glucuronide of C10H14O2 (2)2 0.013 (0.007, 0.019)1 0.013 (0.007, 0.020)1 0.015 (0.008, 0.021)1

X-11478 0.012 (0.006, 0.018)1 0.013 (0.006, 0.019)1 0.014 (0.007, 0.020)1

Glucuronide of C10H18O2 (7)2 0.012 (0.006, 0.018)1 0.012 (0.006, 0.019)1 0.014 (0.007, 0.021)1

Indoxyl glucuronide 0.005 (–0.001, 0.011) 0.010 (0.004, 0.016)1 0.013 (0.007, 0.019)1

Glucuronide of C10H18O2 (8)2 0.013 (0.007, 0.019)1 0.012 (0.006, 0.019)1 0.014 (0.007, 0.020)1

N,N-dimethylalanine 0.010 (0.004, 0.016)1 0.012 (0.006, 0.018)1 0.013 (0.007, 0.019)1

3-Hydroxy-N6,N6,N6-trimethyl-L-lysine2 0.012 (0.006, 0.018)1 0.012 (0.006, 0.018)1 0.012 (0.006, 0.018)1

1-methylhistamine 0.011 (0.005, 0.016)1 0.011 (0.005, 0.017)1 0.012 (0.006, 0.018)1

Glucuronide of C10H18O2 (9)2 0.011 (0.005, 0.017)1 0.011 (0.005, 0.017)1 0.012 (0.006, 0.019)1

X-25442 0.011 (0.005, 0.017)1 0.013 (0.007, 0.019)1 0.012 (0.006, 0.019)1

X-17825 0.009 (0.003, 0.015)1 0.011 (0.004, 0.017)1 0.011 (0.005, 0.017)1

X-24345 0.010 (0.004, 0.016)1 0.012 (0.006, 0.018)1 0.012 (0.005, 0.018)1

X-17358 0.011 (0.005, 0.017)1 0.010 (0.004, 0.017)1 0.011 (0.005, 0.018)1

1,6-anhydroglucose 0.010 (0.004, 0.016)1 0.011 (0.005, 0.017)1 0.011 (0.004, 0.018)1

3-indoxyl sulfate 0.003 (–0.003, 0.009) 0.008 (0.002, 0.014) 0.010 (0.004, 0.016)1

Glycerophosphorylcholine (GPC) 0.005 (–0.001, 0.011) 0.009 (0.002, 0.015) 0.011 (0.004, 0.017)1

Glycolate (hydroxyacetate) 0.012 (0.006, 0.018)1 0.010 (0.004, 0.016)1 0.010 (0.004, 0.016)1

6-Bromotryptophan 0.011 (0.005, 0.017)1 0.010 (0.004, 0.016)1 0.010 (0.004, 0.016)1

Abbreviations: β, regression estimate; CI, confidence interval; UPF, ultraprocessed food.
Model 1: Unadjusted.
Model 2: Adjusted for age, sex, BMI, and energy intake.
Model 3: Adjustments in model 2 and physical activity, alcohol and smoking status.
Eachmodelwas run independently (i.e., separately not based on statistical significance in previousmodel), overall significancewas based onmodel 3.
1 Statistically significant results (false discovery rate-adjusted q value < 0.05). Only positive associations are summarized; full results are given in

Supplemental Table 2.
2 Indicates a compound that has not been confirmed based on authentic chemical standard, but Metabolon are confident in its identity. The

structural identities of “X-” followed by a number (e.g., X-17679) are unknown.
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(0.007, 0.021), glucuronide of C10H18O2 (8), β ¼ 0.014 (0.007,
0.020). Other metabolites were N, N-dimethylalanine, β ¼ 0.013
(0.007, 0.019); 1-methylhistamine, β ¼ 0.012 (0.006, 0.018); 3-
Hydroxy-N6,N6,N6-trimethyl-L-lysine, β¼ 0.012 (0.006, 0.018);
glycerophosphorylcholine, β ¼ 0.011 (0.004, 0.017); 1,6-anhy-
droglucose, β ¼ 0.011 (0.004, 0.018); 3-indoxyl sulfate, β ¼
0.010 (0.004, 0.016); glycolate, β ¼ 0.010 (0.004, 0.016); and 6-
bromotryptophan, β ¼ 0.010 (0.004, 0.016) (Table 2).

There were also structurally unknown metabolites whose
concentrations positively correlated with UPF intake, namely
TABLE 3
Regression estimates of the associations between UPF intake and plasma m

Metabolite Model 1, β (95% CI)

Homostachydrine1 –0.021 (–0.031, –0.011)2

4-Hydroxyglutamate 0.017 (0.007, 0.028)
3-CMPFP –0.019 (–0.029, -0.009)
X-11372 0.020 (0.009, 0.030)
X-23639 –0.015 (–0.025, –0.004)
X-24951 0.018 (0.008, 0.028)

Abbreviations: β, regression estimate; 3-CMPFP, 3-carboxy-4-methyl-5-pent
Model 1: Unadjusted.
Model 2: Adjusted for age, sex, BMI, energy intake, number of dietary assess
Model 3: Adjustments in model 2 and physical activity, alcohol, and smok
1 Indicates a compound that has not been confirmed based on authenti

structural identities of “X-” followed by a number (e.g., X-11372) are unkn
2 Statistically significant results (false discovery rate-adjusted q value <0
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X-17679, β ¼ 0.027 (0.021, 0.033); X-19497, β ¼ 0.016 (0.010,
0.022); X-11478, β ¼ 0.014 (0.07, 0.020), among others
(Table 2).

Associations between UPF intake and plasma
metabolites

In young adult plasma samples, UPF intake was associated
with 6 metabolites in our fully adjusted model after corrections
for multiple testing (Table 3). Of these, UPF intake was associ-
ated with elevated concentrations of 4-hydroxyglutamate,
etabolites in young adults (N ¼ 195).

Model 2, β (95% CI) Model 3, β (95% CI)

–0.025 (–0.035, –0.015)2 –0.024 (–0.034, –0.013)2

0.023 (0.013, 0.033)2 0.021 (0.011, 0.031)2

–0.020 (–0.031, –0.010)2 –0.020 (–0.031, –0.009)2

0.018 (0.008, 0.028)2 0.019 (0.009, 0.030)2

–0.020 (–0.030, –0.009)2 –0.020 (–0.031, –0.010)2

0.019 (0.009, 0.029)2 0.019 (0.009, 0.030)2

yl-2-furanpropionate; CI, confidence interval; UPF, ultraprocessed food.

ments, and time difference between dietary assessment and blood draw.
ing status.
c chemical standard, but Metabolon are confident in its identity. The
own.
.05).
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β ¼ 0.021 (0.011, 0.031) and 2 structurally unknown metabo-
lites, X-11372, β ¼ 0.019 (0.009, 0.030) and X-24951, β ¼ 0.019
(0.009, 0.030).
Associations between UPF intake and urine and
plasma MPs

In adolescent urine samples, 25 MPs, explaining 61.7% of
urine metabolite variation, were analyzed in relation to UPF
intake (Supplemental Table 3). Four MPs (MP7, MP9, MP10, and
MP18) were associated with UPF intake in the minimally
adjusted model (Table 4). Two of these associations were inde-
pendent of lifestyle factors and multiple testing correction: MP9,
β ¼ 0.042 (0.014, 0.070) and MP7, β ¼ –0.063 (–0.092, –0.034).
In brief, the MP9, consisting of n ¼ 214 metabolites, was domi-
nated by metabolites in the xenobiotic super pathway (63
metabolite of subclasses: food components, xanthine meta-
bolism, chemicals and drugs, and benzoate metabolism), 64
structurally unknown metabolites, 40 amino acids, 16 lipids, 11
partially characterized molecules (particularly, glucuronides of
C8H14O2, C8H14O2, C8H16O2, C10H18O2, C12H22O4,
C12H22O3, and C14H26O4), and the rest were spread across
nucleotides, cofactors and vitamins, energy, and peptides.
Therefore, on the basis of known metabolic pathways, we named
this urinary pattern “xenobiotics and amino acids”MP. The MP7,
consisting of n ¼ 281 metabolites, was dominated by unknown
metabolites (n ¼ 74), amino acids (n ¼ 70), lipids (n ¼ 51), and
xenobiotics (n ¼ 41) among other metabolite classes. We named
this urinary pattern, “amino acids, lipids, and xenobiotics” MP.

We compared the 2 urinary MPs 9 and 7 and found 46 com-
mon metabolites, mostly showing opposite direction of PCA
loadings, which also possibly reflects the results observed in
multivariable linear regression models (i.e., UPF’s positive as-
sociation with MP9 and inverse association with MP7). Of these
common metabolites, 17 represented xenobiotic metabolism
(subclasses: food component, xanthine metabolism, and chem-
icals) and 13 amino acids (primarily involved in glycine, serine,
and threonine; tryptophan; and alanine and aspartate meta-
bolism) and other unknownmetabolites and pathways. Extended
tables of metabolites represented in MP9 and MP7 are provided
in Supplemental Tables 4 and 5, with the top metabolites
TABLE 4
Regression estimates of associations between UPF intake and urine and pla

Analytic sample MP Model 1, β (95% CI)

Adolescent urine MP7 –0.062 (–0.090, –0.034)1

MP9 0.046 (0.20, 0.072)1

MP10 0.022 (–0.003, 0.047)
MP18 –0.020 (–0.042, 0.002)

Young adult plasma
MP1 –0.021 (–0.100, 0.058)
MP6 0.047 (0.005, 0.088)
MP8 0.065 (0.026, 0.105)1

MP17 –0.040 (–0.071, –0.010)

Abbreviations: β, regression estimate; CI, confidence interval; MP, metabol
Model 1: Unadjusted.
Model 2: Adolescent urine – adjusted for age, sex, BMI, and energy intake.
Model 2: Young adult plasma – adjusted for age, sex, BMI, energy intake
assessment and blood draw.
Model 3: Adjustments in model 2 and physical activity, alcohol and smoki
The MPs were analyzed and labeled separately for urine and plasma samp
1 Statistical significance (false discovery rate-adjusted q value <0.05). Fu
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contributing to the variation and their loadings summarized in
Supplemental Figures 3 and 4, respectively.

In young adult plasma samples, 19 MPs explaining 55.0% of
the plasma metabolite variation were analyzed with the UPF
intake (Supplemental Table 6). Four MPs (MP1, MP6, MP8, and
MP17) were associated with UPF intake in the minimally
adjusted model (Table 4). Of these, only MP8 was associated
with UPF intake in our fully adjusted model after corrections for
multiple testing, β¼ 0.074 (0.031, 0.117). This MP8 had n¼ 216
metabolites, dominated by lipids (n ¼ 86), unknown metabolites
(n ¼ 45), xenobiotics (n ¼ 39) amino acids (n ¼ 28), and the rest
spread across cofactors and vitamins, peptides, and partially
characterized molecules. Similarly, on the basis of the known
biochemical pathways, we named this pattern “lipids, xenobi-
otics, and amino acids” MP. An extended table of this MP is
provided in Supplemental Table 7 and its top metabolites and
weights in Supplemental Figure 5.

Lastly, we compared the similarity of the UPF-positively
associated MPs across biological matrices (urine and plasma,
i.e., urinary MP9 reflecting short-term intake and plasma MP8,
reflecting repeated, long-term intake). We found 29 common
metabolites, mostly xenobiotics (n ¼15) of subclasses food
components, benzoate, xanthine, and drug/chemical pathways,
and the rest were mostly amino acids and lipids.

Secondary and sensitivity analyses
In adolescent urine samples, most metabolites generally

showed comparable results for both absolute and energy-based
UPF variables, with few exceptions. For example, saccharin, a
common noncaloric ingredient in sweetened beverages, was not
statistically significant even before correcting for multiple sta-
tistical tests for the energy-based UPF, β ¼ 0.005 (–0.003, 0.012)
but was significant in absolute UPF intake, β ¼ 0.0002 (0.0000,
0.0004) (Supplemental Table 8). The UPF-associated urinary
MP9 was statistically significant with absolute and energy-based
UPF, whereas the MP7 was statistically significant with energy-
based UPF but not with the absolute UPF model (Supplemental
Table 9).

In young adult plasma samples, most associations observed
with the weight-based ratio were also replicated using absolute
UPF intake and energy-based UPF (Supplemental Table 10). The
sma metabolite patterns.

Model 2, β (95% CI) Model 3, β (95% CI)

–0.064 (–0.092, –0.036)1 –0.063 (–0.092, –0.034)1

0.046 (0.019, 0.073)1 0.042 (0.014, 0.070)1

0.036 (0.011, 0.061)1 0.029 (0.003, 0.055)
–0.032 (–0.055, –0.010)1 –0.032 (–0.056, –0.008)

–0.081 (–0.134, –0.029)1 –0.064(–0.119, –0.010)
0.063 (0.023, 0.104)1 0.049 (0.008, 0.091)
0.072 (0.031, 0.113)1 0.074 (0.031, 0.117)1

–0.052 (–0.083, –0.021)1 –0.038 (–0.070, –0.007)

ite pattern; UPF, ultraprocessed food.

, number of dietary assessments, and time difference between dietary

ng status.
les as MP1 to MPn.
ll results are given in Supplemental Tables 3 and 6.



S. Muli et al. The Journal of Nutrition 154 (2024) 3255–3265
68
UPF-related plasmaMP8was statistically significant with all UPF
variable specifications (Supplemental Table 11).

Regarding the correlation between UPF and UMF intakes, we
found a strong negative correlation of these intakes in both
adolescent urine, r ¼ –0.88 (–0.90, –0.86), and young adult
plasma, r ¼ –0.95 (–0.96, –0.95), samples.

In our sensitivity analyses on potentially implausible intakes,
excluding possibly underreported intakes showed comparable
results to those obtained from the main analysis using the entire
analytic samples regardless of the UPF variable specification,
urinary patterns (Supplemental Table 12) and plasma patterns
(Supplemental Table 13).
Discussion

Using untargeted metabolomics, we investigated cross-
sectional associations of UPF intake with urine metabolites and
associations of repeatedly assessed UPF intake with plasma me-
tabolites in a cohort of free-living adolescents and young adults.
Our results suggest that the intake of UPF is reflected in the urine
and plasma metabolome, through diverse biochemical pathways
such as xenobiotics, amino acids, and lipids pathways, including
alterations of microbiome-derived and other endogenous
metabolites.

Noteworthy single-metabolite associations in urine included
indoxyl glucuronide and several other partially characterized
glucuronides. Glucuronidation is a major pathway for detoxifi-
cation and elimination of exogenous substances, predominantly
drugs, chemicals, dietary substances, and endogenous com-
pounds such as hormones [48]. A recent controlled feeding trial
also reported UPF-related changes in indoxyl glucuronide con-
centrations and various glucuronides of C10H18O2 in 24-h urine
[28]. Similarly, we previously reported these associations
(glucuronide of C10H14O2, glucuronide of C10H18O2) with
sweetened beverages in 24-h urine samples [33], the food group
with highest contribution to the UPF intake in our study. The
specific mechanisms for dietary-related glucuronidation are not
entirely defined, but the gut microbiome plays a key role in
modulating microbial transformation of dietary substrates and
glucuronide levels [48] and biosynthesis of microbial metabo-
lites [49].

Indeed, 3-indoxyl sulfate, a protein-bound uremic toxin, and
6-bromotryptophan, both positively associated with UPF intake
are microbiome-derived tryptophan metabolites. This associa-
tion of UPF intake with indoxyl sulfate was also observed in
adults [28]. These metabolites may be important because of the
suggested roles of the UPFs and western-style diets in inducing
gut microbial dysbiosis [50–52], and the associations of
microbiome-related metabolites with health outcomes. In other
studies, higher indoxyl sulfate concentrations were positively
linked with various health problems: psychic anxiety [53],
cognitive impairment [54], and neuroinflammation and oxida-
tive stress [55].

Our finding of a positive association of UPFs with 1-methyl-
histamine is also consistent with a previous study on gut metab-
olites and microbial compositions, which observed that children
on a western-style diet had elevated concentrations of 1-methyl-
histamine compared with those on a Mediterranean-style diet
[56]. The mechanisms for elevated levels of 1-methylhistamine
3261
with UPF intake are unclear and could reflect histamine release
as an allergic response [57], food histamine intolerance [58], or
even microbiological contamination of certain foods [59].

The N,N-dimethylalanine, positively associated with the UPF
in this study and similarly with sweetened beverages in our
previous study [33], may be important in various biological
processes. For instance, the urinary N,N-dimethylalanine was
inversely associated with 3 measures of adiposity in adolescents
[33], and lower concentrations of plasma N,N-dimethylalanine
were observed in adults with type 2 diabetes in another study
[60]. There is, however, limited literature on this metabolite.

Consistent with the study by O’Connor et al. [28], we
observed that higher UPF intakes were associated with lower
concentrations of metabolites known to reflect minimally pro-
cessed or certain whole foods. Our single-metabolite models
showed that higher UPF intake was linked to lower levels of
hydroquinone sulfate, a marker of pear intake [61]; dopamine
3-O-sulfate, a marker for banana intake [62,63]; 2-acetamido-
phenol sulfate (HPAA sulfate), linked to whole grains [64]; 3,
5-dihydroxybenzoic acid, also associated with intake of
whole-grain cereals [47,65]; allantoin, a purine derivative found
in cow milk [66]; caffeic acid sulfate, a polyphenol abundant in
coffee beans [62]; ferulic acid 4-sulfate, a metabolite of ferulic
and caffeic acid found in fruits, whole-grain cereals, and coffee
[67] and 3-methyladipate, a metabolite of phytanic acid break-
down, found in meat, dairy fat, and fatty fish [68]. Taken
together, these data suggest lower intake of these foods in diets
rich in UPF.

The single-metabolite associations with UPFs were also
captured in the urinary “xenobiotics and amino acids” pattern,
MP9; whose composition includes nutrient- and nonnutrient-
related metabolites. Many of these metabolites were reported
in a previous feeding study [28]. Metabolites of xanthine meta-
bolism, for example, caffeine and theobromine were also related
to UPF intake in another study [10], whereas concentrations of
theobromine, 7-methylxanthine, and 3-methylxanthine were
elevated with UPF intake [28]. In our previous study including
the same participants [33], we observed that these
caffeine-related metabolites more likely reflected caffeine in the
sweetened beverages independent of other dietary sources of
caffeine. Theobromine is a well-known component of cocoa and
present in chocolate and other cocoa containing foods. Thus,
considering the main contributing foods to the UPF intake in our
study, these metabolites and their variation (i.e., direction of
their PCA loadings) relative to those known to reflect whole
foods, make this pattern compellingly relevant to the UPF.

Furthermore, one of the distinctive characteristics of UPFs,
according to the NOVA system, is the use of industrial food ad-
ditives such as flavoring and preservative agents. In MP9, me-
tabolites reflecting these include vanillate (4-hydroxy-3-
methoxybenzoate), a widely used vanilla food flavor [69] and
naringenin 7 glucuronide, metabolite of naringenin, an indus-
trial flavoring agent extracted from grapefruit [70]. We, how-
ever, note that other food sources of naringenin exist, such as
citrus fruits and fruit juices [71]. In addition, various forms of
benzoates (e.g., sodium benzoate) are commonly used as pre-
servatives in packaged foods [72]. Metabolites of benzoate
metabolism pathway in the UPF-related MP9 were 3-methyl
catechol sulfate, 4-ethylcatechol sulfate, 2-ethylphenylsulfate,
and o-cresol.
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In relation to long-term UPF intake and plasma metabolites,
we observed far fewer associations compared with urine using
the single-metabolite modeling approach. This might suggest
generally weak individual plasma metabolite associations with
UPF intake, with only a few remaining significant after correc-
tion for multiple testing. These differences could also reflect the
biological characteristics of the sample matrices. Urine is a more
reliable matrix for investigating short-term response to dietary
intakes and detoxification pathways, whereas blood matrix more
reliably reflects endogenous metabolism of food from the gut to
the liver and blood [20]. An interesting result in our
single-metabolite models was the association of higher UPF
intake with elevated concentration levels of 4-hydroxyglutamate
(4-hydroxy-L-glutamic acid). This association was recently
observed in spot urine, 24-h urine, and plasma samples in a
controlled feeding study by O’Connor et al. [28]. Given that
4-hydroxyglutamate is implicated in metabolic syndrome [73]
and pre-eclampsia [74,75], its mechanistic link with the UPFs
could be an interesting research target regarding diet–health
relationships.

The UPF-plasma MP8 largely reflected lipid metabolites.
Differences and variation of dietary modulation of urine and
blood metabolome are anticipated [20], and some differences in
our results may also reflect some of the long-term changes
associated with UPF intake. Importantly, the common metabo-
lites across the urine and plasma MPs positively linked to UPF
were mostly involved in xenobiotic metabolism of food-related
components, xanthine metabolism, benzoates, sulfites, and me-
tabolites of potential contaminants or exposures to chemicals or
drugs. Therefore, although unsupervised machine learning
methods such as the PCA are exploratory and multiple biological
interpretations may exist for observed exposure associations,
collectively, the common biochemical pathways and their joint
combinations as captured in these urine and plasma MPs rein-
force their potential relevance to UPF intake.

In summary, our study provides further evidence and insights
into the growing concern of the potential health effects of UPFs.
Our data showed a strong negative correlation between intakes
of UPF and UMF, suggesting that UPFs displace whole foods that
should be the basis of the diet according to the NOVA system.
These results are consistent with established literature and long-
held perspectives on public health nutrition [2,4]. In line, our
study extends this evidence to molecular level, as shown in our
explorative single-metabolite models and MPs. We also note that
the UPFs were associated with changes in gut microbiota me-
tabolites (e.g., indoxyl sulfate and 6-bromotryptophan). Mecha-
nisms for gut bacteria–xenobiotics interplay are well described
[76], and western-style diets [51,52,77] or food additives
themselves [50] are suggested to induce gut microbiome dys-
biosis. Thus, our results suggest multiple ways through which
regular intakes of UPFs may influence health—from nutritional
displacement to alterations of the gut microbiota composition,
and possibly other unintended but undetermined effects of in-
dustrial food additives and formulations. Some of these metab-
olites, which seem metabolically or physiologically important,
could be putative links between the consumption of UPFs and
health status.

This study has several strengths. The DONALD study design
allows for regular, repeated dietary assessments on the same
individuals that have enabled assessment of long-term UPF
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intake. The DONALD’s 3d-WDRs, compared with other methods
such as food-frequency questionnaires, collects dietary data at
the food item level rather than at food group level, enabling
more accurate assigning of their NOVA groups. Using urine and
blood—the most popular biological matrices—and their com-
plementary nature enabled us to investigate short-term and long-
term metabolomics profiles of UPF intake. This approach has the
potential to provide more insights on potentially transient as
well as sustained metabolomics alterations related to dietary
intakes. Besides, by combining single-metabolite models with
the MP approaches, we identified individual metabolites as well
as broader MPs that may mechanistically reflect the UPF-
associated perturbations of the metabolome. We opted for non-
targeted metabolomics approaches given that targeting single or
multiple selected pathways might not optimally reflect the
complex UPF influence on the metabolome.

We acknowledge several limitations in this study. Self-
reported dietary assessments are subject to random and sys-
tematic errors. We performed sensitivity analysis on potential
implausible dietary reporting, although these checks are based
on energy intakes and only identifies potential underreporting
or over-reporting. Another challenge relates to the uncertainty
in classification of some multi-ingredient foods into processed
(NOVA-3) or the UPFs (NOVA-4). Despite reaching consensus
for food groupings based on multiple guidelines, some dis-
crepancies may still exist. Furthermore, some of the metabo-
lites consistently associated with UPF intakes in single-
metabolite models and MPs were of unknown structural
identities, limiting our understanding of their biological
functions. Lastly, the DONALD cohort consists of a largely
homogeneous, urban population with a higher socioeconomic
status than the general German population [32]. This homo-
geneity could influence their food choices and dietary habits.
Nonetheless, given that this study replicated findings of other
studies from different populations and regions, suggests
reasonable generalizability of our findings.

In conclusion, we identified individual metabolites and MPs
that reflect UPF intake in urine and plasma samples of adoles-
cents and young adults. These findings add to the growing
literature on complementary assessment of UPF intake and re-
ports some of the underlying biological mechanisms through
which these foods may affect metabolism and health. Besides,
the extensive processing of food resulting in UPFs has generated
considerable clinical and public health interest and become
mired in controversy. Our data suggest that the complex and
heterogeneous nature of UPFs may be gleaned from the
metabolome.
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Extended analyses on publication 4: UPF related metabolites associated with adiposity in 
adolescents and young adults using penalized elastic net regression models 
 

Biosample Metabolite BMI (n = 339)1 % BF (n = 339)1 WC (n = 231)1 
 Adolescent 
Urine 
  

N,N-dimethylalanine -0.125 -0.144 -0.188 
X - 17358 0.100 0.041 0.069 
4-hydroxymandelate -0.097 -0.118 -0.078 
2-acetamidophenol sulfate -0.070 -0.069 -0.107 
dopamine 3-O-sulfate 0.069 — 0.042 
3-methyladipate -0.067 — -0.001 
X - 17679 -0.060 — -0.087 
X - 12818 -0.058 -0.029 — 
X - 13844 -0.056 -0.073 -0.056 
glucuronide of C10H18O2 (9)* 0.044 0.033 0.022 
2S,3R-dihydroxybutyrate 0.042 — — 
3,5-dihydroxybenzoic acid -0.040 — — 
4-hydroxycinnamate sulfate -0.029 -0.039 -0.029 
glycerophosphorylcholine (GPC) -0.027 — -0.020 
4-methoxyphenol sulfate 0.026 — — 
picolinoylglycine 0.016 — — 
X - 24345 0.012 — 0.070 
heptenedioate (C7:1-DC)* 0.004 — — 
3-indoxyl sulfate -0.001 — — 
X - 17825 — 0.027 — 
glycolate (hydroxyacetate) — 0.010 0.063 
hydroquinone sulfate — — -0.032 

Young adult 
Plasma  

 BMI (n = 195)1 % BF (n = 195)1 WC (n = 195)1 
4-hydroxyglutamate 0.304 0.230 0.318 
X - 11372 -0.149 -0.126 -0.177 
X - 23639 -0.042 — -0.028 
3-carboxy-4-methyl-5-pentyl-2-
furanpropionate (3-CMPFP) 0.039 — 0.140 
X - 24951 — — 0.094 

1Only UPF-related metabolites (in publication 4) that were also associated (non-zero values) with at least one of 
the three anthropometric measures are shown in this table. A dash [—] indicates that the metabolite had no 
association with the anthropometric measure.  

Abbreviations: BMI, body mass index; %BF, body fat percentage; WC, waist circumference 

Metabolites with a prefix ‘X-‘ followed by a number (e.g., X - 17358) are molecular features whose biochemical 
identities could not be identified. *Indicates metabolites that were not confirmed based on authentic standard, but 
Metabolon Inc are confident in its identity based on their biochemical identification criteria and chemical properties. 

The analytic approach for the adaptive elastic regression models and their nested cross-validation is reported in 
Publication 2 (and its supplemental material). Briefly, linear regression models were applied to adjust metabolite 
concentrations for confounders (age, sex, energy intake, birthweight, time difference between biosample collection 
and anthropometric measurements, physical activity, smoking, and alcohol status). For each of the adiposity 
measures (target Y variables, standardized to a mean of zero and unit variance), the confounder-adjusted 
metabolites (predictors) were fit in an adaptive elastic-net regression model, using the inverse of the absolute ridge 
regression weights as penalty factors, and a nested cross-validation approach implemented in the nestedcv (v0.4.4) 
R package.  
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4 Discussion with references 

4.1 Main findings 

In our systematic review (publication 1) we identified acesulfame, saccharin, sucralose, 

cyclamate, and steviol glucuronide as the most validated biomarkers for LNCSB intake. 

These were based on two experimental and one observational study using targeted 

metabolomics approaches. Applying untargeted approaches, we replicated acesulfame 

and saccharin as urinary biomarkers of LNCSB intake in children and adolescents in the 

DONALD cohort (publication 2). Acesulfame and saccharin, though biochemically 

different compounds, share certain characteristics regarding their absorption and 

metabolism, and are both primarily excreted in urine (Magnuson et al., 2016). Only 

saccharin was quantified in both children and adolescent urine samples. Acesulfame was 

detected in adolescent urine samples only. It was unclear whether this was partly due to 

inter-laboratory differences as children and adolescent samples were analyzed at different 

laboratories, or whether these results reflected differences in beverage choices and other 

dietary exposures across these two age groups. By using repeated diet and urine 

measurements in children, it was expected that even the transient dietary biomarkers that 

may be missed in single measurements would be quantified. 

As exogenous compounds, urinary acesulfame and saccharin reflect dietary exposures to 

the parent sweetener. However, these sweeteners are common ingredients in other foods 

such as sweets and savory snacks. In our post-hoc analyses, there were no discernible 

correlations between these metabolites and other food groups. Other sweeteners were 

likely not observed in this study due to their different absorption, metabolism, and 

excretion pathways and were not quantified by our approaches; for example, stevio 

glycoside and aspartame are degraded into different compounds (Magnuson et al., 2016). 

Because of the sustained interest in these sweeteners, more advanced targeted 

approaches for simultaneously quantifying all the main industrial sweeteners in urine have 

been developed (Bruin et al., 2023), and applied in recent large population studies (Buso 

et al., 2024). 

We highlighted the limitations of 24-h urinary sucrose and fructose for assessing SSB 

intake (publication 1). In line, we replicated 24-h urinary sucrose as a biomarker for AS in 
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adolescents, but not for SSB intake (publication 2). The other panel of SSB biomarkers in 

publication 1 (formate, citrulline, taurine, and isocitrate) had low validity based on the 

Dragsted framework for biomarkers of food intake (Dragsted et al., 2018), mainly due to 

lack of specificity for SSB intake and limited replication. Although formate, citrulline, and 

taurine were quantified in adolescent urine samples, they were not predictive of SSB 

intake. Strikingly, SSB intake was more positively related to caffeine metabolites, 

particularly, the 1-methylxanthine and 5- acetylamino-6-amino-3-methyluracil in 

adolescent urine and young adult plasma samples, independent of other dietary sources 

of caffeine (publication 2). 

Caffeine is a major ingredient in soft drinks (e.g., sodas, energy drinks, and iced teas); 

hence, caffeine-related metabolites are biologically plausible ingredient-based biomarkers 

for caffeinated SSBs. Ingredient-based biomarkers are unlikely to be reliable in the 

assessment of heterogeneous foods such as SSB, as they do not generalize to subgroups 

not enriched with the primary ingredient. This could also explain our lack of replication of 

taurine, an ingredient-based biomarker of SSB, particularly, for cola drinks (Gibbons et 

al., 2015). Considering our previous findings on the carbon isotope ratio (δ13C) of alanine 

as the most validated biomarker of SSB as demonstrated by various targeted studies 

(publication 1), it is of interest to determine how the SSB metabolites from untargeted 

approaches (publication 2) correlate with the isotopic signature δ13C. Ultimately, 

combining various biomarkers appears to be a more promising strategy to advance the 

assessment of SSB intake. 

Sweet and fatty snacks, like SSBs, are heterogeneous and among the most difficult foods 

to determine their accurate intakes due to the unplanned nature of snacking. Many are 

consumed at irregular intervals, in varying portion sizes, and are of diverse composition; 

hence, they are prone to misreporting (Garden et al., 2018). In our children analytic 

sample, three candidate biomarkers of chocolate intake were identified: theobromine, 

xanthosine, and cyclo(L-prolyl-L-valyl). These were externally replicated in an 

independent cohort (publication 3). The lack of reproducibility across metabolite features 

for other subgroups of snacks is likely due to their complex multi-ingredients and subgroup 

heterogeneity. Chocolate was the most homogenous subgroup of snacks included as the 

primary ingredient in most brands is cocoa beans. Besides, while theobromine is a known 
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biomarker for cocoa intake, it is also a metabolite of caffeine; thus, it lacks the specificity 

for chocolate (Michielsen et al., 2018).  

In publication 4, our results showed that the complex nature of UPF and its effects on 

human metabolism are reflected in its associated metabolomic changes. A significant 

contribution of this study was the replication of many UPF-related metabolites previously 

reported in a controlled human feeding study (O’Connor et al., 2023), demonstrating the 

generalizability of these findings in a free-living population and their relevance to diverse 

UPF diets across populations. Our results showed that consumers of diets rich in UPF 

unsurprisingly consumed smaller amounts of whole, nutritious foods (e.g., vegetables, 

fruits, whole grains, legumes, etc.) that are the basis for diet quality and known to promote 

health. This was evident from the strong negative correlation between the UPF intake and 

unprocessed or minimally processed food intake, and from the inverse associations 

between UPF intake and metabolites known to reflect these whole foods (publication 4). 

Even though the DONALD cohort generally includes healthy participants, some of the 

metabolites positively associated with UPF intake are validated markers for various 

metabolic health conditions. For example, 4-hydroxyglutamate has been linked to 

metabolic syndrome (Gelpi et al., 2021), primary hyperoxaluria type 3 (Pitt et al., 2015), 

pre-eclampsia (Sovio et al., 2019), and gestational diabetes mellitus (Sovio et al., 2022). 

The UPF-related metabolite Indoxyl sulfate is also linked to psychic anxiety (Brydges et 

al., 2021), cognitive impairment (Yeh et al., 2016), neuroinflammation and oxidative stress 

(Adesso et al., 2017). To gain a better understanding of the biological mechanisms 

underlying long-term consumption of UPFs and health outcomes, longitudinal studies 

should prioritize these metabolically and physiologically important metabolites. 

Regarding diet-adiposity associations, the SBs-, AS-, and UPF-related metabolites that 

were also significantly associated with adiposity measures were interpreted as potential 

intermediate biomarkers of diet and adiposity, based on common metabolic pathway 

perturbations (Vineis et al., 2013). Overall, we discovered new associations as well as 

replicated associations reported in literature. For example, N1-methyl-2-pyridone-5-

carboxamide and decanoylcarnitine (C10), both positively related to all three measures of 

adiposity in adolescents (publication 2), were also positively associated with adiposity in 
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other cohorts (Goodson et al., 2019; Lowe et al., 2017), respectively. Nonetheless, these 

results were observed in a single urine measurement, and longitudinal studies would 

provide a better interpretation. 

In young adult plasma samples, which assessed long-term dietary intakes preceding the 

blood draw, two results were particularly noteworthy. First, higher SSB consumers had 

lower concentrations of plasma carotene diol (publication 2), one of the carotenoid 

markers of leafy vegetable intakes (Landberg et al., 2023). Also, the young adults with 

higher WC had lower levels of carotene diol (publication 2). Other epidemiologic studies 

have reported lower levels of serum carotene diol in individuals with higher BMI and WC 

(Stevens et al., 2020) and similarly, other carotenoids with visceral adiposity (Yan et al., 

2023). Carotenoids are major phytochemicals in fruits and vegetables and are indicative 

of adherence to healthier dietary patterns (Neuhouser et al., 2023; Holthaus et al., 2024). 

Collectively, our findings suggest a potential indirect relationship between SSB and 

adiposity, but more plausibly through overall quality of diet, since higher SSB consumers 

also tend to consume other foods of poorer diet quality (Doherty, Lacko, & Popkin, 2021). 

Secondly, plasma 4-hydroxyglutamate which was positively related with all three 

measures of adiposity in young adults, has been reported to mediate the effects of 

maternal overweight and obesity on early childhood growth trajectories and obesity risk 

(Hu et al., 2022). As a primary metabolite, 4-hydroxyglutamate is a metabolically and 

physiologically important metabolite considering its other associations with metabolic 

health conditions. Mechanistic studies should provide a better understanding of the 

specific mechanisms through which UPF, or its subgroups contribute to higher levels of 

4-hydroxyglutamate, and its functional roles in cellular metabolism and pathophysiology 

of related health conditions. 

4.2 Reflections and conclusion 

Metabolomics has significantly accelerated progress towards precision nutrition 

(Landberg et al., 2023; Prentice, 2024; Cuparencu et al., 2024), but there are still some 

unresolved issues regarding the most optimal approaches for biomarker research. For 

instance, nearly all metabolomics-based studies in free-living populations, including the 

present study, rely on self-reported intakes for identification of biomarkers of intake. This 
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appears to be a counterintuitive and suboptimal strategy for advancing dietary biomarker 

research, as the need for intake biomarkers arises from the uncertainty and errors in these 

self-reported intakes (Prentice, 2024). Today, we have an ever-growing, extensive list of 

candidate dietary biomarkers, many of which have not been replicated across studies or 

validated in intervention studies. Our publication 3, for example, demonstrates the 

challenges of using untargeted approaches for identification and replication of biomarkers 

of intake in free-living populations. Ultimately, there is  a need to strike a balance between 

the pursuit of novelty provided by these untargeted approaches and validation of existing 

candidate biomarkers of intake. As evident across publications 1-4, human controlled 

feeding studies appear more suited for food biomarker discovery, and observational 

studies for evaluating their generalizability in real-world settings. Targeted metabolomics 

seems more ideal for the latter. 

In conclusion, we demonstrated the usefulness of the human metabolome in elucidating 

the mechanisms through which diet influences metabolism and adiposity. These findings 

only fit a piece of the puzzle on the diet-adiposity relationship. Integrating metabolome 

with other omics (e.g., microbiome, proteomics, and genomics) can advance this work, 

particularly in longitudinal studies with better defined temporality of dietary exposures, 

omics data, and future adiposity measurements. To address some of the limitations 

discussed in publications 2-4, we intend to extend this work by applying a life-course 

approach to dietary intakes where the same individuals are investigated from early 

childhood to adulthood to gain an even better understanding of the effects of these foods 

on microbiome composition and some of the physiologically important gut-microbial 

metabolites associated with adiposity and other metabolic health conditions.   
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