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Abstract

For many-body quantum systems, dimensionality is known to exert a profound influence on
the physical behaviour, allowing for the shaping of distinct phases of matter. In general, for
lower dimensions, enhanced fluctuations serve to suppress long range order. For bosonic
gases, for example, Bose-Einstein condensation in one dimension requires confinement that is
stronger than linear in order to occur, in contrast to two-dimensional systems where harmonic
confinement can suffice.

In this thesis, the dimensional crossover between one and two dimensions in a harmonically
trapped photon gas has been experimentally investigated. The photons were confined within a
dye filled optical microcavity, where polymer nanostructures produced by direct laser writing
defined the trapping potential. By systematically adjusting the aspect ratio of the harmonic trap,
the confinement was varied from an isotropic two dimensional regime to a highly anisotropic
one dimensional regime.

The caloric properties of the photon gas were characterised across this transition, revealing
that the sharp phase transition observed in two dimensions evolves into a smooth crossover in
one dimension. This work enhances understanding of thermodynamic behaviour in photon
Bose gases under confinement and demonstrates that here dimensionality can be used to tailor
phase transition phenomena.

Furthermore, polymer cavities fabricated via direct laser writing afforded precise control
over the confinement geometry, enabling exploration of variable potential landscapes. Proof
of concept studies of advanced geometries, previously inaccessible, are presented, opening
new directions for research in driven dissipative Bose gases and photonic quantum simulation
platforms.
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CHAPTER 1

Introduction

In the field of condensed matter and many-body physics, low-dimensional systems immediately
draw attention to the Hohenberg—Mermin—Wagner theorem [1, 2], which rules out long-range
order in systems with short-range interactions due to enhanced fluctuations [3, 4]. This leads to
the emergence of novel phases and states of matter that are absent in three-dimensional space.
Notable examples include the Berezinskii—Kosterlitz—Thouless (BKT) transition [5—7] in lower
dimensions [8—11] and Tomonaga—Luttinger-liquid physics in one-dimensional systems [12,
13]. These intriguing phases arise from the interplay between particle interactions and the
effects of dimensionality. For instance, the loss of order in lower dimensions can be restored by
introducing long-range interactions [14], as demonstrated in references [15-17]. A superfluid
to supersolid transition arising due to the dimensional crossover in dipolar gases has been
studied [18], and a transition from BKT to the TonksGirardeau regime has been observed in
strongly-interacting bosons upon the dimensional crossover from two- to one-dimensions [19].

For ideal bosonic gases, Bose—Einstein condensation in low dimensions is only possible
under strong confinement [20]. In two dimensions, a harmonically trapped gas can undergo a
finite-temperature phase transition to a Bose—Einstein condensate. However, in one dimension,
a similar transition is only observed under tighter confinement [20]. When a infinite sized
one-dimensional system is confined harmonically, no sharply defined thermodynamic phase
transition occurs; instead, a smooth crossover to a quasi-condensate is expected [21].

Optical quantum gases have recently emerged as a promising alternative platform for
studying such dimensional crossovers [22]. Due to their weak or negligible interactions,
these systems are ideally suited for exploring low-dimensional physics. Experimentally, the
formation dynamics have been examined in one-dimensional system [23, 24] and in coupled
lattices a Kardar—Parisi—Zhang scaling has been observed in polaritonic system [25] . In
semiconductor microcavities, dimensional crossover has also been probed by modifying the
drive geometry. A dissipative phase transition observed under two-dimensions vanishes when
reduced to one-dimension [26].

In this work, a dye-filled optical microcavity platform is employed. The photons in this
system, characterised by negligible interactions, allow for the study of nearly ideal Bose
gas physics [27]. The inherently two-dimensional confinement in this platform is ideal
for examining the physics of such interaction-less two-dimensional Bose, for example a
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homogeneous 2D Bose gas [28]. Additionally, dissipation can be tuned from nearly lossless
regime to that of a driven-dissipative condensate [29]

Dimensional tuning within this platform is, in principle, achievable by engineering highly
asymmetric potential landscapes [30]. However, current techniques such as controlled mirror
surface delamination [31], while effective in creating box potentials [28] and coupled lattice
geometries [32], are limited in the curvatures they can produce [31] [28]. This limitation has
been addressed in the present work by integrating polymer nanostructures fabricated via direct
laser writing (DLW) into the dye microcavity. DLW, a well-established method [33-38] across
fields from biology [39, 40] to photonics [41—44], enables sub-micrometre fabrication of
complex polymer structures [38]. The structures fabricated in this manner within a microcavity
act as effective potentials due to the refractive index contrast with the surrounding medium,
enabling the realisation of high curvature one-dimensional geometries and thereby facilitating
the study of dimensional crossover in photon gases.

This thesis is structured as follows. In Chapter 2, the theoretical framework underpinning
photon gases in dye microcavities is presented, and thermodynamic quantities relevant for the
study of the dimensional crossover are introduced. The chapter also discusses the dye-solution
mediated thermalisation mechanism for photons, with emphasis on conditions under which
thermalisation remains effective even in one-dimensional confinement.

Chapter 3 details the custom-built dye microcavity setup, which has been optimised to
incorporate DLW-fabricated nanostructures. In Chapter 4, the DLW technique is introduced,
along with the challenges of fabricating polymer structures on highly reflective cavity mirrors
and the methods developed to overcome them.

In Chapter 5, the characterisation of two- to one-dimensional engineered potentials is
presented, alongside experimental observations of the dimensional crossover in photon gases.
A Bose-FEinstein condensate phase transition is observed in an isotropic two-dimensional
harmonic potential, while a gradual softening of the transition is identified in intermediate
anisotropic geometries. A smooth crossover, rather than a distinct phase transition, is recorded
in the one-dimensional harmonic confinement, supported by both population measurements
and calorimetry.

In Chapter 6, new avenues enabled by direct laser writing (DLW) are explored through
proof-of-concept studies of advanced potential geometries in previously inaccessible parameter
regimes. The geometries investigated include small-footprint box potentials with rectangular
and circular bases. Double-well potentials with substantially enhanced coupling, beyond
that achieved previously, are demonstrated through the coupling of two zero-dimensional
cylindrical structures. This progress facilitated the fabrication of extended one-dimensional
lattice chains with coherent coupling, leading to the realisation of a Su—Schrieffer—Heeger
(SSH) model [45-48] with detectable edge modes in the dye-microcavity platform. For
the future, these developments open experimental routes to studying Kardar—Parisi—Zhang
universality [49] in a driven-dissipative platform [S0-57], the bosonic skin effect [58], and
stable vortex formation in two-dimensional photon lattices [59]. In addition, efforts towards
constructing a potential where condensation occurs below the single-photon threshold are
presented, using a two-dimensional potential resembling two-level system [60] but with high
terahertz scale mode spacing.

The fabrication, by the means of direct laser writing, of the polymer structures used in
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CHAPTER 2

Theoretical background

In this chapter, the general theoretical framework of photon Bose-Einstein condensation in a
dye-filled microcavity platform [27] [61] is discussed, here the photon number, rather than
temperature, is typically employed as the tuning parameter to achieve condensation. To
facilitate the experimental study of dimensional crossover in photon gases, the theoretical
expectations for the nature of the transition from a classical to a quantum-degenerate phase are
presented, as the dimensionality is reduced from two-dimensional (2D) to one-dimensional
(1D) confinement within a harmonic oscillator potential. Intermediate regimes between
isotropic 2D and purely 1D geometries hinder a straightforward mapping between the total
photon number and an effective temperature, thereby limiting the applicability of conventional
thermodynamic quantities such as the heat capacity at constant volume. In this context, the
chemical potential like quantity f is identified as a more suitable thermodynamic parameter,
exhibiting distinct signatures that differentiate a Bose-Einstein condensation phase transition
from a crossover as the 1D limit is approached.

Subsequently, the conditions required for realising a thermalised photon gas are examined,
together with the ways in which the influence of dimensionality on the thermalisation
mechanism may be suppressed.

2.1 Confinement for photons

For a Bose-Einstein condensate to form, a non-zero low-energy cutoff i.e., a non-trivial ground
state is required [62]. This condition is not fulfilled for free photons, whose dispersion relation
is linear in the wave vector k. As a result, the minimum photon energy €, = 0 eV would
correspond to a system with no photons. In order to allow for condensation, the photon
dispersion must be modified to introduce a non-zero minimum energy. This modification may
be achieved by introducing a strong confinement in one of the spatial dimensions. Specifically,
by freezing the longitudinal (z) direction, the photons acquire a dispersion characteristic
of massive particles, featuring an effective non-zero rest mass and a non-zero minimum
energy [22, 63], as illustrated in Figure 2.1.

For photons, confining boundaries may be achieved using mirrors, thus forming an optical
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Figure 2.1: a. The dispersion relation, depicting the energy of a dimensional photon as a function
of its wavevector & , is shown. For free photons, the relation is linear (dashed blue line) as function
of wavevector k, whereas for photons confined in an optical cavity of micrometer-scale length (two-
dimensional photons), the dispersion, which is a function of transverse wavevector l:, only, becomes
parabolic (solid red curve) for a small transverse wavevector. b. A schematic of an optical microcavity
is presented, illustrating strong confinement along the longitudinal (z) axis. The optical field in this
direction forms a standing wave with a low longitudinal mode number q.

cavity resonator. Let the cavity mirror surfaces along the longitudinal axis be separated by a
distance D (F), where ¥ = (x, y) defines the coordinates in the transverse plane. This spatial
dependence of the cavity length will be utilised later for potential landscape engineering. The
optical field inside the cavity forms a standing wave along the longitudinal axis, with the wave
vector component

k.|=— 2.1
k= 5 .1

where D, is the maximum cavity length, and g is the longitudinal mode number (g =
1,2,3,...). For sufficiently small D, the longitudinal component dominates the transverse

one, i.e., |k | > |k,|, where k, = ,/ki + ki. Under this condition, the photon dispersion
relation becomes

he r k2
= —|k| \/kz k= \/ s ko + 57 ) (2.2)
z nd

where 7 and ¢ are the reduced Planck’s constant and speed of light in vacuum respectively,
with the latter being modified by the intra cavity medium refractive index n,. In the final
expression, a series expansion has been applied to the square-root term, and terms of order
O(kf / k; ) have been neglected.

Let the transverse coordinate of the cavity be centred at the position of maximum cavity
length D), such that D(0) = D,. The cavity length at any transverse position can then be
expressed as

D(7) = Dy - d(7), 2.3)

where d(7) denotes the transverse modulation. This transverse position dependence of the
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cavity length renders k, a function of 7 and may be expressed as

q Dy _qn Dy qr qn
k =k,— = — = = 24
(N = k5 D,D(7) D) Dy-d(7) @24
substituting this in the dispersion relation 2.2 yields
he(_an kg 25)
~ — —-d(r)|. .
ng\Dy—d(F) 2nq 0

For sufficiently small modulation of the cavity length , i.e., d(¥) < D, the first term,

. . . . o d(7) .
D(ﬂ%, in Equation 2.5 may be expanded using a Taylor series, yielding qD—Z (1 + D_o)’ while

2
neglecting terms of order O(d*(7)/ D(z)). The second term simplifies to kzr]go_ Substituting
these into Equation 2.5 and rearranging gives
£ fic (gn N k? D4 qrd(F) mgc” nk? megc” d(7) 2.6)
~ — | 0 = . .
ng\Dy  2nq D% nfl 2Megy nfl Dy

—_——— S~ —— —

Rest Energy ~ Kinetic Energy Potential Energy
Here, m 4 = hzgqo” is the effective photon mass in the cavity and the dispersion relation

resembles that of a massive boson, comprising rest, kinetic, and potential energy components.
The rest energy serves as a low-energy cutoff, i.e., the minimum non-zero energy state into
which photons may condense. The kinetic energy of the photons is governed by the potential
landscape established through the transverse modulation of the cavity length, d(7), which
determines the system’s Eigenenergies.

The transverse modulation of the cavity length, d(7) need not only be the physical distance
between the cavity mirrors but the effective optical path length. This modulation for example
may be achieved in three different ways, which then leads to decomposition of the potentials
energy as follows,

megc” d(F) _ mege” (Ad(F) , (@) _ny—ng h(7)

V() ~ - .
ni Do ns \ Do ny ng Dy

2.7

Here, the longitudinal optical path length is changed by the physical cavity length Ad(F)
in the first term, in the second term by creating a refractive index gradient An(7) in the
intra-cavity medium and finally in the last term by additive structuring of material with height
profile 4(7) and refractive index n,.

One-dimensional potentials required for the study of the dimensional crossover would
require a method of modulating the optical path length with a lateral resolution much smaller
than the wavelength of the photon gas or a potential of sufficiently high curvature, such that
the second-dimensional bound state energy exceeds the thermal energy and the chemical
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potential [30]. To achieve this, a novel method was developed in this work ! to realise
one-dimensional potentials exploiting the last term in Equation 2.1 as will be discussed in
Chapter 4.

2.2 Statistical mechanics of an ideal Bose gas

As this study focuses on a photon gas confined within a dye microcavity platform, the
interactions between the constituent particles, namely photons, may be neglected [27].
Consequently, the physics of the system may be accurately described by the Bose-Einstein
distribution for an ideal Bose gas. The primary tuning parameter is taken to be the total photon
number, rather than the temperature which is commonly used in cold atom experiments,
for exploring the transition between classical and quantum degenerate phases. This choice
necessitates the usage of the photon number based thermodynamic quantities in order to
characterise the onset of condensation. Furthermore, the influence of finite-depth potentials
on condensation into the quantum degenerate phase is also examined.

2.2.1 Bose-Einstein distribution

The probability of finding a photon with energy € in a photon gas with temperature 7 and
chemical potential u is governed by the Bose-Einstein distribution [64—66]

g(e)

N&) = T

(2.8)
where g(€) denotes the degeneracy of the energy level at energy €. For large photon numbers,
this function may also be interpreted as the population of photons at a given energy. Without
loss of generality, the energy scale may be rescaled such that the minimum energy corresponds
to zero, i.e. €, = 0. Summation over all energy levels yields the total photon number N

N g(e)
N:Z()N(E):Zom . (29)

which fixes u for a given temperature 7. For systems with infinitely many bound sates or if
thermal energy kg7 is much larger than the energy spacing between bound energy levels, this
summation may be replaced by an integral over the continuous energy spectrum, with the
degeneracy g(€) replaced by the density of states p(€) [67]

p(€)
N = / T lde (2.10)

! in collaboration with J. Schulz and G. von Freymann from the RPTU Kaiserslautern-Landau, Kaiserslautern,

Germany
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2.2 Statistical mechanics of an ideal Bose gas

2.2.2 Transition from the classical phase to the quantum
degenerate phase

For a potential characterised by a density of states p(€), two tuning parameters are available:
the total photon number N and the temperature 7. These parameters may be employed to
induce a transition from the classical gas phase to a quantum degenerate phase such as a
Bose—FEinstein condensate (BEC). Historically, BEC was achieved in atomic Bose gases by
lowering the temperature below a critical threshold 7., while keeping the total particle number
fixed. When T' < T, a macroscopic occupation of the ground state was realised at the expense
of the excited state population [62, 68, 69].

Alternatively, condensation may also be achieved by increasing the total particle number at
a fixed temperature, in this case the total photon number N. As N increases, the population
in excited states saturate, and the chemical potential approaches zero, u — 0, resulting in a
macroscopic occupation of the ground state and the onset of condensation [64] [62].

Infinite potential

The realisation of Bose—Einstein condensation is not guaranteed in infinite systems. This
behaviour may be quantified by decomposing the total photon number N, as expressed in
Equation 2.10, into two contributions: the ground-state population N, and the total population

in all excited states N,,, given by

o0

N:N0+NeX:N0+/ ple) (2.11)

e#0 MT—l .

As the system transitions from the classical to the quantum degenerate phase, the absolute

value of the chemical potential |u| decreases from a finite value to zero. Under this condition,

1.e u = 0, the population in the excited states becomes the saturation photon number N,
defined as

(o)

p(€)

ex0 e/f8T _ |

N, = (2.12)

The value of N, depends on the form of the density of states p(e). Table 2.1 lists p(e) and
the corresponding saturation photon number N, for three different potential shapes.

Potential ‘ p(e) ‘ N,
2D Harmonic oscillator | o« € | Finite

2D Box x| o
1D Harmonic oscillator | o € 00

Table 2.1: Density of states p(€) and saturation photon number N for three different potential shapes.

It is evident that not all infinitely deep potentials in one or two dimensions yield a
finite saturation photon number N, and thus Bose—Einstein condensation into the quantum
degenerate phase may not occur. However, in most experimental systems, the potentials are

11
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neither infinitely deep nor unbounded in spatial extent. Instead, they possess a finite depth V,
and finite spatial extent, which restores a finite value for N, as discussed below.

Finite potential depth

For potentials of finite depth V;), Equation 2.9 becomes

Emax

N =Ny+Ne=No+ Y
€#0

g(e)
T 1 (2.13)
where €, denotes the highest bound state energy level. The corresponding saturation photon

number at fixed temperature 7 is given by

Gmax

_ g(€)
N, = Z Tl 7 (2.14)
€20 € -

For potentials of finite depth, with €, being finite, it might be expected that the summation
in Equation 2.14 would be finite, thereby ensuring convergence and a finite value of N,.
However, this expectation holds only for potentials that support a finite number of bound
states, which is not a universal property of all finite-depth potentials.

In particular, certain classes of potentials, such as a two-dimensional box potential with
finite wall height (i.e., finite depth) but infinite lateral extent, or a slowly decaying confining
potentials, may support an infinite number of bound states despite having a finite depth [70].
In such cases, the summation over bound states does not necessarily converge. This condition
is related to what is sometimes referred to as the Bergmann bound.

All potentials considered in the present study are spatially and energetically constrained to
support a finite number of bound states. Therefore, the summation in Equation 2.14 is always
finite, and a finite saturation photon number N, is guaranteed, regardless of the potential
shape. This ensures that the system may reach a macroscopic occupation of the ground state,
thereby entering the quantum degenerate phase. However, this does not necessarily imply that
a discontinuity in a thermodynamic quantity is present, as would be the case in an infinite
system. Consequently, the quantum degenerate phase of the system may not persist in the
thermodynamic limit [21, 66].

2.2.3 Thermodynamic quantities

As established in Section 2.2.2, a quantum degenerate phase, characterised by a macroscopic
population of the ground state, can be reached for all finite potentials satisfying the saturation
condition. The nature of the transition from the classical phase to the quantum degenerate
phase then becomes of interest. Specifically, it is necessary to determine whether this transition
constitutes a true phase transition or merely a smooth crossover.

In classical thermodynamics, the characteristics of gases governed by classical statistics,
including their phases and the nature of transitions between them, are often studied through
thermodynamic quantities. These quantities also prove valuable when analysing gases obeying
non-classical statistics, such as a photon gas governed by Bose—Einstein statistics. Among

12



2.2 Statistical mechanics of an ideal Bose gas

these, the heat capacity at constant volume Cy, as a function of temperature 7 is frequently
utilised to probe second order phase transitions. In interacting Bose systems such as superfluid
4He, a sharp divergence in Cy,, often referred to as a lambda peak, is observed. This feature is
classified in modern terminology as a second order (continuous) transition, although it does
not conform neatly to Ehrenfest’s rule on account of its logarithmic divergence [62]. 2

However, the definitions of thermodynamic quantities such as volume and pressure in the
used power-law confined system are not straightforward, as they depend on the geometry of
the confining potential. Consequently, it is beneficial to employ a thermodynamic quantity
that is general and can be applied consistently across potentials of different dimensionalities.
Further, it is the photon number, rather than the temperature, that is employed as the control
parameter. To this end, the following quantity is introduced :

p=2Z (2.15)

where U is the internal energy of the photon gas 3, defined as

€ €

B max B max g(e_)
U—ZOEN(G') —Zoém. (216)

Since the ground-state energy is rescaled to zero, the internal energy can be decomposed as

U=Uy+U, =U,

ex?

(2.17)

and hence depends solely on the population of the excited states :

As the total photon number N is increased, the population of the excited states is raised,
resulting in a corresponding increase in the internal energy. For systems that support a true
phase transition, such as the isotropic 2D harmonic oscillator, a critical total photon number
exists beyond which the population in excited states saturate. Any additional photons then
occupy the ground state, which lies at zero energy. Consequently, the internal energy ceases
to increase, and the derivative @ = dU/JN exhibits an abrupt change, thereby serving as a
useful indicator of phase transition behaviour.

2 Bose Einstein condensation in an ideal Bose gas (confined in a potentials with density of states which grow
slower than linear in energy) is regarded as a higher order phase transition [65] [62], since a discontinuity
appears in one of the higher derivatives of the Helmholtz free energy F with respect to temperature at the
critical temperature T,.. Conversely, a smooth variation of that same higher derivative is taken to signify a
crossover. Nonetheless, care must be taken depending on the system in consideration [62].

3 The quantity £ is analogous to the chemical potential but is not identical. In standard homogeneous
thermodynamic systems, the chemical potential is defined as u = (JU/dN)g v, that is, at constant entropy
S and volume V [64, 65]. However, this condition is not fulfilled in the present system, which involves a
dimensional crossover from a two-dimensional to a one-dimensional harmonic potential. In this context, the
notion of volume is non-trivial and must be replaced by a harmonic volume. More critically, the entropy,
specifically the photonic contribution, excluding the dye solution acting as a heat bath, is not held constant [71].
Consequently, the quantity @ = AU /JN must be regarded as distinct from the conventional chemical potential
u.

* The ground state contribution to the internal energy is set to zero owing to the rescaling of the bound energy
levels such that the ground state energy satisfies €, = 0

13
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In contrast, for systems in which no true phase transition occurs, i.e. where population
in excited states do not exhibit a sharply defined saturation point, it is found that U changes
smoothly with N. In such cases, a continuous crossover from the classical to the quantum
degenerate phase takes place, which is also captured by the smooth behaviour of fi.

2.0 + ]
—— 2D harmonic
=== 1D harmonic

1.5

=
< 1.0 1
3
0.5 +
0.0 - oo
T T
0 2 4 6

NIN

Figure 2.2: Comparison of, numerically calculated, || (in units of kz7T) as a function of normalised
total photon number N /N for isotropic 2D and 1D harmonic oscillator potentials with finite depth

This hypothesis is tested for harmonic oscillator potentials, as listed in Table 2.1, with
finite depth. The finite nature of the system ensures that condensation is possible regardless
of dimensionality. Figure 2.2 shows the absolute value of /i, normalised by thermal energy
kgT, as a function of the normalised total photon number for both the isotropic 2D and 1D
harmonic oscillator potentials with V; = 10kgT. The normalisation constant N is defined
such that ji(N) = fi(N — 0)/2. Unlike the infinite case, the 1D system exhibits a transition
from classical behaviour (|| > 0) to the quantum degenerate phase (|| = 0), confirming
that finite depth permits condensation even in lower-dimensional systems.

However, the nature of this transition varies with potential geometry, in this case dimension.
In the isotropic 2D harmonic oscillator, || shows an abrupt decline, characteristic of a phase
transition. Conversely, in the 1D harmonic oscillator, || decreases smoothly, indicating a
crossover rather than a sharp transition.

Effects of a finite potential depth

In practical experimental setups, the potential depth for the photon gas in the dye microcavity
is not infinitely large, but typically ranges between 1kgT and 1.3kg7. To investigate the
influence of finite potential depth on the transition behaviour, & was computed as a function
of the normalised total photon number for both isotropic 2D and 1D harmonic oscillator
potentials. The potential depth V|, was varied from 0.5kgT to 14kgT, while the trap frequencies,
w = 2m x 0.22 THz, were held constant, as shown in Figure 2.3.

The results indicate that the qualitative nature of the transition, namely the curvature of
2], is not altered by variations in the potential depth V, for either geometry. However, the

14
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Figure 2.3: The effects of the potential depth V|, on |fi| as a function of the total photon number
are shown in panels a and b for isotropic two-dimensional and one-dimensional harmonic oscillator
potentials, respectively.

low photon number limit (classical limit) values of || are found to decrease as V) is reduced.
It may therefore be anticipated in experiments that these low photon number limit values of
| 7| depend on both the potential depth and the dimensionality, while it’s curvature reflects a
purely dimensional effect.

2.3 Photon gas thermalisation

To realise a Bose-Einstein condensate (BEC) of photons, a number conserving thermalisation
mechanism is required.

Thermalisation, in the context of gases composed of particles, refers to the redistribution
of energy among the constituents until thermal equilibrium is attained. At equilibrium,
thermodynamic quantities such as temperature become well defined, and the microscopic
states of the system obey the appropriate statistical distributions: Maxwell-Boltzmann for
classical particles, Bose-Einstein for bosons, and Fermi-Dirac for fermions.

Photons, unlike atoms or molecules, do not thermalise via particle-particle collisions in
free space. Although photon-photon interactions are not strictly forbidden, they occur with
exceedingly low probability and negligible strength [72]. Nevertheless, thermalisation of
photons can occur through absorption and re-emission processes by a blackbody, yielding
a state as described by Planck’s law of blackbody radiation [64, 65]. However, this process
does not conserve photon number, as photons are lost to the environment upon temperature
reduction, and the chemical potential ¢ remains pinned at zero.

To overcome this limitation, number conserving thermalisation of visible photons has been
demonstrated using fluorescent dye molecules, such as Rhodamine 6G dissolved in ethylene
glycol, confined within a high-finesse microcavity [27, 61]. More recently, thermalisation has
also been achieved for photons in the infrared regime using semiconductor quantum wells in a
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microcavity [73] [74], and with erbium-ytterbium co-doped optical fibre cavities [75].

2.3.1 Photon thermalisation via dye solution bath
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Figure 2.4: Rhodamine 6G dye properties. a. A simplified Jablonski diagram is shown, depicting
the electronic state and corresponding rovibrational manifold relevant to the fluorescence cycle of
Rhodamine 6G. The dye molecule is excited from its singlet ground state manifold S, to the excited
singlet manifold §; through photon absorption, as described by the Einstein coefficients, with rate
B|,. De-excitation proceeds predominantly via the fluorescence channel, characterised by the rate
B,,, with the zero-phonon line energy indicated by 7w,p; . Less probable decay pathways include
non-radiative transitions and inter-system crossing to the triplet state 7}, followed by phosphorescence.
These are illustrated in grey. b. The absorption and emission spectra, corresponding to the rates By,
and B, respectively, are presented for Rhodamine 6G in an ethylene glycol environment at an ambient
temperature of 300 K. The zero-phonon line, located at A,p; = 545 nm, is marked by a black dashed
line. The data have been replotted from the database [76].

Photons are considered to be thermalised to the dye solution (comprising dye molecules
and solvent) when the following conditions are met: (1) Chemical equilibrium between the
photons and the dye molecules is established, and (2) an equilibrium distribution is acquired
by the photons, characterised by a spectral temperature matching that of the dye solution [27,
61, 77].

Although exact equilibrium is challenging to realise, it can be closely approximated by
employing dye molecules with high quantum efficiency, which minimises non-radiative
losses. Rhodamine 6G, for instance, exhibits a quantum yield of approximately 95% [78, 79].
Additionally, the cavity lifetime is required to exceed the thermalisation time, the latter being
on the order of the dye reabsorption time [27, 61, 77].

The mapping of ambient temperature to spectral temperature via the thermalisation
mechanism may be understood with reference to the simplified Jablonski diagram in Figure 2.4.
Rhodamine 6G molecules possess a ground electronic singlet state (S,) and a first excited
singlet state (), each of which contains a rovibrational manifold arising from the molecule’s
internal structure. Upon absorption of a photon with energy Zw, an electronic transition is
induced from a rovibrational level in the ground state to one in the excited state. The excited
state has a lifetime of the order 10~ s [78-80].
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2.3 Photon gas thermalisation

As the dye molecules are immersed in a solvent at ambient temperature 7', frequent collisions
with solvent molecules occur. These collisions induce rapid non-radiative transitions among
rovibrational levels, on a timescale of the order 10712 s. Consequently, thermal distributions
are established within the rovibrational sublevels of both electronic states [80, 81].

This results in the Kennard-Stepanov relation, which connects the absorption spectrum
a(w) and the fluorescence spectrum f(w) via a Boltzmann factor associated with the spectral
temperature of the bath. Within the spectral range from 550 nm to 600 nm, the relation takes

the form
flw) 5 [_h(w - wZPL)]
kT ’

where hiw,p; denotes the energy of the zero-phonon line associated with a pure electronic
transition in the molecule [82].

Under typical experimental conditions, the average time between photon emission and
reabsorption is in the order of picoseconds, if not less [27]. This interval is considerably
shorter than the photon lifetime, which is typically on the order of several hundred picoseconds
(see Section 3.1.1). Therefore, efficient thermalisation can be achieved through repeated
absorption and emission events, provided that the reabsorption time is sufficiently short, as
demonstrated in previous studies in dye filled microcavity platform [27, 29, 61, 83, 84].

(2.18)

2.3.2 Suppression of dimensional effects on thermalisation

Thermalisation via coupling to an external bath, such as a dye solution, not only allows
thermalisation for non-interacting bosons but also mitigates the influence of reduced dimen-
sionality. In low-dimensional systems, such as one-dimensional confinements, thermalisation
through particle collisions is hindered or even entirely suppressed due to integrability [85,
86]. Experimental observations have confirmed the absence of thermalisation in atomic Bose
gases confined to one dimension [87, 88].

A simplified explanation is as follows: in a pairwise elastic collision between two identical
particles of equal mass, energy and momentum conservation allows only for momentum
exchange. In the quantum regime, particles may either transmit or reflect, but for indistinguish-
able particles, the final state remains unchanged, preventing any redistribution of momentum
and, hence, inhibiting thermalisation [89, 90].

By contrast, bath-mediated thermalisation avoids these constraints. Since the bath remains
three-dimensional, even when the bosonic system is confined to a lower dimension, therm-
alisation proceeds unimpeded [91, 92]. For this reason, the use of a three-dimensional dye
solution bath is particularly effective in suppressing dimensionality induced hindrances to the
thermalisation of photon gases confined in one dimension.

17






CHAPTER 3

Dye microcavity experimental setup

In this chapter, a detailed description of the dye microcavity experimental setup is provided.
The setup has been optimised for the operation with photon gas potentials realised through
polymer nanostructures. A comprehensive discussion of this novel fabrication technique
applicable to the dye microcavity platform is presented in Chapter 4.

In addition to the usual constraints imposed by the dye microcavity platform [27, 28, 31,
93], the design also addresses specific challenges such as the pumping of the dye for highly
elongated potentials and operation at low intra-cavity photon numbers.

The preparation and measurement of the photon gas require three main components: (1)
the optical microcavity, (2) the dye excitation light source and its spatial beam shaping for
introducing photons into the cavity (dye microcavity pumping setup), and (3) the measurement
setup, which utilises the transmitted radiation through the cavity mirrors. These setups are
discussed in Sections 3.1, 3.2, and 3.3, respectively.

3.1 Optical microcavity

The optical microcavity is composed of highly reflective mirrors that permit the excitation
(pump) light for the dye to enter the cavity while remaining reflective for the photon gas.
These mirrors are integrated with a mounting platform, which enables tuning of essential
cavity parameters such as the cavity length along the longitudinal axis, the transverse position,
and the angular tilt of the mirrors as shown in Figure 3.1 I

3.1.1 Cavity mirrors

In order to confine photons within the cavity for durations on the order of 107, exceeding the
thermalisation timescale, two highly reflective mirrors are employed. A reflectivity exceeding
99.998% was achieved by selecting super-polished glass substrates with a root-mean-square

! The cantilevered mount was designed and fabricated at the IAP mechanical workshop by Mr. W.Graf
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Figure 3.1: Dye-filled optical microcavity setup.a. Illustration of the cavity assembly is shown. The
mirrors are mounted on mirror holders, with the left holder equipped with piezoelectric actuators
(piezo-mikes) for tilt adjustment. This holder is further mounted on an open-loop piezoelectric
translation stage. Both mirrors are aligned by a three-axis translation stage. b. The cavity assembly
is mounted on a cantilevered three-axis stage equipped with a spring suspension system, allowing
alignment of the cavity’s optical axis with that of the pump and imaging optics. ¢. The microcavity is
formed by dielectric Bragg reflector (DBR) mirrors, comprising a exemplary structured mirror on the
right (imaging facet) and a planar unstructured mirror on the left (pumping facet), and is filled with a
dye solution of refractive index n4. The dye filled cavity is pumped at normal incidence relative to the
mirror surface, i.e with an angle of 0 ° to the optical axis, and fluorescence is collected using a 20X
objective with a numerical aperture of 0.42.

surface roughness of 0.5 A, which were subsequently coated with a distributed Bragg reflector
(DBR) stack composed of dielectric materials provided by Laseroptik GmbH 2,

The DBR mirrors were designed to exhibit high reflectivity at 580 nm, corresponding to
the targeted photon condensate wavelength, while maintaining low reflectivity at the pump

% The mirror substrates have a diameter of 2 and a thickness of 6 mm. Howeyver, due to their bulkiness, the
mirrors were diced into segments of 5 mm X 5 mm X 6 mm following DBR coating.
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Figure 3.2: Calculated transmission profile of the cavity mirror as a function of wavelength and angle
of incidence. a. The transmission profile was calculated as the average of the transmissions for s- and
p-polarised light, which are presented in b and ¢, respectively.
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Figure 3.3: a. The calculated total transmission profile of the cavity mirror is shown as a function of
the wavelength at normal incidence (0°), marked by a white dashed line. b. The mirror transmission in
the region of interest for the photon gas and the pump wavelength at 532 nm is extracted from the trace
at 0° in a. The inset displays the transmission profile on a logarithmic scale around the photon gas
wavelength, between 570 nm and 580 nm.

wavelength of 532 nm. In earlier dye microcavity photon gas designs, such a differential
reflectivity is achieved by introducing a pump beam at an incidence angle of 43° for a specific
linear polarisation, owing to the angle-dependent reflectivity of DBR coatings. However, this
approach introduces two main drawbacks: first, the spatial profile of the pump beam cannot be
modified without introducing optical aberrations due to the high incidence angle; and second,
the pump polarisation is restricted to a single linear orientation.

These limitations were addressed through the implementation of a novel Bragg mirror
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Chapter 3 Dye microcavity experimental setup

design, which provides low reflectivity for the pump wavelength even at normal incidence,
while preserving high reflectivity across the photon condensate wavelength range. The
computed transmission matrix of the DBR mirror as a function of wavelength and incidence
angle is presented in Figure 3.2. At 532 nm and 0° incidence, increased transmission is
observed for both pump polarisations. In contrast, for the thermalised photon gas spectrum
spanning 560 to 580 nm, the transmission remains low, reaching a minimum value of 107 at
580 nm, as shown in Figure 3.3.

Cavity lifetime

The cavity photon lifetime can be compared to the absorption and emission time scales of the
dye molecules, which are crucial for establishing thermalisation. The finesse of an empty
cavity with mirror reflectivity R = 0.99998 is given by [63]

VR

1-R

The round-trip time, defined as the time required for a photon to traverse twice the optical
path length L of the cavity at the speed of light in vacuum c, is given by

F = =1.57x10° . (3.1

2L
Ly = —

: (3.2)
c

For longitudinal mode number g < 10 at a cutoff wavelength of 4, = 580 nm, the optical
path length inside the cavity is approximately

qAa,
L <
-2

~ 2.9 nm,

yielding a round-trip time of

t,~ 10fs. (3.3)

The photon storage time, or cavity lifetime, is then determined as

_ Fiy
= o
This lifetime is significantly longer than the typical absorption—emission timescale of the dye
molecules, which is on the order of a few picoseconds for a concentration of 1 mmol Lt [27].
Therefore, photons remain within the cavity long enough to undergo repeated absorption and
re-emission processes, enabling thermalisation of the photons via the dye medium.

=250 ps . (3.4)

3.1.2 Cavity alignment and control

An optical cavity with micrometre-scale spacing and two independently mounted mirrors
offers both versatility and significant experimental challenges. This configuration, commonly
referred to as an open cavity design, provides the advantage of independent control over
critical cavity parameters. However, alignment becomes increasingly demanding as the mirror
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3.1 Optical microcavity

separation is reduced to only a few micrometres. Care must be taken to ensure that the mirrors,
as well as any structures present on them (such as polymer structures), do not come into
contact with the opposing cavity mirror during the tuning of the longitudinal cavity length or
the adjustment of the mirror tilt.

To address these challenges, a robust and tunable cavity assembly was constructed,
incorporating the necessary degrees of freedom as outlined below.

The tilt of each mirror is independently controlled. The mirrors are mounted on separate
mirror holders, with the left mirror holder equipped with a piezo-actuated micrometre screw
(piezo mike). This mechanism provides precision tilt control with a step size of 20 nm,
enabling the introduction or compensation of a linear gradient across the cavity by modifying
the cavity length along the transverse plane. This feature is particularly useful for eliminating
unwanted gradients induced by nano-structuring on the mirror surface.

The mirrors must be positioned sufficiently close, on the order of micrometres, such that
the longitudinal mode number of the optical field within the cavity, g, corresponding to a
cutoff wavelength of 1. = 580 nm, remains sufficiently small. As a result, the free spectral
range becomes large, and the majority of fluorescence is constrained to the same longitudinal
mode. Under these conditions, the photon gas remains effectively two-dimensional, which
also ensures a non-zero rest energy for the photon gas [27, 61]. In this work, the short
mirror spacing is realised by mounting the left mirror holder on a piezoelectric translation
stage capable of sub-100 nm precision. The cavity is typically operated at longitudinal
mode numbers g < 10, corresponding to a mirror separation of D, = gA,./(2n,;) < 2 pm.
Under these conditions, the resulting free spectral range exceeds 64 nm, which is considered
sufficiently large. The piezoelectric stage also facilitates long-term drift compensation by
monitoring the cutoff wavelength using a spectrometer, which serves as a reference signal for
tuning the cavity length.

The structured right mirror contains multiple regions of interest featuring polymer structures
with varied parameters. To access these regions across the mirror surface, the cavity mirrors
are mounted on a three-axis translation stage 3, allowing precise translation of the mirror with
a resolution of 50 pm/revolution via a micrometre screw.

The entire cavity assembly is positioned at the confocal point of both the pump and imaging
optics by mounting it on a custom-built, suspended three-axis translation breadboard (see
Figure 3.1). This configuration serves two main purposes: (1) it enables precise positioning
of the cavity relative to the pump and imaging optics, thereby minimising aberrations; and (2)
the suspended breadboard, supported by springs integrated into a vertical translation stage,
passively reduces vibrations and suppresses jitter in the cavity cutoff wavelength. This passive
stabilisation is particularly beneficial in experiments involving variable intra-cavity photon
numbers, where locking the cavity via the cutoff wavelength becomes challenging due to weak
signal intensities.

3 Thorlabs three-axis microblocks
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Chapter 3 Dye microcavity experimental setup

3.2 Pumping the dye microcavity

In optical microcavity experiment platforms, a mechanism is required to inject photons into
the cavity. Depending on the thermalisation medium, this injection can be achieved optically
or electrically, as demonstrated in semiconductor-based photon Bose—Einstein condensation
platforms [73]. In the present work, where Rhodamine 6G dye molecules serve as the
thermalisation medium, optical excitation is used to introduce photons into the dye-filled
microcavity.

Rhodamine 6G exhibits a broad absorption spectrum ranging from 425 nm to 585 nm,
enabling pumping the dye at shorter wavelength than the photon gas at thermal equilibrium.
The photons generated by emission from dye molecules within the dye-filled microcavity
subsequently undergo thermalisation, redistributing their energy via repeated absorption and
re-emission processes [27, 61]. This results in the formation of a thermalised photon gas,
typically within the spectral range of 560 nm to 580 nm, depending on the depth of the
confining potential.

A commercially available, frequency-doubled laser operating at 532 nm was here employed
as the pump source. The system, provided by SpectraPhysics (Millennia EV10S), delivers up
to 10 W of optical power, offering sufficient intensity for effective pumping the dye.

To prevent photobleaching of the dye and to maintain a steady-state condition over a finite
time period, temporal shaping of the pump beam is required. In order to confine dye pumping
to the vicinity of the microstructure and suppress the excitation of unconfined modes (free
space modes), spatial beam shaping is employed, as described in Sections 3.2.1 and 3.2.2,
respectively. The full dye microcavity pumping setup is illustrated in Figure 3.4.
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Figure 3.4: Dye microcavity pumping setup, subdivided into temporal and spatial shaping modules.
Additional essential components, such as the dye-filled microcavity and photon gas measurement setup,
are also included for completeness. The polarised pump laser is temporally modulated using AOM,
and AOM,, spatially cleaned using a telescope with a pinhole in the focal plane, and subsequently
split into two optical paths by a flip mirror. One path enables spatial beam modulation via a spatial
light modulator (SLM), while the other provides a standard Gaussian beam profile for pumping. The
polarisation state is adjusted using wave plates positioned at designated locations. The beam profile
is monitored with a camera, and final focusing into the cavity is achieved using a 10x magnification
objective. Some of the graphical components employed have been sourced from an online graphics
component library [94].
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3.2.1 Temporal shaping

Continuous, steady state operation of a photon gas, achieved by balancing the pump with
cavity losses, would be ideal. However, the dye molecules used here for thermalising the
photons undergo photobleaching under continuous-wave (CW) light exposure [95].

Photobleaching is minimised by limiting the active pumping duration, or the steady state
period, to between 200 ns and 500 ns, followed by a dark interval ranging from 5 ms to 20 ms.
Timing control is achieved via a pulse generator that provides periodic TTL signal with
adjustable pulse widths and delays. To temporally modulate the pump light into quasi-CW
pulses, an acousto optic modulator (AOM, ) is employed. AOM; deflects the incident 532 nm
pump beam into the first-order diffraction path with approximately 85% efficiency, with the
temporal pulse duration defined by the input TTL signal. Additionally, an analogue input to
AOM; permits fine control of the first-order diffraction intensity, and thereby the pump power,
as shown in Figure 3.4.

Despite the quasi-CW operation, dye molecules may still undergo transient photobleaching
by being excited into triplet dark states within the 500 ns illumination period. Although this
effect is relatively minor, it causes deviation from the ideal steady-state photon gas conditions.
To compensate for this transient response, the first-order beam from AOM; is directed through
a second acousto optic modulator (AOM,). AOM, is used to apply a steady linear ramp to the
diffraction efficiency over the pulse duration, increasing from 90% to 100%, controlled via an
arbitrary function generator. This helps to offset the temporary drop in dye efficiency.

The temporally shaped pump beam is monitored in real time using a photodiode (PD),
ensuring consistent pulse shaping across repeated cycles.

3.2.2 Spatial shaping

To ensure optical pumping of dye molecules in the region of the microstructure, spatial shaping
of the pump is carried out using a dedicated optical setup, as illustrated in Figure 3.4.

The first-order beam from the AOMs typically exhibits a non-Gaussian and irregular
spatial profile, which necessitates beam cleaning. This is accomplished using a spatial filter
comprising a pinhole placed at the focal point of a telescope configuration. The result is a
collimated Gaussian beam with a full-width at half-maximum (FWHM) of approximately
3.4 mm (see Figure 3.5) + Following spatial filtering, a linear polarisation state of the pump
beam is achieved using a polariser PL, (see Figure 3.4), which is required for the subsequent
modulation steps. Depending on the experimental requirements, both the spatial profile and
the polarisation of the pump beam must be adjusted. To enable this flexibility, the beam is
split into two paths via a flip mirror: one for standard Gaussian-profile excitation and the other
for spatial modulation using a Spatial Light Modulator (SLM), as illustrated in Figure 3.4.

For experiments involving small and isotropic confining potentials, the Gaussian pump
profile is sufficient and yields a nearly flat chemical potential. This path also permits full
control over the pump beam’s polarisation using a combination of 1/2 and 4/4 wave plates.
Since the cavity mirrors exhibit high transmission at 532 nm for all polarisation states at normal

* A small deviation from the true ideal Gaussian shape is attributed to the aperture and residual interference
effects arising from the camera window and sensor surface.
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Figure 3.5: a. The spatial profile of the pump light is shown after spatial filtering with a pinhole in
the focal plane of the telescope, resulting in a collimated Gaussian beam. b. The integrated intensity
profiles along the x and y directions are plotted, along with Gaussian fits. The extracted full width at
half maximum (FWHM) is approximately 3.4 mm.

incidence (see Figure 3.2), the polarisation degree of freedom can be fully exploited [96, 97].

For more complex spatial modulation, a phase-only, reflective, liquid-crystal Spatial Light
Modulator (PLUTO-2.1-VIS-130 by the supplier HOLOEYE Photonics AG) is employed,
which is positioned at the Fourier plane of the pump objective. This SLM is selected over
Digital Micromirror Devices (DMDs) owing to its higher modulation efficiency. Additionally,
the dielectric-coated reflective backplane of the SLM allows for high-power operation (up to
several tens of watts CW at 532 nm), as it enhances reflectivity while minimising absorption.

The SLM imprints a phase pattern onto the incident beam in the Fourier plane. Upon
interference in the image plane, this yields the desired spatially modulated intensity profile.
The required phase pattern is calculated using the Gerchberg—Saxton (GS) algorithm [98-100],
implemented via software provided by the supplier HOLOEYE Photonics AG.

The modulation efficiency is determined by three main factors: (1) the spatial overlap
between the incident and modulated optical fields in the Fourier plane, (2) the fill factor of the
SLM, specified as 93%, that is, the region of the liquid-crystal display covered by the pixels ’,
and (3) the inherent modulation efficiency of the SLM, which is typically below 99%. As a
result, a portion of the pump beam remains unmodulated and co-propagates with the shaped
beam.

To spatially separate the modulated and unmodulated components, a blazed grating phase
mask is added to the desired modulation. This results in diffraction of the modulated

> Light incident on the gaps between the pixels is simply reflected without modulation. In this configuration,
7% of the total surface area of the SLM is rendered unusable.
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Figure 3.6: An exemplary spatially modulated pump beam is shown, generated using the spatial light
modulator (SLM). The beam can be shaped into rectangular profiles with varying aspect ratios, as
depicted exemplarily in panels a and b.

component into the +1* order, while the unmodulated light remains in the 0™ order. By
adjusting the incidence angle of the pump beam on the SLM, the 0" order can be directed away
and blocked using a D-shaped mirror placed in the image plane, as illustrated in Figure 3.4.

The efficiency of SLM modulation is also sensitive to the pump beam’s polarisation relative
to the liquid-crystal alignment. Therefore, a half-wave plate is introduced before the SLM to
tune the incident pump beam’s polarisation for maximum modulation contrast.

To monitor the modulated pump beam, a non-polarising beam splitter (BS,, 90:10 reflectance
to transmittance) diverts 10% of the beam onto a Thorlabs Zelux camera. Exemplary spatial
profiles of the modulated beam are shown in Figure 3.6, where rectangular patterns with
distinct aspect ratios are presented. Furthermore, the SLM software supports aberration
correction using Zernike polynomial functions to refine the final beam shape 5,

Thus, using this optical arrangement, both the temporal and spatial properties of the pump
light are precisely controlled. The structured pump beam is coupled into the cavity using a
long working distance, apochromatic, 10X magnification objective (numerical aperture 0.28,
infinity-corrected, by Mitutoyo Deutschland GmbH).

® The intensity maxima in the rectangular intensity patterns are typically located at the edges. This effect
can be mitigated by employing an asymmetric cylindrical zone plate phase mask, with additional aberration
correction applied if required. The shape is optimised depending on the structure being pumped.

28



3.3 Experimental methods for photon gas measurements

3.3 Experimental methods for photon gas
measurements

Insights into the physics of the dye microcavity photon gas can be obtained by measuring its
thermodynamic quantities, such as the total photon number, energy distribution, and spatial
distribution. These quantities are probed non-destructively by detecting the light emitted from
the cavity, often referred to as cavity fluorescence. Since the photons that leak through the
cavity mirrors directly reflect the intra-cavity photon distribution, this emission provides a
reliable mapping of the internal state of the photon gas.

The measurement system is divided into two main branches: one for imaging the density
distribution in both real and momentum space, and the other for performing spectroscopy, also
in both real and momentum spaces, as illustrated in Figure 3.7. Due to the high reflectivity of
the cavity mirrors and the relatively low intra-cavity photon number, only a small fraction of
photons escape the cavity. For a steady-state intra-cavity photon number of approximately
1000, the out-coupled optical power through one of the mirrors is typically less than half
a picowatt per pulse. As such, the detection setup is optimised for low signal levels. To
minimise background noise, the entire setup is enclosed in a light-tight housing to shield it
from stray ambient light.

Prior to entering either the imaging or spectroscopic branches, the leakage photons must
be efficiently collected and separated from residual stray light. This is achieved using a
long-working-distance, apochromatic objective (numerical aperture 0.42, 20X magnification,
infinity-corrected, by Mitutoyo Deutschland GmbH) to collect the cavity fluorescence. The
collected light, after a 20 cm focal length achromatic tube lens, passed through a set of optical
filters: a notch filter to suppress the residual pump light at 532 nm (F,) and a short-pass filter
to block wavelengths beyond 600 nm (F,), which may arise from the alignment laser (e.g.
HeNe) or other spurious sources.

Subsequently, the filtered light is imaged onto a variable rectangular aperture placed
in the image plane. This aperture is used to block stray light and transmit only light
originating from within the photon gas potential. It is particularly useful in rejecting light
from unconfined plane-wave modes, especially in the presence of elongated or asymmetric
finite-depth potentials.

The resulting cavity fluorescence is then relayed through a linear polariser (PL,), which
enables measurements to be performed within a selected polarisation subspace. This capability
is essential for exploring polarisation-dependent effects in the photon gas [97]. Finally, a
non-polarising beam splitter (BS5) divides the optical path into two branches: one directed
towards a spectrometer, and the other towards an density distribution setup for either real or
momentum space imaging, as depicted in Figure 3.7.

3.3.1 Spatial and momentum space imaging

The density distribution measurement setup, shown in Figure 3.7, is designed to allow the
probing of the spatial and momentum-space density distributions of the photon gas confined
within a given potential. This configuration serves as a complementary tool to the spectroscopic
setup, allowing qualitative cross-verification of the dispersion shape where applicable. In
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Figure 3.7: Dye microcavity emission detection setup. The collected cavity fluorescence is divided into
two optical paths: one directed to the spatial and momentum-space imaging system (density distribution
setup), and the other to the spectroscopy setup. The current configuration is shown operating in
the real-space domain, which can be switched to momentum space by adjusting the relevant optical
components, as indicated by the arrows. Further details on the optical elements used are provided in
Appendix A. Some of the graphical components employed have been sourced from an online graphics
component library [94].

this work, the investigated potentials are often narrow, small, or both. Consequently, the
spatial resolution limit is reached for small or elongated potentials, or for potentials with steep
boundaries, and the corresponding momentum-space distribution becomes proportionally
broad, resulting in signal-to-noise constraints. Despite this, the imaging setup plays an
important role in cavity alignment and qualitative verification, even though most quantitative
results are inferred from spectroscopic data.

In its simplest form, the spatial imaging setup functions as a microscope. It is essential for
aligning the cavity mirrors such that a specific structured region on the patterned mirror is
brought into the focal plane of the imaging objective. Similarly, the alignment of the pump
beam is performed using this imaging path !

The transmitted cavity fluorescence from the beam splitter is imaged directly onto a

7 This is achieved by observing the fluorescence location and guiding it using the spatial light modulator (SLM),
in conjunction with cross-checking the spectrometer camera. The resulting signal provides a distinct signature
of the potential, which differs from that of the free-space continuum modes.
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sCMOS camera (Kiralux 12.3 MP Monochrome CMOS Camera) using an achromatic lens
with a focal length of 30 cm. This configuration yields an effective magnification of 30x.
The microscope resolution, estimated using the Rayleigh criterion 0.611/NA at the photon
condensate wavelength 4 = 580 nm, is approximately 0.84 pm. Combined with the high pixel
density of the camera, this setup allows imaging near the diffraction-limited spatial resolution.

Momentum-space imaging is achieved by Fourier transforming the optical field. For light,
this transformation is performed by a lens, which maps the propagation angle of a wavevector k
(relative to the optical axis) to a position in its focal plane [101]. Thus, the angular momentum
distribution of the photon gas can be directly accessed by measuring the intensity distribution
in the focal plane. To perform momentum-space imaging, the back focal plane of the imaging
objective must be relayed onto the same sCMOS sensor. A set of relay lenses (L; and L,)
preserves the back focal plane of the objective, while lenses L; and Ls (with focal lengths of
20 cm and 10 cm, respectively) image this plane onto the camera. To maintain confocality,
these lens assemblies are mounted on flip mounts, allowing switching between spatial and
momentum-space imaging modes.

Pixel to momentum vector calibration

The mapping between pixels on the SCMOS camera and the transverse momentum vector
components of the photons from the microcavity emission is established using ABCD matrix
ray tracing [101]. Given the confocal arrangement of the optical system, ray transfer matrices
are used to propagate rays from the cavity output to the detector.

Let the angle at which a ray exits the cavity mirror surface (comprising the DBR and
substrate) be denoted by 6, relative to the optical axis, at a position x;. After propagating through
the optical system, the ray illuminates a position x » on the camera sensor, corresponding to an
angle 6 ; at the output plane. The transformation between these vectors can be expressed as:

x| _|A B||xf
6;| |C D| |6,

1
N—
where M, is the total ABCD matrix for the optical path between the external surface of
the cavity and the sSCMOS sensor.
As light exits a medium with refractive index n, (the dye solution) into air, Snell’s law
relates the internal angle 6 to the external angle 6;:

opt

sin 6,
’) . 3.5

@ = arcsin
ng

Using this angle, the transverse component of the photon’s wavevector in the x-direction is
calculated as:

k, = k_tan(-6) , (3.6)

where k_, is the longitudinal wavevector component, defined in Equation 2.1. The y-
component of the wavevector, k,, is similarly determined from the pixel displacement y
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along the y-axis of the sensor.

This calibration method assumes that the angular spread of the rays remains within the
paraxial regime. With a numerical aperture of 0.42 for the imaging objective, this assumption
is of course marginal. However, the potentials investigated in this work are shallow enough
that the emission angles 6, remain well below this upper limit (i.e. 6; < 0.42). Therefore, the
ABCD matrix formalism is deemed valid for accurate momentum calibration in this regime.

3.3.2 Spectrally resolving the photon gas distribution

A thermodynamic characterisation of the photon gas requires direct access to its energy
distribution. While spatial and momentum-space density distributions can offer some
insights, they are inherently limited by resolution constraints. Momentum-space imaging
may provide a more accurate proxy for energy distribution in specific cases, such as box
potentials, where the spatial overlap of momentum eigenstates is minimal [28]. In such
configurations, the momentum distribution approximates the energy distribution well. However,
this correspondence does not generally hold for other potentials of interest, such as harmonic
oscillator traps, where real-space Hermite—Gaussian eigenfunctions Fourier transform into
rescaled Hermite—Gaussian functions in momentum space, resulting in significant mode
overlap.

Therefore, direct spectroscopic measurements are necessary not only to resolve the energy
distribution of the photon gas but also to obtain its absolute energy scale .

Spectroscopy of the cavity fluorescence is performed using two custom-built spectrometers.
The first, a real-space spectrometer, is optimised for signal-to-noise ratio and is used for
extracting the energy distribution. The second, sharing the same back-illuminated scientific
CMOS camera, is configured to measure the photon dispersion relation. Most of the potentials
studied in this work have maximum widths smaller than 50 pm. In such cases, the real-
space spectrometer provides a higher signal-to-noise ratio, since the signal remains spatially
concentrated. Conversely, in momentum space, the same signal is distributed over a broader
area, making this configuration better suited for resolving the shape of the dispersion relation
rather than the energy distribution.

Switching between the two spectrometers is achieved by introducing or removing the
appropriately aligned lenses and gratings into the optical path using a flip-mounts, as shown
in Figure 3.7.

Both spectrometers employ blazed reflective diffraction gratings with 1200 grooves/mm as
the dispersion element. The dispersed spectrum is imaged onto a back-illuminated sCMOS
camera (Andor Marana 4.2B-11), which provides approximately 95% quantum efficiency and
active cooling. The detector consists of 2048 pixels (each 11 pm wide) along the dispersion
axis, enabling high spectral resolution. Calibration of the dispersion axis is performed using a
commercial spectrometer. The real-space configuration provides a spectral range of 62.5 nm
and a resolution better than 0.3 nm. In momentum-space configuration, the spectral range
extends to 74.4 nm with a maximum resolution of 1 nm.

To preserve spatial mode information and maximise signal collection in low-light regimes,
no entrance slit is employed in either configuration. While this slit-less design results in a

8 That is, the true energy of the photon, ic/A,, can be obtained directly from the measured wavelength.

32



3.3 Experimental methods for photon gas measurements

reduction of spectral resolution, it enables direct measurement of mode shapes and improves
signal-to-noise ratio, an essential requirement for experiments involving low intra-cavity
photon numbers. Although alternative methods, such as tomographic spectroscopy [102,
103], are available to simultaneously extract both mode shape and spectral information, these
techniques were not feasible for use in this work due to the extremely low photon numbers,
which limit their practical sensitivity.
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Figure 3.8: Exemplary spectral dispersion of a 10 X 10 pm box potential in real and momentum space
in the quantum degenerate limit. a. The expected spatial bounds of the box potential are indicated
by dashed black lines at —5 jum and 5 pm overlaid on the raw real-space spectrograph. b. The raw
momentum-space spectrum of the same box potential is shown, with the expected parabolic dispersion
marked by an overlaid dashed black curve. The regions shaded in grey denote areas beyond the
numerical aperture (NA) of the detection setup.

To illustrate the differences in the results obtained using the two spectrometers, exemplary
spectra for a photon gas confined in a 10 pm X 10 pm box potential are shown in Figure 3.8. As
expected, the real-space spectrum exhibits a uniform mode size across all energies, consistent
with the homogeneous spatial density of the box potential. In contrast, the momentum-
space spectrum shows an energy-dependent broadening of the modes, following a parabolic
dispersion relation E o« k* [28]. Although the resolution in the momentum-space spectrometer
is limited due to its slit-less configuration, the overall dispersion profile remains consistent
with theoretical expectations. A detailed analysis of results obtained with this potential is
presented in Chapter 6.
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Photon number estimation

The total intra-cavity photon number, denoted by N, is used as the primary experimental
tuning parameter in this work. An experimental estimate of N is obtained by calibrating
the detected counts on the sSCMOS sensor of the real-space spectrometer against the actual
intra-cavity photon number. This calibration accounts for mirror transmission losses and the
duration of the steady-state emission. It is performed using a broadband tunable source, such
as a dye laser.

Depending on the potential landscape, N can be extremely low, occasionally on the order
of a few tens of photons, resulting in a very low signal-to-noise ratio. To improve this, the
camera integration time is configured to accumulate cavity fluorescence over many identical
experimental realisations. This averaging enhances the signal without altering the underlying
photon statistics.

Care is taken to ensure that the cavity cutoff remains stable during the integration period, as
fluctuations in cavity length can degrade the spectral resolution, particularly under slit-less
conditions. Data acquisition begins only after the cavity length has passively stabilised and
mechanical drifts have been minimised. Furthermore, the integration duration is accounted
for when converting detected counts to photon numbers.

It should be noted that systematic uncertainties in the calibration factor may introduce a
shift in slope of the counts to photons calibration curve. However, as shown in subsequent
chapters, the calibration constant can be eliminated when analysing appropriate photon gas
observables for which the dependence on N cancels out. Consequently, the measurements
remain internally consistent and precise, even if the absolute accuracy is subject to a fixed
uncertainty.
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CHAPTER 4

Nano-structuring potentials for
photon gases

In this chapter, a novel fabrication method for realising high-curvature potentials necessary for
experiments on the dimensional crossover of a photon gas in a dye microcavity is discussed.
Currently, the established fabrication technologies for the dye microcavity platform yield
feature sizes of approximately 3 pm, which is significantly larger than the photon condensate
wavelength of around 580 nm, thereby inhibiting the fabrication of potentials with both high
curvatures (corresponding to steep traps) and depths [31]. In other photon gas platforms, such
as the erbium-ytterbium co-doped fibre (EYDF) cavity, potentials with both high curvatures
and depths are achievable, but the dimensionality is restricted to one dimension [75, 104] I
preventing experiments on observing a dimensional crossover of a photon gas.

As outlined in Section 2.1 of Chapter 2, the critical parameter in realising a potential for
a dye microcavity photon gas is the longitudinal optical path length. To address this, the
well-established additive fabrication technology of 3D printing polymer structures on the
nanometre length scale using Direct Laser Writing (DLW) has been employed, a method that
has been widely adopted across various research areas [33—44]. The stability of polymer in the
dye solution under high intracavity power conditions is not straightforward to achieve; however,
this challenge has been addressed and resolved in the referenced Master’s thesis work [105].
Thus the adaptation of DLW technology for fabricating potentials in the dye microcavity
platform is presented, together with a discussion of the unique challenges associated with 3D
nano-printing on cavity mirrors and the corresponding solutions.

The chapter begins with a summary of the established methods for creating engineered
potentials for the dye microcavity photon gas platform, employing the dispersion relation 2.6
(Section 4.1). In Section 4.2, the general working principles of the DLW experimental setup
are discussed, followed by an examination of various configurations used in fabrication and
the challenges associated with DLW fabrication on reflective cavity mirrors (Section 4.3).
Finally, in Section 4.4, methods to overcome the challenges of printing on reflective mirrors
and to achieve quasi-stepless polymer structures are presented.

! Access to the second dimension can be achieved if the fibre is multimode; however, tuning the dimensionality
is not straightforward.
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4.1 Arbitrary potentials for photon gas

The photon gas in a dye-filled microcavity is subjected to a confining potential generated by
the transverse cavity length modulation term d(7)/D,, as shown in equation 2.6, where the
modulation refers not only to the physical distance between the cavity mirrors but also to the
effective optical path length between them. This modulation may be implemented in three
distinct ways, and the corresponding potential energy is therefore decomposed as expressed in
Equation 2.1, which is reiterated here for convenience.

V() =

mege’ d(7) _ menc® (Ad(?) , M) n—ny h<7>) @.1)

ns Do w2 \ Dy ng ng Dy

Firstly, the physical length of the cavity, Ad (F), may be modified—for instance, by employing
spherically curved mirrors with radii of curvature R; and R,. This configuration yields an
isotropic harmonic oscillator potential of the form

! (2 ¢ (Ri+ R2>/<R1R2>) 2 (42)

VF) = =

valid for |F| < D, where the term in brackets represents the square of the angular trap
frequency w [27, 106].

More complex potential landscapes can be realised by locally altering the elevation of the
mirror surface. Two well-established methods have been developed for this purpose. The first,
known as the delamination method [31], involves the local elevation of a dielectric mirror
stack (DBR) by depositing heat into an additional silicon layer. The second approach utilises
focused ion beam (FIB) milling[107] where a subtractive approach is used by carving out
the desired shape in the glass substrate followed by deposition of the dielectric mirror stack
(DBR). These techniques have enabled the realisation of box-like potentials using delamination
technique [28] and small traps for light using the FIB [108].

Secondly, modulation can also be achieved by locally varying the refractive index, thereby
altering the effective optical path length. To date, the method implemented in dye-filled
microcavities has exploited the second term in equation 4.1. This thermo-optic technique
involves the use of a thermally sensitive polymer placed between the cavity mirrors. Upon the
application of a heating laser, the polymer’s refractive index undergoes a change An(r), with
the resulting potential determined by the spatial profile of the heating laser [109].

However, the creation of one-dimensional potentials required for the study of the dimensional
crossover is necessitated by the use of a mirror structuring method with a resolution on the
order of the photon gas wavelength. As delamination and the thermo-optic method, both
heat-dependent techniques, typically achieve feature sizes of approximately 3jum, and although
the FIB technique is, in principle, capable of carving deep, high-curvature structures into
the glass substrate, the deposition of the DBR stack can only be performed after structuring.
This adds significant complexity to the optimisation of the structuring process. Therefore,
a novel method was developed in this work to realise deep, high-curvature potentials by
exploiting the last term in Equation 4.1, where the local optical length is modulated by
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4.2 Polymer direct laser writing

printing polymer structures with varying height profiles using a Direct Laser Writing (DLW)
system by the supplier Nanoscribe GmbH & Co. KG, as will be explained in the following
sections. In collaboration with Dr. J. Schulz and Prof. Dr. G. von Freymann from RPTU
Kaiserslautern-Landau, Kaiserslautern, Germany, the fabrication of the polymer structures
was performed using such a Nanoscribe system. The fabrication system operation, as well as
the pre- and post-processing of the cavity mirrors, were handled by them and will be discussed
in detail later in this chapter. The iterative optimisation of the design parameters was carried
out by the present author based on cavity fluorescence spectroscopy, in close coordination
with J. Schulz.

4.2 Polymer direct laser writing
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piezoelectric
3D scanning stage

structuring objective

galvanometer
scanner
|

y camera
laser /

Figure 4.1: Simplified sketch of the polymer direct laser writing setup. The exposing light, provided by
a laser with wavelength near 780 nm, is guided and controlled using two galvanometric scanners, and
is focused onto the region of interest within the photoresist by a high numerical aperture (NA) 1.4
objective with 63X magnification. The substrate is held and positioned using piezoelectric scanning
stage. The entire process is monitored with the aid of a camera placed in the imaging plane. The inset
shows a voxel representing the region polymerised at the focal depth.

The polymer nanostructuring process operates by polymerising the monomers of the
photoresist. The photoresist (IP-dip) requires exposure to light, typically in the UV range,
to initiate the polymerisation process. To achieve small feature sizes, the exposing light
must be focused using a high-NA, liquid-immersed objective (writing objective). However,
two principal challenges must be overcome to achieve feature sizes below 1 pm: firstly, the
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Chapter 4 Nano-structuring potentials for photon gases

diffraction limit of the focused exposing light, and secondly, the tendency of the exposing
light to polymerise the entire beam path within the photoresist.

To address both challenges, two-photon polymerisation is employed. Instead of UV light,
infrared light (wavelength 780 nm; pulse duration 150 fs), at half the frequency of UV
light, is used. This approach prevents polymerisation along the entire beam path, restricting
the polymerised volume (voxel) to a size smaller than the diffraction limit. At the focus,
sufficiently high intensity enables two-photon excitation of the photoresist, thereby initiating
polymerisation.

In this work, the Nanoscribe Photonic Professional GT and Nanoscribe Quantum X systems
by Nanoscribe GmbH & Co. KG were employed to 3D print nanostructures onto the mirror
surface using two-photon polymerisation [38]. Feature sizes measuring 100 nm transversely
and 250 nm longitudinally were realised. The polymer structures were printed in blocks by
moving the mirror substrate with piezoelectric actuators, while the exposing light path was
controlled using galvanometer scanners as shown in the Figure 4.1.

4.3 Direct laser writing configurations

Polymer nanostructuring using Direct Laser Writing (DLW) on the surface of materials
such as glass can be performed in two main configurations: (a) immersion configuration and
(b) dip-in configuration. The choice of DLW configuration depends on the transparency and
thickness of the substrate. The advantages and limitations of the Direct Laser Writing (DLW)
configurations for conventional cavity mirror substrates are first discussed, along with relevant
solutions to these issues depending on the structures to be printed. In this work, both DLW
configurations are employed. The immersion configuration, with certain modifications, is
used for the structures presented in Chapter 5, whereas the dip-in configuration is utilised for
flat-top structures, as discussed in Chapter 6.

A schematic sketch of the two configurations for the conventional cavity mirror is shown in
Figure 4.2. The immersion configuration, also referred to as the conventional configuration,
requires the substrate thickness to be much smaller than the working distance of the available
writing objective so that the structuring laser beam (exposing light) can be focused through
the substrate onto the opposite surface. As illustrated in Figure 4.2a, the 6 mm thick glass
substrate of the cavity mirror is substantially larger than the working distance of the writing
objective; thus, the immersion configuration here cannot be used for 3D printing the polymer
structures.

In the dip-in configuration, the photoresist is placed between the writing objective and the
surface of the material to be patterned, where it also serves as the immersion medium for the
writing objective. This configuration permits the writing objective to approach very close to
the surface of the cavity mirror (DBR), allowing for the fabrication of taller structures without
being limited by the substrate thickness.

IP-DIP, with a refractive index of n, = 1.55 [110], is employed both as the immersion
medium for the writing objective and as the photoresist in the dip-in configuration, while
immersion oil is employed as the immersion medium in the immersion configuration.
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Figure 4.2: Direct laser writing (DLW) configuration for a conventional cavity mirror substrate. a. A
schematic of the immersion configuration is shown, illustrating the limitation that structuring cannot
be performed on the DBR surface due to the excessive substrate thickness (6 mm), which prevents
the focus of the writing objective from reaching the region of interest. b. A schematic of the dip-in
configuration is shown, in which the focus of the writing laser coincides with the region of interest, the
DBR mirror surface, enabling polymer structuring.

The choice between the two DLW configurations for conventional cavity mirrors appeared
to be straightforward, as the DBR stack is positioned on a 6 mm thick glass substrate. This
arrangement precludes the use of the immersion configuration (see Figure 4.2a) for such
mirrors with thick substrates. Consequently, the dip-in configuration, shown in Figure 4.2b,
was initially tested.

To verify the fidelity of the structures fabricated using the dip-in configuration, an isotropic
parabolic structure with a height profile

h(x,y) = hy = LxX° = 4,y 4.3)

was printed, where i, denotes the maximum height of the structure, and £, and £, represent
the curvatures along the x and y directions, respectively. The height profile of the resulting
structure was measured using Atomic Force Microscopy (AFM) 2 and is shown in Figure 4.3.

A typical lateral resolution of approximately 20 nm and a vertical resolution of around 1 nm can be achieved
using this technique.
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Figure 4.3: Measured height profile of the polymer structure with a parabolic height profile, fabricated
using the dip-in configuration and characterised via atomic force microscopy (AFM). a. The transverse
height profile is presented as a heat map, with the colour bar indicating height. b. The radial average
of the height profile is shown, with the measured profile plotted as a solid blue curve and the ideal
parabolic profile overlaid as a dashed black curve. ¢. The deviation of the measured radial average
from the ideal parabolic shape is plotted as a solid red curve. Zero deviation is indicated by a dashed
dotted black line.

The transverse height profile appears radially symmetric, with the height decreasing from
the centre outwards as expected. However, step-like features are also observed, superimposed
on the parabolic profile (see Figure 4.3a). To quantify this deviation, a radial average was
performed on the measured two-dimensional height profile (Figure 4.3a), the radial average
h,, (r) (solid blue curve) was compared to the parabolic reference profile %, (r) (dashed black
curve), which was obtained by fitting £,,(r) with the maximum height and curvature treated
as free parameters, as illustrated in Figure 4.3b.

The structure exhibits significant variation in curvature as a function of position. The
deviation of the measured height profile #,,(r) from the expected profile /,(r) is quantified
as Ah(r) = h,(r) — h,,(r), shown in Figure 4.3c. Excluding deviations near the edge of
the structure at approximately » > 30 pm, it is observed that substantial oscillations in the
difference Ah(r) occur within the bulk, attributable to the step-like features. These deviations
in a microcavity are expected to alter the local density of states from that of an ideal harmonic
oscillator, which is undesirable.

This deviation here may be attributed to an unwanted interference pattern generated by
the exposing light in the dip-in configuration, as the mirrors possess finite reflectance at
various incidence angles for the exposing light at 780 nm used to polymerise the photoresist.
In Figure 4.4, the mirror reflectance at a wavelength of 780 nm as a function of incidence
angle is presented. As the writing objective employed a high NA (1.4), the incidence angle
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Figure 4.4: Transmission profile of the used DBR mirror around the direct laser writing (DLW) exposure
wavelength. a. The DBR mirror transmission matrix is shown, with the exposure wavelength at 780 nm
indicated by a dashed black line. b. The transmission at the exposure wavelength (780 nm) is plotted
as a function of angle of incidence, corresponding to the numerical aperture (NA) of 1.4 for the writing
objective in the immersion medium.

of the light ranged from 0 ° to a maximum of 70 °, and from Figure 4.4b, it is evident that
substantial reflection of the exposing light occurred at the mirror surface. This reflection may
have resulted in standing wave interference of the exposing light along the longitudinal (z)
axis, creating alternating regions of high and low exposure in the photoresist, and thereby
producing a polymer structure with step-like features.

4.4 Quasi-stepless nanostructuring

Step-like features that may arise from the interference pattern of the exposing light in the
dip-in configuration can be suppressed by switching to the immersion configuration, as no
standing waves are present in the polymerisation region, provided that the substrate thickness
of the DBR mirror is reduced to below the working distance of the writing objective. To this
end, the procedure illustrated in Figure 4.5 was employed to obtain quasi-stepless polymer
nanostructures, as follows: the 6 mm thick substrate region of the mirror (referred to as
the thick mirror) was ground, and polished to a thickness of approximately 100 pm. The
resulting mirror flake (thin mirror) possessed a substrate thin enough for use in the immersion
configuration, allowing the polymer nanostructuring to be performed and developed. However,
the nano-structured thin mirror proved too fragile for use in the dye microcavity experimental
setup. To provide mechanical stability, the structured thin mirror was bonded to a 5 mm thick
glass substrate using an optically transparent adhesive. The adhesive was selected for its
solubility in solvents such as acetone, enabling the thin mirror to be reused and restructured if
necessary. Photographs of the mirror before and after this procedure are shown in Figure 4.5b.
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Figure 4.5: Quasi-stepless nanostructuring technique. a. A schematic illustrating the fabrication process
for quasi-stepless nanostructures. The thick DBR mirror substrate is ground down to approximately
100 pm, rendering it sufficiently thin for use in the immersion configuration of direct laser writing
(DLW) to produce smooth, quasi-stepless structures. Excess photoresist is removed during the
development step. For mechanical stability and ease of handling in the dye microcavity setup, the
structured thin mirror is bonded to a thick glass substrate. b. Images of the DBR mirror before and
after application of the quasi-stepless nanostructuring technique.

The AFM height profile of the resulting parabolic structure, fabricated using the quasi-
stepless nanostructuring method, is presented in Figure 4.6a. The two-dimensional height
map exhibits a smooth gradient, with no indication of step artefacts. A radial average was
applied to the measured two-dimensional profile (Figure 4.6a), yielding the measured height
profile 4,,(r) (solid blue curve), which was subsequently compared to the parabolic profile
h,(r) (dashed black curve), as shown in Figure 4.6b. The measured height profile &,,(r)
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Figure 4.6: Measured height profile of the polymer structure with a parabolic height profile, fabricated
using the quasi-stepless nanostructuring technique and characterised via atomic force microscopy
(AFM). a. The transverse height profile is presented as a heat map, with the colour bar indicating
height. b. The radial average of the height profile is shown, with the measured profile plotted as a solid
blue curve and the ideal parabolic profile overlaid as a dashed black curve. ¢. The deviation of the
measured radial average from the ideal parabolic shape is plotted as a solid red curve. Zero deviation is
indicated by a dashed dotted black line.

closely follows the expected behaviour. The deviation between #,,(r) and h,(r), denoted
Ah,,(r), is plotted in Figure 4.6¢. As in previous results (cf. Figure 4.3c), low-frequency
oscillations are absent in the central region of the structure, excluding the edge region around
r > 30 pm. This confirms that the structure is quasi-stepless in the bulk. The maximum
absolute deviation in this region, |A#,,|, is substantially less than 0.05 pm.

Accordingly, in this work, the quasi-stepless nanostructuring method was employed for the
fabrication of structures requiring a smooth change in height profile, such as the parabolic
structure presented here. For other structures without such requirements, including flat-top
geometries such as cuboids (corresponding to rectangular-base box potentials) and cylinders
(corresponding to circular-base box potentials), the dip-in configuration was used, as the
longitudinal modulation of the exposing light does not affect the transverse height profile of
the structure.

4.4.1 Other constraints on direct laser writing

Although direct laser writing offers several advantages over other mirror structuring techniques,
itis accompanied by a number of specific, albeit relatively minor, challenges and limitations. In
this work, these limitations are discussed to ensure that future applications in dye microcavity
platforms can be designed with these constraints in mind, potentially allowing them to be
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addressed or overcome in subsequent developments.

Potential depth

Owing to the finite height of the polymer structure, the potential depth V/, is also finite and is
given by

2 h
MegC Ny — Ny Mo

Vo = (4.4)

b
n?, ng Dy

where h( denotes the height of the polymer structure. The potential depth is directly
proportional to h,. An appropriate value for A, can therefore be estimated to ensure the
potential is sufficiently deep while still maintaining adequate space between the structured
surface and the unstructured cavity mirror to accommodate the dye solution.

The DLW-structured cavity configuration can be constrained to exhibit properties comparable
to those of the conventional dye microcavity, as described in [27]. The optical path length in the
conventional cavity 3, nyD .., can be matched to the optical path length in the DLW-structured
cavity, given by

ngD.=n,d; +nhg, 4.5)

where d; denotes the distance travelled by photons within the dye solution. For typical
longitudinal mode number in conventional dye microcavity of ¢ = 7 and a cutoff wavelength
A, =580 nm, this yields d; = 74,./(2n,;) ~ 1410 nm [27].

Considering the g < 11, the maximum optical path length in the conventional cavity can be
estimated as ny;D, = 114,./2, which implies D =~ 2215 nm. Substituting into Equation 4.5,
the structure height is found to be 4, < 748 nm 4, assuming refractive indices n,; = 1.44 for
the dye solution and n; = 1.55 for the polymer.

Accordingly, the depth of the potential, excluding zero-point energy contributions, is given
by V,; < 55 meV, which corresponds to approximately 2kgT at room temperature (7' = 300 K).
However, the effective depth observed in experiments, defined as the energy difference between
the ground mode and the potential edge, will be reduced due to the presence of zero-point
energy.

Mechanical stability

The direct laser writing structuring technique does not result in a permanent modification of
the mirror surface, as the polymer structures can be removed mechanically without causing
damage to the underlying DBR stack. This feature enables mirror reuse and facilitates rapid
prototyping iterations. However, it also introduces certain challenges. Considerable care must
be taken when handling the mirror, particularly during the reduction of cavity length and
the adjustment of mirror tilt, to avoid direct contact between the structured surface and the
opposing mirror.

3 This assumes an ideal scenario. In practice, a portion of the field extends into the mirrors, resulting in the
surface-to-surface spacing being smaller than the optical path length divided by the refractive index [63, 111]

* The true height of the printed structure may exhibit a global offset owing to residual deviations in the substrate
tilt correction performed immediately prior to fabrication.
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Despite this mechanical sensitivity, the polymer structures were found to be chemically
stable within the dye solution bath and showed no signs of degradation over the course of
extended experimental runs. After such prolonged use, partial evaporation of the dye solution
may occur, necessitating mirror cleaning. This process is especially challenging, as no
mechanical force can be applied without risking detachment of the structures. Consequently,
cleaning must be performed exclusively using solvent rinses, such as isopropanol, to avoid
dislodging or shifting the polymer structures from their original positions.
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CHAPTER 5

Dimensional crossover: experimental
results

In this chapter, an observation of a dimensional crossover from two to one dimension in a
photon gas confined within a harmonic oscillator potential is presented. It is shown that while
the photon gas exhibits signatures of Bose—FEinstein condensation (BEC) phase transitions in
two dimensions, it displays a crossover behaviour in one dimension. The harmonic oscillator
confinement allows this distinction to emerge clearly, as the dimensionality substantially
affects the density of states, which in turn governs the nature of the transition from a classical
gas to a quantum degenerate regime in finite-depth potentials, as discussed in Section 2.2.3.
Furthermore, as elaborated in Section 2.3.2, the suppression of additional effects such as
interactions and dimension-influenced thermalisation facilitates the unambiguous observation
of the dimensional crossover for the photon gas confined within a dye microcavity.

The chapter is structured as follows. In Section 5.1, the tuning of dimensionality in a
harmonic oscillator confinement is examined, together with the criteria required for achieving
a one-dimensional potential, followed by the modelling of the theoretical expectations for the
observables. This is followed, in Section 5.2, by a discussion of how harmonic oscillator
potentials across two to one dimensions can be realised for the photon gas using the direct laser
writing (DLW) nanostructuring technique. Their characterisation is presented in Section 5.3.
The effects of the dimensional crossover are then examined in Section 5.4 by analysing the
energy-resolved occupation of the ground and excited energy levels of the potentials. Finally,
a calorimetric analysis is presented in Section 5.5.

5.1 Theoretical modelling

As the dimensionality is reduced, the geometry of the confining potential is maintained
as a harmonic oscillator. This choice is motivated by the fact that a harmonic oscillator
in the isotropic two-dimensional (2D) limit supports a Bose—Einstein condensation (BEC)
phase transition [20, 62, 112], thereby enabling direct comparison as the dimensionality is
varied. The dimensional crossover is implemented by altering the aspect ratio of the harmonic
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oscillator potential, beginning with an isotropic 2D configuration, transitioning through an
anisotropic two-dimensional (2D-1D) regime, and ultimately reaching a highly elongated
one-dimensional (1D) harmonic oscillator potential I

Consider the eigenenergies of a particle confined within a two-dimensional (2D) anisotropic
harmonic oscillator potential, which are given by

o1 o1 ..
E:hwx(z+§)+hwy(]+§), i,j=0,1,2,... 5.1

where w, and w, denote the angular trap frequencies along the x and y directions,
respectively, while i and j denote the corresponding quantum numbers.

To realise a dimensional crossover from two to one dimension, the ratio of the angular trap
frequencies (trap aspect ratio), defined as A = w, /w,, serves as a tuning parameter. Under
this definition, the energy spectrum in Equation 5.1 can be rewritten in the form

1 A
E:hwx(i+§+/\j+5), i,j=0,1,2,... 5.2)

5.1.1 Constraints for 1D potential

The parameters defining the effective one-dimensional (1D) potential can be estimated by
imposing constraints derived from the excitation probability of photons into the second spatial
dimension. A spatial dimension here, along y is considered to be frozen out if the occupation
of its excited level is substantially suppressed. For an anisotropic harmonic potential, this
condition is satisfied when

hw,” > kgT, (5.3)

ensuring that the Boltzmann-weighted occupation probability, exp(—Aw,/kgT), becomes
exponentially small [30]. Furthermore, if the excited state along the second dimension is
not confined due to the finite depth of the potential, the system is effectively reduced to a
one-dimensional confinement.

From the inequality 5.3, at ambient temperature 7 = 300 K, the minimum trapping
frequency along the second dimension is estimated to be

w,® > kgT/h =21 % 6.25 THz . (5.4)

5.1.2 Theoretical expectation of observables

The potentials are theoretically modelled based on measured trap parameters. The measurement
of trap parameters will be discussed in the following Section 5.3. The bound states of the
harmonic oscillator potential are calculated based on the energy spacing defined by w, ,, or
alternatively by w, and the aspect ratio A, as introduced in Equation 5.2. The measurable

! The intermediate region is chosen such that substantial anisotropy is present, while remaining below the
threshold for a one-dimensional regime. The conditions required to reach the one-dimensional limit will be
discussed in the following section.
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5.1 Theoretical modelling

effective depth of the potential is given by V¢ = V,, — E,, where E;, = hw,/2 + hw, /2
corresponds to the zero-point energy.

The resulting bound state spectrum is rescaled by setting E, to zero. The degeneracy, g(e),
of an energy level with energy e is then determined by counting the number of occurrences of
that level in the spectrum.

For a bound state with energy e and corresponding degeneracy g, the occupation probability
is obtained from the Bose-Einstein distribution, as described in Equation 2.8 and reiterated

here for convenience
g(e)
e—p
es” —1

Here, the chemical potential u is estimated by numerically solving the following equation

N(e) = (5.5)

Emax
g(e)

N=> —=

e=0 e*BT — 1

(5.6)

where the total photon number N is determined experimentally, as described in Section 3.3.2.

Furthermore, the number of photons occupying the excited states, N,

x> and the ground state,
N,, is determined by the following expressions

Nex = j?i —igéfz—— (5.7)

€#0 efs’ —1

5(0)

=
eksT — 1

Ny = (5.8)

The Equation 5.5 describes the spectral distribution of the photon gas and serves as a
weighting function for the calculation of spatial and momentum-space distributions.

The spatial density distribution for these potentials is calculated by assuming the wavefunc-
tions of a quantum harmonic oscillator. For a bound energy level with quantum numbers
(i, j), the wavefunctions in the x and y directions are given by

1 1/4 2
Ui = == (T exp (——meffz‘;"x )Hl- (\/—mefg‘”"x) , (59)
V2'i!

1 m ﬂc{,l) 1/4 m ﬂ‘(,() y2 m ﬂr(,()
v () = ( - y) exp|————|H;|\[——¥| .  (.10)

b 2n h

where H; ; denote the Hermite polynomials. The density of the (i, j) mode with energy
€ ; is obtained by taking the outer product of ;(x) and ¢;(y) and absolute square. The total
spatial density distribution of the photon gas, for a total photon number N, is then given by:

¥(x,y) = ) Wi IPN, - (5.11)

i,J

49



Chapter 5 Dimensional crossover: experimental results

Similarly, the spatial distribution of excited states (i.e., excluding the ground state) is given
by
* 2
Yorcited (5 3) = ) Wi (005 (0PN, - (5.12)

e,-,thO

The momentum density distribution is obtained by applying a Fourier transform to the
spatial wavefunctions of the harmonic oscillator potential. This transformation maps the
wavefunctions to Hermite-Gaussian forms in momentum space, identical in form to their spatial
counterparts, up to phase factors, thus allowing the momentum space density distribution to
be calculated accordingly.

5.2 Parabolic structures as harmonic oscillator
potentials

The photon gas potentials induced by the DLW, as discussed in Chapter 2 and Chapter 4,
exhibit an inverted geometry relative to the height profile of the structure, owing to the negative
sign, for n; > ny, as expressed below:

2
Mg ng—nyg h(x,y)
V(X,y):— 62 - D
nd nd 0

(5.13)

It can be observed that the potential depth increases as the structural height increases.
Consequently, by fabricating a structure with a maximum height A, corresponding to a
maximum potential depth V|;, and allowing the height to decrease radially with a parabolic
profile, an attractive potential with harmonic oscillator geometry can be realised. This is
illustrated by considering a height profile as follows

ho— x> = &y° ifhy—x* =4, y* 20

) (5.14)
0 otherwise

h(x,y) = {
where h(x,y) denotes the height of the polymer structure at the transverse coordinates
(x,y), ¢, and ¢ y represent the curvature parameters along the x and y axes, respectively.
By substituting this height profile into Equation 5.13 and rearranging terms, the resulting
potential is given by

2 2 2
Megc” ng —ny ho— X" =4y
Vil y) = ——=
nd nd DO
) 5 5 (5.15)
_ mggc ng—ng hy 1 c2ns_nd{x 2 Czns—”dgy 2
ny ng Do 2 ng, Ma Do n; Ma Do

This expression can be directly compared to the two-dimensional anisotropic harmonic
potential of finite depth V), defined as
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1
Vo(x,y) ==V, + Emeﬁ(wixz + wiyz) (5.16)

from which it is evident that the angular trap frequencies are determined by the curvature

parameters via
c [.ng,—ny<
Wyy = —4 /2S—"ﬂ . (5.17)
Ty ng Dy

The constraints on the angular trapping frequencies w, , can be estimated based on the
maximum allowable structure height, ( 4, < 748 nm), as discussed in Section 4.4.1, and by the
transverse extent of the fabricated structure. The transverse extent is limited to under 60 pm,
which facilitates efficient coupling of the structured pump light with sufficient intensity and
helps to mitigate deviations of the structure’s height profile from the designed geometry.

As detailed in Section 4.4.1, for D ~ 2215 nm , ng = 1.55, and n; = 1.44, the curvature
parameter of the structure and the corresponding angular trapping frequencies are bounded
from below as follows

oy >831x10°m™! (5.18)

w, , >2mx0.22 THz (5.19)

X,y —
Consequently, the polymer structures must be fabricated with heights below 748 nm, and
with curvature parameters no less than 8.31 X 10°’m™". In the case of quasi-1D confinement,

a minimum curvature of {;D =52x10°m ' is required along the strongly confined axis,

corresponding to a trapping frequency of w;D =2 X 6.25 THz (see Section 5.1.1).

It should be noted that these estimations provide only approximate bounds for the relevant
parameters, rather than absolute values, as the trapping characteristics also depend on non-static,
continuously tunable parameters such as the cavity length D,,.

Parabolic polymer structures designed within these constraints and exhibiting varying ratios
of angular trapping frequencies have thus been fabricated to emulate isotropic two-dimensional
(2D), anisotropic two-dimensional (2D-1D), and one-dimensional (1D) harmonic oscillator
potentials, respectively. Their properties are characterised in the Section 5.3.

5.3 Characterisation and modelling of harmonic
potentials

A characterisation of the potentials rendered by the polymer nanostructuring is carried out
through measurements of the spatial, momentum, and spectral density distributions, obtained
via cavity fluorescence. Obtained experimental data for the spatial density distribution of
the degenerate photon gas confined in isotropic two-dimensional (2D), anisotropic two-
dimensional (2D-1D), and one-dimensional (1D) harmonic oscillator potentials is presented
in Figure 5.1, with corresponding microscope images of the fabricated polymer structures
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Figure 5.1: Spatial photon density distributions in the quantum degenerate regime for varying trap
dimensionalities. a—c. Photon density profiles are shown for a two-dimensional (a, A = 1), anisotropic
two-dimensional (b, 2D-1D, A = 5), and one-dimensional (¢, A = 22) harmonic oscillator potential.
Insets display microscope images of the corresponding polymer structures, fabricated on the cavity
mirror using the quasi-stepless nanostructuring technique. Dashed lines indicate the positions of
horizontal and vertical cross-sectional cuts through the centre of the photon cloud, which are shown
in the side and top panels, respectively. In each cross-section, the dashed grey curve represents
the thermal contribution, while the solid red curve shows the contribution from the ground mode,
demonstrating its macroscopic occupation across all geometries. Theoretical predictions are based
on a Bose—Einstein distribution of photons within the cavity modes, with total photon numbers of
N = 3958 (2D), N = 357 (2D-1D), and N = 54 (1D). The deviation observed in the 1D configuration
is attributed to the excitation of free-space modes near the edge of the confining potential.

shown in the insets.

As expected, the spatial density distribution appears symmetric in the 2D configuration,
while asymmetries emerge in the 2D-1D and 1D cases. Line cuts along the x and y
axes are compared to theoretical predictions based on the estimated photon number and
trapping frequencies w, and w,, which are extracted from the spectral measurements. These
comparisons demonstrate that the spatial extent of the photon gas becomes increasingly
compressed along the tightly confining y-direction, while remaining broad along the x-axis
as the system transitions from 2D to 1D. This behaviour, illustrated in the side panels of
Figure 5.1, is consistent with theoretical expectations derived in the Section.5.1.2, for the
extracted potential parameters.

While spatial distributions provide useful information, they are insufficient for determining
the energy level spacing, degeneracies, and the mode occupations of the photon gas within these
potentials as the different modes spatially overlap and thus cannot be resolved individually.
These quantities are measured using a custom-built spectrometer setup, as described in
Section 3.3. An exemplary real-space spectrum of a photon gas confined in a one-dimensional
harmonic oscillator potential is presented in Figure 5.2a, where the discrete eigenmodes of
the 1D quantum harmonic oscillator potential are clearly resolved.

The spacing between energy levels and the distribution of photons among these states are
inferred by integrating the raw spectral data along the vertical (spatial) axis of the image in
Figure 5.2a. The resulting integrated spectrum is shown in Figure 5.2b, and the positions
of the spectral peaks are extracted and plotted as a function of mode number in Figure 5.2c.
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Figure 5.2: Spectrum analysis. An exemplary spectrum of the cavity fluorescence is presented for the
one-dimensional case. a. The raw spectrometer image is shown, where the vertical axis corresponds
to the spatial coordinate (x-axis), and the horizontal axis combines spatial (y-axis) and dispersive
information. Spectral integration is performed along the vertical axis (spatial x-axis), as indicated
by the arrow. Panels a and b share horizontal axis. b. The resulting spectrum, corrected for mirror
transmission, is plotted on a linear scale. ¢. The positions of the observed modes are plotted in units
of THz, relative to the ground mode identified in panel b, as a function of mode number. A linear
increase in mode energy, Av, with mode number is observed, in agreement with the expected behaviour
of a harmonic oscillator potential, as indicated by the solid black line.

The linear trend observed in the peak positions confirms that the mode spacing is constant,
consistent with the expected energy spectrum of a harmonic oscillator potential.

Moreover, the spatial mode profile observed in the raw spectrum reveals the absence of bound
excited energy levels along the second spatial dimension, even beyond the 21* mode along
the x axis. This absence implies that the ratio of trap frequencies is at least A = w, /w, > 22,
corresponding to w, = 22 X w, = 27 X 8.14 THz, which exceeds the minimum frequency
required for one-dimensional confinement, w;D (see Equation 5.4). This observation further
confirms that the realised potential operates in an effectively one-dimensional regime.

For the study of dimensional crossover, precise control over the potential geometry in both
spatial dimensions is essential. To confirm that the second dimension also exhibits harmonic
confinement, one can examine the mode structure and the emergence of higher-dimensional
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Figure 5.3: Spectrum analysis for the anisotropic 2D-1D case (A = 5). a. The raw spectrometer image
is shown using a linear colour map, where the vertical axis corresponds to the spatial coordinate and
the horizontal axis combines spatial and dispersive information. The mode size increases parabolically
along the x direction, as indicated by the white dashed curve. b—c. Signatures of the emergence of the
second dimension. In b (rotated and zoomed in version of a), the potential exhibits one-dimensional
mode structure up to the fifth excited state, beyond which the first excited mode along the second
dimension (along the y direction) appears. At the tenth mode along the x direction, the second excited
mode along y also becomes visible, as expected from harmonic oscillator level spacing. This emergence
of a family of excited modes is more clearly visible in the logarithmic colour map shown in ¢, where
the mode structure is highlighted by dashed white parabolic curves.

features in the intermediate (2D-1D) regime, where the trap aspect ratio is A = 5.

In the raw spectrum corresponding to the 2D—-1D potential shown in Figure 5.3a, a parabolic
progression of real-space mode size as a function of energy is observed (indicated by the white
dashed line). Upon closer inspection (see the zoomed-in spectrum in Figure 5.3b) distinct
second-dimensional modes, specifically (i =0, j = 1) and (i = 0, j = 2), are seen to emerge
quite precisely at the positions of the i = 5 and i = 10 modes of the less confining x-direction.

These second-dimensional modes are accompanied by the corresponding mode families
(i, 1), (i,2) and so on, forming additional parabolic branches highlighted in Figures 5.3b—c.
This clearly indicates that the second spatial dimension is also governed by a harmonic
oscillator potential, with a trap aspect ratio of A = w,/w, =5, thus confirming the intended
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Figure 5.4: Spectrum analysis for the isotropic 2D case. a. The raw spectrometer image is shown
using a linear colour map. The vertical axis corresponds to the spatial coordinate, while the horizontal
axis combines spatial and dispersive information. The mode size increases parabolically along the x
direction, as indicated by the white dashed curve. b—e. Signatures of isotropy. A zoomed-in views
of panel a are presented. In b, the potential supports circularly symmetric modes, without any clear
one-dimensional mode character. These isotropic modes are further visualised in ¢ using a logarithmic
colour map, which highlights the increasing spatial extent of the higher-order modes. In panels d—e,
the spatial structure of the modes is compared to the expected harmonic spacing. Equidistantly spaced
white circles (from centre to centre) are overlaid to illustrate the correspondence with the harmonic
oscillator levels. At low energies, the mode separation is sufficiently large to allow individual modes to
be resolved. However, the overlap between modes increases with energy, as indicated by the merging
of adjacent circles, which leads to a reduction in spectral resolution.

geometry of the confinement.

Finally, the spectrum corresponding to the isotropic 2D harmonic potential, shown in
Figure 5.4a, also exhibits the characteristic parabolic increase in mode size as a function
of increasing energy (or, inversely with decreasing wavelength), similar to the 2D-1D case.
Upon zooming into the low-energy region, the mode shapes are observed to be circularly
symmetric and increase in spatial extent with rising energy, as indicated by the equidistant
white circles (see Figures 5.4a—c).
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This circular symmetry confirms the absence of anisotropy in the confinement, consistent
with the spatial density distributions discussed earlier. Although mode overlap becomes more
pronounced at higher energies, due to the nature of slit-less spectroscopy and the increasing
size of harmonic oscillator mode size, the overlap among the lowest-lying modes remains
sufficiently small to allow reliable extraction of the trap frequency.

Thus, by analysing the mode shapes and energy level spacing, the parameters characterising
the harmonic potentials were estimated and are summarised in Table 5.1, along with the
corresponding longitudinal mode number ¢ 2. In addition to the trapping frequencies w,
and w, the effective potential depth V.4 was determined. This quantity was measured as the
energy difference between the ground state and the last bound state of the potential, identified
by the termination of cavity fluorescence and the emergence of unconfined free-space modes.

Dimension | A | @, (THz) | w, (THz) | Vg (THz) | Vg (kgT) | ¢
2D 1 |27x0.223 [ 27 x0.223 | 7.747 1.239 8
2D-1D 5| 27x0.33 | 27 x1.65 7.855 1.256 8
1D 22 | 271x0.37 | 27 x8.14 7.629 1.220 | 10

Table 5.1: Measured parameters of the potentials for photons gas realised using DLW. The potentials
exhibit harmonic oscillator mode spacing with varying trap aspect ratio and thus ratio of trapping
frequencies A, with effective depth V5 i.e energy spacing between the ground mode and top of the
potential for corresponding longitudinal mode number ¢

Additionally, access to the momentum-space distribution was enabled by the experimental
setup through an optical Fourier transform, as discussed in Chapter 3. Figure 5.5 presents the
momentum-space distribution of the photon gas in both 2D and 2D-1D harmonic potentials 3,
under classical and quantum degenerate regimes. The expected extent of the thermalised
photon gas in momentum space was determined from the effective potential depth, V4, as
measured from the spectrum. This extent is indicated by a red dashed circle, where the
wavevectors satisfy the condition ki + ki = 2mqVeg/ A%, and lies within the detection limits
imposed by the numerical aperture (NA) of the setup, denoted by the black circle.

Good agreement is observed between the measured size of the photon gas cloud and
theoretical predictions, thereby validating the parameters derived from the spectral data. The
anisotropy of the potential is evident in the momentum distribution: in the quantum degenerate
regime, the ground mode shape appears isotropic for the 2D potential and elongated for the
2D-1D case (see Figure 5.5). It should be noted that the momentum-space photon distribution
is rotated by 90° * with respect to the spatial density distribution (see Figure 5.1), a feature
that is particularly apparent in the 2D-1D case (Figure 5.5b). Theoretical expectations for
the momentum-space distribution were also computed and show good agreement with the
experimental data (see side panels in Figure 5.5).

% The choice of q is motivated by the fact that any further reduction in the cavity length would result in a
collision between the plane cavity mirror and the structure fabricated on the opposite mirror. The value of ¢
was minimised as far as possible, depending on the height of the structure.

3 In the 1D case, momentum-space measurements were not feasible due to the broad momentum distribution
combined with the low photon number, which led to poor signal-to-noise ratio.

* In atomic Bose Einstein condensates, the inversion of the axis during time of flight has long been regarded as
evidence of a transition from a thermal cloud to a Bose Einstein condensate [66, 113, 114].
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Figure 5.5: Experimental momentum-space distributions. Exemplary momentum-space distributions
of the cavity fluorescence are shown for the two-dimensional (panel a) and anisotropic two-dimensional
(2D-1D, panel b) configurations, in both the classical and quantum degenerate regimes. The red
dashed circle indicates wavevectors satisfying k)zc + ki = 2megVog/ 7%, while the black circle marks
the numerical aperture (NA) of the imaging system. Side panels display the distributions integrated
along the k _ direction, with the corresponding theoretical expectations plotted as red dotted lines. The
extended tails of the distributions, reaching into regions of wavevector space beyond the confinement
of the trapping potential (denoted by grey shaded areas), are attributed to emission from free-space
modes that are not confined by the potential.

5.4 Absence of criticality

Having established the presence of quantum harmonic oscillator potential across the di-
mensional crossover from 2D to 1D, the influence of dimensionality on the presence of a
Bose—Einstein condensation (BEC) phase transition is investigated. The total photon number,
N, is selected as the scanning parameter. This choice is justified by the dependence of the
chemical potential on both temperature and total photon number; an increase in the total
photon number plays a role analogous to a reduction in temperature.

As the ground mode is spectrally resolved in the 2D, 2D—1D, and 1D spectra, the number of
photons in the excited states, N,,, is obtained by summing over all spectral modes excluding

ex?
the ground state. In Figure 5.6, the photon population of the excited states, N,,, is compared

ex?
to that of the ground state, N, as a function of N, for all three configurations.
Since a well defined critical photon number is not available for the 2D-1D case [30], the
observables N, N, and N, are scaled individually to an aspect-ratio dependent characteristic
photon number N. The scaling photon number, N, is defined as the photon number at which
the i = U /ON, reaches half of its low photon number limit, i.e., #(N) = (N — 0)/2. This
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quantity is estimated theoretically to enable consistent comparisons across dimensions 3,

a b

N

Population (N)
Population (N)

Population (N)
Population (N)

N/N

Figure 5.6: Ground versus excited mode populations. a—c. The populations in the ground mode (blue
dots) and in the excited modes (green diamonds) are shown as a function of scaled total photon number
for the 1D case (a, A = 22), the 2D-1D case (b, A = 5), and the 2D potential (¢, A = 1). Solid lines
represent theoretical predictions based on a Bose—Einstein distribution across the cavity modes. d.
A comparison of theoretical ground-mode populations is presented for one-dimensional (red) and
two-dimensional (blue) harmonic potentials, each with an equal number of energy levels. Predictions
for finite-size systems with trap depth 1.2kgT (solid lines) are contrasted with those for quasi-infinite
systems of depth 10kzT (dash-dotted lines). The dimensional crossover is observed to have a more
pronounced effect on ground-state population than the finite size of the system. For visual comparison,
the horizontal axis is rescaled for each geometry using the normalised photon number N, defined as
N =628 (2D), N = 64 (2D-1D), and N = 23 (1D), as described in the main text.

Initially, both the ground and excited state populations increase linearly, with the population
of the excited states growing significantly faster. This trend, however, undergoes a sharp
change in the case of the isotropic 2D potential with A = 1, where the population in the
excited states ceases to increase and saturates. In contrast, the ground state population
exhibits a threshold-like increase, continuing to grow (see Figure 5.6a), indicating the onset
of Bose—Einstein condensation (BEC).

A similar but less pronounced behaviour is observed in the 2D—1D crossover potential with
A = 5. In contrast, for the 1D potential with A = 22, no threshold behaviour is detected.
Instead, the populations in both the ground and excited states exhibit a smooth, monotonic

> Alternative definitions of the characteristic photon number may be formulated. For instance, it may be
determined as the photon number at which the internal energy per photon first undergoes a change in gradient
during the transition from a classical gas to a quantum degenerate gas, or it may be specified by higher order
moments of the internal energy per photon. However, the definition adopted in the present work, although
seemingly arbitrary, is straightforward to evaluate.
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increase, suggesting the absence of a BEC phase transition. These observations are in good
agreement with theoretical predictions based on Equations 5.7 and 5.8.

In the 1D case, the finite depth of the potential, identical to that used in the 2D configuration,
results in a reduced number of available modes, thereby softening any sharp features associated
with the phase transition. To assess the extent of this effect, theoretical expectations for the
ground-state population, obtained numerically, are presented for both finite-depth (1.2kgT)
and quasi-infinite-depth (10kzT") potentials in 1D and isotropic 2D geometries, each with the
same number of bound energy levels. The corresponding results are shown in Figure 5.6d.

While the threshold behaviour characteristic of the BEC transition becomes marginally
sharper in the quasi-infinite 2D case, no such features emerge in the 1D configuration. This
result suggests that dimensionality plays a dominant role over potential depth in determining
the presence or absence of BEC phase transition signatures.

5.5 Calorimetry along the dimensional crossover

For isotropic 2D harmonic potential, a direct mapping between N and T exists, i.e, both
the critical photon number and critical temperature are well defined [30], and Cy, has been
employed in prior studies to demonstrate the BEC phase transition in a photon gas [71].
However, for dimensions less than 2, such as in the case of a anisotropic two-dimensional
potential with aspect ratio A = 5, no such mapping is available. Consequently, as discussed in
Section.2.2.3, the thermodynamic quantity (V) is chosen as the primary thermodynamic
observable to investigate the BEC phase transition, owing to its capacity to sharply distinguish
between a BEC phase transition and a crossover.

As introduced in Section 2.2.3, fi(N) is defined as the partial derivative of the internal
energy with respect to the total particle number (in this context, the total photon number),
given by 5

U
fi=—5 (5.20)
where the internal energy U of the photon gas is computed by summing the energies of the
bound modes weighted by the corresponding photon occupancies

U= ) eN,. (5.21)

Experimentally, U and N can be extracted from the measured real-space spectra. Importantly,
the experimental observables U/N and g = 0U/ON are independent of the calibration
constant « that relates the photon number, N, to the camera counts C via N = aC. Since
U=}.eN,=a}, eC,itfollowsthatU/N = }, eC./C. Consequently, /iis alsoindependent
of @, and changes in this calibration constant does not affect the underlying physics.

The internal energy per photon, U /N, as a function of the normalised photon number N /N,
is displayed in Figure 5.7b for all three potential geometries: 2D, 2D-1D, and 1D. In all cases,
U/N is observed to decrease with increasing N /N, following theoretical expectations, though
at different rates depending on the geometry. However, high-frequency noise in the measured
U/N data introduces substantial numerical artefacts when calculating the derivative. This
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was mitigated by first binning the photon number data for U to suppress numerical noise.

The impact of this binning procedure is analysed in Figures 5.8-5.10, where three different
common ratios are applied to the binning process. The original and binned data are shown in
blue, green, and red, while the resulting || are compared to theoretical predictions (solid
black lines). Although binning does influence the level of numerical noise, it does not alter
the qualitative features associated with BEC transitions or crossovers. Smaller bin sizes
(i.e., smaller common ratios) fail to sufficiently suppress the noise, whereas larger bin sizes
(larger ratios) reduce data resolution. A compromise is therefore adopted to balance these two
extremes.

The observed variation of |fi| on N/N, extracted from the numerically differentiated binned
photon number data for U (bins of photon number in a geometric series spacing with a common
ratio of 1.2, 1.3 and 1.2 for the 2D, the 2D—1D and the 1D harmonic oscillator potentials,
respectively), reveals a strong contrast between BEC and crossover regimes (see Figure 5.7a).
For all three geometries,|i| decreases as the photon gas evolves from a classical regime to a
quantum-degenerate state. In the 2D isotropic harmonic oscillator potential, a sharp decline
in |/i| is observed around N/N = 1, after which it remains nearly constant, consistent with the
presence of a BEC transition. In contrast, for the one-dimensional potential, || decreases
smoothly, thereby indicating the absence of a genuine Bose-Einstein condensation (BEC)
phase transition and the presence of a crossover. The intermediate case of the anisotropic
two-dimensional (2D-1D) geometry, characterised by an aspect ratio A = 5, exhibits softened
phase transition features. This behaviour underscores a gradual and continuous evolution
from a sharp BEC phase transition to a smooth crossover.
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Figure 5.7: Caloric properties of the photon gas. The transition from a thermodynamic phase transition
in two dimensions to a smooth crossover in one dimension is reflected in the behaviour of . a. The
measured absolute value of ||, normalised by the thermal energy kg7, is shown as a function of
the rescaled total photon number N/N for the 1D, 2D-1D, and 2D harmonic oscillator potentials
(symbols). The zero-point energy is set to zero. Theoretical predictions for each geometry are shown
as solid curves. b. The measured internal energy per photon, also normalised by kg7 (symbols), is
plotted against the rescaled total photon number N /N for the same geometries, arranged from top to
bottom as 2D, 2D-1D, and 1D. The corresponding theoretical expectations are shown as solid lines.
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Figure 5.8: Binning effects on the caloric properties in the two-dimensional (2D) potential. a—c.
The unbinned internal energy per photon, U /N, is shown in grey, with the corresponding theoretical
prediction indicated by the solid black curve. Binned data, presented as mean values + standard
deviation, are shown for three different geometric binning series with common ratios of 1.145 (blue),
1.271 (green), and 1.381 (red), plotted in separate columns. d—f. The corresponding data for the ||,
are shown using the same binning schemes (symbols), with theoretical expectations again indicated by

the solid black curve.
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Figure 5.9: Binning effects on the caloric properties for the 2D—-1D potential. a—c. The unbinned
internal energy per photon, U /N, is shown in grey, with theoretical expectations indicated by the solid
black curve. Binned data, presented as mean values + standard deviation, are plotted using geometric
binning series with common ratios of 1.189 (blue), 1.278 (green), and 1.523 (red), each shown in a
separate column. d—f. Corresponding results for the absolute value of the normalised ||, are shown
(symbols), with theoretical predictions again plotted as solid black curves.
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Figure 5.10: Binning effects on the caloric properties for the 1D potential. a—c. The unbinned internal
energy per photon, U/N, is shown in grey, with the corresponding theoretical expectations indicated
by the solid black curve. Binned data, presented as mean values + standard deviation, are plotted using
geometric binning series with common ratios of 1.144 (blue), 1.198 (green), and 1.318 (red), shown in
three separate columns. d—f. The corresponding data for the absolute value of the normalised ||, are
shown as symbols, with theoretical predictions again plotted as solid black curves.
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CHAPTER ©

Engineering coupled and
high-curvature potentials for photon
gas in dye microcavities using direct
laser writing

The direct laser writing technique has proven to be a powerful method for fabricating high-
curvature structures within the dye microcavity platform, as demonstrated in the previous
chapter. In this chapter, the aim is to illustrate how this approach can open new avenues of
physics to be explored in this platform.

The high curvature and sub-micron feature sizes achievable with direct laser writing, down
to approximately 0.1 pm enable the fabrication of small potentials while preserving sharp
edges. To investigate this, small box potential with a side length of 10 pm is investigated
in Section 6.1, testing whether the potential geometry is preserved upon miniaturisation.
Subsequently, the limit of coupled single mode potentials is explored through the realisation
of a double well potential in Section 6.2, allowing estimation of the coupling strength between
individual wells. This coupling strength is then used to assess the feasibility of fabricating
extended 1D lattice geometries, as discussed in Section 6.3. Finally, an exploration of a
regime in which the characteristic photon number falls beneath one photon is presented in
Section 6.4. All of these structures will be investigated spectroscopically. For the majority of
potentials covered in this chapter, attention is directed towards the potential landscape and,
when possible, the associated distribution. These observations constitute a proof of principle
study. These potential landscapes do not require gradual variations in curvature. Instead,
a step function like height profile is sufficient and can be achieved using the simpler dip-in
configuration of direct laser writing, thereby eliminating the need for a substrate preparation
stage.
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6.1 Small box potential for photon gas

Box potentials for the dye microcavity platform, realised using a delamination technique in
previous work [28], enabled the investigation of compressibility in an optical quantum gas.
The smallest box sizes previously demonstrated had side lengths of 20 pm. When attempting
to reduce the box size further, the curvature of the structure’s walls plays a substantial role,
rendering the potential closer to that of a harmonic oscillator and consequently distorting the
intended dispersion. This limitation has now been overcome through the application of direct
laser writing (DLW), which allows the fabrication of box potentials with side lengths below
20 pm without significantly affecting the dispersion as the transverse feature size is < 100 nm.
This advancement is demonstrated here by DLW 3D-printing a box potential with side lengths
of 10 pm.

Figure 6.1: Optical microscope image of a 10 pm X 10 um box structure fabricated using the dip-in
configuration of direct laser writing (DLW).

A box potential is realised by printing the 3D polymer structure with the following height
profile
hy if (L~ 2fx]) - (L, = 2[y]) 2 0

. (6.1)
0  otherwise

h(x,y) = {
where L, and L, represent the side lengths of the box along the x and y directions,
respectively. The structure possesses a uniform height of 4. A microscope image of the
resulting 3D-printed polymer structure on a cavity mirror with L, = L, = 10 pm is shown in
Figure 6.1.
The potential landscape is obtained by substituting this height profile into Equation 2.1,
yielding

-V, if (L, =2|x|)- (L, =2]y]) =0
Viey) =] 01 ( X lx) - (L) —2y]) 62)
0 otherwise
This represents a box potential with a depth
megc” ng—ny hy
Vo = — (6.3)
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Figure 6.2: Exemplary spectral dispersion of a 10 pm X 10 pm box potential in real and momentum
space. a. The expected spatial bounds of the box potential are indicated by dashed black lines at
—5 pm and 5 pm, overlaid on the raw real-space spectrogram. The match with the anticipated spatial
extent highlights signatures of sharp confinement boundaries. b. The raw momentum-space spectrum
of the same box potential is shown, with the expected parabolic dispersion indicated by an overlaid
dashed black curve, consistent with the relation Ay o ki. Regions shaded in grey denote wavevector
components beyond the numerical aperture (NA) of the detection system.

The spatial extent of the modes in real space is expected to remain constant regardless of
energy. In contrast, in momentum space, the mode size is anticipated to increase with energy,
exhibiting a parabolic dispersion [28]. To investigate this behaviour, a dual spectroscopy
setup, comprising both real and momentum space spectrometers, was employed to measure
the corresponding spectra of the photon gases in such box potential (see Figure 6.2). In real
space, the modes were observed to maintain a constant size, as expected. This is indicated by
the black dashed lines at =5 pm and 5 pm, corresponding to the designed width L, = 10 pm,
in Figure 6.2a. In momentum space, despite a reduced signal to noise ratio resulting from the
larger mode sizes, a parabolic dispersion was observed, consistent with the theoretical relation
Av o« ki, as shown by the black dashed curve in Figure 6.2b.

The results indicate that the DLW-fabricated box structure reproduces essential features of
a photon gas in a box potential in both real and momentum space, even at transverse scales
as small as 10 pm. Additionally, the effective potential depth, V.4 > 727 X 6 THz, implies
that the side walls of the structure remain sufficiently steep, preserving the depth of the
potential. This finding is particularly substantial, as it allows for realising deep, single-mode
(zero-dimensional) traps, which are critical for lattice engineering as will be discussed in the
following sections. More comprehensive investigations of polymer based box potentials have
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already been reported in the referenced Master’s thesis [105]. However, in the present work, a
photon gas confined in a significantly smaller box potential than those previously realised [28,
105] has been demonstrated, and also its dispersion in momentum space has been measured
spectroscopically.

6.2 Coupled microscopic potentials

Previous significant work on two coupled potentials in dye-filled microcavity platforms was
conducted using a delamination technique. In that study, two coupled wells, resembling
harmonic oscillators, each supporting a single bound energy level, were investigated, with
coupling rates on the order of 27 X 30 GHz [93]. In the present work, the use of the DLW
technique, which enables smaller transverse feature sizes, allows the realisation of box-like
potential wells, each supporting a single bound energy level.

The energy spacing in a box potential with side length L scales as 1/ L*. For sufficiently
small transverse dimensions, a potential of finite depth V; may support only a single bound
energy level. This bound state exhibits no degrees of freedom in any spatial direction, thereby
rendering the system effectively zero-dimensional or may be regarded as a photonic quantum
dot.

Here, a radially symmetric version of the box potential is considered, specifically, a circular
pillar potential of radius R and depth V|,. The resulting potential landscape is described as
follows

—V, if(RP=(x-a)* - (y-b)*») >0

] (6.4)
0 otherwise

V(x,y) = {
where the potential is centred at coordinates (a, b).
Such a potential may be realised through the fabrication of a cylindrical polymer pillars, as
shown in Figure 6.3. The associated height profile is defined by:

hy if (R = (x—a)’—(y=5b)*) 20
hx,y) = {0 RS @ (=) 2 (6.5)
0  otherwise
The energy eigenvalues of a circular pillar potential are given by
72
E; =——[z;;]% fori=0,£1,+2,43,... and j, = 1,2,3, ... , (6.6)
)~ 5 2 L2(jy) r
meﬂ:R

where z; ; y denotes the jﬁh zero of the regular Bessel function J;(z) [115, 116].

A system may be considered zero-dimensional if the ground state energy E|) ; lies below
the potential depth V},, while the first excited state’s energy E, | | exceed it. These conditions
establish lower and upper bounds for the radius R, expressed as

hz
Rlower = \/— [Z(O,lr)]2 (67)

2meﬂ:VO
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V(x)

R

Figure 6.3: Schematic of a zero-dimensional potential. a. A microcavity incorporating a cylindrical
polymer structure is shown. Circular pillar potentials are realised by fabricating a cylindrical structure
with a circular base of radius R and height 4, onto the mirror surface using the dip-in configuration of
direct laser writing (DLW). b. The corresponding potential energy landscape is shown, featuring a
single bound mode with an evanescently leaking component.

n* 2
Rupper = \/Zm—eﬁVo [2(e1,1,)] (6.8)
For a maximum potential depth of V) = 2k T, the corresponding bounds are R, ., = 0.71m
and R = 1.1pm, which fall within the feature size limits of the DLW fabrication method.

upper

The mode profile in such a potential extends beyond the potential boundary, exhibiting an

exponentially decaying tail. This evanescent part of the wavefunction provides a mechanism

for photon tunnelling, which can be utilised to couple two such sites, thereby forming a
double-well potential (see Figure 6.4).

The Hamiltonian describing such a double-well system can be written as

0 0 01 0 -nJ
H= (0 AE) - (1 0) B (—h] AE) ’ ©9)
where AE denotes the energy detuning between the two wells, and J is the coupling
strength [93]. The corresponding eigenenergies are

E,=AE/27 \/ (hJ)* + (AE/2)* = AE/2F hJ' = AE, =2hJ (6.10)

The resulting symmetric (ground) and antisymmetric (excited) eigenmodes, ¢, can be
expressed as superpositions of the wavefunctions ¢, and i, of the individual wells
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V(x)

Figure 6.4: Schematic of two coupled zero-dimensional potentials. a. A microcavity incorporating
two cylindrical polymer structures is shown. Each structure has a circular base of radius R and height
hy, and they are fabricated onto the mirror surface with a centre-to-centre separation of d, using the
dip-in configuration of direct laser writing (DLW). b. The corresponding potential energy landscape is
shown, featuring a single bound mode with evanescent coupling between the adjacent potentials.

Yy = cos(0/2) -y +5in(6/2) - ¥,

. (6.11)
W =sin(0/2) -y —cos(6/2) -
where the mixing angle is defined as
6 = tan"' (2hJ /AE) . (6.12)

In Figure 6.5, raw spectra of a photon gas confined within coupled cylindrical polymer
structures of radius R ~ 0.6 pm in a dye-filled microcavity are shown in panels Figure 6.5d to
Figure 6.5f. These correspond to three different centre-to-centre spacings of the structures,
d = 2um, 1.5 pm, and 0.8 pm, as illustrated in panels Figure 6.5a to Figure 6.5c¢, respectively.
Form the spectra, signatures of a symmetric ground state and an antisymmetric excited state
are observed, consistent with the expected coupling between two potential wells.

Furthermore, the spatial mode density of the excited state is symmetric, suggesting that
0 ~ /2, and hence AE < 2hJ. It follows that the dominant contribution to the mode splitting
AE . arises from the coupling strength J. Additionally, it was observed that, upon tilting one
of the cavity mirrors, no change in mode spacing was detected, suggesting that the coupling
strength was dominant over the energy detuning.

The energy detuning AE is directly proportional to the height difference between the two
polymer cylindrical pillars. The deviation introduced by inherent fabrication roughness is
estimated as Ak < 0.02 pm h corresponding to a relative energy shift of AE/E,; < 0.06.

! Estimated from atomic force microscopy (AFM) measurements taken in the bulk of the structure, although of
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Figure 6.5: Mode hybridisation in a double-well potential. a—c. Optical microscope images of
cylindrical polymer structures fabricated using the dip-in configuration of direct laser writing (DLW).
The centre-to-centre spacing between the cylinders is d = 2 um, 1.5 pm, and 0.8 pm in panels a, b,
and c, respectively. The corresponding raw spectra of the coupled double-well potentials are shown in
panels d—f, revealing two bound modes that are attributed to arise due to mode hybridisation. The
horizontal axis represents the spatial dimension along the double-well axis, while the vertical axis
denotes the dispersive direction, indicating the measured energy spacing with respect to the ground
state in units of THz. To enhance the visibility of the antisymmetric (excited) eigenmodes, the image
has been slightly defocused; as a result, the x-axis does not correspond to calibrated length units.

The coupling strength J is primarily determined by three parameters: the individual
potential depth V|, the base radius R of the potentials, and the centre-to-centre distance d
between the potentials.

Owing to the constraints set by Equations 6.7 and 6.8, and the maximum achievable potential
depth V.. = 2k T, the distance d is employed as the primary control parameter for tuning

the coupling strength.
From the spectrograms, the energy difference between the ground and excited modes is

different geometry, described in Section 4.4.
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extracted and plotted as a function of centre-to-centre distance d in Figure 6.6.

1.0 15 2.0 2.5
d (um)

Figure 6.6: Mode separation energy in the double-well potential as a function of centre-to-centre
distance d between the potentials. The measured data, extracted from the raw spectra shown in
Figure 6.5, are indicated by red symbols. Corresponding numerical predictions are shown as black
symbols, with a grey curve interpolating between them.

It is observed that the mode splitting AE, increases as the centre-to-centre distance d is
reduced, in good agreement with theoretical predictions obtained numerically using open-
source Python package PyPBEC [117] 2. The maximum coupling strength, J ~ J', is achieved
for a configuration in which the polymer pillars partially overlap 3 with J' ~ 27 X 2 THz.

In contrast, for configurations without physical overlap (see Figure 6.5a), the coupling
strength is reduced to J' ~ 27 x 0.25 THz . Nevertheless, this value remains approximately
an order of magnitude larger than those reported in previous studies on double-well potentials
in dye-filled microcavity platforms [93]. Consequently, the use of multiple coupled pillars
arranged in lattice geometries becomes experimentally feasible, as will be discussed in the
following sections.

% The Python package was used exclusively for the extremely small potentials and lattice geometries presented
in this work, as it was particularly helpful for the rapid optimisation of the design parameters of complex
potential landscapes

3 In this regime, the coupled wells may also be interpreted as an elongated box supporting two eigenmodes. The
model remains valid because the mode amplitude is maximal at the pillar centre, and a similar arrangement of
overlapping coupled pillars has been employed in polariton experiments [25].
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6.3 Band structure engineering for photon
condensates

The here observed high coupling strength between individual zero-dimensional potentials, in
principle, allows for the realisation of large lattices. This is because strong coupling reduces
the system’s sensitivity to detuning variations between sites that may arise due to surface
inhomogeneities. This can enable the study of phenomena such as the one-dimensional
Kardar—Parisi—Zhang universality class [50-57], dissipation induced stable vortices in non-
interacting systems [59], and the Bosonic skin effect through tunable coupling strength [58].
As a proof of principle technological demonstration towards realising such extended lattices,
one-dimensional lattice structures consisting of 20 sites of various geometries have been
fabricated using direct laser writing (DLW).

6.3.1 1D chain

A one-dimensional chain of cylindrical pillars, with a height of 4, = 400 nm and a radius
of R = 0.7 pm, was printed with a centre-to-centre spacing of d = 1.3 nm using a dip-
in configuration. A top-down view of the resulting structure, captured using an optical
microscope, 1s presented in Figure 6.7a. Analogous to the case of the double-well potential,
the spectrogram of the photon gas distribution at cutoff wavelengths of 579.5 nm is shown
in Figure 6.7b. The spectrogram reveals extended lattice modes with an increasing number
of nodes as a function of energy. The experimentally measured spectrum (at equilibrium) is
compared to a numerically calculated equilibrium spectral distribution, as shown in Figure 6.7d,
corresponding to the lattice geometry illustrated in Figure 6.7b. A good agreement between
the experimental and numerical spectra is observed (see integrated spectrum in Figure 6.7e),
indicating the feasibility of hosting a near to equilibrium photon gas in extended lattices.
However, the coupling strength in this structure lies at the higher end due to the partial overlap
of the pillars, as evident in Figure 6.7a. As a result, the system may also be interpreted
as a periodically modulated one-dimensional rectangular potential, which would similarly
support comparable mode shapes and energy spacings. In many experimental platforms,
arrays of overlapping pillars are regarded as lattice geometries. Such arrangements display
characteristic lattice features [63] and have been employed in polaritonic systems to investigate
Kardar-Parisi-Zhang physics [25].

6.3.2 SSH chain

The coupling between two zero-dimensional potentials can be controlled via the centre-to-
centre distance, d. To demonstrate the realisation of a band structure in a lattice potential,
characterised by features such as a band gap and distinct from continuous potentials like
the one-dimensional rectangular potential, the Su—Schrieffer—Heeger (SSH) model [45—48]
geometry was chosen. The SSH model requires alternating coupling constants, J; and J,.
Depending on the coupling constant of the terminating lattice sites, either a topologically
trivial band structure with a band gap or a topologically non-trivial edge state situated within
the band gap can be realised, as shown in Figure 6.8.
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Figure 6.7: One-dimensional chain potential. a. Optical microscope image of a one-dimensional
(1D) chain consisting of 20 cylindrical polymer structures, each with a radius R = 0.7 pm and a
centre-to-centre spacing of 1.3 pm. b. Schematic of the 1D chain used for calculating the photon gas
mode spectrum. ¢. Measured real-space spectrum of the photon gas confined within the 1D chain
potential. d. Numerically calculated equilibrium distribution mode spectrum based on the schematic in
panel b, including spectrometer resolution. Panels ¢ and d display spectrograms in which the horizontal
axis corresponds to the spatial dimension along the lattice chain, while the vertical axis represents the
dispersion axis. e. Integrated spectra, with measured data shown as magenta-coloured symbols and the
numerical prediction, based on a Bose—Einstein distribution, shown as a solid black curve. The exact
expected mode positions are indicated by vertical black dashed lines.

The lattice potentials were implemented by coupling 20 zero-dimensional potentials with
corresponding coupling strengths. Microscope images of the 3D-printed polymer structures for
both the trivial and non-trivial SSH cases are presented in Figures 6.8¢ and 6.8d, respectively.
The pillars were designed with a maximum height of 4, = 600 nm and a radius of R = 0.5 pm.
The centre-to-centre distances d; = 0.7 ym and d, = 1.7 pm were chosen to realise two
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Figure 6.8: Schematic of the Su—Schrieffer—Heeger (SSH) one-dimensional model. a. A one-
dimensional (1D) chain of zero-dimensional potentials is shown, with alternating coupling strengths
J, and J,, and terminating with a J; coupling. b. A similar 1D chain is shown, terminating instead
with a J, coupling. ¢. Exemplary band structure calculated for the configuration in panel a (with 20
sites), showing a lower band (red) and an upper band (blue) with a visible band gap. d. Exemplary
band structure calculated numerically, using PyPBEC [117], for the configuration in panel b (with
20 sites), also exhibiting a band gap. In this case, additional states appear in the middle of the gap,
corresponding to topological edge modes.

clearly distinct coupling strengths, J; and J,, respectively. Unlike in a 1D continuous chain,
the pillars do not exhibit overlap, at least for the d, = 1.7 pm case, confirming the presence of
discrete lattice potentials.

The spectrogram of the photon gas in the SSH lattices is shown in Figure 6.9 4 where a
clear separation between the ground and excited bands is observed in both cases, with an
energy gap between them. This indicates the existence of two distinct coupling strengths, J,
and J,. In the trivial case, the band gap remains empty, whereas in the non-trivial case, two
edge modes appear within the gap, one at each edge, in addition to the ground and excited
energy bands. This confirms the feasibility of realising large lattices with significant photon
hopping probability, enabled by high coupling strengths without site overlap. This proof of
principle study demonstrates the potential of DLW for the fabrication of large lattice models,

* The difference in the onset of free-space modes between the SSH trivial and SSH non trivial lattice structures
is attributed to a global offset in their heights. The offset may arise from inconsistencies in the tilt correction
of the cavity mirror during fabrication. Because the structures are separated by more than 2 mm, even slight
errors in tilt correction can introduce this effect. The issue may be avoided by printing the structures of interest
side by side.
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Figure 6.9: Investigating the Su—Schrieffer—Heeger (SSH) one-dimensional model in a dye microcavity.
a. Optical microscope image of a one-dimensional (1D) chain of zero-dimensional potentials, consisting
of 20 sites with alternating centre-to-centre spacings of d; = 0.7 ym and d, = 1.7 pm, corresponding
to coupling strengths J; and J,, respectively. The chain terminates with a J; coupling. b. Optical
microscope image of a similar 1D chain with the same alternating spacings (d; and d,), but terminating
with a J, coupling. ¢. Measured real-space spectrum of the photon gas confined in the lattice potential
shown in panel a, displaying upper and lower bands separated by a visible band gap. d. Measured
real-space spectrum of the photons in the lattice potential shown in panel b, where in addition to
the upper and lower bands, distinct edge modes are visible at either spatial boundary, with energies
located in the middle of the band gap. The grey-shaded regions correspond to the ends of the potential
and indicate the emergence of free-space modes. Panels ¢ and d display spectrograms in which the
horizontal axis corresponds to the spatial dimension along the lattice chain, while the vertical axis
represents the dispersion axis.

enabling future studies of driven-dissipative physics in lattice geometries.
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6.4 Towards sub one-photon characteristic photon
number

The study of two-level systems, typically comprising an atom coupled to an electric field,
has been thoroughly investigated [118] [119-121]. In recent work with a dye microcavity,
a thermalised two-level system of light (that is, a potential featuring only two bound states
accessible to photons), has been investigated [60]. In that work, the energy splitting between
the modes (AE =~ h - 50 GHz) was substantively smaller than the thermal energy. Above a
characteristic photon number N, ~ 2kgT /hAv =~ 250, the ground-state mode was dominantly
populated, whereas at low photon number, the populations of the states were nearly equal.

Continuing with the theme of few-level systems, it is also of interest to consider regimes in
which the characteristic photon number, required for condensation into ground state, is on the
order of a single photon or less, on average. Preliminary investigations into this regime have
here been enabled in the dye microcavity platform through the use of DLW, and the initial
results are presented herein. To design a potential in that regime, it is instructive to begin with
strict constraints, as discussed below.

The occupation probability of a bound state with energy ¢, relative to the ground state
energy and with degeneracy g(¢€), is described by the Bose—Einstein distribution, as expressed
in Equation 2.8, which is reiterated here for convenience

Ne) = g(€)

= 1
e lksT _ | ©.15)

As outlined in Section 2.2.2, the corresponding saturation photon number at a fixed
temperature 7 is given by

Emax
N = g(e)
' €#0 ee/kBT -1

(6.14)

In a two-level potential the degeneracy g(e) may be lifted by introducing transverse
asymmetry and by restricting the system to a single polarisation subspace. The resulting
potential supports two excited bound energy levels, each corresponding to a distinct spatial
dimension, the saturation photon number can be decomposed as

€

1
Ny=» —— |
s EZ#:O eE/kBT _1
- eel/kBT -1 + efz/kBT -1 = e, + fe, -

(6.15)

The saturation photon number 7, for a single bound energy level at an energy hAy above
the ground state may then be expressed as

ne(Av) = (6.16)

hAvy

eksT — 1
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For the case N, < 1, it is evident that both n, and n, must individually satisfy n,(Av) < 1.
Accordingly, for sufficiently large energy spacings Av, the saturation photon number per level
remains below unity. This condition imposes a constraint on the energy spacing Ay at ambient
temperature 7' = 300 K,

S In(2)kgT

Ay > , ~ 4.3 THz (6.17)

2 um

Figure 6.10: Optical microscope image of an asymmetric pillar structure fabricated using the dip-in
configuration of direct laser writing (DLW).

To realise such a system, a small polymer pillar structure exhibiting transverse asymmetry
is employed, with lateral dimensions L, = 2.29 ypm and L, = 1.9 pm , was fabricated on a
cavity mirror. The cavity fluorescence spectrum corresponding to this structure is shown
in Figure 6.11. It is evident that the potential supports three bound states. By virtue of the
transverse asymmetry, the degeneracy of the excited state here is lifted, yielding two distinct
excited states rather than a one. Crucially, the measured energy spacing between the ground
mode and the first excited state is 4.15 THz, corresponding to a saturation photon number of
1.06 photons on average; the energy spacing between the ground mode and the second excited
state is 5.12 THz, corresponding to a saturation photon number of 0.79 photons on average,
where the saturation photon numbers are calculated using Equation 6.16. Thus, the system
approaches the limit in which one photon suffices to saturate a single bound level, as indicated
by Equation 6.17. Taken together, the two excited states yield a total saturation photon number
of 1.85 photons. However, the onset of condensation into the ground state may occur at a
characteristic photon number lower than this limit due to finite-size effects [21].

Following the definition used in reference [60], the characteristic photon number for a
single polarisation subspace, i.e the photon number at which the "thermal cloud" saturates, is
given by N, = kgT/(hAv), which for Av = 4.15 THz yields an average value of N = 1.5.

Further, measurements were performed to determine the population of each bound state as
a function of the total photon number; the results are displayed in Figure 6.12. For each total
photon number, the counts within the spectral regions corresponding to the individual mode
extents (as defined in Figure 6.11) were recorded. Because the photon numbers involved were
very low, a calibration factor converting counts to photons was obtained by averaging the
ratio of ground mode counts to the theoretically expected populations at condensate fractions
0f 0.9, 0.85, 0.8 and 0.75. It is observed that the behaviour of the ground mode population
differs markedly from that of the excited states. The excited states (shown in blue and purple
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Figure 6.11: Integrated spectrum of a small asymmetric potential containing only three bound states.
Due to the mode size and spectrometer resolution, the modes have finite width, which are marked by
red, blue and purple shaded regions for the ground, first excited and second excited states. The onset of
free space unbound states is indicated by a grey shaded region.

symbols) clearly exhibit saturation, whereas the ground mode population continues to increase
as the total photon number is raised, indicating the onset of condensation into the ground
state. In addition, a change in the slope of the ground mode population is apparent around 1.5
photons on average, as anticipated. The population trends of the two excited states follow
the theoretical expectation and approach saturation in accordance with theory (numerically
estimated). It should be noted that these observations pertain to a single polarisation subspace.

In future experiments, by fine-tuning the lateral extent and aspect ratio of the potential, the
total saturation photon number may be reduced to well below one photon on average.
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Figure 6.12: Population of the bound states as in Figure 6.11 as a function of total photon number,
i.e. the summation of populations of the bound states. a The population in the ground mode (red
symbols), first excited mode (blue symbols) and second excited mode (purple symbols). The theoretical
expectation is indicated by a solid line. A horizontal dashed line represents population equal to one
photon. The ground mode population increases as total photon number increases, while the excited
states show saturation. b Zoomed-in region of plot in a, showing the saturation effects of excited
states nearing the one photon limit, while the ground mode is observed to change slope around the one
photon population mark.
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CHAPTER [

Conclusions

This thesis has presented an experimental investigation into the nature of the transition of
a photon gas in a dye-filled microcavity platform, as the dimensionality is reduced from
two dimensions to one dimension under harmonic confinement. It has been observed, both
via population measurements and calorimetric analysis, that the isotropic two-dimensional
case exhibits a Bose-Einstein condensation characteristic of an ideal Bose gas. In contrast,
this sharp transition becomes softened under an intermediate anisotropic two-dimensional
harmonic confinement with an aspect ratio of A = 5. Upon further increasing the anisotropy,
a one-dimensional harmonic confinement is realised, where a smooth crossover from the
classical regime to a quantum-degenerate phase is observed. This behaviour stands in stark
contrast to the isotropic two-dimensional case. The realisation of such highly anisotropic
and high-curvature potentials has been made possible through the implementation of Direct
Laser Writing (DLW) polymer nanostructures onto a cavity mirror, marking their first use in a
dye-filled microcavity photon gas platform.

As DLW has been primarily suited to the fabrication of small polymer structures, various
trapping geometries have been explored to investigate its broader potential in this platform.
Notably, coupled double-well potentials have been realised with minimum coupling rates that
significantly exceed previous demonstrations within dye microcavities. These configurations
have subsequently been employed to fabricate extended one-dimensional chains of up to
twenty lattice sites, including geometries based on the Su-Schrieffer-Heeger (SSH) model.
These results confirm that complex band structure engineering of extended lattice geometries
is now feasible. Beyond the demonstration of well-established potential landscapes, DLW has
enabled a preliminary exploration of new finite-size regimes where condensation may occur
with an average occupancy of less than one photon, at which the thermal cloud saturates.

Looking forward, it would be of interest to study alternative trapping potentials for photons.
In particular, potentials stronger than linear could enable Bose-Einstein condensation with
phase transition signatures even in one dimension [20], and the associated spatial correlations
should be investigated [122]. In finite-sized traps the correlations may still extend across the
entire system. It would therefore be insightful to fix the system size, defined by spatial extent
and potential depth, while varying the dispersion relation from harmonic to stronger than
linear, to better explore the conditions under which phase transitions arise.
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Within the dye microcavity platform, by tuning the low-frequency cutoff, photon losses
can be changed from a nearly lossless regime to that of a driven-dissipative condensate [29].
This adjustment is expected to impact the system’s correlations and may further influence the
polarisation properties of the condensate [96, 97], which presents an interesting avenue for
future research.

The DLW structuring approach demonstrated here offers significant flexibility in the
engineering of photonic potentials. It enables the design of both continuous potentials
such as the harmonic oscillator and discrete coupled-lattice geometries with large coupling
strengths. For the one-dimensional lattices like the ones explored in this thesis, with incoherent
hopping, is predicted to give rise to the bosonic skin effect [58], which could be implemented
with tilted lattice with hopping mediated by bath such as dye solution. It would also be of
interest to investigate whether Kardar—Parisi—Zhang (KPZ) scaling, as observed in polariton
condensates, emerges in this system [25]. Extending the lattice to two dimensions is predicted
to result in KPZ behaviour distinct from the one-dimensional case [123]. Furthermore, in
two-dimensional driven-dissipative lattices, the formation of stable vortices is expected [59,
124], and the possibility of vortex cluster formation remains to be explored [125].
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APPENDIX A

Information on optics used

Lens | Focal length (cm)
L, 20
L, 20
L, 20
L, 30
Ls 10
L 7.5
L, 30
Lg 20
L 30
Lo 25

Table A.1: List of lenses mentioned in Figure 3.7 and their focal lengths.
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