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Summary

In this thesis, we will study the representation theory of the periplectic Lie superalgebra
p(n) and the isomeric Lie superalgebra q(n) in great detail and obtain explicit descriptions
of the endomorphism rings of a projective generator. These are the two families of finite
dimensional classical Lie superalgebras that are not widely understood (in contrast to
gl(m|n) and osp(r|2n)).

This thesis comprises two parts, one for each of the families, which can also be read
independently, although many ideas and tools are very similar in both approaches (the
difficulties, however, are not).

We tackle this problem via Schur—-Weyl duality and the theory of KLR algebras. Namely,
every projective representation appears as a direct summand of V®¢ @ (V*)®d/, where V
is the natural representation. We introduce respectively recall (for p(n) resp. q(n)) certain
KLR algebras, whose cyclotomic quotients can pick out the projective representations
under Schur—Weyl duality. A very important step in this process is the proof of a basis
theorem for these cyclotomic quotients. In principle, this basis theorem can be used
to extract a basis for the endomorphism ring of a projective generator. However, the
multiplication rules for these basis elements are very complicated, and it is impossible to
give even a rough description of the result.

To overcome this issue, we introduce another type of diagrammatic algebra, which we
call Khovanov algebra of type P/Q. These resemble the other versions of Khovanov
algebras that were shown to describe the finite dimensional representation theory of
gl(m|n) and osp(r|2n). They come equipped with a distinguished basis together with an
explicit multiplication for these basis elements. We show that these are equivalent to
the cyclotomic KLR algebras and prove that certain subquotients are isomorphic to the
endomorphism ring of a projective generator.

This gives rise to diagrammatic descriptions of translation functors, and we study their
effect on important classes of modules, i.e. projective, simple (and (co)standard for p(n))
representations.

We conclude both parts with some categorification results. For p(n), we show that
the respective KLR algebra with its cyclotomic quotients categorifies a Fock space
representation of the quantum electrical algebra. This algebra is a rather newly introduced
and strange object that has not been studied at all. In particular, much work had to
be done to even define a Fock space, and we do this by realizing the quantum electrical
Lie algebra as a coideal. For q(n), it is already known that the KLR algebra in question
categorifies a quantum supergroup of type By|o,. We extend this result by showing
that the here considered cyclotomic quotient categorifies a tensor product of a spin
representation with its dual. This tensor product is not irreducible anymore, and we
show that its Jordan—Hoélder series is categorified by rep(q(n)) for the various n.
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Introduction

Lie superalgebras are Zo-graded Lie algebras which were originally introduced by Ger-
stenhaber in [Ger63] in the context of ring theory and Hochschild cohomology.

Ever since the introduction of Lie superalgebras, their representation theory has proven
to be a source of fruitful mathematics with applications e.g. in the fields of mathematical
physics [CNS75], deformation theory [Gin05], and geometry [DM99].

In this thesis, we lay our focus on the representation theory of two families of finite
dimensional Lie superalgebras: the periplectic Lie superalgebra p(n) and the isomeric
Lie superalgebra q(n). Even though these Lie superalgebras were defined already in the
1970s by [Kac77b], their representation theory appears to be mysterious and not well
understood. These two Lie superalgebras are also called strange Lie superalgebras, as
some of the classical properties of Lie algebras do not hold for them. For instance, not
every root for p(n) has a negative root, and for q(n) there exist irreducible representations
whose endomorphism ring is not 1-dimensional, i.e. Schur’s lemma does not hold.

We construct explicit descriptions of the endomorphism ring of a projective generator
of the respective category of finite dimensional representations via the use of diagram
algebras and Schur-Weyl duality.

In the following, we will elaborate on these results in further detail. First, we give a brief
overview on the representation theory of Lie superalgebras. For a general introduction to
this topic see [CW12a, Mus12, Ser17].

Any Lie superalgebra g comes with a decomposition g = go 4 g1 into an even part gg and
an odd part g;. The even part gg is a Lie algebra and the odd part g; is a representation
of do.

The first milestone in the theory of Lie superalgebras was the classification of simple Lie
superalgebras by Kac in [Kac77b]. The classification of the simple Lie superalgebras g
comprises two main classes of Lie superalgebras depending on whether the Lie algebra gg
is reductive or not. If gg is reductive, g is called a classical Lie superalgebra. Independent
of Kac’s work, a classification of classical Lie superalgebras was also obtained in [SNR76].
Partial results for classical Lie superalgebras were previously achieved in [PR75,Djo76,
FK76,NRS76] under different restrictions.

The classical Lie superalgebras consist of four infinite families and a few exceptional
cases. There are (subquotients of) the general linear Lie superalgebras gl(n|m), the
orthosymplectic Lie superalgebras osp(r|2n), the isomeric Lie superalgebras q(n) and the
periplectic Lie superalgebras p(n). The exceptionals consist of two finite dimensional
ones (types F'(4) and G(3)) and a family of deformations of osp(4/2).

By definition, the classical Lie superalgebras have reductive even part and thus are the
only Lie superalgebras where the tools from Lie theory could be applied. For instance,
as for semisimple Lie algebras, finite-dimensional irreducible representations of classical
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Lie superalgebras can be parametrized by their highest weight. Sufficient and necessary
conditions have been derived in [Kac77b]. Understanding the characters of the irreducible
representations turns out to be very difficult. In particular, some difficulties arose from
the fact that the finite dimensional representation theory of Lie superalgebras is not
semisimple, in contrast to Lie algebras.

A basic measurement of the non-semisimplicity is the notion of atypicality, already
introduced in [Kac77a]. The degree of atypicality is a number associated to the highest
weight of an irreducible representation and the higher this number, the more difficult the
representation theory of this irreducible representation becomes. Typical representations
are those, which do not have non-trivial extensions. These behave as representations of
semisimple Lie algebras. For typical representations of gl(n|m) and osp(r|2n), character
formulae were obtained in [Kac77a]. For these, the resulting character formula is close to
Weyl’s character formula.

For characters of atypical representations, first advancements were achieved in [BL80] for
gl(1|n). These methods were extended to 0sp(2|2n) and singly atypical representations
of gl(m|n) in [VdJ91] and [VHKTMO0] respectively.

For gl(m|n), Serganova obtained in [Ser96] character formulae for all irreducible repre-
sentations with geometric methods. The same methods were used in [GS10] to obtain
character formulae for osp(r|2n), which were also shown in [CLW11] via super duality. A
purely algebraic approach was given in [Bru03] for gl(m|n).

For the isomeric Lie superalgebra q(n), character formulae were first obtained for typical
representations in [Ser84]. For all representations, formulae were discovered in [PS97] via
geometric means. An algebraic proof later appeared in [Bru04].

For the periplectic Lie superalgebra, the question of finding character formulas remains
open, though through the works of [BDEAT19], at least an algorithm to compute the
characters should be in reach.

Although the task of finding character formulas is almost complete, until rather recently
only little could be said about the respective representation theory. Small rank examples
were studied in [Ger98] for sl(1|n), where all indecomposable representations were classi-
fied. In [GQS07], the Lie superalgebras gl(1|1) and sl(2|1) were studied and in particular
explicit tensor product decompositions for all finite dimensional representations were
obtained. For osp(1|2n) a deep connection with the representation theory of so(2n + 1)
was discovered in [RS82], including connections between their respective characters and
tensor product decompositions.

A description of ¢(2) as a quiver with relations was given in [MM12] and extended to
q(3) in [GS20].

A major breakthrough in understanding the representation theory of gl(m|n) was made
in [BS12b], when the authors showed that (a limiting version of) Khovanov’s diagram
algebra describes the endomorphism ring of a projective generator of gl(m|n). Khovanov’s
diagram algebra arose originally in the context of knot theory and categorification of the
Jones polynomial, see [Kho00,Kho02]. A special feature of this algebra is its diagrammatic
description, which is well-suited for direct computations. The main idea of [BS12b] is to
understand the representation theory of gl(m|n) via translation functors. Translation
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functors are given by direct summands of the functors _ ® V', where V' denotes the natural
representation, and provide a powerful tool to study the representation theory of Lie
(super)algebras. Via repeatedly applying these functors to certain special representations,
one can obtain a projective generator of the category of finite dimensional representations
of gl(m|n). If one additionally understands the natural transformations between these
functors, one can obtain a complete description of the endomorphism ring of a projective
generator. Via (higher) Schur-Weyl duality, translation functors and their natural
transformations are governed by KLR algebras, see [CW08], [BK09]. The KLR algebras
were independently introduced in [KL09] and [Rou08] and arose originally in the context of
categorification of quantum groups. The methodology of [BS12b] relies then on comparing
Khovanov’s diagram algebra with a cyclotomic quotient of the KLLR algebra. Together
with the results of [BS10], this allows computing the effect of translations functors on
projective, standard and simple modules via easy combinatorics.

In [BR87] and [Ser84], Schur-Weyl duality for gl(m|n) on V®¢ was already considered.
In the language from above, this means repeatedly applying translation functors to the
trivial representation. As for the Lie algebra gl(n), not every indecomposable projective
representation (for gl(n) these are also irreducible) appears as a direct summand of V¢,
where V' is the natural representation. In particular, in [BS12b], they needed to consider
M ® V®4 for some (more complicated) representation M.

Alternatively (and more conceptually), one could consider mixed tensor powers Vel
(V*)®d,. Now, every indecomposable projective representation appears as a direct sum-
mand of V® g (V*)®d/ for some d and d’. In particular, these mixed tensor powers
contain all information about the abelian category of finite dimensional representations
of gl(m|n).

In [Del07], an interpolation category Rep(GLs) was introduced, which describes all these
mixed tensor powers for different m and n. This is a category build around the walled
Brauer algebras, which were independently introduced in [Tur89] and [Koi89]. From the
universal property of Rep(GLs) in [Del07], there is an obvious monoidal functor from
Rep(GLy) to rep(gl(m|n)). In [CW12b], the authors showed that this functor is full by
extending the classical Schur—Weyl duality to the case of mixed tensor powers. They also
classified indecomposable summands of the mixed tensor powers V®¢ @ (V*)®d/ and gave
decomposition rules for their tensor products. However, this approach gives no direct
access to the Jordan—Holder filtrations of the indecomposable summands, in contrast
to [BS12b]. In [BS12a], the authors showed that the walled Brauer algebras are Morita
equivalent to (an idempotent truncation of) Khovanov’s diagram algebra. In principle,
this says that the afore-mentioned description of rep(gl(m|n)) via Khovanov’s diagram
algebra from [BS12b] can also be obtained via Rep(GLsy).

Similar results were then obtained for osp(r|2n). Here, the Deligne category Rep(Os),
also introduced by Deligne in [Del07], is used, which is a category built around the Brauer
algebras from [Bra37]. This category was studied e.g. in [CH17], where classifications of
thick tensor ideals and indecomposable objects were obtained as well as tensor product
decomposition formulae. In [Coul8b], it all tensor ideals were classified, and the results
were used to describe the kernel of Schur—Weyl duality. In [ES16], a version of Khovanov’s
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diagram algebra adapted to type B was introduced and shown to be equivalent to Rep(Os)
in [ES21]. There is again a full monoidal functor from Rep(Os) to rep(osp(r|2n)), see
[DLZ18]. A diagrammatic description of the endomorphism ring of a projective generator
of osp(r|2n) as a particular subquotient of Khovanov’s diagram algebra of type B was
also constructed in [ES21]. In [HNS24], it was proven that this description is compatible
with translation functors and using the same methods as in [BS10] explicit descriptions
of the effect of translation functors on projective and irreducible modules were obtained.

This thesis contains similar considerations for the periplectic and isomeric Lie super-
algebras, completing this approach for (non-exceptional) classical Lie superalgebras.
We obtain explicit descriptions of the endomorphism ring of a projective generator of
p(n) and q(n), which resemble the diagrammatics of Khovanov’s diagram algebras in
types A and B. In the same manner as for gl(m|n) and osp(r|2n), we approach this
via Schur—Weyl duality and translation functors. In the periplectic and isomeric case,
the counterparts for Schur—Weyl duality are taken by the super Brauer algebra, studied
in [Coul8a,CE18, CE21,KT17,Moo03], and the oriented Brauer—Clifford algebra, see
e.g. [Ser84, HKS11,BCK19, GRS24], respectively. Idempotents in these algebras play a
crucial role for understanding translation functors, i.e. direct summands of the functors
_®V and _ ® V*. In type A, the idempotents can be obtained via identifying the
degenerate affine Hecke algebra with the KLR algebra, see [BK09]. In type B, the
idempotent version is described in [Lil4]. For q(n), the quiver Hecke superalgebras from
[KKT16] play the role of the idempotent version. These algebras describe the natural
transformations between the translation functors coming from _ ® V. The appropriate
object that also considers the translation functors coming from _ ® V* was defined in
[BE17b]. For p(n), we define the respective idempotent replacement, called electric KLR
algebra, motivated by the fake Casimir introduced in [BDEA119]. In both cases, we
study certain cyclotomic quotients and obtain basis theorems.

Afterward, we introduce two further diagrammatic algebras resembling Khovanov’s
diagram algebras of types A and B. We will prove that these are equivalent to the
studied cyclotomic quotients and obtain explicit descriptions of the endomorphism ring
of a projective generator as subquotients of these diagrammatic algebras. With the
methodology of [BS10], we obtain descriptions of translations functors on interesting
classes of modules.

This establishes explicit descriptions of the categories of finite-dimensional representations
of classical Lie superalgebras as well as diagrammatic interpretations of translation
functors in the two missing cases.

This thesis contains two parts, one for each of the Lie superalgebras. The first part is
devoted to the periplectic Lie superalgebra p(n), whereas the second part is concerned
with the isomeric Lie superalgebra q(n). Both parts can (and probably should) be read
independently. However, many ideas and the used tools are very similar, but difficulties
arise in different places. Both parts have an individual introduction (more specialized to
the respective Lie superalgebra) and are structured similarly.

We being by recalling some facts about the respective Lie superalgebras, including e.g. the
precise statements of Schur—Weyl duality. Then, the respective idempotent versions are
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defined (or recalled), and we prove a basis theorem for certain cyclotomic quotients.
Afterward, we go about defining a new diagrammatic algebra resembling Khovanov’s
diagram algebras of types A and B. We study geometric bimodules for these algebras and
show that they are isomorphic to the cyclotomic quotients that were considered before.
We then prove that certain subquotients of these diagrammatic algebras are isomorphic
to the endomorphism ring of a projective generator for rep(p(n)) and rep(q(n)). For p(n),
we also include some direct applications that have not yet appeared in the literature. For
instance, we present p(1) and p(2) as a quiver with relations.

In both cases, we close with some categorification results. For ¢(n), we obtain a cate-
gorification of the tensor product of a spin representation (for U(By|)) with its dual,
including an interpretation for the canonical basis. These results are new, but not
surprising, considering the results of [Bru04, KKO13,BE17b, GRS24]. For p(n), the story
is more complicated and rather surprising. We show that the cyclotomic quotients of the
electric KLR algebras categorify a Fock space representation of the quantum electrical
algebra. This quantum electrical algebra is a quantization of the electrical Lie algebras
in [BGG24]. Its defining relations are a deformation of the positive part of gl(co), but
generically ¢™* appears in the defining relations. Categorified these strange g-powers
must give rise to a rather unnatural grading with generic generators having degree +-4.
It is rather surprising that this categorification works out.
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Part |I.

The periplectic Lie superalgebra



1. Introduction

In this part, we consider the periplectic Lie superalgebra p(n). It is the Lie subsuperalgebra
of gl(n|n) preserving a non-degenerate odd bilinear form on (n|n)-dimensional vector
superspace V. Fixing a basis for V', we can also describe p(n) explicitly in terms of
matrices

(1.1) p(n) = {( g — ) |B:Bt,cz—0t}.

We restrict ourselves to finite dimensional representations of p(n) which are integrable with
respect to GL(n), the algebraic group corresponding to p(n)o = gl(n). And from now on a
finite dimensional representation means finite dimensional integrable representation. The
main reason for this restriction is that we can endow the category of such representations
with a highest weight structure (see [Chel5] and [BDEAT19]). Namely, the supergrading
on p(n) comes from a Z-grading p(n) = g_1 @ go ® g1 (where g_; are the matrices with
A = B =0 and g; those with A = C' = 0), which allows defining thick and thin Kac
modules via

L)) V()\) = Coind™™ _£80()),

A(X) = Ind??) e

gobg—1
where £80()\) denotes the irreducible gg = gl(n)-module with (p-shifted) highest weight
A= (A1 >X2>--->)\,;) and \; € Z. These are called thick respectively thin as they
have different dimensions (cf. (1.1)), and these give the standard and costandard modules
for the highest weight structure. They have a unique irreducible head respectively socle
L(\) with highest weight A and this describes all the irreducible modules up to parity
shift. Every £(\) admits a projective cover P(\) and every projective is also injective,
see [BDEAT19] for more details.
Question: Can we describe the category of finite dimensional representations explicitly,
for instance by describing the endomorphism ring of a projective generator?
To tackle this problem, we will study the representation theory via Schur—Weyl duality.
For this recall from [Moo03], see also [BDEAT19], the super Brauer category sBR which
provides exactly the counterpart in Schur—Weyl duality for p(n). This is the C-linear
strict monoidal supercategory generated by one object * and odd morphisms b = N\

and b* = \_/ as well as the even morphism s = SubJect to the relations

%] | é{}éj w ¥

11



1. Introduction

aw- X J-N o) —(\) |- LA

From (s\/-4) and (\{/-3) using (s\{/-5) it is easy to deduce the following additional relations
(keeping in mind that b and b* are odd).

(1.2) 50 N (1.3) Q _ n

We write Rep(P) for the Karoubian closure of sBR, this is also known as Deligne category
of type P and was introduced in [KT17] and studied e.g. in [Coul8a, CE21], see also
[EAS21] for the perspective of an abelian envelope.

Denoting by Fund(p(n)) the category with objects direct sums of direct summands of
V®4 and all morphisms (not necessarily degree preserving), there exists a full monoidal
functor

(SW) SW,,: Rep(P) — Fund(p(n)),

see e.g. [Coul8a, Theorem 8.3.1]. The bilinear form on V provides an isomorphism
V 2 IIV*, and SW,, is given by mapping the object * to V, the morphism s to the
braiding and b as well as b* to the morphisms induced by the bilinear form. This functor
maps s to the braiding, and the odd bilinear form on V induces the images of b and b*.
In particular, we obtain an algebra morphism sBRy; — Endp(n)(V®d), where sBRy :=
Endggr (#®9). This was shown in [Coul8a, Theorem 8.3.1] to be an isomorphism for
n > 0.

There also exists a degenerate affine version of sBR. The super VW -category introduced
in [BDEA20] is the C-linear strict monoidal supercategory s\ generated by a single
object * and morphisms b = N\ * =\, s = >< as above and an additional even

morphism y = * subject to the relations (s\/-1)—(s\{/-5) together with two additional

relations:

\
AN ANWA A

Using (s\/-6) and (8\/-5), it is very easy to deduce
(1.4) U=U-\U

In [BDEA 20, Proposition 22|, it was shown that there is a monoidal functor 8}/ —
End(Rep(p(n))), which sends the object * to the endofunctor _ ® V. The maps s, b and
b* are mapped to the “same” morphisms as in (SW). The final generating morphism y is
sent to a fake Casimir.

This upgrades (SW) to a homomorphism of 8\/-module categories. In this case, y is also
given by Jucys—Murphy elements, see e.g. [BDEAT20, Remark 20] and [Coul8b, §6].

12



The existence of this fake Casimir was a main insight of [BDEA'19] and implies that
_ ®V can be refined to _ ®@ V = @, ©; by projecting onto generalized eigenspaces.
The summand ©; corresponds to a refinement i-ind on the super Brauer side.

We want to use this refinement to understand V®? and its decomposition into inde-
composable summands. An abstract classification can be obtained via understanding
indecomposable objects of Rep(P) (using primitive idempotents in sBRy). This was done
in [CE21] giving rise to a combinatorial bijection

indec. objects 1:1 o
(15) {in flirépe(};)oug)eigbiso.} AR {partltlons}.

Moreover, the non-zero images of these indecomposable objects under SW,, give a
complete classification of indecomposable summands in V%%, see [CE21] for an explicit
description of the corresponding partitions. Unfortunately, these classification results
provide no further description of the structure of the indecomposable summands in V&,
To overcome this issue, we will define an idempotent version of sBR called sR%°.

We even go a step further and introduce the electric KLR-category sR. The reason for
this naming will only become apparent in Chapter 10, when we talk about categorifi-
cation. This category should be seen as an idempotent replacement of 8/, similar to
the relationship between the KLR algebra from [KL09] and the degenerate affine Hecke
algebra, see e.g. [BK09]. We make this connection precise for generic cyclotomic quotients
and show

Theorem A. There is a fully faithful functor ®: sR' — Kar(s\W[). 1t is an isomorphism
after passing to additive envelopes.

The notation sR' and 8/’ refers to cyclotomic quotients of level £. The above-mentioned
sRY¢ is a special case of sSR! for £ = 1. On the way, we also show

Theorem B. The category sR! has a basis indexed by pairs of multi-up-down-tableauz
of the same shape and this endows sRY with the structure of an upper finite based quasi-
hereditary algebra in the sense of [BS24].

As a special case, we obtain an isomorphism ¥’ : (sR%)® — Rep(P). This isomorphism
gives rise to the following commutative diagram:

vl

0. (sRY°)® - Rep(P) . i-ind

m SWp, ’
Ve

where 6; correspond to adding a strand labelled ¢ in SR¥° (as in the classical case, sSR¥¢
is defined diagrammatically with strands labelled by integers). In this case, the basis is
indexed by pairs of “normal” up-down-tableaux of the same shape.
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1. Introduction

Recall that by the mere definition of p(n), we have odd morphisms in Fund(p(n)). For our
purposes of describing the endomorphism ring of a projective generator, we rather want
to work with even morphisms. If we denote by Fundsj(p(n)) the category of direct sums
of direct summands of V®¢ with parity shifts and all morphisms and by Fund®_ (p(n))
its restriction to even morphisms, we have the following situation:

II

B!

Fund§ (p(n))
(enriched over Z/2Z)

deg0 morpl;iifiﬂﬂ’ \H“”ff»rfj I-action

Fund® . (p(n Fund(p(n
HC( (p(n)) (p(n))

underlying category) (enriched over Z/27),

12

where the lower two are essentially the same. Now, Fund(p(n)) arises via choosing
representatives for the Il-action in Fund{(p(n)) (namely those that appear as a direct
summand of V®?). A different choice, called Fundf (p(n)), will be presented in Section 3.5,
and we obtain a full functor

U4t SRYC — Fund? (p(n)),

where W ,, and SR are essentially the same as U_ ,, and sR”¥°. The main purpose for
introducing Fund$ (p(n)) is that the graded homomorphism spaces of Fund? (p(n)) (and
SR9°) are all concentrated in even degree, which is more feasible for our purposes.
Now, every indecomposable projective p(n)-representation is a direct summand of V¢
for some d (or equivalently in Fundf (p(n))), see e.g. [BDEAT19].

On the other hand, SR®°® was built exactly in the way that all these indecomposable
projective modules arise as the image of some explicit object in SR®° (and not as an
abstract direct summand as for Rep(P)). For our endeavor to describe explicitly the
endomorphism ring of a projective generator, Theorem B can be used to extract a basis
of this endomorphism ring. Thus, it can be viewed as an analog of the well-known arc
algebras from [BS11la,ES16,ES21] describing the finite dimensional representations of
GL(m|n) and OSp(r|2n). But the multiplication of the basis elements in SR¥° is very
complicated and there is no way to describe explicitly the multiplication using these basis
elements.

Hence, we will introduce yet another combinatorial approach in Chapter 4. We will define
the Khovanov algebra K of type P. These algebras will have a distinguished basis and an
explicit multiplication procedure for these basis elements. It is a locally unital locally
finite dimensional algebra and the distinguished basis elements look like

14



For §R¥°, we considered the endofunctor 6; by adding an i-labelled strand. We want to
mimic this for K, and we introduce an endofunctor #; of K-mod given by tensoring with
a certain K-K-bimodule G;. This gives all the ingredients for

Theorem C. There exists an isomorphism ® from SR¥C to the full subcategory of K-mod
containing 0;, . ..0; P(7) intertwining 0; and 6;.

The main difference between §R%® and K is that SR is defined via generators and
relations whereas K comes with a distinguished basis and an explicit multiplication
rule for this. This difference between an explicit basis and generators with relations
appears very often in representations theory, most prominently in diagram algebras (like
Temperley—Lieb, Brauer algebras and versions thereof).

For our ultimate goal of an explicit description of the endomorphism ring of a projective
generator for p(n), we define a quotient K,, of an idempotent truncation of K in Section 6.1
(where the idempotents are labeled by dominant integral weights for p(n)) and show that
its finite dimensional representation category is upper finite highest weight. In Section 6.3
we analyze the endofunctors 6; of K, -mod induced by 0;. We will show the following.

Theorem D. We have an adjunction (0;,60;_1).

Afterward, we will also study thoroughly the effect of 6; on projective, standard, costan-
dard and irreducible modules in Propositions 6.26, 6.33 and 6.34 and Theorem 6.35.

In Section 6.3, we will show that K, is isomorphic to the endomorphism ring of a
projective generator of rep(p(n)). We construct a projective generator by applying
translation functors to the trivial module. This gives us two different ways to associate a
cup diagram to an indecomposable module, we can either use Lemma 4.2 or realize this
module as the image of an object in SR and use Theorem C.

{indec. proj. p(n)-modules}

hw of its head Wﬁ?yl duality

(1.6) {AM>- >N} {partitions}

Lem mn C

{cap diagrams}

We will show in Proposition 7.3 that this diagram in fact commutes. This gives us all
the ingredients for our main theorem.

Theorem E (Main theorem). There is an equivalence of categories
(1.7) U: K, -mod — rep(p(n))
identifying the highest weight structures and intertwining 6; and ©;.

In particular, we obtain explicit results on the action of (iterated) translation functors
on projective, standard, costandard and irreducible modules.

15



1. Introduction

Applications and consequences

o We show that the dual of an irreducible p(n)-module can be computed by just rotating
the cap diagram associated to its highest weight by 180°, providing a much easier
formula than the combinatorial procedure from [BDEA*19).

o In [BGSY6], it was shown, that category O of a semisimple Lie algebra admits a Koszul
grading. This also holds for gl(m|n) by [BS12a] and is still conjectural for osp(r|2n)
(see e.g. [ES21] and [HNS24]). However, we will show that rep(p(n)) does not admit a
Koszul grading, we even prove:

Theorem F. There does not exist a non-negative grading on K, with semisimple
degree 0 part, that is generated in degree 1 for n > 2. In particular, rep(p(n)) does
not admit a Koszul grading.

o There exist exactly n irreducible summands of V®?, one for each block (except for
the one containing £L(n —2,n —4,...,—n)).

o We will give a simple combinatorial criterion to compute extensions between irreducible
p(n)-modules.

Theorem G. The dimension of Ext! is given by

1 if u) sati Def. 8.5,
dim Ext) ) (£(3), £(u)) = if pX satisfies Def

0 otherwise.
Utilizing this, we give explicit description of rep(p(1)) and rep(p(2)) as a quiver with
relations, which also explicitly shows that p(2) does not admit a Koszul grading.

The contents of Chapters 4-8 are based on [Neh24].

Categorification

After having intensively studied the periplectic Lie superalgebra, we will turn our attention
once again towards the electric KLR category. This will also give some context to the
name “electric” KLR category. The contents of this are also available as a preprint
version in [NS25].

We can ask what the category of projective sR.-modules categorify. This is the content
of Chapter 10, which sloppily formulated reads as follows:

Theorem H. The analog of the positive half of the quantum group for gl from the
KLR setting is, in the electric KLR setting, the quantum electrical algebra el

Electrical Lie algebras arose from the study of electrical networks. An electrical network
comprises a directed graph with labelled edges (conductivity) and special boundary
vertices. Its response matrix (sometimes also called Dirichlet-to-Neuman map) encodes
the linear operator sending boundary electric potentials to the induced boundary currents.

16



This response matrix contains all the information about the network that can be observed
on the boundary. Hence, it makes sense to consider electrical networks as equivalent if
they have the same response matrix.

In [CIM98], certain combinatorial operations on the space of electrical networks (i.e. up
to equivalence given by equal response matrices) have been studied. Loosely speaking,
these correspond to adding edges or vertices to a network. These have been assembled
in [LP15] into an electrical Lie group that acts on the space of electrical networks. The
corresponding electrical Lie algebras are obtained by deforming the Serre relations of
a semisimple Lie algebra in way suggested by the Y-A-transformation on electrical
networks, [Ken99].

Electrical Lie algebras appeared only recently in the mathematical literature, see [LP15,
Sul4, BGG24,Geo24,Lam?24| to name just a few.

Rather surprising, in type A the electrical Lie algebra is isomorphic to the symplectic Lie
algebra, [LP15]. As was already observed by Serganova, the refined translation functors
O, for p(n) satisfy the defining relations of a symplectic Lie algebra of infinite rank.
There are essentially two different ways to define a grading on the electric KLR categories,
see Remark 3.6. This allows us to define a quantization e[}, of the electrical Lie algebras
of type A, see Definition 9.1, depending on a sign € reflecting the two different gradings.
The grading on sR. is very unusual and induces generically ¢** in the relations of elg.
We construct a quantum electric Hopf algebra U, in Definition 9.22 and show the following:

Theorem I. The quantum electric algebra el is a coideal subalgebra of the quantum
electric Hopf algebra Uy,.

We then define a natural representation V' and its dual V® for U, and its restriction to
el and introduce Fock spaces % and Z5¥. These constructions are surprisingly involved.
We can define exterior powers of V and V® but the naive limit to semiinfinite wedges is
not compatible with the Uj-action. We mix two different comultiplication to ensure a
well-defined limit and finally obtain:

Theorem J. There is an electric Fock space Fs, i.e. the space of semiinfinite wedges
can be equipped with an action of ely.

The generators elj, act on Zs (up to g-powers) via the usual combinatorics of adding and
removing boxes to partitions. However, these generators are a mixture of creation and
annihilation operators.

In analogy to the classical KLR setting, we show a categorification result for cyclotomic
quotients given by a charge vector as in Notation 2.8:

Theorem K. The categories sRﬁ(d) -proj of projective modules over the level { cyclotomic
quotient categorify the level [ Fock space Fs . The action of ely is given by an action of
the electric KLR category.

By passing to right modules, we also obtain a categorification of the dual Fock space
F gf\f and the pairing between them, see Theorem 10.35, We categorify several involutions,
including a bar involution, that might be interesting in their own right.
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2. Combinatorics of multi-up-down-tableaux

2.1. Some preliminaries and notation

We denote by &,, the symmetric group of order n!, generated by the simple transpositions
s1:=(1,2),...8,-1:=(n—1,n).

Notation 2.1. We denote by R a subset of a ring with unit 1 (there is no harm to take
for R the real numbers) such that for any » € R, r + ml € R for any m € Z.

Definition 2.2. A standard subsequence of © = (i1,...,i,) € R™ is given by some
J = (4j,%541,--.,%j4n—1) € R obtained from % by taking a connected sequence of entries.
By an admissible permutation of ¢ we mean a permutation of the entries which involves
only simple transpositions that swap entries a,b with a # b+ 1. By a subsequence of 1
we mean any standard subsequence of an admissible permutation of ¢. Moreover, % is
braid avoiding if (a,a £ 1,a) is not a subsequence of <.

2.2. Partitions and residues

Throughout this article we fix a charge § € R. A partition A is a sequence A1 > Ao >
- > .- of weakly decreasing non-negative integers. The length of X is the maximal ¢
such that \p > 0. We call |A| :== S3¢_, \; the size of \. We will not distinguish between A
and the finite sequence A\; > Ay > --- > Ay. We also identify A with its Young diagram
built from |A| boxes with A; boxes (left-adjusted) in row i.
For every box 0 = (7, ¢) in the Young diagram of A, specified by its row r and its column
¢, we define its charged content as cont(O) == + 1 — c.
We denote by Add(A) and by Rem(\) the set of boxes of A that can be added to
respectively removed from A such that the result is again a Young diagram. These
sets refine to the union of the sets Add;(\) := {O € Add()) | cont(O) = i} respectively
Rem;(\) = {0 € Rem(\) | cont(O) = i} with ¢ running through § + Z.
If i can be obtained from A by adding a box we write A — u or A g w1 encoding
additionally the box 0O which was added. We also write in this case A -4 W, i.e. u is
obtained by removing O from A\. We moreover use the notation A &0 for p and p &0 for
A. The abbreviation A <+ 4 means A — p or p — A.
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2.2. Partitions and residues

Next, we extend the notion of charged contents to treat box addition and box removal

PRt w for m = +£0 = +(r,¢) in parallel. We introduce two different extensions, the
residue res(m) and the dual residue res®(m) of m as follows:

o — if m=
res(m) = res(\ LN p) = remr 1 (r;),
2.1) S+c—r+1 ifm=—(rrc),
. 4] — if m=
res® (m) = res®(\ = ) = remr 1 (r,),
d+c—r—1 ifm=—(rrc).
An up-down-tableau of length k is a sequence (tg,t1,...,t) of partitions such that
[to] = 0 and t; <> t;41. The shape Shape(t) of t is t;. To each up-down-tableau we
can associate the two residue sequences @ = #; = (res(My),...,res(m;)) and % =
if = (res®(my), ..., res®(my)), where t; LN tir1. If 1 = 4 ©0O;, then m; = O; and

res(m;) = cont(Q;) = res®(m;). Thus, we recover the charged contents.

2.2.1. Combinatorics of multipartitions

We now consider multi-partitions and multi-up-down-tableaux. These are straightforward
generalizations obtained by replacing every partition by a tuple of partitions. Namely,
an (-multi-partition is an (-tuple A = (A!,..., \') of partitions A’. We identify A\ with
the corresponding tuple of Young diagrams and call [A\| = 3% ;|\f| the size of A. The set
of all (-multi-partitions is denoted Par’. We identify Par! with the set Par of partitions.
Every box 0= (r,¢, k) in the Young diagram of \ € Par’ has now a third coordinate k
that indexes the component \¥, 1 < k < ( containing O.

To distinguish the components of a multi-partition, we use a charge sequence 6(cc) € RN.
It determines a charge vector & == 8(() == (61,...,0;) € R’ for any fixed £ € N. For
A € Par’ we define the charged content of a box O = (r,¢, k) as cont(D) = 8 + 1 — c.
We denote by Add(\) and Rem(\) the set of boxes that can be added to respectively
removed from \. As for partitions, these sets are the union of the sets Add;(\) (and of
Rem;(\)) of addable (respectively removable) boxes of charged content i € R.

Remark 2.3. Note that if ; — d; ¢ Z1 C R for all i # j, then the charged content of a
box (r,¢, k) in A € Par’ uniquely determines this component.

We again use the arrow notation A LN w if p can be obtained from A by adding or

removing a box 0. If m =0 = (r,c, k), we have \* ﬂ ¥ and X' =yt for i # k. We

also extend the notion of (dual) residues involving boxes 0 = (r,¢, k) in A € Par':

_ ifm=
res(m) = {5k+c " ifm=(r,c,k),

op+c—r+1 ifm=—(rck),
(2.2)
Oop+c—r ifm=(r,ck),

p+c—r—1 ifm=—(rck).

res” (m) := {

Obviously £ =1, §; = J recovers the case (2.1) of partitions.
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2. Combinatorics of multi-up-down-tableaux

Notation 2.4. An (-multi-up-down-tableau t of length m is a sequence (to,t1,...,t;,) of
(-multi-partitions t; such that ty has size |[tg| = 0 and t; <> t;11. We call t,,, the shape
Shape(t) of t. By t|,, for n < m we denote the (-multi-up-down-tableau (to, t1,...,t,) of
length n which is the restriction to the first n + 1 multi-partitions.

We can draw an (-multi-up-down-tableau by drawing the tuple of Young diagrams of
the partitions and arrows between consecutive (-multi-partitions. Observe, that any

(-multi-up-down-tableau t necessarily has to = (0,...,0).
As above, we associate to t two residue sequences ¢ = (res(my),...,res(m,,)) and % =
(res®(my), . .., res® (my,)) if & — tiyq.

Notation 2.5. Denote by 7,U4¢(\) the set of all (-multi-up-down-tableaux of shape A
and length m, and by 7" (vesp. TU TUdl () the set of (-multi-up-down-tableaux
(of fixed length m and of fixed shape \). For each (-multi-partition A there exists the
canonical up-down-tableauz * of shape \ which is obtained by first adding the boxes for
X' row by row, then the boxes of A’ ! row by row, and so on.

Example 2.6. Here is an example of A € Par? its t* and the charged contents:
A:( . > t,\:<567\7 12) b 61+161+2‘7 o )
819 34 1 5 o1 6,

Definition 2.7. Define a partial ordering on Par’ by setting A > p if [\ < |p|.

Notation 2.8. For the remainder of the article we fix a charge sequence 6> € RN (with
charge vectors 6((')) which is generic that is 6; — J; ¢ Z1 C R for all i # j.
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3. The electric KLR-category sR.

The goal of this section is to introduce a new monoidal supercategory, the electric KLR-
category, by generators and relations and describe some basic properties. The morphism
spaces assemble into electric KLR algebras which should be seen as analogues of the
KLR algebras from [KL09], [Rou08].

Notation 3.1. For this section we fix a ground field k and denote by SVec® the symmetric
monoidal category of k-vector superspaces with (super) degree preserving morphisms,
and we write SVec if we allow all morphisms. For V' € SVec® we denote by |v| € {0,1}
the degree of v € V implicitly assuming v to be homogeneous.

Thus, in SVec®, the braiding morphisms are v @ w — (—1)"l“lw @ v. By a supercategory
we mean a SVec’-category, i.e. a category enriched in SVec®, in the sense of [Kel05].
Moreover, SVec® has a symmetric braiding and we can consider monoidal supercategories.
Morphisms in these satisfy (f ® 1)(1® g) = (-D9l(1 @ g)(1 @ f).

3.1. Basic definition and formulation of main theorems

For basics on monoidal supercategories we refer for instance to [BE17a], [CE21]. We
denote by 1 the monoidal unit in a given monoidal (super)category.

Definition 3.2. Let sR(Z) be the k-linear strict monoidal supercategory freely generated
on the level of objects by a € Z and on the level of morphisms by

b a a
even generators: >< ta®b—>b®a, ta— a,
a b a

odd generators:  “\' /1= (a+1)®a, ca®(a+1)—1,

a a+1

modulo the following (local) relations (sR-1)—(sR-7):
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3. The electric KLR-category sR.

if b = a,
A N2 a+1a
(R £, =Y, OR2) D= X =YY itr—an,
‘ ’ ‘ ’ a a+1
0 otherwise,
T /\ /\ T a a a
(sR-3) 2 J vt=v oy (sR4) — 2 l=|=1.D
X | X | ]
booa b+l booa b+1 “ “ ¢
0 if a =0,
a b a b
a b + — + ifb:a_l,
Ll/)+1 >< @ b ¢ b
(sR-5) 0 GRee) S=liionn
>< — ‘ ifb=a+1,
axl e PR a b a b
a b
otherwise,
c b a c b a a a+l a a ”*Q” ’ '
+ ifc=a=b-1
>< ‘ ‘ ><l a (LJ»I l‘t (L/(I\Xu ’
a a—1 a a a—1 a

h

b c a c a
(sR-7) ‘b ><_>< b Il a+’%a ifc=a=b+1,
a><b ‘ J, b><p 0 otherwise.

Remark 3.3. For simplicity, we work over k and not an arbitrary ground ring or Z.

This definition makes also sense when we replace the set of objects/of labels of the
strands by any set R’ with an automorphism (+1): R” — R’. In particular R = R as in
Notation 2.1 works. Objects in sR(R’) are then (possibly empty) finite sequences a of
elements in R’. We will denote the resulting category sR(R’), but mostly work from now
on with sR := sR(R).

Lemma 3.4. The defining relations (sR-1)—(sR-7) imply the following equalities:

b a b—1 b a b-1
a a-—1 a a-—1
(3.1) )= U (3.2) b b—>1<a = a><b b—‘l
if b =a,
a a+1 b o b a a a
a+1l a
(3.3) ><a =0 (3-4) ><_><: -\ ifb=a+1,
a+\1/ “ b “ b a/a\-%—l
0 otherwise,

Proof. The relations (3.1) and (3.2) follow from (sR-1) respectively (sR-3) using (sR-4).
After adding a snake (sR-4) to the left-hand side of (3.3), (3.3) follows with (3.2), (sR-3)
from (sR-5). Finally, (3.4) follows from (sR-2) by rotation, i.e. by adding a cup to the
bottom and a cap to the top and then applying (sR-3) and (sR-4). ]
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3.1. Basic definition and formulation of main theorems

We denote by GSVec® (and GSVec) the monoidal category of Z-graded vector superspaces
with supergrading preserving morphisms which preserve (respectively not necessarily
preserve) the Z-degree. The braiding morphisms are the flip maps adjusted by signs only
with respect to the super grading and not the Z-grading.

Proposition 3.5. Let e € {+1}. Then sR(Z), or more generally sR(R), can be viewed
as a monoidal GSVec®-category sRe by setting

deg(+>:2, deg(‘”’@"):—e, deg(a/a\ﬂ):e,

a

(3.5) b w -2 ifb=a,a+1,
deg(><>: 0 ifb—adZ,
“o 4sgn(b—a)(—1)"% otherwise.
Proof. 1t suffices to check that (3.5) is compatible with (sR-1)-(sR-7). O

Remark 3.6. The (surprisingly difficult) degrees for the crossings are forced on us if we
require for sR¢(Z) the dot generator to be of degree 2, i.e. compatible with the usual KLR
convention. First, by (sR-2) the crossings labelled (a,a) must have degree —2. Then
(sR-3) forces the crossing labelled (a,a + 1) at the bottom to be of degree —2. Finally,
by (sR-6), the crossing labelled (a + 1,a) must have degree 4. The arguments from
[Neh24, Definition 1.6, Lemma 1.8] imply then that the degrees of the other crossings
are also forced. The degree for a (a,a + 1) cap can be an arbitrary integer €, as long as
the (a + 1,a) cup has degree —¢,. If we require independent of a, our choices for € are
unique up to an overall positive scaling.

Definition 3.7. The monoidal GSVec’-category sR. is the electric KLR category.

Definition 3.8. The category sR¢ can be viewed as a locally unital algebra sR. with
set of idempotents labelled by R, namely sRe = @, per lasRelp, where 1asRc1y, is the
Z-graded vector superspace of all morphisms from a to b in sR.. More precisely, sR¢ is a
Z-graded superalgebra (that is an algebra object in GSVec®). We call this algebra the
electric KLR (super)algebra.

For a supercategory C we denote by C°P its opposite supercategory. If C is moreover
monoidal, let C™V the category C with the opposite monoidal structure a ®,ey b = b ® a
on objects and f @,y g = (—1)119lg @ f. Denote COPrev = (COP)rev =2 (Crev)op,

Lemma 3.9. There are equivalences of monoidal GSVec-categories

¥ sRP™Y — sRe, T :sRP — sR,
a—a+1, a+— —a,
b a b+la+1 b a —a —b
X X P X
a b a+1b+1 a b -b —a
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3. The electric KLR-category sR.

a a-—1 _ /\ a+l a
= a a+1’ U = —a—1—-a’
/M atl o /M —eed
a—1 a = N2 a a+1 = NP2

where a,b € R, andn=—-1ifb#a,a+1andn=1ifb=a+1,a.

Proof. This is straightforward bearing in mind that f o,, g = (—1)fllglg o f. O

3.1.1. Cyclotomic quotients sR.

For a general overview about cyclotomic quotients in the context of (quiver) Hecke
algebras we refer to [Mat15].

Definition 3.10. Given a natural number £, called the level, we define the cyclotomic
quotients sR' and sRé, of charge 6 = §((), as the quotients of sR and sR. respectively by
the right tensor ideal generated by

(3.6) +n, where n =

a

i 1 ifa=6;,1<i<U(,
0 otherwise.

Definition 3.11. The cyclotomic polynomial of level { (and charge 6) is defined as

(3.7) QO (z) = H(:L' — ;).
Definition 3.12. We denote by 05 : sRﬁ — SRQ the endofunctor given by adding a strand
labelled i with k dots on the right. If k = 0, we abbreviate 6; == 6.

Notation 3.13. The case, that { = 1 and the corresponding § = 0, will appear very
often in the following. In this case we will also write sR¥¢ for sR’. The cyclotomic
polynomial is in this case given by Q!(z) = .

This will be important when relating sR to representations of p(n).

3.1.2. Cyclotomic quotients in the affine VW-supercategory s\/
Recall from the introduction the affine VW-supercategory s\/.

Definition 3.14. The level { cyclotomic quotient S\’ is the cyclotomic quotient of s\
by the cyclotomic polynomial () of level £ from (3.7). This is the quotient of 8/ by
the right tensor ideal generated by

(3.8) En:a * .

Notation 3.15. As for sR., we also write s/ for the cyclotomic quotient of 8/ by
the cyclotomic polynomial z (i.e. £ =1 and 6 = 0). Observe that s\/“° = sBR.
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3.2. The Isomorphism Theorem and Cyclotomic Equivalence

Given an object, say *®™, its endomorphism algebra Ends\x/f (m) is a finite dimensional

algebra and the y;, (i.e. identities with a dot on the j-th strand) for 1 < j <m form a
family of pairwise commuting elements.

Notation 3.16. Denote by e; = ¢;, .. ;,, the idempotents projecting onto the simultaneous
generalized j-eigenspaces for the y;’s, in particular yje; = e;y; = ije;.

3.2. The Isomorphism Theorem and Cyclotomic Equivalence

We finally formulate the Isomorphism Theorem from the introduction:

Theorem 3.17 (Isomorphism Theorem). For any level [, the following assignments
define a fully faithful functor to the Karoubian envelope Kar(swl) of N/':

,
®:sRO — Kar(S\/ ), i=(i1,...,im) — e,

(ST TR A R 1 & m

|\ > eibger, + = ei(Yk — k),
n tm i1 ik im

i im

‘ N e ‘ — ei/bkei,

1 U k41 lm

“W“"*><i’“mi’“ et (e —d)si +1) if dggn & {in, i+ 1,
bl 0 otherwise,
where i’ = (iy, ... ,%k, %k_H, oy bm) and my o s any choice of scalars, such that
(i) NapMba = 1_((1%[))2 for all a, b € R such that a —b ¢ {0,£1} and
(i) 7p,a(b —a) =ngp+1(a —b—1) for all a, b € R such that a # b,b+ 1.

As a consequence of the Isomorphism Theorem in the special case of { =1 and 6 =0 we
obtain an idempotent version of the periplectic Brauer algebras, [Coul8a].
For the proof we will introduce elements ¥§ € sR’ and show a Basis Theorem.

Remark 3.18. Note that the functor is not an equivalence, but it will become an
equivalence after additive completion by the Cyclotomic equivalence below.

Recall that the Karoubian closure of a category is the idempotent completion of a category.
We could also take its additive envelope (which means we allow also finite direct sums
of objects and morphisms). In general, taking additive closure and taking Karoubian
closure does not commute, but since we have finite dimensional morphism spaces these
procedures in fact do commute.

Theorem 3.19 (Cyclotomic equivalence). For any level [, the ’additive’closure of sR is
equivalent as SVec®-category to the additive closure of Kar(Y/') of s\/".
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3. The electric KLR-category sR.

Remark 3.20. We expect that the Isomorphism Theorem holds for any (not necessarily
generic) charge sequence, but our formulation and proof of the Basis Theorem requires
the charge to be generic.

Remark 3.21. As a consequence of the Isomorphism Theorem we obtain in particular
an idempotent version of cyclotomic quotients of the periplectic Brauer categories from
[CE21] or the marked Brauer categories from [KT17].

3.3. The Basis Theorem and applications

In this section we formulate the Basis Theorem and show some important consequences.
Let t = (to, t1,...,ty,) € T with Shape(t) = A\. We start by defining morphisms

ro . . . .

(3.9) Ui — i and Uil — i in sRL.
. A

Construction of ¥{" and ¥},

Case 1: If |A\| = m, then boxes were only added in t and ¢ differs from 7, by a
permutation. Let d; € &,, be the unique such permutation of minimal length. Pick a
reduced expression d¢ = s,, - - - s;,. This defines a corresponding composition 2y — % of
¢ generating morphisms, where each simple transposition si is sent to a diagram where
the kth and k + 1th strand cross. Note that, by construction and by assumption on the
charge, the labels, say a and b, at these two strands are distant in the sense that they
satisfy a ¢ {b,b+ 1}. But then (sR-7) implies that the construction is independent of
the choice of reduced expression. Thus, we get a well-defined morphism \IJ,EA D — T
Analogously, define \IIEA : zfi — i using the dual residue sequences. In both constructions
\I/S is the identity on %.

Case 2: If |\| < m then consider the minimal r such that t, is obtained from t,_; by
removing a box. Denote by | < k the index where this box was added to t. Draw a cap
from 4; to it in %¢. By adding vertical strands at the remaining residues we obtain a
diagram representing a morphism from #; to the subsequence of ¢; given by the residues
not involved in the cap. (We leave it to the reader to verify using (sR-3) that the diagram
can be written as a product of crossings and caps and that any such product defines up
to sign the same morphism.)

Repeat this procedure for all boxes that were removed in t working with the residue
sequence treated by caps already. This results in a composite morphism from ¢ to the
subsequence ; of 4¢ where all residues connected with cups are removed. The length of 4}
equals |A|, and we can construct, as in Case 1, a morphism i{ — ¢,. Composing provides
a morphism ¢¢ — 2,» which is up to an overall sign independent of choices on the way.
Similarly, we can construct a morphism 1,:% — i¢ by using cups instead of caps.

The constructed morphisms are only unique up to signs, since caps and cups have odd
degree and thus height moves create signs. To fix this we adjust our construction by
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3.3. The Basis Theorem and applications

height moves so that they satisfy the following height requirement: We assume that if
two caps (or cups) connect the positions (k,1) and (k’,1") with [ < ', then (k,1) is lower
(resp. higher) than (k’,1’). With this we constructed the desired morphisms (3.9) in sRC.
Recalling that 2 = zf‘i we can define the following compositions:

Definition 3.22. For t, 5 € 7" with Shape(t) = A = Shape(s), define ¥§ = Ui \I/{A €
sRL. In particular, U} is the identity on 4.

Theorem 3.23 (Basis Theorem). The set B := {¥ | t,5 € T4 Shape(t) = Shape(s)} is
a basis, the up-down-tableaux basis, of SRi.

Before the proof we show some nice properties of the basis elements.

Proposition 3.24. Let t,s € T"Y(\) and ) g w, res(0) = i. Then 0;(¥7) = \Ilf:ﬁ, where
u~p= (U(), s 7un7,u) € Tud(:u) fm‘u = (u07 s >un) € TUd()\)
p _ s — g e gt et :
roof. Assume first that s = t*. By definition, ¥ = ., =Y "V ,. By assumption,
o, and 4 are obtained from ¢¢ by adding ¢ at the end respectively at the position,
say p, corresponding to O. In a diagram describing W, this last entry in zf‘ ~ [ connects
(via the right factor of ¥) to the residue at position p and then (via the left factor) back
to the last entry in ¢p,. Since the involved crossings carry distant labels, one can
straighten this strand using (sR-6) and (sR-7) to obtain ¥{ with an additional vertical
strand labelled 7 on the right. Thus, ¥ = ;(¥{). Similarly, the claim holds for \IJ:A and

thus for U§ = W3, \I/IA, since 6; is a functor. O]

For the next application we consider Par! for fixed level { with its partial order from
Definition 2.7 as subset of I :=J R™ by identifying \ € Par’ with T = zf‘;

meZZO

Theorem 3.25 (Highest weight). Consider sR. with up-down-tableauz basis B. For
A€ Parl and i € R™ set Y (i,\) = {Ws |48 =i} and X (\1) = {\IlgA | s = 1}.
This data endows A = @, nen, Dierm jern Homge (1,§) with the structure of an upper

finite based quasi-hereditary (super-)algebra in the sense of [BS24].

Proof. Writing Y (X) = U;c; Y (3, A) and X(\) = U;e; X (A, 2), it follows by Defini-
tion 3.22 directly from Theorem 3.23 that (U, p,« Y (A) X X (X) is a basis of A. The set
Y (u, A) can only be nonempty if A = p or |u| > |A|, and thus p < A, similarly for X (A, u).
It is also clear from Definition 3.22 that X (\,A) = Y/(\,\) = {ey} for each A € Par’. O

3.3.1. The spanning set B

We next show that the proposed basis B in Theorem 3.23 spans. For this fix the
filtration {0} = Fg_l - FSO - Fgl C... on Tud given by ng = U|>\\§b 7—ud(/\) This
induces a filtration on the k-span B of B with pieces B<; spanned by all ¥§{ with
Shape(t) = Shape(s) € F<;. Let R D R<;, be the two-sided ideals in sR generated by B
respectively B<;,. Thus, R<; defines a filtration on R by ideals which we use to show
B = R. Abbreviate Bj == B<(y_1), R<p = R<(p_1)-
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3. The electric KLR-category sR.

We show now some properties of sRﬁ in the following situation for fixed b € N:
(ASS<b) ng/ = RSb’ for all b < b.

Proposition 3.26. Assume (Ass<b) and let A € Par’ with |\| = b. Then the following
holds in sR. for any i,j € R with Add;(\) = 0.

(3.10) 6;(PH) € Bopyy,  (3.11) 01(TH) =0,  (3.12) 6;(¥5) € By for t,5 € TUI(N).
In particular, any diagram with a dot is zero in sRL by (3.11).

The proof of Proposition 3.26 will show inductively the following refinements:
Corollary 3.27. Assume (Ass<b). Then the following holds in sR..

(a) Any object i such that id; € R<py1 which has a subsequence of the form (a,a) is
zero.

(b) For any t = (i1,...,4r) € Rep_1,

(¢) Let A € Par’ with |\| < b and assume Add;(\) = 0. If 91(\113) # 0 then there exists
a subsequence of the form (i,i 4 1,4) in res(t}q).

Remark 3.28. In Corollary 3.27 the subsequence can in be chosen to involve the i at
the end of res(t"i). The statement holds even for any t € TU(\).

Proof of Proposition 3.26 (with Corollary 3.27 and Remark 3.28). The assumption and
(3.10) directly imply (3.12). We prove (3.10) and (3.11) parallel via induction on b := |A|.
Let (i1, ..., i) =4 = 45, thus U4 =id;, ).

If b =0, then Add;(\) = 0 implies i # 0; for all j and both, (3.10) and (3.11), follow
from (3.6).

Assume the claims hold for all ¥ < b. Via induction and Proposition 3.24, 6;| B, , 184
filtered map of degree 1. B

We consider four different cases.

(i) If i = ip, then we have, by (sR-2) and by (sR-2) with (sR-6),

ip i i 7

i i i i i i i
i i

iy i

i i

Therefore, 9?(\113) = 0 for n € {0, 1} by induction. This also shows Corollary 3.27(a)
and (c) in this case.
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(iii)

3.3. The Basis Theorem and applications

If i % iy, |i — ip| # 1, then Add;(t) ;) = Add;(\) and (sR-6), (sR-2) give

o) =

By inUCtiOH, 9?(id(i1w.7ib71)) € B<b_1. ’I‘hUS7 id(il,...,ib,l,i,ib
filtered of degree 1. Corollary 3.27(a) and (c) follow also immediately in this case.
Remark 3.28 holds, since Add;(t) ;) = Add;()\)

) € Bepas bz, is

Suppose that i, = i + 1. By definition of ¢, 4 is the residue of the last box in
the last row of A. As there is no addable box with residue i, the last row of A has
more than one box and then i,_1 = i. Thus, (i_1,i) = (i,7 + 1). This shows
Corollary 3.27 (c¢) and Remark 3.28 in this case.

Define multi-up-down-tableaux u and v of length b+ 1 such that! u;, = tg for k < b,
Upr1 = Up—1 and uy = up_o respectively vy = tﬁ for kK < band vy = vp_1. By
construction, we have res(u) = (iy,...,%,7) = res®(v). Now we can compute

i1 Qo i di+1 i i1 o i i+l

(3.13) = ‘ ‘ A/ - | |

i1 ib—o i i+1 i i1 o i i+1 i

— —6,(T4).

The first and last equalities here hold by definition, and the second equality used
(sR-7). The reader might expect two more summands from this relation, but we
proved in (i) that 6; o 6;|p<s = 0 and thus these terms vanish. We see that the
number of propagating strands in ¥} is exactly one less than the one in \I/g Thus,
0;(W5) € R<Y and (3.10) holds.

We also need to show (3.11). By (sR-6) and the induction hypothesis it suffices to
show Corollary 3.27(b), i.e.

Observe that Add;(t} ;) = 0 as Add;+1 () ;) = Add;, () ;) # 0. Thus, by induc-
tion, and from the arguments given so far, we see that either (i1,...,i_1,%,i+1) =0
(in which case we are done) or we find a subsequence of the form (i, — 1,4). For
this subsequence we can apply the argument as in (3.13) and obtain

i 1@ i+l
i 1 i i+l
/

i 1

~A

v i+1

i—
L'*
i 1=

If we apply a height move to the cup and the crossing, the statement follows from
Corollary 3.27(b) (for a shorter sequence).
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3. The electric KLR-category sR.

(iv) Suppose that i, = i — 1. By definition of t*, 4 is the residue of the last box in the
last row of A. As there is no addable box with residue 4, the second last row has a
box with residue ¢ but not with higher residues. (Note moreover that there are at
least two rows). Now this case is similar to (iii), but one also has to use (sR-6) to
move a value i to the position b — 1. Here, for the proof of (3.10), a subsequence
(i,7 — 1,1) is obtained.

This shows (3.10) and (3.11) and hence also Proposition 3.26 and Remark 3.28. O

Corollary 3.29. Assume (Ass<b). Then 6;(B<p) € B<p+1 and 0;(B<p) C Bepyq for all
1 € R, b€ Ng. In particular 0; is a filtered map of degree 1.

Proof. This follows directly from Proposition 3.26 using Proposition 3.24. 0
Corollary 3.30. Assume (Ass<b). Then id; € B<y for any object © = (i1, ..., 1p).
Proof. Since id;, € R<!, this follows directly from Corollary 3.29 O

We next want to show that B<, = R<; for all b.
We fix more notation for the rest of this subsection:

Notation 3.31. Consider multi-up-down-tableaux t and s of shape A\. We define b := ||
so that W§ € Beyp. Let (i1,...,0y) =4 and (i7,...,i?) = 2.

We formulate more properties for sR. in case (Ass<b) holds:

Corollary 3.32. Assume (Ass<b). Then dp¥i =0 = Uidy for 1 <k <mn, where

de="
R
Proof. This follows directly from Proposition 3.26. O

Proposition 3.33. Assume (Ass<b) and define for 1 <k <n, i € R the morphisms

X ]|

U U1l Y1 U2

iy A A U SR

y ykﬂ,:‘ ‘ N ‘ ‘7 Zk,i:
@ e ® e e
o 1l Ykl Y2 o

Then xy,; VY, yr: Vi, 21, Vi € B<p holds. Similarly, Vi ;, Yiyki, Vizk: € B<p.

Proof of the case wy; in Proposition 3.33. If 0 € Add;(sg), let u € TU(\) with u|, =
S|, U1 = Up @0, Uj4o = 55 for £ < j < n. Then, z;,V] = £V} € R=t. Otherwise,
we have Add;(sx) = 0 and may also assume that |s;| = k (as removing boxes would
correspond to cups commuting with the cup of xj; up to sign). By Corollary 3.27, the
object (i1,...,1k,4,7 — 1) is either 0 or we find a subsequence of the form (7,7 + 1,4). If
the subsequence is (i,i — 1,4), applying (sR-7) gives the diagram according to removing
with a — 1 the box with residue a and then adding two boxes.

On the other hand if the subsequence is (i,i + 1,4), we get a valid multi-up-down
tableau v with res®(v) = (i1, ...,ix, 4,4 — 1) where the last two entries remove the boxes
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3.3. The Basis Theorem and applications

corresponding to the subsequence. If v can be extended to a multi-up-down tableau
of shape p by (ikt1,.--,im), then |u| < b and zj,; Tt = a¥b € R<? by construction.
If it cannot be extended, we either find a subsequence (i — 1,7 — 1) which is 0 by
Corollary 3.27(a) or we try to add a box of residue i + 2. But this strand can be moved
to the left using (sR-6), where we then either get 0 by Corollary 3.27(a) or (3.6) or we
find a subsequence (i + 2,7+ 3,7+ 2). In the last case we can apply (sR-7) and then use
the same argument as above and end up eventually with 0. O

Proof of the case zj; in Proposition 3.33. Suppose first that iy 1 ¢ {ig, 9% = 1}. Then
we claim that ssi is an up-down-tableau. If in steps k£ and k£ + 1 we only add respectively
remove boxes, then this is clear as the boxes neither appear in the same row nor column
of the same partition.

In the other two cases let ¢ be the residue of the removal. This means that we removed a
box O with residue ¢ + 1. So this actually swaps with all residues which are < ¢ — 1 and
>+ 3.

The only case left to consider is, when the added box S has residue ¢ + 2. But note that
after the removal of O, O is addable again. As O has residue ¢ + 1, no box with residue
i 4+ 2 can be addable. And vice versa, if we add /3 after adding O, the box § lies directly
to the right of O in the same row. Thus, we cannot remove O afterward. Therefore, this
case cannot appear.

It remains to show the statement for iy = i1 £ 1. If steps k and k£ + 1 consist out of
adding boxes O and 3, these two boxes appear in the same row respectively column. This
means that 5 cannot be added to sp_1. By Proposition 3.26 and Corollary 3.29 we know
that z;, ;¥ € R<’.

Suppose that we remove a box in step k and add a box in step £ + 1. Let further [
be the step in which the box was added which was removed in step k. Without loss of
generality we may assume that [ = k — 1. Using (sR-6), we can move the i; pass every
distant entry and every neighbored entry has to be removed prior step k, which results
in a cup that does not interact with the crossing z, meaning that we can swap these two
as well. We then either have the subsequence (i + 1,4k, ix + 1), in which case applying z
gives 0 by Corollary 3.27(a). Or we have (i + 1, i, ir — 1), in which case step ssy is an
up-down-tableau and zj, ; ¥§ = ¥,

Suppose that we add a box in step k£ and remove a box in step k£ + 1. Then z; ;¢ = 0 by
(sR-6) and Corollary 3.32 or (sR-5) respectively.

Suppose that we remove in both steps a box.

Let [ denote the index of adding the box for step k and I’ the one for k + 1. Without loss
of generality we may assume that [ =k — 1 and I’ = k — 2. Note that [’ has to appear
before [ as s is an up-down-tableau.

Then we either have a subsequence (a+1,a,a—1,a) or (a—1,a,a—1,a—2). In the first
case, applying z gives 0 by Corollary 3.27(a). In the second case we have the equality
displayed in (3.14) by (locally) using (sR-6) and (3.2). Now removing steps & — 1 and
k from s gives a valid up-down-tableau u of shape A. Thus, looking at the diagrams
we see that z;, ;U7 is obtained from WY via left multiplication with a cup and a distant
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10 Xl X

crossing. Now the claim follows from Proposition 3.33 for zj; and the first paragraph
about distant crossings. d

Proof of the case yy; in Proposition 3.33. If in the k-th step of s a box is removed and
in the k + 1-th one is added, using (sR-4) we get y; ;U = £V}, where u is obtained from
s via deleting steps k£ and k + 1.

If the k-th step adds a box and the k + 1-th removes one, then y; ;U = 0 by (sR-5).

If in the k-th and %k + 1-th steps boxes are removed from s, let s be the up-down tableaux,
that is obtained from s by removing all the “cups” of s, i.e. it is the same as s but
whenever we would remove a box in s or add a box that later would be removed we skip
this step. Now ¥§ = ¢- ‘I/f/, where ¢ is a diagram consisting of cups (which might intersect).
As the k-th and k 4+ 1th step both remove boxes, we see that y; - Uf = ¢ - \I!f’ by (sR-4),
where ¢’ also consists only of cups. The statement then follows from Proposition 3.33 for
xp,i and zy ;.

The remaining case to consider is when two boxes are added. But this case immediately
follows from (Ass<b), as yx;¥§ € R<’. O

We directly obtain from Corollary 3.32 and Proposition 3.33:
Corollary 3.34. Assume (Ass<b), then B<y = R<p, holds in sRL.
Proposition 3.35. The set B of up-down-basis elements is a spanning set for SRQ.

Proof. By Corollary 3.34 we know that all B<;, form two-sided ideals and by Corollary 3.30
we see that all identities lie in some B<;, for some b. These two facts together imply that
the U§ € B span sR.. O]

Corollary 3.36. In SRQ, any object © with a subsequence of the form (a,a) is zero.
Proof. This follows now directly from Proposition 3.35 and Corollary 3.27(a). O
Corollary 3.37. Any nonzero object of SRQ is isomorphic to i for some \ € Par’.

Proof. Let ¢ be a nonzero object in SRi. If it is the residue sequence of some up-tableau,
the statement follows. This is as all residue sequences for up-tableaux of the same shape
differ only by distant crossings (which are isomorphisms by (sR-6)).

Otherwise, we can find a subsequence (4,i%1, %) in ¢ by Corollary 3.27(c). By Corollary 3.36
and (sR-7), we can do the following replacement

i i+l i i+1 i i i—1 4 i i—1 4
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In conjunction with (sR-4), we see that ¢ is isomorphic to #’, where 2’ is obtained from ¢
by replacing the subsequence (7,7 4 1,7) with i. We can repeat this argument until we
end up with a residue sequence of an up-tableau. ]

Remark 3.38. After the proof of the Cyclotomic equivalence we see, for instance using
Theorem 3.25, that the 4,x for A\ € Par are indeed all nonzero.

3.4. Proofs of the Isomorphism Theorem and the Basis Theorem

Now we are going to prove Theorem 3.17. We will begin by outlining our strategy.
Consider the functor ®: sR. — Kar(s\/'). This functor is filtered by the number of
strands, and we can consider its restriction ®< to at most k strands (on either side).
We then will prove Theorems 3.17 and 3.23 by induction on k. For k = 1 this is an easy
calculation. Given the theorem for all k' < k, we will show that yi,1 act diagonalisably
and use this to check the relations involving the k + 1-st strand. For both calculations
we will use the basis of SRQ (on the first £ — 1 strands) to exclude and simplify many
cases in the calculations.

From these considerations it will also follow that the functor is full and by arguments
from [AMRO6] it follows that the spanning set of sR. has the same size as a basis for
SW! (up to this filtration degree).

We first examine how generators of S\Wf interact with the generalized eigenspaces:

Lemma 3.39. Let a, b, ¢, d € R. In /' the following holds:
(a) Ifbeqp #0 thenb=a+1, and if ecgb* # 0 then d = c — 1.
(b) If ecaskeap # 0 then (b,d) = (a+1,¢—1) or (¢,d) = (a,b) or (¢,d) = (b, a).

Proof. Part (a) holds by (s\/-6) respectively (1.4). For (b) we deduce from (s\{/-1) and
(3W-7) the two equations e q(Skyr + SkUk+1)€ap = €cd(Ykt+15k + Yrsk + 200™)eqp and
eqd(skyk — Skyk+1)€a7b = ecyd(ykJrlsk — YrSk — 2)€a,b- If (b, d) #* (a +1,c— 1), then in
the first equation the cup-cap part vanishes and we get a + b = c+ d. If (a,b) # (¢,d)
then the second equation implies a — b = d — ¢, since the last term there vanishes. Thus,
€c.dSkeap 7 0 implies (b,d) # (a+1,c—1) or (b,d) # (a+ 1,¢c — 1) are satisfied, or the
two conditions a + b =c+d, a —b = d — ¢ hold, that is (a,b) = (d,c). O

Next we show diagonalizability of y,_1 induces diagonalizability of y; for any k € Ng:

(I)Sk—l

Proposition 3.40. Assume is an isomorphism. Then yi acts diagonalisably on

¢
W<k -

Remark 3.41. If ®=F1 is an isomorphism, then yj_; acts diagonalisably for S\W; k1
(since its preimage does so by Proposition 3.26), and €;,, i i, , =0.

Throughout the following proofs we will need the following technical result:
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Lemma 3.42. Assume ®=F~1 is an isomorphism. Then we have for any i € R, z € N/’
; ; k—2 _
(i1, ,ip—2) €R that ;... iy _5,i+1,iT€iy o jip_o,iit1 = 0.

Proof. By Corollary 3.37, we know that e;, ... ;, , is isomorphic to ej,, . ; with [ <k — 2,
where ji,. .., is the residue sequence of some t*, \ € Par’. As t* cannot have addable
boxes of residue 7 and i+1 at the same time, one of the two idempotents must be conjugate
to some e . 3, with I” < k—2 (or zero which directly implies the claim). Adding a snake
t0 €41, ip_0,i+1,iTCiy - ix_o,i,i+1 and using the above conjugate idempotent, we obtain

an idempotent of the form €5 e 3l 0 with a € {i,i + 1} (i if the first idempotent is
conjugate to a shorter one, 7 + 1 if the second one is). In particular, €jl e jlppaa = by
Corollary 3.36 as ®<F~! is an isomorphism. The statement follows. O

Proof of Proposition 3.40. It suffices to show the claim:
(315) €i1,...,ikyk - ikeil,-..,ik for any eilr"?ik'

For k = 1, this holds by definition of 8/’ and the minimal polynomial (3.7) of y;. Thus,
let k > 1. We abbreviate e(q 4] = €i,,..iy_,,ab and set j :=iy_1, i = ip. From (3\/-7) we
get with e = -,/ 1 €(q/ 1) the formula

(3.16) €(e,d) YkC(ab] = €(c,d)Sh—1Yk—1€5k—1€(ab] T €(c,d]Sk—1€(ab] T €(c,d)? PE(a,p)-

Note that the last summand vanishes in case (a,b) = (¢,d) by Lemma 3.39.

Case j = i. If we take (a,b) = (¢,d) = (i,1) in (3.16), only (a’,b") = (i,i) matters by
Lemma 3.39, and we get e(; 3 (yp — 1) = €(i,i] Sk—1€(iq]> since yx_1 acts diagonalisably by
assumption. Now, (e (yr — i)e(i,i})% = 0 for n > 0 whereas (ew]sk,le(i’i])% = €(i]
by Lemma 3.39 and (8\/-1). Thus, e(;; = 0.

Case j =1+ 1. Consider (3.16) with (a,b) = (¢,d) = (i + 1,47). By Lemma 3.39, only the
terms e(; ;1) and e(;41, matter for e. But by Lemma 3.42, actually the term for e(; ;41
vanishes as well and only e(;, ; remains. Then, we can use the same argument as for
the case j = 1.

Case j =i — 1. If we take now (a,b) = (¢,d) = (i — 1,4) in (3.16), only (a’,b") = (i — 1,14)
matters by Lemmas 3.39 and 3.42, and we can argue as for the above two cases.
Case j ¢ {i,i & 1}. Let (a,b) € {(4,5),(j,1)} and set zqp) = (k-1 + ﬁ)e(@b].
Since the action of y,_; is diagonalizable, (8\/-7) implies that yr2(ap) = 2(ap)¥Yk—1 =
az(ap) and bz(ap) = Z(ab)Yk = Yk-12(ap)- 10 particular, ey q2(ap) = Z(@ap)- We get
Z(ba)?(ap) = (Sk—1 + ﬁ)(sk_l + ﬁ)e(avb] =(1- ﬁ)e(aﬂ. Since a — b # +1 and
Z(ap) Yk — D)e(ay = 0, we get (yx — b)e(qy = 0 for (a,b) € {(4,7), (4,7)}-

We showed that vy is diagonalizable. O

The following two results follow directly from the proof of Proposition 3.40.
Corollary 3.43. If yi_1 acts diagonalisably on S\W['Sk,l, then e, i o4 = 0.

Corollary 3.44. If y,_1 acts diagonalisably on S\W[Sk_l, then eqp((b — a)sp + 1) =
((b—a)sk + 1)epq given that a ¢ {b,b—1}.
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3.4. Proofs of the Isomorphism Theorem and the Basis Theorem

Proposition 3.45. Let k € Ny and assume ®=F~1

O=F js a well-defined algebra homomorphism.

is an isomorphism of algebras. Then

Proof. If k = 1, the only relations are the cyclotomic relations (3.6) for sR! and (3.8) with
(3.7) for 8\ which exactly correspond to each other, and thus the functor is well-defined
(in this case the assumption is vacuous).

If £ > 1 it suffices by assumption to verify the compatibility with the relations involving
the last strand. Recall from (3.11) that all dots in sR! become zero which fits with
the fact that yp acts diagonalizable by Proposition 3.40. We can ignore all terms
involving dots in the relations, since they are zero and sent to zero. Again we abbreviate
€(a,b] = €iy,...ig—2,a,bs €(a,b,c] = €i1,...ab,c

Relation (sR-1): Both sides are zero and are sent to zero.

Relation (sR-2): The right-hand sides are sent to zero by Corollary 3.43 respectively by
Lemma 3.42 using that ®<*~1 is an isomorphism.

Relation (sR-3): We may assume that a # b, b+ 1 as otherwise both sides are sent to
zero by definition. The LHS of the relation is (using Corollary 3.44) sent to

(3.17) na,bbk—l((a —b)sg—2 + 1)6(a,b+1] = na,bbk—l((a — b)Sk_Q)e(a,b_i_l].

Here, the second summand vanishes by Lemma 3.39. Similarly, the RHS is sent to

(3.18) Mot+1,aPk—2((0 + 1 — a)sg + 1)epr1] = M+1,aP2k—2((b + 1 = a)sk)e(qpy1)-

Now (3.17)=(3.18) holds by the defining property (ii) of the ’s and (1.2).

Relation (sR-4): By Lemma 3.39 the middle idempotent in the image is uniquely
determined by the outer idempotents and the compatibility follows from (S\{/-5).
Relation (sR-5): The image is zero by (8\/-3) noting that iy —ix—1 =a—(a+1) = —1.
Relation (sR-6): The first case is clear by Corollary 3.43, the second and third case follow
from Lemma 3.42. For the remaining one note that the image of the LHS is gy, ((b —
a)sk +1)((a — b)sg + 1)e(qy by Corollary 3.44. This equals 74,pmp,4(1 — (a — b)2)e(a7b] by
(3)/-1). By the first defining property of the n’s, 14 57p.a(1 — (a — b)?) = 1 and the desired
compatibility holds.

Relation (sR-7): First assume (a, b, c) # (a,a £ 1,a). Then the RHS is zero and sent to
zero. The left-hand side is mapped to zero if any of the pairs (a,b), (a,c), (b, c) are of
the form (i,7) or (i,7 4+ 1) by definition of ®. Otherwise, the image of the first term is

Nap((b — a)sp—1 + 1)ngc((c — a)sk + 1)y c((c — b)sp—1 + 1)
= Na,bNa,cMb,c (1 +(b—a)(c=b)si_1+ (c—a)sp+ (b—a)sp_1+ (¢ — b)sp
+(c—a)(c—b)sgsg—1+ (b—a)(c —a)sg-15k + (b — a)(c — a)(c — b)sg—15k5k-1) ,
whereas the image of the second term equals
Me((c—b)sp 4+ 1) 0 Ma,e((c — a)sp—1 + 1) 0 nap((b — a)sp + 1)
= Nty (14 (¢ = B)(b = a)st + (b= a)si + (¢ — a)si1 + (¢ — b)sy
+(c—a)(b—a)sg_15k + (c—b)(c — a)sgsk—1 + (¢ —b)(c — a)(b— a)SkSk—_1Sk) -
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3. The electric KLR-category sR.

The two images agree in all expressions involving one or two s;’s. The other terms match

by (s\/-1) and (s\/-2).
Next assume that (a,b,c¢) = (a,a = 1,a). We need to show that

(319) €(a,a+1,a] = ~€(a,a+1,q] bZ—lbkfle(a,a—l,a] bZ—2b1672€(a,a—i-1,a] :

We first rewrite e, 41,4 by plugging in the relation (s\/-7) three times. We always
simplify using that the y;’s act by scalars (and thus the double cross can be straightened
by (8\/-1)) and that certain cups or caps vanish because of Lemma 3.39.

*
€(a,a+1,a] = €(a,a+1,a]5k—2€(a,a+1,a] = e(a,a—&—l,a}(*sk—l - bk—lbkz—l)Slc—26(a,a-|-1,i]
* *
= —€(a,a+1,a]Sk—15k—2€(a,a+1,a] — e(a,a+1,a}Sk*lbkflbkflbk72bk726(a7a+1,a]'

Only with the idempotent e(, ,_14) in the middle, the last term is nonzero. Thus, (3.19)
follows if we show that e(q q11,4)5k—15k—2€(a,a41,a) = 0-
For this we observe that (again by (S\{/-7), diagonalizability and Lemma 3.39)

(320) €(a,a+1,a]5k—1€(a,a+1,a] = ((I - (CL + 1))e(a,a+1,a} = —Ca,a+1,a]
(321) €(a,a+1,a]5k—2€(a,a+1,a] = (CL +1- a)e(a,a+1,a] = €(a,a+1,a)
and compute (using Corollary 3.43 and Lemma 3.39 in the second and fourth step)
(3.20)
€(a,a+1,a]5k—15k—2€(a,a+1,a] — ~C(a,a+1,a]5k—15k—2€(a,a+1,a]5k—1€(a,a+1,d]
(BW-2)
= ~ €(a,a+1,a)Sk—15k—25k—1€(a,a+1,a] — ~€(a,a+1,a]5k—25k—15k—2€(a,a+1,d]
(3.21)

= = €(a,a+1,a]5k—2€(a,a+1,a] Sk—15k—2€(a,a+1,a] — €(a,a+1,a]5k—15k—2€(a,a+1,a]"
Therefore, €(q,q+1,a]5k—15k—2€(a,a+1,a) = 0 and (3.19) is proven.
The case (a,b,c) = (a,a — 1,a) is treated analogously. O

Proof of Theorem 3.17. We prove that ®=F is an isomorphism by induction on k. For
k = 0 there is nothing to show. Now assume the statement for k& — 1. Then ®=F is
well-defined by Proposition 3.45. Furthermore, the spanning set B for sRé has the same
size as a basis of 8/, see [AMRO6, Lemma 5.1]. Hence, it suffices to show that ®=F
is full. For this let 2 € R™, ¢; € R", m,n < k. It is clear that e;y;e; € im U< for all
1 < j < k. By Lemma 3.39, we also have e;bre; and e;bfe; € im USF whenever they
make sense. We claim that ejsp_1e; € im o=k, By induction, it suffices to show that
eispe;j € im Ok for m =n =k — 1. If iy, ¢ {ip_1,ir_1 — 1} this is clear by definition of
O=k If i), = ip_q then e; =0 by Corollary 3.43 and there is nothing to do.

Thus, assume iy +1 = i1 = 7. By Lemma 3.39, we have e;s,_1e; = 0 unless (ji, jz—1) =
(ik—1,ik) or (jk—1,Jk) = (ik—1,%k). For the former, we have e; iy 5k—1€(3,i41] = 0 by
Lemma 3.42. For the latter, we get e;spe; = e;e; by (S\W/-7). Therefore, ejsie; € im Pk
as claimed. Similarly, if ¢, = i;_1 + 1 we have e;s;_1e; = 0 by Lemma 3.42 and thus

€iSkK€; = 0.
Altogether, im U=F contains a generating set for the morphism and thus U=F is full. It
follows that ¥ is an isomorphism. O
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3.5. Refined Schur—Weyl duality

3.4.1. Proof of the Basis Theorem and the Cyclotomic Equivalence

Proof of Theorem 3.23. Since the cardinality of B equals the cardinality, see [AMRO6,
Lemma 5.1], of a basis of 3/, the Basis Theorem follows from the Isomorphism Theo-
rem 3.17 and Proposition 3.35. O

Proof of Theorem 3.19. By the Isomorphism Theorem 3.17 it is enough to show that
the functor is essentially surjective. Write 1 = 3 e; for pairwise orthogonal nonzero
idempotents. We claim that e; is primitive for all ¢. If the claim holds we are done, since
then the image contains (up to equivalence) all primitive idempotents. By Corollary 3.37
we can restrict ourselves to the case 4 = i* for A € Par’. Then the claim follows from
Theorem 3.25. (One could also directly use Theorem 3.25.) O

3.5. Refined Schur—Weyl duality

In this section, we apply the result of Theorem 3.17 to obtain a refined Schur—Weyl
duality for p(n) using the KLR algebra sR“°.
The following is immediate from (SW) and Theorem 3.17:

Corollary 3.46. There is an essentially surjective full homomorphism W_,, (sRY)® —
Fund(p(n)) of module categories over sR.

The main disadvantage of Fund(p(n)) is that it contains odd morphisms. But as we
consider all morphisms, Fund(p(n)) depends on a choice of representatives under the
parity switch. We chose this representative such that it appears as a direct summand
of V¥4, We proceed by fixing a new choice of representatives to obtain the category
Fundf (p(n)) where miraculously only even morphisms are left.

For this define the endofunctor ©; := I1*©; and the category Fund$(p(n)) as the full
additive subcategory of Rep(p(n)) generated by @fd e @le. We also define an analog
of sR that we call §R.

Definition 3.47. Let SR be the k-linear strict monoidal category freely generated on
the level of objects by a € Z and on the level of morphisms by

b a a
>< D a®b — b®a, + ta—a, 1= (at])®a, LN ra®(a+l) = 1,
a b a

modulo the relations (sR-1), (sR-3), (sR-5) and (sR-6) and the following modified
relations:
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3. The electric KLR-category sR.

(—1) if b=a,
b a b a a a
A _ a+1l a
(SR-2) >< B >< - (—1)‘1‘"1 \/ ifb=a+1,
0 otherwise,
(éR‘é‘:) a/?+ 1 r‘z = = (‘1 a —/1\(1
| NS
(-><b .« e b>< (-] | ' ~(~1)a N ifc=a=0b-1,
b c a ¢ a b a a+l a a a+l a
(8R-7) - >< = (_1)a+10 T] | + (_1)aa\ya fe—a=b+1
! ! i | < b a a-1 a a a—/l\a ’
a><b . JL b>< 0 otherwise.

As before, we also define SR as the quotient of SR by the right tensor ideal generated
by

¢ 1 ifa=0
(3.22) +n7 where n = =5
0 otherwise.

a

Theorem 3.48. The category Fundf(p(n)) is a module category over SR via (the dotted
diagrams correspond to the action of sR on Fund(p(n)))

a+1 q “ b
at+1l a e+t -

L
\\/// a b \ /
. X
/ A / \
) o L v ’
- a+1 ¢
R :
b a

a a+1

a

:

+I—>¢.
a

Furthermore, evaluation at C factors through SR, and we obtain the homomorphism
V. 1 SRV — Fund? (p(n)) of module categories over 8R.

Proof. The following equalities regarding the parity shift hold (all follow from the Koszul
sign rule for height moves in supercategories):

a v
_ Hb :(_1)ab // \\ - \\ //
v
a a a b a b b a >
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3.5. Refined Schur—Weyl duality

Using these, it is straightforward to verify the relations of SR using ¥_ ,,sR“Y* —

Fund(p(n)).
Furthermore, we have @jC # 0 if and only if i = 0, and thus we obtain the homomorphism
U, ,, of module categories as claimed. O

Remark 3.49. If we only consider SR“°, many of the (—1)* in the defining relation
disappear. Namely, in this case, one of the two sides in the defining relations is always
zero, and we can rescale the relation.

Remark 3.50. We also get the “same” basis for SR as in Theorem 3.23. By the
“same”, we mean the obvious analogues of the basis elements by replacing all generating
morphisms with their respective analogues.

We conclude this section by stating some results about the functor of W ,,. All of these
were already proven by Coulembier and Ehrig for the super Brauer category, and we
translate their results to SR“°.

Definition 3.51. We abbreviate the partition (k,k —1,...,1) by J.

Proposition 3.52. Let ¢ = (i1,...,1x) be the residue sequence of an up-tableau of shape
A. Then Wy ,(2) = 0 if and only if 6p+1 C A.

Proof. The object 7 gets mapped under ¥’ to the indecomposable object associated to A
as this maps to a generalized eigenspace for the action of the Jucys—Murphy elements (see
the paragraph after (1.4) and [Coul8al). The statement then follows from [CE21, Theorem
6.2.1]. 0

Theorem 3.53. Let i = (i1,...,i;) be the residue sequence of an up-tableau of shape X.
The module V. (%) is projective if and only if 6, C A.

Proof. This is [CE21, Theorem 6.3.1]. O
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4. The Khovanov algebra of type P

In this chapter we aim at giving a different description of SR, similar to the Khovanov
algebras of type A or B.

4.1. Combinatorics of cup and cap diagrams

Definition 4.1. A cup diagram \ is a partitioning P of Z 4 % into subsets of size at
most 2 such that there are only finitely many size 2 subsets. Furthermore, if {i,j} € P
and i < k < j, then k is part of a subset of size two {k,k'} € P with i <k’ < j.

We draw such a cup diagram (without crossings) by attaching a vertical ray to a one
element subset and a cup with endpoints given by two element subsets.

The set of all cup diagrams with n cups is denoted by A,, and by A =|JA,, we denote
the set of all cup diagrams.

The following is immediate from the definitions.

Lemma 4.2. We have a bijection between A, and strictly decreasing sequences of integers
A1 > - > A by sending such a sequence to the unique cup diagram with endpoints
{A\+ %} In particular, we can identify the set A with strictly decreasing sequences of
integers of arbitrary length.

Definition 4.3. Let A and p be cup diagrams. Denote by A1 > Ay > -+ > Aj the right
endpoints of cups in A and similar define p; > --- > .. We define a partial order on A
by declaring A < p if either k > r or k=7 and \; > p; for 1 <7 < k.

Example 4.4. The following are cup diagrams.

[][98)
(il
VeS|

©

NI
o=

[1[9Y]
Dot
[SIR=)

[SIEN]

YR

The right endpoints of cups of A are given by % > % > —% and those of u by % > —% > —%,
and thus A < p.

40



4.2. Definition of K

Definition 4.5. A cap diagram A\ = \* is the horizontal mirror image of a cup diagram \
shifted one to the right, i.e. if A has a cup connecting a and b then A has a cap connecting
a+1and b+ 1.

A circle diagram A is a cup diagram A drawn under a cap diagram .

Definition 4.6. A circle diagram is called orientable if it contains no circle and any
non-propagating line has one endpoint to each side of 0.

To check this in practice, we first have to redraw cup and cap diagrams using the following
rule. For a cup diagram with k cups, we draw the bottom endpoints of rays in the unique

way such that —k — %, —k+ %, N % have no endpoints of rays. For a cap diagram
with k caps, we draw it in the unique way such that there are no top endpoints of rays at
—k+ %, —k+ %, R % If we redraw the cup and the cap diagram in a circle diagram

in this way, one endpoint to each side of 0 means that, any non-propagating line ending
at the top, is centered around 0 and a non-propagating line ending at the bottom around
—1.

Example 4.7. For the cup diagram from Example 4.4 we would think of the rays as the

following.

2 % 2
Remark 4.8. We could have also chosen to define cup and cap diagrams with the skew
rays, which would have made the orientability criterion easier but the definition of cup
and cap diagrams more involved. We chose to do this differently as all these technicalities
fade away, when we pass to representations of p(n).

[SIR=)
\1

olcol

SIS}

9
2

V]
ol
ol

4.2. Definition of K

Definition 4.9. We define the Khovanov algebra K of type P to be the vector space with
basis all orientable circle diagrams A\zi. We define a multiplication by setting Az - 4/7 to 0
if 4 # 1/, and otherwise we draw A below 1/ and connect endpoints of rays from 7 to
endpoints of rays of p in the following way: If this endpoint is not directly to the left of
a cap we connect it with a straight line to the top. If it is to the left of a cap we connect
it to the first free endpoint right of the corresponding cup in u. This gives us a middle
section consisting of subpictures of the form B

A

We then apply surgery procedures to remove this middle section. This is done by replacing
these subpictures iteratively by

If any of these intermediate results is not orientable, we define the result to be 0.
Otherwise, we set it to be AU (which is exactly the result of the surgery procedure). This
turns K into an associative algebra by Theorem 4.11 below.
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4. The Khovanov algebra of type P

A~ A~ ¢ e
o) |

% s ‘ ._,f“u s | acf

(a) Straightening (b) Split (c¢) Reconnect

Figure 4.1.: Different cases of the surgery procedure

Remark 4.10. We chose to call these replacements surgery procedures (even though
they are, strictly speaking, not) as they play the same role as the surgery procedures
from [BS1la] and [ES16] in the definition of the Khovanov algebra of types A and B.

4.2.1. Detailed analysis of surgery procedures

Before we are going to prove associativity, we inspect the surgery procedure in more
detail. Every surgery procedure falls into one of the following three categories.

4.2.2. Straightening

This appears if we are in the situation of Figure 4.1a. In this case the surgery procedure
does not change orientability and just “straightens” the kink.

4.2.3. Split

In this situation we split off a circle from a line, and thus the surgery procedure gives 0.
Figure 4.1b shows this in detail.

4.2.4. Reconnect

The last case is that none of the endpoints of the surgery are connected with one another
as in Figure 4.1c. In this situation we only reconnect three lines.

If all three lines are propagating, then the two right endpoints (as well as the two left
endpoints) end either both on the top or both on the bottom. If these endpoints lie on
different sides of 0, the surgery procedure is nonzero and produces two non-propagating
lines.

In all other cases, we claim that the surgery procedure will produce 0. If all three lines
are propagating, but some right (or left) endpoints do not lie on the same side of 0,
then the result is not orientable, and thus 0. Now suppose that there is at least one
non-propagating line. We may assume without loss of generality that it corresponds
to the endpoints a¢ and b and without loss of generality these end on the top. As our
diagram is orientable, we know that a and b lie on the same side of 0. Thus, (if the result
is also orientable) d has to end on the bottom. Furthermore, ¢ and f cannot both end on
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4.2. Definition of K

the top and e, f and ¢ cannot all end on the bottom by the same argument as for a, b
and d. Hence, a, b and ¢ end on the top and d, e and f on the bottom. Thus, we have
two non-propagating lines, one associated to the cap and one to the cup.

Then e and f have to be at positions —k — % and k — % where k denotes the number of
cups as the diagram is orientable (see also Definition 4.6). On the other hand observe
that a and b have to be at positions —k — % and k + % But this can only be achieved if
there are more cups than caps to the left of this surgery procedure, which means that
there has to be a non-propagating line ending at the top that is not nested with the one
coming from the cup, thus this is not orientable.

Theorem 4.11. The multiplication on K is well-defined and associative.

Proof. That it is well-defined follows from Theorem 4.17 by horizontal stacking of surgery
procedures and associativity by vertical stacking. O

4.2.5. Properties of K

Definition 4.12. For a decreasing sequence A = (\; > --- > \;,) of integers let ey = AN

Lemma 4.13. The following hold true.
ey v = 5)\I/AE AU - €y = 61/,uAﬁ

Proof. We only prove the first equation. If v £ X the statement is clear by definition of
the multiplication. Otherwise, as ey = A\, every surgery procedure is given locally by

F~U !
which clearly does not change orientability. This means that any surgery procedure gives
a non-zero result, and thus we obtain Az in the end. O

Corollary 4.14. The algebra K is a locally unital locally finite dimensional algebra with
K= @)\,MEA exKey,.

Proof. By Lemma 4.13 we know that the set of all ey form a set of mutually orthogonal
idempotents and the direct sum decomposition is then immediate from Lemma 4.2. It is
locally finite dimensional as eyKe,, is non-zero if and only if Az is orientable in which
case it gives a basis. O

Definition 4.15. For each A € A we have a one dimensional irreducible module L())
with action given by

T = v if uv = ey,
- 0 otherwise.

Each of these has a locally finite dimensional projective cover denoted by P()\) = Key.
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4. The Khovanov algebra of type P

4.3. Proof of associativity

In order to show that K is an associative algebra, we will look at a slightly more general
situation. We consider multiple circle diagrams stacked over one another, i.e. we take
a sequence v, ...V, such that ;717 is orientable for all ¢. Drawing all these beneath
each other, as for the multiplication procedure, we get a big orientable diagram. We will
prove that any two surgery procedures commute with each other.

Before we prove this, we will first analyze, when a surgery procedure gives 0.

Lemma 4.16. A surgery procedure gives 0 if and only if we are in one of the following
two situations (up to rotational symmetry):

In the second picture the two rays end on the same side of 0, but they may also end on
the bottom.

Proof. One easily checks that these are all the possible cases. O

Theorem 4.17. Given two potential surgeries D and D', we have D o D' = D’ o D.

Proof. Assume we are given two potential surgeries. If both surgeries produce in the
first step orientable diagrams, the surgery procedures commute. So we may assume that
one of them produces a non-orientable diagram. Lemma 4.16 describes how this has
to look locally. But now note that if the dashed cup does not interact with the other
surgery procedure, then the overall result will be zero, independent of the order. So we
may assume that the dashed cup does interact with the other surgery. We will make a
case distinction on how this cup connects to the other surgery. By rotating the bottom
surgery, we can reduce to three different main cases as follows:

A A e

| ~ \
~
| N \

) V )

A A A
We make a further case distinction on how the other end of the dashed cup connects to
the other surgery. As these need to be connected in the total picture, we are left with
three more cases for each main case (see Figure 4.2 for this). Observe that in each of

these cases the rays at the top may also end on the bottom or may be joined to form a
cap. If they are not joined to a cap, then the two endpoints lie on the same side of 0.

(1-3a) In these three cases note that after performing both surgeries the result is
not orientable as we have either a circle or a non-propagating line with two
endpoints at the same side of 0.
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4.3. Proof of associativity

\
1

| 1 10 i)
CONENS (20) L CONIEAS
.70 2 A
| U -
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(32) 1 (3b) 1 ) (30
) RO o
N AN Um

Figure 4.2.: First case distinction in the proof of associativity

(1b) By assumption the dashed lines have to be connected, so it has to look like the
following:

But in this case, the bottom surgery procedure only “straightens” the cup-cap
at the bottom and this commutes with the other surgery procedure.

(1-2c) These diagrams are not orientable as the components inside the dashed lines
will either give circle or non-propagating lines. As these non-propagating lines
would have both endpoints between the dashed ones, they would lie on the
same side of 0 by assumption on the dashed lines.

45



4. The Khovanov algebra of type P

(2b)

(3b)

(3¢)

46

XX

N
/

X

Figure 4.3.: Subdivision of the case (3c) in the proof of associativity

Observe that by our assumption the two dashed lines have to be connected. For
this we have two possibilities.

In the left diagram, the second surgery procedure produces 0 as well by
Lemma 4.16, so they commute. For the second picture note that the second
surgery procedure “straightens” the cup-cap at the bottom, which commutes
with the other surgery procedure.

Look at the left endpoint of the bottom cap. It cannot be a ray or form a
circle as then the diagram would not be orientable, so we are in the following
situation.

Similarly, to before, the bottom surgery only “straightens” the cup-cap at the
bottom, and thus commutes with the other surgery.

This is the hardest case of all. In Figure 4.3 we make another case distinction
depending on how the bottom right vertex is connected to the rest.

(A) This diagram is not orientable.



4.3. Proof of associativity

Y e Y U
o O (1) % (1) % vy <7
o 5 A O

Figure 4.4.: Subdivision of case (f) in the proof of associativity

(B) The bottom surgery procedure gives 0 as well by Lemma 4.16.
(C) Again both surgery procedures give 0, so they commute.

(D) We distinguish two cases

The left picture is not orientable, whereas the right one gives 0 after
applying both.

(E) The bottom surgery “straightens” only the cup-cap, so it commutes with
the other one.

(F) We have two different possibilities.

% i
A

In the left diagram, the bottom surgery only “straightens” the cup-cap, and
thus commutes with the other one. For the right diagram, we distinguish
how the right endpoint of the upper cap is connected. All possibilities for
this are listed in Figure 4.4.

(I) The diagram is not orientable.

(IT) The upper surgery produces two circles, where one does not interact
with the other one, so the overall product is 0 and hence they commute.

(III) The diagram is not orientable by assumption on the dashed lines.
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4. The Khovanov algebra of type P

(IV) In this case we claim that not all the following three pictures are

orientable.
ql?cde c‘zl‘)cde ql?cde
A LA L
b A RN
f9h f9h f9h

If we can show this claim, this means that applying the second surgery
procedure before the first will also give 0, thus they commute.

First note that not all of {b,c,d,e} can end on the same side, as
then one of the pictures would not be orientable (the non-propagating
lines would not all wrap around the same spot). Similarly, not all of
{a, f,g,h} can end on the same side. Therefore, e and h end on the
same side.

Now look at the middle picture. The two loose ends in the middle
have to be now connected as otherwise e and h would contribute to
two non-propagating lines next to one another, which is not orientable.

So {e,g,h} (resp. {d,e, h}) cannot end on the same side for the same
reasons as before. But this means that {a,b,c, f} end on the same
side, which produces two non-propagating lines in the middle picture
that are not nested. Thus, there always exists a non-orientable picture
and the overall surgery procedure result is 0. O

4.4. Geometric bimodules

Definition 4.18. A crossingless matching is a diagram t given by drawing a cap diagram
c underneath a cup diagram d and connecting the rays from c to d via an order preserving
bijection such that outside some finite strip we only have straight vertical rays. For i € Z
we can consider special crossingless matchings t* given as

A generalized crossingless matching t is a sequence ty, - - - t1 of crossingless matchings.
Given a cup diagram a and a cap diagram b we can form a generalized circle diagram
atb. This is called orientable if it contains neither a circle nor a non-propagating such
that both endpoints lie on the same side of 0.
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4.4. Geometric bimodules

Definition 4.19. Given a generalized crossingless matching ¢ = ¢ - - - t; we define Gy to
be the vector space with basis all orientable generalized circle diagrams Atz.

Given another generalized crossingless matching w = u;---u; we define ut to be the
generalized crossingless matching u; - - - w1ty - - - t1. We define a map m: éu ® ét — éut
by defining the product (aub)(ctd) of two basis vectors as follows. If ¢* # b, we declare
(aub)(ctd) = 0. Otherwise, we draw (aub) underneath (ctd) to create a new diagram.
We now can use the surgery procedures two remove the middle section c¢*c to obtain a
vector in Gut.

Given a third generalized crossingless matching s, the following diagram commutes (by
Theorem 4.17).

éu®ét®és M éu®ét5
(41) lm@l J{m

Remark 4.20. Using (4.1) with s and w being the empty generalized crossingless
matchings, we endow G with the structure of a K-K-bimodule.

Definition 4.21. The reduction red(t) of a generalized crossingless matching ¢ is the
unique crossingless matching (i.e. only one layer) that is topologically equivalent. Similarly,
given a crossingless matching ¢ and a cup diagram a (resp. cap diagram b) we define the
lower reduction low(at) of at (resp. upper reduction upp(tb) of tb) to be the unique cup
(resp. cap) diagram that is topologically equivalent to at (resp. tb).

The following is clear from the definitions.

Corollary 4.22. There exists a K-K-bimodule isomorphism Gy — Gred(t) via sending
Atf to Ared(t)f.

Remark 4.23. Corollary 4.22 allows us to reduce to crossingless matchings. In the
following, we will consider everything only for the non-generalized version.

Lemma 4.24. The map m: é’u@)ét — éut descends to an isomorphism m : @u QK Gt —
Gut.

Proof. The map m induces a map m: Gu @k Gy — Gt by the associativity (4.1). Note
that the left-hand side is generated by elements of the form aub ® ctd where a and ¢
are cup diagrams and b and d cap diagrams. By definition of the multiplication and
reduction we have au(low(au))* - low(au)b = aub. But this means that the domain of ™
is in fact generated by

(4.2) au(low au)* @ low(au)td.

Again by the definition of the multiplication, m(au(low au)* ® low(au)td) = autd. Thus,
the generating set (4.2) maps to a basis of G;. Hence, m is an isomorphism. O
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4. The Khovanov algebra of type P

Definition 4.25. Given a crossingless matching ¢, we define 6, to be the endofunctor
of K-mod given by tensoring with the K-K-bimodule G; over K. If ¢t = t we abbreviate
91 = eti.

One should think of §; as equivalents of the labelled strands in SR%Y®.

Proposition 4.26. We have

P 0 if t7 is not orientable,
p(u) otherwise, where U = upp(t7).

Proof. We clearly have étfj(ﬁ) = C?tey. But now if 7 is not orientable, then the right-
hand side is 0 by definition. Otherwise, we denote by v its upper reduction. Then we
have a linear map

f:0,P(H) = Pv), A7y~ AD.

This is an isomorphism as the process of upper reduction does not change orientability.
Furthermore, it is K-linear because the multiplication procedure depends only topologically
on the diagram. O

Corollary 4.27. The K-K-bimodule Gy is sweet, i.e. projective as a right and as a left
K-module.

Proof. Tt is projective as left K-module by Proposition 4.26 as Gy = Darea Giey. For
projectivity as right K-module use the right-hand analog of Proposition 4.26. O

Our next goal is to prove an adjunction theorem between the 6.

Definition 4.28. Given a crossingless matching ¢ we define ! to be the horizontal mirror
image of ¢ shifted one to the right.
Furthermore, we define ¢: G+ ® Gy — K on basis vectors as

ST ® V'E7) = 5,00 (Aupp(#1D) - (low(/1)70).

Lemma 4.29. The map ¢ is a homogeneous K-K-bimodule homomorphism that is also
K-balanced.

Proof. We can also realize ¢ as the following composition

where w is given by applying the surgery procedures to eliminate the middle section
red(t't). This is possible because t was defined as the horizontal mirror image shifted
one to the right.

Note that this composition is a bimodule map as each of the composites is by (4.1),
Corollary 4.22 and Theorem 4.17. Furthermore, m is balanced by (4.1), and thus ¢ is
K-balanced as well. O
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4.4. Geometric bimodules

Theorem 4.30. There is a homogeneous K-K-bimodule isomorphism.
QZA): ét — HOmK(éti, K)
given by sending y € Gy to quS(y) éti - Kz olx®y).

Proof. First, note that this is well-defined as ¢(__ ® y) is a left K-module homomorphism
by Lemma 4.29.

To show that this is a K-K-bimodule homomorphism let u € K, x € G+ and y € G;. Then
we have

(up(y)) (@) = d(y)(zu) = d(ru @ y) = ¢(z @ uy) = (H(uy))(z),
(@(y)u)(x) = (S(y)(@))u = ¢(z @ y)u = $(z © yu) = ($(yu))(x),

and thus ¢(uy) = ug(y) and ¢(yu) = ¢(y)u.
It remains to show that ¢ is a vector space isomorphism. For this it suffices to show that

the restriction
(25: e,\Gt — HomK(GtieA, K)

is an isomorphism. Now as ¢+ is the mirror image and shifted one to the right with respect
to t we see that ey Gy # 0 if and only if @t¢€ A 7 0 (recall that cap diagrams arise by shifting
the horizontal mirror image of cup diagrams one to the right). Thus, we may assume that
exGy # 0. In this case we have by the mirrored version of Proposition 6.26 exGy = e, K and
G,rex = Ke,, for some v (which is the same for both). Under this isomorphism ¢ translates
to multiplication. Thus, we need to show that e, K — Homg(Ke,,K),y — (z + zy) is an
isomorphism, but this is obvious. ]

Corollary 4.31. We have an adjunction (éti, ét) In particular, éi_;,_l is left adjoint to 0;.

Proof. We have the usual adjunction ((A}ti QK _, HomK(@ti,_)). As Gti is projective as a
left K-module by Corollary 4.27, there exists a natural isomorphism Homg (G:, K)®@x M —
HomK(éti, M). Precomposing this with the isomorphism from Theorem 4.30 gives the
desired adjunction. O
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5. Relation to SR“°

In this section, we will relate SR with K-mod. Namely, the object ¢ of SR will correspond
to the endofunctor §; of K. We will then define natural transformation between the 6;
that satisfy the same relations as the relations in SR. In particular, we will show that
the SR-module category generated by ( ) € K-mod is 1som0rphlc to §RYC.

We begin by defining natural transformations n;: 6’l+10 — K, ¢: K = HZ 10 and
Y g ézéj — éjéz that satisfy the same relations as sR. This will be the first step in
relating K with SR%°.

Instead of directly defining the natural transformations, we first define bimodule homo-
morphisms 9;: Gy — K, &: K = Gio1 and zp,j Gyiyi = Gyiyi. Using Lemma 4.24,
this induces then the natural transformations 7;, €; and ¥ ;.

Definition 5.1. We set 1,2@] =0 for j =4, 1 — 1. Then, we define 7;, & and 1,2@3 for j # 1,
1+ 1 to be the linear maps

ﬁi: Gti+1ti — K €:K— Gti—lti
pitlyip ab if ab orient., b s at™ ' if at’~'t'b orient.,
0  otherwise, otherwise,
1/)1‘,]': étitj — étjti lzmq_l: Gtiti+1 — Gti+1ti
o - iy at't™t1p  if at't*t1b orient.,
at't’b — at’t'b at't™ b — _
otherwise.
See also Figure 5.1 to see a pictorial description of these maps.
N
E m N
r
;i Gti+1ti — K 1/% i+1- Gtzt1+1 — Gtz+1tz
N
el AU-Ur
a NS AN
€:K— Gti—lti 1/11'7]‘: Gtitj — thti

Figure 5.1.: Pictorial description of the maps 7};, €; and 1[)1]
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Remark 5.2. Observe that the order of the matchings ¢’ is reversed in comparison to
the strands in SR, as we tensor from the left and add strands from the right.

Lemma 5.3. The maps from Definition 5.1 are K-K-bimodule homomorphisms.

Proof. For zﬂw with j # ¢ 4+ 1 this is clear from the definition and Figure 5.1 as it is
either 0 or does not change anything regarding the orientability. Regarding 7);, €; and
Qﬁi,iﬂ, we remark that we can interpret all these maps as a rotated surgery procedure, see
Figure 5.2 for details. But using Theorem 4.17 we see that these are actually bimodule

homomorphism. O
123 123 123 123
J N
S —
M M

654 65 4 654 6514
Normal surgery procedure i : éti+lti K
612 612 561 561
N N\ N\
— —

M M M
543 543 432 432
wi,i—&-l: Gtiti+1 — Gti+lti €Z': K— Gti—lti

Figure 5.2.: How to interpret 7;, €; and 1[1@-71-“ as rotated surgery procedures

Definition 5.4. A stretched cup diagram is a sequence at, where «a is a cup diagram
and t = t---t1 is a generalized crossingless matching such that ¢; = t% are special
crossingless matchings for all j. A stretched cap diagram t'a’ is the horizontal mirror
image of a stretched cup diagram at shifted one to the right. A stretched circle diagram
au l t' is a stretched cup diagram awu glued underneath a stretched cap diagram t'v'.
A stretched circle diagram aul t'b is called orientable if it contains no circle and no
non-propagating line such that both endpoints are on the same side of 0.

Definition 5.5. Denote by 7 the unique cap diagram that has no caps.
Let F be the full subcategory of K-mod with objects 6;, ...60;, P(z). We can consider this
category also as a locally finite dimensional locally unital algebra

(5.1) A= P Hom (0; P(7), 0, P (7))
iezZk jez!

By Lemma 4.24 and Corollary 4.31 the definition of 0; respectively Gy, the algebra A
has a basis given by all orientable stretched circle diagrams of the form ru ! t'z, where
u and t are generalized crossingless matchings build from the special ones. And the
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5. Relation to SR%°¢

composition tu ¥t - 1r 1 8T is given by 0 if ¢ # 7, and otherwise we draw (tu ! upp(¢'7)
underneath low(ct) ¢ 'z and apply the surgery procedure to eliminate the middle section
upp(t'7) low(wt).

All the definitions above culminate in the following theorem.

Theorem 5.6. There is an isomorphism of §R-module categories ®: SRY® — F, given
by

A

a b a

a —1
+ — 0 \\“/ — €q a/>+l g >< = P g
a a b

The subsequent sections will prove that this is functor is well-defined and faithful.
Assuming these results, we can prove the theorem.

Proof. The functor is well-defined by Proposition 5.10 and faithful by Lemma 5.12. On
the other hand, Proposition 5.11 and the adjunction (91, 671-_1) from Corollary 4.31 imply
dimggeye (4, ) = dimr(6; P(7), éjﬁ(z)) Furthermore, ® is a bijection on objects given by
i+ 0;P(7), so ® is an isomorphism of categories. O

5.1. Well-definedness of ¢

Lemma 5.7. The functor ® respects the relations (sR-1), (8R-2), (8R-4), (sR-5), (sR-6)
and (3.6).

Proof. « By definition of 6;, we see that éiP(Z) = (e, has a basis given by all orientable
generalized circle diagrams at'z. But by assumption 7 has no caps, so this is only
orientable if ¢ = 0, thus (3.6) holds.

o Equation (sR-1) trivially holds as any dot is mapped to 0.

o For (8R-2), we have to show that 0,00, =0 and €a+1 ©1q = 0. Note that the former
implies the latter by Theorem 6.29. We easily observe that G,i;; = 0 as it contains a
circle and so no generalized circle diagram of this form is orientable, hence 6, 0 8, = 0.

o For (8R-4) observe that éana, naéa—l-l? 0,6, and €,0,_1 all look as follows (up to vertical
mirror image).
N\

N

A

~

Thus, these morphisms do not change orientability, and thus are isomorphisms. Equa-
tion (sR-4) follows.
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5.1. Well-definedness of ®

o Next we want to show (sR-5). Note that the left-hand side is locally given by

abe abec abec

N N
— —
MM

def def def

The only possibility such that this composition is not 0 is if we can find a diagram
such that all of these local changes preserve its orientability.

For this note that none of these six endpoints can be connected to another one, as there
exists a picture that creates a circle (also observe that e.g. a cannot be connected to e
as there is nothing left for d). So we may assume that there are only rays connected
to every endpoint. If the first two pictures are orientable, then neither all of a, b
and ¢ (resp. d, e and f) end on the top nor all three on the bottom as then one of
these pictures has a non-propagating line, where both ends lie on the same side of 0.
Orientability of the first and third picture implies that not all of a, b and d (resp. ¢, e
and f) can end on the same half. Similarly, considering the second and third picture
not all of a, d and e (resp. b, ¢ and f) can end on the same half. This means that if
all three pictures are orientable, no three consecutive (considering the letters as lying
on a circle) rays can end on the same half. But we have six rays, and thus necessarily
three consecutive ones have to end on the same half. This is a contradiction, and thus
(sR-5) holds.

o Finally, for (sR-6) observe that if ¢ and j are distant ¥; ; is by definition an isomorphism
and its inverse is given by ¥;;, the other cases hold by definition. O

Lemma 5.8. The functor ® respects also (sR-3).

Proof. Both sides of (sR-3) are mapped to 0 if a € {b,b+ 1} by definition of ®. Next
assume that @ # b—1,b+2. In this case the left-hand side of (sR-3) in terms of geometric

bimodules looks like
Jnl.oU
- m E ﬂ & =2
M M

whereas the right-hand side is given by

AUl

and it is easy to see that the first step is an isomorphism and does not influence
orientability for the second.

)
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5. Relation to SR%°¢

Now assume that a = b — 1 (the case a = b+ 2 is handled similarly). Now the situation

UU / SN
1K ﬂ ya

Now note that the bottom left map is an isomorphism. This means that this diagram
cannot commute only if the top left map sends something to zero, which is nonzero under
the bottom composition. By Lemma 4.16 and Figure 5.2 this means that we are in one
of the following two cases

U N

NU 1=

where the dotted lines are either joined or end on the same side of 0. Now observe that
the first case produces a not orientable diagram in the end. Furthermore, for the second
case at least one of the dotted lines has to connect to the bottom right cap, as the picture
is otherwise not orientable. If the right dotted line connects to this cap, then we create a
circle in the end, so it is left to consider the following case.

N

15

But as both dotted endpoints either join or lie on the same side of 0, this means that the
resulting diagram in the end will also not be orientable. O

Lemma 5.9. The functor ® respects also (S8R-T7).

Proof. We split this proof into two parts. First assume that (a,b,c) = (a,a +1,a). We
have 0, 00, = 0 (Gaga = 0 as it contains a circle), and thus the left-hand side of (SR-7)
is 0. The argument for the rlght hand side is similar to checking (sR-4). Recall from the
proof of Lemma 5.7, that Hana, 77a9a+1, 0 w€q and ea9a 1 are isomorphisms. With this at
hand, it is easy to check that the right-hand side of (§R-7) is also 0.
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5.1. Well-definedness of ®

In the remaining cases, the RHS of (§R-7) is 0, so we have to show that the terms on the
LHS amount to 0. If any of the pairs (a,b), (b,c) or (a,c) is of the form (i,) or (i,i+ 1),
then the left-hand side of (S8R-7) is 0 (as the corresponding crossings are mapped to
0). In the remaining case suppose first that |a —b| > 1 and |a — ¢| > 1. This means in
terms of generalized crossingless matchings that the cup cap pair corresponding to a does
not interact with b and ¢. So swapping a with b (resp. ¢) is just given by changing the
order of the cup cap pairs, which does not change anything regarding the orientability.
Therefore, the left-hand side of (SR-7) is given by first swapping b and ¢ and then moving
a to the top, whereas the right-hand side first moves a to the top and then swapping b
and c. Because a is distant to b and ¢ both give the same result.

A similar argumentation proves the cases, where b (resp. ¢) is distant to a and ¢ (resp. a
and b).

So the only remaining case is that ¢ = b+ 1 = a + 2. In this case the situation looks as

follows.
N\
H
w / q M
U/
(M

f\ M

These two compositions do not agree only if there is an orientable generalized circle
diagram that is mapped to 0 under one composition and something nonzero via the other
one. Now the two middle arrows are isomorphisms, thus this situation can only occur if
one of the first maps sends such a generalized circle diagram to 0. We may assume that
f maps such a generalized circle diagram to 0 as the other case is obtained by rotational
Symimetry.

Using Figure 5.2 and Lemma 4.16 we are in one of the following two cases

—

N
N

~
~

and either the two dotted lines are connected or these are both rays ending on the same
side of 0.

In the first case note that the diagram in the end is not orientable. Thus, either
composition produces 0.

So we are left to look at the second case. We make a case distinction on how the top
right endpoint of the cup connects to the rest of the diagram. We have essentially four
different cases, which are presented in Figure 5.3.
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5. Relation to SR%°¢

N N

R vl { =~ |

| 1 } | U/
! w e l

ARNAY a . A

\

~ -

Figure 5.3.: Case distinction for the proof of the braid relation

(i) This diagram is not orientable by assumption on the dotted lines.

(ii) The small dashed cup forms a circle in the resulting diagram, thus both compositions
have to be 0.

(iii) This diagram is not orientable as the two dotted lines will necessarily be connected.

(iv) In this case we make a case distinction to where the top left endpoint connects.
We distinguish another three cases.

!
|
|
|
!
|
|
|

K M A

(a) This diagram is not orientable.

(b) In this case the end result would look like

SN

i
|
!
|
|
|
!
|

which is not orientable by the assumption on the dotted lines.

(c) Note that any configuration of cups below this diagram produce a non-
orientable diagram along the bottom composition. So in these cases, the
compositions would both give 0. And now we distinguish whether the dotted
lines are connected or not. First assume that they are connected.

I
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5.2. The functor ® is faithful

And now we have to show that not all of these picture can be orientable.
Observe that for every two consecutive lines there is one diagram, where these
are joined by a line. Assume there exists a configuration such that all four
diagrams are orientable. There has to be a half where at least three strands
end. But this means that two of these strands have to lie on the same side of 0.
So there is a diagram that has a non-propagating line, where both endpoints
lie on the same side of 0, in contradiction to orientability.

The last case is that we only have rays at the top and bottom.

RN

Again we have to show that there is no posmble Conﬁguratlon that all these
pictures are orientable. Similar to before, there cannot be three of the bottom
strands ending on the same half. Also, the four top rays cannot end on the
same half using the same reasoning. But this means that the left two bottom
rays end for example at the bottom and the right two bottom ones at the
top. Also observe that there is a diagram such that each of these pairs are
connected. Furthermore, there is a diagram such that the left two (resp. right
two) top strands are connected. This means that the bottom pairs cannot be
joined by two more rays and so there cannot be a configuration such that all
four diagrams are orientable. So both compositions give 0. O

Proposition 5.10. The functor ® is a well-defined morphism of SR-module categories.

Proof. This is Lemmas 5.7-5.9. O

5.2. The functor @ is faithful

In order to show that ® is faithful, we need the following technical result.

Proposition 5.11. The sequence (i1,...,i) is a dual residue sequence of an up-down
tableau of shape () if and only if tt* - --t"'7 is an orientable generalized circle diagram.

Proof. Let (i1, ...,1x) be a dual residue sequence of an up-down tableau of shape ). First
assume that it does not contain a subsequence (a,a =+ 1,a) (i.e. a consecutive subsequence
up to swapping entries of difference > 1). Suppose furthermore that ¢t - - -7 is not
orientable. This means that it either has a circle or a non-propagating line ending on
both sides of 0. But as we assumed that we have no subsequence (a,a + 1,a) we do not
have a subpicture of the form (or its vertical mirror image)
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5. Relation to SR%°¢

so a circle would consist of only one cup and cap and the non-propagating line only of
one cup or cap. Now the circle would give a subsequence (a,a) which cannot happen for
residue sequences of up-down tableaux. For the non-propagating line we can move the
entry corresponding to the cup (resp. cap) to the front (resp. back) but as both endpoints
lie on the same side of 0 the sequence then either does not start with 0 or does not end
with —1. But every dual residue sequence of an up-down tableau of shape () has to start
with 0 and end with —1. Therefore, tt% - - -t"17 is orientable.

Now we do an induction on the number of subsequences of the form (a,a £+ 1,a). The
paragraph before established the base case. Now we will take such a residue sequence
(i1,...,1x) with a subsequence (a,a £ 1,a). We will show that after replacing (a,a £+ 1, a)
by (a) we are still left with a residue sequence of an up-down tableau of shape (). Note
that this reduction process (up to vertical mirror image) looks like

U/

~

So this does not change orientability of the associated stacked circle diagram. Therefore,
once we proved that the reduced sequence is a residue sequence of () we know by induction
that the associated stacked circle diagram is orientable and then reversing the reduction
process there gives still an orientable diagram. Hence, it suffices to show that replacing
a subsequence of the form (a,a + 1,a) by (a) gives the dual residue sequence of an
up-tableau of shape (). The following are the possibilities how a subsequence (a,a — 1, a)
can look in terms of up-down tableau.

a,
= a|=

| [ ]

a lat1| S a = 4 a

1=

We easily see that in each case we have that a — 1 removes a box that was either added
by the a before or is added again by the a afterward. Thus, replacing this sequence by a
we still have a residue sequence of an up-down tableau of shape (). Given a subsequence
(a,a + 1,a) we have the following possibilities.

‘ ‘ a, ‘a—}—l a, ‘
— a — a la+1| — a
‘ a, ‘ ‘ a+l ‘ a,
a+1 — — a+1 —
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5.2. The functor ® is faithful

Similar to before a + 1 adds a box which is removed by one of the a’s. Thus, the reduced
sequence is also a dual residue sequence of an up-down tableau of shape (). This proves
then that such a residue sequence gives rise to an oriented stacked circle diagram.

Now assume that ct? ---t"17 is orientable. We will prove that any diagram without
subpictures of the form

or its vertical mirror image gives rise to a dual residue sequence of shape (). Furthermore,
we will prove that given a dual residue sequence of an up-down tableau, replacing any
entry (a) by (a,a %+ 1,a) still gives a dual residue sequence of the same shape.

Now given any diagram, we can use the reduction process from the second paragraph
to obtain a picture without these subpictures. This is then a dual residue sequence by
our first claim, and then we can reverse the reduction process and add the sequences
(a,a £ 1,a) again and by the second claim this stays in the desired form.

We will first prove the second claim for (a,a — 1,a). Suppose we are given such a
residue sequence (i1,...,4x) and let i; = a be some entry. If there exists an entry a that
corresponds to adding a box that is not removed until step | we can remove this with
a — 1 and add it again with a.

| | [ ]

a, a, a—1 a,
— a ANNNAN — a — — a

If no such entry exists, this means that a removes a box of residue a + 1 in the first
column. But in this case we could also add this a and then remove the two boxes with
a—1 and a.

. o bl [ o
S s =S ]| S = 5]
B

Next we prove the second claim for (a,a + 1,a). Suppose we are given such a residue
sequence (i1, ...,1;) and let i = a be some entry. If after step [ there exists an addable
box of content a + 1, we can add this with a + 1 and remove this with a.

a, ‘ a, ‘ a+1 a, ‘
— ANNNN> — — —
a a a la+1 a

If there is no addable box of content a + 1, this means that a added a box and the
situation looks as follows.

| | | [ ] | |

a a+1
a+1 — a+1 ANNANNS a+1 — a+1 a+1!

1=
1=
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5. Relation to SR%°¢

Hence, we have proved the second claim.
It remains to prove that any orientable diagram ¢t - - - t"17 without subpictures of the
form

or its vertical mirror image gives rise to a dual residue sequence of an up-down tableau of
shape (. In this case we have the following properties of the integer sequence (i1, ... 1).

(i) If 4, = a > 0, then there exists ' < r with i,y = a — 1.
(ii) If 4, = a < 0, then there exists ' < r with i,y = a + 1.

(iii) If 4, = 4, = a for ' < r, then there exists v’ < [,I’ < r such that iy = a + 1 and
il/ =a-—1.

(iv) The first two properties hold for the sequence (i + 1,451 +1,...,41 + 1).

If the first two would not be satisfied we could create a non-propagating line ending at
the top with both endpoints on the same side of 0. The last one ensures the same for
non-propagating lines ending at the bottom (remember the shift by —1 for cup diagrams).
And the third condition prevents the existence of the subpictures from the top as well as
circles.

All these together imply that ¢ is the residue sequence of an (n+ 1) x n rectangle for which
it is easy to see that this can be interpreted as a residue sequence of an up-down tableau
of shape (). This is done by adding boxes to reach the partition (n,n —1,n—2,...1) and
then removing boxes until one ends up at (. O

Lemma 5.12. The functor ® is faithful.

Proof. The category SR has a basis given by W, where s and t are two up-down-
tableaux of the same shape. By adjunction and using that ® is compatible with this
adjunction, we can assume that s = () is the trivial up-down-tableaux. All these basis
vectors are build by applying KLR-cups (to distinguish them from the cups in K). Using
(3.2), we can get rid of the non-distant crossings that might be involved in the KLR~cups.
So Wy can be cut into a sequence of distant crossings and KLR-cups on neighbored
strands. In terms of the stretched circle diagram basis for A from (5.1) this means
that we start with the diagram ¢17 and successively apply the crossings and KLR-cups.
But in every step we reach a pair (), t'), where t' is an up-down-tableau of shape ().
By Proposition 5.11 this means that in every step we get an orientable stretched circle
diagram, and thus by definition of ¢; and ; ; the result is nonzero in every step. But
this means that Wy, is mapped to something nonzero and by adjunction this holds for all
basis vectors.

Using that the dimension of morphism spaces in SR“° is < 1 we conclude that ® is
faithful. O
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6.1. Definition of the algebra K,

Overall, we want to relate the algebra K with finite dimensional representations of p(n).
As K is Morita equivalent to §R%°, this algebra is a bit too big to be equivalent to
rep(p(n)). Therefore, we introduce a new algebra K,, that will turn out to satisfy our
purpose. This algebra is defined as a quotient of an idempotent truncation of K. The
general idea is to first pick those idempotents that correspond to projective representations
of p(n) and then quotient out by all the morphisms that vanish for the Lie superalgebra.
With Lemma 4.2 we can associate to every (p-shifted) dominant integral weight \ a
cup (or cap) diagram with n cups, and we obtain a bijection between dominant integral
weights and A,. Recall, that a weight is called typical if \; — A\;+1 > 1. This means for
the associated cup (or cap) diagram that there are no nested cups (or caps).

Definition 6.1. We then define eKe to be the idempotent truncation of K at A,,, i.e. at
all cup diagrams with n cups. The algebra eKe has a basis given by orientable circle
diagrams with exactly n cups and caps.

We denote by |, the subspace spanned by all orientable circle diagrams Az with n cups
and caps such that there exists at least one non-propagating line.

Lemma 6.2. The space |, is a two-sided ideal of K.

Proof. From Section 4.2.1 it is clear that every surgery procedure either preserves non-
propagating lines or produces 0. O

Lemma 6.3. Given f € eKe the following holds:
(6.1) f €l = f factors through an object v € Ip,41

Proof. It suffices to prove this statement for all circle diagrams Az € eKe that contain a
non-propagating line. As the number of cups in A is the same as the number of caps in 1
we see that we have as many non-propagating lines ending at the bottom as we have at
the top. So consider a non-propagating line L ending at the bottom, and we choose L
such that its left endpoint is minimal. This has one cap more than cup. Now let ) be the
cup diagram that is the same as A except that the left endpoint of the non-propagating
line and the next ray to its left form a cup instead of two rays (see also Figure 6.1). As L
was chosen minimal, \'7i is orientable and it has one more cup than caps. Furthermore,
AN is also orientable as the additional cap connects exactly the same endpoints as L in
M by construction. We claim that AN - Xt = Afi. As A and )\ agree up to one cup, we
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AL N AN

Figure 6.1.: Example of how )\ is constructed.

Figure 6.2.: Example for the first surgery procedure of AN - \'7i

see that A\ is very close to the idempotent ey. We may choose the surgery procedure
coming from the additional cup as the first one. But this surgery procedure produces
by definition of )’ the diagram A\ drawn underneath \fz which is clearly orientable (see
also Figure 6.2). After this we essentially compute ey - Az which gives clearly A\. As
N € I,41, this proves the lemma. O

Definition 6.4. We define the algebra K,, to be eKe/l,,.
When talking about orientable circle diagrams in the context of K,, we mean orientable
circle diagrams for K without any non-propagating lines.

Remark 6.5. For K,, the multiplication is given exactly as for K, but we declare the result
to be 0 whenever a non-propagating line appears. Thus, comparing with Section 4.2.1
we see that the split and reconnect produce 0 in every case and straightening produces
something non-zero.

Lemma 6.6. The algebra K,, is an essentially finite locally unital algebra K with idempo-
tents ey indexed by A € A,,.

Proof. By Corollary 4.14 K is a locally unital algebra, so clearly K,, is as well. It is
essentially finite dimensional, i.e. dimK,ey < 0o, as we do not allow non-propagating
lines. This means that if we fix a cap diagram \ and HX is orientable, then all the cups of
1 are close to the caps of . In particular every cup diagram of this form fits into a finite
strip where it is non-trivial, thus dim K,e) < co. And similarly also dim e)K,, < co. [

Definition 6.7. We define an anti-involution * on K,,, which is given by rotating a circle
diagram around %

From now on we will assume that any K,-module M is compatible with the locally unital
structure, i.e. M = @y cp, exM.
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6.2. A triangular basis and quasi-hereditaryness

In this section we explore the structure of K,, further. In particular, we will prove that
K, is an essentially finite based quasi-hereditary algebra in the sense of [BS24].

6.2.1. A and V orientations

We introduce orientations of circle diagrams that allow us to split our diagrams and
provide then some cellular like properties. These additional orientations behave very
much like orientations for the Khovanov algebras of type A respectively B, see [BS11a]
for type A and [ES16] for type B. The main difference is that for type P the orientations
are not needed to define the algebra structure, they are only important for the more
involved structure.

Definition 6.8. A A-orientation of a cap diagram X associates to each cap with endpoints
a<beZ+ % an integer k such that a < k < b and for every other cap with endpoints
a <k<lV wehaved <a<b<lb.

A V-orientation of a cup diagram X associates to each cup with endpoints a < b € Z + %
an integer k € {a — 3,b+ 3}.

Furthermore, we require for both orientations that the integers are pairwise distinct. We
draw this as n black dots at the corresponding positions in the cap (resp. cup) diagram.

Remark 6.9. One might argue that “orientation” is not a descriptive name for this.
However, we chose this wording (similar to surgery procedures) as these mimic the
orientations in [BS11b] and [ES16] for the Khovanov algebras of other types. In their
setup, these orientations provide filtrations of indecomposable projective modules via
standard and costandard modules. Our orientations play the exact same role as shown
in Corollary 6.18 below.

Remark 6.10. We can think of A- and V-orientations also as integral dominant weights
for p(n). If the set {k1 > --- > k,} describes the orientation we can associate the integral
dominant weight k1 —1>--- >k, — 1.

So cup diagrams are shifted by %, orientations by 1 and cap diagrams by %

Remark 6.11. Spelling out the definition of A-orientation, we associate to each cap a
point that lies below this cap but not below any other cap inside this cap. Informally
speaking, we move the point from the cap somewhere to the inside. Especially if we have
a small cap there is only one point we can associate.

So for a typical cap diagram there is only one A-orientation.

Remark 6.12. Instead of associating the integer a — % or b+ % to a cup, we could also
demand for an integer k such that k ¢ [a, b] and for another cup (here two neighbored
rays are also considered as a cup) with endpoints o’ < a < b <V we have @’ < k < ¥'.
This allows a priori for more possibilities for each cup diagram, but the interested reader
can easily verify that these two definitions are equivalent. This other definition resembles
more the definition of a A-orientation meaning that we can move every point to the
outside but not outside another cup, but the original one is more practical.
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6. Khovanov algebras for p(n)

Definition 6.13. An orientation of an orientable circle diagram Af is a A-orientation
of @ and a V-orientation A such that the sets of the associated integers agree. Using
Remark 6.10 we also write Avi if the orientation of Af is exactly v.

Lemma 6.14. FEvery orientable circle diagram admits a unique orientation.

Proof. We prove this via induction on the number k of caps, with k = 0 being trivial.
So let ¢ be an orientable circle diagram. If k& > 0, there exists a small cap, which is
connected in one of the following ways.

VAR AVERVAY

The dotted ray indicates that it is either a ray or a cup that contains the undotted cup.
Any orientation of ¢ necessarily needs to have a black dot at the unique position inside
this small cap, which needs to be associated to one of the undotted cups in the above
picture. In the first two cases we can remove the cup/cap pair and in the last we replace
the picture with a cup. In all three cases we obtain an orientable diagram with one cap
less. By induction, we now that this admits a unique orientation.

In the first two cases we directly get a unique orientation for ¢ by putting the cup/cap
pair back and adding a dot below the small cap. In the third case note that the new
cup that we added necessarily has a dot either to its left or right. If it is on the left, we
associate this with the left cup and the dot inside the small cap with the right cup and
vice versa. In any case, we can build a unique orientation out of the smaller diagram. [

6.2.2. A triangular basis
Definition 6.15. For A\, u € A,, we define the sets X(\, ) and Y (A, ) as

{A@m} if A is a valid A-orientation of 7,

0 otherwise,

XA\ p) = {

{Apm} if pis a valid V-orientation of ),

Y (A p) = {

0 otherwise.
We also set Y (A) = U,en, Y (1, A) and X(A) == U,ep, XA, 1)

Lemma 6.16. If v is a valid A-orientation of Ti and a valid V-orientaion of \, then Al
is orientable.

Proof. Suppose that Az is not orientable. Then it contains either a non-propagating line
ending at the bottom or a circle. In both cases look at the k caps of this component. As
v is a valid A-orientation of i we have k dots in between these k caps. But this means
that we also have k dots in k cups if we have a circle or k dots for £ — 1 cups bounded
by rays if we have a non-propagating line ending at the bottom. But in either case v is
not a valid V-orientation of \. O

66
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Theorem 6.17. The following properties hold.
(i) The products (yx) for (y,z) € Urea, Y (A) X X(N) form a basis of K.
(ii) For A\, u € Ay, the sets Y (u, \) and X (A, u) are empty unless p < .
(iii) We have that Y (A, \) = X (A, A) = {en} for each X € A,,.

Proof. For (ii) note that Y (i, \) (resp. X (A, i) is non-empty only if A is a V-orientation
(resp. A-orientation) of p (resp. 7). Observe that if one always puts the dot at the
rightmost position possible one obtains the V-orientation (resp. A-orientation) p. All the
others are obtained from this by moving single dots to the left, which makes the weight
bigger in our order from Definition 4.3.

For (iii) observe that X is clearly a A-orientation of A and a V-orientation of ).

Thus, it only remains to proof (i). We will prove that if A\vz is an orientation, then
Al = AV - vii. We clearly have \v € Y(\,v) and v € X(v,u) and together with
Lemma 6.14 this proves (i).

Denote by v}, the cup diagram, where we remove the k cups of A which are associated to
the k leftmost dots of v. Then let v be obtained from v, by adding k cups such that
their endpoints correspond to the k leftmost dots of . In other words vy = \ and v, = v.
By construction, we know that v is a V-orientation of v}. Therefore, v, is orientable by
Lemma 6.16. Furthermore, by construction we also have that vy is a V-orientation of A
and hence A7 is orientable as well.

Now we compute some surgery procedures for A7 - v fi. Refer for this also to Section 6.2.3,
where we describe explicitly how orientations behave under multiplication. When multi-
plying these diagrams we have n surgery procedures in total, n — k of them come from A
and the last k£ from v. By construction, we may choose to apply the n — k procedures
for A first. As stated before v is an orientation of AT and the n — k rightmost dots
in v all also appear in A. But this means that the first n — k surgery procedures are
similar to multiplying with e,, instead of A and each of these looks just as in the proof
of Lemma 4.13, i.e. all theses are straightenings. Thus, none of these change orientability
and after n — k steps we have reached an orientable diagram. But this diagram is exactly
the diagram that we obtain after n — k surgery procedures (for one specific order) of
the multiplication A\ - vi. Therefore, with the correct order (namely from right to left)
of surgery procedures we see that after applying each of them we receive an orientable
diagram. Thus, by definition of the multiplication we get Az = A\? - V. O

Corollary 6.18. The algebra K,, is an essentially finite based quasi-hereditary algebra in
the sense of [BS24].

Proof. This is immediate from Lemma 6.6 and Theorem 6.17. O

6.2.3. An alternative description of K, using orientations

Alternatively we can describe K, as the algebra with a basis given by all oriented circle
diagrams Avji. And the multiplication is given by exactly the same procedure we just
have to define what happens with the orientation during a surgery procedure.
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6. Khovanov algebras for p(n)

In order to describe this, we first define what such an orientation ought to be.

Definition 6.19. Suppose we are given a generalized stacked circle diagram Atf with
t =t ---t1. An orientation of this diagram is a sequence of weights vy, ..., 1 such that

(i) v is a V-orientation of A,
(ii) v is a A-orientation of 7,

(iii) and every of v;t;v;— is oriented (where we think of the orientations v; as dots), by
which we mean

e every cap has associated a unique dot of \; inside it that is not contained in
any other cap,

e every cup has associated a unique dot of \;_; directly to its left or right,

o and every other dot of \; that is not contained in any cap lies in a region
bounded by two rays. For each of these dots, there exists a unique dot of A\;_1
that is in the same region and not associated to a cup.

Remark 6.20. Associating the dots to cups and or caps is not part of the data. We
require only the existence of such a pairing.
In Figure 6.3 it is easy to see that there are many possibilities to define this pairing, but
we consider this to be only one orientation.

Example 6.21. Figure 6.3 provides examples for some orientations of crossingless
matchings.

Figure 6.3.: Examples of orientations of crossingless matchings

Lemma 6.22. Any orientable diagram of the form A\tfi admits a unique orientation (and
if it admits an orientation it is orientable).

Proof. This is proven by exactly the same argument as for Lemma 6.14. O

Observe that all diagrams that are obtained using surgery procedures are of the form
At for some crossingless matching t. We have now all the ingredients to describe how
orientations behave under surgeries. If the surgery we apply is a split or a reconnect
the result is 0, so we only have to look at straightening. Note that by definition of
orientation these are all the cases that appear. In every case we move the dots as depicted
in Figure 6.4 (the white dots may or may not be there)

This preserves the orientation as the resulting dots lie in the same region.

After every surgery procedure we have a trivial middle section and the two orientations
agree. Then we collapse the middle section and identify the two orientations.
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Figure 6.4.: How orientations behave under straightening

Example 6.23. Let n =3 and A = (1,0,-1), p=(4,3,—1) and v = (3,2, —1). We then
compute in Figure 6.5 v - pA including the orientations.

Figure 6.5.: Example of multiplication including orientations

6.3. Geometric bimodules and adjunction

This section adapts the definition of geometric bimodules for K to the subquotient K,,
and proving similar results as in Section 4.4.
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6.3.1. Definition

Definition 6.24. For a generalized crossingless matching ¢ we can define the K,,-K,,-
bimdoule Gy = eé’te /1y where |, is the vector subspace spanned by all generalized circle
diagrams with non-propagating lines. That this is indeed a two-sided submodule can be
verified analogously to Lemma 6.3.

We then define 6; as tensoring over K,, with Gy and if ¢t = t' we also write 6; for 0, and
call these 0; projective functors.

Remark 6.25. As in Corollary 4.22, we still have Gt = G q(¢), thus we restrict ourselves
from now on to crossingless matchings of one layer.

Observe that for these bimodules the appropriate replacement for (4.1) also holds. On
the other hand given a generalized crossingless matchlng t we define t* as the rotation of
t around 1 . And we can define a hnear map *: Gy — Gy, ath — b*t*a*, i.e. % is given by
rotating the total picture around 5. Then the map * is ant1—mult1phcat1ve in the sense
that

Gt ® GY PO(*®*) G * & Gt*

(6.2) lm lm

Gtu . ” Gu*t*
commutes, where P is the normal flip map.

6.3.2. Adjunction

The next proposition states the equivalent of Proposition 4.26 for K,.

Proposition 6.26. We have

6,P() = 0 if t7 is not orientable,
) P(w) otherwise, where 7 = upp(t7).

Proof. This is proven in the same way as Proposition 4.26 by noticing that now any
non-propagating line is killed by definition of 6;. O

Corollary 6.27. The K,-K,,-bimodule Gy is sweet, i.e. projective as a left and as a right
K, -module.

Proof. We have Gy = @, ¢y, Gren is projective as a left K,-module by Proposition 6.26.
Furthermore, using (6.2) we see that G, is projective as a right K,-module if and only if
Gy is projective as a left K,,-module which we know. O

Corollary 6.28. Projective functors are exact and preserve finitely generated modules.

Proof. Use Proposition 6.26 and Corollary 6.27. O
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Our next goal is to prove an adjunction theorem between the 6;.
Theorem 6.29. We have an adjunction (6,1,0). Thus, 0,11 is left adjoint to 0;.
Proof. This is proven exactly as Corollary 4.31. O

Theorem 6.30. Given any crossingless matching t and any finite dimensional K,,-module
M there exists a natural isomorphism 0,3 M® = (0, M)®, where t' is the vertical reflection
of t at 0. In particular, (6; M)® = 6_;M®.

Proof. Tt suffices to construct a natural isomorphism G, ®k, M® = (Gy ®k,, M)®. For
this we define the auxiliary map

5:GrOMP G, @M — C

by sending z ® f ® y @ m to f(¢(z* @ y)m). Observe that (¢7)* is the rotation around
% of the vertical mirror of ¢ at 0. But this is the same as the horizontal mirror image
shifted one to the right, i.e. (t')* = t}. Hence, we can apply ¢ in the definition of s, and
thus s is well-defined.
Now let u € K,,. Using the linearity properties from Lemma 4.29 (or its K,,-equivalent)
we have
s(zu @ f@y@m) = f(¢((zu)" @y)m) = f(u'¢(z" @ y)m) = s(zr @ uf @y @ m),
s(z®@ f@yuem) = f(o(z" @yu)m) = f(p(z" @ y)um) = s(z @ uf @ y ® um).

This means that s factors over
s: Gy @, M® ® Gy @k, M — C,
and thus we get an induced map
§: Gy ®k, M® — (Gy @k, M)®

by sending z ® f to (y®@ — s(z @ f @y @ m)).
It remains to show that § is K,,-linear and a vector space isomorphism.
For linearity let u € K,,.

(us(z @ f))(y @m) = 5(x @ f)(u'y @m) = f(¢(z* @ u y)m) = f(¢((ur)” @ y)m)
= 5(uz @ f)(y @ m)

where we used that ¢ is K,,-balanced.
In order to show the vector space isomorphism it suffices to restrict for each A € A, at

exGyr @k, M¥ — e\(Gy @k, M)?.

We can identify e)(G: @k, M)® with (e5G: ®k,, M)®. Now observe that e} is the same
as vertical mirroring ey at 0. Therefore, we have eyGy+ # 0 if and only if e}G; # 0, so
we may assume that these are non-zero.
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By Proposition 6.26 we have that e\G;+ = e,K,, for some v € A,, and for the same v we
also have e} G; = e;K,,.
Therefore, it suffices to (see also the proof of Theorem 4.30) show that

e M® = (egM)*,  enf = f(e)- ) (egm = f(eym))
is an isomorphism, but this is clear. O

Remark 6.31. One should observe that the index shift in the theorem (i.e. §; turning
into 6_; under the duality) agrees exactly with Lemma 3.9.

6.3.3. Action on special classes of modules

We already have proven in Proposition 6.26 how geometric bimodules act on projective
modules. In this section we are going to determine the effect of geometric bimodules on
standard, costandard and irreducible modules. But first, we use Corollary 6.18 to define
standard and costandard modules.

Definition 6.32. Let A € A,, and define K;L)‘ to be the quotient of K,, by the two-sided
ideal generated by all e,, for u ¢ A. We will also write z for the image of x € K,, in this
quotient. We then define the left K,-modules A, ()\) := KS*ey and V,(A) = (6,KZH)*
where (_)* denotes the usual vector space dual. The module A()\) has a basis given by
{(yey) | y € Y(\)}. Furthermore, the vectors (eyz) for x € X (\) give a basis for eyK>*
and its dual basis gives a basis for V().

Proposition 6.33. Let t be a crossingless matching and v € Ay,.
(i) The Ky-module 0;A(7) has a filtration
{0} =My Cc My C---CM,=0,A7)

such that M;/M;_1 = A(@;). In this case p, ..., pyr denote the elements of the set
{n € Ay, | pty oriented} ordered such that p1; > p; implies j < i.

(ii) The module is nonzero if and only if no cup of ty contains more dots than cups
and for every cup there has to be a dot directly to its left or right (these are chosen
pairwise distinct for all cups).

(iii) Assuming (ii), the module ;A(¥) is indecomposable with irreducible head L(\),
where X is given by the upper reduction of 7.

Proof. The module A(%) is the quotient of P(¥) by the subspace spanned by all oriented
circle diagrams vy with n # ~. Therefore, 6;A(5) = Gt ®k,, A(7) is obtained as the
quotient of G'ye, by the subspace spanned by all circle diagrams vputny with 7 # . Hence,
0, A(7%) has a basis given by the images of vuty¥y under the quotient map.
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Now let My = {0} and define inductively M; to be generated by M;_; and {vutvy7y |
for all oriented cup diagrams vu;}. Every M; is a K,-submodule by [BS24, Lemma 5.5].
Furthermore, the map

M; /My — A(),  vutyy — v

defines an isomorphism of K,-modules (in the definition of the map we mean the images
of the elements under the quotient maps rather than the elements themselves). This
proves (i).

For (ii) observe that if any of the mentioned conditions is not satisfied then there exists
no oriented diagram of the form pty. Thus, in this case 6;A(A) = 0. For the converse
observe that Aty is oriented with A defined as in (iii).

Now the functors 6, are exact by Corollary 4.27, and thus 6;A% is a quotient of 0; P(7).

Thus, it is either 0 or indecomposable with irreducible head L(\) (see Proposition 6.26).
O

Proposition 6.34. Let t be a crossingless matching and v € Ay,.
(i) The Ky-module 0,V (7) has a filtration
{0} =MyC My C---C M =60V

such that M;/M;_1 = NV (i;). In this case p, ...,y denote the elements of the set
{p € Ay | vttu oriented} ordered such that p; > p; implies j > i.

(ii) The module is nonzero if and only if each cap of v+ contains exactly as many dots
as caps and for every cap there cannot be a dot directly to its left and right.

(iii) Assuming (ii), the module 0,V () is indecomposable with irreducible socle L()),
where \ is given by the lower reduction of lti.

Proof. First we look at the right K,-modules V*(v) = €,K=* as in the notation of
Definition 6.32. With verbatim the same proof as Proposition 6.33 we can prove the
following.

(i) The right K,,-module V*(%) ®k,, G4+ has a filtration
{O}ZMQCMl c--- CMTIQtV(W)

such that M;/M;_1 = V*(f;). In this case p, ..., u, denote the elements of the
set {i € Ay, | yttu oriented} ordered such that p; > u; implies j < .

(ii) The module is nonzero if and only if each cap of vt¥ contains exactly as many dots
as caps and for every cap there cannot be a dot directly to its left and right.

(iii) Assuming (ii), the right module V*(¥) ®k,, Gy is indecomposable with irreducible
head L()), where ) is given by the lower reduction of lti.

73



6. Khovanov algebras for p(n)

Now using the proof and arguments as in the proof of Theorem 6.30, we can show that
for a right K,-module M we have

G ®k,, M* = (M K, Gti)*

where * denotes the usual vector space dual that turns the right module M into a left
module via (zf)(m) = f(mz).

By definition, we have that V(7)* = V*(7), and thus 6,V(v) = (V*(7) ®k, Gu)*.
Under this duality the filtration is turned upside down, and thus we have proven the
proposition. [

Theorem 6.35. Let t be a generalized crossingless matching and A € A,,. Then

(i) in the Grothendieck group of K, -mod

[0:L(V)] =D _[L(7)]

I

where we sum over all p such that
(i) t'7 contains neither circles nor non-propagating lines ending at the top,

(ii) X is the upper reduction of tifi.

(ii) 6;L(X\) is nonzero if and only if t\ has neither circles nor non-propagating lines
ending at the top and X is the upper reduction of tt\.

(iii) Under the assumptions from (i) define U to be the upper reduction of tA. In this
case 0, L(N\) is an indecomposable module with irreducible head L(7).

(iv) Under the assumptions from (ii) define ' to be the lower reduction of A\t*. In this
case 0;L(\) is an indecomposable module with irreducible socle L(V').

Proof. In order to prove (i) we compute (using the adjunction (,:, 6;) from Theorem 6.29)

(6.3) Homg,, (P(7), 0:L(\)) = Hom, (63 (1), L(X))

Now 6.+ P(fi) # 0 if and only if (i) is satisfied, in which case it is isomorphic to P(f)
where 3 denotes the upper reduction of t'7z. Thus, (6.3) is nonzero if and only if (i) and
(ii) are satisfied and in which case it is isomorphic to C(k).

For (ii) and (iii) note that 6;L()) is a quotient of §; P()\) as 6 is exact by Corollary 6.28.
But 6;P()\) is non-zero if and only if tA has neither circles nor non-propagating lines
ending at the top and in which case it is isomorphic to P(7) by Proposition 6.26. Thus,
0:L()\) is either zero or has irreducible head L(7). But L(7) can only appear if \ is
the upper reduction of t*%7 or equivalently t##). For (iv) note that L(X) is the socle of
V()). Again using Corollary 6.28 we see that 6;L()\) is a submodule of 6;V()), which is
indecomposable and has irreducible socle L(2/) (v as in the statement of the lemma).
So if §;L(\) # 0, it has the same socle. O
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7. Equivalence between K, ,-mod and

rep(p(n))

In this section we will prove the main equivalence between K,-mod and p(n)-mod. We
will achieve this by identifying K,, with the endomorphism ring of a projective generator
for p(n)-mod.

7.1. Generating projective objects using translation functors

Recall that we can associate to each P(\) a cap diagram with n caps via Lemma 4.2.
On the other hand P()\) also arises as the direct summand of some (shift of) V¢, and
thus as @;: e @ZC. Theorems 3.48 and 5.6 tell us that P(\) is actually the image of
0;, - - 0;,P(7) in F. But 6;, ---0;, P(1) is isomorphic to some P(%) for some cap diagram
7 by Proposition 4.26. This gives us two different ways to associate a cup diagram to an
integral dominant weight A and our next goal is to show that these two notions agree
(cf. (1.6)).

The next proposition will prove that the action of ©; on P(\) follows the same rule as
Proposition 4.26.

Proposition 7.1. Given a dominant integral weight X\, we have

0 if t'X contains a circle or a non-propagating line,

0;P()) = {

P(v) otherwise, where v denotes the upper reduction of t' ).

Proof. Tt suffices to match the combinatorics from Proposition 4.26 with the black dot
combinatorics from [BDEAT19] For this observe that our cap diagrams are obtained
from their weight diagrams by connecting pairs of ce by a cap and then shifting the total
diagram % to the right. The statement then follows from [BDEAT19, Lemma 7.2.1 +
Lemma 7.2.3]. O

Lemma 7.2. Given a residue sequence (i1, ...ix) of an up-tableau of shape &, then

©i...0;,C=Pn—-2,n—4,...,—n).
Proof. We prove this only for the residue sequence (0,1,...,n—2,—1,....n—4,...,—n+
2,n—1,n+1,...,—n+1). This is the residue sequence that first builds d,,_; and then

adds the missing boxes. All the other ones are obtained via swapping entries ¢ and j
with | — j| > 1, which gives isomorphic p(n)-modules.
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7. Equivalence between K,-mod and rep(p(n))

First look at the residue sequence j = (0,1,...,n—2,—1,....,n—4,...,—n+2) of d,_;.
We claim that ©,C = V(0,-1,...,—n+1) = L(n—1,n—3,...,—n+ 1). Using the
adjunction (©;41,©;) we find
[@jC : L(p)] = dim Homp(n) (P(w), @jC)
= dim Homy(,,y (€5 P(u), L(n — 1,n —2,...,0))

where j' = (—n+3,—n+5,-n+4,—n+7,—n+6,—n+5,...,n—1,...,1). This means
that we need to find all p such that ©;P(u) = P(n —1,n —2,...,0). Note that the
(reduction of the) generalized crossingless matching looks like:

VRV

The cap diagram associated to P(n — 1,n — 2,...,0) has right endpoints of caps at

positions {n + %, n— %, el %}, hence its cap diagram looks like

5
5—n

n—31

Thus, there exists only one p such that the upper reduction process returns the cap
diagram of (n — 1,n — 2,...,0). Namely, the cap diagram where the right endpoints

of caps are given by {n + %,n — %,...,—n + %} And this is associated with u =
(n—=1,n—=3,...,—n+1)s00;C=L(n—-1,n-3,...,—n+1)=V(n—-1,n-3,...,—n+1)
as claimed.

For the next step we prove that
O_ 110 _pny3-60,1Vin—1,n-3,...,—n+1)=P(n—-2,n—4,...,—n).

By [BDEAT19, Prop. 5.2.2] we know that

Op_1-2iV(n—2,n—4,....n—2i,n—2i—1,n—2i—3,...,—n+1)
has a quotient isomorphic to V(n—2,n—4,...,n—2i,n—2i—2,n—2i—3,...,—n+1).
But repeating this step we see that ©_,4110_,,13---0,1V(n—1,n—3,...,—n+1) has
a quotient isomorphic to V(n —2,n—4,...,—n)=L(n—-2,n—4,...,—n).
Furthermore, ©_,,110_,4+3...0,.1V(0,—1,...,—n + 1) is projective by Theorem 3.53.
Hence, it has to be isomorphic to P(n —2,n —4,...,—n). ]

Proposition 7.3. The diagram (1.6) from the introduction commutes.
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Proof. Observe that the cap diagram associated to the dominant integral weight (n —
2,n—4,...,—n) has n caps and the positions of their right endpoints are n — 2i + % for
1 <i < n. On the other hand to a residue sequence (i1, ...,i) of &, = (n,n—1,...,1)
we associate the cap diagram that is obtained by the upper reduction 7 of t% - . ¢117,
Now ti - .. t17 looks (topologically) like the following.

—n+% —3

o=
ol

|

I

1

—n+1 n—1%
Hence, the right endpoints of the caps in 7 are exactly at positions —n—i—%, —n—&—%, e n—%,
which agrees with the cup diagram associated to (n —2,n —4,...,—n). Therefore, for

this particular weight the two notions agree and using Proposition 7.1 we see that these
notions agree for all dominant integral weights. Hence, we obtain the commutativity of
(1.6) from the introduction. O

7.2. Dimension of homomorphism spaces

When proving the main theorem we will need some estimate on the dimensions of
homomorphism spaces to conclude that the ideal |, is big enough. The next theorem
provides this estimate. Note that we only state one inequality here as it suffices for the
proof of the main theorem but from the main theorem it is clear that it is actually an
equality.

Theorem 7.4. We have the following equality.
(7.1) dim Homy,(,,) (P(A), P(1)) > dim exKye,

Proof. Note that the right-hand side is given by circle diagrams with n cups and caps
that have no non-propagating line. First assume that p is very typical, i.e. u; > i1 + 4.
This means that the associated cap diagram contains no nested caps and all caps have
by assumption at least two rays between them. Therefore, any orientable circle diagram
necessarily looks locally like one of the following two

N

and as all caps are far apart from one another these local picture do not interact. This
gives rise to 2" valid orientable circle diagrams and the cup diagrams are associated to
all weights of the form (u; + 2e1,. .., un + 2¢y,) where (e1,...,e,) € {0,1}".

On the other hand by the proof of [BDEA™19, Proposition 8.1.1] we know that

(72) dim Homy(,, (P(A), P()) = [4(1) N V()|
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7. Equivalence between K,-mod and rep(p(n))

in their notation. As A is also a typical weight, it is clear from their definition that ¥(\)
contains all weights of the form (A\; — 2eq,..., A\, — 2¢,) as well as u € A(u). So we
proved in this case that the inequality holds.
If p is not very typical, we can use translation functors and [BDEA*19, Theorem 7.1.1]
to obtain P(p) as ©;, - --©;, P(u') where p’ is a very typical weight. Then we have

dim Homy,,) (P(A),P(u))

= dim Homy,,) (P(A), ©;;, - - - ©4, P(p ")

= dim Homp n)(911+1 lk+1p()‘) P(N/))

= dim Homy,,) (P(A "N, P))

> dim Homg,, (P(X), P(i))

= dim HomKn(é’le Oiy 1P (X) P(u'))

where we used the adjunction (0;,0;_1) (resp. (#;,6,—1)) and that translation functor
act topologically on projective modules by Proposition 7.1 and Proposition 6.26. O

= dim Homg,,

Remark 7.5. In fact, in Theorem 7.4 equality holds. This will follow from Theorem 7.6
below. We will however use this inequality in the proof of Theorem 7.6 to argue that the
ideal 1, is “big enough”.

7.3. The equivalence

Theorem 7.6 (Main theorem). There is an equivalence of categories
(7.3) U: K, -mod — rep(p(n))

such that ¥ o 0; = ©, o W. Furthermore, ¥ identifies the highest weight structures on both
sides.

Proof. By Theorem 5.6 we know that the categories F and SR€ are isomorphic. Thus,
we get an induced functor F — Fund (p(n)), where Fund?(p(n)) was defined as the
category with objects ©;, ---©; C. This functor is full and by definition essentially
surjective on objects, and it intertwines the translation functors. Now ©;, ---0;,Cis a
direct summand of V®* and V is a projective generator for p(n). This means that every
indecomposable projective module P(\) appears as 0;, --- 0;,C. By Theorem 3.25 we
may assume that (i1,...,17) is the residue sequence of some up-tableau of shape I'. Using
Proposition 3.52 and Theorem 3.53 we see that §, C ' C §,41. By Proposition 4.26 we
see that this corresponds to the module ]5(?) where 7 is the upper reduction of t% ... ¢"7.
But this is equal to A (which has n caps) by Proposition 7.3, and thus we have a surjective
algebra homomorphism

(7.4) eKe = B Homk (P(N), P(z)) — €D Homp(ny (P(X), P (1)),
A H
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7.3. The equivalence

where the sum runs over all A and p which are dominant integral weights for p(n).

The left-hand side has a basis given by all orientable circle diagrams with exactly n cups
and caps. Now by Lemma 6.3 we see that every circle diagram that has a non-propagating
line factors through an object with more than n caps (which means that the shape of the
corresponding partition contains d,11). This means that its image in rep(p(n)) is 0 by
Proposition 3.52. Therefore, we get an induced surjective morphism

(7.5) U: K, = eKe/l,, - @) Homy(,) (P(A), P(1)).-
b

Using Theorem 7.4, we see that this is actually an isomorphism. The right-hand side is
now equivalent to rep(p(n)).

The functor F — Fund? (p(n)) was compatible with the translation functors by definition.
But the inclusion eKe — K is not compatible with translation functors as these can create
new cups in K but not in eKe. But from Proposition 4.26 it is clear that if §; P(X) = P(z),
then 77 has the same number of caps as A or one more. This last case is exactly the
reason why the inclusion eKe — K is not compatible with translation functors as ebe
would produce 0. But if the number of caps increases, the image in the right-hand side of
(7.4) is 0, therefore (7.4) is still compatible with translation functors. So we see especially
that ¥ o 6; = ©; o U. Finally, it is compatible with the highest weight structures as the
combinatorics describing multiplicities of standard and costandard modules in projectives
agree. O
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8. Applications and consequences

8.1. Duals of irreducible modules

Theorem 8.1. Up to parity shift we have L(N)* = LN#), where \# = (X)), i.e. it is
obtained from X\ by rotating its cap diagram around %

Proof. We begin by recalling a combinatorial procedure from [BDEA™19, Proposition
5.3.1]. Namely, they look at a (p-shifted) dominant integral weight A\; > Ao > -+ > A,,.
Then they ordered the set (i, j) for 7, j lexicographically and then look iteratively at the
pairs (4, j), starting with (1,2) and ending with (n —1,n). In each step one creates a new
weight as follows. If [A\g11 — Ag| > 1 for k =4, j, we increase \; and A; by 1, otherwise
we change nothing. Using this iterative procedure we receive a new weight diagram .
They prove then that £(\)* has highest weight given by the reflection of AT at ”Tfl

We will prove now that this procedure gives the same result as rotating the associated
cap diagram around %

We will prove this via induction on n. If n = 1, the procedure from [BDEA™19] sends
a weight (k) to (—k). We would associate to (k) the cap diagram with one cap that
has endpoints k + % and k + % Rotating this around % gives the cup diagram with one
cup that has endpoints at —k + % and —k — % The right endpoint of this cup is at
—k+ % and when translating back into weight diagrams we have to shift by —%, which
results in (—k). Observe here that our cup diagrams are shifted with respect to the cap
diagrams, i.e. when translating a weight into a cap diagram we shift by % and by % for
cup diagrams.

Now let n > 1 and assume that the statement has been proven for all smaller values. We
have two different cases to distinguish, either we have one big outer cap containing all
smaller caps or we have multiple outer caps. Suppose first that we have multiple outer
caps. We denote the rightmost outer cap and all the caps contained in it by Cy and the
rest by C5 and let d; be the number of caps in C and dy the same for C5. Then the
rotation is the same as rotating each of these components separately around % We claim
now that the same holds true for the procedure of [BDEA119]. For the procedure of
[BDEA'19] we have to evaluate all the pairs (i, 7). We first only have pairs where both
belong to C1, then mixed terms and in the end all the ones from Cy. We claim that any
of the mixed terms changes the weight non-trivially. This holds true as (' is given by an
outer cap. This means that for every right endpoint there is also one left endpoint before
C5. Hence, in terms of weights that there is enough space in between so that every of the
mixed pairs is non-trivial. But therefore we first shift everything according to C7, then
we have the non-trivial mixed pairs, which shift C'; to the right do steps and Cy by d.
And then we shift everything according to Co. After this we reflect at %‘1 = %.
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8.2. Gradings and Non-Koszulity

But shifting first by ds and then reflecting at is the same as reflecting at d172—1

and similar for dy. But this means that the procedure of [BDEAT19] splits this into two,
applies their procedure there and glues them back together. Buy induction we know that
for the shorter weights this procedure is the same as rotating around % and so it also
agrees for the long one.

di+dp—1
2

The last case is that we have one big outer cap, and we want to relate the procedure
here to the one for the big cap removed. So we compare the procedure for the weight
(A1y.. oy An) with (A5, ..., \)) We denote the pairs for the smaller component by (i, j')
starting from (2/,3’). We first look at the pairs (1,7). Note first that (1,2) is trivial. But
this means that the pair (1,%) is non-trivial if and only if the pair (2/,4) is. Therefore,
the A; is in the end exactly one higher as the integer obtained for \,. Furthermore, we
know that 1 < |Ag — Ag| < 2 as the cap diagram is completely nested. If [A2 — A3| = 2 the
pair (1,3) non-trivial, and thus after executing all pairs (1,7) we have |\o — A\3| = 1. But
then we see that (2,3) is trivial and the other (2,7) are non-trivial if and only if (3,7)
is non-trivial. Therefore, Ay ends up exactly one higher than A5 would. Repeating this
argument over and over we see that A; for i < n end up one bigger than \; ; and A, lies
directly next to A,—1. Reflecting A; for ¢ < n at ”Tfl is the same as reflecting A}, ; at %2
and the additional A, is after reflection directly to the right of A\,_1. On the other hand
rotating this cap diagram means rotating the inner part and adding a right endpoint of a
cup directly to the right of everything. Thus, we can apply our induction hypothesis and
see that both procedures give the same result. O

Remark 8.2. There is no contravariant duality d on p(n) preserving irreducibles and
satisfying df; = 0;d. For instance in p(1):

6100dC = 6,0,C = P(0)
d616,C = dP(0) = Z(0) = P(-2),

which are not isomorphic.

Remark 8.3. We do not expect a direct geometric realization of rep(p(n)) in contrast to
ordinary Brauer algebras (see e.g. [SW19]) since there one would expect such a (Verdier)
duality.

In many related representation theoretic contexts, a geometric interpretation implies
Koszulity, [BGS96], which we will see now also fails for p(n).
8.2. Gradings and Non-Koszulity

Let n = 2 and consider the indecomposable projective p(2)-module P corresponding to
the cap diagram

M

[}
[If%=]
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By Theorem 7.6 we can carry out the computation inside K,, and P = P(2, —1) = A(2,—1)

Nl Wi INWY
U, ~J o

Using this and the multiplication rule inside K, it is not hard to deduce the structure of
P. Namely, one gets for the radical and socle filtration

£(2,-1) £(2,-1)
L£(4,-1) L£(3,2) 1 £(3,2)
£(2,1) an L£(4,-1) L£(2,1)

L£(4,1) L£(4,1)

respectively. In particular, these do not agree. By [BGS96, Proposition 2.4.1], we
see that K, cannot be non-negatively graded such that (K)o is semisimple and K,
is generated by (K,);. For m > 2, the same phenomenon occurs when considering
e.g. P(2,-1,-5,-9,—-13,...).

Hence, p(n) does not admit a Koszul grading for n > 2.

8.3. Irreducible summands of 1V ®¢

We want to defer our attention now to irreducible modules appearing as direct summands
of V¥4, For gl(m|n)) and osp(r|2n), there is a rather rich class of irreducible summands,
the so-called Kostant modules, see e.g. [Heil7] and [HNS24] respectively. In particular,
there is exactly one irreducible summand for every block. The situation is similar for
p(n) in the sense that we will show that there exist exactly n irreducible summands,
each belonging to a unique one of the n + 1 blocks. However, representations of gl(mn))
and o0sp(r|2n) decompose into very small blocks, giving rise to many Kostant modules,
contrasting the n for p(n).

Theorem 8.4. The irreducible p(n)-module L(p) appears as a summand of V¢ for
some d if and only if u = (n—1,n—2,... k,k—2,k—4,...,—k) for some 0 <k <n-—1.
Moreover, this summand appears as the image of the indecomposable object dx of Rep(P)
under Schur—Weyl duality.
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Proof. Denote by 7 the cap diagram corresponding to the (p-shifted) highest weight
(n—1,n—2,...,0) of the trivial module. Then,

<
I

3
2

N

n +

We have to find all generalized crossingless matchings ¢ such that 6,L(7) is irreducible.
By means of Theorem 6.35, for any of these ¢ there exists exactly one 7 such that t#7 is
orientable and 7 = upp(t7).

Hence, t¥ has to look something like

L N
AT

The condition 7 = upp(t¥7z) implies that all the caps are nested with the right endpoint
of the innermost cap at %

N

If there are any nested cups at the top, there cannot exist exactly one @ because we
could either connect the two left or right endpoints with a cup in  and can extend these
to cap diagrams satisfying the conditions above. We also cannot have a line in between
two cups, as we can connect this line either to the left or right cup with a cap in 7 and
extend to two different admissible cap diagrams. But this means that ¢ is of the form

N N N N

=R

where the only freedom is given by the number of nested caps k. If £k > n the result
is 0;L(v) =0 as t'7 will always contain a non-propagating line. If k = n, Lemma 7.2

N
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computed 0y L(7) to be an indecomposable projective module and not irreducible. In all
other cases (i.e. 0 < k < n — 1) the result is irreducible and given by the cap diagram

corresponding to the weight (n —1,n —2,...,k,k— 2,k —4,...,—k) as claimed. O

8.4. Extensions between irreducibles and Ext-quivers
The main goal of this section is to compute the dimension of

Exxty) (£(N), £22).

Using a projective resolution of £(A), it is easy to see that it is at most one dimensional
as P(A) is multiplicity free. Furthermore, it is one dimensional if and only if £(u) appears
in the head of the radical of P()A). The computation of the head of the radical of P(\)
can be done in K, -mod by Theorem 7.6, meaning that we need to determine all u\ (with
u # A) such that B

(8.1) PA=pR-kX = k€ {p A}

Definition 8.5. An orientable circle diagram pX with 1 # X is called A-primitive if pX
a A-orientation such that

ere is at most one cap in A suc at its corresponding dot is not a e rightmos
Al) Th is at t in A h that it d dot t at th ht t
possible position,

(A2) it is /_\ avoiding, and
o/ )\ M
(A3) it is ~ m avoiding.
[ ]

It is called V-primitive if uX is a V-orientation such that

(V1) There is at most one cup in X such that its corresponding dot is not at the rightmost
possible position, and

[ ]
(V2) it is w avoiding, where the outer cup is not contained in any other cup.
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We call HX primitive if it is either A- or V-primitive.

Theorem 8.6. Let HX be an orientable circle diagram. Then HX satisfies (8.1) if and
only if it is primitive.

Proof. First we prove that every primitive circle diagram satisfies (8.1) by contraposition.
For this consider an oriented circle diagram

H(SX = - me

that violates (8.1). We have to show that udX is neither A- nor V-primitive.
By Theorem 6.17(i) we know that

H‘SX = pvu - v\

for some /. Now using Theorem 6.17(ii) we know that ' > X\, v > p and § > &/, v (this
last inequality uses [BS24, Lemma 5.5]). If " # X and v # p we have d # u, A, and thus
it can neither be A- nor V-primitive as any orientation is unique by Lemma 6.14. So
either K = \ or v = p.

e Suppose that ' = X and v # u. This means we have
H(SX = pvu - VA

Observe furthermore that A,v,and p are pairwise distinct by assumption, and thus
d > A >v > p by Theorem 6.17(ii).

As § > p this cannot be A-primitive. If § and p differ by at least two dots it cannot
be V-primitive as it violates (V1). If they differ by exactly one dot, observe that
this dot is uniquely defined (there will be a sequence of neighbored cups that have
their associated dots in between them (so one is missing), the additional dot has
to be to the left of this sequence). In case this sequence contains more than one
cup, we violate (V1). If this sequence contains exactly one cup, we arrive at a
contradiction as there cannot exist a u < v < 4.

So we may assume that v = u, i.e. we are reduced to the case
WO = ppd] - neA

Using again Theorem 6.17(i) we have
H‘SX = ﬁn’ﬁ - KK

for some 7. By the same reasoning as above we have 6 > 7', k, ' > p and x > X. Thus,
if ¥ > p and k > X the circle diagram cannot be primitive. So either ' = p or Kk = A.
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e Suppose that ' = p and x # A. This means we have

Eéx = ppR - KR

Observe furthermore that A, x and p are pairwise distinct, and thus 6 > >k > A
by Theorem 6.17(ii). Therefore, this cannot be V-primitive. If § and A differ by
at least two dots, it violates (A1), so it cannot be A-primitive. If they differ by
exactly one dot look at the cap in A that corresponds to this dot. As § > k > A,
this dot has to move two times along a valid A-orientaion, and thus it violates (A2)
and cannot be A-primitive.

Thus, we can also assume that k = A, meaning that we are reduced to showing that

de = ppm - Q)\X

can be neither A- nor V-primitive. Note that by assumption n # A, p and furthermore
1 # X\ as otherwise it is not primitive by definition. Furthermore, if § # A, i it cannot be
primitive by definition.
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e Suppose that § = A > p. In this case HX cannot be A-primitive. We may also

assume that it satisfies (V1) as otherwise it cannot be V-primitive either. This
means that in the multiplication process no dot in the top number line moves. As

we find a situation in 1. This means that considering the total
w# (L 0\ i g
diagram ppu7 it looks like

e

We may assume that this outer cup is not contained in any other cup, as otherwise
we would find the same pattern for the cup that contains this. Now consider the
surgery procedure involving the outer cap. This cannot be of the second kind
from Figure 6.4 as the inner cap afterward would be of the first kind with the
additional white dots. This would mean that a dot in the top number line moves
which contradicts our assumption. Therefore, it has to be of the third kind, which
means that the left dot moves to the other side of the inner cup (and stays there).

But then pAX violates (V2).

Suppose that § = x> X. In this case pA cannot be V-primitive. We may also
assume that it satisfies (A1) and (A2) as otherwise it cannot be V-primitive either.
This means that in the multiplication process no dot in the bottom number line
moves. As A # 7 there exists a subpicture like ®\ ) where there appears not
dot to the right of this cup. Observe now that no surgery procedure of the third
kind from Figure 6.4 can occur, as no dot in the bottom number line can move by
assumption. But the other two kinds of straightenings require a dot to the right of



8.4. Extensions between irreducibles and Ext-quivers

the cup. This means that the one dot difference between A and p has to move via
a surgery procedure of the first kind (as a white dot) and move to the right of this
cup. Therefore, our situation looks like

v
7

Now the surgery procedure of the first kind moves the white dot to the other side
of the cap (and the dot stays there), so that uu violates (A3), therefore it cannot
be A-primitive.

This finishes the first half of the proof. We are left to show that any circle diagram
satisfying (8.1) is primitive. We prove this also by contraposition, i.e. we show that
any non-primitive diagram does not satisfy (8.1). For this, we split the proof into three
different cases.

(i) Suppose that X is not a V-orientation of p and u is not a A-orientation of \.
Now let 1 be the orientation of an. By our assumption we have n # A\, u. By
Theorem 6.17(i) we have

HnN = p - 1A
violating (8.1).

(i) Suppose that X is a valid V-orientation of p.

(a) Suppose first that this violates (V1). Let s be the same weight as A except
that we replace the rightmost dot of A that corresponds to a left endpoint of a
cup with the dot to the right of the same cup. By construction A\ is oriented
(and only one dot in x and A differ). Furthermore, ux% is also oriented and x
and p have one dot more in common than A and p. We claim that

KR - KA\ = H)‘X

For this it suffices to show that any appearing surgery procedure is a straight-
ening. First look at the surgery procedures that involve a cup that has a dot
to its right. This means there has to be a cap above this dot and because the
orientation of K\ is A, we have to have a straightening. There is exactly one
surgery procedure without a dot to the right of the cup. The situation then

y.
m

By construction k and A agree up to one dot (which is exactly the one depicted
above), and thus all the other dots agree. But now there cannot be a dot
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between the line and the cap as it would have to correspond to one to the
right of the line at the top number line, which would mean that x and \ differ
by at least two dots. Additionally, by construction (as the dot on the top is
to the left of the cup) the dot on the bottom has to be to the right of a cup.
As there is no dot between the cap and the line, this means that this cup
connects the line with the cap, meaning that we have a straightening. Thus,
the multiplication is nonzero, therefore violating (8.1).

Suppose now that (V1) holds but (V2) is violated. Then our situation looks
like
L] LN
and it is easy to check that
[ ] L] = e® [ ] [ J

provides a counterexample to (8.1).

(iii) Suppose now that p is a valid A-orientation of A

(a) First assume that (A1) is violated. As (A1) does not hold, there exists a dot
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in p that is not at the right end below the corresponding cap C in X. Of these
dots we choose the rightmost one such that any caps contained in C have
their dot at the rightmost position. Let x be the same as y except that we
replace this dot by the rightmost position in C. By (Al) we have k # A, p.
The weight & is a A-orienation of A by construction, and thus xxX is oriented.
Furthermore, our choice ensures that p is a valid A-orientation of %, and thus
pprK is oriented. We claim now that

UK - KR = HHX

For this we show that no split or reconnect can occur as a surgery procedure.
If a split occurred, this would look like one of the following two possibilities:

N s

N / \ 7

The first case cannot appear as every dot is to the right of a cup by assumption.
This means that the left dot in the first case cannot be matched with the cup
to its right, so it has to be matched to a dot at the bottom number line. This
would be contained in the dashed cup, which is not possible by definition of
orientation.



8.4. Extensions between irreducibles and Ext-quivers

The second case also cannot appear, as the bottom dot is not contained in a
cap, and thus has to be matched to a dot at the top. But then these two dots
at the top need to lie inside the same cap, which contradicts the definition of
orientation. Therefore, there cannot appear any split.

Now if a reconnect would appear the situation would look like

LaHUT

But any further surgery procedure that we could apply (even though it is
already not orientable) would preserve at least one of the non-propagating lines
(and as this number has to be even), this would imply that g contain non-
propagating lines which contradicts our assumption. Therefore, no reconnect
can appear. Thus, only straightenings can occur, and thus the multiplication
is nonzero.

(b) Suppose now that (A1) holds but (A2) is violated. Then our situation looks
like

and it is easy to check that

FANGANGS

provides a counterexample to (8.1)

(c) Lastly suppose that (A1) and (A2) hold but (A3) does not. Then the circle
diagram looks like
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and a counterexample for (8.1) is given by

This explicit description of diagrams satisfying (8.1) gives us immediately the following
corollary.

Corollary 8.7. We have
1 if HX s primitive,

0 otherwise.

dim Eti(n) (LN, L(p)) = {

8.4.1. p(1) as a quiver with relations

The irreducible modules of rep(p(1)) are labelled by Z. The category decomposes into 2
blocks By, By, where L(i) € By if i is even and L(i) € By if ¢ is odd. The module P(7)
has irreducible head £(i) and irreducible socle £(i + 2) and nothing else. Both blocks
can be described by the same quiver

with relation —— ¢ —— =0.

8.4.2. p(2) as a quiver with relations

The irreducibles for p(2) are labelled by two integers (i,7) with ¢ > j. The category
decomposes into three blocks By, B; and By depending on how many odd entries there
are. We only consider the block Bj as it is the most irregular one (By and B; can be
obtained by removing the leftmost diagonal). It can be described as the quiver
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with relations

e e

I .

/o L eI e T

[ : : ¢ —s
YAy e L

Here, we also see that the last relation in the second row is not homogeneous, which
reflects again the problems with the grading that occurred in Section 8.2.
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9. The quantum electrical algebras and their
Fock spaces

We fix from now on as ground field Q(gq), the field of rational functions over Q in a variable
q with its Q-algebra involution ~ given by ¢ — G := ¢~!. The quantum integer [m] for

=5 L =g g+ ¢ € Q(g)

m € Z is the polynomial [m]

9.1. The quantum clectrical algebras el

We next define a main player, the quantum electrical (or short g-electrical) algebras.

Definition 9.1. Let e € {£1}. We define the corresponding g-electrical algebra el to be
the algebra generated by &;, for i € Z, subject to the relations

(el-1) & =q"&E ifi—j|>1,
(€l-2) P — 28 &+ ¢ EnE = —q[2)&;
(el-3) q*38i28i_1 — [2)&:&i-1 & + qg&_lgf = —¢°[2]&;,
where b; = 2 B 1fj:zjz+1,

4-sgn(j —i)(—1)7~" otherwise.

Remark 9.2. The b;; are shift invariant, i.e. b;; = bj41,;41 and also b;_1,; = bj;.
Moreover, we have b;; = —b; ; if | — j| > 1.

Remark 9.3. The g-electrical algebras elf should be seen as an analog of a special
example of an electrical Lie algebra as defined e.g. in [BGG24]. In informal discussions
with Azat Gainutdinov and Vassily Gorbounov we were informed that they are also
working on quantum versions. Our example should arise as a special example of their
construction.

Next, we define the bar involution and shift isomorphism connecting el and elf ;.
Lemma 9.4 (Bar involution). There exists a unique q-antilinear isomorphism
Corelp — el 1, E=E&

of Q-algebras. Here, q-antilinear means f€ = f - & for any f € Q(q), € € elg,.
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9.1. The quantum electrical algebras el

Proof. Clearly, it suffices to show that the assignments are compatible with the defining
relations of elf, since then the statements follow from the definitions.
For 1 <1i,j <n with |[i — j| > 1 (such that the expressions make sense) we have

S = & = S = ¢ EE = &L,

PEXE 1 — EEin & + q3EiEF =2 Ei1 — [21E:Ein1Ei + PEin1 E
= — ¢ ‘[2)& = —¢°[2]&;,

q3ERE 1 — 206:Ei1E + PEE? = ELE 1 — [2EiEi1E + qPEAE]
= — ¢ “[21& = —¢[2&:.

Thus, we obtain a well-defined antilinear algebra homomorphism elj, — e[frl. O

Lemma 9.5 (Shift isomorphism). There exists a unique Q(q)-algebra anti-isomorphism
o: 6[2_1 — 2[2, (&) =q “Eiq1.

Proof. Since the &; are algebra generators of 6[2,1, there is at most one such anti-
homomorphism which is then also an isomorphism, since o¢’: ely — e[g_l, Ei— q°&
provides an inverse to 0. We however need to verify well-definedness, that is the
compatibility with the defining relations of el; and 8(2_1-
To see (el-1) we calculate for |i — j| > 1 using Remark 9.2,

o(Ei€)) = ¢ Ejr&ipr = q 2 FTINE L Ej 1 = a(qTEE) = ¢ 0 (E;E).
To see (el-2) let j =i+ 1 and calculate

a(q 285 — 2666 + °6,67) = (a7 €y — €11 + PEL 1 E1)
= — ¢ 21 = o(—q [2&).

To see (el-3) let j =i — 1 and calculate

o(PEPE; — [216:E;E + a3E;ER) = (4P Ej11E7 1 — 21811 Ej+1Ei1 + 0 2E2 1 Ej+1)
= — ¢ ¥[2Ei41 = o(—q [21&).

Therefore, the assignments give a well-defined g¢-linear anti-isomorphism o. O
Lemma 9.6. There exists a unique isomorphism of Q(q)-algebras
Tielyg —ell (&) = q°E-;.

Proof. This is similar to the proof of Lemma 9.5. O
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9. The quantum electrical algebras and their Fock spaces

9.1.1. The associated graded of the clectrical algebras

The algebra el becomes filtered by putting the monomials &;, ---&;, in degree k. We
directly obtain:

Lemma 9.7. The associated graded algebra gr el of el is the algebra with generators &;,
1 € Z, and relations

E& = qEE ifli—j| > 1,
(9.1) PE i — [2EEiE + q PEnE] =0,
q P E 1 — [2EEi1Ei + PE1EF = 0.
We obtain a basis for el (resembling a quantum group basis at ¢ = 0 from [Rei01]):
Corollary 9.8. The subalgebra of e[g generated by &, 1 <i—a <mn—1, has basis
Eaty (Earalar1)™E L (EaraaraCar1)™ (Earaar2) ™ EG s - Egin-

Here, a € Z, n € N are fized arbitrarily and m; € Ng, N = ("_21)”.

Proof. For a = 0, the corresponding polynomials (in the usual generators F;) form a basis
of its positive part of the quantum group U,(sl,,), see [Rin96, Theorem 2], [Jan96, 8.21].
The result then follows from the definitions and Lemma 9.7. O

9.2. The quantum electric Hopf algebra U,

The goal of this section is to realize the g-electric algebras as coideal subalgebras of some
Hopf algebra which is reminiscent of a quantized universal enveloping algebra. We define
this Hopf algebra using a quantum double construction from a pairing between two Hopf
algebras U;‘ and U;‘ . We start by defining the ingredients of the construction.

Definition 9.9. Consider the free Z-module hz with basis e;, ¢+ € Z and, via pointwise
addition, the Z-module X := Homz(hz,Z). Let (_, ): X ®z hz — Z be the evaluation.
We write aiv € hz for the element e;11 — e; and denote by ¢; the dual element to e; and
set a; = €;41 — &;. In particular, the o; (and ) form the (dual) roots of a root system
of type As. Furthermore, let 5; € X be defined by

(-1)2 if j =1,
(9.2) (Bive;) =1 (=1)4 if (=1)75 > (—1)74,
0 otherwise.

Finally, we define for i € Z, 7; € X by (vi,ej) = —(Bit1,€j), that is v = —Biy1.

Notation 9.10. We denote by X™"P C X the set of all A\ € X with finite support,
i.e. (A, e;) # 0 for only finitely many j. (Note that £;,7; ¢ XSUPP, o; € XBupp))

94



9.2. The quantum electric Hopf algebra U,

Lemma 9.11. Fori,j € Z we have <Bi,a}/) = bj;, <’yi,ajv> = —bij and bj ;11 = b; ;.
Proof. This follows by plugging in the definitions. O

Definition 9.12. Define the algebra U, as the Q(g)-algebra generated by F; for i € Z
and by K for A € X, subject to the relations

(17)  KaKu= Ky (47) FiFy =" FF; it |i—j| > 1,
(27) Ko =1, (57)  PFF - RIEFaF + ¢ Fa FP =0,
(37) K\F=q MIERK,,  (67) ¢ F!Fi—[2/FFF + ¢ F2 =0.

)

Lemma 9.13. The following assignments define (anti-)algebra homomorphism

AU = U @U; e: U; — Q(q) S:U;, = U,
Fi— F,® Kg, +1® Fj, F,— 0, Fi— —F,K_g,,
Ky— K\ ® K, Ky —1, Ky— K_j,

which endow Uy~ with the structure of a Hopf algebra.

Proof. The proof is a standard calculation. For details see Section 11.1. O

In analogy to the universal enveloping algebra of a finite dimensional simple complex Lie
algebra we call U, the negative Borel part, and define a positive Borel part U;:

Definition 9.14. Define the algebra U, as the Q(¢)-algebra generated by E; and K
for ¢ € Z and A € X subject to the relations

(1" K\K, =Ky, (4%) EE; = (" E;E; if |i —j| > 1,

(27) Ko =1, (57)  ¢’ElEiy1 — R|EiEiEi + ¢ *Ei E} =0,
(3%)  KnE;=qMOEK,,  (6%) ¢ PEXE - [2EE B+ B, E? = 0.
Not very surprisingly, the positive Borel can also be turned into a Hopf algebra:

Lemma 9.15. The following assignments define (anti-)algebra homomorphism

A:US = USfoUf e:Uf = Qq) S:Uf —=US
E;,— Ka,' QFE; + FE; ® Kaif’yi E,—0 E;, — _K*aiEiK’ﬁ*ai
Ky— K\y® K) Ky—1 Ky— K_y

which endow Uq+ with the structure of a Hopf algebra.
Proof. The proof is totally analogous to the one of Lemma 9.13. O

Remark 9.16. The slight asymmetry between U, and UqJr is chosen on purpose and
motivated by the categorification results obtained later. It encodes the extra data, namely
the b; j, appearing in the definition of elf via Lemma 9.11. A rescaling of E; by K_,,
would indeed provide formulas similar to those for the F;’s.
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9. The quantum electrical algebras and their Fock spaces

Both, in U, and in Uq+ , the K, for A € X generate a commutative subalgebra UY which
is a Hopf subalgebra. We call these the Cartan parts of U, and U; .

Remark 9.17. The Cartan parts have basis Ky, A € X and multiplication as in (1%).
For simplicity, we write U, and UqJr instead of more suggestively qu and Uqg.

We now want to construct from U, and U; a Hopf algebra via the usual Drinfeld double

construction, see e.g. [Kas95, IX.4] for the general concept.

Fix now a bilinear pairing (_,_): X x X — Z such that for all : € Z we have (f;, u) =
—(p, ) and (X, ;) = (A, @)). Note for this that (8;,7;) = —(v;, o) = bj; is consistent

with (ﬁz,%) = (i, ) = bji by Lemma 9.11.

Proposition 9.18. There exists a unique Hopf pairing
(,):U; @US —Q(q)

such that for all i,5 € Z and A\, p € X the following holds:

1
<K>\aKu> = q(A,H), <EaKM> =0, <Fiij> = 6ijﬁ’ <K>\7Ej> = 0.

Proof. We need to verify that (_, ) extends uniquely to a pairing which satisfies the
Hopf pairing conditions
(i) (a,1) = €(a) and (1,b) = £(b) for all a € U, and b € U,".
(if) <
(iif) (a,bd") = (A(a),b® ') for all a € U, and b,b' € U,
v) (

(i

The proof is analogous to [Lus10, 1.2], see also [Xia97, Proposition 2.9.3, Proposition
2.9.4] for a summary. If one uses (in the notation of the latter) the slightly adjusted

functionals &;(K,0; ) = W

aa’,b) = (a ® a’, AP (b)) for all a,a’ € U; and b€ U}.

S(a),b) = (a,S71(b)) for all a € U, and b e U}

T,(K)) = ¢ | the arguments can be copied. [

This Hopf pairing endows U, ® U; with the structure of a Hopf algebra, see e.g.
[Jos95, §3.2] for the construction and [Xia97, Proposition 2.4] for the explicit formulas:

Corollary 9.19. There is a unique Hopf algebra structure on U, ® Uq+ such that U,
and UqJr are Hopf subalgebras via the canonical embeddings and

(a) the multiplication in Sweedler notation is given by

(9.3) (a@b)(d @)= > (S a(yy),ba))aajy @ byl {ajz), b)),
(a’),(b)

(b) the comultiplication is given by Ala®b) = > (a),(b) A1) @ b(1) @ a(2) ®b(g) with counit
e(a®b) =¢e(a)e(b), and
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(c) the antipode is S(a ® b) = (1 ® S(b))(S(a) ®1).

Remark 9.20. In U, ® U}, the product (1® E;)(F; ® 1) is by (9.3) equal to

(STHF)), Ei)Kp; © Ka,—5,(Kp;, Ka,—p;) + (ST (F)), Ka,) K, © Ei(Kg,, Ka,—p,)
+(STHF)), Ka,) Kg, @ Ko, (Kp, Ei) + (71 (1), EDFj @ Ko,y (Kp;, Koy,
+(S7H(1), Kao,) Fj ®E<Kﬁya i) F(S7H(1), Koy Fj @ Ko, (Kp;, Ei)
+H(STH1), Bl ® Koy—y (Fjy Kay—yi) + (S7H1), Ko,)1 @ Ei(Fj, Koy - )
+(S™ 1( ), K >1®Kai(Fj7Ei>

—1® Ko, + ¢ (—K 5, Fj, B)Kp, @ Koy,

since the other summands vanish. Now the last summand can be simplified using
(—/3',%;—%;) (ag—viaY)
(—K_p,Fj, Ei) = —(K_p;, Ko, )(Fj, Bi) = =~ =~

a—aq- '
o 19Ka,—Kp, ©Ka,
Altogethel", (1 ® Ez)(E] ® 1) — q<6] C!z;CV})Fj ® EZ + 5@] ® i - 2z i ﬁ]

In analogy to the universal enveloping algebra of a simple complex Lie algebra we like to
identify the Cartan parts U, see Remark 9.17, from the two Borel parts.

Proposition 9.21. The maps m, A, €, S defining the Hopf algebra structure on U, ®U(;|r
are U%-balanced. Thus, Uy ®po U; inherits a Hopf algebra structure.

Proof. This is proven in Section 11.2. ]

Definition 9.22. We call U, := U, ®po Uq+ the quantum electric Hopf algebra.

Notation 9.23. From now on, we will write F; (respectively E;) for the element F; ® 1
(respectively 1 ® E;) in U,;. We also write K for Ky ® 1 =1® K, in U,.

The quantum electric Hopf algebra is very similar to the quantized universal enveloping
algebra (of adjoint type in the sense of [Jan96, 4.5]) of slz of type Aso

Corollary 9.24. The quantum electrical Hopf algebra U, has as algebra a presentation
with generators E;, F; fori € Z and Ky for A\ € X subject to the relations

(U_l) K/\K,u = K)\Jr/u KO = 17
(U-2) K\Fy=q M EE,, KB =qMEE,
K. — K_,,
(U-3) [E%Fj]ﬁij = 5ij%?
qa—4q
FiFj = ¢" FF; if [i — j| > 1,
(U-4) CF Fiy1 — RIFFin Fi + ¢ P Fiq Ff =0,

¢ 3F?F_ 1 — 2|F,F; 1 F; + ¢*F;_1F? =0,

(2
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9. The quantum electrical algebras and their Fock spaces

EE; = " E;E; if |i —j| > 1,
(U-5) CE}Eis1 — [2)E;Ei B + ¢ *Ei EF =0,
¢ E?E; 1 — [2|BiE; \E; + ¢*FE; 1E? =0,

where [Ez',Fj],Bij denotes the q-commutator E;F; — qu'iijEi and Bij = (vi — ai,a}/>.
Spelling out B;; explicitly, we have

0 ifi=j,

(9-4) Bij = 4301 — 1) ifli—jl=1,
—4-sgn(j —i)(=1)~"  otherwise.

The Hopf algebra structure is given by Lemma 9.13 and Lemma 9.15.

Proof. The relations (U-1)-(U-2) and (U-4)-(U-5) hold by definition of U, and (U-3)
follows from Remark 9.20 noting that a; + 8; — v = —a; by Lemma 9.11 and (9.2). The
given relations suffice by comparison with Uy(slz): one obtains a PBW-type basis for U,
from compatible PBW-type bases of Uq+ and U, via Definition 9.22. O

9.3. Realization of the ¢-clectrical algebra as a coideal

The quantum electrical Hopf algebra allows treating el in a more conceptual way as
coideal in Uy:

Theorem 9.25 (Coideal realisation). The g-electric algebra el embeds into the quantum

electrical Hopf algebra Uy as a right coideal via & — F; + qe_?Ei_lK_ai_l.
Proof. In Section 11.3 we show that the assignment provides a well-defined algebra
homomorphism j which is moreover injective. It remains to show that its image C' = im(j)

is in fact a right coideal. We have

AG(Eit1)) = A(Fip1 + ¢ 'EK_q,)
=F1 0K, +1@Fn+¢ ' @EK o +q¢ 'BK o, @ K_,,.

Since B;+1 = —7;, we obtain
A(j(€ir1)) = i(1) @ (1) +i(Eiv1) @ Kp,, € CRUy.
This shows that C' is a right coideal in U, and finishes the proof. O

Notation 9.26. From now on we identify e[} with its image in U, and thus view it as
coideal subalgebra of U, with A(&) =1® & + & @ Kg,.
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9.4. (Dual) Natural representation of U, and their exterior
powers

The Hopf algebra U, is another quantization of the universal enveloping algebra of slz.
In analogy to slz we define a natural representation V = Q(q)% of Uy,.

Proposition 9.27. Let V = Q(q)z with basis v;, i € Z. Then there exists a well-defined
right action of Uy on V given, fori,j € Z and A € X, by

Ae;
v Fy = 6vj01, v E; =01 vi1,  viKy = ¢M9u;.

Proof. The relation (U-1) is immediate, and (U-2) follows directly from the definition
of af. For (U-4) and (U-5) both sides act by 0, hence these relations are satisfied.
It remains to check the compatibility with (U-3). If i # j, then both sides act by 0.

Otherwise, we have vi[E;, Filg,, = vpEiF; — v Fi By = 0k i41viq1 — Oki0i, which equals
Ko, —K o, qleier) —g—(ag.ep
=v
q—q 1 k q—q 1

)
Vg, , because a; = €41 — €. ]

Definition 9.28. Let V® be the (restricted) dual vector space of V, i.e. the vector space
with basis v € Homg(V,k), where v*(v;) :== §;;. The right U,-module structure on V
defines a left Uj-module structure on V®. In formulas, it is given by

Fﬂ)j = 5i+1,jvi, Eﬂ)j = 62-]-11”1, ’UjK,\ = q<)"ej>vj.

Define a g-bilinear pairing (_, ): V¥ @ V — Q(q) by (v',v;) = d;j.

Lemma 9.29. The bilinear pairing satisfies (wu,v) = (w,vo(u)) for allw € V¥, v eV
and u € elz,l with o as in Lemma 9.5.
Proof. Tt is enough to consider v = v',w = v, u = & for any [, k,i. We compute
(Ul&', vg) = ((5(i+2)lq_€vz+1 + 5ilvz+1,vk) = 5(i+1)k(q_66(i+2)l + di1). On the other hand
(0!, 00 (&) = ¢~ (v, vk€is1) = 4 (Oirn) (V) vit2) + ¢ Op(ig) (v}, v4)). Since the latter
equals ¢~ “Op(i+1)01(i+2) + Ox(i+1)01 the assertion follows. O

We next define an alternative comultiplication on Uy:

Definition 9.30. Given A € X let X' € X such that (X, e;) = () ejq1). Define the
algebra isomorphism

shift: Uq—>Uq, Fi— Fi,BEi— Eiq, Ky — Ky
Let A’ := (shift ® shift) A shift™" be the induced comultiplication, cf. [Jan96, §7.2].
Remark 9.31. We have A’ = (shift ™' @ shift ™) A shift as (3;_1, ;) = (Bi+1,€j41)-

Notation 9.32. Definition 9.30 defines a second monoidal structure on the category of
Uz-modules, cf. [Jan96, §3.8]. To keep track of the tensor products we use the symbol ®
for the usual tensor product of vector spaces and ®; and ®9 for the tensor product of
U,-modules with the action given by A and A’ respectively. The notation M © N means
that ® can be ®1 or ®s.

99



9. The quantum electrical algebras and their Fock spaces

We will use mixed tensor products involving ®1 and ®s.

Definition 9.33. Given a Uy-module M and d = (I1,...,l4_1) € {1,2}97}, we define
the corresponding mized tensor product of M as MO .= M O O, M.

Warning. When writing mized tensor products, we have to be careful with the bracketings,
since e.g. (M ®1 N)®a P 2 M ©1 (N ©2 P) in general. If in the following we suppress the
bracketing in mized tensor products, we will implicitly always assume that the bracketing
is left adjusted, e.g. M ©1 N ©2 P = (M ©1 N) ®2 P.

Next, we analyze the Uy-linear endomorphisms of (mixed) tensor powers of V and V®.
In analogy to U,(slz), we expect to find a Hecke algebra action.

Recall the Hecke algebra Hg, which is the Q(g)-algebra generated by Hi, ..., Hy1
subject to the relations

H2 =1+ (¢ '~ q)H;

9.5
( ) HZ'H]‘ = HjHZ‘ if ’Z — j’ > 1, HiHi+1Hi = Hi—l—lHiHi—f—L

Given a Q(g)-vector space W and a linear endomorphism ¢ of W @ W, define the
endomorphisms ¢; = id® Y @ ¢ ® id®@1 of W®d for i = 1,...,d — 1. Then ¢
satisfies the Hecke relations if (9.5) hold with H; replaced by ¢;.
Proposition 9.34. Consider the natural right Ug-module V. The linear map

H: VoV VoV, viGUjHaijvj(Dvi—l—(sKj(q*l—q)vi®vj,

is Ug-linear and satisfies the Hecke relations, where for © = ©; we set

¢  ifi>j, i—1odd, j—1 even,
g ifi>j, otherwise,
P
“ g3 ifi<j, i—1 even, j—1 odd,

q if 1 < j, otherwise.
Proof. Noting that
(9.6) ai=q ' and ajaj; =1 forany i#j,
the statement follows by straight-forward calculations, see Section 11.4. 0

There is no reason to prefer V to V®. Analogously to Proposition 9.34 we obtain:

Proposition 9.35. The linear map
HY: VPOV 5 VPoV® o' 0v e ajn! v+ 6i<i(g! — gv' @,

is Uq-linear and satisfies the Hecke relations, with a;; as in Proposition 9.34.
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9.5. The electric Fock space representations .# and F®

Remark 9.36. As a consequence of Propositions 9.34 and 9.35 we obtain a (left) action
of Hg on any d-fold mixed tensor product V®2 of V by Ug-module homomorphisms
commuting with the (right) Uj-action. With our implicit bracketing convention we have
for instance v; ©1 vj ©2 vy = (v; ®1 Uj) ©2 v;. Then F; acts as F; ® Kg, ® K5§_1 +1®
F,® Kﬁzll +1® 1® F;. This commutes with the H4-action.

Remark 9.37. One can even check that the Hecke algebra centralizes U, and that we
have an isomorphism

Hq — Endy, (V).

This even works for any mixed tensor product V4,

To see this recall that by quantum Schur-Weyl duality, Hq = Endy, (E[Z)(V@)d), where
H;actsin VRV by v, ®vp = vp @ Vg + dacp(q! — q)va @ vp. We now claim that
VeV =2V eV as He-modules. Indeed, an isomorphism as desired is given by

v; @ Uy = o ]
ajv; ©@v; it i < g

This can now easily be extended to arbitrary mixed tensor products.

The Hecke algebra actions from Propositions 9.34 and 9.35 finally allow defining g-wedge
products of V and of V®.

Definition 9.38. Consider a mixed tensor product V®¢. We define the ¢-wedge product
NV to be the subspace of V¢ spanned by all elements of the form

Vi AN Vjy A=+ A0y, = Z (=) Hy (v, @ 03, @ -+ @ Viy),
weSy

for iy >ig > -+ >ig. If d = (2,1,2,1,...), we just write 'V for A2 V.

The goal of the next section is a definition of a Fock space % and its dual .%® for the
electrical Lie algebras elj. We use the NV with their U,-actions to define Fock spaces
for elf, following in principle the standard constructions, [LT96], as a space of semiinfinite
wedges. In detail, the construction is however more involved. We have to make sure that
the action of the Cartan part in Uy is well-defined. For this the combination of the two
monoidal structures ®1, ®9, i.e. the choice of d = (2,1,2,1,...) in the definition of the
g-wedge product will be crucial.

9.5. The electric Fock space representations .% and . ®

In the following we will consider V' and V® as right elg-modules:

Definition 9.39. The natural eli-module V' is the vector space V with the action
restricted from Uy, to elg. In formulas, the action is given by v;& = d;; (vit1 + qvi—1).
The dual natural elj-module V® is the vector space V® with the action of el; given by
the restriction from Uy to el twisted by the shift anti-automorphism o from Lemma 9.5.
In formulas, we have v/&; = §;12 jq~ v + §;;0° L,
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9. The quantum electrical algebras and their Fock spaces

Indeed, one calculates v/ & = o(&)v! = ¢ €1 - 1) = 5¢+2,jq_€vi+1 + 5ijvi+1
Definition 9.40. We define the Fock space % as the vector space

(9.7) F = hg/\d V, using the linear maps _ Av_g: /\d v AN

The Fock space has as basis formal semiinfinite wedges
Vig N Uiy NUjg N vy
where i; > i;41 and i; # 1 — j for only finitely many j € Z-.
Unfortunately, the action of U, on g-wedge products extends only partially to .7:

Proposition 9.41. Let Ugsupp be the subalgebra of U, generated by E;, F; with i € Z
and Ky with A\ € X™P_ Then there is a well-defined action of Uésupp on & induced
from the Ug-action on q-wedge products.

Proof. Consider for any d, the map _ Av_q: NV — NV, Our (implicit) choice of [
implies that in the comultiplication of F; we obtain a Kpg, in even spots and a K 8! in odd
spots. However, for i > —d we have v_gKpg, = v_g if —d is even and have v_ dKB/ =v_g
if —d is odd. Hence, the action of F; is well-defined. Similarly, the action of E; is
well-defined. By our assumption on A, we have v_gK) = v_g4 for d > 0, hence the action
is well-defined as well. O

We finally arrive at a well-defined electric Fock space:
Corollary 9.42. The action of Uésupp on F restricts to a right action of elf.

Proof. From the formulas for elj, C U, in Theorem 9.25 we see that el C U[fsupp . O

0“@

Definition 9.43. Similarly to .#, we can define the dual Fock space F® using V®

instead of V. This has then a bas1s given by formal semiinfinite wedges
VI AVEZAVBA - ,

where i; > ;11 and i; # 1 — j for only finitely many j € Z-o. As above, we can identify
partitions with the basis vectors of .#® and write v* for the corresponding basis vector.
With the same arguments we get an induced (left) action of Uésupp on .Z® and thus a
right action of e[;_l via the shift automorphism from Lemma 9.5.

We call .7 the electric Fock space and F® the dual electric Fock space.

Corollary 9.44. Both, the Fock space % and the dual Fock space F®, are cyclic
elg-module generated by the vacuum vector vy.

One can consider also Fock spaces .% depending on a charge § € R. For this let Vs = Q(¢)?
with basis v;, with i € § +Z and let .%; be the corresponding Fock space defines as before.
Via the identification of vector spaces V' = Vi, v; — vsy; Vs inherits an action of el}.
Similarly, we define .Z*, the dual Fock space of charge §. In the special case § = 0 we
have #y = .# and F; = .Z®. The following is straight-forward:
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9.5. The electric Fock space representations .# and F®

Proposition 9.45. All results in Section 9.5 hold for F5, F° instead of F, F®.

Lemma 9.46. The annihilator of vy € % and of = F5¥ is the right ideal generated
by & fori# 6 and by the two-sided ideal generated by E? fori € Z.

Proof. We compute the annihilator A of vy. By definition, we have vp&; = 0 if and only
if i # 6. By Remark 9.47, the element £? acts by 0 on .%. Thus, J C A. To show J = A
let u=&;, --- &, be a product of generators, that is nonzero in el /J. In particular iy = 0
and we may assume moreover by (el-2) and (el-3) that u is braid-avoiding, that is there
is no subsequence in the sense of Definition 2.2 of the form (j,j &+ 1,7) for some j. It
is straightforward to check that (i,,...,41) is the residue sequence of a partition \, see
[Neh24, Proposition 2.7] for a similar argument. By definition of the eli-action we have
Vg - U= CAUN F Do <|A| Culp With ¢y # 0.

Conversely, any residue sequence (iy,...,41) defining X is braid-avoiding and provides,
thanks to (el-1), up to powers of ¢ the same element u in A\el. Therefore, the linear
map J \e[; — s, u — vy - u is surjective and in fact an isomorphism. This shows the
claim J = A.

The same arguments show that A is also the annihilator of v? € TP, O

As usual, see e.g. [Ari02], we label, depending on the fixed charge 0, the basis vectors
(i.e. the semi-infinite wedges) of .# by partitions. Namely, to a partition A we assign the
basis vector with indices given by {\; + 1 — i + ¢} and also write vy for this basis vector.
Similarly, for .%® using V,® with basis vectors v, i € § + Z.

Remark 9.47. Note that Definitions 9.38 and 9.39 provide explicit formulas for the
elg-action on % and %@ Up to powers of g, this action is given in the basis of partitions
in familiar terms (cf. e.g. [Ari02]) using (2.1):

o &; sends a partition A to the linear combination of all partitions p where a box of
charged content § + ¢ was added or a box of charged content § 4+ ¢ — 1 was removed.
In the language of Section 2.2 this means res(A — p) = 9§ + 4.

e Similarly, for .#® we have that &; € elz,l adds boxes of charged content é + i and
removes boxes of charged content § + ¢ + 1 that means res®(\ — u) = § + 4.

Proof. This follows from Corollary 9.42 using Definition 9.43 and Remark 9.47. O

Remark 9.48. Remark 9.47 should justify the notation res and res® by referring to .%
and 9:5@ The introduction of these two slightly different functions is necessary because
o not only scales by a power of ¢, but also shifts the indices.

Lemma 9.49. There is a unique isomorphism of vector spaces 7: Fs — %@9 satisfying
7(vg) = vy and T(vE) = T(v)7T(E) forv € F, € € el

c(A)

Remark 9.50. Up to some g-power, T transposes the partition, i.e. 7(vy) = ¢““Mwye.

Proof. This follows directly from Lemma 9.6 and Corollary 9.44, since the annihilator J
in Lemma 9.46 is 7-invariant. O
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9. The quantum electrical algebras and their Fock spaces

9.5.1. Pairing and Bar involution on Fock spaces

®

From the definition we expect %" to be dual to .% via the following pairing.

Definition 9.51. Define a g-bilinear pairing (_, ): .%* ® % — Q(q) by
(v/\,vu) = O\
Lemma 9.52. The bilinear pairing satisfies (with o as in Lemma 9.5)
(wu,v) = (w,vo(u))
forallw e FP, ve F and u € eli—1.
Proof. This holds by definition recalling the twist by ¢ in the action. O

Warning. For readers familiar with categorification the shift o appearing in Lemma 9.52
should be alarming, since we cannot expect that a functor categorifying &; is self-adjoint
(even up to grading shifts). One should also observe that we do not define a scalar product
on F, but only a pairing with F° .

We next define a bar involution compatible with the bar involution on elf and e[;,l.

Proposition 9.53. There exists a bar involution on .%, that is a unique g-antilinear
isomorphism — : F5 — F¥ satisfying vg = W and wT = u.

Proof. By Corollary 9.44, the el-module . is cyclic with generator vg. Therefore, the
bar involution on % is unique if it exists. If A C el is the annihilator of vy, then
A\ely, — F5, u + vy - u is an isomorphism of (right) el;-modules. Now A = J by
Lemma 9.46. Since J is obviously preserved under the bar involutions on el and 2[2_1,
the desired (unique) bar involution maps on .% and %@‘) exist. O

Definition 9.54. For a charge vector § and a level { we define the level { Fock space

f
Fsr = F5, @@ Fs, of charge 8. It comes with an obvious (e[;) -action.

Remark 9.47 generalizes to higher levels by identifying the standard basis vectors from
Fs,¢ with (-multipartitions and then using the residue functions (2.2).
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10. Categorification of the clectrical Lie
algebra

10.1. Gradings, free Z-actions and categories of representations

Instead of working with (strict monoidal) GSVec®-categories C, we could equivalently
work with (strict monoidal) SVec®-categories C%, but equipped with a free Z-action given
by (strict monoidal) isomorphisms (i), ¢ € Z, such that (i)(j) = (i + j).

More precisely we have the following, see [MOS09, (2.1)]:

Lemma 10.1. There is a correspondence

Catz := {GSVec® -categories} < {SVec® -categories with a free Z-action} = Cat?
C — (7
Cz — C

Here, a Z-action means an action by automorphisms (i),i € Z such that (i)(j) = (i + j)
(and freely means that the stabilizer of every object is trivial).

In C%, the objects are (i)c, with i € Z, ¢ € C and Homez ({i)c, {j)c') == Home(c,c);—;.
The orbit category Cz has objects the orbits [c] of objects in C with a fixed representative
¢. The morphisms are Home, ([¢], [¢]); := Homg, ((i)¢, &) = Home, (¢, (—i)¢é).

Remark 10.2. One could work with any group G and with G-graded vector spaces
instead. If we work with G = Z/2Z and with Vec instead of SVec® our notion of
supercategories turns into the notion of supercategories using free Zs-actions as defined
e.g. in [KKT16].

Concretely, in (sR¢)%, objects are (i)a, i € Z with a € sR, and Homgpz((i)a, (j)b) =
Homgg, (a,b);—;, the degree i — j morphisms in sR.. As monoidal supercategory with
Z-action, sRZ is generated by objects a = (0)a, a € R, and morphisms (f: a — (—i)b) €
SVec® for any (f: a — b) € GSVec® from (3.5) of degree i, subject to (sR-1)-(sR-7)
interpreted in the same way.

Remark 10.3. Given C € Catz there is an equivalence (C°P)4 = (C%)°P given by
(i)c = (—i)c noting that the following holds for morphisms Homcopyz ({i)c, (j)d) =
Homger (¢, d);—;j = Home(d, ¢);—j = Homez ((—j)d, (—i)c) = Hom cz)op ({(—i)c, (=j)d).

Remark 10.4. We can view Cat? and Catz as categories with morphisms given by
functors compatible with the Z-action respectively by GSVec-functors!. Then the corre-
spondence from Lemma 10.1 extends to a functor

(10.1) Cat? — Catz sending a morphism F': C — D to Fz: Cz — Dz,
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10. Categorification of the electrical Lie algebra

with Fz defined as follows. On objects Fz([c]) = [F(c)] and f € Home, ([¢1],[é&])i =
Home((i)¢1, é2) is sent to Fz(f) = F(f) G/\I-k)mpz(Fz([él]),Fz([ég]))mlﬂ;,mw where
m; € Z for i = 1,2 such that F (&) = (m;)F(¢;). Here we use that the Z-action is free
and that F(f) € Homp(F({i)¢1), F(¢2)) = Homp((i) F(¢1), F(¢2)).

Warning. A GSVec-functor F: C — D might not have a preimage under (10.1). The
functors relevant for representation theory however usually have lifts. For instance,
the functors ¥ and T have graded lifts which are given on objects by a — (€)(a + 1)
respectively a — —(eya. For an example of the existence and construction of graded lifts
which are less obvious see e.g. [Str03].

Definition 10.5. A left (resp. right) C-module for C € Catz is a co(ntra)variant GSVec®-
functor M: C — GSVec. The categories C- Rep (and Rep-C) of left (resp. right) modules
can again be viewed as GSVec®-categories as explained in [Kel05]. These are objects in
Cat? with Z-action given by (i)M(c) = (i)(M(c)), where the Z-action on GSVec is given
by ((i)V)pti =V, for i,n € Z.

A left (resp. right) C-module for C € Cat? is a co(ntra)variant functor M: C — SVec® of
SVec’-categories. We denote by C- Rep (and Rep-C) the corresponding SVec-category
of left (resp. right) modules. This is an object in Cat? with Z-action given by (i)(M)(c) =

M((—i)c) (resp. (i)(M)(c) = M((i)c)).
Remark 10.6. We have Rep-C := C°P- Rep using the opposite category, [Kel05, §1.4].
The following are important examples of left and right modules:

Definition 10.7. Let C € Cat? or C € Catz. The corresponding projective modules are
P. := Home¢(c, ) € C-Rep and P := Home(_,¢) € Rep-C. The regular C-modules C
are defined as C =@, FP. € C-Rep and C = @, .P € Rep-C.

For readers who refer less categorical notions the following remark is important:

Remark 10.8. The data of a module M € sR.-Rep or M € Rep-sR. is, by taking
P, M (1), equivalent to the data of an ordinary (locally unital) left, respectively right,
module for the electric KLR superalgebra from Definition 3.8. The notion of projective
and regular modules then boils down to the usual notion of projective modules for a
(locally unital) superalgebra.

Lemma 10.9. Let C € Cat? and D € Catz. Then D-Rep can be viewed as object in
Cat? by setting ((a)M)(d) := (a)(M(d)) and there are isomorphisms in Cat%:

C-Rep 2 Cz-Rep D-Rep = D?-Rep
M% «— M Mz «— M

Proof. In the first case let Mz([c]) = ®mezM ((—m)é) and MZ(<77}>6) = M([c])—m. Any
f € Homey, ([c], [¢])x defines an element in Home((k — a)é, (—a)c’) for any a € Z and
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10.2. Projective modules for the (cyclotomic) electric KLR algebras

then in Homgyeco (M ((k — a)é), M ({—a)c’)) = Homgyece (MZ([C])a—k7 MZ([CI])G)' These
maps, for a € Z, are the components of Mz([c])(f).

Conversely, if f € Home((m)é, (n)c') = Home, ([c], [¢]))m_n we get MZ(f) = M(f) €
Hom gyeco (M ([¢])—m, M (') ) = Homgyeee (MZ((m)e), MZ((n)c’)). We omit checking
that these define the isomorphisms. The second case is analogous. O

Remark 10.10. Consider the case D = sR, or D = sR.. Under the second isomorphism
(10.2) the projective module <m>P.([) correspond to rY ; form e Z.

g (m)

Notation 10.11. Let C € Cat?. Given an additive subcategory A of C-Rep closed
under the Z-action, we denote by K{(A) the usual additive Grothendieck group. This is
a Z[q, ¢ ]-module by identifying ¢ with (1) in case A is invariant under the Z-action.
We write then Ko(A) == Q(q) @z(4,4-1] Ko(A).

This definition applies in particular to the following categories:

Definition 10.12. For C € Cat? let C-proj be the idempotent closed additive subcategory
of C- Rep generated by the projectives P, ¢ € C. Given C € Catz we write by abuse of
language C-proj for the category D-proj where D = C%.

Remark 10.13. The identity on objects and morphisms defines a contravariant functor
id: sRe — sR% which induces via Remark 10.3 a contravariant functor sRZ — (sRZ)°P.
It induces a g-antilinear map on K of the representation categories.

10.2. Projective modules for the (cyclotomic) electric KLR
algebras

In this section we study the category of projective modules for sR,. and SRi with their
Grothendieck groups. We start with some definitions.

Definition 10.14. Let sR¢-proj be the idempotent closed additive subcategory of
sR¢- Rep generated by the projectives P;. Similarly, we define SRi-pI"Oj for SR[; and
denote here the projective module associated with ¢ as Pf to indicate the dependence on
(. Let proj-sRe, proj—sRi be the analogues for right modules.

Similarly, let sR.-proj* be the idempotent closed additive subcategory of SREZ—Rep
generated by the projectives P,,);, m € Z.

Notation 10.15. Given SVec®-categories C and D, we denote by CXD the Deligne—Kelly
tensor product of C and D. Given M € C-Rep, N € D-Rep, we have the outer tensor
product M I N € C X D-Rep given by M X N(c,d) = M(c) ® N(d).

Remark 10.16. More precisely, objects of C X D are pairs (¢,d) with ¢ € C, d € D and
Homexp((c,d), (¢!, d')) = Home(c, ') ® Homp(d,d'). The tensor product is in GSVec
or GSVec® if the original categories were enriched in these. For details on the abstract
definition see [Kel05, §6.5]. Note that this construction is compatible with Lemma 10.1
in the sense that (C XD)z = Cz XDz and (C X D)% = ¢4 X D%
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10.2.1. Tensor products of projective modules for sR, and sRi

Using horizontal stacking of diagrams in sR. we have a canonical map sR. K sR. — sR.
which allows us to view the regular module sR. as a (sRe, sR¢ K sR¢)-bimodule. As in
[KL09, §2.6] this provides induction and restriction functors and the following definition:

Definition 10.17. For M, N € sR¢- Rep define their tensor product

(10.3) M N :=ind3}‘gn MEN €sReRep.

The tensor product M - N of two right sRe-modules is defined similarly.

The following statements about sRe-proj and proj-sR. are clear from the definitions:
Lemma 10.18. We have P; - P; = P;; and ;P - ;P = ;;P. In particular, Ko(sRe-proj)
and Ky(proj-sR¢) are Q(q)-algebras with multiplication given by tensor product.
Remark 10.19. The tensor product - provides a monoidal structure on sR¢-proj with

unit object 1 = F;. Moreover, sRi— Rep is a right module category over sR.-proj, see
Lemma 10.21 below. The same holds for proj-sRe with 1 = P and Rep —sRi.

Notation 10.20. For any object 2 in sR. let PZ-" € SRQ— Rep and ;P' € Rep —SR[; be the
corresponding projective module (in contrast to P; € sR.-Rep and ;P € Rep-sRe).

Horizontal stacking of diagrams gives a morphism SRi XsRe — sRi. Thus, given

4
M € SRé— Rep and N € sR.-Rep we obtain M - N = indzﬁf&R MNXN € sRi- Rep.

Similarly, for right modules. The following is immediate from the definitions.

Lemma 10.21. We have Pf P = Pfj and ;P! P = ,-jP[. In particular, the tensor
product turns Ko(sRL-proj) into a right module for Ko(sRe-proj) and Ko(proj-sR.) into

a right module for Ky(proj-sRe).
Definition 10.22. For A € Par’ let P{ :== P/ and P’ == i P. From Theorem 3.25,
t

Zt)‘
we also get the left standard module Ay € sRi- Rep and the right standard SRé—module
*A € Rep —sRé defined as the respective quotients by all morphism which factor through
some P, with p < .

Lemma 10.21 does in fact not require the level to be generic. If it is however generic,
then P/ = 0 or we find \ € Par’ such that P! = P/[\', see Corollary 3.37, similarly for
right modules. This observation should motivate the following:

Lemma 10.23. The following sets each from a Z-basis:
for K} (sRL-proj) : {[G))P{] | X € Par,i € Z},  {[(i)A\] | A € Par,i € Z},
for K} (proj-sRY) : {[(i))P'] | X € Par,i € Z},  {[(i)*A] | X € Par,i € Z},
and the sets {[P{]}, {[AA]}, {*P']}, {[*A]} with A € Par form Q(q)-bases of K.

Proof. The statements for [P{] follow directly from Theorem 3.25. By definition of A
and the upper-finite labelling set, the “base change” matrix is upper triangular with 1’s on
the diagonal and only finitely many non-zero entries in each row. Therefore, it is invertible
and the [A,] form a basis as well. Alternatively, one could apply [Bru25, Theorem 8.3].
The same arguments work for right modules. O
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10.3. Bar involutions and pairings

We define HOMc¢.rep (M, N) := @ Home. rep(M (i), N) € GSVec for any GSVec-category
C and M, N € C-Rep, which is the space of morphisms when C-Rep is viewed as a
GSVec-category.

For a graded (super)vector space V = @pezV;, with V,, =0 for n < 0 we let gdim(V') =
S°dim V,,¢" € N[g~!][[q]] be its graded dimension.

Definition 10.24. Define the grading-reversing contravariant functor

~: sRe-proj — proj-sRe, P := HOMgg,(P,sR.).

It satisfies P;(a) = ;P(—a). It descends to a functor —: sRi-proj — proj-sR. which
satisfies the analogous property on projectives P!.

We also define —: proj—ng) — sRe-proj®) by the same formula. It satisfies iPla) =
P;(—a) and descends again to the cyclotomic quotients.

In particular, we have P = P for any left or right sR, or sRé—module P. This is why we
also call this functor Bar involution.

The following is immediate from the monoidality of —.

Lemma 10.25. The Bar involutions on sRﬁ—proj and sRe-proj are compatible with the
right module structure, that is M - N = M - N for M € SRg)—prOj, N € sRe-proj. The
same holds true for the right sRe-proj-module structure on proj—sRi.

Definition 10.26. We define a ¢-bilinear pairing

(., ): Ko(proj—sRi) ® Ko(sRi—proj) — Q(q),
[P'] ® [P] — gdim(P’ ®gre P)-

Remark 10.27. The pairing (_, ) is related to the HOM pairing as follows. Given P
and @ € sRi-proj we have

gdim HOMp( (P, Q) = (P,Q).
For two P’ and Q' € proj-sR. we have
(10.4) gdim HOM (P, Q") = (Q', P").

The next lemma essentially follows from (sR-4), but we prove it to make sure that all
the grading shifts agree.

Lemma 10.28. The bilinear form satisfies
((P]- QL [P]) = ([P], [P] - [Z(Q)])

Proof. We may assume that P’ = ;P, P = P; and Q = ;P. Then we have P’ - Q = ;P
and P-X(Q) = P+ Pyy1(—€) = Pip11(—¢). And thus,

jkP ®SR£ P, = HOMSRQ (’L,jk) = HOMSR’; (’Lk + 1,j)<—6> = jP ®SR2 Pik+1<_€>~ ]
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10.4. Relations in Grothendieck groups

As preparation for the categorification results in the next section we calculate some
crucial relations in Ko (sRe-proj) and Ko(proj-sRe). For this we extend the parameters
b;j from Definition 9.1 to 4, j € R:

Definition 10.29. For i,j € Rlet bj; = -2 if j =4,i+ 1, let b;; =01if |i — j| ¢ Z, and
set b;; = 4 -sgn(j —i)(—1)7~" otherwise.

Proposition 10.30. In sR.-proj and proj-sR. we have for any i # j € R:

Piji(1) ® Pyji(—1) = Pyyj(3) & Pjis(—3) ® Pile + 1) @ Pile — 1) ifj=i+1,
Pyji(1) @ Piji(—1) = Py;(—3) ® Pj;(3) ® Pi(e + 1) ® P,P(e — 1) ifj=1i—1,
i7iP(1) @ i P(—1) = i, P(=3) @ jui P(3) ® i P{e = 1) ® ;P(—e — 1) ifj=i+]1,
iiP(1) @ 15iP(=1) 2 ;;; P(3) ® j;; P(=3) ®;P{1 —€) ®;P(-1—¢) ifj=i—1,

P;; = Pji(bij) and ;P = j; P(—b;j) otherwise.

Proof. The morphism >< has degree b;; = —bj;. It defines homogeneous degree 0 maps
i

Pj; — P;jP(bj;) and ;P — ;; P(—b;;). Since both are isomorphisms by (sR-6) the last

two claims follow.

Of the remaining relations we will only prove the first one as they are all similar. For

this let j = ¢+ 1 and consider

Bi: Py;j(3) ® Pjii(—3) ® Pi(1 +¢) ® Pi(1+¢€) — Piji(1) ® Pyji(—1)
Bo: Pyji(1) © Piji(—1) = Py (3) © Pjui(—3) ® Pi(1 +¢) ® Pi(1 +¢)

given by the matrices
i J i i J i
iiJ iiJ

i J i i J i

T Xy Tl o <J R

Blz i Joi A BOZ Joii Joii
i 7 i
0 S e U0
i J i iJ i P i
i g i
0 | VY

Note that all the entries are homogeneous and provide two degree zero maps. They are
mutually inverses by Lemma 11.1 in Section 11.5. O

10.5. Categorification Theorems

In this section we finally apply our results to deduce some categorification results.
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10.5. Categorification Theorems

10.5.1. A categorification of the ¢-clectrical algebra

The first result is the following g-electric Categorification Theorem analogous to [KL09],
[Rou08]:

Theorem 10.31. There are Q(q)-linear algebra isomorphisms

D41 ely — Ko(sRe(Z)-proj) P41 el — Ko(proj-sRe(Z)),

Proof. By Proposition 10.30 the assignments extend to a well-defined algebra homo-
morphism. Recall from Lemma 9.7 that the algebra e[} is a filtered with &, ---&;, in
filtration degree k. On the other hand sR.(Z)-proj is a filtered category in the sense
of [FLP23, §4.3], where P;, ;, sits in filtration degree k. This induces a filtration on
Ko(sRe(Z)-proj) so that @, is actually a morphism of filtered algebras. We obtain a
commutative diagram in vector spaces with vertical isomorphisms:

elg P, Ko(sRe(Z)-proj)

bl

grelg LN gr Ko(sRe(Z)-proj)

Thus, it suffices to show that gr ®, is an isomorphism. Now by [FLP23, Theorem 4.19] we
know that gr Ko(sRe(Z)-proj) = Ko(gr sRe(Z)-proj). The category grsR.(Z)-proj arises
by quotienting out everything that factors through a lower filtration degree. In our case
this means that we kill every cup and cap. From the defining relations (sR-1)-(sR-7) we
see that gr(sR¢(Z)-proj) is equivalent to R—proj from [KL09] if we ignore the Z-grading.
On the other hand, the algebra grelf is by Lemma 9.7 up to a different g-shifts exactly
the algebra f from [KLO09]. One quickly checks that the g-shifts match the different
grading. Then, the statement follows from [KL09, Theorem 1.1]. O

10.5.2. Categorified involutions

Theorem 10.32 (Compatibilities Theorem). The following diagrams commute:

® , . @ .
el; —— Ko(sRe(Z)-proj) , el;, —— Ko(sRe(Z)-proj) .
I y L 5
€ (I’q*1 . € (I>q71 .

el 1 —— Ko(proj-sRe¢(2)) ell 1 —— Ko(proj-sRe(Z))

Proof. For the commutative diagrams, it suffices to check the claim for &. We have
P, = ; P, whence the left diagram commutes. Similarly, ¥(P;) = ;11 P{—¢). O

The classes [P;] and [;P] provide a canonical basis of el respectively el ;.
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10. Categorification of the electrical Lie algebra

Remark 10.33. Alternatively one could work directly with the additive closure of the
Karoubian closure of sR¢(Z) and take its K. Then the bar involution is categorified via
the functor in Remark 10.13, whereas ¢ and 7 from Lemmas 9.5 and 9.6 are categorified
by ¥ and T respectively from Lemma 3.9.

10.5.3. Categorification of the ¢-clectrical Fock spaces

We next categorify the £ =1 (dual) Fock space of charge zero. We show that the right
sR¢(Z)-proj-module structure on sRY(Z)-proj categorifies the right action of el on 7,

similarly for the right proj-sR¢(Z)-module structure on proj-sR(Z) and the action of
eli -1 on F ®,

Theorem 10.34 (Fock space categorification). The g-linear map
U: .F — Ko(sR(Z)-proj), vy — [A]

is an isomorphism and the following diagram is commutative:

T @ el Is
l@@‘i’(s v

Ko(sRL(Z)-prof) ® Ko(sRe(Z)-prof) —— Ko(sRL(Z)-proj)

Proof. The first part is obvious from Lemma 10.23. For the second part we need to
compute [A,][F;]. The module Ay has a basis given by Bj,. The module Py has a basis
given by all B, where res' t = i). Additionally, Py.P; has a basis given by all B} where
res' t = i5i. Therefore, A\.P; has a basis given by B where res' t = 3¢ but only in the
last step of t a box might be removed. Now all such Bf where the last step removes a
box form a submodule of Ay.P;. This is nonzero if and only if A has a removable box O
of content i — 1 in which case it is isomorphic to Aycn(d), where d is the degree of the

diagram | /J'—“\ and if O was in row r, then [ = A\; 4+ --- 4+ A,. The quotient

i -1 =1 dgr g i
of Ay.P; by this submodule is nonzero if and only if A admits an addable box § of residue
i, in which case this quotient is isomorphic to Axgg(d'), where d’ is the degree of the

N and if 5 is added in row 7, then [ = Ay +--- + A,

AT TR A i
It remains to check that d and d’ give the same degree shifts as the K appearing in the
comultiplication of &. Observe that we act (by our implicit choice of tensor product)
on vy;+1—5 by Kg, if 1 — j is even and by K if 1 — j is odd. This means that we get
—1)i4

diagram

q° contribution for every even Aj, a g contribution for even 1 — j and odd A; and
q(_1)2+14 contribution for odd 1 — j and odd A;. In other words every even \; gives a
q° contribution and every odd Aj gives a q(_l)lﬂﬂ4 contribution. On the other hand,

observe that the crossings swap i with rows Ay, Ag_1 until A,y (if A has k rows). Now
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10.5. Categorification Theorems

if A\; is even, swapping with this row gives degree 0. If \; is odd, as in the even case,
consecutive pairs of crossings cancel in their degree, and we are left with the degree of

. This has exactly degree 4(—1)"*1=J as i > 1 — j and the diagram in the theorem
1—j i
commutes. O

Theorem 10.35 (Dual Fock space categorification). The g-linear map
U 7% — Ko(proj-sR.(Z)), v* — [MA]
is an isomorphism and the following diagram is commutative:

FO @, F°

i\II’@)‘I’q_l J\I/’

Ko(proj—ng(Z)) ® Ko(proj-sR¢(Z)) —— Ko(proj—sRi(Z)).

Proof. This is similar to the left module version from Theorem 10.34. O

Proposition 10.36 (Compatibility with bar involution). The following diagram com-
mutes.

T

v’ J‘Il

Ko(sRL(Z)-proj) — Ko(proj-sR.(Z)).

=9
-

Proof. The vector space 5 is generated by vg as an el;-module. O

Remark 10.37. The canonical basis of e[f],l respectively e[;,l induces a canonical basis
of .Z5 and .%®. They correspond to the classes [P/] and [;P'] respectively.

(2

Proposition 10.38 (Compatibility with pairing). We have (w,v) = (@gl(w), @g(v)) for
allwe F°, v € F.

Proof. 1t suffices to check that ([*A],[A,]) = 0),. But this is immediate from Theo-
rem 3.25 and (10.4) using that projective sR{-modules have A-flags and the Ext-vanishing,
see [BS24, Theorem 3.14], between A’s and V'’s. O

10.5.4. Universal categorification and higher level Fock spaces

To incorporate 6 and higher level Fock spaces we work now with sR¢(R) instead of sR¢(Z).

Definition 10.39. The universal electrical algebra Q(g)-algebra e[y (R) is generated by
&i, 1 € R, with relations (el-1), (el-2), (el-3) using Definition 10.29.
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10. Categorification of the electrical Lie algebra

For a fixed level (' and a generic charge vector 4, see Notation 2.8, set R((,d) = U§:1(5j +
Z1) C R. We consider the full monoidal supersubcategory sR¢((,d) = sRe(R(4,8)) of
sR.(R) with objects sequences of elements in R((,d). We also let sR.(8) be the associated
level (' cyclotomic quotient.

Denote by el¢ (£, d) the Q(g)-algebra generated by the &; for i € R((, ). In particular,
elg(1,0) = elf if 61 € Z and elg((,d) = el ® -+ - ® elg, the (-fold tensor product of elf,
since 4 is generic. Similarly define elf (£, ) with el _1((,8) Zell 1 @ - @ elf .

With these definitions we obtain as in Theorem 10.31 directly the following;:

Theorem 10.40 (Universal categorification). There are algebra isomorphisms

Dy ely((,6) — Ko(sRe(l, 8)-proj) Py el ((,8) = Ko(proj-sRe((, 6)),

Recall from Definition 9.54 the higher level Fock space s .
Theorem 10.41 (Higher level Fock space categorification). The g-linear map
Up: Fop — Ko(sRL(D)), va — [A))]

is an isomorphism and the following diagram is commutative:

Fsr® e[fl([,é) Tt

l‘l’/@‘bq lqjl

Ko(sRL(8)-proj) ® Ko(sRe((, 8)-proj) —— Ko(sR.(8)-proj).
Proof. The proof of Theorem 10.34 can be just copied. O
Similar to Definition 9.54 there is the higher level dual Fock space
T =F5 @0 Ff
of level { and charge . Theorem 10.35 directly generalizes to the following
Theorem 10.42 (Higher level dual Fock space categorification). The g-linear map
Uy Fy @ © Fy — Ko(proj-sRL(6)), v = PA]

is an isomorphism and the following diagram is commutative:

T @l i ((,0) F®

lw;mq_l J‘I’}

Ko(proj-sR{(8)) @ Ko(proj-sRe) —— Ko(proj-sRL(d)).

Proof. The proof of Theorem 10.35 can be just copied. O
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10.5. Categorification Theorems

Remark 10.43. We consider in this article only generic charge vectors, see Notation 2.8.
This allows to distinguish the components of a multi-partition. In fact, the charge uniquely
determines the corresponding component and the combinatorics of different components
do not interact with each other. Correspondingly, the factors in the %5, ® --- ® %5, and
T @ -~ ® Fg are independent in the sense that elf((, d) respectively eli-1((,0) act
componentwise.

Remark 10.44. Via Theorem 3.17 we could alternatively use modules over the super
Brauer algebras for the categorification of Fock spaces and thus also categories of rep-
resentations of the periplectic Lie superalgebras. The categories of finite dimensional
representations of p(n) are equivalent to a subquotient category of the categories cate-
gorifying the Fock spaces, see Section 3.5 and Theorem 7.6. Each p(n) corresponds to a
layer in a filtration on .%. Alternatively, one could invoke [Coul8b, Corollary 7.3.2].

Remark 10.45. One might want to define and study more involved arbitrary higher
level Fock spaces generalizing work of Uglov, [Ugl00], to the electrical Lie algebra setting.
We expect that these can be categorified using parabolic category O for the periplectic
Lie superalgebras. For this parabolic category O needs to be revisited and studied in
more detail first extending e.g. the works [CC20], [CP24].
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11. Proofs of Chapter 9 and
Proposition 10.30

In this section we collect some technical proofs of statements from Chapter 9.

11.1. Proof of Lemma 9.13

Proof. All the maps clearly satisfy the Hopf algebra conditions if we show that they
are well-defined, i.e. compatible with the relations. For ¢, this is a straight-forward
calculation which is omitted. For A, the compatible with (17) and (27) is obvious. For
(37), we calculate
A(KA)A(F,') =K\ ® K\ \F; + K)F; ®K)\Kgi
= ¢NN Ky @ BK) + By © K5, K)) = MO A(F)A(K)Y).

For (47), we assume |i — j| > 1 and compute

A(F)A(F;) =1@ FiF + F; ® FiKg, + F; @ Kg, I + FiF; @ Kg, 1 5,
= "1 @ FjF; + ¢ Fy @ Ko, Fi + ¢ %) F, © FjKp, + " FjF; @ Kg, 4,
= " A(F))A(F).

Here we used that b;; = —bj; if |1 — j| > 1, see Remark 9.2.

Of the remaining Serre relations (57) and (6~) we only consider one, since the arguments
are similar. We calculate the parts:

A(FPFi1) =1@ F Fiy1 + Fip1 ® FPKp,,, + Fi @ FiKg Fyy1 + F; ® Kg, FiFiq

+ FiFi11 ® FKg K, + FFi1 © Kg FKp,, + F} © Kog, Fiy1
+ FFi1 @ Kogiipip

=1® F F1 + Fip ® FPKg,,, + (¢ 4+ ¢ %) F, @ FiF; 1 K,
+(1+ ¢} FiFi1 © FiKg Kg,,, +q °F? ® Fyy1Kop,
+ F7Fi1 © Kog, .., -

A(FFi1 Fy) = 1@ FiFi 0 F + F; @ FiF 1 Kg, + Fip ® FiKg, | F;

+F @ Kg Fip1 by + Fiq By © FiKg,  Kg, + F?® Kg Fii1Kp,
+ FiFi @ Kg,Kp,, Fy + F?Fi1 @ Kog, 15,

=1Q® F;Fj1Fi+ F,® FiF; 1 Kg, + ¢*Fiiq © F{ Kg,,,
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11.2. Proof of Proposition 9.21

+q 2 F® Fi FiKg, + Fin Fy ® F;Kp,, K, + ¢ *F? ® Fy11 Ko,
+¢*FiFi1® FiKg Kg,, , + F’Fi1 ® Ko, 181
A(F 1 F?) =1@ Fy FP + F; @ Fp FiKp, + F; ® Fi K Fy + Fip ® Kg,, | F?
+ F? @ Fyy1Kop, + Fin Fy @ Kg,,  FiKg,
+ Fip1 By @ Ko K Fy + Fra B © Kog,ag,y,
=1®@ FnF?+(1+¢*)F, ® F 1 FKg, + ¢*Fi1 © K, F}
+ F?® Fi1Kop, + (¢* + ¢ F Fy ® FiKp, 15,1
+ Fip1 Y © Ko,

Now the first terms from each term give zero thanks to the Serre relation in the second
tensor factor. The same for the last term thanks to the Serre relation in the first tenor
factor. But then also all other terms cancel (remember to multiply the three cases by ¢3,
—[2] and ¢~ respectively!). This shows that A is well-defined. For S we compute

S(K\F) = S(F)S(K)) = —FiK_g K_) = —q~ M K_\FiKs, = S(¢ M FK)),
S(FE) = FyK g FiK g, = " By FyK s, = S(¢P FyF),
For the Serre relations (57), and similarly for (67), we calculate

S(PF?Fi1 — [2)FiFi 1 Fy + ¢ *Fi1 F?)
= - q3Fi+1KBi+1(EK/Bi)2 + [Z]EKBiE+1KBi+1FiKBi - q_g(FiKﬁi)2Fi+lKﬂi+1
= - q376Fl‘+1‘F1’izK2,Bi+6i+1 + [2]FiFi+1EK2,Bi+6i+l - q73+6Fi2Fi+1K251‘+5i+1 =0.

And therefore, S is also well-defined and Lemma 9.13 is proven. O

11.2. Proof of Proposition 9.21
Proof. The statement is clear for A and €. For S, it suffices to show that
S(CLK)\ ®b) = S(a® K)J))

holds in U, ®po U/ for any a € U, , be Uf, X € X.
By definition of S in Corollary 9.19 we get that

(11.1) S(aKy®b)=(1®S8(0)(S(aKy)®1)=(1®Sb))(K_y®1)(S(a)®1)
since S is an antipode on the factors and U, and UqJr are subalgebras. Similarly,
(11.2)  S(a® Kxb) = (1® S(Kxb))(S(a) ®1) = (1® S(b)(1® K_»)(S(a) ® 1).

Since (11.1)=(11.2) in U, ®po U, we showed that S is U balanced.
It remains to consider the multiplication. It is U%balanced if the equalities

(113) (A9 K)(e®l)=(Ka®l) and (1)K, ®1) = (1®bK))
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11. Proofs of Chapter 9 and Proposition 10.30

hold in U, ®po Uq“' forany a € U, b € U; , A € X. By linearity, it suffices to assume
a = Ka for some K € U° and some monomial @ = Fj, - - - F;, in the F;s. Note that then
the term <a’(3), b)) in (9.3) can only get nonzero contributions from monomial summands

in a’(3) which are contained in U°, i.e. contain no Fjs. Similarly, for a’(l) using the term
(Sil(al(l)), ba))- By the definition of A in Lemma 9.13 this implies that only a’(l) =K,
a’(2) = Ka, a’(g) = K= Kﬂi]- contributes. Thus,

T T
(1® K\)(a®1) = (K™ Ky Ka® KK [[ Ks, . Kx) = ([] Kp,, . Kn)a @ K.
j=1 J=1
This simplifies in U, ®go UqJr to ¢°a ® K\ = ¢“aK) ® 1 = ¢°KaK), ® 1 with ¢ =
"—1(Bi;» A). But KaK) is by (17) and (37) equal to ¢*Kxa®1 where d = YN agy) =
- §:1(5ij, A) = —c. Thus, the first equality in (11.3) holds. The second can be shown

analogously using F;s instead of Fjs. Therefore, the multiplication is U°-balanced, and
Uy ®yo UqJr is a Hopf algebra. O

11.3. Proof of Theorem 9.25

Proof. To prove Theorem 9.25 we need to show that we get a well-defined injective
algebra homomorphism. We first check consistency with the relations of elf.
For (el-1) we have

i(E)IE) = (Fi+ ¢ EiaK o, )(Fj+ ¢ Ej 1K ;)
= FFj+q '"EiaK o Fj+ ¢ 'FRE 1K o+ PE 1K o Bj 1K g
= QUFF ¢ T YR E K o, + T Y E K o F,
+ q26+2+bi71,j71 Ej—lK—a]- Ei—lK—oci_l
= QPIFF 4 ¢ TN B Ko, g E K F
+ q26—2+bi,j Ejfleaj Ei 1K .,

= ¢"(Fj+ ¢ B K o)) (F + ¢ Eici Ko, ) = (&) §(&).
Here we used that b j1r = b;j and by_1; = by, see Remark 9.2.
For (el-2), we first compute the result R of j applied to the left-hand side of (el-2). We

break the task into pieces. Piece 1: First, let us look at the sum of those summands in
R that contain three F’s. Together with (U-4) we get

¢PFFFiyy — [2|FiF, 1 F 4 ¢ 3Fi 1 FiF; = 0,

Piece 2: The sum of the summands in R that contain three E’s is (up to the common
¢>3 factor and calculated for i + 1 instead)

CPEK_0,BiK_o,Ei1K_o,,, — [2]E;K_o,Biy1K_
+q B K-

it EiK_q,
EiK_o,EiK_,,

Q41
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_ U-5
=(®E;E;Fiy1 — [2|EiEi1 B + ¢ 3Ei 1\ EiF)K o4, () 0.

—Qut1
Piece 3: Next we have those terms that contain two F’s. We split this case into three
subcases, whether we have two F; or F;y1 before F; or F;1 after Fj.
In case of two Fj, we get (ignoring the common factor ¢~ !)
(@ EBEEK o — FEK o, F; + ¢ K o, FiF)
= (*FiFiEK o, — (¢* + Q) FEFK o, + ¢EiFFK o)
= (¢*Fi[Fy, Bi| K o, + qEi, FIFK o) + q[2]F;

.3
= (q _qq—lFi(Kai - K*Ozi)Kfai + #(Kaz — K*ai)Finai)
—q3 q—l q3
= (q — q_lFi(l — K_24;) + = q_lﬂ + - q_lF,-K_mz.) = —q[2]F; = (»).

Next assume F; | appears before a unique F;. Ignoring a factor ¢~ we get

—21Bi-1K o, \Fii1Fi+q P FiBi K o, \F;+q *Fip1 FiE 1K o, ,
= -1+ q_2)Ei—1Fi+1FiK—Oéi4 + q_4_Bi_1’i+1Ei—lFi—&-lpiK—aiq
+ q_3_ﬂi_1’i+l_Bi_l’iE’L'*lFl?l»lFinai,l —0.

The remaining case for two F’s is when Fj;; appears after a unique F;. Then,

CEi1K_o, FiFi + ¢ FE 1 K_o, [ Fip1 — [2]FiFin B K_g,
=B 1\ FFip K o, +¢ PV E_ FFi K o,
_ [Q]Q_Bi—l,i_ﬁi—l,i+l Eile‘iFiJrleai,l —0.

Piece 5: Now it remains to look at the case, where we have only one F'. Similar to before,
we split this case into three subcases. Namely, we look at the cases where two F;_1
appear, F; appears before F; | respectively F; appears after F;_1.

If we have two F;_1, we get (we calculate again for i + 1)

CEK o, EiK o, Fiyz — [EK o, FiaBiK o, + ¢ FiaEiK o, BiK o,
= (¥ P BiK o, B — (2072 Fia BiRK o, B + 4 Fira BiK o, B K,

=2}

The next case is when E; appears before E;_;. We calculate in U, the following

~RIFEK _o,Ei 1K o, + ¢ EK o FiEi 1K o +q *EK_oEi 1K o F;
= —[2(FEK o,FEi1+q 'EF,K_o,Ei 1 +q " P EFK 0Ei 1)K o,

9.4 1—K_o,,
0 2] (B3, K o i) Ky = 2 (2 2 ) Ko
+q! +¢°
:Z — Z—lEi_lK_ai_l - qq_ qq_lEi—lK—2Oéi—Oti_1 =: (**)
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Finally, we look at the case where E; appears after F;_1. Then,

¢PFFE 1K o EK o +¢@E 1K o FEK o —[2]Ei1K_o, |E;K_o,F
= (¢" P B K 0 BB+ B 1K o (BB~ (g4 ) Ei 1 Ko EF) K o,

+ 3
=—(¢+ qg)Ei—lK—Oti—l [Ei? Fi]K_O‘i - _qq— qq—l E‘_IK_ai—l(l - K—foi) =1 (kxx).

Adding up the nonzero intermediate results (which only appear in Pieces 3-4) and recalling
the ¢® scaling factors, we find that j maps ¢*€2€; — [21€:E;E + ¢ 3E;E2 to

-1 _ .3
(4) + (#%) + (x5 %) = —q°[2]Fs + q%EK

= —¢21F — 2B K o, = ¢ [2)(Fi + ¢ Ei K _o,_,) = j(—q°[2]&).

Thus, (el-2) is satisfied. A similar calculation shows the compatibility with (el-3).

This proves that j: el — U, is well-defined. It remains to show injectivity. By definition
of the map, the image of a word in the generators &; of e[} has a unique summand that
contains only F;’s (and it is moreover the same word in these F;’s). Now the statement
follows from Lemma 9.7, since the algebra elf is filtered with associated graded isomorphic
to the subalgebra of U, generated by the Fjs. O

11.4. Proof of Proposition 9.34

Proof. We show the first statement and the most complicated braid relations in the general
mixed cases as claimed in Remark 9.36. The remaining cases are then straight-forward
adaptions of the easy checks. We start by showing that H is Ugj-linear.

It clearly commutes with K, so we consider F; and F;. The computation for E; is very
similar to the one for Fj, so we only treat the F;. Recall that v; F; = 0;;v;41. Let n; == f3;
if ©=0®1 and n; == B/_; if ® = ®2. Then

F
v; © v; - diaVir1 © V; Ky, + 05005 © vj41

JH
0iatit1,;V; Ky, © vig1

i +0iabit1<i (@7 — q)vip1 © v Ky,
40500 j+1Vj41 © Vi + 8jabicir1(q™! — @)v; © v

Fo 0ia@ijVj @ Vit1 + 0ialici (¢! — @)vig1 © v Ky,
—

a;ijV; O vi+ -
RN + 0jaijvj41 © vily, + 0jadici(q = Qv © Vi

Sicilg™! — q)ui ©v;
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With the abbreviation c¢j; = (1, ej), we therefore have to show the following

@iy1,jCji = Qij for j ¢ {i,i +1},
1.4 aiiri,jcji =ai;+ (¢ —q)e; for J = Z +1,
Ait1,5Ci ¢~ —q = aij for j =1,
Qi j+1 = A4jCij for any Z,j

The following table shows all the different possibilities for ¢ and j.

parity of i —1 parity of j —1 aj41,; ¢ji i Cij gyl
3 4 1

even even q- q q q
o even odd q 1 q 1 q
j>i1+1 4 3 A
odd even q q q q q
odd odd q 1 q -4 g3
even even g ! 1 ' ¢ 7
o even odd e S L R
It odd even -1 1 -1 1 -1
q q
odd odd 7 gt ¢! 1 gt
i even even g ! ¢ ¢t ¢ q
odd odd ¢ g? ¢t ¢? ¢33
a1 even odd g ! 1 q 1 q
J=1+
odd even gt ¢t ¢ ¢ q

Now it is easy to see that (11.4) is satisfied. This shows that H is Uj,-linear.
Next we show that H satisfies the Hecke relations.
We begin by computing H2(v; ® v;). In case i # j we have

HQ(UZ' ® vj) = H(aijvj ®v; + (5Z'<j(q_1 — q)vi ® Uj)
= a;a0; O V; + a¢j5j<l-(q_1 — q)vj ©v;
+6i<j(q7" = @)aijv; ©vi + 6ici(¢7 — )%V O v;
= aija;ivi © v+ (¢ — q)(agv; © vi + dici(q7 — Qv © v;)
=0 O+ (¢ = @) H(vi ©v)),
In case i = j, we have
HQ(UZ' ® Ui) = H(aiivi ® Ui) = q_z’l)z‘ Qv =v; ®v; + (q_l — q)H(’UZ' ® Ui),

and thus the first Hecke relation is satisfied. The second Hecke relation is obvious.
It thus remains to show the braid relations for V© V ® V, where each of the ® can
be chosen from {®1,®2}. Solet V.o,V ®, V with [,r € {1,2}. To simplify notation
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11. Proofs of Chapter 9 and Proposition 10.30

abbreviate v;j1, 1= v; ©v; ©vg. We will also write a and a . to emphasize the dependence

on [ and r in the definition. We compute

]

HyHyHy(vij) = H1H2(a§jvjik +0ici (g = Qvije)
= H(d Qi Qi Vjki + 5z<k% (7" — Qvjip + dici(q™" - Q)avinj + dicjer(a — 0)*vijk)

= aéjaikaé'kvkji +0j<k(q” ! q)ai]azkvjkz + 5z<kaﬂ i](qil — q)Vijik
@ @ ®
+ Gjcicnali(@ = q)*vjin + 0ici (07" — @Q)alpalyvris + Orsici (@ — @) afgvin
@ ® ©®
Siirat (7Y — NV 20si 4 8 =1 _ )30,
+ l<j<kaz_](q Q) Vjik + z<]<k(q Q) Vijk,
@ @)

which we need to compare with
HyHyHa(vijk) = HaHi(afving + 0j<k(a”" — @)viji)
= Ha(aj.ak vk + 6icrafp (™" — Q)ving + 0j<n(q™ — Qajvjin + icjer(a™ = @)*vije)

r 1l r —1 L r ror -1
= aj; @GV + 0ici (@7 — @)@V + 6ick@iray; (" — q)vijk

@ ® ®
+ 5i<k<ja§k(q_l — q)*vikj + Gjek(q" — q)a;i; @i Vjki + 0j<k>i(q - q)2aéjvjik;
© @ @
+ Gicjckp (@ = @)?vinj + Sicjcn(a™ — @)Pviji -
©® @

The parts @, ®, @ agree in the two expressions. Let us consider now @), @, ©®.

If i = j = k, then the terms for ®, @, ® match since al, = ¢~! = att for any t.

Next assume i, j, k are pairwise distinct. Then the parts @ agree if aﬂ l] ajay; which
holds by (9.6). The parts @ agree if 5]<1<ka + 51<J<kal 5]-<k>za” which obviously
holds. Similarly, for ®. Assume now i = j 75 k. Then the respective sums @+@+®
are 5z<kau ali(g7! = q)vigk and (0i<palyal; + 6j<r>ial;) (¢~ — q)*vir. They agree, since
aila’L’L =q =1 + q_l( - Q) = a:kGZz + aiz( - ) by (96)

Assume next i # j = k. Then the sums are (51<k;a§Z ij (' —q) + Ok>ici(q — q)2a§] and

Sr>ici(g™t — q)%a ;- They agree, since aélaZJ =14+q¢2=q¢qg ' ~q) by (9.6).
Assume finally i = k: # 4. Then both sums @+@+® vanish.

It remains to compare the two parts labelled @.
Ifi=j5= k: then they agree since al, = ¢! = al, for any t. If i = j 75 k then we ask if

Zkazk = alkadC which is obviously true. If i = k #£ j then we ask if al = al.a’. which

ij Jz ij i
holds by (9.6). If j = k # i then we ask if aw 5= a azl which is clearly true.

Therefore, the @-parts agree if at least two of 4, j, and k are equal, and it remains to
consider @ in the case where i, j, k are distinct and r # [. Using (9.6) we can reduce to

the case i < j < k. We compute the values depending on whether ¢ —1[, j — [ and k —
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11.4. Proof of Proposition 9.34

parity of i — 1 parity of j —1 parity of k — I aﬁ-jafkaék afjaéka;k

even ¢ ¢
even
odd g ! g !
even — —
even q q
odd 1 1
odd q- q-
even q 1 q 1
even . 3
odd q q
odd 1 1
even q q
odd 3 3
odd q q

Figure 11.1.: Comparison of values

are even or odd in Section 11.4. Note that r has the opposite parity of [ since r £ [. We
see that the @-parts agree as well. This finishes the proof. O
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S 11.5. Proof of Proposition 10.30
Lemma 11.1. The matrices By and By from Proposition 10.30 are mutually inverse.
Proof.
i J i D
%il E?% \ £ E?% KGN
BlB[): 'zjiljl zJ:JzzJ:JL o iJoi (];;7)
g g i g o1
iid iiJ Joii Joii i i ) ) Joii Joii
iid iid
- Eﬁ%—tﬁ%—@}% - t-5 W8
iij PG i iij L P Y Y i i
idd iid di i ; i (sR-6) (sR-7) (sR-3) (sR-3) iid iid _ )
(sR-7) (sR-6) (sR-5) (sR-5) s S
— X+ - - &J — &J (sR-5) (sR-3) (sR-4) 0 - + - &+
B0B1: joii i i joii gt gt (SR_S)(SR_?)):O () joii joii s T
iiJ Joii i Joii
SEI ’ A
:Zz J 1.7' i i Ji :
L O ’ A

Rewriting this using (sR-2), (3.4) and (sR-6) gives the identity matrix.

0¢°01 uonjisodoiq pue g 193dery)) jo sjoord ‘T[




Part II.

The isomeric Lie superalgebra
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12. Introduction

In this part of the thesis we will consider the representation theory of the isomeric Lie
superalgebra q(n). For this consider a vector superspace V of dimension (n|n) with an
odd endomorphism J satisfying J? = —1.

The isomeric Lie superalgebra q(n) is then the centralizer of J in gl(V'). Fixing a basis
{vi,...,0n,0],...,v1} for V, we may assume that Jv; = v} and Jv, = —v;. We have
q(n)o = gl(n), and q(n); is the adjoint representation of gl(n).

The most striking difference of q(n) to other Lie (super)algebras is that the classical
version of Schur’s lemma does not hold for q(n). In particular, there exist irreducible
representations whose endomorphism ring is not C. If that is the case, the endomorphism
ring has dimension (1]1) and the odd part is generated by a morphism that squares to
—1. These irreducibles are said to be of type Q and the others are of type M. For instance,
the natural representation V is by definition of type Q.

Our goal is to describe the category of finite dimensional representations of q(n) via
explicitly describing the endomorphism ring of a projective generator. We approach this
via Schur—Weyl-Sergeev duality. By construction, the natural representation V of q(n)
is faithful. In particular, every indecomposable projective representation appears as a
direct summand of V&4 ® (V*)®? for some d and d’, see e.g. [CH17].

So if we have an explicit description of homomorphisms between tensor products of V'
and V* there is hope to extract information on morphisms between projective modules.
For this we will use the oriented Brauer—Clifford supercategory OBC. This is a cyclotomic
quotient of AOBC, the degenerate affine oriented Brauer—Clifford supercategory. Both
supercategories, OBC and AOBC, were introduced in [BCK19], extending the works of
[Ser84,Naz97, JK14].

Both are symmetric monoidal supercategories generated by two objects A and V (the
dual of A) and morphisms generated by the braiding, evaluation and coevaluation
morphisms, as well as one additional generator, which is odd and corresponds to the odd
endomorphism J of V. The supercategory AOBC admits one further even generator,
which should be seen as a diagrammatic interpretation of (a rescaling of) the odd Casimir
for q(n), see Section 14.2 for a precise definition.

By results of [Ser84], [JK14], [HKS11] and [BCK19], there exists a full monoidal super-
functor

SWS,,: OBC — rep(q(n))

of AOBC-module categories. This is also called (mized) Schur—Weyl-Sergeev duality.

To be able to pick out the projective representations in rep(q(n)), we would like to
understand idempotents in OBC. This can be achieved by replacing AOBC by a certain
2-supercategory il(BO|OO), the super Kac-Moody 2-category of type By, which was
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introduced in [BE17b]. This construction is based on work by [KKT16], [KKO13] and
[KKO14], who introduced an idempotent version of the degenerate affine Sergeev algebra,
that coincides with the full monoidal subcategory of AOBC generated by A. Disregarding
all technicalities, U(By|) arises from AOBC by decomposing the endofunctors A @ _
and V ® __ into generalized eigenspaces for the additional generator of AOBC. The direct
summands are then named FE; and F; and define the 1-morphisms for 4(By|a)-

The definition of {(By|.,) arose in the study of categorification of Kac-Moody su-
peralgebras. Generally speaking, representations of type Q are not very suitable for
categorification purposes, one prefers much more the type M representations. Usually,
to obtain some kind of uniqueness result, one requires e.g. your category corresponding
to the highest weight space to be Vec (i.e. type M), see [Rou08, LW15, BLW17]. Another
phenomenon appears in [Bru04], where many factors of 2 appear while relating the
representation theory of q(n) to exterior powers of type B. These factors of 2 are mainly
due to type Q representations, and would not appear for type M representations, see
Theorem 19.18.

In [KKT16], a so-called Clifford-Twist was defined, which in broad terms swaps between
type M and type Q representations. Using this twist, we obtain a supercategory rep’(q(n)),
which is weakly Morita superequivalent to rep(q(n)), but contains only type M repre-
sentations. By results of [Bru25|, the functor SWS,, upgrades to a full morphism of
U(By|oo )-2-Tepresentations

Fn: u(BD|oo)A — rep/(q(n))'

The 2-representation il(BO|OO)A is a cyclotomic quotient of Ll(BO|Oo) and arises by the
“same” cyclotomic condition as OBC from AOBC.

The main advantage of LL(BO|OO)A over OBC is that the idempotents which we want to
understand are part of the definition of il(B0|oo)A. However, from the definition it is
not clear, which idempotents are actually non-trivial. We then go about proving a basis
theorem for M(BO‘OO)A. This will give insight into the non-trivial idempotents and also
describes the morphism spaces of ZL(BO‘OO)A, yielding information on morphisms between
projective representations of q(n).

Theorem A. The 2-representation il(Bmoo)A has basis indexed by pairs of up-down-

tableauz of strict bipartitions and this endows il(B0|oo)A with the structure of an upper
finite based quasi-hereditary algebra in the sense of [BS24].

Its proof comprises two parts. After defining the basis elements in Definition 15.6, we
show in Theorem 15.23 that these elements span the morphism spaces of L[(B0|OO)A.

To show that these are linearly independent, we construct a faithful representation of
11(B0|OO)A in Chapter 16. To construct the faithful representation, we introduce a new
Khovanov superalgebra K@ of type Q as it should be seen as an analog of the Khovanov
algebras of types A, B and P from [BS1la] and [ES16] and Chapter 4. Before we circle
back to the linear independence, we will first give a brief overview of the Khovanov
algebra of type @, as this will later also play an important role for our main goal, the
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12. Introduction

explicit description of the endomorphism ring of a projective generator for q(n). The
Khovanov algebras (of types A, B, P and @) are equipped with a distinguished basis
and an explicit multiplication rule, which arises from the application of certain surgery
procedures. In our case (i.e. type @), the distinguished basis elements look like

[ﬁclml
T

To keep it simple here, we will only define the multiplication rule over Fs. In general,
signs will appear in the multiplication rule in a subtle way, similar to the signs appearing
for osp(r|2n), see [ES16]. We show:

Theorem B. The graded superalgebra K is an upper-finite based quasi-hereditary
superalgebra in the sense of [BS24].

As in [BS10] and [HNS24], we then introduce geometric bimodules for K2. The results
there carry over to our case more or less verbatim. In particular, we can e.g. compute
their effect on projective representations of K¢ and obtain an adjunction theorem.

We define then special geometric bimodules called F; and F; for i € Ng and obtain the
linear independence needed for the basis theorem:

Theorem C. There is an isomorphism of 2-representations G LL(BO|OO)A — 2Kf’g.

Here, ZK% is the category obtained by repeatedly applying the functor E; and F; to a
particular projective representation of K<. This statement should be taken with a grain
of salt, as we only have defined the multiplication rule for K® over Fy. In particular, we
can check well-definedness of the 2-representation structure on K? only over Fy. We will
indicate, however, which parts of the argument carry over to the general case and where
extra care is needed.

The rest of the proof (i.e. obtaining the morphism of representations and showing that
this is an isomorphism) does not use the explicit signs in the multiplication rule.

The well-definedness of the 2-representation structure on K is the sole point where the
explicit signs are actually needed. All the other results do not depend on the explicit
signs.

With the isomorphism from Theorem C, we can translate the results for il(BO|OO)A to K@
and obtain for free a full functor

Fn: K9 -proj — rep’(q(n)).

The image is given by direct summands of mixed tensor powers V&4 @ (V)@ In
particular, the image contains all projective representations of q(n). Unfortunately,
this functor is not faithful. To remedy this issue, we then introduce certain sub-2-
representations of 2Kg, called 2l,,. From Schur—Weyl-Sergeev duality in conjunction
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with easy considerations regarding central characters, we see that F,, maps 21,11 to 0
and 21, to proj’(q(n)). We can give another description of the quotient representation
21,, /21,41 as K@ -proj, where K is a subquotient of K.

With all that we achieved so far, the following theorem is almost immediate.

Theorem D. We have a superequivalence of (B« )-2-representations
Fn: K@ -proj — proj'(q(n)).
In particular, we obtain a weak superequivalence between K -mod and rep(q(n)).

After proving this main theorem, we take a step back and consider again the cyclotomic
quotient il(B0|OO)A, but now from a categorification perspective. In this context quantum
covering groups as in [CHW13] appear. These quantum covering groups come equipped
with another parameter 7 satisfying 72 = 1. This additional parameter can be specialized
to 1 or —1. In the former case, giving a classical quantum group and in the latter
case, giving a quantum supergroup (of anisotropic type). The original motivation for
this twofold definition came from the categorification of the Jones polynomial. Namely,
there exist two different categorifications of the Jones polynomial, Khovanov homology
as in [KhoOO] and odd Khovanov homology as introduced by [ORS13]. These two
categorifications are not equivalent, as can be seen from results of [Shull].

As the Jones polynomial bears close connections to the representation theory of Uy(sly),
see e.g. [RT90], it is natural to expect close connections between the corresponding
categorifications. With this guiding principle at hand, there should be another (non-
equivalent) categorification of quantum groups in addition to the one from [KL10] (or
equivalently [Rou08]). In [EKL14], a second categorification of the positive half of Uy (sl5)
was introduced, based on the theory of odd symmetric functions and the odd nil-Hecke
algebra.

In [KKT16], so-called quiver Hecke superalgebras were defined which comprise a gen-
eralization of KLLR algebras by incorporating the odd nil-Hecke algebra. Following up
on this, it was shown in [KKO13] that the respective cyclotomic quotients provide a
supercategorification of Kac-Moody algebras and their integrable highest weight modules.
However, in this categorification setup supercategories are used. Instead of supercate-
gories, one could equivalently work with categories endowed with a parity shift functor II.
See e.g. [MOS09] for a similar consideration in the graded context. Furthermore, refer to
[BE17a] for more details in the case of 2-supercategories.

This parity shift functor gives rise to the above-mentioned second parameter w. These
quantum covering groups have been defined by [CHW13]. The main difference of this
definition compared to other definitions of quantum supergroups is the existence of
another set of generators J, which gives a more unified approach to the representation
theory. Loosely speaking, the generators K scale weight spaces by ¢-powers and J by
m-powers. Without these additional generators, these algebras were already considered
in [BKM98].

Following up on [KKO13], the same authors proved in [KKO14] that the cyclotomic
quotient of the quiver Hecke superalgebras, now with parity shift II, provide a cate-
gorification of these quantum covering groups. This parallels the classical results from

129



12. Introduction

[KK12] and [Web17], which proved that cyclotomic KLR algebras together with induction
and restriction functors provide a categorification of highest weight representations of
Kac—Moody algebras.

Another approach to categorify the full quantum group was taken in [Rou08| and [KL10].
In both cases, a certain 2-category was constructed. We can think of KLR algebras as
2-categories with horizontal and vertical composition given via horizontal and vertical
stacking of diagrams. The 2-categories in question arise then via adding adjoints F; to
the generating 1-morphisms FE; and imposing one additional relation originating in the
Mackey type relations for induction and restriction. This additional relation corresponds
decategorified to the commutation relation between F; and F}.

For the quantum covering groups, the analogous 2-supercategories have been defined in
[BE17b].

A very important step in the categorification process is the proof of a basis theorem. In
the classical setup, the case sly was proven in [Laul0] via iterated flag varieties. This was
extended to s, in [KL10] using similar methods. The result in full generality was proven
in [Web24] by means of deformation theory. The basis theorem for the 2-supercategories
is not known in full generality. Intermediate results can be extracted from [KKT16],
where the authors related (degenerate) affine Sergeev algebras to certain quiver Hecke
superalgebras. In particular, type By, appears among these, providing in turn a basis
theorem for U(By|o)-

Therefore, 4(By|,) categorifies U(By|) and we obtain a U (B, )-module structure on
Kg(il(Bmoo)A). From the upper-finite highest weight structure on il(BO‘OO)A, we obtain
two natural bases on Ko(il(B0|oo)A). One is given by the isomorphism classes of the
standard modules A([A, u]) and the other by the isomorphism classes of the projective
modules P([\, p]). We will show

Theorem E. There is an isomorphism of U(By|)-modules
O: L(wys) ® LY (—wp) = Ko($(Bojeo)™)s
vu @ 0N = [A(, )],

Under this isomorphism, [P([\, u])] corresponds to the canonical basis element bi‘b of
L(wf) @ L™ (—wy).

Here, L(wy) denotes the integrable U (B )-module with highest weight wy and L*(—wy)
the one with lowest weight —wy.

Canonical bases for covering quantum supergroups are a straightforward generalization
of the classical theory as in [Lus10], see e.g. [CHW13] for this setup. We use however a
different comultiplication, resembling the one from [Kas93| in the construction of crystal
bases.

Disregarding the statement concerning the canonical basis, a similar result was proven in
[GRS24] in the context of cyclotomic oriented Brauer—Clifford algebras.

Note that L(wy) ® L (—wy) is not irreducible anymore. It rather has a descending
Jordan—Hoélder filtration
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We will also categorify this filtration.

Theorem F. There is a filtration of Ll(B0|OO)A by 2-subrepresentations
-+ C UW(Byjso )y € U(Bojoo)t € U(Bojoo ) = U(Bojoo)™

with ﬂ(Bo\oo)ﬁ/ﬂ(Bo\oo)ﬁq = rep/(q(n)). The induced filtration on KO(L[(BO|OO)A) turns
® into a filtered isomorphism of filtered U(By|o)-modules (with the filtration from Sec-
tion 19.3 on L(wy) ® L(—wy)).

Finally, we will identify the subquotients appearing in the Jordan—Hoélder filtration. We
will show that these are isomorphic to exterior powers %™ of the natural representation
of U(By|s). In particular, we obtain that rep(q(n)) categorifies .#", giving a more
conceptual proof for the results in [Bru04].
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13. Preliminaries

In this chapter we will introduce some basic definitions. We will recall the combinatorics
of strict bipartitions and also recall the definition of graded (2-)supercategories.

13.1. Combinatorics of strict bipartitions

Definition 13.1. A partition (Ag,---,A.) is called strict if Ay > Ao > -+ > \,.. We
write £(\) = r for the length of this sequence and |\| = Y_i_; \; for its size. We will
identify a strict partition with its (shifted) Young diagrams. Namely, we will draw the
Young diagram with A\; boxes in row ¢ but shifted by ¢ — 1 to the right. To emphasize this
slightly unusual convention, we will draw the box on the diagonal in gray. For instance,

the Young diagram of (4,3,1) is . We define the residue res(a) of a box « in the

Young diagram to be the difference between the column and the row. In particular, every
gray box has residue 0.

Remark 13.2. There are two reasons for this convention. First, the author finds it
easier to detect addable and removable boxes in this way. Namely, in this convention all
boxes to the right that “look” addable or removable are actually addable or removable.
Second, we can also identify strict partitions with symmetric partitions, i.e. partitions A
with A = \. This is done by reflecting the (shifted) Young diagram at the main diagonal.
These strict partitions will later appear again in the context of type B combinatorics.
Strict partitions encode then also symmetric partitions, since it is enough to remember
half of the diagram.

A strict bipartition [\, u] is a pair, i.e. [A, u] = (A, ), of strict partitions. We denote the
set of strict bipartitions by )\ and also identify these with their pairs of Young diagrams.
The residue of a box « for a strict bipartition is the same as the residue for a bipartition.
We define a partial order on the set of bipartitions by [A, u] > [N, /] if [A| < || and

|l <]

We define a graph (also called /\\) with vertices )\ and two kinds of edges. There is
o an edge [\, u| — [N, '] if N can be obtained from A by adding a box and pu = 1/,
o an edge [\, p] --» [N, /] if A =X and g’ can be obtained from p by adding a box.

We label every edge by the residue of the box that is added.
The following depicts a small part of this labelled graph.
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0 (@7@) ~. 0
L@ / / o,
, 1/@,5)\{ /(@D])
@330»/( 0 EOE e oI oD

An up-down-bitableau t of shape Shape(t) = [\, u] is a walk in the underlying undirected
graph of )\ starting at (0,0) and ending at [\, u]. We write [(t) for the length of this
walk. We denote the set of up-down-bitableaux of shape [\, ] by 7"([A, u]), and we
define T([\, u]) := {t € TY([\, u]) | I(t) = I}. Furthermore, we introduce the notation
794 for the set of all up-down-bitableaux.

Given an up-down-bitableau t of shape [\, u] and suppose that [\, u] = [N, ], then write
5 [N, u] for the up-down-bitableau obtained by concatenation of the walks. Similarly,
we use this notation for --+ as well as backwards edges.

For every bipartition [A, ] there exists a special up-down-bitableau M which is the
walk in the graph by first constructing the Young diagram of A by adding boxes row by
row and afterward constructing the Young diagram of p in the same way.

Example 13.3. For [\, u| = ( ,|:|:]>, the walk t"* would be given as follows

©,0) > @0 - @0 > Hg0) > o) - Heom)

We define

Addg, [\, 1)) = {IN 1] [ D\ ] = X, 4]} and Addg, ([N, u]) = {0 ] ] A ] = [N 1))

13.2. Basics on 2-supercategories

This section introduces the main definitions and results on 2-supercategories that we will
need. See [BE17a] for a more thorough introduction.

Definition 13.4. Denote by GSVec the symmetric monoidal category of graded (i.e. Z-
graded) vector superspaces with linear maps of all degrees and parities. Write GSVec® for
the subcategory of GSVec with only even linear maps of degree 0. Given a graded vector
superspace V', we write |v| for the parity of v € V and deg(v) for the degree of v (given
that v € V is homogeneous). The braiding on GSVec is given by v @ w — (—1)"I*lw @ v,
i.e. the grading plays no role for the braiding.

Given a graded vector superspace V = @,z V;, we define its shift Q™V by (Q™V); =
Vi_m for m € Z. We also have the parity shift functor II swapping the parity.
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Definition 13.5. A graded supercategory is a category enriched over GSVec®. This
means that every morphism space is a graded vector superspace and composition induces
an even linear map of degree 0. Given a graded supercategory C, we write C° for the
underlying category, i.e. the category with the same objects but only even morphisms of
degree 0. Observe that GSVec® is the underlying category of GSVec.

A graded superfunctor F': C — D between two graded supercategories is a GSVec®-
enriched functor, i.e. Home(z,y) — Homp(Fz, F'y), f — Ff is an even linear map of
degree 0 for all z, y € C.

A degree m supernatural transformation n: F' = G between graded superfunctors F,
G:C — D is a family of degree m morphisms 7, = 70 + 7z,1: F'* — Gz such that
nep| =p and Gf o nyp = (=1)PFly, , 0 Ff for f € Home(x,y). Denote by Hom(F, G),y,
the superspace of all homogeneous degree m supernatural transformations. A graded
supernatural transformation is then an element in @,,c; Hom(F, G),,. An even supernat-
ural transformation of degree 0 is the same as a GSVec®-enriched natural transformation.

Classically (i.e. no super), there is a correspondence between graded categories and
categories with a free Z-action. Between these two notions, there are graded categories
with a Z-action. The next definition introduces these for graded supercategories.

Definition 13.6. A graded Q-II-supercategory is a graded supercategory C plus the
extra data of graded superfunctors @, Q= !, II: C — C, a degree 0 odd supernatural
isomorphism (: II = I, and even supernatural isomorphisms o: Q = [ and 7: Q™' = I
of degrees —1 and 1 respectively.

The Q-II-envelope of a graded supercategory A is the graded Q-II-supercategory Cg »
with objects {Q™I1% | kK € Ob(A),m € Z,a € Z/2Z} and

Home, , (Q™1IK, Q”Hbl/) = Qnmett Homy(k,v),

where on the right-hand side ) and II denote the grading and parity shift functors on
GSVec®.

Remark 13.7. If we leave out the graded everywhere in the previous definition and replace
GSVec® by SVec®, we obtain the notion of supercategories, superfunctors, supernatural
transformations etc.

The next definition was introduced in [KKT16] for categories with a Z/2Z-action. We
will use the adaptation from [Bru] to supercategories.

Definition 13.8. Let C be a supercategory. We define its Clifford twist C¢T to be
the following supercategory. The objects of C¢T are pairs (X, ¢), where X € Ob(C)
and ¢ € End(X) such that |¢| = 1 and ¢> = —1. Morphisms f: (X,¢) — (Y, %) are
morphisms f: X — Y in C such that
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supercommutes, i.e. ¥ o f = (=11 f o .

As GSVec® is symmetric monoidal, we get a tensor product on GSVec-enriched categories,
see [Kel05, §1.4]. Given two GSVec®-categories A and B, their tensor product AKX B is
the GSVec®-category with objects Ob(A) x Ob(B) and morphisms

Hom axg((k,v), (0,7)) = Homy(k, o) ® Homp(v, )

for k,0 € Ob(A) and v,7 € Ob(B). The composition of morphisms uses the symmetric
braiding on GSVec®.

In particular, we can consider categories enriched over the monoidal category of graded
supercategories with graded superfunctors. This notion is, however, a bit too restrictive
for our purposes, and we recall the weaker version of a graded 2-supercategory (we use
the term 2-category for what sometimes is also called bicategory). Roughly speaking,
this is a 2-category but the level of 2-morhisms is enriched over GSVec®. This is also
a special case of [GS16], where the authors consider 2-categories enriched in monoidal
2-categories. In our case, the monoidal 2-category is the (strict) 2-category of graded
supercategories, graded superfunctors and even, degree 0 supernatural transformations
(i.e. GSVec-enriched natural transformations).

We will only list the needed data, for the precise coherence conditions we refer to [BE17a]
(or [GS16] for the general setup). In particular, these are the analogs of the coherence
conditions for 2-categories.

Definition 13.9.

(i) A graded 2-supercategory 2 is the data of
(a) A set of objects Ob(2l).

(b) A graded supercategory Homgy(k,v) for every k, v € Ob(2l), whose objects
and morphisms are called 1-morphisms and 2-morphisms, respectively. The
composition of 2-morphisms is also referred to as wvertical composition.

(c) A family of 1-morphisms 1,: k — k for every k € Ob(2l).

(d) Graded superfunctors Ty, ,,: Homy(v, k) ¥ Homgy(t, v) — Homgy(t, k) for all
Kk, v, t € Ob(A). We will usually abbreviate T}, ,,, by —— and refer to it as
horizontal composition.

(e) Even degree 0 supernatural isomorphisms a: (——)— = —(——), I: 1,— — —,
and 7: — 1, — — (whenever this makes sense).

If a, I and r are the identity, we call 2 a strict graded 2-supercategory.
(ii) A graded 2-superfunctor R: 2 — © between two graded 2-supercategories is the
data of
(a) A function R: Ob() — Ob(D).
(b) Graded superfunctors R: Homgy (v, k) — Homo(Rv,Rk) for all k, v € Ob(2l).
(c¢) Even supernatural isomorphisms c¢: (R—)(R—) = R(——) that are of degree 0.
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(d) Degree 0 even 2-isomorphisms i: 1gr, => R1, for all kK € Ob(2).

(iii) A graded 2-supernatural transformation (X, x): R = S is the data of
(a) 1-morphisms X,;: Rk — Sk for all kK € Ob(2l).

(b) Even degree 0 supernatural transformations z,,: X.(R—) = (S—)X, for
all kK, v € Ob(). (Both sides are graded superfunctors Homg(v, k) —
Homso (R, Sk), respectively).

A graded 2-supernatural transformation is called strong if all X, , are isomorphisms.

Remark 13.10. A strict graded 2-supercategory is the same as a category enriched over
the category of graded supercategories with graded superfunctors.

Again there is an obvious notion of 2-supercategories, 2-superfunctors and 2-supernatural
transformations by leaving out the grading everywhere.

Note that the forgetful functor GSVec® — SVec® is symmetric monoidal, in particular any
graded 2-supercategory is a 2-supercategory. However, not every (graded) 2-supercategory
is a 2-category (but the converse holds).

Example 13.11. The prototypical example of a strict graded 2-supercategory is the
graded 2-supercategory G&C€at consisting of graded supercategories, graded superfunc-
tors and graded supernatural transformations. We also consider a particular sub-2-
supercategory $&€at? with Karoubian graded supercategories (by this we mean that
the underlying category is Karoubian), graded superfunctors, and graded supernatural
transformations.

An example for a non-strict 2-supercategory is the 2-supercategory of superalgebras,
superbimodules and superbimodule morphisms.

Definition 13.12. A graded 2-representation of a graded 2-supercategory 2 is a graded
2-superfunctor A — &SC€at. A morphism of graded 2-representations is a strong graded 2-
supernatural transformation. A graded 2-representation R’ is called a sub-2-representation
if there is a fully faithful morphism R’ — R.

Remark 13.13. The following is a particular example of a sub-2-representation. Let R
be a graded 2-representation of the graded 2-supercategory 2. Suppose, we are given
full subcategories RN C R\ such that the graded superfunctors R restrict to these
subcategories. Then, we obtain a sub-2-representation R’ of R.

The following gives another construction of graded 2-representations as quotients by
invariant ideals, see e.g. [BD17, §4.2].

Definition 13.14. Let R be a graded 2-representation of a graded 2-supercategory 1. An
invariant ideal | of R is a family (l,), of homogeneous (categorical) ideals |, C Rx such
that for every 1-morphism X: k — v and ¢g: * — y in |, we have Xg € |,,. Categorical
ideal means that if g: x >y €1, and f: y — 2, h: 2 = x € Rk, then fg,gh € L.

Given an invariant ideal | of R we can define R/l to be the graded 2-representation of 2
with (R/1)k := Rk/l,; (the usual quotient of a category by an ideal).
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Remark 13.15. Note that an invariant ideal does not necessarily define a sub-2-
representation (it is not necessarily fully faithful) but every sub-2-representation defines
an invariant ideal.

The following definition will be later needed for the categorification results.

Definition 13.16. A graded Q-I1-2-supercategory is a graded 2-supercategory 2 together
with families of 1-morphisms

1 1

! Lk ok), m=@cr—k), wl=(m''Kk—kK)

q=(q=: k= K), q =g
and families of (homogeneous) 2-morphisms

0=(0s:qge= 1), T=Cn:q. = 1s), (= (Cu:me=1s).
parity even even odd
degree -1 1 0

Definition 13.17. Given a graded 2-supercategory 2, we define its Q-II-envelope
2 4 to be the graded Q-II-2-supercategory with the same objects as 4 and morphism
supercategories Homsg, . (k,v) = Homc(k,V)qr. In other words, we add formal grading
and parity shift to every 1-morphism.

The space of 2-morphisms stays the same but is shifted in degree and parity, according
to the grading and parity shift of the 1-morphisms.

Observe that for the horizontal composition of 2-morphisms signs are involved (for details
see [BE1T7al).
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Brauer—Clifford algebras

In this section we collect the basic definitions on isomeric Lie superalgebras and their
representation theory.

14.1. Isomeric Lie superalgebras and their representation theory

Consider a vector superspace V with an odd endomorphism J satisfying J2 = —1. This
necessarily means that V' is of dimension (n|n) for some n € N.

The isomeric Lie superalgebra q(n) is the centralizer of J in gl(n|n). Fixing a basis
{vi,...,0n,0],...,0,} for V, we may assume that Jv; = v, and Jv, = —v;. In terms of
explicit matrices, q(n) is then given by

a(n) = {(5 %)}

such that q(n)o = gl(n), and q(n); is the adjoint representation of gl(n).

Denote by rep(q(n)) the supercategory of finite dimensional representations of q(n) that
are integrable with respect to GL(n), the algebraic group corresponding to gl(n) = q(n)o.
The morphisms in rep(q(n)) can be even or odd, and we denote by rep°(q(n)) the
restriction to the even morphisms. Both of these are rigid symmetric monoidal categories,
with braiding v ® w +— (—=1)lI1*ly @ v,

The abelian category rep(q(n))° has enough projectives and injectives (and these agree),
see e.g. [BKN11, Proposition 2.2.2]. Denote by proj(q(n)) be the full subcategory of
rep(q(n)) generated by the projective objects (in rep q(n)°).

Two very important representations of ¢(n) are the natural representation V and its dual
V*. We denote the full Karoubian monoidal subcategory of rep®(q(n)) generated by V/
and V* by Fund®(q(n)). Objects of Fund(q(n)) are direct sums of direct summands of
mixed tensor powers V&4 @ (V*)&d',

We use the notation Fund(q(n)) for the full subcategory of rep(q(n)) generated by the
objects of Fund®(q(n)).

Remark 14.1. Note that Fund(q(n)) is not Karoubian. There might exist non-
homogeneous idempotents in Fund(q(n)) that will not split. However, every homogeneous
idempotent (which is then necessarily even) splits.

The natural representation V is a faithful representation and thus a tensor generator for
rep q(n). The proof is as in the classical case, but an explicit argument for the super case
can e.g. be found in [CH17| (the paragraph after Remark 7.4). In particular, we have the
following important consequence.
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Corollary 14.2. FEvery indecomposable projective representation appears as a direct
summand of VE @ (V)2 for some d and d'.

Hence, we have the following inclusions of full subcategories of rep(q(n)):

proj(q(n)) € Fund(q(n)) € rep(q(n)).

Irreducible finite dimensional representations of g(n) have been classified by [Pen86,
Theorem 4] and are parametrized by their highest weight. Denote by Ag the set
{( Ay, ) € Z% | N > ANip1 and Aj = A4 only if \; = 0}. Given A € Ag, there is a
corresponding irreducible highest weight representation Lg(\) of q(n) and

(14.1) {LQ()\) ‘ AE AQ}

form a complete set of non-isomorphic irreducible representations of q(n) (up to parity
shift). Some of these are of type Q, i.e. Lg(\) = IILg()), and some are of type M,
ie. Lo(X) 2IILg(A). To give an easy criterion to determine whether a representation is
of type Q or M, we introduce some combinatorics.

Definition 14.3. The combinatorial weight diagram of A\ € Ag is a sequence AT = (Aj)ieN

with /\Z € {o, X, A, V}. We draw this as a sequence of symbols next to one another and
put a wall | to the left of the first entry. The entries are defined as follows: Let
I;_ = {)‘z ’ A > 0} and I/\_ = {—)\z‘ | A < 0} Then,

v oifie I NIy,
x ifie I\ I,
ifiel; \I,
A ifi¢ ITUIy.

(¢]

Note that any combinatorial weight diagram has finitely many o, x and V entries but
infinitely many A. For a sequence AT we write ?(A) for the number of ? entries in AT,
where ? € {o, x, A, V}. The core core()\) is the core diagram of AT which is obtained by
replacing all A and V with e.

Example 14.4. To the weight A = (7,5,2,0,0,—1,—-2,-3,-7) for q(9) we have the
following combinatorial weight diagram:

M= oVoAXAVA--.

Its core is core(A\) = oeoce x eee---. Note that the combinatorial weight diagram
of (7,5,2,—1,—2,-3,-7) for q(7) is the same as the one for q(9). In particular, the
combinatorial weight diagram only determines \ if we fix the n for q(n).

Lemma 14.5. The irreducible module Lo()\) is of type Q if and only if x (AT) + o(AT) is
odd, and otherwise of type M.
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Proof. By [Pen86, Proposition 1], we have that Lg(A) is of type Q if and only if [{); |
\i # 0} is odd. This number is exactly x(A) 4+ o(AT) +2 Vv (A) and the statement
follows. O

The category rep(q(n)) decomposes into a direct sum of blocks, i.e.

rep(q(n)) = P rep(a(n))x,

given by the central characters k.
Definition 14.6. We write X<1(n) for the set of central characters of q(n).
The following is a direct consequence of [Ser83, Theorem 2].

Lemma 14.7. Two finite dimensional irreducible representations Lgo(\) and Lo(p) have
the same central character if and only if core(\) = core(p).

Next we will introduce the notion of atypicality.
The definition we give here goes back to [Bru04, (2.13)], and it is a slight refinement of
the usual notion of atypicality, as defined e.g. in [CW12a, Definition 2.29].

Definition 14.8. We define the atypicality of a weight A € Ag to be
atyp(\) == n — x (A7) + o(AT).

If atyp(A) < 1, we call A typical and strongly typical if atyp(\) = 0. Observe, that the
atypicality only depends on the core of A\, and thus, by Lemma 14.7, we can also define
the atypicality of a block k.

Furthermore, note that Lg(A) is of type M if and only if n — atyp(\) is even.

The usual notion of atypicality can be recovered from Definition 14.8 as LatyTp()‘)J . However,

the differentiation between typical and strongly typical weights (both of which would
yield “usual” typical weights) was e.g. also made in [FM09] and [GS20]. The next result
justifies the notion of typical and strongly typical and was shown in [GS20, Theorem 4.1]
and the discussion thereafter.

Lemma 14.9. Let A € Ag.

(i) If atyp(\) =0, then Lo(A) = Po(X) = Ig(N).
Here, Lo(N) is of type Q if and only if n is odd.

(ii) If atyp(A\) = 1, then there is a short exact sequence
0 — IILg(A) — Po(A\) — Lg(X) — 0.

Here, Lo(X) is of type Q if and only if n is even.
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Remark 14.10. Lemma 14.9 shows that the (strongly) typical blocks of rep(q(n)) contain
only one irreducible module (up to parity shift). The strongly typical blocks are exactly
those blocks that are simple.

Working with representations of type Q is often not very convenient. One reason for
this is that their endomorphism ring is not 1-dimensional. In particular, Jordan—Hélder
multiplicities cannot be computed via dim Homg,,)(Pg()), ). In the following definition,
we use the Clifford twist from Definition 13.8 to remedy this.

Definition 14.11. Consider the decomposition rep(q(n)) = @.cx_,(n) rep(d(n)), (recall
the set X<;(n) from Definition 14.6).

Define rep/(q(n))« to be rep(q(n)), if it is of type M and rep(q(n))¢7T if it is of type Q.
By Definition 14.8, we add a Clifford twist if and only if n — atyp(k) is odd.

Similarly, we define Fund'(q(n)) and proj’(q(n)).

14.2. Schur—Weyl-Sergeev duality and oriented Brauer—Clifford
algebras

In this section, we are going to recall Sergeev duality from [Ser84, Theorem 3]. This will

be the main ingredient in our construction of an equivalence of abelian categories, as

described in the introduction.

We begin by recalling the degenerate affine oriented Brauer—Clifford supercategory from
[BCK19].

Definition 14.12. The degenerate affine oriented Brauer—Clifford supercategory AOBC
is the C-linear strict monoidal supercategory generated by two objects V and A and
morphisms

o AV =1 M1 — VA, AL AN = AN, T A=A TA=NA,

where the first four are even and the last one is odd, subject to the following relations:

(14.2) Ul :l (14.3) (\j :T
(14.4) zj = TT (14.5) g = F@ (14.6) m is invertible

(14.7) £=1 (14.8) A= (14.9) 3 =0
(14.10) 4=-% (14.11) R = =1-1¢

Next, we introduce an important cyclotomic quotient of AOBC.

Definition 14.13. The oriented Brauer—Clifford supercategory OBC is the quotient of
AOBC by the left tensor ideal generated by

1.

Write HC,, for the endomorphism algebra of V& in OBC.
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Remark 14.14. The above defined supercategory OBC can alternatively be defined as
the monoidal subsupercategory of AOBC generated by the same objects and morphisms
as AOBC, excluding 4.

The main reason for introducing AOBC is the following result.

Theorem 14.15 (Mixed Schur-Weyl-Sergeev duality). There is a full functor
SWS,,: OBC — rep(q(n))

of left AOBC-module categories.

The fullness for the full monoidal subcategory of OBC generated by V goes back to
[Ser84, Theorem 3]. Using adjunctions, it can easily be extended to all of OBC, see
e.g. [BCK19, Theorem 4.1]. In [BCK19, Theorem 4.4], it was shown that rep(q(n)) is a left
AOBC-module category, see also [HKS11] for a similar statement for the endomorphism
algebras of V---V. From the definition there, it is clear that this is compatible with
SWS,,.

Under the functor SWS,,, the object V corresponds to the natural representation V' and A
to its dual V*. The cap, cup and crossing of OBC are sent to the evaluation, coevaluation
and braiding of rep(q(n)), respectively. The morphisms 4 is sent to the rescaling of J by
v/—1. The final generator 4 is sent to a rescaling of the odd Casimir in U(q(n)) ® U(q(n))
by —J ® 1.

The more classical formulation in [Ser84] is as follows. In this setup everything is
semisimple and more can be said about decomposing tensor products into irreducibles.
The following summarizes [Ser84, Theorem 3 and 4].

Theorem 14.16. The actions of HC,, and q(n) on V& centralize each other. Moreover,
V@ js semisimple as q(n)-representation and decomposes as

Vol = P2V Lg(\) K DN
A

Here, A runs through all [\,0] € N\ with £(\) < n, D* denotes the irreducible HC,,-
module associated to X\ and 6(A) = ¢(A) mod 2. We can easily interpret \ as the integral
dominant weight (A1 > --+ > Agx),0,--+,0) of q(n) and Lg()\) denotes the irreducible
module with this highest weight. If 6(\) = 1, both irreducible representation are of type Q
and their tensor product decomposes into a direct sum of two irreducible representations
of type M. Then, 2_5()‘)LQ()\) X D* denotes one summand of this.
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In this section we are going to recall the definition of quiver Hecke superalgebras from
[KKT16] and [BE17b]. These are defined for any super Cartan datum, but we will only
be interested in the case of type By: For this let I = Ng with parity function I — Z/2Z,
i — 0;0. Let (—d;;) be the generalized Cartan matrix of odd type B, i.e. we have

-2 ifi=j,
2 ifi=0=j5-1,
1 ifi£0and j=10+1,

0 otherwise.

dij =

Let b be the complex vector space with basis e; for ¢ € N. We define h; € h as hg = —2e;
and h; = e;—e; 11 for ¢ € N. Furthermore, we define o; € h* as ag = —¢1 and o; = g;—€;41
for i € N. In particular, we have (h;, oj) = —d;j. Denote by X = {x € b* | (h;,r) € Z}
the weight lattice.

The following definition is taken from [BE17b] and based on [KKT16].

Definition 15.1. The 2-supercategory il(Bo‘oo) is the 2-supercategory with objects X,

generating 1-morphisms F;l.: kK > k+«a; and F;1,: k >k —a; fori € I and k € X,
which we depict as T and l , and the following generating 2-morphisms

/{ : Eil,g — Eil,{, >< : EiEjl,.@ — EjEi]-m
i i

- (parity [i]) (parity i]|j])
A i1 = BB, o EiFL — 1,

(parity 0) (parity 0)

subject to the following relations:

if i =,

0
(15.1) ij _ TT if [i = j| > 1,

i (i_j)(dﬂ _13?) if i — j| = 1.

(15.2) P4 _(_1)|z’|m>< _ >< _(_1)|i|m>< :%H ,

L
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(i —j) Y (—1)lilli+s) TTT.{ ifi=k=j+1,
i J ok
(15.3) - = r+§;9§3—1

ik i J ok 0 otherwise.

(15.4) NJ =T, m _l

i i

Finally, introducing the shorthand

X=Xk

we require the following (not necessarily homogeneous) morphisms to be isomorphisms:

(15.5) X ¢ EjFls 5 FEjl, if i # j,
)—1
(15.6) >< @ w1 EiFil, S FE;l, @ 15hs) if (hi, k) > 0,
n= 0 i
hm |
(15.7) >< @ nu L EiFil, @ 197 0him) X P, if (hi k) <0
n=| 0

In [BE17b], the authors calculated a spanning set for (B ), and they calculated many
additional relations that hold among these generators. We do not repeat all of these
relations here, but will frequently refer to them. We advise the reader to consult [BE17b]
while reading Chapter 15 and Section 15.1.

Rotating the generating morphisms via (15.4) and using (15.5)—(15.7), we obtain the
following important elements

i

i J i ;
booX X oy

1

Observe that, by using the defining relations, {{(By|o) can be turned into a graded
2-supercategory. Figure 15.1 shows the degree and parity of all the generators.

Next, we introduce a certain cyclotomic quotient Ll(BO|OO)A of U(By|o), 1-€. a certain
2-representation of U(By)-

Definition 15.2. Consider the universal 2-representation (R )xecx associated with the
weight 0, i.e. Ry = Homy(p,.)(0, &), where the 1- and 2-morphisms in (Bp|) act on
the left in the obvious way.

Define (Z(a | @o)x)rex to be the invariant ideal of R generated by

(15.8) {? T (05 }
0 £0
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Generator Degree Parity Generator Degree Parity

1 2d; i ! 2d; i

i i J

4 didy; li| 151 X did;j div
[

X 0 il X 0 il
~ G- (hiys) O A G+ (i) i

) di(1+ (hi, K)) 0 J di(1 — {hi, ) i

Figure 15.1.: Degree and parity of the generators of U(By)

Remark 15.3. By [BE17b, 2.18, Corollary 5.4], (Z(aog | a0)k)rex is also generated by

(15.9) {f l O }

0 20 0

Definition 15.4. We define the cyclotomic level 1 quotient ﬂ(BO‘OO)A to be the 2-
representation U(By)/Z(ao | ap) using Definition 13.14.

Theorem 15.5. There is an essentially surjective, full functor of 2-representations of
Ll(B(J\oo)
Fn: M(BO‘OO)A — Fund’(q(n)).

Before we give the proof, note that we use Fund’(q(n)) and not Fund(q(n)) here. The
reason for this is that L((BO|OO)A is solely of type M, so to have any chance of a full functor,
we need to consider Fund’(q(n)).

Proof. Theorem 14.15 gives an action of AOBC on Fund(q(n)). By [Bru], this upgrades
to a 2-representation of {(By|«) on Fund'(q(n)). The trivial representation C clearly
satisfies the cyclotomic relations (15.8), and thus we get a map of 2-representations
il(BO‘OO)A — Fund’(g(n)). Fullness follows from Theorem 14.15. O

We conclude this section by formulating a basis theorem.
The basis will be indexed by pairs of up-down-bitableaux of the same shape.

Definition 15.6. Fix an up-down-bitableau t of shape [\, u]. To this, we will associate
an upper half basis element, which we denote by Wt.

Let £ = wt([\, pu]) == wt(p) — wt(X), where wt(A) = Yi_jey, if A= (A > -+ > \).
Note that wt(\) = >7;cn, —lici, where [; is the number of boxes of A with residue .
Then, ¥! lives in the Hom-category M(BO‘OO)Q, which is a quotient of ’Homu(BO‘oo)A(O, K).
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To t we associate the following sequence of 1-morphisms E; and F;. Namely, we start with
the empty sequence and build it via traversmg the walk in )\ from (0, 0) to [\, u]. For

every edge — we add Ej and for every edge -15 we add F; to the front. For edges being

traversed backwards, i.e. & and - respectively, we add F; and F; respectively to the
front. Denote the so obtained sequence by rest. Similarly, we define res tV* for the special
up-down-bitableau. Then, ¥! is a 2-morphism from rest“* to rest in Homy Bojoo) (0, k).
This two-morphism is obtained as follows. For every edge in the walk for t that removes
a box, we connect (using a cup) the corresponding E; (or F;) to the corresponding F; (or
E;) where this box was added. After finishing all this, we connect the remaining E; (or
F}) to the corresponding E; (or Fj;) in res tM* (this is also the unique way with the least
number of crossings).

Example 15.7. Consider the up-down-bitableau t of shape [\, u] = (-, 1 ]):

@0 -% 0.0 > @D -~ @) S Eoe) - e

< (gD - @O0 - @EOE) > G D)

We have wt(\) = 3 + 61 = —(2a9 + a1) and wt(p) = 2 = —(ap + a1). In particular,
Kk =wt(u) — wt(A) = —e1 = ap and the sequence rest would be EyF FyE EyE1 Fy EoFo,
while rest\* = FyFyEgFE1FEy. The 2-morphism W' would be given by the following
diagram:

Similarly, we can define a lower half basis element W, for every up-down-bitableau t of
shape [A, u]. This lives again in £(Bp )2 but describes now a 2-morphism from rest to
res tM*. The construction is exactly the same, we just replace cups by caps.

Given now a pair (t,s) of up-down-bitableaux of the same shape, we can define an element
Ui == U® o Uy of M(BO‘OO)A. In the beginning of Section 15.1, we will argue why these
elements are actually well-defined.

Theorem 15.8 (Basis Theorem). The set

U {98 1tseT N u)}
oule A\

is a basis ofil(BO‘oo)A.
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In Theorem 15.23, we will show that this set spans il(BO‘OO)A. Linear independence will
follow from Theorem 17.8. We conclude this section with a direct consequence of the
basis theorem.

For this, recall the partial order on /{\ from Section 13.1:

(15.10) Aop] > N ) = A< V] and [ < /]

Let I be the set of finite sequences with entries in {E;, F; | i € No}. We view /\\ as a
subset of I via [\, p] — res t™*. Let

Y (4, [\ p]) = {0 | te TY\, p]) and rest =i},
X([\ p),4) = {0 t e T\, pu]) and rest = 3}.

Theorem 15.9. The data \ C I together with Y (i,[\, pu]) and X([\, pu],2) endow
il(B0|OO)A with the structure of an upper-finite based quasi-hereditary algebra in the sense
of [BS24].

Proof. The partial ordering on / is clearly upper finite. Furthermore, by Theorem 15.8,
the set of all W¢- W = W{ is a basis of $(By)*. Clearly, Y([X, /], [\ p]) = 0
unless [\, u] = [N, @] or A < |N| and |p| < |¢/|. And finally, Y ([X, u], [\ p]) =
XA, pl, [\ p]) = {955} = {1, 0 } and the result follows. O

o

15.1. Spanning set of L((BO|OO)A

In this section, we are going to show the first half of Theorem 15.8, namely that the
designated basis spans.
We start with some remarks concerning the definition of the basis elements.

Remark 15.10. A priori, it is not clear that the elements W{ are well-defined. Namely,
there are several ways to draw the cups and caps in the definitions of ¥* and ¥;. By
[BE17b, Proposition 7.2] all these possibilities only differ by a sign. In particular, this
means that they span the same linear subspace. To be completely precise, one should
rather pick for every up-down-bitableau a preferred way to draw cups and caps, but this
is not necessary for our purposes.

Furthermore, there might also be a slight ambiguity in the crossings needed after all cups
and caps have been constructed. Namely, there might be multiple reduced expressions for
the needed permutation diagram. By Matsumoto’s theorem, all these reduced expressions
differ only by braid moves. The distant swaps all hold on the nose (again up to sign).
Additionally, one observes that all upward or downward crossings can only appear for
i and j with | — j| > 1, hence the braid relation will always be satisfied by (15.3) and
[BE17b, Lemma 3.3, Proposition 7.6].

Remark 15.11. Just by the construction of ¥, the crossings in the middle of the
corresponding diagram in general do not give a reduced expression.
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However, double-crossings between two E; and E; (resp. Fj and Fj) can only occur for
|i — j| > 1 (see Remark 15.10) and thus can be removed (up to sign) by (15.1).

Any double-crossing between E; and F}; with ¢ # j can be removed via (15.5). Finally, if
there appears a double-crossing between E; and Fj, this means that the corresponding
weight  in the region corresponds to a [\, u] € A\ with addable boxes of residue i for A
and p. It is then an easy check that (h;, k) = 0 and thus (15.6) allows us to remove this
double-crossing. Summarizing, we can always remove all double-crossings in the middle
of the diagram, at least up to sign.

We will prove the spanning set property via an induction on |A|+ |g|. This will consist of
two main steps. First, we will show that our basis is closed under horizontal composition,
i.e. we will show E;(¥7) and F;(V7) are again linear combinations of basis elements, at
least up to lower order terms; this will imply, that the identity morphism of every object
in M(BO|OO)A is contained in our spanning set. Secondly, we will show that the basis is
closed under composition with the generating 2-morphisms of (By|,). These together
will imply the spanning set property.

We begin by introducing the necessary notation. Let M(Bo‘oo)éb be the collection of all
((LL(BO|OO)%b),§),$eX, where (M(Bo‘w)%b),ﬁ is the collection of all morphisms in LL(B0|OO)£
factoring through an object of length < b. By definition, we have

Ei($(Bojoo)23) € U(Bojoo) 2415 Fi(U(Bojoo)2p) € U(Bojoo) 2ps1

Furthermore, given [\, u] € A\, we write CIM# for the span of all the morphisms AW
for all t € TUI(\, ]).

We also write R<;, for the span of all ¥f for t, s € TUY([\, u]) for all [\, u] with |A|+|u| < b.
Furthermore, we introduce the notations R<j|_, and M(B0|Oo)/§\b’<l for the restriction to

all morphisms between objects of length at most I.
Observe that we have CM# C Ren4+1u € M(BO‘OO)QWHM.

15.1.1. Closure under horizontal composition

The 2-representation il(BO|OO)A is equipped with functors E;: il(Bo|Oo)£ — il(BO‘OO)Q o
and Fy: (Bojoo) 2 — $(Bojoo)2

K+ao;*
Furthermore, we also have natural transformations z;: F; — F;, which are induced by

F_ . We write E}(¥7) for the composition (2;); es(s) © £i(¥5). Diagrammatically this is
just given by juxtaposition with F . Similarly, we also define F}l.
In this section we will show [
Ei(R<y) € Ry + U(Bojoo)2y,  Fi(R<p) € Ry + U(Bojoo) 2
E}(R<p) C W(Bojoo)2pi1,  FH(R<p) € U(Bojoo) 2p11-

Lemma 15.12. Let t and s € TN, u]). If [\, ] 4 [N, 1], then E;(¥5) = Uf,, where
t=t5 N, and s' =55 [N, ).
Similarly, if [\, p] -=» [N, 1], then Fy(U3) = W3 for the corresponding t and s'.
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15.1. Spanning set ole(BO‘OO)A

Proof. This follows directly from the construction and Remark 15.11, which allows
removing all double-crossings in the middle. O

Proposition 15.13. Let t and s be up-down-bitableaux of shape [\, .
i) If AddEz([)‘nU/]) =0, then E;(¥%) € u(BO|oo)[%|)\\+w'

(i) B} (¥f) € M(BO|OO)/§\\)\|+|M|'
The same statements hold also for F; and Fl-l.

Proof. The proof for F; is the same as for the F; case, so we will only show the F; case.
By definition of u(Boloo)élMJrlul’ it suffices to show the statement for t = s = t**. This
means that ¥§ =1, ..

We will prove the statement via downwards induction on [A, u]. There is a unique maximal
element [\, u] = [0, 0]. In this case, t = s = t*? and both claims follow from (15.8).
Now assume that the claims hold for all [N, /] > [\, u]. We make a case distinction
depending on the first entry X in res t\#.

(a) If X = E;, we have by (15.1) and (15.2)

Then, (i) and (ii) follow from the induction hypothesis.

(b) Suppose that X = F; .1 and i # 0. For (i), observe that the second entry in res t*
must be E; by construction of t** and the assumption that Addg, ([A, u]) = 0. In
particular, we get by (15.3)

i+l i+l

In both diagrams on the right-hand side, we can apply the induction hypothesis.
In the first one, we can not add ¢ + 1 before ¢ and in the second one we cannot add
twice i (all in the first component). This shows (i).

For (ii) we may assume that Addg, ([\, 1]) # 0 as otherwise we can apply the above
argument. Then, we have by (15.1)

may= 1 1= T 3

i 141 i 141
10+ [ARES i i1

The first diagram on the right-hand side is in M(B[)bo)/s\‘ A4y Py the induction
hypothesis. For the second diagram note that by assumption there cannot be an
addable box of residue i before we add the box with residue 7 4 1, hence we can
apply the induction hypothesis.
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(c¢) Next consider the case X = E;1; with ¢ = 0. Then, Addg, ([\, p]) # 0, so we only
have to show (ii). For this, note that the second step in res M must be Ey by
construction. Hence, by (15.3)

() = ETI:_ ITE_ §§<+>§

The first diagram is in u(BDIOO)ép\H_lMl by induction for (ii). The other two follow
from the induction hypothesis for (i) (the middle strand in the (vertical) middle of
each diagram comprises a not addable box).

(d) If X = E;_1, this is similar to the case X = E;; for ¢ # 0, but we must use (15.1)
for distant entries to move the first i-entry to the second spot.

(e) If X = Ej with |¢ — j| > 1, (15.1) and (15.2) imply for n € {0, 1}

A, n .-
EL W) — if

i

In case n = 1, the statement follows from the induction hypothesis for (ii). For
n = 0, let [\, /] denote the second to last bipartition in the walk for t**. As
i — j| > 1, we have Addg, ([N, n]) = 0. Hence, we can apply the induction
hypothesis for (i).

(f) If X = F; with ¢ # j, using (15.5) and [BE17b, Lemma 3.1}, the same argument as
for X = E; with |i — j| > 1 shows the claims.

(g) If X = F;, we can use almost the exact same argument as for X = F} using (15.6)
or (15.7) and [BE17b, Lemma 3.1]. The only difference is that the double-crossing
might not be equal to the identity, but rather yields some error terms given by some
cups and caps. However, the cap and cap terms are again in ﬂ(BO‘OO)é‘ AR ]

15.1.2. Closure under vertical composition

We say that a diagram (or morphism) a € U(Byjs)" is (2)-extensive, if the diagram
contains at most one more cup than cap.

Given a morphism a € LL(BO|OO)A and an up-down-bitableau t, we want to show the
following cellular-like property

(CP) a- Wi, € O™ mod U(Bojoo) -

An up-down-bitableau t is called (2)-good if (CP) holds for all (2)-extensive morphisms a.
If we can show that all up-down-bitableaux are (2)-good, the spanning set property
follows immediately from this and the Chevalley involution.
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The base case

Let [A,u] € N\ and let | == |A| 4+ |p|. In this section we are going to prove that any
te T4([\, 1) is (2)-good. So throughout this section, fix t € T,*4([A, u]). In all of this
section, the orientation and label of any strand has to match with ‘I’tx,w so we will not
write them down explicitly.

Lemma 15.14. For d = ‘ ‘ + ‘ , we have d-\II:ML S u(BO|w)2b'

Proof. This immediately follows from Proposition 15.13. O

The next lemma is obvious from the definition of i’[(BO|oo)2b-

Lemma 15.15. Let y = ‘ ‘ o ‘ ‘ Then, y - ¥}, , GM(B0|OO)/éb.
Lemma 15.16. Let z = ‘ ‘ >< ‘ ‘ with any oritentation. Then,

e ik
o on if s =t- s exists,

2 Wt =00
z - ‘I’b,u € H(Bo\oo)éb otherwise.

Here, t- sy, is the same walk as t except we swap the k-th and (k + 1)-th arrow. Note that
this might not exist.

Proof. If t- sy, exists, the statement follows from the definition of \I/:f’; and Remarks 15.10
and 15.11. Otherwise, the last box added in t cannot be added before. This means we
can apply Proposition 15.13 to the sequence (resty, - ,resty_o,resty, resty_1) to obtain
the desired result. ]

Lemma 15.17. Let z; = ‘
z; - Wy, satisfies (CP).

lul H with either orientation present on the cup. Then,

K

Proof. Without loss of generality, we may assume that the cup is oriented rightwards. If

inserting an arrow « - and % in the middle of t (determined by the endpoints of the
cup) gives rise to a valid up-down-bitableau v, then z; - Ui, , = WP, .
Otherwise, we find a sequence (i1, - ,ix) (with k < [+ 2), where we can apply Proposi-

tion 15.13. Meaning we get a sum of elements of the following form:

LA ]

lower order terms ‘

All the lower terms contain at least one cap. If there exists a cap that does not connect
to the present cup, this summand is in ﬂ(BO‘OO)Ql by Lemma 15.15. If there is a unique
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cap that also connects to this cup, we can apply (15.4) to straighten the cup and the cap.
This leaves some crossings to which we can apply Lemma 15.16 and one cup where the
left endpoint appears later.

For this we can repeat the argument above to eventually arrive at a cup being present
at the rightmost position. If this does not give rise to a valid up-down-bitableau, this
diagram is already 0 by (15.8). O

Lemma 15.18. Any t € T\, u]) for 1 = |A| + || is (2)-good.
Proof. This is a direct consequence of Lemmas 15.14-15.17. O

The induction step

Now we are going to prove some kind of induction step.
The following statement is the main reduction step.
Lemma 15.19. Let t € TYY([\, u]) such that the walk ends with [N, i'] AN [\, u] or

N, 1] - [A, 1u]. Define u to be the 1 followed by the last edge of t and s = t]l(t)fl.
Then,
\I/t)\”u - Ei(\:[lf%/m‘/) : tg"f"'

If t ends with [N, 1/'] 4 [\, 1] or [N, 1] L [\, u], the statement holds with F; instead of
E;.

Proof. This is just a fancy formulation of the following easy observation. If t ends with
[N, 1] % [\, p] (i.e. a box is added in the last step), then

t —
\I]tk,u -

The bottom part of the diagram is exactly Wi ..
On the other hand, if t ends with [X, 1] «2- [, 1], we have

Ui, =

thu

And again the bottom part is exactly Wi, ..
The same argument holds for the other two cases, there the last strand is oriented
downwards. O

Essentially, this allows us to reduce to up-down-bitableaux of smaller length. To make
this precise, we need the following assumption.

(Ass<) Ral = u(BO\oo)élLl and any v € T2 is (2)-good.

This is made precise in the following proposition (using the notation from Lemma 15.19).

For simplicity, we will only consider t ending with [\, /] = [\, ] and [N, 1] L (A, u].
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Proposition 15.20. Assume (Ass<;) for 1 =1(t). Then, t has (CP) for any (2)-extensive
diagram of the form a = E;(a’).

Before we prove this, we need first a technical result.

Lemma 15.21. Let [\, p] € N\ and [\, y N [N, @] and 1 :== |\ + |u]. Denote by

ue T\, 1) the up-down-bitableau ¥+ <2~ [\, p]. Let z be the morphism starting at
res(u), which is given by connecting any two strings by a cap. Then,

2 U= > U mod U(Bojso) sy ju)-
o€ T (A p))

Proof. We will only give a sketch here. The result is obtained by first removing any
double-crossings with (15.1) and (15.5)—(15.7) (maybe we need to use (15.3) before). This
might create more cups, caps and dots. Then, apply any possible snake to straighten
some cups and caps (one might need to use [BE17b, (2.4), (2.5), (7.4), (7.5))] for this). If
any small circle is created one can move this to the rightmost position to get rid of it by
(15.8). In this process one might create some more dots.

If there are still some caps left, one can move these to the bottom and apply Lemma 15.15.
Otherwise, there are only crossings and dots left, hence we can apply Lemmas 15.14
and 15.16. O

Proof of Proposition 15.20. We use the notation from Lemma 15.19.
First assume that t ends with [\, ¢/] = [\, u]. We have by Lemma 15.19

t / 5 u v’ u 0
a - \Ith,H = E,(a . \Iltk’,,u’) . \Ijt/\«u = Ez Z CU/\II{A’,;L’ CWu = ZCD\IJ{N#H
v TR (V) v

where we used (Ass<;) for the second equality (as [(s) < ) and the reverse of Lemma 15.19

for the last equality. In particular, ¢, # 0 only if v ends with [N, /] = [\, ).
Now we consider the case that t ends with [N, ¢/] «=- [\, u]. We have

t / t / /
a- Vo= Ei(d -V ) Vi, = Ei ( Z Cor Wy + Z CI’U’\I’?/) W
v e ) i

In the last step, we used (Ass;) to explicitly write the rest in terms of \IJ;J,/ . The second

sum runs through all o € J\ and r, y € 7"(0). Note that the coefficient Cyry can only
be nonzero, if res(r’) = res(t"#'). By applying the reverse of Lemma 15.19 to the first
sum and Lemma 15.12 and Proposition 15.13 to the second, we obtain

— A
a - \IJ:A# = Z Cy * :’)\,,u + Z C;\)\II? : \I/?A,u mod il('BO|C>O)<‘)\|-%-|M|’
) &
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where the sum runs through r, y € 7% ([0, 02]) for all [0, 02] € A\ with |o1| + |o2| =
IA| + |u|. Furthermore, we must have res(z) = res(u) and that r and y both add a box of
residue 7 in the last step.

There is a unique cap in every Wy (if ¢y # 0) (otherwise it lies already in ﬂ(BO‘OO)QP\H-lHl)'
Therefore, we can apply Lemma 15.21 and obtain

a - \I/:)\“u = Z Cu\IJfA,,u + Z 335 . \Ijik’“ HlOd L[(Bmoo)/é‘)\H_lul,
o€ T (A p]) s (o)

where z; is (2)-extensive and of the form Ej(y;) for some y; (as r and y add boxes in the
last step).

Now, observe that any appearing 3 ends with [\, /] BN (A, u].
Note that y; is (k)-extensive for k =2+ I(t) — |A| — |p|. In particular, we can repeatedly

apply (Ass.;) to W’

"\ to obtain a linear combination of z;, - llf‘z;w where 3’ € 7;&31([)\, u])
and 2, is (2)-extensive and of the form E;(y;) for some y;.
In particular, we can apply the first part of the proof to 3/ and obtain the desired

result. O

The spanning set

Now we are ready to prove the main result of this section.
Proposition 15.22. Let t € T"4([\, u]) and assume (Ass<;). Then, t is (2)-good.

Proof. If t = t*, the statement follows from Lemma 15.18. Otherwise, it can be obtained
from ¢ of length I(xr) = [ — 2 by composing with a cup. As ¢ is (2)-good by (Ass<), tis
(0)-good (i.e. closed under composition with diagrams containing as many cups as caps).
Therefore, t is (2)-good, if we can show (CP) for any diagram of the form

If there is at least one strand to the left of the cup, we can apply Proposition 15.20 and
obtain the claim.

Otherwise, the argument that we will give is very similar to the one in Lemma 15.17.
We might have the situation that the resulting diagram is already of the form W, , for
some u (only if n = 0).

If this is not the case, we find a spot, where we can apply Proposition 15.13. If we
denote by s the up-down-bitableau of length || + |u|, where we removed all the edges
corresponding to removing boxes (or adding boxes that will later be removed), the
situation looks as follows:

T = ‘
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All lower order terms contain at least one cap. If there exists a cap, that does not connect
to the present cup, this summand is in M(BO‘OO)QWH#' by Lemma 15.15. Otherwise,
there is a unique cap that also connects to this cup, and we can apply (15.4) to straighten
the cup and the cap. This leaves some crossings for which we can use Lemma 15.16 and
some cups.

Note that there are k = % +1 cups in the diagram. Therefore, we can split this part
into k terms all of the form F;(a’) for (2)-extensive diagrams a’. As 2-k' + |A|+|u|—1 < 1
for all &' < k, we can apply Proposition 15.20 to all these terms. Hence, t is (2)-good. [

Now we have all the ingredients to show that our proposed basis indeed spans il(BO|OO)A.

Theorem 15.23 (Spanning set). The set {U! | t,s € T Y[\, 1))} spans H(BO‘OO)A.

Proof. We claim that it suffices to show that every tis (2)-good. Applying this inductively,
shows that W! is closed under left multiplication with all 2-morphisms. Mimicking
the arguments for the right multiplication, we obtain that W! is closed under right
multiplication with all 2-morphisms. Alternatively, one can apply the Chevalley involution
from [BE17b, Proposition 3.5]. Then, Lemma 15.12 and Proposition 15.13 imply that
the set of all U! is closed under horizontal composition. In particular, every identity
morphism is in the span of the set.

Therefore, it suffices to show that any t is (2)-good. We proceed by induction on the
length of t. If [(t) = 0, the statement follows from Lemma 15.18.

Now, let t be of length [ > 0. By the induction hypothesis, (Ass;) holds. By Proposi-
tion 15.22, t is (2)-good. O

It remains to show that the ¥§ are linearly independent. This will be done in Chapter 17
by creating a faithful representation of LL(BO|OO)A on a Khovanov algebra of type ), which
will be defined next.
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In this section we are going to define a Khovanov algebra of type ). This will be backbone
to show linear independence for the basis elements from Theorem 15.8.

This algebra will be defined with an explicit basis and multiplication rule using diagram-
matics resembling the one from [BS11a]. We will also introduce geometric bimodules and
study these.

We begin by introducing the combinatorics.

16.1. Weight, cup and cap diagrams

In this section we are going to define weight diagrams, cup and cap diagrams in our
context. The definitions and combinatorics are inspired by the ones in [BS11a] and very
similar to the combinatorics of osp(r|2n) as in [ES17] Compare these definitions also to
the combinatorial weight diagrams that we introduced in Definition 14.3.

Definition 16.1. Let r € NU {oo}. A weight diagram of length r is a sequence of
symbols w = (w;)1<i<, With entries w; € {V, A, 0, x} such that w; = V for almost all ¢ (if
the sequence is finite, this condition is vacuous).

We usually draw this as a sequence of symbols next to one another and put a = (called
wall) at the left of this sequence. Write A, for the set of weight diagrams of length
r € NU{oo}.

We are mainly interested in the case r = co. The finite case is only used to simplify some
computations for the definition of the multiplication.
Next, we will need a partial order on these weight diagrams.

Definition 16.2. The Bruhat order on A, is the partial order generated by VA < AV
and A < V.

Example 16.3. The following is the Bruhat graph for the block e e o e (the weights
are increasing from left to right):

VVoA

/

ANOAN — VAoAN—- AVo VAoV — AVoV — VVoV

/N
N

ANo
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Another important thing is the core of a diagram.

Definition 16.4. Given a weight diagram w € A,, we define core(w) as the weight
diagram w obtained by replacing all V’s and A’s with e. In other words, we only
remember the position of o and x for the core. Write Cores, for the set of cores of weight
diagrams of length 7.

Observe that for any core diagram, there is a unique maximal weight diagram with this
given core. It is obtained by replacing all e’s with V’s.

Definition 16.5. To each weight diagram w € A,., we associate a cup diagram as follows:

(i) We connect neighboring pairs of VA with a cup. Here, neighboring means that
there is no V or A in between that is not yet connected to a cup.

(ii) We join every remaining A with a half cup (called inner cup) to the wall (such that
nothing intersects).

(iii) We attach to each remaining V a ray to infinity.
(iv) Finally, we remove all V’s and A’s from the original weight diagram.
We call this cup diagram w.

Example 16.6. Consider the weight diagram w = A x VoA AV V. To this we associate
the cup diagram

&
Il
>
< ><
<
b
>
>

@

Definition 16.7. A cap diagram is the horizontal mirror image of a cup diagram. We
write a* for the cap (resp. cup) diagram given by the horizontal mirror image of the cup
(resp. cap) diagram a. We also abbreviate w := (w)* for any weight diagram w.

A cup or a cap diagram is called closed if it does not contain any lines to infinity (i.e. only
cups/caps and inner cups/caps connecting to the wall). Note that a cup or cap diagram
can only be closed if r < co. The cup diagram from Example 16.6 is obviously not closed.

Definition 16.8. Let a be a cup diagram (associated to some weight diagram). We
can glue another weight diagram w onto a, which we call aw. It is called oriented if the
positions of o and x agree in w and a and if the endpoints of any outer cup are VA or
AV. Similarly, we define oriented cap diagrams.

Given an oriented cup diagram aw and an oriented cap diagram wb (with the same
orientation), we can glue these in the middle to obtain an oriented circle diagram.

Definition 16.9. Any oriented circle diagram consists of several components. We call
those which do not connect to the wall outer and the other ones inner. There are outer
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lines and outer circles, and inner components with one endpoint on the wall (which we
call inner lines) and inner components with both endpoints on the wall (which we call
inner circles). A circle diagram is called closed if its cup and cap diagram are closed.
Any circle diagram (i.e. a cup and a cap diagram without a weight diagram in between)
admits 27°¢les orientations. If the rightmost vertex of a circle is oriented A, the circle is
called anticlockwise, and it is called clockwise if the rightmost vertex is oriented V.

Lemma 16.10. If nw is an oriented cup diagram, then w > 1 in the Bruhat order.

Proof. Consider nn. Any inner cup is oriented A and any outer cup VA. Now any other
orientation of 7 is obtained by swapping the orientation on any cap. This means that
either A is turned into a V or VA gets replaced by AV. Both of these operations increase
the weight in the Bruhat order. O

Next we will associate a degree to every diagram.

Definition 16.11. Given an oriented cup diagram aw, we define its degree

(16.1) deg(aw):—#(])—i—%#(U).

In other words, it is the number of clockwise inner cups plus twice the number of clockwise
outer cups. Similarly, for an oriented cap diagram wb, we define its degree as

(16.2) deg(wb) = # () +2~#( ) >

A

Given an oriented circle diagram awb, we define its degree as deg(awb) := deg(aw) +
deg(wb).
We also introduce the shorthand

cups(a) =# () +2-#( \U )

for a cup diagram a, and similarly caps(b) for a cap diagram b. We will also use this
notation for circle diagrams and more general diagrams.

Remark 16.12. The oriented cup diagram ww has always degree 0. In particular, for
every weight diagram w there is exactly one oriented cup diagram wniw of degree 0,
namely wwi.

The next result is the analog of [BS1la, Lemma 2.1].

Lemma 16.13. The degree of an anticlockwise circle C' in an oriented anticlockwise
circle diagram is deg(C') = caps(C) — 1 — € and caps(C) + 1 + € for a clockwise circle,
where € = 1 if C is outer and 0 if C' is inner. The same statement is true, when replacing
caps(C) with cups(C).
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()0 W) w(0)-

0
deg(@)zo deg(@>:4 deg(ﬁ):3

Figure 16.1.: Induction beginning for degree of a circle

Proof. First, observe that caps(C) = cups(C) for any circle C. Hence, we only have to
prove one of the statements.
We proceed by induction on caps(C'). The cases for caps(C') = 1 and caps(C) = 2 are
shown in Figure 16.1. For instance, for the first picture, we have deg(C) =1—-1—-0=0.
If we have a circle with caps(C) > 2, then there must be one of the following two
subpictures present:

| |

Observe that this contributes degree 2 independent of the orientation of this piece.
Replacing this piece by a straight line, we reduce the degree by 2 and also reduce

caps(C') by 2 (recall that outer caps count 2). Thus, the result follows from the induction
hypothesis. O

We define yet another grading on these diagrams, namely a supergrading.

Definition 16.14. Given an oriented cup diagram aw, we define its parity |aw| € Z/2Z
as follows:

jaw] = # () - (#(N) + #0)) + # (2 ) mod 2,
Very similarly, we define the parity of an oriented cap diagram wb via
wbl == # () - (#(A) + #0) + 1) +# (S ) mod 2.

Observe that there is an extra +1 for oriented cap diagrams!
Finally, we define the parity of an oriented circle diagram awb as |awb| == |aw| + |wb].

Definition 16.15. For every weight diagram w, we define a special oriented circle
diagram e,, '= www. This is always even of degree 0.

Example 16.16. Consider the oriented circle diagram awb given by
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Then,

law]=1-(2+1)+0=1 mod 2,
lwb|=2-(2+14+1)+0=0 mod 2.

In particular awb is odd. However, if we change the o to a x, we would get an even
diagram.

As the previous example demonstrated, the parity is very cumbersome to compute and
not very intuitive. However, the following result should give some intuition for it.

Proposition 16.17. Changing the orientation of an outer circle does not change its
parity. However, changing the orientation of an inmer circle changes its parity.

Proof. Changing the orientation of an outer circle only changes the orientation of some
outer cups, which do not change the parity, as the number of A stays the same.

For the second part, observe that there are three different ways, how an inner circle might
connect to the wall. Namely, either via two inner cups, two inner caps or one inner cup
and one inner cap. The first two cases are handled similarly, hence we only show it for
the former of these two.

Then our situation is the following;:

A TN
Z ST

The number of inner cups oriented downwards is the same in both cases and the same
holds for #(A) + #(x). The only difference lies in the pairs of inner cups and for this it
obviously suffices to compare those which involve one of the inner cups in the inner circle.
Namely, every inner cup inside this circle gives rise to a pair on the right (but not on
the left). As this happens inside this circle, there must be an even number of inner cups
inside, hence these do not change the parity. Finally, both inner cups on the right also
contribute one pair, which is not on the left-hand side. Hence, we get an overall parity
change.

Now, assume that we have one inner cup and one inner cap for this circle. Then the
situation is as follows:

DD
Note that, apart from these two inner cups/caps, #(A) 4+ #(x) is the same. In particular,
the upwards oriented inner cup on the left contributes 1 for every downward inner cup
inside the circle. The same holds true for the inner cap on the left. On the right we have
in total a contribution given by all upwards oriented inner cups and caps inside the circle
(41 for the downward inner cap). The number of inner cup and inner caps inside the
circle must in total be even, hence we get an overall parity change. O
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16.2. The algebra H?

In this section we will define the algebra H?. Tt has a distinguished basis given by closed
oriented circle diagrams with a fixed core k. This will be a finite dimensional algebra
and should be seen as an analog of the algebra Hy from [BS11a].

Definition 16.18. Let k € Cores,.. We define Hg to be the graded vector superspace
with basis

{awb | awb closed oriented circle diagram with core(w) = k}.
We also define H? = Drccores, H?. Note that this is a finite dimensional vector
superspace. Furthermore, observe that H? = {0} if r = occ.

We will define a multiplication on Hg. For this we make use of surgery procedures,
similar to those in [BS1la] and [ES16].

Given awb and ¢nd in Hg, we compute their product as follows. If b* # ¢, we set
(awb) - (end) = 0. Otherwise, we draw (awb) underneath (cnd) and connect the rays of b
and c.

As b* = ¢, we have a symmetric middle section consisting of cup/cap pairs (either inner or
outer) and we replace these successively by straight line(s) applying a surgery procedure.
There are three kinds of surgery procedures, depending on whether the number of
components decreases (Merge), increases (Split) or stays the same (Reconnect). After
applying all surgery procedures, we obtained a linear combination of diagrams with
middle section only consisting of rays. This we then collapse and declare this to be the
result of the multiplication.

From the definition, it is neither clear that this is well-defined nor associative. But before
we dive into these questions, we will give an explicit description of the surgery procedures.

16.2.1. Merge

In this situation the number of components decreases. This means, that two components
are involved in the surgery. If we denote anticlockwise outer circles by 1, clockwise outer
ones by z and use the same symbols with a bar for inner circles, we have listed the
possibilities in Figure 16.2a.

16.2.2. Split

In this situation the number of components increases. This means, that one component
is turned into two. Using the same notation as for Merge, the various possibilities are
listed in Figure 16.2b.

16.2.3. Reconnect

In this situation the number of components stays the same. This can only occur for an
outer surgery procedure that involves two inner circles. The possibilities are listed in
Figure 16.2c.
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Surgery Orientation Result Surgery Ori. Result
1®1 1
Q 1®x x 1 1®z+z®1
Q T®1 x z TR
TRx 0
1l 1
() 1oz T 1 lox
1C> r®1 0 T I®x
TRT 0
1®1 1
) 1®z T 1 0
) 1 T T T
r®x 0
(a) Merge (b) Split
Surgery Orientation Result
1®1 ler+z®1
:[> loz TR
1C> T®1 TR
TR 0

(¢) Reconnect

Figure 16.2.: Surgery procedures for H%

Warning. To keep it simple here, we work over Fo. Quer Fo, the multiplication is exactly
given as in Figure 16.2. Howewver, in the general case, signs come into play in a very
subtle way, similar to the signs appearing for osp(r|2n) case, see [ES16].

Theorem 16.19. Ower Fa, the multiplication on HS is well-defined and associative.

Before we prove this theorem, we prove the following lemma to give the reader a better
intuition for the surgery procedures.

Lemma 16.20. The multiplication on HY is homogeneous of degree 0.

Proof. We must show that the number of clockwise cups and caps is preserved under the
surgery procedures. By means of Lemma 16.13, this is equivalent to showing that

#(caps) — #(anti-clockwise circles) + #(clockwise circles)

stays constant under the surgery procedures. Here, we count with multiplicities, i.e. an
outer cap contributes 2 whereas an inner cap contributes 1. The same holds for outer
circles in contrast to inner ones.
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16.2. The algebra H?

In case of a Merge, the number of clockwise circles stays the same (with multiplicities!).
The number of anticlockwise circles decreases by 1 for an inner Merge and 2 for an outer
Merge. The number of caps decreases by 1 for an inner Merge and 2 for an outer Merge.
Hence, the sum stays constant.

In case of an outer Split, the number of anticlockwise circles stays the same, whereas
the number of clockwise circles increases by 2 (we add an outer clockwise circle). For an
inner Split, we change a clockwise inner circle into a clockwise outer circle and remove
an inner cap. So, the sum is preserved.

Finally, for a Reconnect, we reduce the number of caps by 2. We also change an inner
anticlockwise circle into an inner clockwise one. Thus, we preserve the above sum. [

Proof of Theorem 16.19. In order to show both claims at once it suffices to show that
any two surgery procedures commute. Horizontal commutativity implies well-definedness,
since any ordering gives the same result. Vertical commutativity will give associativity.
We have three different cases, depending on whether 0, 1 or 2 of the surgeries are inner.
All base cases are shown in Figure 16.3.

U y Y
; , R

MU YU )
N ) ~N
7T 8 5 6

Figure 16.3.: Commutativity of surgery procedures

We will frequently use the term directly connected in the following. Two numbers are
directly connected if they are connected by a line segment not involving any of the cups
or caps depicted.

Let us begin by examining the case of two outer surgeries. If these two do not interact,
then they clearly commute. Suppose that 1 and 2 lie on an outer circle, that does not
interact with the other cups and caps. Then the surgery involved here is a Merge. The
other surgery has the same type (independent of whether we first perform this Merge or
not). In particular both commute. The same argument also holds if 3 and 4, 5 and 6, or
7 and 8 lie on a circle that does not interact with the other surgery.

Similarly, if 1 and 3 are directly connected the here involved surgery is a Split. Again
the other surgery has the same type and this Split also produces no signs. From the
description of the surgeries, we see that they commute in this case. The same argument
also holds if 2 and 4, 5 and 7, or 6 and 8 are directly connected.

As we assumed that the surgeries interact, there exists i € {1,2,3,4} that is directly
connected to j € {5,6,7,8}. Without loss of generality, we assume that i = 1. Also by
symmetry, we may assume that j = 5 or j = 6. Consider the case j = 5. We make
another case distinction on where 8 is connected to. We may exclude the cases where 8 is
directly connected to 7 or 6 because these cases have been treated already. We can also
exclude the connection to 2 and 3 as these do not produce a valid diagram (every number
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(a)

J A

()

Figure 16.4.: The case that 1 is directly connected to 5

must either connect to another number or to the wall). This leaves 8 being connected to
4 or to the wall. By similar considerations, we finally deduce that there are five different
cases to consider, all of them are shown in Figure 16.4.

For (a), note that the first surgery will always be a Merge and the second one always a
Split (in both cases). In particular, they commute.

For (b), the first surgery is always a Split and the second one always a Merge (in both
cases). In particular, they commute.

For (c), note that the right surgery splits off a clockwise outer component which is then
merged with an inner component. In particular, the result is 0. The other order gives
two Reconnects. If any of the components is oriented clockwise, we will get 0. However,
if both are oriented anticlockwise, we get T @z +x ® T = 0.

The case (d) is similar to the (c), here the left surgery splits off the clockwise outer
component.

Finally, for (e), all involved surgeries are Reconnects. If at least two of the inner circles
are oriented clockwise, both outcomes will be 0. If exactly one is oriented clockwise,
we will get T ® £ ® T for both sides. And if all are anticlockwise, both orderings will
give 1T RT+2®1®%T+x®x® 1. This finishes the case of 1 and 5 being directly
connected.

Next, assume that 1 and 6 are directly connected. We make a case distinction on how 7
is connected. As before, we can exclude the cases where 7 is directly connected to 2, 3 as
these cannot be part of a valid diagram. We can also exclude the case that 7 is directly
connected to 5 or 8, as these cases have been treated already. So it is either connected
to 4 or to the wall. With similar considerations for the other vertices, we are left with
four different cases, which are shown in Figure 16.5. For (a) and (b), the first surgery is
always Merge and the type of the second stays the same. In particular, they commute
(use the same argument as before).

Next we consider (c). In both cases, the first surgery is a Reconnect and the second one
a Split. In particular, the Split will always split off a clockwise outer component. Hence,
they commute.

For the final case (d), all involved surgeries are reconnects. This is similar to (e) for
the case 1 and 5 being directly connected. This finishes the argument for 1 and 6 being
directly connected and thus also the case of two outer surgeries.
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D U /)
L~ £A
(a) (b) (©) (@

Figure 16.5.: The case that 1 is directly connected to 6.

Next, consider the case of one inner surgery. Begin by considering the case that 1 is
directly connected to the wall. Then, this surgery is an inner Merge and the type of the
other is the same throughout. In particular, they commute (this is the same argument
when considering 1 and 2 being directly connected).

Hence, we may assume that neither 1 nor 2 are directly connected to the wall. We also
may assume that the surgeries are interconnected as the claim is otherwise obvious. With
further excluding the cases where 3 is directly connected to 4 or 5 and 6 being directly
connected to 4 or 5 (as all these have been treated before), this leaves us with the two
cases shown in Figure 16.6. In the first case, one direction is given by first an inner Merge
and then an outer Split, resulting in the following assignment:

1l—= 1@
1®T—TQx
I®l—IQx
T®@r+—0
The other direction is given by first a Reconnect and then an inner Split, which gives

1l—= 1@z
1®T—TQx
I®l—IQx
T@z—0

For the second one, observe that doing first the inner surgery and then the outer one
produces 0. The other order gives a Reconnect and then an inner Merge. In particular, this

O
% g .

Figure 16.6.: One inner surgery Figure 16.7.: Two inner surgeries
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is 0 if any of the involved circles is oriented clockwise. If both are oriented anticlockwise,
we get ¥ + T = 0. Hence, the two surgeries commute.

Finally, we consider the case where both surgeries are inner. Again, we may exclude that
any of the four endpoints is directly connected to the wall. This leaves exactly one case,
shown in Figure 16.7. In this case, the first surgery is always an inner Merge and the
second one an inner Split. In particular, they commute. ]

Proposition 16.21. The multiplication on H? is parity preserving.

Proof. We begin by outlining our strategy. By Theorem 16.19, we know that the surgery
procedures commute, and thus we can choose any particular order of surgeries. We will
first apply inner surgeries and then the outer ones. For the inner ones, we will make sure
that after applying any of them, we still have a diagram that is glued from two oriented
circle diagram (this allows us to apply Proposition 16.17). For each of these two we know
how to compute the parity and this will allow us to track the parity of the result. After
all inner surgeries have been applied, the middle section will give no contribution to the
parity (as there are no inner cups or caps anymore). Then, we are left to apply the outer
surgeries and for these we only need to track orientation changes of inner circles.

As outlined above, we may begin by applying inner surgeries. Figure 16.8 shows a list of
all the possible types of surgeries that we can apply.

D a a
D o] [

NN

Figure 16.8.: All possible inner surgeries

(1) This is the most difficult case of the four. There are several players that impact
the situation here. Namely, we have the orientations of the two circles and the
particular orientation of the inner cup and inner cap in the middle. We want to
cut the inner cup/cap pair in the middle and keep track of the parity change. Note
that if both inner cups/caps are oriented downwards, the parity changes exactly
by 1, when replacing this by a straight line. This is because the number of outer
cups and caps as well as the number of x agrees, and there is no VA pair of inner
cups/caps involved with the ones for the surgery. Thus, the change comes exactly
from the removal of the downward oriented inner cup. Now, the idea is to change
the orientation of the circles so that both inner cup and cap are oriented downward,
cut this pair and reorient to what we actually want to have. Let Cy (resp. C3)
denote the orientation of a rightmost vertex of the upper (resp. lower) circle. If
C7 = V the upper circle is oriented clockwise and anticlockwise if C; = A. The
same also holds true for Cy and the lower circle. We also use C3 to encode the
orientation of the resulting circle after the reorientation and the cutting (not the
proper surgery).
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Reorientations actual Reorientations
S a C before 3 result after
V V \Y VAN 0 AN V 1
V vV VAN AN 1 V V 0
V A vV V 0 VAN V 1
V VAN VAN AN 1 VAN AN 0
AN \Y VAN VAN 2 VAN V 1
AN VAN vV V 1 \Y V 0
VAN AN vV AN 1 VAN AN 0
AN VAN VAN V 2 AN V 1
VAN AN VAN AN 2 V VAN 1

Figure 16.9.: The Merge of two inner circles

Note that if both circles are oriented clockwise (i.e. C1 = Cy = V), the result is 0,
so we may assume that at least one is oriented anticlockwise. Furthermore, observe
that if the first two columns (resp. third and fourth columns) do not agree, this
means that the corresponding inner circle wraps around the other inner circle. In
particular, if the first two entries are different, then the third and fourth have to
agree (and vice versa). Figure 16.9 lists all the remaining possibilities. Now note
that the replacement of the inner cup/cap pair by a straight line changes the parity
by 1. Also, observe that the total number of reorientations is odd in each case. In
total this gives an even parity change.

Finally, we only have to consider, whether cutting the resulting diagrams gives two
oriented circle diagrams. This is the case if and only if the “actual result”—column
is V (as it has to be glued from two inner lines). If it is oriented A, there are two
possibilities. It is either part of another inner cup/cap surgery or not. If it is, then
this surgery has to be an inner Split, which produces 0. Otherwise, we may reorient
this inner circle (which changes the parity). This diagram will then be glued from
two oriented circle diagrams, and we can continue the argument for the other inner
cup/cap surgeries. After all these have been completed, we can reorient this inner
circle again to revert the parity change.

Note that the result is 0 if the inner circle is oriented anticlockwise. Hence, we may
assume the inner circle to be oriented clockwise and Figure 16.10 shows the precise
situation. Observe that the surgery depicted on the right gives the same result.

9~ 0~

Figure 16.10.: The situation for the second surgery
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(1) B (2) H (3) B

Figure 16.11.: The possibilities for the outer surgery procedures

Both surgeries change the parity by the number of downward inner cups/caps in
the middle. In particular, the diagrams on the right and the left have the same
parity. And if we replace the diagram by the right-hand side, we will get the same
multiplication result, but the diagram has one less inner cup.

Also note, that for both pictures, if we cut them in the middle, we obtain two
oriented circle diagrams.

Now we are in a situation, where we have applied all the inner cup/cap surgeries, keeping
the same parity. But now the middle section does not contribute anything to the parity
anymore. Now, any surgery procedure now that does not involve an inner circle will not
change the parity. So we only need to look at outer surgery procedures involving an inner
circle. In Figure 16.11, we list all the possibilities.

(1)

(2)

168

If the outer circle is clockwise, the result is 0. If the outer circle is anticlockwise, the
orientation of the inner circle does not change. All in all, the parity is preserved.

Observe that the orientation of the left end of the cup and cap in the surgery agrees
and is V if the circle is clockwise and A if it is anticlockwise. In any case, the
surgery to be performed splits off a clockwise outer circle and keeps the orientation
of the inner circle. In particular, with the above observation no inner cup/cap gets
reoriented, hence the parity is preserved.

In Figure 16.12, one fixed orientation for the possible cases is shown.

Note that our diagram is not necessarily glued from two oriented circle diagrams
anymore. But as we first applied all inner surgeries, the middle section does not
contribute anything to the parity anymore. Furthermore, as our middle section is
symmetric and only contains outer cups and caps, the number of x and A is the
same for both numberlines. This means that the arguments in Proposition 16.17
carry over verbatim to this case.

Furthermore, observe that in this case two anticlockwise inner circles produce a sum
of two diagrams, namely both orientations, which assure that of the two resulting

“3~D ™R~

Figure 16.12.: The possibilities for the third surgery procedure
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inner circles one is clockwise and the other anticlockwise. If we start with one
anticlockwise and one clockwise inner circle, the result gives two clockwise inner
circles. And two clockwise circles produce 0.

In particular, via reorienting inner circles before and after the surgery procedure
and via symmetry, it suffices to check the statement for the two diagram shown
in Figure 16.12. For (3a), note that both summands have the same parity by
Proposition 16.17. As we do not need to reorient anything for the first summand,
means that the parity is preserved.

For (3b), we also do not reorient anything, hence the result has the same parity.

All together, we found a sequence of surgeries that do not change the parity in total.
Hence, by independence of the order, the multiplication preserves the parity. ]

The previous results culminate in the following corollary.

Corollary 16.22. The multiplication procedure turns Hg into an associative, graded
superalgebra.

16.2.4. Cellular structure of HY

Next, we will show a cellular property for HS. The statement and the proof are parallel
to [BS1la, Theorem 3.1].

Theorem 16.23. Let awb and cnd be basis vectors of HS. Then,

0 if b # c*,
(awb)(cnd) = { Sawb.end - and + () if b= c* and an is oriented,
(1) otherwise,

where
(i) (1) is a linear combination of ayd for v > n in the Bruhat order;
(i) Sawbena € {—1,0,1};
(ili) ifw =b=c* =7, then squpcnd 7 0.

Proof. The statement for b # ¢* is immediate from the definition, so we may assume
from now on that b = ¢*.

Consider a single iteration of the surgery procedure for (awb)(cnd). Let « denote the top
weight at the beginning of the surgery procedure. We claim that

(i) the top weight after every surgery procedure is > ~;
(ii) the total number of diagrams with top weight  is either 1 or 0;

(iii) if the cup and cap to be cut are anticlockwise, then exactly one diagram with top
weight v is produced.
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() Ian M N
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Figure 16.13.: The possibilities for the surgery procedures involving a clockwise cap

If we can show these claims, the statement follows inductively.

If the surgery procedure only involves outer components, we can invoke the proof of
[BS1la, Theorem 3.1] to show these claims (note that our claims are significantly weaker
than theirs). Hence, it suffices to show the claims for the surgery procedures involving at
least one inner component.

Observe that whenever we change the orientation of a circle from anticlockwise to
clockwise, we increase all the involved weights. We will make use of this observation
many times in the following.

All possibilities for the surgery are listed in Figure 16.13. The proof of the claims is then
very similar to the proof of Proposition 16.21 and we do not give the details here. The
general strategy is to first reorient components so that the cup and cap to be cut have
the same orientation. Then, we can just cut and reorient components again, according to
the orientation we actually need to have.

Checking all the cases, one sees that this can always be obtained by reorienting anticlock-
wise circles. With the above observation, this means that the top weight (and also the
bottom one) cannot decrease.

On the other hand, if cup and cap are anticlockwise, then there needs to be no reorientation
before the cutting. It is then a quick check to see that this cutting appears as a term in
the actual surgery procedure. This implies the second claim. O

16.3. The algebra K%

In the previous section we have defined a multiplication on Hg, i.e. a product of any two
closed oriented circle diagrams. In this section we are going to define a larger algebra
KS, extending the multiplication of Hg to all circle diagrams.

Definition 16.24. Let x € Cores,. We define K¥ to be the graded vector superspace
with basis
{awb | awb oriented circle diagram with core(w) = k},

KQ

K

and KQ .= @

reCores,
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We want to define a multiplication on K.

First assume that x € Cores, for r < co. Let ' = r+1 if r is odd and 7’ = r+2 otherwise.
Consider w with core(w) = k. Define the closure cl(w) of w to be the weight diagram
obtained from w by adding r’ new vertices labelled A to the right of the rightmost vertex
of w. Note that cl(w) is a closed weight diagram. All weight diagrams w with core(w) = &
still have the same core after the closure. Denote by v this block.

This gives rise to an injective map of vector spaces

cl: K@ — HY
awb — cl(a) cl(w) cl(b).

Note that this map is homogeneous of degree 0 and parity preserving (as r’ is even).
Denote by cl(k) the set of all cl(~) for v with core(y) = k. Furthermore, observe that if
1 < cl(w) in the Bruhat order, then n = cl(vy) for some v € A,, i.e. cl(k) is a lower set.
By Theorem 16.23, the vector superspace I, := {anb € HY | n ¢ cl(x)} is a two-sided
ideal in HY. In particular, we can define the quotient superalgebra H? /I,..

Lemma 16.25. The map cl induces an isomorphism of graded vector superspaces
cl: K? = HY/I.,.

Proof. Observe that this map is injective by construction. We have to show that cl is
surjective. Note that HY /I, has a basis given by a cl(w)b+ I'x for all closed oriented circle
diagram a cl(w)b with core(w) = k. By definition of cl(w), the rightmost r’ vertices are
labelled A. In particular, all these vertices must be right endpoints of inner or outer cups.
Therefore, there is an obvious way to “open” the diagram. This is done by removing the
rightmost r’ vertices and the inner cups/caps that are attached to them. We replace the
outer cups/caps that are attached to these vertices by rays. This gives a (non-closed)
circle diagram of the form a’wb’ with core(w) = k. Hence, cl is surjective. O

Using this isomorphism we define the multiplication on Kg.

Remark 16.26. If we replace ' by ' 4+ 2, we can do the same construction and obtain a
potentially different algebra structure on Kg. Observe that in this case, every diagram for
r’ is just enclosed in two anticlockwise inner circles to obtain one for r’ + 2. Any surgery
involving these, merges two of these anticlockwise inner circles. Hence, the multiplication
on K@ is the same.

Now consider x € Coresy. In this case, we define the multiplication on K€ by taking a
certain colimit of K for v € Cores, with 7 < co. More precisely, consider the following
diagram

KS —KZ =KD =,
where k; is the restriction of x to the first [ + 1 vertices and k some integer such that all
o and X appear among the first £ 4+ 1 vertices. The maps are given by adding a ray to

the right of any circle diagram (or V to any weight).
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It is easy to see that the colimit (in GSVec) of this diagram is K. If we can show that
all the maps are (non-unital) algebra homomorphisms, we get the desired multiplication
on K%.

Note that, first adding the ray and then closing the diagram is the same as first closing the
diagram and then adding an anticlockwise circle in the middle of the diagram (between
the original and the new vertices). In particular, the surgery procedures are exactly the
same, except that we have to do another Merge of anticlockwise circles for the diagram
with the added ray. Hence, first adding a ray and then multiplying is the same as first
multiplying and then adding the ray.

Therefore, we get a well-defined algebra structure on K%.

In Appendix A, we list all the surgery procedures that can occur in the multiplication
(ignoring any signs). In contrast to HY, now also non-closed components can appear.

16.4. Properties of K%

Recall the element e, from Definition 16.15.
Lemma 16.27. We have

_{anb if w=a, _{anb ifo=0,
ey - anb = anb - e, =

0 otherwise, 0 otherwise.

Proof. We only prove the first statement, the second one is similar. If w # a, the result
is 0 by definition. So we may assume that w = a. In this case, every surgery involved
in the multiplication is a Merge with an anticlockwise (inner) circle (which is part of
e,). In particular, no surgery changes the orientation of any component of anb and the
statement follows. O

In the language of [BS24], we have the following corollary.

Corollary 16.28. The graded superalgebra K is a locally unital locally finite dimensional
superalgebra with idempotents e, for w € N\ with core(w) = k.

Proof. By Lemma 16.27, we have

KZ = P esKe,,
w,n

where the sum runs through all w, n € M\ of weight k. Each of the direct summands
on the right-hand side has a basis given by all oriented circle diagrams of the form w~7.
There exist only finitely many such -, hence each summand is finite dimensional. O

Definition 16.29. Given a graded, locally unital, locally finite dimensional superalgebra
A =@, jcreiAej, we write A-mod;sq for the category of all locally finite dimensional
graded left A-modules M such that M; = @ ,c; e;M; with dime; M < oo. Given a right
A-module N, we write N* for the left A-module @,c;(Ne;)*.

We denote by A-proj the full subcategory of A-mod of projective modules.
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Theorem 16.30. The graded superalgebra K& = ®D.. enge7 is an upper-finite based
quasi-hereditary superalgebra in the sense of [BS24] with the following data

(i) all idempotents are special,
(ii) the partial order is given by Definition 16.2,
(ili) Y(w,v) = {wy7y | if oriented} and X(v,w) = {yyw | if oriented}.

Proof. Suppose that Y (w,v) # 0, i.e. that wy is oriented. By Lemma 16.10, we get
v > w. Hence, Y (w,7) = 0 unless w < =, the same holds true for X (v,w). We clearly
also have Y (w,w) = {ey,} = X(w,w).

Thus, it remains to show that the elements (ay7) - (yyb) form a basis of K¥. By
Theorem 16.23, we get (ay7) - (yyb) = +(a7yb) up to lower order terms. In particular,
these form a basis of K&. a O

16.5. Geometric bimodules

In this section we are going to introduce geometric bimodules for K2. Many things are
similar to [BS10], though there is one major difference. In our case, we have two different
kinds of circles, namely inner and outer circles. It does not make affect any arguments,
it just involved more bookkeeping as these behave differently.

Definition 16.31. A crossingless matching t is a diagram obtained from drawing a cap
diagram underneath a cup diagram, connecting the rays in the unique non-crossing way.
We furthermore, require that almost all rays are straight lines, i.e. connect positions ¢
and 1.

If the cap diagram has weight x and the cup diagram has weight v, we call this a
kv-matching. An orientation of a krv-matching ¢ are two weight diagrams w, n such that
wtn is consistently oriented.

Given a sequence of blocks kK = ki - - - kg, a K-matching is a sequence of x;k;_1-matchings
t; for 1 <14 < k. An orientation of a k-matching ¢ is a sequence w = wy, - - - wy of consistent
orientations of the ¢;, and we write t[k] for this oriented k-matching. Given cup and cap
diagrams we can glue these onto (oriented) k-matchings to obtain (oriented) k-circle
diagrams.

The degree of an oriented k-circle diagram is computed in the same way as of an oriented
circle diagram, namely, by adding the number of clockwise (half) cups and caps.

Its parity |wtn| is defined as

jwtnl = # (0 ) - (B (Ag) + #0o) + # (2)
+# () (FEA) + #(x) + D) +# (5 )
)

+(#oa) +# (V) =) - # ()

-<#(I)+;(#(xn)+#(U)+#(xw)+#(m)+1)> mod 2.
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16. Khovanov algebra of type Q

Figure 16.14.: Reduction steps for geometric bimodules

Note that the first two lines look very similar to the definition of parity for oriented cup
and cap diagrams.
Given an oriented k-circle diagram at|w]b, we define the parity of atw]b as

k
|at[w]b] == |awg| + [wob| + > |witiwi—1]-
i=1
For us, the important consequence of this definition is the following analog of Proposi-
tion 16.17.

Proposition 16.32. Switching the orientation of an inner circle changes the parity by
1, whereas the orientation of an outer circle does not impact the parity.

Proof. We will only give a sketch of the proof. The statement is clearly true for outer
circles. For inner circles, there are four different reductions shown in Figure 16.14. One
easily checks that both orientations of any reduction step give rise to the same parity
change. Henceforth, we can reduce to inner circles as for usual circle diagrams and apply
the same arguments as in the proof of Proposition 16.17. O

Definition 16.33. For every k-matching t we define a graded vector superspace Kg’t
with basis all oriented k-circle diagrams at[w]b. Every at[w]b is a homogeneous element,
where the degree and parity are defined in Definition 16.31.

Suppose we are given two sequences of blocks kK = ki -+ - kg and v = v; - - - 1y such that
ko = ;. We introduce the notation kK {v = Kk - -- k1 -- - 1. Given a k-matching t and a
v-matching u, we can define a multiplication map
m: K@t @ K@ — KM,

which is defined as the multiplication of K¢. Namely, m(at[w]b® cu[n]d) is defined to be
0 if b # c¢*, and otherwise we draw the first underneath the second diagram and iterate
the surgery procedures. Via the same arguments, using in particular Proposition 16.32,
we obtain a well-defined multiplication (i.e. independent of the order of surgeries), which
is homogeneous of degree 0 and parity preserving. Furthermore, it is associative, i.e. the
following diagram commutes:

KO® @ K@t @ KGu M9, Qs o Qo

UK
(16.3) }d om lm
KLQ,S Q Kg{;u m ngzflu
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16.5. Geometric bimodules

In particular, we obtain a (ng, K& )-bimodule structure on Kt (use m with the special
case of the empty matching). We can define (upper or lower) reduction as in [BS10, §2]
and the results on the degree directly carry over to our setting. Furthermore, we can also
interpret the (ng, K& )-bimodule K as a (K?, K9)-bimodule by lettings all the other
summands act by 0.

Theorem 16.34. We have Kg’t ®y@ K,?’“ &~ KDt 6 (K? K%)-bz’modules.

"o % K
Proof. The proof is exactly the same as in [BS10, Theorem 3.5]. O

Next we obtain a similar reduction result as in [BS10, Theorem 3.6]. For this let
R = C[X]/(X?) be the graded vector space with degx = 2 and deg1 = —2. We write R’
for the same vector space but with halved grading, i.e. degx =1 and degl = —1. We
also put a supergrading on R’ via |X| =1 and |1| = 0.

Theorem 16.35 (Reduction). Let t be a generalized crossingless matching and u be its
reduction. Denote by n the number of inner circles that got removed in the reduction
process and by m the number of outer circles. Then there exists | € {0,1} (only depending
on t) such that the following is an even isomorphism of (ng, Kgo)-bimodules

K! 2 IT'K* @ R®™ @ R'®"(caps(t1) + - - - + caps(tx) — caps(u)).

Proof. We have two different kinds of circles, inner and outer circles. Both of these admit
two orientations, namely clockwise and anticlockwise. Lemma 16.13 and Proposition 16.32
show that reorienting an anticlockwise inner circle changes the parity and the degree by
2. Furthermore, reorienting an anticlockwise outer circle does not change the parity and
changes the degree by 4. These exactly explain the difference between R and R’. With
this in mind, the proof is exactly the same as [BS10, Theorem 3.6]. The statement about
the parity follows from Proposition 16.32. O

Theorem 16.35 shows that it suffices to consider crossingless matchings ¢ instead of the
generalized crossingless matchings . We can now define the geometric bimodule K, as
follows.

Definition 16.36. Given a rxv-matching ¢, tensoring with K& defines a functor
G9! = K& (—caps(t)) ®q _: K¢ -mod — K¥ -mod .

We will call any functor that is isomorphic to a finite direct sum of (a grading/parity
shift of) such functors a projective functor. Theorem 16.34 and Theorem 16.35 imply
that projective functors are closed under composition.

Using this definition, the proofs and statements of [BS10, Lemma 4.1-Theorem 4.9] carry
over verbatim to our setting. At some places the same adjustments as in the proof of
Theorem 16.35 are necessary. To gather all these in one place, we state the adapted
versions of these results. Throughout all of these assume that ¢ is a kv-matching.
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16. Khovanov algebra of type Q

Lemma 16.37. Ift does not contain any cups or caps, the functor ng is an equivalence
of supercategories.

Proof. As in [BS10, Lemma 4.1]. O
Theorem 16.38. Let vy be a weight diagram with core(y) = v. Then,
(1) GYIP(y) = KL e\ (—caps(t)) as left K2-modules,

(i) the module G%!P(v) is nonzero if and only if the rays in each upper line in tyy
are oriented such that one is V and one is A\, and

(iii) moreover, in this case we have for some | € {0,1}, we have
G P(y) 2 I'P(w) @ R®™ @ R®™(cups(t) — caps(t))

as graded left KY-modules (K acts again on the right-hand side only on the first
factor), where @ is the upper reduction of 7y and n (resp. m) denotes the number
of inner (resp. outer) circles removed in the reduction process.

Proof. The proof is exactly the same as in [BS10, Theorem 4.2]. O
The next corollaries are proven as [BS10, Corollary 4.3 and 4.4].

Corollary 16.39. The module K, is sweet, i.e. projective as a left K?-module as well
as projective as a right K& -module.

Corollary 16.40. Projective functors are exact and preserve the property of being finitely
generated.

Next, we want to show that the projective functors G and G, form up to degree shift
an adjoint pair. For this we define a linear map

(16.4) ¢: K\ @ Kt —KY

as follows. Given basis vectors (awt*rvd) € K!,_ and (d'ktyb) € K, we denote by c the

upper reduction of t*d. Then if d’ = d* and all mirror image pairs of upper respectively
lower circles in t*d respectively d*t are oriented in opposite ways in the corresponding
basis vectors, we set

(16.5) d((awt*vd) @ (d'ktyd)) = (awe)(c*yb),
and otherwise we set ¢((awt*vd) @ (d'ktyb)) == 0.

Lemma 16.41. The map ¢: K, @ K¢, — K9 is a homogeneous (KS,KS)-bimodule
homomorphism of degree —2 caps(t) changing the parity by the number of inner caps in t.
Moreover, it is K2-balanced and thus induces a map ¢: K, e Kf, — KQ.

Proof. This is proven as in [BS10, Lemma 4.6], but recall that caps(t¢) encodes two
different kinds of caps (i.e. all outer caps are counted twice). O
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16.5. Geometric bimodules

Theorem 16.42. Let | be the number of inner caps in t. There is an even, graded
(KL, KS)-bimodule isomorphism

§: T'RY, (~2 caps(t)) = Hom(K., K9)
given by sending y € K', to o(y): KL = KL, 2 — ¢z @y).
Proof. This is now the same argument as in [BS10, Theorem 4.7]. O

As in [BS10], we deduce the following two corollaries.
Corollary 16.43. There is a canonical even isomorphism
HomKﬁg(Kf;,_) ~I'K!, (—2 caps(t)) B

of functors from K9 -mod to Kg -mod, where | denotes the number of inner caps in t.

Corollary 16.44. We have an adjoint pair of functors

(G {cups(t) — caps(t)), I'GZ')

giving Tise to an even, degree 0 adjunction between Kf;2 -mod and Kg -mod.
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17. Another 2-representation of (B

In this section we will finish the proof of Theorem 15.8 by showing linear independence.
This will be done by constructing another 2-representation of (B, ), which is related
to K. We begin by observing some combinatorial connections.

17.1. Combinatorial connections between (5 ,,) and K¢

Lemma 17.1. There is a bijection between Ay and J\.

Proof. To [\, u] € /\, we associate the following two sets
A={N|[1<i</t(N)} and B:={p;|1<i</{(n)}

To this we associate a weight diagram w = (w;);en via

x ifie B\ A,
o ifi€e A\ B,
“"TYA ificAnB,
v o ifi¢ AUB.

Observe that we can reconstruct A and B from the weight diagram and then in turn also
(A, . O

Additionally, we define its weight wt(w) € X as > ;cn ai€i, Where

-1 ifw; = o,
a; =141 ifwl-:x,

0 if wi =V or w; = A.

Clearly, this only depends on the core of w. In turn, we get a bijection between
K= enai€i € X with |a;| <1 and cores of weight diagrams for A,,. We also refer to
these x as blocks and write X<; C X for the set of these. Note that in the beginning
of Definition 15.6 we associated to each [\, u] € N\ a weight wt([A, u]) € X. Now, we
associated to each weight diagram another weight wt(w) € X. The next lemma is
immediate from the definitions.

Lemma 17.2. Let [\, u] € N\ and w € A be the weight diagram associated to [\, p].
Then, wt([A, u]) = wt(w).
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17.1. Combinatorial connections between il(BO‘OO) and K@

We begin by defining some important functors E; and Fj.
From now on, we will use the convention K% := {0} for k ¢ X<;.

Definition 17.3. Fix a block x € X< such that also k + a; € X<;. This means that
the core corresponding to x matches exactly one of the tops of the following diagrams
(we depicted positions i and i + 1):

fori >0: E; \_/ v/\X H Oy—i t§ (k)

AV o
A

]

N N

By swapping all o’s and x’s, we define t{(m) in the same way for a block k such that
K — 0y € XSI-

Definition 17.4. Let k € X and v .= k — «;. We define the functor

E;, = sz{(”) QR Kg -mod — K% -mod,

K+oy

whenever x and v € X<, otherwise we define E; to be 0.
Furthermore, we define F; to be the right adjoint of E; (given by Corollary 16.44), i.e. we
have

! (etous
F; = HZK,t,if(H+a’)(— cups(tzf(n + o)) ®_: K?  -mod — K?-mod,

K+ay

where [ denotes the number of inner caps in tlf (k).
Next, we assemble these functors into a 2-category.

Definition 17.5. We define the 2-supercategory 2K® as the 2-subsupercategory of the
2-supercategory of k-linear supercategories with objects K¢ -mod for x € X, 1-morphisms
generated by E; and F; and 2-morphisms given by natural transformations (resp. bimodule
maps).

Denote by wy the weight diagram V V--- and write kg for the corresponding block.
The projective Kgo—module P(10) induces a 2-representation ®: 2K? — &GSCat of 2K?,
denoted by 2K%. Explicitly, on objects, we map the object K¢ -mod to the full additive
subcategory of K9 -mod given by all objects that are obtained from P(1y) by applying
FE;’s and F;’s; while on 1- and 2-morphisms, we just act in the obvious way.

Lemma 17.6. We have (2K?),. ~ K¥ -proj and thus @, x (2K%) . ~ K -proj.

Proof. This follows easily from Theorem 16.38 using the defining diagrams of F; and
F;. O

Theorem 17.7. We have a graded 2-superfunctor LI(B0|OO) — 2KQ, given on objects by

K > KE -mod and on 1-morphisms by sending F; and E; to the corresponding functors
for K&.

179



17. Another 2-representation of U(By|o)

Warning. We prove this theorem over Fo, as we did for the multiplication in Theo-
rem 16.19. In addition to the signs appearing in a general multiplication on K9, we also
have to consider odd maps of superbimodules.

However, we indicate in the proof, where extra care is needed in the general case.

Proof. We still have to define the 2-superfunctor on 2-morphisms, and then it amounts
to checking the defining relations of (By|,). For all the 2-morphisms not involving Fy
or Fy, we use the same morphism as [BS11b]. Also recall that we did not introduce any
signs in the multiplication, whenever an outer component is involved in an outer surgery.
This together with Theorem 16.19 implies that all the relations that do not involve Ej or
Fjy are satisfied.

For the remaining generators, we first map ? : Byl — Epl, to the supernatural

0
transformation, which is given by multiplying the inner cup/cap in the diagram for Ej

with }, which is odd and has degree 2. Next, if FyEj is not zero on K@ we necessarily
find a small inner circle in the diagram for FyFy. Then, >< : BEyEgl,s — EgEoly is given
0 0

sending an anticlockwise circle to 0 and reorienting a clockwise one to be anticlockwise.
This is then also odd and has degree —2.

For crossings involving 0 and j > 2, there is an obvious isomorphism given by a height
move. This is even and of degree 0.
For the remaining crossings

>< : EgE11, — E1Eol, and >< : B1Eol, — EoFql,,
0 1 1 0

we have to apply a surgery procedure to cut the components and glue them back together
the other way.

This is done by creating a cup/cap pair (which gives degree 2) and then applying a surgery
procedure. This gives an even degree 2 supernatural transformation, see Figure 17.1 for
details.

Finally, we map 7\] : 1, = EiF;l,, and ~ : E;F;1, — 1, to the corresponding
(co)unit of the adjunction Corollary 16.44. In particular, (15.4) is automatically satisfied.
To check the relations, first observe that applying >< or ? twice, gives 0. Therefore,

0 0 i
for (15.1) we only have to show

(17.1) Aij - If ,

0 1

as well as the mirror (i.e. first 0, then 1), which is proven in exactly the same way. There
are four possible number lines (at positions 1 and 2) such that F; is applicable: ee, ex,
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17.1. Combinatorial connections between il(BO‘OO) and K@

Il
>
0

Figure 17.1.: Explicit description for the image of the crossings for 0 and 1

oe and ox. Note that the last two are exactly those where, Ej is not applicable and
also those where the strands involved in the geometric bimodules for Fy and E; belong
to the same components. Hence, for the last two both sides produce 0. The other two
cases have exactly the same argument and we will only give the one for ex. First note
that both sides are given by surgery procedures plus some signs. Note that these signs
agree on both sides, so it suffices to check that the surgeries on both sides give the same
result. The left-hand side in terms of geometric bimodules is shown in Figure 17.2. The
squiggly arrows denote the application of surgery procedures. Now, as surgery procedures
commute by Theorem 16.19, the top composition is the same as the bottom one. For the
bottom one, we can first split off the outer circle and then merge this with the inner circle.
The Merge of a clockwise outer circle with an inner circle is 0, hence the composition
is nonzero, only if we split off an anticlockwise circle. This happens, if and only if this
component is part of an anticlockwise circle. The result is then the reorientation of this
anticlockwise circle, which agrees with the right-hand side of (17.1) by definition.

For (15.2), note that if the labels do not agree, the crossing and the dot are given by
surgery procedures (or height moves). Hence, the relations hold by Theorem 16.19. So

NH e

Figure 17.2.: Surgeries for (15.1) Figure 17.3.: Diagram for (15.2)
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17. Another 2-representation of U(By|o)

we may assume that both labels are 0. Note that if applying Fy twice is nonzero, then
the diagram has to contain a small inner circle (see Figure 17.3). We have to show

Observe that the crossing reorients the small circle to be anticlockwise (and kills the
anticlockwise orientation), whereas the dot reorients the small circle to be clockwise (and
kills the clockwise circle). In any case, one of the summands kills it and the other gives
the identity. Thus, (15.2) is satisfied.

Next, we consider (15.3). There are three labels involved, i, j and k, at least one of
them being 0. If any of the three is distant to the other two, the braid relation is given
by some height moves plus one additional crossing. As this crossing commutes with
the height moves, the relation is satisfied. Furthermore, if all three labels are pairwise
different, the involved crossings are either height moves or surgeries and thus commute.
Thus, we can assume that the labels are either 0 or 1. Also, applying Ey three times is
0, so we may exclude this. We also need to have that F;E;E, as well as EF;E; are
nonzero (as otherwise the relation trivially holds). This leaves exactly two cases to check
t=k=1=j+landi=k=0=j5—1.

We begin by examining ¢ = k =1 = j + 1. There are exactly two possible top number
lines, such that this sequence is nonzero: ox and ex. They are just upside down mirrors
of each other and we will only consider the first one. Observe that for this the second
summand of the left-hand side of (15.3) is zero. The involved surgeries for the right-hand
side are shown in Figure 17.4. In the first step, we split off a clockwise circle. This gets
then reoriented and merged again, which results in the identity.

Next, we consider i =k =0=j — 1.

In this case, there exist 4 possible number lines, such that the sequence is nonzero: X X,
xe, oo and ex. The latter two are the horizontal mirrors of the first two and we will
only consider the first two. Note that the second summand of the left-hand side of (15.3)
is zero. The involved surgeries for the left-hand side are shown in Figure 17.5. The two

o X o X o X o X
AN /\MQW
o XO XO o
o N, W o

Figure 17.4.: Braid relation fori =k =1=j+1
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XX X

X XX
X ) X X \x
AVAVAS AVAVAS AVAVAYS
X o o X
N /4R /4R N

J ol o]

><<) o o XO
N, . . IR T

> >
VX
>

Figure 17.5.: The two possibilities for the braid relation fori =k =0=75—1

cases, further divide into two subcases each. Namely, whether the two drawn components
are connected and form an inner circle or not. If they form an inner circle, the first
surgery splits off a clockwise outer circle, which merges in the last step with an inner
component, thus the left-hand side is 0. On the right-hand side, each summand reorients
this circle and hence, they cancel out.

If the two components are not connected, the first surgery is a Reconnect, then we reorient
the small inner circle and do another Reconnect. In case both circles are clockwise, both
sides are 0. If exactly one circle is oriented anticlockwise, the first Reconnect produces
two clockwise circles. Overall, the result will contain two clockwise circles. One summand
on the right-hand side gives 0 (applying the dot to the clockwise circle) and the other
summand gives two clockwise circles. If both circles are anticlockwise, after the second
step, we will still have two anticlockwise circles. The final Reconnect, then gives the
difference of two diagrams, each containing exactly one clockwise circle. This is exactly
the effect that the right-hand side has. Thus, the relation is satisfied.

Finally, we consider (15.5). If < and j are distant, this is just a height move, which is
clearly an isomorphism. This leaves ¢t =0=j — 1 and ¢ =1 = j + 1. Both of these are
similar, so we only show the first case. There are exactly two number lines, such that
the 4 Fp is nonzero: ox and oe. These are also exactly those two, such that FyE; is
nonzero. The involved crossings are the obvious isomorphisms

o X o X o o
\( AN ﬂ and U AN />
X X X0 X o

It remains to look at (15.6) and (15.7). Both are shown similarly, so we concentrate on
(15.6) for : = 0. We are in a situation where (hg, x) > 0. This leaves two possibilities for
position 1 of the top number line: o and e. In case of o, we have (hg, k) = 2 and for e we

183



17. Another 2-representation of U(By|o)

have (hg, k) = 0. For the former, note that the crossing is 0 as Ejy is not applicable. So
we have to show that

Y S N :E0F015—>1569ln
0 0

is an isomorphism. The diagram for the left-hand side is given by

o

)

o

Observe that the counit of the adjunction is given by projecting onto the clockwise
oriented component. Hence, the first summand kills the anticlockwise component and
projects onto the clockwise one. Similarly, the second summand kills the clockwise
component (because of the dot) and projects onto the anticlockwise one. This is also
exactly the isomorphism given in Theorem 16.35.

If (ho, k) = 0, the crossing is the obvious isomorphism

/ /
X AN e
N N
Hence, all relations are satisfied, and we obtain the desired 2-functor. O

Using this theorem, QKg exhibits the structure of a 2-representation of {(By|o,) by pulling
back the action along the 2-functor.

Theorem 17.8. There is an isomorphism of 2-representations G Ll(BO|OO)A — 2Kg.

Proof. We being by constructing the morphism G. Observe that LI(BO|OO)A is generated
by the object 0 and QK% by the projective module P,,. If we can show that P,, satisfies
(15.8), we get the desired morphism from Theorem 17.7.
Observe that the definition and Theorem 16.38 immediately imply that E;P(io) = 0
unless ¢ = 0. Furthermore, we have

J

D

and thus ? is satisfied. Finally, observe that (05 defines an odd endomorphism of P, ,

0
which thus must be trivial.

Therefore, we obtain the desired morphism of 2-representations G': M(BO|OO)A — QK%.
Let t be one of the diagrams that are used in Definition 17.3 to define F;. Now, observe
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o X _ ‘\/ ‘\L
+ (. T

S S S S
a : - U
W) = — ﬂ“

>< g/ > AN\ X<
><
><
/ ° \< AN —<—

<]
><

o
J

A A

Figure 17.6.: The possibilities for a cup

that wtn is oriented if and only if (under the identification with /X\) either n % w or

1 «~- w. A similar statement is true for F (by reversing the orientation of the arrows).
This has the following consequence. Let X; and Y} denote two sequences of E; and
F; and let x be the weight associated to this. On the one hand, we can consider
Homy g, )a (k,0)(X;,Yj). On the other hand, we have Hom, o (X3 P(u0),Y;P(w)). Note
that G exactly maps the former to the latter. Now the above observation shows that

dim Homy g, )a (k,0)(X;,Y;) < dim Hom, o (XiP(w),Y;)P(w0).

Hence, it suffices to show that G is full. This in turn also proves the linear independence
of the spanning set of ﬂ(BO‘OO)A.

Let [\, u] € N\ and s € TUY([\, u]). Let X; be the sequence of projective functors that is
induced by ress and let t = t,, - - - t1 be the associated sequence of crossingless matchings.
A basis of X;P(1p) is given by all compatible orientations w'n,t,nn—1 - - - t1Lot0. If we write
w for the weight associated to [\, u], the set of all these orientations with w = w’ =1, is
in bijection with the subset of 7"4([\, u]) with residue sequence res s.

Now, W* is given as the composition of crossings and cups. Note that considering the
diagram from the bottom up, this still defines a valid up-down-bitableau of shape [, p].
Thus, we can associate to each of these slices also a basis vector in the corresponding
projective module. If we consider two consecutive slices, these differ only by a basic
crossing or cup. We will show that in this situation the dedicated basis vector is mapped
to the other dedicated basis vector (up to lower order terms).

By the dual argument we obtain the same result for W(. In the end, we will have ¥*
giving rise to a diagram of the form ww--- and Wy gives - - - ww. By Theorem 16.30, we
have that (---ww) - (ww---)==---w--- up to lower order terms. This shows that G is
full and thus an isomorphism of 2-representations.

We only have to show the above claim. For this let t and s two consecutive slices. We
look at different cases depending on the elementary diagram connecting these two. First
suppose that the elementary diagram is a rightward cup labelled ¢. This means that at
this position a box of residue i can be added to the first component (which then gets
removed by the other end of the cup). Figure 17.6 describes all the local possibilities
including the orientations of what basis vector needs to be mapped to which other one.
For most of these cases it is immediate from the definition, that the basis vector is
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Figure 17.7.: The possibilities for a neighbored crossing

mapped to the other one. The only exception are the last two, where a line is cut into
two. Both of these can be rephrased in terms of usual surgeries and then these amount to
cutting anticlockwise cups and caps, hence the orientation is preserved by Theorem 16.30.
Replacing o by x and vice versa, we obtain the same result for leftward cups.

Next, we move on to crossings. We begin by examining the possibilities for E;FE;. In our
situation, a crossing for these two can only appear, when the first a box is removed and
afterward added. The situation looks necessarily like

»,
2

< >>

<
2

<

By definition of the crossing, this exactly reorients the small circle as desired.

Next, we consider F;FE; 1. This can also only appear if F;;; removes a box and E; adds
a box. The possible cases are depicted in Figure 17.7. Recall, that neighbored crossing
are defined using one surgery procedure. In all the cases from Figure 17.7, the surgery is
given by cutting an anticlockwise cup and cap, hence (up to possible sign) everything is
given by reconnecting (without changing any weights). If we reorient all lines and change
the orientation of the squiggly arrow, we obtain the diagrams for F; 1 F;.

For E; and E; with |i — j| > 1, the crossing is just a height move, in the diagram. In
this case, it is easy to see that the two basis vectors are mapped to each other.

If we replace in the above arguments all o by x, we obtain the diagrams for crossings
involving F;’s.

For crossings involving F; and F; with ¢ # j, the statement is very similar to the distant
case for F; and Ej;.

Finally, we are left with F;F;. This situation can only appear, if either both add boxes
or both remove boxes. In any case, the crossing is the obvious isomorphism, given by the

following diagrams
\/ \_/ -
R Xy
AN NN

It is easy to see that also in this case the basis vectors are mapped to each other. ]
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18. Khovanov algebra of type (),

In this section, we will foster the relationship between K¢ and q(n). By combining
Theorem 15.5 with Theorem 17.8 and Theorem 16.35, we obtain a relationship between
K%?-modules and representations of q(n). This is the following corollary.

Corollary 18.1. We have an essentially surjective, full functor
Fn: K9 -proj — Fund’(q(n)).

Unfortunately, this functor is not faithful. To overcome this issue, we begin by introducing
certain subrepresentations of 2K%.

Definition 18.2. Let ¢, be the weight oo---0V V.- where the number of o’s is
exactly n. (Note that this agrees with the previous definition of ¢y). Denote by 2l,, the
2-subrepresentation of 2K% generated by P, . This is the full subcategory of 2K% where
objects are given by direct summands of K¢* ®yq P, , where t is a composite matching
build from the elementary E; and F; diagrams.

From Theorem 16.38 it is easy to see that 2lp D 21, D 2l D ---.

Next, we will introduce certain subsets of M\, which will be an important tool for
understanding 21,,.

Definition 18.3. Denote by M\, € /A the set of all weight diagrams w such that w
satisfies

#)+#E+# (0 )+2# (U ) =n

We also introduce N>, = Ug>n A (equivalently we can replace the = by > in the
definition of \\,,)-

Lemma 18.4. Letw € )\ a weight diagram. We have P(w) € 2l,, if and only if w € N>,
Additionally, any P(w) with w € )\, also generates 2l,,.

Proof. First, observe that any of the elementary diagrams for E; and F; never decrease
the left-hand side of the inequality and clearly ¢, satisfies the inequality. So we only
have to show that any P(w) satisfying the inequality is in 2l,,. Observe that applying
E;FE; turns ox into xo (if ¢« > 0) and x into o (if i = 0). Similarly, F; F; does exactly the
reverse. Furthermore, F; and F; can also move o and x around. Applying Fy and Ey to
e, we can create o or X. This means, that we can obtain any w with at #(o) +#(x) >n
that does not contain any cups. Finally, applying F; to ox (or to x if i = 0) we can
create a cup. This shows that any w € /\>,, can be obtained from ¢,,.
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18. Khovanov algebra of type Q,

For the second part, we have to show that P(i,) can be obtained (as a direct summand)
from P(w) with w € )\, via applying E;’s and F;’s. This can be proven by mimicking
the same arguments as above. Any cup in the cup diagram can be removed by applying
FE;, which turns this into xo. Then, move all the x to the left and apply EgEy to turn
them into o. Finally, move all the o’s to the left to obtain ¢,. Note that we really need
w € /N\,, to ensure that the number of resulting o is exactly n. O

The following lemma gives a representation theoretic interpretation of the sets )\, in
terms of the representation theory of q(n).

Lemma 18.5. We have F,(2ly,4+1) = 0 and F,(21,) C proj(q(n)). Furthermore,
Fo(P(w)) #0 for allw € /\,-

Proof. By Theorem 14.16, we have F,(P(t+1)) = 0 and F,(P(tn)) = Lg(n,n—1,...,1).
Now, Lg(n,n—1,...,1) = Py(n,n—1,...,1) by Lemma 14.9. As E; and F; are biadjoint
functors (on rep’(q(n))), they preserve projective objects. In conjunction with F,, being
a map of 2-representations, the first part follows.

For the second part, suppose that F,(P(w)) = 0 for some w € \\,,- As P(w) generates
2l,,, we get in particular F,,(P(t,)) = 0, contradicting the first part. O

In particular, we obtain an induced map of 2-representations F,: 21, /21,41 — proj’(q(n)),
where 2l,,/2l,, 41 denotes the quotient 2-representation. Our next goal is to give a better
description of this quotient. For this we introduce a subquotient of K<.

Definition 18.6. Let e, = _ A\ Ceor This is not an honest element in K<; nevertheless,
we can consider enKQek = @we/)(\n,ne/)(\k ewKQen,
We define K to be the quotient of e,K?e, by the two-sided ideal generated by e,1.

The following is immediate from K¢ and Lemma 18.4.
Corollary 18.7. The quotient 2-representation 21, /21,41 is isomorphic to KQ -proj.
The next proposition provides a basis for Kg.

Proposition 18.8. The algebra Kg has a basis given by all circle diagrams ywn with
v,m € N\, that do not contain an inner line.

Proof. Tt is clear that e,K%e, has a basis given by ywij with v, 17 € A\,

First, note that any oriented circle diagram in enI(Qen+1 (respectively e, 1K%e,) has
an inner line. This is because the cup and the cap diagram have the same number of
o and x. Furthermore, each outer line and each circle contribute the same number to
the sum in the inequality of Lemma 18.4. Hence, there must be an inner line ending at
the bottom for enKQen+1 and at the top for e, K@e,,. From the explicit description of
the surgery procedures in Appendix A, we see that this inner line is preserved by the
multiplication (or mapped to 0).

On the other hand, we have to show that any circle diagram with an inner line factors
through e, 1. So consider ywn with v, n € )\, containing an inner line. Consider the
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first (from the left) inner line L ending at the top (the number of inner lines ending
at the bottom and top is the same, but the same argument also works the other way
around). Let 1/ be the same diagram as 7 but we replace the line segment of L by an
inner cap. Then, ywr/ is also an oriented circle diagram, where the L is now replaced by
a clockwise inner circle. Let w’ be the same as w except that we orient this inner circle
anticlockwise. Then, yw'n’ is an oriented circle diagram in e,K%e, 1. Furthermore, 7/n7
is an oriented circle di%gram in e,41K%e,. Observe that n'n7 contains only anticlockwise
circles and one inner line. Hence, all surgeries involved in the multiplication process are
Merges with anticlockwise circles. All except for the last one come from the anticlockwise
circles in 7'n7. The last one merges the created anticlockwise circle of yw'n’ with the
inner circle of n'n7. This shows that w7 factors through ey 1. B O

Theorem 18.9. We have a superequivalence ofU(BO|OO)—2—7’ep7’esentati0ns

A

Fi: KQ -proj — proj'(q(n)).

In particular, we obtain a weak superequivalence of abelian categories between Kg -mod
and rep(q(n)).

Proof. Consider Hom, o (P(v),P(n)) for v and n € \,,- By Theorem 16.38 (see also the
proof of Lemma 18.4), there exists w € /\\,, such that w contains no cups and a sequence
X; of Ej’s and F;’s such that X;P(w) = P(v). Denote by X} the adjoint sequence
(i.e. reverse the order and swap E’s and F’s) and consider the following diagram

Homyg (P(7), P(n) —"— Homyy(qiny) (FalP()). Fn(P(0)))

l A A
Homyo (X; P(w), P(1)) —"— Homyep(q(m)) (Fn(XiP()), Fu(P(n)))

A

(P(w). X{ P(n) —T" Homyeps oy (Fa(P(@)). (X7 P(n)))
zu 0

A

Homyo (P(w), P@)®) —7 Homyeyqgn)) (Fa(P(©)), Fa(P(w)?)

The first vertical isomorphisms come from the definition of X; and w and the upper
square commutes by definition. The second vertical isomorphism follow from adjunction
and the square commutes as Fpis a map of 2-representations. Note that w is strongly
typical by construction and thus Theorem 16.38 implies that there exists some k£ € Ng
such that the third vertical isomorphism holds (which might be 0). The lower square
also trivially commutes.

By Lemma 18.4, we know that F,(P(w)) # 0 and as P(w) is irreducible so is the image.
In particular, the dimension of the two homomorphism spaces in the bottom row is the
same, namely k. As F, is full, the lower horizontal map must be an isomorphism and
thus also the top horizontal map. Thus, F,, is fully faithful and essentially surjective and
hence a superequivalence of supercategories.
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18. Khovanov algebra of type Q,

As rep/(q(n)) and rep(q(n)) are weakly superequivalent (by definition of rep’(q(n))), we
obtain the desired result. O

Remark 18.10. The locally unital algebra K& decomposes into blocks (K?),. Let (K¢),
be (KQ), if #(0) 4+ #(x) is even and (KY), ® €1 if # (o) + #(x) is odd. Here, &; is the
Clifford algebra with one generator, i.e. C[C]/(C? — 1) with C odd.

Write K@ = @,.(KY'),.. Then, we have a superequivalence of abelian categories between
(K?'),.-mod and rep(q(n)) by Theorem 18.9 and [KKT16, Lemma 2.3, Lemma 2.7].

Remark 18.11. In [Fri07], it was shown that integral typical blocks of O(q(n)) are
fibered highest weight categories. This also holds true (more or less trivially) for the
typical blocks of finite dimensional representations of q(n) as these are semisimple by
Lemma 14.9.

One might hope that this extends to all integral blocks of (finite dimensional) representa-
tions of q(n). However, this is not the case. From the explicit description of K, it is
easy to check that already for n = 2 the atypical blocks are not fibered highest weight
categories anymore.
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19. Categorification

In this section, we will show that the 2-representation il(BO|OO)A categorifies the U(By|oo)-
representation L"(—wys) ® L(wy). Here, L(wys) denotes the integrable highest weight
representation with highest weight wy and L"(—wy) the integrable lowest weight repre-
sentation with lowest weight —wy.

Throughout this section, let Q(¢)™ be the algebra Q(q)[n]/(7? — 1), with ¢ and 7 indeter-
minates over Q. We also use the notation Z™ for Z[r]/(7? — 1).

We replace the usual braiding on Q(q)™-vector superspaces by v @ w + *lI*ly @ w. Note
that setting m = —1 gives the usual braiding of vector superspaces and m = 1 gives the
usual braiding of vector spaces.

19.1. The Grothendieck groups of $((By,,) and (B, )"

We begin with some generalities for the Grothendieck groups of graded 2-supercategories
and its 2-representations.

Definition 19.1. Let 2 be a graded 2-supercategory. Then, we define its Grothendieck
group
Ko@) = € Ko(Homu(x, V)or)-
K,vE€ODb(A)

This is a locally unital Z™[q, ¢ !]-algebra with mutually orthogonal idempotents 1,,
k € X. Here, q, ¢! and 7 are induced by the automorphisms @, Q' and II respectively.
The algebra structure is induced by the horizontal composition.

We write Ko(21) == K() @zx[q.4-1] Q"(g) for the scalar extension.

Given a 2-representation R of 21, we define its Grothendieck group as

KyR)= & Ko(Rr,).
Kk Ob(2l)

As above, this is a Z™[q, ¢ !]-module. The 2-representation structure induces a left
Kj(0)-module structure on Kj(R). We write Ko(R) = Kj(R) ®zr[q4-1] Q"(g) for the
scalar extension, which is then also a left Ky(2A)-module.

Definition 19.2. Given a Q-II-category C (i.e. the underlying category of a graded
Q-II-supercategory), we denote by rep(C) the functor category Fun(C, Vec). This is a
Q-II-category where the additional data is given by precomposing with @, Q! and II.
Given ¢ € Ob(C), we have the projective module P. := Hom¢(c, ). We denote by proj(C)
the full additive subcategory generated by finite direct sums of P..
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19. Categorification

The following lemma is obvious from the definitions.

Lemma 19.3. Let C be a Q-Il-category. Then, there is a Q(q)™-linear isomorphism
Ko(C) = Ko(proj(C)), [c] — [Fe].
This gives us the following bases for K (ﬂ(BO‘OO)A).

Lemma 19.4. The Q(q)"-module KO(L[(BO|OO)A) has the following bases over Q(q)™:

{POu el e N} and {1 D] A ul € N\

Proof. By Lemma 19.3, we see that the indecomposable projective modules form a basis
of K (il(BO|OO)A). Theorem 15.9 identifies the indecomposable projective modules with
P([A, p]). The A([A, p]) all have finite projective dimension by [BS24, Lemma 3.43],
i.e. we can consider them as elements in Kj (il(Bmoo)A). Furthermore, any projective has
a finite filtration by (grading/parity shifts of) A([\, u]), so they form a basis. O

We will also need a supergrading on Ko(4(By|)) and Ko(il(Bmoo)A).

Definition 19.5. We endow Ko(U(By)) with the structure of a superalgebra by
declaring |[€;]1.| = |[Fi]1.| = |i|. There also exists a supergrading on Ko(4(Byjoo)™) by
declaring that the vector space lﬁKo(il(B0|oo)A) is pure of parity (3> o2, e, k) mod 2.
With this definition, Ko(i,((Bmoo)A) is a left Ko(L - (Bojso))-module.

19.2. Categorification of ((By,)"

In this section, we state the results from [BE17b] for the categorification of U(Byj)-
We begin by recalling the definition of the quantum covering group U(By|«) from
[CFLW14].

Let ¢; = ¢% and m; = «l!l for i € I.

For n € Z, we define

) q" — (mq)™" R oy L SRR SOV bl if n>0,
n = =

q, q-— 7rq_1 _7rn<qfn71 + qunfS S anflqlJrn) if n < 07
Note that this slightly differs from [CFLW14] but agrees with [BE17b].

Definition 19.6. The covering quantum group U(By|s) is the Q(g)"-superalgebra with
generators J, &;, F;, IC; for all i € Ny subject to the following relations

J is central,
K:jK:Z' = ,CiK:j, jz = 17
Ki€j = ¢ €K, KiFj = q Ml FiK,
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19.3. Categorifying L(wys) ® L™ (—wy)

. liljodi _ jo—di
£F, — allilg 7 — 5,0 — R
lilg; — ¢
&&= &€, FiF; = FiF; for |i —j| > 1,

EXEix1 — 2]21Ei&ix1E + EEl =0 for i # 0,
FiFimr — Rl FiFinFi + FinnFf =0 for i #0,
361 — [3)gnE2E1E0 + (3] nE0E1ER — TELES = O,
F3F1 — [BlynFoF1Fo + 7[3lgnFoF1Fe — nF1Fs = 0.

Here, |K;| = |J| =0 and |&| = |F;| = |i| = 6; for all ¢ € No.

This is a Hopf algebra with comultiplication A(&;) = & ® IC;di + T @ &, A(F) =
Fi@l+ /C?i ®@Fi, A(K) =K@ K and A(J) = J ®J. The chosen comultiplication is the
one from [CHW14] and is more similar to the comultiplication of [Kas91] than [Lus10].

Remark 19.7. Observe that [CFLW14] define U(By|) where K and J are indexed by
general coroots. We restricted to coroots associated to the simple roots. Also note that
their jaiv =1 for ¢ # 0 and our J is their jag.

The following theorem was proven in [BE17b] for all types (not only By|,) assuming a
basis theorem for U(By). In our specific setup this basis theorem can be deduced from
[KKT16, Theorem 3.13, Theorem 5.4], see also [KKO13, KKO14].

Theorem 19.8. There is an isomorphism of Q(q)™-superalgebras
U2 U(Bojoo) = Ko(U(Bojoo)),

where U(Bmoo) denotes the modified covering quantum group from [CFLW14].

19.3. Categorifying L(w;) ® L"(—wy)

From Theorem 19.8, we obtain a U(By|)-module structure on KO(LL(BO|OO)A). We will
show that this categorifies a tensor product of type B spin representations.
Let us begin by introducing the representations we want to categorify.

Lemma 19.9. The following gives a well-defined representation of U(By|,) on the vector
superspace L(wy) with basis vy, for [0, u] € N\, where |v,| =1+ €(p).

Kivy = qéi’0+<hi7Wt(#)>vw Jvu = Ty,
] _E ! ’ 3 3'_ /
Foup = {0 if [0, p] —= [0, 1], I if [0, 1] <= [0, 1],
0 otherwise, 0 otherwise.

In particular, L(wy) is an integrable highest weight module with highest weight wy, where
wy is the first fundamental weight, i.e. (hi,wg) = 0.
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19. Categorification

Proof. We need to check all the defining relations of U(By|,). First, observe that the
action is parity preserving, as Fy and &y change ¢(u) by 1.
Recall that, if g = (1 > -+ > p), then wt(p) = >5_; €4, The element J operates
by a scalar and hence is central. Observe that by definition of wt(u), the commutation
relations between IC and € (respectively F) are satisfied.
For the commutation relation between &; and F; assume first that ¢ # j. Note that if
|i — j| = 1, then both summands on the left-hand side are 0, as a box of residue ¢ cannot
be removed after a box of residue j has been added (and vice versa). If |i — j| > 1, then
the commutation relation is trivially satisfied, as these do not interact. Next if i = j # 0,
note that Fjv, is non-zero if and only if there is a row with ¢ boxes in ¢ and no row with
1+ 1 boxes. Similarly, & can remove a box of residue i if there is a row with ¢ + 1 boxes
and no row with ¢ boxes. In particular, the commutation relation is satisfied if & and F;
act by 0 on v, (as then v, = v,). If Fv, # 0, then v, = qu,, and if Ev, # 0, then
Kivyy = q_lvw. Hence,
2 -2 2 -2

(51.?1 — Fié’i)vu = UH = ’f];_;C_ZQUH, (SZ./’—"z — ]:z'gi)vu’ = —'U“/ = IE;_;C_lQU“/.
For i = j = 0, suppose that [0, y] N [0, '], this means that (hg,wt(x)) = 0. Then
Eovy, = 0, and we calculate

TKo — Ky

50./—"01)“ = ’Uu = g — q_l

V-

If [0, p] Qo 0, 1], then Fov, = 0 and (ho, wt(p)) = —2. We obtain

TKo — Kyt
Er——

q9—q
The Serre relation for |i — j| > 1 trivially holds for F' and follows from (h;, oj) = 0 for E.
Finally, all the other Serre relations trivially hold as every individual summand operates
by 0.
From the definition it is clear, that L(w¢) is an integrable module (we even have F2v, =
E?Uu = 0). The highest weight vector is vy and this has highest weight wy, as KC;vy =

q%ouy. Ul

—nFolovy = —mv, =

We have the following automorphism on U(By|,), see [CHW13, §2.2].

Lemma 19.10. There is a unique Q(q)"-linear involution w on U(By) given by
w(&;) = mi JIUF;, w(F;) =&, w(ky) = ’Ci_l and w(J) =J.

With this involution, we can define the following lowest weight representation.
Definition 19.11. Denote by L*(—wy) the U(By| )-module obtained by twisting L(wy)

with w from Lemma 19.10. Explicitly, we have the following action (writing now v* for
A€ X 0])
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19.3. Categorifying L(wys) ® L™ (—wy)

—Fi’u/\ = {,UX lf [)\7 ®] <Z_ [)‘/a @]7 5“/\ = {,UX lf [)\’ ®] _Z> [)‘/a (DL

0 otherwise, 0 otherwise.

Recall that wt(\) = > p_; €y,. In particular, L (—wy) is an integrable lowest weight
module with lowest weight —wy.

We want to introduce a bar involution on L(wy) and L (—wy). For this, recall the bar
involution on U(By|) from [CHW13, §2.2].

Lemma 19.12. There is a unique Q-algebra automorphism —: U(Bojoo) =+ U(Bo|oo) such
that
q:ﬂ-qila =T, ?Z:g’h fzzﬂv E:jmlcl_la 7:\.7

We call this automorphism the bar involution.

Proposition 19.13. There is a unique bar involution — on L(wy) (respectively LV (—wy))
such that T-0 = T -7 and Ty = vy (respectively v0 = o?) for all u € U(Boyx), and
v € L(wy) (respectively v € L*(—wy)).

Proof. Note that the involution w commutes with the bar involution on U(Bo\oo), thus
the statement for L (—wy) follows from the one for L(wy).

The uniqueness is clear, as vy generates L(wy). We only have to show that the bar
involution is well-defined.

Let I be the left ideal of U(B|,) generated by &; for all i and F; for i # 0 as well as F,
J —mand K; — ¢%o for all i. Consider the quotient U (Bojso)/I. This is an integrable
highest weight module of highest weight wy, thus we must have L(wy) = U(By|oo)/I. Tt
is easy to see that I = I. Hence, the bar involution on L(wy) is well-defined. O]

Using the quasi R-matrix from [CHW13, Theorem 3.11], we can extend these bar
involutions to L(wys) ® L*(—wy).

Proposition 19.14. There is a unique bar involution — on L(ws) ® L¥(—wy) such that
T 0 ="1-7 and vy @ v = vy @ v? for allu € U(Boyjx), and v € L(wy) ® LY (—wy).

Proof. We follow the arguments from [Lus10, §27.3.1]. The uniqueness is still clear, as
vp @ v? generates L(wy) ® L*(—w 7). We only have to show that the bar involution is
well-defined and an involution.

Recall the quasi R-matrix © € (U(By|s) ® U(By|))” from [CHW13, Theorem 3.11].
This is an element © = ", O, with v a positive linear combination of simple roots and
0y € U(Bojeo);, @ U(Bojoo);} - It satisfies A'(u)© = OA(u) for all u € U(By|). Here,
A’ is another comultiplication of U (Bojoo) and A is given by precomposing A’ with
and postcomposing with ® .

To translate their result to our comultiplication, consider the Q-superalgebra automor-
phism ¢, which is defined by ¢(¢) = ¢~ ', u(n) = 7, (&) = TNF;, o(F) = &, oK) =
jli‘lCi and «(J) = J. Then, A’or = 1®10A. Tt is also clear that ¢ commutes with the bar
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19. Categorification

involution. Hence, we obtain an element ©' = 3>, 6/, = 1®(0) € (U(By|s) @U(By|0))"
with ©), € U(Byjes ) @ U(Bojso),, - This satisfies A(u)0’ = O'A(u) for all u € U(Bo|so)-
Now, define v®w = ©'(v ® w) for v € L(—wys) and w € LY(—wys). The quasi-
commutativity of ©” with the comultiplication implies @- v ®@ w = u - (v ® w).

By [CHW13, Corollary 3.1.3], we have ©'0/ = ©0' = 1 ® 1. So, we get v@w =

Ovew) =00Txw) =vew. O

Remark 19.15. In [CHW13] it was assumed that the set of simple roots is finite.
However, looking carefully at the needed statements in the proof of [CHW13, Theorem
3.11], one sees that this is not necessary. Every calculation and claim takes place in a
subalgebra generated by J, &;, F; and K; for i < N for some N > 0.

The next result is a standard argument.

Lemma 19.16. There is a unique basis {bﬁ | [\ p] € N} (called canonical basis) of
L(wy) @ LY (—wy) such that

(i) b = by,

.. )\/ !/ ’ . )\/ / -

(ii) b;\L =v, @V} + 2oV > o] a)\ﬁ vy @ VY with a/\,f € qZ"[q].
Corollary 19.17. Let [\, u] € )\ such that X\; # p; for alli and j (whenever \; # 0 and
pj #0). Then, bl); = v, ® v
Proof. Note that v, ® v* is the minimal element in its weight space. Hence, it must be

bar invariant and thus bf; =, ® v, O

The next theorem shows that #(By|s)" categorifies L(wy) @ L*(—wy).

Theorem 19.18. We have an isomorphism of U(By|s)-modules
®: L(ws) © L (~ws) = Ko(4(Bojso) ™),
vu ® 0™ = [A(A, )

Under this isomorphism, [P([\, pu])] corresponds to the canonical basis element bl’) of
L(wy) @ LY (—wy).

Remark 19.19. This theorem should by all means fit in the framework of tensor product
categorification as e.g. in [BLW17,LW15]. All the axioms of [BLW17, Definition 2.10] are
satisfied, except for the ordering on the poset. Looking at the proof of Theorem 15.9, we
can actually refine the partial ordering on J)\. Namely, il(BO‘OO)A is also an upper-finite
highest weight category, if we replace the partial ordering by [\, u] < [N, /] if and only if

wt([\, p]) = wt([N, 1']) and wt(p') — wt(p) = iliai with I; > 0.

The second condition is exactly the opposite of the ordering on /{\ that is required in
[BLW17, Definition 2.10].
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19.3. Categorifying L(wys) ® L™ (—wy)

We believe that this is due to the fact that we used a comultiplication which is more in
line with Kashiwara’s convention [Kas91] than Lusztig’s comultiplication [Lus10] (the
latter being considered in [BLW17]).

Proof of Theorem 19.18. The map is an isomorphism by Theorem 15.9, so it suffices
to check that this respects the U(B|q,)-module structure. Also, note that this action
preserves the weight spaces, so we only need to check the action of £ and F'.

From Theorem 15.8, one easily sees that F;A([), u]) has a filtration by Q™II*A([N, u])

and Q"IIPA([\, i/]), where [A, u] % [N, u] and [\, y] «=- [\, 1], respectively. The shifts
are given by the degree and parity of the following diagrams.

T e
The first diagram determines m and a and the second n and b. Ignoring the non-straight
lines, this is the identity on res(t**). From right to left, we iterate along first the rows of
A (upwards lines) and then the rows of p (downward lines).
The first diagram corresponds to adding a box to A of content i. In particular, all labels
on the upward strands that cross the diagonal one must be distant to 7. If A has an
addable box of content i, then every row after has at most ¢ — 1 boxes. In particular, any
of these boxes has residue at most ¢ — 2. This means that every crossing has degree 0 and
thus m = 0. The parity is determined by the number of crossings where both strands are
labelled 0, so a = 0 if ¢ # 0. If ¢ = 0, then there are no crossing between upward strands,
and we get a = £(u) (every row in p contributes one Fy).
The second diagram corresponds to removing a box of content ¢ from u. The degree of
the second diagram is d;(1 — (h;, k)), where & is the weight in the region directly to the
right of the cap. Explicitly, k = &; + > 7_1 €4, — Dpei €N, if a box in row s + 1 of p is
removed (if i = 0, the €9 summand should be considered 0). As we have a removable
box of content i, we must have (h;,e,,) =0 for all r < 's. Also, (h;,e;) =1ifi#0and 0
otherwise. So the degree is given by d;(h;,ws + wt(\)). The parity of the diagram will
always be even. So we get n = d;(h;,ws + wt(A)) and b = 0.
On the other hand,

Ei(vy @) = (&K + T @ &) (v, @)
=&v, ® ICi_d"v)‘ + W‘il|”“|J|i|vu ® Ev?
- qdi<h¢,wf+wt(>\)>vu, Qv + Wlil(lvulﬂ)vu Qv
Now, recall that |v,| = 1+ ¢(1), and so both computation agree under the proposed
isomorphism.
For F, a similar computation shows the compatibility of the action. Since it might be
difficult to keep track of the grading and parity, we nevertheless include the argument

here.
We have that F;A([A, u]) has a filtration by QTII*A([N, u]) and QMII°A([), i/]), where

the bipartitions satisfy [\, u] < [\, u] respectively [\, ] N [A, 1/]. The shifts are given
by the degree and parity of the following diagrams.

HHT AR
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19. Categorification

With the same argument as before, we obtain m = 0. We also have a = 0, as the parity
can only possibly occur for i = 0, but in this case there are no crossings involved (a box
of residue 0 will always be added in the last row).

For the second diagram note that the degree is given by d;(1+ (h;, &)+ (h;, wt(n))). Again
k denotes the region directly to the right of the cap. The first summand corresponds to
the degree of the cap, whereas the second summand describes the degree of the crossings.
As before, we obtain kK = —g; — > 7_; €y, if we remove a box in row s + 1 of A. Again
we obtain (h;,ey,.) = 0 for all r < s and (h;, ;) = 1 if ¢ # 0 and 0 otherwise. So in total
we obtain n = d;((hs,ws +wt(u))). The diagram is even if ¢ # 0 and for ¢ = 0 the degree
is given by 1+ £(u) (the leftward cap is odd and ¢(u) describes the number of Fp).
Now we compare this again with JF;(v, ® v*). We get

Filv, @) = (Fi® 14+ K% @ F) (v, @ v*)
=Fiv, ® v+ w‘iHWICglivu ® F
= vy @ v+ lIUHW) glilhicortwi(u)y, @ N

and the two computations agree.

For the claim regarding the canonical basis, note first that P([0,0]) = A([0,0]) and
b% = vy ®v?. Any other P([\, u]) is obtained by applying E; or F; to P([\, y/]) for some
[N, 1] < [\, p]. From the definition it is thus immediate that [P([), u])] is bar invariant.
By Theorem 15.9, we know that P([\, ]) has a filtration with section Q™II*A([N, 1'])
for some [N, /] <[\ p], m € Z and a € Z/2Z. The definition of the upper finite based
quasi-hereditary structure implies that every A([\, 1']) appears at most once (for some
m and a). If we can show that A([\, u]) appears without parity and grading shift and
any other standard module only with positive grading shift, the statement follows from
the uniqueness of the canonical basis.

The filtration by A([X, 1]) is obtained by applying caps to P([A, u]). So to assert the
positivity, we need to argue that the following diagram has positive degree:

We calculated above that the degree of this diagram is d;({h;,ws + v)), where v denotes
the weight in the region below the left end of the cap. As the bottom is the residue
sequence for [\, u], we know that there is an F-addable box of content i right before the

cap. But this implies that (h;,ws +v) > 1. Clearly, A([A, u]) occurs exactly once with
no grading shift (and no parity shift). So the statement follows. O

Observe that L(wy)® L"(—wy) is indecomposable but not irreducible. The next definition
introduces certain subquotients.

Definition 19.20. Let [A,, 0] € A\ with A\, = (n,n—1,n—2,---,1) (this is the partition
associated to ¢, from Definition 18.2). Let .J,, be the subrepresentation of L(wy)®L"(—wy)
generated by bé‘”.
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19.3. Categorifying L(wys) ® L™ (—wy)

The subrepresentations J,, give rise to a filtration of L(wy) ® L*(—wy)
- C JQ - J1 - J() = L(Wf) & Lw(—w]c).
Theorem 19.21. There is a filtration ole(BO|OO)A by 2-subrepresentations
-+ CU(Byjoo)y S U(Bojoo)t € U(Bojso)o = (Byjoo)™

with il(Bo‘oo)ﬁ}/il(Bo‘oo)ﬁ_l = rep’(q(n)). The induced filtration on Ko(u(Bmoo)A) turns
® into a filtered isomorphism of filtered U(By|o)-modules (with the filtration from Sec-
tion 19.3 on L(wy) ® L(—wy)).

Proof. Using Theorem 17.8, we can translate all the statements to 2K?. The filtration
is then given in Definition 18.2 and the identification of the quotients is given by
Theorem 18.9. O

In the following we will give a more explicit description of the subquotient J,,/J,41.

19.3.1. The natural representation and its exterior powers

For this part, we will mostly follow [Bru04]. However, we will adapt the notation to
accommodate the covering quantum group. Specializing ¢ = 1, we obtain his results
(observe that his K; is our ngli). Observe that all proofs carry over verbatim to our
setting.

Definition 19.22. The natural representation V' of U(By|o) is the Q(g)"-superspace
with basis {v; | i € Z} with |v;| = J;0 and action given by

Kivg = q"<)y, Tva =0,

Fiva = 6a,iVit1 + 0q,—i—1V—; Eivg = 0a,i+1Vi + 0q,—iV—i—1

Fova = 04,0(2]¢,xv1 + da,—1v0 EoVa = 6a,0m[2]¢,xV—-1 + da,1v0,
with the convention that eg = 0 and e_; = —¢&y.

The following is clear from the definition.

Lemma 19.23. The linear map  defined by Uq = vq is a bar involution on 'V, i.e. -0 =
-0 for allu € U(By), andv € V.

Definition 19.24. Write .7 for the tensor algebra of V and 7" for V€". Let .# be the
quotient of .7 by the two-sided ideal generated by

Ve ®va  (a#0)
Vo @ Uy + G2y @ Vg (a>0b, a# —b)
Vo ®V_q + ¢*(Vam1 @ Vi—q + V1—a ® Vae1) + ¢Hv_a ® v, (a > 2)
V1 ® v_1 + quo ® Vg + ¢ vy ® vy,

for all admissible a,b € Z. This is a homogeneous ideal and thus . = @,,>c #", with
F™ a quotient of V®", Moreover, the ideal is a U (Bo|so)-submodule, and we obtain a
U(Bp|oo)-module structure on F".
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19. Categorification

F; E; F; E;

XA — AX Ao — oA xXo — VA — oX
F; F; F F

XV — VX Vo — oV o =% A Ix

Figure 19.1.: The crystal strings of length > 0 for .# (at positions i and i + 1)

The elements F) = vy, A--- Avy, for A € Ag form a basis of .F#".
Write .7 for the completion of .7™ with respect to the descending filtration (.7}")4ez,
where 7' is spanned by v,, ® -+ ® vg, with " ra, > d. We denote the induced

completion of #" by Z™. The next two results are [Bru04, Lemma 3.4 and Theorem
3.5].

Lemma 19.25. There is a continuous q-antilinear involution — on G satisfying
(i) @ =a - for all u € U(Bys,) and v € F™,
(i) F\ € F\+ DA Z"[q,q '|F, for all X € Ag.

Theorem 19.26. There exists a unique topological basis {Uyx | A € Ag} of F" such that
Uy =Uy and Uy € F + ZM»\qZ”[q]FH for all X € Ag.

In [Bru04], the actions of & and F; on Uy were computed in some cases using the crystal
structure obtained from the canonical basis.

We give the crystal structure in terms of the combinatorial weight diagrams from
Definition 14.3, see Figure 19.1 for a list of all crystal strings of length > 0.

The following result is a general property of canonical basis, see e.g. [Kas93, Proposition
5.3.1].

Lemma 19.27. Let A € Ag and i > 0.

() &UN = [pi(N) + inUpy + Xpeng YjaUn» where 4, \ € qu*%(“)zqq] is zero
unless €;(p) > €;(A) for all j > 0.

(i) iU = e +1}i’ﬂUFi)‘+Z“€AQ Z/Z,AUN’ where ZL,A € QQ37€i(M)ZF[q] s zero unless
@i(p) > @;(\) for all § > 0.

As every crystal string has length at most 2, we obtain the following (see also [Bru04,
Corollary 3.25]).

Corollary 19.28. Let A € Ag and ¢ > 0.
(i) If ei(A) > 0, then &EUx = [pi(A) + 1 2Up, 5 -
(ii) If pi(A) > 0, then F;Ux = [gi(A) + 1]; z U, -
Theorem 19.29. We have an isomorphism of U(By|s)-modules

-, A
E: Jn/Int1 — FL, by, Uwﬁ.
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19.3. Categorifying L(wys) ® L™ (—wy)

If w is the weight diagram associated to [\, p], then wl)) is the combinatorial weight diagram
obtained from w by replacing every V corresponding to a ray in w by A.
Here, 7 is the subrepresentation of ™ with basis Uy for A € Ag (i.e. not topological).

Proof. The proposed map is clearly a linear isomorphism, so we only have to check that
it is compatible with the action of U(By|«). The arguments for J; are similar to the
ones for &;, so we only give the proof for &. By Theorem 16.38, we know how bﬁ behaves
under &;. Abbreviate wﬁ‘ by w. From the explicit crystal strings in Figure 19.1 and
Corollary 19.28, we see that &U,, = E(Sibf;) whenever g;(w) > 0.

The case €;(w) = 0 remains to check. We also may assume that the weight space of
&;U,, is non-zero, as the statement is otherwise trivial. This leaves the following cases for
positions ¢ and 7 + 1 of the combinatorial weight diagram w. We either have VV, AV or
AN if ¢ > 0 and |V if i = 0. We check these case by case.

Suppose it is VV. Looking at the cup diagram associated to w, we see that the V’s are
left endpoints of cups. Consider the subsequence V V AA that is given by the V’s and
the right endpoints of the corresponding cups. We claim that &U, = U,/, where ' is
obtained by replacing this subsequence by x o VA. By applying distant £;’s and F;’s, we
may assume that these are actually neighbored.

Let wy be the weight diagram obtained by replacing the (now neighbored) subsequence
V V AA by x V oA. Then, Fit1FU,, = U, by Corollary 19.28. We compute using
Corollary 19.28 that

EiUy = EFir1Fi€i1Uy, = Fi1EFiUy, = Fig1Uy, = Uy

For the case AV, note that V is always the right endpoints of a cup. With the same
reduction argument as above, we may assume that the next entry is A. Let w; be obtained
from w by replacing A V A by A x o. Then, F;+1U,, = U,. We compute

EU, = EFir1Uy, = Fir1&U,, = Uy,

where ' is obtained from w by replacing A V A with x o A.

For AA, we have two cases. Either the first A is a right endpoint of a cap or not. Suppose
that it is not the endpoint of a cap. We may assume that the combinatorial weight
diagram contains no V (otherwise use £; and F; distant to i to remove them). Then, the
U, has weight > 72, a,&,, where exactly n entries a, are non-zero but a; and a;4; are
zero. In particular, we see that &U, = 0 as the corresponding weight space is zero. So
assume now that the first A is the right endpoints of a cap. Again we may assume that
we have the subsequence V A A. Let wy and w’ be obtained by replacing V A A with x o A
and A X o, respectively. Then, F;_1U,, = U, and we compute

giUw = giJri—lle = i—lgile = Uw’-

Finally, it remains to check the case ¢ = 0. We must have V, and we may assume that
the next entry is A. Let w; and w’ be obtained by replacing V A by  x o and oA
respectively. Then, /U, = U, and we compute

EOU,, = E0F Uy, = FLE0U,, = U,y
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19. Categorification

Note that in all the computed cases this is exactly the same as the action of & on b/);.
Thus, = is an isomorphism of U(By|)-modules. O

Remark 19.30. Combining Theorem 19.21 with Theorem 19.29, we obtain a new proof
of the connection between Ky(rep(q(n)) and .#™ that was already observed in [Bru04].
In [Bru04], the standard basis of F™ corresponds to certain classes in the Grothendieck
group and a completion was needed to write the classes of projective modules in terms of
the standard basis. In Remark 18.11, we have seen that q(n) do not admit any kind of
nice highest weight structure (except for the typical blocks). Hence, there should exist no
“nice” standard basis for Ko(rep(q(n))). We remedy this problem by considering a bigger
category M(BO‘OO)A. This is an upper-finite highest weight category and thus admits a

nice standard basis. Then, rep(q(n)) is obtained via a relatively simple subquotient.
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A. Explicit surgery procedures

Here, we describe all surgery procedures (over Fy). This allows computing the multipli-
cation without closing the diagrams first. We use the notation 1, x, y for anticlockwise,
clockwise circles and lines, respectively. We put a bar on top if these correspond to inner
components and put no decoration for outer ones.

Surgery  Orientation Result

Surgery Orientation Result

1®1 1
O 1®x T 1 I1®r+zR1
O 16@1 x T T®x
Qx 0
1®
TRy
1®1 1
O 1®z x H 1 1o
T® 1 0 T TR
D TR 0
1®1 1
) 1@z T
P o1 _ YRy 0
) i@x :g
5, gl y y®1 Joy
) T 0 D YT 0

Continued on next page
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A. Explicit surgery procedures

Surgery  Orientation Result Surgery Orientation Result
J E 1®1 loz+z®1
o 1oz IR
) yey 0 D 7@l QI
TR 0
U ! U §o1 o
n yey 0 D Ty 0
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