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Factor graph-based ground truth trajectory estimation by fusing

robotic total station and inertial measurements
Manuel Mittelstedt1,∗, Felix Esser1, Gereon Tombrink1, Lasse Klingbeil1 and Heiner Kuhlmann1

Abstract—The application of mobile mapping systems (MMS)
has increased continuously in the last decades in fields like
infrastructure or ecosystem monitoring. Equipped with multiple
laser scanners and cameras, these systems can generate high-
resolution 3D point clouds of the environment in a short time.
In this process, the accuracy of the trajectory of the system is
of central importance as it directly affects the accuracy of the
resulting point cloud. However, since the trajectory estimation
depends on sensor observations that are often affected by
unknown systematic errors, the actual accuracy of the trajectory
remains mainly unknown. To uncover the gap in the trajectory
accuracy assessment, we present a method to create ground
truth trajectories for mobile mapping systems by integrating
millimeter-accurate total station measurements. We mount an
Inertial Measurement Unit (IMU) and two 360-degree prisms on
a mobile platform, track them with two Robotic Total Stations
(RTS) during motion, and fuse these prism measurements with
the IMU readings using a factor graph-based trajectory esti-
mation approach. To evaluate the quality of this ground truth
trajectory, we record repeated measurements on a closed-loop
rail track close to Bonn, Germany. The results show that the
generated ground truth trajectory estimated with RTS and IMU
data achieves a precision of around 1 mm in position and 0.05◦

in orientation. To show the potential of the method, we detect
systematic deviations of an example MSS that uses Real-Time
Kinematic Global Navigation Satellite System (RTK-GNSS) and
IMU data for trajectory estimation. The results show that even
under good GNSS conditions, the ground truth trajectory from
our proposed approach has significantly better precision and less
systematic errors than the trajectory based on RTK-GNSS and
IMU data.

Index Terms—Localization, Sensor Fusion

I. INTRODUCTION

MOBILE MAPPING SYSTEMS like field robots or
drones equipped with multiple cameras or laser scan-

ners can create high-resolution and high-precision 3D point
clouds of the environment in a short time [1]. Therefore, the
application of such systems has rapidly increased during the
past decades in fields like building and ecosystem monitor-
ing or the creation of large-scale city models. To generate
3D point clouds, Simultaneous Localization and Mapping
(SLAM) techniques are frequently applied that use sensor data
from cameras or laser scanners to estimate both the trajectory

Manuscript received: March 31, 2025; Revised: May 19, 2025; Accepted:
July 15, 2025

This paper was recommended for publication by Editor Javier Civera upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy–EXC
2070–390732324 - PhenoRob.

1University of Bonn, Institute of Geodesy and Geoinformation (Nussallee
17, 53115 Bonn, Germany)

∗Corresponding author, mittelstedt@igg.uni-bonn.de
Digital Object Identifier (DOI): see top of this page.

of the system and the environmental map simultaneously [2].
Direct georeferencing techniques are also commonly used,
which first estimate the trajectory using for example Global
Navigation Satellite System (GNSS) and Inertial Measure-
ments Unit (IMU) data and use this trajectory to register the
recorded images and laser scans to a global reference frame.
Since both methods depend on sensor data that are affected
by random noise and systematic errors, the accuracy of the
trajectory is often unknown.

To evaluate the accuracy of the trajectory, direct methods by
comparing it with a ground truth trajectory [3]–[5] or indirect
methods by using a resulting point cloud to draw conclusions
on the trajectory [6], [7] are available. The direct approaches
have the advantage that the results are neither environment-
dependent nor affected by potential additional systematic
deviations of cameras or laser scanners, such as calibration
errors. Therefore, many researchers focus on the generation of
ground truth trajectories to evaluate the trajectories of mobile
mapping systems. Existing methods are usually limited either
by their suitability only for small-scale areas or by their
accuracy. Motion-capturing systems with cameras enable a
high-accuracy ground truth trajectory, but can only be used
in laboratories and small-scale areas [4]. An alternative for
large-scale outdoor areas is to use Real-time kinematic GNSS
in combination with a high-grade IMU [8]. However, this is, in
some cases, the solution we want to evaluate, and the accuracy
is still limited by the available accuracy of the GNSS positions
in the particular test environment. Robotic Total Stations (RTS)
provide position data with higher accuracy and, in particular,
less systematic errors than RTK-GNSS. By mounting a 360°
prism on the platform and tracking it continuously during
motion with the RTS, a position measurement with an accuracy
in the order of millimeters can be achieved [3], [9]–[11]. A
simultaneous use of three RTSs can be used to estimate both
ground truth position and orientation, as demonstrated by [5].
However, this method relies heavily on prior knowledge of the
prism positions on the platform and does not provide redun-
dant observations of the orientation, which may compromise
its robustness regarding deviations and outliers.

In this paper we present a factor graph-based method to fuse
the position measurements of two RTSs with the data of an
IMU to estimate a ground truth trajectory. While the RTS mea-
surements deliver millimeter-precise position measurements in
motion, the IMU obtains relative changes along the trajectory
with high frequency. The integration of IMU measurements
over a longer period leads to drift effects and systematic
deviations, which cannot be corrected for the heading angle
without additional measurements or restrictions. To avoid these
drift effects in the heading angle, we include the position
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measurements of both RTSs using a novel RTS baseline
factor in our factor graph for trajectory estimation. Since
roll and pitch values are obtained with sufficient accuracy
from the IMU measurements, two RTSs are sufficient for the
method presented. Compared to [5], this reduces the effort
and increases flexibility, as only two instead of three RTSs are
required and therefore an additional line of sight constraint is
eliminated. An additional advantage of our method is that the
IMU measurements are available at a very high frequency,
which means that even fine movements can be taken into
account. We evaluate our approach using repeated closed-loop
rail track measurements to analyze the precision of the ground
truth trajectory and the noise model of the RTS-related factors.
To show the potential of the ground truth, we additionally
uncover systematic trajectory deviations of a state-of-the-art
system that uses centimeter accurate RTK-GNSS and IMU
data.

In summary, the main contribution of this paper is a method
that estimates the ground truth trajectory by fusing two RTS
prism positions with IMU data using a factor graph-based
approach. The resulting ground truth trajectory is characterized
by millimeter precision without the presence of systematic
deviations. Since the RTS data is geo-referenced with high
precision, the ground truth allows the evaluation of state-of-
the-art systems that use GNSS and IMU data for trajectory
estimation.

The paper is structured as follows: First, in Section II, the
methodology to estimate the ground truth trajectory using a
factor graph-based approach is presented. The system and
the sensor setup we used in our work for experiments are
described in Section III. In Section IV, the results of an
evaluation concerning the estimated ground truth trajectory are
presented. In addition, we evaluate a GNSS/IMU trajectory
and demonstrate how the ground truth trajectory enables the
detection of systematic deviations in Section IV-C.

II. TRAJECTORY ESTIMATION METHODOLOGY

The aim is to estimate a high-accurate ground truth trajec-
tory by fusing total station and IMU measurements. The total
station measurements provide an absolute position observa-
tion. Relative changes in position and orientation are derived
from the IMU measurements. Since the IMU observation of
horizontal orientation (yaw angle) is subject to drift effects,
absolute information of the yaw angle is integrated using total
station measurements as a baseline.

The trajectory estimation considering different sensors like
IMU and absolute measuring sensors like total station is an
essential part of any MMS measurement processing. One
common approach to calculate the trajectory using several
sensor observations is a Kalman filter [10], [12], [13]. In
addition, new approaches such as factor graph-based solu-
tions provide the ability to optimize a trajectory efficiently
and globally based on sensor observations [14], [15]. The
advantage of factor graph-based approaches is that they can
be flexibly extended by new sensor observations and directly
estimate the trajectory without forward and backward filtering
like common Kalman filter smoothers. For the ground truth
trajectory estimation, we use a factor graph-based approach.

The trajectory is defined by a sequence of navigation states
xi consisting of position pi = [px, py, pz]i, velocity vi =
[vx, vy, vz]i, and orientation Ri at each time increment i. The
orientation is represented by the rotation matrix Ri, which can
be defined by the three Euler angles roll αi, pitch βi and yaw
γi.

xi = [pi,vi,Ri]
T
. (1)

The total set of navigation states over the whole trajectory to
be estimated is given by the set of I navigation states.

XI = {xi | i = 1, . . . , I} (2)

Besides the trajectory navigation states, time-dependent IMU
bias parameters bj containing acceleration bias ba

j =
[bax, b

a
y, b

a
z ]j and gyroscope bias bω

j = [bωx , b
ω
y , b

ω
z ]j need to be

estimated as well. All bias parameters that need to be estimated
over the entire measurement time can be summarized as BJ

BJ = {bj | j = 1, . . . , J} (3)

In total, the parameters to be estimated are

VK = {XI ,BJ} (4)

The navigation states of the ground truth trajectory are
estimated using a factor graph. In principle, graphs consist of
nodes and edges that represent relations between the nodes.
A special type of graph is the so-called factor graph. A factor
graph is a two-sided graph with two types of nodes, variable
nodes on the one hand and factor nodes on the other. Variable
nodes represent unknown random variables and factor nodes
represent impact factors on the random variables obtained from
measurements or previous knowledge.

The trajectory estimation using multiple sensor measure-
ments can also be represented as a factor graph. The parame-
ters VK to be estimated are introduced as variable nodes. The
measurements of the sensors are integrated as factor nodes.
A factor node can also be understood as a function between
a measurement and variable nodes. By linearizing the factor
graph, optimization based on least squares can be applied. A
visualization example of a factor graph is shown in Figure 1.

The navigation states and IMU bias parameters are repre-
sented as variables and the measurements as factor nodes. New
bias parameters are estimated when an absolute measurement
is included, as they are observable through absolute compari-
son. The squared factor nodes of Figure 1 highlight the non-
linear error functions depending on unknown parameters and
sensor measurements.

Equation 5 describes the corresponding least squares opti-
mization problem of the factor graph as shown in Figure 1.
Each function f() represents the corresponding error func-
tion of the respective factor. The error functions define the
functional relationship between the parameters to be estimated
and the observations. To perform a least squares adjustment,
a covariance matrix Σ is required for each measurement
included as a factor.

The IMU acceleration and gyroscope measurements can
be used through a pre-integration to calculate the relative
movements between two navigation states i and j. This is
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Fig. 1. Example for the visualization of a factor graph, consisting of variable nodes and factor nodes (initial-, IMU-, IMU-bias-, position and baseline-factors).

V∗
K =argmin

VK

{
K∑

i=0, j=i+1

∥∥f IMU
ij

∥∥2
Σij

+

Q∑
q=0

∥∥fBias
q

∥∥2
Σ(q−1)q

+

G∑
g=1

∥∥fPos
g

∥∥2
Σpp

+

G∑
g=1

∥∥fBase
g

∥∥2
Σll

}
. (5)

represented in the factor graph as an IMU factor f IMU
ij to

predict the next pose with accuracy given by the covariance
matrix Σij . For pre-integration, the approach of [16], [17] and
[18] is used. Since the IMU observations are influenced by a
time-dependent bias, the current bias bq has to be taken into
account in pre-integration. The bias factor fBias

q contains the
prediction, how the bias changes over the measurement period,
described by a random walk process.

The absolute observations of the total stations are integrated
using two kinds of factors. A position measurement is in-
tegrated via the fPos

g factor. The error function (Eq. 6) is
calculated from the position measurement lPos

i , the lever arm
t, i.e. the referred point of the position measurement on the
origin of the platform coordinate system and the position pi

and orientation Ri of the navigation state xi at time i.

fPos(pi,Ri, l
Pos
i ) = lPos

i − (pi +Ri · t) (6)

The matrix R describes the rotation matrix that specifies
the orientation of the platform at navigation state xi. The
covariance matrix Σpp gives the accuracy of the position
measurement.

Since the integration of a position factor does not provide
any direct information about the orientation, a baseline vector
is derived by the difference of the two position measurements.
The orientation of the baseline vector in space can be traced
back to the orientation of the MMS if the extrinsic calibration
is known. The extrinsic calibration i.e. the lever arms t1, t2
describe the two reference points, referring to the origin of
the platform, of the position observations. A baseline vector
is integrated into the factor graph as the factor fBase

g . The
error function 7 specifies the functional relationship between
the observation lBase

i and the rotation Ri at time i. So the
error function is the difference between the predicted baseline
vector and the measured one.

fBase(Ri, l
Base
i ) = lBase

i −Ri · (t2 − t1) (7)

The accuracy of the baseline measurement lBase
i is specified

by the covariance matrix Σll. The covariance matrix of the
baseline measurement depends on the accuracy of the two
position measurements used to compute the baseline.

For the optimization of VK we use the iSAM2 algorithm
[19] that sequentially builds up and optimizes the factor graph.
To estimate the global optimum, approximate values for the
parameters VK are required for linearization. Since these are
often only insufficiently available over the entire measurement
time, the iSAM2 algorithm offers the possibility to optimize
sequentially and update the approximate values over time.
If parameters in the past are no longer influenced by new
measurements, the iSAM2 algorithm no longer optimizes these
parameters. This ensures that the factor graph is optimized
efficiently. Further information can be found in [19].

III. EXPERIMENTS

The first part of this Section introduces the system and
the sensors used. The second part describes the measurements
conducted as part of our work and the measurement setup.

A. Sensor System

For ground truth trajectory estimation, we use a mobile
sensor system consisting of two 360-degree Leica GRZ122
prisms and an IMU, as shown in Figure 2. The IMU is an
Ellipse-2D from SBG-Systems located in the aluminum box.

The prisms, as targets for the total stations, are needed to
create the ground truth trajectory. The prisms must be mounted
at different heights to ensure a permanent line of sight between
the prism and the total station.
Since the lever arms between the IMU center and the prisms
t1, t2 must be known for the error function of the position
factor of the factor graph, these vectors must be estimated
with high precision. We determine the lever arm as part of
a calibration in the laboratory. According to Equation 7, the
baseline factor is particularly determined by the difference
vector between the two lever arms. We determine this vector
in the lab by using two Leica round prisms and multiple
measurements of a total station, which allow sub-millimeter
accurate position measurements. The distance between the
prisms, also known as the baseline length, is 0.92 meters.

Total stations are high-precision measuring sensors that cal-
culate the position coordinate of a targeted point by measuring
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Fig. 2. System for ground truth trajectory estimation, consisting of an IMU
and two Leica GRZ122 prisms

two angles and a distance. Robotic total stations additionally
provide the feature of automatic prism tracking. As a part
of the sensors used for the estimation of the ground truth
trajectory, two RTSs are set up externally and statically in the
measurement environment. The two RTSs must be set up in a
way that ensures a permanent line of sight to two prisms on
the platform. If the ground truth trajectory requires to be geo-
referenced, for example to enable evaluation of systems that
use GNSS for direct geo-referencing, the RTS observations
must be available in a geo-referenced coordinate system. This
can be realized, for example, by using existing geo-referenced
control points in the measuring environment.

Both RTSs, Leica TS60 and Leica MS60 were synchronized
by connecting each to a GPS-time synchronized logging
device (Raspberry Pi Single Board Computer). This logging
device timestamps incoming GeoCOM messages containing
the measurements of the RTS in GPS time and writes them to
a file. Due to the very similar architecture of both the RTS and
the logging devices used, low synchronization latencies can be
achieved. Empirical investigations showed a time offset of -
0.2 ms which does not differ significantly from zero given
the observation accuracy. Note that the RTS measurements
are not triggered or performed at the same point in time.
By synchronization, we mean that the time systems of both
RTSs run synchronously. Measured values for both RTSs for
a specific point in time can then be obtained via interpolation.

B. Measurement Setup

The measurements are realized on the test site of the
University of Bonn at the Klein-Altendorf campus. An approx-
imately 140-meter-long closed loop rail track, as highlighted
in Figure 3 c, enables repeated measurements of the ground
truth trajectory. The rail track contains variations of all tra-
jectory parameters, thus also for the orientation in roll, pitch,
and yaw. Conducting measurements on the rail track allows
investigating the repeatability of the ground truth trajectory
[3].

The sensor system we used for the measurements is shown
in Figure 3 b. In comparison to Figure 2, two Leica AS10
GNSS antennas are additionally installed on the platform.

They are used to compare the method presented using ob-
servations of two RTSs and an IMU to a conventional system
using GNSS and IMU. To move the entire sensor system along
the rail track, it is mounted on a test trolley, attached to the
rails with three wheels. We moved the trolley manually along
the rail track. The velocity varies between 0.2 and 0.8 meters
per second, after a zero velocity period at the beginning of the
measurement to initialize the IMU.

Fig. 3. a: Measurement set up with two total stations; b: Platform with prisms,
IMU, and GNSS antennas; c: Rail track

To allow prism tracking along the whole rail track, we
place the first total station on a pillar in the middle of
the test track, see Figure 3 a. The second total station is
positioned on a hill 20 meters from the rail track. A fixed geo-
referenced control point network consisting of several pillars is
located in the area around the rail track. A network adjustment
carried out in advance with static GNSS and total station
measurements provides the control points with an accuracy
in the sub-millimeter range. We use these network points to
transform the local total station position measurements into
the global WGS84 reference frame. This ensures the same
spatial reference in which for example GNSS measurements
were obtained, so trajectories of GNSS/IMU systems can be
compared with the ground truth trajectory.

A dataset consisting of 11 laps was measured simulta-
neously for all sensors. We used the measurements on the
rail track to investigate the repeatability based on multiple
measurements. Simultaneous measurements of GNSS, RTS
and IMU allow a direct comparison between the ground
truth and a trajectory estimated using GNSS and IMU. Since
RTK corrected GNSS measurements are used, centimeter-level
accuracy can be assumed for the GNSS positions.

IV. EVALUATION AND RESULTS

In this Section, we present the results and findings of
the measurements described in Section III. First, in Section
IV-A, we describe how the noise model for the factor graph
is selected and how this can be confirmed based on the
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measurements. The repeatability of the ground truth trajectory
based on multiple measurements of the laps on the rail track
is analyzed and compared with the trajectory from GNSS
and IMU in Section IV-B. Finally, in Section IV-C, using the
example of the GNSS/IMU trajectory, we demonstrate how
the high-accurate ground truth trajectory can be used to detect
systematic deviations.

In general, accuracy, as defined by ISO 5725-1, is a com-
bination of random and systematic deviations. Random devia-
tions are termed as precision and can be covered by repeated
measurements. Systematic deviations are termed trueness and
can be determined using a ground truth value.

A. Factor graph noise model

To integrate the observations correctly into a factor graph, a
specification of the noise model is required. First, prior knowl-
edge, such as manufacturer specifications of sensor accuracy,
can be used to define the noise model. Once measurements
have been conducted, we use the results to validate the noise
model.

The 3D accuracy of the position observation lPos measured
with a total station depends on several influencing factors
and the measurement setup. Besides the measurement noise
specified by the manufacturer, potential total station position
and system-related deviations have to be considered. The total
station position deviations can be calculated based on the
network adjustment carried out previously and are in the sub-
millimeter range. Two main system-related deviations must
be taken into account. One of these is small vibrations of
the prisms on the platform, which can amount to around one
millimeter. The second are deviations of the prisms depending
on the incident angle of the target. A closer examination of
this deviation can be found in [20]. The resulting deviation
of the measured prism position is up to ±1.5 mm. Overall,
a noise model of 3 millimeters is assumed for 3D-position
accuracy. The noise model of the baseline observation lBase

is derived based on the accuracy of the total station position
measurements as well.

To validate the noise model, the raw total station measure-
ments are examined empirically. One way to do so is to check
the baseline length between the prisms over the measurement
period. According to [21], the baseline length is also known as
the inter-prism distance. Since the measurements were carried
out on a closed loop rail track, repeated measurements are
available over several laps. As constant systematic deviations
have the same effect in each lap, the laps are analyzed
concerning similarities in the variation of the baseline length.
Figure 4 visualizes the baseline lengths as an example for 5
laps of the measured dataset. Besides the measurement noise,
in each lap the same deviations of around ±1.5 millimeters
compared to the baseline length determined in the laboratory
can be recognized. According to [20], this corresponds to the
order of magnitude of the deviation of the prisms depending
on the incident angle of the target. Given that this provides
an explanation for the existing systematics, which are smaller
than the assumed noise, it can be approved that there are no
other significant systematic deviations. As a result, the selected

Fig. 4. Difference between the baseline calibrated in the laboratory and
estimated baseline length out of measurements along five laps on the rail
track. The five laps are divided by the green lines.

noise model fits the acquired measurement data and we can
assume that all deviations have been taken into account.

B. Trajectory repeatability

Since our dataset contains repeated measurements on a
closed-loop rail track, the repeatability of trajectories is com-
puted, which we use to measure the trajectory precision. This
is done by estimating a mean trajectory based on the repeated
laps and computing the errors to this mean afterward. We
first do so for the ground truth trajectory and, to highlight
the precision gain of the ground truth, then additionally for
the trajectory estimated from GNSS and IMU data. The
GNSS/IMU trajectory is estimated using a factor graph-based
approach as described in our previous work [22].

To compute the mean trajectories, all poses of the trajectory
are first arranged based on the arc length of the rail track.
The mean trajectory is determined as a continuous function
using a least-squares adjustment. The errors δ to the mean
trajectory are then calculated over the whole trajectory for
each position and orientation parameter. Therefore, we use
the popular trajectory evaluation software Trajectopy 1 as
proposed in [3].

Since the trajectory was sorted spatially along the rail track
before calculating the errors, analyzing the along-track errors
is senseless. The analysis of the cross-track error δc provides
information about the repeatability of the horizontal compo-
nent and the vertical error δv about the height component of
the trajectory. To compute the mean values for the orientation
parameters, we use the chordal L2-mean, as described in
[23]. Since the orientation parameter roll pitch and yaw errors
cannot be calculated directly in the Euclidean space, the
orientation parameters are converted to the quaternion space.
After calculating the error in quaternion space, the error is
converted back to roll pitch and yaw errors δα, δβ and δγ .

To obtain a single scalar that values the repeatability for
each position and rotation parameter separately, the standard
deviation σ is computed over all N trajectory poses with

σ =
1

N

√
δT δ (8)

1https://github.com/gereon-t/trajectopy
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Fig. 5. Distribution of the trajectory errors for the ground truth trajectory and trajectory estimated with GNSS and IMU data divided into cross-track,
cross-vertical, roll, pitch, and yaw. Due to visualization reasons, the interval width of the histograms and the scaling of the x-axis differ.

Both the error distributions and their standard deviations are
used to evaluate the ground truth trajectory and trajectory
estimated with GNSS and IMU data.

Figure 5 shows the resulting error histograms for cross-
track, vertical, roll, pitch, and yaw. The cross-track and vertical
position errors of the ground truth trajectory are distributed
between ±2.5 mm. The roll and pitch errors extend between
±0.1◦, and the yaw angle errors between ±0.2◦. The errors
of each component follow a normal distribution.

The corresponding standard deviations of the ground truth
for the error histograms are summarized in Table I. The
millimeter range standard deviation of 1.4 mm and 0.8 mm for
cross-track and vertical positions show the high repeatability
of the prism measurements in the trajectory estimation. The
standard deviation of the rotations is estimated with 0.03◦ for
roll and pitch and 0.07◦ for the yaw rotation.

The error distributions of the GNSS/IMU trajectories differ
in the magnitude of the errors. The cross-track and vertical
position errors are distributed between ± 40 mm and thus
differ by an order of magnitude from the errors of the ground
truth trajectory. While the errors of the roll and pitch orien-
tation components are in the same order of magnitude as for
the ground truth trajectory, the errors for the yaw component
are significantly larger and are distributed between ±0.5◦.
The errors of the GNSS/IMU trajectory cannot generally be
described by a normal distribution for each component. Thus,
for example, several local maxima are recognizable in the
histogram of the vertical errors.

The empirical standard deviation for each parameter of the
GNSS/IMU trajectory is higher than the standard deviation of
the ground truth trajectory. The position’s standard deviation of
7.6 mm and 13.8 mm is significantly higher than the estimated
ground truth trajectory. The empirical standard deviation of the
yaw orientation is 0.19◦, which is more than twice as high as
the standard deviation of the ground truth yaw orientation.

The results demonstrate that the assumptions made about the
noise model correspond to the real measurements and that a
highly accurate ground truth trajectory with high repeatability

TABLE I
STANDARD DEVIATION OF THE TRAJECTORY ERROR DIVIDED INTO

HORIZONTAL CROSS-TRACK, VERTICAL, ROLL, PITCH, AND YAW FOR THE
GROUND TRUTH TRAJECTORY AND GNSS/IMU TRAJECTORY.

Parameter RTS and IMU GNSS/IMU
cross-track [mm] 1.4 7.6
vertical [mm] 0.8 13.8
roll [◦] 0.03 0.04
pitch [◦] 0.03 0.04
yaw [◦] 0.07 0.19

is estimated. Even though the GNSS conditions in the mea-
surement environment are good, the ground truth trajectory
is proven to outperform GNSS/IMU trajectories in terms of
precision.

C. Uncover systematic deviations using ground truth

As described in Sections IV-A and IV-B, the results prove
that the ground truth trajectory is not affected by any sig-
nificant systematic deviations and has high precision. In the
following Section, we show how the millimeter-precise ground
truth trajectory can be used to detect systematic deviations of
the GNSS/IMU trajectories and evaluate the trueness. Note
that the combination of GNSS and IMU data is just an
example, but any kind of trajectory estimate, such as SLAM
systems, could be evaluated here as well.

To determine systematic deviations of the GNSS/IMU tra-
jectory, it can be compared directly with the ground truth
trajectory. Since both trajectories are in the same coordinate
system and were measured simultaneously, the matching of
poses to be compared is realized by time in this paper.

The time-varying systematic deviations of the GNSS/IMU
trajectory are investigated by analyzing the errors to the ground
truth trajectory. Figure 6 shows the difference between the
height components of the GNSS/IMU solution and the ground
truth trajectory. This time series clearly shows a temporal
variation of up to 4 cm over the measurement period of
approximately 40 minutes. It can be assumed that the system-
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Fig. 6. Height differences over time between GNSS/IMU trajectory and the
ground truth trajectory

Fig. 7. Yaw orientation deviations between ground truth and GNSS/IMU
trajectory plot over the rail track for the example of four sequential laps (The
plot is generated with Trajectopy [3])

atic deviations are caused by varying systematic deviations of
GNSS over time.

The time-varying systematic deviations of the GNSS/IMU
trajectory can also be identified by the residuals of the ori-
entation parameters to the ground truth trajectory. Figure 7
shows the residuals of the yaw orientation for four sequential
laps. First, it can be noted that there is no section of the rail
track where the same systematic occurs in every lap. This
proves that the deviations change over the measurement time.
Particularly in laps 3 and 6, the sections where the largest
deviations occur are different. However, a continuous evolution
of the deviations can be observed over the four sequential laps.
As an example, the deviation in the upper right part of the rail
track increases, while the deviations in the upper middle part
decrease from lap to lap. This demonstrates the fact that the
systematic deviations change over time and indicate deviations
resulting from the GNSS measurements.

The experiments conducted prove that the ground truth

trajectory estimated from RTS and IMU is highly accurate
and can be used for evaluation purposes. Systematic deviations
of a GNSS/IMU system were detected. Since the rail track
is not required for this analysis of systematic deviations,
the experiment is also transferable to other environments. As
described in Section III-A, a prerequisite for analyzing a test
trajectory using GNSS observations is that control points are
available in a global coordinate system to geo-reference both
RTSs. This enables a more comprehensive analysis of the
impact of GNSS on trajectory estimation, for example, in
challenging environments such as urban canyons or forests.

V. CONCLUSION

In this paper, we present a method for determining a ground
truth trajectory using two total stations and an IMU with a
factor graph-based approach.

Conducting tests on a rail track, we have proven that the
generated trajectory achieves precision in the millimeter and
hundredth of a degree range. The accuracy of the ground
truth trajectory exceeds the accuracy of a state-of-the-art
configuration of GNSS/IMU system, even under very good
GNSS conditions. The potential of the estimated ground truth
trajectory for evaluation purposes is highlighted using the
example of a GNSS/IMU trajectory.

The ground truth trajectory offers the opportunity to advance
research. For example, the accuracy of the trajectory of MMSs
can be investigated by comparing it with the ground truth tra-
jectory. Therefore, a conclusion about precision and systematic
deviations can be made. Algorithms for trajectory estimation
can also be evaluated with the ground truth trajectory. Another
example is calibration measurements for sensors like cameras
and laser scanners, which can be improved by a highly
accurate trajectory.

Future research may investigate testing the ground truth
trajectory for different applications. To improve the ground
truth trajectory, future research should attempt to overcome
the prism deviations. For example, automatic rotating round
prisms would be conceivable.
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