Generic Malware Unpacking:
Existing Solutions, Requirements,
New Approach for Windows
Malware

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultat
der
Rheinischen Friedrich-Wilhelms-Universitat Bonn

vorgelegt von

Thorsten Jenke

Euskirchen

Bonn, 2025

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultat der
Rheinischen Friedrich-Wilhelms-Universitat Bonn.

Gutachter/Betreuer: Prof. Dr. Peter Martini

Rheinische Friedrich-Wilhelms-Universitdt Bonn
Gutachter: Prof. Dr. Elmar Padilla

Hochschule Bonn-Rhein-Sieg

Tag der Promotion: 6.10.2025
Erscheinungsjahr: 2025

II

Summary

Malware continues to be a substantial threat to cybersecurity, amplified by the widespread
use of malicious executable packing, so-called packers. These packers inflate the num-
ber of unique samples in the wild by introducing polymorphism and hinder and delay
in-depth malware analysis, making unpacking an essential first step.

Security researchers are developing countermeasures against these packers, called un-
packers. Early unpackers targeted specific packer types, but the variety of different
packers prompted the development of generic malware unpackers. Such tools aim to
unpack the original binaries without prior knowledge of used packer’s properties and
capabilities, relying instead on broadly applicable assumptions about packer behavior.
The more generic the assumptions are made, the more generic the unpacker. However,
the lack of empirical understanding of packer capabilities has forced researchers to rely
on subjective experience in practical malware analysis when defining these assumptions.

To remedy this, this dissertation defines scientifically sound prerequisites for generic
malware unpackers and demonstrates their application in a proof-of-concept tool. This
is accomplished by conducting studies on packer capabilities, deriving unpacker require-
ments from those insights, and using these requirements as the basis to develop a generic
malware unpacker.

Since Windows malware running on x86 and x86_64 processors is the most common
type of malware, it is the main focus in this work. Two studies have been conducted to
explore the unpacking behavior of Windows malware: one in a singular process and the
second across multiple processes. The results of these studies have been used to formulate
requirements for a Windows-focused generic malware unpacker. These requirements were
then applied to evaluate the genericity of previously proposed solutions. No previously
proposed unpacker meets all the requirements. The final steps demonstrate how a generic
malware unpacker can be implemented based on the previously identified requirements.
A new generic malware unpacker called GeMU is proposed and implemented into a proof
of concept. Evaluation on three Windows malware data sets used in the unpacking
behavior studies confirms that GeMU achieves high coverage across diverse samples.

I

Publications

This thesis is based on the following peer-reviewed publications:

e Jenke, Thorsten, Simon Liessem, Elmar Padilla, and Lilli Bruckschen. “A Mea-
surement Study on Interprocess Code Propagation of Malicious Software.” In-

ternational Conference on Digital Forensics and Cyber Crime. Cham: Springer
Nature Switzerland, 2023. [https://doi.org/10.1007/978-3-031-56583-0_18]

e Jenke, Thorsten, Elmar Padilla, and Lilli Bruckschen. “Towards Generic Malware
Unpacking: A Comprehensive Study on the Unpacking Behavior of Malicious Run-
Time Packers.” Nordic Conference on Secure I'T Systems. Cham: Springer Nature
Switzerland, 2023. [https://doi.org/10.1007/978-3-031-47748-5_14]

e Jenke, Thorsten, Max Ufer, Manuel Blatt, Leander Kohler, Elmar Padilla, and
Lilli Bruckschen. “Democratizing Generic Malware Unpacking.” 2025 IEEE Euro-
pean Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, 2025.
[https://doi.org/10.1109/EuroSPW67616.2025.00010]

https://doi.org/10.1007/978-3-031-56583-0_18
https://doi.org/10.1007/978-3-031-47748-5_14
https://doi.org/10.1109/EuroSPW67616.2025.00010

Contents

1

Introduction 1
1.1 Research Questions L 2
1.2 Contributions 2
1.2.1 Analysis of Past Research 3
1.2.2 Malware Unpacking Within a Single Process 3
1.2.3 Multi-process Malware Unpacking 4

1.2.4 Requirements for a Generic Malware Unpacker and new Malware
Unpacker 4
1.3 Outline e 5
Foundations 7
2.1 Malware Analysis 7
2.1.1 Static Analysis Lo 7
2.1.2 Dynamic Analysis 8
2.1.3 Evasion Techniques. oL 9
2.2 Microsoft Windows Foundations, 9
2.2.1 PE-Format 9
2.2.2 Virtual Address Spaceo 11
223 APIL . . . 12
2.3 Runtime Packing 13
2.3.1 Typesof Packers 13
2.3.2 Packing and Unpacking Steps 14
2.4 Conclusion 16
Malware Unpacking in the Literature 17
3.1 Generic Malware Unpackers in Literature 18
3.2 Analysis e 23
3.2.1 Terminology 23
3.2.2 Heuristics 24
3.23 DataSets 24
3.3 Blueprint for the Construction of a Generic Malware Unpacker 27
3.4 Conclusion 29
Intra-Process Unpacking Behavior 31
4.1 Introduction 31
4.2 Unpacking Model L 32
4.2.1 Unpacking Layer oo 32
4.2.2 Interpretation of Unpacking Layers 33

VII

Contents

4.3 Packer Measurement System L.
4.3.1 Framework Lo
4.3.2 Implementation of Recording Plugin
4.3.3 Generating the Unpacking Layers
4.4 Study
441 Setupo
4.4.2 Results and Interpretation L.
4.5 Limitations L L
4.6 Conclusion
Multi-Process Unpacking Behavior
5.1 Imtroduction
5.2 Code Propagation
5.2.1 Definition
5.2.2 Representation o o
5.2.3 Code Propagation Implementation
5.3 Measuring Code Propagations
5.3.1 Recording APIcalls
5.3.2 Identifying Code Propagations
5.4 Code Propagation Study oo
5.41 Setup
5.4.2 Results
5.5 Limitations L
5.6 Conclusion
Past Generic Malware Unpackers
6.1 Introduction
6.2 Requirements for a Generic Malware Unpacker
6.3 Assessment
6.3.1 Analysis
6.4 Conclusion e
GeMU: The QEMU-Based Generic Malware Unpacker
7.1 Introduction L
7.2 Methodology
7.3 Implementation
7.3.1 Writing Function oo
7.3.2 Translation Function L.
7.3.3 Syscall/Sysret Function
7.3.4 Management L
7.3.5 Limitations
T4 Study . ..o
741 Setup
742 DataSets
7.4.3 Correctness o v vt
T4.4 Speed

VIII

47
47
47
48
48
49
50
51
52
54
55
55
59
99

61
61
61
63
67
69

Contents

7.5 Discussion e 85
7.6 SUMMATY o e 86
8 Conclusion 87
81 Ovwerall Impact 87
8.2 Impact of Research Questions 88
8.3 Limitations e 91
8.4 Future Work 92
8.5 Al-Tools Disclosure e 93
Bibliography 95

IX

1 Introduction

Despite significant advances in computer system defense, the persistent threat of mal-
ware continues to pose a substantial risk to all digital systems. In April 2025, AV-Test
found 952,604,358 unique malware samples for Microsoft Windows and an increase of
73,063,458 unique samples in 2024 [1]. To defend against this threat, automated tools
are developed for early detection and mitigation. However, malware authors use tools to
protect their software against detection and analysis to increase its longevity. These tools
are called packers and obfuscate or compress code that is brought into an executable
state during the run time of the malicious binary.

In turn, malware analysts responded by creating unpackers, most of which are tailored
to specific off-the-shelf packers. Packer manufacturers and malicious actors countered
this development by constantly changing their packers and developing custom packers,
resulting in a high number of custom packers only used by singular actors or adjacent
groups [2]. Analysts tried to counteract this development with generic malware unpack-
ers. This arms race is known as the packer problem [2, 3].

The goal of a generic malware unpacker is to create a lasting solution to the packer
problem by being able to remedy every kind of packer. Achieving this objective requires
abstraction away from the individual packer implementations toward a common feature
that underlies the unpacking methodology. Such an approach requires a deep under-
standing of the vast landscape of different packers. Moreover, the unpacker must be
implemented in a way that is applicable in real-life scenarios.

Despite the development of generic malware unpackers since at least 2005 [4], the chal-
lenges posed by packers spread and persist, indicating that no lasting solution has been
achieved. This dissertation investigates a method for constructing a generic malware
unpacker from a blueprint that requires only a set of packed malware as input. This
blueprint is exemplified by applying it to malware developed for Microsoft Windows that
runs natively on x86 and x86_64 processor architectures. First, the capabilities and im-
plementations of packers are explored and studied to identify their shared features [5, 6],
allowing the categorization of packers along their shared characteristics. The resulting
categories serve as an abstraction from the individual designs and implementation de-
tails of the different packers. Each category encapsulates a distinct capability, thereby
providing the leverage to perform unpacking. Consequently, the ability to tackle each of
these categories yields a list of requirements that a generic malware unpacker must fulfill
to unpack every packer present in the data set used to explore the capabilities of pack-
ers. These requirements are then used to evaluate previous unpacking methodologies
targeting x86 and x86_64 Windows malware. The assessment reveals that no previously
developed generic malware unpacker is capable of unpacking all types of implementations
discovered in the studies.

1 Introduction

To fully address all aspects of the requirements, a new generic malware unpacker was
developed and evaluated. This unpacker is called GeMU and is intended as a starting
point for generic malware unpackers based on the lessons learned in this work.

1.1 Research Questions

This section describes the research questions that drive this thesis. The main driving
motivation of this dissertation is to provide a blueprint for creating a generic malware
unpacker.

The first step involves identifying the requirements a malware unpacker must adhere to
be considered generic. This is explored in the first research question of this dissertation:

Research Question 1:
What are the requirements for a malware unpacker that it must meet
to be generic?

The answer to this research question is a set of requirements, enabling comparison
and evaluation of previous generic malware unpackers that are focused on the same
packer ecosystem from which the requirements were derived. As such, the next research
question concerns previous academic work in the field of generic malware unpacking to
determine which, if any, generic malware unpackers are able to solve the packer problem.
Therefore, the second research question is:

Research Question 2:
Do the previously proposed generic malware unpacker meet the
requirements of a generic malware unpacker?

These requirements also inform the creation of a generic malware unpacking method-
ology, as it abstracts away individual packer designs, thereby enabling a generic solution
to the packer problem. Therefore, the last research question is:

Research Question 3:
Is it possible to develop a malware unpacker that fulfills all the
requirements of a generic unpacker and works perfectly on the data
set used to create the requirements?

1.2 Contributions

This section summarizes the contributions of this dissertation, which have been published
in peer-reviewed papers. Rather than reiterating those papers, this dissertation transfers
their findings to a different context and improves them. The peer-reviewed papers are:

1.2 Contributions

e Towards Generic Malware Unpacking: A Comprehensive Study on the Unpacking
Behavior of Malicious Run-Time Packers [5]

e A Measurement Study on Interprocess Code Propagation of Malicious Software [6]

e Democratizing Generic Malware Unpacking [7]

1.2.1 Analysis of Past Research

To reveal the shortcomings of the related work, a thorough analysis of past generic
malware unpackers is carried out. Terminological inconsistencies emerged: the term un-
packing is applied variably, and some publications conflate it with other nomenclatures.
Therefore, we propose a new definition for unpacking to reflect new developments in the
field of generic malware unpacking. The unpacking heuristics in related work are also
gathered and clearly stated. Lastly, the data sets used for evaluating generic malware
unpackers are gathered and evaluated against the prudent practices defined by Rossow et
al. [8]. The results reveal that no previous generic malware unpacker has been evaluated
using a sufficient data set.

In short, the following contributions are provided:
e A detailed analysis of the nomenclatures used in literature.

e An overview of the unpacking heuristics used in previous generic malware unpack-
ers.

e An analysis of the evaluation data sets against the prudent practices defined by
Rossow et al. [8].
e A new definition for unpacking.

The analysis of the nomenclature and heuristics of the paper Democratizing Generic
Malware Unpacking [7] are presented in Chapter 3.

1.2.2 Malware Unpacking Within a Single Process

To fill the gap in the general field of malicious run-time packers, the behavior of malware
packers within a single process was explored in a study. A mathematical representation
of malware unpacking is presented, and a PANDA-based malware packer measurement
system [9] is implemented for the technical realization of our study. With this system,
a study is performed using two data sets: a real-world malware data set called Malpe-
dia [10], and a data set called dataset-packed-pe [11] containing binaries packed with
off-the-shelf packers.

The following contributions are provided:
e A model for displaying the unpacking behavior of malware.
e A technical implementation for a packer measurement system as a plugin for
PANDA.

e A study to examine the intra-process unpacking behavior of malware.

The findings of the paper Towards Generic Malware Unpacking: A Comprehensive
Study on the Unpacking Behavior of Malicious Run-Time Packers [5] are presented in
Chapter 4.

1 Introduction

1.2.3 Multi-process Malware Unpacking

An often underappreciated topic in dynamic analysis and especially malware unpack-
ing is the ability of malware to inject other processes. To address this gap, research
was undertaken to investigate code propagations, which refers to the phenomenon of
distributing code outside the current running process.

First, a definition of code propagations is provided, together with a mathematical
definition for the topology of code propagations and the techniques employed. Using
these definitions, a program is developed that relies on API-hooking to measure the code
propagations of a given malware sample. Finally, this program is applied to Malpedia
to identify the code propagation implementations observed in real-world scenarios and
the corresponding techniques employed to achieve them.

In short, the following contributions are made:
e A model to display multi-process unpacking behavior of malware.
e A method for measuring code propagations.
e A study to examine multi-process unpacking behavior of malware.

The findings of the paper A Measurement Study on Interprocess Code Propagation of
Malicious Software [6] are presented in Chapter 5.

1.2.4 Requirements for a Generic Malware Unpacker and new Malware
Unpacker

Initially, the results of previous studies are used to abstract the implementation details
of packers to formulate the requirements for a generic malware unpacker. These require-
ments provide a benchmark for evaluating the genericity of previous academic unpacking
methodologies. Guided by this assessment, the most promising generic malware unpack-
ers are combined to form GeMU, the generic malware unpacker. Implemented as a proof
of concept, GeMU is evaluated using the three data sets, Malpedia, dataset-packed-pe,
and one based on the samples uploaded to Malware Bazaar [12] in 2024. The evaluation
demonstrates that deriving requirements for a generic malware unpacker from a set of
packers enables the construction of an unpacker that works perfectly on these data sets.

The following contributions are made:

e A set of requirements for a generic malware unpacker.

Evaluation of previous unpacking methodologies using these requirements.

A methodology for a generic malware unpacker that meets all the requirements.

A proof-of-concept implementation of this methodology.

A study using two data sets to generate the requirements showing that the generic
malware unpacker fulfills the requirements.

1.3 Outline

The remaining findings of the paper Democratizing Generic Malware Unpacking [7]
are presented in Chapter 6 and Chapter 7.

All these contributions culminate in the central contribution of this dissertation:

Central Contribution:

This dissertation provides a blueprint for creating a generic malware
unpacker based on a series of studies.

1.3 Outline

This dissertation illustrates that, despite extensive academic efforts, a generic malware
unpacker remains unattainable with current knowledge. It addresses this knowledge gap
through two different studies, whose results are used to assess previous generic malware
unpackers and to create a new generic unpacker.

Chapter 2 establishes the required foundations. It elaborates on the background
needed to grasp the themes, questions, and results presented in this dissertation, followed
by an introduction to malware analysis, and concludes with a description of malware
packing.

Chapter 3 examines prior research on past generic malware unpackers to reveal their
shortcomings, which shall be remedied in this thesis. It collates and analyzes their ter-
minology for malware unpacking, the assumptions and heuristics used in their method-
ologies, and their data sets, then proposes a plan to address these shortcomings and
improve previous research.

Chapter 4 explores how malware writes and runs code within a single process. A
definition of the malware unpacking model is given, followed by the development of a
measurement system, which implements the unpacking model and enables observation of
the unpacking behavior. Using this measurement system, a study is conducted showing
the various ways malware writes and executes code within a single process.

Chapter 5 details a measurement study to explore code propagations in malware, i.e.,
how malware writes and executes code across multiple processes. A model for this type
of behavior and the measurement method are introduced, followed by a study using
real-life malware and an implementation of the measurement method.

Chapter 6 synthesizes these two studies to derive the requirements for a generic mal-
ware unpacker. These requirements are used to show that previous unpacking method-
ologies do not meet the requirements and are therefore incompatible with some packers
encountered in the wild.

Equipped with this new knowledge, Chapter 7 presents GeMU, an implementation
of a generic malware unpacker that meets all the requirements. This chapter describes
GeMU’s methodology and implementation, followed by an evaluation and discussion.

Chapter 8 concludes with a discussion of the dissertation’s impact, acknowledges its
limitations, and offers an outlook for possible future work.

2 Foundations

In this chapter, the technical foundations for understanding this dissertation are pre-
sented. To this end, malware analysis is introduced with a special emphasis on dynamic
analysis. This is followed by a brief overview of different important terminologies from
the Windows ecosystem, including the PE-Format, the Virtual Address Space, and the
Windows API. After that, the foundations for executable unpacking are laid.

2.1 Malware Analysis

Malware analysis denotes the act of analyzing a malicious program to obtain information
about its functionalities, capabilities, and behavior. The methods used in this process
can be divided into two different fields of dynamic and static analysis. Dynamic analysis
describes analysis techniques in which the entire code or pieces of it is executed, while
static analysis omits execution. A mix of static and dynamic analysis is also a valid
option for malware analysis, called a hybrid approach. The remainder of this chapter
briefly talks about static analysis, as it is imperative to understand the goal of this
thesis, followed by a description of dynamic analysis with a focus on virtualization and
emulation [13].

2.1.1 Static Analysis

Static analysis describes the process of analyzing malware without executing any code.
Instead, it is characterized by manual or automated assembly analysis, as well as signature-
based analysis methods [13].

Therefore, code that is only revealed during the execution of the program thwarts
static analysis [2]. There is very little work on static malware unpacking [14] and as a
result a dynamic analysis step is often needed to reveal hidden code. This step can be
performed manually using various tools, such as debuggers, to find the exact point in
time when the unpacking has been performed [15].

After successfully revealing the hidden code layer, i.e. unpacking, static analysis on
the entire code becomes possible. Since the malware is now in its decrypted form,
the machine code can be disassembled and analyzed. This analysis may include the
attribution of the sample to an actor or group of actors [16].

2 Foundations

2.1.2 Dynamic Analysis

Dynamic analysis describes the process of analyzing malware by executing pieces of or
all of the malware’s code. Executing the malware’s code allows observation of effects,
possible return values, and other results of the executed functionality without trying to
understand the effects by thoroughly studying the code [13, 15].

A crucial aspect to consider is that the malicious nature of malware requires a careful
and responsible approach to dynamic analysis. Therefore, precautions must be taken
when performing dynamic malware analysis. One way to prevent harm is by using
isolated environments, such as virtual machines or emulation, which leads to the next
section [13].

2.1.2.1 Virtualization and Emulation

Since the subjects of malware analysis should be considered dangerous programs that
can cause great harm, several precautions should be taken to prevent malware from
doing harm during analysis. Therefore, the lab setup should include a way to execute
malware in an isolated and controlled environment, which also enables rapid disinfection
of the machine. This level of control can be achieved using guest systems in which a
full operating system is executed. In this dissertation, two different products are used
to run a guest system.

The first is called VirtualBox and is provided by Oracle [17]. This tool provides a
virtual machine, meaning a guest system that runs in a different processor mode which
isolates the execution of the guest from the host system, enabling high performance.

The other approach used in this dissertation is the emulation of a guest system. This
is provided by QEMU [18]. QEMU is a full-system emulator which, in contrast to
VirtualBox, does not use a specific processor mode to isolate the guest. Instead, it
implements hardware in software to run the guest system. As a consequence, emulation
is much slower than virtualization but enables complete introspection in the execution
of the guest, enabling more complex analysis.

2.1.2.2 Semantic Gap

A challenge of introspection is to bridge the semantic gap. The semantic gap describes
the missing interpretation of the raw bytes of guest memory to obtain their high-level
interpretation. To gain meaningful information about the state of the machine, the
correct bytes at the correct addresses must be read and interpreted. The location and
meaning of these bytes depend greatly on the operating system and the architecture of
the hardware [19].

2.2 Microsoft Windows Foundations

2.1.3 Evasion Techniques

Malware authors aim to thwart malware analysis to conceal their goals and motivations
or hinder the development of countermeasures. This is done using so-called evasion tech-
niques, which is an umbrella term for techniques that are not part of the malware’s main
functionality but instead serve the purpose of protecting the malware from detection,
analysis, and scrutiny. Therefore, evasion techniques range from passive techniques that
have been applied statically before malware is released to active techniques that only
show their effect during execution [20].

One notable class of evasion techniques, which is encountered in this thesis, is based
on detecting the environment in which the malware is executed. To protect the mali-
cious code from analysis, the malware authors can anticipate the nature of the machines
on which their malware shall not be executed. These types of machines can be virtual
machines or emulations that the malware authors suspect are used in malware analy-
sis [15, 20]. The evasion techniques encountered in this research alter the malware’s
behavior based on certain hardware configurations, specific strings encountered in the
artifacts on the system, absent user interaction, or missing Internet connectivity.

In addition to this, malware frequently uses stalling code regions to thwart analysis.
These evasion techniques use sleep functions, complex calculations, or repeated super-
fluous calls to the API to delay its execution [21]. This is done to exceed the sandboxing
time of the analysis machine, overwhelm the machine with complex operations to halt
its execution, or overwhelm the logging system of the analysis system with redundant
information.

2.2 Microsoft Windows Foundations

This section outlines the basics of Microsoft Windows to improve the clarity of this dis-
sertation. To fully grasp the technical background of malware unpacking, it is important
to know some concepts of the portable executable format, how processes are handled in
Microsoft Windows, and the Windows API.

2.2.1 PE-Format

Since 99% of Windows malware is encountered in the PE-format [1], this subsection
highlights aspects of the PE-format that are needed to understand this dissertation.
The PE-format is a specification to describe Windows files that contain executable
code [22]. These files are called Portable Executables (PE) and Common Object File
Format (COFF) files [22].

2.2.1.1 Sections

When a PE-file is loaded into memory, different sections of virtual memory need to be
allocated for different parts of the image to be loaded [22]. Common compilers divide

2 Foundations

00DDO000 | 00001000 & sy, alc.exe IMG
00DD1000 | 00001000 & sy, IMG
00DD2000 | 00001000 |E sy, . IMG

00DD3000 | 00001000 & sy, . : IMG
00DD4000 | 00005000 & sy,) IMG
00DD9000 | 00001000 |E sy, .reloc IMG

Figure 2.1: Screenshot of x64dbg showing the calc.exe of Windows being loaded into a process.

the PE-file data into different sections that have different permissions to protect the
image from harmful or accidental manipulation. An example of this can be found in
Figure 2.1. These sections are called image sections and are used by packers. UPX, for
example, introduces the .upz! and .upz2 sections to perform the unpacking [23].

2.2.1.2 Import Table

The import table details the symbols that are imported by the code contained in the
PE-file. It also contains the library that shall be loaded and the symbols imported from
that library. These symbols can be imported using either their name or an ordinal [22].

Figure 2.2: Screenshot of an import address table taken in x64dbg.

When an image is loaded into memory, the import table is resolved. To do so, the
denoted PE-files are loaded into the memory space of the program. Each of these PE-
files has a table of exported functions, i.e. functions that are meant to be called from
outside its own image. This table is used to find references to the names or ordinals
denoted in the import table. So, if the name or the ordinal refers to a function, then

10

2.2 Microsoft Windows Foundations

the export table contains a reference to this function that can be used to call that
function [22]. These references are gathered and put into the import address table,
which is a buffer containing consecutive references that gives it an intuitive look, as can
be seen in Figure 2.2.

2.2.2 Virtual Address Space

Since unpacking involves interactions with memory, this subsection presents an overview
of how memory is managed in the x86 and x86-64 architectures. Therefore, this subsec-
tion introduces the virtual address space as implemented in Microsoft Windows and the
fundamental data structures that make up and reside in the virtual address space [24].

The virtual address space (VAS) is a continuous virtual memory space that is made
up of physical memory pages that are not continuous [24]. This space is addressed
using virtual addresses by the CPU to directly read and write memory. The virtual
addresses are mapped onto physical addresses, which point to the real physical memory
on the hardware. Linear sequences of these addresses are fixed in length and are always
mapped together. Such a sequence is called a memory page. The CR3 register holds
a value that is used to identify the mapping between virtual and physical addresses.
Therefore, whenever a virtual address is translated into a physical address, the value in
CR3 is used. That means that it is an indicator of the running process and also provides
a layer of isolation between the processes so that one process is unable to access the
memory of another process [24]. So, the virtual address space enables the process to
be executed in a predictable environment, since the dependency on volatile physical
addresses is resolved in a step that is transparent to the process. For this reason, it
is the main data structure for the execution of user code in Microsoft Windows and
includes data structures that are vital for the execution of programs [24].

2.2.2.1 Section

The virtual address space is made up of sections that are related to the sections used in
the PE-file as described above. A section is a continuous piece of memory that can be
addressed and accessed by a program. These sections need to be explicitly allocated for
them to exist and therefore to be accessed. However, they cannot be used freely as each
section can be read-, write-, or execution-protected. These permissions can be changed
using the Windows API and functions like VirtualProtect [25].

There are multiple ways in which a section can be allocated. As mentioned above,
when a PE-file is loaded into memory, the sections listed in the header are allocated and
filled according to the information in the PE-file. Another way is to use the Windows
API with functions like VirtualAlloc [26]. However, some sections are allocated when the
process is first spawned, i.e. the Thread Environment Block [27] and its substructures,
i.e. the Process Environment Block [28].

11

2 Foundations

2.2.2.2 Thread Environment Block and Process Environment Block

One of the main challenges in malware analysis is to bridge the semantic gap, as men-
tioned in Chapter 2.1.2.2. The Thread Environment Block (TEB) and the Process En-
vironment Block (PEB) contain the information needed to identify the process that is
currently being executed by the operating system. Therefore, this data structure can be
used in dynamic analysis to identify the processes of interest.

The TEB can be located using the F'S register for 32-bit or the GS register for 64-bit.
The TEB in turn contains the PEB address, which contains the current unique process
ID and the name of the process.

2.2.2.3 Stack

The stack is a fundamental data structure on the Intel architectures and in the Windows
calling conventions. Each thread running in a process has its own stack. The stack is
used to store local variables, function parameters, and the return address to reconstruct
the original program flow after a function call.

2.2.2.4 Heap

Another central data structure is the heap, which is used for dynamic memory allocation.
A process can have multiple heaps and is used for data that is needed in the context
of multiple functions. Windows provides multiple functions to allocate memory on the
heap and also to create new heaps [24].

2.2.3 API

The Windows API provides an interface to a plethora of functions that may or may not
interact with the kernel. Before the Windows API can be called, the associated library
must be loaded into the process memory, which is described in the previous section,
Chapter 2.2.2. During the loading process, the library is read and mapped to memory.
Therefore, the library code is part of the user mode. The kernel exists outside the user
space and manages the interactions between processes and hardware components. The
kernel can be extended with modules that can be utilized by malware to gain complete
access to the operating system and hide its behavior and existence from the analysis
system.

This dissertation focuses on Windows malware that does not contain a kernel compo-
nent. Therefore, the malware analyzed in this dissertation performs parts of its func-
tionality through the Windows API, making this behavior observable in the Windows
API [15].

Malware may use the Windows API to achieve the same functionality in different ways.
For example, to copy data from one buffer to another, malware may allocate a buffer
and write data into that buffer by directly addressing it inside the code body of the

12

2.3 Runtime Packing

malware. It may also use functions such as memcpy [29] to copy data from one buffer
to another. This function does not interact with the kernel, but instead the user-mode
library performs the read and write operations. This makes these operations observable
for a user-mode-focused dynamic analysis system. However, there is also the function
WriteProcessMemory [30] that writes from one buffer to another. It offers the extended
functionality that the copy operation may also target a process different from the calling
one. Therefore, these write operations are performed from the kernel to the user space
memory. The analysis system is evaded because the operations occur outside the user
mode, although the call to WriteProcessMemory can still be observed.

The usage of functions can be observed dynamically or statically. Traditionally, im-
ported functions can be found in the Import Table of the portable executable [31].
Modern dissemblers can attribute and annotate jumps in the Windows API directly in
the disassembly [32, 33, 34]. In dynamic analysis, API calls are observed by compar-
ing executed addresses with the addresses found in the import address table shown in
Figure 2.2.

2.3 Runtime Packing

Runtime packing is the main focus of this dissertation, therefore, in this section, malware
packing is described.

A packed executable refers to a program that has been compressed or modified. Upon
execution of this program, this altered code is put into an executable state and executed.
More generally speaking, a packed executable refers to a program that has one or more
hidden code segments that are revealed during execution.

2.3.1 Types of Packers

There are different options for packers, ranging from open-source free unpackers [23] to
closed source commercial products [35] with different implementations.

Historically [36], malware unpacking has been described as the act of restoring the
original binary to its original form before it is packed. This stems from the assumption
that packers are exclusively programs that take a standalone binary as input and produce
a packed or compressed binary. The point in which the malware is fully unpacked, and
the execution is handed to the unpacked code is called a tail-jump. However, several
studies [2, 37, 5] have shown that the landscape of packed malware is much more complex.
Therefore, for the remainder of this thesis, a packer is a piece of code creating hidden
code that is revealed during execution. Code is hidden if it cannot be observed by
simply reading the binary code of the packed executable. In turn, a packed executable
is characterized by the presence of hidden code.

In generic malware unpacking, packers are interpreted from the artifacts and modifica-
tions inside the binary that is encountered in the wild. Ugarte-Pedrero et al. formalized
six different types of packers [2]:

13

2 Foundations

e Type I: Singular tail-jump at the end of the packer routines.
o Type II: Multiple tail-jumps in a row.
e Type III: All packers with more complex topologies.

e Type IV: The execution trace is intertwined between malware and packer stub.
The malware triggers part of the packers, and the execution jumps back and forth.

e Type V: Malware and packer code are mangled together, and the malicious code
is revealed successively.

e Type VI: Encrypt and decrypt malicious code on demand. These packers are
further divided into different levels of granularity.

Type I is understood to be the simplest type of packer. It consists of exactly one
packer with a single buffer, which directly contains the payload. A typical example of
this type is the UPX packer [23] which is also well known because it is open source and
available for many platforms.

Type II and Type III describe more complex packer structures. Type II is a series of
packers in a straight line, i.e. the obfuscated buffer contains another packer and another
obfuscated buffer. Type III is a catchall group that contains all other possible packer
topologies [2].

The last three types are subtypes of Type III and describe the position of the payload
code in relation to the packer code. Type IV means that the malware and packer code
call each other, but they are two distinct entities. Type V describes binaries in which
malware and packer code are mangled together, and Type VI is another special type of
packer in which the malware code is decrypted before being called and encrypted after
execution [2].

This taxonomy reinforces the notion that the packer code and the malware code are
two different entities. However, the author of this dissertation conducted a study [5] that
challenges this notion. Rather, packer functionality is a property that can be added to
any kind of malware. The definition of packer and malware exists on a spectrum, which
in turn means that packer should be understood as a functionality that is added to a
given malware rather than two different entities.

2.3.2 Packing and Unpacking Steps

To understand how unpacking works, it is first shown how, in general, a packer packs a
binary. There are a variety of ways to achieve this. However, the general steps are as
follows:

e Step 1: Encrypt/Encode/Compress the buffer of protection-worthy code.

e Step 2: Include the code to decrypt/decode/decompress the buffer called packer
stub in the binary that will be released.

e Step 3: Insert the packer stub and subsequent execution of the decrypted/decod-
ed/decompressed code into the execution of the malware.

14

2.3 Runtime Packing

text ;] text text text -

section 1 section 1 section 1

section 2 section 2

Figure 2.3: This figure shows the unpacking behavior of Opachki. The black arrows denote the
writing and execution of code. The red arrows show a memory allocation using
VirtualAlloc.

Step 1 is the most diverse step, as there is a multitude of different approaches to this.
There are packers that take an unpacked binary as input and produce a functionally
identical packed binary, such as UPX [23]. However, it is also possible to implement
packing via compiler macros, which enable a more fine-grained obfuscation of functions
that are especially worth protecting.

As previously established, the unpacking process of a given malware sample can include
one or more unpacking steps. These unpacking steps consist of several steps.

e Step 1: Decrypt/Decode/Decompress the buffer containing the next unpacking
layer or payload.

e Step 2: Write the unpacked code to a piece of memory.

e Step 3: Transfer the execution to the unpacked code.
Step 1 varies very strongly from packer to packer, due to the selection of readily avail-
able compression, encryption, or encoding schemes. This is the step that packer-specific
malware unpackers take to recreate. The unpacking algorithm is identified and reimple-

mented as a countermeasure to this specific packer. However, generic malware unpackers
aim to use the vulnerabilities exposed in Step 2 and Step 3 for their methodologies.

15

2 Foundations

2.3.2.1 Real-World Example Opachki Malware

To provide the reader with a more intuitive understanding of what malware unpacking
is, this section presents the unpacking behavior of a particular packed sample of the
Opachki family. This process is depicted in Figure 2.3. This example has been chosen
because it demonstrates how multiple unpacking layers are used during the unpacking,
as well as the allocation of new memory and the overwriting of previously executed code.

When the sample is launched, the code inside the .text image section is executed. At
this point, new code is generated, written into the same .text section, and executed. This
is the first unpacking layer. This layer allocates a new section using VirtualAlloc [26]
and fills it with data and code. The written buffer starts with a few magic bytes and
the string “Mystic Compressor”, which is a custom packer specialized in malware. It is
suggested to have been developed in Russia [38] and appears to be used in the context
of the Zeus and Opachki malware families [39, 40]. This is the second unpacking layer.
Using this packer as a means to identify threat actors has only been possible because
this intermediate unpacking layer is also analyzed. This means that these intermediate
layers may also yield useful information, which will become important later in this thesis,
when discussing the necessity of unpacking every stage of the unpacking process.

Afterwards, a new section is allocated again, using VirtualAlloc [26]. Now, the identical
code from the last unpacking step is written in the new section, with a different piece of
this code being executed. This is the third unpacking layer.

This third layer now overwrites the original binary code pieces, as well as the code
unpacked in the first layer, which reside in the .text image section. Subsequently, this
new code is executed.

2.4 Conclusion

This chapter discussed the foundations for understanding unpacker methodologies. First,
the basics of malware analysis were given by introducing static and dynamic analysis.
The dynamic analysis is further elaborated on through the lenses of virtualization and
emulation, which are both central to this thesis. Secondly, the fundamental concepts
of Microsoft Windows were introduced, which are integral to understanding malware
unpacking. Lastly, malware packing was examined more closely by introducing the
different types of packers and explaining the typical workflow of an unpacking step,
which is further supported by a real-life example.

Now that the fundamentals for malware unpacking have been discussed, the next
chapter will provide a study on previous generic malware unpackers.

16

3 Malware Unpacking in the Literature

The analysis of terminology, unpacker description, and the definition of unpack-
ing presented in this chapter is based mainly on prior research carried out by the
author of this dissertation. The material has been restructured from an indepen-
dent article to align with the structure of this dissertation. The author of this
dissertation has published the original work in the following paper:

Jenke, Thorsten, Max Ufer, Manuel Blatt, Leander Kohler, Elmar Padilla, and
Lilli Bruckschen. “Democratizing Generic Malware Unpacking.” 2025 IEEFE
European Symposium on Security and Privacy Workshops (EuroS¢&PW). IEEE,
2025. [7]

This chapter reviews generic malware unpackers published between 2005 and 2019,
as no contributions were found outside this time frame. The purpose of this chapter is
to highlight the shortcomings of previous research and to outline how this dissertation
seeks to address them. To this end, the related work is analyzed in three aspects.

The first concerns the terminology used to discuss the contributions and findings of
each study. To present their findings clearly, malware authors must define the specific
behavior and obfuscation of the malware that their tool mitigates, along with their
tool’s intended function. This terminology varies between publications, and identical
terms may carry different meanings depending on context. Therefore, this chapter also
examines whether the contribution distinguishes between malware and the packer.

The second aspect concerns the assumptions and heuristics employed by generic
malware unpackers. To tackle multiple packers at once, such unpackers must rely on
assumptions about packer behavior. Broad assumptions enable broader applicability; in
general, broader assumptions about packers lead to more generic unpackers. This neces-
sity has led to the development of various heuristics designed to detect when unpacking
occurs, thereby enabling the extraction of the maximum amount of unpacked code at the
optimal time. By defining which behaviors belong to the unpacking process, the heuris-
tic governs how unpacking is observed and measured. Therefore, this section discusses
the heuristics and assumptions that previous work made to build their unpackers. The
effectiveness and implementations of their heuristics are evaluated in Chapter 6.

The third aspect concerns the data sets used to evaluate the presented approaches.
These evaluations serve to demonstrate the feasibility and correctness of the methodology
and its implementation. Correctness means that the methodology produces the correct
output, that is, the desired unpacked data. Since no formal requirements define what
a generic malware unpacker must be capable of, theoretical evaluation is not feasible.
Practical evaluation is therefore required, which involves implementing the unpacker as a

17

3 Malware Unpacking in the Literature

proof of concept and testing it on a data set. Consequently, the quality of the evaluation
depends directly on the quality of the data set. Therefore, the data sets are analyzed in
this chapter.

3.1 Generic Malware Unpackers in Literature

This section presents several works focused on the development of generic malware un-
packers. Each description highlights the heuristics, technologies, and unpacking termi-
nology used, as well as the data sets and evaluation methodologies. If the technologies
used for the implementation are not mentioned, it means that this information could
not be inferred from the respective publication.

Malware Normalization

Malware Normalization by Christodorescu et al. [4] (2005) introduces an unpacker that
uses the write-then-execute heuristic also called WxE. Figure 3.1 displays an automaton
that describes how the write-then-execute heuristic distinguishes any written data code
from unpacked code. This heuristic relies on the assumption that during unpacking,
code is written to memory and subsequently executed. Thus, if a piece of memory is
written to and then executed, it is assumed to contain unpacked code. This is a very
broad assumption about the behavior of packers and malware and, therefore, results in
false positives [5]. Nevertheless, it has become widely used and has been adopted in
numerous unpacking methodologies, with two established granularities: byte [41, 42, 2,
43, 44, 45, 46, 4] and page [3, 47] level. The byte-level approach is very fine-grained but
introduces a substantial performance overhead due to the amount of information. This
motivated the development of the page-level approach, where a write access to a page
marks it as dirty, and subsequent execution indicates an unpacking step. Compared to
the byte-level write-then-execute scenario, this approach yields an enormous performance
improvement, as not every write operation needs to be tracked. Christodorescu et al.
implemented their unpacker in QEMU and evaluated their approach using seven off-
the-shelf packers and variants of two malware families. Anti-Virus software was used to
confirm the correctness of their output. They refer to packed binaries as self-generating
programs and describe unpacking as self-generating. Their tool aims to normalize or
unpack the malware. They do not consider packer and malware to be two different
entities.

Polyunpack

Polyunpack by Royal et al. [36] (2006) employs a heuristic called new instruction. It is
based on the assumption that whenever an instruction is executed that was not present
in the original malware binary, an unpacking has occurred. To this end, the packed
binary is disassembled before execution, and all pieces of code are collected. Next, the
malware is executed and halted regularly to check whether the executed instructions
are in the disassembled packed binary. If not, an unpacking has occurred. The authors

18

3.1 Generic Malware Unpackers in Literature

Start ‘_execution—> Code

written to written to.

executon 3 Unpacked

Data <«——writtento——— Code

Figure 3.1: This automaton models the write-then-execute heuristic for a single piece of memory.
If a piece of memory is executed, it contains code. If that piece of code is overwritten,
then the piece of memory contains an unknown type of data. If that data is executed,
the write-then-execute heuristic is triggered, and the piece of memory contains un-
packed code.

implemented their unpacker into a debugger, which traces the malware and also ex-
tracts hidden code. They refer to this process as hidden-code extraction for the purpose
of Polyunpack in their title and throughout their paper. However, they also use the
term generic unpacking interchangeably. Additionally, they introduce the term unpack-
executing to describe the unpacking behavior of malware. They consider malware and
packer to be two different entities. For evaluation, they used 3,467 different malware
samples and employed an antivirus scanner to confirm the correctness of the unpacking
results.

Renovo

Renovo by Kang et al. [41] (2007) is another generic unpacker that relies on the byte-level
write-then-execute heuristic. It works very similarly to the one proposed by Christodor-
escu et al. Renovo uses shadow memory to track write operations performed by the
malware. When the memory to which has been written is subsequently executed, the
extraction of this memory section is triggered. The authors refer to code that is hidden
in an executable as hidden code, with packing being just one method of achieving this.
Accordingly, the purpose of Renovo is described as hidden-code extraction. Their ap-
proach does not consider malware and packer to be two different entities. For evaluation,
their data set contained 374 malware samples and one benign sample packed with 20
off-the-shelf packers, and they searched for suspicious strings to validate the correctness
of the output.

Omniunpack

Omniunpack by Martignoni et al. [47] (2007) also implements the page-level write-then-
execute heuristic. The malware’s behavior is tracked via page-level access violations. To

19

3 Malware Unpacking in the Literature

determine the end of the unpacking routine, an antivirus scanner scans the memory each
time a write-then-execute event triggers. To achieve this, the heuristic is implemented in
a Microsoft Windows kernel module. The authors exclusively use unpacking to describe
both the malware’s behavior and the purpose of Omniunpack. In addition, they consider
malware and packer to be two different entities. For evaluation, they used one toy
example packed with 20 off-the-shelf packers.

Hump-and-Dump

Hump-and-Dump by Sun et al. [48] (2008) is less a generic malware unpacker than a
heuristic. It is based on the assumption that unpacking occurs within a large loop with
many iterations and is followed by code pieces that are executed only once. Sun et al.
propose to construct a histogram with the number of executions of each piece of code,
sorted by the last executed pieces of code. Two parameters are determined: one to
identify the hump, i.e., the basic blocks with a large number of executions, and another
to identify the sequence of code that is only executed once. The authors exclusively refer
to this behavior and their approach as unpacking. Their proof-of-concept implementation
is built primarily using IDA Pro. For evaluation of their proof of concept, they used
eleven off-the-shelf packers on two benign known programs.

Etherunpack

Ether by Dinaburg et al. [42] (2008) is a hypervisor that aims to analyze malware. In their
paper, the authors introduce EtherUnpack, an unpacker that uses their own hypervisor
and is a recreation of Renovo. Unlike the terminology used in the Renovo paper, the
authors omit the term hidden-code and instead exclusively use unpacking. Similarly to
Renovo, they treat malware and packer as a single entity. For their evaluation, they
recreate the study used in the Renovo paper.

Eureka

Eureka by Sharif et al. [49] (2008) is an unpacker that introduces a novel heuristic by
measuring the entropy of the process’ memory. The assumption is that packed malware
has a very high entropy, whereas unpacked code has a very low entropy. Thus, a tran-
sition from high to low entropy of the memory indicates that unpacking is in progress
or has finished. This approach is complemented by a second heuristic based on API
calls. This heuristic is based on the assumption that malware and packers exhibit dis-
tinct patterns in their use of the Windows API. So, calls to API functions commonly
associated with malware signify that the unpacking is complete. In their terminology,
the term wunpacking refers to the behavior of the malware, while defeating obfuscation
is used to describe Eureka’s purpose, although the two terms are used interchangeably.
The authors treat malware and packer as two different entities. For evaluation, they
used 914 malware samples and one benign program packed with 15 off-the-shelf packers.
To validate the correctness of Eureka’s output, a code-to-ratio analysis was used.

20

3.1 Generic Malware Unpackers in Literature

JUSTIN

JUSTIN by Guo et al. [3] (2008) implements the page-level write-then-execute, com-
plemented by additional heuristics introduced by Isawa et al. [50]. These additional
heuristics are disregarded in this dissertation, since they have not been added by the
original author. Its implementation is very similar to Omniunpack and also accepts the
dichotomy of malware and packer. Their approach was evaluated using 183 malware
samples using six different packers and one sample packed with one off-the-shelf packer.
In their discussion, the authors use the unpacking nomenclature.

Coogan

Coogan et al. [14] (2009) present a very different approach to unpacking. Their system is
based on static analysis by analyzing the programs’ binary and extracting the unpacking
routine. This approach can be considered as an application of the write-then-execute
heuristic: the analysis identifies the routines that would write to memory and detects
when this written memory would be executed. The extracted routine is processed so that
it can be executed outside the malicious binary to unpack the hidden code. Unpacking is
the dominant nomenclature in their description, and they consider malware and packer to
be two different entities. They tested their proof of concept with four different malware
samples and one benign sample with an off-the-shelf packer.

Tracesurfer

Tracesurfer by Guizani et al. [51] (2009) implemented a write-then-execute-based un-
packer in Intel PIN, an instrumentation program that can be used to trace a program.
The authors use the term unpacking to discuss their approach and the behavior of mal-
ware, and do not consider malware and packer to be two different entities. Tracesurfer
was evaluated using 59,544 samples. The correctness of their output is based on whether
an unpacking has occurred.

Jeong

Jeong et al. [52] (2010) present an entropy-based unpacker similar to Eureka. In their
paper, they use the term unpacking. They also assume that the packer and malware
are distinct entities. Their evaluation was performed using ten benign programs packed
with eleven off-the-shelf packers and six malware samples.

Malwise

Malwise by Cesare et al. [43] (2012) integrates the methodology of Renovo with the
entropy-based analysis used in Eureka. The authors use the term unpacking to discuss
their contribution. They also do not consider that malware and packer might be the
same. To test their approach, they used 14 different off-the-shelf packers and 15,569
malware samples. The correctness of their output was validated using similarity scores
against known malware.

21

3 Malware Unpacking in the Literature

Codisasm

Codisasm by Bonfante et al. [44] (2015) is another byte-level write-then-execute-based
unpacker implemented using Intel PIN. However, the focus of their contribution lies
not in the unpacking part, but in the proposition of a disassembler capable of correctly
processing code with different entry points. Additionally, the authors provide a detailed
description of multilayered packing. They mostly use the term self-modifying code to
describe the unpacking behavior of malware and do not accept the dichotomy of malware
and packer. The unpacking part was evaluated using notepad.exe packed with 28 off-
the-shelf packers and 500 malware samples, however the output of the 500 samples does
not seem to have been assessed.

Binunpack

Binunpack by Cheng et al. [53] (2018) introduces an unpacker that implements a novel
heuristic called rebuilt-then-run. This approach is based on the assumption that unpack-
ing has occurred when the import address table is being built, as the packer part of the
program requires fewer imports than the unpacked malware. Thus, a sudden increase
in imported symbols is interpreted as an indication that the original malware is running
and the unpacking has concluded. This means that they consider malware and packer
to be two different entities. The authors also use the unpacker term for their paper.
Their evaluation used 238,835 malware samples and one known program packed with
28 off-the-shelf packers. The correctness of Binunpack’s output was confirmed using a
series of metrics similar to Fureka.

Malflux

Malflux by Lim et al. [54] (2019) proposes a unique generic unpacker that combines the
write-then-execute heuristic with hump-and-dump. The hump is measured by counting
sequential write operations in a memory region. If the number of write operations exceeds
a certain threshold, it is referred to as flux. The subsequent execution of such a memory
region means that the malware has unpacked itself. The authors describe this process
hidden code extraction and consider malware and packer to be two different entities.
They implemented their approach using PANDA [9], a QEMU fork that enables fine-
grained analysis. The evaluation was performed using 18 benign samples packed with 12
off-the-shelf packers and 116 samples spanning ten different families. They used another
unpacker to confirm the correctness of their output.

Roamer

Roamer by the author of this dissertation [55] (2019) introduces an unpacker based on the
novel heuristic that focuses on memory allocation behavior. This heuristic assumes that
malware must allocate new memory regions to unpack and execute itself. Consequently,
newly allocated memory regions, including the mapped image of the input executable,

22

3.2 Analysis

’ ‘Work Tool-Purpose ‘ Behavior ‘ MW !I=P ‘
Normalization Normalize / Unpacking | Self-Generating False
Polyunpack Hidden-Code Extraction | unpack-executing True
Omniunpack Unpacking Unpacking True
Renovo Hidden-Code Extraction | Unpacking False
Hump-And-Dump | Unpacking Unpacking True
Etherunpack Unpacking Unpacking False
Eureka Defeat obfusc. auto deobfusc. True
JUSTIN Unpacking Unpacking True
Coogan Unpacking Unpacking True
Tracesurfer Unpacking Unpacking False
Jeong Unpacking Unpacking True
Malwise Unpacking Unpacking True
Codisasm Extraction Self-Modifying Code | False
Binunpack Unpacking Unpacking True
Malflux Hidden-Code Extraction | Unpacking True
Roamer Unpacking Unpacking False

Table 3.1: This table summarizes the terminology used by the authors to describe their contri-
bution and indicates whether they consider malware and packer two different entities.
Unpacking clearly emerges as the most prevalent used term.

are considered likely to contain malicious unpacked code. The unpacking agent was
implemented in Python and runs inside VirtualBox. This publication uses the term
unpacking and assumes that malware and packer can be the same entity. Malpedia was
used for the evaluation and the correctness based on whether a new PE-Header has been
found in the output.

3.2 Analysis

This section examines each of the mentioned aspects in detail. The assumptions about
malware behavior made by the unpackers are addressed in Chapter 6.

3.2.1 Terminology

This subsection analyzes the terminology used in the related work, as summarized in
Table 3.1. The table lists the reviewed contributions along with the terminology they use
to describe the purpose of their tool and the behavior of the malware. Of the 16 works
reviewed in this chapter, ten exclusively use the term unpacking, while the remaining
six adopt a variety of alternative nomenclatures. Table 3.1 also indicates whether the
authors consider malware and packer to be separate entities.

Notably, 70% of the publications that exclusively use the term unpacking also assume
that malware and packer are distinct entities. In contrast, among those that do not

23

3 Malware Unpacking in the Literature

solely use the term unpacking, only 50% maintain this distinction. Those works that also
introduce different terms still revert to the term unpacking in their discussions. This
reflects the importance of the term unpacking in not only academic publications but
also in conversations within the research community. However, its usage often implies
that malware and packer are distinguishable (Table 3.1), a notion that, as shown by
the authors of this dissertation [5] and by Ugarte-Pedrero et al. [2], does not universally
apply. Moreover, unpacking is frequently used to describe the behavior of malware,
which is not encapsulated in the definition.

3.2.2 Heuristics

Heuristic Number Of Unpackers
Write-Then-Execute 10

Entropy Analysis
Hump-And-Dump

New Instruction
Rebuilt-Then-Execute
New Memory Sections

[l R R A RN

Table 3.2: This table presents which heuristics are employed by the malware unpackers to detect
unpacking behavior and how many packers are using each heuristic. If an unpacker
combines two heuristics, it is counted under both.

Table 3.2 presents the different heuristics found in the related work and the number
of publications that employ each. If an unpacker combines two approaches, it is counted
once in each approach. The write-then-execute heuristic emerges as the most prominent
heuristic, appearing in ten of the sixteen reviewed publications. Other heuristics did
not seem to catch on in academic research, whereas write-then-execute has been in use
since at least 2005 and remained prevalent through 2019. A detailed evaluation of these
heuristics is provided in Chapter 6.

3.2.3 Data Sets

As noted previously, all publications assessed in this chapter use data sets to perform
practical evaluations of their approaches. These data sets include three different types
of samples:

1. Unclassified malware encountered in the wild and used without prior analysis.

2. Analyzed real-world malware samples for which malware family and/or the applied
packer has been identified.

3. Benign samples, such as open-source tools or native Windows tools that have
been packed with off-the-shelf packers. The term off-the-shelf packers refers to
commercially available or freely distributed packers.

24

3.2 Analysis

’ Work Data Set ‘ Correctness
Normalization 7 OTS X two malware families Anti-Virus
Polyunpack 3,467 MW Anti-Virus
Omniunpack 20 OTS X 1 Benign Ground Truth
Renovo 1 benign X 14 OTS & 374 MW Search String
Hump-And-Dump | 11 OTS X 2 Benign programs Ground Truth
Etherunpack Same as Renovo Search String
Eureka 914 MW & 1 benign X 15 OTS Code-To-Data Ratio
JUSTIN 183 MW X 6 OTS Anti-Virus
Coogan 4 MW & 1 benign X 1 OTS Ground Truth
Tracesurfer 59,544 MW Unpacking Behavior
Jeong 10 benign X 11 OTS & 6 MW Ground Truth
Malwise 3 benign X 14 OTS & 15,569 MW | Similarity Scores
Codisasm 1 benign X 28 OTS & 500 MW Ground Truth
Binunpack 238,835 MW & 1 MW X 28 OTS | Entropy analysis
Malflux 18 benign X 12 OTS & 116 MW Other Unpacker
Roamer Malpedia New PE-Header

Table 3.3: This table summarizes the data sets used in the evaluation of each work, along with the
methodologies employed to determine the correctness of the unpackers. The abbrevi-
ations OT'S and MW refer to off-the-shelf packers and malware samples, respectively.
As the table shows, the data sets vary in quality. If one unpacker is tested with mul-
tiple data sets of the same type, then the number of samples are added.

Table 3.3 presents the data sets used in each approach along with the method used
to assess the correctness of the unpacked output. OTS refers to off-the-shelf packers,
and MW denotes real-world malware. Three publications use one or more antivirus
scanners to verify the correctness of the unknown malware samples. This strategy has
the drawback that malware must be known by the antivirus software vendor or conform
to a specific format. Therefore, eight other publications apply heuristics to determine
correctness. The remaining five constructed a ground truth by either selecting already
analyzed malware or by using clinical samples, i.e. both input and packer are known.

The data sets used in the reviewed publications vary considerably. At one end of the
spectrum, Coogan et al. evaluated their approach using just four malicious samples
and one benign program packed with a single off-the-shelf packer. At the other end,
Binunpack was tested on a data set comprised of 238,835 samples. Notably, even in
earlier years, larger data sets were occasionally used. Polyunpack employed over 1,000
malware samples in 2006, Tracesurfer used 59,544 malware samples in 2009, and Bin-
unpack 238,835 samples in 2018. Meanwhile, small clinical data sets prevailed from the
first publication in our review in 2005, through Coogan et al. in 2009, up to Malflux in
2019. To assess the quality of these data sets, the contributions were evaluated against
Rossow’s Prudent Practices for Malware Experiments, which were formulated by Rossow
et al. [8] as a set of prudent practices when designing malware data sets for malware
experiments. Contributions are assessed on whether they are following prudent practices
for the creation of data sets and their presentation, while practices regarding the setup

25

3 Malware Unpacking in the Literature

’ Work ‘ Violated Prudent Practices
Normalization A2 C1
Polyunpack A2, B3, B5, C1
Omniunpack A2, B1, B3, B5, C1
Renovo Al, A2, B1, B3, B5, C1
Hump-And-Dump | No Malware
Ether Same as Renovo
Fureka A2 BI, B3, B5, C1
JUSTIN Al, A2, B1, B3, C1
Coogan B3, C1
Tracesurfer Al, A2, B1, B3, C1
JEONG A2, B3, B5, B6, C1
Malwise Al, A2, B1, B3, C1
Codisasm A2 BI, B3, C1
Binunpack Al, A2, B3, C1
Malflux A2 BI, B2, C1
Roamer Follows the practices

Table 3.4: This table presents an assessment of the conducted experiments in the reviewed pub-
lications based on Rossow’s Prudent Practices for Malware Experiments. This as-
sessment focuses on the practices for the design of a data set. As shown, nearly all
publications violate at least two of these practices.

and the environment have been omitted. Table 3.4 lists which prudent practices are
violated in each contribution. With the exception of Roamer, all reviewed contributions
violate at least one prudent practice, up to six. The experiments for Roamer have been
constructed with these practices in mind. Overall, the assessment reveals shortcomings
in the data sets in all reviewed contributions. This has also been observed by Alkhateeb
et al. [56] in their study on packing mitigation techniques in 2023, who criticize the use of
outdated malware samples and a narrow range of packers. Similarly, Ugarte-Pedrero et
al. [2] have pointed out that the lack of high-quality data set containing packed malware
hinders a thorough evaluation.

As a result, most prior publications on generic malware unpacking have lacked a rig-
orous evaluation due to the absence of a high-quality data set and a clear set of require-
ments. Malpedia, a diverse malware data set by Plohmann et al. [10], addresses many of
these shortcomings by adhering to Rossow’s [8] Prudent Practices. It strives to include
representative samples of every version of every malware family. In addition, Malpe-
dia also provides an unpacked representative for most samples, along with the YARA
rules [57, 58] that have been generated using unpacked or dumped representatives. This
makes it a substantial advancement in malware data set design: the diversity of included
families implies a corresponding diversity in actors, used tools, and, therefore, packing
methods. This means a set of requirements can be derived from Malpedia and in turn
be used to assess the previous unpacking methodologies. Such a requirement set en-

26

3.3 Blueprint for the Construction of a Generic Malware Unpacker

ables both a theoretical assessment of unpacking methodologies without access to the
appropriate samples and the creation of more representative data sets.

One publication that attempts to measure the complexity and capabilities of packers is
the study by Ugarte-Pedrero et al. [2] discussed in Chapter 2.3.1. Although valuable, the
study does not provide a comprehensive list of the capabilities of real-world malware.
Instead, it focuses on a systematization of packer complexity while omitting aspects
such as usage of API functions, the life time of code, and unpacking spanning multiple
processes. Therefore, the information presented by Ugarte-Pedrero et al. is incomplete
and insufficient for evaluating the genericity of a generic malware unpacker.

The next section outlines how this dissertation aims to advance the state of the art by
creating such a set of requirements.

3.3 Blueprint for the Construction of a Generic Malware
Unpacker

To address the shortcomings identified in this chapter, this dissertation proposes a
blueprint for constructing a generic malware unpacker tailored to any given set of mal-
ware. In addition, the blueprint produces a set of requirements that can be used to
assess existing generic malware unpackers and to support the development of new ones.

Initially, studies are needed to measure the unpacking behavior of malware. These
insights allow for categorizing behaviors, leading to the creation of generic handling
strategies for each category. A generic malware unpacker must accommodate each cat-
egory’s specific behavior from the study’s data set. Thus, an unpacker that successfully
tackles all unpacking techniques can handle every malware in the data set.

However, to clearly describe the findings in this dissertation, a precise definition of
unpacking is required. As previously established, the related work lacks a consistent
definition of the tools’ purpose and the malware’s behavior. This dissertation, therefore,
proposes the following definition for unpacking:

')

Definition for Unpacking:

Let P be a program that reveals a set of instructions H during its execution.
Unpacking describes the process of making H from a given P statically
observable.

This definition generalizes unpacking to encompass all forms of self-modifying code,
providing a more accurate reflection of the state of the art, as packer and malware are
indistinguishable. This definition can also be used to name the behavior of the malware.
Therefore, it will serve as the working definition of unpacking throughout this thesis.

For the remainder of this thesis, the blueprint is applied to Microsoft Windows malware
running natively on x86 and x86_64 processors. AVAtlas has found that 900 million
unique samples have been identified for Windows, 900,000 for MacOS, 4.7 million for

27

3 Malware Unpacking in the Literature

Study of Intraprocess

Unpacking
Representative Data Requirements for a Assessment of st::?kper:]svrr?i:r:
Sets (Malpedia/ ——— Generic Malware ——> Previous Malware '?:ulﬁlls all
dataset-packed-pe) Unpacker Unpackers Requirements
Study of Interprocess

’ Unpacking

Figure 3.2: Flow for the remainder of this thesis. The two data sets Malpedia and dataset-
packed-pe are used to conduct two studies on their unpacking behavior. The results
of these studies inform a set of requirements for a generic malware unpacker. These
requirements are then used to assess previous malware unpackers. The insights gained
from this assessment guide the development of a generic malware unpacker that fulfills
all requirements.

Linux, and 35 million for Android up to October 2024 [1]. This highlights the prevalence
of Windows malware, thus justifying the focus of this thesis on this malware ecosystem.
In addition, the malware unpackers reviewed in this chapter were also developed for this
platform, so the requirements can be applied to these unpackers.

As mentioned above, the first step to execute the blueprint is selecting a set of packers
from which to derive the requirements for a generic malware unpacker. Given the focus
on Windows malware and the goal of maximizing applicability for the resulting unpacker,
the selected data set should be diverse in families and ideally include a representative of
each version of every family. This ensures diversity in actors and their tools, including
packers. Additionally, the inclusion of unpacked malware representatives as encountered
in the wild is highly desirable, as these can serve as ground truth for evaluating the re-
sulting malware unpacker. For this purpose, Malpedia by Plohmann et al. [10], described
above, was chosen. It is organized in a GIT repository and the commit used in this dis-
sertation is e55fbb6b8. Malpedia follows Rossow’s Prudent Practices [8, 10] and limits
the risks of overly clinical and constructed data sets, as suggested by Muralidharan et
al. [16]. However, exploring open-source or commercially available off-the-shelf packers
applied to benign software is also valuable, as it highlights the contrast between packing
used for malicious purposes versus those used in benign ways. Therefore, the data set
dataset-packed-pe [11], which consists of benign samples packed with off-the-shelf packers
alongside their unpacked binaries, is used to complement real-world malware. This data
set is termed synthetic.

The initial decision to construct a generic unpacker is to determine how the unpacking
is to be recognized. Past malware unpackers that assume a strict separation between
packer and malware, typically define the end of unpacking as the moment when the
program executes the original entry point (OEP) of the original binary. As previously
established, this assumption does not reflect reality.

Alternative heuristics have also proven insufficient. For example, identifying unpacking
steps based on the resolution of API functions [59, 53] is also unreliable, as there are
several techniques to obfuscate resolution and even use of APIs. This heuristic, therefore,
rests on the assumption that malware is not using these types of obfuscation.

28

3.4 Conclusion

The hump-and-dump heuristic assumes that unpacking has occurred when a large
number of write operations are followed by a jump. [48] Unfortunately, this heuristic
still implies that a lengthy loop is necessary to write the unpacked code. However,
malware is also known to use functions such as RTLDecompressBuffer or LoadLibrary
during unpacking. Consequently, it would be impossible for Hump-and-Dump to spot
the unpacking steps that employ these methods.

The heuristic used in Roamer is also inadequate, as it assumes that malware does not
utilize code caves or the stack to write its unpacked data.

Since all these heuristics rely on assumptions about the functionality and properties
of malware, the write-then-execute heuristic, also known as WxE, has been chosen.
Figure 3.1 displays how WxE helps distinguish between code, data, and unpacked code.
WxE identifies an unpacking step by observing the malware’s memory writes followed
by the execution of a written byte. This heuristic is deliberately broad and makes no
assumptions about the malware’s functionality since it is based on the idea that unpacked
code must be written to get executed. As shown above, WxE is also the most popular
heuristic in prior research.

As a reminder, write-then-execute refers to the act of writing data to memory followed
by the execution of that written data. This behavior can be observed inside of a single
process, as described in Chapter 2.3.2.1. Therefore, the first study focuses on exploring
write-then-execute events that are confined to a single process. Given that this disser-
tation focuses on Windows malware, it is also necessary to account for WxE unpacking
behavior that crosses process boundaries, which is generally described as host-based
code injection attacks [60]. To study this behavior, the second study focuses on mea-
suring the multi-process write-then-executes. The combination of both studies yields
a comprehensive picture of the unpacking behavior, allowing the categorization of the
unpacking behavior and the derivation of requirements for a generic malware unpacker.
These requirements are then used to evaluate the unpackers described above to identify
the most promising approaches. Finally, these approaches are extended to create a new
generic malware unpacker that fulfills all the requirements. This workflow is illustrated
in Figure 3.2.

3.4 Conclusion

This chapter reviewed 16 publications on creating generic malware unpacking spanning
from 2005 to 2019. The analysis of these works was structured along the three axes: the
terminology used for unpacking, the heuristic employed to detect unpacking behavior,
and the data sets used for evaluation. Examining the terminology for unpacking revealed
inconsistencies in the academic landscape. Therefore, a new definition for unpacking is
proposed: one that reflects the current state of the art and can be used to name the
malware’s behavior. The review of the used heuristics shows that the write-then-execute
heuristic is the most widely used. Lastly, the most significant problem in all the reviewed
work concerns the appropriate data sets, as shown by the review of the evaluations. The
findings of the data sets are also reflected in other related work [2, 56, 8].

29

3 Malware Unpacking in the Literature

To remedy this state of affairs, a blueprint is proposed for creating a generic malware
unpacker. To execute this blueprint, Windows malware has been chosen as the main
focus. Since the blueprint calls for a set of packers, two representative data sets have
been chosen that will be studied.

The subsequent chapters, Chapter 4, and Chapter 5, discuss studies on malware un-

packing behavior. These studies provide the groundwork to equip future researchers with
the knowledge to design, implement, and evaluate their generic malware unpackers.

r

Main Takeaways of this chapter:

A comprehensive review of the academic landscape reveals that it is not yet
adequately equipped to create generic malware unpackers. In particular, the
field fails to provide both an understanding of how malware packing works and a
means to evaluate a generic unpacker. Therefore, this dissertation proposes a
new definition of malware unpacking and a blueprint to create this
understanding. The Windows ecosystem has been chosen to execute this
blueprint for the remainder of this thesis.

30

4 Intra-Process Unpacking Behavior

The content of this chapter and some of its figures are mostly a retelling of prior
research conducted by the author of this dissertation. It has been restructured
from an independent article to fit the flow of this dissertation. The author of this
dissertation has published their findings in the following paper:

Jenke, Thorsten, Elmar Padilla, Lilli Bruckschen (2024). “Towards Generic Mal-
ware Unpacking: A Comprehensive Study on the Unpacking Behavior of Malicious
Run-Time Packers”. In: Fritsch, L., Hassan, 1., Paintsil, E. (eds) Secure IT Sys-
tems. NordSec 2023. Lecture Notes in Computer Science, vol 14324. Springer,
Cham. [5]

4.1 Introduction

This chapter explores the unpacking behavior of malware within a single process called
intra-process unpacking by measuring it under five different aspects. These aspects have
been chosen to support the creation of requirements for a generic malware unpacker. As
established in Chapter 3.3, write-then-execute is the chosen unpacking heuristic with
its two defining properties, the writing and subsequent execution of code, and therefore
heavily influences the aspects.

To write unpacked code, malware must access the memory where unpacked code is
written and possess the means to write the code. Therefore, the first aspect is the
techniques and functions that are used to obtain the memory to write the unpacked code,
and the second aspect is the techniques and functions that are used to write the unpacked
code. The next aspect is the number of unpackings that are performed, which means
the number of unpacking layers. When multiple layers of packing are used, it might
mean that the malware overwrites the intermediate stages to hide certain behavior from
the analyst. These stages may yield information on the tool chain used, which may leak
information on the threat actor group. Therefore, the next aspect is whether malware
overwrites unpacked code during its unpacking process. The last aspect examined is
the distinction between malware and packer. As shown in Chapter 3, the consensus in
the related work presumes a clear distinction between packers and malware, with the
primary goal of malware unpacking being the reconstruction of the original malware as
it existed prior to the application of a packer. Therefore, this chapter explores whether
malware and packer are more intertwined than is generally assumed. One missing aspect
from the write-then-execute heuristic is the execution of the unpacked code. This aspect
is further discussed in the discussion in Chapter 4.5.

31

4 Intra-Process Unpacking Behavior

To make this behavior observable, this work proposes a novel unpacking model that
divides the execution of a program into unpacking layers. This model is implemented
using the write-then-execute unpacking heuristic into a packer measurement system,
which takes a program as input and returns the unpacking behavior using the unpacking
model. The resulting measurement system is subsequently implemented for a study using
Malpedia and dataset-packed-pe as data sets, as described in Chapter 3.3.

So, in total, the following research questions (RQ) are explored:

RQ1.1: What are the methods/techniques used by malware to obtain the memory
to write unpacked code?

RQ1.2: What are the methods/techniques used by malware to write code?

RQ1.3: Is the unpacked code overwritten during the execution of the malware?

RQ@1.4: How many layers of packing are used?

RQ1.5: Is it possible to differentiate between malware and packer code?

This chapter is structured as follows: first, the unpacking model is described. This is
followed by the implementation of the packer measurement system and the subsequent
study. The chapter ends with a summary and conclusion.

4.2 Unpacking Model

To answer the research questions, this section establishes the necessary theoretical foun-
dations to model the unpacking behavior. The research questions concern the logistics
around the writing of code. In malware unpacking, the writing of code is conducted
by the malware or, more precise, the unpacking layers of the malware. Therefore, the
concept of unpacking layers is introduced that divides the entire malware behavior into
unpacking layers. This is the first aspect examined in this section. These unpacking
layers interact by providing, overwriting, or sharing each other’s code. Thus, how layers
interact with each other’s code is examined to establish the relationships between the
layers and used to answer the research questions. This is the second aspect explored in
this section.

4.2.1 Unpacking Layer

As introduced above, the purpose of the proposed unpacking model is to divide the
full behavior of the malware into unpacking layers, making the unpacking behavior
observable. The first unpacking layer begins when the input program is executed, and
each unpacking introduces a new unpacking layer. An unpacking is determined by the
chosen unpacking heuristic.

As can be seen in Figure 4.1, an unpacking layer L is denoted as:

L=(I,E,W,A) (4.1)

32

4.2 Unpacking Model

UnpackingLayer
+ ID: integer
+ executed basic blocks: Set<BasicBlock>
+ written addresses: Set<integer>
+ called APIs: Set<CalledAPI>

CalledAPI BasicBlock
+ name: string + start address: integer
+ parameters: list<integer, string> + length: integer
+ returnvalue: integer + lastManipulatedBy: UnpackingLayer.|D

Figure 4.1: Representation of an unpacking layer, called APIs, and basic blocks.

where I € N represents the identifier of the unpacking layer, E represents a set of
executed basic blocks, W represents a set of written addresses w where w € N, and A
represents a set of called API functions. A basic block b is a sequence of code that does
not involve any control manipulation and is defined as

b=(s,1,1) (4.2)

with s,l,1 € N and s being the start address and [the length of the basic block. [
refers to the identifier of the unpacking layer that was the last to manipulate at least
one byte of this basic block.

Let executedAddresses(FE) be a function that returns a set of executed bytes for a
given set of basic blocks E. This means that for each b in E, add the addresses bs until
bsy; to a singular set of addresses.

Every API call a € A being a tuple with
a = (name, P,r) (4.3)
with name being the name of the called function, P C N being the list of the in- and

out-parameters with » € N being the return value.

If during execution an unpacking is detected, a new layer L,, is introduced, and each
subsequent basic block, write operation, and API call will be assigned to this layer.

Therefore, a single basic block can belong to multiple layers, which differs from the
code waves model, as seen in [2, 44], where jumps back to previous layers are possible.
In contrast, this unpacking model is sequential and once a new layer is introduced, the
execution does not jump back to any earlier layer.

4.2.2 Interpretation of Unpacking Layers

A subsequent interpretation step extracts high-level semantics from the model described
in the previous section. This step is explained in this section.

Because a single malware sample may employ multiple packing methodologies, different
behaviors can be measured. The semantic representation system must therefore be

33

4 Intra-Process Unpacking Behavior

Transition Share-Code Overwrite
Data
Code of /| Code of Code of Written
Layerp, > Layer, Layery, Layer, Layery, By
Layer,
Memory-Source Memory-Writer
Memory Data
Created Code of Written Code of
By Layer, By Layer,
Layerp, Layery,

Figure 4.2: There are five different tags that describe the relationship between two unpacking
layers. This figure shows the different possible layer tags with Layer,, being created
before Layer,,.

flexible enough to represent this diversity. A strict grouping system that places each
sample exclusively into one group is too strict and may hinder accurate analysis of varied
behaviors. Instead, a tagging system is chosen to describe the relationships between
unpacking layers, ensuring that diverse behaviors of different unpacking methods are
adequately captured.

As explained above, the writing of code is done by the malware itself. In particular,
the different unpacking layers write or overwrite the code of the other layers. Therefore,
the high-level semantic insights on the unpacking behavior needed to answer the re-
search questions is how these unpacking layers interact with the code of the other layers.
Accordingly, a tag is a relationship between two unpacking layers. With a tag R being

R= (L, Ly, T) (4.4)

with L,, and L, being unpacking layers and T being the identifier for a tag. Five
different tags are needed for the study.

e Transition Tag: Organize all layers into a list Ly, La, ..., L. Assign the Transition
tag to every two consecutive layers (L, Ly+1).

e Share-Code Tag: For each pair (L, L,) where n > m, compute the intersection
of their executed basic blocks B, N B,,. If By, N B, # 0, assign the Share-Code
tag to (L, L,). Therefore, this tag indicates that the two layers share code that
has not been altered, indicating a functional dependency between the two layers.

e Overwrite Tag: For each pair (L, L,) where n > m, compare the write op-
erations W, of the later layer with the executed addresses executedBytes(Ey,)
of the earlier layer. If W,, N executedBytes(E,,) # 0, assign the Overwrite tag
to (L, Ly). This indicates that one or more basic blocks executed in L,, were
partially or entirely overwritten by write operations in L,. Multiple layers can
overwrite the same earlier layer. However, the initial layer is not included in this,
as its code can be reproduced from the image file and does not require unpacking.

34

4.3 Packer Measurement System

Therefore, this tag is used to determine whether all layers of the code are accessible
at the end of execution.

e Memory-Source Tag: If a layer L,, executes a basic block whose bytes originated
or were generated by the memory of a previous unpacking layer L,,, assign the
Memory-Source tag to (L, L,). However, this only indicates that L,, gained the
handle on a memory section that is used by L,, or a later layer to write the code
of L,. For this, the API calls used for memory allocation and retrieval need to
be analyzed, such as the set MemGen,, is a set of memory addresses that are
allocated or retrieved by Layer,, and MemGen,, N executedBytes(Ey,) # 0 to
assign this tag to (L, Ly).

e Memory-Writer Tag: For each pair (L,,, L,,) where n > m, compare the write
operations of W,,, of L,, with the executed basic blocks executed Bytes(E,,) of Ly,.
If W,,,NexecutedBytes(E,) # 0, assign the Memory- Writer tag to (Ly,, Ly). This
indicates that the code executed in L,, was written by L,,. Memory-Writer shows
that L, wrote parts of the code belonging to Ly,.

4.3 Packer Measurement System

This section presents the technical implementation of the unpacking model presented in
Section 4.2.

As established in Chapter 3.3, the chosen unpacking heuristic is write-then-execute.
So, the unpacking model described above must be applied to this heuristic: each time
code that has been written to memory is subsequently executed, a new unpacking layer
is created.

Each written byte, executed basic block, and API call are added to the current layer
L,. Whenever a basic block is executed, the system checks if a written address w € W
exists, such that s < w < s+ [, with s and [being the start and length, respectively, of
the executed block. If such a written address w exists, a new layer L, is introduced
and each written byte, the executed basic block and any API call are added to this new
layer.

Next, a framework is chosen to implement the component that records the information
needed to measure the unpacking layers and then apply tags.

4.3.1 Framework

The write-then-execute unpacking heuristic necessitates recording both written bytes
and executed basic blocks, which, in turn, requires recording low-level details of the
execution of the program. Attaching a debugger to the malicious process could record
the executed and written bytes. However, debuggers are prone to detection and are
easily bypassed by malware [20]. Therefore, it was decided to avoid this risk, and a more
covert approach was pursued.

35

4 Intra-Process Unpacking Behavior

An option considered was virtual machine introspection such as Drakvuf [61] based on
LibVMI [62]. Unfortunately, experiments using LibVMI with both KVM and XEN to
record each executed and written byte proved too slow for such fine-grained analysis.

Alternatively, QEMU-based [18] emulation introspection frameworks offer a viable
solution. QEMU is an open-source machine emulator capable of full-system emulation
using the Tiny Code Generator (TCG) [63]. TCG translates the code of the guest
system, in the granularity of basic blocks, into platform-independent code (Tiny Code)
and is then compiled into the architecture of the host.

The open-source nature and documentation of QEMU have led to the development of
several emulation introspection frameworks [64, 9, 65, 66, 67, 68]. These frameworks fork
QEMU and modify its source code with calls to make execution and interaction with the
memory observable. Among these, TEMU has not been maintained for over a decade
and was therefore discarded. Instead, DECAF [66], DECAF++ [67], and PANDA [9]
have been evaluated in previous experiments by setting them up and developing proof-
of-concept plugins to gather the information needed. DECAF and DECAF++ proved
unreliable and crashed in almost all attempts to run the plugin. Only PANDA has worked
reliably, offers a stable Python API and remains actively maintained [69]. Therefore,
PANDA is selected to implement the packer measurement system.

4.3.2 Implementation of Recording Plugin

This section discusses the implementation of the packer measurement system using the
PANDA framework chosen in Section 4.3.1. The overall workflow achieved in this section
is denoted in Figure 4.3. The recording of the execution trace is implemented through
the PyPANDA [65] plugin interface.

Since this dissertation focuses on malware for Microsoft Windows, as explained in
Chapter 3.3, the packer measurement system is only compatible with this operating sys-
tem. To meet the requirements laid out in Section 4.2.1, three events must be recorded:
executed basic blocks, written memory bytes, and called APIs. PyPANDA offers, among
other functions, callbacks that are called whenever a memory byte is written or a ba-
sic block is executed. So, functions have been added to these callbacks to record the
unpacking behavior. Each function produces a log line that contains the current PID,
thread identifier, callback type identifier, and current program counter. Specifically:

e Basic-Block Callback: log line includes information about the base address and
size of the basic block.

e Memory-Writer Callback: log line includes the address, the size of the written
data, and the actual data.

Since PANDA has a view on the full system, these callbacks would normally be called
for every process and kernel, resulting in a significant amount of data. Therefore, the
recording is restricted to malicious processes that run on the system. Upon virtual-
machine startup, all callbacks are deactivated except for the callback that gets called
whenever the value in the CR3-register changes. The CR3-register contains the ASID
number and is, therefore, an indicator for the currently running process. When a malware

36

4.3 Packer Measurement System

PANDA Emulation
Launch
Input
Malware
Write to log

« Executed Basic Blocks
« Written Memory Bytes
» Called API

=1 |og file
£

Y

Log Analyzer
Record for current layer

« Executed Basic Blocks
« Written Memory Bytes
. Called APIs

Layer Creator
For every Memory Address do:

Address is Address
executed is written

Address Address is
i i executed
is Written /ot \written new
Start)——>"" it —> Unpacking
<«—— Layer
Address
T is written
address is
executed

llayers

Tag Layers

Result:

Unpacking
Behavior

Figure 4.3: This figure illustrates the workflow of the packer measurement system. First, the
malware sample is run in the PANDA emulation, and the executed basic blocks,
written addresses and API calls are recorded into a log file. The resulting log file
is analyzed. The executed, written addresses and called APIs are recorded for the
current layer. The automaton in the Layer Creator detects when a new unpacking
layer is introduced. The resulting layers are tagged and are the final output.

sample is first executed, the initial malware process has a predetermined name, and the
system waits until the CR3 callback is called for the switch into the process with this
predetermined name. At that moment, the PID of the malware process is added to a

37

4 Intra-Process Unpacking Behavior

watch list of processes, and all recording callbacks are activated. Whenever the ASID
changes to a PID not on the watch list, the callbacks are deactivated, and when the
execution returns to a watched PID, callbacks are reactivated. If the initial malware
process performs a code propagation as explained in Chapter 5, the PID of the new
malicious process is added to the watch list.

Furthermore, the model described in Section 4.2 also requires the recording of API
calls. So, a generic API hooking framework is built into the packer measurement plugin
for PANDA. To compile a list of API function addresses using APIScout [70], ASLR
is disabled in the guest system, ensuring that the libraries and, therefore, the function
offsets are always at the same address. Each of these addresses is hooked using the
PANDA plugin hooks2 [69]. Additionally, the function names and their signatures, i.e.
name, input, and output parameters, are added to a lookup table. Hook functions receive
the signature of their respective functions.

Whenever a hook is triggered, it reads the input parameters according to the process
architecture and creates a new hook on the return address of the API function. The input
parameters are printed alongside the function name, current PID, and TID. Whenever
the hook on the return address is triggered, the output parameters of that function
are read and printed with the function name, current PID, and TID. The return hook
deactivates and removes itself before returning.

The result of this plugin is a log file that contains every written memory byte, every
executed basic block, and every API call done by the malware sample.

4.3.3 Generating the Unpacking Layers

The generation of unpacking layers is analogous to the write-then-execute methodology,
described in Renovo [41]. The log file described in Section 4.3.2 is processed sequentially,
line by line. Initially, a new empty unpacking layer is created. Each log line contributes
to the current layer.

The following events in the log can be encountered:

e If a memory write is encountered, the written bytes are added to the set of
written bytes W.

e If a code execution or code translation is encountered, the executed basic
block is added to the set of executed blocks FE.

e If an API function is encountered, the following lines are skipped until the return
of that function. This optimization avoids attributing memory writes and execut-
ed/translated basic blocks by library functions, as they should not be attributed
to the malware. Once the return of the function is encountered, the function is
added to the set of functions called A.

— If an API function writes memory, the affected bytes are derived from
the parameter and return values and added to the written bytes W.

38

4.4 Study

— If an API function manipulates a file, this file is added to a list of ma-
nipulated files, so that when a function of the LoadLibrary family is called,
the set of manipulated files can be checked to see if the LoadLibrary function
is used for unpacking.

A new layer L,4; is created when a byte is executed that has already been added
to the written bytes of the current layer L,. At this point, the current layer has been
completed, and every subsequent event is attributed to the new layer.

The write-then-execute heuristic is very lenient and does not make assumptions about
the capabilities and functionalities of the malware; consequently, it is prone to false
positives. Certain libraries execute generated code, which triggers the write-then-execute
heuristic and generates a new layer. This unintentional behavior should not be included
in the output.

Now, the tags can be applied to the output, as described in Section 4.2.2.

4.4 Study

To answer the research questions outlined in Section 4.1, a study was conducted to
measure the unpacking behavior of two diverse sets of malware and packed executables
using the packer measurement system described in Section 4.3. The resulting tags, as
described in Section 4.2.2, are interpreted to gain a deeper understanding of packer
behavior and answer the research questions. As explained in Chapter 3.3, the chosen
data sets are Malpedia and dataset-packed-pe.

Malpedia Initially, 3,123 32-bit portable executables (PE) were obtained from Malpe-
dia. Of these, 632 (15.91%) samples are written for the .NET framework by Microsoft [71]
and, therefore, excluded from the data set, since the packer measurement framework is
not compatible with the .NET framework. An additional 218 (5.49%) samples could
not be analyzed, and 43 (1.08%) other samples have not been fully analyzed; these
were also removed. Among the remaining samples, unpacking behavior was detected in
1,301 (41.66%) samples. These samples constitute the Malpedia data set for the study.

dataset-packed-pe The second data set, dataset-packed-pe, contained 2,558 samples.
Of these, 119 (4.06%) are .NET and, therefore, were removed. Another 254 (8.67%) sam-
ples were deemed broken, and 16 (0.55%) samples could not be fully analyzed. Among
the remaining samples, unpacking behavior was detected in 2,001 (78.23%) samples,
which are further analyzed in the study.

4.4.1 Setup

A ten-minute timeout was chosen for the sandboxing to mitigate the impact of Py-
PANDA on the performance of the emulation. The chosen operating system is Windows
7 (32-bit) with 2 GB of RAM allocated to each virtual machine. The operating system

39

4 Intra-Process Unpacking Behavior

has Visual C++ redistributables installed. Although Windows 7 is an older platform
and its user base has largely migrated to newer or other operating systems, it remains
compatible with Malpedia malware. In a previous experiment, it was found that a higher
number of malware is compatible with Windows 7 compared to Windows 10. In addi-
tion, PANDA is more compatible with Windows 7 32-bit than subsequent versions of
Windows.

4.4.2 Results and Interpretation

This section presents and interprets the results of the study to answer the research
questions posed in Section 1.1. The results for each tag in Section 4.2.2 are presented
on their own and are interpreted to answer the corresponding research question.

4.4.2.1 Memory-Source Tag

This subsection presents and interprets the results for the memory-source tag, answering;:

RQ1.1: What are the methods/techniques used by malware to obtain the memory to
write unpacked code?

Malpedia Packed-PE
Used Memory Source Sampll)es (%] | Samples [%]
image 67.03 84.91
VirtualAlloc 64.34 22.79
NtMapViewOfSection 26.29 19.84
RtlAllocateHeap 10.99 0.40
codecave 7.92 5.55
NtAllocateVirtualMemory 6.46 0
VirtualAllocEx 6.00 0
stack 5.00 0
LoadLibraryExW 4.07 0
LocalAlloc 3.61 0
LoadLibraryExA 2.84 0
GlobalAlloc 2.69 0.10
HeapCreate 2.15 0.25
LoadLibrary A 1.46 0
MapViewOfFile 0.61 0
malloc 0.54 0
LoadLibraryW 0.38 0

Table 4.1: This table shows the memory sources used by samples from the data sets to gain
access to a memory region.

The results are presented in Table 4.1, which categorizes memory sources either by

purpose or allocation method and reveals the types of memory malware uses to write its
unpacked code.

40

4.4 Study

Image refers to the image sections that are allocated when the PE file is loaded
into memory. In the Malpedia data set, 67.03% samples leveraged their own image
sections for unpacking, while 84.91% samples of the dataset-packed-pe did so. For
both data sets, it is the most widely used memory location.

VirtualAlloc [26] takes the size and optionally the address to allocate a new
memory section in the caller process. For Malpedia, 64.34% of the samples used
VirtualAlloc, narrowly trailing the image section. In contrast, only 22.79% of
dataset-packed-pe samples use VirtualAlloc, showing a clear bias towards real-
world malware and indicating that off-the-shelf packers rely far less on this memory
source.

NtMapViewOfSection [72] is used to map the same piece of memory to other
processes or within the own process. Its prevalence is similar between the data
sets: 26.29% of Malpedia samples and 19.84% of dataset-packed-pe samples use
this function.

RtlAllocateHeap [73] allocates new memory on a given heap of a given size and
is the fourth most prevalent memory source. 10.99% of the Malpedia samples used
it, but only 0.4% of the samples in dataset-packed-pe.
Other heap allocations showed a similar disparity, suggesting that the heap is
almost irrelevant for off-the-shelf packers:
— GlobalAlloc: 0.1% (dataset-packed-pe) vs 2.69% (Malpedia), can be used
to allocate memory on the heap [74].
— HeapCreate: 0.25% (dataset-packed-pe) vs 2.15% (Malpedia), creates a new
heap [75].
— LocalAlloc [76]: 3.61% (Malpedia; none in dataset-packed-pe)
— malloc [77]: 0.54% (Malpedia; none in dataset-packed-pe)
Codecaves [78] were used in 7.92% of the samples in Malpedia and in 5.55% of
the samples in the dataset-packed-pe. Here, codecaves refer to writing code into
the memory regions of a module and executing it from there.

NtAllocateVirtualMemory [79] and VirtualAllocEx [80] were used in 6.64%
and in 6% of samples in Malpedia and none in dataset-packed-pe.

The stack is used by 5% of the samples in Malpedia to write and execute code.
By default, code that has been pushed to the stack cannot be executed, since the
stack section is marked as not executable. However, this can be circumvented.

LoadLibrary [81] is used by some malware in Malpedia. This malware writes
code as a library on the hard drive and loads it via one of the LoadLibrary family
of functions, thereby fulfilling the write-then-execute metric using the hard drive.

The packer measurement system detected 17 different memory-source techniques in
the Malpedia data set, of which only seven are observable in dataset-packed-pe. This
discrepancy further demonstrates that evaluations based solely on off-the-shelf packers
provide a limited perspective on real-world malware capabilities.

Consequently, a generic malware unpacker must be compatible with all kinds of mem-
ory sections.

41

4 Intra-Process Unpacking Behavior

4.4.2.2 Memory-Writer Tag

This segment presents the observed memory writing techniques and interprets the find-
ings to answer the research question:

RQ1.2: What are the methods/techniques used by malware to write code?

Used Write Malpedia Packed-PE
Function/Technique | Samples [%] | Samples [%]
direct 91.85 100.00
memecpy 17.22 7.45
LoadLibraryExW 4.07 0
RtlDecompressBuffer 3.77 0
memmove 3.00 0
LoadLibraryExA 2.84 0
WriteProcessMemory 2.61 0.10
LoadLibrary A 1.46 0
RtIMoveMemory 0.77 0.50
LoadLibraryW 0.38 0

Table 4.2: This table summarizes the methods and strategies used by samples in the data sets to
write data that is subsequently executed. The term direct denotes immediate access
to memory without using an API function.

The observed memory writing techniques are presented in Table 4.2. The used write
function/technique column specifies the method the samples used to write code for the
unpacking procedure.

e Direct access to memory occurs in 91.85% of the Malpedia samples and in
every sample of the dataset-packed-pe. This means that code is written directly
to the memory location without the use of an API function.

e Memory copy functions are also used in both data sets.

— memcpy [29] is a function dedicated to copying memory from one buffer to
another. It is used in 17.22% and 7.45% of the samples in Malpedia and
dataset-packed-pe. Some compilers inline the memcpy function, which turns
a usage of the memcpy function into an immediate access to memory.

— memmove [82] is used by 3% of the samples in Malpedia, also moves memory
from one buffer to another.

— RtlMoveMemory [83] is used by 0.77% of samples in Malpedia and 0.5%
of samples in dataset-packed-pe and also moves memory from one buffer to
another.

e WriteProcessMemory [30] is used in both data sets with 2.61% and 0.1%. Be-
cause this API function does not perform writing operations in user mode, an
unpacker that only observes user-space behavior is not able to detect these mem-
ory writes.

42

4.4 Study

¢ RtlDecompressBuffer [84] decompresses a given buffer and is a packing function
included in the Windows API. It is used in 3.77% of the samples in Malpedia but
was not observed in dataset-packed-pe.

e LoadLibrary [81] usage is also reflected in the memory writing techniques, anal-
ogously to the memory locations.

Although memory writing techniques are less diverse than the observed memory-source
techniques, important requirements for a generic unpacker can be deduced. Specifically,
a generic unpacker must be compatible with memory access in user mode and memory
access done through the API.

4.4.2.3 Code-Overwrite Tag

In this section, the phenomenon of code being overwritten during the unpacking phase
is explored. The interpretation of these results determines whether a generic malware
unpacker must track overwritten code during the unpacking process and answers the
research question:

RQ1.3: Is unpacked code overwritten during the execution of the malware?

Code Malpedia Packed-PE
Overrides | Samples [%] | Samples [%)]
Yes 21.60 28.79
No 78.40 71.21

Table 4.3: This table indicates how many samples in each data set exhibited overwritten code.

Table 4.3 presents the results of the analysis for the Code-Querwrite tag. In Malpedia,
more than 20% of the samples overwrite code during unpacking, while in dataset-packed-
pe nearly 30% of the samples do so, which cannot simply be extracted from the unrun
binary.

This is a significant portion of the binaries. A generic unpacker that fails to return
every layer to the user risks inadvertently hiding crucial information about the tool chain
of the actors and malware. Therefore, a generic malware unpacker must return every
piece of executed code to the user.

4.4.2.4 Transition Tag

This section examines the number of unpacking layers observed per sample. The result-
ing layer counts address the research question:

RQ1.4: How many layers of packing are used?

The number of packing layers observed by the packer measurement system is summa-
rized in Table 4.4. A majority of samples in both data sets use more than two layers:
36.97% of Malpedia samples and 44.88% of dataset-packed-pe samples. Moreover, ap-
proximately 25% of all samples in both data sets exceed three layers. The maximum

43

4 Intra-Process Unpacking Behavior

Number of Malpedia Packed-PE
Unpacking Stages | Samples [%] | Samples [%]

2 36.97 44.88

3 24.14 25.54

4 18.14 19.74

5 9.30 0.40

6 5.30 0.30

7 1.08 0.30

8 0.77 0.25

9 0.46 5.80

10 0.61 0.15

11 0.15 0.15

12 0.08 0.10

13 0.15 0
>15 2.84 2.40

Table 4.4: Number of unpacking layers per sample.

observed layer counts are 953 in the Malpedia data set and 487 in dataset-packed-pe.
These results invalidate the assumption that malware has a single original entry point.
Therefore, a generic malware unpacker must be compatible with any number of unpack-
ing layers.

4.4.2.5 Share-Code Tag

Using the Share-Code tag explained in Section 4.2.2; the distinction between malware
and packer is discussed to answer the research question:

RQ1.5: Is it possible to differentiate between malware and packer code?

The traditional unpacking model posits a definitive hand-off point between the packer
and the malware, implying that their respective layers are functionally independent.
Functional independence is defined by the absence of shared code between two layers.
If this unpacking model holds true, every sample must exhibit such an observable hand-
off point. This means that at least two disjoint sets of unpacking layers (one for the
packer, one for the malware) are totally functionally independent, because both the
packer and the malware might have multiple layers. Figure 4.4 illustrates an example
for this scenario.

At least two Functionally Malpedia Packed-PE
Independent Programs | Samples [%] | Samples [%]
No 80.40 90.85
Yes 19.60 9.15

Table 4.5: This table shows the number of samples that contain at least two functionally inde-

pendent programs.

44

4.5 Limitations

Packer Malware

Code of
Layerg

Code of
Layer;y

Code of
Layers

Code of
Layery

Code of
Layer,

Code of
Layerg

Figure 4.4: This figure illustrates two distinct programs, Packer and Malware, that are divided
by a single hand-off point, the original entry point (OEP). Each program consists
of three sequential layers, and within each program those layers share basic blocks.
Crucially, there is no overlap between any layer of the Packer and any layer of the
Malware, demonstrating complete functional independence.

The number of samples that contain at least two separate programs is displayed in
Table 4.5. In 19.60 % of the Malpedia samples, the packer and malware functionalities
are significantly intertwined; this proportion falls to 9.15 % in dataset-packed-pe samples.

These findings challenge the traditional assumption of packer and malware as two
different entities, revealing instead a continuum between the terms packer and malware.
Therefore, a generic unpacker must recognize that a strict distinction between the two
is not possible.

4.5 Limitations

There are two major limitations to this study:

The implementation is limited to 32-bit executables. As modern malware might be
increasingly compiled for 64-bit, more modern unpacking techniques are not measured
by this approach.

This framework does not include a means to determine that all unpacking stages have
been observed. The ten-minute sandbox timeout attempts to mitigate that fact by
allowing sufficient runtime for most packers to complete. But there is no ground truth
to verify the correctness. Also, there are packers that potentially generate an unlimited
amount of unpacking layers, such as the packers that pack and unpack code on demand.

An additional aspect of the write-then-execute heuristic is the execution part, which
remains unexamined in this study. For native binaries, the code is strictly executed in the
CPU. However, code execution can be conducted in various ways on other platforms, such
as .NET, for example just-in-time compiled or executed in a virtual machine. Therefore,
for platforms with more variable code execution, the research question on how the written
code is executed should be added.

45

4 Intra-Process Unpacking Behavior

In future work, a definitive end of the sandboxing could be implemented by scanning
the memory with the Yara rules provided by Malpedia or searching for the unpacked
representatives for the samples in dataset-packed-pe.

4.6 Conclusion

This chapter has presented a comprehensive study of intra-process malware unpacking.
A theoretical model of unpacking behavior was introduced, segmenting unpacking into
distinct layers and defining five inter-layer relationship tags. This model was imple-
mented into a packer measurement system using the dynamic analysis system PANDA.

Using the packer measurement system, a study was conducted to observe the unpacking
behavior of malware in the wild. Two data sets were analyzed: a diverse selection of real-
world malware from Malpedia and a clinical data set containing benign binaries packed
with off-the-shelf packers. Consistent with other work [16, 8] suggesting that clinical
data sets are not suitable for studies of malware behavior, the comparison demonstrates
that clinical data sets alone do not capture the entire range of malware behavior.

In the study, it was found that malware uses a plethora of different ways to write data
to differing types of memory. It also regularly overwrites the code executed during the
unpacking process and generally employs more than two unpacking layers. Additionally,
a distinction between malware and packer is not always possible, as they are present on
a spectrum.

e 3N

Main Takeaways of this chapter:

This chapter provides a theoretical model to describe intra-process unpacking
behavior. A study using a PANDA-based unpacking measurement tool reveals
that real-world malware is much more diverse than off-the-shelf packers and
benign software. The study has shown that malware uses the API and direct
memory addressing to write its code to any place in its process. It also uses
multiple unpacking layers and deletes unpacked code as part of the unpacking
process, while also blurring the line between what can be considered packer and
malware.

46

5 Multi-Process Unpacking Behavior

This chapter, including several of its figures, primarily recounts the previous re-
search conducted by the author of this dissertation. The evaluation has been
truncated to focus on the findings relevant to this dissertation. The findings
have been published in the following paper: Jenke, Thorsten, Simon Liessem,
Elmar Padilla, and Lilli Bruckschen. “A Measurement Study on Interprocess
Code Propagation of Malicious Software.” International Conference on Digital
Forensics and Cyber Crime. Cham: Springer Nature Switzerland, 2023. [6]

5.1 Introduction

Chapter 4 examined the write-then-execute behavior of malware confined to a single
process. However, some operating systems, most notably Microsoft Windows, permit
write-then-execute behavior across multiple processes, rendering an intra-process anal-
ysis insufficient for a comprehensive evaluation of Microsoft Windows malware. This
chapter therefore addresses the multi-process aspect of write-then-execute behavior with
a study.

First, the concept of code propagations is introduced to define the multi-process behav-
ior regarded as unpacking under the write-then-execute heuristic. A theoretical model
of code propagation is then presented and implemented in a code-propagation mea-
surement tool. Finally, this tool is employed in a study to explore the multi-process
write-then-execute behavior of malware.

The research questions for this study are:

e RQ1.6: What methodologies are used by malware to achieve multi-process write-
then-executes?

e RQ1.7: What functions are used to implement multi-process write-then-executes?

5.2 Code Propagation

The capabilities of multi-process write-then-execute behaviors are examined by first es-
tablishing which behaviors qualify. Prior research by Barabosch et al. [85, 60, 86] offers
a comprehensive systematization of process injections techniques but omits the need for
injected code to be executed. To bridge this gap, a definition of code propagation is
introduced that explicitly includes the execution of written code, thereby conforming to

47

5 Multi-Process Unpacking Behavior

the write-then-execute heuristic. Following this, a theoretical model of code propagation
is presented as a methodological basis to guide the implementation of the code propa-
gation measurement tool. This model encompasses both the propagation topology and
their implementation.

5.2.1 Definition

In general, a code propagation is defined as an instance of write-then-execute behavior
that occurs outside the memory space of the currently observed process.

In more detail, a code propagation conducted by a process M fulfills the following
criteria:

1. The code is written and executed outside of M’s currently running process.

2. M uses previously written binaries to spawn new processes or injects code into
newly created or running processes.

3. The code is executed immediately after writing.
4. Interaction from the user or other processes is not required.

Criterion 1 requires that the code is executed outside of the currently infected process,
thereby ensuring the multi-process property of code propagation.

Criterion 2 specifies the way code propagations are carried out, mandating either
through the spawn of a malicious process or the injection into another process.

Criterion 3 distinguishes code propagations from persistence techniques [87], in which
code is placed for delayed execution to harden the malware against disinfection.

Criterion 4 further separates code propagations from persistence techniques and en-
sures that code propagations are performed autonomously by the malware.

5.2.2 Representation

In this section, the mathematical representation for code propagations is presented.
As mentioned earlier, this dissertation focuses on Windows Malware and, therefore, uses
Windows-specific nomenclatures, though the model applies to any operating system that
offers multi-process write-than-execute.

Code propagations are the interaction between different processes, and only an infected
process can create another code propagation, and therefore spread the infection. One
process is also capable of infecting more than one process. This means that there is
an infection chain from the original malware process to the last infection, making a
graph-based model a natural choice. Therefore, code propagations can be described as
a weighted, directed graph:

Gmov = (‘/7 E) (51)

with each vertex v € V representing an infected process and each edge e € E representing
the code propagation between them. There are no reflective edges in E because a
code propagation can occur only between two different processes. Therefore, the tuple

48

5.2 Code Propagation

start

Launch of
new Process

Write Binary > Launch of new
Process

Gain Process reuse Allocate new

Handle memory Memory
yes /
. Gain
Reuse Write to AGKEES 6
Thread Memory
Memory

. . Let Thread
Creation of a Gain Handle to L 3 execute new
new Thread Thread Code

Figure 5.1: Decision tree to implement code propagations: the graph is segregated into two major
paths depending on whether a malicious process is launched. The first path (right)
describes the spawn of a malicious child process, while the other (left) describes the
family of process injections [6].

(Gmov, f) denotes the code propagations for a given input binary, and f being the
weight function called code propagation implementation, which is explained in the next
subsection. In this dissertation, G,y is called the code propagation topology.

5.2.3 Code Propagation Implementation

This section further elaborates on the weight function f : £ — X of the code propagation
graph, where x € X represents the implementation of the code propagation.

Figure 5.1, inspired by the work of Barabosch et al. [60], illustrates two primary
paths of how code propagations can be carried out: spawning a malicious child process
or injecting code into another process. If the decision lands on spawning a malicious
process, a malicious binary is needed to launch a new process: either written to the hard
drive by the malware or employing its original binary that spawned the initial process.
The binary is then used to spawn a new process.

The other path denotes the various ways through which malware injects its code into
other processes. Successful injections depend on three resources: a victim process, a
target memory, and a thread. For each resource, the malware decides whether to reuse
existing ones or allocate new ones.

49

5 Multi-Process Unpacking Behavior

e First, the malware must choose a victim process. Malware may either appropriate
existing processes or spawn a new one from benign binaries for injection.

e The second resource is the memory to write malicious code. Once a process is
chosen, its already allocated memory regions can be overwritten and, therefore,
reused.

e The third resource needed is the thread to execute the malicious code written
inside the victim process. Similarly to memory, each process already has running
threads, but new threads can also be spawned. For example, malware can launch a
new process in suspended mode, to manipulate the main thread of the new process
after the malicious code has been written.

Measurements of code propagations, and malware behavior in general, inevitably cap-
ture only a snapshot of the current landscape. Because future implementation cannot be
predicted, the chosen representation is deliberately open to ensure general applicability
and a possible future-proof way of describing code propagations. For the representation,
an eight-bit vector X encodes each decision step from Figure 5.1: a bit set to 1 denotes
that the corresponding action occurred, while a bit set to 0 denotes that it did not.

Bit 1 : Was a new process spawned?

Bit 2 : Was a handle on a process obtained?
Bit 3 : Was a new thread spawned?

Bit 4 : Was a handle on a thread obtained?
Bit 5 : Was new memory allocated?

Bit 6 : Was a memory region reused?

Bit 7 : Was the data written?

Bit 8 : Was the thread resumed?

This representation also accommodates mixed strategies, in which resources can be
reused and new ones generated. In addition, it also captures incomplete code prop-
agations. The high diversity of malware projects and malicious actors [10], together
with differences in the actors’ motivation and capabilities, yield code propagations with
superfluous steps or even missing steps, so some code propagations may be incomplete.

5.3 Measuring Code Propagations

The aim of this study is to characterize the multi-process unpacking behavior of malware
by measuring the code propagations of real-world malware. To this end, the concepts
of the code propagation topologies of the previous section need to be implemented into
a code propagation measurement system, as outlined in Figure 5.2. Initially, API calls
are gathered into logs. These produced logs are interpreted, and the code propagations
are identified. Both the API call recorder and the interpretation step are detailed in
the upcoming sections. Since code propagations represent the multi-process unpacking
behavior of malware, a code-propagation measurement system provides the means of
studying how malware relocates and executes code across process boundaries.

50

5.3 Measuring Code Propagations

Record

« Calling Process ID :

) Result:
« Function Name Create Code . .

- . Multiprocess Unpacking
« In and Out Parameters Propagation Topologies -
logs Behavior
» Return Value
« Call Stack Depth
=X

Figure 5.2: The flow of the code-propagation measurement system: API calls are traced and
written into logs, which are interpreted to identify code propagations and thus reveal
the samples’ multi-process unpacking behavior. The interpretation step is displayed
in Figure 5.3.

5.3.1 Recording API calls

As noted previously, the code-propagation measurement system focuses on Windows
malware. Since code propagations are defined by interactions between processes, which
require interaction with the kernel, the API calls for conducting code propagations need
to be gathered. Addressing this issue through static analysis is highly time-consuming
and impractical due to the numerous potential levels of obfuscation, especially malware
packing. The alternative is a dynamic analysis system that records API calls, which puts
the code propagation measurement system into the field of dynamic analysis systems.

Therefore, to build the code propagation topologies as described in Chapter 5.2, the
code propagation measurement system must gather information on the API calls per-
formed by the malware. This information is as follows:

e function name

e in and out parameters passed to the function
e return value

e depth of the call stack

e Calling Process (process ID)

The name of the function is needed to identify the API call performed. The in and
out parameters are essential for attributing the API call to the target process. For
example, if the malware first creates a handle on a process, the target’s PID is an in
parameter to that function, whereas launching a new process before injecting its code, the
launched process’ PID is in the API call’s out parameters. The return value may contain
information generated by the API call or the status code indicating the call’s success or
failure. The depth of the call stack indicates whether the API call is performed by the
Windows API or by malware directly. Lastly, the identifier of the performing process
should be recorded to identify the origin process.

The analysis plugin presented in the previous chapter would have been a valid candi-
date but it generates unnecessary performance overhead due to the fine-grained analysis.
Also, a solution based on Virtual Machine introspection such as LibVMI would have in-
volved the development of an API-hooking framework. However, Microsoft has released

51

5 Multi-Process Unpacking Behavior

Create empty

Code
Propagation
_ > _ \\\ _— \\\
- . yes < . yes - . yes
<« Is Beginning of N _ Is Memory Region D - Is written D Record Code
. Code Propagation? /// \\\\ written to? - \\\\ memory executed? Propagation

yes

Discard Code
Propagation

Figure 5.3: Decision tree to interpret the interactions between two processes to identify code
propagations.

an actively maintained and thoroughly documented framework called Detours [88]. De-
tours allows hooking API calls in Windows by offering the tool chain to build libraries
that are loaded into processes. Experiments have shown that Detours offers a stable
solution with minimal programming overhead. As a result, Detours was chosen as the
framework to capture and record API calls. It achieves this by overwriting the first few
instructions of the target function with a jump to a function belonging to the Detours
hooking library. Therefore, arbitrary code can be inserted into any API call.

For this study, a hooking library was created that is very similar to Microsoft’s
Traceapi [89] example plugin. Each time a hooked function is called, the library creates
a log line containing the function’s name, in parameters, and depth of the call stack.
Then the original function is called to preserve the original functionality of the program.
Afterwards a second log line captures the return value, the depth of the call stack, and
the out parameters. This approach ensures that all the information required to construct
the code propagation have been logged. The library is injected into the processes via
the AppInit_DLL [90] registry key. Each process writes the log lines into its own log file.

5.3.2 Identifying Code Propagations

In this section, the log files from the API call recorder are processed line by line to
identify the code propagations and create the code propagation topology for the input
binary. All API-call entries are gathered, matched with their exit lines, and put into a
list. Each API call’s origin is then examined: If the API call was invoked by an API
function instead of directly by the malware, it is recorded in a list as internal API calls.
Each of these API calls represents an edge in a directed graph, with the origin vertex
being the process that conducts the API call and the end vertex being the process that
is interacted with.

52

5.3 Measuring Code Propagations

A preliminary directed graph is defined as Gprelim = (Vpretims Epretim) With every cap-
tured process in Vppeum and all API calls between them in Epepi,. An empty set of
vertices V and an empty set of code propagations E are also created. The flow of inter-
pretation is shown in Figure 5.3. Each pair of two vertices vi,v2 € Ve, is checked if
there is at least one API call e € Epeiim, between them. If no edge exists, the next pair
of vertices is examined. Otherwise, it is checked whether the API call denotes the start
of a code propagation according to Figure 5.1.

On Microsoft Windows, these functions are:

e OpenProcess & NtOpenProcess & CreateProcessW & CreateProcessA & WinExec
e CreateProcessInternalA & CreateProcessInternalW & NtCreateUserProcess

o ShellExecuteExW & ShellExecuteExA & ShellExecuteA & ShellExecuteW

If these functions are not encountered, then the next pair of vertices is examined. If
these functions are encountered, the set of edges between the examined vertices could
contain a code propagation and is therefore further analyzed, and a weight for the edge
between v1 and wvg is created with all bits set to zero. If a process is spawned, the first
bit is set to 1, and if a process is opened, the second bit is set to 1.

Next, it is checked whether the memory is being manipulated between the two pro-
cesses. The functions checked for this interaction in Microsoft Windows are:

o VirtualAllocEx & VirtualAllocExNuma & NtAllocateVirtualMemory &
NtMapViewOfSection

o WriteProcessMemory & NtWriteVirtualMemory & VirtualQueryEx

The functions WriteProcessMemory, NtWrite VirtualMemory, and NtMap ViewOfSec-
tion signify that the data have been written to the target process and are used to set the
seventh bit. It is not always possible to detect the reuse of a memory section through
the usage of the API. So, if memory is being written inside another process that has not
been previously allocated using VirtualAllocEz, VirtualAllocExNuma, or NtAllocate Vir-
tualMemory, the sixth bit is set to 1. However, if they were used for allocating, the fifth
bit is set to 1.

The last resource to check are the threads. The functions to manipulate and allocate
threads on Microsoft Windows are:

e OpenThread & SetThreadContext & NtSetContextThread & NtOpenThread
e ResumeThread & NtResumeThread & CreateRemoteThread & QueueUserAPC

In case a thread is created or opened to execute the written code, the third or fourth
bits are set to 1, respectively. Manipulation of a thread that is allocated with the spawn
of a new process is denoted by the fourth bit being set to 1. Next, it is checked whether
a thread is started to execute the written code, which is denoted by the eighth bit. Now
that all bits have been set, it can be checked whether the written code has been executed
inside the victim process.

If the functions between the two processes represent a functioning code injection, the
edge between v; and wvg is added to E, the resulting weight is added to the weight

53

5 Multi-Process Unpacking Behavior

479024d: 2072: +CreateProcessW(<NULL>,C:\Windows\SysWOW64\upnpcont.exe,0,0,0,0,0,<NULL>,18ff04,18ff50)
47b824f: 2072: -CreateProcessW(,,,,,,,,) -> 1 (proc:2168/f0, thrd:2172/ec
47b828e: 2072: +OpenProcess(1f0fff,0,pid=2168)

47b8339: 2072: -OpenProcess(,,) -> f8

47b838c: 2072: +VirtualAllocEx(f8,0,9a4a,1000,40)

47b83c7: 2072: -VirtualAllocEx(,,,,) -> 100000

47b841a: 2072: +WriteProcessMemory(f8,@100000..109a49,27bea0,0)
47b8515: 2072: -WriteProcessMemory(,,,,) -> 1

47b8573: 2072: +CreateRemoteThread(f8,0,0,100000,0,0,18ff6c)
47b87d5: 2072: -CreateRemoteThread(,,,,,,) -> f4 (2176

488e0fa: 2072: +ExitProcess(0)

Figure 5.4: Truncated snippet of a log file containing a code propagation [6].

function f, and v; and vy are added to V. Otherwise, the binary used to spawn the
process is examined. If the binary has previously been written by a malicious process,
the code propagation is recorded. Otherwise, the code propagation is discarded because
no malicious code has been executed. This process is repeated with the next pair of
vertices contained in Vi,eiim, -

The resulting sets V', F, and the weight function f fully describe the code propagation
of the input malware. This program has been implemented in a Python program that
takes the logs of the malware sandboxing step as input.

Figure 5.4 presents an example snippet of the previously mentioned log file, heavily
truncated to improve readability. The snippet shows that the malware creates a new pro-
cess using CreateProcessW, which takes, among other fields, a string containing the path
to a binary as input parameter and a structure called LPPROCESS_INFORMATION
as an output parameter [91]. The string denotes the binary that shall be used to spawn
the new process, and the struct contains the process ID, thread ID of the main thread,
a handle to the process, and the thread when the call returns. In this example, the ID
of the created process is 2168.

Using the ID of the process, the malware uses OpenProcess to open the spawned
process [92], which is unnecessary because CreateProcessW already returns the handle
f8. This handle is used as input for VirtuaAllocEx to allocate a memory section of
1,000 bytes, and the base address of this section is returned [80]. Next, the malware
calls WriteProcessMemory using the process handle and the base address of the memory
to write its code [30]. The written code is executed using CreateRemoteThread, which
takes the handle of the process and the address of the written code to create a thread [93].
Lastly, the malware process is terminated using ExitProcess [94].

5.4 Code Propagation Study

This section presents the study of code propagation to explore the multi-process unpack-
ing behavior of malware. However, it is heavily truncated compared to the published
article [6], with emphasis placed on the behaviors required to derive the requirements for
a generic malware unpacker. First, the setup of the study is described. Then, the im-
plementations of code propagations are analyzed to answer the research questions posed
in Chapter 5.1.

54

5.4 Code Propagation Study

5.4.1 Setup

The setup is analogous to the one presented in Chapter 4.4.1, employing four instances of
VirtualBox virtual machines with 4 GB of RAM. Guest operating systems ran Windows 7
64-bit SP1 with Visual C++ redistributables installed and have been set up as described
in [95].

As mentioned in Chapter 3.3, two data sets, Malpedia and dataset-packed-pe, were
chosen, but since none of the dataset-packed-pe samples exhibited multi-process un-
packing behavior in the experiments, this data set was excluded from this study. The
remaining data set comprised all PE files including 64-bit executables and DLLs. In
total, 4,889 samples have been sandboxed: 3,358 were executables and 1,531 DLLs. Of
these, 1,456 samples, approximately 30%, performed code propagations. Only 86 of
those samples were DLLs, indicating that code propagations are not frequently used in
DLL malware. In fact, 41% of the executables performed code propagations, highlight-
ing the importance of handling this behavior in malware analysis. The 1,456 resulting
code propagation topologies are further analyzed in this study.

5.4.2 Results

The findings of the study are presented here. First, the measured implementations of
code propagations are detailed. This answers the research question:

RQ1.6: What methodologies are used by malware to achieve multi-process write-then-
executes?

This is followed by an assessment of which functions are used to realize them and of the
distribution of function calls over the different samples to answer the research question:

RQ1.7: What functions are used to implement multi-process write-then-executes?

5.4.2.1 Code Propagation Implementations

This subsection discusses the methodologies of the code propagations. Our findings,
depicted in Figure 5.1, show the type of propagation techniques by both their decimal
and binary encoding. Spawning a new malicious process emerges as the most prevalent
method, occupying both first place and also fourth place when the process is created in
suspended mode and its main thread is explicitly resumed. The second most common
technique, 217, is the injection into a new process, allocating new memory, and executing
a reused thread. This technique is also commonly referred to as process hollowing.
Injection into an already running process is in the third place, which is technique 86. This
code propagation is the injection into a running process, the allocation of new memory,
and the creation of a new thread to execute the written memory. Altogether, these
findings confirm that the most common methods for multi-process write-then-execute
are spawning new malicious processes from previously written binaries and injecting into
new processes.

55

5 Multi-Process Unpacking Behavior

Code Propagation

|

Samples

|

Propagation | Binary Code -

1 00000001 1018 (69.92%)
217 11011001 270 (18.54%)
86 01010110 101 (6.94%)
129 10000001 86 (5.91%)
225 11100001 85 (5.84%)
209 11010001 78 (5.36%)
85 01010101 43 (2.95%)
145 10010001 38 (2.61%)
82 01010010 34 (2.34%)
241 11110001 31 (2.13%)
249 11111001 28 (1.92%)
113 01110001 15 (1.03%)
210 11010010 14 (0.96%)
233 11101001 13 (0.89%)
81 01010001 12 (0.82%)
118 01110110 9 (0.62%)
117 01110101 7 (0.48%)
130 10000010 6 (0.41%)
50 00110010 6 (0.41%)
229 11100101 5 (0.34%)
114 01110010 5 (0.34%)
153 10011001 4 (0.27%)
214 11010110 3 (0.21%)
97 01100001 3 (0.21%)
230 11100110 3 (0.21%)
102 01100110 2 (0.14%)
246 11110110 2 (0.14%)
22 00010110 1 (0.07%)
242 11110010 1 (0.07%)

Table 5.1: Occurrence of code-propagation techniques in topology types. Each propagation is
The number in the first column is the decimal number
representation of the 8 bit-vector. The most important code propagation techniques
are the spawn of new processes, technique 217, (injection, newly created process, new
memory allocation, executed by reused thread), and technique 86 (injection, running
process, new memory allocated and executed by a spawned thread). The explanation

counted once per sample.

for the binary codes can be found in Section 5.2.3.

56

5.4 Code Propagation Study

This answers the research question RQ1.6:
e A generic malware unpacker needs to deal with code written to other processes.

e A generic malware unpacker needs to deal with code written to the hard drive.

5.4.2.2 Used API Functions

’ Function Total Usage ‘ Samples ‘
CreateProcessW 2377 849 (58.31%)
WriteProcessMemory 48,671 574 (39.42%)
ResumeThread 801 555 (38.12%)
VirtualAllocEx 41387 510 (35.03%)
CreateProcessA 1602 459 (31.52%)
SetThreadContext 467 295 (20.26%)
VirtualProtectEx 1246 169 (11.61%)
OpenProcess 15513 162 (11.13%)
CreateRemoteThread 15347 155 (10.65%)
NtMapViewOfSection 256 151 (10.37%)
NtWriteVirtualMemory 731 133 (9.13%)
ShellExecuteA 123 96 (6.59%)
ShellExecuteExW 216 95 (6.52%)
ShellExecuteW 133 92 (6.32%)
NtResumeThread 98 69 (4.74%)
CreateProcessInternal W 63 56 (3.85%)
WinExec 65 52 (3.57%)
CreateProcessInternal A 22 22 (1.51%)
QueueUserAPC 10 10 (0.69%)
VirtualQueryEx 74 6 (0.41%)
ShellExecuteExA 5 5 (0.34%)
OpenThread 3 3 (0.21%)

Table 5.2: Functions, their number of usages, and the number of samples using the respective
functions.

Now, the functions used to achieve the code propagations are discussed. Table 5.2
shows the results.

e Process Creation and Manipulation:

— CreateProcessW [91] is the most used function, appearing in 58.31% of
samples. This aligns with the analysis of the code propagation method-
ologies, in which spawning a new process is the most prevalent method.
This is supported by the still frequent use of CreateProcessA. Other func-
tions achieving similar results are the ShellExecute [96] family of functions,
WinExec [97], and the low-level equivalents CreateProcessInternalA and
CreateProcessInternal W.

57

5 Multi-Process Unpacking Behavior

OpenProcess [92] is used to create a handle on an already existing process.
Handles are commonly used in functions to manipulate another process. It
was observed in 11.13% of samples. Although this number may seem low, the
CreateProcess family of functions also returns a handle to a process, making
a call to OpenProcess obsolete.

¢ Memory Writing:

WriteProcessMemory [30] is the most used function with 48,671 total us-
ages in 39.42% of samples. It is used to write data to be later executed and
is therefore frequently used to implement code injections.

NtWriteVirtualMemory is used in 9.13% of samples and the low-level
equivalent of WriteProcessMemory.

e Thread Manipulation:

ResumeThread [98] ranked third, with 38.12% of samples using it. However,
this function is used not only in code injections, but also regularly used to
spawn a malicious process. As mentioned above, it is possible to spawn a
process in a suspended state and then use ResumeThread to run the main
thread.

NtResumeThread is the low-level equivalent of ResumeThread and is used
in 4.74% of samples.

SetThreadContext [99] can be used to manipulate an existing thread to
execute the code of the code propagation. It was used in 20.26% samples.

CreateRemoteThread [93] was observed in 10.65% of samples and spawns
a thread in another process, executing the injected code.

OpenThread [100] is used to manipulate an existing thread and was only
used in three samples.

QueueUser APC [101] is used to perform an APC injection and was used in
ten samples.

¢ Memory Manipulation:

VirtualAllocEx [80] is the fourth most used function and is a necessary step
in code propagations that do not reuse memory. It was observed in 35.03%
of samples.

VirtualProtectEx [25] is closely related to this function as it is used to
change permissions of a memory section. It was observed in 11.61% of sam-
ples.

VirtualQueryEx [102] was only used in six samples and retrieves informa-
tion about a memory page.

NtMapViewOfSection [72] is used to transfer code to the memory of an-
other process and was observed in 10.37% of samples. It enables the malware
to write malicious code into a mapped section in its own memory space and
then mapping that to the memory of another process to execute it. This
concept is further explored in [103].

58

5.5 Limitations

This analysis answers the research question:

RQ1.7: What functions are used to implement multi-process write-then-executes?

5.5 Limitations

One limitation of this implementation is the use of Detours or VirtualBox, both of which
could be detected by malware. Upon detection, samples can hide their functionality and
skip code propagations altogether.

Detours also hooks the APIs in the user space, whereas some malware may bypass
these hooks by implementing the syscalls themselves [104].

Another limiting factor arises from evasion techniques, especially APT hammering [21],
where repeating the same API call many times overwhelms the system. In our experi-
ments, API hammering caused the memory of the interpretation component to overflow,
preventing the analysis of those samples.

In addition, no mechanism has been implemented that checks whether all code prop-
agations have been performed. Therefore, there is no way to ensure that the behavior
observed in the study is complete.

5.6 Conclusion

This chapter examined the malware’s multi-process write-then-execute behavior, focus-
ing on the method employed to realize this behavior and the functions to implement
them. The results shall aid in understanding how multi-process write-then-execute be-
havior works and which functions need to be observed to spot it.

A mathematical model was proposed and implemented in a dynamic analysis system
based on Microsoft Detours. Applying this system to a representative real-world data
set containing Windows malware revealed that spawning a new process from a mali-
cious binary and process hollowing are the dominant multi-process write-then-execute
methods, while other process injections techniques occur far less frequently.

These findings imply that a generic malware unpacker must be able to deal with code,
not only on the hard drive but also in the memory of other processes. In addition, the
CreateProcess family of functions, WriteProcessMemory, NtWriteVirtualMemory, and
NtMap ViewOfSection emerged as strong indicators for code propagations.

The insights gained in this chapter inform the requirements for a generic malware
unpacker. In the next chapter, the requirements are formulated, and an assessment is
made to evaluate past generic malware unpackers using said requirements.

59

5 Multi-Process Unpacking Behavior

Main Takeaways of this chapter:

This chapter provides a theoretical model to display multi-process
write-then-execute behavior. This model is used to conduct a study of real-world
malware and reveals how malware spawns new processes and uses existing ones
to spread its code to another process. Malware also uses the hard drive to write
its code and spawns a process from it.

60

6 Past Generic Malware Unpackers

This chapter primarily recounts the previous research conducted by the author
of this dissertation. It is restructured from an independent article into the flow
of this dissertation. The author of this dissertation has published them in the
following paper:

Jenke, Thorsten, Max Ufer, Manuel Blatt, Leander Kohler, Elmar Padilla, and
Lilli Bruckschen. “Democratizing Generic Malware Unpacking.” 2025 IEEE
European Symposium on Security and Privacy Workshops (EuroS¢&PW). IEEE,
2025. [7]

6.1 Introduction

This chapter provides an in-depth analysis of the previous unpacking methodologies
of Chapter 3 and their shortcomings based on the two studies discussed in Chapter 4
and Chapter 5. From these studies, the requirements for a generic malware unpacker are
derived and stated. Finally, the previous unpacking methodologies are evaluated against
these requirements.

This chapter answers the research questions:

e RQ1: What are the requirements for a malware unpacker that it must meet to be
generic?

e RQ2: Do the previously proposed generic malware unpackers fulfill the require-
ments for a generic malware unpacker?

6.2 Requirements for a Generic Malware Unpacker

This section defines the requirements for a generic malware unpacker, as derived from
the studies presented in Chapter 4 and Chapter 5.

The first set of requirements are derived from the types of memory writes that have
been observed in the studies. The vast majority of malware uses direct access to memory
to write the unpacked code. This leads to the first requirement:

R1:
A generic malware unpacker must be able to handle write operations
carried out in user mode.

61

6 Past Generic Malware Unpackers

Malware has also been shown to use the API to write code into its own memory, to
the hard drive or other processes. This leads to the second requirement:

R2:
A generic malware unpacker must be able to handle write operations
through the API.

While some packers only use a limited number of different memory locations, the
multi-process write-then-execute study has shown that malware uses any kind of memory
location. This leads to the third requirement:

R3:
A generic malware unpacker must be compatible with all kinds of
memory locations.

As mentioned previously, memory writes are also performed to implement code propa-
gations, which means write operations to other processes or files on the hard drive. This
leads to the fourth and fifth requirement:

- 3
R4:
A generic malware unpacker needs to cover injections into other
processes.

R5:
A generic malware unpacker must be able to deal with new processes
spawned from binaries on the hard drive.

. J

Lastly, the topology of the unpacking layers is discussed. The intra-process write-then-
execute study demonstrated that the majority of malware uses multiple packing layers.
This leads to the sixth requirement:

R6:
A generic malware unpacker must be able to handle multiple
unpacking layers.

In addition, these unpacking layers may also contain code that is deemed worthy of
protection by malicious actors. They can be used to deduce knowledge about the tool
chain used, which can yield information on the involved threat actor groups. This leads
to the seventh requirement:

RT:
A generic malware unpacker must be able to unpack all unpacking
layers.

62

6.3 Assessment

Lastly, the intra-process write-then-execute study shows that malware and packer
cannot be separated, rendering the search for an original entry point counterproductive
in many cases. This leads to the eight requirement:

RS:
A generic malware unpacker does not rely on the dichotomy of
malware and packers.

The behavior and their derived requirements are summarized in Table 6.1.

] ID ‘ Behavior Requirement

Memory Writes
R1 Direct write access to memory Deal with memory writes in user mode
R2 APT is used to write data Deal with memory writes through API
Memory Locations
R3 | All kinds of memory locations are used Deal with all types of memory
R4 Code is written to another process Deal with code in other processes
R5 Code is written to the hard drive Deal with code on hard drive
Topology
R6 Multiple packing layers Aware of multiple packing layers
R7 Unpacked code is deleted Extract all unpacking layers
RS Packer functionality in packed data Handle mixed packer and malware code

Table 6.1: This table shows the exhibited behavior of malware and the requirements derived from
them.

A generic malware unpacker must fulfill all these requirements. Since they are derived
from the unpacking behavior observed in previous studies, failing any of them will prevent
the unpacker from unpacking every sample analyzed in the studies.

6.3 Assessment

To answer research question RQ2, the related work introduced in Chapter 3 is evaluated
against the stated requirements. For each contribution, it is stated whether they fulfill
each requirement. The results are summarized in Table 6.2.

Malware Normalization

The unpacker presented in the Malware Normalization [4] paper fulfills requirement
R1, although its compatibility with requirement R2 cannot be inferred. It can locate
malware in all memory locations within a process, thus fulfilling requirement R3, but
is incompatible with code propagations and therefore fails to meet requirements R4
and R5. Their unpacker is compatible with multiple layers to fulfill requirement R6.
The authors claim that code being overwritten during unpacking is out-of-scope and,

63

6 Past Generic Malware Unpackers

| Name | R1 | R2[R3|R4[R5|R6|R7[RS8|

Normalization | v ? v X X v X v
Polyunpack | N/A | N/A | v | X X X X X
Omniunpack v v v X X v X X
Renovo v ? 4 X X VA 4
Etherunpack v ? v X X v/
Eureka N/A|N/A| vV | X X | v | X X
Coogan v X 4 X X X X X
JUSTIN v X I X X | v | X X
Tracesurfer v X v X X v v v
Jeong N/A | N/JA | X X X X X X
Malwise v ? 4 X X v X X
Codisasm v X v X A A A 4
Binunpack |N/A|N/A| v | V | V | V | X X
Malflux v ? L X |V VX X
Roamer NAINA| X |V |V |V | X |/

Table 6.2: Assessment of previous malware unpacker based on the requirements. v’ : unpacker
fulfills requirement; X : unpacker fails requirement; ‘?’: definitive answer could not be
derived from the publication; ‘N/A’: requirement is not applicable to that methodol-
ogy. No unpacker meets all requirements.

therefore, requirement R7 is violated. It does not differentiate between malware and
packer, to satisfy requirement RS8.

Polyunpack

Polyunpack [36] is not based on the tracing of executed bytes or written memory, there-
fore requirements R1 and R2 are not applicable. Because Polyunpack is agnostic to the
memory in which the unpacked code is written to, requirement R3 is met. However, it
is completely unaware of multi-process unpacking and multiple unpacking layers, and it
assumes a clear distinction between malware and packer code. The requirements R4,
R5, R7, and R8 are not met. Regarding multiple unpacking layers, the authors say
that their algorithm should be applied multiple times, but since it is not part of the core
algorithm, they violate R6.

Omniunpack

Omniunpack [47] treats all types of memory and memory writes uniformly, thereby
satisfying requirements R1, R2, and R3. However, their program is not compatible with
multi-process unpacking, so requirements R4 and R5 remain unfulfilled. The program
can handle multiple unpacking layers, meeting requirement R6, but the inclusion of
antivirus software leads to the extraction of only the layer on which the antivirus hits,
which violates requirement R7. Finally, Omniunpack assumes a dichotomy between
malware and unpacker, failing to satisfy requirement RS.

64

6.3 Assessment

Renovo & Etherunpack

Renovo[41] is compatible with write operations in user mode, satisfying requirement R1,
but its documentation does not confirm whether it also traces write operations done in
kernel mode, leaving requirement R2 open. It does not discriminate between different
types of memory, fulfilling requirement R3, yet multi-process unpacking is completely
outside its scope, thereby violating requirements R4 and R5. Renovo is compatible
with multiple unpacking layers, unpacks all layers, and does not differentiate between
malware and packer code, fulfilling the remaining requirements R6, R7, and RS8.

Etherunpack [42], as a reimplementation of Renovo that reproduces its evaluation,
violates the exact same requirements.

Eureka

Eureka [49] does not trace memory writes, so requirements R1 and R2 are not applicable.
It does not discriminate between different types of memory, meeting requirement R3.
Due to the threshold used for the code-to-data ratio, it can be argued that Eureka is
compatible with multiple packing layers, meeting requirement R6. However, Eureka is
incompatible with multi-process unpacking, does not unpack all unpacking layers, and
assumes a difference between malware and packer code. Therefore, the requirements
R4, R5, R7, and R8 are not met.

JUSTIN

JUSTIN [3] traces memory writes in user mode and not kernel mode, fulfilling require-
ment R1 and violating R2, and checks for all memory locations, satisfying requirement
R3. It is incompatible with code propagation, which violates requirements R4 and R5.
The tool is also aware of multiple unpacking layers, but does not extract them, meeting
requirement R6, but failing requirement R7. Lastly, because it uses an antivirus scan-
ner to find the OEP, it assumes a separation between malware and packer and therefore
does not satisfy requirement R8.

Coogan Methodology

Coogan et al. [14] trace the memory writes of the binary in their heuristic, satisfying
requirement R1, but not of the used API, thereby failing requirement R2. They do not
differentiate between different types of memory, fulfilling requirement R3, but multi-
process unpacking and multiple unpacking layers are out of scope, violating requirements
R4, R5, R6, and R7. Lastly, it assumes a clear distinction between malware and packer,
thus failing requirement RS8.

65

6 Past Generic Malware Unpackers

Tracesurfer

Tracesurfer [51] traces memory writes in user mode, fulfilling requirement R1, but not
in kernel mode, violating R2. It is compatible with all memory locations, meeting
requirement R3, but does not consider code propagations, failing requirements R4 and
R5. However, the tool handles and extracts all unpacking layers and does not distinguish
between malware and packer, thus satisfying requirements R6, R7, and R8.

Jeong Methodology

Their methodology [52] does not track write operations or executions, requirements
R1 and R2 are not applicable. The unpacker seems to be compatible with unpacking
only into the image sections, while code injections and child processes are out-of-scope,
thereby violating requirements R3, R4, and R5. Furthermore, they only support one
unpacking layer and do not extract any other layers, failing requirements R6 and R7.
Finally, their model is heavily based on a dichotomy between malware and packer, so
requirement R8 is also not met.

Malwise

Malwise [43] traces the memory write in user mode satisfying requirement R1, but
similarly to the tracer-based unpackers mentioned above, it cannot be inferred whether
the unpacker also traces writes in kernel mode, leaving requirement R2 ambiguous. It
checks for every possible memory location, fulfilling requirement R3, yet does not handle
code propagations, breaking requirements R4 and R5. The tool is compatible with
multiple unpacking layers, meeting requirement R6, but does not extract all unpacking
layers, failing requirement R7, and considers malware and packer to be two different
entities, thus not meeting requirement R8.

CoDiasm

CoDiasm [44] is compatible with memory writes in user mode, meeting requirement
R1, but cannot track writes in kernel mode, violating requirement R2. Codisasm is
compatible with all memory locations, fulfilling requirement R3. While it tracks the
creation of new threads and processes, injections into new processes are not fully covered,
so requirement R4 is not met, but is fully compatible with requirement R5. The tool
is compatible with multiple layers and also extracts all the unpacking layers, therefore
fulfilling requirements R6 and R7. Finally, their model acknowledges that packer and
malware cannot always be differentiated, satisfying requirements RS8.

Binunpack

Tracing of memory writes is not part of Binunpack [53], therefore requirements R1 and
R2 are not applicable. It is compatible with all types of memory, detects multi-process

66

6.3 Assessment

Requirements | Number of Unpackers

R1 15
R2 6
R3 13
R4 2
R5 4
R6 12
R7 4
RS 6

Table 6.3: This table shows how many unpackers fulfill each requirement. Entries marked “N/A”
are counted as compatible with the requirements because they are not needed for
their respective unpacker and, therefore, not a flaw. Entries flagged as “?”, indicating
uncertainty about compatibility is treated as unmet requirement.

unpacking, and is aware of multiple unpacking layers, fulfilling requirements R3, R4,
R5, and R6. However, it only extracts the last layer and assumes a dichotomy between
malware and packer, failing requirements R7 and RS8.

Malflux

Just as the other tracers, it cannot be inferred if Malflux [54] is able to follow write
operations in the kernel but it does in user mode, therefore satisfying requirement R1
but requirement R2 is inapplicable. It is compatible with all memory locations, meeting
requirement R3, yet does not account for code injections, breaking requirement R4,
although it tracks newly created processes, fulfilling requirement R5. The tool can
handle multiple unpacking layers, meeting requirement R6, but does not extract them,
violating requirement R7, and does not consider malware and packer to be one entity,
failing R8.

Roamer

Roamer [55] does not trace the memory writes, therefore requirements R1 and R2 are
not applicable. It is not compatible with all types of memory, instead only with newly
allocated sections, violating requirement R3. However, code written to other processes
and processes launched from malicious binaries are covered by Roamer, fulfilling require-
ments R4 and R5. Roamer is also compatible with multiple unpacking layers, meeting
requirement R6, but only extracts the memory at the end of the unpacking, violating
R7. Roamer does not differentiate between malware and packer, meeting requirement
RS.

6.3.1 Analysis

Table 6.3 reports how many unpackers meet each requirement. The least fulfilled re-
quirements are those related to code propagations. The widespread use of multi-process

67

6 Past Generic Malware Unpackers

’ Unpacker Number of met Requirements

(=}

Binunpack
Codisasm
Roamer
Renovo/Etherunpack
Tracesurfer

Normalization
Malflux
Omniunpack
Eureka
JUSTIN
Polyunpack

Malwise
Jeong
Coogan

NN W W W || OO OO

Table 6.4: This table shows the unpackers and the amount of met requirements. Binunpack,
Codisasm, Renovo/Etherunpack, Tracesurfer, and Roamer are the best performing
unpackers. “N/A” and “?” are handled as in Table 6.3.

execution by malware to hide its behavior and the failure of most tools to address it,
represents a massive oversight in current research. This is followed in prevalence by the
requirement that all layers need to be unpacked and that there is no distinction between
malware and packer.

A summary of the evaluation can be found in Table 6.2, which shows that no existing
unpacker satisfies all requirements. This may help explain why none of these academic
unpackers has managed to provide a lasting solution. Notably, five tracer-based unpack-
ers do not specify whether they are also tracing memory writes in kernel mode.

As can be seen in Table 6.4, the best performing unpackers are Binunpack, Roamer, and
Codisasm with six fulfilled requirements. Renovo/Etherunpack and Tracesurfer follow
with five met requirements. Three of the top five best performing unpackers are all based
on a tracer. Etherunpack is not counted separately, since it is a reimplementation of
Renovo. Binunpack and Roamer score highly because they fulfill the code-propagation-
based requirements. Excluding those two requirements, the best performing unpackers
are those that implement write-then-execute in its most naive way. In contrast, each
time researchers added another heuristic to enhance write-then-execute in any way, they
invariably introduced unwanted assumptions, which have been disproved in our studies,
on the property of packers [47, 54, 43]. For example, Omniunpack relies on antivirus
software to determine the end of unpacking, presuming a clearly defined termination
point for unpacking or that the entire malware resides in memory. Malwise introduced
entropy-based heuristics to check the unpacking status, assuming that the entropy in
the memory must change during the unpacking procedure. Malflux similarly presumes
a minimum number of write operations before the code is executed. These specific
assumptions reduce genericity and are refuted by our studies.

68

6.4 Conclusion

Therefore, implementing an unmodified write-then-execute unpacker combined with
a robust code propagation detector has promising potential to improve on the related
work, as such a design would satisfy all eight requirements. The construction of such an
unpacker is the subject of the following chapter. Alternatively, Binunpack or Roamer
could have been extended to fulfill all requirements. However, Binunpack’s rebuilt-then-
execute heuristic assumes a strict separation between malware and packer. Similarly,
Roamer’s heuristic forbids that some sections contain malicious code, such as the stack
of a process that has been injected because this is not a new section.

6.4 Conclusion

This chapter established a set of requirements for a generic malware unpacker, derived
from the studies in Chapter 4 and Chapter 5. A survey of existing unpacking method-
ologies against these requirements revealed that none fulfill all requirements. Especially,
the handling of multi-process unpacking is seldom covered, despite its frequent occur-
rence, as shown in Chapter 5. This deficiency likely explains why academic unpackers
have seen limited practical adoption for real-world malware analysis.

The assessment also demonstrated that unpackers implementing the unmodified write-
then-execute heuristic outperform those that augment it with additional assumptions.
Therefore, the next chapter introduces a new generic malware unpacker that combines
the unmodified write-then-execute heuristic with a robust code propagation detector.

Main Takeaways of this chapter:

This chapter summarizes the requirements for a generic malware unpacker as
derived from the previous studies. These requirements are used to evaluate
previous research on the construction of a generic malware unpacker. The

assessment reveals that none of the previously proposed unpackers is able to

meet all the requirements, indicating that they are not suitable for real-world
application. Therefore, in the next chapter the strongest performing heuristic is
selected and combined with a mechanism to detect code propagations.

69

7 GeMU: The QEMU-Based Generic
Malware Unpacker

The content of this chapter is mostly a retelling of previous research paper by the
author of this dissertation:

Jenke, Thorsten, Max Ufer, Manuel Blatt, Leander Kohler, Elmar Padilla, and
Lilli Bruckschen. “Democratizing Generic Malware Unpacking.” 2025 IEEFE
European Symposium on Security and Privacy Workshops (EuroS¢&PW). IEEE,
2025. [7]

The description of GeMU has been updated to its most recent version.

MALWARE UNPACKER

Figure 7.1: Logo of the generic malware unpacker GeMU

7.1 Introduction

The last chapter demonstrated that no existing unpacker in the literature satisfies all
eight requirements, answering research question RQ2. To address this gap, this chap-
ter presents GeMU (Generic Malware Unpacker), which combines a write-then-execute
based unpacker with a code-propagation detector.

71

7 GeMU: The QEMU-Based Generic Malware Unpacker

The first section discusses the methodology, explaining how the different aspects of the
methodology satisfy all requirements of Table 6.1. Next, the QEMU-based implementa-
tion of this methodology is described. This implementation is used to conduct a study,
asserting a generic malware unpacker’s performance on three data sets: Malpedia [105],
dataset-packed-pe [11], and MWB2024, a data set composed of malware samples that
have been uploaded to a malware sharing site called Malware Bazaar [12] in 2024.

The results of this chapter answer the research question:

R@Q3: Is it possible to develop a malware unpacker that can meet every requirement for
a generic unpacker and works perfectly on the data set used to create the requirements?

7.2 Methodology

This section describes the methodology of the new generic malware unpacker GeMU. As
established in Chapter 6, the chosen unpacking heuristic is write-then-execute combined
with a way to handle code propagations.

The write-then-execute heuristic requires tracing both write operations and code ex-
ecutions. Whenever a memory address is accessed, the associated memory section is
identified and marked as written. Tracing then resumes, and if code is executed in a
previously marked-as-written section, that memory section is extracted from memory.
Once extracted, the memory section is unmarked, and tracing resumes. Each extracted
memory section constitutes the output. This process satisfies requirement R1 by tracing
the memory writes and code executions, and fulfills R3 because no distinction between
memory locations has been made. The continued tracing of the program and the imme-
diate extraction from memory accounts for additional unpacking layers and prevents the
code from overwriting unpacked code after execution, ensuring that requirements R6
and R7 are met.

However, requirements concerning code propagations must also be addressed. To en-
sure compliance with requirement R2, the unpacker must monitor all operating system
functions capable of writing code and mark the written sections accordingly. Full compli-
ance with requirements R4 and R5 further necessitates the observation of the functions
that execute code in a target process or on the hard drive. If a write-then-execute occurs
in a target process, this process must also be traced. Thus, whenever a traced process
writes data either directly to memory or over the hard drive to another process, the
associated memory sections must be marked as written and extracted when executed.

This methodology is completely agnostic to the overall functionality of the traced code.
It refrains from inferring or approximating the purpose of code and, therefore, does not
discriminate between different pieces of code. Consequently, it does not distinguish
between malware and packer code and fulfills requirement R8.

7.3 Implementation

The previous section introduced the methodology of GeMU. This method can be imple-
mented using tools for both static and dynamic analysis. As established, it is essential

72

7.3 Implementation

to trace both write operations and code executions. While static analysis offers solutions
such as symbolic execution or the methodology of Coogan et al. [14], symbolic execu-
tion is very performance intensive and provides capabilities beyond what is required for
implementing an unpacker.

Among dynamic analysis techniques, debuggers, virtual machine introspection, and
emulation are potential candidates. However, debuggers are easily detected by malware
and therefore unsuitable. Virtual machine introspection, though less detectable, suffers
from performance limitations due to frequent processor switches out of virtualization
mode. Emulation, in contrast, offers a favorable balance: it allows fine-grained analysis
comparable to symbolic execution, while maintaining the performance of dynamic anal-
ysis approaches suitable for large-scale analysis. Therefore, emulation was chosen for
the GeMU’s implementation.

In Chapter 4 PANDA [9] has been used as an emulation-based dynamic analysis sys-
tem. However, PANDA is based on an outdated QEMU [18] version. Since then, the
QEMU code base underwent improvements, including speed-ups. Therefore, GeMU has
been implemented using QEMU version 8, which was the most recent version available
at the time of development.

The development also focuses on native binaries for Microsoft Windows. Given that
most historic and a significant portion of contemporary malware is released for Microsoft
Windows [10, 1], this choice ensures compatibility with the largest malware ecosystem.
Specifically, GeMU is developed for Windows 7 and Windows 10, supporting histori-
cal and contemporary malware to enable longitudinal studies and future-proofing the
implementation.

GeMU is implemented as a library that is imported by QEMU at an early stage
of execution. The interactions between GeMU and QEMU are denoted in Figure 7.2.
GeMU'’s internal state consists of a set of observed PIDs, memory maps of each observed
process, and the relation from handles to PIDs. To enable tracing, QEMU’s source code
has been altered to invoke GeMU’s three hooking functions for three different execution
stages: writing function, translation function, and syscall/sysret function. Each of these
functions share a prologue that checks whether the current process should be observed.
This is achieved by extracting the current PID from memory and checking its presence
in the list of observed PIDs. The initial malware process is recognized by its name and
added to the observed PIDs.

7.3.1 Writing Function

The writing function sets the writing bit on memory pages, signaling that such pages
should be extracted from memory if the code contained therein is executed. In QEMU,
memory writes can occur via two paths: the fast path and the slow path. The fast path
is conducted inside the TCG via TinyCode instructions, which is very fast. The slow
path, however, is invoked when a memory write targets pages that are not currently
cached or contain translated basic blocks. The slow path is not part of the TinyCode.

GeMU’s writing function is invoked whenever QEMU takes the slow path for a memory
write. This ensures that the correct page is loaded and that the cache of translated basic

73

7 GeMU: The QEMU-Based Generic Malware Unpacker

r—-——>F—"F~>"~"~>">">" >~~~ - - - - - - - - - - - - - - - - - - - === 1
| |
) . .) I
I QEMU First Basic Block on syscall/gysrgt Write Operation
| : Instruction is . |
Page is translated in Slow-Mode
| executed I
[. . : '
| translation. syscall/sysret . writing 1 I
| function function ! function |
F————===- e b - === 1
: 7 7 7 :
| GeMU Check erttenfBlt for Check if EAX value is Se; ertten-Blt for |
Memory Section of Section that is written
| 4 of hooked API |
| Basic Block to |
| |
| Yes Yes |
I Y Y |
| |
I Dump section Handle API call |
| |
| |

Figure 7.2: This figure illustrates the interactions of QEMU with GeMU. The translation function
handles extracting the written sections. The syscall/sysret function handles the API
calls, and the writing function marks the memory sections when they are written to.

blocks on that memory page is flushed. This flushing is essential on Intel architecture,
where code and data share memory and code can be altered during execution. Flushing
the translated basic blocks accounts for the self-modifying properties of code, as cached
blocks can no longer be trusted, once data on a page with cached blocks is manipulated.

These two aspects make it unnecessary for GeMU to force the slow path via manip-
ulating the TinyCode. This approach leads to a significant speed-up of the emulation
over fine-grained tracing that records every write operation.

7.3.2 Translation Function

Translation occurs whenever QEMU is going to execute code which has not been executed
before. This code is transformed into TinyCode, which is then compiled to host code.
Therefore, it was decided to define translations as the point of execution where an
unpacking could be concluded. Each time the translation function is executed, the page
of the currently translated basic block is checked for the written bit. However, calling
GeMU for every translation is inefficient, as superfluous calls for basic blocks may occur
on the same page without any writing operations between subsequent translations. To
reduce redundant invocations, QEMU calls GeMU’s translation function only on the
first translation of any given page.

The unpacking process starts with updating the memory map currently saved by
GeMU to ensure that all memory sections are of the correct size. GeMU then iden-
tifies the section to be dumped and retrieves all directly adjacent sections, and also the

74

7.3 Implementation

adjacent sections to these, and so on. The result is a continuous piece of virtual memory
which is extracted from memory. This ensures that the resulting dump potentially con-
tains data associated with the unpacked code, including header information, the import
(address) table, and auxiliary data such as strings. At the end, all extracted memory
sections are unmarked.

7.3.3 Syscall/Sysret Function

The syscall/sysret function handles the observation of API calls. It is invoked whenever
QEMU executes a syscall or sysret instruction, which on x86_64 processors are used to
perform API calls to the kernel, thus allowing to observe API calls. The call to GeMU
is inserted into TinyCode during the translation of the basic blocks containing a syscall
or sysret instruction. This method is more efficient than checking every basic block
whether its address is the start of an API call, as it avoids invoking GeMU at the start
of every basic block execution. To identify API calls, the function inspects the value in
EAX/RAX, which contains a system call number. This number is compared against a
list of all relevant call numbers that must be observed. These call numbers are extracted
from the DLLs that handle syscalls.

In case an API call is detected, the in and out parameters are read. Also, the addresses
for the out parameters are read so that their contents can be retrieved, if the sysret
function is eventually executed.

The observed functions are:
e NtCreateUserProcess
NtWriteFile
NtWriteVirtualMemory
o NtMapViewOfSection

e NtOpenProcess
e NtTerminateProcess

The NtOpenProcess function is observed to capture the translation from PIDs to
handles. This is useful, as most of the functions that manipulate a running process do
not take PID as input and instead require a process handle. This is generally achieved
by calling the NtOpenProcess function. Therefore, whenever this function is called,
the mapping of PID to handle is saved to GeMU’s internal state.

The NtWriteFile is observed to capture write operations on the hard drive. Every
time a file is written to the hard drive, it is also extracted. Similarly, the Nt WriteVir-
tualMemory function is observed to monitor write operations using the API, including
write operations to a target process. The written memory is also extracted and provided
as an output. In addition, the PID of the process that is written is added to the set of
observed PIDs.

NtMapViewOfSection is used by malware to write to memory inside its own process
and then map that memory section to another process to launch the code, as described in

75

7 GeMU: The QEMU-Based Generic Malware Unpacker

Chapter 5. To reflect this behavior in GeMU, each mapped memory section has a shared
written state, which is shared between the different processes to which this section is
mapped.

NtCreateUserProcess and NtTerminateProcess are directly opposed. Every pro-
cess that is created by a traced process is added to the list of observed PIDs in GeMU’s
state. This is an approximation of malware that uses child processes to perform write-
then-execute behavior. In addition, the returned handles for the created processes are
added to the internal state of GeMU. Conversely, NtTerminateProcess removes the
PID of the terminated process from the observed PID set. If the set of PIDs is empty
after removal, the analysis is terminated prematurely.

7.3.4 Management

The management of GeMU is performed via a Python script, which launches GeMU, the
malware, and processes the output. It takes a binary as input and encapsulates it into
an ISO file, which is loaded into GeMU’s CD drive so that its content can be copied to
the guest.

Inside the guest, the Python script uses QEMU’s “sendkey” commands to simulate
keyboard input into a command line launched with administrator permission. The binary
is copied to the desktop and renamed to a predetermined filename, allowing the initial
malware process to reliably recognize the malware based on its name. Subsequently, the
binary is executed via the same command line. During execution, the script sleeps for a
predetermined amount of time. Upon expiration of this timeout, the script shuts down
GeMU.

7.3.5 Limitations

As mentioned earlier, GeMU is only compatible with Windows Malware and native
binaries. This is a significant limitation, as GeMU is incompatible with programs using
managed code, especially malware written in .NET, given its increasing prevalence in
recent years. This shortcoming is shown later using a data set comprising samples of
Malware Bazaar.

Furthermore, the current approach is not hardened against evasion techniques. In
the upcoming study, evasion techniques detecting QEMU ask for user interaction or use
stalling code regions [21], which had a detrimental effect on the correctness of the output.
A more in-depth look is given in the next section.

7.4 Study

This section describes the study to evaluate GeMU’s real-world applicability by assessing
both the output correctness and the time required for the samples to unpack. First,
the experimental setup is discussed, followed by an overview of the data sets and the
methodology used to determine the correctness of the output. The results are presented
by first reporting the correctness of the output, followed by the unpacking speed.

76

7.4 Study

7.4.1 Setup

For this study, the samples were run on a Windows 10 64-bit version 1803 machine and on
a Windows 7 SP1 64-bit machine, each with the Microsoft Visual C++ Redistributables
installed. The guest machines, in which the malware runs, are not connected to the
Internet. Four identical instances of these guest machines are used and running on the
same host with 32 GB of RAM and an AMD EPYC 7352. The timeout for GeMU is

ten minutes.

7.4.2 Data Sets
As stated in Chapter 3.3, the first two data sets are Malpedia [105] and dataset-packed-

e [11]. To further assess the real-world effectiveness of GeMU, an additional data set
comprising malware samples submitted to Malware Bazaar in 2024 [12] was analyzed.

7.4.2.1 Malpedia

’ detected packer | number of samples

unknown 1648
UPX 138
PECompact
Themida
VMProtect
PELock
Confuser
ASPack
Smart Assembly
ASProtect
MPRESS
ASProtect
Yoda’s Protector
.NET Reactor
(Win)Upack
Crypto Obfuscator
NsPacK
ConfuserEx
Enigma
tElock

—_
—_

el il Rl Rl e B B M VRt R N RS2 L R RN R Ne'o) ie)

Table 7.1: This table presents the outermost layer of packers in Malpedia, as identified by detect-
it-easy. For 1,648 samples, no packer could be identified.

Malpedia provides both packed malware samples and their corresponding unpacked
or dumped representatives. These representatives are used to generate Yara rules that

7

7 GeMU: The QEMU-Based Generic Malware Unpacker

’ detected packer | number of samples

Exe32Pack 119
MEW 107
RLPack 106
MPRESS 105
Packman 105
BeRo 103
Yoda’s Protector 102
NsPacK 97
PECompact 97
ASPack 94
UPX 91
(Win)Upack 89
FSG 73
Petite 70
Yoda’s Crypter 35
unknown 34
tElock 29

Table 7.2: The packers on the most outer layer for the dataset-packed-pe samples that did not
crash during the unpacking by Detect-It-Easy. Curiously enough, for 34 samples no
packer could be identified.

prevents false positives with the representatives of other families. In this study, these
rules are used to determine the correctness of the results. If at least one dump in the
results of a run matches with the Yara rules, then this run is correct.

From the Malpedia data set, all executables are selected for the experiments. Samples
that use .NET, lack a YARA rule, or have an unpacked representative on which their
Yara rule does not match are removed. This filtering yielded 1,860 remaining samples in
the data set. However, a further 35 (1.92%) samples that crashed during analysis were
also removed, resulting in a final set of 1,825 samples. The packers on the outer layer
of these samples were identified with the Detect-It-Easy packer identification tool [106],
selected for its prominence on Github. The results can be found in Table 7.1. For 1,648
(90.3%) samples no packer could be identified, indicating that most packers encountered
in the wild are largely unknown. This underlines the necessity of a malware unpacker
that does not require prior knowledge of the packer used. The second largest group is
UPX with 138 (8,56%) samples.

7.4.2.2 dataset-packed-pe

As mentioned above, the dataset-packed-pe data set comprises benign samples that are
packed with off-the-shelf packers. It does not include rules to automatically assess the
correctness of unpacking. To address this, signatures were generated from the unpacked
programs: each rule has been created from the first 50 bytes at the base of the code as

78

7.4 Study

regular expressions, in which the accessed addresses are replaced by wildcards to address
ASLR. If the correct signature matches GeMU’s output, the unpacking is considered suc-
cessful. Although this method may falsely classify partial unpackings as fully unpacked,
it is very robust to code reordering by the packer.

From this data set, all samples are compatible with the implementation. However,
since this implementation does not support any user interaction, samples requiring a
click to launch trial-version packers were excluded, as were any samples that did not
provide its unpacked form. Therefore, 1,456 samples remained for the experiments.
However, a further 138 (9.48%) samples crashed and were also removed. The packers of
the remaining samples can be found in Table 7.2 as they have been detected by Detect-
It-Easy [106]. For 34 samples, the tool was unable to identify the packer. According to
the data sets labels, these unidentified samples comprise 4 samples packed by BeRo, 14
samples packed by FSG, 13 samples packed by UPX, 2 samples by (Win)Upack, and 1
sample by Packman.

7.4.2.3 Malware Bazaar 2024

To determine GeMU'’s effectiveness in real-world scenarios, it is tested using a third
data set that was not curated to be representative and instead reflects the samples that
malware analysts encounter in their daily work. The purpose of this evaluation is to
determine whether GeMU is compatible with the malware that is actively of interest to
malware analysts.

To this end, malware samples uploaded to Malware Bazaar [12] in 2024 were selected.
Malware Bazaar is a platform for sharing malware samples with the wider security
community. A key advantage is that the samples are analyzed by the platform and
uploaded to other third-party analysis platforms to provide more context information to
the samples.

Among these services is the malware unpacking service unpac.me [107]. This makes it
possible to reduce the amount of samples uploaded to Malware Bazaar for constructing
a filtered data set based on two criteria:

e successful unpacking by unpac.me
e tagging created dumps with Malpedia’s Yara rules by unpac.me.

This filtered set, hereafter referred to as MWB2024, can be used to verify the correct-
ness of GeMU-produced dumps. In summary, the samples in this data set are samples
uploaded to Malware Bazaar in 2024 that have been successfully unpacked by unpac.me
and were tagged with Malpedia’s Yara rules.

To build MWB2024, the complete list of samples uploaded to Malware Bazaar was
downloaded. From this list, Windows executables were selected. Malware Bazaar offers
the analysis reports of these samples as download, so for each of the Windows executables
uploaded in 2024, the corresponding analysis reports was downloaded, including the
results of unpac.me. Only those samples that both exhibited unpacking behavior and
were tagged with Malpedia’s Yara rules were retained.

79

7 GeMU: The QEMU-Based Generic Malware Unpacker

After downloading these samples, samples that were identified as .NET and where
Malpedia’s Yara rule matched on the packed sample have been removed. This resulted
in the removal of 6,609 .NET samples, leaving 4,763 samples in the data set for analysis.
1,946 samples crashed during their execution. While this is a significant portion of the
samples, 1,761 of these samples belong to the stealc family and an additional 134 samples
to the formbook family. The remaining 51 samples span eight different families. The full
list of families of crashed samples can be found in Table 7.3. A closer analysis of the
1,946 samples that crashed during execution was performed using Detect-It-Easy [106]
and the results are displayed in Table 7.4. The largest group of samples is packed with
Themida, a commercial packer that employs virtual machine emulation, which is out of
scope for GeMU, and various evasion techniques to protect its payload.

Table 7.5 lists the identified packers in the samples that did not crash. Notably, Detect-
It-Easy failed to detect the packer for 2560 (90.88%) samples. This further emphasizes
the need for a generic malware unpacker that does not rely on prior knowledge of the
packer type.

After removing the samples that crashed, 2,817 samples remained in the MWB2024
data set.

Family Count
stealc 1761
formbook 134
lumma, 34
neshta 8
amadey 2
lockbit 2
smokeloader 2
ave_maria 1
juicy_potato 1
vidar 1

Table 7.3: Distribution of samples across families for the crashed samples in MWB2024. The
majority of samples belongs to the stealc family.

detected packer | number of samples

Themida 1734
unknown 202
UPX 10

Table 7.4: Identified packer by Detect-It-Easy for the MWB2024 samples that crashed during
execution. 89.1% of these samples use Themida [108].

80

7.4 Study

detected packer | number of samples

unknown 2560
UPX 145
Themida 96
MPRESS 6
VMProtect 3
ASPack 3
PECompact 1
MoleBox 1

Table 7.5: Identified packers of the samples that did not crash in MWB2024 were not detected
by Detect-It-Easy. For 90,88% of samples, no packer could be identified.

7.4.3 Correctness

This section presents the correctness of the runs. To this end, each of the data sets is
analyzed by themselves.

‘ Correct ‘ Incorrect ‘ Total ‘
Malpedia 1,715 (93.97%) | 110 (6.03%) | 1,825
dataset-packed-pe | 1,336 (91.76%) | 120 (8.24%) | 1,456
MWB2024 2,503 (88.85%) | 314 (11.15%) | 2,817

Table 7.6: This table depicts the correctness of the study divided across the three data sets.
93.97% of the samples in Malpedia, 91.76% in dataset-packed-pe, and 88.85% in
MWB2024 were unpacked successfully.

7.4.3.1 Malpedia

First up is the analysis of the results of Malpedia. The correctness of the results is shown
in Table 7.6. GeMU successfully unpacks 93.97% of the samples, demonstrating both
the practical applicability of the methodology and implementation and its robustness
against malware in the wild.

However, samples that have not been unpacked correctly may point to oversights in
the derived requirements. Therefore, these 110 samples have been manually reversed to
determine why the unpacking was unsuccessful. 98 of these samples are packed with an
unknown packer, 6 are packed with UPX, 3 with VMProtect, 2 with ASPack, and 1 with
PECompact.

For unsuccessful runs on Malpedia:
e 34 samples were successful after a manual rerun.

e 15 samples were correctly unpacked, but the Yara rule did not match because it
is too narrow. The rules automatically generated in Malpedia demand that the
dump is below a certain size. After removing this limitation from the rules, the
Yara rules matched.

81

7 GeMU: The QEMU-Based Generic Malware Unpacker

9 samples are incompatible with details of the implementation, such as the number
of dumps that can be generated.

4 samples were correctly unpacked when allowed a longer timeout.

2 samples crashed during execution

46 samples did not work due to evasion techniques, which are as follows:
— 34 detect QEMU
— 5 use stalling code regions
— 3 require user interaction
— 3 reboot the system
— 1 checks for network connection

The results indicate that evasion techniques have the most detrimental effect on GeMU.
Importantly, none of the evasion techniques directly targets the GeMU unpacking rou-
tine. Consequently, these failures reflect implementation limitations rather than method-
ological shortcomings.

7.4.3.2 dataset-packed-pe

Next up is the analysis of the results of dataset-packed-pe run. The results are shown in
Table 7.6. 91.76% of samples have been correctly unpacked, while 8.24% of the samples
failed.

Manual analysis of the 120 incorrect samples revealed that 6 samples were correctly
unpacked but could not be identified by the rules. The remaining 114 samples crashed
due to missing DLLs or the binary being malformed.

87 of all 120 incorrect samples belong to the Exe32Pack packer, and 10 belong to
tElock. The remaining 23 samples are spread over 12 other packers, each contributing
between one to four samples.

The results demonstrate that GeMU works on most samples packed with off-the-shelf
packers.

7.4.3.3 MWB2024

In this section, the results of the MWB2024 sandboxing run are analyzed. The raw
results can be seen in Table 7.6. For MWB2024, 2,503 samples (88.85%) of samples
have been correctly unpacked. These samples span 76 families, confirming a broad
compatibility consistent with the Malpedia findings. There are 798 Formbook samples,
580 Smokeloader samples, and 338 Stealc samples as the three biggest families in this
group. The top 15 families are listed in Table 7.7.

However, the failure rate of samples for MWB2024 is 11.15%, higher than in the
other data sets. Failures occur in 25 different families, led by 159 Remcos samples, 70
Formbook samples, and 25 Lockbit samples. Detect-It-Easy identified 275 samples using

82

7.4 Study

Family Count
formbook 798
smokeloader 580
stealc 338
unidentified_045 123
stop 107
gcleaner 59
lumma 49
remcos 49
tofsee 49
flawedammyy 47
amadey 45
emotet 39
gtbot 25
sality 19
dbatloader 12

Table 7.7: Distribution of samples across the top 15 families that created a correct result in the

MWB2024 data set.

an unknown packer, 38 using UPX, and one using PECompact. Further analysis of the
314 failed runs revealed that 198 samples are packed with an AutoIT-based packer called

CypherIT using evasion techniques to thwart the analysis in sandboxes [109].

Of the remaining 116 samples, it was found:

e 27 samples were already unpacked but have not been tagged as such.

1 uses virtualization

2 samples needed a longer timeout.

4 require user interaction

1 checks for internet connection

1 sample uses stalling code

83

24 samples were successful after a manual rerun.

13 samples crashed during manual execution.

2 samples are out of scope because they are based on Visual Basic.

The remaining 43 samples used the following evasion techniques:

35 detect QEMU

1 sample requires a command line parameter

4 samples matched a benign file that the malware sometimes uses for injections.

1 sample had the same problem with the size restriction of the Yara rule as ex-
plained above.

7 GeMU: The QEMU-Based Generic Malware Unpacker

| Family | Count | socksb_systemz | 2
remcos 159 blacksuit 1
formbook 70 cybergate 1
lockbit 25 darkpulsar 1
stealc 20 dbatloader 1
phobos 8 gandcrab 1
karius 4 oski 1
azorult 3 ozone 1
lumma 3 sinowal 1
amadey 2 smokeloader 1
hawkeye_keylogger 2 stop 1
nymaim 2 unidentified 045 | 1
pony 2 webmonitor 1

Table 7.8: Distribution of samples across families that were incorrect in MWB2024. The biggest
family is Remcos.

The results of MWB2024 are very similar to those of Malpedia. The most detrimental
effect on the failure rate in this data set can be traced back to the samples packed with
the AutolT packer. Removing these samples from the data set yields a failure rate of
4.1%, aligning more closely to the failure rates in the other two data sets.

However, construction of MWB2024 has shown that a significant amount of contem-
porary malware uses the .NET framework indicating a need for an unpacker capable of
handling these types of samples.

7.4.4 Speed

Unpacking speed denotes the time elapsed between the launch of the malware and the
appearance of the first unpacked dump. Therefore, the unpacking speed is only measured
for correct runs. Table 7.9 presents these durations in seconds.

For Malpedia, the fastest unpacking occurred in under one second. The average time is
about 33 seconds and the median close to 10 seconds, with the slowest being 10 minutes.
By contrast, the dataset-packed-pe samples unpacked significantly faster and much more
uniform: the lower quartile, median, average, and upper quartile fell below 4 seconds.
The maximum is also much lower, with only 118.27 seconds.

The samples in MWB2024 exhibited the greatest variability. The median unpacking
time was about 15 seconds, the average exceeded 50 seconds, and the upper quartile
reached 86 seconds: almost three times slower than Malpedia and 40 times higher than
dataset-packed-pe. These observations confirm that packing with off-the-shelf packers
is much more uniform than what is encountered in real-world malware. This further
highlights the difference between benign samples packed with the off-the-shelf packers
and real-world malware, which has already been observed in the studies of the previous
chapters.

84

7.5 Discussion

’ ‘ Malpedia dataset-packed-pe | MWB2024
Min 0.21 seconds 0.85 seconds 0.55 seconds
25% 3.73 seconds 2.01 seconds 3.53 seconds

median 9.68 seconds 2.45 seconds 15.31 seconds
Average | 33.23 seconds 3.27 seconds 51.33 seconds
75% 32.03 seconds 2.84 seconds 86.08 seconds
max 594.89 seconds 118.27 seconds 444.74 seconds

Table 7.9: This table presents the unpacking speed in seconds, defined as the elapsed time from
the moment the initial process is first traced until the first correct dump is observed.
The unpacking speed averages 33.23 seconds for the Malpedia samples, 3.27 seconds
for the dataset-packed-pe samples, and 51.33 seconds for MWB2024 samples.

7.5 Discussion

GeMU successfully unpacks the vast majority of samples across all three data sets.
Its high success rate in Malpedia demonstrates compatibility with most historical and
contemporary families. Results from dataset-packed-pe confirm that GeMU handles the
majority of off-the-shelf packers.

The third data set, MWB2024, highlights that GeMU also performs effectively on
real-world malware samples. MWB2024 exhibits the highest diversity in families among
successfully unpacked samples compared with those that failed. However, constructing
the MWB2024 data set required excluding a significant amount of .NET-based samples.
Adding support for .NET based samples would improve GeMU’s real-world applicability.

Unpacking speed is another concern. With an average unpacking speed of thirty
to fifty seconds, some use cases may find this duration excessive. Testing alternative
implementations, for example using virtual machines or instrumentation, could reduce
unpacking time.

Another concern stems from using Malpedia and dataset-packed-pe for both deriving
requirements and evaluating the tool. This practice risks overfitting, with requirements
tailored too specific to these two data sets that they may fail the transfer to other data
sets. However, as especially Malpedia is still very actively maintained, with new samples
added constantly, the data sets provide a near complete picture of the current malicious
unpacking landscape. Omitting them from the evaluation would introduce significant
blind spots.

To guard against overfitting, the MWB2024 data set served as an independent valida-
tion corpus. Its results closely align with those from Malpedia and dataset-packed-pe,
indicating a low overfitting effect and that GeMU is highly compatible with real-world
malware. Nevertheless, ongoing testing with new samples will help ensure and verify
GeMU’s applicability with novel unpacking techniques.

In addition, concerns also arise in assessing correctness. In the study, the output
was verified using Yara rules and regular expressions, which match only the specific
unpacking layer containing the correct data. When unpacking unfolds across multiple

85

7 GeMU: The QEMU-Based Generic Malware Unpacker

layers, it cannot be assessed whether the entire body of desired data is unpacked or just
the part on which the rule coincidentally matches. Requirement R7, which demands
extraction of every layer, cannot be verified with these aforementioned rules alone. To
address this issue, a data set should be constructed that includes all possible unpacking
methodologies and provides the ground truth to assess the correctness of every unpacking
layer.

7.6 Summary

This chapter aims to construct a generic malware unpacker that meets all established
requirements and to demonstrate its applicability in real-world scenarios. To this end,
the write-the-execute heuristic has been combined with a component to detect code
propagations to build a new unpacker called GeMU.

First, the methodology of GeMU was presented, which can be adopted in different run-
time systems. It was highlighted how the different aspects of the methodology satisfy
the requirements for a generic malware unpacker, confirming that these requirements
are built into the methodology.

In the next section, the implementation of this methodology was presented.

Finally, a study was conducted to demonstrate the correctness of the approach. Three
data sets have been selected to assess its applicability in real-world scenarios. GeMU
achieved unpacking coverage above 90% for Malpedia and dataset-packed-pe, and 88.85%
for MWB2024. Unpacking failed primarily due to missing hardening against evasion
techniques and incompatibility with implementation details.

Main Takeaways of this chapter:

This chapter introduces GeMU, a new generic unpacking methodology along
with its proof-of-concept implementation. GeMU meets all requirements derived
in the previous chapter and successfully unpacks almost all samples from the
chosen data sets. The few remaining samples that failed stem from evasion
techniques.

86

8 Conclusion

This chapter concludes this dissertation by first evaluating its cumulative impact, then
addressing its limitations, including a brief discussion of the applicability to other plat-
forms, and finally outlining an outlook for possible future work.

8.1 Overall Impact

This dissertation makes two principal contributions to the field of generic malware un-
packing:

1. The theoretical model for building generic malware unpackers for any kind of
platform is established.

2. An in-depth analysis of generic malware unpacking is provided by applying this
theoretical base to native Windows malware, the most prevalent group of malware.

Therefore, this dissertation delivers both foundational theoretical advancements in generic
malware unpacking and actionable practical solutions.

The models for displaying malware unpacking within a single process and across mul-
tiple processes expose the unpacking behavior of any kind of software. When applied
to a representative data set containing different malware, these models reveal a set of
different unpacking behaviors, which, in turn, informs a set of requirements for a generic
malware unpacker that is compatible with all samples included in the data set.

The practical contribution of this dissertation begins with a critical review of previ-
ous generic malware unpackers, identifying ambiguities in the definition of unpacking
and their shortcomings. To address these, a new definition of unpacking is provided
and requirements for a generic malware unpacker are generated. These requirements
are created by conducting two studies using two representative data sets of real-world
malware and off-the-shelf packers from the ecosystem of native Windows malware. The
studies are practical applications of the unpacking models. One study covers the un-
packing behavior within one single process and the other study covers the unpacking
behavior across multiple processes. Using the results of these studies, the requirements
for a generic malware unpacker for native Windows malware are derived and then used
to evaluate existing generic malware unpackers.

Although the evaluation revealed that no existing unpacker covered all requirements,
the most promising approaches were extended to fulfill the requirements, leading to the
creation of GeMU, the Generic Malware Unpacker. The implementation and subsequent
evaluation of GeMU show that most of the samples are correctly unpacked, while the few
unpacking failures are attributed to evasion techniques unrelated to the unpacking. This

87

8 Conclusion

confirms that GeMU is capable of unpacking all the samples from which the requirements
have been derived.

Although the practical results described in this dissertation can only be a snapshot
of the current malware landscape, and the arms race between malware analysts and
malware developers dictates that new unpacking techniques will be found. However,
the theoretical blueprint presented here provides a durable foundation to adjust the
requirements for a generic malware unpacker to the ever-changing state of the art. Thus,
the theoretical contributions of this dissertation will most likely never become obsolete.

8.2 Impact of Research Questions

This section discusses the impact of this thesis on the field of executable packing, mal-
ware analysis, and reverse engineering along the different research questions. Note that
the research questions mostly refer to the practical contributions of this dissertation,
while the theoretical contributions stem from the real-world need for a generic malware
unpacker to deal with the overwhelming amount of Windows malware.

Since Research Questions 1.1 to 1.7 are required to answer Research Question 1, their
individual impacts are also stated here.

Research Question 1:
What are the requirements for a malware unpacker that it must meet
to be generic?

Before Dissertation: The detailed requirements for a generic malware unpacker were
unknown. Researchers relied on preconceived notions generated from their own personal
experience in malware analysis to build unpackers or evaluate others. Furthermore,
researchers used data sets of widely varying quality for their evaluation that do not
reflect the full spectrum of unpacking behavior encountered in the wild. As a result,
many unpackers fail to unpack a significant portion of the malware encountered in the
real world. This shortcoming has perpetuated the so-called packer problem even two
decades after the first generic malware unpacker has been proposed.

After Dissertation: With the standardization of these requirements, researchers can
use them to evaluate their own generic malware unpackers against these standardized
requirements instead of relying on a practical evaluation.

88

8.2 Impact of Research Questions

Research Question 1.1:
What are the methods/techniques used by malware to obtain
memory to write unpacked code?

Before Dissertation: The memory used by malware to write its unpacked code was
largely unknown. In previous unpacking methodologies, some unpackers assumed that
only the image sections were used [52, 46].

After Dissertation: A detailed overview is provided, describing the types of memory
that malware uses and how spread these types are. This knowledge will aid future
researchers in detecting unpacked malware in the memory.

Research Question 1.2:
What are the methods/techniques used by malware to write code?

Before Dissertation: The methods and techniques used by malware were largely
unknown. Consequently, researchers had to rely on preconceived notions on how to
trace the execution and write operations of malware.

After Dissertation: Due to the results presented in this dissertation, researchers can
now rely on a detailed overview of the different options malware uses to write its code.
This will aid future research in automatic unpacking to build analysis systems for each
of the different write operations.

Research Question 1.3:
Is unpacked code overwritten during the execution of malware?

Before Dissertation: It was considered sufficient for generic malware unpackers to
only extract the unpacking layer containing the malware. Any extraction of all unpacking
stages occurred incidentally rather than by deliberate design.

After Dissertation: The results demonstrate that a significant portion of malware
overwrites unpacked code during execution. Such runtime modification can obscure
information from analysts. Therefore, this dissertation highlights the importance of ex-
tracting the intermediate unpacking stages to provide a complete picture of the executed
code.

Research Question 1.4:
How many layers of packing are used?

Before Dissertation: Ugarte-Pedrero et al. [2] have analyzed the amount of unpack-
ing layers used in malware and found that malware utilizes multiple unpacking layers.

89

8 Conclusion

After Dissertation: These findings have been reproduced, reinforcing the need for
a generic malware unpacker to deal with multiple unpacking stages.

Research Question 1.5:
Is it possible to differentiate between malware and packer code?

Before Dissertation: The malware and packer dichotomy was a strong assumption
that permeated the field of generic malware unpacking. Although Ugarte-Pedrero et
al. [2] mentioned in their packer types that the distinction between malware and packer
might not always be clear, they still searched for a distinction between malware and
packer. This is reflected in a significant number of existing generic malware unpackers
sharing this assumption and therefore lacking in generality.

After Dissertation: The dichotomy of malware and packer is no longer the state of
the art. The results in this dissertation demonstrate that, for a significant number of
samples, determining the difference between malware and packer is impossible. There-
fore, a generic malware unpacker must operate without assuming a clear distinction
between malware and packer.

Research Question 1.6:
What methodologies are used by malware to achieve multi-process
write-then-executes?

Before Dissertation: The previous research by Barabosch et al. [110] focused on
process injections but did not address child-process creation or the notion of multi-
process write-then-executes. Therefore, no empirically grounded framework existed to
build an unpacker.

After Dissertation: This dissertation provides the knowledge needed to build a
generic malware unpacker capable of detecting multi-process write-then-executes. Also,
the findings of this dissertation have shown that code propagations can be observed in
a significant portion of malware. These insights can also be leveraged in other dynamic
analysis approaches that rely on following malware through multiple processes.

Research Question 1.7:
What functions are used to implement multi-process
write-then-executes?

Before Dissertation: Ugarte-Pedrero et al. [2] and Barabosch et al. [110] have pro-
vided overviews of the functions used in Windows Malware to spread its code to other
processes.

90

8.3 Limitations

After Dissertation: The findings of Barabosch et al. are improved, since they
did not monitor the execution of malicious binaries using process creation. Compared to
Ugarte-Pedrero et al., the findings in this dissertation provide a slightly different picture,
as many more process creations were conducted in this dissertation’s studies. Therefore,
researchers looking to create a generic malware unpacker for Microsoft Windows can
apply the findings of this dissertation to gain a strong understanding of the functions
for multi-process write-then-executes.

Research Question 2:
Do the previously proposed generic malware unpacker meet the
requirements of a generic malware unpacker?

Before Dissertation: The effectiveness of previously proposed unpackers in real-
world scenarios was unknown. Withholding their source code prevented an extended
third-party evaluation and obfuscated their applicability.

After Dissertation: None of the previously proposed unpackers are capable of
thwarting all possible packer behavior, since they do not fulfill all requirements for a
generic malware unpacker. This fact explains why none of these unpackers solved the
packer problem.

Research Question 3:
Is it possible to develop a malware unpacker that can meet all the
requirements of a generic unpacker and works perfectly on the data
set used to create the requirements?

Before Dissertation: It was unknown whether it was possible to create a generic
malware unpacker capable of meeting all requirements and therefore handle a wide range
of packer behaviors.

After Dissertation: It is possible to construct such an unpacker. The presented
methodology for a generic malware unpacker can be adopted in various dynamic analysis
scenarios. As a result, this dissertation ultimately democratizes the creation of generic
malware unpackers, empowering analysts who are unable or unwilling to use commercial
platforms such as UnpacMe [107].

8.3 Limitations

The primary limitation that plagues the implementations and evaluations in this thesis
lies in the ignorance towards evasion techniques. Malware authors commonly use evasion
techniques to thwart analysis, thereby reducing the reliability of the results of this thesis,
as has been shown in Chapter 7.4.

91

8 Conclusion

Another limiting factor stems from the exclusive focus on Windows Malware for x86
and x64. All implementations and studies conducted in this dissertation target this plat-
form, leaving managed code, especially .NET, unaddressed despite their widespread use
in contemporary malware. This limitation extends to packers that convert the payload
into managed code. Furthermore, the blueprint presented in this dissertation is based on
the write-then-execute heuristic. While this heuristic is very broad and aligns with the
Intel’s Von Neumann Architecture, which mixes code and data in memory and there-
fore allows self-modifying code, it is not applicable on platforms which enforce a strict
separation of code and data. Unpackers targeting such platforms must instead adopt
new heuristics capable of detecting unpackings under these constraints. Nonetheless,
the model to measure unpacking behavior within a single process is agnostic towards the
unpacking heuristic.

8.4 Future Work

Future research can advance both the theoretical framework for creating a generic mal-
ware unpacker and the practical application of the proposed blueprint.

Other platforms: As of now, the current blueprint has only been applied to Win-
dows malware using the write-then-execute heuristic to spot unpacking. Applying this
methodology to other malware ecosystems would test its genericity.

One highly relevant platform is Android, given its huge user base and the rapidly
growing number of malware for Android. Therefore, applying the blueprint to this
platform would yield a significant benefit to malware analysts.

Managed code also remains unaddressed. Especially .NET, which is commonly en-
countered as seen in Chapter 7.4.2.3 in the MWB2024 data set, is a blind spot for the
implementations presented in this dissertation, yet the current implementation of the
write-then-execute heuristic is inherently incompatible with managed code like .NET.
Extending the unpacker compatibility to malware written using managed code would
greatly improve the results in this dissertation.

Extending the data sets: The practical results of this dissertation could be improved
by incorporating additional data sets beyond Malpedia [10] and dataset-packed-pe [11].
Expanding the data set may expose more unpacking techniques that have not been
covered yet. Another avenue is the creation of a data set which provides a high diversity
in packing techniques and the means to confirm that the unpacking has worked. This
has already been identified as future work in [2].

Evasion techniques in Windows Malware: As seen in Chapter 7, GeMU'’s effectiveness
can be improved by addressing evasion techniques that are commonly used to thwart
malware analysis. This aspect of malware has not been addressed in any study or in
the implementation of GeMU. A dedicated study on evasion techniques used during the

92

8.5 Al-Tools Disclosure

unpacking phases is highly desirable, as it would greatly improve the results of this paper
and help researchers decide which evasion techniques are detrimental to their unpackers.

8.5 Al-Tools Disclosure

The following tools have been used to fix language errors and improve wording;:
e Writefull For Overleaf
e Languagetool

e Overleaf’s spell checker

93

Bibliography

(1]
2]
3l

(4]

(7]

(8]

(10]
(11]

(12]
(13]
(14]

(15]

[16]

(17]
(18]

AVTest, “Av-atlas.” https://portal.av-atlas.org/malware/statistics. Accessed: 2025-05-15.

X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “Sok: Deep packer inspection: A
longitudinal study of the complexity of run-time packers,” in 2015 IEEE Symposium on Security
and Privacy, pp. 659-673, IEEE, 2015.

F. Guo, P. Ferrie, and T.-C. Chiueh, “A study of the packer problem and its solutions,” in
International Workshop on Recent Advances in Intrusion Detection, pp. 98-115, Springer, 2008.

M. Christodorescu, J. Kinder, S. Jha, S. Katzenbeisser, and H. Veith, “Malware normalization,”
tech. rep., University of Wisconsin-Madison Department of Computer Sciences, 2005.

T. Jenke, E. Padilla, and L. Bruckschen, “Towards generic malware unpacking: A comprehensive
study on the unpacking behavior of malicious run-time packers,” in Nordic Conference on Secure
IT Systems, pp. 245-262, Springer, 2023.

T. Jenke, S. Liessem, E. Padilla, and L. Bruckschen, “A measurement study on interprocess code
propagation of malicious software,” in International Conference on Digital Forensics and Cyber
Crime, pp. 264—282, Springer, 2023.

T. Jenke, M. Ufer, M. Blatt, L. Kohler, E. Padilla, and L. Bruckschen, “Democratizing generic
malware unpacking,” in 2025 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), pp. 30-38, IEEE, 2025.

C. Rossow, C. J. Dietrich, C. Kreibich, C. Grier, V. Paxson, N. Pohlmann, H. Bos, and M. van
Steen, “ Prudent Practices for Designing Malware Experiments: Status Quo and Outlook ,” in
Proceedings of the 33rd IEEE Symposium on Security and Privacy (SEP), 2012.

B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, “Repeatable reverse engineering
with panda,” in Proceedings of the 5th Program Protection and Reverse Engineering Workshop,
pp. 1-11, 2015.

D. Plohmann, M. Clauss, S. Enders, and E. Padilla, “Malpedia: a collaborative effort to inventorize
the malware landscape,” in Proceedings of the Botconf, 2017.

“GitHub - packing-box/dataset-packed-pe: Dataset of packed PE samples — github.com.” https:
//github.com/packing-box/dataset-packed-pe. Accessed: 2025-05-15.

“Malware Bazaar,” 2023. https://bazaar.abuse.ch/.
E. Eilam, Reversing: secrets of reverse engineering. John Wiley & Sons, 2011.

K. Coogan, S. Debray, T. Kaochar, and G. Townsend, “Automatic static unpacking of malware
binaries,” in 2009 16th Working Conference on Reverse Engineering, pp. 167-176, IEEE, 2009.

D. Plohmann, S. Eschweiler, and E. Gerhards-Padilla, “Patterns of a cooperative malware analysis
workflow,” in 2018 5th International Conference on Cyber Conflict (CYCON 2013), pp. 1-18,
IEEE, 2013.

T. Muralidharan, A. Cohen, N. Gerson, and N. Nissim, “File packing from the malware perspective:
Techniques, analysis approaches, and directions for enhancements,” ACM Computing Surveys,
vol. 55, no. 5, pp. 1-45, 2022.

Oracle, “Oracle virtualbox.” https://www.virtualbox.org/. Accessed: 2025-05-15.

F. Bellard, “Qemu, a fast and portable dynamic translator.,” in USENIX annual technical confer-
ence, FREENIX Track, vol. 41, p. 46, California, USA, 2005.

95

https://portal.av-atlas.org/malware/statistics
https://github.com/packing-box/dataset-packed-pe
https://github.com/packing-box/dataset-packed-pe
https://bazaar.abuse.ch/
https://www.virtualbox.org/

Bibliography

[19]

[20]

21]

B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso: Narrowing the semantic
gap in virtual machine introspection,” in 2011 IEEE symposium on security and privacy, pp. 297—
312, IEEE, 2011.

N. Galloro, M. Polino, M. Carminati, A. Continella, and S. Zanero, “A systematical and longitu-
dinal study of evasive behaviors in windows malware,” Computers & Security, vol. 113, p. 102550,
2022.

C. Kolbitsch, E. Kirda, and C. Kruegel, “The power of procrastination: detection and mitigation
of execution-stalling malicious code,” in Proceedings of the 18th ACM conference on Computer
and communications security, pp. 285—-296, 2011.

various, “PE format,” 2021. MSDN Article: https://docs.microsoft.com/en-us/windows/
win32/debug/pe-format Accessed: 2025-05-15.

M. Oberhumer, L. Molnar, and J. F. Reiser, “Upx: the ultimate packer for executables,” 2004.

various, “Virtual address spaces,” 2021. MSDN Article: https://learn.microsoft.com/en-us/
windows-hardware/drivers/gettingstarted/virtual-address-spaces Accessed: 2025-05-15.

Microsoft, “Virtualprotect function.” https://learn.microsoft.com/en-us/windows/win32/
api/memoryapi/nf-memoryapi-virtualprotect. Accessed: 2025-05-15.

Microsoft, “Virtualalloc function.” https://learn.microsoft.com/en-us/windows/win32/api/

memoryapi/nf-memoryapi-virtualalloc. Accessed: 2025-05-15.

Microsoft, “Teb structure (winternl.h).” https://learn.microsoft.com/en-us/windows/win32/
api/winternl/ns-winternl-teb. Accessed: 2025-05-15.

Microsoft, “Peb structure (winternl.h).” https://learn.microsoft.com/en-us/windows/win32/
api/winternl/ns-winternl-peb. Accessed: 2025-05-15.

Microsoft, “memcpy, wmemcpy function.” https://learn.microsoft.com/en-us/cpp/c-
runtime-library/reference/memcpy-wmemcpy?view=msvc-170. Accessed: 2025-05-15.

Microsoft, “Writeprocessmemory function.” https://learn.microsoft.com/en-us/windows/
win32/api/memoryapi/nf-memoryapi-writeprocessmemory. Accessed: 2025-05-15.

Karl-Bridge-Microsoft, = “PE Format - Win32 apps.” https://docs.microsoft.com/en-
us/windows/win32/debug/pe-format. Accessed: 2025-05-15.

I. Guilfanov, “IDA Pro,” May 1990. Company Website: https://hex-rays.com/ida-pro/ Ac-
cessed: 2025-05-15.

National Security Agency, “The Ghidra Software Reverse Engineering suite,” 2019. Project Web-
site: https://ghidra-sre.org/ Accessed: 2025-05-15.

B. Ninja, “Binary ninja. 2024,” URL: hitps://binary.ninja/, vol. 24, 2024.

N. M. Hai, M. Ogawa, and Q. T. Tho, “Packer identification based on metadata signature,” in
Proceedings of the Tth Software Security, Protection, and Reverse Engineering/Software Security
and Protection Workshop, pp. 1-11, 2017.

P. Royal, M. Halpin, and D. Dagon, “Polyunpack: Automating the hidden-code extraction of
unpack-executing malware, dec. 2006,” ACSAC, pp289-300.

J. Calvet, F. L. Lévesque, J. M. Fernandez, J. Marion, E. Traourouder, and F. Menet, “Waveatlas:
surfing through the landscape of current malware packers,” Virus, 2015.

M. Krejdl, “Malware: It’s all in the gift-wrapping,” 2010. Website: https://blog.avast.com/
2010/12/20/malware-giftwrapping-services/ Accessed: 2025-05-15.

F-Secure, “Packed:W32/MysticCompressor.gen!A,” 2021. Website: https://www.f-secure.com/
v-descs/packed-w32-mysticcompressor-gen!a.shtml Accessed: 2025-05-15.

B. Zdrnja, “Opachki, from (and to) Russia with love,” 2009. Website: https://isc.sans.edu/
diary/Opachki+from+and+to+Russia+with+love/7519 Accessed: 2025-05-15.

96

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-teb
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-teb
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/memcpy-wmemcpy?view=msvc-170
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/memcpy-wmemcpy?view=msvc-170
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://hex-rays.com/ida-pro/
https://ghidra-sre.org/
https://blog.avast.com/2010/12/20/malware-giftwrapping-services/
https://blog.avast.com/2010/12/20/malware-giftwrapping-services/
https://www.f-secure.com/v-descs/packed-w32-mysticcompressor-gen!a.shtml
https://www.f-secure.com/v-descs/packed-w32-mysticcompressor-gen!a.shtml
https://isc.sans.edu/diary/Opachki+from+and+to+Russia+with+love/7519
https://isc.sans.edu/diary/Opachki+from+and+to+Russia+with+love/7519

Bibliography

[41]

42]

[43]

(44]

[45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code extractor for packed executa-
bles,” in Proceedings of the 2007 ACM workshop on Recurring malcode, pp. 46-53, ACM, 2007.

A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis via hardware virtualiza-
tion extensions,” in Proceedings of the 15th ACM conference on Computer and communications
security, pp- 51-62, ACM, 2008.

S. Cesare, Y. Xiang, and W. Zhou, “Malwise—an effective and efficient classification system for
packed and polymorphic malware,” IEEE Transactions on Computers, vol. 62, no. 6, pp. 1193—
1206, 2012.

G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and A. Thierry, “Codisasm:
medium scale concatic disassembly of self-modifying binaries with overlapping instructions,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pp. 745-756, ACM, 2015.

S. D’ALESSIO and S. MARIANI, “Pindemonium: a dbi-based generic unpacker for windows
executables,” 2016.

L. Bohne and T. Holz, “Pandora’s bochs: Automated malware unpacking,” Master’s thesis, RWTH
Aachen University, 2008.

L. Martignoni, M. Christodorescu, and S. Jha, “Omniunpack: Fast, generic, and safe unpacking
of malware,” in Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third
Annual, pp. 431-441, TEEE, 2007.

L. Sun, “Hump-and-dump: Efficient generic unpacking using an ordered address execution his-
togram,” in 2nd International Computer Anti- Virus Researchers Organization (CARO) Workshop,
2008, 2008.

M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, “Eureka: A framework for enabling
static malware analysis,” in Furopean Symposium on Research in Computer Security, pp. 481-500,
Springer, 2008.

R. Isawa, D. Inoue, and K. Nakao, “An original entry point detection method with candidate-
sorting for more effective generic unpacking,” IEICE TRANSACTIONS on Information and Sys-
tems, vol. 98, no. 4, pp. 883-893, 2015.

W. Guizani, J.-Y. Marion, and D. Reynaud-Plantey, “Server-side dynamic code analysis,” in
2009 4th International Conference on Malicious and Unwanted Software (MALWARE), pp. 5562,
IEEE, 2009.

G. Jeong, E. Choo, J. Lee, M. Bat-Erdene, and H. Lee, “Generic unpacking using entropy analysis,”
in 2010 5th International Conference on Malicious and Unwanted Software, pp. 98-105, IEEE,
2010.

B. Cheng, J. Ming, J. Fu, G. Peng, T. Chen, X. Zhang, and J.-Y. Marion, “Towards paving the
way for large-scale windows malware analysis: Generic binary unpacking with orders-of-magnitude
performance boost,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 395—411, 2018.

C. Lim, K. Ramli, Y. S. Kotualubun, et al., “Mal-flux: Rendering hidden code of packed binary
executable,” Digital Investigation, vol. 28, pp. 83-95, 2019.

T. Jenke, D. Plohmann, and E. Padilla, “Roamer: The robust automated malware unpacker,”
in 14th International Conference on Malicious and Unwanted Software (MALWARE), Nantucket,
MA, USA, 2019, pp. 67-74, 2019.

E. Alkhateeb, A. Ghorbani, and A. Habibi Lashkari, “A survey on run-time packers and mitigation
techniques,” International Journal of Information Security, pp. 1-27, 2023.

V. M. Alvarez, “yara: The pattern matching swiss knife for malware researchers (and everyone
else).” http://virustotal.github.io/yara/. Accessed: 2025-05-15.

D. Plohmann, “Malpedia.” https://malpedia.caad.fkie.fraunhofer.de/stats/yara. Accessed:
2025-05-15.

97

http://virustotal.github.io/yara/
https://malpedia.caad.fkie.fraunhofer.de/stats/yara

Bibliography

[59]

[60]

[61]

(62]

(63]

B. Cheng and P. Li, “Bareunpack: Generic unpacking on the bare-metal operating system,” IFICE
TRANSACTIONS on Information and Systems, vol. 101, no. 12, pp. 3083-3091, 2018.

T. Barabosch and E. Gerhards-Padilla, “Host-based code injection attacks: A popular technique
used by malware,” in 2014 9th International Conference on Malicious and Unwanted Software:
The Americas (MALWARE), pp. 8-17, IEEE, 2014.

T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A. Kiayias, “Scalability,
fidelity and stealth in the drakvuf dynamic malware analysis system,” in Proceedings of the 30th
Annual Computer Security Applications Conference, pp. 386-395, 2014.

B. D. Payne, “Simplifying virtual machine introspection using libvmi.,” tech. rep., Sandia National
Laboratories (SNL), Albuquerque, NM, and Livermore, CA ..., 2012.

“GitHub - airbus-seclab/qemu_blog: A series of posts about QEMU internals: — github.com.”
https://github.com/airbus-seclab/qemu_blog. Accessed 2025-05-15.

H. Yin and D. Song, “Temu: Binary code analysis via whole-system layered annotative execution,”
EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2010-8, 2010.

L. Craig, A. Fasano, T. Ballo, T. Leek, B. Dolan-Gavitt, and W. Robertson, “Pypanda: Taming the
pandamonium of whole system dynamic analysis,” in NDSS Binary Analysis Research Workshop,
2021.

A. Henderson, L. K. Yan, X. Hu, A. Prakash, H. Yin, and S. McCamant, “Decaf: A platform-
neutral whole-system dynamic binary analysis platform,” IEEE Transactions on Software Engi-
neering, vol. 43, no. 2, pp. 164-184, 2016.

A. Davanian, Z. Qi, Y. Qu, and H. Yin, “{DECAF++}: Elastic {Whole-System} dynamic taint
analysis,” in 22nd International Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2019), pp. 31-45, 2019.

P. Dovgalyuk, N. Fursova, 1. Vasiliev, and V. Makarov, “Qemu-based framework for non-intrusive
virtual machine instrumentation and introspection,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pp. 944-948, 2017.

“GitHub - panda-re/panda: Platform for Architecture-Neutral Dynamic Analysis — github.com.”
https://github.com/panda-re/panda. Accessed 2025-05-15.

D. Plohmann, S. Enders, and E. Padilla, “Apiscout: Robust windows api usage recovery for mal-
ware characterization and similarity analysis,” The Journal on Cybercrime & Digital Investigations,
vol. 4, 2018.

J. Richter, Applied Microsoft. NET framework programming, vol. 1. Microsoft Press Redmond,
2002.

Microsoft, “Zwmapviewofsection function.” https://learn.microsoft.com/en-us/windows-
hardware/drivers/ddi/wdm/nf-wdm-zwmapviewofsection. Accessed: 2025-05-15.

Microsoft, “Rtlallocateheap function.” https://learn.microsoft.com/en-us/windows-
hardware/drivers/ddi/ntifs/nf-ntifs-rtlallocateheap. Accessed: 2025-05-15.

Microsoft, “Globalalloc function.” https://learn.microsoft.com/en-us/windows/win32/api/
winbase/nf-winbase-globalalloc. Accessed: 2025-05-15.

Microsoft, “Heapcreate function.” https://learn.microsoft.com/en-us/windows/win32/api/
heapapi/nf-heapapi-heapcreate. Accessed: 2025-05-15.

Microsoft, “Localalloc function.” https://learn.microsoft.com/en-us/windows/win32/api/
winbase/nf-winbase-localalloc. Accessed: 2025-05-15.

Microsoft, “malloc function.” https://learn.microsoft.com/en-us/cpp/c-runtime-library/

reference/malloc?view=msvc-170. Accessed: 2025-05-15.

D. Benton, “The beginners guide to codecaves.” https://www.codeproject.com/Articles/
20240/The-Beginners-Guide-to-Codecaves. Accessed: 2025-05-15.

98

https://github.com/airbus-seclab/qemu_blog
https://github.com/panda-re/panda
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwmapviewofsection
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwmapviewofsection
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-rtlallocateheap
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-rtlallocateheap
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-globalalloc
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-globalalloc
https://learn.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heapcreate
https://learn.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heapcreate
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-localalloc
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-localalloc
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/malloc?view=msvc-170
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/malloc?view=msvc-170
https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves
https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves

Bibliography

[79]
(80]
(81]
(82]
(83]
(84]
(85]

(86]

(87]

(83

(89]

(90]

(91]

(92]

(93]

[94]

[95]

[96]
[97]
(98]
[99]

[100]

Microsoft, “Ntallocatevirtualmemory function.” https://learn.microsoft.com/en-us/windows—
hardware/drivers/ddi/ntifs/nf-ntifs-ntallocatevirtualmemory. Accessed: 2025-05-15.

Microsoft, “Virtualallocex function.” https://learn.microsoft.com/en-us/windows/win32/
api/memoryapi/nf-memoryapi-virtualallocex. Accessed: 2025-05-15.

Microsoft, “Loadlibrarya function.” https://learn.microsoft.com/en-us/windows/win32/api/
libloaderapi/nf-libloaderapi-loadlibrarya. Accessed: 2025-05-15.

Microsoft, “memmove, wmemmove.” https://learn.microsoft.com/en-us/cpp/c-runtime—
library/reference/memmove-wmemmove?view=msvc-170. Accessed: 2025-05-15.

Microsoft, “Rtlmovememory function.” https://learn.microsoft.com/en-us/windows/win32/

devnotes/rtlmovememory. Accessed: 2025-05-15.

Microsoft, “Createprocess function.” https://learn.microsoft.com/en-us/windows-hardware/
drivers/ddi/ntifs/nf-ntifs-rtldecompressbuffer. Accessed: 2025-05-15.

T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla, “Bee master: Detecting host-based code
injection attacks,” in Proceedings of the 11th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), London, UK, 2014.

T. Barabosch, N. Bergmann, A. Dombeck, and E. Padilla, “Quincy: Detecting host-based code
injection attacks in memory dumps,” in Proceedings of the 14th International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment (DIMVA), Bonn, Germany, 2017.

7. Gittins and M. Soltys, “Malware persistence mechanisms,” Procedia Computer Science, vol. 176,
pp- 88-97, 2020. Knowledge-Based and Intelligent Information & Engineering Systems: Proceed-
ings of the 24th International Conference KES2020.

Microsoft, “Microsoft detours.” https://github.com/microsoft/Detours. Accessed: 2025-05-15.

Microsoft, “Samples: Traceapi.” https://documentation.help/Detours/Sam_Traceapi.htm. Ac-
cessed: 2025-05-15.

Microsoft, “Appinit dlls.” https://technet.microsoft.com/en-us/library/cc939696.aspx. Ac-
cessed: 2025-05-15.

Microsoft, “Createprocessw function.” https://learn.microsoft.com/en-us/windows/win32/
api/processthreadsapi/nf-processthreadsapi-createprocessw. Accessed: 2025-05-15.

Microsoft, “Openprocess function.” https://learn.microsoft.com/de-de/windows/win32/api/
processthreadsapi/nf-processthreadsapi-openprocess. Accessed: 2025-05-15.

Microsoft, “Createremotethread function.” https://learn.microsoft.com/en-us/windows/
win32/api/processthreadsapi/nf-processthreadsapi-createremotethread. Accessed: 2025-
05-15.

”

Microsoft, “Exitprocess function.” https://learn.microsoft.com/en-us/windows/win32/api/
processthreadsapi/nf-processthreadsapi-exitprocess. Accessed: 2025-05-15.

D. Plohmann, “Knowledge Fragment: Hardening Win7 x64 on VirtualBox for Malware Anal-
ysis,” 2017. Blog post for ByteAtlas: http://byte-atlas.blogspot.de/2017/02/hardening-
vbox-win7x64.html Accessed: 2025-05-15.

Microsoft, “Launching applications (shellexecute, shellexecuteex, shellexecuteinfo).” https://
learn.microsoft.com/en-us/windows/win32/shell/launch. Accessed: 2025-05-15.

Microsoft, “Winexec function.” https://learn.microsoft.com/en-us/windows/win32/api/
winbase/nf-winbase-winexec. Accessed: 2025-05-15.

Microsoft, “Resumethread function.” https://learn.microsoft.com/en-us/windows/win32/
api/processthreadsapi/nf-processthreadsapi-resumethread. Accessed: 2025-05-15.

Microsoft, “Setthreadcontext function.” https://learn.microsoft.com/en-us/windows/win32/
api/processthreadsapi/nf-processthreadsapi-setthreadcontext. Accessed: 2025-05-15.

Microsoft, “Openthread function.” https://learn.microsoft.com/en-us/windows/win32/api/

processthreadsapi/nf-processthreadsapi-openthread. Accessed: 2025-05-15.

99

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntallocatevirtualmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntallocatevirtualmemory
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/memmove-wmemmove?view=msvc-170
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/memmove-wmemmove?view=msvc-170
https://learn.microsoft.com/en-us/windows/win32/devnotes/rtlmovememory
https://learn.microsoft.com/en-us/windows/win32/devnotes/rtlmovememory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-rtldecompressbuffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-rtldecompressbuffer
https://github.com/microsoft/Detours
https://documentation.help/Detours/Sam_Traceapi.htm
https://technet.microsoft.com/en-us/library/cc939696.aspx
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
https://learn.microsoft.com/de-de/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://learn.microsoft.com/de-de/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
http://byte-atlas.blogspot.de/2017/02/hardening-vbox-win7x64.html
http://byte-atlas.blogspot.de/2017/02/hardening-vbox-win7x64.html
https://learn.microsoft.com/en-us/windows/win32/shell/launch
https://learn.microsoft.com/en-us/windows/win32/shell/launch
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-winexec
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-winexec
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-resumethread
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-resumethread
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadcontext
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadcontext
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openthread
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openthread

Bibliography

[101]
[102]

[103]
[104]

[105]
[106]
[107]
[108]
[109]

[110]

Microsoft, “Queueuserapc function.” https://learn.microsoft.com/en-us/windows/win32/
api/processthreadsapi/nf-processthreadsapi-queueuserapc. Accessed: 2025-05-15.

Microsoft, “Virtualqueryex function.” https://learn.microsoft.com/en-us/windows/win32/
api/memoryapi/nf-memoryapi-virtualqueryex. Accessed: 2025-05-15.

M. Miller, “Using dual-mappings to evade automated unpackers,” 2008.

Microsoft, “Writeprocessmemory function.” https://learn.microsoft.com/en-us/windows/
win32/api/memoryapi/nf-memoryapi-writeprocessmemory. Accessed: 2025-05-15.

Daniel Plohmann, Steffen Enders, “Malpedia.” General Statistics: https://malpedia.caad.fkie.
fraunhofer.de/stats/general.

Horsicq, “Detect-It-Easy,” 2014. GitHub Repository: https://github.com/horsicq/Detect-It-
Easy/ Accessed: 2025-05-15.

S. Wilson and S. Frankoff, “UNPACME Project Overview,” 2025. Website: https://www.unpac.
me/ Accessed: 2025-05-15.

Oreans, “Themida overview.” https://www.oreans.com/Themida.php, 2025. Accessed: 2025-05-
15.

raw data, “Exploring autoit fud crypter.” https://raw-data.gitlab.io/post/autoit_fud/,
2019. Accessed: 2025-05-15.

T. F. Barabosch, Formalization and Detection of Host-Based Code Injection Attacks in the Context
of Malware. PhD thesis, Universitidts-und Landesbibliothek Bonn, 2018.

100

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualqueryex
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualqueryex
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://malpedia.caad.fkie.fraunhofer.de/stats/general
https://malpedia.caad.fkie.fraunhofer.de/stats/general
https://github.com/horsicq/Detect-It-Easy/
https://github.com/horsicq/Detect-It-Easy/
https://www.unpac.me/
https://www.unpac.me/
https://www.oreans.com/Themida.php
https://raw-data.gitlab.io/post/autoit_fud/

	Introduction
	Research Questions
	Contributions
	Analysis of Past Research
	Malware Unpacking Within a Single Process
	Multi-process Malware Unpacking
	Requirements for a Generic Malware Unpacker and new Malware Unpacker

	Outline

	Foundations
	Malware Analysis
	Static Analysis
	Dynamic Analysis
	Evasion Techniques

	Microsoft Windows Foundations
	PE-Format
	Virtual Address Space
	API

	Runtime Packing
	Types of Packers
	Packing and Unpacking Steps

	Conclusion

	Malware Unpacking in the Literature
	Generic Malware Unpackers in Literature
	Analysis
	Terminology
	Heuristics
	Data Sets

	Blueprint for the Construction of a Generic Malware Unpacker
	Conclusion

	Intra-Process Unpacking Behavior
	Introduction
	Unpacking Model
	Unpacking Layer
	Interpretation of Unpacking Layers

	Packer Measurement System
	Framework
	Implementation of Recording Plugin
	Generating the Unpacking Layers

	Study
	Setup
	Results and Interpretation

	Limitations
	Conclusion

	Multi-Process Unpacking Behavior
	Introduction
	Code Propagation
	Definition
	Representation
	Code Propagation Implementation

	Measuring Code Propagations
	Recording API calls
	Identifying Code Propagations

	Code Propagation Study
	Setup
	Results

	Limitations
	Conclusion

	Past Generic Malware Unpackers
	Introduction
	Requirements for a Generic Malware Unpacker
	Assessment
	Analysis

	Conclusion

	GeMU: The QEMU-Based Generic Malware Unpacker
	Introduction
	Methodology
	Implementation
	Writing Function
	Translation Function
	Syscall/Sysret Function
	Management
	Limitations

	Study
	Setup
	Data Sets
	Correctness
	Speed

	Discussion
	Summary

	Conclusion
	Overall Impact
	Impact of Research Questions
	Limitations
	Future Work
	AI-Tools Disclosure

	Bibliography

