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Summary

This thesis is concerned with providing a description of the soliton addition map (Bäcklund
transform) of the KP-II equation on R2, which adds a line soliton to a fixed solution of
the equation, and how this map is related to the stability of the line soliton. The line
soliton solution is given by the KdV soliton

φ(x) := −2 sech2(x),

which is extended to a function on R2 that is constant in the y variable. Its time evolution
is u(t, x, y) = φ(x− 4t).

The thesis includes three main parts, which correspond to Sections 3, 4, 5 in Chapter
2. The first part consists of a study of the Miura map with small data in a critical space,
and provides a classification of solutions to the Miura map equation with such data.
This result implies well-definedness of the Bäcklund transform on a rather generic class
of functions:

B : Bε0(0) ⊂ Ḣ− 1
2
,0(R2)× R → {φα + w |w ∈ H− 1

2
,0(R2), ∂yα ∈ L2(R)},

where Ḣ− 1
2
,0(R2) is the space of distributions with half x-antiderivative in L2(R2), Bε0(0)

is a small ball in the Banach space, H−1/2,0(R2) = L2(R2) + Ḣ−1/2,0(R2) and φα is a
shorthand notation for the modulated soliton φ(x−α(y)). The map depends on an addi-
tional parameter γ0 ∈ R which represents the choice of the position of the superimposed
line soliton along the x axis. We then show that the transform admits good two-sided
bounds in L2:

c∥u∥L2(R2) ≤ inf
α=α(y)

{
∥B(u, γ0)− φα∥2L2(R2) + ∥∂yα∥2L2(R)

} 1
2 ≤ C∥u∥L2(R2)

for suitable c, C > 0, when ∥u∥L2(R) is finite and small enough. A multisoliton addition
map is constructed as well, although we do not provide a classification theorem nor
two-sided estimates in this thesis.

The second part covers the properties of the Bäcklund transform in relation to the
KP-II flow. The main result therein is that time-dependent solutions of KP-II are
mapped to functions which are regular enough and are new solutions of KP-II, if the
additional parameter γ0 evolves in a suitable way over time. This result extends to the
multisoliton addition map.

The third part covers the study of the range of the Bäcklund transform. It is shown
that the intersection between the range and a small ball in a weighted space forms exactly
a codimension-1 manifold. This manifold appears naturally in the scattering transform
theory of the equation.

The above results prove codimension-1 stability of the line soliton up to modulations.
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2 On the Bäcklund transform of KP-II 9

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Description of the problem and fundamental objects . . . . . . . . 12

1.2 Context and previous work . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Strategy, main results, and structure of the paper . . . . . . . . . . 19

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Preliminaries: the Miura map and the integrability . . . . . . . . . . . . . 28

2.1 Lax pair and compatibility condition . . . . . . . . . . . . . . . . . 28

2.2 Relation between the Lax pair, the Miura map and mKP-II . . . . 29

2.3 Multisolitons and elementary solutions . . . . . . . . . . . . . . . . 31

3 The Miura map of the KP-II equation . . . . . . . . . . . . . . . . . . . . 32

3.1 Decomposition of the solution and uniqueness . . . . . . . . . . . . 33

3.2 Exact formula for solutions of (M) . . . . . . . . . . . . . . . . . . 48

3.3 Proofs of Theorem A and Corollary B . . . . . . . . . . . . . . . . 54
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Chapter 1

Introduction to the thesis

The history of integrable partial differential equations traces a long path, beginning with
observations of water waves in the Union Canal in Scotland, passing through the first
numerical experiment held at Los Alamos National Laboratory, and gaining widespread
attention in the mathematical community after the pioneering work of Gardner–Greene–
Kruskal–Miura [11]. After many decades where the focus was put on the inverse scat-
tering technique, the field is experiencing a wave of novelty with works that combine
some of the properties of the scattering transform with several PDE techniques. Recent
breakthroughs include sharp results on generalized conservation laws at low and frac-
tional regularity, low-regularity well-posedness, and soliton stability. Most of these recent
works are on equations in one space dimension, with a few works on higher dimensional
models.

The present thesis on the KP-II equation on R2,

ut − 6uux + uxxx + 3∂−1
x uyy = 0,

falls in the category of soliton stability for integrable PDEs. The main element of novelty
in this work with respect to what described above is the non-compactness of the shape of
the solitons. The challenge does not arise merely from the lack of spatial decay—common
in travelling solutions of various PDEs that approach non-zero values at infinity, such
as kinks and dark solitons—but rather from the fact that the parameters describing the
evolution of a perturbed soliton must depend on one of the coordinate functions of R2.
The stability of the KP-II soliton, called line soliton, was studied and proved under
suitable classes of perturbations by Mizumachi [36, 37, 38], using techniques that do not
rely on the integrability of the KP-II equation. In this work, we study the Bäcklund
transform of KP-II, an object that allows to nonlinearly add a line soliton to a given
solution of the equation, while preserving the KP-II flow. This object is part of the
integrable structure of the equation. Its properties are used to prove a stability result
for the line soliton.

1



2 CHAPTER 1. INTRODUCTION TO THE THESIS

Figure 1.1: On the left, the line soliton φ (λ = 1). On the right, an illustration of a
modulated line soliton φλα for some α = α(y), λ = λ(y).

Solitons of KP-II

The line soliton of KP-II coincides with the KdV soliton,

u(t, x, y) = φλ(x− x0 − 4λ2t), φλ(x) := −2λ2 sech2(λx),

λ > 0, x0 ∈ R. It is thus constant in the y variable. When λ = 1, we will write φ1 =: φ.
When perturbing the soliton at initial time, considering a solution u with

u|t=0 = φ+ g,

the solution is expected to evolve into a modulated line soliton, as the one in Figure 1.1,
plus a remainder that is bounded in L2(R2) uniformly in time:

u(t, x, y) = φλ(t,y)(x− α(t, y)) + w(t, x, y),

where
sup
t≥0

∥w(t, ·, ·)∥L2(R2) ≤ C∥g∥L2(R2).

Using a shorthand notation to denote translations in the x variable by a subscript, we
will set φλα := φλ(x− α), and write

u = φλα + w.

The above phenomenon is called modulational stability in the space L2(R2), and is known
for suitable initial perturbations g thanks to the works of Mizumachi [36, 37, 38].

The line soliton is part of a large family of solutions called multisolitons, which look
like a superposition of several tilted line or half-line solitons, and represent interaction
phenomena between different solitons. These solutions can be classified by the position,
direction and amplitude of their solitons at spatial infinity [8, 31], although the inter-
action region features some interesting non-trivial patterns. Multisolitons are usually
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Figure 1.2: Some examples of multisolitons. On the left, a Y -shaped soliton. On the
right, a (4, 1)-multisoliton, belonging to the class of tree-shaped multisolitons. Below, a
(2, 3)-multisoliton.

subdivided into classes of (N−, N+)-multisolitons, where N−, N+ ≥ 1 are integer num-
bers that represent the number of half-line solitons supported for values of y approaching
−∞ and +∞ respectively. For example, the line soliton is a (1, 1)-soliton, because it
has one tail that goes to −∞ and one tail going to +∞ in the y variable. A famous
example of multisoliton is the Miles resonance, or Y -shaped soliton (see Figure 1.2). In
this thesis, we will briefly consider (k, 1)-solitons with k ≥ 1.

Note that the soliton (and in fact all multisolitons) of the KP-II equation, as we
wrote it, is negative. We chose this convention because it is more natural from the point
of view of the scattering theory of the equation. On the other hand, solitons represent
water waves with positive elevation, so the figures in this introduction represent the
function −u instead of u.

The Bäcklund transform

The Bäcklund transform, or soliton addition map, is present in integrable PDEs admit-
ting solitons. It commutes with the flow of the respective PDE and has the effect of
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nonlinearly superimposing a soliton on a given solution.

This map is linked to the scattering transform, a change of variables that essentially
allows to transform the PDE into a family of linear ODEs with constant coefficients,
effectively diagonalizing the equation. It plays the same role that the Fourier transform
has in diagonalizing linear PDEs with constant coefficients like the heat equation, so it is
often called nonlinear Fourier transform. The scattering transform of localized enough
solutions is generally composed of two parts: a continuous part, which is a function
of a spectral parameter like the usual Fourier transform, and a discrete part, which is
supported on a discrete set of spectral parameters. It is well-known that the discrete
part corresponds to solitons, while the continuous scattering data represent dispersive
radiation. On the spectral domain, the Bäcklund transform generally has the effect of
adding a component to the discrete scattering transform, while leaving the continuous
part unchanged.

It is interesting to note that for the KP-II equation, the continuous scattering data
of perturbations of the line soliton can have singularities even for very localized pertur-
bations [52], which hints to the possibility that the Bäcklund transform might not be
surjective.

The Bäcklund transform of KP-II, for λ = 1, is formally defined as

B(u, γ0) = u− 2vx,

where v is an eternal solution of the Miura map equation

(M) vy − vxx = (v2)x − ux,

a forced Burgers’ equation, with boundary values v → ±1 as x → ±∞. By considering
the family of solutions

u = 0, v(x, y) = tanh(x− γ0), γ0 ∈ R.

it is possible to guess that, for generic data u, a natural family of solutions of (M) is
a one-dimensional object. The additional parameter γ0 ∈ R in the map B is therefore
needed to select one of the solutions of (M) with fixed u.

Results and structure of the thesis

Note. To simplify numbering, chapter numbers have been omitted in the numbering of
sections, equations, and theorems. All numbered sections and items, including equations
without section numbers, are in Chapter 2. Sections labeled with letters, along with their
items, are in the appendices (Chapter 3). The main results—Theorems A, C,D, and
Corollaries B and E—are presented in Chapter 2, Section 1.
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The Bäcklund transform

The work of this thesis can be divided into three main parts, corresponding to Sections
3, 4, and 5 of Chapter 2.

The first part consists of a study of equation (M) with small data u ∈ Ḣ− 1
2
,0(R2),

the Banach space defined in terms of the Fourier transform by the norm

∥u∥2
Ḣ− 1

2 ,0(R2)
=

∫
R2

|2πξ|−1|û(ξ, η)|2 dξ dη.

This is a scaling critical space for u in equation (M), and at the same time a scaling
critical space for the KP-II equation. In theorem A, we provide a classification of solu-
tions v to (M) with small data in Ḣ− 1

2
,0(R2). The solutions classified are those of the

form
v = tanh(x− α(y)) + w,

with ∂yα ∈ L2(R) and w ∈ L3(R2). For each small u ∈ Ḣ− 1
2
,0(R2), the set of solutions

forms a 1-parameter family parametrized by a real parameter γ0 ∈ R, which roughly
corresponds to α(0), with bounds

∥∂yα∥L2(R) + ∥w∥L3(R2) ≤ C∥u∥
Ḣ− 1

2 ,0(R2)
.

We show that these solutions can be written explicitly in terms of two solutions with
constant boundary values at (x, y) → ∞. This formula can be formally written as

v = ∂x log
(
(1− θ)e

∫
v+ dx + θe

∫
v− dx

)
for θ = θ(γ0) ∈ (0, 1), where v± ∈ L3(R2)± 1 are the unique solutions of (M).

As a consequence, the Bäcklund transform is well-defined as a map

B : Bε0(0)× R → {φα + w |w ∈ H− 1
2
,0(R2), ∂yα ∈ L2(R)},

where H− 1
2
,0(R2) = L2(R2) + Ḣ− 1

2
,0(R2), Bε0(0) is a small ball in Ḣ− 1

2
,0(R2), and

φα := φ(x − α(y)) as above. The parameter γ0 ∈ R roughly describes the intersection
between the line soliton and the y axis. We then show that the transform admits good
two-sided bounds in L2:

c∥u∥L2(R2) ≤ inf
α=α(y)

{
∥B(u, γ0)− φα∥2L2(R2) + ∥∂yα∥2L2(R)

} 1
2 ≤ C∥u∥L2(R2)

for suitable c, C ∈ R, when ∥u∥L2(R) is small enough. This is the content of Corollary
B. A multisoliton addition map is constructed for (k, 1)-multisolitons, k ≥ 1 as well,
although we do not provide a classification theorem nor two-sided estimates in this
thesis.

The second part covers the properties of the Bäcklund transform in relation to the
KP-II flow. We show that solutions of KP-II with small initial data in Ḣ− 1

2
,0(R2), which
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are known to be L2
loc([0,∞)× R2), are mapped to functions in L2

loc([0,∞)× R2) which
are new solutions of KP-II, see Theorem C. This procedure gives freedom of choosing
the parameter γ0 at time t = 0, which fixes the values of γ0 for all future times. The
parameter γ0 evolves as

γ0(t) = γ0(0) + 4t+O(
√
t).

The leading term reflects the speed of the line soliton φ(x − 4t). This part essentially
shows that the Bäcklund transform conjugates the KP-II flow around the zero solution
with the flow around the line soliton, although not necessarily in a surjective way.

The third part covers the study of the range of the Bäcklund transform and proves
Theorem D. It is shown that the intersection between the range of B and a small ball
in a weighted space Yε(R2) ⊂ L1(R2) ∩ L2(R2) (defined in Chapter 2) forms exactly a
codimension-1 manifold φ+N , where N can be written as

N = {g ∈ Yε(R2) |Φ(g) = 0}

for an analytic function Φ : L1(R2) ∩ L2(R2) → R.
The functional Φ appears in the scattering transform theory of KP-II [52], as ex-

plained in Chapter 1, Section 1. The continuous scattering data of a perturbed line
soliton φ+g contain a singularity at a spectral parameter corresponding to the line soli-
ton, with a coefficient proportional to Φ(g). When Φ(g) = 0, the singularity vanishes.
This shows that this manifold is special, and the KP-II evolution of data in this manifold
likely admits special properties. It was proved by Mizumachi that general, sufficiently
localized perturbations g will induce a non-zero shift h ∈ R in the position of the line
soliton in a moving frame [38], and this shift is constant in t and y (see Section 5.7). We
conjecture that this number h is a function of Φ(g), with h = 0 if and only if Φ(g) = 0.
In particular, we conjecture that this manifold coincides with the set of perturbations
for which the solution converges back to the original line soliton, locally in y, along a
co-moving frame of reference.

Stability of the line soliton

Our results on the Bäcklund transform imply codimension-1 modulational stability of
the line soliton in L2(R2). In fact, as discussed in the previous subsection, the Bäcklund
transform conjugates the KP-II flow around the line soliton with the same flow around
the zero solution, and it admits double L2-estimates. This means that the modulational
stability of the line soliton reduces to the stability of the zero solution in L2(R2). The
latter is trivial because the L2-norm is a conserved quantity of the KP-II equation.

Our stability result is the first at sharp (L2) regularity. The codimension-1 condition
is likely not sharp, analogously as in the works of Mizumachi, but our method does
not easily allow to remove this condition, since the Bäcklund transform is not surjective
around the line soliton when well-defined. It is an open and interesting problem how
to generalize the above argument to generic perturbations of the line soliton that fall
outside the manifold Φ = 0.
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Finally, in Section 6 we provide the construction of the analogous Bäcklund transform
for the class of (k, 1)-multisolitons, k ≥ 0. The study of this map is to be done more
carefully in follow-up works, although we expect to be able to obtain analogous stability
results with this map.

The relevance of the research contained in this thesis lies precisely in the fact that
the method shows promise for applications to the L2-stability of multisolitons, which
is currently open in all cases, except the line soliton. We also make explicit the possi-
ble problems arising when studying Bäcklund transforms of integrable PDEs admitting
‘non-compact’ solitons, as this kind of study was not done before. This work raises
several natural questions, open problems and possible research directions concerning the
problem of multisoliton stability and the study of the Bäcklund transform itself, which
is interesting as a mathematical object on its own.

We refer to the introduction contained in Chapter 2, Section 1 for a broader discussion
of the state of the art and of the results contained in this thesis.

The present thesis is based on the preprint

[46] L. Pompili. On the Bäcklund transform and the stability
of the line soliton of the KP-II equation on R2. Preprint:
arxiv:2412.12530, 2024.

Chapter 2 contains the body of the paper, and Chapter 3 contains its appendices.

The author acknowledges the support of the DAAD through the program ‘Gradu-
ate School Scholarship Programme, 2020’ (57516591), and of the Hausdorff Center for
Mathematics under Germany’s Excellence Strategy–EXC–2047/1-390685813.
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Chapter 2

On the Bäcklund transform and
the line soliton of KP-II on R2

We report the preprint [46], including the appendices in the next chapter.

L. Pompili. On the Bäcklund transform and the stability of the line soliton of the
KP-II equation on R2. Preprint: arxiv:2412.12530, 2024.

Abstract

We study the Miura map of the KP-II equation on R2 and the resulting Bäcklund trans-
form, which adds a line soliton to a given solution. This work aims to develop a comple-
mentary approach to T. Mizumachi’s method for the L2-stability of the line soliton, which
the potential for generalization to multisolitons.

We construct the Bäcklund transform by classifying solutions of the Miura map equation
close to a modulated kink; this translates into studying eternal solutions of the forced
viscous Burgers’ equation under distinct boundary conditions at ±∞. We then show that

its range, when intersected with a small ball in |Dx|
1
2L2(R2)∩L2(R2)∩⟨y⟩0−L1(R2), forms

a codimension-1 manifold.

We prove codimension-1 L2-stability of the line soliton in the aforementioned weighted
space as a corollary, providing the first stability result at sharp regularity. The codimension-
1 condition in the range of the Bäcklund transform is an intrinsic property, and we con-
jecture that it corresponds to a known long time behavior of perturbed line solitons. The
stability is expected to hold without this condition, as in Mizumachi’s works.

Finally, we show the construction of a multisoliton addition map for (k, 1)-multisolitons,
k ≥ 1.

9
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1 Introduction

We consider the Kadomtsev–Petviashvili equation on the plane R2
x,y

(KP-II) ut − 6uux + uxxx + 3∂−1
x uyy = 0,

a well-known two-dimensional generalization of the KdV equation

(KdV) ut − 6uux + uxxx = 0.

The KdV equation can be seen as a special case of KP-II where solutions do not depend
on the y variable. A family of solutions of (KP-II) is given by the KdV solitons

u(t, x, y) = φλ(x− x0 − 4λ2t), φλ(x) := −2λ2 sech2 (λx) = − c
2
sech2

(√
cx

2

)
,

for λ > 0, x0 ∈ R, and where the last equality holds1 for c = 4λ2. In the context of the
KP-II equation, the KdV soliton is called line soliton, since it decays in the x variable
and is constant in the y variable2. The variable y is often called the transversal direction.

Historically, the KdV equation was one of the first nonlinear dispersive models de-
rived to describe travelling waves. The KdV soliton corresponds to the ‘wave of trans-
lation’ discovered and studied by J. Scott Russell starting from 1834, often observ-
able in shallow water or along narrow water channels. Russell’s experiments, followed,
among others, by the theoretical contributions of Boussinesq and Korteweg–de Vries, as
well as the numerical experiments of Fermi–Pasta–Ulam–Tsingou and Kruskal–Zabusky,
sparked significant interest among mathematicians and physicists, providing solid moti-
vation for the development of soliton theory [45].

Solitons of integrable dispersive PDEs are known to have a special behavior: they
generally interact elastically with each other and with the ‘radiation’, the part of the
solution that decays in time. Their evolution is essentially decoupled from that of the
rest of the solution, and they can be thought roughly as nonlinear eigenmodes of the
equation. This is connected to the integrable PDEs being formally diagonalized by
scattering transforms, also called nonlinear Fourier transforms. In physical terms, their

1The parameter c = 4λ2 is the translational velocity of the soliton. The choice of parametrizing the
family of solitons by the parameter λ is natural from the inverse scattering point of view: −λ2 is the
ground state energy of the Schrödinger operator

LKdV
u = −∂2

x + u

with potential u = φλ, which is the Lax operator of a solution u of the KdV equation. The ground state
of Lφλ is sech(λx).
We remark that we intentionally chose the constants in equations (KdV), (KP-II) so that the solitons
are negative, despite physically representing water waves with positive elevation, so that the potential in
the above Schrödinger operator coincides with the KdV solution itself, otherwise we would need a minus
sign in front of u.

2Line solitons that are not parallel to the y-axis can be obtained by applying the KP-II Galilean
symmetry (1.3) to the KdV solitons.
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shape being restored after interactions with other waves can be seen as a particle-like
property, as suggested by the suffix ‘-on’.

Remarkably, this unique property of solitons can be made precise by the so-called
soliton addition maps, or Bäcklund transforms3, which commute with the flow of the
respective integrable PDE and allow to nonlinearly add and subtract solitons from a
given solution. These maps are naturally linked to the scattering transform, but they
generally require different analytic techniques to be studied. They were derived and
used to study the stability of solitons for several integrable PDEs in 1 space dimension
[40, 28, 3, 30].

What makes solitons of (KP-II) on R2 special, compared to those of other integrable
PDEs, is their non-compact nature: the evolution of generic perturbations of the line
soliton are described by scaling and translation parameters that depend on the y vari-
able. This introduces behaviors, such as those discussed in [38] (see Subsection 5.7),
which, from a global perspective, suggest that the heuristic description provided in the
third paragraph may be incomplete or require further refinement, although the same de-
scription works well locally in y. A Bäcklund transform for (KP-II) is formally available
and similar to that of (KdV), but the unboundedness of the soliton support poses some
challenges for its well-definedness. The stability of the line soliton of (KP-II) was proved
by Mizumachi in [36, 37, 38], with a proof that does not rely on the Bäcklund transform
or on the integrability of the equation. The stability of KP-II multisolitons in L2(R2),
as well as their asymptotic stability, remains an open problem, except in the case of the
line soliton.

The main objective of our work is to understand the soliton addition map of (KP-II).
Our broader motivation is to look for a robust proof for the L2 stability of general KP-II
multisolitons, and possibly extend the same techniques to similar models. The goal of
the present paper is to give a rigorous analytic treatment of the Bäcklund transform
related to the line soliton. In particular, we are interested in understanding how the
non-compactness of the line soliton plays a role in its properties, and how the transform
gives information on the stability of the line soliton, compared to integrable models
admitting localized solitons.

After constructing the soliton addition map and showing its properties, we find that
the map is not surjective around the line soliton, but the range has codimension-1 in a
weighted space of L2 regularity. This allows to prove codimension-1 stability of the line
soliton in L2(R2) under such perturbations. The last result is comparable to some of
the results of Mizumachi: in particular, it is weaker due to the codimension-1 condition,
and stronger in the regularity assumptions.

We also construct the analogous Bäcklund transforms for a subclass of KP-II mul-
tisolitons, and plan to discuss analogous stability results for these multisolitons in a
follow-up paper.

3The term Bäcklund transform is an umbrella term that is used in the literature of integrable PDEs
to describe various maps that conjugate the flows of two PDEs (often the same PDE). The name ‘soliton
addition map’ is more specific and refers to what is described in the paragraph. In this article, we will
use the two terms synonymously.
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1.1 Description of the problem and fundamental objects

Properties of the KP-II equation

The KP-II equation is invariant under space-time translations, although not under space
rotations. It possesses several other symmetries: among others, a scaling symmetry

(1.1) SKP
λ u(t, x, y) = λ2u(λ3t, λx, λ2y),

a reflection symmetry with respect to the y variable

(1.2) Ru(x, y, t) = u(x,−y, t),

and two other important symmetries, which in the literature are both called Galilean
symmetries:

GKP
σ u(t, x, y) := u(t, x− σy − 3σ2t, y + 6σt),(1.3)

GKdV
µ u(t, x, y) := Bµu(t, x, y)− µ := u(t, x− 6µt, y)− µ.

The second one is inherited from the KdV equation, while the first one does not apply
to KdV, so we refer to them as the KP-II and the KdV Galilean symmetries respectively
(here B stands for ‘boost’). The KP-II Galilean symmetry plays well with the well-
posedness theory of the equation as it preserves the Sobolev spaces used in the standard
theory, whereas the KdV symmetry adds a constant to the solution. In rigorous terms,
since the antiderivative in the KP-II equation is not a priori uniquely defined for solutions
with arbitrary growth at infinity, both Galilean symmetries need to be accompanied by
auxiliary changes of variables for the function v such that vx = uyy appearing in the
KP-II equation.

A natural function space whose norm is invariant under the symmetries SKP and
GKP is the Banach space Ḣ− 1

2
,0(R2), with norm defined by

∥u∥
Ḣ− 1

2 ,0(R2)
:=

∫
R2

|2πξ|−1|û(ξ, η)|2dξ dη.

It is known that the KP-II equation is globally well-posed in Hk(R2), k ∈ N for large

data, as well as in Ḣ− 1
2
,0(R2) for small data. The globality of solutions in the first

result follows from the conservation of the L2 norm of the equation, while the latter
comes from global-in-time bilinear estimates for solutions of the linear equation and the
scaling invariance of the space Ḣ− 1

2
,0(R2). The line soliton φ does not lie in any of the

aforementioned Banach spaces, but global well-posedness was proved in Hk(R2) + φ,
k ∈ N. These results are discussed in more detail in Section 4.

Remark 1.1. The antiderivative appearing in (KP-II) can be understood in the following
way. The operator S = ∂3x+3∂−1

x ∂2y is a skew-adjoint unbounded operator on L2(R2) with
an explicit domain given in terms of the Fourier transform. In particular, the unitary

group t 7→ e−t(∂
3
x+∂

−1
x ∂2y) is a well-defined continuous group on L2(R2) and other L2-based

Sobolev spaces, and Strichartz estimates for this group can be proved in full analogy
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with the linear Schrödinger equation, so that the Duhamel formulation of (KP-II) makes
perfect sense for general classes of functions. More refined bilinear estimates are required
for proving well-posedness of the nonlinear equation (see [29] for a good introduction).
In addition to that, the operator ∂−1

x ∂y extends to a well-defined operator on a suitable
Banach space containing the space of solutions from the well-posedness theory, even at
low regularity (see Remark C.4 and Theorem 4.5).

Modulational stability of the line soliton

The line soliton φ is not orbitally stable in L2(R2) [36]. Since it is infinitely long on R2,
in general small perturbations of φ evolve so that the perturbed modulation parameters
λ and x0 depend sensibly on the transversal variable. For this reason, what is natural to
investigate is the so-called modulational stability of φ, in which we ask for the solution
to remain close to a line soliton whose parameters (scaling and translation) are allowed
to depend on the y variable. We give the following definition.

Definition 1.2 (Modulational stability). We say that the line soliton φ ismodulationally
stable in L2(R2) under perturbations in a set N ⊂ L2(R2) provided that the following
holds: for every initial datum u0 ∈ N + φ, there exist two continuous functions x =
x(t, y), λ(t, y) called modulation parameters such that the solution u = u(t, x, y) of
(KP-II) with initial datum u0 satisfies

sup
t>0

∥u(t, x, y)− φλ(t,y)(x− x(t, y))∥L2(R2) ≲N ∥u0 − φ∥L2(R2),

where the implicit constant only depends on the set N .

A desirable result is obtained when N contains a small ball centered at the origin in
a Banach space X ⊂ L2(R2) containing the space of test functions D(R2), or at least
a finite-codimensional submanifold of X containing the origin. The definition above is
adapted to our specific problem, but notice that it can be generalized in several ways
allowing for different spaces and moduli of continuity, or considering asymptotic stability
instead.

Due to the nature of the result we want to show, we will make extensive use of the
following notation throughout the article.

Notation 1.3 (Subscript notation). For a function f = f(x) and for α ∈ R, we will
denote by fα the function

fα(x) := f(x− α).

More generally, f and α will be allowed to depend on y, or on t, y: in that case, fα will
denote

fα(t, x, y) := f(t, x− α(t, y), y).

The only exception to this notation rule is the function Gα in Definition 3.3.
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The Miura map and the mKP-II equation

The KP-II equation is related to the mKP-II equation

(mKP-II) vt − 6v2vx + vxxx + 3∂−1
x vyy + 6vx∂

−1
x vy = 0

via the Miura map
Mλ

±(v) = −
(
∂−1
x vy ± vx − v2 + λ2

)
.

Formally, if v(t, x, y) is a solution of (mKP-II), thenMλ
±(v)(t, x−6λ2t, y), i.e., Bλ2Mλ

±(v),
are solutions of (KP-II). This fact is rigorously true as long as all the terms ∂−1

x ∂yv
appearing in the Miura map and in (mKP-II) and are a distributional x-antidrivative of
vy (see Proposition 2.1). The parameter λ comes from the symmetries of the equation:
it is related to the KdV Galilean symmetry, as it holds

Bλ2Mλ
± = GKdV

λ2 M0
±,

but we can also see it as coming from the scaling symmetry:

Mλ
±SmKP

λ = SKP
λ M1

±,

where SmKP
λ := λ−1SKP

λ is the scaling symmetry of (mKP-II). The mKP-II equation
admits analogous Galilean symmetries, which are discussed in Section 2.2.

There exist kink solutions of (mKP-II) of the form

v(t, x, y) = Qλ(x− x0 + 2λ2t) = Qλ
(
x− x0 +

c

2
t
)
, Qλ(x) := λ tanh(λx),

and the following relations hold:

(1.4) Mλ
−(Q

λ) = 0, Mλ
+(Q

λ) = φλ.

The above identities indicate that the soliton is a special solution of (KP-II) that is
connected to the trivial solution through the Miura map. In the rest of this work, we
will look at the case λ = 1, without loss of generality thanks to the scaling symmetries
SKP
λ , SmKP

λ , and set M± :=M1
±, Q := Q1, φ := φ1.

The Bäcklund transform

Using the Miura maps, we can define a relation between two different functions u, ū if
there exists a third function v such that it holds{

M+(v) = ū,

M−(v) = u,

or more rigorously, with some redundancy to allow a symmetric writing of the system,
vy + vxx = (v2)x − ūx,

vy − vxx = (v2)x − ux,

u− ū = 2vx.
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It is desirable to look for a map

B : (u, γ0) 7→ ū

that satisfies the above system, where γ0 is an auxiliary parameter that allows to select
one of the many pairs (v, ū) that would satisfy the system for fixed u. Clearly, v =
Q(· − γ0), u = 0, ū = φ(· − γ0) is a solution of the above system for all γ0 ∈ R, so we
expect R to be a natural parameter space for the second entry of B . By the commuting
properties of the Miura map, we expect that if u now depends on time and is a solution of
(KP-II), the function ū is a new solution of (KP-II), at least for a suitably chosen time-
dependent γ0. Moreover, the effect of the transformation is that of nonlinearly adding
a line soliton to the solution u so that the new function is still a solution of (KP-II).
When well-defined, the map B is called soliton addition map, or Bäcklund transform. It
is evident how such a map can give plenty of information on the dynamics of solutions
close to the soliton. In particular, the map B essentially conjugates the (KP-II) flow
around the zero solution with the same flow around the soliton. The stability of the line
soliton can morally be translated to the problem of the stability of the zero solution of
(KP-II) if B satisfies suitable continuity properties.

A large part of this article is dedicated to the construction of the soliton addition
map B and studying its properties, which will then be used to study the stability of the
line soliton. In particular, we study the inversion of the Miura map M− around the pair
Q 7→ 0. This amounts to solving the viscous Burgers equation with forcing

(M) vy − vxx = (v2)x − ux

for all x, y ∈ R2, where u is a given profile, and v is a suitable perturbation of Q to be
determined.

1.2 Context and previous work

Completely integrable dispersive equations

The Miura map written above is part of the rich set of algebraic properties that form
the integrable structure of the KdV and KP-II equations. Most of the known completely
integrable dispersive PDEs can formally be rewritten using a Lax pair, a set of two
differential operators L(t) = L[u(t)], P (t) = P [u(t)] which depend only on the solution
u of the original equation at time t, that transform the PDE into the Lax equation

d

dt
L(t) = [P (t), L(t)],

where [·, ·] is the commutator between operators. The operator L(t) is called the Lax
operator of the solution u(t). Some of the most notable instances of dispersive inte-
grable PDEs are the 1D cubic NLS, KdV, mKdV and Benjamin–Ono equations; higher-
dimensional integrable equations include the KP-I and KP-II equations, the Davey–
Stewartson, and the Veselov–Novikov equations (the latter admits a modified version
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of the Lax equation). The theory of integrable equations begun with the article by
Gardner–Greene–Kruskal–Miura on the KdV equation in 1967 [11] featuring the scat-
tering transform of KdV, which as already mentioned diagonalizes the equation reducing
it to a family of linear ODEs with constant coefficients, and was developed in the seven-
ties and eighties with the discovery of scattering transforms for several integrable PDEs.
The method used in [11] to invert the scattering transform and recover the solution of
the original PDE was extended to other models, and is now commonly known as inverse
scattering transform (IST) [45].

Concerning the inverse scattering theory of KP-II on R2, results on solutions that are
perturbations of the line soliton are available. We mention the IST theory developed by
Villarroel–Ablowitz [51] after previous works by Boiti–Pempinelli–Pogrebkov–Prinari,
and the subsequent extensive works by Wu on the KP-II line soliton and multisolitons
[52, 53].

Recent developments

The main limitation of the use of the inverse scattering machinery, especially for PDEs
on the Euclidean space, is that the inverse scattering transform is well-behaved only
when the solution decays fast enough in space (for instance, u0 ∈ L1(R; ⟨x⟩ dx) for the
KdV equation, see the survey [2] for an overview of the basic theory) and regular enough.
These conditions are often strictly stronger than the ones actually needed for the well-
posedness of the equation: typically, the initial datum is allowed to be in Hs(Rn) for a
suitable s ∈ R.

In more recent years, there was an increasing effort in employing the integrable
structure in the study of dispersive PDEs in L2-based Sobolev spaces and in spaces
of critical regularity. The main and groundbreaking application of these techniques
is low regularity well-posedness, which was established much earlier on the circle for
some models, see for instance [19, 18, 12], and finally on the real line, with the first
work in this direction being the celebrated article on the KdV equation in H−1(R) by
Killip–Visan [23], with several subsequent works on the cubic 1D NLS equation, modified
KdV and many more, see for instance [16, 5, 32, 22]. Another important application
which came slightly before the former, is the construction of generalized conservation
laws at Hs-regularity which prove almost-conservation of the Sobolev norms: one of the
earliest works on the real line is by Koch and Tataru [27] for the NLS, KdV and mKdV
equations, with subsequent works on Gross–Pitaevskii [25, 26] and Benjamin–Ono [50]
by other authors.

Another important instance of the use of the structure of integrable PDEs is the sta-
bility of solitons and multisolitons. In the eighties and nineties, there was a considerable
effort in the study of solitons of integrable equations: important objects in this sense
are the Bäcklund transforms for integrable PDEs, which allow the explicit construction
of multisolitons. Although these were mostly treated as algebraic manipulation of the
equations, with the more recent well-posedness results on the equations, it became nat-
ural to ask whether these maps can be used to study the dynamics of solutions that are
close to multisolitons. This was initially done for the KdV equation using the Miura
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map (see the next paragraph), and later for some other models such as cubic NLS [40]
and sine-Gordon [3, 30]. The first work that used Bäcklund transforms for the study of
solitons in a somewhat abstract and more general sense, and which serves as a signif-
icant inspiration for our paper, is that of Koch–Tataru [28]. The remarkable property
of Bäcklund transforms is that, despite coming from the integrable structure and being
linked to the scattering transform, they are generally robust enough that they do not
need to rely on the whole analytic framework needed for the treatment of the inverse
scattering transform.

KdV solitons

In the above discussion, the KdV equation was historically an important link in the
chain that led to the current understanding and state of the art. The KdV Miura map,

v 7→ Mλ
KdV,±(v) := ∓vx + v2 − λ2,

which maps solutions of the (defocusing) mKdV equation

vt − 6v2vx + vxxx = 0

to solutions of (KdV) (up to an inertial change of frame of reference), allows in its
simplicity to understand the power of Bäcklund transforms in soliton dynamics. The
resulting soliton addition map, analogous to the one described earlier for KP-II, makes
possible to establish a diffeomorphism4 between a neighbourhood of the zero solution
and a neighbourhood of the soliton φ, so that one can reduce the stability of the soliton
to the stability of the zero solution, which is a consequence of the conservation laws of
the equation. This idea was used to prove the stability of KdV solitons back in 2003 by
Merle–Vega [35] for L2 data, and later by Buckmaster–Koch [6] in the well-posedness
critical topology H−1(R) (we remind that the scaling-critical Sobolev space for KdV is

Ḣ− 3
2 (R)). The picture was completed later by Killip–Visan [24], who proved stability of

multisolitons at sharp regularity.

The KP-II equation and the line soliton

The nonlinear L2 stability of the KP-II line soliton was proved in [42] on the cylinder Rx×
Ty following the same idea of [35] for the KdV case. In that setting, the soliton addition
map coming from the KP-II Miura map still gives a local diffeomorphism connecting 0-
and 1-solitons under those boundary conditions

The stability question on R2 turns out to be much more delicate and challenging.
The linearized evolution of KP-II around the line soliton admits resonant continuous

4More precisely, the map Mλ
KdV,− has one-dimensional fibers, while the map (λ, v) 7→ Mλ

KdV,+(v) is
a diffeomorphism locally: this gives rise to a soliton removal map which is locally a submersion with
two-dimensional kernel. To make it a full diffeomorphism, one needs to take into account two additional
degrees of freedom, which naturally correspond to the choice of position and scaling parameter of the
soliton. See [6] for a detailed treatment.
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eigenmodes in an exponentially weighted space, with eigenvalues accumulating at zero
[36]. These eigenmodes represent the modulations that a perturbed, infinitely long line
soliton undergoes during the KP-II evolution. The presence of these eigenmodes suggests
that the Bäcklund transform behaves differently from the KdV case, since the linearized
KP-II equation around u ≡ 0 possesses a different spectrum. In particular, the argument
relying on the Miura map used for KdV does not readily generalize to KP-II on R2 and
was not investigated before, unlike in the cylindrical geometry mentioned above where
solitons essentially have finite length.

Eventually, Mizumachi solved the stability problem on R2 in a striking series of pa-
pers [36, 37, 38] in which he proved modulational L2-stability of the line soliton as well
as asymptotic stability in suitable subsets of R2, under polynomially decaying pertur-
bations and under perturbations in ∂xL

2(R2), with additional regularity and smallness
assumptions. The papers provide a precise description of the position and amplitude
modulation parameters x = x(t, y) and λ = λ(t, y), which evolve under a 1D wave equa-
tion with damping. Remarkably, Mizumachi’s arguments do not rely on the integrability
of the KP-II equation, and were in fact used in later works on non-integrable PDEs [41].
On the other hand, the role of the Miura map in the stability of the line soliton remained
unclear.

KP-II multisolitons

As for many other integrable dispersive PDEs, the (KP-II) equation admits a set of
explicit, analytic solutions called multisolitons, which represent the interaction of several
(half-)line solitons. These naturally include the KdV multisolitons as a subclass, which
look like a superposition of several parallel line solitons. Due to the KP-II Galilean
symmetry (1.3), single line solitons can be ‘tilted’ with respect to the y axis, and in
fact more general multisolitons exist which combine several line solitons with different
slopes in the x, y-plane, creating complicated and fascinating patterns that impressively
resemble real water wave interactions, as noted in [1]. See Subsection 2.3 for more details,
and we refer to [8, 31] for an extensive treatment of KP-II multisolitons.

The KP-II multisolitons are expected to be stable up to modulations as in the case of
the line soliton, although very little was proved on the subject. The linear stability was
rigorously proved only very recently by Mizumachi for the case of the so-called elastic
2-line solitons [39]. On the nonlinear dynamics, we have the recent preprint of D. Wu [53]
which addresses the inverse scattering problem of KP-II around multisolitons and states
an L∞ bound uniform in time for all perturbations in an L1−based Sobolev space, where
the L∞ estimate is given in terms of the full L1 Sobolev norm of the initial perturbation.
To the best of our knowledge, there are no other results at present concerning the long
term nonlinear dynamics of KP-II multisolitons, except the line soliton. In particular,
modulational stability in L2(R2) and asymptotic stability are open.
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1.3 Strategy, main results, and structure of the paper

As previously discussed, the aim of this article is to study the soliton addition map
connecting the zero solution and the line soliton, and try to make use of it in the study
of the nonlinear stability of the line soliton.

Let us make use of Notation 1.3. Due to the relations (1.4), one would hope that
for a small, uniformly bounded in time solution u of KP-II there exists an associated
solution v of mKP-II such that M−(v) = u which is close in some sense to a modulated
kink Qα, α = α(y), so that ū :=M+(v) is a solution of KP-II close to a modulated line
soliton φα. To make sense of the soliton addition map, one needs to solve the equation
M−(v) = u, which we rewrote as

(M) vy − vxx = (v2)x − ux,

for known u and for solutions v close to a modulated kink. As previously discussed,
we expect to find a one-parameter family of solutions for given u, since by translation
invariance M−(Q(· − γ)) = 0 for any γ ∈ R. These simple observations suggest the
following program:

• classify the solutions v to equation (M) close to a modulated kink and provide a
suitable parametrization with respect to a real parameter γ0 ∈ R: v = V (u, γ0),

• define the soliton addition map as discussed in 1.1,

B(u, γ0) :=M+(V (u, γ0))

• prove two-sided bounds for B of the form ∥u∥X ∼ ∥B(u, γ0) − φα∥X for suitable
α, for some Banach space X

• prove that B commutes with the KP-II flow modulo the correct choice of γ0 = γ0(t)

• characterize the range of B , or find sufficient conditions for a perturbation of the
line soliton to fall in the range of the map

The above strategy would be able to reduce the modulational stability of the line soliton
to the stability of the zero solution in the space X. It is natural to choose X = L2(R2)
due to the conservation of the L2 norm along the KP-II flow. We want to follow this
strategy in analogy with previous works on KdV and KP-II on the cylinder, but we have
to solve the problems introduced by the infinite length of the solitons.

To construct the maps V and B , we choose to work in the critical space Ḣ− 1
2
,0(R2)

to make use of the small-data global existence result in [15], see Theorem (4.5). The
outcome of our research can be summarized as follows.

1. For small u ∈ Ḣ− 1
2
,0(R2), equation (M) admits a 1-parameter family of solutions

of the form v = w + tanhα, w ∈ L3(R2), αy ∈ L2(Ry) parametrized by γ0 ∈ R,
which roughly coincides with α|y=0.
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2. The soliton addition map is well-defined for generic small data in Ḣ− 1
2
,0(R2):

B : BḢ− 1
2 ,0

ε0 (0)× R → H− 1
2
,0(R2) + {φα |αy ∈ L2(Ry)},

for a universal constant ε0 > 0. The second parameter γ0 ≈ α(0) selects one
solution v from the 1-parameter family above, and sets B(u, γ0) = u − 2vx. This
has the effect of superimposing a modulated line soliton on u.

3. The map B satisfies a two-sided L2 estimate. If ū = B(u, γ0), then ∥u∥L2(R2) is
comparable with the L2-distance between ū and the manifold of modulated line
solitons

{φα |α ∈ C(Ry), ∥αy∥L2(Ry) <∞},

with a penalization factor that grows with ∥αy∥L2(Ry).

4. The map B commutes with the KP-II flow. More precisely, assuming that u = u(t)

is a solution of KP-II in Ḣ− 1
2
,0(R2) and γ0,0 ∈ R, ū(t) = B(u(t), γ0(t)) is a solution

of KP-II for a suitable t 7→ γ0(t) with γ0(0) = γ0,0. If u(0) is also in L2, then ū
coincides with the unique solution of KP-II given by the well-posedness theory.

5. The range of B contains φ+N , where

N ⊂ Ḣ− 1
2
,0(R2) ∩ L2(R2) ∩ L1(R2) ∩ L1(R2; sech2(x)(1 + |y|)εdx dy) =: Yε(R2)

is an analytic codimension-1 submanifold of the Banach space Yε(R2) for any ε > 0.
Functions outside this manifold are not in the range of B .

6. As a consequence of 3, 4, 5, the line soliton is modulationally stable in L2 under
perturbations in N .

The strategy involved will allow to make a natural generalization with little additional
effort.

7. We construct a multisoliton addition map for (k, 1)-multisolitons (see the definition
in Section 2) for any k ≥ 1, which equals B for k = 1 up to a change of variables.

Our result for the first point is the following theorem, which classifies the solutions
of equation (M) close to a modulated kink. The preimage of small data u ∈ Ḣ− 1

2
,0(R2)

through the Miura map M− under suitable conditions is a one-parameter family of
solutions to (M) which can be parametrized by the position of the kink at y = 0.

We use the notation fα(x, y) := f(x − α(y), y) as in Notation 1.3, we let ρ be a
standard mollifier in R2, and η±(x) := (1 + e∓2x)−1.

Theorem A (Classification of solutions of (M) close to a kink). Let u ∈ Ḣ− 1
2
,0(R2)

be small enough, and γ0 ∈ R. There exists a unique solution v to equation (M) of the
form v = w + tanhσ, w ∈ L3(R2), σ ∈ C(Ry), σy ∈ L2(Ry), satisfying the localization
condition ∫

R2

ρ(x− γ0, y)v(x, y) dx dy = 0.
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The solution can be decomposed into

v = tanhα+η
+
α · (v+ − 1) + η−α · (v− + 1) + ω,

where v± are the unique solutions of (M) in L3(R2) ± 1, α ∈ C(Ry) is determined
uniquely by the orthogonality condition∫

R
ω(x, y) dx = 0 ∀y ∈ R,

and it holds the estimate

∥v± ∓ 1∥L3(R2) + ∥ coshα ω∥C0L2∩L2H1 + ∥αy∥L2 ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
.

Moreover, v± satisfy all the bounds of Corollary 3.2 (with λ = ±1), and the shift α
satisfies

sup
y1,y2∈R

|α(y2)− α(y1)|
log(2 + |y2 − y1|)

≲ ∥u∥
Ḣ− 1

2 ,0(R2)
.

The map V : (u, γ0) 7→ v is continuous assuming the topology of the codomain is
L3
loc(R2).

Finally, there exist ψ,ψ± ∈ L6
loc(R2), with 1/ψ, 1/ψ± ∈ L6

loc(R2), ψx, ψ
±
x ∈ L2

loc(R2),
ψ,ψ± > 0 a.e., uniquely defined up to a positive multiplicative constant by the systems{

(∂y − ∂2x + u)ψ± = 0,

v± = ∂x(log(ψ
±)),

{
(∂y − ∂2x + u)ψ = 0,

v = ∂x(log(ψ)),

and it holds, up to a positive multiplicative constant,

ψ = (1− θ)ψ+ + θψ−

for a unique θ ∈ (0, 1) that depends bijectively on γ0 for fixed u.

Morally, the map V is the inverse of the Miura mapM− (more precisely, V is a right
inverse of the map (M−, v 7→ γ0) defined on a suitable domain). Note that the products
uψ, uψ± are well-defined with the regularity assumptions of the involved distributions.

The explicit formula in the end is motivated in Section 2 and it essentially relies
on the Cole–Hopf transformation to turn Burgers’ equation into a linear heat equation.
Simple solutions of (M) can be combined using the linearity of the heat equation to
obtain new solutions: in particular, solutions with different limits at infinity can be
written as a nonlinear superposition of some special, atomic solutions which we call
elementary solutions, which are constant at infinity. This idea is especially useful to
treat the time-dependent problem in Theorem C. Note that, as discussed in Section 2,

Lu = ∂y − ∂2x + u

is the Lax operator of the KP-II equation.
Thanks to Theorem A, we can define the soliton addition map B . We give an

additional definition that is needed to state the bounds on B .
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Definition 1.4 (The soliton addition map). We define the line-soliton addition map (or
Bäcklund transform) of KP-II as

(1.5) B(u, γ0) := u− 2∂xV (u, γ0),

with V as in Theorem A. Moreover, for ū ∈ D ′(R2), we define

|ū|2L2
φ(R2) := inf

{
∥w∥2L2(R2) + ∥σy∥2L2(Ry)

∣∣ ū = w + φσ

}
,

L2
φ(R2) :=

{
ū ∈ D ′(R2) | |ū|L2

φ(R2) <∞
}
.

With some more work, we obtain the following Corollary of Theorem A.

Corollary B. In the hypotheses of Theorem A, if in addition u ∈ L2(R2) is small
enough, then ū := B(u, γ0) ∈ L2

φ(R2) and it holds the double L2-estimate

∥u∥L2(R2) ∼ |ū|L2
φ(R2).

The next Theorem states that the transformation B in (1.5) commutes with the flow
of (KP-II), up to the choice of the additional 1-dimensional parameter. The statement

relies on the global well-posedness theory of KP-II for small data in Ḣ− 1
2
,0(R2) proved

in [15], see Theorem 4.5.

Theorem C. Let u0 ∈ Ḣ− 1
2
,0(R2) be small enough, and γ0,0 ∈ R. Let u ∈ Cb([0,∞), Ḣ− 1

2
,0(R2))

be the global solution of (KP-II) with u|t=0 = u0. There exists a continuous function
t 7→ γ0(t), γ0(0) = γ0,0 such that the curve ū(t) := B(u, γ0(t)) lies in L2

loc([0,∞)× R2),
is a solution of the KP-II equation in distributional form, and can be decomposed as
ū(t) = φ(x− α(t, y)) + u(t) + w(t), with the estimates

sup
t≥0

[
sup

y1,y2∈R

|α(t, y2)− α(t, y1)|
log(2 + |y2 − y1|)

+ ∥αy(t, ·)∥L2
y
+ ∥w(t, ·, ·)∥

H− 1
2 ,0(R2)

]
≲ ∥u0∥

Ḣ− 1
2 ,0(R2)

,

∥∥∥∥ ddtγ0 − 4

∥∥∥∥
L2
unif(0,∞)

≲ ∥u0∥
Ḣ− 1

2 ,0(R2)
.

If in addition u0 ∈ L2(R2) and is small enough, then

ū− φ(x− α(0, y)− 4t) ∈ C([0,∞), L2(R2)),

it holds the double estimate

|ū(t)|L2
φ(R2) ∼ |ū(0)|L2

φ(R2), t ≥ 0,

and ū is the solution of KP-II coming from the well-posedness theory (see Proposition
4.7).
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The second part of the above theorem shows that | · |L2
φ

is an almost-conserved

quantity for small solutions of (KP-II) around a modulated line soliton, at least for
those solutions generated by our Bäcklund transform B . We conjecture that the same
holds for all small L2 perturbations of φ.

Next, we provide information on the range of B . The following Theorem provides
necessary and sufficient conditions in the restricted setting of small output data in a
mildly weighted space. For ε > 0, define the weighted space L1

sech2,ε
(R2) with norm

∥f∥L1
sech2,ε

(R2) := ∥(1 + |y|)ε sech2(x)f∥L1(R2),

and the Banach space

Yε(R2) := Ḣ− 1
2
,0(R2) ∩ L2(R2) ∩ L1(R2) ∩ L1

sech2,ε
(R2).

Theorem D (Codimension-1 manifold in the range of B). There exists an analytic map

Φ : L1(R2) ∩ L2(R2) → R

with Φ(0) = 0, DΦ(0) · ġ = 1
2

∫
R2 φġ dx, with non-vanishing differential everywhere, and

invariant under the reflection symmetry (1.2), such that the following holds.
Let ε > 0. Let g ∈ Yε(R2) be small enough (depending on ε). The following are equiva-
lent:

• Φ(g) = 0,

• there exists a small u ∈ Ḣ− 1
2
,0(R2) and γ0 ∈ R such that g + φ = B(u, γ0).

The functional Φ is constructed in Section 5. It involves solving a parabolic equation
with the input g as multiplicative potential, and its power series around g = 0 can be
computed explicitly. The functional Φ is connected to the KP-II scattering transform:
the number Φ(g) corresponds to the coefficient multiplying a singular term in the con-
tinuous scattering data of the function ū = φ + g (the nonlinear Fourier transform of
ū) at the two spectral parameters corresponding to the line soliton, which are set to
±1 in this paper. These singularities are described by Wu in [52, equation (3.16)] (the
reader can compare γ = γ1 in [52, equation (3.8)] with Φ(g) in our Definition 5.3 and
note that they essentially coincide). The condition Φ(g) = 0 is thus roughly equivalent
to the scattering transform of φ+ g being non-singular. We remark that the above is in
clear contrast with the KdV scattering transform, where all the information concerning
solitons is contained in the discrete scattering data, and the continuous scattering data
of sufficiently localized solutions, including perturbed solitons, are non-singular.

By combining Theorems C and D with the conservation of the L2 norm along the KP-
II flow, we obtain an L2 stability result for the line soliton in a codimension-1 manifold
of data of sharp (L2) regularity.
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Corollary E. For every ε > 0, there exists δ = δ(ε) > 0 such that the line soliton of
KP-II is modulationally stable in L2, in the sense of Definition 1.2, under perturbations
in the manifold

N = {g ∈ Yε(R2) | Φ(g) = 0, ∥g∥Yε(R2) < δ},

which is an analytic, regular codimension-1 submanifold of Yε(R2) containing the origin.

The assumptions in Corollary E are sharp in terms of regularity, unlike previous
results on the stability of the KP-II line soliton on R2. Although we do not provide
details here, there seem to be no obstructions in using the properties of B to prove
asymptotic stability of the line soliton under perturbations in the above manifold by
making use of scattering of small Ḣ− 1

2
,0(R2) solutions of (KP-II), proved in [15].

The stability theorems for the line soliton proved by Mizumachi do not assume any
finite-codimension condition. In fact, we expect the codimension-1 condition Φ = 0 in
Corollary E to be removable. A key difference between our works is that in this paper
we do not consider modulations in the scaling parameter λ of the line soliton, which
could be related to this discrepancy.

On the other hand, as Theorem D states, the condition Φ = 0 is necessary for a
perturbation of the line soliton to fall in the range of the soliton addition map B . The
proof and the conclusion of Theorem D seem to not depend sensibly on the function
space used to define B as long as the space is scaling critical, a condition that in turn is
natural to have uniqueness of solutions of (M) and a well-defined map B . Moreover, as
noted after Theorem D, the functional Φ is directly linked to the scattering transform. In
particular, the condition Φ = 0 is a no-singularity condition for the continuous scattering
data of φ+ g. We conclude that this ‘missing degree of freedom’ in the soliton addition
map is an intrinsic feature of the Bäcklund transform and the KP-II equation itself,
arising from the interplay between analytic and algebraic properties of the integrable
structure. This is remarkable, and contrasts with the common intuition, which has been
shown to be valid at least for several 1-dimensional models, that solitons of integrable
PDEs can be thought as being entirely independent, and in fact easily removable from
the rest of the solution. The failure of this description is linked to the unbounded nature
of KP-II solitons. We state a conjecture on the connection between this degree of freedom
and the long time behavior of perturbed line solitons in Section 5, which we did not see
in previous works on the line soliton.

It remains unclear whether there exists a well-behaved generalization of the soliton
addition map that can describe generic perturbations of the line soliton, without the
codimension-1 condition. On the other hand, we think that some modification of the
arguments needed to prove Corollary E can lead to a complete stability result.

We conclude by noting that the approach to the stability of solitons using Bäcklund
transforms shows promise for potential generalizations to the multisoliton case. In Sec-
tion 6 we derive the analogous Bäcklund transform for a subclass of KP-II multisolitons,
and we plan to discuss analogous stability results to that in Corollary E in a follow-up
paper.
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Structure of the paper

Our plan for the present article is as follows. In Section 2, we discuss the formalism
of the Lax equation, its connection with (KP-II), (mKP-II) and the Miura map, and
all the tools and heuristics that we derive from the Lax equation in order to study the
KP-II equation. We also focus on the construction of multisolitons and give a heuristic
discussion on the elementary solutions of system (M–mKP-II).

In Section 3, we study the Miura map for fixed time. We prove Theorem A, which
allows to define the Bäcklund transform in Definition 1.4, and Corollary B. We provide
there the main tools needed for the construction of the elementary solutions.

In Section 4, we look at the time-dependent problem and prove Theorem C. We first
review the well-posedness and regularity properties of solutions of the KP-II equation,
then we define the elementary solutions of (M–mKP-II) and show their basic properties.
Before the proof of Theorem C, we state the nonlinear superposition of elementary
solutions in Proposition 4.17, which allows to select the time-dependent parameter γ0 in
Theorem C.

In Section 5, we prove Theorem D and discuss a conjecture on the codimension-1
condition Φ = 0.

In Section 6, we briefly discuss the multisoliton addition map.
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1.4 Notation

• x, y, t are the space-time variables, with corresponding frequency variables ξ, η, τ .
We will often use the space variables as subscripts, for instance Rx, R2

x,y, whenever
we are working with functions that depend only on some of the variables.

• (Subscript notation; cf. Notation 1.3) For a function f of the variable x and α ∈ R,
we will denote by fα the function

fα(x) := f(x− α).

More generally, f and α will be allowed to depend on y or t, y: in that case, fα
will denote

fα(t, x, y) := f(t, x− α(t, y), y).

The only exception to this notation rule is the function Gα in Definition 3.3.
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• Throughout this article, we define the two functions of the x variable

η+(x) :=
1

2
(1 + tanh(x)), η−(x) :=

1

2
(1− tanh(x)).

• (Convention on hyperbolic functions). The following statements are written for the
function ‘tanh’, and apply as well to all other hyperbolic functions (cosh, sech, ...)
and to φ, Q, η±.

◦ When we want to evaluate the function at a given number x, we will write
tanh(x). We will never write ‘tanhx’.

◦ When taking products between tanh and functions inside brackets, we will
write for instance tanh ·(f + g).

◦ When not given an argument as input, we will consider tanh as a function of
the x variable. When comparing it to functions with more variables, we will
think of tanh as being constant in the other variables.

Examples: for w = w(x, y) and α = α(y):

◦ the expression ‘tanh sech2’ denotes the map x 7→ tanh(x) sech2(x),

◦ the expression ‘coshw’ denotes the map (x, y) 7→ cosh(x)w(x, y),

◦ the expression ‘coshαw+φα’ denotes (x, y) 7→ cosh(x−α(y))w(x, y)+φ(x−
α(y)).

• C(A,B) denotes the space of continuous maps from A to B. For Ω a metric space
and X a Banach space, we denote by Cb(Ω, X), C0(Ω, X) ⊂ C(Ω, X) the Banach
spaces of continuous functions that are respectively bounded, and small outside
compact sets (more precisely, C0(Ω, X) is the closure of the space Cc(Ω, X) of
compactly supported continuous functions). We will omit X when X = R. In one
case, X will be a Fréchet space, and we will rely on the notion of boundedness in
such spaces.

• In Rn, with variable z and frequency variable ζ, we define the usual smooth
Littlewood–Paley projector Pλ on dyadic annuli with frequencies ζ ∼ λ ∈ 2Z,
as for instance in [4]. We define P≤λ, P>λ similarly.

• If z = (x, y, . . . ), ζ = (ξ, η, . . . ), we denote by P xλ the Littlewood–Paley projection
with respect to the frequency variable ξ only (analogously for P x≤λ, P

x
>λ).

• We define the homogeneous and inhomogeneous Besov norms as

∥u∥q
Ḃs

p,q
:=
∑
λ∈2Z

∥Pλu∥qLp , ∥u∥qBs
p,q

:= ∥P≤1u∥qLp +
∑

λ∈2Z, λ>1

∥Pλu∥qLp ,

with the obvious modification for q = ∞, and denote by Ḃs
p,q(Rn) and Bs

p,q(Rn)
the respective Besov spaces. When p = q = 2, we will write Hs instead of Bs

2,2.
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• Given a Banach space X and an interval I, the norm of the associated Bochner
space Lp(I,X) is denoted by

∥u∥pLpX =

∫
I
∥u(s)∥pXds.

When the interval is not R or [0,∞), or when I = [0, T ], the norm will be denoted
respectively by ∥u∥Lp

IX
, ∥u∥Lp

TX
.

• The spaces Hs1,s2(R2) are defined by the norm

∥u∥2Hs1,s2 (R2) =

∫
R2

⟨ξ⟩2s1 ⟨η⟩2s2 |û(ξ, η)|2dξ dη,

with the obvious modification for the homogeneous version (cf. [14], [15]).

• The anisotropic Besov spaces Ḃs,t
p,q(R2) are defined by the norm

∥u∥Ḃs,t
p,q

=

∑
λ∈2Z

λqs∥P xλ |Dy|tu∥qLp(R2)

1/q

,

with the obvious modification for q = ∞. Note that the norm of Ḃs,0
p,q is invariant

under the KP-II Galilean symmetry.

• For an open set Ω ⊂ Rd, we define Lpunif(Ω) as the Banach space induced by

∥g∥Lp
unif(Ω) := sup

Q
∥g∥Lp(Q∩Ω),

where the supremum is taken over all dyadic cubes of Rd with side 1.

Cross-reference list

• The maps Mλ
± and the transformations B,GKP,GKdV are defined in the introduc-

tion. GmKP is defined in Subsection 2.2

• | · |L2
φ(R2), L

2
φ(R2), see Definition 1.4.

• Yε(R2) is defined before Theorem D.

• The map V is defined in Theorem A, and characterized explicitly in Lemma 3.22.

• The map B (soliton addition map, or KP-II Bäcklund transform), see Definition
1.4.

• The map V is a generalization of V up to a change of variables, see Proposition
3.19.
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• The map V→→ is a time-dependent version of V, see Proposition 4.17.

• v±, ṽ±, see Corollary 3.2.

• Gα, see Definition 3.3

• Γ,Γ(c),Γ±, see Definition A.1.

• The maps B, B→→ are generalizations of B to (k, 1)-multisolitons, see Section 6.

• Equations (KP-II), (mKP-II), see the beginning of the introduction.

• Equations (mKP-II), (M), see Subsection 1.1.

• System (M–mKP-II), see Subsection 2.2.

• C0,α
unif, see Lemma 3.18

2 Preliminaries: the role of the integrability and the Miura
map

2.1 Lax pair and compatibility condition

The KP-II equation is a completely integrable PDE, with a structure resembling the one
of the KdV equation.

Lax-pair formulation

Fix σ ∈ {±1}. The KP-II equation is related to the operators defined below called the
Lax pair, the first of which is called Lax operator :

Lu(t) := σ∂y − ∂xx + u(t),

Pu(t) := −4∂xxx + 3 (u(t)∂x + ∂xu(t)) + 3σ(∂−1
x uy(t)),

where u(t), ux(t), (∂
−1
x uy(t)) are meant as the multiplication operators by the same func-

tions. Under the hypothesis that ∂−1
x uy(t) is well-defined in a suitable sense, the function

u solves (KP-II) if and only if the associated Lax pair satisfies the equation

d

dt
Lu(t) = [Pu(t), Lu(t)],

where [P,L] := PL − LP is the commutator. As already anticipated, solutions u of
(KP-II) generally lie in Banach spaces of functions on which the operator ∂−1

x ∂y is well-
defined (see Remark C.4), and ∂−1

x ∂yu coincides with the term appearing in the KP-II
equation.
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Compatibility condition

As for the KdV equation, the KP-II equation is formally equivalent to the compatibility
condition for the Lax system

(2.1)

{
σψy − ψxx + uψ = −λ2ψ
ψt = −4ψxxx + 6uψx + 3uxψ + 3σ(∂−1

x uy)ψ,

for a given λ ∈ C, which says how generalized eigenfunctions of the Lax operator evolve
in time. This formulation is related to the Miura map as shown in the next subsection.
We note that in system (2.1) we can make use of the transformation ψ 7→ eλ

2yψ to set
λ = 0 (this feature is not present in the Lax operator of (KdV)). Moreover, the choice
of σ corresponds to a reflection in the y coordinate. We will thus mostly consider the
case λ = 0, σ = 1,

(2.1′)

{
ψy − ψxx + uψ = 0

ψt = −4ψxxx + 6uψx + 3uxψ + 3(∂−1
x uy)ψ.

When referring to the Lax operator, we will always think of the one with σ = 1.

2.2 Relation between the Lax pair, the Miura map and mKP-II

The mKP-II equation in system form

Unlike (KP-II), (mKP-II) needs an auxiliary function to be written down without using
antiderivatives. The mKP-II equation in system form reads

(2.2)

{
wx = vy

vt + vxxx − 6v2vx + 3wy + 6vxw = 0.

There is another clever rewriting that, interestingly enough, can be derived from the
Lax equation. In fact, system (2.1′) is equivalent, under the change of variables ψ = eV ,
to the system

(2.3)

{
Vy − Vxx = V 2

x − u

Vt + 4Vxxx + 4V 3
x + 12VxVxx − 6uVx − 3ux − 3∂−1

x uy = 0.

Derivating with respect to the x variable and setting v = Vx, we obtain the following
system:

(M–mKP-II)

{
vy − vxx = (v2)x − ux

vt + 4vxxx + (12vvx + 4v3 − 6uv − 3ux)x − 3uy = 0.

It is an easy exercise to show that systems (2.2) and (M–mKP-II) are equivalent for
u, v, w ∈ Lploc with p large enough, under the change of variables w = −u + v2 + vx.
In other words, system (M–mKP-II), which in turn is just the compatibility system
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(2.1′) which describes the evolution of the Lax operator, is nothing but a reformulation
of (mKP-II) in system form which contains equation (M). This fact provides insights
on the link between the two dispersive models and is going to be useful. Coming back
to the discussion on the eigenvalue −λ2, we also note that v = ∂x log(ψ), so that the
transformation ψ 7→ eλ

2yψ used to change the value of λ leaves the function v unchanged,
this is one more reason why we should not worry about the eigenvalue λ in the equation
and set it to be zero. Note that if we had to take into account λ2, the function V would
be shifted by the additive term −λ2y.

We note that the map ψ 7→ V = log(ψ) is bijective, assuming ψ > 0. The map
V 7→ v = Vx is clearly not injective a priori without further conditions, although it
turns out (see Lemma 3.10 and Lemma 4.15) that V is determined from v only up
to an additive constant which is independent of space and time variables (hence, ψ is
determined from v up to a multiplicative constant), assuming V satisfies system (2.3).
The free undetermined constant is natural due to the linearity of the Lax system (2.1′).

Properties of the mKP-II equation in system form, (M–mKP-II)

We first understand the symmetries of the mKP-II equation in a broad sense, that is,
we look for symmetries of the system (M–mKP-II). The following two symmetries can
be both guessed from the KP-II symmetries by looking at the Miura map:

(2.4) (u, v) 7→ (GKP
σ u,GmKP

σ v),

(u, v) 7→ (GKdV
µ u,Bµv),

where GmKP
σ v = GKP

σ v − σ
2 . These translate into symmetries of mKP-II in system form

(2.2), since the two systems are equivalent. The two symmetries do not necessarily
correspond to symmetries of (mKP-II) in a well-posed setting, especially the second
one. These symmetries are possible due to the arbitrary choice of an additive constant
in the term ∂−1

x vy, which in a general setting need not be determined univocally and
canonically from v.

Now we give a precise version of the property of the Miura map to conjugate the
mKP-II flow and the KP-II one, which is stated and proved in [21] in terms of system
(2.2).

Proposition 2.1. Let Ω ⊂ R3 open. Assume v ∈ L4
loc(Ω), vx, w ∈ L2

loc(Ω) satisfy the
system (2.2). Then, u := −w + v2 + vx and ū := −w + v2 − vx belong to L2

loc(Ω) and
solve the KP-II equation distributionally, that is,

(2.5) (ut − 3(u2)x + uxxx)x + 3uyy = 0,

and the same holds for ū. Equivalently, if v as above and u ∈ L2
loc(Ω) satisfy the system

(M–mKP-II), then u and ū := u− 2vx satisfy (2.5).
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2.3 Multisolitons and elementary solutions

The following is a way of constructing solutions of the KP-II equation and is described
for instance in [8] and [31]. Let f1, . . . , fN be positive solutions of the system

(2.6)

{
∂yf = ∂2xf,

∂tf = −4∂3xf.

Define the τ function as the Wronskian determinant

(2.7) τ(x, y, t) = Wr (f1, . . . , fN ) =

∣∣∣∣∣∣∣∣∣
f1 f2 · · · fN
f ′1 f ′2 · · · f ′N
...

...
...

f
(N−1)
N f

(N−1)
2 · · · f

(N−1)
N

∣∣∣∣∣∣∣∣∣ ,

where f
(j)
k := ∂jxfk. It is known that the function

(2.8) ū(t, x, y) := −2∂2x log(τ(x, y, t))

formally solves the KP-II equation as long as the τ function does not vanish.
It is known (see e.g. the paper [34]) that any non-negative solution of the heat

equation on the whole Rx×Ry can be achieved as an integral sum of exponential solutions

eλx+λ
2y, in particular any positive solution of system (2.6) has to have the form

f(x, y, t) =

∫
R
eλx+λ

2y−4λ3tdµ(λ),

where µ is a non-negative Borel measure on R. The multisolitons of KP-II can be gen-
erated using formula (2.7) by taking the functions fj as finite sums of the above expo-
nential solutions: we describe below the procedure, which loosely follows the notation of
[8]. First choose two positive integers 0 < N < M , a matrix A = (anm) ∈ MatN×M (R),
real spectral parameters λ1 < λ2 < · · · < λM , and phase parameters θ1,0, . . . , θM,0. Let

θm(x, y, t) := λmx+ λ2my − 4λ3mt+ θm,0 , fn(x, y, t) =
M∑
m=1

anme
θm(x,y,t).

Assuming Rank(A) = N and that all N × N minors of A are non-negative and some
irreducibility condition on A (see [8, Condition 2.2]), the function τ in (2.7) is strictly
positive, and the function ū in equation (2.8) is a (M − N,N)-multisoliton. The term
means that for fixed time, the solution looks like a sum of M tilted ‘half line’ solitons
coming from infinity, which exhibit a nontrivial interaction in a compact region of space.
Moreover, of the M half lines interacting, N come from y = +∞, and M − N come
from y = −∞. The directions of the M solitons are given by the relations between the
spectral parameters λ1, . . . , λM . If we take N = 1, it is not possible to construct all
multisolitons, but only the so-called (k, 1)-multisolitons, k = M − 1 ≥ 1, which possess
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one line as y → +∞ and k lines as y → −∞. We called them tree-shaped solitons.
For M = 2, one obtains the line soliton, possibly transformed under the KP-II Galilean
symmetry (1.3). Taking M = 3, the corresponding solution is the (2, 1)-soliton, which
is known as Miles resonance solution, or as ‘Y -shaped’ soliton. The reflection symmetry
(1.2) can be used to exchange the number of outgoing solitons at y → −∞ and y → ∞.

Solutions of (M) as superpositions of elementary solutions

The following simplified discussion is enough to present one of the key ideas in this work.
If u is small in a suitable sense, one can expect that for a given parameter λm ∈ R, there
exists a time-dependent eigenfunction ψ(m) of the Lax operator, solution of (2.1′), which
behaves like eθm(x,y,t) up to multiplicative lower order terms. We call such functions
ψ(m) elementary Lax-eigenfunctions and are essentially the Jost solutions of the Lax
operator with potential u. Thanks to the equivalence between systems (2.1′), (2.3),
(M–mKP-II), the problem of constructing ψ(m) essentially reduces to that of finding
solutions v(m) := ∂x log(ψ

(m)) to (M–mKP-II) which converge to constants λm ∈ R
at infinity. The precise reduction is made possible by Lemmas 4.15 and 4.16. These
elementary solutions v(m) of (M–mKP-II) are the building blocks that can be used
to construct perturbations of the line soliton and multisolitons. For fixed time t, the
function v(m) is a solution to (M) with datum u(t) that is equal to the constant λm at
spatial infinity. The existence and uniqueness of such a function is essentially given by
Corollary 3.2. The elementary solutions are introduced in Definition 4.14.

If (v(m))m are elementary solutions associated to the spectral parameters (λm)m, it
follows from the linearity of system (2.1′) that formally

v := ∂x log
( M∑
m=1

e
∫
v(m)dx

)
solves system (M–mKP-II). Consequently, ū = u − 2∂xv is a solution of KP-II by the
property of the Miura map in Proposition 2.1. This motivates the explicit formula in
Theorem A.

3 The Miura map of the KP-II equation

In this section we will prove Theorem A, in particular we work with fixed, small u ∈
Ḣ− 1

2
,0(R2), which is a scaling-critical space for both equations (M) and (KP-II). As

mentioned in the introduction, a satisfactory global well-posedness theory of KP-II for
small data in this space holds, see Theorem 4.5, in particular the smallness in Ḣ− 1

2
,0(R2)

is preserved by the KP-II flow.
The Miura map equation in PDE form, which we rewrote as

(M) vy − vxx = (v2)x − ux

is a viscous Burgers equation on the whole space-time R2
x,y with external forcing. The

parameter λ2 = 1 in the definition ofM− does not appear in the equation, but it will play
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a role in terms of the boundary conditions. As discussed in the introduction, formally

Mλ
−(Q

λ(· − γ)) = 0 ∀γ ∈ R,

so Q(x− γ) = tanh(x− γ) solves (M) with u ≡ 0 for all γ ∈ R, and we expect that all
solutions of (M) with the same space asymptotics of Q form a 1-parameter family. As
a preliminary remark, the boundary condition

v(x, y)− tanh(x) → 0 as x→ ±∞.

is too weak to be equipped to equation (M) to have just a 1-parameter family of solu-
tions, since viscous shocks with different velocities can come from y = −∞ with different
speeds. An example is given by the ‘multikink’ solutions

u ≡ 0, v(x, y) = ∂x log(e
x+y+a + 1 + e−x+y+b),

which are all different for a, b ∈ R. A more restrictive condition, the one that we are
interested in, is to impose that v is close to Q for all values of y, so what we ask for is
that

∃α : R → R such that v(x, y)− tanh(x− α(y)) → 0 as x, y → ∞,

possibly in some averaged sense. We will ask for v − tanh(x− α(y)) ∈ L3(R2).
Looking at the evolution in the y variable, since u decays to zero, we can see that

the asymptotic profiles of the solution are expected to be translations of the viscous
shock tanh(x) and there should be stability of this profile at y → +∞. Defining z :=
v − tanh(x− γ), γ ∈ R, and using Notation 1.3, the new variable z solves

zy − zxx − 2(tanhγ z)x − (z2)x = −ux.

This way it is clear that in (M) we have transport towards the center of the shock, and
a phenomenon of accumulation of mass close to the shock itself that corresponds to a
shift of the position of the kink.

3.1 Decomposition of the solution and uniqueness

A first guess would be to study the equation (M) in some new variables w,α, where

v = w + tanhα

and α = α(y) is chosen in a suitable way so that it represents the ‘position’ of the kink

at ordinate y. Having chosen to work in the critical space Ḣ− 1
2
,0(R2), we will see that

the decomposition will have to be a little more sophisticated to prove uniqueness of
solutions. In Appendix B we outline the same setting with data u ∈ L2(R2) for which
the decomposition is fixed simply by choosing∫

R
sech2(x− α(y))w(x, y) dx = 0 ∀y,

although a uniqueness theory in R2 is missing due to the strict subcriticality of the data.
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Solutions of (M) that are constant at infinity

The following lemma shows the well-posedness of equation (M) on the whole R2 in the
simple case where solutions go to zero at infinity, and collects some estimates that will
be useful later on. We mention that with the same techniques, it is possible to show the
well-posedness of the initial value problem associated to equation (M), that is, assigning

an initial datum v0 = v|y=0 ∈ Ḣ− 1
2 (R) and a forcing u ∈ Ḣ− 1

2
,0(R × (0,∞)). We refer

to the definition of the anisotropic Sobolev and Besov spaces Hs,t(R2), Bs,t
p,q(R2) in the

notations. We will write ⟨c(x− α)⟩−1 to denote the function (x, y) 7→ ⟨c(x− α(y))⟩−1.

Lemma 3.1. Let c ̸= 0 and α ∈ C(Ry) be such that ∥αy − c∥L2(Ry) ≲ 1. Let u ∈
Ḣ− 1

2
,0(R2) small. There exists a unique solution v ∈ L3(R2) to equation (M), and it

satisfies the bounds

(3.1)

∥v∥
C0Ḣ

− 1
2

x ∩Ḣ
1
2 ,0∩Ḣ0, 14 ∩L3(R2)

+ ∥∂−1
x vy∥Ḃ−1/2,0

2,∞ (R2)

+|c|
1
2 ∥ ⟨c(x− α)⟩−1 v∥L2

x,y
≲ ∥u∥

Ḣ− 1
2 ,0(R2)

.

Moreover, we have the additional estimates

∥v∥C0L2 + ∥vx∥L2(R2) + |c|∥ ⟨c(x− α)⟩−1 v∥L2(R2) ≲ ∥u∥L2(R2),(3.2)

∥vx∥Hk(R2) + ∥∂−1
x vy∥Hk(R2) ≲k ∥u∥Hk(R2), k ≥ 0,(3.3)

∥v∥L2(R2) + ∥∂−1
x v∥C0L2∩L6(R2) + |c|∥ ⟨c(x− α)⟩−1∂−1

x v∥L2(R2) ≲ ∥u∥Ḣ−1,0(R2)(3.4)

whenever the right-hand sides are finite and ∥u∥
Ḣ− 1

2 ,0(R2)
is small enough. The data-to-

solution map u 7→ v is analytic in all the above topologies.

We will extensively use Proposition A.3, which proves the estimate

∥|∂x|s(∂y − ∂2x)
−1u∥LrLσ ≲ ∥u∥LpLq

for suitable 1 ≤ p, q, r, σ ≤ ∞, s ∈ [0, 2], as well as other linear estimates from Appendix
A.

Proof. The existence and uniqueness of a small v follows by a standard fixed point
argument in the L3(R2) topology using Proposition A.3. In fact, call Γ the operator
(∂y − ∂2x)

−1 defined as the integral operator on R2 with respect to the heat kernel, as in
Appendix A. Then one has

∥Γ∂xf∥L3(R2) ≲ ∥f∥
Ḣ− 1

2 ,0(R2)
, ∥Γ∂xf∥L3(R2) ≲ ∥f∥L3/2(R2).

Since obviously ∥f2∥L3/2(R2) = ∥f∥2L3(R2), we find that the map

F : v 7→ Γ∂x(v
2 − u)
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is a contraction in a small ball Bε0(0) ⊂ L3(R2) assuming u ∈ Ḣ− 1
2
,0(R2) is small enough,

in particular there exists a unique small v ∈ L3(R2) such that F (v) = v, hence the claim.
The data-to-solution map is analytic due to the fact that the solution is obtained using
the Banach fixed-point theorem.

The uniqueness for large v ∈ L3 is a consequence of the uniqueness for small v,
translation invariance, and the fact that for small solutions v one has that v|{y<−M}
depends only on u|{y<−M}, for any given M ∈ R. In fact, given M ∈ R, one can prove
an analogous uniqueness statement for small v with R2 replaced by {y < −M}, using
the same estimates as before. By translation invariance, the smallness condition does
not depend onM . Now given two solutions v1 and v2 in L

3(R2), one has ∥v1∥L3({y<−M})
and ∥v2∥L3({y<−M}) are arbitrarily small for M large enough, so by the inequality

∥v2 − v1∥L3({y<−M}) = ∥∂xΓ(v22 − v21)∥L3({y<−M})

≲ ∥v2 + v1∥L3({y<−M})∥v2 − v1∥L3({y<−M}),

it holds that v1 = v2 a.e. on L3({y < −M}) for M large enough. The same is true for
all M ∈ R by a bootstrap argument, assuming v1 is the unique small solution.

The estimate on the first term on the left hand side of (3.1) follows from the estimates
of Proposition A.3 and the last estimate of Remark A.4, since v = ∂xΓ(v

2 − u) and

∥v2∥L3/2(R2) ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
.

The estimate (3.2), except for the weighted estimate, comes by Proposition A.3 and
a fixed point argument in L3(R2) ∩ L6(R2), which yields

∥Γ∂x(v2 − u)∥L6(R2)∩C0L2∩L2
yḢ

1
x
≲ ∥v2∥L2(R2) + ∥u∥L2(R2)

≤ ∥v∥L6(R2)∥v∥L3(R2) + ∥u∥L2(R2).

The weighted estimate in (3.2) follows from inequality (1.1) of Lemma A.6, since v =
∂xΓ(v

2−u), with u, v2 ∈ L2(R2). For the weighted estimate in (3.1) instead, we note that
v = w + z, w := ∂xΓu, z := ∂xΓv

2. The weighted estimate for w follows precisely from
inequality (1.2) of Lemma A.6 after a linear change of coordinates. For z, Proposition
A.3 and Hölder’s inequality give us

|c|
1
2 ∥ ⟨c(x− α)⟩−1 z∥L2(R2) ≤ |c|

1
2 ∥ ⟨c(x− α)⟩−1 ∥L∞

y L2
x
∥∂xΓv2∥L2

yL
∞
x

≲ ∥v2∥L3/2(R2)

= ∥v∥2L3(R2)

≲ ∥u∥2
Ḣ− 1

2 ,0(R2)
.

For the second term in estimate (3.1), we note that we can simply recover the an-
tiderivative of vy from equation (M),

∂−1
x vy = vx + v2 − u,
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and u, vx ∈ Ḣ− 1
2
,0(R2) ↪→ Ḃ

− 1
2
,0

2,∞ (R2). Moreover, it holds the chain of continuous em-
beddings

Ḣ0, 1
4 (R2) ↪→ L2

xL
4
y ↪→ L4

yL
2
x, L2

yL
1
x ↪→ Ḃ

− 1
2
,0

2,∞ (R2),

so that v2 ∈ B
− 1

2
,0

2,∞ (R2) and the estimate is proved.
Estimate (3.3) follows with standard techniques of well-posedness at higher regularity

similarly as for estimate (3.2), or simply by the analyticity and translation invariance of
the data-to-solution map u 7→ v. The first part of estimate (3.4) follows similarly, this
time making use of the simple estimates

∥v2∥L6/5(R2) ≤ ∥v∥L3(R2)∥v∥L2(R2), ∥∂xΓf∥L2(R2) ≲ ∥f∥L6/5(R2).

For the second term in (3.4), since v ∈ L3(R2) is small and in addition ∥v∥L2 ≲ ∥u∥Ḣ−1,0 ,
we can simply set V := Γ(v2 − u) and note that

∥V ∥C0L2∩L6(R2) ≲ ∥u∥∂xL2(R2) + ∥v2∥L6/5(R2)

≲ ∥u∥Ḣ−1,0(R2)(∥u∥Ḣ− 1
2 ,0(R2)

+ 1)

≲ ∥u∥Ḣ−1,0(R2)

for small u in Ḣ− 1
2
,0(R2), where we used the estimates of Proposition A.3 in the first

inequality. Since v = ∂xΓ(v
2 − u), we have Vx = v, in particular v is the derivative of a

function that belongs to C0L
2 ∩ L6(R2), with the desired bounds from above. Finally,

the bound on the third term follows from the linear estimate (1.1) in Lemma A.6 with
s = 0, 1, since ∂−1

x v = Γ(v2 − u).

The next Corollary proves similar estimates for solutions to (M) with constant
boundary conditions at infinity. More precisely, we look for solutions v ∈ L3(R2) + λ,
λ ∈ R. Note that if v is one such solution, then ṽ := v − λ ∈ L3(R2) is a solution to

(3.5) ṽy − ṽxx − 2λṽx = (ṽ2)x − ux,

so this Corollary is equivalently proving estimates for ‘tilted’ solutions to equation (M).
We use the tilde above ‘v’ to express the fact that we are removing the leading part (in
this case, the constant λ) from a solution v of (M). We will try to keep this convention
consistent throughout the article5.

Corollary 3.2 (Solutions of (M) close to a constant λ ∈ R).
(a) Let c ̸= −2λ, u ∈ Ḣ− 1

2
,0(R2) small and α ∈ C(Ry) be such that ∥αy−c∥L2(Ry) ≲ 1.

There exists a unique solution v ∈ L3(R2)+λ to equation (M). The function ṽ := v−λ
is the unique solution in L3(R2) to equation (3.5), and it satisfies the bounds

∥ṽ∥
C0Ḣ

− 1
2∩L3(R2)

+∥ṽx∥
Ḣ− 1

2 ,0(R2)
+|c+2λ|

1
2 ∥ ⟨|c+ 2λ|(x− α)⟩−1 ṽ∥L2(R2) ≲ ∥u∥

Ḣ− 1
2 ,0(R2)

.

5For example, an analogous notation will be used for solutions V of equation (3.9), whose leading

part will be λx+ λ2y, so we will have Ṽ := V − (λx+ λ2y).
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Moreover, the estimates (3.2), (3.3), (3.4) hold for ṽ as well (with ∂−1
x ṽy replaced by

∂−1
x ṽy − 2λṽ and c replaced by c + 2λ), and the data to solution map is analytic in all

the involved topologies.
(b) Let u ∈ Ḣ− 1

2
,0(R2) small and let λ1 ̸= λ2. The two solutions ṽ(1), ṽ(2) to equation

(3.5) with λ = λ1, λ2 given by part (a) satisfy ṽ(1) − ṽ(2) ∈ C0(Ry, L2(Rx)) and

∥ṽ(1) − ṽ(2)∥C0L2∩L6(R2) ≲ |λ1 − λ2|
1
2 ∥u∥

Ḣ− 1
2 ,0(R2)

.

Proof. Part (a) is a direct consequence of Lemma 3.1 thanks to the change of coordi-
nates (x, y) 7→ (x+ 2λy, y), which conjugates equations (M) and (3.5) in L3(R2) while

keeping the L3-norm and the Ḣ− 1
2
,0(R2)-norm of u invariant, and from the operation of

subtracting a constant λ from v, which also conjugates the same equations in the spaces
L3(R2) + λ and L3(R2) respectively. We thus restrict our attention to part (b). By the
scaling symmetry

v 7→ λv(λ·, λ2·), u 7→ λ2u(λ·, λ2·)

and the above change of coordinates with suitable λ, we may assume λ1 = 1, λ2 = −1
without loss of generality, and call ṽ(1) = ṽ+, ṽ(2) = ṽ−. Consider the function w :=
ṽ+ − ṽ−. It satisfies the equation

wy − wxx = ((ṽ+ + ṽ−)w)x + 2(ṽ+ + ṽ−)x.

Consider the two solutions k± of the linear equation

k±y − k±xx = 2ṽ±x .

Then the difference z := w − (k+ + k−) =: w − k satisfies

(3.6) zy − zxx − ((ṽ+ + ṽ−)z)x = ((ṽ+ + ṽ−)k)x.

Now, from Proposition A.3 we know that

∥(∂y − ∂xx)
−1∂xg∥C0L2∩L6(R2) ≲ ∥g∥L2(R2).

Note that ∥ṽ±∥L3(R2) ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
, so (ṽ+ + ṽ−) is small and lies in a scaling critical

space of sufficient regularity. By Proposition A.3,

∥(∂y − ∂xx − ∂x(ṽ
+ + ṽ−))z∥∂xL2(R2) ≥ ∥(∂y − ∂xx)z∥∂xL2(R2)

− ∥(−∂x(ṽ+ + ṽ−))z∥∂xL2(R2)

≳ ∥z∥C0L2∩L6(R2) − ∥(ṽ+ + ṽ−)∥L3∥z∥L6(R2),

so for small enough u ∈ Ḣ− 1
2
,0(R2), we can upgrade the previous estimate to

∥(∂y − ∂xx − ∂x(ṽ
+ + ṽ−))−1∂xg∥C0L2∩L6(R2) ≲ ∥g∥L2(R2).

By looking again at equation (3.6), it is then clear that we only need to show that k ∈
C0L

2 ∩L6, because then the same holds for z thanks to the above estimate (considering
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g = (ṽ+ + ṽ−)k ∈ L2(R2)), and for w = z+ k simply by summation. Let’s thus consider
k+ without loss of generality. Considering w+ := ṽ+ − k+, it holds

w+
y − w+

xx = ((ṽ+)2)x − ux.

In particular, we have

∥k+∥L3 ≤ ∥ṽ+∥L3 + ∥w+∥L3

≲ ∥(ṽ+)2∥L3/2 + ∥u∥
Ḣ− 1

2 ,0

≲ ∥u∥
Ḣ− 1

2 ,0

due to the estimate ∥|∂x|Γf∥L3 ≲ ∥f∥
L3/2+Ḣ− 1

2 ,0(R2)
of the heat kernel given by Propo-

sition A.3. But we also have k = 2∂xΓṽ
+ = 2T ((ṽ+)2 − u), where

T = ∂xΓ∂xΓ
− = −1

2
∂x[Γ− Γ−],

where the last equality can be checked by means of the Fourier transform, using the
notation Γ± := (∂y−∂2x±2∂x)

−1 as in Appendix A. The above operator behaves at least
as well as a heat kernel and an x-derivative of the heat kernel, since ∂2xΓ is bounded
on Lp(R2), 1 < p < ∞ (see Proposition A.3), so in the end k ∈ C0L

2 ∩ Lp(R2) for any
3 ≤ p <∞, with the desired bound on the norms.

Decomposition in terms of simpler solutions

Throughout the rest of the subsection, we will assume u ∈ Ḣ− 1
2
,0(R2) small, and consider

v± ∈ L3(R2) ± 1 the unique solutions of (M) given by Corollary 3.2. Recall that
ṽ± := v± ∓ 1 ∈ L3(R2) are solutions to (3.5) for λ = ±1, that is,

ṽ±y − ṽ±xx ∓ 2ṽ±x = ((ṽ±)2)x − ux.

We will write fα(x, y) := f(x − α(y), y) as in Notation 1.3 several times for the rest of
the section.

Definition 3.3. Consider the two real functions defined in the introduction

η±(x) :=
1

2
(1± tanh(x)).

For u ∈ Ḣ− 1
2
,0(R2), let v± as above, and define

G(x, y;α) := η+(x− α)v+(x, y) + η−(x− α)v−(x, y)

= tanh(x− α) + η+(x− α)ṽ+(x, y) + η−(x− α)ṽ−(x, y).

Using the subscript Notation 1.3 to denote translations in the x variable, we will write

G(·, ·;α) = η+α v
+ + η−α v

−
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= tanhα+η
+
α ṽ

+ + η−α ṽ
−.

Finally, through an abuse of our own Notation 1.3, we will simply write Gα to denote the
function (x, y) 7→ G(x, y;α). Depending on the context, α might denote a function of
the variable y, in which case Gα will have the obvious definition Gα(x, y) := Gα(y)(x, y).

In the following lemma we momentarily drop the dependence of ṽ±, G on the variable
y and prove some properties of G(·, y; ·) for fixed y ∈ R. Note that, by a straightforward
computation, the quantity Ga −Gb can be rewritten in terms of a, b and ṽ+ − ṽ− only:

(3.7) Ga −Gb = (tanha− tanhb) + (η+a − η+b )(ṽ
+ − ṽ−).

Lemma 3.4 (Properties of Gα). Let ṽ± ∈ H−1/2(Rx) such that ṽ+ − ṽ− =: h ∈ L2(Rx)
is small enough. For a ∈ R, let

Ga(x) = tanh(x− a) + η+(x− a)ṽ+(x) + η−(x− a)ṽ−(x).

(a) It holds Ga−Gb ∈ L2(R; cosh2(x)dx) for any fixed a, b ∈ R, and we have the bounds

(b− a) ≤
∫
R
(Ga −Gb)dx ≤ 3(b− a) ∀ a, b ∈ R.

(b) Let v ∈ L2(R; cosh2(x)dx) + G0. There exists a unique α ∈ R such that the
decomposition v = ω +Gα satisfies∫

R
ω(x)dx = 0.

(c) The map

L2(R; cosh2(x)dx)× L2(R) → L2(R; cosh2(x)dx)× R
(z, h) 7→ (ω, α),

with α and ω as in (b) and v = z +G0, is well-defined and smooth.

(d) If v = ω +Gα as in (b), it holds

∥ coshα ω∥L2(R) ≲ inf
a∈R

∥ cosha(v −Ga)∥L2(R)

whenever the right-hand side is small enough.

Note that by (a), for any a ∈ R, the property v ∈ L2(R; cosh2(x)dx)+Ga is equivalent
to v ∈ L2(R; cosh2(x)dx) +G0.

Proof. We first write

Ga −Gb = (tanha− tanhb) + (η+a − η+b )(ṽ
+ − ṽ−)
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and note that the first term and the first factor in the product are bounded by sech2(x)
up to a multiplicative constant, in particular the integral is well-defined. We can compute
its derivative with respect to a, which reads

d

da

∫
R
(Ga −Gb) dx = −

∫
R

1

2
sech2a · (2 + ṽ+ − ṽ−) dx

= −
∫
R

1

2
sech2a · (2 + h) dx,

and using the smallness of h ∈ L2(R), we get that this derivative lies between −1 and
−3, proving (a). Note that being the above quantity a convolution with a Schwartz
function, the map

a 7→
∫
R
(Ga −Gb) dx

is smooth, and has a global smooth inverse by the strict sign-definiteness of the derivative.
Part (b) is a direct consequence of part (a), in particular of the bijectivity of the above
map for fixed b = 0.

Concerning part (c), we first show that the map is well-defined. That is, we show
that ω and α only depend on z and h = ṽ+− ṽ−, and not on more information on ṽ+, ṽ−.
We have z = v−G0 = ω+(Gα−G0), so, ω = z− (Gα−G0). The number α is thus the
unique number such that

∫
R z − (Gα − G0)dx = 0. By (3.7), for fixed α the integrand

depends only on z and h, so α is indeed only determined by them. The same holds for
ω, since ω = z − (Gα − G0), and Gα − G0 depends only on α and h by (3.7). For the
smoothness, first note that the map

L2(R)× R → L2(R; cosh2(x)dx),

(h, a) 7→ Ga −Gb

is smooth, as it can be verified directly from equation (3.7) (note in particular that the
map is affine in the variable h). The dependence on (h, a, b) is smooth as well since
Ga − Gb = (Ga − G0) − (Gb − G0). Now, call z = v − G0, and let v = ω + Gα be the
unique decomposition of v. From what we have just shown, the map

F : (h, ω, α) 7→ ω +Gα −G0

is well-defined and smooth, where α ∈ R, h ranges in L2(R), ω ranges over the closed
subspace of functions f ∈ L2(R; cosh2(x)dx) such that

∫
R f dx = 0. Moreover, the

differential with respect to (ω, α) is

Dω,αF (h, ω, α) · (ω̇, α̇) = ω̇ − α̇ sech2α ·(1 + h/2).

It follows that Dω,αF (h, ω, α) is invertible on L2(R; cosh2(x)dx), since sech2α ·(1 + h/2)
has non-zero mean for small h, and ω̇ is a generic vector with zero mean. Part (c) thus
follows by the implicit function theorem and the uniqueness of the decomposition.
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Finally, we prove (d). From the smoothness statement in part (c), we have

∥ coshω∥L2 + |α| ≲ ∥ cosh ·(v −G0)∥L2

when the right-hand side is small enough. With the same smallness assumption, we can
assume |α| ≤ 1, so

∥ coshα ω∥L2 ≲ ∥ cosh ·(v −G0)∥L2

follows by monotonicity, since cosh(x− α) ≤ e|α| cosh(x). Estimate (d) follows from the
above estimate by translation invariance.

Uniqueness

We now start working for the uniqueness of solutions of (M). The main issue is that
the position of the kink depends sensibly on the source term at very negative y, so the
difference of two generic solutions is hard to control. The first idea is to consider the
new variable ω := v − Gα, which is expected to decay exponentially as x → ±∞. The
transport towards the kink converts the decay in x into exponential decay in y, after
fixing α via a suitable orthogonality condition. This leaves room for all the needed a
priori estimates.

Secondly, two solutions of (M) with the ansatz vj = Gαj + ωj will turn out to be
comparable due to the fact that the quantity∫

R
v1 − v2 dx =: I

does not depend on x, and in fact it can be used as a measure of the distance between the
kinks of the two solutions. When I = 0, the two solutions will share the same α due to
a good choice of the orthogonality condition, and the argument described above proves
estimates for the difference of two solutions, and shows that v1 = v2. When I ̸= 0, the
distance between the two kinks will be approximately I for all y ∈ R, and the two will
be different solutions. The number I, or equivalently the value of α at any fixed y, will
thus be the real parameter that describes the family of solutions.

As a side effect of the above argument, we will see a gain of regularity in the pertur-
bation ω, essentially due to the fact that ṽ+ − ṽ− is more regular than ṽ±, by Corollary
3.2 part (b).

We first give existence, a decomposition and a priori bounds on the solution of the
initial value problem with initial time y = 0 associated to equation (M) with conditions
±1 at ±∞, and satisfying the above ansatz. To facilitate the reader, we recall that for
α ∈ C(Ry),

G0 = G0(x, y) := η+(x)v+(x, y) + η−(x)v−(x, y),

Gα = Gα(x, y) := η+(x− α(y))v+(x, y) + η−(x− α(y))v−(x, y).
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Proposition 3.5. In the hypothesis u ∈ Ḣ− 1
2
,0(R× (0,∞)) small, let v±, ṽ±, G be as in

Definition 3.3. Let v0 ∈ L2(Rx; cosh2(x)dx) +G0(·, 0) be such that

∥ cosha0 ·(v0 −Ga0(·, 0))∥L2
x

is small enough for some a0 ∈ R. There exists a unique solution v ∈ C([0,∞), H− 1
2 (Rx))+

tanh(x) of equation (M) with initial datum v0 such that

v −G0 ∈ C([0,∞), L2(Rx; cosh2(x)dx)).

Moreover, the decomposition

v = ω +Gα,

given for every y by Lemma 3.4, is such that α ∈ C([0,∞)) and

∥ coshα ω∥L∞L2∩L2H1 + ∥αy∥L2 ≲ ∥u∥
Ḣ− 1

2 ,0 + ∥ cosha0 ·(v0 −Ga0(·, 0))∥L2
x
.

Here we think of u as a distribution in Ḣ− 1
2
,0(R2) supported on {y ≥ 0}, so all

we said so far makes sense, including the definition of v± and G. The corresponding
functions ṽ± will also be identically zero for negative y.
The decomposition is obtained by applying Lemma 3.4 part (b) at each y ∈ R. In
particular,

∫
ω(x, y) dx for all y ≥ 0, and α(y) is uniquely determined by this condition.

Proof. Consider z := v −G0, and call Vα := η+α ṽ
+ + η−α ṽ

− = Gα − tanhα. The equation
for z reads

zy − zxx − 2(tanh z)x − 2(V0z)x = (z2)x +
1

2
sech2· ((ṽ+)2 − (ṽ−)2)

− 1

4

[
sech2· (ṽ+ − ṽ−)2

]
x
+ 2 sech2 V0,

so a unique solution z exists and belongs to C([0, T ], L2(Rx; cosh2(x)dx)) for a short time
T > 0 thanks to Lemma A.9. The global existence of z follows from the estimate we still
need to prove and the blowup alternative. By the continuity of the decomposition map
in Lemma 3.4, we can assume that v0, u are test functions, so that the solution belongs
to C∞([0, T ], sech(x)H∞).

We now prove the estimate on the solution. Using the equations for ṽ± and the
smoothness of the decomposition map, ω satisfies the equation

ωy − ωxx − 2(tanhα ω)x − 2(Vαω)x = (ω2)x +
1

2
sech2α · ((ṽ+)2 − (ṽ−)2)

− 1

4

[
sech2α · (ṽ+ − ṽ−)2

]
x

+ 2 sech2α Vα +
αy
2

sech2α · (2 + ṽ+ − ṽ−).
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The estimate on αy follows integrating the equation in x:

|αy(y)| =

∣∣∣∣∣
∫
R sech2α · ((ṽ+)2 − (ṽ−)2) dx+ 4

∫
R sech2α ·Vα dx

(
∫
R sech2α · (2 + ṽ+ − ṽ−)) dx

∣∣∣∣∣
and the estimate ∥αy∥L2

y
≲ ∥u∥

Ḣ− 1
2 ,0(R2)

follows from Corollary 3.2, by part (b) and the

weighted estimate of part (a), since the denominator of the above fraction is bounded
away from 0 for small u, uniformly in y.
Integrating against cosh2α ω and integrating by parts, we get the weighted energy estimate

1

2

d

dy

[∫
R
(coshα ω)

2dx

]
= −

∫
R
(coshα ω)

2
x dx−

∫
R
(coshα ω)

2dx+ 2

∫
R
sech2α · (coshα ω)2dx

+ 2

∫
R
Vα(coshα ω)[(coshα ω)x + tanhα · (coshα ω)] dx

− 2

3

∫
R
tanhα sechα · (coshα ω)3dx

+
1

4

∫
R
sechα · (ṽ+ − ṽ−)2(coshα ω)x dx

+

∫
R
sechα f · (coshα ω) dx,

where

f =
1

2
((ṽ+)2 − (ṽ−)2) +

1

4
tanhα · (ṽ+ − ṽ−)2 + 2Vα +

αy
2
(2 + ṽ+ + ṽ−).

Looking at the first three terms on the right hand side, we can bound the positive term
with the two negative ones by making use of the orthogonality condition and the fact that
the self-adjoint operator −∂2x − 2 sech2 is non-negative on the subspace of L2 functions
that are orthogonal to the function sech, by Lemma D.1. More precisely, under the
condition

∫
ω dx = 0, it holds∫

R
(coshα ω)

2
xdx+

∫
R
(coshα ω)

2dx− 2

∫
R
sech2α · (coshα ω)2dx ≳ ∥ coshα ω∥H1 .

Integrating the weighted estimate in time from 0 to T thus gives

∥ coshα ω∥2L∞L2 + ∥ coshα ω∥2L2H1 ≲ ∥ coshα0 ω0∥2L2 + (∥ṽ+∥L3L3 + ∥ṽ−∥L3L3)∥ coshα ω∥L6L6

× (∥(coshα ω)x∥L2L2 + ∥ coshα ω∥L2L2)

+ ∥ coshα ω∥3L3L3

+ ∥ coshα ω∥L3L3(∥ṽ+∥L3L3 + ∥ṽ−∥L3L3)2

+ ∥(coshα ω)x∥L2L2∥ṽ+ − ṽ−∥2L4L4+

+ (∥ sechα ṽ+∥L2L2 + ∥ sechα ṽ−∥L2L2)

× (∥ coshα ω∥L2L2 + ∥αy∥L2
y
∥ coshα ω∥L∞L2)
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+ ∥αy∥L2
y
∥ coshα ω∥L2L2 .

The cubic term can be controlled by the left hand side assuming ω remains small: by
a continuity argument, the latter follows by the assumption we have on the smallness
of ∥ cosha0 ·(v0 −Ga0(·, 0))∥L2 , which is equivalent to the smallness of ∥(coshα ω)|y=0∥L2

by Lemma 3.4 part (d). All the remaining terms on the right hand side are controlled

by what is on the left hand side, the L2-norm of αy, and the norm of u in Ḣ− 1
2
,0(R2),

thanks to the estimates of Corollary 3.2 (note in particular that by Corollary 3.2 we
have the bound ∥ṽ±∥L3L3 +∥ṽ+− ṽ−∥L6L6 +∥ sechα ṽ±∥L2L2 ≲ ∥u∥

Ḣ− 1
2 ,0(R2)

), where the

multiplicative constants do not depend on T . So the a priori estimate holds uniformly
in T > 0, thus it holds on [0,∞) as well.

Lemma 3.6. Let v1, v2 be two solutions of (M) with initial data v10, v
2
0 as in Proposition

3.5. Then the quantity ∫
R
(v2 − v1)dx =: I

is well defined, finite and does not depend on y. Moreover, if vj = ωj+Gαj as in Lemma
3.4 part (b), we have that |I| ≤ |α1 − α2| ≤ 3|I| for all y ∈ R.

Proof. We can assume the data u and vj0−G0(·, 0) to be test functions as in the proof of
the previous Proposition. It holds w := v2− v1 = ω2−ω1+(Gα2 −Gα1). The finiteness
of the above integral is given by the estimates in the previous Proposition and Lemma
3.4 part (a). The quantity w satisfies the equation

(3.8) wy − wxx = ((v1 + v2)w)x,

and the independence of y of the integral in the statement follows by integrating the
equation in x. The last statement follows by Lemma 3.4 part (a), since∫

w dx =

∫
(Gα2 −Gα1) dx.

Lemma 3.7. In the hypotheses of the previous Lemma, calling w := v2 − v1, assuming
I = 0, we have the estimate

∥eε0y coshαw∥L∞L2∩L2H1 ≲ ∥ cosha0 w(·, 0)∥L2 ,

where α = α1 = α2 is shared by both solutions thanks to the previous Lemma, a0 ∈ R,
and where ε0 > 0 is a universal constant.

Proof. We perform the same approximation argument as in the previous Lemma. We
follow the same strategy as in the proof of Proposition 3.5, and we define again Vα :=
η+α ṽ

+ + η−α ṽ
−. Integrating the equation (3.8) against cosh2αw and multiplying by e2εy,

calling z := eεyw, we get

1

2

d

dy

[∫
R
(coshα z)

2dx

]
= −

∫
R
(coshα z)

2
xdx− (1− ε)

∫
R
(coshα z)

2dx
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+ 2

∫
R
sech2α · (coshα z)2dx

−
∫
R
(2Vα + ω1 + ω2)(coshα z)(coshα z)x dx

−
∫
R
(2Vα + ω1 + ω2) tanhα · (coshα z)2dx

− αy

∫
R
tanhα · (coshα z)2dx.

The third term on the right-hand side is controlled by the first two terms thanks to the
orthogonality condition

∫
w dx = 0 as we already discussed in the proof of Proposition

3.5: the only difference is the factor (1− ε) in front of the second term, which does not
change the argument assuming ε is smaller than a suitable ε0 > 0. For the remaining
terms, we proceed as in Proposition 3.5, so we give short details. It is enough to estimate
ṽ±, ωj in L3(R2), tanhα αy in L

2
yL

∞
x , and αy in L

2
y, since we will have bounds for coshα z

in L2
x,y ∩L6

x,y ∩L4
yL

2
x and (coshα z)x in L2

x,y. The former quantities are controlled by the

Ḣ− 1
2
,0(R2)-norm of u, thanks to the estimates we have on v± in Corollary 3.2, and to

the estimate for ωj of Proposition 3.5. After integrating in y, and substituting z with
eεyw, we thus obtain the desired inequality.

For small u ∈ Ḣ− 1
2
,0(R2) and v being a solution of (M), we consider the following

properties:

v −G0 ∈ C(Ry, L2(Rx; cosh2(x)dx)),(H1)

lim
y→−∞

inf
γ∈R

∥ coshγ · (v(·, y)−Gγ(·, y))∥L2(R) = 0,(H2)

lim
y→+∞

inf
γ∈R

∥ coshγ · (v(·, y)−Gγ(·, y))∥L2(R) = 0,(H3)

v = w + tanhσ, ∃w ∈ L3(R2), σy ∈ L2(Ry).(H4)

with G as in Definition 3.3.

Corollary 3.8. Let u∈ Ḣ− 1
2
,0(R2) small. Let v be a solution of (M) on R2 satisfying

(H1), (H2). Consider the unique decomposition v = ω + Gα with
∫
ω dx = 0 ∀y ∈ R

given by Lemma 3.4. Then, v satisfies (H3), (H4), and it holds

∥ coshαj ω∥L∞L2∩L2H1 + ∥αy∥L2 ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
.

Moreover, if v1, v2 are two such solutions, with decompositions vj = ωj + Gαj , then
either v1 ≡ v2 or α1(y)− α2(y) ̸= 0 ∀y ∈ R.

Proof. By Lemma 3.4 part (d), the assumption (H2) is equivalent to

∥(coshαj ωj)|y=y0∥L2(R) → 0 as y0 → −∞.

The a priori estimate follows by Proposition 3.5 after a translation in the y variable,
truncating first the solutions on Rx × (y0,∞), and then sending the parameter y0 to
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−∞. Using Lemma 3.4 part (d), the assumption (H3) can be verified from the same a
priori estimate by sending y0 to +∞ along a suitable sequence, since coshα ω ∈ L∞

y L
2
x ∩

L2
yL

2
x. Assumption (H4) follows from the a priori estimate of this Corollary on ω, α, the

definition of G, and the fact that ṽ± ∈ L3(R2).

For the last statement, assume α1 −α2 = 0 for some y. Then by Lemma 3.6 it holds
α1 ≡ α2 =: α ≡ 0, I = 0, and by Lemma 3.7 it holds

∥eε0(y−y0) coshαw∥L∞
(y0,∞)

L2∩L2
(y0,∞)

H1 ≲ ∥ coshα(y0)w(·, y0)∥L2 .

Sending y0 to −∞ shows that w = 0, and the claim follows.

Proposition 3.9 (Uniqueness of solutions of (M)). Let u ∈ Ḣ− 1
2
,0(R2) small enough.

Let v be a solution to (M) satisfying (H4). Then, v satisfies (H1), (H2), (H3). In
particular, by Corollary 3.8, v is uniquely determined by u and by the value of α at any
fixed y, where v = ω +Gα is the decomposition as in Lemma 3.4.

Lemma 3.22 will later tell us that v = V(−1,1)(u, c) (see Proposition 3.19) for a suitable
c ∈ R that is uniquely determined by u and α(0).

Proof. Consider v± ∈ L3(R2)± 1 as in Definition 3.3, and ṽ± := v±∓ 1. For w as in the
statement of the Proposition, after some rewriting, it holds

wy − wxx − 2wx = −4(η−σ w)x + (w2)x − ux + σy · sech2σ .

The function z := w − ṽ+ solves

zy − zxx − 2zx = ((w + ṽ+)z)x − 4(η−σ w)x + σy · sech2σ .

The function ω(x, y) := ex−σ(y)z(x, y) satisfies

ωy − ωxx + ω = (∂x − 1)[(w + ṽ+)ω − 2 sechσ w] + σye
x−σ sech2σ −σy ω.

The operator
≻
Γ := (∂y − ∂2x + 1)−1 satisfies all the estimates satisfied by Γ stated in

Proposition A.3 with similar proofs, with in addition

∥
≻
Γf∥LpLq ≲ ∥f∥LpLq

due to the fact that the kernel
≻
Γ(x, y) = e−yΓ(x, y) belongs to L1(R2). We thus have

the estimate

∥ω∥C0L2∩L6
x,y

≲ ∥(w + ṽ+)ω∥L2
x,y

+ ∥ sechσ w∥L3
yL

2
x

+ ∥σyex−σ sech2σ ∥L2
x,y

+ ∥σy ω∥L2
x,y

≲ (∥ṽ+∥L3
x,y

+ ∥w∥L3
x,y

+ ∥σy∥L2
y
)∥ω∥C0L2∩L6

x,y

+ ∥w∥L3
x,y

+ ∥σy∥L2
y
,
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The estimate holds on any half plane Rx × (−∞, y0], y0 ∈ Ry, since the kernel
≻
Γ is

identically zero for negative y. In particular, choosing y0 to be negative enough so that
all the quantities multiplying ∥ω∥ on the right hand side are small enough, it holds

∥ω∥C0L2∩L6
x,y

≲ ∥w∥L3
x,y+L

6
x,y

+ ∥σy∥L2
y

on that given half plane, provided that the left hand side is finite. By a density argument
and the uniqueness of solutions for the initial value problem associated to the heat
equation, the finiteness condition of the left hand side can be removed assuming z ∈
L3(R2), so for our original z we have

∥ex−σ(y)z∥C0L2∩L6
x,y

≲ ∥w∥L3
x,y+L

6
x,y

+ ∥σy∥L2
y
.

Thus, ex−σ(y)(w− ṽ+) ∈ C0((−∞, y0], L
2(Rx))∩L6(R× (−∞, y0)). An analogous energy

estimate

∥ω∥L∞
I L2∩L6

IL
6 ≲ ∥ω|y=y0∥L2(R) + (∥ṽ+∥L3

IL
3
x
+ ∥w∥L3

IL
3
x
+ ∥σy∥L2

I
)∥ω∥L∞

I L2∩L6
IL

6
x

+ ∥w∥L3
IL

3
x
+ ∥σy∥L2

I

holds on finite strips of the form R × I, I = (y0, y1). The above argument applied
iteratively on finitely many small intervals I shows that

ex−σ(y)(w − ṽ+) ∈ C(Ry, L2(Rx)) ∩ L6(R2),

with the L2-norm going to zero as y → −∞. The same holds for e−(x−σ(y))(w − ṽ+),
with an identical proof. Now note that it holds

v −Gσ = w − η+σ ṽ
+ − η−σ ṽ

−

= η+σ · (w − ṽ+) + η−σ · (w − ṽ−),

and coshσ η
±
σ ≤ e±(x−σ(y)), so by the two estimates we proved,

coshσ ·(v −Gσ) ∈ C(Ry, L2(Rx)) ∩ L6(R2),

with vanishing L2-norm as y → −∞. This directly implies (H1), and by Lemma 3.4 part
(d), condition (H2) follows as well. The rest of the statement follows from Corollary
3.8.

Following what we do in Appendix B, we could now run a compactness argument to
obtain the existence of eternal solutions with the above bounds (this will work due to
the a priori estimates we have on v). It turns out that we can avoid this, since we are
able to find explicit formulas for the solutions in terms of v±.
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3.2 Exact formula for solutions of (M)

The main idea to construct solutions of (M) is simple. Burgers’ equation is formally
equivalent to a heat equation with potential, through the Cole–Hopf transformation. So
there is a way of taking superpositions of different solutions by the linearity of the heat
equation. In particular, we are allowed to interpolate between v+ and v−, which can be
seen as the limit of the solution family as α→ ±∞: note, in fact, that v+ and v− satisfy
equation (M) with boundary conditions ±1 as (x, y) → ∞. We make things slightly
more general by considering an arbitrary combination of solutions of (M) from Corollary
3.2: this is the content of Proposition 3.19, which we prove at the end of this subsection.
We will show in the next subsection how the solutions constructed in this way are the
ones we are looking for (in particular, they satisfy the assumptions of Proposition 3.9).

One conceptual difficulty is the fact that the derivative in the Cole–Hopf transforma-
tion is not a bijective operation, and its inverse introduces undetermined y-dependent
constants. However, there is a natural way of defining the antiderivative of a solution of
(M) up to a constant that does not depend on x nor on y. To see this, we consider the
natural primitive equation of (M),

(3.9) Vy − Vxx = V 2
x − u.

Lemma 3.10. Let v ∈ L2
loc(R2) be a distributional solution to equation (M). Then,

there exists a solution V to equation (3.9) such that ∂xV = v. Moreover, V is unique up
to an additive constant.

Proof. Assume v ∈ L2
loc(R2) is a solution to equation (M). By Lemma D.2, there exists

Ṽ ∈ D ′(R2) that satisfies ∂xṼ = v. It follows that

Ṽy − Ṽxx = Ṽ 2
x − u− g,

where g ∈ D(Ry) (that is, g ∈ D(R2) such that ∂xg = 0). Consider G ∈ D(Ry) a

primitive of g which is still independent on y and define V := Ṽ + G. Then, it is
immediate to see that V satisfies (3.9) and ∂xV = v. Moreover, assume T has the same
properties of V . Then, calling W := T − V ,

Wx = v − v = 0,

Wy = Ty − Vy = (vx + v2 − u)− (vx + v2 − u) = 0,

so that W is constant.

Estimates in parabolic BMO spaces

By scaling considerations, and from the fact that we have uniqueness only up to an
additive constant, we can guess that the right space for V is some space of BMO type, but
we need to take into account the scaling symmetry of equation (M), which is parabolic
and incompatible with the usual, Euclidean BMO(R2). We give the definition of BMO
spaces with parabolic metric, after a brief, self-contained overview of the general theory
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of metric measure spaces of homogeneous type. We refer in particular to Coifman–Weiss
[9], and to the other classical references [48, 49].

Definition 3.11 (Spaces of homogeneous type and BMO, [9]). Let (X, d) be a metric6

space, with open balls denoted by Br(x), r ≥ 0, x ∈ X, and µ be a Borel measure on
X such that µ(Br(x)) > 0 for any r > 0, x ∈ X. The triple (X, d, µ) is a space of
homogeneous type if the measure µ is doubling, i.e., there exists A > 0 such that

µ(Br(x)) ≤ Aµ(Br/2(x)), ∀ r > 0, x ∈ X.

We define BMO0(X, d, µ), or simply BMO0(X), as the space of all (classes of a.e. equal)
measurable functions such that the seminorm

∥f∥BMO := sup
B

−
∫
B
|f − fB|dµ

is finite, where the supremum is taken over all balls B with respect to the distance d, and
where fB := −

∫
B fdµ := 1

µ(B)
∫
B fdµ. We then define7 BMO(X) := BMO0(X)/R (note

that ∥ · ∥BMO is well-defined on BMO(X)).

The above is simply the usual definition of the space BMO in the context of metric
measure spaces of homogeneous type (see the discussion in [9, §2]). From the classical
theory, we know that the space (BMO(X), ∥·∥BMO) is a Banach space, and it is immediate
to verify that BMO0(X) is a Banach space as well when equipped with the norm

∥f∥BMO0
ϕ
:= ∥f∥BMO +

∣∣∣∣∫
X
fϕ dµ

∣∣∣∣ ,
for some ϕ ∈ L∞

c (X) such that
∫
X ϕdµ ̸= 0 (all such norms are equivalent), and embeds

continuously into8 L1
loc(X). From here on, for a function f ∈ BMO0(X), we will denote

with the same name the class of functions [f ]R = {f + c | c ∈ R} ∈ BMO(X) when there
is no ambiguity.

One property of BMO functions in spaces of homogeneous type is the John–Nirenberg
Lemma. The proof is analogous to that of the Euclidean case, which was originally proved
in [17] (see also [9, footnote 22]).

6One can more generally consider quasi-metrics on X, where the triangle inequality only holds up to
an absolute multiplicative constant. We will always assume that the metric is finite.

7When µ(X) < ∞, it is common to define BMO(X) simply as BMO0(X), and to set

∥f∥BMO = sup
B

−
∫
B
|f − fB|dµ+

∣∣∣∣−∫
X

f dµ

∣∣∣∣ .
We do not adopt this distinction here for the sake of uniformity. This has minor importance, since the
applications of this theory in this article will only concern the case µ(X) = ∞.

8From here we assume that closed balls in X are compact, so that Lp
loc(X) is a Fréchet space with

all the usual properties. This will hold for the parabolic BMO spaces. It holds in general when X is
complete, see [9, §4, second paragraph].
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Lemma 3.12 (John–Nirenberg inequality). Let (X, d, µ) be a space of homogeneous
type. There exist constants C, γ > 0, depending on the doubling constant A, such that
for every ball B it holds

−
∫
B
e

γ
∥f∥BMO

|f(x)−fB|dµ ≤ C.

Corollary 3.13. It holds BMO0(X) ↪→ Lploc(X) for all p <∞. Moreover, ef ∈ Lploc(X)
whenever p ≤ γ/∥f∥BMO.

We state the classical logarithmic-growth bound for BMO functions, the proof of
which can be found in [13, §3.1] for the Euclidean case, as a guided exercise.

Lemma 3.14. Let (X, d, µ) be a space of homogeneous type. The following inequality
holds for functions in BMO(X):

|fBr(x1) − fBr(x2)| ≲ log

(
2 +

d(x1, x2)

r

)
∥f∥BMO.

We now apply the general theory above to a very special case, considering parabolic
BMO spaces as follows.

Definition 3.15 (The space BMOp,λ(R2)). Define the parabolic norm9 on R2

|(x, y)|p,λ := max{|x+ 2λy|, |y|
1
2 }

and the corresponding parabolic metric as

dp,λ(p, q) := |p− q|p,λ.

We denote by BMOp,λ(R2) := BMO(R2, dp,λ, µ) the BMO space with respect to the space
of homogeneous type (R2, dp,λ, µ), where µ is the Lebesgue measure. We will denote by
BMO0

p,λ(R2) the Banach space BMO0(R2, dp,λ, µ) ↪→ S ′(R2), and call BMOp(R2) :=

BMOp,0(R2).

The space (R2, dp,λ, µ) is indeed a space of homogeneous type (dp,λ is a metric) with
doubling constant A = 8, since µ(Br(x, y)) = r3. The distance dp,λ is the ‘tilted’ version
of the natural parabolic metric dp = dp,0, that is, dp,λ is the composition between dp,0
and the linear transformation (x, y) 7→ (x+ 2λy, y).

We use the notation Γ(c) := (∂y − ∂2x + c∂x)
−1 as in Appendix A.

Lemma 3.16. The operator Γ(−2λ) is bounded from L3/2(R2)+Ḣ− 1
2
,0(R2) to BMOp,λ(R2),

with uniform constants in λ.

9We will call it norm, although it is homogeneous only with respect to a parabolic rescaling of
coordinates.
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By the change of coordinates (x, y) 7→ (x − cy, y), we can assume λ = 0. The
estimate follows from the estimates of Lemma 5.8 by theH1-BMO duality. Alternatively,
a direct proof involves linear estimates for the operators (∂y − ∂2x)

−1, |∂x|
1
2 (∂y − ∂2x)

−1,
and is analogous to the boundedness of the Riesz potential operator (−∆)−

s
2 , s = n

p ,
from Lp(Rn) to BMO(Rn) in the Euclidean case, often referred to as ‘endpoint Sobolev
embedding’, see [48, V, §6.17].

Corollary 3.17. Let λ ∈ R. Let v ∈ L3(R2) + λ be the unique solution to (M) given
by Corollary 3.2, and let V the solution of (3.9), Vx = v, defined up to a constant by
Lemma 3.10. It holds the bound

(3.10) ∥Ṽ ∥BMOp,λ(R2) ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
,

where Ṽ := V − (λx + λ2y). Moreover, if u ∈ Ḣ− 1
2
,0(R2) is small enough, then ψ :=

eV , 1/ψ ∈ L6
loc(R2), ∂xψ = vψ ∈ L2

loc(R2), and it holds

(3.11) (∂y − ∂xx + u)ψ = 0.

Estimate (3.10) is an extension of Corollary 3.2 part (a). Note that the product uψ is

well defined in L1(Ry, B
− 1

2
1,2 loc(Rx)) ⊂ B

−1/2,0
1,2 loc (R

2) with the above regularity hypotheses
on ψ.

Proof. Let ṽ := v − λ as in Corollary 3.2. From equation (3.9), the function Ṽ :=
V − (λx+ λ2y) satisfies

Ṽy − Ṽxx − 2λṼx = (Ṽx)
2 − u,

Ṽx = ṽ,

so the bound (3.10) follows from the linear estimates of the previous Lemma and from the
bound ∥ṽ∥L3(R2) ≲ ∥u∥

Ḣ− 1
2 ,0(R2)

of Corollary 3.2. Since V − (λx+ λ2y) ∈ BMOp,λ(R2),

by Corollary 3.13 we have ψ = eV , 1/ψ = e−V ∈ L6
loc(R2) if ∥u∥

Ḣ− 1
2 ,0(R2)

is small enough,

and it is easy to verify that ∂xψ = vψ ∈ L2
loc(R2) thanks to the L3-bound on ṽ.

The next Lemma shows that the difference of two solutions of (3.9) is more regular
than BMO, in analogy with Corollary 3.2, part (b). To state it, we define the semi-
normed space

C0,α
unif(R

2) :=

{
f ∈ C(R2) | |f |

C0,α
unif

:= sup
u,v∈R2, |u−v|≤1

|f(u)− f(v)|
|u− v|α

<∞

}
,

where the function | · | denotes the Euclidean norm on R2. Clearly, the space C
0,α
unif(R

2)⧸R
is a Banach space when equipped with | · |

C0,α
unif

.
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Lemma 3.18. Let u ∈ Ḣ− 1
2
,0(R2) small, and λ1 < λ2. Consider the solutions v(j) ∈

L3(R2) + λj of (M) given by Corollary 3.2. Let V (j) as in Corollary 3.17, and Ṽ (j) =
V (j) − (λjx+ λ2jy). It holds

|Ṽ (2) − Ṽ (1)|
C

0,1/4
unif (R2)

≲λ1,λ2 ∥u∥
Ḣ− 1

2 ,0(R2)

and the map u 7→ Ṽ (2) − Ṽ (1) is analytic with values in C
0,α
unif(R

2)⧸R.

Proof. Set ṽ(j) = v(j)−λj . We consider the special case λ1 = 1 and λ2 = −1 without loss
of generality as in the proof of part (b) of Corollary 3.2, and we use the same notation ṽ±

of that proof. The analyticity of the map follows from the Banach fixed point theorem
as in Lemma 3.1, so we focus on the bound. The functions Ṽ ±, given up to additive
constants by Lemma 3.10, satisfy{

Ṽ ±
y − Ṽ ±

xx = ±2Ṽ ±
x + (Ṽ ±

x )2 − u,

∂xṼ
± = ṽ±.

By subtracting the two equations, calling W = Ṽ + − Ṽ −, and noting that ṽ± =
Γ∂xΓ

∓((ṽ±)2 − u), one has

W = Γ((ṽ+ + ṽ−)(Wx + 2))

= Γ((ṽ+ + ṽ−)Wx) + 2S−((ṽ+)2 − u) + 2S+((ṽ−)2 − u),

where

S± := Γ∂xΓ
± = −1

2
[Γ− Γ±],

where the last identity is checked via the Fourier transform. The heat operator Γ extends
to a map

Γ: L2(R2) → C0,1/2(R2, dp)⧸R,

which is well-defined and bounded by Lemma A.5, where R ⊂ C0,1/2(R2, dp) is the
subspace of constant functions. By Lemma 3.2, Wx = ṽ+ − ṽ− ∈ L6(R2), so (ṽ+ +
ṽ−)Wx ∈ L2(R2). In particular,

|Γ((ṽ+ + ṽ−)Wx)|Ċ0,1/2(R2,dp)
≲ ∥u∥

Ḣ− 1
2 ,0(R2)

.

For the remaining two terms, we use the fact that S± can be written in two different
ways, as above. Combining Proposition A.3 and Lemma A.5, from the two above ways
of writing S±, we get respectively that

S± : L6/5(R2) ∩ ∂xL2(R2) → C0,1/2(R2, dp) ∩ C0,1/2(R2, dp,∓1),

S± : L2(R2) → C0,1/2(R2, dp) + C0,1/2(R2, dp,∓1).
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By interpolation,

S± : L3/2(R2) ∩ Ḣ− 1
2
,0(R2) → C0,1/2(R2, dp) + C0,1/2(R2, dp,∓1).

Putting together the above bounds, we have obtained that

W ∈ C0,1/2(R2, dp) + C0,1/2(R2, dp,1) + C0,1/2(R2, dp,−1),

with bound from above by ∥u∥
Ḣ− 1

2 ,0(R2)
. The claim follows noting that for |z| ≤ 1, it

holds
|z|p ∼ |z|p,1 ∼ |z|p,−1 ≤ |z|1/2.

As anticipated at the beginning of the subsection, we now construct new solutions of
(M) by combining those coming from Corollary 3.2, using the Cole–Hopf transformation.
In the following, ρ ∈ C∞

c (R2) is again a standard mollifier. For a distribution V ∈
D ′(R2)/R defined up to an additive constant, by an abuse of notation, we will refer to
the unique distribution V ∈ D ′(R2) in its equivalence class satisfying the normalization
condition

(3.12)

∫
R2

V (x, y)ρ(x, y) dx dy = 0

as a ‘normalization’ of V .

Proposition 3.19. Let u ∈ Ḣ− 1
2
,0(R2) small enough, M ≥ 1, and λ⃗ ∈ RM such that

λ1 < · · · < λM . Let v(j) ∈ L3(R2) + λj, 1 ≤ j ≤ M be the unique solutions to equation
(M) with λ = λj, given by Corollary 3.2. Let V (j) the corresponding solutions to equation
(3.9) as in Corollary 3.17, normalized as in (3.12). Given c⃗ := (c1, . . . , cM ) ∈ RM , the
functions

ψ :=
1∑M

j=1 e
cj

M∑
j=1

eV
(j)+cj , V := logψ, v := ∂xV

are all well-defined distributions, with ψ, 1/ψ ∈ L6
loc(R2), ∂xψ ∈ L2

loc(R2), V ∈ Lploc(R
2) ∀p <

∞, v ∈ L3
unif(R2). The function ψ solves equation (3.11), and v solves (M) distribution-

ally. The map

Vλ⃗ : (u, c⃗) 7→ v

is uniformly continuous10 from B
Ḣ− 1

2 ,0(R2)
ε0 (0)× RM to L3

loc(R2).

Proof. By Corollary 3.17, ψ ∈ L6
loc(R2) and ∂xψ = 1

∥ec⃗∥ℓ1

∑M
j=1 v

(j)eV
(j)+cj ∈ L2

loc(R2).

The function V = logψ is finite a.e., and it holds

min
j

{V (j)} ≤ V ≤ max
j

{V (j)}.

10Every topological vector space has a natural uniform structure by the translation invariance of the
topology. The statement is equivalent to uniform continuity with values in L3(K) when restricting to
any compact K ⊂ R2.
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Since the functions V (j) are in BMO0
p,λj

(R2), they lie in Lploc(R
2) for any p < ∞ by

Lemma 3.13. Thus, V is also in Lploc(R
2), p <∞, so one can set v = ∂xV . Moreover, it

holds

v =

M∑
j=1

ζ(j)v(j), ζ(j) :=
eV

(j)+cj∑M
k=1 e

V (k)+ck
,

in particular v ∈ L3
unif(R2), since v(j) ∈ L3(R2) + λj for all j, and 0 ≤ ζ(j) ≤ 1 a.e..

Consider the map (u, c⃗) 7→ ζ(j). Rewrite ζ(j) as

ζ(j) :=
1∑M

k=1 e
(V (k)−V (j))+(ck−cj)

.

By computing the differential explicitly, using the normalization (3.12) of the functions

V (j), as well as the analyticity of the map u 7→ V (k) − V (j) with values in C
0,1/4
unif coming

from Lemma 3.18, and the fact that |ζ(k)| ≤ 1, it follows that the map (u, c⃗) 7→ ζ(j)

is Lipschitz continuous from B
Ḣ− 1

2 ,0(R2)
ε0 (0) × RM to L∞(K) for any compact K ⊂ R2.

That is, the same map is uniformly continuous with values in L∞
loc(R2). Combining this

with the analyticity of the maps u 7→ v(j) by Corollary 3.2 yields the uniform continuity

of Vλ⃗.

Finally, by Corollary 3.17 and by linearity, it follows that ψ solves equation (3.11),
and by the Cole–Hopf transformation v = ∂x log(ψ), v solves equation (M) (this last
step is true by direct computation when u is smooth, and the statement extends to all
small enough u ∈ Ḣ− 1

2
,0(R2) by continuity).

3.3 Proofs of Theorem A and Corollary B

Now we are ready to give an explicit characterization of the solutions and of the map V
in Theorem A.

Definition 3.20. Given a small u ∈ Ḣ− 1
2
,0(R2), let v± ∈ L3(R2) ± 1 the solutions of

(M) given by Corollary 3.2 with λ = ±1. Define V ± as the solutions of (3.9) given by
Lemma 3.10 corresponding to v±, normalized by the condition (3.12). Finally, for c ∈ R,
define

V c := log

(
eV

+−c + eV
−+c

ec + e−c

)
, vc := ∂xV

c =
v+eV

+−c + v−eV
−+c

eV +−c + eV −+c
.

In other words, vc = Vλ⃗(u, c⃗), with V as in Proposition 3.19, λ⃗ = (−1, 1), and c⃗ =
(c,−c).

Proposition 3.21. The functions {vc}c∈R in Definition 3.20 solve equation (M) and
satisfy the four assumptions (H1)–(H4) stated before Corollary 3.8. In particular, vc

satisfies the assumptions of both Corollary 3.8 and Proposition 3.9.
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Proof. The fact that vc satisfies equation (M) distributionally is a consequence of
Proposition 3.19. It is enough to show (H1), (H2) by Corollary 3.8. Consider Ṽ ± :=
V ± − (±x+ y), and set

ν :=
1

2
(V + − V − − 2c), µ := x− ν.

Let
tanh◦ ν(x, y) := tanh(ν(x, y)), η±◦ ν(x, y) := η±(ν(x, y)).

Then, one can write vc as

vc := G0 + (tanh◦ ν − tanh) + (η+◦ ν − η+) · (ṽ+ − ṽ−).

It is clear that ∂xµ = −1
2(ṽ

+ − ṽ−), which lies in C0(Ry, L2(Rx)) by Corollary 3.2. In
particular, it holds

(3.13) |µ(x1, y)− µ(x2, y)| ≤ Cy|x1 − x2|
1
2 ,

where Cy = 1
2∥ṽ

+(·, y) − ṽ−(·, y)∥L2(Rx) ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
∀y. This immediately implies

that

(tanh◦ ν− tanh)(·, y) ,
(
(η+◦ν−η+) · (ṽ+− ṽ−)

)
(·, y) ∈ L2(Rx; cosh2(x)dx) ∀y ∈ R.

Moreover, by Lemma 3.18, µ is Hölder-continuous on the whole R2, so by dominated
convergence it follows that vc −G0 ∈ C(Ry, L2(Rx; cosh2(x)dx)). Finally, since Cy → 0
as y → ±∞, assumption (H2) is satisfied by choosing γ = γ(y) such that γ = µ(γ, y),
which always exists due to (3.13), and the same condition holds for y → +∞.

Recall that, by Lemma 3.4 part (d), (H2) and (H3) are equivalent to

lim
y→±∞

∥ coshα(y) ω(·, y)∥L2(Rx) = 0.

In principle, we have many ways of parametrizing the family of solutions {vc}c∈R: by
the parameter c, by the phase shift α0 := α(0) at ordinate y = 0, and by the quantity∫
vα− v0dx, where the first and the third are in a way more canonical but only up to an

additive constant. Here we also introduce the parameter γ0, which we used to formulate
Theorem A, and can be defined with very few assumptions on a general solution of (M).

Lemma 3.22 (Change of parameter). Let u ∈ Ḣ− 1
2
,0(R2) small, and consider {vc}c∈R

as in Definition 3.20. There exist invertible, smooth changes of variables on R, c 7→ α0,
c 7→ γ0, determined uniquely by the conditions

(3.14)

∫
R
vc(x, 0)−Gα0(x, 0)dx = 0,

(3.15)

∫
R2

ρ(x− γ0, y)v
c(x, y)dxdy = 0.
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In particular, the map c 7→ vc is injective. Moreover, it holds

|γ0 − α0| ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
,(3.16)

|γ0 − c|+ |α0 − c| ≲ (1 + |c|)∥u∥
Ḣ− 1

2 ,0(R2)
.(3.17)

Finally, the map (u, c) 7→ (u, γ0) is bi-Lipschitz on bounded sets. In particular, the map
V defined as

V (u, γ0) := V(−1,1)(u, (c,−c)) = vc

coincides with V(−1,1), up to a homeomorphism and a projection from R2 to {(c1, c2) | c1+
c2 = 0}.

Note that for small u, estimate (3.17) implies

|α0 − c| ≲ (1 + |α0|)∥u∥
Ḣ− 1

2 ,0(R2)
, |γ0 − c| ≲ (1 + |γ0|)∥u∥

Ḣ− 1
2 ,0(R2)

.

The proof is moved to Appendix D.2.

Remark 3.23. Similarly as above, we can define γ(y) for all y ∈ R as the number deter-
mined uniquely by ∫

R2

ρ(x′ − γ(y), y′ − y)vc(x′, y′)dx′dy′ = 0.

By translation invariance in y, (3.16) implies

∥γ − α∥L∞(Ry) ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
.

Corollary 3.24. Let vc as in Definition 3.20. Consider the associated phase shift α
given by Lemma 3.4 thanks to Proposition 3.21. Then,

|α(y2)− α(y1)| ≲ log(2 + |y2 − y1|)∥u∥
Ḣ− 1

2 ,0(R2)
.

Proof. By Remark 3.23, we can replace α with γ in the above statement. We recall that
vc can be written as

vc = tanh◦ ν + (η+◦ ν)ṽ+ + (η−◦ ν)ṽ−,

where ν(x, y) := 1
2(V

+(x, y)− V −(x, y)− 2c). It is then a straightforward consequence
of the bound from Lemma 3.18 that, in order to show the logarithmic bound on γ, it is
enough to prove the same bound for any function σ = σ(y) such that ν(σ(y), y) = 0.

Now, consider µ(x, y) := x − ν(x, y). By Corollary 3.17 and Lemma 3.18, µ ∈
C0,α
unif(R

2) ∩ (BMOp,1(R2) + BMOp,−1(R2)). From this and Lemma 3.14, it holds that µ
grows at most logarithmically in R2, that is,

|µ(x1, y1)− µ(x2, y2)| ≲ log(2 + |(x1, y1)− (x2, y2)|)∥u∥
Ḣ− 1

2 ,0(R2)
.

The logarithmic bound on y 7→ σ(y) is a direct consequence of the above bound.
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Proof of Theorem A. The proof follows combining previous results. We first claim that
the data to solution map V is the same we defined in Lemma 3.22. In particular, we set
v = V (u, γ0) = V(−1,1)(u, (c,−c)), with c that depends univocally on u and on γ0 as in
the Lemma. This v indeed satisfies the localization condition∫

R2

ρ(x− γ0, y)v(x, y) dx dy = 0

by the definition of the map c 7→ γ0 in Lemma 3.22, and satisfies (H4) by Proposition
3.21, so the existence statement is proved. The uniqueness is given by Proposition 3.9 and
the bijectivity of the change of variables α0 7→ γ0 in Lemma 3.22. The decomposition is
given by Lemma 3.4 part (b), which can be applied since v satisfies (H1) by Proposition
3.21. The same Proposition says that Corollary 3.8 applies to v, and this proves the
estimate on α, ω. The bounds on v± follow directly from Corollary 3.2. The additional
bound on α follows by Corollary 3.24. The continuity of the map and the explicit formula
both follow from Proposition 3.19 and the bi-Lipschitz change of variables (u, c) 7→ (u, γ0)
from Lemma 3.22.

Remark 3.25. From the decomposition in Theorem A, it follows in addition that if
u ∈ L2(R2), then

∥(v − tanhα)x∥L2(R2) ≲ ∥u∥
Ḣ− 1

2 ,0(R2)∩L2(R2)
.

In other words, the Bäcklund transform B defined in (1.5) satisfies

∥B(u, γ0)− φα∥L2(R2) ≲ ∥u∥
Ḣ− 1

2 ,0(R2)∩L2(R2)
.

In fact, it holds

(v − tanhα)x = (η+α ṽ
+
x + η−α ṽ

−
x ) +

1

2
sech2α · (ṽ+ − ṽ−) + ωx,

and we can estimate all the three terms on the right hand side by the second and third
estimate in (3.2) using Corollary 3.2, and by Theorem A respectively.

Proof of Corollary B. First of all, if u ∈ L2(R2) ∩ Ḣ− 1
2
,0(R2) is small enough in both

norms, the solution v from Theorem A coincides with the one given by Proposition B.3
and its proof, for some β0 ∈ R. This is immediate if u is compactly supported in R2

thanks to the well-posedness of the initial-value problem for Burgers’ equation, and it
extends to all u as above by approximation using the continuity of V (note that the
solution in Proposition B.3 is constructed as a weak limit of solutions whose data are
restrictions of the datum u on a half plane {y > yN}, with yN → −∞). In particular, v
satisfies the estimates of the Proposition.

We have to prove two estimates. The estimate |ū|L2
φ(R2) ≲ ∥u∥L2(R2) is an immediate

consequence of the estimate ∥βy∥L2(Ry) + ∥wx∥L2(R2) ≲ ∥u∥L2(R2) of Proposition B.3,
where v = w + tanhβ is the decomposition of v given by the Proposition, and of the
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identity ū = u− 2wx+φβ. We now prove the converse estimate. Note that ū = u− 2vx
satisfies the equation

vy + vxx = (v2)x − ūx.

Let σ ∈ C(Ry) such that ∥σy∥L2(R) < ∞ and ū − φσ ∈ L2(R2). Let z := v − tanhσ,
g := ū− φσ.

We claim that z ∈ C0(Rx, L2(Rx)). For this, note that the three following decompo-
sitions hold:

v = w + tanhβ = Gα + ω = z + tanhσ,

where w, β are the functions from the decomposition from Lemma B.1 and ω, α are
as in the decomposition of Lemma 3.4. We know that v = vc for some c ∈ R as in
Definition 3.20, and by Corollary 3.2, ∥ṽ±∥C0L2 ≲ ∥u∥L2(R2). Also, by Proposition 3.21,
coshα ω ∈ C0(Ry, L2(Rx)), so it follows v− tanhα ∈ C0(Ry, L2(Rx)). By the definition of
w in the decompositon of Lemma B.1, it follows immediately that w ∈ C0(Ry, L2(Rx)).
Finally, since both zx and wx belong to L2(R2), it has to hold β − σ ∈ H1(Ry), so
z = w + (tanhβ − tanhσ) ∈ C0(Ry, L2(Rx)) and the claim is proved.

Now, the functions z, σ satisfy

zy + zxx − 2(tanhσ z)x = (z2)x − gx − σy sech
2
σ .

By the usual energy estimates obtained multiplying the equation by z and integrating
in space, it holds for smooth enough functions

1

2

d

dy

[∫
R
z2dx

]
−
∫
R
z2xdx−

∫
R
sech2σ z

2dx =

∫
R
zxg dx− σy

∫
R
sech2σ z dx.

The last term can be controlled by
√
2∥σy∥L2(Ry)∥ sechσ z∥L2(R2) when integrated in time,

and the first term on the right-hand side is bounded by ∥zx∥L2(R2)∥g∥L2(R2). By an
approximation argument with smooth functions, using the fact that z ∈ C0(Ry, L2(Rx)),
the above yields the bound

∥z∥2L∞L2 + ∥zx∥2L2(R2) + ∥ sechσ z∥2L2(R2) ≲ ∥g∥2L2(R2) + ∥σy∥2L2(Ry)
.

Since u = ū+ 2vx = g + 2zx, we obtain

∥u∥L2(R2) ≲ ∥ū− φσ∥L2(R2) + ∥σy∥L2(Ry),

and the bound is proved by taking the infimum over all σ.

4 The time-dependent Bäcklund transform

We now go back to space-time equations. This time we will consider a time-dependent
u satisfying (KP-II), and instead of studying equation (M), we will study the whole
system (M–mKP-II), as well as its relations with (mKP-II) and the Lax system (2.1′).
The goal of this section is to prove Theorem C. To do this, we give definition and prop-
erties of the elementary solutions of system (M–mKP-II) and prove a general nonlinear
superposition principle in Proposition 4.17 that allows to combine such solutions.
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4.1 The well-posedness theory

Well-posedness around the zero solution

We have a satisfactory well-posedness theory of the (KP-II) equation on R2 in high
regularity spaces (see [14] and references therein). The following Proposition can be
seen as a special case of [43, Theorem 1.2].

Definition 4.1 ([43]). We define the spaces Xb,b1,s as the Banach spaces with norm

∥u∥2
Xb,b1,s

=

∫
R2
ξ,η×Rτ

〈
⟨σ(τ, ξ, η)⟩

⟨ξ⟩3

〉2b1

(1 + ξ2 + η2)s⟨σ(τ, ξ, η)⟩2b|û(τ, ξ, η)|2 dτ dξ dη,

where σ(τ, ξ, η) = τ − 4π2ξ3 + 3η2/ξ. For any T > 0, the norm in the localized version

Xb,b1,s
T is given by

∥u∥
X

b,b1,s
T

= inf {∥w∥Xb,b1,s | w(t) = u(t) on (0, T )} .

Note that Xb,b1,s
T ↪→ C([0, T ], Hs(R2)) when b > 1

2 .

Proposition 4.2. There exists an ε0 > 0 such that the following holds. Fix k ∈ N,
ε < ε0, 1/4 < b1 < 3/8. Let u0 ∈ Hk(R2). There exists a unique solution u ∈
C([0,∞), Hk(R2)) of (KP-II) such that u(0) = u0 and u|[0,T ] ∈ X

1/2+ε,b1,k
T for all T > 0.

The data-to-solution map is analytic.

The next Lemma addresses the time regularity of the solutions and can be proved
by directly looking at the Duhamel formulation of (KP-II).

Lemma 4.3. In the assumptions of Proposition 4.2, if in addition u0 ∈ ∂jxHk(R2) with
k − 3j ≥ 0, it holds u ∈ Cj([0,∞), Hk−3j(R2)).

Remark 4.4. Note that solutions of (KP-II) are not necessarily smooth in time, even for
u0 ∈ H∞(R2). This is true even for the linear flow, and can be checked by looking at the
space-time Fourier transform of the solution of the linear KP equation. In order to have
solutions that are smooth in space-time, we need u0 ∈ ∂∞x H

∞(R2) := ∩k≥0∂
k
xH

2k(R2).

The first well-posedness result in a scaling-critical space is due to Hadac–Herr–Koch
[15], who proved global well-posedness for small initial data in Ḣ− 1

2
,0(R2), as well as

local well-posedness for data in the inhomogeneous version of the space. We state here
a short version of the main theorem from the article, with the definition of the solution
space in Appendix C, Definition C.1.

Theorem 4.5 ([15, Theorem 1.1]). Let u0 ∈ Ḣ− 1
2
,0(R2) small enough. There exists a

unique solution

u ∈ Ż− 1
2 ((0,∞)) ↪→ Cb([0,∞), Ḣ− 1

2
,0(R2))

of (KP-II) on [0,∞). The data to solution map u0 7→ u is analytic from a small ball in

Ḣ− 1
2
,0(R2) centered at zero, to Ż− 1

2 ((0,∞)).
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Well-posedness around the line soliton

The well-posedness of (KP-II) around the line soliton was first studied and proved in [43,
Theorem 1.2] by Molinet–Saut–Tzvetkov for data inHs(R2), s ∈ N plus a non-modulated
line soliton. Since the phase shift of the line solitons produced by our Bäcklund transform
B is not necessarily zero or vanishing rapidly at infinity, we need to prove a slightly
modified version of Theorem 1.2 in [43].

Let u be a solution to the KP-II equation with moving frame of reference

ut − cux + uxxx − 6uux + 3∂−1
x uyy = 0.

We fix the scaling parameter of the line soliton, so we set c = 4. Using Notation 1.3, we
consider the ansatz

u = v + φα,

φα := φ(x− α(y)), where s ∈ N, u ∈ Hs(R2), αy ∈ Hs+1(Ry), and φ(x) := −2 sech2(x)
is the line soliton, which solves

−4φx + φxxx − 6φφx = 0.

Note that by moving a low-regularity remainder inside v, it is always possible to assume
αy ∈ H∞(Ry) with no harm to the following analysis. The function v satisfies

(4.1) vt − 4vx + vxxx − 6vvx − 6(φαv)x + 3∂−1
x vyy = (αy)

2φx,α − αyyφα.

In the following, the definition of Xb,b1,s is modified by setting σ(τ, ξ, η) = τ − 4ξ −
4π2ξ3 + 3η2/ξ to take into account the moving frame of reference. We first note that

Strichartz estimates show that the solution of the linearized equation is in X
1/2+ε,b1,s
T

when the forcing is in X
−1/2+ε,b1,s
T . With this in mind, following the proof in [43,

Theorem 1.2] and adapting it to (4.1), we see that:

1. The nonlinearity can be treated in the same way as in the cited paper. In particular,
for ε small enough and 1/4 < b1 < 3/8, it holds

∥6vvx∥X−1/2+ε,b1,s
T

≤ T ν∥6vvx∥X−1/2+2ε,b1,s
T

≲ T ν∥v∥2
X

1/2+ε,b1,s
T

,

for some ν > 0 (see [43, Proposition 4.3 and equation (50)]).

2. The term (φα)xv can be treated in the same way as in the paper (see [43, Lemma
4.2]) with a slight modification:

∥(φα)xv∥X0,0,s
T

≲ ∥∂xφα∥W s,∞(R2)∥v∥L∞
T Hs(R2)

≲ ∥φ∥W s+1,∞(R)(1 + ∥αy∥W s−1,∞(R))
s∥v∥

X
1/2+ε,0,s
T

,

where the estimate on ∥∂xφα∥W s,∞ can be checked directly for integer s. Note that

the space X0,0,s
T works well here because X0,0,s

T ↪→ X
−1/2+ε,b1,s
T if b1 < 1/2− ε.
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3. The terms (αy)
2φx,α and αyyφα are independent of time and lie inHs(R2) assuming

∥αy∥Hs+1(R) <∞, in particular they belong to X0,0,s
T as well.

The only term left to estimate is φαvx. In the original paper, the term φvx is controlled
thanks to a smoothing estimate for KP-II:

∥φvx∥X0,0,s
T

≲ (
s∑

k=1

∥∂kxφ∥L2
xL

∞
y
)(
∑
|β|≤s

∥∂x∂βx,yv∥L∞
x L2

y,t
)

≲ ∥φ∥Hs(R)∥v∥X1/2+ε,0,s
T

.

In our case, for an arbitrary α such that αy ∈ H∞(Ry), the norm ∥φα∥L2
xL

∞
y

is infi-
nite in general. We thus need a slight modification of local smoothing for the KP-II
equation that takes into account the modulation of φ to adapt the result of Molinet–
Saut–Tzvetkov to our case, where the soliton is modulated.

Lemma 4.6 (Local smoothing with modulated weight). Let c > 0, u0 ∈ L2(R2), and
αy ∈ L2(Ry). It holds the estimate

c
1
4 ∥ ⟨c

1
2 (x− α)⟩

−1
∂xe

tSu0∥L2
TL

2 + c
1
4 ∥ ⟨c

1
2 (x− α)⟩

−1
∂−1
x ∂ye

tSu0∥L2
TL

2 ≲ L∥u0∥L2 ,

where S = −∂3x + c∂x − 3∂2y∂
−1
x , and L = 1 + c3/4∥αy∥2L2.

The case α ≡ 0 yields the usual local smoothing estimate. The above is simply a
modification that allows the level sets of the weight to be unbounded in x. The estimate
for S = −∂3x−3∂2y∂

−1
x (with c = 1 in the weights) holds with a constant that grows with

the length of the time interval. The proof is moved to Appendix D.2.

Proposition 4.7 (Well-posedness of KP-II around a modulated line soliton). Fix s ∈
N, and let ε, b1 as in Proposition 4.2. Let αy ∈ Hs+1(Ry). For every v0 ∈ Hs(R2),
there exists a unique global solution v ∈ C([0,∞), Hs(R2)) of equation (4.1) such that

v|t=0 = v0 and u|[0,T ] ∈ X
1/2+ε,b1,s
T for all T > 0. The data-to-solution map is analytic.

Proof. By a standard argument for Bourgain type spaces, we can upgrade the modified
local smoothing in Lemma 4.6 to the estimate

∥ ⟨x⟩−1
α (1−∆x,y)

s/2∂xv∥L2
TL

2 ≲ ∥v∥X1/2+ε,0,s .

This immediately yields the estimate

∥φα∂xv∥X0,0,s
T

∼ ∥φα∂xv∥L2
TH

s(R2)

≲ ∥v∥X1/2+ε,0,s

≤ ∥v∥X1/2+ε,b1,s .

The rest of the proof is analogous to that of [43, Theorem 1.2], with the use of the
estimates summarized in this subsection and the above estimate. The globality of the
solution in Hs follows from the L2 a priori estimate

∥v(t)∥2L2(R2) ≲ exp(t∥φx∥L∞(R))(1 + ∥v0∥2L2),

and the L2-subcriticality of the equation, analogously as in [43].
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Remark 4.8. The assumption αy ∈ Hs+1(Ry) is technical, and is only needed to close

the fixed point argument in X
1/2+ε,b1,s
T . It is possible to relax the assumption to αy ∈

Hmax{0,s−1}(Ry) in the following way: first consider a standard regularization ᾱ of α and
note that the low-regularity remainder r := φα−φᾱ belongs to Hs(R2). Then, consider

v̄0 := v0 + r ∈ Hs(R2) and let v̄ ∈ X
1/2+ε,b1,s
T be the solution of (4.1) with α replaced

by ᾱ given by the Proposition, with initial datum v̄0. Then, v := v̄ − r is a solution of

(4.1) with initial datum v0. The price to pay, though, is that in general v ̸∈ X
1/2+ε,b1,s
T ,

although v + r does indeed belong to the function space.

Remark 4.9. Since the whole argument for the well-posedness of (4.1) only needs esti-
mates from above on the Hs+1 norm of αy, for every time T > 0 and s ∈ N it holds

∥v∥
X

1/2+ε,b1,s
T

≤ C(∥v0∥Hs , ∥αy∥Hs+1(Ry), T, s),

where C is non-decreasing in the first three arguments.

Finally, we mention that solutions which are initially in ∂xL
2(R2) stay in that space

for all times, and perturbations of the line soliton obey the same law.

Proposition 4.10. Let u0 ∈ L2(R2), u be the solution of (KP-II) with initial datum u0,
and v be the solution of (KP-II) with initial datum u0 + φ(x). If in addition u0 ∈ ∂xL

2,
then u, v − φ(x− 4t) ∈ C([0,∞), ∂xL

2(R2)), and it holds the estimate

∥u(t)∥∂xL2(R2) ≤ ∥u0∥∂xL2(R2) + C
√
t∥u0∥2L2(R2)

for some universal constant C.

The above Proposition is a refinement of [37, Lemma 3.1].

Proof. We consider u and look at the Duhamel formulation

u(t) = etSu0 − 3∂x

∫ t

0
e(t−s)Su2(s)ds,

where S = −∂3x − 3∂−1
x ∂2y . By time translation invariance and the conservation of the

L2-norm, we have ∥u∥
X

1/2+ε,b1,0

[t,t+1]

≲ ∥u0∥L2(R2) for any t ≥ 0, with ε, b1 as in Propositon

4.2. By standard arguments involving Bourgain-type spaces and the Strichartz estimates

for the group e−t(∂
3
x+3∂−1

x ∂2y) (see [29]), we have for every t > 0

∥u∥L4
[t,t+1]

L4 ≲ ∥u∥
X

1/2+ε,b1,0

[t,t+1]

≲ ∥u0∥L2(R2).

In particular,
∥u2∥L2

[0,t]
L2 ≲ (1 +

√
t)∥u0∥2L2(R2).

After using Hölder’s inequality in time, the above bound plugged into the Duhamel
formulation yields

∥u(t)∥∂xL2(R2) ≲ ∥u0∥∂xL2(R2) +
√
t(1 +

√
t)∥u0∥2L2(R2),

which can be upgraded to the bound stated in the Lemma using the scaling symmetry
(1.1). The statement for v is proved analogously (cf. [37, Lemma 3.1]).
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4.2 Elementary Lax-eigenfunctions and elementary solutions of mKP-
II

In this subsection we essentially replicate what we did in Subsection 3.2 to construct
explicit solutions of equation (M), adding a time dependence. This time we consider u to
be time-dependent and solving (KP-II), and the solutions of (M) that we are interested
in will satisfy system (M–mKP-II).

We motivate the definition of the elementary solutions as follows. The main difficulty
in defining a solution of (KP-II) via the Bäcklund transform is that the parameter γ0
has to be chosen in a suitable way for all times t > 0. Our strategy to solve this problem
relies on two facts: first, while tanh-like solutions of (M) as in Theorem A are unique
only up to 1 degree of freedom γ0, solutions of (M) that are constant at infinity are
well-defined with no further choice of parameters (see Lemma 3.1 and Corollary 3.2).
Secondly, Lemma 4.15 ensures that x-antiderivatives of these solutions are canonically
well-defined up to a constant that depends neither on space nor on time. As a result, it
follows that when using the Cole–Hopf transformation to combine the solutions of (M),
the parameters needed to interpolate those solutions are to be chosen once for all times.
This is what will fix the parameter γ0 = γ0(t) in the statement of Theorem C.

We start by showing that the function constructed in Lemma 3.1 is a solution of
(mKP-II) if the datum u is a time-dependent solution of (KP-II).

Proposition 4.11 (Nonlinear existence of solutions of mKP-II). Let u0 ∈ Ḣ− 1
2
,0(R2) be

small enough and v0 ∈ Ḣ0, 1
4 (R2)∩Ḣ

1
2
,0(R2) be the small solution of (M) given by Lemma

3.1 with datum u0. Let u(t) be the solution of (KP-II) given by Theorem 4.5 and v(t)

the solution of (M) given by Lemma 3.1. Then, v ∈ Cb([0,∞), H0, 1
4 (R2) ∩ Ḣ

1
2
,0(R2)),

(u, v) solve system (M–mKP-II), and v is a limit of strong solutions of the (mKP-II)
equation from the well-posedness theory ([21]). Moreover, it holds the estimate

∥v∥
L∞
t (Ḣ0, 14 (R2)∩Ḣ

1
2 ,0(R2))

+ ∥∂−1
x vy − v2∥

L∞
t Ḣ− 1

2 ,0(R2)
≲ ∥u0∥

Ḣ− 1
2 ,0(R2)

and the map u0 7→ v is continuous.

Remark 4.12. The assumptions on u0, v0 can be rewritten as ‘Let v0 ∈ Ḣ0, 1
4 (R2) ∩

Ḣ
1
2
,0(R2) small enough such that ∂−1

x v0,y − v20 ∈ Ḣ− 1
2
,0(R2) is also small, and call

u0 := v0,x+ v20 − ∂xv0,y’. Note that the nonlinear term ∂−1
x vy − v2 is precisely one of the

two terms appearing in the energy functional of the mKP-II equation

E(v(t)) =

∫
R2

|∂xv(t)|2 + |∂−1
x ∂yv(t)− v(t)2|2dx dy,

which is formally conserved by the mKP-II flow (see [21, §1]). The function v is a
solution of the mKP-II equation in the sense that (u, v) solve system (M–mKP-II): the
latter is related to the distributional mKP-II equation (2.2) as we noted in Section 2.

Proof. The regularity and the bound on v both follow from Lemma 3.1 and the uniform-
in-time smallness of u. The fact that v is a limit of strong solutions of (mKP-II) will
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be clear from the rest of the proof, so we only need to show that v is a solution of
system (M–mKP-II). The map u0 7→ v is continuous from Ḣ− 1

2
,0(R2) to CbL

3, so by
approximation it suffices to show the statement assuming u0 ∈ ∂xH

∞(R2). In particular,
in these hypotheses we have v0, v0,x, ∂

−1
x v0,y ∈ H∞(R2) by Lemma 3.1, so we fall in the

range of applicability of the well-posedness theory of the mKP-II equation, as in [21,
Theorem 1]. It follows that there exists a unique solution v ∈ C([0,∞), H∞) to mKP-II
with initial datum v0 such that vx, ∂

−1
x vy ∈ C([0,∞), H∞), and by the mapping property

of the Miura map of Proposition 2.1 and the uniqueness of the solution u of KP-II (see
also [21, Remark 1]) it holds

−∂−1
x v(t) + v2(t) + vx(t) = u(t).

By the uniqueness of the solution given by Lemma 3.1, it follows that v ≡ v, so v is a
strong solution of (mKP-II). In particular, by the equivalence of systems (M–mKP-II)
and (2.2), it follows that (u, v) solve system (M–mKP-II).

Using symmetry (2.4) of system (M–mKP-II), the content of Proposition 4.11 can
be easily extended to cover the cases where the initial data (u0, v0) solve (M) and
v0 ∈ L3(R2) + λ for some constant λ ∈ R.

Corollary 4.13. Let u0 ∈ Ḣ− 1
2
,0(R2) be small enough and let u ∈ Ż− 1

2 ((0,∞)) be the
solution of (KP-II) given by Theorem 4.5. Fix λ ∈ R. For all times t ≥ 0, let v(t) ∈
L3(R2)+λ be the solution of (M) given by Corollary 3.2. Then, v ∈ C([0,∞), L3(R2))+λ
and (u, v) solves system (M–mKP-II).

Definition 4.14 (Elementary solutions). Fix u0 ∈ Ḣ− 1
2
,0(R2) small enough and let

u ∈ Ż− 1
2 ((0,∞)) be as in Theorem 4.5. Let λ1 ∈ R. The solution v(1) = ṽ + λ1

of (M–mKP-II) as in Corollary 4.13 is called the elementary solution of (M–mKP-II)
with parameter λ1 associated to u.

Next, given a solution v of (M–mKP-II), we construct a solution V of (2.3) such
that Vx = v and establish bounds on V . We first prove that such a solution V is unique
up to an additive constant, which turns out to be independent of space and time.

Lemma 4.15. Let ∅ ̸= I ⊂ Rt be an open interval. Assume u ∈ L2
loc(I × R2), v ∈

L3
loc(I × R2), w ∈ D ′(I × R2) are space-time distributions, such that wx = uy, (u, v)

solves the system (M–mKP-II), and (u,w) solves the KP-II equation, in the sense that

ut − 6uux + uxxx + 3wy = 0.

Then, there exists a unique V ∈ D ′(I × R2) up to an additive constant (independent of
t, x, y) which solves system (2.3) with ∂−1

x uy = w, and such that Vx = v. If u, v, w are
smooth, then V is smooth.

The function w is morally the term ∂−1
x ∂yu appearing in the KP-II equation, and we

simply assume that it is well-defined.
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Proof. The proof for the uniqueness is analogous to the proof of Lemma 3.10. For the
existence, let Ṽ be such that ∂xṼ = v. Then, integrating system (M–mKP-II),

(4.2)

{
Ṽy − vx = v2 − u+ g

Ṽt + 4vxx + 4v3 + 12vvx − 6uv − 3ux − 3w = h,

where g, h are distributions that are independent of x. Derivating the first equation of
system (4.2) with respect to t and the second equation with respect to y, after combining
them and using the fact that (u,w) solve KP-II, we find that gt = hy. This in turn
implies, by applying Lemma D.2 twice, that g = Fy, h = Ft for a third distribution F
independent of x. From here, the argument is analogous to the proof of Lemma 3.10.

Recall that for u ∈ Ż− 1
2 ((0,∞)), the distribution ∂−1

x uy is well-defined thanks to
Remark C.4.

Lemma 4.16. Let u0 ∈ Ḣ− 1
2
,0(R2) be small and let u ∈ Ż− 1

2 ((0,∞)) be the unique
small solution of KP-II given by Theorem 4.5. Let v ∈ Cb([0,∞), L3(R2)) + λ be the
elementary solution of system (M–mKP-II) with parameter λ ∈ R associated to u, as in
Definition 4.14. Then, the distribution V solving system (2.3) and Vx = v, given (up to
an additive constant) by Lemma 4.15, satisfies

V (t, x, y)− (λx+ λ2y − 4λ3t) ∈ C([0,∞),BMO0
p,λ(R2)),

and for all t, V (t) coincides with the function obtained from v(t) by Lemma 3.10 (up to
a time-dependent additive constant). Moreover, it holds

(4.3)

∥∥∥∥ ddt
(∫

R2

V ρ dx dy

)
+ 4λ3

∥∥∥∥
L2
unif((0,∞))

≲ ∥u0∥
Ḣ− 1

2 ,0(R2)
.

We recall that here BMO0
p,λ(R2) ↪→ S ′(R2) is simply the Banach space of all func-

tions in BMOp,λ(R2), to which one can equip the norm

∥f∥BMO0
p,λ,ρ(R2) = ∥f∥BMOp,λ(R2) +

∣∣∣∣∫
R2

fρ dx dy

∣∣∣∣ ,
where ρ is a standard mollifier centered at the origin (see Definition 3.11). In particular,
BMO0

p,λ embeds into Lploc(R
2) for all p <∞ (see Corollary 3.13).

Proof. First, by symmetry (2.4), it suffices to show the statement for λ = 0. Assume
first that u0 ∈ ∂∞x H

∞(R2) (see Remark 4.4). Then, u is in C∞([0,∞), H∞(R2)). It
follows from Lemma 3.1 that v ∈ C∞([0,∞), H∞(R2)), and thus V is smooth by the
previous Lemma. Since ∂xV (t, ·, ·) = v(t, ·, ·), and since V (t, ·, ·) solves equation (3.9)
with datum u(t) for all t ≥ 0, the function V (t) agrees with the one given by Lemma
3.10 (with datum u(t)) for all t ≥ 0 up to an additive constant which depends on t, by
the uniqueness statement therein. By Corollary 3.17, it holds the estimate

∥V ∥CbBMOp(R2) ≲ ∥u0∥
Ḣ− 1

2 ,0(R2)
.
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The above estimate does not give control on the time evolution of any additive
constant, so we need an additional estimate. Consider the second equation in system
(2.3). Set w := ∂−1

x uy, which is well-defined by Remark C.4. Multiplying both sides by
ρ and integrating over space, we obtain the bound∣∣∣∣ ddt

∫
R2

V ρ dx dy

∣∣∣∣ = ∣∣∣∣∫
R2

ρ · (4v3 + 4vxx + 12vvx − 6uv − 3ux − 3w)dx dy

∣∣∣∣
≲ ∥v∥L3(B) + ∥v∥3L3(B) + ∥v∥2L3(B) + ∥u∥L3/2(B)∥v∥L3(B)

+

∣∣∣∣∫
R2

ρw dx dy

∣∣∣∣ ,
where B = B1((0, 0)) is the support of ρ. The L

3 norm of v is controlled by ∥u∥
Ḣ− 1

2 ,0(R2)

by Lemma 3.1 (remember that we assumed λ = 0). For the norm of u in L3/2(B), we
note that from Theorem 4.5 we have the bound

∥u∥
Ż− 1

2 ((0,∞))
≲ ∥u0∥

Ḣ− 1
2 ,0(R2)

,

with Żs as in Definition C.1, and thanks to Remark C.4 we can estimate u locally in L2

in space-time. The last term is also L2-integrable in time by the bound in Remark C.4.
It follows

(4.4)

∥∥∥∥ ddt
∫
R2

V ρ dx dy

∥∥∥∥
L2
unif((0,∞))

≲ ∥u0∥
Ḣ− 1

2 ,0(R2)
,

which implies V ∈ C([0,∞),BMO0
p(R2)) together with the above estimate. For general

u0 ∈ Ḣ− 1
2
,0(R2), an approximation argument is enough to conclude thanks to the above

a priori estimates.

4.3 The time-dependent Bäcklund transform - Proof of Theorem C

In this subsection we prove Theorem C. First, we state a nonlinear superposition prin-
ciple which allows to construct solutions of (M–mKP-II) from its elementary solutions
associated to the same solution u of (KP-II). This is a direct time-dependent analogue
of Proposition 3.19. We call the map below V→→ because its output is the forward time
evolution of the output of V along the mKP-II flow.

Proposition 4.17 (Nonlinear superposition of elementary solutions). Let u0 ∈ Ḣ− 1
2
,0(R2)

be small enough, M ≥ 1, and λ⃗ ∈ RM such that λ1 < · · · < λM . Let u be the solution
of (KP-II) given by Theorem 4.5 with u|t=0 = u0. Let v(j) ∈ Cb([0,∞), L3(R2)) + λj,
1 ≤ j ≤ M be the corresponding elementary solutions of (M–mKP-II) associated to u.
Let V (j) be the corresponding primitive solutions of system (2.3) given by Proposition
4.15 and 4.16, normalized as in (3.12) at t = 0. Given c⃗ := (c1, . . . , cM ) ∈ RM , the
functions

ψ :=
1∑M

j=1 e
cj

M∑
j=1

eV
(j)+cj , V := logψ, v := ∂xV, ū := u− 2∂xv
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are well-defined and they satisfy11

ψ, 1/ψ ∈ C([0,∞), L6
loc(R2)), ψx ∈ C([0,∞), L2

loc(R2)),

V ∈ Cb([0,∞), Lploc(R
2)) ∀ p <∞,

v ∈ Cb([0,∞), L3
loc(R2)) ∩ L6((0,∞)× R2), vx ∈ L2

unif((0,∞)× R2),

ū ∈ L2
loc([0,∞)× R2).

The function v solves system (M–mKP-II), and ū solves the KP-II equation in distri-
butional form (2.5). The map

Vλ⃗
→→ : (u0, c⃗) 7→ v

is continuous from B
Ḣ− 1

2 ,0(R2)
ε0 (0) × RM to C([0,∞), L3

loc(R2)) ∩ L6
loc([0,∞) × R2) with

vx ∈ L2
loc([0,∞)× R2). It holds

(4.5) v(t) = Vλ⃗(u(t), c⃗(t))

for all t ≥ 0, for a C0, 1
2 curve t 7→ c⃗(t), c⃗(0) = c⃗. In particular, Vλ⃗ = Vλ⃗

→→ |t=0.

Proof. The main technicality is proving an estimate on ū to ensure it lies in L2
loc([0,∞)×

R2), with continuous dependence on u0. For this, by Theorem 4.5, Corollary C.3, and
Remark C.4, we know that

u ∈ Ż− 1
2 ((0,∞)) ↪→ L6((0,∞), |∂x|

1
2L3(R2)) ∩ L2

unif((0,∞)× R2)

Using the product estimate ∥fg∥L6
tL

2
x,y

≲ ∥f∥L∞
t L3

x,y
∥g∥L6

x,y,t
and the estimates

∥∂xΓ(c)f∥L6(R2) ≲ ∥f∥
|∂x|

1
2L3(R2)+L2(R2)

,

∥∂2xΓ(c)f∥L2(R2) ≲ ∥f∥L2(R2),

Γ(c) = (∂y − ∂2x + c∂x)
−1 from Proposition A.3, it is straightforward to refine the fixed

point argument in Lemma 3.1 to show that for fixed λ1 ∈ R, the map

u0 7→ v(1)

as in Definition 4.14 is analytic from a small ball Bε0(0) ⊂ Ḣ− 1
2
,0(R2) to

Cb([0,∞), L3(R2)) ∩ L6((0,∞)× R2) + λ1,

with
v(1)x ∈ Cb([0,∞), Ḣ− 1

2
,0(R2)) ∩ L2

unif((0,∞)× R2).

The regularity of the functions defined in the statement and the continuity of the map
follow analogously as in the proof of Proposition 3.19, using in addition the analyticity

11The ‘b’ in Cb this time refers to the notion of boundedness in Fréchet spaces. We are asking for the
above functions to be bounded with values in Lp(K) when restricted to any compact K ⊂ R2.
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of the above map and of the data to solution map in Theorem 4.5 from u0 ∈ Ḣ− 1
2
,0(R2)

to u ∈ Ż−1/2((0,∞)).

For the remaining statements, except (4.5), we can assume u0 ∈ ∂∞x H
∞(R2) by

continuity, so all the functions appearing in the statement are smooth. The functions

ψ(m) := eV
(m)

solve system (2.1′) as observed in Section 2. By linearity,

ψ :=

M∑
m=1

ψ(m)

solves system (2.1′). Again, by the equivalences of Section 2, V := log(ψ) solves system
(2.3), and v := ∂xV solves system (M–mKP-II). The function ū solves the KP-II
equation thanks to Proposition 2.1.

Since the functions v(m), V (m) solve systems (M–mKP-II) and (2.3) respectively,
they solve respectively (M) and (3.9) with u = u(t) for each t ≥ 0, and v(m)(t) is the
unique solution of (M) in L3(R2) + λm as in Corollary (3.2). By Lemma 3.10, called
Ṽ (m)(t) the unique solution of (3.9) with x-derivative v(m)(t) normalized as in (3.12), it
holds

V (m)(t) = Ṽ (m)(t) +

∫
R2

ρ V (m)(t) dx dy.

In particular, by the definition of V in Proposition 3.19, (4.5) holds with

cm(t) = cm +

∫
R2

ρ V (m)(t) dx dy.

Since V (m) is normalized as (3.12) at t = 0, it holds c⃗(0) = c⃗. The Hölder regularity of
c⃗ comes from estimate (4.3) in Lemma 4.16.

Now we are ready to prove Theorem C. We restate it here in a more detailed form.

Theorem C′. Let u0 ∈ Ḣ− 1
2
,0(R2) be small, u ∈ Cb([0,∞), Ḣ− 1

2
,0(R2)) the global so-

lution of (KP-II) given by Theorem 4.5, and γ0,0 ∈ R. Let v0 := V (u0, γ0,0) as in
Theorem A. There exists a continuous function t 7→ γ0(t), γ0(0) = γ0,0 such that (u, v)
solves system (M–mKP-II), where v ∈ C([0,∞), L3

loc(R2)) is defined as

v(t) := V (u(t), γ0(t)).

Moreover, the curve ū(t) := B(u, γ0(t)) is a solution to the KP-II equation in distri-
butional form and can be decomposed as ū(t) = φ(x − α(t, y)) + u(t) + w(t), with the
estimates

sup
t≥0

[
sup

y1,y2∈R

|α(t, y2)− α(t, y1)|
log(2 + |y2 − y1|)

+ ∥αy(t, ·)∥L2
y
+ ∥w(t, ·, ·)∥

H− 1
2 ,0(R2)

]
≲ ∥u0∥

Ḣ− 1
2 ,0(R2)

,
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∥∥∥∥
L2
unif(0,∞)

≲ ∥u0∥
Ḣ− 1

2 ,0(R2)
.

If in addition u0 ∈ L2(R2) is small enough, then ū−φ(x−α(0, y)−4t) ∈ C([0,∞), L2(R2))
with the estimate

|ū(t)|L2
φ(R2) ∼ |ū(0)|L2

φ(R2) ∼ ∥u0∥L2(R2), t ≥ 0,

and ū is the solution of (KP-II) coming from the well-posedness theory (see Proposition
4.7).

Proof. First, by Theorem A, we can write v0 as

v0 = ∂x log(e
V +
0 −c + eV

−
0 +c)

= V(−1,1)(u0, (c,−c)),

where V +
0 , V −

0 are solutions of (3.9) with datum u0 as in Definition 3.20, normalized as
in (3.12), and where c ∈ R depends bijectively on γ0,0 as in Lemma 3.22. Let v(±1) =: v±

be the elementary solutions of system (M–mKP-II) with parameters λ = ±1 associated
to u, as in Definition 4.14. Let V ± be the corresponding solutions of (2.3) given by
Lemmas 4.15, 4.16, and normalize them as in (3.12) at t = 0. By Proposition 4.17, the
function

v = ∂x log(e
V +−c + eV

−+c)

= V
(−1,1)
→→ (u0, (c,−c)),

solves system (M–mKP-II) with v|t=0 = v0, and ū = u− 2∂xv solves KP-II in distribu-
tional form. By Lemma 4.16, it holds

V ±|t=0 = V ±
0 ,

and there exists a continuous c : [0,∞) → R such that

v(t) = V(−1,1)(u(t), (c(t),−c(t))).

By the second change of variables in Lemma 3.22 and the bi-Lipschitz continuity re-
sult therein, there exists a continuous γ0 = γ0(t) with γ0(0) = γ0,0 such that v(t) =
V (u(t), γ0(t)) for each time t ≥ 0, where we defined V in Lemma 3.22 and coincides
with the map in Theorem A.

The curve ū := u− 2∂xv solves (KP-II) distributionally by Proposition 4.17. Taking
α as in Theorem A for each time, the decomposition and the estimates on α,w follow
from the estimates of Theorem A, since

w = u− 2(ω + η+α ṽ
+ + η−α ṽ

−)x.

We now prove the continuity and the a priori bound on γ0(·). By an approximation
argument, using Ascoli–Arzelà theorem, the well-posedness of KP-II given by Theorem



70 CHAPTER 2. ON THE BÄCKLUND TRANSFORM OF KP-II

4.5 and the continuity of the map V in Theorem A, we can assume u0 ∈ ∂∞x H
∞(R2), so

that u, v are smooth by Remark 4.4. To show the a priori estimate, we differentiate with
respect to t the equation defining γ0 (3.15) and obtain, after substituting the second
equation in (M–mKP-II),

d

dt
γ0(t)

∫
R2

ργ0vx dx dy = −
∫
R2

ργ0(t)vt dx dy

=

∫
R2

ργ0(t)[(4vxx + 4v3 + 12vvx − 6uv − 3ux)x − 3uy] dx dy.

Subtracting the number 4,

d

dt
γ0(t)− 4 =

∫
R2 ργ0(t)[(4vxx + 4v3 + 6(v2)x − 4v − 6uv − 3ux)x − 3uy] dx dy∫

R2 ργ0vx dx dy
.

As in the proof of Lemma 3.22, we note that the denominator is positive and bounded
away from zero, so it can be ignored. We now proceed as in the proof of (4.4) in Lemma
4.16. This time, v is not small in L3 of a given ball, because of the contribution from
the modulated kink. Nevertheless, plugging v = tanhα yields

4vxx + 4v3 + 6(v2)x − 4v = 0,

so after considering v = ṽ + tanhα, it is straightforward to show that

|dγ0/dt(t)− 4| ≲ ∥ṽ∥L1(B) + ∥ṽ∥2L2(B) + ∥ṽ∥3L3(B) + ∥u∥L3/2(B)∥v∥L3(B) + ∥u∥
Ḣ− 1

2 ,0(R2)
,

where B = B1((γ0(t), 0)) is the support of ργ0(t). Since α is the same given by Theorem
A, the bounds in the Theorem imply that

∥ṽ(t)∥L3(B) ≲ ∥u(t)∥
Ḣ− 1

2 ,0(R2)
,

and the bound follows analogously as for estimate (4.4) by integrating in time, using
that

∥u∥L2
unif((0,∞)×R2)) + ∥u∥

L∞
t Ḣ− 1

2 ,0 ≲ ∥u0∥
Ḣ− 1

2 ,0(R2)
.

Finally, we look at the last part of the Theorem. The L2
φ estimate is a direct conse-

quence of Corollary B and the conservation of the L2 norm for solutions of (KP-II):

∥u(t)∥L2(R2) = ∥u0∥L2(R2).

Assume first that u0 ∈ ∂xH
∞(R2), so that u ∈ C([0,∞), ∂xH

∞(R2)), and is uniformly

small in Ḣ− 1
2
,0(R2). We first show the following claim.

Claim. We have vx−sech2(x−4t−a) ∈ C([0,∞), L2(R2)) for some a ∈ R. In particular,
ū− φ(x− 4t− a) ∈ C([0,∞), L2(R2)).
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⌜ Proof of the Claim. By Corollary 3.2, since the curve t 7→ u(t) ∈ ∂xL
2(R2) is contin-

uous, the corresponding solutions v±(t) ∈ L3(R2)± 1 of equation (M) are such that

ṽ± := v± ∓ 1 ∈ Cb([0,∞), L2(R2) ∩ ∂xL6(R2)).

This means that for each t ≥ 0, ṽ±(t) have well-defined x-antiderivatives in L6(R2). This
is equivalent to v±(t) having well-defined antiderivatives in L6(R2) + (±x + y), which
have to solve equation (3.9) with datum u(t). We will call these primitives W±(t). By
Lemma 4.16, W±(t)− V ±(t) is a constant depending only on time. In particular, since
(u, V ±) solve system (2.3) by construction (note that the leading part of the second
equation gives V ±

t ≈ −4(V ±
x )3 = −4(v±)3 ≈ ∓4), there must exist a± ∈ R such that

V ± ∓ c =W± ∓ 4t+ a±.

Now set a = a− − a+. Call W̃± :=W± − (±x+ y) ∈ C([0,∞), L6(R2)). We have

(4.6)

v = ∂x log
(
eW

+−a−4t + eW
−+a+4t

)
= ∂x log

(
eW̃

++(x−4t−a) + eW̃
−−(x−4t−a)

)
= tanh ◦ν + (η+◦ ν)ṽ+ + (η−◦ ν)ṽ−,

where η±(x) = (1± tanh(x))/2 as usual, and

ν =
1

2
(V + − V −)− c

=
1

2
(W̃+ − W̃−) + (x− 4t− a)

(note that ∂x log(y) = 0). Taking a further x-derivative, we obtain
(4.7)

∂xv − sech2(x− 4t− a) = (sech2◦ ν − sech2(x− 4t− a))

+ (η+◦ ν)ṽ+x + (η−◦ ν)ṽ−x + sech2◦ ν · (ṽ+ − ṽ−).

Now, since u ∈ C([0,∞), ∂xH
∞(R2)), by the continuity of the data to solution map in

Corollary 3.2 in all the involved function spaces, we deduce that ν ∈ C([0,∞)×R2). We
also have the estimate

| sech2(ν(x, y))− sech2(x− 4t− a)| ≤ 1

2

∣∣∣∣∫ 1

0
(sech2)x(x− 4t− a+ s(W̃+ − W̃−)/2)ds

∣∣∣∣
× |W̃+ − W̃−|

≲ ⟨x− 4t− a⟩−1 |W̃+ − W̃−|.

Since ṽ±, ṽ±x ∈ C([0,∞), L2(R2)), and since ⟨x− 4t− a⟩−1 W̃± ∈ C([0,∞), L2(R2))
thanks to the weighted estimate in (3.4) in Corollary 3.2, the right-hand side of (4.7) lies
in C([0,∞), L2(R2)) by the dominated convergence theorem. This concludes the proof
of the claim. ■ ⌟
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By the estimates of Lemma 3.2 and by repeatedly differentiating the explicit formula
for v in (4.6), one verifies that v(t) − tanh(x − 4t − a) is bounded in Hk(R2) locally in
time for all k ≥ 0, which implies that ū − φ(x − 4t − a) ∈ C([0,∞), H∞(R2)) by the
above claim. From this, and since ū solves KP-II distributionally,

ū(t, x+ 4t, y)− φ ∈ C([0,∞), H∞(R2))

and solves equation (4.1) distributionally, with α ≡ 0. Due to the high regularity, the
above solution has to coincide with the solution given by the well-posedness theory of
Proposition 4.7 with α ≡ 0, as it can be seen via a standard use of energy estimates for the
difference of two solutions. In particular, by Proposition 4.7, it holds ū(t, x+4t, y)−φ ∈
X

1/2+ε,b1,0
T for all T > 0.

In addition, as we noted in the proof of Corollary B, v0 coincides with one of the solutions
in Proposition B.3, with datum u0. So, let β = β(y) be the shift given by the Proposition,
and let β̄ := β ∗ ρ a regularization of β. It holds

∥β̄y∥H2(Ry) + ∥β − β̄∥H1(Ry) ≲ ∥βy∥L2(Ry)

≲ ∥u0∥L2(R2),

∥ū0 − φβ∥L2(R2) ≤ ∥u0∥L2(R2) + 2∥(v − tanhβ)x∥L2

≲ ∥u0∥L2(R2),

where the last inequalities in both estimates come from Proposition B.3. Furthermore,

∥ū0 − φβ̄∥L2(R2) ≤ ∥ū0 − φβ∥L2(R2) + ∥φx∥L2(Rx)∥β − β̄∥L2(Ry)

≲ ∥u0∥L2(R2).

The function ū(t, x+ 4t, y)− φβ̄ is a solution of (4.1) with α = β̄, and it also coincides

with the one given by the well-posedness theory in this setting since β̄y ∈ H1(Ry). By
Remark 4.9, it holds the estimate

∥ū(t, x+ 4t, y)− φβ̄∥X1/2,b1,0
T

≤ C(∥ū0 − φβ̄∥L2(R2), ∥β̄y∥H1(Ry), T, 0)

≤ C(∥u0∥
L2(R2)∩Ḣ− 1

2 ,0(R2)
, T )

for some function C that is non-decreasing in both variables.
For general u0 ∈ Ḣ− 1

2
,0(R2) ∩ L2(R2) small, we consider an approximating sequence

of data ∂xH
∞(R2) ∋ u0,n → u0 in Ḣ

− 1
2
,0(R2)∩L2(R2) such that ∥u0,n∥L2 ≤ 2∥u0∥L2 . Let

ūn be the corresponding solutions of KP-II with initial data ū0,n := ūn|t=0 = B(u0,n, γ0),
with corresponding phase shifts at time zero βn given by Proposition B.3, and note
that ∥β̄n,y∥ is uniformly bounded in n thanks to the above estimates. Moreover, it is
straightforward to show that |βn(0)| ≲ 1 + |γ0|. By the estimate (3.17) in Lemma 3.22,
the sequence (cn)n of real numbers such that ū0,n = u0,n − 2∂xV

(−1,1)(u0,n, (cn,−cn)) is
bounded. By reducing (u0,n) to a subsequence, we can assume cn converges to c ∈ R.
By the continuity of the maps V in Theorem A, V in Proposition 3.19, and by the
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global well-posedness of (KP-II) in Ḣ− 1
2
,0(R2) of Theorem 4.5, we have ū0 = u0 −

2∂xV
(−1,1)(u0, (c,−c)) (that is, c is the same constant as the one at the beginning of the

proof), and
ūn → ū in D ′((0, T )× R2).

Since (βn,y)n is bounded in L2(Ry) and βn(0) is bounded in R, up to extracting a new
subsequence, we can assume βn → β uniformly by Arzelà–Ascoli, so β̄n → β̄ in L∞. By
continuity, this β is the same shift assigned to the pair (u0, v0) given by Proposition B.3,
although we do not need this fact here. The above implies

ūn(t, x+ 4t, y)− φβ̄n → ū(t, x+ 4t, y)− φβ̄ in D ′((0, T )× R2).

By weak-∗ compactness, the limit lies in X
1/2,b1,0
T due to the uniform bound

∥ūn(t, x+ 4t, y)− φβ̄n∥X1/2,b1,0
T

≲T C(2∥u0∥
L2(R2)∩Ḣ− 1

2 ,0(R2)
, T )

proved above for smooth solutions. By the uniqueness statement in Proposition 4.7,

ū(t, x+ 4t, y)− φβ̄

also agrees with the solution given by the well-posedness theory as in the Proposition,
with α = β̄.

5 The range of the soliton addition map

By Theorem A, we have constructed a Bäcklund transform

B : (u, γ0) 7→ ū

for the KP-II equation in Definition 1.4, which acts on small functions u ∈ Ḣ− 1
2
,0(R2)

and a parameter γ0 ∈ R that determines the position of the line soliton at y = 0. Our aim

is to characterize a sufficiently large subset of the image of B through BḢ− 1
2 ,0

ε0 (0) × R,
where ε0 is the smallness constant. In this section we will prove Theorem D, which
characterizes the intersection between the range and a small ball in a suitable weighted
space at L2 regularity. The Theorem implies codimension-1 modulational stability of
the line soliton.

5.1 Premise

Given a datum u and the output ū of the Bäcklund transform, the two functions solve
the system of equations given by the Miura map(s)

(5.1)


vy − vxx = (v2)x − ux,

vy + vxx = (v2)x − ūx,

u = ū+ 2vx,
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a rigorous way of writing the system{
M+(v) = ū,

M−(v) = u.

In this section, we want to solve for v, given ū a suitable perturbation of the line soliton,
to derive sufficient conditions under which ū lies in the range of the soliton addition
map. We set

g := ū− φ, w := v − tanh(x),

where φ(x) = −2 sech2(x) is the non-modulated line soliton, and perform some reduc-
tions. The second equation in (5.1) becomes

(5.2) wy + wxx − 2(tanhw)x = (w2)x − gx,

and since we removed the leading parts φ and tanh, we want to find solutions w that
approach zero at infinity, for given perturbations g that are localized and smooth enough.
Recall the reflection symmetry

Rf(x, y) := f(x,−y).

By the change of variables
w 7→ −Rw =: z,

g 7→ Rg =: h,

the above equation is equivalent to

(5.3) zy − zxx + 2(tanh z)x = (z2)x − hx.

We will thus look for a solution to (5.3) with h ∈ Ḣ− 1
2
,0(R2), that is equivalent to

g ∈ Ḣ− 1
2
,0(R2). Since u = g + 2wx, we will look for additional assumptions on g to

make wx ∈ Ḣ− 1
2
,0(R2) small. By the Cole–Hopf transformation z 7→ e

∫
z dx =: ψ, we can

reduce the problem to that of finding positive solutions to

(5.4) ψy − ψxx + 2 tanhψx = −hψ.

Remark 5.1 (The codimension-1 condition and the Lax eigenfunctions). Before we con-
tinue, here is a brief explanation on why we expect that the range of B has codimension
1 in a suitable vector space. By the property of the Cole–Hopf transformation, the
function

Ψ(x, y) := ey cosh(x)ψ−1(x,−y)

is a 0-eigenfunction of the Lax operator Lu = ∂y − ∂2x + u with potential u, since

∂x log(e
y coshRψ−1) = tanh−Rz

= v
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is a solution of (M). Since ∂x log(Ψ) = v, LuΨ = 0, and since Ψ has the expected
asymptotics at infinity, it is reasonable to expect that Ψ coincides, up to a positive
scalar, with the eigenfunction of Lu in Theorem A (called ‘ψ’ there), if v is a solution
that comes from the Theorem. By looking at the properties of v in Theorem A, in
combination with Corollary 3.2, it can be seen that if u ∈ Ḣ− 1

2
,0(R2) is localized and

regular enough, it holds

Ψ(x, y) = ey cosh(x)m(x, y),

where m converges to a positive constant at infinity in all directions. On the other hand,
it is evident that for localized g, solutions of equation (5.4) with h = Rg that approach
a constant a− > 0 at y → −∞, in general will converge to a different constant a+ > 0
as y → +∞ due to the transport term. The condition that allows g to lie in the range
of B is precisely that a− = a+.

5.2 Linearization of the problem in the Cole–Hopf variables

To study equation (5.4), we look at the linearized equation around the constant solution
ψ = 1, h = 0:

ψy − ψxx + 2 tanhψx = f.

By Proposition A.2, a solution ψ is given by ψ = Tf + 1, where the operator T is an
integral operator with explicit kernel that inverts ∂y − ∂xx + 2 tanh ∂x:

(5.5) T = Ktr+ := Γ+Mη+ + Γ−Mη− +
1

2
∂−1
x (Γ− − Γ+)Msech2 ,

where we recall that Γ± = (∂y ± 2∂x − ∂2x)
−1, Mη± is the multiplication by η±(x),

and Msech2 is the multiplication by sech2(x), as in Definition A.1. The operator T is
therefore a sum of four terms: two (tilted) heat operators composed with multiplication
operators by bounded smooth functions, and two antiderivatives of (tilted) heat opera-
tors composed on the right with the multiplication operator by sech2(x). The difference
∂−1
x (Γ+ − Γ−) is a convolution operator with the function

∂−1
x (Γ− − Γ+)(x, y) = ∂−1

x Γ(x+ 2y, y)− ∂−1
x Γ(x− 2y, y)

=

∫ x+2y

x−2y
Γ(x′, y)dx,

whose kernel decays to zero for fixed y and is identically zero for negative y, but it
converges to the constant 1 for positive y.

5.3 Solving the equation M+(v) = ū

We turn to the study of equation (5.4).
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Proposition 5.2. Let h ∈ L1(R2)∩L2(R2). There exists a unique solution ψ ∈ L∞(R2)
to equation (5.4) such that ∥ψ − 1∥L∞(R×(−∞,y]) goes to zero12 as y → −∞. It holds
ψ ∈ Cb(R2), infx,y∈R ψ(x, y) > 0, and

∥ψ∥L∞(R2) + ∥1/ψ∥L∞(R2) ≲ exp
(
C∥h∥L1(R2)∩L2(R2)

)
,

∥ψ − 1∥L∞(R2) ≲ exp
(
C∥h∥L1(R2)∩L2(R2)

)
∥h∥L1(R2)∩L2(R2).

For a universal C > 0. The data-to-solution map is analytic.

Proof. Let T = (∂y − ∂2x + 2 tanh ∂x)
−1 be the integral operator described above. By

Lemma A.7, the operator T is bounded from Z := L1(R2)∩L2(R2) to L∞(R2), and the
Banach space X := T (Z) ↪→ L∞(R2) is such that

f ∈ X =⇒ f |R×(−∞,y0] ∈ C0(R× (−∞, y0]) ∀y0 ∈ R

(we defined C0 in Subsection 1.4). The operator T is a right inverse of L = ∂y −
∂2x + 2 tanh ∂x, whose kernel in L∞(R2) is exactly the 1-dimensional space of constant
functions. Our assumptions then imply ψ ∈ T (Z) + 1, and equation (5.4) is equivalent
to

ψ − 1 = −T (ψh).

Since, as we recall later, the operator Lh := ∂y − ∂2x + 2 tanh ∂x + h is invertible from
T (Z) to Z, the uniqueness follows by necessity, since by (5.4), it has to hold

ψ = −(Lh)
−1 h+ 1.

Now, let

N :=

{
ϕ ∈ T (Z) | inf

R2
ϕ > −1

}
,

which is a convex, open subset of T (Z). Consider the map

F : N → Z

ϕ 7→ − 1

1 + ϕ
(∂y − ∂2x + 2 tanh ∂x)ϕ.

It is well-defined and analytic due to the restriction infR2 ϕ > −1 and the boundedness
of T from Z to L∞(R2). The Proposition will follow after establishing the invertibility
and additional properties of the map F by setting ψ := F−1(h) + 1.

The differential of F is

DF (ϕ) · ϕ̇ = − 1

1 + ϕ
(∂y − ∂2x + 2 tanh ∂x) ϕ̇+

ϕ̇

(1 + ϕ)2
(∂y − ∂2x + 2 tanh ∂x)ϕ =

12The kernel of the operator ∂y −∂xx+2 tanh ∂x in L∞ coincides with the space of constant functions,
this is why we need such a condition. Since the equation is linear, the Proposition shows that the solution
is unique up to a multiplicative constant.
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= − 1

1 + ϕ
(∂y − ∂2x + 2 tanh ∂x + h) ϕ̇,

where in the last equality, h := F (ϕ) is meant as a multiplication operator. By Lemma
A.7 part (b), Th := (∂y − ∂2x + 2 tanh ∂x + h)−1 is well-defined and bounded from Z to
T (Z), in particular F has invertible differential everywhere. We claim that F is also
surjective, and a preimage of h ∈ Z is given by

F−1(h) = −Th h.

In fact, −Th h ∈ T (Z) by Lemma A.7, and we claim that inf ϕ > −1. For that it is
enough to consider ψ := 1 + ϕ, and note that the function ψ̃ := 1/ψ solves

ψ̃y − ψ̃xx + 2 tanh ψ̃x = −2ψψ̃2 + hψ̃ ≤ hψ̃.

Since ψ ∈ T (Z)+1, the functions ψ, ψ̃ converge to the constant 1 uniformly as y → −∞,
and since the kernel of T is non-negative, we can follow the same steps as in (1.3)
replacing the L∞ norm with the supremum of ψ̃, so after an approximation and a
continuity argument, the a priori estimate

sup
R2

1/ψ ≲ exp
(
C∥h∥L1(R2)∩L2(R2)

)
is proved. Since inf ψ > 0, it follows that ψ solves ψ = −T (ψh) + 1, i.e., F (ψ − 1) = h.
Thus, F is an analytic diffeomorphism.

The same a priori estimate for ψ is proved in complete analogy, since ψ solves equation
(5.4). Finally, the estimate on ψ − 1 follows from Lemma A.7 part (b) and the identity
ψ − 1 = −Thh.

We recall that setting w := −R∂x log(ψ), we get a solution of (5.2), and we want to

understand what to assume on g = Rh to have wx ∈ Ḣ− 1
2
,0(R2).

5.4 The functional Φ

There is one mechanism that prevents wx from being in Ḣ− 1
2
,0(R2), even for extremely

localized g: mass unbalance between the left and right regions delimited by the line soli-
ton. To intuitively illustrate this phenomenon, assume for simplicity that g ∈ ∂xD(R2)

(so that it also lies in Ḣ− 1
2
,0(R2)). Let supp(g) ⊂ [−R,R]2. The diffusive and trans-

port natures of equation (5.4) (with h = Rg) suggest that, for large y ≫ R, the solution
ψ(·, y) will converge to a constant on a growing time interval [−2y+O(

√
y), 2y+O(

√
y)],

or more explicitly,

ψ(x, y) ≈ 1 + c

∫ x

−∞
Γ(x′ + 2y, y)− Γ(x′ − 2y, y) dx′

for some c ∈ R (up to translations in the y variable). If this constant is not zero, we
argue that w ̸∈ L3(R2). The reason is that from the above heuristics, ψx will behave like

ψx ≈ c (Γ(x+ 2y, y)− Γ(x− 2y, y)),
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which cannot lie in L3(R2) because the heat kernel simply doesn’t (it belongs to L3,∞(R2)).
Then we simply note that w = ψx

1+ψ , so the same holds for w. It is then not possible

to have wx ∈ Ḣ− 1
2
,0(R2), since we already know from Section 3 that we would have

w ∈ L3(R2). These heuristics suggest that in order to aim at wx ∈ Ḣ− 1
2
,0(R2), we need

some cancellation condition to ensure that c = 0 in the above asymptotics. In other
words, ψ should decay to zero as y → +∞.

To rephrase this condition in a convenient way, we note that the equation

ψy − ψxx + 2 tanhψx = 0

preserves the hyperplane {sech2}⊥ of L2(R), so a natural condition is to impose that

1

2

∫
ψ(x, y) sech2(x) dx→ 1

as y → +∞. For localized h and solutions ψ to (5.4), by testing the equation against
sech2(x), the latter condition is equivalent to

−1

2

∫
R2

sech2(x)h(x, y)ψ(x, y) dx dy = 0.

The above serves as a motivation for the following definition and the subsequent analysis.

Definition 5.3. We define the functional

Φ : L1(R2) ∩ L2(R2) → R,

Φ(h) :=− 1

2

∫
R2

sech2(x)h(x, y)ψ(x, y) dx dy

= lim
y→+∞

1

2

∫
R
sech2(x)ψ(x, y) dx− 1,

where ψ ∈ L∞(R2) is the unique solution to (5.4) that converges uniformly to 1 as
y → −∞ given by Proposition 5.2. The second equality is verified by integrating (5.4)
against sech2(x).

Remark 5.4. The above functional is analytic on L1∩L2(R2). Its differential at h = 0 is

DΦ(0) · z = −1

2

∫
R2

sech2(x)z(x, y) dx dy,

(so the requirement Φ(h) = 0 is somewhat transversal to the requirement h ∈ Ḣ− 1
2
,0(R2)).

It is also invariant under the reflection R. In fact, if ψ solves (5.4) and ϕ solves

ϕy − ϕxx + 2 tanhϕx = −(Rh)ϕ,
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and are both given by Proposition (5.2), it is easily verified that

d

dy

[
1

2

∫
R
sech2 ψ(Rϕ) dx

]
= 0,

which implies

lim
y→+∞

1

2

∫
R
sech2(x)ψ(x, y) dx = lim

y→+∞

1

2

∫
R
sech2(x)ϕ(x, y) dx

since both solutions converge uniformly to 1 as y → −∞.

As remarked in the introduction, the above functional appears naturally in the scat-
tering transform of (KP-II) for perturbations of the line soliton.

It is clear from the above, although not rigorously proved, that if g is a ‘good per-
turbation’ that falls in the image of our Bäcklund transform, it must hold Φ(Rg) = 0,
that is, Φ(g) = 0. In the following, we look for additional conditions on g to prove the
reverse implication.

5.5 Estimates in a parabolic Hardy space

The property Φ(h) = 0 appears naturally when writing ψ as an integral operator applied
to −hψ. Assume that we have

h ∈ L1(R2) ∩ L2(R2) ∩ Ḣ− 1
2
,0(R2)

such that Φ(h) = 0. For the solution ψ ∈ L∞(R2) to equation (5.4) given by Proposition
5.2, it holds

ψ = T (−h(1 + ψ)) + 1,

with T = (∂y − ∂2x + 2 tanh ∂x)
−1 as in (5.5). Since we want wx = −R(ψx/ψ)x ∈

Ḣ− 1
2
,0(R2), by fractional chain rule, we need |Dx|3/2ψ ∈ L2(R2). When applying T to

−hψ ∈ L1 ∩ L2(R2), the contribution from the first two terms in (5.5) have the desired
bounds by the estimate

|Dx|3/2Γ± : L3/2(R2) 7→ L2(R2),

which is covered by Proposition A.3. To control the remaining term

−1

2
|Dx|1/2(Γ− − Γ+)(sech2 hψ)

in L2, scaling suggests that the argument of Γ± must be in a space that scales like
L1(R2). This introduces a complication, because it means that we need sech2 hψ to lie
in a Hardy space H1 adapted to the operators Γ±. In particular we need it to have zero
mean, hence one further motivation for the condition Φ(g) = 0.

What follows is a brief (pre -)dual treatment to that of the BMO spaces in Subsection
3.2, and all the results can be found in the same references.
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Definition 5.5 ([9]). Let (X, d, µ) be a doubling metric measure space of homogeneous
type.

• Let 1 < q ≤ ∞. A q-atom a : X → R is a measurable function such that13:

1. the support of a is contained in a ball Br(x0),
2. µ(Br(x0))1/q

′∥a∥Lq(X) ≤ 1,

3.
∫
X a dµ = 0.

• The Hardy space H1(X) is the vector space of functions f such that there exists
a sequence λ ∈ ℓ1(N) and a sequence of ∞-atoms a0, a1, . . . such that it holds a.e.

f =
∑
j∈N

λjaj .

• We equip H1(X) with the norm

∥f∥H1(X) := inf
λ,(aj)j

∥λ∥ℓ1 ,

where the infimum is taken over all representations of f as in the previous point.
Consider the space (X, d, µ) = (R2, dλ, µ) with the tilted parabolic metric dλ as in
Definition 3.15, and µ the Lebesgue measure. We denote the associated Hardy space
H1(X) by H1

p,λ(R2).

Remark 5.6. It follows from the definition that H1(X) ⊂ L1(X) with continuous embed-
ding. It is well-known that H1(X) is a Banach space, and BMO(X) is the dual of the
Hardy space H1(X), where the pairing is given by the integral of the product (extended
by density). Finally, we will use the nontrivial fact (see [9, Theorem A]) that in the
definition of H1(X) we can equivalently consider q-atoms instead of ∞ atoms, yielding
the same vector space and the same norm up to equivalences.

We will need two simple lemmas.

Lemma 5.7 (Decay + integrability + zero mean, imply H1). Let (X, d, µ) be a doubling
metric measure space with doubling constant A, and let 1 < p ≤ ∞, ε > 0, and x0 ∈ X.
It holds

∥f∥H1(X) ≲µ,d,x0,p,ε ∥wf∥Lp(X)

for all f such that
∫
X f dµ = 0, where w(x) = (1 + d(x0, x))

D/p′+ε, D = log2A.

If a function has zero mean, decays slightly better than L1, and is slightly more
integrable than L1, then it lies in H1. Note that the norm on the right-hand side
controls the L1 norm, so the integral of f is well-defined. Note as well that it holds
D ≥ 1 as long as X contains more than one point, see [47, Theorem 3.1].

13When µ(X) < ∞, one often assumes the constant a = µ(X)−1 to be an atom as well, which results
in adding the constant functions to the space H1(X). As we did in the definition of BMO, we give a
definition that does not depend on whether µ(X) is finite or infinite.



5. THE RANGE OF THE SOLITON ADDITION MAP 81

Lemma 5.8. The operator Γ(c) := (∂y + c∂x − ∂2x)
−1 satisfies

∥|∂x|−1/2Γ(−2λ)f∥L6(R2) + ∥|∂x|1/2Γ(−2λ)f∥L2(R2) ≲ ∥f∥H1
p,λ(R2).

The proofs use classical arguments, and we move them to Appendix D.2.

5.6 Proof of Theorem D

Recall the definition of the parabolic norm |z|p,λ in Definition 3.15.

Proof of Theorem D. The map Φ is given by Definition 5.3. The property Φ(0) = 0 is
immediate. Its differential is

DΦ(h) · ḣ = −1

2

∫
R2

sech2 · (ḣψ + hψ̇),

ψ̇ := −Th(ḣψ)

with ψ as in Proposition 5.2 (the operator Th := (∂y−∂2x+2 tanh ∂x+h)
−1 is well-defined

on L1∩L2 by Lemma A.7 part (b)). The non-degeneracy of the differential at any h can
be seen by choosing ḣ as sign-definite and supported on y > M , with M large enough
so that h is small on y > M and ψ̇ is identically zero for y < M . The property

Φ(h) = Φ(Rh)

is shown in Remark 5.4.

Fix ε > 0. We first show that Φ(g) = 0 implies that g is in the range of B . Let
g ∈ Yε(R2) be small enough. Consider ψ ∈ Cb(R2) the unique solution of

ψy − ψxx + 2 tanhψx = −(Rg)ψ

converging to the constant 1 uniformly as y → −∞ given by Proposition 5.2. By the
change of variables discussed in Subsection 5.1, the function

w := −R (∂x logψ) = −R
(
ψx
ψ

)
solves equation (5.2), and the system (5.1) is solved by

ū := g + φ, u := g + 2wx, v := w + tanh(x).

In particular, the pair (u, v) solves (M). For the claim to hold, it is enough to show

that w ∈ L3(R2), and that wx ∈ Ḣ− 1
2
,0(R2) is small enough. In fact, the latter implies

that u ∈ Ḣ− 1
2
,0(R2) is small, since g is small in Yε(R2) ⊂ Ḣ− 1

2
,0(R2). Moreover, by the

uniqueness statement in Theorem A, the former implies that we indeed have v = V (u, γ0)
for some γ0 ∈ R, and thus ū = B(u, γ0) by the definition of B .
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We focus on proving wx ∈ Ḣ− 1
2
,0(R2) small, since the other condition follows simi-

larly. By the definition of w, with sufficient regularity we have

wx = R
(
ψ2
x

ψ2
− ψxx

ψ

)
,

so the claims follows by fractional Leibniz and fractional chain rule, after establishing
for small g

∥|∂x|3/2ψ∥L2(R2) + ∥∂xψ∥L3(R2) + ∥|∂x|1/2ψ∥L6(R2) ≲ ∥g∥Yε(R2).

The second term is bounded by the other two terms by interpolation. For the other
terms, writing h := Rg for brevity, we decompose ψ into

ψ = −T (hψ) + 1

=
[
−Γ+(η+hψ)− Γ−(η−hψ)

]
− 1

2
∂−1
x (Γ− − Γ+)(sech2 hψ) + 1

=: I + II + 1,

where we recall that T is defined in (5.5), and the first equation is in the proof of
Proposition 5.2. The contribution from I satisfies all the three bounds above, since by
Proposition A.3 one has

∥|∂x|sΓf∥Lp(R2) ≲ ∥f∥L3/2(R2), s ∈ (0, 2],
1

p
=
s

3
,

and we can assume ∥ψ∥L∞ ≤ 2 by the estimates of Proposition 5.2 and the smallness
of g. For the term II, it is enough by Lemma 5.8 to show that sech2 hψ belongs to the
intersection of parabolic Hardy spaces H1

p,1(R2)∩H1
p,−1(R2). By Lemma 5.7, this follows

when sech2 hψ has mean zero, which is granted by the condition Φ(g) = Φ(h) = 0, and
by the weighted estimates

∥|(x, y)|3/p
′+δ

p,±1 sech2 gψ∥Lp ≲p,ε,δ ∥g∥L2∩L1
sech2,ε

.

This estimate is true for p close enough to 1 and for δ > 0 small enough. In fact, by
interpolation of weighted spaces it holds

∥wθf∥Lp(R2) ≤ ∥f∥1−θ
L1(R2)

∥wf∥θL2(R2),
1

p
=

1− θ

1
+
θ

2
,

with w(x, y) = sech2(x)(1+ |y|)ε. For θ ∈ (0, 1) with 1 > θ > 3
3+2ε ⇐⇒ δ := θε−3/p′ >

0,

wθ = sech2(x) cosh2(1−θ)(x)(1 + |y|)θε

≳ sech2(x)(1 + |x|+ |y|)θε

≥ sech2(x)(1 + |x|+ |y|)3/p′+δ
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≳ sech2(x)|(x, y)|3/p
′+δ

p,±1 .

For the second part of the proof, assume Φ(g) ̸= 0. We focus first on what we know
about w. Since g ∈ Yε(R2), as we have just shown, sech2 hψ satisfies the assumptions of
Lemma 5.7, except for its integral being non-zero. It can thus be written as a function in
the Hardy space H1

p,1(R2)∩H1
p,−1(R2) plus a scalar multiple of an arbitrary test function.

A quick study of the kernel of Γ− − Γ+ shows that because of this, II does not have an
x-derivative in L3(R2), unlike I. In particular, derivating in x, we have ψx, w ̸∈ L3(R2).
However,

ψx, w ∈ L3,∞(R2) \ L3(R2),

since Γ± ∈ L3,∞(R2) and sech2 hψ ∈ L1(R2). Moreover, it can be checked that

∥Γ±(x, ·)∥L2(Ry) ≲ log
1/2
− (|x|) + ⟨x⟩−1/4 ,

which gives for any ε > 0 the estimate

(5.6) ∥ sechε(x)Γ±(sechε f)∥L2(R2) ≲ε ∥f∥L1(R2).

Considering again the equation ψ = −T (hψ) + 1, this estimate, together with estimate
(1.1) of Lemma A.6 with s = 1, and the identity w = −R(ψx/ψ), implies that

sech(x)w ∈ L2(R2).

We also know that w satisfies (5.2), as noted at the beginning of the proof.
Now assume by contradiction that ū is in the range of B . That is,

ū = B(u′, γ′0)

= u′ − 2∂xV (u′, γ′0)

for some u′, γ′0 as in the assumptions of Theorem A. Call v′ = V (u′, γ′0), and w′ :=
v′ − tanh. Then, as discussed at the beginnning of the section, w′ solves equation (5.2).
We also have w′ ∈ L3(R2). In fact, let v′ = w′′ + tanhα be the decomposition with α as

in Theorem A. In particular, αy ∈ L2(R), w′′ ∈ L3(R2), w′′
x ∈ H− 1

2
,0(R2). Since as we

said u′ − 2v′x = ū = φ+ g, and −2vx = −2w′′
x + φα, it holds

φα − φ = g − u′ + 2w′′
x ∈ H− 1

2
,0(R2),

which implies α ∈ L2(R) knowing that αy ∈ L2(R). This implies

w′ = w′′ + (tanhα− tanh) ∈ L3(R2).

Similarly, by the estimate of Theorem A and the weighted estimates on the functions
v± therein coming from Corollary 3.2 part (a), we have immediately sechαw

′′ ∈ L2(R2),
which by the same argument above implies

sech(x)w′ ∈ L2(R2).

To recap, we have w,w′ ∈ L3,∞(R2)∩ cosh(x)L2(R2), and they both solve (5.2). We
claim that they must coincide.
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Claim. Let w1, w2 ∈ L3,∞(R2) ∩ cosh(x)L2(R2) solve equation (5.2) with g ∈ D ′(R2).
Then, w1 = w2.

⌜ Proof of the Claim. We first verify that for any ε > 0,

∂xT : L3/2,∞(R2) ∩ cosh2−ε(x)L1(R2) → L3,∞(R2) ∩ coshε(x)L2(R2)

is well-defined and bounded, with T as in (5.5). In particular, ∂xT is the integral operator

∂xT = ∂xΓ
+Mη+ + ∂xΓ

−Mη− +
1

2
(Γ− − Γ+)Msech2 .

The statement is true for the operators ∂xΓ
±: first, it holds

∥ sechε(x)∂xΓ±f∥L2(R2) ≲ε ∥f∥L3/2,∞(R2)

by interpolation between estimate ∥∂xΓ±f∥L2(R2) ≲ ∥f∥L6/5(R2) from Proposition A.3,

and estimate (1.1) in Lemma A.6 with s = 1; second, their kernels belong to L3/2,∞(R2),
and L3/2,∞ ∗L3/2,∞ ⊂ L3,∞ [44]. The statement is also true for the operators Γ±Msech2 :
in fact, since Γ± ∈ L3,∞(R2), the two respective convolution operators map L1(R2) to
L3,∞(R2), and they map sechε(x)L1(R2) to coshε(x)L2(R2) by (5.6). So the estimate for
∂xT is proved by combining the above ones.

Consider now w := w1 − w2. After a reflection in the y variable, using the same
names to denote the reflected versions of the respective functions, w solves

wy − wxx + 2(tanhw)x = −((w1 + w2)w)x.

By density and the uniqueness of solutions of the linear heat equation with prescribed
initial data, a solution z ∈ L3,∞(R2) of the above equation with the right hand side
equal to zero lies in C(Ry, L1 + L∞(R)), and satisfies the a priori estimate

∥z|y=y1∥L1+L∞(R) ≲ ∥z|y=y0∥L1+L∞(R)

with y0 < y1 due to the diffusion and the vector field ∂y + 2 tanh(x)∂x having positive
divergence. In particular, z must be zero by sending y0 to −∞. Since w ∈ L3,∞(R2) ∩
cosh(x)L2(R2), this implies that

w = ∂xT ((w
1 + w2)w).

Calling X := L3,∞(R2) ∩ coshε(x)L2(R2), Y := L3/2,∞(R2) ∩ cosh2−ε(x)L1(R2), we
have the estimate

∥w∥X = ∥∂xT ((w1 + w2)w)∥X
≲ ∥(w1 + w2)w∥Y
≲ ∥w1 + w2∥X∥w∥X .
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This estimate holds when restricting all functions on any half plane R × (−∞,M),
y0 ∈ R, due to the fact that all the convolution kernels appearing in ∂xT are supported
for positive y. When M is smaller than a suitable M0 such that 1{y<M0}(w

1 + w2) is
small enough in X, the estimate implies

(5.7) 1{y<M}w = 0.

Equation (5.7) then implies

(5.8) wy − wxx + 2(tanhw)x = −(1{y<M}(w
1 + w2)w)x.

The same argument above, with a bootstrap argument involving (5.7) and (5.8), imply
that (5.7) holds for all M ∈ R. The claim is thus proved. ■ ⌟

As we said, we also have w′ ∈ L3(R2), w ∈ L3,∞(R2) \ L3(R2), which yields a
contradiction with the assumption that ū is in the range of B . This concludes the proof
of the Theorem.

5.7 A conjecture on the range of the soliton addition map

In [38, Theorem 1.5], Mizumachi proves that polynomially localized perturbations of the
line soliton induce a finite, well-defined shift h ∈ R of the position of the soliton along
the x axis in a co-moving frame. Specifically, if u is the solution of (KP-II) with initial
datum u0 = φ+ g such that ∥⟨x⟩(⟨x⟩+ ⟨y⟩)g∥H1(R2) is small enough, there exists h ∈ R
such that suitable modulation parameters x = x(t, y) and λ = λ(t, y) describing the
modulations of the line soliton (u = φλ(t,y)(x − x(t, y)) + OL2(∥g∥) for a suitable norm
∥ · ∥) satisfy supt≥0,y∈R |x(t, y)− 4t| ≲ ∥⟨x⟩(⟨x⟩+ ⟨y⟩)g∥H1(R2), and

lim
t→∞

∥λ(t, ·)− 1∥L∞(R) = 0

lim
t→∞

∥x(t, ·)− 4t− h∥L∞(|y|≤(4−δ)t) = 0

lim
t→∞

∥x(t, ·)− 4t∥L∞(|y|≥(4+δ)t) = 0

for any δ > 0.
We conjecture that when g is small enough in (⟨x⟩(⟨x⟩+ ⟨y⟩))−1H1(R2) and Yε(R2),

the spaces involved in Theorem [38, Theorem 1.5] and our Theorem D and Corollary E
respectively, it holds

h = 0 ⇐⇒ Φ(g) = 0,

where Φ is the functional in Theorem D. More generally, we conjecture that h is a
function of Φ.
As discussed in the introduction, the codimension-1 condition is natural, linked to the
integrable structure, and of qualitative type. It is reasonable to suspect that the manifold
contained in the range of B follows special dynamics along the KP-II flow. The above
equivalence says that this manifold corresponds to the set of perturbations such that the
line soliton converges back to the non-perturbed soliton φ(x− 4t) locally in space, along
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a co-moving frame. All other perturbations will converge to a soliton shifted by a finite,
non-zero amount along the x axis. Intuitively, if the perturbed soliton was the image of
a localized solution of KP-II through B , the behavior of x(t, y) described above would
look too special to be compatible with the fact that general small solutions of KP-II in
Ḣ− 1

2
,0(R2) scatter, unless the constant h is zero. We did not find a proof of this before

finishing this article, so we leave it as an open problem.

6 A multisoliton addition map

Recall the definitions of V, V→→ in Propositions 3.19, 4.17.

Definition 6.1. We define the (upgraded) Bäcklund transform for (M − 1, 1)-solitons

as follows. Let u0 ∈ Ḣ− 1
2
,0(R2) small enough, M ≥ 1, and λ⃗ ∈ RM such that λ1 < · · · <

λM . For c⃗ ∈ RM , we define the transformation for fixed time

Bλ⃗(u0, c⃗) := u0 − 2∂xV
λ⃗(u0, c⃗),

and the transformation that includes the time evolution of the image through the KP-II
flow,

Bλ⃗
→→(u0, c⃗) := u− 2∂xV

λ⃗
→→ (u0, c⃗),

where u is the solution of KP-II with initial datum u0.

From the definition of multisolitons in Section 2 and from the aforementioned propo-
sitions, we have the following results:

1. Adding a scalar multiple of the vector (1, . . . , 1) to c⃗ leaves the image of B, B→→
unchanged.

2. For M = 2, B(−1,1) coincides with the soliton addition map B we constructed in
Definition 1.4 up to a homeomorphic change of variables of the domain, and up to
the symmetry of the previous point (this follows from Lemma 3.22).

3. Given M ≥ 2, λ⃗, c⃗, the function Bλ⃗(0, c⃗) is a (M −1, 1)-multisoliton (with Bλ⃗
→→(0, c⃗)

being its time evolution along the KP-II flow). For fixed M ≥ 2, the map (λ⃗, c⃗) 7→
Bλ⃗(0, c⃗) is a bijective parametrization of the set of (M − 1, 1)-multisolitons, up to
rescaling c⃗ as in the first point.

4. The function ū := Bλ⃗
→→(u0, c⃗) belongs to L2

loc([0,∞) × R2) and solves the KP-II

equation distributionally with initial datum Bλ⃗(u0, c⃗) (the symbol ‘→→’ refers to the
forward time evolution).

5. For each λ⃗, u0, c⃗, there exists a continuous function c⃗ = c⃗(t) with c⃗(0) = c⃗ such
that

Bλ⃗
→→(u0, c⃗)(t) = Bλ⃗(u(t), c⃗(t)).
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6. The maps are continuous with values in suitable low regularity spaces.

The above is the subclass of the ‘tree-shaped’ multisolitons, with N+ = 1, the number
of outgoing solitons at y = +∞. These are the multisolitons in which the size N of
the matrix in (2.7) equals 1. For instance, choosing M = 3, the map B allows the
construction of solutions close to a modulated Y -shaped multisoliton.

We note that the transformation makes sense for M = 1 and yields a nontrivial
Bäcklund transform for solutions of KP-II without solitons. It is an immediate conse-
quence of Corollary 3.2 that Bλ(·, 1), for λ ∈ R, leaves the space Ḣ− 1

2
,0(R2) invariant

for small data. This map can be seen as a limit of the map for M = 2 where one of
the coordinates of the vector c⃗ goes to +∞, which morally corresponds to adding a line
soliton at x = ∞ or x = −∞.

Finally, the Bäcklund transforms can be conjugated by the reflection symmetry (1.2).
The conjugated maps add solitons that have one soliton at y → −∞ and M − 1 solitons
at y → ∞.



88 CHAPTER 2. ON THE BÄCKLUND TRANSFORM OF KP-II



Chapter 3

Appendices

A Linear estimates and parabolic equations

A.1 Linear operators, kernels, and estimates for the heat equation

Definition A.1. We define the following operators that act on suitable functions on
R2:

- H := ∂y − ∂2x

- H(c) := ∂y + c∂x − ∂2x

- Ltr± := ∂y − ∂2x ± 2 tanh ∂x

- Lco± := ∂y − ∂2x ± 2∂x tanh

- Ltr−∂
−1
x = ∂−1

x Lco− = ∂−1
x ∂y − ∂x − 2 tanh,

where ‘tanh’ denotes the multiplication operator by the function tanh(x). Furthermore,
let

Gt(x) := 1{t>0}
1√
4πt

e−
x2

4t

be the heat kernel in 1 space dimension. We define the heat kernels

Γ(x, y) := Gy(x), ∂−1
x Γ(x, y) :=

∫ x

0
Gy(x

′)dx′, Γ± := Γ(±2),

Γ(c)(x, y) := Γ(x− cy, y), ∂−1
x Γ(c)(x, y) := ∂−1

x Γ(x− cy, y), ∂−1
x Γ± := ∂−1

x Γ(±2).

For each of the above kernels K = K(x, y), we will use the same symbol to denote the
associated convolution operator

Kf(x, y) :=

∫
R2

K(x− x0, y − y0)f(x0, y0) dx0 dy0.

89
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More generally, in what follows we will consider integral operators that are not translation-
invariant:

Kf(x, y) :=

∫
R2

K(x, y;x0, y0)f(x0, y0) dx0 dy0,

with kernels K = K(x, y;x0, y0). Finally, let Mη± =: M ±, Msech2 be the multiplication
operators by the functions (x, y) 7→ η±(x) := 1

1+e±2x , (x, y) 7→ sech2(x) respectively.

Proposition A.2 (Explicit kernels). The operators in Definition A.1 admit respectively
the following operators as right inverses:

- Γ,

- Γ(c),

- Ktr+ := Γ+M + + Γ−M − + 1
2(∂

−1
x Γ− − ∂−1

x Γ+)Msech2 ,

- Ktr− := M +Γ− + M −Γ+,

- Kco+ := Γ+M + + Γ−M −,

- Kco− := M +Γ− + M −Γ+ + 1
2Msech2(∂

−1
x Γ− − ∂−1

x Γ+),

- DKtr− := M +∂xΓ
− + M −∂xΓ

+ + 1
2Msech2(Γ

− − Γ+).

The above are all integral operators, the kernels of which will be called with the same
symbols.

The proof is straightforward. The kernels can be deduced from the heat kernel using the
following relations

Ltr− = M −1HM , Lco−∂x = ∂xLtr−, (∂x + 2 tanh)Lco− = Ltr−(∂x + 2 tanh(x)),

where M is the multiplication operator by the function ey cosh(x), and the fact that
some operators are adjoint to others after a reflection in the y variable (for instance,
Ktr−(x, y;x0, y0) = Kco+(x0, y;x, y0)). Note also that it holds DKtr− = ∂xKtr− =
−∂x0Kco−.

Proposition A.3 (Estimates for the heat equation with forcing). Let s ∈ [0, 2], p, q, r, σ ∈
[1,∞] satisfying (

2

r
+

1

σ

)
=

(
2

p
+

1

q

)
− 2 + s.

Consider the integral operator Γ as before:

Γf(x, y) :=

∫
R2

Γ(x− x0, y − y0)f(x0, y0) dx0 dy0,

where Γ(x, y) = 1{y>0}
1√
4πy

e
−x2

4y . The estimate

∥|∂x|sΓf∥Lr
yL

σ
x
≲ ∥f∥Lp

yL
q
x

holds whenever the right hand side is finite, in the following cases:
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1. s ∈ [0, 2), 1 < p < r <∞ and 1 ≤ q ≤ σ ≤ ∞,

2. s = 2, 1 < p, q <∞, (p, q) = (r, σ),

3. s ∈ [0, 1], (r, σ) = (∞, 2), 1 ≤ p, q,≤ 2, (p, q, s) ̸= (2, 1, 1/2)
(in this case, it holds |∂x|sΓf ∈ C0(Ry, L2

x)).

All these estimates hold for Γ(c) as well with uniform constants in c, thanks to the
change of coordinates (x, y) 7→ (x− cy, y).

Proof. It is straightforward to verify that for fixed y > 0, all fractional x-derivatives of
Γ(·, y) of non-negative order are bounded and in L1 (they actually lie in the Hardy space
H1 for s > 0). Thus, simply by the scaling symmetry in the y variable, it follows that

∥|∂x|sΓ(·, y)∥Lp
x
≲s |y|−

1
2
(1+s)+ 1

2p , 1 ≤ p ≤ ∞, s ∈ [0,∞).

By Young’s convolution inequality, this in turn implies the following estimates for the
fractional derivatives of the heat kernel:

∥|∂x|sey∂
2
xf∥Lσ

x
≲ |y|−

k
2
− 1

2
( 1
q
− 1

σ
)∥f∥Lq

x
, y > 0, s ≥ 0.

Part (1) is then a consequence of the Hardy–Littlewood–Sobolev inequality and the
above Lq − Lσ estimates of the heat propagator ey∂

2
x .

A proof of part (2) is contained in [33, Chapter 7].
For part (3), consider the heat equation

uy − uxx = |∂x|sf.

The standard energy estimates yield immediately

∥u∥2L∞
y L2

x
+ ∥ux∥2L2

yL
2
x
≤ ∥|∂x|su∥Lp′

y L
q′
x
∥f∥Lp

yL
q
x
.

The estimate then follows by the interpolation estimate

∥|∂x|su∥Lp′
y L

q′
x
≲ ∥u∥1−θ

L∞
y L2

x
∥ux∥θL2

yL
2
x

with θ = s + (1/2 − 1/q′) and the inequality 2ab ≤ Ca2 + C−1b2. Note that the above
interpolation inequality fails precisely at the endpoint s = 1/2, (p′, q′) = (2,∞) (for
which θ = 1). By approximation with smooth functions, it holds |∂x|sΓf ∈ C0(Ry, L2

x).

Remark A.4. With the same methods as in part (1), estimates with mixed derivatives
are proved. For example, we will use the following one:

∥|∂y|
1
4∂xΓf∥L2

x,y
≲ ∥f∥

L
3/2
x,y
.

We refer to the definition of dp,λ in Definition 3.15.
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Lemma A.5. The heat operator Γ(−2λ) = (∂y−∂2x− 2λ∂x)
−1 extends to a bounded map

Γ(−2λ) : Lp(R2) → C0,α(R2, dp,λ)⧸R , 1− α

3
=

1

p
+

1

3
, p ∈ (3/2, 3),

where for 0 < α < 1 and (X, d) metric space, we denote the semi-normed Hölder space
by

C0,α(X, d) :=

{
f ∈ C(X, d)

∣∣∣∣ |f |C0,α := sup
z1,z2∈X

|f(z1)− f(z2)|
d(z1, z2)α

<∞

}
,

and where R ⊂ C0,α(X, d) is the subspace of constant functions.

Proof. By the change of variables (x, y) 7→ (x + 2λy, y), we can assume λ = 0. Set
| · |p = | · |p,0 as in Definition 3.15, and let z = (x, y), w = (x′, y′). The heat kernel Γ
satisfies

|Γ(z)| ≲ |z|−1
p , |∂xΓ(z)| ≲ |z|−2

p , |∂yΓ(z)| ≲ |z|−3
p .

As a consequence (see the proof of Lemma 5.8), we have the estimate

|Γ(z + w)− Γ(z)|p ≲


1

|z + w|p
+

1

|z|p
for |z|p ≤ 2|w|p,

|w|p
|z|2p

for |z|p ≥ 2|w|p,

By taking the L2 norm and splitting the integral on the two regions, using that
∫
r≤|z|p≤R |z|−sp dz ≲

R3−s − r3−s, we find

∥Γ(·+ w)− Γ(·)∥Lq(R2
z)

≲ |w|αp , 0 < α < 1,
1

q
=

1− α

3
+

2α

3
.

We have Γf(w)− Γf(0) =
∫
R2(Γ(z + w)− Γ(z))f(−z)dz, w ∈ R2, for any test function

f . Choosing q = p′ in the previous estimate, the right hand side is bounded by∣∣∣∣∫
R2

(Γ(z + w)− Γ(z))f(−z)dz
∣∣∣∣ ≲ |w|αp∥f∥Lp

for α as in the statement of the Lemma. The previous equation allows thus to extend
Γ to f ∈ Lp, with Γf being well-defined up to an additive constant. The C0,α bound is
given by

|Γf(w1)− Γf(w2)| ≲ |w1 − w2|αp∥f∥Lp(R2),

which follows by the previous bound by translation invariance.

Lemma A.6. Let c ∈ R \ {0} and α ∈ C(Ry) such that αy ∈ L2(Ry). The following
bounds hold:

∥ ⟨(x− α(y))/L⟩−1 |Dx|sΓ(c)u∥L2(R2) ≲ |c|−1∥u∥Lp(R2), s ∈ [0, 1],
1

p
=

(1− s)

6/5
+
s

2
,

(1.1)
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∥ ⟨(x− α(y))/L⟩−1 ∂xΓ
(c)u∥L2(R2) ≲ |c|−

1
2 ∥u∥

Ḣ− 1
2 ,0(R2)

,(1.2)

where Γ(c) = (∂y − ∂2x + c∂x)
−1 (see Definition A.1), and L = |c|−1(1 + ∥αy∥L2)−1.

Estimate (1.2) shows that estimate (1.1) is not optimal in terms of regularity. Note
that the inequalities are invariant under the scaling (x, y) 7→ (λx, λ2y), which leaves the
quantity ∥αy∥L2 unchanged.

Proof. We can assume c > 0 without loss of generality by symmetry. Let ρ ∈ C∞
c (R) a

standard mollifier, ρε(x) := ε−1ρ(ε−1x), ε > 0, and let αε := ρε ∗α. It is straightforward
to show

∥αε,y∥L∞ ≲ ε−
1
2 ∥αy∥L2 , ∥αε,y − α∥L∞ ≲ ε

1
2 ∥αy∥L2 ,

and choosing ε =
(
6C1∥αy∥L2

c

)2
, where C1 is the implicit constant in the first inequality,

we have
∥αε,y∥L∞ ≤ c

6
, ∥αε − α∥L∞ ≲ c−1∥αy∥2L2 ,

and in particular,

⟨(x− α(y))/L⟩−1 ≲ ⟨(x− αε(y))/c
−1⟩−1

.

This means that it is enough to prove the two estimates for L = c−1, and assuming that
∥αy∥L∞ ≤ c

6 .
Consider the first estimate. Assume first s = 0. We know by Proposition A.3 that

v ∈ C0,yL
2
x. Let a(x, y) := 2− arctan(3c(x−α(y))). Considering the heat equation with

transport
(∂y − ∂2x + c∂x)v = u,

multiplying by a and integrating in dx and by parts, we obtain the energy estimate

1

2

d

dy

∫
av2dx+

∫
av2xdx− c

2

∫
axv

2dx+
1

2
αy

∫
axv

2dx− 1

2

∫
axxv

2dx =

∫
avf dx.

The third term is non-negative due to a being non-increasing, and by the definition of
a and the estimate ∥αy∥L∞ ≤ c

6 , it is at least 3 times larger than the absolute value of
the fourth and fifth terms. Integrating in y, we thus obtain

∥
√
av∥2L∞L2 + ∥

√
avx∥2L2L2 +

c2

6
∥ ⟨3c(x− α)⟩−1 v∥2L2L2 ≤

∣∣∣∣∫∫ avf dx dy

∣∣∣∣
≤ C−1∥

√
av∥2L6 + C∥f∥2

L6/5 ,

which proves the estimate for C large enough by the interpolation inequality

∥f∥L6L6 ≲ ∥f∥2/3
C0L2∥fx∥

1/3
L2L2 .

The estimate for s = 1 follows with the same tools, this time with the right hand side
of the energy estimate being∫

avfxdx = −
∫
axvf dx−

∫
avxf dx.
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The estimate for s ∈ (0, 1) follows by interpolation.
For the second estimate, we let v = ∂xΓ

(c)u, and set U := |∂x|−1/2u ∈ L2(R2),
V := ∂xΓ

(c)U ∈ C0L
2. Clearly, it holds V := |∂x|−1/2v. By the previous estimate with

s = 1 and Proposition A.3, which can be applied after a linear change of coordinates,
we can establish the bounds

∥V∥C0L2 + ∥Vx∥L2L2 + c∥ ⟨c(x− α)⟩−1 V∥L2L2 ≲ ∥U∥L2 = ∥u∥
Ḣ− 1

2 ,0 .

The last two terms on the left hand side control the quantity c1/2∥1|x−α(y)|≤c−1v∥L2L2 ,
and from that we can achieve the full bound stated in (1.2) by a summation trick and
by translation invariance.

Lemma A.7 (Mapping properties of (∂y−∂2x+2 tanh ∂x+h)
−1). Consider T := Ktr+, the

integral operator as in Proposition A.2 that inverts the operator Ltr+ = ∂y−∂2x+2 tanh ∂x.

(a) The operator T is well-defined from L1(R2) ∩ L2(R2) to L∞(R2), and it holds

∥Tu∥L∞(R2) ≲ ∥u∥L1(R2)∩L2(R2).

The range lies in the subspace C−
0 (R2) := {ψ ∈ L∞ |ψ ∈ C0(R×(−∞, y]) ∀y ∈ R}.

(b) Let h ∈ L1(R2) ∩ L2(R2). Define the operator

Ltr+,h := ∂y − ∂2x + 2 tanh ∂x + h.

The operator is invertible from the space T (L1(R2) ∩L2(R2)) to L1(R2) ∩L2(R2).
Denoting by Th := (Ltr+,h)

−1, we have for a universal constant C > 0

∥Thu∥T (L1(R2)∩L2(R2)) ≲ exp
(
C∥h∥L1(R2)∩L2(R2)

)
∥u∥L1(R2)∩L2(R2).

Proof. Recall that the operator T is the integral operator on R2
x,y with kernel

K(x, y;x0, y0) = Γ+(x− x0, y − y0)η
+(x0) + Γ−(x− x0, y − y0)η

−(x0)

+
1

2
∂−1
x (Γ−(x− x0, y − y0)− Γ+(x− x0, y − y0)) sech

2(x0),

or equivalently, following the notation in Definition A.1,

T = Γ+Mη+ + Γ−Mη− +
1

2
(∂−1
x Γ− − ∂−1

x Γ+)Msech2 .

The estimate in part (a) is then a consequence of the estimates

∥Γ±u∥L∞ ≲ ∥u∥L1∩L2 , ∥∂−1
x Γ±u∥L∞ ≲ ∥u∥L1 ,

which come from Young’s convolution inequality and the fact that the convolution kernels
Γ±, ∂−1

x Γ± belong respectively to L3,∞(R2) ⊂ L2 +L∞, L∞(R2). The statement on the
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range is true for u ∈ C∞
c (R2) as the integral kernel is identically zero for y < y0, and

extends by density to all u.
For part (b), we argue perturbatively. The statement for small h follows by Neumann

series inversion: the estimate

∥h · Tu∥L1∩L2(R2) ≤ ∥h∥L1∩L2(R2)∥Tu∥L∞(R2)

≲ ∥h∥L1∩L2(R2)∥u∥L1∩L2(R2)

implies that the operator Ltr+,hT = Id + hT is invertible on L1 ∩ L2(R2).
For large h, we can repeat the same argument on a subset R × (−∞, y0] ⊂ R2, with
y0 = y0(h) ≪ 0 so that the norm ∥h∥L1∩L2(R×(−∞,y0]) is small enough, and then extend
ψ = (Ltr+,h)

−1u to the whole R2 by solving the initial value problem of the linear PDE{
ψy − ψxx + 2 tanhψx = −hψ + u,

ψ(·, y0) = ψ0

with ψ0 ∈ C0(Rx). The global bounds follow from the a priori estimate

(1.3)

∥ψ(y)∥L∞(Rx) ≤ ∥ψ0∥L∞(Rx) + ∥Tu∥L∞(R2)

+ 2

∫ min{1,y}

y0

∥Γ(·, y − s)∥L2(Rx)∥h(s)∥L2(Rx)∥ψ(s)∥L∞(Rx)ds

+ 2

∫ max{1,y}

1
∥Γ(·, y − s)∥L∞(Rx)∥h(s)∥L1(Rx)∥ψ(s)∥L∞(Rx)ds

+

∫ y

y0

∥∂−1
x Γ(·, y − s)∥L∞(Rx)∥h(s)∥L1(Rx)∥ψ(s)∥L∞(Rx)ds

given by the Duhamel formulation of the problem involving the kernel K, from the
estimates

∥Γ±(·, y)∥Lp(Rx) ≲ |y|−
1
2
(1−1/p), ∥∂−1

x Γ±(·, y)∥L∞(Rx) ≲ 1,

and from Gronwall’s inequality.

A.2 Well-posedness for parabolic equations

Here we state a well-posedness result for the initial value problem (on positive sub-
intervals of Ry) associated to equation (M).

Lemma A.8. Let v0 ∈ L2(Rx)+tanh(x) and u ∈ L2(R× (0,∞)). There exists a unique
solution v ∈ C([0,∞), L2(Rx)) + tanh(x) to equation (M) such that v(·, y) = v0. The
map (v0, u) 7→ v is continuous (equipping the codomain with the compact-open topology).

Proof. The proof relies on a standard fixed point argument. First, calling z(x) :=
v(x)− tanh(x), we equivalently show the global well-posedness of equation

(1.4) zy − zxx − 2(tanh(x)z)x − (z2)x = −ux.
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By the uniqueness properties of the linear heat equation, we can equivalently look for
solutions satisfying the integral equation

z(y) = ey(∂
2
x+2∂x tanh)z0 +

∫ y

0
e(y−s)(∂

2
x+2∂x tanh)∂x(z

2(s)− u(s)) ds,

where ey(∂
2
x+2∂x tanh) and ey(∂

2
x+2∂x tanh)∂x are the integral operators with kernelsKco−(·, y)

and DKtr−(·, y) defined in Proposition A.2. Consider the map

Φ(v) = ey(∂
2
x+2∂x tanh)z0 +

∫ y

0
e(y−s)(∂

2
x+2∂x tanh)∂x(v

2(s)− u(s)) ds.

We note that, up to multiplications by bounded functions, ey(∂
2
x+2 tanh)∂x is essentially

a sum of heat kernels and derivatives of heat kernels, while ey(∂
2
x+2 tanh) is a sum of heat

kernels and a term whose L1 norm grows linearly in y. Thus, we can easily obtain the
bounds

∥Φ(v)∥L∞
T L2 ≲ (1 + T )∥z0∥L2 + (1 + T )∥u∥L2

x,y
+ (T 1/4 + T 3/4)∥v∥2L∞

T L2 ,

∥Φ(v)− Φ(w)∥L∞
T L2 ≲ (T 1/4 + T 3/4)∥v + w∥L∞

T L2∥v − w∥L∞
T
.

This is enough to prove local well-posedness using the Banach fixed point theorem and
standard arguments. The global well-posedness follows from the standard energy esti-
mate of equation (1.4),

∥z∥L∞
T L2 + ∥zx∥L2

TL
2 ≲ T

1
2 ∥z∥L∞

T L2 + ∥u∥L2L2 ,

and Gronwall’s inequality.

Lemma A.9. Let R > 0. There exists T > 0 such that, given z0 ∈ L2(Rx; cosh2(x)dx),
V, f, h ∈ L3(Rx× (0, T )), g ∈ L3(Rx× (0, T )) with norms bounded by R > 0, the Cauchy
problem{

zy − zxx − 2((tanh(x) + U)z)x = (z2)x + sech2(x)(f + g) + (sech2(x)h)x

z(x, 0) = z0(x)

admits a unique solution z ∈ C([0, T ], L2(R; cosh2(x)dx)). Moreover, the map

(z0, U, f, g, h) 7→ z

is continuous.

Proof. Consider w := cosh(x)z. The equation for w becomes

wy − wxx + w − 2 sech2w − 2 cosh · (sechUw)x = sech · (w2)x − 2 sech tanhw2

+ cosh · (sech2 · (f + g) + (sech2 h)x)

and the proof follows the lines of a classical fixed point argument as in Lemma A.8.
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B The Miura map with L2 data

This appendix, originally a first attempt in the construction of solutions to (M), de-
scribes the situation of small data u ∈ L2(R2). This is a simplified setting which can
be instructive for the reader, and we will rely to some extent on this subsection for the
proof of Corollary B. The problem with using exclusively this approach is that we lack
a uniqueness theorem for the solutions of (M) with generic L2 data.

The main idea is to prove a monotonicity estimate for the initial value problem of
equation (M) to obtain global solutions with uniform bounds on any interval [a,∞),
and then let a → −∞ to obtain a solution defined on the whole R2 by compactness.
We start with the following lemma, which gives a simple decomposition of a function in
L2(Rx)+tanh(x). Concerning this decomposition, we will use the letter β to distinguish
this shift parameter from the shift α in the rest of the paper, although they are both
quantities that represent the positions of the kink.

We make use of Notation 1.3 throughout all this subsection: fβ(x) := f(x − β) if
β ∈ R, and fβ(x, y) := f(x− β(y)) if β : R → R. We define the quantity

|||v0|||L2(R) := min
γ∈R

∥v0 − tanhγ ∥L2(R).

Lemma B.1. There exists θ0 > 0 and an analytic decomposition map v 7→ (w, β) from
Aθ0 ⊂ L2(R)+tanh(x) to L2×R, where Aθ0 := {v | |||v|||L2 < θ0}, such that v = tanhβ +w
and ∫

R
w sech2β dx = 0.

Moreover, (w, β) is uniquely determined by the above properties under the hypothesis
that v ∈ Aθ0.

Proof. The first part is a consequence of the implicit function theorem. The map

F : (L2(R) + tanh(x))× R → R,

F (v, β) =

∫
R
(v − tanhβ) sech

2
β dx

is such that F (tanhγ , γ) = 0, γ ∈ R, and has β-derivative at (v, β) = (tanhγ , γ) equal to

∂βF (tanhγ , γ) = ∥ sech2γ ∥2L2(R) > 0.

By the implicit function theorem, there exists ε1 > 0 and an analytic function

β : BL2

ε1 (tanhγ) → L2 × R

such that F (v, β(v)) = 0. Moreover, ε1 does not depend on γ by translation invariance,
and any two such maps agree where they overlap.

For the second part, assume without loss of generality that v = w + tanh(x),∫
Rw sech2(x) dx = 0. Then,∫

R
(w + tanh− tanhβ) sech

2
β dx = w ∗ sech2(β) + tanh ∗ sech2(β).
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It is then clear that w ∗ sech2(0) = 0 and, for ∥w∥L2 smaller than a suitable ε2 > 0,
the function w ∗ sech2 will have an L∞ norm and a Lipschitz constant so small that it
will never be equal to − tanh ∗ sech2(β) besides at β = 0. The claim follows by choosing
θ0 = min{ε1, ε2}.

Lemma B.2. Let u ∈ L2(R × (0,∞)) small, and v0 ∈ L2(R) + tanh(x) be such that
|||v0|||L2(R) is small enough. The solution v ∈ C([0,∞), L2(R))+tanh(x) of equation (M)
with initial datum v|y=0 = v0 given by the global well-posedness theory (see Lemma A.8)
satisfies

sup
y∈[0,∞)

|||v(y)|||L2(R) ≲ |||v0|||L2(R) + ∥u∥L2L2 .

Moreover, called w and β the decomposition given by Lemma B.1, we have the bounds

∥w∥L∞L2 + ∥wx∥L2L2 + ∥ sechβ w∥L2L2 + ∥βy∥L2 ≲ ∥u∥L2
x,y

+ |||v0|||L2 .

Finally, called h := w − k, with k ∈ C([0,∞), L2(R)) being the unique solution to
ky − kxx = −ux with k(·, 0) ≡ 0, we have the bounds

∥hy∥L3/2+L2(R×(0,∞)) + ∥hxx∥L3/2+L2(R×(0,∞)) ≲ ∥u∥L2
x,y

+ |||v0|||L2 .

Proof. Assume first that v0 and u are test functions. The solution v given by Lemma
A.8 is then a classical solution in C∞([0,∞), H∞(R) + tanh), and for a maximal time
T ∗ > 0, the quantity |||v(y)|||L2 remains small in [0, T ∗). It follows by Lemma B.1 that
there exists a decomposition w ∈ C∞L2, β ∈ C∞([0, T ∗)) such that

v = w + tanhβ,

∫
R
w sech2β dx = 0 ∀y ∈ [0, T ∗).

The equation for w then reads

wy − wxx − 2(tanhβ w)x = (w2)x − ux + βy sech
2
β .

We multiply by w and integrate integrating in x. Using Lemma D.1 with the orthogo-
nality condition

∫
sech2β w dx = 0, integrating then in y and using Cauchy–Schwarz, we

obtain the estimate

∥w∥2L∞
[0,T∗)L

2 + ∥wx∥2L2
[0,T∗)L

2 + ∥ sechβ w∥2L2
[0,T∗)L

2 ≲ ∥u∥2L2
[0,T∗)L

2 + |||v0|||2L2 .

By the smallness assumptions, we have an a priori uniform bound on the quantity
|||v(y)|||L2 , which implies T ∗ = +∞ by a continuity argument.

The only term remained to estimate is the derivative of β. From the equation, we
get

0 =
d

dy

∫
R
w sech2β dx

=

∫
R
wy sech

2
β dx− βy

∫
w (sech2β)x dx
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=

∫
R

(
(sech2β)xx − 2 tanh · (sech2β)x

)
w dx+

∫
R
sech2β(w

2)x dx

+
4

3
βy +

∫
R
u sech2β dx− βy

∫
R
w(sech2β)x dx.

If ∥w∥L∞L2 is small enough, we thus obtain

|βy(y)| ≲
∫
R
(|w|+ |wx|) sech2β dx+

∫
R
|w||wx| sech2β dx+

∫
R
|u| sech2β dx

=⇒ ∥βy∥2L2(Ry)
≲ ∥v0∥2L2(Rx)

+ ∥u∥2L2(R2
x,y)

.

For general data v0 and u, we can argue by density using the CTL
2 continuity and the

continuity of the decomposition map in Lemma B.1 to obtain the same conclusion and
the desired bounds on w, wx, βy.

Finally, we consider h as defined in the statement. Then, h satisfies the equation

hy − hxx = (2 tanhβ w + w2)x + βy sech
2
β .

Using the previous estimates, we note that the right hand side of the equation lies in

L
3/2
x,y +L2

x,y. Thus, by the Lp boundedness of the operator ∂2x(∂y−∂2x)−1 from Proposition
A.3 and the uniqueness properties of the heat operator, this same bound is transferred
on hy and hxx, hence the last statement.

We now want to build an eternal solution, that is, a solution of (M) living in R2.
We will use the a priori bounds proved for the solution.

Proposition B.3. Let u ∈ L2(R2) be small enough, and β0 ∈ R. There exists an eternal
solution v ∈ C0(Ry, L2(Rx)) of equation (M) such that∫

R
sech2(x− β0)v(x, 0) dx = 0.

Moreover, it holds supy∈R |||v(y)|||L2 < θ0 as in Lemma B.1, and the unique decomposition
v = tanhβ +w given for each y ∈ R by the Lemma satisfies w ∈ C(Ry, L2(Rx)) and the
bounds

∥w∥L∞L2 + ∥wx∥L2(R2) + ∥ sechβ w∥L2(R2) + ∥βy∥L2(Ry) ≲ ∥u∥L2(R2) .

Proof. By translation invariance, we assume β0 = 0. By Lemma B.2, we can find
solutions vN ∈ L∞L2 + tanh(x) to (M) with initial times yN → −∞ and initial data
vN0 (x) = tanh(x − βN0 ), with uniform bounds on the decompositions given by Lemma
B.1, which we will call wN and βN . Using the estimate on βNy in Lemma B.2 and

by continuity of the decomposition map of Lemma B.1, we can choose βN0 such that
βN (0) = 0, i.e., ∫

R
sech2(x)vN (x, 0) dx = 0.
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Now, we can use the uniform estimates for vN given by Lemma B.2 to have that, up
to subsequences and using a diagonal construction, βN converges locally uniformly to a
function β with β(0) = 0 and ∥βy∥L2 ≲ ∥f∥L2

x,y
. The sequence wN converges ∗-weakly in

L∞L2 to a function w ∈ L∞L2, the derivatives wNx converge weakly to wx in L
2(R2), and

the uniform bounds of wN are carried over to w. We will then call v := w+tanh(x−β).
Moreover, by the previous Lemma, we can assume weak convergence of (wN − kN )y
and (wN − kN )xx in L3/2 + L2(R2) after removing kN := −(∂y − ∂2x)

−1(1{y>yN}ux),
which converges to k := −(∂y − ∂2x)

−1ux in L6(R2) by the estimates of Proposition
A.3. By Rellich’s compactness Theorem, wN converges strongly in L2

loc(R2) to w, which
immediately implies that vN → v in L2

loc(R2), and the same happens for the first order
x-derivatives. It follows by continuity that v satisfies the equation (M) distributionally.
By the uniqueness properties of the heat equation and the a priori estimate, v satisfies the
Duhamel formulation of the equation, so the continuity in y holds due to Proposition A.3.
It is a consequence of the strong convergence that (w, β) coincides with the decomposition
given by Lemma B.1.

C Up and V p spaces

We refer to [7, 14, 29] for the definitions in this appendix.

C.1 Definition of the spaces Up and V p

Let I = (a, b) ⊂ R an open, possibly unbounded interval. Denote by Ī := I ∪ {a, b} ⊂
R ∪ {±∞}. Denote by R the set of L2(R2)-valued regulated functions on I, that is,
bounded functions which admit left and right limits at any given point of the domain
(and admit right limit and left limit at a, b respectively). Let Rrc ⊂ R the subset of all
right continuous functions u such that limt→a+ u(t) = 0. The spaces R,Rrc are Banach
spaces when equipped with the supremum norm. Moreover, Rrc embeds naturally into
S ′(I × R2).

Define the set of all partitions of I

P = {τ = (tj)
N
j=1 | N ∈ N, tj ∈ I, tj < tj+1},

corresponding to the decompositions of I into subintervals. We say that u is a step
function if there exists τ ∈ P and f1, . . . , f|τ | ∈ L2(R2) such that

u(t) =

|τ |∑
j=1

1[tj ,tj+1)(t)fj ,

where we adopt as a convention t0 = a, t|τ |+1 = b. We denote the set of step functions
as Src and note that Src ⊂ Rrc. A step function u ∈ Src is a Up-atom if in the above

definition the vectors (fj)
|τ |
j=1 satisfy

( |τ |∑
j=1

∥fj∥pL2(R2)

) 1
p
= 1.
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The space Up is defined to be the space

Up :=

u =

∞∑
j=1

cjuj

∣∣∣ (cj)j≥1 ∈ ℓ1(N+,C), (uj)j≥1 U
p−atoms

 ,

with the norm

∥u∥Up = inf


∞∑
j=1

|cj |
∣∣∣ ∃ (uj)j≥1 U

p-atoms : u =
∑
j∈N

cjuj

 .

Since the Up−atoms belong to Rrc with bounded norm, and since the Up norm controls
the supremum norm, the above sum is well-defined and one has Up ↪→ Rrc.

We define the spaces V p for completeness, although we will not use them. Define the
p−variation of a function v : I → L2 as the seminorm

|v|V p = sup
(tj)

|τ |
j=1∈P

( |τ |−1∑
j=1

∥v(tj+1)− v(tj)∥pL2

) 1
p

and ∥v∥V p = ∥v∥L∞
t L2

x,y
+ |v|V p . Note that all functions whose V p seminorm is finite

belong to R, but may contain functions which are identically zero outside a countable
set. Let V p be the space of all functions v ∈ Rrc such that |v|V p <∞. On the space V p,
the seminorm | · |V p is in fact a norm, due to the condition at −∞, and it is equivalent
to the norm ∥ · ∥V p .

Definition C.1 (Adapted function space, [15]). We define UpS as the space of functions
of the form etSf(t), f ∈ Up, with norm ∥u∥Up

S
=
∥∥e−tSu∥∥

Up , where S = −∂3x − 3∂−1
x ∂2y .

Define Żs(I) as the closure of all u ∈ C(I,H1,1(R2)) ∩ U2
S such that

∥u∥Żs :=

∑
λ∈2Z

λ2s ∥P xλu∥
2
U2
S

 1
2

<∞,

in the space Cb(I, Ḣ
s,0(R2)) with respect to the Żs−norm.

Lemma C.2. The following estimates hold:

∥u∥Lp
tL

q
x,y

≲p ∥u∥U2
S
,

1

p
+

1

q
=

1

2
, p ∈ (2,∞],

∥∂xu∥L∞
x L2

t,y
+ ∥∂−1

x ∂yu∥L∞
x L2

t,y
≲ ∥u∥U2

S
.

Proof. By the definition of U2 and arguing on U2-atoms first (see [15, Corollary 2.18]),
the estimates follow from the corresponding estimates for the linear flow t 7→ etS . For a
solution u = etSu0, the usual Strichartz estimates hold

∥u∥Lp
tL

q
x,y

≲p ∥u0∥L2(R2),
1

p
+

1

q
=

1

2
, p ∈ (2,∞]
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(see [29]), which imply the first estimate. Analogously, the smoothing estimate for linear
solutions of KP-II,

∥∂xetSu0∥L∞
x L2

t,y
+ ∥∂−1

x ∂xe
tSu0∥L∞

x L2
t,y

≲ ∥u0∥L2(R2),

which is proved in [20, Lemma 3.2], implies the second estimate (the first part of the
second estimate is actually already proved in [15, Corollary 2.18]).

Corollary C.3. It holds Ż−1/2((0,∞)) ↪→ Cb([0,∞), Ḣ− 1
2
,0(R2))∩L6((0,∞), |∂x|

1
2L3(R2)).

Proof. The first estimate is immediate by the definition of U2 and Minkowski integral
inequality. Note that a function in Ż− 1

2 is well-defined at t = 0 because of the definition
of U2. For the second one, we first use Lemma C.2 to estimate the quantity∑

λ∈2Z
λ−1 ∥P xλu∥

2
L6
tL

3
x,y

 1
2

≲ ∥u∥
Ż− 1

2
.

Minkowski’s integral inequality is then used multiple times to bring the summation on
λ inside the norm, and finally the square function characterization of the Lp norm

∥(−∂2x)s/2f∥L3(R) ∼ ∥(
∑
λ∈2Z

λs|Pλf |2)
1
2 ∥L3(R)

is enough to conclude.

Remark C.4. It holds the embedding Ż− 1
2 ((0,∞)) ↪→ L2

unif((0,∞) × R2
x,y). In fact,

combining the smoothing estimate of Lemma C.2 with the embedding U2 ↪→ L∞L2

yields ∑
λ∈2Z

λ−1∥P xλu∥2U2
S
≳ ∥P x≤1u∥2L∞

t L2
x,y

+
∑
λ≥1

λ∥P xλu∥2L∞
x L2

t,y

≳ ∥P x≤1u∥2L∞
t L2

x,y
+ ∥P x≥1u∥2L∞

x L2
t,y
.

By interpolating between the two estimates in Lemma C.2, with the same argument, it
is possible to show that u ∈ Lpunif((0,∞)× R2), p < 8/3.

Moreover, the operator ∂−1
x ∂y extends to a bounded operator from Ż− 1

2 ((0,∞)) to some
Banach space of tempered distributions, since by Lemma C.2 it holds∑

λ∈2Z
λ−1∥P xλ ∂−1

x ∂yu∥2L∞
x L2

t,y

 1
2

≲ ∥u∥
Ż− 1

2
.

The same statements hold for the space X
1/2+ε,b1,0
T as in Definition 4.1, with different

estimates. The spaces X
1/2+ε,b1,0
T , 0 < T < ∞ and Ż− 1

2 ((0,∞)) contain all solutions

of (KP-II) with initial data in L2(R2), Ḣ− 1
2
,0(R2) respectively (see Proposition 4.2 and

Theorem 4.5 and Proposition): in particular all solutions from the well-posedness theory
with the above data lie in L2

loc((0,∞) × R2) and the operator ∂−1
x ∂y is well-defined on

those solutions. This means that all terms in (KP-II) are well-defined.
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D Supplementary lemmas and proofs

D.1 Miscellaneous results

Lemma D.1 (Lower bound on a quadratic form). For every w ∈ H1(R), the inequality∫
R
(wx)

2 dx− 2

∫
R
sech2(x)w2 dx ≥ 0

holds, assuming one of the orthogonality conditions

⟨w, sech⟩L2 = 0, or ⟨w, sech2⟩L2 = 0.

Proof. From classical operator theory [10], we know explicitly the negative energy states
of the Pösch–Teller type Schrödinger operators Hn = −∂2x−n(n− 1) sech2(x), n ≥ 2. In
particular, the operator

H2 = −∂2x − 2 sech2(x)

has its ground state w0 = sech(x) as the only negative energy state, with eigenvalue −1,
while the operator

H3 = −∂2x − 6 sech2(x)

has two bound states, v0 = sech2(x) and v1 = tanh(x) sech(x), with energies that are
respectively −4 and −1. The goal is to prove that the quadratic form Q(·) := ⟨·, H2·⟩ is
non-negative on the hyperplanes w⊥

0 and v⊥0 .
The first statement is immediate, since w0 is the only negative eigenvector of H2.

Concerning the orthogonal of v0, we argue as follows. Since w0 is even, the quadratic
form is positive on the subspace of odd functions. By the fact that the even and odd
subspaces are invariant under H2, we just need to prove that the form is positive on the
space M of even functions which are orthogonal to v0. For that, we look at H3. The
state v1 is odd, so functions in M are orthogonal to both v0 and v1. Thus, the form
⟨·, H3·⟩ is positive on M , which implies the same for Q by monotonicity.

Lemma D.2 (Any distribution admits an antiderivative). Let u ∈ D ′(Rn) and x be one
of the coordinates of Rn. There exists U ∈ D ′(Rn) such that ∂xU = u.

Proof. Denote as x′ ∈ Rn−1 the remaining coordinates, and call e1 the vector with
coordinates x = 1, x′ = 0. Let χ ∈ C∞(R) be a smooth non-decreasing cutoff function
such that χ(x) = 0 for x ≤ −1 and χ(x) = 1 for x ≥ 1. Consider u+ := χu, u− :=
(1 − χ)u, where χ is considered a function on Rn depending only on the x variable.
Consider the Heaviside function H := 1[0,∞) in the variable x, and let δn−1

0 ∈ D ′(Rn−1)

be the Dirac delta. For f ∈ L1
loc(R), let f ⊗ δn−1

0 ∈ D ′(Rn) be defined as

f ⊗ δn−1
0 (ϕ) :=

∫
R
f(t)ϕ(te1)dt.

Then by a direct verification, the convolutions U+ := (H⊗δn−1
0 )∗u+, U− := ((H−1)⊗

δn−1
0 ) ∗ u− are well defined, they lie in D ′(Rn), and they satisfiy ∂xU

± = u±. It follows
that U := U+ + U− satisfies ∂xU = u.
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D.2 Some detailed proofs

Proof of Lemma 3.22. As usual, we will use Notation 1.3 and write fα(x, y) = f(x −
α(y), y) for α = α(y) (we use the same notation when f and/or α are independent of y).
Recall that vc is defined as

vc =
v+eV

+−c + v−eV
−+c

eV +−c + eV −+c

=(η+◦ ν)v+ + (η−◦ ν)v−,

where we set

(4.1) ν(x, y) :=
1

2
(V +(x, y)− V −(x, y))− c.

The function c 7→ vc|y=0 is a curve in L2(Rx; cosh2(x)dx) +G0|y=0 by Lemma 3.21 and
can be easily verified to be smooth, so by Lemma 3.4 parts (b) and (c), the map c 7→ α0

is well-defined and smooth. Next, we differentiate (3.14) in the variable c to get

∂cα0(c) =

∫
R sech2◦ ν(·, 0) · (v+ − v−)|y=0 dx∫

R sech2α0
· (v+ − v−)|y=0 dx

.

Claim 1. If x0 ∈ R is such that ν(x0, y0) = 0, then

∥ sech2◦ ν|y=y0 − sech2x0 ∥L1∩L∞(R) + ∥η±◦ ν|y=y0 − η±x0∥L1∩L∞(R) ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
.

⌜ Proof of Claim 1. We fix y = 0 for simplicity and focus on the sech2 case, since the
other is analogous. It holds ∂xν(x, y) = 1+ ṽ+−ṽ−

2 , so by Corollary 3.2 part (b) we have

|ν(x2, y)− ν(x1, y)− (x2 − x1)| ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
|x2 − x1|

1
2 .

In particular, for some C > 0,

|ν(x, 0)− (x− x0)| ≤ C∥u∥
Ḣ− 1

2 ,0(R2)
|x− x0|1/2,(4.2)

|ν(x, 0)| ≥ |x− x0| − C∥u∥
Ḣ− 1

2 ,0(R2)
|x− x0|1/2.(4.3)

Moreover, | ddx sech
2(x)| = |−2 tanh(x) sech2(x)| ≤ 8e−2|x|. So, calling σ := C∥u∥

Ḣ− 1
2 ,0(R2)

,

| sech2(ν(x, 0))− sech2(x− x0)| =
∣∣∣∣∫ 1

0
(sech2)x((x− x0) + s(ν(x, 0)− (x− x0))) ds

∣∣∣∣
· |ν(x, 0)− (x− x0)|

(4.2), (4.3) −→ ≲ min{1, e−2(|x−x0|−σ|x−x0|1/2)}σ|x− x0|1/2

≲ e−2(|x−x0|−|x−x0|1/2)+ |x− x0|1/2∥u∥
Ḣ− 1

2 ,0(R2)
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=: τ(x− x0)∥u∥
Ḣ− 1

2 ,0(R2)
,

where the last inequality holds for small u. The claim is proved since τ ∈ L1 ∩ L∞(R).
■ ⌟

Let x0 be any point such that ν(x0, 0) = 0. By Corollary 3.2, it holds

(4.4) ∥(v+ − v−)− 2∥C0,yL2
x
≲ ∥u∥

Ḣ− 1
2 ,0(R2)

.

This fact and Claim 1 imply that the numerator and denominator in the expression
of ∂cα0 are uniformly bounded from above and away from zero by the smallness of
(v+ − v−)|y=0 − 2 in L2(Rx) (as already noted in the proof of Proposition 3.4), and that

sup
c∈R

|∂cα0(c)− 1| ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
.

In particular, c 7→ α0 is a C1-diffeomorphism of R.
Concerning γ0, the map

(c, γ0) 7→ F (c, γ0) =

∫
R2

ργ0
v+eV

+−c + v−eV
−+c

eV +−c + eV −+c
dx dy

is well-defined and smooth with γ0−derivative

∂γ0F (c, γ0) =

∫
R2

ργ0∂xv
cdx dy.

From Proposition 3.21 and the estimates of Corollary 3.8, we know that vc = tanhα+w,
where ∥w∥L3(R2) + ∥αy∥L2(Ry) ≲ ∥u∥

Ḣ− 1
2 ,0(R2)

and α(0) = α0. Since w ∈ L3(R2) and

|α(y)−α0| ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
|y|1/2, for fixed c we have F (c, γ0) → ±1 as γ0 → ±∞, so that

at least one solution of (3.15) exists. Moreover, if γ0 satisfies (3.15), then

min{1, |γ0 − α0|} ≲

∣∣∣∣∫ ργ0 tanhα0 dx dy

∣∣∣∣
≤
∣∣∣∣∫ ργ0 tanhα dx dy

∣∣∣∣+ ∣∣∣∣∫ ργ0 · (tanhα− tanhα0)dx dy

∣∣∣∣
(3.15) −→ ≤

∣∣∣∣∫ ργ0w dxdy

∣∣∣∣+ ∥αy∥L2(Ry)

∫
ργ0 |y|

1
2 dx dy

≲ ∥u∥
Ḣ− 1

2 ,0(R2)
,

which in turn implies, since u is small, that if the map c 7→ γ0 exists,

|γ0(c)− α0(c)| ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
.

Now note that, since ρ is radially decreasing and with unitary integral,∫
R2

ρ(x, y) sech2(x) dx dy ≥ 1

2

∫ 1

−1
sech2(x) dx
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= tanh(1)

> 3/4.

Writing vcx = sech2α+wx = sech2α0
+(sech2α− sech2α0

) + wx, with a similar computation
as above, there exists a universal δ > 0 such that, for u small enough,

(4.5) |F (c, γ′)| < δ =⇒ ∂γ0F (c, γ
′) > 3/4.

In particular, ∂γ0F (c, γ0) > 3/4 if γ0 satisfies (3.15). A smooth map c 7→ γ0 exists then
locally by the implicit function theorem, and it extends to a global, unique map due to
the fact that whenever (3.15) holds, ∂γ0F (c, γ0) is strictly positive, so that two distinct
zeroes of the function γ0 7→ F (c, γ0) cannot exist. An analogous computation to that of
the case α0 shows that

∂cγ0(c) =
1
2

∫
R2 ργ0 · (v+ − v−) sech2◦ ν dx dy∫

R2 ργ0v
c
x dx dy

=

∫
R2 ργ0 · (v+ − v−) sech2◦ ν dx dy∫

R2 ργ0 ·
(
sech2◦ ν · 1

4(v
+ − v−)2 + η+◦ ν · v+x + η−◦ ν · v−x

)
dx dy

.

The terms sech2◦ ν, η±◦ ν are treated in the same way as in the case of α0 using Claim
1, while the remaining terms can be controlled using again the bound mentioned above
on (v+ − v−)− 2 in C0(Ry, L2(Rx)). In the end, we get

(4.6) sup
c∈R

|∂cγ0(c)− 1| ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
.

As said above, the map c 7→ γ0 is a smooth change of variables.
We have proved already estimate (3.16). Estimate (3.17) follows by combining the

bounds on |∂cα0 − 1| and |∂cγ0 − 1| we have already obtained, with the bounds

|γ0(0)| ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
, |α0(0)| ≲ ∥u∥

Ḣ− 1
2 ,0(R2)

.

These two bounds are in turn equivalent by (3.16), so we focus on proving that |α0(0)| ≲
∥u∥

Ḣ− 1
2 ,0(R2)

.

Claim 2. If x0 ∈ R is such that ν(x0, 0) = 0, then

|x0 − α0(c)| ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
.

⌜ Proof of Claim 2. Using (3.14) and the identity η+ + η− = 1, it holds∣∣∣∣∫
R
(Gα0 −Gx0)|y=0 dx

∣∣∣∣ = ∣∣∣∣∫
R
(vc −Gx0)|y=0dx

∣∣∣∣
=

∣∣∣∣∫
R
((v+ − v−)(η+◦ ν − ηx0))|y=0 dx

∣∣∣∣
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≲ ∥u∥
Ḣ− 1

2 ,0(R2)
,

where the last inequality follows from Claim 1 and the bounds on (v+−v−)−2 as before.
The claim follows by Lemma 3.4, part (a). ■ ⌟

Fix now c = 0. By Claim 2, it is enough to show that |x0| ≲ ∥u∥
Ḣ− 1

2 ,0(R2)
for any x0

as in the statement of the Claim (such a x0 always exists since x 7→ ν(x, 0)−x is globally
Hölder continuous by (4.4)). From Definition 3.20, and since ρ is radially symmetric, it
holds ∫

R2

ν(x, y)ρ(x, y) dx dy = 0.

In particular,

|ν(0, 0)| =
∣∣∣∣∫

R2

ν(0, 0)ρ(x, y) dx dy

∣∣∣∣
=

∣∣∣∣∫
R2

(ν(0, 0)− ν(x, y))ρ(x, y) dx dy

∣∣∣∣
Lemma 3.18 −→ ≲ ∥u∥

Ḣ− 1
2 ,0(R2)

∫
R2

ρ(x, y)|(x, y)|1/4 dx dy

≲ ∥u∥
Ḣ− 1

2 ,0(R2)
.

Now, by (4.2),

|x0| ≤ C∥u∥
Ḣ− 1

2 ,0(R2)
|x0|1/2 + |ν(0, 0)|

≤ C∥u∥
Ḣ− 1

2 ,0(R2)
=⇒ |x0|

1 + |x0|1/2
≲ ∥u∥

Ḣ− 1
2 ,0(R2)

,

which proves the bound for small u.
For the bi-Lipschitz bound, we proceed as follows. First, by estimate (4.6), it is

enough to show the Lipschitz continuity of the forward map (u, c) 7→ (u, γ0). By the
same estimate and the triangle inequality, it is enough to show

(4.7) |γ0,1 − γ0,2| ≲ (1 + |c|)∥u1 − u2∥
Ḣ− 1

2 ,0(R2)

for small u1, u2, the corresponding γ0,1, γ0,2 satisfying (3.15) with v
c
j = V(−1,1)(uj , (c,−c)),

and for c ∈ R which is shared by both solutions. By the bounds in Lemma 3.18 and the
analiticity of the map u 7→ V + − V −, it holds

(4.8) ∥ν1 − ν2∥C0,1/4
unif (R2)

≲ ∥u1 − u2∥
Ḣ− 1

2 ,0(R2)
,

with νj corresponding to uj and defined as in (4.1). By the normalization condition
(3.12), it holds

∫
ρνj dx dy = −c, j = 1, 2, in particular,

(4.9)

∫
R2

ρ · (ν1 − ν2) dx dy = 0.
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Now we consider the difference vc1 − vc2, and write it as

vc1 − vc2 = η+◦ ν1 · v+1 + η−◦ ν1 · v−1 − η+◦ ν2 · v+2 − η−◦ ν2 · v−2
Corollary 3.2 (a) −→ = tanh◦ ν1 − tanh◦ ν2 + (η+ ◦ ν1 − η+ ◦ ν2)ṽ+1

+ (η− ◦ ν1 − η− ◦ ν2)ṽ−1 +OL3(∥u1 − u2∥
Ḣ− 1

2 ,0(R2)
),

where ṽ±j = v±j ∓ 1. The remainder goes to zero linearly with ∥u1 − u2∥
Ḣ− 1

2 ,0(R2)
by

Corollary 3.2, since the map u 7→ ṽ± is analytic with values in L3(R2). The rewriting
above implies∣∣∣∣∫

R2

ργ0,1 · (vc1 − vc2) dx dy

∣∣∣∣ ≤ ∫
R2

ργ0,1 · | tanh◦ ν1 − tanh◦ ν2|(1 + |ṽ+1 |+ |ṽ−1 |) dx dy

+O(∥u1 − u2∥
Ḣ− 1

2 ,0(R2)
)

≲
∫
R2

ργ0,1 · |ν1 − ν2|(1 + |ṽ+1 |+ |ṽ−1 |) dx dy

+ ∥u1 − u2∥
Ḣ− 1

2 ,0(R2)

(4.9), (4.10) −→ ≲ |γ0|∥ν1 − ν2∥C0,1/4
unif (R2)

+ ∥u1 − u2∥
Ḣ− 1

2 ,0(R2)

(4.8), (3.17) −→ ≤ (1 + |c|)∥u1 − u2∥
Ḣ− 1

2 ,0(R2)
.

where we used the estimate from Corollary 3.2

(4.10) ∥ṽ±j ∥L3(R2) ≲ ∥uj∥
Ḣ− 1

2 ,0(R2)
≪ 1.

Since it holds (3.15) with γ0,1 and vc1, we simply have∫
R2

ργ0,1v
c
2 dx dy ≲ (1 + |c|)∥u1 − u2∥

Ḣ− 1
2 ,0(R2)

.

By the property (4.5) applied to u2, v
c
2, estimate (4.7) is proved when the right hand side

is less than a universal constant, which we can assume by the smallness of u1, u2.

Proof of Lemma 4.6. Assume u ∈ ∂xH
∞(R2) by density. By considering αε = α ∗ ρε a

regularization of α, with regularization parameter ε = Kc
1
2 ∥αy∥2 for a universal K large

enough, we can assume α ∈ H∞(R) and that

δ := c1/4∥αy∥L∞

is small. In fact, by the properties of the regularization, we have c1/4∥αε,y∥L∞ ≤
c1/4ε−

1
2 ∥αy∥L2 = K−1, and

⟨c
1
2 (x− α(y))⟩ ≤ ⟨c

1
2 ∥α− αε∥L∞⟩ ⟨c

1
2 (x− αε(y))⟩ ,

with c
1
2 ∥α− αε∥L∞ ≤ c

1
2 ε

1
2 ∥αy∥L2 = Kc3/4∥αy∥2L2 = KL.
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Call u(t) := etSu0, and let a(x) = (π + arctan(c
1
2x)). From

ut − cux + uxxx + 3∂−1
x uyy = 0,

one gets

1

2

d

dt

∫
R2

aα|u|2 dx dy = c

∫
aαuux −

∫
aαuuxxx − 3

∫
aαu∂

−1
x uyy

= − c
2

∫
ax,α|u|2 +

∫
ax,αuuxx +

∫
aαuxuxx

− 3

∫
αyax,αu∂

−1
x uy + 3

∫
aαuy∂

−1
x uy

= −3

2

∫
ax,α|ux|2 +

1

2

∫
axxx,α|u|2 −

c

2

∫
ax,α|u|2

− 3

∫
αyax,αu∂

−1
x uy −

3

2

∫
ax,α|∂−1

x uy|2.

Note that |axxx| ≤ c
2 ax. Integrating in the time variable, we obtain the estimate

c∥√ax,αu∥2L2
TL

2 + ∥√ax,α∂xu∥2L2
TL

2

+∥√ax,α∂−1
x uy∥2L2

TL
2 ≲ ∥

√
aαu0∥2L2 + ∥ax∥

1
2
L∞∥αy∥L∞

y

× ∥√ax,αu∥L2
TL

2∥√ax,α∂−1
x uy∥L2

TL
2

≲ ∥u0∥2L2 + δ∥√ax,αu∥L2
TL

2∥√ax,α∂−1
x uy∥L2

TL
2 .

For δ ≥ 0 small enough, the above implies

∥√ax,α∂xu∥L2
TL

2 + ∥√ax,α∂−1
x uy∥L2

TL
2 ≲ ∥u0∥L2 .

Substituting a with its definition, we get the desired inequality.

Proof of Lemma 5.7. The statement is monotonically weaker as p grows by Hölder’s
inequality, so we assume p <∞. By rescaling the measure µ, we can assume µ(B1(0)) =
1, in particular µ(Bj) ≤ 2jD for j ∈ N, where Bj := B2j (x0). For the sake of exposition,
we prove the Lemma under the assumption

(4.11) µ(Bj) ∼ 2jD

and we mention at the end how to modify the proof in the general case.

Step 1. Let χj = 1Bj , and Aj := Bj \Bj−1. For j ≥ 0, define

fj := fχj −
∫
X fχj dµ∫
X χj dµ

χj ,

and consider the decomposition

f = f0 +
∑
j≥1

fj − fj−1.
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All the functions in the decomposition are in Lp(X), have mean zero and have support
in a ball, so they are multiples of p-atoms, as in Definition 5.5. By what said in Remark
5.6 and the definition of p-atoms, to show the claim and the above bound, it is enough
to show that

∥f0∥Lp ≲ ∥wf∥Lp ,
∑
j≥1

2jD/p
′∥fj − fj−1∥Lp ≲ ∥wf∥Lp ,

since the support of fj − fj−1 is contained in the ball Bj , whose measure is comparable
to 2jD.

Step 2. The first bound is immediate. For the second bound, we have

∥fj − fj−1∥Lp ≤ ∥f∥Lp(Aj) + µ(Bj)
−1/p′

∣∣∣∣∣
∫
Bj

f dµ

∣∣∣∣∣+ µ(Bj−1)
−1/p′

∣∣∣∣∣
∫
Bj−1

f dµ

∣∣∣∣∣ .
In addition to (4.11), we have the bounds∣∣∣∣∣

∫
Bj

f dµ

∣∣∣∣∣ =
∣∣∣∣∣
∫
Bc

j

f dµ

∣∣∣∣∣ ≤ ∥1/w∥Lp′ (Bc
j )
∥wf∥Lp

≲ 2−jε∥wf∥Lp ,

∥f∥Lp(Aj) ≤ ∥1/w∥L∞(Bc
j )
∥wf∥Lp

≲ 2−j(D/p
′+ε)∥wf∥Lp ,

which combined yield
2jD/p

′∥fj − fj−1∥Lp ≲ 2−jε∥wf∥Lp ,

so we obtain the claim and prove the proposition under the additional assumption (4.11).

Step 3. For a general doubling metric measure space we can modify the proof as
follows. If µ(X) < ∞, then it is easy to show by contradiction that X is d-bounded,
so the statement is immediate since any Lp function with zero mean is also a multiple
of a p-atom. If µ(X) = ∞, we set Bj = BRj (x0), with (Rj)j being a sequence of radii
Rj → ∞ such that R0 = 1, Rj ≥ 2Rj−1, 2µ(Bj−1) ≤ µ(Bj) ≤ 4µ(Bj−1), and repeat the
same argument in the previous two steps without other changes.

Proof of Lemma 5.8. The way of proving this estimate is classical. We recall the def-
inition of parabolic norm and metric given in Definition 3.15. First, by the change of
coordinates

(x, y) 7→ (x+ 2λy, y),

one can assume λ = 0. For a convolution operator K with kernel K = K(z), z = (x, y),
consider the property

(4.12) |K(z)| ≲ |z|−αp , |∂xK(z)| ≲ |z|−α−1
p , |∂yK(z)| ≲ |z|−α−2

p .
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The two kernels |∂x|−1/2Γ, |∂x|1/2Γ satisfy the property (4.12) with α = 1/2, α = 3/2,
respectively: this is easy to verify since the two kernels and the parabolic norm are
homogeneous with respect to the parabolic rescaling (x, y) 7→ (sx, s2y). It is thus enough
to show that for a convolution operator K, it holds for α ∈ (0, 3):

[K satisfies the property (4.12)] =⇒
[
∥Kf∥Lp(R2) ≲ ∥f∥H1

p(R2),
1

p
=
α

3

]
.

By the definition of H1
p,λ(R2) and by linearity one can assume that f is an ∞-atom. By

scaling, we can assume

∥f∥L∞ ≤ 1, supp f ⊂ B1((0, 0)) =: B,

∫
R2

f dx dy = 0.

Let 2B := B2((0, 0)). By the first estimate in (4.12), the kernelK ∈ Lp,∞(R2) ⊂ L1+L∞,
thus

∥Γf∥L∞(2B) ≲ 1.

By combining the estimates (4.12) as follows, for |z|p ≥ 2|w|p, w = (x′, y′) one obtains

|K(z − w)−K(z)| ≤
∣∣∣∣x′ ∫ 1

0
∂xK(z − sw)ds

∣∣∣∣+ ∣∣∣∣y′ ∫ 1

0
∂yK(z − sw)ds

∣∣∣∣
≲

|w|p
|z|α+1

p
+

|w|2p
|z|α+2

p

≲
|w|p
|z|α+1

p
.

With that, one can use the zero mean of f and the bounds we have to estimate

|Kf(z)| =
∣∣∣∣∫
B
[K(z − w)−K(z)]f(w) dw

∣∣∣∣
≲

1

|z|α+1
p

for z ∈ 2Bc. It holds 1/|·|α+1
p ∈ Lq,∞(R2), q = 3/(α+1) < p, and clearly 12Bc(z) 1/|z|α+1

p ≤
1/4, so the estimate is proved by combining the bound on 2B with the one on 2Bc.
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