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Abstract
Techniques to estimate sun-induced fluorescence (SIF) passively from hyperspectral
remote sensing data have evolved steadily over the last two decades. SIF provides
causally grounded information about the photosynthetic activity of plants and, as
such, is considered a valuable quantity for agriculture-related applications and var-
ious ecosystem monitoring setups. Accordingly, interest in this quantity has grown
as the precision and availability of SIF estimates has improved worldwide. Upcom-
ing missions such as FLEX by the European Space Agency (ESA) are expected to
further reinforce this trend by offering, for the first time, spatially well-resolved es-
timates from space, based on measurements conducted in regular repeat cycles.

The growing amount of data sources that qualify for the derivation of SIF esti-
mates, combined with an anticipated increased reliance of various stakeholders on
precise Remote Sensing SIF estimates highlight the need for SIF retrieval methods
with high validation accuracy applicable in a wide range of observational condi-
tions. In response to this challenge, this thesis includes four sequential publica-
tions that develop a novel machine learning-based approach to estimate SIF in the
O2-A absorption band from airborne and spaceborne hyperspectral imagery. The
proposed approach leverages recent developments in the field of deep learning for
data-driven and physically consistent SIF estimation using data from HyPlant, the
airborne demonstrator for FLEX, and DESIS, a spaceborne hyperspectral sensor with
reduced spectral resolution.

Publication I establishes the basis for a new self-supervised neural network-
based approach targeting SIF retrieval in the O2-A absorption band of hyperspectral
data from the airborne HyPlant sensor. To achieve this, a reconstruction-based loss
is employed to train a multi-layer perceptron to predict the spectral decomposition
of the at-sensor radiance using a physical simulation layer in the network. Despite
the approximate nature of this physical model – shown to yield partially inconsis-
tent spectral reconstructions – the method demonstrates competitive performance
against in-situ top-of-canopy SIF measurements.

To address the limitations of Publication I, a closer integration of exact radiative
transfer models such as MODTRAN6 in the training process targeted. The compu-
tational cost of such a model is, however, prohibitive in the training setting of artifi-
cial neural networks. Publication II therefore investigates the derivation of machine
learning surrogate models that balance training and inference times with the simu-
lation precision required for SIF retrieval in the O2-A band. As a first application,
Publication III integrates the results of this study in the general SIF retrieval frame-
work developed in Publication I achieving state-of-the-art validation performance
on HyPlant data, demonstrating strong agreement with in-situ SIF measurements.

Finally, Publication IV applies this approach to spaceborne hyperspectral data
from the DESIS sensor – marking the first successful retrieval of SIF from space at
30 m resolution using a sensor previously considered unsuitable for such estimates.
To validate this exceptional result, Publication IV makes use of simultaneous over-
flights of HyPlant and DESIS to obtain high-quality SIF estimates as reference data.

In summary, the four publications of this thesis make a significant contribution
to the research field of SIF retrieval by introducing a novel and extensible frame-
work for estimating SIF from both airborne and spaceborne hyperspectral imagery.
Adaptable to upcoming data sources such as FLEX and capable of handling chal-
lenging observational conditions, including scenarios with strongly variable topog-
raphy, this framework may represent a valuable addition to existing methods cur-
rently under evaluation for future FLEX data processing.
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Zusammenfassung
Techniken zur Schätzung sonneninduzierter Fluoreszenz (SIF) aus passiv erfasst-

en hyperspektralen Fernerkundungsdaten haben sich in den letzten zwei Jahrzehn-
ten stetig weiterentwickelt. SIF liefert wertvolle Informationen über die photosyn-
thetische Aktivität von Pflanzen und gilt daher als Schlüsselressource für agrarwis-
senschaftliche Anwendungen und das Ökosystem-Monitoring. Die zunehmende
Genauigkeit und Verfügbarkeit von SIF-Schätzungen hat das wissenschaftliche In-
teresse an SIF verstärkt. Die bevorstehende FLEX-Mission der Europäischen Wel-
traumorganisation (ESA) wird dieses voraussichtlich weiter verstärken, da sie erst-
mals präzise, räumlich hochaufgelöste SIF-Schätzungen aus dem All ermöglicht.

Die zunehmende Zahl an Datenquellen, die für die Schätzung von SIF geeignet
sind, sowie die erwartete verstärkte Nutzung präziser Fernerkundungsdaten durch
verschiedene Interessengruppen, unterstreichen die Notwendigkeit von SIF Retrie-
val-Methoden mit hoher Validierungsgenauigkeit, die unter einer Vielzahl von Beo-
bachtungsbedingungen anwendbar sind. Um diese Herausforderungen anzugehen,
enthält diese Dissertation vier aufeinander aufbauende Publikationen, die einen neu-
artigen, auf maschinellem Lernen basierenden Ansatz zur Schätzung von SIF im
O2-A-Absorptionsband in luft- und satellitengestützter hyperspektralen Daten en-
twickeln. Der vorgeschlagene Ansatz nutzt aktuelle Entwicklungen im Bereich des
Deep Learning für datengetriebene und physikalisch konsistente SIF-Schätzungen
von Hyperspektraldaten von HyPlant – dem airborne demonstator von FLEX – sowie
DESIS, einem satellitenbasierten Sensor mit geringerer spektraler Auflösung.

Publikation I präsentiert einen neuen Ansatz zur SIF-Schätzung im O2-A-Band,
der erstmals auf selbstüberwachten neuronalen Netzwerken basiert. Dabei wird
eine rekonstruktionsbasierte Verlustfunktion dazu verwendet, eine spektrale Zer-
legung der von diesen Sensoren gemessenen Strahldichte durchzuführen. Trotz ap-
proximativer physikalischer Modellierung zeigt diese Methode eine vielversprechen-
de Validierungsleistung.

Um die Einschränkungen von Publikation I anzugehen, wird eine engere Inte-
gration exakter Strahlungstransfermodelle in den Trainingsprozess angestrebt. Da
jedoch lange Simulationszeiten eine direkte Einbindung solcher Modelle in das Train-
ing neuronaler Netzwerke verunmöglichen, untersucht Publikation II verschiedene
maschinelle Lernverfahren als Surrogatmodelle, die die Simulationszeit reduzieren
und gleichzeitig die für SIF-Schätzungen im O2-A-Band erforderliche Genauigkeit
erhalten. Als erste Anwendung nimmt Publikation III diese Ergebnisse in die all-
gemeine SIF-Retrieval-Methodik aus Publikation I auf und erreicht damit eine hohe
Validierungsgenauigkeit in einem HyPlant-Datensatz.

Schließlich wird der neuartige Ansatz in Publikation IV auf Daten des satlliten-
gestützten DESIS-Sensors angewendet. Er ermöglicht erstmals eine erfolgreiche Ab-
leitung von SIF aus satellitengestützten Daten mit einer räumlichen Auflösung von
30 m mithilfe eines Sensors, der zuvor für SIF-Schätzungen ungeeignet galt. Zur Va-
lidierung dieses erfolgreichen Ergebnisses nutzt Publikation IV koinzidente Über-
flüge von HyPlant und DESIS, um Referenzdaten bereitzustellen.

Die vier Publikationen dieser Dissertation leisten einen wichtigen Beitrag zur
Forschung an SIF-Retrieval-Verfahren, indem sie eine neuartige Methodik zur Schätz-
ung von SIF aus luft- und satellitengestützten hyperspektralen Bilddaten beschreiben.
Da diese Methodik anpassbar an neue Sensoren wie FLEX ist und mit herausfordern-
den Beobachtungsbedingungen – einschließlich stark variierender Topografie – umge-
hen kann, stellt sie eine wertvolle Ergänzung zu bestehenden Verfahren dar, die
derzeit für die künftige Verarbeitung von FLEX-Daten evaluiert werden.
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Chapter 1

Introduction

1.1 Overview

The recent decades of research in optical remote sensing applications could rely on
a steadily increased number of airborne and spaceborne hyperspectral sensors with
improved spectral coverage, spatial and spectral resolution and signal-to-noise ratio
[231]. The high number of spectral features recorded in parallel over large spatial
footprints by optical remote sensing have become crucial information sources in a
wide array of applications related to global environmental mapping and monitoring
[64, 74]. The amount of information gathered from airborne and satellite-based opti-
cal remote sensing sensors has increased significantly over the last decades [101] and
will likely grow further over the next decade to fulfill the expanding interest in re-
mote sensing derived estimates of terrestrial variables [63, 186, 187] which are crucial
for climate change monitoring, adaptation and mitigation strategies [160, 259, 266].
The usefulness of hyperspectral imagery for environmental and agricultural moni-
toring in particular has been recognized early in the development of hyperspectral
remote sensing systems [105, 274] and is a significant driver in the design and appli-
cation of new spaceborne hyperspectral sensors [13, 17, 40, 210, 280]. Recently, the
success of deep learning (DL) in standard imagery, as well its application in optical
multispectral remote sensing a number of publications have shown the increased po-
tential for hyperspectral imagery for providing accurate estimates of surface quanti-
ties [103, 118] to enable proactive, data-driven strategies to anticipate, monitor, and
respond to climate change-induced societal challenges worldwide.

This thesis focuses on the use of deep learning techniques for the estimation of
sun-induced fluorescence (SIF) from hyperspectral imagery. The estimation of SIF
has accompanied developments in hyperspectral remote sensing and imaging since
its beginnings [194]. To date, SIF estimation still poses several technical and method-
ological issues even though today it can rely on powerful computational hardware
and a growing number of sensors with adapted instrument characteristics. The re-
search summarized in this thesis targets some of these challenges. The publications
included in this thesis were conducted in the framework of the Helmholtz AI project
FluoMap (2021 - 2024) where for the first time a purely DL-based approach for SIF
estimation was targeted. To this end, FluoMap has focused on two representative
sensors – HyPlant FLUO and DESIS. The Publications I - IV [29, 31, 33, 213] included
in this thesis focus on methodological aspects of SIF estimation. In addition, further
publications focusing on hyperspectral signal simulation (Publication V [212]) and
emulation [211] as well as on SIF estimation [30] have been prepared for FluoMap.

In the following Chapter 1, this thesis presents a concise overview of the current state
of research on SIF estimation. Subsequently, it examines the contributions of Pub-
lications I - IV to the field of hyperspectral SIF estimation. To this end, summaries
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of Publications I - IV are provided in Chapter 2. A synthesizing Discussion of these
four Publications is given in Chapter 3. The thesis concludes with giving a summary
over future challenges and perspectives for further research in deep learning based
SIF retrieval both in airborne and spaceborne contexts in Chapter 4. For the reader’s
convenience, publications authored or coauthored by the author of this thesis are
referred to by their publication numbers (I - VII), as listed in the List of Publications,
in addition to their full bibliographic references.

1.2 Background and Motivation

1.2.1 Chlorophyll Fluorescence

Chlorophyll a fluorescence (ChlF) is a light source in the red and far-red spectrum
(600 - 770 nm) that originates in the chloroplast of plants, algae and cyanobacteria
[207]. It is one of three de-excitation pathways by which the solar irradiance ab-
sorbed by vegetative tissues is consumed and channeled to prevent photoinduced
damage to the plant. The energy absorbed by plants is either quenched by photo-
chemical processes (PQ) fuelling the linear electron transport of the photosynthetic
apparatus, by non-phochemical processes (NPQ) that converts it to thermal energy
or else by re-emission in the form of ChlF [188]. Under normal illumination con-
ditions, healthy plants are able to regulate the amount of energy dissipated in the
photochemical and non-photochemical pathway [291] by adjusting their metabolism
and physiological state (e.g., by opening and closing of stomata) [196]. ChlF itself is,
thus, not directly regulated by plants [278] but represents the residual energy that is
not otherwise dissipated via photochemical or non-photochemical quenching.

1.2.2 Active Chlorophyll Fluorescence Measurements

Typically, the excess energy dissipated in form of ChlF represents 2-5% of the ab-
sorbed photosynthetically active radiation (PAR). Under normal solar illumination
conditions of vegetation, this represents a radiation intensity that can be measured
passively with modern high precision spectrometer equipment. Until the year 2000,
ChlF measurements were, however, measured almost exclusively actively due to
lacking convincing evidence that the sun-induced fluorescence (SIF) signal could be
disentangled with high-precision from the much larger background radiance [194].
A range of techniques have been developed to derive a plant’s photosynthetic state
from precise measurements of ChlF when it is actively induced by LEDs or lasers
in field conditions [335]. Pulse-amplitude modulation (PAM) devices [100, 228] and
Laser-induced Fluorescence Transient (LIFT) setups [12, 219] in particular have prov-
en to be active measurement techniques adapted to field conditions. In both cases,
a measurement series of ChlF emissions induced by repeated modulated or tran-
sient excitations is acquired. A set of variables can be derived from these time se-
ries measurements that are directly related to variables of photosynthetic activity in
theoretical models of photosynthesis. The continuous deployment of these active
setups allows to track the photosynthetic response of plants to changing conditions
at short temporal intervals. Due to the sensitivity of the photosynthetic apparatus
to biotic and abiotic stress factors causing suboptimal plant functioning and, con-
sequently, changing photosynthetic efficiency, the continuous deployment of these
measurement techniques has been historically and still is used widely in crop and
yield improvement studies for breeding [94].
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1.2.3 Passive Chlorophyll Fluorescence Estimation with Remote Sensing
Techniques

Currently, active ChlF inducing methods cannot be applied on spatial scales larger
than a few square meters except for very specific cases where the measurement de-
ployment is highly automated [150]. ChlF emissions can be estimated from passively
acquired radiance data over larger areas as sun-induced fluorescence (SIF) with suit-
able hyperspectral sensors. Instead of relying on controlled light excitation and fixed
measurement protocols as in active measurement setups, passive measurement tech-
niques aim at quantifying steady-state SIF that is emitted "[...] from a photosyntheti-
cally active plant adapted to ambient irradiance when the electron transport processes and the
coupled biochemical reactions of the carbon reduction cycle establish a dynamic equilibrium"
[183]. The connection between steady-state ChlF and plant physiology is subject
to active research. Several works have shown that a link can be established using
mechanistic photosynthesis models [109, 229, 278, 291] relying on strong assump-
tions and complementing the analysis with ancillary information that often may be
gained from the same remote sensing data sources on which the SIF estimation is
based.

Passive methods estimate the fluorescence contribution to radiance measurements
in a process that is called SIF retrieval. While passive SIF estimates provide the clos-
est causal link to photosynthetic activity that can be remotely sensed, such singular,
non-controlled estimates of steady-state ChlF provide a reduced degree of informa-
tion about the photosynthetic state of vegetation as compared to active methods due
to the following factors:

1. Energy absorption and partitioning: ChlF is an informative quantity if it can
be related to the fraction of photosynthetically active radiation energy that
drives photosynthesis (PQ). In most remote sensing setups this is, however,
problematic due to lacking knowledge about (i) the total amount of photosyn-
thetically active radiation absorbed by photosynthetic pigments (APAR) and
(ii) the fraction of APAR dissipated via NPQ. APAR can be controlled in ac-
tive ChlF measurements, but in typical passive remote sensing measurement
setups it can only be estimated. Such estimations are challenging and typi-
cally associated with large uncertainties [47, 227]. Furthermore, since ChlF is a
residual energy flux, it can only be related to PQ if NPQ is known, but while
in active measurement setups, the partitioning into ChlF, PQ and NPQ can be
solved exactly [195] in passive ChlF sensing it must also be estimated. Accu-
rate estimation of NPQ is subject to active research. Multiple avenues based
on hyperspectral data processing have been proposed, notably some relying
on the photochemical reflectance index (PRI) [3]. The uncertainties associated
with NPQ estimates are, however, still significant and impose severe limits on
the direct leveraging of ChlF estimates for the characterization of photosyn-
thetic efficiency.

2. Canopy structure and reabsorption: Canopy structure is one of the main driv-
ers of remotely sensed SIF [69]. It affects (i) the penetration of the canopy by
solar irradiance, (ii) the spectral distribution of canopy leaving SIF due to reab-
sorption and scattering of ChlF along the upwelling optical path through the
canopy [227] and (iii) the relative contribution of diffuse and direct irradiation
[20]. Remote sensing SIF estimates therefore only relate to the top-of-canopy
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(TOC) leaving SIF emission. These estimates must be post-processed with ad-
ditional information describing the canopy to gain physiologically relevant
leaf-level SIF [242, 264, 323]. An additional complication is given by the non-
isotropic nature of differential penetration, scattering and reabsorption that
leads to a viewing angle dependency in estimated SIF [167, 294, 348, 349] for
which a number of normalizing schemes have been developed [122, 175, 349]
(see Section 1.5.3).

3. Atmospheric absorption: depending on the retrieval algorithm, the spectral
range of at-sensor radiance from which SIF is estimated is modulated by scat-
tering and absorption of atmospheric components such as the oxygen and
water vapour column and aerosol concentration along the optical path (see
Publication II [213], Publication V [212]). These modulating effects must be
accounted for under typically incomplete knowledge about individual atmo-
spheric components. This process – called atmospheric correction if it is con-
ducted as a preprocessing step and atmospheric characterization if performed as
part of the retrieval – is a major source of the total TOC SIF estimation uncer-
tainty (see Section 1.5.2).

4. Pixel-level mixing: there is a representation mismatch between pixel-level es-
timation and plant-level photosynthesis due to the finite resolution of remote
sensing sensors. The correlation between leaf-level and TOC SIF decreases as a
function sub-pixel heterogeneity in reflectance, canopy structure and soil con-
ditions. This has been discussed for airborne [35, 128, 334] and spaceborne
[98, 133, 246] retrieval contexts. Due to variable canopy reabsorption in differ-
ent canopy structures, SIF mixing in single pixels can be non-linear especially
in the red domain where the SIF canopy interaction is stronger than in the NIR
spectral range [247].

1.2.4 SIF Applications

A range of remote sensing platforms suitable for SIF retrieval have become avail-
able in the last decades [194]. These platforms cover spatial scales from the field to
the global level. The rapid growth of the hyperspectral remote sensing domain will
likely allow for increased passive SIF retrieval capabilities from Unmanned Aerial
Vehicles (UAVs), airplanes and spaceborne platforms in the future (see Sec. sec-
tion 1.3). The scientific and economic domains benefiting from passively sensed SIF
vary strongly with the spatial resolution and the uncertainty of the estimates that
may be gained from the acquired remote sensing data.

A large range of remote sensing applications has been put forward that make use
of SIF either based on mechanistic models of the ChlF generating processes or purely
statistical approaches. Especially in statistical approaches the basis for including SIF
in various inference tasks is its close causal link to the photosynthetic state of vegeta-
tion that is very sensitive to changes in environmental conditions. In the following a
summary over the most researched applications of SIF estimates [279] from airborne
and spaceborne platforms is given.

Gross Primary Productivity

Current methodologies for estimating global Gross Primary Productivity (GPP) are
subject to substantial uncertainties, as evidenced by the considerable variability in
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results across different estimation approaches [249] and low performance of predic-
tions by Dynamic Global Vegetation Models (DGVM) with respect to observational
data [92]. The reason for this large variance relies in a large number of unconstrained
model assumptions [12] that have to be estimated due to a lack of direct measure-
ment techniques at a global level. The sparsity of constraining measurements in tra-
ditional observation-based GPP estimates such as the light-use efficiency approach
[248] and approaches to upscale localized Eddy Covariance (EC) GPP measurements
[145] to a global distribution must be countered by a large number of model assump-
tions and ancillary environmental and climatic information.

Frankenberg et al. [90] has first compared global SIF measurements to process-
based GPP estimates as an alternative and found comparable prediction perfor-
mance to reflectance-based estimates without using additional information sources
(e.g., climatic variables). SIF is a promising GPP predictor because ChlF and GPP are
linked at the cellular level by the regulation of the light reactions of photoynthesis
[200, 278]. This mechanistic link provides the basis for an alternative way to esti-
mate GPP that relies less on modelling assumptions [109] and has been an actively
researched topic over the last decade [109, 278].

Direct use of mechanistic models in the estimation of GPP from SIF has been in-
vestigated recently with different global and field-level SIF datasets [50, 120, 173].
The most widely used SIF-based GPP estimates rely on the empirical extraction of
linear relations of SIF and GPP [117]. Empirically, the relationship between SIF and
GPP is, however, variable across environmental conditions [59, 214, 299] resulting
in global level variations as a function of biome and climate conditions [162, 260].
Combining SIF observations and dynamic vegetation modeling, Parazoo et al. [208]
has cast the estimation of this variable SIF-GPP scaling in a Bayesian framework.
Research in the scaling variance has included analysis of GPP-SIF scaling factors
across different biomes and climate zones [163, 217, 233], under improved differen-
tiation of NPQ conditions [311], under accounting for local relative distributions of
C3 and C4 plants [111, 123] as well as a function of physiological plant state [19].
Other studies have concentrated on the assessment of the SIF-GPP scaling in spe-
cific vegetation types and ecosystems such as in maize [304], deciduous [327], boreal
evergreen [180, 218, 305] and mangrove forests [355] as well as in peatlands [14].

A precise mechanistic understanding of coupling and decoupling mechanisms of
the SIF-GPP relationship [226] is necessary to disentangle structural from physiolog-
ical drivers of SIF and, thus, interpret the SIF-GPP relationship correctly. Field-level
experiments [69, 107, 317, 324] have for example shown that the empirical SIF-GPP
correlation is mainly driven by absorbed photosynthetically active PAR (APAR) and
the canopy structure. Statistical approaches that estimate GPP from linear SIF scal-
ings cannot identify such individual drivers. Moreover, there is evidence that under
heat stress such linear scalings become [315] uninformative.

Another technique to leverage SIF estimates for the prediction of photosynthetic
rates involves terrestrial biosphere models (TBMs) and land-surface models (LSMs)
such as ORCHIDEE, BETHY-SCOPE and SCOPE [279]. The GPP estimation is achiev-
ed by optimizing TBM/LSM parameters that affect both SIF and GPP on SIF time
series observations from spaceborne sensors [18, 200, 343]. While current GPP prod-
ucts mainly make use of scalar SIF estimates at particular wavelengths, accurate
modelling of the whole SIF emission spectrum from 400 - 900 nm by SCOPE al-
lows for retrieval formulations involving spectrally explicit radiance measurements
[204, 302].
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Precision Agriculture

The benefits of leveraging SIF as a predictor variable for agricultural applications has
been recognized early in the history of SIF retrieval [65, 182]. The close link between
ChlF emission and plant photosynthesis function forms the basis for research in SIF
applications in phenotyping, crop monitoring and large scale yield prediction.

SIF retrieval from proximal hyperspectral sensors has been shown to have large
potential in high-throughput phenotyping applications [44, 94, 269] over large ar-
eas that can only be captured by remote sensing instrumentation. The potential
for fast screening of crop variants is of particular interest in breeding applications
[221, 243, 245]. SIF estimates allow to estimate the photosynthetic capacity [39, 93]
and the nitrogen content [38, 137, 286, 312] across different experimental field se-
tups [3, 22, 106, 316]. Since SIF is a dynamic quantity that reacts instantaneously to
changes in the photosynthetic state of vegetation, it allows furthermore to capture
the response on a very short time scale. This is in contrast to analyses based on
vegetation indices [104] calculated from reflectance measurements which ultimately
reflect slowly changing pigment concentrations and structural vegetation properties
in response to changing ground conditions [44, 56, 176].

The sensitivity of SIF to plant stress and photosynthetic activity has lead to var-
ious studies on the feasibility of field level crop monitoring from UAV [23, 48, 295,
307–309] and airborne [156, 332, 333] sensing platforms and regional crop yield pre-
diction [149, 171, 216, 268]. Parallely, new ground-based point spectrometer systems
for long-term SIF measurement series have been developed in the last decade such
as the Fluorescence Box (FloX, JB Hyperspectral Devices AG, Dusseldorf, Germany)
[134] and the PhotoSpec device [108].

The operational use of SIF in precise agriculture applications, however, is not yet
feasible for generalized setups. The main difficulties to achieve this consist in link-
ing top-of-canopy SIF to ChlF in different crop types and across non-experimental
setups where constraining variables are not controlled [264]. On a larger spatial scale
the benefits of SIF-based yield prediction from current spaceborne SIF products over
traditional reflectance-based approaches is not well established [97, 216, 267].

Stress Detection and Monitoring

Remote monitoring of agricultural landscapes on a local, regional or global scale
with optical remote sensing methods is considered an important tool in guarantee-
ing food security in the context of rising world population [24]. As a consequence,
besides making use of the valuable information source of SIF in field-level precision
farming applications, research in SIF applications focuses on the early detection of
plant stress [2, 221] and tracking of global phenology [341] from individual or time-
series observations.

In a large meta-analysis [2] evaluates the potential of active and passive ChlF
and SIF in different spectral regions to reliably indicate nitrogen deficiency, tem-
perature stress and water deficiency in plants. With increasing availability of SIF
products, hyperspectral instruments for SIF retrieval and the improvement of SIF
retrieval algorithms for data from different platforms, further studies have inves-
tigated heat [148], water [56, 67, 125, 172, 307], low-temperature [76] and biotic
[36, 37, 77, 225, 237] stress in small-scale experimental setups with proximal, air-
borne and spaceborne sensors. SIF from spaceborne instruments have allowed the
tracking of spatio-temporal patterns of drought and heatwaves [127, 234, 277, 330]
on a regional to global scale.
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As in other SIF applications, a key difficulty in stress detection with SIF remains
the disentangling of physiological and structural changes [77, 148, 310]. Recently,
several avenues to reduce the effects of confounding factors on the inversion have
been proposed. [325, 339] use the full radiance and reflectance spectrum to infer
structural properties and constrain the physiologically relevant contribution to mea-
sured SIF. Furthermore, Publication VI [241] has proposed a 3D Radiative Trans-
fer modelling approach to downscale the canopy level SIF estimates gained from a
traditional retrieval algorithm as well as with the retrieval approach developed in
Publication I [33].

Constraining the Hydrological Cycle

There is a strong link between plant transpiration and the photosynthetic activity
that leads to the emission of SIF [61, 273]. This circumstance likely explains the
strong correlation of evapotranspiration and SIF that has been observed in drought
studies [277]. SIF estimates have recently been proposed to be used to estimate
[179, 322, 354] and constrain [205] global and field-scale [6, 60, 67] plant transpi-
ration. Data assimilation of spaceborne SIF observations in land surface models for
simultaneous GPP and transpiration estimation has been investigated by [232].

1.3 SIF Retrieval Methods

A common conceptual framework underlying all SIF retrieval methods describes a
measured at-sensor radiance spectrum L in wavelengths λ as the sum of three main
groups of radiative fluxes

L(λ) =

(
Lp +

E0
g ρ T↑

π (1 − ρS)
+ T↑L f

)
(λ), (1.1)

where the first term denotes the path radiance, the second reflected solar irradiance
and the third the contribution of top-of-canopy SIF L f to the at-sensor radiance L
(see Publication II [213] and Publication V [212]). E0

g denotes the solar irradiance at
the ground, ρ the surface reflectance, T↑ the total transmission coefficient from sur-
face to sensor including direct and diffuse contributions and S the spherical albedo.
This formulation hides the complex interaction of SIF with the canopy structure (see
Section 1.2.3) and describes the target variable L f (λ) as the canopy leaving SIF in-
tegrated over the footprint of the spectral radiance measurement. Suitable param-
eterizations of the spectral shape of L f (λ) and its variability under the impact of
plant stress [181] and canopy structure [242] from first principles [292], measure-
ments [10] or retrieval performance assessments [54] are subject to active research.
In the publications included in this thesis, L f was modelled with a Gaussian which
closely matches more exact formulations in the small small spectral window around
the O2-A absorption band (Publication V [212]). SIF retrieval methods attempt to
disentangle the SIF contribution L f from the impact of the atmospheric effects cap-
tured in T↑ and S, the path radiance Lp and the reflected solar irradiance ρE0

g in
radiance measurements. To this end, these methodsfs ht leverage at-sensor radiance
measurements in spectral regions with strong sensitivity to ChlF. These regions typ-
ically consist of solar and telluric absorption lines [194].
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A number of reviews [21, 46, 88, 193, 194] have summarized the progress of differ-
ent variants of SIF retrieval methods. An overview over the most widespread SIF
retrieval algorithm is given in the following paragraphs.

1.3.1 Solar Fraunhofer Lines

The earliest form of SIF retrieval algorithms were designed to estimate SIF from
spectrometer radiance measurements with sufficient spectral resolution (SR) to re-
solve solar Fraunhofer lines (FL) (≲ 0.1 nm). In particular, the FLs Hα centered
at 656.5 [166, 265], Fe I at 758.8 nm [89, 116], K I close to 770 [89, 143] and Ca II
near 866 nm [142] have been considered for SIF retrieval due to their coverage of
the ChlF spectrum. Atmospheric gases interact with light selectively such that at
sufficient SR spectral features, Fraunhofer Lines, can be identified that are almost
unaffected by the downwelling and upwelling radiative transfer through the atmo-
sphere [328]. As a consequence, the relative fractional depth of FL can be assumed
to be almost uniquely driven by the variation in ChlF which allows the use of FL for
SIF retrieval. Depending on specific FL and the sensor resolution, additional factors
affect the fractional depth of FL besides ChlF to a small extent. For example, the
impact of Rotational Raman scattering (RRS) on FL-based SIF retrieval, which can
be neglected only when focusing on FL which are sufficiently isolated from telluric
O2-A absorption lines in nadir-looking acquisitions [89, 113], has been studied ex-
tensively [142, 143, 265]. At non-optimal spectral resolutions, the fractional depth of
measured at-sensor radiance in solar FL may furthermore be affected by spectrally
close telluric absorption features due to mixing in the spectral integration described
by the Instrument Spectral Response Function (ISRF). This is notably the case for
Hα-based retrievals [168].

1.3.2 O2-A and O2-B Absorption Bands

The use of Fraunhofer Lines (FL) for fluorescence retrieval requires high spectral res-
olution (SR) and signal-to-noise ratio (SNR) of a sensor. To achieve the high SNR in
particular, either long integration times or a large field of view per pixel is neces-
sary to assure a sufficient light flux to the sensor. Both conditions limit fluorescence
retrieval in conditions where high spatio-temporal resolution is of interest such as
in FLEX mission [75] advanced by the European Space Agency (ESA). SIF retrieval
from spectral regions with relatively high sensitivity to ChlF emission at smaller
spectral resolutions are therefore key for (i) the design of spatial high-resolution SIF
retrieval sensors such as FLEX and (ii) for commercially available sub-nanometer
spectrometers [192]. Besides the solar absorption lines, the sensitivity of at-sensor
radiance to SIF has maxima in the telluric oxygen absorption bands O2-A and O2-B
[87, 89, 113]. These spectral features have the benefit of being broad enough to put
less strict requirements on the sensors SR, SNR and spectral sampling interval (SSI)
than for Fraunhofer absorption lines [57]. Since the O2-A and O2-B bands originate
atmospheric oxygen absorption, these bands, however, vary as a function of the
optical path length through the atmosphere which mainly depends on the target-
observer-geometry. To a lesser extent water vapour and aerosol density affect the
at-sensor radiance in these spectral windows as well. As a consequence, the SIF pre-
diction must account for a larger variability in the radiance observation than is the
case in FL-based approaches. In order to model such influences, multiple studies
focusing on the variability of oxygen absorption bands have been conducted. For
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example, Publication V [212] has presents a thorough sensitivity analysis of the O2-
A band under fluorescence emission and atmospheric effects in HyPlant and DESIS
data as a basis to Publication II [213] included in this thesis. Smaller studies includ-
ing also sensitivity studies of the O2-B absorption band can be found in [87, 113, 252].

1.3.3 Fraunhofer Line Discrimination

The Fraunhofer Line Discrimination (FLD) method derives a simple equation sys-
tem from Eq. 1.1 that can be solved with measurements or estimates of E0

g and L
inside and outside of an atmospheric feature [165, 223]. While the original form of
FLD targeted solar FL, most modern applications of FLD make use of the telluric
O2-A absorption feature. This is due to the strong requirements on SR, SNR and
SSI to resolve individual solar FL which often can not be satisfied for spectrometers
in operational conditions. Operational spectrometers capable of resolving FL for
high-quality FLD SIF retrieval are restricted to satellite missions targeting the quan-
tification of global concentrations of Greenhouse gases (GHG) (see Section 1.4.3). SIF
retrieval on datasets of these sensors is, however, usually performed with optimiza-
tion techniques (see Sec. 1.3.4).

FLD is mainly applied in updated forms such as the 3FLD [182] and the Im-
proved FLD (iFLD) [9] in the telluric O2-A absorption band. These updated forms
(i) account for the typical spectral shape of at-sensor radiance, reflectance and top-
of-canopy SIF in the O2-A and O2-B spectral region and (ii) adapt the number of
sampling points used in the equations [45, 170] to reduce retrieval errors. In order
to account for the observational and atmospheric variability affecting the O2-A and
O2-B band depth, these FLD variants either measure the atmospheric transfer or
formulate the equations system in the framework of a radiative two-stream model
where the atmospheric transfer is entirely parameterized by additional atmospheric
estimates.

FLD-based approaches in O2 absorption bands are mainly used for data from
field spectrometers as well as for UAV and airborne sensor data but have also been
considered for use for spaceborne data in the past [112, 113]. The main limitations
of FLD methods are their high-sensitivity to noise [168] and simplistic modelling of
reflectance and fluorescence shapes which does not allow the retrieval of the full SIF
spectrum.

1.3.4 Fraunhofer Line Optimization Retrievals

SIF retrieval with spectral data from spaceborne GHG sensors is most prevalently
performed with optimization methods targeting FL. These methods make use of the
invariance of the fractional depth of solar FL by constraining the data to small spec-
tral windows which allows to disregard atmospheric absorption. The retrieval can
then be tackled by optimizing a simplified forward model that depends only on a
high resolution model of solar top-of-atmosphere irradiance, the targeted fluores-
cence, a polynomial low-frequency contribution to account for variable reflectance
and atmospheric scattering and a precise sensor characterization. Importantly, since
the atmospheric influence in the focused spectral range is minimal, this model does
not need to account explicitly for any atmospheric components. The first SIF re-
trieval methods of this type were applied to data of the TANSO-FTS sensor [89, 142,
143, 275]. More recently optimization has been applied to OCO-2/3 data as well
[152]. Furthermore, [147] formulates a similar procedure in the framework of Differ-
ential Optical Absorption Spectroscopy (DOAS).
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1.3.5 Data-driven Decomposition-based Methods

The simple physical modelling of the signal generation in the approaches above
hinges on small spectral ranges. The restriction to small spectral ranges is, however,
a bottleneck in sensors with lower spectral resolution and subjects the estimated SIF
to more sensor noise. As a response to this, multiple authors have proposed using
larger spectral windows which include strong atmospheric absorption features from
O2 and water vapour both in spaceborne [79, 114, 138, 153, 253, 293, 352], airborne
[263] and field spectroscopy data [116, 342]. In order to simplify the description of
the atmospheric influences on the observational data driven decomposition-based
methods (DDDM) model the radiative transfer with linear combinations of Princi-
pal Components (PCs) from spectral datasets of non-fluorescing targets. The accu-
racy of such methods is very sensitive to a representative choice of PCs given the
acquisitions from which SIF is to be estimated [46, 169], but have been shown to
yield competitive validation accuracies in well-defined conditions with high spec-
tral resolutions [197, 345].

1.3.6 Spectral Fitting Methods

Differently to DDDMs, Spectral Fitting Methods (SFMs) model accurately the phys-
ical generation process of either measured the at-sensor radiance [52, 54, 298] or the
computed reflectance [42, 189, 192]. The estimation then is conducted similarly to
DDDM by optimizing the free parameters in a least-squares minimization. The best
estimate for the SIF parameterization is used as SIF estimate. If reflectance is the
target, solar irradiance measurements are needed in addition to the at-sensor radi-
ance. The downwelling and upwelling radiative transfer for SFM targeting radiance
is mostly modelled with physical radiative transfer models such as MODTRAN [25].
The spectral shapes of reflectance and fluorescence emission are either derived from
land-surface and biologically accurate models [52, 54, 292, 351] or these models are
used directly during inference [42, 298].

Both reflectance and radiance targeting retrievals require atmospheric character-
ization or correction prior to the retrieval of surface parameters. While radiance tar-
geting SFM include an explicit formulation of the radiative transfer, the atmospheric
signal component is treated differently to the rest of the optimization. Instead of
solving a joint optimization of atmospheric and surface related parameters, a two-
step approach is usually adopted where the atmospheric contributions to the signal
are first estimated with an RTM inversion scheme and subsequent RTM modelling
called interrogation technique [296, 297]. In a second step, all surface related param-
eters are usually jointly estimated. This procedure is adopted because of the high
computational burden of high-resolution RTMs that renders repeated runs in opti-
mization iterations infeasible. Recently, the Publications I, III and IV, included in this
thesis, and Buffat et al. [30] have, however, argued for a neural network-based SFM
formulation where a joint estimation is made possible by the adoption of constraint-
based neural network training.

1.4 Existing SIF Products

SIF is estimated from hyperspectral sensors installed on a large variety of platforms
including ground-based, UAV, airborne, and spaceborne systems, each offering uni-
que advantages and challenges that may be suited for particular downstream ap-
plications. Airborne and spaceborne SIF retrievals have been extensively reviewed,
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highlighting the scientific interest in reliable and systematically provided SIF prod-
ucts [193, 194, 279]. UAV-based SIF studies have gained attention for their ability to
bridge the gap between ground, airborne and potentially spaceborne observations,
providing detailed insights into canopy-level fluorescence [21, 308]. Harmonizing
data across these platforms remains a critical challenge to ensure consistency and
comparability in SIF estimates across scales. The following section introduces the
characteristics, advancements, and integration efforts regarding existing SIF prod-
ucts across different platforms.

1.4.1 Field and Tower-based Measurements

A number of commercially available hyperspectral spectroradiometers have been
found suitable [144] to be integrated in automated measurement systems for quan-
titative measurements of TOC SIF in field conditions either mounted on portable
stands, existing Eddy Covariance (EC) towers or UAVs [43, 80]. In the last decade, a
number of research institutions have developed automated TOC SIF measurement
systems (HSI [191], FluoSpec [327], FluoSpec2 [326], MRI [53], PhotoSpec [108],
FAME [110], FLoX [134]). These automated systems provide time series SIF esti-
mates that are needed in localized settings where plant dynamics must be observed
continuously. TOC SIF estimates can be derived from hyperspectral radiance mea-
surements of these systems with much lower uncertainty than from airborne and
spaceborne platforms due to higher instrument stability, concurrent irradiance and
reference panel measurements and lower atmospheric influence. As a consequence,
such estimates have provided important in-situ calibration and validation data for
SIF products derived from acquisitions recorded in multiple airborne campaigns
(see Sec. 1.4.2). Due to the low spatial resolution their adoption for validation of ex-
isting spaceborne SIF products is, however, not widespread (see Sec. 1.4.3). With the
advent of new SIF estimates from spatially higher-resolved spaceborne platforms
(e.g., FLEX and, as argued in Publication IV, DESIS) these ground based systems,
however, may prove to constitute valuable independent validation data for a range
of spaceborne products as well.

1.4.2 Airborne Sensor Data

A number of airborne platforms have been equipped with sensors with spectral
resolutions allowing for passive SIF retrieval. Most notably, the HyPlant FLUO
spectrometer [263] has been operated in yearly campaigns since 2014 as the demon-
strator version of the FLEX FLORIS [75] sensor. Other airborne sensors that have
been used for SIF retrieval include the micro-hyperspectral imaging sensor [332], the
Chlorophyll Fluorescence Imaging Spectrometer (CFIS) [91], the FIREFLY (fluores-
cence imaging of red and far-red light yield) spectrometer [215] and APEX (Airborne
Prism Experiment) [59]. The quality of SIF measurements from airborne platforms
has substantially progressed allowing for use in actively researched applications
concerned with the previsual monitoring of plant stress (see Section 1.2.4) and in
research requiring field-level SIF estimates for phenotyping tasks [194]. Due to large
operating costs of such setups installed in airplanes, recently an increased interest
has also been placed in sensor systems on UAVs [1].

Airborne SIF retrieval setups have had historically a special importance for the
derivation of SIF from data acquired on spaceborne platforms. Instrumental effects,
calibration artefacts and unsuitable modelling assumptions have an influence on the
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reliability of spaceborne SIF estimates. The retrieval of SIF from airborne hyperspec-
tral data represents an important testing application of SIF retrieval methods and
associated calibration procedures that are intended to be operationalized for space-
borne SIF retrieval. Furthermore, airborne SIF estimates are acquired to provide
reference data for the validation of spaceborne SIF products following a bottom-up
validation principle [199] leveraging reference data at multiple spatial scales. For ex-
ample, [276] has validated the OCO-2 SIF product with CFIS derived SIF estimates.
The use of HyPlant – the airborne demonstrator of the FLEX FLORIS sensor (see Sec-
tion 1.4.3) – for a dedicated validation campaign of FLEX FLORIS is currently also
considered [87].

1.4.3 Spaceborne Sensor Data

Globally distributed SIF estimates have been realized from satellite-based instru-
ments with suitable SR, SNR and SSI [356]. These include the Thermal And Near-
infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-
FTS) on the Greenhouse gases Observing SaTellite (GOSAT) [114, 143], SCIAMACHY
[142], GOME-2 [138, 293], OCO-2 [276] on a free-flying satellite and OCO-3 mounted
on the Japanese Experiment Module-Exposed Facility International Space Station
[73, 85, 281], TROPOMI [151, 352] and the Atmospheric Carbon dioxide Grating
Spectrometer (ACGS) onboard the Chinese Carbon Dioxide Observation Satellite
(TanSat) [79, 329]. Following [80], current global SIF products can be grouped by
their swath coverage and spectral resolution. While SCIAMACHY and GOME-2
products [140, 153] have provided 0.5◦ resolutions and global coverage in a few
days, GOSAT, OCO-2 and TanSat are narrow-swath imagers with smaller footprints
down to a few km2 with longer repeat cycles. No instrument from which currently
global SIF products are derived has been designed for SIF retrieval as primary aim
but rather for the quantification of Greenhouse Gas emissions. As a consequence,
their spatial resolutions do not allow to study vegetation dynamics below the re-
gional scale. The FLORIS sensor onboard ESA’s Earth Explorer FLEX [75, 87] will be
the first such instrument with an anticipated spatial resolution of 300 m and repeat
cycles ranging from 10 to 24 days. Publication III [31] included in this thesis further-
more addresses for the first time the estimation of SIF at 30 m resolution from the
DESIS sensor [158] on the International Space Station.

To leverage the multitude of spectrally high-resolved earth observations for a
long term SIF product with improved spatio-temporal coverage recent work has con-
centrated on harmonization strategies of individual SIF products [209]. A number of
works [82, 83, 99, 135, 178, 331, 344] have targeted the spatio-temporal downscaling
of coarse SIF products by combining them with high-resolution surface reflectance
estimates employing statistical machine learning approaches and physiological con-
straints [260].

1.4.4 Validation

Methods that derive land-surface products from remote sensing data are evaluated
using different strategies in Earth observation. These fall into five broadly defined
categories [119, 246]. The products can be validated (i) with direct in-situ point mea-
surements of the target variable, (ii) indirectly by making use of accurate modelling
where the the target variable can be inferred from precise in-situ point measure-
ments of auxiliary variables that parameterize the model, (iii) making use of cross-
validation with existing products of the same target variable, (iv) by leveraging prior
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knowledge about system constraints of the underlying model (e.g. with time-series
data) and (v) with synthetic data generated using radiative transfer models.

The validation of remote sensing products with in-situ measurements of the tar-
get variable is ultimately the most valuable validation strategy as it represents the
most independent assessment of prediction errors [318] and is a prerequisite to pro-
vide traceable uncertainty budgets [199]. However, direct validation of airborne and
spaceborne SIF products with in-situ point measurements is challenging due mul-
tiple factors. The vast difference in measurement footprints, sparse datasets where
acquisition times align sufficiently, as well as the misalignment of observational ge-
ometries are major difficulties that complicate the creation of ground-truth reference
datasets (see Section 1.5.3). As a consequence, validation of airborne and spaceborne
SIF products has addressed direct validation only recently with the emergence of in-
creased availability of field and tower-based SIF ground measurements.

Lacking sufficient ground measurements in diverse phenological and observational
conditions airborne products can be validated quantitatively with synthetic data
[54, 58, 192] presupposing accurate modelling of both the physical process gener-
ating the at-sensor radiance as well as the instrument modulation and noise. Quali-
tative assessments have been used in [58, 314, 333] where the estimated SIF estimates
were compared to prior assumptions on the dynamics of covariates (e.g., GPP) and
SIF itself. Direct validation with concurrently recorded in-situ field and tower-based
SIF estimates [22, 221, 238], as well as Publications I and III, still feature large uncer-
tainties (see Section 1.5.3).

In the spaceborne context, validation with synthetic data represents often the only
practical quantitative validation strategy of SIF retrieval methods [303, 356] as in-situ
data is sparse and subject to large uncertainties when compared to SIF products with
much lower spatial resolutions. To alleviate the current lack of reliable in-situ vali-
dation data increased interested is placed in the possibility to install hyperspectral
spectrometers on existing covariance (EC) towers to generate reliable and continu-
ous ground SIF reference datasets in various ecosystems [87, 110, 347]. A small set of
studies have recently targeted the validation of spaceborne SIF estimates with in-situ
reference datasets acquired from EC towers for the first time [80, 81, 336, 337, 347].
Similarly, the use airborne SIF products for validation is being discussed in the FLEX
validation preparation [87] as part of a multi-scale validation approach. Dedicated
flight campaigns with CFIS and HyPlant have for example been conducted for vali-
dation studies of OCO-2 [276, 313] and DESIS (see Publication IV [31]) SIF estimates.
However, due to the lack of reliable reference data, SIF estimates from most space-
borne sensors have been ranked qualitatively by their correlation performance with
global GPP estimates [139, 260] (OCO-2 [233, 275], TanSat [78], GOME-2, [253, 344],
TANSO-FTS onboard GOSAT [90]) even though a linear SIF-GPP scaling is itself
not necessarily an expected outcome in all circumstances. Furthermore, a number
of cross-validations between independent instruments have been conducted as well
(SCIAMACHY vs. GOME-2 [140], OCO-2 vs. GOME-2 [275], TROPOMI vs. OCO-2
and GOME-2 [151], OCO-2 vs. TanSat [328]).



Chapter 1. Introduction 14

1.5 Challenges in SIF Retrieval

The development of SIF retrieval algorithms is challenging due to several factors
connected to the measurement setup and the specific fluorescence signal in hyper-
spectral remote sensing data. In the following paragraphs the most important chal-
lenges to precise retrieval of top-of-canopy SIF are summarized.

1.5.1 Signal Strength

The TOC SIF signal accounts for 1 - 2% of the canopy leaving radiance in the near
infrared region [91]. As a consequence, sensor related artefacts such as stray light,
dark current related noise, spectral miscalibrations and directional sensitivity im-
pact the fluorescence prediction significantly [8, 35, 185, 203]. Disentangling of the
fluorescence signal from the reflected sun-light requires a high signal-to-noise ratio
of the sensor and the derived radiance product. Studies regarding suitable SNR,
SR and SSI have been conducted with a focus on different sensing systems (e.g.,
GOSAT and OCO-2 [89], FLEX [75, 87], a general overview is given by [356]) as well
as on particular retrieval methods [57, 166]. The advanced requirements on the sen-
sor characteristics have triggered the development of specialized ground-based, air-
borne and spaceborne sensor systems (see Section 1.4) operated mainly by scientific
organizations.

1.5.2 Atmospheric Compensation

Similarly to the demanding requirements on the accuracy of the sensor character-
ization, SIF retrieval in atmospheric absorption bands relies on exact modelling of
the radiative transfer through the atmosphere to correct for molecular and aerosol
absorption and scattering [250]. This is in contrast to SIF retrieval based on the in-
filling of solar Fraunhofer lines that rely on spectral regions that are insensitive to
atmospheric effects. Atmospheric contributions to the at-sensor signal impact the
SIF retrieval since they lead to misattributions of changes in the oxygen features to
SIF. Of particular interest for O2-B and O2-A absorption band-based SIF retrievals
is the oxygen column integrated over the radiative path length which is mainly de-
termined by the distance between surface and sensor. To a lesser degree the atmo-
spheric water content, the pressure profile, the aerosol model and the specific view-
ing geometry also influence the retrieval [58, 66, 198, 212, 250]. However, depending
on the sensor and observation setup the accurate measurement of atmospheric con-
stituents is often not feasible or too costly such that they must be estimated, particu-
larly in airborne and spaceborne contexts.

The atmospheric contribution to the at-sensor radiance is addressed in SFM and
FLD SIF retrieval methods in one of two ways. In the first possibility, a prepro-
cessing step called atmospheric correction is conducted with accurate measurements
or estimates of atmospheric constituents that allow to normalize at-sensor measure-
ments to surface reflectance [251]. The effect of the additional TOC SIF signal on the
effective surface reflectance can then be inverted without atmospheric influences.
Secondly, the estimation of atmospheric effects can be integrated in the SIF estima-
tion scheme. In this case, the influence of atmospheric effects is modelled as part of
the SIF retrieval formulation such that an initial estimate of the atmospheric com-
position can be adjusted to fit the observations more closely (e.g., Publications I and
III). Due to the computational cost of accurate radiative transfer simulations, these
SIF retrieval methods, however, typically do not implement a full joint optimization
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of atmospheric constituents, SIF and other relevant quantities such as the surface
reflectance, but run a small number of experiments with adjusted atmospheric com-
position in a process called transmittance correction. The possibility of fully joint opti-
mization or training of both atmospheric and surface quantities is, however, subject
to research and addressed in the Publications I, III and IV comprised in this thesis
[29, 31, 33].

1.5.3 Retrieval Method Evaluation

The validation of airborne and spaceborne products with ground-based point mea-
surements of TOC SIF presents major challenges. In the following, an overview of
the main challenges is given.

1. Spatial mismatch There is an inherent representation mismatch between in-
situ SIF measurements from field and tower-based radiometers of SIF on the
one hand and airborne and spaceborne SIF products on the other due to the
vast difference in measurement footprints of these systems. The spatial het-
erogeneity of SIF within large pixels, particularly in a spaceborne context, in-
troduces uncertainty, as a single ground measurement typically does not accu-
rately represent the average SIF value of the entire pixel [80, 353] and assump-
tions about the spatial distribution of SIF within the pixel have to be made.
This issue is particularly pronounced in areas with diverse vegetation types
or varying canopy structures. Similarly, in airborne validation settings a rep-
resentation mismatch can impede straightforward validation analysis due to
complex canopy structure that introduces strong signal heterogeneity over the
footprints caused (i) by mixing of different plant individuals [35, 128] and (ii)
by partial shadowing [20, 156, 334].

2. Temporal mismatch SIF is a dynamic quantity that reacts on fast time scales to
changes in illumination [130, 258]. Its large sensitivity to natural variation in
solar irradiation causes significant discrepancies between SIF estimates taken
at different times. In particular, under non-noon, cloudy and hazy conditions
auto-correlation time scales of SIF time series can become much shorter due to
rapid changes in illumination [46]. Evaluation of SIF products must therefore
be conducted with data exhibiting high temporal consistency as was realized
in Publications I and III by using in-situ time series data with high tempo-
ral sampling rates as validation data and in Publication IV by relying on a
novel benchmarking dataset consisting temporally closely matching airborne
and spaceborne SIF estimates.

3. Signal correlation: SIF is strongly correlated to the near-infrared reflectance of
plant leaves as both are driven significantly by the chlorophyll concentration.
Depending on the training setup of feature-based SIF estimation techniques,
performance validation must therefore take into account spurious uninforma-
tive cross-correlations (see Publications II [213] and V [212]) as was done in
Publication IV [31] with a reflectance constrained performance evaluation.

4. TOC SIF emission anisotropy: Similar to vegetation reflectance that may be
expressed as bidirectional reflectance factor (BRF) [254], TOC SIF exhibits a
non-isotropic bidirectional angular dependency [20, 338, 350]. The TOC SIF
signal has a directional dependency (i) with respect to the irradiant PAR that
fuels photosynthesis and (ii) with respect to the viewing geometry. This view-
ing angle dependency is not only preventing a straightforward downscaling
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of TOC SIF to leaf-level ChlF [69] (see Section 1.2.3). Importantly, this de-
pendency renders validation of remote sensing SIF with in-situ measurements
more challenging as it introduces the requirement to align the prediction with
the in-situ measurement either at recording time or in post-processing. The
representative mismatch between in-situ labels and SIF estimates is more pro-
nounced in circumstances where the alignment is technically impossible or the
post-processing is subject to large uncertainties such as in data from space-
borne platforms where the viewing geometry is set by orbital requirements
[141, 350]. Indirect validation studies of SIF post-processing have shown view-
ing angle corrections to improve validation performance [121, 348, 349].

The directional dependency related to the solar irradiance is primarily driven
by the leaf angle distribution (LAD) and gap fraction of the canopy. LAD deter-
mines the total leaf area exposed to the irradiant PAR by varying the mean rel-
ative angle between the sun and the leaf surface [222]. Equally, the directional
dependency is modulated by the gap fraction which determines the amount
of (i) light penetration into the canopy (ii) the scattering and reabsorption of
ChlF in the canopy and (ii) the contribution of the fluorescence signal from dif-
ferent canopy layers to the canopy leaving radiance (including the amount of
soil reflected radiance visible in single pixels [168]). Depending on the canopy
structure, the composition of fluorescence contributions may vary significantly
in the diurnal course as a consequence [242]. Reabsorption and scattering are
also driven by the vegetation reflectance [323] such that the BRF may introduce
additional viewing angle dependency. Due to spectrally variable transmission
properties of vegetative tissues, this viewing angle dependency is spectrally
variable.

1.6 Machine Learning for SIF Retrieval in Hyperspectral Imag-
ing Spectroscopy

1.6.1 Hyperspectral Imaging Spectroscopy

Imaging spectroscopy is a technique in optical remote sensing that captures sensor-
incident radiance in narrow spectral bands to sample the electromagnetic spectrum
at a high spectral resolution over a spatially contiguous field of view. It provides
spatially and spectrally structured information of the interaction between solar irra-
diation and terrestrial molecules and particles that modulate the measured at-sensor
radiance through absorption, scattering and reflection, enabling a synchronous char-
acterization of the Earth’s surface and the atmosphere over extended areas [96, 231].
Unlike multispectral sensors that typically collect data in wide spectral bands (e.g.,
Sentinel-2 [84] and Landsat [289]), hyperspectral sensors acquire spectral informa-
tion in more narrow bands with spectral resolutions of less than 10 nm, usually cov-
ering spectral windows in the spectral range from the visible to the thermal infrared
(300 nm - 2500 nm). This high spectral resolution allows for a more precise char-
acterization of surface properties based on finer spectral signatures than is possible
with multispectral sensors [41].

Both multispectral and hyperspectral imaging spectroscopy have become a rich
sources of physically well characterized imagery in the last decades with airborne
sensors such as Aviris-NG [49], APEX [255, 287], HyPlant [263] as well as satellite
missions with global coverage such as the Sentinel-2 [84] and Landsat programs
[289]. Additionally, in the last years multiple hyperspectral imaging sensor systems
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have been operationalized (PRISMA [220], EnMAP [115], DESIS [158], EMIT [283])
or have entered advanced planning stages (FLEX [75], SBG [271], PRISMA2GEN
[5]). While the first imaging spectrometers were designed to allow for mineral map-
ping based on material-specific spectral responses [231], airborne and spaceborne
hyperspectral imaging sensors today acquire data for the estimation of environmen-
tal quantities without trivial spectral response features such as fire and shadow re-
lated or biophysical variables such as the leaf area index (LAI), water quality pa-
rameters, and atmospheric constituents to detect subtle variations distributed across
large sections of optical reflectance spectra.

1.6.2 Towards Neural Network-based SIF Retrieval

The semantic attribution and disentangling of complex spectral signatures in various
remote sensing tasks is typically solved by leveraging Machine Learning methods.
The term Machine Learning (ML) denotes a field of techniques in artificial intelli-
gence where computing systems are enabled to learn statistical relationships in data
to solve tasks without being explicitly programmed to do so. Learning in this context
describes the capacity to adjust the completion of such a task iteratively under tar-
geted variation of model parameters to improve a mean task performance according
to a user defined metric over a training dataset. In the context of hyperspectral imag-
ing, machine learning targets the identification of generalized spatio-spectral features
for tasks such as land use and land cover (LULC) classification [206], object [174]
and anomaly [321] detection, mineral abundance mapping [261], mapping of envi-
ronmental quantities [290, 346] and disaster impacts [236].

Machine Learning methods are adopted in hyperspectral image analysis due to
their capacity to effectively distill informative features from large amounts of data
despite the large observational variability in spectral data. As in many other fields,
ML methods excel over the use of traditional hand-crafted features [51]. Traditional
ML methods to achieve this include Gaussian Process Regression, Support Vector
Machines (SVMs), Decision Trees and Random Forests [136, 224]. Due to the high
data dimensionality which the high spectral resolutions of hyperspectral sensors
entail the analysis and utilization of hyperspectral of ML methods necessitate the
use of dimensionality reduction methods. ML tasks in hyperspectral remote sens-
ing are therefore typically formulated as learning tasks over reduced feature spaces
(e.g., [62, 68, 244, 301]) established with custom dimensionality reduction techniques
[102, 239, 240]. In recent years, artificial neural network (NN) methods, particularly
deep learning architectures, have become increasingly prevalent in hyperspectral
applications [118, 177, 206] due to their improved performance in various remote
sensing tasks [136, 270] that can be attributed [206] to the well-established improved
identification of robust features of DL over traditional ML methods [72, 157, 202].
NN architectures allow to integrate dimensionality reduction and task completion
in a single end-to-end prediction scheme. This allows the derivation of more infor-
mative features than is possible in traditional ML methods. The increased amount
of hyperspectral data sources globally, that benefit the adoption of NN-based meth-
ods, as well as the larger computational resources at the disposal of research insti-
tutions additionally supports the increased interest in NN architectures. The large
amount of hyperspectral data available could be shown to be benefit the training of
foundation models in estimation tasks such as land cover classification, segmenta-
tion, change detection and unmixing (e.g., for multispectral [126] and hyperspectral
[26, 230, 256, 306, 320] sources).
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While the recent advances in Deep Learning and in the emerging field of Foun-
dational Modelling in particular have allowed to achieve new state-of-the-art per-
formances in hyperspectral remote sensing [26], their use for SIF retrieval not yet
been widely established. Related work includes [139] presenting a supervised ap-
proach to post-process noisy SIF estimates to a noise-reduced SIF product with a
shallow neural network from the leading Principal Components of hyperspectral
GOME-2 observations and independently retrieved SIF estimates. A number of
works have furthermore investigated SIF estimation based on broadband surface
reflectance products by leveraging supervised neural network training with inde-
pendent OCO-2 and TROPOMI SIF estimates used as labels. Since such methods do
not target the physiological fluorescence signal in the observational data but a non-
causal statistical relationship between surface reflectance and SIF, they are, however,
not useful as standalone fluorescence estimators, even though they might prove use-
ful for SIF-dependent tasks such as GPP estimation. Recently, the Publications I, III
and IV [29, 31, 33] included in this thesis have introduced a neural network-based
approach relying on self-supervised training for the first time. As these contribu-
tions show good retrieval performances in validation studies with in-situ data and
in SIF product cross-validations, their method formulation may lay the basis for fu-
ture research in neural network-based SIF retrieval.

1.7 Research Objectives

The objectives of this thesis focus on the use of self-supervised Deep Learning for
the retrieval of SIF in hyperspectral image data acquired on an airborne and a space-
borne platform. To this end, a sensitivity (Publication V [212]) and a modeling study
(Publication II [213]) have been conducted to allow for the development and vali-
dation of two SIF prediction methods (Publications I and III) adapted to two rep-
resentative sensors – DESIS and HyPlant FLUO. While these two sensors feature
vastly different specifications, operation modalities and post-processing, they rep-
resent different extremes of data quality that can be expected in modern imaging
spectrometer equipment suitable for SIF retrieval in airborne and spaceborne con-
texts. The objectives of this thesis were therefore:

1. Develop a deep learning framework for physically-based SIF retrieval in HyPlant
FLUO data around the O2-A absorption band by adopting key concepts of the
well-established optimization-based Spectral Fitting Method (SFM) [52]. Due
to the exceptional sensor design of HyPlant FLUO focusing on SIF retrieval
in the O2-A and O2-B absorption bands the method development could rely
on high-fidelity baseline predictions such that method-related biases could be
studied effectively in real data (Publications I [33] and III [29]).

2. Contributing to a sensitivity analysis of surface, atmosphere and sensor pa-
rameters in typical HyPlant and DESIS observation conditions with respect to
the at-sensor fluorescence signal (Publication V [212]). This has allowed the
simulation of a large dataset of training spectra that was used to represent the
physical generation of the at-sensor radiance signal (Publication II [213]).

3. Improving the physical atmospheric radiative transfer formulation in SFM to
allow for local changes in observation geometry (e.g., because of variable to-
pography) without noise-prone preprocessing (Publication III [29]). To this
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end, a suitable emulation strategy of atmospheric radiative transfer simula-
tions had to be derived for both DESIS and HyPlant to allow an efficient online
simulation of at-sensor radiance during training (Publication II [213]).

4. Provide the first SIF estimates from DESIS acquisitions by adapting the method-
ology developed and validated on high-quality HyPlant FLUO data (Publica-
tion IV [31]).

1.8 Contributions

In this thesis multiple novelties are presented that have the potential to benefit fu-
ture research in SIF retrieval from airborne and spaceborne hyperspectral imagery.
The thesis is based on four cumulative publications. The individual contributions in
each publication to research in SIF estimation from hyperspectral spectroscopy data
are listed below.

Publication I

1. A feature-based spectral fitting method called Spectral Fitting Method Neu-
ral Network (SFMNN) is introduced implementing for the first time a self-
supervised deep learning-based based training for SIF retrieval.

2. A loss formulation is proposed that considers physical and physiological con-
straints as well as a spectrally dependent weighting in the O2-A band.

3. It is shown that this method can approximately disentangle fluorescence varia-
tion from topographic changes in hilly terrain which sets it apart from previous
methods for SIF retrieval in airborne contexts.

4. SFMNN reaches competitive validation results on a dataset of in-situ top-of-
canopy SIF measurements.

5. HyData [34], a publicly available dataset, is assembled from data recorded in
HyPlant campaigns from 2018 to 2023.

Publication II

1. The approximation accuracy of multiple RTM emulation models (polynomial,
neural network, kernel based and Gaussian Process regression-based) are tested
in the specific context of SIF retrieval from at-sensor radiance in the O2-A ab-
sorption band acquired by HyPlant FLUO and DESIS by drawing on an ex-
haustive sensitivity analysis (Publication V [212]).

2. A fourth-order polynomial emulation model based on a fixed feature space
consisting of the power set of the parameterizing variables is shown to be suf-
ficiently accurate, fast and robust to the training dataset size. These qualities
have the potential to allow to speed up and widen the application of accurate
RTM models in various remote sensing applications.

Publication III

1. The emulator of at-sensor radiance in the O2-A band developed in Publication II
is extended to allow SFMNN (Publication I) to estimate atmospheric constituents
and sensor miscalibrations simultaneously with SIF.
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2. The combined use of this emulator and the loss formulation of SFMNN are
shown to allow the creation of a state-of-the-art SIF retrieval method for HyPlant
FLUO data. In particular, the prediction performance is improved over the
model presented in Publication I.

Publication IV

1. The first SIF retrieval method for DESIS acquisitions is introduced and val-
idated with a validation dataset [32] consisting of quasi-simultaneous high-
fidelity HyPlant-derived SIF estimates as well as with OCO-3 observations.

2. The loss developed in Publications I and III is extended to suit low-resolution
DESIS data and shown to improve validation performance. (i) A perturbation-
based regularizer and (ii) supervised loss terms targeting atmospheric esti-
mates are introduced.

The methods and concepts developed in this thesis are generally tested both in
DESIS and HyPlant FLUO such that adaption to different sensors with similar char-
acterizations are likely to succeed with similar estimation errors.
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Chapter 2

Summary of Publications

This thesis is based on four publications. In this chapter, a short summary of all pub-
lications is given by highlighting the underlying research questions, methodology
and validation results. The publications are attached as separate Chapters A - D.

2.1 Publication I

In the last decade, the data acquisition for the derivation of spatially highly resolved
SIF maps from airborne platforms has become achievable. The operational start of
ESA’s Earth Explorer mission FLEX will conclude this development also for space-
borne platforms. On the one hand, this development was triggered by advances in
hyperspectral sensor design enabling to develop sensor systems capable of acquir-
ing hyperspectral image data from airborne and spaceborne platforms with SNRs
suitable for the retrieval of sun-induced fluorescence (SIF). On the other hand, the
targeting of oxygen absorption bands in spectral fitting and Fraunhofer discrimi-
nation methods has allowed to derive fluorescence at lower spectral resolution and
SNR than required in methods targeting very fine solar absorption features. This
has allowed to improve the spatial resolution of these systems. The high spatial
resolution of such SIF products is notably projected to be beneficial for environmen-
tal research and monitoring due to the close causal link between fluorescence and
carbon and water fluxes in vegetation canopies.

Publication I [33] introduces a novel approach for SIF retrieval relying on a Spec-
tral Fitting Method Neural Network (SFMNN). SFMNN is a neural network-based
self-supervised method that addresses key challenges faced by traditional SIF re-
trieval algorithms. Well-established methods like 3FLD, iFLD, and the Spectral Fit-
ting Method (SFM) decompose at-sensor radiance into fluorescence and reflectance
components by relying on pixelwise optimization assuming constant atmospheric
conditions for efficiency reasons. SFMNN is inherently a feature-based method such
that it has the potential to alleviate the need for recurring optimization. Furthermore,
SFMNN adapts to local changes of the atmospheric radiative transfer as occurs for
example in hilly terrain where the optical path length varies significantly. This is
implemented without needing separate atmospheric correction steps, making it par-
ticularly promising for topographically complex regions. In summary, key technical
novelties of SFMNN include:

1. Self-supervised loss function: Unlike supervised neural network methods for
SIF retrieval that rely on labeled data for training, SFMNN uses a self-supervised
loss function to invert a physical model of the at-sensor radiance. This ap-
proach does not require manually annotated ground truth data for SIF, im-
proving its flexibility and scalability.
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2. Joint estimation of fluorescence, reflectance, atmospheric transfer and sensor
miscalibration: The method jointly estimates surface reflectance, fluorescence
emission and the influence of atmospheric transmittance and scattering during
data acquisition. This contrasts with baseline methods that handle these com-
ponents separately or rely on fixed assumptions for atmospheric conditions.

3. Adaptability to local atmospheric conditions: One of the most significant ad-
vancements of SFMNN relies in its capability to learn and adjust to local atmo-
spheric variations. The method does not assume constant atmospheric con-
ditions across the scene, which is a major limitation of existing methods. By
learning atmospheric transfer functions as part of the retrieval process, it pro-
vides more accurate and localized SIF estimates, especially in regions with
varying topography and atmospheric properties.

4. No need for separate atmospheric correction: Traditional retrieval methods re-
quire atmospheric corrections or localized atmospheric characterizations, which
can introduce errors or require significant computational overhead. In con-
trast, SFMNN integrates the estimation of atmospheric transfer directly into
the model, avoiding these additional steps and reducing computational costs.

Publication I presents a validation study of SFMNN with traditional methods with
the benchmark dataset HyData [34]. This dataset combines HyPlant acquisitions
and in-situ top-of-canopy SIF measurements. While SFMNN does not outperform
all baseline methods in this validation dataset in terms of accuracy due to an over-
estimating bias, its correlation with respect to in-situ measurements outperforms
baseline methods in a majority of validation sets. Furthermore, two qualitative ap-
plication studies highlight the physiological and physical consistency of SFMNN.

In summary, SFMNN introduces a powerful, efficient and adaptive approach for SIF
retrieval, addressing the limitations of traditional methods by jointly estimating key
parameters. Its ability to adapt to local conditions and handle complex terrain makes
it a promising tool for advancing remote sensing of plant health and productivity.

2.2 Publication II

SIF retrieval relies on accurate modelling of sensor-related artefacts, illumination
and viewing-related geometry as well as atmospheric effects. These effects can have
an imprint on the measured radiance of the hyperspectral imaging sensors HyPlant
FLUO and DESIS on the same order of magnitude as SIF itself (Publication V [212]).
Typical approaches adopted in various SIF retrieval methods leverage accurate Ra-
diative Transfer Models (RTMs) to account for geometry and atmospheric-related
effects and separate spectral corrections to account for sensor artefacts in dedicated
preprocessing steps. In practice, the parametrization of RTMs can not be derived
from measurements alone since especially the atmospheric constitution is rarely
known at acquisition time. The computational cost of accurate RTMs, however, pro-
hibits the estimation of undetermined parameters during SIF retrieval by direct in-
tegration of the RTM into the learning or optimization process of the SIF retrieval
methods. RTM emulation provides a computationally efficient approximation of an
RTM model, reducing the computational burden while maintaining physical accu-
racy at a sufficient level. Publication II therefore investigates the accuracy and speed
of RTM emulation based on polynomial, neural network, kernel ridge and Gaussian
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Process (GP) regression in the specific context of SIF retrieval in the O2-A absorption
band of the hyperspectral HyPlant FLUO and DESIS imaging sensors.

Publication II [213] finds excellent emulation performance within the small spec-
tral window around the O2-A absorption band with a fourth-order polynomial over
a fixed feature space. The approximation residual of this emulator with respect to
the RTM can be shown to be sufficient for SIF retrieval while also exhibiting low
prediction times. Its performance is notably better than the kernel-based, GP-based
and neural network-based setups that were equally tested. Publication II argues,
that while improved results might be gained from these methods after hyperparam-
eter tuning, the adoption of a polynomial emulator in SIF retrieval methods still is
preferable in many use cases due to its fast prediction time, performance robust-
ness under small training dataset sizes and model simplicity that, notably, allows
a straightforward inclusion in the gradient backpropagation mechanism in neural
network training.

With Publication II a simple yet accurate polynomial RTM emulation method the
O2-A absorption band is presented to model HyPlant FLUO and DESIS at-sensor
radiances under typical viewing geometries and atmospheric conditions. Since its
accuracy is sufficient to disentangle SIF from other effects on the measured the at-
sensor radiance, it qualifies for use in machine learning-based SIF retrieval methods
in HyPlant and DESIS data. However, the application of this approach is not re-
stricted to these two sensors as it can be transposed to other hyperspectral sensors
with suitable spectral configurations such as, e.g., FLEX [75], and possibly other
spectral ranges such as the O2-B thereby extending the application of machine learn-
ing methods for SIF retrieval.

2.3 Publication III

Publication III [29] focuses on improving the SFMNN methodology outlined in Pub-
lication I by enhancing the physical accuracy of its at-sensor radiance simulation.
Since SFMNN targets the reconstruction of the atmospheric oxygen absorption line
O2-A, it requires exact modelling of the down and upwelling radiative transfer through
the atmosphere. The atmospheric state at acquisition time is most commonly unde-
termined such that the atmospheric characterization must be estimated as part of
the SIF retrieval. In SFMNN the atmospheric transfer functions are estimated as in-
terpolations in a PCA space spanned by observed transfer functions derived from a
subset of all HyPlant acquisitions. However, such a formulation can not guarantee
to produce physically plausible transfer functions. Furthermore, it does not estab-
lish an explicit relationship between the physical drivers and the functional form of
the transfer function.

Atmospheric radiative transfer models (RTMs) such as MODTRAN6 [25], 6S/6SV
[154, 155] and libRadTran [86] are typically used to model precisely atmospheric
transfer functions, but their high computational cost makes them impractical for
pixel-wise SIF retrieval or direct use in the gradient backpropagation of neural net-
work training. To alleviate this inefficiency, a fast and accurate indirect use of RTMs
is proposed to replace the implicit atmospheric formulation adopted in SFMNN.
Specifically, Publication III introduces an emulator-based version of SFMNN (Em-
SFMNN), which integrates the polynomial RTM emulator developed in Publication II
[213] and [211] with the basic SFMNN concepts outlined in Publication I. Addition-
ally, a simple, but computationally efficient extension to this polynomial emulator
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formulation is introduced in order to improve the representation of spectral sensor
miscalibrations.

Publication III [29] includes a quantitative validation study of its SIF estima-
tion performance and two qualitative case studies to assess its consistency across
different datasets and of auxiliary estimates. In the comparative validation study
EmSFMNN is validated using HyPlant campaign data and in-situ TOC SIF mea-
surements. EmSFMNN is shown to demonstrate strong agreement with ground-
based in-situ SIF measurements outperforming both SFMNN and traditional base-
line methods in most of the validation datasets. Furthermore, the study shows that
a backbone model without finetuning is able to yield SIF predictions with validation
errors similar to traditional methods.

In addition, Publication III studies qualitatively its SIF estimation in HyPlant
acquisitions with strong topographic gradients. In traditional methods additional
atmospheric correction methods steps are needed to allow SIF retrieval uniformly
in such acquisitions in order to account for differences in the optical path length of
the radiative transmission trough the atmosphere and the boundary layer. Publi-
cation III shows that EmSFMNN yields consistent SIF estimates across topograph-
ical gradients without any further processing steps, highlighting that the implicit
atmospheric correction of the RTM emulation layer is consistently integrated in the
prediction scheme.

Publication III furthermore presents a qualitative validation of the EmSFMNN’s
prediction of aerosol optical thickness (AOT). To this end EmSFMNN’s mean AOT
predictions in a multi-day time series of 13 HyPlant FLUO acquisitions were com-
pared (i) to high-quality AOT estimates derived from sun photometer measurements
recorded at the FZJ-JOYCE AERONET station [4] and (ii) with MODIS derived AOT
products used as ground truth. This comparison could show consistent dynamics in
EmSFMNN-predicted AOT and the ground truth sun-photometer measurements.
This result further underscores that the targeted disentangling of atmospheric ef-
fects, surface reflectance characteristics and SIF is indeed realized by means of the
constraint-based loss of EmSFMNN.

In Publication III a retrieval method is developed that allows for the first time con-
sistent SIF estimates over variable topography without noise-prone preprocessing
steps. Its good validation performance with respect to high-quality in-situ TOC SIF
measurements shows that finetuning a common baseline model yields state-of-the-
art SIF predictions from HyPlant FLUO. Since HyPlant FLUO is the demonstrator
sensor for FLEX, a future application of this approach to this spaceborne sensor with
minimal sensor-related domain gap provides an interesting opportunity to test this
approach in a global scenario.

2.4 Publication IV

DESIS is a hyperspectral sensor onboard the International Space Station (ISS) with
a significantly lower spectral resolution than HyPlant FLUO. Its design specifica-
tions were not chosen to fulfill optimal SR, SNR and SSI requirements for traditional
SIF retrieval methods as for HyPlant FLUO. As a consequence, SIF retrieval from
DESIS has never been addressed in the past even though its high spatial resolution
of 30 m is makes it an interesting sensor for field-scale predictions of environmen-
tal variables. In Publication IV [31], the EmSFMNN architecture and loss, that have
been originally developed for HyPlant FLUO, are adapted to SIF retrieval in DESIS
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data. The adapted EmSFMNN methodology is shown to allow for the first time to
derive SIF estimates at 30 m resolution from data acquired by a spaceborne sensor.
Currently, spaceborne SIF estimates are derived from atmospheric missions such
as GOSAT, OCO-2/3, and TROPOMI, which have sufficient spectral resolution but
low spatial resolution (>4 km2). ESA’s Earth Explorer Mission FLEX, scheduled for
launch in 2026, will provide estimates with 300-meter resolution, offering significant
improvements but still falling short for many applications relying on higher spatial
resolutions. The proposed EmSFMNN implementation has therefore the potential
to provide a valuable addition to a range of SIF products where high-resolution SIF
imagery is needed such as in precision agriculture. Furthermore, this DESIS SIF
product may complement the validation efforts of FLEX SIF product by providing
cross-comparison estimates.

In Publication IV several technical innovations to EmSFMNN have been imple-
mented in order to allow SIF estimation from DESIS. Since the spectral resolution of
DESIS is much smaller than the resolution of HyPlant FLUO (2.5 nm vs. 0.25 nm) the
changes to the original EmSFMNN methodology aim at constraining the training of
the spectral reconstruction more strongly. Key adaptations in the approach include
a perturbation-based augmentation scheme to minimize the influence of confound-
ing variables, the integration of atmospheric data from DESIS Level 2A products
through supervised learning tasks as well as the use of a supervised SIF predictor
trained on simulation data.

Publication IV includes a validation study of the newly developed DESIS SIF
product with high-quality SIF estimates derived from spatially matching and quasi-
synchronous HyPlant acquisitions in North-Western Germany [? ]. The acquisitions
of HyPlant FLUO were scheduled specifically to allow for a this validation with
a time difference between the SIF products of less than 20 minutes to reduce the
signal decorrelation due to the dynamic nature of SIF. The validation shows close
alignment in the two SIF products of 0.78 mW nm−1 sr−1 m−2 at 740 nm and a co-
efficient of determination r2 = 0.6. Furthermore Publication IV also compares this
novel DESIS SIF product to globally distributed OCO-3 SIF estimates. Since OCO-3
is equally located a dataset of the ISS matching acquisitions within small time win-
dows of less than 10 minutes could be established. Despite large differences in the
spatial resolution between the two sensors, the validation still finds a weak correla-
tion between the SIF products (r2 = 0.2).

Publication IV shows that EmSFMNN can be extended to spaceborne sensors for SIF
estimates with reasonable uncertainties even in the case of very challenging sensor
characteristics. As a consequence, the EmSFMNN SIF retrieval methodology can be
expected to be applied successfully to future hyperspectral missions such as FLEX
that feature sensor characteristics adapted to SIF retrieval.
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Chapter 3

Discussion

3.1 Self-Supervised Training for SIF Estimation

Self-supervised training adopts a loss formulation that does not rely on labels but on
intrinsic data properties or assumptions about the data generation process to guide
the learning process [262]. It is an important learning framework in various fields
with Deep Learning applications, for example in natural language processing (NLP)
and computer vision. In NLP, it has been instrumental in the development of foun-
dation models like BERT [70] and GPT [201], which use techniques such as masked
language modeling and autoregression [132]. In computer vision, self-supervised
learning has been adapted by means of reconstruction-based and contrastive tech-
niques [131]. A typical reconstruction-based formulation in self-supervised learn-
ing are Masked Autoencoders (MAEs). MAEs work by masking random patches of
input images and tasking the model with reconstructing the missing pixels. In con-
trastive techniques, equivariance and invariance properties of the data or the desired
predictor are leveraged to formulate a training scheme.

Variations of such reconstruction-based and contrastive learning formulations
from general computer vision have equally been implemented for network train-
ing in remote sensing data to contend with its specific features and requirements
such as multi-modality [15, 95, 230, 320], large spectral input dimensionality [55,
126, 190], seasonality and temporal variation [11, 184, 288], observation angle de-
pendencies [71, 164] and specific noise patterns [161]. Self-supervised training is
beneficial in contexts where labelled data is costly or unavailable such as in SIF esti-
mation explored in this thesis. Accordingly, this thesis has applied a self-supervised
reconstruction-based methodology of traditional spectral fitting methods to train the
predictor neural network in Publications I and III and, partly, in Publication IV. This
has been achieved by relying on the use of an auto-encoder and two different physi-
cal radiative transfer model formulations. While in Publication I linear combinations
of Principal Components over a representative set of radiative transfer functions
were used (see Publication I, Sec. 3.1.), SIF prediction performance in Publication
III could be improved by leveraging an accurate emulation framework developed
in Publication II (see Publication III, Sec. 3). Both physical model formulations are
integrated directly into a reconstruction-based loss to be able to conduct the esti-
mator training with measured data, similarly to [124] where a simulation based on
estimated quantities is compared to the input. Such a procedure can be qualified self-
supervised since implicit properties of the physical radiative transfer are leveraged to
formulate the training loss instead of reference data serving as labels. In addition,
a self-supervised regularization method has been developed and validated as part
of the EmSFMNN training on DESIS data in Publication IV to leverage a physical
invariance property in a perturbation based loss regularizer (see Publication IV, Sec.
3.2.). The self-supervised approaches for SIF retrieval followed in this thesis have
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allowed to include domain-specific knowledge about the physical signal generation
process.

3.2 Coupling Hyperspectral Emulation and Deep Learning

Estimation of SIF based on hyperspectral data in the oxygen absorption bands must
involve atmospheric correction steps prior to the retrieval process or an atmospheric
characterization as part of the retrieval method. This accounts for the oxygen ab-
sorption as well as modulating effects of the atmospheric transfer driven by the
water vapour and aerosols present in the optical path. The sensitivity of the at-
sensor radiance in the O2-A absorption band to optical path length is such that in
SIF retrieval atmospheric correction has to be considered for small surface-sensor
distances in the range of a few meters already [252]. However, atmospheric cor-
rection steps represent a significant amount of the total processing time of tradi-
tional SIF retrieval methods. As a relief to this problem, a feature-based approach
for SIF estimation has been adopted throughout Publications I, III and IV where
the pixelwise optimization of traditional SFM [52] is replaced by neural network
inference. This allows costly atmospheric correction preprocessing steps to be sub-
stituted by fast online estimation of the atmospheric effects. To this end a neural
network is trained with a simulation-based loss that reconstructs spectra from dis-
entangled physical quantities. The influence of the atmospheric radiative transfer
is addressed by specifically adopting a parameterization of the reconstruction sim-
ulation that allows for variation in atmospheric quantities. While the consistency
of the atmospheric estimates in Publication I has suffered from inconsistent radia-
tive transfer approximations (see Publication I, Sec. 5.1.), the preparatory work of
Publication II improved the simulation during training. In this work, an emulator
acting as surrogate model for a precise but computationally demanding RTM [212]
was used, similarly to well-known look-up table based approaches for the retrieval
of surface quantities from remote sensing data [257]. These equally rely on large
scale preliminary simulation over a dense sampling set of the relevant surface and
atmospheric parameters to derive a functional approximation. Differently to LUT
applications, however, the derived emulator was not implemented as an interpola-
tor over the set of precomputed simulations but as pretrained polynomial to allow
for efficient batchwise simulations.

As discussed in Publication III, the specific emulation formulation developed in
this thesis has allowed a joint reflectance and SIF retrieval, atmospheric correction
and estimation of the instrument characterization similarly to Optimal Estimation
(OE) techniques [282, 284, 285], where the atmospheric correction is implemented
as a loss minimization during training. Notably, integration of RTM emulation ap-
proaches in OE have been proposed and validated for surface reflectance estimation
from hyperspectral imagery with a neural network emulator on PRISMA [28] and
with a hybrid emulation technique on Aviris data [27]. In this thesis, the beneficial
use of RTM emulation in the context of SIF retrieval has, however, been shown for
the first time.

3.3 Validation Accuracy

In this thesis, the coupling of physical radiative transfer models with neural net-
work training could be shown to yield validation results with state-of-the-art valida-
tion results comparing to SFM [52] and iFLD [9] baseline methods (see Publication I,
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Tabs. 6 and 7, and Publication III, Tab. 5). In particular, the improved physical pre-
cision and range of control in the emulator formulation in Publication III has lead to
validation errors of SIF at 760 nm in the range 0.2 - 0.4 mW nm−1 sr−1 m−2 with a
dataset of in-situ measurements acquired in multiple years in tandem with airborne
HyPlant campaigns. The extension of this approach and application to DESIS data
in Publication IV yielded a mean error of 0.78 mW nm−1 sr−1 m−2 at 740 nm (corre-
sponding to ∼ 0.36 mW nm−1 sr−1 m−2 at 760 nm) with respect to an SFM baseline in
a benchmark set acquired specifically for this validation study. In a comparison with
globally distributed OCO-3 soundings, the DESIS SIF product performed worse due
to strong overestimation (see Publication IV, Fig. 5). While validation metrics did
not meet the challenging FLEX mission objectives to provide SIF at 760 nm with
an accuracy of 0.2 mW nm−1 sr−1 m−2, it must be noted that both in the HyPlant
(Publication III) and DESIS (Publication IV) prediction major additional sources of
uncertainty were present that will be reduced in FLEX’ specific measurement setup:
(i) first, differently to the HyPlant prediction case, synchronous retrievals of AOT
and water vapour density from Sentinel-3 will be able to be leveraged to constrain
the radiative transfer similarly to Publication IV, where a more detailed parameteri-
zation is shown to improve the SIF retrieval accuracy (see Publication IV, Sec. 4.3.).
(ii) Secondly, FLEX acquisitions will exhibit spectral resolutions that are very close
to HyPlant FLUO, thus providing significantly better suited data for SIF retrieval
than the test of the proposed methodology on spaceborne data (DESIS) conducted
in Publication IV.

Quantifying the accuracy of SIF estimates is a challenging task that has been
conduycted in this thesis with in-situ datasets [34] and cross-platforms comparisons
[32]. Major sources of uncertainty regarding the validation could, however, not be
addressed. The used in-situ data sets were not collected with validation of a SIF
product in mind, such that emission anisotropy, viewing angle mismatch, perfor-
mance variation in different vegetation types and the impact of pressure and tem-
perature profile variation could not be considered in the analysis (see Sec. 1.5.3).
These factors contribute, however, to the uncertainty in SIF estimates and their val-
idation such that further efforts must be made to create a well-defined validation
setup for SIF retrieval method validation. In this context, the quasi-simultaneous
data set consisting of HyPlant and DESIS acquisitions [32] represents an exception-
ally useful validation benchmarking data set due to the small time intervals between
the recording of the two sensors despite non-optimal viewing angle differences in
spaceborne and airborne acquisitions. Similar data quasi-simultaneous acquisition
from airborne and spaceborne platforms for SIF retrieval validation have previously
only been performed for the validation of OCO-2 with CFIS [276] and they are con-
sidered for the future validation of FLEX FLORIS SIF products [87]. An extended
interest in the data set and repeated quasi-simultaneous data acquisition with DESIS
in future campaigns may provide a sufficiently diverse validation data set of DESIS
to allow it to be used for the cross-validation of the future FLEX SIF products. Or-
bit unpredictability of the ISS, however, makes a careful planning of the alignment
of HyPlant and DESIS for a repeated simultaneous data acquisition difficult. Fur-
thermore, at the time of writing it is not clear if the operational life time of DESIS
will be long enough to allow for a time window of simultaneous DESIS and FLEX
operation.
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3.4 Use of Non-Physiological Models for SIF Estimation

Much progress has been made in the mathematical description of molecular and
leaf-level SIF [109, 129, 278, 292, 338]. The simulation formulations for surface re-
flectance and TOC SIF emission adopted in this thesis do not follow the most ad-
vanced models describing these quantities in vegetation canopies (e.g., SCOPE [292,
300]). This has two main reasons. First, since the reconstruction-based loss only tar-
gets a small spectral range around the O2-A absorption band (740 - 780 nm), it is
not necessary to cover much of the complexity expressed in state-of-the-art physio-
logical models that cover much larger spectral domains. For example, the Gaussian
approximation of one of the two modes in the chlorophyll fluorescence emission is
valid to a high degree in the chosen spectral range [212]. The reflectance model on
the other hand has been developed and validated on an extensive set of DUAL de-
rived surface reflectances [213]. Its parameterization has the beneficial property that
it can be monotonically sampled by iterating over linearly defined ranges. However,
the reflectance validation data set lacks representativeness outside the specific land
cover types over which HyPlant is operated, i.e. healthy forests and crops in mid-
latitude summer conditions, and does not represent well human-made structures,
as well as water surfaces such that it may be necessary to generalize the reflectance
modelling in future extensions of the EmSFMNN approach (Publication III) to SIF
prediction from general observation modalities.

A second feature of this simplistic surface model is given by its lack of intrin-
sic causal structure. The modelled reflectance and TOC fluorescence are not related
via the solar irradiance, canopy structure, plant physiology, surface reflectance and
viewing geometry. Thus, while the tight integration of physical simulation and em-
ulation in the reconstruction-based loss terms in Publications I, III and IV impose
strong implicit constraints on the training, the feature-based prediction of physiol-
ogy related quantities is guided by basic assumptions on spectral reflectance and
fluorescence emission shapes. In this thesis’ learning-based approach this prevents
the unintended biasing of the SIF estimator to other fitted parameters such as the
chlorophyll content that both drives NIR reflectance and fluorescence in physiologi-
cal models.



30

Chapter 4

Outlook

4.1 Towards SIF Prediction from Improved Encoding of Hy-
perspectral Data

Foundation models act as powerful task-agnostic encoders capable of representing
diverse data types. As a consequence, these models can be adapted to various ap-
plications, enhancing performance in many computer vision tasks significantly. Re-
mote sensing related applications have benefited from innovations in this field for
classification, segmentation and mapping (regression) tasks [16, 319]. The use of
large foundation models has proven to improve significantly the performance of
neural network models in a wide range of vision related tasks [26, 230, 256, 306,
320]. The similarity of multi-band data sources to classical imaging has allowed
for straightforward implementation of concepts originally developed in natural im-
ages. Applications on hyperspectral data as used in Publications I - III of this thesis
usually require some model adaptation due to the larger memory consumption for
single observations [230]. The availability of large datasets for foundation model
training is crucial [7, 146, 340] as it must scale with the large model size to allow
generalization of the feature space. This generalization capability makes foundation
models particularly valuable in scenarios where task-specific data may be limited,
as they can be adapt to new downstream tasks on smaller data set sizes [235]. With
the advent of a sizeable number of continuously recording spaceborne hyperspec-
tral imaging sensors such as PRISMA [220], EnMAP [115], DESIS [158], EMIT [283]
as well as hyperspectral pointing instruments such as TANSO-FTS [114, 143], SCIA-
MACHY [142], GOME-2 [138, 293], OCO-2 [276] and OCO-3 [73, 85, 281], TROPOMI
[151, 352] and TanSat [79, 329] the available data set sizes qualify for foundational
training. While the use of benchmarking data sets for hyperspectral training is still
not as widespread [26] as in the multi-spectral domain [126, 159, 272] domain first
contributions in this domain have addressed the training of foundational models on
data sets acquired by individual [26] hyperspectral sensors. A key strength of foun-
dation models is, however, their ability to derive embeddings from multi-modal
input. Research on multi-modality for sensor fusion in the context of hyperspectral
data has been driven by the goal to make use of larger simultaneous observational
coverage and to leverage complementary sensor qualities in repeated or (quasi-) si-
multaneous observations [230, 320].

In Publications I, III and IV, included in this thesis, a small neural network archi-
tecture has been chosen due to its versatile feature identification properties. With a
self-supervised loss formulation it has allowed to leverage prior knowledge about
the physical generation process of the observational data making use of intrinsic con-
straints encoded in the tightly integrated radiative transfer and instrument model
formulations. The proposed training schemes have adopted concepts from classical
self-supervised training for computer vision tasks. While a fully general model for
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SIF estimation in HyPlant data could be shown to reach the performance of baseline
methods, significantly better results were achieved after finetuning to individual
campaign data sets (Publication II). Furthermore, the training data sizes for HyPlant
and DESIS data were limited due to a constrained set of available data (HyPlant) or
available acquisitions that corresponded to the parametrization bounds of the im-
plemented physical models.

An interesting direction for further research on deep learning based SIF retrieval,
thus, includes the use of large foundational models as auto-encoders used in the
EmSFMNN prediction scheme presented in this thesis. Such models could be pre-
trained in a task-agnostic way on data that is not suitable for SIF retrieval a priori,
but which allows the to acquire feature representations of the atmospheric radiative
transfer, typical scene and spectral structures in a larger data base. Preferably such
a model should be trained on a range of sensors with different spectral resolutions
and overlapping coverage for an improved representation of sensor related effects
in contrast to changes in surface related variables such as SIF potentially reducing
systematic shifts in existing global SIF products due to orbit and viewing angle dif-
ferences [141].

4.2 Relevance for SIF Retrieval from FLEX Imagery

Two sensors with significant differences spectral characterizations and spatial res-
olution were studied in this thesis. These two sensors have exemplified the use of
variants of SFMNN for SIF estimation under different data modalities of hyperspec-
tral data sets that are currently and will be available in the near future. In particular,
it has allowed to gauge the possibility of applying EmSFMNN to data acquired by
the FLORIS sensor onboard the FLEX satellite which is due to be operational in 2026.
On the one hand, the HyPlant FLUO sensor is the airborne demonstrator for FLORIS.
Challenges in EmSFMNN due to the high spectral resolution could be tested before
FLORIS’ official launch and data acquisition with observational data. On the other
hand, this thesis’ work regarding SIF estimation from DESIS data is relevant to FLEX
SIF retrieval as EmSFMNN could be tested on observational spaceborne data. While
more exact SIF products can be estimated from atmospheric sensors such as from
TANSO-FTS or GOME-2, DESIS allows to work with spatially explicit data at high
resolution (30 m). Furthermore, the application of EmSFMNN to DESIS in addition
to HyPlant has enabled insights into (i) challenges to SIF retrieval specifically related
to sensors with low-spectral resolution and (ii) FLEX’ tandem set-up with Sentinel-3
for high-quality estimates of atmospheric components. Namely, in Publication III
two strategies to include atmospheric estimates into the EmSFMNN training were
tested: (i) as a direct parameterization of the simulation layer and (ii) via the inclu-
sion of supervised loss terms.

Finally, EmSFMNN may be relevant for the FLEX mission as a provider of valu-
able source of cross-validation SIF estimations in the validation and calibration cam-
paign of the FLEX satellite. The EmSFMNN DESIS SIF product is the spatially high-
est resolved spaceborne SIF product with a pixel size that is significantly smaller
than the FLEX pixel (300 m). It may thus complement in-situ validation data gained
either from ground-based installations or drone-based products in circumstances
where such high-fidelity validation data can not be gathered. Since the operational
timeline of DESIS is not fixed at the time of writing this thesis, it is, however, not
known whether there will be a time window where both FLEX and DESIS are oper-
ated simultaneously.
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A B S T R A C T

Accurate estimation of solar-induced fluorescence (SIF) from passively sensed hyperspectral remote sensing
data has been identified as fundamental in assessing the photosynthetic activity of plants for various scientific
and ecological applications at different spatial scales. Different techniques to derive SIF have been developed
over the last decades. In view of ESA’s upcoming Earth Explorer satellite mission FLEX aiming to provide high-
quality global imagery for SIF retrieval an increased interest is placed in physical approaches. We present a
novel method to retrieve SIF in the O2-A absorption band of hyperspectral imagery acquired by the HyPlant
sensor system. It aims at a tight integration of physical radiative transfer principles and self-supervised neural
network training. To this end, a set of spatial and spectral constraints and a specific loss formulation are
adopted. In a validation study we find good agreement between our approach and established retrieval methods
as well as with in-situ top-of-canopy SIF measurements. In two application studies, we additionally find
evidence that the estimated SIF (i) satisfies a first-order model of diurnal SIF variation and (ii) locally adapts
the estimated optical depth in topographically variable terrain.

1. Introduction

The notion that sun-induced fluorescence (SIF) is an important
biophysical parameter has become prevalent over the last decades
(Mohammed et al., 2019). In the last two decades, sensor and re-
trieval method development, on the one hand, and the push for the
standardization of hyperspectral imagery in airborne and spaceborne
sensing systems, on the other hand, have set the path to establish
spatially contiguous SIF estimates (Grace et al., 2007; Rascher et al.,
2009; Guanter et al., 2013; Ryu et al., 2019). The close causal link
of the SIF signal to the internal photosynthetic machinery of plants
is a valuable tool to infer plant dynamics remotely over large areas.
SIF has found applications linked to establishing regional and global
gross primary productivity and light-use efficiency of vegetation (Joiner
et al., 2013; Cheng et al., 2013; Sun et al., 2018), small and large
scale quantification of photosynthetic dynamics (Porcar-Castell et al.,
2014; Rossini et al., 2015), the detection of various vegetation stress
types (van der Tol et al., 2014; Verrelst et al., 2015; Damm et al.,
2022), vegetative transpiration rates (Maes et al., 2020), and ecological
monitoring more generally (Damm et al., 2015, 2020; Colombo et al.,

∗ Corresponding author at: Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich, Germany.
E-mail address: j.buffat@fz-juelich.de (J. Buffat).

2018). The retrieval of SIF from airborne hyperspectral imagery in
particular allows to follow spatial and temporal patterns of photosyn-
thetic activity at meter to submeter resolution. This provides important
information for precision farming and phenotyping applications and
was investigated in the context of food production (Bendig et al., 2021).

A range of hyperspectral sensors on different platforms exist for
operational passive retrieval of top-of-canopy SIF (Bandopadhyay et al.,
2020). In the proximal SIF retrieval, the use of field spectrometers has
grown in recent years due to increased interest in passive SIF measure-
ments as indicators of plant status in application studies. Furthermore,
these ground measurements are important in the development of UAV-
based, airborne and spaceborne sensors for SIF retrieval. High-quality
hyperspectral ground data sets for calibration and validation of non-
ground-based sensors are increasingly needed (Naethe et al., 2024)
as the number of SIF products increases. In recent years, a multitude
of globally distributed spaceborne SIF products have been developed
from sensors that were originally designed for the characterization of
the atmosphere such as GOSAT (Joiner et al., 2011), GOME (Joiner
et al., 2013; Guanter et al., 2014), SCIAMACHY (Joiner et al., 2016),

https://doi.org/10.1016/j.rse.2024.114596
Received 13 April 2024; Received in revised form 23 November 2024; Accepted 30 December 2024

Remote Sensing of Environment 318 (2025) 114596 

Available online 15 January 2025 
0034-4257/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC license ( http://creativecommons.org/licenses/by- 
nc/4.0/ ). 



J. Buffat et al.

OCO-2 (Sun et al., 2017), TROPOMI (Guanter et al., 2015a, 2021) and
TanSAT (Yao et al., 2021). In addition, the upcoming FLEX satellite
mission will make available data from the first hyperspectral sensor
dedicated full-spectrum SIF retrieval on a global scale by 2026 (Drusch
et al., 2017).

Investigations regarding the development, improvement and testing
of operational SIF retrieval algorithms have relied strongly on data
from airborne platforms equipped with sensors such as with the micro-
hyperspectral imaging sensor (Zarco-Tejada et al., 2016), with the
Chlorophyll Fluorescence Imaging Spectrometer (CFIS) (Frankenberg
et al., 2018) and with the HyPlant spectrometer (Siegmann et al.,
2019). The development of the new SIF retrieval approach presented
in this work is based on hyperspectral HyPlant imagery. HyPlant data
is particularly suitable to testing new retrieval methods as it has been
designed as an airborne demonstrator for the FLORIS sensor of the
upcoming spaceborne FLEX mission. Moreover, hundreds of HyPlant
flight lines were recorded in several field campaigns since 2014. This
large collection of hyperspectral data sets allowed to test different
SIF retrieval methods (European Space Agency, 2017a,b, 2018, 2019;
Rascher et al., 2021, 2022a,b). Many of these data sets are acquired
in tandem with ground-based measurements allowing to derive high
quality ground-based SIF estimates as ’ground truth’ in addition to the
hyperspectral flight lines (see Section 2.2 for details on the data sets
and ground measurements).

Prominent algorithms for SIF retrieval on hyperspectral data are
the 3FLD method (Maier et al., 2004), the Improved Fraunhofer Line
Discrimination (iFLD) (Alonso et al., 2008), the Spectral Fitting Method
(SFM) targeting SIF in oxygen absorption bands (Mazzoni et al., 2012;
Meroni et al., 2010) as well as full-spectrum SFM (Cogliati et al., 2015b,
2018, 2019) developed in view of the ambitious accuracy require-
ments of the FLEX mission, the Singular Vector Decomposition (SVD)
method (Guanter et al., 2012) as well as the recently developed partial
least-squares (PLS) approach (Naethe et al., 2022). In this work,
we examine the performance of a new spectral fitting method neural
network (called SFMNN) with a novel self-supervised loss function
specifically formulated for SIF retrieval from hyperspectral imagery
first presented in Buffat et al. (2023) and compare it to SFM (Cogliati
et al., 2015b) and iFLD (Wieneke et al., 2016) versions adapted to SIF
retrieval in the O2-A absorption band of HyPlant acquisitions. The
current work restricts the model fitting to the O2-A band which is a
subset of the radiance spectrum measured by HyPlant. While restricting
the spectral range decreases the amount of constraining information
during training it also decreases the complexity and, thus, the required
complexity of the physical model fitted to the data. Fitting the whole
HyPlant spectrum with the proposed methodology for full-spectrum
SIF retrieval is, however, principally possible. It can be achieved by
adjusting the formulation of the physical at-sensor radiance simulation.
In this contribution we have, however, opted to present a more concise
retrieval problem in the O2-A band in order to discuss our methodology.

As in other spectral fitting retrieval schemes we aim at performing
a decomposition of the at-sensor radiance into reflected irradiance and
the top-of-canopy fluorescence transmitted to the optical sensor. We
investigate the use of a neural network to learn a feature based decom-
position instead of leveraging pixelwise optimization as is implemented
in other spectral fitting methods. This decomposition requires a joint
estimation of the surface reflectance, the top-of-canopy fluorescence
and the influence of atmospheric transmittance and scattering during
data acquisition, which cannot be inferred based on physical principles
alone due to incomplete knowledge of the atmospheric composition and
the surface properties at acquisition time. In its most general form such
a joint estimation constitutes an ill-posed inversion problem as different
decompositions can result in the same observation (Frankenberg et al.,
2011). We introduce constraints based on prior knowledge of the
spectral forms and spatial variability of the atmospheric transfer func-
tions, the surface reflectance and the fluorescence emission in the O2-A

absorption band to reduce the space of possible solutions. A similar set-
up has been adopted in earlier SFM implementations restricted to the
O2-A and O2-B absorption band (Mazzoni et al., 2012; Meroni et al.,
2010) as well as for full-spectrum retrieval (Cogliati et al., 2015b,
2019).

Fluorescence and reflectance are spectrally smooth, but vary strongly
in space depending mainly on the distribution of vegetation, the
photosynthetic state of the vegetation and soil conditions. In contrast
to this, atmospheric functions are spectrally highly variable but spa-
tially smooth as they vary on spatial scales that are larger than the
typical spatial footprints of airborne imagery (Anderson et al., 2003;
Thompson et al., 2021) which allows the simplifying assumption of
constant atmospheric conditions over extended spatial domains for the
purpose of fluorescence estimation. Atmospheric transfer functions are
therefore typically estimated for entire flight lines or large spatial image
regions in existing SIF retrieval schemes.

To disentangle fluorescence and reflectance, iFLD and SFM formu-
late pixelwise functional constraints, i.e. constraints on full spectra or
on a collection of spectral lines, that either allow to fit a specific at-
sensor radiance model (SFM) or else to solve an equation system (iFLD).
However, the assumption of constant atmospheric conditions causes
performance decreases in regions with variable atmospheric transfer
properties, e.g., because of varying optical path lengths due to variable
topography, aerosol and water vapor concentrations, temperature and
pressure profiles and clouds (Sabater et al., 2021; Guanter et al., 2010;
Pato et al., 2024). Disregarding such atmospheric variability can result
in misattribution of signal components in the decomposition that SIF
retrieval methods perform. Changing optical path lengths results in
variable absorption of oxygen and, thus, in changing O2-A absorption
depths. These changes cannot be attributed uniquely to the presence
of fluorescence anymore as a result. In cases where the atmospheric
transfer functions cannot be assumed sufficiently constant in the spatial
dimension, localized estimates of the atmospheric transfer or an atmo-
spheric correction of the at-sensor radiance is necessary. If retrieval
methods do not rely on atmospherically corrected data, but characterize
the atmosphere on-the-fly (such as the iFLD and SFM baseline methods
in this contribution), they must be run repeatedly on independent local-
ized subsets of the data where the assumption of constant topography
holds approximately. This results in a computational overhead and
exposes the retrieval to errors incurred due to the spatial discretiza-
tion of the input data. While approaches for computationally efficient
estimation of spatially variable atmospheric transfer exists (Thompson
et al., 2022), such approaches have not been integrated in existing SIF
retrieval methods. The introduction of atmospheric correction on the
other hand exposes the SIF retrieval to errors in misparameterization
of the correction algorithm, particularly in acquisition contexts where
only incomplete knowledge of the atmospheric components exists (van
der Tol et al., 2023). For this reason, a practical contribution of
this study is that our new retrieval method allows for locally varying
atmospheric conditions and, thus, is able to provide SIF estimates for
topographically complex terrains. The proposed method does not rely
on a separate atmospheric characterization or correction step as in SFM
and iFLD since the estimation of the atmospheric transfer functions is
learned as part of a joint estimation problem.

Recently published neural network based SIF retrieval schemes
focus on reconstructing traditionally derived spaceborne SIF products
from reflectance and PAR products and a subset of high-quality SIF
estimates used as labels (Gentine and Alemohammad, 2018; Zhang
et al., 2018; Chen et al., 2022). Our approach is different to these
approaches as we do not use labels for training, but leverage a
set of constraints to invert a physical model of the at-sensor radi-
ance. Our approach uses similar model assumptions as SFM (Cogliati
et al., 2015b) for the different parts of the at-sensor radiance model,
i.e., the fluorescence, reflectance, and atmospheric functions, since
the at-sensor radiance needs to be simulated efficiently during the loss
minimization of SFMNN. In the case of SFMNN we additionally require
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Fig. 1. Sample spectra of a WST-2019 HyPlant acquisition (false color image (FLUO NIR, red and green), upper row) over the input spectral window (lower row) t ot . The
window  (750–770 nm) simulated by our approach is highlighted in blue. In black we show the SNR based weighting 𝑤𝑓 described in Section 3.4.1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

a simulation model from which a gradient can be derived easily with
automatic differentiation.

This work encompasses a qualitative comparison of the reconstruc-
tion residuals of SFMNN as compared to SFM and a quantitative com-
parison of its SIF predictions with FLOX top-of-canopy SIF measure-
ments. Additionally, we show in two application studies that SFMNN’s
SIF predictions are in line with physiological and physical plausibility
considerations.

In the first application study, we analyze the diurnal course of
SFMNN predicted SIF. Understanding the diurnal dynamics of canopy
SIF and its interplay with plant status and photosynthetic activity is an
open and relevant research question (Lee et al., 2015; Kim et al., 2021;
Siegmann et al., 2021; Pierrat et al., 2022). SIF as a function of daytime
has been modeled in the past by van der Tol et al. (2016) and has been
the subject of detailed studies more recently (Wang et al., 2021; Chang
et al., 2021). As a plausibility check of SFMNN SIF predictions, we can
make use of the universal feature of diurnal SIF dynamics to be strongly
correlated to the local solar irradiance due to the large dependency
of SIF on available photosynthetically active radiation (PAR). Given a
predicted SIF time series we can formulate a first order plausibility test
on whether the predicted SIF peaks around solar noon.

The SFMNN prediction of the atmospheric transfer is designed to
be locally adaptive. The second application study focuses therefore
on the sensitivity of the atmospheric transfer prediction to changing
atmospheric and observational conditions. Due to a lack of knowledge
about the atmospheric state at the time of data acquisition, we can-
not compare the predicted atmospheric conditions to a measured or
estimated atmospheric composition to gain insights into the physical
accuracy of the predicted optical depth of the atmosphere. The only
driver of the atmospheric transfer that can be quantitatively assessed by
us is the optical path length of a given pixel on the ground. Therefore
we test SFMNN’s capacity to adapt to local changes in the optical path
in HyPlant acquisitions with considerable topographic variation.

2. Data

2.1. HyPlant spectrometer

HyPlant is an assembly of two hyperspectral push-broom sensors
with different spectral sampling and resolution configurations. The
FLUO module covers the range 670–780 nm with a spectral sampling
interval of 0.11 nm. Its resolution in terms of the full width half maxi-
mum (FWHM) is 0.27 nm (Siegmann et al., 2019). See Fig. 1 for sample
spectra over the full spectral range of HyPlant. The DUAL module in
contrast, provides optical data in the spectral range 370–2500 nm with

3–10 nm spectral sampling and a FWHM varying between 1.7–5.6 nm.
The FLUO module was specifically designed for SIF retrieval in the
O2-A and O2-B absorption bands when operated on airborne platforms
at flight heights varying from 350 m to 1800 m. The DUAL module’s
purpose is to simultaneously provide optical data from which ancil-
lary information, such as the reflectance and various related products
(e.g., the photochemical reflectance index (PRI) or the Enhanced Vege-
tation Index (EVI) (Bandopadhyay et al., 2019)), can be derived. The
current work makes use of radiometrically calibrated FLUO acquisitions
in sensor geometry as input for the SIF predictor network (Buffat et al.,
2024b). The input data is not spectrally calibrated. Rather, the spectral
calibration is estimated as part of the SIF retrieval scheme presented
here .

We train a neural network (see Fig. 2) with data from 13 HyPlant
campaigns in five locations from six years listed in Table 1. The
measurement campaigns used for training cover a wide range of the
nominal flight heights at which HyPlant is operated (350–1800 m).
The acquisitions of these campaigns also differ with respect to the
variability of the ground altitude. NRS-2019, TR32-2019, GLO-2019,
INN-2022 and SOP-2023 comprise acquisitions with ground altitude
changes of 50–150 m, while WST-2019, SEL-2018 and the CKA cam-
paigns were conducted over flat terrain (less than 20 m). The diversity
of sun-surface-sensor geometries over this multi-year data set results in
significant variability of the O2-A absorption band depth.

The training process of our method involves a pretraining on a
large and variable data set and subsequent finetuning to smaller data
sets consisting of HyPlant imagery acquired at the same nominal flight
height and comparable topographic variation. During pretraining the
model is trained to minimize the same loss as during finetuning.
Pretraining is conducted to derive a coarse base predictor which then
can be finetuned to different datasets. From this base predictor data
set specific models can be derived with fewer training steps than a full
training process would require. We expect the variability of the fitted
atmospheric transfer functions during finetuning to be smaller than in
the full data set such that finetuning also aims at improving the base
predictors performance for the specific atmospheric transfer conditions
prevalent in different data sets.

For the pretraining we compiled a data set mix consisting of
acquisitions with large differences in nominal flight height and topo-
graphic conditions (see Table 2). The variability of this data set ensured
the generalization capacity of the coarse model to a wide variety of
observation conditions during finetuning.

For finetuning, we created the data sets 350, 600 and 1500 for
individual nominal flight height by selecting a subset of the available
acquisitions of the measurement campaigns with small topographic
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Fig. 2. Outline of SFMNN’s data input and architecture. Hyperspectral image patches are encoded (𝑒in) in a pixel-wise fashion to a common latent space. The latent vectors
are subsequently decoded to physical variables (𝑑𝑅 , 𝑑𝑓 , … ) parameterizing a four-stream model simulating the high-resolution at-sensor radiance 𝐿̂at −s. The patchwise decodings
(𝑑𝑡1 , … , 𝑑𝑡6 ) are homogenized across the patch for that purpose. In a second simulation step, the estimated sensor characterization (𝛥𝜆, 𝛥𝜎) is applied to 𝐿̂at −s in order to yield a
reconstructed observation 𝐿̂Hy P. Different colors denote the range over which variables are kept constant (px-wise varying in every pixel, patch-wise over patches, global-variable over
a single training data set). data base denotes the origin of the solar irradiance model (Kurucz, 2006) and solar zenith angle 𝜃𝑠 calculated for each acquisition. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Campaign data sets acquired in different locations in the years 2018–2023. With FLOX we denote the availability of simultaneous FLOX data, with 𝛥ℎ the maximum topographic
variation over the campaign data set, with HyP the corresponding campaign report and with DEM corresponding the digital elevation map used for validation purposes. All
campaign data sets and corresponding FLOX measurements are available (Buffat et al., 2024b) .

Campaign data set FLOX 𝛥ℎ [m] HyP DEM Location

SEL-2018 (600 m) ✓ 20 Rascher et al. (2021) – Selhausen, DE
SEL-2019 (600 m) – 20 Rascher et al. (2022a) –
SEL-2022 (600 m) – 20 – –

WST-2019 (1500 m) ✓ 20 Rascher et al. (2022a) – Braccagni, IT
NRS-2019 (1500 m) – 70 Rascher et al. (2022a) Tarquini et al. (2023)

TR32-2019 (1800 m) – 150 Rascher et al. (2022a) Nordrhein-Westfalen (2017) Jülich, DE
INN-2022 (350 m) – 60 – Nordrhein-Westfalen (2017)
SOP-2023 (600 m) – 140 – Nordrhein-Westfalen (2017)

CKA-2020 (350 m) ✓ 20 – – Klein
CKA-2020 (600 m) ✓ 20 – – Altendorf, DE
CKA-2021 (350 m) ✓ 20 – –
CKA-2022 (350 m) ✓ 20 – –

GLO-2021 (1150 m) ✓ 70 Rascher et al. (2022b) NASA JPL (2013) Mollerussa, ES

variation within single acquisitions (see flat in Table 2). The number
of patches per finetuning data set differs depending on data availability
at individual flight heights. We selected acquisitions for individual both
the pretraining and finetuning data sets by hand to ensure a balanced
distribution of the sun-zenith angles (SZA) at which the acquisitions
were recorded.

Parallelly, we created data sets with strong topographic variability
(see topo in Table 2). As for the flat denoted data sets, we grouped
together campaign data sets acquired at the same flight height. Dif-
ferently to mix we group the acquisitions according to the nominal
flight height in the topo data sets. Due to data limitations, the compiled
topo data sets are smaller and constrained to single campaign site and
acquisition years in all but one case. Since the baseline iFLD and
SFM implementations are not adapted to SIF retrieval under variable
topography (see Section 2.3), we cannot validate the SFMNN SIF pre-
dictions in acquisitions of these datasets directly. Instead, we perform
a plausibility study in Section 4.4.

An additional data set day was compiled for validation purposes.
It is used both for validating SFMNN’s reconstruction performance
as well as the physiological plausibility of our approach in the first
application study. It consists of nine repeated flights over the same
location at the same nominal flight height in an irregular frequency
(10:11, 10:19, 10:27, 10:34, 13:15, 13:30, 13:38, 16:11, 16:18 CEST)

allowing us to validate the performance of our approach under different
solar zenith angles with otherwise comparable conditions. For our
analysis of the SFMNN predicted diurnal course of SIF, we leverage
the universal property of SIF to be strongly correlated to PAR under
non-shaded conditions. This correlation is however only expected to be
fulfilled over homogeneous fields. It may be invalid only under strongly
changing irradiation in pixels with complex 3D structure. Under such
conditions, (i) varying sampling directions of the angular SIF emission
distribution and (ii) shade impede the comparability of measurements
at different times during the day. Predictions of the day data set are
well suited for this analysis as the acquisitions have a relatively large
pixel footprint (2.3 m) due to the large nominal flight height (1500 m).
At this pixel resolution small scale inhomogeneities in crop fields are
not preserved.

2.2. In-situ fluorescence measurements

A subset of the HyPlant measurement campaigns presented in
Table 1 were accompanied by in-situ radiance and irradiance measure-
ments recorded by the FLOX system (Fluorescence Box, JB-Hyperspectral
Devices GmbH, Düsseldorf, Germany) (Buffat et al., 2024b). The FLOX
system provides precise radiance top-of-canopy measurements within
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Table 2
Compiled data sets of HyPlant acquisitions from flight campaigns in the years 2018–
2023. Flight heights are not mentioned if indicated in the data set name. In the first
column, we indicate the purpose of the data set: flat or topo denote the training of
predictors for flat or topographically variable terrain, val. denotes specific validation
purposes outlined in the Results section, pretrain denotes the pretraining of a common
predictor. || denotes the number of used 17 × 17 patches [×103] and in brackets the
number of used acquisitions.

Data set Included campaign data sets ||

pr
et

ra
in

mix SEL-2018 (600 m), 260 (44)
NRS-2019 (1500 m),
WST-2019 (1500 m),
CKA-2021 (350 m),
GLO-2021 (1150 m)

fla
t

350 CKA-2020, CKA-2021, 183 (44)
CKA-2022

600 SEL-2018, SEL-2019, 283 (32)
SEL-2020, SEL-2022,
CKA-2019, CKA-2020

1500 WST-2019 54 (16)

to
po

 𝑡
600 INN-2022, SOP-2023 107 (12)

 𝑡
1150 GLO-2021 100 (8)

 𝑡
1500 NRS-2019 27 (12)

𝑡
1800 TR32-2019 66 (8)

val. day WST-2019 30 (9)

small footprints of a few square meters depending on the experi-
mental set-up. Fluorescence estimates derived from FLOX data sets
have been used in the past for independent validation of HyPlant SIF
estimates (Tagliabue et al., 2019; Krämer et al., 2021).

The present study provides a systematic comparison of SFM, iFLD
and SFMNN predictions from HyPlant imagery with FLOX derived iFLD
SIF estimates as provided by the manufacturer’s processing software.
FLOX data sets from 2018–2022 were taken into account. We gained
iFLD based FLOX SIF estimates with the processing software provided
by the FLOX manufacturer. In order to validate with a consistent data
set we disregarded FLOX measurements where the irradiance in the O2-
A band recorded at the beginning and at the end of a measurement
cycle varied more than 1% because this is an indicator for changing
illumination conditions. The majority of measurements were, however,
taken under optimal measurement conditions so that only a negligible
number of data points had to be disregarded.

Apart from the SEL-2018 FLOX data set, which was acquired with a
mobile FLOX system, the FLOX geolocation was acquired by a separate
RTK-GPS measurement. The geolocation for the SEL-2018 FLOX data
was derived from UAV data. Due to the high temporal variability of
SIF, only FLOX data within ten minutes to a corresponding HyPlant
overflight was considered. When multiple FLOX measurements were
available within such a ten minute time window, we used the average
for comparison with the HyPlant derived predictions, and the variance
to compute an uncertainty estimate of the ground SIF measurement.

To account for spatial uncertainties associated with both the ge-
olocation of the in-situ measurements as well as the field of view of
single pixels in HyPlant FLUO data, we averaged the SIF prediction
in a radius of 1 m, 2 m and 3.4 m for acquisitions acquired 350,
600 and 1150 m above ground level (2 pixel radius), respectively, and
used the variance within this region as an uncertainty estimate for the
prediction. In addition, we used the variance of multiple FLOX derived
SIF measurements collected within the chosen time window of ten min-
utes as an uncertainty estimate. Both the uncertainties determined for
the FLOX measurements and the corresponding uncertainties calculated
for the HyPlant derived SIF measurements were used to compute the
uncertainty on the mean absolute error (MAE) leveraging first-order
error propagation.

2.3. iFLD and SFM airborne SIF estimates

Both SFM and iFLD SIF estimates are generated operationally for
all HyPlant campaigns in the O2-B and O2-A absorption bands sep-
arately. No dedicated rerun of the iFLD and SFM baseline methods
was conducted for the comparisons presented in this work. The SFM
implementation used for HyPlant FLUO data follows (Cogliati et al.,
2019, 2015b) and is applied directly on radiometrically calibrated, but
not atmospherically corrected FLUO at-sensor radiances. In this imple-
mentation, first a single atmospheric transfer function per acquisition
is estimated from the spectral information in barren pixels. Subse-
quently, a spectral calibration is performed in each pixel to account
for sensor miscalibrations. The actual fluorescence estimation is then
implemented as a least-squares minimization of the physical radiative
transfer model that we have adopted in this contribution as well. In
this minimization the model is fitted to radiometrically and spectrally
calibrated FLUO at-sensor radiance measurements. It is noteworthy that
this implementation of SFM incorporates the atmospheric transfer func-
tions in the at-sensor radiance simulation instead of prior atmospheric
correction of the FLUO measurements. A more detailed description of
the implementation can be found in Siegmann et al. (2019).

The iFLD implementation for HyPlant FLUO data follows Wieneke
et al. (2016) and Damm et al. (2014). Specific implementation details
are reported in Siegmann et al. (2019). As the SFM implementation
detailed above, this iFLD implementation is applied to radiometri-
cally calibrated, but not atmospherically corrected HyPlant FLUO radi-
ance measurements. A single atmospheric characterization derived with
MODTRAN5 is integrated into a set of equations that can be solved
analytically. Additionally, the implementation includes an empirical
correction term to account for spectral miscalibrations.

3. Development of a novel spectral fitting method

We propose a novel neural-network-based method to predict SIF in
the O2-A absorption band at 760 nm. This approach could principally
be adapted to other spectral domains with sensitivity to SIF as well,
e.g., at HyPlant spectral resolution the O2-B absorption band is a-priori
suitable as well. The formulation in this contribution focuses on a
single contiguous spectral domain (750–770 nm), however, to evaluate
the feasibility of the proposed method in a restrained and controlled
problem setting where simple modeling the surface reflectance and
fluorescence are possible.

The proposed methodology can be regarded as a spectral fitting
method (Meroni et al., 2010; Chang et al., 2020) and we call it spectral
fitting method neural network (SFMNN), accordingly. Similarly to other
spectral fitting methods we first construct an explicit physical model of
the measured at-sensor radiance which we then fit to HyPlant at-sensor
radiance (𝐿Hy P). The prediction of top-of-canopy SIF at 760 nm can be
directly derived from the best estimates of the parameters modeling the
top-of-canopy fluorescence emission curve.

In contrast to typical spectral fitting methods such as SFM (Cogliati
et al., 2015b), where a least-squares minimization is performed, we
implement a feature based optimization to fit the model to the ob-
servations. Specifically, we train a neural network (see Fig. 2) in a
self-supervised fashion using the objective function that is minimized
in SFM as a part of the loss formulation. Self-supervised learning means
that we do not need SIF ground truth for every training sample, as
would be needed for supervised learning. Instead, we use the predicted
SIF (as well as predicted reflectance and atmospheric transfer functions)
in a physical forward simulation model (the same as used in SFM)
to reconstruct the signal. Comparing the reconstructed signal to the
input signal allows to evaluate a signal reconstruction error as loss
for the usual backpropagation during training of the SFMNN. This loss
is complemented with regularizers to ensure a physical disentangle-
ment of atmospheric and surface related contributions to the at-sensor
radiance. Training is thus completely independent of any SIF ground
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measurements; a fact allowing us to finetune the model to any new
data even during prediction where needed or desired.

Differently to SFM, in SFMNN atmospheric transfer functions are es-
timated locally over small patches which allows to account for changing
observation and atmospheric conditions in a straightforward fashion.
Moreover, SFMNN relies only on the full HyPlant at-sensor radiance
spectrum and a general distribution of high-resolution atmospheric
transfer functions. This distribution is gathered from MODTRAN5 at-
mospheric transfer estimates produced as a side product of SFM applied
to a number of HyPlant acquisitions.

3.1. Simulation of HyPlant at-sensor radiance

The loss formulation used for training relies on an explicit forward
simulation model of the measured at-sensor signal 𝐿Hy P, measured over
the spectral range t ot (670–780 nm), in the spectral subset  ⊂ t ot .
The simulation range  was fixed as the spectral range 750–770 nm
covering the O2-A absorption band. In order to formulate a model
for the physical at-sensor signal, we make use of the four-stream for-
ward simulation formulation used in the SFM baseline (Cogliati et al.,
2015b), which is based on the Soil Canopy Observation Photosynthesis
Energy balance (SCOPE) (van der Tol et al., 2009) radiative transfer
model explicitly accounting for diffuse and direct fluxes. It reads

𝐿at −s =
𝐸0

𝑠 cos(𝜃𝑠)
𝜋

×
(
𝜌𝑠𝑜 + 𝜏𝑜𝑜

(
𝜏𝑠𝑠 𝑟𝑠𝑜 +

𝜏𝑠𝑑 + 𝜏𝑠𝑠 𝑟𝑠𝑑 𝜌𝑑 𝑑
1 − 𝑟𝑑 𝑑 𝜌𝑑 𝑑

𝑟𝑑 𝑜
)
+ 𝜏𝑑 𝑜

𝜏𝑠𝑑 𝑟𝑑 𝑑 + 𝜏𝑠𝑠 𝑟𝑠𝑑
1 − 𝑟𝑑 𝑑 𝜌𝑑 𝑑

)

+ 𝜏𝑜𝑜

(
𝑓 + 𝑓𝑑 𝜌𝑑 𝑑 𝑟𝑑 𝑜

)
+ 𝑓𝑑 𝜏𝑑 𝑜

1 − 𝑟𝑑 𝑑 𝜌𝑑 𝑑
.

(1)

We define all quantities involved in Eq. (1) in Table 3. After rewriting
the functions related to atmospheric transfer as 𝑡0 … 𝑡6 and products
thereof as 𝑡7 … 𝑡12 (see Table 3) and simplifying Eq. (1) by setting
𝑟𝑠𝑑 = 𝑟𝑑 𝑜 = 𝑅, 𝑟𝑠𝑑 = 𝑟𝑑 𝑑 = 𝑅, 𝑓𝑑 = 𝑓 we get
𝐿at −s = 𝐿𝑅

at −s + 𝐿𝑓
at −s

= 𝑡0

(
𝑡1 + 𝑡7 𝑅 +

𝑡8 𝑅 + 𝑅 𝑅 𝑡12 + 𝑅 (𝑡9 + 𝑡10)

1 − 𝑡2 𝑅

)

+

(
𝑡5 𝑓𝑠 +

𝑓 (𝑡6 + 𝑡11 𝑅)

1 − 𝑡2 𝑅

) (2)

where the overline denotes a spatial mean. In practice, this mean is
computed by taking the mean over the output window. We estimate
𝑡1 … 𝑡6, 𝑓 and 𝑅 at a high spectral resolution (𝛿 𝜆 = 0.0055 nm) by
modeling each of these functions in dependency of the input data. The
implementation details of the modeling of each of these functions is
detailed below in Section 3.2.1.

For the application of the neural network to the HyPlant radiance
product 𝐿Hy P , the simulation model needs to take into account Hy-
Plant’s sensor characteristics and potential miscalibrations in addition
to the physical process which only yields 𝐿at −s . Spectral miscalibration,
resulting in smile effects, can lead to a misalignment spectral features
in the modeled solar irradiance and atmospheric characterization with
respect to the measurements. This can lead to large uninformative
gradients in the loss computation described in Section 3.4. In order
to simulate 𝐿Hy P , we need to take into account possible sensor mis-
calibrations by estimating the shift 𝛥𝜆 with respect to the nominal
wavelength 𝜆 and the shift 𝛥𝜎 with respect to the nominal spectral
resolution 𝜎. Optimally, we would consider spectral shifts in each
spectral band. Considering the computational overhead resulting from
the large number of spectral HyPlant bands that would need to be fitted
simultaneously (172 bands), we have restricted the shift prediction. We
estimate a single scalar shift 𝛥𝜆 per spatial pixel and a single shift 𝛥𝜎
per training set. These shifts do not correspond directly to the physical

Table 3
Definitions for all quantities involved in the simulation model as defined in
Eq. (1) and (2).
Eq. (1) Eq. (2) Definition

𝐸0 cos
(
𝜃𝑠
)

𝑡0 solar irradiance modulated by the
local solar zenith angle

𝑓 directional fluorescence emission

𝑓𝑑 𝑓 diffuse fluorescence emission

𝜌𝑠𝑜 𝑡1 bi-directional atmospheric reflectance

𝜌𝑑 𝑑 𝑡2 spherical albedo at the bottom of the atmosphere

𝜏𝑜𝑜 𝑡3 directional atmospheric transmittance
along observation direction

𝜏𝑠𝑠 𝑡4 directional atmospheric transmittance in solar
direction

𝜏𝑑 𝑜 𝑡5 directional atmospheric transmittance
in observation direction for diffuse incidence

𝜏𝑠𝑑 𝑡6 diffuse transmittance for solar incidence

𝑟𝑠𝑜 𝑅 bi-directional reflectance factor (BRF)

𝑟𝑑 𝑜 𝑅 hemispheric-directional reflectance factor (HDRF)

𝑟𝑑 𝑑 𝑅 bi-hemispherical reflectance factor (BHRF)
of the surrounding

𝑟𝑠𝑑 𝑅 directional-hemispherical reflectance factor (DHRF)
of the surrounding

𝜏𝑠𝑠 𝜏𝑜𝑜 𝑡7 ⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

multiplication definitions in Eq. (2)

𝜏𝑠𝑑 𝜏𝑜𝑜 𝑡8
𝜏𝑠𝑠 𝜏𝑑 𝑜 𝑡9
𝜏𝑠𝑠 𝜌𝑑 𝑑 𝑡10
𝜏𝑜𝑜 𝜌𝑑 𝑑 𝑡11
𝜏𝑠𝑠 𝜌𝑑 𝑑 𝜏𝑜𝑜 𝑡12

sensor miscalibration but allow to take into account the effects of spec-
tral miscalibration that otherwise would result in large, uninformative
gradients of the loss. Given an estimated center wavelength shift per
pixel 𝛥𝜆, spectral resolution 𝜎 and estimated shift in spectral resolution
𝛥𝜎, a simple sensor model can be created

𝐿̂Hy P (𝜆, 𝑥, 𝑦) = ∫ 𝑑 𝜆 𝑔 (𝜆 + (𝛥𝜆)𝑥,𝑦 | 𝜆𝑖, 𝜎 + 𝛥𝜎
)
𝐿at −s

(
𝜆 + (𝛥𝜆)𝑥,𝑦 , 𝑥, 𝑦

)

(3)

This model gives us the at-sensor radiance as measured by HyPlant
𝐿̂Hy P(𝜆) in the spectral range  (750–770 nm) considered in the sim-
ulation. 𝐿̂Hy P can be compared to radiometrically calibrated at-sensor
radiance 𝐿Hy P(𝜆𝑖) in the nominal center wavelengths 𝜆𝑖. In practice, we
assume a Gaussian Spectral Response Function (SRF) 𝑔 for all 𝜆𝑖. This
allows us to implement Eq. (3) approximately by Gaussian smoothing
followed by a linear interpolation to sample the spectra at nominal
HyPlant wavelengths.

3.2. Architecture

SFMNN acts on patches of spatially contiguous spectral input 𝑐𝑥𝑦 ∈
R𝑝×𝑝×(𝛬+𝑁𝑝), where 𝑝 denotes the spatial patch dimension, 𝛬 = 1024
the spectral dimensionality of the full spectral range of the FLUO
sensor t ot and 𝑁𝑝 = 3 the number of additional variables passed
to the network (nominal flight height, solar zenith angle, across-track
position). We randomly draw these patches from all the acquisitions in
the data set during training. The patch’s dimensions 𝑝 were fixed in all
experiments in this work. Preliminary experiments have shown patches
of 17 × 17 pixels to allow training batch sizes that were sufficiently
large for efficient training and to constrain the optimization. While
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Fig. 3. Conceptual sketch of the concatenation of input normalization layer, dimensionality reduction and encoder architecture ℎ.

we have fixed the patch size in all experiments, further investigations
should consider varying this patch size as a function of the physical
pixel size, i.e. the sensor flight height. This input consists of the
full spectral range of the FLUO at-sensor radiance where each band
is interpreted as a channel to the neural network. In addition to the
spectral input we also add the nominal flight height, the solar zenith
angle and the spatial across-track position as additional layers to the
input patch. All parameters are predicted in a pixelwise fashion except
parameters of the atmospheric functions 𝑡𝑖 and 𝛥𝜎. The atmospheric
functions 𝑡𝑖 are estimated on a patchwise basis to enforce the em-
pirical expectation of large auto-correlation distances of atmospheric
parameters. 𝛥𝜎 was estimated directly as a network parameter since
preliminary experiments have shown that formulating it as a function
of the spectral input would affect disadvantageously the decomposition
capacity of the network. SFMNN consists of a normalization layer, a
dimensionality reduction layer 𝑘in, an encoder 𝑒in and several decoder
modules for each of the variables. Both 𝑒in and the decoder modules
are simple multi-layer perceptrons with residual links.

The spatially dependent input 𝑐𝑥𝑦 passed to SFMNN is first normal-
ized as presented in Fig. 3, where we show the first layers of SFMNN.
The normalization layer is implemented as a batch normalization layer
that is trained with the network during one epoch. In order to de-
crease the large input dimensionality of 1027 channels (1024 spectral
channels and 3 additional variables), we introduce a dimensionality
reduction to 100 channels implemented as a linear layer followed by a
rectified linear unit (ReLU) activation (𝑘in in Fig. 3).

The construction of the prediction network involves transforms 𝑘𝑖
simply defined as

𝑘i ∶ ReLU ◦ BN ◦ 𝓁𝑘𝑖−1→𝑘𝑖 (4)

where 𝓁𝑘𝑖−1→𝑘𝑖 is a linear layer with input and output dimensions 𝑑𝑖−1
and 𝑑𝑖, BN denotes a batch normalization layer (Ioffe and Szegedy,
2015; Wu and He, 2018) and ReLU a rectified linear unit. Both
encoder 𝑒in and decoder modules are defined as ℎ modules with dif-
fering layer dimensions listed in Table 4. We define a module ℎ as
𝑘out ◦ 𝑧𝐿 ◦ … ◦ 𝑧0 with

𝑧𝑖(𝑥) = D𝑖
𝑝 ◦ BN ◦ ReLU ◦

(
𝓁𝑘𝑖−1→ 𝑘𝑖 (𝑥) +

(
𝑘𝑖 ◦ … ◦ 𝑘𝑖

)
(𝑥)

)
(5)

implementing the repeated application of layers 𝑘𝑖 and a residual link.
D𝑖
𝑝 denotes a dropout layer with dropout probability 𝑝. 𝑘𝑖 are defined

as in Eq. (4). The dimensions of the linear layers of all submodules of
𝑒in are listed in Table 4.

3.2.1. Mapping the decoded input spectra to physical parameters
Decoder modules are constructed identically to the encoder 𝑒in,

i.e. they are implemented as ℎ modules but with submodules of dif-
ferent dimensions as compared to 𝑒in. We list all the dimensions of

Table 4
Architecture dimensionalities according to Fig. 3. Each element in a tuple denotes an
architecture parameter for the 𝑖th encoder or decoder layer (0 ≤ 𝑖 ≤ 𝐺). 𝑘𝑖 denotes
the dimensionality of the 𝑖th encoder (decoder) sublayers, 𝑛𝑖 denotes the number of
repetitions of sublayers, 𝐷𝑖

𝑝 denotes the dropout rate of the output of the 𝑖th encoder
(decoder) layer.

𝑘𝑖 𝑛𝑖 𝐷𝑖
𝑝

Encoder 𝑒in (100, 50, 50) (3, 3, 1) (0.1, 0)
Decoder 𝑑𝑣 (100, 50, 50, 50) (3, 1, 1, 1) (0, 0, 0, 0)

Table 5
Upper and lower bounds parameterizing the scaling layers for each variable needed in
the signal reconstruction. 𝜌, 𝑠𝜌 and 𝑒 parameterize the reflectance (see Eq. (9)), 𝐴𝑓 and
𝜎𝑓 parameterize the fluorescence signal model (see Eq. (8)), 𝛥𝜆 denotes the maximum
wavelength shift per band (see. Eq. (7)), 𝐸 and 𝑡 denote the maximum range of the
estimated atmospheric transfer PCA weights (see Eq. (10)) and the solar irradiance
variation (see Eq. (11)).

𝜌 𝑠𝜌 𝑒 𝐴𝑓 𝜎𝑓 𝛥𝜆 𝐸 𝑡

Lower bound 𝑏𝓁 0 0 0 0 20 −0.09 0.98 −300
Upper bound 𝑏𝑢 0.6 12 ×10−3 1 8 21 0.09 1.02 300

the decoder module in Table 4. All decoders act on the same spatially
dependent encoding 𝑝𝑥𝑦 = 𝑒in(𝑐𝑥𝑦) of the input 𝑐𝑥𝑦. Each decoding
𝑞𝑣 = 𝑑𝑣(𝑝𝑥𝑦) for variable 𝑣 is then mapped to the physical parameters
in Eq. (2). The mapping between the decoder outputs 𝑞𝑣 and the
physical values of variables that are predicted in a pixelwise fashion
is implemented by a scaling layer

𝑚(𝑞 | 𝑏𝓁 , 𝑏𝑢) = 𝑏𝓁 + sigm (𝑞)
(
𝑏𝑢 − 𝑏𝓁

)
(6)

where sigm denotes the sigmoid function. This formulation restricts the
solution space to predefined parameter ranges (𝑏𝓁 , 𝑏𝑢). These parameter
ranges were chosen according to prior knowledge and are listed in
Table 5.

We allow scalar and spatially variable 𝛥𝜆 across acquisitions and dif-
ferent campaigns. We include this variation in the forward simulation
by constructing a decoder 𝑑𝛥𝜆 with a scaling layer

𝑑Δ𝜆(𝑝) = 𝑚
(
𝑑(𝑝) | (𝑏𝛥𝜆

)
𝓁 ,

(
𝑏𝛥𝜆

)
𝑢

)
(7)

Similarly, we construct the decoder 𝑑𝑓 (𝑝) → (𝐴𝑓 , 𝜎𝑓 ) that yields the
parameterization for the top-of-canopy fluorescence emission. Since
the present contribution is restricted to SIF estimation in the O2-A
absorption band, we restrict the model to the emission peak at 737 nm.
We assume a normal distribution for

𝑓 (𝜆) = 𝐴𝑓  (
𝜆 ∣ 𝜇𝜆, 𝜎𝑓

)
, 𝜆 ∈  (8)

around the emission peak 𝜇𝑓 = 737 nm similarly to Pato et al. (2023),
Subhash and Mohanan (1997). While more precise functional expres-
sions for top-of-canopy fluorescence have been proposed (Cogliati et al.,
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Fig. 4. Distribution of the SFM estimated transfer function 𝜏𝑜𝑜 used for the PCA decomposition in shaded blue. We show the lower and upper bound as well as the mean 𝜏𝑜𝑜 .
The total extent of 𝛥𝜏𝑜𝑜 = max(𝜏𝑜𝑜) − min(𝜏𝑜𝑜) in the selected data set is shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

2015b; Magney et al., 2019) we adopt here the normal distribution
for simplicity. We expect the errors incurred from the model mismatch
to be marginal as the spectral reconstruction is restricted to a narrow
spectral range  . The prediction bounds parameterizing the scaling
layer are given in Table 5.

Equivalently, we restrict the definition of the reflectance 𝑅 to a
region covering tightly the simulated spectral range around the O2-
A absorption band  . We assume 𝑅 can be approximately expressed
by a square polynomial in this spectral range. Following (Pato et al.,
2023, 2024) a network 𝑑𝑅(𝑝) → (𝜌, 𝑠𝜌, 𝑒) is constructed in a way that
reflectance estimates can be written

𝑅(𝜆 | 𝑝) = 𝜌 + 𝑠𝜌 (𝜆 − 𝜆0) +
𝑠𝜌 (𝑒 − 1)(𝜆 − 𝜆0)2

2 (𝜆1 − 𝜆0)
, 𝜆 ∈  (9)

where we define 𝜆0 = 740 nm and 𝜆1 = 780 nm. The bounds of the
scaling layer for 𝜌, 𝑠𝜌 and 𝑒 are given in Table 5. It has proven to allow
a physiologically consistent parameterization of observed reflectance
spectra.

Lastly, we highlight that we estimate a single FWHM shift 𝛥𝜎 for the
whole training data set, contrarily to the CW shifts 𝛥𝜆 and fluorescence
and reflectance parameters which are estimated for each pixel. 𝛥𝜎
is estimated as a single free parameter in the network. We chose
this simplification of the retrieval problem as preliminary analysis
has shown that any larger degree of freedom in the prediction of 𝛥𝜎
impacted the fluorescence retrieval negatively.

3.2.2. Atmosphere estimation
We predict the atmospheric functions 𝑡1,… , 𝑡6 and calculate the

products 𝑡7,… , 𝑡12 defined in Eq. (2). Differently to SFM, we do not
rely directly on MODTRAN simulations to estimate the atmospheric
transfer. Instead, we perform a Principal Component Analysis (PCA)
decomposition on a chosen set of MODTRAN simulated atmospheric
functions that were derived by SFM for a range of different HyPlant
acquisitions (see Fig. 4). Since HyPlant flights are operated under
comparable weather conditions, we assume that we can find fitting
atmospheric functions for arbitrary HyPlant acquisitions in the span
of the first five PCA components. This procedure is similar to Joiner
et al. (2013, 2016) where atmospheric transfer estimates are derived
from linear interpolations over a decomposition of the expected space
of possible atmospheric transfer functions.

In order to derive a suitable PCA decomposition we used high res-
olution (0.0055 nm) atmospheric transfer functions calculated during
SFM optimization for 38 acquisitions from a compilation of acquisitions
from 2018 and 2019 (Rascher et al., 2021, 2022a). Fig. 4 shows as an
example the distribution of the SFM estimated transfer function 𝜏𝑜𝑜 in
these selected acquisitions. These acquisitions were chosen to cover a
multitude of flight heights, flight directions, and day times to ensure
that the span of the PCA components covers all acquisitions considered

in this work. We show the distribution of atmospheric conditions for
these transfer functions in Fig. 5(a) and (b).

We highlight that we included atmospheric transfer functions of
SEL-2018 and WST-2019 acquisitions, which are also used for training
and validation (see Table 1) in this data set. In the case of acquisitions
from these two campaigns we thus guarantee that the SFM solution for
the atmospheric transfer functions is in the solution space of SFMNN’s
atmospheric predictor.

We derived the first five principal components 𝑔𝑖𝑗 from all distri-
butions of 𝑡1,… , 𝑡6 before training the network. These components 𝑔𝑖𝑗
(with 1 ≤ 𝑖 ≤ 6 and 0 ≤ 𝑗 ≤ 5) and according means 𝜇𝑖 and standard
deviations 𝜎𝑖 were then used for all experiments. In order to estimate
PCA weights from the encoded HyPlant radiance input 𝑝, we construct
networks 𝑑𝑡𝑖 (𝑝) → {𝑞𝑖𝑗}𝑗≤𝑁𝑐

such that

𝑡𝑖(𝑝) = min

(
1, 𝜇𝑖 + 𝜎𝑖

∑
𝑗≤𝑁𝑐

𝑔𝑖𝑗𝑤𝑖𝑗

)
, wit h𝑤𝑖𝑗 = 𝑚

(
𝑞𝑖𝑗 |

(
𝑏𝑡
)
𝓁 ,

(
𝑏𝑡
)
𝑢

)

(10)

where 𝑝 is the single pixel encoding as defined above and 𝑁𝑐 = 5 is the
number of components used for the PCA reconstruction.

To test our assumption that atmospheric functions under typical
HyPlant operation conditions may indeed be approximated by a PCA
reconstruction, we show in Fig. 5 the results of a k-fold cross-validation
where we evaluate the reconstruction error of each atmospheric func-
tion 𝑡1,… , 𝑡6 in HyPlant spectral resolution. The reconstruction is per-
formed using the first five components derived from 50% subsets. We
draw these subsets randomly 50 times and establish optimal reconstruc-
tion weights using a least-squares minimization of the absolute error
on the remaining 30% of the atmospheric functions at our disposal.
From this analysis it becomes clear that almost all transfer function
have a weight representation with approximation errors of less than
2% in terms of normalized absolute errors (nMAE). The reconstructions
of 𝜌𝑠𝑜 and, to a lesser degree, of 𝜏𝑑 𝑜 yield nMAE 2%–10%. These ap-
proximation errors make our method less precise. Particularly, diffuse
conditions may not be well represented by our atmospheric model as a
consequence.

Optimally a larger data base of atmospheric transfer functions
would be chosen to derive suitable PCA components to the atmospheric
part of our model. We show in the following results based on a
PCA decomposition derived from this small data set of 38 sets of
atmospheric transfer functions and can show that it is sufficient to yield
comparable SIF retrieval performance to SFM and iFLD on our in-situ
validation data set.

Finally, for the solar top-of-atmosphere (TOA) irradiance 𝑡0 we
predict a single weight 𝑞0 for the whole training dataset and use the
solar irradiance spectrum 𝐸0

𝑠 (Kurucz, 2006) modulated by the true
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Fig. 5. (a) and (b): Distribution of atmospheric conditions of atmospheric transfer functions used to derive the PCA-based atmospheric model. AOT denotes the aerosol optical
thickness at 550 nm, H1 the flight height above sea level, SPR the atmospheric surface pressure, H2O water vapor content, g the scattering anisotropy factor, SZA the solar zenith
angle and RAA the relative azimuth angle between sun and sensor. (c): K-fold cross-validation results of the PCA-reconstruction. We plot the normalized mean absolute error
(nMAE) between target and reconstructed transfer function. Gray scales denote the 5%–95%, 10%–90% and 25%–75% percentiles and blue the median. Dashed lines denote 2%
as a reference. For variable definitions see Table 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

solar zenith angle 𝜃𝑠 corresponding to the acquisition time and location
as initial guess for the solar irradiance at acquisition time from which
the network is allowed to deviate slightly, i.e.

𝑡0 = 𝐸0
𝑠 cos(𝜃𝑠)

((
𝑏𝐸

)
𝓁 + sigm(𝑞0)

((
𝑏𝐸

)
𝑢 −

(
𝑏𝐸

)
𝓁

))
. (11)

Here, 𝑞0 is a free parameter and does not depend on the spectral
input 𝑝 since we introduce possible deviation from the solar irradiance
𝐸0
𝑠 (Kurucz, 2006) only to account for (i) a possible model mismatch

and (ii) miscalibration of radiometrically calibrated HyPlant FLUO ra-
diance. Since 𝑡0 is supposed to be constant, the bounds

(
𝑏𝐸

)
𝓁 and

(
𝑏𝐸

)
𝑢

are chosen tightly. Simultaneous training over acquisitions recorded
over time frames that do not allow the assumption of a constant solar
TOA irradiance would have to account for the variability of 𝐸0

𝑠 by using
precise daily 𝐸0

𝑠 estimates.

3.3. Architectural constraint

The architecture of 𝑑𝑡𝑖 (𝑝) differs from the decoder structure intro-
duced before, because we require a single prediction 𝑡𝑖 per patch and
not per pixel. This is necessary since we architecturally constrain the
ill-posed retrieval by requiring the atmospheric prediction to hold over
an extended spatial domain. We implement this by first averaging a per-
pixel atmosphere encoding 𝑑𝑡𝑖 (𝑝) over the patch. 𝑑𝑡𝑖 (𝑝) is architecturally
identical to 𝑑𝑓 and 𝑑𝑅. Thus, we estimate 𝑞𝑖 as

𝑞𝑖 = BN ◦ 𝓁𝑑𝑎→𝑁𝑐
◦

∑
𝑥,𝑦≤𝑠

𝑠−2 𝑑𝑡𝑖 (𝑝𝑥𝑦) (12)

where 𝓁𝑑𝑎→𝐾 is a linear layer with input and output dimensions 𝑑𝑎 and
𝑁𝑐 , where 𝑠 is the number of pixels per side of a square patch in across-
track dimension 𝑥 and along-track dimension 𝑦 and where BN denotes

a batch normalization layer.

3.4. Loss & regularization

We formulate the following unsupervised loss per patch for the SIF
regression problem for the spectral domain 
𝓁(𝐿Hy P , 𝐿̂Hy P ) = (𝓁 + 𝛾𝑓𝓁𝑓 + 𝛾𝑁𝓁NDVI + 𝛾𝑎𝓁at m)(𝐿Hy P , 𝐿̂Hy P ), (13)

where 𝛾𝑓 , 𝛾𝑁 and 𝛾𝑎 are weighting factors that fix the relative impor-
tance of individual loss terms. These values were fixed in preliminary
experiments as 𝛾𝑓 = 5, 𝛾𝑁 = 10 and 𝛾𝑎 = 1 as they yielded a small
difference between SFMNN and SFM SIF predictions in preliminary
tests with an individual acquisition (WST 16/06/2019 11:28). Varying
these weights adjusts the importance of individual loss components. No
thorough validation over the sensitivity of the proposed method with
respect to these values has been conducted, however.

This loss implements a least-squares minimization on the measured
at-sensor radiance. It is composed of the main loss contribution over
the spectral range  (750–770 nm)

𝓁 = ||−1 𝜇

(∑
𝜆∈

(
𝐿Hy P (𝜆) − 𝐿̂Hy P (𝜆)

)2
)
, (14)

where 𝜇 denotes the mean over all pixels. The three additional signal
𝓁𝑓 , physiological 𝓁NDVI and physical 𝓁at m regularizers account for
data-specific constraints.

3.4.1. Signal regularization
The regularizer

𝓁𝑓 = ||−1 𝜇

( ∑
𝜆∈

𝑤𝑓 (𝜆)
(
𝐿Hy P (𝜆) − 𝐿̂Hy P (𝜆)

)2
)

𝛿R=𝛿tat m=0

(15)
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weights the reconstruction with a sensor and signal specific weight
function 𝑤𝑓 . 𝑤𝑓 boosts the loss in spectral regions with high fluores-
cence SNR. The gradient computation of 𝓁𝑓 is set to only influence
the fluorescence module 𝑑𝑓 as the definition of 𝑤𝜆 assumes known
reflectance and atmospheric transfer functions.

We define 𝑤𝑓 as the Moore–Penrose solution to a simplified and
linearized retrieval problem. The derivation of the linearized problem
and these weights (see Appendix) result in the definition

𝑤𝑓 (𝜆) =
⟨

1
𝑢2𝜆

∑
𝜆′ 𝑓

2
𝜆′∑

𝜆′ 𝑓
2
𝜆′∕𝑢

2
𝜆′

⟩

𝑝(𝐿at −s ,𝑓 )
(16)

where 𝑓 denotes the predicted at-sensor fluorescence, 𝑢𝜆 the estimated
sensor variance of 𝐿at −s and ⟨… ⟩𝑝(𝐿at −s ,𝑓 ) the expectation over a repre-
sentative distribution of at-sensor radiance and fluorescence emission.
We show the mean weights 𝑤𝑓 used in all experiments that we estimate
using a fixed distribution 𝑝(𝐿at −s, 𝑓 ) in Fig. 1. Both the variability of 𝑤𝑓
as well as the influence of 𝑤𝑓 on the learned retrieval have not been
investigated in this work.

3.4.2. Physiological constraint
The regularizer

𝓁NDVI = 𝜇
(
𝑓 𝛿 (NDVI ≤ 𝜏NDVI

))
(17)

was introduced to reinforce the physiological expectation of vanishing
fluorescence in sparsely vegetated areas. In Eq. (17) the prediction
network’s fluorescence prediction at 760 nm, 𝑓 , is evaluated in pixels
with low vegetation cover as expressed by a threshold on NDVI, 𝜏NDVI.
We fixed 𝜏NDVI = 0.15 in all experiments in accordance with a similar
thresholding principle in SFM (Cogliati et al., 2019). The NDVI is
derived online during training and inference from the FLUO input
spectra.

3.4.3. Physical regularization
For practical purposes, we define the total effective predicted trans-

fer function with respect to the direct solar irradiance

𝑡t ot =
𝐿𝑅
at −s 𝑅

−1

𝐸0
𝑠 cos(𝜃𝑠)

(18)

describing both downwelling, upwelling and diffuse contributions to
the at-sensor signal. In this computation, we only use the reflectance
signal contribution 𝐿𝑅

at −s from Eq. (2). We point out that the resulting
effective transfer function 𝑡t ot may not respect max

(
𝑡t ot

)
< 1 because

of diffuse contributions to the at-sensor signal even though individual
components 𝑡1 … 𝑡6 are constrained to < 1. This is caused by the
definition of 𝑡t ot which relates only to the direct solar irradiance.
The additional diffuse downwelling and upwelling contributions in the
simulation model used in this work are not part of the normalizing
denominator and can, thus, lead to 𝑡t ot > 1. We can assume the
diffuse components to the measured at-sensor radiance to be small
under typical HyPlant observation conditions. We make sure that the
atmospheric transfer functions result in a physically plausible total
transfer function 𝑡t ot that is not much larger than 1. by regularizing the
loss with a soft constraint to enforce ReLU(𝑡t ot − 1) to be small.. Thus,
we add

𝓁at m = ReLU(𝑡t ot − 1) (19)

as an additional regularizer to the loss. It constrains the network to
decrease diffuse parts of the predicted atmospheric transfer. While this
regularizer achieves the soft constraint with a suitable weight 𝛾𝑎 in the
loss (see Eq. (13)), it has the downside that the fixed hyperparameter
𝛾𝑎 effectively controls the contribution of simulated diffuse at-sensor
radiance.

3.5. Training set up

The training of the SFMNN network was conducted in two phases.
First we performed a pretraining on a data compilation of acquisitions
from different nominal heights mix (cf. Table 1). This pretraining
provided us with a coarsely trained network 𝑝mix, which we then fine-
tuned to gain predictors for specific observation and terrain conditions.
We trained networks 𝑝350, 𝑝600 and 𝑝1500 for individual nominal flight
heights (350, 600 and 1500 m) in flat terrain. In Table 1 we detail the
composition of the corresponding compilations 350 …1500 that were
used for fine tuning. In addition to the flat terrain predictors, we also
compiled data sets with variable topography (𝑡

600, 𝑡
1150, 𝑡

1500 and
𝑡

1800). Due to a significantly reduced availability of HyPlant data in
topographically complex terrain these compilations mainly consist of
acquisitions from a single campaign.

The HyPlant acquisitions in a training data set were cut spatially
in partially overlapping patches. A fixed patch size of 17 × 17 Hy-
Plant pixels was chosen. While we used the whole spectral range
covered by the FLUO module as spectral input window t ot , we re-
stricted the prediction range to the more constrained simulation range
 = [750, 770] nm. A larger simulation range would have required
modeling of the at-sensor radiance in a larger spectral domain. Since
this work focuses on the O2-A absorption band we instead restricted
the fluorescence estimate to 750–770 nm while still allowing the net-
work to leverage information on the fluorescence emission outside
the spectral window which we simulate. In all training runs, the
input provided to the network consisted of concatenated layers of
the spectral information, the across-track pixel location as well as the
mean solar incidence angle per acquisition. With respect to the analysis
of predicted transfer functions in topographically variable terrain, we
point out that no topographic elevation such as a digital elevation
model (DEM) was provided to SFMNN during training or testing time.

The training was conducted with an Adam optimizer guided gradi-
ent descent Kingma and Ba (2017). The nominal learning rate was
set initially to 𝓁𝑟 = 10−3 and subsequently reduced to a minimum of
𝓁𝑟 = 10−4 with a learning rate scheduler. All networks (𝑝mix, 𝑝350 … )
were trained until the validation loss on a random subset of the training
data stopped decreasing.

4. Results

In order to validate the SFMNN reconstruction and retrieval per-
formance, we present a qualitative comparison of the reconstructed
at-sensor radiance of SFM and SFMNN as well as a quantitative com-
parison of SFMNN top-of-canopy fluorescence estimates against top-of-
canopy FLOX measurements. Additionally, we include two application
studies to assess the physiological and physical plausibility of SFMNN’s
estimated parameters.

4.1. At-sensor radiance reconstruction performance

Good reconstruction performance of the at-sensor radiance is a
critical prerequisite for successfully disentangling 𝑅, 𝑓 and the atmo-
spheric transfer functions 𝑡𝑖. In order for SFMNN to yield consistent
SIF estimates, comparable reconstruction performance across a wide
range of observational conditions is needed. While, the reconstruction
is an important evaluation metric, it does, however, not guarantee the
correctness of the estimated at-sensor signal decomposition. This is due
to the ill-posed nature of this decomposition problem that may allow
ambiguous solutions resulting in similarly small residuals.

We show that SFMNN reaches a reconstruction performance sim-
ilar to SFM by analyzing error statistics of the predicted at-sensor
radiance both in the full simulation range  (750–770 nm) as well
as in the spectral range O2−𝐴

= [759.55, 761.60] nm in the O2-
A absorption band. In Fig. 6 we plot the 5%–95% percentiles of
the absolute reconstruction residuals along with the mean absolute
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Fig. 6. Statistics of absolute errors across single acquisitions. We show the mean 5, 50 and 95% quantiles of absolute error (MAE, upper row) and of normalized absolute error
(nMAE, lower row) between observed radiance and radiance predicted by SFMNN in the spectral ranges  = [750, 770] nm ((a) and (c)) and O2−𝐴

= [759.55, 761.60] nm ((b) and
(d)) as a function of the sun zenith angle (SZA). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

error (MAE). The SFMNN simulations exhibit overall mean abso-
lute error (MAE ) distributions constrained consistently in the range
0.6–2 mW nm−1 sr−1 m−2 (Fig. 6(a)) and MAEO2A

in the O2-A band
in the range 0.4–1 mW nm−1 sr−1 m−2 (Fig. 6(b)). We equally show
the normalized mean absolute error distributions

nMAE =
|||𝐿̂Hy P − 𝐿Hy P|||

𝐿Hy P
(20)

for the spectral range  in Fig. 6(c) and equally for O2A in (d). Con-
trarily to the MAE, we find increasing nMAE outliers with increasing
SZA. The MAE decreases more slowly than the mean at-sensor radiance
with increasingly diffuse conditions for image data acquired under high
SZA. As a consequence, the nMAE increases under low-light conditions.

In order to assess whether SFMNN’s reconstruction error is sufficient
for a spectral fitting based SIF retrieval, we compare the reconstruction
residuals of SFMNN and the SFM baseline. The present study only
focuses on a comparison in the day dataset. To highlight the variability
in reconstruction performance across different light regimes we differ-
entiate between noon acquisitions taken around the solar noon (13:15,
13:30, 13:38 CEST) and off-noon acquisitions taken in the morning and
afternoon (10:11, 10:19, 10:27, 10:34, 16:11, 16:18 CEST).

In Fig. 7(a) and (b) we plot the mean absolute error distributions
MAE over simulation range  (750–770 nm) and MAEO2−𝐴

in the
O2-A band (759.55–761.60 nm). SFMNN’s reconstruction performance
over the full spectrum (see Fig. 7(a)) is sightly worse than SFM.
Contrarily, in the O2-A band (see Fig. 7(b)) we see an improvement of
SFMNN over SFM. In both cases, we find lower reconstruction errors
in off-noon than in noon acquisitions, but increased nMAE in off-noon
consistent with the discussion of Fig. 6 above. This partially improved
performance of SFMNN over SFM in the O2-A band of in the day data
set can also be observed in terms of nMAEO2−𝐴

in 7 (c) and (d). As for
the absolute MAE, we find worse overall performance nMAE but an
improvement of SFMNN in the O2-A band.

We conclude that SFMNN is able to learn a reconstruction of the
at-sensor radiance with a reconstruction error in the O2-A band consis-
tently bounded in the range 0.4–1 mW nm−1 sr−1 m−2 over the whole
range of observational conditions covered by the data sets. SFMNN’s
prediction accuracy in the O2-A band is improved over the operational
SFM predictions in the day dataset both in terms of MAE and nMAE,

but falls short of SFM’s performance when comparing residuals in the
full simulation range  in off-noon conditions.

4.2. Validation of SFMNN predicted top-of-canopy fluorescence with FLOX
measurements

In order to evaluate whether SFMNN’s decomposition of the at-
sensor radiance yields SIF estimates comparable to SFM and iFLD
baselines, we directly validate SFMNN SIF with in-situ SIF measure-
ments that were acquired quasi-simultaneously to the airborne HyPlant
acquisitions. In particular, we compare FLOX derived iFLD SIF esti-
mates to HyPlant derived SIF predictions for the five measurement
campaigns SEL-2018 (600 m), WST-2019 (1500 m), CKA-2020 (350 m),
CKA-2020 (600 m), CKA-2021 (350 m), GLO-2021 (1150 m) and CKA-
2022 (600 m) (see Table 2). We show comparative scatter plots (Fig. 8)
and performance metrics of HyPlant derived SFM, SFMNN and iFLD (
Table 6) taking into account all in-situ FLOX measurements available
after filtering as described in Section 2.2. In addition to the MAE, the
results report the Pearson correlation 𝑟.

The validation results show that SFMNN outperforms the two base-
line methods in terms of 𝑟 for all but two datasets (see Table 6). In
these two data sets providing a lower validation accuracy, CKA-2020
(350 m) and CKA-2021 (350 m), 𝑟 is still close to the best performing
baseline method. A similar conclusion can be drawn when comparing
the performance in terms of mean absolute error (MAE). While the MAE
of SFMNN suffers from bias leading to overestimation in all datasets
it ranks at least second in all but one dataset (CKA-2021 (350 m))
The overall validation results in Table 6 and the scatter plots in Fig. 8
suggest that SFMNN has the strongest sensitivity to changes in in-situ
measured SIF, but that the prediction bias leads to a underperformance
with respect to iFLD and SFM in terms of MAE.

The results for the CKA-2020 (350 m) and (600 m) runs refer to
data acquired by three different FLOX systems placed in two different
crop types (winter wheat, oat). In order to avoid biased metrics due to
sensor specific and crop type phenological differences that potentially
influenced the FLOX measurements, we additionally list the prediction
performance over the measurement series of the individual measure-
ment stations at the ground (see Table 7). The results in Table 7
show that there is variation in the performance metrics across the
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Fig. 7. Residual distribution of SFM and SFMNN reconstructions of WST-2019 (1500 m) acquisitions sampling a single day (2019/06/19). noon denotes data from 12:00–14:00 (3
acquisitions), off-noon denotes data acquired earlier than 12:00 or later than 14:00 (6 acquisitions). Shown are (a) absolute error distributions MAE over the complete spectral
window  , (b) MAEO2A

in the O2-A band [759.55, 761.60] nm and corresponding normalized absolute error distributions (c) nMAE and (d) nMAEO2A
as defined in Eq. (20).

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 6
FLOX derived SIF measurements compared to SFMNN, SFM and iFLD SIF predictions
(≤10 min time difference). Correlation 𝑟 marked with ∗ have 𝑝 > 0.05. Mean absolute
errors (MAE) are given in mW nm−1 sr−1 m−2. 𝑁 denotes the number of validation
points. We highlight the best results in bold font. Multiple MAE results are highlighted,
if the uncertainty is too large to establish a single best case. All uncertainties are
computed from the variation of HyPlant derived SIF estimates within a fixed radius
(350 m: 0.5 m, 600 m: 1 m, 1150 m: 2 m) around the measurement location and the
variation of FLOX SIF estimates within the predefined time window of 10 min.

Data set r MAE N

SEL-2018 (600 m) SFM 0.81 0.82 ± 0.12 9
SFMNN 0.96 0.68 ± 0.08 11
iFLD 0.78 0.58 ± 0.09 10

WST-2019 (1500 m) SFM −0.35∗ 0.48 ± 0.07 22
SFMNN 0.58 0.20 ± 0.08 22
iFLD −0.12∗ 0.78 ± 0.09 18

CKA-2020 (600 m) SFM 0.83 0.42 ± 0.05 23
SFMNN 0.83 0.29 ± 0.05 23
iFLD 0.52 0.39 ± 0.08 23

CKA-2020 (350 m) SFM 0.90 0.36 ± 0.04 37
SFMNN 0.86 0.35 ± 0.04 37
iFLD 0.55 0.28 ± 0.05 36

GLO-2021 (1150 m) SFM 0.89 0.24 ± 0.09 6
SFMNN 0.91 0.38 ± 0.15 6
iFLD 0.81 0.73 ± 0.14 6

CKA-2021 (350 m) SFM 0.64∗ 0.44 ± 0.07 7
SFMNN 0.82 0.65 ± 0.09 7
iFLD 0.87 0.12 ± 0.15 7

CKA-2022 (350 m) SFM 0.58∗ 0.39 ± 0.13 6
SFMNN 0.70∗ 0.35 ± 0.17 6
iFLD −0.87∗ 1.12 ± 0.21 4

different FLOX measurement set-ups. It can be observed, however,
that the best performing method in 𝑟 and MAE also performs best
on a majority of the individual FLOX set-ups such that the overall
performance assessment in Table 6 is not driven by single set-ups in

Table 7
Performance metrics for different 3 different FLOX devices. We denote the different
devices by the crop type the devices were pointed at. Metric definitions as in Table 6.
Correlation scores 𝑟 marked with ∗ have 𝑝 > 0.05. Mean absolute errors (MAE) are
given in mW nm−1 sr−1 m−2. We highlight the best results in bold font. 𝑁 denotes the
number of validation points.

Data FLOX r MAE N

CK
A-

20
20

 (3
50

 m
) SF

M

Wheat (1) 0.62 0.48 ± 0.05 11
Wheat (2) 0.86 0.30 ± 0.07 14
Oat 0.84 0.33 ± 0.06 12
All 0.90 0.36 ± 0.04 37

SF
M

N
N Wheat (1) 0.59∗ 0.31 ± 0.06 11

Wheat (2) 0.90 0.49 ± 0.09 14
Oat 0.39∗ 0.23 ± 0.07 12
All 0.86 0.35 ± 0.04 37

iF
LD

Wheat (1) −0.19∗ 0.33 ± 0.07 11
Wheat (2) 0.11∗ 0.34 ± 0.09 13
Oat 0.10∗ 0.17 ± 0.09 12
All 0.55 0.28 ± 0.05 36

CK
A-

20
20

 (6
00

 m
) SF

M

Wheat (1) 0.88∗ 0.85 ± 0.09 4
Wheat (2) 0.86 0.32 ± 0.10 10
Oat 0.69 0.34 ± 0.06 9
All 0.83 0.42 ± 0.05 23

SF
M

N
N Wheat (1) 0.81∗ 0.11 ± 0.08 4

Wheat (2) 0.90 0.31 ± 0.10 10
Oat 0.73 0.36 ± 0.06 9
All 0.83 0.29 ± 0.05 23

iF
LD

Wheat (1) −0.56∗ 0.51 ± 0.10 5
Wheat (2) 0.24∗ 0.45 ± 0.16 9
Oat 0.10∗ 0.25 ± 0.10 9
All 0.52 0.39 ± 0.08 23

the CKA-2020 data sets. Furthermore, the variation of MAE across
the different measurement set-ups is of the same order as the large
uncertainties on the MAEs of individual measurement set-ups for all
methods.
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Fig. 8. FLOX derived iFLD SIF vs. HyPlant derived SFMNN, SFM and iFLD SIF in the 7 in-situ validation data sets (see Table 1). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

As a conclusion, we highlight that the SFMNN performs best in
terms of 𝑟 but is impacted by prediction bias. In particular, SFMNN
showed sensitivity to in-situ FLOX SIF data sets where both iFLD
and SFM do not (WST-2019, CKA-2022). Strong positive bias in all
datasets leads to an underperformance of SFMNN with respect to iFLD
and SFM in various data sets such that it only outperforms these
two baseline methods in less than half of the considered validation
data sets. Furthermore, a restricted comparison of the performance
of individual and aggregated FLOX performance metrics in the CKA-
2020 datasets indicates that iFLD, SFM and SFMNN performances can
be generalized across the different measurement set-ups within single
campaigns given the large uncertainties associated of both the FLOX

and the HyPlant SIF estimates.

4.3. Application study 1: Retrieval of SIF in the diurnal course

In this application study we analyze the diurnal course of SFMNN
predicted SIF and assess whether it peaks around the solar noon or
if, contrarily, the largest fluorescence values can be found prior to
or after solar noon. We formulate this plausibility test on the diurnal
data set day, by investigating the overall diurnal course of predicted
SIF over a large number of pixels. The SIF predictions for the nine
HyPlant acquisitions in day were georegistered to form time series
𝑓 (𝑥, 𝑡) in each georegistered pixel 𝑥 (see Fig. 10). We detrended each
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Fig. 9. (a) Sketch of two possible time series of predicted fluorescence 𝑓 (𝑥, 𝑡). Only the blue time series with 𝛽 < 0 is considered plausible as it peaks during solar noon. (b)
Histogram of SFMNN 𝛽-NDVI relationship shown in Fig. 10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

time series independently and fitted a second order polynomial 𝑝𝑓 (𝑥)
to the time series in each pixel. The second order derivative of this
polynomial with respect to time 𝜕2𝑝𝑓∕𝜕 𝑡2 = 𝛽 then was used as a proxy
for the diurnal SIF dynamics (see Fig. 9(a)). In particular, we indicate
whether the predicted SIF peaks around solar noon (𝛽 < 0) or in
morning and evening (𝛽 ≥ 0) acquisitions. In physiologically plausible
SIF time series of healthy vegetation under a typical course of diurnal
solar irradiance variation without shadowing, we expect 𝛽 < 0 over
the whole NDVI domain. The map of 𝛽 for day in Fig. 10 highlights
that pixels with 𝛽 > 0 are mainly distributed parallel to tree lines
where the strong shadowing in the diurnal course invalidates the model
assumptions. SFMNN predictions thus yield a plausible diurnal course
of SIF.

4.4. Application study 2: Retrieval of SIF in hilly terrain

In this application study we show that the constraints imposed on
SFMNN’s weight optimization yield topography-aware predictors. To
this end, we have trained SFMNN 𝑝𝑡600, 𝑝

𝑡
1150, 𝑝

𝑡
1500 and 𝑝𝑡1800 on the data

sets 𝑡
600, 𝑡

1150, 𝑡
1500 and 𝑡

1800 exhibiting large topographic variation.
For this we compare the geometrical path length 𝑑 to the fractional
band depth

𝑛𝑂2𝐴 =
𝑡t ot (760.5 nm)
𝑡t ot (755 nm)

(21)

predicted by SFMNN for each spatial pixel. The path length is defined
as the distance computed from the surface to the sensor considering
the flight height, topography and the instantaneous viewing angle at
recording time.

In Fig. 11 we show an exemplary acquisition of a strong topographic
gradient along a height difference of ∼140 m. The SFMNN predictor
adapts the predicted band depth locally to gain a similar nMAE𝑂2𝐴
over the full topographic change (see Figs. 11 and 12(a)). As a result
we can observe a relatively constant SFMNN SIF prediction along-track
for the different height ranges (see Figs. 11 and 12(b)). A small increase
of maximum SIF can still be observed over the topographic change
(and 𝑑 decrease). It is, however, not possible to completely disassociate
this SIF distribution shift from a possible change in surface conditions.
This is also visible in Fig. 12(b) where we show the SIF prediction
distribution as a function of the topography. Similarly, the distribution

of spectral wavelength shifts 𝛥𝜆𝑥,𝑦 and 𝜌752 are approximately constant
in the along track dimension, suggesting that the model does not
compensate the atmospheric transfer over the hill slope by varying
these parameters.

The predicted O2-A band depth is not completely decoupled from
surface related quantities. This can be seen in the exemplary acquisition
plot in Fig. 11 in some correlated features in SIF in 𝑛𝑂2𝐴. We cannot
determine from observational data whether this coupling is physical
(i.e. conditioned by common causal factors) or conditioned by a learned
empirical distribution. Furthermore, there is an unphysical artefact
visible in the band depth estimation that correlates with a region of
high reconstruction errors nMAE𝑂2𝐴

(see Fig. 11). While we cannot
pinpoint exactly, what the reason for this prediction failure is, we test
for consistency of 𝑛𝑂2𝐴 in general prediction scenarios. In order to
assess whether the variation in predicted band depth 𝑛𝑂2𝐴 is consistent
across multiple acquisitions and across different predictors, in Fig. 13
we show the linear extinction factor 𝑠𝑛𝑂2𝐴 defined as the first-order
derivative to the approximation

E
[
𝑛𝑂2𝐴 | 𝑑

]
= 𝑠𝑛𝑂2𝐴 ⋅ 𝑑 + const. (22)

where 𝑑 denotes the geometric path between the surface and sensor. As
we are interested in the sensitivity of 𝑛𝑂2𝐴 to the changing geometric
path length, we summarize any other influencing factor under 𝑐 𝑜𝑛𝑠𝑡.
and determine 𝑠𝑛𝑂2𝐴 with a linear fit to the conditional distribution
𝑝(𝑛𝑂2𝐴|𝑑) as shown in Fig. 12(a). We find that 𝑠𝑛𝑂2𝐴 stabilizes at
a constant value in acquisitions with large differences in geometric
path lengths 𝛥𝑑 = max 𝑑 − min 𝑑. This is true for acquisitions of
different SFMNN models and across different data sets. As expected,
the variation in the 𝑠𝑛𝑂2𝐴 estimates increases when the geometric path
length differences 𝛥𝑑 become smaller and the uncertainty on the per-
acquisition expectation E

[
𝑛𝑂2−𝐴 | 𝑑

]
increases. As a consequence, the

effect of variable 𝑑 cannot be ascertained in acquisitions with small 𝛥𝑑.
The smaller predicted band depth differences are more strongly driven
by other, possibly non-physical factors. However, in acquisitions with
larger 𝛥𝑑 band depth changes are explained by a common atmospheric
transfer model yielding a constant 𝑠𝑛𝑂2𝐴 (Fig. 13). This common transfer
model is predicted by independent SFMNN models. We find thus a
strong indication that SFMNN models converge to solutions where
topographic changes are explained mainly by changing atmospheric
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Fig. 10. We show a pseudo-color image (FLUO NIR, red and green) of the WST-2019 (1500 m) 13:30 CEST acquisition (first row), the corresponding NDVI computed from DUAL
(second row), the SFMNN SIF prediction (third row) and the diurnal SFMNN SIF variation parameterized by 𝛽 (fourth row). Pixels with invalid NDVI values (in shaded, barren
and water pixels) are highlighted in pink. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

transfer and not, for example, by increasing fluorescence.

5. Discussion

5.1. Reconstruction performance

Since the SFM is the operational spectral fitting SIF retrieval al-
gorithm for HyPlant data, its prediction as well as reconstruction
performance has been repeatedly validated using top-of-canopy spec-
tral measurements (Rascher et al., 2021; Cogliati et al., 2019; Siegmann
et al., 2021) and cross-validated with SIF products from different
platforms (Wang et al., 2022). Matching SFM’s reconstruction perfor-
mance is thus an important feature of novel spectral fitting algorithms
aiming to retrieve SIF in addition to a good performance against other
baseline methods applied to HyPlant data such as iFLD. While a good
reconstruction performance does not validate the physicality of our
approach, it constitutes a necessary precondition for any spectral fitting
method. Failure to satisfactorily approximate the model to observations
could indicate either an incomplete model formulation or too stringent
constraints imposed as regularization on the fitting process.

We could show that the reconstruction performance of SFMNN is
comparable to SFM in a data set of nine HyPlant acquisitions recorded
over the course of a single day. SFMNN’s reconstruction led to smaller
MAE than SFM inside and to only slightly worse performance outside
of the O2-A absorption band. We hypothesize that the SNR-based loss

weighting, which increases the importance of residuals within the
absorption band, led to this preferential improvement of absolute resid-
uals as no such prior assumption is considered in the spectral fitting
process of SFM. In parallel, the improved reconstruction performance
of SFMNN could be observed when analyzing its radiance normalized
residuals nMAE inside the O2-A band. We found the same differentia-
tion in nMAE between noon and off-noon conditions for SFMNN as for
SFM. Worse nMAE are found in off-noon conditions. This performance
deterioration could also be established in SFMNN residual statistics of
multiple acquisitions (cf. Fig. 6).

We have investigated the cause for this decreased reconstruction
performance and find that it is likely due to lacking disentangle-
ment of reflectance and atmospheric transfer performance in off-noon
conditions. In Fig. 14 we show that SFMNN’s reflectance prediction
is not accurate in off-noon conditions. A significant underestimation
of SFMNN as compared to georegistered DUAL reflectances can be
observed in the morning and afternoon while the noon acquisitions
show comparable reflectance distributions. In order to reduce the re-
construction error the network predictor instead increases the diffuse
contributions to the at-sensor radiance in off-noon predictions as can
be seen in Fig. 15, where we show the mean nadir 𝑡t ot in all day (a)
and the simulated 𝑡t ot in black (b). The simulation is performed by (i)
simulating 𝐿at −s using a MODTRAN derived radiative transfer emula-
tor Pato et al., 2024) and (ii) normalizing with the solar irradiance and
reflectance model used in this work. We parameterize the simulation of
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Fig. 11. An exemplary airborne data acquisition with pronounced topographic variation (SOP-2023, 2023/06/23 14:44 CEST). In the first row we show SFMNN SIF prediction
(green), a digital elevation map (DEM) of the scene (black) and the predicted 𝑛𝑂2𝐴 (blue) averaged over the across-track dimension. In the second to fourth row we show maps of
FLUO derived NDVI, 𝑛𝑂2𝐴, SFMNN SIF SFMNN predicted reflectance at 740 nm, SFMNN predicted wavelength shifts 𝛥𝜆𝑥,𝑦 and reconstruction errors nMAE𝑂2𝐴

. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. (a): Distribution 𝑝(𝑛𝑂2𝐴|𝑑) (O2-A band depth as a function of geometric path length 𝑑) (green) and linear fit (red) of the acquisition shown in Fig. 11 (SOP-2023,
2023/06/23 14:44 CEST). (b): Distribution 𝑝(SIF760|𝑑) (SFMNN SIF as a function of geometric path length 𝑑). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

𝐿Hy P with the mean values assumed for day noon acquisitions. We also
show simulations under shifts 𝛥𝜌 and 𝛥𝑒 which denote shifts between
the parameter values for 𝜌 and 𝑒 used in the simulation of the at-sensor
radiance and the parameter values used for normalization in Eq. (18).
The simulation under a shift 𝛥𝜌 = 0.05 can explain both the large
variation between predicted 𝑡t ot in noon and off-noon the acquisitions.
The shift and 𝛥𝑒 > 0 furthermore explains the sloping behavior of the
predicted transfer functions in all acquisitions (Fig. 15 (a)). Overall,
this shows that SFMNN cannot fully disentangle the reflectance contri-
bution from the atmospheric transfer. The regularization 𝓁𝐚𝐭 𝐦 (Eq. (19))
proves to be insufficient in off-noon conditions. While we could not yet
pinpoint the exact reasons for the difference in disentangling capacity
of SFMNN in noon and off-noon conditions, we posit that there are three

plausible reasons.
First, there is increasing model incompatibility under more diffuse

conditions as could be seen in Fig. 5. The physical model used for
signal reconstruction in Eq. (1) includes a diffuse contribution to the
at-sensor signal, but the approximate PCA-based formulation of the
atmospheric transfer lacks accuracy for the representation of 𝜏𝑑 𝑜 and
𝜌𝑠𝑜 which become more important under low SZA conditions.

Secondly, the worse performance may be due to data quality
deterioration in lower light conditions. At lower SZA the diffuse contri-
bution to the at-sensor radiance increases strongly even under clear-sky
conditions when HyPlant data is normally recorded. An increasing
diffuse component, however, reduces the signal-to-noise ratio of the at-
sensor radiance as the pixelwise hyperspectral signal is spatially mixed.
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Fig. 13. Estimated 𝑠𝑛𝑂2𝐴 for all acquisitions with relevant variation in topography (cf. topo in Table 2). The dashed line represents the mean of five acquisitions with largest 𝛥𝑑.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Marginal reflectance distributions as predicted by SFMNN (a) and measured by DUAL (b) in the day data set. Noon and off-noon acquisition statistics are shown separately.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. (a) Mean SFMNN predicted atmospheric transfer 𝑡t ot in the nadir position in all acquisitions of day . (b) Simulated 𝑡t ot (black) simulation parameterization: AOT = 0.05,
H2O = 0.1, tilt angle TA = 0◦, SZA = 30◦, relative azimuth angle RAA = 30◦, ground surface height ℎgnd = 0.1 km, sensor height above ground ℎsen = 1.6 km, 𝜌740 = 0.28,
𝑠𝜌 = 0.007, 𝑒 = 0. 𝛥𝜌 and 𝛥𝑒 denote simulations where the normalizing reflectance in Eq. (18) was simulated with a shifted value with respect to the value used for at-sensor
radiance calculation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The reduction in SNR is further enhanced due to the overall lower light
intensity. This might reduce the ability of the network to disentangle
reflectance and atmospheric components of the at-sensor signal.

Thirdly, the circumstance that the similitude of the predicted atmo-
spheric transfer function with respect to our simulation in Fig. 15(b)
is significantly improved under a change 𝛥𝑒 indicates that the model

does not represent surface reflectances accurately in the parameter
space spanned by 𝜌, 𝑠𝜌 and 𝑒 (see Eq. (9)). This may in turn force the
unphysical boosting of diffuse components.

The lack of control over the atmospheric decomposition is a sig-
nificant draw-back of the PCA-based parameterization as compared to
a physically based prediction of atmospheric components. This work
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has only addressed the atmospheric at-sensor contribution in an aggre-
gated way by analyzing the variation of the O2-A band depth under
topographic changes (Section 4.4) and the disentangling capacity of re-
flectance from atmospheric transfer in this section. Further work should
therefore evaluate quantitatively the predicted atmospheric compo-
nents and concentrate on proposing physical constraints regarding the
disentangling of individual atmospheric components.

A promising possibility to constrain further the simulated atmo-
spheric transfer consists in replacing the PCA-based forward simulation
in SFMNN with a differentiable emulator of a physically accurate
radiative transfer model. Research in biophysical modeling and simu-
lation of hyperspectral reflectance from various platforms (Vicent et al.,
2016; De Grave et al., 2020; Verrelst et al., 2021) are the basis for
fast and accurate emulation models (Verrelst et al., 2016, 2017) and
may be leveraged for computationally efficient retrieval of biophysical
parameters. The emulation of at-sensor radiance simulations, as would
be needed in our approach, has been addressed in Pato et al. (2024),
Vicent et al. (2018). The differentiable nature of a number of those em-
ulator models warrants an investigation into possibilities to implement
such a replacement that would implement a tight integration of phys-
ically and statistically based SIF retrieval as has been shown recently
for DESIS (Buffat et al., 2024a). Furthermore, the use of sensor-specific
emulation facilitates the generalization of SFMNN to other airborne
hyperspectral imaging sensors such as CFIS (Frankenberg et al., 2018),
as well as to other spaceborne imaging sensors with appropriate spatial
and spectral resolution such as FLEX (Drusch et al., 2017). With the use
of emulators the radiative transfer physics and sensor characteristics
affecting the at-sensor radiance can be modularized by domain experts
and do not need to be modelled by the network as has been the case
in this work where the atmospheric transfer was reconstructed from
PCA weights on the fly. Such a procedure can exclude non-physical or
implausible efficiently by imposing hard constraints on the at-sensor
radiance model.

5.2. Accuracy of the SFMNN top-of-canopy SIF product

Direct validation with high-quality predictions from top-of-canopy
measurements is the gold-standard for any SIF retrieval scheme if the
spatial resolution of the sensor data is high enough to resolve the mea-
surement footprint of the top-of-canopy measurements. The acquisition
of field data and its synchronization with sensor acquisitions is, how-
ever, costly and usually results in small and spatially very constrained
validation data sets. In this work we have gathered the majority of
FLOX derived top-of-canopy SIF estimates acquired in tandem with
HyPlant flights covering the period 2018–2022 to thoroughly validate
SFMNN with high-quality data (see Table 6). While this study is the
largest and most complete systematic comparison of HyPlant derived
SIF estimates with top-of-canopy FLOX measurements, the validation
data set has still a limited size and mainly covers crop canopies. More-
over, in addition to the uncertainties on the geolocalization and time
synchronization, that were considered in this work, other uncertainty
sources can impact the comparison of HyPlant derived SIF and FLOX
derived SIF. Most importantly, we could not quantify uncertainties
related to different viewing angles of in-situ and airborne radiance
measurements (Liu et al., 2016).

In our validation study we could show that SFMNN prediction
resulted in a reduction of the absolute error with respect to SFM and an
improvement of correlation scores 𝑟 with respect to iFLD. With SFMNN
we found the best correlation scores 𝑟 overall. SFMNN, however, was
shown to still be impacted by biases leading to overestimation of SIF
in absolute terms that lead to a similar performance as iFLD in terms
of MAE. iFLD, on the other hand, clearly underperformed in terms of 𝑟
as compared to SFM and SFMNN.

We found SFMNN MAE covering the range from 0.2–0.7 mW nm−1

sr−1 m−2 depending on the campaign data set used for validation. The
FLEX mission requirement for SIF retrieval accuracy of 0.2 mW nm−1

sr−1 m−2 (Vicent et al., 2016) could not be consistently achieved for
HyPlant data with the current set-up using one of the three SIF retrieval
methods (iFLD, SFM, SFMNN) that were investigated in this study.

5.3. Learning of implicit constraints

We have shown in two application studies that SFMNN predictions
are constrained implicitly. The observation of a constraint on the
second order derivative 𝛽 in diurnal SIF products suggests that the
network is able to learn a first order physiological relationship between
day time (i.e. SZA) and SIF emission magnitude. On the other hand,
it could be shown that the atmospheric transfer function could be
adapted in a way to represent the variation of the optical path in
acquisitions solely based on radiance data. The fact that the feature
based internal representations learned by SFMNN can be shown to be
sensitive to basic physiological and physical constraints emphasizes
that the proposed loss formulation allows the network to generalize
the disentangling in typical HyPlant recording conditions beyond a
pure functional optimization as it is done in SFM. This aspect of
SFMNN can be considered to be an important advantage of SFMNN
over the methodologies followed by SFM and iFLD as it allows in
principle the use of trained models on data that was not included
in the training. If a single model could be applied directly to new
data prediction times could be significantly reduced as compared to
the approach followed here (pretraining and fine-tuning) as well as
compared to related spectral fitting methods such as SFM. Further
validation should therefore especially concentrate on the generalization
capacity of SFMNN SIF prediction for an operational context where fast
prediction times are advantageous.

The feature representation of the hyperspectral signal as learned
by the SFMNN encoder is based on a restricted number of HyPlant
acquisitions. Recent scientific breakthroughs in the domain of neu-
ral network training for vision applications draw however on the
self-supervised, application-agnostic learning of feature representations
from very large data sets. Recently, first adaptations of large Vision
Transformer and Diffusion models have been developed for remote
sensing RGB (Wang et al., 2023; Khanna et al., 2023) and multi-
spectral imagery (Blumenstiel et al., 2024). The multitude of space-
borne, globally distributed hyperspectral datasets that have become
and will be available in the near future (PRISMA Pignatti et al., 2013,
EnMAP Guanter et al., 2015b, DESIS Krutz et al., 2019, FLEX Drusch
et al., 2017, CHIME Celesti et al., 2022) are likely to allow similar
training set-ups. A natural extension of the present work will therefore
consist in adapting the training of the SFMNN encoder backbone to a
large collection of hyperspectral data sets from different sensors and
platforms to improve its representative power.

6. Conclusion

We have presented in this work SFMNN, a self-supervised deep
learning method to estimate SIF in the O2-A absorption band of hy-
perspectral HyPlant imagery. We have applied the method to HyPlant
acquisitions from multiple years and different observational conditions
and compared the results to both an SFM and an iFLD SIF retrieval
method for HyPlant data by performing a validation with ground
based FLOX measurements. This is the first time that HyPlant SIF
retrieval methods and products have been compared systematically in
a validation with a FLOX in-situ data set spanning multiple years. In
this validation study with in-situ measured SIF in flat terrain we could
show that SFMNN yielded state-of-the-art SIF predictions in terms of
its correlation score outperforming both iFLD and SFM. In terms of
accuracy we found that SFMNN is impacted by an overestimating bias.
Despite this bias SFMNN outperformed SFM in terms of accuracy.

In a second study on predicted diurnal SIF variation we found that
the expected diurnal SIF dynamics in vegetated and non-vegetated
areas were physiologically plausible. We have shown that SFMNN could
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learn implicitly a first order physiological constraint regarding day time
(i.e. SZA) and SIF emission magnitude.

We could furthermore observe that SFMNN could be applied to
HyPlant data taken in regions with large topographic variation. One of
the most serious issues of the baselines considered in this work is to find
a suitable parameterization of the atmospheric transfer in regions with
changing atmospheric and observational conditions. As SFMNN can
locally compensate such changes in principle, an increased interest was
put in its ability to yield trustworthy SIF estimates in such conditions.
Since no in-situ data was available for flight lines exhibiting large
topographic changes, we could only conduct a qualitative analysis.
We found that the effective extinction coefficient determined from
the linear relationship between O2-A band depth and the estimated
radiative path length converged to a constant value in flight lines with
large topographic variations.
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Appendix. Derivation of SNR-based loss weighting

Let us consider a simplified model for SIF estimation and assume
we have 𝑁 measurements 𝑦 on two wavelengths 𝜆1 and 𝜆2. Signal is
composed by a reflectance part 𝑦𝑅(𝜆) and a fluorescence part 𝑦𝑅(𝜆)
including atmospheric influences, such that

𝑦(𝜆) = 𝑦𝑅(𝜆) + 𝑦𝑓 (𝜆) + 𝜖 , (A.1)

where 𝜖 denotes represents instrumental noise. We model 𝑅(𝜆) and 𝑓 (𝜆)
to be

𝑅(𝜆𝑖) = 𝑐𝑅(𝜆𝑖)𝑅0 (A.2)
𝑓 (𝜆𝑖) = 𝑐𝑓 (𝜆𝑖)𝑓0 (A.3)

with known, constant function 𝑐⋅(𝜆) and scalar parameters 𝑅0 and 𝑓0.
In a more realistic model there would be more than one parameter for
𝑅 and 𝑓 . Please note, that we can select 𝑐⋅(𝜆) such that E[𝑅0] = 1 and
E[𝑓0] = 1 if we want to. Our model equations for estimation are then

𝑦(𝜆1)𝑗 = 𝐴𝑅(𝜆1)𝑐𝑅(𝜆1)𝑅0 + 𝐴𝑓 (𝜆1)𝑐𝑓 (𝜆1)𝑓0 + 𝜖𝑗 (A.4)

𝑦(𝜆2)𝑗 = 𝐴𝑅(𝜆2)𝑐𝑅(𝜆2)𝑅0 + 𝐴𝑓 (𝜆2)𝑐𝑓 (𝜆2)𝑓0 + 𝜖𝑗 (A.5)

where 𝐴𝑅 and 𝐴𝑓 contain all atmospheric parameters and all the rest.
Note, that the multiple measurements indicated by index 𝑗 only change
𝜖𝑗 . Obviously, we can multiply each equation with a freely adaptable
weight 𝑤𝑖 without changing anything. We can rewrite the equation to
be

𝐖𝐲 = 𝐖𝐗𝜷 +𝐖𝝐 (A.6)

where 𝐖 is a diagonal weight matrix with 𝑊𝑖𝑖 = 𝑤𝑖, 𝑋𝑖1 = 𝐴𝑅(𝜆𝑖)𝑐𝑅(𝜆𝑖),
𝑋𝑖2 = 𝐴𝑓 (𝜆𝑖)𝑐𝑓 (𝜆𝑖), 𝛽1 = 𝑅0, and 𝛽2 = 𝑓0. Noise 𝜖 has E(𝜖|𝐗) = 0 and
cov(𝜖|𝐗) = 𝜴. In our case we assume that noise is independent, such
that 𝜴 is diagonal with 𝛺𝑖𝑖 = 𝑤2

𝑖 𝑢
2
𝑖 , where 𝑢𝑖 is the noise standard

deviation for wavelength 𝑖. Clearly, weights 𝑤𝑖 also scale the noise in
the weighted equations. We know from Gauss–Markov-Theorem that
the generalized least-squares estimator can then be written as

𝜷̂ = (𝐗𝑇𝜴−1𝐗)−1𝐗𝑇𝜴−1𝐲 (A.7)

where weights 𝑤𝑖 cancel out. Using this simultaneous estimation of
all parameters 𝛽𝑖 for designing a suitable loss function is not obvious.
We therefore investigate a special case, where only one parameter is
unknown.

Let us assume 𝑅0 to be known and we want to infer 𝑓0. We can
then reformulate (A.4) as

𝐲̃ = 𝐗𝑓0 + 𝝐 (A.8)

where 𝑦̃𝑖 = 𝑦𝑖 − 𝑦𝑅,𝑖 and 𝑋𝑖 = 𝐴𝑓 (𝜆𝑖)𝑐𝑓 (𝜆𝑖). The BLUE is given by

𝑓0 =
∑

𝑖 𝑋𝑖𝑦̃𝑖∕𝑢2𝑖∑
𝑖 𝑋

2
𝑖 ∕𝑢

2
𝑖

(A.9)

or, more suggestively written

𝑓0 =
∑
𝑖

1
𝑢2𝑖

𝑋𝑖∑
𝑗 𝑋

2
𝑗 ∕𝑢

2
𝑗

𝑦̃𝑖 (A.10)
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For the usual Moore–Penrose pseudo-inverse we would get

𝑓0 =
∑
𝑖

𝑋𝑖∑
𝑗 𝑋

2
𝑗

𝑦̃𝑖 (A.11)

The difference between these two estimation approaches is in the
weights

𝑤𝑖 =
1
𝑢2𝑖

∑
𝑗 𝑋

2
𝑗∑

𝑗 𝑋
2
𝑗 ∕𝑢

2
𝑗

(A.12)

For training, we derive a mean weighting function 𝑤𝑓 = E𝑝[𝑤𝑖(𝐿at −s,
𝑓 )] over a specific distribution 𝑝 of simulated at-sensor radiances 𝐿at −s
and top-of-canopy fluorescence. The simulations are performed in this
case with a simple two-stream model, a fixed atmospheric transfer
function and varying reflectance and fluorescence functions. Given
the HyPlant-specific sensor variance model 𝜎2, this expectation can be
written as

𝑤𝑓 (𝜆) =
⟨

1
𝑢2𝜆

∑
𝜆′ 𝑓

2
𝜆′∑

𝜆′ 𝑓
2
𝜆′∕𝑢

2
𝜆′

⟩

𝑝(𝐿at −s ,𝑓 )
. (A.13)

Data availability

The training and validation data will be made available. The DOI
will be provided at a later stage of the review process.
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Abstract—The successful operation of airborne and space-based
spectrometers in recent years holds the promise to map solar-
induced fluorescence (SIF) accurately across the globe. Machine
learning (ML) can play an important role in this effort, but its
application to SIF retrieval methods is in part hindered by the
need for time-consuming radiative transfer modeling to account
for atmospheric effects. In this work, we address this difficulty and
develop a fast and accurate physics-based ML emulator of at-sensor
radiances around the O2-A absorption band for the space-based
DESIS and the airborne HyPlant spectrometers. Different ML
models are trained on an extensive set of simulated spectra en-
compassing a wide range of atmosphere, geometry, surface, and
sensor configurations. A fourth-degree polynomial model is found
to perform best, presenting errors at or below 10% of typical SIF
at-sensor radiances and a prediction time per sample spectrum
of 10−20 µs. Using data acquired with the HyPlant instrument,
the proposed model is also shown to be able to match very closely
the measured spectra. We illustrate how to improve further the
accuracy of the emulator and how to generalize it to other sen-
sors using the particular case of ESA’s FLEX space mission. Our
findings suggest that physics-based emulators can be efficiently
used for the development of ML-based SIF retrieval methods by
generating large training datasets in short time and by enabling a
fast simulation step for self-supervised retrieval schemes.

Index Terms—Hyperspectral sensors, machine learning, radia-
tive transfer, solar-induced fluorescence.

I. INTRODUCTION

R EMOTELY sensed optical data collected by airborne
or space-based Earth observation instruments inevitably

carry the imprint of the atmosphere. These so-called atmospheric
effects depend on wavelength range of interest, spectral resolu-
tion, and observation conditions, but usually they are substantial
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and cannot be ignored when analyzing the spectrometric data.
Therefore, the processing of remote sensing data requires com-
plex radiative transfer modeling in order to account or correct
for atmospheric effects before surface-related observables can
be derived. This step typically relies in part on specialized
radiative transfer packages (such as MODTRAN [1], [2], li-
bRadtran [3], [4], or 6S/6SV [5], [6], [7]), which are crucial
in accurately modeling the light path through the atmosphere
but are often too slow to be included in online correction or
retrieval schemes. In many applications, the time-consuming
radiative transfer calculations are performed offline and saved in
look-up tables that can be swiftly accessed during correction or
retrieval.

One such application is the retrieval of solar-induced flu-
orescence (SIF) emitted by plants between 650 and 800 nm
during the photosynthetic process [8], [9]. SIF represents an
important indicator of the efficiency of photosynthesis and can
be used to monitor vegetation status. Thus, there is considerable
interest in measuring SIF from remote platforms in order to
study extended areas of vegetation. The SIF radiance is however
much smaller than the surface reflected radiance [8], making
its measurement particularly challenging even under favorable
conditions. The relative strength of the SIF signal is significantly
improved in regions of the spectrum where the reflected signal is
reduced as in solar Fraunhofer lines or in atmospheric absorption
bands. To resolve these features requires in turn a high spectral
resolution instrument with sufficient signal-to-noise ratio. De-
spite the challenges, SIF has been successfully retrieved from
selected airborne instruments both in solar Fraunhofer lines and
in oxygen absorption bands [10], [11], [12] (see also [13]).
Retrieval schemes such as the spectral fitting method [14],
[15] make use of precomputed look-up tables based on offline
radiative transfer computations. Because the latter are slow, the
look-up tables are necessarily restricted to a limited range of
atmosphere and observation geometries. This limitation could
be efficiently addressed by machine learning (ML) models since
they are well suited to speed up the forward simulation step and
thereby provide a fast alternative to full-fledged radiative transfer
modeling (see, e.g., [16], [17], [18]). Besides extending the
scope of traditional SIF retrieval methods, an ML emulator can
also be seamlessly integrated into the recent efforts to develop
ML-based SIF retrieval schemes [19], [20], [21], [22].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/
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The goal of the present work is to develop a physics-based
ML emulator of at-sensor radiances in the vicinity of the O2-A
absorption band (λ = 740 − 780 nm) for use in SIF retrieval
methods. The choice of the O2-A band is motivated by the
significant depth of the absorption feature and its wide use
for SIF retrieval. The narrow range also helps reducing the
complexity of the problem and enables the generation of large
datasets of simulated spectra. In the future, the O2-B absorption
band (around 687 nm) and other spectral ranges should also
be considered. We focus on two representative instruments
currently in operation, namely the DESIS spectrometer [23],
[24] operating on the International Space Station since 2018
and the airborne HyPlant spectrometer [12] which is the demon-
strator for the FLEX space mission. The proposed emulator
can also be generalized to other sensors in a straightforward
manner.

The article is organized as follows. Section II introduces
the simulated data and methodology adopted, while Section III
reports the performance of all tested physics-based ML emu-
lators and explores strategies to improve upon our proposed
ML model. Section IV discusses the relevance of our results
and the concluding remarks are given in Section V. Note that
this manuscript is an extended and improved version of our
previous work presented in [25]. In particular, we use here newly
simulated datasets (see Section II-A), compare the emulator to
data acquired by the HyPlant instrument (see Section IV), and
implement emulator variants with improved accuracy perfor-
mance (see Section III-C).

II. DATA AND METHODS

A. Simulated Data

The first step in developing our physics-based ML emulator
is to assemble a body of simulated at-sensor radiance spectra
capturing a meaningful range of atmosphere conditions, obser-
vation geometries, surface properties and sensor characteristics.
For our purposes, the at-sensor radiance signal has contributions
due to light scattered by the atmosphere as well as light reflected
and emitted by the surface [26]:

Ls = Lp +
E0

gρT
↑

π(1− ρS)
+ LFT

↑ (1)

where Lp is the path radiance, E0
g is the global solar irradiance

on the ground, T ↑ is the total transmission coefficient from
surface to sensor (comprising direct and diffuse components,
T ↑ = T ↑

dir + T ↑
dif), and S is the spherical albedo of the atmo-

sphere. The surface reflectance and SIF on-ground radiance are
represented by ρ and LF, respectively. The at-sensor radiance
spectrum in sensor resolution is then obtained by convoluting
the above expression with the appropriate spectral response
functions. It is noteworthy that the atmospheric functions Lp,
E0

g , T ↑
dir, T

↑
dif, and S depend solely on atmosphere and geometry

and can thus be computed separately and applied for different
surface and sensor configurations. Accordingly, a two-module
software tool was developed to simulate at-sensor radiance

spectra. The atmosphere and geometry parameters are passed
to the first module, which derives the atmospheric functions
Lp, E0

g , T ↑
dir, T

↑
dif, and S at very high spectral resolution. We

modeled radiative transfer through the atmosphere with the
line-by-line algorithm of MODTRAN6 [2], but other radiative
transfer software can also be used in our generic approach.
The surface and sensor properties are handled by the second
module of our tool, which outputs the at-sensor radiance spec-
trum in sensor resolution for any given atmosphere, geometry,
surface, and sensor configuration.

The developed simulation tool is generic and can be used
for virtually any optical remote sensing application. In this
work, the tool is employed for the simulation of DESIS and
HyPlant at-sensor radiances between 740 and 780 nm in view
of SIF retrieval applications in the O2-A absorption band. The
modeling of surface and sensor properties is tailored for our
specific case. The surface reflectance spectrum is parameterized
as a second-order polynomial, while the SIF emission spec-
trum is taken as a Gaussian of variable normalization F737 at
λ = 737 nm and with 20 nm standard deviation. Using real data
acquired by DESIS and HyPlant, these models were found to
be realistic for different vegetation and soil land covers in the
wavelength range around the O2-A band, but are not intended
for other applications or spectral regions. In addition, the DESIS
and HyPlant sensor properties were carefully considered based
on expert knowledge of their performance and calibration over
recent years. With typical spectral sampling distances of 2.55 nm
for DESIS and 0.11 nm for HyPlant, there are 13 DESIS and 349
HyPlant spectral bands in the range λ = 740− 780 nm with
full width at half maximum (FWHM) of approximately 3.5 nm
for DESIS and 0.24 nm for HyPlant. For detailed instrument
specifications, please refer to [12], [23], [24]. We characterize
the pixels of each band by an average Gaussian spectral response
function and allow for small additive changes of central wave-
length (CW) and FWHM. In this way, the simulated spectra for
DESIS and HyPlant are very realistic and closely follow the
spectral performance of the instruments.

We aim at simulating at-sensor radiances precisely enough
to be useful to retrieve the weak SIF signal. For typical SIF
on-ground outputs of F737 = 0.1− 0.4 mW/cm2/sr/μm at λ =
737 nm, the corresponding SIF at-sensor radiance amounts
to 0.01−0.4 mW/cm2/sr/μm in the range λ = 740− 780 nm.
This sets the sensitivity goal for our simulations. We therefore
conducted a sensitivity analysis with the objective of pinning
down all parameters of interest for our case. The resulting set
of parameters define atmosphere (water vapor content H2O,
aerosol optical thickness at 550 nm AOT 550), geometry (tilt
angle TA, sun zenith angle SZA, relative azimuth angle RAA,
ground altitude hgnd, sensor altitude hsen), surface (reflectance at
740 nm ρ740, reflectance slope at 740 nm s, ratio of reflectance
slopes at 780 and 740 nm e) and sensor (CW shift δCW, FWHM
change δFWHM) properties. The corresponding ranges are listed
in Table I, where the cases of DESIS and HyPlant were treated
separately given their operation specificities. For clarification,
the tilt angle is the angle between the line-of-sight and the nadir
direction and is essentially equal to the view zenith angle in
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TABLE I
SPECIFICATION OF THE DESIS AND HYPLANT SIMULATED DATASETS

our cases of interest. Note that in the table the sensor altitude
is given with respect to the ground in the case of HyPlant
and the SIF on-ground radiance is expressed in terms of F0 =
1 mW/cm2/sr/μm. Beyond the parameters specified in Table I,
we adopted throughout the mid-latitude summer atmosphere,
the rural aerosol model, an ozone content of 332 DU, and the
TSIS-1 solar model [27].

Table I effectively defines the input parameter space for
our simulated dataset, encompassing 12 dimensions for DE-
SIS and 13 for HyPlant. It is crucial to uniformly cover these
high-dimensional spaces in order to appropriately represent the
influence of atmosphere, geometry, surface and sensor proper-
ties on the at-sensor radiance spectra. Uniform grid sampling,
frequently used for the generation of look-up tables, is not
efficient for more than a few dimensions leaving large chunks of
the parameter space unexplored. The random and Halton [28],
[29] methods provide much more uniform sampling in high
dimensions with a limited number of samples (for other methods,
see, e.g., [30]). Therefore, we sampled the input space with a
combination of the uniform grid, random, and Halton methods
and then ran the simulation tool to generate the at-sensor radi-
ance spectra. The key specifications of the DESIS and HyPlant
simulated datasets are detailed in Table I; a full account of the
simulations used here is presented in [31]. For later comparison,
the simulation of a single spectrum typically takes 1−4 min
depending on the input configuration and this time is dominated
by the radiative transfer part. The simulated datasets, generated
using ten cores on a dedicated virtual machine (Intel(R) Xeon(R)
Gold 6132 CPU @ 2.60 GHz, 64 GB RAM) and leveraging the
decoupling of the two modules of the simulation tool, contain
4.3 million DESIS and 6.3 million HyPlant spectra. This body of

simulated data constitutes the basis for training a physics-based
ML emulator.

B. Methodology

The influence of atmosphere, geometry, surface, and sensor
properties on the at-sensor radiance spectrum can be learned by
a ML model trained on the simulated datasets presented in the
previous section. In fact, this constitutes a regression problem
in multiple dimensions:

Ls = F (x) (2)

where the feature vector x ∈ Rp contains the parameters iden-
tified in Table I, the target vector Ls ∈ Rb is the at-sensor
radiance spectrum in sensor resolution, and F : Rp → Rb is the
mapping function to be learned (F : R12 → R13 for DESIS,
F : R13 → R349 for HyPlant). Given the sheer number of input
dimensions in our problem, simple models for F can capture
a significant degree of complexity while being very fast at
evaluation. With this observation in mind, we attempted to learn
F (x) with basic benchmark models, namely linear functions,
polynomials, and shallow neural networks. For clarity and later
reference, a polynomial of degree d is defined as

Pd(x) =
∑

k∈Kd

wk

p∏

i=1

xki
i

Kd =

{
k ∈ Np :

p∑

i=1

ki ≤ d

}
(3)

with wk ∈ Rb the polynomial coefficients. For the models
above, we use least squares as loss function. The case of a
linear function (polynomial of degree d = 1) is simply ordinary
least squares (OLS). In addition, kernel ridge regression (KRR),
Gaussian process regression (GPR), support vector regression,
and k nearest neighbors were also applied to learn F (x). No at-
tempt was made to realize more complex ML models (including
deep learning). This choice is justified by the very encouraging
results obtained with the very simple ML models mentioned
above (see Section III). A comparative analysis of the different
models studied here with traditional look-up table interpolation
methods is a relevant line of research that is left for future work.
Note however that, unlike interpolation methods, the emulators
studied here are very lightweight in terms of memory usage.

A fast and accurate emulator of at-sensor radiances needs to be
complex enough to handle the range of simulated configurations
and simple enough to be computationally efficient. It turns out
that basic ML models are very effective in our application case of
simulating DESIS and HyPlant data around the O2-A absorption
band. We trained and assessed in detail several benchmark
ML models: OLS, second-, fourth- and fifth-order polynomials
(P2, P4, P5) and neural networks with 128 × 64 (N2) and
128 × 64 × 32 (N3) hidden nodes, batch size 16, and rectified
linear unit activations. The polynomial models were trained with
ridge regression, while for the neural network stochastic gradient
descent was used. KRR and GPR were also considered since
they have shown good performance for the emulation task [17],
[18], [20]. ML models based on support vector regression and
k nearest neighbors (k=1,5,10) led to poor results in terms of
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TABLE II
TIME AND ACCURACY PERFORMANCE OF DIFFERENT ML MODELS TRAINED ON THE DESIS AND HYPLANT SIMULATED DATA

accuracy and speed early on in our analysis and were accordingly
disregarded for in-depth evaluation. The performance of each of
the benchmark models was explored by considering a limited
set of the relevant hyperparameters (including L2 norm penalty
for OLS, P2, P4, P5, N2, and N3; hidden nodes, batch size,
training epochs for N2 and N3; kernel function for KRR) in the
validation dataset. Since the figures did not change dramatically
by fine-tuning the hyperparameters, in the following we opted
to focus on the simplest representative configuration for each
model. In particular, the models shown all have zero L2 norm
penalty.

The simulated datasets specified in Table I were split into
training, validation, and test sets considering the properties of
the different sampling techniques used. Uniform grid samples
populate the input space very sparsely but include the borders,
while Halton and random samples lie uniformly across the space
but not at its borders. Ultimately, we are interested in realizing a
physics-based ML emulator with good performance in the bulk
of the input parameter space, not necessarily on its borders. The
borders are however important for the training phase. Therefore,
we assigned all uniform grid and Halton samples to the training
set and split the random samples into validation and test sets.
The training, validation, and test sets contain 4 × 106 (93.0%),
2.1 × 105 (4.9%), and 9 × 104 (2.1%) samples, respectively, for
DESIS and 6 × 106 (95.2%), 2.1 × 105 (3.3%), and 9 × 104

(1.4%) samples, respectively, for HyPlant. Note that the baseline
emulators presented in the next section do not require the use
of the full training set to deliver excellent accuracy performance
(see Section III-B for details). This should be taken into account
when evaluating the apparent imbalance of the training, valida-
tion, and test sets.

The performance of each ML model was evaluated in terms
of accuracy using the at-sensor radiance mean absolute error
(MAE) and in terms of computational time using the prediction
time per sample. These performance metrics are to be compared
to the at-sensor radiance corresponding to a typical SIF output of
F737 = 0.4 mW/cm2/sr/μm and the simulation time of 1−4 min
per spectrum. The training, validation, and test phases for each
model were conducted on the same standard virtual machine as
mentioned in Section II-A using one core only. No effort was

made to speed up the performance of the models by parallelizing
the implementation.

III. RESULTS

A. Evaluation of Different Models

The test set accuracy, total training time, and prediction
time per sample for all benchmark models are reported in
Table II. Comparing the accuracy of the different models
in terms of MAE with the typical SIF at-sensor radiances
0.04−0.4mW/cm2/sr/μm at λ = 740− 780 nm (corresponding
to a SIF on-ground radiance of F737 = 0.4 mW/cm2/sr/μm at
λ = 737 nm), it is clear that linear or quadratic functions (OLS,
P2) are not complex enough to approximate the mapping func-
tion F and are therefore not appropriate for our purposes. The
accuracies attained by N2, N3, KRR, and GPR are significantly
better, but still of the order of the small fluorescence signal we
aim to characterize. The results shown for KRR correspond
to a third-order polynomial kernel; similar but slightly worse
results were obtained when using a radial basis function kernel.
Note that limited effort was put into exploring all possibilities
for neural networks, KRR, and GPR. It is well possible that
better results can be obtained with these models by fine-tuning
their configuration and/or hyperparameters. Fourth-order poly-
nomials seem to be adequate to represent the interplay between
simulated data and atmosphere, geometry, sensor, and surface
parameters. In fact, with an MAE of 0.011 mW/cm2/sr/μm for
DESIS and 0.0027 mW/cm2/sr/μm for HyPlant, the P4 model
provides an average accuracy well below typical SIF at-sensor
radiances. Higher order polynomials perform even better at the
cost of prediction time as illustrated by the P5 results in Table II,
but we decided to use P4 as our baseline model since it is faster
and its performance is already excellent. Our results suggest in
particular that in our specific case deep learning models are not
required to realize a very accurate ML emulator.

The training phase is relatively fast for all models with total
training times of seconds for OLS, P2, and GPR, minutes for
P4, P5, and KRR and hours for N2 and N3. Note that due to
memory limitations some models were trained on a subset of
the training data. The neural networks were trained on CPU,
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Fig. 1. Accuracy performance of the baseline P4 emulators trained on the DESIS (left) and HyPlant (right) simulated data. The top panels show the mean (black)
and 5th/95th percentiles (gray) of the absolute error per band in the test set in direct comparison to the test set average total at-sensor radiance (red) and the SIF
at-sensor radiance corresponding to F737 = 0.4 mW/cm2/sr/μm (green). The distribution of the absolute error in the test set is plotted in the bottom panels relative
to the SIF at-sensor radiance (top, green) for the spectral ranges around the O2-A absorption band: λ = 740− 755 nm (blue), λ = 755− 765 nm (green), and
λ = 765− 780 nm (red).

so their time performance can likely be improved by the use of
GPUs. Except for OLS, the times are similar for the cases of
DESIS and HyPlant and do not scale with the number of output
features (13 bands for DESIS, 349 for HyPlant). It is fair to
point out that the total training time is not critical since training
just occurs once; one can easily afford a longer training if a
better accuracy can be achieved (see Section III-C for specific
examples). More important is the prediction time per sample
spectrum, also reported in Table II and computed as the mean
time per spectrum when predicting on the training, validation,
and test sets. OLS and P2 predictions take around 2 μs or less,
while N2 and N3 prediction times are of order 50 μs (using
CPU only). KRR and GPR prediction times are slightly higher
at about 0.1 ms. But these models are not particularly useful
for our purposes due to their reduced accuracy as shown above.
The prediction time per spectrum for the proposed P4 model
is of order 10−20 μs. This is about 107 times faster than the
simulation, which takes roughly 1−4 min. The extreme speed up
can be explained by the simplicity of the polynomial model used
and the fact that prediction involves only matrix multiplications,
which can be made very fast on a normal CPU. Note as well that
for these models the predictions can be performed in bulk (e.g.,
for the whole test set). The sequential prediction of one spectrum
at a time might differ from the values in Table II.

B. Baseline Emulator

It is clear from the discussion above that our best ML emulator
is the fourth-order polynomial P4. The errors per band for this
baseline model are shown in Fig. 1 separately for the DESIS
and HyPlant cases. The upper plots compare the average total
at-sensor radiances in the test set (red), the at-sensor radiance
for a typical SIF signal withF737 = 0.4mW/cm2/sr/μm (green),
and the P4 model error in the test set (black and gray) across
the wavelength range λ = 740− 780 nm. The mean test set
error is represented by the black line, while the 5th and 95th
percentiles are marked by the gray band and encompass the
interval 5 × 10−4 − 5 × 10−2 mW/cm2/sr/μm for DESIS and
10−4 − 10−2 mW/cm2/sr/μm for HyPlant. Such error levels cor-
respond to � 0.1% of the total at-sensor radiance, attesting the
excellent accuracy of the P4 model. As evident from the bottom
panels of Fig. 1, the model error is consistently at or below
10% of the typical SIF signal with F737 = 0.4 mW/cm2/sr/μm
for different wavelength ranges. Note in particular that there
are virtually no test samples for which the error exceeds the
typical SIF signal. The model performs similarly at and above
the O2-A band (λ = 755− 765 nm and λ = 765− 780 nm) and
slightly better below the absorption band (λ = 740− 755 nm).
This is because the absolute errors are mostly constant across the
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Fig. 2. Dependence of the accuracy of the baseline P4 emulator on observation conditions for DESIS (left) and HyPlant (right). The plots color-code the
band-averaged absolute error in the training set as a function of SZA − TA and RAA for DESIS and of AOT550 and RAA for HyPlant. The regions to the left of
the red lines encompass the largest errors and were masked out for the training and test of the P4A emulator variant.

spectral range considered (cf., upper panels of Fig. 1), while the
SIF signal gradually decreases toward larger wavelengths. The
main message conveyed by our results is that the P4 emulator
is very accurate for the purposes of simulating the feeble SIF
signal in the O2-A band for DESIS and HyPlant.

For completeness, the performance of the baseline emulator
is evaluated for different training set sizes. It turns out the P4
model is very accurate even when trained on small datasets.
In fact, the accuracy of the emulator is the same or better
than in Table II down to 5 × 103 training samples for DESIS
and 5 × 104 training samples for HyPlant. For instance, using
5 × 104 randomly selected samples from the full training set,
the test set MAE of the P4 model is 0.0061 mW/cm2/sr/μm for
DESIS (better than previously) and 0.0027 mW/cm2/sr/μm for
HyPlant (the same as previously). In this context, our test set with
9× 104 samples, although a small fraction of the whole simu-
lated dataset, is appropriate for testing the benchmark models. In
addition, the results suggest that a significantly smaller training
dataset would be sufficient for our particular application with
the corresponding speed up of the simulation step and training
of the emulator.

The performance of the P4 model is excellent across the whole
input parameter space, but it is not uniform. In fact, there are parts
of the parameter space where the emulator performs slightly
worse than on average. This is illustrated in Fig. 2 for DESIS
and HyPlant. In the case of DESIS, the most problematic region
is related to sun backscatter geometries, where sun, sensor, and
target are roughly aligned with the sun behind the sensor (i.e.,
SZA � TA and RAA � 0◦). These configurations lead to an
increase in sunlight backscattered by aerosols and are typically
avoided if possible. For HyPlant, the problematic geometry does
not occur since SZA ≥ TA (cf., Table I), but the largest residuals
arise instead for a narrow range of small AOT 550 values. In
both DESIS and HyPlant cases, the highest errors are very small
(of order 0.02 mW/cm2/sr/μm) and simply indicate where the
selected model has a numerical difficulty in representing the
simulated data.

C. Accuracy Improvement Strategies

Despite the encouraging findings presented above, it is impor-
tant to understand the limitations of our proposed P4 emulator
and explore ways to improve its performance. In the follow-
ing, we consider variants of the P4 model with a restricted
input space (P4A), bandwise learning (P4B), and atmospheric
functions learning (P4C). The performance of the three variants
is presented in Table III and Fig. 3.

We start by considering a restriction of the input space as a
means to improve the performance of the P4 emulator. In fact, the
nonuniform performance shown in Fig. 2 suggests that a better
accuracy can be attained by partitioning the input parameter
space and developing different models for each partition. In or-
der to assess this possibility, we excluded the regions to the left of
the red lines in Fig. 2, namely RAA < 45◦, SZA − TA < −10◦

for DESIS and AOT550 < 0.05 for HyPlant, and retrained and
tested a dedicated fourth-order polynomial model (P4A). As can
be seen in Table III and Fig. 3, the P4A model improves upon
the baseline P4 model on average by 21% for DESIS and 37%
for HyPlant while being similarly fast. Although modest, the
improvement is significant and illustrates how this low-effort
strategy can boost the performance of a model in specific por-
tions of the parameter space. Dedicated emulators for the masked
problematic regions could also be developed if needed. Note that
the trained emulators are only strictly valid in the corresponding
input spaces and should not be used to interpret real data with
parameters outside that space. This is especially important due
to the polynomial nature of models which makes extrapola-
tions beyond the input parameter space particularly prone to
errors.

Next we explore the possibility to train our emulator band-
wise. The formulation of the regression problem in Section II-B
includes a multidimensional target (the at-sensor radiance spec-
trum) and implies the learning of all spectral bands in the same
model. Alternatively, it is also possible to define a separate
regression with a unidimensional target for each band. This
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TABLE III
TIME AND ACCURACY PERFORMANCE OF VARIANTS OF THE BASELINE ML EMULATOR

Fig. 3. Error distribution for the baseline P4 emulator and its variants for DESIS (left) and HyPlant (right). The histograms show the band-averaged absolute
error in the test set for the baseline P4 model (black) and variants P4A (red, restricted input space) and P4C (blue, atmospheric functions learning). The results for
the variant P4B (bandwise learning) are very similar to the ones of the baseline P4 model and are not shown for clarity. The green band indicates the SIF at-sensor
radiance values corresponding to a typical SIF on-ground radiance of F737 = 0.4 mW/cm2/sr/μm at λ = 737 nm.

approach decouples the different bands and enables the best pos-
sible fitting for each band at the price of additional computation
time. The performance of a bandwise fourth-order polynomial
model (P4B) is documented in Table III. As expected, training
takes several times longer than for the baseline P4 model (espe-
cially for HyPlant given the large numbers of bands) and, more
importantly, the prediction time per sample spectrum is 0.1 ms
for DESIS and 4 ms for HyPlant, about 10 and 200 times slower
than P4, respectively. Nevertheless, there is virtually no gain in
accuracy of P4B with respect to P4 with MAE changes appearing
only after the third significant digit. The results suggest that the
overall regression with a multidimensional target used in P4 is
very effective for both DESIS and HyPlant and it does not pay
off to implement bandwise learning in our specific case.

Finally, we attempt to directly learn the atmospheric functions
Lp, E0

g , T ↑, and S at very high spectral resolution instead of the
sensor-resolution simulated data Ls [cf., (1)]. In other words,
our regression problem is no longer as in (2) but it now reads

(
Lp, E

0
g , T

↑, S
)
= F (x) . (4)

The crucial difference is that the new input space of F (x) has a
lower dimensionality. In fact, as explained in Section II-A, the
atmospheric functions depend only on atmosphere and geometry
parameters and can be used with any surface and sensor models
for the derivation of the at-sensor radiance spectrum. There-
fore, learning the atmospheric functions involves a regression
function F (x), where x contains only atmosphere and geometry

parameters as opposed to the case of learning the simulated
at-sensor radiance spectra in (2) where x contains all atmo-
sphere, geometry, surface, and sensor parameters. This reduces
significantly the dimensionality of the input parameter space:
from 12 to 6 dimensions for DESIS and from 13 to 7 dimensions
for HyPlant (cf., Table I). We trained a fourth-degree polynomial
to learn the atmospheric functions (P4C) and combined it with a
numerical module to factor in the surface and sensor properties
as in (1). The performance of P4C model is detailed in Table III
and Fig. 3. The training phase is now much quicker, because
the dimensionality and size of the training set are much reduced
with respect to the case of the P4 model. The prediction time
is approximately 6 ms for DESIS and 173 ms for HyPlant,
about three to four orders of magnitude slower than for P4.
However, the average error in the test set is decreased by a
factor of 3 to 0.0037 mW/cm2/sr/μm for DESIS and by a factor
of 2 to 0.0014 mW/cm2/sr/μm for HyPlant. This suggests that
the learning of atmospheric functions constitutes a promising
strategy to realize a more accurate emulator at the price of a
somewhat longer prediction. Whether a more accurate but slower
ML-based emulator is useful for retrieval schemes depends on
the specific application.

IV. DISCUSSION

In order to assess how well our emulators match observational
data, we perform an unconstrained least-squares optimization
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Fig. 4. Reconstruction of HyPlant spectra with the baseline P4 emulator model. The false color composite of a subset of a HyPlant acquisition (2018/06/26,
15:30 CEST, Jülich DE) is shown in (a), while the spectrally averaged relative reconstruction error is displayed in (b). Panel (c) plots the mean observed (black)
and fitted (blue) at-sensor radiance within the subset as well as the 1th/99th percentiles of the reconstruction residuals (red).

of the input parameters of P4 on individual pixels of a Hy-
Plant acquisition (cf., Fig. 4). The acquisition was recorded
under optimal weather conditions such that its atmospheric
state can be assumed to be covered by the simulation input
ranges. Furthermore, we could infer geometry parameters from
a digital elevation model and the sensor attitude recorded dur-
ing acquisition which were covered by the simulation input
ranges as well. Accordingly, the optimization was restricted to
the atmosphere, surface, and sensor parameters (cf., Table I). We
find the spectrally averaged reconstruction error to be 〈|ΔLs|〉 <
0.25 mW/cm2/sr/μm, which corresponds to a relative recon-
struction error below 1.4%. It is clear from Fig. 4 that this per-
formance holds across different surface classes commonly found
in HyPlant acquisitions (e.g., crops, forested areas, man-made
structures, and bare soil). Retrieval of physical parameters from
spectral data is ill-posed due to the confounding nature of the
parameters affecting the at-sensor radiance. As a consequence,
the parameters derived as the optimal parametrization to P4 in
each pixel cannot be trusted to approximate well the physical
quantities underlying the at-sensor radiance signal generation.
However, good reconstruction performance is a necessary pre-
condition for emulators such as P4 to be used in various SIF
retrieval approaches. Fig. 4 demonstrates the high accuracy of
the baseline P4 emulator when compared to real data from
HyPlant and therefore its usefulness for integration into future
SIF retrieval methods.

We conclude our discussion by commenting on an additional
use of the learned atmospheric functions in the P4C emulator.
Since the atmospheric functions are independent of surface and
sensor properties (cf., Section II-A), the P4C model effectively
opens the possibility to generalize the simulation to any re-
flectance and fluorescence models and any putative sensor. This
point is illustrated explicitly by simulating data with spectral
sampling distances and spectral resolutions resembling the near
future FLEX mission in the vicinity of the O2-A absorption
band. Loosely based on the specifications for the FLORIS in-
strument [32] and the learned P4C model, we show in Fig. 5
several simulated at-sensor radiance spectra between 740 and

780 nm for different observation conditions. It is important
to emphasize that ours is not a high-fidelity simulation of the
performance of the FLORIS instrument, which covers not only
the O2-A band but also the O2-B band in high resolution and
a considerably larger spectral range in lower resolution. In
particular, the emulators developed in our work cover a limited
spectral range (λ = 740− 780 nm) and cannot be employed
directly as emulators for the FLEX mission. However, the results
in Fig. 5 serve to illustrate how our emulator can be used
and extended for sensors other than HyPlant and DESIS. The
ability to realistically simulate at-sensor radiance spectra will
become crucial to interpret the data collected by FLEX and other
missions and ultimately retrieve the underlying SIF spectrum.

V. CONCLUSION

Physics-based ML emulators have the potential to speed up
radiative transfer modelling and thereby widen the reach of re-
trieval methods in varied remote sensing applications. Our work
follows ongoing efforts in the community toward this direction
and focuses on the case of SIF retrieval in the O2-A absorption
band. We deliver in particular a simple ML emulator of at-sensor
radiances which is both fast and accurate enough to characterize
the SIF signal in the DESIS and HyPlant spectrometers. Several
strategies are analyzed to improve even more the accuracy of
the emulator in exchange for lower speeds at prediction time.
The results are not only relevant for DESIS and HyPlant, but are
easily transferable to other sensors, including FLEX. A relevant
line of research for future work is to extend our emulators to
other spectral ranges, especially the O2-B absorption band. This
opens up the prospect of simulating large amounts of realistic
spectrometer data quickly and integrating a fast simulation step
into SIF retrieval methods. Both possibilities will be instrumen-
tal in bringing the power of machine learning to SIF studies over
the coming years. In the wider picture, our work constitutes an
illustrative example on the use of ML to speed up physics-based
calculations in remote sensing applications.
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Fig. 5. Simulated at-sensor radiance spectra around the O2-A absorption band for a FLEX-like instrument. The simulated spectra were obtained with the
P4C emulator model for a space-based nadir observation with sun zenith angle of 30◦, ground altitude of 0 m, aerosol optical thickness at 550 nm of 0.1,
water vapor content of 2.0 cm, a slowly rolling reflectance spectrum (ρ740 = 0.3, s = 0.006 nm−1, e = 0) and different SIF on-ground radiances (F737 =
0.0, 0.2, 0.4, 0.8 mW/cm2/sr/μm). The spectral response function of the putative FLEX-like instrument was modelled roughly following the specifications of
FLORIS [32] in the range λ = 740− 780 nm. The left panel shows the at-sensor radiance spectra for different SIF radiances, while the right panel displays the
at-sensor radiance differences with respect to the case without fluorescence.
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Abstract

The retrieval of sun-induced fluorescence (SIF) from hyperspectral imagery
requires accurate atmospheric compensation to correctly disentangle its small
contribution to the at-sensor radiance from other confounding factors. In
spectral fitting SIF retrieval approaches this compensation is estimated in a
joint optimization of free variables when fitting the measured at-sensor signal.
Due to the computational complexity of Radiative Transfer Models (RTMs)
that satisfy the level of precision required for accurate SIF retrieval, fully
joint estimations are practically inachievable with exact physical simulation.
We present in this contribution an emulator-based spectral fitting method
neural network (EmSFMNN) approach integrating RTM emulation and self-
supervised training for computationally efficient and accurate SIF retrieval
in the O2-A absorption band of HyPlant imagery. In a validation study
with in-situ top-of-canopy SIF measurements we find improved performance
over traditional retrieval methods. Furthermore, we show that the model
predicts plausible SIF emission in topographically variable terrain without
scene-specific adaptations. Since EmSFMNN can be adapted to hyperspec-
tral imaging sensors in a straightforward fashion, it may prove an interesting
SIF retrieval method for other sensors on airborne and spaceborne platforms.

Keywords: Sun-induced fluorescence, deep learning, hyperspectral sensors,
radiative transfer modelling, spectral fitting methods
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1. Introduction

Any application based on hyperspectral imagery of the earth’s surface ac-
quired from remote platforms such as satellites, aircrafts or UAVs must con-
sider the influence of the atmosphere at acquisition time. The atmospheric
state has a confounding influence on the measured at-sensor radiance. In
order to disentangle atmospheric effects from a physical surface variable of
interest a firm understanding of the physical signal generation is necessary.
Various atmospheric radiative transfer models (RTMs) have been developed
(e.g. MODTRAN6 [1], 6S/6SV [2, 3], libRadTran [4]) to derive appropriate
correction algorithms for these effects. In vegetation-related remote sensing
it is crucial to couple such atmospheric models with leaf and soil optical
properties, leaf-level energy fluxes [5, 6, 7, 8], and radiative transfer models
in the canopy [9, 10] to enable accurate retrieval of biophysical parameters
from remote sensing reflectances.

Similarly, the retrieval of sun-induced fluorescence (SIF) from hyperspec-
tral imagery in atmospheric absorption bands relies heavily on accurate mod-
elling of atmospheric radiative transfer and of sensor properties. The state
of the atmosphere parameterized by its water vapour content, the type and
density of aerosols at recording time as well as the pressure and temperature
profiles along the optical path of the at-sensor signal modulate the radiance
signal from which SIF is retrieved [11, 12, 13, 14]. Since in typical acquisition
scenarios of hyperspectral at-sensor radiance for SIF retrieval no measure-
ments are conducted to establish the signal contribution of the atmosphere
during recording time, atmospheric variables must be estimated using RTMs
in iterative processes. However, RTMs can often not be used directly in
radiance-based estimation for individual pixels due to their computational
cost. To reduce the retrieval dependency and the number of RTM simula-
tions required to retrieve SIF from at-sensor radiance, a two-step procedure
is assumed in various SIF retrieval methods as opposed to a joint estima-
tion of surface, atmospheric and sensor related parameters. In a first step
the atmosphere is characterized for a large number of pixels to derive the
atmospheric transmittance with the help of an RTM. In a second step, these
transmittance estimates are used to disentangle reflectance, fluorescence and
possibly sensor miscalibrations commonly parametrized in center wavelength
(CW) and full width at half maximum (FWHM) shifts. For example, [15, 16]
derive a set of atmospheric transfer functions for single acquisitions using an
RTM ’interrogation’ technique first introduced by [17]. Operationally, these
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estimated transfer functions are finetuned to account for retrieval errors of
atmospheric components, sensor noise, sensor mischaracterization and model
inaccuracies by modifications of a procedure called transmittance correction
[18, 19]. This type of finetuning of the atmospheric transfer functions is based
on the presence of non-vegetated pixels that are not affected by fluorescence.
The identification of non-vegetated soil pixels can be difficult, however, in
many geographical areas and especially in observation set-ups resulting in
pixel sizes larger than a few meters where pure pixels are rare.

The validity of constant atmospheric transfer across a large set of spatial
pixels relies on the fact that in airborne imagery the auto-correlation distance
of atmospheric factors influencing the at-sensor radiance is usually larger than
the spatial extent of the prediction [20, 21]. In the case of airborne acquisi-
tions this results usually in the use of a single RTM estimate per acquisition.
In the case of spaceborne acquisitions with a much larger spatial footprint,
as will be provided for example by the FLEX mission [22], this assumption
is not satisfied and strategies to localize the atmospheric characterizations
efficiently must be developed. In the context of atmospheric correction for
accurate reflectance estimation [23] have for example recently demonstrated
the use of local linear emulators for accurate and computationally efficient
atmospheric correction.

Similarly to changing atmospheric conditions on spatial scales relevant
to satellite observations, the strongly changing observational conditions in
airborne observations of topographically variable terrain are a challenge for
SIF retrieval algorithms based on spectral regions affected by O2 absorption.
The simplifying assumption of constant atmospheric transmittance is invalid
in these cases since the resulting optical path differences cause large variance
in the depth of these absorption features.

[24] has proposed a pathway to computationally efficient SIF retrieval in
these observational conditions. A reconstruction based on a Principal Com-
ponent Analysis (PCA) of atmospheric transfer functions is used to model
the radiative transfer non-parametrically. The use of PCA reconstructions
allows for localized radiative transfer estimations and, importantly, a joint
retrieval of the transfer functions as well as surface and sensor related quanti-
ties impacting the at-sensor radiance. However, the PCA loadings are fitted
non-parametrically since they are not formulated as functions of physical
quantities (e.g., surface and sensor altitude, water vapour content, aerosol
optical density) as would be the case with physically explicit RTM simula-
tions. This (i) impedes the explanatory power of atmospheric estimates and
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(ii) does not allow for constraining the atmospheric estimates with known
physical quantities.

In this work we propose the use of RTM emulation instead of the PCA-
based radiative transfer formulation adopted in [24] to increase the physical
accuracy of the Spectral Fitting Method Neural Network (SFMNN) in Hy-
Plant FLUO data. Such an emulator-based SFMNN (EmSFMNN) approach
has recently been validated for spaceborne DESIS data [25] in conjunction
with a loss formulation similar to [24]. The authors find good agreement
between their DESIS derived SIF product and HyPlant SIF estimates in
a benchmark data set consisting of quasi-simultaneously recorded HyPlant
and DESIS acquisitions highlighting the potential of this approach for hyper-
spectral sensors with improved spectral sampling intervals such as HyPlant
FLUO and the FLORIS sensor onboard the ESA’s Earth Explorer Mission
FLEX [22].

RTM emulation can be regarded as a computationally efficient approx-
imation of the exact RTM computation by a function acting on the same
input parameter space as its RTM counterpart [26]. The functional form of
such emulators is not relevant a priori, but depends on the specifications of
the application such as the required computational speed and reconstruction
performance, the spectral range of the application and the input parameter
dimensionality. In this contribution, we derive a polynomial emulator from a
large simulation database replicating typical observational conditions and the
sensor characterization of the hyperspectral imaging sensor system HyPlant
as in [11, 27, 28]. We additionally extend this emulator to represent band-
wise spectral miscalibration which is shown to be integral for accurate SIF
retrieval in HyPlant data. The functional form of this emulator matches well
the specific requirements of neural network training. The computational effi-
ciency of its predictions and gradient computation are sufficient for training
on large hyperspectral data bases. With this novel neural network approach
to integrate a computationally efficient model of canopy level optical prop-
erties and atmospheric radiative transfer into a SIF retrieval scheme we are
able for the first time to make use of a pixelwise geometrical parameterization
for a joint estimation of SIF and reflectance in airborne SIF retrieval.

In this study, We focus on SIF retrieval of selected campaign data sets of
the hyperspectral HyPlant sensor system [29, 30]. The sensor characteristics
of HyPlant and size of HyPlant data sets are uniquely suited to develop
and improve partly data-driven SIF retrieval algorithms such as ours. Since
HyPlant data is often acquired during field campaigns featuring ground based
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Data Set Campaign FLOX ∆h [m] |D| [×103] Location

SEL-2018 (600 m) SEL ✓ 20 15 (5) Selhausen, DE

WST-2019 (1500 m) WST ✓ 20 14 (5) Braccagni, IT

CKA-2020 (600 m) CKA ✓ 20 10 (3) Kl. Altendorf, DE

CKA-2020 (350 m) CKA ✓ 20 8 (2) Kl. Altendorf, DE

CKA-2021 (350 m) CKA ✓ 20 4 (1) Kl. Altendorf, DE

TOPO
SOP, HOE

– 300 11 (3)
Jülich, DE

Hölstein, CH
600 m
2021 - 2023

PRE

PHY, HOE, TR32

– 300 235 (38)

CKA, SEL, SOP

WST, NRS

350 - 1800 m

2018 - 2023

Table 1: Data sets of compiled HyPlant acquisitions from different locations in the years
2018 - 2023. Data Set denotes a single compilation. With Campaign we denote the
campaign identifier pointing to the used acquisitions according to the identified scheme
outlined in the openly available HyData data set [30], with FLOX we denote the avail-
ability of simultaneous FLOX data, with ∆h the maximum topographic variation over the
compiled data set, with |D| the data set size in terms of number of 60×60 image crops. In
parenthesis is reported the number of patches used for training.

SIF measurements, we are able to complement the present study with a direct
comparison of SIF estimates of our approach with ground-based in-situ SIF
estimates. However, we point out that while HyPlant is well suited to test the
set-up presented in this work, EmSFMNN may be applied on data acquired
by other airborne or spaceborne sensors. Its specific formulation is in fact
well suited to cope with large existing hyperspectral data sets and continuous
data streams of hyperspectral imaging sensors.

2. Data

2.1. Data quality provided by the HyPlant FLUO sensor

The HyPlant FLUO sensor [29] is the airborne demonstrator for the space-
borne FLEX satellite mission [22]. As such, it has been designed specifically
for SIF retrieval in the atmospheric O2-A and O2-B absorption bands with
a spectral sampling interval of 0.11 nm and a full width a half maximum
(FWHM) of 0.25 nm. A large collection of hyperspectral HyPlant data sets
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Figure 1: Geometrical set-up of the
sun-observer geometry definitions in use.
RAA denotes the relative azimuth angle,
TA the tilt angle and SZA the sun zenith
angle.

Specification Range

Atmosphere H2O [cm] 0.3−3.0

AOT550 [] 0.02−0.30

Geometry TA [◦] 0−25

SZA [◦] 20−55

RAA [◦] 0−180

hgnd [km] 0−0.760

hagl [km] 0.2−2.86

Surface ρ740 [] 0.05−0.60

s [nm−1] 0−0.012

e [] 0−1

F737 [∗] 0−8

Sensor ∆λ [nm] [−0.080,+0.080]

∆σ [nm] [−0.040,+0.040]

Input dimensions 13

Number of bands 349

Number of samples 6.3× 106

Table 2: Specification of the ranges of
all physical variables necessary for complete
parametrization of the simulation tool.
∗: F737 is given in units of [mW/nm/sr/m2].

have been collected since 2014 [31, 32, 33, 34, 35, 36, 37] and are partly openly
available [30]. In particular, yearly data sets since 2018 can be considered to
be comparable across different campaigns due to their operationalized and
standardized radiometric calibration and derivation of the geometric cor-
rection. Overall, the radiometric calibration is gauged at a mean relative
uncertainty rg of 3% [36] and the geolocalization reaches subpixel accuracy
[29].

In this study, we make use of radiometrically corrected HyPlant FLUO
acquisitions acquired in the years 2018 -2023 (cf. Tab. 1) in different flight
campaigns, various locations and varying sun-observer geometries. The data
set incorporates a large part of all available HyPlant FLUO acquisitions from
this time period. We notably include acquisitions with strong topographic
variation to train and to test the retrieval performance under these demand-
ing conditions (cf. Sec. 4.4).
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2.2. Simulation of HyPlant at-sensor radiance
The emulator utilized in this work is based on the polynomial emulator

described in [27, 28] derived from a simulation tool generating single pixel
at-sensor radiance [11]. It uses MODTRAN6 to model radiative transfer
through the atmosphere and assumes simple parametric models for surface
reflectance and fluorescence emission in the spectral range around the O2-A
oxygen absorption band. The parameters of the simulator have been cho-
sen according to an extensive sensitivity study performed in [11]. We fixed
the ranges of the resulting 13 parameters such that they cover the empir-
ical distributions found in the HyPlant acquisitions used in this work (cf.
Tab. 2). Appropriate ranges for the geometric parameters sensor altitude
above ground level hagl, ground altitude hgnd, relative azimuth angle RAA
and tilt angle TA could be established exactly from metadata provided with
HyPlant data taking account of its precise orientation. The ranges for the
surface parameters and for the sensor characterization also were adopted di-
rectly from preparatory work in [27, 28]. The parameterization of a simple
quadratic reflectance model implemented in the simulation tool was chosen
according to an analysis of vegetation and soil reflectance spectra of the
DUAL hemispherical-directional reflectance product that is computed op-
erationally for all HyPlant acquisitions. Equally, we modelled fluorescence
emission in the O2-A band spectral region with a Gaussian with fixed mean
(µ = 737 nm), fixed standard deviation (σf = 20 nm) and a free ampli-
tude F737. The ranges regarding the sensor characterization parameterized
by center wavelength shifts ∆λ and FWHM shifts ∆σ were derived from in-
flight data. Due to lacking simultaneous measurements, which would have
allowed an estimate of the ranges of the atmospheric parameters aerosol op-
tical thickness AOT550 and water vapour density H2O, these ranges were
chosen such that they covered all possible atmospheric states in which Hy-
Plant campaigns are operated (cloud-free weather conditions in mid-latitude
regions in summer).

We sampled the parameter ranges in Tab. 2 with different sampling strate-
gies for training and validation data set to derive an emulator as outlined in
[27, 28]. Importantly, the input parameters p were sampled independently.
Since the parametric models for the spectral shapes of the reflectance and
fluorescence implemented in the simulation tool were completely independent
as well, we prevented our retrieval method to incorporate cross-correlations
between fitted parameters a-priori as this would undermine the purely phys-
ical approach followed in this work.
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2.3. In-situ SIF validation data

For a subset of the HyPlant acquisitions used in this work in-situ mea-
surements of SIF are available (cf. Tab. 1). All in-situ measurements were
derived with the Improved Fraunhofer Line Discrimination Method (iFLD)
[38] from radiance point measurements and solar irradiance recordings of
the hyperspectral FLOX device (Fluorescence Box, JB-Hyperspectral De-
vices GmbH, Duesseldorf, Germany). In the case of the FLOX measurement
series matching with CKA-2020 HyPlant acquisitions, the in-situ measure-
ments were taken in four different locations by four different devices. One
FLOX was placed in an agricultural oat field and three others in wheat fields.
For the validation, we have aggregated the time series and did not differen-
tiate between the different FLOX devices. The localization of those FLOX
systems was improved with an exact GPS RTK measurement at each of the
devices. In case of the in-situ measurements matching the SEL-2018 HyPlant
acquisitions, a single mobile FLOX device was used in agricultural fields of
sugar beet and wheat.

FLOX measurements falling within a 5 minutes to the acquisition time
of HyPlant were considered. We selected only FLOX measurements flagged
as having high radiometric stability (< 1% difference in solar irradiance over
the course of the measurement) in order to exclude measurements affected
by cloud and haze. Since HyPlant campaigns are only conducted in optimal
weather conditions, no measurements had to be excluded. In the case of
multiple measurements within this time window matching a single acquisi-
tion, we averaged the FLOX iFLD SIF estimate to compare with HyPlant
derived SIF estimates. In order to account for localization errors as well as
the field of view we compared HyPlant pixels within a 2 m radius around
the measurement location. The temporal and spatial variance resulting from
the time windowing and spatial localization buffer were used as proxies for
uncertainty estimates in the performance calculations.

3. Methods

3.1. Simulation Tool

The simulation tool utilized in this work [11, 27, 28] uses MODTRAN6
to simulate the HyPlant at-sensor radiance in a spectral range covering the
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O2-A absorption band (740 - 780 nm) according to the model

Ls(p) =

(
Lp +

E0
gρT

↑

π(1− ρS)
+ LFT

↑
)
(p) (1)

as a function of the parameters p (as defined in Tab. 2) where Lp is the
path radiance, E0

g is the global solar irradiance on the ground, T ↑ is the total
transmission coefficient from surface to sensor (direct and diffuse components,
T ↑ = T ↑

dir + T ↑
dif), LF is the top-of-canopy fluorescence emission modelled as

a Gaussian with fixed variance and amplitude F737, S is the spherical albedo
of the atmosphere, ρ is the hemispherical-directional reflectance modelled as
a 2nd order polynomial with offset ρ740, slope s and curvature e, H2O denotes
the columnar water vapour content, AOT550 the aerosol optical thickness,
TA the viewing angle, SZA the solar zenith angle, RAA the relative azimuth
angle between observation and irradiance directions, hgnd the topographic
height above sea level, hagl the sensor height above ground level and ∆λ and
∆σ the scalar shifts in the center wavelength and full width at half maximum
(FWHM). In order to be consistent with in-situ reference fluorescence esti-
mates, we report SIF760 instead of F737 in all validation and analysis sections
which we define as the functional value of the modelled fluorescence emis-
sion at 760 nm. The simulations have been conducted with an atmospheric
model corresponding to the MODTRAN mid-latitude summer model. Thus,
we have disregarded changes in the atmospheric pressure profile that might
be caused by changing meteorology or topography. Finally, as in [28, 27],
we densely sample the parameter space spanned by the parameter ranges in
Tab. 2 and run a total of 6.3× 106 simulations.

3.2. Definition of the polynomial emulator

Emulation of a hyperspectral simulator Ls(p) : RM → RΛ from physical
parameters p ∈ RM by an emulator e is ultimately a regression problem
where we derive a function e : RM → RΛ that reproduces as closely as possible
the simulator Ls at reduced computational cost. In practice, there is a trade-
off between reducing the residual between simulator and emulator on the
one hand and reducing the computational cost of e on the other for any non-
trivial simulator Ls. Since the emulator is used during the training of a neural
network, we require additionally that its gradient computation is efficient and
preferably can be integrated easily in common programming frameworks for
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deep learning. The polynomial emulator investigated by [27, 28] fulfills these
requirements. It is defined as the polynomial function of dth order

ed(p | aKd) =
∑

k∈Kd

pk01 . . . pkMM ak, (2)

over the parameters p, where ak ∈ RΛ and where the set of polynomial
features is defined as

Kd =

{
k ∈ NM :

∑

1≤i≤M

ki ≤ d

}
(3)

We train the emulator weights ak in a least-squares optimization with a
training subset of the data points partitioned from the total simulation data
set as in [27, 28].

3.3. Emulation of a wavelength dependent sensor characterization

The simulation data base is created for scalar shifts ∆λ and ∆σ, i.e. sim-
ulated spectra s(p) ∈ RΛ will suffer the same simulated sensor miscalibration
in all wavelengths λ ∈ Λ. In a realistic sensor model, CW and FWHM shifts
are, however, functions of the wavelength such that we ought to find an em-
ulator with dependency on shifts ∆λ ∈ RΛ and ∆σ ∈ RΛ in addition to the
other input parameters p̃. We assume that there is no cross dependency of
the shifts either in the measured at-sensor radiance L or the simulator Ls,
i.e.

∀i ̸= k :
dLi

dvk
=

d (Ls)i (p̃,∆λ,∆σ)

dvk
= 0, v ∈ {∆λ, ∆σ}. (4)

In this case a naive approach to extend the emulator could be achieved by
rewriting

eΛd (p̃,∆λ,∆σ) = (ed(λi | p̃,∆σi,∆λi))0≤i≤Λ (5)

As the simulation data base covers a large number of spectral bands (Λ =
349) such an approach results in a significant increase in computation time
for a single spectrum since the emulator would need to be run Λ times for a
single emulated spectrum. We therefore adopt an approximation. We derive
a multiplicative correction factor

m(λi |∆λ,∆σ) = E [w (λi | p̃, ∆λi,∆σi)] (6)

= E
[

ed (λi | p̃, ∆λi,∆σi)

ed (λi | p̃, ∆λi = ∆σi = 0)

]
(7)
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Module Parameters

Encoder ein

Dim. (2e3, 2e3, 1e3, 5e2, 5e2, 1e2, 1e2, 1e2, 50)
Reps. (3, 3, 3, 3, 3, 3, 3, 1, 1)

Dp (0.05, 0.05, 0.01, 0.01, 0.005, 0.0)

Decoder dv

Dim. (1e2, 50, 50, 50, 10)
Reps. (3, 2, 2, 1)

Dp (0.05, 0.05, 0.01, 0.01, 0.005, 0.0)

Sensor charact. g
Dim. (1e2, 50, 50, 50, 10)
Reps. (3, 2, 2, 1)

Dp (0.05, 0.05, 0.01, 0.01, 0.005, 0.0)

Table 3: Dimensionalities for different modules in the EmSFMNN architecture (cf. Fig. 2).
Elements in a tuple denote an architecture parameter for a single sublayer in a module.
Reps. denotes the number of repetitions of linear layers in a sublayer, Dp denotes the
dropout rate of the output of the sublayer. For a more detailed exposition of the module
architecture we refer to [24].

where the expectation is calculated by sampling randomly over the param-
eter distribution in the input parameter space. As we will show below, the
variance over this distribution is very small, such that we can write

ẽd (λi | p̃,∆λ,∆σ) ≈ m(λi |∆λ,∆σ) · ed (λi | p̃, ∆λi = ∆σi = 0) (8)

3.4. Neural Network Architecture

We integrate a fourth-order emulator ẽ4 of the radiative transfer in Eq. 1
with a self-supervised neural network. We construct a neural network acting
on fixed size excerpts of HyPlant imagery (60 × 60) that we will refer to as
patches. The network architecture is defined as in SFMNN [24] and similarly
to a DESIS EmSFMNN implementation [25] (cf. Fig. 2) as a Multilayer
Perceptron (MLP) encoder-decoder set-up. The network is trained to predict
all parameters p of the RTM model in Eq. 1 that cannot be inferred from
metadata or geometrical recordings, i.e. all parameters in Tab. 2 except
parameters of the group Geometry.

The encoder ein and decoder modules dv in this network are constructed
as MLPs with residual links and have the dimensionalities given in Tab. 3.
The decoders are tasked with disentangling the latent space spanned by the
encoder to the physical parameters p̃ parameterizing the radiative transfer
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model underlying the simulation tool and, thus, the emulator. We define two
decoders dv: for the reflectance and fluorescence related parameters predicted
for each pixel and for the atmospheric parameters predicted for each patch.
These two decoder modules are implemented identically with the exception
of a final spatial mean reduction before the emulator layer in the case of the
patchwise predictor. As in SFMNN, we differentiate between pixel-wise and
patch-wise prediction based on the fact that atmospheric parameters (AOT
and H2O) have an autocorrelation that typically exceeds the physical patch
size such that a single atmospheric estimate per patch can be assumed to
lead to sufficiently precise approximations.

The estimation of sensor shifts ∆λ and ∆σ is implemented differently.
We assume that we can fit these shifts as a function of the sensor state at ac-
quisition time and the across-track sensor position alone without any spectral
input. This assumption is implemented in the architecture by estimating the
sensor shifts only from an arbitrarily defined acquisition identifier u ∈ RU

that represents the sensor state and the across-track position x1. At the start
of the training we randomly instantiate these identifiers u of fixed dimension-
ality (U = 8) for each acquisition in the training data set and include them
as learnable parameters in the optimization. The MLP module g predicts
shifts ∆λ and ∆σ for each wavelength (Λ = 349) at across-track positions
x1 from pixelwise concatenations of the identifier vectors u and a positional
encoding of x1 [39].

An important characteristic of this particular set-up consists in the phys-
ically coherent separation of inputs and the differentiation of output dimen-
sions for individual parameters. For example, all reflectance parameters (ρ740,
s, e) and the fluorescence emission amplitude F737 are estimated for each pixel
from the radiance data and geometrical information νgeo, but without pro-
viding the acquisition identifier u since the decoders to those parameters by
definition do not depend on sensor characteristics or acquisition dependent
changes. Similarly, atmospheric parameters are estimated from radiance and
νgeo alone, but, differently to the surface parameters, only per patch as we
assume negligible variance of these parameters over small spatial distances.
The sensor characterization ∆λ and ∆σ on the other hand is uniquely esti-
mated from the acquisition identifier u for individual across-track positions
x1 since it is driven by factors that are identical across single acquisitions.
Both input separation and differentiation in output dimensionality constrain
the network optimization architecturally with prior knowledge of the physical
processes and sensor design at play. On the other hand, we implicitly con-
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Figure 2: Outline of the architecture and emulator integration of the SFMNN used in this
work. Dimensions of the encoder ein, the decoders for variables ρ740, s, e, F737, AOT550

and H2O and the sensor characterization g are given in Tab. 3.

strain the network by enforcing physically accurate solutions of the radiative
transfer equation Eq. 1 given a particular parametrization p̃. Differently to
the simplified four-stream model used in SFMNN to model at-sensor radi-
ances, the emulator ẽ allows for pixel-wise parameterization of the radiative
transfer formulation with known geometrical variables. This is a significant
improvement over SFMNN’s formulation as the solution space of the network
can be constrained very precisely in a pixel-wise fashion.

3.5. Loss formulation

The loss used in this set-up is adapted from the loss used in [24]. It
consists of a batchwise mean squared reconstruction error complemented by
two regularizers. Given the input radiance spectra LHyP as measured by
HyPlant and matching geometrical meta data νgeo (flight hsen and ground
altitude hgnd, relative azimuth RAA, tilt angle TA and solar zenith angle
SZA) we train the network n to minimize

ℓ
(
LHyP, L̂HyP

)
=

〈(
LHyP − L̂HyP

)2〉

λ, x

+ γf ℓf + γN ℓNDVI, (9)

where LHyP is the measured at-sensor radiance in the spectral window W
and

L̂HyP = ẽ(p̃,∆λ,∆σ, νgeo) (10)
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denotes the network prediction with predicted p̃, ∆λ and ∆σ. ⟨. . . ⟩x,λ de-
notes the spatial and spectral mean over the patches included in a batch.
Throughout all experiments in this work we have fixed the regularizer weights
γf = 1 and γNDVI = 10. These weights were established as they have shown
satisfactory results in preliminary tests on the CKA-2020 (600 m) data set
(cf. Tab. 1).

The fluorescence regularization

ℓf =

〈∑

λ∈W
wλ

(
LHyP(λ)− L̂HyP(λ)

)2
〉

x

∣∣∣∣∣
δpi=0, pi ̸=F737

(11)

boosts the contribution of reconstruction residuals according to a SNR-based
weighting wλ that accounts for the spectral distribution of typical fluores-
cence emission. This weighting is derived as the Moore-Penrose solution to
a linearized retrieval problem with known reflectance and atmospheric pa-
rameters [24]. We thus restrict the gradient contribution of this loss term to
affect only the fluorescence decoder (i.e. network weights uniquely related to
parameters pi ̸= F737, i.e. reflectance, atmospheric and sensor parameters,
are not affected by this term). The physiologically motivated regularizer

ℓNDVI =
〈
f̂ · δ (NDVI < τ)

〉
x

(12)

ensures that the fluorescence estimate f vanishes in pixels with very low
green vegetation, i.e. in pixels with a low Normalized Difference Vegetation
Index (NDVI). To identify these pixels, we set a threshold τ = 0.15 on an
approximate NDVI product derived from the radiance LHyP.

3.6. Training set-up

The training of the EmSFMNN SIF predictors takes place in two steps.
We first train a backbone on the PRE HyPlant data set (cf. Tab. 1). This
backbone is used as the initialization to all EmSFMNN instances that are
trained for individual data sets in the second step. Finetuning of PRE aims
at adjusting the network (1) to the data set specific radiance calibration, (2)
to train the acquisition specific identifiers u that determine the estimated
shifts ∆λ and ∆σ and (3) to train in the specific parameter ranges covered
differently in the various data sets (e.g. TOPO exhibiting larger variation
of hagl). During the finetuning step, the encoder ein is fixed and only the
decoders dv, the identifiers u and the sensor characterization g are trained.
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As the identifiers u are not estimated from the radiance data but rather im-
plicitly as a result of the architectural constraint in each acquisition, there
is no generalization property of this part of the network. Thus, in order
to get meaningful shift predictions, a finetuning is thus necessary. When
EmSFMNN instances are applied to data sets for which they were not fine-
tuned, arbitrary identifiers u are selected from the set of finetuned u. This
procedure results in larger reconstruction errors than would have been pos-
sible with a finetuning of u but it doesn’t necessarily affect the fluorescence
estimate negatively. The spectral reconstruction window W was fixed to
cover 750 - 770 nm.

Figure 3: Multiplicative change w of e4 under variable sensor shifts (∆λ and ∆σ) in three
selected wavelengths. In blue is plotted the standard deviation of w (as defined in Eq. 6)
over the distribution of randomly sampled emulator parameter configurations p. The
fitted mean used as multiplicative correction m (see Eq. 6) is plotted in orange.

4. Results

4.1. Training of emulator extension for bandwise spectral shifts

We have derived a polynomial emulator of 4th order of HyPlant at-sensor
radiance e4 for the parameter ranges given in Tab. 2. In order to allow for
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Figure 4: Relative errors of the approximate emulator ẽ4 (green/yellow) and scalar shift
emulator e4 (pink) with respect to the accurate eΛ4 emulator. In the case of e4 we set
∆λ = ∆σ = 0. The 25 -75 % percentile range is plotted in dark green, the 5 - 95 %
percentile range in light green, the mean in yellow. Pink denotes the 25 -75 % percentile
range.

efficient training we then have implemented the emulator extension for wave-
length dependent shifts ẽ4 based on the polynomial emulator e4 which acts
only on scalar shifts as outlined in Sec. 3.2. To this end, we have computed
the multiplicative factor m as the expectation in Eq. 6. To compute the dis-
tribution, we uniformly sampled a large number of parameter combinations
p and sensor shifts ∆λ and ∆σ in the input space spanned by the individual
parameter ranges.

We found the standard deviations of w to be bounded by 3.5% under CW
shifts and 0.06% by FHWM shifts which we regarded as sufficiently small to
approximate it by its mean m (cf. Fig. 3). Subsequently, we fitted a 5th

order polynomial to the derived m to gain a multiplicative factor defined on
the whole input parameter space discarding the need for interpolation during
prediction. The dimension of this polynomial was required to be just large
enough to fit m well. The use of ẽ4 leads to a significant time reduction as
compared to eΛ4 (cf. Tab. 4).

In order to evaluate the accuracy of ẽ4 we compared it to eΛ4 on a uniformly
sampled test set. While eΛ4 takes significantly longer to compute, its accuracy
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with respect to the RTM is as high as the emulator itself since it essentially
computes the emulator in a bandwise fashion. In Fig. 4 we show that the
mean relative error incurred by using the approximation ẽ4 is smaller than
1% . However, the 95% percentile reaches a relative error of 3.5% inside
the O2-A band. We equally show the effect of neglecting bandwise shifts by
comparing emulations of eΛ4 with e4 emulations with scalar shifts. The same
parameters p̃ were used for eΛ4 and e4 with only ∆λ and ∆σ set to a fixed
scalar value for e4. The relative errors can reach up to 10-20 % in the O2-A
band highlighting the importance of bandwise sensor characterization.

4.2. Reconstruction Performance

We evaluate the impact of the various implemented constraints, the op-
timization and the emulator extension on the reconstruction performance.
To this end we compare the reconstruction performance of four different
EmSFMNN set-ups to the reconstruction performance of an unconstrained
least-squares optimization (LSQ) of the emulator e4 to individual pixels
in a single HyPlant acquisition (cf. Fig. 5). By mCKA(ẽ4) we denote an
EmSFMNN predictor using the spectrally explicit sensor miscalibration em-
ulator ẽ4 and finetuned on the CKA-2020 (600 m) data set. The EmSFMNN
mSEL(ẽ4) and mSEL(e4) are equivalently trained on the SEL-2018 (600 m)
data set and mPRE(ẽ4) denotes the common backbone without finetuning.
Importantly, the HyPlant acquisition for which we evaluate the reconstruc-
tion performance is part of the finetuning training set of mSEL(ẽ4) but not of
mCKA(ẽ4). Due to the prediction of ∆λ and ∆σ in EmSFMNN being depen-
dent on learnable IDs, and the ID not having been trained for mCKA(ẽ4), we
use a single ID in CKA that we arbitrarily choose from the set of IDs trained
for CKA acquisitions.

e4 eΛ4 ẽ4

Prediction time per sample 0.28 µs 55.40 µs 1.93 µs

Table 4: Prediction time measurements for the original emulator e4, the original emulator
applied in a bandwise fashion eΛ4 and the emulator approximation ẽ4. In the case of e4
only scalar sensor shifts were computed. The values represent the average of 20 time
measurements on a single GPU (NVIDIA Quadro RTX 8000) predicting a batch of 104

samples.
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Figure 5: Distribution of relative reconstruction errors ε (see Eq. 13) for different
EmSFMNN set-ups as well as a least-squares optimization in a HyPlant acquisition
recorded on 2018/07/26 15:30 CEST in Selhausen. The mean values of these distribu-
tions are reported directly in the figure with vertical lines. Mean relative reconstruction
errors for mSEL(e4) and mSEL(ẽ4) overlap in this figure. rg denotes the relative uncertainty
of the radiometric calibration.

In Fig. 5 we report the distribution of the relative reconstruction residuals

ε =

〈∣∣∣∣∣
LHyP − L̂HyP

LHyP

∣∣∣∣∣

〉

x,λ

. (13)

of LSQ and all EmSFMNN predictors in the acquisition. We find that the
unconstrained emulator optimization LSQ outperforms all EmSFMNN train-
ing set-ups. However, since LSQ is completely unconstrained, the resulting
estimates of physical parameters defining the simulation layer are not well
disentangled. As a consequence, it cannot be used for SIF retrieval, even
though it provides a useful baseline for the reconstruction error.

Since the simulation layer of mSEL(e4) and LSQ are the same, a compar-
ison of mSEL(e4) to the least-squares optimization LSQ isolates the impact
of EmSFMNN’s constraint formulation and its feature-based optimization.
The direct EmSFMNN equivalentmSEL(e4) performs significantly worse than
LSQ, presumably due to the constrained optimization. However, this de-
crease in reconstruction performance can be improved by adopting the ex-
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r R2 MAE
N

[mW nm−1 sr−1 m−2]

S
E
L
-2
0
1
8

(6
0
0
m
)

EmSFMNN (ẽ4) 0.91 0.55 0.26 ± 0.09 10

EmSFMNN (e4) 0.86 0.74 0.46 ± 0.05 10

PRE 0.78 0.57 0.47 ± 0.06 10

SFMNN 0.98 – 0.68 ± 0.07 10

SFM 0.96 – 0.51 ± 0.07 10

iFLD 0.64 0.10 0.88 ± 0.00 11

W
S
T
-2
0
1
9

(1
5
0
0
m
)

EmSFMNN (ẽ4) -0.54 – 0.29 ± 0.05 15

EmSFMNN (e4) -0.73 – 1.48 ± 0.05 15

PRE -0.78 – 0.41 ± 0.04 15

SFMNN – – 0.22 ± 0.10 15

SFM – – 0.53 ± 0.08 15

iFLD – – 0.80 ± 0.10 15

C
K
A
-2
0
2
0

(6
0
0
m
)

EmSFMNN (ẽ4) 0.65 0.02 0.35 ± 0.05 16

EmSFMNN (e4) 0.69 0.18 0.47 ± 0.05 16

PRE 0.67 – 0.39 ± 0.06 16

SFMNN 0.69 0.34 0.33 ± 0.06 16

SFM 0.72 – 0.48 ± 0.06 16

iFLD 0.64 – 0.42 ± 0.09 16

C
K
A
-2
0
2
0

(3
5
0
m
)

EmSFMNN (ẽ4) 0.74 0.04 0.28 ± 0.04 34

EmSFMNN (e4) 0.81 0.12 0.35 ± 0.04 34

PRE 0.80 – 0.33 ± 0.04 34

SFMNN 0.84 – 0.34 ± 0.04 34

SFM 0.87 – 0.35 ± 0.04 34

iFLD 0.58 0.05 0.28 ± 0.05 34

C
K
A
-2
0
2
1

(3
5
0
m
)

EmSFMNN (ẽ4) – 0.19 0.38 ± 0.09 6

EmSFMNN (e4) – 0.16 1.07 ± 0.12 6

PRE – 0.30 0.70 ± 0.09 6

SFMNN – – 0.65 ± 0.10 6

SFM – – 0.50 ± 0.08 6

iFLD 0.85 0.71 0.12 ± 0.18 6

Table 5: Comparative validation of SFM, iFLD, SFMNN and EmSFMNN retrieval meth-
ods. We report the mean absolute error (MAE) of the EmSFMNN predictions with respect
to FLOX measurements, the Pearson correlation r and the Explained Variance Score R2.
In cases where the p-value of r is larger than 5% we do not report r and write − instead.
Similarly, in cases where R2 ≤ 0 we do not report R2 and write −.
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tended emulator formulation with bandwise shift prediction which results in
a smaller lower limit of the reconstruction residuals but which also increases
the tail towards larger residuals.

We measure the generalization capacity of EmSFMNN across different
data sets with respect to the reconstruction performance. The residual dis-
tribution of mCKA(e4) yields an ε which is significantly increased over its
equivalent mSEL(e4) as it lacks finetuning to the HyPlant input data acqui-
sition. However, its performance is close to what can be expected from the
relative uncertainty of the radiometric calibration of the at-sensor radiance
rg. Since mCKA(e4) that has been finetuned on the CKA-2020 data set is
applied here on an acquisition from the SEL-2018 data set, effects due to
different yearly calibrations can affect the reconstruction performance.

Finally, it can be observed that the relative reconstruction error ofmPRE(e4)
is constrained in the range 3 - 6 %. It is thus larger than errors attributed
purely to calibration uncertainties and indicates that the backbone PRE is
not able to reconstruct model at-sensor radiance of arbitrary HyPlant acqui-
sitions from its learned feature representation without prior finetuning.

4.3. Validation with FLOX data

We validate EmSFMNN SIF predictions with top-of-canopy iFLD SIF
estimates derived from radiance data recorded by FLOX devices. To this end,
we use the fluorescence model assumption of the Gaussian implemented in
the simulations to calculate SIF760 consistent with the FLOX iFLD retrieval
software. Five measurement time series are at our disposal acquired during
HyPlant overflights in field campaigns in the years 2018 - 2021 (see Fig. 6).
To support our comparison, we also report the validation results for three
baseline methods that were developed for hyperspectral HyPlant imagery
(iFLD, SFM and SFMNN). Additionally, we show the impact of the emulator
formulation and the finetuning on the performance of the standard training
set-up denoted by EmSFMNN (ẽ4) in Tab. 5. To this end, we report (i)
results for the EmSFMNN set-up using the polynomial interpolation without
band-wise sensor characterization, denoted as EmSFMNN (e4), and (ii) the
performance of the coarsely pre-trained SIF predictor, denoted as PRE.

We find that the EmSFMNN (ẽ4) predictors finetuned to the individ-
ual datasets generally are among the best SIF retrieval methods in terms
of the mean absolute error with respect to FLOX estimates (MAE). They
yield MAE scores consistently smaller than 0.4 mW nm−1 sr−1 m−2 whereas
stronger variation in MAE can be found in case of the iFLD, SFM and
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SFMNN SIF predictions. We find notably a reduced overestimating bias of
EmSFMNN as compared to SFMNN in Fig. 6 and a higher accuracy than
in SFM and iFLD predictions.

Both the use of ẽ4 instead of e4 as well as the finetuning considerably
decrease the MAE. This can be concluded from the improved performance
of EmSFMNN (ẽ4) over EmSFMNN (e4) and PRE. These two aspects have
been introduced to improve
the model representation by (i) a more exact simulation layer in the recon-
struction loss and (ii) a more precise fitting of the spectral data by special-
izing the network weights to a selection of HyPlant lines. While the use
of the non-specialized pretrained EmSFMNN model PRE leads to valida-
tion results comparable to the baseline methods, it is necessary to make use
of a finetuning step to improve over the baseline methods iFLD, SFM and
SFMNN.

In Tab. 5 we equally report the Pearson correlation scores r and the
Explained Variance Score R2. A consistent cross-validation assessment based
on r and R2 is, however, not possible throughout all validation data sets due
to strongly variable performance under these two metrics. Due to the small
number of validation data points these performance metrics are subject to
large uncertainties. A reduced performance of EmSFMNN (ẽ4) in terms of r
with respect to SFMNN is, however, observable in all data sets where such
a comparison can be made. We hypothesize that this may be due to the
more strict modelling approach of EmSFMNN which may result in a higher
sensitivity to sensor noise.

4.4. Topography

The emulator was derived from simulations covering a hgnd range of 0 -
0.76 km and of hagl 0.2 - 2.86 km. This allows the application of EmSFMNN
predictors in acquisitions with large height variation where both the sur-
face height hgnd and flight height above ground level hagl change significantly
over the course of a single datatake. To test the reconstruction performance
of EmSFMNN predictors under these circumstances we examine the TOPO
data set consisting of HyPlant acquisitions with strong topographic varia-
tion and a nominal flight height of 600 m (see Tab. 1). We apply (i) the
EmSFMNN predictor finetuned to the CKA-2020 (600 m) data set (denoted
as mCKA) and (ii) a EmSFMNN finetuned to the TOPO data set (mTOPO).
The finetuning of the mTOPO and mCKA was performed on the TOPO data
set as described above (cf. Tab. 1) and only differed in the finetuning data
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Figure 6: FLOX derived iFLD SIF vs. HyPlant derived EmSFMNN, SFMNN, SFM and
iFLD SIF in the five in-situ validation data sets (see Tab. 1). The dashed line and the
red floating labels report the linear relationship between EmSFMNN and FLOX iFLD
estimates. In the CKA-2020 data sets FLOX measurements from different devices are
reported separately.

set. Both predictors derive from a EmSFMNN backbone trained on the
PRE data set which includes the data contained in TOPO. By examining

22



Figure 7: Top row: Marginalized distribution of relative reconstruction residuals of
CKA(1) in red and TOPO(1) in blue in the whole fitted spectral window W (a) and
in the spectral window WO2A in the O2-A band (b). Bottom left: Relative reconstruc-
tion residuals of CKA(1) (red) and TOPO(1) (blue) stratified by the sensor height above
ground hagl in W (a) and WO2A (b). Red and blue lines denote the means, dark areas
denote the 25 - 75 percentile ranges, light areas denote the 10 - 90 percentile ranges. In
yellow we highlight the range of hagl covered by the CKA-2020 data set on which CKA(1)
was finetuned. Bottom right: Logarithmic empirical histogram of hagl of CKA-2020 in
yellow and TOPO in blue.

on TOPO with both mCKA and mTOPO we can evaluate the importance of
topography related distribution differences between finetuning data sets.

In Fig. 7 (a) and (b) we summarize the residual statistics of mCKA and
mTOPO as a function of the flight height hagl in the full prediction spectral
window W (750 - 770 nm) as well as in a narrow spectral window WO2A in
the O2-A absorption band (759.5 - 761 nm). mCKA outperforms the finetuned
mTOPO in W exhibiting a residual distribution with less outliers. Notably,
mCKA outperforms mTOPO including in hagl ranges that are not covered by
the CKA-2020 (600 m) finetuning data set. The finetuning to the valida-
tion data set TOPO yields, however, to an improved mTOPO performance
in the O2-A band with mTOPO exhibiting an improved reconstruction per-
formance overall. The strong reconstruction residual outliers of mTOPO are
consequently contained in spectral regions outside the O2-A band as can be
understood from the fact that its performance on WO2A is less affected by it.

While we are able to assess the reconstruction performance of mTOPO

and mCKA, we can not evaluate the SIF predictions in the TOPO data set
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Figure 8: Top row: Marginalized distribution of reflectance offset parameter ρ (a) and
fluorescence emission amplitude F737 as predicted by CKA(1) in red and TOPO(1) in
blue. Bottom left: reflectance offset parameter ρ (a) and fluorescence emission amplitude
F737 (b) stratified by the sensor height above ground hagl as predicted by CKA(1) in
red and by TOPO(1) in blue. Red and blue lines denote the means, dark areas denote
the 25 - 75 percentile ranges, light areas denote the 10 - 90 percentile ranges. In yellow
we highlight the range of hagl covered by the CKA-2020 data set on which CKA(1) was
finetuned. Bottom right: Logarithmic empirical histogram of hagl of CKA-2020 in yellow
and TOPO in blue.

due to lacking in-situ data. Therefore, we test whether in addition to the
reconstruction performance the SIF prediction and reflectance estimation are
independent of the hagl variation. Fig. 8 (a) shows that the SIF predictions
of mTOPO and mCKA have a constant mean over most of the covered height
range. This is to be expected in the case of a homogeneous distribution of
fluorescence emitting surfaces. The decoupling of hagl from the SIF prediction
is only invalid in the range hagl < 0.5 km where both mTOPO and mCKA have
a larger mean SIF prediction than in the rest of the height range. There are
however significantly less HyPlant pixels falling in this range such that the
homogeneity assumption is weakened due to a decreased statistical relevance.

In Fig. 9 we show an exemplary HyPlant acquisition that highlights the
independence of the achieved SIF prediction and the reconstruction perfor-
mance from hagl. Both SIF and the fractional residual ∆L/LHyP are unaf-
fected by the topographic variation over the hill slope in the image center.
The SIF predictions differ only slightly inmTOPO andmCKA due to differences
in the finetuning training data set.
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Figure 9: Top row: Shown are the SIF prediction of TOPO(1) and CKA(1) along the
ground surface altitude hgnd derived from a matching Digital Elevation Map (DEM). Lower
rows: shown are a false color image of the HyPlant at-sensor radiance, the pixelwise SIF
prediction of TOPO and the relative reconstruction error of TOPO in the spectral window
W in a subset of the HyPlant acquisition displayed in the top row.

Concluding, we can observe that the influence hagl on EmSFMNN’s re-
construction performance, SIF and reflectance prediction is small. The vari-
ation of reconstruction errors, SIF and reflectance of both mTOPO and mCKA

do not vary systematically with hagl. It could be observed that the choice
of the training data set for finetuning had a larger effect on EmSFMNN’s
reconstruction performance than the topographic variation indicating that
EmSFMNN can compensate for the variability in the atmospheric transfer
with the specific choice of RTM emulation adopted in this contribution.

5. Discussion

5.1. Simulation and Emulator Design and Limitations

In this work the integrated use of a polynomial emulator and self-supervised
neural network training could be shown to yield both fast and accurate esti-
mation of SIF at 760 nm. Two design choices of the simulation model are of
particular relevance to the discussion of EmSFMNN’s performance.

Firstly, the model underlying the simulation tool and the emulator was
set up to not feature any cross-correlation between input parameters. Mak-
ing use of a physiologically plausible model such as SCOPE [7] relation-
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ships would have confounded EmSFMNN’s capacity to fit the at-sensor ra-
diance signal purely on the basis of physical principles with possible cross-
correlations between estimated parameters. As an example, it is well known
that both the reflectance in the spectral region of photosynthetically ac-
tive radiation (PAR) and the total fluorescence emission amplitude F737 are
strongly correlated in green vegetation due to a common dependency on leaf
chlorophyll concentration [40]. Reconstructed SIF products involving space-
borne reflectance products such as the MODIS-based RSIF [41] and RTSIF
[42], reconstructing the TROPOMI SIF product, make use of this relation-
ship. Detailed studies with field data could also establish cross-correlations
in reflectance-based features and top-of-canopy SIF derived from airborne
platforms resulting from structural effects [43, 44] and biochemical processes
related to non-photochemical quenching [45]. However, such dependencies,
if incorporated a-priori in the predictor modelling assumptions, may well in-
duce larger gradients in the self-supervised loss than the small at-sensor flu-
orescence signal. As a consequence, the influence of such correlations on the
feature-based optimization and ultimately on the SIF estimate may trump
the physical and causal relationship leveraged in EmSFMNN.

Secondly, this contribution has focused on SIF retrieval in a narrow spec-
tral range. The spectral range around the O2-A absorption band of the sim-
ulation data base has allowed us to (1) parametrize the reflectance and fluo-
rescence with simple functions (second-order polynomial, Gaussian) and (2)
use a polynomial model to approximate the simulation data base. The poly-
nomial form chosen for the emulator was advantageous to the EmSFMNN
set-up as it allowed an easy integration of the emulator in the neural net-
work architecture: both forward pass and backward gradient computation
were achieved by implementing the emulator as a fixed linear layer.

The use of the plain polynomial emulator e4 [28, 27] for EmSFMNN
has led to subpar performance with respect to in-situ FLOX measurements.
While the lacking spectrally explicit sensor characterization did not lead nec-
essarily to decreased performance in terms of spectral reconstruction resid-
uals, the emulator model’s incompleteness has caused systematic errors in
the signal decomposition. As a consequence, we have implemented an emu-
lator capable of simulating HyPlant at-sensor radiances with bandwise spec-
tral shifts with an efficient approximation ẽ4. This approximation could be
shown to yield acceptable relative errors peaking at ∼ 3.5% with respect to
the exact, but computationally demanding emulator solution eΛ4 . The error
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incurred by the approximation in the O2-A absorption band may, however,
still be significant in terms of reconstruction accuracy considering that the
mean fluorescence emission at 760 nm in HyPlant acquisition amounts also
to < 3% of the mean at-sensor signal. The validation of the SIF predic-
tion of EmSFMNN models integrating this approximate emulator ẽ4 proved
sufficient to outperform all baseline methods in terms of accuracy.

While we have shown the application of EmSFMNN to HyPlant FLUO
data in this contribution, the EmSFMNN approach to retrieve SIF can be im-
plemented for data from different imaging sensors (e.g., [25]) and spectral re-
gions. Since the network architecture interacts with the data in the loss only
through the interface of the emulator representing the physical constraints of
the retrieval problem, such a change in the data modality would simply ne-
cessitate adapting the emulator. In particular, the modelling of the sensor in
the simulation tool [11] and an extension of the reflectance and fluorescence
parametric functions to the new spectral range would be required. Further
research in emulator representations of simulated hyperspectral at-sensor ra-
diance including bandwise sensor characterization is thus warranted. While
the simple polynomial approach adopted here was suitable for the spectral
range and simulation model that had been fixed for the EmSFMNN O2-A
SIF retrieval problem on HyPlant data, the integration of different emulator
architectures [46, 47, 48] may become necessary for retrieval in different data
modalities.

5.2. Prediction of Atmospheric Variables

We have tested the quality of EmSFMNN’s signal decomposition with
respect to its reconstruction performance and the agreement of its SIF pre-
diction with in-situ measurements. We could not validate the accuracy of
the predicted atmospheric variables (water vapour content H2O and aerosol
optical thickness AOT550) with direct measurements. The prediction of these
variables is understood to be very challenging in the setting adopted in the
presented retrieval method since (i) the sensitivity of the at-sensor radiance
to water vapour and AOT550 in the fitting spectral window (750 - 770 nm)
is small [11], (ii) the variation of both parameters in the training data is ex-
pected to be small due to similar meteorological conditions during HyPlant
campaigns. Furthermore, there may be remaining representation insufficien-
cies of the emulator e4 that can result in EmSFMNN predictors leveraging the
degrees of freedom in these parameters to adjust the atmospheric estimate
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Figure 10: Comparison of AOT550 estimates. Black : distribution of EmSFMNN AOT550

estimates in single HyPlant acquisitions, box width show 25-75 % percentiles and whiskers
show 5 -95% percentiles, the median is reported in orange, Blue: CIMEL measurements
of the JOYCE AERONET station [49] located at ∼ 5 km from the SEL-2018 HyPlant
acquisitions (left), box width shows the standard deviation of all measurements recorded
within 20 minutes of the HyPlant acquisition time, Green: Deep Blue AOT550 products
of MODIS Terra [50] and Aqua [51] at 10 km resolution, box width shows the standard
deviation of available Terra and Aqua products within two hours of the HyPlant acquisition
time and the whiskers represent the mean of the provided uncertainty of the estimates
within a 30 km window around the location of the CKA-2020 estimates. Red : maximum
AOT550 covered in simulation data base.

to the observational data. In particular, we highlight that the at-sensor ra-
diance simulations all have used a standardized atmospheric pressure profile
(MODTRAN mid-latitude summer) while we have not adapted the emula-
tor to the meteorological conditions at acquisition time. Thus, while H2O
and AOT550 were included explicitly in the simulations and EmSFMNN ad-
dresses these parameters with a spatial constraint, accurate retrieval of these
parameters can not be expected.

We show in Fig. 10, however, that the distributions of AOT550 estimates
of single HyPlant acquisitions is approximately consistent with AOT550 mea-
surements of a CIMEL instrument located in the JOYCE AERONET sta-
tion [49] nearby the geographical center of HyPlant acquisitions in the SEL-
2018 data set (∼ 5 km). We could gather for this analysis CIMEL AOT550

measurements with a maximum time difference to the HyPlant acquisition
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time of 20 minutes. In particular, we find a strong decrease in AOT550 on
2018/06/27 which is reflected in EmSFMNN estimates as well. Furthermore,
MODIS Terra and Aqua AOT550 estimates from data with a maximum two
hour time difference to the HyPlant acquisition are similar to EmSFMNN.
The MODIS estimates exhibit large uncertainties, however, such that they
must be considered to gauge only very roughly the accuracy of EmSFMNN
AOT550.

A more detailed study of parameters pertaining to the atmospheric com-
position at acquisition time would be of relevance for EmSFMNN if it were
to be applied to more susceptible spectral regions covered by full-spectrum
retrieval. Furthermore, more extensive analysis could establish the perfor-
mance benefit of including atmospheric estimates from different sensors as in
[25]. Since such a procedure is planned with the FLEX/Sentinel-3 tandem
orbit configuration [22], such analysis is relevant especially for further work
on the application of EmSFMNN on FLEX data.

5.3. Feature Generalization of EmSFMNN

The validation analyses have shown good performance of EmSFMNN
models on data for which the models were not finetuned. In Section 4.2
we could show that mCKA(ẽ4) applied to a HyPlant acquisition from SEL-
2018 yielded a mean reconstruction performance of ϵ < 3.15% as compared
to the result of the finetuned mSEL(ẽ4) of ϵ < 2.31%. In addition to the
reconstruction performance being similar, Section 4.3 could establish that the
non-finetuned backbone predictor PRE could estimate SIF outperforming the
SFM, iFLD and SFMNN baselines in some of the validation data sets. The
SEL-2018 data set is similar to CKA-2020 on which mCKA(ẽ4) was finetuned.
Its hagl and hgnd ranges are overlapping. Furthermore, both data sets cover
predominantly agricultural fields and exhibit only a small fraction of forested
areas such that mCKA(ẽ4) and mSEL(ẽ4) are trained with a similar spectral
surface composition. However, the data sets were acquired in different years
resulting in varying radiometric sensor calibrations associated with a mean
uncertainty of 3%. These results indicate that EmSFMNN generalizes well
across HyPlant data sets with large similarities.

Furthermore, a generalization capability of EmSFMNN across topographic
changes could be established in Section 4.4. We could show thatmCKA(ẽ4),
which was finetuned on data exhibiting only small topographic variation, had
an improved reconstruction performance over an EmSFMNN instance that
was finetuned on the full topographic range present in TOPO. We interpret
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this finding such that the learned feature space successfully disentangles fea-
tures that are unrelated to the topographic change and the associated optical
path length differences (i.e. the reflectance and SIF emission). This in turn
is corroborated by the observation that both the statistical distribution of
the predicted SIF emission as well as of the reflectance are constant across
the full topographic range.

The possibility to base the inference of SIF in new data on a single gener-
alized SIF retrieval model is an advantage of the feature based optimization
of EmSFMNN over other physical SIF retrieval methods for which a repeated
pixelwise or campaign-wise optimization has to be conducted. While we have
not conducted validation studies on completely new data sources, that were
not included in the pretraining or finetuning training data, we could show
that the EmSFMNN could be finetuned successfully to a range of HyPlant
data sets without complete retraining. If the importance of finetuning on
the SIF prediction performance could be better quantified and reduced, the
emulator based SIF retrieval method developed here could therefore prove to
be a useful contribution to efficient SIF retrieval method for hyperspectral
high-throughput imaging sensors where inference speed is critical.

6. Conclusion

In this work, we have applied EmSFMNN, a novel emulation-based SIF
retrieval method first presented by [25], to HyPlant FLUO acquisitions.
EmSFMNN utilizes feature-based optimization and hyperspectral RTM em-
ulation to disentangle the fluorescence signal from the at-sensor radiance. It
has first been introduced in an application with DESIS data [25]. We have
proposed an extension to the originally purely polynomial model used for DE-
SIS to represent spectrally explicit CW and FWHM shifts computationally
efficiently. This has allowed for the training of EmSFMNN on a significant
fraction of the totality of available HyPlant acquisitions.

The direct SIF validation with in-situ SIF estimates derived from FLOX
measurements has shown that the accuracy of finetuned EmSFMNN outper-
forms both SFMNN as well as traditional baseline methods (SFM, iFLD).
Importantly, we could also show that a pretrained backbone EmSFMNN pre-
dictor generalized well across the considered HyPlant campaigns such that
improved EmSFMNN SIF retrievals could be achieved at a smaller compu-
tational cost than traditional pixel-wise optimization. The computational
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efficiency of this approach is due to the feature-based nature of EmSFMNN
that allows a single model to be used for inference without prior finetuning.

Furthermore, in an analysis with HyPlant acquisition with strong topo-
graphic variability, we could show that the set-up allows for a generalization
of the application domain of SIF retrieval. The possibility to constrain the
retrieval by exact topography and geometrical information has allowed the
application of EmSFMNN to HyPlant acquisitions with strong topographic
variation where prior retrieval algorithms could not be applied in a straight-
forward fashion.

Finally, we have presented a small comparison of EmSFMNN predicted
AOT550 with high-fidelity CIMEL AOT550 measurements in a single cam-
paign data set consisting of 13 acquisitions giving first insights into the accu-
racy of the atmospheric characterization estimated by EmSFMNN. We found
a consistent variation of predicted AOT550 with the measurements which sup-
ports the hypothesis that the disentangling of reflectance, fluorescence and
atmospheric components as predicted by EmSFMNN is trustworthy. Further
work is, however, necessary to assess EmSFMNN’s performance in predicting
secondary atmospheric components in general observation conditions.

As HyPlant FLUO is the airborne demonstrator for the spaceborne FLORIS
sensor, that will be operated onboard ESA’s Earth Explorer mission, this
work is relevant for further research in computationally efficient SIF re-
trieval algorithms for data acquired by FLORIS. While [25] have shown how
EmSFMNN could be applied to radiance data acquired on a spaceborne plat-
form, in this work we have focused specifically on the requirements of HyPlant
FLUO, a sensor comparable to FLORIS. The encouraging results in terms of
precision in both DESIS and HyPlant FLUO suggest that EmSFMNN may
be successfully applied to FLORIS data as well.
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Jülich supercomputing centre, Journal of large-scale research facilities
7 (A182) (2021). doi:10.17815/jlsrf-7-182.

40



145

Appendix D

Publication IV: Retrieval of sun-induced
plant fluorescence in the O2-A absorption
band from DESIS imagery

Manuscript accepted at 9th Computer Vision in Plant Phenotyping and Agriculture
at ECCV 2024 for publication in ECCV 2024 Workshop Proceedings; Manuscript
published online; DOI: 10.48550/arXiv.2411.08925

Jim Buffata, Miguel Patob, Kevin Alonsoc, Stefan Auerb, Emiliano Carmonab, Ste-
fan Maierb, Rupert Müllerb, Patrick Rademskea, Uwe Raschera, Hanno Scharrd

aForschungszentrum Jülich GmbH, Institute of Bio- and Geosciences,
IBG-2: Plant Sciences, Jülich, Germany

bRemote Sensing Technology Institute, German Aerospace Center (DLR),
Oberpfaffenhofen, Germany

cStarion Group c/o European Space Agency (ESA), Largo Galileo Galilei,
Frascati 00044, Italy

dForschungszentrum Jülich GmbH, Institute of Advanced Simulations,
IAS-8: Data Analytics and Machine Learning, Jülich, Germany

Corresponding author: Jim Buffat, j.buffat@fz-juelich.de

Author contributions: Jim Buffat: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Methodology, Investigation, Formal anal-
ysis, Data curation, Conceptualization. Miguel Pato: Writing – review & editing,
Supervision, Project administration, Funding acquisition, Conceptualization, Data
Curation. Kevin Alonso: Writing — review & editing, Conceptualization. Ste-
fan Auer: Writing – review & editing, Project administration, Funding acquisition,
Conceptualization. Emiliano Carmona: Writing – review & editing, Conceptualiza-
tion, Data Curation. Stefan Maier: Writing – review & editing, Conceptualization,
Data Curation. Rupert Müller: Conceptualization. Patrick Rademske: Data cura-
tion. Uwe Rascher: Writing – review & editing, Supervision, Project administration,
Funding acquisition, Data curation, Conceptualization. Hanno Scharr: Writing –
review & editing, Supervision, Project administration, Methodology, Funding ac-
quisition, Conceptualization.

Overall contribution by Jim Buffat: 80 %
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Abstract. We provide the first method allowing to retrieve spaceborne
SIF maps at 30 m ground resolution with a strong correlation (r2 = 0.6)
to high-quality airborne estimates of sun-induced fluorescence (SIF). SIF
estimates can provide explanatory information for many tasks related to
agricultural management and physiological studies. While SIF products
from airborne platforms are accurate and spatially well resolved, the
data acquisition of such products remains science-oriented and limited
to temporally constrained campaigns. Spaceborne SIF products on the
other hand are available globally with often sufficient revisit times. How-
ever, the spatial resolution of spaceborne SIF products is too small for
agricultural applications. In view of ESA’s upcoming FLEX mission we
develop a method for SIF retrieval in the O2-A band of hyperspectral
DESIS imagery to provide first insights for spaceborne SIF retrieval at
high spatial resolution. To this end, we train a simulation-based self-
supervised network with a novel perturbation based regularizer and test
performance improvements under additional supervised regularization of
atmospheric variable prediction. In a validation study with correspond-
ing HyPlant derived SIF estimates at 740 nm we find that our model
reaches a mean absolute difference of 0.78 mWnm−1 sr−1 m−2.

Keywords: Sun-induced fluorescence · Hyperspectral Sensors · DESIS

1 Introduction

The potential of sun-induced flurorescence (SIF) for agricultural management
and phenotyping tasks was recognized early in the development of retrieval al-
gorithms [41]. Since SIF is fuelled by a residual energy flux of photosynthetically
active radiation (PAR) that is not consumed by processes related to the plant’s
photochemistry and thermal energy dissipation it provides a causal link between
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radiance measurements and the photosynthetic status of plants [42, 50, 61, 62].
Various studies have utilized this relationship as the theoretical basis for stress
detection and monitoring [1, 12, 14, 49, 68], the estimation of photosynthetic ac-
tivity and gross primary productivity [10, 58, 59, 69], crop monitoring and yield
predictions [25, 37, 48, 56] and disease monitoring [8, 51] from SIF estimates de-
rived from remote sensing data at various spatial scales. Quantitative estimates
of SIF allow for more sensitive and causally founded physiological assessments
compared to purely reflectance based indices commonly used for such tasks.
Different studies have shown the increased explanatory power of SIF estimates
measured at canopy level in a range of tasks [12,39,45,65].

SIF retrieval methods for a variety of sensors have been developed as the
number of airborne and spaceborne sensors with sufficient spectral resolution
has increased [43]. However, no spaceborne sensor designed specifically for flu-
orescence retrieval has yet been operationalized. ESA’s Earth Explorer Mission
FLEX [16], planned to be launched in 2025, will be the first such instrument.
Spaceborne SIF estimates to this day are derived from data acquired by satellite
missions for atmospheric characterization (e.g ., GOSAT [34], GOME [27, 33],
SCIAMACHY [35], OCO-2/3 [17,57], TROPOMI [26,28], TanSAT [67]) as their
spectral resolution (SR) and signal-to-noise ratio (SNR) allow for SIF retrieval
from Fraunhofer lines [16, 23, 24]. However, the spatial resolution of these at-
mospheric sensors (> 4 km2) is insufficient for most agricultural applications.
FLEX, on the other hand, will provide radiance data with a pixel size of 300 m
which still imposes severe limits on its usability for a wide range of applications
in heterogeneous agricultural landscapes.

As an exploratory step towards spaceborne SIF retrieval at high spatial reso-
lution, we therefore propose a deep learning architecture and a loss formulation
for the first SIF retrieval from hyperspectral imagery of the DLR Earth Sens-
ing Imaging Spectrometer (DESIS). SIF retrieval from DESIS imagery has the
benefit of providing spaceborne SIF products at an unprecedented spatial reso-
lution of 30 m which principally allows for the targeted acquisition of auxiliary
validation data at high spatial resolution for the upcoming FLEX mission. How-
ever, the SR and SNR of DESIS are insufficient for consistent SIF retrieval with
current traditional retrieval methods leveraging data in the O2-A absorption
band [13, 22, 40] where the fluorescence signal contribution to the at-sensor sig-
nal has a local maximum. Airborne SIF retrieval with similar methods applied
to radiance data at lower SR has however been shown to yield consistent relative
SIF estimates [3]. As a solution, we extend the simulation-based self-supervised
deep learning approach of [5, 7], called Spectral Fitting Method Neural Net-
work (SFMNN), originally developed with airborne hyperspectral imagery. As
in other self-supervised simulation-based learning schemes, this approach lever-
ages the implicit constraints of a differentiable simulator of the physical image
generation in the loss [30,32] and primarily does not rely on labels for training.
Further regularization terms that enforce physical and physiological domain con-
straints allow this encoder-decoder architecture to decompose and reconstruct
hyperspectral data in the spectral range around the O2-A absorption band.
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Fig. 1: DESIS and HyPlant data. (a) RGB composite of a DESIS acquisition
(13/06/2023 14:37 CEST) and, in red, extent of spatially and temporally overlap-
ping HyPlant acquisitions (13/06/2023 14:11 - 14:38 CEST). (b) Top: Sample DESIS
at-sensor radiance spectra, Bottom: sample HyPlant at-sensor radiance spectra. Wout

denotes the spectral emulator domain.

In this contribution we introduce regularization terms in the SFMNN frame-
work allowing consistent SIF retrieval in DESIS imagery despite its lower SNR
and SR. Firstly, we propose a perturbation based augmentation scheme to pro-
mote the decorrelation of the predicted SIF from other confounding variables
affecting the at-sensor signal. Secondly, we show that including ancillary atmo-
spheric data from DESIS L2A products by means of a secondary supervised
downstream learning task improves the performance of our model.

2 Data

2.1 DESIS observation, simulation and emulation

The DLR Earth Sensing Imaging Spectrometer (DESIS) is a hyperspectral imag-
ing sensor onboard the International Space Station (ISS) [38]. It measures at-
sensor radiance in 235 bands in the spectral range from 400 nm to 1000 nm with
a nominal spectral sampling interval (SSI) of 2.55 nm and a full width at half
maximum (FWHM) of 3.55 nm. The spatial dimensions of DESIS acquisitions
are fixed to 1024 × 1024 pixels with a nominal pixel width of 30 m. See [2]
for a complete description of the DESIS sensor, data products and associated
uncertainties. We make use of a polynomial emulator formulation [46, 47] to re-
construct DESIS radiance spectra around the O2-A absorption band. We found
small domain shift errors with respect to smile-corrected L1B DESIS products
(see Sec. 4.1). For training, we assembled a data set of 96 DESIS data takes
(L1B and L2A in sensor geometry) matching either OCO-3 or HyPlant record-
ings [6]. The georegistration of DESIS SIF estimates was conducted with the
operationally provided DESIS L2A geolayers.
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Table 1: Training (Trn.) and validation (Val.) data sets. Npx: number of covered
DESIS pixels, Nacq: number of DESIS acquisitions (with matching pixels, in the case
of data sets HyPlant and OCO-3). A complete account of the data set is available [6].

Data Set Npx Nacq Location Method Type

HyPlant 10’196 (2020), 18’850 (2023) 4 Jülich (Germany) [11] Val.

OCO-3 670 92 Global [58] Val.

DESIS 100× 106 96 Global – Trn.

2.2 HyPlant campaigns 2020 and 2023

HyPlant is an airborne spectrometer system providing hyperspectral radiance
measurements with an SSI of 0.11 nm and a nominal FWHM of 0.25 nm [55]. It is
the airborne demonstrator version for FLEX [16] which is first spaceborne sensor
specifically designed for SIF retrieval. As a result, HyPlant measurements have
been used for SIF retrieval in yearly field campaigns since 2014 [18–21, 52–54].
For this contribution, spatially overlapping acquisitions of DESIS and HyPlant
could be recorded on 13/06/2023. Six HyPlant and two DESIS acquisitions were
acquired within small time intervals of 1 - 25 minutes at around 14:30 CEST
(cf. Fig. 1 and Tab. 1). Additionally, we found close spatial matches between
six HyPlant and two DESIS acquisitions on 23/06/2020 in the same region. In
this case the HyPlant acquisitions were recorded at least an hour earlier than
the DESIS acquisitions (12:08 CEST). This unique disposition of spatially and
temporally matching spaceborne and airborne radiance measurements allowed
us to compile a comparative data set of georegistered HyPlant and DESIS SIF
estimates. To this end, we processed the HyPlant at-sensor radiance with the
Spectral Fitting Method (SFM) [11] to derive high-quality SIF estimates. The
alignment of DESIS and HyPlant SIF products involved downscaling (isotropic
Gaussian smoothing and spatial resampling) HyPlant SIF to DESIS resolution.

2.3 OCO-3 SIF estimates

OCO-3 is a spectrometer assembly originally designed for the retrieval of col-
umn carbon dioxide [17]. As DESIS, OCO-3 is located onboard the ISS. The
high SR of the radiance measurements around the O2-A absorption band of this
sensor allows for SIF retrieval in this spectral region similarly to earlier space-
borne sensors designed for the retrieval of atmospheric gas compositions [60].
Since both OCO-3 and DESIS are on the ISS, there exists a set of overlapping
acquisitions with small time differences (< 10 minutes). We have identified a set
of approximately 100 DESIS acquisitions that are partially covered by OCO-3
measurements, exhibit a low ratio of cloud cover and are flagged to be of accept-
able quality. We make use of an OCO-3 SIF product of those acquisitions [15,44]
as a complementary performance validation of our DESIS SIF estimates. These
OCO-3 SIF estimates were compared to DESIS pixels in a 300 m radius around
the center of individual soundings.
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Fig. 2: Proposed network architecture. Data: gray blocks denote different data sources:
L1B smile-corrected DESIS L1B at-sensor radiance, L2A reflectance and atmospheric
variables provided in the DESIS L2A product, GEO geometrical variables from L1C
metadata and L2A geolayer: RAA (relative azimuth angle), TA (tilt angle), SZA (sun
zenith angle), hgnd (digital elevation model). other : u denotes trainable sensor state
identifier and x1 the across-track pixel position. Network: variables (ρ740, s, e, f740)
predicted by dpx and (AOT550, H2O) predicted by dpatch as well as (∆λ, ∆σ) predicted
by q are passed to the simulation layer implemented as the emulator E [46, 47].

3 Architecture and Simulation-Based Loss

3.1 Architecture

The SIF retrieval method for DESIS imagery presented in this work is based
on the Spectral Fitting Method Neural Network (SFMNN) [5, 7]. This network
implements in an encoder-decoder type architecture to fit parameters pj of a sim-
ulation model of observational at-sensor radiance data. The simulation model pa-
rameterizes the physical signal generation as a function of surface, atmospheric,
sensor and geometrical variables. As a result, SIF retrieval is formulated as a
feature optimization for optimal spectral decomposition and reconstruction. In
order to constrain the solution space, the output dimensionality of the prediction
of the simulation parameters is variable (Fig. 2). While surface parameters are al-
lowed to vary in a pixelwise fashion, the atmospheric parameters are constrained
to a single scalar value for pixels in a single input patch, i.e., within the same
spatial neighbourhood. This is motivated by the large spatial auto-correlation
distance of the atmospheric variables which is typically larger than the patches
of 30 × 30 DESIS pixels (900 × 900 m) used during training. Equally, simulated
sensor miscalibration only varies along the across-track dimension.

We implement an encoder, decoders dpx and dpatch for the surface and at-
mospheric variables and a module q for the sensor variables. The module archi-
tecture consists of stacked multi-layer perceptrons (MLPs) with residual links
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(see [7] for a detailed architecture description). The simulation model imple-
mented here exhibits three major differences with respect to [5,7] that allow the
application of SFMNN in an adapted form to DESIS data (explained below).

Emulator We replace the approximate simulation model of [5,7] with an emula-
tor of a simulations of DESIS-like radiance spectra around the O2-A absorption
band. To this end, we adopt a simulation tool and emulation set-up introduced
by Pato et al . [46,47] who show that a polynomial emulator of 4th degree yields
an approximation error that is significantly smaller than typical at-sensor flu-
orescence in a DESIS-like configuration. Polynomial emulators are not widely
used for radiance emulation in remote sensing (e.g . [63,64]). In our specific case,
only the small spectral range Wout =[740 - 780] nm around the O2-A band must
be covered, however, such that a model with small complexity is able to meet the
precision requirements. The polynomial nature of the emulator is advantageous
since (i) it can be integrated easily in a feed-forward neural network architecture
as a fixed linear layer and (ii) it is computationally efficient such that training
and prediction are not significantly affected by it.

Residual Fluorescence Estimation SFMNN is a completely self-supervised
approach that does not require any labelled data to be trained to a set of hy-
perspectral imagery. Preliminary tests with a plain SFMNN approach on DESIS
data did not provide SIF estimates with useful sensitivity to the HyPlant and
OCO-3 validation data, however. The most likely cause for this is the low SR of
DESIS data, especially in comparison to the HyPlant data on which SFMNN was
originally developed. We therefore adopt a modification to SFMNN whereby the
fluorescence f is not estimated directly from radiance data. Instead, a residual
∆f to an initial guess finit with large uncertainty is predicted by a dedicated
module from L1C and L2A data (cf. Fig. 2) such that we can interpret

f740 = finit +∆f, (1)

as the model’s SIF estimate. A similar approach has notably be implemented
by Brodrick et al . [4] to improve a low-quality atmospheric radiative transfer
model. finit here denotes an initial estimate of the fluorescence emission that
we gain from a supervised predictor directly trained on simulated DESIS data.
While the simulation-trained model alone yields noisy predictions with subpar
performance (cf. Fig. 4), we find that its combination with the self-supervised
principles of SFMNN results in significantly improved prediction accuracy.

Sensor state Miscalibration of a hyperspectral sensor can be expressed in terms
of changes to a Gaussian approximation of the instrument spectral response
function (ISRF) in each spatio-spectral pixel. Commonly, such miscalibrations
are parameterized with shifts of its standard deviation ∆σ and shifts of its center
wavelength ∆λ. Hyperspectral sensors can suffer from changing ∆λ and ∆σ due
to mechanical and environmental stresses that change the ISRF and must be
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Fig. 3: (a) Relative and absolute reconstruction error of best performing model con-
figuration over all DESIS acquisitions. (b) Red/Pink: Spectrally explicit error distri-
bution in the DESIS acquisition matching the OCO-3 validation data (Fig. 1), light
colors denote the 25 - 75 percentiles. Blue/Green: Sample reconstruction (blue) of a
single spectral DESIS observation (green) matching HyPlant (2023) data.

addressed operationally by periodical recalibration. The issue of mismatching
calibrations may be significant due to (i) DESIS’ overall low SR and (ii) a subpar
smile-correction of L1C in the O2-A band. In order to alleviate this issue the
shifts ∆σ and ∆λ are fitted as a function q of acquisition-specific identifiers
u such that sensor drifts, processing changes and artefacts may be accounted
for. In order to prevent a too large degree of freedom that could affect the SIF
prediction, we implement a module q as a decoder module with only u and sensor
position x as inputs such that (i) it is independent of any other input than the
identifier u, (ii) multiple acquisitions may have the same identifier (acquisitions
of the same date have the same identifier u) and (iii) only across-track variability
of the shifts are allowed as is realistic for a push-broom sensor.

Table 2: Dimensions ein, dpx, dpatch, q and ∆f (cf. Fig. 2). Modules consist of stacked
MLPs. Each element in Dim. denotes the dimension of individual perceptrons in a single
MLP, Reps. the number of perceptrons in a single MLP (all with the same dimension
reported in Dim.) and Dp the dropout rate of the output of each MLP. For a detailed
architecture description see [7].

Module Parameters

Encoder ein

Dim. (1000, 500, 200, 100, 50, 50, 50, 30)
Reps. (2, 3, 3, 3, 3, 3, 3, 3)

Dp (0.05, 0.01, 0.01, 0.01, 0.005, 0.001)

Decoders dpx, dpatch and q
Dim. (100, 50, 50, 50)
Reps. (3, 2, 2, 2)

Dp (0.001, 0.001, 0.0)

∆f
Dim. (1000, 200, 100, 50, 50, 50)
Reps. (2, 3, 3, 3, 3, 1)

Dp (0.05, 0.005, 0.001)
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3.2 Loss formulation

We propose a simulation-based loss ℓ = ℓres+ ℓm+ ℓ∆f + ℓN + ℓc where ℓres eval-
uates the reconstruction residuals of the model with respect to the observational
input, ℓm and ℓ∆f ensure that the network matches prior knowledge, ℓN ensures
the physiological plausibility of the SIF estimates and ℓc denotes a perturbation
based regularization that enhances the decorrelation between predicted variables
by means of a physically accurate augmentation. Self-supervised learning with
radiance observations is addressed by adopting the methodology of [5,7], where
the reconstructed signal is compared to the observation similarly to other self-
supervised methods such as masked auto-encoders [29, 31]. A squared residual
over the whole spectrum as well as a weighted residual boosting the loss in spec-
tral regions with high average fluorescence contributions punish the network for
not reproducing the at-sensor observations. This is implemented by

ℓres

(
L, L̂

)
=

〈(
L− L̂

)2〉

λ, x

+
γf

|Wout|

〈∑

λ∈Wout

wλ

(
L(λ)− L̂(λ)

)2
〉

x

, (2)

where ⟨. . . ⟩λ,x denotes the batchwise mean over the spatial and spectral dimen-
sion, and where L and L̂ denote the observations and emulated predictions in the
spectral range Wout. The weighting wλ is resampled from the weights originally
proposed in [5, 7] for the specific sensor characterization of the DESIS sensor.
Furthermore, we also adopt the selective gradient backpropagation of the second
term which is set to only affect the fluorescence prediction f̂740.

The inclusion of prior information on atmospheric variables and the SIF
emission are implemented as regularization terms

ℓm =
∑

k∈K
γpk

(p′k − p̂k)
2

and ℓ∆f = γ∆f

(
f̂ − finit

)2
(3)

where finit denotes the prediction of the supervised SIF predictor and where
K = {H2O, AOT550}. We denote by H2O the water vapour density and by
AOT550 the aerosol optical thickness at 550 nm, which are derived operationally
and distributed with DESIS L2A products. Thus, ℓm introduces a supervised
regression training of ancillary data from DESIS products as a secondary task.
As an alternative strategy, we test in Sec. 4.3 a set-up where the ancillary data
is passed directly to the input and the emulator for training and prediction. Ac-
cordingly, our model does not provide predictions of the atmospheric parameters
(H2O, AOT550) in this latter variant.

The SIF estimate finit, which we gain from a predictor trained on simulated
DESIS data, is included in the loss parallelly to ℓm. This effectively controls
the range of deviation that the residual module ∆f is allowed to introduce.
Additionally, the fluorescence estimate of the residual module is controlled by
the constraint

ℓN = γN f̂ δ (NDVI(L) ≤ τ) (4)

to ensure vanishing SIF predictions in pixels without vegetation, i.e., with small
NDVI [5, 7]. We fix τ = 0.15 in all experiments.
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Fig. 4: Overview of an image excerpt of a DESIS acquisition matching HyPlant (2023)
validation data (Fig. 3). Left to right: RGB composite, NDVI derived from L2A, relative
reconstruction error, fluorescence estimate f740, initial fluorescence estimate f init

740 .

Finally, we leverage the compact physical description of the generation of
at-sensor radiance given by the emulator to derive a perturbation based aug-
mentation for regularization that we will refer to as consistency regularization.
We denote by gpj

the prediction of emulator input variables pj . Consequently,
gpj

are approximate partial inversions of the emulator e. Perturbations of the
input radiance L by δL affect the predictor gf and vice-versa perturbations δf

of the predicted fluorescence f̂ affect the emulator:

gf (L+ δL) = f̂ + δf and e(f̂ + δf, pj) = Le + δLe (5)

where the spectral range Wout of the emulator output Le is smaller than the
range of the observational DESIS spectrum L due to a practical limitation of
the emulator design. We can simulate new approximate samples by generating
radiance perturbations δLe. To do this, we write

(L+ δL)(λ) ≈ L′
δf = L(λ) + δLe δ (λ ∈ Wout) , (6)

where δLe = e(f̂ + δf, pj)− e(f̂ , pj).

Neglecting any simulation errors and inaccuracies due to the perturbation im-
plementation of L′

δf an optimal solution should yield

gf
(
L′
δf

)
− f̂ = δf and gpj

(
L′
δf

)
= pj , (7)

since all changes in the perturbed observation can be attributed to a change in
fluorescence in this case. We thus formulate the regularization as

ℓc(L, f̂ , p̂j) = Eδf∼F

[(
gf
(
L′
δf

)
− (f̂ + δf)

)2
+
(
gpj

(
L′
δf

)
− p̂j

)2
]

(8)

where F is the fluorescence range over which e is defined. We implement the
expectation as a mean over a uniformly sampled set of δf in each training forward
pass.
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Fig. 5: Conditional 2d-histogram of DESIS SIF estimates of the best performing run
(γc = 5× 103, γAOT = 100) compared to HyPlant (2023), HyPlant (2020) and OCO-3
validation data sets Tab. 1, red dashed lines denote the 10, 25, 75 and 90 percentiles.

4 Results

4.1 Reconstruction Performance & Validation

The network must reconstruct observed spectra with high accuracy. The model
trained on all DESIS acquisitions with matching HyPlant or OCO-3 SIF products
(Tab. 1) with the proposed loss (with γf = 1, γ∆f = 5, γH2O = 1 and γN = 10
fixed during preliminary experimental runs and γAOT = 100 and γc = 5 × 103

being the best configuration) reaches a mean relative reconstruction error of 1.6
% (Fig. 3 (a)). The spectral variation of the reconstruction error is small (Fig. 3
(b)) which evidences the model’s capacity to plausible signal generation across
the spectral domain. We equally observe that the reconstruction error is reduced
under inclusion of f740 compared to reconstructions where we fixed f740 = 0.

In Fig. 4 we show an exemplary result. The prediction of f740 exhibits a re-
duced noise level compared to f init

740 and correlates with the distribution of agricul-
tural fields. In order to assess the performance quantitatively we compare DESIS
SIF estimates to matching HyPlant and OCO-3 SIF estimates (Tab. 1). Since
existing SIF retrieval methods are not adapted to DESIS data (cf. Sec. 3) we
rely on these estimates as ground truth. The same configuration as above yields
a mean absolute difference ⟨∆f740⟩HyP23 = 0.78 mWnm−1 sr−1 m−2 (smaller
is better) and a coefficient of determination r2HyP23 = 0.6 (larger is better) in
the HyPlant (2023) data set. The DESIS estimates perform worse in a compar-
ison with HyPlant (2020) data (⟨∆f740⟩HyP20 = 0.86 mWnm−1 sr−1 m−2 and
r2HyP20 = −0.01) due to a large overestimation of our approach. This is expected
since the data was recorded closer to solar noon when the diurnal course of
SIF peaks [9, 66]. Finally, we find ⟨∆f740⟩OCO3 = 0.58 mWnm−1 sr−1 m−2 and
r2OCO3 = 0.2 compared to OCO-3 data (cf. Fig. 5).

We evaluated the consistency regularization and the inclusion of ancillary
data on the SIF prediction. We only validated with respect to the HyPlant (2023)
and OCO-3 data sets as the acquisition time difference of HyPlant (2020) would
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have introduced large biases. In addition to the metrics above, we report ⟨∆f740⟩
and r2 for bias corrected data to differentiate between performance increases due
to bias reduction and due to increased explanation of label variance, i.e.,

R2 = r2
(
n ◦ f740, n ◦ f̂740

)
and ⟨∆f740⟩′ = ⟨∆ (n ◦ f740)⟩ , (9)

where n(x) = x − ⟨x⟩. Furthermore, since there is an empirical correlation be-
tween SIF and reflectance due to common causal drivers, a stronger validation
consists in conditioning the model’s performance on reflectance ρ. Subsequently,
we define the reflectance constrained explained variation

〈
R2
〉
A
= |P |−1

∑

ρ780∈P

R2(Aρ780
), Aρ780

= p
(
f740

∣∣∣ f̂740, |ρ− ρ780| < dρ
)

(10)

where dρ = 0.02 and exclusively reflectance in a single DESIS band (ρ780) is
considered. Only the HyPlant (2023) data set is large enough to calculate

〈
R2
〉
A

confidently, however. We focus on the reflectance at 780 nm since the influence of
SIF on DESIS L2A reflectances at 780 nm is negligible while ρ780 also is strongly
correlated to vegetation cover. Similarly, we characterize Aρ780 by the slope sA
and bias bA of a linear model fitted to it (cf. Fig. 6 (c)). Since we expect this
bias to vanish for perfect predictions we calculate the mean reflectance dependent
bias MAEb = ⟨bA⟩ as an additional performance metric.

Fig. 6: (a) and (b): performance of the model trained with varying γc as compared
to HyPlant (2023) and OCO-3 SIF. (c): Reflectance constrained metrics for the case
γAOT = 0, γc = 5 × 103, light blue and light red colors denote the uncertainty of the
least-squares fit to gain s and b, (d): metrics under varying γc in HyPlant (2023) data.
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Fig. 7: Model performance with respect to HyPlant (2023) SIF in (a) and (c) and
OCO-3 SIF in (b) and (d) under variable γAOT. Light colors indicate γc = 0, dark
colors indicate γc = 5 × 103. Horizontal lines indicate the performance of the model
runs without ancillary data in Sec. 4.2.

4.2 Consistency Regularization Weighting γc

In order to evaluate the impact of the consistency regularization ℓc on DESIS
SIF, we perform a grid search over γc (Fig. 6 (a) and (b)) without including
ℓm in the training loss. In the OCO-3 data set the inclusion of ℓc at all tested
weights γc outperforms the case γc = 0 in terms of ⟨∆f740⟩ (smaller is better)
and generally also in terms of R2 (larger is better) (Figs. 6 (a) and (b)). With
HyPlant (2023) we find only a localized performance optimum at γc ∼ 5 × 103

in terms of ⟨∆f740⟩ and r2. We show in Fig. 6 (c) that we find particularly
strong overestimation at ρ780 > 0.5 Improved performance under ℓc in HyPlant,
however, can be seen in terms of MAEb and

〈
R2
〉
A

(Fig. 6 (d)). Specifically, we
find

〈
R2
〉
A
> 0 only if the consistency regularization is applied.

4.3 Inclusion of Ancillary Data

To assess the impact of including ancillary data in the SIF retrieval, we con-
duct a grid search over γAOT (while fixing γH2O = 1). First, we establish the
performance difference between using the proposed regularization scheme in
Eq. (3) and providing the data directly to the input and the emulator. We
denote this configuration by γAOT = 0 in Fig. 7. We find decreased r2 and
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Fig. 8: (a): Reflectance constrained metrics for γAOT. Light colors indicate model runs
with γc = 0, dark colors indicate runs with γc = 5 × 103. Horizontal lines denote the
reflectance constrained performance results of the model runs without ancillary data
in Fig. 6 (d). (b): Reflectance constrained metrics for γAOT = 100, γc = 5× 103. Light
blue and light red denote the uncertainty of the least-squares fit to gain s and b.

⟨∆f740⟩ performance in all HyPlant configurations (Fig. 7) compared to cases
γAOT > 0. Equally, decreased r2 performance can be observed in the comparison
with OCO-3 SIF estimates. Secondly, we can observe that runs with high γAOT

approximately reach the same SIF prediction performance as model runs with-
out any ancillary data from Sec. 4.2 (Fig. 7 (a) and (c)). Finally, similarly to the
results in Sec. 4.2, we can observe a performance increase in the HyPlant (2023)
and OCO-3 datasets when using γc. This is observable in r2, ⟨∆f740⟩, MAEb and〈
R2
〉
A

(Fig. 8 (a)). In particular, the previously observed large overestimation
at high ρ780 is reduced (Fig. 8 (b)).

5 Discussion

5.1 Decorrelating Impact of Consistency Regularization

The introduction of ℓc proved beneficial to the overall SIF retrieval performance.
In a study of the performance of

〈
R2
〉
A
, we isolated the model performance

independent of the empirical correlation between SIF and ρ780. We found im-
proved performance in terms of

〈
R2
〉
A

under the inclusion of ℓc (Fig. 6 (c) and
(d)) indicating that the consistency regularization ℓc has the intended effect of
decorrelating the target signal from confounding factors. The weighting γc has
to be chosen carefully, however. Increased MAEb at large γc may have been due
(i) to imperfect sample generation in ℓc introducing a domain gap between the
observations and the augmentations and (ii) a trade-off between reconstruction
accuracy and minimization of ℓc.

5.2 Inclusion of Ancillary Data Sources

In order to reduce the retrieval problem’s ill-posedness we have proposed the use
of a regularization that implements the supervised learning of atmospheric emu-
lator prediction variables with ancillary data sources as labels. The regularization
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formulates a secondary downstream task in addition to the decomposition of the
spectral observations into constituent variables. Importantly, we could see im-
proved SIF retrieval performance with this regularization in terms of a reduced
reflectance dependent bias MAEb when used with ℓc. As systematic integration
of ancillary data is also planned for the FLEX mission by operating it in tandem
with Sentinel-3 [16] the retrieval approach explored in this contribution could
benefit similar SIF retrieval approaches on FLEX imagery.

6 Conclusion

In this contribution we have presented a deep learning architecture for SIF re-
trieval from DESIS imagery. This work is the first to use hyperspectral DESIS
data for SIF retrieval. A unique data set of spatially and temporally closely
matching HyPlant SIF estimates has allowed us to perform a detailed val-
idation study of the methodology proposed in this work. The good perfor-
mance of our model with respect to these high-quality SIF estimates (⟨∆f740⟩ =
0.78 mWnm−1 sr−1 m−2, r2 = 0.6) supports our finding that it is possible to
derive SIF from DESIS products. Further comparison with a data set of glob-
ally distributed OCO-3 SIF estimates could establish the sensitivity of our SIF
product in a wider variety of observational and ground conditions and may form
the basis for an operational SIF product from DESIS data.

To achieve the good SIF prediction performance, we have extended a self-
supervised simulation-based deep learning approach [5, 7]. Several changes to
the loss formulation were necessary to address the lower SR and SNR of DESIS
imagery. Most importantly, we have (i) introduced a perturbation based augmen-
tation to improve signal decorrelation and (ii) tested the inclusion of ancillary
data by formulating a secondary supervised downstream task. We could show
that both the perturbation based augmentation and the supervised downstream
task formulations improved SIF retrieval performance when comparing both with
HyPlant and OCO-3 SIF products. We furthermore could observe improved
decorrelation of DESIS SIF from ρ780 when making use of the augmentation
during training. Since this perturbation based regularization strategy is not re-
stricted to remote sensing data it may be implemented in other simulation-based
deep learning applications to decrease the influence of confounding factors.
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