Hardware-Aware Quantum Optimization

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultit
der
Rheinischen Friedrich-Wilhelms-Universitit Bonn

von
Thore Thassilo Gerlach

aus
Kreuztal

Bonn, 2025

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultit der Rheinischen
Friedrich-Wilhelms-Universitit Bonn

Gutachter/Betreuer: Prof. Dr. Christian Bauckhage
Gutachter: Prof. Dr. Stefan Wrobel

Tag der Promotion: 11.09.2025
Erscheinungsjahr: 2025

Abstract

Quantum Optimization (QO) is emerging as a promising approach to tackle hard combinatorial optimiz-
ation problems by leveraging the unique computational properties of quantum hardware. In recent years,
QO has gained traction in Machine Learning (ML), where problems such as clustering and vector quant-
ization can be naturally expressed as Quadratic Unconstrained Binary Optimization (QUBO) problem:s.
These ML applications often involve complex, high-dimensional data, which directly influences both the
structure and scale of the resulting QUBO formulations. However, current quantum devices fall under the
category of Noisy Intermediate-Scale Quantum (NISQ) hardware, which imposes significant limitations
on qubit counts and small error rates. This dissertation investigates the impact of data complexity and
data scale—as encountered in ML settings—on the effectiveness and feasibility of QO on NISQ devices.
We propose novel, hardware-aware methods to overcome these challenges.

The first part of this thesis focuses on the effect of data complexity for QO. We analyze how
problem structure—particularly when QUBO formulations are derived from ML tasks—affects quantum
solvability. We identify the spectral gap as a key factor in the success of adiabatic quantum algorithms
and provide a theoretical and empirical analysis linking data-induced complexity to optimization
performance.To address noise sensitivity and limited precision, we introduce a preprocessing framework
based on a principled Branch-and-Bound algorithm that reduces dynamic range while preserving global
optima. This improves robustness on both quantum annealers and classical solvers.

In the second part, the thesis addresses challenges introduced by data scale. First, we propose a
recursive Divide-and-Conquer strategy that breaks down large QUBO problems into tractable subprob-
lems, demonstrated through an application to Bundle Adjustment in 3D scene reconstruction. Second,
we introduce a variable and constraint generation method inspired by column generation for Integer
Linear Programming, enabling dynamic QUBO size growth. This technique is successfully applied
to Multi-Agent Pathfinding, where it scales well on NISQ devices while maintaining compatibility
with classical solvers. Finally, we explore QUBO reformulations that reduce problem size through
compact encodings and cyclic expansion, enabling the use of quantum hardware for tasks such as FPGA
placement in chip design.

Across all contributions, the developed algorithms are evaluated both theoretically and empirically,
with experiments conducted on real quantum and quantum-inspired hardware. These methods signific-
antly improve solution quality, scalability, and hardware compatibility, paving the way for more effective
use of QO in practical settings. While tailored for NISQ era constraints, the results remain relevant for
fault-tolerant quantum computing, offering insights into the long-term viability of QO across hardware
generations.

il

Acknowledgements

I am deeply grateful to the many people—mentors, colleagues, friends, and family—whose support,
encouragement, and understanding made this thesis possible.

First and foremost, I would like to thank my supervisors, Prof. Dr. Christian Bauckhage and Prof. Dr.
Stefan Wrobel, for accepting me as their PhD student. I would especially like to extend my thanks to
Christian for the academic freedom he afforded me, and his trust in my ability to conduct independent
research.

Secondly, I would also like to thank my colleagues Dr. Nico Piatkowski and Sascha Miicke who
were always open to engaging discussions. I am especially grateful to Nico for his mentorship, which
significantly contributed to my professional growth. Also, a big thanks to my colleagues at Fraunhofer
IAIS and the University of Bonn for making office days and work trips not just productive, but genuinely
fun—both in and outside of research.

Finally, I would like to thank my family and friends for their unwavering support, encouragement,
and presence throughout this journey. I am especially grateful to my parents and siblings for their love
and belief in me, and to my friends for bringing balance and perspective to life beyond research.

v

Contents

1

Introduction

1.1 ThesisOutline e e e e

1.2 Overview of Publications

Background

2.1 Notation and Basic Definitions 0 e
2.1.1 BasicLinear Algebra e e e e
2.1.2 Binary Vector Spaces oot e e e e e e
2.1.3 Complex Vector Spaces o v v i i i i it e e e

22 Optimization v ot e e e e e e e e e e e
2.2.1 Combinatorial Optimization v v v v v v v et
2.2.2 Quadratic Unconstrained Binary Optimization
223 IsingModel e e e

2.3 Machine Learning L e e e
2.3.1 Supervised Learningo e e e e e
2.3.2 Unsupervised Learning e e e e
2.3.3 Reinforcement Learning

24 Quantum COMpPULINg v v v v i e
24.1 Quantum Gate Computing oot e e e
2.4.2 Adiabatic Quantum Computingo e e e e e e e e e
243 Quantum Optimization o e
2.4.4 Limitations of Quantum Hardware

Effects of Data Complexity on Quantum Optimization
Relating Data Complexity to Solvability

3.1 Related Work e
3.2 QUBO Embeddings for Machine Learning
3.2.1 Integrating Linear Equality Constraints
3.2.2 Binary Support Vector Machine,
323 Biclustering e e e e e e
3.2.4 Vector Quantization vt i e e e e e e e e e e e e e e e e
3.3 Solvability in Terms of Spectral Gap
3.3.1 Boundingthe Spectral Gap
3.3.2 QUBO Formulation for Spectral Gap

vi

AN W =t

O oo oo

11
12
13
14
15
18
20
23
26
28
30
33

3.4 Experimental Evaluation
34.1 DataSetup e e e e e e e e
342 Biclustering e e e e e e e e e
3.4.3 Binary Support Vector Machine
3.5 Conclusion L e e e e e

Mitigating Data Induced Noise

4.1 Related Work e e e e e e e e
4.2 Parameter Precision L L e
421 DynamicRange.
4.2.2 Precision Reduction While Preserving Optima
423 Bounds for Preserving Optima
4.3 Reducing the DynamicRange
431 Greedy Strategy o i e e e e e e e e e e e e e e e
4.3.2 Maintaining the Parameter Ordering
4.3.3 Markov Decision Process Formulation
434 BranchandBound e
4.4 Experimental Evaluation o
4.4.1 Greedy Policies for Random Instances
4.42 Data Dependent QUBO Embeddings
443 Performance of Branch-and-Bound
4.44 Performance on Hardware Solvers
4.5 Conclusion e e e e e e e

Effects of Data Scale on Quantum Optimization

Recursive QUBO Decomposition

5.1 Related Work e
5.2 Incorporating Inequality Constraints
5.3 Iteratively Solving Subproblems L oo o
5.3.1 Choosing Subproblems e
5.3.2 Recursive Divide-and-Conquer
5.4 Application: Bundle Adjustment L
5.4.1 Keypoint Extraction Lo e
5.4.2 Feature Matching e
5.4.3 Quantum Kernel Methods
5.5 Experimental Evaluation
5.5.1 Experimental Protocol e
552 Results e
5.6 Conclusion L e e e e e e
Variable and Constraint Generation
6.1 RelatedWork e
6.2 Integer Linear Programming

vii

6.3 Column Generation for Binary Linear Programs
6.3.1 Pricing e e e e e e e e e e e
6.3.2 Separationo e e e e e e e e e e e e e e e e
6.4 Application: Multi-Agent Pathfinding
6.4.1 Different Problem Formulations
6.4.2 Adapting Variable Generationto MAPF
6.5 Experimental Evaluation
6.5.1 Benchmark Performance
6.5.2 QUBOComparison. oot v vttt e e e
6.6 Conclusion e e e
QUBO Size Reduction by Reformulation
7.1 Related Work L e
7.2 Quadratic AssignmentProblem o o oo
7.2.1 QUBO Formulation forthe QAP
7.2.2 Logarithmic Encoding
7.3 Cyclic EXpansion 0 i i i it e e e e e e e e e e e e e e e e
7.4 Application: FPGA-Placement
7.4.1 FPGA-Placement it e
7.4.2 Implementation Details
7.5 Experimental Evaluation
7.5.1 Generic Examples e
752 CRCExample et e e e e e e e
7.6 Conclusion e e e e e e e e
Conclusion
8.1 Summary e e e e e e e e e e e e e e e e e e
82 Outlook e e
Bibliography

List of Figures

List of Tables

viii

107
108

143
143
145

146
163
169

CHAPTER 1

Introduction

Optimization plays a fundamental role in many application areas, such as scientific and engineering
disciplines, enabling efficient decision-making in complex systems. Whether in logistics [1], finance [2],
healthcare [3], energy systems [4], transportation [5], or Artificial Intelligence (Al) [6], optimization
techniques help in finding the best possible solutions under given constraints. One can generally use
two different categorizations: in continuous optimization, the decision variables can take any real
value within a specified range while discrete optimization deals with problems where variables are
discrete, such as integers. Methods for finding a (sub)optimal solution have been extensively studied and
applied to a wide range of real-world problems [7—10]. However, as problem sizes grow and constraints
become more intricate, many algorithms face increasing computational challenges, particularly in
high-dimensional and discrete settings.

Machine Learning (ML) [11] has revolutionized how we process and analyze information and is a
perfect example for being exposed to the aforementioned challenges. It enables systems to learn from
data, recognize patterns and make predictions or decisions without explicit programming. ML can be
understood as the process of fitting mathematical models to data—known as training—with optimization
serving as the foundational backbone of this process. Training ML models typically entails minimizing
a loss function, tuning hyperparameters, or solving complex combinatorial problems. Exemplary
tasks include the classification of images, detecting fraud in banking transactions or natural language
processing, such as translating text from one language to another. Arguably, the most prominent approach
for tackling these tasks is Deep Learning (DL) [12], which aims to simulate the complex decision-making
structures of the human brain with an Artificial Neural Network (ANN). Using Gradient Descent (GD)
as the optimization method of choice, DL models can be efficiently trained using backpropagation—a
method fundamentally based on linear algebra operations [13]. The availability of special-purpose
hardware, capable of massively parallelizing such operations, has significantly expanded the scope and
scale of DL applications in recent years. That is, large DL models have shown impressive performance
in playing games [14], protein folding [15], or generating text [16], images [17] and videos [18]. These
state-of-the-art DL. models consist of up to billions of parameters and are trained on millions of data
samples. Training such large-scale models is becoming progressively more expensive and inefficient,
demanding increasing amounts of time and computational resources to navigate the exponentially
expanding parameter space.

As datasets continue to grow in size and complexity, optimizing ML workflows becomes computa-
tionally demanding, requiring innovative techniques to efficiently process large-scale data. With data

Chapter 1 Introduction

scale, we refer not only to the dataset size, but also to the underlying dimensionality of single data
points, while data complexity solely refers to intrinsic properties not concerned with size, such as noise
or the presence of outliers. We use the term data complexity, since the complexity/hardness of an
ML task is largely dependent on characteristics of the underlying data. In general, data serves as the
foundation of both optimization and ML, influencing solution quality and computational feasibility. The
scale and complexity of data impact how well an optimization algorithm performs and whether an ML
model generalizes effectively—that is, how accurately it captures the true underlying data distribution.
Large scale and high complexity introduce challenges related to sparsity, feature selection, and noise,
making data preprocessing and transformation crucial steps in modern computational workflows. Thus,
understanding the relationship between data properties and optimization techniques is essential for
designing robust and efficient algorithms.

Quantum Computing (QC) [19] offers a new paradigm for solving computationally challenging
problems, leveraging the principles of quantum mechanics to process information in fundamentally
different ways than classical computers do. It offers the potential for solving certain computational tasks
in a reasonable time, where classical computers would need decades or even centuries to come up with a
solution. Unlike the usage of classical bits for representing information in classical computers, quantum
systems operate using quantum bits (qubits). Unlike classical bits, which exist in a definite state (0
or 1), qubits can exist in a superposition of states—a concept that defies human intuition. Measuring
the state of a qubit also leads to the observation of a definite state, but only with a certain probability.
More specifically, measuring a quantum system consisting of multiple qubits can be seen as a discrete
probability distribution over an exponentially large space. Another unusual property without an analogue
in our macroscopic world is quantum entanglement. Denoted by Albert Einstein as a “spooky action at
a distance” [20], it describes the interaction between different qubits, such that the state of one qubit
instantly influences the state of the other. Due to these two quantum phenomena, highly entangled
qubit systems are intractable to be simulated with a classical computer, while quantum hardware can
efficiently manipulate such quantum states. The key question in QC is how to leverage the implicit
manipulation of a quantum state to achieve meaningful results.

The perhaps most well-known example for a quantum algorithm with a provably asymptotic speed-
up is the quantum fourier transform [21], which offers an exponential run-time advantage over the
classical counterpart. This insight has been used by Peter Shor, who developed a polynomial-time
QC algorithm for prime factorization [22], which is assumed to be unsolvable in a reasonable time
with a classical computer. Many cryptographic standards are based on this assumption, leading to
QC posing a potential threat—at least in theory. Another famous example is unordered data base
search [23], which has a provable quadratic speed-up over classical methods. These two algorithms
solve a classical task by outsourcing computationally intensive problems to quantum computations.
However, quantum computers are also suited for working with data that is inherently quantum in nature.
Especially in obtaining accurate simulations of quantum systems, inter alia used for drug discovery [24]
and material science [25], QC can be very beneficial. Another application field is Quantum Machine
Learning (QML) [26], which explores how quantum algorithms can enhance ML tasks by encoding and
processing data in quantum states. The underlying data can be either quantum or classical. However,
efficient classical-to-quantum data conversion is often the bottleneck when applying QML algorithms.

One of the most promising application areas using classical data is Quantum Optimization (QO) [27],
which addresses problems where classical techniques struggle due to exponential complexity. Many
optimization problems, particularly those in Combinatorial Optimization (CO), can be mapped to
Quadratic Unconstrained Binary Optimization (QUBO) [9] problems and the equivalent Ising model [28].

Chapter 1 Introduction

These formulations can be conveniently encoded into a quantum Hamiltonian, which describes the total
energy of a quantum system and how it evolves over time. Through quantum mechanical principles, an
optimal configuration of the optimization problem at hand is obtained by searching for a quantum state
with minimal energy regarding this Hamiltonian. Dependent on the underlying problem setting, this
search can be conducted efficiently in the quantum realm, e. g., by exploiting quantum tunneling effects.

Although the aforementioned advantages of QC over classical digital computing for certain application
areas may sound very appealing, these insights are of a theoretical nature, and a real-world advantage on
quantum hardware has not (yet) been proven. This is due to the limitations of current and near-term
quantum devices, often referred to as Noisy Intermediate-Scale Quantum (NISQ) hardware [29]. These
devices are prone to noice-induced errors and offer limited qubit counts, preventing the solvability of
large-scale problems. NISQ hardware does not yet possess full error correction capabilities, making it
essential to develop algorithms that are resilient to noise. Understanding how to leverage NISQ devices
effectively thus requires strategies to mitigate noise and to outsource computationally hard tasks with a
problem size suited for the limited number of qubits.

Due to the close connection between problem structure/dimensionality and underlying data, this
thesis investigates the interplay between data and the performance of QO on NISQ devices. Specifically,
we first ask the question of how the underlying data complexity affects the solvability of QUBO
problems with QO algorithms. Considering the inherent noise in NISQ hardware, we analyze the impact
of different data properties on computational efficiency and solution quality and propose generally
applicable mitigation techniques to counteract possible negative effects. Additionally, the limited
qubit availability and intermediate scale of current quantum devices impose constraints on problem
sizes and encoding strategies. We explore how these constraints influence the effectiveness of QO
and adopt theoretically sound methods to improve scalability while preserving the integrity of the
optimization process. Our developed methods are adapted to real-world large-scale use-cases, where
high dimensionality arises from the underlying data, and are evaluated on NISQ hardware in order to
demonstrate their effectiveness.

Even though we concentrate on NISQ devices and their limitations, our insights can be directly
transferred to post-NISQ quantum computers. The largest quantum hardware vendors (optimistically)
promise systems with up to thousands of (nearly) error-corrected qubits until 2033"~". This number may
sound impressive and can definitely be advantageous for certain application areas, such as cryptography
and quantum simulations, but solving large-scale optimization problems is still way out of reach. Further,
with current hardware approaches, noise effects can still corrupt complex computations. Thus, our
proposed methods can also be of great benefit for upcoming quantum hardware in the long term.

1.1 Thesis Outline

This thesis investigates the impact of data on QO performance in the NISQ era, and is split into two
parts preceded by an extensive background. In the first part (Chapters 3 and 4), we investigate the effect
of data complexity for QO, respecting the noisiness of NISQ devices. The second part (Chapters

to 7) bridges the gap to the limited scale, which examines the impact of data scale for QO performance.
A structural high-level overview of this thesis can be found in Figure 1.1, while the introductions of

! https://www.meetigm.com/technology/roadmap (last accessed September 19, 2025)
: https://www.ibm.com/roadmaps/quantum (last accessed September 19, 2025)
} https://quantumai.google/roadmap (last accessed September 19, 2025)

https://www.meetiqm.com/technology/roadmap
https://www.ibm.com/roadmaps/quantum/
https://quantumai.google/roadmap

Chapter 1 Introduction

Data

Problem (c) Decomposition

(a) Solvability setting
h
(Chapter 3) (Chapter 5)
Quantum (d) Variable generation
Optimization (Chapter 6)

(b) Noise mitigation

(Chapter 4) (e) Reformulation

(Chapter 7)

NISQ hardware

Figure 1.1: Structural overview of this thesis. We investigate the relation between the underlying data of a problem
setting and the consequential performance of QO techniques for NISQ devices. A schematic representation of
clustering is used for representing a generally hard optimization task. In the first part of this thesis, we delve into
the effect of data complexity on the solvability for QO (a) and develop a generally applicable noise-reduction
method, coping with the proneness to errors of current NISQ devices (b). Furthermore, we propose theoretically
sound problem size reduction techniques in part two, which are indispensable due to the possibly huge scale of data
for real-world use-cases and the limited size of NISQ hardware. An efficient top-down problem decomposition
algorithm is developed (c), while we also consider a bottom-up variable generation approach for controlling the
problem size (d). Finally, we explore size reduction by using efficient reformulations of the problem (e). Overview
figures for the single chapters—similar to this one—can be found in the respective introductions. Our developed
methods help to improve the performance of QO in the NISQ era and beyond.

the single chapters contain more low-level figures for describing the methods developed therein. The
following paragraphs provide a more detailed description of the various chapters.

Before we get to the first part, we start off with establishing foundational concepts necessary for the
subsequent chapters in Chapter 2. It begins with an overview of essential mathematical notation, focusing
on linear algebra, binary and complex vector spaces. The discussion transitions into optimization with an
emphasis on QUBO and its role in combinatorial problem-solving. Next, ML is introduced, detailing the
three primary paradigms—Supervised Learning (SL), Unsupervised Learning (UL), and Reinforcement
Learning (RL)—alongside applications such as Support Vector Machines (SVMs) [30], clustering [31],
and Vector Quantization (VQ) [32]. The chapter then shifts to QC, presenting its fundamental principles,
including qubits, superposition, entanglement, and quantum measurement. The two primary models of
QC—~Quantum Gate Computing (QGC) and Adiabatic Quantum Computing (AQC) [33]—are explored,
along with their applications for QO. Finally, we discuss the availability, advantages and limitations of
current quantum hardware, particularly in the NISQ era, setting the stage for the thesis’s investigation

Chapter 1 Introduction

into practical QO strategies.

Part] We begin the first part by investigating how certain data characteristics affect the efficiency and
feasibility of solving QUBO problems on quantum devices in Chapter 3. A central focus is the Spectral
Gap (SG), a critical parameter influencing the success of AQC. We examine how various ML problem
structures—such as clustering and SVMs—interact with QUBO formulations and influence the solution
quality. The findings provide insights into the fundamental relationship between problem structure and
quantum solvability, guiding the development of more efficient QO methods.

Beyond solvability concerns, NISQ devices are prone to computational errors that can significantly
distort optimization outcomes. In Chapter 4, we thus explore the challenges introduced by noise in
quantum hardware for QO and propose a framework for assessing and mitigating these effects. A key
focus lies on parameter precision in QUBO instances, which directly impacts the robustness of quantum
computations. For quantifying the precision needed for faithfully representing the problem parameters,
we use the Dynamic Range (DR) often used in signal processing. We introduce preprocessing techniques
that optimize QUBO formulations for hardware resilience, reducing the risk of false optima caused by
numerical errors. These techniques are based on using a Markov Decision Process (MDP) formulation
and the development of a principled Branch-and-Bound (B&B) algorithm to navigate through the
exponentially large search space, preserving optimal solutions of the underlying problem. This leads
to a generally applicable QUBO preprocessing procedure for mitigating hardware noise, in opposition
to existing methods specifically tailored towards certain problem structures. Through experimental
evaluations on NISQ devices and Field-Programmable Gate Array (FPGA)-based quantum emulation
hardware, the chapter demonstrates the effectiveness of these noise-mitigation strategies in improving
optimization reliability and reduction of resources for classical hardware solvers.

Part Il Due to hardware constraints, many optimization problems exceed the feasible size for NISQ
devices, necessitating strategies to reduce the problem size without compromising solution quality.
Chapter 5 introduces an iterative top-down Divide-and-Conquer (D&C) approach that decomposes
large QUBO instances into smaller, manageable subproblems. Unlike traditional methods that process
problems holistically, this technique progressively refines solutions by solving smaller subproblems
and reintegrating their results. Special emphasis is placed on underlying constraint structures, leading
to efficient recombination strategies. The method is particularly beneficial for ML-related CO tasks,
where data scale often leads to prohibitively large QUBO matrices. A key application of this method is
in computer vision, specifically in 3D scene reconstruction using Bundle Adjustment (BA) [34], where
multiple camera images are analyzed to extract 3D geometric structures. By reinterpreting the keypoint
extraction step of BA as a VQ problem, the D&C approach enables efficient quantum processing while
preserving global correlations between image features. The method is evaluated on satellite image
data, which have a very high pixel resolution, leading to huge image feature dimensionality. Evaluating
our approach on current quantum hardware, we demonstrate how quantum techniques can improve
large-scale optimization tasks in vision-based applications while remaining compatible with current
NISQ hardware constraints.

In contrast to the top-down method followed in Chapter 5, Chapter 6 builds on bottom-up decomposi-
tion strategies. We explore an alternative approach to controlling QUBO problem size through dynamic
variable and constraint generation. Instead of solving the entire problem upfront, the method begins
with a small subset of variables, gradually expanding the formulation by introducing new variables and

Chapter 1 Introduction

constraints as needed. Inspired by column generation [35] techniques for Integer Linear Programming
(ILP), the approach leverages Lagrangian Relaxation (LR) [36] to compute efficient lower bounds, while
QO is used to determine upper bounds. Using these bounds, we prove an optimality criterion that tells
us when our generated variables already obtain an optimal solution to the underlying problem, leading
to a potentially drastic problem-size reduction. A key application of this method is in Multi-Agent
Pathfinding (MAPF) [37], where it is used to optimize collision-free routes for multiple agents in
complex environments. By iteratively refining the optimization process, this approach enables scalability
while preserving solution quality on quantum hardware. We show the compatibility with state-of-the-art
methods by introducing hardware-aware QUBO formulations.

The second part finishes with Chapter 7 where alternative QUBO encodings are explored to enhance
efficiency and scalability. Instead of iteratively solving subproblems or expanding the variable set,
the approach focuses on reformulating the problem structure to achieve more compact and sparse
representations. For CO tasks such as the Quadratic Assignment Problem (QAP) [38], a logarithmic-
sized encoding is introduced, reducing the number of required decision variables. Additionally, the
chapter presents our developed Cyclic Expansion algorithm for unbalanced QAPs inspired by the a-
expansion method [39] in classical optimization. This iterative approach refines solutions by optimizing
over cyclic permutations, bypassing the need for explicit constraint incorporation. The method is applied
to FPGA-placement problems in chip design [40] using NISQ devices, demonstrating its ability to
handle large-scale optimization tasks while remaining adaptable to quantum hardware limitations.

Finally, this thesis is concluded in Chapter 8 with summarizing and discussing the most important
results. We highlight future work and provide an outlook on how our developed methods can also
improve QO performance beyond the NISQ era, particularly for fully fault-tolerant quantum computers.

1.2 Overview of Publications

This thesis is based on a number of scientific peer-reviewed papers published between 2022 and 2025,
presented in chronological order.

[41] N. Piatkowski et al., “Towards bundle adjustment for satellite imaging via quantum machine
learning”, Proceedings of the 25th International Conference on Information Fusion (FUSION),
IEEE, 2022 1, DOI: https://doi.org/10.23919/FUSION49751.2022.9841388

[42] T. Gerlach et al., “FPGA-placement via quantum annealing”, Proceedings of the 32nd ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (ISFPGA), ACM, 2024 43, DOI:
https://doi.org/10.1145/3626202.3637619

[43] T. Gerlach and S. Miicke, “Investigating the relation between problem hardness and QUBO
properties”, Proceedings of the 22nd International Symposium on Intelligent Data Analysis (IDA),
Springer, 2024 171, DOI: https://doi.org/10.1007/978-3-031-58553-1_14

[44] T. Gerlach et al., “Quantum optimization for FPGA-placement”, Proceedings of the 2024 IEEE
International Conference on Quantum Computing and Engineering (QCE), IEEE, 2024 637, DOTI:
https://doi.org/10.1109/0CE60285.2024.00080

[45] S. Miicke, T. Gerlach and N. Piatkowski, Optimum-preserving QUBO parameter compression,
Quantum Machine Intelligence 7.1 (2025) 1, DOI: https://doi.org/10.1007/s42484~
024-00219-3

https://doi.org/https://doi.org/10.23919/FUSION49751.2022.9841388
https://doi.org/https://doi.org/10.1145/3626202.3637619
https://doi.org/https://doi.org/10.1007/978-3-031-58553-1_14
https://doi.org/https://doi.org/10.1109/QCE60285.2024.00080
https://doi.org/https://doi.org/10.1007/s42484-024-00219-3
https://doi.org/https://doi.org/10.1007/s42484-024-00219-3

Chapter 1 Introduction

[46] T. Gerlach et al., “Hybrid quantum-classical multi-agent pathfinding”, Proceedings of the 42nd
International Conference on Machine Learning (ICML), To appear, PMLR, 2025, DOI: https:
//doi.org/10.48550/arXiv.2501.14568

[47] T. Gerlach and N. Piatkowski, “Dynamic range reduction via branch-and-bound”, Proceedings of
the 2025 IEEE International Conference on Quantum Computing and Engineering (QCE), To
appear, IEEE, 2025, DOI: https://doi.org/10.48550/arXiv.2409.10863

[48] T. Gerlach, S. Miicke and C. Bauckhage, “Kernel k-Medoids as General Vector Quantization”,
Proceedings of the 2025 IEEE International Conference on Quantum Artificial Intelligence (QAI),
To appear, IEEE, 2025, DOI: https://doi.org/10.48550/arXiv.2506.04786

https://doi.org/https://doi.org/10.48550/arXiv.2501.14568
https://doi.org/https://doi.org/10.48550/arXiv.2501.14568
https://doi.org/https://doi.org/10.48550/arXiv.2409.10863
https://doi.org/https://doi.org/10.48550/arXiv.2506.04786

CHAPTER 2

Background

In this chapter, Section establishes notation that will be used throughout this thesis, while basic
concepts forming the foundation of subsequent chapters are introduced. Specifically, we will introduce
(combinatorial) optimization (Section 2.2) and ML (Section 2.3), with an emphasis on the problems and
models relevant to later chapters. An overview of the two main paradigms of QC is given in Section
along with an overview of QO and limitations of current quantum hardware.

2.1 Notation and Basic Definitions

The notational conventions adhered to throughout this thesis are briefly outlined in this section. Since
the theory behind QC is mainly based on complex linear algebra, we will concentrate on matrix/vector
notation and recall basic concepts.

2.1.1 Basic Linear Algebra

Vectors are represented by lowercase boldface letters, matrices by uppercase boldface letters and their
respective elements are written using their non-boldface counterparts with subscript indices. As an
example, let A be an arbitrary n x m matrix and a a vector of size n, n,m € N. Then q; is the i-th
element of a and A;; the element of A in row ¢ and column j, where i and j are elements of the
ordered set from 1 ton, i.e., 4,5 € [n] := {1,...,n}. The i-th row of A is denoted by A; and the j-th
column by A.;. Note that indexing a boldface vector a, does not denote the i-th entry of a, but some
enumeration of an element of a set of vectors, i.e., {aq,...,a,} C R". More advanced indexing is
obtained by defining subvectors and submatrices.

Definition 2.1 (Subindexing). Let I = {iy,...,i,} C [n], J = {j1,...,5i} € [m], a € K" and
A € K™™ for some field K and k,1,n,m € N. Then a; is a subvector of a defined as

ar = (ail,...,ajk)—r s

Chapter 2 Background

and the submatrix A; ; is given by

g A
Apg= : :
Aikvjl T Aikvjl
For an index set I C [n], we define its complement as [:= [n] \ I. All vectors are assumed to be
column vectors and the superscript T denotes the transpose of vectors and matrices. Addition, subtraction
and equality is element-wise between vectors and matrices. We denote element-wise multiplication
by ® and element-wise inequality by <. For a quadratic matrix A, we indicate its diagonal vector by
diag(A). Further, if the argument is a vector a, we define diag(a) to be the diagonal matrix with a as
its corresponding diagonal. tr denotes the frace of a matrix, that is tr(A) = 1" diag(A) and vec(A) is
defined as the concatenation of all rows of A into a single vector, that is vec(A) = (A, ,...,A})".
The euclidean norm or the length of a real vector a € R" is given by ||all, = V a'a and we simply

denote it by ||-|| without using the subscript. We also recall the definition of the Kronecker product, since
it is vital for QC.

Definition 2.2 (Kronecker). Given two matrices A € K" and B € K" ™ for some field K, the
Kronecker product is defined as

AllB ctt AlmB
A ® B— . . . c Knnlxmm/
AnlB e Ant
Applying the Kronecker product & times is denoted by A®F = A® ... ® A. Note that the dimension
A®F of grows exponentially with k.

2.1.2 Binary Vector Spaces

We denote the set of binary vectors of size n as B", where B = {0, 1}. The n x n identity matrix is
denoted by I,, € B"*", the n-dimensional vectors consisting only of zeros and ones by 0,, and 1,, and
the i-th standard basis vector as e;'. The subscript/superscript is omitted if the size is clear from the
context. Matrices consisting only of single binary values are denoted as outer products. That is the
m X n matrix consisting only of zeros is written as OmOI and the matrix consisting only of ones as
1m11 . For the rest of the thesis we also need the concept of fixing certain entries in binary vectors.

Definition 2.3 (Fixed subspace). Let 1 < m < n, I C [n] with [I| = m, z € B", and ¢ € B". The
set of all n-dimensional bit vectors in which the variables indexed by I are fixed to the values in ¢ is
denoted as

BY, ¢ :={z': 2 eB", 21 =(}. (2.1

2.1.3 Complex Vector Spaces

Another important aspect for QC are complex vector spaces, so we give a quick recap about complex
numbers. Every element z € C can be written as z = a + b, with real part a = Re(a + ib) € R,

Chapter 2 Background

imaginary part b = Im(a + ib) € R and the imaginary unit ¢ which fulfills > = —1. An alternative
form is given by its polar representation z = r - . reR, ¢ € [0, 27], with the complex exponential
e"¥ = cos(p) + isin(p). A transformation between these different representations or coordinates is
given by a = rcos(p) and b = rsin(yp), giving rise to a two-dimensional real vector space. The
complex conjugate of z = a + ib = re'¥ € Cis given by 2" := a — ib = re” '? and the absolute value
by lz| =Vz- 2" =V +b° =7

A complex matrix A € C"™" is called Hermitian—the complex extension of a symmetric matrix—if
Al = A, where the superscript { indicates the combination of element-wise complex conjugation and
the matrix transpose, i.e., Al = (A*)T. A Hermitian matrix A € C"*" is said to be positive definite if
2" Az > 0and positive semi-definite if 2" Az > 0 for all non-zero z € C". The complex extension of
orthogonal real matrices is given by unitary matrices which fulfill ATA=AAT=T.

Definition 2.4 (Inner product). An inner product space is a complex vector space H equipped with an
inner product (- | -) : H x ‘H — C satisfying the following properties:

l. (z|y)" =(y|), Vo |y € H (conjugate symmetry),
2. (ax+by|z)y=a(x|2)+bly|2), Ve,y,z € H, a,b € C (linearity),
3. (x| x) >0, Vr # 0 € H and (0 | 0) = 0 (positive definiteness).

An inner product (-,-) induces a norm and hence also a distance measure given by d(x,y) =
\/ (x —y | * — y). A Hilbert space is a complete inner product space, i. e., every Cauchy sequence is
converging w.r.t. the induced distance measure. For QC, we will consider the complex vector space C",
equipped with the inner product (z | y) := «'y which is a Hilbert space.

2.2 Optimization

Optimization lies at the heart of many problems in computer science—particularly in ML. It involves
finding the best solution from a set of feasible solutions according to a specified criterion. These
problems are typically defined in terms of

* Objective Funtion f : X — R: Criterion to be maximized or minimized,
* Domain X: The variables that can be adjusted for optimization,
* Constraints g; : X — R: Conditions g;(x) < 0 that define the feasible region.

Mathematically, an optimization objective can be written as

meislgl f(z) (2.2a)
s.t. g;(x) <0, Vi € [m], (2.2b)

where m is the number of constraints and without loss of generality, we assume we want to minimize
our objective function. Note that the optimum is an element of R—we denote the corresponding optimal
2" € X as an optimizer. Finding an exact (global) solution to Equation (2.2) is often intractable in
practice. This can be due to the nature of the objective function, the domain and/or the constraints. Thus,

10

Chapter 2 Background

one is often satisfied with a finding an optimum in a local neighborhood N (y) C X for a given element
y € X. The arguably most well-known method for finding a local optimum for an arbitrary differentiable
function f : R” — R involves its gradient. It is defined by

V() = (giw...,;{;(mf |

which consists of the vector of all partial derivatives w.r.t. to every coordinate of the input. Descriptively,
it points towards the steepest local ascent of f. This motivates a method for finding a local optimum: we
can start from some initial position r’, compute the gradient V f (7’0) and take a step into the opposite
direction of the steepest ascent

I an(’I’t) 7

where 17 > 0 characterizes the step size (learning rate in ML) and ¢t € N indicates the current iteration.
Carefully choosing 7, the sequence f (rt) converges towards a local minimum of f. This iterative
method is known as GD and a plethora of variants exist in the literature [49]. It is the backbone of
optimizing modern ML models, and has be proven incredibly effective in practice, especially enabling
the rapid progress of Al and specifically Deep Learning [12]. However, as mentioned earlier, GD cannot
be applied to arbitrary optimization problems and is only guaranteed to find a local optimum. In this
thesis, we are concerned with optimization problems whose domain is discrete, where GD cannot be
applied. A prominent example is ILP [36], where the domain is defined as X = Z" for some n € N and
we are faced with a linear objective. In the following section, we examine finite domains, as it is often
the case in practice.

2.2.1 Combinatorial Optimization

CO [50] is a branch of optimization that deals with problems with the goal of finding the best solution
from a finite but potentially vast set of possible solutions. The term “combinatorial” reflects that the
problems often involve discrete structures such as sets, graphs, or sequences, and the solutions require
combining elements in optimal ways. CO is omnipresent in practice and appears in numerous applica-
tions such as logistics [1], supply chains [51], scheduling [52], chip design [53], vehicle routing [54],
energy systems [4] or healthcare [3]. In this thesis, we are mainly concerned with Quadratic Binary
Programming (QBP) problems.

Definition 2.5 (QBP). Let W € R™*", A € Z™ " and b € Z"™. QBP is defined as finding the solution
to the following optimization problem

min z' Wz (2.32)
zeB™
st. Az <b, (2.3b)

We here use integer constraints, since it aligns with the natural combinatorial structure of many
real-world problems modeled using QBP. Note that we do not allow the constraints to take arbitrary
form, but we here restrict ourselves to linear constraints. Written in the form of Equation (2.2), our
objective function becomes f(z) = 2" W z and the constraints 9i(z) = A/ 2z — b;, where A, denotes
the i-th row of A.

The problem in Equation (2.3) may look rather specific but is actually a fairly general form of many

11

Chapter 2 Background

CO problems. In fact, all the aforementioned problems arising in real-world applications can be brought
into the QBP form. Since current quantum computers cannot handle optimization under arbitrary
constraints, we are interested in a more specific problem structure.

2.2.2 Quadratic Unconstrained Binary Optimization

QUBO [9] is a general purpose optimization format in CO. It is of central importance in this thesis due
to its versatility and suitability for QC.

Definition 2.6 (QUBO). Let Q € R™*". QUBO aims to solve

i=1 j=1

We call Eg the QUBO energy function.

Similarly to QBP, QUBO is highly versatile and can be used to model various optimization prob-
lems [55]. Examples range from satisfiability [56] over routing [5] and resource allocation [57] to
computer vision [41] and ML [43, 58-60].

Note that any QUBO problem is fully characterized by a square matrix Q € R™"", which we denote
as parameter matrix. Due to the symmetries in the quadratic form zTQz, one often stumbles across
alternative definitions of QUBO in the literature, with all of them being equivalent. For example, it is
often assumed that @ is symmetric and that we are also given an offset vector ¢ € R" with the goal of
solving

nxn

min zTQz + qu .

zeB”
Since z;z; = z; for z; € B, we can add q on the diagonal of Q (diag(Q) — diag(Q) + q) to get rid of
the linear offset. Due to the fact that z;z; = z;z2;, the assumption of symmetry or any other structure
on Q can be leveraged by setting Q;; — Q;; + Q;; and Q;; — 0 for all i < j. This leads to an upper
triangular QUBO matrix, which completely characterizes the QUBO and uniquely defines the energy
function Eg. Thus, we regularly assume a QUBO matrix to be upper triangular and denote the set of all

. . nxn

upper triangular matrices as 9,, C R""".
In most practical applications, one is not interested in the actual minimum energy value, but in the

configuration with such a value.

Definition 2.7. Let Q € Q,,. The set of optimal configurations of Eg is given by

Z"(Q) = argmin Eg(z) = {z € B" : Eg(2) < Eg(2') vz € B"} .
zeB"

We denote z € Z* (Q) as an optimizer of Q.

Clearly, Q is not restricted to have a unique optimizer, i.e., |Z" (Q)] > 1.

Finding a Solution Even though QUBO problems are often used in practice, finding an optimal
solution is NP-hard [61]. That is, finding an optimal solution can be as hard as trying out every possible
candidate solution (brute-force). Since it holds that [B"| = 2", the number of possible solutions is

12

Chapter 2 Background

exponentially large, which often renders finding an exact optimizer impossible. Nonetheless, different
methods for obtaining an optimal solution have been developed [9, 10], with an exponential runtime
in the worst case. Hence, state-of-the-art methods are (meta)heuristics, which find local optima and
converge towards an optimal solution. Among the most prominent methods are Simulated Annealing
(SA) [62], tabu search [7] and genetic algorithms [8], while more sophisticated methods are given by
commercial solvers, such as Gurobi [63] and CPLEX [64]. A detailed overview of solution techniques,
encompassing both exact and approximate methods, is given in [65].

In practice, results obtained with the aforementioned classical methods are often not satisfactory. This
can be either due to the solution quality or the time needed for finding a good solution. In Chapters
to 7, we will discuss three use-cases where this caveat can be very critical. QC is a prominent candidate
to overcome classical limitations. The bridge between QUBO and QC is given by the Ising model.

2.2.3 Ising Model

The Ising model [66] is a computational model from statistical physics. It was originally designed to
model the magnetic spins of atomic particles in a lattice, but can be used to model much wider range of
problems [55].

Definition 2.8 (Ising). Let J € R"*" be hollow (diag(J) = 0), h € R" and n € N. The energy of a
bipolar vector o € S" with S" := {—1, 41} of the Ising model is defined as

Ejplo)=c'Jo+h'o. (2.5)

Hollowness is assumed since 03 = 1 for o; € S, which would just add a constant offset diag(.J)Tl
to Equation (2.5), not relevant for optimization.

From a physics-viewpoint, the variable o; represents the magnetic spin of a lattice node ¢, J;; the
interaction between node ¢ and j and h; an external magnetic field acting on node 7. Similar to the
definition of QUBO in the literature, there exist different conventions for formalizing the Ising model.
However, they are all equivalent to the one given in Equation (2.5).

Similar to Definition 2.7, we define Z* (J, h) = arg min, g Ey . We show the equivalence
between the QUBO energy and the Ising energy.

Proposition 2.1. Given Q € R ler J = 1Q h = 1Q1, ¢ = 11'Q1 and 1 : S" — B",
(o) =1(1+ o). Then
Eq (o)) =Ejp(o)+c, YoeS". (2.6)

Specifically, the restriction [z« p : Z*(J,h) — Z*(Q) is an isomorphism.

13

Chapter 2 Background

Proof. We use the the definition in Equation (2.4) to obtain

Fq (o) = {(1+0) Q1 +0)

— i (1TQ1 +1'Qo+0' Q1+ O'TQ0'>

1 1 1
= ZUTQO' + 5 (Ql)T o+ ElTQl
=o' Jo+h'o+c
=Ejp(o)+c.

O]

Thus, to find an optimum to a QUBO problem with matrix (), we can optimize the Ising model
given in Proposition 2.1, with the reverse also holding true. However, solving an Ising model is
as hard as solving QUBO, which is NP-hard. Hardware solvers aiming to find solutions for Ising
models and equvialent QUBO formulations are called Ising machines. They are designed to solve
CO problems by mimicking physical processes of magnetic systems. Many different approaches
constructing Ising machines exist, encompassing analog, digital and quantum variants [67]. For the
analog computation approach, numerous physical implementations for thermal annealing exist, e.g.,
including magnetic devices [68] and Bose-Einstein condensates [69]. Examples based on digital
hardware are implementations of SA and evolutionary algorithms on Application-Specific Integrated
Circuits (ASICs) [70], FPGAs [71, 72], or Graphical Processing Units (GPUs) [73, 74]. Dynamical-
system solvers implemented with optics and electronics, such as coherent Ising machines [75, 76], also
attracted interest lately. QC technologies have gained a lot of attention over the recent years for tackling
QUBO problems. The most prominent example is Quantum Annealing (QA), which is a physical
implementation of AQC. Through the exploitation of quantum tunneling, the system is allowed to pass
through energy barriers and find good solutions of the underlying optimization problem. A more detailed
elaboration is given in Section . All of these approaches have the advantages of being standalone
without additional overhead and being able to massively parallelize computations.

As we have seen before, optimization is of great importance for many real-world tasks. It is especially
vital for ML as it serves as the fundamental mechanism that enables models to learn from data.

2.3 Machine Learning

For many complex tasks, precise mathematical models or exact algorithms are challenging to develop.
These tasks often demand a level of intelligence akin to human capabilities, such as recognizing shapes
and objects in images, identifying patterns in data, or making predictions based on prior observations.
Numerous methods have been devised to address these challenges, giving rise to the field of ML. ML
is a subset of the broader field of Al, setting itself apart from traditional problem-solving approaches
where machines operate strictly according to predefined rules. It is particularly valuable for tasks like
pattern recognition, which are intuitive for humans but lack easily definable rules, or for problems where
simple rules exist but the sheer complexity renders rule-based methods computationally impractical. In
recent decades, advancements in hardware have significantly enhanced ML’s relevance, making it a
cornerstone technology across a broad spectrum of applications.

14

Chapter 2 Background

®g | i o O
e .9 0 o O o) o -O O
@@@g _;'é@e Ooo 00 © % L0°
Pie® ? e °o Lo

(a) Given labeled data, find maximum (b) Given unlabeled data, find similar (c) Given unlabeled data, find repres-
separating margin. groups. entative points.

Figure 2.1: Schematic representation of three different ML tasks: SVM (a), clustering (b) and VQ (c). See Sec-
tions and for more details.

ML can be considered to be the science of fitting data to mathematical models. This process can be
described with the help of the following terms:

* Data set D: Finite sample of underlying unknown data distribution D,
* Model hg: Parametrized mathematical model, able to describe a certain hypothesis,
* Loss function £: Rates the quality of the current model .

Assume we are given a dataset D, we want to find a suitable model hg describing our data. The
chosen model hy stems from some hypothesis space, which is believed to have the ability to accurately
characterize the underlying data distribution. Finding optimal parameters 6 is done by optimizing a loss
function £ w.r.t. the data and the model

mein L(hg;D) . 2.7

Three main paradigms arise in ML: SL (Section), UL (Section) and RL (Section).

2.3.1 Supervised Learning

SL aims to learn the mapping between inputs and their corresponding outputs. We want to find a function
hg : X — Y which is optimal in terms of a loss function £ : Y x Y — R. Seeing X x Y as a random
variable with the joint distribution D, we aim for minimizing the expected loss

min Ep (L(he(X),Y)) -

In practice, we have no knowledge on the underlying distribution but only access to a finite sample—the
dataset—consisting of input-output pairs D = {(x;, ¥;) }icn) € X x Y. That is, we fit the parameterized
model hg to the given data by minimizing the empirical loss

mein ;}E(he(mi)vyi) .
€en

The input space X is called feature space and is typically modeled as a metric space (e.g., Rd), where
inputs might represent diverse data types such as images, texts, emails, gene sequences, networks,
financial time series, or demographic data. Outputs can take various forms: they may be quantitative,

15

Chapter 2 Background

such as a temperature measurement or the concentration of a specific substance in the body, or qualitat-
ive/categorical, such as binary values or multi-class labels. The first type of problem, where the output
consists of quantitative values, is typically referred to as regression, while the latter, involving qualitative
or categorical outputs, is known as classification. Exemplary regression problems are the prediction of a
house price based on features like size and location or estimating the temperature given current weather
conditions. For classification, examples would be to identify a an email as spam or classifying images of
animals into categories like “cat” or “dog”.

Based on the task at hand, we require a parametric model that can be trained to solve the problem.
Popular models include ANNs, Decision Trees, Random Forests and SVMs.

Support Vector Machines SVMs [30, 77] are among the most extensively studied ML models due
to their effectiveness in both classification and regression tasks. SVMs are particularly known for their
ability to handle high-dimensional data and find an optimal decision boundary that maximizes the margin
between different classes, making them powerful for tasks with clear class separations. Their theoretical
foundations, along with various extensions and kernels, have made SVMs a central topic in ML research
and applications.

In its original form, an SVM is a binary classifier which takes a labeled dataset D = {(z;, ¥;) }icn)
with z; € R and y; € {—1,+1} for i € [n], and separates them with a hyperplane . As there may be
infinitely many such hyperplanes, an additional objective is to maximize the margin, which is the area
around the hyperplane containing no data points, in order to obtain best generalization. A schematic
representation of an SVM is given in Figure

The hyperplane is represented as a normal vector w € R? and an offset or bias b € R. To ensure
correctness, every data point must lie on the correct side of the plane

(w'a; —b)y; > 1,
A feature vector which lies exactly on the border of the margin is called Support Vector (SV), i.e., a
vector x; with (wT:ni — b)y, = 1. In addition to correct classification, we also want to maximize the
margin width. Assume x, and x_ are SVs with labels +1 and —1, respectively. The margin width is
then given by the projection of «, — _ on the unit normal vector of the hyperplane

N T B
e () = g O+ 1= =1 =7

As perfect linear separability for real-world data is unlikely, slack variables &; > 0 allow for slight
violations. The new correctness constraint is

T
(wz; —by; >21-¢,
where we want to minimize the sum of all slack variables 1T£ .

Definition 2.9 (Primal SVM). Given a labeled dataset D = {(x;,¥;) }ic[n) C R? x S, the primal SVM

16

Chapter 2 Background

Table 2.1: Overview of frequently used kernel functions [79].

Name Form Parameters
Linear x' z
Polynomial ("2 +c)f Degree p € N, constant ¢ € R
RBF/Gaussian exp(—|z — 2'|%) Bandwidth v € R
aims to optimize
min ||w|? + C1'¢ (2.84)
w7b7£
st(w'w,—b)-y; >1—-¢&, Vie[n], (2.8b)

where the parameter C' > 0 determines the trade-off between increasing the margin size and ensuring
that the x; lie on the correct side of the margin.

Kernel Trick Many data distributions are not linear separable in the original space, or do not even
live in a properly defined Hilbert space in the first place. In such cases, a feature map ¢ : X —

R? can be applied to project the data into a feature space where linear separation becomes feasible.
However, explicitly computing the feature map can be computationally expensive, especially when the
dimensionality of the feature space is much larger than the one of input space (d < d'). Furthermore,
solving the objective in Equation (2.8), we need to compute d? inner products of size n and invert a
d’ x d’ matrix. Finding a solution of the primal SVM thus has a complexity of O(nd/2 + d'g), which is
infeasible for large d.

The dual formulation of a SVM addresses this challenge through the kernel trick, which avoids
operating directly in the feature space. It is based on Mercer’s theorem [78].

Theorem 2.1 (Mercer). Given a dataset D = {xi}ie[n] C X and a symmetric function k : X x X — R.
Let K € R™" with K;; = K(x;, a:j). If K is positive semi-definite, then there exists a map ¢ : X —
RD, s.t.,

K = K(z;,x)) = ¢(x;) o(x;) .

The actual theorem is more general, which is applicable to square-integrable functions, rather than
to the restriction of a finite dataset. A symmetric function K(-,-) which fulfills the positive semi-
definiteness condition is called Mercer kernel or just kernel in short. The corresponding matrix K is
called kernel matrix.

The kernel trick is now to replace inner products of feature vectors by a suitable kernel. This approach
enables efficient computation of inner products in the high-dimensional feature space without explicitly
realizing the feature map, significantly reducing the computational overhead. An overview of commonly
used kernel functions is given in Table

Kernels can be applied to SVMs by considering its well-established Lagrangian dual form.

Definition 2.10 (Dual SVM). Given a labeled dataset D = {(x;,¥;) }icfny € X X S, we let y =

(Y1, -, yn)—r and K : X x X — R be a kernel function with corresponding kernel matrix K € R"*"

17

Chapter 2 Background

respective the given dataset. The dual SVM objective is given by

1
max1l o — —a' (ny ® K) o (2.9a)
a 2
st.0<xa=<C1, (2.9b)
y'a=0. (2.9¢)

For solving Equation (2.9), we evaluate the kernel n® times and invert the corresponding n X n
kernel matrix. Since the evaluation of the kernel is often possible in O(d) (c.f. Table 2.1), we obtain a
total complexity of O(dn2 + n3). This can largely improve upon the complexity of the primal form,
especially when the feature map is intractable to compute.

2.3.2 Unsupervised Learning

UL does not require the creator to “supervise” the model during training, enabling it to independently
identify patterns and structures in data. Unlike SL, it operates on unlabeled datasets, i.e., D =
{acl, ...,x"} C X, making it well-suited for discovering hidden relationships. Prominent examples
are cluster analysis, VQ and anomaly detection, where we want to detect “unusual” points in a dataset,
which may be of special interest.

Clustering Clustering is an unsupervised ML technique used to group data points into clusters, where
data points within the same cluster are more similar to each other than to those in other clusters. The
goal of clustering is to identify patterns, structures, or relationships in data without the need for labeled
outputs. A schematic representation is given in Figure

A distinction is made between hard and soft clustering, where the first describes exclusive membership
in clusters while the latter allows the membership to a certain degree. We focus on hard clustering, i. e.,
we want to find disjoint subsets C; C D with | J; C; = D such that points in C; are similar and points
from two different clusters C; and C'; are dissimilar. Hence, one relies on suitable similarity measures
such as Euclidean distance or cosine similarity. Many different methods exist all with certain advantages
and disadvantages, e. g., DBSCAN, hierarchical clustering or spectral clustering. However, we here
focus on the arguable most prominent approaches, k-means clustering and k-medoids clustering. For
setting up the exact objective, we first define the mean/medoid of a cluster.

Definition 2.11 (Mean, Medoid). Let D C R? and C' C D. The mean p of C'is defined as
1
H == T,
P
while the medoid m is defined to be an element of C

. 112
m:argmanHw—wH .
z'eC xzecC

Note that if u € C, then p = m.

18

Chapter 2 Background

Definition 2.12 (k-Means, k-Medoids). Let D C R,

D|l=n,C;CD,ic [k],k <nand

C;nC;=0,vi#j |JC=D.
1€[k]

The objective of k-means/k-medoids clustering is given by minimizing the within cluster scatter

omin YNz (i, SNz -my)? (2.10)

Cy
iclk] xeC; 1€[k] zeC;

A notable characteristic of medoids is that they are determined solely by evaluating squared distances
between given data points. Such distances can be precomputed and thus do not rely on numeric data, in
opposition to means.

Finding a good solution to the objectives in Equation (2.10) is conceptually very similar. For example,
it can be achieved by using slightly different versions of Lloyd’s algorithm [80]. This method initializes k
means/medoids and iteratively determines clusters by assigning data points to their closest mean/medoid
and updates these means/medoids according to that assignment.

Vector Quantization VQ is a technique used in signal processing and ML to compress a dataset into a
finite set of representative points, known as prototypes. For D = {wl, ...,x"} C X, it aims to identify
k < n prototypes W = {wl, . ,wk} C X that serve as a compressed representation of the dataset.
These representative points form a codebook, and each input vector is mapped to its closest prototype,
effectively quantizing the data. A schematic representation is given in Figure

It functions by partitioning a large set of points (vectors) into groups, with each group containing
roughly the same number of points nearest to it. This makes VQ suitable for lossy data compression,
pattern recognition and density estimation. Furthermore, it is very similar to clustering but describes a
slightly different task. For example, one can use the cluster means p; of k-means as prototypes for VQ.

As VQ aims to model the underlying probability density functions of the data distribution with the
help of the codebook, we consider probability density estimates. That is, assuming that pp(-) is an
underlying probability density function of D and pyy(-) of W, we want pp(-) and pyy () to be as similar
as possible. The dissimilarity or divergence can be measured in numerous ways, examples include the
Cauchy-Schwartz divergence [81] or the Kullback-Leibler divergence [82].

Since we have no knowledge on the underlying distribution of our data, we use approximations. In
particular, we examine Kernel Density Estimation (KDE), also called Parzen windowing, similar to [83].

Definition 2.13 (KDE). Let K : X x X — R be a kernel function, D C X, |D| = n. A KDE of the
underlying distribution of D is given by

po(@) = 3 K(a,2).
x'€D

In [84, 85], a Gaussian kernel is used to approximate pp(-) and py,(-) and the Cauchy-Schwartz
divergence is minimized. However, we are not restricted in the choice of the used kernel function. Due

19

Chapter 2 Background

to Mercer’s theorem (Theorem 2.1), there exists a feature map ¢ : X — RD, s.t.,

pp(x) = % > b)) o) = d(x) dx. bp= % > o(a), (2.11a)
x'eD xeD

(@) =1 3 o) () = 0@) b, dwi= 1 O 6(a). @.11b)
x'ew xeW

The mean vectors ¢y and ¢, fully characterize the KDEs pp(-) and pyy,(+). The difference between
these vectors can be measured by the Mean Discrepancy (MD) [86], which leads to following objective.

Definition 2.14 (MD-VQ). Let K : X x X — R be a kernel function, D C X, |D| = n. MD-VQ aims
to find a codebook W C X, [W| = k and k < n, s.t.,

min [|¢p - owl? (2.12a)
st W=k, (2.12b)

where ¢y and ¢, are the feature mean vectors defined in Equation (2.11).

It is worth noting that prototypes coinciding with actual data points are often easier to interpret. This
makes MD-VQ very similar to k-medoids, and we will investigate this connection later on in Chapter 3.

2.3.3 Reinforcement Learning

RL [87] is an ML paradigm in which an agent learns to make decisions by interacting with an environment
to maximize a cumulative reward signal. Unlike SL, RL does not rely on labeled data; instead, it uses
trial-and-error to discover optimal actions. The agent observes the current state of the environment,
takes an action, and receives feedback in the form of a reward and a new state. Over time, it refines
its behavior using strategies such as QQ-learning [88] or policy gradients [89], balancing exploration
(trying new actions) and exploitation (choosing the best-known actions). RL has applications in robotics,
game playing [14], resource management, and other domains requiring sequential decision-making. We
formalize this decision problem by a mathematical framework.

Markov Decision Process A decision process is a framework used to model decision-making in
environments where outcomes are partly under the control of a decision-maker and partly under the
influence of chance. One common formalization of a decision process is an MDP [90]. We will focus
on deterministic environments, where we have full control over the outcomes. It can be described by a
4-tuple (S, A, f,r):

» State space S: Set of all possible states the system can be in. Each state provides a complete
description of the system at a particular point in time.

* Action space .A: Set of all possible actions that the decision-maker can take. Actions are choices
or moves that can influence the state of the system. It may be dependend on the current state.

* Transition function f : S x A — S: Function defining the transition of moving to a new state
s’ € S given the current state s € S and action a € A, f(s,a) = 5. It encapsulates the dynamics
of the environment.

20

Chapter 2 Background

* Reward function r : S x A — R: Function assigning a numerical value (reward) received
after taking action a € A in state s € S. This value represents the immediate benefit or cost of
performing the action in that state.

Note that the transitions can happen under uncertainty, as it is often the case in practice. Also, we often
cannot fully observe our current state, which leads to the formalization of a partially observable MDP.

The next decision in the current state is governed by a policy 7 : S — A which maps the current
state to the action to be taken next. Similarly to uncertain transitions, policies are often described by
probability densities in practice, i. e., with which probability should we follow action a starting in state
s. Rating the quality of a policy 7 is done by having a look at the gathered cumulative reward following
m. It can be described by the value function.

Definition 2.15 (Value function). Let (S, A, f,r) be an MDP and v € (0,1). The value function
V™ : 8 — Ris defined as

T

VT(s) =Y 4'r(sp,m(s,)), so=s, (2.13)

t=0

where v € (0, 1) is a discount factor guaranteeing convergence for infinite horizons 7" — oo and the
state evolution is described by s, 1 = f (s, 7(s;)).

The function V™ rates how good a policy 7 performs, that is, the higher the cumulative reward the
better. As we want to maximize our rewards, the goal of an MDP is to find an optimal policy 7 which
maximizes Equation (), i.e.,

7' (s) = argmax V" (s), Vs€S. (2.14)
T:S—A

In practice, one also wants to rate the quality of a taken action.

Definition 2.16 (Action value). Let (S, A, f,r) be an MDP and v € (0,1). Define the Q-value or
action value as

QW(S’ a)=r(s,a)+ ’Yvﬁ(f(s’ a))
which describes the quality of a state-action pair.

In order to solve Equation (2.14), one often utilizes a fundamental recursive insight.

Theorem 2.2 (Bellman [91]). Let (S, A, f,r) be an MDP and ~y € (0, 1). The Bellman equation is a
recursive description of the value function

V7T(s) = mjgc)r(s,a) +4V™(f(s,a)), VseS. (2.15)
acA(s

This also leads to a recursive description of the Q)-value using the Bellman equation

Q"(s,a) = 7(s,a) +v max Q"(f(s,a),a) . (2.16)
a€A(s)

One approach for finding 7" is value iteration: Instead of optimizing directly over possible policies,
the value function (or (Q-value function) is iteratively updated until convergence. Let us denote the

21

Chapter 2 Background

corresponding approximations of V”* (or QW*) with V (or Q). The resulting policy 7 can then be
constructed by .
7(s) = argmax Q(s,a), VseS. (2.17)
acA(s)

There are many different ways of obtaining an approximately optimal Q-value function Q.

Q-Learning One of the most prominent examples for discrete action spaces is Q-learning [88].
The Q-function () is initialized before the learning starts and then the following update is conducted
iteratively:

Q(s,a) « (1 —a)Q(s,a) + aQ(s,a), Q(s,a) = r(s,a) +~ max Q(s,a) .

a€A(s)

The learning rate 0 < a < 1 weights the current value Q(s, a) with the new information Q(s, a), which
corresponds to applying the Bellman equation Equation (2.16).

For discrete state and action spaces, one often uses tabular storage to keep track of Q(s, a) for each
state-action pair. However, if the state space is continuous, this method is no longer feasible. In those
cases, one falls back to function approximation of Q instead of storing all evaluations of Q. The most
prominent function approximators are of course ANNs. The combination of ()-learning with using an
ANN to represent Q is called deep @-learning [92].

Policy Rollout A suboptimal policy 7 can further be improved by using the concept of Policy Rollout
(PR) [93, 94]. Obtaining 7 can for example be obtained as a myopic greedy policy

7(s) = argmin r(s,a) , (2.18)
acA
or by using ()-learning. PR describes the concept of following such a given base policy 7 for a certain
number of steps. Its usage is m(*)tivated by the well known rollout selection policy, which approximates
the optimal future reward V™ (f(s;,a)) with V™ (f(s;,a)). The following approximation of the
Bellman equation Equation (2.15) is used

VT(sy) = 15163% |:T‘(8t, a) + VT (f(sy, a))]) (2.19)

The rollout selection policy 7 is guaranteed to be at least as good as the base policy 7 and often
outperforms it [93]. Its simplicity and strong performance stem from its close connection to the core
dynamic programming algorithm of policy iteration. Equation (2.19) describes the optimal one-step
look-ahead policy, which is followed by adhering to the base policy thereafter.

There are several variants of the rollout selection policy for reducing computational requirements.
Simplified rollout is employed to reduce the action space size in every step by choosing a subset due to
some measure. This bears some resemblance to the beam search method [95] for exploration, where a
fixed-size search beam is maintained for traversing through the search space. Another way of reducing
computational burden is to use truncated rollout, which stops the PR before reaching the full horizon.

22

Chapter 2 Background

2.4 Quantum Computing

QC [19] leverages the principles of quantum mechanics, such as superposition, entanglement, and
quantum tunneling, to process information in fundamentally different ways compared to classical
computing. Recently, it has gained widespread attention due to the upcoming availability of quantum
hardware through companies like IBM Quantum and D-Wave. For more details on the availability and
current state of QC hardware, we refer to Section

In theory, QC is able to solve certain tasks way faster than classical computers [22, 23]. A practical
quantum hardware demonstration of solving a problem infeasible for any classical computer within
a reasonable timeframe, is called quantum supremacy or quantum advantage' . Google presented
a remarkable sampling benchmark performance of their newest quantum chip in December 2024,
performing computation in under 5 minutes, while the fastest supercomputers would need around 10%
years” for the same task. D-Wave claimed quantum supremacy by using their Advantage Systems for
simulating non-equilibrium dynamics in March 2025 [96] and for complex magnetic materials simulation
problems with relevance to materials discovery in March 2025 [97].

Even though the usefulness of such sampling and simulation benchmarks can be called into question,
the promising theoretical properties of QC sparked a plethora of research investigating its potential for
different applications. Two application areas gained particular wide-spread attention in the last decade—
QML and QO. QML seeks to leverage QC techniques for common ML tasks, including classification,
regression, and clustering [26, 79], while QO focuses on potential benefits for optimization. A more
in-depth description of QO is given in Section

Qubits At the heart of QC is the concept of replacing classical bits with quantum bits, called qubits.
While classical bits can only have distinct values in B = {0, 1}, that is, either the value 0 or 1, qubits exist
in continuous states “between” 0 and 1 (superposition) and yield discrete values only when measured.
One denotes the state of qubits in Bra-ket notation, stemming from the physics area of quantum
mechanics. That is, we say a single qubit is in state |¢)) (ket-vector), which is a two-dimensional complex

vector
) = <j§) = ap|0) + oy 1) € C2, [0) = (é) 1) = (g’) .

Similar to classical bits, qubits have two basis states |0) and |1) which coincide with the standard basis
vectors in two dimensions. A single qubit can be in a mixture of states and if oy # 0 and oy # 0,
we say the qubit is in superposition. The bra vector ()| denotes the conjugate transpose of |1)), that
is (¢] = (\1/1>)T = (ag,a}), where * indicates complex conjugation. We assume C” as the Hilbert
space equipped with the standard inner product in complex spaces, that is (¢|¢)) = (¢||¢). The
complex coefficients o and o are called the amplitudes and the amplitude vector |¢) is assumed to be
normalized

(W) = |ag|® + |oq > = 1.

Since quantum states are normalized, the state of a single qubit can be seen as a vector on a unit
sphere—the so-called Bloch sphere. Due to the loss of a degree of freedom through the normalization

: https://www.quantamagazine.org/john-preskill-explains-quantum-supremacy-20191002 (last accessed September 19, 2025)
. https://blog.google/technology/research/google-willow-quantum-chip (last accessed September 19, 2025)

23

https://www.quantamagazine.org/john-preskill-explains-quantum-supremacy-20191002
https://blog.google/technology/research/google-willow-quantum-chip/

Chapter 2 Background

10)

A

p(|0)) = cos™(6/2)

Measurement of |v))

OR Nondeterministic \

p(|1)) = sin®(6/2)

) 4

v

1 1)
(a) Classical bit can only exist in one (b) Qubits can exist in a superposition of their basis states |0) and |1) Equa-
of two definite states, either O or 1. tion (). A clear definition of its state is given through measurement.

Figure 2.2: State comparison between a classical bit and a qubit.

assumption, we can also use an equivalent polar state description with azimuth angle ¢ and polar angle 8

|1) = cos <2> 0) + ¢ sin <z> 1) . (2.20)

A visualization of a single-qubit state along with a comparison to classical bits can be found in Figure

Measurement Unfortunately, a quantum state cannot be directly observed, i.e., we do not have
access to the amplitudes of a qubit. If we try to measure such a quantum state, it causes a collapse into
one of its basis states. The probability of a qubit being measured in a particular basis state is given by the
absolute square of the corresponding amplitude. The normalization property of qubit states guarantees
that the probabilities of all basis states sum to 1, aligning with probability theory. During measurement,
information on the quantum state gets lost, which gets clear through the following example. Looking at
the equal superposition states

_o+n
+) = =)=
V2
we realize, the measurement probability of ending up in either basis state is % for both states. However,
the states |+) and |—) are clearly not the same.

Quantum Register The real power of QC comes from combining states of multiple single qubits into
one quantum register. We describe a system consisting of n qubit states |¢,) , ..., |1,,) by a combined
amplitude vector v

Note that the i-th entry of |1)) is the amplitude «; of the standard basis vector |i) := efv , where N = 2",
That is, |¢)) can be written as [¢)) = Zz‘]i_ol «; 7). Multi-qubit states which can be expressed by
Kronecker products of single-qubit states are called seperable. That is, the qubits are independent and

24

Chapter 2 Background

such states can be efficiently simulated with classical computers. The true power of QC comes from
quantum registers which are not decomposable. The simplest states of this form are the 2-qubit Bell
states

oty = 00+ 1D gy 100) — 1) _ o) +[10) _ |01) — [10)

V2 V2 V2 V2o

|®T), |®7) have an equal probability of 3 to be measured in |00) or [11), while |®%), |®7) in |01)
or |10). However, they cannot be written as a single Kronecker product of the basis states. After
measurement, the outcome of the first qubit automatically determines the one from the second qubit and
vice versa. Speaking from a probabilistic viewpoint, the probability distributions of the single qubits are
not independent and thus do not factorize. This phenomenon is described as entanglement and has no
analogue in our classical world. With full entanglement, the most efficient way of storing the amplitudes
is one-by-one, which makes highly entangled quantum states intractable to simulate with a classical
computer.

1) [0

Observables So far, we assumed that we take a measurement in the standard basis, that is in the
Z-basis. This is due to the fact that the Pauli-Z matrix (Table 2.2, more details will follow in the
upcoming section) can be diagonalized in the standard basis

Z = (+1)10) (O] + (=) 1) (1] ,

i.e., Z has eigenvalues —1, +1 and eigenvectors |0) , |1). Similarly, we can think of a measurement
procedure which does not give us the probabilities for the standard basis states |0) and |1), but for a
different basis, such as |[+) and |—). As is known from standard linear algebra theory, such a basis
change can be achieved by finding a suitable unitary matrix. In the our exemplary case, we can achieve
this by using the Hadamard matrix H (Table 2.2) on an arbitrary state |1) in the standard basis to obtain
a state 1)’ in the X-basis

)" =H) = H(ag [0) + o1 [1)) = agH |0) + aH[1) = g [+) + oy |[—) -

Generalizing this concept to quantum registers, we ask the question whether we can also obtain
different measurable properties. This is answered by an observable O € (CQn, which is a measurable
physical quantity that can be assigned a numerical value, such as spin, position, momentum, or energy.
Hence, the matrix O is often assumed to be Hermitian, since it then has real eigenvalues \; € R. With
the aforementioned basis change, we assume that it can be decomposed to O = Zfigl A le) (7] A
measurement of a quantum register |¢/) w.r.t. an observable O then results in an eigenvalue \; and it
causes the state to collapse into the eigenstate |i). The probability of measuring J; is

N-1

pON) = (G017 =D a; [= il .

0

<

Thus, measuring an eigenstate of some Hermitian observable always results in the same result. This
means, that if the current state |¢)) is not in such an eigenstate, we cannot completely observe it and
have a nondeterministic measurement outcome. In practice, one is often interested in the expectation

25

Chapter 2 Background

Table 2.2: Overview of frequently used quantum gates along with their associated unitaries.

Name Symbol #Qubits Parameters Unitary Circuit
NOT/Pauli X X 1 <(1) (1)> 7
Pauli Y Y 1 (? BZ> v}
Pauli Z V/ 1 <(1) _01>
Hadamard H 1 % G _11> @
0 —isin (¢ i
X-Rotation Ry 1 6eo,2n) <‘;O:H§2()9) CZ(:IE 9()2)>
2 2
) _gin (8 i
Y-Rotation Ry 1 6 € [0,2m) (2?1? ((92)) Ci;n(g§)>
2 2
—;8 ,
Z-Rotation R, 1 6elo,2n) <eXp(O i3) expo(i 9)>
2
1 000
Controlled NOT CX 2 8 (1) 8 (1) g
0 010

of an observable O, i.e., (O) = (¥|O|y). As in classical statistics, it is approximated by taking many
measurements and averaging the corresponding obtained results.

2.4.1 Quantum Gate Computing

Having the necessary details at hand, we can go over to the most prominent paradigm of QC, namely
QGC. It describes the framework of constructing and manipulating quantum states. This is done
by quantum circuits, which are fundamental structures used to perform computations on a quantum
computer. They consist of a sequence of quantum gates applied to a set of qubits, where each gate
represents a specific quantum operation. These circuits are analogous to classical logic circuits, but
operate under the principles of quantum mechanics.

Quantum Gates Quantum gates are represented by unitary matrices, which transform the amplitudes
by multiplication with the given quantum state. A unitary matrix U fulfills the property ur=u,
which preserves the length of a vector after multiplication. Unitarity ensures the preservation of
the normalization property (¢|¢)) = 1 and thus the reversibility of quantum computations, a core
requirement in quantum mechanics. An overview of the most prominent quantum gates can be found
in Table 2.2. The gates X, Y, Z are called Pauli-gates and are building blocks for more complex quantum
gates. They are Hermitian, that is U = U', and thus self-involutory (XX = YY = ZZ = I). For
example, the X-gate (NOT gate) flips the basis state of a single qubit

X[0)=[1), XI[1)=]0) .

26

Chapter 2 Background

q: |0> ‘@_‘} [00Y—|11) |q1> S |QQ>
i V2
a2 : |0) —&-(2) 42) ~—— |a1)
(a) Circuit creating the Bell state |®). (b) Circuit for swapping qubit states.

Figure 2.3: Exemplary 2-qubit quantum circuits.

The H-gate (Hadamard gate) has the effect of mapping a single-qubit basis state onto an equal superpos-
ition of the basis states
H|0) =|+), H[L)=]|-),

while the gates Rx(0) = e_igx, Ry(9) = e_igY, Rz(0) = 2% act like a rotation on single qubits.
From the Bloch sphere point-of-view, they rotate the state vector by 6 along the z-, y- and z-axis,
respectively. The most important two-qubit gate is the CX-gate (also called controlled NOT or CNOT)
which flips the state of the first/target qubit when the second/control qubit is in the |1) state and leaves the
target qubit unchanged otherwise. In quantum hardware, this gate is often used to create entanglements
between single qubits.

Quantum Circuits A quantum circuit describes a sequence of initialization of qubits, quantum
gates and measurements. It can be depicted graphically such that the horizontal axis represents time,
progressing from left to right. Horizontal lines denote qubits, while double lines indicate classical bits.
The elements connected by these lines correspond to operations performed on the qubits, such as gates
or measurements. The underlying unitary U of the given quantum circuit can be written as a finite
product of quantum gates {Uy,...,U,,},ie., U = U,, - - - Uj. In this case, we say that the circuit has
depth m, which is a key property used to describe the complexity of quantum algorithms. Note that
the order of the gates can be confusing: we read the circuit diagram from left to right, that is the gates
appear in ascending order of the indices. However, writing down the product of the gates, the first gate
to be applied is the last factor, since we multiply from the left. Exemplary quantum circuits are depicted
in Figures 2.3 to 2.5.

A set of universal quantum gates is a collection of gates capable of represented any operation on a
quantum computer. In other words, any unitary matrix U can be approximated to an arbitrary precision
e > 0 by a finite sequence {Uy, ..., U,,} of gates from this set

|U = Uy, --- Uy <e.

For example, such a universal gate set is given by {CX, Rx(6), Ry(#),Rz(#)} but there are many other
gate combinations. An exact representation for an arbitrary unitary U = U,, - - - U; is not possible
since the number of unitary matrices is uncountable. Quantum computations are carried out with this
universal ability of approximating unitaries, e.g., by computing the unitary corresponding to a discrete
fourier transformation [98] efficiently. Keep in mind that these unitaries are of size 2" x 2", making
such computations intractable for classical computers.

Example 1 (Quantum Kernel). For showing an exemplary quantum circuit and bridging the gap to
ML, we examine quantum kernels. Instead of relying on problem specific knowledge to construct the
feature map or the kernel function, the intrinsically 2?-dimensional Hilbert space of an d-qubit register
is utilized to realize the feature map [99]. The feature space transformation is created by encoding the

27

Chapter 2 Background

Compute expectation
®d 5 /1 ®d
(0] u¢(m,)u¢(m) |0)

Figure 2.4: Circuit for computing the quantum kernel matrix. Given data points x, ' € R?, the d-qubit basis state
|O>®d is prepared. First is encoded into the circuit by applying Uy), leading to a feature representation in the
quantum state. Similarly, «’ is encoded by using Z/{(Z(w) and through measurements of the outcome with respect to

>®d <O|®d

the projection operator |0 , we can estimate the kernel value K (z,).

data into the underlying quantum circuit.
Assume we are given data points {x,...,x,} C R?. The data does not enter the circuit in the
discrete qubit state space but is passed to the circuit in form of parameters of universal unitary gates

d
U () representing (parts of) the high-dimensional feature map with ¢ : R? — R? . Each classical d-bit
binary string is interpreted as one feature and the corresponding probability amplitudes of the qubit state
as feature values. The actual kernel value K (x, 33/) is then given by estimating the transition amplitude

K(e,a') = | @) o@)|* = [0 U 0] 21)

(@)
with [¢()) = Uy () 10)®? and Uyy = (U¢(_))l. An circuit diagram for computing this kernel value is
given in Figure 2.4. Even though Uy, is universal for choosing @ appropriately, the underlying data is
not arbitrary. Thus, for the final feature map Uy 4), the application of Uy ;) is repeated for [times. This
is known to increase the expressiveness of the overall circuit and is denoted as data reuploading [100].
Clearly, the specific choice of U .)—known as ansatz—is not fixed and can be tuned for the application
at hand. Finding the right ansatz choice is a major challenge in QML, and is largely dependent on the
underlying data and quantum hardware specifics. In [99], the authors suggest the following unitary:

Up) =exp | —i Y os(x) [] 2, | H*, (2.22)
Scld] keS

where Z;, := I§® ez I§® =k represents the Pauli-Z operator applied to qubit k.

Obtaining the full kernel matrix for n data points requires n(n + 1)/2 evaluations of the circuit
in Equation (2.21), due to the symmetry of the resulting kernel matrix. “Circuit evaluation” means, that
we run the circuit multiple times, measure the corresponding output (usually a few thousand times) and
approximate the expectation value by averaging.

For compatibility with current quantum devices, considering local feature functions for all subsets
S C [d] is too costly. More details on limitations of current quantum hardware will follow in Section
and a hardware-aware formulation of U, is discussed later in Chapter 5.

2.4.2 Adiabatic Quantum Computing

AQC [33] operates on a fundamentally different principle compared to QGC. In QGC, computations can
evolve throughout the entire Hilbert space and are implemented using a sequence of unitary quantum

28

Chapter 2 Background

logic gates. In contrast, AQC begins with an initial Hamiltonian whose ground state is easy to prepare
and gradually transforms into a final Hamiltonian, whose ground state represents the solution to the
computational problem. In quantum mechanics, a Hamiltonian is a mathematical operator that represents
the total energy of a quantum system, including both kinetic and potential energy. It plays a central role
in determining the time evolution and behaviour of quantum states. The adiabatic theorem [101, 102]
ensures that, as long as the Hamiltonian changes slowly enough, the system remains in its instantaneous
ground state (state with minimum energy) throughout the process.

AQC began as a method for solving optimization problems [102] and has since developed into a

significant and universal alternative to QGC. Specific algorithms have been developed for AQC such as
the one in [103] but it was shown that both QC paradigms are equivalent [104].
Definition 2.17 (Hamiltonian). A Hamiltonian H € (CQnXQn is a Hermitian matrix and describes
the energy of a quantum system with n qubits. If we conduct a measurement with respect to that
Hamiltonian, we can end up in 2" different energy configurations, which coincide with the eigenvalues
E,lq < E%{ < ... of H. The eigenvector corresponding to eigenvalue Ellq is called ground state and
the one corresponding to E}{ is called first excited state.

Definition 2.18 (Schrodinger). An evolution of a quantum state |¢/) under a time-dependent Hamiltonian
H (t) is governed by the Schridinger equation

im0 _ by ey, (o)) = 1) | @23

where 7 is the reduced Planck constant. Instead of solving the differential equation in Equation (2.23)
with intractable classical methods, QC hardware can naturally perform this evolution.

In AQC we are given an initial Hamiltonian Hy with known ground state |t) and want to find the
ground state of target Hamiltonian Hp. This is done by evolving |t) sufficiently slow (adiabatically)
under the Hamiltonian H (s) = A(s)Hj + B(s)Hp to end up in a ground state ¢ gy, of Hp. A, B :
[0,1] — [0,1] are monotonically decreasing and increasing, respectively, and A(0) = B(1) = 1,
A(l) = B(0) = 0, i.e., H(0) = Hy and H(1) = Hp. Setting A(s) = 1 — sand B(s) = sisa
common choice. We assume s = /7" € [0, 1] to be a dimensionless time, such that H (s) is independent
of T', where t is the actual time in the evolution and 7' is the total evolution time. The question remains
how “long” we let our system evolve. This is governed by the adiabatic theorem, which tells us at which
rate the Hamiltonian can be changed without leaving the ground state. With sufficient smooth variation
of H(t), the time T scales as

1 2 1
T e O max e = B — Eba (2.24)
<se[o,1] ’Y%J@)) H(s) H(s) H(s)

where () is called the optimum SG of H (s) or just SG in short.

Ising models representing certain NP-hard problems have been shown to exhibit exponentially small
SG [105]. Often, we do not have much knowledge about the SG of the Hamiltonian at hand. In fact,
determining or making assumptions about the SG is actually notoriously challenging [106]. How
the structure and underlying properties of the given problem influences the SG will be investigated
in Chapter 3. A vital assumption for this process is that the initial Hamiltonian H} has a unique
ground state. Furthermore, it has to be ensured that the Hamiltonians do not commute, i.e., H{ Hp #

29

Chapter 2 Background

HpHj. Since Hp is diagonal in the computational basis, this leads to transversity and introduces
quantum entanglement. Through quantum fluctuations, the barriers of the energy landscape can be
traversed efficiently through quantum tunneling effects. If the Hamiltonians commute, their share
a a common eigenbasis. That is, they share the eigenstates and just differ on the corresponding
energy values/eigenvalues. During evolution, the energy levels evolve trivially as weighted sums of the
corresponding eigenvalues, i. €., the system remains in the initial ground state with transition to other
states. If the ground state of Hj coincides with the one of Hp, we would end up in a ground state of Hp
after the evolution. However, the assumption is that finding a ground state of Hp is hard, so it would be
infeasible to prepare a ground state for Hj. In the opposite case, an energy level crossing would exist,
which leads the SG to vanish during the evolution process, letting the adiabatic theorem fail.

2.4.3 Quantum Optimization

QO refers to the use of QC techniques and principles to solve optimization problems. As we have seen
earlier, problems include areas like logistics, finance, ML, drug discovery, and energy management. QO
can offer significant speed advantages over classical approaches, especially as the size and complexity
of the problem grow. Quantum devices may explore large solution spaces more efficiently due to their
ability to operate in parallel over quantum states.

The original idea for QO comes from encoding CO problems into quantum Hamiltonians [102]. It
uses the observation that the Ising model (Definition 2.8) can be conveniently translated to the quantum
realm by using the Ising Hamiltonian of an n-qubit system

n n
Hyp =Y JyLZ;+> hiZ;. (2.25)
ij=1 i=1

Since Z is diagonal, Z; is diagonal Vi € [n] and thus H j j, is also diagonal. It holds that diag(Z) =

(1, —1)T and due to the nature of the Kronecker product, the diagonal of H ; ;, exactly consists of all
possible Ising energy configurations in lexicographical order. Hence, finding the ground state energy
(minimum eigenvalue) of H j 5, is equivalent to finding a minimum of the Ising model

min (| Hyp [t) = min o' Jo+h'o.
wyec? 7es

Furthermore, due to diagonality, every eigenstate (eigenvector) |) of H j ;, can be factorized by the
single-qubit basis states, that is |¢)) = [1)1) ® - - @ |¥,,), |¥;) € {|0),]1)} Vi € [n]. Thus, with finding
a ground state 1)) of H j 5, we also obtain a minimizer o to the corresponding Ising model. As we have
seen in Proposition 2.1, every QUBO problem can be converted to an Ising problem and vice versa. This
makes QC a prominent candidate for solving CO problems.

We examine two different techniques of finding a ground state the of Ising Hamiltonian: one is based
on QGC and the other one on AQC.

Variational Quantum Algorithms A Variational Quantum Algorithm (VQA) is targeted to op-
timization problems for near-term quantum devices which uses the variational principle in quantum
theory. The variational principle is a method for determining the lowest expectation value of a given
observable, typically the ground state energy of a Hamiltonian H, by evaluating it with respect to a trial

30

Chapter 2 Background

state |¢(6)). This principle is termed “variational” because the trial state is parameterized by a set of
adjustable parameters 8, enabling a general form of the state to be optimized for the system, thereby
identifying the minimum expectation value.

We aim to optimize (¢)(0)| H |¢(0)) using a hybrid quantum-classical approach. For this purpose,
the trial state can be written as [1(8)) = U () |0)®", where U (8) is a unitary matrix implementable
as a quantum circuit on QGC hardware and is called ansatz. The circuit parameters 0 are optimized
using a classical optimization routine to estimate the ground state. In the literature this is refered to as a
Variational Quantum Eigensolver (VQE) [107].

The choice of ansatz form is a distinct challenge with numerous approaches that vary depending on
the system’s Hamiltonian [108], and is often guided by the specific problem context. For instance, in
quantum chemistry, estimating the ground state of a helium atom might begin with an ansatz formed
as the product of two hydrogen atom wave functions [109]. In addition to a problem-inspired ansatz,
another approach is a hardware-efficient ansatz [110], which uses the gate set native to the available
quantum hardware. Its key advantages include reducing circuit depth and offering versatility, as it is
“problem-agnostic” and can be applied to a broad range of problems. The general pipeline for a VQA is
depicted in Figure 2.5 for a specific ansatz tailored towards solving CO problems.

Example 2 (QAOA). The Quantum Approximate Optimization Algorithm (QAOA) [111] is a hybrid
quantum-classical VQA designed for solving QUBO problems. It employs a specific quantum circuit
ansatz with alternating layers of a target Hamiltonian and a mixing Hamiltonian and approximates the
solution to a problem encoded in a classical cost function. QAOA has later been extended to the Quantum
Alternate Operating Ansatz [112] by allowing a broader class of operators to handle constraints directly,
or operate in spaces beyond binary variables. In this thesis, we mainly deal with QUBO problems and
thus we focus on the original definition of QAOA.

The idea behind QAOA is the approximation of the time evolution in AQC using QGC, which is
called trotterization. It is based on Trotter’s product formula [113] for complex matrices

exp(A+ B) = lliglo (exp (A/l) exp (B/1))', A,B € C"N

which is also known as the first-order Suzuki-Trotter expansion. Note that the time-dependent evolution
operator U (s) of the AQC Hamiltonian H (s) = A(s)H; + B(s)Hp can be written as

U(s) = exp (—i /Os H(T) dT) (2.26a)
~ exp <_7; /0 " (A(7)H, + B(r)Hp) d7> (2.26b)

= exp <—i /8 A(r) drHy — i/s B(T) d7'Hp> (2.26¢)
0 0

l S s
I exo <—i / A(ZT) dTHI> exp (—z / B ET) dTHp) , (2.26d)
k=1 0 0

where Equation () is the general solution to the Schroédinger equation Equation (), i.e.,
|(s)) = U(s)|¢) and Trotter’s product formula is applied in Equation (). Interestingly, the
matrix exp(—iH) is unitary if H is Hermitian and thus can be implemented by a sequence of quantum
gates. Thus, the continuous evolution given by Equation () can be emulated with QGC in sufficiently

%

31

Chapter 2 Background

¢ :10)
g : |0> =i Hy | i, i Hp | -ifiH Compute expectation

: (U'(8,~)HpU(B,7))
Gy ¢ |0) %

Update parameters Classical optimizer
B= .-, 0),7= (*yl,...,fyl)) COBYLA, SPSA,..
Figure 2.5: VQA pipeline overview: A parameterized quantum circuit is optimized w.r.t. the expectation of

an observable in a hybrid quantum-classical loop. As an example, we depict the QAOA circuit along with the
objective of finding a minimum eigenstate of the problem Hamiltonian Hp.

€

.

small steps.

To enhance the approximation in Equation (), QAOA implements the circuit
!
. . !
U(B,7) = || exp (=iBpHy) exp (—ivpHp) , B,7 €R’, (2.27)
k=1

where 3 and ~ are optimizable parameter vectors. This parameterized circuit is depicted in Fig-
ure 2.5. QAOA is initalized by (i) constructing Hp which encodes the given QUBO problem us-
ing Equation (), (ii) defining Hj, (iii) choosing the number of layers [> 1 and constructing
the circuit U (3,~) in Equation (2.27) and (iv) preparing an initial state |¢)y). After initialization,
(W] U' (B,v)HpU (B, 7) |1y) is evaluated with the help of measurements and the parameters 3, v are
optimized with a classical computer. Due to the probabilistic nature of QC, it is often hard to compute a
gradient analytically and thus often falls back to derivative-free optimizers, such as COBYLA [114] or
SPSA [115]. .

Hj is called the mixer Hamiltonian and is often chosen as Hy = — 37| X;, where X; == I3 '
X®I §® e represents the Pauli-X operator applied to qubit ¢. This choice might look arbitrary but
it has certain key properties. In order for QAOA to avoid trivial dynamics, it is crucial that H; and
Hp do not commute (HyHp # HpH);), which is the case, since XZ # ZX. This ensures that
the optimization process involves genuinely quantum phenomena, such as entanglement and state
exploration. Furthermore, the initial state |1/) should correspond to the ground state of Hy and should
be easy to propose. This is the case since the equal superposition state \0>®” is the ground state. Lastly,
Hj is rather easy to implement in current quantum hardware.

Quantum Annealing The concept of encoding the solution to a computational problem within the
ground state of a quantum Hamiltonian first emerged in 1988 in the context of classical CO, where it
was referred to as quantum stochastic optimization or QA [116-118]. These early works highlighted
that QA should be viewed as an algorithm leveraging simulated quantum fluctuations and tunneling,
rather than thermal fluctuations, thereby offering a quantum-inspired counterpart to SA.

Nowadays, QA denotes a physical hardware implementation of AQC [28, 119-122] instead of
emulating it with the aforementioned methods. QA devices offer an alternative approach to QGC for
achieving quantum-enhanced information processing, focusing on similar application areas such as

32

Chapter 2 Background

CO and generative learning. It cannot only be used for optimization but also for efficient sampling
from complex probability distributions. This is very crucial in probabilistic graphical models such as
Bayesian Networks and Markolv Random Fields [71] but also for training the powerful ANN model of
Boltzmann machines [123, 124]. However, one should keep in mind that QA is an imperfect physical
implementation and thus a heuristic for AQC.

2.4.4 Limitations of Quantum Hardware

Over the past decade, quantum computers have been become more and more accessible. One of the
state-of-the-art QGC hardware providers is IBM, which launched a cloud-based service in 2016, allowing
public members to access their quantum devices’. As of 20257, 11 systems—each with at least 127
physical qubits—are available for running custom quantum circuits. The interface between circuit design
and execution is given by the Python package Qiskit. It is designed for compiling quantum circuits and
executing them on quantum devices (backends). Once executed, the measurement results are sent back
to the user. The execution of circuits is subject to several constraints, including limits on the number of
circuits, the number of measurements, the circuit depth and sharing a queue with other users. When
backend workloads are high, experiments may experience significant delays due to extended queue
times.

A similar cloud-access is given by the company D-Wave with their Leap” platform. Contrary to IBM,
D-Wave does not (yet) offer access to a universal quantum gate computer but to quantum annealers with
up to 5670 qubits. These systems are specifically tailored towards optimizing QUBO problems or the
equivalent Ising models, respectively. For fine-tuning the behaviour during the annealing process, many
different parameters can be set manually, such as the annealing time 7'.

Even though the public accessability sounds promising for achieving a near-term quantum advantage,
there are several limitations of the current generation of quantum computers to be mentioned. As of now,
we find ourselves in the NISQ era [29]. This term describes the emergence of quantum devices with
hundreds to thousands of qubits, which are, however, largely susceptible to errors. Full-scale quantum
error correction is not yet practical, as it requires a significant number of physical qubits to encode a
single logical qubit [125]. Consequently, NISQ devices function in an intermediate regime, bridging the
gap between classical computation and fully fault-tolerant quantum computers.

Noise A major error source for NISQ devices is the decoherence of the quantum state which leads
to the loss of superposition and entanglement [126]. Quantum systems must be isolated to maintain
their fragile quantum states, but real-world devices suffer from different unwanted physical side-effects,
such as thermal noise, electromagnetic radiation or cosmic rays. In quantum devices, this effect is
measured via the decoherence time, i.e. how long a qubit can maintain its quantum state. Furthermore,
quantum gate operations are imperfect due to control inaccuracies, hardware imperfection, and crosstalk,
describing unintended interactions between nearby qubits. Even though error mitigation and suppression
techniques such as zero-noise extrapolation [127] or dynamic decoupling [128] are being investigated,
the aforementioned caveats limit the depth and complexity of executable quantum circuits.

} https://www.ibm.com/quantum/blog/quantum-five-years (last accessed September 19, 2025)
4 https://quantum.ibm.com/services/resources (last accessed September 19, 2025)
> https://cloud.dwavesys.com/leap (last accessed September 19, 2025)

33

https://www.ibm.com/quantum/blog/quantum-five-years
https://quantum.ibm.com/services/resources
https://cloud.dwavesys.com/leap

Chapter 2 Background

Another limiting factor is the underlying hardware topology, i. e., the physical layout of the qubits
describing how they are interconnected. For example, IBM uses the heavy hex-lattice topology”, featuring
qubits in a hexagonal pattern, where each qubit is linked to two or three neighbors. This connectivity
limits the application of arbitrary multi-qubit gates, which have to be broken down into a gate sequence
for neighboring qubits, denoted as transpilation. Most circuits must undergo a series of transformations
that make them compatible with a given target device, and optimize them to reduce the effects of noise
of the resulting outcomes. Rewriting quantum circuits to match hardware constraints and optimizing for
performance can be far from trivial. The flow of logic in the rewriting tool chain need not be linear, and
can often have iterative subloops, conditional branches, and other complex behaviors. Most importantly,
it encompasses the decomposition of gates involving three or more qubits into hardware-native two-qubit
gates. As a direct result, an apparently “shallow” quantum gate circuit, consisting of a single unitary
operation among n-qubits, can thus eventually exhibit a very high depth.

Even though quantum annealers do not rely on the design of sophisticated quantum circuits, they also
suffer from different error sources, such as integrated control errors. A more detailed explanation is
given in Chapter 4, where we address the mitigation of these effects.

Intermediate Scale The number of physical qubits in current quantum systems ranges up to a few
thousand. This can already be leveraged for simulating small-scale quantum-mechanical systems [129].
However, they are not yet fit for large-scale applications appearing in many CO and ML problems [130].
Furthermore, the sheer number of physical qubits is not directly decisive for the devices’ ability to solve
problems of that size.

Even though the qubit size of 5670 might sound impressive for the D-Wave Advantage System’,
the qubit connectivity is restricted. For embedding arbitrary graphical structures into the underlying
topology, D-Wave uses the method of chaining multiple physical qubits together to a single super-qubit,
representing a single logical qubit of the problem at hand. To embed arbitrary QUBO problems, the
current Pegasus topology” allows for up to 182 densely connected qubits, while the upcoming Zephyr
topology for 232. Combined with the noise limitations mentioned before, the full quantum chip (all
phyiscal qubits) of NISQ hardware cannot be completely utilized, leading to a current applicability of
problems to a, at most, a few hundred qubits.

Compared to digital computing, QC technology remains immature due to fundamental challenges in
hardware scalability, error correction, and algorithmic development. Unlike classical transistors, which
have undergone decades of miniaturization and optimization under Moore’s Law, qubits are highly
sensitive to noise and decoherence, limiting their reliability and requiring complex error correction
schemes that significantly increase qubit overhead [29]. Additionally, while classical algorithms have
been refined for decades across various architectures, quantum algorithms remain niche, with limited
practical advantages over classical methods for most real-world problems.

On the other hand, QC hardware strongly varies in qubit scalability, runtime efficiency, and suscept-
ibility to errors. Superconducting qubits, used by IBM, Google and D-Wave, offer fast gate speeds
(nanoseconds) and moderate scalability (~ 100s of qubits) but suffer from short coherence times

6 https://www.ibm.com/quantum/blog/heavy-hex-lattice (last accessed September 19, 2025)

’ https://www.dwavesys.com/solutions-and-products/systems (last accessed September 19, 2025)

§ https://www.dwavesys.com/media/jww;j5z3z/14-1026a-c_next-generation-topology-of-dw-quantum-processors.pdf (last
accessed September 19, 2025)

’ https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf (last accessed
September 19, 2025)

34

https://www.ibm.com/quantum/blog/heavy-hex-lattice
https://www.dwavesys.com/solutions-and-products/systems/
https://www.dwavesys.com/media/jwwj5z3z/14-1026a-c_next-generation-topology-of-dw-quantum-processors.pdf
https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf

Chapter 2 Background

(~ 100 ps) and high gate errors (~ 0.1%) [131]. Trapped ion qubits, such as those developed by TonQ,
provide longer coherence times (seconds) and high-fidelity gates (~ 99.9%) but have slower operations
(ms per gate) and challenges in scaling beyond 100 qubits [132]. Neutral atom qubits, pioneered by
QuEra, promise better scalability (~ 1000 qubits) and long coherence, though gate fidelities are still
improving [122]. Photonic quantum computers, like those from Xanadu, leverage linear optics for
high-speed operations and room-temperature stability but require complex error correction due to photon
loss and are not universal [133]. Microsoft builds upon topological qubits, which are small and fast, but
the scalability claim has yet to be proven [134]. The lack of standardized quantum hardware, varying
qubit modalities (superconducting, trapped ions, etc.), and the need for ultra-low-temperature or vacuum
environments further hinder commercialization.

Until scalable, error-corrected quantum systems emerge, classical computers will continue to dominate
practical computing tasks. Despite its current immaturity, QC research is crucial because it has the
potential to solve problems that are intractable for classical computers. Even in the near term, NISQ
devices may provide advantages in specialized applications, such as in QML. In the first part of this
thesis (Chapters 3 and 4), we thus investigate the effect of data properties of an underlying ML problem
on the noise sensitivity in NISQ devices and how to mitigate them. Coping with the intermediate-scale
component is investigated in the second part (Chapters 5 to 7), where we develop efficient algorithms for
decomposing a large-scale problem into suitable NISQ-aware subproblems. We show their effectiveness
on three different real-world problems, whose huge dimensionality stems from the underlying data.

35

Part |

Effects of Data Complexity on
Quantum Optimization

36

CHAPTER 3

Relating Data Complexity to Solvability

QO leverages techniques based on AQC, such as QA and variational algorithms, to solve complex CO
problems more efficiently than classical methods. In the NISQ era, current quantum devices contain
hundreds to thousands of qubits but suffer from noise, limited coherence times, and gate errors, restricting
their ability to outperform classical computers in practical applications. While NISQ devices might
enable early demonstrations of quantum advantage in optimization tasks, their limitations—such as error
rates, qubit connectivity constraints, and the lack of robust error correction—pose significant challenges.

In this first part of the thesis, we are interested in the effect of different data characteristics on the
performance of QO methods and how to mitigate possible difficulties. In this chapter, we first aim to
understand the relation between data complexity and the quantum solvability. That is, we examine the
SG of the corresponding Hamiltonian of a given QUBO problem, which is directly related to the system
evolution time in AQC. The effect of data complexity on QUBO formulations can be characterized by
observing that CO problems lie at the core of many NP-hard problems in ML [135]: clustering a dataset
comes down to deciding for every point, whether it belongs to one cluster or another. Training an SVM
involves identifying the subset of SVs. These decisions are highly interdependent, making the tasks
computationally complex. Data complexity properties can then be chosen as parameters that characterize
the hardness of ML problems. For example, clustering can be very prone to outliers (compactness), while
SVMs are largely dependent on the separability of the underlying data. An overview of the investigation
of data complexity on the solvability with QO is given in Figure 3.1. Apart from considering the SG
as a measure for solvability, which is a general factor in every AQC-based QO method, we examine
limitations specific to NISQ devices in Chapter 4. In particular, we connect data complexity with the
proneness to errors by describing an effective precision measure, and develop efficient techniques for
mitigating the noise in NISQ devices.

Given some dataset, the question arises of how to obtain a quantum-compatible optimization format
describing a certain ML task. In Section 3.2, we answer this question by presenting QUBO embeddings
for the three different ML tasks discussed in Chapter 2: SVM, clustering and VQ. We show how
constraints can be integrated into the objective function for obtaining equivalence to the underlying
QBP formulation. Further, QUBO equivalence is proven between KMEDVQ and MDVQ, which leads
to an interesting insight into kernel alignment and distance-based VQ methods. A more profound
understanding of the SG of the problem Hamiltonian is provided in Section 3.3, along with its relation
to the AQC Hamiltonian. Since the SG directly relates to the evolution time needed for AQC to be
successful, it can be used as an appropriate metric for solvability. A large SG implies a shorter runtime

37

Chapter 3 Relating Data Complexity to Solvability

Problem setting QUBO Q Quantum hardware
pE = |
o E
o @) @)
Q @ Embed . Upload
o o0° ™ 5 ol
o e} e |
@)

Data complexity Relation? QUBO properties Affect Solvability
Separability, ~ [""""TTTTTRT Optimum Optimum
compactness, ... energy gap spectral gap

Figure 3.1: Schematic depiction of the effect of data complexity on QUBO solvability with QO. We are given some
CO problem—in this case biclustering—which is embedded into a QUBO formulation. Properties describing the
complexity of the underlying data (e. g. separability or compactness) affect the properties of the corresponding
QUBO matrix, such as the optimum energy gap (see Equation (3.11)). These properties then affect the performance
of quantum hardware in solving the QUBO, in terms of the optimum SG of the corresponding quantum Hamiltonian.
Thus, we investigate the relation between data complexity and corresponding QUBO properties.

for obtaining an optimal solution, while a small SG can lead to the problem being unsolvable in a
reasonable amount of time.

The SG is a physical property of the AQC Hamiltonian, and its connection to classical complexity
theory is poorly understood. One would expect that classically hard problems tend to be more difficult
to solve, even when non-classical QO methods are used. We thus investigate the relation between data
complexity and the SG of the corresponding QUBO formulation. An experimental evaluation for SVM
and clustering is conducted in Section 3.4, where we vary properties such as separability, compactness,
and cluster size. Surprisingly, we find that the relationship does not always align with intuition: with
clustering, a stronger separation of data corresponds with a larger SG, while for SVM learning the
opposite is true. Moreover, the incorporation of constraints can also have a negative effect on the SG
without a reasonable choice for the penalty parameters.

3.1 Related Work

Obtaining theoretical general estimates on the SG is notoriously hard [106]. Thus, methods have
been developed for obtaining bounds in specific scenarios. For example, the authors of [136] obtain
polynomial bounds dependent on the number of quantum gates used in simulating a quantum circuit
with AQC. For assuming first-order quantum phase transitions during the adiabatic evolution, the use of
perturbation expansion for computing a lower bound on the SG is proposed in [137]. This concept has
been more refined in [138], by using graph-theoretical methods and degenerate perturbation theory for
obtaining bounds on the location of the SG during the evolution.

In [139], the effect of changing qubit interactions on the SG is investigated for the Maximum-
weighted Independent Set problem. Varying this interactions can lead to an increased SG and thus better
performance for AQC. However, it has been shown, that this framework is not generally applicable to
arbitrary QUBO formulations, as shown with the counter example of Weighted Max k-Clique in [140].

38

Chapter 3 Relating Data Complexity to Solvability

Altering the evolution path between the initial and the problem Hamiltonian has been shown to enlargen
the SG [141]. Further, using higher-dimensional problem formulations instead of QUBO can have
advantageous effects [142].

Expanding on these insights, the authors of [143] propose a technique to modify the penalty factors
of constrained Hamiltonians, thereby improving their SGs. The subsequent work in [144] explored
patterns and guidelines for setting the appropriate penalty factors to achieve an overall improvement in
solution quality. Varying penalty parameters and reformulating QUBO problems for permutation-based
optimization has been investigated in [145]. A more general approach is taken in [146] by estimating a
penalty parameter using efficiently computable bounds.

Although all of the aforementioned methods aim to obtain insights on the SG for improving the
performance of AQC, they are mainly tailored towards specific use-cases or settings. Moreover, most
of these insights are either based on quantum effects during the adiabatic evolution process, such as
anti-crossing or phase transitions, or manipulating penalty parameters in the given QUBO formulations.
It has not yet been addressed how the underlying data affects the corresponding QUBO embedding,
which will be investigated in this chapter.

3.2 QUBO Embeddings for Machine Learning

Before we can analyze the effect of data properties on QUBO solvability, we give different QUBO
embeddings for well-known ML problems. In order to obtain such QUBO formulations, one needs a
conversion from a constrained CO problem.

3.2.1 Integrating Linear Equality Constraints

Assume our problem can be formulated as a QBP (Definition 2.5) with linear integer equality constraints.
We can obtain an equivalent QUBO formulation.

Proposition 3.1. Let W € R™", A € Z™"" and b € 7. There exists a vector A € R, such that

the following equivalence holds

2
min z' Wz & min 2z Wz + Z A (A,Tz — bi>
zeB” z€eB” iem]

s.t. Az=0b

We can find an equivalent QUBO formulation with X' = (\/)\i)iTe[m], A=N1"ToA denoting
row-wise multiplication of X' to A andb' ==X © b

min z' Wz < min zTQz, Q=W+ ATA - Zdiag(b’TA/) .

zeB" zeB"

s.t. Az=0>

Proof. For showing necessity, assume that 2™ is an optimizer of the LHS, i.e., Az" = b. Then

2
Az*:b@AiTz*:bi@<AiTz*—bi> Vi € [m) .

39

Chapter 3 Relating Data Complexity to Solvability

Assume now that Az* # b, i.c., there exists j € [m], such that A} z* # b;. Due to the integer
2
assumption, it follows that (Asz>k — bj> > 1. With choosing A = (Z” €] ‘Ww‘) 1, we obtain

P (A;rz*—bi>2>)\k: S Wyl >z Wz vzeB".

i€[m) i,5€[n]

Thus, optimizing the RHS always leads to finding feasible solution adhering the constraints, inducing
sufficiency. 0

Corollary 3.1. Let W € R™™", A ¢ R™*" and b € R™. The following equivalence holds for large
enough A > 0

min z' Wz & min 2 Wz+A(Az—b) (Az—b)

zcB" zcB"

st.Az =10

Finding a suitable value is far from trivial and is of great interest in current research [146]. The
parameters \; have to be chosen large enough to ensure the constraints to be fulfilled. Choosing
Ai =200 i€l |W;;| always guarantees this equivalence, which is however an optimistic upper bound.
As we will see later on in Section 3.4, choosing these parameters too large has a negative effect on the
solvability with QO. We go over to ML QUBO embeddings, in particular, we examine SVM, clustering,
and VQ.

3.2.2 Binary Support Vector Machine

For simplicity, the definition of the dual SVM from Definition is recollected for labeled data:

1
max1l o — —a' (ny ® K) o (3.1a)
a 2
st.0xa=<C1, (3.1b)
y'a=0. (3.1c)

C controls how “soft” the margin is, i.e., how strongly misclassified data points are penalized. A large
C does so heavily, which may result in overfitting. A QUBO formulation is given through the following
proposition.

Proposition 3.2 (BINSVM). Let D = {(z;,y;) }iepy) € R'XS, y = (y1,.. .. 9,) | and K : R'xR? —
R be a Mercer kernel with corresponding kernel matrix K € R™™" respective the given dataset. A
QUBO problem for the dual SVM is given by

minz'Qz, Q=yy' © (21{ +)\11T> -I. (3.2)
zeB”

Proof. Following [71] we make the simplifying assumption that «; can only take the values 0 or C,

40

Chapter 3 Relating Data Complexity to Solvability

which allows us to introduce binary variables z; € B and write «; = C'z;, leading to a QBP

2
max Cl' 2z — —z ' (ny © K> z
zeB" 2

CyTz =0.
The condition Equation (3.1c) can be included in the main objective by introducing the penalty term

—)\(yTa)Q, which is zero when the condition is fulfilled, and negative otherwise. The parameter A has
to be chosen large enough, s.t., the constraint is fulfilled. From Equation (3.1), we obtain

02
max Cl'z— —z' (ny ©) K) z—)\CzTnyz

zeB" 2
. T Cr 1 T
< min 2z —I—l——(yy @K)+/\yy z,
zeB" 2
concluding the proof. O

The assumption «; = C'z; is highly restrictive, as it permits no intermediate states between being a
non-support vector (o; = 0) and being misclassified (cy; = C). An extension with more precision is
given in [147, 148], where the problems size is increased by a factor of k£ > 0, for approximating the
interval [0, C] in binary representation with k bits.

3.2.3 Biclustering

We recall the definition of the k-means objective given in Definition for the simplest case of setting
k = 2, also denoted as biclustering. However, it was shown that even in that case, it is NP-hard to find
an optimal solution [149]. Assume we are given a set of n data points D = {xy,...,x,} C R?. We
want to partition D into disjoint clusters C, Cy C D, C;UC, = D. A strategy is to minimize the within

cluster scatter, .
. 2
min >Nz -, w= o Y @, (3.3)
CyroCLCD - |G

where p; is the mean of cluster C;.

Proposition 3.3 (BICLUS [59]). Letn € N, K : RY x RY = R be a Mercer kernel and D =
{xq,...,2,} C R%. A QUBO formulation of the 2-means problem is given by

min z' Qz, Q= —K + diag (1TK) : (3.4)
zeB"

where K is the centered kernel matrix, i. e.,
1 1 , 1 ,
Kiyj = K(wpz)) -~ Y K@,z) -~ > K@ z)+—5) K
xeD w,ED n w,wleD

Proof. We gather the data in a matrix X = (xq,...,x,), and assume that it is centered, i.e., X1 = 0.
One can show that minimizing the within cluster scatter is equivalent to maximizing the between cluster

41

Chapter 3 Relating Data Complexity to Solvability

scatter [150]

2
Chﬂlc%?ép |Cy|Col 1 — o™ - (3.5)

n

Since |C}| 4 |Cy| = n, the product |C4||Cy| is maximized if |C}| = [Cy| = §. With assuming
|C1] = |Cy|, we obtain

2
2 M 2 _||n 2 2
CHlICol s = pall” = iy = all” = || 5 (b1 = mo)|| =~ G l1as = 1ol

We introduce two binary vectors 2, 2, € B", with the i-th entry indicating whether data point x; is an
element of cluster C'; or Cy, respectively. That is, the i-th entry of z; (2,) is 1 if ; € C; (z; € Cy)
and 0 otherwise. It holds that |Cy|p; = X2, and |Cy|ps = X 25 and thus |||C) |y — [Calps|® =
|1 X (2, — 29)||>. With 2, = 1 — 2, Equation (3.5) can be rewritten to

max || X (2z — 1)||> © max 4(Xz) Xz —-4(X1) Xz < min -2 Kz+1 Kz .
z€B" z€B" z€B™

with K = X' X being the kernel matrix of the linear kernel. With similar arguments, one can use
arbitrary kernel matrices. O

The QUBO formulation in Equation (3.4) adheres a certain type of symmetry, since it holds that
Eq(z) = Eg(1 — z). This ambiguity can be removed by fixing a single entry to zero or one, w.l.0.g.
z, = 0. An equivalent formulation to Equation (3.4) is then given by

min ZTQ[nfu,[nfuZ, Q = 2K, 1) [p1) + diag <1TK[n],[n71]> :
zeB

3.2.4 Vector Quantization
We first present a VQ QUBO-embedding based on the k-medoids objective.

Proposition 3.4 (KMEDVQ [58]). Letn,k € N, k <n, D : RY x R? — R be a distance measure,
D = {z,,...,z,} C R and D be the corresponding distance matrix, i. e., D;; = D(z;,z;). A
QUBO formulation of VQ w.r.t. to the k-medoids objective is given by

min z' Qz, Q:=—aD + 11" + diag(3D1 — 2Xk1) , (3.6)
zeB"

where the parameters o, 3 € R balance the objectives of finding central and far apart data points.
The parameter \ € R guarantees that exactly k medoids are chosen.

Proof. The formulation is based on the observation that k-medoids aims to minimize the within cluster
scatter and equivalently maximize the between cluster scatter. Minimizing the within cluster scatter can
be written as selecting the k£ most central data points

iy >,) D)

W 4'eD
st. W=k,

42

Chapter 3 Relating Data Complexity to Solvability

while maximizing the between cluster scatter is similar to finding far apart data points

as 2 2. D)

zeW g/ cwy
st W|=k.

Putting both objectives together by weighting them with parameters «, 3 > 0

vr\r}lé% -« Z Z D(x,x') + 8 Z Z D(x,x')

xeWw CBIEW reWwW iI!IED
st W|=k.

Since W C D, we can indicate the membership of the data point x; in V¥ by a binary variable z;. This
leads to a QBP formulation by using the distance matrix D

min —az Dz + 3(D1)" 2
zeB”

st.1'z=1Fk.

Using Proposition 3.1, we obtain the QUBO formulation
min —az' Dz + 3 (Dl)T z+ A (lesz — 2k1Tz> ,
zeB"”

with a suitable A > 0. O

Depending on the data at hand, one can use an appropriate distance measure. Typically, the euclidean
distance ||z — y|| is used, but one can also fall back on more robust measures such as Welsch’s M-
estimator [151]

1
Da.y) = 1-exp (1o - ul?) 6)
We also present a QUBO formulation for the MD-VQ objective (Definition)
. 2
— 3.8
min [l¢p — G|l (3.8a)
st. W=k, (3.8b)

where ¢y = + 3" é(z) and pp = L 3°_ 1 ¢() denote the mean vectors in some feature space
/

for a feature map ¢ : R? 5 RY.

Proposition 3.5 MDVQ [83]). Let n,k € N, k < n, K : R? x RY — R be a Mercer kernel,
D=A{xy,...,x,} C R? and K be the corresponding kernel matrix. A QUBO formulation for MD-
VQ is given by

1 1
min z' Qz, Q= 5K +A1' —2diag (Kl + Akl) , (3.9)
zeB" k nk

for a large enough A > 0.

43

Chapter 3 Relating Data Complexity to Solvability

Proof. We rewrite the MD in terms of inner products
. 2 T T
min l¢p — dll” < min Gy ¢y — 20pdyy

smin g Y 3 K@a)- - 3 3 K@),

zEW 2/ ey zeW 2'eD

with K (z,x') = ¢(x) ¢(a) since K is a Mercer kernel. Letting the binary variable z; indicate
whether x; is an element of VW C D, we obtain a QBP formulation equivalent to Equation (3.8)

1 2

min —QZTKZ ~- 2(K1)'z

zeB" k nk
st.1'z=k.

Again, using Proposition 3.1, we obtain a QUBO
1 2
min —ZzTKz — 2 (K1) 24+ Az"117 2 — 2Xkz
zeB" k nk
for large enough A > 0. O

Interestingly, there is a connection between KMEDVQ and MDV Q.

Proposition 3.6. Letn, k € N, k < n, K : R*xR? — R be a Mercer kernel, D = {z{,...,2,} C R,

k < n and K be the corresponding kernel matrix. Defining the matrix D := 11" — K, the QUBO

. 1 1
formulations in Proposition and Proposition are equivalent if we set o = el B = g, and

A=)+ k%’ where X is the penalty parameter for linear equality constraint from Proposition and

X from Proposition
Proof. Inserting o, 8 and A into the QUBO matrix definition in Proposition 3.4 leads to
—aD + A11" + diag(8D1 — 2Xk1)
& —a(11" — K)+ A11" + diag(8(11" — K)1 — 2)k1)
& aK + (A —)11 + diag(—SK1 — (2Ak — nB)1)

1 I44 T . 2 / 1 n
— K+)11 d ——K1— (2 —|k-2—)1
& 2 + + diag < " < ()\ + k2> nk> >

1 1
& K+ X117 —2diag <K1 + A'kl) ,
k nk
which corresponds to the QUBO matrix in Proposition 3.5. O

Using Proposition 3.6, we can see that MDVQ is a special case of KMEDVQ by choosing parameters
in a specific way and using distance measures of the form D(x,y) = 1 — K(«, y) for some Mercer
kernel. With the commonly used RBF kernel with a bandwidth of 2, one exactly recovers Welsch’s
M -estimator Equation (3.7). In fact, there is an interesting relationship between specific kernels and the
euclidean distance in the feature space.

44

Chapter 3 Relating Data Complexity to Solvability

Proposition 3.7. Let K : R? x R? — R be a Mercer kernel and ¢ X — R? the underlying feature map,
that is gb(a:)TgZ)(:c/) = K(x,). If all feature vectors lie on the unit sphere, i. e., p(x) = 1, YV € X,
then we can obtain a distance measure D : R? x RY — R by

D(z,x')=1- K(z,') . (3.10)

Proof. Consider the euclidean distance between feature vectors ¢(z) and ¢(z')

o) — o(2)||* = d(@) " o() + d(a') " d(a') — 20(x) " d(a) =2 — 2K (z,) .
Dividing the RHS by 2, we obtain the claim. O

With having different ML QUBO formulations at hand, we go over to a QUBO property which largely
effects the performance of QO, especially its runtime.

3.3 Solvability in Terms of Spectral Gap

As we have seen in Section , we need an adiabatic evolution of the quantum system to guarantee
finding an optimal solution. The speed at which the Hamiltonian can safely evolve without the system
leaving its ground state depends on the optimum SG, which is the minimal difference between the two
lowest eigenvalues over time. For a Hamiltonian H with lowest eigenvalue E}l'{ and second to lowest
eigenvalue Eir it is given by yg = Elzq — E}I A small SG requires a slow change rate, which leads to
a long, potentially exponential (c.f. [105]) annealing time. It is therefore desirable to somehow increase
the SG by choosing the initial Hamiltonian H7 or the problem Hamiltonian Hp appropriately. In QA
hardware, such as the one provided by D-Wave, Hj is usually prescribed and the only free variable is
Hp.

To bridge the gap to QUBO, it is important to make the distinction between the parameter matrix
and its corresponding Hamiltonian Hg: The entries along the diagonal of the latter correspond to the
values zTQz for every possible z € B". Therefore, the SG of H , is simply the difference between the
lowest and second-to-lowest values of Eg (which is very hard to compute for large n), i.e.,

= min Ep(z) — min EpH(z) . 3.11
THg = i Q(2) min Q(2) (3.11)

We thus use the terms optimum energy gap and SG interchangeably, the eigenvalues of @ hold no
particular relevance.
3.3.1 Bounding the Spectral Gap

We recall from Section , that the time-dependent Hamiltonian during the adiabatic process is
given by H(s) = A(s)H; + B(s)Hp, where A, B : [0,1] — [0, 1] are monotonically decreasing and
increasing, respectively, and A(0) = B(1) =1, A(1) = B(0) =0, i.e., H(0) = Hyand H(1) = Hp.
Due to the adiabatic theorem, the time 7" needed scales as

1
T €O max — ,
s€[0,1] YH(s)

45

Chapter 3 Relating Data Complexity to Solvability

but the minimal SG min¢ g 1] Vg (s) cannot be easily predicted from either vg, or vg,,. However, we
can still make some statements about it using known results about eigenvalues of Hermitian matrices.

Theorem 3.1 (Weyl). [152]] Let M, N, R be m x m Hermitian matrices with N + R = M. Let
Wi, Vi, p; denote their respective eigenvalues in ascending order, i.e., p; < ;1 V1 <4 < m, and for
v;, p; analogously. Then Weyl’s inequality holds for all 1 < i < m:

Vit p1 = i SV + Py - (3.12)
We can use Weyl’s inequality to deduce an upper bound on min¢o 1) Ve (s)-

Proposition 3.8. Let Hp, H;, H(s) and A(s) be defined as before and let B(s) = 1 — A(s). Then

i <) 3.13
srerféﬁ} YH(s) < VHp (3.13)

Proof. Applying Weyl’s inequality multiple times we find the following bounds on the SG of sums of
two Hamiltonians:

o — py < Vo — vy +H(pm — p1) - (3.14)
—_—— e N —
=Tm =N =I'(R)

Since A(s) is monotone, we obtain

min aA(s) + bB(s) = min aA(s) +b(1 — A(s)) = min{a,b} .
s€l0,1] s€[0,1]

Applying Equation (3.14) to min,co 1) 7r(s) leads to

i < min A(s)T'(H, B 3.15
Jmin Ya() < min (s)T'(Hy) + B(s)vH, (3.15)
= Inin A(s) (P(HY) = vH,) + 78, (3.16)
= min{rYHpa F(HI)} < YHp > (317)
concluding the proof.
O

This result provides motivation to increase g, when trying to improve QO performance, as it is
an upper bound on g (s): Increasing it does not guarantee a larger minimal SG, but is a necessary
precondition. Finding a lower bound is generally very hard.

3.3.2 QUBO Formulation for Spectral Gap

Computing the SG of a QUBO is as hard as computing the optimal solution itself. Interestingly, we can
find a QBP formulation for obtaining the SG of a given QUBO instance.

Proposition 3.9 (SG-QBP). Let Q € O,, represent the matrix of a QUBO instance with a unique

46

Chapter 3 Relating Data Complexity to Solvability

Algorithm 1 SPECTRALGAPQUBO

Input: QUBO instance Q € Q,,
Output: Spectral gap YH,

I: V4 o0

2: fori:=1tondo

3 vy min, g Eq(2)

V] min, g Eq(z)
v < min{v, v + v} }

end for

THo = v — 2min_cgn Eg(2)

Nk

optimizer, that is | Z* (Q) | = 1. Further, let

vi= min Eq(z)+ Eqg(z') (3.18a)
z,z €B

stz 2 (3.18b)

Then
YH, =V — 2 min Eg(2) (3.19)

zeB’ll

Proof. Follows from Equation ().]
The constraint in Equation () can be enforced iteratively by fixing the variables z; and z; to

different values, that is z; = 1 — z.. An overview of this procedure is given in Algorithm |. We recall
from Chapter 2 that IB?Z»} . denotes the set of binary vectors, whose i-th entry is fixed to the value
b € B. For obtaining equivalence to Equation (), we thus can solve 2n + 1 QUBO problems
appearing in Algorithm 1. Exact solutions are of course intractable to compute, but as we will see
in Chapter 4, bounds on the optimal QUBO value can be computed efficiently. Thus, we can obtain
efficiently computable bounds on the SG for general QUBO problems.

3.4 Experimental Evaluation

We have seen in Sections and that linear equality constraints have to be integrated into
the objective function, for obtaining a QUBO problem. This can be done with using positive penalty
parameters to punish a violation of the constraints, as is evident from Proposition 3.1. It is well known,
that choosing larger penalty parameters also results in a larger SG [146]. We can attribute problem
properties to effects on the SG of the resulting Hamiltonian of the QUBO formulation. We thus conduct
an empirical evaluation of QUBO formulations and their properties. For each experiment, the steps
we take are as follows: (i) Choose problem type and hyperparameters, (ii) Sample dataset with known
properties, (iii) Compute QUBO parameters and record the SG. Using the acquired data, we investigate
the relationship between data parameters and SG, which has a high impact on problem hardness for QC,
as we have shown before. We consider the two problems of binary clustering and SVM training, which
we described in previous sections.

47

Chapter 3 Relating Data Complexity to Solvability

P D

T Xi,l
0 w 2w 2w+ D 3w+ D 4w + D

Figure 3.2: Distribution of the first dimension of the 2-dimensional synthetic data used for our experiments (before
applying the rotation): Two clusters are sampled such that there is a separating margin of at least size D between
them. The parameter w controls the spread of data points, while r is the ratio between the number of data points
in the first vs. the second cluster.

CONES CIRCLES
: j """""""""" """ . """"" . """ """""""""" — 1.0

Figure 3.3: Exemplary instances of the datasets used for our experiments.

3.4.1 Data Setup

As input data, we sample synthetic datasets for each repetition of the experiments. To this end, we
consider two different types, CONES and CIRCLES, both of which have parameters allowing us to vary
the resulting optimization problems’ difficulty by adjusting the data class separation.

CONES Letn € N with n > 2 denote the number of data points, p € (0, 1) the cluster size ratio,
w > 0 a spread parameter, and D € R a separating margin size. We set n; := min{1, [pn|} and
ny := 1 — n; as the cluster sizes. We create a matrix X € R"™? where every entry X;; is sampled
i.i.d. from a triangular distribution within the interval [0, 2w] and with mode w. We chose the triangular
distribution over a normal distribution because it has no outliers, which allows us to define a hard lower
bound on the separating margin between clusters. For all 7 > n; we then set X; ; — X; 1 + 2w + D,
which shifts all of these points such that | X; . — X, || > D is tight for all i € [n;] andny < £ < n.
The distribution of X. ; is visualized in Figure 3.2; the distribution of X. , consists of just a single
triangle from 0 to 2w with height 1/w at mode w. Next, we sample 6 uniformly from [0, 27r) and apply
X — X R(0), where R(6) is a 2D rotation matrix. This rotation leaves the distances unchanged but

48

Chapter 3 Relating Data Complexity to Solvability

n==8 n=20 n=32

Spectral gap

00 04 08 1.2 00 04 08 1.2
Maximum separating margin size

Figure 3.4: SG of QUBO instances according to Proposition against maximum separating margin size D for
CONES; w = 0.2, p = 0.5 fixed, 1000 random datasets with n € {8,20,32} and D € [0, 1] uniformly sampled.
The yellow curve is a fitted quadratic function.

introduces another degree of freedom. Lastly, we center the data by computing p; := S X ;;/m and
applying X, ; — X;; — p; forall i, j € [n] x [2]. The target vector y € S" is set to y; = —1 fori € [n,]
and y; = +1forn; <i < n.

CIRCLES As a second dataset type, we consider two circles, which are not linearly separable in R?,
The radius of the outer circle is fixed to 1 and for our experiments we vary the radius of the inner circle
r. The circles consist of an equal number of points /2 and Gaussian noise with standard deviation o is
added to every point (see Figure 3.3, right). To bridge the gap to linear separability, we project the dataset
to a higher-dimensional feature space via a feature map ¢ : R* — R®, ¢(x) = (z1,29,a H:cHQ)T
In this space, the data is linearly separable. A corresponding kernel function is given by K (x,y) =
o(x) p(y) = ="y + a||z|/*||y||>. For every experiment, we compare three different problem sizes,
that is, we consider n € {8, 20, 32}. To make the SG comparable between QUBO instances of the same
size, we scale each @ such that [| Q|| = max; jepn) [Qy5] = 1.

3.4.2 Biclustering

We first explore the biclustering QUBO from Proposition 3.3. Changing the maximum separating
margin size between the two clusters changes the SG of the corresponding QUBO instance, as shown
in Figures and 3.5: For Figure 3.4, we sample 1000 different CONES datasets with varying cluster
distances in [0, 1] and fix w = 0.2, p = 0.5. We find that the SG is increasing with an increasing
problem size n and that there is a clear quadratic positive correlation between the SG and the margin
size.

A similar setup can be found in Figure 3.5, where 1000 different CIRCLES datasets are sampled
with varying inner radius in [0, 1] and ¢ = 0.05, p = 0.5. Again we find that the SG increases with
an increasing margin size, but with a linear correlation. Since different kernels are used in Figure
and Figure 3.5, the exact correlation form is dependent on the exact dataset and the used kernel.

In Figure 3.6, the effects of a varying cluster ratio in p € [0.1, 0.5] are depicted for the CONES setup.
We again sample 1000 datasets with fixing w = 0.2 and D = 0.5. A positive correlation becomes
evident between cluster ratio and SG. That is, the QUBO problem is easier to solve with QC when the
clusters have the same size. The effect that the plots look like a step function for small n is due to the
fact that there n/2 different configurations, e.g., for n = 8, we can have the four cases n; = 1, ny = 2,

49

Chapter 3 Relating Data Complexity to Solvability

Spectral gap

1 2 3
Maximum separating margin size

Figure 3.5: SG of QUBO instances according to Proposition 3.3 against maximum separating margin size D for
CIRCLES; 0 = 0.05, p = 0.5 fixed, 1000 random datasets with n € {8, 20,32} and r € [0, 1] uniformly sampled.
The yellow curve is a fitted quadratic function.

n=20 n=232
:
'20 50 R ;, ,.
8 :
g 25 SORE FOPORSOSS OSSR
&
0.0

0.15 0.30 0.45 0.15 0.30 0.45
Cluster size ratio

-

Figure 3.6: SG of QUBO instances according to Proposition 3.3 against cluster ratio for CONES; D = 0.5, w =
0.2 fixed, 1000 random datasets for n € {8, 20,32} and p € [0.1,0.5] uniformly sampled.

(o) \S]

Spectral gap

0
0.0 03 06 09 0.0 03 06 09 0.0 03 06 09
Spread (intra cluster distance)

Figure 3.7: SG of QUBO instances according to Proposition 3.3 against spread for CONES; D = 0.5, p = 0.5
fixed, 1000 random datasets for n € {8, 20,32} and w € [0, 1] uniformly sampled.

ny=3andn; = 4.

In Figure 3.7, we vary the spread w € [0, 1] for 1000 different datasets and fix D = 0.5, p = 0.5. We
can see that the SG is negatively correlated to the spread of the dataset.

Putting the results together we can deduce that the SG is positively correlated with the inter-cluster
distance or between cluster scatter (separability) and negatively correlated with the intra-cluster distance
or within cluster scatter (compactness).

50

Chapter 3 Relating Data Complexity to Solvability

n=20 n=32

Spectral gap

00 04 08 1.2 00 04 08 1.2
Maximum separating margin size

Figure 3.8: SG of QUBO instances according to Proposition against maximum separating margin size D for
CONES. Same configuration as for Figure

n=20

—

Spectral gap

e @

1.5 3.0 45 0.0 1.5 3.0 45 0.0 1.5 3.0 4.5
Maximum separating margin size

Figure 3.9: SG of QUBO instances according to Proposition against maximum separating margin size D for
CIRCLES. Same configuration as for Figure

3.4.3 Binary Support Vector Machine

We move over to experiments with the SVM QUBO in Proposition 3.2. Again, we depict the effect of
changing the maximum separating margin size between the two clusters on the SG of the corresponding
QUBO in Figures 3.8 and 3.9. We use the same parameters for the datasets as in Figures 3.4 and 3.5.

Interestingly, we now observe a negative correlation between the SG and the margin size, making
the problem harder to solve with a quantum computer if the data is well separable. For n = 32 the SG
basically vanishes from a certain margin size for CIRCLES. Furthermore, we again observe that this
correlation is quadratic for CONES and linear for CIRCLES, leading to a large dependence on the used
kernel function and the dataset at hand.

Note that we are considering a QUBO formulation for a soft-margin SVM: even though the SG might
be very small, the second best solution might also be satisfactory for solving the original problem. In
contrast, the second best solution of a biclustering QUBO is much worse: changing a single bit leads to
a data point within the wrong cluster, which increases the energy more dramatically the further the two
clusters are separated.

In Figures and , we show the effect of varying A and C' on the SG for CONES. We fix
p=0.5w=0.2, D=0.5and sample 10 000 datasets with C' € [0,0.1], A € [0, 100] for Figure
and A\ € [0, 10] for Figure , respectively. It is evident from Figure that the SG decreases as

A and C increase. However, there are interesting intervals for A when fixing C, such that the SG first
increases and then decreases with increasing A, forming a triangular shape when plotted, which gets
more pointy with an increasing value of C' — see Figure for a closer view. We observe a similar

51

Chapter 3 Relating Data Complexity to Solvability

n=232 C

0.10
S
on
g 0.05
9
o
w

0.00

Figure 3.10: SG of QUBO instances according to Proposition 3.2 against A and C' for CONES; w = 0.2, p = 0.5
fixed, 10 000 random datasets for n € {8, 20,32} and A € [0,100], C € [0,0.1] uniformly sampled.

N 0.10
= 1.6
=
5 08 0.05
L
%)

0.0 0.00

Figure 3.11: Same as Figure 3.10, zoomed in on A € [0, 10].

effect with CIRCLES.
Combining our observations we deduce that the SG is negatively correlated with the inter-cluster
distance (separability) and the parameters A\, C' except for a small region.

3.5 Conclusion

In this chapter, we investigated the connection between the problem hardness of classical ML problems—
related to the complexity of the underlying data—and their solvability on quantum hardware. We
considered QUBO formulations for biclustering and SVM learning. We highlighted that the SG of these
formulations impacted their solvability on quantum hardware, and showed how the SG behaves when
adapting the problem parameters, which we underpinned with an empirical study.

We found that for biclustering an easier problem also leads to a better solvability on quantum
computers. Here, “easy” refers to the separability and compactness of the different classes. We found a
positive correlation between these properties and the SG of the corresponding QUBO. Interestingly, this
is not the case for the SVM problem, where we would have expected a better solvability for problems
with a large separation of the classes. However, we found a negative correlation between separation and
SG. Furthermore, other hyperparameters, such as the one controlling the softness of the margin that
avoids overfitting, are negatively correlated to the SG. This is due to the balancing of different objectives
in one single QUBO problem. Combining these two insights, we conclude that the original problems’

52

Chapter 3 Relating Data Complexity to Solvability

hardness is not directly connected to the solvability on quantum computers, contrary to what one might
assume. Instead, it depends not only on the dataset at hand, but also on specifics in the used QUBO
formulation.

Another interesting research direction would be to compare the properties of more QUBO formulations
of different problems. Furthermore, investigating the effect of the QUBO parameters and not only the
problem parameters is an interesting research direction [45]. This can strengthen our intuition about
which problems are hard for quantum computers in particular, and the potential and limitations of QC in
general.

In the next chapter, we expand our analysis beyond the SG, recognizing that it is just one measure
of solvability and the time required to find an optimal solution. While a large SG generally implies
faster convergence, choosing an evolution time that is too short can lead to false optima—a fundamental
limitation in QO. This issue is further exacerbated in NISQ devices, where quantum computations
are subject to significant errors. These errors can distort the optimization landscape, increasing the
likelihood of converging to incorrect solutions. To address these challenges, the next chapter provides
an in-depth exploration of a robust measure of error proneness, strategies for preserving true optima,
and techniques for mitigating noise, ultimately improving the reliability of QO methods on quantum
hardware.

53

CHAPTER 4

Mitigating Data Induced Noise

In the last chapter, we explored the impact of data complexity on QO methods, particularly in the context
of CO problems relevant to ML. By analyzing the SG of the problem Hamiltonian, we established
a direct link between data characteristics and quantum solvability, highlighting its implications for
AQC. Our findings demonstrate that while some intuitive relationships hold—such as the effect of
cluster separation on clustering problems—others, like the inverse relation in SVM learning, challenge
conventional expectations.

This chapter broadens the scope of our analysis beyond the SG, acknowledging that it is only one
factor influencing solvability and the time required to reach an optimal solution. In QO, an insufficient
evolution time can lead to convergence at false optima, a challenge that becomes even more pronounced
in NISQ devices due to inherent computational errors. These errors can distort the optimization process,
further increasing the risk of incorrect solutions. To counteract these limitations, we delve into a robust
framework for assessing error proneness, explore methods to preserve true optima, and present strategies
for mitigating noise, ultimately enhancing the reliability of QO on current quantum hardware. An
overview of this process is given in Figure

Apart from QC, hardware acceleration in general is a major driving force in the recent advent of Al
Virtually all large-scale AI models rely on hardware-accelerated training via Tensor Processing Units
(TPUs), GPUs, or FPGA. A key ingredient of these accelerators is parallelism—a large computation
is split into smaller pieces, solved via multiple compute units. Clearly, each compute unit must read
its inputs from memory. However, memory bandwidth is limited. Hence, to achieve a large level of
parallelism, the input that each compute unit receives must be as small as possible. To this end, model
parameters with limited precision, e.g., 16-bit, 8-bit, or even smaller, are considered and special training
procedures are employed to directly train models with low-precision parameters [153]. Al accelerators
usually rely on parallel implementations of basic linear algebra routines. There is, however, a multitude
of Al problems whose inherent computational complexity does not stem from linear algebra operations.
Examples include clustering [149], probabilistic inference [154], or feature selection [155].

As of today, solving such ML-related CO problems exactly is out of reach for high-dimensional
instances. However, analog devices [67, 75, 76], ASICs [70], FPGAs [71, 72], and quantum com-
puters [33] have recently made promising progress when it comes to solving CO problems. Despite the
promise of quantum speedup, currently available devices that claim to perform AQC could not yet be
proven to be faster than classical computing resources [156]. One common issue of QUBO hardware
solvers, also called Ising machines, is limited physical precision of the matrix entries, as real-world

54

Chapter 4 Mitigating Data Induced Noise

Original Q Prepr()cess Reduced Ql
g i -- > .
Hardware solver
Jij Upload Upload . =

a1

m > <
H Perturbed Q Perturbed Q' N

Intra(f:table -j . Intraictable
z, = 00101000 # 10011100 = 2, Z, = 00101000 — 00101000 = 2

Figure 4.1: Ilustration of parameter perturbation for finite precision hardware and the mitigation with our proposed
preprocessing method. When we upload the original QUBO @ to the hardware solver, it is perturbed through
quantization errors which can lead to spurious optima of the resulting perturbed QUBO Q.ie. z, # Z,. Our
proposed preprocessing method mitigates this effect by transforming @Q into a QUBO Q' which is more robust
against hardware errors, while preserving the optimal solution, i.e. z, = z, = 2.

hardware devices use finite numerical representations. While in theory QUBO is defined with parameters
in R, digital devices rely on finite number representations that necessarily sacrifice some precision, as
B bits can only encode 2% distinct values. The well-known solution to this problem in the classical
realm is floating-point arithmetic, e.g., IEEE 754. However, it turns out that simply truncating decimal
digits of @Q is not sufficient, since the resulting optimization problem will have different local and
global optima [45] (see Figure 4.1). Integrated Control Errors (ICE) pose a similar problem specific
to D-Wave’s quantum annealers, which randomly distort the Hamiltonian, leading to a skewed energy
landscape. Depending on the particular problem instance, this distortion may change the optimum
(see Figure 4.1). Classical solutions like IEEE 754 are thus not applicable, due to the physical, analogue
representation of the Hamiltonian.

We develop an algorithmic machinery for reducing the numeric precision required to represent QUBO
instances, by first having an in-depth look into parameter precision in Section 4.2. The proposed method
relies on the DR of any QUBO matrix as a measure of its complexity, which is proportional to the
number of bits required to encode the QUBO parameters faithfully: the smaller the DR, the more robust
the instance is against distortion. We formalize the notion of optimum preservation between QUBO
instances based upon their set of minimizing bit vectors and explore to which extent parameters can
be modified without changing said set. Having optimality guarantees at hand, we switch our attention
towards reducing the DR of a given QUBO instance in Section 4.3. First, heuristics for reducing the
DR by changing single matrix entries are presented. We then formalize the problem of reducing the
required precision via an MDP and introduce a fully principled B&B algorithm for exactly solving the
problem in a finite number of steps. Efficiently computable bounds are presented for pruning the state
space, enhancing our B&B algorithm. Moreover, we explain why greedy methods are likely to produce
suboptimal results and propose a combination of B&B and policy rollout [14, 93] to address the greedy

! https://docs.dwavesys.com/docs/latest/c_qpu_ice.html (last accessed September 19, 2025)

55

https://docs.dwavesys.com/docs/latest/c_qpu_ice.html

Chapter 4 Mitigating Data Induced Noise

nature of baseline methods.

For analyzing the effect of data properties on the DR, we conduct an experimental evaluation of
ML-related problems in Section 4.4. Similarly to the SG, the DR is also greatly effected by certain
properties such as the existence of outliers in the dataset. To evaluate the effectiveness of our proposed
heuristics, we first examine randomly generated QUBO instances. We then turn to data-dependent
QUBO embeddings, in particular biclustering and VQ (see Chapter 3) and present an embedding for the
well-known subset sum problem. The performance of our proposed B&B is compared to our developed
heuristics and other state-of-the-art methods, indicating the former’s superiority. Lastly, we investigate
the performance of NISQ devices and FPGA-based Digital Annealing (DA) hardware by using our
method for preprocessing QUBO instances. Our results indicate strong benefits not only for mitigating
noise in quantum computations but also for error-robustness and possible speed-ups in Ising machines in
general.

4.1 Related Work

It is well known that hardware devices tailored towards solving QUBO problems suffer from a limited
parameter precision [157]. While FPGA-based DA devices [158] have a fixed bit-width for representing
problem parameters, e.g., 16-bit, quantum computers are prone to integrated control errors [159, 160].
For preserving global optima, in [157] the bit-width is reduced by introducing exponentially many
auxiliary variables dependent on the number of reduced bits. This can be combined with the heuristic
rounding of the parameters [161], which, however, can lead to different optima. A similar method
that respects the underlying hardware topology of a D-Wave quantum annealer can be found in [162].
Instead of enlargening the problem size, [163] follows the approach of solving topologically equivalent
instances, each with reduced precision requirements. The number of such instances grows exponentially
with the number of reduced bits, and the optimal solution is guaranteed to be preserved only if all
instances share the same global optimum.

A more general precision measure than the bit-width, which is only defined for integer parameters,
is discussed in [57, 164]. The maximum coefficient ratio of a QUBO problem is directly related to the
performance on D-Wave quantum annealers. This ratio is largely affected by penalty parameters for
incorporating constraints. The authors of [146, 165] try to optimize these penalties by using bounds on
the optima of the underlying problem. However, these methods are not applicable for arbitrary QUBO
instances, e.g., when the large precision stems from the underlying data and not the problem formulation.
In [45], the DR is identified as an improved complexity measure, and a method for iteratively reducing
the DR is proposed, which can be applied to any QUBO instance. The underlying idea is to update single
QUBO matrix entries within specific interval boundaries, computed by bounding the optimal QUBO
value. The method is guaranteed to preserve the original optima. However, the heuristics presented
in that work are greedy and often get stuck in local optima. In what follows, we build upon [45] by
formulating a more elaborate algorithm that overcomes this issue.

4.2 Parameter Precision
Even though the entries of a QUBO matrix are real-valued in theory, on any real-world computing

device there is a limit to the precision with which numbers can be represented. Typically, binary
representations are used, where floating-point numbers or 2-complement integers can be represented

56

Chapter 4 Mitigating Data Induced Noise

with a fixed number of bits. For instance, a register of B bits using 2-complement can represent all
integers in {—2B_1, ey 2Bl _ 1} (the first bit represents the sign). Values that have a fractional
part must be rounded to the nearest integer in order to be represented in 2-complement. Rounding
a number a € R to the nearest integer is denoted by |a|. By convention, a number exactly halfway
between two integers (with fractional part 0.5) is rounded up. Additionally, we write | A| to denote
element-wise rounding for any real-valued matrix A. This leads to the important practical observation
that any real-world computing device with finite floating-point precision only realizes QUBO instances
with integer parameters.

Analog devices also suffer from similar limitations. Even though floating-point precision is often not
the bottleneck, unwanted physical effects pose a challenge on the parameter precision. For example,
uploading and solving a QUBO problem to D-Wave quantum annealers endures device-specific ICEs.
Assume we are given the matrix J € R™" and the vector h € R" describing the Ising model of the
form

Ejp(o) = oc'Jo+h'oc, oceS".

Instead of accurately representing the energy £ (o) the quantum hardware solves a slightly perturbed
problem (see Figure 4.1)

Eg’h(a) =o' (J+6J)o+ (h+0h) o, aeS",

where dJ and dh characterize the errors in the Ising parameters. Such errors appear due to different
reasons’, such as background susceptibility, flux noise of qubits or quantization effects.

4.2.1 Dynamic Range

To quantify the precision required to accurately represent QUBO parameters, we adopt the concept of
DR from signal processing [166, 167]. For this, we first introduce the notion of difference sets.

Definition 4.1 (Difference Set). Let X', Y C R be finite sets. We define the set of absolute differences
between the elements of X and) as

Do (X, Y) ={lz —yl:zc X, yec Y, £y} . 4.1

Further, we define D(X,))) := min D, (X, V) and D(X,Y) := max Dy, (X,Y) and write Dy, (X) =

Dy (X, X), D(X) = min Dy (X, X') and D(X') = max Dy (X, X) for shorthand.
Definition 4.2 (Dynamic Range). Let X C R be a finite set. The DR of X is defined as

DR(X) :=logy (ggg) . 4.2)

A large DR indicates that many bits are required to represent all elements of X" accurately in binary
representation, as the parameters span a wide range of values and require fine gradations. Taking the
next larger integer larger than the DR—that is [DR(X’) | + 1—quantifies how many bits are required to
faithfully represent X.

We also mention two different measures for describing the required precision.

2 https://docs.dwavesys.com/docs/latest/c_qpu_ice.html (last accessed September 19, 2025)

57

https://docs.dwavesys.com/docs/latest/c_qpu_ice.html

Chapter 4 Mitigating Data Induced Noise

Definition 4.3 (Coefficient Ratio [164]). Let X C R be a finite set. The coefficient ratio (CR) of X is

defined as)
D(X,{0
cr(x) = 210D 4.3)
D(x,{0})
Definition 4.4 (Bit-Width [163]). Let X C Z be a finite set. The bit-width (BW) of X is defined as

BW() = [log, (D, {0})) | +1. (4.4)

For describing the DR, CR and BW of a QUBO matrix @, we use the shorthand notations DR(Q) =
DR(set(Q)), CR(Q) = CR(set(Q)) and BW(Q) = BW(set(Q)), where set(Q) = {Q;; : 4,j € [n]}.
Note that always 0 € set(Q), since @ is upper triangular, that is ();; = 0 for i > j. We want to give
theoretical relationships between the three precision measures DR, CR and BW, but we note that the
BW is only defined for integer entries. However, this does not pose a problem with respect to QUBO
matrix entries.

Proposition 4.1. Let Q € R"*". Then, there exists a Q' € Q"*", s.t. the QUBO energy landscapes of
EQ and E Q are equivalent, in the sense that

Eq(z) < Eq(2)) © Eg(2) < Egy(2) vz € B" . 4.5)
Proof. For showing necessity, we first note that Q is dense in R, that is
Vg1, €Q:IreR:q <r<gqgy and Vr,ry e R:3qeQ:ri<g<ry.

We examine the smallest energy gap, i.e.,

Eg:= min |Eqg(z)—Eq(z)|€R,
z,z €EB " z#2
which leads to
Eq(2) < Eg(Z) & Eg(2) < Eq(?) —Eg Vz,2 eB',z#2 . (4.6)

Due to density, we can set

A A
Q;j:min q:Qij*Eng<q<Qij+E7Q2 .
q€Q 2n 2n

This leads to

, By Eq
= Z Qijzizj Z Qij + o2 zz; < Eg(z) + o

i,j€[n] i,j€[n]

and with similar arguments we deduce a lower bound

Eg Eg

58

Chapter 4 Mitigating Data Induced Noise

Finally, we obtain

A A
E . E
Egy(z) <Eq(z)+ 7(2 < Eq(z') — Eg + 7Q < EQ/(z/) Vz,2 €B ",z # 2,

by using Equations (4.6) and (4.7). Sufficiency follows similarly. g

Proposition 4.2. Let Q € Q™" Then, there exists a Q' € Z"*", s.t. the QUBO energy landscapes of
Eq and EQ/ are equivalent, according to Equation (4.5).

Proof. We note that the QUBO energy is scale equivariant, that is £, = aFg, a € R. Since

Q € Q""" every entry can be written as Q;; = %, Pij>4ij € Z. Setting o := [we find that

, i,je[n] dij>
= aQ € Z™*". Due to scale equivariance, we obtain the claim. O
q

Combining Propositions and 4.2, we deduce a very interesting insight.

Corollary 4.1. Let Q € R™". Then, there exists a Q' € Z"*", s.t. the QUBO energy landscapes of
Egq and EQ/ are equivalent, according to Equation (4.5).

Corollary 4.1 tells us, that we can assume that our QUBO matrix @ as integer entries, without loss of
generality. We can now compare the different precision measures.

Proposition 4.3. Let Q € Z""*". Then

BW(Q) — 2 — log, (D(set(Q), {0})) < log, (CR(Q)) < DR(Q) .

Proof. The first inequality directly follows from definition. For the second one, not that

N A~ -~ -

D(set(Q),{0}) < D(set(Q)), D(set(Q),{0}) > D(set(Q)) ,
which leads to the desired result. O

The BW does not capture inter-weight distances, making it an inaccurate measure when scaling
parameters to a specific range. Even though CR might be very small, the DR can still be large, but the
reverse does not hold. That is to say, we understand DR as an accurate measure of representational
complexity.

4.2.2 Precision Reduction While Preserving Optima

Every QUBO instance has at least one binary vector with minimum energy, which is the global optimum
of the optimization problem. Scaling the QUBO matrix with a positive factor « does not change
the optima, therefore Z* (Q) = Z* (aQ), where we remember Z* (Q) defined to be the set of all
optimizers of E¢, (see Definition 2.7). Note that Vn € N: VQ € Q,, : Z*(Q) # 0, as in a non-empty
finite set of real numbers a smallest element always exists.

Having a choice between multiple optima has several benefits. For one, when there is a variety
of equally good solutions, we can choose one according to other criteria that are not encoded in the
optimization problem (e. g., the solution with fewest 1-bits). Moreover, certain iterative optimization
strategies may converge more quickly when there are multiple global optima scattered through the search

59

Chapter 4 Mitigating Data Induced Noise

space, as the distance to the nearest optimum across all binary vectors decreases. However, when we are
interested in just any optimal solution, we have to accept that, when modifying the QUBO matrix, some
optima may get lost. To this end, we define the notion of optimum inclusion on QUBO instances.

Definition 4.5 (Optimum inclusion). Let Q, Q" € Q,,. We say that Q includes the optima of Q', written
as Q & @', when the set of optima of the Q-instance is a subset of the optima of the Q'-instance:

QEQ = 2 (Q) cz (Q) .

The relation & induces a preorder on Q,,. It is not anti-symmetric, as Q & Q' and Q' & Q does
not imply Q = @', but it is reflexive and transitive. Informally, if Q & Q’, we know that the QUBO
instances with Q and Q' share at least one global optimum, and that the Q-instance has no optima that
the Q'-instance does not have as well. Therefore, a binary vector that minimizes Eq is guaranteed to
also minimize F .

We formulate the precision reduction problem as follows.

Definition 4.6. Let Q € Q,,. To reduce the needed precision for representing Q while maintaining an
optimizer, we define the objective as

argmin DR(Q + A) (4.8a)
A€Q,
st. Q+AEQ. (4.8b)

Let us give a small example for clarification.

Example 3. Consider the following 2 x 2 matrices:
0.8 —1.5 s 10.8 —1.5
Q_[O —1000}’ Q_[O —2}'
Observing the corresponding QUBO problems, we get
T T 1
argminz Qz =argminz Q'z = E
zeB’ zeB’

that is, Q and Q’ have the same optimizer, therefore Q &= Q’. Furthermore, it holds that
PN 100
Q+A=Q. A= [O 998] .

When we compare the DR of @ and @', we find that DR(Q) =~ 10.29, DR(Q") ~ 2.49.

Example 3 demonstrates that, in principle, it is possible to reduce the DR while preserving an optimizer
of the QUBO problem. Interestingly, finding an optimal solution to Equation (4.8) is generally as hard
as solving QUBO problem itself.

Proposition 4.4. Let Q € Q,,. Solving Equation (4.8) is NP-hard.

Proof. We can find an optimal solution A* = (51'3‘(1 — 227))?j:1 — @ to Equation (4.8), when we
already know an optimizer z* € Z*(Q). Q + A" is a diagonal matrix only consisting of the entries

60

Chapter 4 Mitigating Data Induced Noise

—1,0,1 with a minimum DR(Q + A") = 1. Nevertheless, solving an arbitrary QUBO problem with
matrix @ is NP-hard, but the resulting optimum of Equation (4.8) is a diagonal matrix, for which the
corresponding QUBO problem is solvable in linear time O(n). Solving Equation (4.8) is also NP-hard
and thus as intractable to solve as the QUBO problem itself. O

4.2.3 Bounds for Preserving Optima

In general, reducing the DR leads to coarser energy gradations. E.g., a QUBO instance where parameters
are encoded with only 2 bits can only have values in {—2,—1,0, 1}, which may be insufficient to
accurately preserve the value function and, consequently, the minimizing binary vectors. In this section
we develop strategies to balance these competing objectives and reduce the DR while keeping (some of)
the optimal vectors intact. To this end, we modify parameter values while trying to stay within bounds
which guarantee that a minimal solution stays minimal, and a non-minimal solution does not become
minimal.

To approach this problem, we update the elements of @@ sequentially by assigning Q,; — Qi + Wy
for index pairs &, € [n] with & < [. Deciding how to choose (i) the indices k and [, and (ii) the update
value wy,; will be the focus of the following subsections. For now, let the indices &£ < [be arbitrary but
fixed.

Interval for Parameter Change Recall our definition of B?ec from Definition 2.3. Fixing one
or more bits in a binary vector to constants induces subspaces of B", one for each possible assignment
of variables indexed by I, which is 217l in total. Each subspace has its own set of minimizing binary
vectors w.r.t. Eg.

Definition 4.7. Let Q € Q,,, I C [n]and ¢ € B!!. The set of subspace optima for assignment ¢ is
defined as

Zi, ¢(Q) = argmin Eg(z) .
ZEB?}_C

Let 3, = min_ 2 (@) Eg(z) denote the optimal value of the subspace created through the

assignment (a, b)—r € B?. For conciseness, we write ab instead of kl < ab in the index, making k and [
implicit from now on. Naturally, 3/ is just as hard to compute as solving QUBO itself. Therefore, we
work with upper/lower bounds on the true values, which are much easier to compute. We use them to
determine the update parameter wy,.

Definition 4.8. Let 1, be defined as before. Denote upper and lower bounds on 7/, by ¥, and 9., i. €.,
o * ~ 2
Yab < Yab < Yab> V(a, b) eB”.

Further, we define

Yp = min{0, min{goo, Jo1, Y10} — 11} >

Y = max{0, min{Foo, Jo1, F10} — F11} -

if k # 1. Otherwise, let y;; = min{0, §joo — #11} and y;; = max{0, Jog — 911} (k = D).

61

Chapter 4 Mitigating Data Induced Noise

- R R

Jo0 Jo0 oo Yoo

b f —

Y01 o1 Jo1 Yo1
—_— —_
Y10 Y10 Y10 Y10
— —
Y11 911 J11 911
—_ —_—
minab{@ab} Y11 Y11 minab{gab}
(@) 711 > min{Joo, Jo1, G0} = 2~ ¢ Zre11(Q).) 911 < min{Foo, Jo1,¥10} = 2" € Zrie11(Q).
Figure 4.2: Tllustration of Proposition 4.5: The orange bars indicate the interval the global optimum must fall

into. When the lower bound for a subspace By, ,;, is greater than an upper bound of any other subspace, we can
conclude that Z;;;,_1;(Q) does not contain an optimizer (a). On the other hand, when an the upper bound for a
subspace B}, ., is lower than the lower bounds of all other subspaces, we can conclude that an optimizer is in
Zr11(Q) (b). For the above example, we set ab = 11.

Theorem 4.1. Let Q € Q,, k,l € [n] and consider updating the QUBO matrix parameter Qy;
Q1 + wyy. The resulting QUBO matrix preserves an optimum if

Y < Wiy < yp - 4.9)

Proof. We assume k # [, since a similar argument holds for &£ = [. Note that one of the four subspaces’
minimum energies Y0, Y01, Y10, Y11 corresponds to the global minimum 3™ and changing Q;,; by wy,
affects only y37. Assuming z* ¢ Z;,. 11(Q), an optimum is preserved if
Y11+ wg >y
Y11 + wi > min{ygo, Yor. ¥io}
< Y11 + wiy = min{goo, Jo1, Y10} - (4.10)

Since yj; > 4", wy,; can take any positive value. Combining this observation with Equation (), we
obtain lower bound

wyy > min{0, min{Joo, Jo1: Y10} — Y11} = Y - (4.11)
We can similarly deduce an upper bound for z* € Z;;, 11(Q),

wyy < max {0, min{gog, Yo, 10} — J11} = YA - (4.12)
Our claim is obtained by combining Equations (4.11) and (4.12). 0

Equation (4.9) uses bounds (4, and 4,;,) on the true optima v, to give us an interval for wy,; if we
want to preserve an optimum. The bounds in Equation (4.9) determine an interval wy,; € [y;;, y,;rl] for
optimum preservation but can also be used for determining optimality of the subspaces.

Proposition 4.5. The following implications hold:

Yap > min ({Joo> Jo1- J10> 11} \ {dan}) = 2° € Zrean(Q), (4.13)
gab < min <{900a gOla gl[]v yll} \ {yab}) = Z* € Zl):l<—ab<Q) . (414)

62

Chapter 4 Mitigating Data Induced Noise

Proof. Assume Equation () holds, i.e.,

Yap > min ({Joo, Jo15 9105 Y11} \ {Yab})
= Ypp > Min ({Z/go, Yo1, Y105 Y11} \ {QZb})
Syn>y © 2 ¢ Zh a(Q) .

Analogously, the result in Equation (4.14) can be deduced. O

A visualization of Proposition can be found in Figure 4.2. If we find the inequality in Equa-
tion () to be true for some two-bit assignment ab, the dimension of the QUBO search space can be
reduced by fixing z;, = a and z; = b. Similar reduction techniques can be found in [168—170]. Knowing
that 2* ¢ Z7;._.,(Q) we can get rid of the upper bound Equation (4.9) (cf. proof of Theorem 4.1).

Bounding the Optimal Value The questions remains how to obtain lower and upper bounds on /.
For this, we remark that the optimal energy value is always bounded from above by any energy value of
the QUBO instance. Specifically, one can evaluate the vector consisting only of zeros.

Proposition 4.6. Let Q € Q,, k,l € [n] and (a,b) € B2 An upper bound for v, is given by
Yab < Eq(aey, + bey) .

To obtain better upper bounds, we can invest more computational effort. For instance, one can perform a
local or random search in the space B}, _,; or use more sophisticated methods, such as SA [62] or tabu
search [7].

For obtaining a simple lower bound, we can sum over only the negative entries of Q).

Proposition 4.7. Ler Q € Q,, k,l € [n] and (a,b) € B, Define Q as the matrix containing only the
negative values of Q, i. e., Q;; = min{0, Q;; }. A lower bound for Yoy is given by

Var > Eg- (14 (a— e, + (b— e |

The lower bound can be improved by exploiting more sophisticated techniques, e. g., through using roof
duality [171, 172] or a continuous Semi-Definite Programming relaxtion [146]. Such methods come at
cost of higher computational complexity, but still with polynomial runtimes.

4.3 Reducing the Dynamic Range

We have established intervals within which the parameters of a QUBO problem can be modified while
an optimum is preserved. The question remains how to choose the values in a way that reduces the DR.
In this section we show multiple approaches to achieve this goal.

Let m = n® be the number of entries of an n by n square matrix. For any Q € Q,, there is an
ordering 7 : [m] — [n]? of values in Q such that

¢ < Gir15 € = Qr(), Vi € [m] .

63

Chapter 4 Mitigating Data Induced Noise

Using this notation, ¢; = min set(Q), ¢,, = max set(Q), and further D(Q) = ¢, — ¢, and
D(Q) = min{g;; —¢q; : j € [m — 1]}. Note that about half of all g; are 0, as Q is upper triangular.
An example is given in Figure

Theorem 4.2. Let Q € Q,, k,l € [n], m(¢) = (k,1), Qi # 0 and consider updating the QUBO matrix
parameter Qp; — Qg + wy;. DR(Q) > DR(Q + wklekel—r), if the following two conditions hold:

1. wy,; is bounded:

@1 = G0+ Ome (@1 — @) — Di < wpyg < @iy — @0+ 610 (02 — @1) + Dy (4.15)

=d, ::dj

2. wy,; does not decrease the minimal parameter distance:

|q¢ + wy — 4| > D(Q), Vi € [m]\ {¢} (4.16)
V qr +wy = q;, di € [m]. 4.17)

Here, 0. is the Kronecker delta with §,,, = 1 if u = v, else 0, and Dy is defined as

D({gu: we [m\{}}) 1> ,
D(Q)

Proof. Assume wy; > 0, the case wy; < 0 follows analogously. Firstly, consider ¢, > ¢;. If

D; = D(Q) (

Wiy < G, — Qe s (4.18)

then D(Q) is not increased. Maintaining a distance of at least D(Q) to all other QUBO parameters,
i.e.,

g +wiy — ;| > D(Q), Vi € [m]\ {¢}, (4.19)

or “landing” on an already existing QUBO parameter, i. e.,
Qr + wiy = g, Ji € [m] (4.20)

avoids a decrease of D(Q) and thus the DR is not increased. On the other hand, D(Q) is increased if
wy; > ¢, — qp- Hence, to reduce the DR, D(Q) has to increase. This can only happen if g, is unique
and is part of the minimum distance, i.e., D({q, : v € [m]\{¢}}) > D(Q). We obtain a bound on wy,

64

Chapter 4 Mitigating Data Induced Noise

by
DR(Q) > DR (Q + wklekelT)
N 1?(@) <] D(Q) + wiy — (4m)
D(Q) ~ min{D({g, : v e [m]\{{}}), D(Q) + wi}
S 1:7(@) + G0+ Wi — Gy
~ Dgu: we[m\{}})
S wy < — g+ D(Q) (D({qu : g(GQ[)m]\{f}}) _ 1> ' @21)
Secondly, consider ¢ = 1 and assume g; is unique (g5 — g¢; > 0), otherwise we can deduce

bounds Equations () to (). If wy; > ¢ — q1, qo 1s the new minimal value instead of ¢, + wy;.
Thus, we can add the difference g, — ¢; to the bound in Equation (4.18)

Wi < (G — 1) + (@2 — @1) = @ — 201 + q2 -

If g is also part of the unique minimum distance, we add ¢, — ¢; to the bound in Equation ()

Dyer({au = w € [m\{£}}) 1) _ (4.22)
D(Q) '

Similar bounds can be obtained for a negative change wy; < 0. O

wklﬁqm—Q1+QQ—Q1+ﬁ(Q)<

Theorem 4.2 provides loose bounds on the QUBO parameter changes. We discuss several heuristic
approaches of how to choose wy,; within these bounds in the upcoming subsections.

4.3.1 Greedy Strategy

The first heuristic is a greedy strategy which we denote by G. The QUBO parameter ()} is increased if
g, < 0 and decreased otherwise, where 7w (¢) = (k,). For increasing (decreasing) Q);,; we choose w,gl
maximally (minimally), i.e., w,f’l = dZ (w,Sl = d,). If the updated QUBO parameter lays too close to
some other parameter, i. e.,

a0 +di —ai| < D(Q), 3i € [m]\{¢},

we set it equal to the next smaller (larger) QUBO parameter, that is,
G . -
QG+wy=a, ¢ <q+d,Vj<i <qj >q+d V> 2) : (4.23)
Again, recall that there is always a ¢, = 0 for some v € [m], and thus we may set parameters to
0. For certain target platforms, such as quantum annealers, this is particularly beneficial, as setting

a parameter to 0 allows to discard the coupling between the qubits indexed by & and /, which saves
hardware resources. As an alternative version to Equation (), we choose w,;’ such that

qe+wzfz°=0, 0<gq+d", (OZqﬁd*) :

65

Chapter 4 Mitigating Data Induced Noise

We henceforth call this alternative version G,.

4.3.2 Maintaining the Parameter Ordering

With the preceding methods, we allowed parameters to cross over each other, changing their ordering.
However, another heuristic approach is to maintain the ordering of the elements in set(Q), which should
intuitively help to preserve the optimum. This heuristic is denoted by M and we define bounds on a
certain QUBO parameter ¢,

G =min{q : ¢ > gt € [m]} (4.24a)
G =max{q : ¢ < qpt€[m]\{{}} (4.24b)
¢, =min{q : ¢ >qpt € [m]\ {{}} , (4.24¢)
g =max{q : q < qpt€[m]} . (4.24d)

If all entries of @ are unique, then cjz = ¢, and (jj = ¢, , so only if duplicate values exist, these
bounds on g, differ. An example clarifying these bounds is given in Example 4. The idea is now that g,
is changed in such a way that it lies exactly in the middle between cjzt and (jjt. For ¢ < ¢y < q,,, we
increase qp if ¢y — ¢, < (j? — ¢, and decrease otherwise. The weight ¢, is thus changed by

St

- e TN —
L8 —min{G, —qpq0— 4 Y, fa—d <4 —a
dp —dg

5= +min{q, —qpq, —d, }, else.

Wy =

For the edge case £ = m, w,':;/ll is given by

. {qgn ~4n +D(Q). o it Dul{au s w e m)\{m}}) = D(@Q),
Deer({gu = w € [m\{m}}) = D(Q), else.
Similarly, for £ = 1
M {q? ~a1-D(Q), if Deer({a, + u € [m]\{1}}) = D(Q),
D@ - Durl{au s we m\{1}}), else.

Having the heuristic change le at hand, we can determine the final change wy,; as
. h — +
wyy = min{max{wy;, yp}, Y}, (4.25)

which ensures that wy; € [y, %], such that the optimum is preserved.

Example 4. Consider the following exemplary QUBO matrix with n = 3:

1 04 1
Q=10 04 —08], (4.26)
0 0 -15

66

Chapter 4 Mitigating Data Induced Noise

D(Q)
D(Q) o
—— ° Py
~—@ *—@ @ @ o— R
—-1.5 —-1-0.8 0 0.4 1
(a) We can read off D(Q) = 2.5 and D(Q) = 0.2.
[J
([([
~—@ *—© L L R
(jfa (jir Uil (j;7 (ﬁ (j; d;a qr, Q;r d;r

(b) Bounds (Equations () and ()) on QUBO parameters ¢; = —1 and ¢; = 0.4.

Figure 4.3: Sorted QUBO parameters of the matrix given in Equation (4.26). Duplicates are indicated as vertically
stacked points.

with DR(Q) = log,(2.5/0.2) = 3.64. The parameter ordering ¢, . . . , qq is given by
(@11 q) = (—1.5,—1,-0.8,0,0,0,0.4,0.4,1) ,

and is visualized in Figure . The bounds from Equations () and () for two specific
parameters can be found in Figure . We want to increase the value (053 = g3 = —0.8, because this
would decrease D(Q) and thus decrease the DR. We fix k = 2, 1 = 3 and find that z* = (0, 1, l)T. For
maintaining the optimum z* when changing ()53, we need to obey Theorem 4.1. Computing accurate
bounds, i. e., the exact values, we obtain

Yoo = 0, go1 = —1.5, 10 = 0.4, §;; = —1.9,

and thus y,jl = min{0, —1.5,0.4} — 1.9 = 0.4. In words, we can maximally increase ()93 by 0.4 to
maintain the optimum state, which is shown in Figure . For decreasing the DR we examine the
three heuristics M, G and Gy. The values w,'z/'l = 0.3, w,fl = 1.6 and w,(jlo = 0.8 are also indicated
in Figure . We observe that M changes (095 to lie in the middle between its neighbors, G maximally
increases ()53 to maintain the DR, while G sets ()93 to 0. In Figure the final changes are shown,
using the three heuristics. Following Equation (4.25), the changes are given by 0.3 for M and 0.4 for G
and G, respectively. Both result in a doubling of D(Q) leading to a new DR decreased by one bit, i.e.,
2.64.

4.3.3 Markov Decision Process Formulation

Since the changes of the QUBO parameters are carried out in a successive fashion, it remains to decide
which k,l € [n],k < [to pick next. A very simple approach is to pick a random pair of indices, or
iterate over all index pairs in sequence. Using this method, many—or, with growing n, most—iterations
will not lead to a DR improvement, as only a few different parameters directly determine the DR, namely
those closest and furthest apart (c.f. Figure). Conversely, changing such an “inactive” parameter
can never lead to a decrease in DR, only to an increase. This realization leads to a better strategy,
which is choosing only among those index pairs whose parameters determine DR. In our experiments,

67

Chapter 4 Mitigating Data Induced Noise

—
— .
Wa3 w§3<: &t
~—@ o—© L L o— R
—1.5 —1-0.8 0 0.4 1

(a) Parameter value intervals: Maximum increase y;}, = 0.4 (blue) of QUBO parameter (0,3 such that the optimum is
preserved, along with heuristic interval limits wQ’}, = 0.3 (purple), w§3 = 1.6 (orange) and w§§ = 0.8 (yellow).

G, G,
~—@ @ @ @ @ o— R
-15 -1 \,\; 0 0.4 1

(b) New parameters after changing (0,3 = —0.8 w.r.t. preserving the optimum: min{ygrg, wgﬂd} = 0.3 for M (purple), and
min{y;rg, w§3} = 0.4 (yellow) for G (and G, analogously). In both cases, the DR decreases by one bit, since D(Q) is
doubled.

Figure 4.4: Change of QUBO parameter ().

DR =9.49 DR =9.28 DR =9.13 DR = 8.89
.. | | | H
a =12 B 0 =69 0y = (2,3) I
— —— . Em >
O r=0.21 O r=0.15 O VT =0.24
Figure 4.5: Illustration of the MDP described in Section . Every step ¢, we choose an action a, in form of an

index pair and update our state s; to s;, 1 to obtain a matrix with a smaller DR. The goal is to maximize the value
function V7.

we compute their respective update values a and greedily choose the one that leads to maximal DR
reduction, breaking ties randomly.

However, this greedy myopic approach can easily end up in a local optimum. We present a more
sophisticated long-sighted approach utilizing MDPs combined with B&B.

Recall the definition of an MDP from Section . We consider the state space as S = Q,, and
the action space A C [n]| x [n]. The state transition function is given by f(s,a) = f(Q, (k1)) =
Q + h(Q, (k, l))ekelT, where e, e; are the standard basis vectors with zeros everywhere except at
index k and [, respectively. h : Q,, X [n] x [n] — R, is a function for determining the parameter update.
For example, h can be chosen as one of presented heuristics in Section 4.3. We define the reward as
the change of DR, r(s, a) :== DR(s) — DR(f(s, a)). The four-tuple (S, A, f,) defines an MDP. Now
assume that we want to change 7" QUBO matrix entries such that the accumulated reward is maximized.
Formally, the goal is to find a policy 7 : S — A, s.t.,

T—1
7" = argmax V" (sy) = arg max Z (s, 7(84)) (4.27a)
mS—A mS—=A 1T,
=argmin DR (fr(Q, 7)) , (4.27b)

T:S—A

68

Chapter 4 Mitigating Data Induced Noise

where the equality follows through a telescopic sum and the ¢-time state transition f; following policy 7
is defined as f;(sg, 7) == f (s, w(S4)) = S441, o = Q. Our MDP is illustrated in Figure

Observing that the transition is a simple matrix addition, we can write f(Q,7) = Q + A’, where
Q + A’ & Q. Thus, the optimization objective of the decision process in Equation () is a more
restricted version of the problem in Equation (4.8). That is, we do not optimize over the set of all
optimum inclusive matrices, but over the subset of matrices which can be created with any policy
following our MDP framework. The cumulative sum in Equation () is also called the value function
V™ for a policy 7. Using the recursive Bellman equation

*

V7 () = max [r(si.a) + V7 (f(s0.a))] | (428)

we can find an optimal policy in Equation () with dynamic programming (DP), using a shortest
path-type method. In our case, we have no knowledge about the final state f(Q, 7) and thus the search
space is exponentially large (see Figure 4.0)

T 2\T+1

-1
Y (n*) = W) -1)2 e O(n*T)y | (4.29)
=0 nt—1

Choosing the number of iterations 1" logarithmic in the problem dimension, i.e., 7' = logy (n2) =
21logy(n), results in the sub-exponential state space size of

%) <n410g2(n)+2> -0 <n22<4log§(n)>> C 0(2n) .

Thus, we have an asymptotically slower growth than the exponentially large state space size 2" of the
original QUBO problem.

However, in practice, super-polynomial runtimes are often not tractable, especially for large n. Due to
this fact, Equation (4.28) is typically solved with approximate DP methods such as Monte Carlo Tree
Search (MCTS), PR or reinforcement learning [87, 94]. We present a B&B algorithm utilizing PR to
reduce the complexity of solving Equation (4.27).

4.3.4 Branch and Bound

Following all paths of possible QUBO matrix updates is intractable. We combine PR with the B&B
paradigm to obtain a trade-off between computational complexity and solution quality—solution paths
which cannot lead to an optimum are pruned, based on bounds on the best found solution. The algorithm
is given in Figure 4.6: the search space is expanded (branch) and every state is checked whether it can
be pruned (bound). This is done until the final horizon 7" is reached and the state with the minimum DR
is returned.

Branch In the branch-step, the search space is expanded from the current considered state. The
question arises how to decide which indices to consider in the current iteration, i.e., which entries of
QUBO matrix should be changed. The obvious method is to use all n(n + 1)/2 upper triangular indices
of the whole matrix, which we will further indicate by ALL. With large n, this expansion gets very
large and thus we also consider a different method in our experiments. This method is based on the

69

Chapter 4 Mitigating Data Induced Noise

N 98N
I
CRRICRTSE

Figure 4.6: Exemplary depiction of the search space when applying our B&B algorithm (Section) to some
QUBO matrix Q. In every step, we expand our search space (from top to bottom, Section) and check whether
a branch can be pruned (r* < 7, Section). The small filled circles indicate the visited states of our algorithm
and the pruned parts are depicted as gray dashed lines. The fraction of pruned states is 40/85 = 0.47 (without
rollout). Since the search space size grows exponentially with the horizon 7" = 5, we execute a PR (Section)
for T = 2 steps. From here on, a base policy is followed without expanding further, which is depicted in blue.
The red path indicates the optimal solution and the yellow path shows the base policy.

observation, that only four entries of the QUBO matrix affect the DR when changing a single weight.
Namely the smallest/largest weight and the weights which are closest to each other, which will be
denoted by IMPACT. This drastically reduces the search space search size and the performance to ALL
is compared in Section

Policy Rollout Having an index pair (k,) at hand, a new state is created from the current state Q
by following the transition function f. Instead of solving the problem in Equation () exactly and
expanding the search space for 7" steps, we also consider a PR approach. It describes the concept of
following a given a base policy 7 for a number of steps. For a given rollout depth T < T, we denote the
policy which optimizes its path for 7" steps and then follows 7 for T' — T steps as 7. We use a greedy
policy 7(Q) := argmin,. 4 DR (f(Q, a)) which myopically optimizes the DR when taking a single
step. Since the solution quality is monotonically increasing with T, we obtain a trade-off between the
size of the state space and the performance of our algorithm. Usin*g PR is motivated by the well known

rollout selection policy. At time t, the optimal future reward V™ (f(s¢,a)) is approximated with the
reward V™ (f(s;, a)) following 7. The Bellman equation Equation (4.28) is modified to

V() = max [r(s,0) + V7 (F(sp,0)] - (4.30)

The resulting rollout selection policy 7 is at least equal and typically better than the base policy 7.
It is renowned for its simplicity and strong performance, largely due to its close relationship with
the fundamental dynamic programming algorithm of policy iteration. Equation () represents the
optimal one-step look-ahead policy, when subsequently following a base policy. This principle can be
generalized to T- -step look-ahead rollouts, T < T, where the solution quality increases with increasing
rollout horizon 7. The exact solution for Equation () is obtained if T = T. Thus, PR can be
seamlessly integrated into our B&B algorithm. An experimental comparison between 7. and 7 with
using the aforementioned variants can be found in Section

Bound We want to prune states, which cannot lead to the optimal solution. Deciding whether a state
can be pruned, is dependent on bounds of the reachable best solution from that given state. Given the

70

Chapter 4 Mitigating Data Induced Noise

D(set(Q))
D(set(Q))
~—@ L H L o— R
-2 -1.5 0 0.8

(a) We can read off D(set(Q)) = 2.8 (purple) and D(set(Q)) = 0.5 (red). Change of parameter (o, using a heuristic
h(Q,0,1) = 0.7 (yellow). The sorted parameters are given by ¢; = —2, ¢ = —1.5, g3 = 0 and ¢4, = 0.8.

-~ ry ® o~ R
—_—

b(Q,1)

(b) Bounds when a single QUBO parameter is changed to 0: A lower bound (top, purple) is given by D(set(f1(Q,7"))) >
b(Q,1) = 2 and an upper bound (bottom, red) by D(set(f,(Q,7"))) < b(Q,1) = 0.8. The changed parameters are
indicated with rectangular boxes.

b(Q,2)
~fo—fef ° o~ R
h(Q.2)
(c) Bounds when two QUBO parameters are changed, namely b(Q, 2) = 0.8 and b(Q, 2) = 2. For details, see Figure
Figure 4.7: Sorted QUBO matrix entries given in Example 3. Heuristic h is depicted in Figure and the
methods for finding a lower bound on the DR are given in Figures and

current best final DR r*, we can prune a state @ if it is smaller than a lower bound #(Q, T') on the best
reachable solution DR(f7(Q, ")), i.e.,if r* < #(Q,T) < DR(f7(Q,7")). Pruning states, we do not
have to expand the search further and can drastically reduce the computation time. We find a lower
bound on DR(f7(Q, 7*)) with a lower/upper bound b(Q, T')/b(Q, T') on the numerator/denominator
in Equation (4.2)

DR(fr(Q,7")) = log, (ZEg’g) =7(Q,T) .

Let m := n” be the number of entries of an n x n matrix. For any Q € Q,, there is an ordering

(bijective map) o : [m] — [n] x [n] of entries such that ¢, < qp1, ¢ = Qo (p), V¢ € [m]. With this
notation, D(set(Q)) = ¢, — ¢ and 3j € [m — 1] : D(set(Q)) = @j+1 — q;- A visualization for an
ordering of Example 3 is shown in Figure

Lower Bound on Maximum Distance For finding a lower bound on DR(f7(Q, ")), we optim-
istically assume that we can set all parameters to 0 while maintaining an optimizer of . Since 0 is
always considered in the computation of the DR, this corresponds to an optimal strategy of changing the
parameters, because the DR cannot increase. Changing a single parameter, the numerator D(set(Q))
in Equation (4.2) is maximally reduced if we set q; /q,,, larger/smaller than ¢, /¢,,,_;. The maximum pos-
sible reduction is equal to min{qy — q1, ¢,, — Gyn—1 }- Iterating this process for 7" times, we end up with

71

Chapter 4 Mitigating Data Induced Noise

Algorithm 2 LOWERBOUND
Input: Q,T
Output: Lower bound 7 < DR(set(QT)
: b+ min {qm T+i — 4it1 - 0<i< T}
Compute o, st 2 < Q415 U = Qo) > Sort weights
D {d;:i€[m—1]}, di = g1 — 4
Compute p, s.t., dyry < dpes) > Sort distances
fort =1to T do
I« {p(1),p(1) + 1}
i, = argmin;.; d;
if i, = p(1) then
Ty < 1, — 1
end if
d;, < d; +d,n > Update distance
D« D \ {d,y}
Recompute p, s. t dpey < dpes)
: end for
R dp(l)
DT 6/1;

N AR

— e e e e
AN A

—
(o))

b(Q,T) == min {q,,_14; — ¢+1 : 0 < i < T}. Anillustration for Example 3 is found in Figures
and

Upper Bound on Minimum Distance Obtaining a lower bound is a little more tricky and
an iterative procedure is given in Algorithm 2. Since we are concerned with the smallest distance
between two QUBO parameters, we consider the set of distances between “neighboring” parameters
D(set(Q)) == {qip1 — ¢; i € [m — 1]} = {d; : i € [m — 1]}. We iteratively set QUBO weights to
0, which are part of the minimum distance, maximizing the minimum distance. Define an ordering
pilm—1] = [m—1],s.t, dy; < dyiq1)- It then holds that D(set(Q)) = dp(1)- D(set(Q)) is max-
imally reduced if we change g,(1);1 Or g (1), S.t., d(1) is not the smallest distance anymore. We change
the weight with the smaller corresponding distance (Lines 6 and 7, Algorithm 2). If g,,(;) is changed,
dy1y—1 is updated to d 1)1 + dp1) = Qp(1)+1 — Qp(1)—1 and if g,(1y4q is changed, d (1)1 is updated
to dy1)41 + dp1) = Qp(1)+2 — Qp(1) (Algorithm 2, Algorithm 2). No update is required if p(1) = 1 or
p(1) + 1 = m. The new smallest distance either equals the second smallest distance d) or one of the
two newly updated ones. The smallest distance d () is removed (Algorithm 2, Algorithm 2) from D
and the ordering p is updated with the updated distances (Algorithm 2, Algorithm 2). In Figures

and , this is illustrated for Example 3.

Computational Complexity Analysis Even though we are able to prune a large amount of the
search space, it would be beneficial for the bounds to be computable efficiently. It turns out that
the bounds can be dynamically computed in (’)(TnQ). Through the use of memoization, this can be
efficiently combined with PR.

For the transition f(Q, (k,1)) = Q + h(Q, (k, l))ekelT we need to compute the value h(Q, (k,1))

72

Chapter 4 Mitigating Data Induced Noise

which is implicitly dependent on y;; and y,jl. For computing a lower bound ¢, we use the roof dual
technique [171]. A flow network is build with O(n) nodes, and the lower bound is given by the maximum
flow value, which is computable in (’)(n?’). Exploiting the top-down nature of our B&B approach, we
can dynamically update the flow network and recompute the maximum flow in O(nQ). An upper bound
1 is given by performing local descent using a discrete analogue of a gradient [168]. Having an initial
runtime of (’)(n3) it also can be dynamically updated making it computable in O(n2). This leads to an
initial computational effort of O(n”) and O(n?) for every subsequent branched state.

Having 4y (Q) and " (Q) at hand, & can be computed in O(n). This leads to a total computational
cost of O(n?) for a single state. Thus, every upper bound #(Q, T") (policy rollout) can be computed in
O(Tn?).

For the computational complexity of the lower bound 7(Q, T"), we first consider the lower bound
b(Q,T). Initially, the parameters of € and the elements in D can be sorted in O(n* log(n)) . Updating
single parameters, this sorting can be dynamically updated in (’)(nz). For b(Q, T), this is repeated T’
times, leading to a computational effort of O(Tn?). The bound b(Q, T) can be computed in O(T).
Thus, the computational complexity of the lower bound #(Q, T') is O(T'n*). Combined with the runtime
for computing an upper bound #(Q, T') results in a total runtime O(T'n?) of the bound-step.

4.4 Experimental Evaluation

In this section we conduct experiments to demonstrate the effectiveness of our proposed method.

4.4.1 Greedy Policies for Random Instances

We first conduct experiments comparing two base policies, called 7% and 7. The policy 7 ran-
domly chooses an index pair from [n] x [n]. # chooses the next indices greedily according to
arg min,c 4 DR(f(Q, a)) and if it gets stuck in a local optimum, it switches to 7. Different heuristics
are compared for updating the parameter in the transition function f(Q, (k,1)) = Q +h(Q, (k,1))exe;
which were presented in Section 4.3, namely

* G: Greedily choose the parameter update that leads to the greatest DR decrease;
* Gy: Like G, but prefer to set parameters to 0, if possible;
* M: Restrict bounds such that the parameter ordering remains intact.

The methods described are implemented as part of our Python package qubolite’.

Using 1000 random QUBO matrices with the entries being sampled uniformly in the interval
[—0.5,0.5], we apply the different heuristics for 1000 iterations. For preserving the optimum, the
upper bounds g, are computed using a local search, and the lower bounds 9,,;, are computed by using
the roof-dual algorithm [171]. The 95%-confidence intervals are indicated.

Figure shows the DR ratio between the matrices arising by following the different heuristics and
the original QUBO matrix, that is DR(Q + A)/DR(Q).

We observe this ratio to be monotonically decreasing, indicating that our proposed heuristics are
fulfilling their duty of reducing the DR. This decreasing percentage shrinks with larger n, i.e., it is

} https://github.com/smuecke/qubolite (last accessed September 19, 2025)

73

https://github.com/smuecke/qubolite

Chapter 4 Mitigating Data Induced Noise

Go (random) —— G (random) —— M (random)
Go (IMPACT) —== G (IMPACT) === M (IMPACT)

—_
=
o

e
3
O

©
o3
(e

| | | | | | | | |
0 500 1000 0 500 1000 0 500 1000 0 500 1000
Iterations

n=12

Dynamic range ratio

<
[\
oy

Figure 4.8: Dynamic range ratio for random QUBO instances with sizes n € {4, 8,12, 16}.

harder to reduce the DR for larger n. Generally, choosing the next QUBO weight according to the
myopic IMPACT on the DR is better than a random decision (except for n = 4), but also comes with a
higher computational cost. With increasing n, it turns out that the G heuristic performs worse than the
M heuristic. However, the slight adaption G, of setting QUBO weights to 0 if possible outperforms M.

After relatively few iterations the DR ratio seems to converge to a minimal value for all methods we
investigate. Convergence is faster for small n. Also with increasing n, the minimum DR ratio approaches
one, i. e., a smaller overall improvement can be achieved. We suspect that the iterative procedure reaches
a local optimum where none of the weights can be reduced without changing the minimizing vector,
according to the bounds employed. Naturally, this happens faster with fewer weights, i. e., with smaller
n, on which the number of weights depends according to (’)(n2).

Convergence could be improved by using sharper bounds, which comes at higher computational
cost, though, e. g., computing the roof dual bound has time complexity (’)(n3). We expect that clever
implementations of bounds can exploit the fact that only one weight at a time is changed, allowing
for re-use of data structures (like the flow network constructed for the roof dual bound), reducing the
computation time drastically.

For further evaluation, we need to define the notion of the induced ranking of a QUBO instance, and
a way to compare these rankings.

Definition 4.9. Let Q € Q,,, and let 2z, ..., zy» be the binary vectors of B" in lexicographical order.
The induced ranking of Q is a permutation g € [2"] — [2"] such that

EqQ(zrgi) < EQ(zrg(is)) Vi€ 2" —1].

Definition 4.10. Let 7,7 : [K] — [K] be two permutations for some K > 1. The normalized Kendall
7 distance between 7 and 7’ is given by
Ky) =2+ ——— 3" sign[(x(i) — 7)) - (') — 7' (7))]
a(T, 2T RE o) 2 J i -
i,j€[K]
1<)

Intuitively, this distance measures the proportion of disagreement between rankings over all pairs

74

Chapter 4 Mitigating Data Induced Noise

n=4

s . S . A SR S A e

n=12

o ——————

0.0 I ;=.

|] = |] 1
0 500 1000 0 500 10000 500 1000 0 500 1000
[terations

Kendall 7 distance
o
(\9]
1

Figure 4.9: State ordering for random QUBO instances with sizes n € {4,8,12,16}.

n=12 n=16

le

0.2

n=4

0.0 : - - -
0 500 10000 500 10000 500 10000 500 1000

Iterations

Kendall 7 distance

Figure 4.10: Distance between parameter orderings for random QUBO instances with sizes n € {4,8,12,16}.
Note that the line for method M (random) is constantly O.

of indices, i.e., the percentage of (i,) such that (i) < 7(j), but 7'(i) > 7'(j), and vice versa. If
K (m,7') = 0, then 7 and 7’ are identical, and if K (7, 7') = 1, then " is the reverse of m. Therefore,
Kendall 7 distance gives us a measure of how much the DR reduction “scrambles” the value landscape of
fq by computing K;(7g, g+ 4), Which is relevant, e. g., for the performance of local search heuristics.

Figure 4.9 shows the Kendall 7 distance between the induced rankings of the QUBO instances on B"
before and after their DR reduction. We observe that G and G, “scramble” the ordering of binary vectors
more strongly than M. This is exactly what we expected, as M’s objective is to preserve the ordering of
parameters, which in turn leads to more conservative parameter modifications. This reduces the overall
“noise” that is added to the energy landscape.

Instead of considering the QUBO energy values themselves, we plot the change of the QUBO
weight ordering in Figure . Again, the Kendall 7 distance is used and we observe similar effects
to Figure 4.9. We can see that M maintains the weight ordering.

Finally, Figure displays the unique weight ratio, that is the number of unique QUBO weights of
the current iteration divided by the number of unique QUBO weights of the original QUBO. M never
changes the uniqueness of the weights, while the ratio is monotonically reduced for G, since many
weights are set to 0. With using G, the number of unique weights is first reduced but then starts to
increase when the to be changed weights are chosen randomly.

75

Chapter 4 Mitigating Data Induced Noise

1.00

0.75

©
W
(e}

n=16
1 1 1 1 1 -i 1 1 -i 1 1
0 500 1000 O 500 1000 O 500 1000 O 500 1000
Iterations

©

Y

9
T
T

Unique parameters ratio

Figure 4.11: Percentage of unique parameter values for random QUBO instances with sizes n € {4,8,12, 16}.
Note that the line for method M (random) is constantly 1.

4.4.2 Data Dependent QUBO Embeddings

We want to investigate to what extend our DR reduction method can help to improve the performance of
actual Ising machines, such as NISQ devices.

As three exemplary problems, we perform BICLUS, VECQUANT and SUBSUM. BICLUS stands for
“binary clustering” and is an unsupervised ML task, where data points are assigned to one of two classes
(“clusters”). SUBSUM consists of finding a subset from a list of values that sum up to a given target
value. Both have well-established QUBO embeddings [59, 173]. We chose these problems as they are
(i) real-world problems of both scientific and economic interest, (ii) easy to generate for arbitrary n, and
(iii) their QUBO instances’ DR is a direct result of the input data. The last point is especially important,
as the DR has a tangible connection to the underlying data, which we can generate to obtain realistic
QUBO instances with high DR.

BICLUS To generate data for BICLUS, we sample i.i.d. n = 20 2-dimensional points from an isotropic
standard normal distribution. Then we create two clusters by applying (z;, z9) — (21 — 4, z4) to the
first ten points, and (x1, z9) — (27 + 4, x4) to the last ten. As a last step, we choose the points 1 and 19
and multiply their coordinates by 20, which leads to a data set containing two outliers.

From this data we derive a QUBO instance) given in Proposition

min —z ' Kz+1 Kz ,

zeB"
where K is a kernel matrix. We use a linear kernel, which leads to a vanilla 2-means clustering based on
Euclidean distance. To ensure this problem has only one optimal solution, we assign class O to point 20
and only optimize over the remaining 19 points (otherwise there would be two symmetrical solutions).

SuBSUM For the SUBSUM problem, we are given a set A = {ay,...,a,} C Zand T € Z. The goal
isto find Z C [n], s.t., Y-,z a; = T. We use the same problem instance as is given in [45], Section
4.2. We set n = 16 and generate the elements of A as || 10 - Z||, where Z follows a standard Cauchy
distribution. This approach leads to occasional outliers with large magnitudes, which in turn produced
QUBO instances with a high degree of difficulty due to large DR. Next, we determined the number of

summands & by sampling from a triangular distribution [U'], where U is defined with parameters a = %,

76

Chapter 4 Mitigating Data Induced Noise

b=5,and c = %”, ensuring that, on average, half of the elements of A contribute to the sum. Finally,
we selected k indices from [n] without replacement to form the subset 7 and set T" =) _._; a;, thereby
creating problems where the global optimum is predetermined.

We obtain a QUBO formulation, where we use n binary variables which indicate if ¢ € S for each <.

With a = (ay,...,a,), a QUBO formulation is given by

2
min (aTz — T) < min zTaTaz — 2TaTz .
2€{0,1}" 2€{0,1}"

VECQUANT VQ deals with the problem of finding prototypes of a given set of vectors, which give a best
representation according to some measure. We use the approach from Proposition 3.4, where the goal is
to find £ medoids according to the well known k-medoids objective function. A QUBO formulation is
given by
. T T T
min z (711 — aD) z+ (D1 —2vk1) =z,
2€{0,1}"

where D is a pairwise distance matrix for, « is a weight for identifying far apart data points, S is for
identifying central data points and ~ ensures that we choose exactly k vectors. We follow [58] and set
a =1/k, 8 =1/n and use Welsh’s distance

2
d(w,y) ==1—exp (‘Hm2yu>)

for computing D. The penalty parameter v, which enforces that exactly k prototypes are chosen, is set
to 2. For hardware evaluation, we use the same dataset as BICLUS and set k = 4.
We also compare the results of our proposed methods with two other methods from the literature.

Adding Auxiliary Variables In [157], a method is proposed which reduces the bit-width of single
parameters of the underlying Ising model. It adds auxiliary variables to the problem in a way such that
an optimal configuration still corresponds to an optimum of the original problem. It is assumed that
all problem parameters are integer, i.e., J € Z"*" h € Z". If we want to change a parameter Jijs
i # j to reduce its bit-width, we can do this by introducing a new variable x to the problem to obtain
J' € 2" quch that
Jij=dij—r, Jip=1r|, Jo = —r.
If we want to change h;, optimality is ensured by
hi=nh; —r, hiy = —|r|, hy=1.

That is, if § :== arg min ntl s'J's + sTh/, then

se{-1,1}

5[1}J.§[n] —I—E[IL]h: min s'Js+s h ,
se{—1,+1}

where the subscript [n] denotes the vector consisting of the first n entries. However, to reduce the
bit-width by m bits, O(n2"™) auxiliary variables are introduced. Due to limited capability of hardware
solvers in terms of representable problem size, this can pose a problem on finding a solution.

In our experiments we apply this method to SUBSUM, since our datasets are integer. We reduce the
bit-width of our parameters by 2, since no further benefit on the performance of hardware solvers was
observed for introducing more variables.

7

Chapter 4 Mitigating Data Induced Noise

Tuning Penalty Parameters As a second baseline, we use the method from [146]. It is assumed
that the optimization problem is given in a quadratic binary constrained form
min zTQz
2z€{0,1}"
st. Az=b0,

which can be brought in an equivalent QUBO form by introducing a penalty parameter A > 0

min z' Qz+A(Az—b) (Az—b).
z€{0,1}"

This parameter has to be chosen large enough to ensure equivalence. We use the method
A=2'Qz - Eg,

where 2 is a feasible solution, i.e., A2 = b and EQ is a lower bound on the optimum, i.e., EQ <

min zTQz. For increasing A the DR is also increased, thus choosing A as small as possible is favourable.
Hence, we use the exact solutions for computing A in our experiments. However, this is intractable in
realistic scenarios.

We denote the method of tuning penalty parameters for incorporating constraints in [146] as PEN and
the method of introducing auxiliary variables to reduce the BW [157] as AUX. However, they are not
generally applicable to arbitrary QUBO problems, i.e., PEN can only be applied to VECQUANT since
it incorporates a constraint of finding exactly %k prototypes and AUX can only be applied to SUBSUM,
since we here use QUBO instances with integer values. However, our method can be applied to arbitrary
QUBO problems.

4.4.3 Performance of Branch-and-Bound

In what follows, we consider numerical experiments and study the impact of our method on a D-Wave
Advantage System 5.4 QA device and FPGA-based DA hardware [71] in Section . Three exemplary
problems are considered: BICLUS represents 2-means clustering, SUBSUM consists of finding a subset
from a list of values that sum up to a given target value and VECQUANT aims for finding prototype
vectors. All three problems have known QUBO embeddings [58, 59, 173], discussed in the previous
section.

We compare different policies: the base policy 7 (heuristic baseline discussed in Section), our
B&B policy 77 with different rollout horizons T and our rollout selection policy 7. The relative DR
reduction for a horizon up to 7" = 10 can be found in Figure . We compare ALL (left) and IMPACT
(right) for choosing the indices in the branch step. It is apparent that every single policy reduces the
DR with an increasing horizon T". The base policy 7 is largely outperformed by our 77 and 7. 77 is
increasing its performance with an increasing rollout horizon 7. We can see that the exact method ALL
has the same performance as using the simplified version IMPACT, while being more computational
demanding. It scales quadratically with the problem size n, where IMPACT is basically independent of n.
The policy 7 already almost achieves optimal performance (c.f. to 7).

We also evaluate our results with the coefficient ratio (CR) (Equation (4.3)) for n = 8. It is evident
from Figure , that log, (CR(Q)) < DR(Q), aligning with our theoretical insights.

78

Chapter 4 Mitigating Data Induced Noise

[7 (baseline)

[[)

7

Horizon

=

2 05} 38 F

2 °

204

=

DQ: 03_ i ° [~

5 02F « -

Sot i ' gﬁ

Qqé OO—I_ 1 1° — — |oo

2 4 6 8 10 0 10

Horizon

- O m |) H 7 W 7

2 05 -

2 000

R -

e

Pol ! .

a

g 02_ : : i H -

g 0.1F % viod- w000 B ﬂ 08

i) o 0o 06 0 0 o ° 8 °

o 0.0 —— | 0{0-000/00 00100 0000 | |—— 00810008 9000

0 2 4 6 8 10 0 2 4 6 8

Figure 4.12: Relative DR reduction for 100 BICLUS instances with n = 8 (first and third column plot) and n = 16
(second and fourth column plot). Different policies are compared for choosing the indices with ALL (left) and
IMPACT (right).

[7 (baseline) E 7 m o

7

20 [z

15

DR

10

™

by

Figure 4.13: Comparison between absolute DR and log, (CR) reduction for n = 8 and IMPACT indices.

0 2 4 6 8 10

0 2

Horizon

log,(CR)

Evaluating the quality of our bounds (see Section 4.3.4), we indicate the fraction of the pruned state
space in Figure 4.14. We here consider the exact solution, that is 7. We vary the depth until the upper
bounds are updated. Increasing this depth, as well as increasing the horizon leads to pruning a larger
fraction of the whole search space. The number of pruned states does not heavily depend on an updated

current best, indicating the strength of our lower bound (Section 4.3.4).

79

Chapter 4 Mitigating Data Induced Noise

% d 2 | 4 6 Hl S

2 10F = ' S o ' ~

17 000

—q'é 08 - |-0.0:0.0 ;

a 06 [0 000 - :

o ocoo °

qa 04F gigs e B 0:0.0

§ 0.2 o000 LCH X "0 ° °°'°° : '

§ 0.0 —T1—"990j00-0-0j0-0 0,00 0(0-0 i 1 | i

= 2 4 6 8 10 2 4 6 8 10
Horizon

Figure 4.14: Fraction of pruned states. Different depths (2, 4, 6 and 8) for updating the current best DR are
compared for n = 8 (left) and n = 16 (right).

25 - -
20 - i L T
o | : B
15 \\
10 - : -
5 -I 1 1 1 1 -I 1 1 1 1 -I 1
0 25 50 75 100 0O 25 50 75 100 0O 25 50 75 100
Horizon

Figure 4.15: Performance of our developed policy 7 compared to the base policy 7 and the randomized base policy
7. The DR reduction is compared for a SUBSUM (left), a BICLUS (middle) and a VECQUANT (right) instance.

Table 4.1: Comparison of QUBO hardware solvers using different methods (details in Figure). We depict the
DR along with the number of optimal samples (from 1000) obtained by QA and DA with 16, 8 and 4 bit precision.
Optima are bold and dashes indicate that the method is not applicable for the respective problem.

SUBSUM BICLUS VECQUANT
DR QA DAl16 DA8 DA4 DR QA DA16 DA8 DA4 DR QA DAl16 DA8 DA4
Orig 25.68 0 5 1 0 22.79 3 1000 1000 1 19.19 18 1000 1000 0
GRE 15.94 3 687 3 0 20.52 605 462 0 0 9.51 1 1000 0 0
AUX 25.68 0 7 2 2 — — — — — — — — — —
PEN — — — — — — — — — — 24.63 0 1000 1 0
Ours 9.89 26 1000 0 0 8.87 865 585 579 528 2.68 356 1000 1000 487

Further, we compare the DR reduction performance of the base policy 7 and a randomized base policy
72 with our rollout selection policy 7 in Figure for three different instances of SUBSUM, BICLUS
and VECQUANT of dimensions n = 16, 20, 20. We can see that 7 ends up in local optima pretty fast
while our 7 is more robust and is steadily improving with an increasing horizon. It also outperforms ik,
which needs a lot of iterations for an increasing QUBO dimension. Specifics on the obtained DR can be
found in Table 4.1—our method always achieves the smallest DR.

The parameter values of the original are shown in the left column of Figure . As is apparent

80

Chapter 4 Mitigating Data Induced Noise

| | | ..
- 6000
- 10000

- 4000

III.
ry

- 5000 |
- 2000 20
-0 -0

- -2000
- -5000

- -4000

- ~10000 500
|
-60

(a) BICLUS (b) BICLUS (c) BiICLUS

(original, DR = 22.79) (greedy, DR = 20.52) (B&B, DR = 8.87)
s - a0
i | - [I
N LI = I

., " , u 3
- | - -1000
B - 200000
[~ ~400000 | | e
- L | i
(d) SuBSum (e) SUBSUM (f) SuBSum

(original, DR = 25.68) (greedy, DR = 15.94) (B&B, DR = 9.89)
. Io2 L R | lm I
] |
. * . [0 -0.025
-0.0 . -0.00 . - 0.000
n] | | --0.025
| o [" s u - -0.050

m B
" |
I I I'*O’\OO
(g) VECQUANT (h) VECQUANT (i) VECQUANT
(original, DR = 19.19) (greedy, DR = 9.51) (B&B, DR = 2.68)

Figure 4.16: QUBO parameter matrices for BICLUS, SUBSUM and VECQUANT problems, original (left), using
the greedy policy (middle) and applying our B&B algorithm (right) for 100 iterations. Notice that the difference
in DR is illustrated by the color scale, which renders most parameter values in the original QUBO matrices
indistinguishable, which is greatly improved, especially on the right.

from the color scale, the DR is very high, which makes most values near 0 completely indistinguishable.
We apply our base policy 7 and the B&B rollout policy 7 with a fixed budget of 100 iterations. The
resulting QUBO instances are shown in the middle and right column, respectively. Clearly, much more
detail is visible, as the color scale is much narrower, already hinting at the lower DR. While the base
policy can get stuck in local optima pretty fast, our proposed B&B largely reduces the DR

4.4.4 Performance on Hardware Solvers

Further, we assess the impact of the reduced QUBO instances on two hardware QUBO solvers (Ising
machines)—QA and DA. The D-Wave annealers have a fixed connectivity structure, i.e., only a subset
of qubit pairs can be assigned a weight. Therefore, dense QUBO problems (like ours) must be embedded
into this connectivity graph structure through redundant encoding and additional constraints. To improve

comparability, we have this embedding computed once for the original QUBO and re-use it for the
compressed one.

81

Chapter 4 Mitigating Data Induced Noise

Further, NISQ devices are prone to Integrated Control Errors which constrain the DR of the hardware
parameters. If the DR of the given QUBO is too large, it can happen that a completely different problem
is solved due to implementation noise of the parameters. A similar problem appears for hardware solvers
with a fixed bit precision: the parameters have to be rounded/quantized to that precision, which can
lead to different optima (see Figure 4.1). Furthermore, DA designs can be improved by considering a
reduced bit precision. In our experiments, the hardware plattform for the digital annealer is an AMD
Virtex UltraScale+ FPGA VCU118 evaluation board.

By implementing the digital annealer chip design with AMD Vivado for 16, 8 and 4 bit precision,
we find that when using 4 instead of 16 bit precision, the number of on-chip signals is reduced by
28.29%. This has multiple benefits: First, the improvement allows us to run the orginal design with
a reduced power consumption when operating the hardware solver. E.g., the power requirement for
on-chip memory" shrinks from 1.4 W to 0.3 W. Second, due to less occupied chip space, the reduction
also allows for an increase of the maximum number of QUBO problem variables. However we did not
evaluate this option as it requires significant changes of the chip design which are out of scope of our
study.

Now, after adressing the resource consumption, we answer the question whether reducing the DR
leads to an optimized performance for QA and DA. To quantify the improvement, we consider the energy
values of samples obtained from the compressed QUBO instances w.r.t. the original (uncompressed)
QUBO. Due to their probabilistic nature, we generate 1000 samples and use default parameters. For
DA, we use three different bit precisions of the internal arithmetics, i.e., 16, 8 and 4 bit. For making
the performances comparable we evaluate the original QUBO energy Eg(z) for every sample z and
examine the relative distance to the optimum energy vg(z) = (Eq(z) — Eg(z"))/Eg(z"). This
is depicted in Figure , where we indicate the energy distribution for the initial QUBO matrix Q,
the base policy f19o(Q, 7), AUX for SUBSUM, PEN for VECQUANT and our rollout selection policy
f100(@Q, 7). Even though our DR reduction method can change the overall energy landscape, we are
interested in the low energy values since we aim to minimize the energy. In Table 4.1, we depict the
total number of optimal samples from the 1000 drawn samples, using different methods for QA and
DA. We can see that our method almost always outperforms the baselines in terms of ability of the
hardware solver to find optimal solutions. We conclude that our method helps a quantum annealer and
FPGA-based technology to find the optimum more reliably.

4.5 Conclusion

In this chapter, we expanded our investigation beyond the spectral gap to consider the broader factors
influencing QO performance, particularly in the presence of noise and hardware limitations. We
demonstrated how finite numerical precision and inherent hardware imperfections can lead to deviations
from the true optima, posing significant challenges for both quantum and classical Ising machines.
The proneness of QUBO matrices for such errors is quantized by the DR, indicating the number of
bits needed to faithfully encode their parameters. Finding an optimum preserving QUBO matrix with
minimal DR, however, is as hard as solving the QUBO itself. To address these issues, we introduced
a principled MDP framework for analyzing error susceptibility in QUBO instances and developed an
iterative methodology for reducing the DR of problem matrices. Our proposed precision-reduction

* Block RAM and Ultra RAM combined. See https://docs.amd.com/v/u/en-US/ug573-ultrascale-memory-resources (last
accessed September 19, 2025). Numbers reported here are estimated by the FPGA design software.

82

https://docs.amd.com/v/u/en-US/ug573-ultrascale-memory-resources

Chapter 4 Mitigating Data Induced Noise

F T T T T T F T T T T T
[Orig — Ours | | PEN

- == GRE - - o

N 90 1 RO

e

18

0 sessduannnns jeennns Joesnns Ei bt sesafennnns kb

0 025 05 075 100 025 05 075 1.0 0 025 05 075 1.0
Samples (ordered by energy)

Figure 4.17: Performance of the D-Wave Advantage 5.4 (top row) and an FPGA-based digital annealer with 4-bit
precision (bottom row): we compare the original QUBO @ (Orig), the QUBO using the greedy base policy (GRE)
for 100 steps f10o(Q,), the method in [146] (PEN) for computing the penalty, the method of adding auxiliary
variables (AUX) [157] and our rollout selection policy for 100 steps f100(Q, 7). The relative energies v¢ for 1000
samples are shown for a SUBSUM (left), a BICLUS (middle) and a VECQUANT (right) instance.

techniques, ranging from heuristic approaches to an exact B&B algorithm, offer a systematic way
to mitigate the impact of noise while preserving the integrity of optimization results. For this, we
established upper and lower bounds, which allowed us to compute intervals in which parameter values
can be modified without affecting the minimizing vectors, leaving optimal solutions intact. Further,
we proposed computationally efficient and theoretically sound bounds for pruning, leading to drastic
reduction of the search space size. We combined our B&B approach with the well-known policy rollout
for improving computational efficiency and the performance of already existing heuristics.

Through extensive experimentation on ML-related CO problems, we established a clear link between
data properties and the required numerical precision, reinforcing the necessity of precision-aware
preprocessing. We use our method to reduce the DR of NP-hard real-word problems, such as clustering,
subset sum and VQ. Our proposed algorithm largely outperforms recently developed algorithms, while
also being applicable to arbitrary QUBO problems. The effectiveness for hardware solvers is shown for
a real quantum annealer and an FPGA-based digital annealer. We conclude that our method enhances
the reliability of QA and DA in finding the optimum, and reduces the power consumption of DA. The
findings suggest that optimizing QUBO representations not only enhances robustness in NISQ era
quantum devices but also provides measurable improvements in classical hardware solvers, including
FPGA-based annealers. In summary, we provide an efficient pre-processing technique that can be
applied out-of-the-box to arbitrary QUBO instances to improve their feasibility.

In future work, it would be interesting to investigate further techniques for approximate dynamic
programming, such as reinforcement learning. Furthermore, evaluation of the effect of our algorithm
for using different hardware, such as GPUs, or coherent Ising machines is intriguing. Another factor is
the qubit topology of the NISQ hardware. For our experiments, we used the same qubit mapping for
both the original and compressed QUBO instances, in order to eliminate this variable when comparing
the result quality. However, it could be well worth adapting the compression methods presented here to
actively improve qubit allocation, e. g., by preferably setting weights to 0 that would otherwise lead to
longer chain lengths. The performance of DR reduction on native-connectivity QUBO instances could

83

Chapter 4 Mitigating Data Induced Noise

moreover be an interesting benchmark.

In this first part of the thesis—Chapter 3 and this chapter—we found that the performance of NISQ
devices for QO tasks is highly influenced by problem data properties, particularly in ML applications
where data separability and compactness affect solution quality. Beyond noise, these devices face
constraints like a limited number of qubits and sparse connectivity, making it difficult to implement large-
scale QUBO problems efficiently. The high dimensionality of ML-related CO problems exacerbates
these challenges, leading to increased gate depth and error accumulation. In the upcoming second part
(Chapters 5 to 7), we address these limitations with problem size reduction techniques, such as problem
decomposition, variable generation and using different QUBO encodings.

84

Part Il

Effects of Data Scale on Quantum
Optimization

85

CHAPTER D5

Recursive QUBO Decomposition

As we have seen in Part [of this thesis, the performance of NISQ devices for QO tasks is largely
dependent on the underlying data complexity. Especially in typical ML tasks, the data separability or
compactness can play a large role for the ability to find an optimal solution. This is, inter alia, due to the
proneness to errors in quantum computations. However, noise is not the only issue of current quantum
hardware, since NISQ devices also suffer from a limited number of qubits. Many CO problems for
ML have an enormous problem dimensionality, either through the size of the dataset or the number of
features. These constraints make it challenging to implement large-scale QUBO problems efficiently,
thus necessitating techniques to reduce problem size while preserving solution quality. NISQ devices
typically contain only tens to a few hundred qubits, which limits the direct encoding of large QUBO
instances. Moreover, the connectivity between qubits in current hardware is sparse, requiring additional
qubits and operations to implement problem constraints effectively. This leads to increased gate depth
and error accumulation, which further degrades computational performance. Given these limitations,
problem size reduction methods—such as decomposition techniques, variable reduction heuristics, and
hybrid quantum-classical approaches—are essential for optimizing QUBO formulations.

In this second part, we investigate different techniques for reducing the intractable QUBO problem
size, which stem from the underlying data. This not only enables practical implementations on NISQ
devices but also improves solution fidelity by minimizing the impact of quantum noise. Specifically,
problem decomposition allows for breaking down large QUBO instances into smaller subproblems that
can be solved independently or iteratively, as described in this chapter. Chapter 6 is concerned with
iteratively adding constraints and variables to the problem, leading to a well-controllable problem size.
A different approach is taken in Chapter 7, where we consider techniques to refine an already available
feasible solution by using efficient QUBO encodings, instead of considering subproblems.

Reasons behind a large problem size can be manifold—a great dataset size, a huge amount of features
or the need for incorporating many constraints. In Section 5.2, we examine how to integrate linear
inequality constraints into the objective of a QBP problem to obtain a QUBO formulation. Since this
can result in an intractable problem size for NISQ devices, we consider techniques of iteratively solving
subproblems, converging towards the optimal solution in Section 5.3. However, it can be hard to choose
the subproblem structure, especially in the face of with constraints concerning many variables. Further,
such methods are not well parallelizable and can take many iterations to converge.

These drawbacks can be overcome by splitting the QUBO into independent subproblems and sub-
sequently merging the solutions into a (hopefully) good solution for the original problem. This approach

86

Chapter 5 Recursive QUBO Decomposition

2 Peemw

W B

(a) QUBO size too large. (b) Divide. () and . (d)

Figure 5.1: Overview of our proposed recursive Divide-and-Conquer algorithm for reducing the problem size
of a given QUBO instance. A large dataset or feature dimensionality can lead to a huge QUBO matrix size,
intractable to be solved on current intermediate-scale quantum hardware (a). The large problem is iteratively
split into independent subproblems (divide) until it is solvable with a quantum device (conquer) (b). Since
independent subproblems only consider locality, global information is introduced by using current solutions for
further subproblem generation (c). Finally, all solutions are combined for obtaining a solution to the original
QUBO instance (d).

is known as D&C, where an intractable problem is divided into smaller problems, until they can be
solved (conquered). Considering only independent structures leads to a huge information loss for depend-
encies between the single components. Thus, we propose a recursive D&C algorithm (see Figure 5.1),
which iteratively introduces global correlation into the subproblems in Section . It creates new
subproblems based on previously obtained solutions, which is especially suited for k-hot constraints,
obtaining a trade-off between problem size and number of iterations.

In computer vision, one deals with image data, where each data point (image) can consist of millions
of features (pixels). Considering each pixel as a potential candidate in a CO formulation is intractable to
be solved with NISQ hardware. Despite these limitations, we explain how a relevant class of computer
vision problems can be transferred to the quantum domain. More precisely, we consider a situation in
which a set of 3-dimensional points from a scene is viewed by multiple cameras. Given a list of image
coordinates of these points in the camera coordinates, finding the set of camera positions, altitudes,
imaging parameters, and the point’s 3-dimensional locations is a reconstruction process. BA is the
estimation that involves the minimization of the re-projection error. It usually goes through an iterative
process and requires a good initialization [174]. Solutions to this task allow for the extraction of
3-dimensional coordinates that describe the image geometry and the intrinsic coordinate system of each
image. By fusing the available images to construct a single large image, one may eventually extract
valuable information, e.g. a classification of each pixel as to whether it belongs to a moving object.
In Section 5.4, we investigate the performance of our proposed D&C algorithm in solving a certain
subtask of BA. That is, we re-interpret the keypoint extraction subtask as a VQ problem that introduces
global correlation between all pixels instead of just local ones, which is discussed in Section
For solving this large-scale problem, we adapt our efficient D&C algorithm for incorporating global

87

Chapter 5 Recursive QUBO Decomposition

information between independent subproblems, where special care is taken for the k£ hot constraints.
Based on the retrieved keypoints, we construct a QUBO formulation for solving a matching problem
of identifying corresponding keypoint pairs in Section . We replace distance computations using
Mercer kernels, circumventing possible drawbacks of feature descriptors. Especially, we investigate the
performance of quantum kernels, combining QGC and AQC for the first time. Lastly, in Section 5.5, all
proposed methods are evaluated on satellite image data using NISQ devices, such as D-Wave annealers
and IBM devices, and DA hardware (quantum emulator).

5.1 Related Work

Iteratively breaking down a large QUBO into subproblems is often used in the literature as well as in
state-of-the-art solvers. Starting with an initial guess, such algorithms select an index set and optimize
the corresponding sub-QUBO, repeating this process until a fixed number of steps or convergence
is achieved [175]. Different strategies exist for selecting subproblems, e. g., by targeting variables
promising the highest energy gain [176]. To include constraints, structure-based selection interprets
the QUBO matrix as a weighted adjacency matrix of an underlying graph, utilizing methods like
community detection [177] and graph clustering [178]. A recursive approach, such as Recursive QAOA
(RQAOA) [179] and warm-starting techniques [180], iteratively reduces problem size. Independent
subproblem solving, including the divide-and-conquer method [181], can mitigate the need for an initial
solution but may sacrifice global solution quality [182].

Considering the field of computer vision, Quantum Image Processing (QIP) [183, 184] has emerged
as an extensive research field in recent years. The key idea is to encode an image into a quantum
state which can then be preprocessed efficiently with quantum routines. Examples include image
compression [185, 186], filtering [187], segmentation [188] and edge detection [189—-191], but also ML
related problems such as nearest neighbors [192] or pattern recognition [193]. For our proposed BA
use-case, extracting characteristic keypoints in images is a vital subtask. Obtaining image features is
investigated in [194, 195], where interesting pixels are identified locally. Matching multiple images
is another important subtask in BA. Using QIP, [196] proposes an image matching method solely on
quantum state representations. Having local image features (keypoints) at hand [145, 197] investigate
permutation-based QUBO formulations for successful matching.

A caveat of QIP is the encoding of classical images into a quantum state, which is often the bottleneck
in the aforementioned methods. Furthermore, these methods only consider extracting local features
from images. We propose a recursive D&C algorithm for QUBO formulations built upon classical data
which introduces global correlations by recombining solutions of independent subproblems. We also
consider a new QUBO formulation for the matching problem, perfectly adapted towards solving BA.

5.2 Incorporating Inequality Constraints

Assume we are posed with a QBP of the following form

min z' Wz (5.1a)
zeB™
st. Az <b, (5.1b)

88

Chapter 5 Recursive QUBO Decomposition

where W € R™*" characterizes a quadratic CO objective and A € Z™*", b € Z" describe m linear

inequality constraints. As we have seen in Section , we can introduce penalty parameters to obtain
an equivalent QUBO formulation for Equation (5.1) if we are faced with equality constraints, i.e.,
Az = b. For inequality constraints of the form Az =< b, the validity of this method does not hold
anymore. To ensure equivalence, we can introduce slack variables.

Proposition 5.1. Let W € R™", A € Z™*" and b € Z". There exist A € R} and k € N, s.1.

2
min z' Wz & min z Wz + Z A (A;—rz —b;, + pTSZ) ,
ZEB” ZEB"L,SEBkX’m ze[m}
s.t. Az <b

where p = (20, 2' 2k71).

We obtain an equivalent QUBO formulation, with P; = (In,OnO;m), P, = (OkmOI,Ikm),
N o= (\/A»i);re[m], P=1,1,®p) B A .= N1" © (AP, + PP,) denoting row-
wise multiplication of X' to (AP, + PPy) andb' := X © b

min z' Wz & min zTQz, Q= PITQPl +ATA - 2diag(b/TA/) :
zeB" zeB™TF

s.t. Az <b

Proof. Note that the following equality holds by using an auxiliary vector a € N

min z' Wz & min 2 Wz
zeB™ zeB™
st. Az =<b sttAz+a=0>b,acN" .

Every natural number a € N can be written in binary representation s € B* ,l.e,a =8y - 20 4 81+
2 s 2" =pTs where k= [logy(a)] and p = (2°,2%,...,2")" € N*. Thus, we can
represent entry a;(z) = b; — AiT z of the auxiliary vector with

k; = max [log, (b~ A]'z) | |

binary variables. Since we have m constraints, we can represent the whole vector a with &k = m -

max;e [, k; slack variables, i.e., a = pTS, S € B¥*™ . Hence, we obtain the equivalence
min z' Wz & min 2z Wz
zeB"” zeB"
st. Az <b st.Az+p' S=b, S B>,
With using the argument for equality constraints in Proposition 3.1, we deduce the first claim.

For obtaining an equivalent QUBO formulation, we note that P, = (I,,,0,,0;,..) € B™""*™ projects
z € B"™ on its first n entries and Py = (0,0, , I1..,) € B ™™™ on its last km entries. In fact,

89

Chapter 5 Recursive QUBO Decomposition

Algorithm 3 ITERATIVESUBQUBO
Input: QUBO instance Q € Q,,
Output: Solution z’ € B”

1: 2z’ < INITIALSOLUTION(Q)

2: while not converged do
3: I + CHOOSEINDICES(Q, 2')
4
5

/ . T
Z < argmin,gr , 2z Qz
Iz

: end while

km

the following holds true with s := vec(S) € B
a=p S=1,(1,,®p) s=Ps.
Thus we can rewrite
Az+Ps=b, zeB", s eB"™ & AP + PP,z =b, 2/ e B |
leading to the claimed formulation. 0

Proposition 5.1 shows that it is possible to incorporate linear inequality constraints into the quadratic
objective, leading to a QUBO formulation. However, this comes with the drawback of expanding
the search spice, since we need to introduce mk slack variables with £ > 1. With a large num-
ber of constraints m, the resulting QUBO matrix size can be way too large for what current NISQ
devices can handle. In practice, one can avoid an exploding QUBO size by using iterative methods
such as the alternating direction method of multipliers [198], satellite methods [199] or unbalanced
penalization [200].

However, the problem size without incorporating the constraints can already be too large, either
through the size of the dataset or the feature dimensionality. Thus, one often considers lower-dimensional
subproblems.

5.3 lteratively Solving Subproblems

We define the notion of a sub-QUBO.

Definition 5.1 (Sub-QUBO). LetQ € Q,,, 2 eB",TC [n] and =7 \ [n]. The sub-QUBO of Q
w.r.t. 2’ and Z is defined as

min zTQz < min zTQ/z, Q = Qz 7 + diag <z'ZTQI,Zc + QIC,IZ/I) .

" n—|Z|
ZGBI«¢& 2cB

This definition gives rise to an iterative algorithm [175] shown in Algorithm 3: Starting with some ini-
tial first guess solution 2 for Q (Algorithm 3), we iteratively choose an index set Z C [n] (Algorithm 3)
and optimize the corresponding sub-QUBO (Algorithm 3). This process is repeated for a fixed amount
of steps our until convergence.

90

Chapter 5 Recursive QUBO Decomposition

Clearly, we have certain degrees of freedom in the configuration of this algorithm. That is, how do we
obtain the initial solution and the indices to optimizer over?

5.3.1 Choosing Subproblems

A straightforward way is to choose the subproblems randomly. However, this can lead to bad solution
quality and a lot of iterations for convergence.

Energy-Based One can also use more informative heuristic methods, for example optimizing the
variables which promise the largest energy gain. This is a popular tool and is implemented in powerful
hybrid solvers from D-Wave, such as OBSolv or Kerberos . The possible energy gain for a single variable
z for a given assignment z’ € B" is given by

Eé)(zl) = (1-2z) | Qu + Z (Qij + jS)z;- ;
JEM\ {3}

The index set Z can then for example be chosen as the variables with the best &k variables or cutting off
at a certain energy threshold. Using this method, an immediate threat is to end up in a local optimum of
the QUBO energy landscape.

Structure-Based Since QUBO matrices are quadratic, they can also be interpreted as a weighted
adjacency matrix of an underlying graph. Every structural element (connectivity, number of edges, etc.)
is fully contained in Q. Thus, it may be beneficial to search for natural groups of variables, when solving
subproblems. Popular methods include searching for connected components, community detection [177]
or graph clustering methods [178], such as spectral clustering [201].

In practice, CO problems are not directly available in QUBO form, but rather incorporate constraints,
such as QBP. This gives rise to another decomposition method, which groups variables by given
constraints. However, if the number of constraints is very large or effect many variables simultaneously,
this method might not lead to a large problem size reduction.

Recursive Recursion is another interesting approach for iteratively solving subproblems. This is
done by recursively reducing the problem size with an already available solution. It has been adapted to
QAOA [179], called recursive QAOA (RQAOA), and expanded to possible warm-starting in [180]. For
an overview of QAOA, we refer to Chapter 2. Further, state-of-the-art algorithms for integer optimization
are often given in the Branch-and-Bound (B&B) framework. For QUBO, one can relax the optimization
over binary variables to the interval [0, 1]. Subsequent branching to obtain binary variables, leads to a
recursive algorithm for QUBO [202] with reduced problem size.

5.3.2 Recursive Divide-and-Conquer

Iteratively solving subproblems comes with some caveats. If the problem size is very large, we often
need a lot of iterations for Algorithm 3 to converge or for finding a solution with a satisfactory quality.
Due to the purely iterative nature, it is not directly possible to exploit independence in the subproblems.

! https://docs.ocean.dwavesys.com/en/stable/docs_hybrid/reference/reference.html (last accessed April 8, 2025)

91

https://docs.ocean.dwavesys.com/en/stable/docs_hybrid/reference/reference.html

Chapter 5 Recursive QUBO Decomposition

Algorithm 4 INDEPENDENTSUBQUBO

Input: QUBO instance Q € Q,,

Output: Solution z’ € B”

: I + DIVIDEINDICES(Q)

2+ 0

: forZin I do
Z «— arg minzeBch zTQz
Z+ ZU{2}

end for

z' + MERGESOLUTIONS(Z)

A A o s

Algorithm 5 RECURSIVESUBQUBO

Input: QUBO instance Q € Q,, and J C [n]

Output: Solution z’ € B"

: I +DIVIDEINDICES(Q, J)

J <—®

: forZin I do
z < RECURSIVESUBQUBO(Q,)
J—JU{j:z;=1,j¢€[n]}

end for

2« arg minzGBT}c‘_O zTQz

NN RN

Another approach is to focus on disjoint index sets and solve problems independently. Independence
of an index set Z to all other indices Z¢ means, that we assume all indices in Z€ to take the value 0 in the
sub-QUBO sense. That is, no QUBO matrix entry of the rows or columns in Z° effects the solution of
the subproblem

min ZTQ|I"|I‘Z = mrjn ZTQZ .
zeB‘Il z&bze, o
An algorithm for breaking a QUBO into independent instances is given in Algorithm 4. Even though we
have no need for an initial solution anymore, we are given independent solutions to each subproblem.
The obvious way of simply setting the subvectors to the corresponding solution may not lead to useful
results, since the resulting configuration might not respect all given constraints. One thus has to carefully
design a merging mechanism (Algorithm 4) for obtaining a feasible solution to the original problem.

The procedure of dividing a problem into independently solvable subproblems and subsequent
merging of the solutions is known as divide-and-conquer (D&C). It has been first applied to QUBO
in [181] and is often combined with a recursive approach to reduce the corresponding problem size [182].
However, considering only independent subproblems leads to crucial information loss. Even though the
subproblems might be solved to optimality, we have no guarantees on the global quality of the solution.
Thus, we propose a D&C algorithm which iteratively solves independent subproblems and induces
global information. An algorithmic overview is given in Algorithm 5. As we can see from Algorithm 5,
the new subproblems are constructed from the already obtained solutions.

Depending on the given constraints and the underlying problem structure, this method can be very

92

Chapter 5 Recursive QUBO Decomposition

suitable. Specifically, consider QBP problems of the following form

min z' Wz (5.2a)
zeB”
T
st.1 z=k, (5.2b)
where £ < n. Following Section , we can introduce a penalty to obtain an equivalent QUBO

formulation.

In Equation (5.2), we want to find the minimizing k-hot vector. Since an optimal solution always
contains exactly k non-zero entries, Algorithm 5 is guaranteed to add the same number of indices in
every step. This leads to a well controllable problem size. In fact, for ¥ = n, we exactly recover
the original formulation. Thus, there is a trade-off between the problem size and the number of used
recursive iterations. An application of the recursive D&C algorithm is given in the next section.

5.4 Application: Bundle Adjustment

We consider a scenario in which a set of three-dimensional points from a scene is observed by V' cameras.
Given the image coordinates of these points in the respective camera coordinate systems, the task of
determining the camera positions, orientations, imaging parameters, and the three-dimensional locations
of the points constitutes a reconstruction process. A crucial step in this process is BA, which aims to
refine these estimates by minimizing the re-projection error—the discrepancy between the observed
image points and their predicted projections based on the current model parameters. This optimization
procedure is typically iterative and requires a well-chosen initialization to ensure convergence to an
accurate solution [174].

Solutions to this task enable the extraction of three-dimensional coordinates that describe both the
image geometry and the intrinsic coordinate system of each image. By merging multiple images into a
single, unified representation, valuable insights can be obtained—such as determining whether individual
pixels correspond to moving objects. This process can be divided into several key subtasks:

1. Keypoint Extraction: The first step involves identifying keypoints (also known as interest points
or feature points) in each image. These keypoints correspond to distinctive pixels, such as
corner points. In a naive approach, every pixel could serve as a keypoint, but this is typically
computationally expensive.

2. Keypoint Matching: Once keypoints are extracted, those shared across multiple images must be
matched. Given the potentially large number of pixels, both keypoint extraction and matching are
computationally intensive tasks.

3. Coordinate System Alignment: Using the correspondences between matched keypoints, a
projection is determined that aligns the coordinate systems of all images.

4. Image Fusion and Object Segmentation: After aligning the images, they are fused into a
single composite image. In this step, missing regions are identified, and overlapping areas with
conflicting pixel data are analyzed to detect and segment moving objects.

The final alignment step is done by finding transformations between different images which align them
to a single plane. These transformations can have varying forms, e.g. a homography or a fundamental

93

Chapter 5 Recursive QUBO Decomposition

matrix. Without further processing, this subtasks is inherently continuous and thus not very well suited
for quantum computation. Classical methods include the “eight-point algorithm” [203], direct linear
transformation (DLT) [204], and enhanced correlation coefficient (ECC) [205]. The refinement of the
alignment step is referred to as BA [34].

Mathematically, the problem can be formulated as follows: Assume that P 3-dimensional points are
visible through V" different views and let 7r;; be the projection of the i-th point onto the plane containing
the j-th image. Since 7r;; may not lie in the image itself, we define a binary variable b;; which is 1 if
and only if point 7 is visible in image j. Furthermore, assume that the camera that created the j-th image
can be characterized by a vector w;, and every 3-dimensional point ¢ by a vector ;. The objective is
now to minimize the total re-projection error

PV
fpa(wj,r;) = Zzbij |7 (w;, r;) — 7rin§7 (5.3)

i=1 j=1

where 7 corresponds to the predicted projection.

The goal of this section is to investigate how far current QC resources can be used to tackle the problem
of BA. As explained above, we focus on keypoint extraction and feature matching, which are both
computationally hard problems. Due to their discrete structure, these subtasks exhibit a large potential
for improvements via quantum computation, as known from other areas of signal processing [206].

In general, pixel data can either be represented by raw color channels, or sophisticated feature
space mappings, e.g., scale-invariant feature transform (SIFT) [207], (accelerated) KAZE [208, 209],
or low-dimensional embeddings based on geometric hashing [205, 210]. Nevertheless, if not stated
differently, we assume that an image is encoded as a set of pixel features Z = {p,,...,ps}. For
example, p; = (x;,y;, 7, 9;, b;) represents a pixel with location (z;, y;) and color channels (r;, g;, b;).

5.4.1 Keypoint Extraction

The goal of keypoint detection is to extract a subset of relevant pixels which describe the full image
well—we re-interpret this step as a VQ problem. Due to the NP-hardness of VQ, offloading the
corresponding computation to a quantum processor promises large benefits. We recall the VQ problem
settings from Chapter 2 and the corresponding QUBO formulations from Chapter 3. Specifically, the
VQ objective respective the k-medoids objective (KMEDV Q) is given by

min —az' Dz + 8(D1)' z (5.4a)
zeB"
st.1'z=k, (5.4b)

where D is a distance matrix and «, 8 > 0 are parameters for balancing the two objectives of finding
central and far apart prototypes. As we have seen in Proposition 3.6, an equivalent formulation for
specific «, § and D is given by mean discrepancy VQ (MDVQ)

1 2
361%531}1 ?zTKz - &(Kl)—rz (5.5a)
st.1'z=F, (5.5b)

94

Chapter 5 Recursive QUBO Decomposition

where K is the kernel matrix of an underlying Mercer kernel. Both QBP formulations can be brought into
QUBO form by integrating the constraint with the help of a penalty parameter A > 0O (Proposition 3.1)

min 2 Wz < 2z Wz+)\ (lesz — 2l<:1Tz> . (5.6a)
zeB"
T
st.1l z=k (5.6b)

Up to now, classical Gaussian kernels, with K (,) = exp(—7||@ — y||3), have been considered for
KDC in the literature. Here, however, we also consider quantum kernels, i.e. the kernel matrix IC is
computed via the quantum gate circuit that is shown in Figure

Depending on the specific choice of the parameters « and 5 in KMEDVQ, MDVQ results in prototypes
that contain more information for dense parts of an image and hence deliver substantially different
results. Both QBP formulations given in Equations (5.4) and (5.5) exactly have the form of optimizing
over k-hot vectors Equation (5.2), so we can apply our recursive D&C algorithm (Algorithm 5) for
reducing the problem size.

5.4.2 Feature Matching

Based on the output of keypoint extraction, suiting matches between keypoints of different images must
be identified. To this end, let piIl, 1 <i<nand pJIQ, 1 < 7 < m be keypoints extracted from images

T

7, and Z,, respectively. The task is to find pairs (piI1 , pjz"’) s.t. p;* in the first image, corresponds to

pJI-2 in the second image. For this task, raw information about a single pixel is insufficient, since both
images might be scaled, rotated or illuminated in a different way. Thus, feature descriptors, e.g. SIFT

or AKAZE, are computed for each keypoint, i.e. x; for piI1 and y; for p]ZQ. Let f be the function

that maps keypoints pgl) and p§-2) to their feature descriptors ¢; = f (pz(l)) andy; = f (p§2)). The
distance between feature descriptors of different keypoints Hml —Y; H , can then be used to measure the
similarity.

As a first step towards obtaining a matching, we identify each x; with its k£ nearest neighbors
{yj1’ Yy, }, since it can happen that a keypoint is very similar to a non-corresponding point. In
practice, one often chooses k fairly small, e.g., & = 2. We formulate this problem as a QUBO, since
matching is known to be NP-hard. Since this procedure allows for identifying possible mismatches,

typically a classical postprocessing method is used, such as RANSAC [211].

Proposition 5.2. Let {x,...,x,},{y1,- -, Ym} C RY D:RIxR? = Ra distance function with
corresponding distance matrix D € R™™. Further, let p = (2°,2, ..., 2" k> 0, 1 = [log,(k)].
T T T ! T
p, = (Inmaonmonl)’ P, = (OnlonmaInl)! P = 1n(1n ®p) c B"" , B=1,® (1n & Im) and
A=1,® 1; and A' .= (AP, + PP,). A QUBO formulation for the matching problem is given by

min z'Qz, (5.7a)
zEIBMmH)
Q = P, BP, + vA'T A’ 1 diag ((VeC(D) —al,,)P — 2yk1ImA’) . (5.7b)

where «, B,y are penalty parameters, weighing the different objectives.

Proof. The optimization objective for the matching problem can be formulated as a QBP problem by

95

Chapter 5 Recursive QUBO Decomposition

indicating a potential match between points x; and y; by a binary variable Z;; € B. We vectorize the
corresponding binary matrix z = vec(Z) to obtain

min 2! vec (D) (5.8a)
z6{071}nm

and max z'l,, (5.8b)
zE{O,l}nm

subject to 2z Bz = lgmz (5.8¢)

Az <k1, , (5.8d)

with N = 11 ®(1,®IL,)and M =1, ® ITT,L. We are faced with two objectives: minimizing the dis-
tances between matched points Equation () and maximizing the number of matches Equation ().
The condition in Equation (5.8¢) ensures that two points «; and x;, are not matched to the same point
y; while Equation () forces every point x; to be matched with maximally & points y; ,...,y;, .

Since z ' Sz > 1Imz, condition Equation (5.8¢) is fulfilled if at its minimum. Thus, we can obtain an
equivalent QBP by using penalty factors o, 8 > 0

min 2" vec (D) — az'1,, + Bz Nz (5.9a)
z€{0,1}"""

Mz=<kl, . (5.9b)

The inequality constraint in Equation () can be reformulated by using a penalty parameters v > 0,
binary slack variables (Proposition 5.1) and projection matrices P; and P;, leading to the claimed
result. O

The parameters /3 and ~ are chosen to be large enough such that the conditions in Equation (5.8¢)
and Equation () are adhered. Without loss of generality, we assume D(x;, yj) < 1 and choose «
to be in [0, 1]. A large o emphasizes the maximization of the number of matches in Equation ()
which forces every x; to be matched with a y; even though they may not be very similar. By setting «
close to 0, the distance minimization in Equation (5.82) is prioritized—Ileading to no matches at all in
the extreme case. As we have seen in Proposition 3.7, we can define a distance measure using specific
Mercer kernels, which leads to the applicability of the kernel trick.

5.4.3 Quantum Kernel Methods

Quantum kernels are special Mercer kernels because they leverage quantum feature maps to encode
classical data into a high-dimensional Hilbert space, which is exponentially large compared to classical
feature spaces. This allows quantum kernels to potentially provide a quantum advantage by enabling
complex feature mappings that are infeasible for classical methods. We recall from Chapter 2 that unlike
classical kernels, which use predefined mathematical functions to compute inner products in a feature
space, quantum kernels rely on quantum circuits to map data into quantum states. The kernel is then
defined as the fidelity (overlap) between these quantum states

K(z,a) = |((@)|w@)|

96

Chapter 5 Recursive QUBO Decomposition

1) {H){Rz (2013 (2))

192) () Ra(2012) () |- Ry (201 2 ()| 4
la3) {H}{ Rz (293} (T))

A\

a

D {Rz(2¢{2,3}(w)) }&

Figure 5.2: Exemplary feature map for three qubits. The ZZFeatureMap is depicted, that is Uy (,) Equation (5.10)

where [¢(x)) = Uy(a) 10)*? is a quantum state encoding the classical data . The dimension of the
Hilbert space grows exponentially with the number of qubits, allowing for intricate, highly nonlinear
relationships between data points. One key advantage of quantum kernels is that they implicitly compute
similarities in feature spaces that may be classically intractable. Certain quantum feature maps create
highly entangled states that are difficult to approximate using classical computations.

To obtain the quantum feature map, the unitary 4y, is implemented by iteratively applying universal
unitaries Uy ;). In the literature (e. g. in [99]), it is often suggested to use a Pauli-gate efficient ansatz,
i.e.,

Ug) =exp | —i Y os(x) [] 2 | H*, (5.10)
Scld] keS

For compatibility with NISQ-devices, some typical pitfalls must be avoided: Considering local feature
functions for all subsets S C [IV] is too costly: To see this, one has to consider the transpilation of user
specified quantum circuits. Transpilation is the process of rewriting a given input circuit to match the
connectivity structure and noise properties of a specific quantum processor. Most circuits must undergo
a series of transformations that make them compatible with a given target device, and optimize them to
reduce the effects of noise of the resulting outcomes. Rewriting quantum circuits to match hardware
constraints and optimizing for performance can be far from trivial. The flow of logic in the rewriting
tool chain need not be linear, and can often have iterative subloops, conditional branches, and other
complex behaviors. Most importantly, it encompasses the decomposition of gates involving three or
more qubits into 2-qubit gates. Clearly, the heavy hexagon structure is pairwise and hence contains
no connection between three or more qubits. As a direct result, an apparently “shallow” quantum gate
circuit, consisting of a single unitary operation among /N -qubits, can thus eventually exhibit a very high
depth. High circuit depths require large decoherence and dissipation times, which are not available in
the current generation of NISQ-devices.

It is hence recommended to consider only pairwise features (S C [N] A |S| = 2) in Equation (5.10)
as it is depcited in Figure 5.2. First, a Hadamard gate H is applied to every qubit to obtain an equal
superposition state. Then, the data is encoded into every qubit independently with the help of single-qubit
Ry gates. Finally, entanglement is created with the help of Rzz = CX(I, ® Rz)CX gates applied to
qubits 1 and 2, and 2 and 3, respectively.

Due to the normalization of quantum states ((¢[1)) = 1), we can apply Proposition 3.7 for obtaining a
valid distance measure using a quantum kernel. This can be readily used in the distance-based QUBO
formulations developed in the previous sections.

97

Chapter 5 Recursive QUBO Decomposition

5.5 Experimental Evaluation

For our experimental evaluation, we consider 344 sets of £ = 5 images from the Kaggle “Draper
Satellite Image Chronology” challenge” which all have a resolution of 3099 x 2329 pixels.

5.5.1 Experimental Protocol

Each pixel p is represented by a 5-dimensional vector which captures the position in the image as well
as the RGB color channels, p = (z,y,r, g, b). We further down-weight the location information by a
factor of 1/4 to emphasize the importance of the color channels. Finally, pixel vectors are normalized, i.e.
Ipll, = 1.

The raw image resolution implies that the QBPs from Equations (5.4) and (5.5) are 7217571-
dimensional—far beyond the capabilities of any quantum annealer or gate-based quantum computer. We
hence use our D&C algorithm and split the task recursively into subtasks. First, redundant information
is reduced by down-sampling images to 928 x 704 pixels. Then, each image is split into 32 x 32 equally
sized non-overlapping subimages, which results in patches of size 29 x 22 pixels. Figure depicts
one exemplary patch of the image from Figure . The keypoint extraction on the original image
is an iterative process of finding keypoints in the current “layer” and then merging them to form the
next dataset. More precisely, 10 keypoints are extracted on every of the 32 x 32 image patches. The
keypoints of adjacent 4 x 4 image patches are chosen to be the next dataset for VQ. On these datasets
20 keypoints are extracted, which are again grouped to form 4 x 4 grids. The last step is then to extract
45 keypoints on every of the remaining 4 datasets to obtain 180 final keypoints. The penalty parameters
are chosen such that every summand in has approximately the same contribution. For KMEDVQ we set
a=1/k,8=1/nand X\ = 1/k, and for MDVQ we set A\ = 1/k>. Since the parameter \ weighs the
constraint of finding exactly k prototypes, setting these values too low can result in finding states not
adhering this constraint. For the matching problem we employ SIFT feature descriptors in a normalized
inner product kernel. The QUBO parameters (see Proposition 5.2) are setto k = 1, 5 = 1, v = 1, while
a is varied for showing the effect of this parameter.

QUBO solvers process the same problem multiple times to prevent local optima. The state with the
lowest energy is then chosen to be the solution. We consider a digital annealer (10 shots, runtime 1s per
shot), a D-Wave Advantage System 5.1 with 5619 qubits (1024 shots, runtime 50 us per shot), SA, and
tabu search, the latter being implemented in the D-Wave Ocean SDK".

For computing quantum kernels, we consider a statevector simulation and an IBM Falcon supercon-
ducting quantum processor with 5 qubits. The circuits on the IBM system are executed with 10 000
shots.

5.5.2 Results

Two exemplary results of the keypoint extraction pipeline can be found in Figure 5.3. It is evident from
every single subfigure that KMEDVQ and MDVQ allocate the prototypes substantially different. While
KMEDVQ spreads its centroids equally distributed over the whole image patch, MDVQ is able to detect
edges which is very useful for keypoint extraction. However, if such edges are represented by only a few
pixels in the image patch (low density), MDVQ may not detect them. This is e.g. evident from the left

: https://www.kaggle.com/c/draper-satellite-image-chronology/data (last accessed September 19, 2025)
3 https://docs.ocean.dwavesys.com/en/stable (last accessed September 19, 2025)

98

https://www.kaggle.com/c/draper-satellite-image-chronology/data
https://docs.ocean.dwavesys.com/en/stable/

Chapter 5 Recursive QUBO Decomposition

B O e o oy

(a) Extraction of 10 keypoints (b) Extraction of 10 keypoints (c) Extraction of 20 keypoints (d) Extraction of 45 (final) key-
on a single image patch. on every image patch. on 4 x 4 grid. points on 4 X 4 grid.

Figure 5.3: Keypoint extraction is done by subsequently computing prototype pixels on subimages by solving the
QUBOs given in Section 5.4.1 using the digital annealers. The image is first split into 32 x 32 image patches of
size 29 x 22 pixels and ten keypoints are extracted on every patch. The resulting prototypes are then grouped
into 8 x 8 grids of size 4 x 4 to obtain keypoint sets of size 160 shown in (a) and (b). We extract 20 keypoints on
each of these sets and group the resulting prototypes into 2 x 2 grids of size 4 X 4 to obtain keypoint sets of size
320 (c). Lastly, 45 prototypes are computed on these sets to obtain the final set of 180 keypoints (d). Results for
KMEDVQ are depicted in red, MDVQ in light blue and coincident keypoints in purple.

| | [Quantum
[Gaussian
[Both
! o
3
(a) (b) © (d)

Figure 5.4: Extraction of 10 keypoints on 29 x 22 patches with MDVQ: Comparison between Gaussian and
quantum kernel.

Table 5.1: Keypoint extraction on ten 8 x 8 patches: Comparison of energy values between the D-Wave quantum
annealer Advantage System 5.1 (QA), simulated annealing (SA) and digital annealing (DA). Lower is better.

(a) (b) (©) (d) (e) () ® () ® @

QA —4.71 —4.80 —4.74 —4.69 —4.75 —4.34 —4.29 —4.40 —4.44 —4.40
SA —4.74 —4.82 —4.77 —4.75 —4.78 —4.79 —4.73 —4.78 —4.81 —4.79
DA —4.75 —-482 477 —-476 —478 —479 —474 —479 —-481 —-4.80

and right neighbor patches of the highlighted patch in the top row of Figure 5.4(c). In such cases, the
prototypes are driven towards the center of the patch, since most density is then captured in the position

99

Chapter 5 Recursive QUBO Decomposition

1.0
0.8
0.6
0.4
0.2

0.0

Figure 5.5: Comparison of kernel matrices computed on an exemplary 8 x 8 image patch shown in Figure 5.6(¢).
Specifics on the used kernel from left to right: Gaussian kernel, quantum kernel computed with simulation,
quantum kernel computed with real quantum hardware, quantum kernel computed with simulation with inputs
being scaled by a factor of s = 0.5, quantum kernel computed with real quantum hardware with inputs being

scaled by a factor of s = 0.5.
= I j d
(b) © (d)

E]F
B

[]

(@)
Figure 5.6: Extraction of 10 keypoints on 8 x 8 patches: Comparison of D-Wave quantum annealer and digital
annealer.

[D-Wave
1 Dig. Annealer

(e)

of the pixels—a proper re-weighting of pixel locations can hence be considered as a hyper parameter of
the proposed method. In almost all cases, the digital annealer outperforms SA and tabu search.

A comparison between the usage of a Gaussian kernel and a quantum kernel for MDVQ is depicted
in Figure 5.4. Keypoints are extracted on four different 29 x 22 image patches solving the MDVQ QUBO
problem with the digital annealer. The quantum kernel is computed via Schrodinger wave-function
/ statevector simulation—we can see that MDVQ with a quantum kernel distributes its prototypes
slightly different to the ones using a Gaussian kernel, while also capturing interesting pixel locations.
Constructing a full quantum pipeline can hence be a viable approach.

Figure 5.5 depicts a comparison of kernel matrices of a Gaussian kernel with a quantum kernel
computed from the 8 x 8 patch in Figure 5.6(c¢). We here show the effects on the kernel matrices of
scaling the inputs < sx. The quantum kernel matrices are computed for two different scales, s = 1
and s = 0.5. We compare the results from the statevector simulation with the estimated kernel values
using actual quantum hardware. One can see that the quantum kernels computed on actual hardware
have a very similar structure to the simulated ones, while the scaling of the inputs substantially affects
the “density” of the kernel matrix.

In Figure 5.6 we compare the performance in solving the MDVQ QUBO problem with a quantum
annealer and the digital annealer. Five 8 x 8 image patches are depicted with the corresponding extracted
keypoints. Table 5.1 shows the corresponding energy values of the best computed solution. It is clear
that the digital annealer is finding better states in terms of objective function value.

Finally, exemplary solutions of the matching QUBO are depicted in Figure 5.7. For this, a subimage

100

Chapter 5 Recursive QUBO Decomposition

Fa — | E—
'+ —— Correct match

Wrong match |
e Unmatched '

¥
"-n\ AN
(a) Emphas1s on good matches (a = 0.05). (b) Emphasis on many matches (v = 0.2).

Figure 5.7: Matching of 10 keypoints on a small image excerpt solving the matching QUBO in Proposition 5.2
with the digital annealer. The right image excerpt corresponds to the left one rotated clockwise by 20°.

with 10 keypoints is rotated by 20° to obtain the same scene from a different view. The keypoints are
then matched by solving the QUBO from Proposition 5.2. In this case, the digital annealer needs a
larger annealing time (60s) to find a good state, while tabu search can identify a good solution rather
quickly. This shows that not only the QUBO dimension but especially the underlying energy landscape
is of great importance for the performance of finding good states. We can see that setting « to a small
value leads to finding only a few matches. However, the identified matches have the highest quality,
i.e., the largest kernel values. The wrongly matched pair has a larger kernel value than the theoretically
correct match, which can be ascribed to the feature representation of SIFT and is not an artefact of the
underlying QUBO.

5.6 Conclusion

In this chapter, we have addressed the challenge of solving large-scale QUBO problems on NISQ
devices by developing an efficient recursive D&C algorithm. This method enables the decomposition of
complex problems into independent subproblems while iteratively introducing global correlations, thus
achieving a balance between problem size reduction and solution accuracy.

We demonstrated the applicability of our approach to computer vision tasks, particularly in the context
of BA. By formulating keypoint extraction as a VQ problem, we introduced global correlations beyond
local feature descriptors. Furthermore, we constructed a QUBO formulation for the keypoint matching
problem, leveraging Mercer kernels to enhance performance and mitigate the limitations of classical
feature descriptors. In doing so, we explored the integration of quantum kernels, combining QGC
and AQC for the first time. Our methods were empirically evaluated on satellite image data using
state-of-the-art quantum and quantum-inspired hardware, including D-Wave annealers, IBM quantum
devices, and FPGA-based DA hardware.

Future work includes the optimization of hyper parameters (e.g., penalty parameters) and investigating
the “qubitization” of the full BA task, e.g., formulating (5.3) as a QUBO or quantum circuit. Comparing
our approaches with classical counterparts and looking at postprocessing methods would also be
intriguing. Moreover, quantum kernels can be used in the matching QUBO as well. Respecting the
limitations of current quantum hardware, a lower dimensional feature descriptor than SIFT can be
chosen, e.g. PCA-SIFT [212]. In any case, our contributed methods open up opportunities for BA and
other computer vision tasks on the current and upcoming generations of QC hardware.

Despite these advancements, open challenges remain, particularly in refining subproblem selection
strategies and including specific constraint structures. In opposition to the top-down approach taken

101

Chapter 5 Recursive QUBO Decomposition

in this chapter, we delve into a bottom-up subproblem generation method in Chapter 6. We rigorously
prove optimality for this procedure and allow for incorporation of efficient classical algorithms that
solve certain substructures.

102

CHAPTER O

Variable and Constraint Generation

In Chapter 5, we addressed the challenges posed by the limited qubit availability and noise sensitivity
of NISQ devices when solving large-scale QUBO problems in QO. Given the high dimensionality of
many ML and CO tasks, directly encoding these problems is often infeasible in practice. To mitigate
this, we explored problem size reduction techniques with subproblem decomposition and iterative
constraint incorporation in form of a recursive D&C algorithm. However, by breaking down the problem
into independent subproblems, essential global correlations are sometimes lost, leading to suboptimal
solutions when the subsolutions are recombined. While the recursive nature of the method attempts to
mitigate this, it cannot capture all dependencies in certain cases. Moreover, it is mainly suited for a
certain type of constraints.

In this chapter, a different approach is taken with guarantees to find an optimal solution. Instead of
solving the original problem upfront with all possible variables, called Master Problem (MP), it begins
with a small subset and dynamically introduces new variables as needed. That is, a Restricted Master
Problem (RMP) is iteratively expanded with new decision variables. In classical Linear Programming
(LP), this method is known as Column Generation [35], which builds on the hope that many variables
take the value zero in an optimal solution and thus do not contribute to the objective function. Specifically,
we examine ILP problems, which are introduced in Section 6.2. Variables are added in an iterative
fashion and we prove an optimality criterion, which tells us when our current RMP already contains an
optimal solution to the original MP. For this criterion, we use bounds on an optimal solution of the given

ILP and solve a so-called pricing problem, telling us which variable to add next in Section . An
overview for the algorithm of iteratively adding variables and constraints is given in Figure 6.1. Further,
as we have seen in Section 5.2, incorporating constraints can also lead to an increased problem size.

Hence, it is also instructive to iteratively add constraints, as we will examine in Section

Obtaining efficiently computable bounds on the optimal value of an ILP is problem-specific. For
obtaining a lower bound, we use LR, which is efficiently solvable if the correct constraints are integrated
into the objective function. QO comes into play in computing an upper bound: binary ILP can be
brought into an equivalent QUBO formulation. Using the variable and constraint generation described
earlier, we obtain reasonable problem sizes suited for NISQ devices. For efficiently deciding whether
our current set of considered variables comprises an optimal solution, the underlying pricing problem
has to be efficiently solvable. In practice, this is often the case, e. g., in shortest path type problems.

In Section 6.4, we investigate a well-known real-world use-case which exactly fulfills this efficient
pricing problem structure. To be specific, we consider MAPF which involves computing collision-free

103

Chapter 6 Variable and Constraint Generation

Lagrangian Pricing

Relaxation problem

No
(a) . (b) Solve with CPU. (c¢) . (@ . (e) Optimal.

Figure 6.1: Overview of our proposed bottom-up variable generation algorithm for iteratively adding new variables
to control the problem size. First, a set of variables is initialized (a), leading to a low-dimensional RMP. Optimizing
the LR results in optimal Lagrangian dual variables and a lower bound on the optimal value. Using the dual
variables, a pricing problem is solved classically which can be done efficiently for certain problem structures,
such as finding shortest paths (b). A variable not contained in the RMP with minimal reduced cost is obtained by
solving the pricing problem. In parallel, an upper bound on the optimal value is obtained by solving a QUBO
formulation of the RMP with quantum hardware (c). If an optimality criterion dependent on the obtained bounds
and the minimal reduced cost is fulfilled, we obtain equivalence between the RMP and the underlying (potentially
way higher-dimensional) MP (e), that is an optimal solution 2™ is already in our generated variables. If not, the
variable with minimal reduced cost is added to the RMP and steps (b)-(c) are repeated, until we obtain equivalence
to the MP.

paths for numerous agents simultaneously, posing significant computational challenges, especially
in large-scale scenarios. These challenges are increasingly relevant in real-world applications, such
as future Unmanned Aerial Vehicle (UAV) traffic in urban areas, where parcel delivery demands are
expected to require coordinating tens of thousands of flight paths [213]. Our approach iteratively
adds paths and constraints, solving QUBO formulations to determine an upper bound and identify the
optimal solution. We present an optimality criterion tailored towards MAPF and introduce hardware-
aware QUBO formulations leveraging conflict graphs for parallel solvability. This formulation not only
leads to a sparse QUBO matrix, but also avoids the introduction of slack variables for incorporating the
constraints. Extensive benchmarking demonstrates the superiority of our method over prior QUBO-based
approaches and classical MAPF solvers using NISQ hardware.

6.1 Related Work

Our algorithms are based on the Branch-and-Cut-and-Price (BCP) idea from [214]. Despite their optim-
ality, such algorithms require a sophisticated branching strategy and are not guaranteed to find a good
solution in reasonable time. An anytime adaption of MAPF BCP has already been investigated [215],
but further investigation of optimal anytime algorithms is of great interest. Heuristics are used for
avoiding exponentially many branching steps, leading to efficient suboptimal algorithms [216]. However,
such rounding heuristics can lead to unsatisfying results, making the investigation of QC for this task

104

Chapter 6 Variable and Constraint Generation

intriguing.

QC is a promising candidate for large-scale planning problems [57, 217]. In the area of multi-agent
problems, flow-problem formulations have been investigated [218-221]. These methods are edge-based,
that is each edge in the spatio-temporal graph is represented by a qubit. Even though certain constraints
can be conveniently integrated into the quantum state in this framework, the problem size is way beyond
current quantum hardware capabilities and also infeasible for near-term devices.

Instead of representing all edges in the given graph, [222] take a different approach considering
which path to choose as decision variables. They introduce a QUBO formulation for the Unsplittable
Multi-Commodity Flow problem by directly integrating the inequality constraints. Similar to BCP, they
iteratively add paths to their problem. However, they present no theoretically sound criterion on when to
stop, but have to rely on suboptimal heuristics. Furthermore, the large amount of constraints have to
be incorporated into the QUBO formulation which either leads to a huge number of auxiliary variables
or the need for an iterative optimization scheme to adapt Lagrangian parameters [198]. [164, 223]
circumvent this problem by using conflict graphs for representing possible constraints. However, their
methods are not directly applicable to the MAPF setting, since only the starting times of pre-planned
trajectories are optimized.

We combine the ideas of an iteratively expanding path-based approach with the concept of conflict
graphs. A pricing criterion tells us when all variables are included which are part of an optimal solution.
The proof is based on [224], which however assumes negativity on reduced costs. We loosen this
assumption and adapt it for general applicability to MAPF.

6.2 Integer Linear Programming

Instead of looking at a quadratic objective as given in QBP, we consider linear objectives in this chapter.
In particular, we are concerned with Integer Linear Programming (ILP) problems, which take the
following form.

Definition 6.1 (ILP). Letc € R", A € Z™ " and b € Z™. ILP is defined as finding the solution to the
following optimization problem

min cTz (6.1a)
zeZ"
st. Az <b, (6.1b)

Solving Equation (6.1) is NP-hard and thus it is often intractable to find an optimal solution, especially
for a large n. A quite similar problem is given by Linear Programming (LP).

Definition 6.2 (LP). Letc € R", A € Z" " and b € Z"™. LP is defined as finding the solution to the
following optimization problem

min ¢' z (6.2a)
zeR"
st. Az <b, (6.2b)

Given an ILP, we denote its relaxation as the LP using the same costs and constraints. In fact, the
optimum of the relaxation is always smaller than the optimum of the original ILP. Since we are faced

105

Chapter 6 Variable and Constraint Generation

with a linear objective in Equation (6.1), the constraints determine the hardness of the problem. For
example, the LP relaxation of an ILP has integer solutions if the set {x € R": Az < b} is convex, i.e.,
{x e R": Az X b} = CH({z € Z" : Az < b}), where CH denotes the convex hull. This leads to
the idea to split the constraints into easy and hard constraints. A formalization is given by introducing
the LR [36].

Definition 6.3 (LR). Let ¢ € R", constraints described by A € Z¥". b € Z*, D € Z™*" and d € Z™
and consider the ILP of the form

min ¢ z (6.3a)

zeZ"
st. Az =<b (6.3b)
Dz <d. (6.3¢)

With A € R"", the partial Lagrangian is given by
Lz A)=c z+ A" (Dz—d) .

The LR of the ILP problem given in Equation (6.3) is defined as finding the solution to the following
optimization problem

L(A) == min L(z,A) (6.4a)
zeZ"
st. Az <b. (6.4b)

That is, we “absorb” the hard constraints into the objective function.

Correctly splitting all constraints into hard and easy can lead to Equation (6.4) being easily solvable.
Let v(-) denote the optimal value of a programming problem mentioned before. It then holds that
(c.f. [36])

L(A) <v(ILP), VA € RT" .

Thus, we can easily find a lower on the optimum of the ILP problem, which is hard to compute. To
obtain as much information as possible, we want to maximize this lower bound.

Definition 6.4 (LD). Let ¢ € R", constraints described by A € 7" b e 7Fand D € 2", d € 7™
The Lagrangian Dual (LD) of the ILP problem given in Equation (6.3) is defined as the maximization of
the LR
max L(\) . (6.5)
AeRY
The LD can be efficiently computed, e. g., using a subgradient method [225]. Interestingly, the
following inequalities hold, which combine the optimal values of LP, ILP and LD.

Theorem 6.1 (ILP bounds [36]). Let ¢ € R", constraints described by A € Z¥", b € 7" and
D ¢ 7", d € Z". Then, the following inequalities hold true for an ILP of the form given
in Equation (6.3)

v(LP) < max L(AX) < v(ILP) . (6.6)
AeRT

106

Chapter 6 Variable and Constraint Generation

Setting Z = {z € Z" : Az X b} and X = {x € R" : Dx < d}, equality in Equation (6.6) holds
under the following conditions

CH(ZNX)=CH(Z)NX & v(ILP) = max L(N), (6.72)
AERT

CH(Z)={x eR": Az <b} = v(LP) = max L(\). (6.7b)
AERY

Thus, if Equation (6.7b) holds, we can easily obtain the value of LD with using an efficient algorithm
for LP, such as the simplex algorithm [226].

6.3 Column Generation for Binary Linear Programs

Bridging the gap to QUBO, we assume that our problem at hand can be formulated as binary linear
programs, that is

MP: min c' 2 (6.8a)
zeBY

st. Az <b (6.8b)

Dz <d, (6.8¢)

with A € Z"N b e 7¥, D € Z"*N and d € Z™ with M, N, k € N. We call Equation (6.15) the
master problem (MP) and use the capital letters M and N to stress that these values can be very large.
That is, assume we are faced with many constraints and variables. As we have seen in Chapter 5, solving
such problems with NISQ devices is intractable. Thus, we consider the restricted master problem (RMP)

RMP: min c z (6.9a)
ZEBgQ—O

st. Az =<b (6.9b)

Dzz = dZ y (690)

withZ C [M], |Z| = m, J C [N], and |J| = n. We only optimize over a subset of variables (n < N)
and constraints (m < M), drastically reducing the problem size.

To get equivalence between Equation (6.9) and Equation (6.8), we use a two-loop iterative optimization
scheme: the outer loop decides which constraints are not fulfilled and should be added to our problem
and the inner loop decides which variables should be added not included in the RMP (see Figure
and Algorithm 6). This procedure builds with the hope that we already find a (nearly) optimal solution
with not exploring the whole search space, both in terms of decision variables n and number of constraints
m. The mathematical framework describing this technique is called column/row generation [35]. The
columns are identified with the decision variables and the rows with the constraints. It alternatingly
solves a high-level restricted master problem (RMP) and low-level pricing and separation problems (PP
and SP), which decide which variables/constraints to add to the MP. If solving the PP/SP tells us to not
add any more variables, the solution to the MP is optimal by construction.

This method was developed for LP without the restriction of integrality of the variables—in our

107

Chapter 6 Variable and Constraint Generation

Algorithm 6 QUBOANDPRICEANDCUT

Input: Initial set of decision variables J C [N]
Output: Optimal feasible solution

LZ+0

2: while z is infeasible do > Separation
3: Add violated constraints to Z

4 while not Equation () do > Pricing
5: = argmin . 7 ¢ (A T)

6: J <+~ JuU {j*}

7: A < OPTIMIZELAGRANGIAN(7,7)

8 z < OPTIMIZEMASTER(J,Z) > QUBO

9: end while
10: end while

case we do not optimize over the continuous domain [0, 1] but over the binary values {0, 1}. To cope
with these kind of ILP problems, branching methods, such as BCP [227], are used. In the worst case,
exponentially many branching steps are needed. We circumvent this problem by considering QUBO
solutions to the ILP MP, instead of the relaxed LP version. Ideally, we want that n < N, while an
optimum of RMP is also an optimum of MP. An iterative algorithm for variable and constraint generation
can be found in Algorithm 6 and Figure 6.1. How to add new variables to our problem and check
whether a solution is equivalent is governed in the next section.

6.3.1 Pricing

For obtaining an optimality criterion, we first define the reduced cost.

Definition 6.5 (Reduced cost). Let ¢ € R", constraints described by D € Z™™", d € Z™ and X € R".
The Lagrangian reduced cost vector is defined as

cA)=c+A'D.

In classical column generation, the MP and RMP are equivalent if the minimal reduced cost is < 0.
In the more restricted ILP case, we obtain a looser bound for guaranteeing optimality.

Theorem 6.2. Let c € RY, A € 2"V b e 2%, D € N, d € 2" with M, N,k € N, T = [M]
and J C [N]. Let ¥ be the objective value of a feasible solution zZ to RMP (Dz < d, Az < b and
b=c'2), X e R If v(RMP) # v(MP) then

min &(A) > o+ A'd. (6.10)

Proof. We give a proof by showing that v(RMP) = v(MP) holds if Equation (6.10) does not hold. The
variables not in RMP are implicitely assumed to take the value 0. Assume now, that one variable not

108

Chapter 6 Variable and Constraint Generation

included in the RMP takes value 1, i.e., 172 ge > LIt follows that

v(MP) = min {cTz : Dz <d, Az < b, 1Tch > 1} (6.11a)
zeBY
> min {ﬁ(z,)\) Az <b 1z 0 > 1} (6.11b)
2eBY
— min {E(A)Tz ~ATd:Az=<b 17z, > 1} 6.11c)
2zeBY
> min {E(A)Tz 1720 > 1} ~ATd 6.11d)
zeBY
> min &(A) —A'd (6.11¢)
jege
>0 > v(RMP) , (6.11f)
where Equation () holds since we assume that Equation () does not hold. We follow that

no feasible solution to MP with 1 ' z 7¢ = 1can be better than an optimal solution to RMP. Since
v(MP) < v(RMP) is always true, we conclude v(MP) = v(RMP). Hence, if v(MP) # v(RMP)
then Equation () holds.]

Using the optimality criterion stated in Theorem 6.2, we can decide whether the variables in the RMP
contain the ones for an optimal solution to the MP. The given is rather loose, since we only have very
few assumptions on the underlying problem. We completely ignore the “easy” constraints Az < b
in Equation (). In practice, we are often faced with a special structure of the constraints, such we
can find a tighter bound for the optimality criterion, as we will see in Section 6.4. The tighter the bound,
the less variables are added to the RMP for reaching equivalence to the MP. Which variables to add
is governed by the pricing problem (PP) which aims to find a variable not included in the RMP with
optimal reduced costs

PP : min ¢;(A) . (6.12)

jege

Even though the optimization domain 7 might be huge, the problem in Equation () can still be
efficiently solvable. For example, finding shortest paths allows efficient enumeration of a number of
near-optimal solutions, which will be used in Section 6.4. Instead of relying on optimal Lagrange
parameters, our theorem allows any choice of A € R". How to obtain these parameters depends on
the underlying problem structure. For example, if our constraints are convex, we can obtain optimal
parameters by solving the LP relaxation of the LD.

6.3.2 Separation

In addition to adding new decision variables to our RMP, we can take a similar approach with handling
the constraints. Starting off with no inequality constraints, Z = (), we can iteratively add them to the
RMP, reducing computational overhead. Given a feasible solution 2z to the RMP, we check whether it is
also feasible for the MP. That is, we add the row/constraint D,z < 1 to the RMP if D;Z > 1, i € [M].
We investigate the performance of our proposed algorithm in the next section, where we consider the
well-known MAPF problem.

109

Chapter 6 Variable and Constraint Generation

K Separation \
kol kol kol bt 1] at
I ° I ° I D i o] | °
- e «) e
Hile mem 7 e Rl 7= e oy |
i i » | » | AV »
(a) Init. paths. (b) Identify conflicts. (c) Generate paths. (d) Solve QUBO. (e) Solution.

Figure 6.2: Schematic visualization of our quantum MAPF algorithm. (a) First, initial paths are generated for
every agent with possible conflicts. (b) We enter the outer loop (separation), where we identify conflicts between
paths and add them to the problem. (c) In the pricing step, we generate new paths for every agent and (d) find
the best set of paths by solving a QUBO problem. This inner loop is repeated until adding a new path cannot
improve the solution quality, while the outer loop is terminated when our set of chosen paths has no conflicts. (e)
By construction, a conflict-free optimal set of paths is returned.

6.4 Application: Multi-Agent Pathfinding

Emerging domains of large-scale resource allocation problems, such as assigning road capacity to
vehicles, warehouse management or 3D airspace to unmanned aerial vehicles (UAVs), often require
multi-agent pathfinding (MAPF) [37, 228, 229] to determine feasible allocations. MAPF involves
calculating non-colliding paths for a large number of agents simultaneously, presenting significant
computational challenges in realistically sized scenarios.

The scalability of optimal state-of-the-art M APF solvers is limited, since finding optimal solutions
is NP-hard [230]. Thus one often falls back to suboptimal methods, with the most prominent one
being Local Neighborhood Search (LNS) [231-233]. Even though such methods are computationally
efficient in finding a feasible solution, the solution quality can be insufficient which implies the urge
for optimal solution methods. By reformulating MAPF as a multi-commodity flow problem, it can
be solved optimally via ILP. However, the reduction uses an inefficient representation of the problem
setting in terms of space complexity and is only effective on small instances. More popular techniques
for optimal MAPF include Conflict-based Search [230] and BCP [214]. CBS is a two-level procedure,
with splitting a search tree based on detected conflicts between agents and subsequent replanning. This
tree is explored with best-first search until a collision-free node is found. BCP takes a different approach
of considering a (possibly infeasible) solution which is then refined iteratively by successively adding
paths and constraints. Similarly to CBS, BCP is a two-level algorithm: on the low level it solves a series
of single-agent pathfinding problems, while the high level uses ILP to assign feasible paths to agents.
While low level single agent pathfinding can be performed efficiently, the high level problems of both
CBS and BCP remain NP-hard.

In this section, we investigate the use of QC for MAPF by constructing two optimal hybrid quantum-
classical algorithms based on QUBO subproblems. To the best of our knowledge, these are the first
quantum algorithms for MAPF. We call our algorithms QUBO-and-Price (QP) and QUBO-and-Cut-
and-Price (QCP) which are based on the idea of BCP. We iteratively add paths (and constraints) to the
problem and solve a QUBO, which leads to the applicability of QC. This gives us an upper bound on
the best possible solution and a stopping condition tells us when our set of paths contains the optimal

110

Chapter 6 Variable and Constraint Generation

B ——

\
OO0

OOk

(a) Vertex conflict. (b) Swapping edge conflict.

Figure 6.3: The conflicts we are using for our MAPF setup.

solution. An overview of QCP can be found in Figure

6.4.1 Different Problem Formulations

The input to the MAPF problem is a set of agents A, a weighted undirected graph G = (V, E) and an
origin-destination pair for each agent. The graph G captures the underlying environment, where all
possible agent states (e.g. location) are represented by V' and E can be regarded as valid transitions
from one state to another, with an underlying cost. V' already captures environmental constraints, such
as possible obstacles, while E' captures motion constraints of the agents, e.g., velocity and maximum
turning rates of UAVs. The goal of MAPF is now to find optimal paths from the origin to the destination
for each agent, s.t. they avoid pairwise conflicts. For rating optimality, we use the objective of the sum
of all weighted path lengths. We here consider classical collision conflicts, that is the vertex conflict
and the (swapping) edge conflict. A vertex conflict between two agents exists if they move to the same
node at the same time, while an edge conflict prohibits two agents to use the same edge at the same
time. Introducing the time component, we allow the agents to start at different points in time, while also
giving them the opportunity to wait a certain location.

For finding a solution to the MAPF problem, a spatio-temporal directed graph formulation is typically
used. That is, we define Gy = (Vp, Er) as the graph, with nodes v = (s,t) € V x {1,...,T} and
edges e = (v,v") = ((s,1), (s',t + 1)) € Vip x Vi with weights w, = W, &> Where (s,s') € E and
T € N is a maximum allowed time horizon. We define the reverse edge of e = (s,t), (s',t + 1) as
e = (s',t), (s, t + 1) for representing edge conflicts. G- is an acyclic weighted directed graph with
|Vr| =T |V|and |Ex| = O (ST |V]), where S is the average number of possible state transitions. For
example, if we consider the classical two-dimensional grid environment, an agent has five possible state
transitions, i.e., wait, go north, go east, go south and go west.

Every agent a € A is obliged to find a path in G from origin (o,,t,) € Vr to destination (d,, t, +
T,) € Vp for a starting time ¢, € [T] and T, < T — t,. A path p is a sequence of edges p =
(817 s 'aeTafl)’ s.t.oe = (($ata + t)a (y7ta +1t+ 1))’ €1 = ((yvta +1t+ 1)7 (tha +1+ 2))’
e1 = ((0g,ta), (8:tq + 1)) and e = ((s,t, + T, — 1), (dy,t, + T5)). The cost/length ¢, of a path

p is defined as the sum of all its edge weights, i.e., ¢, ==) cep We- Specifically, we go over to the

111

Chapter 6 Variable and Constraint Generation

mathematical description of the MAPF objective.

Edge-Based Formulation The MAPF problem with vertex and edge conflicts can be formulated
in the ILP paradigm, indicating a used edge e by agent a with a binary variable 2z € B

minl Z Z WeZe (6.13a)
z€B 4 a ecEr
st Y 28— Y A =bf, Vae A icVy (6.13b)
e=(i,j) e'=(j0)
o> @<L viely (6.13¢)
a€Ae=(j,i)
Y +2¢<1,Ve€ Ep, (6.13d)
acA

where | = |A||Ep| and b = 6; , — 6, 4 . Equation () ensures that we have valid paths for every
agent, Equation () avoids vertex conflicts and Equation () prevents edge conflicts.

If we want to reformulate the ILP in Equation () to a QUBO problem, we have to incorporate
the constraints in Equations () to (). This can be done by adding quadratic penalty terms to
the objective function Equation () which penalizes invalid solutions, i.e., ones that violate at least
one of the constraints. Linear equality constraints like Equation () can be easily reformulated into
such a quadratic penalty (c.f. Proposition 3.1). For general linear inequality constraints we either need
to introduce additional slack variables which also have to be optimized or use an iterative method to find
optimal Lagrange parameters [198]. More details can be found in Section

Since we have | V| constraints for avoiding vertex conflicts and |A||E| constraints for avoiding
swapping conflicts, we need to incorporate | A|| E1|+| V| constraints for obtaining a QUBO formulation.
The number of needed binary variables x¢, representing the possible solutions, is |A||E7|. For large
environments (S and |V|), a large maximum time 7 or a large number of agents |A|, the problem
size can increase very quickly, making it infeasible to solve it with current NISQ devices. Due to this
limitation, we examine a different encoding.

Path-Based Formulation Instead of representing each edge by a binary variable, we encode each
possible path p € P for every agent by 2, € B. An ILP formulation is given by:

min >) ¢z, (6.14a)

N
z€B" jca peEP,

st. Y z,=1,VacA (6.14b)
pEP,

Z Z ryz, <1, Vv € Vp (6.14¢)

a€ApeP,

SN W4z, <1,Vee By, (6.14d)
acApeP,

112

Chapter 6 Variable and Constraint Generation

where 2, y¥ € B indicate whether path p visits vertex v € Vi / edge e € Ep, P, indicates the set of
all possible paths for agent a and N = |P|, P = |J,c 4 |P.|. Note that 2}, 4/? are constant and we just
optimize over z,. The constraint in Equation () ensures that exactly one path is chosen for every
agent, while Equations () and () avoid conflicts, similar to Equations ()and (). The
problem Equation (6.14) is exactly of the form given in Equation (6.8), i. e., an equivalent more concise
formulation is given by

MP : min ¢'z (6.152)
zGIB%N

st. Az = 1|A\ (6.15b)

Dz <1y, (6.15¢)

where M = |A||Ep| + |Vp|, ¢ = (¢cp)pep. D € BM*Y and A € BV . Further, let C denote the set
of all constraints, i.e., an element for each possible vertex and edge conflict. Each element 7 € C in this
set is identified by a vector
D—(D) D = IE?, ifiGVT,
' WPIPEPT TR P +off, ifi € By
Then the matrix D captures all inequality constraints from Equation (). Equation () ensures
that exactly one path is chosen for every agent

1, iftpeP,,

A, = (Aa,p)pEP7 Aa,p = {0 ifpégP,.

It follows that Az < 1 is convex, and hence we identify the corresponding constraints as “easy”. We
denote Equation () as the master problem (MP).

We have |V7| constraints for avoiding vertex conflicts and | E7| constraints for avoiding swapping
conflicts. The number of our decision variables representing possible solutions now corresponds to
the number of all possible paths for all agents, which is exponential in the maximum time horizon,
N = O(]A|S). A large maximum time T or number of agents |A| can make the problem size increase
very quickly, making it infeasible to solve it with current NISQ devices.

6.4.2 Adapting Variable Generation to MAPF

Not only the huge number of decision variables poses a challenge for current quantum computers, but
also the number of constraints strongly impacts the solvability of the resulting QUBO formulation. We
overcome this issue by considering the restricted master problem (RMP) which optimizes over a subset
of decision variables

RMP: min c' z (6.16a)
zeBg(—O

st. Az=1 (6.16b)

Dz=<1, (6.16¢)

113

Chapter 6 Variable and Constraint Generation

Algorithm 7 QUBOANDPRICEANDCUT

Input: Shortest independent paths P and z = 1
Output: Optimal feasible solution

1: C« 0
2: while z is infeasible do > Separation
3: Add violated constraints to C'
4 while not Equation () do > Pricing
5: p* <+ arg min,, ¢,(A, C) > Shortest path
6: P+ PU{p*}
7: A < OPTIMIZELAGRANGIAN(P, C) > Solve Equation (6.21)
8 z < OPTIMIZEMASTER(P, C) > QUBO
9: end while
10: end while

with P, C P,, n = |P|, P = |J,c4 P, To get equivalence between Equation (6.16) and Equa-
tion (), we use a two-loop iterative optimization scheme (Algorithm 7), similar to the one given
in Algorithm 6. The outer loop decides which constraints are not fulfilled and should be added to our
problem and the inner loop optimizes over subsets of all possible paths for every agent, increasing the
number of paths in every step (see Figure 6.2 and Algorithm 7). How to add new paths to our problem
and an optimality criterion similar to the one Theorem but with tighter bounds is given the next
section.

Pricing We identify Dz < d as the hard constraints and recall the definition of LR

LR : ‘CRMP(A) = min E(z, A) (6173)
ZGB?C(_O
stAz—=1, (6.17b)

where L(z,A) == &(A) "z — A Land &) == ¢+ X' D is the Lagrangian reduced cost vector. Note
that Lryp(A) < v(RMP) follows from Theorem 6.1, where v(-) indicates the optimal value of the
optimization problem.

Theorem 6.3. Let © be the objective value of a feasible solution z to RMP (Dz < 1, Az = 1,4 and
b=c'z), A € R If v(RMP) # v(MP) then

da e A: pergj{lPa Cp(A) — 117161}% Cp(A) <0 — Lryp(A) (6.18)

Proof. We give a proof by showing that v(RMP) = v(MP) holds if Equation (6.18) does not hold. The
path variables not in RMP are implicitely assumed to take the value 0. Assume now, that one variable

114

Chapter 6 Variable and Constraint Generation

not included in the RMP takes value 1 for agent a € A, i.e., Zpepa\ P, %p > 1. It follows that

v(MP) :géig Z cpzp Dz X1, Z 2, > 1 (6.19a)
pEP peEP,
> mi :
2 min L(z,A): Z 2, > 1 (6.19b)
peEPR,
. — T
=min Zcp()\)zp : Z zp>1p—=A'1 (6.19¢)
pEP pEP,
. _ - T
= min Z Cp(A)zp + ;IEHI_? cp(A) — A1 (6.19d)
PEP\P, ¢
=y min &,(A) + min ¢,(X) A1 (6.19)
beA\fa) TP pebs
=min ¢,(A) — min ¢,(A) + L(A 6.19
;relg(llcp() ;gglcp()+ L(N) (6.19f)
>0 > v(RMP) | (6.19g)

with P, = P, \ P, and Z = {z € BY | > pep, ?p = 1, Va € A}. Equation () holds
since we assume that Equation () does not hold. We follow that no feasible solution to MP with
Zpepa\ P, % = 1 can be better than an optimal solution to RMP for each @ € A. As all paths not
included in the RMP are in the set | J,. 4 P, \ P, and v(MP) < v(RMP) is always true, we conclude
v(MP) = v(RMP). Hence, if v(MP) # v(RMP) then Equation (6.18) holds. O

The bound in Equation (6.18) is tighter than the one in Equation (6.10), since we exploit the specific
problem structure. Instead of solving a pricing problem (PP) globally, we resort to independent problems
for every agent

PP: min ¢

| uin, (A), VacA. (6.20)

Even though P, \ P, can be exponentially large, Equation (6.20) can be solved efficiently. It boils down
to a k shortest path problem (k < |P,|) on the graph G with updated edge weights—), is added to the
cost of w, and w; for conflicted edges and A, is added to all incoming edges to conflicted vertices in the
current solution z. This can be done efficiently, e.g. using Yen’s algorithm [234], which dynamically
updates the new shortest path using the already computed paths, obtained with A*.

Interestingly, Equation () generalizes the stopping criterion in classical column generation. The
RHS is an upper bound on the optimality gap between the RMP and LD, i.e., v(RMP) — v(LD) <
© — L(A). If that gap is 0, we exactly recover the criterion given in [214] given by ¢, — a, < 0,
where o, = min,cp, Cp(A) is the dual variable corresponding to the convexity constraint of agent
a Equation (). In typical column generation, the pricing is solved with an optimal dual solution of

115

Chapter 6 Variable and Constraint Generation

the LP relaxation of the RMP [214]. In our case, we solve the Lagrangian dual (LD)

LD : max L(A) . (6.21)

AeRY
Due to standard ILP theory (c.f. [235]), the optimum of LD and the LP relaxation of RMP coincides,
since the one-hot constraint is convex. Also, the dual parameters of this LP relaxation exactly correspond

to the optimal A*. Instead of relying on optimal Lagrange parameters, our theorem allows any choice of
A eRT.

Separation Similar to Section , we also iteratively add constraints (Equations () and ()
in addition to adding new paths to our RMP. We add the constraint D,z < 1tothe RMPif D;z > 1, i €
VU E, where Z is a feasible solution to the RMP. However, to ensure that our algorithm is optimal, we
need to find an optimal solution w.r.t. the current constraints. If this cannot be guaranteed, Algorithm
can diverge to a suboptimal solution. The performance of this procedure is evaluated in Section

Solving RMP with QUBO It remains to clarify how to obtain a solution of Equation (6.16). Since
we want the solutions to be solvable with QC, we reformulate the constrained problems into QUBO
formulations. We examine three different approaches, which all rely on using penalty factors to integrate
constraints.

Proposition 6.1 (One-hot QUBO). Let A € BAX" describe the one-hot constraints given in Equa-
tion (). We can find an equivalent QUBO formulation of the given ILP

2
T T T
min c z < mlncz—i—g wZ(Aaz—1> :
zeB” zeB”
acA

st Az=1
Setting wy > max,cp ¢, always guarantees the equivalence.
Proof. Follows from Proposition 3.1. O
It remains to incorporate the inequality constraints.
Incorporation of Inequality Constraints The first approach inserts slack variables for every
inequality constraint, similar to [221].

Proposition 6.2 (Slack QUBO). Let D € B™*" describe the inequality constraints given in Equa-
tions () and (). We can find an equivalent QUBO formulation of the given ILP

2
T T T
mine z << min c z+ wf(Diz—sl) ,
zeB” z€B”
i€[m]
s.t. Dz <1

with large enough w; > 0.

116

Chapter 6 Variable and Constraint Generation

Proof. The linear inequality constraint can be reformulated with using a vector of slack variables
s € B" with binary entries,
Dz<1 & Dz=s.

The equivalence follows by using Proposition 5.1. O

Using this formulation, however, comes with the overhead of introducing m additional binary variables.
One variable is needed for every inequality constraint, leading to a total QUBO dimension of n + m. As
we are still in the era of noisy intermediate-scale quantum (NISQ) computers, it is better to resort to
a QUBO formulation that uses fewer qubits. However, we analyze the performance of real quantum

hardware on this QUBO formulation in Section
Since D € B™*", we can avoid using slack variables.

Proposition 6.3 (One-half QUBO). Let D € B™*" describe the inequality constraints given in Equa-
tions () and (). We can find an equivalent QUBO formulation of the given ILP

2
. . T 1
minc'z < min ¢ z+ E w; DiTz—f ,
zeB” zeB”

s.t. Dz <1

with large enough w; > 0.

Proof. We can use the following equivalence

1 1 1
Dz=<1% |[D'z—-|=2,Vic|m] & min|Dz--1| .
2] 2 zeB” 2
Similar to Proposition 3.1, we can deduce the result by adding the corresponding penalty term. O

Thus, we do not optimize over any slack variables and reduce the corresponding QUBO size.

Conflict Graph As a third concept, we examine conflict graphs (CG).

Definition 6.6 (Conflict graph). The vertices of a conflict graph correspond to all paths considered in
the problem and the edges indicate whether there is at least one conflict between a pair of paths. That is,
its adjacency matrix C' € B"*" is given by

. ,:{0 ifa? 42l <landyl +y? +of +yf <1Vie VpUEy,
1 else.

An exemplary schematic visualization of a conflict graph is given in Figure

Proposition 6.4 (Conflict QUBO). Let D € B™*" describe the inequality constraints given in Equa-
tions () and () and let C' denote the adjacency matrix of the corresponding CG. We can find
an equivalent QUBO formulation of the given ILP
min cz o min ¢ z+uw'z Cz ,
z€B zeB
s.t. Dz <1

117

Chapter 6 Variable and Constraint Generation

4

N\
e

* *

(a) Conflicted paths of exemplary MAPF problem. (b) Corresponding disconnected conflict graph.

Figure 6.4: Schematic visualization of a conflict graph, which has two connected components. This leads to the
decomposition into independent subproblems with reduced problem size.

with large enough w® > 0.

Proof. Assuming that Dz < 1, we follow

S Y aln <L VoeVpedtal <1 Vpp e{pe Pz =1,
acApeP,

DD W+)z, <1, Vee Ep syl +yf+3f +4f <1, Vpp e{peP:z=1},
ac€ApeP,

and thus no penalty occurs for ZpZy/s since C’p e If there exists a row ¢ s.t. DiT z > 1, then

SNo> abzg,>1, weVpeal+ah >1, Ipp e{pe Py =1}
acApeP,

SN W+ >1,FecBref +yl ol +yf >1,Ipp e{pe Pz =1},
a€ApeP,

Choosing w® > c¢'1 leads to equivalence. O

Note that the adjacency matrix is square and the dimension is only dependent on the number of
considered paths and not on the number of constraints. Since the structure of the CG depends on the
underlying problem, it may contain several connected components. Thus, the graph of the QUBO matrix
can have multiple connected components, dependent on C'. These connected components can be seen as
smaller instances, giving us the ability to solve them independently. This can lead to large reduction of
the considered problem sizes, which is very vital for current QCs, due to the limited number of available
qubits. Furthermore, a lower density and well-behaved problem structure can have a huge effect on
current quantum hardware, as we will see in Section

This leads to two different hybrid quantum-classical MAPF algorithms. QUBO-and-Price (QP)
describes generating new paths and stopping when Equation (6.18) is violated (inner loop in Figure 6.2).
Even though the QUBO solver might not be optimal, this procedure leads to generating all sufficient
paths for obtaining an optimal solution. We denote the extension of iteratively adding constraints to our

118

Chapter 6 Variable and Constraint Generation

problem as QUBO-and-Cut-and-Price (QCP). It is only guaranteed to generate an optimal path set if the
QUBO is solved to optimality in every step. However, we also investigate its suboptimal performance in
the next section.

6.5 Experimental Evaluation

We compare our algorithms QP and QCP with two state-of-the-art MAPF solvers: BCP [214] and
LINS2 [232]. BCP is an optimal algorithm but has also been adapted to anytime, while the suboptimal
LNS2 can quickly generate a good solution. The code was taken from their respective public reposit-
ories ~. We kept all standard parameters and set a maximum time limit of 180 s for both solvers. The
experiments were conducted on a single core of the type Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz.

For QP and QCP we generate the initial paths with prioritized path planning (PPP) [236]. That
is, every agent is planned successively, with removing edges and nodes of previously planned paths.
No clever priorization heuristic is followed, we randomly sample which agent to be chosen next.
We use a maximum limit of 30 pricing steps in total and compute optimal Lagrangian parameters
A" with LP in every iteration. We compare the optimal solution of the RMP obtained by an ILP
Brach-and-Bound method with the solutions obtained by two different QUBO solvers. As a classical
baseline, we use the Simulated Annealing (SA) implementation of D-Wave and for real quantum
hardware, we run experiments on a D-Wave Advantage_system5.4 quantum annealer (QA). Since both
solvers are probabilistic, we generate 1,000 samples each and use default parameters. We compare
the three different QUBO formulations from Section and denote them by SLACK Proposition 6.2,
HALF Proposition 6.3 and CONFLICT Proposition

As maps and instances, we use the in the MAPF community well-known MovingAl benchmark [37].
This benchmark includes 33 maps and 25 random scenarios, some of which were utilized in our
experiments. Each scenario on each map (with some exceptions) consists of 1, 000 start-goal position
pairs. To evaluate a solver on a given scenario, we run it on the first 20, 40, 60, 80 and 100 start-goal
pairs for all 25 scenarios and indicate the average performance.

6.5.1 Benchmark Performance

In Figure 6.5, we depict the performance of our two algorithms QP and QCP for four different maps,
namely random-32-32-10, maze-32-32-4, room-64-64-8 and den312d. All performances are shown
relative to the best and worst performing configuration, i.e., V] = (v — Vpest)/ (Vworst — Vbest) and
averaged over all 25 scenarios. This maps all obtained values to the range [0, 1], where 0 indicates the
best and 1 the worst performance, respectively. For QC-QUBO and QCP-QUBO we use the CONFLICT
formulation and the SA solver.

The top plot row shows the mean relative upper bound ¥,,; — v, (LD) on the optimality gap for a
different number of agents. It is not only a measure of solution quality, but it also quantifies the problem
size. The higher this gap is, the more new paths are added to our problem during pricing, since it
corresponds to the RHS in our optimality criterion Equation (). We can see that optimally solving
the RMP (QCP-ILP and QP-ILP) often has a smaller gap than generating a possibly suboptimal solution
by a QUBO solver. However, the QUBO methods largely improve upon the base PPP method. Even

! https://github.com/Jiaoyang-Li/MAPF-LNS2 (last accessed September 19, 2025)
2 https://github.com/ed-lam/bcp-mapf (last accessed September 19, 2025)

119

https://github.com/Jiaoyang-Li/MAPF-LNS2
https://github.com/ed-lam/bcp-mapf

Chapter 6 Variable and Constraint Generation

—
=)

PPP —#— QCP-ILP —A— QP-ILP —#— QCP-QUBO —%¥— QP-QUBO

Rel. gap bound
o
|9

—_ O
oo

o
W

Rel. cost

0.0

20 40 60 80 10020 40 60 80 10020 40 60 80 10020 40 60 80 100
Number of agents

Figure 6.5: Relative performance comparison of our methods QP-ILP, QP-QUBO, QCP-ILP and QCP-QUBO to
the baselines PPP, BCP and LNS2 on four different maps with a varying number of agents. The relative upper
bound of the optimality gap (top) is shown along with the relative total path costs (bottom) averaged over all 25
scenarios. The lower the better, i.e., a value of 0 corresponds to the best performance, while 1 corresponds to the
worst performing algorithm.

though QP clearly outperforms QCP for optimal solving (ILP) of RMP, QCP takes way less constraints
into account and is thus computationally more efficient. This is also beneficial for the QUBO solvers,
since they can easier generate good solutions for a more well-behaved problem (less constraints).

The mean relative total path cost for the single MAPF instances are depicted in the bottom plot row.
We compare the baselines PPP, BCP and LNS2 with QP solving the RMP optimally (QP-ILP) and
with QUBO (QP-QUBO). If BCP does not return any solution in the given time window, we set its
performance to the worst other performing method (PPP), allowing for a naive anytime comparison. It
is evident that QP-ILP is nearly almost optimal, while LNS2 is able to outperform it for 80 and 100
agents for maze-32-32-4. BCP is always outperformed by our methods and LNS2 due to its bad anytime
performance. However, it is interesting that for no map it is able to find all optimal solutions in the
given time frame. QP-QUBO is able to outperform LNS2 in many cases, making our method already
applicable without the need of exactly solving the RMP.

The most time consuming step in our algorithm is to solve the QUBO problem. However, a wall-
clock time comparison is difficult for quantum devices nowadays, since there is a large communication
overhead when using real quantum hardware over cloud services. Nevertheless, assuming perfect
communication with the QA, we can generate solutions to a QUBO with an annealing time of around
50 ps. Due to its probabilistic nature, we have to generate only few thousand samples. In the near future,
this could also lead to very good wall-clock time performance.

6.5.2 QUBO Comparison

The effect of using different QUBO formulations for solving the RMP is depicted in Figure 6.6.
We consider four different maps (maze-32-32-4, empty-32-32, random-32-32-10, room-32-32-4) and
compare the results of QP (Section 6.5.2) and QCP (Section 6.5.2) for 20 agents. This leads to varying
QUBO sizes between 20 and 400, depending on the underlying map and scenario. We use SA and QA

120

Chapter 6 Variable and Constraint Generation

[Half I Conflict Il 1P [Half I Slack I 1P
[} —

05 s b mm| 05T SETHE M

00O 90 0o0 000

Cost
Cost

[\
=]
a

#Infeasible
=)
1
#Infeasible
=
1

[=

SA QA SA QA

Figure 6.6: Performance comparison of different QUBO formulations for four different maps with 20-agent
problems along with the optimal solution, where we run QP (Section 6.5.2) and QCP (Section 6.5.2) for 30 pricing
steps. We compare SA and QA by indicating the total path cost of the best sample (top) and the number of
infeasible solutions (bottom), i.e. Equations (6.14c) and (6.14d) are violated. The cost is scaled by 1073,

for solving HALF and CONFLICT for QP and HALF and SLACK for QCP.

In the top row, we show the cost of the best sample obtained by SA and QA over all 25 scenarios,
along with the optimal solution (ILP). Only feasible samples are indicated here, that is, only those that
adhere to the constraints. For QP, we can see that finding a feasible solution with the HALF QUBO is
nearly almost optimal while the solution quality of CONFLICT slightly deteriorates. Comparing HALF
and SLACK for QCP, we observe that both solvers are able to find optimal solutions. However, QA has
problems finding feasible solutions for the first map for all QUBO formulations.

The number of infeasible solutions returned by SA and QA is depicted in the bottom row. While
SA always finds feasible solutions for HALF, it is easier for QA to obtain feasibility with CONFLICT.
This is due to the sparsity advantage of CONFLICT over HALF and the corresponding decomposition
into independent subproblems. Since the hardware topology of current quantum computers is strongly
limited, such properties have a large effect on the solution quality obtained. For QCP, we find that
QA finds slightly more feasible solutions with HALF than SLACK. However, we note that only a few
separation steps have happened and thus only a small number of constraints have been generated. Using
more pricing steps or scaling up the problem size would lead to way more included constraints, making
the SLACK QUBO infeasible to solve.

6.6 Conclusion

To address the limitations of NISQ devices in solving large-scale QUBO problems, we explore a variable
and constraint generation approach that ensures an optimal solution while maintaining a manageable
problem size. Instead of encoding all possible variables upfront in a MP, we iteratively expand a RMP
by selectively adding new variables. This approach, inspired by Column Generation in LP, assumes
that many variables take a value of zero in the optimal solution, allowing us to introduce only the most
relevant ones. Specifically, we prove an optimality criterion for ILP problems based on upper and lower
bounds obtained through quantum and classical optimization methods. A classical pricing problem

121

Chapter 6 Variable and Constraint Generation

determines which variable to introduce next, while constraints are incorporated iteratively to avoid
excessive problem size growth. We leverage QUBO formulations to obtain upper bounds and LR for
lower bounds, efficiently managing problem complexity. This makes our approach well-suited for NISQ
devices.

As areal-world application, we applied this approach to MAPF, where the challenge lies in computing
collision-free paths for multiple agents simultaneously. Given the high dimensionality of MAPF,
our method iteratively adds paths and constraints while solving QUBO formulations to refine upper
bounds and ensure optimality. We introduced an optimality criterion tailored towards MAPF and
develop hardware-aware QUBO formulations that leverage conflict graphs, enabling parallel solving
and reducing computational overhead. This formulation results in a sparse QUBO matrix and eliminates
the need for slack variables, further improving efficiency. Extensive benchmarking demonstrates the
superiority of our approach over existing QUBO-based methods and classical MAPF solvers when
implemented on NISQ hardware.

For our experiments, we initialized our problem with a feasible set of solutions, that is we use
prioritized path planning for MAPF. In classical column generation, one often falls back to different
methods for generating solutions. Prominent examples are the big-M method or Farkas pricing [35].
For future work, it would be interesting to investigate the adaption of these methods for the ILP setting.
Furthermore, expanding benchmarking to real-world datasets such as UAV traffic or warehouse logistics
would be intriguing.

Even though we obtain equivalence between the original MP and the RMP by generating new variables,
we have no guarantees on how large the problem dimension of the RMP will be in the end.That is,
our problem size can get intractable—in the worst case as large as the MP itself. To circumvent this,
we scrutinize an iterative size-adaptable procedure in Chapter 7. Instead of considering subproblems,
we improve upon an existing solution by solving a QUBO formulation which naturally incorporates
constraints and whose size can be conveniently chosen to match the available NISQ hardware size.

122

CHAPTER [

QUBO Size Reduction by Reformulation

In Chapter 6, we introduced a variable and constraint generation approach to address the limitations of
NISQ devices in solving large-scale QUBO problems. Rather than considering all decision variables
at once, we iteratively expanded a restricted problem by selectively adding relevant variables until
optimality is achieved. However, there is no guarantee on the number of variables required to reach
equivalence with the original problem, meaning that, in the worst case, the problem size may remain
nearly unchanged. Furthermore, it might be the case that many constraints have to be incorporated into
the subproblem QUBO formulation. This can lead to a very dense structure of the corresponding QUBO
matrix, posing difficulties for NISQ devices with a certain underlying qubit topology.

In this chapter, we overcome these limitations by considering different QUBO formulations of the
problem instead of solving subproblems. Reformulating a QUBO problem can significantly reduce its
size, making it more suitable for NISQ devices. This can be achieved by leveraging efficient encoding
schemes, which can also lead to increased sparsity in the QUBO matrix. In particular, we consider CO
problems which aim to find an optimal assignment/permutation. The notoriously hard QAP [237, 238]
is discussed in Section 7.2, for which we propose a logarithmic-sized encoding of the binary variables,
instead of the well-known quadratic encoding for representing permutation matrices.

Going a step further, we propose an iterative algorithm for solving the unbalanced QAP in Section 7.3,
which is inspired by the classical a-expansion algorithm [39], originally developed for computing
graph-cuts. The idea is that instead of optimizing over all permutations at once, an iterative optimization
over cyclic permutations is carried out which converges towards the original optimization. With this
approach, we circumvent the incorporation of constraints for ensuring permutation matrices and can
natively integrate further design constraints into the selection procedure of the cycles. The binary
variables in the solution of a QUBO decide whether a certain cyclic permutation is applied to our current
solution. This encoding allows for arbitrary problem sizes, leading to a scalable and NISQ-aware
approach. An overview of our Cyclic Expansion algorithm can be found in Figure

We apply our proposed algorithm to the FPGA-placement problem in Section 7.4. It is one of the
most time-consuming steps in the implementation pipeline for FPGAs, as well as for the field of chip
design in general. Placement is crucial for FPGA design because it directly impacts the performance,
power consumption, and resource utilization of the circuit. Due to increased chip size—chip grids
consisting of millions of transistors—the need for efficient algorithms is huge. Since QAP is strongly
NP-hard, classical algorithms often fail in finding a good solution in reasonable time, while QO is very
promising in overcoming these limitations. We apply our proposed cyclic expansion algorithm for

123

Chapter 7 QUBO Size Reduction by Reformulation

[Subproblem

558

(a) Init. solution. (b) Choose indices. (c) Solve QUBO. (d) Update. (e) Valid solution.

L&

3

Figure 7.1: Overview of our proposed variable Cyclic Expansion algorithm. Given an initial permutation (a), we
choose a subproblem with a suitable size for quantum hardware (b). Random disjoint cyclic permutations are
sampled for formulating a QUBO problem, which can then be conveniently solved with a NISQ device (c). The
obtained solution indicates which cycles should be applied to our current permutation and it is updated accordingly
(d). Steps (c) and (d) are repeated until every possible 2-cycle appeared, while subproblems in (b) are chosen until
a certain convergence criterion is met. We end up with a valid solution with better quality than the initialization

(e).

iteratively refining a given FPGA-placement. The heterogenous nature of mapping functional blocks
to the underlying chip grid locations in FPGA design, can be handily integrated into the choice of the
cyclic permutations. Moreover, we can conveniently adapt the problem size to available NISQ-hardware
capabilities. Experiments on digital annealing devices and quantum annealers prove the viability of our
method.

7.1 Related Work

The QAP is a traditional combinatorial optimization problem [239], [38]. It is NP-hard and no classical
algorithms are known which can approximate a solution with quality guarantees in polynomial time.
The current state-of-the-art methods for solving the floor planning problem/QAP in FPGA-placement
can mainly be divided into three groups: simulated annealing (SA) [240, 241], analytical [40, 242] and
partitioning-based [243, 244] approaches. The SA approach can achieve high quality results, especially
in terms of subsequent routing time. However, its running time becomes a major drawback when placing
a large circuit. Contrary to this, partition-based approaches have a very short running time by recursively
partitioning a design. Nevertheless, this might result in bad quality because the problem is solved locally
after partitioning. The analytic approach compromises this quality-speed trade-off, by being very fast
and showing similar performances to the SA approach. Not every functional block contained in the given
net list can be placed anywhere on the chip grid, e.g., a LUT cell cannot be placed on an IO location.
The analytic methods need a post-processing for incorporating these constraints. There also exist other
approaches, e.g., ones who are based on machine learning [245, 246]. All of the aforementioned methods
heavily rely on approximations and often need good initializations.

! We stick to the term “grid” although the placement problem can indeed be lifted to higher dimensions, e.g., 3-dimensional
chips.

124

Chapter 7 QUBO Size Reduction by Reformulation

The idea of addressing hard combinatorial optimization problem, such as QAP, with quantum
computing naturally arises, since quantum computers look promising for overcoming classical limitations.
The most advanced research in this field is given in [145, 197, 247], where the paradigm of quantum
annealing is applied for solving QAP. Still, the only work we came across in our literature research
which is concerned with solving the FPGA-placement problem with quantum computing is [248]. This
paper uses a combination of a quantum genetic algorithm and SA and is of rather theoretical nature,
without any restrictions on th problem size.

Note that FPGAs are frequently used as control devices in QC hardware [249-251]. However, we
apply QC implementations of FPGA designs, which can then be applied to the development of FPGA
control units for quantum computers.

7.2 Quadratic Assignment Problem

In particular we examine QAP [237], which aims to find an optimal assignment, also called permutation.

Definition 7.1 (Permutation). Let X = {z,...,z,} C Randn € N. Amap 7 : [n] — [n] is
a permutation if it is bijective. Permuting an element x; means, that we apply to its index ¢, i.e.,
x; — Zr(;)- Equivalently, it can be depicted by a binary matrix P, the so called permutation matrix

PcP, = {ZGB”X":leL ZTlZl}’ Pij = 0n(i) 5 -

That is, each row and column of P sums to one. Equivalence holds in the sense, that if we stack the
. T .
elements of the set X into a vector ¢ = (xy,...,x,) , we obtain

In words, a permutation is a rearrangement of elements in a set in terms of position. The corresponding
permutation matrix swaps a vector’s entries accordingly. We extend the term to injective maps.

Definition 7.2 (Subpermutation). With m,n € N,m < n we define a map 7 : [m] — [n] to be a
subpermutation if it is injective. 7 can also be described by a binary subpermutation matrix, whose
rows sum to 1 and whose columns contain at most a single 1. The space of subpermutation matrices of
dimension m x n can hence be defined as

Py = {Z € {0,1y™" . 21, =1,,, Z'1,, = 1n} .
The QAP can be formulated as follows.

Definition 7.3 (QAP). Given are a set of facilities 7 = {p;,...,p,,} and a set of locations £ =
{li,...,1,} (m < n), along with a flow function f : F x F — R between facilities and a distance
function d : £ x £ — R between locations. We define the flow and distance matrices as

F = (f(pz,pj))’;rzzlv D = (d(ll’lj)):jzl :

125

Chapter 7 QUBO Size Reduction by Reformulation

We formulate the quadratic assignment problem (QAP) as
argmin » F, ;Do) ()
T e

where 7 : [m] — [n] is a subpermutation. An equivalent formulation is given by the corresponding
permutation matrices

min tr (FPDPT> .
PeP,, ,

For given flow and distance matrices F' and D, we define the cost function as
c(A,B) = tr (FADBT) . c(A)=c(A,A) .

In the literature, assuming m < n is denoted as unbalanced QAP, while a QAP is typically defined
with m = n. In practice however, the number of facilities is often way smaller than the number of
locations, as we will see in Section 7.4. We remark that the number of permutations [n] — [n] is n!,
hence, it infeasible to use exhaustive search/brute force for finding an optimal permutation.

7.2.1 QUBO Formulation for the QAP
To obtain a QUBO formulation, we observe the that QAP is a specific form of QBP.

Proposition7.1. Let F € R™ ™ D € R™", m < n, W := F@D, A:=I,,®1,) and B := 1), ®1,,.
The following equivalence holds

min z' Wz & min tr (FPDPT).

ZEan PGPm,n
st. Az=1,,
Bz <1,

Proof. Forabinary Z € B"™", let z = vec(Z). Then

2 Wz=z2 (F® D)z = S Z;ZuF,;Dy=tr (FZDZT) .
(4,9), (kD) €[m] x[n]
For the constraints, we remark that

Az=(I,®1,)z2=2Z1,, Bz2=(1), @I,)z2=2Z'1,,,

which follows from standard matrix identities involving Kronecker products, matrix traces and the vec
operator [252].]

To obtain a QUBO formulation, we can leverage the equivalence in Proposition

Proposition 7.2 (QAP-QUBO). Let F € R™™ D e R”" m <n, A:=1,®1, and B =
1, ® I,,. We can find a QUBO formulation for the QAP with A € RT, p € R", X := (\/)\i)iTe[m],

126

Chapter 7 QUBO Size Reduction by Reformulation

wo= (Vi)iepp A =X1,0A, B =p'1, 0B, 1,,:=XN 01, and 1}, = ' © 1,

min 2 Qz, Q=FoD+ATA+B B —diag <2A'T1;71+B’T1;) Can

zeB™"

Proof. The QUBO formulation is obtained by applying Proposition 3.1 to Proposition 7.1 and using Pro-
position 6.3 for incorporating inequality constraints < 1. 0

For practical problems, the problem size mn can quickly get intractable for current quantum hardware,
due to the limited qubit scale.

7.2.2 Logarithmic Encoding

A first try towards reducing the problem size is to use a different encoding scheme. We focus on the
case m = n, the resulting state space size is then n®. Our idea is to not use a permutation matrix but to
use a matrix whose rows correspond to binary numbers represented as vectors. For this, we assume that
n = 2k, ie., k = logyn.

Definition 7.4. Let k € N, n = 2", 7 : [n] — [n] be a permutation, P € P, its corresponding per-

mutation matirx, d := (2k_1, . ,20)T andn = (0,...,n — l)T. We define the binary representation

matrix B, € {0, 1}”Xk of 7 to be the matrix which maps the vector d to a permutation 7 of n, i.e.,
B,d=Pn.

The rows of B, correspond to binary numbers in [n], since the entries in 7 are unique. We denote the
set of all binary number matrices on [n] as B,,.

Example 5. As an example, set n = 4 and let 7(0) = 2, 7(1) = 3, 7(2) = 1, 7(3) =0,

: (i) =B,d. (7.2)

With this representation our state space is reduced from n®ton log, n. The number of permutations
for n elements is n! and thus for representing all permutations we need at least m bits such that

P.n =

™

_ o O O
o R O O
S O O =
o O R O
w N = O
O~ W N
S O = =

2™ >n! & m >logy(n!) (7.3)

is fulfilled. With logy(n!) = nlnn —n + O(Inn), we can deduce that 2(n log, n) bits are needed for
representing all permutations. Thus, our variable reduction is asymptotically optimal.

We have seen in opposition to Proposition 7.2 that a QUBO formulation for QAP can be obtained by
incorporating constraints. However, the conditions for the binary representation matrix are not as trivial
as for permutation matrices.

k k
Proposition 7.3. Let Z = (zy -+ z,_1) € {0,1}2 *¥, z, € {0,1}? and let Z, (Z,) be the submatrix
of Z which arises from removing the first column and then only considering the row indices in which the

127

Chapter 7 QUBO Size Reduction by Reformulation

first’s column entry is 0 (1). Then for k > 2
ZeBy & zzg=2 1y =2" N Zy,Z, € By (7.4)

Proof. Without loss of generality we can assume that the rows of Z are ordered with respect to the
ordering of binary numbers. This can be assumed, since both sides in Equation (7.4) do not get effected
by applying row-wise permutations. We prove the claim using induction.

“="" Trivial.

“<"IB: Letk = 1. Then Z = (0,1) ', since zg 2o = 1.

IS: With the ordering described above, we can write Z as

-
0O --- 01 --- 1
Z = , 7.5
(s 75
- 2" k-1 . k—1 k—1 : : :
with Z,, Z; € {0,1} , since zj has exactly 2° ~ ones and 2" ~ zeros. With the induction
hypothesis the claim follows, since Zy, Z; € B,x-1. O

The recursive condition in Equation (7.4) does not enlighten us directly how to find an equivalent
quadratic formulation. We first setup a binary form of higher degree.

sgs _ 2 xk 2" 2Fxk
Proposition 7.4. Let Z = (zg -+ z,,_1) € {0,1}" °", z; € {0,1}" Then, B € B if

T

.
B cargmin y |1 (@ z) O] 1, -2 <@ z) el , (76

k ~ ~
Z€B2 xk ZEZZ zZeZ z"lez zZeZ

where Z; .= {{Zy,..., Z_1, 21} : Z; € {z;, 10 — 2}, i € [}

Proof. Note that the matrices Z), Z; can be obtained by entry-wise multiplying all columns but the
first column by 1,1 — 2 and z, respectively. We can then use Equation (7.4) iteratively, such that all
submatrices fulfill this condition. For the [-th column of Z, we thus get the following conditions:

.
(@ 2) 1. =2"" 2€z.

zZeZ

128

Chapter 7 QUBO Size Reduction by Reformulation

This leads to 2' conditions for the I + 1-th column. We can write

N
(@ 2) 1, =2""" zez

zZeZ
2

.

& <@ 2) 1. -2 =0, 2ez
zZeZ

2

B T
& min > (@z) 1 — 28!

zeB? ** zez, | \zez

T

S min Y |1 <©z> O] 1, -2 <@2>T12k

zeR® *F zez zez fez zez

O]

The optimization problem in Equation (7.6) is not quadratic and it is thus not straightforward to obtain
a QUBO formulation. A higher-degree pseudo boolean function can be quadratized by using penalty
terms [253]. Specifically, a product of two binary variables z;z; can be replaced by a single binary
variable z;2; = z;; by adding

M(ZZ‘Z‘ — 222‘21;]‘ — 22’]2’” + 322]) s

to the objective function, where M > 0 is a suitable penalty term. Using this substitution, we need
(’)(n2) auxiliary variables, rendering the official size reduction useless. This could be circumvented by
using more sophisticated quadratization techniques [254, 255]. In the best case however, we still need
at least n logy (1) qubits, which is out of reach with a large n. Thus, we examine a different technique
suited for permutation-based optimization, whit adaptable subproblem size.

7.3 Cyclic Expansion

The above issues can be overcome by not considering a single QUBO formulation but a series of
QUBOs. Compared to the methods discussed in Chapters 5 and 6 we do not consider the optimization
of subproblems, but take a slightly different approach. That is, we use a variant of the a-expansion
algorithm [39, 197]. The original a-expansion is a graph-cut-based method that efficiently finds
approximate solutions for problems where the objective function involves pairwise interactions between
variables. The key idea is to iteratively improve a current labeling by allowing nodes to either keep their
current label or switch to a given label ae. We expand this approach by considering permutation-based
optimization—the QAP problem in particular. The idea is that instead of optimizing over all permutation
matrices at once, an iterative optimization over cyclic permutations is carried out which converges
towards the original optimization. For the upcoming sections we assume that m = n, the case m < n
follows analogously.
Informally, the cyclic expansion algorithm works as follows:

129

Chapter 7 QUBO Size Reduction by Reformulation

1. Initialize permutation matrix P € P,,,

2. Choose a set of simple permutation matrices C C P,, with |C| = k < n,
3. Solve a QUBO of size £ to decide which permutation in C to apply to P,
4. Update P with the chosen permutation,

5. Repeat steps 2-4 until convergence of cost ¢(P).

In what follows, we define all necessary terms and provide a detailed description of Algorithm &, also
depicted in Figure 7.1. As simple permutation matrices we use cyclic permutations, even the smallest
possible cyclic permutations, so called 2-cycles.

Definition 7.5 (2-Cycle). Let C € P, be a permutation matrix. C' is a 2-cycle if

We denote the set of 2-cycles with Pﬁ,?%
A 2-cycle is also called a transposition. We remark that any permutation matrix P € P,, can be
written as a product of 2-cycles,
S
VPeP,:3C,...,0} c PP P=T]C;. (7.8)
i=1
Instead of optimizing over all 2-cycles the idea is to iteratively consider fixed subsets of]P’f).

Definition 7.6. LetC = {C,,...,C,} C ng) be a set of 2-cycles and let a € B®, s € N. For P € P,
we define

S
g(P,a,C) = (H C’f”) P=C"...C*P, (7.9)
i=1

with CZQ =1, C} := C}. In words, the vector « indicates which cycle in C should be applied to P.

For a given P € P, the following objective is optimized in each iteration

argmin ¢ (g (P, a,C)) . (7.10)
acB’

However, Equation (7.10) is not in QUBO form and can thus not be directly solved on actual quantum
hardware. To overcome this issue, we only consider disjoint 2-cycles.

Definition 7.7. Let C,C’ € P?). C and C’ are disjoint if
(Com0=Chm1) A (Ch=0=C=1) |

which leads to commutativity, i.e., CC' = C'C. We call a set C C]P’gf) disjoint if all elements are
pairwise disjoint.

130

Chapter 7 QUBO Size Reduction by Reformulation

Sets of disjoint 2-cycles have a large expressive power in terms of covering the whole permutation
space.

Proposition 7.5. Given a permutation matrix P, there exist two sets C, C' C]P’ of disjoint 2-cycles
such that
P=LR, L=][cCc, R:=1]]C.
cec c'ec’

Proof. See [197].]
Assuming disjoint 2-cycles we obtain the following result.

Lemma 7.1. Assume thatC = {C},...,C,} C]P)g) is a disjoint set of 2-cycles and let P € P, be a
permutation matrix. Then, the following identity holds

=1

Proof. We prove the statement by induction. For s = 1 Equation (7.9) reduces to
C°P=(1-a)P+aCP=P+a(C-1,)P,
leading to Equation (). Multiplying the inverse of P to the right, we obtain
C=I,+a(C-1,) .

Now, consider s and assume that Equation () holds for s — 1. Then

(f1er) - (iter)
(1 —i—Za (C;—I,)) (I + as (Cs = 1))
=<In+2ai (ci—m) (Zaias (Ci—1,) (Cs—m) :

and it remains to show that (C; — I,) (C, — I,,) = 00 . Since all C; are 2-cycles, C; — I, only has 4
non-zeros entries and since C; and C| are disjoint, they have these entries in different rows/columns.
This leads to their product being equal to the matrix consisting only of zeros. O

C s

Inserting Equation (7.11) into Equation (7.10) leads to the following QUBO.

Theorem 7.1 (CYCLICEXPANSION-QUBO). Assume thatC = {C,...,C,} C]P’g) is a disjoint set of
2-cycles, P € P,,. A QUBO formulation equivalent to Equation () is given by

c(C;,C; fi#7,
i o Qe Q= ¢ c))(C P) (P,Ci), else . 712

131

Chapter 7 QUBO Size Reduction by Reformulation

Algorithm 8 CYCLICEXPANSION Algorithm

Input: FcR™"™", Dec R k<m,k,<n—k
Output: subpermutation matrix P € PP,,, ,, optimizing ¢ (P)
1: Initialize P € P, ,,
2: repeat
3: Choose indices Z, 7, |Z| = k, |J| = k,, (Section)

4; Construct matrix W (Z, J) (Section)

5: repeat

6: Choose a random set of 2-cycles C (Section)

7: Calculate Q (Z, J) from W (Z, J) (Theorem 7.1)

8: a” + argminy, aTQ (Z,7) o > QC
9: P+—yg (P, a*,C) (Lemma 7.1)

10: until Every 2-cycle occured in one set

11: until A convergence criterium is met

Proof. Since tr and matrix multiplication are linear functions, c is bilinear and we obtain

min ¢(g(P,a,C))

acB®

S S
a€B i=1 j=1

= min c¢(P)+ zs: ;o e (é’l,éj> + ZZS;%'C (éi,P> + jzs;ajc (P, éj)

s
acB ij=1

: T
=min o Qa,
acB®

where @ is defined as in Equation ().]

We observe that for a set with n elements, the largest possible set of disjoint 2-cycles has |n/2]
elements. Therefore, the dimension of the QUBO problem in Equation (7.12) is way smaller than the
size of the original QUBO in Proposition 7.2 (s < [n/2] < m(n + 1)).

The overall iterative method is outlined in Algorithm 8: Given a permutation matrix P € P,,, we
iteratively choose sets of random disjoint cycles and optimize Equation (). This gives us a binary
vector a, indicating which cycle should be applied to our current permutation matrix. After updating P,
the procedure is repeated until convergence. The specifics for Algorithm 8 are elaborated in the next
section.

7.4 Application: FPGA-Placement

Logic optimization, placing and routing are fundamental and the most time-consuming steps in the field
of chip design for both ASICs and FPGAs [256]. The number of transistors and logic gates on a single
chip is increasing more and more, leading to the mentioned processes consuming more and more time.

132

Chapter 7 QUBO Size Reduction by Reformulation

Until convergence/ ¥

Initialize Choose Sample
Permutation subset of disjoint 2- Solve QUBO
(random) indices cycles

Final
permutation

Update
permutation

a* = argmin &' Qa “ctp

Figure 7.2: Flow chart of the CYCLICEXPANSION (Algorithm 8): Given an initial permutation (random), we
choose a subproblem and iteratively sample random disjoint cycles, which are used to formulate a QUBO problem.
This QUBO formulation is solved with quantum annealing, giving us a binary vector a*, indicating which cycle
should be applied to the current permutation. If every cycle occurred, we choose a new subproblem and repeat this
procedure until convergence.

This limits the speed of development cycles, which is an issue of productivity but can also be a security
issue, since faster development cycles for cryptography related algorithms allow for improved security
analysis.

Here, we focus on the placement step, in which we aim to find an ideal placement of functional
blocks on the chip. The advantages of a good placement are twofold: On the one hand, minimizing
the physical distance between connected elements leads to shorter wire lengths and therefore a higher
maximum clock rate. On the other hand, a good placement can lead to a faster routing process, i.e., the
routing algorithm of the connections between elements finding a good solution in fewer iterations and
less time. Since the placement itself is an increasingly time-consuming step, decreasing the runtime of
the placement algorithm while maintaining a high solution quality is of great interest.

Taking a closer look at the math behind the placement in the floor-planning case, we find that it is
equivalent to the QAP [237, 238]. The goal of the QAP is to assign each given element to a unique
location, minimizing a given cost function. In chip design, that cost function can be the total wire length
between connected units given by a placement on the chip. Minimizing that function leads to a shorter
maximum wire length and with that the possibility for a higher maximum clock rate. The QAP is
an NP-hard combinatorial optimization problem, and moreover, one of the hardest in this class, since
there is no approximation algorithm for producing a suboptimal solution with guarantees in polynomial
time [257].

While real-world quantum devices suffer from a series of technical limitations, there is theoretical
evidence that hard combinatorial problems can be solved exactly via AQC. We leverage these theoretical
insights and describe the first algorithm for placement of functional blocks (e.g., Lookup Tables (LUT),
BlockRAMs (BRAM), Digital Signal Processing (DSP)) on an FPGA, based on solving a QAP via QC.
That is, we apply our developed CYCLICEXPANSION algorithm to FPGA-placement, with an overview
given in Figure

133

Chapter 7 QUBO Size Reduction by Reformulation

7.4.1 FPGA-Placement

We illustrate the FPGA development procedure on the example of the open-source tool nextpnr [258],
which is used for logic optimization, placement and routing. In the first step, nextpnr transforms the
logic elements (LUTs, BRAMs, DSPs) from the logic optimization into elements which are actually
available on the specific chip. The number of elements needed to be placed on the chip, as well as the
neccessary conncetions between the elements, is then known exactly. After that step, nextpnr generates
an initial placement guess, which is used as a seed for a simulated annealing approach. The goal of
the placement is to determine an optimal spatial arrangement of these blocks on an FPGA to minimize
communication delays and enhance performance. Following the placement, the routing is done by an A*
algorithm with a rip-up and reroute strategy. The routing time is significantly affected by the quality
of the placement, meaning a better placement can increase the routing speed. It is well known that the
placement problem can be formulated as an unbalanced QAP. We now recap this formulation, since
our construction in Section 7.3 relies on it to transform the placement problem into a series of QUBO
problems.

In FPGA-placement the goal is to place m functional blocks into n physical slots on the FPGA
chip grid such that the total wire length is minimized, with m < n. The matrix F' indicates how two
functional blocks are connected in the given net list and the distance matrix D indicates the distances
between different locations on the chip. However, in the classical QAP framework, we need the two
matrices to have the same dimensionality.

Using this definition, we can formalize the placement problem as a QAP by introducing a new
matrix F' € R™*", which is 0 everywhere except for its 7m x m upper block matrix, i.e., F[/m],[m] =F.
Descriptively, we introduce n — m “dummy” functional blocks which are not connected to any other
unit. The placement objective can now be written as

min tr (F'PDP") . (7.13)
PeP,

Even though it is a common way for obtaining a QAP formulation, inserting n — m dummy elements
leads to a large amount of redundancy and high dimensionality, especially if m < n. We can overcome
this issue by considering subpermutations, discussed in Section

Even though with Proposition 7.2, we have a quantum-compatible problem formulation for the QAP
at hand, we remark that our problem dimension is mn. That is, for solving an FPGA-placement
problem with m functional blocks and n grid locations, we need nm qubits, which is beyond capabilities
of current (and upcoming) quantum hardware. Furthermore, choosing the penalty parameters A, p
in Proposition maintaining equivalence while also having preferable conditioning for quantum
hardware is tedious and error prone. In [145], coarse upper bounds are provided for these parameters.
Moreover, constraints on the permutation space can not easily be integrated into such a formulation.
However, this is of great importance in FPGA-placement since we have to take into account that the
types of every functional block and the corresponding placement location have to match. For example, it
is impossible to place a LUT onto an IO location (cf. Figure 7.3). We thus investigate the performance
of the CYCLICEXPANSION-algorithm developed in Section 7.3 for FPGA-placement.

7.4.2 Implementation Details

We give an overview of the implementation details of our proposed algorithm in Algorithm 8.

134

Chapter 7 QUBO Size Reduction by Reformulation

Figure 7.3: Illustration of allowed 2-cycles. Shown are the current placement (left) with corresponding cell types
(cyan and red) and an example of legal and illegal 2-cycles (right).

Initialization Since our proposed method works iteratively, any given initial solution can be incorpor-
ated easily. Either we can start off with a random subpermutation or something more elaborated like
analytical or force-directed placement [238].

Choosing Indices Instead of optimizing over the whole index set [m] in each iteration we can
reduce the problem size by considering an index set Z C [m] of size k. These indices can be chosen
randomly but having a deep understanding of the underlying problem setting, one could use a more
informative approach. For example, we could choose the indices depending on the impact of the overall

cost, i.e.,
max Y Y FDroya(y) - (7.14)
ZC|ml,|Z|=k ieT i)

Intuitively, it makes sense to greedily permute the currently worst performing indices. However, one
might get stuck in a local optimum too early. Both methods (random and greedy) are investigated later
on in Section

Even though we now have a problem dimension only dependent on & and not the number of locations
n, this approach is not yet guaranteed to converge towards an optimal solution. If we only consider
index sets Z C [m] we stick to permute the initial subpermutation and thus concentrate on a fixed set
of m locations. To prevent this, in each iteration, we also sample a set 7 C [n] of k, < k unbound
locations, i.e., locations which are not assigned to a functional block. We sample each unbound location
with a probability proportional to the distance to the nearest neighbor in the set of bound locations. With
this method, we also explore the set of unbound locations and can place the given functional blocks on
the whole chip grid.

Choosing Cycles For fixed numbers of indices k, k, < m, we iteratively sample a set of dis-
joint 2-cycles and optimize the current permutation until every 2-cycle has occurred in the sampling
process (Lines 5-10). The question arises on which indices these cycles should be sampled. Con-
sidering an index set Z = {iy,...,4;} C [m] we can compute the subpermuted index set under the
subpermutation 7 as Z. := {7 (i1),...,m(i;)} C [n]. We first sample k,, disjoint 2-cycles which map
{i1, .- ik, } to J. Secondly, we sample | (k — k,,)/2] disjoint 2-cycles which map {ij, ,1,...,i;} to
{m(ig,41),---,m(ix)}. Since there are restrictions on which functional block can be mapped to which
chip location (e.g. a LUT cannot be placed on an IO cell), one cannot simply sample these cycles
arbitrarily between chosen indices (see Figure 7.3). However, this does not pose a problem for this
framework, because these constraints can be integrated into the sampling process. The total number of
2-cycles is thus s = k,, + | (k — k,,)/2], which is only dependent on the freely selectable index set sizes

135

Chapter 7 QUBO Size Reduction by Reformulation

k and k. Since the QUBO dimension corresponds exactly to the number of considered disjoint cycles,
we can conveniently adapt the problem to the available hardware size, either for real quantum annealers
or classical digital annealing QUBO solvers. However, there is a trade-off between problem size and
performance, which will be investigated later on in Section

Constructing Clamped Matrix It remains to clarify how the matrix W (Z, 7) from Algorithm
is constructed. One way would be to precompute the cost matrix W = F @ D € R™" ™ and then
using standard methods for reducing the QUBO size with fixed variables. Since real-world algorithms
to be implemented on an FPGA-chip can contain up to millions of functional blocks and chip locations,
the size of the cost matrix W € R™" ™" can get infeasible to hold the precomputed matrix in memory.
We resolve this issue by exploiting the tensor product-like structure of W = F ® D.

Definition 7.8. Let m,n € N, m < n,Z C [m] and 7 : [m| — [n] be a subpermutation with
corresponding subpermutation matrix P € P,,, ,,. Define Z := [m] \ Z and let Z, 7. C [n] be the sets
created by applying the underlying subpermutation 7 of P to Z,Z°.

Proposition 7.6. Let m,n € N, m < n, w : [m] — [n] be a subpermutation with corresponding
subpermutation matrix P € P, ,, F' € R DeRV" W=FD,TC [m], with |Z| = k and
J C [n] with |J| = k,. Then

min 2 Wz = min (z (T, j))T W (L,7)2(L,7) .
e (VA 2(T.7)ef0, 1 R

with z (I, J) = vec(Py 1), I, :=7.UJ, z = vec(P) and

7I7/T
W(Z,7):= F;® Dy + diag (VGC (FZ,ICDZfr,I; + FITC,ZDI,C,,Z;)) :

With having clarified all steps of Algorithm 8, we can examine the behavior of this algorithm.

7.5 Experimental Evaluation

We conduct experiments with a fictional FPGA architecture for analyzing the behavior of our proposed
algorithm. We choose this as a generic minimum baseline for all FPGA architectures, ignoring imple-
mentation details like grouping into slices, carry chains etc, which might be vendor specific and thus
not translate easily to other FPGAs. In this architecture, we assume that every LUT has an adjacent
register, so that its usage is irrelevant to the placement process and can be ignored. We consider only the
data path, i.e., ignore clock net routing and control signals like reset and clock enable. However, this
information can be integrated into F' and D.

The fictional FPGA architecture contains three different cell types: 10 cells, BRAM cells and LUT
cells. The legend for upcoming plots is indicated in Figure 7.4. For the upcoming experiments we
assume an FPGA chip which consists of 21 x 21 cells. It contains 10O cells at the border and 16 BRAM
cells distributed uniformly over the gird, with the rest being LUT cells (see e.g. Figure 7.7). We are thus
faced with n = 217 = 441 locations.

136

Chapter 7 QUBO Size Reduction by Reformulation

LUT location B 1O location RAM location
@® LUT facility @ [facility RAM facility
O facility

Figure 7.4: Different cell types for our fictional FPGA architecture along with plotted colors.

— k=10 ke=50 —— k,=100 — k=10 k=50 —— k, =100
1000 T 3000 T
random : ----- worst random : ----- worst
I
300 " 2500 i
2 ll 2 ll\\
38 I 8 2000 HW -
a, 600 [, " NS
< I \\ < \\ _____________
o ‘\ \\~~~~ o 1500 F LTSS e ——]
400 NS —
-------- 1000 | -
200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 O 10 20 30 40 50 0 10 20 30 40 50 O 10 20 30 40 50
Iterations Iterations
(a) m = 100. (b) m = 200.

Figure 7.5: Depicting the effect of varying &, when k is fixed to a certain value, comparing choosing random
subproblems in Line Algorithm 8 with choosing worst performing indices Equation (7.14). Here, £ = 100 and the
QAP cost is depicted over 50 iterations used in the CYCLICEXPANSION. We compare the costs for 10 randomly
generated problems with a problem size of 100 (a) with 10 problems of size 200 (b).

7.5.1 Generic Examples

For examining the behavior of Algorithm 8, we sample 10 different problem instances with m = 100
and m = 200 facilities, respectively. For every instance we assume two IO cells, imitating a single input
and a single output cell. The rest of the cell types are randomly sampled corresponding to the ratio of
the underlying architecture.

We compare the performance of Algorithm &8 with solving the QUBO given in Equation (7.1) using
different QUBO solvers. As a classical software solver we use a simulated annealing (SA) implemented
in the python software package D-Wave Ocean” with default parameters. As a second classical solver,
we utilize a QUBO hardware solver, which is denoted as digital annealing (DA). Similar to QA, DA is
standalone but is not based on quantum technology and uses classical algorithms. One can set up the
running time/annealing time of this device and we henceforth set this time to 0.1 s which is equivalent
to evaluating ~ 160k candidate solutions. Thirdly, we use a real quantum annealer (QA), namely a
D-Wave Advantage System 5.4 with 5614 qubits and 40,050 couplers, fixing the annealing time to
40 ps and taking the best out of 100 reads. Since our algorithm CYCLICEXPANSION contains random
decisions, such as choosing a set of cycles in Line 6, we plot the average performance over 10 runs and
indicate the 95%-confidence intervals.

We start with depicting the performance of CYCLICEXPANSION over 50 iterations in terms of the
QAP cost in Figure 7.5, varying the number of chosen unbound indices k,. We fix & = 100 and
compare k,, € {10,50,100} using the SA solver, with the performance being averaged over the 10
generated instances for m = 100 and m = 200. Moreover, the impact of different methods for

2 https://docs.ocean.dwavesys.com/en/stable (last accessed September 19, 2025)

137

https://docs.ocean.dwavesys.com/en/stable

Chapter 7 QUBO Size Reduction by Reformulation

— k=60 k=80 — k=100 — k=60 k=80 — k=100
1000 T -
I\ I
random T O R B btl worst random R R worst
[3000 : e s S SRR SR
800 : \\,\ |l
2 I R L SE S 2 \
3 1 3 1
& 600 K & 2000 FL
S \¥ o [t BT S
400 P T T —
1000 -
200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 O 10 20 30 40 50 0 10 20 30 40 50 O 10 20 30 40 50
Iterations Iterations
(a) m = 100. (b) m = 200.

Figure 7.6: Depicting the effect of varying k£ when k,, is fixed to a certain value, comparing choosing random
subproblems in Line Algorithm 8 with choosing worst performing indices Equation (7.14). Here, k,, = 30 and the
QAP cost is depicted over 50 iterations used in the CYCLICEXPANSION. We compare the costs for 10 randomly
generated problems with a problem size of 100 (a) with 10 problems of size 200 (b).

choosing subproblems in Line 3 is indicated, comparing random sampling with worst performing
indices Equation ().

We observe that the QAP cost decreases with every iteration of the algorithm. For m = 100 the
random indices choosing method performs similar to the method of worst indices, contrary to the case
m = 200. The larger the dimension of our problem gets, considering only the worst indices can lead to
fast convergence to local optima, leading to an overall worse placement in the end. Furthermore, we can
see that with an increasing number of unbound variables k,,, the performance of the CYCLICEXPANSION
increases, since the space of unbound cells is more thoroughly explored. However, increasing this
parameter k,, also leads to a larger QUBO size (Equation (7.12)), leading to a trade-off between problem
size and performance for a fixed number of iterations.

An experiment with similar configuration can be found in Figure 7.6, but we know compare the
performance varying the dimension of the chosen subproblems k. Here, the number of unbound indices
is fixed to k,, = 30. We observe similar behavior as for Figure but choosing the worst subindices
especially falls back in performance to choosing random indices for small k and large m.

Fixing k£ = 100 and k,, = 50, we plot intermediate placement results of Algorithm 8 after 1, 10 and
50 iterations in Figures and 7.8. We fix the locations of the 10 cells before the actual placement
and use a random initialization. We can see that the initial placement is very bad, in the sense that the
connecting edges are spread over the whole chip grid and cross each other, leading to a large QAP cost.
With an increasing number of iterations, the placement gets a more grid-like structure with less crossings,
leading to very preferable results for a potential subsequent routing. In Figure 7.8, the intermediate
placements for a random instance with m = 200 and fixed IO locations is shown. We can see, that it
takes more iterations to achieve a good placement on the first sight, than for m = 100.

7.5.2 CRC Example

As a real-world example, we consider a simple 32-bit Cyclic Redundancy Check (CRC-32) algorithm
with 8-bit parallel input. This is synthesized by the open-source tool Yosys” for the Lattice MachXO2

} https://yosyshq.net/yosys (last accessed September 19, 2025)

138

https://yosyshq.net/yosys/

Chapter 7 QUBO Size Reduction by Reformulation

R s e L e

R R R T

(a) Initial, cost 2492. (b) 1it., cost 576. (c) 10 it., cost 388. (d) 50 it., cost 328.

Figure 7.7: Intermediate placement results for an exemplary generic example with 100 facilities. The initial
random placement (a) is indicated along with the result of applying our algorithm for 1 iteration (b), 10 iterations
(c) and 50 iterations (d). The placement of the two IO facilities is fixed and the corresponding QAP costs are
indicated. See Figure 7.4 for a legend.

(a) Initial, cost 4954. (b) 1 it., cost 2780. (c) 10 it., cost 1068. (d) 50 it., cost 768.

Figure 7.8: Intermediate placement results for an exemplary generic example with 200 facilities. The initial
random placement (a) is indicated along with the result of applying our algorithm for 1 iteration (b), 10 iterations
(c) and 50 iterations (d). The placement of the two IO facilities is fixed and the corresponding QAP costs are
indicated. See Figure 7.4 for a legend.

architecture. Wide LUTs and CCU?2 carry chains are forbidden, so that the synthesized output only
contains 78 LUT-4s and 32 registers. The Lattice MachXO2 is a current technology that is available in
sizes starting from 256 LUTs’, so it is comparable to our demo architecture.

For this real-world example, we conduct experiments with a similar configuration to the one used
in Figure 7.5. In contrast to the previous experiments, we now do not vary our problem size m but
compare setups with fixed 1O cells with the setup of optimizing the placement of these cells along with
the remaining functional blocks. In Figure 7.9, we fix £ = 100 and vary k,, € {10, 50, 100}. We observe
that fixing the IO cells leads to faster convergence and thus a worse placement than with the possibility
of also optimizing the 10 placements. Although, for unfixed IO cells, the uncertainty in the outcomes is
larger than in the fixed case. Furthermore, we can see that the relative performance of only choosing
k,, = 10 unbound indices compared to k£, = 50, 100 is worse than in the generic case (cf. Figure 7.5).
The number of needed unbound indices is thus heavily dependent on the underlying problem structure.

In Figure 7.10 we depict the effect of varying k£ when k,, is fixed to 30. We observe that for choosing
random problems, changing the subproblem size does not have a very large effect on the QAP cost.

4 https://www.latticesemi.com/view_document?document_id=38834 (last accessed September 19, 2025)

139

https://www.latticesemi.com/view_document?document_id=38834

Chapter 7 QUBO Size Reduction by Reformulation

— k,=10 k, =50 — k, =100 — k,=10 k, =50 — k, =100
5000 — 5000 .
o I
random \ S T worst random ' N Bimintad worst
4500 J\ e T 4500 TS
o \ I - 1 \\\
g 4000 - RN £ 4000 it p .
Q NS Q e~
A S R ———— o ‘\ =
& 3500 - S 3500 i
\\\
3000 ! ! : o ! ! : 3000 R M S R
2500 1 1 1 1 1 1 1 1 2500 1 1 1 1 1 1 1 1
0 10 20 30 40 50 O 10 20 30 40 50 0 10 20 30 40 50 O 10 20 30 40 50
Iterations Iterations
(a) Fixed IO cells. (b) Unfixed IO cells.

Figure 7.9: Depicting the effect of varying k£ when k,, is fixed to a certain value, comparing choosing random
subproblems in Line Algorithm 8 with choosing worst performing indices Equation (7.14). Here, k,, = 30 and the
QAP cost is depicted over 50 iterations used in the CYCLICEXPANSION. We compare the costs for fixed 1O cells

(a) and unfixed IO cells (b) for the CRC-32.

— k=60 k=80 — k=100 — k=60 k=80 — k=100
5000 - 5000 -
[} 1\
random . - worst random 1y " worst
4500 } i H - \‘.\ i i i H 4500 H H _\\ 3 \‘4 H H
S N e
Z 4000 L S — Z 4000 BN -
9] S o N 3
A " S
& 3500 - & 3500 - B
2500 1 1 1 1 1 1 1 1 2500 1 1 1 1 1 1 1 1
0 10 20 30 40 50 O 10 20 30 40 50 0 10 20 30 40 50 O 10 20 30 40 50
Iterations Iterations
(a) Fixed IO cells. (b) Unfixed IO cells.

Figure 7.10: Depicting the effect of varying & when £ is fixed to a certain value, comparing choosing random
subproblems in Line Algorithm 8 with choosing worst performing indices Equation (7.14). Here, £ = 100 and the
QAP cost is depicted over 50 iterations used in the CYCLICEXPANSION. We compare the costs for fixed IO cells

(a) and unfixed IO cells (b) for the CRC-32.

Thus, one already can achieve good placement results with a small problem size. However, choosing
the subproblems greedily with Equation (7.14) is more sensitive in terms of performance outcomes for
different problem sizes.

Again, similarly to the observations in Figures and 7.8, we see that the placement also visually
improves with an increasing number of iterations.

Lastly, we conduct experiments with QA and DA. We compare the performance of these two hardware
solvers with SA on the CRC-32 example with fixed IO cells in Figure . We fix k = 60, k,, = 30 and
choose the subproblems randomly. Figure depicts the change of the QAP cost over an increasing
number of iterations in the CYCLICEXPANSION. We find all solvers to perform equally well for this
problem.

Figures to depict the placement results for specific runs after 50 iterations using QA,
DA and SA, respectively. Since the QUBO problems in Equation () are well conditioned (integer
valued and small dynamic ranges), real quantum hardware can achieve similar performance to classical

140

Chapter 7 QUBO Size Reduction by Reformulation

AN g ¥ TR
@oooooe o o} 0T,
P et/
o

L
L
N e e
5500f Q = oo
— DA B0 s o0 o0m
- e e o\e e o B
g 5000y ae cea
=9 B ooo o\o\e o &
< oo o 0 @
S 4500(7 e :
4 AN
4000 “f! ¢
- % \

0 10 20 30 40 50

- N\
Gosife o/ 59 %
Iterations ?:? o) 5 S\}:\:

(a) QAP cost. (b) QA, cost 3732. (c) DA, cost 3790. (d) SA, cost 3758.

Figure 7.11: Performance comparison of the hardware solvers QA and DA with SA on the CRC-32 example.
We choose random subproblems and fix £ = 60 and £ = 30. We depict the QAP cost over 50 iterations for the
CYCLICEXPANSION (a) and exemplary placements after 50 iterations with QA (b), DA (c) and SA (d).

Table 7.1: QAP cost comparison of our CYCLICEXPANSION method to a random placement, as well as simulated
annealing (SA) and an analytical placement (HeAP) as implemented in nextpnr. We use the CRC-32 example
and synthesize for the generic architecture. Numbers are average QAP costs over 10 repetitions of the respective
method. Lower is better.

Random SA HeAP Ours (1it) Ours (2it) Ours (10 it)

11417.0 7017.6 7047.8 8192.8 6560.2 4762.0

solvers. This is an interesting result, since today’s quantum technology is still in its infancy with limited
computational power (number of qubits) and large proneness to errors. A detailed discussion on the
effect of the conditioning of QUBO problems can be found in [45].

We also compare our CYCLICEXPANSION algorithm to two state-of-the-art placers implemented
in the open-source framework nextpnr [258]. Table depicts the performance comparison in terms
of QAP cost of a simulated annealing (SA) placer [241], an analytical placer (HeAP) [40] and our
algorithm. We can see that our method already outperforms the other placers after two iterations in
terms of QAP cost. These results are very promising for future benchmarking of our algorithm on real
FPGA hardware.

7.6 Conclusion

Our proposed method addresses the limitations of NISQ devices in solving large-scale QUBO problems
by focusing on problem reformulation rather than subproblem decomposition. We introduce efficient
encoding schemes that reduce problem size while maintaining solution quality. This reformulation not
only increases sparsity in the QUBO matrix but also avoids the complexity introduced by additional
constraints. Specifically, we tackle the QAP, which is notoriously hard to be solved with classical
algorithms. With the notion of subpermutations, we find a new QUBO formulation for the unbalanced
QAP without introducing dummy facilities, leading to a lower dimensionality. The problem of incor-
porating constraints for the set of allowed subpermutations is overcome by considering the iterative
CYCLICEXPANSION algorithm. It is inspired by classical a-expansion, where optimization is performed
over cyclic permutations instead of the entire solution space. This approach ensures scalability, allowing

141

Chapter 7 QUBO Size Reduction by Reformulation

for arbitrary problem sizes while remaining NISQ-aware. Moreover, initial solutions can easily be
incorporated into this algorithm.

To demonstrate the effectiveness of our method, we apply it to the FPGA-placement problem, a critical
task in chip design that significantly influences circuit performance, power consumption, and resource
utilization. Our cyclic expansion algorithm refines FPGA-placements iteratively by selecting and
optimizing cyclic permutations, seamlessly integrating hardware constraints into the selection process.
This adaptability enables optimization within the constraints of NISQ hardware. Given the increasing
complexity of FPGA architectures, traditional algorithms struggle to efficiently map functional blocks
to chip grids. For comparison with classical methods, we integrate our algorithm into the open-source
FPGA implementation software framework nextpnr. Experimental results on digital annealing devices
and quantum annealers confirm the viability of our approach.

In this work, we consider binary flow matrices and Manhattan distances between locations on the
FPGA chip. Real architectures can easily be integrated into our framework, by adapting the distance
matrix and flow matrix correspondingly. Furthermore, our experiments are conducted on randomly
generated problems as well as a small real-world circuit (CRC-32). We defer the investigation of
large-scale use-cases as well as additional performance metrics such as the maximum clock rate of the
final chip design to follow-up work, since we were more interested in theoretical properties.

142

CHAPTER 8

Conclusion

In recent years, ML has made remarkable advancements, enabling breakthroughs in various fields
including computer vision, natural language processing, and scientific discovery. However, as datasets
grow in scale and complexity, the underlying data properties—such as high dimensionality, potential
outliers, and noise—pose significant challenges for traditional optimization methods. This limits the
efficiency and scalability of ML models in the absence of extensive computing resources. QC offers a
fundamentally new approach to tackle such problems by leveraging quantum mechanical effects. QO, in
particular, holds the promise of efficiently solving CO tasks that are intractable for classical algorithms.
However, the limitations of current NISQ devices, such as limited qubit availability and noise-induced
errors, restrict the practical application of QO to real-world problems.

In this thesis, we investigated the relationship between the underlying data of a problem setting
and the corresponding QO performance on NISQ devices. The primary goal was to address the
computational challenges posed by NISQ hardware: the limited qubit availability and proneness to
errors. By systematically analyzing the effects of data complexity on QO solvability and proposing
strategies to mitigate these challenges, we developed an efficient framework for preprocessing QUBO
problems. Regarding the limited scale of NISQ devices, we presented efficient, iterative algorithms
for reducing the problem size. We outline the specific steps in the next section and conclude with a
discussion on the broader impact of our work, along with potential future research directions.

8.1 Summary

In the first part of the thesis, we explored how data complexity impacts QUBO solvability, with a
focus on SG analysis as a key metric for AQC performance in Chapter 3. For this, we examined
QUBO embeddings of different ML tasks with a combinatorial nature. Through a detailed study of
the corresponding QUBOs, we demonstrated that data complexity characteristics like separability and
compactness directly influence the convergence behavior of QO algorithms. Interestingly, the results
did not directly align with our intuition that a harder underlying problem also leads to worse solvability
on quantum hardware. Furthermore, we proposed a generally applicable noise mitigation technique
in Chapter 4 based on an MDP framework. Identifying the DR as a suitable precision measure, we
found that it is more general than other measures used in the literature. Moreover, we introduced a
principled B&B algorithm that iteratively adapts QUBO weights, while preserving an optimal solution.
This not only enhanced the robustness of QUBO instances against quantum hardware errors but also

143

Chapter 8 Conclusion

led to optimized resource usage for classical hardware solvers. Our approach significantly improved
the reliability and accuracy of finding optimal solutions on current NISQ devices and outperforms
state-of-the-art methods for precision reduction.

The second part of the thesis focused on overcoming the problem size limitations imposed by NISQ
hardware. We introduced an iterative top-down D&C algorithm for QUBO decomposition in Chapter 5,
allowing the efficient handling of large-scale CO problems. Special care was taken in the recombination
of solutions, respecting the underlying structure of given constraints. This led to a trade-off between the
amount of global correlation and local parallelizability of small-scale problems. In contrast to this top-
down approach, a bottom-up variable and constraint generation method was developed in Chapter 6. It
is inspired by Column Generation in ILP, which aims to expand QUBO formulations dynamically while
preserving solution quality. Using LR, we proved an optimality criterion telling us when our generated
variables contain an optimal solution, leading to a potentially large reduction of the problem size.
This criterion relies on efficiently computable bounds: a lower bound can be obtained by optimizing
the LR with Linear Programming and an upper bound is given by solving hardware-aware QUBO
formuluations with NISQ hardware. The decision of which variable to add next is made by solving
a pricing problem, which can also be done efficiently for specific problem structures. Apart from
considering subproblems, we proposed different QUBO encoding strategies of the underlying problem
in Chapter 7. By considering permutation-based optimization problems, we first presented a logarithmic
encoding scheme to circumvent the quadratically large size of permutation matrices. Then, a cyclic
expansion technique was presented, which natively integrates design constraints into the choice of the
decision variables. It iteratively considers sets of disjoint cyclic permutations and solving a QUBO
indicates which of these cycles should be applied to a given permutation. Obtaining a trade-off between
problem size and number of iterations for convergence, the QUBO dimensionality can be conveniently
adapted to the quantum hardware size.

The proposed methods were validated with regard to different ML tasks and real-world use-cases.
Specifically we considered SVMs, clustering and VQ and conducted experiments with varying problem
hardness. For the latter, we stumbled across the intriguing insight that a k-medoids-based formulation
is more general than a KDE approach. For investigating the performance on real-world use-cases, we
considered problems whose large dimensionality stems from the underlying data. We first examined
the 3D scene reconstruction computer vision task of BA. For experimental evaluation, we considered
high-resolution satellite images with millions of pixels and applied our D&C algorithm for introducing
global correlations in extracted keypoints. We further presented a QUBO formulation for matching
keypoints between images, resulting in high-quality image alignment. Integrating quantum kernels into
our QUBO formulations, we obtained a combination of AQC and Quantum Gate Computing (QGC) by
projecting the image data into an exponentially large Hilbert space. To demonstrate the effectiveness of
our variable and constraint generation method, we used MAPF as an application. The goal is to find
collision free paths between multiple agents simultaneously, leading to potentially intractable problem
sizes for classical methods in finding an optimal solution. For obtaining upper bounds on the optimum
needed in our optimality criterion, we presented different hardware-aware QUBO formulations indicating
advantages over methods used in the literature. Comparing our algorithm to state-of-the-art methods, we
showed potential benefits for upcoming quantum hardware. As a last real-world large-scale CO task, we
considered the FPGA-placement, which is vital for the whole chip design process. Due to increasing chip
sizes consisting of millions of functional blocks, classical methods often need unreasonable amounts
of time and lead to unsatisfactory results. For all use-cases we conducted experiments on QA and DA
devices, proving the viability of our methods.

144

Chapter 8 Conclusion

8.2 Outlook

QO on NISQ devices is a rapidly evolving research field, with novel approaches emerging to address the
limitations of current quantum hardware. With our proposed QUBO-based methods, we have developed
effective techniques that are sensitive to data complexity by mitigating noise-induced errors while also
respecting limited scale by using problem size reductions. However, many open questions remain and
our methods for improving solvability and scalability on NISQ devices would greatly benefit from
further research.

Regarding the relation of QO solvability and the complexity of the underlying data of an ML task,
we mainly explored empirical approaches. Theoretical investigation would thus be very intriguing,
especially with respect to the SG of the problem Hamiltonian. Even though exactly determining the
SG can be notoriously hard, we have seen in Chapter 3 that bounds can be computed for estimation.
Using such bounds in combination with a similar approach to our developed precision reduction method,
it would be interesting to also develop a QUBO preprocessing method for enlarging the SG of the
corresponding Hamiltonian. With a theoretical understanding of the effect of data complexity on the SG,
one could device effective heuristics for an MDP, which could then be used by using PR [93, 94]. Apart
from a theoretical investigation, efficient heuristics could also be learned within a RL [87] framework.
Due to the continuous state and discrete action space, deep (-learning [88] would be a good candidate
for this investigation. This would not only provide us with insights into enlarging the SG but could also
improve our noise mitigation technique.

Future work for problem size reduction building upon our developed methods could include a closer
examination of the given constraints. Even though we adapted our D&C towards k-hot constraints,
different problem structures could be integrated into the recombination procedure. Concerning variable
generation, a valid initial solution could be designed more carefully in a way that respects the underlying
constraints, similar to the method of Farkas pricing [35] in classical Column Generation. For improving
Cyclic Expansion, a more informative approach on how to choose the cycles in setting up the QUBO
formulation could be chosen, leveraging knowledge on the constraints. Theoretical insights on the
convergence could be further integrated, giving us optimality guarantees. Lastly, we did not directly take
the underlying hardware topology of NISQ devices into account, but limited our investigation towards
reducing the problem size. Developing methods that take such graph topology constraints into account
could also significantly improve QO performance. For example, embedding arbitrary graph structures
into the underlying qubit topology of the D-Wave systems is achieved by chaining multiple physical
qubits together into a single logical super-qubit. Reducing such chaining would not only lead to larger
embeddable problems but also reduce hardware-induced noise.

In conclusion, this thesis provided theoretically sound and efficient algorithms for noise mitigation
through QUBO preprocessing and dimensionality reduction. The effectiveness of our approaches has
been shown through application to different ML tasks and large-scale CO use-cases. With the abstraction
of the theoretical algorithmic concept and the specific use-case, our methods can also be conveniently
adapted to different application areas. By bridging the gap between data complexity/scale and NISQ
hardware limitations, this thesis provides a solid foundation for future advancements in QO. Moreover,
the insights gained from this work are transferable to post-NISQ quantum computers, paving the way
for scalable and robust quantum algorithms in the era of fault-tolerant quantum hardware.

145

Bibliography

[1] A. Sbihi and R. W. Eglese, Combinatorial optimization and green logistics,
Annals of Operations Research 175 (2010) 159.

[2] G. Cornuejols, J. Pefia and R. Tiitiincii, Optimization methods in finance,
Cambridge University Press, 2018.

[3] A. Ahmadi-Javid, P. Seyedi and S. S. Syam, A survey of healthcare facility location,
Computers & Operations Research 79 (2017) 223.

[4] S. A. Gabriel, A. J. Conejo, J. D. Fuller, B. F. Hobbs and C. Ruiz,
Complementarity modeling in energy markets, Springer Science & Business Media, 2012.

[5] F. Neukart et al., Traffic flow optimization using a quantum annealer,
Frontiers in ICT 4 (2017) 29.

[6] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. De Freitas,
Taking the human out of the loop: A review of Bayesian optimization,
Proceedings of the IEEE 104 (2015) 148.

[7] F. Glover and M. Laguna, Tabu search, Springer, 1998.

[8] D.E. Goldberg and C. H. Kuo, Genetic algorithms in pipeline optimization,
Journal of Computing in Civil Engineering 1 (1987) 128.

[9] A.P. Punnen, The quadratic unconstrained binary optimization problem, Springer, 2022.

[10] D. Rehfeldt, T. Koch and Y. Shinano,
Faster exact solution of sparse MaxCut and QUBO problems,
Mathematical Programming Computation 15 (2023) 445.

[11] E. Alpaydin, Machine learning, MIT press, 2021.
[12] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature 521 (2015) 436.

[13] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman and G. Hinton,
Backpropagation and the brain, Nature Reviews Neuroscience 21 (2020) 335.

[14] D. Silver et al., Mastering the game of Go with deep neural networks and tree search,
Nature 529 (2016) 484.

[15] J.Jumper et al., Highly accurate protein structure prediction with AlphaFold,
Nature 596 (2021) 583.

[16] J. Achiam et al., GPT-4 technical report, arXiv preprint arXiv:2303.08774 (2023).

146

Bibliography

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]

[32]
[33]

[34]

[35]

R. Rombach, A. Blattmann, D. Lorenz, P. Esser and B. Ommer,

“High-resolution image synthesis with latent diffusion models”, Proceedings of the 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2022
10684.

J. Ho et al., “Video diffusion models”,
Advances in Neural Information Processing Systems (NeurIPS) 36, 2022 8633.

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information,
Cambridge University Press, 2010.

H. Buhrman, R. Cleve and W. Van Dam,
Quantum entanglement and communication complexity,
SIAM Journal on Computing 30 (2001) 1829.

Y. S. Weinstein, M. Pravia, E. Fortunato, S. Lloyd and D. G. Cory,
Implementation of the quantum Fourier transform, Physical Review Letters 86 (2001) 1889.

P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer, SIAM review 41 (1999) 303.

L. K. Grover, “A fast quantum mechanical algorithm for database search”,
ACM Symposium on Theory of Computing (STOC), ACM, 1996 212.

Y. Cao, J. Romero and A. Aspuru-Guzik, Potential of quantum computing for drug discovery,
IBM Journal of Research and Development 62 (2018) 1.

B. Bauer, S. Bravyi, M. Motta and G. K.-L. Chan,
Quantum algorithms for quantum chemistry and quantum materials science,
Chemical Reviews 120 (2020) 12685.

J. Biamonte et al., Quantum machine learning, Nature 549 (2017) 195.

A. Abbas et al., Challenges and opportunities in quantum optimization,
Nature Reviews Physics 6 (2024) 1.

Z. Bian, F. Chudak, W. Macready and G. Rose,
The Ising model: teaching an old problem new tricks, tech. rep., D-Wave Systems, 2010.

J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2 (2018) 79.
C. Cortes, Support-vector networks, Machine Learning (1995).

A. Saxena et al., A review of clustering techniques and developments,
Neurocomputing 267 (2017) 664.

R. Gray, Vector quantization, IEEE ASSP Magazine 1 (1984) 4.

T. Albash and D. A. Lidar, Adiabatic quantum computation,
Reviews of Modern Physics 90 (2018) 015002.

B. Triggs, P. F. McLauchlan, R. I. Hartley and A. W. Fitzgibbon,
“Bundle adjustment—a modern synthesis”,
Proceedings of the International Workshop on Vision Algorithms, Springer, 1999 298.

M. E. Liibbecke, Column generation,
Encyclopedia of Operations Research and Management Science 17 (2010) 18.

147

Bibliography

[36]
[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]

L. A. Wolsey, Integer programming, John Wiley & Sons, 2020.

R. Stern et al., “Multi-agent pathfinding: Definitions, variants, and benchmarks”,
Proceedings of the 12th International Symposium on Combinatorial Search (SoCS),
AAAI Press, 2019 151.

E. L. Lawler, The quadratic assignment problem, Management Science 9 (1963) 586.

Y. Boykov, O. Veksler and R. Zabih, Fast approximate energy minimization via graph cuts,
IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (2001) 1222.

M. Gort and J. H. Anderson, “Analytical placement for heterogeneous FPGAs”, Proceedings of
the 22nd International Conference on Field Programmable Logic and Applications (FPL),
IEEE, 2012 143.

N. Piatkowski et al.,

“Towards bundle adjustment for satellite imaging via quantum machine learning”,
Proceedings of the 25th International Conference on Information Fusion (FUSION),

IEEE, 2022 1, DOI: https://doi.org/10.23919/FUSION49751.2022.9841388.

T. Gerlach et al., “FPGA-placement via quantum annealing”, Proceedings of the 32nd
ACM/SIGDA International Symposium on Field Programmable Gate Arrays (ISFPGA),
ACM, 2024 43, DOI: https://doi.org/10.1145/3626202.36376109.

T. Gerlach and S. Miicke,

“Investigating the relation between problem hardness and QUBO properties”,

Proceedings of the 22nd International Symposium on Intelligent Data Analysis (IDA),
Springer, 2024 171, DOL: https://doi.org/10.1007/978-3-031-58553-1_14.

T. Gerlach et al., “Quantum optimization for FPGA-placement”, Proceedings of the 2024 IEEE
International Conference on Quantum Computing and Engineering (OQCE), IEEE, 2024 637,
DOI: https://doi.org/10.1109/QCE60285.2024.00080.

S. Miicke, T. Gerlach and N. Piatkowski, Optimum-preserving QUBO parameter compression,
Quantum Machine Intelligence 7 (2025) 1,
DOIL: https://doi.org/10.1007/s42484-024-00219-3.

T. Gerlach, L. K. Lee, F. Barbaresco and N. Piatkowski,

“Hybrid quantum-classical multi-agent pathfinding”,

Proceedings of the 42nd International Conference on Machine Learning (ICML), To appear,
PMLR, 2025, DOI: https://doi.org/10.48550/arXiv.2501.14568.

T. Gerlach and N. Piatkowski, “Dynamic range reduction via branch-and-bound”, Proceedings
of the 2025 IEEE International Conference on Quantum Computing and Engineering (QCE),
To appear, IEEE, 2025, DOI: https://doi.org/10.48550/arXiv.2409.10863.

T. Gerlach, S. Miicke and C. Bauckhage, “Kernel k-Medoids as General Vector Quantization”,
Proceedings of the 2025 IEEE International Conference on Quantum Artificial Intelligence
(QAl), To appear, IEEE, 2025,

DOIL: https://doi.org/10.48550/arXiv.2506.04786.

S. Boyd and L. Vandenberghe, Convex optimization, Cambridge university press, 2004.
B. H. Korte, J. Vygen, B. Korte and J. Vygen, Combinatorial optimization, Springer, 2011.

148

https://doi.org/https://doi.org/10.23919/FUSION49751.2022.9841388
https://doi.org/https://doi.org/10.1145/3626202.3637619
https://doi.org/https://doi.org/10.1007/978-3-031-58553-1_14
https://doi.org/https://doi.org/10.1109/QCE60285.2024.00080
https://doi.org/https://doi.org/10.1007/s42484-024-00219-3
https://doi.org/https://doi.org/10.48550/arXiv.2501.14568
https://doi.org/https://doi.org/10.48550/arXiv.2409.10863
https://doi.org/https://doi.org/10.48550/arXiv.2506.04786

Bibliography

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

M. Eskandarpour, P. Dejax, J. Miemczyk and O. Péton,
Sustainable supply chain network design: An optimization-oriented review,

Omega 54 (2015) 11.
M. L. Pinedo, Scheduling, Springer, 2012.

S. Held, B. Korte, D. Rautenbach and J. Vygen, Combinatorial optimization in VLSI design,
Combinatorial Optimization (2011) 33.

G. Ausiello et al., Complexity and approximation: Combinatorial optimization problems and
their approximability properties, Springer Science & Business Media, 2012.

A. Lucas, Ising formulations of many NP problems, Frontiers in physics 2 (2014) 5.

G. Kochenberger, F. Glover, B. Alidaee and K. Lewis,
Using the unconstrained quadratic program to model and solve Max 2-SAT problems,
International Journal of Operational Research 1 (2005) 89.

T. Stollenwerk, E. Lobe and M. Jung, “Flight gate assignment with a quantum annealer”,
International Workshop on Quantum Technology and Optimization Problems, Springer, 2019
99.

C. Bauckhage, N. Piatkowski, R. Sifa, D. Hecker and S. Wrobel,
“A QUBO formulation of the k-medoids problem”,

Proceedings of the Conference on “Lernen, Wissen, Daten, Analysen” (LWDA),
CEUR-WS.org, 2019 54.

C. Bauckhage, C. Ojeda, R. Sifa and S. Wrobel,

“Adiabatic quantum computing for kernel £ = 2 means clustering”,
Proceedings of the Conference on “Lernen, Wissen, Daten, Analysen” (LWDA),
CEUR-WS.org, 2018 21.

S. Miicke, R. Heese, S. Miiller, M. Wolter and N. Piatkowski,
Feature selection on quantum computers, Quantum Machine Intelligence 5 (2023) 11.

P. M. Pardalos and S. Jha,
Complexity of uniqueness and local search in quadratic 0-1 programming,
Operations Research Letters 11 (1992) 119.

S. Kirkpatrick, C. D. Gelatt Jr and M. P. Vecchi, Optimization by simulated annealing,
Science 220 (1983) 671.

L. Gurobi Optimization, Gurobi Optimizer Reference Manual, 2025,
URL: https://www.gurobi.comn.

IBM Corporation, IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, 2025, URL:
https://www.ibm.com/products/ilog-cplex—optimization—studio.

G. Kochenberger et al., The unconstrained binary quadratic programming problem: A survey,
Journal of Combinatorial Optimization 28 (2014) 58.

S. G. Brush, History of the Lenz-Ising model, Reviews of Modern Physics 39 (1967) 883.

N. Mohseni, P. L. McMahon and T. Byrnes,
Ising machines as hardware solvers of combinatorial optimization problems,
Nature Reviews Physics 4 (2022) 363.

149

https://www.gurobi.com
https://www.ibm.com/products/ilog-cplex-optimization-studio

Bibliography

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

W. A. Borders et al., Integer factorization using stochastic magnetic tunnel junctions,
Nature 573 (2019) 390.

T. Byrnes, K. Yan and Y. Yamamoto,
Accelerated optimization problem search using Bose—Einstein condensation,
New Journal of Physics 13 (2011) 113025.

S. Matsubara et al., “Digital annealer for high-speed solving of combinatorial optimization
problems and its applications”,

Proceedings of the 25th Asia and South Pacific Design Automation Conference (ASP-DAC),
IEEE, 2020 667.

S. Miicke, N. Piatkowski and K. Morik,
“Learning bit by bit: Extracting the essence of machine learning.”,

Proceedings of the Conference on “Lernen, Wissen, Daten, Analysen” (LWDA),
CEUR-WS.org, 2019 144.

H. Kagawa et al.,

“Fully-pipelined architecture for simulated annealing-based QUBO solver on the FPGA”,
Proceedings of the 8th International Symposium on Computing and Networking (CANDAR),
IEEE, 2020 39.

R. Yasudo et al., “Adaptive bulk search: Solving quadratic unconstrained binary optimization
problems on multiple GPUs”,
Proceedings of the 49th International Conference on Parallel Processing (ICPP), ACM, 2020 1.

M. Tao et al., “A work-time optimal parallel exhaustive search algorithm for the QUBO and the
Ising model, with GPU implementation”, Proceedings of the 2020 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), IEEE, 2020 557.

Y. Yamamoto, T. Leleu, S. Ganguli and H. Mabuchi,
Coherent Ising machines—Quantum optics and neural network Perspectives,
Applied Physics Letters 117 (2020).

S. H. G. Mastiyage Don, Y. Inui, S. Kako, Y. Yamamoto and T. Aonishi,
Mean-field coherent Ising machines with artificial Zeeman terms,
Journal of Applied Physics 134 (2023).

V. Vapnik, The nature of statistical learning theory, Springer science & business media, 2013.

J. Mercer,
Functions of positive and negative type, and their connection the theory of integral equations,
Philosophical Transactions of the Royal Society of London 209 (1909) 415.

M. Schuld and F. Petruccione, Supervised learning with quantum computers, vol. 17,
Springer, 2018.

S. Lloyd, Least squares quantization in PCM,

IEEE Transactions on Information Theory 28 (1982) 129.

R. Jenssen, J. C. Principe, D. Erdogmus and T. Eltoft, The Cauchy—Schwarz divergence and
Parzen windowing: Connections to graph theory and Mercer kernels,
Journal of the Franklin Institute 343 (2006) 614.

150

Bibliography

[82]

[83]

[84]

[85]

[86]

[87]
[88]
[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

S. Kullback and R. A. Leibler, On information and sufficiency,
The Annals of Mathematical Statistics 22 (1951) 79.

C. Bauckhage, R. Ramamurthy and R. Sifa, “Hopfield networks for vector quantization”,
Proceedings of the 29th International Conference on Artificial Neural Networks (ICANN),

Springer, 2020 192.

T. Lehn-Schigler, A. Hegde, D. Erdogmus and J. C. Principe,
Vector quantization using information theoretic concepts, Natural Computing 4 (2005) 39.

J.-W. Xu, A. R. Paiva, I. Park and J. C. Principe,
A reproducing kernel Hilbert space framework for information-theoretic learning,
IEEE Transactions on Signal Processing 56 (2008) 5891.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf and A. Smola,
A kernel two-sample test, The Journal of Machine Learning Research 13 (2012) 723.

D. Bertsekas, Reinforcement learning and optimal control, vol. 1, Athena Scientific, 2019.
C. J. Watkins and P. Dayan, Q-learning, Machine Learning 8 (1992) 279.

R. S. Sutton, D. McAllester, S. Singh and Y. Mansour,
“Policy gradient methods for reinforcement learning with function approximation”, 1999 1057.

R. Bellman, A Markovian decision process,

Indiana University Mathematics Journal 6 (1957) 679.

R. Bellman, On the theory of dynamic programming,
Proceedings of the National Academy of Sciences 38 (1952) 716.

H. Van Hasselt, A. Guez and D. Silver, “Deep reinforcement learning with double g-learning”
Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), 1,

AAAI Press, 2016.

)

D. P. Bertsekas, J. N. Tsitsiklis and C. Wu, Rollout algorithms for combinatorial optimization,

Journal of Heuristics 3 (1997) 245.

D. Bertsekas, Rollout, policy iteration, and distributed reinforcement learning,

Athena Scientific, 2021.

V. Steinbiss, B.-H. Tran and H. Ney, “Improvements in beam search”,
Proceedings of the 3rd International Conference on Spoken Language Processing (ICLSP),

ISCA, 1994 2143.

A. D. King et al., Computational supremacy in quantum simulation,

arXiv preprint arXiv:2403.00910 (2024).

A. D. King et al., Beyond-classical computation in quantum simulation,

Science (2025) eado6285.

D. Coppersmith, An approximate Fourier transform useful in quantum factoring,

arXiv preprint quant-ph/0201067 (2002).

V. Havlicek et al., Supervised learning with quantum-enhanced feature spaces,

Nature 567 (2019) 209.

151

Bibliography

[100]

[101]
[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster and J. I. Latorre,
Data re-uploading for a universal quantum classifier, Quantum 4 (2020) 226.

M. Born and V. Fock, Beweis des adiabatensatzes, Zeitschrift fiir Physik 51 (1928) 165.

E. Farhi, J. Goldstone, S. Gutmann and M. Sipser, Quantum computation by adiabatic evolution,
arXiv preprint quant-ph/0001106 (2000).

J. Roland and N. J. Cerf, Quantum search by local adiabatic evolution,
Physical Review A 65 (2002) 042308.

D. Aharonov et al.,
Adiabatic quantum computation is equivalent to standard quantum computation,

SIAM Review 50 (2008) 755.

B. Altshuler, H. Krovi and J. Roland,
Adiabatic quantum optimization fails for random instances of NP-complete problems,
arXiv preprint arXiv:0908.2782 (2009).

T. S. Cubitt, D. Perez-Garcia and M. M. Wolf, Undecidability of the spectral gap,
Nature 528 (2015) 207.

A. Peruzzo et al., A variational eigenvalue solver on a photonic quantum processor,
Nature Communications 5 (2014) 4213.

J. Tilly et al., The variational quantum eigensolver: a review of methods and best practices,
Physics Reports 986 (2022) 1.

Y. Cao et al., Quantum chemistry in the age of quantum computing,
Chemical Reviews 119 (2019) 10856.

A. Kandala et al.,
Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,
Nature 549 (2017) 242.

E. Farhi, J. Goldstone and S. Gutmann, A quantum approximate optimization algorithm,
arXiv preprint arXiv:1411.4028 (2014).

S. Hadfield et al., From the quantum approximate optimization algorithm to a quantum
alternating operator ansatz, Algorithms 12 (2019) 34.

H. F. Trotter, On the product of semi-groups of operators,
Proceedings of the American Mathematical Society 10 (1959) 545.

M. J. Powell, A direct search optimization method that models the objective and constraint
functions by linear interpolation, Springer, 1994.

J. C. Spall, An overview of the simultaneous perturbation method for efficient optimization,
Johns Hopkins APL Technical Digest 19 (1998) 482.

B. Apolloni, C. Carvalho and D. De Falco, Quantum stochastic optimization,
Stochastic Processes and their Applications 33 (1989) 233.

B. Apolloni, N. Cesa-Bianchi and D. De Falco,
“A numerical implementation of “quantum annealing””, Proceedings of the 2nd International
Conference on Stochastic Processes, Physics and Geometry, World Scientific, 1990 97.

9999

152

Bibliography

[118]

[119]

[120]
[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

T. Kadowaki and H. Nishimori, Quantum annealing in the transverse Ising model,
Physical Review E 58 (1998) 5355.

J. Brooke, D. Bitko, Rosenbaum and G. Aeppli, Quantum annealing of a disordered magnet,
Science 284 (1999) 779.

M. Johnson et al., Quantum annealing with manufactured spins, Nature 473 (2011) 194.

T. Lanting et al., Entanglement in a quantum annealing processor,
Physical Review X 4 (2014) 1.

L. Henriet et al., Quantum computing with neutral atoms, Quantum 4 (2020) 327.

D. Crawford, A. Levit, N. Ghadermarzy, J. S. Oberoi and P. Ronagh,
Reinforcement learning using quantum boltzmann machines,
Quantum Information & Computation 18 (2018) 51.

A. Levit et al., Free energy-based reinforcement learning using a quantum processor,
arXiv preprint arXiv:1706.00074 (2017).

A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. Sloane,
Quantum error correction via codes over GF(4),
IEEE Transactions on Information Theory 44 (1998) 1369.

W. H. Zurek, Decoherence, einselection, and the quantum origins of the classical,
Reviews of Modern Physics 75 (2003) 715.

K. Temme, S. Bravyi and J. M. Gambetta, Error mitigation for short-depth quantum circuits,
Physical Review Letters 119 (2017) 180509.

L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems,
Physical Review A 58 (1998) 2733.

B. Fauseweh, Quantum many-body simulations on digital quantum computers: State-of-the-art
and future challenges, Nature Communications 15 (2024) 2123.

D. Peral-Garcia, J. Cruz-Benito and F. J. Garcia-Pefalvo,
Systematic literature review: Quantum machine learning and its applications,
Computer Science Review 51 (2024) 100619.

M. Kjaergaard et al., Superconducting qubits: Current state of play,
Annual Review of Condensed Matter Physics 11 (2020) 3609.

C. D. Bruzewicz, J. Chiaverini, R. McConnell and J. M. Sage,
Trapped-ion quantum computing: Progress and challenges, Applied Physics Reviews 6 (2019).

S. Slussarenko and G. J. Pryde, Photonic quantum information processing: A concise review,
Applied Physics Reviews 6 (2019).

M. A. Quantum et al., Interferometric single-shot parity measurement in InAs—Al hybrid devices,
Nature 638 (2025) 651.

V. Guruswami and P. Raghavendra, Hardness of learning halfspaces with noise,
SIAM Journal on Computing 39 (2009) 742.

S. Dooley, G. Kells, H. Katsura and T. C. Dorlas,
Simulating quantum circuits by adiabatic computation: Improved spectral gap bounds,
Physical Review A 101 (2020) 042302.

153

Bibliography

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

M. H. Amin and V. Choi,
First-order quantum phase transition in adiabatic quantum computation,

Physical Review A 80 (2009) 062326.

M. Werner, A. Garcia-Sdez and M. P. Estarellas,
Bounding first-order quantum phase transitions in adiabatic quantum computing,
Physical Review Research 5 (2023) 043236.

V. Choi, The effects of the problem Hamiltonian parameters on the minimum spectral gap in
adiabatic quantum optimization, Quantum Information Processing 19 (2020) 90.

A. Braida and S. Martiel, Anti-crossings and spectral gap during quantum adiabatic evolution,
Quantum Information Processing 20 (2021) 260.

K. S. Rai, J.-F. Chen, P. Emonts and J. Tura,
Spectral gap optimization for enhanced adiabatic state preparation,
arXiv preprint arXiv:2409.15433 (2024).

S. Nagies et al., Boosting quantum annealing performance through direct polynomial
unconstrained binary optimization, arXiv preprint arXiv:2412.04398 (2024).

C. Roch, A. Impertro and C. Linnhoff-Popien,
“Cross entropy optimization of constrained problem Hamiltonians for quantum annealing”,
International Conference on Computational Science (ICCS), Springer, 2021 60.

C. Roch, D. Ratke, J. Niilein, T. Gabor and S. Feld, The effect of penalty factors of constrained
Hamiltonians on the eigenspectrum in quantum annealing,
ACM Transactions on Quantum Computing 4 (2023) 1.

M. S. Benkner, V. Golyanik, C. Theobalt and M. Moeller,
“Adiabatic quantum graph matching with permutation matrix constraints”,
Proceedings of the Sth International Conference on 3D Vision (3DV), IEEE, 2020 583.

E. Alessandroni, S. Ramos-Calderer, I. Roth, E. Traversi and L. Aolita,
Alleviating the quantum Big-M problem, arXiv preprint arXiv:2307.10379 (2023).

D. Willsch, M. Willsch, H. De Raedt and K. Michielsen,
Support vector machines on the D-Wave quantum annealer,
Computer Physics Communications 248 (2020) 107006.

P. Date, D. Arthur and L. jPusey-Nazzaro,
QUBO formulations for training machine learning models, Scientific Reports 11 (2021) 10029.

D. Aloise, A. Deshpande, P. Hansen and P. Popat,
NP-hardness of Euclidean sum-of-squares clustering, Machine Learning 75 (2009) 245.

R. Fisher, On the “probable error” of a coefficient of correlation deduced from a small sample.,
Metron 1 (1921) 3.

J. E. Dennis Jr and R. E. Welsch, Techniques for nonlinear least squares and robust regression,
Communications in Statistics-Simulation and Computation 7 (1978) 345.

J. N. Franklin, Matrix theory, Courier Corporation, 2012.

154

Bibliography

[153]

[154]

[155]

[156]
[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

Y. Choukroun, E. Kravchik, F. Yang and P. Kisilev,

“Low-bit quantization of neural networks for efficient inference”, Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), IEEE, 2019
3009.

S. Ermon, C. Gomes, A. Sabharwal and B. Selman,

“Taming the curse of dimensionality: Discrete integration by hashing and optimization”,
Proceedings of the 30th International Conference on Machine Learning (ICML), PMLR, 2013
334.

G. Brown, “A new perspective for information theoretic feature selection”, Proceedings of the
12th International Conference on Artificial Intelligence and Statistics (AISTATS), PMLR, 2009
49.

T. F. Rgnnow et al., Defining and detecting quantum speedup, Science 345 (2014) 420.

D. Oku, M. Tawada, S. Tanaka and N. Togawa,
How to reduce the bit-width of an Ising model by adding auxiliary spins,
IEEE Transactions on Computers 71 (2020) 223.

0. Seker, N. Tanoumand and M. Bodur, Digital annealer for quadratic unconstrained binary
optimization: A comparative performance analysis,
Applied Soft Computing 127 (2022) 109367.

M. Booth, S. P. Reinhardt and A. Roy,

Fartitioning optimization problems for hybrid classical/quantum execution, tech. rep.,
D-Wave Systems Inc., 2017, URL: https:
//docs.ocean.dwavesys.com/projects/gbsolv/en/latest/_downloads/
bd15a2d8£32e587e9e5997ce9d5512¢cc/gbsolv_techReport.pdf.

T. Vyskocil, S. Pakin and H. N. Djidjev,

“Embedding inequality constraints for quantum annealing optimization”, Proceedings of the
First International Workshop on Quantum Technology and Optimization Problems (QTOP),
ed. by S. Feld and C. Linnhoff-Popien, vol. 1, Springer, 2019 11.

Y. Yachi, Y. Mukasa, M. Tawada and N. Togawa,

“Efficient coefficient bit-width reduction method for ising machines”,

Proceedings of the 40th International Conference on Consumer Electronics (ICCE), IEEE, 2022
1.

G. J. Mooney, S. U. Tonetto, C. D. Hill and L. C. Hollenberg,
Mapping NP-hard problems to restricted adiabatic quantum architectures,
arXiv preprint arXiv:1911.00249 (2019).

Y. Yachi, M. Tawada and N. Togawa,
“A bit-width reducing method for Ising models guaranteeing the ground-state output”,
Proceedings of the 36th International System-on-Chip Conference (SOCC), IEEE, 2023 1.

T. Stollenwerk et al.,
Quantum annealing applied to de-conflicting optimal trajectories for air traffic management,
IEEE Transactions on Intelligent Transportation Systems 21 (2019) 285.

155

https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_downloads/bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf
https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_downloads/bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf
https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_downloads/bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf

Bibliography

[165]

[166]
[167]
[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]
[178]
[179]

[180]

[181]

A. Verma and M. Lewis,

Penalty and partitioning techniques to improve performance of QUBO solvers,
Discrete Optimization 44 (2022) 100594.

B. Seeber, Handbook of Applied Superconductivity, Volume 2, vol. 2, CRC press, 1998.
G. Ballou, Handbook for sound engineers, Taylor & Francis, 2013.

E. Boros, P. L. Hammer and G. Tavares,
Preprocessing of unconstrained quadratic binary optimization, tech. rep.,
Technical Report RRR 10-2006, RUTCOR, 2006.

M. Lewis and F. Glover, Quadratic unconstrained binary optimization problem preprocessing:
Theory and empirical analysis, Networks 70 (2017) 79.

F. Glover, M. Lewis and G. Kochenberger, Logical and inequality implications for reducing the
size and difficulty of quadratic unconstrained binary optimization problems,
European Journal of Operational Research 265 (2018) 829.

E. Boros, P. L. Hammer, R. Sun and G. Tavares, A max-flow approach to improved lower
bounds for quadratic unconstrained binary optimization (QUBO),
Discrete Optimization S (2008) 501.

P. L. Hammer, P. Hansen and B. Simeone,
Roof duality, complementation and persistency in quadratic 0—1 optimization,
Mathematical programming 28 (1984) 121.

D. Biesner, T. Gerlach, C. Bauckhage, B. Kliem and R. Sifa,

“Solving subset sum problems using quantum inspired optimization algorithms with
applications in auditing and financial data analysis”, Proceedings of the 21st IEEE International
Conference on Machine Learning and Applications (ICMLA), IEEE, 2022 903.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd,
New York, NY, USA: Cambridge University Press, 2003.

G. Rosenberg, M. Vazifeh, B. Woods and E. Haber,
Building an iterative heuristic solver for a quantum annealer,
Computational Optimization and Applications 65 (2016) 845.

G. Bass, M. Henderson, J. Heath and J. Dulny III,
Optimizing the optimizer: decomposition techniques for quantum annealing,
Quantum Machine Intelligence 3 (2021) 10.

S. Fortunato, Community detection in graphs, Physics Reports 486 (2010) 75.
S. E. Schaeffer, Graph clustering, Computer Science Review 1 (2007) 27.

S. Bravyi, A. Kliesch, R. Koenig and E. Tang,
Obstacles to variational quantum optimization from symmetry protection,
Physical review letters 125 (2020) 260505.

D. J. Egger, J. Marecek and S. Woerner, Warm-starting quantum optimization,
Quantum 5 (2021) 479.

G. G. Guerreschi, Solving quadratic unconstrained binary optimization with
divide-and-conquer and quantum algorithms, arXiv preprint arXiv:2101.07813 (2021).

156

Bibliography

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

J. Li, M. Alam and S. Ghosh,
Large-scale quantum approximate optimization via divide-and-conquer, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 42 (2022) 1852.

Y. Ruan, X. Xue and Y. Shen, Quantum image processing: opportunities and challenges,
Mathematical Problems in Engineering 2021 (2021) 6671613.

Z. Wang, M. Xu and Y. Zhang, Review of quantum image processing,
Archives of Computational Methods in Engineering 29 (2022) 737.

M. E. Haque, M. Paul, A. Ulhaq and T. Debnath,
Advanced quantum image representation and compression using a DCT-EFRQI approach,
Scientific Reports 13 (2023) 4129.

S. K. Deb and W. D. Pan,
Quantum image compression: Fundamentals, algorithms, and advances,
Computers 13 (2024) 185.

J. Mu, X. Li, X. Zhang and P. Wang,
Quantum implementation of the classical guided image filtering algorithm,
Scientific Reports 15 (2025) 493.

S. Caraiman and V. 1. Manta, Histogram-based segmentation of quantum images,
Theoretical Computer Science 529 (2014) 46.

X.-W. Yao et al.,
Quantum image processing and its application to edge detection: theory and experiment,
Physical Review X 7 (2017) 031041.

A. Geng, A. Moghiseh, C. Redenbach and K. Schladitz,
A hybrid quantum image edge detector for the NISQ era,
Quantum Machine Intelligence 4 (2022) 15.

W. Liu and L. Wang,
Quantum image edge detection based on eight-direction Sobel operator for NEQR,
Quantum Information Processing 21 (2022) 190.

N.-R. Zhou, X.-X. Liu, Y.-L. Chen and N.-S. Du,
Quantum k-nearest-neighbor image classification algorithm based on KL transform,
International Journal of Theoretical Physics 60 (2021) 1209.

S. Das, J. Zhang, S. Martina, D. Suter and F. Caruso,
Quantum pattern recognition on real quantum processing units,
Quantum Machine Intelligence 5 (2023) 16.

Y. Zhang, K. Lu, K. Xu, Y. Gao and R. Wilson,
Local feature point extraction for quantum images,
Quantum Information Processing 14 (2015) 1573.

S. Yuan, W. Lin, B. Hang and H. Meng, Quantum fast corner detection algorithm,
Quantum Information Processing 22 (2023) 313.

N. Jiang, Y. Dang and J. Wang, Quantum image matching,
Quantum Information Processing 15 (2016) 3543.

157

Bibliography

[197]

[198]

[199]

[200]

[201]
[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

M. S. Benkner et al., “Q-match: Iterative shape matching via quantum annealing”,
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
IEEE, 2021 7586.

S. Miicke and T. Gerlach, “Efficient light source placement using quantum computing”,
Proceedings of the Conference on “Lernen, Wissen, Daten, Analysen” (LWDA),
CEUR-WS.org, 2023.

D. De Santis, S. Tirone, S. Marmi and V. Giovannetti,

Optimized QUBO formulation methods for quantum computing,
arXiv preprint arXiv:2406.07681 (2024).

J. A. Montafiez-Barrera, D. Willsch, A. Maldonado-Romo and K. Michielsen,
Unbalanced penalization: A new approach to encode inequality constraints of combinatorial

problems for quantum optimization algorithms,
Quantum Science and Technology 9 (2024) 025022.

U. Von Luxburg, A tutorial on spectral clustering, Statistics and Computing 17 (2007) 395.

T. Hiner, K. E. Booth, S. E. Borujeni and E. Y. Zhu,
Solving QUBOs with a quantum-amenable branch and bound method,
arXiv preprint arXiv:2407.20185 (2024).

Y. I. Abdel-Aziz, H. Karara and M. Hauck, Direct linear transformation from comparator

coordinates into object space coordinates in close-range photogrammetry,
Photogrammetric Engineering & Remote Sensing 81 (2015) 103.

R. I. Hartley, In defense of the eight-point algorithm,
IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997) 580.

G. D. Evangelidis and C. Bauckhage,
Efficient subframe video alignment using short descriptors,
IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (2013) 2371.

T. Presles, C. Enderli, R. Bricout, F. Aligne and F. Barbaresco, “Phase-coded radar waveform
Al-based augmented engineering and optimal design by Quantum Annealing”, preprint, 2021.

D. G. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision 60 (2004) 91.

P. F. Alcantarilla, A. Bartoli and A. J. Davison, “KAZE features”,
Proceedings of the 12th European Conference on Computer Vision (ECCV), Springer, 2012 214.

P. F. Alcantarilla and T. Solutions,
Fast explicit diffusion for accelerated features in nonlinear scale spaces,
IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (2011) 1281.

D. Lang, D. W. Hogg, K. Mierle, M. Blanton and S. Roweis,
Astrometry. net: Blind astrometric calibration of arbitrary astronomical images,
The Astronomical Journal 139 (2010) 1782.

M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography,
Communications of the ACM 24 (1981) 381.

158

Bibliography

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

Y. Ke and R. Sukthankar,

“PCA-SIFT: a more distinctive representation for local image descriptors”, Proceedings of the
2004 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2004
506.

M. Doole, J. Ellerbroek and J. Hoekstra,
Estimation of traffic density from drone-based delivery in very low level urban airspace,
Journal of Air Transport Management 88 (2020) 101862.

E. Lam, P. Le Bodic, D. D. Harabor and P. J. Stuckey,

“Branch-and-cut-and-price for multi-agent pathfinding”,

Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), 2019
1289.

E. Lam, D. D. Harabor, P. J. Stuckey and J. Li, “Exact anytime multi-agent path finding using
branch-and-cut-and-price and large neighborhood search”, Proceedings of the 33rd
International Conference on Automated Planning and Scheduling (ICAPS), AAAI Press, 2023
254.

R. Sadykov, F. Vanderbeck, A. Pessoa, 1. Tahiri and E. Uchoa,
Primal heuristics for branch and price: The assets of diving methods,
INFORMS Journal on Computing 31 (2019) 251.

Q. Li, Z. Huang, W. Jiang, Z. Tang and M. Song, Quantum algorithms using infeasible solution
constraints for collision-avoidance route planning,
IEEE Transactions on Consumer Electronics (2024).

M. Ali, H. Ahmed, M. H. Malik and A. Khalique,
Multicommodity information flow through quantum annealer,
Quantum Information Processing 23 (2024) 313.

Y. Zhang, R. Zhang and A. C. Potter, QED driven QAOA for network-flow optimization,
Quantum 5§ (2021) 510.

S. Tarquini, D. Dragoni, M. Vandelli and F. Tudisco,
Testing quantum and simulated annealers on the drone delivery packing problem,
arXiv preprint arXiv:2406.08430 (2024).

E. Davies and P. Kalidindi, “Quantum algorithms for drone mission planning”,
Proceedings of Quantum Technologies for Defence and Security, SPIE, 2024 67.

M. P. Martin and S. Martin,
“Unsplittable Multi-Commodity Flow Problem via Quantum Computing”, Proceedings of the

9th International Conference on Control, Decision and Information Technologies (CoDIT),
IEEE, 2023 385.

Z. Huang, Q. Li, J. Zhao and M. Song,
Variational quantum algorithm applied to collision avoidance of unmanned aerial vehicles,
Entropy 24 (2022) 1685.

E. Ronnberg and T. Larsson,
An integer optimality condition for column generation on zero—one linear programs,
Discrete Optimization 31 (2019) 79.

159

Bibliography

[225]
[226]
[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

D. Bertsekas, Convex optimization algorithms, Athena Scientific, 2015.
G. B. Dantzig, Linear programming, Operations research 50 (2002) 42.

J. Desrosiers and M. E. Liibbecke, Branch-price-and-cut algorithms,
Encyclopedia of Operations Research and Management Science (2011) 109.

S. Choudhury, K. Solovey, M. Kochenderfer and M. Pavone,
“Coordinated Multi-Agent Pathfinding for Drones and Trucks over Road Networks”,

Proceedings of the 21th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), IFAAMAS, 2022 272.

J. Li et al., “Lifelong multi-agent path finding in large-scale warehouses”,
Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI), AAAI Press, 2021
11272.

G. Sharon, R. Stern, A. Felner and N. Sturtevant,

“Conflict-Based Search For Optimal Multi-Agent Path Finding”,

Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI), AAAI Press, 2012
563.

J. Li, Z. Chen, D. Harabor, P. J. Stuckey and S. Koenig,

“Anytime multi-agent path finding via large neighborhood search”,

Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI), 2021
4127.

J. Li, Z. Chen, D. Harabor, P. J. Stuckey and S. Koenig,

“MAPF-LNS2: Fast repairing for multi-agent path finding via large neighborhood search”,
Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI), AAAI Press, 2022
10256.

T. Huang, J. Li, S. Koenig and B. Dilkina,

“Anytime multi-agent path finding via machine learning-guided large neighborhood search”,
Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI), AAAI Press, 2022
9368.

J. Y. Yen, Finding the k shortest loopless paths in a network,
Management Science 17 (1971) 712.

A. M. Geoffrion, “Lagrangean relaxation for integer programming”,
Approaches to integer programming, Springer, 2009 82.

H. Ma, D. Harabor, P. J. Stuckey, J. Li and S. Koenig,

“Searching with consistent prioritization for multi-agent path finding”,

Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), AAAI Press, 2019
7643.

M. F. Anjos and F. Liers, Global approaches for facility layout and VLSI floorplanning,
Springer, 2012.

D. Feld, FieldPlacer-A flexible, fast and unconstrained force-directed placement method for
heterogeneous reconfigurable logic architectures, Fraunhofer Verlag, 2017.

160

Bibliography

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]
[253]

T. C. Koopmans and M. Beckmann,
Assignment problems and the location of economic activities,
Econometrica: Journal of the Econometric Society (1957) 53.

V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for FPGA research”,
International Workshop on Field Programmable Logic and Applications, Springer, 1997 213.

A. Ludwin and V. Betz, Efficient and deterministic parallel placement for FPGAs,
ACM Transactions on Design Automation of Electronic Systems 16 (2011) 1.

T.-H. Lin, P. Banerjee and Y.-W. Chang,
“An efficient and effective analytical placer for FPGAs”,
Proceedings of the 50th Design Automation Conference (DAC), IEEE, 2013 1.

M. A. Breuer, “A class of min-cut placement algorithms”,
Proceedings of the 14th Design Automation Conference (DAC), IEEE, 1977 284.

P. Maidee, C. Ababei and K. Bazargan,
Timing-driven partitioning-based placement for island style FPGAs, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 24 (2005) 395.

C.-W. Pui, G. Chen, Y. Ma, E. F. Young and B. Yu,

“Clock-aware ultrascale FPGA placement with machine learning routability prediction”,
Proceedings of the 2017 International Conference on Computer-Aided Design (ICCAD),
IEEE, 2017 929.

M. A. Elgamma, K. E. Murray and V. Betz,
“Learn to place: FPGA placement using reinforcement learning and directed moves”,

Proceedings of the 2020 International Conference on Field-Programmable Technology (FPT),
IEEE, 2020 85.

H. Bhatia et al., “CCuantuMM: Cycle-consistent quantum-hybrid matching of multiple shapes”,
Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(ICCV), IEEE, 2023 1296.

X. Guo, T. Wang, Z. Chen, L. Wang and W. Zhao,

“Fast FPGA placement algorithm using quantum genetic algorithm with simulated annealing”,
Proceedings of the 8th International Conference on ASIC (ASICON), IEEE, 2009 730.

A. U. Khalid, Z. Zilic and K. Radecka, “FPGA emulation of quantum circuits”,

Proceedings of the 22nd IEEE International Conference on Computer Design (ICCD),

IEEE, 2004 310.

J. Pilch and J. Dtugopolski, An FPGA-based real quantum computer emulator,
Journal of Computational Electronics 18 (2019) 329.

Y. Xu et al., QubiC: An open-source FPGA-based control and measurement system for
superconducting quantum information processors,
IEEE Transactions on Quantum Engineering 2 (2021) 1.

H. Liitkepohl, Handbook of matrices, John Wiley & Sons, 1997.

I. Rosenberg, Reduction of bivalent maximization to the quadratic case,
Cahiers du Centre d’Etudes de Recherche Opérationnelle 17 (1975) 71.

161

Bibliography

[254]

[255]

[256]

[257]

[258]

E. Boros and A. Gruber, On quadratization of pseudo-boolean functions,
arXiv preprint arXiv:1404.6538 (2014).

A. Verma, M. Lewis and G. Kochenberger,
Efficient qubo transformation for higher degree pseudo boolean functions,
arXiv preprint arXiv:2107.11695 (2021).

S. T. Rajavel and A. Akoglu,

“An analytical energy model to accelerate FPGA logic architecture investigation”,
Proceedings of the 2011 International Conference on Field-Programmable Technology (FPT),
IEEE, 2011 1.

S. Sahni and T. Gonzalez, P-complete approximation problems,
Journal of the ACM (JACM) 23 (1976) 555.

D. Shah et al.,

“Yosys+ nextpnr: an open source framework from verilog to bitstream for commercial fpgas”,
Proceedings of the 27th International Symposium on Field-Programmable Custom Computing
Machines (FCCM), IEEE, 2019 1.

162

List of Figures

1.1

2.1
22

23
24

25

Structural overview of this thesis. We investigate the relation between the underlying
data of a problem setting and the consequential performance of QO techniques for NISQ
devices. A schematic representation of clustering is used for representing a generally
hard optimization task. In the first part of this thesis, we delve into the effect of data
complexity on the solvability for QO (a) and develop a generally applicable noise-
reduction method, coping with the proneness to errors of current NISQ devices (b).
Furthermore, we propose theoretically sound problem size reduction techniques in part
two, which are indispensable due to the possibly huge scale of data for real-world
use-cases and the limited size of NISQ hardware. An efficient top-down problem
decomposition algorithm is developed (c), while we also consider a bottom-up variable
generation approach for controlling the problem size (d). Finally, we explore size
reduction by using efficient reformulations of the problem (e). Overview figures for the
single chapters—similar to this one—can be found in the respective introductions. Our
developed methods help to improve the performance of QO in the NISQ era and beyond. 4

Schematic representation of three different ML tasks: SVM (a), clustering (b) and VQ

(c). See Abschnitte 2.3.1 und 2.3.2 formore details. 15
State comparison between a classical bitandaqubit. 24
Exemplary 2-qubit quantum circuits.o e e 27

Circuit for computing the quantum kernel matrix. Given data points x, ' € Rd, the
d-qubit basis state |O>®d is prepared. First x is encoded into the circuit by applying
Uy (), leading to a feature representation in the quantum state. Similarly, ' is encoded
by using Z/{(I7 (@) and through measurements of the outcome with respect to the projection
operator [0)“% (0|“?, we can estimate the kernel value K (@, @), 28
VQA pipeline overview: A parameterized quantum circuit is optimized w.r.t. the
expectation of an observable in a hybrid quantum-classical loop. As an example, we
depict the QAOA circuit along with the objective of finding a minimum eigenstate of
the problem Hamiltonian Hp. 32

163

List of Figures

3.1

3.2

33

34

3.5

3.6

3.7

3.8

39

3.10

3.11

4.1

Schematic depiction of the effect of data complexity on QUBO solvability with QO.
We are given some CO problem—in this case biclustering—which is embedded into a
QUBO formulation. Properties describing the complexity of the underlying data (e. g.
separability or compactness) affect the properties of the corresponding QUBO matrix,
such as the optimum energy gap (see Gleichung (3.11)). These properties then affect the
performance of quantum hardware in solving the QUBO, in terms of the optimum SG
of the corresponding quantum Hamiltonian. Thus, we investigate the relation between
data complexity and corresponding QUBO properties.
Distribution of the first dimension of the 2-dimensional synthetic data used for our
experiments (before applying the rotation): Two clusters are sampled such that there is a
separating margin of at least size D between them. The parameter w controls the spread
of data points, while 7 is the ratio between the number of data points in the first vs. the
second CluSter. e e e e e
Exemplary instances of the datasets used for our experiments.

SG of QUBO instances according to Satz 3.3 against maximum separating margin size
D for CONES; w = 0.2, p = 0.5 fixed, 1000 random datasets with n € {8, 20,32} and
D € [0, 1] uniformly sampled. The yellow curve is a fitted quadratic function.
SG of QUBO instances according to Satz 3.3 against maximum separating margin size
D for CIRCLES; o = 0.05, p = 0.5 fixed, 1000 random datasets with n € {8, 20, 32}
and r € [0, 1] uniformly sampled. The yellow curve is a fitted quadratic function.

SG of QUBO instances according to Satz 3.3 against cluster ratio for CONES; D =
0.5, w = 0.2 fixed, 1000 random datasets for n € {8,20,32} and p € [0.1,0.5]
uniformly sampled. e e e
SG of QUBO instances according to Satz 3.3 against spread for CONES; D = 0.5, p =
0.5 fixed, 1000 random datasets for n € {8,20, 32} and w € [0, 1] uniformly sampled.
SG of QUBO instances according to Satz 3.2 against maximum separating margin size
D for CONES. Same configuration as for Abb.3.4.
SG of QUBO instances according to Satz 3.2 against maximum separating margin size
D for CIRCLES. Same configuration as for Abb.3.5.
SG of QUBO instances according to Satz 3.2 against A and C for CONES; w = 0.2, p =
0.5 fixed, 10 000 random datasets for n € {8,20,32} and A € [0,100], C' € [0,0.1]
uniformly sampled. e e e e e e
Same as Abb. 3.10, zoomedinon A € [0,10].

[llustration of parameter perturbation for finite precision hardware and the mitigation
with our proposed preprocessing method. When we upload the original QUBO @ to the
hardware solver, it is perturbed through quantization errors which can lead to spurious
optima of the resulting perturbed QUBO Q, i.e. z, # Z,. Our proposed preprocessing
method mitigates this effect by transforming @ into a QUBO Q' which is more robust
against hardware errors, while preserving the optimal solution, i.e. z, = z, = Z.. . . .

164

48

50

50

50

52
52

55

List of Figures

4.2

4.3
4.4
4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

[lustration of Satz 4.5: The orange bars indicate the interval the global optimum must
fall into. When the lower bound for a subspace B}, is greater than an upper bound of
any other subspace, we can conclude that Z;;, 1, (Q) does not contain an optimizer (a).
On the other hand, when an the upper bound for a subspace B}, is lower than the
lower bounds of all other subspaces, we can conclude that an optimizer is in Z5;, 11 (Q)

(b). For the above example, wesetab=11. 62
Sorted QUBO parameters of the matrix given in Gleichung (4.26). Duplicates are

indicated as vertically stacked points. 67
Change of QUBO parameter (g3. . . . v v v v v v v v v e e e e 68

lustration of the MDP described in Abschnitt 4.3.3. Every step ¢, we choose an action
a; in form of an index pair and update our state s; to s;,; to obtain a matrix with a
smaller DR. The goal is to maximize the value function V™. 68
Exemplary depiction of the search space when applying our B&B algorithm (Ab-
schnitt 4.3.4) to some QUBO matrix Q. In every step, we expand our search space (from
top to bottom, Abschnitt 4.3.4) and check whether a branch can be pruned (r* < #, Ab-
schnitt 4.3.4). The small filled circles indicate the visited states of our algorithm and
the pruned parts are depicted as gray dashed lines. The fraction of pruned states is
40/85 = 0.47 (without rollout). Since the search space size grows exponentially with
the horizon T" = 5, we execute a PR (Abschnitt 4.3.4) for T=2 steps. From here on, a
base policy is followed without expanding further, which is depicted in blue. The red
path indicates the optimal solution and the yellow path shows the base policy. 70
Sorted QUBO matrix entries given in Beispiel 3. Heuristic A is depicted in Abb. 4.7(a)
and the methods for finding a lower bound on the DR are given in Abb. 4.7(b) und 4.7(c). 71

Dynamic range ratio for random QUBO instances with sizes n € {4,8,12,16}. 74
State ordering for random QUBO instances with sizes n € {4,8,12,16}. 75
Distance between parameter orderings for random QUBO instances with sizes n €
{4,8,12,16}. Note that the line for method M (random) is constantly 0. 75
Percentage of unique parameter values for random QUBO instances with sizes n €
{4,8,12,16}. Note that the line for method M (random) is constantly 1. 76

Relative DR reduction for 100 BICLUS instances with n = 8 (first and third column
plot) and n = 16 (second and fourth column plot). Different policies are compared for
choosing the indices with ALL (left) and IMPACT (right). 79
Comparison between absolute DR and log,(CR) reduction for n = 8 and IMPACT indices. 79
Fraction of pruned states. Different depths (2, 4, 6 and 8) for updating the current best
DR are compared for n = 8 (left) and n = 16 (right). 80
Performance of our developed policy 7 compared to the base policy 7 and the random-
ized base policy 7. The DR reduction is compared for a SUBSUM (left), a BICLUS
(middle) and a VECQUANT (right) instance. 80
QUBO parameter matrices for BICLUS, SUBSUM and VECQUANT problems, original
(left), using the greedy policy (middle) and applying our B&B algorithm (right) for
100 iterations. Notice that the difference in DR is illustrated by the color scale, which
renders most parameter values in the original QUBO matrices indistinguishable, which
is greatly improved, especially on theright. 81

165

List of Figures

4.17 Performance of the D-Wave Advantage 5.4 (top row) and an FPGA-based digital an-

5.1

5.2

53

54

5.5

5.6

5.7

nealer with 4-bit precision (bottom row): we compare the original QUBO @ (Orig),
the QUBO using the greedy base policy (GRE) for 100 steps f1(Q, 7), the method
in [146] (PEN) for computing the penalty, the method of adding auxiliary variables
(AUX) [157] and our rollout selection policy for 100 steps f199(Q, 7). The relative
energies vg for 1000 samples are shown for a SUBSUM (left), a BICLUS (middle) and
a VECQUANT (right) instance. o v vt i v ittt e et e oo

Overview of our proposed recursive Divide-and-Conquer algorithm for reducing the
problem size of a given QUBO instance. A large dataset or feature dimensionality can
lead to a huge QUBO matrix size, intractable to be solved on current intermediate-
scale quantum hardware (a). The large problem is iteratively split into independent
subproblems (divide) until it is solvable with a quantum device (conquer) (b). Since
independent subproblems only consider locality, global information is introduced by
using current solutions for further subproblem generation (c). Finally, all solutions are
combined for obtaining a solution to the original QUBO instance (d)..
Exemplary feature map for three qubits. The ZZFeatureMap is depicted, that is
Uy (z) Gleichung (5.10) with ¢ (z) = x; and ¢y (x) = (7 — ;) (7 — 25).
Keypoint extraction is done by subsequently computing prototype pixels on subimages
by solving the QUBOs given in Abschnitt 5.4.1 using the digital annealers. The image
is first split into 32 x 32 image patches of size 29 x 22 pixels and ten keypoints are
extracted on every patch. The resulting prototypes are then grouped into 8 x 8 grids
of size 4 x 4 to obtain keypoint sets of size 160 shown in (a) and (b). We extract 20
keypoints on each of these sets and group the resulting prototypes into 2 x 2 grids of
size 4 x 4 to obtain keypoint sets of size 320 (c). Lastly, 45 prototypes are computed on
these sets to obtain the final set of 180 keypoints (d). Results for KMEDVQ are depicted
in red, MDVQ in light blue and coincident keypoints in purple.
Extraction of 10 keypoints on 29 x 22 patches with MDVQ: Comparison between
Gaussian and quantum kernel. L. oL Lo oo
Comparison of kernel matrices computed on an exemplary 8 x 8 image patch shown
in Abb. 5.6(e). Specifics on the used kernel from left to right: Gaussian kernel, quantum
kernel computed with simulation, quantum kernel computed with real quantum hard-
ware, quantum kernel computed with simulation with inputs being scaled by a factor
of s = 0.5, quantum kernel computed with real quantum hardware with inputs being
scaledbyafactorof s =0.5. L
Extraction of 10 keypoints on 8 x 8 patches: Comparison of D-Wave quantum annealer
and digital annealer. oL e
Matching of 10 keypoints on a small image excerpt solving the matching QUBO
in Satz 5.2 with the digital annealer. The right image excerpt corresponds to the left one
rotated clockwise by 20°.

166

83

100

List of Figures

6.1

6.2

6.3
6.4

6.5

6.6

7.1

Overview of our proposed bottom-up variable generation algorithm for iteratively adding
new variables to control the problem size. First, a set of variables is initialized (a),
leading to a low-dimensional RMP. Optimizing the LR results in optimal Lagrangian
dual variables and a lower bound on the optimal value. Using the dual variables, a
pricing problem is solved classically which can be done efficiently for certain problem
structures, such as finding shortest paths (b). A variable not contained in the RMP with
minimal reduced cost is obtained by solving the pricing problem. In parallel, an upper
bound on the optimal value is obtained by solving a QUBO formulation of the RMP
with quantum hardware (c). If an optimality criterion dependent on the obtained bounds
and the minimal reduced cost is fulfilled, we obtain equivalence between the RMP and
the underlying (potentially way higher-dimensional) MP (e), that is an optimal solution
2" is already in our generated variables. If not, the variable with minimal reduced cost

is added to the RMP and steps (b)-(c) are repeated, until we obtain equivalence to the MP.104

Schematic visualization of our quantum MAPF algorithm. (a) First, initial paths are
generated for every agent with possible conflicts. (b) We enter the outer loop (separation),
where we identify conflicts between paths and add them to the problem. (c) In the pricing
step, we generate new paths for every agent and (d) find the best set of paths by solving
a QUBO problem. This inner loop is repeated until adding a new path cannot improve
the solution quality, while the outer loop is terminated when our set of chosen paths has
no conflicts. (e) By construction, a conflict-free optimal set of paths is returned.
The conflicts we are using forour MAPFsetup.
Schematic visualization of a conflict graph, which has two connected components. This
leads to the decomposition into independent subproblems with reduced problem size. .
Relative performance comparison of our methods QP-ILP, QP-QUBO, QCP-ILP and
QCP-QUBO to the baselines PPP, BCP and LNS2 on four different maps with a varying
number of agents. The relative upper bound of the optimality gap (top) is shown along
with the relative total path costs (bottom) averaged over all 25 scenarios. The lower the
better, i.e., a value of 0 corresponds to the best performance, while 1 corresponds to the
worst performing algorithm. L o
Performance comparison of different QUBO formulations for four different maps with
20-agent problems along with the optimal solution, where we run QP (Abschnitt 6.5.2)
and QCP (Abschnitt 6.5.2) for 30 pricing steps. We compare SA and QA by indicating
the total path cost of the best sample (top) and the number of infeasible solutions

(bottom), i.e. Gleichungen (6.14c) und (6.14d) are violated. The cost is scaled by 1073,

Overview of our proposed variable Cyclic Expansion algorithm. Given an initial per-
mutation (a), we choose a subproblem with a suitable size for quantum hardware (b).
Random disjoint cyclic permutations are sampled for formulating a QUBO problem,
which can then be conveniently solved with a NISQ device (c). The obtained solution
indicates which cycles should be applied to our current permutation and it is updated
accordingly (d). Steps (c) and (d) are repeated until every possible 2-cycle appeared,
while subproblems in (b) are chosen until a certain convergence criterion is met. We
end up with a valid solution with better quality than the initialization (e).

167

121

List of Figures

7.2

7.3

7.4
7.5

7.6

7.7

7.8

7.9

7.10

7.11

Flow chart of the CYCLICEXPANSION (Algorithmus 8): Given an initial permutation
(random), we choose a subproblem and iteratively sample random disjoint cycles, which
are used to formulate a QUBO problem. This QUBO formulation is solved with quantum
annealing, giving us a binary vector o™, indicating which cycle should be applied to the
current permutation. If every cycle occurred, we choose a new subproblem and repeat
this procedure until convergence. oL L e e e e e e e e e e
Ilustration of allowed 2-cycles. Shown are the current placement (left) with corres-
ponding cell types (cyan and red) and an example of legal and illegal 2-cycles (right). .
Different cell types for our fictional FPGA architecture along with plotted colors. . . .
Depicting the effect of varying %k, when £ is fixed to a certain value, comparing choos-
ing random subproblems in Line Algorithmus 8 with choosing worst performing in-
dices Gleichung (7.14). Here, k = 100 and the QAP cost is depicted over 50 iterations
used in the CYCLICEXPANSION. We compare the costs for 10 randomly generated
problems with a problem size of 100 (a) with 10 problems of size 200 (b).
Depicting the effect of varying k£ when k,, is fixed to a certain value, comparing choos-
ing random subproblems in Line Algorithmus 8 with choosing worst performing in-
dices Gleichung (7.14). Here, k,, = 30 and the QAP cost is depicted over 50 iterations
used in the CYCLICEXPANSION. We compare the costs for 10 randomly generated
problems with a problem size of 100 (a) with 10 problems of size 200 (b).
Intermediate placement results for an exemplary generic example with 100 facilities.
The initial random placement (a) is indicated along with the result of applying our
algorithm for 1 iteration (b), 10 iterations (c) and 50 iterations (d). The placement of the
two 1O facilities is fixed and the corresponding QAP costs are indicated. See Abb. 7.4
foralegend. L
Intermediate placement results for an exemplary generic example with 200 facilities.
The initial random placement (a) is indicated along with the result of applying our
algorithm for 1 iteration (b), 10 iterations (c) and 50 iterations (d). The placement of the
two IO facilities is fixed and the corresponding QAP costs are indicated. See Abb. 7.4
foralegend. L e e
Depicting the effect of varying k£ when k,, is fixed to a certain value, comparing choos-
ing random subproblems in Line Algorithmus 8 with choosing worst performing in-
dices Gleichung (7.14). Here, k,, = 30 and the QAP cost is depicted over 50 iterations
used in the CYCLICEXPANSION. We compare the costs for fixed 10 cells (a) and unfixed
IO cells (b) forthe CRC-32. e i e e e
Depicting the effect of varying k£ when k is fixed to a certain value, comparing choos-
ing random subproblems in Line Algorithmus 8 with choosing worst performing in-
dices Gleichung (7.14). Here, £ = 100 and the QAP cost is depicted over 50 iterations
used in the CYCLICEXPANSION. We compare the costs for fixed 1O cells (a) and unfixed
IO cells (b) forthe CRC-32. e e e e
Performance comparison of the hardware solvers QA and DA with SA on the CRC-32
example. We choose random subproblems and fix £ = 60 and k£ = 30. We depict the
QAP cost over 50 iterations for the CYCLICEXPANSION (a) and exemplary placements
after 50 iterations with QA (b), DA (¢c)and SA ().

168

137

138

List of Tables

2.1
2.2

4.1

5.1

7.1

Overview of frequently used kernel functions [79].
Overview of frequently used quantum gates along with their associated unitaries.

Comparison of QUBO hardware solvers using different methods (details in Abb. 4.17).
We depict the DR along with the number of optimal samples (from 1000) obtained by
QA and DA with 16, 8 and 4 bit precision. Optima are bold and dashes indicate that the
method is not applicable for the respective problem.

Keypoint extraction on ten 8 x 8 patches: Comparison of energy values between the
D-Wave quantum annealer Advantage System 5.1 (QA), simulated annealing (SA) and
digital annealing (DA). Lowerisbetter.

QAP cost comparison of our CYCLICEXPANSION method to a random placement, as
well as simulated annealing (SA) and an analytical placement (HeAP) as implemented
in nextpnr. We use the CRC-32 example and synthesize for the generic architecture.
Numbers are average QAP costs over 10 repetitions of the respective method. Lower is
better. e e e

169

	1 Introduction
	1.1 Thesis Outline
	1.2 Overview of Publications

	2 Background
	2.1 Notation and Basic Definitions
	2.1.1 Basic Linear Algebra
	2.1.2 Binary Vector Spaces
	2.1.3 Complex Vector Spaces

	2.2 Optimization
	2.2.1 Combinatorial Optimization
	2.2.2 Quadratic Unconstrained Binary Optimization
	2.2.3 Ising Model

	2.3 Machine Learning
	2.3.1 Supervised Learning
	2.3.2 Unsupervised Learning
	2.3.3 Reinforcement Learning

	2.4 Quantum Computing
	2.4.1 Quantum Gate Computing
	2.4.2 Adiabatic Quantum Computing
	2.4.3 Quantum Optimization
	2.4.4 Limitations of Quantum Hardware

	I Effects of Data Complexity on Quantum Optimization
	3 Relating Data Complexity to Solvability
	3.1 Related Work
	3.2 QUBO Embeddings for Machine Learning
	3.2.1 Integrating Linear Equality Constraints
	3.2.2 Binary Support Vector Machine
	3.2.3 Biclustering
	3.2.4 Vector Quantization

	3.3 Solvability in Terms of Spectral Gap
	3.3.1 Bounding the Spectral Gap
	3.3.2 QUBO Formulation for Spectral Gap

	3.4 Experimental Evaluation
	3.4.1 Data Setup
	3.4.2 Biclustering
	3.4.3 Binary Support Vector Machine

	3.5 Conclusion

	4 Mitigating Data Induced Noise
	4.1 Related Work
	4.2 Parameter Precision
	4.2.1 Dynamic Range
	4.2.2 Precision Reduction While Preserving Optima
	4.2.3 Bounds for Preserving Optima

	4.3 Reducing the Dynamic Range
	4.3.1 Greedy Strategy
	4.3.2 Maintaining the Parameter Ordering
	4.3.3 Markov Decision Process Formulation
	4.3.4 Branch and Bound

	4.4 Experimental Evaluation
	4.4.1 Greedy Policies for Random Instances
	4.4.2 Data Dependent QUBO Embeddings
	4.4.3 Performance of Branch-and-Bound
	4.4.4 Performance on Hardware Solvers

	4.5 Conclusion

	II Effects of Data Scale on Quantum Optimization
	5 Recursive QUBO Decomposition
	5.1 Related Work
	5.2 Incorporating Inequality Constraints
	5.3 Iteratively Solving Subproblems
	5.3.1 Choosing Subproblems
	5.3.2 Recursive Divide-and-Conquer

	5.4 Application: Bundle Adjustment
	5.4.1 Keypoint Extraction
	5.4.2 Feature Matching
	5.4.3 Quantum Kernel Methods

	5.5 Experimental Evaluation
	5.5.1 Experimental Protocol
	5.5.2 Results

	5.6 Conclusion

	6 Variable and Constraint Generation
	6.1 Related Work
	6.2 Integer Linear Programming
	6.3 Column Generation for Binary Linear Programs
	6.3.1 Pricing
	6.3.2 Separation

	6.4 Application: Multi-Agent Pathfinding
	6.4.1 Different Problem Formulations
	6.4.2 Adapting Variable Generation to MAPF

	6.5 Experimental Evaluation
	6.5.1 Benchmark Performance
	6.5.2 QUBO Comparison

	6.6 Conclusion

	7 QUBO Size Reduction by Reformulation
	7.1 Related Work
	7.2 Quadratic Assignment Problem
	7.2.1 QUBO Formulation for the QAP
	7.2.2 Logarithmic Encoding

	7.3 Cyclic Expansion
	7.4 Application: FPGA-Placement
	7.4.1 FPGA-Placement
	7.4.2 Implementation Details

	7.5 Experimental Evaluation
	7.5.1 Generic Examples
	7.5.2 CRC Example

	7.6 Conclusion

	8 Conclusion
	8.1 Summary
	8.2 Outlook

	Bibliography
	List of Figures
	List of Tables

