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Simultaneous selection and displacement of buildings 
and roads for map generalization via mixed-integer 
quadratic programming

Leon Rosenbergera, Yilang Shenb and Jan-Henrik Haunerta 

aInstitute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany; bSchool of Geospatial 
Engineering and Science, Sun Yat-sen University, Zhuhai, Guangdong 

ABSTRACT 
Research on map generalization has led to many algorithms for 
multiple elementary processes, such as object selection, aggrega
tion, simplification, and displacement. Algorithms for different 
processes are usually combined to workflows or orchestrated 
using multi-agent systems. Here, we present a novel approach 
integrating object selection and displacement at an algorithmic 
level. We model both processes together as an optimization prob
lem in the form of a mixed-integer quadratic program and dem
onstrate that it can be optimally solved using a mathematical 
problem solver. Moreover, we present an efficient heuristic. In 
experiments with roads and buildings from OpenStreetMap, our 
methods showed a good capability to unselect a small set of 
buildings whose inclusion in the output map would have caused 
large displacements or proximity conflicts. For a quantitative 
evaluation, we solved a benchmark instance once with our new 
model integrating selection and displacement and once with a 
variant of our model where the selection of objects was pre
scribed based on a solution found with an existing approach via 
simulated annealing. Comparing the two models, our integrated 
model yielded a solution of 33% less total cost. We conclude the 
article with a discussion of possible follow-up work.
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1. Introduction

Map generalization aims to reduce the scale of a map while preserving the most char
acteristic information in it. To satisfy minimal dimensions and distances, the map has 
to undergo several processes. These processes include object selection, displacement, 
aggregation, and simplification, among others. In the past decades, optimization has 
repeatedly proven itself for automating different processes of map generalization. 
Researchers have emphasized, in particular, that optimization approaches can handle 
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diverse constraints that cartographers have formalized as mathematical representa
tions of cartographic knowledge (Sester 2005; Harrie and Weibel 2007). These con
straints deal with the legibility of the output map or with the preservation of 
information given with the input map (Burghardt et al. 2007). Since a perfect satisfac
tion of all constraints is rarely possible, one usually considers some or all constraints 
as soft and tries to satisfy them as much as possible.

The optimization techniques that have been successfully applied to map generaliza
tion include mathematical programming, specifically least-squares adjustment (Harrie 
1999; Harrie and Sarjakoski 2002) and (mixed) integer linear programming (Haunert 
and Wolff 2010a, 2010b). Also, it is common to apply meta-heuristics, including hill 
climbing and simulated annealing (Ware and Jones 1998; Ware et al. 2003) and gen
etic algorithms (Wang et al. 2017). To deal with multiple processes of map generaliza
tion in an integrated way, multi-agent systems are nowadays frequently used (Maudet 
et al. 2014). They are often driven by an optimization engine that iteratively modifies 
the current map based on mathematically defined goals. A discussion of different opti
mization strategies in the context of a multi-agent system for polygon generalization 
is provided by Galanda (2003).

Despite the success of optimization approaches for map generalization, there 
remains a larger scientific challenge that we address with this work. This challenge is 
the simultaneous treatment of multiple processes of map generalization in an opti
mization approach, where some processes deal with discrete decisions (e.g. whether 
to select an object or aggregate a set of objects) and other processes deal with con
tinuous decisions (e.g. by how much to displace or enlarge an object). A prerequisite 
for tackling this challenge is a unified mathematical model integrating the different 
processes. Once such a model has been created, the problem will become accessible 
for a whole range of algorithmic techniques that are constantly being developed in 
the growing discipline of algorithm engineering (Sanders 2011). These techniques 
include both exact algorithms and efficient algorithms for computing approximate 
solutions.

To deal with both continuous and discrete decisions, the approach most com
monly used in the context of map generalization is to discretize the continuous solu
tion space. Then, a framework for discrete optimization is applied. For example, to 
deal with object displacement in a simulated annealing framework, Ware et al. (2003) 
defined for each map object an integer number of ‘trial positions’, from which in 
each iteration of the algorithm a candidate position is randomly sampled, evaluated, 
and possibly accepted for the next iteration. Less common but also possible is to 
model discrete decisions of map generalization in an optimization framework that 
uses only continuous variables. In particular, Harrie and Sarjakoski (2002) dealt with 
line simplification in their framework based on least-squares adjustment by introduc
ing a constraint that tries to move a node towards the line segment connecting its 
predecessor and successor node. If the constraint is perfectly satisfied, the node can 
be removed without affecting the shape of the line. With this, a simplification of the 
line is achieved. Recently, Zhou et al. (2023) have presented a method based on 
deep learning that simplifies building footprints by simultaneously moving and 
removing nodes.
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In contrast to previous work, we here investigate the potential of an optimization 
framework that can deal with both discrete and continuous variables and, in particular, 
that does not apply any unnatural discretization of continuous variables. Specifically, 
we apply mixed-integer quadratic programming to the simultaneous selection and dis
placement of objects, where ‘mixed-integer’ refers to the fact that we use both con
tinuous variables (to model the displacement of polygon and line nodes) and integer 
variables (which in our approach are constrained to values 0 or 1, to model whether 
an object is unselected or selected, respectively).

By formalizing our problem as a mixed-integer quadratic program (MIQP), we can 
directly apply existing mathematical solvers. For our experiments, we used the solver 
Gurobi (Anand et al. 2017), which guarantees an optimal solution as output. While this 
guarantee comes at the cost of an exponential worst-case running time, our exact 
method is fast enough for generating optimal solutions that provide meaningful 
insights about the effectiveness of our mathematical model and that can serve as 
benchmarks for heuristic methods. Specifically, we present an efficient heuristic based 
on a relaxation of our MIQP.

To summarize, we make the following concrete contributions:

1. We present a mathematical model unifying the selection of objects and the move
ment of their nodes (displacement). The aim is to resolve a set of proximity con
flicts that have been found in advance, meaning that the detection of conflicts is 
not part of our contribution. In our experiments, the conflicts are detected with 
an existing triangulation-based method (van Dijk et al. 2013). Our model has the 
form of an MIQP, which can be solved with exact methods implemented in math
ematical solvers.

2. We show how our exact method can be easily transformed into an efficient 
inexact method. Specifically, we relax the MIQP in the sense that we admit frac
tional values for the discrete variables. The relaxed model has the form of a con
vex quadratic program (CQP), which can be solved efficiently. We compute an 
optimal solution to the CQP and apply a rounding heuristic to it.

As it is common in the literature on mathematical programming, we use the term 
constraint exclusively for hard constraints, i.e. constraints that have to be strictly satis
fied. Subject to a set of constraint, our methods minimize a function measuring to 
which degree a set of mathematically defined goals are unfulfilled, e.g. the goal to 
keep nodes of objects at their original positions. Note that in the literature on map 
generalization, such goals are also sometimes referred to as constraints (Harrie 1999; 
Harrie and Sarjakoski 2002).

Our methods combine the displacement and selection of buildings and roads but 
do not aggregate buildings. This approach is appropriate if the geometric accuracy of 
the output map is not too important (hence displacement), the completeness of the 
set of buildings is not too important (hence selection), but the buildings should be 
represented individually (hence no aggregation). Individual buildings are commonly 
shown in large-scale topographic maps. At a scale of 1:25,000, displacement is neces
sary and some buildings need to be omitted to avoid graphic conflicts (Ware et al. 

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 1569



2003). In maps that are designed for navigation tasks, even large geometric distortions 
can be acceptable (Agrawala and Stolte 2001). Visual representations of individual 
buildings are highly relevant for navigation as they can serve as landmarks (Elias et al. 
2005; Kapaj et al. 2023).

We evaluate both our exact and our heuristic methods on datasets of building foot
prints and roads from OpenStreetMap. For both methods, we assess the running times 
and the quality of the solutions. Moreover, we also compare solutions of our methods 
with solutions that we extracted from the publication of Ware et al. (2003), which also 
aimed at a combination of displacement and selection. However, the combination of 
displacement and selection is not our ultimate goal. We rather consider our work, as 
an important step towards a new holistic map generalization method, which should 
ultimately also include the aggregation of individual buildings to larger built-up areas 
as well as the enlargement of objects and simplification of lines. Moreover, although 
we evaluate our approach for datasets of buildings and roads, we see the potential of 
our method to also generalize other line or area features, such as rivers and lakes.

In the following, we discuss related work on selection and displacement (Sect. 2). 
Next, we review existing mathematical programming approaches for related tasks and 
discuss the mathematical relationships between mixed-integer quadratic programming 
and mathematical programming techniques more commonly used in cartography 
(Sect. 3). We then introduce our new methods (Sect. 4) and present the experiments 
we conducted with them (Sect. 5). Finally, we conclude the article and discuss possible 
future work to address limitations of our approach (Sect. 6).

2. Related work on cartographic displacement and object selection

Resolving proximity conflicts among buildings and roads represented in a map is a 
common challenge of map generalization. Often this is addressed using displacement 
and (un)selection of objects. Since we follow the same strategy, we review existing 
methods for displacement (Sect. 2.1) and selection (Sect. 2.2) in the following.

2.1. Cartographic displacement

Cartographic displacement refers to the resolution of proximity conflicts in maps 
through the movement of objects or their nodes. A common approach is to detect 
the conflicts first by analyzing the context of the map elements. Next, displacement 
vectors are calculated based on specific constraints or rules. Finally, the spatial con
flicts are resolved by moving the map elements with conflicts. For example, 
Mackaness (1994) developed a radial displacement method for solving the spatial con
flicts of point sets by cluster analysis. To preserve the spatial distribution patterns of 
point sets, a density function that can handle the displacement decay was applied. 
Ruas (1998) presented a displacement method, emphasizing the importance of evalu
ating the input map and the map after each step of an iterative displacement algo
rithm. Basaraner (2011) developed an iterative method for building displacement 
based on Voronoi-based generalization zones. A spatial analysis and multiple criteria 
were applied to determine the displacement distances and directions. Ai et al. (2015) 
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applied a vector field model inspired by physics for the displacement of building con
flicts. In this method, the displacement distance, displacement decay, and secondary 
conflicts are handled by simulating a force field.

Several optimization methods have been proposed to deal with cartographic dis
placement together with other tasks of map generalization. Ware and Jones (1998) 
proposed a method for resolving spatial conflicts based on simulated annealing and 
gradient descent. The authors considered different generalization operators in these 
methods, including exaggeration, reduction, and displacement, to choose the new 
position of a building from a set of candidate positions. Wilson et al. (2003) considered 
object displacement and scaling in a genetic algorithm approach, where candidate sol
utions are encoded with chromosomes. The solution is iteratively modified using dif
ferent genetic operations, including mutation, crossover, and selection. To improve the 
method by Wilson et al. (2003), Sun et al. (2016) and Huang et al. (2017) extended the 
genetic algorithm by considering different arrangement patterns of buildings, their 
spatial relationships, and topological structures. In addition, some scholars also intro
duced ideas from other subject fields such as engineering and physics to build math
ematical models for displacement. For example, Harrie (1999, 2003) and Sester (2005) 
applied the least-squares adjustment method for building displacement and simplifica
tion. Højholt (2000) introduced the deformation of an elastic body to model the dis
placement of buildings. The finite element method is applied to discretize the map 
space, and boundary constraints are used to change the size and shape of the map 
elements. This method can effectively preserve the distribution patterns and spatial 
relationships of buildings, without distorting the map elements too much.

Since least-squares adjustment turned out to be appropriate for cartographic dis
placement, we developed our new method based on a similar principle. Specifically, 
we use quadratic energy terms to quantify distortions and displacements.

2.2. Selection of objects

To realize selection, many methods designed for point clusters, roads, and buildings 
have been proposed by previous studies. T€opfer and Pillewizer (1966) developed the 
radical law for determining the number of map elements at different levels of detail, 
which has been widely applied for selection tasks in map generalization. 
Subsequently, methods based on Voronoi diagrams (Yan and Weibel 2008; Lu et al. 
2019), Delaunay triangulations (Ai and Liu 2004), and quadtrees (Peters 2013) were 
introduced for the selection of points. Selection methods for linear features were 
mainly developed for roads and rivers (Jiang and Harrie 2004; Chen et al. 2009; Li 
et al. 2019; Mazur and Castner 1990; Thomson and Brooks 2000; Ai et al. 2006; Li et al. 
2018). For example, Chen et al. (2009) developed a road selection method by calculat
ing the mesh density of roads, especially considering semantic, topological, and geo
metrical properties. Li et al. (2019) proposed a railway selection method that can well 
preserve the structural features of railways and the connectivity of railway stations. For 
river selection, Mazur and Castner (1990) applied Horton’s rule to order the streams 
during generalization. Ai et al. (2006) used the Delaunay triangulation to detect the 
watershed regions of rivers and perform the selection by calculating the sizes of the 
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watershed regions. The design of building selection methods including building typifi
cation has also attracted the attention of many scholars (Regnauld 2001; Burghardt 
and Cecconi 2007; Gong and Wu 2018; Wang and Burghardt 2019). For example, 
Regnauld (2001) proposed a building typification method combining different Gestalt 
rules, which can well preserve the distributions, shapes, sizes, and density of buildings. 
Based on graph theory and the Delaunay triangulation, Gong and Wu (2018) also 
developed a building typification method that can maintain linear distribution patterns 
of buildings. In recent years, Shen et al. (2022a, 2022b) developed raster-based meth
ods for building selection and typification methods based on superpixel segmentation, 
which considers the distribution patterns as well as the geometric and semantic char
acteristics of buildings.

Our main conclusion for the development of our model is that the selection of 
buildings should not only be driven by proximity conflicts but also by patterns that 
should be preserved, such as multiple buildings aligned in a row (Gong and Wu 2018). 
The selection of roads should be based on connected sequences of segments, and the 
connectivity of the road network has to be preserved (Thomson and Brooks 2000).

3. Mathematical programming and its applications in map generalization

Mathematical programming means to state a computational problem as a mathemat
ical program, which consists of a set of variables, an optimization objective, and a set 
of constraints. One commonly distinguishes different types of mathematical programs 
based on the types of the variables and the form of the objective function and con
straints. Many types of mathematical programs can be solved with existing solvers.

In the context of cartographic displacement, least-squares adjustment is frequently 
applied (Harrie 1999; Sester 2000; Harrie and Sarjakoski 2002; Zhang et al. 2006; Harrie 
and Weibel 2007; van Dijk and Haunert 2014; Touya and Lokhat 2022), where the aim 
is to satisfy an overconstrained system of equations Ax ¼ b with unknowns x 2 Ru 

and constants A 2 Rn�u and b 2 Rn as much as possible. To achieve this, the aim is to 
minimize fðxÞ ¼ ‖Ax − b‖2:

Least-squares adjustment is a special case of convex quadratic programming, which 
in turn is a special case of convex programming (Boyd and Vandenberghe 2004). 
Generally, the term ‘convex’ in convex programming refers to the fact that (i) the set 
of feasible solutions defined with the constraints is convex (i.e., for every a 2 ½0, 1� the 
convex combination a � x0 þ ð1 − aÞ � x00 of any two solutions x0 and x00 is again a solu
tion) and (ii) the objective is to minimize a convex function f (i.e., f bounds a convex 
set from below). Due to the convexity of the objective function f and the convexity of 
the solution space, any local optimum of a convex program is automatically a global 
optimum. This observation has led to highly efficient convex programming solvers.

In a convex quadratic program (CQP), the variables are x 2 Rn; the objective is to 
minimize a function fðxÞ ¼ 1

2 xTAxþ bTxþ c; and the constraints are x � 0 and Dx � e;
where A 2 Rn�n; b 2 Rn; c 2 R; D 2 Rm�n; and e 2 Rm are prescribed constants and 
A is positive semidefinite. Haunert and Sering (2011) used this form to enlarge focus 
regions in road network maps and to optimally distribute the resulting distortions. 
Another prominent special case of convex programming is linear programming, where 
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other than in convex quadratic programming the minimization objective has no quad
ratic term, i.e., the objective function of a linear program (LP) has the form fðxÞ ¼
bTxþ c: Hirono et al. (2013) used linear programming to displace three-dimensional 
buildings in order to disocclude routes and landmarks in maps for navigation tasks. 
More recently, Nickel et al. (2022) applied linear programming to displace squares repre
senting countries in Demers cartograms.

Non-convex programs are much harder to solve than convex programs, but also 
their expressiveness is much larger. Especially mixed-integer linear programming has 
been applied for various tasks of map generalization and cartographic label placement 
that have a high computational complexity (in particular, for NP-hard problems). The 
difference to linear programming is that some of the variables are constrained to inte
ger values, i.e., a mixed-integer linear program (MILP) has variables xT ¼ ðxT

real, xT
intÞ

with xreal 2 Rnreal and xint 2 Znint . With integer variables constrained to 0 or 1 it is pos
sible to model discrete states, such as the unselection or selection of objects. This 
principle has found wide application in cartography, e.g., to select point features 
(Schwartges et al. 2013), edges of graphs representing road networks (Chimani et al. 
2014), local simplifications of lines called shortcuts (Haunert and Wolff 2010b), and 
text labels (Zoraster 1990; Haunert and Wolff 2017). Moreover, integer linear programs 
with 0–1 variables have been developed for clustering tasks, where the variables 
model possible assignments of objects to cluster centers. This principle has been 
applied in map generalization to group multiple polygon objects and aggregate the 
elements within each group to a single output polygon (Haunert and Wolff 2010a; 
Oehrlein and Haunert 2017; Peng et al. 2021; Gedicke et al. 2021). Guercke et al. 
(2011) applied the same concept to the generalization of 3D building models.

The mixed-integer quadratic programming formulation that we contribute in this 
article has the form of a convex quadratic program with both continuous and integer 
variables, i.e. xT ¼ ðxT

real, xT
intÞ as stated above. In other words, the non-convexity of the 

problem is due to the discrete nature of its variables and not due to its objective func
tion or constraints. Relaxing the restriction that xint has to be integer yields an effi
ciently solvable CQP. We use this property of our MIQP to derive an efficient rounding 
heuristic (see Sect. 4.7).

To our knowledge, mixed-integer quadratic programming has not been applied to 
map generalization yet. In the more general context of geometry processing, Huang 
et al. (2023) presented an MIQP-based method for the symmetrization of polygons.

4. Methodology

In this section, we give a detailed presentation of our new approach. We present the 
design goals underlying the approach (Sect. 4.1) and provide an overview of the work
flow (Sect. 4.2). Next, we discuss the preprocessing steps that are part of this workflow 
in detail (Sect. 4.3). To describe the main step of our approach, the optimization, we 
explain the fundamental mechanism of our model (Sect. 4.4), a basic MIQP that deals 
with the most important design goals (Sect. 4.5), and extensions to deal with the 
remaining design goals (Sect. 4.6). Finally, we present a heuristic (Sect. 4.7) and con
clude the section with an overview of the parameters of our methods (Sect. 4.8).
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4.1. Design goals

On an abstract level, our approach follows seven design goals.
Design goals G1–G4 deal with the selection of objects:

G1: Priorities of map objects that are provided as input should be respected.
G2: Dependencies between pairs of objects have to be respected (e.g., if a building is 

selected, the road leading to it must also be selected).
G3: When unselecting buildings, patterns of multiple buildings should be preserved.
G4: When unselecting roads, the road network has to remain connected.

Design goals G5–G7 deal with the positions of the nodes of the selected objects:

G5: Positions close to the original node positions should be favored.
G6: Proximity conflicts should be resolved.
G7: Distortions should be low. We here understand distortions as deviations from pre

ferred relative positions of nodes. They are measured (G7a) at edges of objects and 
(G7b) at pairs of nodes that represent characteristic proximity relations of objects.

Our approach is flexible with respect to how the priorities of objects are set for G1 
and which dependencies between objects are considered for G2. The priorities of 
buildings could be determined with importance rating algorithms that consider appli
cation-specific criteria and the spatial context. For example, if the map is used for navi
gation, important buildings are those that can serve as landmarks, e.g., buildings that 
are clearly visible and distinguishable from other buildings in the vicinity (Elias 2003). 
However, in the experiments, we used a basic setting, simply prioritizing buildings 
according to their areas.

In its current form, our method does not fulfill G3 for arbitrary patterns of buildings. 
However, we introduce weak dependencies between adjacent buildings. More pre
cisely, we add a term to the objective function that penalizes the unselection of a 
building if an adjacent building is selected, where two buildings are considered adja
cent if their polygons share at least one edge. This, in particular, has the effect that 
sequences of multiple row houses are preserved. The preservation of other types of 
building patterns, such as a set of buildings arranged on a regular grid, is a topic for 
future research. Generally, we consider it promising to detect patterns before setting 
up and solving the optimization problem. For example, if it was determined that a set 
of buildings in the input data set forms a grid pattern, the optimization problem 
should be set up with additional constraints or objectives, favoring solutions where 
the selected subset has a similar characteristic.

4.2. Overview of the workflow

Figure 1 provides an overview of our workflow. As input for our method we require a 
geometric graph G ¼ ðV , EÞ that represents the roads and boundaries of buildings; see 
Figure 1(a). We apply preprocessing steps (from Figure 1(a) to (d)) to achieve an 
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enriched graph G0 ¼ ðV 0, E0Þ that we use as input for the optimization step. These pre
processing steps are dealing with computing a conforming Delaunay triangulation of 
G (Saalfeld 1991), selecting a subgraph of interesting edges from the triangulation 
(see Sect. 4.3 for details), and removing redundant nodes in the selected subgraph 
(i.e., nodes of degree two whose two incident edges have the same orientation). The 
result of the subsequent optimization step is shown in Figure 1(e), where one building 
has been unselected and some displacement occurred. In a final postprocessing step, 
the nodes that were introduced by the conforming Delaunay triangulation algorithm 
(i.e. Steiner nodes) are removed from the graph; see Figure 1(f).

In some situations, it can be reasonable to apply a simplification algorithm prior to 
our workflow, in order to avoid that the enriched graph G0 represents too many 
details. However, we did not simplify the data that we retrieved for our experiments 
(see Sect. 5) since its level of detail seemed appropriate.

A detailed presentation of the workflow for an example is given in Appendix.

4.3. Preprocessing

To compute the enriched geometric graph G0 from the input graph G, we first com
pute a conforming Delaunay triangulation T of G; see Figure 1(b). While many meth
ods for displacement are based on a triangulation, not all methods use the full 
triangulation for the optimization step. For example, Sester (2005) uses all edges of a 
triangulation, but Harrie and Sarjakoski (2002) consider only the edges that belong to 

Figure 1. Overview of our workflow. The steps from (a) to (d) are referred to as preprocessing. The 
step from (d) to (e) is the optimization step, which is the focus of our work. The step from (e) to 
(f) is referred to as postprocessing.
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objects or represent conflicts. They argue that the lengths of other triangle edges are 
not interesting from a cartographic point of view. We choose a compromise between 
these two approaches by selecting a preferably small subgraph T 0 of T that satisfies 
the following requirements:

(R1) T 0 must include every edge of T that is covered by an edge of G (i.e. edges 
belonging to objects).

(R2) For every edge fu, vg of T it must hold that dT 0 ðu, vÞ=dðu, vÞ � t; where dT 0

denotes the geodesic distance in T 0 (i.e. the geometric length of a geometrically 
shortest path in T 0), d denotes the Euclidean distance, and t � 1 is a parameter that 
can be chosen to control how densely T 0 is connected. Setting t ¼ 1 yields T 0 ¼ T :
For increasing t, the density of T 0 decreases.

The motivation for Requirement R2 is that two nodes u, v with large 
dT 0 ðu, vÞ=dðu, vÞ are closely related to each other (geometrically near) but are lacking a 
good connection in T 0: Without improving this connection, there is the risk that the 
characteristic proximity relationship between the two nodes will be lost in the opti
mization step. By adding too many edges to T 0; however, we would likely lose the 
flexibility that is needed to appropriately resolve the conflicts.

To satisfy Requirements R1 and R2 when selecting T 0 from T, we choose an iterative 
greedy heuristic proposed by van Dijk et al. (2013). It initially sets T 0 to include all 
edges belonging to objects, thus satisfying Requirement R1. Then, the method iterates 
over the edges in T in increasing order of their lengths. In every iteration, it checks 
the current edge e ¼ fu, vg and computes dT 0 ðu, vÞ=dðu, vÞ with respect to the current 
graph T 0: If this ratio exceeds t, the method adds e to T 0:

With this method, we find bottlenecks of the faces of the current graph T 0; i.e. 
every edge that we add cuts one of the faces where the face is relatively narrow. 
Therefore, we call the additional edges bottleneck edges. Bottleneck edges that are 
shorter than a prescribed threshold e > 0 represent conflicts that should be resolved 
by displacement. Bottleneck edges of length at least e represent characteristic relative 
positions between nodes that should be preserved during generalization. 
Consequently, we will measure the distortion of the map at the edges belonging to 
objects (design goal G7a) and at the bottleneck edges (design goal G7b). The resulting 
graph T 0 is shown in Figure 1(c).

To avoid superfluous nodes in the input for the optimization step, we remove every 
Steiner node v from T 0 for which no incident edge was selected as a bottleneck edge. 
When removing v, we replace its two incident edges fu, vg and fv, wg with a single 
edge fu, wg; resulting in the enriched graph G0; see Figure 1(d).

Finally, we impose an arbitrary direction on each edge of G0: The direction of an 
edge ðu, vÞ 2 E0 does not have any meaning, except that it allows us to unambigu
ously distinguish between the source node u and the target node v of e. Therefore, in 
the following, we refer to G0 as a directed graph.

We would like to point out that the edges of the conforming Delaunay triangula
tion T of G only approximately represent smallest distances between objects. However, 
the approximation error is relatively small if th0e level of detail of the input data is 
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high. For a better representation of smallest distances, one could subdivide edges 
of G.

4.4. Fundamental mechanism

Once the enriched graph G0 ¼ ðV 0, E0Þ has been computed, the optimization method 
continues with the distortion of G0 and the selection of objects. For this, we assume 
that we are given a partition of E0 into a set Eobj that represents the roads and build
ings (gray edges in Figure 1(d)), and the set Ebot of bottleneck edges (red and blue 
edges in Figure 1(d)).

Each building and each road are given as a subset of Eobj: The edge set for a road may 
either follow the definition of a road object in the source data or correspond to a 
sequence of line segments that has been identified as a stroke in a pre-processing step 
(Thomson and Brooks 2000). The edge sets for two buildings overlap if the buildings 
share a wall. With B, we refer to the set of all buildings and with R to the set of all roads. 
The following definition summarizes the fundamental mechanism underlying our model.

Fundamental mechanism. Every edge e 2 E0 depends on a set of objects, in the sense 
that a deviation of e from its desired extent is penalized in the objective function if 
and only if a certain condition over the selection states of the objects holds. An edge 
satisfying this condition is called active.

We first define the desired extent of the edges and then specify the conditions for 
active edges.

� For every bottleneck edge e ¼ ðu, vÞ that is shorter than the minimally allowed 
length e; the desired extent of e corresponds to the original extent of e scaled by 
e=dðu, vÞ; where dðu, vÞ is the distance between the two incident nodes u and v 
of e. With this we try to resolve proximity conflicts (design goal G6).

� For every other edge, the desired extent is equal to the original extent. This 
includes edges belonging to objects (design goal G7a) but also bottleneck edges 
of length at least e (design goal G7b), which are depicted blue in Figure 1(d).

The condition under which an edge is active is defined as a logical expression that 
consists of at most two OR clauses that are combined with AND. Each OR clause for 
an edge e corresponds to a set of objects. Together, these sets of objects for e consti
tute a set SðeÞ: For example, for edge e in Figure 2(a), we define SðeÞ ¼
ffb1g, fr1, r2gg: Consequently, e is active if and only if (i) b1 is selected and (ii) r1 or r2 

is selected. More generally, we use the following rule:

� If e is a bottleneck edge, we add for each of its incident nodes u a set to SðeÞ: If u 
belongs to a single road or building, the corresponding set in SðeÞ contains only 
this object. If u belongs to multiple objects, the corresponding set in SðeÞ contains 
all of them.

For edges belonging to objects, the following two rules are used:

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 1577



� If e belongs to a single building or road a, then SðeÞ ¼ ffagg: This means that the 
distortion of e is considered if and only if a is selected.

� If e belongs to two buildings b1 and b2; as it is the case for edge e1 in Figure 2(b), 
we set SðeÞ ¼ ffb1, b2gg: This means that the distortion of e is considered if and 
only if b1 or b2 is selected.

To simplify the discussion in the following, if SðeÞ contains a set of two or more 
objects, we consider this set itself as an object. We call every such additional object a 
collector. With C, we refer to the set of all collectors. Furthermore, we introduce O ¼
R [ B [ C as the set of all objects (i.e. roads, buildings, and collectors). Since a collector 
corresponds to an OR clause, we consider it selected if at least one object in it is 
selected. For every edge e, we introduce a set of at most two associated objects 
OðeÞ � O: For every set in SðeÞ that contains only one object, that object is contained 
in OðeÞ: For every other set in SðeÞ; OðeÞ contains the corresponding collector.

4.5. A basic mixed-integer quadratic program

In addition to the enriched graph G0 ¼ ðV 0, E0Þ; the partition of E0 into the set of object 
edges Eobj and the set of bottleneck edges Ebot; the set of objects O and its partition 
into the three sets B, R, and C, and the set OðeÞ of associated objects for each edge e, 
we require the following parameters as input:

� e 2 R�0 : The minimal length required for the edges representing conflicts.
� wselect, wpos, wedge 2 ½0, 1� : The weights expressing the general priorities of design 

goal G1, design goal G5, and the goal to achieve the desired edge extents (model
ling design goals G6 and G7).

� wuv 2 R�0 for each ðu, vÞ 2 E0 : An edge-specific weight expressing the priority to 
achieve the desired extent for edge ðu, vÞ (also allowing the differentiation between 
design goals G6 and G7).

� wo 2 R�0 for each o 2 B [ R: A weight representing the importance of object o.

Concrete parameter settings will be presented with our experiments, in Sect. 5.

Figure 2. The set SðeÞ determining the activity of an edge e for two cases. Generally, e is active if 
for each set of objects in SðeÞ at least one object is selected.
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With this, we set up the optimization problem in the form of an MIQP, which con
sists of the variables, the objective function, and the constraints specified as follows.

The variables are of three different types:

� For each node v 2 V 0; the continuous variables dx0v; dy0v 2 R encode the movement 
of v.

� For each object o 2 O; the binary variable zo 2 f0, 1g models whether o is selected 
for the output map (zo ¼ 1) or not selected (zo ¼ 0).

� For each edge e ¼ ðu, vÞ 2 E0; we introduce the continuous variables dx0uv; dy0uv 2 R:

If e is active, we ensure with constraints that dx0uv and dy0uv measure the residuals 
for e, i.e., the difference between the desired extent of e and the extent of e after 
its distortion. If e is not active, we ensure that the constraints imposed on dx0uv and 
dy0uv are relaxed, such that dx0uv ¼ 0 and dy0uv ¼ 0 in every optimal solution.

The objective function consists of three parts.

Minimize fbasic ¼ wpos �
P

v2V 0 dx0v
� �2

þ dy0v
� �2

� �

þwedge �
P
ðu, vÞ2E0wuv � dx0uv

� �2
þ dy0uv

� �2
� �

þwselect �
P

o2B[Rwo � 1 − zoð Þ

(1) 

The first, second, and third part of the objective functions are weighted by wpos;

wedge; wselect; respectively. The reason for these parts is as follows:

� The first part measures the sum of the squared movements in x- and y-direction 
over all nodes, which means that each node contributes a cost that is proportional 
to the squared Euclidean distance between its original and new position. This has 
the effect of a quadratic energy attracting the nodes to their original positions.

� The second part of the objective penalizes, for every active edge e 2 E0; the devi
ation of the extent of e ¼ ðu, vÞ from its desired extent. We apply the edge-specific 
factor wuv 2 R�0 to the cost for e to take into account that the same amount of 
distortion may be more or less tolerable for different edges.

� The third part adds a cost of wo for every non-selected object o. With this impor
tant objects (i.e., objects with large weights) are likely selected.

The constraints of our basic model first of all ensure that the map stays within the 
prescribed box ½xmin, xmax� � ½ymin, ymax�: More precisely, we require for each u 2 V

xmin � xu þ dx0u � xmax (2) 

ymin � yu þ dy0u � ymax, (3) 

where xmin ¼ minu2V 0 fxug; xmax ¼ maxu2V 0 fxug; ymin ¼ minu2V 0 fyug; and ymax ¼

maxu2V 0 fyug: Furthermore, we introduce a constraint for each collector c 2 C and each 
object o 2 c; to ensure that c is selected if o is selected and, thus, that c has the effect 
of an OR clause.

zc � zo (4) 
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Next, we ensure that the different types of variables are correctly coupled, such 
that the variables’ values in an optimal solution conform to the variables’ definitions 
stated above. We achieve this with four inequality constraints for each edge e ¼
ðu, vÞ 2 E0; which we first introduce and then explain.

dx0uv � ðxu þ dx0uÞ − xv þ dx0v
� �� �

− s xu − xvð Þ − M
X

o2OðeÞ
1 − zoð Þ (5) 

dy0uv � ðyu þ dy0uÞ − yv þ dy0v
� �� �

− s yu − yvð Þ − M
X

o2OðeÞ
1 − zoð Þ (6) 

dx0uv � − ðxu þ dx0uÞ − xv þ dx0v
� �� �

þ s xu − xvð Þ − M
X

o2OðeÞ
1 − zoð Þ (7) 

dy0uv � − ðyu þ dy0uÞ − yv þ dy0v
� �� �

þ s yu − yvð Þ − M
X

o2OðeÞ
1 − zoð Þ (8) 

where

s ¼
e

dðu, vÞ
if dðu, vÞ < e and ðu, vÞ 2 Ebot

1 else

8
<

:
(9) 

and M is a large constant. More precisely, we set

M ¼ maxf2ðxmax − xminÞ, 2ðymax − yminÞg: (10) 

To explain the effect of Constraints (5)–(8) for edge e ¼ ðu, vÞ; we first consider the 
case that the objects in OðeÞ are selected, i.e. zo ¼ 1 for all o 2 OðeÞ: In this case, the 
term with factor M in each inequality vanishes. Moreover, the right-hand sides of 
Constraints (5) and (7) differ only with respect to their signs, thus together they imply 
dx0uv � ððxu þ dx0uÞ − ðxv þ dx0vÞÞ − sðxu − xvÞ

�
�

�
�: In an optimal solution, dx0uv will be set to 

the smallest possible value, which implies dx0uv ¼ ððxu þ dx0uÞ − ðxv þ dx0vÞÞ − sðxu − xvÞ
�
�

�
�:

Here, ððxu þ dx0uÞ − ðxv þ dx0vÞÞ is the extent of edge e in the x-dimension after the dis
placement of nodes. By choosing s according to Equation (9), we implement the reso
lution of proximity conflicts (design goal G6) in such a way that an edge representing a 
conflict should be scaled to achieve a length of e; while every other edge should pre
serve its extent. Hence, dx0uv correctly models the difference between the resulting extent 
and the desired extent of edge e in the x-dimension. Constraints (6) and (8) ensure the 
same for dy0uv with respect to the y-dimension. Next, we consider the case that at least 
one object o 2 oðeÞ is not selected, i.e., zo ¼ 0: In this case, the constant M is subtracted 
at least once from the right-hand side of each of the four inequalities. With the definition 
of M in Equation (10) and assuming e < xmax − xmin and e < ymax − ymin; this subtraction 
implies a relaxation of the four constraints, i.e. they are always fulfilled. Consequently, in 
an optimal solution, it holds that dx0uv ¼ dy0uv ¼ 0: This means that, if e is not active, there 
is no cost for its distortion.

4.6. Model extensions

4.6.1. Coupled selection of roads and buildings
We can model dependencies between any two objects (design goal G2) with additional 
constraints. In particular, in the context of buildings and roads, we allow the selection of 
a building only if the road leading to it is selected as well. Therefore, we compute for 
every building b 2 B the road r 2 R nearest to the centroid of b and denote it with rðbÞ:
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We then add the following constraint to couple the selection of these two objects.

zrðbÞ � zb (11) 

Alternatively, the road rðbÞ associated with building b could be defined using add
itional address information.

4.6.2. Coupled selection of multiple buildings
From our experiments with the basic model, we learned that the set of buildings 
selected for an optimal solution sometimes contains unfavorable gaps. For example, a 
single house in the middle of a sequence of row houses was removed, which led to a 
solution with relatively little distortion of the active edges. Although this solution con
forms with the design goals based on which the basic model was set up, it does not 
conform with the overarching goal of map generalization to preserve characteristic 
patterns in the data. In particular, the sequence of row houses is not preserved as a 
sequence. Therefore, we model as an additional objective that adjacent buildings should 
be treated the same. More precisely, we consider the adjacency graph of all buildings, 
i.e. the graph with node set B and with an edge between every two buildings in B that 
share an edge in E0: We reduce this graph to its connected components of at least three 
buildings, resulting in a graph whose edge set we denote with A. For every two build
ings b and b0 connected by an edge in A, if one building is selected and the other one 
not selected, we charge a certain cost. To express this objective in mathematical terms, 
we introduce an additional variable zbb0 2 f0, 1g for each fb, b0g 2 A: Using the follow
ing two constraints, we ensure that zbb0 ¼ 1 if one of the two buildings is selected and 
the other one not selected.

zbb0 � zb − zb0 (12) 

zbb0 � zb0 − zb (13) 

With this, we are able to add a fourth term to our objective function that penalizes 
solutions in which a building is selected and a building adjacent to it is not selected.

fadvanced ¼ fbasic þ wdepend �
X

fb, b0g2A

zbb0 (14) 

Here, wdepend 2 ½0, 1� needs to be chosen to express the priority of the additional 
term.

Instead of only looking at adjacent buildings, we could introduce weak dependen
cies for arbitrary pairs of buildings, e.g. a pair of buildings that from given thematic 
information are known to belong to the same hospital or university.

4.6.3. Connectivity of the road network
An important requirement when selecting roads is to keep the road network con
nected. We enforce the global connectivity of the road network by adapting the flow 
model of Shirabe (2005). Generally, with this model one can enforce the connectivity 
of a graph H0 when selecting it as a subgraph of a given graph H. In our application, 
H has the node set R and its edge set EH contains an edge for every two roads that 
share a node in G. Since the model of Shirabe is well documented in the literature, 
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and its adaptation is rather straight-forward, we only present the additional variables 
and constraints coming with the model and give a very brief explanation.

Additional variables:

� For each edge fr, r0g 2 EH that share a node, the variables frr0 ; fr0r 2 R�0 model the 
amount of a commodity that flows from r to r0 and from r0 to r.

� For each road r 2 R; the variable sr 2 f0, 1g encodes whether r acts as a sink of the 
flow network (sr ¼ 1) or not (sr ¼ 0).

Additional constraints:
X

r2R
sr ¼ 1 (15) 

sr � zr for each r 2 R (16) 
X

fr, r0g2EH
frr0 −

X

fr, r0g2EH
fr0r � zr − jRj � sr for each r 2 R (17) 

X

fr, r0g2EH
frr0 � jRj − 1ð Þ � zr for each r 2 R (18) 

The connectivity of the subgraph of H induced by the selected roads is ensured by 
enforcing that there is a single sink (Equation (15)), that this sink is in the selected 
subgraph (Equation (16)), that a non-selected node has neither incoming nor outgoing 
flow (Equations (17) and (18) for zr ¼ 0), and that all selected nodes except the sink 
contribute a positive amount of flow (Equation (17) for zr ¼ 1).

4.7. Heuristic method

Our heuristic approach consists of the following steps:

1. Solve the relaxation of the MIQP in which the integer variables are allowed to 
receive fractional values. This relaxation is a convex quadratic program (CQP), 
which can be solved efficiently. For each object o in the solution to this relaxation, 
the variable zo has a value in [0, 1].

2. For each object o 2 O fulfilling zo � h; round zo up to 1 and thus select o, where 
h 2 ½0, 1� is a user-set threshold. For each other object o, set zo ¼ 0:

3. Solve the CQP again but keep the value of zo for every object o 2 O fixed to the 
value resulting from the previous step. Return the solution found.

In Step 3, when fixing zo ¼ 1 for some object o, we apply several simplifications to 
the CQP to speed up its solution. In particular, in Equations (5) and (6), the terms with 
M disappear. The inequality relation can be replaced by equality since the sign of dx0uv 

and dy0uv has no effect on the optimization if the objects are fixed. Thus, Equations (7)
and (8) can be omitted.

Also for the heuristic, we can formulate goals supporting the connectivity of rows 
of buildings in the same manner as before, but now the variables zbb0 are continuous 
with values in the interval [0, 1].

In order to guarantee the connectivity of the road network, we apply the following 
strategy between Steps 2 and 3: If the roads chosen in Step 2 are disconnected, 
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iteratively add roads from the set of the unselected roads, ordered descendingly by 
their corresponding values zo: Skip roads which are only adjacent to roads which have 
already been added and lie in one connected component.

4.8. Summary of parameters

We conclude this section with an overview of the parameters that we have introduced 
along the development of our model; see Table 1. Concrete parameter settings will be 
given in the next section, which deals with the experiments that we conducted.

5. Experiments

We implemented our method in Java using the Gurobi library for solving the mathem
atical programs. In this section, we show some results of our method applied to real- 
world data that we retrieved from OpenStreetMap.1 In total, we use 20 datasets of 
road and building data split into two groups: 15 ‘urban’ datasets where the objects lie 
within the city of Bonn and mostly cover one or two building blocks and 5 ‘rural’ data
sets, each consisting of a small village in the Eifel region south of Bonn. While in the 
urban datasets most buildings lie within tight meshes of the road network, they are 
rather grouped around crossings of the roads in the rural datasets. Unless stated dif
ferently, the parameters introduced in Sect. 4 are set as follows: t ¼ 5; e ¼ 7:5 m, 
wpos ¼ 0:0001; wedge ¼ 0:8; wselect ¼ 0:1999; wdepend ¼ 0:5: This setting was found 
through the experiments that we discuss in Sect. 5.1. We weight the roads proportion
ally to their lengths and the buildings proportionally to their areas. By normalizing 
these weights, the smallest building finally obtains a weight wo ¼ 1 and the shortest 
road obtains a weight wo ¼ 10: We set the edge-specific weight wuv to 1 unless ðu, vÞ
is a bottleneck edge of length l > e: In this case, we set wuv ¼ e2=l2: This means for 
sufficiently long bottleneck edges design goal G7 is less strict, which allows these 
edges to be contracted to a larger degree. We found that in some situations this helps 
to better make use of free map space and thus preserve more objects.

Moreover, we apply the coupled selection of roads and buildings from Sect. 4.6.1. 
With this, the road network remains connected in our examples, even without the 
strategies described in Sections 4.6.3 and 4.7.

Table 1. Input parameters of our methods.
t Threshold used in the preprocessing to control the density of the graph G

0

used in the optimization 
step. With larger t, G

0

gets less dense, which implies that distortions are measured only at most 
critical bottlenecks.

e Bottleneck edges shorter than this threshold are considered as conflicts.
wpos Weight expressing the priority to keep original node positions

wedge Weight expressing the priority to generally keep distortions at edges low.
wselect Weight expressing the priority to generally keep objects selected.
wdepend Weight expressing the priority to respect weak dependencies. (We used a weak dependency for each 

two adjacent buildings to preserve rows of buildings, but also other pairs of objects could be 
considered.)

wo Weight expressing the priority to select object o.
wuv Weight expressing the priority to keep the distortion at edge uv low.
h Threshold is used by the heuristic to decide which variables are rounded up.
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In Sections 5.1 and 5.2, we discuss the results of our exact approach and compare 
it to the approach by Ware et al. (2003). Section 5.3 examines the quality of the heur
istic approach. In Sect. 5.4, we discuss the running time of the exact and the heuristic 
approach.

5.1. Exploring different weightings

We now show some results for one of the urban datasets and how they are influenced 
by the choice of the weights wpos; wedge and wselect; see Figure 3. For that, we start 
with an example where the displacement of nodes is penalized with a relatively large 
cost wpos (see Figure 3(a)): The objects stay roughly at their initial locations, but some 
are removed to resolve the conflicts. The number of unselected objects is relatively 
large since displacement and distortion come along with large costs and selection 
remains as a relatively cheap operation to resolve conflicts. In contrast, when using a 
small value for wpos and a large one for wedge; some objects are displaced but roughly 
keep their original shapes, since the distortion of the graph edges is penalized; see 
Figure 3(b). Hence, wpos should be small to allow for both selection and displacement 
being applied to resolve conflicts. Also, wedge should not be too small. In the extreme 
case wedge ¼ 0; the bottleneck edges have no influence and no conflict is resolved. In 
comparison to Figure 3(b), we show in Figure 3(c) the result for the case that unselect
ing objects is not permitted. In this case, some buildings are visibly distorted, which 
happens mostly for those that are unselected in Figure 3(b). This shows that the com
bined approach tends to unselect objects only if they are involved in conflicts and if 
these conflicts cannot be resolved by only displacing the objects.

In order to visualize the displacements of nodes and the distortions of edges, we 
define the absolute displacement dv of a node v and the absolute distortion duv of an 
edge ðu, vÞ as follows:

Figure 3. Example dataset for different parameter settings (grey: input graph G, black: output 
graph, blue: bottleneck edges of length at least e; red: bottleneck edges shorter than e).
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dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdx0vÞ
2
þ ðdy0vÞ

2
q

(19) 

duv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdx0uvÞ
2
þ ðdy0uvÞ

2
q

(20) 

Note that these terms occur squared and weighted in the objective function in 
Equation (1).

Figure 4. Absolute distortion duv of each active edge ðu, vÞ of G
0

:

Figure 5. Absolute displacement dv of each node v of G
0

that belongs to selected objects.
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In Figure 4, we colored each active edge according to its absolute distortion. It 
becomes clear that also the bottleneck edges are distorted more if only the displace
ment operator is applied. Similarly, Figure 5 shows the absolute displacements of the 
nodes belonging to the output graph. Again, using the combined selection and dis
placement approach leads to smaller node movements than when only displacement 
is allowed. Furthermore, objects can be displaced while not being distorted much. 
This can be seen especially for the bottom-most building in Figures 4(a) and 5(a).

For the shown dataset, the total objective value decreases by ca. 86% when selec
tion of objects is permitted. Averaged over the urban datasets, a decrease of ca. 73% 
is obtained, compared to only 52% for the rural datasets. This reflects the structure of 
our datasets: In the urban datasets, the buildings are to a higher degree surrounded 
by other objects, which makes it more difficult to displace them without generating 
new conflicts. For comparison, the result for the rural dataset yielding the smallest 
decrease (ca. 21%) is shown in Figure 6.

5.2. Comparison to a simulated annealing approach

We now compare our approach to the simulated annealing approach by Ware et al. 
(2003). For that, we have to slightly change our model so that the results are compar
able. First, in their approach all roads remain unchanged. Hence, we add the con
straint dx0v ¼ dy0v ¼ 0 for each node v belonging to a road before solving the model. 
Secondly, in their model buildings can only be displaced as a whole object, i.e. their 
edges cannot be distorted. We achieve this by constraining dx0uv ¼ dy0uv ¼ 0 for each 
edge ðu, vÞ belonging to a building. Thirdly, the authors distinguish between conflicts 
involving two buildings and conflicts involving a building and a road. The weight they 
assign to the latter group is 10 times the weight they assign to the first group. We 
consider this by setting the coefficient wuv in Equations (1) to (10) for each bottleneck 
edge between a building and a road, and to 1 for any other edge. Since their input 
data are not available anymore, we manually generated a dataset that mimics the situ
ation in Figure 6(d) of their publication. For our comparison, we run our approach on 

Figure 6. An example of a rural dataset.
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this dataset twice: Once without further restrictions and once with the restriction that 
we have to select exactly the same buildings as they did. We then compare the overall 
objective values achieved with both variants. Moreover, we look at the values of the 
three terms in Equation (1). We do this for the weighting which appeared most rea
sonable in Sect. 5.1 (wpos ¼ 0:0001; wedge ¼ 0:8; wselect ¼ 0:1999), without the model 
extension from Sect. 4.6.2 since the dataset consists of isolated buildings only. The 
resulting objective values are listed in Table 2. In total, we achieve a reduction by 
approximately 33% of fbasic when we use our approach to select buildings instead of 
adopting the selection from Ware et al. (2003). The largest part of the reduction comes 
from the selection of buildings. In their approach, a larger number of buildings are 
unselected (12 vs. 11), and these buildings tend to be larger than the ones which are 
unselected in our approach (see Figure 7). This is interesting since also in their 
approach the cost of unselecting a building is proportional to its area. Hence, we can 
assume that with our global optimization we are more able to find the buildings 
which are most suited for being unselected. Also the displacement cost is larger for 
the restricted selection. This can be seen in Figure 7, since some buildings in the cen
ter obtain rather large displacements in the restricted selection. The largest displace
ment is 3.7 m for our selection, compared to 5.1 m for the restricted one. A reason for 
this may be that, in our approach, the cost for displacing a node grows quadratically 
with the amount of displacement, whereas Ware et al. (2003) apply a linear cost 

Table 2. Objective values when using our approach for the selection of buildings and when 
enforcing the selection from Ware et al. (2003). The columns displacement, distortion, and selec
tion refer to the first, second, and third term of Equation (1), respectively. The column total shows 
their sum. The weights are wpos ¼ 0:0001; wedge ¼ 0:8 and wselect ¼ 0:1999:

Displacement Distortion Selection Total

Our selection 0.13 564.86 241.24 806.24
Selection from Ware et al. (2003) 0.18 585.87 616.96 1203.02

Figure 7. Our method applied to a dataset that we manually generated to mimic the situation 
shown in a figure by Ware et al. (2003): (a) Free selection of buildings within our framework. 
(b) Fixing the selection to the one made by Ware et al. (2003). Coloring as in Figure 3.
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function. Hence, in their approach, displacing a few nodes by a large distance is less 
strictly penalized.

5.3. Performance of the heuristic

A heuristic optimization algorithm should provide results close to an exact algorithm 
measured in terms of the objective function. Yet, so far it is not clear to which degree 
this holds for our heuristic. Therefore, we now compare the objective values provided 
by our exact algorithm and the heuristic for our instances. For each instance, both the 
exact and the heuristic algorithm are run and the objective function from Equation 
(14) is evaluated on the results. The threshold h in the heuristic is chosen experimentally 
for each instance by exploring values between 0.9965 and 0.9995 with a step size of 
0.0005 and selecting the one yielding the smallest objective value. This always resulted 
in h lying within the interval [0.998, 0.999]. Figure 8 shows the increase in the objective 
function coming along with the heuristic. Averaged over the 20 datasets, the objective 
value provided by the heuristic is by ca. 18% larger than the one of the exact solution. 
The datasets are sorted by the weighted percentage of removed objects (WP), which we 
define as the ratio of the summed weights of all unselected objects in the exact solution 
over the summed weights of all objects. Higher values of WP indicate more unfavorable 
configurations because in this case the optimal solution unselects objects of high weight. 
However, there seems to be no correlation between WP and the increase in the object
ive. This indicates that the approximation quality does not depend much on the spatial 
complexity of the instance. Also, the performance of the heuristic does not seem to differ 
much between the urban and the rural datasets.

Figure 9 shows the results for the dataset where the highest increase in the 
objective (ca. 41 %) was obtained. Using the heuristic, a block of garages in the 
upper part is completely removed, whereas the exact method removes only the first 

Figure 8. Increase in the objective function that comes along when using the heuristic instead of 
the exact method, for each of our 20 datasets. The x-axis shows the amount of unselection occur
ring in the exact method.
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and last garage. Apart from this, the two methods yield a similar result. Both the 
rectangular shape of the buildings and the connectivity of building blocks can be 
preserved. The results for another dataset are depicted in Figure 10. In this case, the 
heuristic unselects a road. The same also happens for the exact method when the 
weight for the selection of objects is decreased (wedge ¼ 0:9; wselect ¼ 0:0999). 
However, this is only a minor road contributing to many conflicts, so in this case the 
removal is plausible.

5.4. Running time

We conducted the computations on a Windows notebook with 16 GB RAM and an AMD 
Ryzen 5 5625 U CPU, clocked at 2.3 GHz. For the exact method, the running times range 

Figure 9. Dataset where the largest gap between the heuristic and the exact method in terms of 
the objective function occurred (coloring as in Figure 3).

Figure 10. An example where a road is unselected (wpos ¼ 0:0001; wdepend ¼ 0:5; coloring as in 
Figure 3).
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from 0.7 s to 284.5 s, whereas they range from 0.5 s to 1.7 s for the heuristic (see Figure 11). 
The ratio of the running times of both methods varies between 1.6 and 199.0 and, in gen
eral, increases with the size of the datasets. Beside the 20 small datasets, we tested our 
method on a larger dataset with 898 buildings and 88 road objects, covering an area of ca. 
43 ha and comprising 5024 nodes in G0: There, the heuristic yielded a solution within 
65 sec, whereas the exact approach was not completed within 9 h.

To sum up, the heuristic allows for a much faster computation while only slightly 
increasing the objective value.

6. Conclusion and future work

We have presented a novel optimization approach for solving two processes of map 
generalization, object selection and displacement, in an integrated way. From the 
experiments that we have conducted with building and road data, we conclude that 
the method is well capable to resolve a set of previously detected proximity conflicts. 
Specifically, our exact method reduced the overall cost by 33%, compared to a solu
tion where the selected objects have been adopted from a solution of an existing 
method and only the displacement has been optimized using our model. The solu
tions found with our heuristic were on average 18% worse than the optimal solutions. 
However, this decrease in quality may be acceptable in view of the relatively short 
running time of the heuristic, which solved a problem instance of 898 buildings and 
88 roads within 65 seconds. We understand our approach as a first step towards inte
grating discrete and continuous decisions of map generalization in a single mathemat
ical programming framework and see the following opportunities for future work.

As discussed in Sect. 4.1, an important topic for future research is the preservation 
of building patterns other than sequences of row houses in the selection process, e.g. 
sets of buildings arranged in a regular grid. Moreover, it is important to integrate fur
ther processes of map generalization into our model. It would be relatively easy to 

Figure 11. Running times of our methods as functions of the number of nodes in the enriched 
graph G

0

:
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integrate processes that have already been tackled with least-squares optimization, 
such as smoothing and exaggeration (Harrie and Sarjakoski 2002), since our model for 
displacement has a similar form. A more interesting challenge would be to also 
include polygon aggregation, meaning that multiple buildings are replaced by a single 
output polygon. With this capability the method would become relevant for the pro
duction of maps of scales smaller than 1:25,000. We consider it promising to develop 
an aggregation approach where the output polygons are defined by selecting a set of 
triangles from a triangulation of the exterior of the input polygons (Jones et al. 1995; 
Rottmann et al. 2021). Here, the solution could be modeled with additional binary vari
ables indicating which triangles are selected. Since even without these extensions our 
model contains many parameters that so far need to be set by an expert, automating 
the calibration of the model is an important task for future work. We consider it prom
ising to model the calibration task as an optimization problem, aiming to find a set of 
parameters whose application yields an output map most similar to a reference solu
tion, e.g., a map that was manually generated by an expert.

Future work is also needed to address the limited scalability of our method. For 
processing very large datasets, such as a digital landscape model of an entire country, 
it is promising to combine our method with methods for data partitioning (Chaudhry 
and Mackaness 2008; Thiemann et al. 2013; Berli et al. 2018).

Finally, future work is needed to deal with situations where large displacements occur. 
For example, in Figure 12(a), a small building lying between other ones is unselected. 
Since the amount of displacement of the selected buildings is almost half the width of 
the unselected building, a new proximity conflict arises that has not been detected in the 
preprocessing step. A straight-forward approach would be to reiterate on the solution 
found, i.e., to perform the detection of proximity conflicts and the solution of the opti
mization problem again; see Figure 12(b). However, an interesting question is whether 
one could predict the proximity conflicts that will likely arise. When considering all pre
dicted conflicts in the model, it may be sufficient to solve the model only once. 

Figure 12. An example where new proximity conflicts arise from the displacement of objects. The 
bottleneck edges shown in (b) are those computed in the second iteration.
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Specifically for the prediction of conflicts, we see a large potential in machine-learning 
approaches, which are receiving a growing attention in cartography (Harrie et al. 2024).

Note

1. https://www.openstreetmap.org/
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