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ABSTRACT ARTICLE HISTORY
Research on map generalization has led to many algorithms for Received 5 July 2024
multiple elementary processes, such as object selection, aggrega- Accepted 28 January 2025

tion, simplification, and displacement. Algorithms for different
processes are usually combined to workflows or orchestrated
using multi-agent systems. Here, we present a novel approach
integrating object selection and displacement at an algorithmic
level. We model both processes together as an optimization prob-
lem in the form of a mixed-integer quadratic program and dem-
onstrate that it can be optimally solved using a mathematical
problem solver. Moreover, we present an efficient heuristic. In
experiments with roads and buildings from OpenStreetMap, our
methods showed a good capability to unselect a small set of
buildings whose inclusion in the output map would have caused
large displacements or proximity conflicts. For a quantitative
evaluation, we solved a benchmark instance once with our new
model integrating selection and displacement and once with a
variant of our model where the selection of objects was pre-
scribed based on a solution found with an existing approach via
simulated annealing. Comparing the two models, our integrated
model yielded a solution of 33% less total cost. We conclude the
article with a discussion of possible follow-up work.

KEYWORDS

Map generalization;
displacement; selection;
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programming

1. Introduction

Map generalization aims to reduce the scale of a map while preserving the most char-
acteristic information in it. To satisfy minimal dimensions and distances, the map has
to undergo several processes. These processes include object selection, displacement,
aggregation, and simplification, among others. In the past decades, optimization has
repeatedly proven itself for automating different processes of map generalization.
Researchers have emphasized, in particular, that optimization approaches can handle
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diverse constraints that cartographers have formalized as mathematical representa-
tions of cartographic knowledge (Sester 2005; Harrie and Weibel 2007). These con-
straints deal with the legibility of the output map or with the preservation of
information given with the input map (Burghardt et al. 2007). Since a perfect satisfac-
tion of all constraints is rarely possible, one usually considers some or all constraints
as soft and tries to satisfy them as much as possible.

The optimization techniques that have been successfully applied to map generaliza-
tion include mathematical programming, specifically least-squares adjustment (Harrie
1999; Harrie and Sarjakoski 2002) and (mixed) integer linear programming (Haunert
and Wolff 2010a, 2010b). Also, it is common to apply meta-heuristics, including hill
climbing and simulated annealing (Ware and Jones 1998; Ware et al. 2003) and gen-
etic algorithms (Wang et al. 2017). To deal with multiple processes of map generaliza-
tion in an integrated way, multi-agent systems are nowadays frequently used (Maudet
et al. 2014). They are often driven by an optimization engine that iteratively modifies
the current map based on mathematically defined goals. A discussion of different opti-
mization strategies in the context of a multi-agent system for polygon generalization
is provided by Galanda (2003).

Despite the success of optimization approaches for map generalization, there
remains a larger scientific challenge that we address with this work. This challenge is
the simultaneous treatment of multiple processes of map generalization in an opti-
mization approach, where some processes deal with discrete decisions (e.g. whether
to select an object or aggregate a set of objects) and other processes deal with con-
tinuous decisions (e.g. by how much to displace or enlarge an object). A prerequisite
for tackling this challenge is a unified mathematical model integrating the different
processes. Once such a model has been created, the problem will become accessible
for a whole range of algorithmic techniques that are constantly being developed in
the growing discipline of algorithm engineering (Sanders 2011). These techniques
include both exact algorithms and efficient algorithms for computing approximate
solutions.

To deal with both continuous and discrete decisions, the approach most com-
monly used in the context of map generalization is to discretize the continuous solu-
tion space. Then, a framework for discrete optimization is applied. For example, to
deal with object displacement in a simulated annealing framework, Ware et al. (2003)
defined for each map object an integer number of ‘trial positions’, from which in
each iteration of the algorithm a candidate position is randomly sampled, evaluated,
and possibly accepted for the next iteration. Less common but also possible is to
model discrete decisions of map generalization in an optimization framework that
uses only continuous variables. In particular, Harrie and Sarjakoski (2002) dealt with
line simplification in their framework based on least-squares adjustment by introduc-
ing a constraint that tries to move a node towards the line segment connecting its
predecessor and successor node. If the constraint is perfectly satisfied, the node can
be removed without affecting the shape of the line. With this, a simplification of the
line is achieved. Recently, Zhou et al. (2023) have presented a method based on
deep learning that simplifies building footprints by simultaneously moving and
removing nodes.
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In contrast to previous work, we here investigate the potential of an optimization
framework that can deal with both discrete and continuous variables and, in particular,
that does not apply any unnatural discretization of continuous variables. Specifically,
we apply mixed-integer quadratic programming to the simultaneous selection and dis-
placement of objects, where ‘mixed-integer’ refers to the fact that we use both con-
tinuous variables (to model the displacement of polygon and line nodes) and integer
variables (which in our approach are constrained to values 0 or 1, to model whether
an object is unselected or selected, respectively).

By formalizing our problem as a mixed-integer quadratic program (MIQP), we can
directly apply existing mathematical solvers. For our experiments, we used the solver
Gurobi (Anand et al. 2017), which guarantees an optimal solution as output. While this
guarantee comes at the cost of an exponential worst-case running time, our exact
method is fast enough for generating optimal solutions that provide meaningful
insights about the effectiveness of our mathematical model and that can serve as
benchmarks for heuristic methods. Specifically, we present an efficient heuristic based
on a relaxation of our MIQP.

To summarize, we make the following concrete contributions:

1. We present a mathematical model unifying the selection of objects and the move-
ment of their nodes (displacement). The aim is to resolve a set of proximity con-
flicts that have been found in advance, meaning that the detection of conflicts is
not part of our contribution. In our experiments, the conflicts are detected with
an existing triangulation-based method (van Dijk et al. 2013). Our model has the
form of an MIQP, which can be solved with exact methods implemented in math-
ematical solvers.

2. We show how our exact method can be easily transformed into an efficient
inexact method. Specifically, we relax the MIQP in the sense that we admit frac-
tional values for the discrete variables. The relaxed model has the form of a con-
vex quadratic program (CQP), which can be solved efficiently. We compute an
optimal solution to the CQP and apply a rounding heuristic to it.

As it is common in the literature on mathematical programming, we use the term
constraint exclusively for hard constraints, i.e. constraints that have to be strictly satis-
fied. Subject to a set of constraint, our methods minimize a function measuring to
which degree a set of mathematically defined goals are unfulfilled, e.g. the goal to
keep nodes of objects at their original positions. Note that in the literature on map
generalization, such goals are also sometimes referred to as constraints (Harrie 1999;
Harrie and Sarjakoski 2002).

Our methods combine the displacement and selection of buildings and roads but
do not aggregate buildings. This approach is appropriate if the geometric accuracy of
the output map is not too important (hence displacement), the completeness of the
set of buildings is not too important (hence selection), but the buildings should be
represented individually (hence no aggregation). Individual buildings are commonly
shown in large-scale topographic maps. At a scale of 1:25,000, displacement is neces-
sary and some buildings need to be omitted to avoid graphic conflicts (Ware et al.
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2003). In maps that are designed for navigation tasks, even large geometric distortions
can be acceptable (Agrawala and Stolte 2001). Visual representations of individual
buildings are highly relevant for navigation as they can serve as landmarks (Elias et al.
2005; Kapaj et al. 2023).

We evaluate both our exact and our heuristic methods on datasets of building foot-
prints and roads from OpenStreetMap. For both methods, we assess the running times
and the quality of the solutions. Moreover, we also compare solutions of our methods
with solutions that we extracted from the publication of Ware et al. (2003), which also
aimed at a combination of displacement and selection. However, the combination of
displacement and selection is not our ultimate goal. We rather consider our work, as
an important step towards a new holistic map generalization method, which should
ultimately also include the aggregation of individual buildings to larger built-up areas
as well as the enlargement of objects and simplification of lines. Moreover, although
we evaluate our approach for datasets of buildings and roads, we see the potential of
our method to also generalize other line or area features, such as rivers and lakes.

In the following, we discuss related work on selection and displacement (Sect. 2).
Next, we review existing mathematical programming approaches for related tasks and
discuss the mathematical relationships between mixed-integer quadratic programming
and mathematical programming techniques more commonly used in cartography
(Sect. 3). We then introduce our new methods (Sect. 4) and present the experiments
we conducted with them (Sect. 5). Finally, we conclude the article and discuss possible
future work to address limitations of our approach (Sect. 6).

2. Related work on cartographic displacement and object selection

Resolving proximity conflicts among buildings and roads represented in a map is a
common challenge of map generalization. Often this is addressed using displacement
and (un)selection of objects. Since we follow the same strategy, we review existing
methods for displacement (Sect. 2.1) and selection (Sect. 2.2) in the following.

2.1. Cartographic displacement

Cartographic displacement refers to the resolution of proximity conflicts in maps
through the movement of objects or their nodes. A common approach is to detect
the conflicts first by analyzing the context of the map elements. Next, displacement
vectors are calculated based on specific constraints or rules. Finally, the spatial con-
flicts are resolved by moving the map elements with conflicts. For example,
Mackaness (1994) developed a radial displacement method for solving the spatial con-
flicts of point sets by cluster analysis. To preserve the spatial distribution patterns of
point sets, a density function that can handle the displacement decay was applied.
Ruas (1998) presented a displacement method, emphasizing the importance of evalu-
ating the input map and the map after each step of an iterative displacement algo-
rithm. Basaraner (2011) developed an iterative method for building displacement
based on Voronoi-based generalization zones. A spatial analysis and multiple criteria
were applied to determine the displacement distances and directions. Ai et al. (2015)
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applied a vector field model inspired by physics for the displacement of building con-
flicts. In this method, the displacement distance, displacement decay, and secondary
conflicts are handled by simulating a force field.

Several optimization methods have been proposed to deal with cartographic dis-
placement together with other tasks of map generalization. Ware and Jones (1998)
proposed a method for resolving spatial conflicts based on simulated annealing and
gradient descent. The authors considered different generalization operators in these
methods, including exaggeration, reduction, and displacement, to choose the new
position of a building from a set of candidate positions. Wilson et al. (2003) considered
object displacement and scaling in a genetic algorithm approach, where candidate sol-
utions are encoded with chromosomes. The solution is iteratively modified using dif-
ferent genetic operations, including mutation, crossover, and selection. To improve the
method by Wilson et al. (2003), Sun et al. (2016) and Huang et al. (2017) extended the
genetic algorithm by considering different arrangement patterns of buildings, their
spatial relationships, and topological structures. In addition, some scholars also intro-
duced ideas from other subject fields such as engineering and physics to build math-
ematical models for displacement. For example, Harrie (1999, 2003) and Sester (2005)
applied the least-squares adjustment method for building displacement and simplifica-
tion. Hgjholt (2000) introduced the deformation of an elastic body to model the dis-
placement of buildings. The finite element method is applied to discretize the map
space, and boundary constraints are used to change the size and shape of the map
elements. This method can effectively preserve the distribution patterns and spatial
relationships of buildings, without distorting the map elements too much.

Since least-squares adjustment turned out to be appropriate for cartographic dis-
placement, we developed our new method based on a similar principle. Specifically,
we use quadratic energy terms to quantify distortions and displacements.

2.2. Selection of objects

To realize selection, many methods designed for point clusters, roads, and buildings
have been proposed by previous studies. Topfer and Pillewizer (1966) developed the
radical law for determining the number of map elements at different levels of detail,
which has been widely applied for selection tasks in map generalization.
Subsequently, methods based on Voronoi diagrams (Yan and Weibel 2008; Lu et al.
2019), Delaunay triangulations (Ai and Liu 2004), and quadtrees (Peters 2013) were
introduced for the selection of points. Selection methods for linear features were
mainly developed for roads and rivers (Jiang and Harrie 2004; Chen et al. 2009; Li
et al. 2019; Mazur and Castner 1990; Thomson and Brooks 2000; Ai et al. 2006; Li et al.
2018). For example, Chen et al. (2009) developed a road selection method by calculat-
ing the mesh density of roads, especially considering semantic, topological, and geo-
metrical properties. Li et al. (2019) proposed a railway selection method that can well
preserve the structural features of railways and the connectivity of railway stations. For
river selection, Mazur and Castner (1990) applied Horton’s rule to order the streams
during generalization. Ai et al. (2006) used the Delaunay triangulation to detect the
watershed regions of rivers and perform the selection by calculating the sizes of the
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watershed regions. The design of building selection methods including building typifi-
cation has also attracted the attention of many scholars (Regnauld 2001; Burghardt
and Cecconi 2007; Gong and Wu 2018; Wang and Burghardt 2019). For example,
Regnauld (2001) proposed a building typification method combining different Gestalt
rules, which can well preserve the distributions, shapes, sizes, and density of buildings.
Based on graph theory and the Delaunay triangulation, Gong and Wu (2018) also
developed a building typification method that can maintain linear distribution patterns
of buildings. In recent years, Shen et al. (2022a, 2022b) developed raster-based meth-
ods for building selection and typification methods based on superpixel segmentation,
which considers the distribution patterns as well as the geometric and semantic char-
acteristics of buildings.

Our main conclusion for the development of our model is that the selection of
buildings should not only be driven by proximity conflicts but also by patterns that
should be preserved, such as multiple buildings aligned in a row (Gong and Wu 2018).
The selection of roads should be based on connected sequences of segments, and the
connectivity of the road network has to be preserved (Thomson and Brooks 2000).

3. Mathematical programming and its applications in map generalization

Mathematical programming means to state a computational problem as a mathemat-
ical program, which consists of a set of variables, an optimization objective, and a set
of constraints. One commonly distinguishes different types of mathematical programs
based on the types of the variables and the form of the objective function and con-
straints. Many types of mathematical programs can be solved with existing solvers.

In the context of cartographic displacement, least-squares adjustment is frequently
applied (Harrie 1999; Sester 2000; Harrie and Sarjakoski 2002; Zhang et al. 2006; Harrie
and Weibel 2007; van Dijk and Haunert 2014; Touya and Lokhat 2022), where the aim
is to satisfy an overconstrained system of equations Ax = b with unknowns x € R
and constants A € R"*Y and b € R” as much as possible. To achieve this, the aim is to
minimize f(x) = IIAx — bl|2.

Least-squares adjustment is a special case of convex quadratic programming, which
in turn is a special case of convex programming (Boyd and Vandenberghe 2004).
Generally, the term ‘convex’ in convex programming refers to the fact that (i) the set
of feasible solutions defined with the constraints is convex (i.e., for every o € [0, 1] the
convex combination o - X' + (1 — a) - x” of any two solutions x" and x” is again a solu-
tion) and (ii) the objective is to minimize a convex function f (i.e., f bounds a convex
set from below). Due to the convexity of the objective function f and the convexity of
the solution space, any local optimum of a convex program is automatically a global
optimum. This observation has led to highly efficient convex programming solvers.

In a convex quadratic program (CQP), the variables are x € R", the objective is to
minimize a function f(x) = I x"Ax + b'x + ¢, and the constraints are x > 0 and Dx > e,
where A€ R beR" ceR, DeR™" and e € R™ are prescribed constants and
A is positive semidefinite. Haunert and Sering (2011) used this form to enlarge focus
regions in road network maps and to optimally distribute the resulting distortions.
Another prominent special case of convex programming is linear programming, where
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other than in convex quadratic programming the minimization objective has no quad-
ratic term, i.e, the objective function of a linear program (LP) has the form f(x) =
b'x + c. Hirono et al. (2013) used linear programming to displace three-dimensional
buildings in order to disocclude routes and landmarks in maps for navigation tasks.
More recently, Nickel et al. (2022) applied linear programming to displace squares repre-
senting countries in Demers cartograms.

Non-convex programs are much harder to solve than convex programs, but also
their expressiveness is much larger. Especially mixed-integer linear programming has
been applied for various tasks of map generalization and cartographic label placement
that have a high computational complexity (in particular, for NP-hard problems). The
difference to linear programming is that some of the variables are constrained to inte-
ger values, i.e., a mixed-integer linear program (MILP) has variables x" = (xfeal,xiTnt)
With Xiea € R™= and xi; € Z™ . With integer variables constrained to 0 or 1 it is pos-
sible to model discrete states, such as the unselection or selection of objects. This
principle has found wide application in cartography, e.g., to select point features
(Schwartges et al. 2013), edges of graphs representing road networks (Chimani et al.
2014), local simplifications of lines called shortcuts (Haunert and Wolff 2010b), and
text labels (Zoraster 1990; Haunert and Wolff 2017). Moreover, integer linear programs
with 0-1 variables have been developed for clustering tasks, where the variables
model possible assignments of objects to cluster centers. This principle has been
applied in map generalization to group multiple polygon objects and aggregate the
elements within each group to a single output polygon (Haunert and Wolff 2010a;
Oehrlein and Haunert 2017; Peng et al. 2021; Gedicke et al. 2021). Guercke et al.
(2011) applied the same concept to the generalization of 3D building models.

The mixed-integer quadratic programming formulation that we contribute in this
article has the form of a convex quadratic program with both continuous and integer
variables, i.e. x" = (!, x.) as stated above. In other words, the non-convexity of the
problem is due to the discrete nature of its variables and not due to its objective func-
tion or constraints. Relaxing the restriction that Xi,: has to be integer yields an effi-
ciently solvable CQP. We use this property of our MIQP to derive an efficient rounding
heuristic (see Sect. 4.7).

To our knowledge, mixed-integer quadratic programming has not been applied to
map generalization yet. In the more general context of geometry processing, Huang
et al. (2023) presented an MIQP-based method for the symmetrization of polygons.

4, Methodology

In this section, we give a detailed presentation of our new approach. We present the
design goals underlying the approach (Sect. 4.1) and provide an overview of the work-
flow (Sect. 4.2). Next, we discuss the preprocessing steps that are part of this workflow
in detail (Sect. 4.3). To describe the main step of our approach, the optimization, we
explain the fundamental mechanism of our model (Sect. 4.4), a basic MIQP that deals
with the most important design goals (Sect. 4.5), and extensions to deal with the
remaining design goals (Sect. 4.6). Finally, we present a heuristic (Sect. 4.7) and con-
clude the section with an overview of the parameters of our methods (Sect. 4.8).
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4.1. Design goals

On an abstract level, our approach follows seven design goals.
Design goals G1-G4 deal with the selection of objects:

G1: Priorities of map objects that are provided as input should be respected.

G2: Dependencies between pairs of objects have to be respected (e.g., if a building is
selected, the road leading to it must also be selected).

G3: When unselecting buildings, patterns of multiple buildings should be preserved.

G4: When unselecting roads, the road network has to remain connected.

Design goals G5-G7 deal with the positions of the nodes of the selected objects:

G5: Positions close to the original node positions should be favored.

G6: Proximity conflicts should be resolved.

G7: Distortions should be low. We here understand distortions as deviations from pre-
ferred relative positions of nodes. They are measured (G7a) at edges of objects and
(G7b) at pairs of nodes that represent characteristic proximity relations of objects.

Our approach is flexible with respect to how the priorities of objects are set for G1
and which dependencies between objects are considered for G2. The priorities of
buildings could be determined with importance rating algorithms that consider appli-
cation-specific criteria and the spatial context. For example, if the map is used for navi-
gation, important buildings are those that can serve as landmarks, e.g., buildings that
are clearly visible and distinguishable from other buildings in the vicinity (Elias 2003).
However, in the experiments, we used a basic setting, simply prioritizing buildings
according to their areas.

In its current form, our method does not fulfill G3 for arbitrary patterns of buildings.
However, we introduce weak dependencies between adjacent buildings. More pre-
cisely, we add a term to the objective function that penalizes the unselection of a
building if an adjacent building is selected, where two buildings are considered adja-
cent if their polygons share at least one edge. This, in particular, has the effect that
sequences of multiple row houses are preserved. The preservation of other types of
building patterns, such as a set of buildings arranged on a regular grid, is a topic for
future research. Generally, we consider it promising to detect patterns before setting
up and solving the optimization problem. For example, if it was determined that a set
of buildings in the input data set forms a grid pattern, the optimization problem
should be set up with additional constraints or objectives, favoring solutions where
the selected subset has a similar characteristic.

4.2. Overview of the workflow

Figure 1 provides an overview of our workflow. As input for our method we require a
geometric graph G = (V, E) that represents the roads and boundaries of buildings; see
Figure 1(a). We apply preprocessing steps (from Figure 1(a) to (d)) to achieve an
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(a) input graph G representing (b) conforming Delaunay triangu- (c) subgraph T” of T selected with

roads and buildings lation T' of G (Steiner nodes red)  the method of van Dijk et al. (2013)
[ ®---9 °
. o---o °
o o o ° - .  Jp—
. ° 1]
° L °

(d) enriched graph G’ with de- (e) result of the optimization step (f) result without Steiner nodes
tected conflicts (red) and other
characteristic node pairs (blue)

Figure 1. Overview of our workflow. The steps from (a) to (d) are referred to as preprocessing. The
step from (d) to (e) is the optimization step, which is the focus of our work. The step from (e) to
(f) is referred to as postprocessing.

enriched graph G' = (V/,F’) that we use as input for the optimization step. These pre-
processing steps are dealing with computing a conforming Delaunay triangulation of
G (Saalfeld 1991), selecting a subgraph of interesting edges from the triangulation
(see Sect. 4.3 for details), and removing redundant nodes in the selected subgraph
(i.e., nodes of degree two whose two incident edges have the same orientation). The
result of the subsequent optimization step is shown in Figure 1(e), where one building
has been unselected and some displacement occurred. In a final postprocessing step,
the nodes that were introduced by the conforming Delaunay triangulation algorithm
(i.e. Steiner nodes) are removed from the graph; see Figure 1(f).

In some situations, it can be reasonable to apply a simplification algorithm prior to
our workflow, in order to avoid that the enriched graph G' represents too many
details. However, we did not simplify the data that we retrieved for our experiments
(see Sect. 5) since its level of detail seemed appropriate.

A detailed presentation of the workflow for an example is given in Appendix.

4.3. Preprocessing

To compute the enriched geometric graph G’ from the input graph G, we first com-
pute a conforming Delaunay triangulation T of G; see Figure 1(b). While many meth-
ods for displacement are based on a triangulation, not all methods use the full
triangulation for the optimization step. For example, Sester (2005) uses all edges of a
triangulation, but Harrie and Sarjakoski (2002) consider only the edges that belong to
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objects or represent conflicts. They argue that the lengths of other triangle edges are
not interesting from a cartographic point of view. We choose a compromise between
these two approaches by selecting a preferably small subgraph T’ of T that satisfies
the following requirements:

(R1) T" must include every edge of T that is covered by an edge of G (i.e. edges
belonging to objects).

(R2) For every edge {u,v} of T it must hold that dr(u,v)/d(u,v) <t, where dp
denotes the geodesic distance in T’ (i.e. the geometric length of a geometrically
shortest path in T’), d denotes the Euclidean distance, and t > 1 is a parameter that
can be chosen to control how densely T’ is connected. Setting t = 1 yields 7' =T.
For increasing t, the density of T’ decreases.

The motivation for Requirement R2 is that two nodes u, v with large
dr(u,v)/d(u,v) are closely related to each other (geometrically near) but are lacking a
good connection in T'. Without improving this connection, there is the risk that the
characteristic proximity relationship between the two nodes will be lost in the opti-
mization step. By adding too many edges to T’, however, we would likely lose the
flexibility that is needed to appropriately resolve the conflicts.

To satisfy Requirements R1 and R2 when selecting T’ from T, we choose an iterative
greedy heuristic proposed by van Dijk et al. (2013). It initially sets T’ to include all
edges belonging to objects, thus satisfying Requirement R1. Then, the method iterates
over the edges in T in increasing order of their lengths. In every iteration, it checks
the current edge e = {u,v} and computes dr(u,v)/d(u,v) with respect to the current
graph T'. If this ratio exceeds t, the method adds e to T'.

With this method, we find bottlenecks of the faces of the current graph T', i.e.
every edge that we add cuts one of the faces where the face is relatively narrow.
Therefore, we call the additional edges bottleneck edges. Bottleneck edges that are
shorter than a prescribed threshold & > 0 represent conflicts that should be resolved
by displacement. Bottleneck edges of length at least ¢ represent characteristic relative
positions between nodes that should be preserved during generalization.
Consequently, we will measure the distortion of the map at the edges belonging to
objects (design goal G7a) and at the bottleneck edges (design goal G7b). The resulting
graph T’ is shown in Figure 1(c).

To avoid superfluous nodes in the input for the optimization step, we remove every
Steiner node v from T’ for which no incident edge was selected as a bottleneck edge.
When removing v, we replace its two incident edges {u,v} and {v,w} with a single
edge {u,w}, resulting in the enriched graph G/, see Figure 1(d).

Finally, we impose an arbitrary direction on each edge of G'. The direction of an
edge (u,v) € E' does not have any meaning, except that it allows us to unambigu-
ously distinguish between the source node u and the target node v of e. Therefore, in
the following, we refer to G’ as a directed graph.

We would like to point out that the edges of the conforming Delaunay triangula-
tion T of G only approximately represent smallest distances between objects. However,
the approximation error is relatively small if th’e level of detail of the input data is
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high. For a better representation of smallest distances, one could subdivide edges
of G.

4.4. Fundamental mechanism

Once the enriched graph G’ = (V/,E’) has been computed, the optimization method
continues with the distortion of G' and the selection of objects. For this, we assume
that we are given a partition of E’ into a set Eqy,; that represents the roads and build-
ings (gray edges in Figure 1(d)), and the set Epo: of bottleneck edges (red and blue
edges in Figure 1(d)).

Each building and each road are given as a subset of Eqp,;. The edge set for a road may
either follow the definition of a road object in the source data or correspond to a
sequence of line segments that has been identified as a stroke in a pre-processing step
(Thomson and Brooks 2000). The edge sets for two buildings overlap if the buildings
share a wall. With B, we refer to the set of all buildings and with R to the set of all roads.
The following definition summarizes the fundamental mechanism underlying our model.

Fundamental mechanism. Every edge e € E' depends on a set of objects, in the sense
that a deviation of e from its desired extent is penalized in the objective function if
and only if a certain condition over the selection states of the objects holds. An edge
satisfying this condition is called active.

We first define the desired extent of the edges and then specify the conditions for
active edges.

e For every bottleneck edge e = (u,v) that is shorter than the minimally allowed
length ¢, the desired extent of e corresponds to the original extent of e scaled by
e/d(u,v), where d(u,v) is the distance between the two incident nodes u and v
of e. With this we try to resolve proximity conflicts (design goal G6).

e For every other edge, the desired extent is equal to the original extent. This
includes edges belonging to objects (design goal G7a) but also bottleneck edges
of length at least ¢ (design goal G7b), which are depicted blue in Figure 1(d).

The condition under which an edge is active is defined as a logical expression that
consists of at most two OR clauses that are combined with AND. Each OR clause for
an edge e corresponds to a set of objects. Together, these sets of objects for e consti-
tute a set S(e). For example, for edge e in Figure 2(a), we define S(e) =
{{b1},{r,r}}. Consequently, e is active if and only if (i) b; is selected and (ii) r; or r,
is selected. More generally, we use the following rule:

e |If e is a bottleneck edge, we add for each of its incident nodes u a set to S(e). If u
belongs to a single road or building, the corresponding set in S(e) contains only
this object. If u belongs to multiple objects, the corresponding set in S(e) contains
all of them.

For edges belonging to objects, the following two rules are used:
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(a) S(e) = {{ba},{r1,m2}} (b) S(e) = {{b1,b2}}

Figure 2. The set S(e) determining the activity of an edge e for two cases. Generally, e is active if
for each set of objects in S(e) at least one object is selected.

e If e belongs to a single building or road g, then S(e) = {{a}}. This means that the
distortion of e is considered if and only if a is selected.

e If e belongs to two buildings b, and b,, as it is the case for edge e; in Figure 2(b),
we set S(e) = {{b1,b,}}. This means that the distortion of e is considered if and
only if by or b, is selected.

To simplify the discussion in the following, if S(e) contains a set of two or more
objects, we consider this set itself as an object. We call every such additional object a
collector. With C, we refer to the set of all collectors. Furthermore, we introduce O =
RUBUC as the set of all objects (i.e. roads, buildings, and collectors). Since a collector
corresponds to an OR clause, we consider it selected if at least one object in it is
selected. For every edge e, we introduce a set of at most two associated objects
O(e) C O. For every set in S(e) that contains only one object, that object is contained
in O(e). For every other set in S(e), O(e) contains the corresponding collector.

4.5. A basic mixed-integer quadratic program

In addition to the enriched graph G' = (V',E’), the partition of £’ into the set of object
edges Eqpj and the set of bottleneck edges Ey, the set of objects O and its partition
into the three sets B, R, and C, and the set O(e) of associated objects for each edge e,
we require the following parameters as input:

e ¢ € Ry : The minimal length required for the edges representing conflicts.

®  Wielect: Wposs Wedge € [0, 1] : The weights expressing the general priorities of design
goal G1, design goal G5, and the goal to achieve the desired edge extents (model-
ling design goals G6 and G7).

e w, € Ry for each (u,v) € E' : An edge-specific weight expressing the priority to
achieve the desired extent for edge (u,v) (also allowing the differentiation between
design goals G6 and G7).

e w, € Ry for each 0 € BUR: A weight representing the importance of object o.

Concrete parameter settings will be presented with our experiments, in Sect. 5.
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With this, we set up the optimization problem in the form of an MIQP, which con-
sists of the variables, the objective function, and the constraints specified as follows.
The variables are of three different types:

e For each node v € V', the continuous variables dx,, dy, € R encode the movement
of v.

e For each object o € O, the binary variable z, € {0, 1} models whether o is selected
for the output map (z, = 1) or not selected (z, = 0).

e For each edge e = (u,v) € E’, we introduce the continuous variables dx/,,, dy,, € R.
If e is active, we ensure with constraints that dx/, and 8y, measure the residuals
for e, i.e., the difference between the desired extent of e and the extent of e after
its distortion. If e is not active, we ensure that the constraints imposed on dx/,, and

dy,, are relaxed, such that dx/, = 0 and &y, = 0 in every optimal solution.

The objective function consists of three parts.
Minimize  foasic = Wpos * D _yepr ((dx",)2 + (dy",)z)

+Wedge . Z(U,V)EE’WUV . ((lellv)z —+ (6}/(’1‘/)2) (1)
+Wselect - ZogBuRWO ’ (1 - ZO)

The first, second, and third part of the objective functions are weighted by wpyos,
Wedge, Wselect, respectively. The reason for these parts is as follows:

e The first part measures the sum of the squared movements in x- and y-direction
over all nodes, which means that each node contributes a cost that is proportional
to the squared Euclidean distance between its original and new position. This has
the effect of a quadratic energy attracting the nodes to their original positions.

e The second part of the objective penalizes, for every active edge e € E', the devi-
ation of the extent of e = (u,v) from its desired extent. We apply the edge-specific
factor wy, € R to the cost for e to take into account that the same amount of
distortion may be more or less tolerable for different edges.

e The third part adds a cost of w, for every non-selected object o. With this impor-
tant objects (i.e., objects with large weights) are likely selected.

The constraints of our basic model first of all ensure that the map stays within the
prescribed box [Xmin, Xmax] X [Ymins Ymax)- More precisely, we require for each u € V

Xmin < Xy + dxll, < Xmax (2)

Ymin < Yu + dy:, < Ymaxs 3)

where  xmin = Minyev {Xu}, Xmax = MaXyev {Xu}, Ymin = Minuey{yy}, and  ymax =

maxyer{yy}. Furthermore, we introduce a constraint for each collector ¢ € C and each

object o € ¢, to ensure that c is selected if o is selected and, thus, that ¢ has the effect
of an OR clause.

Zc > 2, (4)
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Next, we ensure that the different types of variables are correctly coupled, such
that the variables’ values in an optimal solution conform to the variables’ definitions
stated above. We achieve this with four inequality constraints for each edge e =
(u,v) € E', which we first introduce and then explain.

x> ((xy +dx) = (xy +dx,)) — s(xy — X) — MZon(e (1-2,) (5)

8. > (o + ) = (v +dy,)) - ) =MD o) (1= 20) (©)
8x;, > —((xu +dx,) — (%, + dx, )) +5(Xu — Xv) MZoeo - 2) 7)
8yuv— (yu+dyu (yv+dyv))+5)/u_ MZOGO o ®
where
€ .
s=d duv) if d(uv)<e and (y,v) € Epot ©)
1 else

and M is a large constant. More precisely, we set
M= maX{Z(Xmax - Xmin): 2(,Vmax _ymin)}- (10)

To explain the effect of Constraints (5)-(8) for edge e = (u,v), we first consider the
case that the objects in O(e) are selected, i.e. z, = 1 for all o € O(e). In this case, the
term with factor M in each inequality vanishes. Moreover, the right-hand sides of
Constraints (5) and (7) differ only with respect to their signs, thus together they imply
8x}, > |((xu + dx,) — (x, + dx])) — s(xu — X,)|. In an optimal solution, 8x/, will be set to
the smaIIest possible value, which implies 8x}, = |((x, + dx,) — (x, + dx,)) — s(xu — X/)|.
Here, ((x, + dx;,) — (x, +dx|)) is the extent of edge e in the x-dimension after the dis-
placement of nodes. By choosing s according to Equation (9), we implement the reso-
lution of proximity conflicts (design goal G6) in such a way that an edge representing a
conflict should be scaled to achieve a length of &, while every other edge should pre-
serve its extent. Hence, dx/,, correctly models the difference between the resulting extent
and the desired extent of edge e in the x-dimension. Constraints (6) and (8) ensure the
same for dy;,, with respect to the y-dimension. Next, we consider the case that at least
one object o € o(e) is not selected, i.e., z, = 0. In this case, the constant M is subtracted
at least once from the right-hand side of each of the four inequalities. With the definition
of M in Equation (10) and assuming & < Xmax — Xmin @Nd € < ¥Ymax — Ymin, this subtraction
implies a relaxation of the four constraints, i.e. they are always fulfilled. Consequently, in
an optimal solution, it holds that 6x;, = dy,,, = 0. This means that, if e is not active, there
is no cost for its distortion.

4.6. Model extensions

4.6.1. Coupled selection of roads and buildings

We can model dependencies between any two objects (design goal G2) with additional
constraints. In particular, in the context of buildings and roads, we allow the selection of
a building only if the road leading to it is selected as well. Therefore, we compute for
every building b € B the road r € R nearest to the centroid of b and denote it with r(b).
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We then add the following constraint to couple the selection of these two objects.

Zyp) 2 2 amn

Alternatively, the road r(b) associated with building b could be defined using add-
itional address information.

4.6.2. Coupled selection of multiple buildings

From our experiments with the basic model, we learned that the set of buildings
selected for an optimal solution sometimes contains unfavorable gaps. For example, a
single house in the middle of a sequence of row houses was removed, which led to a
solution with relatively little distortion of the active edges. Although this solution con-
forms with the design goals based on which the basic model was set up, it does not
conform with the overarching goal of map generalization to preserve characteristic
patterns in the data. In particular, the sequence of row houses is not preserved as a
sequence. Therefore, we model as an additional objective that adjacent buildings should
be treated the same. More precisely, we consider the adjacency graph of all buildings,
i.e. the graph with node set B and with an edge between every two buildings in B that
share an edge in E’. We reduce this graph to its connected components of at least three
buildings, resulting in a graph whose edge set we denote with A. For every two build-
ings b and b’ connected by an edge in A, if one building is selected and the other one
not selected, we charge a certain cost. To express this objective in mathematical terms,
we introduce an additional variable z,, € {0,1} for each {b,b'} € A. Using the follow-
ing two constraints, we ensure that z,,y = 1 if one of the two buildings is selected and
the other one not selected.

Zpy = Zp — Zy (12)
Zpy = 2y — Zp (13)

With this, we are able to add a fourth term to our objective function that penalizes
solutions in which a building is selected and a building adjacent to it is not selected.

fadvanced = foasic + Wdepend - Z Zpy (14)
{b,b'}€A

Here, Wyepend € [0, 1] needs to be chosen to express the priority of the additional
term.

Instead of only looking at adjacent buildings, we could introduce weak dependen-
cies for arbitrary pairs of buildings, e.g. a pair of buildings that from given thematic
information are known to belong to the same hospital or university.

4.6.3. Connectivity of the road network

An important requirement when selecting roads is to keep the road network con-
nected. We enforce the global connectivity of the road network by adapting the flow
model of Shirabe (2005). Generally, with this model one can enforce the connectivity
of a graph H when selecting it as a subgraph of a given graph H. In our application,
H has the node set R and its edge set Ey contains an edge for every two roads that
share a node in G. Since the model of Shirabe is well documented in the literature,
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and its adaptation is rather straight-forward, we only present the additional variables
and constraints coming with the model and give a very brief explanation.
Additional variables:

e For each edge {r,r'} € Ey that share a node, the variables f,, f., € R>o model the
amount of a commodity that flows from r to r' and from r’ to r.

e For each road r € R, the variable s, € {0, 1} encodes whether r acts as a sink of the
flow network (s, = 1) or not (s, = 0).

Additional constraints:

ICES 03

s <z for each reR (16)
Z{r,r’}EEHf"/ - Z{m,}efor’r Z 2= |R| -5, for each reR a7
> el < (RI=1) -2 for each reR (18)

The connectivity of the subgraph of H induced by the selected roads is ensured by
enforcing that there is a single sink (Equation (15)), that this sink is in the selected
subgraph (Equation (16)), that a non-selected node has neither incoming nor outgoing
flow (Equations (17) and (18) for z, = 0), and that all selected nodes except the sink
contribute a positive amount of flow (Equation (17) for z, = 1).

4.7. Heuristic method

Our heuristic approach consists of the following steps:

1. Solve the relaxation of the MIQP in which the integer variables are allowed to
receive fractional values. This relaxation is a convex quadratic program (CQP),
which can be solved efficiently. For each object o in the solution to this relaxation,
the variable z, has a value in [0, 1].

2. For each object o € O fulfilling z, > 0, round z, up to 1 and thus select o, where
0 € [0, 1] is a user-set threshold. For each other object o, set z, = 0.

3. Solve the CQP again but keep the value of z, for every object o € O fixed to the

value resulting from the previous step. Return the solution found.

In Step 3, when fixing z, = 1 for some object o, we apply several simplifications to
the CQP to speed up its solution. In particular, in Equations (5) and (6), the terms with
M disappear. The inequality relation can be replaced by equality since the sign of dx/,
and &y, has no effect on the optimization if the objects are fixed. Thus, Equations (7)
and (8) can be omitted.

Also for the heuristic, we can formulate goals supporting the connectivity of rows
of buildings in the same manner as before, but now the variables z,, are continuous
with values in the interval [0, 1].

In order to guarantee the connectivity of the road network, we apply the following
strategy between Steps 2 and 3: If the roads chosen in Step 2 are disconnected,
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Table 1. Input parameters of our methods.

t Threshold used in the preprocessing to control the density of the graph G used in the optimization
step. With larger t, G gets less dense, which implies that distortions are measured only at most
critical bottlenecks.

€ Bottleneck edges shorter than this threshold are considered as conflicts.

Wpos Weight expressing the priority to keep original node positions

Wedge Weight expressing the priority to generally keep distortions at edges low.

Waelect Weight expressing the priority to generally keep objects selected.

Wdepend Weight expressing the priority to respect weak dependencies. (We used a weak dependency for each

two adjacent buildings to preserve rows of buildings, but also other pairs of objects could be
considered.)

Wo Weight expressing the priority to select object o.
Wy Weight expressing the priority to keep the distortion at edge uv low.
0 Threshold is used by the heuristic to decide which variables are rounded up.

iteratively add roads from the set of the unselected roads, ordered descendingly by
their corresponding values z,. Skip roads which are only adjacent to roads which have
already been added and lie in one connected component.

4.8. Summary of parameters

We conclude this section with an overview of the parameters that we have introduced
along the development of our model; see Table 1. Concrete parameter settings will be
given in the next section, which deals with the experiments that we conducted.

5. Experiments

We implemented our method in Java using the Gurobi library for solving the mathem-
atical programs. In this section, we show some results of our method applied to real-
world data that we retrieved from OpenStreetMap.' In total, we use 20 datasets of
road and building data split into two groups: 15 ‘urban’ datasets where the objects lie
within the city of Bonn and mostly cover one or two building blocks and 5 ‘rural’ data-
sets, each consisting of a small village in the Eifel region south of Bonn. While in the
urban datasets most buildings lie within tight meshes of the road network, they are
rather grouped around crossings of the roads in the rural datasets. Unless stated dif-
ferently, the parameters introduced in Sect. 4 are set as follows: t =5, e=7.5 m,
Wpos = 0.0001, Wedge = 0.8, Weelect = 0.1999, Wgepend = 0.5. This setting was found
through the experiments that we discuss in Sect. 5.1. We weight the roads proportion-
ally to their lengths and the buildings proportionally to their areas. By normalizing
these weights, the smallest building finally obtains a weight w, = 1 and the shortest
road obtains a weight w, = 10. We set the edge-specific weight wy, to 1 unless (u,v)
is a bottleneck edge of length / > &: In this case, we set w,, = £2//°. This means for
sufficiently long bottleneck edges design goal G7 is less strict, which allows these
edges to be contracted to a larger degree. We found that in some situations this helps
to better make use of free map space and thus preserve more objects.

Moreover, we apply the coupled selection of roads and buildings from Sect. 4.6.1.
With this, the road network remains connected in our examples, even without the
strategies described in Sections 4.6.3 and 4.7.
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(a) wpos = 1, Wedge = 0.1, (b) wpos = 0.0001, weqge = 0.8, (c) wpos = 0.0001, wegge = 0.8,
Wselect = 0.1, Wdepend = 0.5 Wselect = 0.1999, Wdepend = 0.5 no selection

Figure 3. Example dataset for different parameter settings (grey: input graph G, black: output
graph, blue: bottleneck edges of length at least €, red: bottleneck edges shorter than ¢).

In Sections 5.1 and 5.2, we discuss the results of our exact approach and compare
it to the approach by Ware et al. (2003). Section 5.3 examines the quality of the heur-
istic approach. In Sect. 5.4, we discuss the running time of the exact and the heuristic
approach.

5.1. Exploring different weightings

We now show some results for one of the urban datasets and how they are influenced
by the choice of the weights Wpes, Wedge and Wielect; See Figure 3. For that, we start
with an example where the displacement of nodes is penalized with a relatively large
cost Wpos (see Figure 3(a)): The objects stay roughly at their initial locations, but some
are removed to resolve the conflicts. The number of unselected objects is relatively
large since displacement and distortion come along with large costs and selection
remains as a relatively cheap operation to resolve conflicts. In contrast, when using a
small value for wpos and a large one for weqgqe, Some objects are displaced but roughly
keep their original shapes, since the distortion of the graph edges is penalized; see
Figure 3(b). Hence, wpos should be small to allow for both selection and displacement
being applied to resolve conflicts. Also, Wedge should not be too small. In the extreme
case Wedge = 0, the bottleneck edges have no influence and no conflict is resolved. In
comparison to Figure 3(b), we show in Figure 3(c) the result for the case that unselect-
ing objects is not permitted. In this case, some buildings are visibly distorted, which
happens mostly for those that are unselected in Figure 3(b). This shows that the com-
bined approach tends to unselect objects only if they are involved in conflicts and if
these conflicts cannot be resolved by only displacing the objects.

In order to visualize the displacements of nodes and the distortions of edges, we
define the absolute displacement d, of a node v and the absolute distortion 5,, of an
edge (u,v) as follows:
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Figure 5. Absolute displacement d, of each node v of G that belongs to selected objects.

d, =/ (dx)* + (dy,)’ (19

8UV = (SX{IV)Z + (Syl/lv)z (20)

Note that these terms occur squared and weighted in the objective function in
Equation (1).
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(a) wpos = 0.0001, Wegge = 0.8, Weelect = 0.1999, (b) wpos = 0.0001, weqge = 0.8, no selection
Wdepend = 0.5

Figure 6. An example of a rural dataset.

In Figure 4, we colored each active edge according to its absolute distortion. It
becomes clear that also the bottleneck edges are distorted more if only the displace-
ment operator is applied. Similarly, Figure 5 shows the absolute displacements of the
nodes belonging to the output graph. Again, using the combined selection and dis-
placement approach leads to smaller node movements than when only displacement
is allowed. Furthermore, objects can be displaced while not being distorted much.
This can be seen especially for the bottom-most building in Figures 4(a) and 5(a).

For the shown dataset, the total objective value decreases by ca. 86% when selec-
tion of objects is permitted. Averaged over the urban datasets, a decrease of ca. 73%
is obtained, compared to only 52% for the rural datasets. This reflects the structure of
our datasets: In the urban datasets, the buildings are to a higher degree surrounded
by other objects, which makes it more difficult to displace them without generating
new conflicts. For comparison, the result for the rural dataset yielding the smallest
decrease (ca. 21%) is shown in Figure 6.

5.2. Comparison to a simulated annealing approach

We now compare our approach to the simulated annealing approach by Ware et al.
(2003). For that, we have to slightly change our model so that the results are compar-
able. First, in their approach all roads remain unchanged. Hence, we add the con-
straint dx/, = dy,, = 0 for each node v belonging to a road before solving the model.
Secondly, in their model buildings can only be displaced as a whole object, i.e. their
edges cannot be distorted. We achieve this by constraining 6x,, = dy,, = 0 for each
edge (u,v) belonging to a building. Thirdly, the authors distinguish between conflicts
involving two buildings and conflicts involving a building and a road. The weight they
assign to the latter group is 10 times the weight they assign to the first group. We
consider this by setting the coefficient w,, in Equations (1) to (10) for each bottleneck
edge between a building and a road, and to 1 for any other edge. Since their input
data are not available anymore, we manually generated a dataset that mimics the situ-
ation in Figure 6(d) of their publication. For our comparison, we run our approach on
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Table 2. Objective values when using our approach for the selection of buildings and when
enforcing the selection from Ware et al. (2003). The columns displacement, distortion, and selec-
tion refer to the first, second, and third term of Equation (1), respectively. The column total shows
their sum. The weights are wyes = 0.0001, Wegge = 0.8 and Wiglece = 0.1999.

Displacement Distortion Selection Total
Our selection 0.13 564.86 241.24 806.24
Selection from Ware et al. (2003) 0.18 585.87 616.96 1203.02

(a) our selection (b) selection from Ware et al. (2003)

Figure 7. Our method applied to a dataset that we manually generated to mimic the situation
shown in a figure by Ware et al. (2003): (a) Free selection of buildings within our framework.
(b) Fixing the selection to the one made by Ware et al. (2003). Coloring as in Figure 3.

this dataset twice: Once without further restrictions and once with the restriction that
we have to select exactly the same buildings as they did. We then compare the overall
objective values achieved with both variants. Moreover, we look at the values of the
three terms in Equation (1). We do this for the weighting which appeared most rea-
sonable in Sect. 5.1 (Wpos = 0.0001, Wegge = 0.8, Wselect = 0.1999), without the model
extension from Sect. 4.6.2 since the dataset consists of isolated buildings only. The
resulting objective values are listed in Table 2. In total, we achieve a reduction by
approximately 33% of f,asic when we use our approach to select buildings instead of
adopting the selection from Ware et al. (2003). The largest part of the reduction comes
from the selection of buildings. In their approach, a larger number of buildings are
unselected (12 vs. 11), and these buildings tend to be larger than the ones which are
unselected in our approach (see Figure 7). This is interesting since also in their
approach the cost of unselecting a building is proportional to its area. Hence, we can
assume that with our global optimization we are more able to find the buildings
which are most suited for being unselected. Also the displacement cost is larger for
the restricted selection. This can be seen in Figure 7, since some buildings in the cen-
ter obtain rather large displacements in the restricted selection. The largest displace-
ment is 3.7 m for our selection, compared to 5.1 m for the restricted one. A reason for
this may be that, in our approach, the cost for displacing a node grows quadratically
with the amount of displacement, whereas Ware et al. (2003) apply a linear cost
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Figure 8. Increase in the objective function that comes along when using the heuristic instead of
the exact method, for each of our 20 datasets. The x-axis shows the amount of unselection occur-
ring in the exact method.

function. Hence, in their approach, displacing a few nodes by a large distance is less
strictly penalized.

5.3. Performance of the heuristic

A heuristic optimization algorithm should provide results close to an exact algorithm
measured in terms of the objective function. Yet, so far it is not clear to which degree
this holds for our heuristic. Therefore, we now compare the objective values provided
by our exact algorithm and the heuristic for our instances. For each instance, both the
exact and the heuristic algorithm are run and the objective function from Equation
(14) is evaluated on the results. The threshold 0 in the heuristic is chosen experimentally
for each instance by exploring values between 0.9965 and 0.9995 with a step size of
0.0005 and selecting the one yielding the smallest objective value. This always resulted
in O lying within the interval [0.998, 0.999]. Figure 8 shows the increase in the objective
function coming along with the heuristic. Averaged over the 20 datasets, the objective
value provided by the heuristic is by ca. 18% larger than the one of the exact solution.
The datasets are sorted by the weighted percentage of removed objects (WP), which we
define as the ratio of the summed weights of all unselected objects in the exact solution
over the summed weights of all objects. Higher values of WP indicate more unfavorable
configurations because in this case the optimal solution unselects objects of high weight.
However, there seems to be no correlation between WP and the increase in the object-
ive. This indicates that the approximation quality does not depend much on the spatial
complexity of the instance. Also, the performance of the heuristic does not seem to differ
much between the urban and the rural datasets.

Figure 9 shows the results for the dataset where the highest increase in the
objective (ca. 41 %) was obtained. Using the heuristic, a block of garages in the
upper part is completely removed, whereas the exact method removes only the first
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(a) optimal solution (b) heuristic

Figure 9. Dataset where the largest gap between the heuristic and the exact method in terms of
the objective function occurred (coloring as in Figure 3).

(a) optimal solution (weqge = 0.8, (b) heuristic (weqge = 0.8, (c) optimal solution (weqge = 0.9,
Wselect = 0.1999) Wselect = 0.1999) Wselect = 0.0999)

Figure 10. An example where a road is unselected (Wpos = 0.0001, Wgepens = 0.5; coloring as in
Figure 3).

and last garage. Apart from this, the two methods yield a similar result. Both the
rectangular shape of the buildings and the connectivity of building blocks can be
preserved. The results for another dataset are depicted in Figure 10. In this case, the
heuristic unselects a road. The same also happens for the exact method when the
weight for the selection of objects is decreased (Wedge = 0.9, Wselect = 0.0999).
However, this is only a minor road contributing to many conflicts, so in this case the
removal is plausible.

5.4. Running time

We conducted the computations on a Windows notebook with 16 GB RAM and an AMD
Ryzen 5 5625U CPU, clocked at 2.3 GHz. For the exact method, the running times range
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Figure 11. Running times of our methods as functions of the number of nodes in the enriched
graph G.

from 0.7 s to 284.5 s, whereas they range from 0.5 s to 1.7 s for the heuristic (see Figure 11).
The ratio of the running times of both methods varies between 1.6 and 199.0 and, in gen-
eral, increases with the size of the datasets. Beside the 20 small datasets, we tested our
method on a larger dataset with 898 buildings and 88 road objects, covering an area of ca.
43ha and comprising 5024 nodes in G'. There, the heuristic yielded a solution within
65 sec, whereas the exact approach was not completed within 9 h.

To sum up, the heuristic allows for a much faster computation while only slightly
increasing the objective value.

6. Conclusion and future work

We have presented a novel optimization approach for solving two processes of map
generalization, object selection and displacement, in an integrated way. From the
experiments that we have conducted with building and road data, we conclude that
the method is well capable to resolve a set of previously detected proximity conflicts.
Specifically, our exact method reduced the overall cost by 33%, compared to a solu-
tion where the selected objects have been adopted from a solution of an existing
method and only the displacement has been optimized using our model. The solu-
tions found with our heuristic were on average 18% worse than the optimal solutions.
However, this decrease in quality may be acceptable in view of the relatively short
running time of the heuristic, which solved a problem instance of 898 buildings and
88 roads within 65 seconds. We understand our approach as a first step towards inte-
grating discrete and continuous decisions of map generalization in a single mathemat-
ical programming framework and see the following opportunities for future work.

As discussed in Sect. 4.1, an important topic for future research is the preservation
of building patterns other than sequences of row houses in the selection process, e.g.
sets of buildings arranged in a regular grid. Moreover, it is important to integrate fur-
ther processes of map generalization into our model. It would be relatively easy to



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE ‘ 1591

(a) exact approach, after 1 iteration (b) exact approach, after 2 iterations

Figure 12. An example where new proximity conflicts arise from the displacement of objects. The
bottleneck edges shown in (b) are those computed in the second iteration.

integrate processes that have already been tackled with least-squares optimization,
such as smoothing and exaggeration (Harrie and Sarjakoski 2002), since our model for
displacement has a similar form. A more interesting challenge would be to also
include polygon aggregation, meaning that multiple buildings are replaced by a single
output polygon. With this capability the method would become relevant for the pro-
duction of maps of scales smaller than 1:25,000. We consider it promising to develop
an aggregation approach where the output polygons are defined by selecting a set of
triangles from a triangulation of the exterior of the input polygons (Jones et al. 1995;
Rottmann et al. 2021). Here, the solution could be modeled with additional binary vari-
ables indicating which triangles are selected. Since even without these extensions our
model contains many parameters that so far need to be set by an expert, automating
the calibration of the model is an important task for future work. We consider it prom-
ising to model the calibration task as an optimization problem, aiming to find a set of
parameters whose application yields an output map most similar to a reference solu-
tion, e.g., a map that was manually generated by an expert.

Future work is also needed to address the limited scalability of our method. For
processing very large datasets, such as a digital landscape model of an entire country,
it is promising to combine our method with methods for data partitioning (Chaudhry
and Mackaness 2008; Thiemann et al. 2013; Berli et al. 2018).

Finally, future work is needed to deal with situations where large displacements occur.
For example, in Figure 12(a), a small building lying between other ones is unselected.
Since the amount of displacement of the selected buildings is almost half the width of
the unselected building, a new proximity conflict arises that has not been detected in the
preprocessing step. A straight-forward approach would be to reiterate on the solution
found, i.e, to perform the detection of proximity conflicts and the solution of the opti-
mization problem again; see Figure 12(b). However, an interesting question is whether
one could predict the proximity conflicts that will likely arise. When considering all pre-
dicted conflicts in the model, it may be sufficient to solve the model only once.
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Specifically for the prediction of conflicts, we see a large potential in machine-learning
approaches, which are receiving a growing attention in cartography (Harrie et al. 2024).

Note

1. https://www.openstreetmap.org/
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