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Abstract 

Flooding in Ghana’s White Volta basin has led to severe human displacement, fatalities, and 

extensive property damage. The region’s heavy dependence on agriculture exacerbates these 

impacts, posing significant threats to food security and livelihoods. In Ghana, institutions such 

as the Ghana Meteorological Agency (GMet) and the Ghana Hydrological Authority (GHA) 

are mandated to provide flood forecasts. However, their forecast remains inadequate, 

prompting many communities to rely on traditional knowledge and informal coping 

mechanisms. This study qualitatively assesses the operational state of Flood Early Warning 

Systems (FEWS) in the White Volta basin, focusing on their effectiveness, limitations, and 

opportunities for improvement. Using semi-structured interviews with 18 key stakeholders, 

including representatives from government agencies, technical experts, and community 

leaders, the study analysed the institutional and technical dynamics of Ghana’s FEWS through 

thematic analysis. Findings reveal that although the myDEWETRA-VOLTALARM platform 

offers 5-day flood forecasts through social media, SMS, and radio, its warnings are often 

mistrusted or inaccessible to rural populations. Thematic analysis identified four critical gaps: 

institutional fragmentation, exclusion of local knowledge, inadequate data infrastructure, and 

last-mile communication failures. These are complicated by the basin’s unique environmental 

conditions, including transboundary dam releases, intense seasonal rainfall, flat terrain, and 

poor drainage. These findings suggest that the current FEWS framework remains insufficient 

for proactive flood risk governance. Strengthening institutional coordination, integrating 

community-based adaptation practices, and investing in localised data and communication 

infrastructure are essential to improving system legitimacy and resilience. The study 

contributes to broader discourses on early warning systems in resource-constrained settings. 

The study explored alternative data sources for building a robust and reliable FEWS in the 

White Volta basin. Satellite and reanalysis data were compared with ground-based 

observations in Northern Ghana. This surrogate data assumes prominence as an alternative 

predictor amid the scarcity of ground-based data for streamflow forecasting to manage and 

mitigate floods in the basin. Rainfall and mean temperature span from 1998 to 2019, and soil 

moisture from 2019 to 2019. Data were sourced from GMet, ISMN (ground-based), CHIRPS, 

PERSIANN-CDR, ERA5, ARC2, MERRA-2, TRMM, and CFSR (satellite and reanalysis). 

Using performance metrics, namely standard deviation, mean absolute error (MAE), and mean 

bias error (MBE), the accuracy of these datasets was thoroughly evaluated. The results revealed 

that CHIRPS and PERSIANN-CDR exhibited superior accuracy in rainfall simulation, with 

CHIRPS demonstrating particularly consistent congruence with observed data. ERA5 



 

outperformed MERRA-2 and CFSR in predicting average temperatures. For soil moisture, both 

ERA5 and CFSR gave reliable results. Based on these findings, CHIRPS is recommended for 

rainfall, ERA5 for temperature, and either ERA5 or CFSR for soil moisture. These datasets are 

suitable for streamflow modelling, drought and flood forecasting, and managing water 

resources in Northern Ghana.  

The study also examines an operational Flood Early Warning System (FEWS) in the White 

Volta basin, aimed at delivering accurate streamflow forecasts critical for effective flood 

management and mitigation. For the first time, this research applies machine learning 

algorithms, specifically Long Short-Term Memory (LSTM) and Random Forest (RF), trained 

on rainfall, temperature, soil moisture, and evapotranspiration data to predict streamflow at 1-

, 5-, and 10-day intervals within the basin. The study further used these models (RF and LSTM) 

to forecast future streamflow using CMIP6 SSP5-8.5 scenario data. The model’s output was 

evaluated using Mean Absolute Error, Mean Bias Error, and Kling-Gupta Efficiency. The result 

showed high variability in the streamflow, and both models performed well in capturing these 

variabilities. LSTM showed superiority in capturing peak flows, and RF provided stable long-

term predictions for up to 10 days. The future predictions also showed high variability in the 

streamflow, suggesting an increased risk of floods and droughts in the basin. Given that these 

models are able to capture the timings (seasonal patterns and peaks), they are well-positioned 

to provide accurate and reliable streamflow forecasts to support effective flood risk 

management and mitigation in the basin. The models can be extended to similar ungauged 

basins, offering a replicable and sustainable framework for proactive flood early warnings.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Zusammenfassung 

Die Überschwemmungen im White-Volta-Becken in Ghana haben zu massiven Vertreibungen, 

Todesfällen und erheblichen Sachschäden geführt. Eine starke Abhängigkeit der Region von 

der Landwirtschaft verschärft diese Auswirkungen und stellt eine erhebliche Bedrohung für die 

Ernährungssicherheit und die Lebensgrundlagen der Bevölkerung in diesem Gebiet dar. In 

Ghana sind Institutionen wie die Ghana Meteorological Agency (GMet) und die Ghana 

Hydrological Authority (GHA) mit der Erstellung von Hochwasservorhersagen beauftragt. Ihre 

Vorhersagen sind jedoch nach wie vor unzureichend, so dass sich viele Gemeinden auf 

traditionelles Wissen und informelle Bewältigungsmechanismen verlassen. Um diese Lücke zu 

schließen, wurde in dieser Arbeit der aktuelle Zustand des Frühwarnsystems für 

Überschwemmungen (FEWS) im White-Volta-Becken qualitativ bewertet und seine 

Wirksamkeit, Herausforderungen und mögliche Verbesserungen untersucht. Konkret wurde die 

operative Landschaft des FEWS anhand von ausführlichen Interviews mit zentralen staatlichen 

und nichtstaatlichen Akteuren analysiert. Im Zuge der  Untersuchung wurde das 

myDEWETRA-VOLTALARM-Systems betrachtet, welches Hochwasserwarnungen über 

soziale Medien, Radio und Textnachrichten verbreitet. Die Warnungen dieses Systems waren 

jedoch nicht flächendeckend für alle Betroffene zugänglich. Weitere zentrale Schwächen des 

FEWS im Becken betrafen die begrenzte Einbindung der Gemeinden, finanzielle 

Einschränkungen, veraltete Technologien, unzureichende Echtzeitdaten, Lücken in der 

Überwachungsinfrastruktur sowie eine schwache institutionelle Koordination. Die Studie 

kommt zu dem Schluss, dass das derzeitige FEWS-Rahmenwerk im White-Volta-Becken für 

ein proaktives Hochwasserrisikomanagement unzureichend ist. 

Zur Ermittlung alternativer Datenquellen für den Aufbau eines robusten und zuverlässigen 

FEWS im White-Volta-Becken bewertete die Studie in einem zweiten Schritt die Genauigkeit 

von Satelliten- und Reanalysedaten im Vergleich zu bodengestützten Daten in Nordghana. 

Diese Daten gewinnen an Bedeutung als alternative Prädiktoren angesichts des Mangels an 

bodengestützten Daten für Abflussvorhersagen zur Steuerung und Minderung von 

Überschwemmungen im White-Volta-Becken.  Niederschlags- und  

Durchschnittstemperaturdaten von 1998 bis 2019 sowie Bodenfeuchtigkeitsdaten von 2019 bis 

2022 wurden von GMet, ISMN (bodenbasiert), CHIRPS, PERSIANN-CDR, ERA5, ARC2, 

MERRA-2, TRMM und CFSR (Satelliten- und Reanalysequellen) erhoben. Die Genauigkeit 

dieser Datensätze wurde mithilfe strenger statistischer Maße – Standardabweichung, mittlerer 

absoluter Fehler (MAE) und mittlerer Bias-Fehler (MBE) – umfassend bewertet. Die 

Ergebnisse zeigten, dass CHIRPS und PERSIANN-CDR eine überlegene Genauigkeit bei der 



 

Niederschlagssimulation aufwiesen, wobei CHIRPS eine besonders konsistente 

Übereinstimmung mit den beobachteten Daten zeigte. Bei der Vorhersage der 

Durchschnittstemperatur übertraf ERA5 sowohl MERRA-2 als auch CFSR. In Bezug auf 

Bodenfeuchtigkeit lieferten sowohl ERA5 als auch CFSR zufriedenstellende Simulationen. Die 

Ergebnisse sprechen daher für CHIRPS (für Niederschlagsdaten), ERA5 (für Temperaturdaten) 

und eine Kombination aus CFSR/ERA5 (für Bodenfeuchtedaten) als zuverlässige primäre 

Datenquellen für Abflussmodellierung, Dürrenanalyse, Hochwasservorhersage und 

Wasserressourcenmanagement im Kontext Nordghanas.  

Zur Entwicklung eines operativen FEWS im White-Volta-Becken, das genaue 

Abflussinformationen für das Hochwassermanagement bereitstellt, setzte die Studie erstmals 

maschinelle Lernalgorithmen ein, insbesondere Long Short-Term Memory (LSTM) und 

Random Forest (RF), die mit Niederschlags-, Temperatur, Bodenfeuchte und 

Evapotranspirationsdaten trainiert wurden, um den Abfluss in Intervallen von 1, 5 und 10 Tagen 

im Becken vorherzusagen. Darüber hinaus wurden in der Studie die Modelle (RF und LSTM) 

eingesetzt, um den zukünftigen Abfluss mithilfe von Daten aus dem CMIP6 SSP5-8.5-Szenario 

zu prognostizieren. Die Modellleistung wurde anhand von MAE, MBE und der Kling-Gupta-

Effizienz bewertet. Die Ergebnisse zeigten hohe Variabilitäten im Abfluss, wobei beide 

Modelle diese gut abbildeten. LSTM erwies sich jedoch als überlegen bei der Erfassung von 

Spitzenabflüssen, während RF stabile Langzeitvorhersagen über einen Zeitraum bis zu 10 

Tagen lieferte. Auch die Zukunftsprognosen zeigten starke Schwankungen im Abfluss und 

deuten auf ein erhöhtes Risiko von Überschwemmungen und Dürren im White-Volta-Becken 

hin.  Aufgrund dessen das die Modelle in der Lage sind, zeitliche Muster (saisonale Trends und 

Spitzen) zuverlässig zu erfassen, sind sie gut geeignet, präzise und zuverlässige 

Abflussvorhersagen bereitzustellen, die ein effektives Hochwasserrisikomanagement und eine 

vorausschauende Schadensminderung im Becken unterstützen. Die Modelle lassen sich auch 

auf ähnliche, nicht überwachte Einzugsgebiete übertragen und bieten einen replizierbaren und 

nachhaltigen Rahmen für frühzeitige Hochwasserwarnsysteme. 
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CHAPTER 1 

1 Introduction 

1.1 Study Background and Problem Statement 

Over the past 100 years, human activities, particularly the reliance on fossil fuels and inefficient 

use of land and energy, have driven a rise in global temperatures, now approximately 1.1°C 

above levels seen before industrialization (IPCC, 2023; Valavanidis, 2022). This temperature 

increase has led to a surge in extreme weather events, placing growing pressure on both the 

environment and human societies worldwide (IPCC, 2023). With each degree of warming, 

hazards such as heatwaves, heavy rainfall, and other extreme weather events intensify, posing 

further threats to human health and ecosystems (Seneviratne et al., 2021). Climate-related food 

and water shortages are expected to worsen as global warming continues (Wheeler & von 

Braun, 2013). The climate crisis has caused significant disruptions to human societies, with 

profound impacts on fundamental aspects of human livelihoods and social structures (IPCC, 

2023). Throughout history, floods have consistently been recognised as one of the most 

significant climate crises on record, capable of causing extensive harm to individuals through 

physical injuries as well as property damage (Smith & Smith, 2013).  

According to Asumadu-Sarkodie & Owusu (2015), global flood phenomenon has affected 65 

million people, and it is projected to increase to 132 million by 2030 and 292 million by 2080 

(Islam & Wang, 2024). Additionally, urbanisation is accelerating, leading to exposure and 

vulnerability of people and properties to floods. Between 1950 and 2011, the number of people 

living in urban areas increased almost five times, with the majority of this expansion taking 

place in less developed parts of the world (Cardona et al., 2012; United Nations Human 

Settlements Programme (UN-Habitat), 2011). On average, less developed countries are more 

vulnerable to floods, which often cause damage that heavily impacts their national GDP 

(Tanoue et al., 2016).    

In Africa, over 27,000 fatalities attributed to flooding have been recorded between 1950 and 

2019 (Tramblay et al., 2020). According to predictions about climate change, there will be 

significant reductions in the production of essential food crops due to increased drought and 

floods (Ayanlade et al., 2022). This will be particularly severe in sub-Saharan Africa, where it 

is estimated that by 2060, a total of US$26 million will be lost due to the impact of climate 

change on Arable lands (Gemeda & Sima, 2015). This decline in agricultural output will have 

a direct impact on food security and the risk of malnutrition, particularly among children 

(Ringler et al., 2010). West Africa has recently experienced an increase in floods, especially 
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along the banks of the Niger and Volta Rivers, affecting approximately 1.5 million people and 

destroying many hectares of farmland (Atubiga & Donkor, 2022).  

In Ghana, the National Disaster Management Organisation (NADMO), Ghana Hydrological 

Authority (GHA), Ghana Meteorological Agency (GMet), the Water Resources Commission 

(WRC), and Engineers assist in flood forecasting and management. They focus on developing 

early warning systems, monitoring, and forecasting, as well as assessing hazards (Organization 

for Economic Cooperation and Development (OECD), 2020). The Global Facility for Disaster 

Risk Reduction (GFDRR) and the World Bank initiated a flood hazard assessment for the 

White Volta basin to generate hazard maps, make flood predictions, and lay a foundation for 

an operational Flood Early Warning System (FEWS). This project integrated meteorological, 

river monitoring, and modelling data with defined institutional responsibilities to facilitate 

prompt evacuation decisions during flood events  

However, despite the involvement of organisations such as NADMO, GMet, GHA, WRC, 

GFDRR, and the World Bank, the impact of flooding remains a recurring issue in Northern 

Ghana, affecting many residents each year. In 2007, over 260,000 people were affected, with 

more than 35 fatalities and over 3,000 hectares of farmland submerged in the Northern part of 

the country (Ahadzie & Proverbs, 2011). In 2018, heavy rains and overflow from Burkina 

Faso’s Bagre Dam led to flooding that impacted 100,000 people, causing 34 deaths and 

destroying 196 square kilometers of farmland (Evers et al., 2024; Katsekpor et al., 2024a). In 

2021, eight lives were lost, coupled with the destruction of homes and properties (FloodList, 

2021). Moreover, in 2023, floods displaced approximately 26,000 people with significant 

damage to properties (International Federation of Red Cross and Red Crescent Societies, 2024), 

while Africanews (2024) reported a recent flood in 2024 that killed 8 people and collapsed 

major roads and bridges.   
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Figure 1.1: Floods in Nawuni, September 2023 (Source: Picture taken by Title Man, 2023).  

 

In this region, agriculture is the main source of livelihood and is highly susceptible to flood 

damage, which poses significant risks to both food security and economic stability in Ghana 

(Ntim-Amo et al., 2022). For instance, about 60% of the labour force in Kumbungu, a 

community along the White Volta basin, depends largely on agriculture as the main source of 

livelihood (Ayereka & Jaman, 2023). Nonetheless, the combined effects of climate change and 

the recurring release of water from the Bagre Dam have heightened their exposure to risk and 

intensified food insecurity. Li et al. (2022) revealed that population exposure to flood hazards 

in communities along the basin increased from 2016 to 2020. While Abubakari et al. (2019) 

and Smits et al. (2024) projected rising flood exposure during the wet season throughout the 

21st century. Given the growing intensity and frequency of these events, the implementation 

of an effective FEWS is essential to safeguard lives and property (Kuller et al., 2021). The 

United Nations has highlighted the critical role of early warning systems (EWS) through key 

frameworks such as the Paris Agreement and the Sustainable Development Goals (World 

Meteorological Organization, 2023) and further detailed in the Sendai Framework for Disaster 

Risk Reduction (Kuller et al., 2021; UNDRR, 2023b; World Meteorological Organisation, 

2023).  

Institutions, in their effort to forecast floods, face significant challenges. These challenges 

include inadequate technologies, personnel capacity, weak planning systems, ineffective EWS, 

inadequate vulnerability and hazard maps, and non-cooperation and non-compliance among 

some community members (Almoradie et al., 2020). The findings by Almoradie et al. (2020) 
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revealed that existing models for flood predictions have a coarse resolution, hindering effective 

flood management and adaptation practices. Computational power, capacity, and data 

availability hampered the attempt to run models at a higher resolution. The White Volta 

especially suffers from inadequate data and sparse gauge station locations, hindering water 

level monitoring, resource management, and flood prediction in the area (Almoradie et al., 

2020; Li et al., 2022). The lack of station data and gaps in the existing ones introduce 

uncertainty, especially when using spatial interpolation with limited data. This interpolation is 

necessary for obtaining hydrological model input, but can lead to significant errors. 

Furthermore, this uncertainty affects model calibration and validation results (Jung et al., 

2012). It has become important to find complementary methodological approaches in 

developing EWS with improvement in the lead-time and spatiotemporal resolution (Almoradie 

et al., 2020).  

Satellite and reanalysis data, such as CHIRPS, ERA5, ARC2, CFSR, PERSIANN-CDR, and 

GloFAS discharge data, can complement limited ground-based data. However, these surrogate 

data contain biases and uncertainties that must be validated against ground-based data. 

Moreover, Challenges associated with flood risk management are being aided by the 

advancement in Earth Observations (EO) with more precise, higher resolution data in real-time 

(Avalon-Cullen et al., 2023) and machine learning (ML) models (Hunt et al., 2022; Nevo et 

al., 2022). ML methods like Random Forest (RF), Artificial Neural Networks (ANN), Long 

Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN) have aided in 

making flood forecasting more promising with higher accuracy (Khairudin et al., 2022; Nevo 

et al., 2022). ML can adjust its boundary conditions with changing hydrological conditions and 

also learn from past data, predicting water levels accurately and quickly, even with scarce 

amounts of data (Huang et al., 2022). That is not to say that machine learning does not need 

data. They are as good as their training data, and their performance depends on the quantity 

and quality of the training data (Bayat & Tavakkoli, 2022). The use of ML models for flood-

related research in regions with data scarcity is often promoted compared to the physically-

based models, which require larger datasets (Mosavi et al., 2018; Nevo et al., 2022; Sellami et 

al., 2022; Yang et al., 2023).    

To improve the accuracy of streamflow forecasting, researchers have explored hybrid models 

that integrate the advantages of different approaches to offset their individual weaknesses 

(Hunt et al., 2022; Roy et al., 2023). For example, physically based hydrodynamic models, 

remote sensing technologies, and data-driven approaches such as deep learning and ML (ANN, 

CNN, ConvLSTM) have been combined in flood forecasting (Estébanez-Camarena et al., 
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2023; Kim et al., 2019; Sampurno et al., 2022). Puttinaovarat & Horkaew (2020) combined 

geospatial, meteorological, and hydrological data obtained from the Global Flood Awareness 

System (GloFAS), hourly rainfall prediction, and crowdsource (or volunteer) data for flood 

forecasting in Thailand, aided by ML. Combining machine learning, remote sensing, and global 

flood forecasting systems like GloFAS offers promising avenues for improving flood 

prediction and risk management.  However, their application in the White Volta basin remains 

underexplored, necessitating further research to develop an effective flood mitigation strategy 

for the area.  

A significant gap exists in current studies. While prior literature has delved into flood 

perception, preparedness, and impact assessments in Southern Ghana, particularly Accra and 

Kumasi (Abass, 2022; Amaglo et al., 2022; Antwi-Agyei et al., 2023; Osei et al., 2021; Poku-

Boansi et al., 2020; Yin et al., 2021), limited attention has been given to flood forecasting and 

FEWS in Northern and, specifically, the White Volta basin, suggesting potential for streamflow 

forecasting (Almoradie et al., 2020).   

To address this gap, the present study examines the effectiveness of frameworks for Flood 

Early Warning Systems (FEWS) and validates satellite and reanalysis data against ground-

based measurements. Additionally, the study simulates and forecasts streamflow at 1-, 5-, and 

10-day intervals using Random Forest (RF) and Long Short-Term Memory (LSTM) driven 

mainly by rainfall, temperature, and soil moisture. Furthermore, the study incorporates the 

Coupled Model Intercomparison Project Phase 6 (CMIP6) - Shared Socioeconomic Pathway 

SSP5-8.5 scenario to project streamflow from 2020 to 2050.  

   

1.2 Aim of the Study 

This study investigates and predicts streamflow and flood events in the White Volta basin of 

Ghana. 

 

1.3 Specific Objectives  

Specifically, the study seeks to: 

•  Evaluate the current state of the Flood Early Warning Systems (FEWS) in the White 

Volta basin.  

• Validate satellite and reanalysis products with ground-based observations in the White 

Volta basin of Ghana. 
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• Predict and evaluate streamflow using a shallow model (RF) and a deep learning model 

(LSTM) for flood mitigation and management in the White Volta basin of Ghana. 

 

1.4 Research Questions  

The research seeks to address the following questions:  

• How effective are the current FEWS in the White Volta basin?  

• What is the reliability and consistency of reanalysis and satellite data for flood 

forecasting in the White Volta basin of Ghana?  

• How does the performance of a shallow model (RF) compare to a deep learning model 

(LSTM) in forecasting streamflow in the White Volta basin of Ghana? 

 

1.5 Research Hypothesis 

Given the limited progress in climate policy implementation in Ghana, it is hypothesized that 

climate projections under the SSP5-8.5 scenario will provide a more realistic basis for assessing 

future climate impacts in Ghana. 

 

1.6 Significance of the Study/Expected Result  

By assessing the current structure of FEWS in the White Volta basin, the study draws attention 

to key strengths, weaknesses, opportunities, and threats that are important for policy 

implementation in the field of flood management.   

By validating open-source satellite and reanalysis data from ERA5, CHIRPS, MERRA-2, 

TRMM, ARC2, CSFR, and PERSIANN-CDR, this study provides reliable data sources for 

flood predictions and water management in the basin faced with limited ground data.   

By developing an ML LSTM and RF, this study improves on the current streamflow and flood 

forecasting in the basin, Northern Ghana. These models are important for more accurate and 

timely flood forecasts, leading to improved preparedness and mitigation measures by 

strengthening the capacity of early warnings. 

Lastly, this study serves as a reference for policy guidelines and frameworks as well as future 

research. Thus, it provides a practical approach to managing flood risk and can serve as a model 

for similar regions facing similar challenges. Managing flood occurrences in the basin is central 

to securing livelihood sources and addressing food insecurity.  
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1.7 Conceptual Framework 

Flood risk management is essential for ensuring the safety and sustainability of communities, 

especially in areas prone to flooding. An effective FEWS is required as extreme weather events 

become more frequent and intense. This system should adopt a holistic approach that includes 

stakeholder involvement, policy implementation, and robust streamflow/flood monitoring and 

forecasting. Stakeholders play a crucial role in developing and executing policies, monitoring 

and forecasting floods, and disseminating early warnings, which are vital for disaster risk 

reduction. For instance, local communities provide essential knowledge that aids in policy 

formulation and enhances the accuracy of flood forecasting. 

Leveraging open-source satellite and reanalysis data, as well as ML models, is critical for 

predicting water levels and monitoring potential flood risks in data-scarce regions. This enables 

authorities to implement timely and targeted measures for flood mitigation and response, which 

ultimately reduces the hazard, exposure, and vulnerability of the population. 

Streamflow forecasting is key to predicting water levels and monitoring potential flood risks. 

This allows authorities to enact timely and precise interventions. Additionally, ground-based 

monitoring stations offer crucial localised data on water levels, river flow rates, and soil 

moisture. These stations complement satellite observations and improve their accuracy in 

streamflow forecasting. Enhancing ground data collection policies and installing telemetric 

systems and radar are essential for improving flood and streamflow monitoring. Suppose the 

government fails to implement policies or enhance the existing infrastructure for ground data 

collection for developing operational models and optimising existing ones, the risk of flood 

hazard, exposure, and vulnerability is likely to increase. 
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Figure 1.2:  Conceptual framework illustrating the key components and relationships underpinning the study (Source: Author’s own construct). 
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1.8 Structure of the Thesis 

Chapter 1 outlined the flood challenges in the White Volta basin, justified the significance of 

the research, identified existing knowledge gaps, and stated both the overall aim and specific 

objectives of the study. Chapter 2 gives a broader view of the topic focusing on the state of 

floods as a disaster, flood risk management, and flood early warning system in Ghana with key 

challenges, streamflow monitoring as an early warning system, the role of physical models, 

ML (LSTM and RF), and open source satellite, reanalysis data as well as the CMIP6 data. 

Chapter 3 assessed the current state of the FEWS in the basin, along with its potential 

opportunities and challenges. This work forms the basis of the first manuscript submitted to 

the Journal of Flood Risk Management, titled ‘Flood early warning systems in the White Volta 

basin, Ghana: challenges and opportunities’, which has undergone the first revision process. 

Chapter 4 focused on validating various open-source satellite and reanalysis datasets, 

specifically rainfall, mean temperature, and soil moisture, using ground-based observations 

from locations near gauge stations in the basin. This chapter has been published in 

Meteorological Applications (Katsekpor et al., 2024a) under the title ‘Comparative analysis of 

satellite and reanalysis data with ground-based observations in Northern Ghana.’ Chapter 5 

applied ML models specifically, LSTM and RF, using the validated data from Chapter 4 to 

forecast streamflow at 1-, 5-, and 10-day intervals for flood management and mitigation. The 

models were also trained with CMIP6 SSP5-8.5 scenario data to project streamflow up to the 

2050s. This study has been published in Environmental Challenges (Katsekpor et al., 2025). 

The manuscript is titled ‘Streamflow forecasting using machine learning for flood management 

and mitigation in the White Volta basin of Ghana.’ Chapter 6 concludes the work and gives 

recommendations for further research and policy directions.  
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CHAPTER 2 

2 Literature Review 

2.1 Introduction  

This chapter provides a theoretical and conceptual review of flood risk reduction strategies, 

examines the significance of streamflow forecasting, and explores the influence of climate 

change on future streamflow patterns and associated flood risks. The study also reviewed the 

role of open-source satellite and reanalysis, as well as physical-based and data-driven machine 

learning models in streamflow predictions.   

 

2.2 Examining the Concept of Disasters 

Disasters have been an integral part of the Earth’s history (Veenema, 2018). The number of 

disasters has increased fivefold over the past 50 years, partly due to human-induced climate 

change (World Meteorological Organisation, 2023). In 2010, there were 435 natural disasters 

resulting in 329,880 deaths, over 26 million people injured or homeless, and around $143 

billion in material damages, according to the Annual Disaster Review (Guha-Sapir et al., 2016). 

Future disasters are projected to rise due to the convergence of global warming, climate change, 

sea level rise, resource depletion, and social factors (Alexander, 2006).  

The term ‘disaster’ has no universal definition. Their definition are dependent on the discipline 

using them, as a result, different terms have been used to define disaster. A disaster is 

characterised as a sudden natural or human-induced event, including technological 

malfunctions, that temporarily overwhelms the response capacity of individuals, communities, 

or ecosystems, leading to significant harm, economic loss, social disruption, injuries, or loss of 

life (Parker, 1992). The World Health Organisation and the Pan American Health Organisation 

provide the following definition for a disaster: it is an occurrence that typically happens 

suddenly and unexpectedly, leading to significant disturbances for the affected individuals and 

objects. This leads to loss of life, public health impacts, destruction of community property, 

and significant environmental damage. Such a situation disrupts normal life, causing 

misfortune, helplessness, and suffering. It also negatively impacts the socioeconomic structure 

of a region or country and may require outside assistance and immediate intervention due to 

environmental modifications (Severin & Jacobson, 2020). Similarly, the Centre for Research 

on the Epidemiology of Disasters (CRED) describes a disaster as a sudden and unforeseen 

event that results in substantial damage and human suffering, surpassing the ability of local 

systems to cope and necessitating support from national or international sources (CRED, 2020). 
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While often natural, disasters can also result from human actions (CRED, 2020). The three 

definitions share the core idea that a disaster is an unexpected event causing significant damage, 

harm to people, disruption, and suffering. They all emphasise the overwhelming nature of the 

event and the need for external assistance. The main differences lie in specific aspects and 

focus: Parker’s definition highlights the role of technological failures, the WHO and PAHO's 

definition emphasizes disturbances and impact on the environment, while CRED’s definition 

includes the possibility of disasters having human origins.  

A review of the types of disasters by Shaluf et al. (2003), has categorised them into natural, 

man-made, and hybrid. Natural disasters are devastating occurrences caused by natural 

hazards, which stem from internal, external, weather-related, and biological factors. These 

disasters are uncontrollable by humans and are often termed as ‘Act of God’ (Shaluf et al., 

2003). The International Federation of Red Cross and Red Crescent Societies (IFRC) (2014) 

classifies natural disasters into five types: geophysical (such as earthquakes, landslides, 

tsunamis, and volcanic eruptions), hydrological (including avalanches and floods), 

climatological (like droughts, extreme temperatures, wildfires, and floods), meteorological 

(such as storms, cyclones, wave surges, and floods), and biological (including disease 

outbreaks and plagues caused by insects or animals) (Shaluf et al., 2003). On the other hand, 

Man-made disasters are catastrophic events caused by human decisions. They can be either 

sudden or long-term, with sudden ones referred to as socio-technical disasters. Man-made 

disasters include environmental degradation, pollution, and accidents, such as industrial, 

technological, or transport-related incidents, often involving hazardous materials. Hybrid 

disasters fall in between natural and man-made and are often viewed as a result of both human 

choices and natural forces, sharing the common element of causing significant harm to people, 

property, and the environment. However, this thesis focuses extensively on flood occurrences 

and how they can be managed.   

 

2.3 Floods 

The Intergovernmental Panel on Climate Change Special Report (IPCC SREX) report cited in 

Kundzewicz et al. (2014) defines a flood as ‘the overflowing of the normal confines of a stream 

or other body of water or the accumulation of water over areas that are not normally 

submerged’. According to Seneviratne et al. (2012), floods are caused by extreme excesses of 

precipitation or unexpected releases of excess water from storage, like dams or snow packs. 

Compared to drought, they are normally confined to small areas. Types of floods include river 
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(fluvial/riverine) floods, flash floods, urban floods, pluvial floods, sewer floods, coastal floods, 

and glacial lake outburst floods.  

Floods are the most common and destructive natural disasters, making up almost half of all 

disasters in the last ten years, and are responsible for 6.8 million deaths in the 20th century 

(Jonkman, 2005). For example, the 2005 and 2009 floods in Cumbria and the 2007 flooding 

across England resulted in loss of lives and major economic impacts. The summer 2007 floods 

alone cost over £3.2 billion (Thorne, 2014). Between 1998 and 2017, floods accounted for 

43.4% of recorded natural disasters, with 45% of people being impacted by weather-related 

disasters (UNDRR & CRED, 2018). Developing countries suffered nearly 50% of flood-related 

fatalities during the last quarter of that century. The impact of flooding, which is projected to 

increase, can be far-reaching, causing extensive damage to infrastructure, homes, agriculture, 

and posing a significant threat to human lives and wildlife (Tanoue et al., 2016; United Nations 

Office for Disaster Risk Reduction, 2015). With the onset of global warming and climate 

change, the frequency and intensity of flood events have been projected to increase (Petrova, 

2022). This is primarily due to several interconnected factors, including rising sea levels, 

increased precipitation, changing weather patterns, urbanisation, and storm surges (Ali et al., 

2020).  

According to Rentschler et al. (2022), many developing nations in Africa, Asia, and Latin 

America experience frequent flooding. As indicated by Douglas (2017) and Rentschler et al. 

(2022) Africa, particularly sub-Saharan Africa, is highly susceptible to floods, a situation 

usually triggered by a combination of erratic rainfall patterns and inadequate drainage 

infrastructure, which increases the region’s vulnerability to these disasters. The UNDRR’s data 

reveals that in the last two decades, floods accounted for 43% of all reported natural disasters 

in Africa, impacting the lives and livelihoods of millions of people (UNDRR, 2023a). 

Agriculture, which is a cornerstone of many developing economies, is usually affected as 

flooding destroys crops and farmlands, leading to food scarcity and economic instability 

(Armah et al., 2010; Atanga & Tankpa, 2021; UNDRR, 2023a). The Food and Agriculture 

Organisation (FAO) highlights that flood events in Africa cause approximately $11 billion in 

damage to crops annually (United Nations Economic Commission for Africa & Food and 

Agriculture Organization of the United Nations, 2018). Furthermore, floods often compromise 

the safety of drinking water sources and sanitation facilities, thereby facilitating the spread of 

waterborne diseases such as cholera (Ntajal et al., 2022).  

Ghana, situated in West Africa, also grapples with a significant flood risk, predominantly 

during the rainy season. Aside from epidemics, flood is the second highest natural disaster, 



13 
 

causing devastation in the country (Ansah et al., 2020). The capital city, Accra, has been 

especially vulnerable to annual flooding events over the years (Okyere et al., 2013).  Amoako 

& Frimpong Boamah (2015) explain that the city’s topography, coupled with inadequate 

drainage systems and unplanned urbanisation, has contributed significantly to the recurrent 

flooding events experienced in the nation’s capital. Riverine flooding is another common cause 

of floods, affecting especially the White Volta basin with annual occurrences. These floods are 

a result of torrential rainfall and the release of the Bagre dam, causing the displacement of 

people and large hectares of agricultural land. Intense rainfall in 2018, with the Bagre Dam 

spillage in Burkina Faso, affected 100,000 individuals, resulting in 34 fatalities and the 

destruction of 196 𝑘𝑚2 of agricultural land in the basin (Armah et al., 2010; Atanga & Tankpa, 

2021; Katsekpor et al., 2024a). In 2021, floods in the Upper East of Ghana killed 5 people and 

destroyed homes, roads, and bridges (FloodList, 2021). In 2024, floods killed two people and 

caused further damage to roads and bridges (Africanews, 2024). The PARADeS project 

identified Accra, Kumasi, and the White Volta basin to be the most critical (highly vulnerable) 

areas affected by floods (Almoradie et al., 2020). Floods in Ghana also have environmental 

repercussions, affecting ecosystems and water resources, leading to the contamination of water 

bodies and their attendant long-term risks to the health of the population (Ntajal et al., 2022). 

 

2.3.1 Flood Risk Management 

Understanding the relationship between hazards, flood disasters, risk, vulnerability, exposure, 

and resiliency is essential for flood disaster management (UNISDR, 2017). A hazard is a 

potential human or natural threat that can cause harm (Schneiderbauer & Ehrlich, 2004; 

UNISDR, 2017). A disaster occurs when a hazard materialises. Risk is the likelihood of a 

hazardous event and its impact, influenced by the hazard's probability, vulnerability of exposed 

elements, and their capacity to cope (Peduzzi et al., 2009; Schneiderbauer & Ehrlich, 2004). 

Vulnerability is the susceptibility of a community to harm, while exposure is the presence of 

people or assets in hazard-prone areas (Schneiderbauer & Ehrlich, 2004). Exposure alone does 

not equate to risk; vulnerability must also be present. Resilience is the ability to recover from 

difficulties, reducing damage and speeding recovery (Woods, 2015). In summary, hazards 

trigger disasters and risks, but vulnerability, resilience, and adaptation measures shape the 

extent of losses. 
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Figure 2.1: Relationship between risk, hazard, exposure, and vulnerability (Sayers et al., 2013).  

 

Managing flood risks efficiently maximizes benefits with limited resources. Flood risk 

management is a comprehensive, practical method combining various strategies to reduce flood 

risks by addressing community exposure and vulnerability (Sayers et al., 2013). This approach 

encompasses prevention, emergency preparedness, response, and recovery, aiming to minimise 

flood impacts rather than eliminate them. As climate change increases the frequency and 

severity of extreme weather events, effective flood risk management becomes increasingly 

critical (Sayers et al., 2013). The general approach to managing floods includes structural and 

non-structural measures (Sayers et al., 2013; Wang et al., 2022). Structural measures involve 

constructing physical infrastructures like levees, floodwalls, reservoirs, and stormwater 

systems to alter the natural environment and manage water flow, thus reducing flood risks 

(Sayers et al., 2013). However, these measures can be costly and may have negative 

environmental impacts, such as increased erosion and decreased ecological health (Amoateng 

et al., 2018). Non-structural measures focus on policies, regulations, and planning to reduce 

vulnerabilities and enhance resilience. These measures include land-use planning, floodplain 

management, early warning systems, emergency preparedness, and community engagement 

(Wang et al., 2020). They aim to raise awareness, provide timely alerts, and involve 

communities in decision-making, fostering a culture of resilience and sustainable development. 

An integrated approach combining both structural and non-structural measures, such as early 

warning systems and proper land-use planning, is essential for effective flood risk management 

(Chan et al., 2020). This holistic method enhances adaptive capacity, preserves natural 
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floodplains, and promotes ecological integrity while empowering communities to better handle 

flood risks. 

 

2.3.2 Flood Management in Ghana, Stakeholder Involvement, and Challenges  

As a result of climate change, Ghana is expected to experience more frequent and severe flood 

events, calling for urgent, sustainable flood risk management (FRM) strategies with full 

participation from community members, government institutions, and other stakeholders. One 

of the approaches of sustainable FRM is actively developing systems to communicate and 

forecast floods to communities. If effectively communicated and comprehended, FEWS can 

enhance the accuracy of contingency planning and evacuation, thus safeguarding people and 

potentially valuable economic assets from harm.  

NADMO, GHA, WRC, and GMet are the primary entities developing FEWS. GHA plays a key 

role in monitoring rivers and other water levels, and WRC acts as a coordinating agency in 

managing water bodies, including transboundary ones (Amoako & Frimpong Boamah, 2015). 

NADMO’s responsibilities include managing disasters like floods by coordinating government 

and non-governmental resources and building community capacity to respond to this while 

improving livelihoods through social mobilisation, job creation, and poverty reduction 

initiatives (UNDP & NADMO, 2012). GMet is tasked with monitoring meteorological and 

climate conditions and issuing forecasts of rainfall and storms (IFRC, 2023). Together, both 

GMet and GHA issue early warnings on floods, which are then communicated to NADMO, 

who are closer to the community members, especially during the flood event (UNDP & 

NADMO, 2012).  

The Ghana government has actively implemented the National Water Policy, which advocates 

for measures such as community consultation in implementing mitigation strategies in the form 

of early flood warnings and enforcement of buffer zone laws to prevent settlement near river 

banks (Almoradie et al., 2020). Another significant strategy taken is the implementation of the 

Blue Agenda, which targets flooding and associated threats through initiatives like enforcement 

of building regulations and public education (Danso & Addo, 2017). Aside from these 

Governmental institutions, there are also non-profit organisations like STAR-Ghana that 

collaborate with NADMO. They provide sensitisation programs to communities within the 

White Volta basin, namely Sugu Tampia in the  Kumbungu District, Nawuni in the Savelugu 

District,  Chama Janga in West Mamprusi, and  Kubugu-Yagaba in the Mampurugu Moaduri 

District. Sensitisation programs include identifying risk factors of floods in their communities 

and how they can be managed to reduce the impact. Generally, the foundation strengthens flood 
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risk management structures at the local and regional levels by serving as a middle person 

between the communities and the philanthropies, mobilising local resources, and enhancing 

EWS, among others.  

Despite these interventions, findings by Almoradie et al. (2020), Amoako & Frimpong Boamah 

(2015) and Yiwo et al. (2022) shows the weak coordination between agencies and inadequate 

participation of community members in FRM. Another challenge identified in Ghana’s effort 

is that strategies for managing floods tend to be more focused on responding to and addressing 

the consequences of floods after they occur, rather than proactively preventing them from 

happening in the first place (Almoradie et al., 2020; Amoateng et al., 2018; Danso & Addo, 

2017).  

 

Policies on Flood Management in the White Volta Basin 

Although Ghana has undertaken efforts to implement several flood risk management policies 

within the White Volta basin, as outlined in Table 2.1, substantial challenges continue to hinder 

their effective implementation. For example, the White Volta Flood Hazard Assessment, which 

seeks to establish an operational FEWS with modern hydrological and meteorological systems, 

faces significant challenges, which include inadequate funds, community engagement, data 

accessibility and quality, transboundary cooperation, and technical capacity (Klutse, 2022).  

The Government of Ghana in partnership with the Ministry of Sanitation and Water Resources 

in April 2024 developed a policy that seeks to mitigate the effects of climate change and prevent 

damage caused by extreme floods and droughts on people and agriculture, facilitate intra-

institutional collaboration to address overarching climate change challenges in an integrated 

manner, build institutional capacity to manage climate change, define and implement 

adaptation and mitigation programs and measures as well as engage marginalised groups, 

especially women and youth (Ministry of Sanitation and Water Resources, 2024). The 

Government seeks to develop an operational framework for a FEWS, promote the construction 

of structures for flood protection, and promote rainwater harvesting (Ministry of Sanitation and 

Water Resources, 2024).  
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Table 2.1: Policies on water resources and flood management in the White Volta basin. 

Policies Strengths of these Policies  Challenges faced  

Volta River Development Act, 

1961 (Act 46) 

Emphasizes integrated water management in the 

Volta basin 

Collaborate actively with neighbouring countries in 

managing the transboundary Volta basin.   

The policies cover various flood risk management, 

including water resource management, riparian 

buffer protection, and climate change adaptations.   

Limited funds and logistical challenges often lead to 

differences between policy objectives and practical life 

implementation.  

Limited infrastructure, capacity training, and technical 

know-how often affect the implementation of these 

policies.  

Bureaucratic systems and officers’ lack of willingness 

to coordinate at the local and national agencies impeded 

particularly effective flood management.  

The increasing threat of climate change and weather 

variability poses challenges in accurately predicting 

extreme events.  

Community/ Public engagement and awareness. 

Data accessibility and quality. 

Making flood management a key priority. 

National Water Policy (2007) 

National Riparian Buffer Zone 

Policy (2011) 

National Integrated Water 

Resources Management Plan 

(2012) 

National Climate Change Policy 

(NCCP) 

Master Plan for Development 

and Sustainable Water 

Management (MPSDM) 

White Volta Flood Hazard 

Assessment 

ECOWAS Flood Management 

Plan and Strategies 

Adapted from Klutse (2022). 
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2.4 Flood Early Warning System (FEWS)  

Providing an effective Early Warning System (EWS) is key to saving lives and properties and 

consequently reducing flood impact, especially on the poorest in society. For instance, nations 

with limited EWS experience six times higher disaster-related mortality rates than nations with 

advanced EWS (UNISDR &WMO, 2023). According to UNISDR (2017), an EWS is a 

coordinated framework that integrates hazard monitoring, forecasting, risk evaluation, 

communication, and preparedness to support timely actions that reduce disaster risk. Similarly, 

WMO (2023) views FEWS as interconnected structures that provide rainfall forecasts, operate 

hydrometric networks, run real-time flood modelling software, and issue early flood alerts. 

From the two definitions above, it is important to note that FEWS  is broad, which includes 

forecasting and monitoring floods, risk assessment, communicating hazards to the public, 

ensuring an adequate response to floods, and conducting evaluations after flood events. 

Evidence further indicates that countries with comprehensive multi-hazard early warning 

systems experience lower mortality rates compared to those with minimal or no such systems 

(WMO, 2023). Although the importance of EWS for climate adaptation is widely 

acknowledged, less than half of the least developed countries and only about one-third of small 

island developing states report having such systems in place. To address this, the UN has 

launched the ‘Early Warning for All’ Initiative, aiming to ensure that EWS protects everyone 

within five years. Countries in West Africa including Ghana, Nigeria, Gambia Libera, Togo, 

Niger, and others recently implemented early warning for all (WMO, 2023). In recent times, 

Global Flood Awareness System (GloFAS), the Global Flood Detection System (GFDS), the 

Global Forecast System (GFS), the African Flood Forecasting System (AFFS), and others have 

provided weather forecasts that facilitate the FEWS in Africa. For instance, A study conducted 

in Africa revealed that the African Flood Forecasting System (AFFS) accurately identified 

approximately 70% of reported flood events (Thiemig et al., 2015). The system was particularly 

effective in forecasting prolonged riverine floods lasting over a week and impacting areas larger 

than 10,000 square kilometers (Fofana et al., 2023; Thiemig et al., 2015). In West Africa, 

particularly Ghana, some active FEWS include FANFAR and GloFAS embedded in 

myDEWETRA-VOLTALARM. FANFAR provides reliable and timely flood forecasts and 

alerts through web visualisations, SMS, email, and APIs. It uses an open-source hydrological 

model in a cloud-based Information Communication Technology (ICT) environment to 

maintain robustness despite frequent power and internet outages in West Africa (Lienert et al., 

2022). The myDEWETRA -VOLTALARM FEWS brings together different data from local, 

national, and international sources to monitor and predict real-time floods and droughts 
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(Reggiani et al., 2022). This platform is shared among six countries, which include Togo, Cote 

d'Ivoire, Burkina Faso, Benin, Mali, and Ghana, who forms part of the Volta River basin. For 

instance, Ghana forecasters can see Burkina Faso’s (upstream) situation, provide warnings, and 

take necessary preparedness measures. Key limitations of FEWS include delays in data 

transmission and frequently inaccurate information, which are mainly due to inadequate tools 

to collect data (Reggiani et al., 2022).  

 

2.4.1 Streamflow Monitoring and Forecasting   

Streamflow refers to the volume of water flowing through a channel per unit of time, and it 

exhibits temporal and spatial variability (Wiche & Holmes, 2016). While excess streamflow is 

essential for the ecosystem, it may pose a flood hazard that threatens settlements around it. 

Understanding the amount of streamflow and how it varies over time and space is essential for 

hydrology, flood forecasting, emergency response, and areas such as water resource planning 

and environmental protection.  

 

2.4.2 History of Streamflow Forecasting  

Streamflow forecasting is a very important aspect of river flood management. It involves 

predicting the flow of water in rivers and streams, allowing authorities and communities to 

make informed decisions and take preventive measures in the face of potential flood events 

(Yaseen et al., 2015). Historically, one of the first attempts to forecast streamflow can be 

attributed to the work of Mulvaney (1851), which comprised a linear regression relationship 

between catchment rain and streamflow. He laid the foundation for the concept of hydrograph 

and estimating runoff. Likewise, the work of Imbeaux (1892), cited in Hunt et al. (2022), was 

among the first attempts to quantitatively predict a flood hydrograph adopting a semi-

distributed model of snowmelt and runoff generation in France. His methodology played a key 

role in the field of Hydrology and flood prediction. Ross (1921), as referenced in Hunt et al. 

(2022), advanced this work in the United States by integrating Mulvaney's (1851) simple 

rational method for estimating peak flow. In addition, the Muskingum-Cunge method 

developed by Albert R. Robinson and Ven Te Chow significantly improved the accuracy of 

flood prediction and river flow routing (Moglen, 2015). The work of Horton (1933) also 

contributed to physics-based streamflow models with his insight into how soil properties and 

infiltration capacity affect runoff generation (Beven, 2004). His work laid the foundation for 

understanding how land surface characteristics and rainfall patterns influence runoff in 

watersheds, which is fundamental in hydrology and the study of water resources management. 
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Additionally, Edward A. Thomas pioneered the use of physics-based models and computer 

simulations to predict streamflow. His work made a significant contribution to the development 

of physically based models, which are now widely used for flood forecasting and water 

resource management. In recent years, data-driven models like the application of ML 

algorithms have gained much attention in streamflow forecasting due to the drawbacks of the 

physical-based models (Mosavi et al., 2018).  

 

2.4.3 Streamflow Forecasting in Ghana 

Ghana is endowed with many streams and rivers (White Volta, Black Volta, Pra, Ayensu, Densu 

Rivers, among others), making riverine flooding one of the most common types of floods 

experienced in the country (Mensah & Ahadzie, 2020). Streamflow forecasting is a crucial tool 

in river flood management, providing communities with the knowledge and time to prepare for 

and respond to flooding events (Kankam-Yeboah et al., 2013). Its historical evolution, range of 

forecasting approaches, and importance in infrastructure planning and disaster response make 

it a pivotal component in flood-prone regions globally, particularly in developing nations like 

Ghana and across Africa (Gaisie & Cobbinah, 2023).  

Streamflow forecasting in Ghana has become increasingly important due to the recurring threat 

of riverine floods, particularly in the White Volta basin during the rainy season and spillage of 

the dams upstream. As a result, the government and relevant agencies like the Water Resource 

Commission (WRC) have been working to enhance the country's streamflow forecasting 

capabilities by investing in early warning systems (Kankam-Yeboah et al., 2013). The Ghana 

Meteorological Agency (GMet), being primarily responsible for monitoring and forecasting 

weather-related events in the country, often collaborates with the Ghana Hydrological 

Authority (GHA) and NADMO to provide timely flood warnings (Agyekum et al., 2023). 

GMet utilises data from rain gauges, river gauges, and weather radar strategically placed in 

various parts of the country to track rainfall patterns and river levels (IFRC, 2023). According 

to IFRC (2023), Ghana is making significant efforts to develop and implement early warning 

systems for floods, particularly in high-risk areas. These early warning systems typically 

involve the collection of real-time data on rainfall, river levels, and weather conditions, which 

is used to make forecasts, after which alerts and warnings are issued to the general public and 

relevant authorities based on these forecasts (IFRC, 2023). 
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Challenges  

GMet and GHA, in their effort to make forecasts, face limited equipment and technical 

capacity. These institutions lack the necessary equipment and technical capacity to monitor the 

weather, collect hydrometeorological data, calibrate models, and provide early warnings with 

adequate lead time, which is crucial for preparing for extreme weather events (Almoradie et 

al., 2020; UNDP & NADMO, 2012). Gauge stations are sparsely distributed with inadequate 

telemetric and radar instruments. The second challenge has to do with inadequate lead time. 

Effective flood forecasting and early warning systems require the ability to predict extreme 

weather events with sufficient lead time. Currently, GMet cannot offer this, limiting the time 

available for preparation and response (Almoradie et al., 2020; UNDP & NADMO, 2012).  

 

2.4.4 Models for Streamflow Forecasting 

Streamflow forecasting plays a pivotal role in enhancing preparedness and reducing the adverse 

effects of flooding by allowing authorities to continually monitor water levels. Furthermore, 

precise streamflow forecasting is crucial not only for effective water resource management but 

also for informed environmental planning. Models for streamflow forecasting are categorised 

into physical-based, conceptual, and black-box/data-driven models (Abba et al., 2020). 

However, in recent years, hydrological models have generally been classified into process-

based (physical) and data-driven models.  

 

Physics-based model 

Physical-based models are commonly used in predicting hydrological events like 

rainfall/runoff, storms, floods, shallow water conditions, hydraulic models of flow, etc. 

(Mosavi et al., 2018). These models are also referred to as the white box or process-based 

model. Sharma & Machiwal (2021) define these models as using differential equations to 

describe the physical laws of mass, energy, and momentum conservation, thereby giving a 

detailed description of the hydrologic system. According to Ahmadi et al. (2023), the physical-

based models provide an accurate estimate of hydrologic variables. Beven (2020) added that 

physical-based models are created from field data such as soil texture, land use, and vegetation 

cover, among others, and are based on pre-existing mathematical correlations between various 

hydrological processes. Simply put, the physical-based model is a description method of the 

hydrologic variables of the targeted basin (Khairudin et al., 2022). Examples of these models 

include Geospatial Hydrologic Modelling (HEC-GeoHMS) (Darko et al., 2021; Haile et al., 

2016), Soil and Water Assessment Tool (SWAT),  (Obuobie & Diekkrüger, 2023; Osei et al., 
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2021; Senent-Aparicio et al., 2021), MIKE (Ghosh et al., 2019), physically based distributed 

hydrological models (PBDHMs) (Chen et al., 2016), LISFLOOD (Harrigan et al., 2020), etc. 

These models are also effective in capturing the physics of the hydrological cycle, characterised 

by the basin’s response to rainfall events (Roy et al., 2023). For instance, the LISFLOOD uses 

static maps in generating discharge for the Global Flood Awareness System (GloFAS). While 

physics-based models have seen significant advancements, they are presently constrained by a 

lack of understanding of processes, insufficient data, especially regarding the subsurface, and 

inadequate grid resolution (Hunt et al., 2022). Hydrological-hydrodynamic models for flood 

forecasting suffer from coarse resolution, inadequate data in the White Volta region, and sparse 

gauge station locations (Almoradie et al. 2020). Moreover, these models fail to account for the 

random variability inherent in hydrologic systems, and linear regression models overlook the 

nonlinear behaviour of hydrologic processes (Ahmadi et al., 2023).  

  

LISVAP model 

LISVAP is a pre-processor for LISFLOOD that calculates potential evapotranspiration grids 

using the Penman-Monteith or Hargreaves equations (Burek et al., 2013). The model is 

implemented in PCRaster Environmental Modelling language with a Python interface. This 

study ran the model using Linux with installed PCRaster and Python. The model's primary 

output includes evaporation of open water bodies (e0), evaporation from bare soil (es), and 

potential evapotranspiration (et) (Burek et al., 2013). The formula of the main output of the 

LISVAP model are shown below: 

ⅇ𝑡 =
𝛥𝑅𝑛𝑎 + 𝛾𝐸𝐴

𝛥 + 𝛾
 

ⅇ𝑠 =
𝛥𝑅𝑛𝑎,𝑠 + 𝛾𝐸𝐴𝑠

𝛥 + 𝛾
 

ⅇ0 =
𝛥𝑅𝑛𝑎,𝑤 + 𝛾𝐸𝐴𝑤

𝛥 + 𝛾
 

where : 

es is potential evapotranspiration for reference crop 𝑚𝑚 𝑑𝑎𝑦−1, es is potential evaporation for 

bare soil surface 𝑚𝑚 𝑑𝑎𝑦−1, e0 is potential evaporation for open water surface 𝑚𝑚 𝑑𝑎𝑦−1, 

𝑅𝑛𝑎 is net absorbed radiation, reference crop 𝑚𝑚 𝑑𝑎𝑦−1,  𝑅𝑛𝑎,𝑠 is net absorbed radiation - bare 

soil surface 𝑚𝑚 𝑑𝑎𝑦−1, 𝑅𝑛𝑎,𝑤 is net absorbed radiation - open water surface 𝑚𝑚 𝑑𝑎𝑦−1, EA 

is evaporative demand - reference crop 𝑚𝑚 𝑑𝑎𝑦−1, 𝐸𝐴𝑠 is evaporative demand - bare soil 

surface 𝑚𝑚 𝑑𝑎𝑦−1, 𝐸𝐴𝑤 is evaporative demand - open water surface 𝑚𝑚 𝑑𝑎𝑦−1, 𝛥 is slope 



23 
 

of the saturation vapour pressure curve 𝑚𝑏𝑎𝑟 °𝐶−1, γ is Psychrometric constant 𝑚𝑏𝑎𝑟 °𝐶−1 

(Burek et al., 2013).    

 

LISFLOOD – Distributed Water Balance and Flood Simulation 

Developed in 1997 by the Joint Research Centre (JRC) of the European Commission, the 

LISFLOOD model is a semi-distributed, physically based tool used for applications including 

flood forecasting, drought analysis, and evaluating the effects of land use and climate change 

on water resources (Burek et al., 2013; Knijff et al., 2010). The model is normally used in 

simulating trans-national catchment water balance and is applied in flood forecasting (as in the 

case of GloFAS), drought and soil moisture assessment and forecasting, assessing the impact 

of land use and climate changes on water resources, assessment of water balance between water 

demand, consumption, and availability. The LISFLOOD model’s spatial resolution can vary 

between 10 meters and 5 kilometers, determined by the resolution of input data and 

computational resources available (Gai et al., 2018). It allows simulating both long-term water 

balance over several decades with user-defined time steps and individual flood events. Inputs 

required to run the LISFLOOD model are categorised into meteorological forcings and static 

maps. Meteorological forcings include information on precipitation and temperature, as well 

as reference values for evaporation from water and open water bodies, and evapotranspiration 

for each pixel derived by running the LISVAP model (Cantoni et al., 2022; Hirpa et al., 2018). 

Static maps provide information on morphological, topographic, soil, and land use properties, 

river channels, and reservoirs for each pixel of the computational domain (Cantoni et al., 2022; 

Gai et al., 2018; Hirpa et al., 2018). The primary output of LISFLOOD is river discharge, and 

it also allows users to rewrite inputs as outputs. The LISFLOOD model comprises multiple 

elements, including a two-layer soil moisture balance component, modules for simulating both 

groundwater and subsurface flow, a component that directs surface runoff to the closest river 

channel, and another that handles the routing of flow within the river network (Burek et al., 

2013; Knijff et al., 2010).   

LISFLOOD simulates processes that include snowmelt, infiltration, rainfall interception, leaf 

drainage, evaporation and water absorption by vegetation, surface runoff, preferential flow 

(bypassing the soil layer), moisture exchange between two soil layers, drainage to groundwater, 

sub-surface and groundwater flow, and river channel flow (Burek et al., 2013; Knijff et al., 

2010). The Xinanjiang model is employed to simulate the soil's infiltration capacity  (Ren-Jun, 

1992). Sub-surface storage and movement are modelled using a two-parallel linear reservoirs 

approach, where the upper zone represents rapid runoff and the lower zone represents slow 
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groundwater flow, contributing to base flow. Kinematic wave equations handle surface runoff 

and channel routing. Reservoirs are modelled as points within the channel network, with inflow 

equal to the upstream channel flow and outflow determined by various parameters (Burek et 

al., 2013; Knijff et al., 2010). 

All precipitation is considered snow when the average daily temperature drops below 1°C. A 

snow correction factor may be used to adjust for the underestimation of snowfall. Unlike rain, 

snow remains on the ground until it melts, and the rate of snowmelt can be calculated based on 

the complete surface radiation balance. Due to the data demands of radiation balance models, 

LISFLOOD uses a degree-day factor equation for snowmelt. 

 

𝑀 = 𝐶𝑀(1 + 0.01 ⋅ 𝑅𝛥𝑡)(𝑇𝑎𝑣𝑔 − 𝑇𝑚) ⋅ 𝛥𝑡 

where: 

𝑀 represents the snowmelt rate (mm), calculated using several variables: 𝐶𝑀 is the degree-day 

factor (mm/°C/day), R is the rainfall intensity (mm/day), Δt is the time interval (days), 𝑇𝑎𝑣𝑔 is 

the average daily temperature (°C), and 𝑇𝑚 is the temperature threshold above which snowmelt 

occurs (°C).      

Interception 

Rainfall interception is modelled following Aston (1979) and Merriam (1960), requiring only 

two parameters. Interception is calculated as: 

𝐼𝑛𝑡 − 𝑆𝑚𝑎𝑥[1 − ⅇ𝑥𝑝(−𝑘𝑅𝛥𝑡 ∕ 𝑆𝑚𝑎𝑥)] 

where:  

 Int (mm) is the interception per time step, 𝑆𝑚𝑎𝑥 (mm) is the maximum interception capacity, 

R is the rainfall intensity (𝑚𝑚 𝑑𝑎𝑦−1), k is the density of the vegetation. 

Furthermore, The equations show that 𝑆𝑚𝑎𝑥 is influenced by the LAI, which represents the 

vegetation density in each grid cell. The higher the LAI, the greater the maximum interception 

capacity, up to a certain point. 𝑆𝑚𝑎𝑥 is calculated using the empirical relation (von Hoyningen-

Huene 1981). 

𝑆𝑚𝑎𝑥 = {
0.935 + 0.498 ⋅ 𝐿𝐴𝐼 − 0.00575 ⋅ 𝐿𝐴𝐼2  𝑖𝑓𝐿𝐴𝐼 > 0 ⋅ 1
0                                                                      𝑖𝑓𝐿𝐴𝐼 ≤ 0 ⋅ 1

 

Where: 

where LAI is the average Leaf Area Index (𝑚2 𝑚−2) of each grid cell. K constant is given by: 

                                          k = 0.046⋅LAI 
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The interception value (Int) cannot exceed the storage capacity, defined as the difference 

between the maximum interception (𝑆𝑚𝑎𝑥) and the accumulated intercepted water (𝐼𝑛𝑡𝑐𝑢𝑚). 

Evaporation of intercepted water (𝐸𝑊𝑖𝑛𝑡) occurs at the potential evaporation rate from an open 

water surface (𝐸0). The maximum evaporation during each time step is determined by the 

proportion of vegetated area within each pixel.    

𝐸𝑊𝑚𝑎𝑥 = 𝐸0 ⋅ [1 − ⅇ𝑥𝑝(−𝑘𝑔𝑏 ⋅ 𝐿𝐴𝐼)] 𝛥𝑡 

where E0 is the potential evaporation rate (mm/day), 𝑘𝑔𝑏 is the extinction coefficient for global 

solar radiation, LAI is the Leaf Area Index, and Δt is the time step. The actual evaporation from 

the interception store is limited by the amount of water stored on the leaves and is given by the 

minimum of 𝐸𝑊𝑚𝑎𝑥 and 𝐼𝑛𝑡𝑐𝑢𝑚 (Supit et al., 1994).  

                                               𝐸𝑊𝑖𝑛𝑡 =  𝑚𝑖𝑛(𝐸𝑊𝑚𝑎𝑥 𝛥𝑡, 𝐼𝑛𝑡𝑐𝑢𝑚 ) 

Here,  𝐸𝑊𝑖𝑛𝑡 represents the evaporation from the interception store, measured in millimeters 

per time step. It is assumed that all intercepted water either evaporates or reaches the soil 

surface as leaf drainage within a day. Leaf drainage is modeled using a linear reservoir with a 

one-day time constant.  

𝐷𝑖𝑛𝑡 =
1

𝑇𝑖𝑛𝑡
⋅ 𝐼𝑛𝑡𝑐𝑢𝑚𝛥𝑡 

Where: 

 𝐷𝑖𝑛𝑡 is the amount of leaf drainage per time step (mm) and 𝑇𝑖𝑛𝑡 is the time constant for the 

interception store, set to one day. Further elaborations like the treatment of impervious areas, 

evapotranspiration,  Infiltration, preferential flow and surface runoff, Soil moisture flow, 

Subsurface flow, hillslope and channel routing are found in the works of (Burek et al., 2013; 

Knijff et al., 2010).  

 

Empirical Studies on LISFLOOD-OS and GloFAS 

The GloFAS, operated by the Copernicus Emergency Management Service, provides flood 

forecasts and early warning information to aid decision-making at various levels (Harrigan et 

al., 2020). It employs hydrological models utilising meteorological data, satellite-derived 

maps, and specific parameter settings to deliver global probabilistic flood forecasts (Alfieri et 

al., 2020; Harrigan et al., 2020; Hirpa et al., 2018). Key data sources for GloFAS include 

precipitation estimates, river delineations, soil properties, land use and cover, and digital 

elevation models, with data drawn from multiple organisations such as MERIT DEM (Multi-

Error-Removed Improved-Terrain Digital Elevation Model), FAO (Food and Agriculture 
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Organisation), CGLS (Copernicus Global Land Service), ISRIC (World Soil Information), and 

AQUASTAT (Choulga et al., 2024). GloFAS uses LISFLOOD-OS (open source) described in 

the previous paragraphs as a hydrological model to generate hourly discharge at a 24-hourly 

timestep. It adopts a data assimilation process to integrate observations from various sources 

with model outputs, enhancing the accuracy of initial conditions and subsequent flood 

forecasts. This system uses ensemble forecasting to manage the uncertainties inherent in flood 

predictions, providing a range of scenarios to help decision-makers understand potential flood 

magnitudes, timings, and extents. Additionally, GloFAS emphasizes effective communication 

of flood risks through user-friendly interfaces and interactive tools that present flood forecasts 

and hydrological information (Harrigan et al., 2020).  

The real-time land data assimilation used in GloFAS may cause biases (Harrigan et al. 2020; 

Zsoter et al., 2019). Calibrating model parameters and validating them with observed data is 

one way to enhance model performance. Cantoni et al. (2022) showed that calibrating 

LISFLOOD parameters improved simulated streamflow in ungauged basins in Tunisia, 

focusing on Xb (Xinanjiang b), PPF (power preferential bypass flow), UZTC (upper zone time 

constant), GWPV (groundwater percolation value), LZTC (lower zone time constant), CMM, 

GwLoss, and lower zone threshold (LZT) parameter tuning. Senent-Aparicio et al. (2021) 

recommended discharge data from GloFAS as a suitable option for calibrating hydrological 

models in the absence of observed streamflow data.  Similarly, GloFAS has been used in flood 

research in West Africa, Komi et al. (2017) simulated flood extent and flood inundation using 

the LISFLOOD-OS and the LISFLOOD-FP, respectively, in the Oti basin. The study's 

methodology enabled the identification and prediction of flood-prone areas that are ungauged.  
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Figure 2.2: Generating daily streamflow with the help of LISFLOOD-OS (adapted from 

Choulga et al. (2024)).  

 

Data-driven models 

Data-driven models have gained prominence in hydrological studies like flood and streamflow 

prediction due to their significant advancements in computational techniques and capacities 

over recent decades (Özdoğan-Sarıkoç & Dadaser-Celik, 2024). Data-driven model, as 

mentioned earlier, does not rely entirely on physical characteristics to simulate streamflow.  

They can be trained relatively easily without the need for deep knowledge about the physical 

processes occurring within the hydrological basin (Mosavi et al., 2018; Özdoğan-Sarıkoç & 

Dadaser-Celik, 2024). This makes them particularly important in the White Volta basin, where 

there is inadequate and incomplete ground-based data. Data-driven methods include artificial 

intelligence, machine learning (ML), computational intelligence (CI), and soft computing (SC) 

that are used as a complement or replacement to the physically based models (Solomatine et 

al., 2008) 

 

 Machine Learning (ML) 

The term ‘machine learning’ was first introduced by Arthur Samuel in 1959, who described it 

as a field that enables computers to learn without being explicitly programmed (Alzubi et al., 

2018). According to Sarker (2021), machine learning is the science of creating algorithms that 

can learn from and make predictions or decisions based on data. This allows computers to 

identify patterns, make decisions, learn, and improve from experience without explicit 

programming, using statistical techniques to enable systems to improve their performance over 
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time (Sarker, 2021). It encompasses a diverse range of algorithms and methodologies, each 

tailored for specific tasks.  

The history of ML has seen several key milestones. It can be traced back to 1950, where Alan 

Turing proposed the ‘Turing Test,’ which later gave birth to Artificial Intelligence (AI) at the 

Dartmouth Conference in 1956 (Muggleton, 2014). In 1958, the work of Frank Rosenblatt's 

‘Perceptron’ laid the foundation of ANN (Sheikh et al., 2023). ML shifted from knowledge-

driven to data-driven approaches in the 1990s. Notable achievements in this period include 

IBM’s Deep Blue defeating a World chess champion in 1997 and the coining of ‘Deep 

Learning’ in 2006 by Geoffrey Hinton. Breakthroughs like Google’s AlphaGo in 2016 marked 

the combination of ML and tree-searching techniques. Recent developments include Google's 

Lens, Facebook’s DeepFace, and advancements in distributed ML (Sheikh et al., 2023). The 

timeline illustrates the continuous evolution of ML, from foundational concepts to 

transformative applications across various domains.    

ML models can be predictive, where they perform prediction, or descriptive, gaining 

knowledge. In certain situations, they could be both (Taffese & Sistonen, 2017). ML models 

are typically categorized into supervised, unsupervised, and reinforcement learning (Akinsola, 

2017). Supervised learning relies on labelled datasets, where each input is matched with a 

known output; common techniques include linear regression, support vector machines (SVM), 

and decision trees (Akinsola, 2017). In contrast, unsupervised learning works with unlabelled 

data, enabling models to detect underlying patterns using methods such as k-means clustering 

and principal component analysis (Akinsola, 2017). Reinforcement learning involves training 

models to make sequential decisions within an environment by optimising actions based on 

feedback in the form of rewards or penalties. Algorithms like Q-learning and Deep Q Networks 

(DQNs) are widely used in this domain, especially in robotics and gaming applications. These 

models are not commonly used, unlike supervised and unsupervised learning. It is very 

important to identify the difference between supervised and unsupervised learning in this study. 

According to Taffese & Sistonen (2017), the key difference between supervised and 

unsupervised learning is whether labelled output data is available. In supervised learning, the 

model is trained with both input and corresponding output labels, allowing the model to learn 

the correlation between inputs and outputs. This learned relationship can then be applied to 

predict new cases. On the other hand, unsupervised learning aims at uncovering patterns or 

structures within the data without the use of labelled output information. Instead, it seeks to 

discover inherent relationships or similarities among input instances, often through techniques 

like clustering.  
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Random Forest (RF) 

RF is a popular ML model for classification and regression tasks. RF is an ensemble learning 

method used for classification and regression tasks (Kim & Han, 2020). This model is created 

out of multiple decision trees through techniques of bootstrapping and aggregating, often 

known as bagging, to improve predictive performance (Adnan et al., 2023; Blandini et al., 

2023). To Tyralis et al. (2019) bagging decision trees reduces the variance and generally boosts 

the performance of the final model. The algorithm also introduces some randomness during the 

construction of the individual trees, ensuring sturdiness and variety in the model (Cutler et al., 

2011). This model achieves diversity by generating multiple decision trees during training, with 

each tree built from a randomly selected subset of features (Blandini et al., 2023; Cutler et al., 

2011). For prediction, the outputs of these trees are combined, either by averaging in regression 

tasks or by majority voting in classification scenarios (Breiman, 2001, cited in Blandini et al. 

(2023)). RF finds applications in various fields like land cover classification, remote sensing, 

and flood frequency analysis (Desai & Ouarda, 2021; Park et al., 2020; Tyralis et al., 2019). 

Their robustness, accuracy, and ability to handle large datasets make them a popular choice for 

complex problems with multi-dimensional datasets (Salman et al., 2024). Tyralis et al. (2019) 

defined RF as ‘bagging of CARTs (Classification And Regression Trees) with some additional 

degree of randomisation.’ 

Features of an RF: according to Kim & Han (2020) key parameters of the RF include 

max_features for determining the maximum attributes in each node, bootstrap for data overlap, 

and n_estimators for the number of decision trees. These authors went further to identify the 

algorithm of RF to include: extracting bootstrap samples, generating decision trees by selecting 

characteristics, and repeating the process multiple times, with predictions aggregated through 

majority vote. However, one major weakness suffered by the RF is that a large number of trees 

in the model can lead to computational inefficiency (Esteve et al., 2023). 

Out-Of-Bag (OOB): When sampling data using bootstrapping, some of the data do not make it 

to the bootstrap datasets, and these are called ‘out-of-bag data’. These OOB are very key in 

estimating the generalisation error. According to Janitza & Hornung (2018), OOB plays a 

significant role in estimating the prediction error of RF, called the OOB error. This OOB error 

thus helps in assessing the accuracy of the RF model. One advantage of the OOB error is that 

it can be used in validating and tuning the hyperparameters of the RF.   

Tuning: This is one of the most important things to consider when training an RF to improve 

accuracy. The key parameters in tuning a Random Forest model include: ‘m’, the number of 

features randomly selected at each split; ‘J’, the total number of trees in the forest; and the 
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depth or size of each tree. RF shows some sensitivity to the parameter m, with defaults based 

on √M for classification and N/3 for regression. While tuning using out-of-bag error is possible, 

it introduces bias in estimating generalisation error. However, RF models typically exhibit low 

sensitivity to the value of ‘m’, reducing the need for precise tuning and helping to mitigate the 

risk of overfitting (Cutler et al., 2011). 

 

Long Short-Term Memory (LSTM)  

In theory, the hidden state in a recurrent neural network (RNN) should retain the memory of 

previous input data. However, in practice, traditional RNNs with artificial neurons as hidden 

units encounter problems with gradients that either vanish or explode during network training 

(Li et al., 2021). LSTM, on the other hand, is a type of RNN that is designed to capture long-

term dependencies in sequential data (Van Houdt et al., 2020). This approach is widely used in 

fields such as natural language processing, speech recognition, and time series analysis due to 

its ability to retain information over extended sequences, making it particularly effective for 

capturing complex temporal dependencies (Van Houdt et al., 2020). LSTM networks consist 

of memory cells that can store and access information over long sequences. By incorporating 

gating mechanisms that can regulate the flow of information, LSTM models can retain relevant 

information and discard irrelevant data (Lu & Salem, 2017).  

The original work of the standard LSTM cell concept dates back to 1997, wherein a simple 

RNN cell was improved by pioneering a memory block controlled by input and output 

multiplicative gates. The LSTM architecture features a self-connected linear component within 

its memory block, known as the ‘constant error carousel’ (CEC), which helps mitigate the 

vanishing and exploding gradient issues commonly associated with traditional RNNs 

(Staudemeyer & Morris, 2019). The LSTM cell incorporates input and output gates, each 

equipped with specific weight matrices and activation functions, which regulate the flow of 

pertinent information into and out of the cell. While a standard LSTM cell consists of an input 

layer, an output layer, and a self-connected hidden layer, the addition of a forget gate layer 

became necessary to address saturation issues and allow the cell to erase unnecessary 

information.  

An LSTM model consists of three primary gates: the forget gate, input gate, and output gate. 

Each gate utilises a sigmoid activation function (σ) to regulate the amount of information 

retained, added, or released from the cell state 𝐶𝑡. The weights of the sigmoid functions are 

adjusted via gradient descent.   
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Forget Gate 𝑓𝑡: Forget gate determines whether to accept information from the cell state 𝐶𝑡−1 

or block it (Smagulova & James, 2019). Forget gates are vital for LSTM performance as they 

enable the network to selectively remember relevant information, addressing the need to avoid 

retaining every detail from the past (Chaturvedi et al., 2024; Smagulova & James, 2019). The 

model takes the prior hidden state ℎ𝑡−1 and the current input data 𝑥𝑡 as inputs, generating a 

vector with variables between 0 to 1 through a sigmoid activation function (Aslam et al., 2021; 

Mikami, 2016; Smagulova & James, 2019). Distinctively, the forget gate network is 

programmed to be trained in a way that assigns values close to 0 for information considered 

irrelevant and close to 1 for relevant information (Mikami, 2016). These vector elements act as 

filters, permitting more information when their values approach 1.  

Input Gate: first, the input gate identifies the new data to be stored in the memory cell 

determines whether the data should be retained or not. Secondly, the tanh layer generates a 

vector of new candidate values to augment the state.  

Update cell States: the previous cell state 𝐶𝑡−1 are updated to a new cell state 𝐶𝑡 by utilising 

the input 𝑖𝑡 and forget gates 𝑓𝑡 with the new candidate cell states 𝐶𝑡̅. To update the previous 

cell state 𝐶𝑡−1, multiply the vector 𝑓𝑡, add 𝑖𝑡 ∗ 𝐶𝑡̅. The updated cell state reflects the updated 

long-term memory of the network. 

 Output: Output are normally dependent on the cell state 𝐶𝑡̅ with filter from output gate 𝑜𝑡. The 

output gate controls whether the latest cell output 𝐶𝑡̅ will be transmitted to the final state ℎ𝑡 

(SHI et al., 2015). Thus the output gate 𝑜𝑡 determines which part of cell state 𝐶𝑡̅ will be the 

output. Furthermore, the final output is generated with the help of tanh-ed ell states filtered by 

𝑜𝑡. Similarly, the sigmoid function is employed on the previous hidden state and current input 

to determine the output from the memory cell. The result is then multiplied by the tanh and 

applied to the new memory cell, ensuring values between -1 and 1 (Mikami, 2016).  

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

                                                     𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)              

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̅ 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) 

 

Empirical Review of Machine Learning (ML) in Streamflow and Flood Forecasting 

Machine learning models are important, particularly in the White Volta, because the 

computational costs and time of running them are low, and they can be used effectively in flood 
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early warning systems (FEWS) (Kilsdonk et al., 2022). Most importantly, this model can learn 

from meteorological rainfall and temperature data without the physical characteristics of 

elevation.  

LSTM is one of the widely used models in streamflow and flood forecasting (Fang et al., 2021; 

Hunt et al., 2022; Nevo et al., 2022; Ng et al., 2023). The work of Hunt et al. (2022) and Ng et 

al. (2023) show how the LSTM can handle and learn from the non-linear, complex relationships 

in data, crucial for time series like streamflow. ML models can also perform better than 

hydrological models, as mentioned by Liang et al. (2023). Recently, ML has been used to 

calibrate and optimise hydrological models. Alexander & Kumar (2024)adopted CNN in 

calibrating the Structure for Unifying Multiple Modelling Alternatives (SUMMA), Jiang et al. 

(2023) used the Multilayer Perceptrons (MLP) in calibrating the process-based Advanced 

Terrestrial Simulator (ATS) model, Zhao et al. (2023) adopted  Gaussian process regression 

(GPR), Gaussian mixture copula (GMC), RF, and XGBoost to calibrate the RAPID river 

routing model. Yang et al. (2019) uses the LSTM to improve the Global Hydrological Models 

(GHMs).  

ML models perform better when trained with more data, as shown in the findings of Nevo et 

al. (2022), where the model improved slightly after adding past precipitation data. Moreover, 

model performance in forecasting longer lead times on both a daily and monthly basis is 

influenced by the number of epochs and input data span (Cheng et al., 2020). The work of 

Cheng et al. (2020) shows that the LSTM performs better than ANN in forecasting a long lead 

time. Predictions using ML models for long lead times are less accurate in smaller basins as 

compared to larger basins (Farfán-Durán & Cea, 2024). A significant challenge identified in 

using ML models like RF and LSTM is that they are sensitive to the physical characteristics of 

terrain. For instance, the study of  Catchment characteristics, such as the steepness of slopes 

and the sand content, negatively affect RF performance in certain flow regime groups (Pham 

et al., 2021).  

Researchers have recently used the hybrid model, combining two or more models to optimise 

predictions. The study of Li et al. (2023) also showed that the Convolutional neural network 

(CNN)-LSTM performs better in mountainous basins. Fang et al. (2021) developed the local 

spatial sequential (LSS)-LSTM to capture local spatial data for flood monitoring and 

mitigation. Similarly, Ni et al. (2020) combined the wavelet transforms and the LSTM models 

to enable accuracy for a long time ahead of forecasting. Liu et al. (2020), used Empirical Mode 

Decomposition (EMD) to decompose streamflow time series to enhance LSTM’s forecasting 

ability, achieving superior performance with different time lag inputs. The study of Wu et al. 
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(2009) adopted the crisp distributed support vectors regression (CDSVR) model for forecasting 

monthly streamflow, but saw a reduction in the model’s performance as the forecast horizon 

increased.  

 

2.4.5 The Role of Satellite and Reanalysis Data in Streamflow Prediction 

To forecast streamflow or floods, in situ measurements such as temperature, rainfall, and soil 

moisture are recognised (Ling et al., 2021). These ground-based data are considered the most 

reliable data for predicting streamflow and floods because they provide direct measurements 

from the actual location of interest, enabling detailed insights into local hydrological conditions 

and dynamics (Corona et al., 2014; Ling et al., 2021). Hence, to develop EWS for flood 

monitoring in Northern Ghana, these ground-based measurements are key. However, there are 

significant challenges regarding the availability and quality of these in-situ data for regions 

such as Northern Ghana. Gauge stations are sparsely distributed, with significant areas lacking 

measurement stations (Abbam et al., 2018). Besides, available station measurements often lack 

coverage of continuous and comprehensive temporal data (Bliefernicht et al., 2022; Ling et al., 

2021; Peng & Loew, 2017). These data challenges are making flood forecasting in the area 

difficult, given that accurate streamflow and flood forecasting often rely on data from a dense 

network of gauge stations and the completeness of data (Upadhyay et al., 2022). In the absence 

of in situ data, alternative data sources like high-resolution satellite and reanalysis data emerge 

as viable options for managing streamflow and floods (Upadhyay et al., 2022). These data are 

crucial for weather forecasting and climate studies. However, regardless of its source, these 

surrogate data inherently contain uncertainties, biases, and regional variations in accuracy. 

Therefore, validation of such data with ground-based measurements is necessary to examine 

their level of accuracy in predicting streamflow and floods (Upadhyay et al., 2022; Wiwoho et 

al., 2021). Additionally, validating satellite and reanalysis data against ground-based 

measurements enhances confidence in using surrogate data for streamflow and flood 

forecasting. It also serves as an assessment tool, enabling researchers to gauge the reliability of 

datasets and identify where they fall short. Water resource managers can rely on validated 

datasets to make informed decisions and develop robust flood management strategies.  

Research conducted by Ahmed et al. (2024) in Ethiopia shows that CHIRPS data outperforms 

ERA5 in simulating rainfall, particularly in high altitudes. Similarly, the study of Mekonnen et 

al. (2023) recommended Multi-Source Weighted-Ensemble Precipitation (MSWEP), African 

Rainfall Estimation (RFE),  ARC2, and CHIRPS rainfall data for Northern, Western, Central, 

and Eastern Africa regions, respectively. A study conducted by Dembélé & Zwart (2016) 
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evaluated the performance of PERSIANN, ARC2, CHIRPS, RFE, Tropical Applications of 

Meteorology using Satellite (TAMSAT), African Rainfall Climatology and Timeseries 

(TARCAT), Tropical Rainfall Measuring Mission (TRMM) against ground-based gauges in 

Burkina Faso. The study recommended that for drought monitoring, ARC2, RFE, and TARCAT 

perform best, while for flood monitoring, PERSIANN, CHIRPS, and TRMM perform best. 

Logah et al. (2021) and Kouakou et al. (2023) also added that CHIRPS is the most reliable 

satellite in detecting rainfall and extreme rainfall indices. Aside from CHIRPS performance in 

detecting rainfall, PERSIANN-CDR, TAMSAT, CRU, TRMM, and TMPA 3B42 have also 

been recommended as a good alternative to rain gauge data ( Dembélé & Zwart, 2016; Owusu 

et al., 2019; Atiah et al., 2020; Garba et al., 2023). However, all authors admitted that the 

performance of these products varies depending on the spatial and temporal scale of analysis, 

with daily data showing weaker performance compared to longer time scales. Most of this 

research validated rainfall data, and a few have covered temperature and soil moisture. Parsons 

et al. (2022) recently validated temperature data and found the CHIRTS to be good in Northern 

Ghana. In Ghana, the study of Oduro et al. (2024) shows that the Climate Research Unit (CRU), 

Climate Prediction Center (CPC), and TerraClimate outperform ERA5 and MERRA in 

simulating surface temperature. A study in China shows that ERA5 is good at simulating soil 

moisture in northern and northwestern China (Ling et al., 2021). Similarly, the work of  Tian 

& Zhang (2023) shows ERA5 performs best in mimicking soil moisture at the root zone. To 

the best of the researcher’s knowledge, no study has validated historical soil moisture with 

ground-based measurements in the White Volta.  

 

2.4.6 Empirical Studies on GCM-CMIPs Data 

According to the Intergovernmental Panel on Climate Change (IPCC) report, climate change 

will intensify globally in the coming decades, with global temperature rise expected to reach 

or exceed 1.5°C (IPCC, 2021). This effect is expected to substantially alter rainfall and 

temperature patterns, which in turn will influence global water systems, including streams and 

rivers (Deng et al., 2024). Understanding variations in catchment streamflow under future 

climate scenarios is crucial, especially in West Africa, where warming is expected to exceed 

the global average throughout the 21st century (Dembélé et al., 2022; Todzo et al., 2020). The 

Global Climate Models (GCMs) and the Regional Climate Models (RCMs) provide projected 

data under various local and regional adaptations, which can be used to model streamflow and 

other hydrological variables until the end of 2100.  
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Global Climate Models (GCMs) developed through the World Climate Research Programme’s 

Coupled Model Intercomparison Projects, CMIP3, CMIP5, and CMIP6 are designed to 

simulate climate dynamics and adaptation responses on a global scale (Lakku & Behera, 2022). 

These models employ mathematical representations structured as ‘grid boxes’ to simulate the 

physical processes of the Earth’s climate system, encompassing the atmosphere, oceans, land 

surfaces, and cryosphere (Virgilio et al., 2022). CMIP6 data encompass a broad range of 

experimental simulations designed to improve understanding of climate variability and change 

across historical, current, and future periods (Eyring et al., 2016). It significantly improves on 

the CMIP 3 and 5 by incorporating more detailed experiments and forcings. According to Singh 

et al. (2023), using scenarios from the latest CMIP6-GCMs can reduce the uncertainty in 

streamflow prediction. These models, which show significant advancements over earlier 

versions like CMIP3-GCMs and CMIP5-GCMs in simulating historical rainfall and 

temperature, provide a more accurate forecast of future hydrological regimes in catchments 

(Adib & Harun, 2022; O’Neill et al., 2016; Siabi et al., 2023; Singh et al., 2023). CMIP6-GCMs 

are fundamental for generating global climate projections and provide insights into climate 

dynamics under different greenhouse gas concentration (GHG) scenarios (Auffhammer et al., 

2011). Different disciplines like geographers/hydrologists, sociologists, economists, and 

policymakers use GCM projections to evaluate the potential impacts of climate change on 

human systems and design adaptation practices (Auffhammer et al., 2011). One key challenge 

of the models is that they are coarse in resolution (grid cells of about 100–200 km), which 

limits their ability to capture fine-scale phenomena like local weather patterns and topographies 

(Auffhammer et al., 2011; Nguyen et al., 2022; Virgilio et al., 2022). Downscaling methods, 

such as dynamical or statistical approaches used by Regional Climate Models (RCMS), 

translate GCM outputs into higher-resolution context data. While these methods can effectively 

address local discrepancies in marginal statistics, they cannot correct large-scale inaccuracies 

like repositioning overarching patterns (e.g., the North Atlantic storm track). Kerr (2013) 

argued that using the output from GCMs and downscaling using the RCMs does not entirely 

improve data quality. Errors from the GCM can be transferred to the RCM (Dingamadji et al., 

2024; Gudmundsson et al., 2012).  

GCMs have been used in the Volta basin in West Africa to project flood and drought risk. 

Research conducted by Abubakari et al. (2019) about the influence of climate change on the 

streamflow of the White Volta basin, projected an increase in streamflow during the wet season 

by the mid-21st century using the SWAT model. The work of Todzo et al. (2020) indicates that 

the hydrological cycle is expected to intensify, resulting in an increase in droughts and floods. 
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Dembélé et al. (2022) assessed the impact of climate change on the Volta basin using bias-

corrected GCM-RCM from CORDEX-Africa and the distributed mesoscale Hydrologic Model 

(mHM) in simulating future changes in the hydrological cycle. The study consequently 

projected an increase in floods under RCP 8.5 and a risk of drought under RCP 2.6 and 4.5. 

Similarly, Smits et al. (2024) projected a 19.3% increase in flood risk by 2100. The study of 

Smits et al. (2024) relied on historical data from GMet, which are very sparsely distributed and 

present challenges for an accurate analysis. Recently, Siabi et al. (2023) used the CMIP6 in 

monitoring future climate changes. However, the study focuses on rainfall and temperature 

changes in Accra. This makes data-driven tools like the LSTM and Random Forest attractive 

for futuristic streamflow in West Africa, specifically the White Volta basin, a valuable area for 

research.   

 

SSPs - Shared Socioeconomic Pathways  

Future climate projections depend mainly on anthropogenic factors, including emissions of 

greenhouse gases, aerosols, chemical reactive gases, and land changes. The SSPs represent 

total radiative forcings, which largely stem from mixed greenhouse gases (GHG), moderated 

by radiative forcings from the troposphere aerosols (Meinshausen et al., 2020). SSP projections 

provide the GHG concentrations, with the dominant concentration being carbon dioxide for 

most of the SSP scenarios (Nazarenko et al., 2022). According to Riahi et al. (2017), the SSPs 

are future socioeconomic pathways designed for climate change research and policy analysis, 

covering a broad spectrum of challenges to mitigation and adaptation.  

The SSP1-2.6 represents low climate forcing with global warming below 2°C by 2100. This 

scenario also supports an increase in global forest cover, supporting land use studies and low 

societal vulnerability. The SSP2-4.5 is a mid-range scenario corresponding with the RCP4.5 

pathway, used widely for regional downscaling and near-term climate forecasts. It offers a 

balance of moderate land use changes and aerosol levels, ideal for studies on societal 

vulnerability and climate impacts. SSP3-7.0 represents a medium to high climate forcing, also 

focusing on higher societal vulnerability and significant land use changes, like decreased global 

forest cover. The SSP5-8.5 is the highest scenario and an update of the RCP8.5. It is assumed 

that humans are adamant about climate change and make no effort to mitigate it (Riahi et al., 

2017). The World population is postulated to grow to 8.5 billion in the 2050s, with a sharp drop 

of 7 billion by 2100. The scenario represents a radiative forcing of 8.5 W/m² by 2100. It is 

crucial for studying extreme climate outcomes and impacts. 

The SSP is further described below (Riahi et al., 2017): 
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In SSP1 (taking the green road), the world becomes conscious about climate change and adopts 

a sustainable approach, focusing on inclusive development within environmental limits, 

improving global commons management, and prioritising health and education to foster 

demographic shifts and enhance well-being, while reducing inequality and shifting 

consumption toward less material-intensive patterns. In SSP2 (middle of the road), the world 

continues on a path where social, economic, and technological trends largely follow historical 

patterns, leading to uneven development and moderate global population growth, with 

institutions making slow progress toward sustainable goals, persistent income inequality, and 

ongoing environmental degradation despite some improvements. In SSP 3 (a rocky road), there 

is a rise in security concerns, and countries tend to prioritise regional and domestic issues, 

implementing policies on security and regional self-sufficiency in energy and food. However, 

declining investment in education and technology, sluggish economic growth, resource-

intensive consumption, persistent or growing inequalities, uneven population trends, and major 

environmental degradation, driven by weak international cooperation, remain pressing issues. 

In SSP4 (a road divided), increasing disparities in human capital, economic opportunities, and 

political power exacerbate inequalities and stratification globally, creating a divide between a 

well-connected, high-tech global economy and fragmented, low-income, low-tech societies, 

leading to social unrest, uneven technological development, and a diverse but divided energy 

sector focusing on both high-carbon and low-carbon investments, with environmental policies 

targeting local issues in more affluent areas. In SSP5 (taking the highway), the world 

optimistically relies on competitive markets, innovation, and participatory societies to drive 

rapid technological advances and human capital development for sustainable growth, 

integrating global markets and heavily investing in health, education, and institutions, while 

adopting resource-intensive lifestyles and exploiting fossil fuels, leading to a booming global 

economy and a peaking then declining global population, with successful management of local 

environmental issues and confidence in handling broader social and ecological challenges, 

potentially through geo-engineering. 

 

2.5 Conclusion 

This chapter provides a comprehensive review of floods as a global disaster, focusing 

particularly on flood disasters in Ghana. It discusses how floods are managed, highlighting the 

roles of organisations, policies, and various flood early warning systems (FEWS) that have 

been established. The chapter also examines streamflow forecasting as an early warning 

strategy, exploring different models adopted, including physical models such as LISFLOOD, 
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which is used in generating GloFAS discharge, and data-driven models like RF and LSTM. 

Additionally, the chapter reviews literature on the use of satellite and reanalysis data in 

streamflow and flood forecasting, especially in regions with sparse ground-based data, Ghana. 

In light of ongoing climate change, the study further reviews literature on the potentials of 

GCMs-CMIPs data that could be adopted to simulate the responses of streamflow under the 

SSP scenarios. 
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CHAPTER 3 

3 Flood Early Warning System in the White Volta Basin, Northern Ghana: Opportunities 

and Challenges 

3.1 Introduction 

This chapter evaluates the current state of FEWS in the White Volta basin of Northern Ghana. 

It is based on a paper submitted for publication in the ‘Journal of Flood Risk Management’. 

Except for the Introduction section, which has been removed, and the conclusion, which has 

been replaced with a summary, the rest of the text remains unchanged from the submitted 

manuscript.  

The study evaluates existing frameworks for effective FEWS by drawing on case studies from 

local government agencies and community leaders. The study focuses on the variables 

monitored, communication channels used, and the roles of various stakeholders in flood 

management. It also identifies key data gaps and technological challenges. These findings 

highlight both the potential and the limitations of the current FEWS, offering practical insights 

to enhance flood preparedness and resilience in one of Ghana’s most flood-prone regions. 

Additionally, the study proposes a comprehensive framework for evaluating FEWS and 

underscores the critical role of community leaders in local flood management. Its novelty lies 

in providing context-specific evidence from a resource-limited setting, contributing to the 

global discourse by bridging the knowledge gap between developed and developing countries.  

 

3.2 Methodology 

3.2.1 Profile of the Study Area 

The research primarily focuses on Northern Ghana and the lower White Volta basin, regions 

selected due to their susceptibility to consistent flooding. The White Volta basin (shown in 

Figure 3.1), a transboundary river basin shared predominantly by Ghana and Burkina Faso, is 

situated between latitudes 8°N and 15°N and longitudes 1°E and 4°W.  The climate is marked 

by clearly defined wet and dry seasons, with the wet season occurring from April to October 

and the dry season from November to March.  Reliance on agriculture, which is predominantly 

rain-fed, makes the region particularly susceptible to the adverse effects of climatic variability 

(Taylor et al., 2006). The economic activities in these communities extend beyond agriculture 

to include fishing and shea processing, yet these too are influenced by the seasonal climate and 

the availability of water resources (Katsekpor et al., 2024b). Persistent flooding and variable 

rainfall patterns pose significant challenges to the livelihoods of the local population, 
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necessitating further research into FEWS to mitigate the impacts of climate change and enhance 

resilience in the White Volta basin (Awuni et al., 2023). 

 

Figure 3.1 Study area map with elevation (m), adapted from Katsekpor et al. (2025) and 

Katsekpor et al. (2024a).  

 

3.2.2 Research Design  

The methodology is guided by a flowchart that visually outlines the research steps (see Figure 

3.2). We employed a qualitative case study approach to investigate the effectiveness of FEWS 

and the management and monitoring of floods in the White Volta basin by stakeholders. This 

method is suited for investigating complex issues in real-world settings, especially where the 

context and subject are closely intertwined (Baxter & Jack, 2010; Creswell & Creswell, 2017). 

It allows us to explore local dynamics and stakeholder interactions, such as those between 

government agencies and community leaders, in depth. The study draws on multiple data 

sources, including semi-structured interviews and system analysis, to understand how FEWS 

functions on the ground and what challenges arise. This approach provides a rich, contextual 

understanding of how the system operates within Northern Ghana’s social, geographical, and 

institutional landscape.  
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                         Figure 3.2: Methodological flowchart 

 

3.2.3 Case Study Context 

This study adopts a single case study design focused on the FEWS operating in the White Volta 

basin, Northern Ghana. The primary system under examination is the myDEWETRA-

VOLTALARM platform, which became operational in 2020 under the Volta Flood and Drought 

Management (VFDM) project. This initiative was coordinated by the Volta Basin Authority 

(VBA), CIMA Research Foundation, and the World Meteorological Organisation (WMO), with 

funding from the Adaptation Fund (Reggiani et al., 2022). The platform represents part of a 

broader regional collaboration among national agencies from the six Volta basin countries. 

What distinguishes this FEWS is its transboundary and multi-agency governance structure, as 

well as its technical integration of multiple forecasting models. These include the Global Flood 

Awareness System (GloFAS), Global Flood Monitoring (GFM), Flood Forecasting and Alert 

System for West Africa (FANFAR), and the Soil and Water Assessment Tool (SWAT) (Alfieri 

et al., 2013; Arnold et al., 1998; Lienert et al., 2022). The system delivers 5-day impact-based 
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forecasts, colour-coded by severity level, and co-produced using both global satellite products 

and in-situ data from national agencies such as GMet and GHA (Reggiani et al., 2022). 

Unlike urban-focused early warning systems in Southern Ghana, the White Volta FEWS 

operates in a rural, under-resourced environment, marked by infrastructural deficits, limited 

communication reach, and frequent flood threats from the Bagre Dam in Burkina Faso.  

 

3.2.4 Data Collection 

This study employed a purposive sampling strategy to identify and select participants who were 

directly involved in the design, management, or implementation of FEWS in the White Volta 

basin. The aim was to capture a diverse range of institutional, technical, and community-level 

perspectives on the functionality and effectiveness of the FEWS (Patton, 1999). A total of 18 

participants were selected based on their operational roles, institutional affiliations, and 

geographic proximity to flood-prone areas. The sample included representatives from the 

National Disaster Management Organisation (NADMO) at national, regional, and district 

levels, as well as technical officers from the Ghana Meteorological Agency (GMet), Ghana 

Hydrological Authority (GHA), and the Water Resources Commission (WRC).  

Two agricultural extension officers, a traditional community leader, a district assemblyman, 

and a unit committee member were included to ensure that grassroots perspectives were 

captured alongside institutional insights. Participants were recruited through formal 

institutional contact, local government introductions, and snowball referrals, a common 

approach in qualitative research where access to key informants is facilitated through trusted 

intermediaries (Biernacki & Waldorf, 1981).  

Inclusion criteria were confirmed by verifying each participant’s professional role, 

organisational mandate, and years of experience related to flood risk or early warning system 

engagement. Details of the participants' affiliations and expertise are summarised in Tables 3.1 

and 3.2 (see Section 3.1). These data confirm that the sample reflects a well-distributed and 

experienced stakeholder group, with 12 out of 18 participants possessing more than 10 years 

of relevant experience in flood monitoring, emergency preparedness, or forecasting.  

 

3.2.5 Data Analysis 

The qualitative data collected through semi-structured interviews were analysed using thematic 

analysis (see Braun & Clarke, 2012; Castleberry & Nolen, 2018; Lochmiller, 2021; Sovacool 

et al., 2023), following the six-phase framework outlined by Braun & Clarke (2006, 2012). 

This approach was chosen due to its flexibility in identifying patterned meanings across 
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qualitative datasets. The analysis followed an inductive logic, where codes and themes were 

derived directly from the content of the data without being shaped by predefined categories or 

theoretical assumptions. Coding was focused on participants’ explicit statements, while 

remaining open to the underlying meanings that emerged through theme refinement. 

The process began with familiarisation, where all interview transcripts were read multiple times 

to ensure deep engagement with the data (Nowell et al., 2017). During the initial coding phase, 

meaningful segments of text were highlighted and labelled inductively, without reliance on pre-

existing categories. Coding was done manually using a constant comparison technique to 

ensure consistency across transcripts. Next, codes were grouped into preliminary themes based 

on conceptual similarity and recurrence across stakeholder accounts. The final stage involved 

defining and naming themes (see Ruslin et al., (2022), leading to the development of four core 

themes (see Figure 3.3 below).  

 

 

Figure 3.3: Thematic framework developed from stakeholder interviews. Source: Field Data 

(2024) 

 

3.3 Results and Discussion 

This section presents the findings of the study, based on qualitative data gathered through in-

depth interviews with stakeholders involved in the design, management, and implementation 

of FEWS in the White Volta basin. The data were analysed using reflexive thematic analysis 

(Braun & Clarke, 2006, 2012), which allowed for the identification of patterns across the 

dataset. Through an inductive and iterative coding process, four key themes emerged that 

convey stakeholder perspectives on the functionality, strengths, and limitations of the existing 
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FEWS.  A visual summary of these themes is presented in Figure 3.3 above, which highlights 

their contribution to the broader concern of reduced effectiveness and trust in FEWS among 

vulnerable communities. We begin this with a pre-theme context. 

 

3.3.1 Demography of Participants 

A total of 18 stakeholders were interviewed, representing a cross-section of institutions and 

community leaders involved in flood management within the White Volta basin. As shown in 

Table 3.1 below.   

 

Table 3.1: Affiliated organisation of respondents 

Affiliated Organisation Number of 

Respondents 

Role/Level Description 

National Disaster Management 

Organisation (NADMO) 

7 Dissemination of FEWS to the 

communities and serving as an 

Emergency response unit. 

Ghana Meteorological Agency 

(GMet) 

2 Weather forecasting and providing 

meteorological data.  

Ghana Hydrological Authority 

(GHA) 

2 River level monitoring and 

discharge, flood forecasting. 

Water Resources Commission (WRC) 2 Transboundary water management 

Agricultural Extension Officers 2 Community outreach and farmer 

support for climate change 

adaptations.  

District Unit Committee 1 Local governance 

Traditional Leader (Titled Man) 1 Community liaison (Nawuni) 

Assembly Member 1 Local government representative 

(Yapei) 

Total 18 
 

 

At the community level, local leadership was captured through interviews with a district unit 

committee member, a titled community leader (Nawuni), and an elected assembly member 

(Yapei), who serve as conduits for risk communication and public mobilisation. As detailed in 

Table 3.2, participants brought significant institutional knowledge to the study. 
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Table 3.2: Years of experience by respondents. 

Years of experience  Number of Respondents 

More than 10 years 12 

7-10 years 5 

4-6 years 1 

Total 18 
 

 

 3.3.2 Monitoring and Observing Floods  

 

Figure 3.4: Areas liable to flood identified by respondents in the White Volta basin and label 

sticks used by locals to monitor floods at Nawuni. Source: Field Data (2024).  
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Figure 3.4 highlights areas within the White Volta basin identified by respondents as flood-

prone, mainly settlements near the river. The communities include Nawuni, Daboya, Yapei, 

Pwalugu, Nungu, Yakaba, Afayili, Nabogo, Kumbungu, Sappelliga, Bazua, and Kukubila. This 

information is essential for improving FEWS and risk assessment, leading to better 

preparedness and mitigation strategies. Identifying these areas helps tailor local interventions 

to protect lives and reduce economic disruptions.  

Floods of the White Volta basin are monitored using a framework known as myDEWETRA-

VOLTALARM (Mapelli et al., 2024; Reggiani et al., 2022). The myDEWETRA-

VOLTALARM platform integrates FANFAR, GloFAS, and GFM to monitor and forecast flood 

risks across the Volta basin and provide 5-day impact-based forecasts (Mapelli et al., 2024; 

Reggiani et al., 2022). As elaborated by a GMet official, stating: 

‘We use the myDEWETRA-VOLTALARM platform to monitor floods in the Volta 

basin, particularly the White Volta. It integrates rainfall and hydrological models like 

FANFAR, GloFAS, and GFM to provide a 5-day impact-based flood forecast. Risk 

levels are identified by colour codes: green (no impact), yellow (low impact), orange 

(medium impact), and red (high impact).’ 

GloFAS (Global Flood Awareness System) provides medium-range probabilistic flood 

forecasts at the global scale; GFM (Global Flood Monitoring) delivers near-real-time flood 

extent mapping using satellite imagery; FANFAR (Flood Forecasting and Alert System for 

West Africa) supports regional forecasting through a co-designed platform tailored for West 

African needs; and SWAT (Soil and Water Assessment Tool) is used for long-term watershed 

modelling and simulating the impact of land use on hydrology (Alfieri et al., 2013; Arnold et 

al., 1998; Lienert et al., 2022) 

Aside from the myDEWETRA-VOLTALARM system, the Ghana Hydrological Authority 

(GHA) uses discharge and water level simulations to track changes over the years. These 

simulations are created with the help of Earth Observation (EO) data and validated against 

global models such as GloFAS and GFM forecasts. Tools like HEC-RAS (Hydrologic 

Engineering Center-River Analysis System), HEC-HMS (Hydrologic Modelling System), and 

SWAT are employed in this process.  

Local government representatives at the district level, extension officers, and community 

leaders, apart from the formal system (myDEWETRA-VOLTALARM), employ their methods 

for monitoring floods. This involves physically checking river levels. Physical examinations 

include placing labelled sticks in and along rivers shown in Figure 3.4, marking bridges, and 

observing water levels. As stated by a NADMO official: 
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‘We, the NADMO personnel, have placed marks on the bridges over the river in Yapei, 

a flood-prone community near Tamale. This process enables us to monitor changes in 

water levels by reading the labels. We then inform the relevant authorities and 

community leaders when the water level is rising.’   

For these local leaders and extension officers, these are some of the strategies to remain alert 

for any possible floods.   

 

 3.3.3 Theme 1: Institutional/ Stakeholder Synchronisation and Coordination 

Effective flood monitoring and early warning in the White Volta basin requires collaboration 

across multiple institutional levels. Stakeholders emphasised that synchronisation between 

national and international agencies is crucial to ensure timely forecasting, data exchange, and 

dissemination. The myDEWETRA-VOLTALARM platform integrates contributions from 

several key actors, including the Volta Basin Authority (VBA), Global Water Partnership–West 

Africa (GWP-WA), the CIMA Foundation, the World Meteorological Organization (WMO), 

and the Adaptation Fund, alongside government agencies from Benin, Burkina Faso, Côte 

d’Ivoire, Ghana, Mali, and Togo. This collaboration facilitates the exchange of critical data 

such as rainfall, water levels, and upstream dam operations before flood incidents like the 

Bagre Dam spillage. National agencies such as the Ghana Meteorological Agency (GMet) and 

the Ghana Hydrological Authority (GHA) supply vital meteorological and hydrological data 

used to localise and calibrate global forecasts. As one GMet participant explained: 

‘We at GMet collaborate with agencies such as VBA, WRC, GHA, and other countries 

covered by the Volta basin to develop the myDEWETRA-VOLTALARM platform. For 

instance, we are involved in the development and implementation stages of the 

FANFAR use on the platform. We also work closely with GHA to provide data such as 

ground rainfall, temperature, and discharge, which are integral to the flood forecasting 

models. Furthermore, we issue an impact-based bulletin on extreme rainfall and river 

floods, particularly for NADMO to inform local authorities.’ 

A GHA respondent similarly noted their role in integrating discharge data with satellite models:  

‘We are directly involved when it comes to flood issues. When the myDEWETRA-

VOLTALARM platform is being developed, we provide data on water levels and 

discharge to compare with satellite data for controls and make recommendations.’ 
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Communication Channels 

 

Figure 3.5: Channels used in issuing warnings in the White Volta basin.  

 

Clear communication is critical for tracking FEWS and delivering timely flood warnings 

(Elkhaled & Mcheick, 2019; Kuller et al., 2021). MyDEWETRA-VOLTALARM uses bulletins 

as its primary tool for issuing warnings and disseminating risk information. A typical bulletin 

reads:  

‘Moderate rainfall is expected in most parts of the Volta basin over the next 5 days, with 

40-70 mm in the Savannah, Northern, and Eastern regions, associated with low impact. 

Remaining areas expected to record below 40 mm with no impact.’ 

(GMet via X, posted at 8:13 pm on 13 June 2025: 

https://x.com/GhanaMet/status/1933603681217257498)  

These 5-day impact-based forecasts are colour-coded by risk level: green (no impact), yellow 

(low), orange (medium), and red (high). Forecasts issued during the rainy season (June-

October) are derived from a combination of global models (e.g., GloFAS) and local 

observational data from agencies such as GMet and GHA. GloFAS outputs are probabilistic, 

while local assessments tend to be deterministic or observational. GMet bulletins include daily 

rainfall estimates by region (e.g., 40–70 mm over 5 days in the Savannah and Northern 

regions), impact levels (low or none), and specific locations (e.g., Yendi, Akosombo, Sawla).  

GHA complements this by issuing statements like “no threat of inundation” when water levels 

remain below risk thresholds. These are integrated into regional impact bulletins produced with 

the VBA and disseminated as colour-coded maps. The myDEWETRA-VOLTALARM flood 

https://x.com/GhanaMet/status/1933603681217257498
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and drought bulletin is issued twice weekly (Tuesdays and Fridays). (GMet via Instagram, 25 

July 2024: https://www.instagram.com/p/C92fASiItGv/?utm_source=ig_web_copy_link) 

While bulletins are designed for national and regional awareness, actionable messages are 

issued at the district or community level, typically 48-72 hours before the expected impact. 

These are sent to key agencies, such as NADMO, via email and later shared with the public 

through WhatsApp, radio, TV, and community vans, as shown in Figure 3.5 above. Other 

channels include churches and mosques.  

Despite these efforts, barriers remain. Stakeholders reported that technical warnings are often 

not fully understood at the community level due to issues like low literacy, language diversity, 

and limited understanding of colour scales or rainfall figures. Moreover, participants revealed 

that institutional silos, unclear mandates, and uneven technical capacity limit the full potential 

of coordination. These observations support earlier research (Basher, 2006; Cools et al., 2016; 

Perera et al., 2020), which found that poor institutional cooperation often leads to the failure 

of  FEWS. Some organisations participate only at certain stages of the system lifecycle, while 

others remain underutilised or overly reliant on external support.  

In short, despite promising technical platforms and early collaboration, stakeholders 

consistently pointed to a range of interconnected challenges that limit the practical 

effectiveness of FEWS in the White Volta basin. These challenges, spanning community 

engagement, data infrastructure, and communication breakdowns, are explored further in the 

next three themes.   

 

3.3.4 Theme 2: Exclusion of Local Knowledge and Community Participation 

A key concern raised by stakeholders is the exclusion of local actors, such as traditional leaders, 

fishermen, and community representatives, from the design and decision-making processes of 

FEWS. This disconnect erodes both the cultural relevance and local legitimacy of these 

systems, reducing their effectiveness and undermining public trust. Communities in the White 

Volta basin play a vital role in environmental monitoring. Relying on traditional knowledge, 

seasonal cues, and informal techniques, they often detect early signs of flooding well before 

official alerts are issued. Observations such as changes in water colour, shifts in current, 

riverbank erosion, or unusual fishing conditions serve as critical warning signals (Khan et al., 

2018; P. J. Smith et al., 2017). Despite their value, these insights remain largely unrecognised 

within formal systems like myDEWETRA-VOLTALARM (Marchezini et al., 2017; Yankson 

et al., 2017). As a result, local communities often rely more on their observations or informal 

alerts shared between villages than on official warnings. This gap in recognition contributes to 
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a growing credibility problem for FEWS, weakening its ability to prompt timely protective 

actions. 

In practice, community members use a range of informal yet effective methods to monitor river 

behaviour. For instance, some farmers and community leaders use marked sticks to track rising 

water levels, while fishermen pay close attention to changes in current strength or water 

turbidity. These approaches are critical in areas with limited access to technological forecasting 

tools.  Though rarely documented, these locally grounded strategies complement formal 

mitigation efforts and merit inclusion in FEWS planning. The lack of integration between 

community-based knowledge and institutional systems creates a persistent gap between policy 

frameworks and real-world experiences. One GMet participant highlighted this disconnection 

and the need for local participation, stating: 

‘Local communities are cut off from the formal framework of FEWS in the White Volta 

basin. There is a need for a bottom-up approach, where community members are 

involved in developing the FEWS (respecting the culture of the people). They have the 

knowledge to identify flood risk areas and provide mitigation procedures (Knowledge 

is in their hands).’  

In addition to advocating for greater involvement of local actors in system development (Sufri 

et al., 2020), participants emphasised the importance of community education and 

preparedness. This aligns with Lumbroso (2018) who found that regular evaluations improve 

the effectiveness of warning systems, especially at the community and local levels. A NADMO 

official at the district level in Tamale explained:  

‘There is a need for community engagement, sufficient simulation exercises, and drills 

to prepare people’s minds for what will occur during floods and to understand the 

implications of not evacuating. Regular community engagement is essential to sensitise 

the people. Also, community drills are necessary to clarify the roles they play when a 

flood occurs.’ 

Alongside the issue of local exclusion, stakeholders pointed to fundamental data infrastructure 

challenges (see Figure 3.6). These include missing or outdated monitoring stations, a lack of 

real-time telemetry, and poor integration of local and satellite-derived datasets. These themes 

converge to form a complex landscape of institutional, technical, and social constraints.  
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3.3.5 Theme 3: Data and Technical Limitations 

Figure 3.6: Challenges with data in developing FEWS (source: field trip (2024)).  

 

Despite the implementation of regional forecasting platforms like myDEWETRA-

VOLTALARM, significant technical and data-related constraints undermine the effectiveness 

of FEWS in the White Volta basin (Almoradie et al., 2020). The GHA and the GMet rely heavily 

on gauge station data for hydrological and meteorological monitoring. Figure 3.6 summarises 

the key data-related challenges raised by participants. These include inadequate funding for 

data collection and maintenance, limited availability of real-time data, incomplete historical 

records, and a lack of access to satellite or remote-sensing technologies due to unstable internet 

connectivity. Outdated sensors and bureaucratic delays in procurement further reduce the 

system’s responsiveness. These findings are consistent with earlier studies on infrastructure 

and coordination failures in Ghana’s disaster response systems (Amoako et al., 2019; Cobbinah 

& Poku-Boansi, 2018; Poku-Boansi et al., 2020; Revilla-Romero et al., 2015; Smits et al., 

2024). 

One community leader in Nawuni explained the scarcity of local gauge stations: 

‘There is a limited number of gauge stations in Northern Ghana, especially in 

communities prone to floods. For instance, there are only a few gauge stations in 

Nawuni, some of which are owned by the Ghana Water Company. Communities like 

Yapei and Kumbugu are also prone to flooding; however, they do not have any gauge 

stations. Moreover, most of the flood-prone communities in the Upper East region of 

Ghana face similar challenges.’    
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A GHA official provided further details on the lack of adequate ground data, highlighting the 

financial constraints that hinder the agency’s ability to independently operate or upgrade its 

monitoring system: 

‘Current in-situ data on discharge and water levels are not adequate. We need sub-

gauges on all major water bodies. Automatic water sensors for collecting real-time data. 

We also need more staff gauges. However, we are unable to secure the necessary funds 

to obtain this equipment, and even the ones we have installed along the river have been 

stolen. What is left is very sparse.’   

This infrastructure gap leaves regional and global systems like GloFAS and WRF poorly suited 

for community-level decision-making, as they lack the granularity to capture the White Volta 

basin’s unique hydrological patterns. Although these platforms offer advanced forecasting 

capabilities, their effectiveness hinges on accurate, real-time local data, something that remains 

scarce in much of the basin. 

As a result, a critical disconnect emerges: forecasts may be technically available, but they often 

fail to match local realities or respond to the specific needs of affected communities. This 

undermines trust in the system and limits the practical application of forecasts in decision-

making. Bridging this gap requires more than technical upgrades; it demands approaches that 

are informed by the context, culture, and capacities of those most affected. 

Moreover, even when forecasts are available, a persistent challenge lies in how this information 

is communicated and interpreted by end-users (Chaves-Gonzalez et al., 2022; Reichstein et al., 

2025). One reason for this breakdown is that many forecasting systems are not designed with 

local perspectives in mind. 

Evidence from other resource-constrained regions, such as Bangladesh and Uganda, shows that 

co-developing models with local knowledge and embedding institutional feedback loops can 

significantly improve how well forecasts align with community needs, ultimately making them 

more relevant, usable, and trusted in humanitarian contexts (Coughlan de Perez et al., 2016; 

Hossain et al., 2023; Mitheu et al., 2023).    

 

 3.3.6 Theme 4: Communication Gaps and the “Last Mile” Problem 

The diversity of channels is critical in the White Volta’s rural context, where inconsistent 

mobile service and infrastructure barriers often hinder communication flow. The use of text 

messaging has proven effective in reaching remote populations quickly and reinforces the 

system’s potential to reduce disaster risk through timely alerts in other parts of the world 

(Feldman et al., 2016; Servaes, 2008; Yasmin et al., 2023). Although regional platforms like 
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myDEWETRA-VOLTALARM are designed to provide early warnings for at-risk 

communities, their effectiveness is significantly constrained by communication gaps in rural 

and under-resourced areas. Stakeholders identified several factors that disrupt the timely and 

accessible flow of information: poor internet connectivity, frequent power outages, limited 

telecommunications infrastructure, and a general lack of capacity among local actors to 

interpret impact-based bulletins. 

These barriers contribute to what is widely recognised as the “last mile” problem, where early 

warning messages fail to reach or be understood by the very communities most vulnerable to 

flood hazards (Budimir et al., 2020; Golding, 2022; Shrestha et al., 2021). Technical outputs 

from forecasting systems often rely on formats and language that are not adapted to local 

contexts, which limits their usability at the community level. This result supports Lumbroso 

(2018), Perera et al. (2020) and Shah et al. (2023), who found that warnings not tailored to 

local communities are often ineffective. A local assemblyman and community leader in Yapei 

described the consequences of these challenges: 

‘When it comes to floods, we often do not receive timely warnings, due to the poor 

internet connectivity and power outages. We usually find ourselves caught in the 

floodwaters.’  

He further noted: 

‘Language barriers also pose a significant challenge when warnings are issued. Not 

everyone understands Twi or English. Additionally, there are times when community 

members are unwilling to heed the warnings.’ 

The preceding sections have outlined four core themes that reflect the institutional, technical, 

and social challenges affecting the operational effectiveness of FEWS in the White Volta basin. 

Drawing on stakeholder experiences across government agencies, technical experts, and 

community leaders, these findings reveal a complex web of limitations as summarised in Table 

3.3 below. 
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Table 3.3: Summary of thematic findings 

Theme Summary Description 

1. Institutional/Stakeholder 

Synchronisation and Coordination 

Weak coordination among key agencies (e.g., 

NADMO, GMet, GHA) limits system 

responsiveness and integration. 

2. Exclusion of Local Knowledge 

and Community Participation 

Local actors are not meaningfully included in 

FEWS design or dissemination; traditional 

knowledge is underutilised. 

3. Data and Technical Limitations Inadequate real-time data, outdated 

equipment/gauge stations, and a lack of funding 

affect forecasting accuracy and reliability. 

4. Communication Gaps and the 

'Last Mile' Problem 

Infrastructure and literacy barriers prevent the 

timely and accessible dissemination of flood 

warnings to vulnerable communities. 

 

3.3.7 Local Adaptation Practices and Emergency Response Gaps 

Interview participants stressed that flood risk in the White Volta basin must be addressed 

through a multi-pronged strategy that goes beyond early warnings. While FEWS provides 

critical lead time, its effectiveness ultimately hinges on the ability of institutions and 

communities to act. A recurring issue raised by respondents was the lack of emergency response 

capacity, especially in hard-to-reach or riverine settlements. Several participants cited the 

absence of motorised rescue boats, life jackets, and safe evacuation shelters as a critical 

weakness that results in preventable loss of life.  

In addition to emergency logistics and mitigation policies, such as redirecting waterways or 

enforcing the National Riparian Buffer Zone Policy (2011) (Klutse, 2022), stakeholders 

identified several local adaptation strategies already in use. These include the seasonal 

relocation of crops to higher ground, informal evacuation drills led by local leaders, and 

adjusting planting schedules based on observed river behaviours. However, these bottom-up 

adaptations remain disconnected from formal FEWS processes. Strengthening this interface 

through sustained funding, decentralised governance, and the formal recognition of 

community-based knowledge would broaden preparedness outcomes and improve the overall 

resilience of the FEWS framework in Northern Ghana. 
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3.4 Summary 

The study examines the current state of FEWS in the White Volta basin of Ghana. The 

effectiveness of this system is shaped by a complex mix of prospects and challenges. The 

system’s structured framework, which integrates multiple predictive models and benefits from 

collaboration among national and international stakeholders, forms a strong foundation for its 

operation. Leveraging platforms like myDEWETRA-VOLTALARM to provide flood forecasts 

that rely on a combination of rainfall, weather, and hydrological data. These predictive 

capabilities are further enhanced by the involvement of key agencies such as NADMO, GMet, 

WRC, and GHA, whose expertise in disaster monitoring and management is invaluable. The 

system’s communication strategies, including text messaging, social media, and radio, ensure 

that warnings reach a wide audience.  

Despite these strengths, there are significant challenges that limit the full potential of FEWS. 

Inadequate funding, technological limitations, outdated equipment, bureaucratic inefficiencies, 

and a lack of willingness among agencies to coordinate result in limited availability of real-

time data, incomplete historical data, and compromised data quality, which hampers the ability 

to provide precise and localised flood forecasts. The system relies heavily on global models 

that are not fully tailored to the unique environmental and hydrological conditions of Northern 

Ghana. This dependence on global forecasting models, combined with gaps in communication 

infrastructure in rural areas, means that many communities remain vulnerable to floods, even 

when warnings are issued. There is insufficient integration of local knowledge into the formal 

framework, which weakens the relationship between the formal system and the communities it 

is designed to protect. 

The findings reinforce that improving FEWS effectiveness in the White Volta basin requires 

technical upgrades and place-specific interventions. As a transboundary and flood-prone basin 

marked by infrastructural limitations and rural dispersal, the region faces challenges distinct 

from more urbanised areas in Southern Ghana. Based on stakeholder input, we recommend: 

(1) strengthening inter-agency coordination at the regional and district levels; (2) increasing 

investment in real-time data and community-based logistics such as motorised rescue boats and 

early warning interpretation training; (3) formally incorporating local knowledge and 

adaptation strategies into the FEWS model; and (4) enhancing communication tools using local 

languages and trusted channels.  
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CHAPTER 4 

4 Comparative Analysis of Satellite and Reanalysis Data with Ground-based 

Observations in Northern Ghana 

4.1 Introduction 

Chapter four focused on validating satellite and reanalysis datasets in Northern Ghana. It is 

based on a paper that has been published in the ‘Meteorological Applications - 

https://doi.org/10.1002/met.2226’ (Katsekpor et al., 2024a). Apart from the removal of the 

Introduction section and the conclusion, which have been replaced with a summary, the rest of 

the text remains unchanged from the published work.   

The study systematically assessed the accuracy of rainfall estimates derived from CHIRPS, 

PERSIANN-CDR, ERA5, ARC2, and TRMM. In addition, mean temperature and soil moisture 

data from ERA5, CFSR, and MERRA-2 were evaluated. This represents a novel contribution 

to the literature by validating reanalysis-based soil moisture data in the context of Northern 

Ghana. An error significance framework, as proposed by Moriasi et al. (2007), was applied to 

evaluate the datasets. Performance metrics included MAE and MBE, with values falling within 

half the standard deviation of observed data considered satisfactory, in accordance with the 

criteria outlined by Yamba, (2016). This methodological approach effectively captures the 

variability and distinct error patterns across datasets, offering a robust basis for intercomparison 

and reliability assessment of satellite and reanalysis products. 

 

4.2 Data and Methodology 

4.2.1 Study Area 

The study focuses on Northern Ghana and the lower White Volta basin, selected for its gauge 

station network and the basin's geographic features. This transboundary basin, shared by Ghana 

and Burkina Faso, lies between 8 °N to 15 °N latitudes and 1 °E to 4 °W longitudes (Evers et 

al., 2024; Mensah et al., 2022). These gauge stations, located within the elevation range of 150 

m to 300 m, experience climatic conditions typical of the Sudan and Guinea Savannah zones, 

with distinct dry and wet seasons (Yamba et al., 2023). The dry season spans from November 

to March, and the wet season from April to October, with August being the wettest month, 

except for Tamale, which sometimes peaks in September (Atiah et al., 2020; Yamba et al., 

2023). The basin is divided into nine sub-catchments for hydrological study and supports a 

population reliant on rain-fed agriculture, vulnerable to weather extremes like droughts and 

https://doi.org/10.1002/met.2226
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floods (Taylor et al., 2006). The population largely depends on rain-fed farming. Figure 4.1 

shows a map of Northern Ghana and the catchment of the White Volta.  

 

Figure 4.1: Catchment map of the White Volta enabled by Shuttle Radar Topography Mission 

(SRTM) with available gauge stations.  

 

4.2.2 Datasets 

In-situ Data 

This research utilised rainfall, mean temperature, and soil moisture gauged data obtained from 

GMet (https://www.meteo.gov.gh/gmet/what-types-of-data-are-available/) and the 

International Soil Moisture Network (ISMN- https://ismn.bafg.de/en/dataviewer/# - last 

access: 20 September 2023 (Dorigo et al., 2021)). Rainfall and mean temperature cover the 

period of 1998 to 2019 while soil moisture covers from 2019 to 2022. GMet provides daily 

rainfall and mean temperature (point source) records for various locations in Ghana including 

Wa, Bawku, Tamale, Navrongo, and Walewale. Daily surface soil moisture (0-10cm) 

https://www.meteo.gov.gh/gmet/what-types-of-data-are-available/
https://ismn.bafg.de/en/dataviewer/
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measurements (point source) were also sourced from ISMN for Bimbilla, Pusiga, Bongo, 

Navrongo, and Tamale gauge stations. The locations were chosen for their proximity to 

hydrological stations, as shown in Figure 4.1. The surface layer (0-10 cm) was selected for 

validation due to its sensitivity to atmospheric conditions and quick response to rainfall and 

temperature changes. This depth is crucial for soil moisture studies and agricultural 

applications, directly affecting seed germination and root development. While soil 

temperatures can be measured up to 1 meter, the 0-10 cm range balances capture essential 

surface interactions. The study did identify certain limitations within the ISMN datasets, such 

as gaps in data and inadequate temporal resolution. To address these issues, the study employed 

a linear interpolation to fill in the missing values. This method was adopted because it is 

straightforward and works well for datasets where the values change gradually and predictably. 

After interpolation, the cleaned dataset was saved to a new Excel file, ensuring the original 

dataset remained unaltered. This is crucial for maintaining previous data and ensuring there are 

no outliers.   

 

Satellite and Reanalysis Data 

CHIRPS  

The CHIRPS dataset was developed by experts at the USGS Earth Resources Observation and 

Science (EROS) Centre and is an amalgamation of the Climate Hazards group Precipitation 

Climatology (CHPclim) and CHIRP, enriched with station data (Funk et al., 2015). This dataset 

is specifically designed to support EWS for natural disasters, including floods and droughts. 

CHIRPS offers a detailed high-resolution (0.05-degree) precipitation dataset that covers data 

from 1981 to the current period, leveraging the technological progress in satellite observations 

from agencies like the National Aeronautics and Space Administration (NASA) and the 

National Oceanic and Atmospheric Administration (NOAA). The dataset undergoes regular 

updates with a nominal three-week lag. It provides data at varying time intervals, regions, and 

formats. CHIRPS features a fine spatial resolution of 0.05 by 0.05 degrees. However, for certain 

applications like land surface modelling in Africa, the daily data's resolution is adjusted to 0.25 

by 0.25 degrees (Funk et al., 2015). Rainfall data spanning from 1998 to 2019 was retrieved 

from https://data.chc.ucsb.edu/products/CHIRPS-2.0/ (last accessed on September 28, 2023).  

PERSIANN-CDR  

The PERSIANN-CDR system is an enhanced iteration of the original PERSIANN model, 

utilizing a mix of high-frequency data from geostationary (GEO) and low Earth orbit (LEO) 

satellites (Ashouri et al., 2015; Baig et al., 2023). Initially relying on longwave infrared data 

https://data.chc.ucsb.edu/products/CHIRPS-2.0/
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from GEO satellites, the system has evolved to incorporate visible imagery during daylight. 

The model's parameters are refined through passive microwave imagery from LEO satellites. 

The PERSIANN algorithm processes GridSat-B1 infrared satellite data, and Artificial Neural 

Networks (ANN) classifiers are honed using NCEP stage IV hourly precipitation data at a 

resolution of 0.25° by 0.25° (Baig et al., 2023). The dataset is further calibrated with the GPCP 

monthly product version 2.2 and spans daily data from 1983 to nearly the present (Ashouri et 

al., 2015). The precipitation data covering 1998 to 2019 was retrieved from 

https://climatedataguide.ucar.edu/search?search_api_fulltext=persiann-cdr (last accessed on 

September 28, 2023). 

TRMM  

TRMM was Launched in 1997; the TRMM mission was a collaborative endeavour between 

NASA and Japan to capture comprehensive rainfall patterns and latent heat release in the 

tropics and subtropics, areas that previously lacked extensive monitoring (Liu et al., 2012). The 

mission's instruments, including the Visible and Infrared Scanner (VIRS), TRMM Microwave 

Imager (TMI), Precipitation Radar (PR), and Lightning Imaging Sensor (LIS), facilitated this 

(Chen et al., 2020; Liu et al., 2012). The TRMM provided rainfall data from 1998 and officially 

ended in 2019 (https://gpm.nasa.gov/missions/trmm, last accessed on September 28, 2023) 

(Caloiero et al., 2020). Subsequently, the Multi-satellite Retrievals for GPM (Global 

Precipitation Measurement-GPM (IMERG)) took over, with records starting from June 2000. 

Both datasets are synchronized monthly with GPCC rain gauges (Caloiero et al., 2020). 

ARC2  

ARC2 was developed to address the limitations of its predecessor, ARC1, particularly the 

latter's shorter data span and reprocessing inconsistencies. Drawing on recalibrated historical 

infrared imagery and daily summary gauge data, ARC2 delivers daily, gridded rainfall 

estimates with a resolution of 0.1° by 0.1°. Its spatial domain stretches from 40 °S to 40 °N in 

latitude and 20 °W to 55 °E in longitude, covering the African continent (Novella & Thiaw, 

2013). The timeline for this dataset extends from 1 January 1983 to the present and into the 

future. Daily rainfall data was available for download in netCDF4 format and retrieved from 

1998 to 2019 (https://www.icpac.net/data-center/arc2/, last accessed on September 28, 2023) 

for further processing.  

ERA5 

ERA5, developed by the European Centre for Medium-Range Weather Forecasts (ECMWF) 

through the Copernicus Climate Change Service (C3S), is the latest reanalysis dataset, 

succeeding ERA-Interim (Hersbach et al., 2019). Its primary goal is to furnish data for 

https://climatedataguide.ucar.edu/search?search_api_fulltext=persiann-cdr
https://www.icpac.net/data-center/arc2/
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understanding past, present, and projected climate conditions to aid water management and 

policy decisions (Hersbach et al., 2019). ERA5 assimilates various data, including in-situ and 

satellite observations, to refine land surface variables such as soil moisture and temperature, 

snow cover, and more (https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset 

last accessed on September 28, 2023). ERA5 covers the globe with a 0.25° latitude resolution 

and details the Earth's atmosphere across multiple levels, from the surface to upper-level layers 

(Hunt et al., 2022). It also offers uncertainty assessments for all variables, which enhances the 

data's reliability for various resolutions (Hersbach et al., 2019). Hourly rainfall, mean 

temperature and soil moisture (volumetric soil water layer 1 (0-7cm)) were retrieved from 1998 

to 2019 for the former two and 2019 to 2022 for the latter in netCDF4 format.   

MERRA-2 

MERRA-2, an upgrade from the original MERRA dataset, is generated using the Goddard 

Earth Observing System (GEOS) atmospheric assimilation system (Gelaro et al., 2017). It 

integrates modern observations like hyperspectral radiance and microwave data, along with 

GPS-Radio Occultation and NASA ozone profiles, enhancing the original dataset (Gelaro et 

al., 2017). This comprehensive reanalysis provides daily data starting from 1980 and is 

retrievable from  https://climatedataguide.ucar.edu/climate-data/nasas-merra2-reanalysis (last 

accessed on September 28, 2023). It maintains a spatial resolution comparable to its 

predecessor, around 50 km in latitude (Gelaro et al., 2017). Mean temperature from 1998 to 

2019 and soil moisture (surface soil wetness (0-5cm)) from 2019 to 2022 were used for the 

validation.    

CFSR  

The Climate Forecast System Reanalysis (CFSR) employs advanced data assimilation 

techniques that merge conventional meteorological observations with satellite data. It uses 

models that simulate the interplay between the Earth's atmosphere, oceans, land, and sea ice 

(Lu et al., 2019; Mok et al., 2018; Saha et al., 2010). The data from 1979 to 2011 is available 

in hourly intervals with a spatial resolution of approximately 0.312°. Its successor, CFS Version 

2 (CFSV2), extends the data record post-March 2011, offering a finer resolution (Mok et al., 

2018). When combined, these datasets provide a comprehensive set of variables, referred to 

collectively as CFSR. Retrieved from https://climatedataguide.ucar.edu/climate-data/climate-

forecast-system-reanalysis-cfsr (last accessed on September 28, 2023 - (Schneider et al., 

2013)). In this research, CFSR and CFSV2 are collectively called CFSR. Mean temperature 

from 1998 to 2019 and soil moisture (0-5cm)  from 2019 to 2022 were used for the validation.   

 

https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://climatedataguide.ucar.edu/climate-data/nasas-merra2-reanalysis
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
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4.2.3 Data analysis 

The study examined rainfall and mean temperature data covering the period from 1998 to 2019, 

along with soil moisture data from 2019 to 2022. These datasets were obtained for Tamale, 

Walewale, Navrongo, Wa, Bongo, Pusiga, Bimbilla and Bawku gauge stations in Northern 

Ghana. Longitudes and latitudes of the available ground-based stations (GMet and ISMN) were 

used in retrieving the satellite and reanalysis data (ERA5, PERSIANN-CDR, CHIRPS, ARC2, 

TRMM, MERRA-2, and CFSR) in grid formats. Thus a point-to-pixel method was employed 

to evaluate satellite and reanalysis data against ground-based measurements. A method adopted 

by Benítez et al., (2024); Hosseini-Moghari & Tang, (2020); Wei et al., (2018) in validating 

reanalysis data. This method involves comparing the rain gauges closest to the center of the 

grid pixel, which includes precipitation, temperature, and soil moisture data, with the 

corresponding satellite and reanalysis data (Benítez et al., 2024). The point-to-pixel approach 

allows for validating satellite and reanalysis estimates by directly comparing them to ground-

based observations, ensuring spatial and temporal alignment. The time frame chosen in 

retrieving both satellite and reanalysis data was influenced by the availability of TRMM (1998-

2019) and ISMN (2019-2022) databases. Hourly data for temperature and soil moisture were 

converted to daily values by averaging the hourly measurements for each day. These daily 

datasets were then aggregated and averaged to obtain monthly mean values. In contrast, hourly 

rainfall data were aggregated by summing the hourly totals to obtain daily rainfall amounts. 

These daily totals were then summed to calculate the monthly rainfall amounts. To assess the 

accuracy of the satellite and reanalysis data against the ground-based observations, statistical 

metrics such as Mean Absolute Error (MAE), Mean Bias Error (MBE), and Standard Deviation 

(SD) of the observed data were utilised. These metrics are instrumental in quantifying the 

accuracy and reliability of the models being evaluated. MAE measures the average size of the 

errors between predicted values (e.g., ERA5) and observed values (e.g., GMet), without 

accounting for whether the errors are positive or negative, offering a simple assessment of 

prediction accuracy. Unlike MAE, MBE accounts for the direction of the errors, indicating 

whether the model’s predictions are consistently higher or lower than the actual observations, 

giving either a negative or positive value. This can be particularly useful for identifying 

systematic biases in the model outputs. MAE values approaching 0 indicate that the average 

prediction error is minimal, suggesting that the predicted values closely match the actual 

values, on average. Similarly, an MBE value approaching 0 signifies that the average prediction 

is unbiased, indicating that the model tends neither to consistently overestimate nor 

underestimate the actual values. The study adopted the principle of error significance as 
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proposed by (Singh et al., 2005) and subsequently used by Moriasi et al. (2007) and Yamba, 

(2016). According to this principle, MAE and MBE values that are less than or equal to half of 

the standard deviation of the observed data are deemed acceptable for model performance 

assessment. This threshold is chosen because the standard deviation represents the variability 

within the observed data, and maintaining errors within half of this value ensures that the model 

predictions are well within the natural variability of the data. The formulae for the MAE, MBE, 

and SD are below:  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑂𝑖 − 𝑃𝑖|
𝑛
𝑖=1                                

𝑀𝐵𝐸 =
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)
𝑛
𝑖=1                              

𝑆𝐷 = √
1

𝑛
∑ (𝑂𝑖 − 𝑂)

2
𝑛
𝑖=1                           

𝑊ℎⅇ𝑟ⅇ 𝑛 𝑖𝑛𝑑𝑖𝑐𝑎𝑡ⅇ 𝑡ℎⅇ 𝑠𝑎𝑚𝑝𝑙ⅇ, 𝑂𝑖 𝑖𝑛𝑑𝑖𝑐𝑎𝑡ⅇ 𝑡ℎⅇ 𝑜𝑏𝑠ⅇ𝑟𝑣ⅇ𝑑,  𝑃𝑖 𝑖𝑛𝑑𝑖𝑐𝑎𝑡ⅇ 𝑡ℎⅇ 𝑝𝑟ⅇ𝑑𝑖𝑐𝑡ⅇ𝑑. 

𝑂 𝑟ⅇ𝑝𝑟ⅇ𝑠ⅇ𝑛𝑡 𝑡ℎⅇ 𝑚ⅇ𝑎𝑛 𝑜𝑏𝑠ⅇ𝑟𝑣ⅇ𝑑.  
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4.3 Result 

This section presents the findings (presented in figures) of the satellite and reanalysis data 

against half SD of the ground-based data on a daily and monthly (seasonal) basis.  

 

4.3.1 Seasonal Rainfall Distribution 

 

Figure 4.2: Monthly rainfall recorded by GMet, CHIRPS, PERSIANN-CDR, ERA5 ARC2, 

and TRMM at Wa, Tamale, Walewale, Bawku, and Navrongo gauge stations.  

 

Figure 4.2 shows the seasonal distribution of rainfall from satellite and reanalysis data 

compared to ground-based measurements from GMet for Wa, Tamale, Bawku, Walewale and 
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Navrongo. CHIRPS and PERSIANN-CDR closely match GMet data, outperforming TRMM, 

ARC2, and ERA5. TRMM, however, diverges significantly from GMet. August is typically the 

peak rainfall month across datasets, except for Tamale, which peaks around August to 

September, indicating variation in climatic zones. The data reveals CHIRPS and PERSIANN-

CDR's accuracy and the variable performance of ERA5, ARC2, and TRMM. 

 

Figure 4.3: Monthly MAE against half SD of the observed rainfall recorded at the five stations. 
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From Figure 4.3 above, the study used Mean Absolute Error (MAE) to quantify prediction 

errors. CHIRPS showed the lowest errors, such as 43.2 mm for Wa in August, outperforming 

PERSIANN-CDR, ERA5, ARC2, and TRMM, which had higher errors for the same period 

and location. CHIRPS excelled, particularly in Bawku, with a 26.3 mm error in August. Across 

all stations, CHIRPS errors remained within the observed data's Standard Deviation (SD), 

indicating its reliability for climate studies. PERSIANN-CDR also fared well, especially in 

Tamale, Walewale, and Bawku. Errors from ARC2 and ERA5 commonly exceeded the SD, 

while TRMM had the most significant errors, often surpassing half the SD from March to 

November at all five stations.  

 

Figure 4.4: Monthly MBE against half SD of the observed rainfall recorded at the five stations. 
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Figure 4.4 compares the MBE of CHIRPS, ERA5, ARC2, PERSIANN-CDR, and TRMM 

against the observed data’s half SD. Despite some over- and underestimations, CHIRPS 

remained within the observed SD, whereas PERSIANN-CDR aligned well except for 

overestimating at Wa and Navrongo during peak rainfall. CHIRPS outperformed PERSIANN-

CDR, ARC2, ERA5, and TRMM across all stations. Both ARC2 and ERA5 varied in 

estimations, with ERA5 consistently underestimating at Bawku and Navrongo. TRMM's 

significant underestimations at all stations suggest a need for more scrutiny. 

 

4.3.2 Temperature 

 

Figure 4.5: Monthly mean temperature recorded by GMet, ERA5, MERRA-2, and CFSR at 

Wa, Tamale, Walewale, Bawku, and Navrongo gauge stations. 

 

Temperature analysis is vital for climate research. Validating temperature data from ERA5, 

MERRA-2, and CFSR against GMet data across five Northern Ghana stations, Figure 4.5 
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illustrates monthly temperature trends. ERA5 mostly aligns with GMet, except for some late-

month deviations at Navrongo and Wa. MERRA-2, while underestimating mean temperatures, 

follows GMet's pattern consistently across all stations. CFSR's temperature trajectory, however, 

markedly differs from GMet's observed data. 

 

Figure 4.6: Monthly MAE against half SD of the observed mean temperature recorded at the 

five stations. 

 

Figure 4.6 shows the MAE for mean temperature from ERA5, MERRA-2, and CFSR against 

GMet's half SD. ERA5 performs best, with the lowest errors (e.g., 0.21 ⁰C for Bawku in July), 
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while MERRA-2 (0.82 ⁰C for Bawku in July) and CFSR (1.86 ⁰C for Bawku in July) are higher. 

ERA5's errors generally stay within GMet's half SD, unlike MERRA-2 and CFSR, which often 

exceed this margin, indicating their limited reliability across the studied stations and months.  

 

Figure 4.7: Monthly MBE against half SD of the observed mean temperature recorded at the 

five stations. 

 

Figure 4.7 presents the MBE for temperature predictions. MERRA-2 consistently shows cooler 

biases across all stations. CFSR's estimates are cooler in early and late months but warmer from 

April to October, except in Tamale and Wa, where it overestimates from August to October. 

ERA5's bias (0.002 ⁰C for Bawku in July) is minimal compared to MERRA-2 (-0.80 ⁰C for 

Bawku in July) and CFSR (1.86 ⁰C for Bawku in July). Despite ERA5’s cooler estimates for 

Navrongo and Wa, its overall accuracy deems it a viable choice for simulating mean 

temperature, especially when considering the broader inaccuracies of MERRA-2 and CFSR. 
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4.3.3 Soil Moisture 

 

Figure 4.8: Daily soil moisture recorded by ISMN, ERA5, MERRA-2, and CFSR at Tamale, 

Navrongo, Bongo, Bimbilla, and Pusiga gauge stations. 

 

Figure 4.8 depicts daily soil moisture trends from ISMN, ERA5, MERRA-2, and CFSR 

between 2019 and 2022. All datasets show similar patterns, with CFSR aligning closest to 

ISMN across the five stations. ERA5 is notably accurate in Bimbilla and Navrongo, while 

MERRA-2 displays slight divergence from the observed data. Seasonal monthly data analysis 

will provide further insights into the performance of the reanalysis datasets. 
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 Figure 4.9: Monthly soil moisture recorded by ISMN, ERA5, MERRA-2, and CFSR at 

Tamale, Navrongo, Bongo, Bimbilla, and Pusiga gauge stations. 

 

Figure 4.9 illustrates the monthly soil moisture records from the four datasets. Just like rainfall 

data, the peak period of soil moisture was recorded between August and October. While ERA5 

(5.73 𝑚3𝑚−3 in May for Navrongo) and CFSR (2.14 𝑚3𝑚−3 in May for Navrongo)  show a 

close alignment with the observed data (3.36 𝑚3𝑚−3 in May for Navrongo), MERRA-2 

(13.57 𝑚3𝑚−3 in May for Navrongo)  stands out by consistently deviating across all five 

stations.  
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Figure 4.10: Monthly MAE against half SD of the observed soil moisture at the five stations. 

 

Figure 4.10 displays the MAE for the reanalysis of soil moisture data relative to the observed 

half SD. Data gaps recorded in the observed data could affect consistency. CFSR shows the 

lowest MAE (2.31 𝑚3𝑚−3 in August for Tamale), outperforming ERA5 (5.56 𝑚3𝑚−3 in 

August for Tamale) and MERRA-2 (11.75 𝑚3𝑚−3 in August) at Tamale, Bongo, and Bimbilla. 

However, errors often exceed the observed data's half SD. At Navrongo and Pusiga, ERA5 

(2.5 𝑚3𝑚−3 in July for Pusiga) and CFSR (2.3 𝑚3𝑚−3 in July for Pusiga)  errors are alike, 

while MERRA-2's errors (9.4 𝑚3𝑚−3 in July for Pusiga)  routinely exceed half SD across all 

stations, highlighting its limitations. 
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Figure 4.11: Monthly MBE against half SD of the observed soil moisture recorded at the five 

stations. 

 

Figure 4.11 illustrates the monthly MBE for the reanalysis of soil moisture data against 

observations at five stations. Each dataset consistently overestimates moisture levels, with 

MERRA-2 showing the greatest overestimation, casting doubt on its precision. CFSR's 

overestimation is notably less at Tamale (1.37 𝑚3𝑚−3 in July), Bimbila (2.57 𝑚3𝑚−3 in July), 

and Bongo (0.32 𝑚3𝑚−3 in July), suggesting its performance varies by location. Across all 

stations, no reanalysis dataset underestimates soil moisture. 
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4.4 Discussion 

CHIRPS emerged as the frontrunner in accurately simulating rainfall, a finding that mirrors the 

research of Welde et al. (2021); López-Bermeo et al. (2022), particularly in topographical 

regions like plains. PERSIANN-CDR stands out for its commendable accuracy, albeit with 

some deviations from the half-standard deviation benchmark at certain stations (Zubieta et al., 

2019). The high-resolution capabilities of CHIRPS and the sophisticated data amalgamation 

methods used in PERSIANN-CDR, which include ongoing recalibrations with the Global 

Precipitation Climatology Project's monthly product (GPCPv2.2), contribute to their efficacy. 

ARC2 and ERA5, while they demonstrate certain inaccuracies, could serve as proxies for 

ground-based measurements if they are properly downscaled to account for local conditions. 

In contrast, TRMM's performance was poorer, suggesting that it may not be suitable for 

application across the studied stations, contradicting Atiah et al. (2020), who suggested a 

reasonable alignment with gauge data. The MBE analysis for CHIRPS revealed both 

underestimations and overestimations, but these remained largely within the accepted 

thresholds, signifying its robustness for climate studies. PERSIANN-CDR's performance, 

despite being generally satisfactory, exhibited some challenges at the Navrongo and Wa 

stations. ARC2's underperformance during the rainy season and ERA5’s in the dry season point 

to their limitations, and the necessity for downscaling becomes evident to enhance their utility. 

TRMM's suitability remains questionable, as its error margins exceeded the half SD 

benchmark, indicating significant discrepancies compared to the gauge data. These insights are 

crucial, as they inform the selection of appropriate datasets for specific research needs and 

highlight the importance of continual data verification and validation in the dynamic field of 

climate science.  

Excluding CFSR, ERA5, and MERRA-2 datasets are closely aligned with GMet data in 

simulating mean temperature on a monthly basis. However, MERRA-2 and CFSR have high 

Mean Absolute Error (MAE) values at all stations. Although ERA5's errors do not always fall 

within half the standard deviation of the observed data, it outperforms MERRA-2 and CFSR 

(Zheng et al., 2023). The commendation of ERA5 extends beyond this study, with multiple 

researchers, including Choudhury et al. (2023); Graham et al. (2019); Lan et al. (2023); Tetzner 

et al. (2019); Welde et al. (2021), validating its effectiveness in simulating mean temperatures 

in various geographic regions. MERRA-2’s systematic underestimation and CFSR's 

overestimation of temperatures, particularly noticeable in April through June, highlight the 

challenges in achieving precise temperature data assimilation.  
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Soil moisture significantly impacts Earth’s atmospheric and hydrological cycles, affecting 

weather, climate, and evaporation. It is vital for predicting runoff, streamflow, and refining 

temperature and precipitation models (Liu et al., 2022). In this context, the study's validation 

of soil moisture data from the ISMN, ERA5, MERRA-2, and CFSR across daily and monthly 

intervals is particularly salient. Despite identifying sporadic data omissions, especially in the 

dry season months of February and March, likely due to the harmattan's effect on soil 

conditions, the study found a substantial alignment in the daily soil moisture patterns among 

the datasets. CFSR notably showed the closest correlation to ISMN observed data, suggesting 

its utility for soil moisture analysis. In periods of peak soil moisture, ERA5's data closely 

reflected the observed values, particularly in the Navrongo region. This observation aligns with 

Li et al. (2021), who reported that ERA5's soil moisture data are a marked improvement over 

the preceding ERA-Interim data, offering enhanced resolution and accuracy. This improvement 

underscores ERA5's increasingly reliable performance in simulating soil moisture 

observations, reinforcing its value as a tool for environmental modelling and forecasting. 

Upon monthly evaluation, the datasets from CFSR and ERA5 have demonstrated a stronger 

correlation and pattern resemblance to the ISMN soil moisture data, outperforming MERRA-

2. This is evident in their ability to replicate the observed data's temporal patterns. The use of 

precise analytical metrics, including MAE, MBE, and the half SD of the observed dataset, was 

instrumental in quantifying the performance levels of the reanalysis data. The findings indicate 

that CFSR and ERA5 data not only exhibit a higher degree of accuracy but also maintain a 

robust consistency in humid climate settings, a conclusion that is similar in scope to the work 

of Zheng et al. (2023), who identified ERA5-Land and CFSv2 as notably reliable in such 

environmental conditions. In localities such as Tamale, Bimbilla, and Bongo, CFSR's error 

margins closely approached the half-standard deviation threshold of the observed data, 

suggesting an impressive alignment with the actual soil moisture conditions in these areas. 

Despite this precision, it is essential to acknowledge a general trend across all reanalysis 

datasets to overestimate soil moisture levels, with MERRA-2 presenting the most significant 

deviation. 

The comprehensive nature of this assessment must be considered, as it provides a valuable 

perspective on the dependability and exactitude of soil moisture data derived from various 

reanalysis sources. The implications of these insights extend to many practical applications, 

facilitating more informed decision-making processes in fields such as climate modelling and 

hydrological sciences, where accurate environmental data is paramount. ERA5's competence 

in capturing the essence of temperature and soil moisture profiles surpasses its representation 
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of precipitation patterns. This differential in performance may be attributable to the inherent 

characteristics of the land surface models and data assimilation techniques employed within 

the ERA5 framework (Hersbach et al., 2020). These models are inherently more receptive to 

variables such as temperature and soil moisture, which are directly influenced by land 

conditions, as opposed to rainfall, which is subject to more complex atmospheric processes and 

variability. The advancements in ERA5's land surface model, HTESSEL (Hydrology Tiled 

ECMWF Scheme for Surface Exchange over Land), significantly contribute to the 

improvements in soil moisture accuracy (Hersbach et al., 2020). These enhancements 

encompass the integration of a comprehensive soil texture map, refined methodologies for 

simulating bare soil evaporation, and the incorporation of dynamic vegetation maps that reflect 

seasonal variations. The evolution of the Land Data Assimilation System (LDAS) and the 

refinement of the Simplified Extended Kalman Filter (SEKF) have been instrumental in 

refining the process of integrating satellite and ground-based observations into the model, as 

detailed by Hersbach et al. (2020). These advancements collectively amplify the capacity of 

ERA5 to provide a more accurate representation of the Earth's soil moisture dynamics. 

 

4.5 Summary 

The study provided a validation of satellite and reanalysis products with ground-based data in 

Northern Ghana, covering the period from 1998 to 2022. Utilising statistical tools such as 

MAE, MBE, and half the SD of observed data, the study assessed the reliability of rainfall, 

mean temperature, and soil moisture data from various sources. The CHIRPS data emerged as 

the most accurate dataset for rainfall in Northern Ghana. Its high-resolution capabilities and 

ongoing recalibration with ground data make it particularly effective for climatic studies. 

CHIRPS consistently outperformed other datasets, including PERSIANN-CDR, ARC2, ERA5, 

and TRMM, accurately capturing rainfall patterns. On the other hand, TRMM displayed 

significant discrepancies, especially during peak rainfall periods, raising questions about its 

suitability for detailed hydrological studies in this region.  

The ERA5 dataset emerged as the most reliable source for mean temperature data, consistently 

aligning closely with ground-based observations. In contrast, MERRA-2, although 

demonstrating consistent patterns, generally underestimated temperatures, suggesting potential 

limitations in its data assimilation methods. Meanwhile, CFSR exhibited significant variability 

in its temperature estimates, indicating limited reliability for temperature analysis in this 

region. In contrast, the CFSR dataset demonstrated the closest alignment with the ISMN data 

for soil moisture analysis. The study revealed that CFSR’s performance was notably robust 



76 
 

during the peak soil moisture months from August to October, highlighting its suitability for 

hydrological and agricultural applications during critical growing periods. ERA5 also exhibited 

strong performance, particularly in regions such as Navrongo and Pusiga, underscoring its 

potential utility in localised agricultural planning and ecosystem service management. 

MERRA-2 displayed significant overestimations in soil moisture levels, indicating a need for 

further refinement of its algorithms or the development of bias-correction techniques.  
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CHAPTER 5  

5 Streamflow Forecasting using Machine Learning for Flood Management and 

Mitigation in the White Volta Basin of Ghana 

5.1 Introduction  

Chapter five presents a manuscript on streamflow forecasting using ML as part of the FEWS 

in the White Volta basin of Ghana. The manuscript has been published in the journal 

‘Environmental Challenges - https://doi.org/10.1016/j.envc.2025.101181’ (Katsekpor et al., 

2025). The introduction and conclusion sections have been removed and replaced with a 

summary. Aside from this modification, the content remains identical to the published version.   

The study highlights the increasing applicability and reliability of ML models in hydrological 

forecasting and water resource management. Following an extensive literature review, this 

study is identified as the first to apply RF and LSTM models for streamflow forecasting in the 

basin, specifically to support flood mitigation efforts. The research is structured around two 

core objectives: (i) to forecast streamflow at 1-, 5-, and 10-day lead times using historical data 

on rainfall, mean temperature, soil moisture, and evapotranspiration from 1985 to 2019; and 

(ii) to project future streamflow from 2020 to 2050 based on rainfall and temperature 

projections from the CMIP6 dataset under the SSP5-8.5 scenario. By employing RF and LSTM 

models, the study improves the accuracy and lead time of streamflow predictions, contributing 

directly to enhanced flood risk management, drought response, and irrigation planning in a 

region that faces recurrent hydrological extremes. The proposed ML-based forecasting 

approach is both adaptable and scalable, offering a replicable framework for similar water-

scarce and climate-vulnerable regions. 

 

5.2 Data and Methods 

5.2.1 Study Area 

This research focuses on the White Volta basin in Northern Ghana. The area has ground-based 

hydrological stations that provide streamflow records with Nawuni, Pwalugu, and Yarugu 

having drainage areas of 92,950, 63,350, and 41,550 𝑘𝑚2 respectively. These are the three 

gauge stations in the basin with sufficient open-source data for streamflow forecasting (Darko 

et al., 2021; GRDC, 2020; Mensah et al., 2022).  

The basin stretches from Burkina Faso (Upstream) to Ghana (downstream), 8°50’N to 11°05’N 

latitudes and 0°06’E to 2°50’W longitudes (Mensah et al., 2022). The region is predominantly 

low-lying, with an elevation range of 150m to 300m. Climatic conditions typical in this region 

https://doi.org/10.1016/j.envc.2025.101181
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include the Sudan and the Guinea Savannah zones, characterised by distinct dry and wet 

seasons (Katsekpor et al., 2024b). The dry season spans November to March, and the wet 

season runs from April to October (Katsekpor et al., 2024a; Yamba et al., 2023). The basin 

sustains a population primarily engaged in rain-fed agriculture, susceptible to weather extremes 

such as droughts and floods (Taylor et al., 2006).   

 

 Figure 5.1: Study area outlook enabled by SRTM with available gauge stations (Source: 

adapted from Katsekpor et al. (2024a)).  

 

5.2.2 Data 

Discharge  

Daily discharge data were obtained from the Global Runoff Data Centre (GRDC), which 

operates under the supervision of the World Meteorological Organisation (WMO) (GRDC, 

2020). The GRDC’s primary role is to collect, archive, and provide access to historical runoff 

data from river basins around the world. Its database contains daily and monthly river discharge 

from more than 10,000 stations globally (Burek & Smilovic, 2023; GRDC, 2020). These 

datasets are critical for hydrological research, climate modelling, and water resource 

management, particularly in the calibration of models (Burek & Smilovic, 2023). For this study, 

daily discharge data from 1985 to 2007 were obtained for the Nawuni,  Pwalugu, and Yarugu 

gauge stations in Northern Ghana 

(https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser#dataDownload/

Home, last accessed on July 20, 2024). 

https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser#dataDownload/Home
https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser#dataDownload/Home
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GloFAS is a river discharge reanalysis dataset from the Copernicus Emergency Management 

Service (CEMS). It aims to provide consistent hydrological data for flood monitoring and 

forecasting globally. The system primarily uses the LISFLOOD-OS hydrological model forced 

with ERA5 rainfall data (called GloFAS-ERA5 from here on), enabling river discharge 

calculations at catchment scales (Harrigan et al., 2020, 2023; Hersbach et al., 2020). The 

horizontal resolution of the data for version 4.0 is 0.050. Daily discharge was downloaded from 

1985 to 2019 using the link https://ewds.climate.copernicus.eu/datasets/cems-glofas-

historical?tab=overview (last accessed on September 25, 2024). 

 

Rainfall  

Daily rainfall data were obtained from the CHIRPS and the GCMs CMIP6. The CHIRPS 

dataset, created by experts at the USGS, EROS Centre, combines the CHPclim and CHIRP, 

supplemented with station data (Funk et al., 2015). Designed to support early warning systems 

for disasters like floods and droughts, CHIRPS provides a high-resolution precipitation dataset 

(0.05°) covering 1981 to the present. The data is offered in various time intervals and formats 

with a resolution of 0.05° x 0.05° (Funk et al., 2015). CHIRPS mimics well with the observed 

data in the White Volta basin (Katsekpor et al., 2024a), influencing its selection. Rainfall data 

spanning from 1985 to 2019 were retrieved from https://data.chc.ucsb.edu/products/CHIRPS-

2.0/ (last accessed on July 20, 2024).  

The GCMs developed under the CMIP6, in collaboration with the IPCC, provide projections 

of future climate change scenarios under various SSPs (Nguyen et al., 2024; Siabi et al., 2023). 

In this study, historical data (1985 – 2014) and future projections under the SSP5-8.5 (2020 - 

2050), which include five rainfall models, were sourced from the Earth System Grid Federation 

(ESGF) data portal (https://esgf-node.llnl.gov/projects/esgf-llnl/). These experiments include 

ACCESS-CM2, BCC-CSM2-MR, INM-CM5-0, MIROC6 and MRI-ESM2-0. These datasets 

were selected because they provide daily historical simulations and future projections under 

the SSP5-8.5 scenario, which assumes the highest radiative forcing of 8.5 W/m² by 2100. 

Moreover, the findings of Singh et al. (2023) and Siabi et al. (2023) have shown the ability of 

ACCESS-CM2, BCC-CSM2-MR, INM-CM5-0, and MRI-ESM2-0 in simulating observed 

rainfall. This scenario was chosen due to the limited progress on climate change policy 

implementation in Ghana (Awuni et al., 2023).  

 

https://ewds.climate.copernicus.eu/datasets/cems-glofas-historical?tab=overview
https://ewds.climate.copernicus.eu/datasets/cems-glofas-historical?tab=overview
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
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Mean Temperature 

Temperature data were obtained from ERA5 and GCMs-CMIP6. The CMIP6 data include the 

ACCESS-CM2 and ACCESS-ESM1-5 spanning from 1985 to 2014 for the historical period 

and 2020 to 2050 for the future period under the SSP5-8.5 scenario. This data combination was 

informed by the findings of Siabi et al. (2023), Singh et al. (2023) and Liu et al. (2024), who 

have shown their ability in simulating observed temperature. Daily mean temperatures were 

sourced for further preprocessing and analysis.     

ERA5, developed by ECMWF under the C3S, is the latest reanalysis dataset following ERA-

Interim. It provides comprehensive data for analysing past, present, and future climate 

conditions, supporting water management and policy decisions (Hersbach et al., 2019). ERA5 

combines in situ and satellite observations to improve land surface variables such as soil 

moisture, temperature, and snow cover (Hersbach et al., 2020). It offers global coverage at a 

0.25° latitude resolution and includes uncertainty assessments to enhance reliability (Hersbach 

et al., 2020). ERA5 has shown a strong agreement with observed data in the White Volta basin 

(Katsekpor et al., 2024a) influencing its selection. Hourly temperature data spanning from 1985 

to 2019 were processed into daily timesteps.    

 

Soil Moisture 

Soil moisture data (0–5 cm) from 1985 to 2019 were collected from the CFSR. The CFSR 

datasets integrate conventional meteorological observations with satellite data using advanced 

data assimilation techniques. It models interactions between the atmosphere, oceans, land, and 

sea ice (Lu et al., 2019; Mok et al., 2018; Saha et al., 2010). Data from 1979 to 2011 are 

available at hourly intervals with a spatial resolution of 0.312°. The follow-up version, CFSV2, 

continues the data record after March 2011 with improved resolution (Mok et al., 2018). These 

datasets, known as CFSR, offer a comprehensive collection of climate variables.  

 

Evapotranspiration 

Daily evapotranspiration (et), evaporation from open waters (e0), and evaporation from bare 

soil (es) were obtained from the LISVAP model spanning from 1985 to 2019 (Appendix: Figure 

A.3.6 - A.3.8). LISVAP uses either the Penman-Monteith or Hargreaves equations, 

implemented in a Python using the PCRaster modelling framework (Burek et al., 2013; Knijff 

et al., 2010). 
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5.2.3 Models 

Random forest  

RF is a widely adopted machine learning model for both classification and regression tasks. It 

functions by generating an ensemble of decision trees through a bagging technique, which 

helps to reduce variance and improve predictive performance (Adnan et al., 2023; Blandini et 

al., 2023). Each tree is built on a random feature subset, ensuring the model’s diversity and 

robustness. Final predictions are made by averaging (regression) or majority voting 

(classification). RF is highly effective for large, complex datasets and is used in fields such as 

flood frequencies and land cover classification (Desai & Ouarda, 2021; Park et al., 2020; 

Tyralis et al., 2021). Key parameters of the model include the number of trees, max features 

per node, and bootstrapping (Kim & Han, 2020). Despite the possibility of tuning, RF is 

generally not overly sensitive to hyperparameters (Cutler et al., 2011; Janitza & Hornung, 

2018).  

 

LSTM - Long Short-Term Memory  

The LSTM model, introduced in 1997, improves upon traditional RNNs by addressing 

vanishing and exploding gradient problems (Staudemeyer & Morris, 2019; Van Houdt et al., 

2020). The architecture features a memory block regulated by three primary gates: the input 

gate, output gate, and forget gate (Fathi et al., 2025). These gates primarily control the 

information across the memory of the LSTM model.   

 

5.2.4 Data Preprocessing and  Analysis    

Data Processing 

Since the ML models were run daily to generate forecasts, it was important to ensure that all 

input data were in daily formats. Rainfall and observed streamflow were already available in 

daily formats. However, mean temperature and soil moisture were originally retrieved hourly. 

Therefore, they were converted to daily formats by averaging. 

Streamflow data obtained from GRDC had gaps, especially at the Pwalugu and Yarugu gauge 

stations, as detailed in Table 5.1. To construct a complete time series, these gaps were filled 

using discharge data from GloFAS, which has demonstrated strong performance in simulating 

discharge globally (Harrigan et al., 2020; Prudhomme et al., 2024). Due to limited observed 

data in the White Volta basin, GloFAS data were further used to replace missing records from 

2008 to 2019. This data augmentation was essential to improve the performance of the ML 

models.  
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Table 5.1: Percentage gaps in data. 

Station Missing data (%)  

Nawuni (1985 – 2007) 3.63% 

Pwalugu (1985 – 2007) 44.69% 

Yarugu (1990 – 2007) 56.72% 

 

Running LSTM and RF 

The RF model was trained using multiple configurations of decision trees ranging from 50 to 

200 trees. This configuration is important to choose the number of trees that yields the highest 

performance of the model. Consequently, 100 trees were selected based on the performance 

metrics as detailed in Appendix Figure A.3.12. The RF model code was adapted from Pham et 

al. (2021).  

Similarly, the LSTM is configured with 50 units to capture the complex nature of hydrological 

patterns. Hunt et al. (2022) also used 50 neurons when training their LSTM model, achieving 

high accuracy in model performance. The input shapes used were 1 and 2, as training was 

conducted daily. In the LSTM architecture, the tanh function helps control gradient flow, while 

the sigmoid function regulates the flow of information through the cell state (Van Houdt et al., 

2020). The linear activation function enables scaling of the LSTM output. The study also 

employed the Adam optimiser to accelerate training. This optimiser is known to be stable for 

time series data and requires minimal tuning (Hunt et al., 2022). To determine the optimal batch 

size and number of epochs for improving LSTM performance, an experimental tuning process 

was used to strike a balance between effective learning and computational efficiency. Batch 

sizes of 16, 32, and 64, and epochs of 20, 50, and 100 were tested. Consequently, the model 

was trained for 50 epochs (see Appendix Figure A.3.11) with a batch size of 32, as shown in 

Appendix A.3.11 The LSTM code was adapted from Hunt et al. (2022). 

  

Table 5.2: Characteristics of the LSTM model.  

Layer Input Shape Activation Output Shape 

LSTM layer 1 (1, number of features) Tanh (1, 50) 

Dense layer (50,) Linear (1,) 
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The LSTM and RF models were trained using CHIRPS rainfall, ERA5 temperature, CFSR soil 

moisture, evapotranspiration, and evaporation from soil and open water. CHIRPS, ERA5, and 

CFSR were chosen based on the findings of Katsekpor et al. (2024a), who found them accurate 

for simulating rainfall, temperature, and soil moisture, respectively, in the region. The LSTM 

and the RF models were trained to simulate streamflow spanning from 1985 to 2019 for both 

Nawuni and Pwalugu and from 1990 to 2019 for Yarugu. Datasets were split into 70% for 

training, 20% for testing, and 10% for operational use. Operational data were used in 

forecasting streamflow at 1-day, 5-day, and 10-day intervals.  

GCMs-CMIP6 data were also used to run the RF and LSTM models to forecast streamflow 

from 2020 to 2050. Models were trained using GCMs-CMIP6 rainfall and mean temperature 

data from 1985 to 2014 for Nawuni and Pwalugu, and from 1990 to 2014 for the Yarugu gauge 

station. The data were split into 80% for training and 20% for testing.  

 

Trends in Climate Variables 

Annual trends in rainfall and mean temperature from the GCMs-CMIP6 were analysed using 

Kendall’s Tau and the p-value. Kendall’s Tau (τ) measures the monotonic (increasing or 

decreasing) relationship in ordinal data. Kendall’s Tau (τ) ranges from -1 to 1: a positive value 

means the trend is rising, while a negative one means it is falling (Brossart et al., 2018). A trend 

is considered statistically significant if the p-value is below 0.05; if the p-value exceeds 0.05, 

the trend is not statistically significant (Wood et al., 2014).   

 

Low and High Flows Analysis 

High flows indicate flows that are likely to occur or exceed 10% of the time (Q10). Low flows, 

on the other hand, are those that happen or are exceeded 90% of the time (Q90). Moreover, a 

rise in Q10 suggests higher peak flows and greater flood risk, while a drop in Q90 indicates 

lower base flows and increased vulnerability to river drought (Aich et al., 2014; Dembélé et 

al., 2022). Q01 indicates a rise in flood risk, which is useful for identifying more extreme events 

(Pechlivanidis et al., 2017).  

 

Performance Metrics 

To evaluate the accuracy of the simulated data against observations, CMIP6 data were validated 

using CHIRPS rainfall and ERA5 temperature. These datasets  (CHIRPS rainfall and ERA5 

temperature) were identified by Katsekpor et al. (2024a) as the best alternatives to observed 

data in the data-scarce White Volta basin. Statistical metrics such as MAE, MBE, and SD were 
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used for the evaluation. These metrics are essential for quantifying the tested model’s precision 

and reliability. MAE quantifies the average size of errors between simulated and observed 

values, providing a straightforward measure of prediction accuracy regardless of error 

direction. Unlike MAE, MBE considers the direction of the errors, indicating whether model 

predictions are consistently higher or lower than the actual observations, resulting in a positive 

or negative value. This helps identify systematic biases in the model outputs. An MAE value 

close to 0 suggests minimal average prediction error, meaning the predicted values closely align 

with the actual values (Katsekpor et al., 2024a). Similarly, an MBE value near 0 indicates an 

unbiased prediction with no consistent overestimation or underestimation. The study followed 

the error significance principle proposed by Singh et al. (2005), later adopted by Moriasi et al. 

(2007) and Yamba (2016), where MAE and MBE values less than or equal to half of the 

observed data's standard deviation (SD) are considered acceptable, as stated in the work of 

Katsekpor et al. (2024a). The Kling-Gupta Efficiency (KGE) was also adopted to measure the 

model’s performance of the simulated data compared to that of the observed data. The Kling-

Gupta Efficiency is one of the standard metrics adopted in hydrological studies for measuring 

the accuracy of models (Cinkus et al., 2023; Harrigan et al., 2020; Hunt et al., 2022). Similar 

to the KGE, the 𝑅2, which is the coefficient of determination, measures the variance of the 

predicted from the observed data (Singh et al., 2023). A perfect forecast using both the KGE 

and the 𝑅2 indicates a value of 1. The formulas are shown below: 

                                          𝑀𝐴𝐸 =
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In this context, n denotes the sample size, 𝑂𝑖  represents the observed values, 𝑃𝑖 the predicted 

values, and 𝑂 is the mean of the observed values (Katsekpor et al., 2024a). In the KGE metric, 

r represents Pearson’s correlation coefficient, γ signifies the variability ratio, and β denotes the 

bias ratio.  Here, 𝜇𝑠𝑖𝑚 and 𝜎𝑠𝑖𝑚 refer to the mean and SD of the simulated discharge, while 𝜇𝑜𝑏𝑠 

and 𝜎𝑜𝑏𝑠 are the corresponding statistics for the observed discharge (Hunt et al., 2022). 𝑅2 is 

the coefficient of determination.    

  

5.3 Results 

5.3.1 Historical Streamflow Prediction at 1, 5, and 10 days using RF and LSTM models 

 

Figure 5.2: RF model in forecasting streamflow at 1, 5, and 10 days.  

 

Figure 5.2 shows the ability of the RF to mimic the observed data at 1-day, 5-day, and 10-day 

forecasts. Both the testing and the operational period recorded a high KGE, ranging from 0.86 

for a 1-day forecast to 0.71 for a 10-day forecast. During the testing phase, MAE was higher 

in larger basins like Nawuni (14.98  𝑚3/𝑠) compared to smaller ones like Yarugu (7.98 𝑚3/𝑠). 

Similarly, the magnitude of negative biases recorded in Yarugu (-0.79 𝑚3/𝑠) are much lower 

than the magnitude of biases recorded in the Nawuni (-5.47 𝑚3/𝑠) gauge station. The 
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outstanding performance of the model in mimicking the discharge data can be attributed to the 

large amount of validated data used in training the models.  

 

Figure 5.3: LSTM model in forecasting streamflow at 1, 5, and 10 days.  

 

Figure 5.3 shows the ability of the LSTM model to mimic the observed data at 1-day, 5-day, 

and 10-day forecasts across the three gauge stations. Similar to Figure 5.2, the KGE recorded 

by the model is generally high, between 0.97 and 0.89. During the testing period, the predicted 

data underestimated the actual flow at all three gauge stations. Pwalugu recorded the highest 

magnitude (-11.36  𝑚3/𝑠), followed by Nawuni (-8.04 𝑚3/𝑠) and Yarugu (-1.72  𝑚3/𝑠). 

Again, the MAE recorded by the simulated data is higher in larger basins (Nawuni: 13.48 

 𝑚3/𝑠) compared to smaller basins (Yarugu: 8.10  𝑚3/𝑠). In the operational period, the KGE 

drops slightly as the lead time is extended from 1 to 5 days and 10 days. For instance, the KGE 

recorded at Nawuni is 0.97 for 1 day, 0.96 for 5 days, and 0.91 for 10 days. The model’s 

outstanding performance in mimicking the discharge data, even at a 10-day forecast, can be 

attributed to the large amount of validated data used in training the models.   
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5.3.2 Validation of Rainfall Data from GCMs-CMIP6  

 

Figure 5.4: Monthly rainfall recorded by the CHIRPS observed and the CMIP6 data.  

 

Figure 5.4 shows the monthly rainfall pattern recorded by the CMIP6 data, including ACCESS-

CM2, BCC-CSM2-MR, INM-CM5-0, MIROC6, and MRI-ESM2-0 against the observed 

CHIRPS data. The BCC-CSM2-MR shows a consistent alignment with the observed data, at 

the Pwalugu (for example, 235.87mm and 257.29mm for the BCC-CSM2-MR and CHIRPS, 

respectively) and Yarugu (for example, 235.87mm and 254.88mm for the BCC-CSM2-MR and 

CHIRPS, respectively) gauge stations. At the Nawuni gauge station, MRI-ESM2-0 closely 

matches the observed data from January to June, INM-CM5-0 aligns closely in July and 

August, and BCC-CSM2-MR matches well from September to December. MIROC6 

consistently records a larger gap from the observed data, especially in the wet season between 

July and October across all three stations (for example, 417.31mm and 195.1mm for MIROC6 

and CHIRPS, respectively, at Nawuni).   
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Figure 5.5: Monthly MAE recorded by the CMIP6 at the three gauge stations. 

 

The study used the MAE to quantify prediction errors as shown in Figure 5.5. BCC-CSM2-

MR recorded the lowest errors at both Pwalugu and Yarugu gauge stations, particularly in the 

peak rain season in September (78.2 mm and 40.3mm for Pwalugu and Yarugu, respectively), 

outperforming ACCESS-CM2, INM-CM5-0, MIROC6, and MRI-ESM2-0, which had greater 

errors for the same period and location. Across Pwalugu and Yarugu gauge stations, the BCC-

CSM2-MR errors remained closer to half the SD of the observed, indicating the reliability of 

the data for climate studies. At the Nawuni gauge station, the lowest MAE from January to 

June was recorded by MRI-ESM2-0 (0.05 mm in May and 11.8 mm in June). For July and 

August, INM-CM5-0 recorded the lowest MAE (24.8 mm in July and 11.9 mm in August), 

while from September to December, BCC-CSM2-MR showed the lowest values (41.9 mm in 

September). MIROC6 recorded the highest MAE across all gauge stations, particularly 

between July and October.  
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Figure 5.6: Monthly MBE recorded by the CMIP6 at the three gauge stations. 

 

The study used the MBE to quantify prediction biases recorded by the CMIP6 data, as shown 

in Figure 5.6. All CMIP6 data, except MIROC6, underestimated the monthly rainfall between 

August and October. Similar to Figure 5.5, BCC-CSM2-MR recorded the lowest magnitude of 

biases at Pwalugu and Yarugu gauge stations (for example, -21.4mm in August at Pwalugu) 

outperforming INM-CM5-0 (for instance, -127.9mm in August at Pwalugu), ACCESS-CM2 

(for instance -126.6mm in August at Pwalugu), MRI-ESM2-0 (for instance -130.6mm in 

August at Pwalugu) and MIROC6 (for instance 221.5mm in August at Pwalugu). MIROC6 

consistently overestimated the monthly rainfall in all 12 months. At the Nawuni gauge station, 

MRI-ESM2-0, INM-CM5-0, and BCC-CSM2-MR each show close agreement with the half 

SD of the observed data from January to June, July and August, and September to December, 

respectively. All simulated data recorded higher biases in the wet season between May and 

October.  

As shown in Appendix Figure A.3.1, the study also performed a monthly coefficient of 

determination (𝑅2) of the observed data with BCC-CSM2-MR at Pwalugu and Yarugu and the 
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ensemble MRI-ESM2-0 (January to June), INM-CM5-0 (July and August), and BCC-CSM2-

MR (September to December) at Nawuni gauge station. The observed data show a strong 

agreement with the simulated data across all gauge stations, with Yarugu recording the highest 

of 0.94, followed by Nawuni  (0.93) and Pwalugu (0.88).  

 

5.3.3 Validation of Mean Temperature Data from GCMs-CMIP6  

 

Figure 5.7: Monthly mean temperature recorded by the ERA5 observed and the CMIP6 data.  

 

Figure 5.7 shows the monthly temperature patterns from ERA5 observations, ACCESS-CM2, 

and ACCESS-ESM1-5 models at the three gauge stations. Although ACCESS-CM2 and 

ACCESS-ESM1-5 closely match the observed data, particularly at the beginning of the month, 

slight deviations are noted in March and April. Both simulated data peaks much quicker starting 

from March, showing a slight distortion in the pattern compared to the observed.  
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Figure 5.8: Monthly MAE recorded by the CMIP6 for the three gauge stations. 

 

Figure 5.8 compares the MAE values from ACCESS-CM2 and ACCESS-ESM1-5 with half 

the SD of the observed ERA5 data. Although all simulated data (CMIP6) do not cover the SD 

of the observed data, ACCESS-ESM1-5 records the lowest error in the wet season between 

June and October (for example 1.0°C, 0.65°C, 0.51°C, 1.3°C and 1.08°C in June, July, August, 

September, and October respectively at Pwalugu) outperforming the ACCESS-CM2 (for 

example, 3.49°C, 4.03°C, 3.77°C, 4.52°C and 3.13°C in June, July, August, September and 

October respectively at Pwalugu) across all three gauge stations. In contrast, the ACCESS-

CM2 (for example 0.16°C, 0.40°C, 0.77°C, and 1.11°C in December, January, February, March 

respectively at Pwalugu) outperforms ACCESS-ESM1-5 (for example 0.67°C, 0.8°C, 1.46°C, 

and 1.72°C in December, January, February, March respectively at Pwalugu) in the dry season 

between December and March. The MAE recorded by the ACCESS-CM2 between May and 

October for all three gauge stations is very high, highlighting its limitations and reliability.   
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Figure 5.9: Monthly MBE recorded by the CMIP6 data at the three gauge stations.  

 

From Figure 5.9, ACCESS-CM2 and ACCESS-ESM1-5 estimates are cooler in the dry season 

from November to March, but warmer from April to October. Similar to Figure 5.8, ACCESS-

CM2 exhibits higher positive biases during the peak rainfall months (June to October) 

compared to ACCESS-ESM1-5. In contrast, ACCESS-ESM1-5 shows greater negative biases 

in the dry season (December to March). For example, at Pwalugu, ACCESS-ESM1-5 recorded 

-0.8°C, -1.46°C, and -1.72°C in January, February, and March, respectively, while ACCESS-

CM2 recorded -0.4°C, -0.77°C, and -1.11°C for the same months.  

The 𝑅2 was used to estimate the relationship between the observed data (ERA5) and the 

simulated data (Ensemble of ACCESS-CM2 and ACCESS-ESM1-5) as shown in Appendix 

Figure A.3.2. All values show a good performance between the observed and the predicted for 

all three gauge stations, with Pwalugu showing the highest value of 0.89, followed by Nawuni 

(0.76) and Yarugu (0.73).  
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5.3.4 Trends in Annual Rainfall for the Historical and Future Periods 

 

Figure 5.10: Trends in annual rainfall from 1985 to 2014 at the three gauge stations.   

  

Figure 5.10 shows the trend in the annual rainfall from 1985 to 2014 at Nawuni, Pwalugu, and 

Yarugu gauge stations. Annual rainfall across all gauge stations shows an increasing trend 

ranging from 0.099 (Nawuni) to 0.278 (both Pwalugu and Yarugu). The p-values for both 

Pwalugu and Yarugu (0.03) are less than 0.05, which provides evidence of an increasing annual 

rainfall pattern between 1985 and 2014. In contrast, the p-value for Nawuni (0.4) is greater 

than 0.05, showing that the increasing trend is not statistically significant and that there is no 

clear evidence of an increase in rainfall at this gauge station.  
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Figure 5.11: Trends in annual rainfall from 2020 to 2050 at the three gauge stations.    

 

Figure 5.11 shows the trend in annual rainfall for Nawuni, Pwalugu, and Yarugu gauge stations 

from 2020 to 2050. In contrast to Figure 5.10, the annual rainfall trends at the Pwalugu and 

Yarugu gauge stations show a decrease, while the trend at the Nawuni gauge station shows a 

slight annual increase. The p-values recorded at Nawuni (0.9), Pwalugu (0.3), and Yarugu (0.3) 

are all greater than 0.05, indicating that the observed trends in annual rainfall, whether 

increasing or decreasing, are not statistically significant. This does not provide any clear 

evidence of an annual rainfall increase or decrease between 2020 and 2050.   
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5.3.5 Trends in annual mean temperature for the historical and future periods 

 

Figure 5.12: Trends in annual mean temperature from 1985 to 2014 across the three gauge 

stations. 

 

Figure 5.12 shows the annual mean temperature trend from 1985 to 2014 at the Nawuni, 

Pwalugu, and Yarugu gauge stations, based on data from the ACCESS-CM2 and ACCESS-

ESM1-5 ensemble. The trends show an increase in annual mean temperature of 0.471, 0.453, 

and 0.416 at Nawuni, Pwalugu, and Yarugu, respectively. Moreover, the p-values for all three 

gauge stations are less than 0.05, indicating a statistically significant trend. This provides 

evidence of an increasing trend in annual mean temperature.  
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Figure 5.13: Trends in annual mean temperature from 2020 to 2050 across the three gauge 

stations. 

 

Figure 5.13 shows the trend in the annual mean temperature from 2020 to 2050 at all three 

gauge stations. Similar to Figure 5.12, there is an increase in annual trends of mean temperature 

with a value ranging from 0.682 (Yarugu) and 0.609 (Pwalugu). The p-values for all three 

gauge stations are less than 0.05, indicating that the increasing trend in annual mean 

temperature is statistically significant. This provides evidence of an annual temperature 

increase between 2020 and 2050.  
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5.3.6 Monthly and Decadal Changes in Rainfall and Temperature 

 

Figure 5.14: Monthly rainfall and temperature for the historical period (1985-2014) and the 

future period (2020-2050).  

 

Figure 5.14 shows monthly rainfall and mean temperature data for the historical period (1985-

2014) and projections for 2020-2050 under the SSP5-8.5 scenario using CMIP6 data. The 

projections indicate an expected increase in rainfall during the early wet season (April-June). 

However, a significant decrease is projected for the peak wet season (July-October) at the 

Pwalugu and Yarugu gauge stations, for example, both recorded a -54 mm change in July. 

Rainfall is also expected to decline during the dry season (November-March) at these stations. 

In contrast, Nawuni is projected to experience increased rainfall from June to August, followed 

by a sharp drop in September and October. The dry season here also shows a slight decline in 

rainfall. Overall, this pattern points to a dual risk of drought and increased surface runoff 

(flooding). 

Furthermore, temperatures are expected to rise under the SSP5-8.5 scenario, with most months 

showing an increase of more than 1°C at all three gauge stations. Notably, December shows 

the highest increase compared to historical values, reaching up to 2°C at the Yarugu gauge 

station. Conversely, July records the smallest temperature increase, up to 0.4°C, also at the 
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Yarugu gauge station. The overall rise in monthly temperatures suggests increased evaporation 

rates continuing into the 2050s under the SSP5-8.5 scenario.  

Table 5.3 shows the average changes in rainfall per decade for the historical (1990s, 2000s, 

2010s) and near future (2030s, 2040s, and 2050s). Throughout the decades, each station has 

exhibited fluctuating rainfall trends. In the 1990s, rainfall increased for all three gauge stations. 

Nawuni recorded an increase of 0.13 mm/decade, while Pwalugu and Yarugu each saw larger 

increases of 0.77 mm/decade. In the 2000s, rainfall slightly increased at Nawuni (0.002 

mm/decade), while both Pwalugu and Yarugu experienced declines of -0.02 mm/decade. In the 

2010s, rainfall trends reversed at Pwalugu and Yarugu, with both stations recording increases 

of 0.55 mm/decade, whereas Nawuni showed a slight decline of -0.01 mm/decade. This upward 

trend continued into the 2030s at Pwalugu and Yarugu (0.73 mm/decade), while Nawuni 

experienced a sharper decrease of -0.31 mm/decade. In the 2040s, rainfall again declined at 

Pwalugu and Yarugu (-0.81 mm/decade), while Nawuni recorded an increase of 0.39 

mm/decade. By the 2050s, rainfall increased at all three stations, 0.48 mm/decade at Nawuni 

and 0.06 mm/decade at both Pwalugu and Yarugu. 

 

Table 5.3: Decadal rainfall changes at Nawuni, Pwalugu, and Yarugu gauge stations. 

Decade Nawuni 

(mm/decade) 

Pwalugu 

(mm/decade) 

Yarugu 

(mm/decade)  

1990s 0.13 0.77 0.77  

2000s 0.002 -0.02 -0.02  

2010s -0.01 0.55 0.55  

2030s -0.31 0.73 0.73  

2040s 0.39 -0.81 -0.81 

2050s 0.48 0.06 0.06  

 

Table 5.4 presents the average decadal changes in mean temperature for historical periods 

(1990s, 2000s, 2010s) and the near future (2030s, 2040s, 2050s). The historical trend shows 

fluctuations, with both increases and decreases in mean temperature. Temperatures start by 

showing declining trends of -0.24 °C/decade, -0.33 °C/decade, and -0.32 °C/decade at Nawuni, 

Pwalugu, and Yarugu, respectively. Temperature then increased significantly in the 2000s, with 

Pwalugu recording the highest increase (0.75 °C/decade), followed by Yarugu (0.71 °C/decade) 

and Nawuni (0.66 °C/decade). The warming trend continued in the 2010s but at a slower rate, 
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with Pwalugu recording the lowest (0.63 °C/decade). Similarly, future projections indicate an 

expected increase in mean temperature in the 2030s, with Yarugu expected to show the highest 

warming rate of 0.81°C/decade. By the 2040s, a moderate increase in the rate of warming is 

projected across all gauging stations. Projected warming rates indicate an increase of 0.56 °C 

per decade at Nawuni, 0.53 °C at Pwalugu, and 0.46 °C at Yarugu. By the 2050s, mirroring the 

1990s, temperatures are projected to decline with negative values of -0.22 °C/decade at Nawuni 

and -0.3 °C/decade at both Pwalugu and Yarugu gauge stations.   

 

Table 5.4: Decadal mean temperature changes at Nawuni, Pwalugu, and Yarugu gauge 

stations. 

Decade Nawuni  

(°C/decade) 

Pwalugu 

(°C/decade)  

Yarugu 

(°C/decade)   

1990s -0.24 -0.33 -0.32 

2000s 0.66 0.75 0.71  

2010s 0.68 0.63 0.70 

2030s 0.74 0.74 0.81 

2040s 0.56 0.53 0.46 

2050s -0.22 -0.3 -0.3  
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5.3.7 Streamflow Forecasting using the CMIP6-GCMs Rainfall and Mean Temperature 

 

Figure 5.15: Comparison of the actual streamflow with the simulated streamflow by the RF 

and the LSTM during the testing period.  

 

Figure 5.15 illustrates the predictive accuracy of the RF and LSTM models using ensemble 

MRI-ESM2-0, BCC-CSM2-MR, and INM-CM5-0 (Nawuni), BCC-CSM2-MR rainfall data 

(both Pwaluu and Yarugu), and the ensemble mean temperature from ACCESS-CM2 and 

ACCESS-ESM1-5 (for all three gauge stations). Both models capture the patterns of lower and 

higher flow at the Nawuni, Pwalugu, and Yarugu gauge stations. The RF model performed 

slightly better than the LSTM in predicting daily streamflow, achieving KGE values of 0.98 at 

Pwalugu and 0.94 at Yarugu during the testing period. Both models underestimated streamflow 
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at Nawuni and Pwalugu, while the LSTM slightly overestimated it at Yarugu (with an MBE of 

0.83 𝑚3/𝑠).  

Appendix Figure A.3.10 shows a close fit of the predicted RF and LSTM to that of the observed 

streamflow. In using the 𝑅2, the LSTM slightly outperforms the RF at the Pwalugu and Yarugu 

gauge stations by 0.02 and 0.03, respectively (Appendix A).  

 

Figure 5.16: Daily streamflow prediction by the RF and LSTM model under the SSP5-8.5. 

 

The diagram in Figure 5.16 demonstrates a consistent pattern of low and high flow events by 

the RF and LSTM models across the three stations. Similar to Figure 5.15, the Nawuni gauge 

station is expected to record the highest streamflow by the 2050s, exceeding 2000 𝑚3/𝑠. The 

predominantly lower flows recorded by the RF model could indicate potential drought 

conditions. Conversely, the high peak flows estimated by both models, particularly around the 

2040s and 2050s, suggest an increased risk of flooding, although both models underestimated 

(except the LSTM at Yarugu gauge station – see Figure 5.15) the actual flow. Overall, the flows 

captured by the RF and LSTM until the 2050s reflect a mix of both drought and flood 

conditions.  
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Figure 5.17: Predicted change in monthly streamflow (2020 – 2050) relative to the historical 

record (1985 – 2014) by the LSTM model.  

 

Figure 5.17 shows the projected change in monthly streamflow from 2020 to 2050 relative to 

the 1985 - 2014 baseline. Similar to Figure 5.14, Pwalugu and Yarugu are expected to be drier 

than the Nawuni gauge station. During the peak rainfall months (August and September), 

streamflow will drop by up to 300 𝑚3/𝑠 evidence at Pwalugu and Yarugu gauge stations. In 

contrast, streamflow is projected to increase from April to July at the Nawuni gauge station.   

Table 5.5 presents the expected frequency of droughts, floods, and extreme floods in the basin, 

based on historical Q90, Q10, and Q01 thresholds, respectively. Under the SSP5-8.5 scenario, 

the basin is projected to experience an increase in drought days (defined as days with 

streamflow below the Q90 threshold) at all three gauge stations. Pwalugu and Yarugu, located 

further North and influenced by the Sudan Savanna climate, are expected to be the most 

affected, with 9,605 and 7,592 drought days respectively. The risk of flood events (days 

exceeding the Q10 threshold) is also higher at Yarugu (111 days) and Pwalugu (90 days), 

compared to Nawuni (46 days). For extreme floods (days exceeding the Q01 threshold), Yarugu 

and Pwalugu recorded 13 days, while Nawuni recorded 4 days. These figures indicate that 
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while Nawuni sees fewer extremes, both Yarugu and Pwalugu face significantly higher 

frequencies of drought, flood, and extreme flood events. 

 

Table 5.5: Frequency of future flow relative to the historical thresholds (Q01, Q10, Q90). 

Gauge stations Q01 

(𝑚3/𝑠)  

Q10 

(𝑚3/𝑠)  

Q90 

(𝑚3/𝑠)  

Days > 

Q01 

Days > Q10 Days < Q90 

Nawuni 1760.32 761.89 3.44 4 46 3651 

Pwalugu 877.32 281.4 7 13 90 9605 

Yarugu 745.42 220.88 7.06 13 111 7592 

 

5.4 Discussion 

5.4.1 Evaluation of Historical Streamflow Predictions using the LSTM and RF Model  

Despite data scarcity and gaps in existing observed discharge data, the performance of LSTM 

and RF models were evaluated by comparing model forecasts with historical streamflow at 

three gauge stations in the White Volta basin. The model was tested on forecasting streamflow 

at 1, 5, and 10 days, ingested with rainfall, mean temperature, soil moisture, and 

evapotranspiration. Both RF and LSTM exhibited high predictive capacity, capturing complex, 

nonlinear relationships between input variables, which is crucial for accurate hydrological 

forecasting. Models like RF utilise an ensemble of decision trees to enhance predictions and 

reduce overfitting risks (Prasad et al., 2006; Schoppa et al., 2020). The LSTM is more effective 

at capturing peak and high flows up to 10 days in advance, which is crucial for detecting 

extreme events and ensuring adequate preparedness. These findings are similar to those of 

Breiman (2001), Hunt et al. (2022), Nevo et al. (2022), Sabzipour et al. (2023), and Xiang et 

al. (2020). The LSTM effectively captured temporal dependencies essential for modelling 

dynamic streamflow (Sarker, 2021; Surucu et al., 2023). Additionally, the exceedance 

probability (Appendix Figure A.3.4 and A.3.5), which indicates the likelihood that streamflow 

will meet or exceed a certain threshold within a given period (Piechota et al., 2001), provides 

water managers with a concrete measure of risk, helping them better prepare for extreme events 

and improve water management systems.  

The integration of GloFAS with the observed data and making predictions with 34 years of 

data (1985 - 2019) enhances the prediction accuracy of the model with a high KGE of 0.94. 

However, the performance of the model decreases as the lead time is extended (Sabzipour et 

al., 2023). These findings highlight the need for ongoing model training and the potential 
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integration of more real-time data inputs to enhance the predictive reliability of streamflow and 

flood early warning systems over extended periods, addressing challenges typical of extended-

range forecasts in hydrology, especially in data-scarce regions like the White Volta basin 

(Gupta, 2024; Li et al., 2024; Muñoz et al., 2021; Tang et al., 2023).  

 

5.4.2 Rainfall and Mean Temperature Validation under the SSP5-8.5 Scenario 

All CMIP6 data align closely with the SD of the observed data in the dry season. However, 

BCC-CSM2-MR outperformed ACCESS-CM2, INM-CM5-0, MRI-ESM2-0, and MIROC6 in 

simulating monthly rainfall during the wet season, as evidenced by its close alignment with the 

half SD of the observed data at both Pwalugu and Yarugu gauge stations. At the Nawuni gauge 

station, MRI-ESM2-0 closely matches the observed data from January to June, INM-CM5-0 

aligns well in July and August, and BCC-CSM2-MR corresponds closely from September to 

December. MIROC6 consistently overestimated the observed data, especially in the wet 

season, highlighting its limitations in forecasting rainfall and floods. ACCESS-ESM1-5 

performs better in simulating the monthly mean temperature in the wet season, outperforming 

ACCESS-CM2. ACCESS-CM2 consistently overestimated the actual temperature in the wet 

season. However, the ACCESS-CM2 outperformed ACCESS-ESM1-5 in simulating the actual 

temperature in the dry season, especially between December and February. The strength of 

these models is significant in understanding the impact of climate change and reducing biases. 

Moreover, researchers have most of the time used the strength of multiple GCMs-CMIP data, 

known as the ensemble, in simulating the impact of climate change on hydrological cycles 

(Dembélé et al., 2022; Mensah et al., 2022; Siabi et al., 2023; Singh et al., 2023; Smits et al., 

2024).  

 

5.4.3 Trends in Annual and Monthly Rainfall and Mean Temperature for the Historical 

and Future Periods  

Analysis of historical rainfall data using MRI-ESM2-MR, INM-CM5-0, and BCC-CSM2-MR 

models indicates an increase in annual rainfall from 1985 to 2014. However, projections under 

the SSP5-8.5 scenario suggest a decline in annual rainfall at both Pwalugu and Yarugu and a 

slight increase at Nawuni until 2050, though this is not statistically significant, highlighting 

uncertainty in the trend. Monthly rainfall is projected to increase from June to August at the 

Nawuni gauge station. This aligns with the findings of Siabi et al. (2023), who anticipate 

increased rainfall in July and August in southern Ghana. In contrast, rainfall is expected to 

decrease in most months, including the typically wet months of July, August, and September, 
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at both the Pwalugu and Yarugu gauge stations, consistent with the findings of Yeboah et al. 

(2022). The dry season, particularly from November to January (2020 - 2050), is projected to 

be much drier, potentially increasing the risk of drought at both stations. While increased 

rainfall from April to June may not offset the prolonged dry periods, the intensity of the rain 

could cause surface runoff and flooding, especially due to hardened soil that absorbs water 

slowly at these two locations.  

Additionally, historical temperature from the ACCESS-CM2 and ACCESS-ESM1-5 ensembles 

showed an annual rise in temperatures at the three gauge stations from 1985 to 2014. This 

confirms the findings of Kranjac-Berisavljevic (1999), cited in Klutse et al. (2020), who noted 

a rising temperature trend between 1931 and 1990 in Northern Ghana. Similarly, Frimpong et 

al. (2014) observed that the Bawku East district in the Northern region of Ghana experienced 

a yearly temperature increase of 0.075°C from 1961 to 2012, exceeding the southern average 

increase of 0.021°C per year, aligning with our findings. Higher temperatures (both annually 

and monthly) are expected to increase further up to the 2050s under the SSP5-8.5 scenario. 

Monthly temperatures are expected to rise as high as 2°C in December at Yarugu. These 

findings align with those of Klutse et al. (2020), who projected an increase in temperature in 

Northern Ghana under the RCP8.5 scenario. This could lead to higher evaporation rates, drier 

conditions, and reduced water availability, aligning with findings from Siabi et al. (2023) and 

Singh et al. (2023) in Asia. However, a warmer atmosphere capable of holding more moisture 

may result in more intense rainfall events and an increased risk of flooding.  

 

5.4.4 RF and LSTM Evaluation and Forecasting Future Streamflow under the SSP5-8.5 

Scenario  

The RF and LSTM models successfully simulated daily streamflow at three gauge stations, 

with RF showing slightly better performance at Pwalugu and Yarugu based on KGE scores. 

Monthly and daily streamflow analysis shows significantly drier conditions at the Yarugu and 

Pwalugu stations compared to Nawuni, partly due to differences in climatic zones. Streamflow 

is expected to increase during the early rainy season in April and May, and further from June 

to July at the Nawuni gauge station. This finding aligns with Dembélé et al. (2022), who 

projected an increase in flow in the Volta basin under the RCP8.5 scenario. The frequency of 

both floods and extreme floods is also projected to rise at all three gauge stations. These 

projections are also consistent with the findings of Dembélé et al. (2022). However, the 

frequency of dry days (drought) will increase significantly compared to wet days. Lower flows 

may stem from heightened evaporation due to warming, consistent with observations by Adib 
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& Harun (2022) and Singh et al. (2023) in Asia. Similarly, Awuni et al. (2023) and McCartney 

et al. (2012) projected a 24% drop in streamflow by 2050 and up to 45% by 2100 in Ghana, 

attributing this decline to reduced precipitation and rising heat. Floods and droughts during this 

period could have a significant impact on farmlands, groundwater, and irrigational facilities. 

These emphasize the need for water managers, including the Ghana Hydrological Authority 

(GHA) and the Water Resource Commission (WRC), to implement policies tailored to 

sustainable water management strategies, such as protecting groundwater reserves and 

upgrading irrigation infrastructure. It is also important to prevent overgrazing and promote 

cover cropping in the basin to protect the soil and reduce surface runoff. Moreover, the findings 

of this study are instrumental in advancing sustainable water management and strengthening 

climate resilience, particularly regarding droughts, floods, and extreme weather events. By 

facilitating timely early warning systems, the study contributes to mitigating the adverse 

impacts on agriculture, water resources, and climate adaptation efforts. It also contributes to 

reducing risks related to food security, water supply, public health, and economic stability, 

supporting progress toward key Sustainable Development Goals (SDGs) such as Zero Hunger, 

Clean Water and Sanitation, Sustainable Cities and Communities, Life on Land, and No 

Poverty. 

While climate change adds uncertainty to flood timing, model limitations may also affect the 

results. The use of GloFAS discharge data instead of direct observations, along with reliance 

on ensemble MRI-ESM2-0, INM-CM5-0, BCC-ESM2-MR, ACCESS-CM2, and ACCESS-

ESM1-5, could miss certain flood occurrences, affecting the broader applicability of findings. 

Despite these constraints, the study highlights the urgency of improving ground-based 

streamflow monitoring in the White Volta basin. Upgrades in irrigation systems, investment in 

water harvesting, and construction of sustainable dams are crucial. Pre-season waterway 

clearance and enhanced early warning systems will also be key to mitigating future flood and 

drought impacts.   

 

5.5 Summary 

This study employed RF and LSTM models to forecast streamflow at 1-, 5-, and 10-day lead 

times using a combination of CHIRPS rainfall, ERA5 temperature, CFSR soil moisture, 

evapotranspiration, and evaporation from bare soil and open water surfaces. Additionally, the 

models were used to predict streamflow from 2020 to 2050 under the SSP5-8.5 scenario. Future 

projections incorporated rainfall data from MRI-ESM2-MR, INM-CM5-0, and BCC-CSM2-

MR, and mean temperature data from ACCESS-CM2 and ACCESS-ESM1-5.  
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The results demonstrate the effectiveness of both RF and LSTM models in capturing the 

complex, nonlinear dynamics of streamflow in the White Volta basin. While the LSTM model 

showed superior performance in predicting peak and extreme flows, RF provided more stable 

long-term forecasts. Projections based on CMIP6 data under the SSP5-8.5 scenario indicate a 

warming trend through the 2050s, accompanied by shifting rainfall patterns. An increase in the 

onset of rainfall (April–June) is projected, followed by declines during the core rainy season 

(July–September) at the Pwalugu and Yarugu gauge stations, signalling increased drought risk. 

Conversely, an increase in rainfall during July and August at the Nawuni gauge station raises 

concerns about potential flood events. Forecasted streamflow patterns reflect the region's 

climatic variability, underscoring its growing hydrological uncertainty. Moreover, the analysis 

suggests that Pwalugu and Yarugu are likely to experience a higher frequency of both droughts 

and high-flow events compared to Nawuni, highlighting the need for localised and adaptive 

water resource strategies.  
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CHAPTER 6 

6 Conclusion and Recommendations 

6.1 Conclusion 

6.1.1 Flood Early Warning System: Opportunities and Challenges  

The study offers a comprehensive perspective on flood early warning systems (FEWS) by 

examining their opportunities and challenges in the White Volta basin of Ghana. The study 

draws on interviews with 18 respondents, including representatives from the Ghana 

Meteorological Agency (GMet), the Ghana Hydrological Authority (GHA), the National 

Disaster Management Organisation (NADMO), the Water Resources Commission (WRC), 

Extension officers, Assemblymen, and Community leaders. Using a qualitative case study 

approach and specifically thematic analysis, the study revealed a structured framework for 

FEWS in the basin, which shows promising strengths for flood risk management. Built around 

the myDEWETRA-VOLTALARM platform, it integrates various meteorological models to 

enhance real-time flood prediction. A notable strength is the collaborative framework involving 

national and international stakeholders such as NADMO, GMet, GHA, WRC, VBA, GWP-

WAF, and the CIMA Foundation, who share data, technical expertise, and resources. This 

cooperation boosts the system’s effectiveness. FEWS also excels in its multi-channel 

communication strategy, using social media, community radio, mobile vans, messengers, and 

SMS to distribute flood alerts. This approach ensures warnings reach diverse communities 

across.  

 However, the system faces several challenges that hinder its full potential. One major issue is 

the lack of integration of local knowledge. Communities in rural areas possess traditional 

ecological knowledge and can help in the management and mitigation of floods in the basin. 

Yet, this informal insight is often not incorporated into the formal system, weakening trust in 

official forecasts. Some residents rely on physical observations or information from 

neighbouring villages about rising levels of rivers and possible flood risk, which might not 

always be sustainable. FEWS also struggles with data limitations: frequent theft, inadequate 

funds, and poor maintenance of gauge stations have led to a shortage of in situ monitoring 

stations, and ground data crucial for accurate flood forecasting. The system further suffers from 

outdated technology, funding shortages, and weak inter-agency coordination. As a result, it 

often relies on global models like FANFAR and WRF, which, while useful for broader weather 

patterns, fail to capture the local flood dynamics of the basin due to a lack of high-resolution 

data and up-to-date ground streamflow measurements. To improve flood management, a multi-
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pronged strategy is needed. This includes enforcing existing policies like the White Volta Flood 

Hazard Assessment and the National Riparian Buffer Zone Policy (2011) to restrict settlement 

in high-risk flood zones. Regular river dredging, especially before the rainy season, is essential 

to improve water flow. Additionally, relocating vulnerable communities to higher ground and 

strengthening the capacities of response agencies through better logistics, motorboats, life 

jackets, and shelters are crucial. Long-term improvements require consistent funding and 

strong government support to build resilience and implement sustainable flood mitigation 

efforts and early warning systems. This effort should include expanding gauge stations and 

maintaining existing ones to ensure the adequate collection of ground streamflow data, which 

is important for developing early warning models and calibrating existing platforms like 

GloFAS, FANFAR, and others. These findings address the first specific objective of the study, 

which seeks to evaluate the current state of the FEWS in the White Volta basin. Through a 

qualitative stakeholder involvement, the study presents the positionality, highlighting key 

strengths and weaknesses of the existing FEWS and critical insights for improvement. 

 

6.1.2 Satellite and Reanalysis Data  Validation 

Faced with limited ground-based data in the White Volta basin and, specifically, the lack of 

observed meteorological data in hydrological gauge stations, this study validated the 

effectiveness of satellite and reanalysis data for predicting streamflow and floods. Precipitation 

and mean temperature data span from 1998 to 2019, and soil moisture data from 2019 to 2022. 

Data were obtained from a combination of sources, including the GMet, ISMN, and various 

satellite and reanalysis datasets such as CHIRPS, PERSIANN-CDR, ERA5, ARC2, MERRA-

2, TRMM, and CFSR. Gauge stations included Tamale, Wa, Walewale, Bawku, and Navrongo 

for both rainfall and temperature analysis. Gauge stations for soil moisture analysis included 

Bongo, Tamale, Pusiga, Navrongo, and Bimbilla. The accuracy of these datasets was assessed 

using statistical metrics, including SD, MAE, and MBE.   

CHIRPS emerged as the most accurate rainfall dataset, mimicking closely the observed data. 

Its high spatial resolution and regular calibration with station data allowed it to reliably capture 

rainfall patterns, particularly during the peak rainy season in August and September. This 

accuracy makes CHIRPS highly valuable for agricultural, hydrological planning, and water 

resource management in Northern Ghana. PERSIANN-CDR also performed well but showed 

some inconsistencies at the Tamale gauge station, indicating the importance of localised 

validation. TRMM, however, displayed significant errors during periods of intense rainfall, 

limiting its usefulness for detailed flood forecasting and water resource planning in the region. 
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For temperature, ERA5 proved to be the most reliable dataset, closely matching ground-based 

measurements at all five stations. Its advanced data assimilation techniques, which incorporate 

a wide range of observational inputs, contribute to its superior performance. In comparison, 

MERRA-2 consistently underestimated temperatures, suggesting limitations in its processing 

methods. The CFSR dataset showed high variability, reducing its suitability for accurate 

climate analysis. 

Regarding soil moisture, CFSR aligned most closely with ground-based ISMN data, 

particularly during the rainfall months from August to October. This makes it a strong candidate 

for streamflow simulations, flood forecasting, and agricultural applications. ERA5 also 

performed well in specific areas such as Navrongo, Bimbilla, and Pusiga, supporting its use in 

localised water resource and ecosystem planning. MERRA-2, however, significantly 

overestimated soil moisture, highlighting the need for bias correction or improved algorithms.  

The study offers practical recommendations for choosing appropriate datasets for streamflow 

and flood forecasting, climate change analysis, and water resource planning research in 

Northern Ghana. CHIRPS and PERSIANN-CDR are suitable for rainfall analysis, ERA5 is 

preferred for temperature studies, and both CFSR and ERA5 are reliable for soil moisture 

monitoring. These validated datasets can improve the accuracy of streamflow forecasts and 

flood risk assessments, which are essential for disaster preparedness, water resource 

management, and agricultural planning. Beyond immediate applications, the findings support 

the development of climate-responsive policies and infrastructure, especially in areas 

vulnerable to climate impacts. This study also establishes a benchmark for dataset validation 

in climate research and provides a framework that can be adapted to other geographic regions. 

Its insights are critical for strengthening climate resilience, guiding policy decisions, and 

ensuring sustainable management of water and agricultural resources in data-limited settings. 

As climate change continues to reshape weather and hydrological patterns, the use of accurate, 

context-specific data becomes increasingly vital for effective adaptation and long-term 

planning.  

These findings address the second objective of the study, seeking to validate satellite and 

reanalysis products with ground-based observations in the White Volta basin. Through robust 

statistical comparison, the study identified reliable datasets for training and building models in 

monitoring and forecasting floods. 
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6.1.3 Streamflow Forecasting Using Machine Learning for Flood Management and 

Mitigation   

This study focused on forecasting streamflow using ML models to manage and mitigate floods 

in the basin. Validated data, including CHIRPS rainfall, ERA5 temperature, and CFSR soil 

moisture, were used as input to train the RF and the LSTM, and forecast streamflow at 1, 5, 

and 10 days. Aside from these input data, models were also trained on evapotranspiration, 

evaporation from bare soil, and open waters obtained from the LISVAP model. Forecasts 

covered the period from 1985 to 2019 at the Nawuni and Pwalugu gauge stations, and from 

1990 to 2019 at the Yarugu gauge station.  

Both RF and LSTM models showed strong predictive performance, effectively capturing the 

complex, nonlinear interactions among hydrological variables, key to accurate forecasting. The 

RF model, with its ensemble of decision trees, reduced overfitting and improved prediction 

accuracy. Meanwhile, the LSTM model excelled at predicting peak and extreme flow events, 

even with a 10-day lead time, making it useful for early warning systems and emergency 

planning. The study also used streamflow exceedance probabilities, providing water managers 

with a practical tool to estimate flood risks and improve planning. By combining GloFAS 

reanalysis with observed streamflow data over 34 years (1985-2019), the model’s accuracy 

improved. However, forecast reliability declined with longer lead times, highlighting the need 

for continuous updates and integration of real-time data. This is especially important for long-

range forecasting in data-scarce regions like the White Volta basin.  

The LSTM and RF models were also trained using CMIP6 GCM projections under the SSP5-

8.5 scenario to forecast streamflow from 2020 to 2050. Rainfall data were sourced from BCC-

CSM2-MR, INM-CM5-0, and MRI-ESM2-0, while temperature data were from the ensemble 

of ACCESS-ESM1-5 and ACCESS-CM2. These CMIP6 datasets aligned well with historical 

CHIRPS and ERA5 observations. Future streamflow simulations showed both models 

accurately captured daily discharge patterns at the three gauge stations, with RF slightly 

outperforming LSTM at Nawuni and Pwalugu. The models projected drier conditions at Yarugu 

and Pwalugu, especially between July and October, but increased streamflow in April and May, 

likely due to earlier seasonal rains. The frequency of dry days is expected to rise, outpacing 

floods and extreme flood events. These findings point to an urgent need for climate-responsive 

water policies and infrastructure investments. These measures are critical for adapting to the 

projected impacts under the SSP5-8.5 scenario, as outlined in the research hypothesis. Effective 

adaptation strategies should also include groundwater protection, expanded irrigation, erosion 

control through cover cropping, and construction of water retention structures. Strengthening 
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early warning systems and maintaining river channels seasonally are also key to minimising 

flood impacts.  

Overall, this research confirms the effectiveness of both shallow (RF) and deep learning 

(LSTM) models in forecasting streamflow in the basin.  Their compatibility with open-source 

data makes them scalable for other data-limited regions. The model’s high short- and long-term 

accuracy supports better flood preparedness and drought planning. As climate change drives 

rising temperatures and shifts in rainfall patterns, proactive water management, resilient 

infrastructure, and climate-smart agriculture are essential. While surrogate data introduced 

some uncertainty, future research should aim to reduce this and expand inputs, such as satellite-

derived vegetation data, to further improve predictions.  

These findings address the third specific objective of the study: to predict and evaluate 

streamflow using a shallow model (RF) and a deep learning model (LSTM) for flood mitigation 

and management in the White Volta basin. The study provides robust, data-driven models for 

monitoring streamflow and managing floods as well as droughts in data-scarce regions.  

 

6.2 Significance of the Study  

The study highlights the importance of providing a comprehensive outlook on flooding in the 

White Volta basin of  Ghana by examining the state of  FEWS, alternative satellite and 

reanalysis data, and the potential of incorporating machine learning models to forecast 

streamflow for improved flood management and mitigation in the basin.  

The state of FEWS in the basin unravels why it continues to face persistent floods yearly. 

Fundamental issues such as a lack of real-time data, limited public trust in warnings, 

insufficient monitoring infrastructure, outdated technology, and poor inter-agency coordination 

offer critical insights into why existing flood warning mechanisms have failed to protect 

vulnerable communities sufficiently. Moreover, the disconnection between formal monitoring 

tools built around the myDEWETRA-VOLTALARM and the absence of community 

involvement in these frameworks undermines the effectiveness of early warnings in the basin. 

Consequently, the study proposes solutions that are important for an active FEWS in the basin, 

capable of reducing the impact of floods and enhancing preparedness and mitigation efforts. 

Centred around improved real-time and ground-based data collection, enhanced community 

engagement, stronger institutional collaboration, and sustainable financing models. It provides 

policymakers and disaster management agencies with evidence-based directions for reforming 

FEWS systems, ultimately aiming to reduce flood impacts, improve livelihoods, and enhance 
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climate resilience across Ghana and comparable contexts. As such, the study fills a vital 

knowledge gap in understanding the socio-technical dimensions of disaster risk reduction in 

Africa. 

This study validates open-source data, rainfall, temperature, and soil moisture. It also uses RF 

and LSTM models to forecast streamflow at 1, 5, and 10-day intervals, as well as from 2020 to 

2050 under the SSP5-8.5 climate scenario. The results of this study will help researchers, 

hydrologists, and policymakers identify reliable datasets that improve the accuracy of 

hydrological models and EWS, particularly in areas with limited ground-based observations. 

The study offers a data-driven framework for predicting floods, extreme floods, and droughts. 

For water managers in the basin, this presents scalable alternatives for building EWS vital for 

flood and drought response. Because the framework relies on open-source data, it is valuable 

in data-scarce regions like the White Volta. The forecasts also highlight how climate change 

may alter rainfall and streamflow patterns, insights that are crucial for agricultural extension 

officers and farmers seeking to plan, adopt cover crops or drought-resistant varieties, and invest 

in irrigation to manage climate risks. More broadly, the findings of this study play a crucial 

role in promoting sustainable water resource management and enhancing climate resilience, 

especially in the face of droughts, floods, and other extreme weather events. By enabling more 

effective EWS, the study helps reduce negative impacts on agriculture, water supply, and 

climate adaptation strategies. It also contributes to lowering risks related to food security, water 

access, public health, and economic stability, thereby supporting progress toward key 

Sustainable Development Goals (SDGs) such as Zero Hunger, Clean Water and Sanitation, 

Sustainable Cities and Communities, Life on Land, and No Poverty.  

 

6.3 Study Limitation 

Local weather and gauge station observations typically provide the most reliable 

meteorological and hydrological time series for such studies. However, in this case, the 

available observation stations were inadequately distributed and had incomplete records. As a 

result, the study relied on alternative meteorological and hydrological datasets, including 

CHIRPS, ERA5, CFSR, and GloFAS discharge data. The use of these surrogate datasets, 

however, introduces the risk of overestimating or underestimating actual rainfall, temperature, 

soil moisture, and discharge levels. Such inaccuracies could significantly affect the final 

streamflow predictions generated by ML models like RF and LSTM networks.   
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6.4 Recommendation for Further Research 

Future research could further examine the potential for enhancing local community 

engagement in flood monitoring and response efforts. While local knowledge plays an 

important role in flood risk identification, there is a need to understand how this knowledge 

can be systematically integrated into formal FEWS frameworks.  

The importance of vegetation and land cover data in hydrological studies, particularly 

streamflow and flood predictions, must be considered. Vegetation provides significant 

resistance to water flow through processes like interception in the hydrological cycle. The 

absence of land use/land cover data in this study is a limitation that should be addressed in 

future research to enhance the accuracy of hydrometeorological models.  

This study did not fully address the uncertainty associated with surrogate data. Future work 

should incorporate models that explicitly account for both forecast uncertainty and the 

limitations of surrogate inputs. Ongoing research should focus on sensitivity analysis and 

feature importance methods that consider time-lagged variables, aiming to improve model 

interpretability in data-scarce regions. Furthermore, integrating satellite-derived vegetation 

indices can enhance model accuracy by providing valuable information on land cover dynamics 

and plant transpiration. Further research could also account for anthropogenic impacts, 

including dam operations, irrigation, land use changes, and sediment transport, which were not 

explicitly addressed in this study. These provide insights in regions where human activity and 

geomorphic processes significantly affect streamflow, particularly in urban areas.  

 

6.5 Recommendation for Policy Directions  

A key area to ensure that future forecasts are accurate is to invest in real-time data 

infrastructure. Outdated models and the limited availability of automatic weather stations and 

telemetric systems undermine the accuracy of flood predictions. Expanding the monitoring 

network with modern data collection technologies would enable more localised and timely 

data, significantly improving the predictive capability of FEWS. This should be coupled with 

integrating advanced technologies such as artificial intelligence and machine learning, which 

enhance data processing and forecasting accuracy. 

Community engagement must also be strengthened through an inclusive, bottom-up approach. 

Local communities possess valuable ecological knowledge that, when incorporated into formal 

predictive models, can improve the relevance and trustworthiness of flood warnings. Training 



115 
 

and capacity-building programs should empower these communities to actively participate in 

monitoring and preparedness efforts. 

Improving communication infrastructure in rural areas is critical, as many vulnerable 

communities lack access to timely flood warnings due to unreliable networks. Investments in 

satellite-based communication systems and low-cost, localised warning mechanisms would 

ensure that even remote areas receive alerts promptly. Additionally, addressing bureaucratic 

inefficiencies and improving coordination among agencies such as NADMO, GMet, and GHA 

are essential. Establishing clear protocols for data sharing and decision-making can reduce 

delays in flood response and ensure agencies have access to real-time information. 

Given the increasing threat of climate change and the rising frequency and intensity of floods, 

FEWS must adapt to a rapidly evolving environment. This will require sustained investment in 

ground data collection and EWS, stronger inter-agency cooperation, and dedicated efforts to 

build local capacity for flood risk management.  

The White Volta basin is a predominantly agricultural region, which makes it highly vulnerable 

to the impacts of intensified droughts and floods. These conditions pose a significant threat to 

food security. Given that farming is the main economic activity in the basin, the increasing 

frequency and severity of droughts and floods heighten the risk of food shortages. It is therefore 

crucial to implement policies that focus on expanding irrigation infrastructure, promoting 

afforestation, planting drought-resistant vegetation, and curbing deforestation. Policies should 

particularly support domestic and local rainwater harvesting to reduce flood risks and improve 

drought resilience.   
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Appendix 

Appendix A.1 

Evaluating the effectiveness of frameworks for flood early warning (FEW) in the White Volta 

basin, Northern Ghana. 

Demographic Information: 

1. Which organization are you affiliated with? 

a. National Disaster Management Organization (NADMO) 

b. Ghana Hydrological Authority (GHA) 

c. Ghana Meteorological Agency (GMet) 

d. Volta River Authority (VRA) 

e. Water Resources Commission (WRC) 

f. Water Research Institute (WRI) 

g. West African Science Service Center on Climate Change and Adapted Land Use 

(WASCAL) 

h.      Others: Please, specify other affiliation? 

  

2. What is your role or affiliation related to flood management in the White Volta basin, 

Northern Ghana? 

a. Government official responsible for flood management policies or implementation. 

b. Local or regional administrator overseeing flood mitigation efforts. 

c. Environmental or water resource management agency staff. 

d. Community leader or representative from a flood-prone area. 

e. Civil engineer or infrastructure planner involved in flood protection projects. 

f. Emergency response or disaster management personnel. 

g.         Others, please specify? 

  

3. How many years of experience do you have in flood monitoring and management? 

a.         Less than 1 year 

b. 1-3 years 

c. 4-6 years 

d. 7-10 years 

e. More than 10 years 

Flood risk assessment: 
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4. Can you identify specific regions or communities prone to flooding within the White 

Volta basin? 

  

5. What are the typical characteristics of these Communities? 

a. Urban areas near rivers or streams 

b. Low-lying agricultural plains 

c. Communities located downstream from dams or reservoirs 

e.          Others, Please specify other characteristics of these communities? 

  

6. What is the typical amount of rainfall required to trigger flooding in the identified 

vulnerable areas? 

a.         Less than 20 mm in 24 hours 

b. 20-100 mm in 24 hours 

c. More than 100 mm in 24 hours 

d. Others, can you specify others? 

  

7. What critical infrastructure exists within flood-prone zones? 

a. Schools 

b. Hospitals 

c. Roads and bridges 

d. Agricultural fields 

e.         Others, can you specify other critical infrastructures? 

  

8. What are the gaps or limitations in the availability of relevant data for flood risk 

assessment?  

a.        Limited availability of real-time data. 

b. Incomplete historical data records. 

c. Lack of access to satellite or remote sensing data. 

d. Insufficient data on localized weather patterns. 

e. Issues with data quality and reliability. 

f. Lack of data sharing among relevant agencies. 

g. Inadequate funding for data collection and maintenance. 

h. Others, Please specify other gaps. 
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Monitoring and Forecasting: 

9. Are you into monitoring floods and streams (rivers) in the White Volta basin? 

a. Yes 

b. No 

 If yes, could you answer question 10-14 

10a. Do you monitor rainfall pattern to issue flood early warning in the White Volta basin?  

a. Yes 

b. No 

If yes, please specify the sources of this data? 

10b. Do you monitor storms pattern to issue flood early warning in the White Volta basin? a. 

Yes 

b. No 

If yes, please specify the sources of this data. 

  

10c. Do you monitor soil moisture pattern to issue flood early warning in the White Volta basin? 

a. Yes 

b. No 

If yes, please specify the sources of data. 

 

10d. Do you monitor Water levels/discharge/runoff of streams/rivers/dams to issue flood early 

warning in the White Volta basin? 

a. Yes 

b. No 

If yes, please specify the sources of this data. 

  

10e. Do you monitor Wind speed and direction to issue flood early warning in the White Volta 

basin?  

a.       Yes 

b.        No 

If yes, please specify the sources of data. 

  

10f. If there are other data used, can you specify these data and their sources? 

  

11. Are you monitoring and forecasting floods based on model(s)? 
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a.        Yes 

b. No 

12. If yes, could you specify this model(s)/system? 

a. Global Flood Awareness System (GloFAS) 

b. Global Flood Monitoring (GFM) 

c. Soil & Water Assessment Tool (SWATS) models 

d. Hydrologic Modeling System (HEC-HMS) 

e. Others, Please specify other models? 

  

12a. If No, how you monitor and forecast floods? 

  

13. Are your monitoring and forecasting models supported by Artificial Intelligence (AI)? 

a.        Yes 

b. No 

14. If Yes, please specify. 

  

Communication of Hazards: 

15. Who are the primary stakeholders or agencies you communicate with before, during, 

and after flood events? 

a.         Local government agencies (Assembly) 

b. National Disaster Management Organization (NADMO) 

c. Water Resources Commission (WRC) 

d. Chiefs 

e. Ghana Hydrological Authority (GHA) 

f. Media 

g. Ghana Meteorological Agency (GMet) 

h. Others 

Please specify other stakeholders and agencies you communicate with? 

  

16. How much lead time is used in warning individuals and communities about impending 

floods? 

a.        Less than 6 hours 

b. 6-12 hours 

c. More than 12 hours 
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d. Others 

Please specify other lead time? 

  

17. Do you see flood damage reduction as a function of lead time? 

a.        Yes 

b. No 

c. Not sure 

18. If Yes, can you give an example? 

  

19 a.What communication channels do you use to disseminate flood warnings to the public?  

a.         Cellular alerts 

b. Broadcast TV or radio/telephone 

c. Information sharing by person 

d. Sirens 

e. Social media 

f. Information vans 

g. Others 

Please specify if there are other channels of communication. 

  

19 b. How effective are these channels in reaching vulnerable populations? 

a. Very Effective 

b. Effective 

c. Somewhat effective 

d. Not very effective 

e. Not effective at all 

20. What are the designated evacuation routes for communities at risk of flooding? 

a. Main highways 

b. Local roads 

c. Footpaths or trails 

d. River embankments 

e. Others, Please specify other designated evacuation routes for communities at risk of 

flooding? 
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21. What are the established emergency response plans specifically tailored to flood 

events? 

  

22. How regular are these plans updated and tested? 

a. Updated and tested monthly 

b. Updated and tested quarterly 

c. Updated and tested annually 

d. Updated and tested every 2 or more years 

e. Rarely or never updated and tested 

23. How do different stakeholders (government agencies, NGOs, local communities) 

collaborate in flood risk assessment and management? 

a. Interagency task forces 

b. Local government forums 

c. NGO-led workshops 

d. Community meetings 

e. Others, Please specify other means of collaborations. 

  

24/25. What are the platform(s) for sharing information and coordinating flood response efforts 

among various actors? 

  

26. To what extent are local communities involved in identifying flood risks and developing 

mitigation strategies? 

a.        High involvement 

b. Moderate involvement 

c. Limited involvement 

d. No involvement 

e. others, Please specify others. 

  

27. Are there community-based initiatives aimed at enhancing flood resilience and 

preparedness? 

a.         Participatory mapping exercises 

b. Community awareness campaigns 

c. Volunteer flood response teams 

d. Community-based flood monitoring networks 
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e. Others, Please specify other community-based initiatives aimed at enhancing flood 

resilience and preparedness? 

  

28. How do you ensure that the general public receives timely and accurate flood warnings? 

a.         Public education campaigns 

b. Community outreach programs 

c. Integration with existing emergency alert systems 

d. Others, Please specify other means of ensuring that the general public receives timely 

and accurate flood warnings? 

  

29. What are the challenges faced in communicating flood hazards? 

a. Limited resources 

b. Language barriers 

c. Technological limitations 

d. Community engagement 

e. Others, Please specify other challenges faced in communicating flood hazards? 

  

Response to Flood Hazards: 

30. What pre-planned actions or protocols are in place for responding to different flood 

scenarios? 

a.          Evacuation procedures 

b. Shelter locations 

c. Emergency service deployment 

d. Road closures 

e. Others, Please specify other pre-planned actions or protocols in place for responding to 

different flood scenarios? 

  

31. How do you coordinate emergency response efforts with various agencies and 

organizations? 

a.         Interagency agreements 

b. Emergency operation centers 

c. Mutual aid agreements 

d. Joint training exercises 
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e. Others, Please specify other means you coordinate emergency response efforts with 

various agencies and organizations? 

  

32. What are the specific resources or infrastructure dedicated to flood response in your 

organisation? 

a.         Flood barriers 

b. Rescue equipment 

c. Emergency shelters 

d. Medical facilities 

e. Others 

33. Please specify other resources or infrastructure dedicated to flood response in your 

organisation. 

  

34. How do you ensure the safety and well-being of residents during flood events? 

a. Public awareness campaigns 

b. Evacuation shelters 

c. Search and rescue operations 

d. Emergency medical services 

e. Others 

Please specify other means you ensure the safety and well-being of residents during flood 

events? 

  

Evaluation and Improvement: 

35. Following a flood event, what process do you follow to evaluate the effectiveness of your 

flood warning system? a. Post-event debriefings 

b. Data analysis 

c. Stakeholder ( eg. affected community) feedback 

d. After-action reports 

e. Others, Please specify other process you follow to evaluate the effectiveness of your 

flood warning system? 

  

36. Have any changes or improvements been made to the system based on past flood 

events? 

a.         Yes 
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b. No 

c. Not sure 

37. If yes, could you mention these improvements? 

  

38. How do you gather feedback from stakeholders and the community regarding the 

performance of the flood warning system? 

a. Surveys 

b. Public meetings 

c. Focus group discussions 

d. Online feedback forms 

e. Others, Please specify other means you gather feedback from stakeholders and the 

community regarding the performance of the flood warning system? 

  

39. What measures are in place to ensure continuous improvement and adaptation of the 

flood warning system over time? 

a. Regular system audits 

b. Technology upgrades 

c. Training and capacity building 

d. Collaboration with research institutions 

e. Others, Please specify other measures in place to ensure continuous improvement and 

adaptation of the flood warning system over time? 

  

Open-ended Questions on the state of existing framework for managing floods. 

1. What strategies does your organization use to monitor floods in the White Volta basin, 

Northern Ghana? 

   

2. How directly are you or your organization involved in developing and implementing 

these strategies? 

   

3. Who are the main stakeholders involved in the implementation and management of 

these frameworks/strategies? 

   

4. Can you mention specific tools or technologies utilized for flood monitoring and 

management within these frameworks/strategies? 
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5. How adequate are the existing facilities and resources for flood monitoring and 

management in the White Volta basin? 

   

6. In your opinion, what strategic initiatives should be prioritized to strengthen the overall 

effectiveness of the flood management framework in the White Volta? 

  

7. Can you mention emerging technologies or approaches that could strengthen flood 

monitoring and management efforts in the White Volta basin, Northern Ghana? 

  

8. How do varying lead times impact your ability to manage resources, protect 

infrastructure, communicate with the public, and minimize economic losses during flood 

events? Please share detailed experiences and any innovative solutions your agency has 

implemented to address these challenges." 

   

Summary of the State of Flood Management 

1. How do you perceive the current effectiveness of flood warning systems within the 

White Volta basin, considering the variables monitored and the communication channels 

utilized? 

  

2. Could you elaborate on any specific challenges or limitations encountered in obtaining 

and utilizing data for flood risk assessment and early warning systems? 

  

3. In what ways do you see local communities actively contributing to flood risk 

identification, mitigation strategies, and emergency response efforts within the region? 

  

4. Can you provide insights into the collaboration dynamics among various stakeholders, 

including government agencies, NGOs, and local communities, in addressing flood risks and 

managing responses? 

  

5.  Following past flood events, what key lessons have been learned, and how have these 

lessons influenced the ongoing improvement and adaptation of flood warning systems and 

emergency response protocols? 
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Appendix A.2 

Table A.2.1: Summary of the GMet (observed) and satellite/reanalysis rainfall data from 1998 

to 2019.  

Variable Min Max Mean Std Dev 

GMet-Bawku (observed) 0 81 2.48 6.33 

ARC2-Bawku 0 157.41 2.47 6.24 

CHIRPS-Bawku 0 81.42 2.59 6.3 

ERA5-Bawku 0 108.76 1.85 4.97 

PERS-Bawku 0 59.23 2.6 5.43 

TRMM-Bawku 0 44.12 0.91 2.84 

GMet-Navrongo (observed) 0 116 2.62 8.6 

CHIRPS-Navrongo 0 76.63 2.7 6.6 

ERA5-Navrongo 0 104.3 2.08 5.33 

PERS-Navrongo 0 58.38 2.69 5.58 

TRMM-Navrongo 0 45.01 0.91 2.91 

ARC2-Navrongo 0 157.41 2.47 6.23 

GMet-Tamale (observed) 0 120.3 2.9 8.88 

CHIRPS-Tamale 0 67.49 3.07 6.41 

ERA5-Tamale 0 166.31 2.43 6.1 

PERS-Tamale 0 58.2 2.98 5.53 

TRMM-Tamale 0 40.56 0.98 2.9 

ARC2-Tamale 0 144.76 2.47 6.3 

GMet-Wa (observed) 0 142.4 2.83 8.34 

CHIRPS-Wa 0 49.07 2.72 5.8 

ERA5-Wa 0 116.94 2.47 5.5 

PERS-Wa 0 55.98 3.03 5.73 

TRMM-Wa 0 35.57 0.97 2.84 

ARC2-Wa 0 127.42 2.61 6.47 

GMet-Walewale (observed) 0 164.9 2.66 8.07 

CHIRPS-Walewale 0 54.04 2.71 6.07 

ERA5-Walewale 0 102.38 2.19 5.22 

PERS-Walewale 0 48.82 2.81 5.54 

TRMM-Walewale 0 38.07 0.92 2.77 
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ARC2-Walewale  0 99.22 2.55 6.16 

 

Table A.2.2: Summary of the GMet (observed) and the reanalysis mean temperature data 

from 1998 to 2019.  

Variable Min Max Mean Std Dev 

GMet-Bawku (observed) 21.23 36.94 28.9 2.67 

ERA5-Bawku 20.89 36.68 28.89 2.74 

MERRA-Bawku 17.53 35.28 27.09 2.65 

CFSR-Bawku 19.89 37.79 29.36 3.38 

GMet-Navrongo (observed) 21.8 36.95 29.22 2.6 

ERA5-Navrongo 21.37 36.45 28.67 2.72 

MERRA-Navrongo 19.18 36.67 27.7 2.93 

CFSR-Navrongo 19.53 37.67 28.76 3.32 

GMet-Tamale (observed) 22.25 36.05 28.77 2.5 

ERA5-Tamale 23.29 35.56 28.81 2.46 

MERRA-Tamale 18.67 34.74 27.36 2.3 

CFSR-Tamale 20.65 36.1 28.39 3.11 

GMet-Wa (observed) 21.75 35.1 28.42 2.36 

ERA5-Wa 21.61 34.88 27.97 2.43 

MERRA-Wa 19.26 34.96 27.34 2.48 

CFSR-Wa 20.36 36.31 28.22 3.15 

GMet-Walewale (observed) 22.65 36.44 29.25 2.61 

ERA5-Walewale 22.39 36.56 29.02 2.69 

MERRA-Walewale 17.83 35.36 27.24 2.72 

CFSR-Walewale 20.37 37.83 28.81 3.33 

 

Table A.2.3: Summary of the ISMN (observed) and the reanalysis soil moisture from 2019 to 

2022. 
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Appendix A.3 

Table A.3.1: Summary of data used in training the LSTM and the RF model for forecasting 

streamflow at 1, 5, and 10 day ahead.   

Variable Min Max Mean Std Dev 

Rainfall-Nawuni  0 87.85 2.91 6.46 

Mean_Temp-Nawuni  22.5 35.87 28.69 2.5 

Soil Moisture- Nawuni 0.03 0.33 0.1 0.06 

eo-Nawuni  0.34 8.47 5.51 1.21 

es-Nawuni  0.27 8.17 5.12 1.17 

et-Nawuni  0.22 8.16 4.85 1.17 

Target_observed-Nawuni  0 3677.12 267.59 464.37 

Variable Min Max Mean Std Dev 

ISMN-Bimbilla (observed) 0.06 0.32 0.16 0.09 

ERA5-Bimbilla 0.12 0.43 0.26 0.1 

MERRA-Bimbilla 0.35 0.89 0.59 0.12 

CFSR-Bimbilla 0.04 0.27 0.09 0.06 

ISMN-Bongo (observed) 0.07 0.3 0.14 0.07 

ERA5-Bongo 0.11 0.48 0.23 0.1 

MERRA-Bongo 0.23 0.94 0.55 0.18 

CFSR-Bongo 0.03 0.27 0.07 0.05 

ISMN-Navrongo (observed) 0.06 0.41 0.14 0.09 

ERA5-Navrongo 0.11 0.46 0.22 0.1 

MERRA-Navrongo 0.15 0.88 0.47 0.19 

CFSR-Navrongo 0.03 0.26 0.07 0.05 

ISMN-Tamale (observed) 0.08 0.3 0.16 0.06 

ERA5-Tamale 0.14 0.47 0.26 0.11 

MERRA-Tamale 0.24 0.8 0.49 0.12 

CFSR-Tamale 0.03 0.3 0.09 0.06 

ISMN-Pusiga (observed) 0.1 0.36 0.17 0.07 

ERA5-Pusiga 0.15 0.48 0.24 0.1 

MERRA-Pusiga 0.29 0.88 0.54 0.14 

CFSR-Pusiga  0.03 0.3 0.08 0.05 
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Rainfall-Pwalugu  0 67.03 2.77 6.39 

Mean_Temp-Pwalugu  21.35 36.48 28.71 2.68 

Soil_moisture-Pwalugu  0.03 0.32 0.1 0.07 

e0-Pwalugu  0.22 8.97 5.66 1.23 

es-Pwalugu  0.19 8.64 5.26 1.21 

et-Pwalugu  0.17 8.51 5 1.23 

Target_observed-Pwalugu  0 2326.48 109.18 195.74 

Mean_Temp-Yarugu  20.95 36.66 28.75 2.7 

Rainfall-Yarugu  0 80.67 2.61 6.21 

Soil_Moisture-Yarugu  0.03 0.31 0.09 0.06 

e0-Yarugu  0.46 9.17 5.75 1.22 

es-Yarugu  0.42 8.84 5.36 1.2 

et-Yarugu  0.34 8.69 5.1 1.21 

Target_observed-Yarugu  0 1781.7 87.12 147.2 

 

Table A.3.2: Summary of the CHIRPS (observed) and the GCMs-CMIP6 rainfall data.   

Variable Min Max Mean Std Dev 

CHIRPS-Nawuni (observed) 0 87.85 2.91 6.44 

ACCESS-CM2-Nawuni 0 61.73 2.15 4.74 

BCC-CSM2-MR-Nawuni 0 377.98 3.2 15.16 

INM-CM5-0-Nawuni 0 111.47 2.22 6.01 

MIROC6-Nawuni 0 295.14 5.28 14.73 

MRI-ESM2-0-Nawuni 0 50.19 2.19 4.31 

CHIRPS-Pwalugu (observed) 0 67.03 2.76 6.39 

ACCESS-CM2-Pwalugu 0 59.9 1.62 4 

BCC-CSM2-MR-Pwalugu 0 268.24 2.51 12.89 

INM-CM5-0-Pwalugu 0 146.24 1.72 5.38 

MIROC6-Pwalugu 0 296 4.52 15.13 

MRI-ESM2-0-Pwalugu 0 70.9 2.08 4.25 

CHIRPS-Yarugu (observed) 0 80.67 2.59 6.22 

ACCESS-CM2-Yarugu 0 59.9 1.62 4 

BCC-CSM2-MR-Yarugu 0 268.24 2.51 12.89 

INM-CM5-0-Yarugu 0 146.24 1.72 5.38 
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MIROC6-Yarugu 0 296 4.52 15.13 

MRI-ESM2-0-Yarugu 0 70.9 2.08 4.25 

 

Table A.3.3: Summary of the ERA5 (observed) and the GCMs-CMIP6 mean temperature 

data.   

Variable Min Max Mean Std Dev 

ERA5-Nawuni (observed) 22.5 35.87 28.59 2.49 

ACCESS-CM2-Nawuni 18.01 36.78 29.39 2.16 

ACCESS-ESM1-5-Nawuni 19.08 37.04 28.58 2.56 

ERA5-Pwalugu (observed) 21.35 36.44 28.62 2.67 

ACCESS-CM2-Pwalugu 16.04 38.8 30.28 2.51 

ACCESS-ESM1-5-Pwalugu 19.08 37.04 28.58 2.56 

ERA5-Yarugu (observed) 20.95 36.5 28.62 2.72 

ACCESS-CM2-Yarugu 16.04 38.8 30.28 2.51 

ACCESS-ESM1-5-Yarugu 17.14 38.03 28.8 3.1 

 

Table A.3.4: Summary of data used in training the LSTM and the RF model for forecasting 

future streamflow.   

Variable Min Max Mean Std Dev 

Rainfall-Nawuni 0 304.41 2.63 7.95 

Mean_Temp-Nawuni 18.01 37.04 28.78 2.47 

Target_observed-Nawuni 0 2354.98 250.21 422.78 

Rainfall-Pwalugu 0 268.24 2.51 12.89 

Mean_Temp-Pwalugu 16.04 37.04 28.79 2.57 

Target_observed-Pwalugu 0 1474.73 98.7 167.23 

Rainfall-Yarugu 0 268.24 2.66 13.65 

Mean_Temp-Yarugu 16.04 38.03 29.38 2.75 

Target_observed-Yarugu 0 1326.68 78.71 120.66 
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Figure A.3.1: 𝑅2 of observed data with rainfall ensemble at Nawuni and BCC-CSM2-MR at 

Pwalugu and Yarugu gauge stations.   

 

Figure A.3.2: 𝑅2 between the observed data and the ensemble temperature data at the three 

gauge stations.   

 

 Figure A.3.3: The loss functions recorded by the LSTM for the three gauge stations during the 

training and testing.  
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Figure A.3.4: Exceedance probability recorded by the predicted streamflow using the random 

forest model for the three gauge stations in the testing phase.    

 

Figure A.3.5: Exceedance probability recorded by the predicted streamflow using the LSTM 

model for the three gauge stations in the testing phase. 
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Figure A.3.6:  Monthly average evapotranspiration recorded from 1979 - 2019.  

 

 

Figure A.3.7:  Monthly average evaporation from open waters recorded from 1979 - 2019.  
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Figure A.3.8: Monthly average evaporation from bare soil recorded from 1979 - 2019.  
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Figure A.3.9: Q90, Q10, and Q01 recorded by simulated and actual streamflow in the testing 

period.  
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Figure A.3.10: 𝑅2 between the observed streamflow and the predicted Random Forest (RF) and 

Long Short-Term Memory (LSTM) from 1985 to 2014.   
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Figure A.3.11: MAE of the simulated streamflow from the LSTM model under different epoch 

and batch size configurations at the Nawuni gauge station.  

 

 

Figure A.3.12: MAE of the simulated streamflow from the RF model under different tree 

configurations at the Nawuni gauge station.   
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Figure A.3.13: Return period estimated across the three gauge stations.   
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