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1 Introduction

The rapid growth of biomedical literature makes it increasingly difficult to identify and organize meaningful knowl-
edge. This project addresses the problem by focusing on relation extraction (RE), i.e., detecting and classifying
semantic relationships between biomedical entities within scientific abstracts.

Our objective is to evaluate and compare multiple paradigms for scientific relation extraction on the BioRED
dataset, a manually annotated benchmark of PubMed abstracts with diverse entities and relation types. Specifically,
we investigate three complementary approaches: a classification-based model using BioBERT, a question
answering formulation QA4RE, and lastly, generative models SciFive and REBEL.

The central research question guiding our study is: Which modeling paradigm offers the most effective and
generalizable solution for biomedical relation extraction under the constraints of the BioRED dataset?

2 Related Work

Biomedical relation extraction has been studied extensively, with BioRED [I] emerging as a benchmark dataset
containing 600 PubMed abstracts annotated with diverse entities and relations. While entity recognition in BioRED
reaches F1 ~ 89.3%, relation extraction—especially for novel relations—remains challenging (F1 ~ 47.7%).

Several approaches have been proposed to address these challenges. Shang et al. [2] introduce adaptive
document-relation cross-mapping with concept identifiers, achieving up to 72% F1 on BioRED, though limited
to predefined relation types. Yamada et al. [3] reframe RE as a question answering task with entity markers,
yielding strong results on DrugProt but requiring multiple queries per entity pair. Li and Verspoor [4] propose
EMBRE, an entity-masking pretraining strategy that improves novelty detection at the cost of higher computation
and sensitivity to NER errors. Ensemble-based methods like SARE [5] show gains by combining multiple pretrained
models, but suffer from high complexity and inference cost.

Overall, three themes emerge: (i) explicit modeling of entity types improves performance, (ii) QA and generative
formulations add flexibility but increase computational overhead, and (iii) transformer baselines such as BioBERT
[6] remain strong for frequent classes but underperform on rare or novel relation types. Dataset imbalance and
strict evaluation constraints continue to be open challenges.

3 Methodology

We designed a modular pipeline to compare three paradigms for relation extraction (RE) on the BioRED dataset.
Each method follows the same preprocessing, training, and evaluation protocol to ensure comparability.

3.1 BioBERT -+ Classification Head

BioBERT  [6], a domain-specific BERT pretrained on PubMed and PMC, was fine-tuned with a classification head.
Each instance consisted of a sentence with two entity mentions, and the model predicted the relation label. Entity
markers and the [CLS] token were used to encode entity-level context.

3.2 QA4RE

QA4RE [7] recasts RE as a question-answering task, where entity pairs are turned into natural language queries
with multiple-choice answers. This leverages pretrained LLMs for structured relational prediction without explicit
relation classification.

3.3 Generative Models

We reformulated RE as a text-to-text generation task using two seq2seq models:

e SciFive [§], a biomedical T5 model, which outputs structured triples (e.g., Aspirin — Chemical — treats —
Inflammation — Disease).

e REBEL [9], designed for open-domain RE, adapted to biomedical text using delimiter-based serialization for
subject—relation—object triples.


https://github.com/naver/biobert-pretrained
https://github.com/OSU-NLP-Group/QA4RE
https://github.com/justinphan3110/SciFive
https://github.com/Babelscape/rebel

3.4 Overall Pipeline

The end-to-end process was:

1. Preprocessing: Parse BioRED abstracts into model-specific formats (classification instances, QA prompts,

or serialized triples).

2. Task Formulation: Train models under three paradigms—classification, generation, and QA.

3. Training: Fine-tune each model on the BioRED training set with standard train/dev/test splits.

4. Evaluation: Assess performance using macro-F1 and accuracy; qualitative error analysis used confusion

matrices and output inspection.

This pipeline enables principled comparison of distinct NLP strategies for biomedical relation extraction.

4 Dataset

We used the BioRED dataset [I], which contains 600 PubMed abstracts annotated with biomedical entities and
semantic relations. Entity categories include Gene/Gene Product, Disease/Phenotype, Chemical, Sequence Variant,
and Cell Line. Gene and Disease dominate (=60% of mentions), while Sequence Variant and Cell Line are rare

(=10% combined).

Relation types are similarly imbalanced: Association is the most frequent, followed by Positive-Correlation
and Negative-Correlation. Less common but important types include Bind, Cotreatment, Drug Interaction, and
Conversion. Figure [I] shows the distribution of entities and relations across splits.

This imbalance presents challenges for learning robust models, motivating the use of techniques such as weighted
loss or careful evaluation with macro-F1. Nonetheless, the balanced design of train/dev/test splits ensures fair

benchmarking.
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Figure 1: Entity and relation distributions across datasets.

5 Experimental Setup

We present the experiments on each of the methods (available on |Github), in the following sections.

5.1 BioBERT

For the classification-based approach, we fine-tuned dmis-lab/biobert-base-cased-v1.1 [6] using PyTorch and
HuggingFace Transformers. Each instance consisted of a sentence with two marked entities and the corresponding

relation label.

We conducted a staged hyperparameter search. First, runs with maximum sequence length 256 explored varia-
tions in dropout, weight decay, and learning rate. Top-performing settings were then rerun with length 512. Then,


https://github.com/Ziad-Aamer/NLP-Lab-Uni

label smoothing values (0.05-0.2) were tested on the top runs of the previous stage. Initial runs were capped at
10 epochs. Top configurations (Test F1 > 0.5) were extended to 100 epochs with early stopping (patience 5, delta
le — 4), selecting checkpoints by Dev F1.

The best configuration used a sequence length of 512, weight decay 0.03, and learning rate 2e — 5, achieving the
highest F1 on the test set. A complete record of all experiments and hyperparameters is provided in the Appendix
for reproducibility.

5.2 QA4RE

In the QA4RE approach [7], relation extraction is reformulated as a multiple-choice question answering task. We
evaluated several large language models (LLMs) on BioRED using this format.

The BioRED JSON files (Train, Dev, Test) were converted into QA4RE-style prompts. For each document,
entities and relations were extracted, and valid entity-pair relations were transformed into multiple-choice questions
with one correct option. The resulting datasets contain 4497 prompts for Train, 1284 for Dev, and 1123 for Test,
and a few-shot variant was created by adding examples to each prompt. Each prompt corresponds to one entity
pair and relation label (options A—H), with only type-consistent relation options provided.

Models were loaded using HuggingFace (for open-source LLMs) and LiteLLM (for GPT). Both encoder—decoder
models (e.g., T5) and causal decoder-only LLMs (e.g., LLaMA, Mistral, GPT) were tested.

The pipeline followed three steps: Load model and tokenizer. Then, for each prompt, generate an answer (e.g.,
“A”  “B”) and map to a valid option. Finally, we compare predictions to the gold label and compute accuracy and
macro-F1.

5.3 Generative RE Models

In this approach, relation extraction is framed as a text-to-text generation task. Input sentences with entity pairs
are serialized into a structured schema of the form:

<subj> | <subj type> | <relation> | <obj> | <obj type>

This representation was used consistently during training and evaluation.

5.3.1 SciFive

We fine-tuned the scifive-base-Pubmed checkpoint [8]. Each input consisted of a sentence-level context with
paired entities, serialized into the schema above. The output was the corresponding relation triple. Training ran
for up to 44 epochs with AdamW optimization and linear learning rate scheduling. During inference, beam search
decoding was applied. The best checkpoint was selected based on validation loss, and evaluation followed the strict
BioRED scorer (exact entity spans and relation labels).

5.3.2 REBEL

For REBEL, we used the pretrained Babelscape/rebel-large model [9], fine-tuned for 11 epochs on BioRED using
HuggingFace’s seq2seq trainer with AdamW optimization. The preprocessing and serialization matched SciFive.
Inference used beam search decoding, and evaluation again relied on the strict BioRED scorer. No additional
post-processing (e.g., entity normalization) was applied, to comply with the dataset’s exact-match requirements.

6 Results

The results of our experiments are discussed below.

6.1 Evaluation Metrics
We evaluate model performance using two standard classification metrics:

e Macro F1 Score: This is the average F1 score computed independently for each class and then averaged. It
gives equal importance to all relation classes, regardless of their frequency, making it especially suitable for
class-imbalanced datasets like BioRED.

e Accuracy: The overall proportion of correctly predicted relation types among all instances.



6.2 Quantitative Results

Below, we present the quantitative results for each of our approaches and a corresponding analysis on each of them.

6.2.1 BioBERT

Table [1] presents the top-performing BioBERT configurations on the test set. The best run, with sequence length
512, weight decay 0.03, and learning rate 2e — 5, achieved a test F1 of 0.5889 and Accuracy of 0.6999. Figure
and illustrate the F1 and accuracy trends over training. Although some overfitting was observed, selecting
checkpoints by validation F1 consistently yielded the best test results, confirming the dev set as a reliable proxy.

Seq Len Weight Decay Label Smoothing Learning Rate Test F1

512 0.03 No 2e-5 0.5889
512 0.025 No 2e-5 0.5876
512 No No 2e-5 0.5674
512 0.03 0.05 2e-5 0.5560
512 0.02 No 2e-5 0.5519
512 0.015 No 2e-5 0.5313

Table 1: Top 6 configurations for BioBERT based on Test F1 score (best run highlighted). Full experimental results
are included in the appendix.
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Figure 2: Performance metrics of best BioBERT run

Error Analysis The confusion matrix (Figure [3) shows that Association dominates both in frequency and
misclassification, with frequent confusion against Positive_Correlation. Overall, BloBERT benefited from longer
sequence lengths and careful regularization, with weight decay emerging as the most impactful hyperparameter.

6.2.2 QA4RE

LLMs’ Results The models below in Table [2|are tested on the Test dataset to compare them with the other approaches
e.g. BioBERT.
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Figure 3: Confusion matrix for the test set (best BloBERT run).

Model Architecture Size Accuracy % F1-Score %
flan-t5-small Seq2Seq (Enc—Dec) 60M 19 4
flan-tb5-base Seq2Seq (Enc—Dec) 220M 20 7
flan-t5-large Seq2Seq (Enc—Dec) 780M 22 5
flan-t5-x1 Seq2Seq (Enc—Dec) 3B 24 4
Mistral-7B-Instruct-vO0.3 Causal LM (Dec-only) 7B 21 11
Llama-3.2-3B-Instruct Causal LM (Dec-only) 3B 35 22
Llama-3.1-8B-Instruct Causal LM (Dec-only) 8B 22 15
DeepSeek-R1-Distill-Llama-8B  Causal LM (Dec-only) 8B 23 15
Gemma-3-4B-IT Causal LM (Dec-only) 4B 22 2
GPT-40 Causal LM (Dec-only) ~ 200B 45%* 20*

Table 2: Model Experimental Results on the Test and Dev Datasets. *GPT-40 was tested on Dev dataset (similar
to Test). Highlights show the best results.

Zero-shots vs. Few-shots The top-performing models are retested on the train dataset, as it is larger than the Test
dataset. In Figure [d] we can see the zero-shot comparison between the models, in which we can see that GPT-4o and
Llama-3.2-3B have the best Fl-score. On the other hand, when testing using the few-shot models Figure[5] the results were
less than expected. This is probably due to the lack of domain knowledge when designing the examples. E.g. Llama-3-3B
with few shots was F1 ~13% underperforms zero-shot prompting with F1 ~20%.

Accuracy (%) F1 (%)
meta-llama/Llama-3.1-8B-Instruct 23.0 g 11.0
deepseek-ai/DeepSeek-R1-Distill-Llama-8B - 20.0 4 13.0
mistralai/Mistral-7B-Instruct-v0.3 4 23.0 B 13.0
meta-lIama/LIama-B.Z-BB-Instruct_ 36.0 - 20.0
openai/gpt-40 1 49.0) 4 21.0
0 1‘0 2‘0 3‘0 4‘0 5‘0 0 1‘0 2‘0 3‘0 4‘0 5‘0
Score Score

Figure 4: Comparison of top-performing models on the Train dataset (Accuracy and Fl-score).



6.2.3 Generative RE Models

On the BioRED test set, both SciFive and REBEL exhibited very low strict scores due to frequent output format errors and
under-generation of triples. Table [3] summarizes their performances.

Model / Relation Support Precision Recall F1
SciFive (strict scorer)

Association 21 0.0526 0.0476  0.0500
Negative Correlation 12 0.0000 0.0000  0.0000
Positive Correlation 10 0.0000 0.0000  0.0000
Micro Avg. 43 0.0400 0.0233  0.0294
REBEL (strict scorer)

Micro Avg. - 0.1526 0.0933  0.1158

Table 3: SciFive and REBEL results on BioRED test set (strict evaluation).

Error Analysis Both models suffered from:
e Output drift: extra commentary or malformed delimiters.
e Entity mismatches: hallucinated IDs or merged biomedical terms.

e Low recall: generating far fewer triples than gold annotations per abstract.

6.3 Comparative Analysis

The relation extraction task was approached using three distinct paradigms: a classification-based model (BioBERT), a
question answering formulation (QA4RE), and a generative models (SciFive and REBEL). Each method presents unique
strengths and trade-offs in terms of performance, scalability, and generalization.

BioBERT, being a domain-specific encoder-based model, benefited significantly from hyperparameter tuning, partic-
ularly with weight decay and increased sequence length. It consistently achieved strong test F'1 scores and showed stable
generalization trends when early stopping was based on validation performance.

QAA4RE’s experiments show that seq2seq models (e.g., T5) frequently produce invalid predictions and struggle with
biomedical relation extraction, whereas instruction-tuned causal LMs (e.g., Llama, Mistral, DeepSeek) achieve stronger
results but still lag behind specialized biomedical models such as BioBERT. Performance is highly sensitive to prompt
wording, and few-shot prompting (F1 ~13%) underperforms zero-shot prompting (F1 ~20%), suggesting that biomedical
RE requires domain-specific calibration rather than general few-shot examples.

Generative RE (SciFive, REBEL). Under BioRED’s strict exact-match scoring, generative seq2seq models struggled
due to unconstrained decoding and span/ID mismatches. On the test set, SciFive (micro) P=0.0400, R=0.0233, F1=0.0294;
REBEL (micro) P=0.1526, R=0.0933, F1=0.1158. Despite their flexibility and unified text-to-triple interface, performance
remains far below BioBERT without grammar-/ID-constrained decoding or copy mechanisms.

Each model brings a complementary perspective to the task. A special highlight goes to the most successful method for
the given dataset: the classification-based approach (BioBERT) which offered interpretability and strong performance with
focused tuning.

7 Conclusion

This project compared classification, QA-based, and generative approaches for biomedical relation extraction on BioRED.
BioBERT was the strongest baseline, with its best configuration reaching F1 = 0.5889 and Accuracy = 0.6999. Systematic
tuning of weight decay, label smoothing, and sequence length improved results; despite some overfitting, validation F1
consistently guided the best checkpoints.

Challenges like class imbalance (e.g., Association dominating), strict span-matching in evaluation, noisy validation
signals, and paradigm differences made fair comparison sensitive to formatting and decoding.

QAA4RE offered flexibility, with larger LLMs (e.g., GPT-40 dev, LLaMA-3.2-3B test) reaching F1 & 0.22. Performance,
however, depended heavily on prompt quality and few-shot design.

Generative models provided a unified text-to-triple interface but performed poorly under strict scoring due to un-
constrained decoding and entity mismatches. On the test set, SciFive achieved P=0.0400, R=0.0233, F1=0.0294; REBEL
improved slightly with P=0.1526, R=0.0933, F1=0.1158. Stronger decoding constraints and copy-aware mechanisms are
needed to close this gap.

Future work could explore hybrid systems that combine BioBERT’s robustness with generative flexibility, or extend
QA-based formulations with biomedical-specific prompting and light supervision.
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Appendix

BioBERT Experiments

This appendix includes the detailed results of all experimental runs for the BioBERT classification model. Each table presents
the key hyperparameters used in a run (e.g., learning rate, dropout probability, weight decay, label smoothing) along with the
resulting test F1 scores. These results provide transparency, reproducibility, and allow for a comprehensive understanding of
how different configurations impacted model performance.

Separate tables are provided for:

e Runs with different dropout and weight decay configurations at sequence length 256

Baseline | Weighted Loss | Dropout | Weight Decay | Learning Rate | Test F1
Yes No No No 2.00E-05 0.3165
Yes Yes No No 2.00E-05 0.3488
Yes No Yes No 2.00E-05 0.3718
Yes Yes Yes No 2.00E-05 0.3209
Yes No No 0.005 2.00E-05 0.3588
Yes No No 0.01 2.00E-05 0.4832
Yes No No 0.015 2.00E-05 0.4164
Yes No No 0.02 2.00E-05 0.4171
Yes No No 0.025 2.00E-05 0.4458
Yes No No 0.03 2.00E-05 0.3981
Yes No No 0.035 2.00E-05 0.3428
Yes No No 0.05 2.00E-05 0.3457
Yes No No 0.1 2.00E-05 0.3654
Yes No No 0.5 2.00E-05 0.3272
Yes No Yes 0.01 2.00E-05 0.4182
Yes No Yes 0.015 2.00E-05 0.3501
Yes No Yes 0.02 2.00E-05 0.3936
Yes No Yes 0.025 2.00E-05 0.4195
Yes No Yes 0.03 2.00E-05 0.4547
Yes No Yes 0.035 2.00E-05 0.3372
Yes Yes Yes 0.01 2.00E-05 0.3742
Yes Yes Yes 0.02 2.00E-05 0.3154
Yes Yes Yes 0.025 2.00E-05 0.3849
Yes Yes Yes 0.03 2.00E-05 0.3302
Yes No No 0.01 1.00E-05 0.3672
Yes No No 0.01 5.00E-06 0.393
Yes No No 0.015 1.00E-05 0.4213
Yes No No 0.015 5.00E-06 0.393
Yes No No 0.02 1.00E-05 0.4213
Yes No No 0.02 5.00E-06 0.3922
Yes No No 0.025 1.00E-05 0.3338
Yes No No 0.025 5.00E-06 0.3922
Yes No Yes 0.01 1.00E-05 0.3948
Yes No Yes 0.01 5.00E-06 0.3303
Yes No Yes 0.025 1.00E-05 0.4212
Yes No Yes 0.025 5.00E-06 0.3286
Yes No Yes 0.03 1.00E-05 0.3897
Yes No Yes 0.03 5.00E-06 0.3246




e Top-performing configurations rerun with sequence length 512

Baseline | Weighted Loss | Dropout | Weight Decay | Learning Rate | Test F1
Yes No No No 2.00E-05 0.5532
Yes No No 0.01 2.00E-05 0.49
Yes No No 0.015 2.00E-05 0.5161
Yes No No 0.02 2.00E-05 0.5537
Yes No No 0.025 2.00E-05 0.5299
Yes No No 0.03 2.00E-05 0.5374
Yes No Yes 0.01 2.00E-05 0.3749
Yes No Yes 0.02 2.00E-05 0.3567
Yes No Yes 0.025 2.00E-05 0.365
Yes No Yes 0.03 2.00E-05 0.3127
Yes No No 0.01 5.00E-06 0.365
Yes No No 0.015 1.00E-05 0.4155
Yes No No 0.015 5.00E-06 0.365
Yes No No 0.02 1.00E-05 0.4155
Yes No No 0.02 5.00E-06 0.324
Yes No No 0.025 5.00E-06 0.324
Yes No Yes 0.01 1.00E-05 0.3942
Yes No Yes 0.025 1.00E-05 0.4057

e Label smoothing experiments with varying smoothing factors for top run configurations

— Learning Rate 2.00E-5

Baseline | Seq Len | Weighted Loss | Label Smooth | Dropout | Weight Decay | Test F1
Yes 512 No 0.1 No No 0.3559
Yes 512 No 0.05 No No 0.4345
Yes 512 No 0.2 No No 0.5055
Yes 512 No 0.1 No 0.02 0.4406
Yes 512 No 0.05 No 0.02 0.4201
Yes 512 No 0.2 No 0.02 0.4292
Yes 512 No 0.1 Yes 0.02 0.4874
Yes 512 No 0.05 Yes 0.02 0.3881
Yes 512 No 0.2 Yes 0.02 0.4578
Yes 512 No 0.1 No 0.03 0.4742
Yes 512 No 0.05 No 0.03 0.5401
Yes 512 No 0.2 No 0.03 0.4658
Yes 512 No 0.1 No 0.025 0.4837
Yes 512 No 0.05 No 0.025 0.3099
Yes 512 No 0.2 No 0.025 0.4061
Yes 512 No 0.1 No 0.015 0.5365
Yes 512 No 0.05 No 0.015 0.4552
Yes 512 No 0.2 No 0.015 0.3178
Yes 256 No 0.1 No 0.01 0.4521
Yes 256 No 0.05 No 0.01 0.3541
Yes 256 No 0.2 No 0.01 0.4872
Yes 256 No 0.1 No 0.025 0.3548
Yes 256 No 0.05 No 0.025 0.3885
Yes 256 No 0.2 No 0.025 0.5256
Yes 256 No 0.1 No 0.03 0.4016
Yes 256 No 0.05 No 0.03 0.3653
Yes 256 No 0.2 No 0.03 0.3696




— Learning Rate 1.00E-5

Baseline | Seq Len | Weighted Loss | Label Smooth | Dropout | Weight Decay | Test F1
Yes 512 No 0.1 No No 0.3902
Yes 512 No 0.05 No No 0.3985
Yes 512 No 0.2 No No 0.3331
Yes 512 No 0.1 No 0.02 0.3742
Yes 512 No 0.05 No 0.02 0.448
Yes 512 No 0.2 No 0.02 0.3934
Yes 512 No 0.1 Yes 0.02 0.3672
Yes 512 No 0.05 Yes 0.02 0.3385
Yes 512 No 0.2 Yes 0.02 0.3789
Yes 512 No 0.1 No 0.03 0.493
Yes 512 No 0.05 No 0.03 0.382
Yes 512 No 0.2 No 0.03 0.3432
Yes 512 No 0.1 No 0.025 0.371
Yes 512 No 0.05 No 0.025 0.4849
Yes 512 No 0.2 No 0.025 0.3992
Yes 512 No 0.1 No 0.015 0.3742
Yes 512 No 0.05 No 0.015 0.448
Yes 512 No 0.2 No 0.015 0.3934
Yes 256 No 0.1 No 0.01 0.416
Yes 256 No 0.05 No 0.01 0.3707
Yes 256 No 0.2 No 0.01 0.3994
Yes 256 No 0.1 No 0.025 0.4052
Yes 256 No 0.05 No 0.025 0.3672
Yes 256 No 0.2 No 0.025 0.3886
Yes 256 No 0.1 No 0.03 0.4115
Yes 256 No 0.05 No 0.03 0.3491
Yes 256 No 0.2 No 0.03 0.4094
— Learning Rate 5.00E-6
Baseline | Seq Len | Weighted Loss | Label Smooth | Dropout | Weight Decay | Test F1

Yes 512 No 0.1 No No 0.3959
Yes 512 No 0.05 No No 0.3743
Yes 512 No 0.2 No No 0.3310
Yes 512 No 0.1 No 0.02 0.3391
Yes 512 No 0.05 No 0.02 0.3831
Yes 512 No 0.2 No 0.02 0.3312
Yes 512 No 0.1 Yes 0.02 0.3141
Yes 512 No 0.05 Yes 0.02 0.3287
Yes 512 No 0.2 Yes 0.02 0.3306
Yes 512 No 0.1 No 0.03 0.3453
Yes 512 No 0.05 No 0.03 0.3758
Yes 512 No 0.2 No 0.03 0.3309
Yes 512 No 0.1 No 0.025 0.3391
Yes 512 No 0.05 No 0.025 0.3831
Yes 512 No 0.2 No 0.025 0.3312
Yes 512 No 0.1 No 0.015 0.3286
Yes 512 No 0.05 No 0.015 0.3777
Yes 512 No 0.2 No 0.015 0.3324
Yes 256 No 0.1 No 0.01 0.3413
Yes 256 No 0.05 No 0.01 0.3948
Yes 256 No 0.2 No 0.01 0.3240

Continued on next page
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Baseline | Seq Len | Weighted Loss | Label Smooth | Dropout | Weight Decay | Test F1
Yes 256 No 0.1 No 0.025 0.4013
Yes 256 No 0.05 No 0.025 0.3946
Yes 256 No 0.2 No 0.025 0.3215
Yes 256 No 0.1 No 0.03 0.4010
Yes 256 No 0.05 No 0.03 0.3956
Yes 256 No 0.2 No 0.03 0.3118

e Extended runs (up to 100 epochs) using early stopping for top configurations. This table gives us our top 6 runs that
we report in Table (the F1 scores highlighted)

Baseline | Stop Seq Len | Weighted | Label Dropout | Weight Learning Test F1
Epoch Loss Smoothing Decay Rate
Yes 100 512 No No No 0.02 2.00E-05 0.5519
Yes 100 512 No No No No 2.00E-05 0.5674
Yes 25 512 No 0.05 No 0.03 2.00E-05 0.5560
Yes 100 512 No No No 0.03 2.00E-05 0.5889
Yes 26 512 No 0.1 No 0.015 2.00E-05 0.5177
Yes 100 512 No No No 0.025 2.00E-05 0.5876
Yes 63 256 No 0.2 No 0.025 2.00E-05 0.4577
Yes 78 512 No No No 0.015 2.00E-05 0.5313
Yes 100 512 No 0.2 No No 2.00E-05 0.4856
All results reported in the main paper related to BioBERT are drawn from these tables.
QA4RE Few-shot Experiment
Model Comparison on Test with Few-shots Dataset: Accuracy vs F1 (macro)
Accuracy (%) F1 (%)
mistralai/Mistral-7B-Instruct-v0.3 11.0
meta-llama/Llama-3.2-3B-Instruct 230 13.0
0 5 10 15 20 25 0 5 10 15 20 25

Score

Score

Figure 5: Comparison of models on the Test dataset with few shots (Accuracy and Fl-score).
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