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Summary

This thesis is concerned with providing a description of the soliton addition map (Backlund
transform) of the KP-II equation on R?, which adds a line soliton to a fixed solution of
the equation, and how this map is related to the stability of the line soliton. The line
soliton solution is given by the KdV soliton

o(x) := —2sech?(z),

which is extended to a function on R? that is constant in the y variable. Its time evolution
is u(t, z,y) = p(x — 4t).

The thesis includes three main parts, which correspond to Sections in Chapter
The first part consists of a study of the Miura map with small data in a critical space,
and provides a classification of solutions to the Miura map equation with such data.
This result implies well-definedness of the Backlund transform on a rather generic class
of functions:

B: B.,(0) C H 22(R?) x R = {pq +w|w e H 2°(R2),d,a € L(R)},

where H _%’O(RQ) is the space of distributions with half z-antiderivative in L?(R?), Be,(0)
is a small ball in the Banach space, H~Y/29(R?) = L*(R?) + H~'/20(R?) and ¢, is a
shorthand notation for the modulated soliton ¢(z—a(y)). The map depends on an addi-
tional parameter 79 € R which represents the choice of the position of the superimposed

line soliton along the z axis. We then show that the transform admits good two-sided
bounds in L?:

1
clulliaey < inf {1B(.%0) ~ allfagee) + 1000l }* < Clullaee)
for suitable ¢, C' > 0, when ||u|2(g) is finite and small enough. A multisoliton addition
map is constructed as well, although we do not provide a classification theorem nor
two-sided estimates in this thesis.

The second part covers the properties of the Backlund transform in relation to the
KP-II flow. The main result therein is that time-dependent solutions of KP-II are
mapped to functions which are regular enough and are new solutions of KP-II, if the
additional parameter g evolves in a suitable way over time. This result extends to the
multisoliton addition map.

The third part covers the study of the range of the Béacklund transform. It is shown
that the intersection between the range and a small ball in a weighted space forms exactly
a codimension-1 manifold. This manifold appears naturally in the scattering transform
theory of the equation.

The above results prove codimension-1 stability of the line soliton up to modulations.



Contents

|Acknowledgments| i
i
[1_Introduction to the thesis 1
2__On the Backlund transform of KP-11l 9
[ Introductionl. . . . . . . . . ... 10
1.1 Description of the problem and fundamental objects| . . . . . . .. 12

(1.2 Context and previous work| . . . . .. ... ... Lo 15

1.3 otrategy, main results, and structure of the paper|. . . . . . . . .. 19

1.4 Notationl. . . . . . . . . . . . e 25

12 Preliminaries: the Miura map and the integrability] . . . . . . . . . . ... 28
2.1 Lax pair and compatibility condition| . . . . . . . ... ... ... 28

[2.2 Relation between the Lax pair, the Miura map and mKP-IIf . . . . 29

2.3 Multisolitons and elementary solutions| . . . . . ... .. ... ... 31

13 The Miura map of the KP-II equation| . . . . . ... .. ... ... .... 32
(3.1 Decomposition of the solution and uniqueness|. . . . . .. ... .. 33

[3.2  Exact formula for solutions of (M))|. . . . ... ... ... ... .. 48

3.3 Proots of Theorem [Aland Corollary[B| . . . . ... ... ... ... 54

|4 The time-dependent Backlund transtorm|. . . . . . . ... ... ... ... 58
4.1 The well-posedness theory| . . . . . . .. ... ... .. .. ..... 59

|4.2 Elementary Lax-eigentunctions and elementary solutions of mKP-II| 63

4.3 The time-dependent Backlund transform - Proof of Theorem |C| . . 66

[5 The range of the soliton addition map| . . . . ... ... ... ... .... 73
b1 Premisel . . . . . . . 73

5.2 Linearization of the problem in the Cole-Hopt variables| . . . . . . 75

[5.3 Solving the equation M (v) =d . ... ... ... .. ....... 75

5.4 ['he functional @l . . . . . . . . .. .. ... ... 77

5.5 Estimates in a parabolic Hardy space| . . . . . . .. ... ... .. 79

5.6 Proof of TheoremIDI . . . . . . . ... ... ... ... ...... 81

5.7 A conjecture on the range of the soliton addition map| . . . . . . . 85

|6 A multisoliton addition map|. . . . . . ... ... oL 86

iii



iv CONTENTS
|13  Appendices| 89
|A°  Linear estimates and parabolic equations] . . . ... ... ... .. .... 89
A1 Linear operators, kernels, and estimates for the heat equation| . . . 89

IA.2  Well-posedness for parabolic equations| . . . . . .. ... ... ... 95

[B  The Miura map with L* datal . . . . . . ... ... ... ... ....... 97

IC  UPand VP spaces|. . . . . . . . . . . 100
IC.1 Definition of the spaces UP and VP| . . . . . ... ... ... ... .. 100

ID  Supplementary lemmas and proots| . . . . . ... ... 103
ID.1 __ Miscellaneous results| . . . . . . . . . ... 103

D.2 oome detailed proofs| . . . . . . ... oo 104




Chapter 1

Introduction to the thesis

The history of integrable partial differential equations traces a long path, beginning with
observations of water waves in the Union Canal in Scotland, passing through the first
numerical experiment held at Los Alamos National Laboratory, and gaining widespread
attention in the mathematical community after the pioneering work of Gardner—Greene—
Kruskal-Miura [I1]. After many decades where the focus was put on the inverse scat-
tering technique, the field is experiencing a wave of novelty with works that combine
some of the properties of the scattering transform with several PDE techniques. Recent
breakthroughs include sharp results on generalized conservation laws at low and frac-
tional regularity, low-regularity well-posedness, and soliton stability. Most of these recent
works are on equations in one space dimension, with a few works on higher dimensional
models.
The present thesis on the KP-II equation on R?,

U — OUUL + Uggy + 38;1uyy =0,

falls in the category of soliton stability for integrable PDEs. The main element of novelty
in this work with respect to what described above is the non-compactness of the shape of
the solitons. The challenge does not arise merely from the lack of spatial decay—common
in travelling solutions of various PDEs that approach non-zero values at infinity, such
as kinks and dark solitons—but rather from the fact that the parameters describing the
evolution of a perturbed soliton must depend on one of the coordinate functions of R2.
The stability of the KP-II soliton, called line soliton, was studied and proved under
suitable classes of perturbations by Mizumachi [36], 37, [38], using techniques that do not
rely on the integrability of the KP-II equation. In this work, we study the Bdcklund
transform of KP-II, an object that allows to nonlinearly add a line soliton to a given
solution of the equation, while preserving the KP-II flow. This object is part of the
integrable structure of the equation. Its properties are used to prove a stability result
for the line soliton.
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Figure 1.1: On the left, the line soliton ¢ (A = 1). On the right, an illustration of a
modulated line soliton ¢} for some a = a(y), A = A(y).

Solitons of KP-11
The line soliton of KP-II coincides with the KdV soliton,

u(t,z,y) = oM — zo — 4X2t), oN(x) := —2)\Fsech?(\x),

A >0, zg € R. It is thus constant in the y variable. When A\ = 1, we will write ¢! =: .
When perturbing the soliton at initial time, considering a solution u with

uli=0 = ¢ + g,

the solution is expected to evolve into a modulated line soliton, as the one in Figure|l.1
plus a remainder that is bounded in L?(R?) uniformly in time:

u(t, z,y) = M (2 — a(t,y)) +w(t,z,y),

where
sup [[w(t, -, ) z2®2) < Cllgll 2 (r2)-
>0

Using a shorthand notation to denote translations in the x variable by a subscript, we
will set ) := ©*(x — a), and write

uzgoé—i—w.

The above phenomenon is called modulational stability in the space L?(R?), and is known
for suitable initial perturbations g thanks to the works of Mizumachi [36], 37, [38].

The line soliton is part of a large family of solutions called multisolitons, which look
like a superposition of several tilted line or half-line solitons, and represent interaction
phenomena between different solitons. These solutions can be classified by the position,
direction and amplitude of their solitons at spatial infinity [8, B1], although the inter-
action region features some interesting non-trivial patterns. Multisolitons are usually
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Figure 1.2: Some examples of multisolitons. On the left, a Y-shaped soliton. On the
right, a (4, 1)-multisoliton, belonging to the class of tree-shaped multisolitons. Below, a
(2, 3)-multisoliton.

subdivided into classes of (N_, N )-multisolitons, where N_, N, > 1 are integer num-
bers that represent the number of half-line solitons supported for values of y approaching
—oo and +oo respectively. For example, the line soliton is a (1, 1)-soliton, because it
has one tail that goes to —oo and one tail going to +o00 in the y variable. A famous
example of multisoliton is the Miles resonance, or Y-shaped soliton (see Figure . In
this thesis, we will briefly consider (k, 1)-solitons with k£ > 1.

Note that the soliton (and in fact all multisolitons) of the KP-II equation, as we
wrote it, is negative. We chose this convention because it is more natural from the point
of view of the scattering theory of the equation. On the other hand, solitons represent
water waves with positive elevation, so the figures in this introduction represent the
function —u instead of u.

The Backlund transform

The Béacklund transform, or soliton addition map, is present in integrable PDEs admit-
ting solitons. It commutes with the flow of the respective PDE and has the effect of
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nonlinearly superimposing a soliton on a given solution.

This map is linked to the scattering transform, a change of variables that essentially
allows to transform the PDE into a family of linear ODEs with constant coefficients,
effectively diagonalizing the equation. It plays the same role that the Fourier transform
has in diagonalizing linear PDEs with constant coefficients like the heat equation, so it is
often called nonlinear Fourier transform. The scattering transform of localized enough
solutions is generally composed of two parts: a continuous part, which is a function
of a spectral parameter like the usual Fourier transform, and a discrete part, which is
supported on a discrete set of spectral parameters. It is well-known that the discrete
part corresponds to solitons, while the continuous scattering data represent dispersive
radiation. On the spectral domain, the Backlund transform generally has the effect of
adding a component to the discrete scattering transform, while leaving the continuous
part unchanged.

It is interesting to note that for the KP-II equation, the continuous scattering data
of perturbations of the line soliton can have singularities even for very localized pertur-
bations [52], which hints to the possibility that the Backlund transform might not be
surjective.

The Béacklund transform of KP-II, for A = 1, is formally defined as

$(U, ’70) =u-—- 21133,
where v is an eternal solution of the Miura map equation
(M) Uy — VUgz = (Uz)x — Ug,

a forced Burgers’ equation, with boundary values v — +1 as * — 4+0c0. By considering
the family of solutions

u =0, v(z,y) = tanh(z — ), 70 € R.

it is possible to guess that, for generic data wu, a natural family of solutions of is
a one-dimensional object. The additional parameter vy € R in the map B is therefore
needed to select one of the solutions of (M) with fixed w.

Results and structure of the thesis

Note. To simplify numbering, chapter numbers have been omitted in the numbering of
sections, equations, and theorems. All numbered sections and items, including equations
without section numbers, are in Chapter[3. Sections labeled with letters, along with their
items, are in the appendices (Chapter @ The main results—Theorems @,@ and
Corollaries [B and [E|—are presented in Chapter[d, Section [1}



The Backlund transform

The work of this thesis can be divided into three main parts, corresponding to Sections
3, 4, and 5 of Chapter

The first part consists of a study of equation with small data v € H _%’O(RQ),
the Banach space defined in terms of the Fourier transform by the norm

_ /R J2m€l~Ha(e, )| g dn.

2
0,y
This is a scaling critical space for u in equation , and at the same time a scaling
critical space for the KP-II equation. In theorem [A] we provide a classification of solu-
tions v to with small data in H 7%’0(]1%2). The solutions classified are those of the
form

v = tanh(z — a(y)) + w,

with 9ya € L*(R) and w € L3(R?). For each small u € H_%’O(RQ), the set of solutions
forms a 1-parameter family parametrized by a real parameter vy € R, which roughly
corresponds to «(0), with bounds

[0yl L2y + (Wl L3@e) < CHUHH_%,O(RQ)-
We show that these solutions can be written explicitly in terms of two solutions with
constant boundary values at (x,y) — oo. This formula can be formally written as

v =0,log ((1-6)e/ " & 1 el v )

for § = () € (0,1), where vt € L3(R?) £ 1 are the unique solutions of (M]).
As a consequence, the Backlund transform is well-defined as a map

B : Bey(0) x R = {0 + w|w € H 2°(R?), 0,0 € L2(R)},

where H™20(R2) = L%(R?) + H 2°(R?), B.,(0) is a small ball in H~2°(R?), and
Yo = @(x — a(y)) as above. The parameter vy € R roughly describes the intersection
between the line soliton and the y axis. We then show that the transform admits good
two-sided bounds in L?:

1
. 2
cllull oy < inf {1Bw70) = palZagee) + 100l 3am b < Cllulzee)
a=a(y)

for suitable ¢, C' € R, when [[u[|z2(g) is small enough. This is the content of Corollary
A multisoliton addition map is constructed for (k,1)-multisolitons, £ > 1 as well,
although we do not provide a classification theorem nor two-sided estimates in this
thesis.

The second part covers the properties of the Backlund transform in rlelation to the
KP-II flow. We show that solutions of KP-II with small initial data in H~2'°(R?), which
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are known to be LZ ([0,00) x R?), are mapped to functions in LZ ([0, 00) x R?) which
are new solutions of KP-II, see Theorem [C] This procedure gives freedom of choosing
the parameter vy at time ¢ = 0, which fixes the values of 7y for all future times. The

parameter g evolves as
70(t) = 70(0) + 4t + O(V).

The leading term reflects the speed of the line soliton ¢(x — 4t). This part essentially
shows that the Backlund transform conjugates the KP-II flow around the zero solution
with the flow around the line soliton, although not necessarily in a surjective way.

The third part covers the study of the range of the Backlund transform and proves
Theorem @ It is shown that the intersection between the range of B and a small ball
in a weighted space Y:(R?) C L'(R?) N L?(R?) (defined in Chapter [2)) forms exactly a
codimension-1 manifold ¢ + A, where A/ can be written as

N = {g € Y.(R?) | ®(g) = 0}

for an analytic function @ : L*(R?) N L?(R?) — R.

The functional ® appears in the scattering transform theory of KP-II [52], as ex-
plained in Chapter [I} Section The continuous scattering data of a perturbed line
soliton ¢+ g contain a singularity at a spectral parameter corresponding to the line soli-
ton, with a coefficient proportional to ®(g). When ®(g) = 0, the singularity vanishes.
This shows that this manifold is special, and the KP-II evolution of data in this manifold
likely admits special properties. It was proved by Mizumachi that general, sufficiently
localized perturbations g will induce a non-zero shift A € R in the position of the line
soliton in a moving frame [38], and this shift is constant in ¢ and y (see Section[5.7). We
conjecture that this number h is a function of ®(g), with A = 0 if and only if ®(g) = 0.
In particular, we conjecture that this manifold coincides with the set of perturbations
for which the solution converges back to the original line soliton, locally in y, along a
co-moving frame of reference.

Stability of the line soliton

Our results on the Béacklund transform imply codimension-1 modulational stability of
the line soliton in L?(IR?). In fact, as discussed in the previous subsection, the Bécklund
transform conjugates the KP-II flow around the line soliton with the same flow around
the zero solution, and it admits double L?-estimates. This means that the modulational
stability of the line soliton reduces to the stability of the zero solution in L?(R?). The
latter is trivial because the L?-norm is a conserved quantity of the KP-II equation.

Our stability result is the first at sharp (L?) regularity. The codimension-1 condition
is likely not sharp, analogously as in the works of Mizumachi, but our method does
not easily allow to remove this condition, since the Backlund transform is not surjective
around the line soliton when well-defined. It is an open and interesting problem how
to generalize the above argument to generic perturbations of the line soliton that fall
outside the manifold & = 0.



Finally, in Section[6] we provide the construction of the analogous Backlund transform
for the class of (k,1)-multisolitons, & > 0. The study of this map is to be done more
carefully in follow-up works, although we expect to be able to obtain analogous stability
results with this map.

The relevance of the research contained in this thesis lies precisely in the fact that
the method shows promise for applications to the L?-stability of multisolitons, which
is currently open in all cases, except the line soliton. We also make explicit the possi-
ble problems arising when studying Béacklund transforms of integrable PDEs admitting
‘non-compact’ solitons, as this kind of study was not done before. This work raises
several natural questions, open problems and possible research directions concerning the
problem of multisoliton stability and the study of the Backlund transform itself, which
is interesting as a mathematical object on its own.

We refer to the introduction contained in Chapter 2] Section[I]for a broader discussion
of the state of the art and of the results contained in this thesis.

The present thesis is based on the preprint

[46] L. Pompili. On the Bécklund transform and the stability
of the line soliton of the KP-II equation on R?. Preprint:
arxiv:2412.12530, 2024.

Chapter [2| contains the body of the paper, and Chapter [3| contains its appendices.

The author acknowledges the support of the DAAD through the program ‘Gradu-
ate School Scholarship Programme, 2020’ (57516591), and of the Hausdorff Center for
Mathematics under Germany’s Excellence Strategy—EXC-2047/1-390685813.
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Chapter 2

On the Backlund transform and
the line soliton of KP-II on R?

We report the preprint [46], including the appendices in the next chapter.

L. Pompili. On the Bécklund transform and the stability of the line soliton of the
KP-II equation on R2. Preprint: arxiv:2412.12530, 2024.

Abstract

We study the Miura map of the KP-II equation on R? and the resulting Béicklund trans-
form, which adds a line soliton to a given solution. This work aims to develop a comple-
mentary approach to T. Mizumachi’s method for the L2-stability of the line soliton, which
the potential for generalization to multisolitons.

We construct the Backlund transform by classifying solutions of the Miura map equation
close to a modulated kink; this translates into studying eternal solutions of the forced
viscous Burgers’ equation under distinct boundary conditions at +co. We then show that
its range, when intersected with a small ball in | Dg| 32 (RH)NLAH(R?)N(y)°” L' (R?), forms
a codimension-1 manifold.

We prove codimension-1 L?-stability of the line soliton in the aforementioned weighted
space as a corollary, providing the first stability result at sharp regularity. The codimension-
1 condition in the range of the Backlund transform is an intrinsic property, and we con-
jecture that it corresponds to a known long time behavior of perturbed line solitons. The
stability is expected to hold without this condition, as in Mizumachi’s works.

Finally, we show the construction of a multisoliton addition map for (k, 1)-multisolitons,
k>1.
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1 Introduction

We consider the Kadomtsev-Petviashvili equation on the plane R?w
(KP-II) wp — Gty + Ugzy + 30, My, = 0,

a well-known two-dimensional generalization of the KdV equation
(KdV) U — 6uty + Ugpr = 0.

The KdV equation can be seen as a special case of KP-II where solutions do not depend
on the y variable. A family of solutions of (KP-II)) is given by the KdV solitons

u(t, z,y) = oz — zo — 4X21), oNx) = —2X%sech? (\z) = —% sech? <\/25x> )
for A > 0, ¢ € R, and where the last equality holdsﬂ for ¢ = 4\2. In the context of the
KP-II equation, the KdV soliton is called line soliton, since it decays in the x variable
and is constant in the y variableﬂ The variable y is often called the transversal direction.

Historically, the KdV equation was one of the first nonlinear dispersive models de-
rived to describe travelling waves. The KdV soliton corresponds to the ‘wave of trans-
lation’ discovered and studied by J. Scott Russell starting from 1834, often observ-
able in shallow water or along narrow water channels. Russell’s experiments, followed,
among others, by the theoretical contributions of Boussinesq and Korteweg—de Vries, as
well as the numerical experiments of Fermi—Pasta—Ulam—Tsingou and Kruskal-Zabusky;,
sparked significant interest among mathematicians and physicists, providing solid moti-
vation for the development of soliton theory [45].

Solitons of integrable dispersive PDEs are known to have a special behavior: they
generally interact elastically with each other and with the ‘radiation’, the part of the
solution that decays in time. Their evolution is essentially decoupled from that of the
rest of the solution, and they can be thought roughly as nonlinear eigenmodes of the
equation. This is connected to the integrable PDEs being formally diagonalized by
scattering transforms, also called nonlinear Fourier transforms. In physical terms, their

!The parameter ¢ = 4)\? is the translational velocity of the soliton. The choice of parametrizing the
family of solitons by the parameter \ is natural from the inverse scattering point of view: —\? is the
ground state energy of the Schrodinger operator

LKV _ g2y

with potential u = ¢*, which is the Lax operator of a solution u of the KdV equation. The ground state
of L,x is sech(\x).
We remark that we intentionally chose the constants in equations , so that the solitons
are negative, despite physically representing water waves with positive elevation, so that the potential in
the above Schrodinger operator coincides with the KdV solution itself, otherwise we would need a minus
sign in front of w.

2Line solitons that are not parallel to the y-axis can be obtained by applying the KP-II Galilean
symmetry to the KdV solitons.
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shape being restored after interactions with other waves can be seen as a particle-like
property, as suggested by the suffix ‘-on’.

Remarkably, this unique property of solitons can be made precise by the so-called
soliton addition maps, or Bdcklund tmnsformslﬂ which commute with the flow of the
respective integrable PDE and allow to nonlinearly add and subtract solitons from a
given solution. These maps are naturally linked to the scattering transform, but they
generally require different analytic techniques to be studied. They were derived and
used to study the stability of solitons for several integrable PDEs in 1 space dimension
[40, 28, 13, 30].

What makes solitons of on R? special, compared to those of other integrable
PDEs, is their non-compact nature: the evolution of generic perturbations of the line
soliton are described by scaling and translation parameters that depend on the y vari-
able. This introduces behaviors, such as those discussed in [38] (see Subsection [5.7)),
which, from a global perspective, suggest that the heuristic description provided in the
third paragraph may be incomplete or require further refinement, although the same de-
scription works well locally in y. A Béacklund transform for is formally available
and similar to that of , but the unboundedness of the soliton support poses some
challenges for its well-definedness. The stability of the line soliton of was proved
by Mizumachi in [36, 37, B8], with a proof that does not rely on the Bécklund transform
or on the integrability of the equation. The stability of KP-II multisolitons in L?(R?),
as well as their asymptotic stability, remains an open problem, except in the case of the
line soliton.

The main objective of our work is to understand the soliton addition map of .
Our broader motivation is to look for a robust proof for the L? stability of general KP-II
multisolitons, and possibly extend the same techniques to similar models. The goal of
the present paper is to give a rigorous analytic treatment of the Béacklund transform
related to the line soliton. In particular, we are interested in understanding how the
non-compactness of the line soliton plays a role in its properties, and how the transform
gives information on the stability of the line soliton, compared to integrable models
admitting localized solitons.

After constructing the soliton addition map and showing its properties, we find that
the map is not surjective around the line soliton, but the range has codimension-1 in a
weighted space of L? regularity. This allows to prove codimension-1 stability of the line
soliton in L?(R?) under such perturbations. The last result is comparable to some of
the results of Mizumachi: in particular, it is weaker due to the codimension-1 condition,
and stronger in the regularity assumptions.

We also construct the analogous Bécklund transforms for a subclass of KP-IT mul-
tisolitons, and plan to discuss analogous stability results for these multisolitons in a
follow-up paper.

3The term Bicklund transform is an umbrella term that is used in the literature of integrable PDEs
to describe various maps that conjugate the flows of two PDEs (often the same PDE). The name ‘soliton
addition map’ is more specific and refers to what is described in the paragraph. In this article, we will
use the two terms synonymously.
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1.1 Description of the problem and fundamental objects
Properties of the KP-II equation

The KP-II equation is invariant under space-time translations, although not under space
rotations. It possesses several other symmetries: among others, a scaling symmetry

(1.1) SEPu(t, z,y) = Nu(\3t, Az, \2y),
a reflection symmetry with respect to the y variable
(1.2) Ru(z,y,t) = u(z, —y,1),

and two other important symmetries, which in the literature are both called Galilean
symmetries:

(1.3) GEPu(t, z,y) == u(t,z — oy — 30°t,y + 60t),
fodvu(t, z,y) = Buu(t,x,y) — p:=u(t,z — 6ut,y) — p.

The second one is inherited from the KdV equation, while the first one does not apply
to KdV, so we refer to them as the KP-IT and the KdV Galilean symmetries respectively
(here B stands for ‘boost’). The KP-II Galilean symmetry plays well with the well-
posedness theory of the equation as it preserves the Sobolev spaces used in the standard
theory, whereas the KdV symmetry adds a constant to the solution. In rigorous terms,
since the antiderivative in the KP-II equation is not a priori uniquely defined for solutions
with arbitrary growth at infinity, both Galilean symmetries need to be accompanied by
auxiliary changes of variables for the function v such that v, = u,, appearing in the
KP-II equation.

A natural function space whose norm is invariant under the symmetries
GXP is the Banach space H _%’O(Rz), with norm defined by

SKP and

Il yoqgey = [, el it mEds dn

It is known that the KP-II equation is globally well-posed in H¥(R?), k € N for large
data, as well as in H _%’O(RQ) for small data. The globality of solutions in the first
result follows from the conservation of the L? norm of the equation, while the latter
comes from global-in-time bilinear ?stimates for solutions of the linear equation and the
scaling invariance of the space H 2" (R2). The line soliton ¢ does not lie in any of the
aforementioned Banach spaces, but global well-posedness was proved in H*(R?) + ¢,
k € N. These results are discussed in more detail in Section

Remark 1.1. The antiderivative appearing in can be understood in the following
way. The operator S = 92430, 185 is a skew-adjoint unbounded operator on L?(R?) with
an explicit domain given in terms of the Fourier transform. In particular, the unitary
group t — e~t03+0:"9) i o well-defined continuous group on L?(R?) and other L?-based
Sobolev spaces, and Strichartz estimates for this group can be proved in full analogy
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with the linear Schrédinger equation, so that the Duhamel formulation of makes
perfect sense for general classes of functions. More refined bilinear estimates are required
for proving well-posedness of the nonlinear equation (see [29] for a good introduction).
In addition to that, the operator J; 18y extends to a well-defined operator on a suitable

Banach space containing the space of solutions from the well-posedness theory, even at
low regularity (see Remark and Theorem |4.5).

Modulational stability of the line soliton

The line soliton ¢ is not orbitally stable in L?(R?) [36]. Since it is infinitely long on R?,
in general small perturbations of ¢ evolve so that the perturbed modulation parameters
A and xy depend sensibly on the transversal variable. For this reason, what is natural to
investigate is the so-called modulational stability of o, in which we ask for the solution
to remain close to a line soliton whose parameters (scaling and translation) are allowed
to depend on the y variable. We give the following definition.

Definition 1.2 (Modulational stability). We say that the line soliton ¢ is modulationally
stable in L?(R?) under perturbations in a set N' C L?(R?) provided that the following
holds: for every initial datum uy € N + ¢, there exist two continuous functions z =
x(t,y), A(t,y) called modulation parameters such that the solution u = wu(t,z,y) of
(KP-1I)) with initial datum wg satisfies

sup fJu(t, z,y) — P (@ — 2(t,y) |22y SA w0 = @ll2e2).

where the implicit constant only depends on the set N.

A desirable result is obtained when A contains a small ball centered at the origin in
a Banach space X C L?(R?) containing the space of test functions Z(R?), or at least
a finite-codimensional submanifold of X containing the origin. The definition above is
adapted to our specific problem, but notice that it can be generalized in several ways
allowing for different spaces and moduli of continuity, or considering asymptotic stability
instead.

Due to the nature of the result we want to show, we will make extensive use of the
following notation throughout the article.

Notation 1.3 (Subscript notation). For a function f = f(z) and for a € R, we will
denote by f, the function

falz) == f(x — ).

More generally, f and o will be allowed to depend on y, or on t,y: in that case, f, will
denote

falt,z,y) == f(t,x — alt,y),y).

The only exception to this notation rule is the function G in Definition [3.3
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The Miura map and the mKP-II equation
The KP-II equation is related to the mKP-II equation
(mKP-II) v — 6020y + Vpgr + 30 tvyy + 60,0, tu, =0
via the Miura map
M2 (v) = — (8;17)3/ + v, — v + )\2) .

Formally, if v(¢, z, y) is a solution of , then M2 (v)(t, x—6)t,y), i.e., Bya M2 (v),
are solutions of . This fact is rigorously true as long as all the terms 0 layv
appearing in the Miura map and in and are a distributional x-antidrivative of
vy (see Proposition . The parameter A comes from the symmetries of the equation:
it is related to the KdV Galilean symmetry, as it holds

ByM?} = GV MY,
but we can also see it as coming from the scaling symmetry:
MASP? = S,

where S;\nKP = A‘lS/I\(P is the scaling symmetry of (mKP-II)). The mKP-II equation
admits analogous Galilean symmetries, which are discussed in Section
There exist kink solutions of (mKP-II|) of the form

o(t, x,y) = QMNx — o + 22\%t) = Q> (m —x0 + %t) , Q*(z) := Mtanh(\z),

and the following relations hold:
(1.4) MM QY =0, MXQY) ="

The above identities indicate that the soliton is a special solution of that is
connected to the trivial solution through the Miura map. In the rest of this work, we
will look at the case A = 1, without loss of generality thanks to the scaling symmetries
S/I\@, Sf\nKP, and set My := M1, Q:=Q', p:= .

The Backlund transform

Using the Miura maps, we can define a relation between two different functions wu, u if
there exists a third function v such that it holds

My (v) = 1,
M_(v) = u,
or more rigorously, with some redundancy to allow a symmetric writing of the system,
Uy + Vg = (U2):c — Uy,

Vy — Ugx = (UQ);U — Ug,

U — U= 20,.
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It is desirable to look for a map
B (U, 70) =

that satisfies the above system, where 7 is an auxiliary parameter that allows to select
one of the many pairs (v,u) that would satisfy the system for fixed u. Clearly, v =
Q(-—), u=0, u=p(-— ) is a solution of the above system for all 7y € R, so we
expect R to be a natural parameter space for the second entry of B. By the commuting
properties of the Miura map, we expect that if u now depends on time and is a solution of
, the function @ is a new solution of , at least for a suitably chosen time-
dependent ~y. Moreover, the effect of the transformation is that of nonlinearly adding
a line soliton to the solution w so that the new function is still a solution of .
When well-defined, the map B is called soliton addition map, or Bdcklund transform. It
is evident how such a map can give plenty of information on the dynamics of solutions
close to the soliton. In particular, the map B essentially conjugates the flow
around the zero solution with the same flow around the soliton. The stability of the line
soliton can morally be translated to the problem of the stability of the zero solution of
(KP-1I)) if B satisfies suitable continuity properties.

A large part of this article is dedicated to the construction of the soliton addition
map B and studying its properties, which will then be used to study the stability of the
line soliton. In particular, we study the inversion of the Miura map M_ around the pair
@ — 0. This amounts to solving the wviscous Burgers equation with forcing

(M) Vy — Vg = (U2)x — Ug

for all 2,y € R?, where u is a given profile, and v is a suitable perturbation of Q to be
determined.

1.2 Context and previous work
Completely integrable dispersive equations

The Miura map written above is part of the rich set of algebraic properties that form
the integrable structure of the KdV and KP-II equations. Most of the known completely
integrable dispersive PDEs can formally be rewritten using a Laz pair, a set of two
differential operators L(t) = L[u(t)], P(t) = P[u(t)] which depend only on the solution
u of the original equation at time ¢, that transform the PDE into the Laz equation

d
—L(t) =[P(t), L(t
SL) = [P), L),
where [-,-] is the commutator between operators. The operator L(t) is called the Laz

operator of the solution u(t). Some of the most notable instances of dispersive inte-
grable PDEs are the 1D cubic NLS, KdV, mKdV and Benjamin—Ono equations; higher-
dimensional integrable equations include the KP-I and KP-II equations, the Davey—
Stewartson, and the Veselov—Novikov equations (the latter admits a modified version
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of the Lax equation). The theory of integrable equations begun with the article by
Gardner—Greene-Kruskal-Miura on the KdV equation in 1967 [I1] featuring the scat-
tering transform of KdV, which as already mentioned diagonalizes the equation reducing
it to a family of linear ODEs with constant coefficients, and was developed in the seven-
ties and eighties with the discovery of scattering transforms for several integrable PDEs.
The method used in [I1] to invert the scattering transform and recover the solution of
the original PDE was extended to other models, and is now commonly known as inverse
scattering transform (IST) [45].

Concerning the inverse scattering theory of KP-II on R?, results on solutions that are
perturbations of the line soliton are available. We mention the IST theory developed by
Villarroel-Ablowitz [51] after previous works by Boiti-Pempinelli-Pogrebkov—Prinari,
and the subsequent extensive works by Wu on the KP-II line soliton and multisolitons
[52, 53].

Recent developments

The main limitation of the use of the inverse scattering machinery, especially for PDEs
on the Euclidean space, is that the inverse scattering transform is well-behaved only
when the solution decays fast enough in space (for instance, ug € L'(R; (z) dx) for the
KdV equation, see the survey [2] for an overview of the basic theory) and regular enough.
These conditions are often strictly stronger than the ones actually needed for the well-
posedness of the equation: typically, the initial datum is allowed to be in H*(R™) for a
suitable s € R.

In more recent years, there was an increasing effort in employing the integrable
structure in the study of dispersive PDEs in L?-based Sobolev spaces and in spaces
of critical regularity. The main and groundbreaking application of these techniques
is low regularity well-posedness, which was established much earlier on the circle for
some models, see for instance [19] I8, [12], and finally on the real line, with the first
work in this direction being the celebrated article on the KdV equation in H~!(R) by
Killip—Visan [23], with several subsequent works on the cubic 1D NLS equation, modified
KdV and many more, see for instance [16] [5, 32, 22]. Another important application
which came slightly before the former, is the construction of generalized conservation
laws at H®-regularity which prove almost-conservation of the Sobolev norms: one of the
earliest works on the real line is by Koch and Tataru [27] for the NLS, KdV and mKdV
equations, with subsequent works on Gross—Pitaevskii [25, 26] and Benjamin—Ono [50]
by other authors.

Another important instance of the use of the structure of integrable PDEs is the sta-
bility of solitons and multisolitons. In the eighties and nineties, there was a considerable
effort in the study of solitons of integrable equations: important objects in this sense
are the Bdcklund transforms for integrable PDEs, which allow the explicit construction
of multisolitons. Although these were mostly treated as algebraic manipulation of the
equations, with the more recent well-posedness results on the equations, it became nat-
ural to ask whether these maps can be used to study the dynamics of solutions that are
close to multisolitons. This was initially done for the KdV equation using the Miura
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map (see the next paragraph), and later for some other models such as cubic NLS [40]
and sine-Gordon [3| [30]. The first work that used Bécklund transforms for the study of
solitons in a somewhat abstract and more general sense, and which serves as a signif-
icant inspiration for our paper, is that of Koch—Tataru [2§]. The remarkable property
of Bécklund transforms is that, despite coming from the integrable structure and being
linked to the scattering transform, they are generally robust enough that they do not
need to rely on the whole analytic framework needed for the treatment of the inverse
scattering transform.

KdV solitons

In the above discussion, the KdV equation was historically an important link in the
chain that led to the current understanding and state of the art. The KdV Miura map,

v o Médv7i(v) = Fu, + 07 — A2,
which maps solutions of the (defocusing) mKdV equation
v — 6020 + Vgge = 0

to solutions of (up to an inertial change of frame of reference), allows in its
simplicity to understand the power of Backlund transforms in soliton dynamics. The
resulting soliton addition map, analogous to the one described earlier for KP-II, makes
possible to establish a diffeomorphisnﬁ between a neighbourhood of the zero solution
and a neighbourhood of the soliton ¢, so that one can reduce the stability of the soliton
to the stability of the zero solution, which is a consequence of the conservation laws of
the equation. This idea was used to prove the stability of KdV solitons back in 2003 by
Merle-Vega [35] for L? data, and later by Buckmaster—Koch [6] in the well-posedness
critical topology H~!(R) (we remind that the scaling-critical Sobolev space for KAV is
s (R)). The picture was completed later by Killip—Visan [24], who proved stability of
multisolitons at sharp regularity.

The KP-II equation and the line soliton

The nonlinear L? stability of the KP-II line soliton was proved in [42] on the cylinder R, x
T, following the same idea of [35] for the KdV case. In that setting, the soliton addition
map coming from the KP-IT Miura map still gives a local diffeomorphism connecting 0-
and 1-solitons under those boundary conditions

The stability question on R? turns out to be much more delicate and challenging.
The linearized evolution of KP-II around the line soliton admits resonant continuous

4More precisely, the map Mﬁdvy, has one-dimensional fibers, while the map (A, v) — Médv’+(v) is
a diffeomorphism locally: this gives rise to a soliton removal map which is locally a submersion with
two-dimensional kernel. To make it a full diffeomorphism, one needs to take into account two additional
degrees of freedom, which naturally correspond to the choice of position and scaling parameter of the
soliton. See [6] for a detailed treatment.
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eigenmodes in an exponentially weighted space, with eigenvalues accumulating at zero
[36]. These eigenmodes represent the modulations that a perturbed, infinitely long line
soliton undergoes during the KP-II evolution. The presence of these eigenmodes suggests
that the Backlund transform behaves differently from the KdV case, since the linearized
KP-II equation around u = 0 possesses a different spectrum. In particular, the argument
relying on the Miura map used for KdV does not readily generalize to KP-II on R? and
was not investigated before, unlike in the cylindrical geometry mentioned above where
solitons essentially have finite length.

Eventually, Mizumachi solved the stability problem on R? in a striking series of pa-
pers [36, 37, [38] in which he proved modulational L?-stability of the line soliton as well
as asymptotic stability in suitable subsets of R?, under polynomially decaying pertur-
bations and under perturbations in 9,L?(R?), with additional regularity and smallness
assumptions. The papers provide a precise description of the position and amplitude
modulation parameters x = x(¢,y) and A = A(¢, y), which evolve under a 1D wave equa-
tion with damping. Remarkably, Mizumachi’s arguments do not rely on the integrability
of the KP-II equation, and were in fact used in later works on non-integrable PDEs [41].
On the other hand, the role of the Miura map in the stability of the line soliton remained
unclear.

KP-II multisolitons

As for many other integrable dispersive PDEs, the equation admits a set of
explicit, analytic solutions called multisolitons, which represent the interaction of several
(half-)line solitons. These naturally include the KdV multisolitons as a subclass, which
look like a superposition of several parallel line solitons. Due to the KP-II Galilean
symmetry , single line solitons can be ‘tilted” with respect to the y axis, and in
fact more general multisolitons exist which combine several line solitons with different
slopes in the x, y-plane, creating complicated and fascinating patterns that impressively
resemble real water wave interactions, as noted in [I]. See Subsectionfor more details,
and we refer to [8, B1] for an extensive treatment of KP-II multisolitons.

The KP-II multisolitons are expected to be stable up to modulations as in the case of
the line soliton, although very little was proved on the subject. The linear stability was
rigorously proved only very recently by Mizumachi for the case of the so-called elastic
2-line solitons [39]. On the nonlinear dynamics, we have the recent preprint of D. Wu [53]
which addresses the inverse scattering problem of KP-II around multisolitons and states
an L> bound uniform in time for all perturbations in an L'—based Sobolev space, where
the L™ estimate is given in terms of the full L' Sobolev norm of the initial perturbation.
To the best of our knowledge, there are no other results at present concerning the long
term nonlinear dynamics of KP-II multisolitons, except the line soliton. In particular,
modulational stability in L?(IR?) and asymptotic stability are open.
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1.3 Strategy, main results, and structure of the paper

As previously discussed, the aim of this article is to study the soliton addition map
connecting the zero solution and the line soliton, and try to make use of it in the study
of the nonlinear stability of the line soliton.

Let us make use of Notation Due to the relations , one would hope that
for a small, uniformly bounded in time solution u of KP-II there exists an associated
solution v of mKP-IT such that M_(v) = u which is close in some sense to a modulated
kink Qn, @ = a(y), so that @ := M, (v) is a solution of KP-II close to a modulated line
soliton ¢,. To make sense of the soliton addition map, one needs to solve the equation
M_(v) = u, which we rewrote as

(M) Vy — Vgg = (v?) g — Ug,

for known u and for solutions v close to a modulated kink. As previously discussed,
we expect to find a one-parameter family of solutions for given w, since by translation
invariance M_(Q(- — v)) = 0 for any v € R. These simple observations suggest the
following program:

e classify the solutions v to equation (M) close to a modulated kink and provide a
suitable parametrization with respect to a real parameter v9 € R: v = V(u,v),

e define the soliton addition map as discussed in

B(u, v0) = My(V(u,70))

e prove two-sided bounds for B of the form ||u|lx ~ || B(u,v) — ¢al|x for suitable
«, for some Banach space X

e prove that B commutes with the KP-II flow modulo the correct choice of vy = o (t)

e characterize the range of B, or find sufficient conditions for a perturbation of the
line soliton to fall in the range of the map

The above strategy would be able to reduce the modulational stability of the line soliton
to the stability of the zero solution in the space X. It is natural to choose X = L?(R?)
due to the conservation of the L? norm along the KP-II flow. We want to follow this
strategy in analogy with previous works on KdV and KP-II on the cylinder, but we have
to solve the problems introduced by the infinite length of the solitons.

To construct the maps % and B, we choose to work in the critical space H _%’0(R2)
to make use of the small-data global existence result in [I5], see Theorem . The
outcome of our research can be summarized as follows.

1. For small u € H _%’0(R2), equation (M) admits a 1-parameter family of solutions
of the form v = w + tanh,, w € L3(R?), a,, € L*(R,) parametrized by 7o € R,
which roughly coincides with ay—o.
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2. The soliton addition map is well-defined for generic small data in H —30 (R?):

1
B: BH27(0) x R = H 2O(R?) + {pq | ay € L*(R,)},

for a universal constant €g > 0. The second parameter vy ~ «(0) selects one
solution v from the 1-parameter family above, and sets B(u,v) = v — 2v,. This
has the effect of superimposing a modulated line soliton on u.

3. The map ‘B satisfies a two-sided L? estimate. If & = B(u,7o), then [wll 2 g2y is
comparable with the L?-distance between @ and the manifold of modulated line
solitons

{¢ala € C(Ry), H%”B(Ry) < oo},

with a penalization factor that grows with [[ay||z2(r,)-

4. The map B commutes with the KP-II flow. More precisely, assuming that u = wu(t)
is a solution of KP-II in H~ 2" (R?) and v € R, u(t) = B(u(t),v0(t)) is a solution
of KP-II for a suitable t — ~o(t) with 40(0) = v9,0. If u(0) is also in L?, then 4
coincides with the unique solution of KP-II given by the well-posedness theory.

5. The range of B contains ¢ + N, where
N € H™20(R?) N LA(R?) N L} (R?) N L (R%; sech?(z)(1 + |y|)°dz dy) =: Y. (R?)

is an analytic codimension-1 submanifold of the Banach space Y(R?) for any ¢ > 0.
Functions outside this manifold are not in the range of B.

6. As a consequence of 3, 4, 5, the line soliton is modulationally stable in L? under
perturbations in N.

The strategy involved will allow to make a natural generalization with little additional
effort.

7. We construct a multisoliton addition map for (k, 1)-multisolitons (see the definition
in Section [2)) for any k& > 1, which equals B for k = 1 up to a change of variables.

Our result for the first point is the following theorem, which classifies the solutions
of equation (M) close to a modulated kink. The preimage of small data u € 30 (R?)
through the Miura map M_ under suitable conditions is a one-parameter family of
solutions to which can be parametrized by the position of the kink at y = 0.

We use the notation f,(z,y) := f(x — a(y),y) as in Notation we let p be a
standard mollifier in R?, and n*(z) := (1 + e72%)7L.

Theorem A (Classification of solutions of close to a kink). Let u € H 7%’0(]1%2)
be small enough, and vy € R. There exists a unique solution v to equation of the
form v = w + tanh,, w € L3(R?), 0 € C(Ry), o, € L*(Ry), satisfying the localization
condition

/}R2 p(x — 0, y)v(z,y) dxdy = 0.
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The solution can be decomposed into

v = tanhy +n0 - (v — 1)+, - (v +1) +w,
where v are the unique solutions of (M) in L3(R?) £ 1, a € C(Ry) is determined
uniquely by the orthogonality condition

/w(w,y)dw =0 Vy eR,
R
and it holds the estimate

+
1™ F Ul age) + |l coshawlicorznrzmn + llayllee < llull -y 0 g0 -

Moreover, v¥ satisfy all the bounds of Corollary (with A = %1), and the shift a
satisfies
o) — ay)| _
Sup 4 5 Sl
y1,y2€R 0g(2 + |y2 — 1)

o1 .
H™2°(R?)

The map V : (u,7) — v is continuous assuming the topology of the codomain is

L} (R?).
Finally, there exist 1" € LY (R?), with 1/, 1/y* € LS (R?), ¢y, v € L2 (R?),
¥, T >0 a.e., uniquely defined up to a positive multiplicative constant by the systems
(Oy — 0 + w)p™ =0, (Oy — 2 +u)p =0,
v = Oy (log(4)), v = a(log(1)),

and it holds, up to a positive multiplicative constant,
b= (1-0)p" + 0y~
for a unique 0 € (0,1) that depends bijectively on ~y for fized u.

Morally, the map ¥ is the inverse of the Miura map M_ (more precisely, V is a right
inverse of the map (M_,v — =) defined on a suitable domain). Note that the products
w, up™ are well-defined with the regularity assumptions of the involved distributions.

The explicit formula in the end is motivated in Section [2] and it essentially relies
on the Cole-Hopf transformation to turn Burgers’ equation into a linear heat equation.
Simple solutions of can be combined using the linearity of the heat equation to
obtain new solutions: in particular, solutions with different limits at infinity can be
written as a nonlinear superposition of some special, atomic solutions which we call
elementary solutions, which are constant at infinity. This idea is especially useful to
treat the time-dependent problem in Theorem [C] Note that, as discussed in Section

L,=0,—9>+u

is the Lax operator of the KP-II equation.
Thanks to Theorem we can define the soliton addition map B. We give an
additional definition that is needed to state the bounds on ‘B.
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Definition 1.4 (The soliton addition map). We define the line-soliton addition map (or
Bécklund transform) of KP-II as

(15) 3(u7 70) =Uu— 28&7{V(Ua 70)7

with % as in Theorem |Al Moreover, for 4 € 2'(R?), we define

02 ey = inf { Jwll3aga) + 0y |2,y | &= w0+ 60 }

[2(R?) = {u € 7'(R?) | [l 2 =2 < oo}.
With some more work, we obtain the following Corollary of Theorem [A]

Corollary B. In the hypotheses of Theorem if in addition u € L*(R?) is small
enough, then u := B(u,vy) € Li(RQ) and it holds the double L?-estimate

|ul L2 (r2) ~ W\L@(R?)-

The next Theorem states that the transformation B in (1.5)) commutes with the flow
of (KP-II)), up to the choice of the additional 1-dimensional parameter. The statement

relies on the global well-posedness theory of KP-II for small data in H -30 (R?) proved
in [15], see Theorem

Theorem C. Letug € H_%’O(RQ) be small enough, and o0 € R. Letu € Cy([0, 00), H_%’O(RQ))
be the global solution of with ul|i—y = ug. There exists a continuous function
t > 70(t), 7(0) = 0,0 such that the curve u(t) :== Blu,yo(t)) lies in LE _([0,00) x R?),
is a solution of the KP-II equation in distributional form, and can be decomposed as

u(t) = oz — alt,y)) + u(t) + w(t), with the estimates

la(t,y2) — alt, y1)]
sup | sup oy (t, 2 + [[w(t,-, )| _1 < luol| -1 ,
g [R e T LM ORI PR FICRBI P o 7 R,
d
—0 —4 S llwoll ;-3 .0 0y
Hdt L?mif(O,oo) H QO(RQ)

If in addition ug € L*(R?) and is small enough, then
U — 90(‘7; - 04(0, y) - 4t) € C([Oa 00)7 LZ(R2))7
it holds the double estimate
W0y ~ 8O a @), 20,

and u is the solution of KP-II coming from the well-posedness theory (see Proposition

£
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The second part of the above theorem shows that | - | 2 is an almost-conserved
quantity for small solutions of around a modulated line soliton, at least for
those solutions generated by our Bécklund transform B. We conjecture that the same
holds for all small L? perturbations of ¢.

Next, we provide information on the range of B. The following Theorem provides
necessary and sufficient conditions in the restricted setting of small output data in a
mildly weighted space. For € > 0, define the weighted space le (R?) with norm

ech? e
1912z, sy = 0+ [yl)* sech®@) Loy,
and the Banach space
Y(R?) = H20(R?) N LA(R?) N L (R} N L 1o (R?).
Theorem D (Codimension-1 manifold in the range of B). There exists an analytic map
®: LYR?) N LA (R?) —» R

with ®(0) =0, D®(0) - g = % Jg2 g dx, with non-vanishing differential everywhere, and
invariant under the reflection symmetry (1.2)), such that the following holds.

Let e > 0. Let g € Y-(R?) be small enough (depending on ¢). The following are equiva-
lent:

o there exists a small u € H_%’O(RQ) and o € R such that g + ¢ = B(u, ).

The functional ® is constructed in Section[5] It involves solving a parabolic equation
with the input g as multiplicative potential, and its power series around g = 0 can be
computed explicitly. The functional ® is connected to the KP-II scattering transform:
the number ®(g) corresponds to the coefficient multiplying a singular term in the con-
tinuous scattering data of the function @ = ¢ + ¢ (the nonlinear Fourier transform of
u) at the two spectral parameters corresponding to the line soliton, which are set to
+1 in this paper. These singularities are described by Wu in [52, equation (3.16)] (the
reader can compare v = 7 in [52, equation (3.8)] with ®(g) in our Definition and
note that they essentially coincide). The condition ®(g) = 0 is thus roughly equivalent
to the scattering transform of ¢ + g being non-singular. We remark that the above is in
clear contrast with the KdV scattering transform, where all the information concerning
solitons is contained in the discrete scattering data, and the continuous scattering data
of sufficiently localized solutions, including perturbed solitons, are non-singular.

By combining Theorems|C|and @With the conservation of the L? norm along the KP-
IT flow, we obtain an L? stability result for the line soliton in a codimension-1 manifold
of data of sharp (L?) regularity.
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Corollary E. For every € > 0, there exists 6 = §(¢) > 0 such that the line soliton of
KP-II is modulationally stable in L?, in the sense of Deﬁm’tion under perturbations
in the manifold

N ={g € Yz(R*) | ®(9) =0, |lglly. r2) < 0},

which is an analytic, regular codimension-1 submanifold of Yz(R?) containing the origin.

The assumptions in Corollary [E] are sharp in terms of regularity, unlike previous
results on the stability of the KP-II line soliton on R2. Although we do not provide
details here, there seem to be no obstructions in using the properties of B to prove
asymptotic stability of the line so_litoln under perturbations in the above manifold by
making use of scattering of small H~2°(R?) solutions of (KP-1I), proved in [15].

The stability theorems for the line soliton proved by Mizumachi do not assume any
finite-codimension condition. In fact, we expect the codimension-1 condition ® = 0 in
Corollary [E] to be removable. A key difference between our works is that in this paper
we do not consider modulations in the scaling parameter A\ of the line soliton, which
could be related to this discrepancy.

On the other hand, as Theorem |D| states, the condition ® = 0 is necessary for a
perturbation of the line soliton to fall in the range of the soliton addition map B. The
proof and the conclusion of Theorem [D| seem to not depend sensibly on the function
space used to define B as long as the space is scaling critical, a condition that in turn is
natural to have uniqueness of solutions of and a well-defined map B. Moreover, as
noted after Theorem [D] the functional ® is directly linked to the scattering transform. In
particular, the condition ® = 0 is a no-singularity condition for the continuous scattering
data of ¢ + g. We conclude that this ‘missing degree of freedom’ in the soliton addition
map is an intrinsic feature of the Backlund transform and the KP-II equation itself,
arising from the interplay between analytic and algebraic properties of the integrable
structure. This is remarkable, and contrasts with the common intuition, which has been
shown to be valid at least for several 1-dimensional models, that solitons of integrable
PDEs can be thought as being entirely independent, and in fact easily removable from
the rest of the solution. The failure of this description is linked to the unbounded nature
of KP-II solitons. We state a conjecture on the connection between this degree of freedom
and the long time behavior of perturbed line solitons in Section [5] which we did not see
in previous works on the line soliton.

It remains unclear whether there exists a well-behaved generalization of the soliton
addition map that can describe generic perturbations of the line soliton, without the
codimension-1 condition. On the other hand, we think that some modification of the
arguments needed to prove Corollary [E] can lead to a complete stability result.

We conclude by noting that the approach to the stability of solitons using Backlund
transforms shows promise for potential generalizations to the multisoliton case. In Sec-
tion [6] we derive the analogous Bécklund transform for a subclass of KP-II multisolitons,
and we plan to discuss analogous stability results to that in Corollary [E]in a follow-up

paper.
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Structure of the paper

Our plan for the present article is as follows. In Section |2 we discuss the formalism
of the Lax equation, its connection with (KP-II), (mKP-II) and the Miura map, and
all the tools and heuristics that we derive from the Lax equation in order to study the
KP-II equation. We also focus on the construction of multisolitons and give a heuristic
discussion on the elementary solutions of system .

In Section [3, we study the Miura map for fixed time. We prove Theorem [A] which
allows to define the Béacklund transform in Definition and Corollary [B] We provide
there the main tools needed for the construction of the elementary solutions.

In Section [4, we look at the time-dependent problem and prove Theorem [C} We first
review the well-posedness and regularity properties of solutions of the KP-II equation,
then we define the elementary solutions of and show their basic properties.
Before the proof of Theorem [C| we state the nonlinear superposition of elementary
solutions in Proposition which allows to select the time-dependent parameter 7o in
Theorem

In Section p| we prove Theorem [D| and discuss a conjecture on the codimension-1
condition ® = 0.

In Section [, we briefly discuss the multisoliton addition map.
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1.4 Notation

e x,y,t are the space-time variables, with corresponding frequency variables &, n, 7.
We will often use the space variables as subscripts, for instance R, ]R%w whenever
we are working with functions that depend only on some of the variables.

e (Subscript notation; cf. Notation For a function f of the variable x and o € R,
we will denote by f, the function

fa(z) :== f(x — ).

More generally, f and « will be allowed to depend on y or ¢,y: in that case, f,
will denote

falt,z,y) = [,z = a(t,y),y).
The only exception to this notation rule is the function G in Definition
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Throughout this article, we define the two functions of the z variable
1 1
nt(z) = 5(1 + tanh(x)), n (z):= 5(1 — tanh(z)).

(Convention on hyperbolic functions). The following statements are written for the
function ‘tanh’, and apply as well to all other hyperbolic functions (cosh, sech, ...)
and to ¢, Q, nt.

o When we want to evaluate the function at a given number z, we will write
tanh(x). We will never write ‘tanh z’.

o When taking products between tanh and functions inside brackets, we will
write for instance tanh-(f + g).

o When not given an argument as input, we will consider tanh as a function of
the x variable. When comparing it to functions with more variables, we will
think of tanh as being constant in the other variables.

Examples: for w = w(z,y) and o = a(y):

o the expression ‘tanhsech?” denotes the map = — tanh(z) sech?(z),

o the expression ‘coshw’ denotes the map (z,y) — cosh(z)w(z,y),
w(

o the expression ‘cosh, w + ¢’ denotes (z,y) — cosh(z — a(y))w(z,y) + ¢(x —

a(y))-

C(A, B) denotes the space of continuous maps from A to B. For Q a metric space
and X a Banach space, we denote by Cp(€2, X),Co(2, X) C C(Q2, X) the Banach
spaces of continuous functions that are respectively bounded, and small outside
compact sets (more precisely, Cy(€2, X) is the closure of the space C.(Q2, X) of
compactly supported continuous functions). We will omit X when X = R. In one
case, X will be a Fréchet space, and we will rely on the notion of boundedness in
such spaces.

In R”, with variable z and frequency variable (, we define the usual smooth
LittlewoodPaley projector Py on dyadic annuli with frequencies ¢ ~ A € 2%,
as for instance in [4]. We define P<), P~ similarly.

If z=(x,y,...), ¢ =(&m,...), we denote by Py the Littlewood-Paley projection
with respect to the frequency variable £ only (analogously for PZ,, PZ,).

We define the homogeneous and inhomogeneous Besov norms as

fuly, =3 1Pl lullh, = Paulb+ S (Pl
P Ae2L AE2Z A>1

with the obvious modification for ¢ = oo, and denote by B;q(R") and By  (R")
the respective Besov spaces. When p = ¢ = 2, we will write H® instead of B3 .
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Given a Banach space X and an interval I, the norm of the associated Bochner
space LP(I,X) is denoted by

fallx = [ Nl

When the interval is not R or [0, 00), or when I = [0,77, the norm will be denoted
vespectively by [ull 7, el zp x-

The spaces H*'2(R?) are defined by the norm

T —— /R (€% () (e, m)Pde dn,

with the obvious modification for the homogeneous version (cf. [14], [15]).
The anisotropic Besov spaces By (R?) are defined by the norm

1/q

lullgge = | S0 AT NP Dy [ ullly ey |
Ae2Z

with the obvious modification for ¢ = co. Note that the norm of Bf,jg is invariant
under the KP-II Galilean symmetry.

For an open set Q C R%, we define Lumf(Q) as the Banach space induced by

uni

gl $(Q) T Sgp HgHLP(QmQ)7

where the supremum is taken over all dyadic cubes of R? with side 1.

Cross-reference list

gKP ngV
)

The maps Mgé and the transformations B, are defined in the introduc-

tion. G™KP is defined in Subsection

| - |L3(R2)’ Li(RQ), see Definition

Y2(R?) is defined before Theorem @

The map ¥ is defined in Theorem |Al and characterized explicitly in Lemma

The map B (soliton addition map, or KP-II Bécklund transform), see Definition
T4

The map V is a generalization of V up to a change of variables, see Proposition
0. 19
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e The map V, is a time-dependent version of V, see Proposition 4.17
e vt ot see Corollary [3.2]

e G, see Definition [3.3]

o I',T(© Tt see Definition

e The maps B, B, are generalizations of B to (k, 1)-multisolitons, see Section @
e Equations (KP-II)), (mKP-II)), see the beginning of the introduction.

e Equations , , see Subsection

o System (M-mKP-II), see Subsection

° C’Sl’ﬁ‘f, see Lemma

2 Preliminaries: the role of the integrability and the Miura
map

2.1 Lax pair and compatibility condition

The KP-II equation is a completely integrable PDE, with a structure resembling the one
of the KdV equation.

Lax-pair formulation

Fix 0 € {£1}. The KP-II equation is related to the operators defined below called the
Lazx pair, the first of which is called Lax operator:

Lu(t) = O'ay — 6;” + U(t),
Py = —40z0s + 3 (u(t)0r + Ozu(t)) + 30 (05 M uy(t)),

where u(t), us (t), (05 tuy(t)) are meant as the multiplication operators by the same func-
tions. Under the hypothesis that 0 1uy (t) is well-defined in a suitable sense, the function
u solves ([KP-II) if and only if the associated Lax pair satisfies the equation

d
— Ly = [Puqy, Lu)

dt
where [P, L] := PL — LP is the commutator. As already anticipated, solutions u of
(KP-1I)) generally lie in Banach spaces of functions on which the operator 9, 18y is well-
defined (see Remark [C.4), and 9, '9,u coincides with the term appearing in the KP-1I
equation.
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Compatibility condition

As for the KdV equation, the KP-II equation is formally equivalent to the compatibility
condition for the Lazx system

{awy — g+ uth = =A%

(2.1) —1
wt = _4w:m:x + Guwz + 3ux¢ + 30’(63; uy)¢7

for a given A € C, which says how generalized eigenfunctions of the Lax operator evolve
in time. This formulation is related to the Miura map as shown in the next subsection.
We note that in system (2.1)) we can make use of the transformation ) — e)‘2y¢ to set
A = 0 (this feature is not present in the Lax operator of ) Moreover, the choice
of o corresponds to a reflection in the y coordinate. We will thus mostly consider the
case A=0,0=1,

(211 {% e =0

th = _4wmrm + 6u¢z + 3Um¢ + 3(8;1uy)w

When referring to the Lax operator, we will always think of the one with ¢ = 1.

2.2 Relation between the Lax pair, the Miura map and mKP-I1
The mKP-II equation in system form

Unlike (KP-II)), (mKP-II) needs an auxiliary function to be written down without using

antiderivatives. The mKP-II equation in system form reads

(2.2) {wx -

Vt + Vpra — 61}2% + 3wy + 6v,w = 0.

There is another clever rewriting that, interestingly enough, can be derived from the

Lax equation. In fact, system (2.1') is equivalent, under the change of variables ¢ = ev,

to the system

Vy—Vie =VZ—u
(2.3)

Vi + dVipe + 4V3 412V, Vyy — 6uV, — 3uy — 39 'uy, = 0.

Derivating with respect to the z variable and setting v = V., we obtain the following
system:

— — (2) _
(M-mKP-I) {”y Vrz = (V7)z — Uz

v+ 4vgze + (1200, + 403 — 6uv — 3ug), — 3uy = 0.
It is an easy exercise to show that systems (2.2) and (M-mKP-II) are equivalent for

U, Vv, W € Lfoc with p large enough, under the change of variables w = —u + v? + v,.
In other words, system (M-mKP-II)), which in turn is just the compatibility system
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which describes the evolution of the Lax operator, is nothing but a reformulation
of in system form which contains equation . This fact provides insights
on the link between the two dispersive models and is going to be useful. Coming back
to the discussion on the eigenvalue —\2, we also note that v = 9, log(z)), so that the
transformation v — 6)‘2y1/1 used to change the value of A leaves the function v unchanged,
this is one more reason why we should not worry about the eigenvalue A in the equation
and set it to be zero. Note that if we had to take into account A2, the function V would
be shifted by the additive term —\?y.

We note that the map ¥ — V = log(¢) is bijective, assuming ¢ > 0. The map
V = v =V, is clearly not injective a priori without further conditions, although it
turns out (see Lemma and Lemma that V is determined from v only up
to an additive constant which is independent of space and time variables (hence, 1 is
determined from v up to a multiplicative constant), assuming V' satisfies system @ .
The free undetermined constant is natural due to the linearity of the Lax system @ .

Properties of the mKP-II equation in system form, (M-mKP-II|

We first understand the symmetries of the mKP-II equation in a broad sense, that is,
we look for symmetries of the system (M-mKP-IIf). The following two symmetries can
be both guessed from the KP-II symmetries by looking at the Miura map:

(2.4) (u,v) — (Q(I,{Pu, Q;“KPU),

(U, /U) = (gffdvu7 BM”))

where g;,nKPv = Q(I,(Pv — % These translate into symmetries of mKP-II in system form
, since the two systems are equivalent. The two symmetries do not necessarily
correspond to symmetries of in a well-posed setting, especially the second
one. These symmetries are possible due to the arbitrary choice of an additive constant
in the term 0 1vy, which in a general setting need not be determined univocally and
canonically from v.

Now we give a precise version of the property of the Miura map to conjugate the
mKP-II flow and the KP-II one, which is stated and proved in [21] in terms of system

22).

Proposition 2.1. Let Q C R? open. Assume v € L (Q), vy,w € L% () satisfy the

system ([2.2). Then, u = —w + v*> + v, and @ = —w + v*> — v, belong to LE _(Q) and
solve the KP-II equation distributionally, that is,

(25) (ut — 3(u2)x + Uxx:p)m + 3uyy = Oa

and the same holds for 4. Equivalently, if v as above and u € L2 () satisfy the system

loc
(WM—mKP-11)), then u and u := u — 2v, satisfy (2.5)).
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2.3 DMultisolitons and elementary solutions

The following is a way of constructing solutions of the KP-II equation and is described

for instance in [8] and [31]. Let fi,..., fn be positive solutions of the system
_ a2
26) s =
Define the 7 function as the Wronskian determinant
I
OO e = Wil gw=| T
fJ(V]\}—l) f2(N 1) f](VN_l)

where f,gj )= o fr. It is known that the function

(2.8) a(t, z,y) == —20%log(r(z,y,t))

formally solves the KP-II equation as long as the 7 function does not vanish.
It is known (see e.g. the paper [34]) that any non-negative solution of the heat
equation on the whole R, xR, can be achieved as an integral sum of exponential solutions

e/\$+)‘29, in particular any positive solution of system ([2.6)) has to have the form

flaw )= [ A )
R

where 1 is a non-negative Borel measure on R. The multisolitons of KP-II can be gen-
erated using formula by taking the functions f; as finite sums of the above expo-
nential solutions: we describe below the procedure, which loosely follows the notation of
[8]. First choose two positive integers 0 < N < M, a matrix A = (anm) € Matyxar(R),
real spectral parameters A\ < Ay < --- < Ap7, and phase parameters 61, ...,00. Let

em(l', y7 t) = Am[B + )\gny - 4)\fnt + em,O 9 .Z' y? Z G M(I’yt

Assuming Rank(A) = N and that all N x N minors of A are non-negative and some
irreducibility condition on A (see [8, Condition 2.2]), the function 7 in is strictly
positive, and the function @ in equation is a (M — N, N)-multisoliton. The term
means that for fixed time, the solution looks like a sum of M tilted ‘half line’ solitons
coming from infinity, which exhibit a nontrivial interaction in a compact region of space.
Moreover, of the M half lines interacting, N come from y = +oo, and M — N come
from y = —oo. The directions of the M solitons are given by the relations between the
spectral parameters Aq,...,Ap. If we take N = 1, it is not possible to construct all
multisolitons, but only the so-called (k, 1)-multisolitons, k = M — 1 > 1, which possess
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one line as y — 400 and k lines as y — —oo. We called them tree-shaped solitons.
For M = 2, one obtains the line soliton, possibly transformed under the KP-II Galilean
symmetry . Taking M = 3, the corresponding solution is the (2, 1)-soliton, which
is known as Miles resonance solution, or as ‘Y -shaped’ soliton. The reflection symmetry
can be used to exchange the number of outgoing solitons at y — —oo and y — oo.

Solutions of (M) as superpositions of elementary solutions

The following simplified discussion is enough to present one of the key ideas in this work.
If w is small in a suitable sense, one can expect that for a given parameter A, € R, there
exists a time-dependent eigenfunction ¥("™ of the Lax operator, solution of , which
behaves like e (*¥:1) up to multiplicative lower order terms. We call such functions
™) elementary Lax-eigenfunctions and are essentially the Jost solutions of the Lax
operator with potential u. Thanks to the equivalence between systems , ,
(M—mKP-TI)), the problem of constructing ("™ essentially reduces to that of finding
solutions v(™) := 9, log(1)(™) to which converge to constants A, € R
at infinity. The precise reduction is made possible by Lemmas and These
elementary solutions v(™ of are the building blocks that can be used
to construct perturbations of the line soliton and multisolitons. For fixed time ¢, the
function v(™ is a solution to with datum u(t) that is equal to the constant A, at
spatial infinity. The existence and uniqueness of such a function is essentially given by
Corollary The elementary solutions are introduced in Definition

If (v(™),, are elementary solutions associated to the spectral parameters (Ap)m, it
follows from the linearity of system that formally

M
v = 0, log ( Z efvm)dx)

m=1

solves system (M-mKP-IIj). Consequently, u = u — 20,v is a solution of KP-II by the
property of the Miura map in Proposition This motivates the explicit formula in

Theorem [Al

3 The Miura map of the KP-II equation

In tlhis section we will prove Theorem [A] in particular we work with fixed, small u €
H _i’O(RQ), which is a scaling-critical space for both equations and . As
mentioned in the introduction, a satisfactory global well-posedness theory of KP-II for
small data in this space holds, see Theorem in particular the smallness in H —3:0 (R?)
is preserved by the KP-II flow.

The Miura map equation in PDE form, which we rewrote as

(M) Vy — Ugy = (UQ)CD — Uy

is a viscous Burgers equation on the whole space-time Riy with external forcing. The
parameter A> = 1 in the definition of M_ does not appear in the equation, but it will play
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a role in terms of the boundary conditions. As discussed in the introduction, formally
MAQM- =) =0 VyeR,

s0 Q(x — ) = tanh(x — ) solves (M| with u = 0 for all v € R, and we expect that all
solutions of (M) with the same space asymptotics of @ form a 1-parameter family. As
a preliminary remark, the boundary condition

v(z,y) —tanh(z) - 0 as x — +oo.

is too weak to be equipped to equation (M) to have just a 1-parameter family of solu-
tions, since viscous shocks with different velocities can come from y = —oo with different
speeds. An example is given by the ‘multikink’ solutions

u=0, v(z,y) = Oy log(ePTVTe 41 4 @Y H0)

which are all different for a,b € R. A more restrictive condition, the one that we are
interested in, is to impose that v is close to @ for all values of y, so what we ask for is
that

Jdo: R — R such that v(z,y) — tanh(z — a(y)) — 0 as x,y — oo,

possibly in some averaged sense. We will ask for v — tanh(x — a(y)) € L3(R?).

Looking at the evolution in the y variable, since u decays to zero, we can see that
the asymptotic profiles of the solution are expected to be translations of the viscous
shock tanh(z) and there should be stability of this profile at y — +o00. Defining z :=
v — tanh(z — 7), v € R, and using Notation the new variable z solves

2y — Zgz — 2(tanhy 2), — (zQ)x = —u,.
This way it is clear that in (M)]) we have transport towards the center of the shock, and
a phenomenon of accumulation of mass close to the shock itself that corresponds to a
shift of the position of the kink.
3.1 Decomposition of the solution and uniqueness
A first guess would be to study the equation (M) in some new variables w, a,, where
v = w + tanhg,

and a = a(y) is chosen in a suitable way so that it represents the ‘position’ of the kink
at ordinate y. Having chosen to work in the critical space 30 (R?%), we will see that
the decomposition will have to be a little more sophisticated to prove uniqueness of
solutions. In Appendix [B| we outline the same setting with data u € L?*(R?) for which
the decomposition is fixed simply by choosing

/Rsechz(:c —a()w(z,y)de =0 Vy,

although a uniqueness theory in R? is missing due to the strict subcriticality of the data.
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Solutions of (M) that are constant at infinity

The following lemma shows the well-posedness of equation on the whole R? in the
simple case where solutions go to zero at infinity, and collects some estimates that will
be useful later on. We mention that with the same techniques, it is possible to show the
well-posedness of the initial value problem associated to equation , that is, assigning
an initial datum vy = v|y—¢ € H_%(R) and a forcing u € H_%’O(R x (0,00)). We refer
to the definition of the anisotropic Sobolev and Besov spaces H>!(R?), By(R?) in the
notations. We will write (¢(x — a)) " to denote the function (z,y) — (c(z — a(y))) .

Lemma 3.1. Let ¢ # 0 and a € C(Ry) be such that ||y — cl[p2®,) S 1. Let u €

~

H_%’O(R2) small. There exists a unique solution v € L3>(R?) to equation (M), and it
satisfies the bounds

-1
B R A R T

1 -1
Hel2ll{e@ —a)) " ollez , S llull g0 5o
Moreover, we have the additional estimates

(3:2) Mvllgorz + llvzllz2m@2y + lel|| {c(z — a))”! vl 2m2) S llull2(m2),
(3.3) ozl g 2y + 107 oy | e 2y Sk lullngrey, k>0,

(3.4) Nloll2r2) + 107 "ollcorensee) + lelll (ele — ) ™05 Mol L2ge) S Nl o102y

whenever the right-hand sides are finite and ||uHH_%0 is small enough. The data-to-

(R?)

solution map u +— v is analytic in all the above topologies.

We will extensively use Proposition which proves the estimate
1182178y — 02) "l pre S llullora

for suitable 1 < p,q,7,0 < 00, s € [0,2], as well as other linear estimates from Appendix

(Al

Proof. The existence and uniqueness of a small v follows by a standard fixed point
argument in the L3(R?) topology using Proposition In fact, call T" the operator
(9, — 02)7! defined as the integral operator on R? with respect to the heat kernel, as in
Appendix [A] Then one has

Tz fll s w2y S NIl - 1T fllL3rey S 11 f 1 L3/2mey-

%,O(Rg)’
Since obviously ||f2HL3/2(Rz) = ||f||%3(R2), we find that the map

F v TO,(v° — u)
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is a contraction in a small ball B.,(0) C L?(R?) assuming u € H _%’O(Rz) is small enough,
in particular there exists a unique small v € L3(R?) such that F(v) = v, hence the claim.
The data-to-solution map is analytic due to the fact that the solution is obtained using
the Banach fixed-point theorem.

The uniqueness for large v € L3 is a consequence of the uniqueness for small v,
translation invariance, and the fact that for small solutions v one has that v|g,« )
depends only on u\{y<_ My, for any given M € R. In fact, given M € R, one can prove
an analogous uniqueness statement for small v with R? replaced by {y < —M}, using
the same estimates as before. By translation invariance, the smallness condition does
not depend on M. Now given two solutions v; and vy in L3(R?), one has vy 23 (qy<—nr})
and ||v2||p3({y<—nry) are arbitrarily small for M large enough, so by the inequality

[va — v1ll 3 (fy<—nry) = 10T (V5 — D) L3 ((y<—arh)
S llve + villpsqy<—amllve = villzaqy<—nrp).
it holds that v; = vy a.e. on L3({y < —M?}) for M large enough. The same is true for
all M € R by a bootstrap argument, assuming v; is the unique small solution.

The estimate on the first term on the left hand side of (3.1)) follows from the estimates
of Proposition and the last estimate of Remark since v = 9,I'(v? — u) and

10232y S -0 g

The estimate (3.2)), except for the weighted estimate, comes by Proposition and
a fixed point argument in L3(R?) N L°(R?), which yields
HF@x(vz - U)HLG(W)chLngH; S HU2HL2(R2) + ”UHLZ(RZ)
< |vllzs@2ylvll Lame)y + llull L2 (m2)-

The weighted estimate in follows from inequality of Lemma since v =
0T (v2—u), with u, v? € L?(R?). For the weighted estimate in instead, we note that
v=w+ 2z, w:= 0,l'u, z := 0,I'v?. The weighted estimate for w follows precisely from
inequality of Lemma after a linear change of coordinates. For z, Proposition
and Holder’s inequality give us

el2] {e(w — a)) ™ 2ll 2y < lel [ (e(@ — @) " | oo 2 10Tl 2 1o
S 102 /22y
= ([0l @e)
Sl o gy

For the second term in estimate (3.1]), we note that we can simply recover the an-
tiderivative of v, from equation ,

9y vy = vy + 0% —u,
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. L1
and u,v, € H _%’O(RZ) — BZ;’O(RQ). Moreover, it holds the chain of continuous em-
beddings

H%5(R?) < L2L4 < LAL2,  L2LL < B, 20(R2),
so that v? € B;EC;O(RQ) and the estimate is proved.

Estimate follows with standard techniques of well-posedness at higher regularity
similarly as for estimate , or simply by the analyticity and translation invariance of
the data-to-solution map u + v. The first part of estimate follows similarly, this
time making use of the simple estimates

1021 orsmey < 0l sy 0l L2 @), 10T fllr2mey S 1 f Il possmey-

For the second term in (3.4), since v € L3(IR?) is small and in addition |[v||z2 < ||ull -1,
we can simply set V := I'(v? — u) and note that

IVlicorenrs@e)y S llullo, 2@y + 102l 1o/ ey
S ||UHH—1,O(R2)(HUHH%,O(RQ) +1)

S ||“”H—1,0(R2)

for small v in H 7%’0(]1%2), where we used the estimates of Proposition in the first
inequality. Since v = 9,I'(v? — u), we have V, = v, in particular v is the derivative of a
function that belongs to CoL? N L5(R?), with the desired bounds from above. Finally,
the bound on the third term follows from the linear estimate in Lemma with
s =0,1, since 9, 'v = T'(v? — u). O

The next Corollary proves similar estimates for solutions to (M| with constant
boundary conditions at infinity. More precisely, we look for solutions v € L3(R?) + A,
A € R. Note that if v is one such solution, then v := v — A € L3(R?) is a solution to

(3.5) Uy — Vg — 200y = (0%) — Uy,

so this Corollary is equivalently proving estimates for ‘tilted’ solutions to equation .
We use the tilde above ‘v’ to express the fact that we are removing the leading part (in
this case, the constant ) from a solution v of . We will try to keep this convention
consistent throughout the articld’}

Corollary 3.2 (Solutions of close to a constant A € R).

(a) Letc # =2\, u € Hfé’O(RQ) small and o € C(Ry) be such that [|ay—c|| 2w,y S 1-
There exists a unique solution v € L3(R?) + X to equation . The function v := v — A
is the unique solution in L3(R?) to equation , and it satisfies the bounds

~ ~ 1 1~
1906 - ey el - oy HleH2XE e+ 22 @ = @)™ Blliaqe) S ull - g g

SFor example, an analogous notation will be used for solutions V of equation (3.9)), whose leading
part will be Az 4+ A%y, so we will have V := V — (Az + \2y).
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Moreover, the estimates (3.2), (3.3), (3.4) hold for v as well (with 8;1v, replaced by
8;1% — 2)\v and c replaced by ¢ + 2)\), and the data to solution map is analytic in all

the involved topqloglies.
(b) Let u € H™2°(R?) small and let A\; # Xa. The two solutions 7, 5(?) to equation

B-5) with A = A1, g given by part (a) satisfy V) — 72 € Cy(R,, L*(R,)) and

~ ~ 1

[T = 5P|y rens@ey S [A1 — Ao ||u||H_%,o(R2)~
Proof. Part (a) is a direct consequence of Lemma thanks to the change of coordi-
nates (z,y) — (x + 2y, y), which conjugates equations (M]) and (3.5 in L3(R?) while
keeping the L3-norm and the H —30 (R%)-norm of u invariant, and from the operation of
subtracting a constant A\ from v, which also conjugates the same equations in the spaces
L3(R?) + X and L3(R?) respectively. We thus restrict our attention to part (b). By the

scaling symmetry
v = Av(A, A2, w = Nu(r, \2)

and the above change of coordinates with suitable A\, we may assume A\; = 1, Ao = —1
without loss of generality, and call o) = 7+, 7 = §~. Consider the function w :=
vt — 0. It satisfies the equation

v

Wy — Wy = (07 +07 )W)y + 207 +07 ).
Consider the two solutions k* of the linear equation

ki — ki, = 205

Then the difference z := w — (k™ + k™) =: w — k satisfies
(3.6) 2y = 2ze — (07 +07)2)e = (07 +07)k)a
Now, from Proposition we know that

10y — Oze) ™ 0agllcor2nrome) S lgllr2(re)-

Note that 7]z < ;o ga
space of sufficient regularity. By Proposition

so (0 +07) is small and lies in a scaling critical

18y = Oz — 0 (0" +07))zll0, L2r2) > 118y — Oua) 2|0, £2(R2)
— (=8 (2" +77))zllo, L2(r2)

2 llzlleorznrsme) = 107 +07)l|zsllzll Lo r2),
so for small enough u € 30 (R?), we can upgrade the previous estimate to
10y = Oxe — D (VT + 5_))_1@9“0@2%6(3&2) S 9l 22 @e)-

By looking again at equation (3.6, it is then clear that we only need to show that k €
CoL? N LY, because then the same holds for z thanks to the above estimate (considering
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g= @"+77)k € L2(R?)), and for w = z + k simply by summation. Let’s thus consider
k™ without loss of generality. Considering w := v+ — k™, it holds

w; —wy, = ((5+>2)m — Ug.

In particular, we have
1&F s < 1[0z + [lw™ |3
SN@H | pare + [lull

350
<l g0

due to the estimate |||04|T'f||13 < ||f||L3/2+H—%’°(R2)
sition But we also have k = 20,I'0" = 27((v1)? — u), where

of the heat kernel given by Propo-

T — 9,70, — —%am[r _1,

where the last equality can be checked by means of the Fourier transform, using the
notation I't := (Oy — 02420,) ! asin Appendix The above operator behaves at least
as well as a heat kernel and an z-derivative of the heat kernel, since 92T is bounded
on LP(R?), 1 < p < oo (see Proposition , so in the end k € CoL? N LP(R?) for any
3 < p < oo, with the desired bound on the norms. O

Decomposition in terms of simpler solutions

Throughout the rest of the subsection, we will assume u € H —30 (R?) small, and consider
vt € L3(R?) £ 1 the unique solutions of (M) given by Corollary Recall that
T =0T F 1 € L3(R?) are solutions to (3.5) for A = £1, that is,

Ej — 0L, F 20 = (0F)?)s — ug.

We will write fo(z,y) := f(z — a(y),y) as in Notation several times for the rest of
the section.

Definition 3.3. Consider the two real functions defined in the introduction

E(z) = %(1 + tanh(z)).

For u € H_%’O(RQ), let v* as above, and define

Gz y;0) =" (z — ) (z,y) + 1 (z — a)v™(2,y)
=tanh(z — a) + 0 (z — a)v " (2,9) + 7" (x — )V (7).

Using the subscript Notation to denote translations in the x variable, we will write

G(-, o) =nivt +n 0"
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= tanh, +nf 0" + 1,0

Finally, through an abuse of our own Notation we will simply write G, to denote the
function (z,y) — G(z,y;«). Depending on the context, o might denote a function of
the variable y, in which case G, will have the obvious definition G (7, y) 1= Gq(y) (@, y)-

In the following lemma we momentarily drop the dependence of &, G on the variable
y and prove some properties of G(-,y;-) for fixed y € R. Note that, by a straightforward
computation, the quantity G, — G} can be rewritten in terms of a,b and v+ — 7~ only:

(3.7) Gq — Gy = (tanh, — tanhy) + (nf —n) (@ —v7).

Lemma 3.4 (Properties of G,). Let vF € H-Y2(R,) such that o7 — 0~ =: h € L*(R,)
is small enough. For a € R, let

Go(x) = tanh(z —a) + T (z — a)v" (2) + 0~ (x — a)v™ (2).

(a) It holds Gy —Gy € L*(R; cosh?(x)dz) for any fized a,b € R, and we have the bounds
(b—a) < /(Ga —Gp)dx <3(b—a) Va,beR.
R

(b) Let v € L%*(R;cosh?(z)dx) + Go. There exists a unique o € R such that the
decomposition v = w + G, satisfies

/Rw(x)dx 0.

(¢) The map

L*(R; cosh?(z)dzx) x L*(R) — L*(R; cosh?(z)dz) x R
(z,h) = (w, ),

with o and w as m@ and v = z + Gy, is well-defined and smooth.
(d) If v =w+ Gq as in|(D)| it holds
[| cosha Wl 22y S 3211;{ | coshq (v — Ga)llL2(m)

whenever the right-hand side is small enough.

Note that by@ for any a € R, the property v € L?(R; cosh?(z)dz)+G, is equivalent
to v € L?(R; cosh?(z)dz) + Gy.

Proof. We first write

G, — Gy = (tanh, — tanh,) + (n7 — )@ —07)
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and note that the first term and the first factor in the product are bounded by sech?(z)
up to a multiplicative constant, in particular the integral is well-defined. We can compute
its derivative with respect to a, which reads

d 1 ~
7a R(Ga—Gb)dx:—/RQsechg-(Q—i—Tﬁ—v_)dm

1
= —/ isech2~(2+h)dx,
R
and using the smallness of h € L?(R), we get that this derivative lies between —1 and
—3, proving @ Note that being the above quantity a convolution with a Schwartz

function, the map

aH/(Ga—Gb)dx
R

is smooth, and has a global smooth inverse by the strict sign-definiteness of the derivative.
Part @ is a direct consequence of part @, in particular of the bijectivity of the above
map for fixed b = 0.

Concerning part we first show that the map is well-defined. That is, we show
that w and « only depend on z and h = v —7~, and not on more information on o+, 0.
We have z = v—Gg =w+ (Go — Gy), s0, w = z — (G4 — Gp). The number « is thus the
unique number such that [ z — (G4 — Go)dz = 0. By , for fixed « the integrand
depends only on z and h, so « is indeed only determined by them. The same holds for
w, since w = z — (G4 — Gy), and G, — G depends only on « and h by . For the
smoothness, first note that the map

L*(R) x R — L?(R; cosh?(z)dz),

(h,a) = Ggq — Gy

is smooth, as it can be verified directly from equation (note in particular that the
map is affine in the variable h). The dependence on (h,a,b) is smooth as well since
Go — Gy = (Go — Go) — (G, — Gy). Now, call z = v — Gy, and let v = w + G, be the
unique decomposition of v. From what we have just shown, the map

F:(hw,a)—w+G,— Gy

is well-defined and smooth, where o € R, h ranges in L?(R), w ranges over the closed
subspace of functions f € L?(R;cosh?(x)dz) such that Jg [ dz = 0. Moreover, the
differential with respect to (w, «) is

Dy oF(h,w,a) - (@,é) =& — ésech? -(1 4+ h/2).

It follows that Dy, oF(h,w,a) is invertible on L?(R;cosh?(z)dx), since sech? -(1 + h/2)
has non-zero mean for small A, and w is a generic vector with zero mean. Part thus
follows by the implicit function theorem and the uniqueness of the decomposition.
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Finally, we prove @ From the smoothness statement in part we have
| coshw||z2 + [a] S || cosh (v — Go) |2

when the right-hand side is small enough. With the same smallness assumption, we can
assume |ao| <1, so

| coshaw||z2 < || cosh-(v — Go)| 2

follows by monotonicity, since cosh(z — a) < el®l cosh(x). Estimate @ follows from the
above estimate by translation invariance. O

Uniqueness

We now start working for the uniqueness of solutions of . The main issue is that
the position of the kink depends sensibly on the source term at very negative ¥, so the
difference of two generic solutions is hard to control. The first idea is to consider the
new variable w := v — G, which is expected to decay exponentially as © — +oo. The
transport towards the kink converts the decay in x into exponential decay in y, after
fixing « via a suitable orthogonality condition. This leaves room for all the needed a
priori estimates.

Secondly, two solutions of with the ansatz v/ = Gy + wJ will turn out to be
comparable due to the fact that the quantity

/’UI’UZdQSZZI
R

does not depend on x, and in fact it can be used as a measure of the distance between the
kinks of the two solutions. When I = 0, the two solutions will share the same a due to
a good choice of the orthogonality condition, and the argument described above proves
estimates for the difference of two solutions, and shows that v! = v2. When I # 0, the
distance between the two kinks will be approximately I for all y € R, and the two will
be different solutions. The number I, or equivalently the value of o at any fixed y, will
thus be the real parameter that describes the family of solutions.

As a side effect of the above argument, we will see a gain of regularity in the pertur-
bation w, essentially due to the fact that 7 — 7~ is more regular than v+, by Corollary

B2 part (b).

We first give existence, a decomposition and a priori bounds on the solution of the
initial value problem with initial time y = 0 associated to equation with conditions
+1 at +o00, and satisfying the above ansatz. To facilitate the reader, we recall that for
a € C(Ry),

@)t (z,y) + 1 (2)v (z,y),
T —ay)v (z,y) +n (2 — aly)v (z,y).
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Proposition 3.5. In the hypothesis u € H_%’O(]R x (0,00)) small, let v, 7%, G be as in
Definition . Let vy € L?(Ry; cosh?(z)dz) + Go(-,0) be such that

|| coshg, -(vo — Gao(',o))HLg

is small enough for some ag € R. There exists a unique solution v € C([0, 00), H 3 (Re))+
tanh(x) of equation (M) with initial datum vy such that

v — Go € C(]0,00), L*(Ry; cosh?(z)dz)).

Moreover, the decomposition
v=w-+ Gy,

given for every y by Lemma[3.4), is such that a € C([0,00)) and

[ cosha wll oo 22 + lleyllze S llull 3.0 + [l coshag -(vo — Gag (-, 0))l[ 2

Here we think of u as a distribution in H_%’O(]RZ) supported on {y > 0}, so all
we said so far makes sense, including the definition of v* and G. The corresponding
functions oF will also be identically zero for negative y.

The decomposition is obtained by applying Lemma part @ at each y € R. In
particular, [w(z,y)dz for all y > 0, and «(y) is uniquely determined by this condition.

Proof. Consider z := v — Gy, and call V,, :=nt0o" + 1,0~ = G, — tanh,. The equation
for z reads

2y — zzx — 2(tanh 2), — 2(Vo2), = (2%)2 + %sechz- (@) = (@7)?)
1

~1 [sech? (o1 — 5_)2]$ + 2sech? Vp,
so a unique solution z exists and belongs to C([0, T], L?(Ry; cosh?(x)dz)) for a short time
T > 0 thanks to Lemmal[A.9] The global existence of z follows from the estimate we still
need to prove and the blowup alternative. By the continuity of the decomposition map
in Lemma [3.4] we can assume that vy, u are test functions, so that the solution belongs
to C*°([0,T7, sech(x) H™®).

We now prove the estimate on the solution. Using the equations for 7% and the
smoothness of the decomposition map, w satisfies the equation

1 ~ ~
Wy — Wgz — 2(tanha W)ac - 2(Vaw)m = (w2)x + 5 SeChi . ((U+)2 - (U_)2)
1
~1 [Sechi (vt — 5_)2}1

+ 2sech? V, + %sechi 240t —77).
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The estimate on «, follows integrating the equation in :

sech? - (712 = (7)) dz + 4 [, sech? -V, dz
fR (] R «
(fpsech? - (2+0F —07))dx

oy (y)] =

and the estimate Hay||L5 S HUHH*%’O(R?) follows from Corollary by part (b) and the

weighted estimate of part (a), since the denominator of the above fraction is bounded
away from 0 for small u, uniformly in y.
Integrating against coshg{ w and integrating by parts, we get the weighted energy estimate

1
1d {/ (coshaw)2d:n} = —/(coshaw)i dx — /(cosha w)de+2/ sech? - (coshy w)?dx
2dy |Jr R R R

+ 2/ Va(coshq w)[(coshy w), + tanh, - (coshy w)] da
R
2
— = / tanh,, sechy, - (coshy, w)3dx
3 Jr
1
+ - / sechy - (07 — 77)2(coshg w), dz
4 Jr
+ / sechy f - (coshy w) dz,
R

where

f=2(@)? =@ )+ %tanha SO =) 2V + %(2 +07+77).

Looking at the first three terms on the right hand side, we can bound the positive term
with the two negative ones by making use of the orthogonality condition and the fact that
the self-adjoint operator —92 — 2sech? is non-negative on the subspace of L? functions
that are orthogonal to the function sech, by Lemma More precisely, under the
condition [wdz =0, it holds

/(cosha w)2dz + / (coshg w)?dx — 2/ sech? - (coshg w)?dx > || coshy w|| g1
R R R

Integrating the weighted estimate in time from 0 to T" thus gives

| cosha || 7o g2 + || cosha w721 S [ coshag wollZ2 + ([T (|33 + 07| ps s ) || cosha w] Lo Ls
x ([[(coshq w)g | z2r2 + || cosha | L212)
+ || cosha wlEas
+ || cosha wll s (107 || rs + [0 [ o r3)?
+ [[(cosha )l 22|07 =T || Fapat
+ (|| secha 0 || 22 + || secha U7 || f212)

X (|| cosha w212 + [yl 12 || cosha w| oo 12)
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+ llay 3 cosha ]l 2.

The cubic term can be controlled by the left hand side assuming w remains small: by
a continuity argument, the latter follows by the assumption we have on the smallness
of || coshg, -(vg — Gaq(+,0))|| 12, which is equivalent to the smallness of ||(coshq w)|y—o|| L2
by Lemma part @ All the remaining terms on the right hand side are controlled
by what is on the left hand side, the L?-norm of oy, and the norm of u in Hfé’O(RQ),
thanks to the estimates of Corollary (note in particular that by Corollary we

have the bound |[7%F|| 573 + |07 — 07 || s s + || sechq 0T || 22 < ||uHH7%7O(R2)), where the
multiplicative constants do not depend on 7. So the a priori estimate holds uniformly
in 7' > 0, thus it holds on [0, 00) as well. O

Lemma 3.6. Let v', v? be two solutions of (M) with initial data vé, vg as in Proposition
5.5 Then the quantity
/(v2 —ol)dr =T
R

is well defined, finite and does not depend on y. Moreover, if v/ = w/ +G,; as in Lemma
part@ we have that |I| < |a! — o?| < 3|I| for all y € R.

Proof. We can assume the data u and vg —Go(+,0) to be test functions as in the proof of
the previous Proposition. It holds w := v? — v = w? —w! + (G2 — G,1). The finiteness
of the above integral is given by the estimates in the previous Proposition and Lemma
part @ The quantity w satisfies the equation

(3.8) Wy — Wgxy = ((U1 + ’U2)w)$7

and the independence of y of the integral in the statement follows by integrating the
equation in z. The last statement follows by Lemma part @, since

/wdac:/(Gag—Ga1)dx. O

Lemma 3.7. In the hypotheses of the previous Lemma, calling w := v*> — v', assuming

I =0, we have the estimate

[[€°°¥ cosha w|[poc p2np2mt < |l cosha, w(-, 0)| L2,

where o = o' = o2 is shared by both solutions thanks to the previous Lemma, ag € R,

and where g > 0 is a universal constant.

Proof. We perform the same approximation argument as in the previous Lemma. We
follow the same strategy as in the proof of Proposition [3.5] and we define again V, :=
ntvt + n,v". Integrating the equation against coshi w and multiplying by €%V,
calling z := e*Yw, we get

;CZJ [ /R (coshe z)Qd:L} _— /R (coshy 2)2dz — (1 — &) / (coshy 2)2da

R
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+ 2/ sech? - (coshy, z)2dx
R
— / (2V,, + w! + w?)(coshy, 2)(coshy 2), dx
R
- /(2Va + w! + w?) tanhy, - (cosh, 2)2dx
R

- ay/ tanh,, - (cosh, 2)2dz.
R

The third term on the right-hand side is controlled by the first two terms thanks to the
orthogonality condition [wdz = 0 as we already discussed in the proof of Proposition
the only difference is the factor (1 — ¢) in front of the second term, which does not
change the argument assuming ¢ is smaller than a suitable g9 > 0. For the remaining
terms, we proceed as in Proposition (3.5} so we give short details. It is enough to estimate
%, w’ in L3(R?), tanh, ay in L;Lgo, and « in L;, since we will have bounds for cosh,, z
in L:%,y N Lgy N Lng and (cosh, z); in L%y. The former quantities are controlled by the
Hfé’O(RQ)—norm of u, thanks to the estimates we have on v* in Corollary and to
the estimate for w’ of Proposition After integrating in y, and substituting z with
e*Yw, we thus obtain the desired inequality. ]

For small u € H _%’O(RQ) and v being a solution of , we consider the following
properties:

(H1) v — Go € O(Ry, L*(Ry; cosh?(z)dx)),

(H2) i ;IelﬂfQ [ coshy - (v(-;y) = G5 (5 9)l L2 (m) = 0,
(H3) A ;rel]% | coshy - (v(-,y) — G5 (5 9)ll2w) = 0,
(H4) v =w +tanh,, Jw € L}R?), o, € L3 (R,).

with G as in Definition B.3

Corollary 3.8. Let ueﬁfé’O(RQ) small. Let v be a solution of (M)) on R? satisfying
[HI), (H2). Consider the unique decomposition v = w + Go with [wdx = 0 Vy € R
given by Lemma|3.4. Then, v satisfies (H3]), , and it holds

| coshys wll Lo p2nr2m + llayllrz S HUHH%,O(RQ)-

Moreover, if v', v? are two such solutions, with decompositions v/ = w/ + G;, then

either vt = v? or at(y) — a?(y) # 0 Yy € R.
Proof. By Lemma part @, the assumption (H2) is equivalent to
”(COShoﬂ wj)|y=y0||L2(]R) —0 asyy— —oo.

The a priori estimate follows by Proposition after a translation in the y variable,
truncating first the solutions on R, X (yp,00), and then sending the parameter yo to
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—o0. Using Lemma part @ the assumption can be verified from the same a
priori estimate by sending yo to +00 along a suitable sequence, since cosh, w € L;OL?C N
Lf/L?r. Assumption follows from the a priori estimate of this Corollary on w, «, the
definition of G, and the fact that = € L3(R?).

For the last statement, assume a! — a? = 0 for some y. Then by Lemma it holds
al=a?=:a=0,1=0, and by Lemma it holds

Hego(yfyo) coshg w”Lg;O o L2nL? m S COSha(yo) w(-, yo)l 2.

) (yg,00)

Sending 1o to —oo shows that w = 0, and the claim follows. O

Proposition 3.9 (Uniqueness of solutions of (M)). Let u € H_%’O(RQ) small enough.
Let v be a solution to (M) satisfying (H4)). Then, v satisfies (H1)), (H2)), (H3). In

particular, by Corollary[3.8, v is uniquely determined by w and by the value of a at any
fized y, where v = w + Gy is the decomposition as in Lemma[3.4)

Lemma will later tell us that v = V(=1 (u, ¢) (see Proposition [3.19) for a suitable
¢ € R that is uniquely determined by u and «(0).

Proof. Consider v* € L3(R?)+1 as in Deﬁnition and F := v¥ F 1. For w as in the
statement of the Proposition, after some rewriting, it holds

Wy — Wy — 2wy = —4(n; W)y + (w?)y — uy + oy - sech? .
The function z := w — v solves
2y — Zpw — 22 = (0 +07)2), — 4(n,; W)y + 0y - sech? .
The function w(z,y) := e*~ "W z(z, y) satisfies
Wy — Wz +w = (0 — D)[(w +)w — 2sech, w] + oye” 7 sech? —o, w.

-
The operator ' := (9, — 92 + 1)~! satisfies all the estimates satisfied by I' stated in
Proposition with similar proofs, with in addition

-
ITfllrre S |1 fllzeLa

due to the fact that the kernel f(:c,y) = e YI'(z,y) belongs to L'(R?). We thus have
the estimate
lwlleoranrs , S ll(w ‘f‘f?fr)WHLg,y + || secho w1312
oy sech? 1z, + oy sz,
S U s, + lwles, + loyll2)lwllcorenis,,

+lwlies, + lloyllcz,
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-
The estimate holds on any half plane R, x (—oo, 0], yo € Ry, since the kernel I" is
identically zero for negative y. In particular, choosing yo to be negative enough so that
all the quantities multiplying ||w|| on the right hand side are small enough, it holds

lwlleozznzs,, S lwllzs s, + oyl

on that given half plane, provided that the left hand side is finite. By a density argument
and the uniqueness of solutions for the initial value problem associated to the heat
equation, the finiteness condition of the left hand side can be removed assuming z €
L3(R?), so for our original z we have

le* "Wzl coronre, S lwlls +e, + lloyllzz.

Thus, e*~ W) (w—7) € Cy((—o0, o), L*(Ry)) N LS (R x (=00, 1)). An analogous energy
estimate

”WHL?OL?mLf;LG S lwly=goll 2wy + (||5+||L?;Lg + ||w”L?;Lg + ||UyHL%)”WHL§0L2mLf}Lg
lwllpazs + lloyl 2

holds on finite strips of the form R x I, I = (yp,y1). The above argument applied
iteratively on finitely many small intervals I shows that

e "W (w -7t € C(Ry, L*(R,)) N LI(R?),

with the L?norm going to zero as y — —oo. The same holds for e~ (=W (yy — 7)),

with an identical proof. Now note that it holds

V= Gy =w—niot —n 0"
=g - (w=0") +n, - (w—17),

and cosh, nf,ﬁ < etl@=a(¥) 5o by the two estimates we proved,
cosh, -(v — G,) € C(R,, L*(R,)) N LY (R?),

with vanishing L?-norm as y — —oo. This directly implies (1)), and by Lemma part
@ condition (H2)) follows as well. The rest of the statement follows from Corollary
B8 O

Following what we do in Appendix [Bl we could now run a compactness argument to
obtain the existence of eternal solutions with the above bounds (this will work due to
the a priori estimates we have on v). It turns out that we can avoid this, since we are
able to find explicit formulas for the solutions in terms of v*.
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3.2 Exact formula for solutions of (M)

The main idea to construct solutions of is simple. Burgers’ equation is formally
equivalent to a heat equation with potential, through the Cole-Hopf transformation. So
there is a way of taking superpositions of different solutions by the linearity of the heat
equation. In particular, we are allowed to interpolate between v and v~, which can be
seen as the limit of the solution family as @ — 40o: note, in fact, that v* and v~ satisfy
equation with boundary conditions +1 as (z,y) — oco. We make things slightly
more general by considering an arbitrary combination of solutions of from Corollary
this is the content of Proposition [3.19 which we prove at the end of this subsection.
We will show in the next subsection how the solutions constructed in this way are the
ones we are looking for (in particular, they satisfy the assumptions of Proposition .

One conceptual difficulty is the fact that the derivative in the Cole—Hopf transforma-
tion is not a bijective operation, and its inverse introduces undetermined y-dependent
constants. However, there is a natural way of defining the antiderivative of a solution of
up to a constant that does not depend on = nor on y. To see this, we consider the
natural primitive equation of ,

(3.9) Vy = Vie = V2 —u.

Lemma 3.10. Let v € L2 _(R?) be a distributional solution to equation (M)). Then,

there exists a solution V' to equation (3.9) such that 0,V = v. Moreover, V is unique up
to an additive constant.

Proof. Assume v € L? (R?) is a solution to equation (M]). By Lemma there exists

loc

V € 2'(R?) that satisfies 9,V = v. It follows that

Vy_Vxx:i}g?_u_gy

where g € 2(R,) (that is, g € Z(R?) such that d,g = 0). Consider G € Z(R,) a
primitive of g which is still independent on y and define V := V +G. Then, it is
immediate to see that V satisfies and 0,V = v. Moreover, assume 1" has the same
properties of V. Then, calling W :=T — V,

We=v—v=0,
W, =T, V, = (vy + 0> —u) — (v + 0> —u) =0,

so that W is constant. O

Estimates in parabolic BMO spaces

By scaling considerations, and from the fact that we have uniqueness only up to an
additive constant, we can guess that the right space for V' is some space of BMO type, but
we need to take into account the scaling symmetry of equation , which is parabolic
and incompatible with the usual, Euclidean BMO(R?). We give the definition of BMO
spaces with parabolic metric, after a brief, self-contained overview of the general theory
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of metric measure spaces of homogeneous type. We refer in particular to Coifman—Weiss
[9], and to the other classical references [48] [49].

Definition 3.11 (Spaces of homogeneous type and BMO, [9]). Let (X, d) be a metricﬁ
space, with open balls denoted by B,(z), r > 0, x € X, and p be a Borel measure on
X such that p(B,(x)) > 0 for any r > 0, z € X. The triple (X,d,u) is a space of
homogeneous type if the measure p is doubling, i.e., there exists A > 0 such that

p(By(z)) < Au(B,j2(x)), Vr>0,z€X.

We define BMO(X, d, ), or simply BMO®(X), as the space of all (classes of a.e. equal)
measurable functions such that the seminorm

IfllBMO = Sup][ |f — fBldu
B JB

is finite, where the supremum is taken over all balls B with respect to the distance d, and
where fz := f5 fdp := ﬁ Ji fdu. We then deﬁneﬂ BMO(X) := BMO%(X)/R (note
that || - [[Bmo is well-defined on BMO(X)).

The above is simply the usual definition of the space BMO in the context of metric
measure spaces of homogeneous type (see the discussion in [9, §2]). From the classical
theory, we know that the space (BMO(X), ||-|[Bmo) is a Banach space, and it is immediate
to verify that BMOO(X ) is a Banach space as well when equipped with the norm

)

Ifllnion = fleso + | | foa

for some ¢ € LX(X) such that [, ¢ du # 0 (all such norms are equivalent), and embeds
continuously int L (X). From here on, for a function f € BMO’(X), we will denote
with the same name the class of functions [f]r = {f + ¢|c € R} € BMO(X) when there
is no ambiguity.

One property of BMO functions in spaces of homogeneous type is the John—Nirenberg
Lemma. The proof is analogous to that of the Euclidean case, which was originally proved

in [I7] (see also [9, footnote 22]).

5One can more generally consider quasi-metrics on X, where the triangle inequality only holds up to
an absolute multiplicative constant. We will always assume that the metric is finite.
"When p(X) < oo, it is common to define BMO(X) simply as BMO?(X), and to set

1 llao :s%p]i\f—fsww‘]{( fdu‘-

We do not adopt this distinction here for the sake of uniformity. This has minor importance, since the
applications of this theory in this article will only concern the case u(X) = oco.
8From here we assume that closed balls in X are compact, so that L? (X) is a Fréchet space with

all the usual properties. This will hold for the parabolic BMO spaces. It holds in general when X is
complete, see [0, §4, second paragraph)].



50 CHAPTER 2. ON THE BACKLUND TRANSFORM OF KP-II

Lemma 3.12 (John—Nirenberg inequality). Let (X,d, ) be a space of homogeneous
type. There exist constants C,~v > 0, depending on the doubling constant A, such that
for every ball B it holds

][ o TFTBM0 ‘f(”")_fB‘du < C.
B

Corollary 3.13. It holds BMO%(X) «— L

P (X) for all p < co. Moreover, e/ € L¥ (X)
whenever p < v/|| fllBmo-

loc

We state the classical logarithmic-growth bound for BMO functions, the proof of
which can be found in [13], §3.1] for the Euclidean case, as a guided exercise.

Lemma 3.14. Let (X,d,pu) be a space of homogeneous type. The following inequality
holds for functions in BMO(X):

IfllBMO-

d(zi,x
|f87‘(1'1) - fBr(x2)| 5 log (2 + (1,,02)>

We now apply the general theory above to a very special case, considering parabolic
BMO spaces as follows.

Definition 3.15 (The space BMO,, »(R?)). Define the parabolic nornﬂ on R?

1
(2, y)|px := max{|z + 2)y[, [y]2 }

and the corresponding parabolic metric as

dp (P, q) == [P — qlp,x-

We denote by BMO,, \(R?) := BMO(RR?, d,, 5, 1) the BMO space with respect to the space
of homogeneous type (R2, dp », 1), where p is the Lebesgue measure. We will denote by
BMO&A(RQ) the Banach space BMO®(R2,d,, 5, ) < .#/(R?), and call BMO,(R?) :=
BMO,, o(R?).

The space (R?,d,, 5, i) is indeed a space of homogeneous type (d, » is a metric) with
doubling constant A = 8, since u(B;(z,y)) = r3. The distance dp,  is the ‘tilted’ version
of the natural parabolic metric d, = dp, 0, that is, d;, ) is the composition between dj, o
and the linear transformation (z,y) — (x + 2y, y).

We use the notation ') := (89, — 92 + ¢d,) " as in Appendix

Lemma 3.16. The operator I'=?Y is bounded from L3/2(R2)+H7%’0(R2) to BMO,, \(R?),
with uniform constants in X.

We will call it norm, although it is homogeneous only with respect to a parabolic rescaling of
coordinates.
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By the change of coordinates (z,y) — (z — cy,y), we can assume A = 0. The
estimate follows from the estimates of Lemma by the H!-BMO duality. Alternatively,
a direct proof involves linear estimates for the operators (9, — 92)~1, |8x]%(8y — 0271
and is analogous to the boundedness of the Riesz potential operator (—A)_%, s = %,
from LP(R™) to BMO(R") in the Euclidean case, often referred to as ‘endpoint Sobolev

embedding’, see [48], V, §6.17].

Corollary 3.17. Let A € R. Let v € L3(R?) + X\ be the unique solution to (M) given
by Corollary and let V' the solution of (3.9), Vi, = v, defined up to a constant by
Lemmal310. It holds the bound

(3.10) IVllgno, @) S llull ;- 02y
where V =V — ()\ac + A2%y). Moreover, if u € H_%’O(RQ) is small enough, then ) :=
eV, 1/y € LS (R?), 0,9 = vip € L2 (R?), and it holds

(3.11) (8 — By + w)p = 0.

Estimate is an extensmn of Corollary- part (a). Note that the product ui is

well defined in Ll(R B, E 1OC(R ) C B ;/lzCO(RQ) with the above regularity hypotheses
on .

Proof. Let v := v — X\ as in Corollary From equation (3.9, the function Vo=
V — (Az + \?y) satisfies
Vy — Vg — 20V, = (V)2 — u,

Ve =",

so the bound (3 - ) follows from the linear estimates of the previous Lemma and from the
bound [|v]| 232y S Hu|| of Corollary [3.2| Since V — (Az + A\?y) € BMO, \(R?),

°(R?)
by Corollary [3.13|we have 1/1 =eV, 1/p=eV € LIOC(RQ) if HuHH,; 0(®2) is small enough,
and it is easy to verify that 9,10 = vip € L} _(R?) thanks to the L3- bound on . O

The next Lemma shows that the difference of two solutions of (3.9)) is more regular
than BMO, in analogy with Corollary part (b). To state it, we define the semi-
normed space

OB = { f e OO ||flgoe = swp LT
unif Cunit wwER?, [u—v|<1 lu —v|*
CO o (R2)
where the function |-| denotes the Euclidean norm on R?. Clearly, the space ~unif\™ /4 R

is a Banach space when equipped with | - |00 .

unif
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Lemma 3.18. Let u € H_%’O(]R2) small, and \y < 2. Consider the solutions;u(j) €
L3(R?) + \j of given by Corollary . Let VU as in C’omllary and V) =
V@ — (Xjz + My). It holds

~ ~ 0,0 (2
and the map v V@ — V) 4 analytic with values in Coumit(R )/]R'

Proof. Set 9\9) = () —A;. We consider the special case A\; = 1 and Ay = —1 without loss

of generality as in the proof of part (b) of Corollary and we use the same notation o+

of that proof. The analyticity of the map follows from the Banach fixed point theorem
as in Lemma so we focus on the bound. The functions V*, given up to additive
constants by Lemma satisfy

ViE—VE =22VE + (VE)? —u,
0, VE =+,

By subtracting the two equations, calling W = vt — ‘7_, and noting that v+ =
9, TF((vF)% — u), one has

W =T((@* +5) (W, +2))
=T(@" +0)W,) + 2S‘((G+)2 —u) + 25*((5‘)2 —u),

where )
§*i=T0,I" = — [ =T,

where the last identity is checked via the Fourier transform. The heat operator I' extends

to a map
0,1/2 (22
T L2R?) ¢ (R dp) o
which is well-defined and bounded by Lemma where R ¢ COV/2(R? d,) is the
subspace of constant functions. By Lemma W, = vt -7~ € L5(R?), so (vF +

)W, € L2(R?). In particular,
D+ )Weleosrague gy < Il o

For the remaining two terms, we use the fact that S* can be written in two different
ways, as above. Combining Proposition and Lemma from the two above ways
of writing ST, we get respectively that

S*: L¥5(R?) N 9, L*(R?) — COY2(R?,dy,) N COV2(R?, dy 1),

S*: L3(R?) — COY2(R?,d,) + COV2(R?, dp +1).
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By interpolation,
S L32(R2) N H-20(R?) — COV2(R2 dy) + COVA(R2 dp +1).
Putting together the above bounds, we have obtained that
W e COVA(R2 d,) + COY2(R?,dy ) + COYV2(R2, dy 1),

with bound from above by ||ul] The claim follows noting that for |z| < 1, it

holds

H-30(R2)"
|Z’p ~ ’Z‘pﬂ ~ ’Z‘p,—l < |Z|1/2‘ O

As anticipated at the beginning of the subsection, we now construct new solutions of
by combining those coming from Corollary using the Cole-Hopf transformation.
In the following, p € C°(R?) is again a standard mollifier. For a distribution V €
2'(R?)/R defined up to an additive constant, by an abuse of notation, we will refer to
the unique distribution V' € 2'(R?) in its equivalence class satisfying the normalization
condition

(3.12) /]R2 V(z,y)p(z,y)dedy =0

as a ‘normalization’ of V.

Proposition 3.19. Let u € H_%’O(RZ) small enough, M > 1, and X € RM such that
)\1 << Ay Let o9 € L3(R?) + ), 1 < j < M be the unique solutions to equation
with A = \j, given by C’omllary . Let V 7) the corresponding solutions to equation
1’ as in Corollm“y-, normalized as in . Given ¢ := (c1,...,cpp) € RM | the

functions

Y= Z VO)‘”J V :=log, vi= 0,V
Cj

316 =

are all well-defined distributions, with,1/¢ € LIOC( ), O € L2 (R?),V e L (R*)Vp <
o0, U E Lumf(]R2). The function ¥ solves equation (|3 , and v solves . distribution-

ally. The map B
VA (4,8 — v
A 50 R2)
is uniformly cantinuou from Bz, (0) x RM ¢o L}

loc

Zj]\il U(j)GV(j)+Cj c LIZOC(R2)'

(R?).

Proof. By Corollary [3.17, ¢ € LY (R?) and 9,9 =
The function V = log is finite a.e., and it holds

||6“||

mln{V N <V < maX{V Y.

OEvery topological vector space has a natural uniform structure by the translation invariance of the
topology. The statement is equivalent to uniform continuity with values in L3(K ) when restricting to
any compact K C RZ.
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Since the functions V) are in BMO%)V (R2), they lie in L{’OC(RQ) for any p < oo by

Lemma Thus, V is also in L (R?), p < oo, so one can set v = 9, V. Moreover, it
holds

f: R T P
v=3 (), (W)= ,
= leyzl eV B +cy

in particular v € L3 ..(R?), since vV) € L3(R?) + ), for all j, and 0 < ¢\ < 1 aee..
Consider the map (u, @) — (9. Rewrite ¢U) as

) = L ‘
SM VIV ()

By computing the differential explicitly, using the normalization (3.12)) of the functions
V), as well as the analyticity of the map u — V® — V) with values in 03;1144 coming

from Lemma and the fact that [¢((¥)| < 1, it follows that the map (u,é) — ¢

o . ™ 30(R2) M 0 2
is Lipschitz continuous from B, (0) x R™ to L*®(K) for any compact K C R”.
That is, the same map is uniformly continuous with values in Lﬁfc(Rz). Combining this
with the analyticity of the maps u v9) by Corollary yields the uniform continuity
of V2.

Finally, by Corollary and by linearity, it follows that i solves equation ,
and by the Cole-Hopf transformation v = 9, log(¢), v solves equation (this last
step is true by direct 1Computation when u is smooth, and the statement extends to all
small enough u € H~2°(R?) by continuity). O

3.3 Proofs of Theorem [A] and Corollary

Now we are ready to give an explicit characterization of the solutions and of the map ¥
in Theorem [Al

Definition 3.20. Given a small u € H_%’O(RZ), let v* € L3(R?) £ 1 the solutions of
(W) given by Corollary with A = +1. Define VT as the solutions of (3.9) given by
Lemma corresponding to v*, normalized by the condition (3.12). Finally, for ¢ € R,
define

+_ - +_ _y-
Ve = log VeV e 7 o e DV v+ev+ c+u fv +c.
e +e ¢ eVi—c eV te
In other words, v°¢ = Vx(u,é), with 'V as in Proposition X = (-1,1), and ¢ =
(¢, —c).

Proposition 3.21. The functions {v°}.cr in Definition solve equation (M) and

satisfy the four assumptions (H1)-(H4) stated before Corollary[3.8 In particular, v°
satisfies the assumptions of both Corollary[3.8 and Proposition [3.9,
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Proof. The fact that v¢ satisfies equation (M) distributionally is a consequence of
Proposition It is enough to show (H1)), (H2|) by Corollary Consider V* :=
V*E — (£r +y), and set

1
vi= §(V+7V_720), Wi=1x — V.

Let
tanho v(z,y) := tanh(v(z,y)), nTov(z,y) :=n*(v(zx,y)).

Then, one can write v° as

v° := Go + (tanhov — tanh) + (pTov —n*) - (T — o).

It is clear that 9, = —3(v — ©7), which lies in Co(Ry, L*(R,)) by Corollary In
particular, it holds

(3.13) (1, y) — plwe, y)| < Cylzy — a2,

where Cy = $[[07 (-, y) — (Y lew,y S Ml Vy. This immediately implies

~ =3 ome)
that

(tanho v —tanh)(-,y) , ((77+oy—77+)'(”17+—”17_))(-,y) € L*(R,;cosh?(z)dz) Vy € R.

Moreover, by Lemma p is Holder-continuous on the whole R?, so by dominated
convergence it follows that v¢ — Go € C(R,, L*(R,; cosh?(z)dz)). Finally, since C,, — 0
as y — +oo, assumption is satisfied by choosing v = 7(y) such that v = u(y,y),
which always exists due to , and the same condition holds for y — 4o00. O

Recall that, by Lemma part @, (H2) and (H3) are equivalent to

ygrziloo ” COSha(y) w(‘a y)HLQ(Rx) =0.

In principle, we have many ways of parametrizing the family of solutions {v°}.cr: by
the parameter ¢, by the phase shift oy := «(0) at ordinate y = 0, and by the quantity
J o — v9dx, where the first and the third are in a way more canonical but only up to an
additive constant. Here we also introduce the parameter ~g, which we used to formulate
Theorem |A] and can be defined with very few assumptions on a general solution of .

Lemma 3.22 (Change of parameter). Let u € Hfé’O(RQ) small, and consider {v°}.cr
as in Definition[3.20. There exist invertible, smooth changes of variables on R, ¢ — ay,
c— o, determined uniquely by the conditions

(3.14) /R’Uc(:c, 0) — Gop(z,0)dz =0,

(3.15) /R2 p(x =50, y)v° (2, y)drdy = 0.
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In particular, the map c — v° is injective. Moreover, it holds

(3.16) o = a0l 5 lull -3 o g

(3.17) o — el +lao — el S A+ leDllull 30 5oy

Finally, the map (u,c) — (u,70) is bi-Lipschitz on bounded sets. In particular, the map
V defined as
V(u,70) := VD (u, (¢, =) = °

coincides with V=LY up to a homeomorphism and a projection from R? to {(c1, ¢2) | c1+
Cy = 0}.
Note that for small u, estimate (3.17)) implies

a0 =] 5 (1+ o) [l 0gay Do =€l S 1+ hoD el oo

The proof is moved to Appendix

Remark 3.23. Similarly as above, we can define (y) for all y € R as the number deter-
mined uniquely by

/R2 pla’ —(y),y —yn (@' y)dz'dy’ = 0.
By translation invariance in y, (3.16)) implies
Corollary 3.24. Let v°¢ as in Definition [3.20. Consider the associated phase shift o
gwen by Lemma [3.4) thanks to Proposition[3.21. Then,
() — aly)] S log(2+ ly2 = yaD)llull 43055
Proof. By Remark we can replace a with « in the above statement. We recall that
v® can be written as

v = tanhov + (nTo V)0t + (n o v)o,

where v(z,y) == 2(V*(z,y) — V~(2,y) — 2¢). It is then a straightforward consequence
of the bound from Lemma that, in order to show the logarithmic bound on 7, it is
enough to prove the same bound for any function o = o(y) such that v(o(y),y) = 0.

Now, consider p(z,y) := = — v(z,y). By Corollary [3.17] and Lemma [3.18] u €
C:%(R2) N (BMOy, 1 (R?) + BMO,, _1(R?)). From this and Lemma [3.14] it holds that 4
grows at most logarithmically in R?, that is,

(@, y1) — @2, )] S log(2 + (21, 91) — (2, 42) Dlull 40 oy

The logarithmic bound on y +— o(y) is a direct consequence of the above bound. O
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Proof of Theorem[4] The proof follows combining previous results. We first claim that
the data to solution map ¥ is the same we defined in Lemma In particular, we set
v =V (u,v) = VoL (u, (¢, —¢)), with ¢ that depends univocally on u and on 7 as in
the Lemma. This v indeed satisfies the localization condition

/R2 p(x —y0,y)v(z,y)dedy =0

by the definition of the map ¢ + 7y in Lemma and satisfies by Proposition
[3:21] so the existence statement is proved. The uniqueness is given by Proposition[3.9)and
the bijectivity of the change of variables ag — vy in Lemma [3.22] The decomposition is
given by Lemma part @, which can be applied since v satisfies by Proposition
3.21l The same Proposition says that Corollary applies to v, and this proves the
estimate on «,w. The bounds on v* follow directly from Corollary The additional
bound on « follows by Corollary The continuity of the map and the explicit formula
both follow from Proposition[3.19|and the bi-Lipschitz change of variables (u, c) — (u, 7o)
from Lemma [3.22 O

Remark 3.25. From the decomposition in Theorem [A] it follows in addition that if
u € L*(R?), then

(v — tanha)xHLZ(RZ) N HuHHf%’O(R%mLQ(RQ)'

In other words, the Béacklund transform B defined in (|1.5)) satisfies

181,70 = $alliz@) S 1l -y o g opagen

In fact, it holds

- e 1 . —
(v —tanhy ), = (n;rv;f + 1,0, )+ 3 sechi (0T —07) + wy,

and we can estimate all the three terms on the right hand side by the second and third
estimate in (3.2)) using Corollary and by Theorem [A| respectively.

Proof of Corollary[B. First of all, if u € L?(R?) N H_%’O(]RQ) is small enough in both
norms, the solution v from Theorem [A] coincides with the one given by Proposition
and its proof, for some By € R. This is immediate if u is compactly supported in R?
thanks to the well-posedness of the initial-value problem for Burgers’ equation, and it
extends to all u as above by approximation using the continuity of 4 (note that the
solution in Proposition [B:3] is constructed as a weak limit of solutions whose data are
restrictions of the datum w on a half plane {y > yn}, with yny — —o0). In particular, v
satisfies the estimates of the Proposition.

We have to prove two estimates. The estimate |t L2(R2) S lul| £2(r2) is an immediate
consequence of the estimate [|Byz2r,) + |wallp2m2) < llullz2ge) of Proposition
where v = w + tanhg is the decomposition of v given by the Proposition, and of the
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identity @ = u — 2w, + 3. We now prove the converse estimate. Note that & = u — 2v,
satisfies the equation
Uy + Vg = (v2)x — Uy

Let 0 € C(Ry) such that |[oy|[z2@r) < o0 and @ — ¢, € L*(R?). Let z := v — tanh,,
g:=u— Pg.

We claim that z € Cy(R,, L*(R,.)). For this, note that the three following decompo-
sitions hold:

v = w + tanhg = G, +w = z + tanh,,

where w, 8 are the functions from the decomposition from Lemma and w,a are
as in the decomposition of Lemma We know that v = v¢ for some ¢ € R as in
Definition @, and by Corollary 175 lcore S llull r2(r2)- Also, by Proposition
coshy w € Co(Ry, L2(R,)), so it follows v — tanh, € Co(R,, L*(R;)). By the definition of
w in the decompositon of Lemma it follows immediately that w € Cp(Ry, L*(Ry)).
Finally, since both 2z, and w, belong to L?(R?), it has to hold 8 — o € H'(R,), so
z = w + (tanhg — tanh,) € Cy(Ry, L?*(R;)) and the claim is proved.
Now, the functions z, o satisfy

2y + Zgz — 2(tanh, 2), = (zg)aC — Gz — Oy sechg )

By the usual energy estimates obtained multiplying the equation by z and integrating
in space, it holds for smooth enough functions

1d
- [/ szac] —/zgdx—/sechgzzd:r:/zxgdx—ay/sech?,zdac.
2dy [Jr R R R R

The last term can be controlled by v/2| o, 22w, |l sechs 2] 2 (r2) when integrated in time,
and the first term on the right-hand side is bounded by |[|z:||z2(r2)ll9llL2(r2)- By an
approximation argument with smooth functions, using the fact that z € Co(R,, L*(Ry)),
the above yields the bound

217 z2 + 20l 222y + ll secho 2ll72ge) < ll9ll72@e) + loyll72,)-

Since u = u + 2v; = g + 2z,, we obtain

lullL2mey S 18— @ollz2@e) + lloyllL2w,)

and the bound is proved by taking the infimum over all o. O

4 The time-dependent Backlund transform

We now go back to space-time equations. This time we will consider a time-dependent
u satisfying (KP-II)), and instead of studying equation (M), we will study the whole

system (M-mKP-II)), as well as its relations with (mKP-II)) and the Lax system ([2.17)).

The goal of this section is to prove Theorem [C] To do this, we give definition and prop-
erties of the elementary solutions of system (M-mKP-I1)) and prove a general nonlinear
superposition principle in Proposition that allows to combine such solutions.
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4.1 The well-posedness theory
Well-posedness around the zero solution

We have a satisfactory well-posedness theory of the (KP-II) equation on R? in high
regularity spaces (see [I4] and references therein). The following Proposition can be
seen as a special case of [43] Theorem 1.2].

Definition 4.1 ([43]). We define the spaces X®1* as the Banach spaces with norm

2b1
s = [, (CTEY T 4 ot st P r ds dn,
£ Rr

where o(7,&, 1) = 7 — 472¢3 + 3n? /€. For any T > 0, the norm in the localized version
X%bl’s is given by

lull o000 = inf {[w]| o010 | w(t) = u(t) on (0,T)} .

Note that X3:"* < ([0, T), H*(R?)) when b > 3.

Proposition 4.2. There exists an €9 > 0 such that the following holds. Fiz k € N,
£ < g0, 1/4 < by < 3/8. Let ug € H¥(R?). There exists a unique solution u €
C([0,00), H*(R?)) of (KP-1I) such that u(0) = uy and uljo,7] € XZIF/QJFE’ZH’]C for allT > 0.
The data-to-solution map is analytic.

The next Lemma addresses the time regularity of the solutions and can be proved
by directly looking at the Duhamel formulation of (KP-II).

Lemma 4.3. In the assumptions of Proposition if in addition ug € 3§Hk(R2) with
k—3j >0, it holds u € CI([0,00), H*=37(R?)).

Remark 4.4. Note that solutions of are not necessarily smooth in time, even for
ug € H®(R?). This is true even for the linear flow, and can be checked by looking at the
space-time Fourier transform of the solution of the linear KP equation. In order to have
solutions that are smooth in space-time, we need ug € 9%° H>®(R?) := N0k H?*(R?).

The first well-posedness result in a scaling-critical space is due to Hadac Herr—Koch
[15], who proved global well-posedness for small initial data in H~ 2 O(R?), as well as
local well-posedness for data in the inhomogeneous version of the space. We state here
a short version of the main theorem from the article, with the definition of the solution

space in Appendix [C] Definition
Theorem 4.5 ([15, Theorem 1.1)). Let ug € Hfé’O(RQ) small enough. There ezists a

unique solution
. 1 . 1
we Z73((0,00)) = Cy([0,00), - EO(RE)
of m on [0,00). The data to solutwn map ug — u s analytic from a small ball in
H~2%(R?) centered at zero, to Z~ ((O 00)).
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Well-posedness around the line soliton

The well-posedness of around the line soliton was first studied and proved in [43],
Theorem 1.2] by Molinet-Saut-Tzvetkov for data in H*(R?), s € N plus a non-modulated
line soliton. Since the phase shift of the line solitons produced by our Backlund transform
‘B is not necessarily zero or vanishing rapidly at infinity, we need to prove a slightly
modified version of Theorem 1.2 in [43].

Let u be a solution to the KP-II equation with moving frame of reference

Ut — ClUy + Ugppy — OUUL + 33;1uyy =0.

We fix the scaling parameter of the line soliton, so we set ¢ = 4. Using Notation [T.3] we
consider the ansatz
U=+ Pa,

Yo = p(z — a(y)), where s € N, u € H*(R?), a, € H*"(R,), and p(z) := —2sech?(x)
is the line soliton, which solves

_4@1 + Qrax — 6, = 0.

Note that by moving a low-regularity remainder inside v, it is always possible to assume
ay € H*(Ry) with no harm to the following analysis. The function v satisfies

(4.1) v — 4vg + Vpgr — 600, — 6(0av) s + 38;11)% = (Ozy)nggc’CY — QyyPar-

In the following, the definition of X% is modified by setting o (7,&,1) = 7 — 4€ —

472€3 4 3n% /€ to take into account the moving frame of reference. We first note that

Strichartz estimates show that the solution of the linearized equation is in XCIF/ 2+ebus

when the forcing is in X, /24eb1s  With this in mind, following the proof in [43]
Theorem 1.2] and adapting it to (4.1]), we see that:

1. The nonlinearity can be treated in the same way as in the cited paper. In particular,
for € small enough and 1/4 < b; < 3/8, it holds

160va]| 17242010 < T7[[6vVR ]| y—1/242001.0
Sj TV||UH§(;/2+€,b1,sa
for some v > 0 (see [43], Proposition 4.3 and equation (50)]).

2. The term (pq),v can be treated in the same way as in the paper (see [43] Lemma
4.2]) with a slight modification:

| (Soa)xUHX%O’S S 10x¢a HWMO(]R?) ”UHL%OHS(R?)

S lpllwsoe @) (1 + llayllws-soom))* 10l y1/242.05,

where the estimate on ||0,pq||wse can be checked directly for integer s. Note that
the space X%:"* works well here because X0** < X;1/2+E’b1’s if by <1/2—e.
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3. The terms (ay)?py o and ay, @, are independent of time and lie in H*(R?) assuming
Q|| gs+1(r) < 00, in particular they belong to X295 as well.
Y (R) T

The only term left to estimate is p,v,. In the original paper, the term v, is controlled
thanks to a smoothing estimate for KP-II:

S
k
lovellyoos < Q105 ¢llzrge) (Y 10202 yoll ez )
k=1 1I<s

S H‘PHHS(]R)HUHX;/HE,O,s-

In our case, for an arbitrary a such that oy, € H*(R,), the norm |¢a||r2 Lge Is infi-
nite in general. We thus need a slight modification of local smoothing for the KP-II
equation that takes into account the modulation of ¢ to adapt the result of Molinet—
Saut—Tzvetkov to our case, where the soliton is modulated.

Lemma 4.6 (Local smoothing with modulated weight). Let ¢ > 0, ugp € L?(R?), and
ay € L3(Ry). It holds the estimate

~

1 1 -1 1 1 -1 __
cil{e2(z —a))  OuePuolpape + il (2w —a)) 00, uoll a2 S Lluoll 2,

where S = —02 + c0, — 3020, %, and L =1+ 63/4\\0@”%2-

y“x
The case a = 0 yields the usual local smoothing estimate. The above is simply a
modification that allows the level sets of the weight to be unbounded in . The estimate
for S = =03 — 3020, (with ¢ = 1 in the weights) holds with a constant that grows with
the length of the time interval. The proof is moved to Appendix

Proposition 4.7 (Well-posedness of KP-II around a modulated line soliton). Fiz s €
N, and let £,b1 as in Proposition . Let oy € H8+1(Ry). For every vo € H*(R?),

there exists a unique global solution v € C([0,00), H*(R?)) of equation (4.1 such that

v]i=0 = vo and uljp 1) € X%/2+€’bl’s for all'T > 0. The data-to-solution map is analytic.

Proof. By a standard argument for Bourgain type spaces, we can upgrade the modified
local smoothing in Lemma [£.6] to the estimate

I (@)a " (1= D)0z 12 S I0llxr/zseos.
This immediately yields the estimate
H‘Paazvuxgvo!s ~ HSOaamUHLQTHS(RQ)

S ol /240

< vl xarz+ens-

The rest of the proof is analogous to that of [43, Theorem 1.2], with the use of the
estimates summarized in this subsection and the above estimate. The globality of the
solution in H* follows from the L? a priori estimate

() 172 (re) S exp(Ell@all oo ) (1 + llvoll72),

and the L2-subcriticality of the equation, analogously as in [43]. O
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Remark 4.8. The assumption o, € H*T}(R,) is technical, and is only needed to close
the fixed point argument in X%/2+6’b1’8. It is possible to relax the assumption to «y €
H™>x{0s=1}(R ) in the following way: first consider a standard regularization & of o and
note that the low-regularity remainder r := ¢, — 5 belongs to H*(R?). Then, consider
vp = vo + 1 € H*(R?) and let v € Xilp/2+6’b1’s be the solution of with « replaced
by @ given by the Proposition, with initial datum vy. Then, v := v — r is a solution of
(4.1) with initial datum vg. The price to pay, though, is that in general v ¢ X%/ 2+£’b1’s,
although v + r does indeed belong to the function space.

Remark 4.9. Since the whole argument for the well-posedness of only needs esti-

mates from above on the H*™! norm of a, for every time 7' > 0 and s € N it holds
1ol 1/242000 < Clllvollazss lloyllre+1m, ), T 5)

where C' is non-decreasing in the first three arguments.

Finally, we mention that solutions which are initially in 9, L?(R?) stay in that space
for all times, and perturbations of the line soliton obey the same law.

Proposition 4.10. Let ug € L?(R?), u be the solution of (KP-II) with initial datum uo,
and v be the solution of (KP-II|) with initial datum ug + @(z). If in addition ug € 0, L?,
then u,v — p(x — 4t) € C([0,0), 0, L*(R?)), and it holds the estimate

lu()lla, z2®2) < lluolla, 22y + C\/%HUUH%Q(RQ)
for some universal constant C.

The above Proposition is a refinement of [37, Lemma 3.1].

Proof. We consider u and look at the Duhamel formulation
t
u(t) = eSug — 3(935/ =542 (s)ds,
0

where S = —93 — 30, 185. By time translation invariance and the conservation of the
L?-norm, we have HUHX[UQ""E]’blvO S lluollp2(m2y for any ¢ > 0, with €,b1 as in Propositon
t,t+1

By standard arguments involving Bourgain-type spaces and the Strichartz estimates

(934305 192) (

for the group e~ see [29]), we have for every t > 0

lullzs ,, 24 S HuHXft{fff]’bl’O S lluollz2m2)-
In particular,
2], 22 S (4 VDlluolZagesy

After using Holder’s inequality in time, the above bound plugged into the Duhamel
formulation yields

[w(®)lo, 2r2) S luollo, L2m2) + V(1 + \/i)||U0H%2(R2)7

which can be upgraded to the bound stated in the Lemma using the scaling symmetry
(1.1). The statement for v is proved analogously (cf. [37, Lemma 3.1]). O
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4.2 Elementary Lax-eigenfunctions and elementary solutions of mKP-
IT

In this subsection we essentially replicate what we did in Subsection to construct
explicit solutions of equation , adding a time dependence. This time we consider u to
be time-dependent and solving , and the solutions of that we are interested
in will satisfy system .

We motivate the definition of the elementary solutions as follows. The main difficulty
in defining a solution of via the Béacklund transform is that the parameter g
has to be chosen in a suitable way for all times t > 0. Our strategy to solve this problem
relies on two facts: first, while tanh-like solutions of as in Theorem |A| are unique
only up to 1 degree of freedom ~p, solutions of that are constant at infinity are
well-defined with no further choice of parameters (see Lemma and Corollary .
Secondly, Lemma ensures that z-antiderivatives of these solutions are canonically
well-defined up to a constant that depends neither on space nor on time. As a result, it
follows that when using the Cole-Hopf transformation to combine the solutions of ,
the parameters needed to interpolate those solutions are to be chosen once for all times.
This is what will fix the parameter 79 = (¢) in the statement of Theorem

We start by showing that the function constructed in Lemma [3.1] is a solution of

(mKP-1I)) if the datum wu is a time-dependent solution of (KP-IIJ).

Proposition 4.11 (Nonlinear existence of solutions of mKP-II). Let ug € H 7%’0(R2) be
small enough and vy € H%1 (]RQ)OH%’O (R?) be the small solution of (M) given by Lemma
with datum ug. Let u(t) be the solution of given by Theorem and v(t)
the solution of given by Lemma . Then, v € Cb([O,oo),HO%(RQ) N H%’O(RQ)),
(u,v) solve system , and v is a limit of strong solutions of the

equation from the well-posedness theory ([21)]). Moreover, it holds the estimate

-1 .2 <
HUHL?Q(HO,%I(RQ)HH%,O(RQ)) + ||8$ Uy v ||L?0H—%,O(R2) ~ ||UO||H_%’O(R2)

and the map ug — v is continuous.

Remark 4.12. The assumptions on wug, vy can be rewritten as ‘Let vy € H O’i(RQ) N

20 (R?) small enough such that d;'vg, — v3 € H_%’O(RQ) is also small, and call
Up = Vo,z + vg — Oy, . Note that the nonlinear term a;lvy —v? is precisely one of the
two terms appearing in the energy functional of the mKP-II equation

B(o(®) = [ 10000 + 1050,0(0) = o(t)*Pdady,

which is formally conserved by the mKP-II flow (see [2I, §1]). The function v is a
solution of the mKP-II equation in the sense that (u,v) solve system (M-mKP-1I)): the
latter is related to the distributional mKP-II equation (2.2]) as we noted in Section

Proof. The regularity and the bound on v both follow from Lemma/3.1|and the uniform-
in-time smallness of u. The fact that v is a limit of strong solutions of (mKP-II|) will
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be clear from the rest of the proof, so we only need to show that v is a solution of
system . The map ug — v is continuous from H _%’0(R2) to CyL3, so by
approximation it suffices to show the statement assuming ug € 9, H°>°(R?). In particular,
in these hypotheses we have vg, vo 5, 95 v, € H® (R?) by Lemma so we fall in the
range of applicability of the well-posedness theory of the mKP-II equation, as in [21]
Theorem 1]. It follows that there exists a unique solution v € C([0, 00), H*) to mKP-II
with initial datum vy such that v, 9, v, € C([0, 00), H*), and by the mapping property
of the Miura map of Proposition and the uniqueness of the solution u of KP-II (see
also [2I, Remark 1]) it holds

—0; ' 0(t) + T2 (t) + T (t) = ul(t).

By the uniqueness of the solution given by Lemma [3.1] it follows that v = v, so v is a

strong solution of (mKP-II)). In particular, by the equivalence of systems (M-mKP-II|)
and (2.2), it follows that (u,v) solve system (M-mKP-II)). O

Using symmetry (2.4) of system (M-mKP-II), the content of Proposition 4.11 can

be easily extended to cover the cases where the initial data (ug,vg) solve E[) and
vp € L3(R?) + X for some constant \ € R.

Corollary 4.13. Let ug € Hfé’O(RQ) be small enough and let u € Z.fé(((), 00)) be the
solution of given by Theorem [{.5, Fiz A € R. For all times t > 0, let v(t) €
L3(R?)+\ be the solution of (M)) given by Comllary. Then, v € C([0,00), L3(R?))+A
and (u,v) solves system (M-mKP-II).

Definition 4.14 (Elementary solutions). Fix ug € H _%’O(RZ) small enough and let
u € Z_%((O,oo)) be as in Theorem Let \; € R. The solution v = ¥ 4+ \;
of (M-mKP-II)) as in Corollary is called the elementary solution of (M-mKP-II))

with parameter A\; associated to wu.

Next, given a solution v of (M-mKP-II|), we construct a solution V' of (2.3)) such

that V,, = v and establish bounds on V. We first prove that such a solution V' is unique
up to an additive constant, which turns out to be independent of space and time.

Lemma 4.15. Let ) # I C R; be an open interval. Assume u € L120C(I x R?), v €
L3 (I xR?), w e 2'(I x R?) are space-time distributions, such that w, = uy, (u,v)

solves the system (M-mKP-II), and (u,w) solves the KP-II equation, in the sense that
ug — 6Uly + Uggr + 3wy = 0.

Then, there exists a unique V € 2'(I x R?) up to an additive constant (independent of
t,x,y) which solves system ([2.3) with 97 u, = w, and such that V, = v. If u,v,w are
smooth, then V' is smooth.

The function w is morally the term 0 18yu appearing in the KP-II equation, and we
simply assume that it is well-defined.
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Proof. The proof for the uniqueness is analogous to the proof of Lemma [3.10} For the

existence, let V' be such that 0,V = v. Then, integrating system (M-mKP-II)),

{%—Ux:UQ—’LL—Fg

(4.2) .
V; + 4vgy + 403 + 1200, — 6uv — 3uy — 3w = h,

where g, h are distributions that are independent of x. Derivating the first equation of
system with respect to t and the second equation with respect to y, after combining
them and using the fact that (u,w) solve KP-II, we find that g, = h,. This in turn
implies, by applying Lemma [[El twice, that g = F,, h = F; for a third distribution F’
independent of 2. From here, the argument is analogous to the proof of Lemma[3.10] [

Recall that for u € Z 7%((0, 00)), the distribution 9;lu, is well-defined thanks to
Remark

Lemma 4.16. Let up € Hfé’o(]l@) be small and let u € Zfé((O,oo)) be the unique
small solution of KP-II given by Theorem . Let v € Cy([0,00), L3(R?)) + X be the
elementary solution of system with parameter A € R associated to u, as in
Definition . Then, the distribution V solving system and V, = v, given (up to
an additive constant) by Lemma satisfies

V(t,z,y) — (Az + Ay — 42%t) € ([0, 00), BMO} , (R?)),

and for all t, V(t) coincides with the function obtained from v(t) by Lemma (up to
a time-dependent additive constant). Moreover, it holds

d
(4.3) H </ Vpdx dy) +4)\3
dt ]R2

We recall that here BMO& L(R?) — #'(R?) is simply the Banach space of all func-
tions in BMO,, (R?), to which one can equip the norm

< ||uo|| - .
12,((000)) ol -4 a2y

)

IFllBmog @) = [1fllBMo,, 5 (R2) + ‘/RZ fpdxdy

where p is a standard mollifier centered at the origin (see Definition 3.11]). In particular,
BMOg,A embeds into LY (R?) for all p < oo (see Corollary [3.13)).

loc

Proof. First, by symmetry , it suffices to show the statement for A = 0. Assume
first that ug € 9°H*°(R?) (see Remark . Then, u is in C°°([0, 00), H*(R?)). Tt
follows from Lemma that v € C*([0,00), H*(R?)), and thus V is smooth by the
previous Lemma. Since 9,V (t,-,-) = v(t,-,-), and since V(¢,-,-) solves equation
with datum w(¢) for all ¢ > 0, the function V' (¢) agrees with the one given by Lemma
(with datum wu(t)) for all ¢ > 0 up to an additive constant which depends on ¢, by
the uniqueness statement therein. By Corollary it holds the estimate

IVlicyaiope) S ol o g
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The above estimate does not give control on the time evolution of any additive
constant, so we need an additional estimate. Consider the second equation in system
2:3). Set w := 9, uy, which is well-defined by Remark Multiplying both sides by
p and integrating over space, we obtain the bound

d
o7 Vopdx dy‘ ’/ 41) + 4vgy + 1200, — 6uv — 3uy — 3w)dx dy
R2

S ollzssy + 10025 sy + 101 7s(my + Il arzgm 0]l L 5

/ pw dx dy| ,
RQ

where B = B1((0,0)) is the support of p. The L? norm of v is controlled by HuH }ome)

by Lemma (remember that we assumed A\ = 0). For the norm of u in L3/ (B ), we
note that from Theorem [£.5] we have the bound

_l’_

<

S ol 40 gy
with Z5 as in Definition and thanks to Remark we can estimate u locally in L?
in space-time. The last term is also L%-integrable in time by the bound in Remark
It follows

S luoll ;-3

d
(4.4) Hdt/m@ Vpdx dy 302y

L3ni((0,00))

which implies V' € C([0, 00), BMog(RQ)) together with the above estimate. For general

up € H _%70(1&2), an approximation argument is enough to conclude thanks to the above
a priori estimates. ]

4.3 The time-dependent Bécklund transform - Proof of Theorem [C]

In this subsection we prove Theorem [C] First, we state a nonlinear superposition prin-
ciple which allows to construct solutions of from its elementary solutions
associated to the same solution u of . This is a direct time-dependent analogue
of Proposition We call the map below V. because its output is the forward time
evolution of the output of V along the mKP-II flow.

Proposition 4.17 (Nonlinear superposition of elementary solutions). Let ug € H _%’O(RQ)
be small enough, M > 1, and X € RM sych that A< -+ < Ay. Let u be the solution
of (KPII)) given by Theorem |{.5 . with uli=g = up. Let v(j) € Cp([0,00), L3(R?)) + Aj,
1 < j < M be the corresponding elementary solutions of (M-mKP-11| m associated to .
Let VU pe the corresponding przmztwe solutions of system (2.3) given by Proposition

4.15 and |4.16, normalized as in (3. att = 0. Given @ := (c1,...,cnr) € RM | the

functions

Y= S Z V(])+C] V :=log, v = 0,V, U= u — 20,0
= 1eCJ =
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are well-defined and they satisfﬂ

¢’ 1/¢ € C([07 Oo)leﬁoc(RQ))v QzZ)I € C([O7OO)7L1200(R2))7
V € Cy([0,00), LF (R?)) Vp < oo,

loc
v € Cy([0,00), Lip, (R*)) N LO((0,00) x R?), vy € Lii((0,00) x R?),

a € L2 .(]0,00) x R?).

The function v solves system (M-mKP-11)), and u solves the KP-II equation in distri-
butional form (2.5)). The map

-

V2t (ug, &) v

1
PE)(0) < RM 1o C([0,00), L}, (R2)) N LY

loc 100([07 OO) X RQ) with

s continuous from Bg_
vy € L2 ([0,00) x R%). It holds

loc
(4.5) v(t) = V(u(t), &)
for allt >0, for a CO2 curve t — ¢(t), €(0) = ¢. In particular, VA = V§\t:0.

Proof. The main technicality is proving an estimate on % to ensure it lies in L2 ([0, 00) x

R?), with continuous dependence on ug. For this, by Theorem M Corollary and
Remark [C.4] we know that

we Z73((0,00)) =+ L8((0, 00), [0 |2 L3(B2)) N L2,4((0, 00) x R?)

unif

Using the product estimate || fg]| 2 , SUWfllzgers Ngllzs  , and the estimates
z, Z, z,Y,

Ha;vr(c)fHLG(RQ) S ||f”|8x\%L3(R2)+L2(R2)7

1021 £l p2m2y S I fll L2 re),

r© = (9, — 02 + ¢d,,)~" from Proposition it is straightforward to refine the fixed
point argument in Lemma [3.1] to show that for fixed A; € R, the map

Uug — U(l)
as in Definition is analytic from a small ball B.,(0) C 20 (R2) to
Cy([0,00), L*(R?)) N LO((0, 00) x R?) + Ay,

with

vl € Cy([0, 00), H7O(R?)) N L2,4((0, 00) x R?).
The regularity of the functions defined in the statement and the continuity of the map
follow analogously as in the proof of Proposition [3.19] using in addition the analyticity

"The ‘b’ in C) this time refers to the notion of boundedness in Fréchet spaces. We are asking for the
above functions to be bounded with values in L”(K) when restricted to any compact K C R?.
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of the above map and of the data to solution map in Theorem from ug € H —30 (R?)
tou e Z712((0,00)).

For the remaining statements, except , we can assume ug € 9 H>®(R?) by
continuity, so all the functions appearing in the statement are smooth. The functions

B = eV

solve system ([2.1') as observed in Section [2| By linearity,

M
DI
m=1

solves system (2.1). Again, by the equivalences of Section [2, V :=log(¢) solves system
(2.3), and v := 9,V solves system (M-mKP-II). The function @ solves the KP-II

equation thanks to Proposition [2.1

Since the functions v(™), V(™) solve systems and respectively,
they solve respectively and with u = u(t) for each t > 0, and v("™(t) is the
unique solution of in L3(R?) + A, as in Corollary . By Lemma @, called
V™) () the unique solution of with z-derivative v(™)(t) normalized as in (3.12), it
holds

v () = vim(¢) 4 / p V™) (t) da dy.
R2

In particular, by the definition of V in Proposition (4.5) holds with
cn(t) = cm +/ p V(1) da dy.
RQ

Since V(™ is normalized as (3.12)) at t = 0, it holds &(0) = & The Holder regularity of
¢ comes from estimate ([1.3) in Lemma [4.16] O

Now we are ready to prove Theorem [C]| We restate it here in a more detailed form.

Theorem . Let ug € H_%’O(RQ) be small, v € Cy([0, oo),H_%’O(Rz)) the global so-

lution of (KP-II)) given by Theorem and 00 € R. Let vo := V(ug,v0,0) as in
Theorem [Al There exists a continuous function t — ~yo(t), ¥0(0) = 0,0 such that (u,v)

solves system (M-mKP-II), where v € C([0,00), L} (R?)) is defined as
v(t) = V(u(t),70(t))-

Moreover, the curve u(t) := B(u,vo(t)) is a solution to the KP-II equation in distri-
butional form and can be decomposed as u(t) = p(x — a(t,y)) + u(t) + w(t), with the
estimates

|O[(t,y2) - a(ta yl)‘
su su + ||y (T, - + ||lw(t, -, - 1 S lwoll 1 )
tzlo) yl,széR log(2 + [y2 — 1) s )HL?% ot )HH 2O(R2) | OHH 3O(R2)
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d
—v — 4
Hdt%

< lluoll,

(0,00) _%’O(R%.

2
Lunif

If in addition ug € L?(R?) is small enough, then ti—p(z—a(0,y)—4t) € C([0,0), L?(R?))
with the estimate

|a(®)| 2 r2) ~ 10(0)| L2 (R2) ~ lluollr2(r2), t>0,

and u is the solution of (KP-II)) coming from the well-posedness theory (see Proposition

L.

Proof. First, by Theorem [A] we can write vy as

vo = Oy 10g(ev0+_c + €% )

== V(iLl) (UO, (C, —C)),

where V5", V;~ are solutions of (3.9) with datum ug as in Definition normalized as
in (3.12)), and where ¢ € R depends bijectively on vy ¢ as in Lemma Let o) = o+

be the elementary solutions of system (M-mKP-II)) with parameters A\ = £1 associated
to u, as in Definition Let VT be the corresponding solutions of (2.3) given by
Lemmas and normalize them as in (3.12) at ¢ = 0. By Proposition the

function

v =20, 10g(ev+_c +eV 1)
1,1
= —(> )(UO, (Ca —C)),
solves system (M-mKP-II|) with v|;—9 = vg, and @ = u — 29,v solves KP-II in distribu-
tional form. By Lemma it holds

Vi|t:0 = ‘/():ta
and there exists a continuous ¢ : [0, 00) — R such that
v(t) = VD (u(t), (e(t), —¢(t)))-

By the second change of variables in Lemma [3.22] and the bi-Lipschitz continuity re-
sult therein, there exists a continuous vy = 7o(¢) with v9(0) = 70,0 such that v(t) =
V(u(t),v0(t)) for each time ¢t > 0, where we defined ¥ in Lemma and coincides
with the map in Theorem [A]

The curve @ := u — 20,v solves distributionally by Proposition Taking
a as in Theorem [A] for each time, the decomposition and the estimates on «,w follow
from the estimates of Theorem [A] since

w=u—2w+nivT+ 0,0 ),

We now prove the continuity and the a priori bound on 7y(-). By an approximation
argument, using Ascoli-Arzela theorem, the well-posedness of KP-II given by Theorem



70 CHAPTER 2. ON THE BACKLUND TRANSFORM OF KP-II

and the continuity of the map ¥ in Theorem [Al we can assume ug € 9° H®(R?), so
that u, v are smooth by Remark [£.4] To show the a priori estimate, we differentiate with
respect to t the equation defining vy (3.15) and obtain, after substituting the second

equation in (M-mKP-II)),

d
@’Yo(t) /R2 PryoVz dx dy = — /]R2 Pryo(t)Vt dT dy

- / Prvo(t) [ (40 + 403 + 1200, — 6uv — 3ug), — 3uy] dx dy.
RQ

Subtracting the number 4,

d () — 4= fRz p%(t)[(4vm + 403 + 6(v?)y — 4v — 6uv — 3ug), — 3uy] dx dy
$70 B fRz ProVz Az dy .

As in the proof of Lemma [3.22] we note that the denominator is positive and bounded
away from zero, so it can be ignored. We now proceed as in the proof of in Lemma
4.16] This time, v is not small in L3 of a given ball, because of the contribution from
the modulated kink. Nevertheless, plugging v = tanh, yields

Y0gp + 40° 4 6(v?), — 4v = 0,
so after considering v = v + tanh,, it is straightforward to show that

[dro/dt(t) = 41 S [0l sy + P12 () + 011230 + Nl ey [0l ocs) + lull - g0 gy

where B = B1((70(t),0)) is the support of p, ). Since « is the same given by Theorem
[A] the bounds in the Theorem imply that

-

156 255) S 10Ol -3 0

and the bound follows analogously as for estimate (4.4 by integrating in time, using
that

lull 2 ((0,00)xR2)) HUHL;mH—%’O S HUOHH_%’O(]RQ)'

Finally, we look at the last part of the Theorem. The L?p estimate is a direct conse-
quence of Corollary [Bf and the conservation of the L? norm for solutions of (KP-II):

w22y = lluollL2(®2)-

Assume first that ug € 9, H*°(R?), so that u € C([0,00), 0, H*(R?)), and is uniformly
small in H 7%’0(]1%2). We first show the following claim.

Claim. We have v, —sech?(z—4t—a) € C([0, 00), L?>(R?)) for some a € R. In particular,
i — p(x — 4t — a) € C([0, ), L*(R?)).
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™ Proof of the Claim. By Corollary since the curve t — u(t) € 9, L*(R?) is contin-
uous, the corresponding solutions v*(¢) € L3(R?) & 1 of equation (M]) are such that

7t = v F1 € ([0, 00), L2(R?) N 9, L(R?)).

This means that for each ¢ > 0, o= (¢) have well-defined z-antiderivatives in L%(R?). This
is equivalent to v*(t) having well-defined antiderivatives in L°(R?) + (&2 + y), which
have to solve equation with datum u(t). We will call these primitives W*(¢). By
Lemma W*(t) — VE(t) is a constant depending only on time. In particular, since
(u, VF) solve system by construction (note that the leading part of the second
equation gives V= &~ —4(V;F)? = —4(v*)? ~ F4), there must exist a* € R such that

VEFe=W*tF4t+at.
Now set @ = a~ —at. Call W* := W* — (+z + y) € C(]0, 00), LS(R?)). We have
v = 8, log <6W+faf4t I eW—+a+4t)
(4.6) — 9, log <6W++(x—4t—a) i e’VV*—(m—ZLt—a))
= tanhov + (nTov)ot + (n o),
where nF(2) = (1 + tanh(x))/2 as usual, and

1
V:§(V+—V_)_C

:%(W+—W_)+(m—4t—a)

(note that 0, log(y) = 0). Taking a further z-derivative, we obtain
(4.7)
dyv — sech?(z — 4t — a) = (sech®o v — sech?(z — 4t — a))

+ (nTov)0F + (nov)v, +sech?or - (7T —77).
Now, since u € C([0,00), 9, H*(R?)), by the continuity of the data to solution map in

Corollary in all the involved function spaces, we deduce that v € C([0, c0) x R?). We
also have the estimate

|sech?(v(z,y)) — sech?(z — 4t — a)| < % /l(sech2)x(x —At—a+s(WT —W7)/2)ds
0

x (Wt —w—|
<{z—At—a) LW —W|.
Since 9%,0F € C([0,0), L2(R?)), and since (x — 4t —a) ' Wt e C([0,00), L?(R?))
thanks to the weighted estimate in (3.4)) in Corollary the right-hand side of (4.7)) lies

in C([0, 00), L?(R?)) by the dominated convergence theorem. This concludes the proof
of the claim. L
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By the estimates of Lemma[3.2|and by repeatedly differentiating the explicit formula
for v in (4:6)), one verifies that v(¢) — tanh(z — 4t — a) is bounded in H*(R?) locally in
time for all k > 0, which implies that @ — ¢(x — 4t — a) € C([0,0), H*(R?)) by the
above claim. From this, and since u solves KP-II distributionally,

a(t,z + 4t,y) — ¢ € C([0,00), H®(R?))

and solves equation distributionally, with & = 0. Due to the high regularity, the
above solution has to coincide with the solution given by the well-posedness theory of
Proposition[d.7jwith o = 0, as it can be seen via a standard use of energy estimates for the
difference of two solutions. In particular, by Proposition it holds u(t,x+4t,y) —p €
X200 for all T > 0.

In addition, as we noted in the proof of Corollary [B] vg coincides with one of the solutions
in Proposition[B.3] with datum ug. So, let 8 = 3(y) be the shift given by the Proposition,
and let 5 := /3 x p a regularization of 8. It holds

HByHH?(Ry) + 18— BHHI(RQ) S 1Byllery)

S lluoll 2 (w2,

la0 — @pll 22y < lluollL2@2) + 2| (v — tanhg)z || 2

S HUOHL2(R2)7

where the last inequalities in both estimates come from Proposition Furthermore,

a0 — wzll2r2) < a0 — eslle@2) + llpell 2@ 18 = Bll2w,)
N ||U0HL2(R2)-

The function u(t, > + 4t,y) — ¢z is a solution of (4.1) with o = 3, and it also coincides

with the one given by the well-posedness theory in this setting since By € H! (Ry). By
Remark it holds the estimate

u(t, z +4t,y) — (PBHXT{/“DO < C(|lao — ¢pll L2r2)s 1Byl m1(w,), T, 0)

< ol g 3oy T)
for some function C t_hat1 is non-decreasing in both variables.
For general uy € H~29(R?) N L?(R?) small, we consider an approximating sequence
of data 9, H*®(R?) 3 ug,, — ug in H_%’O(RQ)QLQ(RQ) such that ||ugp|l 2 < 2[|ugl|z2. Let
Uy, be the corresponding solutions of KP-II with initial data @g y, := @p|i=0 = B(uon,Y0),
with corresponding phase shifts at time zero 8, given by Proposition and note
that ||B,y| is uniformly bounded in n thanks to the above estimates. Moreover, it is
straightforward to show that |3,(0)| < 1+ |yo|. By the estimate (3.17)) in Lemma
the sequence (¢ ), of real numbers such that g, = ug, — 20, V(-L1 (uo,n, (Cn, —cp)) is
bounded. By reducing (up,) to a subsequence, we can assume ¢, converges to ¢ € R.
By the continuity of the maps 4 in Theorem V in Proposition and by the
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global well-posedness of in H _%’O(Rz) of Theorem we have 1wy = ugp —
20, V1D (ug, (¢, —¢)) (that is, c is the same constant as the one at the beginning of the
proof), and

i, — @ in 2'((0,T) x R?).

Since (Bn,y)n is bounded in L*(R,) and /3,(0) is bounded in R, up to extracting a new
subsequence, we can assume 3, — (3 uniformly by Arzela-Ascoli, so 8, — 5 in L™. By
continuity, this § is the same shift assigned to the pair (ug, v9) given by Proposition
although we do not need this fact here. The above implies

Un(t,x +4t,y) — 5, — a(t,x +4t,y) — @z in 2'((0,T) x R?).

By weak-% compactness, the limit lies in Xilp/ 2010 que to the uniform bound

||’an(t7 x + 4t7 y) - SOBH HX;_‘/valaO ST 0(2HUOHLQ(RQ)QH_%’O(RQ)’T)

proved above for smooth solutions. By the uniqueness statement in Proposition [£.7}
u(t,z +4t,y) — ¢z

also agrees with the solution given by the well-posedness theory as in the Proposition,

with a = . O

5 The range of the soliton addition map
By Theorem [A] we have constructed a Backlund transform
B: (u,y0) — u

for the KP-II equation in Definition which acts on small functions v € H _%’O(Rz)
and a parameter 79 € R that determines the position of the line soliton at y = (3 Our aim
is to characterize a sufficiently large subset of the image of B through Bg_i’o(O) x R,
where gg is the smallness constant. In this section we will prove Theorem which
characterizes the intersection between the range and a small ball in a suitable weighted
space at L? regularity. The Theorem implies codimension-1 modulational stability of
the line soliton.

5.1 Premise

Given a datum u and the output @ of the Backlund transform, the two functions solve
the system of equations given by the Miura map(s)

Uy — Uy = (Uz)ac — Ug,

(5.1) Uy + Upg = (1)2)95 — Uy,

U = U+ 20y,
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a rigorous way of writing the system

In this section, we want to solve for v, given @ a suitable perturbation of the line soliton,
to derive sufficient conditions under which # lies in the range of the soliton addition
map. We set

g:=1u-— ¢, w := v — tanh(z),

where p(z) = —2sech?(z) is the non-modulated line soliton, and perform some reduc-
tions. The second equation in ([5.1) becomes
(5.2) Wy + Wy — 2(tanh w), = (w?) g — Gz,

and since we removed the leading parts ¢ and tanh, we want to find solutions w that
approach zero at infinity, for given perturbations g that are localized and smooth enough.
Recall the reflection symmetry

By the change of variables
w— —Rw =: z,
g— Rg=:h,

the above equation is equivalent to
(5.3) 2y — Zgz + 2(tanh 2), = (%) — hy.

We will thus look for a solution to (5.3) with h € H 7%’0(}1%2), that is equivalent to

g € H_%’O(]RQ). Since u = g + 2w;, we will look for additional assumptions on g to

make w, € H _%’O(Rz) small. By the Cole-Hopf transformation z — e/ 79 =

reduce the problem to that of finding positive solutions to

1, we can

(5.4) Yy — VYge + 2tanhp, = —ha.

Remark 5.1 (The codimension-1 condition and the Lax eigenfunctions). Before we con-
tinue, here is a brief explanation on why we expect that the range of B has codimension
1 in a suitable vector space. By the property of the Cole-Hopf transformation, the
function

U(z,y) := e cosh(z)p~ (z, —y)
is a O-eigenfunction of the Lax operator L, = 0, — 02 + u with potential u, since

Oy log(e¥ cosh Ry~ ') = tanh —Rz

=
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is a solution of . Since 0, log(¥) = v, L, ¥ = 0, and since ¥ has the expected
asymptotics at infinity, it is reasonable to expect that W coincides, up to a positive
scalar, with the eigenfunction of L, in Theorem |A| (called ‘¢’ there), if v is a solution
that comes from the Theorem. By looking at the properties of v in Theorem [A] in
combination with Corollary it can be seen that if u € H _%’O(RQ) is localized and
regular enough, it holds

U(z,y) = e’ cosh(z)m(x,y),

where m converges to a positive constant at infinity in all directions. On the other hand,
it is evident that for localized g, solutions of equation with h = Rg that approach
a constant a~ > 0 at y — —o0, in general will converge to a different constant a* > 0
as y — 400 due to the transport term. The condition that allows g to lie in the range
of B is precisely that a~ = a™.

5.2 Linearization of the problem in the Cole—Hopf variables
To study equation ([5.4]), we look at the linearized equation around the constant solution
Yv=1h=0:

% - ¢a:x + 2tanh¢x = f

By Proposition a solution 1 is given by ¢ = T'f + 1, where the operator 1" is an
integral operator with explicit kernel that inverts 0y — 0, + 2 tanh 0,

1
(5.5) T= Ky =T My + 17 M+ 50, (07 =T Mg,

where we recall that I'* = (9, + 20, — 02)™, M+ is the multiplication by n*(z),
and M2 is the multiplication by sech?(z), as in Definition The operator T is
therefore a sum of four terms: two (tilted) heat operators composed with multiplication
operators by bounded smooth functions, and two antiderivatives of (tilted) heat opera-
tors composed on the right with the multiplication operator by sech?(x). The difference
;1T —T'7) is a convolution operator with the function

O, (I =T (z,y) =9, 'T'(z +2y,y) — 0, 'T(z — 2y,y)

T+2y
- / F(x/a y)d.’IJ,
T—2y

whose kernel decays to zero for fixed y and is identically zero for negative y, but it
converges to the constant 1 for positive .

5.3 Solving the equation M, (v) =u

We turn to the study of equation (5.4]).



76 CHAPTER 2. ON THE BACKLUND TRANSFORM OF KP-II

Proposition 5.2. Let h € L'(R?)NL?(R?). There exists a unique solution 1) € L*°(R?)
to equation (5.4) such that |[¢p — 1| peo(mx(—cc,y)) 9g0€S tO zerﬁ as y — —oo. It holds
P € Cp(R?), inf, yer ¥(x,y) > 0, and

9] oo r2) + [11/80]| oo m2) S exp (Cl|Rl| L1 R2)AL2(R) ) S

19 = 1l Leome) S exp (ClIPI L r2ynr2®2)) 101l L R2)n2(Re)-
For a universal C' > 0. The data-to-solution map is analytic.
Proof. Let T = (0y — 02 + 2tanh d,) ! be the integral operator described above. By

Lemma the operator 71" is bounded from Z := L'(R?) N L?(R?) to L*>°(R?), and the
Banach space X := T(Z) < L°(R?) is such that

fe€X = flrx(—ooyo] € Co(R x (—00,%0]) Vyo € R

(we defined Cp in Subsection . The operator T' is a right inverse of L = &, —
02 + 2tanh 9., whose kernel in L>°(R?) is exactly the 1-dimensional space of constant
functions. Our assumptions then imply ¢ € T(Z) + 1, and equation (/5.4)) is equivalent
to

Y —1=—T(¢h).
Since, as we recall later, the operator L := 0, — 02 + 2tanh 0, + h is invertible from
T(Z) to Z, the uniqueness follows by necessity, since by (5.4)), it has to hold
Y =—(Lp) ' h+1.

Now, let
N = {qﬁ eT(Z)| i]l%fgb > —1},

which is a convex, open subset of T'(Z). Consider the map

F:N—=Z

1 2
It is well-defined and analytic due to the restriction infg2 ¢ > —1 and the boundedness
of T from Z to L*(R?). The Proposition will follow after establishing the invertibility
and additional properties of the map F by setting ¢ := F~(h) + 1.
The differential of F' is
—L(a — 92 4+ 2tanhd,) ¢ + L(a — 92 4+ 2tanhd,) ¢ =
Lo 7 U (e '

12The kernel of the operator 8, — 9z, +2tanh 8, in L coincides with the space of constant functions,
this is why we need such a condition. Since the equation is linear, the Proposition shows that the solution

DF(¢) ¢ =

is unique up to a multiplicative constant.
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1 .
= —m(ay — 02+ 2tanh 9, + h) ¢,
where in the last equality, h := F'(¢) is meant as a multiplication operator. By Lemma
A.7| part (b), Ty, := (9, — 02 + 2tanh 9, + h) ™! is well-defined and bounded from Z to
T(Z), in particular F' has invertible differential everywhere. We claim that F' is also
surjective, and a preimage of h € Z is given by

F~Y(h) = =T}y h.

In fact, =T, h € T(Z) by Lemma and we claim that inf¢ > —1. For that it is
enough to consider ¥ := 1+ ¢, and note that the function 1 := 1/1 solves

Dy — Dua + 2tanh gy = —200% + hip < hi.

Since 1) € T(Z)+1, the functions v, 1; converge to the constant 1 uniformly as y — —oo,
and since the kernel of 7" is non-negative, we can follow the same steps as in ([1.3)
replacing the L norm with the supremum of v, so after an approximation and a
continuity argument, the a priori estimate

S]EQP 1/ S exp (Cllhll L1 r2ynrzre2))

is proved. Since inf) > 0, it follows that ¢ solves ¢» = —T'(¢h) + 1, i.e., F(¢p — 1) = h.
Thus, F' is an analytic diffeomorphism.

The same a priori estimate for v is proved in complete analogy, since v solves equation
(5.4). Finally, the estimate on 1 — 1 follows from Lemma part (b) and the identity
¥ —1=—=Tyh. O

We recall that setting w := —RJ, log(v), we get a solution of (5.2), and we want to
understand what to assume on g = Rh to have w, € H —3:0 (R?).

5.4 The functional ¢

There is one mechanism that prevents w, from being in H —30 (R?), even for extremely
localized g: mass unbalance between the left and right regions delimited by the line soli-
ton. To intuitively illustrate this phenomenon, assume for simplicity that g € 9,2(R?)
(so that it also lies in Hfé’o(RQ)). Let supp(g) C [-R, R]2. The diffusive and trans-
port natures of equation (with h = Rg) suggest that, for large y > R, the solution
(-, y) will converge to a constant on a growing time interval [—2y+O(\/y), 2y +O(/¥)),
or more explicitly,

xT

Y(z,y) =~ 1+ C/ (x4 2y,y) — T(2' — 2y,y) da’

— 00

for some ¢ € R (up to translations in the y variable). If this constant is not zero, we
argue that w ¢ L3(R?). The reason is that from the above heuristics, 1, will behave like

1/)55 ~ C(F(x + 2y7y) - P(‘T - 2y7 y))7



78 CHAPTER 2. ON THE BACKLUND TRANSFORM OF KP-II

which cannot lie in L?(R?) because the heat kernel simply doesn’t (it belongs to L3>°(R?)).

Then we simply note that w = ﬁzw, so the same holds for w. It is then not possible

to have w, € H _%’O(RQ), since we already know from Section [3 that we would have
w € L3(R?). These heuristics suggest that in order to aim at w, € 20 (R?), we need
some cancellation condition to ensure that ¢ = 0 in the above asymptotics. In other
words, 1 should decay to zero as y — +4o0.

To rephrase this condition in a convenient way, we note that the equation

Yy — Ygz +2tanh 1), =0

preserves the hyperplane {sech2}L of L?(R), so a natural condition is to impose that

;/¢($,y) sech?(z) dr — 1

as y — +o00. For localized h and solutions v to (5.4), by testing the equation against
sech?(z), the latter condition is equivalent to

1
- /R sech?(@)h(x, y)u(x,y) do dy = 0.

The above serves as a motivation for the following definition and the subsequent analysis.

Definition 5.3. We define the functional

® : LY(R?) N L*(R?) — R,

1

O(h) = — 3 /R? sech?(z)h(z, )Y (z,y) dz dy

1
= lim /sechz(:c)w(x,y)dx—l,
R

y—+oo 2

where ¢ € L*(R?) is the unique solution to (5.4) that converges uniformly to 1 as
y — —oo given by Proposition The second equality is verified by integrating (5.4))
against sech?(x).

Remark 5.4. The above functional is analytic on L' N L%(R?). Its differential at h = 0 is
1 2
D®(0) -z = —3 sech®(x)z(z,y) dz dy,
R2

(so the requirement ®(h) = 0 is somewhat transversal to the requirement h € H _%’0(R2)).
It is also invariant under the reflection R. In fact, if 1) solves (5.4)) and ¢ solves

¢y - ¢acac + 2tanh ¢x = _(Rh)¢7
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and are both given by Proposition (5.2)), it is easily verified that

jy B / sech? 9 (R¢) dx] =0,
R

which implies

lim 1/sech2(:r)1j)(a:,y) dr = lim l/seChQ(x)qS(x,y) dx
R R

Yy—r+00 Yy—r—+0o0

since both solutions converge uniformly to 1 as y — —oc.

As remarked in the introduction, the above functional appears naturally in the scat-
tering transform of for perturbations of the line soliton.

It is clear from the above, although not rigorously proved, that if g is a ‘good per-
turbation’ that falls in the image of our Béacklund transform, it must hold ®(Rg) = 0,
that is, ®(g) = 0. In the following, we look for additional conditions on g to prove the
reverse implication.

5.5 Estimates in a parabolic Hardy space

The property ®(h) = 0 appears naturally when writing ¢ as an integral operator applied
to —ht. Assume that we have

h e LH(R?) N LA(R2) N H™2°(R?)

such that ®(h) = 0. For the solution 1) € L>°(R?) to equation given by Proposition
it holds

¢ =T(=h(1+))+1,
with T = (9, — 02 + 2tanhd,)~! as in (5.5). Since we want w, = —R(Vz/¥)s €
H_%’O(Rz), by fractional chain rule, we need |D,|*?1 € L?(R?). When applying T to
—hy € L' N L%(R?), the contribution from the first two terms in have the desired
bounds by the estimate

|D1-|3/2F:t3 L3/2(R2) — LQ(RQ),
which is covered by Proposition To control the remaining term

— gDl 207 = T sech? h)

in L?, scaling suggests that the argument of I't must be in a space that scales like
L'(R?). This introduces a complication, because it means that we need sech? hi to lie
in a Hardy space H! adapted to the operators I'*. In particular we need it to have zero
mean, hence one further motivation for the condition ®(g) = 0.

What follows is a brief (pre -)dual treatment to that of the BMO spaces in Subsection
and all the results can be found in the same references.
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Definition 5.5 ([9]). Let (X,d, 1) be a doubling metric measure space of homogeneous

type.
e Let 1 < ¢ <oo. A gatoma:X — R is ameasurable function such that}

1. the support of a is contained in a ball B, (x¢),
2. p(Br(20))"/? llall zacx) < 1,

3. fX ady = 0.
e The Hardy space H!(X) is the vector space of functions f such that there exists
a sequence \ € /1(N) and a sequence of co-atoms ag, a1, ... such that it holds a.e.
f = Z )\jaj.
JjEN

e We equip H!(X) with the norm

£l = int Al
HUX) A(aj);
where the infimum is taken over all representations of f as in the previous point.
Consider the space (X,d,pu) = (R?,dy,u) with the tilted parabolic metric dy as in
Definition [3.15] and u the Lebesgue measure. We denote the associated Hardy space
H'(X) by H] \(R?).

Remark 5.6. Tt follows from the definition that H'(X) C L'(X) with continuous embed-
ding. Tt is well-known that H!(X) is a Banach space, and BMO(X) is the dual of the
Hardy space H!(X), where the pairing is given by the integral of the product (extended
by density). Finally, we will use the nontrivial fact (see [9, Theorem A]) that in the
definition of H'(X) we can equivalently consider g-atoms instead of oo atoms, yielding
the same vector space and the same norm up to equivalences.

We will need two simple lemmas.

Lemma 5.7 (Decay + integrability + zero mean, imply H!). Let (X,d, i) be a doubling
metric measure space with doubling constant A, and let 1 <p < o0, e >0, and xg € X.
It holds

1 fll2t(x) Spdzope lwfllLex)

for all f such that [y fdu =0, where w(z) = (1+ d(z,z))P/P'+e, D = log, A.

If a function has zero mean, decays slightly better than L', and is slightly more
integrable than L!, then it lies in H#'. Note that the norm on the right-hand side
controls the L' norm, so the integral of f is well-defined. Note as well that it holds
D > 1 as long as X contains more than one point, see [47, Theorem 3.1].

B3When u(X) < oo, one often assumes the constant a = p(X) ™! to be an atom as well, which results
in adding the constant functions to the space H'(X). As we did in the definition of BMO, we give a
definition that does not depend on whether p(X) is finite or infinite.
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Lemma 5.8. The operator T'©) := (9, + ¢80, — 92)~" satisfies
1102|7202 £ Lo ay + 111022 TN £l Lo ey < HfHH;A(ﬂ@)-

The proofs use classical arguments, and we move them to Appendix [D.2]

5.6 Proof of Theorem
Recall the definition of the parabolic norm |z|,  in Definition

Proof of Theorem[D, The map ® is given by Definition The property ®(0) = 0 is
immediate. Its differential is

D) = 5 [ seli (i -+ hi),

Y= =Ty (h))

with 9 as in Proposition [5.2| (the operator T}, := (9, —92+2tanh 9, +h) ! is well-defined
on L'NL? by Lemma part (b)). The non-degeneracy of the differential at any h can
be seen by choosing h as sign-definite and supported on y > M, with M large enough
so that h is small on y > M and 4 is identically zero for y < M. The property

®(h) = B(RA)

is shown in Remark 5.4
Fix ¢ > 0. We first show that ®(g) = 0 implies that g is in the range of B. Let
g € Y-(R?) be small enough. Consider ¢ € C,(R?) the unique solution of

wy - wxx + 2tanh¢w = _(Rg)d)

converging to the constant 1 uniformly as y — —oo given by Proposition [5.2l By the
change of variables discussed in Subsection the function

w:=—R(0ylogy) = -R <Q’f5>

solves equation (j5.2)), and the system ([5.1) is solved by
=g+, u = g+ 2wy, v := w + tanh(z).

In particular, the pair (u,v) solves (M)]). For the claim to hold, it is enough to show
that w € L3(R?), and that w, € H~2°(R?) is small enough. In fact, the latter implies
that u € H_%’O(]R2) is small, since g is small in Yz(R?) C H_%’O(RQ). Moreover, by the
uniqueness statement in Theorem the former implies that we indeed have v = ¥ (u, )
for some 7y € R, and thus @ = B(u, o) by the definition of B.
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We focus on proving w, € H —30 (R?) small, since the other condition follows simi-
larly. By the definition of w, with sufficient regularity we have

Vs wm>
wy =R |—= — ,
(-5
so the claims follows by fractional Leibniz and fractional chain rule, after establishing
for small g

110220 | 22y + 102 | arz) + 110220 o wey S llglly. e)-

The second term is bounded by the other two terms by interpolation. For the other
terms, writing h := Rg for brevity, we decompose ¥ into

v =-T(hy)+1
= [T h) T hw)] - 587 (07 — T (sech? ) + 1
= I+1II+1,
where we recall that T is defined in , and the first equation is in the proof of

Proposition [5.2 The contribution from I satisfies all the three bounds above, since by
Proposition [A3] one has

1 S
0T fll o2y S I fll 322y, s € (0,2], Pl

and we can assume |[¢||f < 2 by the estimates of Proposition and the smallness
of g. For the term II, it is enough by Lemma to show that sech” hiy belongs to the
intersection of parabolic Hardy spaces ’Hrl),l (R?) ﬂ?—l;_l (R?). By Lemma this follows

when sech? htp has mean zero, which is granted by the condition ®(g) = ®(h) = 0, and
by the weighted estimates

3/p'+6
1 )22 sech? gll e Spes lallpznn: , -
sech? e

This estimate is true for p close enough to 1 and for § > 0 small enough. In fact, by
interpolation of weighted spaces it holds

_ 1 1-60 0
||w6f||Lp(R2) < Hf”él(e]RE)waH%?(R?)? P =—*5

with w(z,y) = sech?(x)(1+|y|)s. For § € (0,1) with 1 > 6 > ﬁ < §:=0c-3/p >
0,
w? = sech?(z) cosh? = (2)(1 + |y|)%
2 sech?(z) (1 + |z] + [y[)”
> sech? () (1 + |z + [y])*/¥'*°
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3/p'+6
ZSQChQ(x)K‘T?y”p,/il .

For the second part of the proof, assume ®(g) # 0. We focus first on what we know
about w. Since g € Yz(R?), as we have just shown, sech? hy satisfies the assumptions of
Lemma except for its integral being non-zero. It can thus be written as a function in
the Hardy space 7—[11)71(]1%2)(17-[11)7_1(]1%2) plus a scalar multiple of an arbitrary test function.
A quick study of the kernel of '™ — I'* shows that because of this, IT does not have an
z-derivative in L3(R?), unlike I. In particular, derivating in =, we have 1, w & L3(R?).
However,

Yo, w € L2¥(R?) \ L7 (R?),
since T+ € L3°°(R?) and sech? hip € L' (R?). Moreover, it can be checked that

2 _
IT% (@, )22z, S log™*(fel) + (2) /",
which gives for any € > 0 the estimate

(5.6) Isech® (2)T* (sech® f) | 12(s2) Se /11 ee).

Considering again the equation » = —T'(ht)) + 1, this estimate, together with estimate
(1.1) of Lemma with s = 1, and the identity w = —R (1), /1), implies that

sech(z)w € L*(R?).
We also know that w satisfies (5.2)), as noted at the beginning of the proof.

Now assume by contradiction that @ is in the range of B. That is,

!/

u= @(u/7 70)
= — 20, V)
for some u',7) as in the assumptions of Theorem Call v/ = V(u/,~), and w' =

v — tanh. Then, as discussed at the beginnning of the section, w’ solves equation ([5.2)).
We also have w’ € L3(R?). In fact, let v = w” + tanh, be the decomposition with « as

in Theorem |A] In particular, o, € L*(R), w” € L3(R?), w’ € H_%’O(RQ). Since as we
said v/ — 20}, =4 = ¢ + g, and —2v, = —2w! + ¢, it holds

Ya—p=g—u +2uwl e H_%’O(RQ),
which implies o € L?(R) knowing that oy, € L?(R). This implies
w' = w” + (tanh, — tanh) € L3(R?).

Similarly, by the estimate of Theorem [A] and the weighted estimates on the functions
v* therein coming from Corollary [3.2] part (a), we have immediately sech, w” € L?(R?),
which by the same argument above implies

sech(z)w’ € L*(R?).

To recap, we have w,w’ € L3*(R?) N cosh(x)L?(R?), and they both solve (5.2]). We
claim that they must coincide.
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Claim. Let w!, w? € L3*(R?) N cosh(z)L?(R?) solve equation (5.2)) with g € 2'(R?).

Then, w! = w?.

T Proof of the Claim. We first verify that for any € > 0,
9, T : L3/%>*(R?) N cosh®~¢(z) L' (R?) — L**®(R?) N cosh® (z) L*(R?)
is well-defined and bounded, with 7" as in ([5.5)). In particular, 9,7 is the integral operator
_ .-
0T = 0, T My + 0,1~ M- + F( - TYM 02
The statement is true for the operators 0,I'F: first, it holds

| sech® (2)0: T f | 2r2) Se 1F1l o200 2y

by interpolation between estimate ||6xFif||L2(R2) S 1SNl zs/5(m2) from Proposition

and estimate (|1.1)) in Lemmawith s = 1; second, their kernels belong to L3/ 2,00(R2),
and L3/%% x [3/2°0 ¢ [3> [44]. The statement is also true for the operators I'* M2
in fact, since TT € L>*(R?), the two respective convolution operators map L!'(R?) to
L**°(R?), and they map sech®(z)L*(R?) to cosh®(z)L?*(R?) by (5.6). So the estimate for

0, T is proved by combining the above ones.

Consider now w := w! — w?. After a reflection in the y variable, using the same

names to denote the reflected versions of the respective functions, w solves
Wy — Wy + 2(tanhw), = —((w* + w?)w),.

By density and the uniqueness of solutions of the linear heat equation with prescribed
initial data, a solution z € L3*°(R?) of the above equation with the right hand side
equal to zero lies in C(Ry, L' + L>(R)), and satisfies the a priori estimate

l2ly=p L1 Loo®) S 12ly=yo |l L1+ Loo(m)

with yo < y1 due to the diffusion and the vector field 0, + 2 tanh(z)0, having positive
divergence. In particular, z must be zero by sending 3 to —oo. Since w € L3> (R?) N
cosh(z)L?(R?), this implies that

w = 0, T((w' + w?w).

Calling X := L3°°(R?) N cosh®(z)L*(R?), Y := L%¥%>(R?) N cosh? ¢ (z) L' (R?), we
have the estimate
lwllx = 0T ((w" +w?)w)|x
S (! +w?)wlly

< llw' + w?|x fJwlx-
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This estimate holds when restricting all functions on any half plane R x (—o0, M),
1o € R, due to the fact that all the convolution kernels appearing in 0,1 are supported
for positive y. When M is smaller than a suitable My such that ]l{y<M0}(w1 + w?) is
small enough in X, the estimate implies

Equation (5.7 then implies
(5.8) Wy — Wye + 2(tanhw), = —(]l{y<M}(w1 + w?)w),.

The same argument above, with a bootstrap argument involving (5.7)) and (5.8)), imply
that (5.7 holds for all M € R. The claim is thus proved. I

As we said, we also have w' € L3(R?), w € L3>*(R?)\ L3(R?), which yields a
contradiction with the assumption that @ is in the range of B. This concludes the proof
of the Theorem. O

5.7 A conjecture on the range of the soliton addition map

In [38, Theorem 1.5], Mizumachi proves that polynomially localized perturbations of the
line soliton induce a finite, well-defined shift € R of the position of the soliton along
the x axis in a co-moving frame. Specifically, if u is the solution of with initial
datum up = ¢ + g such that |[(z)((z) + (y))9| g1 (r2) is small enough, there exists » € R
such that suitable modulation parameters x = z(t,y) and A\ = A(¢,y) describing the
modulations of the line soliton (u = @ ¥ (z — z(t,y)) + Or2(||g||]) for a suitable norm

|- 1) satisfy sup;>q yer [2(t, y) — 4t S [(2) (@) + ()9l g1 (r2y, and
Jim A, ) = 1| poo )y = 0

lim [[z(t, ) =4t = Dl ooy < (a-sy) = O

t—

Jin [zt ) = 48] oo 1y > 4450y = O

for any § > 0.

We conjecture that when g is small enough in ({(z)({x) + (y))) ' H'(R?) and Y.(R?),
the spaces involved in Theorem [38, Theorem 1.5] and our Theorem @ and Corollary
respectively, it holds

h=0 <<= @(g) =0,

where @ is the functional in Theorem More generally, we conjecture that h is a
function of ®.

As discussed in the introduction, the codimension-1 condition is natural, linked to the
integrable structure, and of qualitative type. It is reasonable to suspect that the manifold
contained in the range of B follows special dynamics along the KP-II flow. The above
equivalence says that this manifold corresponds to the set of perturbations such that the
line soliton converges back to the non-perturbed soliton ¢(x —4t) locally in space, along
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a co-moving frame. All other perturbations will converge to a soliton shifted by a finite,
non-zero amount along the x axis. Intuitively, if the perturbed soliton was the image of
a localized solution of KP-II through B, the behavior of z(t,y) described above would
look1 too special to be compatible with the fact that general small solutions of KP-II in
H~3°(R?) scatter, unless the constant h is zero. We did not find a proof of this before
finishing this article, so we leave it as an open problem.

6 A multisoliton addition map

Recall the definitions of V, V, in Propositions .17

Definition 6.1. We define the (upgraded) Bdcklund transform for (M — 1,1)-solitons

as follows. Let ug € Hfé’O(RQ) small enough, M > 1, and X € RM such that A\; < - -+ <
Ay. For @€ RM | we define the transformation for fixed time

BX(U(), 5) = ug — 28$VX(’LL0, E),

and the transformation that includes the time evolution of the image through the KP-II
flow,

B (ug, &) := u — 20,V (ug, &),
where u is the solution of KP-II with initial datum wug.

From the definition of multisolitons in Section [2] and from the aforementioned propo-
sitions, we have the following results:

1. Adding a scalar multiple of the vector (1,...,1) to ¢ leaves the image of B, B,
unchanged.

2. For M = 2, B(-LY coincides with the soliton addition map B we constructed in
Definition [1.4] up to a homeomorphic change of variables of the domain, and up to
the symmetry of the previous point (this follows from Lemma [3.22]).

3. Given M > 2, X, &, the function BX(O, @) is a (M — 1, 1)-multisoliton (with Bi(O, 0)
being its time evolution along the KP-II flow). For fixed M > 2, the map (X, &) —
BX(O, ) is a bijective parametrization of the set of (M — 1, 1)-multisolitons, up to
rescaling € as in the first point.

4. The function @ := Bf‘:(uo,5) belongs to L2 _([0,00) x R?) and solves the KP-II

loc
equation distributionally with initial datum B*(ug, ¢) (the symbol ‘=’ refers to the
forward time evolution).

5. For each X,uq, ¢, there exists a continuous function ¢ = &(t) with &(0) = ¢ such
that

-

B2 (uo. (1) = B (u(t), &(1)).

~—
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6. The maps are continuous with values in suitable low regularity spaces.

The above is the subclass of the ‘tree-shaped’ multisolitons, with N; = 1, the number
of outgoing solitons at y = 4+00. These are the multisolitons in which the size N of
the matrix in equals 1. For instance, choosing M = 3, the map B allows the
construction of solutions close to a modulated Y-shaped multisoliton.

We note that the transformation makes sense for M = 1 and yields a nontrivial
Bécklund transform for solutions of KP-II without solitons. It is an immediate conse-
quence of Corollary that B*(-,1), for A € R, leaves the space H 7%’0(]1%2) invariant
for small data. This map can be seen as a limit of the map for M = 2 where one of
the coordinates of the vector ¢ goes to 400, which morally corresponds to adding a line
soliton at © = oo or x = —o0.

Finally, the Bécklund transforms can be conjugated by the reflection symmetry .
The conjugated maps add solitons that have one soliton at y — —oco and M — 1 solitons
at y — oo.
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Chapter 3

Appendices

A Linear estimates and parabolic equations

A.1 Linear operators, kernels, and estimates for the heat equation

Definition A.1. We define the following operators that act on suitable functions on
R2:

- H:=0,— 0?

- H) =9, + c0, — 92

- Lyt =0y — 02 4 2tanh 9,

- Leot := 0y — 02 4+ 20, tanh

- Ly 07 ' =0, Lo = a;lay — 0, — 2tanh,

where ‘tanh’ denotes the multiplication operator by the function tanh(x). Furthermore,
let

22

4t

r
Gi(z) = 1{t>0}\/ﬁe

be the heat kernel in 1 space dimension. We define the heat kernels
Tey) = G, (), Oz, y) = / G, (), T* =T,
0
Tz, y) :=T(x —cy,y), 0,'T(2,y):=0;'T(z—cy,y), 9, 'T*:=0, T,

For each of the above kernels K = K (z,y), we will use the same symbol to denote the
associated convolution operator

Kf(e,)i= [ K= a0,y = 50)f (oo, ) deodio

89
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More generally, in what follows we will consider integral operators that are not translation-
invariant:

Kfle,)i= [ K Gy, 0) o, o) doo din

with kernels K = K (z,y; o, o). Finally, let M+ =: M=, M, > be the multiplication

operators by the functions (z,y) — n*(z) := Heﬁ, (z,y) ~ sech?(z) respectively.

Proposition A.2 (Explicit kernels). The operators in Deﬁm’tion admit respectively
the following operators as right inverses:

- T,

- T,

- Ky =TT MT + T M~ + (0,1 — 95 1T M, e,
- Ky == M7~ + M T,

- Kooy =Tt M+ +T-M~,

- Koo 1= MOT 4 M+ 40 02(0;'T — 07 'T),
- DKy i= MF0,T 7 + M9, T + M2 (T~ —TH).

The above are all integral operators, the kernels of which will be called with the same
symbols.

The proof is straightforward. The kernels can be deduced from the heat kernel using the
following relations

Ly =M HM, L 0, =0,Liy_, (0, +2tanh)Leo_ = Ly (9, + 2tanh(z)),

where M is the multiplication operator by the function €Y cosh(z), and the fact that
some operators are adjoint to others after a reflection in the y variable (for instance,
Ky (x,y;20,90) = Keor(x0,y;2,90)). Note also that it holds DKy,— = 0, K- =
— 0o Ko

Proposition A.3 (Estimates for the heat equation with forcing). Let s € [0, 2], p,q,7,0 €

[1,00] satisfying
2 1 2 1
-—4+—-)=(-4+-]—-2+s.
r o P q

Consider the integral operator I' as before:

Lf(x,y) = /R2 I'(z — zo0,y — yo) f (0, yo) dzo dyo,

2

where I'(x,y) = ]l{y>0}\/4¥7yef%y. The estimate

10:1"T fllLyzg S I1fllLzrs

holds whenever the right hand side is finite, in the following cases:
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1. s€0,2),1<p<r<ooand1 <¢g<o < o0,
2. s=2,1<p,q<o0, (pq) = (ro),

3. s¢€ [07 1]7 (Ta U) = (OO72)7 1 S P, q, S 27 (p7 q, S) 7é (27 17 1/2)
(in this case, it holds |04|°T f € Co(Ry, L2)).

All these estimates hold for T'(©) as well with uniform constants in ¢, thanks to the
change of coordinates (z,y) — (z — cy,y).

Proof. 1t is straightforward to verify that for fixed y > 0, all fractional z-derivatives of
I'(-,y) of non-negative order are bounded and in L' (they actually lie in the Hardy space
H! for s > 0). Thus, simply by the scaling symmetry in the y variable, it follows that

_1 1
1102 T )l e Ss 7202 1< p < oo, s €[0,00).

By Young’s convolution inequality, this in turn implies the following estimates for the
fractional derivatives of the heat kernel:
kE_1/1
2

Bulte flig < E D o 820
1102 1°€*” fll g < 1yl N fllg, y>0,  s>0.

Part (1) is then a consequence of the Hardy-Littlewood—Sobolev inequality and the
above L? — L? estimates of the heat propagator evs.

A proof of part (2) is contained in [33, Chapter 7).

For part (3), consider the heat equation

Uy — Ugy = |0]° f.
The standard energy estimates yield immediately
2 2
HUHLZOLg + ”UxHLng < H‘ax|suHLz’Lg’Hf”LgL%'
The estimate then follows by the interpolation estimate

—0 0
R e Y R

with = s+ (1/2 — 1/¢') and the inequality 2ab < Ca? + C~1b%. Note that the above
interpolation inequality fails precisely at the endpoint s = 1/2, (p,¢') = (2,00) (for
which 6 = 1). By approximation with smooth functions, it holds |0, |°*T'f € Co(R,, L2).

O

Remark A.4. With the same methods as in part (1), estimates with mixed derivatives
are proved. For example, we will use the following one:

1
10,5 0:T f gz, < £

We refer to the definition of d}, 5 in Definition
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Lemma A.5. The heat operator T(=2) = (8, — 02 — 2)d,) ™" extends to a bounded map

0, (2
I—\(72)\) . LP(RZ) N C (R ;dp,)\)/R , 1— % = ; =+ %, P € (3/273)7

where for 0 < a < 1 and (X, d) metric space, we denote the semi-normed Holder space
by

21,22€ X d(zlv ZQ)Q

CO(X,d) = {fEC(X,d)'|f|CO,a ‘= sup |f(zl)_f(zz)|<oo},

and where R C C%*(X,d) is the subspace of constant functions.

Proof. By the change of variables (z,y) — (z + 2)\y,y), we can assume A = 0. Set
|- |p = |- |p,o as in Definition and let z = (x,y), w = (2/,3’). The heat kernel I’
satisfies

L) S lalt 18lEIS R 190 S 2.

As a consequence (see the proof of Lemma |5.8)), we have the estimate
1 1

— + —  for |z]p < 2Jw
[z +wlp 2l ' v

P(z+w) =T(2)p S

[wlp
W for |z], > 2|wlp,
By taking the L? norm and splitting the integral on the two regions, using that f <|2l<R |z[p Sdz <

R37% — 375 we find

_1—a 2c

IDC+w) =IOy S lefy, 0<a<l, S

We have T'f(w) = Jp2(T(z 4+ w) = T'(2)) f(—2)dz, w € R?, for any test function
f. Choosing ¢ = p’ in the previous estimate, the right hand side is bounded by

L0+ w0) =T s (2| S s

for a as in the statement of the Lemma. The previous equation allows thus to extend
I' to f € LP, with I'f being well-defined up to an additive constant. The C*® bound is
given by

[Tf(w1) = Tf(w2)| S w1 — w25 [ fll r(m2),

which follows by the previous bound by translation invariance. O

Lemma A.6. Let c € R\ {0} and o € C(Ry) such that oy € L*(R,). The following
bounds hold:
(1.1)

- S c — 1—8
| — a()/L) ™ 1D TOul ey < el g, s € 0,1, % = £ %)

6/5

_l’_

)

’B\H
N | ®»
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_ . _1

(12) (e~ 0f))/B) ™ 0Tl ey < el g

where T = (9, — 02 + ;)" (see Definition , and L = |c|71(1 + [Jay || 12) L.

Estimate ((1.2)) shows that estimate (1.1) is not optimal in terms of regularity. Note
that the inequalities are invariant under the scaling (z,y) — (Az, A%y), which leaves the
quantity ||yl 2 unchanged.

Proof. We can assume ¢ > 0 without loss of generality by symmetry. Let p € C2°(R) a
standard mollifier, p.(z) := e 1p(etx), e > 0, and let . := p. * . It is straightforward

to show ) )
loeylle S e 2llayllrz, [loaey —allze S e2flayll 12,
2
and choosing € = (%) , where C' is the implicit constant in the first inequality,
we have
¢ < 1 2
lacyllze < &, lloe = allze S ™ layllze,

and in particular,
(w—aW)/D)7" £ (@ —axy)/e™)
This means that it is enough to prove the two estimates for L = ¢!, and assuming that
ley [l oo < §-
Consider the first estimate. Assume first s = 0. We know by Proposition [AZ3] that
v € CoyL2. Let a(x,y) := 2 —arctan(3c(z — a(y))). Considering the heat equation with

transport
(0y — 0% + cdy)v = u,

multiplying by a and integrating in dz and by parts, we obtain the energy estimate

5 dy av d:n—i—/avxdx 2/(1:,:11 dx + 2ay azvdr > Qgev°dx = | avf dx.

The third term is non-negative due to a being non-increasing, and by the definition of
a and the estimate [|ay||L < §, it is at least 3 times larger than the absolute value of
the fourth and fifth terms. Integrating in y, we thus obtain

2 _
IVav|[fo 2 + [Vavel|Zzp2 + o | Belw — a)) ™ vlfape < \ / / avf dz dy]
< CWav|lis + Cll fl7e/ss

which proves the estimate for C' large enough by the interpolation inequality

2/3 1/3
1 llzozs S IFIE 2 Foll o

The estimate for s = 1 follows with the same tools, this time with the right hand side
of the energy estimate being

/avfxdx:—/axvfdaj—/avzfda:.
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The estimate for s € (0,1) follows by interpolation.

For the second estimate, we let v = 9,1 u, and set U := [9,|"/?u € L*(R?),
V= 9,0U e CyL?. Clearly, it holds V := |9,|~/?v. By the previous estimate with
s = 1 and Proposition which can be applied after a linear change of coordinates,
we can establish the bounds

Mllcore + Vallzre + el {ele = a) ™ Viigzre S Ullie = llull ;4o

The last two terms on the left hand side control the quantity ¢/ 2||Il|z,a(y)|gc_1vﬂ 12125
and from that we can achieve the full bound stated in (|1.2]) by a summation trick and
by translation invariance. O

Lemma A.7 (Mapping properties of (9,—92+2 tanh d,+h)~1). Consider T := Ky, the
integral operator as in Proposition that inverts the operator Ly, = @,—8%%—2 tanh 0.

(a) The operator T is well-defined from L*(R?) N L?(R?) to L*(R?), and it holds
1Tull oo r2y S llull 1 (r2)n L2 (R2)-
The range lies in the subspace Cy (R?) := {¢p € L>® | € Co(Rx (—o0,y]) Vy € R}.
(b) Let h € L*(R?) N L?(R?). Define the operator
Licsp := 0y — 02 + 2tanh 9, + h.

The operator is invertible from the space T(L'(R?) N L%(R?)) to L'(R?) N L%(R?).
Denoting by Ty, := (Ltr+,h)_1, we have for a universal constant C' > 0

I Thull7r@2)nrz@2) S exp (Clhllo @2)nczee)) el @)nr w2)-
Proof. Recall that the operator T is the integral operator on Ri,y with kernel
K(z,y;20,90) = I (z — 20,y — yo)n ™" (w0) + T~ (z — w0,y — yo)n™ (w0)
50 (T =0,y — ) = T (@ 0,y = o) sk a),
or equivalently, following the notation in Definition
T=T "My +T" M, + %(8;1? — 0 T M g2
The estimate in part (a) is then a consequence of the estimates
IT*ullze S lullpinze, 105 ' Tullre S [lull 1,

which come from Young’s convolution inequality and the fact that the convolution kernels
I'*, 97 'T'F belong respectively to L»*°(R?) C L? + L>, L>=(R?). The statement on the
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range is true for u € C°(R?) as the integral kernel is identically zero for y < yo, and
extends by density to all u.

For part (b), we argue perturbatively. The statement for small i follows by Neumann
series inversion: the estimate

17 Tul| iapzgz) < [0l pincz@e)l| Tl Lo g2)
S Al a2y lull inne w2)
implies that the operator Ly, ,T = Id + AT is invertible on L' N L?(R?).
For large h, we can repeat the same argument on a subset R x (—o0,y0] C R?, with

Yo = yo(h) < 0 so that the norm ||Al|1AL2(Rx(—cc,yo]) 18 sSmall enough, and then extend
¥ = (Ltz4+ 1) 'u to the whole R? by solving the initial value problem of the linear PDE

% — Yy + 2tanh ), = —htp + u,
w('vyo) = @ZJO

with ¢y € Cyp(R;). The global bounds follow from the a priori estimate
[ W)z ) < [YollLoe®,) + 1Tl oo (r2)

min{1,y}
+ 2/ ITCsy = s)llze@a) 1M 2@ 1V ()| Lo (R, ds
Yo

(13) max{1,y}
+ 2/1 ITCy = $)llpoe o) 1() | L1 () 19 (9) ]| oo (R, ) ds

y
+ [ 1107y = 8) | oo o) 1P(3) 122 (o) 190 (9)]] oo () ds
Yo

given by the Duhamel formulation of the problem involving the kernel K, from the
estimates

1
SYUNLer,) S Y2, i SYNLe®ry) S 1
IT=(,y)l| Slylm207V 0, TEC )| S

and from Gronwall’s inequality. O

A.2 'Well-posedness for parabolic equations

Here we state a well-posedness result for the initial value problem (on positive sub-
intervals of R) associated to equation (M]).

Lemma A.8. Let vg € L%(R,)+tanh(x) and u € L?(R x (0,00)). There exists a unique
solution v € C(]0,00), L3(R;)) + tanh(zx) to equation (M) such that v(-,y) = vo. The
map (vo,u) — v is continuous (equipping the codomain with the compact-open topology).

Proof. The proof relies on a standard fixed point argument. First, calling z(z) :=
v(z) — tanh(z), we equivalently show the global well-posedness of equation

(1.4) 2y — Zzx — 2(tanh(2)2); — (2%) = —uy.
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By the uniqueness properties of the linear heat equation, we can equivalently look for
solutions satisfying the integral equation

2(y) = V(@420 tank) Ly /y o W=s) (G420 tanh) ) (2(0) () dis,
0

where ¢¥(92120z tanh) o q y(95+20s tanh) g are the integral operators with kernels K., (-, y)

and DKy, (-,y) defined in Proposition Consider the map

B(v) = V(O tanh) / " el s)@220s ey (12(5) — () dis.
0

We note that, up to multiplications by bounded functions, e(95+2tanh) 0, is essentially
a sum of heat kernels and derivatives of heat kernels, while e¥(@z+2tanh) i 5 sum of heat
kernels and a term whose L! norm grows linearly in y. Thus, we can easily obtain the
bounds

@) Lger2 S L+ T)lzollz2 + L+ T)lull gz, + (T + T[]l 1o,

[@(v) = ©(w)[rger2 S (T4 + T3 o + w||geerz v — wllge.

This is enough to prove local well-posedness using the Banach fixed point theorem and
standard arguments. The global well-posedness follows from the standard energy esti-

mate of equation ([1.4]),
1
HZHL;SH + |\Z:v||L2TL2 ST HZHL;SH + lJullz2r2,
and Gronwall’s inequality. O

Lemma A.9. Let R > 0. There exists T > 0 such that, given zo € L?(R,;cosh?(z)dx),
V,f,h € L3(R, x (0,T)), g € L3(R, x (0,T)) with norms bounded by R > 0, the Cauchy
problem

{zy — Zge — 2((tanh(z) + U)2)y = (22)s + sech?(z)(f + g) + (sech?(z)h),
z(x,0) = zp(x)

admits a unique solution z € C([0,T], L?(R; cosh?(x)dx)). Moreover, the map
(20,U, f,9,h) = 2

18 continuous.

Proof. Consider w := cosh(z)z. The equation for w becomes

Wy — Wy +w — 2sech® w — 2 cosh - (sech Uw), = sech - (w?), — 2sech tanh w?
+ cosh - (sech? - (f + g) + (sech? b))

and the proof follows the lines of a classical fixed point argument as in Lemma O
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B The Miura map with L? data

This appendix, originally a first attempt in the construction of solutions to , de-
scribes the situation of small data v € L?(R?). This is a simplified setting which can
be instructive for the reader, and we will rely to some extent on this subsection for the
proof of Corollary [Bl The problem with using exclusively this approach is that we lack
a uniqueness theorem for the solutions of with generic L? data.

The main idea is to prove a monotonicity estimate for the initial value problem of
equation to obtain global solutions with uniform bounds on any interval [a, c0),
and then let @ — —oo to obtain a solution defined on the whole R? by compactness.
We start with the following lemma, which gives a simple decomposition of a function in
L?(R,) +tanh(x). Concerning this decomposition, we will use the letter 3 to distinguish
this shift parameter from the shift « in the rest of the paper, although they are both
quantities that represent the positions of the kink.

We make use of Notation throughout all this subsection: fg(z) := f(z — B) if
B € R, and fg(z,y) := f(z — B(y)) if 5 :R — R. We define the quantity

1ol 22 gy += minlvo — tanby || L2(g)-

Lemma B.1. There exists 6y > 0 and an analytic decomposition map v — (w, 3) from
A, C L*(R)+tanh(z) to L2 xR, where Ag, := {v|||v]| ;2 < 6o}, such that v = tanhg +w
and

/ wsech% dx = 0.
R

Moreover, (w,(3) is uniquely determined by the above properties under the hypothesis
that v € Ag,.

Proof. The first part is a consequence of the implicit function theorem. The map
F: (L*(R) + tanh(z)) x R — R,
F(v,p) = /R(v — tanhg) sech% dx
is such that F(tanh,,v) =0, v € R, and has f-derivative at (v, 8) = (tanh.,~) equal to
0pF'(tanh.,~v) = || sechg H%Q(R) > 0.
By the implicit function theorem, there exists £; > 0 and an analytic function
B: BaLf (tanh,) — L? x R

such that F(v, 5(v)) = 0. Moreover, 1 does not depend on v by translation invariance,
and any two such maps agree where they overlap.

For the second part, assume without loss of generality that v = w + tanh(x),
Jg wsech?(x) dz = 0. Then,

/(w + tanh — tanhg) sech% dx = w * sech?(B) + tanh * sech?(f).
R
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It is then clear that w * sech?(0) = 0 and, for ||w| ;2 smaller than a suitable g5 > 0,
the function w  sech? will have an L® norm and a Lipschitz constant so small that it
will never be equal to — tanh % sech? (B) besides at 8 = 0. The claim follows by choosing
90 = min{sl,eg}. O]

Lemma B.2. Let u € L?>(R x (0,00)) small, and vg € L*(R) + tanh(z) be such that
llvoll L2(ry is small enough. The solution v € C([0, 00), L*(R))+tanh(z) of equation (M|
with initial datum v]y—o = vo given by the global well-posedness theory (see Lemma
satisfies

sup o)l 2y < Mlvoll L2 my + llullz2ze-
y€[0,00)

Moreover, called w and 8 the decomposition given by Lemma[B-1, we have the bounds
[w]| e r2 + [[wellp2r2 + [ sechg wl|r2r2 + 11Byll2 S llullzz , + llvoll 22

Finally, called h := w — k, with k € C([0,00), L>(R)) being the unique solution to
ky — kye = —uy with k(-,0) = 0, we have the bounds

”hyHL3/2+L2(R><(O,oo)) + Hhm”L3/2+L2(Rx(o,oo)) S HUHLgy + H|UO‘”L2'

Proof. Assume first that vg and u are test functions. The solution v given by Lemma
is then a classical solution in C*°([0,00), H>(R) + tanh), and for a maximal time
T* > 0, the quantity [|v(y)|| 2 remains small in [0,7™). It follows by Lemma that
there exists a decomposition w € C*L?, B € C*([0,T*)) such that

v = w + tanhg, / wsech3dr =0 Wy € [0,T%).
R

The equation for w then reads
Wy — Wap — 2(tanhgw), = (w2)$ — Uy + [y sech% .

We multiply by w and integrate integrating in x. Using Lemma [D.I] with the orthogo-
nality condition [ sech% wdx = 0, integrating then in y and using Cauchy—Schwarz, we
obtain the estimate

2 2 2 2 2
HwHLﬁi 2 T waHL[QO’T*)LZ -+ SeChﬂwHLﬁ)’T*)m S HUHL[Q(LT*)L2 + [llvolllz2-

T*)

By the smallness assumptions, we have an a priori uniform bound on the quantity
[lv(y)|l 2, which implies T* = +o00 by a continuity argument.

The only term remained to estimate is the derivative of 5. From the equation, we
get

d
O:/wsech% dzx
dy Jr

= / Wy sech?ﬁ dx — By/w(sech%)w dz
R
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= /R ((sech%)m — 2tanh - (sech%)x) wdzr + /Rsech%(wz)x dx

4
+ gﬁy —i—/Rusech% dx —ﬂy/Rw(sech%)x dz.

If ||w||feor2 is small enough, we thus obtain

1By (y)| S /(\w[ + |fww|)sech% dCE+/ |w\|wx|sech% da:+/ \u|sech% dx
R R R
— 16,2,y S NeolZage,) + Il .

For general data vy and u, we can argue by density using the C7rL? continuity and the
continuity of the decomposition map in Lemma to obtain the same conclusion and
the desired bounds on w, w,, By.

Finally, we consider h as defined in the statement. Then, h satisfies the equation

hy — hge = (2tanhg w + wQ)x + By Sech% )

Using the previous estimates, we note that the right hand side of the equation lies in
Li/ 5 + L3 . Thus, by the L? boundedness of the operator 93 (9, —82)~"! from Proposition
and the uniqueness properties of the heat operator, this same bound is transferred
on hy and hg,, hence the last statement. O

We now want to build an eternal solution, that is, a solution of (M) living in R2.
We will use the a priori bounds proved for the solution.

Proposition B.3. Let u € L?(R?) be small enough, and By € R. There exists an eternal
solution v € Co(Ry, L*(Ry)) of equation (M)) such that

/ sech?(x — Bo)v(x,0) dx = 0.
R

Moreover, it holds sup,cg [|v(y)|l 2 < 0o as in Lemma and the unique decomposition
v = tanhg +w given for each y € R by the Lemma satisfies w € C(Ry, L*(R;)) and the
bounds

|wllpeorz + [lwallp2mey + [ sechg wllpzgey + 1Byl Lew,) S lull2me)

Proof. By translation invariance, we assume By = 0. By Lemma we can find
solutions vV € L®L? + tanh(z) to with initial times yy — —oo and initial data
v (z) = tanh(z — B§'), with uniform bounds on the decompositions given by Lemma
which we will call w" and . Using the estimate on BZ]/V in Lemma and
by continuity of the decomposition map of Lemma we can choose B{' such that
pN(0) =0, i.e.,

/ sech?(z)vN (z,0) dz = 0.
R



100 CHAPTER 3. APPENDICES

Now, we can use the uniform estimates for vV given by Lemma to have that, up
to subsequences and using a diagonal construction, 3 converges locally uniformly to a
function 8 with 8(0) = 0 and [|By|lz2 < || £l 22 ,- The sequence w™ converges x-weakly in

L>L? to a function w € L® L2, the derivatives w) converge weakly to w, in L?(R?), and
the uniform bounds of w” are carried over to w. We will then call v := w + tanh(z — 3).
Moreover, by the previous Lemma, we can assume weak convergence of (w? — k¥ )y
and (wV — kN),, in L3/% + L?(R?) after removing kY := —(9, — 92) (L gysynytia),
which converges to k := —(8, — 02)"lu, in L5(R?) by the estimates of Proposition
m By Rellich’s compactness Theorem, w” converges strongly in L%OC(RQ) to w, which
immediately implies that vV — v in L%OC(]RQ), and the same happens for the first order
z-derivatives. It follows by continuity that v satisfies the equation distributionally.
By the uniqueness properties of the heat equation and the a priori estimate, v satisfies the
Duhamel formulation of the equation, so the continuity in y holds due to Proposition[A.3]
It is a consequence of the strong convergence that (w, 3) coincides with the decomposition

given by Lemma O

C UP? and V? spaces

We refer to [7, [14] 29] for the definitions in this appendix.

C.1 Definition of the spaces U? and V?

Let I = (a,b) C R an open, possibly unbounded interval. Denote by I := I U {a,b} C
R U {#o00}. Denote by R the set of L?(R?)-valued regulated functions on I, that is,
bounded functions which admit left and right limits at any given point of the domain
(and admit right limit and left limit at a, b respectively). Let R;. C R the subset of all
right continuous functions w such that lim;_,,+ u(t) = 0. The spaces R, R,. are Banach
spaces when equipped with the supremum norm. Moreover, R,. embeds naturally into
(I x R?).
Define the set of all partitions of I

P:{T:(tj)jyzl‘NEN, tjEI, tj <tj+1},

corresponding to the decompositions of I into subintervals. We say that u is a step
function if there exists 7 € P and f1,..., fi; € L?(R?) such that

I7|
U(t) = Z ]]‘[tj,tj+1)(t)fj7
Jj=1

where we adopt as a convention ¢y = a, ;4.1 = b. We denote the set of step functions
as Syc and note that S;c C Ryc. A step function u € Sy is a UP-atom if in the above

definition the vectors ( fj)lTl

=1 satisfy

I7]

1
(S 155 gaey)” =1
j=1
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The space UP is defined to be the space
[o¢]
UP:=cu= chuj ‘ (Cj)jzl € EI(N+,(C), (uj')jzl UP—atoms y
j=1
with the norm

o
|ul|ge = inf Z lc;] ‘ 3 (uj)j>1 UP-atoms : u= chuj
j=1 jEN

Since the UP—atoms belong to R;. with bounded norm, and since the UP norm controls
the supremum norm, the above sum is well-defined and one has U? — R ..

We define the spaces VP for completeness, although we will not use them. Define the
p—variation of a function v : I — L? as the seminorm

I7|-1 1
ol = sup (D lolti) = vo(t))}2)”

(t)ilep =1

and |[v[jye = HUHL?OL%’y + |v|]y». Note that all functions whose VP seminorm is finite
belong to R, but may contain functions which are identically zero outside a countable
set. Let VP be the space of all functions v € R, such that |v|y» < co. On the space VP,
the seminorm | - |y» is in fact a norm, due to the condition at —oo, and it is equivalent
to the norm || - [|y».

Definition C.1 (Adapted function space, [15]). We define U¥, as the space of functions
of the f(?rm e!Sf(t), f € UP, with norm HuHUS = He*tSuHUp, where S = —82 — 30,19;.
Define Z*(I) as the closure of all u € C(I, HY*(R?)) N U2 such that

2

lull o == | D2 A 1PSullfs | < oo
Ae2Z

in the space Cy(I, H*°(R?)) with respect to the Z°—norm.

Lemma C.2. The following estimates hold:

11 1
< 42 ="C
lullzprs, Sp llullg, o+ =5, pe (2o

10l rz, + 105 0yl ez, < llulloz.

Proof. By the definition of U? and arguing on U?-atoms first (see [I5, Corollary 2.18]),
the estimates follow from the corresponding estimates for the linear flow ¢t — e*. For a
solution u = e*ug, the usual Strichartz estimates hold

1 1 1
Hu”LﬁLg,y Sp HUOHB(R?)a ]; =+ & = 2 p € (2,00
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(see [29]), which imply the first estimate. Analogously, the smoothing estimate for linear
solutions of KP-II,

S - S
[0:¢Suoll 57, + 1105 0se ol S lollzageo

which is proved in [20, Lemma 3.2], implies the second estimate (the first part of the
second estimate is actually already proved in [I5, Corollary 2.18]). O

Corollary C.3. It holds Z=1/2((0, 00)) = Cy([0, 00), H~2:0(R2))NLE((0, 0), |05 |2 L3(R2)).

Proof. The first estimate is immediate by the definition of U 2 and Minkowski integral
inequality. Note that a function in Z™2 is well-defined at ¢ = 0 because of the definition
of U?. For the second one, we first use Lemma, to estimate the quantity

- 2
> A HIPSullzers, | Sl
Ae2Z

Minkowski’s integral inequality is then used multiple times to bring the summation on
A inside the norm, and finally the square function characterization of the LP norm

1
1(=82)"2 Fllzs@y ~ 1D NP ey

€L

is enough to conclude. O

Remark C.4. Tt holds the embedding Z_%((O,oo)) — L2 +((0,00) x RZ ). In fact,
combining the smoothing estimate of Lemma with the embedding U? < L°L?

yields

-1 2 2 2
> A HPulgy 2 IPEullpers , + D AP ullzears
Ae2Z A>1

2 Hpél’u”%;’oLg’y + HP§1UHigoLgy

By interpolating between the two estimates in Lemma with the same argument, it
is possible to show that u € LP .((0,00) x R?), p < 8/3.

unif
Moreover, the operator 9,19, extends to a bounded operator from Z -2 ((0,00)) to some
Banach space of tempered distributions, since by Lemma, it holds

1

2
SR Ol | Sl
Ae2Z
The same statements hold for the space X%/ 248010 o5 in Definition with different
estimates. The spaces X%,/Ha’bl’o, 0 <T < oo and Z_%((O, o0)) contain all solutions
of (KP-II) with initial data in L?(R?), F —5:0 (R?) respectively (see Proposition [4.2 and
Theorem E and Proposition): in particular all solutions from the well-posedness theory

with the above data lie in L2 ((0,00) x R?) and the operator 9,19, is well-defined on

loc

those solutions. This means that all terms in (KP-1I)) are well-defined.
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D Supplementary lemmas and proofs

D.1 Miscellaneous results

Lemma D.1 (Lower bound on a quadratic form). For every w € H'(R), the inequality

/(wc,;)2 dzx — 2/ sech?(z)w?* dz > 0
R R
holds, assuming one of the orthogonality conditions

(w,sech) ;2 =0, or (w,sech?) s = 0.

Proof. From classical operator theory [10], we know explicitly the negative energy states
of the Posch-Teller type Schrodinger operators H,, = —92 —n(n — 1) sech?(z), n > 2. In
particular, the operator

Hy = —9? — 2sech?(2)

has its ground state wy = sech(z) as the only negative energy state, with eigenvalue —1,
while the operator
Hs = —9? — 6sech?(x)

has two bound states, vy = sech?(z) and v; = tanh(x)sech(z), with energies that are
respectively —4 and —1. The goal is to prove that the quadratic form Q(-) := (-, Ha-) is
non-negative on the hyperplanes wg and vy

The first statement is immediate, since wq is the only negative eigenvector of Hs.
Concerning the orthogonal of vg, we argue as follows. Since wq is even, the quadratic
form is positive on the subspace of odd functions. By the fact that the even and odd
subspaces are invariant under Ho, we just need to prove that the form is positive on the
space M of even functions which are orthogonal to vg. For that, we look at Hs. The
state v1 is odd, so functions in M are orthogonal to both vy and v;. Thus, the form
(-, Hs-) is positive on M, which implies the same for () by monotonicity. ]

Lemma D.2 (Any distribution admits an antiderivative). Let u € 2'(R™) and x be one
of the coordinates of R™. There exists U € 2'(R™) such that 0,U = u.

Proof. Denote as ' € R"™! the remaining coordinates, and call e; the vector with
coordinates z = 1, 2’ = 0. Let x € C*°(R) be a smooth non-decreasing cutoff function
such that y(z) = 0 for x < —1 and x(x) = 1 for z > 1. Consider u™ := yu, v~ =
(1 — x)u, where y is considered a function on R™ depending only on the x variable.
Consider the Heaviside function H := 1y o in the variable z, and let (56‘_1 € 2'(R" 1)

be the Dirac delta. For f € L (R), let f ® 6y~ € 2'(R") be defined as
Fos0) = [ fotend.
Then by a direct verification, the convolutions Ut := (H®6) ) xu®, U™ := (H-1)®

56‘*1) + u~ are well defined, they lie in 2'(R"), and they satisfiy 0,UF = u*. It follows
that U := Ut + U~ satisfies 0,U = u. O
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D.2 Some detailed proofs

Proof of Lemma[3.29. As usual, we will use Notation and write fo(z,y) = f(z —
a(y),y) for a = a(y) (we use the same notation when f and/or « are independent of y).
Recall that v¢ is defined as

+_ _ —
C_U+€V 4y BV +c

vo= eV*—c + eV +c
=(nTov)ot + (novuT,
where we set
1 _
(41) V(.’L',y) = §(V+($,y) -V ($,y)) —C.

The function ¢ + v°|,—g is a curve in L?(R,; cosh?(x)dr) + Go|,—o by Lemma and
can be easily verified to be smooth, so by Lemma parts @ and the map ¢ — ag
is well-defined and smooth. Next, we differentiate (3.14]) in the variable ¢ to get

h%o v(-,0) - (v —v7)|y=0 d
) = A 07—y
Jg sechy, - (v —v7)|y=o dx

Claim 1. If 2y € R is such that v(zg,yo) = 0, then

=+ +
I sech®o vlymyy = sech, iz + 170 vlymyo = 125 ey S lull -y g

T Proof of Claim 1. We fix y = 0 for simplicity and focus on the sech? case, since the
o=

other is analogous. It holds d,v(z,y) = 1+ *—*—, so by Corollary part (b) we have

v(2,y) = viasy) = (@2 = 20)| £ lJull ;g o0 72 = 1]
In particular, for some C' > 0,
(4.2) lv(x,0) — (x — xz0)| < C”u||H—%’O(R2)|x — x0|1/2’
(4.3) (@, 0)] 2 & — wol = Cllull ;g oo v = zo2.
Moreover, |% sech?(x)| = |—2tanh(z) sech?(x)| < 8e2#l. So, calling o := CHU”H*%’O(R?)’

| sech?(v(x,0)) — sech?(x — zo)| =

1
/ (sech?),((x — z0) + s(v(z,0) — (z — x0))) ds
0
“|v(z,0) = (z — z0)|
(4.2), @3) — =< min{l,672(‘x*x0|*0\m*9«"0\1/2
<

e rolbe=aol )l — a2,

Yoz — x['/?

2OR2)
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where the last inequality holds for small u. The claim is proved since 7 € L' N L>(R).
I

Let zp be any point such that v(zy,0) = 0. By Corollary it holds
(4.4 I = w7 = 2l iz S el oge

This fact and Claim 1 imply that the numerator and denominator in the expression
of J.ap are uniformly bounded from above and away from zero by the smallness of
(v —v7)|y=0 — 2 in L*(R,) (as already noted in the proof of Proposition [3.4)), and that

sup [.a0(c) — 1 < ],

1 .
5,0
ceR 2 (Rg)

In particular, ¢ — ag is a C'-diffeomorphism of R.
Concerning g, the map

+_ _ —
7}+6V ) 6\/ +c

(CJ ’70) = F(Cv ’YO) = /]RQ p'yO dx dy

eVt—c + eV~ +c

is well-defined and smooth with yg—derivative

Oy F(c,v0) = /R2 Pryo 020 dx dy.

From Proposition [3.21] and the estimates of Corollary 3.8, we know that v¢ = tanh, +w,

where [|wl[zsge) + loyllL2r,) < HUHH*%’O(R?) and a(0) = ap. Since w € L3(R?) and

la(y) — ap| < HUHH—%’O(W ly|1/2, for fixed ¢ we have F(c,7y) — +1 as vg — £00, so that

at least one solution of (3.15)) exists. Moreover, if v satisfies (3.15]), then
min{1, |y — ao|} < /pvo tanh,, dz dy‘

< /,070 tanh, dx dy‘ + ‘/ Pro - (tanh, — tanhy, )dz dy

1
gm — <|[ p%wdxdy‘ Ry T

Sl g

which in turn implies, since u is small, that if the map ¢ — g exists,
— <
F10(€) = a0(€)] S lull -y 0 g

Now note that, since p is radially decreasing and with unitary integral,

1

1
/ p(x,y)sech?(x) dx dy > / sech?(z) dx
R2 2J
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= tanh(1)
> 3/4.

Writing v¢ = sech? 4w, = sechzYO +(sech? — sechio) + w,, with a similar computation
as above, there exists a universal § > 0 such that, for v small enough,

(4.5) |F(e,7)]<d = 0,,F(c,y)>3/4

In particular, d,,F(c,70) > 3/4 if 7o satisfies (3.15]). A smooth map ¢+ 7o exists then
locally by the implicit function theorem, and it extends to a global, unique map due to
the fact that whenever holds, 0, F(c, o) is strictly positive, so that two distinct
zeroes of the function gy — F'(c,70) cannot exist. An analogous computation to that of
the case g shows that

3 Jgo Py - (v —v7) sech®o v dz dy
fRZ P VS dx dy
_ Jgz2 Py - (v —v7) sech®o v dz dy
B Jgz Py - (sech?ov - 2(vF —v= )2+ prov-vf +nov-vy) dady

a(:")/0 (C) =

The terms sech?o v, no v are treated in the same way as in the case of o using Claim
1, while the remaining terms can be controlled using again the bound mentioned above
on (vt —v7) — 2 in Cy(Ry, L*(R,)). In the end, we get

4.6 9 — U3l '
( ) ilel[g| 0’70(6) ‘ ~ HuHH_%’O(]RQ)

As said above, the map ¢ +— g is a smooth change of variables.
We have proved already estimate (3.16). Estimate (3.17) follows by combining the
bounds on |0.ap — 1| and |0.y0 — 1| we have already obtained, with the bounds

700)] < ull l20(0)] S llull ;1.0

oy ®?)’

These two bounds are in turn equivalent by ([3.16)), so we focus on proving that |« (0)] <
HUHHfé,O(RQ)'

Claim 2. If zg € R is such that v(zg,0) = 0, then
2o — ao(O)] S llull -y 0 50

T Proof of Claim 2. Using (3.14) and the identity n* +n~ = 1, it holds

’/(Gao - Gwo)’yio dx
R

=| [0~ Galy-ado
R

/ (0 — 07 ) (%0 v — 120))yo de
R
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Sl 30 g

where the last inequality follows from Claim 1 and the bounds on (vt —v7)—2 as before.

The claim follows by Lemma part @ [

Fix now ¢ = 0. By Claim 2, it is enough to show that |z¢| < HuHH for any xg

202
as in the statement of the Claim (such a zp always exists since z — v(z,0) —x is globally
Holder continuous by (4.4])). From Definition and since p is radially symmetric, it
holds

/ v(z,y)p(z,y) dedy = 0.
]R2

In particular,

v(0,0)] =

[, 70.00(a0) do dy'

/RQ(”(O’ 0) — v(x,y))p(x,y) dz dy’

Lemma I8 — 5l 3oy [ ool ) dody
H3O®) Jps

2

S HUHH—%,O(RQ)‘

Now, by (4.2),

|zo| < Cllull )IOCO\”2 +[v(0,0)]

3.0 (g2

‘$0| <

< . —_— .
< Ol oy = T o7z S 1y

which proves the bound for small u.

For the bi-Lipschitz bound, we proceed as follows. First, by estimate , it is
enough to show the Lipschitz continuity of the forward map (u,c) — (u,7). By the
same estimate and the triangle inequality, it is enough to show

(4.7) 70,10 = 0,2l S (14 [e])[lur — U2||H—%,0(Rz)

for small u1, ug, the corresponding 9,1, 70,2 satisfying (3.15)) with v = v(=LD (uj, (¢, —¢)),
and for ¢ € R which is shared by both solutions. By the bounds in Lemma and the
analiticity of the map u +— V' — Vit holds

(4.8) ler = voll goays goy S Ml = 2ll -y 0o

with v; corresponding to u; and defined as in (4.1). By the normalization condition
(3-12), it holds [ pvj dzdy = —c, j = 1,2, in particular,

(4.9) /R2 p- (v — ) dedy =0.
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Now we consider the difference v{ — v5, and write it as

v§ —v§ =ntov vl +n o vy —ntovg vl —nTovg vy

Corollary (a) — = tanhov; — tanhovy + (nT 0wy — T o ve)v]

" om = o m)iiy + Opallur =zl o0 )

~+t
v; ~Loge) by
Corollary since the map u ~ vF is analytic with values in L3(R?). The rewriting
above implies

where = ij F 1. The remainder goes to zero linearly with [ju; — 'UQHH

‘/zpml - (v — ) da:dy' < /2p70,1 -|tanho vy — tanhovs|(1 + [0 | + |07 |) do dy
R R

Ol = w0 )

S [ s b=l 4[5+ 571 ddy
+ |Jur — “2”1{*%’0(11@2)

(-9, @10 — < Dolllvr = vell cosagey + llur = wall ;-0 g
B8, 17 — < (1 +leDllur —uzll -y o po)-

where we used the estimate from Corollary [3.2]
~t
(4.10) 15 ey S sl gy <1

Since it holds (3.15) with 70,1 and v{, we simply have

[t dody S 0+ Dl =l o

By the property (4.5)) applied to ug, v§, estimate (4.7) is proved when the right hand side
is less than a universal constant, which we can assume by the smallness of u1, us. ]

Proof of Lemma[f.6. Assume u € 9, H*(R?) by density. By considering a. = a * p; a
regularization of a, with regularization parameter £ = Kc2 [y ||? for a universal K large
enough, we can assume a € H*°(R) and that

5= Moyl

is small. In fact, by the properties of the regularization, we have c'/*||lac |~ <
01/45_%HayHLz = K~ and

(2 (z — ay)) < (e2]la —ac]| =) (3 (& — a:(y)))

with ¢2 [la — ac|[pe < eze||ay |2 = K¥/4|ay||2, = KL
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Call u(t) := e"ug, and let a(z) = (7 + arctan(c%a?)). From
Up — Cly + Uggr + 38;1uyy =0,

one gets

1d
—— aa]u|2 de dy = C/aauux - /aauuwwx - 3/aauagc_1uyy
2 dt R2

c 2
= 2/a:1:,a’ful| Jr/ax,auuszr/aauxuxx

—3/ayam7au8xluy+3/aauy(‘)xluy

- —;/am,a|um|2 + % /am:,;,a]u|2 — g /az7a|u\2
— S/anx7au8x1uy — 2/ax7a]821uy|2.
Note that |azes| < 5 az. Integrating in the time variable, we obtain the estimate
CHMUH%;LQ + H\/%@xu\\iw
lyarads g s 1 S I/auol + las ol
x |Iazaul 2 12 |1V/awa0; tuyll .12
S Nuoll72 + 4]l ax,auHLQTH||\/m8;1uyHL2TL2'
For § > 0 small enough, the above implies
IV@za0zull 2 12 + |1/@za0z uyll 2 12 S lluoll L2
Substituting a with its definition, we get the desired inequality. O

Proof of Lemma|5.7. The statement is monotonically weaker as p grows by Holder’s
inequality, so we assume p < oo. By rescaling the measure u, we can assume p(5;(0)) =
1, in particular u(B;) < 2/ for j € N, where B; := By;(x0). For the sake of exposition,
we prove the Lemma under the assumption

(4.11) u(Bj) ~ 27

and we mention at the end how to modify the proof in the general case.

Step 1. Let x; = 1p;, and A; := B; \ B;j_;. For j > 0, define
Jx x5 dp

fA = fX — =X B
J J Ty X d J

and consider the decomposition

f=rf+> fi—fiu

Jj=1



110 CHAPTER 3. APPENDICES

All the functions in the decomposition are in LP(X), have mean zero and have support
in a ball, so they are multiples of p-atoms, as in Definition [5.5] By what said in Remark
5.6] and the definition of p-atoms, to show the claim and the above bound, it is enough
to show that

Ifolle Slwfliee, D 2P7f5 = fi-allee S lwfllee,

Jj=1

since the support of f; — f;j_1 is contained in the ball B;, whose measure is comparable
to 270,

Step 2. The first bound is immediate. For the second bound, we have

/B_fdu /B_lfdu

J J

15 = fimllze < Iflpeqay) + pw(By) + u(Bj1)~ M

In addition to (4.11)), we have the bounds

‘/ijdu /Jgffdu

< 275 [wf e,
[fllzray) < 11/ wllzee sy llw sl e

S 2P f] |,

< 1/wll o (gey 1w fllce

which combined yield ‘ ‘
2P f5 = fialle S 275 [wf | e,

so we obtain the claim and prove the proposition under the additional assumption (4.11).

Step 3. For a general doubling metric measure space we can modify the proof as
follows. If u(X) < oo, then it is easy to show by contradiction that X is d-bounded,
so the statement is immediate since any LP function with zero mean is also a multiple
of a p-atom. If u(X) = oo, we set B; = Br, (7o), with (R;); being a sequence of radii
R; — oo such that Ry =1, R; > 2R;_1, 2u(Bj—1) < u(Bj) < 4p(Bj-1), and repeat the
same argument in the previous two steps without other changes. ]

Proof of Lemma 5.8 The way of proving this estimate is classical. We recall the def-
inition of parabolic norm and metric given in Definition [3.15] First, by the change of
coordinates

(z,y) = (z+ 2X\y, ),

one can assume A = 0. For a convolution operator K with kernel K = K(z), z = (z,y),
consider the property

(4.12) K@) Sl 10K SR 10K (2)] S =7
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The two kernels |9,|Y/2T, |9,|'/T satisfy the property with a = 1/2, a = 3/2,
respectively: this is easy to verify since the two kernels and the parabolic norm are
homogeneous with respect to the parabolic rescaling (z,y) — (sz,s%y). It is thus enough
to show that for a convolution operator K, it holds for a € (0, 3):

1 Q

[K satisfies the property (4.12)] — [HKfHLp(Rz) < ”fH%Il,(R% . =3

By the definition of 7—[;)\(R2) and by linearity one can assume that f is an co-atom. By
scaling, we can assume

I flloe <1, supp f C B1((0,0)) =: B, . fdxdy=0.
R

Let 2B := B2((0,0)). By the first estimate in (4.12)), the kernel K € LP>(R?) ¢ L'+ L,
thus

ITfl oo 2By S 1
By combining the estimates (4.12)) as follows, for |z|, > 2|w|,, w = (2/,y’) one obtains

1
|K(z —w) — K(z)| < x'/ 0. K (z — sw)ds| +
0

/8Kz—swd

[wlp |w|1%
||a+1 ||a+2
|w‘p

‘|a+1

With that, one can use the zero mean of f and the bounds we have to estimate

Kf(:)| = \ /B K (2 — w) — K()]f(w) du

’za+1

for z € 2B¢. It holds 1/|-|4"! € L9°(R?), ¢ = 3/(a+1) < p, and clearly Iope(2) 1/|2[3H! <
1/4, so the estimate is proved by combining the bound on 2B with the one on 2B¢. [



112 CHAPTER 3. APPENDICES



Bibliography

1]

2]

[10]

[11]

[12]

M. J. Ablowitz and D. E. Baldwin. Nonlinear shallow ocean-wave soliton interac-
tions on flat beaches, Phys. Rev. E 86 (Sep 2012), 036305.

T. Aktosun. Inverse scattering transform, KdV, and solitons. In Current trends
in operator theory and its applications, Oper. Theory Adv. Appl., vol. 149, pages
1-22. Birkhauser, Basel, 2004.

M. A. Alegjo, C. Munoz, and J. M. Palacios. On asymptotic stability of the sine-
Gordon kink in the energy space, Comm. Math. Phys. 402 (2023), no. 1, 581-636.

H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier analysis and nonlinear partial
differential equations. Grundlehren der mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg, 2011.

B. Bringmann, R. Killip, and M. Visan. Global well-posedness for the fifth-order
KdV equation in H~'(R), Ann. PDE 7 (2021), no. 2, Paper No. 21, 46.

T. Buckmaster and H. Koch. The Korteweg-de Vries equation at H~! regularity,
Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 5, 1071-1098.

T. Candy and S. Herr. On the division problem for the wave maps equation, Ann.
PDE 4 (2018), no. 2, Paper No. 17, 61.

S. Chakravarty and Y. Kodama. Classification of the line-soliton solutions of KPII,
J. Phys. A 41 (2008), no. 27, 275209, 33.

R. R. Coifman and G. Weiss. Extensions of Hardy spaces and their use in analysis,
Bull. Amer. Math. Soc. 83 (1977), no. 4, 569-645.

S. Fligge. Practical quantum mechanics. Classics in Mathematics. Springer-Verlag,
Berlin, english edition, 1999. Translated from the 1947 German original.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura. Method for solving
the Korteweg—de Vries equation, Phys. Rev. Lett. 19 (Nov 1967), 1095-1097.

P. Gérard, T. Kappeler, and P. Topalov. Sharp well-posedness results of the
Benjamin-Ono equation in H*(T,R) and qualitative properties of its solutions, Acta
Math. 231 (2023), no. 1, 31-88.

113



114

[13]

[14]

[15]

[16]

[17]

[18]

BIBLIOGRAPHY

L. Grafakos. Modern Fourier analysis. Graduate Texts in Mathematics, vol. 250.
Springer, New York, third edition, 2014.

M. Hadac. Well-posedness for the Kadomtsev-Petviashvili II equation and general-
isations, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6555—6572.

M. Hadac, S. Herr, and H. Koch. Well-posedness and scattering for the KP-II
equation in a critical space, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009),
no. 3, 917-941.

B. Harrop-Griffiths, R. Killip, and M. Vigan. Sharp well-posedness for the cubic
NLS and mKdV in H*(R), Forum Math. Pi 12 (2024), Paper No. €6, 86.

F. John and L. Nirenberg. On functions of bounded mean oscillation, Comm. Pure
Appl. Math. 14 (1961), 415-426.

T. Kappeler and P. Topalov. Global well-posedness of mKdV in L?(T,R), Comm.
Partial Differential Equations 30 (2005), no. 1-3, 435-449.

T. Kappeler and P. Topalov. Global wellposedness of KAV in H~1(T,R), Duke
Math. J. 135 (2006), no. 2, 327-360.

C. E. Kenig and S. N. Ziesler. Local well posedness for modified Kadomstev-
Petviashvili equations, Differential Integral Equations 18 (2005), no. 10, 1111-1146.

C. E. Kenig and Y. Martel. Global well-posedness in the energy space for a modified
KP II equation via the Miura transform, Trans. Amer. Math. Soc. 358 (2006), no.
6, 2447-2488.

R. Killip, T. Laurens, and M. Vi san. Sharp well-posedness for the Benjamin-Ono
equation, Invent. Math. 236 (2024), no. 3, 999-1054.

R. Killip and M. Visan. KdV is well-posed in H~!, Ann. of Math. (2) 190 (2019),
no. 1, 249-305.

R. Killip and M. Visan. Orbital stability of KAV multisolitons in H~!, Comm.
Math. Phys. 389 (2022), no. 3, 1445-1473.

H. Koch and X. Liao. Conserved energies for the one dimensional Gross-Pitaevskii
equation, Adv. Math. 377 (2021), 107467.

H. Koch and X. Liao. Conserved energies for the one dimensional Gross-Pitaevskii
equation: low regularity case, Adv. Math. 420 (2023), Paper No. 108996, 61.

H. Koch and D. Tataru. Conserved energies for the cubic nonlinear Schrodinger
equation in one dimension, Duke Math. J. 167 (2018), no. 17, 3207-3313.

H. Koch and D. Tataru. Multisolitons for the cubic NLS in 1-d and their stability,
Publ. Math. Inst. Hautes Etudes Sci. 140 (2024), 155-270.



BIBLIOGRAPHY 115

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

H. Koch, D. Tataru, and M. Visan. Dispersive equations and monlinear waves.
Oberwolfach Seminars, vol. 45. Birkhduser/Springer, Basel, 2014.

H. Koch and D. Yu. Asymptotic stability of the sine-gordon kinks under perturba-
tions in weighted sobolev norms. Preprint: arXiv:2308.07679, 2023.

Y. Kodama. KP solitons and the Grassmannians. SpringerBriefs in Mathematical
Physics, vol. 22. Springer, Singapore, 2017.

T. Laurens. Global Well-Posedness for H~1(R) Perturbations of KAV with Exotic
Spatial Asymptotics, Comm. Math. Phys. 397 (2023), no. 3, 1387-1439.

P. G. Lemarié-Rieusset. Recent developments in the Navier-Stokes problem. Chap-
man & Hall/CRC Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC,
Boca Raton, FL, 2002.

F. Lin and Q. S. Zhang. On ancient solutions of the heat equation, Comm. Pure
Appl. Math. 72 (2019), no. 9, 2006—2028.

F. Merle and L. Vega. L? stability of solitons for KdV equation, Int. Math. Res.
Not. 2003 (2003), no. 13, 735-753.

T. Mizumachi. Stability of line solitons for the KP-II equation in R?, Mem. Amer.
Math. Soc. 238 (2015), no. 1125, vii+95.

T. Mizumachi. Stability of line solitons for the KP-II equation in R2. II, Proc. Roy.
Soc. Edinburgh Sect. A 148 (2018), no. 1, 149-198.

T. Mizumachi. The phase shift of line solitons for the KP-II equation. In Non-
linear dispersive partial differential equations and inverse scattering, Fields Inst.
Commun., vol. 83, pages 433—-495. Springer, New York, 2019.

T. Mizumachi. Linear stability of elastic 2-line solitons for the KP-II equation,
Quarterly of Applied Mathematics 82 (2024), no. 1, 115-226.

T. Mizumachi and D. Pelinovsky. Biicklund transformation and L?-stability of NLS
solitons, Int. Math. Res. Not. IMRN 2012 (2012), no. 9, 2034-2067.

T. Mizumachi and Y. Shimabukuro. Stability of Benney-Luke line solitary waves
in 2 dimensions, SIAM J. Math. Anal. 52 (2020), no. 5, 4238-4283.

T. Mizumachi and N. Tzvetkov. Stability of the line soliton of the KP-II equation
under periodic transverse perturbations, Math. Ann. 352 (2012), no. 3, 659-690.

L. Molinet, J.-C. Saut, and N. Tzvetkov. Global well-posedness for the KP-II
equation on the background of a non-localized solution, Ann. Inst. H. Poincaré C
Anal. Non Linéaire 28 (2011), no. 5, 653—676.



116

[44]

[45]

[46]

[47]

[48]

[49]

BIBLIOGRAPHY

R. O’Neil. Convolution operators and L(p, q) spaces, Duke Math. J. 30 (1963),
129-142.

R. S. Palais. The symmetries of solitons, Bull. Amer. Math. Soc. (N.S.) 34 (1997),
no. 4, 339-403.

L. Pompili. On the Béacklund transform and the stability of the line soliton of the
KP-II equation on R?. Preprint: arXiv:2412.12530, 2024.

J. Soria and P. Tradacete. The least doubling constant of a metric measure space,
Ann. Acad. Sci. Fenn. Math. 44 (2019), no. 2, 1015-1030.

E. M. Stein. Singular integrals and differentiability properties of functions. Princeton
Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.

E. M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscilla-
tory integrals. Princeton Mathematical Series, vol. 43. Princeton University Press,
Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in
Harmonic Analysis, III.

B. Talbut. Low regularity conservation laws for the Benjamin-Ono equation, Math.
Res. Lett. 28 (2021), no. 3, 889-905.

J. Villarroel and M. J. Ablowitz. On the initial value problem for the KPII equation
with data that do not decay along a line, Nonlinearity 17 (2004), no. 5, 1843-1866.

D. Wu. The direct scattering problem for the perturbed Gr(1,2)-¢ Kadomtsev-
Petviashvili II solitons, Nonlinearity 33 (2020), no. 12, 6729-6759.

D. Wu.  Stability of Kadomtsev-Petviashvili multi-line solitons.  Preprint:
arXiv:2205.07432, 2022.



	Acknowledgments
	Summary
	Introduction to the thesis
	On the Bäcklund transform of KP-II
	Introduction
	Description of the problem and fundamental objects
	Context and previous work
	Strategy, main results, and structure of the paper
	Notation

	Preliminaries: the Miura map and the integrability
	Lax pair and compatibility condition
	Relation between the Lax pair, the Miura map and mKP-II
	Multisolitons and elementary solutions

	The Miura map of the KP-II equation
	Decomposition of the solution and uniqueness
	Exact formula for solutions of (M)
	Proofs of Theorem A and Corollary B

	The time-dependent Bäcklund transform
	The well-posedness theory
	Elementary Lax-eigenfunctions and elementary solutions of mKP-II
	The time-dependent Bäcklund transform - Proof of Theorem C

	The range of the soliton addition map
	Premise
	Linearization of the problem in the Cole–Hopf variables
	Solving the equation M+(v)=u
	The functional Phi
	Estimates in a parabolic Hardy space
	Proof of Theorem D
	A conjecture on the range of the soliton addition map

	A multisoliton addition map

	Appendices
	Linear estimates and parabolic equations
	Linear operators, kernels, and estimates for the heat equation
	Well-posedness for parabolic equations

	The Miura map with L2 data
	Up and Vp spaces
	Definition of the spaces Up and Vp

	Supplementary lemmas and proofs
	Miscellaneous results
	Some detailed proofs



