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Abstract: Agro-ecosystem models are useful tools to assess crop diversification strategies
or management adaptations to within-field heterogeneities, but require proper simulation
of soil water dynamics, which are crucial for crop growth. To simulate these, the model
requires soil hydraulic parameter inputs which are often derived using pedotransfer func-
tions (PTFs). Various PTFs are available and show varying performance; therefore, in this
study, we calibrated and validated an agro-ecosystem model using the Hypres PTF and
the German Manual of Soil Mapping approach and adjusting bulk density for the top- and
subsoil. Experimental data were collected at the “patchCROP” landscape laboratory in
Brandenburg, Germany. The daily volumetric soil water content (SWC) at 12 locations
and above ground biomass at flowering were used to evaluate model performance. The
findings highlight the importance of calibrating agro-ecosystem models for spatially hetero-
geneous soil conditions not only for crop growth parameters, but also for soil water-related
processes—in this case by PTF choice—in order to capture the interplay of top- and espe-
cially subsoil heterogeneity, climate, crop management, soil moisture dynamics and crop
growth and their variability within a field. The results showed that while the impact of bulk
density was rather small, the PTF choice led to differences in simulating SWC and biomass.
Employing the Hypres PTF, the model was able to simulate the climate and seasonal crop
growth interactions at contrasting soil conditions for soil moisture and biomass reasonably
well. The model error in SWC was largest after intense rainfall events for locations with
a loamy subsoil texture. The validated model has the potential to be used to study the
impact of management practices on soil moisture dynamics under heterogeneous soil and
crop conditions.

Keywords: process-based crop model; pedotransfer function; within-field heterogeneity;
soil water content

1. Introduction
Achieving sustainability in agriculture requires innovative cropping systems that

promote the delivery of ecosystem services (ESS) and enhance biodiversity, while increasing
or maintaining crop productivity [1]. Aiming to increase sustainability, crop diversification
has been proposed as one path to transform agricultural systems [2,3]. Additionally, small
field arrangements adapted to heterogeneous soil conditions could have benefits in the
delivery of ESS and biodiversity [4–7]. Soil heterogeneities regarding, e.g., soil texture,
soil horizon depths, soil organic carbon (SOC) and resulting soil moisture, can lead to
small scale variability of crop growth and yield formation [8,9]. With precision farming
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and digital technologies gaining traction, management (e.g., fertilization, crop allocation)
can be adjusted to within-field soil heterogeneities [10]. Nutrient dynamics are highly
dependent on soil moisture and soil temperature, as well as the soil’s clay content [11,12].
Managing these spatial differences could lead to improved resource use efficiency in terms
of fertilizer input. Since experiments to adjust and improve crop allocation or fertilization to
site-specific soil conditions would require substantial effort, agro-ecosystem models could
serve as a tool to test the impact of these approaches on crop productivity by capturing crop
interactions under heterogeneous soil conditions [13–16]. Additionally, agro-ecosystem
models can be useful tools to assess the combined effect of management and climate on
agricultural production, as well as the delivery of ESS and biodiversity [17–20]. To achieve
this, location-specific processes that drive crop growth need to be captured by the models.

As weather patterns are mostly stable within the field, the driving factors for within-
field heterogeneity are the soil conditions [21,22], which impact water and nutrient dynam-
ics. Drainage processes in point-based models can be simulated with a relatively simple
“tipping-bucket” approach or based on more complex Darcy’s or Richards’ equations that al-
low a continuous representation of water movement [20]. Models focusing on crop growth
simulations (WOFOST, DSSAT, APSIM, STICS, MONICA) often work with conceptual ap-
proaches like the tipping-bucket approach to simulate soil water dynamics [23]. It has been
debated that the use of conceptual approaches introduces unnecessary empiricism when
more physics-based approaches could be used [24]. While there have been studies coupling
(physics-based) hydrological and crop models [25], the physics-based models require sub-
daily time steps and have higher computational requirements [26]. Following this debate,
Vianna et al. tested how soil moisture prediction was affected by the model structure and
data detail, and found both the Richards’ equation and tipping-bucket model approach
to perform similarly well, with only a slight improvement when using the physics-based
model [27]. Additionally, Longo et al. found a tipping-bucket-based approach to be suffi-
cient at deep groundwater tables [28]. Similarly, Soldevilla-Martinez et al. [29] compared
the DSSAT model, which incorporates a tipping-bucket approach with the more mech-
anistic Richard’s equation-based WAVE model, and found that both models performed
well for simulating the soil water content, while WAVE showed a better simulation of
drainage. To initialize and parametrize soil water balance models, additional information
about soil hydraulic properties is needed, which can be challenging to measure in the
field for multiple locations. Therefore, pedotransfer functions (PTFs) are commonly used
to translate more readily available soil data into soil hydraulic properties [30]. Weiher-
müller et al. differentiated between continuous, equation-based PTFs, which require soil
particle size distribution, organic carbon and bulk density; and class-based PTFs, which
are based on, e.g., soil textural class [31]. Various continuous PTFs have been developed,
focusing on specific regions to account for similar pedogenetic factors and, consequently,
soil conditions [32–34], and have shown varying performances [35–37]. Rosso et al. tested
how the simulation of SWC was impacted by the PTF by employing a tipping-bucket model
(HERMES) with six PTFs at four locations in Germany [38]. The results suggested that
careful PTF selection is important as the PTF performance was location specific. In Ger-
many, the soil hydraulic properties tabulated in the “Bodenkundliche Kartieranleitung” [39]
are the most important and widespread source with which to estimate the soil hydraulic
properties from the soil textural class, bulk density and soil organic matter content for each
soil layer. One advantage of employing this method is that it does not require cost intensive
laboratory analysis of particle size distribution, but rather soil textural class, which can
be determined manually in the field [40]. However, very few publications have tested
their usefulness and performance to simulate soil water fluxes in process-based simulation
models, capture within-field variability of soil moisture and crop growth and compared
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them to other approaches like continuous pedotransfer functions. Therefore, there is a
need to test and compare different estimation approaches. A range of continuous PTFs
is available, developed based on datasets from different regions, such as Rawls [41] (US),
Rosetta [42] (US and EU), Toth [33] (EU) and Hypres [34] (EU). As this study was conducted
in Germany, Toth and Hypres were the most fitting choice, given the databases are from
European soils. Weihermüller et al. tested PTF performance and found Hypres and Toth to
perform comparably robustly, with a slightly better performance of Hypres for simulating
water fluxes [31]. Therefore, in this study, Hypres was chosen to be compared to the BK.

For agro-ecosystem models covering a large range of crops, to be applied reliably and
to be able to spatially quantify the interactive effects of climate, soils and management
on crop growth, crop productivity and the environment, they need to be tested on their
capability to adequately simulate the effects of climate, crop rotation and soil heterogeneities
on soil water dynamics. The main goals of this study were to (1) develop and calibrate
an agro-ecosystem model which is able to adequately simulate the effect of climate, crop
rotations and soil heterogeneity on soil water content within the root zone as well as crop
growth; and (2) to identify the most suitable approach to derive soil hydraulic properties
as a crucial input to the model by evaluating its impact on the simulation of soil moisture
dynamics and biomass production of different crops. We assume that the validated agro-
ecosystem model is able to reproduce the interactive effect of climate and seasonal crop
development within different crop rotations and heterogeneous soil conditions on site-
specific daily soil moisture dynamics and above ground biomass.

2. Materials and Methods
2.1. Location

The landscape laboratory “patchCROP”, established in 2020, comprises an experiment
with a 70 ha field in Tempelberg, Brandenburg, in North-East Germany. This area is
characterized by young moraine landscapes with heterogeneous soil conditions with a mean
annual temperature of 9.2 ◦C and a mean annual precipitation of 568 mm. Groundwater
levels in Tempelberg are about 20 m below the surface and, therefore, well below the plant
root zone [43]. To explore the potential of diversified cropping systems that operate at
smaller field scales than current farming practice in Eastern Germany and considering
spatial differences in soil characteristics, 30 so-called “patches” with a size of 0.52 ha each
were established in 2020. The patch size was based on the minimum units that can be
managed with current machinery. For patch delineation, Donat et al. used past yield maps
of ten years when the 70 ha field was managed homogenously to identify a high and low
yield potential zone within the field, with 15 patches allocated to each zone [44]. For the
current study, eleven out of the 30 patches were considered (Figure 1a). Six patches were
located in the high yield potential (HYP) zone, where the crop rotation consists of rapeseed
(Brassica napus L., cv. Ambassador), winter barley (Hordeum vulgare L., cv. Wallace), cover
crop, soybean (Glycine max L., cv. Acardia), cover crop, maize (Zea mays L., cv. P8349) and
winter wheat (Triticum aestivum L., cv. Universum). The remaining five patches were located
in the low yield potential (LYP) zone. Here, sunflower (Helianthus annuus L., cv. Seabird),
winter oat (Avena sativa L., cv. Fleuron), cover crop, maize, lupine (Lupinus angustifolius L.,
cv. Boragine), winter rye (Secale cereale L., cv. Tayo) and a cover crop are grown in rotation.

Weed and pest management in the patches were either managed according to (1) stan-
dard farm practices with full herbicide, fungicide and pesticide application; (2) with re-
duced chemical-synthetic plant protection measures; or (3) with reduced chemical-synthetic
plant protection measures and flower strips. Crop management was conducted by the
farm adhering to conservation agriculture principles. Crop residues remained on the field
and ploughing was omitted. Only for seed bed preparation, a shallow or deep chisel
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plough from 15 to 25 cm depth was employed. The patches themselves were managed
homogenously in regard to sowing and fertilization. Each patch had a buffer zone of
18 m width surrounding the center, which was split into four quadrants (Figure 1b). In
each patch, a soil, yield and biodiversity quadrant was dedicated to the respective sample
collection. Daily weather data (mean, maximum and minimum temperature, precipita-
tion, solar radiation, wind speed and relative humidity) were obtained from two on-site
weather stations.
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Figure 1. The patchCROP landscape laboratory. (a) Locations used for calibration or validation
(numbers indicate the patch ID); (b) exemplary image for patch 81 for pairing the soil moisture
sensor with the soil auger information (black line indicates the patch border, black and white dots
indicate locations where soil augers were taken and assessed for soil texture up to 1 m depth, black
dot indicates the location chosen for simulation).

2.2. Data Collection
2.2.1. Soil Data

Soil sampling at the study site was conducted between 2020 and 2023. The dataset
comprises soil information collected at 16 locations along transects within the yield and
soil quadrant of the respective patch. Soil augers were taken with a 1 m long Pürckhauer.
Once the soil was extracted, soil layers were determined using visual assessment for color
differences and manual assessment for density differences. For each layer, the textural class,
color, stone content, presence of mottles and CaCO3 were determined in the field. The soil
textural class was assessed manually according to the German soil texture classification
method (Fingerprobe zur Bestimmung der Bodenarten in Anlehnung an DIN 19682-2 und
KA5, 2012), as described by Vos et al. [40]. The color was evaluated using a wetted and
mixed soil sample with the Munsell soil color chart [45]. Stone content (based on visual
evaluation), CaCO3 (droplet application of 10% HCl, visual and sound evaluation for foam
presence or effervescence) and mottle presence (visual evaluation) were assessed following
the FAO procedure [46].
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Up to December 2023, 256 locations were sampled; out of these, 50 locations were
resampled to collect soil material for laboratory analysis of particle size distribution (sand,
silt and clay content according to DIN ISO 11277 [47] using the SEDIMAT 4-12 (Umwelt-
Geräte-Technik GmbH, Müncheberg, Germany)), total organic C and N, pH and extractable
P and K. The criteria for resampling were that the location featured reoccurring soil textural
classes within a patch or locations where manual soil texture determination was ambiguous.
Based on laboratory analysis, the manual readings from the field were adjusted when
necessary. Within each yield potential zone, the average particle size distribution of the soil
textural classes was calculated (Figure S1) and extrapolated to the respective layers where
soil texture was determined manually (Table 1). For the current study, soil textural class in
the last soil layer was assumed to be the same up to 2 m depth.

Table 1. Average particle size distribution as percentage of sand, silt and clay by yield potential zone
and soil textural class.

High Yield Potential Low Yield Potential

Text. Class 1 Sand% Silt% Clay% Sand% Silt% Clay%

Ss 86.4 9.8 3.8 91.0 5.9 3.1
Su2 80.9 15.0 4.1 83.4 12.9 3.7
Su3 67.9 26.6 5.5 NA NA NA
Sl2 70.8 22.5 6.7 79.7 14.5 5.8
Sl3 66.7 24.0 9.3 72.5 18.0 9.5
Sl4 59.0 25.5 15.5 65.0 20.0 15.0
Ls4 57.7 22.6 19.7 56.5 24.0 19.5

1 Text. class = soil textural class; Ss = sandy sand, Su2 = slightly silty sand, Su3 = medium silty sand, Sl2 = slightly
loamy sand, Sl3 = medium loamy sand, Sl4 = strongly loamy sand, Ls4 = strongly sandy loam.

Bulk density was assessed in two staggered campaigns in March 2021 and 2022. At
each patch, five locations were sampled vertically along a transect in the soil quadrant in
4 depth increments (2–7, 11–16, 20–25 and 29–34 cm) by inserting Eijkelkamp steel cylinders.
Soil samples were dried for 48 h at 105 ◦C and stones were removed subsequently by sieving
to calculate the stone-corrected bulk density.

2.2.2. Observed Soil Moisture Data

In 2020, soil moisture sensors were installed in the soil quadrant of each patch. The
data were recorded using a long-range-wide-area network (LoRaWAN) system, of which
one node box (DriBox, Lancashire, UK) was installed at least 30 cm below the ground to
avoid interference with tillage. Each node box recorded the volumetric soil water content
(SWC) of two locations, where TDR sensors (Acclima TDR310H, Meridian, MS, USA) were
installed at 30, 60 and 90 cm depth in angles between 45◦ and 60◦. The distance between
the measurement locations was three to five meters. Soil moisture data were recorded every
20 min, transferred to a cloud system via modem and made accessible immediately after
measurement. An automated validation process, implemented in the cloud system by the
service provider, included data profiling to detect and address errors. Identified anomalies,
such as recurring or abrupt erroneous jumps (e.g., a specific value of 28.6% caused by a
known sensor manufacturing defect), were removed from the dataset. The measurement
accuracy of the sensors, as indicated by the retailer, is ±3 Vol% [48]. Sensor calibration was
carried out by the retailer before installation. Data gaps caused by transmission failures,
such as battery discharge, signal disturbances, or theft, were minimal due to enhanced
maintenance and monitoring efforts. For detailed information on the LoRaWAN soil sensor
setup refer to Scholz et al. [49]. For the current study, data from 11 patches were considered,
covering the period from 1 January 2021 until 15 September 2022, as a daily average for
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each TDR sensor. Within this timeframe, approximately 10% of data was missing due to
technical problems.

2.2.3. Pairing of Soil Moisture and Soil Textural Data

To evaluate the model’s ability to simulate soil water content, soil auger data and
observed soil moisture data were paired, taking spatial proximity and soil heterogeneity
into account. This approach aimed to ensure that the selected soil profile, which was
later used as basis for model input, accurately represented the soil conditions where soil
moisture sensors were located. Generally, the observed soil moisture data at a given location
were calculated as the daily average of both soil moisture sensors per depth (30, 60 and
90 cm). In patches where the surrounding soil profile locations showed high heterogeneity
in layers and texture, only the soil moisture sensor closest to the paired soil profile was
considered (Table 2). In other cases, two soil augers were situated close to both the left
and right soil moisture sensor locations. The augers always had a distance of 5 m between
them (Figure 1b). If these two augers showed very similar soil properties throughout
the 1 m profile, the soil profile of the closest auger point was used and paired with the
average as described above. In cases where soil profiles showed distinct differences in soil
texture and/or layering, we assumed high soil heterogeneity in this area. Therefore, each
profile was matched with the respective closest soil moisture sensors, but only considered
when the distance between soil profile and sensor location was less than 2 m, ensuring
that observed and simulated moisture data in each soil depth resulted from the same soil
textural class. Additionally, the observed moisture data from 60 cm depth were discarded
if the soil profile in the paired auger exhibited a change in soil texture close to this depth, to
avoid mismatches.

Table 2. Patch properties and TDR soil moisture sensor information for selected augers at the
patchCROP experimental site, located in Tempelberg, Brandenburg.

Patch
Auger

Locations
Considered 1

Homogeneity
of Soil 2 Auger ID

Source of Soil
Moisture

Data 3

Incorporation
of 60 cm TDR

Sensor 4

Distance of
Auger to

Left/Right
Sensor [m] 5

12 1 yes 12-s-2-2 average discarded 2.9/1.5
19 1 no 19-s-2-2 average considered 3.7/1.6
58 1 yes 58-s-2-2 average discarded 2.3/2

65 2 no 65-s-2-3 left considered 2/NA
65-s-2-2 right considered NA/1.6

66 1 no 66-s-1-2 left considered 0.7/NA
76 2 yes 76-s-1-3 average considered 3/5
81 2 yes 81-s-2-2 average discarded 5/1.7
89 2 no 89-s-2-3 right considered NA/2
95 2 yes 95-s-2-2 average discarded 4.6/2.3

102 2 no 102-s-2-3 right considered NA/1.8
114 1 yes 114-s-2-2 average discarded 5.3/2.7

1 Number of soil augers per patch that were in close proximity to soil moisture locations and where considered
when pairing simulated soil moisture at this location and observed soil moisture data; 2 considering the four soil
auger locations, closest to soil moisture sensors; yes = the soil layers and texture was similar; no = the soil layers or
soil texture differed considerably (e.g., appearance of a loamy layer vs. totally sandy soil profile); 3 average = for
each depth (30, 60, 90 cm), the average of the right and left TDR sensor of the patch was used; left/right = only
data from the TDR sensors in the left or right location were used; 4 in cases of soil textural changes at around
60 cm depth, soil moisture data from this depth were discarded; 5 NA = TDR sensor was not considered for
respective Auger ID.

While most of the twelve selected locations were manually assessed for soil texture
(Table 3) and particle size distribution was therefore extrapolated, as described previously,
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for one location (12s22) the auger specific particle size distribution was measured in
the laboratory.

Table 3. Soil layer information for 12 locations within the patchCROP experiment in Tempelberg,
Brandenburg, Germany.

High Yield Potential Low Yield Potential

Patch-ID Cali./
Vali. 1 Auger ID 2 Bottom

Depth (cm)
Textural
Class 3 Patch-ID Cali./

Vali. 1 Auger ID 2 Bottom
Depth (cm)

Textural
Class 3

12 C 12-s-2-2

33 Sl3
76 C 76-s-1-3

40 Sl2
45 Sl3 75 Ss
65 Ls4 100 Ss

96 Ls4
89 C 89-s-2-3

40 Sl2

19 V 19-s-2-2

43 Su3 70 Sl2
65 Su3 100 Ss

87 Su3

95 C 95-s-2-2

38 Su2
100 Sl4 58 Su2

58 C 58-s-2-2

33 Su3 90 Ss
44 Su3 100 Ss

56 Su3
102 V 102-s-2-3

35 Su2
81 Sl4 87 Ss

100 Sl4 100 Ss

65 C 65-s-2-2
41 Sl2

114 V 114-s-2-2
39 Ss

67 Sl2 61 Sl4
100 Ss 99 Sl4

65 V 65-s-2-3

33 Sl2
47 Sl2
58 Sl2
79 Ss

100 Sl4

66 C 66-s-1-2

40 Sl2
58 Sl2
76 Sl2

100 Ls4

81 V 81-s-2-2
40 Sl2
58 Sl3

100 Ls4

1 Cali./Vali. = set for calibration (C) or validation (V); 2 Auger ID representing (“patchID”–“soil(s) or yield(y)
quadrant of the patch”–“transect ID”–“auger ID”; 3 Ls4 = strongly sandy loam, Sl2 = slightly loamy sand,
Sl3 = medium loamy sand, Sl4 = strongly loamy sand, Ss = sandy sand, Su2 = slightly silty sand, Su3 = medium
silty sand.

2.2.4. Crop Management

Table 4 provides the crop management data on sowing and nitrogen (N) fertilization
dates and rates as carried out by the farm. In 2021 and 2022, the planting of summer crops
relevant for this study (maize, soybean, sunflower and lupine) was carried out between
mid-March and mid-May, while winter crops (barley, wheat, rye and oats) were sown
between end of September and mid-November and the cover crop phacelia was sown at
the beginning of September in 2021. Except for lupine, soybean and the cover crop, each
crop was N fertilized either two or three times during their growing season. To avoid crop
deficiencies, potassium, phosphorus and magnesium fertilizer were applied as needed.

2.2.5. Biomass

The above ground biomass samples were collected after the crop reached the end of
flowering (Table S2), representing an adequate time period for the crop biomass to reflect
spatial differences. Samples were collected at four georeferenced locations along the edges
of the yield quadrant of the respective patch and oven-dried at 60 ◦C for 48 h to determine
the dry weight. The sampled area ranged from 0.5 m2 for winter crops to 1.5 m2 for
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maize. Biomass samples were only considered if soil properties of the closest auger location
were similar in terms of soil texture and horizon depth to the soil profile used for the
simulation and assessment of soil moisture. For patch 102, this led to a discard of biomass
data due to inconsistent soil conditions. In the case of patch 66, only the year 2022 was
considered for biomass assessment, as the 2021 biomass was collected in areas which were
not representative of the soil conditions observed for soil auger 66s12. Additionally, in
patches 114, 12 and 89, biomass data of either 2021 or 2022 were not considered in this
study as weed pressure was high (>20% total weed cover), which cannot be captured by
the model.

Table 4. Sowing dates and fertilizer amounts for selected summer and winter crops as applied at the
patchCROP site in Tempelberg, Brandenburg, Germany.

Crop Season Sowing Dates Fertilizer Dates Fertilizer Amount (Total N
[kg N ha−1])

Grain maize

2021 16 April 2021 16 April 2021 13.5
17 April 2021 101.1
04 June 2021 61.3

2022 29 April 2022 20 May 2022 71
23 June 2022 60.7

Soybean 2021 15 May 2021 - -
2022 10 May 2022 - -

Sunflower
2022 31 March 2022 31 March 2022 18.0

05 April 2022 54.0

Lupine 2022 18 March 2022 - -

Phacelia 2021 08 September 2021 - -

Winter wheat
2022 15 November 2021 11 March 2022 80.0

05 April 2022 44.3
19 May 2022 55.1

Winter barley
2021 21 September 2020 17 March 2021 48.2

08 April 2021 71.1
07 May 2021 25

Winter oats
2021 27 October 2020 17 March 2021 61.5

08 April 2021 58.7

Winter rye
2021 02 October 2020 17 March 2021 61.5

01 April 2021 51.1
14 May 2021 25

2.3. Model Description

The modelling framework Scientific Impact Assessment and Modelling Platform for
Advanced Crop and Ecosystem management (SIMPLACE, www.simplace.net (accessed
on 19 April 2024)) consists of complementary but interchangeable submodels, called Sim-
Components, which represent relevant crop- and soil-related processes [50]. A model
solution (or agro-ecosystem model) is made up of several SimComponents, which are
chosen based on the research question to be addressed and available data. For this study,
<Lintul5, SlimWater and SoilCN> as main SimComponents were selected for the model
solution. The SimComponent Lintul5 simulates crop phenological development based on
temperature sum and, for winter crops, is based on photoperiod, whereas potential crop
growth (biomass and grain yield) is simulated based on radiation use efficiency [51]. In this
model setup, actual biomass accumulation in the SimComponent Lintul5 is also affected by
water and nitrogen limitation using reduction factors TRANRF (transpiration reduction
factor) or NNI (nitrogen nutrition index), which range from 0 (full stress) to 1 (no stress).
The TRANRF is calculated as a ratio of actual transpiration and potential transpiration.
The SimComponent SoilCN, based on a multi-storage pool concept for multi-layered soil
profiles [52], was used for simulation of turnover processes regarding soil organic carbon
and nitrogen. The model simulates in a daily time step.

www.simplace.net
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2.3.1. Simulated Soil Water Dynamics

The soil water balance was simulated using the SimComponent SlimWater, which
uses a tipping-bucket approach where the soil profile is further subdivided into layers
of 5 cm (user defined). For each layer, information on certain soil matrix potentials (e.g.,
saturated, field capacity, wilting point), as well as initial water content, needs to be provided
based on the soil conditions at the respective location. The lower boundary condition for
simulation was free drainage. The component estimates the daily soil water content of
each layer based on water input and outflow (e.g., precipitation, run-off, percolation, soil
evaporation, deep seepage). Percolation is calculated vertically starting from the first
layer. Water is considered mobile water when the layer’s water content exceeds field
capacity. The percentage of mobile water that is routed to the below layer is dependent on
the parameter SlimAlfa, which is calculated using the soil layer’s clay content [53]. The
simulations are point-based and do not consider lateral water flow. Evapotranspiration was
calculated based on the FAO approach by Allen et al. [54] and reference evapotranspiration
by Hargreaves using solar radiation and temperature [55].

2.3.2. Pedotransfer Functions and Bulk Density

Two PTFs for deriving soil hydraulic properties were considered in this study. Firstly,
we tested the PTF provided in the German manual of soil mapping (Bodenkundliche
Kartieranleitung KA5, referred to as BK) [39] (p. 350), which utilizes the German soil
textural classes. Hydraulic properties for this method are texture class specific and included
field capacity, wilting point and saturation, which are based on matrix potential, 2.5, 4.2 and
∞, respectively. Bulk density was not considered in this approach. Instead, the values were
representative of the mean overall bulk density classes, with a mean of 1.5 g/cm3. Secondly,
the Hypres PTF [34], implemented as SimComponent in the SIMPLACE framework, was
used. The method consists of continuous functions that predict soil hydraulic properties
based on a European soil database. They require soil particle size distribution, bulk
density and organic matter content by soil layer as input. Since no bulk density data were
collected near the auger points, two bulk density setups were chosen based on previous
data collection at other locations within each patch (data not published). While absolute
values differed, it was apparent that bulk density always increased with increasing soil
depth. Based on the previous data collection at various locations within the field, two
scenarios were considered reasonable input for the model: (1) a bulk density of 1.3 g/cm3

in the topsoil layer and 1.5 g/cm3 in the subsoil layers, referred to as “Hypres1315”; and
(2) a bulk density of 1.5 g/cm3 in the topsoil layer and 1.7 g/cm3 in the following subsoil
layers, referred to as “Hypres1517”. Soil hydraulic data based on these three setups (BK,
Hypres1315 and Hypres1517) were then used as input for the model solution.

2.3.3. Crop Parameters

SimComponent Lintul5 was used with crop specific parameters for winter barley,
soybean, maize, winter wheat, sunflower, lupine and winter rye, which were previously
calibrated and validated based on ground-truth intermediate and final biomass cuts and
grain yield data using a cross-validation approach [56]. Additionally, the parameters for
winter oat and the cover crop Phacelia (Phacelia tanacetifolia Bentham L., cv. Stala) were
manually calibrated based on phenology observations and intermediate and final biomass
data from 2020 (Table S1). Data for manual calibration of winter oat additionally comprised
yield. In the simulation, crops are harvested by default when reaching a developmental
stage (DVS) of two, which indicates physiological maturity. However, as phacelia was also
sown as a cover crop in autumn and died off during winter, we introduced a termination
setting where phacelia is harvested when reaching a DVS of two, or when the daily mean
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temperature dropped below −7 ◦C or when the 60th day of year (DOY) was exceeded. The
temperature limit of −7 ◦C was chosen based on available literature and variety-specific
information from seed producers [57–59].

2.4. Model Initial Conditions

The daily simulations were performed with soil hydraulic property (field capacity,
saturation point, wilting point) inputs from each PTF setup (Table 5).

Table 5. Source and input for each pedotransfer setup used to derive soil hydraulic properties for
the model.

Pedotransfer Setup Source
Input

Location Specific Info Bulkdensity

BK German manual
of soil mapping 1

Soil textural class by
depth -

Hypres1315 Hypres 2 Sand [%], Silt [%], Clay
[%] by depth

Topsoil: 1.3 g/cm3

Subsoil: 1.5 g/cm3

Hypres1517 Hypres 2 Sand [%], Silt [%], Clay
[%] by depth

Topsoil: 1.5 g/cm3

Subsoil: 1.7 g/cm3

1 [39] 2 [34].

The model was initialized at the start of simulation on 1 March 2020 and simulation
ended on 30 November 2022. The initial soil water content was set at field capacity of
the respective location and soil layer. Initial soil mineral N was set to circa 70 kg ha−1

and 200 kg ha−1 for the low and high yield potential locations, respectively, with most
(~70%) of the mineral N allocated to the topsoil layer. Daily weather data on precipitation,
temperature (min, mean and max), solar radiation, wind speed and relative humidity were
provided based on the on-site weather stations. Model performance was assessed just
for the period from January 2021 until 15 September 2022, providing a spin-up phase of
ten months after initialization. Crop management regarding sowing dates and nitrogen
fertilization (dates and amount) were used as applied on the field (Table 4). For calibration
and validation of soil moisture simulation, the data were split by location into a dataset
for calibration (seven locations) and validation (five locations), ensuring that both datasets
featured both yield potential zones (Table 3). The above ground biomass data were assessed
as one dataset to further explore whether trends in SWC simulation corresponded with
trends in biomass predictions.

2.5. Model Performance Statistics

To assess model performance, simulated and observed soil moisture and above ground
biomass data were compared using relative root mean square error (rRMSE), coefficient of
determination (R2), mean error (Error) and mean absolute error (MAE). For simulated and
observed soil moisture, model efficiency (EF) was also calculated. The soil moisture data
were split into a calibration and validation dataset by location (Table 3) and simulated and
observed soil moisture values for unique combinations of day, location and depth were
compared from January 2021 until 15 September 2022. Statistical evaluation was performed
using R Statistical Software [60]. The package ehaGoF was used for calculation of rRMSE
and the function “goodness.of.fit” within the package ZeBook was used for calculation of
EF and MAE. For EF, a value of 1 indicates perfect agreement between the simulated and
observed data and a value of less than zero indicates that the observed mean was a better
predictor than the model [26]. The rRMSE is a dimensionless measure, which expresses the
root mean square error (RMSE) as a fraction of the average measured value. Its advantage
over the RMSE is that it provides a more meaningful comparison of errors for datasets with
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different scales or units and allows a more intuitive interpretation [26]. The package dplyr
was used to calculate R2.

3. Results
3.1. Observed Soil Moisture Dynamics

The observed SWC was highly variable among locations, depth and during the season
(Figure S2). Generally, the SWC was highest during the winter months and started to be
depleted during the crop growth period in spring and summer in both top- and subsoil.
During the phacelia growing period, the SWC decreased at 30 cm depth, but remained
stable or slightly increased at 90 cm depth. The daily SWC ranged from 2.6% in patch 89 in
June 2021 to 33.5% in patch 114 in May 2021, both recorded at 90 cm depth. Particularly, the
data recorded at 30 cm depth showed peaks in SWC coinciding with major precipitation
events, but this was not the case at 60 and 90 cm depth, except for very sandy locations.
Sensors located in loamy subsoil recorded larger absolute ranges in the SWC, while in the
very sandy locations (Ss) the observed SWC was more stable. During crop growth, fast
decreases in SWC occurred at all depths, likely due to crop water extraction. The right
sensor in patch 65 was an exception, since during maize crop growth no decrease in SWC
at 60 cm was observed, even though the left sensor of the same patch showed strong water
extraction. Also, the two sensors at 90 cm depth recorded distinct differences regarding
the maximum and minimum SWC, even though they were only a few meters apart, likely
caused by heterogeneous soil conditions. While they were located next to very different soil
profiles (Ss vs. strongly loamy sand (Sl4) at 90 cm depth), the sensor in the sandy subsoil
showed a higher observed SWC than other locations with sandy subsoil and the sensor
located close to a Sl4 texture in the subsoil, which showed a lower minimum SWC (min.
3.5%) than the other Sl4 locations.

3.2. Pedotransfer Functions and Soil Hydraulic Properties

The field capacity and available water capacity (AWC) varied among soil textural
classes and PTF setup, ranging from 8% to 24% and 5% to 13%, respectively (Figure 2). For
Hypres1315 and 1517, an increasing sand content always led to a lower field capacity and
AWC; however, for BK, this relationship was less pronounced.

For the Hypres PTF, the Hypres1517 setting generally produced slightly lower field
capacity values (~2%) than the Hypres1315 in the topsoil, while differences due to bulk
density in the subsoil were smaller, especially for texture classes with a high sand content
(Figure 2). The differentiation in soil particle size distribution by yield potential zone within
a soil textural class had the largest impact on slightly loamy sand (Sl2), which resulted in
up to 2.5% higher field capacity and AWC when based on samples within the high yield
potential zone. For the class-based BK PTF, no differentiation in hydraulic properties within
a soil textural class was possible. With increasing sand content, the field capacity assigned
to the texture classes either remained stable or decreased, but the range of field capacity
values was smaller compared to both Hypres setups. Also, contrarily to the Hypres setups,
the AWC did not always decrease with increasing sand content. While the BK assigned
the same field capacity to the classes Sl4 and strongly sandy loam (Ls4), the AWC differed
strongly with Ls4 showing the lowest AWC of all soil textural classes, which was the
opposite in both Hypres setups, where the Ls4 was among the soil textural classes with the
highest AWC (Figure 2d).
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Figure 2. Field capacity (FC) (%) and available water capacity (AWC) (%) by pedotransfer function
setup for top- (a,b) and subsoil (c,d) by soil textural class and yield potential zone. BK = based
on the German manual of soil mapping; Hypres1315 = Hypres pedotransfer function with bulk
density of 1.3 g/cm3 in the topsoil layer and 1.5 g/cm3 in the subsoil layers; Hypres1517 = Hypres
pedotransfer function with bulk density of 1.5 g/cm3 in the topsoil layer and 1.7 g/cm3 in the subsoil
layers; Ss = sandy sand, Su2 = slightly silty sand, Su3 = medium silty sand, Sl2 = slightly loamy sand,
Sl3 = medium loamy sand, Sl4 = strongly loamy sand, Ls4 = strongly sandy loam.

3.3. Effect of Pedotransfer Function and Bulk Density on SWC Simulation

The different pedotransfer setups used in terms of PTF and bulk density input to
derive soil hydraulic properties led to differences in the simulated soil water content. The
model performed best when using the setup Hypres1517 as evident from all statistical
indicators of model performance in the calibration, except for the mean error (Table 6).
Using Hypres1517 led to an average underestimation of soil moisture by 0.41 Vol%, showed
lowest rRMSE of 29.6%, the highest R2 (0.72) and the lowest MAE of 2.76 Vol% during
calibration. Furthermore, this setup obtained the highest model efficiency of 0.71. The
Hypres setup with lower bulk density performed slightly worse in all statistical aspects for
calibration, except for the mean error.

Table 6. Model performance indicators for model calibration and validation of daily soil water
content for selected locations at the patchCROP experiment, Tempelberg, Brandenburg.

Pedotransfer
Setup 1

Calibration/
Validation rRMSE 2 R2 Error 3 EF 4 MAE 5 N

BK
Calibration 35.6 0.64 1.68 0.58 3.40 10,136
Validation 36.2 0.66 2.21 0.54 3.58 7240

Hypres1315 Calibration 31.4 0.67 −0.01 0.67 2.99 10,136
Validation 31.6 0.66 0.57 0.65 2.84 7240

Hypres1517 Calibration 29.5 0.72 −0.41 0.71 2.76 10,136
Validation 32.5 0.64 0.19 0.63 2.96 7240

1 BK = based on the German manual of soil mapping KA5; Hypres1315 = Hypres pedotransfer function with bulk
density of 1.3 g/cm3 in the topsoil layer and 1.5 g/cm3 in the subsoil layers; Hypres1517 = Hypres pedotransfer
function with bulk density of 1.5 g/cm3 in the topsoil layer and 1.7 g/cm3 in the subsoil layers; 2 relative root
mean squared error (rRMSE in %); 3 mean error (error in t ha−1); 4 model efficiency (EF); 5 mean absolute error
(MAE in t ha−1).
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The major difference in model performance of Hypres1517 and Hypres1315 during
calibration appears to be the simulation of SWC for the soil textural classes slightly silty
sand (Su2) and medium loamy sand (Sl3), which are present at 30 cm depth (Figure S3). For
simulating SWC in Su2, Hypres1315 showed an rRMSE of 33.7% in calibration, while the
setup with higher bulk density performed better, with an rRMSE of 17.13%. The setup with
lower bulk density tended to overestimate the SWC (mean error = 2.6 Vol%). The same was
true when simulating the SWC for Sl3. Here, the mean error during calibration for setup
Hypres1315 was 3.5 Vol%, while Hypres1517 had a lower mean error of 2.2, resulting in a
lower rRMSE (22.5% vs. 31.2%). The BK input led to the poorest model performance during
calibration, with the highest rRMSE of 35.6%, the highest average overestimation of soil
moisture (mean error = 1.68 Vol%), the highest MAE of 3.4 Vol% and the lowest R2 and EF
with 0.64 and 0.58, respectively. The same trends were apparent in the validation dataset,
where errors with BK simulation were even slightly larger. One major source for this was
the BK model’s performance under very sandy (Ss) conditions (Figure S3), as the SWC
was frequently overestimated, leading to high errors (rRMSE of 39.5% in validation) and
negative model efficiency (EF) during both calibration and validation (−0.31 and −0.03),
which indicates that using the mean of observed data for Ss would have been a better
predictor than the model. As shown in Figure 3 for the SWC at two contrasting (Ss vs.
Ls4 subsoil texture) soil profiles within the calibration set during maize growth, the BK
model performed worse at predicting SWC for Ss and Ls4. For location 12s22 with Ls4 at
90 cm depth, all predictions matched the observed SWC when maize was sown, but, using
the BK setup, the predicted SWC did not decrease as much as observed in the following
months. The opposite was the case for predicting the SWC in profile 76s13 with Ss at 90 cm
depth. Here, the BK setup overestimated the SWC at sowing time but reached the same
level during the crops’ water extraction, overestimating the available water during maize
growth. Although in the calibration set the Hypres1517 performed better than the setup
with lower bulk density, this trend was not so clear for the validation set, where the rRMSE,
R2 and EF were slightly better for the Hypres1315 setup, although the mean error was still
lower for the Hypres1517 setup.
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site during maize crop growth in 2022 for (a) 30 cm depth (soil textural classes Sl3 (12s22) and
Sl2 (76s13)) and (b) 90 cm depth (soil textural classes Ls4 (12s22) and Ss (76s13)); blue bars
indicate daily precipitation (mm); BK = based on the German manual of soil mapping KA5;
Hypres1315 = Hypres pedotransfer function with bulk density of 1.3 g/cm3 in the topsoil layer
and 1.5 g/cm3 in the subsoil layers; Hypres1517 = Hypres pedotransfer function with bulk density of
1.5 g/cm3 in the topsoil layer and 1.7 g/cm3 in the subsoil layers.

The observed and simulated SWC for each location using the Hypres1517 setup,
which performed best during calibration, are shown in Figure 4. Generally, the maximum
and minimum simulated SWC mostly matched with the observed range for the respective
location, indicating that the hydraulic properties estimated with the Hypres1517 setup were
similar to the actual conditions. Major differences were apparent for location 65s22 (Sl2)
at 30 cm depth and for 58s22 (Sl4), 65s22 (Ss), 65s23 (Sl4) and 114s22 (Sl4) at 90 cm depth
(Figure 4). At 30 cm depth, the peaks in SWC after precipitation events were captured
by the model, as well as decreases in the SWC during crop presence. The SWC patterns
at 30 cm depth during crop presence matched particularly well during growth of maize,
winter barley, winter rye, soybean (2022), phacelia and winter oats (Figure 4). At 30 cm
depth, the model showed worse performance during the growth of winter wheat, lupine
(2022) and soybean (2021), which was mainly due to the overestimation of SWC during
summer. Considerable prediction errors during the growth of soybean occurred towards
the end of the growing season, but only in 2021. These trends did not occur at 90 cm depth.
When only considering the locations where the simulation and observation of minimum
and maximum SWC were similar at 90 cm depth (12s22, 19s22, 81s22, 102s23, 76s13, 95s22),
the patterns and timing of the SWC decrease and increase during crop presence were
mostly well reproduced by the model. Nevertheless, substantial overestimation of SWC
by the model occurred in winter 2021 after a heavy rain event (31.4 mm on 4 November
2021) at all locations where Sl4 or Ls4 was present in the subsoil (Figure 4). Furthermore,
the two locations in patch 65 (65s22 and 65s23), which showed contrasting soil textures
in subsoils Ss and Sl4, respectively, also showed some noticeable patterns in the observed
SWC. At the location with Ss as the subsoil texture, the model tended to underestimate
the SWC (MAE = 4.07 Vol%), while at the location with Sl4 in the subsoil, the SWC was
both substantially over- and underestimated. At the remaining locations with Ss at 90 cm
depth, the SWC was simulated fairly accurately, with an MAE ranging from 0.88 (76s13) to
2.05 Vol% (89s23). When comparing the model performance among soil textural classes,
the rRMSE did not provide a reliable indication of performance as small absolute errors led
to considerably higher rRMSE values for locations where a low SWC was observed. This
becomes apparent when comparing the model performance at 90 cm depth at locations
114s22 and 89s23. While the sandy 89s23 showed an MAE of 2 Vol%, the rRMSE was 61.8%.
The loamier location 114s22 shows larger discrepancies in simulated SWC, with an MAE of
7.2 Vol% but a lower rRMSE of 33% (Figure 4b).

3.4. Observed Above Ground Biomass

The observed above ground biomass around flowering ranged from 1.2 t/ha (n = 4)
of lupine in patch 114 in June 2022 to 12.3 t/ha (n = 4) of barley in patch 81 in June
2021 (Figure 5). Out of the 16 biomass samplings conducted in this study, maize was the
most frequent crop, with seven sampling events in 2021 and 2022, as it is part of both the
low and high yield potential rotation and was grown across a wide range of soil conditions.
The maize biomass in both 2021 and 2022 was collected in the beginning of August at the
end of flowering/beginning of fruit development and ranged from 3.9 t/ha (n = 4) in sandy
patch 76 to 9.4 t/ha (n = 2) in the loamier patch 65 in 2022 (Figure 5, Table S2). While most
crops showed rather low standard deviations due to variation among the repetitions, the
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standard deviation of observed biomass was especially high for maize in the patches 12,
58, 65 and 76. Except for winter oat, which showed a biomass of around 5 t/ha at both
locations in 2021, the winter crops winter wheat and winter rye exhibited higher above
ground biomass after flowering, with circa 10 t/ha and circa 8 t/ha, respectively (Figure 5).
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Figure 4. Daily simulated (colored line indicates soil textural class) and observed (black line) volu-
metric water content (%) for the selected locations at the patchCROP experimental site for (a) 30 cm
depth and (b) 90 cm depth from 01/01/2021 to 15/09/2022 for the calibrated (white background) and
validated (grey background) Hypres1517 model setup (soil hydraulic properties based on Hypres
pedotransfer function with bulk density of 1.5 g/cm3 in the topsoil layer and 1.7 g/cm3 in the subsoil
layers; crop names indicate their respective growing season length; blue bars indicate daily precipita-
tion (mm); Ss = sandy sand, Su2 = slightly silty sand, Su3 = medium silty sand, Sl2 = slightly loamy
sand, Sl3 = medium loamy sand, Sl4 = strongly loamy sand, Ls4 = strongly sandy loam; HYP = auger
located within the high yield potential area of the field; LYP = auger located within the low yield
potential area of the field.
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3.5. Effect of Pedotransfer Function and Bulk Density on Biomass Simulations

The different PTF setups led to differences in simulated biomass, with the global
rRMSE ranging from 19.6% for the BK setup to 18.2% for the Hypres1315 setup
(Table 7). While the Hypres1517 did show a tendency to underestimate the biomass
(Error = −0.35 t/ha) and had a slightly higher rRMSE with 18.5% compared to Hypres1315,
R2 was marginally higher and the MAE was the same for both Hypres setups (0.97 t/ha).
The BK setup performed slightly worse than the two Hypres setups in all performance
indicators assessed, with an rRMSE of 19.6%, an MAE of 1.07 t/ha and a lower R2 (0.80).

For the prediction of barley biomass in 2021, the PTF setup did not have a relevant
impact, while for maize, winter wheat, soybean, winter oat and winter rye differences
were apparent, although in some locations the difference in biomass simulation due to
model setup were all within the standard deviation of the observed biomass (Figure 5).
Comparing the two Hypres setups, the higher bulk density led to either no difference
in biomass predictions or a reduction in biomass. This effect was more pronounced at
locations featuring rather loamy soil textural classes, which is in line with the higher impact
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of bulk density on available water capacity for soil textural classes with lower sand content
(Figure 2). The biggest difference regarding accuracy of biomass predictions due to bulk
density was found within the texture class Ls4, where the Hypres1517 setup performed
better compared to Hypres1315 (rRMSE 9.1 and 16.3%, Table S3). Regarding the simulation
of maize biomass, both Hypres setups better captured the impact of soil heterogeneity
on crop growth than the BK. Using the Hypres1517 setup, the model predicted a maize
biomass of 3.7 t/ha for the sandy location (76s13) and 7.1 t/ha for the location with loamy
subsoil (66s12) in 2022, which was similar to the observed biomass, while using the BK
setup the soil conditions did not lead to differentiation, with a predicted biomass of 6.2 and
6 t/ha, respectively. The predicted biomass was even higher in the sandy than the loamy
location, which was not reflected by the observations. The available water capacity when
applying the BK PTF was surprisingly low for textural class Ls4 (7%) (Figure 2), even
though the field capacity was similar to other setups, as previously highlighted regarding
the SWC simulation (Figure 3). While the biomass predictions were lower using the BK
compared to the Hypres PTF in profiles with Ls4 in the last layer, it did not lead to a major
increase in prediction error for biomass (Table S3). Instead, the relatively high available
water capacity for the texture class Ss led to biomass over predictions, which also led to
a relatively high rRMSE of 24.6% when using the BK at locations with Ss as the subsoil
texture (Table S3), consequently limiting the sensitivity to capture differences in biomass
due to soil conditions. While the Hypres setups were able to capture differences between
very contrasting soil conditions, in locations with loamy subsoil the predicted biomass was
often similar.

Table 7. Model performance indicators for above ground biomass after flowering at the patchCROP
experiment, Tempelberg, Brandenburg.

Pedotransfer Setup 1 rRMSE 2 R2 Error 3 MAE 4 N

BK 19.6 0.80 0.23 1.07 16
Hypres1315 18.2 0.84 0.20 0.97 16
Hypres1517 18.5 0.84 −0.35 0.97 16

1 BK = based on the German manual of soil mapping KA5; Hypres1315 = Hypres pedotransfer function with bulk
density of 1.3 g/cm3 in the topsoil layer and 1.5 g/cm3 in the subsoil layers; Hypres1517 = Hypres pedotransfer
function with bulk density of 1.5 g/cm3 in the topsoil layer and 1.7 g/cm3 in the subsoil layers; 2 relative root
mean squared error (rRMSE in %); 3 mean error (error in t ha−1), 4 mean absolute error (MAE in t ha−1).

Overall, the continuous Hypres PTF with bulk densities of 1.5 g/cm3 in the topsoil
and 1.7 g/cm3 in the subsoil proved to be advantageous over the Hypres setup with lower
bulk densities and the class-based PTF BK for simulating soil water dynamics. While small
differences were observed in the prediction of biomass, both Hypres setups still proved to
be advantageous over the BK setup, as they were better able to capture biomass variation
among different locations.

4. Discussion
Previous research has shown that agro-ecosystem models differ in their ability to

capture the impact of soil heterogeneities on soil moisture and crop growth [61]. Addition-
ally, while previous studies have performed sensitivity analyses regarding PTF choice and
its influence on simulating the SWC and/or biomass of agro-ecosystem models, in this
study, we additionally assessed the performance of PTF functions under heterogeneous
conditions by using an extensive soil moisture time series in top- and subsoil and accuracy
of biomass predictions in the context of within-field heterogeneity by accounting for a
wide range of crops, showing that the PTF performance also varies depending on the soil
characteristics. We found that both soil moisture and biomass simulations were dependent
on the PTF selection to derive soil hydraulic properties. Additionally, the use of a tipping-
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bucket model with the Hypres PTF enabled the model to capture the impacts of soil-related
within-field heterogeneities on soil water dynamics in the top- and subsoil and on above
ground biomass.

Regarding the simulation of soil water content, the model performance was dependent
on the used PTF, with an EF ranging from 0.54 to 0.66 after calibration. While the simulated
soil moisture dynamics were similar, the range of simulated SWC was influenced by the
model setup. Even though Hypres is based on a European soil database and BK was
developed for German soil texture classes, using the continuous Hypres PTF [34] proved
to be advantageous over the class-based BK. This is in line with Weihermüller et al. [31],
who tested the influence of PTF on the simulation of water balance fluxes using a Richards’
equation-based model (HYDRUS-1D [62]) and found that the PTF substantially affected the
simulation of water fluxes. Furthermore, they classified the Hypres PTF as overall robust,
while two class-based PTFs were classified as non-robust. In our study, the available water
capacity when applying the BK PTF was surprisingly low for the textural class Ls4 (7%),
even though the field capacity was similar to other setups. While the BK provides another
table where a differentiation of bulk density within a texture class is possible, this table
refers to a field capacity at pF 1.8, while the SimComponent SlimWater requires a field
capacity at pF 2.5. Therefore, this approach did not allow us to differentiate for bulk density,
but was rather based on an average of 1.5 g/cm3, potentially limiting its performance. A
new edition of the BK has been released in August 2024, with updated look-up tables to
derive soil hydraulic properties based on soil textural class, and it provides a table based
on pF 2.5 with the ability to differentiate bulk density classes [63]. Future research should
assess whether the revised soil hydraulic properties provide reasonable soil input for crop
models, as this approach could reduce cost and labor intensive laboratory analysis of
particle size distribution. Most continuous PTFs require input for the bulk density [30], and
while the impact of bulk density was not as large as the PTF selection, model performance
was impacted. The PTF with a higher bulk density of 1.5 g/cm3 in the topsoil and 1.7 g/cm3

in the subsoil outperformed the lower bulk density, with relevant differences in model
performance occurring for the simulation of SWC in the textural classes Sl3 and Su2, leading
to an increased EF. Koszinski et al. investigated field-scale bulk density heterogeneity under
similar soil conditions [64]. The bulk density results agreed with choosing the higher bulk
density setup in this study. Additionally, while they did find bulk density to be structurally
variable dependent on soil depth and number of roots, variance within the field (headlands
excluded) was low, indicating that using a depth-dependent bulk density as model input
was reasonable, as long as it was for simulating the main field rather than headlands.
Independently of the PTF setup, the simulations showed a too early onset of SWC increase
after heavy rain in the loamier subsoils, which can be assumed to be due to the model
structure, namely, the cascading process of the tipping-bucket approach implemented
in SlimWater. Romano et al. compared the model performance of a tipping-bucket and
Richards’ equation-based model and found that the tipping-bucket model had smaller
memory capability, therefore reacting more rapidly to climatic forcing in both increases and
decreases in SWC [65]. Vianna et al. tested how the soil moisture prediction was affected
by model structure and data detail [27]. They found that the prediction of soil moisture
was only slightly improved by applying the SWAP platform (Richard’s equation based,
rRMSE = 6%) rather than a tipping-bucket approach (rRMSE = 8%). While the rRMSE was
lower compared to our study, it has to be noted that the soil moisture range was much
higher (from 0.2 to 0.4 cm3/cm3), limiting the comparability of the rRMSE. With an ME
of 0.7, the tipping-bucket approach performed similarly. Furthermore, they concluded
that a tipping-bucket approach may be preferred when soil parameters are limited, as
has been the case in this study. While location 12s22 was analyzed for sand, silt and clay
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fractions of each layer, the remaining locations relied on an extrapolation of the particle
size distribution, introducing additional uncertainty. In particular, Sl4 at 90 cm depth
shows high heterogeneity in the range of observed SWC among the locations. While one
possible explanation could be errors in the measured volumetric soil water content, due
to limitations such as standard error of 1–3 Vol.% when employing TDR sensors [66], the
texture class Sl4 did exhibit relatively high variance for particle size fractions (Figure S1),
indicating that using a uniform particle size distribution limited the prediction accuracy.
The importance of soil input was also highlighted by Stahn et al., who, based on a sensitivity
analysis, found soil properties to be most relevant for predicting soil water content in the
agro-hydrological model SWAP [67]. Nevertheless, when aiming to simulate within-field
heterogeneity for a considerable field size, it can be expected that model soil input will
come with greater uncertainty, as it is not feasible to use traditional methods for each point
of simulation [15], but rather proximal sensing technologies [68,69]. Despite the small
distance of 5 m between the locations 65s22 and 65s23, they exhibited great differences
in subsoil texture and SWC. The SWC was underestimated by the model in the location
with sandy subsoil but overestimated during relatively dry periods in the location with
loamy subsoil. While there could be many factors at play, one explanation might be lateral
subsurface flow, which is known to occur in hummocky ground moraine landscapes [70]
and is not captured by the model.

The simulated and observed SWC during crop growth differed strongly, particularly
during the growth of winter wheat, lupine and soybean in 2021. The simulation of lupine
showed very limited above ground biomass at flowering for location 102s23 (0.35 t/ha at
maturity), which led to low transpiration and low water extraction, therefore increasing
SWC due to precipitation. While location 114s22 showed the same pattern at 30 cm depth,
strong decreases in SWC were observed at 90 cm depth in simulated and observed data.
Nevertheless, the timing of decrease differed, as well as the absolute values. While the
timing might point to issues in the simulation of crop development, differences in absolute
values at this location were apparent during the whole time period, indicating these were
most likely due to soil input as discussed above, rather than crop extraction. Prediction
errors during the late growing period of soybean could be due to inaccuracies in phenology
simulation, as soybean reached maturity 10 days prematurely in the simulation. These
crop-specific errors occurring at different soil conditions underline the complexity, as not
only soil, but also crop parameters, introduce uncertainty and errors. This is in line with
Groh et al., who performed a model intercomparison and found that a crop parametrization
solely on crop phenology data led to inadequate simulation of SWC [71]. Although soil
data were detailed and complex models were tested, the multi-model mean of rRMSE was
circa 50% for the simulation of SWC. Similarly, Wegehenkel et al. found SWC simulation
errors in summer due to root water extraction [72].

The use of different PTF approaches also influenced the simulation of the above ground
biomass. While for simulating the SWC Hypres1517 performed best in the calibration stage,
for the simulation of biomass, the Hypres1315 setup performed slightly better, even though
the differences between the two were minimal. The BK setup, on the other hand, showed
the lowest performance for SWC and also for the simulation of biomass, specifically when
considering the ability to reproduce the effect of different soil properties (sandy vs. loamy)
on biomass. Even though all the PTF setups showed a trend of decreasing field capacity
with increasing sand content, this was not the case for the available water capacity within
the PTF BK (Figure 2), for which the differentiation of available water capacity among
soil texture classes was rather small. This is in line with other studies that have found
the available water capacity to be one of the most important factors influencing crop
model output [61,73]. The major difference in biomass prediction due to the PTF approach
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was found for locations with sandy subsoil, which is consistent with Rosso et al., who
found yield predictions to be most affected by the applied PTF approach under sandy
conditions [38]. While it could have been suspected that the too early onset of SWC increase
when predicting SWC in loamy subsoils (which occurred independently of the applied
PTF approach) would lead to an overestimation of the simulated above ground biomass
due to higher amounts of plant available water, this was not supported by the simulated
crop growth. A likely explanation is the timing of overestimation, which occurred either
during a fallow period or right before the sowing of winter wheat in November (patches
19, 58 and 65). In the following months, the simulated winter wheat roots did not reach the
depth where the loamier texture appeared, so it did not impact crop growth. This is in line
with Wallor et al., who found that the level of prediction accuracy regarding soil-related
process did not always correspond with the prediction accuracy of the yield [61].

While we did observe some limitations in the simulation of soil water dynamics
(lateral flow, loamy conditions) due to employing a tipping-bucket approach, the model
was able to reasonably reproduce the spatial-temporal dynamics of soil moisture, as well
as the above ground biomass. In future steps, we plan to combine the model with a
high-resolution soil map to assess spatial and temporal management adaptations (e.g.,
nitrogen fertilizer, crop allocation) at a larger scale. When simulating crop performance
as influenced by potential nitrogen limitations (which is the case in this model setup), the
model needs to be able to simulate soil nitrogen dynamics, which are more commonly tested
and applied in tipping-bucket approach models [74]. More advanced soil hydrological
models often lack the simulation of soil nitrogen dynamics, and require more detailed
soil information and substantially higher computational power due to sub-daily time
steps [26,27]. While no hardware or computational constraints were encountered in the
current study, for future model applications the scale and complexity of simulations will
increase and computational requirements are expected to grow significantly, potentially
requiring the use of high-performance computing. As (1) the groundwater table in this
location is well below the root zone, (2) the detail of soil data is limited, (3) the model
needs to account for soil nitrogen dynamics and (4) the simulation complexity will increase
for future applications, we chose a tipping-bucket approach, which is commonly utilized
in crop modelling applications [23,50] and assessed it to be an adequate option for the
simulation of soil water dynamics and crop growth within the context of a ground moraine
characterized by a high degree of soil heterogeneity.

The findings highlight the importance of within-field soil, especially subsoil, hetero-
geneity and the consequent variability of soil moisture and crop available water, which
needs to be accounted for as it potentially limits crop growth depending on the seasonal
rainfall and weather conditions. The calibrated and validated agroecosystem models can
be used to design diversified cropping systems by considering the interaction between soil
heterogeneities and interannual variability affecting soil water dynamics in the top- and
subsoil and, therefore, crop growth and productivity. Also, the agro-ecosystem model can
be utilized for assessing management adaptations, such as improved site-specific fertilizer
practices, in both the spatial and temporal context.

5. Conclusions
When spatializing agro-ecosystem models, the simulation of soil moisture often re-

ceives too little attention in model performance assessment. Coming from different research
questions, studies have come to different conclusions on the needed complexity of model
structure and input data. In this study, we found that the model was able to capture the
within-field variability in SWC reasonably well over two growing seasons under different
crops and heterogeneous soil conditions when using a model that applies a tipping-bucket
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approach for SWC simulation, which was also previously calibrated for crop growth. The
choice of pedotransfer function proved to be important for the simulation of soil water con-
tent and, in some cases, translated to differences in prediction accuracy for above ground
biomass as well. For the simulation of daily soil water dynamics, the model error was
largest after intense rain events for soils with a loamy texture in the subsoil, as the increase
in simulated SWC levels occurred too early, probably due to the capacity-based cascading
process that simulates percolation. While the model’s biomass predictions did not appear
to be negatively influenced by this error, further model testing and improvement might
be useful, as extreme precipitation events may occur more often under future climatic
conditions or when simulation is focused on other model outputs, such as N leaching.
Some uncertainties were introduced due to soil input and crop growth; nevertheless, the
calibrated model using the Hypres PTF was able to reproduce reasonably well the inter-
active effect of climate, management (crop rotation) and contrasting soil conditions on
site-specific daily soil moisture dynamics across the studied growing seasons, as well as
on intermediate biomass productivity. The tested model has the potential to be used for
further studies on how SWC dynamics can be affected by management practices under
heterogeneous soil conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy15020407/s1, Figure S1: Sand, silt and clay content (%)
of soil samples collected at the patchCROP site in Tempelberg, Brandenburg according to sedimenta-
tion/sieving method by soil texture class and high/low yield potential area; sample size within the
high/low yield potential area by textural class: Ls4 (19/4), Sl2 (26/15), Sl3 (18/5), Sl4 (13/7), Ss (1/18),
St2 (NA/7), Su2 (3/22), Su3 (14/NA); orange dot indicates the average used for extrapolation to
samples based on manual assessment of soil textural class; Ss = sandy sand, Su2 = slightly silty sand,
Su3 = medium silty sand, Sl2 = slightly loamy sand, Sl3 = medium loamy sand, Sl4 = strongly loamy
sand, Ls4 = strongly sandy loam; Figure S2: Daily observed (black line) volumetric water content (%)
for the selected locations at the patchCROP experimental site for (a) 30 cm depth, (b) 60 cm and (c)
90 cm depth from 1 January 2021 to 15 September 2022; Figure S3: Daily simulated (color indicates
model setup) and observed (black line) volumetric water content (%) for the selected locations at the
patchCROP experimental site for the different PTF model setups at (a) 30 cm depth and (b) 90 cm
depth from 1 January 2021 to 15 September 2022; blue bars indicate daily precipitation (mm); crop
names indicate their respective growing season length; High/Low yield potential area indicates in
which area the respective soil profile was located; Table S1: Selected parameters, definitions and
values for winter oat and cover crop phacelia; Table S2: Above ground biomass sampling dates,
recorded BBCH stage at the time of sample collection and sampled area (m2) for selected crops at the
patchCROP site in Tempelberg, Brandenburg. The BBCH scale is used to describe the crops devel-
opmental stages (Meier, 2018); Table S3: Model performance indicators relative root mean squared
error in % (rRMSE), coefficient of determination (R2), mean error (Error), mean absolute error [t/ha]
(MAE) and sample size (N) for above ground biomass by pedotransfer setup and subsoil texture.
Reference [75] is cited in Supplementary Materials.
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